
Abundance of minke whales (Balaenoptera
acutorostrata) in the Northeast Atlantic:
variability in time and space

Hans J. Skaug, Nils Øien, Tore Schweder, and Gjermund Bøthun

Abstract: Regional sighting surveys with two independent observers on each vessel were conducted each year from
1996 to 2001. Northern minke whales (Balaenoptera acutorostrata) are mostly solitary animals and are only available
for observation at moments when they surface to breath. Thus, a stochastic point process model is developed for how
the data are generated. The hazard probability of initially sighting a whale that surfaces depends on relative spatial co-
ordinates and on other covariates. The parameters of the model are estimated by maximum likelihood. To account for
interannual variation in spatial distribution of minke whales, a random effects model is developed and estimated by
comparing current and past (1989 and 1995) survey data. A simulation approach is taken to remove bias from parame-
ter estimates and to assess the uncertainty in the results. For total abundance, the result is a log-normal confidence dis-
tribution with quantiles 107 205·exp(0.137z), i.e., an abundance estimate of 107 205 with a coefficient of variation of
≈0.14. Together with these and earlier survey data, past data on catch, mark–recapture, and satellite tracking are re-
viewed to elucidate distribution and migration patterns in Northeastern Atlantic minke whales.

Résumé : Chaque année, de 1996 à 2001, il y a eu des inventaires visuels régionaux avec deux observateurs indépen-
dants à bord de chaque navire. Les petits rorquals (Balaenoptera acutorostrata) sont généralement des animaux solitai-
res et ils ne sont visibles que lorsqu’ils remontent à la surface pour respirer. C’est pourquoi nous avons mis au point
un modèle de processus ponctuel stochastique pour étudier comment les données sont générées. La probabilité de ha-
sard de percevoir initialement un rorqual quand il refait surface dépend de coordonnées spatiales relatives et d’autres
covariables. Les paramètres du modèle sont estimés par une méthode de vraisemblance maximale. Un modèle à effets
aléatoires estimé par la comparaison des données d’inventaire actuelles et passées (1989 et 1995) permet de tenir
compte de la variation d’une année à l’autre de la répartition des rorquals. L’abondance totale obtenue est une distribu-
tion de confiance log-normale avec les quantiles 107 205·exp(0,137z), soit une estimation d’abondance de 107 205 avec
un coefficient de variation de ≈0,14. Un revue de ces données d’inventaire et de celles du passé, des données du passé
sur les pêches et des données de surveillance par satellite nous a servi à élucider les patterns de répartition et de
migration des petits rorquals du nord-est de l’Atlantique.

[Traduit par la Rédaction] Skaug et al. 886

Introduction

Minke whales (Balaenoptera acutorostrata) are found
throughout the North Atlantic, although their main distribu-
tion is thought to be over continental shelf areas, particularly
at its edge. They undertake feeding migrations northwards in
the spring and then enter areas of the Northeast Atlantic
(Fig. 1). Their winter distribution in the North Atlantic is
poorly known as there are few sighting records from that
time of the year. Wintering minke whales in the North At-
lantic have been reported from the northern coasts, from the
Gulf of Mexico, and from south of Bermuda (Horwood 1990).

Exploitation of minke whales in the Northeast Atlantic by
Norwegian fishermen escalated in the 1920s and reached its
peak in the 1950s with a yearly catch of some 3500 animals

(International Whaling Commission 1992). From 1959, the
exploitation declined because of harvest regulations and
came to a halt in 1987. In 1993, commercial minke whaling
was started up again under Norwegian regulation based on
the Revised Management Procedure developed by the IWC
(International Whaling Commission). The yearly catch has
been some 500 animals in the recent decennium. The abun-
dance of minke whales feeding in the North Atlantic, and its
temporal and spatial distribution, is of interest not only for
whaling management, but also for fisheries management and
ecological studies.

The first attempt to estimate the abundance of minke
whales in the Northeast Atlantic was based on catch–effort
data and yielded an estimate of about 30 000 minke whales
(Ugland 1976). Based on two recaptures from 15 minke
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whales marked in 1964 and 1965, Ugland (1976) obtained
an independent estimate of 40 700 animals. Over the period
1974–1978, a total of 333 minke whales were tagged in the
Barents Sea, and from recaptures of these tags, Christensen
and Rørvik (1981) obtained an estimate of 113 000 animals.
Of these, the number of whales recruited to the areas north
of 70°N was estimated to be 55 000. Based on the same
marking experiment, but with more years of recaptures,
Beddington et al. (1984) found point estimates of the North-
east Atlantic stock of minke whales from 81 500 to 121 000
animals based on multiyear recaptures and 66 000 based on
next-year recaptures only. The IWC concluded in 1983 that
the multiyear recapture estimates should be discarded and,
therefore, that a best estimate for the total stock should be
60 000 animals.

Schweder et al. (1997) presented two independent abun-
dance estimates of Northeast Atlantic minke whales: one

based on a combination of data from shipborne sighting sur-
veys (Fig. 2) conducted in 1988 and 1989 and the other
based on a double-platform shipborne survey carried out in
1995. Here, we present an abundance estimate based on a
series of regional sighting surveys conducted in the period
from 1996 to 2001.

The abundance estimates presented in this paper came
about in the context of regulating the harvest of minke whales
in the North Atlantic. The Norwegian reservation against the
moratorium on commercial whaling decided by IWC in 1982
makes the Norwegian minke whaling legal under international
law. In 1982, IWC also requested its Scientific Committee to
develop a management procedure for commercial harvesting
of baleen whales. This work was basically completed in 1991
with a proposed Revised Management Procedure (RMP). The
Commission has still not implemented any scheme for com-
mercial whaling (http://www.iwcoffice.org), but its Scientific
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Fig. 1. The Northeast Atlantic split into survey regions with synoptic coverage in single years. These regions coincide with the five
small areas of the International Whaling Commission (delimited by blue, solid lines): CM, EB, EC, EN, and ES, except for EB which
was covered during three different years (see blue, broken, thin line). The ice edge was read from ice charts (Norwegian Meteorologi-
cal Institute) for mid-July for the year when the adjacent survey blocks were covered.



Committee assures that the Norwegian management is carried
out according to the RMP.

A semi-Bayesian catch limit algorithm forms the core of
the RMP (International Whaling Commission 1994a,
1994b). Based on historical catch data and absolute abun-
dance estimates of the stock in question, catch limits are cal-
culated via a posterior distribution for the parameters of a
crude production model. To guard against uncertainties in
the abundance estimates that might not have been accounted
for, standard errors of abundance estimates are quadrupled in
these calculations. In the implementation, the ocean basin is
divided into medium-sized areas and then further into
smaller areas. The catch limit algorithm is applied to small
areas or to medium areas with catches distributed over small
areas in proportion to current abundance estimates. The lat-
ter method is called catch cascading. The RMP is robust
against a wide range of uncertainties concerning stock struc-
ture and status of the stock (Cooke 1999; Butterworth and
Punt 1999).

In the current RMP implementation, the North Atlantic is
split into three medium areas: west, central, and east.
Whaling is carried out in the small area CM (Fig. 1) of the
central medium area and in the four eastern small areas
(Fig. 1). For the eastern small areas, catch cascading is ap-
plied. This implementation was put in place in 1996 and was
thoroughly reviewed in 2003 by the Scientific Committee.
The implementation review centred on stock structure and
area divisions and on the abundance estimates presented here
(International Whaling Commission 2004, Annex D). The
implementation was essentially upheld.

The estimates presented here are slight modifications of
those in Skaug et al. (2002). These modifications result from
the inclusion of additional data on surfacing rates in north-
ern minke whales and also from some minor changes in

methodology. We present an abundance estimate for each of
five IWC small areas (Fig. 1), in addition to an estimate for
the total survey area.

The surveys in 1996 to 2001 are visual line transect sur-
veys with independent observer platforms. Northeast Atlan-
tic minke whales are mostly solitary on their feeding
grounds in the north (Øien 1989; Sigurjonsson et al. 1989)
and are only observed in the short moments (ca. 2 s) when
they surface to breath between their dives (mean diving time
ca. 80 s). They are therefore regarded as showing discrete
availability in the visual survey, i.e., they are observed only
at discrete points in time. Following Schweder (1974, 1977),
we model the sighting process as a stochastic point process
in space, representing the locations of the individual whales,
and in time, representing the surfacings of the whale, and a
sequence of Bernoulli experiments representing whether the
animal was observed or not at the given surfacing. The suc-
cess probability of these Bernoulli experiments is called the
hazard probability as it is the conditional probability of
sighting given that the observer previously was unaware of
the animal. The hazard probability depends not only on the
position of the whale relative to the observer, but also on
other variables such as the sea state (Beaufort), visibility,
glare, etc. Buckland et al. (2001) present “standard” line
transect methodology and its history, with emphasis on the
detection function g(x), defined as the probability of detect-
ing an animal located at perpendicular distance x from the
transect line. A basic assumption for standard line transect
methods is that g(0) = 1, i.e., all animals located on the
transect line are detected.

As the result of discrete availability, g(0) < 1 in visual line
transecting of Northeast Atlantic minke whales. To estimate
g(0) and the effective strip half-width, the surveys are con-
ducted with independent observers. The observers are placed
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Fig. 2. Double-platform shipborne sighting surveys. Observer platform A is placed in the barrel as shown, and observer platform B
(not shown) is placed at the wheelhouse roof. The depicted scenario involves a single whale making three surfacings, which are all de-
tected by platform A. Platform B sees only the last surfacing. Thus, A1 is the initial sighting of the whale, whereas A3 and B1 form a
duplicate sighting, as indicated by the broken line. Because of measurement error in distance and sighting angle, the recorded relative
positions of A3 and B1 differ. In the statistical analysis, the second and third surfacings form Bernoulli trials for platform B. (Artist:
Åsa Gan Schweder.)



on separate platforms without audible or visual contact.
Butterworth et al. (1982) were the first to realize that data
from independent observers can be used to estimate effec-
tive strip half-width when g(0) < 1. Schweder and Høst
(1992) were the first to apply hazard probability methods
with independent observers in animal abundance estimation.
Cooke (1997), Schweder et al. (1999), and Okamura et al.
(2003), among others, have further developed the methodol-
ogy.

Material and methods

Data collection 1996–2001

Surveys
During the period 1996–2001, the survey covered the

Northeast Atlantic, i.e., the northern North Sea, the Norwe-
gian Sea, the Greenland Sea, and the Barents Sea (Fig. 1).
Although the North and Barents seas are shelf waters with

typical average depths of about 100 m and 230 m, respec-
tively, the Norwegian and Greenland seas are oceans with
deep basins of several thousand metres. The eastern part of
the Norwegian Sea was surveyed in 1996, the western Nor-
wegian Sea in 1997, the North Sea in 1998, the Greenland
Sea with adjacent shelf areas of Svalbard in 1999, and the
Barents Sea in 2000 and 2001.

The total survey area was divided into blocks (see Fig. 3)
based on feasibility surveys conducted in the 1980s and in-
formation extracted from catch data collected since 1938
when a licence system was introduced for Norwegian small-
type whaling. Areas with assumed uniform densities were
defined, also taking into consideration topographical and
oceanographic features. The survey effort available within a
specific block was divided between two transects to ensure
at least one full coverage. Transects were constructed as zig-
zag tracks with a random starting point (Fig. 3). Realized
track lengths in different survey blocks are provided (Ta-
ble 1).
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Fig. 3. Survey block definitions (red lines), transect lines (black lines), and minke whale (Balaenoptera acutorostrata) sightings (black
diamonds) made while on primary search effort.



The speed of the vessel was logged on a regular basis, as
well as data on sighting conditions. The intended speed was
10 knots. In addition to the ordinary survey activity, distance
and angle estimation experiments were conducted. In these
experiments, the survey vessel was operated in the ordinary
modus and the observers were instructed to estimate distance
and angle to a stationary buoy, the exact position of which
could be determined by the vessel’s radar. Further details
about the regional surveys are given by Skaug et al. (2002).

Data on surfacing rates for minke whales have been col-
lected by VHF radio-tagging. The data used here are the
same as those used in previous studies (Schweder et al.
1997). In addition, surfacing data from five minke whales
were collected in 2001 and 2002. Most of the tagged whales
were sampled in near-coastal waters within IWC small areas
EC and ES. In addition, there is one whale from the North
Sea (EN) and one whale from the Norwegian Sea (EB).

Observational routines
Observations of whales were made by naked eye from two

platforms: platform A (a barrel placed 15 m above sea level;
Fig. 2) and platform B (the wheelhouse roof), each manned
by a team consisting of two observers. Each vessel had four
such observer teams working 2-h shifts. With a few excep-
tions, the composition of teams did not change within a spe-
cific year. Most observers had experience from earlier
surveys, and most had participated in all years (1996–2001).
Within a team, one of the observers was instructed to scan
the port 45° sector, while the other scanned the starboard
45° sector. Observers had side view, and sightings were also
made outside the protocol sector. We retained sightings
within the full 180° sector ahead.

The unit of observation was a track of observed surfacings,
with estimated time and relative position (radial distance r
and sighting angle θ (the angle between the sighting line and
the track line)) recorded for every sighted surfacing. Radial
distances were estimated visually, whereas sighting angles
were measured using an angle board. Time was measured
automatically when a button was pushed to allow the relative
position to be recorded on a tape. A track represents the
sighted surfacings judged by the observer to belong to the
same whale. For a certain proportion of observations, the po-
sition was incompletely recorded, i.e., either r or θ was miss-
ing. This proportion was much lower for the initial sightings
than for resightings. Because distance estimation is uncer-
tain at long distances, only observations for which r ≤ 2000 m
were included in the analysis below. Further, because detec-
tion probabilities at short distances may vary substantially
across platforms, observations for which r ≤ 100 m were left
out.

In addition to information directly related to sightings of
whales, data on environmental conditions (weather condi-
tions, visibility, glare, and Beaufort state; Table 2) were re-
corded. Certain levels of these covariates were combined to
obtain a more parsimonious model (Table 2). Individual ob-
servers were grouped into three categories according to their
ability to detect whales at long distances. This classification
was based on the general impression that the cruise leaders
had gained during the surveys and as little as possible on the
actual data. On this basis, every combination of observers
into teams that occurred in the survey was classified as ei-
ther “long” or “short” according to their assumed ability to
detect whales at long distance. In the analysis below, these
two team categories were assigned a separate ρr parameter
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Region Block Area (km2) Year L (km) n(A) + n(B) w(A) + w(B) �N SD

CM JMC 67 272 1997 615.77 38 468.35 4 432.05 921.23
NVN 324 808 1997 1945.58 59 515.51 9 553.52 1789.07
NVS 299 523 1997 1741.72 84 567.27 12 732.47 3426.41

EB BAE 492 171 2000 3349.07 73 462.20 11 605.35 4887.62
FI 94 145 1996 1658.91 120 503.59 6 761.67 1563.04
GA 159 224 2001 1046.90 56 427.11 9 970.62 3730.05
KO 94 034 2001 857.68 25 556.97 2 460.57 819.23
NOS 394 260 1996 4167.66 125 453.52 13 036.93 2477.94

EC LOC 93 839 1996 918.02 2 447.87 228.23 796.69
LOC 93 839 2000 1074.67 10 492.18 887.06 860.98

EN NS 259 502 1998 4032.07 146 401.10 11 713.39 3455.07
NSC 308 918 1998 2560.35 43 419.65 6 181.51 1368.45

ES BAW 123 082 1999 857.76 30 688.04 3 128.29 1516.23
BJ 73 909 1999 907.22 43 917.53 1 908.97 403.40
NON 88 141 1999 957.01 24 428.54 2 579.02 703.61
SV 91 523 1999 967.74 59 593.68 4 699.40 1213.78
SVI 189 072 1999 1130.84 10 432.69 1 932.07 1314.58
VSI 8 665 1999 399.97 25 1193.38 226.93 140.33
VSN 19 618 1999 466.39 43 587.25 1 540.04 304.38
VSS 29 113 1999 710.94 63 597.52 2 158.87 859.82

Table 1. Summary of survey results by survey block: survey region, survey block, area of survey block, survey year, transect length
(L), total number of sightings (n(A) + n(B)), average total effective strip half-width (w(A) + w(B)), abundance estimate ( �N) with associated
estimate of standard deviation (SD).



(see eq. 7 below). Our a priori belief was that ρ ρr r
long short> ,

although this constraint was not put on the model during pa-
rameter estimation. The proportion of realized effort time
(sum over both platforms) with long teams was 60%.

Two teams were concurrently on watch. Neither team could
be seen or heard by the other. Each team reported to the
cruise leader but was not informed of sightings made by the
other. The two teams were thus independent.

Statistical methodology 1996–2001
The first step in the analysis was to match tracks from the

two platforms corresponding to the same whale. This match-
ing was performed by an automatic routine mainly acting on
recorded times. The parameters of the hazard probability
function were then estimated by maximizing the likelihood
of the observed data, disregarding matching errors and other
complications. A bias-correction procedure was applied to
the resulting parameter estimates to account for matching er-
rors, measurement error in r and θ, etc. Finally, the effective
search area was calculated from the estimated model, and
abundance estimates were obtained by equating whale den-
sity in the whole survey stratum with observed whale den-
sity over the estimated effective search area.

The bias correction of parameter estimates was conducted
by simulating the survey under realistic assumptions and for
a sequence of parameter vectors. Simulations also provided
standard errors on parameter estimates. Bias-corrected abun-
dance estimates and coefficients of variation for each of the
yearly surveys were also obtained from simulations, as were
confidence distributions of abundance representing confi-
dence intervals at arbitrary levels.

Finally, a combined abundance estimate for the Northeast
Atlantic stock of minke whales was obtained from the se-
quence of yearly regional surveys. In addition to the sam-
pling variability inherent in the regional surveys, there was a
component of variation resulting from varying spatial minke
whale distribution over the years 1996–2001, when the re-
gional abundance estimates were combined to an abundance
estimate for the entire stock. This additional variance was
obtained by fitting a random effects model representing the
changes in spatial distribution of the stock over the survey
area and period.

Matching tracks
The likelihood function developed below was based on

matched pairs of tracks supposedly representing the same
whale seen from the two platforms and on single tracks
without any match. Identification of matching tracks, and

matching surfacings within tracks, was done by an automatic
routine (Schweder et al. 1997), because it could be applied
to numerous replicates of simulated survey data. Because it
was based on a finite number of rules on observer behav-
iour, the automatic routine occasionally made mistakes that
were easy for the human eye to spot. Because the same set
of rules were used in the simulations, the problem did not
occur for the simulated data. Thus, it was found necessary to
augment the matching results for the real data with a small
number of manually judged duplicates.

Each matched pair of tracks, such as that shown in Fig. 2,
as well as each track without a match, was decomposed as
follows. A combined initial sighting was the first observed
surfacing of the whale. It was sighted by platform A, plat-
form B, or both platforms simultaneously. For each com-
bined initial sighting, there was an associated trinomial trial.
The outcome of the trial was denoted by u, with different
outcomes u = A (seen from platform A only), u = B (seen
from platform B only), or u = AB (seen from both platforms
simultaneously).

Situations in which one platforms detected the whale be-
fore the other (u = A or u = B) provided additional informa-
tion on the conditional detection probability. Assume for
simplicity that platform A detects the whale before platform
B (Fig. 2), then each subsequent surfacing detected by A
sets up a Bernoulli trial with outcomes seen or not seen by
platform B. The initial sighting in the A track does not count
as a Bernoulli trial as it is included as a trinomial trial. Trials
were only registered until the first success for platform B oc-
curs.

Hazard probability model
The starting point for the standard line transect theory

(Buckland et al. 2001) is the detection function g(x), defined
as the probability that an animal located at perpendicular
distance x from the transect line is detected. From an esti-
mate of g(x), one can obtain an estimate of the effective strip
half-width:

(1) w g x x=
∞

∫ ( )
0

d

which is the key parameter in the abundance estimation. For
animals with discrete availability, it is possible to start the
modelling at a more fundamental level, that is, we can
model the probability of detecting individual surfacings.

Let the hazard probability function Q(r, θ) be defined as
the probability of sighting a whale that makes a surfacing at
position (r, θ), given that the observer is previously unaware

© 2004 NRC Canada

Skaug et al. 875

Transformed covariatea

Covariate Description Abbreviation Levels Definition

Platform Platform indicator P A, B
Weather 12 categories W W0, W1 W0, clear sky; W1, cloudy
Visibility Numerical (metres) V High, low High, larger than 3000 m
Glare 4 categories G G0, G1 G0, no glare; G1, glare
Beaufort 0–12 scaleb B BI, BII, BIII BI, 0–1; BII, 2; BIII, 3–4
Observer/team Individual observer codes T Short, long See Material and methods

aTransformed covariate indicates the aggregation of covariate levels used in the analysis.
bThe survey effort used in the analysis only involves Beaufort states 0–4.

Table 2. Covariates recorded on an hourly basis during the survey.



of the whale. The other component of the hazard probability
model is the stochastic point process governing the avail-
ability of individual whales for detection, i.e., the surfacing
process. As shown below, the surfacing process together
with Q determine g(x), and hence w, as well as the probabil-
ity density for the position of the initial sighting of a whale.

Consider first a single observer platform with hazard
probability function Q. The bivariate probability density of
the position of an initial sighting is denoted by f (r, θ). It is
simpler mathematically to work with Cartesian coordinates
(x, y) = (r sin(θ), r cos(θ)) than with polar coordinates (r, θ).
Here, y is the forward distance along the transect line. Under
the assumption that dive times follow a Poisson point pro-
cess with intensity α, it may be shown (Schweder et al.
1996) that

(2) f x y w
v

Q r
v

Q r ux y x y y x u x u( , ) ( , ) exp ( , ), , , ,= −



− ∞
∫1 d

α θ α θ 



where v is the vessel speed, rx,y = (x2 + y2)½, and θx y, =
arctan(x/y). Because

g(x) = w f x y y( , )d∫
(Buckland et al. 2001, p. 53), it follows that the detection
function is given as

(3) g x
v

Q r yx y x y( ) exp ( , ), ,= − −







∞
∫1

0

α θ d

When there are two independent observer platforms, A and
B, with separate hazard probability functions QA and QB, then
the hazard probability of the combined platform A�B is

(4) QA�B(r, θ) = 1 – (1 – QA(r, θ))(1 – QB(r, θ))

Each whale sighted by A�B sets up an experiment with tri-
nomial outcome u � {A, B, AB}, as explained above. Condi-
tionally on the position (r, θ), the probability distribution of u is

(5) q u Q r

Q r Q r u A

Q rA B

A B

B( ) { ( , )}

( , ){ ( , )},

( , ){= ⋅
− =

∪ −θ
θ θ
θ1

1

1 − =
=









Q r u B

Q r Q r u AB

A

A B

( , )},

( , ) ( , )},

θ
θ θ

Assume that Q belongs to a parametric class of hazard prob-
ability functions. The contribution to the likelihood function
coming from a matched pair of tracks (or a track without a
match) may be decomposed as follows: the probability den-
sity (eq. 2) of the position of the initial sighting, the proba-
bility (eq. 5) in the trinomial experiment, and subsequent
Bernoulli trials in situations where the initial sighting is
made only by one platform (u = A or u = B). These likeli-
hood components are conditionally independent and hence
are multiplied together. The likelihoods for different
matched pairs or unmatched tracks are also independent.

A 15-point Gauss-Laguerre quadrature formula (Press et
al. 1992, p. 151) is used to evaluate the integrals involved in
eqs. 1, 2, and 3. The likelihood function is maximized using
the optimization software AD Model Builder (Fournier 2001).

The following parametric class of hazard probability func-
tion is inherited from Schweder et al. (1997):

(6) Q(r, θ) = µQ1(r)Q2(θ)

where Q1(r) = h(–λr (r – ρr ))/h(λr ρr ) and Q2(θ) = h(–λ θ(θ –
ρθ))/h(λ θρθ) with h(x) = exp(x)/(exp(x) + 1) being the logis-
tic function. The basic parameters λr , ρr , λ θ, ρθ, µ of the
model have the following interpretations: µ is the hazard
probability at the origin (where the observer is placed), ρr is
the distance (in metres) at which the hazard probability has
dropped to 50%, and λr is the steepness of the hazard proba-
bility curve at distance ρr . There parameters ρθ and λ θ have
the same interpretation as ρr and λr , respectively, but for
sighting angle instead of distance.

The basic parameters are allowed to depend on covariates
(see Table 2) through exponential and logistic link functions:

(7) ρr = exp(ηr)

ρθ = exp(ηθ)

µ = exp(ηµ)/{1 + exp(ηµ)}

where ηr , ηθ, and ηµ are linear predictors (linear combinations
of covariate effects). To allow platforms A and B to have dif-
ferent hazard probability functions (QA and QB), the intercept
term in the linear predictors may be platform-specific. The vec-
tor of all parameters in the model (λr , λ θ, and the parameters
associated with ηr , ηθ, and ηµ) is denoted by β.

Abundance estimation
For the purpose of abundance estimation, the subareas

EN, EC, EN, EC, and CM are split into survey blocks (Fig. 3)
believed to be homogeneous with whale density.

Changes in the values of covariates will cause w to vary
along the transect line. Let the effective strip half-width at
position l be denoted by w(l) and the total survey length be
denoted by L. The average effective strip half-width in the
survey block is given as

(8) w
L

w l l
L

= ∫1
0

( ) d

The abundance estimate �N for the survey block is ob-
tained by equating whale density in the survey block with
observed whale density over the effective search area:

(9) �

( )( ) ( )
N

n n
L w wA B

= +
+

(A) (B)
AREA

2

where n(A) and n(B) are the total number of sighted whales
for platform A and B, respectively, L is total transect length,
w (A) and w (B) are platform-specific averages of w, and
AREA is the area of the survey block. Note that a common
hazard probability model is fitted for all survey blocks. This
causes estimates of w , and hence �N , from different survey
blocks to be correlated.

Simulation model
The presence of measurement errors in the spatial and

temporal data (related to observed surfacings), matching er-
rors, spatial clustering of whales, and other difficulties have
made it impossible for us to obtain unbiased estimates and
valid standard errors without recourse to simulation. Models
for these various components of the data-generating process
have been estimated, as detailed below, and combine to a
more realistic model for the surveys. An implementation of
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this model as a computer program is used to simulate artifi-
cial data in the same format as collected in the surveys.

The program simulates a virtual sighting vessel with two
independent observer platforms moving through an “ocean”
of predistributed whales. The virtual whales are available for
detection at discrete time points determined by dive time
series obtained from radio-tagged minke whales. Each sur-
facing that an individual makes is detected by the observers
according to the hazard probability Q(r, θ). The spatial distri-
bution of whales is determined by a Neyman-Scott
clustered-point process (Hagen and Schweder 1994). The
Neyman-Scott process is characterized by the following
three parameters: γ N-S (the intensity of clusters), µN-S (the
average number of whales per cluster), and ρN-S (the cluster
radius, i.e., the standard deviation in the bivariate Gaussian
distribution that governs the position of whales relative to
the cluster center).

In addition, we simulate measurement errors in radial dis-
tance r, sighting angle θ, and time point of observation (see
below), incomplete tracking (the observer fails to report in-
formation about subsequent surfacings), and missing values
in r and θ.

A model for measurement error was developed by Schweder
(1997). This model has been modified and fitted to data
from the survey period 1996–2001, yielding

(10) r = 0.898r′exp[N(0,1)·1.371·(r′)–0.2375]

(11) θ = 1.057θ′ + N(0,1)·4.826·exp[0.0117·min(|θ′|, 55)]

where r ′ and θ′ are the true quantities, and the N(0, 1) denote
standard normal random variables. The following error
model for time has been adopted from Schweder (1997):

(12) t = t′ + max[0, 7 + 3.4·N(0, 1)],

where t′ denotes true time.

Simulation-based inference for separate surveys
Computer simulation of a parametric model for inferential

purposes is often called parametric bootstrapping (Efron and
Tibshirani 1993). We use simulation to remove bias from
parameter estimates obtained under the hazard probability
model, to estimate standard errors, and to establish a confi-
dence distribution (Schweder and Hjort 2002) for the abun-
dance of minke whales. The main source of bias in the
maximum likelihood estimation is the measurement error
added in the simulation model, but not accounted for in the
pure hazard probability model. As noted earlier, measure-
ment error in distance and angle estimates leads to errors in
the track-matching procedure, which in turn affect the esti-
mate of the hazard probability.

Schweder et al. (1999) used the simulation model of the
previous section to remove bias from the Bernoulli part of
the likelihood. Here, our aim is to obtain asymptotically un-
biased inference under the assumptions of the simulation
model. We thus apply bias correction to the full likelihood
under the pure hazard probability model. This is done by
correcting the maximum likelihood estimate

~
β by ∆ to

(13) �
~

β β= − ∆

The correction ∆ is calculated iteratively. Start with β1 =
~
β.

At the ith step, simulate a large data set Di
* (we use 30 times

the size of the real survey data) using β = βi. This leads to a
maximum likelihood estimate

~*βi based on Di
*. The bias esti-

mate at this stage is ∆ i =
~*βi – βi. The next large data set to

simulate is based on βi+1 =
~
β – ∆ i. We have found this pro-

cess to converge fairly rapidly. The process leads to an as-
ymptotic bias correction in the sense that �β given by eq. 13
converges to the true value of β as the amount of data be-
comes large (Kuk 1995).

To study the sampling distribution of the abundance esti-
mator, 1000 data sets of the same size as the observed data
set are simulated at β = �β. The simulations are set up with ef-
fort at covariate levels as in the real survey. (The large data
sets used to evaluate ∆ do also have effort similarly distrib-
uted.) For each simulated data set, we first evaluate �β
through eq. 13, then calculate the effective strip half-width
w, and finally calculate �N from the abundance formula (eq. 9).
The number of sightings n(A) + n(B) in the abundance for-
mula is also generated using the simulation model, but from
a different (independent) simulation replica than that used to
estimate �β. For the purpose of simulating the variance of �N ,
separate Neyman-Scott parameters are used for each survey
block (see Table 3), whereas in evaluating the bias correc-
tion factor ∆, the same set of Neyman-Scott parameters is
used for all survey blocks.

To obtain a confidence distribution for total abundance, a
few additional bootstrap runs are carried out. A confidence
distribution represents confidence intervals by its quantiles.
The interval between the confidence quantiles at 2.5% and
97.5% is, for example, the 95% confidence interval. The
confidence density provides a graphical representation of
confidence intervals at all conceivable levels of confidence
and might be regarded as the frequentist analogue to the
Bayesian posterior density (Schweder and Hjort 2002). The
bootstrap runs are carried out at various levels of abundance
around �N . To simplify matters, we only vary the intensity of
clusters in the Neyman-Scott process. The degree of cluster-
ing and the other parameters (β) are fixed at their estimated
values. For each parametric bootstrap sample, a bootstrap es-
timate of abundance ( �N), is obtained as the estimate (eq. 9).
From the series of these, an approximate pivot p( �N , N) with
cumulative distribution function F is constructed. From
Schweder and Hjort (2002), the approximate confidence dis-
tribution will then simply have cumulative distribution func-
tion C(N) = F(p( �N , N)).

Combination of yearly regional surveys
Because of interannual variations in spatial prey distribu-

tion, the proportion of whales present in the different survey
regions (Fig. 1) will vary between years. For the purpose of
estimating the total minke whale abundance in the Northeast
Atlantic, this variation has no effect when the total area used
by the stock is covered in a synoptic survey (such as is as-
sumed for the years 1989 and 1995). The surveys in 1996–
2001 all had partial coverage. The IWC small areas (Fig. 1)
constitute areas with synoptic survey coverage in single
years, except for EB which was covered during 3 years. Be-
low, the index α refers to these small areas, together with the
three parts of EB.
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To assess the level of additional variance in the combined
estimate resulting from temporal–regional variability, we also
use data from 1989 and 1995. Let Ny be the true abundance
in year y in the total survey area (Fig. 1). We let N1989 and
N1995 be free parameters in the model, but for the period
1996 ≤ y ≤ 2001, it is assumed that the population grows ex-
ponentially, i.e.,

(14) log(Ny) = log(Ny–1) + ω

where ω is the unknown rate of growth (or decline). Denote
by pa,y the proportion of whales present in the area a in year
y, so that the number of whales present in the area is pa,yNy.
The following random effects model for the ps is assumed:

(15) pa,y = exp(µa + ξa y, )/c(y)

where c(y) = Σa exp(µa + ξa y, ) is a normalizing factor ensur-
ing that Σa a yp , = 1 for all y. The fixed-effect parameter µa
accounts for time-invariant differences in abundance between
areas, and the random-effect parameter ξa y, accounts for
interannual changes in whale distribution. These random ef-
fects are assumed to be independent and normally distrib-
uted with zero mean and variance σ2. The parameter σ will
be referred to as the additional variance parameter.

Denote by �
,Na y the abundance estimate for area a in year

y. Assuming that �
,Na y is conditionally log-normally distrib-

uted (given the true abundance that year), we have

(16) log( �
,Na y) = log(Ny) + log(pa,y) + ea,y

where the survey error terms ea,y are assumed to be zero
mean normally distributed random variables. Equation 16 il-
lustrates how the total error in �

,Na y can be broken down into

additional variance (variation in pa,y) and survey error (ea,y).
There are three survey periods: 1989, 1995, and 1996–2001.
The terms ea,y are correlated within survey period due to the
use of a common estimated model for the effective strip
half-width. The terms pa,y are correlated within year due to the
normalization factor c in eq. 15 but are uncorrelated across
years. Note that an estimate of the correlation structure of
{ea,y} is available from the bootstrap method described earlier.

To obtain an estimate of σ, the method of restricted maxi-
mum likelihood (Punt et al. 1997) is used. Denote by L(N, ω,
σ, µ, ξ) the likelihood function based on the area estimates
from 1989, 1995, 1996–2001, where µ and ξ are vectors and
N = (N1989, N1995, N1996). When evaluating L we use the as-
sumption of conditional normality (eq. 16) together with the
assumptions of eqs. 14 and 15. The restricted maximum
likelihood estimate of σ is obtained by maximizing the mar-
ginal likelihood:

(17) L L N N( ) ( , , , , )σ ω σ µ ξ ω µ ξ= ∫ d d d d

where the numerical integration is done by Laplace’s method
(Tierney and Kadane 1986). Because data are sparse with re-
spect to information about σ, the resulting estimate can be
expected to be biased (in addition to having a large vari-
ance). Thus, we use the simulation methodology described
earlier to remove the bias in the estimate of σ. In the present
setting, eqs. 14, 15, and 16 constitute the simulation model.

Results

Minke whales were found throughout the survey area, but
with a spatially varying density (Fig. 3 and Table 1). A total
number of 1078 sightings (totally for both platforms) was
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Region Block γN-S (km–2) µN-S ρN-S (km) κ τ
CM JMC Poisson point process 2.36

NVN 2.149 × 10–2 1.57 1.154 2.6500 2.76
NVS 7.093 × 10–4 73.40 7.277 0.0812 4.41

EB BAE 6.153 × 10–4 41.40 1.213 1.1300 10.90
FI 2.938 × 10–3 23.30 1.677 0.3640 6.01
GA 3.387 × 10–3 22.90 0.848 1.3100 7.64
KO 1.086 × 10–3 26.50 7.029 0.0358 2.70
NOS 3.484 × 10–4 97.00 13.218 0.0390 3.44

EC LOC96 4.133 × 10–5 883.00 27.058 0.0662 9.86
LOC00 4.133 × 10–5 883.00 27.058 0.0662 11.30

EN NS 4.252 × 10–6 11 004.00 51.126 0.1910 57.40
NSC 5.981 × 10–3 3.48 1.549 0.0681 1.98

ES BAW 9.425 × 10–4 26.80 2.485 0.1850 5.99
BJ Poisson point process 2.85
NON Poisson point process 2.30
SV 4.501 × 10–3 12.00 2.130 0.1320 3.39
SVI 4.631 × 10–4 82.30 8.199 0.0678 4.29
VSI 1.252 × 10–3 25.90 2.484 0.1830 7.28
VSN Poisson point process 2.53
VSS 4.631 × 10–4 169.00 8.199 0.1390 8.79

Note: The parameter κ defined in eq. 18 is a measure of the average whale density within clusters. The overdispersion co-
efficient τ is defined as τ = Var(n(A) + n(B))/E(n(A) + n(B)), where both the variance and the expectation are calculated under
the Neyman-Scott model.

Table 3. Estimates of Neyman-Scott parameters based on Ripley’s K function.



used in the estimation of whale density. Most of the observa-
tions (95%) were made within a strip 1000 m wide on each
side of the transect line (Fig. 4). When fitting the hazard
probability model, tracks with missing positional information
(missing either r or θ) for all surfacings were left out. The
proportion of tracks left out for this reason was approximately
1%. The track-matching routine identified 200 duplicate
whales. Manual judgment identified two additional duplicate
whales. The resulting number of initial sightings (for the

combined platform A� B), after applying the data-truncation
rules, was 870, and the number of Bernoulli trials was 623.

Likelihood analysis
Initial attempts to fit the model showed that it was not

possible to simultaneously estimate the two sighting-angle
parameters ρθ and λ θ. As a consequence, we fixed the slope
at the rather arbitrary (but not unrealistic) value λ θ = 0.1,
which was also used by Schweder et al. (1997), and we esti-
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Fig. 4. Normalized frequency distribution of observed perpendicular distances by observer platform, together with fitted probability
densities (solid lines). Also shown are histograms for radial distances, forward distances, and sighting angles. The bottom two panels
show estimated success probabilities by radial distance for the Bernoulli trials. The broken line is a nonparametric smoother applied to
the data, and the solid line is the model predicted success probability. Vertical lines are 95% confidence intervals for the nonparametric
estimate.



mated ρθ as a free parameter. The deviances for a set of se-
lected covariate models are shown in Table 4, ranging from
the model without covariates (bottom line) to the full co-
variate model (first line). A backwards model selecting
scheme was used to eliminate covariates from the full
model. The likelihood ratio test was used to compare nested
models. “Weather” was the only covariate that could be re-
moved from the full model (p value 0.065), leaving a model
with the linear predictor ηr = B + V + G + P + T (see Ta-
ble 2 for covariate abbreviations). This model selection was
carried out within the pure hazard probability model (no bias
correction). A similar analysis was attempted to identify co-
variates affecting the level parameter µ. Here, none of the
covariates yielded a significant increase in the likelihood
value, and hence only the intercept term was included in the
linear predictor for µ.

For the chosen model, the maximum likelihood estimate
~
β

was bias-corrected using eq. 13. Parameter estimates (uncor-
rected and bias-corrected) are shown (Table 5), together with
estimates of average effective strip half-width. Sum-to-zero
constraints were imposed on the parameters associated with
the different levels of categorical covariates, except for the
platform covariate P. For instance, the table does not show
the parameter estimate for level BIII of the Beaufort co-
variate as this parameter is determined by those of levels BI
and BII. The platform effect was added only to the linear
predictor of platform B. Thus, a negative estimated value of
the parameter means that platform B looked at shorter range
than platform A.

During the survey, 39 different combinations of covariate
levels occurred. These covariate strata varied largely with re-
spect to estimated effective strip half-width (Table 6).

Externally determined parameters
There are several parameters in the hazard probability

model that were not estimated from the likelihood function.
The mean surfacing rate α was estimated from 13 VHF-

tagged whales to be α = 0.0129 surfacings per second. The
Neyman-Scott parameters (used in the simulation model)
were estimated by matching the theoretical K function
(Ripley 1977) to its empirical counterpart. A separate
Neyman-Scott model was fitted to each survey block (Ta-
ble 3). In four survey blocks (VSN, NON, BJ, JMC), the
estimated Neyman-Scott model is consistent with a homoge-
nous Poisson process (which is a special case of the
Neyman-Scott model).

As seen from the table, the estimates for the survey block
NS deviated strongly from those of the other survey blocks.
A comparison of the empirical and theoretical K function in-
dicated that the Neyman-Scott model did not fit data well for
survey block NS. To resolve this problem, NS was split into
two more homogenous subareas (the coast off Aberdeen and
the rest of NS), and a separate estimate of τ (the coefficient
of overdispersion) was obtained for each area (H.J. Skaug,
unpublished data). From these estimates, an effort-weighted
average τ = 8.96 was calculated, and the Neyman-Scott pa-
rameters for NS were chosen to yield this level of over-
dispersion (under the constraint that γ N-S µN-S was equal to
the observed whale density in NS), yielding γ N-S = 4.34e –
11, µN-S = 1079, and ρN-S = 25 563. (Note that the super-
script “N-S” refers to the term Neyman-Scott, and not to the
survey block NS.) These estimates replace those in Table 3.

In the bias-correction procedure presented above, a com-
mon set of Neyman-Scott parameters was used for all survey
blocks. This estimate was obtained by ranking the survey
blocks according to their value of the quantity

(18) κ µ γ π ρ= + −0.5 4N-S N-S N-S 2 1( ( ( ) ) )

which is proportional to the error rate in the track-matching
algorithm (Schweder et al. 1997). It was found, by excluding
blocks where the fitted Neyman-Scott process was consistent
with a Poisson process and using the median value of κ as
the criterion, that a representative set of Neyman-Scott pa-
rameters was that of the survey block SV (γ N-S = 4.50e – 09,
µN-S = 12.0, and ρN-S = 2130).

Abundance estimates 1996–2001
Abundance estimates were calculated for each survey

block (Table 1) using eq. 9. Estimates for IWC small areas
were obtained by summing the contribution from the consti-
tuting survey blocks (Table 7). In the variance calculations,
intrablock correlation was automatically accounted for by
the parametric bootstrap approach. The table also contains
estimates for the total survey area (TOTAL) and a separate
estimate for the IWC eastern medium area. The latter forms
the “Eastern North Atlantic medium area” in the IWC termi-
nology. In the estimation of the additional variance parame-
ter σ, it was necessary to exclude the survey block NVS,
which was not covered in 1989 and 1995. Based on data
from 1989, 1995, and 1996–2001, we obtained the estimate
�σ = 0.28 (SD = 0.15), but when the bias correction explained
earlier was applied, the estimate became �σ = 0.22. When ig-
noring additional variance (putting σ = 0), the corresponding
estimates of standard error for the total area (TOTAL) was
10 821.

Parametric bootstrapping was carried out at 90%, 100%,
and 110% of the total abundance estimate �N = 107 205 in
order to study the sampling distribution of the estimator of
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ηr Deviance df Abundance

B+W+V+G+P+T 0 0 111 000
W+V+G+P+T –109.5 2 109 000

B+ V+G+P+T –3.4 1 110 000
B+W+ G+P+T –8.7 1 112 000
B+W+V+ P+T –21.3 1 111 000
B+W+V+G+ T –16.8 1 112 000
B+W+V+G+P –36 1 109 000
B –86.8 5 112 000

W –215.1 6 109 000
V –206.7 6 104 000

G –201.9 6 104 000
P –199.1 6 106 000

T –181.4 6 107 000
–220.3 7 107 000

Note: The selected model is printed with bold type. Deviance is two
times the log-likelihood ratio relative to the full model (first row), and df
is the degrees of freedom to use in a likelihood ratio test. Abundance esti-
mates (last column) are given for the total survey area without bias
correction.

Table 4. Comparison of different covariate models (Table 2) for
the linear predictor ηr.



total abundance and to obtain a confidence distribution for
this parameter. The number of bootstrap replicates were 1000,
1000, and 636, respectively. It turns out that the abundance
estimator was practically normally distributed on the log
scale (Fig. 5), with standard deviations 0.134, 0.145, and
0.129, respectively, and a pooled standard deviation of
0.137. These standard deviations are significantly different
(p value = 0.003, Bartlett test). Because of the lack of linear
pattern in the standard deviations, we base our pivot on the
assumption that the standard deviation is constant on the log
scale in the neighbourhood of �N . On the log scale, there is
no significant bias in �N (Fig. 5). The pivot is p( �N , N) =
(log(N) – log( �N))/0.137, and F is the cumulative normal dis-
tribution function. The confidence distribution (Fig. 6) for
total abundance is thus log-normal with median �N and a
scale parameter of 0.137. The confidence intervals for N are
thus �N[exp(–0.137z), exp(0.137z)] for appropriate normal
quantiles z.

Discussion

Variation in abundance
Our abundance estimate at the stock level is lower for the

period 1996–2001 than it was for 1995, but higher than for
1989. The p value for a change in abundance since 1995 is
0.18 (excluding the survey block in CM that was not covered
in the 1995 survey). Is this evidence for a decline in the
Northeast Atlantic stock of minke whales? Just as Schweder
et al. (1997) found it difficult to ascribe the more dramatic
increase in the abundance estimate from 1989 to 1995 to
population growth alone, we find it difficult to ascribe the
decline in estimates to a decline in the stock. One possible
explanation for a decline in the eastern IWC medium area
stock is that the eastern and central stocks are less separated
than previously believed, at least on the feeding grounds.

Alternatively, the migration patterns of minke whales may
vary because of as yet unidentified factors. According to the
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βr W, BI W, BII V, High G, G0 T, Long P, B βθ βµ λr w(A) w(B)

~
β 6.459 0.374 0.068 0.175 0.146 0.15 –0.141 4.532 –0.565 0.0052 263 224
�β 6.729 0.332 0.050 0.177 0.121 0.129 –0.133 4.489 –0.932 0.0058 273 227
SD(�β) 0.089 0.042 0.039 0.046 0.038 0.029 0.036 0.039 0.147 0.00021 17 14

Note: The parameters β r , β θ , and β µ are the intercept terms in the linear predictors ηr , ηθ , and ηµ, respectively. Following the βr column, the coeffi-
cients associated with covariates (Table 2) are given. Parameter estimates are given both with (�β ) and without (

~β ) bias correction. Estimates of standard
deviation (SD) are given for the bias-corrected estimate. Effort weighted mean effective strip half-widths (w(A) and w(B)) are also given.

Table 5. Estimated regression coefficients for the chosen hazard probability model.

Covariates

Beaufort Visibility Glare Team A Team B w(A) w(B) g(A)(0) g(B)(0) Time (%)

BIII Low G1 Short Short 118 104 0.264 0.2468 0.9
BIII Low G0 Short Long 153 178 0.304 0.3295 12.5
BIII Low G0 Long Short 212 132 0.360 0.2807 12.9
BIII Low G0 Long Long 212 178 0.360 0.3295 14.0
BII High G1 Short Long 320 388 0.440 0.4801 0.1
BII High G0 Short Long 465 566 0.520 0.5640 0.4
BI High G0 Long Long 1078 879 0.715 0.6669 0.5

Note: The last column gives the proportion of realized survey time. The first and last rows show the lowest and highest effective
strip half-widths, respectively, that occurred during the survey. Also included are the covariate settings that were dominate in terms
of realized survey time.

Table 6. Effective strip half-width w (in metres) and g(0) for selected combinations of covariate levels (Table 2).

1989 1995 1996–2001

Area �N CV �N CV �N CV

EB 34 712 0.203 56 330 0.136 43 835 0.15
ES 13 370 0.192 25 969 0.112 18 174 0.25
EC 2 602 0.249 2 462 0.228 584 0.26
EN 14 046 0.276 27 364 0.206 17 895 0.25
CM 2 650a 0.484 6 174a 0.357 26 718 0.14
Total 67 380 0.190 118 299 0.103 107 205 0.13
Eastern 64 730 0.192 112 125 0.104 80 487 0.15

Note: The bottom row (eastern) shows estimates for the eastern medium area of the International Whaling
Commission.

aIn 1989 and 1995, the estimates for CM did not include survey block NVS.

Table 7. Abundance estimates ( �N) by survey region (small areas in the terminology of the Inter-
national Whaling Commission) in comparison with estimates for 1989 and 1995, together with
coefficient of variation (CV), taken from Schweder et al. (1997).



estimated random effects model described above, the pro-
portion of the total stock (CM and eastern small areas) pres-
ent in CM each year varies randomly between 18% and 33%
(lower and upper 5% prediction intervals). The increase in
the estimate for the CM area from 1996 to 2001 is quite
marked and could be due to more whales from the eastern
areas being present in CM when it was surveyed in 1997
than was the case in 1995. Although it is possible to find al-
ternative explanations for an apparent decline in abundance
estimates from 1995 to 1996–2001 not being real, the possi-

bility of a decline should not be ruled out. Seen over the lon-
ger period 1989–2001, however, the impression is that there
might have been some growth in the population.

In 1938, a compulsory logbook system was introduced in
Norwegian small-type whaling (Christensen and Øien 1990)
requiring detailed information on each whale caught and all
participating vessels. It is reasonable to assume that the geo-
graphical distribution of catches reflects the distribution, and
changes in distribution, of whales. The catch distributions
indicate that within the Barents Sea, changes have taken
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Fig. 6. Confidence density for total abundance. The median of the confidence distribution (vertical line) is nearly equal to �N = 107 205.

Fig. 5. Normal probability plots of bootstrapped logged total abundance estimates. The panel to the left refers to simulation at N = 0.9 �N , etc.



place over the years between eastern distributions (for exam-
ple in 1952, see Fig. 7) and western distributions (for exam-
ple in 1980, see Fig. 7).

Large temporal changes in abundance are also seen at
smaller geographical scales. For instance, the survey block
Kola in the Barents Sea has shown large variations in abun-
dance during the period since 1989 (Schweder et al. 1997). The
same applies to the survey block NS (North Sea), which in our
survey in 1995 had a very high abundance estimate. A survey
conducted in 1994 with a somewhat different methodology
(Hammond et al. 2002) resulted in a much lower estimate.

Migration of minke whales into Norwegian and Arctic
waters in the spring is segregated with respect to both length
and sex (Jonsgård 1951; Øien 1988). From markings of

minke whales, mainly in the period 1974–1978 within the
Barents Sea, there is at least some indication that a regional
fidelity exists (International Whaling Commission 1991). So
far, instrumentation with radio and satellite tags has not
given answers to questions regarding large-scale movements
of minke whales in the Northeast Atlantic, but tracking over
about 1-month-long periods indicates regional fidelities in
Norwegian waters (Heide-Jørgensen et al. 2001), as well as
Icelandic waters (Heide-Jørgensen, Greenland Institute of
Natural Resources, Box 570, DK-3900 Nuuk, Greenland,
unpublished data).

All of this indicates that there are large year-to-year varia-
tions in regional minke whale abundance, as is reflected in
the high estimate of the additional variance parameter (σ2).
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Fig. 7. Geographical positions of caught minke whales (Balaenoptera acutorostrata) for the selected years 1952 (green) and 1980
(red). The gradient in background blue color reflects the change from several thousand metres depth in the Norwegian Sea to the shal-
low Barents Sea proper.



Presumably, these variations are related to changes in abun-
dance and distribution of possible prey species, although this
has not yet been satisfactorily demonstrated. Finally, it is of
course possible that a component of the minke whale stock
stays outside the surveyed area and that the size of this com-
ponent varies from year to year.

Estimation
The directions of the covariate effects were as expected.

For the Beaufort covariate, the effective strip half-width was
highest for Beaufort state “0–1" (covariate level BI),
whereas it was lowest for Beaufort state “3–4" (covariate
level BIII). For the team covariate, the effective strip half-
width for the long category was higher than for the short cat-
egory, illustrating that the classification of teams done be-
fore the analysis was meaningful. Also, the effective strip
half-width was higher for the barrel (as defined previously)
than for the wheelhouse roof, in agreement with the findings
in Schweder et al. (1997) and with prior belief.

The bias-corrected abundance estimate for the total area is
107 205, whereas the corresponding uncorrected estimate is
110 000. Thus, the bias correction has little effect on the to-
tal abundance estimate. This could be due to cancellation of
biases of different signs in the uncorrected estimate. For in-
stance, we deliberately tuned the automatic track-matching
routine (on simulated data) so that the number of duplicate
pairs missed approximately equaled the number of errone-
ously judged duplicate pairs. The bias resulting from the
manual judgement of two duplicate tracks should be small.

The measurement error models (eqs. 10 and 11) were esti-
mated from the data collected in the distance and sighting-
angle experiments conducted during the survey. For radial
distance (r), it was concluded that the variability in the ex-
perimental data was representative of the variability in the
real survey data. Schweder (1997), however, recommended
that the variability should be estimated from the survey data.
For sighting angle (θ), it was found that a higher variability
was observed in the survey data than was seen in the buoy
experiments. The chosen measurement error model captures
this higher level of variability. The model for the difference
between true and reported surfacing times (eq. 12) was
adopted from Schweder et al. (1997) without modification.
A priori, one expects more accurate time points in the pres-
ent data than in the 1995 data, because the observers on av-
erage were more experienced than those participating in 1995.

Diagnostic plots illustrate that the distribution of distances
to initial sightings are reasonably well predicted by the model,
whereas the angular distribution is less well fitted. In these
plots, the probability density is a weighted average (accord-
ing to the number of observations) of the probability densi-
ties for the different covariate strata. We do not understand
the large number of observations around 45º and the low
number of sightings close to the track line. For large values
of θ, the fit is reasonably good, so there is no indication that
the choice λ θ = 0.1 made earlier is inconsistent with data.
The bottom row represents diagnostic plots based on the
Bernoulli trials. There are surprisingly many successes at
large radial distance, especially for platform A, and more
than predicted by the model. This might be explained by
unmodelled heterogeneity in cue strength, partially resulting

from the angle at which the whale shows its back when sur-
facing.

Potential sources of bias
The transect design was nonadaptive. Each detected ani-

mal generated an observational record when passed, without
the vessel slowing down or deviating from the track line.
Transects were planned to give a uniform coverage and not
to correlate with expected whale density within survey blocks.
To make full use of the available effort, two uniform layers
of tracks were planned. The first layer was mandatory, and
the second layer was to be covered as extensively as possi-
ble, subject to weather conditions and practicalities. The sec-
ond layer was only incompletely covered. Selectivity of
tracks in the second layer could lead to bias in the coverage,
as also would temptation to move to regions of expected
high whale density. However, the protocol specified that sec-
ondary tracks should be selected exclusively on logistic and
weather considerations and that they should be discussed with
the survey leader. Because weather and Beaufort Sea state is
accommodated as a covariate in the analysis model, no bias
should thus follow from the lack of uniform coverage that
resulted from the selection of secondary tracks.

In the hazard probability method, an estimate of surfacing
rate (α), obtained from radio-tagged animals, is used. A neg-
ative bias in the surfacing rate will yield a positive bias in
the abundance estimates. Although our estimate of α is based
on data from a limited number of individuals (13), it is not
likely that the bias in our estimate of α is large. The effect of
including data from five new individuals was not large (α =
0.0129 in the current paper, whereas Schweder et al. (1997)
used the estimate α = 0.0130, which was based on data from
only eight of the individuals). Visual dive time data, as those
of Stockin et al. (2001), have not been used in the present
analysis because it is difficult to ascertain that it is a single
whale that is observed without radio-marking the individual.

In the analysis, whales are assumed to be immobile except
for diving. Random motion between surfacings has been
found to bias abundance estimates positively when not ac-
counted for (Schweder et al. 1996). Responsive behavior
could bias abundance estimates even more. From an analysis
of recorded swim directions in the 1995 data, Palka and
Hammond (2001) found evidence for Northeast Atlantic
minke whales avoiding the vessel when the radial distance is
less than approximately 700 m. Based on the evidence avail-
able in 1995, Schweder et al. (1997) concluded that the di-
rection and size of a potential bias resulting from random or
responsive whale behavior is unknown, but if the bias is pos-
itive, its size is likely to be small in the abundance estimates.

Tracking of whales is assumed to be unbiased in the sense
that the number of tracks recorded from one platform is an
unbiased estimate of the number of whales actually seen.
Because it is possible to break up tracks (count a whale
twice) or to merge different tracks into one recorded track
(count two whales as one), unbiased tracking is not self-
evident. Incorrect tracking can be detected in cases where
the whale has been seen by both platforms, although it is usu-
ally difficult to determine in retrospect which platform made
the mistake. However, during the manual validation of the du-
plicate pairs, only a few such instances were discovered.
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No attempt has been made to incorporate the inherent un-
certainty in model selection into the estimates of variance
for abundance. The variance estimates are calculated condi-
tionally on the selected covariate model being the true model
and do not reflect the fact that other covariate models might
have been chosen. However, as long as the Beaufort co-
variate is included in the model, the abundance estimate is
relatively insensitive to model choice. Further, the additional
variance parameter σ was weakly determined (CV approxi-
mately 0.5 for uncorrected estimate). If σ has been under-
estimated, the variance estimate for the total abundance
estimate will be too low.

In conclusion, the abundance estimate for the survey pe-
riod 1996–2001 is practically unbiased or possibly nega-
tively biased. In 1995 and 1988–1989, the surveys were
synoptic with nearly complete coverage. In 1996–2001, the
survey design could be characterized as a sequence of partial
designs. Except for this difference, the survey methodology
and the method of data analysis were similar for the three
surveys. Differences between abundance estimates for 1989,
1995, and 1996–2001 should thus be approximately unbi-
ased. These differences seem to indicate that the stock has
increased from 1989 to 1995 and then decreased. The esti-
mated decline since 1995 is larger than the cumulated catch
(approximately 3000 minke whales) over the period. This
picture of stock abundance over time prevails even when
taking the standard errors in the abundance estimates into
account, at least for the increase in the first period. Such
variability in true stock abundance is, however, inconsistent
with conventional population dynamics models for minke
whales (International Whaling Commission 1991) and is
likely to be less than estimated. A potential explanation is
that the fraction of the stock that is present in the survey
area varies from year to year, either because there is substan-
tial contact between the central and the eastern stocks or be-
cause a variable stock component keeps to more southern
latitudes at a varying degree.
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