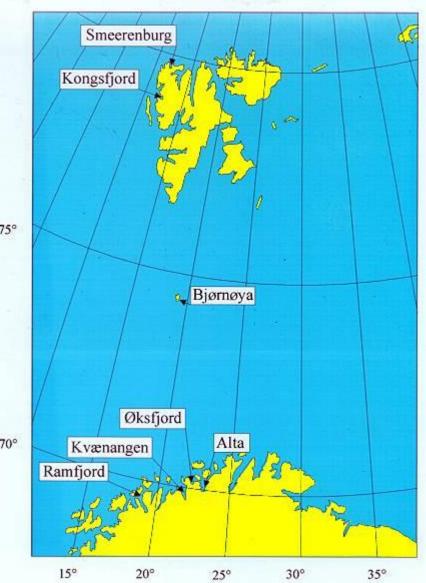


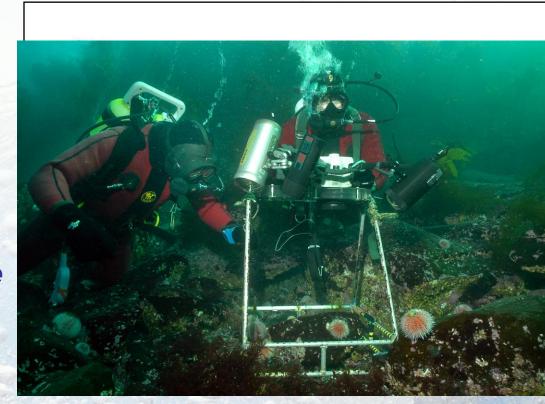
Establishment and maintenance of regular photographic monitoring of rocky bottom localities from North Norway to Spitzbergen

Dr. Sten-Richard Birkely, Akvaplan-niva AS Prof. Bjørn Gulliksen, Norwegian College of Fishery Science, Univ. of Tromsø


Why monitoring rocky bottom substrate?

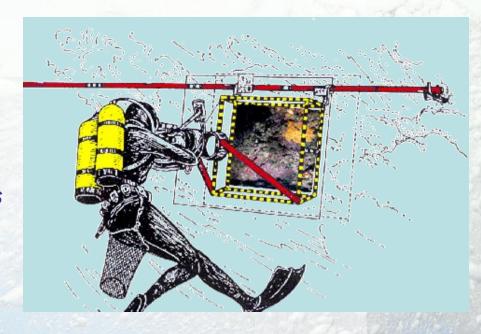
- Characteristics of macrozoobenthic organisms
 - Sessile and/or have reduced motility as adults.
 - Lifespan from years to decades.
 - → Potential for accumulating environmental influences over long periods of time.
 - → These groups of taxa can be considered as excellent indicators of alterations in marine ecosystems....natural, human made etc.
- Organisms on rocky substrate vs. soft sediment
 - Less infaunal organisms.
 - Predomination of filter-feeding organisms.
 - →Increases the observational success regarding image analysis

Permanent stations, localities

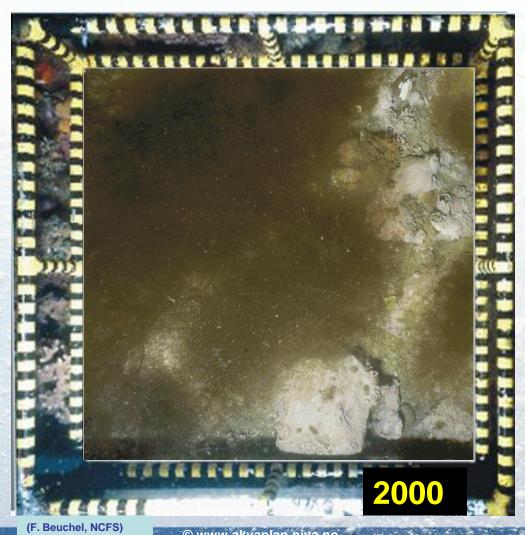

Locality	Depth	Initiated	Regularity	
Svalbard				
Smeerenburgf.	15	1980	1	
Kongsfjord	15	1980	1	
Bjørnøya	15	1980	1	
Heleysundet	15	1997	Terminated	
Sagaskjæret	15	2006	1	
(Brennevinsfj.)	15	1982	Terminated	
Coast of northern Norway				
Haugbergnes	10, 20, 30	1976	4-6 times/yr the first years; 2 times/yr thereafter	
Kvænangen	5, 15	1980	1	
Øksfjord	5, 15	1980	1	
Altafjord	5, 15	1980	1	
(Malangen)	5, 15	1980	Terminated	
(Porsangen)		1980	Terminated	

Methodology in fieldwork, practical solutions

- Steel bar (divides the control and treatment areas at the Svalbard localities).
- Metal rig with digital camera and flashes
 (50 50 cm frame at the seafloor the reference frame, 0.25m²).
- Introducing digital camera optimises time spent scuba-diving



Methodology in fieldwork, practical solutions

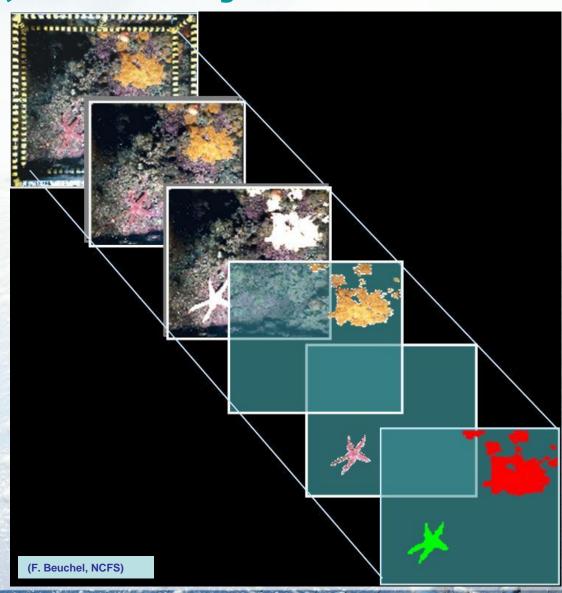

"pro & con's" regarding the technique:

- Non-destructive sampling on the localities repetitive investigations.
- Large amount of raw-data collected with limited time expenditures.
- Quantitative sampling.
- The method follows up guidelines given in Norsk Standard
- Limitation in lower size of organisms that can be identified.
- Must disregard infaunal (where sediments are accumulated) and cryptic organisms.
- The use of scuba diving in sampling.

Time series of one frame (0.5×0.5 m) at one locality

© www.akvaplan.niva.no

Image processing, data analysis


Digital/ scanned photograps; imported into Adobe Photoshop

Area of inner frame selected; reconstructed to a square (0.25 m²)

Selection of species, aggregates, bottom features etc.

Transfer to separate transparency layers

Specific RGB-code to each feature (255³ possibilities); measurement of cover and abundance

Results

- Variations in biodiversity.
- Succession patterns.
- Interannual changes in benthic communities (though restricted to **rocky** bottom areas).
- Relations to climatic indices. Results from Beuchel et al. 2006.

From Beuchel et al. 2006

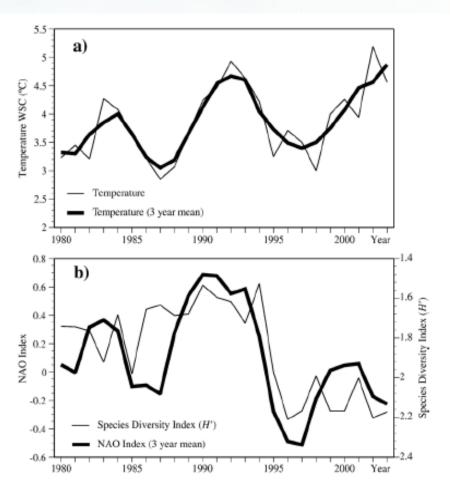


Fig. 2. a) Mean autumn (August-September) temperature of the WSC at about 79°N between 100 and 300 m depth. Data from station E1 (close to Kvadehuken) from Saloranta and Haugan (2001), Schauer et al. (2004) and Tverberg (pers. comm.). b) Correlation between the NAO Index (3-year mean calculated from September-August) and Shannon-Wiener diversity index (H'). The secondary y-axis scale (species diversity) is inverted.

From Beuchel et al. 2006

 "The most striking congruence was found between the NAOI as large-scale climate driver and benthic species diversity. A fundamental change in the community structure between 1994 and 1996 coincides precisely with a major shift in the NAOIregime from a positive to a negative mode. The changes in the benthic community during this period are mostly reflected in the appearance of dense carpets of brown algae and a decline of actinarians, with a resulting increase in biodiversity."

Other possible dataoutput from the monitoring

- Growth; species specific analysis
- Stereo photographic possibilities (calculating volumes/ measures of colonial organisms....future perspective).
- Summing up the amount/ number of photographs collected during the yrs......

Spildra + Kvænangen + Brattholmen			
Haugbergnes	60		
Svalbard	20	ca 30 yrs	stereophotography
	224	6720	13440 pics raw data