ICESCIEM

Report of the

Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak

9-18 September 2003
Boulogne-sur-Mer, France

This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

Draft/Part 1

Conseil International pour l'Exploration de la Mer

Palægade 2-4 DK-1261 Copenhagen K Denmark
Telephone $+4533154225 \cdot$ Telefax +4533934215
www.ices.dk • info@ices.dk

TECHNICAL MINUTES

Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK)

ACFM October 2003

For the most part, comment has been made only on the benchmark assessments, although this is not exclusively so. WGNSSK is commended on the thorough approach that it has taken with the benchmark assessments.

General Comments

1. There is a need to move many of the "standard" assessments undertaken by this working group to a more probabilistic approach, specifically towards more appropriate statistical methods with goodness-of-fit diagnostics, to permit a better understanding of the overall quality of the assessment;
2. SURBA is considered to be over-parameterised for use as a mainstream assessment method, but is considered to be useful for exploratory analyses;
3. The non-inclusion of discard data where large-scale discarding exists is problematic. The exploratory analyses that considered the sensitivity of the assessments to the exclusion of discard data is very valuable, but mainly points to the need to measure and include discard data in the assessments;
4. For the update assessments, the review group would have liked more information to be presented on the quality and consistency of the assessment in order to make an informed judgement on it. This does not require a complete evaluation of the data or model settings, just the straightforward presentation of graphical or tabular information. However, the review group recognises that it is for ICES to give clear guidance of its expectations in this respect.
5. Please note the comments on age range truncations under each section. Especially read that for cod and sole.

Cod 347d

There was a lot of discussion relating to the reduction of the age range used in the assessment, particularly with regard to the cascade effects of having to revise biological reference points. It was accepted that a benchmark assessment is the appropriate time to address such issues, but the following points were made:

- The change in age range made no substantive difference to the current or historical perception of the stock development;
- Recent WGNSSK meetings have suggested that mean F should be quantified over ages 4-8 rather than the "traditional" age range of $2-8$. This was in part due to the inclusion of partially recruited ages in the estimate of mean F. Truncating the age range in the assessment at this year's meeting has forced WGNSSK to adopt a truncated age range of 2-4. This contradicts the previous view of WGNSSK and gives greater relative weight to the partially recruited ages in the estimate of mean F. WGNSSK is requested to look more closely at the age range included in the assessment and over which mean F is calculated, specifically as it may be used to define the mean F that is taken forward into forecasts, including those used to estimate reference points based on long-term yield a likely future requirement within ICES. Collapsing the age range in a highly truncated manner may distort the estimates of long-term yields and stock size that contribute to this estimation. Explicitly regarding the use of XSA, a trade-off may be possible in this respect if there is scope to live with shrinkage contributing to the calculation of survivors at the oldest age, as the influence of shrinkage on the stock estimates does not appear to be substantial;
- Calculating mean F over ages 2-4 also means that it is being calculated over a juvenile age range of predominantly immature fish. It would be useful to distinguish whether this is necessitated by the state of the stock and the reduction in age-groups present in the stock, and is therefore an additional diagnostic regarding the state of the stock, or whether it is only a side effect of the exclusion of commercial CPUE data in the calibration of the assessment.

Other points to note are:

- As stock reviewers within ACFM are not always familiar with the assessments that they are reviewing, better explanation and documentation is needed of the reasons behind specific choices. For example, although it is a correct decision to exclude commercial CPUE data from the catch-at-age calibration of this assessment, the reasons for that choice should be better documented, particularly as this is a fundamental to this assessment;
- This benchmark may be considered to establish XSA as the method of choice for assessment until the next benchmark round. However, in line with the General Comments, above, there is a need to consider a more probabilistic approach to the assessment to improve our ability to judge its overall quality;
- The reason for not taking the analysis forward into forecast was queried, as the review group felt that the estimate of stock in the last year was more driven by the surveys than the 2002 catch-at-age data. Greater unease about the wisdom of going forward into a forecast was expressed with regard to uncertainties in the "middle" year of the assessment, 2003, when there were substantially greater grounds for uncertainty over the true level of catches and the appropriate fishing mortality rate and exploitation pattern to use as the basis for forecasting (given direct effort control in 2003 and the scale of "drop-down" of vessels from whitefish gear to Nephrops gear that resulted as a consequence of the more generous "Nephrops" days at sea allocations).

Haddock 34

- A Working Document for ACFM, October 2003 by Coby Needle, FRS Marine Laboratory, about The effects of technical measures and assumptions about exploitation on short-term forecasts for North Sea haddock (Annex 1), was considered in addition to the WGNSSK report;
- The earlier part of the English groundfish survey series was removed from the assessments of some stocks (due to a perceived step change in Z when the GOV trawl was adopted) but not from this one. WGNSSK is asked to confirm whether such consideration was given to the use of the earlier EGFS data for haddock, and if not, to give it such consideration;
- The age range used in the assessment and calculation of mean F was addressed for haddock as for cod in 347 d . Similar considerations apply;
- The trends and patterns in the XSA $\operatorname{Ln}(\mathrm{q})$ residuals imply this is not a very good assessment. This may be due to conflicts between the indices used, although this is recognised to be an issues of scale rather than direction (ie the relative magnitude of strong year classes as indicated by surveys rather than their qualitative indications of above average year classes). WGNSSK's consideration of a similar inconsistency in scale between the surveys and the catch-at-age data is acknowledged. Although the residual plots imply a poor assessment, this does not seem to be a major problem in terms of the consistency of the assessment from last year to this - it was suggested that an assessment method that gives greater weight minimising the residuals of strong year classes (eg AMCI) could be explored for this stock;
- Unlike the cod assessment, the $\mathbf{F}_{\text {lim }}$ and \mathbf{F}_{pa} reference points were not updated in line with the new age-range used to calculate mean F .

Whiting 47d

- A Working Document for ACFM, October 2003 by Coby Needle, FRS Marine Laboratory, about The effects of technical measures and assumptions about exploitation on short-term forecasts for North Sea whiting (Annex 2), was considered in addition to the WGNSSK report;
- This assessment was rejected by ACFM. ICES has previously considered this assessment to be very uncertain due to inconsistent trends in the development of the stock as indicated (i) by conflicts between stock indices, and (ii) the high sensitivity of the catch-at-age analysis to annual updates. In recent years WGNSSK has tried to address this problem by presenting the results of a probabilistic assessment whose error bounds were considered to best encapsulate the overall uncertainty of the assessment. However, even this approach has failed this year to deal adequately with the high sensitivity of the catch-at-age analysis to the addition of a single year's data. As the assessment is very sensitive both to the choice of model (and its specific formulation) and to the data included in the model, it suggests that the fundamental problem is data related and this will initially requires more exploration and evaluation of the data than of the model;
- The same general concerns regarding age ranges to be used in the analysis were made for whiting as for cod in 347d. Similar considerations apply;

Sole Nsea

1. A Working document, ACFM October 2003 on Sole North Sea recruitment update by Sieto Verver, Loes Bolle, Olvin van Keeken, Martin Pastoors, 7/10/2003, Netherlands Institute for Fisheries Research, Ijmuiden, (Annex 3) was considered in addition to the WGNSSK report.
2. When changes are made to the catch-at-age model configuration, it is helpful to provide a clear indication of the impact of that measure on the time-series, for example removing the "power" model on age 2 - although there is an indication of its effect on terminal estimates, there is no indication of its effect on the time-series - if there is no effect on the longer series (and there may not be) then it is helpful to make that clear;
3. The topic of the maturity ogive that is used in this assessment should be revisited when the maturity data that are currently being processed become available;
4. The medium-term forecast program that is used does not generate the distribution of recruitment that has been seen historically for this stock. WGNSSK should consider moving to a medium-term forecast program that does generate an appropriate distribution (eg STPR);
5. The age range truncation caused real problems in the re-evaluation of reference points for this stock in particular. The mechanical repetition of what went before meant that the algorithm for re-estimating \mathbf{F}_{pa} was consistent with the original event, but the biomass values against which simulation outcomes were compared had not been changed (ie if a new $\mathbf{B}_{\text {lim }}$ corresponding to current $\mathbf{B}_{\text {loss }}(21 \mathrm{kt})$ was selected as the reference biomass, then it is unlikely that \mathbf{F}_{pa} would have been revised downwards). Consequently the revision was not accepted, and this meant that none of the F reference value revisions were accepted.

Plaice Nsea

1. A Working document, ACFM October 2003 on Plaice North Sea recruitment update by Sieto Verver, Loes Bolle, Olvin van Keeken, Martin Pastoors, 7/10/2003, Netherlands Institute for Fisheries Research, Ijmuiden, (Annex 4) was considered in addition to the WGNSSK report.
2. Reviewers were unable to follow clearly the discussion of the likely reasons behind the change in perception of the state of this stock and the evaluation of the discard scenario simulations in particular. This required a lot of clarification by the Chair of WGNSSK. This was very important as the ACFM decisions on this stock were based on these aspects of the assessment;
3. The age range used in the assessment and calculation of mean F was addressed for plaice as it was for cod in 347 d . Similar considerations apply, and in the case of plaice were it has a dramatic effect on the scaling of historical stock size, it is clearly an insufficient age range to forecast into the medium to long-term future at low fishing mortality without explicit account being taken of the survival and growth into the individual ages comprising the plus-group.

Mixed Fisheries

The review group recognises that WGNSSK is well aware of the problems that it faces in providing mixed fisheries advice. However, it seeks to highlight two of those problems for attention.

- Experience of fisheries-based advice in other parts of the world indicate that such provision is possible, but that it requires well-defined fisheries that are based on complete and reliable catch data. In the ICES case, model development has outstripped the provision of appropriate data both for defining fisheries and providing mixed fishery advice. Specifically, the lack of data on discards for most species is a principal concern. Although this is a weakness of many single-stock forecasts it is accentuated in a mixed fisheries context and may lead to inappropriate advice being given to the extent of mis-informing managers;
- It will not always be possible to provide a framework of analytical forecasts for input into mixed fishery evaluation models such as MTAC. This provides a stimulus for the development of complementary processes that do not require an analytical short-term forecast to proceed.

Sandeel in IV

The WG is asked to evaluate possible in-season indicators of recruiting (1-group) sandeel abundance. The very poor 2003 fishery indicated extremely low abundance of 1 -year-olds in 2002 and hence very low SSB in 2004. ACFM struggled greatly to provide appropriate management advice given that the 2004 fishery will be dominated by 1-yearolds from the 2003 year class. Given the likely low SSB in 2004 it was necessary to be adaptive in regard to the 2004 fishery and it advised low exploitation until the strength of the 2004 year class was evaluated. Salmon fisheries in many areas are managed according to escapement policies based on in-season indicators of recruitment. The potential development of this kind of approach should be explored by the WG. However, a pre-requisite to such an approach is a reliable (early) in-season indicator of abundance.

Abstract

ANNEX 1

Working Document for ACFM, October 2003

\title{ The effects of technical measures and assumptions about exploitation on short-term forecasts for North Sea haddock }

Coby Needle, FRS Marine Laboratory

\section*{Introduction}

This document continues the work outlined in the haddock section of the 2003 report of the ICES Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (in preparation). During the Working Group, time did not permit a full evaluation of the potential effect of recent technical measures and uncertainty regarding forecast exploitation patterns on haddock forecasts, and an undertaking was made to present appropriate results to ACFM at their October 2003 meeting. These results are given below, along with a resumé of the forecast methodology used.

Methods

The salient points for a short-term projection for haddock in this year's assessment are as follows:

1. Mean F_{2-4} is estimated to have declined during 2000-2002, so that $\boldsymbol{F}_{s q}$ (the mean of the last three years) is likely to be an overestimate of F in 2003 and beyond if the trend persists. However, the estimate in the assessment of the strength of the 1999 year class is very uncertain, and terminal F is consequently also very uncertain. Hence F may not have declined in recent years as much as indicated by the assessment.
2. The large 1999 year class has been observed to be small for its age in the human consumption catch component, indicating density-dependent growth retardation. The use of a standard three-year mean for the weight of age-4 fish in 2003 is likely to bias SSB estimates upwards.
3. Several technical measures have been implemented for the mixed demersal fishery in the North Sea (see the WG report, section 4). These include square-mesh panels, restrictions on lifting bags, mesh-size changes and days-atsea regulations. There have also been a significant number of vessels decommissioned in 2002 and 2003. These measures will have had (and continue to have) effects on both the exploitation pattern and effort exerted by the international fishery, which need to be accounted for in short-term projections and catch forecasts.
4. The 2003 TAC for North Sea haddock (55 kt) was intended to be restrictive, and have the effect of reducing fishing effort to a level commensurate with measures taken to protect the North Sea cod stock.

The standard forecasts methodology was modified in several ways to address these issues.

1. To allow for uncertainty in terminal-year F, three different bases for F in forecasts were explored:

- F (scaled), the mean exploitation pattern over the period 2000-2002, scaled to the level of estimated mean F_{2-4} in 2002.
- $F(2002)$, the estimated exploitation pattern in 2002
- $F(\mathrm{sq})$, the mean exploitation pattern over the period 2000-2002 (the status quo estimate).

2. The growth of the 1999 year class was modelled by fitting a logistic curve to observed weights for that year class for ages $1-3$, and then projecting forward on the basis of the fitted model. This was done separately for each catch component (human consumption, discards, industrial by-catch). Fitting was done using the Solver package in Excel, and the model formulation used was

$$
\begin{equation*}
W=\frac{1}{1+\exp (a-b A)} \tag{1.1}
\end{equation*}
$$

3. Table 1 gives fitted parameter estimates for each of the catch components, along with the projected weight-at-age and the equivalent value assuming the standard three-year mean. The expected slow growth is only seen in the human consumption component of the catch. Figure 1 shows the weights-at-age for the 1999 year class with the fitted growth curves superimposed.
4. In the forecast presented in the Working Group report, the uptake of the derogation for 110 mm during 2002 (Commission Regulation EC 2056/2001) was taken to be 0%, so that all vessels in the fishery were assumed to have switched to a 120 mm mesh at the start of 2002. This would mean that the exploitation pattern estimated for 2002 in the historical assessment could be carried forward into the forecasts unchanged. However, if (for example) 100% of vessels had taken up the derogation and remained at 110 mm during 2002, then the exploitation pattern for forecasts would have to be altered to reflect the change at the start of 2003 for all vessels from 110 mm to 120 mm . The extent of the change in selectivity that would have to be incorporated depends on the derogation uptake, which is unknown but which clearly lies on a sliding scale between these two extremes. Modifications also have to be made to account for the likely effects of decommissioning and days-at-sea.

Hence, in the following analyses a wider range of alternatives were explored. The following selectivity parameters for haddock were supplied by FRS:

Selectivity	Regulation	L_{50}	L_{25}	S_{1}	S_{2}
Sel1	EU 2000	24.8	22.6	12.384357	0.4993692
Sel2	EU 110 mm	28.7	26	11.677842	0.4068934
Sel3	EU 120 mm	32.1	29.05	11.562444	0.3602008

For each catch component, mean weights-at-age were converted to mean lengths-at-age using
where $a=0.0157, b=2.8268$, and the raising factor (gutted to live weight conversion) $r f=1.16$. Selectivity vectors (Sel1, Sel2, Sel3) relevant to each of the pertinent regulations were calculated using mean lengths-at-age, the selectivity parameters given above, and the following model:

$$
\begin{equation*}
S=\frac{1}{1+\exp \left(S_{1}-S_{2} L\right)} \tag{1.3}
\end{equation*}
$$

For each catch component and each F-forecast basis (2002, scaled 2002, or status quo), three forecast exploitation patterns were calculated. The first assumed 0% derogation uptake, so that the forecast F was unchanged. The second assumed 100% derogation uptake, so that the forecast exploitation pattern was multiplied by the ratio of Sel3 (120 mm) to Sel2 $(110 \mathrm{~mm})$. The third assumed 50% derogation uptake, and thus used the mean of the forecast F s from the first and second patterns. The forecast F-at-age in year y was modified by the difference between the selection in $2002\left(S_{2002}\right)$ and that in year $y\left(S_{y}\right)$, using $F_{y}=F_{2002} S_{y} / S_{2002}$. These F vectors were then used in short-term forecast runs, generated using the WGFRANSW program.

The final scenario modification concerned the potential effect of days-at-sea and decommissioning regulations. The days-at-sea regulation of February 2003 limited fishing to 16 effective fishing days per month, implying a $\sim 50 \%$ reduction in fishing mortality. In addition, Kunzlik (2003) estimated that 18% of effective fishing mortality on haddock would have been removed during 2002 by decommissioning. If these measures had had the full desired effect, the result would have been a 68% reduction in effective effort. The analyses described above were therefore repeated assuming an effort multiplier of 0.32 . This should probably be viewed as an upper limit on the likely effect of the days-at-sea regulation and decommissioning: the actual impact of these measures is still to be evaluated.

The combination of different settings described above produced a total of 18 forecasts. Table 2 gives the input file for run 1, which assumes F (scaled) as the forecast basis, 0% derogation uptake, and no effort modification, and which was presented in the WG report. Table 3 gives the corresponding exploitation patterns for each of the alternative runs: these were the input data that were changed between runs.

Results

The key results from each of these are summarised in Table 4, whilst Tables 5-22 give management option and detailed forecast tables for each of these runs. Broadly speaking, F (sq) results in the highest catch and lowest SSB, F (scaled) gives the lowest catch and the highest SSB , and $F(2002)$ lies somewhere in between. Within these categories, 0%
derogation uptake gives lower SSB and landings than 100%. Finally, the effort multiplier of 0.32 greatly increases SSB and reduces landings.

All these conclusions would have been expected, given the exploitation patterns in Table 3. The interesting point is the relation between the forecast human consumption landings and the TAC, which is around 55 kt . The forecast presented in the WG report (run 1) indicates landings of 159 kt in 2003, just under three times the TAC. We should reiterate that the TAC was intended to be restrictive, so we would expect landings at the usual forecast F s to be higher than the quota. The extent to which predicted landings exceed the TAC is surprising, however. If this was the true level of landings, then the fleets would have exhausted their quotas during the spring. However, there have been no reports (anecdotal or otherwise) to indicate that this has happened: the latest data on the Scottish commercial fleets show that reported quota uptake as of September 2003 was around 70%. There are several possible reasons for this anomaly. For example:

1. The 1999 year class has been overestimated in the assessment, meaning that the starting point for abundance in the forecast is too high.
2. The fish are being caught, but discards have been underestimated and/or landings have been misreported.
3. Recent technical measures have had an effect, so that the basis for the forecast F being used (F (scaled), $F(2002$) or $F(\mathrm{sq})$) is no longer appropriate.

The WG were unable to determine definitively which of these (or which combination of these) is leading to the apparent overestimation of landings. However, the forecast runs (see Table 2) with F (scaled) as a basis and an effort multiplier of 0.32 (thus assuming the full possible impact of decommissioning and days-at-sea regulations) give forecast landings in 2003 of between 49.2 kt and to 58.8 kt , which would be consistent with the agreed TAC. It is unlikely that the effort reduction due to the days-at-sea regulation would be as high as 50%, certainly not in 2003 given that the regulation only commenced in a piecemeal fashion in February, so the effort multiplier used here (0.32) is probably too low. However, the fact that the landings are consistent with the TAC, combined with the perception that the industry have not yet exhausted their haddock quota, implies that the reported effort reduction is of this approximate magnitude. If this is not all due to technical measures, as appears likely, then it is probably due to a combination of the three points listed above.

In conclusion: a standard forecast, making no allowances for recent regulations, results in forecast landings for 2003 that are three times the TAC. The industry have not reported exhausation of quota, so this standard forecast does not appear to be appropriate. Assuming that the regulations have had their full possible effect results in forecast landings for 2003 that are roughly equal to the TAC. However, it is overly optimistic to expect that the regulations have been able to have their full effect yet. Therefore, the estimated landings in 2003 will probably be somewhat higher than the TAC. This could be because of under-reporting, or because the historical estimate of the strength of the 1999 year class was too high, or a combination of both. Given this, it would be inappropriate to present any one of these forecasts as a reliable short-term prognosis of the haddock stock, the future development of which must remain uncertain.

References

Kunzlik, P. (2003) Calculation of potential reduction in fishing mortality of North Sea and west of Scotland cod, haddock and whiting due to decommissioning of UK vessels in 2002. Working Document 6 to the ICES Working Group on the Assessment of Northern Shelf Demersal Stocks.

Table 1 Haddock in Subarea IV and Division IIIa. Fitted growth curve parameter estimates, and projected mean weight-at-age (kg) for age 4 using both the growth model and a simple three-year mean, for the 1999 year class in total catches and three catch components.

Component	a	b	Growth model	3-year mean
Total catch	2.565	0.616	0.474	0.497
Human consumption	1.060	0.212	0.447	0.524
Discards	2.278	0.430	0.364	0.326
Industrial by-catch	3.575	0.879	0.485	0.366

Haddock in Subarea IV and Division IIIa. Input data for catch forecast and linear sensitivity analysis for run 1 (F (scaled) basis, 0% derogation uptake, no effort multiplier, as in the WG report).

Table 3
Haddock in Subarea IV and Division IIIa. Exploitation patterns for alternative short-term forecasts.

		Forecast exploitation pattern								
	Age	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9
	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	1	0.002	0.002	0.001	0.006	0.005	0.004	0.002	0.002	0.001
	2	0.049	0.042	0.036	0.032	0.028	0.023	0.118	0.102	0.086
	3	0.220	0.197	0.174	0.096	0.086	0.075	0.480	0.429	0.379
	4	0.474	0.434	0.394	0.615	0.563	0.511	0.842	0.771	0.700
	5	0.382	0.377	0.372	0.577	0.569	0.562	0.624	0.615	0.607
	6	0.350	0.347	0.344	0.395	0.392	0.389	0.708	0.702	0.697
	7	0.336	0.336	0.336	0.354	0.354	0.354	0.696	0.696	0.696
	0	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001
	1	0.024	0.017	0.010	0.033	0.028	0.022	0.040	0.033	0.026
	2	0.123	0.088	0.053	0.113	0.097	0.082	0.240	0.207	0.175
	3	0.114	0.087	0.060	0.111	0.099	0.087	0.223	0.199	0.176
	4	0.058	0.049	0.040	0.045	0.041	0.037	0.111	0.101	0.092
	5	0.008	0.007	0.006	0.002	0.002	0.002	0.016	0.016	0.016
	6	0.001	0.001	0.000	0.000	0.000	0.000	0.003	0.003	0.003
	7	0.014	0.010	0.007	0.041	0.041	0.041	0.015	0.015	0.015
	0	0.012	0.012	0.013	0.031	0.033	0.034	0.013	0.014	0.015
	1	0.045	0.037	0.030	0.122	0.101	0.080	0.050	0.042	0.033
	2	0.030	0.026	0.022	0.011	0.009	0.008	0.078	0.068	0.057
	3	0.070	0.062	0.055	0.003	0.003	0.003	0.135	0.121	0.107
	4	0.020	0.019	0.017	0.056	0.051	0.047	0.023	0.021	0.019
	5	0.003	0.003	0.003	0.008	0.008	0.008	0.003	0.003	0.003
	6	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	7	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		Forecast exploitation pattern								
	Age	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17	Run 18
	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	1	0.001	0.001	0.000	0.002	0.001	0.001	0.001	0.001	0.000
	2	0.016	0.014	0.011	0.010	0.009	0.007	0.038	0.033	0.027
	3	0.070	0.063	0.056	0.031	0.027	0.024	0.153	0.137	0.121
	4	0.152	0.139	0.126	0.197	0.180	0.164	0.270	0.247	0.224
	5	0.122	0.121	0.119	0.185	0.182	0.180	0.200	0.197	0.194
	6	0.112	0.111	0.110	0.126	0.125	0.124	0.226	0.225	0.223
	7	0.108	0.108	0.108	0.113	0.113	0.113	0.223	0.223	0.223
	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	1	0.004	0.003	0.002	0.011	0.009	0.007	0.013	0.011	0.008
	2	0.015	0.011	0.007	0.036	0.031	0.026	0.077	0.066	0.056
	3	0.015	0.011	0.008	0.035	0.032	0.028	0.071	0.064	0.056
	4	0.007	0.006	0.005	0.014	0.013	0.012	0.035	0.032	0.029
	5	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.005	0.005
	6	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001
	7	0.001	0.001	0.001	0.013	0.013	0.013	0.005	0.005	0.005
	0	0.003	0.004	0.004	0.010	0.010	0.011	0.004	0.005	0.005
	1	0.009	0.007	0.006	0.039	0.032	0.026	0.016	0.013	0.011
	2	0.006	0.005	0.004	0.003	0.003	0.002	0.025	0.022	0.018
	3	0.011	0.010	0.009	0.001	0.001	0.001	0.043	0.039	0.034
	4	0.004	0.004	0.003	0.018	0.016	0.015	0.007	0.007	0.006
	5	0.001	0.001	0.001	0.003	0.003	0.002	0.001	0.001	0.001
	6	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	7	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 4
Haddock in Subarea IV and Division IIIa. Results from short-term forecasts run under 18 different configurations. All estimates are in thousand tonnes.

Run number	Basis	Derogation uptake	Effort multiplier	SSB		Human cons. landings		Discards		Industrial bycatch	
				2004	2005	2003	2004	2003	2004	2003	2004
1	F scaled	0\%	1.00	368.0	271.0	159.0	116.0	9.0	3.0	7.0	3.0
2	F scaled	50\%	1.00	383.0	286.0	148.0	118.0	7.0	3.0	7.0	3.0
3	F scaled	100\%	1.00	399.0	302.0	136.0	119.0	6.0	2.0	6.0	3.0
4	F 2002	0\%	1.00	322.0	201.0	172.0	133.0	20.0	6.0	21.0	10.0
5	F 2002	50\%	1.00	338.0	215.0	161.0	136.0	18.0	6.0	19.0	9.0
6	F 2002	100\%	1.00	355.0	230.0	150.0	139.0	16.0	5.0	18.0	9.0
7	F sq	0\%	1.00	231.0	133.0	239.0	107.0	36.0	10.0	13.0	4.0
8	F sq	50\%	1.00	250.0	147.0	225.0	113.0	34.0	10.0	12.0	4.0
9	F sq	100\%	1.00	271.0	162.0	211.0	120.0	31.0	9.0	11.0	4.0
10	F scaled	0\%	0.32	499.0	468.0	58.8	57.2	3.2	1.3	2.5	1.1
11	F scaled	50\%	0.32	506.0	477.0	54.0	56.3	2.6	1.0	2.3	1.0
12	F scaled	100\%	0.32	512.0	485.0	49.2	55.3	2.0	0.7	2.1	1.0
13	F 2002	0\%	0.32	476.0	423.0	67.5	76.3	7.2	2.6	7.8	3.9
14	F 2002	50\%	0.32	484.0	432.0	62.3	75.5	6.5	2.3	7.3	3.7
15	F 2002	100\%	0.32	492.0	442.0	57.1	74.6	5.9	2.1	6.7	3.4
16	F sq	0\%	0.32	430.0	369.0	101.0	79.0	15.0	5.0	5.0	2.0
17	F sq	50\%	0.32	441.0	381.0	92.9	78.7	13.7	4.8	4.8	1.8
18	F sq	100\%	0.32	452.0	394.0	85.1	78.3	12.4	4.4	4.4	1.7

Table 5a
Haddock in Subarea IV and Division IIIa. Management option table from run 1.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations		Catch number			
Age	ck No.	H.Cons	cards	catch	Total
0	6233448	0	772	27837	28609\|
1	573688	563	3716	7450	11729
2	45989	1761	1692	665	4118
3	316671	53543	11280	8581	73404
4	898062	298242	13016	8214	319472
5	5423	1567	13	7	1587
6	2250	605	1	0	605
7	2098	545	8	0	553
Wt	611	159	9	7	175

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Table 6a
Haddock in Subarea IV and Division IIIa. Management option table from run 2.

Table 6b
Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 2.
Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	Ck No.
0	6233448
1	573688
2	45989
3	316671
4	898062
5	5423
6	2250
7	2098
Wt	611

| H.Cons | \| Discards|By-catch | | Total |
| :---: | :---: | :---: | :---: |
| 0 | 600 | 29533 | 301331 |
| 467 | 2613 | 6183 | 9263 |
| 1537 | 1225 | 580 | 3343 |
| 48745 | 8786 | 7813 | 65344 |
| 278479 | 11245 | 7670 | 297393 |
| 1550 | 11 | 7 | 1568 |
| 601 | 0 | 0 | 601 |
| 545 | 6 | 0 | 551 |
| 148 | 7 | 7 | 162\| |

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$

Table 7a
Haddock in Subarea IV and Division IIIa. Management option table from run 3.

Table 7b Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 3.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust $=1.00$

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

| H.Cons \| Discards|By-catch | | | Total |
| :---: | :---: | :---: | :---: |
| 0 | 428 | 31229 | 31657 |
| 513 | 2076 | 6783 | 9372 |
| 3060 | 1749 | 1155 | 5964 |
| 3975 | 563 | 637 | 5175 |
| 56480 | 2059 | 1556 | 60094 |
| 130032 | 788 | 595 | 131415 |
| 809 | 0 | 0 | 810 |
| 658 | 4 | 0 | 662 |
| 119 | 2 | 3 | 124 |

Table 8a
Haddock in Subarea IV and Division IIIa. Management option table from run 4.

Table 8b Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 4.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Table 9a
Haddock in Subarea IV and Division IIIa. Management option table from run 5.

Table 9b Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 5.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Table 10a
Haddock in Subarea IV and Division IIIa. Management option table from run 6.

Table 10b Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 6.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	Ck No.
0	6233448
1	573688
2	45989
3	316671
4	898062
5	5423
6	2250
7	2098
Wt	611

H.Cons	\| Discards ${ }^{\text {By-catch }}$		Total
0	1734	90230	91964
994	5914	21577	28484
840	2946	281	4066
19555	22624	658	42837
309972	22661	28295	360928
2123	8	29	2160
661	0	0	661
559	64	0	624
150	16	18	184\|

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$

Table 11a
Haddock in Subarea IV and Division IIIa. Management option table from run 7.

Table 11b Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 7.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	Ck No.
0	6233448
1	573688
2	45989
3	316671
4	898062
5	5423
6	2250
7	2098
Wt	611

| H.Cons | \|Discards|By-catch | | Total |
| :---: | :---: | :---: | :---: |
| 0 | 1387 | 35440 | 36826 |
| 614 | 10971 | 13704 | 25288 |
| 3668 | 7481 | 2439 | 13588 |
| 92585 | 42988 | 26088 | 161661 |
| 435939 | 57245 | 11858 | 505042 |
| 2285 | 60 | 12 | 2357 |
| 1045 | 5 | 0 | 1050 |
| 959 | 20 | 0 | 979 |
| 239 | 36 | 13 | 288\| |

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Table 12a
Haddock in Subarea IV and Division IIIa. Management option table from run 8.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	Ck No.
0	6233448
1	573688
2	45989
3	316671
4	898062
5	5423
6	2250
7	2098
Wt	611

| H.Cons \|Discards|By-catch | | | Total |
| :---: | :---: | :---: | :---: |
| 0 | 1471 | 37596 | 39067 |
| 511 | 9128 | 11402 | 21042 |
| 3251 | 6631 | 2162 | 12045 |
| 85933 | 39899 | 24213 | 150046 |
| 412694 | 54193 | 11226 | 478112 |
| 2263 | 59 | 12 | 2334 |
| 1039 | 5 | 0 | 1044 |
| 958 | 20 | 0 | 979 |
| 225 | 34 | 12 | 271 |

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$

Table 13a
Haddock in Subarea IV and Division IIIa. Management option table from run 9.

	Year							
	2003				2004			
Mean F Ages								
H.cons 2 to 4	0.54	0.00	0.21	0.43	0.54	0.64	0.86	1.07
Ind BC 2 to 4	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Effort relative to 2002								
H.cons	1.00	0.00	0.40	0.80	1.00	1.20	1.60	2.00
Ind BC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Biomass								
Total 1 January	611	391	391	391	391	391	391	391
SSB at spawning time	457	271	271	271	271	271	271	271
Catch weight (,000t)								
H.cons	211	0	57	101	120	136	163	185
Discards	31	0	4	7	9	10	13	15
Ind BC	11	4	4	4	4	4	4	4
Total Landings	222	4	61	105	124	140	167	188
Total Catch	253	4	65	113	133	150	180	203
```Biomass in year.... 2005 Total 1 January SSB at spawning time```		412	346	295	274	256	226	202
		295	231	182	162	144	115	92
---+								
	Year							
	2003				2004			
Effort relative to 2002								
H.cons	1.00	0.00	0.40	0.80	1.00	1.20	1.60	2.00
Ind BC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Est. Coeff. of Variation								
Biomass								
Total 1 January	0.11	0.36	0.36	0.36	0.36	0.36	0.36	0.36
SSB at spawning time	0.14	0.27	0.27	0.27	0.27	0.27	0.27	0.27
Catch weight								
H.cons	0.27	0.00	0.54	0.32	0.29	0.27	0.26	0.25
Discards	0.33	0.00	0.65	0.49	0.47	0.46	0.46	0.47
Ind BC	0.65	0.81	0.83	0.86	0.87	0.88	0.90	0.91
Biomass in year.... 2005								
Total 1 January		0.37	0.43	0.47	0.50	0.52	0.58	0.63
SSB at spawning time		0.28	0.32	0.33	0.34	0.34	0.35	0.37

Table 13b Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 9.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00


Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00


Table 14a
Haddock in Subarea IV and Division III.. Management option table from run 10.


Table 14b Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 10.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	Ck No.
0	6233448
1	573688
2	45989
3	316671
4	898062
5	5423
6	2250
7	2098
Wt	611


| H.Cons | \|Discards|By-catch| |  | Total |
| :---: | :---: | :---: | :---: |
| 0 | 248 | 8930 | 9178 |
| 182 | 1202 | 2409 | 3793 |
| 584 | 561 | 221 | 1366 |
| 18839 | 3969 | 3019 | 25827 |
| 111523 | 4867 | 3071 | 119462 |
| 566 | 5 | 3 | 573 |
| 216 | 0 | 0 | 216 |
| 194 | 3 | 0 | 197 |
| 591 | 3 | 3 | 64 |

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$



Table 15b Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 11.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	Ck No.
0	6233448
1	573688
2	45989
3	316671
4	898062
5	5423
6	2250
7	2098
Wt	611


| H.Cons | \|Discards|By-catch| |  | Total |
| :---: | :---: | :---: | :---: |
| 0 | 192 | 9476 | 9668 |
| 151 | 843 | 1995 | 2989 |
| 506 | 403 | 191 | 1101 |
| 16955 | 3056 | 2717 | 22729 |
| 102809 | 4151 | 2831 | 109792 |
| 559 | 4 | 3 | 566 |
| 215 | 0 | 0 | 215 |
| 194 | 2 | 0 | 196 |
| $54 \mid$ | 3 | 2 | 59 |

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$



Table 16b Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 12.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	Ck No.
0	6233448
1	573688
2	45989
3	316671
4	898062
5	5423
6	2250
7	2098
Wt	611


H.Cons	\| Discards ${ }^{\text {By-catch }}$		Total
0	137	10021	10158
119	484	1580	2183
428	245	162	834
15049	2133	2412	19594
93977	3426	2588	99991
552	3	3	558
213	0	0	213
194	1	0	195
491	2	2	53

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$


Table 17a
Haddock in Subarea IV and Division III.. Management option table from run 13.


Table 17b Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 13.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	Ck No.
0	6233448
1	573688
2	45989
3	316671
4	898062
5	5423
6	2250
7	2098
Wt	611


| H.Cons \|Discards|By-catch| |  |  | Total |
| :---: | :---: | :---: | :---: |
| 0 | 499 | 25946 | 26445 |
| 495 | 2949 | 10758 | 14202 |
| 380 | 1333 | 127 | 1841 |
| 8298 | 9600 | 279 | 18177 |
| 140403 | 10265 | 12816 | 163484 |
| 830 | 3 | 11 | 844 |
| 243 | 0 | 0 | 243 |
| 203\| | 23 | 0 | 226 |
| 681 | 7 | 8 | 83 |

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00



Table 18b Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 14.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	Ck No.
0	6233448
1	573688
2	45989
3	316671
4	898062
5	5423
6	2250
7	2098
Wt	611


H.Cons	\| Discards ${ }^{\text {By-catch }}$		Total
0	529	27527	28056
411	2447	8928	11787
329	1156	110	1595
7450	8620	251	16321
129732	9484	11842	151058
820	3	11	834
241	0	0	241
203	23	0	226
621	7	7	76

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$


	2003				2004			
Mean F Ages								
H.cons 2 to 4	0.09	0.00	0.03	0.07	0.09	0.10	0.14	0.17
Ind BC 2 to 4	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Effort relative to 2002								
H.cons	1.00	0.00	0.40	0.80	1.00	1.20	1.60	2.00
Ind BC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Biomass								
Total 1 January	611	629	629	629	629	629	629	629
SSB at spawning time	457	492	492	492	492	492	492	492
Catch weight (,000t)								
H.cons	57.1	0.0	31.4	60.7	74.6	88.1	113.6	137.5
Discards	5.9	0.0	0.8	1.7	2.1	2.4	3.2	3.9
Ind BC	6.7	3.6	3.5	3.4	3.4	3.4	3.3	3.3
Total Landings	63.8	3.6	34.9	64.1	78.0	91.4	116.9	140.8
Total Catch	69.6	3.6	35.7	65.8	80.1	93.9	120.1	144.7
```Biomass in year.... 2005 Total 1 January SSB at spawning time```		643	609	577	562	547	519	493
		522	488	457	442	427	400	375
	Year							
	2003	2004						
Effort relative to 2002								
Ind BC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Est. Coeff. of Variation								
Biomass								
Total 1 January	0.11	0.23	0.23	0.23	0.23	0.23	0.23	0.23
SSB at spawning time	0.14	0.16	0.16	0.16	0.16	0.16	0.16	0.16
Catch weight								
H.cons	0.34	0.00	0.55	0.30	0.25	0.23	0.19	0.18
Discards	0.37	0.00	0.68	0.49	0.47	0.46	0.44	0.44
Ind BC	0.64	0.77	0.78	0.79	0.79	0.79	0.80	0.81
Biomass in year.... 2005								
Total 1 January		0.26	0.27	0.27	0.28	0.28	0.29	0.30
SSB at spawning time		0.19	0.20	0.20	0.20	0.20	0.20	0.20

Table 19b Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 15.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	Ck No.
0	6233448
1	573688
2	45989
3	316671
4	898062
5	5423
6	2250
7	2098
Wt	611

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$

Table 20a
Haddock in Subarea IV and Division IIIa. Management option table from run 16.

Table 20b Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 16.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00
Populations

Age	ck No.
0	6233448
1	573688
2	45989
3	316671
4	898062
5	5423
6	2250
7	2098
Wt	611

| H.Cons | \| Discards|By-catch | | Total |
| :---: | :---: | :---: | :---: |
| 0 | 445 | 11377 | 11822 |
| 201 | 3592 | 4487 | 8281 |
| 1338 | 2730 | 890 | 4959 |
| 37931 | 17612 | 10688 | 66231 |
| 185141 | 24312 | 5036 | 214489 |
| 889 | 23 | 5 | 918 |
| 415 | 2 | 0 | 417 |
| 380 | 8 | 0 | 388 |
| 101 | 15 | 5 | 121 |

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Table 21a
Haddock in Subarea IV and Division IIIa. Management option table from run 17.

	Year							
Mean F Ages								
H.cons 2 to 4	0.19	0.00	0.08	0.15	0.19	0.23	0.31	0.39
Ind BC 2 to 4	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Effort relative to 2002								
H.cons	1.00	0.00	0.40	0.80	1.00	1.20	1.60	2.00
Ind BC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Biomass								
Total 1 January	611	574	574	574	574	574	574	574
SSB at spawning time	457	441	441	441	441	441	441	441
Catch weight (,000t)								
H.cons	92.9	0.0	33.5	64.2	78.7	92.6	118.6	142.6
Discards	13.7	0.0	2.0	3.9	4.8	5.7	7.3	8.9
Ind BC	4.8	1.9	1.9	1.8	1.8	1.8	1.7	1.7
Total Landings	97.7	1.9	35.3	66.1	80.5	94.3	120.4	144.3
Total Catch	111.5	1.9	37.4	70.0	85.3	100.0	127.7	153.2
Biomass in year.... 2005								
SSB at spawning time		469	432	397	381	366	337	310
	Year							
	2003				2004			
Effort relative to 2002								
Ind BC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Est. Coeff. of Variation								
Biomass								
Total 1 January	0.11	0.25	0.25	0.25	0.25	0.25	0.25	0.25
SSB at spawning time	0.14	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Catch weight								
H.cons	0.32	0.00	0.55	0.30	0.25	0.22	0.19	0.18
Discards	0.35	0.00	0.64	0.44	0.42	0.40	0.39	0.38
Ind BC	0.65	0.74	0.75	0.75	0.76	0.76	0.77	0.77
Biomass in year.... 2005								
Total 1 January		0.28	0.29	0.30	0.31	0.31	0.33	0.34
SSB at spawning time		0.21	0.21	0.22	0.22	0.22	0.22	0.23

Table 21b Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 17.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
0	6233448
1	573688
2	45989
3	316671
4	898062
5	5423
6	2250
7	2098
Wt	611

| H.Cons \| Discards|By-catch | | | | Total |
| :---: | :---: | :---: | :---: |
| 0 | 472 | 12072 | 12544 |
| 167 | 2977 | 3719 | 6863 |
| 1166 | 2379 | 776 | 4321 |
| 34385 | 15965 | 9689 | 60039 |
| 171593 | 22533 | 4667 | 198793 |
| 879 | 23 | 5 | 907 |
| 412 | 2 | 0 | 414 |
| 380 | 8 | 0 | 388 |
| 93\| | 14 | 5 | 111 |

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$

Table 22a
Haddock in Subarea IV and Division IIIa. Management option table from run 18.

Table 23b Haddock in Subarea IV and Division IIIa. Detailed forecast table from run 18.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	Ck No.
0	6233448
1	573688
2	45989
3	316671
4	898062
5	5423
6	2250
7	2098
Wt	611

H.Cons	\| Discards ${ }^{\text {By-catch }}$		Total
0	500	12767	13266
132	2360	2948	5440
991	2022	659	3672
30743	14274	8662	53680
157701	20708	4290	182698
868	23	5	896
409	2	0	411
380	8	0	388
85	12	4	102

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$

Figure 1
Haddock in Subarea IV and Division IIIa. Mean weights-at-age for the 1999 year class in total catches and three catch components, along with fitted growth curves.

ANNEX 2
 Working Document for ACFM, October 2003
 The effects of technical measures and assumptions about exploitation on short-term forecasts for North Sea whiting

Coby Needle, FRS Marine Laboratory

Introduction

This document continues the work outlined in the whiting section of the 2003 report of the ICES Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (in preparation). During the Working Group, time did not permit a full evaluation of the potential effect of recent technical measures and uncertainty regarding forecast exploitation patterns on whiting forecasts, and an undertaking was made to present appropriate results to ACFM at their October 2003 meeting. These results are given below. The methods used for data formulation and forecasting are identical to those in the companion anaylses for haddock (Needle 2003), and the reader is referred to that document for further details. It should be noted that no allowance was made for the possible slow growth of any whiting year class, unlike what was done for haddock.

Results and conclusions

Table 1 gives the input data file for run 1 in the set of scenarios (forecast basis F (scaled), 0% derogation uptake, no effort modification). Note that several of the listed CVs in this data file have been corrected from the version given in the 2003 Working Group report. Table 2 shows the selection patterns used for each catch component in each of the 18 runs performed. Table 3 summarises the results of the forecasts, while details of these are given in Tables 4-21.

The forecasts behave much as would be expected. The relationship between F (scaled), $F(2002)$ and $F(\mathrm{sq})$ is complicated, with forecast landings either increasing or decreasing as the forecast basis is changed depending on which catch component is being considered. The full effort multiplier (0.32) reduces whiting catches to a very low level indeed, although this is likely to be an overestimate of the true effect of decommissioning and days-at-sea regulations (see Needle, 2003). The whiting TAC for 2003 is around 38 kt , and in only one forecast is that actually taken in the human consumption landings. This would imply that the recently-imposed technical measures are having a significant effect of the ability of the fleet to catch whiting, an implication supported by anecdotal evidence from skippers.

It should be noted that these forecasts have not allowed for the effects of the ban on lifting bags and the use of squaremesh panels in 110 mm mesh nets, which if used would increase selection. Both of these are unilateral measures which apply only to the Scottish fleet. As this fleet takes only $\sim 50 \%$ of the whiting catch, it may be inappropriate to apply Scottish selectivity characteristics to the international fleet as a whole. In any case, analyses accounting for these measures would still only be illustrative, given the caveats about the generakl approach listed in Needle (2003).

References

Needle, C. L. (2003) The effects of technical measures and assumptions about exploitation on short-term forecasts for North Sea haddock. Working Document for ACFM, October 2003.

Table 1
Whiting in Subarea IV and Division VIId. Input data for catch forecast and linear sensitivity analysis for run 1 (F (scaled) basis, 0% derogation uptake, no effort multiplier).

Label	Value	CV	Label	Value	CV
Numbe	at-age		Weigh	the st	
N1	1459533	0.28	WS1	0.08	0.31
N2	545759	0.26	WS2	0.18	0.10
N3	259221	0.14	WS3	0.23	0.04
N4	170085	0.12	WS 4	0.28	0.01
N5	71342	0.11	WS5	0.29	0.08
N6	19022	0.12	WS 6	0.31	0.14
H.cons selectivity			Weight in the HC catch		
sH1	0.01	0.35	WH1	0.17	0.12
sH2	0.07	0.37	WH2	0.22	0.02
sH3	0.21	0.35	WH3	0.27	0.01
SH4	0.37	0.21	WH4	0.30	0.03
sH5	0.44	0.29	WH5	0.30	0.10
sH6	0.46	0.29	WH6	0.32	0.13
Discard selectivity			Weight in the discards		
sD1	0.02	0.35	WD1	0.11	0.22
sD2	0.10	0.37	WD2	0.17	0.05
sD3	0.14	0.35	WD3	0.20	0.06
sD4	0.06	0.21	WD 4	0.24	0.08
sD5	0.04	0.29	WD5	0.23	0.09
sD6	0.04	0.29	WD 6	0.24	0.10
Industrial selectivity			Weight in Ind. by-catch		
sI1	0.08	0.35	WI1	0.04	0.04
SI2	0.08	0.37	WI2	0.14	0.25
sI3	0.11	0.35	WI3	0.19	0.29
SI4	0.10	0.21	WI 4	0.30	0.06
sI5	0.05	0.29	WI5	0.37	0.11
sI6	0.02	0.29	WI 6	0.28	0.66
Natural mortality			Proportion mature		
M1	0.95	0.10	MT1	0.11	0.10
M2	0.45	0.10	MT2	0.92	0.10
M3	0.35	0.10	MT3	1.00	0.10
M4	0.30	0.10	MT 4	1.00	0.00
M5	0.25	0.10	MT5	1.00	0.00
M6	0.25	0.10	MT 6	1.00	0.00
Relative effort			Year effect for natural mortality		
in HC fishery					
HFO3	1.00	0.15	K03	1.00	0.10
HFO4	1.00	0.15	K04	1.00	0.10
HFO5	1.00	0.15	K05	1.00	0.10
Relative effort in industrial fishery					
IF03 1.00 0.63					
IF04	1.00	0.63			
IF05	1.00	0.63			
Recruitment in 2004 and 2005					
R04	1459533	0.38			
R05	1459533	0.38			
Proportion of F before spawning $=.00$					
Proportion of M before spawning $=.00$					
Stock numbers are XSA are survivors,					

Table 2
Whiting in Subarea IV and Division VIId．Exploitation patterns for alternative short－term forecasts．

						exploi	pattern			
	Age	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9
	1	0.013	0.010	0.008	0.008	0.006	0.004	0.011	0.008	0.006
$\stackrel{\text { 인 }}{ }$	2	0.068	0.053	0.039	0.043	0.034	0.025	0.057	0.045	0.033
들 을	3	0.210	0.166	0.122	0.147	0.116	0.085	0.175	0.139	0.102
ご気	4	0.370	0.295	0.220	0.240	0.192	0.143	0.303	0.242	0.180
	5	0.440	0.350	0.261	0.261	0.208	0.155	0.365	0.290	0.216
	6	0.459	0.368	0.278	0.272	0.218	0.165	0.380	0.305	0.230
	1	0.021	0.017	0.013	0.018	0.015	0.011	0.025	0.019	0.014
	2	0.099	0.077	0.056	0.094	0.074	0.054	0.124	0.097	0.071
\％	3	0.138	0.108	0.078	0.144	0.114	0.084	0.172	0.136	0.100
－	4	0.062	0.049	0.036	0.060	0.048	0.036	0.075	0.060	0.045
－	5	0.038	0.030	0.022	0.033	0.026	0.020	0.046	0.037	0.028
	6	0.036	0.029	0.021	0.032	0.026	0.019	0.045	0.036	0.027
	1	0.077	0.061	0.044	0.029	0.023	0.016	0.038	0.030	0.022
	2	0.083	0.065	0.047	0.034	0.027	0.019	0.045	0.035	0.026
忥	3	0.114	0.090	0.066	0.051	0.040	0.030	0.061	0.048	0.036
\％	4	0.101	0.081	0.060	0.042	0.034	0.025	0.053	0.042	0.031
등	5	0.048	0.038	0.028	0.018	0.014	0.011	0.025	0.020	0.015
	6	0.022	0.018	0.013	0.008	0.007	0.005	0.012	0.009	0.007

Table 3
Whiting in Subarea IV and Division VIId. Results from short-term forecasts run under 18 different configurations. All estimates are in thousand tonnes.

Run number	Basis	Derogation uptake	Effort multiplier	SSB		Human cons. landings		Discards		Industrial bycatch	
				2004	2005	2003	2004	2003	2004	2003	2004
1	F scaled	0\%	1.00	224.0	218.0	39.2	37.6	16.0	15.4	15.8	14.6
2	F scaled	50\%	1.00	237.0	237.0	32.3	33.5	13.0	13.0	12.9	12.5
3	F scaled	100\%	1.00	251.0	260.0	24.9	27.8	9.8	10.2	9.8	9.9
4	F 2002	0\%	1.00	246.0	252.0	27.0	29.0	16.3	16.7	6.8	6.8
5	F 2002	50\%	1.00	255.0	268.0	22.0	24.9	13.1	13.9	5.5	5.7
6	F 2002	100\%	1.00	265.0	285.0	16.8	19.9	9.9	10.7	4.2	4.4
7	F sq	0\%	1.00	234.0	233.0	33.4	33.9	20.2	20.0	8.5	8.1
8	F sq	50\%	1.00	245.0	251.0	27.4	29.6	16.4	16.8	6.9	6.9
9	F sq	100\%	1.00	257.0	271.0	21.0	24.2	12.3	13.1	5.2	5.4
10	F scaled	0\%	0.32	269.0	293.0	14.4	17.6	5.7	6.2	5.6	6.1
11	F scaled	50\%	0.32	274.0	303.0	11.6	14.6	4.5	5.0	4.5	5.0
12	F scaled	100\%	0.32	280.0	313.0	8.7	11.2	3.3	3.8	3.3	3.7
13	F 2002	0\%	0.32	278.0	309.0	9.5	12.0	5.6	6.3	2.4	2.6
14	F 2002	50\%	0.32	281.0	316.0	7.6	9.8	4.5	5.1	1.9	2.1
15	F 2002	100\%	0.32	285.0	323.0	5.7	7.5	3.3	3.8	1.4	1.6
16	F sq	0\%	0.32	273.0	301.0	12.0	15.0	7.1	7.9	3.0	3.3
17	F sq	50\%	0.32	278.0	309.0	9.6	12.34	5.6	6.34	2.4	2.7
18	F sq	100\%	0.32	282.0	317.0	7.2	9.5	4.2	4.8	1.8	2.0

Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 1.

Table 4 (Cont'd)

```
Forecast for year 2003
    F multiplier H.cons=1.00
    F multiplier Indust=1.00
```


H. Cons	Discards ${ }^{\text {By }}$-catch		Total
12016	19293	69357	100666
26659	38737	32617	98013
37265	24440	20224	81929
42709	7160	11699	61568
21839	1870	2372	26080
6093	481	290	6865
39	16	16	71

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$

Populations

Age	ck No.
1	1459533
2	504675
3	271101
4	115150
5	73900
6	41689
Wt	341

Catch number

H. Cons	Discards\|By-catch		Total
12016	19293	69357	100666
24652	35821	30161	90635
38973	25560	21151	85683
28915	4848	7921	41683
22622	1937	2457	27016
13354	1055	636	15045
38	15	15	68

Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 2.

Table 5 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations
Catch number

Age	ck No.
1	1459533
2	545759
3	259221
4	170085
5	71342
6	19022
Wt	353

| H.Cons \|Discards|By-catch | | | Total |
| :---: | :---: | :---: | :---: |
| 9526 | 15489 | 54984 | 79999 |
| 21444 | 31147 | 26235 | 78826 |
| 30769 | 20006 | 16698 | 67473 |
| 35683 | 5907 | 9775 | 51365 |
| 18236 | 1540 | 1980 | 21757 |
| 5118 | 397 | 244 | 5758 |
| 321 | 13 | 13 | 581 |

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$

Populations	
Age	ck No.
1	1459533
2	516861
3	286030
4	126909
5	82418
6	46365
Wt	354

| H. Cons | \| Discards|By-catch | | Total |
| :---: | :---: | :---: | :---: |
| 9526 | 15489 | 54984 | 79999 |
| 20308 | 29498 | 24846 | 74652 |
| 33951 | 22075 | 18425 | 74451 |
| 26625 | 4408 | 7293 | 38326 |
| 21068 | 1780 | 2288 | 25135 |
| 12474 | 967 | 594 | 14035 |
| 33 | 13 | 12 | 591 |

Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 3.

Table 6 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	545759
3	259221
4	170085
5	71342
6	19022
Wt	353

H. Cons	Discards\|By-catch		Total
6986	11608	40321	58914
15965	23175	19532	58672
23656	15152	12838	51647
27900	4520	7643	40062
14247	1176	1547	16971
4042	303	193	4538
25	10	10	45

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$

Populations	
Age	ck No.
1	1459533
2	529342
3	301780
4	139868
5	91918
6	51565
Wt	367

| H. Cons | Discards\|By-catch| | | Total |
| :---: | :---: | :---: | :---: |
| 6986 | 11608 | 40321 | 58914 |
| 15484 | 22478 | 18945 | 56907 |
| 27540 | 17640 | 14946 | 60127 |
| 22943 | 3717 | 6285 | 32944 |
| 18357 | 1515 | 1993 | 21865 |
| 10958 | 822 | 522 | 12301 |
| 28 | 10 | 10 | 48 |

Table 7
Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 4.

Table 7 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	545759
3	259221
4	170085
5	71342
6	19022
Wt	353

H. Cons	Discards\|By-catch		Total
7250	17015	26462	50727
17655	38381	13858	69894
27433	26959	9559	63951
30170	7511	5277	42958
14238	1811	988	17037
3958	465	120	4543
27	16	7	50

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	534201
3	293001
4	129785
5	89478
6	51503
Wt	363

| H. Cons | \| Discards|By-catch | | Total |
| :---: | :---: | :---: | :---: |
| 7250 | 17015 | 26462 | 50727 |
| 17281 | 37569 | 13564 | 68414 |
| 31008 | 30472 | 10804 | 72285 |
| 23021 | 5731 | 4027 | 32779 |
| 17858 | 2272 | 1239 | 21369 |
| 10716 | 1258 | 326 | 12300 |
| 29 | 17 | 7 | 531 |

Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 5.

	2003				2004			
Mean F Ages								
Ind BC 2 to 4	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Effort relative to 2002								
H.cons	1.00	0.00	0.40	0.80	1.00	1.20	1.60	2.00
Ind BC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Biomass								
Total 1 January	353	372	372	372	372	372	372	372
SSB at spawning time	236	255	255	255	255	255	255	255
Catch weight (,000t)								
H.cons	22.0	0.0	10.6	20.3	24.9	29.3	37.6	45.3
Discards	13.1	0.0	5.8	11.3	13.9	16.4	21.3	25.9
Ind BC	5.5	6.2	6.0	5.8	5.7	5.6	5.4	5.3
Total Landings	27.6	6.2	16.5	26.1	30.6	34.9	43.1	50.6
Total Catch	40.7	6.2	22.3	37.4	44.5	51.3	64.4	76.5
Biomass in year.... 2005								
Total 1 January		420	405	391	384	378	366	355
SSB at spawning time		303	288	274	268	261	249	238
	Year							
	2003				2004			
Effort relative to 2002								
H.cons	1.00	0.00	0.40	0.80	1.00	1.20	1.601.00	$\begin{aligned} & 2.00 \\ & 1.00 \end{aligned}$
Ind BC	1.00	1.00	1.00	1.00	1.00	1.00		
Est. Coeff. of Variation								
Biomass								
Total 1 January	0.17	0.19	0.19	0.19	0.19	0.19	0.19	0.19
SSB at spawning time	0.13	0.16	0.16	0.16	0.16	0.16	0.16	0.16
Catch weight								
H.cons	0.20	0.00	0.40	0.24	0.21	0.20	0.18	0.17
Discards	0.27	0.00	0.44	0.31	0.29	0.27	0.26	0.26
Ind BC	0.66	0.67	0.67	0.67	0.67	0.67	0.67	0.67
Biomass in year.... 2005								
Total 1 January		0.19	0.20	0.20	0.21	0.21	0.21	0.22
SSB at spawning time		0.18	0.18	0.19	0.19	0.19	0.20	0.20

Table 8 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	545759
3	259221
4	170085
5	71342
6	19022
Wt	353

H. Cons	Discards\|By-catch		Total
5720	13422	20875	40017
14099	30651	11066	55816
22410	22022	7808	52240
24801	6174	4338	35313
11674	1485	810	13969
3268	384	99	3751
22	13	6	41

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	540568
3	304017
4	139380
5	95926
6	54859
Wt	372

Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 6.

Table 9 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	545759
3	259221
4	170085
5	71342
6	19022
Wt	353

H. Cons	Discards\|By-catch		Total
4174	9794	15232	29200
10420	22652	8179	41251
17040	16746	5938	39723
19068	4747	3335	27150
8950	1139	621	10709
2536	298	77	2911
17	10	4	31

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	547010
3	315447
4	149685
5	102839
6	58434
Wt	382

| H.Cons \|Discards|By-catch | | | Total |
| :---: | :---: | :---: | :---: |
| 4174 | 9794 | 15232 | 29200 |
| 10444 | 22704 | 8197 | 41346 |
| 20736 | 20378 | 7225 | 48340 |
| 16781 | 4178 | 2935 | 23893 |
| 12901 | 1641 | 895 | 15437 |
| 7790 | 914 | 237 | 8941 |
| 201 | 11 | 4 | 351 |

Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 7.

Table 10 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	545759
3	259221
4	170085
5	71342
6	19022
Wt	353

| H. Cons | \|Discards|By-catch| | | Total |
| :---: | :---: | :---: | :---: |
| 9610 | 22553 | 35075 | 67238 |
| 22625 | 49185 | 17758 | 89568 |
| 31849 | 31298 | 11097 | 74244 |
| 36576 | 9106 | 6397 | 52079 |
| 18822 | 2394 | 1306 | 22523 |
| 5232 | 614 | 159 | 6005 |
| 33 | 20 | 91 | 621 |

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	524409
3	277664
4	121391
5	81821
6	45491
Wt	351

Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 8 .

Table 11 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	545759
3	259221
4	170085
5	71342
6	19022
Wt	353

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	532774
3	291446
4	132197
5	89327
6	49686
Wt	362

Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 9 .

	2003				2004			
Mean F Ages								
H.cons 2 to 4	0.18	0.00	0.07	0.14	0.18	0.21	0.28	0.35
Ind BC 2 to 4	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Effort relative to 2002								
H.cons	1.00	0.00	0.40	0.80	1.00	1.20	1.60	2.00
Ind BC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Biomass								
Total 1 January	353	374	374	374	374	374	374	374
SSB at spawning time	236	257	257	257	257	257	257	257
Catch weight (,000t)								
H.cons	21.0	0.0	10.3	19.8	24.2	28.6	36.7	44.3
Discards	12.3	0.0	5.5	10.6	13.1	15.5	20.2	24.5
Ind BC	5.2	5.8	5.7	5.5	5.4	5.4	5.2	5.1
Total Landings	26.2	5.8	15.9	25.3	29.7	33.9	41.9	49.4
Total Catch	38.6	5.8	21.4	35.9	42.8	49.4	62.1	73.9
```Biomass in year.... }200 Total 1 January SSB at spawning time```								
		422	408	394	388	382	370	359
		305	291	278	271	265	253	243
	Year							
	2003	2004						
Effort relative to 2002								
Ind BC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Est. Coeff. of Variation								
Biomass								
Total 1 January	0.17	0.19	0.19	0.19	0.19	0.19	0.19	0.19
SSB at spawning time	0.13	0.16	0.16	0.16	0.16	0.16	0.16	0.16
Catch weight								
H.cons	0.20	0.00	0.40	0.24	0.21	0.19	0.18	0.17
Discards	0.270.66	0.00	0.44	0.31	0.29	0.27	0.26	0.25
Ind BC		0.67	0.67	0.67	0.67	0.67	0.67	0.67
Biomass in year.... 2005								
Total 1 January		0.19	0.20	0.20	0.20	0.21	0.21	0.22
SSB at spawning time		0.18	0.18	0.19	0.19	0.19	0.20	0.20

## Table 12 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	545759
3	259221
4	170085
5	71342
6	19022
Wt	353


| H. Cons | \| Discards|By-catch |  | Total |
| :---: | :---: | :---: | :---: |
| 5550 | 13025 | 20257 | 38832 |
| 13488 | 29323 | 10587 | 53398 |
| 20018 | 19671 | 6975 | 46664 |
| 23476 | 5844 | 4106 | 33427 |
| 12091 | 1538 | 839 | 14468 |
| 3423 | 402 | 104 | 3930 |
| 21 | 12 | 5 | 391 |

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	541273
3	305913
4	143965
5	97521
6	54269
Wt	374



Table 13
Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 10 .


## Table 13 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations
+----+-----------+

Catch number

H.Cons	Discards\|By-catch		Total
3969	6372	22909	33250
9207	13378	11264	33849
13715	8995	7443	30154
16068	2694	4401	23163
8209	703	891	9803
2285	181	109	2574
14	6	6	26

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations

Age	ck No.
1	1459533
2	544597
3	321269
4	157594
5	106224
6	59519
Wt	386

Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 11 .


## Table 14 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	545759
3	259221
4	170085
5	71342
6	19022
Wt	353



Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	548771
3	326827
4	162574
5	109998
6	61578
Wt	391



Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 12.


## Table 15 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	545759
3	259221
4	170085
5	71342
6	19022
Wt	353



Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	552977
3	332482
4	167712
5	113906
6	63709
Wt	397



Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 13.


## Table 16 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	545759
3	259221
4	170085
5	71342
6	19022
Wt	353



Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	554596
3	329355
4	163744
5	112929
6	63685
Wt	395



Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 14.


## Table 17 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	545759
3	259221
4	170085
5	71342
6	19022
Wt	353



Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	556703
3	333268
4	167524
5	115472
6	64984
Wt	398



Table 18
Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 15 .


## Table 18 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	545759
3	259221
4	170085
5	71342
6	19022
Wt	353


| H. Cons | \| Discards|By-catch |  | Total |
| :---: | :---: | :---: | :---: |
| 1348 | 3162 | 4918 | 9428 |
| 3438 | 7474 | 2698 | 13610 |
| 5803 | 5703 | 2022 | 13529 |
| 6505 | 1620 | 1138 | 9263 |
| 3038 | 386 | 211 | 3635 |
| 862 | 101 | 26 | 989 |
| 6 | 3 | 1 | 10\| |

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$

Populations	
Age	ck No.
1	1459533
2	558817
3	337228
4	171392
5	118072
6	66310
Wt	402



Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 16.


## Table 19 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	545759
3	259221
4	170085
5	71342
6	19022
Wt	353



Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	551322
3	323737
4	160278
5	109742
6	61204
Wt	390



Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 17.


## Table 20 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	545759
3	259221
4	170085
5	71342
6	19022
Wt	353


H.Cons	Discards\|By-catch		Total
2470	5797	9016	17284
6137	13341	4817	24295
9252	9092	3224	21567
10787	2685	1887	15359
5565	708	386	6659
1558	183	47	1789
10	6	2	18

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust=1.00

Populations	
Age	ck No.
1	1459533
2	554122
3	328795
4	164712
5	112868
6	62957
Wt	395



Whiting in Subarea IV and Division IIIa. Management option and detailed forecast tables from run 18 .


## Table 21 (Cont'd)

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust=1.00
Populations
Catch number


| H. Cons | \| Discards|By-catch |  | Total |
| :---: | :---: | :---: | :---: |
| 1797 | 4218 | 6560 | 12576 |
| 4492 | 9766 | 3526 | 17783 |
| 6899 | 6779 | 2404 | 16082 |
| 8141 | 2027 | 1424 | 11591 |
| 4199 | 534 | 291 | 5025 |
| 1191 | 140 | 36 | 1367 |
| 7 | 4 | 2 | 13 |

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$

Populations	
Age	ck No.
1	1459533
2	556935
3	333932
4	169268
5	116083
6	64759
Wt	399



# ANNEX 3 <br> Working document, ACFM October 2003 <br> Sole North Sea recruitment update <br> Sieto Verver, Loes Bolle, Olvin van Keeken, Martin Pastoors 7/10/2003 <br> Netherlands Institute for Fisheries Research, IJmuiden 

## 1. BTS index 2003

The Beam trawl survey was carried out between 11 august and 19 September 2003. The survey is carried out by two research vessels and has been used by the WG as two separate calibration indices. The BTS-ISIS survey is available from 1985 onwards, the BTS-Tridens survey from 1996 onwards. Time-series of survey results are shown in table 1.1 and the survey data scaled to the mean survey values for 1996-2002 in table 1.2. Graphs of the spatial results of the 2003 survey by age are shown in figure 1.1.

## 2. BTS biomass indices

The BTS survey was converted into a proxy of spawning stock biomass by multiplying the numbers per hour by the stock weight-at-age and the maturity ogive of the assessment presented by the WG. For 2003, the weight-at-age was taken as the average over the years 2000-2002. The estimates were then scaled by subtracting the mean over the period 1996-2002 and dividing by the standard deviation over that same period. The resulting proxy for SSB does not take account for differences in catchability between ages, but should be compensated by the standardization process. Results are presented in figure 2.1 and indicate that the biomass index from the BTS-ISIS gives a reasonable reflection of the trends in SSB. The BTS-Tridens survey does not agree with the XSA estimates and was not used in the calibration of the assessment, because the survey area does not correspond with the mayor distribution area of sole.

## 3. Recruitment estimation

Average recruitment in the period 1957-2000 was 131 million (arithmetic mean) or 97 million (geometric mean) for 1-year-old-fish, and 117 million (arithmetic mean) or 85 million (geometric mean) 2-year-old-fish (VPA estimates).

Recruitment indices were available from pre-recruit surveys carried out in 2003 and previous years. The survey indices available are listed in the RCT3 input table (Table 3.1).

The options used in RCT3 are the same as those used in previous years: regression type $=\mathrm{C}$, tapered time weighting not applied, survey weighting not applied, final estimates shrunk towards the mean, the minimum S.E. for any survey is taken as 0.2 , and a minimum of 3 points are used for regression. The 'RCT outputs from regressions on ages 1 and 2 are shown in Tables 3.2 and 3.3.

The 2001 year class (as age 2 in 2003, in millions) was estimated as 179 in XSA and 179 in RCT3. Both estimates are well above long-term GM (1957-2000) at age 2. The RCT3 estimate of the 2001 year class is based on more independent observations (estimates) of the year class strength than the XSA estimate and, furthermore, the 2001 year class is not yet fully recruited to the fishery. Consequently, the RCT3 is proposed for the predictions. This suggests the 2001 year class being well above long-term average recruitment.

The 2002 year class (as age 1 in 2003, in millions) was estimated as 86 in RCT3 during the WG and 107 in the new RCT3. The latter is slightly higher than the long-term GM (1957-2000) at 97. No XSA estimate for this year class is available. There were two surveys in RCT3. Indices from the Dutch 2003 SNS were not used because this survey was moved from $3^{\text {rd }}$ to $2^{\text {nd }}$ quarter in 2003. The effect of this change in survey time has to be scrutinized before indices for sole forecast is used. Although the year class estimated in RCT3 received substantial weight from the surveys, the final estimate was considered to be close to the GM and the latter is proposed for predictions.

Year class strength used for predictions is in bold and underlined and can be summarized as follows:

Year	Age	XSA	RCT3 (WG)	RCT3 (new)	GM (1957-2000)
Class	in 2003	Thousands	Thousands	Thousands	Thousands
2001	2	178948	179249	$\underline{\mathbf{1 7 8 6 5 6}}$	84585
2002	1		86222	106933	$\underline{\mathbf{9 6 7 6 2}}$
2003	Recruits				$\underline{\mathbf{9 6 7 6 2}}$

## 4. Short-term forecast

For the current prediction, population survivors at the start of 2003 for age 1 were from GM, and age 2 was estimated by RCT3. Ages 3 and older were taken from the XSA output. Fishing mortality-at-age were the average for the years 2000-2002, scaled to the reference $\mathrm{F}_{(2-6)}$ in 2002 (0.48). Weight-at-age in the catch and in the stock are averages for the years 2000-2002. Maturity-ogive and natural mortality was the same as in the XSA. The input data are shown in Table 4.1.

The management options table is given in Table 4.2 and the detailed predictions for $\mathbf{F}_{\mathrm{sq}}$ are presented in Table 4.3. The options are also illustrated in Figure 4.1.

Assuming a status quo F results in an expected catch in 2003 of $19,300 \mathrm{t}$ (compared with a TAC of $15,850 \mathrm{t}$ and ACFM advice for a TAC of $14,600 \mathrm{t}$ ). The yield in 2004 is expected to be $20,700 \mathrm{t}$ at status quo F , which is only marginally lower than the estimated yield in the forecast presented by the WG. The sensitivity of the short-term forecast to the various input parameters are shown in Figures 4.2 and 4.3.

The SSB in 2003 is predicted to be 29,000 compared with $32,300 \mathrm{t}$ in last year's assessment. At status quo it is expected to increase to $40,800 \mathrm{t}$ in $2004\left(\mathbf{B}_{\mathrm{lim}}=25,000 \mathrm{t}\right)$ and to 36,700 in 2005 (Table 7.5.4). There is a $50 \%$ probability that the SSB will fall below $\mathbf{B}_{\mathrm{pa}}$ in 2005 (Figure 4.3).

## 5. Conclusion

The 2003 survey information has not substantially changed the perception of recruitment or the short-term forecast compared to the estimates provided by the WG.

Table 1.1 IBTS survey indices and standard deviations for North Sea sole. ISIS (top) and Tridens (bottom)


	age Data																	
	1		2		3		4		5		6		7		8		9	
year	Index	Stdev																
1985	2.65	10.16	7.89	11.23	3.54	3.18	1.67	1.74	0.62	0.54	0.28	0.39	0.00	0.00	0.00	0.00	0.00	0.00
1986	7.88	14.55	4.49	4.63	1.73	1.91	0.83	0.91	0.59	0.67	0.22	0.30	0.10	0.15	0.00	0.01	0.02	0.07
1987	6.99	14.70	12.55	13.89	1.83	2.13	0.56	0.61	0.58	0.63	0.22	0.24	0.23	0.37	0.06	0.18	0.03	0.11
1988	81.23	149.52	12.81	21.23	2.78	2.32	1.00	1.13	0.13	0.22	0.15	0.22	0.12	0.25	0.09	0.17	0.01	0.06
1989	9.42	14.37	68.08	85.94	4.19	7.54	4.10	6.71	0.68	1.21	0.13	0.20	0.24	0.33	0.00	0.00	0.14	0.51
1990	22.62	49.22	22.36	34.52	20.09	18.96	0.61	0.47	0.68	0.75	0.51	0.68	0.08	0.23	0.06	0.15	0.01	0.05
1991	3.34	7.06	23.19	29.82	5.84	6.93	6.01	6.90	0.10	0.17	0.14	0.20	0.07	0.18	0.03	0.12	0.01	0.04
1992	74.22	103.11	23.20	53.78	9.88	11.19	2.33	2.87	2.90	2.46	0.06	0.12	0.14	0.19	0.07	0.14	0.02	0.05
1993	4.98	6.53	27.36	23.46	0.99	1.08	4.37	3.30	2.38	2.52	4.30	4.74	0.03	0.09	0.09	0.19	0.06	0.11
1994	5.88	9.62	4.99	4.73	15.42	10.70	0.13	0.30	1.41	1.15	0.10	0.17	0.99	0.85	0.01	0.06	0.00	0.02
1995	27.62	54.00	8.46	10.56	7.04	8.83	6.72	6.24	0.48	0.53	0.91	0.91	0.31	0.49	0.97	1.01	0.05	0.16
1996	3.51	4.63	6.17	5.05	1.91	1.57	1.49	1.10	2.49	1.70	0.31	0.47	0.41	0.60	0.05	0.06	0.29	0.28
1997	173.24	214.62	5.37	4.93	3.23	2.49	0.80	1.05	0.77	0.78	0.40	0.36	0.11	0.15	0.04	0.07	0.05	0.12
1998	14.12	17.30	29.21	26.37	2.00	2.32	1.35	1.25	0.08	0.13	0.02	0.06	0.42	0.51	0.00	0.00	0.00	0.00
1999	11.41	21.98	19.26	25.95	16.63	16.99	0.63	1.12	2.06	2.69	0.33	1.11	0.22	0.34	0.65	0.85	0.00	0.01
2000	12.89	20.86	6.53	8.34	4.09	3.08	1.60	1.35	0.28	0.33	0.16	0.20	0.06	0.13	0.01	0.02	0.16	0.29
2001	7.97	12.48	10.84	10.98	2.35	1.91	1.68	1.32	0.74	0.61	0.08	0.17	0.04	0.11	0.03	0.07	0.00	0.00
2002	21.46	43.54	4.24	4.37	3.41	2.69	0.93	0.73	0.35	0.35	0.35	0.35	0.02	0.04	0.06	0.11	0.00	0.00
2003	12.04	13.85	11.62	14.76	2.62	2.04	1.84	1.62	0.44	0.56	0.21	0.19	0.34	0.37	0.00	0.00	0.02	0.04


spec	SOL
ship	Tridens II


	age Data																	
	1		2		3		4		5		6		7		8		9	
year	Index	Stdev																
1996	0.51	2.18	1.66	5.25	0.45	1.31	0.24	0.60	0.58	1.92	0.15	0.67	0.30	1.04	0.01	0.09	0.15	0.50
1997	0.09	0.38	0.08	0.44	0.16	0.56	0.08	0.47	0.02	0.10	0.00	0.00	0.00	0.00	0.02	0.10	0.00	0.00
1998	0.45	2.22	2.34	7.86	0.60	2.76	0.38	1.58	0.25	0.91	0.18	0.96	0.19	0.93	0.00	0.00	0.08	0.42
1999	0.52	3.10	0.57	2.59	1.26	4.20	0.12	0.64	0.26	1.25	0.03	0.17	0.00	0.03	0.13	0.60	0.02	0.13
2000	0.32	1.60	0.70	2.18	0.48	1.37	0.65	1.56	0.06	0.35	0.04	0.19	0.05	0.16	0.01	0.08	0.08	0.35
2001	1.04	5.76	1.83	10.77	0.82	3.10	0.60	2.26	0.34	1.28	0.01	0.06	0.01	0.07	0.01	0.07	0.00	0.00
2002	0.89	3.90	1.05	4.03	1.88	6.98	1.82	9.11	0.21	1.20	0.80	4.00	0.12	0.61	0.00	0.00	0.00	0.00
2003	1.19	6.29	2.74	12.71	0.35	1.63	0.35	1.54	0.22	1.20	0.04	0.14	0.12	0.43	0.02	0.15	0.01	0.07

Table 1.2 North Sea sole. Relative survey abundances; scaled to the mean over the period 1996-2003.


Table 3.1 Sole in IV. RCT3 input.

Sol-nsea Age 1 recrı Age 2 recruitment

'yc'	36		2							
	'VPA-1'	'VPA-2'	'DFS-0'	'DFS-1'	'SNS-1'	'SNS-2'	'SNS-3'	'Solea-3'	'BTS-1'	'BTS-2'
1967	99754	89275	-11	-11	-11	-11	-11	-11	-11	-11
1968	50029	44891	-11	-11	-11	745	99	-11	-11	-11
1969	138562	124140	-11	-11	4938	1961	161	-11	-11	-11
1970	41536	37184	-11	-11	613	341	73	-11	-11	-11
1971	76644	69010	-11	-11	1410	905	69	-11	-11	-11
1972	108298	97324	-11	-11	4686	397	174	-11	-11	-11
1973	109736	99197	-11	-11	1924	887	187	31.5	-11	-11
1974	40741	36612	-11	3	597	79	77	16.3	-11	-11
1975	113036	101289	169	7	1413	762	267	34.4	-11	-11
1976	140426	125401	82	10	3724	1379	325	-11	-11	-11
1977	47371	42838	34	2	1552	388	99	41.5	-11	-11
1978	11471	10371	97	2	104	80	51	1.9	-11	-11
1979	151708	136665	392	48	4483	1411	231	76.1	-11	-11
1980	149997	135320	404	14	3739	1124	107	77.1	-11	-11
1981	152918	135836	290	14	5098	1137	307	147.1	-11	-11
1982	142410	128488	330	26	2640	1081	159	78	-11	-11
1983	70844	63921	116	12	2359	709	67	11	-11	7.89
1984	80909	73053	187	3	2151	465	59	30	2.65	4.49
1985	159679	144128	293	14	3791	955	284	25	7.88	12.55
1986	72566	65571	73	6	1890	594	248	20	6.99	12.81
1987	456058	412648	527	38	11227	5369	907	67	81.23	68.08
1988	108347	97925	56	13	3052	1078	527	86	9.42	22.36
1989	178103	160333	63	12	2900	2515	319	54	22.62	23.19
1990	70525	63699	23	9	1265	114	46	11	3.34	23.20
1991	354655	319973	360	18	11081	3489	943	181	74.22	27.36
1992	69380	62726	25	11	1351	475	126	-11	4.98	4.99
1993	57159	51037	25	6	559	234	27	-11	5.88	8.46
1994	97449	83608	74	9	1501	473	231	13	27.62	6.17
1995	49103	44267	19	4	691	143	131	1	3.51	5.37
1996	285745	257040	59	20	10132	1993	381	46	173.24	29.21
1997	126033	113807	53	-11	2875	919	189	14	14.12	19.26
1998	85064	76696	-11	-11	1649	150	99	-11	11.41	6.53
1999			-11	5	1735	645	175	-11	12.89	10.84
2000			16	3	958	361	-11	-11	7.97	4.24
2001			86	18	7093	-11	-11	-11	21.46	11.62
2002			65	-11	-11	-11	-11	-11	12.04	-11

Table 3.2 Sole in IV. RCT3 output (1 year olds)

Analysis by RCT3 ver3.1 of data from file :

```
s4-rct1.txt
Sol-nsea Age 1 recruitment
Data for 8 surveys over 36 years : 1967-2002
Regression type = C
Tapered time weighting applied
power = 3 over 20 years
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Year class = 2000
```

Survey/   Series	Slope	Intercept	Std   Error	Rsquare	$\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$	Index Value	Predicted Value	Std   Error	WAP   Weights
DFS-0	. 89	8.01	. 57	. 637	23	2.83	10.52	. 725	. 050
DFS-1	1.50	7.98	. 42	. 785	23	1.39	10.07	. 597	. 074
SNS-1	. 73	6.01	. 20	. 927	30	6.87	11.01	. 242	. 448
SNS-2	. 62	7.64	. 35	. 814	31	5.89	11.31	. 403	. 162
BTS-1	. 63	9.88	. 36	. 808	15	2.19	11.27	. 416	. 152
BTS-2	1.17	8.52	. 54	. 648	16	1.66	10.47	. 670	. 058
					VPA	Mean	11.64	. 687	. 056

Year class $=2001$

Survey/   Series	Slope	Intercept	Std   Error	Rsquare	No.   Pts	Index Value	Predicted Value	Std   Error	WAP   Weights
DFS-0	. 90	8.01	. 55	. 661	23	4.47	12.02	. 666	. 067
DFS-1	1.52	7.95	. 41	. 805	23	2.94	12.42	. 526	. 108
SNS-1	. 72	6.11	. 19	. 934	30	8.87	12.45	. 241	. 510
BTS-1	. 63	9.89	. 35	. 816	15	3.11	11.83	. 410	. 177
BTS-2	1.18	8.53	. 54	. 651	16	2.54	11.51	. 628	. 075
					VPA	Mean =	11.64	. 690	. 063

Year class = 2002

Survey/   Series	Slope	Intercept	Std   Error	Rsquare	No.   Pts	Index Value	Predicted Value	Std Error	WAP   Weights
DFS-0	. 92	7.98	. 54	. 680	23	4.19	11.82	. 661	. 219
BTS-1	. 61	9.90	. 34	. 826	15	2.57	11.48	. 406	580
					VPA	Mean $=$	11.62	. 691	201


| Year <br> Class | Weighted <br> Average <br> Prediction | Log | WAP | Int <br> Std <br> Error | Ext <br> Std <br> Error | Var | VAtio |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$\quad$| Log |
| :---: |
|  |
| 2000 |

Table 3.3 Sole in IV. RCT3 output (2 year olds)

Analysis by RCT3 ver3.1 of data from file :

```
s4-rct2.txt
Sol-nsea Age2 recruitment
Data for 8 surveys over 36 years : 1967-2002
Regression type = C
Tapered time weighting applied
power = 3 over 20 years
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Year class = 2000
```

Survey/   Series	Slope	Intercept	$\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$	Rsquare	$\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$	Index Value	Predicted Value	Std   Error	WAP Weights
DFS-0	. 89	7.88	. 58	. 633	23	2.83	10.41	. 734	. 048
DFS-1	1.51	7.87	. 42	. 786	23	1.39	9.95	. 597	. 073
SNS-1	. 73	5.90	. 20	. 931	30	6.87	10.90	. 236	. 466
SNS-2	. 63	7.52	. 35	. 814	31	5.89	11.21	. 404	. 159
BTS-1	. 64	9.76	. 37	. 798	15	2.19	11.16	. 431	. 140
BTS-2	1.17	8.43	. 53	. 656	16	1.66	10.37	. 660	. 060
					VPA	Mean $=$	11.54	. 689	. 055

```
Year class = 2001
```

Survey/   Series	Slope	$\begin{gathered} \text { Inter- } \\ \text { cept } \end{gathered}$	$\begin{gathered} \text { Std } \\ \text { Error } \end{gathered}$	Rsquare	No.   Pts	Index Value	$\begin{gathered} \text { Predicted } \\ \text { Value } \end{gathered}$	$\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$	WAP   Weights
DFS-0	. 90	7.87	. 56	. 656	23	4.47	11.92	. 676	. 064
DFS-1	1.52	7.83	. 41	. 806	23	2.94	12.31	. 525	. 106
SNS-1	. 72	5.99	. 19	. 938	30	8.87	12.35	. 234	. 531
BTS-1	. 63	9.76	. 36	. 806	15	3.11	11.73	. 425	. 162
BTS-2	1.17	8.43	. 53	. 660	16	2.54	11.40	. 618	. 076
					VPA	Mean $=$	11.53	. 692	. 061

Year class $=2002$

Survey/   Series	Slope	Intercept	$\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$	Rsquare	$\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$	Index Value	Predicted Value	Std Error	WAP   Weights
DFS-0	. 92	7.84	. 55	. 674	23	4.19	11.71	. 673	. 223
BTS-1	. 62	9.77	. 35	. 815	15	2.57	11.37	. 422	. 566
					VPA	Mean =	11.52	. 692	. 211


Year   Class	Weighted   Average   Prediction	Wog	Int	Ext	Var	VPA	Log
Std	Std   Srror	Vatio   Error		VPA			
2000	53890	10.89	.16	.15	.90		
$\mathbf{2 0 0 1}$	$\mathbf{1 7 8 6 5 6}$	$\mathbf{1 2 . 0 9}$	$\mathbf{. 1 7}$	.15	.81		
2002	96131	11.47	.32	.10	.10		


Label	Value	CV	Label	Value	CV
Number-at-age			Weight in the stock		
N1	96762	0.79	WS1	0.05	0.00
N2	178656	0.21	WS2	0.14	0.04
N3	40227	0.19	WS3	0.18	0.02
N4	39766	0.15	WS4	0.22	0.01
N5	13844	0.14	WS5	0.26	0.05
N6	14035	0.13	WS 6	0.28	0.14
N7	14233	0.14	WS 7	0.30	0.09
N8	902	0.15	WS8	0.35	0.21
N9	956	0.14	WS9	0.40	0.02
N10	958	0.16	WS10	0.44	0.18
H.cons selectivity			Weight in the HC catch		
sH1	0.01	0.45	WH1	0.14	0.07
sH2	0.24	0.11	WH2	0.17	0.06
sH3	0.53	0.17	WH3	0.20	0.03
sH4	0.60	0.08	WH4	0.25	0.09
sH5	0.52	0.10	WH5	0.27	0.06
sH6	0.50	0.19	WH6	0.31	0.08
sH7	0.56	0.32	WH7	0.35	0.10
sH8	0.56	0.10	WH8	0.36	0.17
sH9	0.40	0.19	WH9	0.46	0.15
sH10	0.40	0.19	WH10	0.47	0.09
Natural mortality			Proportion mature		
M1	0.10	0.10	MT1	0.00	0.00
M2	0.10	0.10	MT2	0.00	0.10
M3	0.10	0.10	MT3	1.00	0.10
M4	0.10	0.10	MT4	1.00	0.00
M5	0.10	0.10	MT5	1.00	0.00
M6	0.10	0.10	MT6	1.00	0.00
M7	0.10	0.10	MT7	1.00	0.00
M8	0.10	0.10	MT8	1.00	0.00
M9	0.10	0.10	MT9	1.00	0.00
M10	0.10	0.10	MT10	1.00	0.00
Relative effort			Year effect for natural mortality		
in HC fishery					
HFO3	1.00	0.05	K03	1.00	0.10
HFO4	1.00	0.05	K04	1.00	0.10
HFO5	1.00	0.05	K05	1.00	0.10
Recruitment in 2004 and 2005					
R04	96762	0.79			
R05	96762	0.79			

Proportion of $F$ before spawning $=.00$
Proportion of M before spawning $=.00$

Stock numbers in 2003 are VPA survivors.
These are overwritten at Age 2
Data from file:D:\Working_groups \WGNSSK $2003 \backslash$ post-WG\recruitment $\backslash$ sol-nsea\shortt

Table 4.2
Sole,North Sea
Catch forecast output and estimates of coefficient of variation (CV) from linear analysis.
+--------------------------------------------------------------1


Mean F Ages   H.cons 2 to 6	0.48	0.00	0.10	0.19	0.29	0.40	0.48	0.57
Effort relative to 2002 H.cons	1.00	0.00	0.20	0.40	0.60	0.83	1.00	1.20
Biomass								
Total 1 January	58.7	57.6	57.6	57.6	57.6	57.6	57.6	57.6
SSB at spawning time	29.0	40.8	40.8	40.8	40.8	40.8	40.8	40.8
Catch weight (,000t)								
H.cons	19.3	0.0	5.0	9.5	13.6	17.9	20.7	23.8
Biomass in year.... 2005								
Total 1 January		74.7	69.6	65.0	60.8	56.5	53.6	50.5
SSB at spawning time		57.7	52.7	48.1	43.9	39.6	36.7	33.6



Est. Coeff. of Variation								
Biomass								
Total 1 January	0.12	0.20	0.20	0.20	0.20	0.20	0.20	0.20
SSB at spawning time	0.08	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Catch weight H.cons	0.11	0.00	0.29	0.20	0.18	0.17	0.17	0.17
Biomass in year.... 2005								
Total 1 January		0.22	0.23	0.24	0.25	0.26	0.26	0.27
SSB at spawning time		0.22	0.23	0.24	0.25	0.26	0.27	0.28

Table 4.3
Sole,North Sea
Detailed forecast tables.

Forecast for year 2003
F multiplier H.cons=1.00
Populations
Catch number

Age	k No.
1	96762
2	178656
3	40227
4	39766
5	13844
6	14035
7	14233
8	902
9	956
10	958
Wt	59


H.Cons	Total\|
1189	1189
36080	36080
15727	15727
17117	17117
5397	5397
5285	5285
5796	5796
369	369
299	299
300	300
19	19\|

Forecast for year 2004
F multiplier H.cons=1.00



Figure 1.1 North Sea sole. Survey results for 2003 by area and age group for the BTS-ISIS survey (right panels) and the BTS-Tridens survey (left panels).


Figure 2.1
North Sea sole. Relative SSB (scaled to the mean of the period 1996-2002) and divided by the standard deviation over that period from the BTS-ISIS and BTS-Tridens survey, in comparison with the SSB estimate from the most recent assessment.

Figure Sole,North Sea. Short term forecast


Data from file:D:|Working groups\WGNSSK $\backslash 2003 \backslash$ post-WG $\backslash$ recruitment|sol-nsea|shortt
Figure 4.1 Sole North Sea. Short-term forecast
Figure Sole,North Sea. Sensitivity analysis of short term forecast.

Data from file:D:\Working groups\WGNSSK $12003 \backslash$ post-WG\recruitment|sol-nsea|shortt
Sole, North Sea. Sensitivity analysis of the short-term forecast.
Figure Sole,North Sea. Probability profiles for short term forecast.



# ANNEX 4 <br> Working document, ACFM October 2003 <br> Plaice North Sea recruitment update <br> Loes Bolle, Sieto Verver, Olvin van Keeken, Martin Pastoors 7/10/2003 <br> Netherlands Institute for Fisheries Research, IJmuiden 

## 1. BTS index 2003

The Beam trawl survey was carried out between 11 august and 19 September 2003. The survey is carried out by two research vessels and has been used by the WG as two separate calibration indices. The BTS-ISIS survey is available from 1985 onwards, the BTS-Tridens survey from 1996 onwards. Time-series of survey results are shown in table 1.1 and the survey data scaled to the mean survey values for 1996-2002 in table 1.2. The BTS-Tridens data for 2003 appears to give substantially higher estimates of most age groups in the survey. This could indicate a potential catchability problem in this survey. Graphs of the spatial results of the 2003 survey by age are shown in figure 1.1.

## 2. BTS biomass indices

The BTS survey was converted into a proxy of spawning stock biomass by multiplying the numbers per hour by the stock weight-at-age and the maturity ogive of the assessment presented by the WG. For 2003, the weight-at-age was taken as the average over the years 2000-2002. The estimates were then scaled by subtracting the mean over the period 1996-2002 and dividing by the standard deviation over that same period. The resulting proxy for SSB does not take account for differences in catchability between ages, but should be compensated by the standardization process. Results are presented in figure 2.1 and indicate that the biomass index from the BTS-ISIS may not reflect the trend in SSB very well. This can be explained by the coastal nature of this survey, which is not dedicated to catching older plaice. The BTS-Tridens survey seems to agree reasonably well with the XSA estimate of SSB. However, this survey indicates that the spawning stock biomass in 2003 may have increased substantially.

## 3. Recruitment estimation

Input to the RCT3 analysis is presented in Table 3.1. Results for ages 1 to 2 are presented in Tables 3.2 - 3.3. The Geometric mean recruitment is 395 million and the arithmetric mean is 424 million.

The 2001 year class in 2003 (at age 2) is estimated at 297 million in XSA and 396 in RCT3 by the WG. Addition of the new BTS index (ISIS) gave an RCT3 estimate of 436 million. There is some discrepancies between the different surveys for this year class. Therefore, the weight attributed to the surveys was only $65 \%$ whereas in the RCT3 analysis of the WG (without the BTS 2003 index) the weight was $80 \%$. This year class is estimated to be just above average.

The 2002 year class in 2003 (at age 1) is poorly estimated by the RCT3 analysis (only two available indices, which gave very different estimates). The long-term GM for this year class was used.

For the $\mathbf{2 0 0 3}$ and subsequent year classes the long-term GM was used as there were no estimates.

The text table below summarises the year class strength estimates that have been used.

Year class	At age in 2003	XSA	RCT3   $(\mathbf{w g})$	RCT3   (new)	GM 57-00	Accepted Estimate
$\mathbf{2 0 0 1}$	2	296719	396233	$\underline{\mathbf{4 3 6 0 6 3}}$	353703	RCT3
$\mathbf{2 0 0 2}$	1	-	350650	354398	$\underline{\mathbf{3 9 4 6 8 7}}$	GM 1957-00
$\mathbf{2 0 0 3}$ \& subsequent	recruits	-	-		$\underline{\mathbf{3 9 4 6 8 7}}$	GM 1957-00

## 4. Short-term forecast

The input for the short-term forecast is given in Table 4.1. Weight-at-age in the stock and weight-at-age in the catch are taken as the average over the last 3 years. The exploitation pattern was taken as the mean value of the last three years and scaled to the average F over 2002 ( 0.51 ). Population numbers-at-ages 3 and older are XSA survivor estimates. Numbers-at-age 2 are estimated from the new RCT3. Numbers-at-age 1 and recruitment of the 2003 year class are taken from the long-term geometric mean (1957-2000)

A management option table for status quo fishing mortality in 2003 in presented in Table 4.2. Detailed tables for F status quo are given in Table 4.3. A detailed deterministic plot of the catch forecast is given in Figure 4.1. At status quo fishing mortality in 2003 and 2004 the SSB is expected to be at around 149,000 tonnes in 2004 and 166,000 tonnes in 2005.

The yield at status quo $F$ is expected to be around 72,500 tonnes in 2003, compared to 71,000 tonnes estimated by the WG. The status quo catch prediction for 2003 is slightly lower than the TAC for 2003 ( 73,250 tonnes). The yield in 2004 is predicted to be 78,000 tonnes at status quo F, compared to 75,200 tonnes estimated by the WG.

A sensitivity analysis has been carried out to identify the different sources of uncertainty underlying the predictions (Figure 4.2). Most of the variability ( $89 \%$ ) of the SSB in 2005 is explained by the uncertainties of the year classes 2001 to 2003 estimates.

The probability profiles relative to the short-term forecast are given in Figure 4.3. At the current yield of around 70,000 tonnes, the probability that F is higher that $\mathbf{F}_{\text {sq }}$ is around $35 \%$. The probability that SSB will stay below 210,000 tonnes is predicted to be about $80 \%$.

## 5. Conclusion

The 2003 survey information has not substantially changed the perception of recruitment or the short-term forecast compared to the estimates provided by the WG. The interpretation of the biomass proxies for the BTS-Tridens and BTS-ISIS surveys are difficult to interpret.

Table 1.1 IBTS survey indices and standard deviations for North Sea plaice. ISIS (top) and Tridens (bottom)


	age Data																	
	1		2		3		4		5		6		7		8		9	
year	Index	Stdev																
1985	115.58	251.85	179.90	183.92	38.81	29.79	11.84	9.05	1.37	1.85	1.05	1.43	0.36	0.60	0.17	0.29	0.10	0.19
1986	660.20	896.95	131.77	131.85	51.00	39.86	8.89	7.78	3.29	3.00	0.43	0.67	0.34	0.47	0.13	0.19	0.04	0.14
1987	225.82	355.40	764.29	899.80	33.07	26.64	4.77	3.29	2.04	1.81	1.02	1.17	0.35	0.38	0.09	0.24	0.07	0.21
1988	577.32	782.36	140.10	141.00	173.72	117.31	9.24	6.31	2.59	3.08	0.78	0.88	0.42	0.78	0.04	0.10	0.11	0.22
1989	428.70	810.21	319.27	363.14	38.66	32.02	47.30	45.75	5.85	12.79	0.82	0.77	0.29	0.42	0.66	0.88	0.14	0.24
1990	112.06	146.38	102.64	89.19	55.67	50.66	22.78	22.29	5.57	5.21	0.80	0.91	0.21	0.27	0.38	0.43	0.26	0.43
1991	185.44	343.92	122.05	146.29	28.55	33.37	11.86	10.39	4.26	3.33	5.69	3.97	0.26	0.41	0.23	0.24	0.12	0.22
1992	171.54	236.29	125.93	141.85	27.31	16.35	5.62	4.45	3.18	2.03	2.66	1.86	1.14	1.07	0.26	0.27	0.05	0.17
1993	124.76	211.70	179.10	218.32	38.40	35.98	6.12	4.42	0.93	0.93	0.81	0.70	0.64	0.68	0.44	0.45	0.17	0.27
1994	145.21	200.61	64.22	55.93	35.24	28.79	10.87	11.09	2.86	3.58	0.64	0.69	0.86	0.92	0.96	1.14	0.40	0.53
1995	252.17	391.78	43.62	55.76	14.24	17.59	8.11	9.39	1.20	1.18	0.87	1.09	0.36	0.52	1.13	1.87	0.22	0.35
1996	218.28	408.45	212.13	449.54	22.88	23.93	4.83	5.43	3.72	3.56	0.92	1.02	0.05	0.15	0.17	0.33	0.13	0.23
1997	439.51	373.45	743.57	884.03	19.91	13.37	2.79	2.37	0.22	0.24	0.39	0.54	0.17	0.55	0.12	0.33	0.00	0.00
1998	338.20	373.10	436.20	380.88	47.41	36.73	8.91	8.21	1.44	1.68	0.75	1.17	0.14	0.24	0.08	0.19	0.11	0.21
1999	305.87	528.54	130.00	218.25	182.54	158.66	3.66	1.97	2.11	1.61	0.14	0.33	0.14	0.24	0.03	0.13	0.03	0.10
2000	278.78	270.70	75.22	55.30	31.59	23.88	24.21	15.89	0.61	0.51	0.17	0.32	0.54	1.18	0.03	0.09	0.02	0.07
2001	225.78	255.94	78.90	58.35	19.56	11.14	10.05	6.36	9.52	5.83	0.29	0.33	0.15	0.29	0.04	0.07	0.04	0.18
2002	568.65	491.62	45.46	23.49	15.36	12.41	5.50	3.55	2.68	2.12	1.43	1.20	0.08	0.12	0.14	0.34	0.00	0.00
2003	132.82	113.09	170.90	88.86	9.93	5.49	5.67	3.14	1.43	0.91	1.15	0.88	0.68	0.57	0.12	0.19	0.11	0.16


\section*{| spec | PLA |
| :--- | :--- |
| ship | Tridens II |}


	age Data																	
	1		2		3		4		5		6		7		8		9	
year	Index	Stdev																
1996	1.59	5.35	5.58	13.57	4.39	5.74	3.31	3.42	2.39	2.56	1.84	2.27	0.83	1.18	0.48	0.72	0.18	0.54
1997	0.02	0.12	7.21	13.73	10.36	12.51	3.96	4.23	2.84	4.21	1.93	2.36	0.46	0.75	1.12	1.66	0.45	0.87
1998	0.56	1.79	30.79	94.60	9.97	12.76	5.52	6.17	2.70	4.55	1.35	2.00	0.90	1.21	0.78	1.10	0.33	0.64
1999	2.37	9.18	8.29	23.80	36.93	73.73	6.46	7.80	2.65	2.40	2.13	2.90	0.60	0.84	0.76	1.28	0.33	0.64
2000	4.64	15.10	9.45	16.92	12.74	20.73	17.23	21.44	2.94	3.09	1.89	2.40	1.08	1.84	0.95	1.41	0.25	0.34
2001	0.67	2.77	6.93	13.42	9.05	12.59	7.22	8.23	7.65	8.04	1.20	1.27	0.69	1.08	0.48	0.72	0.59	0.89
2002	20.62	39.00	14.41	18.49	10.72	11.85	7.61	5.27	4.26	3.50	4.13	3.48	0.52	0.64	0.63	0.70	0.36	0.56
2003	4.22	18.96	34.35	81.48	11.81	14.32	8.52	9.51	4.79	4.71	3.08	4.41	3.98	3.88	0.70	0.76	0.72	1.11

Table 1.2 North Sea plaice. Relative survey abundances; scaled to the mean over the period 1996-2003.


Table 3.1
Plaice in IV. RCT3 input.
Ple-nsea ${ }^{\text {N }}$ Age 1 recr Age 2 recruitment

'yc' 9	$36 \quad 32$		2		\|'SNS-2'	'SNS-3'	'BTS-1'	'BTS-2'	'BTS-3'	'comb DFS/YFS-0' 'comb DFS/YFS-1'	
	'VPA-1'	'VPA-2'	'SNS-0' ${ }^{\text {² }}$	'SNS-1'							
1967	237193	214621	-11	-11	-11	2813	-11	-11	-11	-11	-11
1968	319318	288928	-11	-11	9450	1008	-11	-11	-11	-11	-11
1969	363590	328917	-11	8032	23848	4484	-11	-11	-11	-11	-11
1970	267742	242245	3678	18101	9584	1631	-11	-11	-11	-11	-11
1971	224217	200756	6705	6437	4191	1261	-11	-11	-11	-11	-11
1972	531194	479438	9242	57238	17985	10744	-11	-11	-11	-11	-11
1973	447210	402538	5451	15648	9171	791	-11	-11	-11	-11	-11
1974	327785	295659	2193	9781	2274	1720	-11	-11	-11	-11	-11
1975	317791	284867	1151	9037	2900	435	-11	-11	-11	-11	-11
1976	463277	416128	11544	19119	12714	1577	-11	-11	-11	-11	-11
1977	420813	379680	4378	13924	9540	456	-11	-11	-11	-11	-11
1978	435541	392840	3252	21681	12084	785	-11	-11	-11	-11	-11
1979	654862	591612	27835	58049	16106	1146	-11	-11	-11	-11	-11
1980	417306	377354	4039	19611	8503	308	-11	-11	-11	-11	154
1981	1021516	921134	31542	70108	14708	2480	-11	-11	-11	633.51	286.65
1982	582796	526181	23987	34884	10413	1584	-11	-11	39	456.51	160.16
1983	600994	543699	36722	44667	13789	1155	-11	180	51	432.42	116.62
1984	523643	473697	7958	27832	7558	1232	116	132	33	263.33	100.94
1985	1247347	1127054	47385	93573	33021	13140	660	764	174	717.73	268.55
1986	539672	488316	8818	33426	14429	3709	226	140	39	345.13	188.55
1987	560224	506911	21270	36672	14952	3248	577	319	56	465.11	105.29
1988	403945	364305	15598	37238	7287	1507	429	103	29	330.73	135.02
1989	392654	353813	24198	24903	11149	2257	112	122	27	462.70	128.61
1990	399455	360052	9559	57349	13742	988	185	126	38	468.23	150.72
1991	401147	359729	17120	48223	9484	884	172	179	35	495.57	131.09
1992	285789	255300	5398	22184	4866	415	125	64	14	356.84	74.09
1993	238966	214900	9226	18225	2786	1189	145	44	23	263.03	30.50
1994	322090	284066	27901	24900	10377	1393	252	212	20	444.90	37.74
1995	249817	224993	13029	24663	-11	5739	218	744	47	184.47	116.73
1996	751423	679067	91713	-11	29431	14347	440	436	183	572.38	152.64
1997	266000	240500	15363	33391	9235	905	338	130	32	156.64	-11
1998	247701	223607	22720	35188	2489	356	306	75	20	-11	-11
1999			39201	23028	2416	263	279	79	15	-11	13.92
2000			24185	10193	1047	-11	226	45	10	184.61	5.21
2001			101291	30265	-11	-11	569	171	-11	499.55	-11
2002			29905	-11	-11	-11	133	-11	-11	-11	-11

Table 3.2 Plaice in IV. RCT3 output (1 year olds)

Analysis by RCT3 ver3.1 of data from file :

```
p4-rct1.txt
Ple-nseaAge 1 recruitment
Data for 9 surveys over 36 years : 1967-2002
Regression type = C
Tapered time weighting applied
power = 3 over 20 years
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Year class = 2000
```

Survey/   Series	Slope	Intercept	Std   Error	Rsquare	$\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$	Index Value	Predicted Value	Std Error	WAP   Weights
SNS-0	. 94	3.61	. 60	. 360	29	10.09	13.11	. 695	. 078
SNS-1	1.45	-2.28	. 44	. 443	29	9.23	11.10	. 709	. 075
SNS-2	. 64	7.06	. 27	. 735	30	6.95	11.50	. 420	. 213
BTS-1	1.73	3.34	. 83	. 225	15	5.42	12.70	. 956	. 041
BTS-2	1.01	7.68	. 79	. 240	16	3.83	11.54	1.004	. 037
BTS-3	. 76	10.07	. 35	. 622	17	2.40	11.90	. 452	. 184
comb D	1.28	5.33	. 41	. 548	17	5.22	12.03	. 528	. 134
comb D	1.04	8.14	. 51	. 450	17	1.83	10.03	1.091	. 032
					VPA	Mean	12.81	. 426	. 207

Year class $=2001$


Survey/   Series	Slope	Inter-   cept	Std   Error		Rsquare	No.   Pts	Index Predicted   Value	Std   Value	WAP   Error	Weights


Year class $=2002$									
Survey/   Series	I	-Re	essi	-		I-	-Pre	tion	---I
	Slope	Intercept	Std Error	Rsquare	No. Pts	Index   Value	Predicted Value	Std Error	WAP   Weights
SNS-0	. 81	4.80	. 51	. 419	29	10.31	13.18	. 628	. 271
BTS-1	1.83	2.69	. 86	. 206	15	4.90	11.68	1.102	. 088
					VPA	ean $=$	12.76	409	641


Year	Weighted	Log	Int	Ext	Var	VPA	Log
Class	Average	WAP	Std	Std	Ratio		VPA
	Prediction		Error	Error			
2000	165216	12.02	. 19	. 25	1.66		
2001	486016	13.09	. 24	. 24	. 98		
2002	354398	12.78	33	27	70		

Table 3.3 Plaice in IV. RCT3 output (2 year olds)

Analysis by RCT3 ver3.1 of data from file :

```
p4-rct2.txt
Ple-nsea Age 2 recruitment
Data for 9 surveys over 36 years : 1967-2002
Regression type = C
Tapered time weighting applied
power = 3 over 20 years
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Year class = 2000
```

Survey/   Series	Slope	Intercept	Std   Error	Rsquare	$\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$	Index Value	Predicted Value	Std Error	WAP   Weights
SNS-0	. 95	3.44	. 60	. 359	29	10.09	13.01	. 701	. 077
SNS-1	1.45	-2.35	. 44	. 448	29	9.23	10.99	. 704	. 077
SNS-2	. 64	6.90	. 28	. 731	30	6.95	11.38	. 427	. 208
BTS-1	1.72	3.25	. 82	. 229	15	5.42	12.59	. 952	. 042
BTS-2	1.02	7.53	. 80	. 239	16	3.83	11.43	1.011	. 037
BTS-3	. 76	9.97	. 35	. 628	17	2.40	11.79	. 447	. 190
comb D	1.30	5.10	. 42	. 537	17	5.22	11.91	. 544	. 128
comb D	1.03	8.03	. 51	. 459	17	1.83	9.92	1.081	. 033
					VPA	Mean $=$	12.71	. 428	. 208


Year class = 2002

Survey/   Series	Slope	Intercept	Std   Error	Rsquare	$\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$	Index Value	Predicted Value	$\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$	WAP   Weights
SNS-0	. 82	4.66	. 52	. 418	29	10.31	13.07	. 632	. 270
BTS-1	1.83	2.64	. 85	. 210	15	4.90	11.58	1.093	. 090
					VPA	Mean =	12.65	. 410	. 640


Year	Weighted	Log	Int	Ext	Var	VPA	Log
Class	Average	WAP	Std	Std	Ratio		VPA
	Prediction		Error	Error			
2000	147782	11.90	. 19	. 25	1.67		
2001	436063	12.99	. 25	. 24	. 98		
2002	318139	12.67	. 33	. 27	. 70		

Table 4.1
Plaice,North Sea
input data for catch forecast and linear sensitivity analysis

Label	Value	CV	Label	Value	CV
Number-at-age			Weight in the stock		
N1	394686	0.41	WS1	0.12	0.00
N2	436063	0.43	WS2	0.21	0.05
N3	97264	0.24	WS3	0.24	0.04
N4	92730	0.15	WS 4	0.28	0.04
N5	59132	0.13	WS5	0.35	0.14
N6	46028	0.12	WS 6	0.44	0.08
N7	38896	0.16	WS 7	0.56	0.21
N8	4599	0.18	WS8	0.67	0.10
N9	2948	0.20	WS9	0.73	0.08
N10	5159	0.20	WS10	0.87	0.04
H.cons selectivity			Weight in the HC catch		
sH1	0.02	0.97	WH1	0.23	0.04
sH2	0.16	0.40	WH2	0.26	0.05
sH3	0.40	0.30	WH3	0.28	0.04
sH4	0.60	0.20	WH4	0.31	0.03
sH5	0.70	0.17	WH5	0.38	0.14
sH6	0.67	0.12	WH6	0.47	0.09
sH7	0.63	0.19	WH7	0.59	0.16
sH8	0.43	0.09	WH8	0.69	0.04
sH9	0.47	0.38	WH9	0.76	0.04
sH10	0.47	0.38	WH10	0.86	0.06
Natural mortality			Proportion mature		
M1	0.10	0.10	MT1	0.00	0.10
M2	0.10	0.10	MT2	0.50	0.10
M3	0.10	0.10	MT3	0.50	0.10
M4	0.10	0.10	MT4	1.00	0.10
M5	0.10	0.10	MT5	1.00	0.00
M6	0.10	0.10	MT6	1.00	0.00
M7	0.10	0.10	MT7	1.00	0.00
M8	0.10	0.10	MT8	1.00	0.00
M9	0.10	0.10	MT9	1.00	0.00
M10	0.10	0.10	MT10	1.00	0.00
Relative effort			Year effect for natural mortality		
in HC fishery					
HFO3	1.00	0.11	K03	1.00	0.10
HFO4	1.00	0.11	K04	1.00	0.10
HF05	1.00	0.11	K05	1.00	0.10
Recruitment in 2004 and 2005					
R04	394687	0.41			
R05	394687	0.41			

```
Proportion of F before spawning = .00
Proportion of M before spawning = . 00
 Stock numbers in 2003 are VPA survivors.
 These are overwritten at Age 2
```

Data from file:D:\Working_groups \WGNSSK $2003 \backslash p o s t-W G \backslash r e c r u i t m e n t \backslash p l e-n s e a \backslash s h o r t t$

Catch forecast output and estimates of coefficient of variation (CV) from linear analysis.

	Year		$2004$					
Mean F Ages   H.cons 2 to 6	0.51	0.00	0.10	0.20	0.30	0.40	0.51	0.61
Effort relative to 2002 H.cons	1.00	0.00	0.20	0.40	0.60	0.80	1.00	1.20
Biomass								
Total 1 January	264	279	279	279	279	279	279	279
SSB at spawning time	157	152	152	152	152	152	152	152
Catch weight (,000t)   H.cons	72.5	0.0	18.5	35.3	50.8	65.0	78.0	89.9
Biomass in year.... 2005								
Total 1 January		367	349	332	317	303	290	278
SSB at spawning time		242	225	210	196	183	171	161
	2003				2004			
Effort relative to 2002 H.cons	1.00	0.00	0.20	0.40	0.60	0.80	1.00	1.20
Est. Coeff. of Variation								
Biomass								
Total 1 January	0.18	0.19	0.19	0.19	0.19	0.19	0.19	0.19
SSB at spawning time	0.15	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Catch weight H.cons	0.17	0.00	0.57	0.33	0.26	0.24	0.23	0.22
Biomass in year.... 2005								
Total 1 January		0.17	0.17	0.18	0.18	0.18	0.19	0.19
SSB at spawning time		0.19	0.20	0.20	0.20	0.20	0.21	0.21

Table 4.3
Plaice,North Sea
Detailed forecast tables.

Forecast for year 2003
F multiplier H.cons=1.00
Populations
Catch number


H. Cons	Total
6701	6701
60016	60016
30616	30616
40208	40208
28350	28350
21575	21575
17391	17391
1541	1541
1058	1058
1851	1851
72	72

Forecast for year 2004
F multiplier H.cons=1.00

Populations	
Age	k No.
1	394687
2	350756
3	337575
4	58994
5	45865
6	26703
7	21248
8	18744
9	2702
10	4580
Wt	279

Catch number

H. Cons	Total
6701	6701
48275	48275
106260	106260
25580	25580
21989	21989
12516	12516
9500	9500
6280	6280
969	969
1644	1644
78	78



Figure 1.1
North Sea plaice. Survey results for 2003 by area and age group for the BTS-ISIS survey (right panels) and the BTS-Tridens survey (left panels).


Figure 2.1 North Sea plaice. Relative SSB (scaled to the mean of the period 1996-2002) and divided by the standard deviation over that period from the BTS-ISIS and BTS-Tridens survey, in comparison with the SSB estimate from the most recent assessment.

Figure Plaice,North Sea. Short term forecast


Data from file:D:\Working groups\WGNSSK $2003 \backslash$ post-WG $\backslash$ recruitment|ple-nsea\shortt

Figure 4.1 Plaice North Sea. Short-term forecast

Data from file:D:\Working groups $\backslash W G N S S K \backslash 2003 \backslash$ post-WG $\backslash$ recruitment $\backslash$ ple-nsea\shortt
Plaice, North Sea. Sensitivity analysis of the short-term forecast.
Figure Plaice,North Sea. Probability profiles for short term forecast.


Data from file:D:\Working groups\WGNSSK\2003\post-WG \recruitment|ple-nsea|shortt
Plaice North Sea. Probability profile for the short-term forecast. Left: probability that $\mathrm{F}(2004)>\mathbf{F}_{\text {sq }}$. Right: probability that $\mathrm{SSB}(2005)<\mathrm{X}$.

## TABLE OF CONTENTS

0 EXECUTIVE SUMMARY ..... 1
0.1 Working procedures ..... 1
0.2 State of the stocks ..... 1
0.3 Mixed fisheries modelling ..... 2
0.4 Evaluation of cod recovery plans ..... 3
0.5 Evaluation and re-estimation of PA reference points. ..... 3
1 GENERAL .....  4
1.1 Participants. .....  4
1.2 Terms of Reference ..... 4
1.3 Data Sources and Sampling Levels. ..... 6
1.3.1 Roundfish and flatfish stocks ..... 6
1.3.1.1 Data on landings, age compositions, weight-at-age, maturity ogive. ..... 6
1.3.1.2 Discard data used in the assessment ..... 7
1.3.1.3 Natural mortality ..... 7
1.3.1.4 Fleet and research vessel data ..... 7
1.3.2 Data sources Norway pout and sandeel ..... 7
1.3.2.1 Data on landings, age composition, weight-at-age, maturity ogive ..... 8
1.3.2.2 Natural mortality ..... 8
1.3.2.3 Fleet and research vessel data ..... 9
1.3.3 Sampling levels and sampling procedures ..... 9
1.4 Methods and software ..... 11
1.4.1 General assessment approach: update/benchmark assessments ..... 11
1.4.2 Assessment methods ..... 12
1.4.3 Recruit estimation ..... 17
1.4.4 Short-term forecasts and sensitivity analyses ..... 17
1.4.5 Stock-recruitment model fitting and medium-term projections ..... 17
1.4.6 Biological reference points ..... 17
1.4.7 Mixed fisheries modeling ..... 18
1.4.8 Software versions. ..... 20
1.5 Biological Reference points ..... 23
1.6 Working Documents and References ..... 23
1.6.1 Working Documents ..... 23
1.6.2 Other Documents ..... 30
1.7 Data for other working groups ..... 30
1.7.1 WGECO ..... 30
1.7.2 WG MSVPA ..... 30
1.8 Recommendations ..... 32
2 OVERVIEW ..... 34
2.1 Stocks in the North Sea (Sub-area IV) ..... 34
2.1.1 Description of the fisheries ..... 34
2.1.2 Technical measures ..... 34
2.1.2.1 Minimum landing size ..... 35
2.1.2.2 Minimum mesh size ..... 35
2.1.2.3 Closed areas ..... 36
2.1.3 Human consumption fisheries ..... 36
2.1.4 Industrial fisheries ..... 37
2.1.4.1 Description of fisheries ..... 37
2.1.4.2 Data available ..... 38
2.1.4.3 Trends in landings and effort ..... 38
2.1.4.4 Landings of Blue Whiting ..... 38
2.1.4.5 Stock impressions ..... 39
2.2 Overview of the Stocks in the Skagerrak and Kattegat (Division IIIa) ..... 56
2.3 Stocks in the eastern Channel (Sub-area VIId) ..... 59
2.3.1 Description of the fisheries ..... 59
2.3.2 Data. ..... 59
2.3.3 State of the stocks ..... 59
2.3.4 Overview of Industrial Fisheries in Division VIa ..... 60
2.4 Overview of Industrial Fisheries in Division VIa ..... 60
3 COD IN SUB-AREA IV, DIVISIONS IIIA (SKAGERRAK) AND VIID. ..... 61
3.1 The Fishery ..... 61
3.1.1 ACFM advice applicable to 2002 and 2003 ..... 61
3.1.2 Management applicable in 2002 and 2003 ..... 61
3.1.3 The fishery in 2002 ..... 62
3.2 Natural Mortality, Maturity, Age Compositions, and Mean Weight at Age ..... 63
3.3 Catch, Effort, and Research Vessel Data ..... 63
3.4 Exploratory analyses ..... 64
3.4.1 A Separable VPA of the North Sea cod catch at age data ..... 64
3.4.2 The assessment age range ..... 64
3.4.3 Cod in Subarea IV survey concurrence ..... 65
3.4.4 Survey index analysis ..... 65
3.4.4.1 Survey recruitment ..... 65
3.4.4.2 VPA SSB, survey SSB and immature stock biomass ..... 65
3.4.4.3 Survey based stock and recruitment plots. ..... 65
3.4.4.4 Survey Z. ..... 66
3.4.5 Surba analyses. ..... 66
3.4.6 A Laurec - Shepherd based analysis of the North Sea cod tuning data. ..... 66
3.4.7 Time Series Analysis (TSA) ..... 67
3.4.8 Extended Survivors Analysis (XSA) ..... 68
3.4.9 The sensitivity of the North Sea cod XSA assessment estimates to discards. ..... 69
3.4.10 The sensitivity of the North Sea cod XSA assessment estimates to multi-species natural mortality rates. ..... 70
3.4.11 The sensitivity of the North Sea cod XSA assessment estimates to multi-species natural mortality rates and discards ..... 70
3.4.12 Conclusions drawn from the exploratory analysis ..... 70
3.5 Historic Stock Trends ..... 71
3.6 Recruitment ..... 72
3.7 Short-Term Forecast ..... 72
3.8 Medium-Term Projections ..... 74
3.9 Biological Reference Points ..... 74
3.10 State of the stock ..... 75
3.11 Management considerations. ..... 75
3.11.1 The effect of decommissioning and trends in fishing effort on fishing mortality rates ..... 76
4 HADDOCK IN SUB-AREA IV AND DIVISION IIIA. ..... 141
4.1 Stock definition and the fishery ..... 141
4.1.1 ICES advice applicable to 2002 and 2003 ..... 141
4.1.2 Management applicable to 2002 and 2003 ..... 141
4.1.3 The fishery in 2002 ..... 142
4.2 Natural Mortality, Maturity, Age Composition, Mean Weight At Age ..... 142
4.3 Catch, effort and research vessel data ..... 143
4.4 Historical stock analyses ..... 144
4.4.1 Exploratory analyses ..... 144
4.4.2 Final assessment ..... 147
4.5 Recruitment estimation ..... 148
4.6 Historical stock trends ..... 149
4.7 Short-term projections ..... 149
4.8 Medium-term projections ..... 150
4.9 Biological reference points ..... 150
4.10 Comments on the assessment ..... 150
5 WHITING ..... 221
5.1 Whiting in Sub-area IV and Division VIId ..... 221
5.1.1 The Fishery ..... 221
5.1.1.1 ACFM advice applicable to 2002 and 2003 ..... 221
5.1.1.2 Management applicable in 2002 and 2003 ..... 221
5.1.1.3 The fishery in 2002 ..... 222
5.1.2 Data available ..... 222
5.1.2.1 Landings ..... 222
5.1.2.2 Age compositions ..... 222
5.1.2.3 Weight at age ..... 222
5.1.2.4 Maturity and natural mortality ..... 222
5.1.2.5 Catch, effort and research vessel data ..... 222
5.1.3 Catch at age analysis ..... 222
5.1.3.1 Exploration of data ..... 222
5.1.3.2 Final Assessment ..... 224
5.1.4 Recruitment estimates ..... 224
5.1.5 Short term forecasts ..... 225
5.1.6 Comments ..... 225
5.2 Whiting in Division IIIa ..... 226
6 SAITHE IN SUB-AREA IV, VI AND DIVISION IIIA ..... 275
6.1 The Fishery ..... 275
6.1.1 ACFM advice applicable to 2002 and 2003 ..... 275
6.1.2 Management applicable in 2002 and 2003 ..... 275
6.1.3 The fishery in 2002 ..... 275
6.2 Data available ..... 275
6.2.1 Landings ..... 275
6.2.2 Age compositions ..... 275
6.2.3 Weight at age ..... 275
6.2.4 Maturity and natural mortality ..... 275
6.2.5 Catch, effort and research vessel data ..... 275
6.3 Catch at age analysis ..... 276
6.4 Recruitment estimates ..... 276
6.5 Short term prognosis ..... 276
6.6 Comments ..... 276
7 SOLE IN SUB-AREA IV ..... 294
7.1 The fishery ..... 294
7.1.1 ACFM advice applicable to 2002 and 2003 ..... 294
7.1.2 Management applicable to 2003 ..... 294
7.1.3 Landings in 2002 ..... 295
7.2 Age composition, weight at age, maturity and natural mortality ..... 295
7.3 Catch, effort and research vessel data ..... 296
7.4 Catch at age analysis ..... 296
7.4.1 Data exploration ..... 296
7.4.2 Final run ..... 298
7.5 Recruitment estimates ..... 299
7.6 Historical stock trends ..... 299
7.7 Short term prognosis ..... 300
7.8 Medium term prognosis ..... 300
7.9 Biological reference points ..... 301
7.10 Quality of the assessment ..... 301
8 SOLE IN SUB-AREA VIID ..... 355
8.1 The Fishery ..... 355
8.1.1 ACFM advice applicable to 2002 and 2003 ..... 355
8.1.2 Management applicable in 2002 and 2003 ..... 355
8.1.3 The fishery in 2002 ..... 355
8.2 Data available ..... 355
8.2.1 Landings ..... 355
8.2.2 Age compositions ..... 355
8.2.3 Weight at age ..... 355
8.2.4 Maturity and natural mortality ..... 356
8.2.5 Catch, effort and research vessel data ..... 356
8.3 Catch at age analysis ..... 356
8.4 Recruitment estimates ..... 356
Year class ..... 356
At age in 2003 ..... 356
Accepted Estimate ..... 356
8.5 Short term prognosis ..... 356
8.6 Comments ..... 356
9 NORTH SEA PLAICE ..... 382
9.1 The fishery ..... 382
9.1.1 ACFM advice applicable to 2002 and 2003 ..... 382
9.1.2 Management applicable to 2002 and 2003 ..... 382
9.1.3 The fishery in 2002 ..... 383
9.2 Natural mortality, maturity, age compositions and mean weight at age ..... 383
9.3 Catch, effort and survey data ..... 384
9.3.1 Commercial CPUE data ..... 384
9.3.2 Survey data ..... 385
9.4 Catch at age analyses ..... 386
9.4.1 Data explorations ..... 386
9.4.2 Model explorations ..... 387
9.4.3 Sensitivity analysis ..... 388
9.4.3.1 The effect of discarding on the stock assessment of North Sea plaice. ..... 388
9.4.3.2 ICA analyses including SBB indices from commercial fleet segments. ..... 388
9.4.3.3 Fishermen's survey ..... 389
9.4.4 Final assessment ..... 389
9.5 Recruitment estimates ..... 390
At age in 2003 ..... 390
Accepted Estimate ..... 390
9.6 Historical stock trends ..... 391
9.7 Short term prognosis ..... 391
9.8 Medium term prognoses ..... 391
9.9 Reference points. ..... 392
9.9.1 Biological reference points ..... 392
9.9.2 PA reference points ..... 392
9.10 Quality of the assessment ..... 392
9.10.1 Comparison between WG2002 assessment with the new WG2003 assessment for North Sea plaice ..... 392
9.10.2 Other remarks concerning the quality of the assessment ..... 396
10 PLAICE IN DIVISION IIIA ..... 458
10.1 The Fishery ..... 458
10.1.1 ACFM advice applicable to 2002 and 2003 ..... 458
10.1.2 Management applicable in 2002 and 2003 ..... 458
10.1.3 The fishery in 2002 ..... 458
10.2 Data available. ..... 458
10.2.1 Landings ..... 458
10.2.2 Age compositions ..... 458
10.2.3 Weight at age ..... 459
10.2.4 Maturity and natural mortality ..... 459
10.2.5 Catch, effort and research vessel data ..... 459
10.3 Catch at age analysis ..... 459
10.4 Recruitment estimates ..... 459
10.5 Short term prognosis ..... 459
10.6 Comments ..... 459
10.6.1 Compilation of commercial tuning series ..... 459
10.6.2 Issues to be addressed in a forthcoming benchmark assessment ..... 460
11 PLAICE IN DIVISION VIID ..... 486
11.1 The fishery ..... 486
11.1.1 ACFM advice applicable to 2002 and 2003 ..... 486
11.1.2 Management applicable in 2002 and 2003 ..... 486
11.1.3 The fishery in 2002. ..... 486
11.2 Data available. ..... 486
11.2.1 Landings ..... 486
11.2.2 Age compositions ..... 486
11.2.3 Weight at age ..... 486
11.2.4 Maturity and natural mortality ..... 487
11.2.5 Catch, effort and research vessel data ..... 487
11.3 Catch at age analysis ..... 487
11.4 Recruitment estimates ..... 487
11.5 Short term prognosis ..... 487
11.6 Comments ..... 487
12 NORWAY POUT IN ICES SUB-AREA IV AND DIVISION IIIA ..... 515
12.1 The fishery ..... 515
12.1.1 ACFM advice applicable to 2002 and 2003 ..... 515
12.1.2 Management applicable to 2002 and 2003 ..... 515
12.1.3 The Fishery in 2002 and 2003 ..... 515
12.2 Data available ..... 515
12.2.1 Landings ..... 515
12.2.2 Age compositions in Landings ..... 516
12.2.3 Weight at age ..... 516
12.2.4 Maturity and natural mortality ..... 516
12.2.5 Catch, Effort and Research Vessel Data ..... 516
12.3 Catch at Age Analyses ..... 517
12.4 Recruitment Estimates ..... 517
12.5 Short-Term Predictions (Forecasts) ..... 517
12.6 Comments ..... 518
12.7 Norway Pout in Division VIa ..... 519
12.7.1 Catch trends and assessment ..... 519
12.7.2 Stock identity ..... 519
13 SANDEEL ..... 547
13.1 Sandeel in IV ..... 547
13.1.1 The Fishery ..... 547
13.1.1.1 ACFM advice applicable to 2002 and 2003 ..... 547
13.1.1.2 Management applicable in 2002 and 2003 ..... 547
13.1.2 The fishery in 2002. ..... 547
13.1.3 Data available ..... 547
13.1.3.1 Landings ..... 547
13.1.3.2 Age compositions ..... 547
13.1.3.3 Weight at age ..... 547
13.1.3.4 Maturity and natural mortality ..... 547
13.1.3.5 Catch, effort and research vessel data ..... 548
13.1.4 Catch at age analysis. ..... 548
13.1.5 Recruitment estimates ..... 548
13.1.6 Short term prognosis ..... 548
13.1.7 Comments ..... 549
13.2 Sandeel in Subarea IIIa ..... 549
13.3 Sandeel at Shetlands ..... 549
13.3.1 Catch trends ..... 549
13.3.2 Management in 2001-2003 ..... 549
13.3.3 Assessment ..... 550
13.4 Sandeel in Division VIa ..... 550
13.4.1 Catch trends ..... 550
13.4.2 Assessment ..... 550
14 COD RECOVERY PLAN ..... 568
14.1 Expired regulations and proposals ..... 568
14.1.1 COMMISSION REGULATION (EC) No 259/2001 establishing measures for the recovery of the stock of cod in the North Sea (ICES subarea IV) and associated conditions for the control of activities of fishing vessels of 7 February 2001 ..... 568
14.1.1.1 Description ..... 568
14.1.1.2 Evaluation ..... 568
14.1.2 Proposal of a COUNCIL REGULATION establishing measures for the recovery of cod and hake stocks COM (2001) 724 final of 11December 2001 ..... 568
14.2 Regulations in force or proposed ..... 569
14.2.1 COMMISSION REGULATION (EC) No 2056/2001 establishing additional technical measures for the recovery of the stocks of cod in the North Sea and to the west of Scotland of 19October 2001 and unilateral measures569
14.2.1.1 Description ..... 569
14.2.1.2 Evaluation ..... 569
14.2.2 COUNCIL REGULATION (EC) No 2341/2002 of 20 December 2002 ..... 570
14.2.2.1 Description ..... 570
14.2.2.2 Evaluation ..... 570
14.2.3 COUNCIL REGULATION (EC) No 671/2003 of 10April 2003 amending Council Regulation (EC) No 2341/2002 fixing for 2003 the fishing opportunities and associated conditions for certain fish stocks and groups of fish stocks, applicable in Community waters and, for Community vessels, in waters where catch limitations are required ..... 570
14.2.3.1 Description ..... 570
14.2.3.2 Evaluation ..... 571
14.2.4 Proposal of a COUNCIL REGULATION establishing measures for the recovery of cod stocks COM (2003) 237 final of 6May 2003 ..... 571
14.2.4.1 Description ..... 571
14.2.4.2 Evaluation ..... 571
15 MIXED FISHERIES ..... 575
15.1 Background ..... 575
15.2 Data ..... 575
15.2.1 Description of the data available ..... 575
15.2.2 Inputs to modeling ..... 576
15.3 Model explorations ..... 576
15.3.1 Sensitivity analyses ..... 576
15.3.2 Mixed-fisheries forecasts using MTAC ..... 578
15.3.2.1 Preliminary MTAC investigations ..... 578
15.3.2.2 Further MTAC investigations using F-multipliers as proposed by ACFM in 2002 ..... 579
15.3.3 Summary of the results of the scenarios presented in Figure 15.3.2.9-15.3.2.12 ..... 580
15.4 Discussion ..... 581
15.5 Recommendations ..... 583
16 PA REFERENCE POINTS ..... 633
16.1 Stock specific comments on the PA reference points proposed by the Study Group on Precautionary Reference Points for Advice on Fishery Management ..... 633
16.1.1 Cod in the North Sea, VIId and Skagerrak (cod-347d) ..... 633
16.1.2 North Sea Haddock (had-34) ..... 633
16.1.3 Norway pout ..... 634
16.1.4 Plaice North Sea ..... 634
16.1.5 Plaice Skagerrak ..... 635
16.1.6 Plaice VIId ..... 635
16.1.7 Saithe North Sea and VIa ..... 636
16.1.8 Sandeel. ..... 636
16.1.9 Sole North Sea ..... 637
16.1.10 Sole Eastern Channel ..... 637
16.1.11 Whiting North Sea ..... 637
16.2 Generic comments on the new PA reference point system ..... 638
16.2.1 Simulations on segmented regressions ..... 638
16.2.2 Comments on the proposed method to derive PA reference points. ..... 640
16.3 Update of reference points for "changed" assessments ..... 641
16.3.1 North Sea Cod (cod-347d) ..... 641
16.3.2 North Sea Haddock (had-34) ..... 641
16.3.3 Plaice North Sea ..... 642
16.3.4 Sole North Sea ..... 643
17 WORKING DOCUMENTS AND REFERENCES ..... 648
17.1 Working Documents ..... 648
17.2 Other Documents ..... 649
17.3 References ..... 649

The Working Group on the Assessment of demersal stocks in the North Sea and Skagerrak met in Boulogne sur Mer, 918 September 2003. There were 27 participants. The main terms of reference for the Working group were to carry out stock assessments and to provide catch forecasts for the demersal and industrial stocks in the North Sea, Skagerrak and Eastern Channel, to collate data for mixed fisheries evaluations and to take technical interactions into account in the forecasts, to evaluation of cod recovery plans and to evaluate the proposed new Precautionary Approach reference points.

### 0.1 Working procedures

The general approach within the WG was changed compared to last year. The stock assessment were distinguished into Benchmark and Update assessments, according to the shortlist agreed by ACFM (October 2002) and according to a rotating cycle over the years. The Working Group carried out benchmark assessments for Cod, Haddock, Plaice in IV and sole in IV. All other stocks were marked for update assessments. From these, the whiting assessment was partly benchmarked during the meeting because problems were encountered with the update assessments. The Quality Control Handbook which specifies the biological background and the default assessment approach for the different stocks is in development. The general approach in benchmark assessments was directed at evaluating the most appropriate model formulation for the benchmark stocks. The benchmark assessments have resulted in new age ranges being used for these stocks.

### 0.2 State of the stocks

In the North Sea all stocks of roundfish and flatfish species have been exposed to high levels of fishing mortality for a long period. For most of these stocks their lowest observed spawning stock size has been seen in recent years. This may be an indication of an excessive effort, possibly combined with an effect of a climatic phase which is unfavourable to the recruitment of some species.

Reported landings of cod in $2002(49,000 \mathrm{t})$ were the lowest on record, as was the spawning stock. The 1996 year-class was relatively strong, but suffered so heavily from fishing and discarding of immature fish that it did not result in rebuilding the spawning stock. Since 1997, recruitment has been at a low level. Fishing mortality is high but appears to be decreasing. Although the absolute level of the spawning stock cannot be determined accurately, is it clear from all sources of informatio that SSB is low and likely to be well below the current $\mathbf{B}_{\text {lim }}(70,000 \mathrm{t})$.

Historically the stock size of haddock has shown large variation due to the occasional occurrence of a very strong year classes. The strong 1999 year class dominated the human consumption landings in 2002. The maturation of the 1999 year class has also increased the SSB to well above $\mathbf{B}_{\mathrm{pa}}$, but it is likely to decrease again in the near future. Fishing mortality is high but appears to be decreasing. Recruitment after 1999 has been low.

The human consumption yield of whiting in 2002 was 16,000 , which is the lowest level observed in the time series. Discard levels observed in 2002 are also low compared to previous years. The spawning stock biomass has overall gradually declined over more than 20 years. Most recent estimates indicate a low level of $F$ and a increase in SSB since 1998. Recruitment in recent years was always below the long-term geometric mean, with the 1996 year class as the weakest on record.

The spawning stock of saithe is increasing and estimated to be well above $\mathbf{B}_{\mathrm{pa}}$. Landings in 2002 were $112,000 \mathrm{t}$ which is still at a relatively low level. Fishing mortality has declined considerably since 1986 and remains at a low level.

Fishing mortality of sole in the North Sea has fluctuated on a high level since the 1970s but appears to be declining since the late 1990s. The spawning stock was below $\mathbf{B}_{\mathrm{pa}}$ in 2002 and 2003 but is expected to increase due to the relatively strong 2001 year class.

The spawning stock of plaice in the North Sea has been decreasing steadily until arriving at its lowest observed level in 1997. Last year the impression was that the SSB was increasing again but the current assessment indicates that this may have been due to overestimation of the stock size. SSB is not estimated to be at around the same low level as in 1997. Fishing mortality has apparently come down since the late 1990's.

The SSB and fishing mortality of Norway pout is highly fluctuating. However, fishing mortality has appeared to decrease since the 1980s. SSB is estimated to be above $\mathbf{B}_{\mathrm{pa}}$ for this stock.

Over the years, SSB of sandeel has been fluctuating around 1 million $t$. There is a general pattern of large SSB being followed by a low SSB. The present assessment estimates SSB for 2002 to be below $\mathbf{B}_{\mathrm{lim}}$ and the recruitment in 2002 is estimated to extremely low. However, the 2001 yearclass is estimated to rebuild the stock to well above $\mathbf{B}_{\mathrm{pa}}$ in 2003.

The landings of cod in Division IIIa were 9.7 thousand tonnes in 2002 in the human consumption fishery, which is a historic low. $75 \%$ was taken in Skagerrak, and the majority of catches were taken by Denmark and Sweden. Cod in Skagerrak is assessed together with the North Sea (Division IV) and Eastern Channel (Division VIId) stock. Cod in Kattegat is assessed as a separate stock by the Baltic Fisheries Assessment Working Group. ICES has since 2002 advised that no fishery should take place on this stock. No recovery plan is implemented yet. By-catches of cod in the Danish small-meshed fishery have been decreasing steadily in the latest decade.

Landings of haddock in Division IIIa, in the human consumption fishery, amounted to 4.6 thousand tonnes. Most of the catches are taken in Skagerrak. Haddock in IIIa is assessed together with the North Sea (Division IV) stock. By-catches of haddock in the Danish small-meshed fishery have been decreasing steadily in the latest decade.

Landings of whiting (for human consumption) in IIIa were 252 tonnes in 2002. Most of the landings are taken in Skagerrak. No analytical assessment of whiting in IIIa was possible. By-catches of whiting in the Danish small-meshed fishery have been slightly increasing in the recent 6 years.

The plaice landings in Division IIIa amounted to 8.7 thousand tonnes in 2002, which is a $25 \%$ decrease from 2001. Historically, TAC has not been restrictive for this stock. About $70 \%$ of the landings were taken in Skagerrak. Plaice in IIIa is assessed as a separate stock. By-catches of plaice in the Danish small-meshed fishery have been decreasing steadily in the latest decade.

The Sole in VIId stock is considered to be within safe biological limits. The fishing mortality is estimated to be below $\mathbf{F}_{\mathrm{pa}}$ The SSB is well above $\mathbf{B}_{\mathrm{pa}}(8000 \mathrm{t})$ following improved recruitment in recent years particularly of the year classes 1998 to 2000. There is a tendency to underestimate F and overestimate SSB.

The plaice in VIId stock follows the pattern of a general decline in plaice stocks observed in other areas up to 1997. Since then SSB appears to have stabilised at or slightly below $\mathbf{B}_{\mathrm{pa}}$. F has increased in 2002 above $\mathbf{F}_{\text {lim }}$ (0.54). Recruitment is close to mean levels after the confirmed strong 2000 year class. The state of the plaice stock in VIId is highly dependent on the quality of the recruitment.

### 0.3 Mixed fisheries modelling

Substantial progress has been on the ToR of collation of fisheries data for mixed fisheries modelling. The MTAC approach takes the (possibly inconsistent) single-species advice for each species in the fishery as a starting point, then attempts to resolve these into consistent catch or effort advice using fishery-disaggregated catch-forecasts in combination with explicitly stated management priorities for each stock. MTAC estimates first a set of fleet effort multipliers for each fleet and species combination to obtain the single species TAC. The estimated fleet-species factors are then combined into a fleet effort factor for each fleet, which afterwards are used to calculate the mixed-fisheries TAC. These calculations require a set of rules or options describing how individual fleet should change effort and how the species specific efforts factors should be combined into a fleet factor. The fleet-factor is determined by the product between three management inputs
a) a species-specific fleet reduction rate
b) a decision weights
c) a fleet target factor

The mixed-fisheries TACs calculated by MTAC were found to be sensitive to both the level of aggregation of the database and the weighting options.

The Working Group concludes that the approach presented here to develop fishery-based forecasts be considered by ACFM as a prototype tool. Due to the data limitations, the group suggests that it may be premature to use this approach for providing fishery-based advice in 2003. The WG considers that there is an urgent need for the ICES SGDFF to collate the appropriate data and for the Methods WG to evaluate the MTAC model.

A summary of the relevant management measures relating to North Sea cod are presented in the report. No evaluation of the effects of reductions in fishing effort could be carried out because reliable effort data on a North Sea scale was (still) not available. The stock assessment of North Sea cod does indicate that there may be a change in the selection pattern which could be attributed to changes in technical measures and reductions in fishing effort although they could also be caused by changes in directivity of the fishery.

The WGNSSK estimated an increase of mean weight at age 1 and 2 in the landings for cod in 2002. It was concluded that this increase could possibly be due to improved size selection but also to high grading or sampling error.

The WG noted that the simultaneous TAC reductions for the closely associated fisheries on cod, haddock and whiting do not necessarily translate into effort reductions. Different assessment methods (including survey only) reveal decreased fishing mortalities. The working group considers that this decrease is mainly driven by low landings in 2001 and 2002. Prediction scenarios applying low fishing mortalities in 2003 and later indicate that the stock has still the potential to recover.

### 0.5 Evaluation and re-estimation of PA reference points

A sensitivity analysis has been carried out of the segmented regression methodology. In general, it appears from the simulations that systematic departures in the data tend to increase the estimate of the breakpoint. Presumably, this may be because all treatments cause the perceived recent recruitment to decline, recent SSBs are also lower and consequently, the change-point occurs at a higher value of SSB. Discarding had minimal effect presumably because discard mortality in the simulations was less than natural mortality. The following points were clear from the results:

- In contrast to the biomass reference points the fishing mortality reference points are much less sensitive either to bias in the data, to changes in the dynamics, or to the S-R relationships.
- There were only small differences between the estimates of the breakpoint from the Beverton-Holt and from constant stock-recruitment models;
- Simulations of mis-reporting and a decline in recruitment both suggested that $\mathbf{B}_{\text {loss }}$ is biased downwards and the breakpoint biased upwards;
- In the case of a recent decline in recruitment the effect is to increase the value of $\mathrm{S}^{*}$, this means that a decline in recruitment and hence the carrying capacity of the stock results in the limit biomass value being increased which is counter-intuitive.

Specific comments about the proposed $\mathbf{B}_{\text {lim }}$ values by SGPRP are included in the report, but will be more fully discussed by correspondence. This will result in a annex to this report which will be presented to ACFM in october 2003. Given the revisions in age ranges for the benchmark stocks, the PA points may need immediate revision, which is not yet foreseen in the time-schedule of SGPRP. Therefore, these estimates are likely to be based on the technical basis as described in the ACFM report. This could not be done within the time frame of the working group and will be taken up by correspondence.

### 1.1 Participants

The Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK) met in Boulogne sur Mer from 9-18 september with the following participants:

Name	Country	E-mail
Martin Pastoors (Chair)	Netherlands	martin.pastoors@wur.nl
Ewen Bell	United Kingdom	e.d.bell@cefas.co.uk
Jesper Boje	Denmark	jbo@dfu.min.dk
Loes Bolle	Netherlands	loes.bolle@wur.nl
Max Cardinale (part-time)	Sweden	massimiliano.cardinale@fiskeriverket.se
John Casey	United Kingdom	j.casey@cefas.co.uk
Steen Christensen	Denmark	sc@dfu.min.dk
Liz Clarke	United Kingdom	e.d.clarke@marlab.ac.uk
Uli Damm	Germany	ulrich.damm@ish.bfa-fisch.de
Chris Darby	United Kingdom	c.d.darby@cefas.co.uk
Wim Demaré	Belgium	wim.demare@dvz.be
Henrik Jensen	Denmark	hj@dfu.min.dk
Tore Johannessen	Norway	torejo@imr.no
Laurence Kell (part-time)	United Kingdom	l.t.kell@cefas.co.uk
Knut Korsbrekke	Norway	knutk@imr.no
Sarah Kraak	Netherlands	sarah.kraak@wur.nl
Paul Marchal	France	pmarchal@ifremer.fr
Colin Millar	United Kingdom	millarc@marlab.ac.uk
Coby Needle	Scotland	needlec@marlab.ac.uk
J. Rasmus Nielsen	Denmark	rn@dfu.min.dk
Kay Panten	Germany	kay.panten@ish.bfa-fisch.de
Hans-Joachim Rätz	Germany	hans-joachim.r.etz@ish.bfa-fisch.de
Are Salthaug	Norway	ares@imr.no
Odd M. Smedstad (part-time)	Norway	odd.smedstad@imr.no
Joël Vigneau	France	jvigneau@ifremer.fr
SietoVerver	Netherlands	sieto.verver@wur.nl
Morten Vinther	Denmark	mv@dfu.min.dk

The meeting was observed by four scientific observers working under the EC funded research contract on Policy and Knowledge in Fisheries Management (PKFM).

## $1.2 \quad$ Terms of Reference

The Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak [WGNSSK] (Chair: M. Pastoors, Netherlands) will meet at Boulogne-sur-Mer (France) from 9-18 September 2003 to:
a) assess the status of 1) haddock in Sub-area IV and Division IIIa, and 2) sole in Sub-area IV and Division VIId;
b) assess the status of the following stocks: 1) cod in Sub-area IV and Division IIIaN (Skagerrak), and Division VIId, 2) whiting and 3) plaice both in Sub-area IV, Division IIIa, and Division VIId, and 4) saithe in Subarea IV, Sub-area VIa and Division IIIa;
c) update recruitment estimates and provide catch options for 2004 using the most recent survey data for the following stocks: 1) cod in Sub-area IV and Division IIIaN (Skagerrak), and Division VIId, 2) haddock in Sub-area IV and Division IIIa, 3) whiting in Sub-area IV, Division IIIa, and Division VIId, 4) plaice in Subarea IV, 5) sole in Sub-area IV and 6) Norway Pout in Sub-area IV. The catch options should take into account the technical interactions among the stocks due to the mixed-species fisheries.
d) provide catch options for 2004 for saithe in Sub-area IV, Sub-area VIa and Division IIIa;
e) assess the status of and provide catch forecasts for 2003 for Norway pout and sandeel stocks in Sub-area IV and Divisions IIIa and VIa, and identify any needs for management measures (including TACs) required to safeguard the stocks;
f) evaluate the effects of the existing recovery plan for North Sea cod;
g) quantify the species and size composition of by-catches taken in the fisheries for Norway pout and sandeel in the North Sea and adjacent waters, and make this information available to WGECO;
h) provide the data required to carry out multispecies assessments (quarterly catches and mean weights at age in the catch and stock for 2002 for all species in the multispecies model that are assessed by this Working Group);
i) provide specific information on possible deficiencies in the assessments including at least: Major inadequacies in the data on catches, effort or discards; major inadequacies if any in research vessel surveys data and major difficulties if any in model formulation; including inadequacies in available software. The Group should clarify the consequences from these deficiencies for a) assessment of the status of the stocks and b) for the projection;
j) for stocks for which a full analytical assessment is presented, comment on this meeting's assessments compared to the last assessment of the same stock;
k) comment on the PA reference points proposed by the Study Group on Precautionary Reference Points for Advice on Fishery Management;
l) structure the assessment report following the guidelines as adopted by ACFM in October 2002 with special attention to the quality issues;
$m)$ provide information on the species compositions by major groups of fisheries/fleets. If possible account for technical interactions in the catch options.

WGNSSK will report on (a) by 1 July 2003 for the attention of ACFM for presentation to the North Sea Commission Fisheries Partnership on 26-27 August $2003^{1}$ and will report on the remaining items by 19 September 2003 for the attention of ACFM.

Terms of reference are mapped onto the sections of the report as follows:

Term of reference	Section(s)
a) Assess status of haddock and sole	4,7
b) Assess status of cod, whiting, saithe and plaice	$3,5,6,9$
c) Estimate recruitment and provide catch options	$3-5,7-11$
d) Provide catch options for saithe	6
e) Assess status of Norway pout and sandeel	$11-12$
f) Evalulate recovery plans for North Sea cod	14
g) Assess by-catches in Norway pout and sandeel fishery	1.7 .1
h) Provide quarterly catch data for Multispecies WG	1.7 .2
i) Comment on deficiencies in the assessments	$3-12,1.5$
j) Compare assessment to last years assessment	$3-12$
k) Comment on PA reference points	16
l) Structure the report according to guidelines	overall
m) Provide information of catches by fleet. Account for technical interactions	15

[^0]
### 1.3.1 Roundfish and flatfish stocks

The data used in the assessment for roundfish and flatfish stocks are based on:

- total landings by market size categories
- sampling market size categories for weight, length, age, and sometimes maturity
- discard data: available only for whiting and haddock in Division IV as a time-series
- fleet data: effort data from logbooks and CPUE data from associated fleet landings
- survey data: survey indices by age
- data on natural mortality from the MSVPA


### 1.3.1.1 Data on landings, age compositions, weight-at-age, maturity ogive

In a number of cases, management areas do not entirely correspond with areas for which the assessments are carried out. If the management areas are wider, landings cannot always be obtained for the assessment area separately. In these cases landings have to be estimated by the WG from external information.

For most stocks, the Working Group estimates of total landings deviate from official figures. The discrepancies are shown in the landings tables under the heading "unallocated landings" in the relevant stock sections. These unallocated landings will in most cases include discrepancies that are due to differences in the calculation procedures. For instance, in some cases national gutted-fresh conversion factors have been changed in the official statistics, but not in the Working Group database. The differences introduced by conversion factors and the difference between SOP and nominal catch are in most cases minor. SOP corrections are usually not applied in the flatfish stocks, but it is a standard procedure for all roundfish stocks. The reason for this is that data in the historical time-series have been corrected and that it has proven difficult to rectify this in a consistent manner. However, these corrections are relatively small.

In a number of cases, uncertainties in the landing data can seriously affect the quality of the assessments and catch forecasts. In some cases, the Working Group estimates of the landings include corrections for mis- or unreported landings. Unreported landings for cod in area IV were estimated by the Working Group for part of the fleets, and have been included in the assessment for the year 1998. There are signals that mis- or unreported landings occur in other stocks, especially in the stocks of valuable species, but these could not be verified or quantified.

Historical time-series of age composition, weight-at-age, and length-at-age by fleet, are kept and maintained in databases at national institutes. The roundfish data (cod, haddock, whiting, and saithe) are kept in Aberdeen (FRS). North Sea plaice and sole are kept in IJmuiden (RIVO), VIId sole in Lowestoft (CEFAS), VIId plaice in Port-en-Bessin (IFREMER) and IIIa plaice in Charlottenlund (DIFRES). No major revisions have been made in the catch- and weight-at-age data, any minor revisions are indicated in the relevant stock sections.

The countries that are responsible for the major proportions of the total landings generally provide the age composition data of a stock. In 2001 and previous years each country only sampled national vessels. As a result the vessels landing abroad were never sampled. Therefore, the sampling procedure has been changed and from 2002 onwards each country will sample the landings of fleet components landing in their country (EU regulation 1639/2001).

The mean weights-at-age used for stock biomass are derived from catch-at-age weights. In most stocks the annual mean weight in the catch is set equal to the mean weight in the stock. Exceptions are the North Sea and eastern English Channel plaice and sole stocks for which the weight-at-age in the stock is set equal to the weight-at-age in the first quarter (plaice) or second quarter (sole). The weight-at-age in the catch of the youngest age groups may not accurately represent the stock due to selectivity.

Maturity ogives are based on historical biological information and kept constant over the whole time period of the assessment. For a number of stocks a knife-edge maturity has been assumed. Maturity-at-age data has indicated that the age of maturation can change over time. In the case of plaice, the data suggest that the currently used maturity ogive may substantially overestimate the proportion of mature fish at ages 3 and 4 . The assumption of constant maturity ogives may introduce bias in the trends in SSB developments, especially when exceptionally large or small year classes enter the spawning stock. The WG did not feel that it was in a position to evaluate the consequences of adjusting the maturity ogive during the meeting and recommended that this is examined before revised maturity ogives are implemented. The analyses of maturity ogives are discussed in more detail in Section 1.3.2.1.

### 1.3.1.2 Discard data used in the assessment

Estimates of discards are used in the assessment for North Sea haddock and North Sea whiting only. Total annual international discard estimates by age group were derived by extrapolation from Scottish data. The inclusion of discard catches is considered to reduce bias and to give more realistic values of fishing mortality and biomass for these stocks but also contributes to the noise in the data.

A discards workshop was held under the invitation of the EC in Charlottenlund, Denmark, 2-4 September 2003. The aim of the workshop was to specify the data requirements for discards data that can be used in stock assessment. Furthermore, the workshop intended to identify raising procedures for discards data and to develop method for estimating the uncertainty of raised discards estimates. The draft report of the meeting was available to WGNSSK and has been presented to the group. The Charlottenlund-meeting did not result in concrete products which were of immediate use to WGNSSK but has developed some guidelines which are thought to be useful for further work on aggregating discards data and making these data useful for stock assessment purposes.

WGNSSK considers that there is a distinctive role for PGCCDBS to further develop the proposals by the Charlottenlund meeting and to initiate the data collation and aggregation process for the discards data that is being developed since the EC data directive from 2002 onwards. In the opinion of the WG it is important that all discard data are made available to the WG. Even though the time-series may be too short or otherwise unsuitable to be included in analytical assessments, this information is important for evaluating the quality of the assessment.

### 1.3.1.3 Natural mortality

The currently used natural mortality estimates are based on historical information (MSVPA for roundfish, ICES, 1989) and, unless specified otherwise, kept constant over the whole time period of the assessment. In the plaice and sole stocks, natural mortality is assumed to be 0.1 for all age groups. The natural mortality of saithe is assumed to be 0.2 for all age groups. The values of $M$ used for the assessments of cod, haddock, and whiting are listed below:

age	cod	haddock	whiting
0	$[2.70]$	2.05	$[2.55]$
1	0.80	1.65	0.95
2	0.35	0.40	0.45
3	0.25	0.25	0.35
4	0.20	0.25	0.30
5	0.20	0.20	0.25
6	0.20	0.20	0.25
$7+$	0.20	0.20	0.20

The Study Group on Multispecies Assessment in the North Sea (SGMSNS) has re-estimated the natural mortality of cod, haddock, whiting, sandeel, and Norway pout (1.6.2). The WG explored the effects of using Ms from SGMSMS in the assessments of cod and haddock.

### 1.3.1.4 Fleet and research vessel data

Time-series of CPUE and effort data from commercial fleets and research vessels have been used to 'tune' the assessments. The survey indices have become increasingly important as catch data has deteriorated for many stocks. The validity of many of the commercial tuning fleets as indicators of stock size and fishing mortality in recent years has become more uncertain, since the enforcement of national quota, ITQ's, and technical measures are known to have led to changes in directivity of some fleets to other species and in some cases to underreporting and discarding. Therefore the commercial CPUE data has been excluded from the assessments of a number of stocks. In this WG we have reevaluated the use of commercial CPUE data with the aim of limiting biases potentially introduces by these series.

Since the Working Group now has been moved to September (June last year), most of the survey indices from 2002 were available to the WG. Survey indices from the Dutch beam trawl survey and IBTS Q3 were not available.

### 1.3.2 Data sources Norway pout and sandeel

The data used in the assessment for Norway pout and sandeel stocks are based on:

- total landings
- samples of landings for species composition, weight, length, age, and sometimes maturity. Samples of industrial landings are used for an exact species composition of by-catch species and to get the percentage of target-species
- fleet data: effort data from logbooks and CPUE data from associated fleet landings
- survey data: survey indices by age for Norway pout
- data on sandeel natural mortality from the MSVPA


### 1.3.2.1 Data on landings, age composition, weight-at-age, maturity ogive

In some cases management areas do not entirely correspond with areas for which the assessments are carried out. If the management areas are wider, landings cannot always be obtained for the assessment area separately. In these cases landings have to be estimated by the WG from external information.

The sampling of Norway pout and sandeel landings were described in detail in the 1995 report of the Working Group (ICES CM 1996/Assess:6). The sampling system has generally not changed since then. The applied sampling systems vary between countries.

In Norway, the sampling system since 1993 is based on catch samples from three market categories: E02 (sandeel, if mainly sandeel), D13 (blue whiting, if not sandeel and catch taken west of $0^{\circ} \mathrm{E}$ ), D12 (Norway pout, if not sandeel and catch taken east of $0^{\circ} \mathrm{E}$ ). The samples are raised to total landings on the basis of sales slip information on landed categories. Effort is estimated from the total number of trips and an estimate of average days out on sea per trip.

In Denmark, the catch estimates are based on sales slip information, logbook data, species composition from inspectors, and biological data, including age-length keys from independent biological sampling. Total landings are estimated per statistical rectangle based on total catch estimates from sales slip and logbook data, together with data on species composition and biological data.

Historical time-series of market sampling data for sandeel and Norway pout are kept and maintained in Charlottenlund (DIFRES). Any revisions in the catch- and weight-at-age data are indicated in the relevant stock sections.

In the assessment of Norway pout the weights-at-age in the stock are kept constant over the whole period of assessment. Samples from the landings, however, suggest high variability both between years and seasons. One of the problems of using mean catch weights is that the 0 -group is not fully recruited in the third quarter, giving an overestimate of weight-at-age in the stock for this age group. More knowledge is required before variable weight-at-age in the catches can fully be taken into account in the assessment. For sandeel, the weights-at-age in the catches in the first half year are used as an estimation for weights-at-age in the stock.

The maturity ogives for Norway pout and sandeel are kept constant over the whole period of assessment. A paper, presented at the WG meeting in 2000, indicates that the age of maturation is higher for sandeel in the central North than observed previously in the southern North Sea and adopted for the assessments of the North Sea sandeel stock. A second paper presented at the same meeting indicated high variability in maturity of 1-group Norway pout.

### 1.3.2.2 Natural mortality

The currently used natural mortality estimates are based on historical information (MSVPA, ICES, 1989) and kept constant over the whole time period of the assessment. Natural mortality for Norway pout has been taken as 0.4 per quarter, corresponding to an annual mortality of 1.6. This year the sandeel stock was assessed using XSA instead of SXSA. The annual natural mortality estimates by age are:

Age 0: $\quad \mathrm{M}=0.8$
Age 1: $\quad \mathrm{M}=1.2$

Age 2+: $\mathrm{M}=0.6$

As mentioned previously (1.3.1.3), the SGMSMS has re-estimated natural mortality of cod, haddock, whiting, sandeel, and Norway pout (1.6.2), and the effects of using these in the assessments of cod and haddock are explored.

### 1.3.2.3 Fleet and research vessel data

For Norway pout, time-series of CPUE and effort data from Danish and Norwegian commercial fleets and data from research vessels are available. The research vessel data include first quarter IBTS, third quarter EGFS, and third quarter SGFS. Data from the third quarter IBTS were also available, but not used because the time-series is too short.

For sandeel, only data from the Danish and Norwegian commercial fleets are available.

### 1.3.3 Sampling levels and sampling procedures

The methods of data collection and processing vary between countries and stocks. Sampling procedures applied in the various countries to the various stocks have been described in detail in the report of the WGNSSK meeting in 1998 (ICES 1999a) and have not been changed since then. Table 1.3.3.1 gives an overview of the sampling levels in 2001 for each stock.

Since 2002 an EU regulation (1639/2001) has been endorsed which affects the market sampling procedures. Firstly each country is obliged to sample all fleet segments, including foreign vessels, landing in their country. Secondly, a minimum number of market samples per tonnes of landing is required. The national market sampling programmes have been adjusted accordingly.

The Working Group were concerned that for some stocks, the level of sampling specified under the Minimum Programme (MP) was substantially lower than those currently collected by countries contributing to age compositions for North Sea stocks. It was expected that the precision levels required in the MP could not be met at the level of sampling specified for a number of stocks. The sampling levels of cod, whiting and haddock were lower this year compared to last year, while the sampling levels of the other species remained more or less the same.

Table 1.3.3.1 Biological sampling level by assessment stock and country: Preliminary official landings (t) and number of fish measured and aged to analyse commercial landings in 2002.

	Cod in IIIa, IV, VIId			Whiting in IV, VIId		
	Landings (t) L	Lengths (No)	Ages (No)	Landings (t)	Lengths (No)	Ages (No)
Belgium	2667		-	328		
Denmark	16300	6796	6636	96		
France	3118		-	8475	1655	2613
Germany	2101	2051	450	354	2691	
Netherlands	4713	3260	2080	2444	5928	1200
Norway	5140	3494	169	41		
Poland	39		-			
Sweden	2179	1101	688	7		
UK (E/W/NI)	3257	34712	3830	1434	16868	1098
UK (Scotland) UK	15416	46306	8920	7756	59270	3885
Total	54930	97720	22773	20935	86412	8796


	Haddock in IIIa, IV			Saithe in IV, IIIa, VI		
	Landings (t)	Lengths (No)	Ages (No)	Landings (t)	Lengths (No)	Ages (No)
Belgium	559			107		
Denmark	8914	1684	1623	5668	3621	3607
France	903			27873	5522	2425
Germany	1091	2138		11466	6175	3965
Netherlands	359			6		
Norway	2391	7178	256	59119	27984	2650
Poland	17		-	752		
Sweden	965	2506	505	1863		
UK (E/W/NI)	3647	18407	1619	2828	838	
UK (Scotland) UK	39624	127782	7083	8163	15046	4610
Total	58470	159695	11086	117845	59186	17257


${ }^{(1)}$ VIId age length keys are used for IV

Table 1.3.3.1. (Cont ${ }^{\text {d }}$ )

	Plaice in IV			Plaice in VIId Landings (t)	Lengths (No)	Ages (No)
	Landings (t) L	Lengths (No)	Ages (No)			
Belgium	4859	2870	400	1204	1900	700
Denmark	12552	1944	1923		-	
France	548	-		3454	5676	1361
Germany	3927	9872	78		-	- -
Netherlands	29081	7670	7670	1	-	
Norway	1996	-	- -		-	-
Sweden	2	-			-	- -
UK (E/W/NI)	8504	19906	1294	841	10472	1667
UK (Scotland)	8236	5948			-	
Total	69705	48210	11365	5500	18048	3728

${ }^{(1)}$ VIId age length keys are used for IV

	Plaice in IIIa   Landings (t) Lengths (No) Ages (No)			Norway Pout in IV, IIIa   Landings (t)* Lengths (No)		Ages (No)
Denmark	8275	5601	5366	73194	3256	2138
Germany	29	-			- -	- -
Norway	58	-		23753	2135	251
Sweden	322	3024	1167	-	- -	
Total	8684	8625	6533	96947	5391	2389


Sandeel in IV      Landings (t)			
Denmark (No) Ages (No)			
Norway	627208	58224	23103
Sweden	175984	3226	314
UK (E/W/NI)	36842	-	-
UK (Scotland)	2985	-	-
UK		-	
Total	843019	61450	23417

### 1.4 Methods and software

### 1.4.1 General assessment approach: update/benchmark assessments

Following the proposals and decisions made at last year's WGNSSK meeting, and taking account of the guidelines adopted by ACFM in October 2002, the WG structured their work and report as detailed below.

Stock assessments were classified according to the following categories:
Benchmark assessment: as traditionally performed, including data preparation, review of fishery information, data screening, trial assessments, final assessment, catch forecast and medium-term projections. Report section similar to that currently provided in the WG report. ACFM summary sheet provided. Assessments in this category can be initially approached on a full basis, but may be subsequently considered unsuitable for medium-term projections, due to data series length, quality, or forecast concerns. In some cases, the stock perception is so similar that repeated mediumterm projections were considered unnecessary.

Update assessment: update and review data sets, carry out a standard assessment and short-term forecast according to the Stock Annex protocol. Report to contain a short text on the the updated data and results of the assessment and
forecast only, and associated tables/figures. ACFM summary sheet provided. No trial runs, stock-recruitment relationship fitting or medium-term projections. [This could be upgraded to a full assessment in any year in which concerns over data or the state of the stock, or requests from customers, arose.]

The WGNSSK schedule of assessments (modified at this meeting) is given below:

	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$
Cod in 347d	Benchmark	Benchmark	Benchmark
Haddock in 34	Benchmark	Update	Update
Whiting in 47d	Update	Benchmark	Update
Saithe in 346	Update	Update	Benchmark
Sole in 4	Update	Update	Update
Sole in 7d	Benchmark	Benchmark	Benchmark
Plaice in 4	Update	Update	Benchmark
Plaice in 3	Update	Update	Benchmark
Plaice in 7d	Update	Benchmark	Update
Sandeel in 4	Update	Benchmark	Update
Norway Pout in 4	Update	Update	Update
sandeel in other areas	Update	Update	Update
Norway Pout in other areas	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Total Benchmark			

## Quality control handbook

The WG attempted to provide some stock annexes following the outlines proposed by ICES in the Quality Handbook proposals. Preliminary annexes have been provided for some stocks. These stock annexes are still being developed intersessionally, and it is intended that they will be included with next year's report, along with annexes from any other stocks which should have been completed by then.

### 1.4.2 Assessment methods

Table 1.4.1 lists the biological basis of the stock assessments undertaken by this Working Group. Table 1.4.2 gives an overview of model settings for these assessments.

Extended survivors analysis (XSA) has been used as an important tool for catch-at-age analysis for all stocks. Two implementations were used: version 3.1 of the Lowestoft VPA package was used for roundfish and flatfish stocks, while the Seasonal XSA (Skagen 1993, 1994) was used for Norway pout to allow for quarterly seasonal data.

In the last year's WG reports, the general approach to tuning the XSA had been to use a full tuning window with a tricubic 20-year time taper. This option was retained this year for cod and saithe, while the no-downweighting option was used for the other stocks assessed using XSA. For the benchmark assessments the $F$-shrinkage was explored with the aim to reduce the effects of shrinkage on the terminal population estimates..

The general approach to carrying out the explorations leading to the final assessment was as follows.

A separable analysis was carried out to explore the internal consistency of the catch-at-age data and also to judge whether the plus group was appropriately chosen.

For all available tuning series, single fleet runs were carried out using Laurec-Shepherd ad hoc tuning or XSA with light shrinkage. These runs were used to explore the consistency of the surveys with the catch-at-age data. In previous assessments, results were used to determine the fleet year and age ranges to be used for the final assessment. In this year's assessment, greater attention was paid to a priori reasons for removing surveys, since residual trends in singlefleet Laurec-Shepherd runs can indicate problems with catch-at-age data as well as survey data.

Given a largely predetermined selection of fleets and ages, a run was carried out with all selected fleets combined, with the time period of tuning as selected for the final run, but with catchability set to be independent of year class strength for all ages (that is, no power model for recruits). From this analysis, graphs of $\log$ catchability residuals were plotted against log stock numbers to judge whether the slope of the regression was consistently different from zero for the most important fleets. If so, a power model of catchability would be used for those ages.

The contribution of shrinkage to survivors estimates at older ages from these exploratory XSA runs was used to facilitate decisions on the plus-group to be used (and consequently whether then mean $F$ range needed to be changed). These contributions were also used aling with retrospective analyses to determine the correct value of $F$-shrinkage.

Then the final run was carried out. Plots of $\log$ CPUE against $\log$ stock numbers were generated to visually inspect the quality of the regressions (or alternatively the residuals were plotted). A poor performance of a fleet at this stage was no longer considered a decisive argument against the use of that fleet (or age), if it had performed acceptably in the single fleet runs.

## TSA

An implementation (time-series analysis or TSA) of the Kalman filter algorithm was used in comparative assessments for cod, haddock and whiting, although it was not selected as the final assessment model for any stock. Its main advantage is that it is thought to encapsulate the uncertainty in terminal-year estimates and that it can be applied to catch data only. It also enabled the exploration of the removal of catch-at-age data for the last two years on the assumption that recent recovery plans for cod may have degraded the quality of such data.

Technical details of the basic model may be found in Harvey (1989), Jones (1993) and Gudmundsson (1994), while the TSA implementation used here is discussed in the 1998 report of the Northern Shelf Demersal working group (ICES CM 1999/ACFM:1, Appendix 3), the 2001 report of the Methods working group (ICES CM 2002/D:01), Fryer et al (1998), Fryer (2001) and the 2003 report of the Working Group on Methods in Fish Stock Assessment. In brief, the Kalman filter TSA algorithm is a recursive procedure that represents the variables of interest (stock numbers and fishing mortalities at age) as unobserved state variables that evolve forward over time. Each year, observed catches-at-age are used to update the estimates of the state variables. Year-class strength is assumed (in this implementation) to be distributed according to a Ricker or Beverton-Holt stock-recruitment model. Model fitting proceeds by examination of standardised catch prediction errors (equivalent to model-fit residuals) and inflation of permitted variance on year-age pairs for which such errors are high. Each estimate of historical mean $F$ and stock numbers is produced with an associated standard error, allowing a statistical evaluation of the uncertainty in the assessment. A number of researchvessel tuning series can be incorporated. The model is also able to roll forward and produce estimates for all parameters for as many years as required following the last historical year. A new version this year assumed a constant CV on catch and survey estimates, and allowed for the separate modelling of industrial bycatch.

The principal benefits of the model are (following Fryer, 2001):

- It gives precision of estimates of numbers-at-age and fishing mortalities-at-age, and avoids over-interpretation of small recent changes in stock trends.
- It allows fishing mortalities-at-age to evolve in a constrained way, thus granting the benefits of both a separable assumption and a fully unconstrained model.
- It partitions the variability in the data into interpretable components (transitory and persistent, year and age, etc.)
- It can predict ahead (and give precision of predictions).
- It can omit catch or survey data or both in some years if the data are suspect.
- It can model landings-at-age, discards-at-age and industrial by-catch separately
- It allows survey catchabilities and discard curves to evolve over time.

The principal disadvantages are:

- It requires normally distributed errors (but constant variance is not a requirement). This is not a particular problem in model fitting, but does impose serious limitations when it comes to predicting in a declining stock..
- It requires linear approximation of non-linear equations.
- The likelihood can be very flat, so it can be difficult to estimate the model parameters. Maximum likelihood estimation can take a long time when there are lots of auxiliary data (and hence lots of parameters).
- It favours the status quo, so it can take a number of years for the model to react fully to major changes in the fishery or the stock. It can thus struggle to characterise rapidly those populations which are highly variable.

TSA is undergoing sporadic development at FRS Marine Laboratory, Aberdeen, with the hope of making it generally available at some future time. However, a robust and generally-applicable implementation is proving difficult to specify, and the future of the method is unclear.

## SURBA

The WG, and ICES in general, are increasingly concerned over the quality and reliability of catch-at-age data from commercial fisheries, due to more restrictive TACs and the possibility of unrecorded discarding in many fisheries. Much attention was paid during the WG meeting to the evaluation of survey data, and the generation of relative indices of SSB and recruitment (along with absolute estimates of $F$ ) based solely on such fishery-independent data. The main tool for doing this was SURBA (version 2.10), which is based on a separable model of mortality as indicated by a survey index.

A separable model assumes that fishing mortality $\mathbf{F}=\left[F_{a, y}\right]$ is separable into an age effect $\mathbf{s}=\left[s_{a}\right]$ and a year effect $\mathbf{f}=\left[f_{y}\right]$, so that $\mathbf{F}=\mathbf{s} \times \mathbf{f}$. Suppose that the abundance of a particular cohort declines exponentially from one year to the next, so that

$$
\begin{equation*}
N_{a+1, y+1}=N_{a, y} \exp \left(-Z_{a, y}\right), \tag{1}
\end{equation*}
$$

where the rate of decline (or total mortality) is given by

$$
\begin{equation*}
Z_{a, y}=F_{a, y}+M_{a, y}=s_{a} f_{y}+M_{a, y}, \tag{2}
\end{equation*}
$$

and $M_{a, y}$ is the natural mortality rate on age $a$ during year $y$. Then if a cohort recruits to the stock in at age $a$ in year $y$ with recruiting abundance $r_{a, y}$, we can calculate its abundance at age $a$ as

$$
\begin{align*}
& N_{a, a-1+y}=r_{a, y} \exp \left(-\sum_{i=1}^{a-1} Z_{i, i-1+y}\right) \\
= & r_{a, y} \exp \left(-\sum_{i=1}^{a-1} s_{i} f_{i-1+y}+M_{i, i-1+y}\right) \tag{3}
\end{align*}
$$

That is, the abundance at age $a$ is given by the abundance at the recruiting age multiplied by the exponential of the sum of the mortality rates in the intervening years. We will denote the vector of all recruiting abundances by $\mathbf{r}=\left[r_{A, 1}, r_{A-1,1}, \ldots, r_{2,1}, r_{1,1}, r_{1,2}, \ldots, r_{1, Y}\right]$ where $A$ is the number of ages and $Y$ is the number of years.

In order to use relative abundance indices $I_{a, y}$ to estimate relative stock size, we assume a time-invariant proportional relationship between stock size and the abundance index. This is given by

$$
\begin{equation*}
I_{a, y}=q_{a} N_{a, y} \tag{4}
\end{equation*}
$$

where $q_{a}$ is the catchability of the survey at age $a$. Thus, a survey for which the abundance index was a reliable indicator of stock size at age $a$ would have $q_{a}=1.0$, while it could be that $q_{a}=0.0$ for a survey which will never catch fish of the age in question (a gill-net survey cannot sample very large fish, for example). Then we can rewrite Equation 3 as

$$
\begin{equation*}
I_{a, a-1+y}=\frac{q_{a}}{q_{r}} I_{r, y} \exp \left(-\sum_{i=1}^{a-1} s_{i} f_{i-1+y}+M_{i, i-1+y}\right), \tag{5}
\end{equation*}
$$

where $q_{r}$ and $I_{r, y}$ are respectively the catchability and the abundance index values for the recruiting age of the cohort.

This expression gives us a model for how the abundance index evolves through time for any given cohort. Estimates can be generated for $\mathbf{s}, \mathbf{f}$ and $\mathbf{r}$ by minimising the sum-of-squares difference between natural logs of the observed and fitted survey-derived abundance,

$$
\begin{equation*}
S S Q=\sum_{a=1}^{A} \sum_{y=1}^{Y} w_{a}\left(\ln I_{a, y}-\ln \hat{I}_{a, y}\right)^{2}, \tag{6}
\end{equation*}
$$

where $\mathbf{w}=\left[w_{a}\right]$ are age-weighting factors. The progressive decline in cohort size is modelled using Equation 5. However, the model as it stands is under-specified, since $\mathbf{s}$ and $\mathbf{f}$ are both estimated simultaneously. One solution to this was to fix the terminal value $f_{Y}$ of the year effect, which is set so that the mean of all the temporal trends is 1.0 : thus $f_{Y}=Y-\sum_{y=1}^{Y-1} f_{y}$. We can also provide a vector of catchabilities-at-age $\mathbf{q}=\left[q_{a}\right]$. Summary statistics (total stock biomass, spawning stock biomass, yield) are calculated in the usual manner.

The model fit could be extremely sensitive to noise in the data. One approach to ameliorating this is to introduce a smoother $\lambda$, which constrains the minimisation by a penalty function:

$$
\begin{equation*}
S S Q=\sum_{a=1}^{A} \sum_{y=1}^{Y} w_{a}\left(\ln I_{a, y}-\ln \hat{I}_{a, y}\right)^{2}+\lambda \sum_{y=1}^{Y}\left(\frac{f_{y}}{f_{y-1}}\right)^{2} . \tag{7}
\end{equation*}
$$

Finally, estimates of fishing mortality rates $F$ are obtained from Equation 1, which can be rewritten as

$$
\begin{equation*}
F_{a, y}=\ln \left(\frac{N_{a, y}}{N_{a+1, y+1}}\right)-M_{a, y} . \tag{8}
\end{equation*}
$$

Mortality rate estimates are therefore derived by looking at the ratios of abundances. Since the number of ratios will always be one less than the number of abundances, we can only estimate $A-1$ age effects and $Y-1$ year effects.

## Catchability estimation and age weighting

At present, there is no accepted method of determining empirically the catchability $\mathbf{q}=\left[q_{a}\right]$ of a survey. This has been one of the principal hindrances to the further development of survey-based analysis methods. Ad hoc experimentation to determine values of $\mathbf{q}$ which resulted in positive age-effects that looked reasonable has been retained in SURBA 2.10 , but it is now also possible to estimate catchabilities so as to minimise the final model SSQ.

A two-stage fitting algorithm is used. Firstly, the standard SSQ (Equation 6 or 7) is minimised with $\mathbf{q}$ allowed to vary (so that the parameter space is $[\mathbf{f}, \mathbf{s}, \mathbf{r}, \mathbf{p}]$ ). Secondly, the model is refitted with $\mathbf{q}$ fixed at the values estimated in the first step (so the parameter space is now $[\mathbf{f}, \mathbf{s}, \mathbf{r}$,$] ). The advantage of the two-stage approach is that the model fitted in$ the first step is likely to be over-parameterised, so that parameter estimates may be unreliable: fixing $\mathbf{q}$ in the second step permits the use of a rough estimate of catchability without compromising the estimates of the remaining parameters. However, because of the potential over-parameterisation, the estimates of $\mathbf{q}$ should be treated with caution, and viewed as indicative only.

In addition to manual definition of age weighting $\mathbf{w}=\left[w_{a}\right]$, SURBA now allows for inverse-variance age-weighting with

$$
\begin{equation*}
w_{a}=\sum_{y=1}^{Y} \frac{Y-1}{\left(I_{a, y}-\bar{I}\right)^{2}} . \tag{9}
\end{equation*}
$$

## Constrained parameter estimation

SURBA can be run with no constraints on parameters. However, values of catchabilities $q_{a}$ which are too large can easily result in negative estimates of the corresponding age-effects $S_{a}$, and thus negative fishing mortality $F$. To circumvent this, parameter estimation can be constrained in SURBA. The bounds used are $\mathbf{f}, \mathbf{s} \in(0,3): \mathbf{r}$ should not be constrained, as $\hat{I}_{1,1 \ldots Y}$ or $\hat{I}_{1 \ldots A, 1}$ can easily be negative on the natural log scale.

## Smoothing and uncertainty estimation

Survey data are inherently noisy, due to small sample sizes and natural variation. Because of this, a survey-based analysis without any smoothing will also be very noisy. In particular, fishing mortality $F$ will be very poorly estimated. It is therefore necessary to smooth the separable model fit.
cook97 used a penalty term in the SSQ formulation (Equation 7) to limit interannual variability in the year effect $f$ (a method referred to hereafter as SSQ smoothing). This does smooth the fitted estimates, but there are two main problems. Firstly, the value of the smoothing parameter $\lambda$, to which the model fit is very sensitive, is entirely arbitrary. Secondly, the penalty term in Equation 7 renders impossible the determination of model uncertainty by residual bootstraps.

An alternative approach is to smooth the survey data themselves before estimating the separable model (index smoothing). SURBA does this by fitting cubic splines with fit parameter $\rho$ to the vectors of survey data for each yearclass, once missing values are filled in by nearest-neighbour averages. The value of $\rho$ is again arbitrary, but population estimates are not very sensitive to it and values between 2.0 and 5.0 are generally reasonable.

The principal advantage of index smoothing is that it facilitates bootstrap-residual uncertainty estimation. The unpenalised SSQ formulation (Equation 6) represents the sum of squared residuals, so that the residuals themselves are

$$
\begin{equation*}
R_{a, y}=\sqrt{w_{a}}\left(\ln I_{a, y}-\ln \hat{I}_{a, y}\right) . \tag{10}
\end{equation*}
$$

Then using Equation 4 and rearranging results in an expression for estimated abundance

$$
\begin{equation*}
\hat{N}_{a, y}=\frac{1}{q_{a}} \exp \left(\ln I_{a, y}-\frac{R_{a, y}}{\sqrt{w_{a}}}\right) . \tag{11}
\end{equation*}
$$

When bootstrapping residuals, SURBA randomly selects (with replacement) a residual $R_{a^{*}, y^{*}}$ from the $A \times Y$ residual matrix (where $a^{*} \in[1, \ldots, A]$ and $y^{*} \in[1, \ldots Y]$ ). It then uses $R_{a^{*}, y^{*}}$ in Equation 11 to generate a new abundance $\hat{N}^{*}{ }_{a, y}$. This is done for each age and year, and summary statistics (SSB, mean $F$, recruitment) are calculated in the usual way. The process is repeated 1000 times, enabling the generation of empirical distributions of the summary statistics. The 50th percentiles (medians) of these distributions are then used as the final smoothed estimates.

## Retrospective analysis

Retrospective analysis consists of refitting the model with the data for the final year removed, then with the last two years removed, the last three years, and so on; and comparing summary statistics from these fits to shorter time-series with those from the fit to the full time-series. SURBA generates such model fits automatically, moving back in time until $y_{0}$ data points are left ( $y_{0}=\frac{Y}{2}$ or $\frac{3 Y}{4}$, as required). The program also calculates two values of Mohn's $\rho$ statistic, defined as

$$
\begin{equation*}
\rho=\sum_{y=y_{0}}^{Y-1} \frac{S_{Y, y}-S_{y, y}}{S_{Y, y}} \tag{12}
\end{equation*}
$$

where $S_{y, y}$ is the estimate of spawning-stock biomass in year $y$ given by the retrospective model run which spans data from year 1 to year $y$. Mohn's $\rho$ is therefore the sum of the relative vertical distances between the end points of the retrospective runs and the equivalent estimate from the full time-series run. While Mohn's $\rho$ does not have a formal statistical interpretation, nor a measure of how significant the measured retrospective bias is, it is useful for comparing qualitatively the bias in retrospective analyses using different models or methods.

### 1.4.3 Recruit estimation

In several cases recruitment estimates have been made with RCT3. This was the case when recruitment indices from 2003 surveys are available or when F-shrinkage in XSA has relatively high weights on the estimation of recruiting survivors. The present implementation of XSA cannot accommodate survey data in the year following the last catch data year, and RCT3 is used for that reason. This creates some inconsistencies in the approaches used. The survey indices may end up being used twice for recruitment estimation - once in the survivors' analysis (and thus in the VPA recruitment) and again with the same survey indices in RCT3. For plaice, haddock, whiting and cod, large discrepancies have been observed in recent Working Groups in the recruitment predicted by RCT3 and the observed recruitment in XSA. In most cases RCT3 seems to overestimate recruitment and WGNSSK considers this may partly explain the overestimation of landings in the short term forecasts for these species

A problem with the use of the power model for recruiting age groups in XSA, is that it cannot be restricted to those tuning fleets for which the use of this model is appropriate. In the present implementation of XSA the use of the power model may solve problems in some fleets while creating problems in other fleets. The fact that the F-shrinkage cannot be turned off for recruiting age groups has in some cases been seen to have an undesirably strong influence on the recruitment estimates originating from XSA.

### 1.4.4 Short-term forecasts and sensitivity analyses

Short-term forecasts were made for stocks for which a full analytical assessment could be carried out, and which would not feature in late-summer groundfish surveys. Such forecasts are based on initial stock sizes as estimated by XSA (in a number of cases supplemented with separate recruitment estimates as described above), natural mortalities and maturity ogives as used in the XSA, mean weights at age averaged over recent years (normally 3) and fishing mortalities at age as a mean $F$-pattern over the most recent 3 years. The estimate of status quo $F$ used by default in short-term predictions was the scaled mean F at age for the most recent three years. Forecasts and corresponding sensitivity analyses were undertaken using the Aberdeen suite of forecast programs. For cod and haddock assessments, forecasts were also carried out that take account of recently-implemented technical measures.

Short-term forecasts have been given on a stock basis, which in some cases includes more than one management area. For management purposes the catch forecast has been split by Subarea and Division on the basis of the distribution of recent landings.

### 1.4.5 Stock-recruitment model fitting and medium-term projections

The WGMTERMC program (from the Aberdeen suite) was used to generate stochastic medium-term (10-year) projections for those stocks where this was thought to be appropriate. Two programs were available to fit stockrecruitment models for these projections. RECRUIT, also part of the Aberdeen suite, fits Ricker, Beverton-Holt and Shepherd models by nonlinear least-squares regression. RecAn 2.0 is a Windows-based alternative that can fit 24 different stock-recruit models and which produces graphical summaries of the output. The use of non-standard models from RecAn 2.0 is, however, currently limited by WGMTERMC, which only incorporates the three models mentioned above.

### 1.4.6 Biological reference points

Established biological reference points ( $\mathbf{F}_{\text {med }}, \mathbf{F}_{\text {high }}, \mathbf{F}_{0.1}, \mathbf{F}_{\text {max }}$ etc) have been estimated using the REFPOINT software or the PA-software. For stocks where the age range of the assessment has been changed, the PA software has been used to provide a full exploration of the biological reference points.

### 1.4.7 Mixed fisheries modeling

Two models aiming at calculating mixed-fisheries forecasts were available to the WG, and these are fully described in WD04 and WD15. One of these two models, MTAC (WD04), was initiated by $\operatorname{STECF}(2002)$ and evaluated in several occasions, including $\operatorname{SGDFF}(2003)$. The other model was made available during the course of the WG, and the group did not have enough time to evaluate it comprehensively. Therefore, the group approached mixed-fisheries forecasts using MTAC. The methodology underlying MTAC is presented below.

To formalise the problem, the initial stage is to introduce additional subscripts into the conventional catch equation. Thus if $k$ fishing fleets exploit $j$ species at age $a$, each with partial fishing mortality $F_{k, j, a}$ for each fleet, then the total annual catch numbers (C) and catch weight (CW) are the sum of catches from each fleet such that

$$
\begin{equation*}
C W_{j}=\sum_{a} \sum_{k} F_{k, j, a} * N_{j, a} * W_{k, j, a} \frac{\left(1-\exp \left(-Z_{j, a}\right)\right)}{Z_{j, a}} \tag{1}
\end{equation*}
$$

where $N_{a}$ represents population abundance on $1^{\text {st }}$ January at age $a$, and $W_{k, j, a}$ represents the mean weight of fish of age $a$ and species $j$ caught by fleet $k$. Total mortality $Z$ is conventionally calculated as the sum of natural and fishing mortality, i.e.

$$
\begin{equation*}
Z_{j, a}=M_{j, a}+\sum_{k} F_{k, j, a} \tag{2}
\end{equation*}
$$

To perform a catch forecast for the purposes of calculating a TAC, we require assumed, 'status quo' values for fishing mortality and weight at age etc. which would typically be estimated using recent average values. These are here indicated by a 'prime' superscript (e.g. F'). Other variables refer to quantities for the forecast period.

The forecast also requires the implicit assumption that fishing practices will remain unchanged. The TAC can thus be estimated from

$$
\begin{equation*}
T A C_{j}=C W_{j}=\sum_{a} \sum_{k} f a c_{k} * F_{k, j, a}^{\prime} * N_{j, a} * W_{k, j, a}^{\prime} \frac{\left(1-\exp \left(-Z_{j, a}\right)\right)}{Z_{j, a}} \tag{3}
\end{equation*}
$$

where $f a c$ is an effort (or F ) multiplier for all fleets combined or specified by fleet. Total mortality $Z$ becomes

$$
\begin{equation*}
Z_{j, a}=M_{j, a}+\sum_{k} f a c_{k} * F_{k, j, a}^{\prime} \tag{4}
\end{equation*}
$$

Now assume it is desired to alter fishing mortality for one species independently of the other species. A variety of different alterations in $f a c_{k}$ can be used interchangeably to effect modifications in $F_{j}$, and the problem is intractable.

In general terms, for a single species in a given year, fisheries management will aim to result in a specified change in the fishing mortality on species $j$ which we will call $\Delta F_{j}$. This could be achieved through a variety of means including closures or an effort control scheme, but for convenience we will here assume that a TAC is required for this purpose. Assume that $F_{j}$ for TAC estimation is determined from $F_{j}^{\prime}$ and a factor such that $F_{j}=F_{j}^{\prime} * \delta F_{j}$. The absolute change in $F_{j}$ thus becomes, $\Delta F_{j}=F_{j}{ }^{*}\left(1-\delta F_{j}\right)$

The contribution which each fleet partial $\mathrm{F}, F_{j, k}^{\prime}$, makes to the total change in F can be defined by

$$
\begin{equation*}
\Delta F_{j}=\alpha_{j} * \sum_{k} p_{k, j} * F_{j, k}^{\prime} \tag{5}
\end{equation*}
$$

where the 'alpha', $\alpha_{j}$ is a scaling factor applied for all fleets catching species $j$, and $p_{k, j}$ represents how the overall effort reduction is allocated across fleets in order to achieve the desired change in fishing mortality for species $j$. The value of $p_{k, j}$ is a kind of "weighting factor" for effort reduction which could be supplied externally to reflect policy considerations such as e.g. the ecosystem effects of fishing with a particular gear, or could be estimated based on the catch compositions of individual fleets.

As a fleet cannot reduce F to less than zero, the product of alpha and $p$ cannot exceed 1 , so (5) must be modified to

$$
\begin{equation*}
\Delta F_{j}=\sum_{k} \min \left(\alpha_{j}^{*} p_{k, j}, 1\right) * F_{j, k}^{\prime} \tag{6}
\end{equation*}
$$

Alternatively, this can be expressed as the effort (or F ) factor, $\delta F_{j, \mathrm{k}}$, for individual fleets

$$
\begin{equation*}
\delta F_{j, k}=1-\min \left(\alpha_{j} * p_{k, j}, 1\right) \tag{7}
\end{equation*}
$$

The $\delta F_{j, k}$ represent the effort modification factor which would be applied to fleet $k$ if management was intended only to apply to species $j$ in isolation of the other species caught in the fishery. For this reason applying $\delta F_{j, k}$ as the effort modification factor, $f a c_{k}$, in (3) will lead to a unique solution. However, this only applies where management decisions in a multifleet fishery are driven by the conservation needs of a single species. Often this will not be the case and conservation needs for each species give different effort reduction scenarios. This is reflected in the different $\delta F_{j, k}$ estimated for each species within a fleet, and it is necessary to find a way of combining them to produce one single fleet effort modifier for each fleet in the fishery. Multicriterion forecasting can only be developed if an appropriate weight is assigned to each of the conservation criteria. Assume that a decision-weight $\Theta_{j}$ can be developed, representing the importance of the conservation criteria for each of the $j$ species. As noted above, choice of the $\Theta_{j}$ is a policy decision, although it would be possible to develop standardised approaches to deriving values. An overall fleet effort modifier, $f a c_{k}$, can then be derived as a weighted sum of the $\delta F_{j, k}$. The weightings would include the $\Theta_{j}$, but if the intention is also to reflect the extent to which the fisheries for the individual species could be prosecuted, (and thus also managed) separately, it would also be necessary to include this in the weightings in some way. If we define $q_{k, j}$ as a fleet target factor, describing the relative importance of species $j$ for fleet $k$ then overall fleet modifier would be :
$f a c_{k}=\sum_{j} q_{k, j} \Theta_{j} \delta F_{j, k}$

The simplest way of defining the $q_{k, j}$ would be to use the mean proportion of species $j$ in the catch of fleet $k$. Use of the catch composition information in the weighting in this way means that greater effort reductions will be applied to those fleets which are targetting the species which are of greater conservation concern.

Having specified such decision weights the calculation for multicriterion TAC setting could be as follows.
A. Specify all relevant decision weights, $\Theta_{j}$ where the sum of $\Theta_{\mathrm{j}}=1$
B. Specify the effort reduction rates $p_{k, j}$
C. Specify the desired adjustment factor $\delta F_{j}$ to status quo fishing mortality for each species, $F_{j, a}=F^{\prime}{ }_{j, a} * \delta F_{j}$
D. Calculate individual "single species" TACs (STACs) from $F_{j, a}$
E. Calculate all $\delta F_{j, k}$, the species and fleet specific effort factors required to achieve each $\mathrm{STAC}_{j}$

$$
\begin{array}{ll}
\delta F_{j, k}=1-\min \left(\alpha_{j}^{*} p_{j, k}, 1\right) & \text { for } \delta F_{j}<1 \\
\delta F_{j, k}=\delta F_{j} & \text { for } \delta F_{j} \geq 1
\end{array}
$$

where $\alpha_{\mathrm{j}}$ is estimated by minimization of

$$
\left(S T A C_{j}-\sum_{a} \sum_{k} \delta F_{j, k} * F_{k, j, a}^{\prime} * N_{j, a} * W_{k, j, a}^{\prime} \frac{\left(1-\exp \left(-\left(\sum_{k}\left(\delta F_{j, k} * F_{k, j, a}^{\prime}\right)+M_{j, a}\right)\right)\right.}{\sum_{k}\left(\delta F_{j, k} * F_{k, j, a}^{\prime}\right)+M_{j, a}}\right)^{2}
$$

F. Calculate weighted fleet effort reduction factors, $f a c_{k}$ using equation (8)
G. Calculate each mixed-species TAC using equation (3).

### 1.4.8 Software versions

Overview of the software versions used:

Software	Purpose	Version
VPA-suite	Historical assessment (e.g. separable   VPA, XSA)	Version: VPA95PA. Compiled:   $30 / 04 / 1998$
TSA (Time-series analysis)	Historical assessment. Multiple   surveys or none, $n$-year projections	No formal version number. Compiled   anew for each run.
GSA	Historical assessment. Seasonal XSA.	Compiled: 09/10/1995
RCT3	Recruitment estimation	Compiled: 02/10/1992
RETVPA	Retrospective analysis	Version: 00-1
SURBA	Survey-driven relative trend estimation	Version 2.10
Insens	Generate input files for predictions and   summary files	Compiled: 20/05/2002
Recruit	Estimation of stock recruitment   parameters	Compiled: 04/10/1996
RecAn	Estimation of stock recruitment   parameters	Version 2.0. Compiled 07/02/2002
WGFRANSW	Short term prediction and sensitivity   analysis	Version 1.0, 22/05/2001
WGMTERMC	Medium term analysis	Compiled: 03/11/1999
REFPOINT	Calculation of reference points and   yield per recruit	Compiled: 12/06/1997
MTAC	Mixed fisheries forecasts	R-code: september 2003

Table 1.4.1. Overview of biological basis of the stock assessments carried out by WGNSSK 2002

Ch.	Stock	Area	Stock numbers	Mean weight catch	Mean weight stock	Natural mort.	Proportion mature
3	Cod	347d	AC from EW, SC, DK, NL, GER, B, FR. No discards included. SOP correction applied.	Based on AC. No smoothing.	Same as mean weight in the catch	$\begin{aligned} & \mathrm{M} 1=0.8, \\ & \mathrm{M} 2=0.35, \\ & \mathrm{M} 3=0.25, \\ & \mathrm{M} 4-11=0.2 \end{aligned}$	$\begin{aligned} & \operatorname{mat} 1=0.01, \\ & \text { mat2=0.05, } \\ & \text { mat3=0.23, } \\ & \text { mat4=0.62, } \\ & \text { mat5=0.86, } \\ & \text { mat6-11 }=1.0 \end{aligned}$
4	Haddock	34	AC from SC, EW, DK, FR, B. AC on ind. bycatch from DK and N. AC of discards from SC. Discard and ind. bycatch included in assessment	Based on AC. No smoothing.   Calculated separately for different catch components	Same as mean weight in the catch	$\begin{aligned} & \mathrm{M} 0=2.05, \\ & \mathrm{M} 1=1.65, \\ & \mathrm{M} 2=0.4, \\ & \mathrm{M} 3-4=0.25, \\ & \mathrm{M} 4-10=0.2 \end{aligned}$	$\begin{aligned} & \mathrm{mat} 0=0, \\ & \text { mat1=0.01, } \\ & \text { mat2=0.32, } \\ & \text { mat3=0.71, } \\ & \text { mat4=0.87, } \\ & \text { mat5=0.95, } \\ & \text { mat6-10=1.0 } \end{aligned}$
5	Whiting	47d	AC from SC, EW, DK, FR, NL, B. AC on ind. bycatch from DK and N. AC of discards from SC, not applied to 7d. Discard and ind. bycatch included in assessment	Based on AC. No smoothing. Calculated separately for different catch components	Same as mean weight in the catch	$\begin{aligned} & \mathrm{M} 1=0.95, \\ & \mathrm{M} 2=0.45, \\ & \mathrm{M} 3=0.35, \\ & \mathrm{M} 4=0.3, \\ & \mathrm{~m} 5-6=0.25, \\ & \mathrm{~m} 7-8=0.2 \end{aligned}$	$\begin{aligned} & \text { mat1=0.11, } \\ & \text { mat2=0.92, } \\ & \text { mat3-8=1.0 } \end{aligned}$
6	Saithe	346	AC from N, EW, SC, DK, GER, FR for area IV. AC from SC for area VI. No discards included. SOP corrected.	Based on AC. No smoothing.	Same as mean weight in the catch	M1-10=0.2	$\begin{aligned} & \text { mat1-3=0.0, } \\ & \text { mat4=0.15, } \\ & \text { mat5=0.70, } \\ & \text { mat6=0.90, } \\ & \text { mat7-10=1.0 } \end{aligned}$
7	Sole	4	AC from NL, EW, FR, B. No discards included. SOP corrections applied by EW and B	Based on AC. No smoothing.	Second quarter catch weights at age	M1-15=0.1	$\begin{aligned} & \text { mat1-2=0.0, } \\ & \text { mat3-15=1 } \end{aligned}$
8	Sole	7d	AC from B, FR and EW     (since 1985). No   discards included. No    SOP correction.	Based on AC. No smoothing.	Second quarter catch weights at age	M1-11 $=0.1$	$\begin{aligned} & \text { mat1-2=0.0, } \\ & \text { mat3-11=1.0 } \end{aligned}$
9	Plaice	4	AC from NL, EW,   FR, B. No discards   included.  SOP    corrections applied by    EW and B	Based on AC. No smoothing.	1st quarter catch weight	0.1 on all ages	$\begin{aligned} & \mathrm{mat} 1=0.0, \\ & \text { mat2-3=0.50, } \\ & \text { mat4-15=1.0 } \end{aligned}$
10	Plaice	3	AC from DK only. No discards included. SOP corrected ??	Based on AC. No smoothing.	Same as mean weight in the catch	M2-11=0.1	$\begin{aligned} & \text { mat2=0.0, } \\ & \text { mat3-11=1.0 } \end{aligned}$
11	Plaice	7d	AC from FR, B and EW. No discards included. SOP corrected ???	Based on AC. No smoothing.	1st quarter catch weight	M1-10=0.1	$\begin{aligned} & \mathrm{mat} 1=0.00, \\ & \mathrm{mat} 2=0.15, \\ & \mathrm{mat} 3=0.53, \\ & \text { mat4} 4=0.96, \\ & \text { mat5-10=1.0 } \end{aligned}$
12	Norway pout	4	AC from DK and N. No discards in the fishery.	Based on AC. No smoothing.	Fixed mean weight in the stock by quarter and age used	M0-4= 0.4 (per quarter)	$\begin{aligned} & \hline \text { mat0=0.0, } \\ & \text { mat1=0.1, } \\ & \text { mat2-4 }=1.0 \\ & \hline \end{aligned}$
13	Sandeel	4	AC from DK and N. No discards in the fishery.	Based on AC. No smoothing.	Same as mean weight in the catch	First half year: M1=1.0, M2-3=0.4. Second half year: $\mathrm{M} 0=0.8$, M1-4=0.2	$\begin{aligned} & \text { mat0-1=0.0, } \\ & \text { mat2-4=1.0 } \end{aligned}$

Table 1．4．2．

		$\left\|\begin{array}{cc} \substack{n \\ \\ 0 \\ 0 \\ 0 \\ 0 \\ 0} \\ 0 & 0 \\ \hline \end{array}\right\|$						$\left\|\begin{array}{cc} n & \text { n } \\ 0 & 0 \\ 0 & 0 \\ 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$	$\begin{array}{lll} -1 & \ddots & \bar{o} \\ \hline \end{array}$		¢	$\|$0    0    0 0   0    0 0   0 0					
	－¢ ¢ ¢ ¢	¢			$\underset{\sim}{\text { a }}$		온̇	¢	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ \hdashline & \cdots & \div \\ & \dot{d} \end{array}\right.$	$\begin{aligned} & 0 \\ & \dot{\alpha} \\ & \hline \end{aligned}$	へ̀ へ̀	－¢	＋	？${ }^{\text {c }}$	－		
			N No										On				
		$\begin{aligned} & n \\ & \hline \end{aligned}$			$\left\{\begin{array}{lll} E & \\ y_{2} & \\ 0 & \infty & s \\ 0 & 5 & 2 \\ z & m & 5 \end{array}\right.$			$\begin{array}{cc} 1 \\ i n & 2 \\ \infty & 2 \\ 0 \end{array}$				$\begin{array}{\|r} \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ y \\ y \end{array}$	20				
	いのら	のく	のぃの	0000	Uのら	000	からい	as	000	いいいか	000	ess	O	いいか	0000		
	2	2	2	2	2	$\stackrel{\square}{2}$		2	\％		2						
	¢	O．	O．	$\cdots$	O．	O－		®．	$\cdots$		O－						
yunays səұеш！ ЧગฺЧМ 아 」 ueəu 〕0 ヨ’S	$\stackrel{\square}{-}$	－	$\because$	$\stackrel{\bigcirc-}{-}$	\％	$\because$		$\stackrel{\square}{\circ}$	Ro		$\because$						
」 ueәu sрлемо yunıus səұеш！！sə дол！＾．ıns									$\left\{\begin{array}{l} \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0} \end{array}\right.$								
  э๐ ұиәриәдәри！Ки！！ягчээеэ	$\bigcirc$	$\sim$	＊	N	，	N			$\infty$		N						
ио ұиәриәdәр К！！！！qечэŋеว	$\stackrel{?}{\square}$	$\bigcirc$	\|e	$\underset{\sim}{\text { }}$	Y				$$		－		§		§		
ィədel əu！			会		2	2		2	2		2		28		2		
	N	N	$\pm$	Mo	$\stackrel{\sim}{\sim}$	$\underset{\infty}{\infty}$		$\stackrel{\circ}{\dot{N}}$	$\underset{\leftarrow}{\infty}$		$\stackrel{\circ}{2}$		¢		$\bar{\circ}$		
	$\stackrel{ \pm}{\stackrel{1}{-}}$	さ̀	$\mid \stackrel{+}{+}$	$\stackrel{+}{\stackrel{\rightharpoonup}{1}} \stackrel{1}{\square}$	$\mid \stackrel{+}{\square}$	$\mid \stackrel{ \pm}{\square}$		$\frac{\stackrel{士}{5}}{\vdots}$	$\left\lvert\, \frac{ \pm}{\grave{N}}\right.$		$\stackrel{+}{\square}$		¢		¢		
	荷	荡	氐	氐	氐	\|r	c			恖	菢		萢		$$		$$
eav	$\begin{array}{\|l} \substack{2 \\ \hline \\ \hline} \end{array}$	标	$\stackrel{\square}{7}$	\％	$\checkmark$	®		$\checkmark$	m		장		$\checkmark$		＋		
Y0015	\％	年			$\frac{0}{0}$	$\begin{aligned} & \frac{0}{0} \\ & \hline 0 \end{aligned}$			$\begin{array}{\|l\|l\|l\|l\|} \hline \stackrel{0}{\overline{⿺ ⿻}} \\ \hline \end{array}$				免				
«әұdечэ	m	$\checkmark$	$\sim$	$\bigcirc$	，	$\infty$		の	$\bigcirc$		F		$\cong$		$\stackrel{\sim}{\square}$		

Established biological reference points $\left(\mathbf{F}_{\text {med }}, \mathrm{F}_{\text {high }}, \mathrm{F}_{0.1}, \mathrm{~F}_{\text {max }}\right.$ etc) have been estimated according to standard procedures and given for each stock when it has been benchmarked this year.

In 1998 the Working Group has proposed limit- and precautionary reference points for fishing mortality and SSB ( $\mathbf{F}_{\text {lim }}$, $\mathbf{F}_{\mathrm{pa}}, \mathbf{B}_{\mathrm{lim}}$ and $\mathbf{B}_{\mathrm{pa}}$ ) for all stocks based on guidelines by the ICES Study Group of the Precautionary approach to Fisheries Management (ICES 1998). These proposals were reviewed by ACFM and in most cases taken over or modified to ICES proposals of precautionary reference points to managers. Some of the reference points for North Sea stocks have been adopted by managers (Norway and EU) notably those for cod, haddock and plaice.

ACFM states that future management advice by ICES will be constrained by $\mathbf{F}_{\mathrm{pa}}$ and $\mathbf{B}_{\mathrm{pa}}$, the precautionary thresholds which imply a reasonably high probability of remaining below a limit fishing mortality and above a limit spawning stock biomass. $\mathbf{F}_{\mathrm{pa}}$ and $\mathbf{B}_{\mathrm{pa}}$ are thus the main devices to be used by ICES in providing Management Advice.

The reference points adopted by ICES and proposed to the managers are given in the text table below:

Stock	$\mathbf{B}_{\text {lim }}$	$\mathbf{B}_{\mathrm{pa}}$	$\mathbf{F}_{\text {lim }}$	$\mathbf{F}_{\mathrm{pa}}$
Cod in IIIa (Skagerrak), IV and VIId	70	150	0.86	0.65
Haddock in IIIa and IV	100	140	1.00	0.70
Whiting in IV and VIId	225	315	0.90	0.65
Saithe in IV, VI and IIIa	106	200	0.60	0.40
Sole in IV	25	35	-	0.40
Sole in VIId	-	8	0.55	0.40
Plaice in IV	210	300	0.60	0.30
Plaice in VIId	5.6	8	0.54	0.45
Plaice in IIIa	-	24	-	0.73
Norway pout in IV and IIIa	90	150	-	-
Sandeel IV	430	600	-	-

Biomass in '000 tonnes

- no estimate available

During the evaluation of the benchmark assessment this year, changes have been made to the age ranges in some assessments. This affects the biological reference points. Given that the process of revising the biological reference points is still underway, the WG has used the technical basis for the old biological reference points as the guidance to update the BRP's for those stocks. These analysis were not finalized by the end of the meeting and will be circulated by email before being presented to ACFM, October 2003.

The Study Group on Precautionary Reference Points For Advice on Fishery Management used segmented regression to analyse stock-recruit data for most of the stocks assessed by this working group. Our comments to this work are given in section 16 of this report.

### 1.6 Working Documents and References

### 1.6.1 Working Documents

## WD01

Rätz, H.J., Panten, K. and Ulleweit, J. German Otter Trawl Board Fleet as Tuning Series for the Assessment of Saithe in IV, VI and IIIa, 1995-2002. WGNSSK WD: 1.

The analysed commercial landing and effort data of saithe are derived from the official German logbook statistics, which have been made available in a consistent database for the period 1995-2002. During 1995-2001, otter trawl board catches were considered of 7 vessels continuously being engaged in the directed saithe fishery. In 2002, the German saithe fleet used for tuning in the saithe assessment consisted of 6 vessels as one left by mid year. This fleet accounted for $64-85 \%$ of the entire annual saithe landings officially reported.

The age disaggregated abundance indices derived from CPUE indicated the 1992, 1996 and 1998 year classes as strong, the latter one being the strongest and most important year class for recent catches. Catch curves also revealed that the
year classes since 1992 were subject to lower mortality rates at ages 4 to 7 than the previous year classes. This indicates a significant reduction in fishing mortality until 2001. However, the most recent abundance indices display a steep decline for most age groups and thus higher mortalities in 2002, possibly a year effect. It was also concluded that the year class 1998 at age 4 is the strongest year class since 1995. In 2002, the commercially most important age groups 3 and 5 to 8 were about average. The calculated abundance at age 3 (year class 1999) is, however, a poor indicator of the year class strength at age 4 . The age group 4 does seem to be a good estimator of year class strength at age 5 explaining about $80 \%$ of the observed variation.

## WD02

P.J., Wright, F.M., Gibb, I.M., Gibb, M.R., Heath, and H.A., McLay. North Sea cod spawning grounds. WGNSSK WD: 2.

This review summarises information on cod spawning grounds in the North Sea currently available from i) compilations of historic data (Anon, 1971; Daan, 1978; ICES, 1994). ii) various icthyoplankton and trawl surveys carried out between 1919 and 2003 and iii) interviews with fishermen conducted in 2002.

Cod spawn throughout much of the North Sea but spawning adult and egg survey data and fishermen's observations indicate a number of spawning aggregations.

It is not possible to quantify long-term changes in the use of spawning grounds because of a lack of comprehensive survey data on eggs or spawning adults, and the lack of suitable sampling within ICES bottom trawl surveys.

However, the limited data available do suggest a contraction in significant spawning areas, beginning with the loss of sites at Great Fisher Bank and Aberdeen Bank by the 1980s, and more recently other coastal spawning sites around Scotland and in the Forties area.

The North Sea cod stock may comprise a number of reproductively isolated populations, although further corroboration is needed.

## WD03

Weber, W. A new recruitment index for whiting in the North Sea. WGNSSK WD: 3.

German RV "Solea" is carrying out two regular surveys on demersal fish in the German Bight. They are scheduled for the 1st and 4th quarter of the year. Since 1996 the results on cod are reported regularly to the ICES Working Group. The net used as a standard trawl is the so called "Cod hopper". It has a headline of 48.68 m . Its standard opening height is 3.5 m and the horizontal wing spread is 23 m . The ground rope is equipped with rubber disc rollers of 20 cm diameter. The cod end has a fine meshed liner with a mesh opening of 20 mm .

The survey is carried out during the forth and first quarter of the year, preferably in November and February. For the estimation of year class strengths fife transects are fished with three 60 -minutes hauls each. The average catch per transect of $0-\mathrm{gr}$ and $1-\mathrm{gr}$ whiting respectively are taken to calculate the year class indices.

The indices gained in the first quarter are of little predictive value. The fourth quarter survey, however, seems suitable, when comparing the data with the year-class strengths estimated by the Working Group. It has a correlation coefficient of 0.55 . In a linear regression, however, the intercept has a rather high value. This confirms the observation, that the whiting year-classes do not vary much: The variation between the smallest and the biggest year-class is only in the order of $1: 4$. The predictive value of this survey for 0 -gr whiting coincides with the results of the IBTS Surveys (ICES, 1998, App.1, Fig.8): The German Bight obviously is an important nursery area for the youngest year class during the 3rd and 4th quarter.

## WD04

Vinther, M., S., Reeves, and K., Patterson. From single-species advice to mixed-species management: taking the next step. ICES C.M. 2003/V:01. WGNSSK WD: 4.

ICES has traditionally given fishery management advice on a stock by stock basis. Recent problems in implementing this advice, particularly for the demersal fisheries of the North Sea, have highlighted the limitations of this approach. In the long-term it would be desirable to give advice which accounts for such mixed-fishery effects, but in the short-term there is a need for approaches which can resolve the conflicting management advice for different species within the same fishery and generate catch or effort advice which accounts for the mixed-species nature of the fishery. This paper documents a recent approach which has been used to address these problems. The approach takes the single-species
advice for each species in the fishery as a starting point, then attempts to resolve these into consistent catch or effort advice using fleet-disaggregated catch-forecasts in combination with explicitly stated management priorities for each stock. Some results are presented for the demersal fisheries of the North Sea and these highlight that the development of such approaches will also require development of the ways in which catch data are collected and compiled.

## WD05

Van Keeken,, O., M., Dickey-Collas, S.B.M., Kraak, J.J., Poos, and M.A., Pastoors. The use of simulations of discarding to investigate the potential impact of bias, due to growth, on the stock assessment of North Sea plaice (Pleuronectes platessa). ICES C.M. 2003/X:17. WGNSSK WD: 5.

In many stock assessments, discards are not accounted for in the catch at age data. This could lead to an underestimation of fishing mortality at the youngest ages, which could bias the stock estimates. In this simulation study the effect of discards on the stock assessment of North Sea plaice (Pleuronectes platessa) was investigated. North Sea plaice is predominantly caught in a flatfish fishery, where the mesh size used is mostly geared towards sole (Solea solea) leading to substantial discarding of plaice. Simulated populations were constructed, derived from mean length at age data obtained from otolith back-calculations and from two distinct surveys. Selection ogives and discarding (sorting) ogives were derived from the literature and used to estimate discards proportions at age, given the simulated populations. Quarterly catch at age numbers were then calculated from the quarterly landings at age using these discard proportions at age. Compared to the (scanty) observer trips, otolith back-calculations gave an apparent underestimation of proportions discards and the surveys an overestimation.

With discards included in the assessment, stock numbers and fishing mortality increased on the youngest ages. This resulted in higher recruitment to the population and to slightly increased estimates of spawning stock biomass The perception of stock trends could be markedly different with the inclusion of discards, especially in periods of high recruitment and associated low growth and high discard rates. In this study, 1-group plaice could not be included in the analysis because the landings of this age group were often zero. This is a serious shortcoming because the 1 -group is an important part of the discards and natural mortality is assumed to be relatively low.

## WD06

Kraak, S.B.M., M.A., Pastoors, and A.D., Rijnsdorp. Analysis of the ICES short-term forecasts of North Sea plaice and sole: dealing with the "current year" assumption. WGNSSK WD: 6

The F1 working package of the F-project is concerned with the improvement of stock assessment of plaice and sole. The full range of problems of uncertainty and bias in the stock assessment will be analysed through a series of small investigations of single problems. The present report deals with the "current year" assumption in the short-term forecast.

Every year ICES Working Groups produce assessments of fish stocks as well as forecasts for the future of these stocks, which serve as a basis for advice. The short-term forecasts consist of a forward projection based on estimates of the numbers-at-age at the beginning of the current year. The weights-at-age and the relative exploitation-at-age are usually assumed to equal the average of the last three years. An assumption has to be made about the catch of the current year. Usually it is assumed that the catch of the current year corresponds to the catch that would be taken under a status quo F (that is the F estimate of the previous year). The alternative assumption is that the catch taken would equal the TAC that was set for the current year.

In this study on North Sea plaice and sole, we investigate under which of the two assumptions for current year catch the predictions more closely approximate "reality" as estimated by the most recent assessment, and also which of the two assumptions produces more precautionary predictions for the stocks. We also investigate how much each of the input estimates - stock numbers-at-age, weights-at-age, and relative exploitation-at-age - contributes to the inaccuracy of the forecasts.

The comparison of historical forecasts based on alternative catch assumptions shows that, for both plaice and sole, the status quo F assumption leads to less frequent and less severe prediction errors, especially overestimates, of SSB than the TAC assumption. Underestimates as well as overestimates of SSB occurred. In some years the TAC assumption leads to a more accurate forecast, but this is believed to be a spurious result linked to the overestimation of stock size. We can therefore not give any recommendations in what circumstances to use the TAC assumption instead of the usual status quo F assumption.

We simulated the consequences of different catch assumptions in three different situations: one where the assessment of the current year is correct, and two where the assessment is biased, i.e. where last year's fishing mortality has been overestimated and where last year's F has been underestimated. Such biases occur frequently, especially underestimates
of F (and, consequently, overestimates of stock size). We found that in the case of bias, the highest catch assumption always results in the lowest catch forecast and the highest surviving SSB ; in some years this is the status quo F assumption but in other years it is the TAC assumption. However, the accuracy of the forecasts depends only marginally on the catch assumption; by contrast, it is strongly affected by the inaccuracy of the assessment. For example, overestimation of the stock size leads to the situation that the F corresponding to the advised TAC exceeds the F that was intended and the surviving SSB is lower than predicted; this effect is marginally stronger with the lower catch assumption.

We found that better estimates of number-at-age would improve the forecasts, but better estimates of recruitment, weights-at-age, and relative exploitation-at-age would not improve the quality of the forecasts. The problem of time trends in weights-at-age is therefore of less concern than the estimation of accurate stock numbers. The analyses imply that the inaccuracy of the short-term forecasts is mainly caused by the large error of the number-at-age estimates given by the VPA each year. This finding focuses our concern again on the quality of the outcome of the VPA.

## WD08

Quirijns F., Rijnsdorp A. Detailed catch and effort data of Dutch beam trawl vessels. WGNSSK WD: 8
A working document was presented on the trends in CPUE data from a group of beam trawl vessels in the Netherlands that have kept logbooks of haul-by-haul landings by species. The data has been collected under collaborative projects between the Netherlands Institute of Fisheries Research and the Dutch fishing industry in the years 1993-1999. A similar collaboration has been reinstigated in september 2002 and is now still ongoing. The WD describes a method that has been applied with the attempt to remove the potential bias of TAC limited CPUE series by deriving an index of CPUE rather than an average CPUE. The CPUE for the group of vessels in each ICES rectangle and for each month was calculated by dividing total catch by total effort within a rectangle. Then the CPUE was averaged by month over all the rectangles that had been fished in that month. The average CPUE in a year was calculated as the average of CPUE of all months. The assumption of calculating the CPUE as an index is that the catch rate by rectangle are unlikely to be affected by TAC restrictions; restrictive TAC's would rather drive the directivity of the fishery to those rectangles where the catch rates are lower.

Results of the CPUE analysis are presented. The overall trend in CPUE from either the direct division of catch and effort and the index method do not appear to give very different perceptions on the developments of catch rates.

## WD09

Turrell, W. R., and Bannister, C. Ocean climate in relation to North Sea cod. WGNSSK WD: 9
The paper does not attempt in-depth studies of climate-related processes, or correlations between climate parameters and stock parameters. Instead it presents a summary of the present knowledge of North Sea ocean climate as a background to how climate may impact cod stocks and the management of those stocks. It also notes areas of potential future research and summarises sources of data and information.

The main points are:

- The North Sea is a complex habitat, divided into the deep northern North Sea, a complex central North Sea and a shallow southern North Sea.
- In each region circulation is determined to a greater or lesser extent by density differences, wind strength and direction, tides, and the shape of the sea bed.
- In at least four regions bottom temperatures in the summer bear no relation to surface temperatures. Rather they are set by the preceding winter. These pools of cold water are isolated at their boundaries by persistent flows of warmer water.
- The North Sea is isolated from deeper waters to the north by a constant flow of warm, saline Atlantic water.
- In the winter there is an inversion of the south-to-north temperature gradient, with the northern boundary of the North Sea warmer $\left(7^{\circ} \mathrm{C}\right)$ than the southern North Sea $\left(5^{\circ} \mathrm{C}\right)$. In summer this is reversed, with the southern North Sea warmer $\left(14^{\circ} \mathrm{C}\right)$ than the north $\left(11^{\circ} \mathrm{C}\right)$.
- The northern North Sea therefore has a smaller annual temperature range $\left(4^{\circ} \mathrm{C}\right)$ compared to the south $\left(9^{\circ} \mathrm{C}\right)$.
- The NAO Winter Index has been a useful measure of North Atlantic atmospheric variability between the years 1960 - 2000. It is not obvious that the simple two point index was a useful measure before 1960, or during the last few years due to departures from the classic 'dipole' pattern of winter sea level pressure anomaly.
- Many physical and oceanographic variables have correlated with the NAO Winter Index during that period. The characteristic change in the NAO Winter Index during the last 4 decades is of a strengthening index, with superimposed decadal variability (peaks 1973, 1983 and 1989).
- This trend, and the classic dipole pattern, has broken down in 2002 and 2003 (Index values of +0.76 and +0.20 respectively), and we do not know how the NAO or the NAO Winter Index will evolve in future years. There is a suggestion that global warming will result in the eastward displacement of the NAO pattern.
- The complex hydrography of the North Sea means that we may get both North Sea-wide and regionally different responses to climate change.
- Winter and summer temperatures are increasing throughout the North Sea, typically at a rate of between 0.5 and 1 ${ }^{\circ} \mathrm{C}$ per decade.
- In the northern North Sea winter temperatures are warming faster $\left(+0.7^{\circ} \mathrm{C} /\right.$ decade $)$ then summer temperatures $\left(+0.4^{\circ} \mathrm{C} /\right.$ decade $)$.
- In the southern North Sea summer temperatures are warming faster $\left(+1.0^{\circ} \mathrm{C} /\right.$ decade $)$ than winter temperatures $\left(+0.5^{\circ} \mathrm{C} /\right.$ decade $)$.
- In the winter, northern near-bed North Sea temperatures are warming faster $\left(+0.7^{\circ} \mathrm{C} /\right.$ decade $)$ than in the southern North Sea ( $+0.5^{\circ} \mathrm{C} /$ decade $)$.
- In the summer, surface temperatures are warming faster in the southern North Sea $\left(+1.0^{\circ} \mathrm{C} /\right.$ decade $)$ than in the north ( $+0.4^{\circ} \mathrm{C} /$ decade).
- Inter-annually, winter near-bed temperatures vary over a larger range in the southern North $\operatorname{Sea}\left(-1^{\circ} \mathrm{C}\right.$ to $\left.7^{\circ} \mathrm{C}\right)$ than the northern North Sea $\left(6^{\circ} \mathrm{C}\right.$ to $\left.8^{\circ} \mathrm{C}\right)$.
- Winter near-bed temperatures are most positively correlated with the NAO Winter Index in the southern North Sea.
- The observed warming in the North Sea region, which is currently of the order of $0.5^{\circ} \mathrm{C} /$ decade when averaged annually and over the North Sea as a whole, is set to continue for another 2 decades.


## WD10

Bell, E. and Dobby, H. Ecosystem considerations for WGNSSK: Multispecies interactions (seals and "industrials"). WGNSSK WD: 10

Multispecies interactions, that is biological rather than fishery (technical) interactions have the potential to mitigate management actions. The North Sea is a biologically complex environment with a vast potential of species interactions, however this paper focusses on two, the position of seals in the ecosystem in relation to cod, and the relationship between so-called industrial species (sandeels and Norway pout) with North Sea whitefish.

- Grey seal population $\approx 75,000(2001)$, increasing at $5.6 \%$ pa.
- Harbour seals population $\approx 50-60,000$ (2001). During 2002 over 21,000 harbour seal carcasses were washed up around the Kattegat/Skagerrak, Waddensea and North sea due to phocine distemper virus.
- Both species consume around $10 \%$ cod. MSVPA estimates grey seal consumption of cod to be around 13,000 tonnes, although there is uncertainty regarding some consumption values. Seal induced mortality is estimated to be an order of magnitude lower than fishing mortality on cod ages 2-6.
- New dietary data for grey seals will become available in 2004 and inclusion of harbour seals
- Cod diets are estimated to be $7.7 \%$ sandeels and $8.5 \%$ Norway pout.
- There is little evidence for a linkage between gadoid growth and sandeel abundance at the North Sea scale, although local effects may occur.
- Local scale investigations into usage of sandeel patches and feeding dependent growth modelling are being undertaken.


## WD11

Darby, C. The effect of including discards on the assessment of north sea cod. WGNSSK WD: 11
Discarding, as measured within the EU study is predominantly small juvenile North Sea cod and as such they make up the first ages of the assessment age range. The dominant effect of the inclusion of discards in the cod assessment is an increase in the level of recruitment and in mortality at age 1 . Management measures to reduce the level of discards will contribute to faster recovery rates but the consequences were not examined in this paper. Estimates of SSB and reference fishing mortality, based on older mature fish, are unchanged after the inclusion of discards. Since SSB levels and the configuration of recruitment are unchanged by the inclusion of discards, SSB reference points are unaffected by the inclusion of discards. Due to the increase in the level of recruitment, estimates of fishing mortality limit reference points will increase marginally. The increased noise in recruitment at the oldest ages may leave the precautionary reference points unchanged.

The perception of the stock dynamics and the situation relative to management reference points will consequently be largely unaffected by the inclusion of the discarding levels measured in the EU study.

## WD12

Panten K.. Discards in Norway lobster fishery. WGNSSK WD: 12

A sampling trip on Norway lobster was carried out at the end of July 2003 in the southern North Sea. The Dutch vessel under German flag used a twin trawl with 80 mm mesh opening in the cod end. In 17 hauls discards of plaice, dab, grey gurnad and lemon sole between 79 and $88 \%$ in terms of weight were observed. These rates lie between 91 and $95 \%$ in terms of numbers. The minimum landing size for these species and the mesh opening do not coincide.

## WD13

S. B. M., Kraak, M., Dickey-Collas, B., Rackham, L,. Kell, P., Bromley, D., Bromley, G., Pilling, J., Blanchard. Second meeting of a Workshop on Comprehensive Assessment for North Sea Flatfish (COMPASS); Analysis of maturity data for North Sea plaice and sole. Lowestoft, 30 April - 2 May 2003. WGNSSK WD: 13.

Several national initiatives exist that aim to investigate the quality of stock assessments and the possibilities for their improvement, e.g. The Dutch "F-project", the English "Fisheries Interactions" and the Danish "TEMAS" project, all of which require international collaboration to achieve their aims. In addition there are several current EU projects, FEMS and EASE and proposals under Priority 8, as well as ICES Working Groups, that have a continuing need for collaboration on an ongoing but informal basis. To facilitate international collaboration an informal group with varying membership has been set up under the name of COMPASS. This report concerns the second meeting of COMPASS. The Terms of Reference of the meeting were:

1. To collate the available data on maturity, growth, and sex ratio, for North Sea flatfish over an as long as possible time period.
2. To develop standard methodology to estimate annual maturity at age, in relation to growth and sex ratio.
3. To explore the consequences of variable maturity on the stock assessments of North Sea flatfish and on the biological reference points.

Data on North Sea plaice and sole from the Dutch and the English market sampling and research sampling programs were combined in one data file, and were described and explored for temporal and spatial coverage and for length and age distributions. About 700000 records of individual fish have been brought together, sampled from 1951 onwards.

With respect to developing a standard methodology to estimate annual maturity at age, it was noted that population or catch data are required in addition, to raise the calculated ogives to population or catch. This raising is required to assess the consequences of different selectivities in the Dutch and English fleets and their spatial and temporal variation, and to cope with the inherent bias caused by length stratified sampling and category sampling. Because these data were not available, representative population ogives could not be constructed. Further analyses are planned by statistical methods.

For the exploration of the consequences of variable maturity ogives on North Sea plaice stock assessment and biological reference points, preliminary ogives were used. Here, maturity was expressed as the proportion of the fish sampled that were classed as sexually mature or in the process of maturing, by sex, age and year. Sampling bias was not corrected. The WGNSSK stock assessment data set was disaggregated into males and females to allow VPA to be conducted on males and females separately. The VPAs were not calibrated, since it was not possible to derive sex specific catch per unit effort (CPUE) series. It appeared that historically males tend to be exploited more heavily than females at younger ages. Fishing mortality and biomass reference points were calculated, by the method of segmented regression, for females only and for the WG data. In the case of female only data it appeared that recruitment has not been impaired at the observed biomasses, but these results should be treated with caution.

## WD14

Anonymous. North Sea Stock Survey 2003. Preliminary Results 9 September 2003. WGNSSK WD: 14.
THE ICES WGNSSK appreciates the important information from the fishing industry about the perception of fish stocks and shellfish stocks that has been made available for the working group.

## WD15

Rätz H.J., A programme for multi species/multi fleets stock and catch projections
in Visual Basic for Applications (EXCEL). WGNSSK WD: 15.

The programme calculates mixed fisheries catches constrained by minimum spawning stock biomass values at the start of the year after the TAC year and maximum fishing mortality during the TAC year for up to 6 jointly exploited species. Such constraints could be set to the precautionary reference points in fisheries management or any other values to be defined through mixed fisheries considerations.

The programme is designed to determine weighted fishing mortality factors (effort factors) for up 80 fleets, for which age structured analytical assessments are available (up to 20 age groups). Fleet weighting is based on the contribution of the fleets to the total fishing mortality of the species ( F reference) and a relative species weighting factor. Resulting stock parameters, such as exploitation patterns, catch in numbers, catch in weight, stock in numbers, stock in weight, spawning stock in numbers and spawning stock in weight at age will be predicted for each species aggregated over all fleets. Partial exploitation patterns, catch in numbers and in weight at age disaggregated for each fleet will also be determined. These results will be aggregated for each species and given for the 3 projection years, the assessment year (intermediate prediction year), the TAC year (assessment year +1 ) and the following year (assessment year +2 ).

The programme does not account for any assessment error or bias. Such drawbacks could be accounted for when specifying the constraining minimum spawning stock biomass or maximum fishing mortalities.

The programme is written in Visual Basic for Applications and uses Microsoft EXCEL workbooks as in- and output sheets. The code of the programme is attached as Appendix 1 of the working document.

## WD16

Tuck, I. Analysis of individual haul data for Scottish Nephrops trawlers at the Fladen Ground (2000 - 2001). WGNSSK WG: 16.

Data from confidential tallybooks from over 6000 hauls ( 19 vessels, 420 voyages) conducted in the North Sea were analysed to investigate the cod and Nephrops component of landings by different gear types. A more detailed analysis of the spatial patterns was also carried out for the Fladen Ground, where most of the activity ( 3800 hauls in 316 voyages by 16 of the vessels) occurred.

For the full data set, vessels targeting Nephrops caught on average, significantly more Nephrops per haul than the other gears ( 280 kg compared to $<1 \mathrm{~kg}$ ), and significantly less cod per haul ( 23 kg compared to $57-250 \mathrm{~kg}$ ). The differences were also apparent in terms of percentage composition of the landings per haul.

Within the Fladen Ground the landings rates show a very similar picture to that of the whole North Sea. The spatial pattern indicated that where activity takes place by the Nephrops targeting vessels, Nephrops landing rates are relatively uniform throughout the area. Cod landings rates are low for these vessels, but do show an increase as the vessels move north. The other gears recorded had higher cod landing rates than the Nephrops targeting vessels, but showed the same spatial pattern, with the highest values in the north. No Nephrops targeted activity took place in the ICES rectangles where the highest cod landing rates were observed.

## WD17

Horwood J. Closed areas: The North Sea cod. Working paper to the STECF Working Group 28 April-5 May 2003. WGNSSK WD: 17.

Closed areas have been a feature in the management of North Sea cod for a number of years. In particular, an area in the south-eastern North Sea was closed in the early 1980s to protect juvenile cod, while in 2001, an area in the northeastern North Sea was closed for several weeks to protect spawning fish. This paper does not review all aspects of closed areas for fisheries. Rather it focuses on those aspects of closed areas as they reveal to conservation measures for North Sea cod. It looks wider at examples of attributed success of closed areas, as these colour the international public debate on the utility of closed areas, and draws some general principles for application of closed areas. It also indicates some of the practical fisheries and environmental problems even when areas could usefully be identified.

## WD18

Jennings S. and Rogers S. Note on human impacts on the mortality of fish. WGNSSK WD: 18.
The paper represents the results of a desk study to review the potential effects of human activities in the marine environment on the mortality of fish.

The potential effects of a variety of activities are reviewed including the 2000 OSPAR North Sea Quality status Report which ranked the effects of a range of human activities in the North Sea, and classified them according to severity. Six
activities were considered to have the highest impacts on the North Sea ecosystem, and three of the six activities were attributable to fisheries. The removal of target species by fisheries was considered to impact the whole North Sea to varying degrees, with $30-40 \%$ of the biomass of most commercially exploited species in the North Sea caught each year. This is a more significant cause of mortality than other human impacts.

The effects of gravel extraction, offshore wind farms, seismic surveys, oil spills and power stations on the mortality of fish is briefly discussed. Each of these is likely to have different effects on fish mortality. Any effects are likely to be localised, and /or temporary although mortality of fish on the cooling water intake screens of coastal powers stations may have a relatively high local impact on juvenile fish of some species compared to fishing in the surrounding area. The potential effect on fish population life history traits of releases of hydrocarbons to the marine environment are not discussed.

The general findings are that fishing is the main source of mortality on fish populations in the North Sea and that the effects of the above at the population level are small in comparison.

### 1.6.2 Other Documents

OD 01
ICES 2003. Report of EC Expert meeting, April 2003

## OD02

ICES 2003. Report of the Study Group on the Development of Fishery-based Forecasts. ICES ACFM:08
OD03
ICES 2003. Report of The Study Group on Precautionary Reference Points For Advice on Fisheries Management. ICES CM 2003/ACFM:15.

OD04
ICES 2003. Report of the Study Group on Multispecies Assessments in the North Sea. ICES CM 2003/D:09

### 1.7 Data for other working groups

### 1.7.1 WGECO

Data on species composition of bycatches in the industrial fisheries in the North Sea are given in Tables 2.1.1, 2.1.2 and 2.1.3. The allocation of roundfish bycatches to human consumption or reduction purposes, respectively, for the Danish landings is given in Tables 2.1.4-2.1.7.

In addition, data on the age composition of commercial roundfish species from these bycatches are provided for the Danish (cod, haddock, whiting : Table 2.1.9) and Norwegian (cod, haddock, saithe, whiting : Table 2.1.10) fisheries.

### 1.7.2 WG MSVPA

Data for multispecies assessments (catch numbers and mean weight at age by quarter) are given for sandeel (Table 1.7.2.1) and plaice and sole (Table 1.7.2.2). The respective roundfish data will be provided after the meeting.

Table 1.7.2.1 Numbers (millions) and mean weight (g) by age and quarter for North Sea sandeel, 2002
Numbers


Weight


Table 1.7.2.2 North Sea plaice and sole: quarterly landings number ('000) and mean weight (kg) by age for 2002.

Age	Q1		Q2		Q3		Q4	
	N	W	N	W	N	W	N	W
1					382.3	0.211	968	0.223
2	1488.6	0.204	1882.2	0.229	4180.6	0.247	9596	0.25
3	10142.3	0.227	16989.1	0.253	17983.5	0.29	16966.3	0.29
4	13347.5	0.271	13937.6	0.287	11684.7	0.321	9020.9	0.33
5	11400.8	0.319	11729.2	0.325	6978.8	0.317	4898.8	0.372
6	15265.3	0.403	12580.5	0.398	5070.7	0.448	4586.3	0.491
7	1779.1	0.446	1152.9	0.474	498.1	0.601	476.1	0.674
8	644.6	0.612	425.2	0.591	251.8	0.753	175.2	0.856
9	332.1	0.685	204.9	0.764	88.5	0.65	38.6	1.044
10	143.1	0.781	39.1	0.637	38.7	1.017	21	1.159
11	251.8	0.932	114.9	0.921	41.1	0.924	16.1	1.078
12	39.3	0.902	49.3	0.693	36.9	0.78	9.6	1.142
13	31.2	0.973	36.3	0.862	18.2	0.915	4.4	1.05
14	67.1	0.886	33.8	1.129	8.1	1.111	1.7	1.516
15+	72.8	0.774	80.3	0.896	47.7	0.915	12.1	1.295
Sole in IV								
Age	Q1		Q2		Q3		Q4	
	N	W	N	W	N	W	N	W
	7.4	0.22			74.1	0.108	1026.5	0.129
2	426.5	0.144	1455.3	0.133	3817.7	0.16	6105.6	0.177
3	8952.8	0.199	9518.2	0.178	7556.6	0.193	6569	0.223
4	2387	0.237	3330.1	0.223	2910	0.214	2118.1	0.255
5	2484.1	0.262	2623.9	0.241	1577.9	0.244	1231.6	0.267
6	2109	0.307	2400.6	0.242	1299.8	0.272	1015	0.312
7	152.2	0.385	312.1	0.274	128.1	0.331	65.4	0.43
8	68.1	0.466	253.8	0.279	187.8	0.247	24.8	0.461
9	14.8	0.743	31.1	0.405	28	0.503	12.4	0.642
10	5.4	0.692	16.2	0.316	27.4	0.447	5.7	0.565
11	40.4	0.567	76.5	0.433	25.2	0.542	14.4	0.72
12	3.3	0.752	19.2	0.355	14.9	0.456	3.9	0.457
13	7.8	0.855	14.7	0.442	9.8	0.558	3.8	0.494
14	0.2	0.767	4.8	0.287	0.3	0.462	0.7	0.552
15+	15.6	0.936	20.1	0.615	4.5	0.619	3.1	0.605

### 1.8 Recommendations

The Working Group recommends that the ICES secretariat supplies a working paper to the WG in 2004 with details of the calculating procedures of the IBTS indices and the historical extension of the time series. The WG also recommends that the ICES secretariat makes the IBTS maturity data avaialble to the WG and that all species covered by the WG are reported.

The Working Group recommends to all members or data suppliers to provide working documents to the WG when substantial changes in input data or new pieces of information are presented to the WG.

The results of the fishermen's survey were received by the Working Group in due time. The Working Group acknowledges the value of this survey. The WG would like to make suggestions for two possible improvements on the fishermen's survey:

- how was the spatial distribution of the fish: did the fishermen have to travel longer/less to reach the fish concentrations.
- how do the current perceptions relate to last year but also to five years ago. Paragraph on fishermen's survey on how it could be improved.

The Working Group recommends that the ICES Study Group on Fisheries Based Forecasts (SGDFF) meets next year in May and collates all the relevant fisheries data at that meeting.

The Working Group recommends that in the short term better linkages be established between this WG and other working groups that deal with species or fisheries that relate to the North Sea, Eastern Channel and IIIa.

The Working Group recommends the Planninggroup on Commercial Catch, Discards and Biological Sampling to take on the task of collating the available discards data.

The Working Group recommends that the mixed fisheries model (MTAC) be evaluated by the methods WG in it's meeting in 2004. The weighting algorithms used within MTAC are currently based upon catch weights. Two fleets catching the same weight of fish but targetting different age ranges will have a different impact on mortality yet receive the same weighting. The potential impact of weighting by numbers on model outcome should be investigated by the Methods Working Group. The Methods Working Group is also requested to evaluate the potential use of the MTAC model for mixed fisheries forecasts within the ICES advisory framework.

The Working Group recommends that the Working Group on Ecosystem effects of fishing (WGECO) advises the WG on how to incorporate ecosystem characteristics into the process of stock assessment where appropriate. The WG also recommends that any relevant time series be made available by the WGECO.

The Working Group recommends that Coby Needle be appointed as the new chair of WGNSSK.

The Working Group recommends that the 2004 meeting of WGNSSK be held at around the same time of the year at IMR, Bergen (Norway)

### 2.1 Stocks in the North Sea (Sub-area IV)

### 2.1.1 Description of the fisheries

The demersal fisheries in the North Sea can be grouped in human consumption fisheries and industrial fisheries which land their catch for reduction purposes. Demersal human consumption fisheries usually either target a mixture of roundfish species (cod, haddock, whiting), or a mixture of flatfish species (plaice and sole) with a by-catch of roundfish. A fishery directed at saithe exists along the shelf edge. On average $90 \%$ of the landings for reduction are composed of sandeel, Norway pout, blue whiting and sprat. The industrial landings also contain by-catches of various other species (Table 2.1.2). The industrial by-catch of human consumption species landed for consumption and reduction by the Danish small-mash fleet are given for 1994-2002 in Tables 2.1.4 and 2.1.5 respectively. Similar data by quarter for 2002 are shown in Tables 2.1.6 and 2.1.7. Sampling intensity of the Danish industrial by-catch is given in Table 2.1.8.

Each fishery uses a variety of gears. Human consumption fisheries: otter trawls, pair trawls, seines, gill nets, beam trawls. Industrial fisheries: small meshed otter trawls.

Trends in effort of selected fleets are shown in Figure 2.1.1. Most demersal effort series are stable or show a downward trend in the recent past. Note that reporting of effort is not a mandatory field on the EU logbook, and therefore the Working Group considers that the data may not representative of the actual deployed fishing effort. Due to reporting problems the Scottish effort data may be underestimates (specific concerns were outlined in the 2000 report of WGNSSK (ICES CM 2001/ACFM:07)). Effort for some fleets may also vary between years because they harvest other areas than the North Sea, as a result of the depletion of the traditional resources of the North Sea.

The trends in the landings ( WG estimates) since 1970, of the species assessed by the WG, are shown in Table 2.1.1 and in Figure 2.1.2. The human consumption landings have steadily declined over the last 30 years, with an intermediate high in the early 80 's. The landings of the industrial fisheries are fluctuating around 1 million $t$ over the years. These landings show the largest annual variations, probably due to the short life span of the main target species. The total demersal landings from the North Sea reached over 2 million $t$ in 1974, and have been around 1.5 million $t$ in the 1990s. The spatial distribution of reported landings (2000-2002) are shown in figure 2.1.3.

The landings by country and fleet segment for the human consumption fisheries are presented in Section 15 of this report (Table 15.2.1.1 and Figure 15.2.1.2). Most of the human consumption landings are from the Dutch beam-trawl fishery harvesting plaice and sole ( $>0000 \mathrm{t}$ ) and from the Scottish fishery harvesting cod, haddock and whiting ( $>$ 100000 t ). This Figure shows clearly the great level of technical interactions between the cod, haddock and whiting fisheries and between the sole and plaice fisheries. The flatfish and roundfish landings are generally taking by different fleet segments, with the exception of gill-netters which may potentially target any of these groups of species. The fisheries landing saithe have a low impact on the others. However, the fisheries non-directed to cod, haddock and whiting may generate discards of saithe. Most of the saithe landings are taken by the Norwegian, French and German offshore trawlers.

For some stocks, the North Sea assessment area may also comprises other regions adjacent to Sub-area IV. Thus, combined assessments were made for cod including IIIaN (Skagerrak) and VIId, for haddock and Norway pout including IIIa, for whiting including VIId, and for saithe including IIIa and VI. Sandeel stocks at Shetlands and in IIIa are separately dealt with.

Biological interactions are not incorporated in the assessments or the forecasts for the North Sea stocks. However, average values of natural mortalities estimated by multispecies assessments for cod, haddock, whiting and sandeel are incorporated in the assessments of these species.

### 2.1.2 Technical measures

The national management measures with regard to the implementation of the quota in the fisheries differ between species and countries. The industrial fisheries are subject to regulations for the by-catches of other species (e.g. herring, whiting, haddock, cod). TACs for these fisheries have only recently been introduced.

Until 2001, the technical measures applicable to the North Sea demersal stocks in EU waters were laid down in the Council Regulation (EC) No 850/98. Additional technical measures have been established in 2001 by the Commission

Regulation (EC) No 2056/2001, for the recovery of the stocks of cod in the North Sea and to the west of Scotland. Their implementation in EU waters is described below.

### 2.1.2.1 Minimum landing size

"Undersized marine organisms must not be retained on board or be transhipped, landed, transported, stored, sold, displayed or offered for sale, but must be discarded immediately to the sea" (EC 850/98). Minimum landing sizes in the North Sea are the same as in all European waters (except in Skagerrak and Kattegat, where minimum sizes are slightly smaller). The value for demersal stocks is shown below.

Cod	35 cm
Haddock	30 cm
Saithe	35 cm
Whiting	27 cm
Sole	24 cm
Plaice	27 cm

### 2.1.2.2 Minimum mesh size

Regulations on mesh sizes are more complex than those on landing sizes, as they differ depending on gears used, target species and fishing areas. Many other accompanying measures are implemented simultaneously with mesh sizes. They include regulations on gear dimensions (e.g. number of meshes on the circumference), square-meshed panels, and netting material. The most relevant mesh size regulations of EC 2056/2001 are presented below.

## Towed nets except beam-trawls

Since January 2002, the minimum mesh size for towed nets fishing for human consumption demersal species in the North Sea is 120 mm . There are however many derogations to this general rule, and the most important are given below:

- Nephrops fishing. It is possible to use a mesh size in range $70-109 \mathrm{~mm}$, provided catches consist of at least $30 \%$ of Nephrops. However, the net needs to be equipped with a 80 mm square-meshed panel if a mesh size of $70-99 \mathrm{~mm}$ is to be used, and with a codend if a mesh size of $70-79 \mathrm{~mm}$ is to be used.
- Saithe fishing. It is possible to use a mesh size range of 110-119 mm, provided catches consist of at least $70 \%$ of saithe and less than $3 \%$ of cod. This exemption however does not apply to Norwegian waters, were the minimum mesh size for human consumption fishing is 120 mm .
- Fishing for other stocks. It is possible to use a mesh size range of $100-119 \mathrm{~mm}$, provided the net is equipped with a square-meshed panel of at least 90 mm mesh size.
- 2002 exemption. In 2002 only, it is possible to use a mesh size range of $110-119 \mathrm{~mm}$, provided catches consist of at least $50 \%$ of a mixture of haddock, whiting, plaice sole, lemon sole, skates and anglerfish, and no more than $25 \%$ of cod.
- General point. Unless specified in 1-4, cod catches from demersal towed nets of mesh size 32-119 mm should not exceed $20 \%$ of total catch.


## Beam-trawls

- Northern North Sea. It is prohibited to use any beam trawl of mesh size range 32 to 119 mm in that part of ICES Sub-area IV to the north of $56^{\circ} 00^{\prime} \mathrm{N}$. However, it is permitted to use any beam trawl of mesh size range 100 to 119 mm within the area enclosed by the east coast of the United Kingdom between $55^{\circ} 00^{\prime} \mathrm{N}$ and $56^{\circ} 00^{\prime} \mathrm{N}$ and by straight lines sequentially joining the following geographical coordinates: a point on the east coast of the United Kingdom at $55^{\circ} 00^{\prime} \mathrm{N}, 55^{\circ} 00^{\prime} \mathrm{N} 05^{\circ} 00^{\prime} \mathrm{E}, 56^{\circ} 00^{\prime} \mathrm{N} 05^{\circ} 00^{\prime} \mathrm{E}$, a point on the east coast of the United Kingdom at $56^{\circ} 00^{\prime} \mathrm{N}$, provided that the catches taken within this area with such a fishing gear and retained on board consist of no more than $5 \%$ of cod.
- Southern North Sea. It is possible to fish for sole south of $56^{\circ} \mathrm{N}$ with 80 mm meshes in the cod end, provided that at least $5 \%$ of the catch is sole, and no more than $10 \%$ of the catch is composed of cod, haddock and saithe.
- Combined nets. It is prohibited to simultaneously carry on board beam trawls of more than two of the mesh size ranges 32 to $99 \mathrm{~mm}, 100$ to 119 mm and equal to or greater than 120 mm .


## Fixed gears

The minimum mesh size of fixed gears is of 140 mm when targeting cod, that is when the proportion of cod catches exceeds $30 \%$ of total catches.

### 2.1.2.3 Closed areas

Twelve miles zone. Beam trawling is not allowed in a 12 nm wide zone along the British coast, except for vessel having an engine power not exceeding 221 kW and an overall length of 24 m maximum. In the 12 mile zone extending from the French coast at $51^{\circ} \mathrm{N}$ to Hirtshals in Denmark trawling is not allowed to vessels over 8 m overall length. However, otter trawling is allowed to vessels of maximum 221 kW and 24 m overall length, provided that catches of plaice and sole do not exceed $5 \%$ of the total catch. Beam trawling is only allowed to vessels included in a list that has been drawn up for the purposes. The number of vessels on this list is bound to a maximum, but the vessels on it may be replaced by another ones, provided that their engine power does not exceed 221 kW and their overall length is 24 m maximum. Vessels on the list are allowed to fish within the twelve miles zone with beam trawls having an aggregate width of 9 m maximum. To this rule there is a further derogation for vessels having shrimping as their main occupation. Such vessels may be included in annually revised second list and are allowed to use beam trawls exceeding 9 m total width.

Plaice box. To reduce the discarding of plaice in the nursery grounds along the continental coast of the North Sea, an area between $53^{\circ} \mathrm{N}$ and $57^{\circ} \mathrm{N}$ has been closed to fishing for trawlers with engine power of more than 300 hp in the second and third quarter since 1989, and for the whole year since 1995.

Cod box. A recovery plan for the North Sea Cod has been decided in January 2001 in order to prevent a potential stock collapse and help SSB rebuilding to safe levels. The EU and Norway agreed on a temporary closure of the demersal fishery from February 15 until 30 April 2001. This measure has not been applied in 2002 or 2003.

## Sandeel Box

In the light of studies linking low sandeel availability to poor breeding success of kittiwake, ICES advised in 2000 for a closure of the sandeel fisheries in the Firth of Forth area east of Scotland. All commercial fishing was excluded, except for a maximum of 10 boat days in each of May and June for stock monitoring purposes. The closure was maintained for three years and has been extended until 2006, with a small increase in the effort of the monitoring fishery, after which the effect of the closure will be evaluated.

A 3 year closure, from 2000 to 2002, was decided and the Commission was requested to produce annual reports to the Council on the effects of the restrictions in the sandeel fishery in the Firth of Forth area. On the basis of these reports the commission can propose appropriate amendments to the limitations on the sandeel fishery in the area. The wording of the Act is stated in article 29a of: "Council Regulation (EC) no 850/98 of 30 March 1998 for the conservation of fishery resources through technical measures for the protection of juveniles of marine organisms".

The closed are is given in Figure 2.1.2.1.

### 2.1.3 Human consumption fisheries

## Data

Data available from scientific sources for the assessment of roundfish and flatfish stocks are relatively good. The volume of biological sampling for most of the stocks in 2001 is close to that in the year before (Table 1.3.3.1).

Discard data used in the assessments are only the series for haddock and whiting from the sampling programme of one country. Other discard sampling programmes are ongoing in recent years, and the results of a sampling project from 4 countries have recently become available (EU document $\operatorname{COM}(2001) 326$ ). Discard information is discussed in the
respective stock sections. In general, considerable discarding is occurring in most human consumption fisheries, particularly when strong year classes are approaching the commercial size limit (e.g. haddock in 2001).

In a number of past years, there are indications that substantial under reporting of roundfish and flatfish landings is likely to had occurred. There are indications that this is likely to have happened for particularly for cod in 2001 and 2002 since the agreed TAC implied a reduction in effort of more than $50 \%$ in both years.

Several series of research vessel survey indices are available for most species and were used in the VPA runs in some stocks. Commercial CPUE series are available for a number of fleets/stocks, but for various reasons only few of them could be accepted for tuning purposes, and the use of such series is progressively reduced.

Of the species assessed by this Working Group in this report, whiting used to form a significant by-catch in the industrial fisheries. This by-catch has been reduced in recent years.

## Stock impressions

In the North Sea all stocks of roundfish and flatfish species have been exposed to high levels of fishing mortality for a long period. For most of these stocks their lowest observed spawning stock size has been seen in recent years. This may be an indication of an excessive effort, possibly combined with an effect of a climatic phase which is unfavourable to the recruitment of some species.

For a number of years, ACFM has recommended significant and sustained reductions in fishing mortality on some of the stocks. In order to achieve this, significant reductions in fishing effort are required. The trends in Landings, SSB and F from the assessments are presented in Figures 2.1.4-2.1.6. Note that the figure for cod is indicative of stock trends only and the absolute level of spawning stock is uncertain.

Reported landings of cod in $2002(49,000 \mathrm{t})$ were the lowest on record, as was the spawning stock. The 1996 year-class was relatively strong, but suffered so heavily from fishing and discarding of immature fish that it did not result in rebuilding the spawning stock. Since 1997, recruitment has been at a low level. Fishing mortality is high but appears to be decreasing. Although the absolute level of the spawning stock cannot be determined accurately, is it clear from all sources of informatio that SSB is low and likely to be well below the current $\mathbf{B}_{\lim }(70,000 \mathrm{t})$.

Historically the stock size of haddock has shown large variation due to the occasional occurrence of a very strong year classes. The strong 1999 year class dominated the human consumption landings in 2002. The maturation of the 1999 year class has also increased the SSB to well above $\mathbf{B}_{\mathrm{pa}}$, but it is likely to decrease again in the near future. Fishing mortality is high but appears to be decreasing. Recruitment after 1999 has been low.

The human consumption yield of whiting in 2002 was 16,000 t, which is the lowest level observed in the time series. Discard levels observed in 2002 are also low compared to previous years. The spawning stock biomass has overall gradually declined over more than 20 years. Most recent estimates indicate a low level of F and a increase in SSB since 1998. Recruitment in recent years was always below the long-term geometric mean, with the 1996 year class as the weakest on record.

The spawning stock of saithe is increasing and estimated to be well above $\mathbf{B}_{\mathrm{pa}}$. Landings in 2002 were $112,000 \mathrm{t}$ which is still at a relatively low level. Fishing mortality has declined considerably since 1986 and remains at a low level.

Fishing mortality of sole has fluctuated on a high level since the 1970s but appears to be declining since the late 1990s. The spawning stock was below $\mathbf{B}_{\mathrm{pa}}$ in 2002 and 2003 but is expected to increase due to the relatively strong 2001 year class.

The spawning stock of plaice has been decreasing steadily until arriving at its lowest observed level in 1997. Last year the impression was that the SSB was increasing again but the current assessment indicates that this may have been due to overestimation of the stock size. SSB is not estimated to be at around the same low level as in 1997. Fishing mortality has apparently come down since the late 1990's.

### 2.1.4

 Industrial fisheries
### 2.1.4.1 Description of fisheries

The industrial fisheries dealt with in this report are the small meshed trawl fisheries targeted at Norway pout and sandeel.

### 2.1.4.2 Data available

Data on landings, fishing effort and species composition are available from all industrial fisheries.

### 2.1.4.3 Trends in landings and effort

The sandeel landings in 1974-1985 fluctuated between 428,000 and $787,000 \mathrm{t}$ with a mean on $611,000 \mathrm{t}$. In the period 1986-2000 the landings increased to a generally higher level between 591,000 and $1,091,000 \mathrm{t}$ and a mean on $819,000 \mathrm{t}$. In 1997 the combined Danish and Norwegian landings on more than 1 million $t$ was the highest ever recorded. Landings in 2002 for Norway and Denmark were $804,000 t$ (Table 2.1.2) which is just above the average on 779.000 tonnes for the period 1980-2002. The majority of the catches in 2002 were taken in the southern fishing area in the second quarter of the year while the landings in the northern fishing area were on low level compared to the previous 6 years. Especially the landings in the north western part of the North Sea were on a low level in 2002 compared to the previous 5 years. The catches were mainly taken in the first half year whereas the landings in the second half year were on a low level compared to the previous 5 years. The catches for 2003 are not included in this assessment, however provisional Danish and Norwegian landings statistics for the period until the end of June 2003 show very small landings. Danish and Norwegian landings were at 221.250 tons compared to a mean value of 494.218 t in the same period for the years 1997-2002..

The Norway pout catches showed a downwards trend in the period 1974-1988. Thereafter the catches have fluctuated around a level of $150,000 \mathrm{t}$. The landings in 1998 and 1999 were less than $100,000 \mathrm{t}$ and the lowest recorded after 1974. However, in 2000 the Norway pout landings increased to around $184,000 \mathrm{t}$ based on fishery on the strong 1999 year class. Landings in 2002 were around $73,000 \mathrm{t}$ that is the second lowest landings since 1966 and well below average for the last five years. .

Trends in effort of the Norwegian and Danish small meshed fishing for norway pout and sandeel are shown in Figure 2.1.1. The effort of the sandeel fleet is gradually decreasing from 1989 to 1994, increasing from 1994 to 1998, and decreasing from 1998 to 2002. The development in the effort for the sandeel fleet is mainly determined by the Danish fishery targeting sandeel. From 1998 and onwards there was a slight increase in effort for norway pout while effort targeting sandeel were declining. The effort in the Norway pout fleet has been gradually decreasing from1993 and to 2001 where the effort in the Norway pout fishery reached a historic low level (Figure 2.1.1). The effort in the Norway pout fishery in 2002 nearly doubled from effort in 2001 being at the same level as in the previous 8 years before 2001

### 2.1.4.4 Landings of Blue Whiting

ACFM states, that the linkage between blue whiting and e.g. Norway pout fisheries should be addressed. Blue whiting is caught by different gears and mesh sizes and can be grouped in two types of fisheries. The first is a directed fishery where by-catches of other species are insignificant. These landings are used for human consumption or for meal and oil production. Secondly there is mixed industrial fishery where varying proportions of juvenile blue whiting are caught together with Norway pout or other species. The majority of these landings are for meal and oil production.

In 2001 ACFM stated that the Blue Whiting stock is considered to be outside safe biological limits. Total catches in 2002 were estimated to be 1554995 t compared to 1780170 t in 2001.

The Danish blue whiting fishery is conducted by trawlers using a minimum mesh size of 40 mm in the directed fishery and in the fisheries where blue whiting was taken as by-catch, trawls with mesh sizes between 16 and 36 mmwere used. The directed fishery in 2002 caught $39100 t$ mainly in Divisions IIa (13 600 t ), IVa ( 20900 t ) with small catches from Divisions IIIa, Vb, VIa and VIIb. By-catches of blue whiting (12 100 t ) were caught mainly in the Norway pout fishery in the North Sea and in the Skagerrak. Some blue whiting by-catches were also taken during the humanconsumption herring fishery in the Skagerrak.

Norway set a blue whiting quota of 250000 t for the Norwegian EEZ, Jan Mayen zone and international waters for 2002. In addition, through international agreements, 120000 t in the EEZ of EU and 35000 t in the Faroese zone were
made available to the Norwegian fishery. The mixed industrial fishery in the North Sea/southern Norwegian Sea was allowed to take 79396 t . The total quota for Norwegian vessels in 2002 was 484396 t . The main Norwegian fishery is a directed pelagic trawl fishery, regulated by vessel quotas, and is carried out on and west of the spawning areas west of the British Isles. The Norwegian fishery in 2002 started at the beginning of February and stopped on 5 May when the quota in the EU zone was taken.

In addition young blue whiting are fished by Norway in the North Sea and in the southern Norwegian Sea (areas south of $64^{\circ} \mathrm{N}$ ) in the mixed industrial fishery targeting blue whiting and Norway pout. An estimated catch of approximately 98000 t was taken in this fishery in 2002 in this fishery.

### 2.1.4.5 Stock impressions

Trends in Yield, F and SSB for sandeel and Norway pout are given in Figures 2.1.4-2.1.6.
The SSB of Norway pout shows an increasing trend in the period 1974-1984. The next two years SSB dropped to a low level and was then followed by an increase. SSB peaked in 1996 due to the big 1994 year class but decreased again in the period up to 1999 reaching a low level. SSB in 2001 increased to $340,000 \mathrm{t}$ to reach a similar level as in 1996 because of the strong 1999 year class. In 2002 SSB decreased to $195,000 \mathrm{t}$ and is just above $\mathbf{B}_{\mathrm{pa}}$ in $1^{\text {st }}$ quarter of 2003. Fishing mortality has generally been decreasing since 1974. In 1995-1998 the fishing mortality fell to about 0.4 compared to the level of about 0.6 in 1988-1994. In 1999 and 2000 the fishing mortality increased again to a level around 0.5. In 2001 the fishing mortality reached a historically minimum just below 0.2 to increase to about 0.4 in 2002.

Over the years, SSB of sandeel has been fluctuating around 1 million $t$ with an increasing trend from 1989 to 1995 and a decreasing trend from 1998 to 2002. There is a general pattern of large SSB being followed by a low SSB. This is caused by similar fluctuation in recruiting year classes. The 1996 year class and the spawning stock biomass at the start of 1998 were the highest recorded in the period 1989 to 2001 . The present assessment estimate SSB for 2002 to be below $\mathbf{B}_{\text {lim }}$. The recruitment in 2002 is estimated to 0 . The low recruitment of 0 -group sandeels in 2002, as estimated in the XSA from commercial CPUE, is confirmed by small landings of the Danish and Norwegian fleets in the first half year of 2003.
Table 2.1.1
Human consumption (hc) and industrial landings (ib = industrial bycatch) of assessed species from the North Sea management area. ('000 t)

	cod		haddock	haddock	whiting	whiting	saithe	saithe	sole	plaice	Norway pout	sandeel	h cons
Year	hc	ib	hc	ib	hc	ib	hc	ib	hc	ho	ic	ic	total
1970	226	n/a	525	180.0	83	115.0	163	59.0	20	130	238	191	1147
1971	328	n/a	235	32.0	61	72.0	218	35.0	24	114	305	382	980
1972	354	n/a	193	30.0	64	61.0	248	28.0	21	123	445	359	1003
1973	239	n/a	179	11.0	71	90.0	229	31.0	19	130	346	297	867
1974	214	n/a	150	48.0	81	130.0	267	42.0	18	113	736	524	843
1975	205	n/a	147	41.0	84	86.0	271	38.0	21	108	560	428	836
1976	234	n/a	166	48.0	83	150.0	295	67.0	17	114	437	488	909
1977	209	n/a	137	35.0	78	106.0	217	6.0	18	119	390	786	778
1978	297	n/a	86	11.0	97	55.0	163	3.0	20	114	270	787	777
1979	270	n/a	83	16.0	107	59.0	134	2.0	23	145	329	578	762
1980	294	n/a	99	22.0	101	46.0	142		16	140	483	729	792
1981	335	n/a	130	17.0	90	67.0	145	1.0	15	140	239	569	855
1982	303	n/a	166	19.0	81	33.0	185	5.0	22	155	395	611	912
1983	259	n/a	159	13.0	88	24.0	197	1.0	25	144	451	537	872
1984	228	n/a	128	10.0	86	19.0	214	6.0	27	156	393	669	839
1985	215	n/a	159	6.0	62	15.0	222	8.0	24	160	205	622	842
1986	204	n/a	166	3.0	64	18.0	202	1.0	18	165	178	848	819
1987	216	n/a	108	4.0	68	16.0	177	4.0	17	154	149	825	740
1988	184	n/a	105	4.0	56	49.0	140	1.0	22	154	110	893	661
1989	140	n/a	76	2.0	45	36.0	117	1.0	22	170	168	1039	570
1990	125	n/a	51	3.0	47	50.0	100	8.0	35	156	152	591	514
1991	102	n/a	45	5.0	53	38.0	115	1.0	34	148	193	843	497
1992	114	n/a	70	11.0	52	27.0	104		29	125	300	855	494
1993	122	0.66	80	11.0	53	20.0	118	1.0	31	117	184	579	521
1994	111	0.78	80	5.0	49	10.0	115		33	110	182	786	498
1995	136	0.96	75	8.0	46	27.0	124	1.0	30	98	241	918	509
1996	126	0.34	76	5.0	41	5.0	120	0.0	23	82	166	777	468
1997	124	0.79	79	7.0	36	7.0	110	3.0	15	83	170	1137	447
1998	146	0.40	77	5.0	28	3.0	107	3.0	21	71	80	1004	450
1999	96	0.10	66	4.0	30	5.0	114	3.0	25	81	92	735	412
2000	71	0.06	47	9.0	28	8.0	88	6.0	23	81	184	699	338
2001	50	0.10	41	8.0	25	7.0	95	3.0	20	82	66	862	313
2002	54	0.03	57	3.7	22	7.6	117	7.8	17	70	73	804	337

Table 2.1.2 Species composition in the Danish and Norwegian small meshed fisheries in the North Sea ('000 t). Data provided by WG members. The category other is subdivided by species in Table 1.7.1.

Year	Sandeel	Sprat	Herring	Norway   pout	Blue whiting	Haddock	Whiting	Saithe	Other	Total
1974	525	314	-	736	62	48	130	42		1857
1975	428	641	-	560	42	41	86	38		1836
1976	488	622	12	435	36	48	150	67		1858
1977	786	304	10	390	38	35	106	6		1675
1978	787	378	8	270	100	11	55	3		1612
1979	578	380	15	320	64	16	59	2		1434
1980	729	323	7	471	76	22	46	-		1674
1981	569	209	84	236	62	17	67	1		1245
1982	611	153	153	360	118	19	33	5	24	1476
1983	537	88	155	423	118	13	24	1	42	1401
1984	669	77	35	355	79	10	19	6	48	1298
1985	622	50	63	197	73	6	15	8	66	1100
1986	848	16	40	174	37	3	18	1	33	1170
1987	825	33	47	147	30	4	16	4	73	1179
1988	893	87	179	102	28	4	49	1	45	1388
1989	1039	63	146	162	28	2	36	1	59	1536
1990	591	71	115	140	22	3	50	8	40	1040
1991	843	110	131	155	28	5	38	1	38	1349
1992	854	214	128	252	45	11	27	-	30	1561
1993	578	153	102	174	17	11	20	1	27	1083
1994	769	281	40	172	11	5	10	-	19	1307
1995	911	278	66	181	64	8	27	1	15	1551
1996	761	81	39	122	93	5	5	0	13	1119
1997	1091	99	15	126	46	7	7	3	21	1416
1998	956	131	16	72	72	5	3	3	24	1283
1999	678	166	23	97	89	4	5	2	40	1103
2000	655	191	24	176	98	8	8	6	21	1187
2001	810	156	21	59	76	6	7	3	14	1152
2002	804	142	26	73	107	4	8	8	15	1186
Avg 74-02	732	200	63	246	61	13	39	9	34	1382


Year quarter	Sandeel	Sprat	Herring	Norway pout	$\begin{gathered} \text { Blue } \\ \text { whiting } \end{gathered}$	Haddock	Whiting	Saithe	Other	Total
1997 q1	37	7	1	11	4	0	1	0	2	65
1997 q2	802	1	2	7	11	3	2	0	4	833
1997 q3	238	28	5	59	16	3	2	2	11	363
1997 q4	13	63	7	49	14	1	1	0	5	155
1998 q1	37	7	7	13	11	1	0	0	5	80
1998 q2	754	1	2	8	12	2	1	0	4	784
1998 q3	153	60	4	29	38	2	1	2	9	298
1998 q4	12	63	4	23	12	0	0	0	6	121
1999 q1	14	14	4	8	23	1	1	1	8	74
1999 q2	507	2	4	22	30	1	2	1	8	577
1999 q3	139	129	10	41	18	1	2	0	7	347
1999 q4	17	21	6	25	17	1	1	0	18	106
2000 q1	10	42	1	9	13	1	0	0	5	82
2000 q2	581	2	4	17	32	3	2	0	4	646
2000 q3	63	133	10	30	39	2	3	6	5	291
2000 q4	0	15	8	119	14	2	3	0	8	169
2001 q1	12	40	2	20	15	1	1	0	3	94
2001 q2	462	1	2	10	32	3	1	2	4	517
2001 q3	314	44	4	4	12	1	2	0	5	386
2001 q4	22	72	13	24	16	1	2	0	2	152
2002 q1	11	5	6	8	18	0	0	0	2	50
2002q2	772	0	3	5	19	1	2	0	4	806
2002q3	21	71	8	31	46	1	3	5	4	189
2002q4	0	66	10	28	24	1	2	3	6	141

[^1]Table 2.1.4 Danish by-catch landings of cod, haddock, whiting and saithe in 1993-2002 from small meshed fisheries in the North Sea.

Landings in tonnes used for human consumtion purposes (These landings have been counted against the Danish human consumtion quotas and have been included in the estimated catch in numbers of the human consumtion landings reported to ICES).

Cod	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Sandeel fishery	89	80	167	208	223	134	16	5	7	11
Sprat fishery	124	172	222	87	12	15	6	4	7	3
Norway pout fishery	435	413	537	419	497	216	89	147	77	40
Blue whiting fishery	4	+	0	77	38	94	92	39	31	37
"Others" fishery	34	17	38	25	41	69	24	10	3	13
Total	686	682	964	816	811	528	227	205	125	104


Haddock	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Sandeel fishery	86	16	19	51	32	5	4	1	3	11
Sprat fishery	20	26	62	2	2	4	2	+	5	1
Norway pout fishery	547	567	280	128	175	53	84	63	20	15
Blue whiting fishery	3	+	0	16	8	23	24	8	8	15
"Others" fishery	70	15	19	8	9	8	10	3	3	17
Total	726	624	380	205	226	93	124	75	39	59


Whiting	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Sandeel fishery	19	3	3	+	+	+	+	+	+	+
Sprat fishery	10	4	3	2	+	+	+	+	+	+
Norway pout fishery	932	307	201	92	33	11	9	19	9	11
Blue whiting fishery	6	+	0	9	3	4	1	1	2	3
"Others" fishery	60	5	2	4	2	1	1	+	+	+
Total	1,027	319	209	107	38	16	11	20	11	14


Saithe	1993	1994	1995	1996	1997	1998	1999	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$
Sandeel fishery	52	52	111	88	73	23	44	6	5	1
Sprat fishery	37	48	123	9	1	3	6	13		
Norway pout fishery	589	514	1,057	359	599	264	205	267	245	182
Blue whiting fishery	2	4	0	155	167	356	476	214	186	225
"Others" fishery	21	43	73	43	117	137	108	21	11	83
Total	701	661	1,364	654	957	783	839	509	460	493

Table 2.1.5. Danish by-catch landings of cod, haddock, whiting and saithe in 1993-2002 from small meshed fisheries in the North Sea.

Landings in tonnes used for reduction purposes.

Cod	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Sandeel fishery	185	70	79	288	375	202	51	56	7	12
Sprat fishery	116	493	174	23	40	11	7	4	4	0
Norway pout fishery	232	201	680	4	242	161	11	0	81	3
Blue whiting fishery	0	0		24	37	20	28	0	0	14
"Others" fishery	126	14	23	2	94	6	4	1	4	1
Total	659	778	956	341	789	400	101	61	97	30


Haddock	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$
Sandeel fishery	2,879	528	534	1,600	524	202	364	1,226	1,557	220
Sprat fishery	113	685	1,097	18	11	6	62	66	223	27
Norway pout fishery	3,028	1,399	4,766	1,774	1,454	251	318	1,734	1,252	1,545
Blue whiting fishery	0	10		153	205	66	195	258	218	133
"Others" fishery	1,193	71	349	77	137	218	117	40	42	183
Total	7,214	2,693	6,745	3,622	2,331	744	1,055	3,324	3,292	2,108


Whiting	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$
Sandeel fishery										
Sprat fishery	4,493	1,392	3,322	1,909	2,143	902	2,121	1,539	2,761	1,397
Norway pout fishery	7,071	4,352	10,386	784	107	673	1,088	2,107	1,700	2,238
Blue whiting fishery	0,121	7,291	1,373	2,235	178	331	2,935	1,559	1,675	
"Others" fishery	2,448	0		187	4,422	126	113	83	169	71
212	22	173	112	116	89	184	127			
Total	18,134	9,053	25,422	4,214	4,771	1,948	3,825	6,740	6,420	5,560


Saithe	1993	1994	1995	1996	1997	1998	1999	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$
Sandeel fishery	21	0	0	40	0					
Sprat fishery	0	11	297	0	0		1	0		
Norway pout fishery	9	135	490	84	209			116	22	246
Blue whiting fishery	0	0		20	80	11	8	8	2	84
"Others" fishery	41	0	542	0	40	1	42			
Total	71	146	1,329	144	329	12	40	120	117	427


All species	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$
Sandeel fishery	482,832	611,554	644,473	622,211	761,963	624,925	514,047	551,008	637,518	628,205
Sprat fishery	246,980	314,970	344,309	107,243	103,523	145,978	171,757	208,641	170,862	167,472
Norway pout fishery	115,595	111,208	140,550	76,390	104,499	33,515	29,361	135,196	47,788	54,980
Blue whiting fishery	1,615	419		34,857	13,181	46,052	51,060	34,129	26,038	27,052
"Others" fishery	40,283	19,480	48,936	8,882	14,554	17,893	26,945	7,433	10,554	8,503
Total	887,304	$1,057,632$	$1,178,268$	849,584	997,719	868,363	793,169	936,408	892,760	886,212

Table 2.1.6
Danish by-catch landings of cod, haddock, whiting and saithe in 2002 from small meshed fisheries in the North Sea.

Landings in tonnes used for human consumtion purposes.
These landings are included in catch in numbers of human consumtion landings.

Cod	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery	5.7	5.4	0.0	0.0	11.1
Sprat fishery	0.5	0.0	1.9	0.3	2.7
Norway pout fishery	2.0	0.0	15.4	22.7	40.1
Blue whiting fishery	16.9	3.6	12.8	1.4	34.7
"Others" fishery	8.2	0.0	0.8	1.5	10.5
Total	33.3	9.0	30.9	25.9	99.1


Haddock	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery	0.1	10.1	0.2	0.0	10.4
Sprat fishery	0.2	0.0	0.3	0.0	0.5
Norway pout fishery	0.7	0.0	4.3	9.8	14.8
Blue whiting fishery	5.2	0.4	7.7	1.7	15.0
"Others" fishery	3.0	0.0	3.2	9.0	15.2
Total	9.2	10.5	15.7	20.5	55.9


Whiting	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
					0.0
Sandeel fishery	0.0	0.0	0.0	0.0	
Sprat fishery	0.1	0.0	0.0	0.0	0.1
Norway pout fishery	0.0	0.0	5.4	5.5	10.9
Blue whiting fishery	1.1	0.1	1.1	0.2	2.5
"Others" fishery	0.1	0.0	0.0	0.1	0.2
Total	1.3	0.1	6.5	5.8	13.7


Saithe	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery	0.0	0.7	0.1	0.0	0.8
Sprat fishery	1.1	0.0	1.1	0.0	2.2
Norway pout fishery	30.0	0.0	84.3	66.3	180.6
Blue whiting fishery	95.9	26.5	90.0	8.6	221.0
"Others" fishery	57.8	0.0	4.5	16.7	79.0
Total	184.8	27.2	180.0	91.6	483.6


All other human	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
consumtion species					
Sandeel fishery	0.1	0.9	0.2	0.0	1.2
Sprat fishery	0.4	0.0	1.3	0.8	2.5
Norway pout fishery	10.7	0.0	51.0	32.9	94.6
Blue whiting fishery	40.2	17.9	26.0	2.0	86.1
"Others" fishery	19.2	0.0	1.7	2.8	23.7
Total	70.6	18.8	80.2	38.5	208.1

Table 2.1.7
Danish by-catch landings of cod, haddock, whiting and saithe in 2002 from small meshed fisheries in the North Sea.

Landings in tonnes used for reduction purposes.

Cod	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery	0	12	0	0	12
Sprat fishery	0	0	0	0	0
Norway pout fishery	0	0	0	3	3
Blue whiting fishery	3	0	11	0	14
"Others" fishery	0	0	0	1	1
Total	3	12	11	4	30


Haddock	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery	30	190	0	0	220
Sprat fishery	12	0	1	14	27
Norway pout fishery	0	0	408	1,137	1,545
Blue whiting fishery	57	14	59	3	133
"Others" fishery	119	0	15	49	183
Total	218	204	483	1,203	2,108


Whiting	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery	0	1,350	47	0	1,397
Sprat fishery	43	0	1,496	699	2,238
Norway pout fishery	0	0	239	1,436	1,675
Blue whiting fishery	28	0	80	15	123
"Others" fishery	55	0	19	53	127
Total	126	1,350	1,881	2,203	5,560


Saithe	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery	0	0	0	0	0
Sprat fishery	0	0	0	0	0
Norway pout fishery	0	0	45	201	246
Blue whiting fishery	25	5	41	1	72
"Others" fishery	49	0	4	56	109
Total	74	5	90	258	427


All species	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
					628,205
Sandeel fishery	10,297	601,559	16,349		167,472
Sprat fishery	10,386	0	81,345	75,741	54,980
Norway pout fishery	4,511	0	18,582	31,887	1,481
Blue whiting fishery	12,977	2,689	9,905	27,052	
"Others" fishery	4,933	0	1,556	2,014	8,503
Total	43,104	604,248	127,737	111,123	886,212

Table 2.1.8. Numbers of fish aged and measured from the Danish industrial by-catch sent for reduction 19982003

Number of fish measured and aged per species and quarter is given.

	Cod	Haddock	Whiting
Quarter 1	2	74	32
Quarter 2	25	79	143
Quarter 3	35	92	726
Quarter 4	1	337	268
Total	63	582	1169

As the number of specimens in the samples are low, it has been necessary to used all specimens in the samples for the period 1998-2003

Table 2.1.9. Numbers and mean weight at age of commercial roundfishes from the Danish small-meshed fishery sent for reduction, 2002



Species: Whiting					Area: IV			Numbers (mill.), W (g.)				Nominal catch in t .	SOPin tons
Winter Rings		0	1	2	3	4	5	6	7	$8+$	Total		
	Numbers		0.17	0.32	0.20	0.10					0.80		
Quarter 1	Mean W		31.3	158.6	244.4	209.0						126	126
Quarter 2	Numbers		11.63	10.43	2.39						24.46	1,350	1,350
	Mean W		39.0	60.3	111.7								
Quarter 3	Numbers	118.11	15.51	1.31	0.37	0.37					135.68	1,881	1,881
	Mean W	9.0	34.4	112.6	194.0	179.0							
Quarter 4	Numbers	16.58	9.68	3.75	1.45	0.85		0.12			32.44	2,203	2,203
	Mean W	21.1	61.0	181.6	196.0	294.7		380.0					
Total Year	Numbers	134.69	37.00	15.82	4.42	1.32		0.12			193.37	5,560	5,560
	Mean W	10.5	42.8	95.4	152.3	255.5		380.0					

Table 2.1.10 . Numbers ('000) and mean weight (g) at age of commercial roundfish species in 2002 in the bycatch of the Norwegian industrial fishery

Saithe   AGE	20021. QUARTE NUMBER WEIGHT		2. QUARTER   NUMBER WEIGHT		3. QUARTER   NUMBER WEIGHT		4. QUARTER NUMBER WEIGHT		Year 2002 NUMBER	Year 2002
AGE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	13.4	215.6	34.9	253.6	104.3	271.9	41.0	452.0	193.5	302.8
	25.1	759.3	65.8	510.0	1762.8	658.9	633.5	656.8	2487.2	655.5
	140.6	597.6	503.5	651.5	4068.7	765.7	2337.3	769.1	7050.2	755.4
	16.6	868.9	80.2	805.1	186.6	846.8	114.7	814.3	398.2	830.0
	8.3	1062.1	17.5	863.2	5.8	1135.3	28.4	863.2	59.9	916.9
	0.0		0.0		0.0		0.0		0.0	
	0.0		0.0		0.0		0.0		0.0	
	0.0		0.0		0.0		0.0		0.0	
	0.0		0.0		0.0		0.0		0.0	
Cod	$\begin{gathered} 2002 \\ \text { 1. QUARTER } \end{gathered}$		2. QUARTER		3. QUARTER		4. QUARTER		Year 2002	
$\begin{array}{\|ll\|}\text { AGE } & \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10\end{array}$	NUMBER WEIGHT									
	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
	3.2	60.2	13.4	91.4	11.5	136.3	0.0		28.1	106.2
	4.8	270.6	62.0	174.9	8.5	418.8	0.0		75.4	208.7
	1.6	331.6	11.1	431.6	0.1	352.8	0.0		12.9	418.4
	0.0		0.0		0.0		0.0		0.0	
	0.0		0.0		0.0		0.0		0.0	
	0.0		0.0		0.0		0.0		0.0	
	0.0		0.0		0.0		0.0		0.0	
	0.0		0.0		0.0		0.0		0.0	
	0.0		0.0		0.0		0.0		0.0	
	0.0		0.0		0.0		0.0		0.0	
Whiting	$\begin{array}{\|c\|} 2002 \\ \text { 1. QUARTER } \end{array}$		2. QUARTER		3. QUARTER		4. QUARTER		Year 2002	
AGE 0	NUMBER WEIGHT									
	0.0	0.0	0.0	0.0	0.4	16.0	0.0	0.0	0.4	16.0
	0.0	0.0	851.9	41.6	276.5	135.3	11.9	163.2	1140.3	65.6
2	20.0	140.8	2111.9	96.9	713.5	228.7	89.3	246.2	2934.6	133.8
3	140.6	207.0	2770.5	203.2	1104.1	252.9	160.4	270.2	4175.5	219.0
4	18.2	309.3	405.9	327.1	366.5	382.5	59.2	345.7	849.8	351.9
5	8.0	460.7	139.4	415.4	46.0	407.0	12.1	407.0	205.5	414.8
6	0.0		0.0		0.0		0.0		0.0	
	0.0		0.0		0.0		0.0		0.0	
	0.0		0.0		0.0		0.0		0.0	
9	0.0		0.0		0.0		0.0		0.0	
10	0.0		0.0		0.0		0.0		0.0	
Haddock	$2002$		2 QUARTER		3 QUARTER		4. QUARTER		Year 2002	
AGE         0    1    2    3    4    5    6    7    8    8    9    10	NUMBER WEIGHT									
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	83.8	54.4	261.3	57.0	225.9	132.2	14.1	179.2	585.1	88.6
	240.7	116.0	957.5	126.0	765.0	199.3	124.1	213.6	2087.4	156.9
	118.5	242.9	723.9	252.1	2301.6	291.9	492.8	296.9	3636.8	283.1
	5.6	397.7	48.0	407.1	368.6	372.4	80.7	360.7	502.9	374.1
	2.6	430.7	24.0	430.7	0.0		0.0		26.6	430.7
	0.0		0.0		0.0		0.0		0.0	
	0.0		0.0		0.0		0.0		0.0	
	0.0		0.0		0.0		0.0		0.0	
	0.0		0.0		0.0		0.0		0.0	
	0.0		0.0		0.0		0.0		0.0	



Figure 2.1.2 Demeral landings from the North Sea


Figure 2.1.3. Distribution of reported landings of cod, haddock, whiting, saithe, plaice, sole and Nephrops from Subarea IV, IIIa and VIId in 2000-2002. (Belgian, and Norwegian landings are not included).



HAD 2001


POK 2001


WHG 2001



HAD 2002


POK 2002


WHG 2002



Figure 2.1.4 Yield by species for the main stocks considered by this working group. For Haddock and whiting, yield refers to total catches, for all other species to landings.












Figure 2.1.5 Trends in SSB for the main stocks considered by this working group. The graph for cod is indicative only.


Note: biological reference points are under revision and may no longer be applicable.

Figure 2.1.6 Trends in mean fishing mortality for the main stocks considered by this working group. The graph for cod is indicative only.












Note: biological reference points are under revision and may no longer be applicable.

The fleets operating in the Skagerrak and Kattegat (Division IIIa) include vessels targeting species for both human consumption and reduction purposes. The human consumption fleets include gill-netters and Danish seiners exploiting flatfish and cod and demersal trawlers involved in various human consumption fisheries (roundfish, flatfish, Pandalus, and Nephrops). Demersal trawling is also used in the fisheries for Norway pout and sandeel, which are landed for reduction purposes.

The roundfish, flatfish, and Nephrops stocks are mainly exploited by Danish and Swedish fleets consisting of bottom trawlers (Nephrops trawls with $>70 \mathrm{~mm}$ mesh size and bottom trawls with $>100 \mathrm{~mm}$ mesh size), gill-netters, and Danish seiners. Effort measures available from the major Danish fleets (Figure 2.2.1) fishing plaice and cod have been stable for nearly a decade. These fleets do however not comprise the entire fishery, but is considered representative for trends in effort.

The industrial fishery is a small-mesh trawl fishery mainly carried out by vessels of a size above 20 m . This fleet component has also decreased over the past decade. Highest catches are from fisheries targeting sandeel, sprat and herring. There is also a trawl fishery landing a mixture of species for reduction purposes. Catches from the industrial fishery is given in Table 2.2.1.

There are important technical interactions between the fleets. This issue was discussed by the WG this year. It was decided to approach the problem by using data for North Sea only and the methodology used is presented in Section 15. Most of the human consumption demersal fleets are involved in mixed fisheries. Norway pout and the mixed clupeoid fishery have by-catches of protected species.

Discard data have been collected for cod, whiting, haddock, and flatfish in the area since the second half of 1999. Due to the short time-series the data was not included in the assessment this year. The Skagerrak-Kattegat area is to a large extent a transition area between the North Sea and the Baltic, with regards to the hydrology, the biology, and the identity of stocks in the area. The exchange of water between the North Sea and the Baltic is the main hydrographic feature of the area.

Several of the stocks in the Skagerrak may not be separate stocks but are assumed to intermingle with the stocks in the North Sea. This is the case for cod, haddock, whiting, plaice, and Norway pout.

The landings of cod in Division IIIa were 9.7 thousand tonnes in 2002 in the human consumption fishery, which is a historic low. 75 \% was taken in Skagerrak, and the majority of catches were taken by Denmark and Sweden. Cod in Skagerrak is assessed together with the North Sea (Division IV) and Eastern Channel (Division VIId) stock. Cod in Kattegat is assessed as a separate stock by the Baltic Fisheries Assessment Working Group. ICES has since 2002 advised that no fishery should take place on this stock. No recovery plan is implemented yet. By-catches of cod in the Danish small-meshed fishery have been decreasing steadily in the latest decade (Table 2.2.2.).

Landings of haddock in Division IIIa, in the human consumption fishery, amounted to 4.6 thousand tonnes. Most of the catches are taken in Skagerrak. Haddock in IIIa is assessed together with the North Sea (Division IV) stock. By-catches of haddock in the Danish small-meshed fishery have been decreasing steadily in the latest decade (Table 2.2.2.).

Landings of whiting (for human consumption) were 252 tonnes in 2002. Most of the landings are taken in Skagerrak. No analytical assessment of whiting in IIIa was possible. By-catches of whiting in the Danish small-meshed fishery have been slightly increasing in the recent 6 years (Table 2.2.2.).

Landings of 르 in Divisions IV and IIIa were about 112 thousand tonnes in 2002, which is above the landings last year. The sai-】assessment comprises Divisions IV, IIIa, and VI. No by-catches of saithe occurs in the Danish smallmeshed fishery since 1999 (Table 2.2.2.).

The plaice landings in Division IIIa amounted to 8.7 thousand tonnes in 2002, which is a $25 \%$ decrease from 2001. Historically, TAC has not been restrictive for this stock. About $70 \%$ of the landings were taken in Skagerrak. Plaice in IIIa is assessed as a separate stock. By-catches of plaice in the Danish small-meshed fishery have been decreasing steadily in the latest decade (Table 2.2.2.).

The sole landings in Division IIIa are mostly taken in Kattegat and this stock is assessed by the Baltic Fisheries Assessment Working Group. Landings data are available in the report of this Working Group.

The Norway lobster stock in Division IIIa is assessed by the Nephrops Assessment Working Group. Landings data may be found in the report of this Working Group.

Most of the landings from the industrial fisheries in IIIa consisted of sandeel, sprat and herring, but also blue whiting and Norway pout were taken (Table 2.2.1). Data was provided by Denmark and Sweden for the years 1999-2002. All other years refer to data provided by Denmark only. The Norway pout assessment comprises Divisions IIIa and IV. Sandeel in Division IIIa was not possible to assess.

Table 2.2.1 Catches of the most important species in the industrial fisheres in Division Illa (' 000 t ), 1989-2002.

Year	Sandeel	Sprat 1	Herring	Norway   pout	Blue   whiting	Total
1989	18	4	52	5	9	88
1990	16	2	51	27	10	106
1991	24	14	44	39	10	131
1992	39	4	66	45	19	173
1993	45	2	71	8	32	158
1994	55	58	30	7	12	162
1995	12	42	34	50	10	148
1996	53	10	26	36	15	140
1997	82	12	6	32	4	136
1998	11	11	5	15	7	49
$1999^{*}$	13	26	11	7	16	73
$2000^{*}$	17	19	18	10	7	71
$2001^{*}$	25	28	16	9	5	83
2002	49	26	32	3	12	122
Mean 1989-2002	33	18	33	21	12	117

* 1999-2001 data provided from Denmark and Sweden. Other years, only data from Denmark is presented
${ }^{1}$ Data provided by Working Group members

Table 2.2.2 By-catches of the most important consumption species in the Danish small-meshed fisheries in Division Illa (t) 1989-2002.

	Whiting	Haddock	Plaice	Saithe	Cod
1989	3,961	64	135	1	399
1990	5,304	297	58	9	131
1991	4,506	400	86	13	421
1992	3,340	513	111	2	293
1993	1,987	415	141	13	153
1994	1,900	138	65	0	181
1995	2,549	247	20	9	304
1996	1,232	302	107	1	234
1997	264	77	16	2	45
1998	354	39	5	1	44
1999	695	89	8	0	53
2000	777	140	30	0	42
2001	970	43	29	0	27
2002	975	12	8	0	32



Figure 2.2.1 Effort in the Danish demersal mixed fisheries for plaice and cod in Division IIIa.

### 2.3.1 Description of the fisheries

Flatfish: The main feature of the flatfish fisheries in VIId are their importance to small ( $<10 \mathrm{~m}$ ) vessel fleets. Approximately 500 vessels fish for sole and plaice at some time during the year in the eastern Channel and are heavily dependent on sole. This fishery is unique in the ICES divisions IV and VII because more than $50 \%$ of the reported landings come from these small vessels. The gears used are mainly fixed nets but there is also considerable effort on trawling and potting. The other main commercial fleets fishing for flatfish in Division VIId include, Belgian and English offshore beam trawlers ( $>300 \mathrm{HP}$ ) which fish mainly for sole and also take plaice. These vessels switch effort to other areas and onto scallops leading to periodic large changes in effort in VIId.

Roundfish: The offshore French trawlers are the main fleet fishing for cod and whiting using high headline trawls, but cod is also very important for inshore vessels who target this species during the winter using fixed nets. Cod and whiting are part of a mixed fishery which includes a number of small species such as red mullet, gurnards and squid all of which are very important for these vessels. The mixed nature of these fisheries poses different but equally difficult problems to managers compared with the typical cod/haddock/whiting mixed fishery in the North Sea.

## Effort

Effort by English and Belgian beam trawlers and large French otter trawlers has increased by a factor of 7 between 1980s and 1990's (Figure 2.3.1). Effort has remained high for the large trawler fleets but shows a decline in recent years for the English fixed net fleet. No information is available for the important French fixed net fleet which takes about $50 \%$ of the French sole landings and less than $20 \%$ of the French plaice landings.

### 2.3.2 Data

a) Within EU Regulation 1639/2001, UK, France and Belgium have initiated a discard sampling program. The UK program started in 2002 and is designed to sample North sea and Eastern Channel. The level of their sampling in Eastern Channel is then proportional to the effort of the UK fleet between the two areas.
The French discard sampling has started late in 2003 and is designed to sample the main fleets in the Eastern Channel. Belgium started a pilot study on discards in 2003. Their results will only be indicative for the level of discarding.
b) Catch at age: French fleets are responsible for the major landings of cod, whiting, sole and plaice, taking around 80$95 \%$ of the roundfish species and between 45 and $60 \%$ of the flatfish. Sampling for flatfish species was poor before 1986 but has improved since then. Quarterly sampling for age and sex is taken, and is thought to be representative of more than $80 \%$ of the landings of flatfish.
c) Surveys: There is a 4th quarter research vessel survey (GFS) which is used in tuning for plaice. A research vessel survey using beam trawl which covers most of VIId in August (BTS) is used in tuning sole and plaice. An International Young Fish Survey (YFS) is carried out along the English coast and in the Baie de Somme on the French coast and is used to calculate an index for $0-\mathrm{gp}$ and 1 -gp sole and plaice

### 2.3.3 State of the stocks

General: Cod and whiting have been assessed with the North Sea stocks since 1998 and are included in the overview for the North Sea.

Sole: The stock is considered to be within safe biological limits. The fishing mortality is estimated to be below $\mathbf{F}_{\mathrm{pa}}$ The SSB is well above $\mathbf{B}_{\mathrm{pa}}(8000 \mathrm{t})$ following improved recruitment in recent years particularly of the year classes 1998 to 2000. There is a tendency to underestimate F and overestimate SSB.

Plaice: The stock follows the pattern of a general decline in plaice stocks observed in other areas up to 1997. Since then SSB appears to have stabilised at or slightly below $\mathbf{B}_{\mathrm{pa}}$. $F$ has increased in 2002 above $\mathbf{F}_{\text {lim }}$ ( 0.54 ). Recruitment is close to mean levels after the confirmed strong 2000 year class. The state of the plaice stock in VIId is highly dependent on the quality of the recruitment

There are two distinct industrial fisheries operating in Division VIa; a Norway pout fishery and a sandeel fishery. The Norway pout fishery is now exclusively Danish, whereas the sandeel fishery is almost exclusively Scottish and operates in more inshore areas. No information is available on by-catches in the Norway pout fishery. The sandeel fishery has a small by-catch of other species; information from the 1995 and 1996 catches indicates that in excess of $97 \%$ of the catch consisted of Ammodytes marinus, with the by-catch consisting mostly of other species of sandeel. Landings from both fisheries are small compared to the fisheries in the North Sea. Landings of sandeel from VIa were very low in 2002, reflecting the continued reduced effort in the fishery.

### 2.4 Overview of Industrial Fisheries in Division VIa

There are two distinct industrial fisheries operating in Division VIa; a Norway pout fishery and a sandeel fishery. The Norway pout fishery is now exclusively Danish, whereas the sandeel fishery is almost exclusively Scottish and operates in more inshore areas. No information is available on by-catches in the Norway pout fishery. The sandeel fishery has a small by-catch of other species; information from the 1995 and 1996 catches indicates that in excess of $97 \%$ of the catch consisted of Ammodytes marinus, with the by-catch consisting mostly of other species of sandeel. Landings from both fisheries are small compared to the fisheries in the North Sea. Landings of sandeel from VIa were very low in 2002, reflecting the continued reduced effort in the fishery.

Since 1996, this assessment has related to the cod stock in the Skagerrak (Division IIIa), the North Sea (Subarea IV), and the Eastern Channel (Division VIId). Prior to 1996 cod in these areas were assessed as separate stocks. The present assessment is classified as a benchmark assessment.

### 3.1 The Fishery

Cod are caught by virtually all the demersal gears in Subarea IV and Divisions IIIa (Skagerrak) and VIId, including beam trawls, otter trawls, seines, gill nets and lines. Most of these gears take a mixture of species, but some of the fixed gear fisheries are directed mainly towards cod.

### 3.1.1 ACFM advice applicable to 2002 and 2003

The advice from ICES for 2002 was as follows: ICES recommends a recovery plan that will ensure a safe and rapid recovery of SSB to a level in excess of 150000 t . If a recovery plan is not implemented ICES recommends that fishing mortality on cod should be reduced to the lowest possible level in 2002. ICES has repeatedly stated that for various reasons, TACs alone are not effective in regulating fishing mortality.

The advice from ICES for 2003 was as follows: Given the very low stock size, the recent poor recruitments, and continued high fishing mortality despite management efforts to promote stock recovery, ICES recommends a closure of all fisheries for cod as a targeted species or by-catch. In fisheries where cod comprises solely an incidental catch there should be stringent restrictions on the catch and discard rates of cod, with effective monitoring of compliance with those restrictions.

These and other measures that may be implemented to promote stock recovery should be kept in place until there is clear evidence of the recovery of the stock to a size associated with a reasonable probability of good recruitment and there is evidence that productivity has improved. The current SSB is so far below historic stock sizes that both the biological dynamics of the stock and the behavior of the fleets are unknown, and therefore historic experience and data are not considered a reliable basis for medium- term forecasts of stock dynamics under various rebuilding scenarios.

The precautionary fishing mortality and biomass reference points agreed by the EU and Norway are as follows:
$\mathbf{B} \lim =70,000 \mathrm{t} ; \mathbf{B p a}=150,000 t ; \mathbf{F l i m}=0.86 ; \mathbf{F p a}=0.65$.

### 3.1.2 Management applicable in 2002 and 2003

Management of cod is by TAC and technical measures. The agreed TACs for Cod in Division IIIa (Skagerrak) and Subarea IV were as follows:

	2002	2003
	Agreed	Agreed
	TAC $(000 \mathrm{t})$	TAC $(000 \mathrm{t})$
IIIa (Skagerrak)	7.1	3.9
IIa + IV	49.3	27.3

There is no TAC for cod set for Division VIId alone. Landings from Division VIId count against the overall TAC agreed for ICES Divisions VII b-k. The agreed TACs for 2002 and 2003 implied reduction in status quo fishing mortality of about $50 \%$ for 2002 and $65 \%$ in 2003.

In 1999 the EU and Norway have "agreed to implement a long-term management plan for the cod stock, which is consistent with the precautionary approach and is intended to constrain harvesting within safe biological limits and designed to provide for sustainable fisheries and greater potential yield. The plan shall consist of the following elements:

1. Every effort shall be made to maintain a minimum level of SSB greater than 70000 t(Blim).
2. For 2000 and subsequent years the Parties agreed to restrict their fishing on the basis of a TAC consistent with a fishing mortality rate of 0.65 for appropriate age groups as defined by ICES.
61
3. Should the SSB fall below a reference point of $150000 t$ (Bpa), the fishing mortality referred to under paragraph 2 shall be adapted in the light of scientific estimates of the conditions then prevailing. Such adaptation shall ensure a safe and rapid recovery of SSB to a level in excess of $150000 t$.
4. In order to reduce discarding and to enhance the spawning biomass of cod, the Parties agreed that the exploitation pattern shall, while recalling that other demersal species are harvested in these fisheries, be improved in the light of new scientific advice from, inter alia, ICES.

The Parties shall, as appropriate, review and revise these management measures and strategies on the basis of any new advice provided by ICES."

This agreement has been re-established annually since 1999.

EU technical regulations in force in 2002 and 2003 are contained in regulations Council Regulation (EC) 850/98 and its amendments. The regulation prescribes the minimum target species' composition for different mesh size ranges. In 2001, cod in the whole of NEAFC region 2 were a legitimate target species for towed gears with a minimum codend mesh size of 100 mm . As part of the cod recovery plan, the EU and Norway introduced additional technical measures from 1 January 2002. Details are given in Council regulation (EC) 2056/2001. The basic minimum mesh size for towed gears for cod from 2002 was 120 mm , although a transitional arrangement until 31 December 2002, vessels were allowed to exploit cod with 110 mm codends provided that the trawl is fitted with a 90 mm square mesh panel and the by catch composition of cod retained on board is not greater than $30 \%$ by weight of the total catch. From 1 January 2003, the basic minimum mesh size for towed gears for cod was 120 mm . In addition effort restrictions were introduced in 2003. The details are given in Annex XVII of Council Regulation (EC) 2341/2002 and amended in Council Regulation (EC) 671/2003. The minimum mesh size for vessels targeting cod in Norwegian waters is also 120 mm .

Cod form a by-catch in towed-gear fisheries using codend mesh sizes less than 120 mm , and fisheries using other gears.
The emergency measure (Council Regulation (EC) 259/2001) involving the closure of a large area of the North Sea from 14 February to 30 April 2001 to all fishing vessels using gears likely to catch cod, was not extended in 2002 or 2003.

The minimum landing size (mls) for cod in Sub-area IV and Divisions IIIa and VIId is 35 cm , although for Danish vessels the mls is 40 cm .

### 3.1.3 The fishery in 2002

Landings data from human consumption fisheries for recent years as officially reported to ICES together with those estimated by the Working Group are given for each area separately and combined in Table 3.1.1. The Working Group estimate for landings from the three areas combined in 2002 is 54.4 thousand t ., split as follows for the separate areas.

```
2002
Landings
 000 t)
```

IIIa(Skagerrak) 7.5
IV 43.9
VIId 3.1
Total

Minor revisions for 2000 and 2001 were also reported for landings from some countries.

WG estimates of landings indicate that the TACs for Subarea IV and Division IIIa were not taken in 2002. This is in keeping with previous years. The working group estimate of landings from Division VIId is about double the officially reported landings.

The WG suspects that under-reporting of landings may have been significant in 1998 because of the abundance in the population of the relatively strong 1996 year-class as 2 -year-olds. The landed weight and input numbers at age data for 1998 were adjusted to include an estimated 3000 t of under-reported catch. The 1998 catch estimates remain unchanged in the present assessment.

For 1999 and 2000, the WG has no a priori reason to suspect that there was significant under-reporting of landings. However, the reduction in fishing effort implied by the 2001 and 2002 TACs ( $>50 \%$ ) may have resulted in an increase in unreported catch in those years. Anecdotal information from the fisheries in some countries, also indicates that this may indeed have been the case, but the extent of the alleged under-reporting of catch varies considerably. Since the WG has no basis to judge the overall extent of under-reported catch, the WG has no alternative than to use its best estimates of landings from market sampling, which in general are in line with the officially reported landings.

The spatial distribution of reported international landings for 2000-2002 are shown in Figure 2.1.3. These represent about $90 \%$ of the reported landings for these years and do not include Norwegian or Belgian landings since these are not reported by statistical rectangle. The landings in 2000 to 2002 generally coincide with the areas of highest density of cod aged 2 and older seen in the IBTS Q1 survey (Figure 3.1.1). This is especially apparent for the northern North Sea. However, a significant proportion of the landings in 2000-2002 were reported from the Southern Bight, the eastern central North Sea and entrance to the Skagerrak, where observed IBTS densities of cod aged 2 and older were relatively low. This may be a reflection of the large amount of effort deployed in areas of low cod density.

Estimates of the proportion of cod discarded by age group for the period 1994-2002 from observations aboard English vessels in the North sea are given in Table 3.1.2. International discard estimates for the period 1997-2001 are given in the 2002 report of the SGDBI (www.ices.dk - reports/ACFM/2002/SGDBI/datafiles/ northseaandskagerrak).

The by-catch of cod from the Danish and Norwegian industrial fisheries that was sent for reduction to fishmeal and oil in 2002 was 50 tonnes (Table 1.7.1). An additional 104 t of cod from the Danish Industrial catch was landed for human consumption and was declared against the cod quota for Denmark. The working group had no information on any bycatch of cod in the Norwegian industrial catch that was landed for human consumption.

### 3.2 Natural Mortality, Maturity, Age Compositions, and Mean Weight at Age

Values for natural mortality and maturity are given in Table 3.2.1, they are applied to all years and are unchanged from those used in recent assessments. The natural mortality values are model estimates from a multi-species VPA fitted by the Multi-species Working Group in 1986. The maturity values were estimated using the International Bottom trawl Survey series 1981-1985. These values were derived for the North Sea and are equally applied to the three stock components. The WG notes that although natural mortality is treated as constant in the assessment, the results of multispecies VPA indicate that this is probably not the case.

Landings in numbers at age for age groups 1-11+ and 1963-2002 are given in Table 3.2.2. SOP corrections have been applied. These data form the basis for the catch at age analysis but do not include industrial fishery by-catches landed for reduction purposes, or discards. By-catch estimates are available for the total Danish and Norwegian small-meshed fishery in Sub-area IV (Table 2.1.3) and separately for the Skagerrak (Table 3.1.1.), but as in previous years, these data were not included in the assessment.

In 2002, the landings were dominated by the 1999 year-class as 3 -year olds, which accounted for $42 \%$ of the total international landings in number. Approximately $90 \%$ of the international landings in number were accounted for by juveniles aged 1-3, with 1-year-old cod accounting for almost $25 \%$.

Age compositions were provided by Denmark, England, France, the Netherlands and Scotland (Table 1.3.3.1). Mean weight at age data for landings are given in Table 3.2.3. These values were also used as stock mean weights.

Long-term trends in mean weight at age for age groups 1-6 are plotted in Figure 3.2.2. Figure 3.2.2 indicates that there have been short-term trends in mean weight at age and that the decline over the recent decade on age groups 3-5 now seems to have stabilised. The data also indicate a slight downward trend in mean weight for age groups 3-6 over time . Age groups 1 and 2 have a slightly increasing long-term trend in mean weight at age in the landings.

### 3.3 Catch, Effort, and Research Vessel Data

Trends in fishing effort for selected commercial fleets exploiting cod are shown in Figure 2.1.1. Note that reporting of effort is not a mandatory field on the EU logbook, and therefore the Working Group considers that the data are not representative of the actual deployed fishing effort. The Report of the 2001 meeting of this WG (ICES CM 2002/ACFM:01), and the ICES advice for 2002 (ICES Co-op. Res. Rep 2001/246) provides arguments for the exclusion of commercial CPUE tuning series from XSA. Such arguments remain valid. Hence in the present assessment using XSA, only survey data have been considered for tuning. Three survey series are used. The English Groundfish Survey (EGFS_Q3) which covers the whole of the North sea in August-September each year to about 200 m depth using a fixed
station design of 75 standard tows. The survey was conducted using the Granton trawl from 1977-1991 and with the GOV trawl from 1992-2003. The Scottish Groundfish survey (SCOGFS_Q3) is undertaken during August each year using a fixed station design with the GOV trawl. Coverage is restricted to the northern part of the North sea. The International quarter 1 Bottom trawl survey (IBTS Q1), covers the whole of the North Sea using fixed stations of at least two tows per rectangle with the GOV trawl. Trends in survey CPUE at age are given in Figures 3.3.1a-3.3.1c. The data files used for tuning XSA are given in Table 3.3.1. Table 3.3.1 also includes a time series for the IBTS Q3 survey from 1991-2003, although this was not used for tuning XSA because data from the Scottish and English Q3 surveys contribute to this index.

### 3.4 Exploratory analyses

As part of the benchmark review process a series of analyses have been used to examine each of the sources of information available for the assessment of the North Sea cod stock. Within the following sections, the recorded landings data and survey series are screened for sampling errors; the time series of surveys are examined for correlation between series and used independently of the catch data as indices of the stock dynamics; and finally two catch at age models are fitted to the catch and survey series in order to derive time series of stock and exploitation rate metrics. The review process was used to guide the Working Group in its conclusions with regard to the current state of the stock and its projected dynamics.

### 3.4.1 A Separable VPA of the North Sea cod catch at age data

In a preliminary screening analysis, before the introduction to the assessment process of noise resulting from model fits to tuning series, a Separable VPA model was used to examine the structure of the catch numbers at age data. The model constraints applied when fitting the model were $\mathrm{F} 3(2002)=1.0$ and $\mathrm{S}(10)=0.85$.

Table 3.4.1 presents the log catch ratio residuals from the fitted Separable VPA, the estimated selection at age and overall fishing mortality effects. Figure 3.4.1 illustrates the average selection pattern estimated for the last 6 years, Figure 3.4.2 the fitted year effects and Figure 3.4.3 the time series of log catch ratio residuals.

It is apparent from the time series of residuals (Table 3.4.1, Figure 3.4.3) that the selection pattern has changed with time. Selection (relative fishing mortality) at the youngest ages increased during the 1960 's, following the increases in recruitment that occurred at that time. In recent years selection has declined. This could result from the introduction of larger mesh sizes in the early 1990 's or the reduced contribution of younger fish as recruitment to the stock has declined.

The average selection pattern estimated from the last six years of data has full selection at age 3 and is flat topped at older ages. Fishing mortality is estimated to have increased during the 1960's and 1970's and remained relatively constant since then.

The residuals in the most recent years indicate no strong patterns or large values. This indicates that the age structure of the recorded landings has been relatively consistent in recent years and that the landings data are not subject to large random or process errors that would lead to concerns as to the way in which the recorded catch has been processed.

### 3.4.2 The assessment age range

In previous assessments of this stock an $11+$ group has been fitted to the data series. The age range is greater than that for which survey calibration data is available (1-6) and therefore shrinkage to the mean $F$ has a strong influence on the population estimates at the oldest ages. In recent years restrictive management controls have been applied in an attempt to reduce mortality rates on the stock. An assessment that has a large contribution from shrinkage could be biased towards higher fishing mortality rates.

Consistent survey data are available for ages $1-6$. Few fish are recorded in the reported catch at ages greater than age 7. Therefore a series of the exploratory XSA analyses were carried out using a 7 plus age range. The use of the new plus group reduced the contribution of shrinkage to the estimates in the terminal year to an average value of less than $10 \%$ (see text table below). The new age range was accepted and used in all subsequent analyses.

Age	Shrinkage c.v. 0.5   Max age 11+	Shrinkage c.v. 0.5   Max age 11+	Shrinkage c.v. 1.0   Max age 7+
1	15.3	4.2	4.2


2	9.4	2.4	2.4
3	10.3	2.6	
4	21.5	5.5	5.4
5	32.3	10.7	10.6
6	43.1	12.6	8.8
7	81.8	42.9	
8	83.8	52.1	
9	94.6	80.8	
10	97.1	87.5	

The choice of a new age range for the assessment requires a revision to the reference ages used for calculating average fishing mortality, previously ages 2 - 8 . In recent years, average fishing mortality at ages $2-4$ has been used to highlight exploitation rates on the juvenile ages. The age range currently represents ages that are predominant in the landings and was therefore, adopted as the new benchmark for measuring fishing mortality.

## English groundfish survey indices

Examination of the EGFS Q3 time series Figure 3.4.4 indicates that there was a step change in Z on age 1 coincident with a change from the Granton to the GOV trawl in 1992. This is despite including a correction factor to convert GOV catch rates to Granton trawl equivalents (Granton cpue $=$ GOV cpue/1.52). This was interpreted as a change in catchability of age 1 with the change of gear. The working group decided it would therefore be appropriate to split the series into two for tuning purposes. The new tuning series are now expressed in their original units ( $\mathrm{No} / 100 \mathrm{~h}$ ).

### 3.4.3 Cod in Subarea IV survey concurrence

Pairwise bivariate scatterplots of survey indices were plotted by age for each survey used in the assessment. The Rsquared goodness-of-fit statistic was calculated for each plot, and a linear regression model fitted. The regression lines are plotted with their associated $95 \%$ confidence bands. This provides a method of quantitatively assessing the correlation between surveys over a common time period. The following can be gathered from Figure 3.4.5. The English and Scottish groundfish surveys are strongly correlated at ages 1 to 3, with weaker correlation at ages 4 and 5 . Age 6 shows no relationship between the surveys. Between the IBTS quarter 1 and Scottish groundfish surveys there is good agreement with significant correlation at ages 1 and 2, weaker association at age 3 , and no relationship at ages 4 and 5 (although the 1982 point is highly influential in the lack of correlation). The English groundfish and IBTS quarter 1 surveys are well correlated at ages 1,2 and 3 and moderately correlated at ages 4 and 5 (the 2000 point in age 4 affecting the R-squared value). The three surveys used for the assessment are consistent and well correlated at ages 1, 2 and 3 , the dominant ages in the catches, with progressively noisier concurrence at the older ages.

### 3.4.4 Survey index analysis

### 3.4.4.1 Survey recruitment

Recruitment indices from the different tuning series are compared in Figures 3.4.6-3.4.7. All the series are standardised to zero mean and unit standard deviation. The level of agreement between the different series is quite high, in particular at age 2, with the tuning series picking up the same pattern of yearclass strengths.

### 3.4.4.2 VPA SSB, survey SSB and immature stock biomass

A spawning stock biomass index was calculated from each of the tuning fleets using the stock weights at age and maturity ogives presented in Table 3.2.1. Each index series and the XSA series of SSB estimates was standardised to zero mean and unit standard deviation. The results are shown in Figure 3.4.8. There are some discrepancies between the survey-based estimates and the VPA. A similar plot was made for the immature part of the stock (Figure 3.4.9). In this figure it seems that the relatively strong 1996 yearclass disappeared more rapidly from the catches than in the surveys indicating an increased under reporting or discarding of this yearclass.

### 3.4.4.3 Survey based stock and recruitment plots.

Using the standardised survey SSB's and recruitment indices described above, a series of stock and recruit plots were made (Figure 3.4.10). A cubic spline smoother indicates the trend in recruitment relative to SSB indices. The range of

SSB levels is rather narrow and is low compared to historic levels. The trends provide a catch data independent indication that recruitment is declining at lower stock sizes.

### 3.4.4.4 Survey Z

The log ratios of surveys indices (called survey Z's) was calculated as:
$Z_{a, y}=\log \left(\frac{I_{a-1, y-1}}{I_{a, y}}\right)$ where $I_{a, y}$ is the survey index of age group $a$ in year $y$. Since survey Z's could give some indication of trends in the total mortality it was thought useful to calculate mean Z's over several age groups. And since low abundance indices are estimated with higher uncertainty these observations were given a lower weight than the more abundant. The weighting factor was calculated as:
$w_{a, y}=e^{\left(\frac{\log \left(I_{a-1, y-1}\right)+\log \left(I_{a, y}\right)}{2}\right)}$ and the average Z at age was calculated as $\overline{Z_{a}}=\frac{\sum_{y=y 1}^{y 2} Z_{a, y} \cdot w_{a, y}}{\sum_{y=y 1}^{y 2} w_{a, y}}$. Average Z at age was subtracted from each $Z_{a, y}$ before averaging over several age groups. This subtraction (standardising) made it easier to compare trends between different surveys. The average $Z$ over the age groups 2 to 5 was calculated using tuning data from the period 1982 to 2003 and the results are shown in Figure 3.4.11. Overall the impression is of an increase in survey Z's over the time period reaching a peak in 2000 followed by a subsequent decline until 2002 with Z's at the same level as in the beginning of the time period. Most of the surveys are conducted in the second half of the year and Z's labelled 2003 represent log ratios between indices from 2003 and 2002. The 2003 observations suggest an increase in overall mortality compared to 2002.

### 3.4.5 Surba analyses

Surba (see section 1.4) was used as a supplementary analysis tool to explore trends in survey index inferred SSB. Surba is a survey only method that fits survey indices assuming a separable F selection pattern. Prior input of survey index to relative abundance ratios (catchability) is required for each age. Estimation of these parameters was based on exploratory runs, bounded by prior knowledge of likely survey catchability performance for each age. The absolute level and trends in estimated mean F for cod were poorly determined and could not be interpreted.. However, Surba does provide an index of trends in relative SSB. Summary plots are presented in Figures 3.4.12-3.4.14 and survey index to relative abundance ratio, q, for each survey fitted (ScoGFS, EngGFS and IBTS Q1) are shown in Table 3.4.2. All three surveys show a declining stock from 1997 with stable SSB in the most recent years.

Table 3.4.2 Cod in Subarea IV. User defined survey index to relative abundance ratio, q , for each survey, as used in Surba analysis. $N_{a, y}^{\text {relative }}=q_{a} * I_{a, y}$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
EngGFS	1.0	1.0	1.0	1.0	1.0			
ScoGFS	0.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0
IBTS Q1	0.5	0.95	1.1	0.9	1.0			

### 3.4.6 A Laurec - Shepherd based analysis of the North Sea cod tuning data.

The Laurec - Shepherd VPA calibration model was used to screen the survey calibration data. The model makes the assumption that the selection pattern at the oldest ages is constant, a constraint used to reduce the number of estimated parameters.

Figures 3.4.15a-3.4.15c present the time series of the log catchability residuals from single fleet Laurec - Shepherd tuning models fitted to the English, Scottish and IBTS quarter 1 groundfish surveys. The figures reveal that for some survey ages, catchability is not constant in time, it has been increasing. The increase is more pronounced at ages $1-3$ of
the Scottish ground fish survey and ages 1 and 2 of the IBTS survey. The trend previously observed in the English groundfish catchability has been removed by splitting the time series.

Catchability is derived as the ratio of the survey catch at age to the population calculated from a VPA transformation of the catch data. Reduced levels of catch at age result in low population sizes and positive catchability residuals. Therefore rather than errors or bias in the survey CPUE, the trends could result from bias in the VPA populations induced by mis-reporting, changes in discard practices and or the level of natural mortality. An alternative hypothesis, used previously for this assessment, is that survey catchability is changing with population abundance, a model that has been used previously for this stock and fitted within XSA.

Apart from the trends in the residuals there are no strong outliers that would give rise to concern as to the quality of the tuning series. The series were therefore accepted as being suitable for inclusion in an XSA and TSA analysis of the stock.

### 3.4.7 Time Series Analysis (TSA)

TSA analyses were carried out using the 'constant cv' version of TSA (see section 1.4). Due to time constraints, last year's TSA settings and input data (updated where possible) were used (Table 3.4.3). Therefore, the combined EngGFS survey data (1977-2002) were used rather than the shortened time series containing data from 1992-2003 only. The only change to the model formulation used last year was that potential outliers in the catch and survey data were not downweighted.

The base case run consisted of a standard assessment for this year, using catch data from 1963-2002, ScoGFS (19832003), EngGFS (1977-2002) and IBTS Q1 (1983-2003). Parameter estimates are given in Table 3.4.4. The predicted catch, mean F (2-4), SSB and recruitment trends for this run (Figure 3.4.16) show similar trajectories to those estimated by XSA. There is a strong increase in mean F from 1997-2000 followed by a decline in recent years. The decrease in recent years is less than the XSA trend. SSB has decreased with only occasional recoveries since the early 1970's. It reached its lowest level in 2000 and has remained at that level subsequently.

Time series analysis has been used previously by this working group in an attempt to estimate the magnitude of missing catch data during the recent period when TAC have been severely reduced. The analysis was repeated by specifying two further TSA models, each with settings and survey indices given in Table 3.4.3, but using reduced time series of catch data from 1963-2000 and from 1963-1995. Thus, in total three scenarios were compared:

- Fitting to the complete catch data time series 1963-2002
- Fitting the model to the catch data from 1963-2000 only
- Fitting the model to the catch data from 1963-1995 only

A comparison of the predicted catch, mean $\mathrm{F}(2-4), \mathrm{SSB}$ and recruitment time series from these scenarios is presented in Figure 3.4.17. TSA matches the catch data very closely where they are available. Where catch data are missing, TSA predicts larger catches than were actually recorded. This results in higher predicted mean F and SSB in later years than predicted by the TSA analysis including all catch data.

In order to test the predictive ability of the TSA model a retrospective analysis was carried out (Figures 3.4.18 and 3.4.19). This involved stepping back 8 consecutive years in time and fitting the model with two years of missing catch data with surveys extending three years beyond the last year of catch data. In each retrospective model fit, the missing catches are overestimated, usually resulting in overestimation of mean F and underestimation of SSB compared to predictions from models which included the missing catch data.

If the retrospective plots for earlier years had accurately predicted the missing catch, whilst those for later years predicted higher catches than those recorded, then this would suggest the possibility of catches that have not been accounted for in the reported catch for more recent years. However, here we have consistent positive bias in the retrospective plots. This could either be a result of unaccounted-for catch throughout the time series over which the trials were run, or an effect of the smoothing inherent in TSA. The analyses presented here are not sufficient to identify the true cause of the retrospective pattern.

### 3.4.8

As a consequence of the change to the plus group age and the shortening of the English groundfish survey tuning series to the period for which GOV data are available, the XSA model structure was re-examined in a series of exploratory runs. The fitted model diagnostics were used to examine the use of the power model at the youngest ages, the q plateau constraint, the range of ages and years used for shrinkage. Retrospective analysis was used to determine an appropriate value for the weight given to shrinkage.

The tapered time weighting used to down weight historic values of catchability in previous years model fits was retained. No new information, apart from the change to the survey gear used for the English groundfish survey, was available in order to modify the time series weightings.

Exploratory fits of XSA to the survey series were used to determine the catchability models to be applied at each age. The XSA regression diagnostics and catchability values were examined in order to determine the most appropriate catchability model structure for the catch at age analysis. It was established that the settings used for the previous XSA fits to the data for this stock are still appropriate, a power model was applied at ages $1-3$, because significant slopes were found for the majority of surveys at those ages. Catchability was held constant at the older ages at the values estimated at age 5 because the catchability estimates for the surveys were basically constant from age 5 onwards (Table 3.4.5).

Shrinkage to the mean fishing mortality was calculated over the penultimate 5 years of the assessment and across ages 3 - 5 as a result of the flat topped exploitation pattern at those ages. Retrospective analysis was used to examine the influence of the weight used with shrinkage. Shrinkage weights of $0.5,1.0$ and 1.5 were tested. Figure 3.4.20 presents the retrospective plots for SSB, average fishing mortality at ages 2-4 and recruitment. At shrinkage levels of 1.5 the retrospective pattern begins to deteriorate, at 0.5 shrinkage has a strong influence on the estimates of population abundance at the oldest ages (diagnostic output in ICES files). This is not appropriate as management actions are attempting to reduce fishing mortality on this stock. Given these considerations a shrinkage value of 1.0 was selected.

The XSA model structure is listed below with the settings used previously by this group.

Year of assessment	2002	2003
Assessment model	XSA	XSA
Age range		
	$1-11+$	$1-7+$
SGF Survey		
EGF Survey	$1982-20011-6$	$1982-20021-6$
IBTS Q1 Survey	$1976-20011-5$	$1992-20021-5$
		$1984-20021-5$
Time series taper	tri-cubic	tri-cubic
Range	20	20
Power model ages	$1-3$	$1-3$
Catchability plateau	5	5
F shrinkage ages	5	3
Year	5	5
s.e	0.5	1.0
Min s.e	0.3	0.3

The diagnostics from the XSA run are given in Table 3.4.5 and plots of the log-catchability residuals for each fleet from this run are given in Figure 3.4.21. Figure 3.4.22 presents the estimates of spawning stock biomass and average fishing mortality as estimated by single fleet runs of XSA with low (s.e. $=2.0$ ) shrinkage weight. The estimates are consistent between series illustrating the agreement discussed previously in the survey analysis sections 3.4.3-3.4.5.

The estimates of fishing mortality rates and population numbers resulting from the tuning procedure and XSA are given in Tables 3.4.6 and 3.4.7 and are summarised in Table 3.4.8. The historic stock and exploitation indices are plotted in Figure 3.4.23 The mean $\mathrm{F}(2-4)$ for 2002 is estimated to be 0.61 and the estimate for 2000 has been revised downwards from $F=0.81$ to $F=0.75$. SSB in 2002 is now estimated to be 39000 t (Table 3.4.8), compared to 38000 t predicted from the 2002 assessment. Figure 3.4 .24 compares the stock summary time series with the time series estimated in 2002.

There is good agreement between the estimated time series the trends in which are largely unaffected by the change to the new assessment age range.

### 3.4.9 The sensitivity of the North Sea cod XSA assessment estimates to discards

The data sets used for the North Sea cod stock assessment do not contain information on historic discards and this has raised concerns as to the reliability / quality of the estimated population trends and consequent advice to managers. Darby (WD11) used the results from a recent European Commision (EC Project 98/07) supported discard study to examine the sensitivity of North Sea cod assessment estimates to discarding.

Discarding, as measured within the EU study is predominantly small juvenile North Sea cod and as such they make up the first ages of the assessment age range. The dominant effect of the inclusion of discards in the cod assessment is to increase the level of recruitment and in mortality at age 1. Unfortunately the number of years for which discard data were collected in the study is short (four years) and therefore raising historic catch data time series is complicated by historic changes in mesh and minimum landing size.

At the EU meeting of experts that took place in May 2003 (EC 2003), comparisons were made between the discard ogives recorded in the EU study with those from the Scottish sampling program. The discard ogives were very similar for the available range of overlapping years. In a continuation of the study, Scottish discard observations for the years 1978 - 2002 have been used to raise the complete time series of North Sea cod catch at age data and the effect on the assessment time series of estimates examined. The raising process makes the gross assumption that the Scottish observations of discards from, predominantly, trawl gear can be applied to all gear types used by the fleets fishing in the North Sea.

Table 3.4.9 presents the discard estimates at age used in the assessment time series. Table 3.4 .10 presents the proportions discarded at age which are also plotted in Figure 3.4.25 The table of proportions discarded illustrates large variations in the rate of discards between years with a very wide variation in discard proportions. There appears to be a change in the pattern of mis-reporting prior to the period over which the discard data were collected, a shift in the level of discarding at age 1. The pattern would need to be examined before discard data can be included in the assessment regularly and therefore the data can currently only be used for sensitivity analysis of estimates derived from catch at age analysis.

The XSA model fitted to the landings at age data was reapplied to the discard corrected catch data. The fit of the model improved at the youngest ages. The standard errors of the regressions used to estimate catchability parameters were reduced and correlation coefficients increased. Figure 3.4 .26 presents the time series of XSA derived assessment estimates of the stock, exploitation trends and the stock and recruitment plot.

The largest change in the assessment estimates when discards were included was to the abundance of the youngest ages. Historic year class strength was estimated to be considerably higher especially during the "gadoid outburst". There was no major change in the structure of the time series only in the level of the recruitment.

The time series of spawning stock biomass which comprises ages that were unaffected by discarding was unchanged. Since SSB levels and the configuration of recruitment are unchanged by the inclusion of discards, SSB reference points will also be unaffected by the inclusion of discards. Due to the increase in the level of recruitment, estimates of fishing mortality limit reference points will increase marginally.

Fishing mortality is increased as the catch data are increased to include landings, but the trends in the rate of exploitation are unchanged.

There appears to be considerable noise in the estimated discarding rates; this may require smoothing. In addition, further work in developing the data series by use of discard ogives for as many gear types as possible is required before the discards series can be used for a full assessment.

This exercise has shown that the estimates of the historic stock dynamics, the perception that levels of mortality are high and that the stock is low compared to management reference points are robust to the absence of discards in the landings data.

### 3.4.10 The sensitivity of the North Sea cod XSA assessment estimates to multi-species natural mortality rates

The natural mortality values used for the assessment of the North Sea cod were estimated within runs of the Multispecies assessment model. New estimates were made available to the working group following the meeting of the multispecies study group at which an updated key run of the model was carried out (ICES CM 2003/D:09). The sensitivity of the North Sea cod assessment estimates was examined by replacing the current, constant in time, natural mortality rates with those from the multi-species key run.

Table 3.4.11 presents the multi-species mortality estimates. Figure 3.4 .27 presents the results from fitting the XSA model key run for the North Sea cod to the catch at age and tuning data using the MSVPA natural mortality estimates.

The model diagnostics revealed an improvement in the fitted regressions at the younger ages. At the older ages the standard error of the model estimates of catchability increased. Cod natural mortality estimates at the older ages have recently shown an increasing trend resulting from seal predation. The reduced correlation between the XSA population numbers and the survey series would suggest that the estimated increase in mortality is inconsistent with the survey data and may be an area for further investigation of the MSVPA mortality rates.

The results of the assessment (Figure 3.4.27) show that the greatest sensitivity in the model results is in the estimated recruitment values. They are increased during the early period of the time series when the stock was more abundant and predation rates higher. Spawning stock biomass is relatively unaffected by the change to multi-species natural mortality rates. Higher rates of natural mortality at the younger ages result in higher total stock sizes and a reduction in the level of fishing mortality. The trends remain unchanged.

Since SSB levels and the configuration of recruitment are unchanged by the inclusion of multi-species natural mortality, SSB reference points will also be unaffected by the inclusion of multi-species natural mortalities. Due to the increase in the level of recruitment, estimates of fishing mortality limit reference points may increase.

This exercise has shown that the estimates of the historic stock dynamics, the perception that levels of fishing mortality are high and that the stock is low compared to management reference points are robust to the absence of variable multispecies mortality in the assessment model.

### 3.4.11 The sensitivity of the North Sea cod XSA assessment estimates to multi-species natural mortality rates and discards

A run of the XSA model was made with both the muli-species natural mortalities and the inclusion of discards. The assessment results are plotted in Figure 3.4.28 As with the model fits examining the effect of changes to the assessment inputs in isolation, the effect on the XSA estimates is relatively minor. SSB is increased but does not change its downward trend or the relative low level that it is estimated to have reached. The increase in fishing mortality resulting from the inclusion of discards is cancelled by the reduction resulting from the multi-species natural mortality. There is therefore no change in the perception of high fishing mortality rates. Recruitment is increased throughout the time series especially during the years when stock size and therefore predation rates were high.

As with the results of the single effect sensitivity runs, SSB and exploitation trends are robust to the inclusion of the increased rates of mortality resulting from multi-species effects and discarding.

### 3.4.12 Conclusions drawn from the exploratory analysis

All of the models used to examine the dynamics of the North Sea cod stock indicate that the spawning stock biomass of the stock is close to its lowest level within the recorded time series. This conclusion is robust to the source of information used for the analysis.

The absolute level of SSB estimated for recent years cannot be determined from the catch at age analysis due to uncertainties in the level of recorded landings. Historically there was less incentive to under report the catch and therefore the historic levels of biomass and their trends are considered to be more representative of the stock abundance
at that time. Consequently, the historic estimate of SSB at which recruitment is impaired is considered to be unbiased by recent uncertainty in catches.

Survey indices are in agreement in indicating that the stock has declined to the lowest level in the recorded time series. There are some indications from the recent indices that the decline has been stabilised with some indices indicating a small increase in 2003. This is in agreement with a fishing industry perception of the state of the stock submitted to the working group (WD 14). However, the survey indices also point to another low recruitment (2002 year class) that is about to enter the stock and unless exploitation levels are reduced the stock will decline further.

The results of the catch at age analyses indicate that fishing mortality rates have been too high to maintain a spawning stock biomass above current Precautionary Approach reference levels. Analyses that are independent of the changes in recorded landings from year to year support this conclusion (within year catch curve analysis and survey-only estimates of mortality rates).

For many years recorded landings have followed the TAC, which in 2001 and 2002 implied sever reductions in fishing mortality. Based on the reported landings the catch at age models indicate that the fishing mortality rate has declined. While the working group agrees that recent decommissioning and reductions in the TAC may have reduced exploitation rates, there are frequent anecdotal reports from the fishing industry that the recent reductions in TAC have not been observed. Therefore the working group considers that fishing mortality has not been reduced to the extent estimated by the models that rely on recorded catch at age data.

The reduction in survey estimated mortality is less marked and the working group considers that missing catches are biasing the catch at age analysis towards underestimates of mortality.

The catch at age analysis models have a retrospective bias in underestimating F. The retrospective bias is derived from conflicting signals in the survey catch rates and the populations estimated from the recorded catch at age data. The magnitude of any missing catch will influence the degree of bias in the terminal estimates. Hence if TACs are severely restrictive and fishing mortality rates remain constant from one year to the next, F will be underestimated and SSB overestimated in the terminal year. Therefore the F in 2002 is likely to be revised upwards in future years.

Given the uncertainties introduced to the catch at age analyses by under-reporting of the catch, the working group concluded that the catch at age analyses can only be used to indicate the current dynamics of the stock trajectory and not absolute levels of spawning stock biomass or recent exploitation rates.

For the purposes of monitoring the stock the working group recommends a greater reliance on the fishery independent survey indices which are considered to be unbiased.

With regard to the caveats listed above the Working Group presents the results of the XSA model fit only for the purpose of illustrating the dynamic history of the North Sea cod stock. The model results should not be used to provide deterministic catch forecasts for management and should only be used for scenario analysis.

### 3.5 Historic Stock Trends

## The Working Group presents the results of the XSA model fit only for the purpose of illustrating the trends in the North Sea cod stock dynamics.

Historic trends in mean fishing mortality, landings, spawning stock biomass, and recruitment are shown in Table 3.4.8 and Figure 3.4.23

Mean fishing mortality (F2-4) has shown a more or less continuous increase over the whole period up to the early 80 's and remained at a high level ( $\mathrm{F} \approx 0.9$ ) throughout the 1990s. The catch at age analyses indicate a sharp increase in F over 1997 to 2000 from about $\mathrm{F}=0.9$ to $\mathrm{F}=1.2$. F is currently estimated to be declining however the rate of decline is uncertain.

Spawning biomass decreased from a peak of $255,000 \mathrm{t}$ in 1971 to a historical low in 2001. In 2002 SSB is estimated to have shown a small increase. However, the absolute level of recent SSB is uncertain due to uncertainties in the reported catch. Recent catch at age analyses of this stock have shown a tendency to over estimate SSB. SSB has remained below $\mathbf{B}_{\mathrm{pa}}(150,000 \mathrm{t})$ since 1983 and below $100,000 \mathrm{t}$ since the late 1980 s . SSB has been below $\mathbf{B}_{\mathrm{lim}}$ for four consecutive years.

Recruitment has fluctuated considerably since 1963 and the frequency of poor year classes has increased since 1985. The 1996 year class is still estimated as the largest since the 1985 year-class, but the 1997 and subsequent year classes at age 1 have been poor.

Historically, recorded landings increased in the 1960s and early 1970s to reach a peak of 350000 t in 1972. After a further peak of about 335000 t in 1981, recorded landings have declined in line with TAC reductions to an historical low in 2000 and 2001.

### 3.6 Recruitment

Three of the last five year classes recruiting to the stock have been the lowest on record (Figure 3.4.23). The 2002 year class indices from all of the survey series (Table 3.6.1) indicate that the incoming year class will be as low as the lowest values in the recent time series. The survey series indices are well correlated with the later recruitment to the fishery.

Table 3.6.1 Recent survey recruitment indices for Cod in Subarea IV and Divisions IIIa and VIId.

Year class	1996	1997	1998	1999	2000	2001	2002
Eng GFS	6147	179	557	1448	264	1199	206
Sco GFS	999	104	440	700	69	274	119
IBTS	4000	270	210	660	280	750	63

### 3.7 Short-Term Forecast

No short-term forecast is presented in the report. For reasons discussed in Section 3.4 (Exploratory analyses) the Working Group considers that, as a direct result of the uncertainties introduced to the catch at age analysis by misreporting and discarding, the XSA results can only be used to examine the recent dynamics of the stock. The estimates should not be used as a basis for deriving catch options for management.

In order to illustrate the possible dynamics of the stock under management measures introduced in 2003 the working group ran deterministic projections for two years. The scenarios examined were:

Scenario 1 - An assumption that fishing mortality has been reduced to the levels estimated by the XSA model for 2002 and remains at that level for 2003 and 2004.

Scenario 2 - Constant fishing at the average level of fishing mortality recorded during 2000 - 2002 in 2003 and 2004. The average fishing mortality of recent years is lower than that of the high values observed in the late 1990's but higher than the estimate for 2002. The average allows for some effects of recent regulations and decommissioning to be taken into account in the projection, but not to the same extent as the reduction in fishing mortality estimated for the final year.

Scenario 3 - An assumption that the TAC for 2003 is observed and that the resulting fishing mortality remains at that level in 2004.

Scenario 4 - Fishing mortality is reduced from the value estimated last year by $65 \%$, the working groups estimate of the intended effect of the "Days at sea" regulations.

Scenario 5 - Fishing at the average level of fishing mortality recorded during 2000-2002 in 2003 and 2004, with a reduction in mortality at ages 1 and 2 due to the change to 120 mm mesh for trawlers in the North Sea. Because the effect of the change in mesh on discard proportions at age could not be predicted it was assumed that all discarding of 1 and 2 group cod was removed by the mesh change. An unlikely event but an assumption that allows the potential benefits of the mesh change to be explored.

The forecasts were calculated using the exploitation patterns described above. Weights at age were taken as the average over 2000 - 2002. Maturity and natural mortality as presented in Table 3.2.1. Recruitment in each year was calculated as the geometric mean of the most recent low year classes, 1997-2001.

Section 3.4.9 presents an analysis of the sensitivity of the catch at age analysis model results to the omission of discards. Including discards into the analysis increases recruitment levels. If recent management measures have had an effect on the rate of discarding and reduction in mortality of juveniles then it might be expected that the stock would exhibit faster rates of recovery. Therefore the projection scenarios 1-5 were also carried out using the estimates of population abundance and mortality estimated by the catch at age analysis including discards to examine the sensitivity of the projected stock dynamics to the omission.

The Working Group considers that, as a direct result of the uncertainties introduced to the catch at age analysis by misreporting and discarding, the projection results can only be used to examine the recent dynamics of the stock not absolute levels of stock abundance. Therefore only SSB trends are presented in terms of relative change from the level of the 2003 spawning stock biomass.

Simulation of the effect of the change to 120 mm mesh resulted in an insignificant change to fishing mortality at age when the selection pattern is estimated without discards. Therefore the projections for this scenario are only included in the results of the projections that include discard mortalities. In addition, for the no-discard projections, a $65 \%$ reduction from the status quo level of fishing mortality (as estimated last year) resulted in a similar level of mortality to that estimated for 2002. Therefore in the no-discards analysis the results of scenario 1 are repeated in scenario 4.

The results of the stock projections are given in Table 3.7.1. The spawning stock biomass trends of the projections that include discards increase at a marginally faster rate than those without.

If compliance with the new mesh regulations is $100 \%$ the improved exploitation pattern has a beneficial effect and the SSB recovers faster. However, the improvement is not as great as the projections with reduced F. The projection examining the effects of mesh change will over-estimate the recovery rate of the stock because it was assumed that all discarding ceased. Taken in isolation the mesh changes will not provide a sufficient rate of recovery to rebuild the stock.

The projections with and without discards have the common result that fishing mortality on the stock has to be reduced substantially in order to rebuild the biomass. The greater the reduction in mortality the faster the rate of rebuilding. A strong reduction in fishing effort for a short time period will have a far greater effect than a lesser reduction over a longer time period. A stock and recruitment relationship has not been used in these projections, only the average of recent low recruitment. Therefore, the rates of recovery show the potential for growth of the remaining stock biomass.

Table 3.7.1 The percentage change in spawning stock biomass relative to the biomass in 2003 for a range of constant fishing mortality scenarios.

## Without discards

Scenario		F factor	SSB2004	
1	SSB2005			
1	F2002	0.71	$21 \%$	$40 \%$
2	Fsq	1.00	$-6 \%$	$-8 \%$
3	FTAC	0.30	$72 \%$	$172 \%$
4	F65\% 99-01	0.69	$21 \%$	$40 \%$

## With discards

	Scenario			F factor
SSB2004		SSB2005		
1	F2002	0.71	$28 \%$	$56 \%$
2	Fsq	1.00	$0 \%$	$0 \%$
3	FTAC	0.30	$90 \%$	$234 \%$
4	F65\% 99-01	0.76	$24 \%$	$46 \%$
5	Fsel	0.97	$8 \%$	$18 \%$

No medium-term predictions have been undertaken for cod at the present meeting.

### 3.9 Biological Reference Points

The Precautionary Approach reference points for cod in IIIa (Skagerrak), IV and VIId have been unchanged since 1999. They are:

## Reference point:

Blim 70	000 t.	Bpa 150000 t.
Flim:	0.86	Fpa 0.65

## Technical basis:

Blim Rounded Bloss. The lowest observed spawning stock biomass.
Bpa The previously agreed MBAL and affords a high probability of maintaining
SSB above Blim, taking into account the uncertainty of assessments. Below
this value the probability of below average recruitment increases. Previous
MBAL and signs of impaired recruitment below: 150000 t .

Flim Floss

Fpa Approx. 5th percentile of Floss

Changes to the range of ages used for the assessment of this stock resulting from the lack of reliable tuning information at the oldest ages necessitate a recalculation of the PA reference points for this stock. The PA soft program was therefore applied to the stock and exploitation estimates derived from the XSA model fit based on the fit to landings data only. The stock and recruit time series used for the estimation of reference points was 1963 - 2001, that is the 1962 -2000 year classes. The final year of XSA estimates was removed from the estimation procedure.

The PAsoft diagnostic program was used to examine the appropriate settings for the span of the calculation for Gloss. There is a well-defined minimum value in the Akaike information index at a span of 0.8 (Figure 3.9.1) therefore this value was used in the estimation of the reference point.

Figure 3.9.2 and Table 3.9.1 present the PAsoft output from the reference point estimation procedure.

The revised assessment age range has not significantly altered the level or trend in the estimates of SSB and recruitment. Therefore the structure of the stock and recruitment data pairs is relatively unchanged. This implies that the position of the break point in the stock and recruitment plot is unchanged at about $150,000 \mathrm{t}$. There remains a high probability of poor recruitment at SSB below this value. ACFM has previously recommended that this value should be used as Bpa but this is currently under review.

Using the previously applied criteria for the selection of fishing mortality reference points (ACFM report 2002) Flim = Floss, the new value of Floss estimated for this stock is 0.91 based on the median of the bootstraped value derived from Gloss. This compares to the value of 0.86 based on the $1-11+$ age range and $\operatorname{Fbar}(2-8)$ used previously by this working group. Using the previous ACFM formulation Fpa is therefore taken from the 5th percentile of Floss and is estimated to be 0.72 . This compares with the previous value of 0.65 .

The working group notes that the Floss estimate may be an over-estimate. The PAsoft diagnostic plots indicate that non-parametric smoother is over estimating the recent low recruitment near to the origin of the stock and
recruitment relationship. Given that region around the origin of the stock and recruitment curve is currently being explored, and that there is a well defined curvature in the pairs of estimates, the working group consider that a parametric model estimate of the slope at the origin may be more robust to random variation in recent recruitment. This should be examined in detail before the Flim and Fpa values are revised.

The results of long-term equilibrium yield and SSB-per-recruit analyses are given in Figure 3.9.2.

The estimates of biological reference points and management reference points for cod are given in the text tables below.

Biological reference point	2002 estimate	2003 Estimate
$\mathbf{F}_{\max }$	0.25	0.3
$\mathbf{F}_{0.1}$	0.15	0.18
$\mathbf{F}_{\text {med }}$	0.82	0.78
$\mathbf{F}_{\text {high }}$	1.19	1.15
Management reference point		
$\mathbf{B}_{\text {lim }}$	$70,000 \mathrm{t}$	$70,000 \mathrm{t}$
$\mathbf{B}_{\mathrm{pa}}$	$150,000 \mathrm{t}$	$150,000 \mathrm{t}$
$\mathbf{F}_{\text {lim }}$	0.86	0.91
$\mathbf{F}_{\mathrm{pa}}$	0.65	0.72

## $3.10 \quad$ State of the stock

The general perception of the cod stock remains unchanged from recent assessments. All sources of information indicate that the mortality rate has remained high since the late 1970s. There has been an apparent reduction in fishing mortality in 2001 and 2002. However, the magnitude of the reduction is uncertain.

The proportion of mature individuals in the stock and the catches remains very low. Only about 5\% of individuals at age 1 survive to age 5 .

Survey indices and results from models fitted to the commercial catch at age data indicate that the spawning stock biomass is at about $20-25 \%$ of the level it was in the 1980 's. The survey data indicate that the relative decline in spawning biomass is less steep than the commercial catch data suggest. This difference in the estimated trends is considered to be the result of underestimated catch from the commercial fishery. The bias is considered to have been greater in recent years when restrictive TACs have not been accompanied by simultaneous and sufficiently restrictive measures to reduce fishing effort.

Recruitment of 1 year old cod has varied considerably since the 1960s but since 1997 average recruitment has been lower than any other time. Although reduced recruitment is indicated by the survey catch at age data, this may be exaggerated in the model estimates by underestimated commercial catch. There are no indications of a strong year-class of cod since 1996, a year class that was a prominent feature in all surveys and was heavily exploited by the fishery at ages 1-5. The incoming 2002 year class is estimated to be close to the lowest on record.

The comparison of the historic performance of the assessment for North Sea cod is shown in figure 3.10.1. The recent two assessments are very consistent.

### 3.11 Management considerations

There is a need to reduce overall fishing mortality on North Sea cod significantly in order to allow more fish to reach sexual maturity and increase the probability of good recruitment. In addition, there is also a need to reduce the mortality rate on younger age groups (1-3). The exploitation pattern has remained the same since the early 1960s despite various changes to technical regulations (gear modifications and mesh size changes) aimed at improving it.

Cod is a specific target for some fleets, but the majority of cod in the North Sea are caught (landings and discards) in mixed demersal fisheries. This means it is important to take into account the impact of the management of cod on other stocks, especially haddock and whiting, although fishing opportunities for other commercially important stocks will also be affected. The reverse is also true. The linkage is explored elsewhere in Section 15.

Recent measures to protect North Sea cod, such as the 2001 closed area, and proposals to increase mesh size, will most likely have a greater beneficial effect to stocks other than cod. Any benefits for cod by such measures are likely to be through reduced discarding of fish below the minimum landing size. The effects of the 2001 closed area and recent recovery proposals are examined in Section 14.

It is considered that conclusions drawn from the trends in the historic stock dynamics and exploitation rates are robust to the uncertainty in the level of recent recorded catches. A sensitivity analysis has shown that the estimated historic stock trends are largely unaffected by the measured rate of discarding, or the inclusion of variable natural mortality rates from multi-species VPA.

### 3.11.1 The effect of decommissioning and trends in fishing effort on fishing mortality rates

During the 1990s and again in 2001-2002, successive rounds of decommissioning have resulted in the removal of physical capacity from the fleets of EU member states. This has partly been in response to achieving MAGP targets and also in response to financial incentives offered under the recovery plans for cod and hake.

In addition to decommissioning, effort has been removed from the fishery by boats targeting other species. Trends in reported fishing effort for some of the main fleets exploiting cod are given in section 2.1. However, it should be noted that reporting of effort is not a mandatory field on the EU logbook, and therefore the Working Group considers that the data are not a true representation of the actual deployed fishing effort.

While reported effort appears to have declined and physical capacity has been removed from national fleets, it is not known what effect, if any, this has had on fishing mortality. This is because under relative stability, the national quotas are reallocated to the remaining vessels. If those vessels are still able to catch their share of the quota, this will not result in any reduction in fishing mortality.

If the quota share of the decommissioned vessels was redistributed to the remaining vessels, and the remaining vessels are able to catch the TAC, the most likely effect of decommissioning would be a reduction in the amount of catch unaccounted for by discarding or under-reporting of landings. If discarding is reduced because there is a better match between the capacity of the fleets to catch cod and the available TAC, then a reduction in fishing mortality would be expected.

In 2001 and 2002, TAC reductions implied reductions in fishing mortality of greater than $50 \%$. The WG did not have access to sufficient data to assess the potential reductions in deployed fishing effort over the recent period. However, decommissioning alone would not have resulted in the required reduction in fishing mortality and the reported effort does not show any stepwise change that would be sufficient to effect such large changes in fishing mortality.

Survey data also indicate a reduction in mortality over 2000-2002, however, the reduction does not appear as great as that suggested by the recorded catches.

Table 3.1.1 COD in IIIa (Skagerrak), IV and VIId: Nominal landings (in tonnes) 1984-2002 as officially reported to ICES and as used by the Working Group

Sub-area IV										
Country	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
Belgium	5,804	4,815	6,604	6,693	5,508	3,398	2,934	2,331	3,356	3,374
Denmark	46,751	42,547	32,892	36,948	34,905	25,782	21,601	18,998	18,479	19,547
Faroe Islands	-	71	45	57	46	35	96	23	109	46
France	8,129	4,834	8,402	8,199	8,323	2,578	1,641	975	2,146	1,868
Germany	13,453	7,675	7,667	8,230	7,707	11,430	11,725	7,278	8,446	6,800
Netherlands	25,460	30,844	25,082	21,347	16,968	12,028	8,445	6,831	11,133	10,220
Norway	7,005	5,766	4,864	5,000	3,585	4,813	5,168	6,022	10,476	8,742
Poland	7	-	10	13	19	24	53	15	-	-
Sweden	575	748	839	688	367	501	620	784	823	646
UK (E/W/NI)	35,605	29,692	25,361	29,960	23,496	18,375	15,622	14,249	14,462	14,940
UK (Scotland)	54,359	60,931	45,748	49,671	41,382	31,480	31,120	29,060	28,677	28,197
United Kindom										
Total Nominal Catch	197,148	187,923	157,514	166,806	142,306	110,444	99,025	86,566	98,107	94,380
Unallocated landings	7,723	6,773	11,292	15,288	14,253	5,256	5,726	1,967	-758	10,200
WG estimate of total										
landings	204,871	194,696	168,806	182,094	156,559	115,700	104,751	88,533	97,349	104,580
Agreed TAC	215,000	250,000	170,000	175,000	160,000	124,000	105,000	100,000	100,000	101,000
	0.95	0.78	0.99	1.04	0.98	0.93	1.00	0.89	0.97	1.04
Division VIId										
Country	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
Belgium	331	501	650	815	486	173	237	182	187	157
Denmark	-	-	4	-	+	+	-	-	1	1
France	2,492	2,589	9,938	7,541	8,795 n/	a		n/a	2,079	1,771
Netherlands	-	-	-	-	1	1	-	-	2	-
UK (E/W/NI)	282	326	830	1,044	867	562	420	341	443	530
UK (Scotland)	-	-	-	-	-	-	7	2	22	2
United Kingdom										
Total Nominal Catch	3,105	3,416	11,422	9,400	10,149 n/	a		n/a	2,734	2,461
Unallocated landings	419	-111	3,722	4,819	580	-	-	-	-65	-29
WG estimate of total										
landings	3,524	3,305	15,144	14,219	10,729	5,538	2,763	1,886	2,669	2,432
Division Illa (Skagerrak)										
Country	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
Denmark	17,443	14,521	18,424	17,824	14,806	16,634	15,788	10,396	11,194	11,997
Sweden	1,981	1,914	1,505	1,924	1,648	1,902	1,694	1,579	2,436	2,574
Norway	311	193	174	152	392	256	143	72	270	75
Germany	-	-	-	-	-	12	110	12		-
Others	156	-	-	-	106	34	65	12	102	91
Norwegian coast *	1,187	990	917	838	769	888	846	854	923	909
Danish industrial by-catch *	1,084	1,751	997	491	1,103	428	687	953	1,360	511
Total Nominal Catch	19,891	16,628	20,103	19,900	16,952	18,838	17,800	12,071	14,002	14,737
Unallocated landings	0	0	0	0	0	-141	0	-12	0	0
WG estimate of total										
landings	19,891	16,628	20,103	19,900	16,952	18,697	17,800	12,059	14,002	14,737
Agreed TAC	28,000	29,000	29,000	22,500	21,500	20,500	21,000	15,000	15,000	15,000
Sub-area IV, Divisions VIId and IIIa (Skagerrak) combined										
	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
Total Nominal Catch	220,144	207,967	189,039	196,106	169,407	n/a	n/a	n/a	114,843	111,578
Unallocated landings	8,142	6,662	15,014	20,106	14,833	-	-	-	-823	10,171
WG estimate of total landings	228,286	214,629	204,053	216,212	184,240	139,936	125,314	102,478	114,020	121,749
* The Danish industrial by-ca n/a not available ** provisional	and the	wegian c	ast catche	are not inc	uded in the	(WG estim	te of) tota	landings o	Division II	(Skage
Division IIla (Skagerrak) landings not included in the assessment										
Country	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
Norwegian coast *								854.00	923.00	909.00
Danish industrial by-catch								953.00	1,360.00	511.00
Total				1,807.00	2,283.00	1,420.00				

Table 3.1.1(cont) COD in IIIa (Skagerrak), IV and VIId: Nominal landings (in tonnes) 1984-2002 as officially reported to ICES and as used by the Working Group

	1994	1995	1996	1997	1998	1999	2000	2001	2002
Sub-area IV									
Country									
Belgium	2,648	4,827	3,458	4,642	5,799	3,882	3,304	2,470	2,616
Denmark	19,243	24,067	23,573	21,870	23,002	19,697	14,000	8,358	9,022
Faroe Islands	80	219	44	40	102	96			
France	1,868	3,040	1,934	3,451	2,934	1,750	1,222	717	1,777
Germany	5,974	9,457	8,344	5,179	8,045	3,386	1,740	1,810	2,018
Netherlands	6,512	11,199	9,271	11,807	14,676	9,068	5,995	3,574	4,707
Norway	7,707	7,111	5,869	5,814	5,823	7,432	6,353	4,383	4,994
Poland	-	-	18	31	25	19	18	18	39
Sweden	630	709	617	832	540	625	640	661	463
UK (E/W/NI)	13,941	14,991	15,930	13,413	17,745	10,344	6,543	4,087	3,112
UK (Scotland)	28,854	35,848	35,349	32,344	35,633	23,017	21,009	15,640	15,416
United Kindom									
Total Nominal Catch	87,457	111,468	104,407	99,423	114,324	79,316	60,824	41,718	44,164
Unallocated landings	7,066	8,555	2,161	2,746	7,779	-924	-1,057	-745	-303
WG estimate of total landings	94,523	120,023	106,568	102,169	122,103	78,392	59,767	40,973	43,861
Agreed TAC	102,000	120,000	130,000	115,000	140,000	132,400	81,000	48,600	49,300
Division VIId									
Country	1994	1995	1996	1997	1998	1999	2000	2001	2002
Belgium	228	377	321	310	239	172	110	93	51
Denmark	9	-	-	-	-	-	-	-	-
France	2,338	3,261	2,808	6,387	7,788		3,084	1,677	1,341
Netherlands	-	-	+	-	19	3	4	17	6
UK (E/W/NI)	312	336	414	478	618	454	385	249	145
UK (Scotland)	+	+	4	3	1	-	-	-	-
United Kingdom									
Total Nominal Catch	2,887	3,974	3,547	7,178	8,665	629	3,583	2,036	1,543
Unallocated landings	-37	-10	-44	-135	-85	6,229	-1,258	-463	1,554
WG estimate of total landings	2,850	3,964	3,503	7,043	8,580	6,858	2,325	1,573	3,097
Division Illa (Skagerrak)									
Country	1994	1995	1996	1997	1998	1999	2000	2001	2002
Denmark	11,953	8,948	13,573	12,164	12,340	8,734	7,683	5,901	5,524
Sweden	1,821	2,658	2,208	2,303	1608	1,909	1,350	2,333	1,716
Norway	60	169	265	348	303	345	301	757	643
Germany	301	200	203	81	16	54	9	32	83
Others	25	134	-	-	-	-	-	-	
Norwegian coast *	760	846	748	911	976	788	624	846	
Danish industrial by-catch *	666	749	676	205	97	62	99	687	
Total Nominal Catch	14160	12109	16249	14896	14267	11042	9343	9023	7966
Unallocated landings	-899	0	0	50	1,064	-68	-66	-1,937	-498
WG estimate of total landings	13,261	12,109	16,249	14,946	15,331	10,974	9,277	7,086	7,468
Agreed TAC	15,500	20,000	23,000	16,100	20,000	19,000	11,600	7,000	7,100
Sub-area IV, Divisions VIId and IIIa (Skagerrak) combined									
	1994	1995	1996	1997	1998	1999	2000	2001	2002
Total Nominal Catch	104,504	127,551	124,203	121,497	137,256	90,987	73,750	52,777	53,673
Unallocated landings	6,130	8,545	2,117	2,661	8,758	5,238	-2,381	-3,145	753
WG estimate of total landings * The Danish industrial bycatch and the Norwegian coast catches are not included in the (WG estimate of) total landings of Division IIIa (Skagerrak) n/a not available ** provisional	110,634	136,096	126,320	124,158	146,014	96,225	71,369	49,632	54,426
Division IIIa (Skagerrak) landings not included in the assessment									
Country	1994	1995	1996	1997	1998	1999	2000	2001	2002
Norwegian coast *	760.00	846.00	748.00	911.00	976.00	788.00	624.00	846.00	
Danish industrial by-catch	666.00	749.00	676.00	205.00	97.00	62.00	99.00	687.00	
Total	1,426.00	1,595.00	1,424.00	1,116.00	1,073.00	850.00	723.00	1,533.00	0.00

Table 3.1.2 Estimated proportions of cod discarded from observations aboard English vessels in the North Sea 1994-2002

		Year								
Quarter	Age	1994	1995	1996	1997	1998	1999	2000	2001	2002
	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1	100.0	99.9	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	2	25.1	30.1	9.2	42.4	48.6	67.1	15.1	50.9	43.9
	3	1.0	0.0	0.0	0.0	0.0	17.8	0.0	0.0	7.2
	4	0.0	0.0	0.0	0.0	0.0	4.9	0.0	0.0	0.0
	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1	100.0	91.4	100.0	99.8	64.9	0.0	96.7	97.0	93.6
2	2	29.7	8.0	5.1	16.9	33.9	0.0	3.1	20.3	63.6
	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.8
	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0
	1	92.3	74.1	58.1	78.8	90.8	77.4	87.0	89.5	32.9
3	2	11.8	6.7	5.3	22.1	20.1	4.5	11.9	13.0	24.8
	3	0.0	0.0	0.0	0.0	0.0	1.4	0.0	0.0	0.0
	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0
	1	39.7	35.6	72.8	68.3	55.0	75.9	63.8	56.9	60.7
4	2	0.0	0.0	0.0	14.4	1.2	0.0	17.2	3.5	37.3
	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.9	0.0
	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 3.2.1 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Natural mortality and proportion mature by age-group.

Age group	Natural mortality	Proportion mature
1	0.8	0.01
2	0.35	0.05
3	0.25	0.23
4	0.2	0.62
5	0.2	0.86
6	0.2	1.0
$7+$	0.2	1.0

Table 3.2.2 COD in IIIa (Skagerrak), IV and VIId: Landings numbers at age.

Run title: North Sea/Skaggerak/Eastern Channel 6/6/2002
At 12/09/2003 12:10

Table 1	Catch numbers at age			Numbers*10**-3						
AGEIYEAR	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	3214	5030	15813	18224	10803	5829	2947	54493	44824	3832
2	42591	22493	51888	62516	70895	83836	22674	33917	155345	187686
3	7030	20113	17645	29845	32693	42586	31578	18488	17219	48126
4	3536	4308	9182	6184	11261	12392	13710	13339	6754	5682
5	2788	1918	2387	3379	3271	6076	4565	6297	7101	2726
6	1213	1818	950	1278	1974	1414	2895	1763	2700	3201
7	81	599	658	477	888	870	588	961	893	1680
8	492	118	298	370	355	309	422	209	458	612
9	13	94	51	126	138	151	147	186	228	390
10	6	12	75	56	40	111	46	98	77	113
+gp	0	4	8	83	17	24	78	40	94	18
TOTAL	60965	56505	98957	122538	132335	153600	79651	129791	235691	254064
TONSLAND	116457	126041	181036	221336	252977	288368	200760	226124	328098	353976
SOP\%	100	100	100	100	100	100	100	100	100	100
AGEIYEAR	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
1	25966	15562	33378	5724	75413	29731	34837	62605	20279	66777
2	31755	58920	47143	100283	51118	175727	91697	104708	189007	65299
3	54931	11404	18944	18574	25621	17258	44653	35056	34821	60411
4	14072	15824	4663	6741	4615	9440	4035	12316	9019	9567
5	2206	4624	7563	1741	2294	3003	3395	1965	4118	3476
6	1109	961	2067	3071	836	1108	712	1273	785	2065
7	1060	438	449	924	1144	410	398	495	604	428
8	489	395	196	131	371	405	140	197	134	236
9	80	332	229	67	263	153	158	74	65	78
10	58	81	95	63	26	36	42	55	37	27
+gp	162	189	63	43	96	44	17	25	21	16
TOTAL	131888	108729	114791	137361	161797	237314	180085	218770	258889	208380
TONSLAND	239051	214279	205245	234169	209154	297022	269973	293644	335497	303251
SOP\%	100	100	100	100	100	100	101	100	100	99
AGEIYEAR	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
1	25733	64751	8845	100239	24915	21480	22239	11738	13466	27668
2	129632	66428	118047	32437	128282	55330	36358	54290	23456	32059
3	21662	31276	18995	34109	9800	43955	18193	11906	16776	8682
4	11900	4264	7823	5814	8723	3134	9866	4339	3310	5007
5	2830	3436	1377	2993	1534	2557	1002	2468	1390	1060
6	1258	1019	1265	604	1075	655	1036	310	1053	491
7	595	437	373	556	235	295	251	310	225	329
8	181	244	173	171	215	66	140	54	139	52
9	90	60	79	69	55	63	27	60	28	40
10	28	45	16	44	48	23	31	12	4	17
+gp	23	20	31	23	12	18	10	9	10	9
TOTAL	193932	171978	157022	177058	174895	127577	89153	85496	59857	75415
TONSLAND	259287	228286	214629	204053	216212	184240	139936	125314	102478	114020
SOP\%	100	100	100	101	100	100	100	99	100	99
AGEIYEAR	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
1	4783	15557	15717	4938	23769	1255	5941	8294	2217	7392
2	55272	25279	63586	36805	29194	81737	9731	23033	20804	7731
3	11360	21144	12943	23364	18646	16958	32224	6472	6192	13131
4	3190	3083	5301	3169	6499	5967	4034	6697	1141	2450
5	1577	870	802	1860	1238	2402	1445	1021	1078	357
6	435	519	286	399	700	509	626	385	144	345
7	204	142	151	162	153	236	223	139	84	51
8	108	58	42	88	47	41	91	40	27	31
9	18	32	15	43	14	16	14	18	14	13
10	10	7	13	4	15	4	10	5	6	4
+gp	13	16	5	8	10	12	2	1	1	1
TOTAL	76970	66706	98861	70837	80285	109137	54341	46105	31710	31506
TONSLAND	121749	110634	136096	126320	124158	146014	96225	71371	49632	54427
SOP\%	99	99	98	100	100	100	100	100	100	100

Table 3.2.3 COD in IIIa (Skagerrak), IV and VIId: Landings weight at age

Run title : ' North Sea/Skaggerak/Eastern Channel 6/6/2002 At 12/09/2003 12:09

Table 2	Catch weights at age (kg)									
AGEIYEAR	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	0.538	0.496	0.581	0.579	0.590	0.640	0.544	0.626	0.579	0.616
2	1.004	0.863	0.965	0.994	1.035	0.973	0.921	0.961	0.941	0.836
3	2.657	2.377	2.304	2.442	2.404	2.223	2.133	2.041	2.193	2.086
4	4.491	4.528	4.512	4.169	3.153	4.094	3.852	4.001	4.258	3.968
5	6.794	6.447	7.274	7.027	6.803	5.341	5.715	6.131	6.528	6.011
6	9.409	8.520	9.498	9.599	9.610	8.020	6.722	7.945	8.646	8.246
7	11.562	10.606	11.898	11.766	12.033	8.581	9.262	9.953	10.356	9.766
8	11.942	10.758	12.041	11.968	12.481	10.162	9.749	10.131	11.219	10.228
9	13.383	12.340	13.053	14.059	13.589	10.720	10.384	11.919	12.881	11.875
10	13.756	12.540	14.441	14.746	14.271	12.497	12.743	12.554	13.147	12.530
+gp	0.000	14.998	15.667	15.672	19.016	11.595	11.568	14.367	15.544	14.350
SOP	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table 3.3.1 COD in IIIa (Skagerrak), IV and VIId: Survey tuning data sets

```
"North Sea/Skagerrak/Eastern Channel Cod Tuning data" "Updated 2 Sept 2003"
103
SCOGFS_IV
1982 2003
1 1 0.50.75
1 6
100614 351572 183 92 59 14 5
100 325780 181 19775 23 15 0
100 819 391 253 50 57 16 5 2
10066 1143 197 112 30 24 6 10
100 801 104 39657 39 19 6 0
100 219695 34 92 29 7
100 162 288 165 25 33 12 4 0
10056113516895 20 8 5 0
```



```
100303154133 13 6 4 2 0
100 642 193 72 67 29 18 12 2
100 347749101 25 12 3 0 1
1001158 33428831 12 7 2 0
1004751443 130 85 11 7 7 4 0
100 318 356542 74 34 4 0 0
10099927822410222 10 2 0
1001042134 11657 37 8 2 0
10044010361627 10 6 3 0
10070023728}444008030
```



```
10027412021511 6 5 0 0
100 119 294 35 51 5 0 0 0
ENGGFS_IV_GOV
1992 2003
1 1 0.50.75
1.
100 3708.60240.98 70.66 54.31 11.97 2.36
1001128.36988.60 124.95 24.03 24.81 3.02
100 4008.20448.86 233.85 28.41 7.58 9.40
100 1561.811940.76181.19 84.49 2.47 2.47
1001023.151102.44260.28 29.12 30.35 0.00
100 6147.36431.90 82.50 38.34 2.26 9.04
100178.75 2122.30125.01 12.65 10.28 7.45
100 557.26 84.00 359.35 19.74 9.46 0.00
100 1448.25299.61 22.94 48.34 0.00 4.52
100 264.39 803.00 49.11 2.83 6.99 2.36
1001199.47222.01 193.28 25.42 0.00 0.00
100 205.96 270.40867.184 49.248 5.32 5.472
```

Table 3.3.1(cont.) COD in IIIa (Skagerrak), IV and VIId: Survey tuning data sets.

```
IBTS_Q1_IV
1976 2003
1 1 0 0.25
1 5
100790 1990 -1 -1 -1
100 3670 320-1 -1 -1
1001290 2930 -1 -1 -1
100 990 930-1 -1 -1
1001690 1480 -1 -1 -1
100290 2550 -1 -1 -1
100 920 670-1 -1 -1
100 3901660 270 180 80
100 1520 800 390 90 100
10090 1760 350 170 50
1001700 360680230130
1008802880 14017060
10036061058060 90
1001310 630500 23040
1003401520 200 100 100
10024041034080 40
1001300 45012010030
1001270 1990 200 70 60
1001480 44030080 50
1009702210 280 110 30
10035080060070 60
1004000 69023011040
1002702640 200 90 50
10021016081080 50
10066038070 20040
10028087017020 40
10075032041050 10
10063.3 301.7 102.3 137 39.7
IBTS_Q3
1991 2002
1 1 0.5 0.75
1 5
10082025012020 10
1004380 36070 50 20
100 1000 800 90 20 10
1004320 62024020 10
1001810 1740 150 80 10
1001030 53018040 20
1006050 55017060 10
1002402000 13040 30
1001200 100 390 30 10
1001070 230 20 50 10
10047055080 20 20
100 1150 195.9 154.3 43.9 10
```

Table 3.4.1 COD in IIIa (Skagerrak), IV and VIId: Separable VPA diagnostic output

Title : Cod North Sea/Skaggerak/Eastern Channel 6/6/2002

At 2/09/2003 16:31

Separable analysis
from 1963 to 2002 on ages 1 to 10
with Terminal F of 1.000 on age 3 and Terminal S of .850
Initial sum of squared residuals was 399.640 and
final sum of squared residuals is 49.205 after 148 iterations

Matrix of Residuals

Years	$1963 / 64$	$1964 / 65$	$1965 / 66$	$1966 / 67$	$1967 / 68$	$1968 / 69$	$1969 / 70$	$1970 / 71$	$1971 / 72$
Ages									
$2 / 3$	-0.244	-0.721	0.141	0.248	-0.482	0.053	-0.902	0.528	0.167
$3 / 4$	-0.057	0.026	0.223	0.399	0.191	0.493	-0.135	0.35	0.821
$4 / 5$	0.04	-0.122	0.163	-0.117	-0.22	-0.017	-0.08	-0.222	0.016
$5 / 6$	-0.151	-0.014	-0.214	-0.217	0.004	-0.272	0.096	-0.001	-0.084
$6 / 7$	0.236	0.414	-0.034	-0.275	0.102	-0.014	0.364	-0.05	-0.286
$7 / 8$	-0.98	-0.041	-0.285	-0.48	0.207	-0.306	0.16	-0.119	-0.508
$8 / 9$	1.205	0.255	0.164	0.378	0.173	-0.117	0.115	-0.777	-0.548
$9 / 10$	-0.201	-0.265	-0.7	0.627	-0.378	0.421	-0.201	0.286	0.087
							0	0	0
TOT	0	0	0	0	0	0	0	0	0
WTS	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001


Years	$1972 / 73$	$1973 / 74$	$1974 / 75$	$1975 / 76$	$1976 / 77$	$1977 / 78$	$1978 / 79$	$1979 / 80$	$1980 / 81$	$1981 / 82$
$1 / 2$	-0.793	0.606	0.419	0.31	-0.704	0.703	0.135	0.439	0.288	0.381
$2 / 3$	0.567	0.506	0.719	0.38	0.893	0.647	0.62	0.53	0.49	0.672
$3 / 4$	-0.01	0.174	-0.068	-0.081	0.366	-0.005	0.108	0.298	0.164	0.246
$4 / 5$	-0.291	0.045	-0.221	-0.125	0.055	-0.568	-0.319	-0.266	-0.094	-0.086
$5 / 6$	-0.326	-0.23	-0.146	-0.2	-0.28	-0.256	0.111	0.008	-0.257	-0.331
$6 / 7$	0.008	-0.009	-0.069	-0.171	0.097	-0.147	-0.173	-0.487	-0.301	-0.29
$7 / 8$	0.003	-0.082	-0.151	0.125	-0.107	0.055	-0.253	-0.274	0.13	-0.078
$8 / 9$	0.996	-0.5	-0.233	0.15	-1.535	0.088	-0.192	-0.154	0.128	-0.279
$9 / 10$	0.964	-0.809	0.559	0.46	0.209	1.279	0.248	0.341	-0.194	0.145
			0	0	0				0	0
TOT	0	0	0	0	0	0	0	0	0	
WTS	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

Table 3.4.1(cont.) COD in IIIa (Skagerrak), IV and VIId: Separable VPA diagnostic output

Years	$1982 / 83$	$1983 / 84$	$1984 / 85$	$1985 / 86$	$1986 / 87$	$1987 / 88$	$1988 / 89$	$1989 / 90$	$1990 / 91$	$1991 / 92$
$1 / 2$	0.683	0.385	0.729	0.223	1.121	0.587	0.906	0.388	0.743	0.499
$2 / 3$	0.376	0.7	0.558	0.751	0.509	0.407	0.488	0.335	0.582	0.324
$3 / 4$	0.277	0.291	0.096	0.116	0.067	-0.128	0.265	0.032	0.098	-0.061
$4 / 5$	-0.122	-0.085	-0.155	-0.1	0.043	-0.035	-0.081	-0.009	-0.038	-0.126
$5 / 6$	-0.302	-0.287	-0.27	-0.221	-0.246	-0.392	-0.297	-0.202	-0.307	-0.205
$6 / 7$	0.061	-0.117	-0.133	-0.096	-0.192	0.184	-0.109	-0.032	-0.709	0.046
$7 / 8$	-0.447	-0.411	-0.342	-0.261	-0.315	0.033	-0.448	0.163	-0.356	0.226
$8 / 9$	-0.136	0.01	0.062	0.068	0.073	0.185	-0.089	-0.325	-0.293	0.212
$9 / 10$	0.01	-0.313	0.346	-0.191	-0.613	-0.072	-0.192	-0.272	1.795	-0.486
			0	0	0	0			0	0


Years	$1992 / 93$	$1993 / 94$	$1994 / 95$	$1995 / 96$	$1996 / 97$	$1997 / 98$	$1998 / 99$	$1999 / * *$	$2000 / * *$	$2001 / * *$	TOT	WTS
$1 / 2$	0.743	-0.307	-0.107	0.669	-0.341	0.251	-0.583	-0.014	0.112	0.226	0	0.281
$2 / 3$	0.442	0.28	-0.038	0.54	0.1	-0.013	0.29	-0.424	0.206	-0.073	0	0.494
$3 / 4$	-0.186	0.021	0.084	0.383	0.114	-0.011	0.171	0.073	-0.052	-0.185	0	0.982
$4 / 5$	-0.026	0.022	0.051	0.028	-0.22	-0.147	0.163	-0.113	0.046	0.055	0	1
$5 / 6$	-0.272	-0.148	-0.169	-0.307	-0.166	-0.234	0.117	-0.131	0.205	0.05	0	0.964
$6 / 7$	-0.155	-0.008	0.087	-0.31	-0.06	0.095	-0.267	0.192	-0.09	0.074	0	0.655
$7 / 8$	-0.047	0.005	-0.061	-0.469	0.086	0.201	-0.257	0.28	-0.12	-0.099	0	0.536
$8 / 9$	0.106	0.159	0.281	-0.842	0.867	0.172	0.046	0.396	-0.434	-0.179	0	0.293
$9 / 10$	0.52	0.02	-0.106	0.511	0.203	0.371	-0.463	-0.042	-0.275	0.405	0	0.269
		0	0	0	0		0	0		0	0	0
TOT	0	0.001	0.001	0.001	0.001	0.001	1	1	1	1	0	12.196

rtalities (F)

	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
F-values	0.4678	0.5507	0.6035	0.601	0.6674	0.7254	0.6652	0.6997	0.7795	0.9286
F-values	0.8178	0.7892	0.8592	0.8267	0.8653	1.003	0.8381	0.9472	0.9218	1.1001
	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
F-values	1.0683	1.0059	0.9204	1.0556	1.0368	1.0343	1.1008	0.9772	1.0188	0.9836
	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
F-values	1.0278	0.9848	0.8605	0.956	0.9889	1.1129	1.2892	1.3472	0.9281	1



Table 3.4.3 COD in IIIa (Skagerrak), IV and VIId: TSA settings for all analyses

Parameter	Setting	Justification
Age above which selection is constant.	$a m=5$	Based on inspection of previous XSA runs.
$\begin{array}{llr}\text { Multipliers } & \text { on } & \text { variance } \\ \text { matrices } & \text { of } & \text { catch }\end{array}$ measurements.	$B(a)=2$   For ages 7, 8+ $B(a)=1$   Otherwise	Allows extra measurement variability for older ages with fewer catches.
Multipliers on variance matrices of ScoGFS measurements.	$\begin{aligned} & B(a)=2 \\ & \text { For ages } 1,5,6 \\ & B(a)=1 \\ & \text { Otherwise } \end{aligned}$	Allows extra measurement variability for older ages with fewer catches.
Multipliers on variance matrices of EngGFS measurements.	$\begin{aligned} & B(a)=2 \\ & \text { For ages } 1,5 \\ & B(a)=1 \\ & \text { Otherwise } \end{aligned}$	Allows extra measurement variability for older ages with fewer catches.
Multipliers on variance matrices of IBTS Q1 measurements.	$B(a)=2$   For ages 1,5 $B(a)=1$   Otherwise	Allows extra measurement variability for older ages with fewer catches.
Multipliers on variances for fishing mortality estimates.	$\begin{aligned} & H(1)=2 \\ & H(a)=1 \text { otherwise } \end{aligned}$	Allows for more variable fishing mortalities for age 1 fish.
Downweighting of particular data points (implemented by multiplying the relevant $q$ by 3)   Initial standard deviation of state vector of numbers at age	None   $40,15,5,1.5,0.8,0$. for ages $1-8+$ respec	Large values indicated by exploratory prediction error plots.
Initial standard deviation of state vector of F	3.0	
Recruitment.	Modelled by a Ricker model, with numbers-at-age 1 assumed to be independent and normally distributed with mean $\eta_{1} S$ $\exp \left(-\eta_{2} S\right)$, where $S$ is the spawning stock biomass at the start of the previous year. To allow recruitment variability to increase with mean recruitment, a constant coefficient of variation is assumed.	
Large year classes. Survey indices	1970, 1971, 1977, 1   ScoGFS (1982-2003)   EngGFS (1977-2002)   IBTS Q1 (1983-2003)	$\begin{aligned} & 86 \\ & 1-6 \\ & 1-5 \\ & 1-5 \end{aligned}$

Table 3.4.4 COD in IIIa (Skagerrak), IV and VIId: TSA parameter estimates for the base case run, with starting values and lower and upper estimation bounds: these are not empirical standard errors, but user-defined run-time limits that were used to obtain a converged assessment.

Parameter					
		Estimate	Starting value	Lower bound	Upper bound
Initial fishing mortality	$F(1,1963)$	0.0359	0.03	0.01	0.10
	$F(2,1963)$	0.4421	0.50	0.20	0.80
	$F(5,1963)$	0.5177	0.50	0.40	0.70
Standard deviations: fishing mortalities	$\sigma F$	0.1323	0.10	0.05	0.20
	$\sigma U$	0.0534	0.10	0.00	0.20
	$\sigma V$	0.0000	0.001	0.00	0.10
	$\sigma Y$	0.0692	0.05	0.00	0.50
Measurement	$\sigma$ catch	0.0458	0.45	0.30	0.80
Recruitment	A	2.9654	3.00	2.00	6.00
	B	0.0261	0.3	0.10	0.50
	Cvrec	0.4245	0.4	0.20	0.80
ScoGFS					
	$\Phi(1)$	0.0342	0.05	0.01	0.30
	$\Phi(2)$	0.1119	0.10	0.05	0.70
	$\Phi(5)$	0.1535	0.10	0.05	0.30
	osurvey	0.3918	0.30	0.25	0.40
	$\sigma \Omega$	0.0000	0.40	0.00	0.70
	$\sigma \beta$	0.1766	0.10	0.00	0.20
EngGFS					
	$\Phi(1)$	0.0945	0.07	0.01	0.15
	$\Phi(2)$	0.0899	0.08	0.01	0.15
	$\Phi(5)$	0.0455	0.04	0.02	0.10
	osurvey	0.3879	0.30	0.10	0.50
	$\sigma \Omega$	0.1286	0.50	0.00	0.80
	$\sigma \beta$	0.0000	0.01	0.00	0.30
IBTS Q1					
	$\Phi(1)$	0.2456	0.35	0.10	1.00
	$\Phi(2)$	0.5551	0.50	0.01	1.00
	$\Phi(5)$	1.1363	1.30	0.05	2.00
	osurvey	0.4264	0.25	0.10	0.50
	$\sigma \Omega$	0.0000	0.05	0.00	0.20
	$\sigma \beta$	0.0975	0.01	0.00	0.50

## Notation

$F(a, y) \quad$ Fishing mortality at age $a$ in year $y$
$\sigma F$ Transitory changes in overall fishing mortality
$\sigma U$ Persistent changes in selection (age effect in fishing mortality)
$\sigma V$ Transitory changes in the year effect in fishing mortality
$\sigma Y$ Persistent changes in the year effect in fishing mortality
ocatch CV of catch-at-age data
$\alpha \quad$ Ricker parameter (slope at the origin)
$\beta \quad$ Ricker parameter (curve dome occurs at $1 / \exists$ )
cvrec Standard error of recruitment data
$\Phi($ a) Age-specific selectivity of survey indices
osurvey CV of survey indices
$\sigma \Omega$ Transitory changes in survey "catchability"
$\sigma \beta$ Persistent changes in survey "catchability"

Table 3.4.5 COD in IIIa (Skagerrak), IV and VIId: The XSA diagnostics file


Time series weights :

Tapered time weighting applied
Power $=3$ over 20 years

Catchability analysis :

Catchability dependent on stock size for ages < 4

Regression type = C
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 4

Catchability independent of age for ages $>=5$

Terminal population estimation :

Survivor estimates shrunk towards the mean F of the final 5 years or the 3 oldest ages
S.E. of the mean to which the estimates are shrunk $=1.000$

Minimum standard error for population
estimates derived from each fleet $=.300$

Prior weighting not applied

Tuning had not converged after 30 iterations

Total absolute residual between iterations
29 and $30=.00048$

Final year F values						
Age	1	2	3	4	5	6
Iteration 29	0.0678	0.3124	0.6499	0.8741	1.1303	0.7212
Iteration 30	0.0678	0.3124	0.6499	0.8742	1.1305	0.7213

Table 3.4.5(cont) COD in IIIa (Skagerrak), IV and VIId: The XSA diagnostics file

Regression weights											
		0.751	0.82	0.877	0.921	0.954	0.976	0.99	0.997	1	1
Fishing mortalities											
Age		1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
	1	0.05	0.074	0.109	0.044	0.091	0.032	0.083	0.078	0.042	0.068
	2	0.805	0.648	0.823	0.65	0.636	0.872	0.603	0.912	0.445	0.312
	3	1.037	1.017	0.994	1.004	0.985	1.194	1.349	1.36	0.778	0.65
	4	0.921	0.965	0.808	0.737	0.921	1.117	1.157	1.358	1.02	0.874
	5	0.838	0.7	0.726	0.761	0.735	1.148	0.938	1.122	0.84	1.131
	6	1.193	0.75	0.523	1.044	0.744	0.787	1.156	0.705	0.44	0.721

XSA population numbers (Thousands)

AGE						
YEAR	1	2	3	4	5	6
1993	148000	119000	19900	5860	3070	690
1994	324000	63200	37500	5500	1910	1090
1995	227000	135000	23300	10600	1720	776
1996	172000	91700	41800	6710	3860	680
1997	408000	73900	33700	11900	2630	1470
1998	58800	167000	27600	9800	3890	1030
1999	111000	25600	49300	6500	2620	1010
2000	166000	45900	9870	9960	1670	841
2001	79700	69000	13000	1970	2100	446
2002	168000	34300	31100	4650	583	741

Estimated population abundance at 1st Jan 2003

0	70600	17700	12700	1590	154

Taper weighted geometric mean of the VPA populations:

171000	72200	26100	7100	2310	930

Standard error of the weighted Log(VPA populations) :

$$
\begin{array}{llllll}
0.5772 & 0.5781 & 0.5086 & 0.5252 & 0.5464 & 0.3765
\end{array}
$$

1

Table 3.4.5(cont) COD in IIIa (Skagerrak), IV and VIId: The XSA diagnostics file

Fleet : SCOGFS_IV

Age		1976	1977	1978	1979	1980	1981	1982			
	1	99.99	99.99	99.99	99.99	99.99	99.99	99.99			
	2	99.99	99.99	99.99	99.99	99.99	99.99	99.99			
	3	99.99	99.99	99.99	99.99	99.99	99.99	99.99			
	4	99.99	99.99	99.99	99.99	99.99	99.99	99.99			
	5	99.99	99.99	99.99	99.99	99.99	99.99	99.99			
	6	99.99	99.99	99.99	99.99	99.99	99.99	99.99			
Age		1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
	1	-0.66	-0.5	-1.24	-0.67	-0.83	-0.69	-0.05	-0.61	-0.06	-0.05
	2	-0.48	-0.4	-0.23	-0.61	-0.71	-0.46	-0.56	-0.1	-0.19	-0.23
	3	-0.11	-0.4	-0.13	-0.17	-0.63	-0.85	-0.08	-0.37	-0.25	-0.1
	4	0.61	0.1	0.31	0.09	0.19	-0.23	0.24	0.5	-0.86	0.35
	5	0.67	0.13	0.23	0.05	0.13	-0.02	0.24	-0.17	-1.35	0.74
	6	0.49	0.19	0.26	0.7	-0.47	0.2	-0.2	0.26	-0.61	0.58
Age		1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
	1	0.14	0.33	-0.01	-0.08	-0.01	0.09	0.64	0.6	-0.54	-0.17
	2	0.05	0.09	0.36	-0.24	-0.19	0.42	0.21	0.29	0.05	-0.1
	3	0.05	0.06	0.03	0.34	0	-0.13	0.38	0.08	0.13	-0.08
	4	-0.16	0.14	0.4	0.67	0.53	0.27	-0.04	0.14	-1.13	-0.78
	5	-0.59	-0.2	-0.16	0.18	0.11	0.5	-0.55	99.99	0.2	0.56
	6	-0.26	-0.14	0.06	-0.05	-0.09	0.07	0.03	0.22	99.99	-0.11

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age	4	5	6
Mean $\log q$	-9.2032	-8.9178	-8.9178
S.E(Log q)	0.5653	0.5193	0.2729

Regression statistics:
Ages with q dependent on year class strength

Age		Slope	t-value	Intercept	RSquare	No Pts	Reg s.e	Mean Log q
	1	0.8	0.902	10.62	0.67	20	0.42	-10.27
	2	0.65	2.223	9.95	0.8	20	0.3	-9.3
	3	0.62	2.448	9.45	0.8	20	0.26	-9

Ages with q independent of year class strength and constant w.r.t. time.

Age	Slope		t-value	Intercept	RSquare	No Pts	Reg s.e	Mean Q
	4	0.54	4.092	9.05	0.89	20	0.2	-9.2
	5	1.39	-0.962	9.36	0.4	19	0.72	-8.92
	6	1.12	-0.364	9.16	0.52	19	0.32	-8.92

Table 3.4.5(cont) COD in IIIa (Skagerrak), IV and VIId: The XSA diagnostics file

Fleet : ENGGFS_IV_GOV

Age		1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
	1	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	0.04
	2	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	-0.35
	3	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	-0.07
	4	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	0.42
	5	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	0.62
	6	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	-0.69
Age											
		1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
	1	0.1	0	-0.14	-0.11	0.01	0.02	0.02	0.13	-0.07	
		-0.14	-0.01	0.13	0.13	-0.2	-0.02	-0.09	0.17	0.16	0.01
	2	0.26	0.04	0.34	0	-0.57	0	0.2	-0.04	-0.05	-0.05
	3	0.08	0.33	0.68	0.02	-0.17	-0.96	-0.08	0.52	-0.91	0.34
	4	0.91	0.11	-0.89	0.83	-1.4	-0.02	0.16	99.99	0.02	99.99
	5	0.51	0.92	-0.22	99.99	0.57	0.76	99.99	0.42	0.24	99.99

Mean $\log$ catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age	4	5	6
Mean Log q	-9.4821	-9.6835	-9.6835
S.E(Log q)	0.5545	0.7683	0.624
Regression statistics :			

Ages with $q$ dependent on year class strength

Age	Slope		t-value	Intercept	RSquare	No Pts	Reg s.e	Mean Log q
	1	0.54	9.776	10.41	0.98	11	0.08	-9.04
	2	0.57	4.416	9.82	0.93	11	0.17	-8.84
	3	0.67	1.998	9.47	0.83	11	0.25	-9.15

Ages with $q$ independent of year class strength and constant w.r.t. time.

Age	Slope		t-value	Intercept	RSquare	No Pts	Reg s.e	Mean Q
	4	0.71	1.222	9.29	0.69	11	0.38	-9.48
	5	0.52	0.934	8.81	0.39	9	0.41	-9.68
	6	0.86	0.288	8.98	0.45	8	0.47	-9.34

Table 3.4.5(cont) COD in IIIa (Skagerrak), IV and VIId: The XSA diagnostics file

Fleet : IBTS_Q1_IV											
Age		1976	1977	1978	1979	1980	1981	1982			
	1	99.99	99.99	99.99	99.99	99.99	99.99	99.99			
	2	99.99	99.99	99.99	99.99	99.99	99.99	99.99			
	3	99.99	99.99	99.99	99.99	99.99	99.99	99.99			
	4	99.99	99.99	99.99	99.99	99.99	99.99	99.99			
	5	99.99	99.99	99.99	99.99	99.99	99.99	99.99			
	6 No data for this fleet at this age										
Age		1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
	1	-1.03	-0.56	-1.47	-0.65	-0.25	-0.58	0.09	-0.25	-0.75	-0.02
	2	-0.54	-0.47	-0.47	-0.36	-0.26	-0.51	-0.08	0.14	-0.06	-0.22
	3	-0.27	-0.43	-0.07	-0.02	-0.22	-0.33	0.34	-0.03	0.03	-0.27
	4	-0.34	-0.11	-0.07	0.63	-0.07	-0.18	0.19	-0.01	0.11	-0.09
	5	-0.21	-0.22	-0.12	0.28	-0.01	0.03	0.04	0.2	-0.32	-0.18
	6 No data for this fleet at this age										
Age		1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
	1	0.68	0.02	0.04	-0.48	0.57	0.39	-0.44	0.06	0.11	0.14
	2	0.23	-0.2	0.18	-0.16	-0.05	0.09	-0.01	0.04	0.17	0.16
	3	0.04	-0.26	0.16	0.2	-0.38	-0.27	0.32	-0.1	0.31	0.15
	4	0.02	0.22	-0.13	-0.14	-0.24	-0.22	0.07	0.59	-0.14	-0.09
	5	0.09	0.36	-0.04	-0.15	-0.18	-0.3	0.07	0.32	0.06	-0.01
	6 No data for this fleet at this age										

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age	4	5
Mean Log q	-8.9127	-8.4988
S.E(Log q)	0.2397	0.2076
Regression statistics :		

Ages with q dependent on year class strength

Age	Slope		t-value	Intercept	RSquare	No Pts	Reg s.e	Mean Log q
	1	0.79	0.95	10.51	0.66	20	0.43	-10.09
	2	0.7	3.104	9.73	0.91	20	0.19	-9.1
	3	0.83	1.116	9.24	0.81	20	0.26	-9.04

Ages with $q$ independent of year class strength and constant w.r.t. time.

| Age | Slope |  | t-value | Intercept | RSquare | No Pts | Reg s.e |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Mean Q

Table 3.4.5(cont) COD in IIIa (Skagerrak), IV and VIId: The XSA diagnostics file

Age 1 Catchability dependent on age and year class strength

Year class $=2001$


Weighted prediction :

Survivors	Int	Ext	N		Var	F
at end of year	s.e	s.e			Ratio	
70599	0.2	0.05		5	0.246	0.068

Age 2 Catchability dependent on age and year class strength
Year class $=2000$


Weighted prediction :


Table 3.4.5(cont) COD in IIIa (Skagerrak), IV and VIId: The XSA diagnostics file

Age 3 Catchability dependent on age and year class strength

Year class $=1999$


Weighted prediction :


Age 4 Catchability constant w.r.t. time and dependent on age

Year class $=1998$

Fleet	Estimated Survivors	$\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$	$\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$	Var   Ratio	N		Scaled   Weights	Estimated F
SCOGFS_IV	1520	0.223	0.269	1.21		4	0.243	0.9
ENGGFS_IV_GOV	1744	0.205	0.091	0.45		4	0.272	0.82
IBTS_Q1_IV	1611	0.197	0.112	0.57		4	0.431	0.865
F shrinkage mean	1061	1					0.054	1.128

Weighted prediction :


Table 3.4.5(cont) COD in IIIa (Skagerrak), IV and VIId: The XSA diagnostics file

Age 5 Catchability constant w.r.t. time and dependent on age

Year class $=1997$


Age 6 Catchability constant w.r.t. time and age (fixed at the value for age) 5

Year class $=1996$

Fleet	Estimated Survivors	$\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$	$\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$	Var   Ratio	N		Scaled   Weights	Estimated F
SCOGFS_IV	279	0.257	0.058	0.23		6	0.569	0.751
ENGGFS_IV_GOV	346	0.372	0.1	0.27		5	0.066	0.643
IBTS_Q1_IV	352	0.229	0.105	0.46		5	0.278	0.634
F shrinkage mean	216	1					0.088	0.894
Weighted prediction :								
Survivors	Int	Ext	N	Var	F			
at end of year	s.e	s.e		Ratio				
295	0.18	0.05	17	0.292				

Table 3.4.6 COD in IIIa (Skagerrak), IV and VIId: XSA estimated fishing mortality

Run title : Cod North Sea/Skaggerak/Eastern Channel 6/6/2002
At 11/09/2003 20:29
Terminal Fs derived using XSA (With F shrinkage)
Table 8 Fishing mortality at age

AGE \ YEAR	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	0.0253	0.0202	0.0591	0.0562	0.0335	0.0459	0.0215	0.1101	0.0762	0.0338
2	0.5365	0.3844	0.4676	0.5587	0.5096	0.6346	0.3923	0.5884	0.8907	0.89
3	0.3948	0.6026	0.6859	0.6215	0.7514	0.7743	0.5989	0.7522	0.7961	0.9184
4	0.5023	0.4644	0.64	0.5667	0.5228	0.7585	0.6374	0.5689	0.7198	0.6989
5	0.4255	0.566	0.5109	0.5158	0.6783	0.6026	0.7148	0.6935	0.6898	0.7334
6	0.4441	0.5488	0.6177	0.5728	0.6568	0.7186	0.6563	0.6778	0.7424	0.7915
+gp	0.4441	0.5488	0.6177	0.5728	0.6568	0.7186	0.6563	0.6778	0.7424	0.7915
FBAR 2-4	0.4779	0.4838	0.5978	0.5823	0.5946	0.7225	0.5429	0.6365	0.8022	0.8358
AGE \ YEAR	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
1	0.1301	0.0934	0.1088	0.0357	0.1443	0.0958	0.1044	0.1098	0.1009	0.1759
2	0.7051	0.8219	0.7489	0.9518	0.8584	1.0294	0.8004	0.8863	0.9743	0.9352
3	0.837	0.686	0.8058	0.8986	0.7951	0.9663	0.9602	1.002	1.0222	1.2435
4	0.8012	0.6394	0.7027	0.8028	0.6035	0.822	0.6477	0.8139	0.8105	0.9474
5	0.6532	0.6791	0.7396	0.625	0.7175	1.0743	0.8211	0.7804	0.7199	0.8866
6	0.7714	0.6744	0.7568	0.7833	0.7121	0.9648	0.818	0.8746	0.8599	1.0377
+gp	0.7714	0.6744	0.7568	0.7833	0.7121	0.9648	0.818	0.8746	0.8599	1.0377
FBAR 2-4	0.7811	0.7158	0.7525	0.8844	0.7523	0.9392	0.8027	0.9007	0.9357	1.0421
AGE \ YEAR	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
1	0.1257	0.1772	0.0868	0.2351	0.1406	0.1787	0.1287	0.1395	0.1273	0.1447
2	1.0887	0.9527	0.9891	0.8935	0.9229	0.9054	0.8878	0.9056	0.7581	0.8543
3	1.1812	1.0264	0.9539	1.0749	0.8886	1.209	1.0607	0.9996	0.9534	0.8364
4	0.9386	0.8134	0.8232	0.9459	0.9626	0.8519	1.0805	0.8302	0.9111	0.9063
5	0.8453	0.7959	0.6835	0.909	0.7086	0.8664	0.7441	0.9028	0.7058	0.8715
6	0.9958	0.8776	0.7914	0.7457	1.0509	0.7723	1.1456	0.5404	1.4453	0.5836
+gp	0.9958	0.8776	0.7914	0.7457	1.0509	0.7723	1.1456	0.5404	1.4453	0.5836
FBAR 2-4	1.0695	0.9308	0.9221	0.9714	0.9247	0.9888	1.0097	0.9118	0.8742	0.8657
AGE \ YEAR	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
1	0.0495	0.0744	0.1088	0.0438	0.0909	0.0323	0.0833	0.0775	0.0424	0.0678
2	0.8048	0.6477	0.8229	0.6505	0.6361	0.872	0.6031	0.912	0.4453	0.3124
3	1.0372	1.0173	0.9937	1.0037	0.9855	1.1943	1.3493	1.3596	0.7776	0.6499
4	0.9209	0.965	0.8082	0.7372	0.9214	1.1174	1.1572	1.3583	1.0195	0.8742
5	0.8383	0.7002	0.7264	0.7613	0.7349	1.1484	0.9381	1.1218	0.84	1.1305
6	1.1928	0.7502	0.5234	1.0437	0.7436	0.7875	1.1556	0.7048	0.4405	0.7213
+gp	1.1928	0.7502	0.5234	1.0437	0.7436	0.7875	1.1556	0.7048	0.4405	0.7213
FBAR 2-4	0.921	0.8767	0.8749	0.7971	0.8476	1.0612	1.0365	1.21	0.7475	0.6122

Table 3.4.7 COD in IIIa (Skagerrak), IV and VIId: XSA estimated fishing population numbers at age

Run title : Cod		North Sea/Skaggerak/Eastern Channel 6/6/2002									
At 11/09/2003 20:29			Terminal Fs derived using XSA (With F shrinkage)								
Table 10	Stock number at age (start of year)				Numbers*10**-3						
AGE \ YEAR	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	
1	191646	375828	410799	497905	489169	193957	206574	779782	911162	172121	
2	122193	83958	165499	173984	211507	212556	83243	90845	313851	379365	
3	24423	50354	40282	73067	70125	89533	79409	39626	35545	90762	
4	9898	12816	21466	15800	30567	25762	32146	33976	14545	12487	
5	8891	4904	6595	9267	7340	14837	9879	13914	15748	5798	
6	3738	4757	2280	3240	4530	3050	6649	3957	5694	6468	
+gp	1808	2138	2584	2787	3260	3117	2906	3312	3639	5600	
TOTAL	362597	534755	649505	776049	816497	542811	420806	965412	1300185	672601	
AGE \ YEAR	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	
1	317476	260316	482839	243756	837303	485694	524217	898279	315222	617721	
2	74770	125245	106536	194579	105690	325674	198307	212194	361658	128045	
3	109780	26033	38799	35500	52935	31567	81984	62769	61632	96193	
4	28215	37021	10210	13498	11256	18615	9354	24443	17948	17270	
5	5082	10367	15991	4140	4952	5040	6699	4008	8868	6533	
6	2280	2165	4304	6249	1814	1979	1409	2413	1503	3534	
+gp	3746	3190	2119	2463	4070	1838	1471	1581	1623	1319	
TOTAL	541349	464337	660798	500186	1018020	870408	823442	1205686	768454	870615	
AGE \ YEAR	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	
1	325080	594876	158759	713870	283443	195858	274798	134517	168060	306336	
2	232798	128819	223891	65406	253571	110658	73606	108567	52574	66488	
3	35416	55229	35014	58678	18861	71001	31532	21348	30932	17358	
4	21603	8465	15411	10505	15598	6041	16506	8502	6119	9285	
5	5483	6919	3073	5539	3340	4877	2110	4587	3035	2014	
6	2204	1928	2556	1270	1827	1346	1679	821	1523	1227	
+gp	1578	1498	1336	1790	942	942	729	1167	572	1106	
TOTAL	624161	797733	440040	857059	577583	390723	400960	279509	262815	403814	
AGE \ YEAR	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
1	147701	323776	227493	171819	407879	58833	110926	165854	79691	168150	0
2	119099	63160	135054	91684	73893	167339	25594	45860	68963	34321	70599
3	19940	37529	23288	41793	33713	27565	49307	9867	12982	31133	17695
4	5857	5505	10568	6714	11930	9800	6503	9962	1973	4646	12658
5	3071	1909	1717	3856	2630	3887	2625	1674	2097	583	1586
6	690	1087	776	680	1475	1033	1009	841	446	741	154
+gp	548	525	605	509	498	618	537	438	407	213	380
TOTAL	296907	433491	399500	317055	532018	269075	196500	234495	166559	239787	103073

Table 3.4.8 COD in IIIa (Skagerrak), IV and VIId: XSA summary table

Run title : Cod North Sea/Skaggerak/Eastern Channel 6/6/2002 At 11/09/2003 20:29 Table 16 Summary (without SOP correction)

Terminal Fs derived using XSA (With F shrinkage)
RECRUITS TOTALBIO TOTSPBIO LANDINGS YIELD/SSB FBAR 2-4 Age 1

	1963	191646	452301	158364	116457	0.7354	0.4779
	1964	375828	531978	159957	126041	0.788	0.4838
	1965	410799	689179	186186	181036	0.9723	0.5978
	1966	497905	836682	215447	221336	1.0273	0.5823
	1967	489169	906489	239380	252977	1.0568	0.5946
	1968	193957	768704	244909	288368	1.1774	0.7225
	1969	206574	611930	242463	200760	0.828	0.5429
	1970	779782	943822	251748	226124	0.8982	0.6365
	1971	911162	1155974	255170	328098	1.2858	0.8022
	1972	172121	807908	232159	353976	1.5247	0.8358
	1973	317476	641095	197070	239051	1.213	0.7811
	1974	260316	614470	225898	214279	0.9486	0.7158
	1975	482839	692627	204872	205245	1.0018	0.7525
	1976	243756	595421	173382	234169	1.3506	0.8844
	1977	837303	813275	156409	209154	1.3372	0.7523
	1978	485694	793454	145942	297022	2.0352	0.9392
	1979	524217	786082	150216	269973	1.7972	0.8027
	1980	898279	1000360	170603	293644	1.7212	0.9007
	1981	315222	841731	184428	335497	1.8191	0.9357
	1982	617721	828033	179886	303251	1.6858	1.0421
	1983	325080	639275	145761	259287	1.7789	1.0695
	1984	594876	711369	127851	228286	1.7856	0.9308
	1985	158759	498007	122029	214629	1.7588	0.9221
	1986	713870	680914	114018	204053	1.7897	0.9714
	1987	283443	567772	101617	216212	2.1277	0.9247
	1988	195858	422824	96819	184240	1.9029	0.9888
	1989	274798	412088	86573	139936	1.6164	1.0097
	1990	134517	330394	79756	125314	1.5712	0.9118
	1991	168060	293264	67615	102478	1.5156	0.8742
	1992	306336	408407	73342	114020	1.5546	0.8657
	1993	147701	337528	63817	121749	1.9078	0.921
	1994	323776	422925	66227	110634	1.6705	0.8767
	1995	227493	424572	72722	136096	1.8714	0.8749
	1996	171819	376070	76913	126320	1.6424	0.7971
	1997	407879	489659	82729	124158	1.5008	0.8476
	1998	58833	302948	72268	146014	2.0205	1.0612
	1999	110926	225913	59488	96225	1.6176	1.0365
	2000	165854	217959	44693	71371	1.5969	1.21
	2001	79691	183730	33264	49632	1.4921	0.7475
	2002	168150	255046	38684	54427	1.4069	0.6122
Arith.							
Mean		355737	587804	140017	193038	1.4833	0.8309
Units		(Thousands)	(Tonnes)	(Tonnes)	(Tonnes)		

Table 3.4.9 The estimated numbers of North Sea cod discards at age (thousands) derived from the application of discard rates derived from the Scottish sampling scheme

Run title : Cod   At 12/09/2003 14:02		North Sea/Skaggerak/Eastern Channel 6/6/2002								
Discard numbers at age			Numbers*10**-3			1968	1969	1970	1971	1972
AGE \ YEAR	1963	1964	1965	1966	1967					
0	50	640	1020	488	274	29	466	2116	527	1028
1	15043	7432	93840	104296	48299	30045	2425	51493	249475	37039
2	18539	5695	6324	21292	23793	22168	9963	8417	35866	57463
3	30	106	86	68	154	190	109	148	45	172
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
TOTALNUM	33662	13873	101270	126144	72520	52432	12963	62174	285913	95702
AGE \ YEAR	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
0	1206	784	100	345	1487	0	86	299	3435	78
1	82279	117784	123776	206340	394689	24353	572445	1156680	153431	178144
2	16651	15064	14687	75277	39853	70934	4963	16294	32166	7755
3	236	67	0	168	417	0	0	0	63	87
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
TOTALNUM	100372	133699	138563	282130	436446	95287	577494	1173273	189095	186064
AGE \YEAR	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
0	7023	1497	154	618	0	2165	231	438	1429	18
1	51390	533311	56953	501956	22405	14026	170046	31498	46369	90602
2	10560	10953	34916	3937	53130	15876	6938	43623	7390	8439
3	20	4	96	260	0	182	392	55	401	2
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
TOTALNUM	68993	545765	92119	506771	75535	32249	177607	75614	55589	99061
AGE \ YEAR	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
0	459	396	585	696	2	6	2039	87	412	119
1	30155	260406	38594	13410	57334	12854	21523	33629	4472	10930
2	25704	14225	39087	19873	11570	75987	4202	4790	29983	1962
3	9	144	24	656	33	1045	7294	0	609	1434
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
TOTALNUM	56327	275171	78290	34635	68939	89892	35058	38506	35476	14445

Table 3.4.10 The estimated proportions discarded North Sea cod derived from the Scottish sampling scheme
Run title: Cod North Sea/Skaggerak/Eastern Channel 6/6/2002
At 12/09/2003 14:02

Discard proportions at age.										
AGE \ YEAR	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	82	60	86	85	82	84	45	49	85	91
2	30	20	11	25	25	21	31	20	19	23
3	0	1	0	0	0	0	0	1	0	0
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
AGE \ YEAR	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
1	76	88	79	97	84	45	94	95	88	73
2	34	20	24	43	44	29	5	13	15	11
3	0	1	0	1	2	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
AGE \ YEAR	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
1	28	89	33	94	15	20	82	37	66	74
2	33	26	65	10	84	27	28	79	31	49
3	0	0	1	4	0	5	4	1	11	0
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
AGE \ YEAR	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
1	35	91	38	27	66	14	69	59	18	59
2	69	40	75	46	38	82	12	43	83	13
3	0	4	0	17	1	15	64	0	35	37
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0

Table 3.4.11 COD in IIIa (Skagerrak), IV and VIId: Estimated multi-species natural mortality rates.

Multi species natural mortality values for cod in 347d

AGE \ YEAR	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	0.6640	0.7602	0.9064	0.969	1.0796	0.9048	1.0014	1.1478	0.9886	0.8875
2	0.3692	0.3849	0.4574	0.5046	0.5314	0.4641	0.5154	0.6122	0.5407	0.4623
3	0.2753	0.2868	0.3014	0.3087	0.3227	0.3047	0.3264	0.3487	0.3233	0.2995
4	0.2107	0.2116	0.2110	0.2111	0.2125	0.2110	0.2142	0.2165	0.2151	0.2110
5	0.2058	0.2051	0.2043	0.2030	0.2015	0.2029	0.2038	0.2038	0.2040	0.2030
6	0.2140	0.2125	0.2125	0.2116	0.2073	0.2103	0.2109	0.2125	0.2130	0.2088
+gp	0.1870	0.1868	0.1873	0.1872	0.1857	0.1859	0.1871	0.1868	0.1860	0.1828
AGE \ YEAR	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
1	1.0441	0.9320	0.7858	0.7621	0.8922	0.9279	0.9721	1.0099	1.1983	0.9891
2	0.5186	0.5577	0.4670	0.4359	0.4895	0.4313	0.4429	0.4445	0.4915	0.4838
3	0.3260	0.3483	0.3153	0.2947	0.3084	0.2948	0.3123	0.3058	0.3420	0.3177
4	0.2145	0.2276	0.2201	0.2172	0.2148	0.2100	0.2212	0.2175	0.2183	0.2201
5	0.2052	0.2180	0.2041	0.2089	0.2062	0.2047	0.2147	0.2107	0.2110	0.2130
6	0.2130	0.2325	0.2139	0.2120	0.2225	0.2145	0.2286	0.2271	0.2278	0.2317
+gp	0.1854	0.2031	0.1837	0.1793	0.1873	0.1770	0.1926	0.1810	0.1794	0.1862
AGE \ YEAR	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
1	0.9618	0.8430	0.8820	0.8848	0.7959	0.8860	0.8102	0.8375	0.7359	0.7089
2	0.4619	0.4180	0.4108	0.4317	0.3607	0.3921	0.3767	0.3719	0.3519	0.3479
3	0.3441	0.3043	0.3250	0.3403	0.3304	0.3226	0.3376	0.3580	0.3515	0.3630
4	0.2278	0.2193	0.2211	0.2232	0.2252	0.2219	0.2283	0.2389	0.2353	0.2419
5	0.2228	0.2157	0.2190	0.2135	0.2232	0.2221	0.2147	0.2273	0.2310	0.2374
6	0.2430	0.2350	0.2398	0.2230	0.2391	0.2447	0.2579	0.2619	0.2662	0.2930
+gp	0.1964	0.1849	0.1827	0.1743	0.1812	0.1902	0.1832	0.2041	0.1798	0.1830


SSB90\%R90\%Surv	149763	143224	155932	177399	51.28
SPR\%ofVirgin	3.42	3.50	3.99	4.89	
VirginSPR	10.38	10.32	12.41	15.86	
SPRIoss	0.36	0.32	0.37	0.44	
	Deterministic	Median	25th percentile	5th percentile	Hist F > ref pt \%
FBar	0.86	0.86	0.82	0.76	53.85
Fmax	0.30	0.30	0.27	0.23	100.00
F0.1	0.18	0.19	0.16	0.13	100.00
Flow	0.50	0.53	0.48	0.40	94.87
Fmed	0.78	0.79	0.73	0.63	66.67
Fhigh	1.15	1.14	1.05	0.94	2.56
F35\%SPR	0.18	0.18	0.17	0.15	100.00
Floss	0.85	0.91	0.82	0.72	53.85

For estimation of Gloss and Floss:
A LOWESS smoother with a span of 0.8 was used.
Stock recruit data were log-transformed
A point representing the origin was included in the stock recruit data. A LOWESS smoother with a span of 0.8 was used. Stock recruit data were log-transformed
A point representing the origin was included in the stock recruit data.
Area 347d North Sea cod
Stock recruitment data Monte Carloed using residuals from the equilibrium LOWESS fit
Data source:
C:Icod4al2003\datalpalCod4a 2001.sen
C:Icod4al2003\datalpalCod4a 2001.sum
FishLab DLL used
FLVB32.DLL built on Jun 141999 at 11:53:37
PASoft 4 October 1999
17/09/03 05:39:38

Figure 3.2.2. Cod in IIIa, IV and VIId: mean weight at age in the landings










Figure 3.3.1a. Cod in Subarea IV and Divisions IIIa and VIId: IBTS Q1 survey cpue indices by age group


Figure 3.3.1b. Cod in Subarea IV and Divisions IIIa and VIId: EGFS: Survey cpue indices by age group 1977-1991 = Granton index: 1992-2003 GOV index.


Figure 3.3.1c. Cod in Subarea IV and Divisions IIIa and VIId: SCOGFS: Survey cpue indices by age group


Figure 3.4.1. Cod in Subarea IV and Divisions IIIa and VIId: Selection at age estimated from the catch data for the years 1963-2002. The year weights were set to estimate the selection pattern from the log catch ratios of the last 6 years.


Figure 3.4.2. Cod in Subarea IV and Divisions IIIa and VIId: Overall fishing mortality estimated from the catch data for the years 1963-2002. Fishing mortality in 2002 is user-specified. Fishing mortalities for the years prior to 2002 are model estimates.



O:\ACFM\WGREPS\WGNSSK\REPORTS\2003\Section 3.Doc 03/10/03 12:17

Figure 3.4.4. Cod in Subarea IV and Divisions IIIa and VIId: Trends in Z from the standardised cpue series for the EGFS Q3





Figure 3.4.5a.Cod in Subarea IV and Divisions IIIa and VIId: Survey concurrence Eng GFS vs Sco GFS

Age 1
$\mathrm{R}-\mathrm{sq}=73.7 \%$


Age 3
$R-5 q=80.1 \%$


Age 5
$R-5 q=26.69 \%$


Age 2
$\mathrm{R}-\mathrm{sq}=88.08 \%$


Age 4
$R-5 q=39.08 \%$


Age 6
$\mathrm{R}-\mathrm{sq}=6.24 \%$


Figure 3.4.5b.Cod in Subarea IV and Divisions IIIa and VIId: Survey concurrence IBTS GFS vs Sco GFS

Age 1
$\mathrm{R}-\mathrm{sq}=55.17 \%$


Age 3
$\mathrm{R}-\mathrm{sq}=22.17 \%$


Age 5


Age 2
$R-5 q=6933 \%$


Age 4


Figure 3.4.5c. Cod in Subarea IV and Divisions IIIa and VIId: Survey concurrence IBTS GFS vs Eng GFS

Age 1
$\mathrm{R}-\mathrm{sq}=82.91 \%$


Age 3
$R-5 q=86.61 \%$


Age 5
$\mathrm{R}-\mathrm{sq}=51.54 \%$


Age 2
$\mathrm{R}-\mathrm{sq}=86.75 \%$


Age 4
$\mathrm{R}-\mathrm{sq}=33.61 \%$


Figure 3.4.6 Cod in Subarea IV and Divisions IIIa and VIId: Standardised recruitment indices age 1.


Figure 3.4.7 Cod in Subarea IV and Divisions IIIa and VIId: Standardised recruitment indices age 2.


Figure 3.4.8 Cod in Subarea IV and Divisions IIIa and VIId: Comparison of standardised survey indices of SSB with standardised VPA SSB.


Figure 3.4.9 Cod in Subarea IV and Divisions IIIa and VIId: Comparison of immature stock size indices with standardised VPA estimates of the size of the immature part of the stock


Figure 3.4.10a Cod in Subarea IV and Divisions IIIa and VIId: Scottish GFS stock and recruit plots using survey indices of SSB and recruitment.


Figure 3.4.10b Cod in Subarea IV and Divisions IIIa and VIId: English GFS stock and recruit plots using survey indices of SSB and recruitment.


Figure 3.4.10c Cod in Subarea IV and Divisions IIIa and VIId: IBTS stock and recruit plots using survey indices of SSB and recruitment.


Figure 3.4.11 Cod in Subarea IV and Divisions IIIa and VIId: Weighted survey $\bar{Z}_{2-5}$ for 4 of the available tuning series.


Figure 3.4.12. Cod in Subarea IV and Divisions IIIa and VIId: Summary results of surba runs with the English GFS survey.


Figure 3.4.13. Cod in Subarea IV and Divisions IIIa and VIId: Summary results of surba runs with Scottish GFS survey.


Figure 3.4.14. Cod in Subarea IV and Divisions IIIa and VIId: Summary results of surba runs with IBTS Q1 survey.


Figure 3.4.15a Cod in Subarea IV and Divisions IIIa and VIId: The log catchability residuals resulting from a fit of the Laurec-Shepherd VPA calibration model to the catch at age data set and the English groundfish survey data for 19993 2002.






Figure 3.4.15b Cod in Subarea IV and Divisions IIIa and VIId: The log catchability residuals resulting from a fit of the Laurec-Shepherd VPA calibration model to the catch at age data set and the Scottish groundfish survey data for 1983 2002.






Figure 3.4.15c Cod in Subarea IV and Divisions IIIa and VIId: The log catchability residuals resulting from a fit of the Laurec-Shepherd VPA calibration model to the catch at age data set and the IBTS groundfish survey data for 1993 2002.



Age 2




Figure 3.4.16 Cod in Subarea IV and Divisions IIIa and VIId: Stock summary plots for the TSA base case analysis (max catch year $=2002$ ) with approximate $95 \%$ pointwise confidence intervals (dashed lines). The vertical dotted lines indicate the last year of catch data, all subsequent estimates are TSA forecasts. Circles on the first graph indicate total reported catches (human consumption, discards and industrial bycatch).


Figure 3.4.17 Cod in Subarea IV and Divisions IIIa and VIId: A comparison of 3 TSA runs, the first using the full set of catch data up to 2002, and survey data up to 2002 (solid line) shown with approximate $95 \%$ pointwise confidence intervals (dotted lines), the second having removed the last two years of catch data (dashed line), the third having removed catch data back to 1995 (dashed-dotted lines). The reported catches are shown as circles in the relevant graph.


Figure 3.4.18 Cod in Subarea IV and Divisions IIIa and VIId: TSA Retrospectives with two years of catch data removed. The longest lines in each plot are the results from a TSA run using survey data to 2003 but catch data only to 2000, the next longest line is results from a TSA run using survey data to 2002 but catch data only to 1999 , etc.


Figure 3.4.19 Cod in Subarea IV and Divisions IIIa and VIId: TSA Retrospectives with two years of catch data removed, enlarging the results for 1990-2003. The longest lines in each plot are results from a TSA run using survey data to 2003 but catch data only to 2000, the next longest line is the results from a TSA run using survey data to 2002

but catch data only to 1999 , etc.
Figure 3.4.20 Cod in Subarea IV and Divisions IIIa and VIId: Retrospective XSA plots at a range of shrinkage levels

Fbar 2-4 shr 0.5				
1995	1997	1999	2001	2003







(

Recruits shr 1.5				
$\begin{aligned} & 500000 \\ & 450000 \end{aligned}$				
400000 -				
35000030000				
$\begin{aligned} & 300000 \\ & 250000 \end{aligned}$				
$\left.\begin{array}{l} 200000 \\ 150000 \end{array}\right]$				
100000				
1995	1997	1999	2001	2003

Figure 3.4.21 Cod in Subarea IV and Divisions IIIa and VIId: XSA log catchability residuals for each of the three tuning fleet series.




Figure 3.4.22 Cod in Subarea IV and Divisions IIIa and VIId: Spawning stock biomass and average fishing mortality at ages 2-4 estimated from XSA models fitted to each of the individual survey seiries with low shrikage weight and the final combined assessment model.


Figure 3.4.23 Cod in Subarea IV and Divisions IIIa and VIId: stock summary plot


Figure 3.4.24 Cod in Subarea IV and Divisions IIIa and VIId: A comparison of the time series of stock metric as estimated by the XSA fitted models at the 2002 and 2003 North Sea Demersal Working Group.




Figure 3.4.25 Cod in Subarea IV and Divisions IIIa and VIId: The proportion of cod discards (numbers) at ages 1 and 2 as estimated from the Scottish sampling scheme.


Figure 3.4.26 Cod in Subarea IV and Divisions IIIa and VIId:



North Sea cod: Discard catch summary plots for results of XSA using three surveys (EGFS tuning series shortened), 7+ plus group, F shrinkage 1.0






Figure 3.4.27 Cod in Subarea IV and Divisions IIIa and VIId:.

North Sea cod: Multi species M summary plots for results of XSA using three surveys (EGFS tuning series shortened), 7+ plus group, F shrinkage 1.0 Solid line - XSA base run without discards and single species natural mortality. Fine line - XSA including multi-species mortalities

Figure 3.4.28 Cod in Subarea IV and Divisions IIIa and VIId:
North Sea cod: Discard catch and multi species $m$ summary plots. XSA using three surveys (EGFS shortened), 7+ plus group, F shrinkage 1.0 Solid line - XSA base run without discards and single species natural mortality. Fine line - XSA including multi-species mortalities and discards
Y Yield/spawning stock biomass


Figure 3.9.1 Cod in Subarea IV and Divisions IIIa and VIId: The PASoft diagnostics plot.


O:\ACFM\WGREPS\WGNSSK\REPORTS\2003\Section 3.Doc 03/10/03 12:17
Figure 3.9.2 Cod in Subarea IV and Divisions IIIa and VIId: The PASoft reference point plots


O:\ACFM\WGREPS\WGNSSK\REPORTS\2003\Section 3.Doc 03/10/03 12:17

Figure 3.10.1 Cod in Subarea IV and Divisions IIIa and VIId: historical comparison of Cod assessments.




To attempt to address the issue of increasing workload, the WG proposed in its 2002 report that three stocks per year be subjected to detailed benchmark assessments, with the remaining stocks being analysed in update assessments. The assessment of haddock in Sub-Area IV and Division IIIa in 2003 was selected to be one of the benchmark assessments, because of difficulties encountered previously in dealing with the slow growth of the large 1999 year-class, and because of the strong linkages between the haddock and cod fisheries. In addition, haddock will be the subject of a review by the North Sea Commission Fisheries Partnership in 2003.

### 4.1 Stock definition and the fishery

Haddock occur in many areas of the central and Northern North Sea and Skagerrak, and are prevalent as far south as the Humber estuary. They usually inhabit depths less than 200 metres. Results from tagging experiments and particletracking simulations suggest that there may also be links between the stocks of North Sea haddock and those to the north-west of Scotland. Spawning occurs from March until May and takes place in almost any area around the Scottish coasts to the Norwegian Deeps

In the North Sea, haddock is taken as part of a mixed demersal fishery, with the large majority of the catch being taken by Scottish light trawlers, seiners and pair trawlers. Until 2001, these gears had a minimum legal mesh size of 100 mm , and smaller quantities were taken by other Scottish vessels, including Nephrops trawlers which used mesh sizes between 70 and 100 mm mesh and hence may have had higher discard rates. New gear regulations were brought in for 2002 as a part of the North Sea cod recovery plan (Commission Regulation (EC) No 2056/2001). Vessels from other countries including England, Denmark and Norway also participate in the fishery, and haddock are also taken as a bycatch by Danish and Norwegian vessels fishing for industrial species. In Division IIIa, haddock are taken as a by catch in a mixed demersal fishery, and in the industrial fishery. Landings from Division IIIa are small compared to those the North Sea.

### 4.1.1 ICES advice applicable to 2002 and 2003

The ICES advice for 2002 (as formulated at the ACFM meeting in October 2001) recommended a reduction of fishing mortality to below $\boldsymbol{F}_{p a}$ ( 0.7 ). ICES also advised that measures should be implemented to reduce discarding of the large 1999 year-class, and that fishing mortality for North Sea haddock may have to be reduced further to retain consistency with the cod recovery plan.

Following the October 2002 ACFM meeting and in response to continued high fishing mortality (above $\boldsymbol{F}_{p a}$ ) and low spawning-stock biomass (below $\boldsymbol{B}_{p a}=140000 \mathrm{t}$ ) during 2001, ICES recommended that fishing for haddock should not be permitted unless ways to harvest haddock without by-catch or discards of cod could be demonstrated. The main principle behind this advice was the strong linkage between the North Sea cod and haddock fisheries, and the requirement for a recovery of the cod stock. If this linkage were not considered in management, then the advice for haddock alone indicated a reduction of fishing mortality at least $40 \%$ to below 0.52 , to ensure that the stock remained above $\boldsymbol{B}_{p a}$.

### 4.1.2 Management applicable to 2002 and 2003

Annual management of the fishery operates through TACs. The 2002 and 2003 TACs for haddock in Sub-Area IV and Division IIa (EC waters) were 104,000 t and 51,735 t respectively, while the TACs for Divisions IIIa, IIIb and IIIc were 6,300 t and 3,150 t respectively.

The following table summarises ICES management advice for haddock in Sub-area IV and Division IIIa during 20012003:

Year	Catches corresponding to ICES advice (000 t)	Basis	TAC (000 t) for IIa (EC), IV, IIIa,b,c	$\begin{aligned} & 2003 \quad \text { WG } \\ & \text { estimate of } \\ & \text { catches }(000 \mathrm{t}) \end{aligned}$
2001	$<60.0$	$F$ less than $\boldsymbol{F}_{p a}$	65.0	167.3
2002	<97.0	$F$ less than $\boldsymbol{F}_{p a}$	110.3	105.2
2003	-	No cod catches	54.9	-

${ }^{1}$ Based on $F$-multipliers from forecast tables.

The minimum mesh size for vessels fishing for cod in the mixed demersal fishery in EC Zones 1 and 2 (West of Scotland and North Sea excluding Skagerrak) was changed from 100 mm to 120 mm from the start of 2002 under EU regulations regarding the cod recovery plan (Commission Regulation EC 2056/2001), with a one-year derogation of 110 mm for vessels targeting species other than cod. This derogation was not extended beyond the end of 2002. Since mid2000, UK vessels in this fishery have been required to include a 90 mm square mesh panel (SSI 227/2000), predominantly to reduce discarding of the large 1999 year class of haddock. Further unilateral legislation in 2001 (SSI 250/2001) banned the use of lifting bags in the Scottish fleet.

In 2001, the EU and Norway agreed and implemented emergency measures involving the closure of a large area of the North Sea from 14 February to 30 April 2001 to all fishing vessels using gears likely to catch cod (EC 259/2001). This measure displaced vessels from areas where haddock were commonly fished, and for a brief period a number of vessels remained in port. The closure of the Norway Pout box to industrial fishing is another measure through which bycatches of haddock are limited. The minimum landing size for haddock is 30 cm in the North Sea, and 27 cm in Division IIIa. Vessel decommissioning in several fleets has been underway since 2002. Effort reductions for much of the international fleet to 15 days at sea per month have been imposed since February 2003 (EU 2003/0090).

### 4.1.3 The fishery in 2002

Official catch data for each country participating in the fishery are presented in Table 4.1.1, together with the corresponding WG estimates. The WG estimate for total international catch in 2002 is $105,194 \mathrm{t}$, consisting of $56,748 \mathrm{t}$ landed for human consumption, $44,730 \mathrm{t}$ discarded and $3,717 \mathrm{t}$ of industrial bycatch for reduction purposes. The estimates for total, human consumption, discard and industrial bycatch components are all near to the 10-year average, and within the range of recent fluctuations. The increase in human consumption landings and the corresponding decrease in discards in 2002 are due to the large 1999 year-class reaching or exceeding the minimum landing size. No revisions have been made to WG estimates of landings in 2000 and 2001.

The reduction in fishing mortality of $c a .35 \%$ implied by the TAC set for 2003 necessarily implies a reduction in effort of a similar magnitude, combined with the effective implementation of other technical measures. Reported effort declined in 2002 by $25.0 \%$ in the Scottish light trawl fleet, and by $39.6 \%$ in the Scottish seine fleet (see Table 4.3.1 and Figure 4.3.1). However, due to reporting problems the Scottish effort data may be underestimates (see Section 4.3).

### 4.2 Natural Mortality, Maturity, Age Composition, Mean Weight At Age

The values of natural mortality and proportion mature at age used in the assessment are unchanged from last year's meeting (Table 4.2.1). The estimates of natural mortality originate from MSVPA (ICES CM 1989/Assess:20). Section 1.3.1.3 of 1999 WG report gives a fuller discussion of the sources of these estimates (ICES CM 2000/ACFM:7). The estimates of proportion mature are based on IBTS data. Both natural mortality and maturity are assumed constant with time. Biomass totals are calculated as at the beginning of the year.

During this year's meeting, the final accepted assessment was re-run using alternative estimates of natural mortality and proportion mature as a sensitivity analysis. These natural mortality estimates were produced by the 2003 meeting of the ICES Study Group on Multispecies Assessments in the North Sea while the maturity estimates were derived from a re-analysis of historical IBTS data (Poulding 1997). The new estimates and the results of the analysis are presented in Section 4.4.1.

Quarterly age composition data for the North Sea (Sub-area IV) human consumption landings were supplied by Denmark, England and Wales, France and Scotland. These nations accounted for $90 \%$ of the total human consumption landings. Sampling levels are given in Table 1.3.3.1. The procedures used to aggregate national data sets into total international landings are given in Section 1.3. Germany, Norway and Sweden provided quarterly landings, Belgium supplied annual age compositions, and the Faroe Islands, Poland and the Netherlands provided official landings statistics only. Industrial bycatch age compositions for the North Sea were supplied by Denmark and Norway. Age composition data for the human consumption and industrial catches in the Skagerrak (Division IIIa) in 2002 were supplied by Denmark, which accounts for most of the human consumption landings and all of the industrial bycatch in this area.

Discard estimates are derived by raising a mean discard proportion ogive from the Scottish sampling programme to the level of the international fleet landings. The Scottish discard programme follows a stratified random design, with fishing trips stratified by area, gear and quarter. Discards are estimated independently in each stratum and total discards are then estimated by summing across strata. Raising to landings is done for each individual trip. However, when there are few trips per stratum (often there is only one trip per stratum), this traditional estimator can be both biased and imprecise. Stratoudakis et al (1999) developed an alternative ratio estimator that collapses the stratification
(i.e. combines strata with similar discard properties) and then estimates discards independently in each collapsed stratum. Total discards are then estimated by summing across collapsed strata. Collapsing strata has the effect of increasing the sample size in each stratum, and results in a collapsed ratio estimator that has negligible bias and greater precision than the traditional estimator. Work is underway to estimate cod, haddock and whiting discards in Sub-Area IV and Divisions VIId and IIIa using the collapsed ratio estimator, to compare these estimates with the traditional estimates, and to compare stock assessments using the two sets of discard estimates. It should also be noted that the method assumes that the Scottish fleet characteristics for haddock are applicable to the international fleet, which may be more tenable for haddock than for other species (given the large Scottish share of the catches). However, further evaluation work on this discard series will be beneficial. No estimates of discards are available for Division IIIa.

Total catch-at-age data are given in Table 4.2.2. while catch-at-age data for each catch component are given in Tables 4.2.3-4.2.5. The catch-at-age data for the North Sea are SOP-corrected; numbers-at-age are adjusted in the Scottish and industrial bycatch data, weights-at-age are adjusted in all other data. There are slight SOP discrepancies in the combined data arising from minor discrepancies in the Division IIIa data. The proportions of each catch component in the total catch numbers are shown in Figure 4.2.1. The 1999 year class is still the main component in the 2003 catch composition (Figure 4.2.2).

The mean weight-at-age data for the Division IIIa catches do not cover all years and for earlier years are not split by catch category, so only North Sea weight-at-age data have been used. Weight-at-age data from the total catch (that is, human consumption, discards and industrial bycatch) in the North Sea, which are also used as stock weights-at-age, are given in Table 4.2.6. The mean weights-at-age for the separate catch components are given for all years in Tables 4.2.7 - 4.2.9. Weights-at-age data are summarised in Figure 4.2.3. The mean weight-at-age of discards has remained reasonably consistent over the last decade, whereas there is an indication that for fish older than four in the human consumption landings there has been a reduction in mean weight since the early 1990s. For fish older than one in the industrial bycatch, mean weights appear to have been lower in the latter half of the last decade than to the first half.

Indications from port and market sampling trips suggest that the 1999 year-class might be relatively slow-growing, and therefore under-weight and under-length for its age. The plots of mean weights-at-age for the total catch and the three catch components in Figure 4.2 .4 suggest that this assumption only holds with any certainty for the human consumption component. Thus, in the human consumption landings, haddock of the 1999 year-class are consistently lighter than they should be, while they are of normal weight in the discards and industrial bycatch components.

### 4.3 Catch, effort and research vessel data

Two commercial Scottish CPUE series have been available in recent years for use in assessments of this stock, specifically light trawlers (ScoLTR) and seiners (ScoSEI). However, none have been used in the final assessment presented by the WG during any of its last three meetings, although they have been used in exploratory and comparative analyses. During preparations for the 2000 round of assessment WG meetings it became apparent that the 1999 effort data for the Scottish commercial fleets were not in accord with the historical series and specific concerns were outlined in the 2000 report of WGNSSK (ICES CM 2001/ACFM:07). Effort recording is still not mandatory for these fleets, and concerns remain about the validity of the historical and current estimates.

The commercial CPUE data available for this meeting consisted of the following:

- Scottish seiners (ScoSEI): ages 0-13, years 1978-2002.
- Scottish light trawlers (ScoLTR): ages 0-13, years 1978-2002.

The definitions of these commercial fleets are the same as those given for the equivalent vessels fishing in Division VIa, which are given in the Report of the 1998 Working Group on the Assessment of Northern Shelf Demersal Stocks (ICES CM 1999/ACFM:1, Appendix 2). Three research vessel survey series were also available:

- Scottish third-quarter groundfish survey (ScoGFS): ages 0-8, years 1982-2003. Only ages $0-5$ are used for tuning, as there are several missing data points at older ages and very low catch rates. This survey is undertaken during August each year using a fixed station design and the GOV trawl. Coverage was restricted to the northern part of the North Sea corresponding to the more northerly distribution of haddock, but since 1998 it has been extended into the central North Sea. There are two versions of the series available, the first with the new areas ignored to ensure consistent coverage, the second with the new areas included. Both are evaluated in Section 4.4.1. The ScoGFS has also used a new gear and vessel since 1999. The catch rates as presented are corrected for the change in vessel and gear, on the basis of comparative trawl haul data (Zuur et al 2001).
- English third-quarter groundfish survey (EngGFS): ages 0-7, years 1977-2002. Only ages 0-5 are used for tuning, as catch rates for older ages are low. The age-composition data for 2003 from this survey were not available at the time of the WG meeting. This survey covers the whole of the North Sea in August-September each year to about 200 m depth, using a fixed station design of 75 standard tows and the GOV trawl.
- International bottom-trawl survey (IBTS Q1): ages 1-6+, years 1967-2003. This survey covers the whole of the North Sea using fixed stations of at least two tows per rectangle with the GOV trawl. Previously this series covered only the years from 1982 onwards for ages $3-6+$, and from 1973 onwards for ages $1-2$. The methodology of the extension of the series for this year's WG was not presented at the meeting, and it is difficult to evaluate them.

The complete data available for catch-at-age analysis tuning are listed in Table 4.3.1.

### 4.4 Historical stock analyses

Section 1.4.1 outlines the general approach adopted at this year's WG. Rather than begin with an evaluation of catch and survey data as is customary, the following text starts with a discussion of the plus-group and mean $F$ age range to be used in the assessment. These settings were determined using a combination of separable VPA and XSA analyses. This issue needs to be addressed first since all the catch and survey evaluations are affected by these decisions.

### 4.4.1 Exploratory analyses

A number of exploratory runs were performed, each of which was intended to address a specific aspect of the assessment. Separable VPA and XSA runs were done to determine the plus-group and mean $F$ age-range to be used. The XSA runs were also used to define XSA parameter settings. Survey data were examined using both empirical and modelling approaches (SURBA) to evaluate the internal and external consistency of the survey data, and to estimate stock trends independently of catch-at-age data. TSA runs were carried out to investigate the utility and consequences of modelling bycatch separately, and also to determine the population dynamics indicated by the catch data alone. Finally, Laurec-Shepherd runs were done to characterise any trend in catchability mismatch between the catch data and the surveys.

## Separable VPA and XSA

A separable VPA (Lowestoft assessment suite) was run on the full catch-at-age dataset (years 1963-2002, ages 0-15+). This run used inverse-variance weighting on ages, and equal weighting of 1.0 on all years. Following exploratory runs, terminal $F$ (on age 4 ) was set to 0.7 , terminal $S$ to 1.0 . Log catch residuals were large for age ratio 10:11 and upwards (see Figure 4.4.1). This supported the use of a plus-group at age $10+$, as in previous assessments.

Several exploratory XSA runs were conducted before and during the WG meeting on the basis of the $10+$ group. Standard diagnostics indicated that a power model at age 0 was appropriate (particularly for the EngGFS series, less so for ScoGFS). A power model on ages 0 and 1 was used in last year's assessment, but this may have been driven by the proximity of the large 1999 year-class which was aged 2 in 2001. These runs also indicated that the catchability plateau should be set at age 2 (see Figure 4.4.2). No time-taper was used in tuning. A time taper would imply greater confidence in the recent catch data than in the historical survey data, and this confidence would be misplaced for haddock.

However, in the course of these exploratory runs, it became clear that a plus-group at age $10+$ was unlikely to be appropriate. Table 4.4 .1 shows the contribution of $F$-shrinkage to survivors estimates for all combinations of low ( $\mathrm{SE}=$ 2.0 ) and high ( $\mathrm{SE}=0.5$ ) shrinkage, and using a $7+$ or $10+$ group. The only combination for which $F$-shrinkage was minimal on all ages in the assessment was low shrinkage and a $7+$ group. The utility of these settings is supported by the XSA retrospective plots for each combination given in Figure 4.4.3, in which the low shrinkage and 7+ group gives the smallest apparent retrospective bias. The WG therefore decided to use a $7+$ group in subsequent analyses. This decision necessitated a change in the mean $F$ range, from $2-6$ to $2-4$. Further separable VPA runs indicated that the number of ages to be used in $F$-shrinkage should be 3 (changed from the 5 ages used when a $10+$ group was implemented), because the fitted separable age-effect was relatively flat over ages 3-6.

## Mean-standardised indices and catch curves

Figure 4.4.4a gives mean-standardised time-series of the EngGFS series by year-class, which show that year-class strength is well-estimated throughout the lifetime of the cohorts. Catch curves for the EngGFS series are given in

Figure 4.4.4b. The EngGFS survey changed from the Granton gear to the GOV gear in 1992. However, the catch curves do not indicate a substantial change in catchability at this time: the slopes of the curves are comparable throughout the time series, and the reduced catchability on younger ages (the hook at the top of the curve) is equally prevalent before and after 1992. There is therefore no strong evidence for a change in the catchability of haddock in the EngGFS series in 1992, and there no reason to split the survey data in that year.

Figures 4.4.5a and 4.4.5b give the mean-standardised indices by year-class for the ScoGFS (consistent areas) and ScoGFS (full areas), while Figures 4.4 .5 c and 4.4 .5 d shows the corresponding catch curves. While these data are less consistent than the EngGFS series in terms of constant catchabilities and ability to follow year-class strength, they are good enough to warrant their re-inclusion in the assessment. In particular, there is very little difference between the consistent-area and full-area series, so the latter should be used to make use of as much data as possible: also, there is no strong evidence of a change in catchability caused by the gear and vessel change in 1998. Hence, there is no reason to split this survey either.

The same information is presented for the IBTS Q1 survey in Figures 4.4.6a-b: the difference between the plots lies in the year range (1967-2003 or 1976-2003). With the former year range, catchability appears to be very inconsistent, and year-class strength poorly determined, in the years 1967-1975. The rest of the series is more acceptable, and the earlier years correspond to the period for which ICES has supplied new undocumented estimates for this year. The WG therefore decided to split to IBTS Q1 series, and to use only the period 1976-2003.

Figure 4.4.7 compares mean-standardised catch numbers at age with the relevant mean-standardised survey indices. Indications of year-class strength are reasonably consistent between surveys, and between surveys and catch data for the most part. The major exception is the 1999 year-class. This appears to be the largest year-class in the time-series for all surveys at ages $0-3$, but only appears as a large year-class in the catch data for age 2 . This indicates that there may be difficulties in estimating the size of this year-class: either the surveys are measuring it to be too big, or the catch data are measuring it to be too small, or both. One possible explanation for this could be the effect of the technical gear measures imposed on the haddock fishery, which if successful would have reduced commercial catch rates of young haddock.

## Catchability mismatch

In previous assessments of this stock, a trend in model catchability residuals has often been interpreted as a trend in survey catchability. The term "catchability" is a misnomer is this context, as what it actually indicates is the mismatch or difference in catchability between the survey and the fishery. Thus, such trends could be due to real changes in survey catchability (arising from distribution changes, for example), or from correspondingly negative changes in fishery catchability.

Trends can be discerned in the basic catch and survey data. Figures 4.4.8-4.4.10 show the log ratios of meanstandardised survey index over mean-standardised catch, by year and age, along with a loess smoother fitted through the time series to illustrate the underlying trends. The EngGFS series (Figure 4.4.8) corresponds quite closely with the catch time-series across all ages. However, there are noticeable trends in the relationships between the ScoGFS series and the catch (Figure 4.4.9), and between the IBTS Q1 series and the catch (Figure 4.4.10). For the ScoGFS and IBTS Q1 surveys there is an apparent dissimilarity between the catchability of the survey, and the catchability of the catch. This shows up in residual patterns for catch-at-age assessment models (see below).

## External consistency of surveys

Survey indices at age are plotted against each other on a log-log scale in Figure 4.4.11. These show that the surveys are reasonably consistent with each other for haddock, particularly for ages 1-4.

## Survey-derived estimates of SSB and recruitment

Survey-based TSB, SSB and recruitment at ages 0 and 1 are shown in Figure 4.4.12. The salient points from these are that all three surveys are estimating a very large year-class in 1999, which results in a correspondingly large SSB in 2002 and 2003. The differences in stock perception arising from each survey are driven by their responses to the 1999 year-class. The ScoGFS series estimates this year-class to be around five times the previous maximum, the EngGFS one-and-a-half times, and the IBTS Q1 around twice the largest observed (discounting the gadoid outburst period). With regards to SSB estimates, the ScoGFS series implies a continuing increase in 2003, and the IBTS series a slight decline from an historic high: the EngGFS estimate for 2003 is not yet available.

## Survey-based model analysis using SURBA

SURBA runs (see Section 1.4) were produced for the EngGFS, ScoGFS and IBTS Q1 survey indices. Stock weights, natural mortalities and maturities for 2002 were also used for 2003. Exploratory runs indicated that default values were appropriate for most settings, so that age weights were all set to 1.0 , index smoothing with $\lambda=2.0$ was used, and parameter estimates were bounded. The exception to this was catchabilities, which were defined by $\mathbf{q}=(0.01,0.1,0.5,1.0, \mathrm{~K})$.

Figures 4.4.13-4.4.15 gives graphical outputs and diagnostics for the selected SURBA run for each of the EngGFS, ScoGFS and IBTS Q1 series, while summary statistics from these runs are compared in Figure 4.4.16. All three runs show a peak in the fitted fishing-mortality age-effect at age 2 , which suggests disproportionately high mortality on that age. This may be caused by the use of a natural mortality estimate for that age which is too low, or it may be due to an incorrect assumption about catchability. Residuals are generally small and without noticeable trends, with two noticeable exceptions: the EngGFS series seems to be less well fitted by the model in recent years, and the ScoGFS series does not model the 2001 year-class well. Finally, the estimates of SSB from the IBTS Q1 SURBA run in the most recent years are questionable. The SSB suggested directly by the survey data (Figure 4.4.12) does not decline rapidly as the SURBA estimate does, and it is likely that model-fitting problems are responsible for this difference.

## TSA

Four TSA runs were performed for this stock (see Section 1.4 for a discussion of the method). The runs were

- Total catch, no surveys.
- Total catch, three surveys.
- Separate industrial bycatch, no surveys.
- Separate industrial bycatch, three surveys.

Due to time constraints, these runs used the plus-group (10+) and mean $F$ range (2-6) from last year's assessment, rather than the revised settings discussed above. Total catch was modelled following Fryer (2002). The only difference was that observed catches and survey indices were assumed to be distributed with constant coefficients of variation $\mathrm{cv}_{\text {catch }}$ and $\mathrm{cv}_{\text {survey }}$ respectively (WGMG 2003). A Beverton-Holt stock recruit curve was used.

Human consumption catch and industrial bycatch were modelled by assuming that

$$
F_{\text {total }}(a, y)=F_{\text {h. cons. \& disc. } .}(a, y)+F_{\text {industrial }}(a, y)
$$

and that $F_{\text {h. cons. \& disc }}(a, y)$ and $F_{\text {industrial }}(a, y)$ evolve independently according to the model in Fryer (2002).
Figure 4.4.17 compares summary statistics from these four runs. The key difference lies in the inclusion of surveys, which increases dramatically the estimate of the 1999 year-class. This feeds through to significantly higher estimate of SSB in recent years, and a correspondingly lower estimate of mean $F_{2-6}$. Persistent trends in log catchability mismatch for the three surveys are shown in Figure 4.4.18 (the plot gives the estimates for TSA run 2: total catch, three surveys). The prevailing impression is confirmed, that there is an increasing trend in catchability mismatch for the ScoGFS and IBTS Q1 series, and a decreasing trend for the EngGFS series.

## Single-fleet Laurec-Shepherd

Single-fleet Laurec-Shepherd runs were carried out using each of EngGFS, ScoGFS, and IBTS Q1 in turn, to evaluate further the apparent catchability mismatch between surveys and catch data. The run settings were as follows: no regression weighting, three-age mean for $F$ on the oldest age, $F_{6,2002}$ was set to 0.4 for the IBTS analysis (following the estimate from exploratory XSA runs), no $F$-shrinkage, minimum five data points for the analysis, and exact VPA for population estimates. Log catchability residuals are plotted in Figure 4.4.19. These analyses confirm the recent increasing catchability mismatch trend between ScoGFS and IBTS Q1 on the one hand, and the catch data on the other. The trend is reversed in the EngGFS residuals.

## Run comparisons

Figure 4.4.20 compares the summary statistics from all the exploratory runs described above: three SURBA runs, four TSA runs, three Laurec-Shepherd runs, and three XSA runs. The runs are identified as follows:

TSA. 1	TSA with total catch, no surveys
TSA. 2	TSA with total catch, three surveys
TSA. 3	TSA with separate industrial bycatch, no surveys
TSA.4	TSA with separate industrial bycatch, three surveys
LS. 1	Laurec-Shepherd tuned by EngGFS
LS.2	Laurec-Shepherd tuned by ScoGFS
LS.3	Laurec-Shepherd tuned by IBTS Q1
SURBA. 1	SURBA on EngGFS
SURBA. 2	SURBA on ScoGFS
SURBA.3	SURBA on IBTS Q1
XSA. 1	$7+$ group, low shrinkage
XSA.2	$7+$ group, high shrinkage
XSA.3	10+ group, low shrinkage
XSA.4	$10+$ group, high shrinkage

Four of these runs can be disregarded. The sharp downturn in SSB suggested by the IBTS Q1 SURBA run cannot be explained at the moment, and should be considered in more detail. The 2003 data for the EngGFS series are not yet available, so the relevant SURBA run is difficult to evaluate. Finally, the two no-survey TSA runs do not appear to pick up the large 1999 year-class. This is because the year-class has not been appearing in the catch data to the same extent as has been suggested by the surveys. The low year-class estimate from the no-survey TSA is not corroborated by other sources of information.

All other analyses suggest that the 1999 year-class was large, that mean $F_{2-4}$ has fallen since 2000, and that there has been a commensurate rise in SSB. SURBA only produces relative estimates of abundance and biomass, so the ScoGFS SURBA run should only be used in a comparative role. The TSA with surveys does not include age-0 fish (this is due to a limitation of the current software implementation), so cannot be adopted as a final assessment either. Single-fleet Laurec-Shepherd are also intended for exploratory analyses rather than as final assessments. The four remaining XSA runs have already been discussed in the text above, in which it was concluded that the configuration with a 7+ group and low shrinkage was the most appropriate. This is therefore the model the WG decided to take forward to predictions.

## Alternative estimates of natural mortality and proportion mature

The final assessment run from last year's meeting (referred to in Figure 4.4.21. as the SPALY ${ }^{1}$ run) was repeated using two different datasets: firstly, the natural mortality estimates produced by the 2003 meeting of the Study Group on Multispecies Assessments in the North Sea, and secondly, maturity estimates derived from a re-analysis of IBTS data by Poulding (1997). Identical XSA settings were used for these runs. Summary statistics are plotted in Figure 4.4.21. Mean $F$ is reduced in the most recent years by both new datasets. SSB is most affected by the new maturity estimates, although the natural mortality estimates do increase SSB in the final year. Recruitment estimates are more variable when either of the new sources of information are used. These analyses are only intended to be indicative of the likely effects of such information and should be viewed with caution. However, the relevant ICES Working Groups (see Section 1.8) are to be encouraged to begin or continue providing data to enable a fuller evaluation of their effect.

### 4.4.2 Final assessment

The WG conducted a full benchmark assessment of haddock, using a number of approaches including XSA, TSA, SURBA, and direct analyses of survey data. On the basis of their findings, the WG produced a new XSA assessment of haddock.

The XSA settings for this year's final assessment are given below, along with the corresponding settings for the three previous assessments. The assessment methodology is a substantial revision from that presented last year. The main

[^2]salient changes are as follows: the plus-group was changed to $7+$ (from $10+$ ), the mean $F$ range was reduced to $2-4$ (from 2-6), the Scottish groundfish survey was included as a tuning series, a power catchability model was used for age-0 (ages 0 and 1 last year), a catchability plateau was fixed for ages 2 and older (ages 3 and older last year), historical downweighting of tuning data was not used, and light $F$-shrinkage was implemented ( $\mathrm{SE}=2.0$, compared with $\mathrm{SE}=0.5$ last year).

Year of assessment	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$
Assessment model	XSA	XSA	XSA	XSA
Catch age range	$0-10+$	$0-10+$	$0-10+$	$0-7+$
Mean $\boldsymbol{F}$ range	$2-6$	$2-6$	$2-6$	$2-4$
ScoLTR	not used	not used	not used	not used
ScoSEI	not used	not used	not used	not used
EngGFS	$1990-1999,0-5$	$1977-2000,0-5$	$1977-2001,0-5$	$1977-2002,0-5$
ScoGFS	not used	not used	not used	$1982-2003,0-5$
IBTS Q1	$1991-2000,1-6+$	$1974-2001,1-6+$	$1974-2002,1-6+$	$1976-2003,1-6+$
Time series weighting	none	tricubic over	20 tricubic	over
		years	20 none	
Power model	0	$0-1$	years	0
q plateau	7	3	$0-1$	0
F-shrinkage	5 yrs, 5 ages	5 yrs, 5 ages	5 yrs, 5 ages	5 yrs, 3 ages
Shrinkage SE	0.5	0.5	0.5	2
Min SE for pop estimates	0.3	0.3	0.3	0.3
Prior weights	None	None	None	None

The consistency of the XSA was evaluated in a retrospective analysis which is shown in Figure 4.4.3. The retrospective results indicate no consistent bias for either SSB or recruit estimates, although there is an indication that fishing mortality has been underestimated in recent years.

Log catchability residuals are given in Table 4.4.2, and shown in Figure 4.4 .22 for the three tuning series. There are clear trends in residuals from the XSA assessment, similar to those observed for exploratory runs (Section 4.4.1). The obvious features are the increase in catchability mismatch for the ScoGFS and IBTS Q1 series, and a decrease in the EngGFS series. A more subtle feature is an apparent change in catchability trend which occurred in the early 1990's. For the older ages this can be seen as a change from decreasing to increasing catchability in the ScoGFS series, and to a lesser extent the EngGFS series. The IBTS Q1 series shows a change from stable to increasing catchability for the older ages and a stabilisation of catchability in the younger ages.

The contribution of the data to the final population estimates is shown in Figure 4.4.23. The contribution of shrinkage is greatly reduced from last year's assessment, due to a combination of lower shrinkage, reduced age-range, and an extra survey.

Estimates of fishing mortalities-at-age and stock numbers-at-age from the final XSA run are given in Table 4.4.3. The present assessment indicates a mean total $F_{2-4}$ in 2002 of 0.36 .

### 4.5 Recruitment estimation

The following table gives the estimates of recent year-class strength from the three surveys used in the assessment, from the final XSA, and from a series of geometric means (GMs): three-year (2000-2002), ten-year (1993-2002), and tenyear (1993-2002) without the 1999 year-class.

Year-class				
Source	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$
EngGFS	31.023	0.372	0.919	
ScoGFS	10375	67	1774	1780
IBTS Q1	888	58	90	
XSA	$\mathbf{2 4 0 0 0}$	$\mathbf{2 1 9 5}$	$\mathbf{4 5 9 8}$	
GM (00-02)				$\mathbf{6 2 3 3}$

The indications from the surveys are that the 2003 year-class strength is similar or slightly greater than the 2002 yearclass strength. The longer-term GMs are considerably higher than the 2002 XSA estimate, which is not supported by the surveys. Therefore the WG used the short-term (three-year) GM of 6.2 millions. This is higher than the previous two years, but still below the long-term (1963-2002) GM ( 23.2 millions). The values used for year-class estimates are highlighted in bold above.

### 4.6 Historical stock trends

Trends in SSB, recruitment and mean $F_{2-4}$ (by catch component) since 1963 are given in Table 4.6.1 and Figure 4.6.1. Total mean $F_{2-4}$ has fluctuated around a mean of 0.94 . Recruitment shows considerable variation as is typical of a spasmodic spawner like haddock, with the current estimate of the 1999 year class indicating that it is the strongest since 1974. The four preceding year classes and the three subsequent ones are all of below-average strength. SSB has fluctuated, with occasional peaks corresponding to the maturation of strong year classes. The 1999 year class has resulted in a rapid increase in SSB in recent years: however, there is no indication of a large incoming year-class.

### 4.7 Short-term projections

The salient points for a short-term projection for haddock in this year's assessment are as follows:

- Mean $F_{2-4}$ is estimated to have declined in recent years, so that $\boldsymbol{F}_{s q}$ is likely to be an overestimate of $F$ in 2003 and beyond.
- The large 1999 year-class has been observed to be light for its age in the human consumption catch component, indicating density-dependent growth retardation (see Figure 4.2.4). The use of a standard three-year mean for the weight of age-4 fish in 2003 is likely to bias SSB estimates upwards.
- Several technical measures have been implemented for the mixed demersal fishery in the North Sea, as highlighted in Section 4.1.2. These consist of mesh-size changes and days-at-sea regulations. There have also been a significant number of vessels decommissioned in 2002 and 2003. These measures will have had (and continue to have) effects on both the exploitation pattern and effort exerted by the international fishery, with commensurate effects on short-term projections and catch forecasts.

The WG endeavoured to address these issues in the limited time available. The basis for $F$ in forecasts was chosen the mean exploitation pattern over the period 2000-2002, scaled to the level of estimated mean $F_{2-4}$ in 2002. The growth of the 1999 year-class was modelled by fitting a logistic curve to observed weights for that year-class for ages $1-3$, and then projecting forward on the basis of the fitted model. Finally, the uptake of the derogation for 110 mm during 2002 (Commission Regulation EC 2056/2001) was assumed to be $0 \%$, so that all vessels in the fishery are assumed to have switched to a 120 mm mesh at the start of 2002. This is unlikely to be true, but the resulting forecast is presented here as an interim position pending further evaluation. Furthermore, no modifications were made to account for the likely effects of decommissioning and days-at-sea. The WG intend to submit a Working Paper to the October 2003 ACFM meeting to explore further the likely effects of such technical measures for haddock.

Population numbers at 1 January 2003 for the catch forecast were taken from XSA predictions for ages 1-7+. CVs for these estimates were approximated by the standard deviations of the log estimates. The short-term GM (2000-2002) recruitment at age 0 of 6.2 millions was assumed for the 2003 and subsequent year classes. CVs on fishing mortalities and weights-atage were calculated for the period 2000-2002.

Input data are shown in Table 4.7.1. The results of the forecast are shown in Table 4.7.2 (detailed) and Table 4.7.3 (management options).

The proportionate contributions of the 2000-2004 year classes to the landings predictions for 2003 and 2004, and to the corresponding spawning biomass predictions for 2003-2005, are given in Table 4.7.4. The prediction of landings in 2004 is still dominated by the 1999 year-class ( $74.3 \%$ ), which is not marked on the plot but which accounts for the unshaded area. This year-class is estimated by TSA. The spawning biomass forecast for 2005 is dominated by the XSA estimate of the 1999 year class $(41.3 \%)$ and the GM estimate of the 2003 year classes ( $37 \%$ ).

Inputs to a sensitivity analysis of the catch prediction are shown in Table 4.7.1 and the results presented in Figure 4.7.1. These indicate that the prediction of landings in 2004 is most sensitive to the year effects on human consumption fishing mortality in 2003, the numbers at age 4 (the 1999 year-class), and the human consumption selectivity and weights for age 5 . The majority of the variance of this prediction is provided by multipliers on human consumption fishing mortality. SSB in 2005 is sensitive to the effects of the 1999 year-class, through starting numbers-at-age, weight in the stock and maturity: the variance of this prediction is explained a number of different parameters.

Cumulative probability distributions are presented in Figure 4.7.2. For the probability of $F$ in 2004 being below the forecast $F$ to be 0.5 or less, landings in 2002 should be $c a .105,000 \mathrm{t}$ or less. The probability of SSB remaining above $\boldsymbol{B}_{p a}$ in 2004 is very high ( $>95 \%$ ). Short-term forecasts for landings and spawning stock biomass are presented in Figure 4.7.3.

### 4.8 Medium-term projections

The recruitment dynamics of haddock (with occasional large year-classes) are very uncertain, and future recruitment cannot be projected with any confidence. This means that a medium-term projection for haddock on the basis of the current assessment is unlikely to be informative, and no such projection is presented here.

### 4.9 Biological reference points

The reduction of the mean $F$ age range from 2-6 to 2-4 necessitates a reanalysis of the biological reference points for haddock, particularly those based on $F$. The PASoft program was run on the output from the final-configuration XSA model. A lowess span of 0.8 was chosen on the basis of the AIC minimum shown in Figure 4.9.1. The yield-per-recruit and spawner-per-recruit plots are shown in Figure 4.9.2. New values for $\mathbf{F}_{\max }, \mathbf{F}_{0.1}$ and $\mathbf{F}_{\text {med }}$ are given in the following text table with the 2002 values for comparison.

	$\mathbf{F}_{\max }$	$\mathbf{F}_{0.1}$	$\mathbf{F}_{\text {med }}$	$\mathbf{F}_{\mathrm{pa}}$	$\mathbf{F}_{\text {lim }}$	$\mathbf{B}_{\mathrm{pa}}$	$\mathbf{B}_{\text {lim }}$
2002	$0.25^{*}$	0.18	0.49	0.7	1	$140,000 \mathrm{t}$	$100,000 \mathrm{t}$
2003	$0.32^{*}$	0.19	0.57				

*corresponding to HC landings only
The stock-recruit plot with a lowess smoother is shown in Figure 4.9.2. The most obvious feature of this relationship are sporadic large recruitments. Even without these occasional outbreaks there is little in the way of a stock-recruit relationship. For comparison purposes with the 2001 assessment, both stock-recruit scatterplots are overlaid in Figure 4.9.3.

ACFM state that $\mathbf{B}_{\text {lim }}$ for this stock is determined as a smoothed estimate of $\mathbf{B}_{\text {loss }}$ and $\mathbf{B}_{\mathrm{pa}}$ is $1.4 * \mathbf{B}_{\text {lim }}$. A new estimate of $\mathbf{B}_{\text {loss }}$ was not made in this assessment, hence no updated candidate for $\mathbf{B}_{\mathrm{pa}}$ is proposed. The determinsitic estimate of $\mathbf{B}_{\text {loss }}$ in 2003 is $58,500 \mathrm{t}$ and for the 2002 assessment $63,000 \mathrm{t}$.

Figure 4.9.4 shows the historical performance of the stock in relation to the existing PA reference points. The stock has apparently made a rapid recovery from being outside safe biological limits in 2000 to well inside safe biological limits in 2002.

### 4.10 Comments on the assessment

In the Technical Minutes of its October 2002 meeting, ACFM commented on several aspects of previous assessments that it would like to see addressed and, if necessary, revised. The general points raised about the WG approach as a whole were:

- A retrospective bias of underestimation of fishing mortality and overestimation of spawning-stock biomass is common to many of the assessments carried out by the WG. It may not be possible to address this problem during the WG meeting, and while ACFM made no specific recommendations, it is clear from the Minutes that the issue should be borne in mind and discussed where necessary.
- Due to concerns about data validity, the WG should continue the recent practice of not using commercial CPUE indices for VPA tuning in those cases where sufficient fishery-independent survey data exist.
- It would be advantageous to express current stock status in probabilistic rather than deterministic terms.

The more specific points relating to the haddock assessment were:

- The WG should investigate the apparent difference in stock-dynamics signals from the surveys used to tune the assessment.
- The Scottish survey data should be re-examined to determine their utility for inclusion in the assessment.
- Adjustments of mean weights-at-age and the selection pattern in forecasts to account for the perceived slow growth of the 1999 year-class should be implemented at the WG.

The retrospective bias in the assessment remains, but now appears to be at a lower level than previously due to the reduction in the number of ages considered in the assessment. Commercial CPUE series were not used for tuning: in addition to ACFM's concerns, the available Scottish effort data is not thought to be reliable. Time has not permitted the generation of a probabilistic statement of stock status, and this is difficult to achieve without modification of the current standard software. Survey data was examined in considerable detail, and appears more consistent than previously. The Scottish survey data were analysed, and no justification for their exclusion could be determined: therefore, they were reinstated. Short-term forecasts were modified to take account of slow growth of the 1999 year-class, and a full investigation of recent possible changes in selectivity will be made available to ACFM.

The uncertainty in the assessment is largely due to uncertainty about the strength of the 1999 year-class. Three independent survey indices indicate that this year-class is very large, but it is not appearing in catch data to the extent expected and this would suggest recording or reporting problems. While all data sources agree that SSB is currently at a relatively high level, it is also clear that the year-classes following 1999 have been weak and are unlikely to contribute to future SSB to any great degree. It is therefore likely that stock biomass will decrease in future.

The results of the fishermen's surveys (WD14) for haddock are broadly in agreement with the perception from the assessment. The majority of respondents report that haddock abundance in 2003 is either the same, more or much more than 2002 , which would accord with the 1999 year-class reaching a size where they are fully selected. This also supports the conclusions on discards, with a similar majority reporting that discards were either the same or less than last year.

The quality control chart is given in Figure 4.10.1. Estimates of mean $F$ are substantially different in this year's assessment, because a new age range for the mean was used, but the same downwards trend is evident. Estimates of SSB are reasonably consistent from year to year. The estimate of the recruiting strength of the 1999 year-class has been revised upwards in each assessment in which it has appeared.

A number of additional issues were raised during the WG meeting which could not be addressed due to lack of time or necessary data, but which may give valuable insight in the future. Such issues include:

- Documentation and evaluation of the early IBTS dataset (1967-1975).
- Evaluation of the use of Scottish discard ogives to raise international fleets.
- Full exploration of effect of technical measures on forecasts.

The WG intends that these be considered at the earliest opportunity.

## References

Fryer RJ, 2002. TSA: is it the way? Annex D in WGMG (2001).
Poulding, D. (1997). M.Sc. thesis, University of Aberdeen. 69pp.

Stratoudakis, Y., Fryer, R. J., Cook, R. M. and Pierce, G. J. (1999). Fish discarded from Scottish demersal vessels: estimators of total discards and annual estimates for targeted gadoids. ICES Journal of Marine Science, 56, 592-605.

Zuur, A.F., Fryer, R.J. and Newton, A.W. (2001). The comparative fishing trial between Scotia II and Scotia III. FRS Marine Laboratory, Report No 03/01.

Table 4.1.1 Nominal catch ( t$)$ of Haddock from Division IIIa and the North Sea 1990-2001, as officially reported to ICES and estimated by ACFM.

## Division Illa

Country	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$
Belgium	-	-	-	-	-			
Denmark	2,523	2,501	3,168	1,012	1,033	1,590	3,791	
Germany	5	5	11	3	1	128	239	
Norway	115	188	188	168	$126^{*}$	148	$146^{*}$	
Sweden	536	835	529	26	377	285	393	
UK (Scotland)	-	-	-	-	-	7	-	
Total reported	3,179	3,529	3,896	1,209	1,537	2,158	4,569	
Unallocated	-37	-128	-137	151	-52	-255	-432	
WG estimate of H.cons. landings	3,142	3,401	3,759	1,360	1,485	1,903	4,137	
WG estimate of industrial by-catch	2,925	610	275	334	617	218	na	
WG estimate of total catch	$\mathbf{6 , 0 6 7}$	$\mathbf{4 , 0 1 1}$	$\mathbf{4 , 0 3 4}$	$\mathbf{1 , 6 9 4}$	$\mathbf{2 , 1 0 2}$	$\mathbf{2 , 1 2 1}$	$\mathbf{4 , 1 3 7}$	
TAC	10,000	7,000	7,000	5,400	$\mathbf{4 , 5 0 0}$	$\mathbf{4 , 0 0 0}$	6,300	$\mathbf{3 , 1 5 0}$
* Priminn								

* Preliminary

Subarea IV

Country	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$
Belgium	215	436	724	462	399	606	559	
Denmark	2,520	2,722	2,608	2,104	1,670	2,407	5,123	
Faroe Islands	13	9	43	55	-			
France	369	548	$427^{*}$	$742^{* 1}$	$724^{* 1}$	485	903	
Germany	1,769	1,462	1,314	565	342	681	852	
Netherlands	110	480	275	110	119	$274(2)$	359	
Norway	2,295	2,354	3,262	3,830	$3,118^{*}$	$1,901^{*}$	$2,245^{*}$	
Poland	18	8	7	17	13	12	17	
Sweden	689	655	472	686	596	804	572	
UK (Engl. \& Wales)	3,379	3,330	3,280	2,398	1,876	3,334	3,647	
UK (N. Ireland)	-	-	-	-	-	-		
UK (Scotland)	63,542	61,098	60,324	53,628	37,772	29,263	39,624	
Total reported	74,919	73,102	72,736	64,597	46,629	39,767	53,901	
Unallocated landings	1,116	5,993	4,575	-388	-545	-809	$-1,290$	
WG estimate of H.cons. landings	76,035	79,095	77,311	64,209	46,084	38,958	52,611	
WG estimate of discards	72,522	52,105	45,175	42,562	48,841	118,320	44,730	
WG estimate of industrial by-catch	5,048	6,689	5,100	3,834	8,134	7,879	3,717	
WG estimate of total catch	153,605	137,889	127,586	110,605	103,059	165,157	101,058	
TAC	120,000	114,000	115,000	88,600	73,000	61,000	104,000	51,735

* Preliminary. 1 Includes Ila(EC). 2 Note: Not included here 21t of haddock reported in area unknown.

Division IIla and Subarea IV

	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$
WG estimate of total catch	159,672	141,900	131,620	112,299	105,161	167,278	105,195	
$T A C$	130,000	121,000	122,000	94,000	77,500	65,000	110,300	54,885

Table 4.1.2. Haddock in Sub-Area IV and Division IIIa. Catch components by weight (tonnes).

Year	Total	Hum. Cons.	Discards	Ind. Bycatch
1963	271531	68779	188969	13783
1964	380158	130944	160318	88896
1965	299464	162307	62236	74921
1966	346726	226335	73572	46819
1967	246589	147778	78056	20755
1968	302043	105830	161886	34327
1969	930538	331419	260232	338887
1970	806674	525325	101380	179969
1971	446634	237340	177482	31812
1972	353606	195494	128130	29983
1973	307688	181518	114719	11451
1974	368797	153116	166786	48895
1975	454536	151386	260424	42726
1976	377118	172607	154265	50246
1977	226411	145083	44347	36982
1978	180144	91674	76878	11592
1979	146001	87094	41732	17175
1980	223610	105071	94743	23796
1981	217151	138731	60115	18306
1982	237842	176635	40549	20658
1983	253594	167353	65925	20316
1984	222563	134505	75294	12764
1985	258117	165672	85444	7001
1986	225697	169157	52209	4331
1987	176880	111779	59212	5889
1988	175516	107978	62062	5475
1989	108772	80288	25713	2770
1990	92720	55558	32603	4559
1991	97021	48731	40276	8014
1992	138001	74614	47967	15420
1993	174296	81539	79601	13156
1994	153864	82730	65392	5741
1995	144773	77503	57360	9909
1996	159671	79176	72522	7973
1997	141900	82496	52105	7299
1998	131621	81070	45175	5376
1999	112299	65569	42562	4168
2000	105161	47569	48841	8751
2001	167278	40861	118320	8097
2002	105194	56748	44730	3717
90				

Table 4.2.1 Haddock in Sub-Area IV and Division IIIa. Maturity ogive and natural mortality values.

Age	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Maturity	0.00	0.01	0.32	0.71	0.87	0.95	1.00	1.00	1.00	1.00	1.00
Natural	2.05	1.65	0.40	0.25	0.25	0.20	0.20	0.20	0.20	0.20	0.20
mortality											

Haddock in Sub－area IV and Division IIIa．Total catch numbers at age．Ages 0－15，Years 1963－2002

$\cdots$	－	－	－	$\bigcirc$	$\bigcirc$	$\bigcirc$	－	$\bigcirc$	－	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	－	$\bigcirc$	－	－	$\bigcirc$	$\bigcirc$	$\bigcirc$	－	－	－	－		－	N	$\rightarrow$	$\bigcirc$	－					－	－	$\bigcirc$	－
$\pm$	－	－	－	－	$\bigcirc$	$\bigcirc$	－	$\bigcirc$	－	－	$\bigcirc$	－	－	－	－	－	－	$\checkmark$	m	$\bigcirc$	－	$\checkmark$	－	7	の	$\checkmark$	F	N	$\bigcirc$	－	－	－	－	，	$\bigcirc$	$\bigcirc$	－	－
$\cdots$	$\bigcirc$	$\bigcirc$	－	$\bigcirc$	$\bigcirc$	$\bigcirc$	－	－	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\infty$	$\bigcirc$	$\checkmark$	N	$\checkmark$	m	$\square$	N	¢	$\checkmark$	$\bigcirc$	${ }_{-}^{n}$		$\bigcirc$	$\checkmark$	$\neg$	N	N	$\bigcirc$	$\checkmark$	－	－	$\checkmark$	$\checkmark$	－	$\bigcirc$
N	－	－	－	－	－	$\bigcirc$	－	$\bigcirc$	ம	$\bigcirc$	$\sim$	$\cdots$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\underset{\sim}{n}$	$\begin{aligned} & \underset{r}{7} \\ & \underset{r}{ } \end{aligned}$	の	＊	N	¢	$\cdots$	－	$\stackrel{\sim}{n}$		6	$\xrightarrow{-}$	$\cap$	6	m	$\sim$	0	$\infty$	N	$\checkmark$	$\checkmark$	$\checkmark$	$\bigcirc$
二	－	$\bigcirc$	－	$\sim$	$\bigcirc$	－	－	$\xrightarrow{9}$	$m$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\square}{7}$	－	$\xrightarrow{-1}$	$m$	m	$\left\lvert\, \begin{aligned} & \text { 子 } \\ & 6 \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \underset{\sim}{r} \\ \hline \end{gathered}\right.$	$\stackrel{\sim}{m}$	$\left\lvert\, \begin{aligned} & 0 \\ & \mathrm{~m} \end{aligned}\right.$	$\checkmark$	6	$\left\|\begin{array}{l} 6 \\ - \\ - \end{array}\right\|$	$\left.\begin{aligned} & \infty \\ & \infty \end{aligned} \right\rvert\,$	N	$0$	$\stackrel{m}{\square}$	$\begin{array}{\|l\|} \underset{H}{r} \end{array}$	$\bullet$	$\underset{N}{N}$	$\Omega$	N	$\infty$		－	N	N	m	$\checkmark$
$\bigcirc$	$\left\|\begin{array}{l} \infty \\ -1 \end{array}\right\|$	$\stackrel{\stackrel{\sim}{\mathrm{N}}}{\mathrm{~N}} \mid$	$\stackrel{7}{7}$	$\stackrel{N}{\sim}$	$\left\|\begin{array}{l} \dot{m} \end{array}\right\|$	$\sim$	－	$\stackrel{-1}{7}$	$\left\|\begin{array}{l} 0 \\ 6 \\ -1 \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ 0 \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ r \end{array}\right\|$	N	¢	$\bigcirc$	$\left\|\begin{array}{l} 0 \\ 0 \\ \underset{v}{ } \end{array}\right\|$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{6}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{N}$	$\stackrel{\sim}{\square}$	$\begin{array}{\|c} n \\ n \end{array}$	$\left\|\begin{array}{c} N \\ \underset{\sim}{r} \end{array}\right\|$	$\stackrel{\sim}{N}$	$\bigcirc$	$\stackrel{0}{n}$	M	$\underset{\sim}{\text { r }}$	H	$\begin{aligned} & \underset{\sim}{\underset{~}{\prime}} \end{aligned}$	ז1	N			6	$\bullet$	$\stackrel{\text { N }}{\sim}$	$\stackrel{\rightharpoonup}{r}$	$\stackrel{\sim}{\square}$
の	$\begin{aligned} & \text { n } \\ & \end{aligned}$	$\begin{aligned} & - \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$	¢	－	ก	$\stackrel{\sim}{\square}$	$\stackrel{\text { N }}{\sim}$	¢	$\begin{aligned} & \mathrm{N} \\ & \dot{n} \\ & \underset{r}{2} \end{aligned}$	$\stackrel{\text { N }}{\sim}$	$\left\lvert\, \begin{aligned} & \text { g } \\ & \text { N } \end{aligned}\right.$	$\stackrel{m}{N}$	$\left\|\begin{array}{l} 6 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 9 \\ n \\ \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{\circ}{N} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \underset{\sim}{1} \end{array}\right\|$	$\left\|\begin{array}{c} N \\ \underset{\sim}{n} \end{array}\right\|$	$\left\|\begin{array}{l} N \\ \underset{\sim}{1} \end{array}\right\|$	¢	응	$\begin{aligned} & - \\ & \sigma \\ & \underset{r}{2} \end{aligned}$	$\underset{\sim}{7}$	$\stackrel{ }{\sim}$	$\underset{\sim}{7}$	$m$	m	$\stackrel{\infty}{\sim}$	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{\sim}{1} \\ & \underset{1}{2} \end{aligned}\right.$	$\left\|\begin{array}{l} m \\ \stackrel{m}{n} \end{array}\right\|$	$0$	$\begin{gathered} \Omega \\ -1 \\ -1 \end{gathered}$	，		$\stackrel{\square}{-}$	$\underset{7}{7}$	N	F	$\xrightarrow[N]{N}$
$\infty$	$\left\|\begin{array}{l} 6 \\ 6 \\ 6 \\ \hline \end{array}\right\|$	$\left\|\begin{array}{l} 6 \\ m \\ \underset{v}{2} \end{array}\right\|$	$\begin{aligned} & r \\ & 0 \\ & -1 \end{aligned}$	$\left\|\begin{array}{l} n \\ 0 \\ -1 \end{array}\right\|$	$\left\|\begin{array}{l} 6 \\ \underset{\sim}{v} \end{array}\right\|$	악	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$		$\left\lvert\, \begin{gathered} \underset{\sim}{r} \\ \underset{\sim}{2} \end{gathered}\right.$	m	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & -1 \end{aligned}\right.$	$\left\|\begin{array}{c} \underset{N}{~} \\ \underset{\sim}{n} \end{array}\right\|$	$\begin{aligned} & \underset{\sim}{\lambda} \\ & \underset{\sim}{\lambda} \\ & \underset{N}{2} \end{aligned}$	$\stackrel{\square}{\sim}$	$\left\|\begin{array}{l} n \\ m \\ \underset{1}{n} \end{array}\right\|$	$\left\|\begin{array}{l} N \\ 0 \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{c} m \\ \infty \\ q_{1} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \underset{\sim}{N} \\ & \underset{H}{2} \end{aligned}\right.$	$\left\|\begin{array}{c} n \\ \underset{\sim}{n} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \underset{\infty}{\infty} \\ & \infty \\ & r \end{aligned}\right.$	$\overrightarrow{6}$	$\infty$	$\stackrel{N}{\sim}$	$\stackrel{N}{m}$		$\underset{\sim}{\circ}$	$\left\|\begin{array}{l} 0 \\ \underset{N}{1} \end{array}\right\|$	$\left\|\begin{array}{l} \text { r } \\ \overrightarrow{-} \end{array}\right\|$	$\left\|\begin{array}{c} -1 \\ 0 \\ \hline \end{array}\right\|$	$$	$\begin{aligned} & n \\ & 0 \\ & n \end{aligned}$			－	$\left\|\begin{array}{l} N \\ \underset{m}{2} \end{array}\right\|$	$\left\|\begin{array}{l} \underset{\sim}{m} \\ \underset{\sim}{2} \end{array}\right\|$	$\stackrel{\stackrel{\rightharpoonup}{2}}{\stackrel{1}{2}}$	¢
N	$\left\lvert\, \begin{gathered} n \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	$\left\|\begin{array}{l} \infty \\ \infty \\ \sim \end{array}\right\|$	$\stackrel{\underset{\sim}{N}}{\underset{\sim}{0}}$	$\left\lvert\, \begin{aligned} & -1 \\ & 0 \\ & 6 \end{aligned}\right.$	$\left\|\begin{array}{c} \stackrel{\sim}{\sim} \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{n}{N} \\ \underset{m}{2} \end{array}\right\|$	$\begin{aligned} & o \\ & n \\ & \underset{\sim}{2} \\ & \underset{r}{2} \end{aligned}$	$\left\|\begin{array}{l} 6 \\ \stackrel{n}{n} \\ \sim \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{n}{0} \\ \underset{\sim}{1} \end{array}\right\|$	$\left\|\begin{array}{l} \circ \\ \stackrel{\rightharpoonup}{1} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{n} \\ \underset{\sim}{N} \\ \underset{\sim}{n} \end{array}\right\|$	$\begin{aligned} & N \\ & N \\ & N \\ & 0 \\ & r \end{aligned}$	$\left\|\begin{array}{l} 0 \\ \stackrel{\rightharpoonup}{6} \\ \hline \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ m \\ 1 \end{array}\right\|$	$\left\|\begin{array}{l} 6 \\ r \\ 0 \\ \sim \end{array}\right\|$	$\left\|\begin{array}{l} \mathrm{N} \\ \mathrm{~N} \end{array}\right\|$	$\left\|\right\|$	$\left\|\begin{array}{l} \infty \\ \infty \\ \underset{\sim}{\sim} \\ \sim \end{array}\right\|$	$\left\|\begin{array}{l} \circ \\ \stackrel{\Omega}{N} \end{array}\right\|$	$\begin{aligned} & \hat{a} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{array}{\|c} 6 \\ \stackrel{6}{n} \end{array}$	$\left\|\begin{array}{l} \bullet \\ \stackrel{0}{6} \\ 0 \end{array}\right\|$	$\begin{aligned} & 0 \\ & -1 \\ & \infty \end{aligned}$	$\stackrel{3}{4}$	in	$\left.\begin{aligned} & 0 \\ & 0 \\ & m \\ & -1 \end{aligned} \right\rvert\,$	$\left\|\begin{array}{l} -1 \\ 0 \\ \underset{\gamma}{2} \end{array}\right\|$	$\left\|\begin{array}{l} \underset{\sim}{4} \\ \underset{\sim}{n} \end{array}\right\|$	$\begin{aligned} & \infty \\ & n \\ & n \\ & -1 \\ & -1 \end{aligned}$	${ }^{-1}$				$\left\|\begin{array}{l} n \\ 0 \\ n \\ \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right\|$	－	r $\sim$ $\sim$
6	$\left\lvert\, \begin{aligned} & \mathrm{N} \\ & 0 \\ & \mathrm{n} \end{aligned}\right.$	$\left\|\begin{array}{l} n \\ 0 \\ \underset{1}{n} \\ N \end{array}\right\|$	$\begin{aligned} & N \\ & N \\ & \sim \\ & \sim \end{aligned}$	$\left\|\begin{array}{c} \underset{\sim}{n} \\ \underset{1}{2} \\ -1 \end{array}\right\|$	$\left\|\begin{array}{l} m \\ \underset{\sim}{m} \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{aligned} & m \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & n \\ & n \\ & n \\ & N \end{aligned}$	$\begin{aligned} & r \\ & \alpha \\ & r \\ & - \\ & r \end{aligned}$	$\left\|\begin{array}{l} \underset{\sim}{N} \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{l} n \\ 6 \\ 1 \\ m \end{array}\right\|$		$\left\lvert\, \begin{aligned} & -1 \\ & n \\ & m \\ & r \end{aligned}\right.$	$\left\|\begin{array}{l} m \\ \infty \\ \infty \end{array}\right\|$	$\left\|\begin{array}{l} 6 \\ \AA \\ \underset{子}{\prime} \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{n}{\wedge} \\ \underset{\sim}{6} \end{array}\right\|$	$\left\|\begin{array}{l} \underset{r}{6} \\ 6 \\ \underset{~}{1} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{N} \end{aligned}\right.$	$\left\|\begin{array}{l} \hat{6} \\ 0 \\ \infty \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ n \\ \sim \\ \sim \end{array}\right\|$	$\left\lvert\, \begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{1} \end{gathered}\right.$	$\left\|\begin{array}{c} \infty \\ 0 \\ r \\ r \\ r \end{array}\right\|$	$\left\|\begin{array}{l} n \\ \infty \\ \sim \\ m \end{array}\right\|$	$\left\|\begin{array}{l} n \\ n \\ n \\ \sim \end{array}\right\|$	$\stackrel{\rightharpoonup}{n}$			$\left\lvert\, \begin{aligned} & 6 \\ & 6 \\ & \infty \end{aligned}\right.$	$\left\|\begin{array}{l} 6 \\ \stackrel{\rightharpoonup}{n} \end{array}\right\|$	$\left\|\begin{array}{l} - \\ 6 \\ \infty \\ \underset{\sim}{1} \end{array}\right\|$	＋	$n$				$\begin{aligned} & \infty \\ & m \\ & m \\ & n \\ & n \end{aligned}$	$\left\|\begin{array}{l} \hat{} \\ \\ \infty \end{array}\right\|$	$\xrightarrow{7}$	$\xrightarrow{N}$
$n$	$\begin{aligned} & -r \\ & \infty \\ & \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \\ \stackrel{n}{n} \\ \\ \end{gathered}\right.$	$\left\|\begin{array}{l} N \\ e \\ 6 \\ \underset{\sim}{t} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \\ & \end{aligned}\right.$	$\left\|\begin{array}{l} \hat{n} \\ \infty \\ \stackrel{\lambda}{\lambda} \\ \underset{r}{2} \end{array}\right\|$	$\begin{aligned} & \substack{\circ \\ N \\ \sim \\ \sim \\ \sim} \end{aligned}$	$\begin{aligned} & \underset{\sim}{-} \\ & \underset{\sim}{\gamma} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & r \\ & - \\ & - \\ & - \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { r } \\ & \stackrel{n}{m} \\ & 0 \\ & - \end{aligned}\right.$	$\left\|\begin{array}{l\|} 0 \\ 0 \\ 0 \\ 0 \\ 10 \\ -1 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{7} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\left\|\begin{array}{l} n \\ \infty \\ \infty \\ -1 \end{array}\right\|$	$\left\|\begin{array}{l} m \\ n \\ 0 \\ n \\ n \\ r \end{array}\right\|$	$\left\|\begin{array}{l} - \\ \overrightarrow{1} \\ m \\ - \\ m \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{m} \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ 0 \\ \\ \infty \end{array}\right\|$	$\left.\begin{aligned} & \underset{\sim}{1} \\ & \mathrm{~N} \\ & 0 \\ & \infty \\ & \sim \end{aligned} \right\rvert\,$		$\left\|\begin{array}{l} \underset{r}{1} \\ m \\ 0 \\ N \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{o} \\ & \stackrel{1}{2} \\ & \underset{m}{ } \end{aligned}\right.$	$\left\|\begin{array}{l\|} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ -1 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & 1 \\ & n \\ & 0 \\ & \underset{m}{n} \end{aligned}\right.$	$\left.\begin{array}{\|c\|} \hline \\ 0 \\ 0 \\ n \\ n \end{array} \right\rvert\,$	$\begin{aligned} & -1 \\ & \text { 人 } \\ & 6 \\ & \sigma \end{aligned}$	$4$		$\begin{aligned} & \text { n } \\ & \text { O } \\ & \text { O } \end{aligned}$	$\left\|\begin{array}{l} \bullet \\ N \\ N \\ N \\ N \\ - \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \stackrel{\sim}{n} \\ \underset{\sim}{1} \end{array}\right\|$	${ }^{\circ}$	$\begin{gathered} 0 \\ \underset{\sim}{2} \\ -1 \end{gathered}$			$-1$	$\left\lvert\, \begin{aligned} & 0 \\ & 6 \\ & 0 \\ & 0 \\ & m \end{aligned}\right.$	$\left\|\begin{array}{l} 6 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} N \\ \underset{\sim}{-} \\ \underset{\sim}{2} \end{array}\right\|$	－
ナ	$\begin{aligned} & 6 \\ & N \\ & 0 \\ & 0 \\ & \Gamma \\ & -1 \end{aligned}$	$\begin{aligned} & a \\ & b \\ & 0 \\ & \Omega \end{aligned}$	$\begin{aligned} & 6 \\ & \sigma_{1} \\ & \downarrow \\ & \sim \\ & \sim \end{aligned}$	$\left\|\begin{array}{c} -1 \\ \underset{\sim}{n} \\ n \\ N \\ \underset{\sim}{n} \end{array}\right\|$	$\left\|\begin{array}{l} n \\ \infty \\ n \\ n \end{array}\right\|$	$\left\lvert\, \begin{aligned} & r \\ & \underset{\gamma}{2} \\ & \underset{r}{2} \end{aligned}\right.$	$\begin{aligned} & 6 \\ & a \\ & n \\ & \end{aligned}$	$\left\|\begin{array}{l} n \\ n \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{array}\right\|$		$\left\lvert\, \begin{aligned} & m \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \underset{N}{2} \end{aligned}\right.$	$\left\lvert\, \begin{gathered} N \\ 0 \\ -1 \\ 6 \end{gathered}\right.$		$\left\lvert\, \begin{aligned} & N \\ & \hat{N} \\ & 0 \\ & \alpha \\ & 0 \\ & \underset{-1}{ } \end{aligned}\right.$	$\left\|\begin{array}{l} N \\ \stackrel{N}{2} \\ \stackrel{2}{6} \end{array}\right\|$	$\left\|\begin{array}{l} n \\ \infty \\ \sim \\ 0 \\ \underset{\sim}{n} \end{array}\right\|$	$\begin{array}{\|l\|l} n \\ o \\ \underset{n}{n} \\ -1 \\ - \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & 6 \\ & 0 \\ & \underset{\sim}{1} \\ & \hline \end{aligned}\right.$	$\begin{aligned} & 6 \\ & \stackrel{0}{\lambda} \\ & \underset{\sim}{1} \\ & 0 \\ & -\quad \end{aligned}$	$\left\|\begin{array}{l} \infty \\ \underset{N}{N} \\ N \\ \sim \\ \sim \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \stackrel{n}{n} \\ & m \\ & \underset{\sim}{7} \\ & \underset{\sim}{7} \end{aligned}\right.$	$\left\lvert\, \begin{gathered} 0 \\ N \\ N \\ N \\ N \\ \end{gathered}\right.$	$\left\|\begin{array}{l} o \\ \underset{\sim}{0} \\ 0 \\ N \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \stackrel{\bullet}{n} \\ & \stackrel{1}{\prime} \\ & \stackrel{\rightharpoonup}{m} \end{aligned}\right.$	$\begin{aligned} & n \\ & \infty \\ & 0 \\ & \stackrel{n}{n} \\ & N \end{aligned}$	$\begin{aligned} & 6 \\ & \infty \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & m \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\left\|\begin{array}{l} \infty \\ \infty \\ \infty \\ \infty \\ m \end{array}\right\|$	$\left\|\right\|$	$\underset{i}{-1}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \underset{v}{2} \end{aligned}$		$\begin{gathered} 4 \\ -1 \\ \Omega \\ \Omega \end{gathered}$		$\begin{aligned} & o \\ & m \\ & \sim \\ & \sim \\ & \sim \\ & \sim \end{aligned}$	$\left\|\begin{array}{c} 6 \\ 10 \\ m \\ e \\ N \end{array}\right\|$	¢	¢
$m$	$\left\lvert\, \begin{aligned} & n \\ & \stackrel{y}{6} \\ & o \\ & o \\ & \end{aligned}\right.$		$\left\lvert\,\right.$	$\left\lvert\, \begin{aligned} & n \\ & N \\ & \underset{\sim}{1} \\ & \ddots \end{aligned}\right.$	$\left\|\begin{array}{l} n \\ 6 \\ \infty \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & i \end{aligned}$	$\left\lvert\, \begin{aligned} & o \\ & \infty \\ & \infty \\ & m \\ & o \\ & m \end{aligned}\right.$	$\begin{aligned} & 0 \\ & m \\ & m \\ & \infty \\ & 0 \\ & 0 \\ & -1 \end{aligned}$		$\left\|\begin{array}{l} \underset{\sim}{0} \\ 0 \\ 0 \\ 0 \\ \underset{\sigma}{2} \end{array}\right\|$	$\left\|\begin{array}{l} 7 \\ 0 \\ 0 \\ 0 \\ \underset{N}{1} \end{array}\right\|$		$\left\|\begin{array}{l} -1 \\ \AA \\ \kappa \\ \infty \\ \curvearrowleft \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \underset{\sim}{~} \\ & \stackrel{n}{~} \\ & \underset{\sim}{1} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & n \\ & \stackrel{n}{r} \\ & \underset{\sim}{1} \\ & \underset{m}{2} \end{aligned}\right.$	$\begin{aligned} & n \\ & \underset{n}{n} \\ & \underset{m}{n} \\ & m \end{aligned}$		$\left\lvert\, \begin{aligned} & m \\ & \underset{\sim}{1} \\ & 0 \\ & m \\ & r \end{aligned}\right.$	$\left\|\begin{array}{l} -1 \\ \stackrel{-}{n} \\ \underset{\sim}{n} \\ \underset{\sim}{r} \end{array}\right\|$		$\left\lvert\, \begin{aligned} & 0 \\ & \underset{N}{2} \\ & \underset{\sim}{n} \\ & \end{aligned}\right.$	$\begin{aligned} & \underset{\sim}{\infty} \\ & o \\ & N \\ & N \\ & \cdots \\ & \cdots \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\rightharpoonup}{N} \\ & \underset{\infty}{\infty} \\ & \stackrel{\sim}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & n \\ & 0 \\ & n \\ & \underset{m}{n} \end{aligned}$	$\begin{gathered} \mathrm{m} \\ \underset{\sim}{*} \\ \hline \end{gathered}$		$\begin{aligned} & \wedge \\ & \underset{\sim}{1} \\ & \alpha \\ & \infty \\ & \underset{\sim}{1} \end{aligned}$	$\left\lvert\, \begin{aligned} & \underset{ }{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{N} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \underset{\sim}{\prime} \\ & \underset{\sim}{2} \\ & \underset{\sim}{n} \end{aligned}\right.$	$\begin{aligned} & y_{1} \\ & y \\ & 0 \\ & 0 \\ & -1 \end{aligned}$	$\begin{aligned} & x \\ & 4 \\ & 0 \\ & 0 \\ & -1 \end{aligned}$		$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & 0 \\ & \Omega \end{aligned}$		$\left\lvert\, \begin{gathered} N \\ \underset{N}{N} \\ \underset{\sim}{\infty} \\ \infty \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \underset{1}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & m \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \underset{N}{2} \end{aligned}\right.$	N $\sim$ $\infty$ 0 0 $n$ $\sim$
N			$\begin{aligned} & \underset{\infty}{\infty} \\ & -1 \\ & 1 \\ & -1 \end{aligned}$		$\left\|\begin{array}{c} n \\ \infty \\ o \\ \circ \\ \infty \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{aligned} & -1 \\ & \underset{1}{n} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\begin{aligned} & - \\ & -1 \\ & 0 \\ & \infty \\ & \\ & \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \infty \\ & -1 \\ & \underset{N}{1} \end{aligned}\right.$	$\left\|\begin{array}{l} \underset{n}{m} \\ 0 \\ \underset{\Gamma}{\lambda} \end{array}\right\|$		$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ \hat{\imath} \\ \stackrel{n}{2} \end{array}\right\|$		$\left\|\begin{array}{l} \bullet \\ \stackrel{n}{N} \\ \underset{\sim}{7} \\ \underset{\sim}{1} \end{array}\right\|$		$\left\|\begin{array}{c} n \\ \hat{0} \\ \stackrel{1}{2} \\ 0 \\ -1 \end{array}\right\|$		$\left\|\begin{array}{l} 0 \\ { }_{1}^{1} \\ 0 \\ { }_{1} \\ \underset{N}{2} \end{array}\right\|$	$\left\|\begin{array}{l} -1 \\ 6 \\ N \\ m \\ m \\ m \end{array}\right\|$	$\left\|\right\|$	$\begin{gathered} 0 \\ N \\ \cdots \\ \vdots \\ \infty \end{gathered}$	$\left\|\begin{array}{c} \infty \\ N \\ N \\ N \\ N \\ N \\ N \end{array}\right\|$	$\left\|\begin{array}{c} m \\ \underset{N}{n} \\ \infty \\ 0 \\ n \\ \hline \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ 6 \\ 0 \\ \underset{\sim}{1} \\ \underset{n}{n} \end{array}\right\|$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \infty \\ & \infty \\ & \sim \\ & \sim \end{aligned}$				$\left\|\begin{array}{l} \infty \\ n \\ N \\ \infty \\ \sim \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \infty \\ \sim \\ N \\ \underset{\sim}{n} \\ \sim \end{array}\right\|$	$\begin{aligned} & 6 \\ & \mathbf{o} \\ & \mathrm{w} \\ & \mathbf{o} \\ & \mathrm{v} \end{aligned}$		－				$\left\|\begin{array}{l} \infty \\ N \\ 0 \\ \infty \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \\ & \infty \\ & \infty \\ & N \\ & N \\ & \end{aligned}\right.$	－ $\begin{aligned} & \text { a } \\ & 6 \\ & 9 \\ & 7 \\ & 6\end{aligned}$
		$\left\lvert\, \begin{aligned} & 6 \\ & m \\ & \underset{\sim}{r} \end{aligned}\right.$	$\left\|\begin{array}{l} m \\ 0 \\ 10 \\ 0 \\ 0 \\ m \end{array}\right\|$	$\left\|\begin{array}{c} N \\ N \\ n \\ \vdots \\ 0 \\ 0 \\ - \\ \hline \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \infty \\ \cdots \\ \infty \\ \infty \\ \infty \\ \infty \end{array}\right\|$		$\begin{aligned} & m \\ & n \\ & \underset{\sim}{1} \\ & o \\ & \sim \end{aligned}$			$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & N \\ & \\ & \underset{\sigma}{2} \end{aligned}\right.$	$\left\|\begin{array}{l} 0 \\ m \\ 0 \\ 6 \\ 0 \\ m \end{array}\right\|$	$\left\|\begin{array}{l} n \\ \sim \\ \infty \\ 0 \\ N \\ N \\ N \end{array}\right\|$			$\left\|\begin{array}{c} n \\ \underset{\sim}{n} \\ \infty \\ n \\ n \\ n \end{array}\right\|$	$\begin{aligned} & \underset{\sim}{r} \\ & \stackrel{1}{n} \\ & \\ & \underset{\sigma}{\prime} \end{aligned}$	$\left\|\begin{array}{l} -1 \\ 0 \\ \underset{\sim}{7} \\ \hat{n} \\ m \end{array}\right\|$		$\left\|\begin{array}{l} 0 \\ \underset{\sim}{\gamma} \\ \underset{\sim}{7} \\ \underset{\sim}{1} \end{array}\right\|$	$\begin{aligned} & 6 \\ & 0 \\ & 0 \\ & \stackrel{1}{n} \\ & \stackrel{\wedge}{N} \end{aligned}$	$\left\|\begin{array}{l} 0 \\ n \\ N \\ N \\ n \\ \end{array}\right\|$	$\left\lvert\, \begin{gathered} m \\ \underset{\sim}{n} \\ \underset{\sim}{n} \\ \cdots \\ \underset{\sim}{n} \end{gathered}\right.$	$\left\|\begin{array}{l} \infty \\ \sim \\ \infty \\ \infty \\ \stackrel{\sim}{r} \end{array}\right\|$		$\begin{aligned} & -1 \\ & -1 \\ & 4 \\ & -1 \\ & - \end{aligned}$		$\begin{aligned} & 0 \\ & 7 \\ & -1 \\ & \infty \\ & 0 \\ & \infty \end{aligned}$	$\left\|\begin{array}{l} n \\ n \\ n \\ \infty \\ N \\ N \\ N \end{array}\right\|$	$\left\|\begin{array}{l} \circ \\ \stackrel{\infty}{\infty} \\ \infty \\ o \\ 0 \\ \sim \end{array}\right\|$	$\begin{aligned} & 6 \\ & \boxed{2} \\ & \Omega \\ & \Omega \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \mathrm{v} \\ & h^{2} \end{aligned}$	－	$\begin{gathered} \Omega \\ -7 \\ \underset{n}{n} \\ \Omega \end{gathered}$		$\left\lvert\, \begin{gathered} \mathrm{m} \\ \underset{\sim}{x} \\ \underset{\sim}{1} \end{gathered}\right.$		$\underset{\text { が }}{\text { নে }}$	6 $m$ $m$ 0 -1
$\bigcirc$	$\left\|\begin{array}{l} \hat{6} \\ m \\ m \\ -1 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & n \\ & n \\ & \sim \\ & 0 \\ & \underset{~}{n} \\ & \underset{1}{2} \end{aligned}\right.$	$\begin{aligned} & n \\ & n \\ & \underset{\sim}{n} \\ & N \\ & N \\ & e \end{aligned}$	$\left\|\begin{array}{c} n \\ 0 \\ n_{1} \\ \underset{\sim}{1} \\ \hat{0} \\ -1 \end{array}\right\|$	$\left\|\begin{array}{l} n \\ m \\ 0 \\ 0 \\ 0 \\ m \end{array}\right\|$	$\underset{\sim}{\bullet}$	$\begin{aligned} & 0 \\ & \underset{\imath}{2} \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & \hat{0} \\ & \hat{0} \\ & N \\ & N \end{aligned}$	$\left\lvert\, \begin{aligned} & 6 \\ & 0 \\ & m \\ & m \\ & m \\ & m \end{aligned}\right.$		$\left\lvert\, \begin{gathered} n \\ \underset{\sim}{1} \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	$\left\|\begin{array}{l} n \\ o \\ o \\ \underset{\sim}{7} \\ -1 \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \infty \\ 0 \\ e \\ \vdots \\ - \end{array}\right\|$	$\left\|\begin{array}{l} -1 \\ 6 \\ \sim \\ \underset{\sim}{r} \\ \underset{\sim}{-1} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ o \\ \Gamma \\ 0 \\ \underset{\sim}{\gamma} \end{array}\right\|$	$\left\|\begin{array}{l} n \\ \underset{1}{1} \\ -1 \\ 0 \\ 0 \\ \hline \end{array}\right\|$	$\left\|\begin{array}{l} m \\ \infty \\ \infty \\ \sim_{1} \\ \infty \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \stackrel{N}{N} \\ & \underset{m}{m} \\ & \underset{\sim}{n} \\ & \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \circ \\ & \vec{~} \\ & \underset{\sim}{1} \\ & 6 \\ & \overrightarrow{7} \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & \infty \\ & \sim \\ & \infty \\ & o \\ & 0 \\ & 0 \end{aligned}\right.$	$\left\|\right\|$	$\left\|\begin{array}{l} o \\ \hat{n} \\ \underset{\sim}{n} \\ n \\ \cdots \end{array}\right\|$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & n \end{aligned}$	$\begin{gathered} \infty \\ m \\ m \\ n \end{gathered}$			$\left\lvert\, \begin{aligned} & 0 \\ & -1 \\ & -1 \\ & m \\ & N \\ & \underset{r}{1} \end{aligned}\right.$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\sim} \\ & \underset{\sim}{o} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \underset{y}{n} \\ & - \\ & -1 \\ & -1 \end{aligned}$	$\begin{gathered} 6 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	－	$\begin{gathered} w_{0} \\ n \\ n \\ m \\ m \end{gathered}$		$\left\|\begin{array}{c} \pi \\ \omega \\ N \\ \infty \\ 0 \\ \sim \end{array}\right\|$	$\left\|\begin{array}{l} -1 \\ \infty \\ \underset{N}{N} \\ N \end{array}\right\|$	$\begin{aligned} & 0 \\ & \text { - } \\ & \text { N } \\ & \mathrm{m} \end{aligned}$	
	$\left\lvert\, \begin{aligned} & m \\ & 6 \\ & 0 \\ & -\quad \end{aligned}\right.$	$\left\|\begin{array}{l} \pi \\ 6 \\ 0 \\ \cdots \end{array}\right\|$	$\left\lvert\, \begin{aligned} & n \\ & 6 \\ & 0 \\ & -1 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0 \\ & 6 \\ & 6 \\ & 0 \\ & -1 \end{aligned}\right.$	$\left\|\begin{array}{l} \hat{6} \\ 0 \\ \underset{\sim}{r} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ 0 \\ 0 \\ \vec{~} \end{array}\right\|$	$\begin{aligned} & \mathbf{o} \\ & 6 \\ & 6 \\ & -1 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{r} \\ & \stackrel{2}{r} \end{aligned}$	$\left\lvert\, \begin{aligned} & \underset{\lambda}{-} \\ & \underset{\lambda}{\lambda} \\ & \underset{r}{2} \end{aligned}\right.$	$\begin{aligned} & N \\ & \underset{\sim}{2} \\ & \underset{\sim}{n} \end{aligned}$	$\left\|\begin{array}{l} m \\ \lambda \\ \vdots \\ \underset{r}{2} \end{array}\right\|$	$\begin{aligned} & \underset{\sim}{r} \\ & \vdots \\ & \vdots \\ & r \end{aligned}$		$\left\|\begin{array}{l} 6 \\ \stackrel{1}{\alpha} \\ \stackrel{1}{-} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\lambda} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\left\|\begin{array}{l} \infty \\ \wedge \\ \hat{n} \\ \sim \end{array}\right\|$	$\left\|\begin{array}{l} n \\ \lambda \\ h \\ \vec{r} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \infty \\ 0 \\ -1 \end{array}\right\|$	$\left\|\begin{array}{l} -1 \\ \infty \\ o \\ -1 \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \infty \\ o \\ \sim \end{array}\right\|$	$\left\|\begin{array}{l} n \\ \infty \\ o \\ \cdots \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \infty \\ 0 \\ -1 \end{array}\right\|$	$\left\|\begin{array}{l} n \\ \infty \\ \infty \\ n \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \infty \\ o \\ - \\ - \end{array}\right\|$	$\begin{gathered} \hat{\infty} \\ \underset{\sim}{\sim} \\ \underset{\sim}{2} \end{gathered}$			$\left\lvert\, \begin{aligned} & -1 \\ & ু \\ & \Omega \\ & -1 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { N } \\ & \AA \\ & \sigma \\ & -1 \end{aligned}\right.$	n $\stackrel{\sim}{2}$ $\stackrel{\rightharpoonup}{\square}$ $\cdots$		成			$\left\|\begin{array}{l} 0 \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}\right.$	－	N




Table 4.2.5 Haddock in Sub-area IV and Division IIIa. Industrial by-catch (for reduction purposes) catch numbers at age. Ages 0-15, Years 1963-2002.
00000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000

00000000000000000000000000000000000000000000
0000000000000000040000000000000000000000






































0000000000000000000000000000000000000000
$0000 \stackrel{N}{N}$



















```
00
```

00000000000000000000000000000000000000000000


$000000000000000000000 \stackrel{H}{4}$
$\stackrel{+}{-}$
00000000000000000000040000000000000000000

























 is given as reported hours fished.

ScoLTR Scottish light trawlers

0
1691.97445733 .129 463.91444561 .961 179.99592519 .258




 O
N
®
त
N
N


 0
+
$\cdots$
$\vdots$
$\vdots$
$\vdots$ à
N
N
o

o \begin{tabular}{c}
N <br>
\multirow{2}{*}{} <br>
\multirow{2}{*}{} <br>
N <br>
N

 

$\exists$ \& \multirow{2}{*}{} <br>
N <br>
N <br>
N <br>
N <br>
N
\end{tabular}



 $\pm$
$n$
$n$
0
$n$
$n$ $\stackrel{\pi}{n}$
$\underset{\sim}{2}$
o

$$
\begin{array}{r}
2002 \\
1 \\
13
\end{array}
$$

 $\infty$
0
0
0
0
0


$n$
$n$



$\hat{N}$

$-$
I
0.000  8
©
$9 E 0^{\circ} 0$
$\varsigma 0 \nabla^{\circ} \mathrm{I}$
O
88









 1978
1
0
236929
287494
333197
251504
250870
244349
240725
268136
279767
351128
391988
405883
441084
408056
473955
447064
480400
442010
445995
479449
427868
329750
280938
245489
184096

Table 4.3.1. contd. Haddock in Sub-area IV and Division IIIa. Landings-effort and survey tuning series made available to the WG. For ScoGFS, numbers are standardised to catch-rate per 10 hours.

EngGFS English groundfish survey

1977	2002							
1	1	0.5	0.75					
0	7							
100	53.480	6.681	3.206	6.163	0.925	0.072	0.091	0.013
100	35.827	13.688	2.617	0.239	2.220	0.214	0.005	0.074
100	87.551	29.554	5.461	0.872	0.109	0.437	0.035	0.004
100	37.402	62.331	16.731	2.570	0.273	0.043	0.142	0.022
100	153.746	17.319	43.910	7.557	0.742	0.064	0.003	0.060
100	28.134	31.547	7.979	11.800	1.026	0.236	0.098	0.014
100	83.193	21.821	10.952	2.143	2.174	0.266	0.041	0.014
100	22.846	59.933	6.159	3.078	0.417	0.478	0.103	0.013
100	24.587	18.656	23.819	2.111	0.698	0.196	0.128	0.041
100	26.600	14.973	4.472	3.383	0.278	0.175	0.038	0.036
100	2.241	28.193	4.310	0.533	0.687	0.048	0.033	0.003
100	6.074	2.856	18.353	1.549	0.160	0.279	0.040	0.012
100	9.429	8.168	1.446	3.968	0.252	0.030	0.060	0.014
100	28.188	6.645	1.983	0.286	0.878	0.048	0.027	0.013
100	26.333	11.505	0.961	0.231	0.048	0.219	0.005	0.006
100	82.774	19.688	9.774	0.584	0.049	0.012	0.084	0.004
100	13.578	24.609	5.859	1.665	0.059	0.017	0.000	0.009
100	94.297	8.066	9.020	0.839	0.283	0.020	0.001	0.001
100	17.993	38.310	4.452	3.403	0.278	0.092	0.007	0.000
100	19.917	8.310	14.570	1.217	0.830	0.071	0.054	0.000
100	13.032	14.863	4.334	6.607	0.227	0.216	0.027	0.006
100	5.302	8.891	5.681	1.347	1.418	0.083	0.046	0.003
100	210.984	5.572	2.830	1.233	0.423	0.405	0.014	0.012
100	31.023	84.112	1.525	0.550	0.247	0.113	0.118	0.000
100	0.372	9.635	32.493	1.023	0.279	0.118	0.045	0.019
100	0.919	1.329	7.596	20.400	0.183	0.033	0.051	0.032

Table 4.3.1. contd. Haddock in Sub-area IV and Division IIIa. Landings-effort and survey tuning series made available to the WG. For ScoGFS, numbers are standardised to catch-rate per 10 hours. The upper table gives indices from a consistent survey area for the whole time-series. The lower table shows indices from the new survey area, instigated in 1999.

ScoGFS (consistent area 1982-2003)

1982	2003					
1	1	0.5	0.75			
0	5					
100	1235.000	2488.000	996.000	1336.000	115.000	7.000
100	2203.000	1813.000	1611.000	372.000	455.000	53.000
100	873.000	4367.000	788.000	336.000	55.000	65.000
100	818.000	1976.000	2981.000	232.000	103.000	14.000
100	1747.000	2329.000	574.000	598.000	36.000	27.000
100	277.000	2393.000	704.000	106.000	128.000	8.000
100	406.000	467.000	1982.000	170.000	27.000	23.000
100	432.000	886.000	214.000	574.000	31.000	4.000
100	3163.000	1002.000	240.000	32.000	103.000	7.000
100	3471.000	1705.000	178.000	21.000	5.000	16.000
100	8270.000	3832.000	963.000	48.000	8.000	3.000
100	859.000	5836.000	1380.000	269.000	6.000	4.000
100	13762.000	1265.000	2080.000	210.000	53.000	2.000
100	1566.000	8153.000	734.000	926.000	74.000	28.000
100	1980.000	2231.000	4705.000	231.000	206.000	22.000
100	972.000	2779.000	849.000	1397.000	66.000	56.000
100	3280.000	6349.000	1924.000	490.000	511.000	24.000
100	66067.310	1907.141	1141.225	688.380	197.127	164.070
100	11902.085	30610.761	460.380	221.282	129.507	72.803
100	78.620	3789.563	11352.408	178.704	65.042	40.239
100	2149.357	674.629	2632.471	6930.857	69.571	37.071
100	2159.063	1171.747	306.57	2091.532	4343.519	22.456

ScoGFS
(new area 1999-2003)

1999	2003					
1	1	0.5	0.75			
0	5					
100	54072.000	1556.000	931.000	562.000	161.000	133.000
100	10375.000	25132.000	378.000	181.000	106.000	59.000
100	67.000	3095.000	9267.000	146.000	53.000	33.000
100	1774.000	556.000	2168.000	5709.000	57.000	31.000
100	1780.104	964.250	252.281	1721.365	3574.563	18.688

Table 4.3.1. contd. Haddock in Sub-area IV and Division IIIa. Landings-effort and survey tuning series made available to the WG.

IBTS_Q1

1967	2003					
1	1	0	0.25			
1	6					
1	42.000	3.900	2.800	6.000	0.200	0.300
1	4877.600	29.200	13.100	5.000	1.800	7.400
1	3555.600	1600.900	159.100	46.500	21.700	25.000
1	52.600	148.800	145.900	60.300	7.200	1.200
1	528.500	30.000	31.800	64.800	1.100	0.200
1	395.100	258.100	32.900	4.700	9.700	0.800
1	327.800	876.300	200.100	12.100	2.200	1.000
1	1136.100	136.100	198.400	18.700	0.900	7.400
1	1146.300	355.800	18.600	34.500	6.200	0.900
1	105.000	556.400	182.900	16.500	13.700	3.200
1	139.400	66.500	134.500	16.500	1.200	1.800
1	352.800	105.900	27.900	66.500	10.400	2.900
1	468.200	212.400	52.500	6.700	15.300	2.600
1	863.700	388.600	86.700	10.700	2.400	5.800
1	267.700	637.600	159.700	25.700	4.400	3.100
1	537.600	253.000	421.900	60.300	8.000	2.200
1	308.200	402.600	89.800	115.300	12.700	1.900
1	1067.700	221.300	130.900	20.900	21.200	4.600
1	228.500	828.400	105.100	33.800	4.300	7.200
1	584.500	251.100	285.900	17.200	6.000	2.100
1	917.300	328.800	47.200	61.100	4.700	2.600
1	100.700	671.000	97.000	12.700	13.600	2.000
1	217.600	97.400	273.700	16.800	2.100	4.700
1	217.400	139.100	33.000	50.400	3.200	1.800
1	678.000	133.000	24.800	4.200	8.400	2.400
1	1163.000	344.600	18.100	3.000	0.600	2.000
1	1254.300	540.800	154.500	8.900	1.100	1.000
1	228.700	503.900	98.300	23.300	1.600	0.800
1	1355.500	201.100	176.200	24.300	5.300	0.800
1	267.400	813.300	65.900	46.700	7.700	3.100
1	860.200	366.400	470.600	24.800	15.100	3.400
1	373.600	432.300	105.500	113.700	8.700	5.400
1	211.800	232.900	129.700	48.100	36.600	4.300
1	3702.100	107.800	49.900	25.400	15.600	10.300
1	887.600	2279.000	47.800	10.900	7.200	5.700
1	57.000	471.100	1308.400	8.700	6.700	3.800
1	89.619	40.296	237.85	537.846	2.452	2.402
1020						

Table 4.4.1. Haddock in Sub-area IV and Division IIIa. Contribution to survivors' estimates of $F$-shrinkage in exploratory XSA runs.


Table 4.4.2. Haddock in Sub-Area IV and Division IIIa. XSA tuning output.

```
Lowestoft VPA Version 3.1
 16/09/2003 9:26
Extended Survivors Analysis
Haddock in the North Sea and Skagerrak, ages 0-10+ (19/08/2003 CLN)
CPUE data from file hadivef_split.txt
Catch data for 40 years. 1963 to 2002. Ages 0 to 7.
 Fleet, First, Last, First, Last, Alpha, Beta
 year, year, age, age
ENGGFS_full (awaitin, 1977, 2002, 0, 5, 5, . 500, .750
SCOGFS_new_full (new, 1982, 2002, 0, 5, .500, .750
IBTS_Q1 late (backsh, 1975, 2002, 0, 4, .990, 1.000
Time series weights :
 Tapered time weighting not applied
Catchability analysis :
 Catchability dependent on stock size for ages < 1
 Regression type = C
 Minimum of }5\mathrm{ points used for regression
 Survivor estimates shrunk to the population mean for ages < 1
 Catchability independent of age for ages >= 2
Terminal population estimation :
 Survivor estimates shrunk towards the mean F
 of the final }5\mathrm{ years or the }3\mathrm{ oldest ages.
 S.E. of the mean to which the estimates are shrunk = 2.000
 Minimum standard error for population
 estimates derived from each fleet = .300
 Prior weighting applied :
 Fleet Weight
 ENGGFS_f 1.00
 SCOGFS_n 1.00
 IBTS_Q1 1.00
Tuning converged after 20 iterations
1
Regression weights
 ,1.000,1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000
Fishing mortalities
 Age, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
 0,.032, .005, .061, .048, .009, .007, .002, .006, .004, .031
 1,.175, . 155, . 106, .081, . 128, .135, . 172, .052, . 067, . 161
 2,.816, . 579, . 518, . 463, .479, . 641, . 881, . 842, . 311, . 155
 3, 1.063, 1.103, .950, .975, . 665, .672, 1.046, 1.203, 1.100, . 209
 4, 1.147, 1.093, 1.095, 1.106, . 841, .954, .949, 1.261, .950, . 716
 5,1.148, 1.296, 1.026, 1.282, 1.229, .971, 1.338, . 659, .684, . 587
 6, 2.129, 2.184, 1.987, 2.059, 1.617, 1.149, 1.692, 1.388, .350, . 395
```

Table 4.4.2. cont. Haddock in Sub-Area IV and Division IIIa. XSA tuning output.
XSA population numbers (Thousands)


Table 4.4.2. cont. Haddock in Sub-Area IV and Division IIIa. XSA tuning output.
Log catchability residuals.


Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3,	4,	5
Mean Log q,	-15.5886,	-15.1295,	-15.1295,	-15.1295,	-15.1295,
S.E (Log q),	.2908,	.3352,	.4376,	.4654,	.4335,

Regression statistics :
Ages with $q$ dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log q

$$
0, \quad .68, \quad 3.929, \quad 17.00, \quad .86, \quad 26, \quad .38,-17.09,
$$

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean $Q$

1,	1.00,	.012,	15.59,	.90,	26,	.30,	-15.59,
2,	.96,	.491,	15.04,	.86,	26,	.33,	-15.13,
3,	.96,	.438,	15.11,	.85,	26,	.41,	-15.24,
4,	.94,	.693,	15.11,	.87,	26,	.37,	-15.38,
5,	.91,	1.379,	14.82,	.90,	26,	.31,	-15.39,

Table 4.4.2. cont.Haddock in Sub-Area IV and Division IIIa. XSA tuning output.


Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3,	4,	5
Mean Log q,	-10.4253,	-9.9889,	-9.9889,	-9.9889,	-9.9889,
S.E (Log q),	.5194,	.3183,	.4830,	.5792,	.5977,

Regression statistics :

Ages with $q$ dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log q
0, .84, $.952, \quad 13.22, \quad$ 21, $75,-12.55$,

Ages with $q$ independent of year class strength and constant w.r.t. time. Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	1.23,	-1.565,	9.44,	.71,	21,	.62,	-10.43,
2,	.95,	.585,	10.14,	.88,	21,	.31,	-9.99,
3,	.87,	1.430,	10.36,	.87,	21,	.39,	-10.12,
4,	.83,	1.760,	10.31,	.85,	21,	.40,	-10.25,
5,	.90,	.860,	10.14,	.79,	21,	.49,	-10.24,

Table 4.4.2. cont. Haddock in Sub-Area IV and Division IIIa. XSA tuning output.


Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3,	4
Mean Log q,	-7.3395,	-7.3213,	-7.3213,	-7.3213,
S.E (Log q),	.3752,	.3332,	.3489,	.5057,

Regression statistics :

Ages with $q$ dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log q
0, 1.03, $-.336, \quad 8.49, \quad 28, \quad .44, \quad-8.74$,

Ages with $q$ independent of year class strength and constant w.r.t. time. Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	1.21,	-2.492,	5.74,	.84,	28,	.42,	-7.34,
2,	1.09,	-1.090,	6.80,	.85,	28,	.36,	-7.32,
3,	1.07,	-1.085,	7.14,	.89,	28,	.34,	-7.47,
4,	1.07,	-.686,	7.32,	.80,	28,	.49,	-7.53,

Table 4.4.2. cont. Haddock in Sub-Area IV and Division IIIa. XSA tuning output.


Table 4.4.2. cont.Haddock in Sub-Area IV and Division IIIa. XSA tuning output.

$\begin{aligned} & \text { Age } 3 \text { Catchability } \\ & \text { Year class }=1999 \end{aligned}$	constant w.r.t. time and age (fixed at the value for age)						
Fleet,	Estimated, Survivors,	Int, s.e,	Ext, s.e,	Var, Ratio,		Scaled, Weights,	Estimated F
ENGGFS_full (awaitin,	683920.,	.182,	. 075 ,	. 41,	4,	. 388,	. 267
SCOGFS_new_full (new,	1114116.,	. 236 ,	. 128,	. 54,	4,	. 240 ,	. 172
IBTS_Q1 late (backsh,	1068457.,	. 192 ,	.129,	. 67 ,	4,	. 367 ,	. 179
F shrinkage mean ,	131721.,	2.00,				. 005,	. 951

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$898062 .$,	.12,	.09,	13,	.817,	.209

Age 4 Catchability constant w.r.t. time and age (fixed at the value for age) 2 Year class $=1998$

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	Ext,	Var, Ratio,		Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
ENGGFS_full (awaitin,	5046.,	. 246 ,	. 135,	. 55,	5,	. 375,	. 754
SCOGFS_new_full (new,	7494	. 305 ,	.128,	. 42 ,	5,	. 245 ,	. 564
IBTS_Q1 late (backsh,	4826.,	. 246 ,	.123,	. 50,	5,	. 360 ,	. 777
F shrinkage mean	3273.,	2.00,				. 020,	1.006

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$5423 .$,	.15,	.08,	16,	.540,	.716

Age 5 Catchability constant w.r.t. time and age (fixed at the value for age) 2
Year class $=1997$

Fleet,	Estimated, Survivors,	Int, s.e,	Ext, s.e,	Var,   Ratio,	N,	Scaled, Weights,	$\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$
ENGGFS_full (awaitin,	1367.	. 283,	. 230,	. 81,	6,	. 498,	. 839
SCOGFS_new_full (new,	4316.	. 363,	. 114,	. 32,	6,	. 285,	. 348
IBTS_Q1 late (backsh,	3448 .	. 256 ,	.184,	. 72 ,	5,	.191,	. 419
F shrinkage mean	$1067 .$,	2.00,				. 026,	. 987

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$2250 .$,	.19,	.17,	18,	.880,	.587

Age 6 Catchability constant w.r.t. time and age (fixed at the value for age) 2 Year class $=1996$

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,	N,	Scaled, Weights,	Estimated F
ENGGFS_full (awaitin,	1656.,	.291,	. 074 ,	. 26 ,	6,	. 498,	. 478
SCOGFS_new_full (new,	2998.,	. 374 ,	.061,	.16,	6,	. 283,	. 292
IBTS_Q1 late (backsh,	2507.	. 230 ,	.115,	. 50,	5,	.174,	. 340
F shrinkage mean	1534.,	2.00,				.045,	. 508

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
2098.	.20,	.08,	18,	.379,	.395

## Table 4.4.3.

	YEAR,	1963,	1964,	1965,	1966,	1967,	1968,	1969,	1970,	1971,	1972,
AGE											
	0 ,	. 0016,	. 0434 ,	. 0716 ,	. 0701 ,	. 0022 ,	. 0018 ,	. 0168,	. 0299,	. 0120,	. 0322,
	1,	.1219,	. 0564 ,	1.3531,	1.3051,	. 2633,	. 0515 ,	. 0215,	.5028,	. 4748,	. 1697,
	2,	. 7914 ,	. 4438,	. 4010,	. 8143,	1.0863,	.5803,	. 6543,	1.0392 ,	. 6646 ,	. 7947 ,
	3,	. 6391,	1.1202,	. 4901,	. 3409 ,	. 4000 ,	. 9110,	1.3932,	1.1454,	.7991,	1.3731,
	4,	. 7267 ,	. 6871,	. 8640 ,	. 7247 ,	. 3440 ,	. 2914 ,	1.3465,	1.3309,	. 8617,	1.2071 ,
	5,	. 7652 ,	. 7973 ,	1.0108,	. 8713,	. 8544 ,	. 4504 ,	. 7437 ,	. 8033,	. 9937,	1.1254,
	6,	. 7171 ,	. 8775,	. 7963 ,	. 6515,	. 5371 ,	. 5555,	1.1753,	1.1062 ,	. 8943,	1.2505,
	+gp,	. 7171 ,	. 8775,	. 7963 ,	. 6515,	. 5371 ,	. 5555,	1.1753,	1.1062 ,	. 8943,	1.2505,
FBAR	2-4,	. 7190 ,	. 7504 ,	. 5850 ,	. 6266 ,	. 6101,	. 5943,	1.1313,	1.1718,	. 7751 ,	1.1249,
	Table 8	Fishing	mortality	(F) at							
	YEAR,	1973,	1974,	1975,	1976,	1977,	1978,	1979,	1980,	1981,	1982,
AGE											
	0 ,	. 0023 ,	. 0130,	. 0113,	. 0298,	.0131,	. 0218 ,	. 0347 ,	.0735,	. 0572,	. 0387 ,
	1,	. 3747 ,	. 3528 ,	. 3363 ,	. 3087 ,	. 3373 ,	. 3882 ,	. 1757,	. 1899,	. 1783,	. 1739,
	2,	.5673,	. 9390,	. 9669,	. 8196,	1.0121,	1.0066,	. 8720,	. 7088 ,	. 4516,	. 4283,
	3,	1.1643,	. 9587,	1.2767,	1.3606,	1.0546,	1.1515,	1.1248,	1.1697,	. 9499,	. 8212,
	4,	. 8607 ,	1.0183,	1.1282,	. 8207 ,	1.2275,	1.1807 ,	1.1304,	1.1312,	. 9026,	. 8897 ,
	5,	. 9635 ,	. 7290 ,	1.0351,	1.3922,	1.1750,	1.0636,	1.1924,	1.1204 ,	. 7145 ,	. 5291,
	6,	1.0075,	. 9118,	1.1605,	1.2058,	1.3478,	1.6120,	. 9039,	1.6445 ,	. 9352 ,	. 5911,
	+gp,	1.0075,	. 9118,	1.1605,	1.2058,	1.3478,	1.6120,	. 9039,	1.6445,	. 9352 ,	. 5911,
FBAR	2-4,	. 8641 ,	. 9720,	1.1239,	1.0003,	1.0981,	1.1129,	1.0424,	1.0032,	. 7681 ,	. 7131,

[^3]At 16/09/2003 9:26
Table 4.4.3. cont. Haddock in Sub-Area IV and Division IIIa. XSA summary output.
Terminal Fs derived using XSA (With F shrinkage)

Table 4.4.3. cont.Haddock in Sub-Area IV and Division IIIa. XSA summary output.

Ñ		$\infty$ $\stackrel{\infty}{\aleph}$ $\stackrel{\sim}{\circ}$	
$\begin{aligned} & \text { ̇̈ } \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{o} \\ & \stackrel{\circ}{-} \end{aligned}$	
$\stackrel{\vdots}{\circ}$		$\underset{\substack{\circ \\ \multirow{2}{*}{\stackrel{\sim}{*} \\ \vdots}\\ \stackrel { \sim } { * } \\ \vdots}}{ }$	
$\begin{array}{r} \stackrel{z}{2} \\ \text { ò } \\ \stackrel{\circ}{\circ} \end{array}$		$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\infty}} \stackrel{\otimes}{\stackrel{\infty}{\circ}}$	
亡̈́		$\begin{aligned} & \stackrel{\rightharpoonup}{\underset{\sim}{2}} \end{aligned}$	
$\begin{aligned} & 4_{0}^{0} \\ & \otimes \stackrel{\rightharpoonup}{6} \\ & \text { ưo } \end{aligned}$		$\begin{aligned} & \text { y } \\ & \cline { 2 - 2 } \\ & \text { un } \\ & \text { an } \end{aligned}$	



Table 4.6.1. Haddock in Sub-Area IV and Division IIIa. Stock summary table.

	Recruitment age 0 '000)	$S S B$	Fbar (2-4)	Fbar by cat	tch	onent
				H. cons	DIS	IB
1963	2406511	140399	0.719	0.490	0.201	0.028
1964	9201303	429454	0.750	0.473	0.115	0.162
1965	26316244	544249	0.585	0.344	0.104	0.137
1966	68832416	458475	0.627	0.364	0.166	0.097
1967	$3.89 \mathrm{E}+08$	254254	0.610	0.350	0.232	0.028
1968	17095760	287914	0.594	0.377	0.148	0.070
1969	12151768	812534	1.131	0.686	0.153	0.293
1970	87697192	899973	1.172	0.701	0.202	0.268
1971	78081424	417411	0.775	0.543	0.177	0.055
1972	21488232	300853	1.125	0.844	0.240	0.041
1973	72967600	295866	0.864	0.651	0.208	0.005
1974	$1.33 E+08$	258099	0.972	0.604	0.234	0.134
1975	11508703	235136	1.124	0.689	0.338	0.098
1976	16516503	305197	1.000	0.631	0.254	0.116
1977	25876810	234677	1.098	0.699	0.212	0.186
1978	39505548	129144	1.113	0.791	0.278	0.044
1979	71994400	107800	1.042	0.859	0.139	0.045
1980	15710135	149779	1.003	0.757	0.133	0.113
1981	32416546	246169	0.768	0.593	0.144	0.031
1982	20458344	307943	0.713	0.550	0.111	0.052
1983	66633644	262999	0.951	0.700	0.207	0.045
1984	17121564	199584	0.928	0.742	0.150	0.035
1985	23938964	240147	0.912	0.761	0.130	0.020
1986	49668436	223136	1.244	0.935	0.303	0.006
1987	4159433	149803	1.059	0.809	0.242	0.009
1988	8414860	152320	1.155	0.857	0.251	0.047
1989	8574881	124499	0.992	0.740	0.221	0.031
1990	28048050	76700	1.187	0.780	0.362	0.045
1991	27330430	60786	0.945	0.811	0.109	0.025
1992	40506204	100001	1.037	0.854	0.165	0.017
1993	12644960	129829	1.009	0.740	0.240	0.030
1994	53283160	152913	0.925	0.642	0.271	0.012
1995	12908813	146915	0.855	0.599	0.248	0.007
1996	20817624	175668	0.848	0.557	0.268	0.023
1997	11818640	190031	0.662	0.430	0.203	0.029
1998	9203476	159549	0.756	0.488	0.230	0.039
1999	$1.24 \mathrm{E}+08$	112450	0.959	0.573	0.359	0.027
2000	24000498	87664	1.102	0.734	0.277	0.091
2001	2194900	240693	0.787	0.458	0.207	0.122
2002	4597802	399032	0.360	0.248	0.089	0.023
Arithmetic mean	42531814	255001	0.911	0.636	0.208	0.067

Table 4.7.1. Haddock in Sub-Area IV and Division IIIa. Input data for catch forecast.


Proportion of $F$ before spawning $=.00$
Proportion of M before spawning $=.00$
Recruitment in 2003 is the 2000-2002 GM; other stock numbers in 2003 are VPA urvivors.
All catch component Fs are obtained from mean 2000-2002 exploitation pattern, scaled to estimated $\mathrm{F}(2002) .0 \%$ uptake of 110 mm derogation is assumed. Fs are distributed between catch components by the mean proportion retained in 2000-2002. Weights-at-age for 99 yc at age 4 are modified by fitted growth models for each catch component. CVs for weights and Fs are from 3-year ranges.

Table 4.7.2. Haddock in Sub-Area IV and Division IIIa. Catch forecast output and estimates of coefficient of variation (CV) from linear analysis.


Table 4.7.3. Haddock in Sub-Area IV and Division IIIa. Detailed forecast tables.

Forecast for year 2003
F multiplier H.cons=1.00
F multiplier Indust $=1.00$

Populations		Catch number				
Age	ck No.	H.Cons \|Discards	By-catch			Total
0	6233448	0	0	31662	31662	
1	573688	547	6569	12317	19434	
2	45989	1693	4250	1037	6979	
3	316671	51136	26498	16271	93905	
4	898062	292759	35823	12353	340934	
5	5423	1563	33	12	1608	
6	2250	605	2	0	607	
7	2098	542	23	0	565	
Wt	611	155	22	11	189\|	

Forecast for year 2004
F multiplier H.cons=1.00
F multiplier Indust $=1.00$

Populations	
Age	ck No.
0	6233448
1	792890
2	102625
3	25189
4	164657
5	402719
6	2997
7	2507
Wt	473


Haddock in Sub-area IV and Division IIIa
Stock numbers of recruits and their source for recent year classes used in
predictions, and the relative (\%) contributions to landings and SSB (by weight) of these year classes

2001	2002	2003	2004
2194900	4597802	6233448	6233448
XSA	XSA	GM	GM
0.4	0.1	0.0	-
1.6	1.3	0.2	0.0
2.0	0.0	0.0	-
2.1	6.3	0.0	0.0
1.8	6.3	37.0	0.0


GM : geometric mean recruitment


O:\ACFM\WGREPS $\backslash W G N S S K \backslash R E P O R T S \backslash 2003 \backslash$ Section 4.Doc $03 / 10 / 03$ 12:03

Figure 4.2.1. Haddock in Sub-Area IV and Division IIIa. Proportions of each catch component in the total Working Group numbers-at-age, by age and year.


Figure 4.2.2. Haddock in Sub-Area IV and Division IIIa. Percentage age compositions for the catch taken four years after the five largest year-classes in the catch (1966, 1970, 1979, 1965, 1981), and for the 1999 year-class. The percentage contribution of the year-class in question at age-3 is given for each year, and highlighted by the shaded area.

 landings (lower plot). Dotted lines give loess smoothers fitted to each time-series.

(Бу) әбе ґе ұцб!əм иеәю

(Бч) әбе ґе ұцб!əм иеәю
Figure 4.2.3. cont. Haddock in Sub-area IV and Division IIIa. Mean weights-at-age (kg) in discards (upper plots), and industrial bycatch (lower plot). Dotted lines give loess smoothers fitted to each time-series.


Figure 4.2.4. Haddock in Sub-area IV and Division IIIa. Mean weights-at-age (kg) in the human consumption landings for ages $0-5$, years 1998-2003. The 1999 year-class is highlighted with small circles.


Figure 4.3.1. Haddock in Sub-Area IV and Division IIIa. Time-series of reported commercial effort and landings-per-unit effort (LPUE) for the Scottish seiner (ScoSEI) and light trawler (ScoLTR) fleets


ScoLTR


Figure 4.4.1. Haddock in Sub-Area IV and Division IIIa. Model residuals from separable VPA, using full age and year range (0-15+, 1963-2002). See text for model details.


Figure 4.4.2. Haddock in Sub-Area IV and Division IIIa. Mean log catchability for ScoGFS, EngGFS and IBTS Q1 from an exploratory XSA run.

Catchability plateau determination (XSA run 2)


Figure 4.4.3. Haddock in Sub-Area IV and Division IIIa. Retrospective analyses from four exploratory XSA runs, assuming low $(\mathrm{SE}=2.0)$ or high $(\mathrm{SE}=0.5)$ shrinkage, and a $7+$ group.


Figure 4.4.3. cont. Haddock in Sub-Area IV and Division IIIa. Retrospective analyses from four exploratory XSA runs, assuming low $(\mathrm{SE}=2.0)$ or high $(\mathrm{SE}=0.5)$ shrinkage, and a $10+$ group.


High shrinkage 10+





Figure 4.4.4. Haddock in Sub-Area IV and Division IIIa. EngGFS summary plots. a. Mean-standardised indices by year-class. Lines are labelled by ages. b. Catch curves (log cohort abundance by year-class).

## Index smoothing: rho $=$ User-defined age weighting Constrained parameters $\quad 2.0000$

ENGGFS (awaiting 2003)


ENGGFS (awaiting 2003): log cohort abundance


Figure 4.4.5. Haddock in Sub-Area IV and Division IIIa. ScoGFS summary plots. a. Mean-standardised indices by year-class for the consistent-area series. b. Mean-standardised indices by year-class for the full-area series.

Index smoothing: :ho $=$
User-defined age weighting
Constrained parameters $\quad 2.0000$
Run performed at $15: 46: 16$ on $16 / 09 / 2003$
File: hadivef.dat
SCOGFS (consistent area 1982-2003 29/08/03)


Index smoothing: :ho $=$
User-defined age weighting
Constrained parameters $\quad 2.0000$
Run performed at 15:46:16 on 16/09/2003
SCOGFS (full areas 1982-2003 29/08/03)


Figure 4.4.5. Haddock in Sub-Area IV and Division IIIa. ScoGFS summary plots. c. Catch curves (log cohort abundance by year-class) for the consistent-area series. d. Catch curves (log cohort abundance by year-class) for the full-area series.

SCOGFS (consistent area 1982-2003 29/08/03): log cohort abundance


Index smoothing: rho = $\quad 2.0000$
User-defined age weighting
SCOGFS (full areas 1982-2003 29/08/03): log cohort abundance


Figure 4.4.6. Haddock in Sub-Area IV and Division IIIa. IBTS Q1 summary plots. a. Mean-standardised indices by year-class for the 1967-2003 series. b. Mean-standardised indices by year-class for the 1971-2003 series.

Index smothing: ho $=2.0000$
User-defined age weighting
Constrained parameters
IBTS_Q1 (1967-2003 6+ group 28/08/03)


IBTS_Q1 (1976-2003 6+ group 12/09/03)


Figure 4.4.6. cont. Haddock in Sub-Area IV and Division IIIa. IBTS Q1 summary plots. c. Catch curves (log cohort abundance by year-class) for the 1967-2003 series. d. Catch curves (log cohort abundance by year-class) for the 1976-2003 series.

IBTS_Q1 (1967-2003 6+ group 28/08/03): log cohort abundance


IBTS_Q1 (1976-2003 6+ group 12/09/03): log cohort abundance


Figure 4.4.7. Haddock in Sub-Area IV and Division IIIa. Time-series plots by age of mean-standardised catch and survey data. Standardisation was performed by dividing through each series by the mean over the year range which all series have in common.


Figure 4.4.8. Haddock in Sub-Area IV and Division IIIa. Time-series of the log ratio of mean-standardised EngGFS survey indices over mean-standardised catch in numbers, by age and year. A loess smoother has been fitted through each time-series.


Age 2



Age 4



Figure 4.4.9. Haddock in Sub-Area IV and Division IIIa. Time-series of the log ratio of mean-standardised ScoGFS survey indices over mean-standardised catch in numbers, by age and year. A loess smoother has been fitted through each time-series.


Age 2





Figure 4.4.10. Haddock in Sub-Area IV and Division IIIa. Time-series of the log ratio of mean-standardised IBTS Q1 survey indices over mean-standardised catch in numbers, by age and year. A loess smoother has been fitted through each time-series.


Age 2


Age 4


Age 6+


Figure 4.4.11. Haddock in Sub-Area IV and Division IIIa. Log-log bivariate scatterplots of survey indices at age. On each plot the solid line shows a least-squares linear regression fit, the dotted line shows approximate pointwise $95 \%$ confidence intervals for the fitted lines. Points are labelled with years.


Age 2


Age 3
Age 3
Age 3


Figure 4.4.12. Haddock in Sub-Area IV and Division IIIa. Estimates of mean-standardised SSB and recruitment derived directly from surveys.


Figure 4.4.13. Haddock in Sub-area IV and Division IIIa. Summary plots from a SURBA run on the EngGFS series.
a. Stock summaries. Top row: fitted temporal trends, age effects and cohort effects. Bottom row: estimated $\bar{F}_{2-4}$ and SSB (both with empirical $2.5 \%, 25 \%, 50 \%, 75 \%$ and $97.5 \%$ uncertainty estimates), log residuals by age and year.

Index smothing: rho $=$ (ser-defined age weighting
Us.0000
Constrained parameters





ENGGFS (awaiting 2003)


b. Bubble plot of log residuals to SURBA model fit.

ENGGFS (awaiting 2003): log index residuals


Figure 4.4.14. Haddock in Sub-area IV and Division IIIa. Summary plots from a SURBA run on the ScoGFS series.
a. Stock summaries. Top row: fitted temporal trends, age effects and cohort effects. Bottom row: estimated $\bar{F}_{2-4}$ and SSB (both with empirical $2.5 \%, 25 \%, 50 \%, 75 \%$ and $97.5 \%$ uncertainty estimates), log residuals by age and year.

b. Bubble plot of $\log$ residuals to SURBA model fit.

SCOGFS (full areas 1982-2003 29/08/03): log index residuals


Figure 4.4.15. Haddock in Sub-area IV and Division IIIa. Summary plots from a SURBA run on the IBTS Q1 series.
a. Stock summaries. Top row: fitted temporal trends, age effects and cohort effects. Bottom row: estimated $\bar{F}_{2-4}$ and SSB (both with empirical $2.5 \%, 25 \%, 50 \%, 75 \%$ and $97.5 \%$ uncertainty estimates), log residuals by age and year.

Index smoothing: rho $=2.0000$
User-defined age weighting
Constrained parameters


IBTS_Q1 (1976-2003 6+ group 12/09/03)





b. Bubble plot of $\log$ residuals to SURBA model fit.

IBTS_Q1 (1976-2003 6+ group 12/09/03): log index residuals


Figure 4.4.16. Haddock in Sub-area IV and Division IIIa. Comparisons of summary plots from SURBA runs on the EngGFS, ScoGFS and IBTS Q1 series.

SURBA run comparisons





Figure 4.4.18. Haddock in Sub-Area IV and Division IIIa. Fitted estimates (line) with $\pm 2$ standard errors (shaded areas) of the persistent trends in EngGFS, ScoGFS and IBTS Q1 log catchability mismatch. These results pertain to TSA run 2 (total catch, three surveys).


TSA (total catch, three surveys)


Figure 4.4.19. Haddock in Sub-Area IV and Division IIIa. Log catchability residuals from single-fleet LaurecShepherd runs for EngGFS, ScoGFS and IBTS Q1.




Figure 4.4.20. Haddock in Sub-Area IV and Division IIIa. Comparison of summary statistics from exploratory analyses. Note that the TSA results presented here are based on a $0-10+$ age range, and a mean $F$ range of 2-6: time did not permit the WG to revisit these analyses.




Figure 4.4.21. Haddock in Sub-Area IV and Division IIIa. Summary plots from XSA runs using alternative estimates of natural mortality and maturity.




Figure 4.4.22. Haddock in Sub-Area IV and Division IIIa. Log catchability residuals from the final XSA assessment configuration.


Figure 4.4.23. Haddock in Sub-Area IV and Division IIIa. Relative contribution of surveys and shrinkage to XSA survivors' estimates from the final assessment.
a. Estimates from the 2003 WG assessment.

b. Estimates from the 2002 WG assessment.


Figure 4.6.1. Haddock in Sub-Area IV and Division IIIa. Stock trends 1963-2002.

Figure 4.7.1. Haddock in Sub-Area IV and Division IIIa. Sensitivity analysis.of short-term projection.
Haddock, IV and IIIa. Sensitivity analysis of short term forecast.

Data from file:C:IWorking Files|NS 2003 haddock|forecasts hadiv.sen on 18/09/200

Figure 4.7.2. Haddock in Sub-Area IV and Division IIIa. Probability profiles for the short-term projection.

Haddock, IV and IIIa. Probability profiles for short term forecast.


Data from file:C:\Working Files\NS 2003ไhaddock\forecasts\hadiv.sen on 18/09/200

Figure 4.7.3. Haddock in Sub-Area IV and Division IIIa. Short-term forecast.

Haddock, IV and IIIa. Short term forecast


[^4]Figure 4.9.1. Haddock in Sub-Area IV and Division IIIa. Diagnostics from PAsoft.






Haddock in Sub-Area IV and Division IIIa. Output plots from PASoft analysis.




Figure 4.9.2.

Figure 4.9.3. Haddock in Sub-Area IV and Division IIIa. Stock-recruit comparison plot between 2002 assessment and current 2003 assessment.

## Stock recruit plots for 2001 and 2002 assessments



Figure 4.9.4. Haddock in Sub-Area IV and Division IIIa. Historical performance of stock in relation to existing PA reference points. The shaded section corresponds to the stock being outside safe biological limits ( $\mathrm{SSB}<\mathbf{B}_{\text {lim }}$, $\mathrm{F}>\mathbf{F}_{\text {lim }}$ ).


Figure 4.10.1. Haddock in Sub-Area IV and Division IIIa. Quality control charts of assessments generated by successive Working Groups, with the 2003 assessment highlighted in blue. The age range for calculation of mean $F$ was 2-6 for the assessments performed during 1989-2002, 2-4 for the current assessment.




### 5.1 Whiting in Sub-area IV and Division VIId

The assessment of whiting in sub-area IV and Division VIId was originally tabled as an update assessment, but the Working Group found that additional analyses were required. All the relevant biological and methodological information can be found in the stock annex dealing with this stock.

### 5.1.1 The Fishery

A brief description of the fishery is given in the stock annex.

### 5.1.1.1 ACFM advice applicable to 2002 and 2003

The advice in 2001 for the fishery in 2002 was:
"To bring SSB above $\boldsymbol{B}_{p a}$ in 2003, fishing mortality in 2002 should be below 0.37, corresponding to human consumption landings of less than $37,000 \mathrm{t}$. However, due to the mixed nature of the fisheries the fishing mortality for whiting may have to be reduced further to achieve consistency with the recovery plan for cod."

The advice in 2002 for the fishery in 2003 was:
"Since whiting is mostly taken in demersal fisheries with cod and haddock, the advice for cod determines the advice for whiting. Except where it can be demonstrated that whiting can be harvested without by-catch or discards of cod, fishing for whiting should not be permitted.

On the status of whiting alone, in order to bring SSB above $\boldsymbol{B}_{p a}$ in 2004, ICES would recommend that fishing mortality in 2002 should be below 0.27, corresponding to human consumption landings of less than 26,000 $t$. This implies a reduction in fishing mortality of at least 40\%. If fishing on whiting is permitted consistent with the advice on cod then total catches should not exceed these values."

### 5.1.1.2 Management applicable in 2002 and 2003

Annual management of the fishery operates through TACs. The 2002 and 2003 TACs for whiting in Sub-Area IV and Division IIa (EC waters) were $32,358 \mathrm{t}$ and $16,000 \mathrm{t}$ respectively. The minimum mesh size for vessels fishing for cod in the mixed demersal fishery in EC Zones 1 and 2 (West of Scotland and North Sea excluding Skagerrak) was changed from 100 mm to 120 mm from the start of 2002 under EU regulations regarding the cod recovery plan (Commission Regulation EC 2056/2001), with a one-year derogation of 110 mm for vessels targeting other species such as whiting. This derogation was not extended beyond the end of 2002. Whiting are a by-catch in some Nephrops fisheries that use a smaller mesh size, although landings are restricted through by-catch regulations. Industrial fishing with small-meshed gear is permitted, subject to by-catch limits of protected species including whiting. The minimum landing size of whiting in the human consumption fishery from this area is 27 cm . Regulations applying to the Norway pout box prevent industrial fishing with small meshes in an area where the by-catch limits are likely to be exceeded.

The UK implemented a national regulation in mid 2000, requiring the mandatory fitting of a 90 mm square mesh panel (SSI 227/2000), predominantly to reduce discarding of the large 1999 year class of haddock. Further unilateral legislation in 2001 (SSI 250/2001) banned the use of lifting bags in the Scottish fleet. These measures are likely to affect the selectivity of whiting.

Vessel decommissioning in several fleets has been underway since 2002. Effort reductions for much of the international fleet to 15 days at sea per month have been imposed since February 2003 (EU 2003/0090).

There is no separate TAC for Division VIId, landings from this Division are counted against the TAC for Divisions VIIb-k combined ( $31,700 \mathrm{t}$ in 2002 and $31,700 \mathrm{t}$ in 2003). Minimum mesh size for whiting in Division VIId is 80 mm , with a 27 cm minimum landing size.

### 5.1.1.3

The fishery in 2002
For the North Sea, the total international catches were $40,500 \mathrm{t}$ in 2002, of which $15,900 \mathrm{t}$ were human consumption landings, $17,300 \mathrm{t}$ discards and $7,300 \mathrm{t}$ industrial by-catch. The human consumption landings were the lowest ever recorded, while both discards and industrial by-catch were around $4,000 \mathrm{t}$ above their lowest recorded levels. The total weight of the catch in the human consumption component in the North Sea decreased from 2001 to 2002, whilst those of discards and industrial by-catch were similar to 2001. For the eastern Channel, the total catch in $2002(5,800 \mathrm{t})$ was very similar to last year, the highest since 1994. The total North Sea and eastern Channel human consumption landings of $21,700 \mathrm{t}$ in 2002 were $31 \%$ of the status quo forecast of $69,000 \mathrm{t}$ from the 2002 assessment.

### 5.1.2 Data available

### 5.1.2.1 Landings

Total nominal landings are given in Table 5.1.2.1.1 for the North Sea (Subarea IV) and Eastern Channel (Division VIId). Total international catches as estimated by the Working Group for the combined North Sea and Eastern Channel are shown in Table 5.1.2.1.2. Eastern Channel catches as used by the Working Group are also shown separately in Table 5.1.2.1.3.

### 5.1.2.2 Age compositions

Total international catch numbers at age (IV and VIId combined) are presented in Table 5.1.2.2.1. Total international human consumption landings, discards and industrial by-catch numbers at age (IV and VIId combined) are presented in Tables 5.1.2.2.2-5.1.2.2.4. Scottish discard estimates are used to estimate discarding in all other fleets, which may not be appropriate because of different discarding practices in different fleets.

### 5.1.2.3 Weight at age

Mean weights at age (IV and VIId combined) in the catch are presented in Table 5.1.2.3.1. Mean weights at age (IV and VIId combined) in human consumption landings, discards and industrial by-catch are presented in Tables 5.1.2.3.2 - 5.1.2.3.4.

### 5.1.2 4 Maturity and natural mortality

Maturity and natural mortality are assumed at fixed values and are given in Table 5.1.2.4.1. New estimates of natural mortality provided by the Multispecies Study Group have not been explored during the meeting.

### 5.1.2.5 Catch, effort and research vessel data

A summary of available tuning series is presented in Table 5.1.2.5.1. The full commercial CPUE and survey tuning indices are presented in Table 5.1.2.5.2. Due to non-mandatory reporting of effort, commercial CPUE series are not considered reliable and are therefore not included in the assessment.

### 5.1.3 Catch at age analysis

Prior to the start of the working group, the whiting assessment had been defined as an update assessment, using the 2002 implementation of TSA (see section 1.4) with catch data from 1980 onwards, and no tuning data. However, due to large differences between the results of the update analysis and last year's assessment, the Working Group considered that additional analyses were required.

### 5.1.3.1 Exploration of data

At last year's working group it was also decided to truncate the catch data to start from 1980. This was because discard data prior to 1978 were estimated, and there was evidence of a regime shift around 1980. Here we therefore consider analyses using the catch data times series from 1980.

## Exploratory analysis of survey data

Previous Working Groups have noted different trends in the signals from the IBTS Q1, ScoGFS, EngGFS and FraGFS survey indices. The 2002 assessment for whiting found that inclusion of survey indices did not make a significant difference to the outcome, so survey indices were not included in the 2002 final assessment.

Comparing trends in mean standardised catch at age (Figure 5.1.3.1.1) indicates an apparent change in catchability over all ages around 1992. There is a consistent downwards trend in most age groups in the 1990s, but the trends in recent years are not consistent over age. The proportions of age 6+ in the catches are very low.

Trends in survey indices agree relatively well in ages 3,4 and 5 (Figure 5.1.3.1.1) The high 1988 year class is picked up by the surveys from age 1 , and also by the catch from age 2 .

SURBA (see section 1.4) runs were fitted to ScoGFS, EngGFS and IBTS Q1 surveys, using constant survey index to abundance ratio on all but age 1 for all surveys. A comparison of mean standardised SSB predictions from SURBA show different trends (Figure 5.1.3.1.2). The ScoGFS and EngGFS surveys indicate that the spawning stock has generally increased since the 1980s, and is now at a relatively high level compared to historical values, whereas the IBTS Q1 survey indicates that the stock is at a relatively low level. Relative trends in SSB for the past five years agree well indicating an increase, followed by a decrease in the last three years.

## Time series Analysis (TSA)

The settings for the TSA update assessment are those used last year and are given in Tables 5.13.1.1 and 5.1.3.1.2. Parameter estimates for this analysis are very similar to last year's (Table 5.1.3.1.2), the main difference being an increase in $\sigma_{F}$, indicating larger transitory changes in F from year to year, and also an increase in the gradient at the origin in the Ricker recruitment curve ( $\alpha$ in Table 5.1.3.1.2). Diagnostics for the update assessment were also similar to those for last year's assessment, and are given in the stock files. The trends in catch, SSB, mean F and recruitment from for this analysis lead to a substantial change in perception of the state of the stock compared to last year's assessment (Figure 5.1.3.1.3).

The retrospective plots for the last 10 years show high retrospective variance and positive bias in the last 3 years (Figure 5.1.3.1.4). TSA analyses were also carried using the same settings as above but including ScoGFS, EngGFS and IBTS Q1 survey indices separately, and then combined. In order to fit the model to all the survey indices, the parameter corresponding to persistent changes in discrepancy between the catch and the survey index was unusually large for the ScoGFS survey, a symptom of the mismatch between the trends in surveys and catch. The stock trends from these analyses are shown in Figure 5.1.3.1.5. They do not show consistent trends. The output from these runs is included in the stock files.

## Extended Survivors Analysis (XSA)

Given the discrepancy between last year's assessment and this year's TSA predictions, the Working Group also considered XSA analyses since, unlike TSA, XSA does not assume separability of F. Exploratory fits of XSA runs were used to determine the choice of power model at the youngest ages, the catchability plateau constraint and the range of ages and years used for shrinkage. Retrospective analyses were used to determine an appropriate value for the weight given to shrinkage. A tricubic taper with a range of 15 years was used to downweight historic information. All ages were fitted with catchability independent of population abundance and catchability was held constant at ages 4 and over. Since the survey data is available only to age 6 , the mean F range was set as $2-4$. However, ages $6+$ account for only a small proportion of the catch (Figure 5.1.3.1.1).

A base case run with the above settings, including the ScoGFS, EngGFS and IBTS Q1 survey indices and catch data from 1980 onwards. The settings for this run are specified in Table 5.1.3.1.3. For this and subsequent runs, the EngGFS series was truncated to 1992-2002, since the gear used on that survey changed in 1992 (see Section 3). Log catchability residuals for this run and runs indicate the model fits well (Figure 5.1.3.1.6), although XSA has similar problems as TSA fitting the ScoGFS survey data. Log catchability residuals for the single fleet runs (Figure 5.1.3.1.7) show the same trends as in the XSA base case run (Figure 5.1.3.1.6). SURBA estimated SSB (Figure 5.1.3.1.2) shows that the ScoGFS series predicts the steepest incline of SSB between the three surveys over recent time. This signal explains the strong trend in the ScoGFS residuals from all presented XSA runs. F-shrinkage weights are low for all ages (Figure 5.1.3.1.8). The base case XSA run has a retrospective positive bias but low variability (Figure 5.1.3.9).

Single fleet XSA runs were also carried out using ScoGFS, EngGFS and IBTS Q1 survey indices. The trends in catch, SSB, mean F and recruitment from all of these analyses agree well (Figure 5.1.3.1.10). The trends from last year's assessment and this year's TSA update analysis are also included (except for mean F, which has a different range) and it
can be seen that the update TSA analysis deviates substantially from the other analyses. A TSA run was also performed with all surveys included. This gives a similar result to the XSA base case run, and encapsulates assessment uncertainty. The least consistent result is from the updated TSA (no surveys included). A figure of SSB against F is presented in Figure 5.1.3.1.11.
$F(2-6)$ cannot be estimated for the base case XSA run. Therefore TSA estimates of $F(2-4)$ and $F(2-6)$ were calculated using the TSA run including ScoGFS, EngGFS and IBTS Q1 surveys (for consistency with base XSA run). These show similar trends (Figure 5.1.3.1.12), however, $F(2-4)$ has decreased less rapidly than $F(2-6)$ in recent years.

## Conclusion

The Working Group decided to accept the base case XSA run including surveys ScoGFS, EngGFS and IBTS Q1, with shrinkage of 0.5 , catchability independent of abundance for all ages, and constant at ages 4 and over, and tricubic tapering over 15 year as the final assessment.

Salient points of the Working Group discussion were as follows:

- Whiting catch-at-age data are thought to be unreliable and therefore including surveys should, in principle, improve the assessment.
- General trends indicated by the survey indices of SSB are different over the whole time series, but trends over the past 5 years agree well.
- The 2002 Working Group excluded survey data from the assessment on the grounds that they made no statistical significant difference to the assessment. The same reasoning could have been used to include survey data. If such a decision had been made, the update TSA assessment would not have resulted in a change in perception of stock. The Working Group therefore decided to include survey indices in the assessment.
- Model predictions from TSA and XSA runs including all surveys were very similar. Model predictions from different XSA runs (single fleet and using all fleets) were relatively consistent whereas those from different TSA runs were less consistent.
- The TSA retrospectives were highly variable, which indicates that the apparent large decrease in SSB predicted by the TSA model this year could be substantially revised upwards next year. However, although a consistent positive bias in the estimation of SSB was apparent in the XSA retrospectives, they showed little retrospective variability. This indicates that whilst the XSA assessment might be overestimating SSB, the magnitude of the annual changes do not substantially change the perception of the recent stock dynamics.
- XSA does not assume separability in F and so does not restrict F-at-age patterns over age and through time. This could provide extra flexibility.
- The Working Group selected XSA for the final assessment, given the reasons indicated above. However, the WG recognized that there is substantial uncertainty in the choice for the most appropriate assessment model for this stock.


### 5.1.3.2 Final Assessment

Prior to the start of the working group, the whiting assessment had been defined as an update assessment. However, using this run as the final assessment would result in a substantial change in perception of the state of the stock in the last few years compared to the perception last year. Further analyses, described in section 5.1.3.1, were therefore carried out, which led to the acceptance of the XSA specified in Table 5.1.3.1.3 as the final assessment this year. This results in a revision of the mean $F$ range from 2-6 to 2-4.

Results of the analysis are presented in Table 5.1.3.2.1 (diagnostics), 5.1.3.2.2 (fishing mortality at age), 5.1.3.2.3 (population numbers at age), and 5.1.3.2.4 (stock summary). The stock summary is also shown in figure 5.1.3.2.1 and the historical performance of the assessment is shown in figure 5.1.3.2.2. Note that the mean $F$ trajectories for this year's assessment are of $F(2-4)$, not $F(2-6)$ as in the past.

### 5.1.4 Recruitment estimates

Recruitment estimates for 2003 to 2005 were calculated using a geometric mean over the period 1993-2002. RCT3 was run using input data given in Table 5.1.4.1. The RCT3 estimates consisted of $>97 \%$ shrinkage (output is presented in Table 5.1.4.2). Recruitment has been relatively stable for the period 1990 - 2002 (Figure 5.1.3.2.1), and therefore a geometric mean was considered more favourable.

Therefore the recruitment estimate for 2002 to 2005 was taken to be 1.460 billion..

### 5.1.5 Short term forecasts

A short term forecast was carried out based on the XSA final assessment. The input is presented in Table 5.1.5.1. Results are presented in Tables 5.1.5.2 and 5.1.5.3, and Figures 5.1.5.1-5.1.5.3.

Several technical measures have been implemented for the mixed demersal fishery in the North Sea, as highlighted in Section 4.1.2. These consist of mesh-size changes and days-at-sea regulations. There have also been a significant number of vessels decommissioned in 2002 and 2003. These measures will have affected the exploitation pattern of the fishery, particularly for whiting. Owing to the method of $F_{\text {sq }}$ calculation (see Section 1.4.4), recent changes in exploitation will not be reflected in the short-term forecast. This issue was regrettably not addressed due to time constraints.

### 5.1.6 Comments

## Quality of assessment

(a) The Working Group has used the XSA model for the final assessment of this stock in this year. Last year the TSA model was used. Whiting catch-at-age data are thought to be unreliable and therefore including surveys should, in principle, improv the assessment.General trends indicated by the survey indices of SSB are different over the whole time series, but trends over the past 5 years agree well. Model predictions from TSA and XSA runs including all surveys were very similar. Model predictions from different XSA runs (single fleet and using all fleets) were relatively consistent whereas those from different TSA runs were less consistent. The TSA retrospectives were highly variable, which indicates that the apparent large decrease in SSB predicted by the TSA model this year could be substantially revised upwards next year. However, although a consistent positive bias in the estimation of SSB was apparent in the XSA retrospectives, they showed less retrospective variability. XSA does not assume separability in F and so does not restrict F -at-age patterns over age and through time. This could provide extra flexibility. The Working Group selected XSA for the final assessment, given the reasons indicated above. However, the WG recognized that there is substantial uncertainty in the choice for the most appropriate assessment model for this stock.
(b) The historical patterns of stock size and recruitment resulting from this assessment are consistent with those observed in the 2002 assessment. The mean F range has been revised from 2-6 to $2-4$, and a qualitative comparison using TSA output showed that trends were similar. $\mathrm{F}(2-4)$ trends estimated from the final assessment show a slight decrease from last year.
(c) An appropriate time-series of discard data suitable for use in catch-at-age analysis is available only for Scottish catches. For assessment purposes, discards for other human consumption fleets are estimated by extrapolation from Scottish data. However the Scottish fleets now account for only about $50 \%$ of human consumption landings, and discarding from other fleets could be substantial. Data are also collected by other countries, but have not been made available to data collators.

## Suggestions for consideration during benchmark assessment tabled for 2004

(a) Using the XSA model for the final assessment has resulted in a new age range for mean F because survey indices as used give information only to age 6 . The effects of this change should be assessed in detail.
(b) Previous meetings of this Working Group have concluded that the survey data and commercial catch data contain varying signals concerning the stock, and that there remain inconsistencies in the annual international catch-at-age distributions. These time series need to be assessed in detail.
(c) The effects of a gear change in 1992 in the EngGFS survey were assessed by this Working Group and was found to have affected catchability in age 1 cod, resulting in the formation of two separate time series: EngGFS_GRT and EngGFS_GOV. It is reasonable to assume that the gear change might also affect whiting indices and this should be considered.
(d) A new index for recruitment from 1990 has been provided this year (WD3). Recruitment indices for whiting are very noisy and so new data is very valuable and should also be considered.
(e) A new version of TSA, which uses a different error structure and can also model discards and industrial by-catch, separately has been introduced (see section 1.4). A full exploration of this model should be carried out.
(f) Natural mortality estimates are available from a recent run of MSVPA (ICES, 2003), but these have not been used in this assessment. The maturity ogive is based on North Sea IBTS quarter 1 data, averaged over the period 19811985. These should both be addressed.

### 5.2 Whiting in Division IIIa

Total landings are shown in Table 5.2.1. No analytical assessment of this stock was possible.
Table 5.1.2.1.1 Nominal landings (in tonnes) of Whiting in Sub-area IV and Division VIId, as officially reported to ICES and as estimated by the WG.

Country	1995	1996	1997	1998	1999	2000	2001	2002*	2003
Belgium	880	843	391	268	529	536	454	270	
Denmark	368	189	103	46	58	105	105	96	
Faroe Islands	21	-	6	1	1	-	-	-	
France	5,963	4,704	3,526	1,908*	4,292*1	2,527	3,455	3,310	
Germany, Fed.Rep.	124	187	196	103	176	424	402	354	
Netherlands	3,640	3,388	2,539	1,941	1,795	1,884	2,478(2)	2,425	
Norway	115	66	75	64	68	33	44	41*	
Poland	-	-	-	1	-	-	-		
Sweden	1	1	1	+	9	4	6	7	
UK (E.\&W)3	2,477	2,329	2,638	2,909	2,268	1,782	1,301	1,322	
UK (Scotland)	27,811	23,409	22,098	16,696	17,206	17,158	10,589	7,756	
Total	41,400	35,116	31,573	23,937	26,402	24,453	18,834	15,581	
Unallocated landings	-348	1,006	-276	-71	-421	-409	578	269	
WG est. of H.Cons. landings	41,052	36,122	31,297	23,866	25,981	24,044	19,412	15,850	
WG est. of discards	30,264	28,181	17,217	12,708	23,584	22,360	16,488	17,319	
WG est. of Ind. By-catch	26,561	4,702	5,965	3,141	5,183	8,886	7,357	7,327	
WG est. of total catch	97,877	69,005	54,479	39,715	54,748	55,290	43,257	40,496	
TAC	81,000	67,000	74,000	60,000	44,000	30,000	30,000	32,000	16,000

## * Preliminary

1 Includes Division Ila (EC).
2 Not included here are 68 t reported into an unknown area.
3 1989-1994 revised. N. Ireland included with England and Wales.

## Division VIId

Country	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2 *}$
Belgium	68	84	98	53	48	65	75	58
France	5,202	4,771	4,532	$4,495^{*}$	-	5,875	6,338	5,165
Netherlands	-	1	1	32	6	14	67	19
UK (E.\&W)	280	199	147	185	135	118	134	112
UK (Scotland)	1	1	1	+	-	-	-	-
Total	5,551	5,056	4,779	4,765	189	6,072	6,614	5,354
Unallocated	-161	-104	-156	-167	4,242	$-1,775$	-810	446
W.G. estimate	5,390	4,952	4,623	4,598	4,431	4,297	5,804	5,800

TAC for VIId is included in TAC for Sub-area VII (except Division VIIa).

* Preliminary.

Sub-area IV and Division VIId

Sub-area IV and Division Vild	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$
Combined	26,400	4,598	5,809	2,974	9,425	7,111	6,547	7,773	
WG est. of total catch									

Table 5.1.2.1.2 Whiting in IV and VIId. Annual weight and numbers caught, years 1980-2002, ages 0-12+.

Year	Weight (thousand tonnes)				Numbers (millions)			
	Total	H. cons.	Disc.	Ind. BC	Total	H. cons.	Disc.	Ind. BC
1980	224	101	77	46	1456	340	471	645
1981	192	90	36	67	1439	296	214	929
1982	140	81	27	33	778	271	173	333
1983	161	88	50	24	1358	290	370	697
1984	146	86	41	19	909	285	327	297
1985	106	62	29	15	688	176	231	280
1986	162	64	80	18	1207	225	583	399
1987	139	68	54	16	946	245	416	285
1988	133	56	28	49	1395	212	231	952
1989	124	45	36	43	883	172	280	431
1990	153	47	56	51	1294	177	539	578
1991	125	53	34	38	1611	199	242	1170
1992	110	52	31	27	863	182	216	465
1993	116	53	43	20	1231	174	343	714
1994	93	49	33	10	702	162	235	304
1995	103	46	30	27	2020	147	214	1659
1996	74	41	28	5	448	143	177	128
1997	59	36	17	6	293	131	101	61
1998	44	28	13	3	290	110	83	97
1999	59	30	24	5	456	117	179	160
2000	61	29	23	9	311	114	142	55
2001	49	25	16	7	498	102	114	282
2002	46	22	17	7	377	76	95	205
Min	44	22	13	3	290	76	83	55
GM	103	50	32	17	802	176	227	345
AM	114	55	36	24	933	189	260	484
Max	224	101	80	67	2020	340	583	1659

Table 5.1.2.1.3 Whiting in VIId. Annual weight and numbers caught, year 1980-2002, ages 0-12+.

Year	Weight   (tonnes)	Numbers (thousands)
1980	9167	35509
1981	8932	34279
1982	7911	32952
1983	6936	29470
1984	7373	33413
1985	7390	19561
1986	5498	21143
1987	4671	18208
1988	4428	17922
1989	4156	16869
1990	3483	13648
1991	5718	17884
1992	5745	19398
1993	5215	17842
1994	6625	24049
1995	5390	18492
1996	4952	22360
1997	4623	22556
1998	4598	23047
1999	4431	18867
2000	4297	22087
2001	5804	28560
2002	5800	19697
Min		
GM	3483	13648
AM	5607	22195
Max	5789	22948
	9167	35509

Table 5.1.2.2.1 Whiting in IV and VIId. Total catch numbers at age (thousands).

Age	$\mathbf{1 9 8 0}$	$\mathbf{1 9 8 1}$	$\mathbf{1 9 8 2}$	$\mathbf{1 9 8 3}$	$\mathbf{1 9 8 4}$	$\mathbf{1 9 8 5}$	$\mathbf{1 9 8 6}$	$\mathbf{1 9 8 7}$
$\mathbf{1}$	265359	162899	192640	205646	323408	203321	576731	267051
$\mathbf{2}$	416008	346343	114444	184746	175965	141716	167077	368229
$\mathbf{3}$	286077	266517	245246	118412	124886	82037	169577	122748
$\mathbf{4}$	90718	102295	88137	131508	49505	37847	46517	85240
$\mathbf{5}$	52969	27776	26796	37231	59817	14420	13367	11392
$\mathbf{6}$	10751	12297	6909	8688	13860	17445	3487	4556
$\mathbf{7}$	1152	3540	2082	1780	2964	3328	3975	928
$\mathbf{8 +}$	767	326	484	930	613	904	569	1035
$\mathbf{A g e}$	$\mathbf{1 9 8 8}$	$\mathbf{1 9 8 9}$	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 1}$	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$
$\mathbf{1}$	430344	331672	253745	128507	239792	217539	163609	137481
$\mathbf{2}$	307429	173676	505010	191193	165354	167577	147177	139010
$\mathbf{3}$	179502	191942	129126	187195	89563	124287	90611	111489
$\mathbf{4}$	39635	78464	86324	36830	93636	46543	47533	35728
$\mathbf{5}$	17901	14367	32270	26209	11967	46136	17384	15161
$\mathbf{6}$	2175	5050	2003	5519	6878	3946	17264	5159
$\mathbf{7}$	544	516	735	542	2609	1519	998	4515
$\mathbf{8 +}$	168	334	112	273	117	771	460	474
Age	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	
$\mathbf{1}$	72645	53408	71430	178079	66789	84121	49725	
$\mathbf{2}$	113956	74200	44697	91355	124365	86178	60926	
$\mathbf{3}$	98476	82944	42771	45627	63526	58908	82553	
$\mathbf{4}$	48575	42154	36459	34175	23888	20559	33818	
$\mathbf{5}$	14235	18492	17756	18528	16232	9177	7893	
$\mathbf{6}$	4695	3358	6392	7547	8791	4814	2026	
$\mathbf{7}$	1294	1020	1426	2049	4322	2232	1439	
$\mathbf{8 +}$	1113	460	407	676	1265	1268	751	

Table 5.1.2.2.2 Whiting in IV and VIId. Human consumption landings numbers at age (thousands).

Age	$\mathbf{1 9 8 0}$	$\mathbf{1 9 8 1}$	$\mathbf{1 9 8 2}$	$\mathbf{1 9 8 3}$	$\mathbf{1 9 8 4}$	$\mathbf{1 9 8 5}$	$\mathbf{1 9 8 6}$	$\mathbf{1 9 8 7}$
$\mathbf{1}$	3656	4240	10890	10568	14388	2288	12879	11074
$\mathbf{2}$	62405	69211	46703	68640	62693	51194	44500	72372
$\mathbf{3}$	152570	104348	124656	67312	99204	57049	11527	70504
$\mathbf{4}$	68422	78253	59393	101342	41277	32340	37287	73742
$\mathbf{5}$	41430	23698	21376	31266	51745	12974	11285	10808
$\mathbf{6}$	9911	12036	5664	8330	12735	16361	3379	4506
$\mathbf{7}$	1135	3530	2058	1730	2813	3238	3912	928
$\mathbf{8 +}$	767	326	484	921	613	904	557	1004
$\mathbf{A g e}$	$\mathbf{1 9 8 8}$	$\mathbf{1 9 8 9}$	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 1}$	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$
$\mathbf{1}$	7462	8636	6949	11610	9603	5980	17126	8832
$\mathbf{2}$	61360	28406	54361	43110	45154	29305	31660	28132
$\mathbf{3}$	94163	77009	45423	91129	48838	64353	46217	58538
$\mathbf{4}$	29147	44307	50603	26169	60806	33514	36814	28013
$\mathbf{5}$	16556	9249	17747	21697	9956	34651	14169	13767
$\mathbf{6}$	2158	3888	1407	4687	6223	2989	14706	4953
$\mathbf{7}$	544	420	622	405	1496	1361	928	4401
$\mathbf{8 +}$	164	249	110	273	110	771	446	467
Age	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	
$\mathbf{1}$	12516	6522	17081	16689	15406	12257	2607	
$\mathbf{2}$	26768	23543	19894	26966	31989	28499	10351	
$\mathbf{3}$	47593	48237	25016	25863	28500	27332	30901	
$\mathbf{4}$	36288	31904	24713	23792	14327	17518	22154	
$\mathbf{5}$	12023	15824	14717	14708	11841	8640	6599	
$\mathbf{6}$	4453	2957	5446	6660	6657	4506	1696	
$\mathbf{7}$	1116	1017	1213	1882	3774	2092	1311	
$\mathbf{8 +}$	1113	443	301	591	1159	1249	635	

Table 5.1.2.2.3 Whiting in IV and VIId. Discard numbers at age (thousands).

Age	$\mathbf{1 9 8 0}$	$\mathbf{1 9 8 1}$	$\mathbf{1 9 8 2}$	$\mathbf{1 9 8 3}$	$\mathbf{1 9 8 4}$	$\mathbf{1 9 8 5}$	$\mathbf{1 9 8 6}$	$\mathbf{1 9 8 7}$
$\mathbf{1}$	103203	50407	53753	152488	200589	154232	404604	158531
$\mathbf{2}$	250735	96509	26922	85318	82563	48791	120492	202154
$\mathbf{3}$	88399	57403	52349	33325	16815	15117	43479	34824
$\mathbf{4}$	14135	7313	18230	23442	4437	2985	5242	9776
$\mathbf{5}$	10795	1285	2972	4309	4495	761	627	582
$\mathbf{6}$	786	149	343	295	1034	801	108	49
$\mathbf{7}$	0	10	22	25	151	65	63	0
$\mathbf{8 +}$	0	0	0	9	0	0	12	31
Age	$\mathbf{1 9 8 8}$	$\mathbf{1 9 8 9}$	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 1}$	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$
$\mathbf{1}$	65021	150598	79488	76938	98967	124426	77783	46209
$\mathbf{2}$	87197	36712	245129	77383	57629	101119	97847	77320
$\mathbf{3}$	51135	61442	33194	74005	26527	49064	36762	48601
$\mathbf{4}$	5877	21267	23488	4900	22976	8992	9528	6943
$\mathbf{5}$	846	3276	12012	1828	1199	10709	2856	1318
$\mathbf{6}$	17	103	253	89	350	519	2337	205
$\mathbf{7}$	0	8	87	60	1064	131	7	113
$\mathbf{8 +}$	3	12	0	0	2	0	0	6
Age	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	
$\mathbf{1}$	30480	19347	29979	84613	33848	27570	8538	
$\mathbf{2}$	82020	28837	18755	51740	75869	44645	31639	
$\mathbf{3}$	48240	30616	16361	14422	23590	21930	43013	
$\mathbf{4}$	11319	9175	10992	8844	2898	2528	9478	
$\mathbf{5}$	2192	2392	2976	3077	2257	385	1089	
$\mathbf{6}$	240	399	935	857	1548	268	208	
$\mathbf{7}$	179	2	213	166	474	140	129	
$\mathbf{8 +}$	0	17	106	85	107	19	116	

Table 5.1.2.2.4 Whiting in IV and VIId. Industrial bycatch numbers at age (thousands).

Age	$\mathbf{1 9 8 0}$	$\mathbf{1 9 8 1}$	$\mathbf{1 9 8 2}$	$\mathbf{1 9 8 3}$	$\mathbf{1 9 8 4}$	$\mathbf{1 9 8 5}$	$\mathbf{1 9 8 6}$	$\mathbf{1 9 8 7}$
$\mathbf{1}$	158500	108252	127998	42591	108431	46801	159249	97446
$\mathbf{2}$	102869	180623	40818	30789	30709	41731	2086	93704
$\mathbf{3}$	45108	104767	68242	17775	8868	9871	14572	17420
$\mathbf{4}$	8162	16729	10514	6723	3790	2522	3987	1722
$\mathbf{5}$	744	2793	2448	1656	3577	685	1456	2
$\mathbf{6}$	55	112	902	63	91	284	0	0
$\mathbf{7}$	18	0	2	25	0	26	0	0
$\mathbf{8 +}$	0	0	0	0	0	0	0	0
Age	$\mathbf{1 9 8 8}$	$\mathbf{1 9 8 9}$	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 1}$	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$
$\mathbf{1}$	357861	172438	167308	39959	131221	87133	68701	82439
$\mathbf{2}$	158872	108558	205521	70701	62571	37153	17670	33558
$\mathbf{3}$	34205	53491	50508	22062	14198	10870	7632	4351
$\mathbf{4}$	4611	12890	12233	5761	9855	4037	1192	772
$\mathbf{5}$	500	1842	2511	2684	812	776	359	76
$\mathbf{6}$	0	1060	342	743	305	437	222	0
$\mathbf{7}$	0	89	26	78	49	27	64	0
$\mathbf{8 +}$	0	72	2	0	6	0	14	0
							0	0
Age	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	
$\mathbf{1}$	29648	27539	24370	76777	17535	44294	38580	
$\mathbf{2}$	5168	21820	6047	12649	16508	13034	18937	
$\mathbf{3}$	2643	4091	1395	5342	11436	9646	8638	
$\mathbf{4}$	968	1075	754	1539	6663	513	2186	
$\mathbf{5}$	21	276	63	743	2134	152	205	
$\mathbf{6}$	2	2	12	30	586	40	121	
$\mathbf{7}$	0	0	0	0	74	0	0	
$\mathbf{8 +}$	0	0	0	0	0	0	0	

Table 5.1.2.3.1 Whiting in IV and VIId. Total catch mean weights at age (kg).

Age	1980	1981	1982	1983	1984	1985	1986	1987
1	0.075	0.083	0.061	0.107	0.089	0.094	0.105	0.077
2	0.176	0.168	0.184	0.191	0.188	0.192	0.183	0.148
3	0.252	0.242	0.253	0.273	0.271	0.284	0.255	0.247
4	0.328	0.321	0.314	0.325	0.337	0.332	0.318	0.297
5	0.337	0.379	0.376	0.384	0.382	0.402	0.378	0.375
6	0.458	0.411	0.478	0.426	0.391	0.435	0.475	0.379
7	0.458	0.444	0.504	0.452	0.463	0.494	0.468	0.542
8+	0.572	0.72	0.735	0.537	0.567	0.439	0.625	0.584
Age	1988	1989	1990	1991	1992	1993	1994	1995
1	0.054	0.07	0.083	0.103	0.082	0.073	0.08	0.087
2	0.146	0.157	0.137	0.169	0.185	0.175	0.17	0.181
3	0.223	0.225	0.209	0.218	0.257	0.252	0.254	0.258
4	0.301	0.267	0.25	0.29	0.277	0.319	0.323	0.341
5	0.346	0.318	0.279	0.307	0.332	0.329	0.371	0.385
6	0.423	0.391	0.408	0.338	0.346	0.349	0.367	0.43
7	0.506	0.431	0.49	0.365	0.314	0.403	0.414	0.434
8+	0.694	0.394	0.599	0.401	0.503	0.381	0.416	0.42
Age	1996	1997	1998	1999	2000	2001	2002	
1	0.093	0.091	0.091	0.076	0.113	0.072	0.066	
2	0.167	0.178	0.18	0.174	0.182	0.191	0.156	
3	0.236	0.243	0.236	0.233	0.238	0.227	0.222	
4	0.302	0.295	0.281	0.256	0.288	0.283	0.281	
5	0.387	0.333	0.314	0.289	0.287	0.270	0.314	
6	0.406	0.381	0.339	0.303	0.277	0.300	0.361	
7	0.428	0.381	0.33	0.309	0.277	0.287	0.359	
8+	0.43	0.418	0.367	0.287	0.273	0.294	0.350	

Table 5.1.2.3.2 Whiting in IV and VIId. Human consumption landings mean weights at age (kg).

Age	$\mathbf{1 9 8 0}$	$\mathbf{1 9 8 1}$	$\mathbf{1 9 8 2}$	$\mathbf{1 9 8 3}$	$\mathbf{1 9 8 4}$	$\mathbf{1 9 8 5}$	$\mathbf{1 9 8 6}$	$\mathbf{1 9 8 7}$
$\mathbf{1}$	0.2038	0.1942	0.1863	0.1990	0.1942	0.1870	0.1886	0.1885
$\mathbf{2}$	0.2391	0.2420	0.2304	0.2396	0.2310	0.2475	0.2297	0.2256
$\mathbf{3}$	0.2733	0.2915	0.2818	0.2825	0.2788	0.3069	0.2788	0.2856
$\mathbf{4}$	0.3351	0.3308	0.3398	0.3317	0.3459	0.3370	0.3271	0.3096
$\mathbf{5}$	0.3580	0.3776	0.3961	0.3829	0.3912	0.4081	0.3760	0.3811
$\mathbf{6}$	0.4733	0.4114	0.4606	0.4290	0.4035	0.4428	0.4837	0.3808
$\mathbf{7}$	0.4566	0.4449	0.5066	0.4522	0.4725	0.4983	0.4725	0.5422
$\mathbf{8 +}$	0.5718	0.7198	0.7355	0.5384	0.5674	0.4385	0.6323	0.5928
Age	$\mathbf{1 9 8 8}$	$\mathbf{1 9 8 9}$	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 1}$	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$
$\mathbf{1}$	0.1941	0.1783	0.2013	0.2040	0.1954	0.1952	0.1836	0.1718
$\mathbf{2}$	0.2262	0.2260	0.2198	0.2496	0.2479	0.2509	0.2497	0.2554
$\mathbf{3}$	0.2559	0.2528	0.2600	0.2518	0.2903	0.2866	0.2974	0.2981
$\mathbf{4}$	0.3276	0.2878	0.2921	0.3086	0.3068	0.3476	0.3454	0.3670
$\mathbf{5}$	0.3515	0.3448	0.3349	0.3182	0.3425	0.3591	0.3927	0.3977
$\mathbf{6}$	0.4248	0.3700	0.4493	0.3493	0.3577	0.3877	0.3823	0.4373
$\mathbf{7}$	0.5064	0.4397	0.5225	0.3878	0.3828	0.4218	0.4128	0.4369
$\mathbf{8 +}$	0.7017	0.4050	0.6012	0.4013	0.5027	0.3804	0.4117	0.4217
Age	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	
$\mathbf{1}$	0.1700	0.1715	0.1642	0.1840	0.1659	0.1600	0.1985	
$\mathbf{2}$	0.2220	0.2067	0.2090	0.2365	0.2264	0.2168	0.2226	
$\mathbf{3}$	0.2743	0.2607	0.2592	0.2702	0.2714	0.2682	0.2688	
$\mathbf{4}$	0.3280	0.3140	0.3041	0.2801	0.3001	0.2857	0.3046	
$\mathbf{5}$	0.4067	0.3476	0.3299	0.3024	0.2924	0.2692	0.3257	
$\mathbf{6}$	0.4133	0.3977	0.3596	0.3139	0.3153	0.3033	0.3768	
$\mathbf{7}$	0.4484	0.3807	0.3444	0.3175	0.2781	0.2909	0.3675	
$\mathbf{8 +}$	0.4302	0.4205	0.4237	0.2951	0.2737	0.2944	0.3497	

Table 5.1.2.3.3 Whiting in IV and VIId. Discard mean weights at age (kg).

Age	1980	1981	1982	1983	1984	1985	1986	1987
1	0.1070	0.1310	0.0910	0.1140	0.1010	0.1050	0.1230	0.0900
2	0.1660	0.1640	0.1820	0.1670	0.1620	0.1690	0.1660	0.1490
3	0.2020	0.1970	0.2110	0.2350	0.2160	0.2130	0.1900	0.2060
4	0.2440	0.2300	0.2250	0.2640	0.2460	0.2380	0.2080	0.2050
5	0.2530	0.2890	0.2410	0.2900	0.2650	0.2420	0.2270	0.2630
6	0.2640	0.2520	0.2440	0.3170	0.2480	0.2530	0.1940	0.2570
7	0.0000	0.2680	0.2610	0.2770	0.2780	0.2550	0.2170	0.0000
8+	0.0000	0.0000	0.0000	0.3650	0.0000	0.0000	0.3110	0.2920
Age	1988	1989	1990	1991	1992	1993	1994	1995
1	0.0630	0.0830	0.0950	0.0890	0.0930	0.0870	0.0900	0.1020
2	0.1460	0.1640	0.1300	0.1540	0.1730	0.1600	0.1510	0.1630
3	0.1810	0.1910	0.1830	0.1770	0.2100	0.2050	0.2030	0.2040
4	0.2100	0.2130	0.1860	0.2130	0.2150	0.2370	0.2300	0.2330
5	0.2190	0.2270	0.1960	0.2300	0.2410	0.2350	0.2440	0.2470
6	0.2350	0.2410	0.2490	0.2530	0.2450	0.2250	0.2540	0.2470
7	0.0000	0.3510	0.3020	0.2680	0.2200	0.2130	0.3320	0.3320
8+	0.2840	0.2210	0.0000	0.0000	1.1830	0.0000	0.0000	0.2900
Age	1996	1997	1998	1999	2000	2001	2002	
1	0.0940	0.1250	0.0860	0.1000	0.1272	0.0844	0.1292	
2	0.1510	0.1810	0.1730	0.1660	0.1669	0.1828	0.1662	
3	0.1980	0.2130	0.2040	0.1970	0.1946	0.2169	0.1958	
4	0.2250	0.2250	0.2280	0.2010	0.2262	0.2591	0.2240	
5	0.2810	0.2330	0.2340	0.2250	0.2086	0.2482	0.2242	
6	0.2650	0.2560	0.2240	0.2310	0.2191	0.2398	0.2249	
7	0.3040	0.6170	0.2470	0.2120	0.2223	0.2249	0.2724	
8+	0.0000	0.3523	0.2063	0.2266	0.2640	0.2425	0.3520	

Table 5.1.2.3.4 Whiting in IV and VIId. Industrial bycatch mean weights at age (kg).

Age	$\mathbf{1 9 8 0}$	$\mathbf{1 9 8 1}$	$\mathbf{1 9 8 2}$	$\mathbf{1 9 8 3}$	$\mathbf{1 9 8 4}$	$\mathbf{1 9 8 5}$	$\mathbf{1 9 8 6}$	$\mathbf{1 9 8 7}$
$\mathbf{1}$	0.0510	0.0560	0.0380	0.0580	0.0530	0.0540	0.0540	0.0430
$\mathbf{2}$	0.1640	0.1410	0.1330	0.1480	0.1730	0.1500	0.1500	0.0850
$\mathbf{3}$	0.2810	0.2180	0.2320	0.3110	0.2890	0.2630	0.2620	0.1730
$\mathbf{4}$	0.4120	0.3180	0.3200	0.4310	0.3430	0.3820	0.3810	0.2620
$\mathbf{5}$	0.3800	0.4330	0.3660	0.6510	0.3900	0.4540	0.4550	0.4000
$\mathbf{6}$	0.3890	0.5960	0.6740	0.5650	0.2280	0.5040	0.5000	0.5000
$\mathbf{7}$	0.5610	0.6000	0.2840	0.6020	0.6000	0.5840	0.6000	0.6000
$\mathbf{8 +}$	1.0000	0.8000	0.8400	0.8023	0.8959	0.8091	0.8000	0.8216
$\mathbf{A g e}$	$\mathbf{1 9 8 8}$	$\mathbf{1 9 8 9}$	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 1}$	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$
$\mathbf{1}$	0.0500	0.0530	0.0730	0.1010	0.0660	0.0440	0.0420	0.0690
$\mathbf{2}$	0.1150	0.1370	0.1230	0.1360	0.1500	0.1550	0.1320	0.1590
$\mathbf{3}$	0.1970	0.2240	0.1810	0.2130	0.2280	0.2590	0.2420	0.3100
$\mathbf{4}$	0.2450	0.2850	0.1990	0.2690	0.2420	0.2640	0.3740	0.3730
$\mathbf{5}$	0.3800	0.3440	0.2800	0.2650	0.3350	0.3080	0.5210	0.5110
$\mathbf{6}$	0.5000	0.4820	0.3550	0.2790	0.2190	0.2350	0.5550	0.0000
$\mathbf{7}$	0.6000	0.3960	0.3350	0.3220	0.2550	0.3920	0.4400	0.0000
$\mathbf{8 +}$	0.8000	0.3854	0.4730	0.0000	0.2820	0.0000	0.5550	0.0000
$\mathbf{A g e}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	
$\mathbf{1}$	0.0590	0.0480	0.0450	0.0270	0.0410	0.0402	0.0437	
$\mathbf{2}$	0.1430	0.1440	0.1050	0.0770	0.1640	0.1643	0.1010	
$\mathbf{3}$	0.2350	0.2500	0.2000	0.1460	0.2420	0.1323	0.1844	
$\mathbf{4}$	0.2330	0.3210	0.3040	0.1960	0.2890	0.3200	0.2933	
$\mathbf{5}$	0.3470	0.3480	0.2860	0.2860	0.3390	0.3510	0.4150	
$\mathbf{6}$	0.2500	0.5880	0.0000	0.0000	0.0000	0.3860	0.3800	
$\mathbf{7}$	0.0000	0.0000	0.0000	0.0000	0.5880	0.0000	0.0000	
$\mathbf{8 +}$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

Table 5.1.2.4.1 Whiting in IV and VIId. Natural mortality and proportion mature by age.

Age	Natural   mortality	Maturity
1	0.95	0.11
2	0.45	0.92
3	0.35	1.00
4	0.30	1.00
5	0.25	1.00
6	0.25	1.00
7	0.20	1.00
$8+$	0.20	1.00

Table 5.1.2.5.1 Whiting in IV and VIId. Summary of available tuning series.

Country	Fleet	Code	Year range	Age Range
Scotland	Groundfish survey	SCOGFS	$1982-2003$	$0-6$
	Seiners			
Light trawlers	SCOSEI	$1978-2002$   $1978-2002$	$0-10$	
			$0-10$	

${ }^{1}$ Formerly IYFS.
${ }^{2}$ Scottish sub-set of IBTS data - discontinued in 1997.
${ }^{3}$ English sub-set of IBTS data - discontinued in 1996.

Table 5.1.2.5.2
Whiting in IV and VIId. Complete available tuning series (not all are used in the assessment) SCOSEI_IV

1978	2002
1	1
0	10

$325246 \quad 5345.92$ $\begin{array}{lll}316419 & 302.00 & 9 \\ 297227 & 668.98 & 27\end{array}$ $289672 \quad 93.00$ $297730 \quad 43.00$ $333168 \quad 572.01 \quad 11565.39$ $\begin{array}{llllllllllll}388035 & 296.72 & 4922.50 & 24015.61 & 20669.76 & 14985.59 & 21269.32 & 4715.24 & 959.96 & 87.28 & 49.59 & 6.94\end{array}$ $\begin{array}{lllllllllllll}381647 & 773.22 & 20067.84 & 20263.32 & 19695.99 & 8956.38 & 4795.86 & 8013.08 & 1362.79 & 333.95 & 17.89 & 5.96\end{array}$ $\begin{array}{llllllllllllll}425017 & 137.76 & 139498.17 & 48705.18 & 34509.26 & 11340.96 & 2624.40 & 1097.50 & 1771.08 & 215.94 & 7.27 & 0.00\end{array}$ $\begin{array}{lllllllllllll}418536 & 1358.85 & 13793.33 & 52715.14 & 38938.77 & 18440.26 & 3637.71 & 1096.91 & 297.74 & 348.42 & 15.88 & 3.97\end{array}$ $\begin{array}{lllllllllllll}377132 & 26.01 & 2502.07 & 28446.11 & 44869.26 & 12631.40 & 4071.61 & 678.72 & 63.97 & 20.99 & 16.99 & 2.00\end{array}$ $\begin{array}{lllllllllllll}355735 & 10.13 & 6878.80 & 15704.13 & 41407.43 & 23710.40 & 4769.04 & 1323.23 & 112.08 & 43.04 & 10.72 & 0.71\end{array}$ $\begin{array}{llllllllllllll}252732 & 184.88 & 14229.83 & 124635.82 & 27694.11 & 29920.98 & 14767.80 & 720.82 & 206.52 & 23.23 & 0.02 & 0.00\end{array}$ $\begin{array}{llllllllllll}336675 & 886.65 & 11951.95 & 44964.26 & 63414.28 & 10436.10 & 8730.12 & 1742.93 & 195.19 & 93.63 & 0.00 & 0.25\end{array}$ $\begin{array}{lllllllllllll}300217 & 426.21 & 16613.69 & 19452.01 & 21217.15 & 27961.87 & 2804.54 & 1958.07 & 564.87 & 32.42 & 3.39 & 0.00\end{array}$ $\begin{array}{lllllllllllll}268413 & 599.77 & 9563.69 & 31623.36 & 26012.82 & 12457.88 & 14446.11 & 899.25 & 332.18 & 153.13 & 7.51 & 8.25\end{array}$ $\begin{array}{lllllllllllll}264738 & 82.71 & 9235.94 & 21451.65 & 22570.72 & 11778.49 & 5530.94 & 5611.98 & 203.91 & 115.77 & 14.69 & 0.00\end{array}$ $\begin{array}{llllllllllllll}204545 & 26.01 & 8287.88 & 22152.73 & 30006.96 & 9018.67 & 3874.63 & 1373.44 & 1270.02 & 86.01 & 14.99 & 18.13\end{array}$ $\begin{array}{lllllllllllll}177092 & 223.90 & 5732.24 & 26020.51 & 21430.22 & 10505.52 & 3483.37 & 1031.27 & 295.71 & 289.16 & 28.12 & 1.00\end{array}$ $\begin{array}{llllllllllllll}166817 & 175.60 & 6627.68 & 8974.45 & 16231.23 & 9922.01 & 4445.23 & 575.33 & 109.85 & 61.63 & 37.34 & 2.35\end{array}$ $\begin{array}{llllllllllllll}150361 & 14.45 & 3710.69 & 4694.83 & 6806.23 & 6840.32 & 3669.55 & 1417.13 & 243.74 & 12.81 & 1.89 & 12.27\end{array}$ $\begin{array}{lllllllllllll}93796 & 663.34 & 13384.17 & 13750.43 & 7009.42 & 6068.11 & 3461.79 & 1684.05 & 409.19 & 77.42 & 3.15 & 0.00\end{array}$ $\begin{array}{lllllllllllll}69505 & 2.79 & 5176.09 & 11207.84 & 6458.23 & 2111.81 & 1971.96 & 835.64 & 297.65 & 89.60 & 6.92 & 0.04\end{array}$ $\begin{array}{rrrrrrrrrrrr}36135 & 929.75 & 606.97 & 6352.27 & 5592.05 & 1715.36 & 485.81 & 352.94 & 145.84 & 65.57 & 10.54 & 0.00 \\ 21817 & 1.94 & 934.97 & 3156.82 & 7464.64 & 2153.75 & 357.68 & 138.15 & 78.65 & 22.03 & 5.97 & 0\end{array}$ SCOLTR IV

1978	2002
1	1
0	10

$\begin{array}{lllllll}236944 & 7158.39 & 8785.46 & 19909.95 & 30722.31 & 14472.60\end{array}$ $287494 \quad 368.00 \quad 171147.28 \quad 42910.40 \quad 23154.59 \quad 17995.66$ $\begin{array}{lllllll}333197 & 869.00 & 20805.96 & 58381.99 & 38436.16 & 9525.06\end{array}$ $\begin{array}{lllllll}251504 & 170.99 & 6576.46 & 19069.21 & 21549.75 & 9706.15\end{array}$ $\begin{array}{lllllll}250870 & 6390.16 & 5214.10 & 8196.98 & 26680.54 & 12944.74\end{array}$ $\begin{array}{lllllll}244349 & 20191.06 & 37495.68 & 17925.87 & 12535.31 & 19234.31\end{array}$ $\begin{array}{lllllll}240775 & 2553.17 & 38266.77 & 16048.09 & 10784.18 & 6306.82\end{array}$ $\begin{array}{lllllll}267393 & 1221.65 & 28760.94 & 9368.37 & 7616.93 & 3085.79\end{array}$ $\begin{array}{lllllll}279727 & 796.71 & 8138.43 & 8571.90 & 9577.94 & 4108.82\end{array}$ $\begin{array}{lllllll}351131 & 599.52 & 18761.18 & 25933.34 & 16160.77 & 5954.48\end{array}$ $\begin{array}{lllllll}391988 & 60.00 & 2397.96 & 15778.77 & 22525.54 & 5127.73\end{array}$ $\begin{array}{llllllll}405883 & 491.80 & 20318.75 & 10051.62 & 21389.72 & 10836.81\end{array}$ $\begin{array}{lllllll}371493 & 371.48 & 3676.88 & 35321.99 & 7664.57 & 8960.09\end{array}$ $\begin{array}{lllllll}408056 & 688.42 & 8726.88 & 11908.03 & 22145.62 & 3192.25\end{array}$ $\begin{array}{lllllll}473955 & 1379.23 & 17580.58 & 14551.32 & 11822.72 & 15417.66\end{array}$ $\begin{array}{llllllll}447064 & 614.45 & 16438.91 & 20513.15 & 14385.55 & 6590.76 & 10\end{array}$ $\begin{array}{lllllll}480400 & 1259.30 & 4132.65 & 15771.00 & 13004.65 & 6453.76\end{array}$ $\begin{array}{lllllll}442010 & 208.07 & 9248.04 & 15886.83 & 19322.30 & 6261.60\end{array}$ $445995 \quad 188.32 \quad 6661.92 \quad 12461.08 \quad 13523.11 \quad 9223.33$ $\begin{array}{llllllll}479449 & 100.18 & 2557.22 & 6767.92 & 15603.23 & 9463.72 & 453\end{array}$ $\begin{array}{lllllll}427868 & 39.44 & 5096.42 & 5350.24 & 8058.40 & 9506.50 & 431\end{array}$ $\begin{array}{lllllllll}329750 & 1274.23 & 26518.76 & 20672.07 & 9295.36 & 6705.67 & 4079\end{array}$ $\begin{array}{lllllll}280938 & 1.15 & 8384.66 & 16220.42 & 9287.05 & 3788.38\end{array}$ $\begin{array}{rrrrrrr}245489 & 2221.71 & 1303.16 & 11409.11 & 10419.00 & 3287.13 \\ 184096 & 5.78 & 979.79 & 4680.38 & 11083.12 & 3591.95\end{array}$

56.04	1612.07	635.03	72.0	6.00	0.00
57.93	376.99	286.00	57.00	5.00	. 00
430.05	186		145	3.00	0
77.02	145	310	9.00	1.00	. 00
3333.92	646.98	33	74.00	16.00	0
23	121	182.80	14	25.97	0
9018.98	23	4	13.13	9	5
133	290		17	13.85	0.00
767.44	5.28	608.60	51.64	3	0
82.95	388.46	116.04	128.99	3.93	. 00
1640.63	20	3	15	1	1
2394.09	448.22	3	54.36	2.39	0.61
3423.01	159	39.	5.3	0.07	0.00
2906.40	628.63	49.90	,	. 45	0.25
1500.40	116	304.40	12.75	0.34	0.66
10	57	2	9	24.36	4.59
2710.23	29	171.83	83.	13.86	0.00
2982.5	1092.21	113	88.83	3.48	14.19
3012.1	860	281.	242.80	8.93	0.54
4535.19	628.02	181.35	51.94	30.82	0.31
4311.78	1728.79	275.71	57.74	12.20	2.67
4079.53	2051.46	487.24	40.79	7.35	0.10
2621.24	1469.79	601.84	79.39	7.11	0.17
745.34	430.51	247.31	65.76	26.77	0.00
780.46	234.59	183.36	66.81	12.9	

Table 5.1.2.5.2 contd. Whiting in IV and VIId. Complete available tuning series.
FRATRB_IV

1978	2001
1	1

1

69739	1153.00	10312.00	14789.00	8544.00	807.00	1091.00	227.00	34.00	4.00
89974	698.00	12272.00	14379.00	10884.00	3789.00	394.00	315.00	45.00	14.00
63577	90.00	5388.00	11298.00	4605.00	4051.00	1004.00	78.00	71.00	10.00
76517	144.00	6591.00	13139.00	8196.00	2090.00	1644.00	314.00	16.00	10.00
78523	173.00	1643.00	16561.00	11241.00	3948.00	1035.00	539.00	119.00	14.00
69720	500.00	4407.00	8188.00	16698.00	5541.00	1061.00	228.00	126.00	19.00
76149	317.00	4281.00	7465.00	4576.00	5999.00	1596.00	308.00	32.00	26.00
25915	314.55	3653.12	2942.09	1225.28	565.55	598.65	117.27	12.32	4.23
28611	890.57	3830.33	3990.71	1202.06	368.64	93.79	160.46	22.28	1.28
28692	431.03	4822.77	3667.48	2151.59	496.97	166.11	47.91	45.81	3.04
25208	150.44	2717.69	4815.08	1124.87	529.69	100.13	31.08	3.11	4.17
25184	447.52	2064.11	4351.49	1877.20	313.54	106.16	9.86	3.52	0.78
21758	163.76	3793.84	2123.86	2009.65	619.55	55.06	13.45	1.07	0.14
19840	292.26	2224.03	3828.93	818.81	657.22	137.59	15.33	3.49	0.08
15656	365.35	1597.81	1685.80	2204.15	248.32	195.02	43.88	2.82	0.06
19076	172.98	1224.59	2633.02	1141.30	1233.36	96.75	37.16	13.84	4.10
17315	107.74	1805.61	1720.52	1466.30	412.54	429.99	29.43	8.24	1.34
17794	114.32	1022.59	3304.45	1536.77	1162.94	240.08	211.60	13.83	6.66
18883	20.89	655.48	1594.39	1438.24	482.20	199.09	37.91	29.82	10.03
15574	39.68	356.96	1406.89	1138.71	606.01	85.94	15.86	9.70	2.25
14949	31.88	125.79	316.62	326.18	191.97	62.83	7.94	2.31	1.19
-9	95.73	489.82	489.30	683.82	451.53	239.35	58.67	13.88	1.21
11747	47.25	1148.44	2968.16	1204.67	319.60	298.20	124.42	53.59	5.27
6771	297.73	648.68	528.07	149.80	36.49	35.62	13.53	6.28	2.11

## FRATRO_IV

-_P6	2001								
1	1	0	1						
0	8								
56099	19.48	1541.94	1891.94	7145.98	3782.82	599.91	157.52	39.03	2.14
71765	12.20	2507.72	4984.96	1271.29	5713.14	412.56	257.90	91.79	69.82
84052	0.31	2536.92	8981.89	3222.83	704.34	1320.59	122.85	55.31	0.54
88397	26.94	2958.16	3739.55	5628.95	1654.27	208.58	280.47	47.27	10.86
71750	37.70	3209.61	6169.85	3780.85	2456.12	365.14	28.65	43.61	1.65
67836	323.02	4464.91	6083.87	2864.37	1412.45	776.93	84.61	5.78	2.53
51340	355.02	3426.92	6498.04	1939.69	635.38	358.08	96.22	4.78	0.12
62553	937.84	3950.46	4586.36	4306.75	877.04	289.87	68.31	39.73	6.21
51241	86.53	7005.88	3298.43	1190.63	612.13	108.28	11.05	8.38	0.98
57823	262.76	6331.03	6125.08	2673.85	543.82	98.58	19.19	0.03	1.79
50163	577.46	5522.73	4742.85	3214.22	890.19	155.83	7.73	12.12	0.03
48904	266.77	1961.14	4676.60	3929.12	1020.11	220.78	18.01	3.07	0.02
38103	566.68	4893.44	1959.25	532.61	161.28	68.00	35.86	0.39	1.55
-9	51.18	7651.96	2885.69	1452.71	960.37	500.08	133.31	45.54	30.71
30082	129.16	7366.57	8191.31	2452.95	1056.07	737.31	454.67	345.11	94.79
50846	3357.15	10766.56	15475.91	6922.60	3226.67	1700.58	637.70	344.65	127.90

Table 5.1.2.5.2 contd. Whiting in IV and VIId. Complete available tuning series.

SCOGFS_IV							
1982	2003						
1	1	0.5	0.75				
0	6						
100	102.00	653.00	971.00	972.00	224.00	60.00	16.00
100	210.00	563.00	578.00	407.00	511.00	116.00	17.00
100	442.00	1048.00	371.00	170.00	77.00	92.00	18.00
100	169.00	1577.00	973.00	247.00	63.00	36.00	18.00
100	406.00	1111.00	452.00	224.00	27.00	5.00	5.00
100	120.00	1405.00	1150.00	208.00	77.00	16.00	3.00
100	642.00	967.00	1606.00	452.00	70.00	19.00	2.00
100	427.00	4043.00	741.00	733.00	157.00	13.00	6.00
100	1943.00	2239.00	2053.00	248.00	255.00	47.00	5.00
100	1379.00	1769.00	950.00	759.00	51.00	40.00	9.00
100	2417.00	2925.00	1267.00	553.00	585.00	47.00	26.00
100	247.00	3169.00	1168.00	423.00	156.00	182.00	6.00
100	648.00	2635.00	950.00	254.00	57.00	34.00	23.00
100	1243.00	4176.00	2010.00	903.00	196.00	58.00	22.00
100	440.00	2888.00	3047.00	1215.00	460.00	43.00	15.00
100	317.00	1824.00	1434.00	1191.00	319.00	122.00	17.00
100	12302.00	4141.00	5426.00	649.00	321.00	131.00	62.00
100	15275.68	5409.65	2090.38	614.72	328.51	128.72	58.35
100	17076.44	6645.52	3329.07	675.66	202.25	130.20	81.17
100	116.72	3499.11	2450.75	844.39	207.17	51.32	48.49
100	1606.00	4980.00	2422.00	1608.00	724.00	94.00	44.00
100	5392.60	1890.60	1433.20	1211.30	823.30	276.20	35.70

ENGGFS_IV
19772002

1	1	0.5	0.75				
0	6						
100	28.4280	21.9533	7.4413	1.1092	0.2162	0.0908	0.0801
100	18.4407	24.7136	5.1506	1.0552	0.3447	0.0507	0.0224
100	35.4758	20.0635	7.1169	1.8985	0.8426	0.0572	0.0292
100	19.9030	35.3272	12.5080	4.8104	1.2045	0.3136	0.0576
100	34.9421	18.3141	28.8039	16.0519	0.6176	0.6163	0.0805
100	6.9320	27.7222	7.9339	8.5904	2.2201	0.3404	0.0491
100	71.6727	11.8533	10.8030	1.9061	1.6964	0.2421	0.0671
100	17.2520	50.6135	10.8181	3.0121	0.8888	0.7688	0.3781
100	19.9897	15.8783	17.0426	1.6727	0.9810	0.1817	0.1533
100	16.3337	15.1618	6.5920	3.8469	0.4060	0.1037	0.0144
100	13.7313	22.7627	13.0365	2.6871	2.0086	0.3516	0.1175
100	38.1694	18.8058	13.1596	4.5456	0.6450	0.1737	0.0180
100	116.9483	29.4743	11.7600	7.6937	1.6741	0.3448	0.0185
100	87.5315	19.0085	12.8360	3.8544	2.3182	0.3254	0.0461
100	16.7322	33.3038	7.6653	3.8177	1.0855	0.3710	0.0424
100	45.5048	26.5546	13.0698	3.0455	2.6101	0.4933	0.5888
100	25.2425	25.1038	9.6291	3.7504	1.1614	0.7417	0.1883
100	21.1433	30.5460	10.5944	2.4368	1.1239	0.3333	0.1139
100	36.2817	35.5060	23.7380	7.3607	1.8703	0.2508	0.1443
100	10.2940	12.3787	10.4401	7.3858	3.2250	0.5942	0.1659
100	59.8713	20.2926	9.7191	6.9873	5.4067	1.6755	0.4291
100	204.7684	16.4773	17.8866	4.0113	2.5565	1.2809	0.2800
100	132.5164	47.8886	21.8306	7.8158	3.0348	0.7707	0.7501
100	96.1504	70.2531	28.0310	7.4195	1.6467	0.4657	0.2880
100	99.9000	54.4500	14.7100	5.0800	1.2600	0.3300	0.3800
100	5.3227	62.5700	17.9715	8.0098	2.4482	0.2702	0.0556

Table 5.1.2.5.2 contd. Whiting in IV and VIId. Complete available tuning series.

IBTS_Q1_IV						
1967	2003					
1	1	0	0.25			
1	6					
1	440.360	97.850	21.160	7.210	0.840	1.150
1	1267.710	81.750	25.430	4.740	0.650	0.310
1	504.740	382.300	19.750	7.980	1.090	0.090
1	57.550	132.910	27.440	5.310	0.600	0.180
1	219.740	19.690	10.020	10.170	0.550	0.250
1	263.690	104.310	33.530	10.680	4.150	0.180
1	1460.010	381.800	53.720	33.610	8.360	5.700
1	312.490	485.970	105.660	7.100	0.580	1.300
1	881.190	174.470	91.130	19.690	3.810	0.570
1	676.190	349.440	130.000	31.290	5.030	0.530
1	411.420	232.590	69.080	12.250	11.030	13.000
1	542.890	256.840	88.720	21.120	4.970	7.500
1	440.930	228.840	112.590	33.060	4.890	1.170
1	674.040	403.340	125.750	25.620	9.150	1.960
1	229.260	464.300	228.310	45.930	9.290	2.780
1	151.380	216.140	257.360	68.510	10.140	4.570
1	127.090	126.860	112.570	79.190	33.390	6.360
1	439.010	178.880	89.200	30.250	25.380	10.490
1	339.010	361.760	65.700	18.530	7.030	7.180
1	469.370	268.420	194.600	32.420	6.600	3.850
1	683.380	556.490	90.420	46.170	4.980	1.980
1	450.740	863.720	312.750	34.170	12.280	1.310
1	1446.080	538.560	414.760	109.900	12.050	5.090
1	518.940	862.350	198.160	91.610	16.980	3.620
1	1009.160	686.180	479.410	70.860	37.600	7.590
1	904.610	677.690	250.360	162.890	14.960	14.260
1	1088.200	523.700	244.520	65.480	59.000	11.440
1	720.990	636.970	179.840	66.590	11.560	8.930
1	678.590	448.480	239.450	58.070	11.870	5.580
1	502.360	485.970	244.700	69.740	23.090	9.850
1	287.870	342.070	162.520	60.430	18.010	9.180
1	556.110	161.260	125.490	54.050	15.500	9.260
1	676.270	305.450	94.670	57.450	25.820	11.080
1	756.580	537.390	182.100	53.050	20.010	14.740
1	647.140	594.850	296.080	97.730	25.680	26.050
1	671.110	416.880	275.270	66.640	22.110	10.410
1	145.554	294.908	244.523	127.376	42.230	7.234

Table 5.1.2.5.2 contd. Whiting in IV and VIId. Complete available tuning series.

FRATRO_7D							
1986	2001						
1	1	0.00	1.00				
1	7						
257794	2586.59	2249.77	7740.58	4462.98	804.35	198.40	19.35
188236	1954.81	5050.15	907.04	4606.14	331.43	218.34	53.97
215422	2233.10	7957.35	2551.70	536.69	1192.83	127.34	61.15
320383	2577.84	3916.35	6005.56	1489.83	216.08	342.97	50.48
257120	2491.70	5240.14	3362.65	2168.19	251.50	29.80	51.08
294594	4009.06	8176.54	3984.56	2625.40	1474.03	155.42	10.50
285718	5732.56	10924.16	3241.05	881.71	587.01	171.40	3.38
283999	3158.34	6542.83	8606.51	1676.81	442.49	123.89	79.06
286019	13931.57	7979.57	3268.93	1776.04	443.66	40.33	20.73
268151	6301.32	8449.94	5260.61	1217.42	263.53	62.53	8.18
274495	6140.12	6465.75	5465.37	1622.56	324.48	47.21	14.16
282216	3320.15	8143.54	6607.75	1974.21	450.88	58.75	8.43
291360	9921.00	6863.22	2384.88	781.09	264.61	104.76	15.31
-9	5536.90	5976.23	2822.66	1672.18	702.49	343.31	69.31
215553	7096.32	7026.28	1733.97	1724.37	1374.95	876.77	674.78
163848	89.05	6101.35	10124.09	3975.55	2563.21	2302.84	1039.71

FRAGFS_7d

1988	2001			
1	1	0.75	1	
0	3			
27	24.7655	-1	-1	-1
27	25.5589	-1	-1	-1
27	17.9188	-1	-1	-1
27	171.8887	26.2471	2.9367	0.4826
27	162.7344	42.7011	7.6562	0.8468
27	67.5271	17.0920	7.2220	1.1432
27	24.2509	68.9305	8.0918	1.4242
27	61.6837	17.8014	2.8242	0.2552
27	30.1222	27.3099	5.5307	1.0228
27	17.7579	50.1070	16.3448	2.5154
27	27.5217	12.3364	8.1936	4.5313
27	8.2441	70.8686	5.8216	0.9928
27	10.8169	64.2548	27.4501	2.5845
27	19.3729	15.1018	14.5698	1.4124

Table 5.1.2.5.2 contd. Whiting in IV and VIId. Complete available tuning series.

IBTS_Q4_ENG_IV	Survey discontinued					
1991	1996					
1	1	0.75	1			
0	7					
100	46.826	55.276	19.642	15.092	3.255	1.851
100	94.233	45.090	26.462	5.379	5.030	0.645
100	78.871	54.210	19.474	7.161	2.335	0.827
100	69.848	61.335	26.413	4.140	0.842	0.621
100	71.328	107.996	41.715	11.186	2.560	0.523
100	29.983	36.556	30.330	8.653	4.815	1.626
IBTS_Q2_SCO_IV			Survey discontinued			
1991	1997					
1	1	0.25	0.5			
1	6					
100	94.900	38.560	22.860	3.740	1.230	0.510
100	129.760	47.500	11.420	4.280	1.140	0.450
100	104.670	41.490	20.860	5.170	4.850	0.360
100	65.400	35.710	8.550	2.380	0.900	0.750
100	191.610	77.300	26.190	4.420	2.210	0.410
100	44.020	49.620	22.300	8.330	1.250	0.590
100	14.070	22.600	18.020	6.430	1.400	0.130

Table 5.1.3.1.1 Whiting in IV and VIId. TSA parameters settings for final assessment run.

Parameter	Setting	Justification
Age above which selection is constant.	$a_{m}=5$	Based on inspection of previous XSA runs.
Multipliers on variance matrices of measurements.	$\begin{aligned} & B_{\text {landings }}(a)=2 \text { for ages } 7, \\ & 8+ \end{aligned}$	Allows extra measurement variability for older ages with fewer catches.
Multipliers on variances for fishing mortality estimates.	$H(1)=2$	Allows for more variable fishing mortalities for age 1 fish.
Downweighting of particular data points (implemented by multiplying the relevant $q$ by 3 )	Catch values at age 1 in 1986, age 2 in 1990, age 4 in 2001, and age 7 in 2000.	Large values indicated by exploratory prediction error plots.
Recruitment.	Modelled by a Ricker mod be independent and nor $\exp \left(-\eta_{2} S\right)$, where $S$ is the the previous year. To allow with mean recruitment, a assumed.	l, with numbers-at-age 1 assumed to ally distributed with mean $\eta_{1} S$ pawning stock biomass at the start of w recruitment variability to increase constant coefficient of variation is
Large year classes.	No year classes sufficiently special modelling treatment	large during 1980-2001 to warrant

Table 5.1.3.1.2 Whiting in IV and VIId. TSA parameter estimates for last year's (left) and this year's (right) assessments. The latter are given with starting values and lower and upper estimation bounds: these are not empirical standard errors, but user-defined run-time limits that were used to obtain a converged assessment.

| parameter |  | Last year's <br> assessment <br> $(1980-2001)$ | This year's assessment (1980-2002) |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Notation

$F(a, y) \quad$ Fishing mortality at age $a$ in year $y$
$\sigma_{F}$ Transitory changes in overall fishing mortality
$\sigma_{U}$ Persistent changes in selection (age effect in fishing mortality)
$\sigma_{V} \quad$ Transitory changes in the year effect in fishing mortality
$\sigma_{Y}$ Persistent changes in the year effect in fishing mortality
$\sigma_{\text {catch }}$ Standard error of catch-at-age data
$\alpha \quad$ Ricker parameter (slope at the origin)
$\beta \quad$ Ricker parameter (curve dome occurs at $1 / \beta$ )
$c v_{\text {rec }}$ Standard error of recruitment data

Table 5.1.3.1.3 Whiting in IV and VIId. XSA input setting for final run.

Catch data range	$1980-2002$
ScoSEI	Not used
ScoLTR	Not used
FraTRB	Not used
FraTRO	Not used
ScoGFS	$1982-2003,1-6$
EngGFS	$1992-2002,1-5$
IBTS Q1*	$1982-2002,0-5$
FraGFS	Not used
	Tricubic over 15 years
Time series weights	None
	Age 4
Power model used for catchability	Final 3 years or 2 oldest ages
Catchability plateau	0.5
	0.3
Survival estimate shrunk towards mean	None
s.e. of other means	
Min std error for pop. estimates	Prior weighting

* The IBTS Q1 Survey was back-shifted to allow incorporation of 2003 survey indices.

Table 5.1.3.2.1 Whiting in IV and VIId. XSA tuning file for final run.

Lowestoft VPA Version 3.1

$$
16 / 09 / 2003 \quad 15: 57
$$

Extended Survivors Analysis
Whiting in the North Sea and eastern Channel, ages 1-8+
CPUE data from file EF.dat
Catch data for 23 years. 1980 to 2002. Ages 1 to 6.

Fleet,		First,	Last,	First,	Last,	Alpha,	Beta
	,	year,	year,	age	age		
IBTS_Q1_IV	,	1982,	2002,	0 ,	5,	. 990,	1.000
SCOGFS_IV	,	1982,	2002,	1,	5,	. 500,	. 750
ENGGFS_IV_GOV		1992,	2002,	1,	5,	. 500,	. 750

Time series weights :
Tapered time weighting applied
Power $=3$ over 15 years
Catchability analysis :
Catchability independent of stock size for all ages
Catchability independent of age for ages >= 4
Terminal population estimation :
Survivor estimates shrunk towards the mean $F$
of the final 3 years or the 2 oldest ages.
S.E. of the mean to which the estimates are shrunk $=\quad .500$

Minimum standard error for population
estimates derived from each fleet $=\quad .300$
Prior weighting not applied
Tuning had not converged after 40 iterations
Total absolute residual between iterations
39 and $40=.00043$
Final year $F$ values
$\begin{array}{lrrrrr}\text { Age } & 1, & 2, & 3, & 4, & 5 \\ \text { Iteration } 39, & .0551, & .1721, & .3419, & .3424, & .3124\end{array}$
Iteration $40, .0551, .1720, .3418, .3423, .3122$
Regression weights

| on weights |
| ---: | :--- |
| $.482, ~ .610, ~ .725, ~ .820, ~ .893, ~ .944, ~ .976, ~ .993, ~ .999, ~$ | .000

Fishing mortalities
Age, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002

| 1, | .186, | .149, | .142, | .110, | .108, | .109, | .178, | .063, | .103, | .055 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2, | .463, | .327, | .322, | .293, | .273, | .213, | .351, | .321, | .184, | .172 |
| 3, | .731, | .645, | .575, | .514, | .462, | .314, | .448, | .573, | .311, | .342 |
| 4, | .804, | .844, | .682, | .632, | .508, | .442, | .524, | .527, | .426, | .342 |
| 5, | .895, | .933, | .814, | .718, | .583, | .457, | .465, | .564, | .433, | .312 |

XSA population numbers (Thousands)

		AGE				
YEAR	,	1,	2,	3	4,	5,
1993		. $06 \mathrm{E}+06$,	$5.66 \mathrm{E}+05$	$2.86 \mathrm{E}+05$	$9.79 \mathrm{E}+04$	$8.84 \mathrm{E}+04$
1994		1.90E+06	6.61E+05,	2.27E+05,	$9.69 \mathrm{E}+04$	$3.25 \mathrm{E}+04$
1995		$1.67 \mathrm{E}+06$	$6.32 \mathrm{E}+05$	3.04E+05,	$8.40 \mathrm{E}+04$	$3.08 \mathrm{E}+04$
1996		1.12E+06,	5.62E+05,	2.92E+05,	1.20E+05	$3.15 \mathrm{E}+04$
1997		8.41E+05,	3.89E+05,	2.67E+05,	1.23E+05	$4.74 \mathrm{E}+04$
1998		1.11E+06	2.92E+05,	1.89E+05,	1.19E+05	$5.49 \mathrm{E}+04$
1999		1.75E+06	3.86E+05,	1.50E+05,	9.73E+04	$5.65 \mathrm{E}+04$
2000		1.76E+06,	$5.67 \mathrm{E}+05$,	1.73E+05,	$6.77 \mathrm{E}+04$	$4.27 \mathrm{E}+04$
2001		1.38E+06,	$6.41 \mathrm{E}+05$,	2.63E+05,	$6.89 \mathrm{E}+04$	$2.96 \mathrm{E}+0$
2002		1.49E+06,	$4.83 \mathrm{E}+05$	$3.40 \mathrm{E}+05$	1.36E+05	3.34
Estimated population abundance at 1st Jan 2003						
		$0.00 \mathrm{E}+00,5.46 \mathrm{E}+05,2.59 \mathrm{E}+05$			70E+05,	$13 \mathrm{E}+04$,
Taper weighted geometric mean of the VPA populations:						
		$1.46 \mathrm{E}+06,5.07 \mathrm{E}+05,2.44 \mathrm{E}+05,1.02 \mathrm{E}+05,4.11 \mathrm{E}+04$,				
Standard error of the weighted Log(VPA populations) :						

Log catchability residuals.


Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age,	1,	2,	3,	4,	5
Mean Log q,	-14.0372,	-14.0547,	-14.3315,	-14.6156,	-14.6156,
S.E (Log q),	.1846,	.2198,	.4339,	.4557,	.5456,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	.71,	2.237,	14.08,	.89,	15,	.11,	-14.04,
2,	.83,	.778,	13.90,	.75,	15,	.19,	-14.05,
3,	9.03,	-2.172,	29.81,	.01,	15,	3.25,	-14.33,
4,	5.97,	-1.856,	29.92,	.02,	15,	2.39,	-14.62,
5,	2.53,	-1.298,	19.98,	.09,	15,	1.10,	-14.33,


Fleet		SCOGFS									
Age	,	1982									
1	,	99.99									
2	,	99.99									
3	,	99.99									
4	,	99.99									
5	,	99.99									
Age	,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992
1	,	99.99,	99.99,	99.99,	99.99,	99.99,	-1.67,	-1.00,	-. 76 ,	-1.00,	-. 39
2	,	99.99,	99.99,	99.99,	99.99,	99.99,	-. 90,	-1.10,	-.83,	-. 78,	-. 60
3	,	99.99,	99.99,	99.99,	99.99,	99.99,	-1.08,	-.63,	-1.01,	-. 79,	-. 28
4	,	99.99,	99.99,	99.99,	99.99,	99.99,	-1.08,	-. 95,	-. 44 ,	-1.31,	. 05
5	,	99.99,	99.99,	99.99,	99.99,	99.99,	-1.66,	-1.77,	-1.06,	-1.27,	-. 45
Age	,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
1	,	-.45,	-. 58,	. 00,	. 01 ,	-.16,	. 38 ,	. 24 ,	. 37 ,	-.01,	. 24
2	,	-. 49 ,	-. 93,	-. 14,	. 37,	-.03,	. 12,	. 41 ,	. 47 ,	-. 04,	. 22
3	,	-.60,	-. 93,	. 00 ,	. 30,	. 34,	-.02,	. 24,	. 27,	-.08,	. 32
4	,	-. 33,	-1.30,	-. 02,	. 44 ,	-. 03,	-. 02,	. 25,	.13,	. 07,	. 59
5	,	-.05,	-. 70 ,	-.19,	-. 57,	-. 02,	-.17,	-. 21,	.14,	-. 51,	-. 10

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age,	1,	2,	4,	5
Mean Log q,	-9.9236,	-9.7336,	-9.8498,	-10.0303,
S.E (Log q),	.3688,	.4448,	.4179,	.5101,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time. Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	1.56,	-.783,	7.54,	.21,	15,	.59,	-9.92,
2,	3.03,	-1.384,	2.81,	.06,	15,	1.28,	-9.73,
3,	1.38,	-.550,	8.89,	.23,	15,	.60,	-9.85,
4,	.79,	.435,	10.34,	.38,	15,	.43,	-10.03,
5,	.78,	.749,	10.38,	.62,	15,	.27,	-10.31,



Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age,	1,	2,	3,	4,	5
Mean Log q,	-14.6114,	-14.6877,	-14.9300,	-15.1351,	-15.1351,
S.E (Log q),	.4088,	.3001,	.2770,	.1986,	.4582,


1

Terminal year survivor and $F$ summaries :
Age 1 Catchability constant w.r.t. time and dependent on age
Year class $=2001$

Fleet,		Estimated, Survivors,	Int, s.e,		Ext, s.e,
IBTS_Q1_IV	,	491796.,	. 300 ,		. 000,
SCOGFS_IV	,	$695254 .$,	. 388 ,		. 000 ,
ENGGFS_IV_GOV	,	948822.,	. 431 ,		. 000 ,
F shrinkage mean	,	243028.	. 50,	, , ,	
Weighted prediction	n :				
Survivors, I	Int,	Ext,	N,	Var,	F
at end of year, s.	s.e,	s.e,		Ratio,	
545759.	.19,	. 26 ,	4,	1.350,	. 055

Age 2 Catchability constant w.r.t. time and dependent on age
Year class = 2000

Fleet,		Estimated, Survivors,	Int, s.e,	Ext,   s.e	Var, Ratio,	N,	Scaled, Weights,	$\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$
IBTS Q1 IV	,	220583.	212,	. 026 ,	.12,	2,	.412,	199
SCOGFS $\overline{\mathrm{I}} \mathrm{V}$	,	284186.	. 299,	.113,	38,	2,	. 206,	158
ENGGFS_IV_GOV		368688	. 256 ,	.116,	. 45 ,	2,	. 289 ,	124
F shrinkage mean		144486.	. 50,				. 093,	. 290

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	S.e,	,	Ratio,	
$259221 .$,	.14,	.12,	7,	.888,	.172

Age 3 Catchability constant w.r.t. time and dependent on age
Year class = 1999

Fleet,		Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	Ext,   s.e,	Var,   Ratio,		Scaled, Weights,	$\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$
IBTS_Q1_IV	,	152970.	194,	. 228,	1.18,	3,	.343,	374
SCOGFS_IV		216402.,	. 249,	. 122,	. 49 ,	3,	. 214,	278
ENGGFS_IV_GOV		176638.,	. 196 ,	.141,	. 72,	3,	. 357 ,	331
F shrinkage mean		121728.,	. 50,				.085,	.451

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$170085 .$,	.12,	.10,	10,	.815,	.342

Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=1998$

Fleet,		Estimated, Survivors	Int,	Ext,	Var,		Scaled, Weights	Estimated
IBTS Q1		Survivors,   65282	s.e,	s.e,	Ratio, $1.42$	4	Weights, $292$	F 369
SCOGFS $\overline{\text { IV }}$	,	94758.,	. 237 ,	. 156 ,	1.42,	4,	. 197 ,	. 2688
ENGGFS_IV_GOV	,	73179	.170,	. 073,	. 43,	4,	. 422,	335
$F$ shrinkage mean		45016.,	. 50,				. 089 ,	. 499

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	R',	Ratio,	
$71342 .$,	.11,	.10,	13,	.910,	.342

Age 5 Catchability constant w.r.t. time and age (fixed at the value for age) 4
Year class = 1997

Fleet,		Estimated,	Int,	Ext, s.e,	Var, Ratio,		Scaled, Weights,	$\underset{\mathrm{F}}{\text { Estimated }}$
IBTS_Q1_IV	,	Survivors, $23009 .$,	$\begin{aligned} & \text { s.e, } \\ & .203, \end{aligned}$	$\begin{aligned} & \text { s.e, } \\ & .166, \end{aligned}$	$\begin{aligned} & \text { Ratio, } \\ & .82, \end{aligned}$	5,	Weights, .264,	$\begin{aligned} & F \\ & .264 \end{aligned}$
SCOGFSS_IV	,	21302.,	.240,	.100,	. 42 ,	5,	.229,	283
ENGGFS_IV_GOV		16222.,	.175,	.191,	1.09,	5,	. 395 ,	. 357
F shrinkage mean		16914.	. 50				.112,	. 345

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	S.e,	Ratio,		
19022.,	.12,	.09,	16,	.761,	.31

Table 5.1.3.2.2 Whiting in IV and VIId. XSA output: Fishing mortality at age.


Table 5.1.3.2.3 Whiting in IV and VIId. XSA output: Stock numbers at age.


Table 5.1.3.2.4 Whiting in IV and VIId. XSA Stock Summary.
Run title : Whiting in the North Sea and eastern Channel, ages 1-8+ (15/09/2003 CPM)
At 16/09/2003 15:58
Table 16 Summary (without SOP correction)

,	RECRUITS,	TOTALBIO,	TOTSPBIO,	LANDINGS,	YIELD/SSB,	FBAR	2-4,
1980,	4527870,	874038,	550660,	223517,	.4059,		.6776,
1981,	1784171,	670133,	517019,	192049,	. 3715 ,		.6167,
1982,	1967836,	520217,	404718,	140195,	. 3464 ,		.4749,
1983,	1775425,	535074,	356202,	161212,	. 4526 ,		.6024,
1984,	2685199,	507559,	286461,	145741,	.5088,		. 7300 ,
1985,	1972426,	467583,	289708,	106363,	. 3671 ,		. 5498,
1986,	3995616,	686995,	304288,	161744,	. 5315,		. 7006 ,
1987,	3385703,	562689,	316618,	138775,	.4383,		.7634,
1988,	2349717,	440772,	314491,	133470,	.4244,		. 5870,
1989,	4385537,	578367,	297096,	123753,	.4165,		. 5963,
1990,	2023262,	493116,	327329,	153453,	. 4688 ,		. 7376 ,
1991,	1899884,	467013,	284405,	124975,	.4394,		. 5820,
1992,	1849317,	416461,	271806,	109704,	.4036,		. 5326,
1993,	2058234,	385829,	244180,	116165,	.4757,		.6659,
1994,	1897021,	377783,	233730,	92606,	. 3962 ,		. 6054 ,
1995,	1673284,	387488,	248776,	103268,	. 4151 ,		. 5262,
1996,	1123578,	322083,	221581,	73957,	. 3338 ,		.4797,
1997,	840689,	267486,	193854,	59102,	. 3049 ,		. 4140 ,
1998,	1114114,	257563,	163127,	44312,	. 2716 ,		.3229,
1999,	1753696,	286130,	162130,	59179,	. 3650 ,		.4413,
2000,	1763763,	385836,	200192,	60907,	. 3042 ,		. 4738,
2001,	1383552,	316821,	218375,	49062,	. 2247,		. 3070 ,
2002,	1490886,	303927,	210328,	46296,	.2201,		. 2854 ,
Arith. Mean	2160903,	456998,	287699,	113904,	. 3864 ,		.5510,
0 Units,	(Thousands),	(Tonnes),	(Tonnes),	(Tonnes),			


'SGFS1'	'SGFS2'	DGFS0'	'GFSI'	DGFS2'	GGFS1' '	GGFS2'	'IBQ21'	'SCQ21'	'SCQ22'	'IBQ40'	'IBQ41' '	'ENQ40'	'ENQ41'	ENQ42'
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	62	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	330	131	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	97	166	205	105	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
65	58	1393	640	224	-1	15.3	-1	-1	-1	-1	-1	-1	-1	-1
56	37	166	431	141	6.8	12.9	-1	-1	-1	-1	-1	-1	-1	-1
108	97	2649	1330	893	5.7	22.8	-1	-1	-1	-1	-1	-1	-1	-1
158	45	143	783	75	9.6	24.6	-1	-1	-1	-1	-1	-1	-1	-1
111	115	859	384	252	12.2	70.8	-1	-1	-1	-1	-1	-1	-1	-1
141	161	1784	2004	612	91	79.8	-1	-1	-1	-1	-1	-1	-1	-1
97	74	2883	1441	803	15.1	392.3	-1	-1	-1	-1	-1	-1	-1	-1
404	205	629	1049	196	603.1	248.5	-1	-1	-1	-1	-1	-1	-1	-1
224	95	1882	963	214	280.2	163.7	-1	-1	3856	-1	-1	-1	-1	19642
177	127	5543	1552	310	324.3	73.3	1298	9490	4750	-1	853	-1	55276	26462
293	117	806	272	61	120.7	-1	816	12976	4149	761	625	46826	45090	19474
317	950	453	340	353	-1	79	710	10467	3571	1219	807	94233	54210	26413
2365	2010	2655	660	-1	181.8	74.5	806	6540	7730	1326	1136	78871	61335	41715
4176	3047	1795	-1	-1	104.7	-1	1592	19161	4962	1318	1112	69848	107996	30330
2888	1434	-1	-1	-1	-1	-1	627	4402	2260	2013	-1	71328	36556	-1
1824	-1	-1	-1	-1	-1	-1	254	1407	-1	-1	-1	29983	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
sgfs1	sgfs2	dgfs0	dgfs 1	dgfs2	ggfs1	ggfs2	IBQ21	SCQ21	SCQ22	IBQ40	IBQ41	ENQ40	ENQ41	ENQ42





Table 5.1.4.2 Whiting in IV and VIId. RCT3 output of final run.

```
Analysis by RCT3 ver3.1 of data from file :
rctwhi_1.in
"WHITING in IV RCT3 INPUT VALUES; age 1"
Data for 21 surveys over 23 years : 1980 - 2002
Regression type = C
Tapered time weighting applied
power = 3 over }15\mathrm{ years
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as .50
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass = 2000
```

Survey/   Series	Slope	Intercept	Std Error	Rsquare	$\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$	Index   Value	Predicted Value	Std   Error	WAP   Weights
EGFS0	******	******	*****	. 000	20	6.56	******	******	. 000
EGFS1	4.82	-12.85	2.27	. 034	20	6.30	17.54	3.017	. 017
EGFS2	-18.51	103.58	6.35	. 004	20	5.20	7.38	8.100	. 002
					VPA	Mean $=$	14.29	. 399	. 981

Yearclass = 2001

Survey/   Series	Slope	Intercept	Std Error	Rsquare	$\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$	Index   Value	Predicted Value	Std Error	WAP   Weights
EGFSO	-35.81	230.64	35.47	. 000	20	6.91	-16.74	45.552	. 000
EGFS1	3.19	-3.73	1.56	. 065	20	6.44	16.81	2.215	. 029

Yearclass = 2002

Survey/   Series	Slope	Intercept	Std Error	Rsquare	$\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$	Index Value	Predicted Value	Std   Error	WAP Weights
EGFS0	-10.14	75.65	10.43	. 001	20	3.99	35.22	17.026	. 000
					VPA	Mean =	14.21	. 364	1.000


Year   Class	Weighted   Average   Prediction	WAP	Lnt   Std   Error	Ext   Std   Error	Var   Ratio	VPA	Log   VPA
2000	1670241	14.33	.39	.33	.70		
2001	1654574	14.32	.37	.35	.88		
2002	1496007	14.22	.36	.45	1.52		

Table 5.1.5.1 Whiting in IV and VIId. Input data for catch forecast and linear sensitivity analysis.

Label	Value	CV	Label	Value	CV
Number	at age		Weight	the st	
N1	1459533	0.38	WS1	0.08	0.18
N2	545759	0.26	WS2	0.18	0.06
N3	259221	0.14	WS 3	0.23	0.02
N4	170085	0.12	WS 4	0.28	0.01
N5	71342	0.11	WS 5	0.29	0.04
N6	19022	0.12	WS 6	0.31	0.08
H.cons selectivity			Weight in the HC catch		
sH1	0.01	0.19	WH1	0.17	0.07
sH2	0.06	0.21	WH2	0.22	0.01
sH3	0.17	0.20	WH3	0.27	0.00
SH4	0.30	0.12	WH4	0.30	0.02
sH5	0.36	0.17	WH5	0.30	0.06
sH6	0.38	0.17	WH6	0.32	0.07
Discard selectivity			Weight in the discards		
sD1	0.03	0.19	WD1	0.11	0.13
sD2	0.13	0.21	WD2	0.17	0.03
sD3	0.17	0.20	WD 3	0.20	0.04
sD4	0.08	0.12	WD 4	0.24	0.05
sD5	0.05	0.17	WD 5	0.23	0.05
sD6	0.05	0.17	WD 6	0.24	0.06
Industrial selectivity			Weight in Ind. bycatch		
sI1	0.04	0.19	WI1	0.04	0.03
sI2	0.04	0.21	WI2	0.14	0.15
sI3	0.06	0.20	WI3	0.19	0.17
SI4	0.05	0.12	WI 4	0.30	0.03
SI5	0.03	0.17	WI5	0.37	0.06
sI6	0.01	0.17	WI 6	0.28	0.38
Natural mortality			Proportion mature		
M1	0.95	0.10	MT1	0.11	0.10
M2	0.45	0.10	MT2	0.92	0.10
M3	0.35	0.10	MT3	1.00	0.10
M4	0.30	0.10	MT4	1.00	0.00
M5	0.25	0.10	MT5	1.00	0.00
M6	0.25	0.10	MT 6	1.00	0.00
Relative effort			Year effect for natural mortality		
in HC fishery					
HFO3	1.00	0.15	K03	1.00	0.10
HFO 4	1.00	0.15	K04	1.00	0.10
HFO5	1.00	0.15	K05	1.00	0.10
Relative effort in industrial fishery					
IF03	1.00	0.63			
IFO4	1.00	0.63			
IF05	1.00	0.63			
Recruitment in 2004 and 2005					
R04	1459533	0.38			
R05	1459533	0.38			
Proportion of $\mathbf{F}$ before spawning $=0.00$					
Proportion of M before spawning $=0.00$					
Stock	umbers ar	XSA	survivor		

Table 5.1.5.2 Whiting in IV and VIId. Catch forecast output and estimates of coefficient of variation (CV) from linear analysis.


Table 5.1.5.3 Whiting in IV and VIId. Detailed forecast tables.


Nominal landings ( t ) of Whiting from Division IIIa as supplied by the Study Group on Division IIIa Demersal Stocks (ICES 1992b) and updated by the Working Group.

Year		Denmark		Norway	Sweden	Others	Total
1975		19,018		57	611	4	19,690
1976		17,870		48	1,002	48	18,968
1977		18,116		46	975	41	19,178
1978		48,102		58	899	32	49,091
1979		16,971		63	1,033	16	18,083
1980		21,070		65	1,516	3	22,654
	Total consumption	Total industrial	Total				
1981	1,027	23,915	24,942	70	1,054	7	26,073
1982	1,183	39,758	40,941	40	670	13	41,664
1983	1,311	23,505	24,816	48	1,061	8	25,933
1984	1,036	12,102	13,138	51	1,168	60	14,417
1985	557	11,967	12,524	45	654	2	13,225
1986	484	11,979	12,463	64	477	1	13,005
1987	443	15,880	16,323	29	262	43	16,657
1988	391	10,872	11,263	42	435	24	11,764
1989	917	11,662	12,579	29	675	-	13,283
1990	1,016	17,829	18,845	49	456	73	19,423
1991	871	12,463	13,334	56	527	97	14,041
1992	555	10,675	11,230	66	959	1	12,256
1993	261	3,581	3,842	42	756	1	4,641
1994	174	5,391	5,565	21	440	1	6,027
1995	85	9,029	9,114	24	431	1	9,570
1996	55	2,668	2,723	21	182	-	2,926
1997	38	568	606	18	94	-	718
1998	35	847	882	16	81	-	979
1999	37	1,199	1,236	15	111	-	1,362
2000	59	386	445	17*	138	1	622
2001	61	n/a	$\mathrm{n} / \mathrm{a}$	27*	126	+	214
2002	101	$\mathrm{n} / \mathrm{a}$	$\mathrm{n} / \mathrm{a}$	23*	127	1	252

*Preliminary.

Figure 5.1.3.1.1 Whiting in VI and VIId. Relative survey indices and catch at ages $0-6$. Proportion by number in catch at age.









Figure 5.1.3.1.2 Whiting in VI and VIId. Fitted Surba relative SSB for three tuning surveys.


Figure 5.1.3.1.3 Whiting in VI and VIId. Stock summary plots for a TSA update analysis (thick lines) with approximate $95 \%$ pointwise confidence intervals (dotted lines). The vertical dotted lines indicate the last year of catch data, all subsequent estimates are TSA forecasts. Thin lines represent last year's WG assessment. Circles on the first graph indicate total reported catches (human consumption, discards and industrial bycatch).


Figure 5.1.3.1.4 Whiting in VI and VIId. TSA update retrospective analyses for 9 years, for mean F (2-6), SSB and recruitment at age 1 .




Figure 5.1.3.1.5 Whiting in VI and VIId. A comparison of TSA runs: last year's assessment, the TSA update analysis, a TSA analysis including all ScoGFS, EngGFS and IBTS Q1, and TSA analyses including each survey separately.


Figure 5.1.3.1.6 Whiting in VI and VIId. Log catchability residuals, from XSA base run.




Figure 5.1.3.1.7 Whiting in VI and VIId. Log catchability residuals, from single fleet XSA runs. Using settings as in Table 5.1.3.1.3.




Figure 5.1.3.1.8 Whiting in VI and VIId. Shrinkage contribution in XSA base run.


Figure 5.1.3.1.9 Whiting in VI and VIId. Retrospectives for XSA base run.




Figure 5.1.3.1.10 Whiting in VI and VIId. Comparison of single fleet XSA runs, base run (XSA all) and the 2002 and 2003 TSA runs.




Figure 5.1.3.1.11 Whiting in VI and VIId. Summary plot of SSB against F(2-4).


* Calculated from estimated F at age in 2002 from the update TSA run.

Figure 5.1.3.1.11
Whiting in VI and VIId. A comparison of $\mathrm{F}(2-4)$ and $\mathrm{F}(2-6)$ trends predicted by the TSA analyses including ScoGFS, EngGFS and IBTSQ1 surveys.


Figure 5.1.3.2 $\quad$ Whiting in IV and VIId. Stock summary.





Figure 5.1.3.2.2 Whiting in IV and VIId. Historical performance of the assessment.




Figure 5.1.5.1 Whiting in IV and VIId. Short term forecast.

Figure Whiting,,„IV_VIId,,. Short term forecast


Data from file:C:\WGs\WGNSSK\2003\whiivviid.sen on 26/09/2003 at 11:02:55

Figure 5.1.5.2 Whiting in IV and VIId. Sensitivity analysis of short term forecast.

Figure Whiting,,,IV_VIId,,. Sensitivity analysis of short term forecast.


Figure 5.1.5.3 Whiting in IV and VIId. Probability profiles for short term forecast.

Figure Whiting,,,IV_VIId,,. Probability profiles for short term forecast.


The assessment of saithe in sub-area IV, VI and division IIIa is presented here as an update assessment. All the relevant biological and methodological information can be found in the stock annex (Q6) dealing with this stock. Here, only the basic input and output from the assessment model will be presented.

### 6.1 The Fishery

A general description of the fishery is given in the stock annex.

### 6.1.1 ACFM advice applicable to 2002 and 2003

For 2002 ACFM considered the stock to be inside safe biological limits and advised that fishing mortality in 2002 should be below $\mathbf{F}_{\mathrm{pa}}$, corresponding to landings less than 148000 t ( 135000 t in IV and IIIa and 13000 t in VI).

For 2003 ACFM considered the stock to be inside safe biological limits and advised that fishing mortality in 2003 should be below $\mathbf{F}_{\mathrm{pa}}$, corresponding to landings less than 193000 t .

### 6.1.2 Management applicable in 2002 and 2003

Management of saithe is by TAC and technical measures. The agreed TAC for saithe in IV and IIIa for 2002 is 135000 t and in Divisions Vb, VI, XII, and XIV the TAC for 2002 is 14000 t . For 2003 the TACs were 165000 t and 17119 t , respectively. Technical measures are described in Section 2.1.

### 6.1.3 The fishery in 2002

In 2002 the landings are estimated to be 117 thousand tonnes in Areas IV and IIIa, which is below =the TAC of 135 thousand tonnes. The landings in area VI are estimated to be 5200 t , which is well below the TAC of 14000 tonnes. One of the reasons that the TAC not was taken was the very low price for saithe in 2002. Data from SGDBI and Scotland indicate that the discard of saithe may be considerable in the fleets not targeting saithe.

### 6.2 Data available

### 6.2.1 Landings

Landings data by country and TACs are presented in Table 6.2.1.

### 6.2.2 Age compositions

Age compositions of the landings are presented in Table 6.2.2.

### 6.2.3 Weight at age

Weight at age in the catch is presented in Table 6.2.3. These are also used as stock weights. The procedure for calculating mean weights is described in the stock annex.

### 6.2.4 Maturity and natural mortality

Maturity and natural mortality are assumed at fixed values and are described in the stock annex.

### 6.2.5 Catch, effort and research vessel data

Fleet data used for calibration of the assessment are presented in Table 6.2.4. Commercial fleets and surveys are described in the stock annex.

Catch at age analysis was carried out according to the specifications in the stock annex. Results of the analysis are presented in Table 6.3.1 (diagnostics), Table 6.3.2 (fishing mortality at age), Table 6.3 .3 (population numbers at age), and Table 6.3 .4 (stock summary). The stock summary is also shown in Figure 6.3.1 and the historical performance of the assessment is shown in Figure 6.3.2.

### 6.4 Recruitment estimates

The calculation of recruitment estimates is described in the stock annex. Year class strength estimates used for short term prognosis are summarized in the text table below.

Year class	Age in 2003	XSA	GM(85-00)
1999	4	$\mathbf{2 2 0} \mathbf{6 0 4}$	
2000	3	139537	$\mathbf{1 3 6 1 5 5}$
2001	2	257267	$\mathbf{1 7 3 1 7 5}$
2002	1		$\mathbf{2 1 2} \mathbf{1 9 4}$
2003	1		$\mathbf{2 1 2} \mathbf{1 9 4}$

### 6.5 Short term prognosis

The short term prognosis was carried out according to the specifications in the stock annex. The input is presented in Table 6.5.1. Results are presented in Tables 6.5.2 and 6.5.3.

### 6.6 Comments

This assessment agrees well with the fishermen's perception of the stock (WD:14).

The next benchmark assessment for this stock is foreseen in 2005.

This assessment gives an increase in fishing mortalities for the years 2000 and 2001 of about $10 \%$, and a reduction in the SSB for 2000 and 2001 of about $2.5 \%$ and $7 \%$, respectively. The general tendency of this assessment to overestimate F and underestimate SSB is no longer apparent.

The historical assessment and catch prediction suffer from the lack of representative data series of recruitment at ages 13. At the benchmark assessment, the Working Group should consider to run the assessment with age 3 as recruits. A survey along the Norwegian coast targeting saithe larvae (0-group) started in 1999. The time series from this survey is currently too short to evaluate its potential as a year class strength predictor (i.e. to investigate the correlation between the 0 -group indices and the corresponding VPA numbers at age 3 ).

Data from SGDBI and Scotland indicate that the discard of saithe may be considerable in the fleets not targeting saithe. This is possibly a source of bias in the assessment and should be investigated in the benchmark assessment.

Table 6.2.1 Nominal catch (in tonnes) of Saithe in Subarea IV and Division IIIa and Subarea VI, 1992-2002, as officially reported to ICES.

Subarea IV and Division IIIa

Country	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Belgium	70	113	130	228	157	254	249	200	122	24	107
Denmark	4,669	4,232	4,305	4,388	4,705	4,513	3,967	4,494	3,529	3,575	5,668
Faroe Islands	2,480	2,875	1,780	3,808	617	158	1,298	1,101			
France	9,061	15,258	13,612	11,224	12,336	10,932	11,786 ${ }^{1}$	$24,305^{12}$	19,200	20,472	24,819
Germany	13,177	14,814	10,013	12,093	11,567	12,581	10,117	10,481	9,273	9,479	10,999
Netherlands	180	79	18	9	17	40	7	7	11	20	6
Norway	48,205	47,669	47,042	53,793	55,531	46,424	50,254	56,150	42,735 ${ }^{1}$	43,725 ${ }^{1}$	58,983 ${ }^{1}$
Poland	1,238	937	151	592	365	822	813	862	747	727	752
Sweden	3,302	4,955	5,366	1,891	1,771	1,647	1,857	1,929	1,468	1,627	1,863
UK (E. \& W.)	2,893	2,429	2,354	2,522	2,864	2,556	2,293	2,874	1,227	1,186	2,521
UK (Scotland)	6,881	5,929	5,566	6,341	5,848	6,329	5,353	5,420	5,484	5,219	6,596
U.S.S.R.	-	-	-	-	-	-	-	-	67		
Total reported	92,156	99,290	90,337	96,889	95,778	86,256	87,994	107,823	83,863	86,368	112,314
Unallocated	187	5,840	12,098	16,525	14,458	17,006	12,983	-175	3,813	3,305	4,333
W.G. estimate	92,343	105,130	102,435	113,414	110,236	103,322	100,263	107,314	87,676	89,673	116,647
TAC	110,000	93,000	97,000	107,000	111,000	115,000	97,000	110,000	85,000	87,000	135,000

Preliminary values for France (1998-1999), Norway (2000-2002).
Includes IIa (EC), IIIa-d (EC) and IV: France (1999).

Subarea VI

Country	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Belgium	2	2	-	-	-	-	-	-	-	-	-
Denmark	1	2	-	-	1	-	-	-	-	-	-
Faroe Islands	1	-	-	-	3	1	-	-			
France	6,534	10,216	8,423	6,145	4,781	4,662	$3,635^{1}$	$3,467^{12}$	3,310	5,157	3,054
Germany	685	222	524	321	1,012	492	506	250	305	466	467
Ireland	278	317	438	530	419	411	216	320	410	399	86
Norway	67	59	74	35	34	26	41	126	$58^{1}$	$92^{1}$	$136^{1}$
Spain	-	-	-	-	-	13	54	23	3	15	
Portugal	-	-	-	-	-	1	-	-	-		
UK (E. \& W. \& N.I.)	540	799	744	317	708	294	526	503	276	273	307
UK (Scotland)	2,708	2,903	2,828	3,279	2,435	2,659	2,402	2,084	2,463	2,246	1,567
United Kingdom											
Russia	-	-	-	-	-	-	-	3	25	1	1
Total reported	10,816	14,520	13,031	10,627	9,393	8,559	7,380	6,776	6,850	8,649	5,618
Unallocated	988	-577	-210	1,143	40	859	1,056	566	-960	$-1,834$	-495
W.G. estimate	11,804	13,943	12,821	11,770	9,433	9,418	8,436	7,342	5,890	6,818	5,186
TAC	17,000	14,000	14,000	16,000	13,000	12,000	10,900	7,500	7,000	9,000	14,000

${ }^{1}$ Preliminary values: France (1998-1999), Norway (2000-2002).
${ }^{2}$ Reported by TAC area, Vb (EC), VI, XII and XIV: France (1999).

## Subareas IV and VI and Division IIIa

	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
W.G. estimate	104,147	119,073	115,256	125,184	119,669	112,740	108,699	114,656	93,566	96,491	121,833

Table 6.2.2. Saithe in IV, VI and IIIa, catch numbers at age.

Age	1967	1968	1969	1970	1971	1972
1	0	174	36	234	594	430
2	8879	3832	2099	2261	11156	23833
3	17330	23223	30235	37249	69808	48075
4	16220	21231	17681	76661	57792	66095
5	15531	13184	11057	15000	32737	25317
6	2303	6023	7609	12128	4736	21207
7	1594	429	5738	3894	4248	3672
8	292	242	791	1792	2843	2944
9	198	123	626	318	1874	1641
$10+$	183	145	150	267	774	1607


Age	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
1	4708	4753	335	270	2172	1253	916	1321	5457	1970
2	37832	19206	74231	34111	14125	20551	17756	24100	20644	29570
3	54332	66938	56987	207823	27461	35059	16332	17494	26178	31895
4	37698	33740	25864	53060	54967	27269	14216	12341	8339	40587
5	26849	14123	10319	11696	14755	18062	11182	9015	6739	9174
6	16061	20688	7566	6253	5490	3312	8699	6718	3675	5978
7	8428	14666	13657	3976	3777	1138	2805	5658	3335	2145
8	2000	5199	9357	5362	3447	1033	733	1150	3396	1454
9	1357	1477	3501	3586	3812	768	540	509	657	982
$10+$	2381	1955	2687	3490	4701	3484	2089	2302	2536	1254


Age	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
1	312	206	231	322	787	32	3664	355	492	319
2	36824	37387	9415	7227	31017	8762	9871	5764	13091	6679
3	28242	80933	134024	55435	31220	32578	22128	40808	46117	18404
4	20604	32172	55605	91223	97470	26408	30752	19583	29871	33614
5	26013	12957	13281	15186	13990	35323	13187	11322	7467	12753
6	5678	13011	4765	5381	3158	3828	10951	4714	3583	3193
7	4893	1657	3005	2603	1811	1908	1557	2776	1716	1524
8	1494	1252	682	1456	1240	1104	739	745	953	696
9	1036	335	399	445	910	776	419	281	367	518
$10+$	1327	646	742	900	700	680	488	364	458	422


Age	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
1	160	106	157	354	27	218	64	145	4	913
2	10118	8033	4338	8963	12396	3706	6634	2692	1846	6884
3	37823	19958	26664	11066	15036	10363	9429	7064	17355	20088
4	20828	40194	26034	38861	19299	31017	13872	17295	18565	42857
5	11845	13034	14797	11786	30177	16367	26684	8940	23497	9007
6	3125	4297	3774	7731	3676	16077	8389	12339	3622	9003
7	1568	947	3494	3163	2640	2231	10070	3159	3518	2432
8	1511	346	674	808	1012	1206	2346	3226	1417	2925
9	814	427	552	210	291	567	891	641	1121	1827
$10+$	1026	794	800	491	288	277	657	441	218	2043

Table 6.2.3 Saithe in IV,VI and IIIa Catch weights at age (kg)

Age	1967	1968	1969	1970	1971	1972
1	0.000	0.501	0.451	0.434	0.495	0.328
2	0.697	0.770	0.609	0.695	0.610	0.549
3	0.930	1.278	0.966	0.941	0.840	0.808
4	1.362	1.652	1.557	1.441	1.348	1.196
5	2.104	1.989	2.261	2.059	2.178	1.961
6	3.186	3.009	2.713	2.718	2.936	2.369
7	3.754	4.040	3.559	3.599	3.766	3.794
8	5.316	4.428	4.406	4.463	4.634	4.228
9	5.891	6.136	5.220	5.687	5.172	4.630
$10+$	7.719	7.406	6.767	6.845	6.163	6.326


Age	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
1	0.164	0.275	0.216	0.459	0.426	0.355	0.435	0.259	0.277	0.253
2	0.432	0.509	0.502	0.516	0.430	0.516	0.406	0.421	0.596	0.508
3	0.821	0.861	0.893	0.702	0.760	0.821	1.107	0.955	0.961	1.086
4	1.406	1.561	1.498	1.309	1.256	1.327	1.623	1.821	1.821	1.575
5	1.641	2.383	2.490	2.260	1.935	2.155	2.238	2.391	2.717	2.529
6	2.571	2.753	3.300	3.071	3.111	3.340	3.095	3.030	3.587	3.220
7	3.357	3.429	3.765	4.035	4.162	4.522	4.050	4.090	4.536	4.207
8	4.684	4.498	4.296	4.383	4.605	4.900	5.274	5.126	5.478	5.125
9	4.814	5.713	5.540	5.112	4.859	5.449	6.308	5.939	6.980	5.905
$10+$	6.445	7.857	7.562	7.147	6.542	7.400	7.955	8.148	8.724	8.823


Age	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
1	0.413	0.389	0.149	0.629	0.371	0.517	0.426	0.272	0.479	0.619
2	0.478	0.501	0.555	0.548	0.418	0.638	0.726	0.703	0.557	0.630
3	1.028	0.795	0.663	0.694	0.674	0.779	0.895	0.844	0.791	0.964
4	1.718	1.614	1.265	1.035	0.876	0.981	1.036	1.196	1.158	1.189
5	2.149	2.297	1.950	1.794	1.824	1.386	1.420	1.583	1.752	1.607
6	3.138	2.690	2.772	2.432	3.075	2.791	1.998	2.247	2.365	2.242
7	3.691	3.896	3.407	3.572	4.210	4.024	3.914	3.242	3.165	3.668
8	4.632	4.665	4.950	4.209	5.330	5.254	5.017	4.858	4.222	4.330
9	5.505	6.183	5.865	5.651	6.128	6.322	6.430	6.315	6.066	5.412
$10+$	8.453	8.474	8.854	8.218	8.603	8.649	8.431	8.416	8.191	7.045


Age	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
1	0.358	0.287	0.502	0.280	0.432	0.603	0.519	0.563	0.508	0.715
2	0.744	0.697	0.759	0.510	0.436	0.659	0.589	0.803	0.730	0.777
3	0.899	0.944	1.002	0.967	0.905	0.892	0.881	1.027	0.796	0.804
4	1.260	1.119	1.294	1.187	1.145	0.966	1.061	1.127	1.071	0.857
5	1.754	1.601	1.816	1.807	1.452	1.393	1.211	1.539	1.303	1.323
6	2.636	2.434	2.562	2.368	2.587	1.744	1.754	1.684	2.057	1.755
7	3.185	3.617	3.555	2.952	3.556	2.949	2.337	2.594	2.569	2.275
8	3.980	4.787	4.767	4.705	4.525	3.883	3.493	3.084	3.523	3.119
9	5.080	6.548	5.267	6.092	6.158	4.996	4.844	4.773	4.173	3.938
10+	6.891	8.326	7.891	8.382	8.866	7.227	6.745	7.461	6.193	4.575

Table 6.2.4. Saithe in IV, VI and IIIa - Combined tuning data


Table 6.3.1. Saithe in IV, VI and IIIa. XSA diagnostics.

Lowestoft VPA Version 3.1

$$
2 / 09 / 2003 \quad 9: 28
$$

Extended Survivors Analysis
SAITHE IN IV, VI and IIIa : 1967-2002
CPUE data from file update.tun
Catch data for 36 years. 1967 to 2002. Ages 1 to 10

NORACU, 1995, 2002, 3, 7, .500, . 750

Time series weights :
Tapered time weighting applied
Power = 3 over 20 years

Catchability analysis :
Catchability dependent on stock size for ages < 3
Regression type $=C$
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 3

Catchability independent of age for ages >= 7

Terminal population estimation :
Survivor estimates shrunk towards the mean $F$
of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk $=1.000$

Minimum standard error for population
estimates derived from each fleet $=$. 300
Prior weighting not applied

Tuning converged after 39 iterations
1

Regression weights
, .751, .820, .877, .921, .954, .976, .990, .997, 1.000, 1.000

Fishing mortalities
Age, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
1, .001, .001, .001, .003, .000, .002, .000, .000, .000, . 003
2, $.085, .032, .035, .046, .141, .023, .060, .008, .006, .044$
3, .322, . $240, .141, ~ .118, .102, .168, .073, .083, .068$, .079
$4, .490, .680, .568, .313, .309, .316, .355, .187, .328, .240$
$5, .623, .660, .576, .549, .429, .470, .495, .409, .418, .261$
6, $.617, \quad .483, \quad .401, \quad .686, \quad .327, \quad .429, \quad .470, \quad .449, \quad .287, \quad .278$

7	.683,	. 380 ,	. 957,	. 704 ,	.530,	.338,	.527,	. 323 ,	.220,	. 319
8	.009,	. 307 ,	.514,	.603,	.509,	494,	. 725 ,	. 317	235	287

9, 1.239, . $921,1.201, .295, .453, .606, .860, .439, .172$, .538

1
XSA population numbers (Thousands)

YEAR		1,	2,	3,	4,	5,	6,	7,	8,	9,
1993		$3.46 \mathrm{E}+05$,	1.37E+05,	1.52E+05,	5.94E+04,	2.82E+04,	50E+03,	$3.50 \mathrm{E}+03$,	63E+03,	$27 \mathrm{E}+03$,
94		$1.71 \mathrm{E}+05$,	2.83E+05,	1.03E+05,	9.01E+04,	$2.98 \mathrm{E}+04$,	$1.24 \mathrm{E}+04$,	3.31E+03,	1.45E+03,	.84E+02,
1995		2.68E+05,	1.40E+05,	2.25E+05,	$6.64 \mathrm{E}+04$,	$3.74 \mathrm{E}+04$,	$1.26 \mathrm{E}+04$,	6.27E+03,	$1.85 \mathrm{E}+03$,	8.72E+02,
1996		1.28E+05,	2.19E+05,	1.10E+05,	1.60E+05,	3.08E+04,	1.72E+04,	$6.92 \mathrm{E}+03$,	1.97E+03,	$9.08 \mathrm{E}+02$,
1997		$2.25 \mathrm{E}+05$,	1.04E+05,	1.71E+05,	$8.03 \mathrm{E}+04$,	$9.56 \mathrm{E}+04$,	$1.46 \mathrm{E}+04$,	7.09E+03,	$2.80 \mathrm{E}+03$,	8.83E+02,
1998		1.55E+05,	1.84E+05,	7.41E+04,	1.27E+05,	4.83E+04,	5.09E+04,	8.61E+03,	3.42E+03,	1.38E+03,
1999		4.37E+05,	1.26E+05,	1.47E+05,	5.13E+04,	7.56E+04,	$2.47 \mathrm{E}+04$,	2.72E+04,	5.03E+03,	1.71E+03,
2000		$4.38 \mathrm{E}+05$,	$3.58 \mathrm{E}+05$,	9.75E+04,	1.12E+05,	$2.95 \mathrm{E}+04$,	$3.77 \mathrm{E}+04$,	$1.26 \mathrm{E}+04$,	1.31E+04,	$1.99 \mathrm{E}+03$,
2001		2.17E+05,	3.58E+05,	2.91E+05,	7.34E+04,	7.60E+04,	1.60E+04,	1.97E+04,	7.49E+03,	7.83E+03,
2002		$3.15 \mathrm{E}+05$,	1.78E+05,	2.92E+05,	2.22E+05,	4.33E+04,	4.10E+04,	$9.84 \mathrm{E}+03$,	1.30E+04,	4.85E+03,

Estimated population abundance at 1st Jan 2003
$0.00 \mathrm{E}+00,2.57 \mathrm{E}+05,1.40 \mathrm{E}+05,2.21 \mathrm{E}+05,1.43 \mathrm{E}+05,2.73 \mathrm{E}+04,2.54 \mathrm{E}+04,5.86 \mathrm{E}+03,7.97 \mathrm{E}+03$,
Taper weighted geometric mean of the VPA populations:
$2.34 \mathrm{E}+05,1.84 \mathrm{E}+05,1.42 \mathrm{E}+05,8.82 \mathrm{E}+04,4.01 \mathrm{E}+04,1.76 \mathrm{E}+04,7.80 \mathrm{E}+03,3.57 \mathrm{E}+03,1.49 \mathrm{E}+03$,
Standard error of the weighted Log(VPA populations) :
. .4078, .4113, .4600, .4682, .4987, .6226, .6385, .7518, .7423,

Log catchability residuals.

Age	,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992
3	,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	. 65,	-.03,	. 27
4		99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	. 30,	. 37,	. 31
5	,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	.01,	. 00,	. 14
6	,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	-. 30,	. 30 ,	-. 38
7		99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	. 97 ,	. 69 ,	-. 41
8	,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	-.10,	. 72,	. 90
9	,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	.21,	. 04 ,	-. 26
Age	,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
3	,	. 98 ,	. 47,	.21,	-.46,	-.48,	.03,	-. 71 ,	. 27 ,	-.73,	. 24
4	,	.28,	. 37 ,	-.17,	-.33,	-.22,	-.44,	-.31,	-. 17,	. 23,	. 26
5		.12,	.19,	-. 49,	-. 28 ,	-.13,	-.01,	-.16,	. 32,	. 51,	-. 21
6		-.53,	. 28 ,	-.45,	.13,	-.67,	.13,	-.07,	. 67 ,	.28,	. 31
7		-1.58,	-.17,	.01,	.13,	. 01,	-.79,	.11,	.68,	. 10,	. 48
8		-1.11,	-1.37,	-.03,	-.13,	-.69,	-. 62,	-.93,	. 46 ,	-.66,	. 05
9		-.63,	-1.16,	. 42 ,	.02,	.25,	-.46,	-.36,	.66,	-. 60,	-. 17

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	3,	4,	5,	6,	7,	8,	9
Mean Log q,	-13.8964,	-12.7387,	-12.4436,	-12.8838,	-13.5711,	-13.5711,	-13.5711,
S.E (Log q),	.5245,	.3098,	.2794,	.4145,	.6373,	.7515,	.5328,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

3,	1.40,	-.770,	14.70,	.29,	13,	.75,	-13.90,
4,	1.12,	-.506,	12.90,	.65,	13,	.36,	-12.74,
5,	1.01,	-.071,	12.47,	.76,	13,	.30,	-12.44,
6,	.72,	2.159,	12.03,	.87,	13,	.26,	-12.88,
7,	.74,	1.132,	12.39,	.68,	13,	.47,	-13.57,
8,	.77,	1.209,	12.68,	.76,	13,	.46,	-14.00,
9,	1.13,	-.518,	14.54,	.65,	13,	.59,	-13.73,

Fleet : NORTRL_IV

$$
\begin{array}{rrrr}
\text { Age }, & 1980, & 1981, & 1982 \\
3, & 99.99, & 99.99, & 99.99 \\
4, & 99.99, & 99.99, & 99.99 \\
5, & 99.99, & 99.99, & 99.99 \\
6, & 99.99, & 99.99, & 99.99 \\
7, & 99.99, & 99.99, & 99.99 \\
8, & 99.99, & 99.99, & 99.99 \\
9, & 99.99, & 99.99, & 99.99
\end{array}
$$

Age,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992
3,	.32,	1.32,	.88,	-.70,	.25,	.89,	-.26,	.11,	1.81,	.47
4,	-.25,	-.02,	.58,	.85,	.49,	-.26,	-.14,	-.23,	.28,	.54
5,	-.05,	-.85,	-.20,	-.26,	-.12,	-.45,	-.68,	.09,	-.39,	.47
6,	.34,	.04,	-.62,	-.88,	-1.01,	-1.28,	-.26,	.43,	-.56,	.25
7,	.72,	-.54,	-1.20,	-1.31,	-.79,	-.48,	.17,	-.04,	-.91,	-.37
8,	.40,	.00,	-2.19,	-2.02,	-.59,	-.61,	.46,	-.10,	-1.60,	-.67
9,	.36,	-.10,	-1.78,	-2.09,	-.14,	.33,	.29,	-.65,	-.45,	-.23
Age,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
3,	1.18,	.65,	-.13,	.21,	-.39,	.12,	-1.00,	-1.32,	.08,	-.64
4,	.14,	.97,	.62,	-.15,	-.36,	.03,	-.07,	-1.08,	.24,	-.60
5,	.18,	.32,	.23,	-.01,	-.28,	.22,	.17,	.17,	.07,	-.61
6,	.60,	-.28,	-.49,	.30,	-.24,	.32,	.35,	.80,	-.23,	-.32
7,	.57,	-.46,	.97,	.18,	-.05,	.14,	.55,	.30,	-.34,	-.40
8,	.63,	-.92,	.20,	-.41,	-.23,	.44,	1.20,	.38,	-.25,	-.18
9,	1.08,	1.00,	.94,	-2.24,	-.52,	.70,	1.11,	.62,	-.59,	.48


Age,	3,	4,	5,	6,	7,	8,	9
Mean Log q,	-14.0339,	-12.6122,	-12.1906,	-12.3263,	-12.1688,	-12.1688,	-12.1688,
S.E $(\log$ q),	.8064,	.5457,	.3300,	.5053,	.5221,	.7286,	1.0023,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value , Intercept, RSquare, No Pts, Reg s.e, Mean $Q$

3,	1.26,	-.380,	14.60,	.17,	20,	1.06,	-14.03,
4,	1.63,	-1.117,	13.38,	.24,	20,	.88,	-12.61,
5,	1.09,	-.385,	12.33,	.66,	20,	.37,	-12.19,
6,	.80,	1.013,	11.82,	.72,	20,	.40,	-12.33,
7,	.86,	.643,	11.72,	.68,	20,	.46,	-12.17,
8,	.78,	.943,	11.38,	.66,	20,	.57,	-12.25,
9,	.92,	.214,	11.67,	.40,	20,	.96,	-12.06,



Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	3,	4,	5,	6,	7,	8,
Mean Log q,	-15.0866,	-13.2777,	-12.8574,	-12.9109,	-13.1219,	-13.1219,
S.E (Log q),	.4767,	.2112,	.1994,	.3247,	.3842,	.6063,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

3,	1.75,	-1.243,	17.41,	.33,	8,	.80,	-15.09,
4,	1.22,	-1.115,	13.67,	.82,	8,	.25,	-13.28,
5,	1.03,	-.177,	12.93,	.82,	8,	.22,	-12.86,
6,	.83,	.870,	12.42,	.82,	8,	.27,	-12.91,
7,	.75,	1.222,	12.18,	.81,	8,	.28,	-13.12,
8,	1.09,	-.256,	13.54,	.59,	8,	.71,	-13.12,
9,	1.03,	-.273,	13.30,	.94,	8,	.23,	-13.14,

Fleet : NORACU
Age , 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
$3,99.99,99.99,-20,-.07,-.47, .01,-.62,51,2014,2002$
$4,99.99,99.99,-1.35,-.55,-.48, \quad .17, \quad .27, \quad .74, \quad .14, \quad .28$ 5, 99.99, 99.99, -1.90, $-.11, \quad .09, \quad .19, \quad .45, \quad .69, \quad-.05, \quad .42$ $6,99.99,99.99,-2.44, \quad .70, \quad .22, \quad .35, \quad .16, \quad .87, \quad .35, \quad-.44$

8 . No data for this fleet at this ag
${ }^{8}$, No data for this fleet at this age

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age,	3,	4,	5,	6,	7
Mean Log q,	-1.3703,	-.8089,	-1.0404,	-1.4713,	-1.5351,
S.E (Log q),	.3837,	.7101,	.7796,	1.0167,	.8389,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

3,	.95,	.174,	1.91,	.67,	8,	.39,	-1.37,
4,	.66,	.925,	4.47,	.56,	8,	.47,	-.81,
5,	.81,	.331,	2.93,	.34,	8,	.68,	-1.04,
6,	.59,	.936,	5.00,	.48,	8,	.61,	-1.47,
7,	1.53,	-.539,	-2.59,	.15,	8,	1.36,	-1.54,

Terminal year survivor and $F$ summaries :
Age 1 Catchability dependent on age and year class strength
Year class = 2001

1
Age 2 Catchability dependent on age and year class strength
Year class $=2000$

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,	N,	Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
FRATRB_IV,	1.,	. 000 ,	. 000 ,	.00,	0 ,	.000,	. 000
NORTRL_IV,	1.,	. 0000	.000,	.00,	0 ,	.000,	. 000
GER_OTB_IV,	1.,	. 000 ,	. 000 ,	.00,	0 ,	.000,	. 000
NORACU,	1.,	. 000 ,	. 000 ,	.00,	0 ,	.000,	. 000
P shrinkage mean	142141.,	. 46 ,				.825,	. 043
F shrinkage mean	127861.,	1.00,				.175,	. 048


Weighted prediction :
Survivors, Int, Ext, N, Var,   at end of year, s.e, s.e, Ratio,    139537., .42, 11.85, 2, 28.344,

Age 3 Catchability constant w.r.t. time and dependent on age
Year class $=1999$

	Estimated,	Int,	Ext,	Var,	N,	Scaled,	Estimated
Fleet,	Survivors,	s.e,	s.e,	Ratio,	, Weights,	F	
FRATRB_IV,	$279351 .$,	.548,	.000,	.00,	1,	.212,	.063
NORTRL_IV,	$116877 .$,	.839,	.000,	.00,	1,	.090,	.145
GER_OTB_IV,	$157070 .$,	.507,	.000,	.00,	1,	.247,	.110
NORACU,	$292430 .$,	.408,	.000,	.00,	1,	.382,	.060
F shrinkage mean,	$174030 .$,	$1.00, \ldots$,				.069,	.099

Weighted prediction :
Survivors, Int, Ext, N, Var, F
$\begin{array}{lllll}\text { at end of year, s.e, s.e, } \quad \text {, } & \text { Ratio, } & \\ 220604 ., & .660, & .079\end{array}$

Age
Catchability constant w.r.t. time and dependent on age
Year class $=1998$

Fleet,		Estimated,	Int,	Ext,	Var,		Scaled,	Estimated
		Survivors,	s.e,	s.e,	Ratio,		Weights,	
FRATRB_IV	,	146198.,	.279,	.426,	1.53,	2,	.313,	. 235
NORTRL_IV	,	96509.,	. 471 ,	. 308,	. 65 ,	2,	.109,	338
GER_OTB_IV	,	139692.,	.258,	.086,	. 33 ,	2,	. 364 ,	. 245
NORACU		192221.,	.359,	.269,	. 75,	2,	.182,	. 184
F shrinka	ge mean	110573.,	1.00,				.031,	. 301

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$143168 .$,	.16,	.12,	9,	.780,	.240

Age 5 Catchability constant w.r.t. time and dependent on age

Fleet,		Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var,   Ratio,		Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
FRATRB_IV		27055.,	.207,	.158,	.76,	3,	. 328 ,	. 263
NORTRL_IV		16526.,	.281,	.289,	1.03,	3,	.189,	. 401
GER_OTB_IV	,	32811.,	.199,	.124,	. 62 ,	3,	. 352 ,	. 222
NORACU		42078.,	. 334 ,	.083,	.25,	3,	.109,	. 177
F shrinkage mean		14449.,	1.00,				.021,	. 447

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
27313.	.12,	.11,	13,	.938,	261

1
Age 6 Catchability constant w.r.t. time and dependent on age
Year class $=1996$

Fleet,		Estimated,	Int,	Ext,	Var,		Scaled,	Estimated
		Survivors,	s.e,	s.e,	Ratio,		Weights,	F
FRATRB_IV,		30084.,	.191,	.221,	1.16,	4,	.315,	240
NORTRL_IV	,	19045.,	.252,	.247,	.98,	4,	.187,	. 356
GER_OTB_IV	,	27834.,	. 176 ,	.179,	1.02,	4,	.383,	257
NORACU	,	19289.,	. 325 ,	.287,	.88,	4,	.093,	. 352
F shrink	mean	16815.,	1.00,				.021,	. 395

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$25398 .$,	.11,	.11,	17,	.974,	.278

Age 7 Catchability constant w.r.t. time and dependent on age
Year class $=1995$

Fleet,		Estimated, Survivors,	Int		$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,	N,	Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
FRATRB_IV		7037.,	192		.135,	. 71 ,	5,	. 282 ,	. 272
NORTRL_IV	,	$5246 .$,	. 240		.120,	. 50 ,	5,	.207,	. 350
GER_OTB_IV	,	5179.,	. 171		.183,	1.07,	5,	.400,	. 354
NORACU	,	7919.,	. 338		.120,	. 36 ,	5,	.087,	. 245
F shrinkage mean		4612.,	1.00	, , ,				.024,	. 390
Weighted prediction :									
Survivors,	Int,	Ext,	N,		F				
at end of year,	s.e,	s.e,		Rat					

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class = 1994

eet,		Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,		Scaled, Weights,	$\begin{aligned} & \text { Estimate } \\ & \mathrm{F} \end{aligned}$
FRATRB_IV	,	8150.,	.201,	.174,	.87,	6 ,	.273,	. 281
NORTRL_IV	,	8455.,	.245,	.183,	. 74,	6,	.219,	. 272
GER_OTB_IV	,	8365.,	.176,	.166,	. 94 ,	6 ,	.402,	. 275
NORACU		5952.,	. 354 ,	. 341 ,	. 96 ,	5,	.077,	. 368

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$7966 .$,	.09,	24,	.806,	.287	

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class $=1993$


Table 6.3.2. Saithe in IV, VI and IIIa. Fishing mortality (F) at age 1


	Table	$\begin{aligned} & \text { Fishing } \\ & 1973, \end{aligned}$	$\begin{aligned} & \text { mortality } \\ & \text { 1974, } \end{aligned}$	(F) at age		1977,	1978,	1979,	1980,	1981,	1982,
	YEAR,			1975,	1976,						
AGE											
	1,	. 0174 ,	.0078,	. 0017 ,	.0019,	.0166,	.0112,	. 0035 ,	.0076,	.0276,	.0061,
	2,	.2072,	.0916,	.1612,	.2325,	.1296,	.2155,	.2160,	.1196,	.1576,	.2045,
	3,	.4990,	.6880,	.4270,	.9115,	.2976,	.5439,	.2659,	.3427,	.1845,	.3889,
	4,	.5629,	.6749,	.6294,	.9308,	.6553,	.5454,	.4431,	. 3300 ,	. 2718 ,	.4840,
	5,	.3202,	.4243,	.4464,	.6618,	. 7380 ,	.4645,	.4515,	.5653,	.3022,	.5442,
	6,	.2838,	.4389,	.4244,	.5385,	.7721,	. 3557 ,	.4274,	.5425,	.4754,	.4817,
	7,	.3695,	.4557,	. 5874,	.4145,	. 7474 ,	.3493,	.5832,	.5510,	.5741,	.5690,
	8,	. 3317 ,	.4107,	.5976,	.4834,	. 7850,	.4641,	. 3988 ,	.5049,	.7739,	.5326,
	9,	.3303,	.4382,	.5408,	.4825,	.7759,	.3923,	.4733,	.5371,	.6131,	.5321,
	+gp,	.3303,	.4382,	.5408,	.4825,	.7759,	. 3923,	.4733,	. 5371,	.6131,	.5321,
0	Fbar 3-6,	.4165,	.5565,	.4818,	.7607,	.6158,	.4774,	.3969,	.4451,	.3085,	.4747,

Run title : SAITHE IN IV, VI and IIIa : 1967-2002
At 2/09/2003 9:33

		Table	8	Fishing	mortality	(F) at	age						
		YEAR,		1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,
	AGE												
		1,		.0007,	.0005,	. 0014,	.0017,	. 0068 ,	.0002,	.0187,	.0025,	.0023,	.0021,
		2,		.1506,	.1033,	.0293,	.0568,	.2196,	.0975,	.0717,	.0370,	.1200,	.0390,
		3,		. 3075 ,	.5734,	.6469,	.2405,	.3687,	.3784,	. 3796,	.4708,	. 4590 ,	.2470,
		4,		.4701,	.6949,	1.0493,	1.4111,	. 8770 ,	.6172,	. 7556 ,	.6913,	. 7712,	.7309,
		5,		.6682,	.6180,	.7052,	.9649,	.8693,	.9712,	.7355,	.7085,	.6236,	.9318,
		6,		.7914,	. 8694,	. 4848 ,	.7069,	.5320,	.6217,	.9713,	.6433,	.5083,	.6016,
		7,		.9641,	.5621,	.4957,	.5382,	.5490,	.7305,	.5591,	. 7096,	.5131,	.4219,
		8,		1.0558,	. 7073,	. 4768 ,	.4776,	.5358,	.7868,	.7115,	.5758,	. 5678 ,	.4037,
		9,		. 9472 ,	. 7201 ,	.5114,	.6673,	.6298,	.7805,	. 8088 ,	. 6570 ,	.6319,	.7083,
		+gp,		.9472,	. 7201 ,	. 5114 ,	.6673,	.6298,	.7805,	. 8088 ,	.6570,	.6319,	.7083,
0	FbAR	3-6,		.5593,	.6889,	.7215,	.8309,	.6618,	.6471,	.7105,	.6285,	.5905,	.6278,



Table 6.3.3. Saithe in IV, VI and IIIA. Stock number at age (start of year) Numbers*10**-3

```
Run title : SAITHE IN IV, VI and IIIa : 1967-2002
 At 2/09/2003 9:33
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Table 10 & Stock & number at & age (start & of year & & & Numbers*10**-3 \\
\hline YEAR, & 1967, & 1968, & 1969, & 1970, & 1971, & 1972, & \\
\hline \multicolumn{8}{|l|}{AGE} \\
\hline 1, & 453729, & 438373, & 492279, & 270954, & 260843, & 273414, & \\
\hline 2, & 149192, & 371482, & 358752, & 403012, & 221626, & 213023, & \\
\hline 3, & 127456, & 114114, & 300676, & 291822, & 327912, & 171358, & \\
\hline 4, & 77473, & 88671, & 72416, & 218815, & 205219, & 205307, & \\
\hline 5, & 54514, & 48753, & 53387, & 43291, & 109785, & 115727, & \\
\hline 6, & 6636, & 30579, & 27987, & 33705, & 21871, & 60263, & \\
\hline 7, & 5175, & 3350, & 19586, & 16029, & 16622, & 13621, & \\
\hline 8, & 1403, & 2795, & 2354, & 10844, & 9600, & 9765, & \\
\hline 9, & 678, & 884, & 2069, & 1212, & 7257, & 5287, & \\
\hline +gp, & 622, & 1038, & 492, & 1010, & 2976, & 5133, & \\
\hline TOTAL, & 876878, & 1100039, & 1329998, & 1290692, & 1183711, & 1072897, & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 10 & Stock & number at & age (start & of year & & & mbers*10 & *-3 & & \\
\hline YEAR, & 1973, & 1974, & 1975, & 1976, & 1977, & 1978, & 1979, & 1980, & 1981, & 1982, \\
\hline \multicolumn{11}{|l|}{Age} \\
\hline 1, & 301468, & 678354, & 222306, & 157148, & 145475, & 124750, & 289717, & 192536, & 221856, & 357641, \\
\hline 2, & 223464, & 242561, & 551088, & 181706, & 128417, & 117139, & 101003, & 236371, & 156440, & 176702, \\
\hline 3, & 152844, & 148725, & 181214, & 384026, & 117903, & 92358, & 77310, & 66628, & 171718, & 109403, \\
\hline 4 , & 96796, & 75976, & 61198, & 96801, & 126368, & 71683, & 43894, & 48519, & 38721, & 116904 \\
\hline 5, & 108286, & 45139, & 31675, & 26702, & 31244 , & 53725, & 34015, & 23074, & 28557, & 24157 \\
\hline 6, & 71842, & 64363, & 24178, & 16596, & 11278, & 12229, & 27643, & 17732, & 10734, & 17283, \\
\hline 7, & 30150, & 44286, & 33977, & 12949, & 7930, & 4266, & 7016, & 14761, & 8439, & 5463 , \\
\hline 8, & 7829, & 17059, & 22988, & 15460, & 7004, & 3075, & 2463, & 3206, & 6966, & 3891 \\
\hline 9, & 5331, & 4600, & 9262, & 10355, & 7806, & 2616, & 1583, & 1354, & 1584, & 2630, \\
\hline +gp, & 9287, & 6035, & 7034, & 9981, & 9489, & 11769, & 6065, & 6057, & 6043, & 3324, \\
\hline TOTAL, & 007295 & & 492 & 911723, & 592914, & 493611, & & & & 8173 \\
\hline
\end{tabular}
 Run title : SAITHE IN IV, VI and IIIa : 1967-2002
 At 2/09/2003 9:33
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 10 & Stock & at & age (start & of year & & \multicolumn{3}{|c|}{Numbers*10**-3} & & \multirow[b]{2}{*}{1992,} \\
\hline YEAR, & 1983, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 1, & 514731, & 440437, & 176947, & 212723, & 128199, & 192542, & 218411, & 156718, & 236028, & 167948, \\
\hline 2, & 291029, & 421144, & 360413, & 144663, & 173871, & 104249, & 157611, & 175504, & 127989, & 192798, \\
\hline 3, & 117916, & 204955, & 310974, & 286562, & 111901, & 114289, & 77423, & 120109, & 138475, & 92943, \\
\hline 4, & 60711, & 70987, & 94571, & 133334, & 184458, & 63368, & 64094, & 43367, & 61413, & 71645, \\
\hline 5, & 58988, & 31063, & 29009, & 27115, & 26623, & 62827, & 27986, & 24650, & 17786, & 23252, \\
\hline 6, & 11477, & 24758, & 13708, & 11733, & 8459, & 9138, & 19477, & 10981, & 9937. & 7806, \\
\hline 7, & 8741, & 4259, & 8497, & 6912, & 4737, & 4068, & 4018, & 6037, & 4725, & 4894, \\
\hline 8, & 2532, & 2729, & 1987, & 4238, & 3304, & 2240, & 1604, & 1881, & 2431, & 2316, \\
\hline 9, & 1870, & 721, & 1101, & 1010, & 2152, & 1583, & 835, & 645, & 866, & 1128, \\
\hline +gp, & 2355, & 1372, & 2028, & 2017, & 1636, & 1367, & 958, & 825, & 1068, & 907, \\
\hline TOTAL, & 1070350, & 1202424, & 999236, & 830307, & 645340, & 555669, & 572416, & 540717, & 600717, & 56563 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 10 & Stock & number at & age (start & of year & & & s*10 & & & & & & \\
\hline YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, & 2003, & GMST 67 & GMST \(85-\) \\
\hline \multicolumn{14}{|l|}{AGE} \\
\hline 1, & 345952, & 170511, & 267696, & 127694, & 224568, & 154623, & 437244, & 437732, & 217459, & 315234, & 0, & 251511, & 212194, \\
\hline 2, & 137215, & 283097, & 139507, & 219029, & 104227, & 183837, & 126398, & 357927, & 358254, & 178037, & 257267, & 199792, & 173330, \\
\hline 3, & 151806, & 103187, & 224512, & 110293, & 171215, & 74118, & 147159, & 97483, & 290610, & 291643, & 139537, & 144587, & 133040, \\
\hline 4, & 59443, & 90065 , & 66424, & 159688, & 80287, & 126574, & 51305, & 111952, & 73420 , & 222228, & 220604, & 85301, & 83853, \\
\hline 5, & 28243, & 29822, & 37370, & 30827, & 95579, & 48271, & 75565, & 29453, & 76010, & 43313, & 143168, & 39550, & 34340, \\
\hline 6 , & 7498, & 12406, & 12622, & 17207, & 14574, & 50948 , & 24712, & 37723, & 16025, & 40970, & 27313, & 18004, & 14248, \\
\hline 7, & 3502, & 3311, & 6269 , & 6919, & 7093, & 8606, & 27165, & 12642, & 19720, & 9843, & 25398, & 8422, & 6333, \\
\hline 8, & 2628, & 1448, & 1854, & 1971, & 2803, & 3418, & 5028, & 13129, & 7492, & 12962, & 5858, & 3907, & 2726, \\
\hline 9, & 1266, & 784, & 872, & 908, & 883, & 1379, & 1707, & 1993, & 7831, & 4852, & 7966, & 1759, & 1124, \\
\hline +gp, & 1562, & 1434, & 1238, & 2109, & 866, & 666, & 1239, & 1359, & 1516, & 5368, & 4885, & & \\
\hline
\end{tabular}
```

Table 6.3.4. Saithe in IV, VI and IIIa. Summary (without SOP correction)

Run title : SAITHE IN IV, VI and IIIa : 1967-2002
At 2/09/2003 9:33
Table 16 Summary (without SOP correction)

,	RECRUITS, Age 1	TOTALBIO,	TOTSPBIO,	LANDINGS,	YIELD/SSB,	FBAR	3-6,
1967,	453729,	499557,	150821,	94514,	. 6267,		. 3220,
1968,	438373,	1025991,	211683,	116789,	. 5517,		. 2907,
1969,	492279,	1134547,	263952,	131882,	. 4996,		. 2624,
1970,	270954,	1288238,	312029,	236636,	. 7584,		. 4079,
1971,	260843,	1282669,	429618,	272481,	. 6342,		. 3286 ,
1972,	273414,	1110251,	474090,	275098,	. 5803,		. 3950,
1973,	301468,	993362,	534441 ,	259602,	. 4857,		. 4165,
1974,	678354,	1143707,	554846,	309439,	. 5577,		. 5565,
1975,	222306,	1068000,	471949,	308926,	. 6546,		. 4818,
1976,	157148,	917779,	351395,	361680 ,	1.0293,		. 7607 ,
1977,	145475,	626324,	262970,	223395,	. 8495 ,		. 6158,
1978,	124750,	568005,	267776,	166199,	. 6207,		. 4774,
1979,	289717,	585173,	240609,	135967,	. 5651,		. 3969,
1980,	192536,	544459,	234427,	142395,	. 6074,		. 4451 ,
1981,	221856,	646532,	239757,	146092,	. 6093,		. 3085 ,
1982,	357641,	687711,	208255,	189861,	. 9117,		. 4747,
1983,	514731,	814189,	210988,	197774,	. 9374,		. 5593,
1984,	440437 ,	843196,	172482,	219642,	1.2734,		. 6889,
1985,	176947,	709971,	154943,	226129,	1.4594,		. 7215 ,
1986,	212723,	691943,	145244,	202758,	1.3960,		.8309,
1987,	128199,	496631,	146453,	180776,	1.2344,		. 6618,
1988,	192542,	479801,	143202,	140778,	. 9831,		. 6471,
1989,	218411,	459039,	110022,	117609,	1.0690,		. 7105 ,
1990,	156718,	422665,	97026,	107945,	1.1125,		. 6285,
1991,	236028,	458874,	92846,	115576,	1.2448,		. 5905,
1992,	167948,	495543,	95155,	104147,	1.0945,		. 6278,
1993,	345952,	545419,	102505,	119073,	1.1616 ,		. 5130,
1994,	170511,	558368,	111696,	115255,	1.0319,		. 5156,
1995,	267696,	696872,	134990,	125183,	. 9273,		. 4213,
1996,	127694,	593022,	157006,	119669,	. 7622 ,		. 4165,
1997,	224568,	616834,	195883,	112740,	. 5755,		. 2917,
1998,	154623,	609222,	195735,	108699,	. 5553,		. 3455 ,
1999,	437244,	717990,	208908,	114655,	. 5488,		. 3484 ,
2000,	437732,	961938,	200768,	93566,	. 4660 ,		. 2820,
2001,	217459,	933076,	229909,	96491,	. 4197,		. 2754 ,
2002,	315234,	1024350,	239878,	121833,	. 5079,		. 2146 ,
Arith.							
Mean	278451,	756979,	232063,	169757,	. 8140,		. 4786 ,
0 Units,	(Thousands),	(Tonnes),	(Tonnes),	(Tonnes),			

(Tonnes),
(Tonnes)
(Tonnes)

Table 6.5.1. Saithe, IV, VI and IIIa, input data for catch forecast and linear sensitivity analysis

Label	Value	CV	Label	Value	CV
Number at age			Weight in the stock		
N1	212194	0.38	WS1	0.59	0.18
N2	173175	0.20	WS2	0.77	0.05
N3	136155	0.20	wS3	0.88	0.15
N4	220603	0.20	WS 4	1.02	0.14
N5	143167	0.20	WS5	1.39	0.09
N6	27313	0.20	WS 6	1.83	0.11
N7	25397	0.20	WS 7	2.48	0.07
N8	5858	0.20	WS8	3.24	0.08
N9	7966	0.20	WS9	4.30	0.10
N10	4884	0.20	WS10	6.08	0.24
H.cons selectivity			Weight in the HC catch		
sH1	0.00	1.51	WH1	0.59	0.18
sH2	0.02	1.22	WH2	0.77	0.05
sH3	0.08	0.20	WH3	0.88	0.15
sH4	0.25	0.29	WH4	1.02	0.14
sH5	0.36	0.11	WH5	1.39	0.09
sH6	0.34	0.21	WH6	1.83	0.11
sH7	0.29	0.30	WH7	2.48	0.07
sH8	0.28	0.22	WH8	3.24	0.08
sH9	0.38	0.60	WH9	4.30	0.10
sH10	0.38	0.60	WH10	6.08	0.24
Natural mortality			Proportion mature		
M1	0.20	0.10	MT1	0.00	0.00
M2	0.20	0.10	MT2	0.00	0.00
M3	0.20	0.10	MT3	0.00	0.10
M4	0.20	0.10	MT 4	0.15	0.10
M5	0.20	0.10	MT5	0.70	0.10
M6	0.20	0.10	MT6	0.90	0.10
M7	0.20	0.10	MT7	1.00	0.10
M8	0.20	0.10	MT 8	1.00	0.00
M9	0.20	0.10	MT9	1.00	0.00
M10	0.20	0.10	MT10	1.00	0.00
Relative effort			Year effect for natural mortality		
in HC fishery					
HF03	1.00	0.14	K03	1.00	0.10
HF04	1.00	0.14	K04	1.00	0.10
HF05	1.00	0.14	K05	1.00	0.10

Recruitment in 2004 and 2005
R04 $212194 \quad 0.38$
$\begin{array}{lll}\text { R05 } & 212194 \quad 0.38\end{array}$

Proportion of F before spawning $=.00$
Proportion of $M$ before spawning $=.00$

Stock numbers in 2003 are VPA survivors.
These are overwritten at Age 2 Age 3

Data from file:C:\nsdem03\Data\SAI46.SEN on 11/09/2003 at 14:45:38

Table 6.5.2. Saithe, IV, VI and IIIa Catch forecast output and estimates of coefficient of variation (CV) from linear analysis.

	2003	2004						
Mean F Ages   H.cons 3 to 6   Effort relative to 2002   H.cons	0.26	0.00	0.13	0.26	0.32	0.40	0.45	0.52
	1.00	0.00	0.50	1.00	1.25	1.54	1.75	2.00
Biomass								
Total 1 January	998	980	980	980	980	980	980	980
SSB at spawning time	364	436	436	436	436	436	436	436
Catch weight (,000t) H.cons	161	0	87	162	196	232	256	283
Biomass in year.... 2005 Total 1 January SSB at spawning time		1145	1042	955	916	875	847	816
SSB at spawning time		605	516	440	406	371	347	321
	Year							
	2003	2004						
Effort relative to 2002 H.cons	1.00	0.00	0.50	1.00	1.25	1.54	1.75	2.00
Est. Coeff. of Variation								
Biomass								
Total 1 January	0.10	0.11	0.11	0.11	0.11	0.11	0.11	0.11
SSB at spawning time	0.11	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Catch weight								
H.cons	0.19	0.00	0.29	0.17	0.16	0.14	0.14	0.13
Biomass in year.... 2005								
Total 1 January		0.11	0.12	0.12	0.12	0.13	0.13	0.13
SSB at spawning time		0.13	0.14	0.14	0.14	0.14	0.15	0.15

Table 6.5.3. Saithe, IV, VI and IIIa Detailed forecast tables.

Forecast for year 2003
F multiplier H.cons=1.00


Forecast for year 2004
F multiplier H.cons=1.00


Figure. 6.3.1 Saithe in Sub-area IV, Division IIIa (Skagerrak) \& Sub-area VI. Stock summary.





Figure 6.3.2. Saithe in IV, IIIa, and VI. Comparison of historical performance of the assessments.




To attempt to address the issue of increasing workload, the WG proposed in its 2002 report that three stocks per year be subjected to detailed benchmark assessments, with the remaining stocks being analysed in update assessments. The assessment of sole in Sub-Area IV in 2003 was selected to be one of the benchmark assessments. Sole will be the subject of a review by the North Sea Commission Fisheries Partnership in 2003.

### 7.1 The fishery

Sole is mainly taken by beam trawlers in a mixed fishery with plaice in the southern part of the North Sea. Fishing by different countries is described below:

Belgium: The Belgian fleet operates out of 2 main ports: Oostende and Zeebrugge. The majority of the fleet use beam trawl exclusively and fish for sole an plaice. The fishing grounds change throughout the year depending on catch rates, although the central and southern North Sea (IVb,c) are the preferred fishing area of the Belgian fleet.

Denmark: The main Danish fishery is a directed one for sole using fixed nets although there is also a little effort using beam trawling, and some by-catch in otter trawlers.

Germany: The German sole fishery can be divided into three segments: 7 large beam-trawl vessels $>30 \mathrm{~m}, 20-30$ Eurocutters and a varying number of small shrimp beam-trawl vessels catching sole during Q2 \& Q3.

The Netherlands: A high proportion of the fishing effort in the North Sea is by Dutch beam trawlers fishing for plaice and sole. The introduction of the Plaice Box in 1989 resulted in a change in the distribution pattern of beam trawl vessels $>300 \mathrm{HP}$ with an increase in activity outside and to the north of the Box.

UK: The English fleet consists of a large number of small otter trawlers fishing in the southern North Sea for sole mainly in the $2^{\text {nd }}$ and $3^{\text {rd }}$ quarters of the year. Prior to 2002, Sole was also taken as by-catch in the English beam trawl fishery ( 9 vessels) which fished mainly for plaice with 120 mm mesh. Since 2002, these vessels do not participate in the fishery any more. These vessels landed the majority of the catch in The Netherlands. In 2001, about $73 \%$ of the total UK catch was landed abroad by Dutch vessels fishing on the UK register. Following the decline of the UK beam trawl fleet, in 2002 43\% of the UK catches was landed abroad.

### 7.1.1 ACFM advice applicable to 2002 and 2003

For both 2002 and 2003 ACFM commented that sole was being harvested outside safe biological limits and recommended that fishing mortality should be reduced below the proposed $\mathbf{F}_{\mathrm{pa}}$ of 0.4 (based on Fbar age range 2-8). In 2002, the advice was for a reduction in F to 0.37 ( $20 \%$ reduction), corresponding to a catch of 14,800 t but the TAC was subsequently set at 16,000 t. For 2003 , ICES recommended that the fishing mortality should be less than $\mathbf{F}_{\mathrm{pa}}(0.4)$, corresponding to landings less that 14,600 t. The TAC for 2003 was set at 15,850 t. Over the last years TACs have been set above $\mathbf{F}_{\mathrm{pa}}$. The stock was expected to decrease just above $\mathbf{B}_{\mathrm{lim}}$, but well below $\mathbf{B}_{\mathrm{pa}}$ in 2003. For 2004, the stock was expected to increase above $\mathbf{B}_{\mathrm{pa}}$, due to a strong 2001 year class. ACFM noted that the the landings over the last years were dominated by the 1996 year class. For 2002 this year class is fished out causing the decrease in SBB. The advice in recent years has been based on the objective to maintain the SSB above a $\mathbf{B}_{\mathrm{pa}}$ of $35,000 \mathrm{t}$ for this stock and below a $\mathbf{F}_{\mathrm{pa}}$ of 0.4. The $\mathbf{B}_{\mathrm{lim}}$ for this stock is considered by ICES to be 25000 t , the lowest observed biomass, but $\mathbf{F}_{\text {lim }}$ is undefined.

ACFM also noted that technical measures which result in a reduction in moratlity on juvenile stocks would benefit the stock as a whole. In the current situation, fishing with 80 mm mesh together with a minimum landing size of 24 cm result in a high proportion of age 1 and 2 sole being landed which are immature.

### 7.1.2 Management applicable to 2003

The TAC for 2003 was set at $15,850 \mathrm{t}$ which is about $9 \%$ above the maximum value recommended by ACFM.

Technical measures applicable to the sole fishery before 2000 were an exemption to use 80 mm mesh codend when fishing south of $55^{\circ}$ North. From January 2000, the exemption area extends from $55^{\circ}$ North to $56^{\circ}$ North, East of $5^{\circ} \mathrm{E}$ latitude. Fishing with this mesh size is permitted within that area providing that the landings comprise at least $70 \%$ of a mix of species which are defined in the new technical measures of the EU [EU 850/98].

Some additional protection is given to sole from the closure of the plaice box along the Dutch and Danish coast. In the years 1989 to 1993 the box was closed in the second and third quarters of the year to all vessels using towed gears and with engine power larger than 300 HP . Since the second quarter of 1994 the box has been closed during all quarters.

The technical measures implemented in 2002 to promote the recovery of cod are not likely to have an effect on sole as sole is mainly caught in a directed fishery or as bycatch in the fishery for plaice.

### 7.1.3 Landings in 2002

The Working Group estimate of landings in $2002(16,945 \mathrm{t})$ was around $6 \%$ higher than the agreed TAC. Unallocated landings, which represent the difference between the figures reported to ICES and those supplied by WG members, have in general decreased considerably since 1993 (apart from $2000 \& 2001$ ) and are mainly caused by the change in the use of raising factors for converting gutted to live weight in landings reported to ICES by The Netherlands. Estimates of sole discards (EC PROJECT 98/097) are available for 1999-2001 for some fleets and indicate that proportions discarded by number amount to $27 \%$ by beam trawlers and $32 \%$ from otter trawlers.

For recent years, the officially reported landing by various countries as well as Working Group estimates of the total landings are given in Table 7.1.1. A longer time series of landings is given in Table 7.6.1 and plotted in Figure 7.6.1.

For 2003, the Dutch national uptake rates for sole indicate that around $40 \%$ of the national quota was taken by the beginning of September.

### 7.2 Age composition, weight at age, maturity and natural mortality

Age compositions, mean weight and mean length at age in the catch were available on a quarterly from France, The Netherlands and UK (England and Wales). The Netherlands provide this information by sex. Age compositions for sexes combined on an annual basis were available from Belgium. Due to implementation of the data regulation that came into action in 2002, the number of samples taken by Belgium was no longer sufficient to provide quarterly age compositions by sex. Overall, the samples are thought to be representative of around $85 \%$ of the total landings in 2002. However, despite the data regulation, no structural sampling takes place to collect samples from national vessels which land abroad and this constitutes for an substatial part of the total landings by some countries. Some samples are taken but there is no international exchange system for this information available. The age compositions were combined separately by sex on a quarterly basis and then raised to the annual international total. Catch numbers at age are shown in table 7.2.1 \& figure 7.2.1b

Revisions since 2002WG:

- For 2000 and 2001, the Danish nominal catches were revised. These catches account for around $5 \%$ of the total WG estimate. No age compositions for these landings were available.
Weights at age in the catch are measured weights from the various national market sampling programmes of the landings. Weights at age in the stock are those of the 2 nd quarter in the landings. Weights at age in the catch and stock for all fleets combined are given in Tables 7.2.2 and 7.2.3 and the trend in catch weights at age shown in Figure 7.2.1a. No clear trends are evident over the last years, although age 7 to 13 and older show a slight decline in stock weight at age. This decline is supported by the average decline in length for these ages for the most important fleets over the last years (Figure 7.2.2) The sexratio for quarter 2 over the period 1986 to 2002 do not show an evident change, at most a small increase in the number of males at the older ages that could support the decrease in the stock weight (Figure 7.2.3). This increase is not further explored

In 2002 UK catch weights show a plateau from age 9 onwards (Figure 7.2.4). Further exploration of this data showed that this low average weight was likely to be caused by a bias in the sampling programm that over emphasised the landings over slow growing fish, mainly males in the $2^{\text {nd }}$ quarter. There is no doubt that the age/weight composition is real, otoliths are re-read and recent UK surveys also report catches of these individuals.

As in all previous assessments, a knife-edged maturity-ogive was used in all years, assuming full maturation at age 3 (Table 7.2.4). The maturity-ogive is based on market samples of females from observations in the sixties and seventies. WD13 describes an ongoing international collaboration (under the name of COMPASS) to explore how to determine annually varying maturity ogives for North Sea flatfish from market and research samples, and the consequences of such ogives on the stock assessment and on the biological reference points. The explorations have so far not yet produced results that can be used for assesment purposes. Natural mortality in the period 1957-1999 has been assumed constant over all ages at 0.1 (Table 7.2.4), except for 1963 where a value of 0.9 was used to take into account the effect
of the severe winter (ICES CM 1979/G:10). In 1996 additional natural mortality was observed in the cold winter of 1995/1996 (ICES 1997e/Assess:6), but in the absence of a precise estimate, the standard value of 0.1 has been retained.

### 7.3 Catch, effort and research vessel data

Catch and effort data, used for tuning the assessment are given in Table 7.3.1. General Catch and effort information is shown in Table 7.3.2 and Figure 7.3.1. Effort in the Netherlands commercial beam trawl is total HP effort days and this has nearly doubled between 1978 and 1994. Since 1996 the effort show a decline and the effort is around the same level as it was in the early 1980's. The English effort is based on the effort from otter trawlers mainly fishing for sole in area IVc. Effort is in HP*hrs and excludes trips directed at cod or shrimps. The other 2 tuning fleets are Dutch research vessel surveys. The SNS (Sole Net Survey) is a coastal survey with a $6-\mathrm{m}$ beam trawl carried out in the $3^{\text {th }}$ quarter. The BTS (Beam Trawl Survey) is carried out in the southern and south-eastern North Sea in August and September using an 8 -m beam trawl. The BTS survey indices were revised in 1998 (ICES,2000) and again examined this year. The procedure to convert length distribution into age distribution was improved and database corrections were carried out. These changes resulted in minimal changes. Figure 9.3.1 (Section North Sea plaice) shows a map of the distribution of the surveys.

The Demersal Young Fish Survey (DFS) is an international survey (The Netherlands, England, Belgium and Germany), which covers the coastal and estuarine areas of the southern North Sea. This survey is directed to 0 and 1-group plaice and sole. The combined international DFS index is only used for RCT3 analysis and not for tuning the VPA. The 2003 indices for the DFS were not available to the WG and will not be available before the ACFM October meeting.

### 7.4 Catch at age analysis

General approaches and methods are described in section 1.4.

### 7.4.1 Data exploration

The data exploration for this benchmark assessment of North Sea sole consisted of a number of steps in order to specify the optimal assessment model for this stock. First, the survey and CPUE data were plotted by age so that the consistency between the different sources of calibration could be evaluated. The survey data were also modelled using the Surba model. Then a separable VPA was carried out to inspect the quality of the catch at age data.

The next steps were aimed at evaluating the performance of the calibration-series separately within the XSA model, using a light shrinkage. The explorations with the XSA model were then directed to removing the commercial CPUE series from the calibration process. The potential bias introduced by using commercial CPUE data in the calibration of a VPA model have been described at several occasions (e.g. WGNSSK 2002) and for the North Sea plaice assessment these series were effectively removed from the tuning. Given that the same problems may apply to North Sea sole, an attempt was made to set up the XSA model without commercial CPUE series. This also involved the analysis of the most appropriate plus group and the evaluation of the effects of shrinkage.

It was subsequently shown that the assessment model could not convincinly be set up without the use of commercial CPUE series because the surveys carried too little weight on the older age groups. At that stage the commercial series were reintroduced and the analysis was focussed on finding the appropriate plus group and levels of shrinkage.

## Evaluation of survey and CPUE data

The Dutch beam trawl cpue series show a peak in 1990 and reaches its minimum in 1997 (figure 7.3.1). Over the most recent years the CPUE slightly increased. The UK otter trawl CPUE series also shows a historical low value for 1997, but has increased as the 1996-year class has recruited to the UK fishery, one year later than for the Netherlands fleet. Indices of survey abundance at age are shown in Figure 7.3.2. In general there is good consistency between the two surveys at ages up to 4 but greater variability on the older ages which are, due to the design of the surveys, less well sampled in the surveys.

## Surba

Surba (see section 1.4) was used as a supplementary analysis tool to explore trends in survey index inferred SSB. Surba is a survey only method which fits survey indices assuming a separable F selection pattern. Prior input of survey index to relative abundance ratios $\left(q_{a}\right)$ are required for each age. Estimations of these parameters were based on exploratory runs, bounded by prior knowledge of likely survey catchability performance for each age. Estimated mean F cannot
reasonably be relied upon due to bootstrap estimation of quantiles from residuals, but this method is especially good at elucidating trends in relative SSB. Summary plots are presented in figures 7.4.1.1a,b-7.4.1.2,a,b and survey index to relative abundance ratio, q , for each survey fitted (SNS-Tridens, BTS-Isis) are shown in table 7.4.1.1. Both surveys show peaks in relative SSB in 1990, 1994, and 1999, as does SSB in the final run, but the relative height of the peaks differ.

## Separable VPA

A preliminary inspection of the quality of international catch-at-age data was carried out using separable VPA, with a reference age of 4 , terminal $F=0.5$ and terminal $S=0.8$. The separable VPA was carried out with last years age range $1-15+$ as well as with an age range $1-10+$. In both cases log catch ratios did not show any large residuals or trends, except some occasional high residual at ages1-2. Table 7.4.1.2 shows the result of the separable VPA carried out for age range 1-10+.

## Single fleet runs

The fleet data were examined for trends in catchability by carrying out XSA for single fleets over the year range available for each fleet. The single fleets XSA runs were carried out with two different settings. One with an age range $1-15+$ (setting last year's final run except weakshrinkage of 1.5 ) and one with an age range 1-10+ (powermodel at age 1, shrinkage 1.5). The results of the last configuration are shown in figure 7.4.1.3. Trends in catchability (Figure 7.4.1.4) were apparent in the Netherlands beam trawl fleet before 1989, particularly at ages 2-7. This may be due to the change in fishing pattern following the introduction of the Plaice Box after 1989 or the effects of technological increase in the fishery. Quick examination of the catch data from The Netherlands, the main fleet influenced by the Plaice Box, showed no clear evidence for the effects of the plaice box. The English otter trawl fleet showed a negative trend from 1990 to 1995 and a positive trend from 1995 for the younger ages. The tuning data was revised this year to exclude data from vessels targeting for shrimp, but this revision did not result in an inprovement of the series. Given the strong trends for this fleet in the single fleet runs, it was decided to remove them from further explorations.

The survey fleets did not show obvious trends in catchability.

## XSA without commercial fleets

The XSA model was explored in several runs without commercial CPUE data. In order to run the model without commercial CPUE, the age range of the assessment had to be reduced, because the surveys only have information up to age 9 and the data from ages 7 and higher are already very variable. Several runs with different settings of shrinkage and combination of fleets were performed on the age range $1-10+$. With a high shrinkage of 0.5 , the weight of the shrinkage on ages $6-9$ was still more than $50 \%$ (Figure 7.4.1.5). As an experiment the BTS survey indices from the Dutch Tridens survey were made available to explore whether this inclusion would give a lower weight to shrinkage on this ages. The effect if this inclusion was minimal, possibly due to the poor coverage of the distribution area of the older sole. Therefore this survey was excluded again from the model. It was also concluded that a convincing assessment with surveys-only could not be set up for this stock, because the shrinkage on fishing mortality kept determining the survivors at the oldest ages.

## XSA with commercial fleets: determining age range, power model, q plateau, shrinkage

After "reintroduction" of the Dutch beamtrawl fleet, the pattern of log catchability residuals for the Netherlands CPUE and the two surveys were not markedly different from single fleet runs (Figure 7.4.1.6).

The sensitivity of the assessment to the tuning fleets was examined by carrying out trial runs with different combinations of fleets. The results are shown in Figures 7.4.1.3. The two commercial fleets run together resulted in lower fishing mortalities and correspondingly higher SSBs than the separate survey fleets or the two surveys taken together.

## Age range

In previous assessments, the age range for the analysis was 1 to 15 . The survivor estimates on the highest ages ( 10 and older) were mostly driven by F-shrinkage, which makes the assessment rather insensitive to changes in the fishery on the short term. Several explorations were then carried out, from which it was found that a 10 -plus group would limit the contribution of shrinkage on the oldest ages to around $20 \%$. This plus group was used in the subsequent analysis.

## Q-plateau

The q-plateau was explored by investigating the estimated catchabilities for the different surveys. Inspection of the catchabilities at age confirmed that age 7 could be used as the q-plateau for at least one of the calibration indices.

## Shrinkage

Further explorations with lower levels of shrinkage (1.0 and 2.0) showed that the Dutch commercial fleets gets more weight as the effect of shrinkage reduces. This implies that shrinkage is balanced by the Dutch data series. The retrospective patterns for these settings were very similar as shown in figure 7.4.1.7.

The reduction of shrinkage to 2.0 resulted in a slightly lower F in the most recent year. Given the similar retrospective patterns and the fact that shrinkage is driven by the Dutch commercial data no objective reason could be found to decide on the level of shrinkage. As the general intention is to reduce shrinkage as much as possible it was decided to set the shrinkage to 2.0. With this low level of shrinkage the assessment should pick up signals from changes in the fishery.

In previous assessments the Fbar age range was set from age 2 to 8 . With the revision of the age range in the model, this age range was no longer suitable. The new Fbar age range was set to a range that covers the catch at age distribution over the last years namely age 2 to 6 . Following this change in age range, the biological reference point have to be updated accordingly. Section 7.9 describes this update.

## Power model

Over the last years, a power model was applied to age 1 and 2. Explorations were carried out on the influence of the power model. Inspection of the slopes of the regressions when the power model was applied revealed that there were no slopes significantly different from zero at age 2 , but that for at least some of the surveys there were significant slopes age age 1 . Therefore, the power model was set to age 1 in the final model.

### 7.4.2 Final run

The final XSA run was accepted with the settings as shown below in comparison with last year.

$\begin{aligned} & \text { stock } \\ & \text { area } \end{aligned}$	Sole   North Sea (IV)	
year of assessment	2002	2003
Assessment model	XSA	XSA
NL beamtrawl	1990-2001 2-14	1990-2002
UK ottertrawl	1990-2001 2-14	not used
BTS Isis	1990-2001 1-9	1985-2002 1-9
SNS	1990-2001 1-4	1970-2002 1-4
Time series weights	none	none
Power model used for catchability	age 1 \& 2	age 1
Catchability plateau age	7	7
Surv. Estimates shrunk towards mean F	5 years / 5 ages	5 years / 5 ages
s.e. of the means	0.5	2.0
Min stand. Error for pop estimates	0.3	0.3
Prior weighting	none	none
Number of iterations	22	25
Convergence	yes	yes

Full tuning diagnostics for the final XSA are given in Table 7.4.2. Estimated stocks numbers at age are shown in table 7.4.3 and fishing mortality at age in Table 7.4.4. The stock summary table is shown in table 7.6.1. The weighting given to fleets and to shrinkage is shown in Figure 7.4.2.1. For age 1 ( 2001 yr class), the two surveys, are given more than $90 \%$ of the weight (F-shrinkage and P-shrinkage together only take less than $10 \%$ ) For age 2, the surveys contribute 88 $\%$ to the weight, $10 \%$ coming from shrinkage and the remaining percentages from shrinkage At age 3, the surveys together and the NL commercial fleet both take around $50 \%$ of the weighting. From age group 5 onwards the commercial fleets start to contribute more than the survey.

Retrospective analyses were run over the full time period to investigate the consistency in estimating F(2-6), SSB and recruitment at age 1 . The time series of the tuning limit the retrospective analysis to only three runs. (Figure 7.4.2.2). The results suggest that F has been underestimated in previous years, particularly in 2000, and SSB slightly overestimated.

### 7.5 Recruitment estimates

Average recruitment in the period 1957-2000 was 131 million (arithmetic mean) or 97 million (geometric mean) for 1-year-old-fish, and 117 million (arithmetic mean) or 85 million (geometric mean) 2-year-old-fish (VPA estimates).

Recruitment indices were available from pre-recruit surveys carried out in 2002 and previous years. The survey indices available are listed in the RCT3 input table (Table 7.5.1).

The options used in RCT3 are the same as those used in previous years: regression type $=\mathrm{C}$, tapered time weighting not applied, survey weighting not applied, final estimates shrunk towards the mean, the minimum S.E. for any survey is taken as 0.2 , and a minimum of 3 points are used for regression. The 'RCT outputs from regressions on ages 1 and 2 are shown in Tables 7.5.2a,b.

The 2001 year class (as age 2 in 2003, in millions) was estimated as 179 in XSA and 179 in RCT3. Both estimates are well above long term GM (1957-2000) at age 2. The RCT3 estimate of the 2001 year class is based on more independent observations (estimates) of the year class strength than the XSA estimate and, furthermore, the 2001 year class is not yet fully recruited to the fishery. Consequently, the RCT3 result was accepted. This suggests the 2001 year class being well above long term average recruitment.

The 2002 year class (as age 1 in 2003, in millions) was estimated as 86 in RCT3. This is about the same as the long term GM (1957-2000) at 97. No XSA estimate for this year class is available. There was only one survey value available with low weight in RCT3. Indices from the Dutch 2003 SNS were not used because this survey was moved from $3^{\text {rd }}$ to $2^{\text {nd }}$ quarter in 2003. The effect of this change in survey time has to be scrutinized before indices for sole forecast is used. On this basis the GM estimate was accepted.

Year class strength used for predictions is in bold and underlined and can be summarized as follows:

Year   Class	Age   in 2003	XSA	RCT3	GM   $(1957-2000)$
		Thousands	Thousands	Thousands
2001	2	178948	$\underline{\mathbf{1 7 9 2 4 9}}$	84585
2002	1		86222	$\underline{\mathbf{9 6 7 6 2}}$
2003	Recruits		$\underline{\mathbf{9 6 7 6 2}}$	

### 7.6 Historical stock trends

Historical trends in landings, recruitment, fishing mortality and SSB are given in Table 7.6.1. and plotted in Figure 7.6.1

Fishing mortality $\mathrm{F}(2-6)$ has more than trebled in the period 1957-1984, mainly because of the developing beam trawl fishery. F reached a peak in 1996, possibly as a result of the underestimate in M resulting from the cold winter of 1966. It has decreased since then but remains at a relatively high level compared with the historical pattern.

Recruitment varies by a factor of 50 between the smallest and largest year classes although more generally, interannual variation is relatively low. Most of the strong year classes seem to have developed following cold winters $(1958,1963$, and 1996) and year classes recruited in recent years seem to be poor or near GM average.

A drastic decline in SSB in 1964 was caused by a high natural mortality in the strong winter of 1963-1964 when water temperatures were very low. After a 20 year period where SSB has varied between $22,000 \mathrm{t}$ and 50,000 t, it increased sharply in 1990 and remained at a high level until 1994. Since 1994 it has declined from $74,000 \mathrm{t}$ to a historically low level of $21,000 \mathrm{t}$ in 1998 because of below average recruitment, high fishing mortality and also an estimated additional natural mortality in the 1995/1996 winter. The SSB showed a temporary increase following recruitment of the strong 1996 year class but has declined to below $\mathbf{B}_{\mathrm{pa}}$ of $35,000 \mathrm{t}$ as this year class has been fished down.

### 7.7 Short term prognosis

For the current prediction, population survivors at the start of 2003 for age 1 were from GM, and age 2 was estimated by RCT3. Ages 3 and older were taken from the XSA output. Fishing mortality at age were the average for the years 2000-2002, scaled to the reference $\mathrm{F}_{(2-6)}$ in 2002 (0.48). Weight at age in the catch and in the stock are averages for the years 2000-2002. Maturity-ogive and natural mortality was the same as in the XSA. . The input data are shown in Table 7.7.1.

The management options table is given in Table 7.7.2 and the detailed predictions for $\mathbf{F}_{\mathrm{sq}}$ are presented in Table 7.7.3. The options are also illustrated in Figure 7.7.1.

Yield and SSB at status quo F: Assuming a status quo F results in an expected catch in 2003 of 19,300 t (compared with a TAC of $15,850 \mathrm{t}$ and ACFM advice for a TAC of $14,600 \mathrm{t}$ ). The yield in 2004 is expected to be $20,800 \mathrm{t}$ at status quo. The sensitivity of the short term forecast to the various input parameters are shown in Figures 7.7.2 and 7.7.3.

The SSB in 2003 is predicted to be 29,000 compared with $32,300 \mathrm{t}$ in last year's assessment. At status quo it is expected to increase to $40,900 \mathrm{t}$ in $2004\left(\mathbf{B}_{\mathrm{lim}}=25,000 \mathrm{t}\right)$ and to 40,200 in 2005 (Table 7.5.4). There is a $50 \%$ probability that the SSB will fall below $\mathbf{B}_{\mathrm{pa}}$ in 2005 (Figure 7.7.3). It should be noted that the dynamics in the SSB is forced by the big variation in recruitment and by the knife edge maturity ogive.

The proportional contributions of recent year classes to catch in 2004 and SSB in 2005 are given in Table 7.7.4. More than half the yield in 2004 is dependent on the 2001 year class estimated by RCT3 and about $10 \%$ is depending on the year class for which GM was assumed. $31 \%$ of SSB in 2005 is depending on the year class for which GM was assumed.

### 7.8 Medium term prognosis

Medium term predictions were made for a period of 25 years, to estimate percentiles of the distribution of the predicted yields, SSB and recruitment at a status quo level of fishing mortality (program used: WGMTERMC).

The input values for the medium term predictions are presented in Table 7.8.1. Catch and stock weights were the average for the past ten years.

A Ricker stock-recruitment curve was used for medium term projections as in last year's sole assessment (table 7.8.2). The projections were carried out for 3 different settings:

- $\mathrm{F}=0.4$, current reference point
- $\mathrm{F}=0.56$, based on $5^{\text {th }}$ percentile of $\mathbf{F}_{\text {loss }}$
- $\mathrm{F}=0.35$ proposed new reference point (see section 7.9)
$F=0.4$

Figure 7.8.1a shows the trajectory of yield and SBB with associated $10,2550,75$ and 90 percentiles for the $F=0.40$ projection. The medium term yield and SSB are estimated to be around $19,000 \mathrm{t}$ and $40,000 \mathrm{t}$ ( $50 \%$ probability)..
$F=0.56$

Figure 7.8 .1 b shows the trajectory of yield and SSB for the projection of F at 0.56 . The medium term yield and SSB are estimated with a $50 \%$ probability to be around $17,000 \mathrm{t}$ and $25,000 \mathrm{t}\left(\mathbf{B}_{\mathrm{pa}}=35,000 \mathrm{t}\right)$.
$F=0.35$

Figure 7.8.1.c shows the trajectory of yield and SBB for the projection of F at 0.35 . The medium term yield and SSB are estimated with a $50 \%$ probability to be around 18,000 t and $48,000 \mathrm{t}$ in the medium term.

## Conclusion

Figure 7.8.1.d shows the phase plots of F against SSB after 25 years in the medium term simulations. The phase plot is instrumental in evaluating the long term effects of fishing mortality on equilibrium SSB levels.

### 7.9 Biological reference points

In this benchmark assessment some major changes were made compared to previous assessments. The plus group has been brought down from $15+$ to $10+$ and the reference F has been brought down from F2-10 to F2-6. For this reason the biological reference points have been revised. In addition, it was requested that the WG comments on the PA reference points proposed by the Study Group on Precautionary Reference Points for Advice on Fishery Management (SGPRP) (ICES 2003).

The estimated biological reference points are in Table7.9.1 and Figure 7.9.1. $\mathbf{B}_{\text {loss }}$ is estimated to be 20941 tonnes (similar to last year: 21000 ). $\mathbf{F}_{\max }$ is revised upward from 0.25 to $0.34 . \mathbf{F}_{\text {med }}$ is revised downward from 0.34 to 0.32 . $\mathbf{F}_{\text {high }}$ is revised downward from 0.81 to 0.78 . Figure 7.9 .2 gives respectively a stock recruitment plot with a LOWESS smoother and reference points, a plot of YPR and SPR curves and reference points, a plot of historical SSB against $\mathrm{F}_{\text {bar }}$ with an equilibrium curve based on the LOWESS stock recruitment relationship, and a plot of historical yield against $F_{\text {bar }}$ with an equilibrium curve based on the LOWESS stock recruitment relationship.

In the report of the SGPRP (ICES 2003) North Sea sole was classified as having no S/R signal and a relatively large spread in SSB, and it was stated that the current reference points could be maintained because $\mathbf{B}_{\text {loss }}(21000)$ was close to $\mathbf{B}_{\text {lim }}(25000)$. The current assessment estimates $\mathbf{B}_{\text {loss }}$ at 20941 . Therefore, the WG proposes that the current reference points can still be maintained: $\mathbf{B}_{\text {lim }}$ at 25000 and $\mathbf{B}_{\mathrm{pa}}$ at 35000 .
$\mathbf{F}_{\text {lim }}$ is undefined for this stock (ACFM 2002). $\mathbf{F}_{\mathrm{pa}}$, however, needs to be re-established because the current assessment changed the age range for the reference F from 2-8 to 2-6. The technical basis for $\mathbf{F}_{\mathrm{pa}}$ was the $5^{\text {th }}$ percentile of $\mathbf{F}_{\text {loss }}$ or lower such that it implies $\mathrm{B}_{\mathrm{eq}}>\mathbf{B}_{\mathrm{pa}}$ and a less than $10 \%$ probability that $\mathrm{SSB}_{\mathrm{MT}}<\mathbf{B}_{\mathrm{pa}}$ (ACFM 2002). The $5^{\text {th }}$ percentile of $\mathbf{F}_{\text {loss }}=0.56$ and implies $\mathrm{B}_{\mathrm{eq}} \sim \mathbf{B}_{\mathrm{pa}}$, but $\mathrm{P}\left(\mathrm{SSB}_{\mathrm{MT}}<\mathbf{B}_{\mathrm{pa}}\right)>10 \%$. $\mathrm{F}=0.35$ implies $\mathrm{P}\left(\mathrm{SSB}_{\mathrm{MT}}<\mathbf{B}_{\mathrm{pa}}\right) \sim 10 \%$ where MT is run over 25 years only, and implies $\mathrm{B}_{\mathrm{eq}}>\mathbf{B}_{\mathrm{pa}}$. Following this argumentation, the WG proposes 0.35 as the new $\mathbf{F}_{\mathrm{pa}}$.

The proposed management reference points are listed below.

	Previous	Proposed
$\mathbf{B}_{\lim }$	25000 t	25000 t
$\mathbf{B}_{\mathrm{pa}}$	35000 t	35000 t
$\mathbf{F}_{\text {lim }}$	undefined	undefined
$\mathbf{F}_{\mathrm{pa}}$	0.4 (age 2-8)	0.35 (age 2-6)

### 7.10 Quality of the assessment

This year's benchmark assessment was set up different compared to last years settings. The main differences are listed below:

- UK Ottertrawl CPUE data not used for tuning
- Reduction of age range from $15+$ to $10+$, followed by an reduction of $F$ age range from 2-8 to 2-6
- Reduction of shrinkage from 0.5 to 2.0
- Power model applied to age 1 only in stead of age $1 \& 2$

The reduction of the age range for the assessment and average F match the age range for the landings of the recent years much better as the majority of the landings comprise age 2 to 6 . The reduction of shrinkage gives more weight to the dutch commercial fleet. The model should pick up signals from changes in the fishery at an earlier stage. Using the power model at age 1 resulted in a higher weighting of the survey data which cover the age 1 group well.

The input data for sole is well sampled:

- Quarterly catch at age data are available for around $85 \%$ of the landings
- an exploration was carried out on the low average stock weight on te older ages in the UK age composition.

This does not affect the calculated international average to such extend that it would be of significant influence on the assessment.

- Discarding is thought to be low (below 30\%)
- well sampled commercial tuning fleets
- survey fleets cover main distribution area of the specie
- good historical data series

There is a shortage of representative data on effort and cpue of fisheries that exploit sole. The two commercial fleets, for which measured data have been used, are mixed fisheries for sole and plaice. The variable catch opportunities of the two species between years and the improved enforcement of management measures in recent years, affect the CPUE's in this fishery and may bias the assessment

Skippers were asked to compare the state of their catch in January to June 2003 with the same period in 2002. Findings were based upon the catch not the landings. The skippers were asked to describe the catch rates (less, the same or more than last year), the size range (mostly small, all sizes, mostly large) and the discard rates (less, the same or more than last year). Questionnaire returns were received from skippers of vessels registered in Belgium, Denmark, England, the Netherlands, Scotland and Sweden. A total of 299 views were collected on the state of sole catches (all gear types combined). The area covered by this survey was subdivided into 10 zones, 8 within the North Sea and 2 in subdivision IIIa.

The results of this questionaire show a slight increase in abundance for Sole in 2002, possibly due to the last part of the 1996 yearclass that was taken in 2002 (as shown in the catch at age in Figure 7.2.1b). Following this, the majority of the respondants reported catches of all sizes. In zone 3 (Western North Sea) catches of relatively small Sole were reported in 2003. No strong trends in discarding are reported, the discard rates have remained the same or showed a slight decrease. Only zone 8 (roughly the Northern part of ICES Area IIIa) reported a increase in discarding. This possibly reflects an increase in abundance.

Table 7.1.1 Sole in IV. Nominal catch (tonnes) and landings as estimated by the Working Group.

YEAR	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$
Belgium	2624	2555	1519	1844	1919	1806	1874	1437	
Denmark	1673	1018	689	520	828	1069	772	644	
France	640	535	99	510	357	362	411	266	
Germany	1564	670	510	782	1458	1280	958	759	
Neth	20927	15344	10241	15198	16283	15273	13345	12120	
Norway							84	50	
Sweden			2	1				451	
UK (E/W/NI)	1040	848	479	549	645	600	597	4512	
UK (Scotland)		229	202	338	501	346	311	242	
Others	312							15969	
total	28780	21199	13741	19742	21991	20736	18352	159	976
Unallocated	1687	1452	1160	1126	1484	1796	1592		
WG estimate	$\mathbf{3 0 4 6 7}$	$\mathbf{2 2 6 5 1}$	$\mathbf{1 4 9 0 1}$	$\mathbf{2 0 8 6 8}$	$\mathbf{2 3 4 7 5}$	$\mathbf{2 2 5 3 2}$	$\mathbf{1 9 9 4 4}$	$\mathbf{1 6 9 4 5}$	
TAC	28000	23000	18000	19100	22000	22000	19000	16000	15850

Table 7.2.1 Sole in IV. Catch numbers at age (thousands)


Table 7.2.2 Sole in IV. Catch weight at age (kg)

	Table	Catch weights at age (kg)									
	YEAR,	1957,	1958,	1959,	1960,	1961,	1962,				
	AGE										
	1,	. 0000,	. 0000,	. 0000,	. 0000 ,	. 0000,	. 0000,				
	2,	. 1540,	.1450,	. 1620,	. 1530,	. 1460 ,	. 1550,				
	3,	. 1770,	.1780,	. 1880,	. 1850,	. 1740,	. 1650,				
	4,	. 2040,	. 2200,	. 2280 ,	. 2350 ,	. 2110,	. 2080,				
	5,	. 2480,	. 2540,	. 2610,	. 2540 ,	. 2550,	. 2410,				
	6 ,	. 2790,	. 2730 ,	. 3010 ,	. 2770 ,	. 2880,	. 2950,				
	7,	. 2900,	. 3140 ,	. 3280 ,	. 3010 ,	. 3190 ,	. 3200 ,				
	8 ,	. 3350 ,	. 3230 ,	. 3210 ,	. 3090 ,	. 3040 ,	. 3210,				
	9,	. 4360,	. 3880 ,	. 3730 ,	. 3810 ,	. 3460 ,	. 3340 ,				
	+gp,	. 4081,	.4135,	. 4262 ,	. 4177,	.4193,	. 4119,				
0	SOPCOFAC,	1.0402,	1.0050,	1.0095,	. 9936 ,	1.0137,	. 9940 ,				
	YEAR,	1963,	1964,	1965,	1966,	1967,	1968,	1969,		1971,	
	1,	. 0000,	. 1530 ,	. 0000,	$.0000$	$.0000$	$.1570$	$.1520$	$.1540$	$.1450$	$.1690,$
	2,	. 1630,	. 1750 ,	. 1690,	.1770,	. 1920,	. 1890,	. 1910,	. 2120,	. 1930,	. 2040,
	3,	. 1710 ,	. 2130,	. 2090,	. 1900 ,	. 2010,	. 2070,	. 1960 ,	. 2180,	. 2370,	. 2520,
	4,	. 2190,	. 2520 ,	. 2460 ,	.1800,	. 2520,	. 2670 ,	. 2550 ,	. 2850,	. 3220 ,	. 3340 ,
	5,	. 2580,	. 2740 ,	. 2860 ,	. 3010 ,	. 2770 ,	. 3270 ,	. 3110 ,	. 3500 ,	. 3580 ,	. 4340,
	6 ,	. 3090,	. 3090,	. 2820 ,	. 3320 ,	. 3890,	. 3420 ,	. 3730 ,	. 4040 ,	. 4250,	. 4250,
	7,	. 3230 ,	. 3270 ,	. 3450 ,	. 4290,	. 4190,	. 3540 ,	. 5530,	. 4410 ,	. 4200,	. 5320,
	8 ,	. 3870,	. 3460 ,	. 3780 ,	. 3990 ,	. 3390 ,	. 4550,	. 3980 ,	. 4630,	. 4900,	. 4850,
	9,	. 3760 ,	. 3880 ,	. 4040 ,	. 4490,	. 4240,	. 4650 ,	. 4680,	. 4430 ,	. 5340,	. 5580,
	+gp,	. 4846 ,	. 4805,	.4797,	. 5015,	. 4912 ,	. 5075,	. 5227,	. 5326 ,	. 5471 ,	. 6291,
0	SOPCOFAC,	. 9918 ,	. 9661 ,	. 9592,	. 9892 ,	1.0225,	. 9968 ,	1.0202,	1.0001,	1.0119,	. 9890 ,
	YEAR,	1973,	1974,	1975,	1976,	1977,	1978,	1979,	1980,	1981,	1982,
	1,	. 1460 ,	.1640,	. 1290,	. 1430,	. 1470,	. 1520,	. 1370 ,	.1410,	.1430,	.1410,
	2,	. 2080,	.1920,	. 1820 ,	.1900,	.1880,	.1960,	. 2080 ,	.1990,	. 1870 ,	. 1880,
	3,	. 2380,	. 2330 ,	. 2250,	. 2220,	. 2360 ,	. 2310,	. 2460 ,	. 2440 ,	. 2260 ,	. 2160,
	4,	. 3460 ,	. 3380 ,	. 3200 ,	. 3060 ,	. 3070 ,	. 3140 ,	. 3230 ,	. 3310 ,	. 3240 ,	. 3070 ,
	5,	. 4040,	. 4180,	. 4060,	. 3890 ,	. 3690 ,	. 3700,	. 3910,	. 3710,	. 3780 ,	. 3710,
	6 ,	. 4480 ,	. 4480 ,	. 4560 ,	. 4410 ,	. 4240,	. 4260 ,	. 4480 ,	. 4180,	. 4240 ,	. 4090,
	7,	. 5520,	. 5200,	. 5290,	. 5120,	. 4300,	. 4660 ,	. 5340,	. 4990,	. 4420,	. 4370,
	8 ,	. 5670,	. 5590,	. 5950,	. 5620,	. 5200,	. 4170,	. 5440 ,	. 5500,	. 5160,	. 4910,
	9,	. 5090,	. 6090,	. 6290,	. 6670,	. 5620,	. 5720,	. 6090,	. 5980,	. 5420,	. 5800,
	+gp,	. 5858,	. 6533,	.6693,	.6647,	.6194,	. 6663,	. 7630 ,	.6841,	. 6302 ,	. 6557,
0	SOPCOFAC,	1.0189,	. 9864 ,	1.0104,	1.0216,	1.0188,	. 9956 ,	1.0124,	1.0201,	1.0262,	1.0138,
	YEAR,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,
	1,	. 1340,	.1530,	. 1220,	. 1350 ,	.1390,	. 1270,	. 1180 ,	.1240,	. 1270,	.1460,
	2,	. 1820,	. 1710 ,	.1870,	. 1790 ,	.1850,	.1750,	. 1730 ,	. 1830,	. 1860 ,	. 1780 ,
	3 ,	. 2170,	. 2210,	. 2160 ,	. 2130,	. 2050,	. 2170,	. 2160 ,	. 2270,	. 2100,	. 2130,
	4,	. 3010,	. 2860 ,	. 2880,	. 2990,	. 2770,	. 2700,	. 2880 ,	. 2920,	. 2630,	. 2580,
	5,	. 3890 ,	. 3610 ,	. 3570 ,	. 3570 ,	. 3560 ,	. 3540 ,	. 3360 ,	. 3710 ,	. 3150 ,	. 2980,
	6 ,	. 4160,	. 3860 ,	. 4270,	. 4070,	. 3780 ,	. 4280,	. 3750 ,	. 4130,	. 4360,	. 3800 ,
	7,	. 4670 ,	. 4650 ,	. 4470 ,	. 4850 ,	. 4280,	. 4840 ,	. 4560 ,	. 4150,	. 4430 ,	. 4090,
	8,	. 4890,	. 5550,	. 5440,	. 5430,	. 4810,	. 5210,	. 4920,	. 5140,	. 4670,	. 4600,
	9,	. 5050,	. 5750,	. 6120,	. 5680 ,	. 3930 ,	. 5590,	. 4700 ,	. 4760 ,	. 5070,	. 4870,
	+gp,	. 6422 ,	.6339,	.6447,	.6096,	. 6569 ,	. 7124,	.6111,	. 6198,	. 5579,	. 5557,
0	SOPCOFAC,	1.0040,	1.0034 ,	. 9898 ,	. 9937 ,	. 9946 ,	. 9990 ,	. 9841 ,	. 9897 ,	. 9829 ,	. 9850 ,
	YEAR,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,
	1,	. 0970,	.1430,	. 1510,	. 1630,	. 1510,	.1280,	.1630,	.1450,	.1430,	. 1280,
	2,	. 1670,	.1800,	.1860,	.1770,	.1800,	.1820,	. 1790 ,	.1700,	. 1850,	. 1660,
	3,	. 1960 ,	. 2020,	. 1960 ,	. 2020,	. 2060 ,	. 1890,	. 2120,	. 2000,	. 2020,	. 1920,
	4,	. 2390,	. 2280,	. 2470 ,	. 2340 ,	. 2360 ,	. 2520,	. 2290,	. 2480 ,	. 2700,	. 2240,
	5,	. 2640,	. 2570,	. 2650 ,	. 2740 ,	. 2670,	. 2620,	. 2870 ,	. 2900,	. 2750 ,	. 2570,
	6 ,	. 3000,	. 3000 ,	. 3190 ,	. 2850 ,	. 2960 ,	. 2890 ,	. 3240 ,	. 2990,	. 3330 ,	. 2840 ,
	7,	. 3380,	. 3170 ,	. 3440 ,	. 3180 ,	. 3230 ,	. 3360 ,	. 3540 ,	. 3230 ,	. 3910 ,	. 3390 ,
	8 ,	. 4410,	. 4320,	. 3560 ,	. 3700 ,	. 3060 ,	. 2920,	. 3720 ,	. 3680 ,	. 4140,	. 2940,
	9,	. 4960,	. 4090,	. 4440 ,	. 3900 ,	. 3840 ,	. 3350 ,	. 3720 ,	. 4020,	. 4330,	. 5290,
	+gp,	. 6031,	. 5101,	. 5914,	. 5943,	.4396,	. 5039,	. 4527,	. 4274,	. 4935,	. 5019,
0	SOPCOFAC,	. 9885 ,	. 9879 ,	. 9927 ,	. 9886 ,	.9901,	. 9914 ,	. 9898 ,	. 9904 ,	. 9690 ,	. 9924 ,

Table 7.2.3 Sole in IV. Stock weight at age (kg)

Table	Stock weights at age (kg)									
YEAR,	1957,	1958,	1959,	1960,	1961,	1962,				
AGE										
1,	. 0250,	. 0250,	. 0250,	. 0250,	. 0250,	. 0250,				
2,	. 0700 ,	. 0700 ,	. 0700 ,	. 0700,	. 0700 ,	. 0700 ,				
3 ,	. 1470,	. 1640,	. 1590,	. 1630 ,	.1480,	. 1480,				
4,	.1870,	. 2050,	. 1980 ,	. 2070 ,	. 2060 ,	.1920,				
5,	. 2080,	. 2260 ,	. 2390 ,	. 2340,	. 2350 ,	. 2400,				
6 ,	. 2530 ,	. 2280,	. 2710 ,	. 2400 ,	. 2320 ,	. 3010,				
7,	. 2620 ,	. 2970,	. 2920 ,	. 2680 ,	. 2590 ,	. 2930,				
8 ,	. 3550 ,	. 3180 ,	. 2760 ,	. 2420 ,	. 2740 ,	. 2820,				
9,	. 3900 ,	. 3930,	. 3030 ,	. 3600 ,	. 2810,	. 2730 ,				
+gp,	. 3652 ,	. 4215,	. 4258 ,	. 4313,	. 3964 ,	. 4414,				
YEAR,	1963,	1964,	1965,	1966,	1967,	1968,	1969,	1970,	1971,	1972,
1,	. 0250,	. 0250,	. 0250 ,	. 0250,	. 0250,	. 0250,	. 0250,	. 0250,	. 0340,	. 0380,
2,	. 0700 ,	. 0700 ,	. 1400 ,	. 0700,	. 1770,	.1220,	.1370,	.1370,	. 1480,	. 1550,
3 ,	. 1480,	. 1590,	. 1980 ,	. 1600 ,	. 1640 ,	. 1710,	. 1740,	. 2010,	. 2130,	. 2180,
4,	. 1930,	. 2140,	. 2230 ,	.1490,	. 2350 ,	. 2480 ,	. 2520,	. 2750,	. 3130 ,	. 3130 ,
5,	. 2430 ,	. 2400,	. 2510,	. 3890 ,	. 2420 ,	. 3120,	. 3240 ,	. 3410 ,	. 3610,	. 4190,
6 ,	. 2750 ,	. 2910,	. 2970 ,	. 3100 ,	. 3990 ,	. 2800,	. 3640 ,	. 3670 ,	. 4100,	. 4430,
7,	. 3110,	. 3050 ,	. 3370 ,	. 4060,	. 3620 ,	. 6290,	. 5790,	. 4230,	. 4320,	. 4430,
8,	. 3630 ,	. 3060 ,	. 3580 ,	. 3770 ,	. 2830,	. 4160,	. 4150,	. 4580,	. 4740 ,	. 4430 ,
9,	. 3290 ,	. 3650 ,	. 5260,	. 3850 ,	. 3810,	. 4100,	. 4690,	. 3900 ,	. 4830,	. 5080,
+gp,	. 4654 ,	. 4739,	. 4605 ,	. 5045 ,	. 4591 ,	. 4856 ,	. 5211,	. 5544 ,	. 5325,	. 6018,
YEAR,	1973,	1974,	1975,	1976,	1977,	1978,	1979,	1980,	1981,	1982,
1,	. 0390 ,	. 0350 ,	. 0350 ,	. 0350,	. 0350,	. 0350,	. 0450 ,	. 0390,	. 0500,	. 0500,
2,	. 1490,	. 1460 ,	. 1480 ,	. 1420 ,	. 1470 ,	. 1390,	. 1480,	.1570,	.1370,	. 1300,
3 ,	. 2260 ,	. 2180,	. 2060 ,	. 2010,	. 2020,	. 2110,	. 2110,	. 2000 ,	. 2000,	. 1930,
4,	. 3220 ,	. 3290,	. 3110 ,	. 3010 ,	. 2910,	. 2900,	. 3000,	. 3040 ,	. 3050 ,	. 2700,
5,	. 3710,	. 4080,	. 4030,	. 3790 ,	. 3650 ,	. 3650,	. 3520,	. 3450 ,	. 3640 ,	. 3590,
6 ,	. 4330 ,	. 4290,	. 4460 ,	. 4580,	. 4090 ,	. 4290,	. 4290,	. 3940 ,	. 4020,	. 4110,
7,	. 4520 ,	. 4990,	. 5080,	. 5080,	. 4780 ,	. 4270,	. 5210,	. 4890 ,	. 4540 ,	. 4290,
8 ,	. 4720,	. 5650 ,	. 5820,	. 5170,	. 4870 ,	. 3850 ,	. 5620,	. 5370,	. 5220,	. 4760,
9,	. 4460 ,	. 5420 ,	. 5800 ,	. 6440 ,	. 5310,	. 5420 ,	. 5670,	. 5790,	. 5610,	. 5830,
+gp,	. 5355,	. 6180,	. 6501 ,	.6648,	. 6443 ,	. 6444 ,	. 7434,	. 6451 ,	. 6221,	. 6422 ,
YEAR,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,
1,	. 0500 ,	. 0500 ,	. 0500 ,	. 0500 ,	. 0500 ,	. 0500,	. 0500,	. 0500 ,	. 0500,	. 0500 ,
2,	. 1400,	. 1330,	. 1270,	. 1330 ,	. 1540 ,	. 1330,	. 1330,	. 1480,	. 1390,	. 1560,
3,	. 2000,	. 2030,	. 1850,	. 1910,	. 1910,	. 1930,	. 1950,	. 2030,	. 1840,	. 1940,
4,	. 2850 ,	. 2680,	. 2670 ,	. 2780 ,	. 2620,	. 2600 ,	. 2900,	. 2940 ,	. 2540 ,	. 2570,
5,	. 3290 ,	. 3480 ,	. 3240 ,	. 3450 ,	. 3570 ,	. 3350,	. 3500,	. 3570 ,	. 3010,	. 3070,
6 ,	. 4350 ,	. 3860 ,	. 3810 ,	. 4230,	. 3810,	. 4090,	. 3400,	. 4470 ,	. 4130,	. 3980,
7,	. 4640 ,	. 4880,	. 3800 ,	. 4950,	. 4060 ,	. 4170,	. 4110,	. 3990,	. 4470,	. 4060 ,
8,	. 4830 ,	. 5910,	. 6260,	. 4870,	. 4540 ,	. 4740,	. 4750,	. 4940,	. 5220,	. 4720,
9,	. 5100,	. 5670,	. 5540,	. 5870,	. 3320 ,	. 4860 ,	. 4190,	. 4810,	. 5480,	. 5000,
+gp,	. 6362 ,	. 6636 ,	. 6423 ,	. 6863 ,	. 6196,	. 6543,	. 5946 ,	. 6528,	. 5733,	. 5401,
YEAR,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,
1,	. 0500 ,	. 0500,	. 0500 ,	. 0500 ,	. 0500 ,	. 0500,	. 0500,	. 0500 ,	. 0500,	. 0500 ,
2,	. 1280,	. 1430,	. 1510,	. 1470,	. 1500,	.1400,	. 1310,	.1390,	. 1440 ,	. 1330,
3 ,	. 1840,	. 1740,	. 1790 ,	. 1780,	. 1900,	. 1730,	.1870,	. 1850,	. 1850,	. 1780,
4,	. 2290 ,	. 2090,	. 2400 ,	. 2080,	. 2250 ,	. 2340 ,	. 2160,	. 2260 ,	. 2230 ,	. 2200,
5,	. 2650 ,	. 2570,	. 2530,	. 2740 ,	. 2520,	. 2670,	. 2590,	. 2640 ,	. 2630,	. 2410,
6 ,	. 2930 ,	. 3260 ,	. 3210 ,	. 2680,	. 3030 ,	. 2810,	. 2960,	. 2750 ,	. 3190,	. 2420,
7,	. 3440 ,	. 3490 ,	. 3650 ,	. 3210 ,	. 3190,	. 3280 ,	. 3400 ,	. 2870 ,	. 3270,	. 2740 ,
8 ,	. 4820 ,	. 4020 ,	. 3570 ,	. 3750 ,	. 3250 ,	. 2730 ,	. 3220 ,	. 3370,	. 4210,	. 2790,
9,	. 4370,	. 4940,	. 5450,	. 4020,	. 3600 ,	. 3360 ,	. 3690 ,	. 3910,	. 4100,	. 4050,
+gp,	. 5833,	. 4589,	. 5452 ,	. 5465 ,	. 4240 ,	. 4548 ,	. 4639,	. 3762 ,	. 5302,	. 4111,

Table 7.2.4
North Sea sole, maturity ogive and natural mortality

Age	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Maturity	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1
Nat Mortality*	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

*Mortality on all ages in 1963=0.9
Table 7.3.1 North Sea sole tuning fleets



6トにサームト







$\infty m \infty \quad m \quad \infty \quad$

effort hphr's (000's)


Table 7.3.1 (cont.) North Sea sole tuning fleets (not used in the assessment)





TRIDENS
0.670 .75

0.5061 .6590 .4540 .2370 .5790 .1510 .3040 .0150 .1480 .048
0.0850 .0800 .1580 .0830 .0160 .0000 .0000 .0160 .0000 .000
0.4532 .3420 .5960 .3760 .2520 .1790 .1900 .0000 .0810 .023
0.5200 .5691 .2600 .1180 .2580 .0340 .0040 .1340 .0190 .207
0.3170 .6960 .4800 .6480 .0610 .0370 .0480 .0120 .0760 .018
1.0351 .8290 .8170 .6010 .3420 .0090 .0100 .0110 .0000 .027
0.8881 .0541 .8801 .8180 .2130 .8000 .1200 .0000 .0000 .206
TRIDENS
0.670 .75

0.5061 .6590 .4540 .2370 .5790 .1510 .3040 .0150 .1480 .048
0.0850 .0800 .1580 .0830 .0160 .0000 .0000 .0160 .0000 .000
0.4532 .3420 .5960 .3760 .2520 .1790 .1900 .0000 .0810 .023
0.5200 .5691 .2600 .1180 .2580 .0340 .0040 .1340 .0190 .207
0.3170 .6960 .4800 .6480 .0610 .0370 .0480 .0120 .0760 .018
1.0351 .8290 .8170 .6010 .3420 .0090 .0100 .0110 .0000 .027
0.8881 .0541 .8801 .8180 .2130 .8000 .1200 .0000 .0000 .206
TRIDENS
0.670 .75
0.5061 .6590 .4540 .2370 .5790 .1510 .3040 .0150 .1480 .048
0.0850 .0800 .1580 .0830 .0160 .0000 .0000 .0160 .0000 .000
0.4532 .3420 .5960 .3760 .2520 .1790 .1900 .0000 .0810 .023
0.5200 .5691 .2600 .1180 .2580 .0340 .0040 .1340 .0190 .207
0.3170 .6960 .4800 .6480 .0610 .0370 .0480 .0120 .0760 .018
1.0351 .8290 .8170 .6010 .3420 .0090 .0100 .0110 .0000 .027
0.8881 .0541 .8801 .8180 .2130 .8000 .1200 .0000 .0000 .206
FLT03:BTS
19962002
N
O
H
H
I
1
1




TRIDENS
0.670 .75

0.5061 .6590 .4540 .2370 .5790 .1510 .3040 .0150 .1480 .048
0.0850 .0800 .1580 .0830 .0160 .0000 .0000 .0160 .0000 .000
0.4532 .3420 .5960 .3760 .2520 .1790 .1900 .0000 .0810 .023
0.5200 .5691 .2600 .1180 .2580 .0340 .0040 .1340 .0190 .207
0.3170 .6960 .4800 .6480 .0610 .0370 .0480 .0120 .0760 .018
1.0351 .8290 .8170 .6010 .3420 .0090 .0100 .0110 .0000 .027
0.8881 .0541 .8801 .8180 .2130 .8000 .1200 .0000 .0000 .206
$\begin{array}{ll}\text { 1996 } & 2002 \\ 1 & 1 \\ 1 & 9\end{array}$

Table 7.3.2 North Sea sole : indices of effort and CPUE

Effort

	B beam	UK otter	NL beam
year	1000 HP hour ${ }^{1}$	1000 HP hour	$\begin{aligned} & 1000000 \mathrm{HP} \\ & \text { day } \end{aligned}$
1972	29.8		
1973	29.4		
1974	32.2		
1975	39.2		
1976	44.7		
1977	47.6		
1978	50.3		44.3
1979	40.0		44.9
1980	35.2		45.0
1981	31.1		46.3
1982	34.9		57.3
1983	35.4		65.6
1984	42.8		70.8
1985	51.4		70.3
1986	42.5		68.2
1987	50.7		68.5
1988	53.0		76.3
1989	54.3		61.6
1990	64.7	6409.1	71.4
1991	74.3	6643.4	68.5
1992	67.7	5279.3	71.1
1993	71.1	5787.2	76.9
1994	60.0	4913.3	81.4
1995	46.5	4766.3	81.2
1996	64.9	3352.8	72.1
1997	47.2	2852.8	72.0
1998	43.6	1933.4	70.2
1999	55.7	2184.1	67.3
2000	49.3	1667.6	67.7
2001	45.5	1446.0	61.4
2002	51.6	1153.5	56.4

CPUE

B beam	UK otter	NL beam
$\mathrm{kg} / 1000 \mathrm{HP} \mathrm{h}$	$\mathrm{kg} / \mathrm{HP} \mathrm{h}$	$\mathrm{kg} / 1000 \mathrm{HP} \mathrm{d}$
33.5		
33.1		
23.7		
26.2		
24.5		
27.2		475.8
25.9		282.1
38.7		267.8
30.9		309.8
35.2		307.9
44.7		276.3
42.8		213.4
35.2		204.5
40.8		235.9
38.8		272.7
28.9		378.1
19.2		350.9
22.7		307.1
24.8		306.4
33.5	30.5	
22.5	25.3	
27.2	27.4	
32.5	25.4	295.6
34.9	25.5	275.1
29.0	23.9	227.1
24.2	23.6	151.7
25.0	25.9	230.7
24.3	24.9	257.9
24.0	25.7	240.6
27.7	22.6	220.1
23.0	24.9	229.0

Table 7.4.1.1. Sole in Subarea IV. Survey to relative abundance ratio, q, for each survey

$$
N_{a, y}^{\text {relative }}=q_{a} * I_{a, y}
$$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
SNS - Tridens	1.0	1.0	1.0	1.0					
BTS	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Table 7.4.1.2 North Sea Sole, Separable XSA output

```
Title : Sole in IV
At 18/09/2003 15:17
Separable analysis
from 1957 to 2002 on ages 1 to 9
with Terminal F of .500 on age 4 and Terminal S of .800
Initial sum of squared residuals was 1659.565 and
final sum of squared residuals is 305.113 after 150 iterations
```

Matrix of Residuals


Table 7.4.2 North Sea sole XSA tuning output
Lowestoft VPA Version 3.1
18/09/2003 2:14

Extended Survivors Analysis
Sole in IV
CPUE data from file fleet $02 z$ z.txt
Catch data for 46 years. 1957 to 2002. Ages 1 to 10.


Time series weights :
Tapered time weighting not applied
Catchability analysis :
Catchability dependent on stock size for ages < 2
Regression type $=C$
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 2
Catchability independent of age for ages >= 7

Terminal population estimation :
Survivor estimates shrunk towards the mean $F$
of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk $=2.000$

Minimum standard error for population
estimates derived from each fleet $=$. 300

Prior weighting not applied
Tuning converged after 25 iterations
Regression weights
, $1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000$

Fishing mortalities										
Age,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
1,	. 001 ,	. 013,	. 053,	. 004 ,	. 006 ,	. 002 ,	. 004 ,	. 019,	. 015,	. 006
2,	.181,	. 140,	. 305,	. 270,	. 155,	. 264 ,	. 157,	. 231,	. 263,	. 253
3,	. 423,	. 479,	. 444 ,	. 693,	. 563,	. 624,	. 556 ,	. 496,	. 532,	. 621
4 ,	. 553,	. 634,	. 760 ,	. 975,	. 693,	. 750 ,	. 729 ,	. 664,	. 564 ,	. 649
5,	. 825 ,	. 667 ,	. 609,	. 693,	. 797 ,	. 750 ,	. 704 ,	. 646 ,	. 523,	. 475
6 ,	. 558,	. 876 ,	. 526,	. 835,	. 732 ,	. 717 ,	. 559 ,	. 611,	. 572 ,	. 388
7,	. 856 ,	. 492,	. 778 ,	. 694,	. 596,	. 588,	. 505,	. 796 ,	. 376 ,	. 568
8 ,	. 519,	. 627,	. 468 ,	. 954 ,	. 774 ,	. 906 ,	. 459 ,	. 646 ,	. 614,	. 495
9,	. 785 ,	. 873,	. 950,	. 451,	. 975,	. 849,	1.136,	. 359 ,	. 490 ,	. 397

XSA population numbers (Thousands)


Estimated population abundance at 1st Jan 2003
$0.00 \mathrm{E}+00,1.79 \mathrm{E}+05,4.02 \mathrm{E}+04,3.98 \mathrm{E}+04,1.38 \mathrm{E}+04,1.40 \mathrm{E}+04,1.42 \mathrm{E}+04,9.02 \mathrm{E}+02,9.57 \mathrm{E}+02$,

Taper weighted geometric mean of the VPA populations:

```
9.74E+04, 8.45E+04, 6.39E+04, 3.50E+04, 1.80E+04, 9.42E+03, 5.19E+03, 3.07E+03, 1.71E+03,
```

Standard error of the weighted Log(VPA populations) :
$.7797, .8157, .8441, .8840, .9270, .9341, \quad .9903,1.0200,1.0965$,
1

Log catchability residuals.

Fleet : FLTO1:NL BTS-ISIS

Age	,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992
1		99.99,	99.99,	-. 64,	-. 62,	. 09 ,	-.18,	-.12,	-.05,	-. 36,	. 02
2		99.99,	99.99,	.11,	-. 71,	-. 30,	. 51,	. 26 ,	. 59,	. 10 ,	1.05
3	,	99.99,	99.99,	-.13,	-. 20,	-. 52,	-.59,	. 51,	. 04 ,	. 27,	. 26
4		99.99,	99.99,	. 30 ,	-. 41,	-. 23,	. 01,	. 94,	-.41,	-. 20,	. 28
5		99.99,	99.99,	-. 17,	. 14,	-.01,	-.89,	. 35 ,	-.05,	-1.33,	-. 24
6		99.99,	99.99,	. 25 ,	-.17,	. 15,	-. 40 ,	-.03,	1.03,	-. 80 ,	-. 77
7		99.99,	99.99,	99.99,	-. 24 ,	. 21,	-. 10,	. 33 ,	-.21,	-. 40 ,	-. 32
8	,	99.99,	99.99,	99.99,	-1.59,	. 03 ,	-. 21 ,	99.99,	-. 55,	-. 38,	. 16
9		99.99,	99.99,	99.99,	-. 16,	1.75,	-. 59,	. 56 ,	-1.22,	-1.33,	-. 25
Age	,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
1	,	-.09,	. 22 ,	. 70 ,	. 04 ,	. 78,	-.01,	. 24 ,	-.11,	. 30 ,	-. 20
2	,	-. 36,	-. 46 ,	. 39 ,	-. 44 ,	-. 03 ,	-.02,	. 31 ,	-. 33,	-. 23 ,	-. 45
3		-1.10,	. 14,	. 92 ,	. 16 ,	. 07 ,	. 15,	. 57,	-.16,	-. 22 ,	-. 18
4	,	. 44,	-2.05,	. 46 ,	. 66 ,	. 46 ,	. 36 ,	. 17,	-.67,	-. 04 ,	-. 07
5	,	1.21,	. 13,	. 03,	. 37 ,	1.04,	-.93,	1.69,	. 23,	-. 68,	-. 90
6		1.08,	-.74,	. 66,	. 76 ,	-.34,	-1.70,	1.52,	. 14,	-. 04 ,	-. 60
7		-. 96,	-.03,	1.09,	. 34,	. 18,	. 18,	1.35,	. 43 ,	-. 93,	-. 93
8		-. 07 ,	-. 82 ,	. 52,	. 33,	-1.18,	99.99,	1.21,	-1.28,	. 44,	. 04
9		. 97,	-2.36,	1.39,	-. 13,	1.22,	99.99,	-1.29,	. 31 ,	99.99,	99.99

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8,
Mean Log q,	-8.8093,	-9.3885,	-9.7600,	-9.8518,	-10.1441,	-9.8855,	-9.8855,
S.E (Log q),	.4564,	.4630,	.6569,	.7884,	.8036,	.6394,	.7935,

Regression statistics :
Ages with $q$ dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log q


Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	1.04,	-.202,	8.71,	.65,	18,	.49,	-8.81,
3,	.94,	.383,	9.51,	.69,	18,	.44,	-9.39,
4,	.97,	.118,	9.78,	.54,	18,	.66,	-9.76,
5,	1.01,	-.051,	9.85,	.45,	18,	.82,	-9.85,
6,	.91,	.373,	10.05,	.52,	18,	.75,	-10.14,
7,	.97,	.156,	9.83,	.60,	17,	.64,	-9.89,
8,	.72,	2.059,	9.41,	.80,	15,	.49,	-10.11,
9,	1.83,	-1.368,	12.46,	.18,	14,	2.12,	-9.97,

Fleet : FLTO2:NL SNS


Age	,	1973,	1974,	1975,	1976,	1977,	1978,	1979,	1980,	1981,	1982
1	,	. 52,	-.17,	-.07,	-. 43,	. 09 ,	. 50,	-.13,	. 15,	. 02,	24
2	,	. 57 ,	-. 62,	. 24 ,	-1.30,	. 06 ,	. 41 ,	. 21 ,	-. 01 ,	. 37 ,	13
3	,	. 20 ,	-. 59,	-.08,	. 10,	. 03,	. 42,	. 44,	. 24,	. 89,	. 06
4	,	-.12,	-4.75,	. 55,	. 45,	. 87 ,	. 48 ,	. 51 ,	. 03,	-. 25 ,	43
5	,	No data	for $t$	s fle	$t$ at $t$	is age					
6	,	No data	for $t$	is fle	$t$ at t	is age					
7	,	No data	for $t$	s fle	$t$ at $t$	is age					
8	,	No data	for $t$	s fle	$t$ at $t$	is age					
9	,	No data	for $t$	s fle	$t$ at $t$	s age					


Age	,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992
1	,	-.19,	. 42,	. 22 ,	-. 03 ,	. 23 ,	-. 26 ,	. 19 ,	-. 34,	-. 05 ,	-. 02
2	,	.19,	.19,	. 48 ,	-. 20,	-.09,	. 22,	. 51,	. 35 ,	. 67 ,	-1.48
3	,	-. 80 ,	. 42,	-. 19,	-. 41,	-. 92 ,	.17,	. 73,	-. 02 ,	. 90 ,	-. 13
4	,	. 05 ,	. 75,	. 48 ,	-. 20,	-. 33,	1.03,	. 06 ,	1.31,	1.04,	1.32
5	,	No data	for t	s fle	t at t	s age					
6	,	No data	for t	s fle	at t	is age					
7	,	No data	for $t$	is fle	$t$ at t	is age					
8	,	No data	for	is fle	$t$ at t	s age					
9		No data	for $t$	is fle	at $t$	s age					


Age	,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
1	,	. 02 ,	-.45,	-. 22,	-. 15,	. 13,	-.01,	-.03,	-.43,	-.17,	23
2	,	. 37 ,	-.03,	-. 41,	-. 23 ,	-.87,	. 09 ,	. 05 ,	-1.31,	-. 27 ,	-. 13
3	,	-1.12,	. 38,	-.07,	-1.06,	.47,	. 46 ,	-.17,	-. 20,	-. 35,	-. 12
4	,	. 69,	-1.12,	1.07,	. 75 ,	1.23,	. 63 ,	-. 24 ,	. 04 ,	-. 47 ,	99.99
5	,	No data	for t	s fle	$t$ at t	is age					
6	,	No data	for t	s fle	$t$ at t	is age					
7	,	No data	for t	s fle	$t$ at t	is age					
8	,	No data	for $t$	s fle	$t$ at t	is age					
9	,	No data	for $t$	s fle	$t$ at t	is age					

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4
Mean Log q,	-4.6869,	-5.5181,	-6.3770,
S.E (Log q),	.5743,	.5079,	1.4625,

Regression statistics :
Ages with $q$ dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log $q$
1, $.76, \quad 3.687, \quad 5.64, \quad$ 38, $26, ~-3.77$,

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean $Q$

2,	.80,	1.828,	6.06,	.72,	33,	.44,	-4.69,
3,	1.09,	-.599,	5.04,	.61,	33,	.56,	-5.52,
4,	.60,	1.896,	7.97,	.43,	32,	.84,	-6.38,


${ }^{\text {Age }} 1$		$\begin{gathered} \text { 1983, } \\ \text { No data } \end{gathered}$	$\begin{aligned} & \text { 1984, } \\ & \text { for } t \end{aligned}$	$\begin{aligned} & \text { 1985, } \\ & \text { his flee } \end{aligned}$	$\begin{aligned} & \text { 1986, } \\ & \text { et at } t \end{aligned}$	$\begin{array}{r} \text { 1987, } \\ \text { his age } \end{array}$	1988,	1989,	1990,	1991,	1992
2		99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	-.31,	-1.00,	-. 47
3		99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	-.11,	-.21,	-. 10
4		99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	-.10,	-.02,	-. 30
5		99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	-.06,	. 21 ,	-. 16
6	,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	-.19,	-. 36,	. 00
7		99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	-.19,	-. 27 ,	25
8		99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	. 06 ,	-. 20,	00
9		99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	. 06 ,	.08,	. 21
Age	,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
1		No data	for	is flee	et at t	is age					
2		-. 08,	-. 52,	. 37 ,	. 46 ,	-.22,	. 52,	-. 13,	. 34,	. 44,	. 61
3		-. 36,	-.09,	-.34,	. 04 ,	.16,	. 02 ,	. 20,	. 25 ,	. 06 ,	. 49
4		-.09,	-.35,	.18,	. 38 ,	-.03,	. 27 ,	-. 10,	-.20,	.13,	. 23
5		. 19,	-.08,	-.60,	.19,	.15,	-.10,	. 21,	-.04,	. 08,	. 02
6		. 08,	. 12,	-.13,	-.10,	. 40 ,	.15,	-.03,	.11,	-. 10,	. 06
7		. 29 ,	-. 04 ,	-.14,	. 25 ,	-.37,	.18,	-.27,	. 29 ,	-.28,	. 28
8		-.07,	-.45,	-.10,	. 29 ,	. 52,	-.37,	. 06 ,	. 36,	.00,	. 16
9		. 05 ,	. 21 ,	. 16,	. 06 ,	-. 26 ,	-.23,	. 31 ,	-. 30,	-. 11,	-. 12

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8,
Mean Log q,	-6.2192,	-5.2698,	-5.1092,	-5.0924,	-5.2678,	-5.3128,	-5.3128,
S.E (Log q),	.4957,	.2416,	.2239,	.2244,	.1879,	.2620,	.2747,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	1.03,	-.133,	6.04,	.59,	13,	.53,	-6.22,
3,	.99,	.120,	5.34,	.90,	13,	.25,	-5.27,
4,	1.01,	-.112,	5.06,	.92,	13,	.24,	-5.11,
5,	1.00,	.047,	5.11,	.93,	13,	.23,	-5.09,
6,	.95,	.842,	5.46,	.96,	13,	.18,	-5.27,
7,	.96,	.484,	5.44,	.92,	13,	.26,	-5.31,
8,	.96,	.436,	5.39,	.92,	13,	.27,	-5.29,
9,	1.02,	-.336,	5.27,	.96,	13,	.21,	-5.30,

Terminal year survivor and $F$ summaries :
Age 1 Catchability dependent on age and year class strength


Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$178948 .$,	.23,	.18,	4,	.774,	.006

1
Age 2 Catchability constant w.r.t. time and dependent on age

Fleet,		Estimated,	Int,	Ext,	Var,	N,	Scaled,	Estimated
,		Survivors,	s.e,	s.e,	Ratio,	,	Weights,	F
FLT01:NL BTS-ISIS	,	39624.	. 302,	. 371 ,	1.23,	2,	. 376 ,	. 257
FLTO2:NL SNS	,	34309.	. 267 ,	. 016 ,	. 06 ,	2,	. 482 ,	. 291
FLT03:NL Comm BT	,	74225.	. 514,	. 000 ,	. 00 ,	1,	. 131 ,	. 145
$F$ shrinkage mean	,	48505.,	2.00,				. 011,	. 214

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$40228 .$,	.19,	.15,	6,	.812,	.253

Age 3 Catchability constant w.r.t. time and dependent on age
Year class $=1999$

Fleet,		Estimated, Survivors,	Int, s.e,	Ext, s.e,	Var, Ratio,	N,	Scaled, Weights,	$\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$
FLT01:NL BTS-ISIS	$r$	$33601 .$,	. 257,	. 033,	.13,	3,	. 307 ,	. 703
FLT02:NL SNS		28725.,	. 239,	. 094 ,	. 39 ,	3,	. 346 ,	. 785
FLT03: NL Comm BT	,	64468.	. 261 ,	. 022 ,	. 08 ,	2 ,	. 336 ,	. 426
F shrinkage mean	,	46054.	2.00,				. 011,	. 556

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$39766 .$,	.15,	.13,	9,	.879,	.621

Age 4 Catchability constant w.r.t. time and dependent on age

Year class $=1998$								
Fleet,		Estimated,	Int,	Ext,	Var,	N,	Scaled,	Estimated
,		Survivors,	s.e,	s.e,	Ratio,	,	Weights,	F
FLTO1:NL BTS-ISIS	,	12914.	. 249,	. 130 ,	. 52 ,	4,	. 257 ,	. 683
FLT02:NL SNS		$10090 .$,	. 238,	. 319 ,	1.34,	3 ,	. 227,	. 813
FLT03: NL Comm BT	,	16571	. 205,	. 065 ,	. 32 ,	3 ,	. 503,	. 567
F shrinkage mean	,	12910.,	2.00,				. 012,	. 683

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$13844 .$,	.14,	.10,	11,	.754,	.649

Age 5 Catchability constant w.r.t. time and dependent on age

Year class $=1997$


Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	S.e,	,	Ratio,	
$14035 .$,	.13,	.07,	14,	.494,	.475

Age 6 Catchability constant w.r.t. time and dependent on age

Year class $=1996$								
Fleet,		Estimated,	Int,	Ext,	Var,	N,	Scaled,	Estimated
r		Survivors,	s.e,	s.e,	Ratio,	,	Weights,	F
FLT01:NL BTS-ISIS	,	11755.	. 311 ,	. 260 ,	. 84 ,	6 ,	. 161,	. 454
FLT02:NL SNS		14933.,	. 239,	. 072 ,	. 30 ,	4,	. 085 ,	. 373
FLT03: NL Comm BT	,	14904.,	. 172 ,	. 062 ,	. 36 ,	5,	. 743 ,	. 373
F shrinkage mean	,	7510.,	2.00,				. 012,	. 641

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$14234 .$,	.14,	.07,	16,	.517,	.388

Age 7 Catchability constant w.r.t. time and dependent on age

Year class $=1995$

Fleet,		Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	Ext, s.e,	$\begin{gathered} \text { Var, } \\ \text { Ratio, } \end{gathered}$	N,	Scaled, Weights,	Estimated F
FLT01:NL BTS-ISIS	,	$606 .$,	. 353,	. 206 ,	. 58,	7,	.164,	. 761
FLTO2:NL SNS	,	799.,	. 238,	. 233,	. 98 ,	4,	. 042 ,	. 623
FLT03:NL Comm BT	,	988.,	. 171,	. 080 ,	. 47,	6,	. 778 ,	530
$F$ shrinkage mean	$r$	889.,	2.00,				. 015,	. 575

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$902 .$,	.15,	.08,	18,	.534,	.568

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class $=1994$

Fleet,		Estimated,	Int,	Ext,	Var,	N,	Scaled,	Estimated
,		Survivors,	s.e,	s.e,	Ratio,	,	Weights,	F
FLT01:NL BTS-ISIS	,	824.,	. 360 ,	. 262,	. 73 ,	8,	. 145,	. 557
FLT02:NL SNS	,	959.,	. 240 ,	.191,	. 80 ,	4,	. 023,	. 495
FLT03:NL Comm BT	,	989.,	.161,	. 084,	. 52,	7 ,	. 819 ,	. 483
F shrinkage mean	,	627.	2.00,				. 013,	. 682

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$957 .$,	.14,	.08,	20,	.534,	.495

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 7

Year class $=1993$


Weighted prediction :
Survivors, Int, Ext, N, Var, F
$\begin{array}{ccccc}\text { at end of year, s.e, } & \text { s.e, } & \text { Ratio, } & \\ 187 ., & .16, & .05, & 21, & .331,\end{array}$

Table 7.4.3 North Sea sole XSA: fishing mortality at age

Run title : Sole in IVAt 18/09/2003 $2: 14$Terminal Fs derived using XSA (With F shrinkage)														
Table 8				Fishing mortality (F) at age										
YEAR,				1957,	1958,	1959,	1960,	1961,	1962,					
1,				. 0000,	. 0000,	. 0000 ,	. 0000 ,	.0000,	. 0000 ,					
2,				. 0207 ,	.0169,	. 0336 ,	. 0290,	.0182,	.0188,					
3,				. 1272 ,	.1487,	.1299,	.1577,	. 1446 ,	. 1411 ,					
4,				. 2547 ,	. 2349 ,	. 2464 ,	. 2410,	. 2952 ,	.2287,					
5,				. 2592 ,	. 2756 ,	. 2050,	. 3234 ,	. 2515,	. 3629 ,					
6,				. 2283,	. 3608 ,	. 2395 ,	. 2671 ,	. 2393,	. 3128 ,					
7,				. 2922 ,	. 3448 ,	.1818,	. 2893,	.1738,	. 3669 ,					
8,				.1671,	. 2949 ,	. 3657 ,	. 3440 ,	. 3967 ,	. 2468 ,					
9,				. 2408 ,	. 3030 ,	. 2482 ,	. 2937 ,	. 2719,	. 3044 ,					
+gp,				. 2408 ,	. 3030 ,	. 2482 ,	. 2937 ,	. 2719 ,	. 3044 ,					
0	FBAR	2-6,		. 1780 ,	. 2074,	.1709,	.2036,	.1898,	. 2129,					
	FBAR	$2-8$,		. 1928 ,	. 2395,	. 2003,	. 2359 ,	. 2170 ,	. 2397 ,					
YEAR,				1963,	1964,	1965,	1966,	1967,	1968,	1969,	1970,	1971,	1972,	
1,				. 0000,	. 0001 ,	.0000,	.0000,	.0000,	.0110,	.0084,	.0099,	.0107,	.0049,	
2,				. 0525,	.0198,	.1071,	. 1244 ,	.1136,	. 3081 ,	. 3309 ,	. 1552,	. 3321,	. 2417,	
3,				. 1787,	. 3257 ,	.1689,	. 4375 ,	. 3657 ,	. 6957,	. 6908,	. 6366 ,	. 5728,	. 6530,	
4,				. 4218 ,	. 2497,	. 3886 ,	. 2044 ,	. 4884 ,	. 6433,	. 5547,	. 5487,	. 6593,	. 5432,	
5,				. 4015,	. 4865,	. 3208 ,	. 4904 ,	.6825,	. 5060 ,	. 6830,	. 3209 ,	. 5798,	. 5134,	
6,				. 5092,	. 3649 ,	.6000,	. 3686 ,	. 3819 ,	. 2954 ,	. 4728 ,	. 3319 ,	. 4124,	. 3609,	
7,				.4819,	. 5159 ,	. 4321 ,	. 3180 ,	. 2961 ,	. 2678 ,	. 3176 ,	. 3824 ,	. 3759,	. 2289,	
8,				. 4572,	. 3251 ,	. 4647 ,	. 3599 ,	. 5492 ,	. 3948 ,	. 4126,	. 3668 ,	. 3718,	. 3106 ,	
9,				. 4792,	. 3896 ,	. 4427 ,	. 3492 ,	. 4813,	. 4228 ,	. 4899,	. 3913,	.4816,	. 3926 ,	
+gp,				. 4792 ,	. 3896 ,	. 4427 ,	. 3492 ,	. 4813,	. 4228 ,	. 4899 ,	. 3913 ,	. 4816 ,	. 3926 ,	
0	FBAR	2-6,		. 3128 ,	. 2893 ,	. 3171 ,	. 3250 ,	. 4064 ,	.4897,	. 5464 ,	. 3987,	. 5113,	. 4624 ,	
	FBAR	2-8,		. 3576 ,	. 3268 ,	. 3546 ,	. 3290 ,	. 4110 ,	. 4444 ,	. 4946 ,	. 3918,	. 4720,	.4074,	
YEAR,				1973,	1974,	1975,	1976,	1977,	1978,	1979,	1980,	1981,	1982,	
1,				. 0068 ,	.0010,	. 0068 ,	.0097,	.0132,	. 0006 ,	.0008,	.0044,	. 0030,	.0185,	
2,				. 2061,	.1817,	. 2787 ,	.1073,	. 2636 ,	. 2355,	. 2240 ,	. 1307,	. 2546,	. 2299,	
3,				. 7105 ,	. 5900,	. 5251,	. 5671,	. 5560 ,	. 5751 ,	. 6592 ,	. 5526,	. 5380,	. 6964 ,	
4,				.5949,	. 6754,	. 6603 ,	.4697,	. 6192 ,	. 5400 ,	. 6367,	. 5896 ,	. 5932 ,	. 5894,	
5,				. 6044 ,	. 4974 ,	. 5204 ,	. 5537,	. 4336 ,	. 5294 ,	. 4890 ,	. 5925,	. 5286,	. 6176,	
6,				. 4263,	. 5764 ,	. 4883,	. 4294 ,	. 3592 ,	. 4196 ,	. 4689 ,	. 4115,	.5947,	. 5948,	
7,				. 3640 ,	. 5120 ,	. 4372,	. 4258 ,	. 2178,	. 6285,	. 2703,	. 5993,	. 4587,	. 5303,	
8,				. 5376,	. 3875 ,	. 5496 ,	. 5481,	. 4182,	. 7238 ,	. 6050,	. 3238,	.4554,	. 5400,	
9,				. 5073,	. 5318 ,	. 5172,	. 4770 ,	.4707,	. 4055 ,	. 6219,	. 5331,	. 2610,	. 5715,	
+gp,				. 5073,	. 5318,	. 5172,	. 4770 ,	. 4707 ,	. 4055 ,	. 6219,	. 5331,	. 2610,	. 5715,	
0	FBAR	2-6,		. 5085,	. 5042 ,	. 4946 ,	. 4254 ,	. 4463 ,	. 4599,	. 4956,	.4554,	. 5018,	. 5456 ,	
	FBAR	2-8,		. 4920 ,	. 4886 ,	. 4942 ,	. 4430,	. 4097 ,	. 5217,	. 4790 ,	. 4571,	. 4890,	. 5426 ,	
YEAR,				1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	
1,				.0029,	.0028,	. 0021 ,	.0025,	.0014,	. 0000 ,	.0011,	.0051,	.0018,	.0029,	
2,				. 3096 ,	. 2896 ,	. 3193 ,	.1447,	. 2381,	. 2382 ,	. 1258 ,	. 1372,	.0903,	. 1196 ,	
3,				. 5927,	. 7177 ,	. 7382 ,	. 6211,	. 5196 ,	. 6590,	. 5287,	. 4057,	. 4245,	. 4338,	
4,				. 7242 ,	.6678,	. 7672 ,	.6821,	. 6121,	. 7344 ,	. 6831,	. 5307,	. 5319,	.4662,	
5,				. 3573,	.6683,	. 5757 ,	. 6674 ,	. 5068 ,	. 6150,	. 4522,	. 5791,	. 7606 ,	.4807,	
6 ,				. 4590,	. 8293,	. 5536,	. 7023 ,	. 5488 ,	. 5706 ,	. 4374,	.6119,	. 4255,	. 6235,	
7,				. 4552 ,	. 5092,	. 5153,	. 7376 ,	. 3853 ,	. 5138 ,	. 3780 ,	. 4823,	.6607,	. 6635,	
8,				. 5989,	. 4167 ,	. 3940 ,	. 4977 ,	. 6531,	. 3501 ,	. 3706 ,	. 5503,	. 6390,	. 5826,	
9,				. 6864 ,	. 6648,	. 4291 ,	. 5082,	. 7442 ,	.8939,	. 2721 ,	. 5525,	.6815,	. 7956,	
+gp,				. 6864 ,	.6648,	. 4291,	. 5082 ,	. 7442 ,	. 8939,	. 2721 ,	. 5525,	.6815,	. 7956 ,	
0	FBAR	2-6,		.4886,	. 6346 ,	.5908,	. 5635,	. 4851 ,	. 5634 ,	. 4454 ,	. 4529,	.4466,	.4248,	
	FBAR	$2-8$,		. 4996,	. 5855 ,	. 5519,	. 5790,	. 4948 ,	. 5259 ,	. 4251 ,	.4710,	. 5046 ,	.4814,	
	YEAR,			1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	FBAR 00-02
	1,			. 0008,	.0133,	. 0532,	. 0037 ,	.0059,	. 0020,	.0036,	.0188,	. 0146 ,	. 0061 ,	. 0132,
	2,			.1812,	.1402,	. 3051 ,	. 2701 ,	. 1550,	. 2636 ,	. 1574 ,	. 2314,	. 2627,	. 2534,	. 2492 ,
	3,			. 4227,	. 4787 ,	. 4439 ,	.6933,	. 5631,	. 6237,	.5557,	. 4962,	. 5316,	. 6215,	. 5498,
	4,			. 5531,	.6345,	. 7601 ,	. 9749 ,	. 6934,	. 7501,	. 7285 ,	. 6638,	. 5640,	. 6490,	. 6256 ,
	5,			. 8250,	. 6674,	. 6085 ,	. 6934,	. 7970 ,	. 7503 ,	. 7036 ,	.6459,	. 5226,	. 4754,	. 5480 ,
	6 ,			. 5583,	. 8756 ,	. 5261,	. 8353,	. 7318 ,	. 7173 ,	. 5590 ,	.6114,	. 5716,	. 3879,	. 5236,
	7,			. 8557,	. 4924 ,	. 7779 ,	. 6941 ,	. 5963,	. 5876 ,	. 5050 ,	. 7964 ,	. 3764 ,	. 5684,	. 5804 ,
	8,			. 5195,	.6273,	. 4684 ,	. 9540 ,	. 7740 ,	. 9057 ,	. 4585 ,	. 6457 ,	.6136,	. 4954,	.5849,
	9,			. 7846 ,	. 8732 ,	. 9496 ,	. 4507 ,	. 9753 ,	. 8495 ,	1.1362,	. 3591 ,	.4899,	. 3975,	. 4155 ,
	+gp,			. 7846,	. 8732,	. 9496 ,	. 4507,	. 9753 ,	. 8495 ,	1.1362,	. 3591,	.4899,	. 3975,	
0	FBAR	2-6,		. 5081 ,	. 5593,	. 5287,	. 6934,	. 5881 ,	. 6210 ,	. 5408,	. 5298,	. 4905,	. 4774,	
	FBAR	2-8,		. 5594 ,	.5595,	.5557,	. 7307 ,	. 6158,	. 6569 ,	. 5240 ,	.5844,	.4918,	. 4930,	
1														

Table 7.4.3 North Sea sole XSA: fishing mortality at age
Run title : Sole in IV
At 18/09/2003 2:14
Terminal Fs derived using XSA (With F shrinkage)

Table 10	Stock	number at	age (sta	of yea		Numbers*10**-3				
YEAR,	1957,	1958,	1959,	1960,	1961,	1962,				
1,	128909,	128643,	488760,	61713,	99480,	22895,				
2,	72454,	116641,	116401,	442248,	55840,	90013,				
3,	89307,	64213,	103778,	101843,	388708,	49614,				
4,	59106,	71155,	50074,	82464,	78708,	304360,				
5,	17318,	41456,	50906 ,	35415,	58637,	53011,				
6 ,	15057,	12092,	28474,	37524,	23191,	41258,				
7,	27046,	10843,	7627,	20278,	25994,	16518,				
8 ,	11836,	18272,	6950,	5754,	13738,	19769,				
9,	2500,	9062,	12311,	4362,	3691,	8361,				
+gp,	30811,	26295,	26788,	32546,	31943,	29933,				
TOTAL,	454344,	498671,	892068,	824147,	779931,	635731,				
YEAR,	1963,	1964,	1965,	1966,	1967,	1968,	1969,	1970,	1971,	1972,
1,	20428,	538986,	121937,	39877,	75140,	99754,	50029,	138562,	41536,	76644,
2,	20716,	8305,	487642,	110333,	36082,	67989,	89275,	44891,	124140,	37184,
3,	79931,	7991,	7367,	396434,	88154,	29142,	45207,	58024,	34779,	80585,
4,	38986,	27180,	5221,	5630,	231608,	55335,	13150,	20501,	27777,	17747,
5,	219092,	10395,	19160,	3203,	4153,	128592,	26314,	6833,	10716,	12999,
6 ,	33369,	59617,	5783,	12579,	1775,	1899,	70153,	12026,	4486,	5430,
7,	27305,	8153,	37452,	2872,	7873,	1096,	1279,	39564,	7808,	2687,
8 ,	10355,	6856,	4404,	21998,	1891,	5298,	759,	842,	24422,	4852,
9,	13976,	2665,	4482,	2504,	13889,	988,	3230,	454,	528,	15236,
+gp,	32249,	9788,	9390,	8709,	7981,	19810,	14246,	16929,	12581,	9035,
TOTAL,	496406,	679938,	702839,	604139,	468545,	409904,	313643,	338626,	288774,	262400,
YEAR,	1973,	1974,	1975,	1976,	1977,	1978,	1979,	1980,	1981,	1982,
1,	108298,	109736,	40741,	113036,	140426,	47371,	11471,	151708,	149997,	152918,
2,	69010,	97324,	99197,	36612,	101289,	125401,	42838,	10371,	136665,	135320,
3,	26421,	50811,	73432,	67923,	29759,	70411,	89657,	30981,	8234,	95867,
4,	37950,	11748,	25486,	39301,	34857,	15443,	35847,	41963,	16132,	4351,
5,	9329,	18941,	5410,	11916,	22231,	16981,	8143,	17159,	21056,	8066,
6,	7039,	4612,	10422,	2909,	6198,	13039,	9049,	4518,	8585,	11230,
7,	3425,	4159,	2345,	5787,	1713,	3916,	7755,	5123,	2709,	4286,
8,	1934,	2153,	2255,	1370,	3421,	1247,	1890,	5355,	2546,	1550,
9,	3218,	1022,	1323,	1178,	717,	2037,	547,	934,	3505,	1461,
+gp,	15227,	12211,	8927,	7347,	5896,	5033,	3447,	3046,	4144,	3070,
TOTAL,	281851,	312717,	269538,	287380,	346507,	300878,	210645,	271158,	353573,	418119,
YEAR,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,
1,	142410,	70844,	80909,	159679,	72566,	456058,	108347,	178103,	70525,	354655,
2,	135836,	128488,	63921,	73053,	144128,	65571,	412648,	97925,	160333,	63699,
3,	97297,	90180,	87026,	42031,	57194,	102776,	46757,	329255,	77249,	132554,
4,	43229,	48670,	39809,	37639,	20436,	30781,	48115,	24935,	198563,	45718,
5,	2183,	18960,	22585,	16724,	17218,	10026,	13362,	21987,	13272,	105554,
6 ,	3935,	1382,	8793,	11491,	7764 ,	9385,	4905,	7692,	11149,	5613,
7,	5606,	2250,	546,	4574,	5152,	4058,	4799,	2866,	3775,	6592,
8 ,	2282,	3218,	1224,	295,	1980,	3171,	2196,	2976,	1601,	1764,
9,	817,	1134,	1919,	747,	162,	932,	2021,	1372,	1553,	765,
+gp,	2474,	1924,	2926,	4417,	1381,	560,	2060,	2082,	2305,	2245,
TOTAL,	436070,	367050,	309658,	350649,	327980,	683317,	645211,	669193,	540323,	719159,


YEAR,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	GMST 57-**	AMST 57-**
1,	69380,	57159,	97449,	49103,	285745,	126033,	85064,	132431,	64233,	198986,	0 ,	96762,	130806,
2,	319973,	62726,	51037,	83608,	44267,	257040,	113807,	76696,	117592,	57279,	178948,	84585,	116567,
3,	51139,	241533,	49333,	34036,	57746,	34302,	178694,	87984,	55059,	81816,	40228,	63714,	90129,
4,	77726,	30322,	135408,	28637,	15397,	29753,	16635,	92753,	48470,	29278,	39766,	34916,	52650,
5,	25954,	40453,	14547,	57295,	9775,	6964,	12716,	7265,	43211,	24951,	13844,	17480,	28506,
6 ,	59059,	10291,	18778,	7162,	25915,	3986,	2975,	5693,	3446,	23185,	14035,	9440,	14734,
7,	2722,	30576,	3879,	10040,	2811,	11280,	1760,	1539,	2795,	1760,	14234,	5394,	8874,
8,	3072,	1047,	16908,	1612,	4538,	1401,	5671,	961,	628 ,	1736,	902,	3229,	5401,
9,	891,	1653,	506,	9577,	562,	1894,	513,	3244,	456,	308,	957,	1837,	3283,
+gp,	1617,	1627,	1136,	2851,	2825,	1542,	1245,	2480,	1956,	1268,	958 ,		
TOTAL,	611533,	477387,	388981,	283923,	449580,	474195,	419081,	411046,	337847,	420567,	303872,		

Tabel 7.5.1 North Sea Sole Input RCT3 - age 1

Sole		rth	Sea		Agel.					
	8	35	2							
'yc'	'VPA-1'		'DFS-0' 'SNS-1'		'DFS-1'	'SNS-2'	'SNS-3'	'Solea-3'	'BTS-1'	'BTS-2'
	1968	50029	-11	-11	-11	745	99	-11	-11	-11
	1969	138562	-11	4938	-11	1961	161	-11	-11	-11
	1970	41536	-11	613	-11	341	73	-11	-11	-11
	1971	76644	-11	1410	-11	905	69	-11	-11	-11
	1972	108298	-11	4686	-11	397	174	-11	-11	-11
	1973	109736	-11	1924	-11	887	187	31.5	-11	-11
	1974	40741	-11	597	2.86	79	77	16.3	-11	-11
	1975	113036	168.84	1413	6.95	762	267	34.4	-11	-11
	1976	140426	82.28	3724	9.69	1379	325	-11	-11	-11
	1977	47371	33.8	1552	2.13	388	99	41.5	-11	-11
	1978	11471	96.87	104	2.27	80	51	1.9	-11	-11
	1979	151708	392.08	4483	48.21	1411	231	76.1	-11	-11
	1980	149997	404	3739	13.9	1124	107	77.1	-11	-11
	1981	152918	289.72	5098	14.06	1137	307	147.1	-11	-11
	1982	142410	330.38	2640	25.87	1081	159	77.8	-11	-11
	1983	70844	115.96	2359	12.45	709	67	10.8	-11	7.89
	1984	80909	187.17	2151	3.32	465	59	29.8	2.65	4.49
	1985	159679	292.92	3791	13.66	955	284	24.6	7.88	12.55
	1986	72566	72.97	1890	6.19	594	248	20.3	6.99	12.81
	1987	456058	527.45	11227	38.02	5369	907	66.9	81.23	68.08
	1988	108347	56.08	3052	12.62	1078	527	86.4	9.42	22.36
	1989	178103	62.77	2900	12.3	2515	319	54.1	22.62	23.19
	1990	70525	22.54	1265	8.52	114	46	11.3	3.34	23.2
	1991	354655	360.44	11081	17.66	3489	943	180.7	74.22	27.36
	1992	69380	25.38	1351	10.6	475	126	-11	4.98	4.99
	1993	57159	25.01	559	6.12	234	27	-11	5.88	8.46
	1994	97449	74.25	1501	9.46	473	231	12.9	27.62	6.17
	1995	49103	18.82	691	3.64	143	131	0.9	3.51	5.37
	1996	285745	58.51	10132	19.92	1993	381	45.7	173.24	29.21
	1997	126033	53.35	2875	-11	919	189	13.6	14.12	19.26
	1998	85064	-11	1649	-11	150	99	-11	11.41	6.53
	1999	-11	-11	1735	4.56	645	175	-11	12.89	10.84
	2000	-11	16.15	958	3.07	361	-11	-11	7.97	4.24
	2001	-11	86.41	7093	18.35	-11	-11	-11	21.46	-11
	2002	-11	64.71	-11	-11	-11	-11	-11	-11	-11

Tabel 7.5.1 (cont.) North Sea Sole Input RCT3 - age 2
Sole
$8^{\text {North }}{ }^{\text {Sea }} \quad 2^{-}$
'yc' 'VPA-2' 'DFS-0' 'SNS-1' 'DFS-1' 'SNS-2' 'SNS-3' 'Solea-3' 'BTS-1' 'BTS-2'

1968	44891	-11	-11	-11	745	99	-11	-11	-11
1969	124140	-11	4938	-11	1961	161	-11	-11	-11
1970	37184	-11	613	-11	341	73	-11	-11	-11
1971	69010	-11	1410	-11	905	69	-11	-11	-11
1972	97324	-11	4686	-11	397	174	-11	-11	-11
1973	99197	-11	1924	-11	887	187	31.5	-11	-11
1974	36612	-11	597	2.86	79	77	16.3	-11	-11
1975	101289	168.84	1413	6.95	762	267	34.4	-11	-11
1976	125401	82.28	3724	9.69	1379	325	-11	-11	-11
1977	42838	33.8	1552	2.13	388	99	41.5	-11	-11
1978	10371	96.87	104	2.27	80	51	1.9	-11	-11
1979	136665	392.08	4483	48.21	1411	231	76.1	-11	-11
1980	135320	404	3739	13.9	1124	107	77.1	-11	-11
1981	135836	289.72	5098	14.06	1137	307	147.1	-11	-11
1982	128488	330.38	2640	25.87	1081	159	77.8	-11	-11
1983	63921	115.96	2359	12.45	709	67	10.8	-11	7.89
1984	73053	187.17	2151	3.32	465	59	29.8	2.65	4.49
1985	144128	292.92	3791	13.66	955	284	24.6	7.88	12.55
1986	65571	72.97	1890	6.19	594	248	20.3	6.99	12.81
1987	412648	527.45	11227	38.02	5369	907	66.9	81.23	68.08
1988	97925	56.08	3052	12.62	1078	527	86.4	9.42	22.36
1989	160333	62.77	2900	12.3	2515	319	54.1	22.62	23.19
1990	63699	22.54	1265	8.52	114	46	11.3	3.34	23.2
1991	319973	360.44	11081	17.66	3489	943	180.7	74.22	27.36
1992	62726	25.38	1351	10.6	475	126	-11	4.98	4.99
1993	51037	25.01	559	6.12	234	27	-11	5.88	8.46
1994	83608	74.25	1501	9.46	473	231	12.9	27.62	6.17
1995	44267	18.82	691	3.64	143	131	0.9	3.51	5.37
1996	257040	58.51	10132	19.92	1993	381	45.7	173.24	29.21
1997	113807	53.35	2875	-11	919	189	13.6	14.12	19.26
1998	76696	-11	1649	-11	150	99	-11	11.41	6.53
1999	-11	-11	1735	4.56	645	175	-11	12.89	10.84
2000	-11	16.15	958	3.07	361	-11	-11	7.97	4.24
2001	-11	86.41	7093	18.35	-11	-11	-11	21.46	-11
2002	-11	64.71	-11	-11	-11	-11	-11	-11	-11

Table 7.5.2a North Sea Sole. Output RCT3 Age 1
Analysis by RCT3 ver3.1 of data from file :

```
S4RCT-1.TXT
SoleNorthSea - Age1.
Data for 8 surveys over 35 years : 1968 - 2002
Regression type \(=\) C
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
```




Yearclass $=2002$									
Survey/   Series	Slope	$\begin{gathered} \text { Inter- } \\ \text { cept } \end{gathered}$	Std Error	Rsquare	No. Pts	Index Value	$\begin{aligned} & \text { Predicted } \\ & \text { Value } \end{aligned}$	Std   Error	WAP   Weights
DFS-0	1.39	5.15	1.24	. 286	23	4.19	10.95	1.330	. 223
SNS-1									
DFS-1									
SNS-2									
SNS-3									
Solea-									
BTS-1									
BTS-2									
					VPA	Mean $=$	11.48	. 712	. 777


Year	Weighted	Log	Int	Ext	Var	VPA	Log
Class	Average	WAP	Std	Std	Ratio		VPA
	Prediction		Error	Error			
2000	54906	10.91	. 18	. 16	. 83		
2001	198412	12.20	. 21	. 16	. 60		
2002	86222	11.36	. 63	. 22	. 12		

Table 7.5.2a North Sea Sole. Output RCT3 Age 2
Analysis by RCT3 ver3.1 of data from file :

S4RCT-2.TXT									
SoleNorthSea - Age2.									
Data for 8 surveys over 35 years : 1968 - 2002									
Regression type $=$ C									
Tapered time weighting not applied									
Survey weighting not applied									
Final estimates shrunk towards mean									
Minimum S.E. for any survey taken as . 20									
Minimum of 3 points used for regression									
Forecast/Hindcast variance correction used.									
Yearclass $=2000$									
Survey/	Slope	Inter-	Std	Rsquare	No.	Index	Predicted	Std	WAP
Series		cept	Error		Pts	Value	Value	Error	Weights
DFS-0	1.38	5.05	1.24	. 286	23	2.84	8.99	1.406	. 016
SNS-1	. 77	5.53	. 25	. 892	30	6.87	10.78	. 269	. 445
DFS-1	1.33	8.26	. 59	. 650	23	1.40	10.12	. 659	. 074
SNS-2	. 80	6.19	. 45	. 724	31	5.89	10.90	. 472	. 145
SNS-3									
Solea-									
BTS-1	. 66	9.79	. 40	. 762	15	2.19	11.25	. 441	. 166
BTS-2	1.14	8.52	. 51	. 649	16	1.66	10.40	. 594	. 091
					VPA	Mean $=$	11.38	. 712	. 063



2002									
Survey/   Series	Slope	Intercept	Std   Error	Rsquare	No. Pts	Index   Value	Predicted Value	Std   Error	WAP   Weights
DFS-0	1.38	5.05	1.24	. 286	23	4.19	10.85	1.327	. 224
SNS-1									
DFS-1									
SNS-2									
SNS-3									
Solea-									
BTS-1									
BTS-2									
					VPA	Mean =	11.38	. 712	. 776


| Year <br> Class | Weighted <br> Average <br> Prediction | Log | WAP | Int <br> Std <br> Error | Ext <br> Std <br> Error | Var | Vatio |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$\quad$| Log |
| :---: |
|  |
| 2000 |

Table 7.6.1 North Sea sole VPA summary table
NOTE: 2 Fbar ranges, age 2-6 and 2-8
Run title : Sole in IV

At 18/09/2003 2:14
Table 16 Summary (without SOP correction)

Terminal Fs derived using XSA (With F shrinkage)
RECRUITS, TOTALBIO,TOTSPBIO,LANDINGS,YIELD/SSB,FBAR 2-6,FBAR 2- 8, Age 1

1957,	128909,	63402,	55107,	12067,	. 2190 ,	. 1780,	. 1928 ,
1958,	128643,	72300,	60919,	14287,	. 2345 ,	. 2074,	. 2395,
1959,	488760,	85947,	65580,	13832,	. 2109,	.1709,	. 2003,
1960,	61713,	105898,	73398,	18620,	. 2537 ,	. 2036 ,	. 2359,
1961,	99480,	123494,	117099,	23566,	. 2012,	. 1898,	. 2170,
1962,	22895,	123703,	116830,	26877,	. 2301,	. 2129,	. 2397,
1963,	20428,	115587,	113626,	26164,	. 2303,	. 3128 ,	. 3576 ,
1964,	538986,	51182,	37126,	11342,	. 3055 ,	. 2893 ,	. 3268 ,
1965,	121937,	101347,	30029,	17043,	. 5676 ,	. 3171 ,	. 3546 ,
1966,	39877,	92951,	84231,	33340,	. 3958 ,	. 3250 ,	. 3290 ,
1967,	75140,	91204,	82939,	33439,	. 4032 ,	. 4064 ,	. 4110,
1968,	99754,	83066,	72277,	33179,	. 4591 ,	. 4897 ,	. 4444 ,
1969,	50029,	68716,	55235,	27559,	. 4989 ,	. 5464 ,	. 4946 ,
1970,	138562,	60342,	50728,	19685,	. 3880 ,	. 3987 ,	. 3918 ,
1971,	41536,	63499,	43714,	23652,	. 5411 ,	. 5113,	. 4720 ,
1972,	76644,	56168,	47492,	21086,	. 4440 ,	. 4624 ,	. 4074 ,
1973,	108298,	51257,	36751,	19309,	. 5254 ,	. 5085 ,	. 4920 ,
1974,	109736,	54091 ,	36041 ,	17989,	. 4991 ,	. 5042 ,	. 4886 ,
1975,	40741,	55063,	38956,	20773,	. 5332,	. 4946 ,	. 4942 ,
1976,	113036,	49777,	40622 ,	17326,	. 4265,	. 4254 ,	. 4430 ,
1977,	140426,	53273,	33469,	18003,	. 5379,	. 4463 ,	. 4097 ,
1978,	47371,	56715,	37626,	20280,	. 5390,	. 4599,	. 5217,
1979,	11471,	51252,	44396,	22598,	. 5090 ,	. 4956,	. 4790,
1980,	151708,	42085,	34540,	15807,	. 4576,	. 4554 ,	. 4571,
1981,	149997,	51009,	24786,	15403,	. 6214,	. 5018,	. 4890 ,
1982,	152918,	57825,	32588,	21579,	. 6622 ,	. 5456 ,	. 5426 ,
1983,	142410,	66042 ,	39904,	24927,	. 6247,	. 4886 ,	. 4996 ,
1984,	70844,	64032,	43401,	26839,	. 6184,	. 6346 ,	. 5855 ,
1985,	80909,	53476,	41312,	24248,	. 5869 ,	. 5908 ,	. 5519 ,
1986,	159679,	52700,	35000,	18201,	. 5200,	. 5635,	. 5790 ,
1987,	72566,	55107 ,	29283,	17368,	. 5931,	. 4851 ,	. 4948 ,
1988,	456058,	70574,	39050,	21590,	. 5529,	. 5634 ,	. 5259 ,
1989,	108347,	94803,	34503,	21805,	. 6320,	. 4454 ,	. 4251,
1990,	178103,	113488,	90090,	35120,	. 3898 ,	. 4529 ,	. 4710 ,
1991,	70525,	103756,	77943,	33513,	. 4300,	. 4466 ,	. 5046 ,
1992,	354655 ,	104878,	77208,	29341,	. 3800 ,	. 4248 ,	. 4814 ,
1993,	69380,	99566,	55141,	31491,	. 5711,	. 5081 ,	. 5594 ,
1994,	57159,	86598,	74770,	33002,	. 4414 ,	. 5593,	. 5595,
1995,	97449,	71963,	59384,	30467 ,	. 5131,	. 5287,	. 5557,
1996,	49103,	53615,	38869,	22651,	. 5828,	. 6934 ,	. 7307 ,
1997,	285745,	49450,	28523,	14901,	. 5224 ,	. 5881 ,	. 6158,
1998,	126033,	63583,	21296,	20868,	. 9799 ,	. 6210,	. 6569,
1999,	85064,	63537,	44375,	23475,	. 5290,	. 5408 ,	. 5240 ,
2000,	132431,	60972,	43690,	22641,	. 5182 ,	. 5298,	. 5844 ,
2001,	64233,	56006 ,	35861,	19944,	. 5561 ,	. 4905 ,	. 4918 ,
$\begin{aligned} & 2002, \\ & 2003, \end{aligned}$	198412 $97000^{2}$,	51808,	$\begin{aligned} & 34241, \\ & 29000^{3} \end{aligned}$	16945,	. 4949 ,	. 4774 ,	. 4930

Arith.
Mean , 130841, 72111, 52390, 22481, .4768, .4498, .4570, 0 Units, (Thousands), (Tonnes), (Tonnes), (Tonnes),

[^5]Table 7.7.1 Sole,North Sea - input data for catch forecast and linear sensitivity analysis

Label	Value	CV	Label	Value	CV
Number	age		Weight	the st	
N1	96762	0.79	WS1	0.05	0.00
N2	179249	0.21	WS2	0.14	0.04
N3	40227	0.19	wS3	0.18	0.02
N4	39766	0.15	WS 4	0.22	0.01
N5	13844	0.14	WS5	0.26	0.05
N6	14035	0.13	WS6	0.28	0.14
N7	14233	0.14	WS 7	0.30	0.09
N8	902	0.15	WS8	0.35	0.21
N9	956	0.14	WS9	0.40	0.02
N10	958	0.16	WS10	0.44	0.18
H.cons selectivity			Weight in the HC catch		
sH1	0.01	0.45	WH1	0.14	0.07
sH2	0.24	0.11	WH2	0.17	0.06
sH3	0.53	0.17	WH3	0.20	0.03
sH4	0.60	0.08	WH4	0.25	0.09
sH5	0.52	0.10	WH5	0.27	0.06
sH6	0.50	0.19	WH6	0.31	0.08
sH7	0.56	0.32	WH7	0.35	0.10
sH8	0.56	0.10	WH8	0.36	0.17
sH9	0.40	0.19	WH9	0.46	0.15
sH10	0.40	0.19	WH10	0.47	0.09
Natural mortality			Proportion mature		
M1	0.10	0.10	MT1	0.00	0.00
M2	0.10	0.10	MT2	0.00	0.10
M3	0.10	0.10	MT3	1.00	0.10
M4	0.10	0.10	MT 4	1.00	0.00
M5	0.10	0.10	MT5	1.00	0.00
M6	0.10	0.10	MT6	1.00	0.00
M7	0.10	0.10	MT7	1.00	0.00
M8	0.10	0.10	MT8	1.00	0.00
M9	0.10	0.10	MT9	1.00	0.00
M10	0.10	0.10	MT10	1.00	0.00
Relative effort			Year effect for natural mortality		
in HC fishery			$\begin{array}{lll} \text { K03 } & 1.00 & 0.10 \end{array}$		
HFO3	1.00	0.05			
HFO4	1.00	0.05	K04	1.00	0.10
HF05	1.00	0.05	K05	1.00	0.10

```
Recruitment in 2004 and 2005
R04 96762 0.79
R05 96762 0.79
```

Proportion of F before spawning $=.00$
Proportion of M before spawning $=.00$
Stock numbers in 2003 are VPA survivors.
These are overwritten at Age 2
Data from file:E:\wgnssk\Sole IV\FINAL_Truncated_yearrange_NL_CPUE\SOLIV.SEN on

Table 7.7.2 North Sea Sole
Table $\qquad$ . Sole, North Sea

Catch forecast output and estimates of coefficient of variation (CV) from linear analysis.


	Year							
	2003	2004						
Effort relative to 2002 H. cons	1.00	0.00	0.20	0.40	0.73	0.83	1.00	1.17
Est. Coeff. of Variation								
Biomass								
Total 1 January	0.12	0.20	0.20	0.20	0.20	0.20	0.20	0.20
SSB at spawning time	0.08	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Catch weight H.cons	0.11	0.00	0.29	0.20	0.18	0.17	0.17	0.17
Biomass in year.... 2005								
Total 1 January		0.22	0.23	0.24	0.25	0.26	0.26	0.27
SSB at spawning time		0.22	0.23	0.24	0.25	0.26	0.27	0.28

Table 7.7.3 North Sea Sole Detailed forecast tables.

Table $\qquad$ . Sole, North Sea Detailed forecast tables.

```
Forecast for year 2003
```

F multiplier H.cons=1.00
Populations
Catch number

Age	k No.
1	96762
2	179249
3	40227
4	39766
5	13844
6	14035
7	14233
8	902
9	956
10	958


H.Cons	Total
1189	1189
36200	36200
15727	15727
17117	17117
5397	5397
5285	5285
5796	5796
369	369
299	299
300	300
19\|	19\|

Forecast for year 2004
F multiplier H.cons=1.00


Catch number

H. Cons	Total
1189	1189
17453	17453
49979	49979
9259	9259
7713	7713
2793	2793
3133	3133
3027	3027
146	146
364	364
21	21

Table 7.7.4 North Sea Sole Proportional contributions in the short term forecast
Stock numbers of recruits and the ir source for recent year classes used in
predictions, and the relative (\%) contributions to landings and SSB (by weight) of the se year classes

1999	2000	2001	2002	2003
132431	64233	198412	96762	96762
XSA	XSA	RCT3	GM	GM
28.2	22.8	23.8	0.0	
9.0	12.3	58.3	9.2	0.0
30.6	25.3	0.0	0.0	
12.4	11.8	57.2	0.0	0.0
8.2	7.5	41.8	30.9	0.0

GM : geometric mean recruitment
Sole in IV : Year-class \% contribution to



Table 7.8.1 North Sea sole. Input to medium term forecasts


Table 7.8.2 North Sea sole. Stock recruitment parameters and residuals as input to the medium term forecast.
5

> 12.497477365975280
> $2.154233404279291 \mathrm{E}-002$
> 1.000000000000000
> $0.000000000000000 \mathrm{E}+000$
> $0.000000000000000 \mathrm{E}+000$ 45
> $2.052662546702059 \mathrm{E}-001$
> 1.562678481134551
> $-4.756431239142150 \mathrm{E}-001$
> $4.802439103647679 \mathrm{E}-002$
> $-9.373051098788598 \mathrm{E}-001$
> -1.080964555487997
> 2.171862802576497 1.572454349758395E-001
$-8.984272158556442 \mathrm{E}-001$
-1.342210072227557E-001
1.410158760807869E-001
$-6.436692265071371 \mathrm{E}-001$
$2.802687807962195 \mathrm{E}-001$
-9.284390430180494E-001
-3.245218446343638E-001
1.228326198175615E-002
5.536117702997963E-002
-9.268020911887506E-001
7.159798758098417E-002
$2.801139226987012 \mathrm{E}-001$
$-7.721089185872758 \mathrm{E}-001$
$-2.251496245335633$
$3.547415283898164 \mathrm{E}-001$
3.805072334043742E-001
5.214647868929940E-001
3.414155774317137E-001
-3.965365215256408E-001
$-2.734521542639474 \mathrm{E}-001$
$4.116305233321461 \mathrm{E}-001$
$-3.432861845897172 \mathrm{E}-001$
1.543716363815717
$2.593480961236422 \mathrm{E}-002$
5.516554896002036E-001
-1.296546526944599E-001
1.362460864773927
-2.816035656264791E-001
-6.114948818569160E-001
$3.888085278175250 \mathrm{E}-002$
$-7.452382791000617 \mathrm{E}-001$
1.000615140712567
$2.679550141518288 \mathrm{E}-001$
$1.041649560532061 \mathrm{E}-002$
2.136629301299109E-001
$-5.094441831283758 \mathrm{E}-001$
$6.535580753121363 \mathrm{E}-001$

Table 7.9.1. North Sea sole. Estimated biological reference points.

| Reference point | Deterministic | Median | 75th percentile | 95th percentile | Hist SSB < ref pt \% |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| MedianRecruits | 104026 | 104026 | 109042 | 126033 |  |
| MBAL | 0 |  |  |  | 0.00 |
| Bloss | 21296 |  |  |  |  |
| SSB90\%R90\%Surv | 46599 | 41242 | 46502 | 56659 | 58.70 |
| SPR\%ofVirgin | 9.80 | 9.78 | 10.93 | 12.83 |  |
| VirginSPR | 3.05 | 3.07 | 3.49 | 4.18 |  |
| SPRIoss | 0.19 | 0.18 | 0.21 | 0.24 |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| FBar | 0.48 | 0.48 | 0.46 | 0.43 | 52.17 |
| Fmax | 0.34 | 0.34 | 0.29 | 0.24 | 78.26 |
| F0.1 | 0.13 | 0.13 | 0.12 | 0.10 | 100.00 |
| Flow | 0.10 | 0.06 | 0.03 | 0.00 | 100.00 |
| Fmed | 0.33 | 0.31 | 0.28 | 0.24 | 78.26 |
| Fhigh | 0.74 | 0.84 | 0.69 | 0.58 | 0.00 |
| F35\%SPR | 0.13 | 0.13 | 0.12 | 0.10 | 100.00 |
| Floss | 0.75 | 0.76 | 0.67 | 0.56 | 0.00 |
|  |  |  |  |  |  |

## For estimation of Gloss and Floss:

A LOWESS smoother with a span of 1 was used.
Stock recruit data were log-transformed
A point representing the origin was included in the stock recruit data.
For estimation of the stock recruitment relationship used in equilibrium calculations:
A LOWESS smoother with a span of 1 was used.
Stock recruit data were log-transformed
A point representing the origin was included in the stock recruit data.

## Sole in IV

Steady state selection averaged over 3 years.
FBar averaged from age 2 to 6
Number of iterations $=1000$
Random number seed $=-99$
Stock recruitment data Monte Carloed using residuals from the equilibrium LOWESS fit
Data source:
W:IPersonallSarah\ref points sol4\pa_out_final.csv

FishLab DLL used
FLVB32.DLL built on Jun 141999 at 11:53:37
PASoft 4 October 1999
18-9-2003 14:50:08

Figure 7.2.1a North Sea sole trends in mean weight in the catches



Figure 7.2.1b North Sea Sole Catch Number at age







Figure 7.2.2 North Sea sole length at age by sex NOTE: Graph titles should be read as quarter 2 in stead of quarter 1.


Figure 7.2.2 (cont.)


Figure 7.2. 3 North Sea sole sex ratio
Yearly Sex-ratio from 1986 to 2002 - all fleets


Quarter 2 Sex-ratio from 1986 to 2002 - all fleets


Figure 7.2.4 North Sea Sole. Catch weights at age in 2002 by country.


Figure 7.3.1 North Sea sole relative effort and cpue



Figure 7.3.2 North Sea sole: standardized survey indices

Figure 3.7.2 North Sea sole standardized survey indices


Figure 7.4.1.1a. Sole in Subarea IV, SNS Tridens.
Index smoothing: rho = User-defined age weighting







Figure 7.4.1.1.1b. Sole in Subarea IV. SNS Tridens.
Index smoothing: rho= $=2.0000$
User-defined age weighting
Unconstrained parameters





Year

Figure 7.4.1.2a. Sole in Subarea IV. BTS.

SSQ smoothing: lambda $=1.0000$
User-defined age weighting
User-defined age weighting





Figure 7.4.1.2b. Sole in Subarea IV. BTS.
sSQ smoothing:1ambda $=1.0000$
SSQ smoothing: lambda $=1.0000$
User-defined age weighting
Unconstrain User-defined age weighting
Unconstrained parameters



Run performed at 10:14:53 on 15/09/2003

BTS-ISIS: Residuals










Figure 7.4.1.3 North Sea sole: F and SSB in 2002.


## LEGEND:

WG2002 final assessment
run 1: All fleets in full age/year range
run 2: Survey fleets only full age/year range
run 3: BTS only full year/age range
run 4: $\quad$ SNS only full year/age range
run 5: Commercial fleets only
run 6: $\quad$ Survey only age range $1-11$
run 7: Survey only 10+ group
10+: NL comm, $10+$ group, power age 1
15+: $\quad$ NL comm, $15+$, power age 1

Figure 7.4.1.4 North Sea sole catchability plots single fleet XSA runs, shrinkage 1.5.
Fleet 1 BTS Isis


Fleet 2 SNS Tridens


Fleet 3 NL commercial CPUE


Figure 7.4.1.5 Weighting of the tuning fleets (XSA without commercial fleets)

10+group $\quad q$ independent >=7
shrinkage $=0.5$ over 5 years last 5 ages


Figure 7.4.1.6 North Sea sole combined fleet XSA catchability residuals
Fleet 1 BTS - Isis


Fleet 2 SNS Tridens


Fleet 3 NL commercial CPUE


Figure 7.4.1.7 North Sea Sole Restospective patterns different setting shrinkage
Shrinkage 2.0 Fbar 2-6


Shrinkage 1.0 Fbar 2-6


Figure 7.4.2.1 North Sea sole weighting of survey fleets and shrinkage in final XSA.


Figure 7.4.2.2 North Sole Retrospective analysis




Figure 7.7.1 North Sea Sole Short term forecast

Figure Sole,North Sea. Short term forecast


Data from file:E:\wgnssk\Sole IVYFINAL_Truncated_yearrange_NL_CPUE\SOLIV.SEN on

Figure 7.7.2 North Sea Sole sensitivity analysis

Figure Sole,North Sea. Sensitivity analysis of short term forecast.


Data from file:E:\wgnssk\Sole IV\FINAL_Truncated_yearrange_NL_CPUE\SOLIV.SEN on

Figure 7.7.3 North Sea Sole probability profiles

Figure Sole,North Sea. Probability profiles for short term forecast.


Figure 7.8.1a North Sea Sole Medium term plots at $\mathrm{F}=0.40$

Sole, North Sea. Medium term aralysis, .84*Fsq. Number of simulations=500.


Figure 7.8.1b North Sea Sole Medium term plots at $\mathrm{F}=0.56$

Sole, Horth Sea. Medium term aralysis, $1.17^{\star}$ Fsq. Number of simulations=500.


Figure 7.8.1c North Sea Sole Medium term plots at $\mathrm{F}=0.35$.

Sole, North Sea. Medium term aralysis, .73*Fsq. Number of simulations=500.


Figure 7.8.1d North Sea Sole Medium term fase plot after 25 years.


Figure 7.9.1. North Sea sole. Biological reference points.


Figure 7.9.2. North Sea sole. Basis for estimation of biological reference points.





The assessment of sole in sub-area VIId is presented here as an update assessment. All the relevant biological and methodological information can be found in the Stock Annex dealing with this stock. Here, only the basic input and output from the assessment model will be presented.

### 8.1 The Fishery

There is a directed fishery for sole by small inshore vessels using trammel nets and trawls, who fish mainly along the English and French coasts. In addition there is a directed fishery by English and Belgian beam trawlers. A third fleet is made up of French offshore trawlers fishing for mixed demersal species and taking sole as a by-catch.

A more detailed description of the fishery can be found in the Stock Annex

### 8.1.1 ACFM advice applicable to 2002 and 2003

Both in 2001 and in 2002, ACFM considered the stock to be within safe biological limits. ACFM recommended that fishing mortality should be maintained below the proposed $\mathrm{F}_{\mathrm{pa}}$, corresponding to landings of less than 5200t in 2002 and of less than 5400t in 2003.

### 8.1.2 Management applicable in 2002 and 2003

The TAC for sole was set at 5200t in 2002 and 5400 t in 2003.

Minimum mesh size for trawling is 80 mm . Under the EU legislation, for fisheries targeting sole in NEACF Regions 1 and 2 with static gears, the minimum mesh size should be 100 mm . Derogation for fisheries targeting sole in ICES division VIId and IVc permit to use static gears with a minimum mesh size of 90 mm .

The MLS for sole is 24 cm .

### 8.1.3 The fishery in 2002

The 2002 landings used by the Working Group were 4730 t which is $9 \%$ below the agreed TAC of 5200 t and around the catch predicted at status quo fishing mortality in 2002 ( $4860 t$ ). The contribution of Belgium, France and the UK to the landings in 2002 is $30 \%, 51 \%$ and $18 \%$ respectively (Table 8.2.1).

### 8.2 Data available

### 8.2.1 Landings

Landing data reported to ICES are shown in Table 8.2.1 together with the total landings estimated by the Working Group. There is misreporting by beam trawlers fishing from adjacent areas. This has been taken into account for the year 2002 and a correction for a longer time series will be made next year (See also the section on sole in VIIe in the WGSSDS for this matter). There is also a considerable under-reporting by small vessels, which take up to $60 \%$ of the landings in the eastern Channel, however, it has not been possible to quantify the level of these for inclusion in the assessment.

There are no discards included in the assessment, but in general discards for sole are minor.

### 8.2.2 Age compositions

Age compositions of the landings are presented in Table 8.2.2.

### 8.2.3 Weight at age

Weight at age in the catch is presented in Table 8.2.3 and weight at age in the stock in Table 8.2.4. The procedure for calculating mean weights is described in the Stock Annex.

### 8.2.4 Maturity and natural mortality

Maturity and natural mortality are assumed at fixed values and are described in the Stock Annex.

### 8.2.5 Catch, effort and research vessel data

Survey and commercial data used for calibration of the assessment are presented in Table 8.2.5. Additional information that is used for recruitment estimation is presented in Table 8.4.1.

### 8.3 Catch at age analysis

Catch at age analysis was carried out according to the specifications in the Stock Annex. The model used was XSA. Results of the analysis are presented in Table 8.3.1 (diagnostics), 8.3.2 (fishing mortality at age), 8.3.3 (population numbers at age), and 8.3 .4 (stock summary). The stock summary is also shown in Figure 8.3.1 and the historical performance of the assessment is shown in Figure 8.3 .2 (a very noisy pattern!).

### 8.4 Recruitment estimates

Recruitment estimation was carried out according to the specifications in the Stock Annex. The model used was RCT3. Input to the RCT3 model is presented in Table 8.4.1. Results are presented in Table 8.4.2 and Table 8.4.3. Average recruitment in the period 1982-2000 was 23 million (geometric mean) 1-year-old-fish. Year class strength estimates used for short term prognosis are summarized in the text table below.

Year class	At age in 2003	XSA	GM 82-99	RCT3	Accepted Estimate
$\mathbf{2 0 0 1}$	2	107294	20090	$\underline{36025}$	RCT3
$\mathbf{2 0 0 2}$	1	-	$\underline{23267}$	23830	GM 1982-00
$\mathbf{2 0 0 3 ~ \& ~ s u b s e q u e n t ~}$	recruits	-	$\underline{23267}$	-	GM 1982-00

### 8.5 Short term prognosis

The short term prognosis was carried out according to the specifications in the stock annex. Input to the WGFRANSW model is presented in Table 8.5.1. Results are presented in Tables 8.5.2 and 8.5.3.

### 8.6 Comments

- This is an update assessment, using the same parameters as last year.
- The year classes 1998 to 2000 are estimated to be above average and explain the increase in SSB.
- There is a tendency to underestimate fishing mortality and overestimate SSB.
- The discrepancy between the high XSA estimate and the RCT3 estimate of the 2001 year class is partly caused by F shrinkage pulling up the XSA estimate.
- The historical performance of this assessment is very noisy (Figure 8.3.2).
- Uncertainties in the current assessment are the under-reporting by important segments of the inshore fleet, since this fleet takes a major part of the landings of sole in VIId, and the misreporting of beam trawl fleets fishing in adjacent areas (it is expected that the latter will be taken into account for the next assessment)

Workplan for benchmark.

- Analyse the consistency of the tuning fleets by individual retrospective analysis
- Consider redefinition of the current tuning fleets (prior to the Working Group) and/or the integration of new ones like the UK beam trawlers that have been provided for this assessment but not used.
- In depth analysis of possible effects of under- and misreporting

The next benchmark assessment for this stock is foreseen in 2005

Table 8.2.1 Sole in VIId. Nominal landings (tonnes) as officially reported to ICES and used by the Working Group


[^6]
## Table 8.2.2 Sole in VIId. Catch numbers at age (kg)

Run title : Sole in VIId (run 09/2003)
At 11/09/2003 11:50
Table 1 Catch numbers at age
YEAR

Numbers*10**-3

AGE

1	155
2	2625
3	5256
4	1727
5	570
6	653
7	549
8	240
9	122
10	83
$+g p$	202
TOTALNUM	12182
TONSLAND	3190
SOPCOF \%	97


Table 1 C	Catch numbers at age		Numbers*10**-3				1989	1990	1991	1992
YEAR	1983	1984	1985	1986	1987	1988				
AGE										
1	0	24	49	49	9	95	163	1271	383	106
2	852	1977	3693	1264	3284	2227	3704	3092	7381	4082
3	3452	3157	5211	5377	3827	7393	3424	6326	3796	8967
4	3930	2610	1646	3273	3417	1648	4842	1257	4316	1886
5	897	1900	1027	925	2166	1219	1530	1654	585	2065
6	735	742	1860	790	1064	910	943	329	1003	295
7	627	457	144	1087	1110	400	651	432	256	382
8	333	317	158	156	828	268	218	293	257	140
9	108	136	156	192	114	280	181	138	272	184
10	89	99	69	216	163	84	270	139	95	98
+gp	193	238	128	381	469	284	329	556	395	237
TOTALNUM	11216	11657	14141	13710	16451	14808	16255	15487	18739	18442
TONSLAND	3458	3575	3837	4024	4974	3982	4187	4060	4382	4142
SOPCOF \%	99	99	100	100	100	100	100	99	100	100
Table 1 C	h numbe	at age		Num	* $10{ }^{* *}$-3					
YEAR	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
AGE										
1	85	34	683	11	30	41	182	145	184	707
2	5225	783	2974	2055	1740	1814	3512	3787	6488	6985
3	6716	6660	4558	7934	6444	5929	9126	5368	6615	7536
4	5735	6152	5003	3081	5228	2890	3543	4914	1760	3777
5	1057	3514	3090	3381	2157	1760	1406	1227	2671	1418
6	645	613	2052	1896	1840	651	945	577	798	659
7	171	613	394	1332	992	654	379	376	319	298
8	206	112	310	288	841	494	731	163	159	131
9	123	154	95	351	255	394	379	380	65	97
10	67	94	111	112	199	251	209	170	102	57
+gp	145	278	247	375	298	354	389	292	304	197
TOTALNUM	20175	19007	19517	20816	20024	15232	20801	17399	19465	21862
TONSLAND	4511	4643	4583	5025	4983	3694	4238	3649	4350	4730
SOPCOF \%	100	100	100	100	98	100	93	94	100	100

## Table 8.2.3 Sole in VIId. Catch weights at age (kg)

Run title : Sole in VIId (run 09/2003)
At 11/09/2003 11:50

Table 2 Catch weights at age (kg)

YEAR		1982
AGE		
	1	0.102
	2	0.171
	3	0.225
	4	0.312
	5	0.386
	6	0.428
	7	0.439
	8	0.509
	9	0.502
	10	0.463
	$+g p$	0.673
SOPCOFAC	0.971	


Catch weights at age (kg)										
YEAR	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
AGE										
1	0.000	0.100	0.090	0.135	0.095	0.102	0.106	0.121	0.114	0.103
2	0.173	0.178	0.182	0.179	0.176	0.152	0.156	0.180	0.161	0.153
3	0.230	0.234	0.230	0.212	0.236	0.226	0.193	0.240	0.211	0.202
4	0.302	0.314	0.281	0.306	0.295	0.278	0.274	0.291	0.267	0.267
5	0.404	0.380	0.368	0.362	0.353	0.358	0.295	0.351	0.349	0.291
6	0.436	0.436	0.394	0.385	0.407	0.407	0.357	0.343	0.390	0.399
7	0.435	0.417	0.516	0.435	0.412	0.458	0.391	0.469	0.415	0.386
8	0.524	0.538	0.543	0.519	0.479	0.509	0.469	0.463	0.426	0.455
9	0.537	0.529	0.594	0.501	0.463	0.551	0.516	0.489	0.433	0.445
10	0.583	0.565	0.595	0.524	0.538	0.559	0.538	0.519	0.477	0.461
+gp	0.628	0.714	0.801	0.603	0.619	0.666	0.705	0.567	0.559	0.558
SOPCOFAC	0.991	0.988	0.998	1.004	1.000	0.997	0.997	0.995	1.000	1.001
Table 2 Catch weights at age (kg)										
YEAR	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
AGE										
1	0.085	0.099	0.127	0.142	0.139	0.133	0.133	0.146	0.111	0.120
2	0.148	0.151	0.174	0.167	0.155	0.160	0.153	0.143	0.154	0.162
3	0.197	0.188	0.180	0.179	0.189	0.174	0.193	0.175	0.211	0.203
4	0.245	0.236	0.233	0.230	0.233	0.236	0.219	0.223	0.280	0.252
5	0.331	0.290	0.257	0.272	0.291	0.285	0.264	0.335	0.286	0.316
6	0.374	0.354	0.332	0.323	0.341	0.341	0.285	0.379	0.329	0.374
7	0.528	0.380	0.356	0.360	0.385	0.379	0.295	0.426	0.361	0.376
8	0.540	0.505	0.380	0.403	0.401	0.412	0.347	0.431	0.361	0.390
9	0.505	0.492	0.480	0.436	0.495	0.480	0.363	0.387	0.480	0.467
10	0.742	0.496	0.490	0.461	0.469	0.432	0.379	0.461	0.488	0.420
+gp	0.647	0.616	0.642	0.585	0.643	0.604	0.545	0.684	0.535	0.530
SOPCOFAC	1.001	1.000	1.000	1.000	0.978	1.000	0.935	0.940	1.000	1.000

## Table 8.2.4 Sole in VIId. Stock weights at age (kg)

Run title : Sole in VIId (run 09/2003)

At 11/09/2003 11:50

Table 3 Stock weights at age (kg)

YEAR		1982
AGE		
1	0.059	
2	0.114	
3	0.167	
4	0.217	
5	0.263	
6	0.306	
7	0.347	
8	0.384	
9	0.418	
10	0.450	
$+g p$	0.530	


Stock weights at age (kg)										
YEAR	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
AGE										
1	0.070	0.067	0.065	0.070	0.072	0.050	0.050	0.050	0.050	0.050
2	0.135	0.131	0.129	0.136	0.139	0.145	0.115	0.139	0.138	0.144
3	0.197	0.192	0.192	0.198	0.203	0.223	0.184	0.231	0.224	0.199
4	0.255	0.249	0.254	0.256	0.262	0.268	0.272	0.302	0.278	0.275
5	0.309	0.304	0.315	0.309	0.318	0.365	0.324	0.390	0.377	0.301
6	0.359	0.355	0.376	0.358	0.370	0.424	0.336	0.363	0.382	0.448
7	0.406	0.403	0.436	0.403	0.417	0.476	0.469	0.464	0.408	0.398
8	0.448	0.448	0.495	0.443	0.461	0.494	0.494	0.515	0.441	0.449
9	0.487	0.490	0.554	0.480	0.500	0.566	0.559	0.561	0.468	0.416
10	0.522	0.529	0.611	0.512	0.536	0.636	0.519	0.497	0.444	0.524
+gp	0.601	0.627	0.780	0.576	0.616	0.754	0.712	0.559	0.610	0.521
Table 3	Stock weights at age (kg)									
YEAR	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
AGE										
1	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050
2	0.131	0.111	0.126	0.155	0.141	0.141	0.131	0.123	0.125	0.138
3	0.188	0.159	0.128	0.175	0.167	0.160	0.159	0.148	0.179	0.190
4	0.243	0.217	0.220	0.259	0.221	0.233	0.191	0.209	0.235	0.237
5	0.356	0.278	0.234	0.286	0.265	0.296	0.275	0.402	0.263	0.289
6	0.363	0.325	0.338	0.308	0.318	0.368	0.305	0.438	0.277	0.335
7	0.531	0.371	0.365	0.367	0.372	0.353	0.366	0.395	0.324	0.364
8	0.543	0.536	0.335	0.395	0.402	0.351	0.340	0.552	0.327	0.336
9	0.546	0.483	0.633	0.435	0.559	0.440	0.448	0.444	0.423	0.479
10	0.782	0.476	0.381	0.467	0.492	0.365	0.348	0.417	0.408	0.498
+gp	0.548	0.631	0.635	0.636	0.647	0.559	0.494	0.685	0.539	0.585

Table 8.2.5. Sole in VIId. Tuning fleets
SOLE 7d,TUNING

BEL BT														
1980	2002													
1	1	0	1											
2	15													
12.8	69.3	46.1	298.7	189.6	57.4	24.7	10.3	5.1	8.6	3.1	5.5	2.4	2.6	37.9
19	640.7	161.4	82.1	312.8	229.6	44.7	32.9	33.1	6.9	9	18.4	9.3	0.8	51.9
23.9	148.7	980.9	128	93.4	155.9	112.6	38.8	60.1	15.2	14	7.4	12.5	5.9	54.
23.6	190.4	373	818.9	65.5	54	81.7	73.2	23.5	20.2	27	5	1	7.1	33
28	603.8	347.2	311.2	436	53.7	38.5	104.9	59.9	25.4	23.2	25.3	9	8.2	42.
25.3	382.9	612.1	213	209.1	260.2	58.2	34.1	48	31	16.9	19.6	9.2	7.7	21.3
23.4	215	1522.3	675	233.7	170.6	194	30.1	53.1	64.2	32.6	12.7	2.6	43	29.3
27.1	843.6	451	739.3	724.4	344.5	232.4	152.7	25.3	86.5	56	56.1	54.5	9.3	109
38.5	131.6	990.4	243.3	362.9	216.7	111.8	41.8	73.8	47	9.8	22.3	35.8	8.6	25.3
35.7	47.5	512.6	543.6	748	276.6	225	53.1	36.4	12.7	4.7	0	0	4.7	27
30.3	1011.4	1375.2	218.1	366.2	85.3	198.2	65.5	39	22.4	22.2	25.4	2.8	24	18.2
24.3	320.2	1358.6	710.1	125.6	283.9	60.6	56.2	21	19.8	22.2	18	5.6	0.3	21.
22	499.3	1613.7	523.3	477.7	36.9	67.9	28.2	31.7	11.2	11.4	6	5.7	3.2	16
20	1654.5	1520.4	889.5	215.5	78.5	38.9	40.8	37.8	11.3	8.7	13.3	1.5	3	22
22.2	196.9	1183.2	1598.5	912.9	201	160	39.5	33.8	46.2	16	10.2	14.9	8.8	18.
24.2	206.2	542.7	671.3	590.9	409.4	100.6	40.3	25.4	14.2	9.3	5	11.9	3.4	
25	284.1	975.5	628.7	560.1	354.3	316.8	68.3	77.6	34.2	26.2	15.8	10.8	1.1	4.2
30.9	196	1282.3	966.1	500.2	422.3	301.1	144.7	56.6	29.3	25.8	12.1	12.6	3.4	1.4
18.1	254.1	450.3	375.4	175.1	54.8	116.1	95.9	59.1	12.4	16	7.7	2.9	4.4	19.
21.4	367.7	1043.6	640.2	308.3	94.6	48.7	90.6	68.3	28.2	44.7	22.9	4.7	8.5	11.3
30.5	569.1	1170.7	1225.1	239.1	139.4	68.4	66.6	74.4	46	26.9	7.6	6.6	0.3	1.9
32.4	1055.5	1385.4	375	617.9	351.1	105.4	31.6	15.2	18.7	35.5	11.6	6.9	12.3	4.6
33.7	1267.7	1612.6	804.3	286.3	122.4	95.7	45.2	24.8	28.6	15.8	13.8	8	6	2.
UK BT														
1981	2002													
1	1	0	1											
2	15													
2.3	41.5	31.2	6.7	25.7	8.5	1.9	2.3	1.6	0.3	0.4	0.8	0.1	0	2.8
4.2	17.2	137.2	10.1	3.3	14.1	1.8	1.8	1.9	4.5	1.1	0	0.1	0.1	2.
2.7	18.5	38.4	118.6	2	2.8	6.9	4.4	0.3	0	0	0	0	1.7	1.
2.9	42.6	34.8	26.1	30.1	2.6	1.1	0.7	0.6	0.4	0.1	0.1	0.1	0.3	1.5
9.1	12.8	295	43.8	21.9	79.8	0.3	0.1	4.9	0	0.1	0.5	1.8	0.5	0.5
12.9	38.4	185.4	128.7	35.9	36.9	50.5	1.5	3.1	6.7	3.3	3.6	2	2.2	6.
24.3	362	152.3	206.4	142.6	26.8	21	54.1	2.1	0.6	4.8	1.5	2.2	4.7	3.5
19	145.2	402.6	81.8	94.4	61.4	13.4	17.6	25.6	2.6	0.4	6.7	7.1	0	0.3
33.3	310	186.9	369.7	44	81.7	60.5	12.7	10.8	42.6	2.5	1.1	5	6.8	34
33.4	199.8	662.3	97.2	146.7	29.1	34.2	34.7	8.7	15	48.6	4.1	1.1	6.8	17.
30.4	488.9	200.3	287.8	12.3	45.9	7.5	11	16.3	4.1	2.7	12.7	0.4	0	7.4
37.1	332.3	684.6	105.6	215.2	15	26.1	8.2	19	6.6	3	1.9	4.2	0.1	3.3
29.3	272.1	358.5	357.3	56.9	86.8	8.6	17.7	7.4	5	5.5	1.9	2.1	3.5	4.6
28.1	49.6	394	217.4	170	41.6	68.3	6.7	15.8	4.9	5.9	5.5	3.6	2.4	13.9
28.6	229.9	136.3	291.6	140.5	124.3	24.4	51.3	7.2	13.1	2.6	5.9	6.1	1.2	10.8
39.1	446	376	118.1	251.3	127.7	101.8	26.3	50.5	6.3	13.5	6.3	8	5.4	18.
39.6	427.3	504.4	239.9	64.2	180.2	75.3	71	16.6	33.1	4	10.4	1.7	5.4	12.
33.5	527.5	337.9	185.8	125.1	41.7	94.1	54.3	43	10.8	22.9	4	10.2	2.8	17.
27.2	350.3	613.7	214.2	87.8	64.8	25.3	54	26.7	14.8	7.1	7.7	1.4	5.1	8.5
29	298.9	342	320.9	102.1	47.5	33.1	12.7	39.8	17.9	10.6	4.4	7.6	1.1	14.3
26	722.3	631.1	219.6	236.2	92.8	39.5	42	12.5	29.7	25.8	10.8	3	6.6	10
33.8	732.3	964.9	479.4	154.5	117	49.9	39.6	13	7	11.1	5.1	5.2	1	6.2
UK BTS														
1988	2002													
1	1	0.5	0.75											
1	6													
1	8.2	14.2	9.9	0.8	1.3	0.6								
1	2.6	15.4	3.4	1.7	0.6	0.2								
1	12.1	3.7	3.4	0.7	0.8	0.2								
1	8.9	22.8	2.2	2.3	0.3	0.5								
1	1.4	12	10	0.7	1.1	0.3								
1	0.5	17.5	8.4	7	0.8	1								
1	4.8	3.2	8.3	3.3	3.3	0.2								
1	3.5	10.6	1.5	2.3	1.2	1.5								
1	3.5	7.3	3.8	0.7	1.3	0.9								
1	19	7.3	3.2	1.3	0.2	0.5								
1	2	21.2	2.5	1	0.9	0.1								
1	28.1	9.4	13.2	2.5	1.7	1.3								
1	10.49	22.03	4.15	4.24	1.03	0.58								
1	9.09	21.01	8.36	1.2	1.91	0.54								
1	31.76	11.42	5.42	3.45	0.27	0.71								
YFS														
1987	2002													
1	1	0.5	0.75											
1	1													
1	0.66													
1	0.94													
1	0.36													
1	1.15													
1	1.87													
1	0.8													
1	0.62													
1	1.59													
1	1.46													
1	0.34													
1	0.52													
1	0.56													
1	0.85													
1	1.28													
1	0.84 1.93													




## Table 8.3.1 Sole in VIId. Diagnostics

Lowestoft VPA Version 3.1
12/09/2003 13:53
Extended Survivors Analysis
Sole in VIId (run 09/2003)
CPUE data from file e:Iwgnsskltun2.txt
Catch data for 21 years. 1982 to 2002 . Ages 1 to 11 .

Fleet	First	Last	First	Last	Alpha	Beta
	year	year	age	age		
BEL BT	1986	2002	2	10	0	1
UK BT	1986	2002	2	10	0	1
UK BTS	1988	2002	1	6	0.5	0.75
YFS	1987	2002	1	1	0.5	0.75

Time series weights :
Tapered time weighting not applied

Catchability analysis :
Catchability independent of stock size for all ages
Catchability independent of age for ages $>=7$

Terminal population estimation :
Survivor estimates shrunk towards the mean $F$ of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk $=.500$

Minimum standard error for population
estimates derived from each fleet $=.300$
Prior weighting not applied

Tuning converged after 36 iterations

Regression weights

1	1	1	1

Fishing mortalities

Age	1993	1994	1995	1996
	1	0.005	0.001	0.035
	2	0.191	0.054	0.136
	3	0.33	0.352	0.128
	4	0.416	0.503	0.431
	5	0.335	0.429	0.451
6	0.246	0.295	0.535	
	7	0.274	0.346	0.279
	8	0.309	0.259	0.263
	9	0.351	0.356	0.377
	10	0.272	0.439	0.416
				0.301
				0.689


1997	1998	1999
0.001	0.002	0.006
0.105	0.073	0.243
0.638	0.539	0.544
0.792	0.584	0.638
0.793	0.597	0.556
0.52	0.517	0.662
0.452	0.311	0.571
0.556	0.377	0.6
0.422	0.486	0.492
0.474	0.845	0.457


2000	2001
0.004	0.005
0.156	0.218
0.626	0.395
0.563	0.379
0.418	0.605
0.412	0.467
0.532	0.373
0.456	0.398
0.64	0.294
0.378	0.309

2002
0.006
0.006
0.215
0.375
0.364
0.528
0.257
0.282
0.23
0.4
0.403

## Table 8.3.1 Sole in VIId. Continued

XSA population numbers (Thousands)
AGE
YEAR
12
$3 \quad 4$ 5 6 7 8 9 10

1993	$1.74 \mathrm{E}+04$	$3.16 \mathrm{E}+04$	$2.51 \mathrm{E}+04$	$1.77 \mathrm{E}+04$	$3.90 \mathrm{E}+03$	$3.11 \mathrm{E}+03$	$7.51 \mathrm{E}+02$	$8.14 \mathrm{E}+02$	$4.37 \mathrm{E}+02$	$2.95 \mathrm{E}+02$
1994	$2.72 \mathrm{E}+04$	$1.57 \mathrm{E}+04$	$2.36 \mathrm{E}+04$	$1.64 \mathrm{E}+04$	$1.06 \mathrm{E}+04$	$2.52 \mathrm{E}+03$	$2.20 \mathrm{E}+03$	$5.17 \mathrm{E}+02$	$5.40 \mathrm{E}+02$	$2.78 \mathrm{E}+02$
1995	$2.06 \mathrm{E}+04$	$2.46 \mathrm{E}+04$	$1.34 \mathrm{E}+04$	$1.50 \mathrm{E}+04$	$8.96 \mathrm{E}+03$	$6.24 \mathrm{E}+03$	$1.70 \mathrm{E}+03$	$1.41 \mathrm{E}+03$	$3.61 \mathrm{E}+02$	$3.43 \mathrm{E}+02$
1996	$2.03 \mathrm{E}+04$	$1.80 \mathrm{E}+04$	$1.94 \mathrm{E}+04$	$7.82 \mathrm{E}+03$	$8.83 \mathrm{E}+03$	$5.16 \mathrm{E}+03$	$3.69 \mathrm{E}+03$	$1.16 \mathrm{E}+03$	$9.82 \mathrm{E}+02$	$2.36 \mathrm{E}+02$
1997	$3.01 \mathrm{E}+04$	$1.84 \mathrm{E}+04$	$1.44 \mathrm{E}+04$	$1.00 \mathrm{E}+04$	$4.14 \mathrm{E}+03$	$4.77 \mathrm{E}+03$	$2.87 \mathrm{E}+03$	$2.07 \mathrm{E}+03$	$7.79 \mathrm{E}+02$	$5.55 \mathrm{E}+02$
1998	$1.89 \mathrm{E}+04$	$2.72 \mathrm{E}+04$	$1.50 \mathrm{E}+04$	$6.87 \mathrm{E}+03$	$4.12 \mathrm{E}+03$	$1.70 \mathrm{E}+03$	$2.57 \mathrm{E}+03$	$1.65 \mathrm{E}+03$	$1.08 \mathrm{E}+03$	$4.63 \mathrm{E}+02$
1999	$3.06 \mathrm{E}+04$	$1.71 \mathrm{E}+04$	$2.29 \mathrm{E}+04$	$7.90 \mathrm{E}+03$	$3.46 \mathrm{E}+03$	$2.05 \mathrm{E}+03$	$9.15 \mathrm{E}+02$	$1.70 \mathrm{E}+03$	$1.03 \mathrm{E}+03$	$5.99 \mathrm{E}+02$
2000	$3.86 \mathrm{E}+04$	$2.75 \mathrm{E}+04$	$1.21 \mathrm{E}+04$	$1.20 \mathrm{E}+04$	$3.77 \mathrm{E}+03$	$1.80 \mathrm{E}+03$	$9.58 \mathrm{E}+02$	$4.68 \mathrm{E}+02$	$8.45 \mathrm{E}+02$	$5.68 \mathrm{E}+02$
2001	$4.22 \mathrm{E}+04$	$3.48 \mathrm{E}+04$	$2.13 \mathrm{E}+04$	$5.87 \mathrm{E}+03$	$6.19 \mathrm{E}+03$	$2.25 \mathrm{E}+03$	$1.08 \mathrm{E}+03$	$5.09 \mathrm{E}+02$	$2.68 \mathrm{E}+02$	$4.03 \mathrm{E}+02$
2002	$1.19 \mathrm{E}+05$	$3.80 \mathrm{E}+04$	$2.53 \mathrm{E}+04$	$1.30 \mathrm{E}+04$	$3.63 \mathrm{E}+03$	$3.06 \mathrm{E}+03$	$1.27 \mathrm{E}+03$	$6.71 \mathrm{E}+02$	$3.09 \mathrm{E}+02$	$1.81 \mathrm{E}+02$

Estimated population abundance at 1st Jan 2003
$0.00 \mathrm{E}+00 \quad 1.07 \mathrm{E}+05 \quad 2.77 \mathrm{E}+04 \quad 1.58 \mathrm{E}+04 \quad 8.17 \mathrm{E}+03 \quad 1.94 \mathrm{E}+03 \quad 2.14 \mathrm{E}+03 \quad 8.70 \mathrm{E}+02 \quad 4.83 \mathrm{E}+02 \quad 1.88 \mathrm{E}+02$
Taper weighted geometric mean of the VPA populations:
$2.59 \mathrm{E}+042.13 \mathrm{E}+041.61 \mathrm{E}+048.63 \mathrm{E}+034.55 \mathrm{E}+032.65 \mathrm{E}+031.54 \mathrm{E}+039.20 \mathrm{E}+025.69 \mathrm{E}+023.50 \mathrm{E}+02$

Standard error of the weighted Log(VPA populations) :

0.5216	0.3899	0.3681	0.4327	0.43	0.4489	0.4699	0.4577	0.4253	0.3871

Log catchability residuals.

Fleet : BEL BT

Age		1986	1987	1988	1989	1990	1991	1992			
	1	No data for this fleet at this age									
	2	0.17	0.71	-0.6	-2.43	1.29	-0.61	0.12			
	3	0.65	-0.3	-0.52	-0.1	0.03	0.77	0.04			
	4	0.13	0.29	-0.82	-0.46	-0.21	0.06	0.31			
	5	-0.22	0.47	-0.35	0.84	-0.15	-0.17	0.21			
	6	-0.15	0.84	-0.25	0.24	-0.29	0.69	-0.57			
	7	-0.12	0.49	-0.14	0.27	0.48	-0.15	-0.21			
	8	-0.23	0.09	-0.87	-0.28	-0.25	-0.06	-0.42			
	9	0.26	-0.06	-0.39	-0.43	0.1	-0.55	-0.01			
	10	0.19	1.2	0.79	-1.49	-0.14	0.22	-0.38			
Age		1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
	1	No data for this fleet at this age									
	2	1.45	-0.15	-0.6	-0.01	-0.62	-0.23	0.52	0.08	0.43	0.49
	3	0.19	-0.09	-0.36	-0.12	0.28	-0.32	-0.06	0.37	-0.19	-0.26
	4	-0.08	0.52	-0.38	0.22	0.3	0.18	0.43	0.27	-0.34	-0.42
	5	-0.2	0.19	-0.16	-0.2	0.35	-0.24	0.31	-0.44	0.03	-0.28
	6	-0.76	0.31	0.09	0.13	0.18	-0.29	-0.04	0.02	0.68	-0.82
	7	-0.17	0.1	-0.23	0.2	0.18	-0.19	-0.08	-0.15	0.03	-0.32
	8	-0.19	0.11	-0.96	-0.26	-0.18	0.09	-0.06	0.5	-0.41	-0.45
	9	0.38	-0.05	-0.03	0.12	-0.2	0.08	0.11	0.1	-0.55	-0.2
	10	-0.47	0.97	-0.52	0.82	-0.49	-0.48	-0.25	-0.1	-0.75	0.48

Mean $\log$ catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age	2	3	4	5	6	7	8	9	10
Mean Log q	-7.2516	-5.7812	-5.6593	-5.4848	-5.7452	-5.6042	-5.6042	-5.6042	-5.6042
S.E(Log q)	0.8824	0.3525	0.3767	0.344	0.4797	0.2481	0.4215	0.2839	0.706

## Table 8.3.1 Sole in VIId. Continued

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

Age	Slope		t-value	Intercept	RSquare	No Pts	Reg s.e	Mean Q
	2	0.89	0.218	7.56	0.21	17	0.81	-7.25
	3	1.22	-0.759	4.93	0.45	17	0.43	-5.78
	4	0.86	0.759	6.15	0.65	17	0.33	-5.66
	5	0.98	0.123	5.56	0.62	17	0.35	-5.48
	6	0.86	0.596	6.04	0.54	17	0.42	-5.75
	7	0.85	1.481	5.88	0.86	17	0.2	-5.6
	8	1.04	-0.232	5.79	0.65	17	0.38	-5.83
	9	0.88	0.893	5.76	0.78	17	0.24	-5.68
	10	5.8	-2.235	4.37	0.01	17	3.66	-5.63

Fleet : UK BT

Age		1986	1987	1988	1989	1990	1991	1992			
	1	No data for this flee	this ag								
	2	-0.58	0.35	0.58	-0.11	-0.06	-0.03	-0.44			
	3	0.27	-0.15	0.42	0.09	0.33	-0.24	-0.21			
	4	0.25	0.31	-0.02	0.41	0.07	0.12	-0.63			
	5	-0.05	0.39	0.44	-0.48	0.27	-1.28	0.33			
	6	0.06	-0.46	0.34	0.24	-0.32	-0.21	-0.85			
	7	0.48	-0.45	-0.2	0.38	-0.02	-1.11	-0.34			
	8	-1.28	0.52	0.32	-0.29	0.37	-0.57	-0.82			
	9	-0.64	-1.09	0.61	-0.22	-0.15	0.33	0.3			
	10	-0.13	-2.31	-0.05	1.14	0.71	-0.23	-0.08			
Age		1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
	1	No data for this fleet at this age									
	2	-0.36	-1.39	-0.29	0.37	0.29	0.26	0.6	-0.14	0.65	0.31
	3	-0.51	-0.3	-0.78	-0.39	0.23	-0.09	0.29	0.32	0.37	0.35
	4	-0.19	-0.53	-0.2	-0.71	-0.16	0.05	0.28	0.17	0.53	0.25
	5	-0.47	-0.29	-0.32	-0.01	-0.51	0.25	0.26	0.19	0.73	0.54
	6	0.1	-0.36	-0.13	-0.2	0.23	-0.04	0.49	0.13	0.71	0.28
	7	-0.71	0.36	-0.46	-0.03	-0.1	0.33	0.38	0.52	0.62	0.38
	8	-0.05	-0.55	0.46	-0.31	0.21	0.26	0.53	0.25	1.44	0.76
	9	-0.29	0.3	-0.11	0.59	-0.32	0.5	0.28	0.88	0.82	0.5
	10	-0.32	-0.16	0.58	0.03	0.73	0.12	0.22	0.36	1.28	0.42

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age	2	3	4	5	6	7	8	9	10
Mean Log q	-7.626	-6.9103	-6.8445	-6.9242	-6.8886	-6.9536	-6.9536	-6.9536	-6.9536
S.E(Log q)	0.5203	0.3622	0.3603	0.5043	0.3839	0.4926	0.6598	0.5542	0.7999

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age

Slope	t-value		Intercept	RSquare	No Pts	Reg s.e	Mean Q
2	0.89	0.35	7.88	0.42	17	0.48	-7.63
3	0.99	0.059	6.95	0.53	17	0.37	-6.91
4	1.14	-0.595	6.52	0.53	17	0.42	-6.84
5	0.74	1.204	7.32	0.59	17	0.37	-6.92
6	0.82	1.01	7.06	0.68	17	0.32	-6.89
7	0.82	0.862	7.03	0.6	17	0.41	-6.95
8	0.75	1.037	6.86	0.52	17	0.49	-6.88
9	0.74	1.159	6.7	0.58	17	0.39	-6.82
10	0.74	0.77	6.57	0.36	17	0.59	-6.82

## Table 8.3.1 Sole in VIId. Continued

Fleet: UK BTS

Age		1986	1987	1988	1989	1990	1991	1992
	1	99.99	99.99	0.46	-0.23	0.34	0.26	-1.57
	2	99.99	99.99	1.07	0.26	-0.66	0.19	-0.28
	3	99.99	99.99	0.66	0.62	-0.44	-0.35	0.15
	4	99.99	99.99	-0.29	0	0.07	0.14	-0.62
	5	99.99	99.99	0.44	0.12	-0.07	-0.24	0.02
	6	99.99	99.99	0.12	-0.79	-0.35	0.17	0.29
	7 No data for this fleet at this age							
	8 No data for this fleet at this age							
	9 No data for this fleet at this age							
		this fle	this ag					


Age		1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
	1	-1.9	-0.09	-0.11	-0.11	1.19	-0.6	1.56	0.35	0.12	0.33
	2	0.14	-0.94	-0.15	-0.21	-0.25	0.41	0.16	0.48	0.24	-0.46
	3	0.08	0.15	-0.94	-0.31	-0.13	-0.48	0.76	0.29	0.28	-0.34
	4	0.67	0.05	-0.27	-0.74	-0.22	-0.23	0.58	0.65	-0.01	0.24
	5	-0.03	0.45	-0.38	-0.25	-1.19	0.2	0.98	0.31	0.55	-0.92
	6	0.45	-0.92	0.27	-0.01	-0.5	-1.08	1.39	0.56	0.3	0.13
7 No data for this fleet at this age											
8 No data for this fleet at this age											
9 No data for this fleet at this age											
		this flee	this ag								

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age	1	2	3	4	5	6
Mean Log q	-8.4925	-7.4556	-7.8181	-8.1819	-8.193	-8.2754
S.E(Log q)	0.887	0.5008	0.4843	0.4211	0.5575	0.6411

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

Age		Slope		t-value	Intercept	RSquare	No Pts	Reg s.e	Mean Q
	1		0.63	1.268	9.17	0.47	15	0.54	-8.49
	2		1.04	-0.095	7.36	0.36	15	0.54	-7.46
	3		0.93	0.21	7.95	0.41	15	0.47	-7.82
	4		0.75	1.462	8.42	0.72	15	0.3	-8.18
	5		0.93	0.231	8.21	0.44	15	0.54	-8.19
	6		1.02	-0.055	8.28	0.34	15	0.68	-8.28
Fleet : YFS									
Age			1986	1987	1988	1989	1990	1991	1992
	1		99.99	0.63	0.14	-0.36	-0.16	0.55	-0.28
	2	No dat	this fleet	et at this ag					
	3	No dat	this flee	et at this ag					
	4	No dat	this flee	et at this ag					
	5	No dat	this flee	et at this ag					
	6	No dat	this flee	et at this ag					
	7	No dat	this flee	et at this ag					
	8	No dat	this flee	et at this ag					
	9	No dat	this flee	et at this ag					
	10	No dat	this flee	et at this ag					

## Table 8.3.1 Sole in VIId. Continued

Age		19931994	1995	1996	1997	1998	1999	2000	2001	2002
	1	$0.16 \quad 0.66$	0.87	-0.59	-0.56	-0.02	-0.08	0.09	-0.42	-0.62
	2	No data for this fleet at this age								
	3	No data for this fleet at this age								
	4	No data for this fleet at this age								
	5	No data for this fleet at this age								
	6	No data for this fleet at this age								
	7	No data for this fleet at this age								
	8	No data for this fleet at this age								
	9	No data for this fleet at this age								
	10	No data for this fleet at this age								

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age	1
Mean Log q	-10.3415
S.E(Log q)	0.4771

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

| Age | Slope |  | t-value | Intercept | RSquare | No Pts | Reg s.e | Mean Q |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 1 | 1.62 | -1.775 | 10.39 | 0.37 | 16 | 0.72 | -10.34 |

Terminal year survivor and F summaries:

Age 1 Catchability constant w.r.t. time and dependent on age
Year class $=2001$

Fleet	Estimat Survivol	$\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$	$\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$	Var Ratio	N		Scaled   Weights	Estimated   F
BEL BT	1	0	0	0		0	0	0
UK BT	1	0	0	0		0	0	0
UK BTS	148868	0.916	0	0		1	0.127	0.005
YFS	57476	0.492	0	0		1	0.442	0.012
F shrinkage mean	184917	0.5					0.43	0.004

Weighted prediction :


Age 2 Catchability constant w.r.t. time and dependent on age
Year class $=2000$

Fleet	Estimat	Int	Ext	Var	N		Scaled	Estimated
	Survivol	s.e	s.e	Ratio			Weights	F
BEL BT	45140	0.908	0	0		1	0.065	0.137
UK BT	37808	0.535	0	0		1	0.187	0.162
UK BTS	20145	0.45	0.245	0.54		2	0.263	0.285
YFS	18272	0.492	0	0		1	0.22	0.31
$F$ shrinkage mean	38478	0.5					0.265	0.159

Weighted prediction :


## Table 8.3.1 Sole in VIId. Continued

Age 3 Catchability constant w.r.t. time and dependent on age


Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=1998$

Fleet	Estimat	Int	Ext	Var	N		Scaled	Estimated
	Survivol	s.e	s.e	Ratio			Weights	F
BEL BT	6066	0.26	0.1	0.39		3	0.274	0.465
UK BT	10325	0.242	0.114	0.47		3	0.31	0.299
UK BTS	11966	0.273	0.185	0.68		4	0.237	0.263
YFS	7508	0.492	0	0		1	0.052	0.391
F shrinkage mean	4433	0.5					0.126	0.594

Weighted prediction :


Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1997$


## Table 8.3.1 Sole in VIId. Continued

Age 6 Catchability constant w.r.t. time and dependent on age
Year class $=1996$

Fleet	Estimats	Int	Ext	Var	$N$	Scaled		Estimated
	Survivol	s.e	s.e	Ratio		Weights		F
BEL BT	1701	0.225	0.217	0.97	5	0.321	0.314	
UK BT	2983	0.232	0.09	0.39	5	0.334	0.191	
UK BTS	3404	0.279	0.118	0.42	6	0.189	0.169	
YFS	1221	0.492	0	0	1	0.018	0.414	
							0.137	0.517

Weighted prediction :

Survivors   at end of year   2139	s.e		Ext	N		Var	F
			s.e			Ratio	
		0.14	0.13		18	0.967	0.257

Age 7 Catchability constant w.r.t. time and dependent on age
Year class $=1995$

Fleet	Estimats	Int	Ext	Var	$N$	Scaled		Estimated
	Survivol	s.e	s.e	Ratio		Weights	F	
BEL BT	746	0.195	0.173	0.89		6	0.459	0.322
UK BT	1316	0.223	0.107	0.48		6	0.29	0.195
UK BTS	1092	0.273	0.147	0.54	6	0.115	0.231	
YFS	481	0.492	0	0	1	0.011	0.464	
							0.125	0.449

Weighted prediction :

Survivors at end of year				Ext	N		Var	F
		s.e		s.e			Ratio	
	870		0.13	0.11		20	0.809	0.282

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class $=1994$

Fleet	Estimate	Int	Ext	Var	N		Scaled	Estimated
	Survivol	s.e	s.e	Ratio			Weights	F
BEL BT	454	0.188	0.108	0.57		7	0.492	0.243
UK BT	718	0.228	0.111	0.49		7	0.281	0.16
UK BTS	673	0.283	0.22	0.78		6	0.086	0.17
YFS	1151	0.492	0	0		1	0.007	0.103
F shrinkage mean	203	0.5					0.133	0.479

Weighted prediction :

Survivors at end of year	Int			Ext	N	Var		F	
		s.e		s.e			Ratio		
	483		0.13	0.11		22	0.829		

## Table 8.3.1 Sole in VIId. Continued

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class $=1993$



Age 10 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class = 1992

Fleet	Estimat Survivol	$\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$	$\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$	Var Ratio	N		Scaled Weights	Estimated F
BEL BT	94	0.184	0.156	0.85		9	0.54	0.455
UK BT	151	0.264	0.168	0.63		9	0.239	0.307
UK BTS	39	0.287	0.097	0.34		6	0.032	0.869
YFS	129	0.492	0	0		1	0.003	0.351
F shrinkage mean	134	0.5					0.186	0.34

Weighted prediction :

Survivors at end of year	Int			Ext	N		Var	F
		s.e		s.e			Ratio	
	109		0.15	0.1		26	0.655	0.403

## Table 8.3.2. Sole in VIId. Fishing mortality (F) at age

Run title : Sole in VIId (run 09/2003)
At 12/09/2003 13:54
Terminal Fs derived using XSA (With F shrinkage)
Table 8 Fishing mortality (F) at age
YEAR 1982
AGE

1	0.0126
2	0.1848
3	0.3221
4	0.4712
5	0.2095
6	0.2427
7	0.4620
8	0.3984
9	0.3377
10	0.3309
+gp	0.3309
$3-8$	0.3510


Fishing mortality ( $F$ ) at age											
YEAR	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	
AGE											
1	0.0000	0.0011	0.0038	0.0019	0.0008	0.0037	0.0101	0.0299	0.0113	0.0032	
2	0.0804	0.1115	0.2157	0.1156	0.1531	0.2533	0.1742	0.2380	0.2167	0.1436	
3	0.3495	0.4198	0.4210	0.4898	0.5279	0.5302	0.6728	0.4449	0.4535	0.3928	
4	0.3770	0.4302	0.3575	0.4516	0.5868	0.4018	0.7056	0.4933	0.5490	0.3784	
5	0.4239	0.2805	0.2662	0.3105	0.5404	0.3779	0.7081	0.4894	0.3975	0.4891	
6	0.4037	0.6591	0.4313	0.3002	0.6215	0.4046	0.4986	0.2808	0.5500	0.3175	
7	0.3445	0.4182	0.2233	0.4282	0.7846	0.4432	0.5014	0.3964	0.3268	0.3691	
8	0.5002	0.2611	0.2211	0.3560	0.5978	0.3827	0.4093	0.3913	0.3855	0.2660	
9	0.2789	0.3467	0.1771	0.4040	0.4237	0.3650	0.4277	0.4367	0.6759	0.4654	
10	0.3914	0.3943	0.2644	0.3516	0.6293	0.5614	0.6337	0.6032	0.5389	0.4855	
+gp	0.3914	0.3943	0.2644	0.3516	0.6293	0.5614	0.6337	0.6032	0.5389	0.4855	
FBAR 3-8	0.3998	0.4115	0.3201	0.3894	0.6098	0.4234	0.5826	0.4160	0.4437	0.3688	
Table 8	Fishing mortality ( F ) at age										
YEAR	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	FBAR 00-02
AGE											
1	0.0051	0.0013	0.0354	0.0006	0.0010	0.0023	0.0063	0.0040	0.0046	0.0062	0.0049
2	0.1911	0.0540	0.1358	0.1276	0.1049	0.0728	0.2433	0.1561	0.2180	0.2147	0.1963
3	0.3296	0.3519	0.4413	0.5603	0.6380	0.5390	0.5442	0.6261	0.3948	0.3751	0.4653
4	0.4156	0.5028	0.4311	0.5351	0.7919	0.5842	0.6382	0.5628	0.3789	0.3645	0.4354
5	0.3353	0.4291	0.4505	0.5151	0.7929	0.5966	0.5563	0.4182	0.6050	0.5279	0.5171
6	0.2456	0.2948	0.4244	0.4876	0.5196	0.5167	0.6620	0.4118	0.4672	0.2570	0.3787
7	0.2736	0.3459	0.2791	0.4769	0.4516	0.3115	0.5714	0.5323	0.3730	0.2821	0.3958
8	0.3094	0.2585	0.2626	0.3012	0.5558	0.3771	0.6004	0.4563	0.3982	0.2297	0.3614
9	0.3509	0.3560	0.3237	0.4713	0.4216	0.4859	0.4917	0.6400	0.2941	0.4001	0.4447
10	0.2725	0.4385	0.4165	0.6893	0.4736	0.8450	0.4569	0.3781	0.3092	0.4026	0.3633
+gp	0.2725	0.4385	0.4165	0.6893	0.4736	0.8450	0.4569	0.3781	0.3092	0.4026	
FBAR 3-8	0.3182	0.3639	0.3815	0.4794	0.6250	0.4875	0.5954	0.5013	0.4362	0.3394	

Run title : Sole in VIId (run 09/2003)
At 12/09/2003 13:54
Terminal Fs derived using XSA (With F shrinkage)


Table 8.3.4. Sole in VIId. Summary

Run title : Sole in VIId (run 09/2003)						
At 12/09/2003 13:54						
Table 16 Summary (without SOP correction)						
Terminal Fs derived using XSA (With F shrinkage)						
	RECRUITS Age 1	TOTALBIO	TOTSPBIO	LANDINGS	YIELD/SSB	FBAR 3-8
1982	12977	10399	7769	3190	0.4106	0.3510
1983	21769	12616	9526	3458	0.3630	0.3998
1984	22144	13037	8972	3575	0.3984	0.4115
1985	13502	13481	10022	3837	0.3829	0.3201
1986	26934	14151	10610	4024	0.3793	0.3894
1987	11574	13758	9543	4974	0.5212	0.6098
1988	27023	13382	10513	3982	0.3788	0.4234
1989	17133	11914	8255	4187	0.5072	0.5826
1990	45359	14211	9809	4060	0.4139	0.4160
1991	35860	16136	8846	4382	0.4953	0.4437
1992	35006	17570	11200	4142	0.3698	0.3688
1993	17403	18221	13214	4511	0.3414	0.3182
1994	27241	16173	13072	4643	0.3552	0.3639
1995	20649	15296	11162	4583	0.4106	0.3815
1996	20304	16206	12396	5025	0.4054	0.4794
1997	30059	14471	10379	4983	0.4801	0.6250
1998	18936	13106	8328	3694	0.4436	0.4875
1999	30633	12622	8851	4238	0.4788	0.5954
2000	38630	13841	8522	3649	0.4282	0.5013
2001	42190	15346	8884	4350	0.4896	0.4362
2002	$40212^{\text {a }}$	22470	11260	4730	0.4201	0.3394
2003	$23267^{\text {b }}$		13300			
Arith.						
Mean	30221	14686	10054	4201	0.4225	0.4402
0 Units	(Thousands)	(Tonnes)	(Tonnes)	(Tonnes)		
${ }^{\text {b }}$ GM ( $\left.82-00\right)$						

Table 8.4.1. Sole in VIId. RCT3 input.

Yearclass	XSA (Age 1)	XSA (age 2)	yfs0	yfs1	ebts1	ebts2
1981	11595	12977	1.881	0.2005	-11	-11
1982	19698	21769	2.6555	0.695	-11	-11
1983	20014	22144	11.887	-11	-11	-11
1984	12170	13502	-11	-11	-11	-11
1985	24324	26934	-11	-11	-11	-11
1986	10464	11574	-11	0.6595	-11	14.2
1987	24361	27023	7.995	0.935	8.2	15.4
1988	15348	17133	1.1875	0.356	2.6	3.7
1989	39833	45359	12.588	1.152	12.1	22.8
1990	32083	35860	3.3285	1.8695	8.9	12
1991	31574	35006	1.3865	0.796	1.4	17.5
1992	15666	17403	1.281	0.615	0.5	3.2
1993	24616	27241	6.534	1.591	4.8	10.6
1994	18034	20649	8.1035	1.4635	3.5	7.4
1995	18361	20304	5.3135	0.339	3.5	7.3
1996	27170	30059	0.9865	0.5205	19	21.23
1997	17095	18936	1.942	0.559	2	9.44
1998	27545	30633	9.3725	0.854	28.14	22.03
1999	-11	-11	2.7455	1.282	10.49	21.01
2000	-11	-11	1.8475	0.8365	9.09	-11
2001	-11	-11	4.5135	1.93	31.76	28.48
2002	-11	-11	2.52	-11	6.47	-11

Table 8.4.2. Sole in VIId. RCT3 output (1 year olds)
Analysis by RCT3 ver3.1 of data from file :
S7DREC.TXT
7D Sole (1year olds),,,,
Data for 4 surveys over 22 years : 1981-2002
Regression type $=\mathrm{C}$
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass $=2000$


Yearclass $=2001$

Survey/   Series	Slope	$\begin{aligned} & \text { Inter- } \\ & \text { cept } \end{aligned}$	Std   Error	Rsquare	$\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$	Index Value	$\begin{gathered} \text { Predicted } \\ \text { Value } \end{gathered}$	$\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$	WAP   Weights
yfs0,	1.29	8.05	. 86	. 140	15	1.71	10.25	. 957	. 067
yfs1,	2.59	8.55	. 55	. 348	15	1.08	11.33	. 681	. 132
ebts1,	. 58	9.10	. 43	. 378	12	3.49	11.13	. 552	. 201
ebts2,	1.07	7.43	. 50	. 382	13	3.38	11.05	. 615	. 162
					VPA	Mean $=$	10.03	. 374	. 438

Yearclass = 2002

Survey/   Series	Slope	Intercept	$\underset{\text { Error }}{\text { Std }}$	Rsquare	No.   Pts	Index Value	$\begin{aligned} & \text { Predicted } \\ & \text { Value } \end{aligned}$	Std   Error	WAP Weights
yfs0,	1.29	8.05	. 86	. 140	15	1.26	9.67	. 963	. 087
yfs1, , ebts1, ebts2,	. 58	9.10	. 43	. 378	12	2.01	10.27	. 486	. 340
					VPA	Mean $=$	10.03	. 374	. 574


Year   Class	Weighted   Average   Prediction	WAP	Log   Std   Error	Ext   Std   Error	Var   Ratio	VPA	Log   VPA
2000	24722	10.12	.26	.15	.35		
2001	40212	10.60	.25	.28	1.28		
$\mathbf{2 0 0 2}$	$\mathbf{2 3 8 3 0}$	$\mathbf{1 0 . 0 8}$	$\mathbf{. 2 8}$	$\mathbf{. 1 2}$	.18		

Table 8.4.3 Sole in VIId. RCT3 output (2 year olds)


Yearclass $=2001$

Survey/   Series	Slope	Intercept	Std   Error	Rsquare	No.   Pts	Index Value	$\begin{gathered} \text { Predicted } \\ \text { Value } \end{gathered}$	$\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$	WAP Weights
yfs0,	1.32	7.89	. 89	. 132	15	1.71	10.14	. 983	. 063
yfis1,	2.61	8.43	. 55	. 339	15	1.08	11.24	. 690	. 128
ebts1,	. 58	9.00	. 42	. 379	12	3.49	11.01	. 548	. 202
ebts2,	1.05	7.36	. 49	. 388	13	3.38	10.93	. 603	. 168
					VPA	Mean $=$	9.92	. 372	. 439

Yearclass = 2002


| Year <br> Class | Weighted <br> Average <br> Prediction | Log | WAP | Int <br> Std <br> Error | Ext <br> Std <br> Error | Var <br> Ratio | VPA |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Log |
| :--- |
|  |
| 2000 |

Table 8.5.1 Sole in VIId
input data for catch forecast and linear sensitivity analysis

Label	Value	CV	Label	Value	CV
Number	age		Weight	the st	
N1	23267	0.38	WS1	0.05	0.00
N2	36025	0.28	WS2	0.13	0.06
N3	27739	0.24	WS3	0.17	0.13
N4	15752	0.17	WS 4	0.23	0.07
N5	8169	0.14	WS5	0.32	0.23
N6	1939	0.14	WS 6	0.35	0.23
N7	2139	0.14	WS 7	0.36	0.10
N8	870	0.13	WS 8	0.41	0.31
N9	482	0.13	WS 9	0.45	0.06
N10	187	0.15	WS10	0.44	0.11
N11	486	0.15	WS11	0.47	0.18
H.cons selectivity			Weight in the HC catch		
sH1	0.00	0.44	WH1	0.13	0.14
sH2	0.16	0.34	WH2	0.15	0.06
sH3	0.37	0.16	WH3	0.20	0.10
sH4	0.35	0.13	WH4	0.25	0.11
sH5	0.41	0.30	WH5	0.31	0.08
sH6	0.30	0.19	WH6	0.36	0.08
sH7	0.32	0.14	WH7	0.39	0.09
sH8	0.29	0.16	WH8	0.39	0.09
sH9	0.36	0.31	WH9	0.45	0.11
sH10	0.29	0.30	WH10	0.46	0.08
sH11	0.29	0.30	WH11	0.50	0.13
Natural mortality			Proportion mature		
M1	0.10	0.10	MT1	0.00	0.00
M2	0.10	0.10	MT2	0.00	0.10
M3	0.10	0.10	MT3	1.00	0.10
M4	0.10	0.10	MT4	1.00	0.00
M5	0.10	0.10	MT5	1.00	0.00
M6	0.10	0.10	MT6	1.00	0.00
M7	0.10	0.10	MT7	1.00	0.00
M8	0.10	0.10	MT8	1.00	0.00
M9	0.10	0.10	MT9	1.00	0.00
M10	0.10	0.10	MT10	1.00	0.00
M11	0.10	0.10	MT11	1.00	0.00
Relative effort			Year effect for natural mortality		
in HC fishery					
HFO3	1.00	0.19	K03	1.00	0.10
HFO4	1.00	0.19	K04	1.00	0.10
HFO5	1.00	0.19	K05	1.00	0.10

Recruitment in 2004 and 2005
R04 $23267 \quad 0.38$
$\begin{array}{lll}\text { R05 } 23267 & 0.38\end{array}$

Table 8.5.2 Sole in VIId.
Catch forecast output and estimates of coefficient of variation (CV) from linear analysis.

	$\begin{array}{c\|c}  & \text { Year } \\ 2003 \end{array}$							
Mean F Ages   H. cons 3 to 8	0.34	0.14	0.20	0.27	0.34	0.37	0.40	0.41
Effort relative to 2002   H.cons	1.00	0.40	0.60	0.80	1.00	1.10	1.18 \|	1.20
Biomass								
Total 1 January	19.1	19.2	19.2	19.2	19.2	19.2	19.2	19.2
SSB at spawning time	13.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3
Catch weight (,000t) H.cons	4.93	2.28	3.31	4.27	5.17	5.60	5.93	6.01
Biomass in year.... 2005								
Total 1 January		21.8	20.6	19.6	18.6	18.1	17.8	17.7
SSB at spawning time		17.9	16.8	15.7	14.7	14.3	13.9	13.8
	2003	Year						
					2004			
Effort relative to 2002								
Est. Coeff. of Variation								
Biomass								
Total 1 January	0.11	0.13	0.13	0.13	0.13	0.13	0.13	0.13
SSB at spawning time	0.13	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Catch weight								
Biomass in year.... 2005								
Total 1 January		0.15	0.15	0.15	0.15	0.15	0.15	0.15
SSB at spawning time		0.17	0.17	0.17	0.17	0.17	0.17	0.17

Table 8.5.3 Sole in VIId.
Detailed forecast tables.

Forecast for year 2003
F multiplier H.cons=1.00


Forecast for year 2004
F multiplier H.cons=1.00


Figure 8.3.1. Sole in Division VIId. Summary plots.




Figure 8.3.2 Sole in VIId. Historical performance




North Sea plaice is taken mainly in a mixed flatfish fishery by beam trawlers in the southern and south-eastern North Sea. Directed fisheries are also carried out with seine and gill net, and by beam trawlers in the central North Sea. Due to the minimum mesh size ( 80 mm in the mixed beam trawl fishery), large numbers of (undersized) plaice are discarded (see section 9.4.3).

Fleets exploiting North Sea plaice have generally decreased in number of vessels in the last 10 years, partly due to the MAGP policy. However, in some instances these reductions have been compensated by reflagging vessels to other countries. The Dutch beam trawl fleet, one of the major operators in the mixed flatfish fishery in the North Sea, has seen a reduction in the number of vessels and also a shift towards two categories of vessels: 2000HP (the maximum engine power allowed) and 300 HP (the maximum engine power for vessels that are allowed to fish within the 12 mile coastal zone and the plaice box).

Approximately $70 \%$ of plaice landings from the UK (England and Scotland) quota is landed into the Netherlands by Dutch vessels fishing on the UK register. Vessels fishing under foreign registry are referred to as 'flag' vessels. As described in the 2001 report of this working group (ICES CM 2002/ACFM:01), the fishing pattern of flag vessels can be very different from that of other fleet segments.

### 9.1.1 ACFM advice applicable to 2002 and 2003

In the 2001 autumn session, ACFM stated that the stock is outside safe biological limits, with respect to both biomass and fishing mortality. In regard of the EU/Norway agreement, as a rebuilding measure a reduction of at least $20 \%$ for F was recommended corresponding with a value below 0.3 , which would correspond to a catch of less than $77,000 \mathrm{t}$ in 2002.

In 2002 ACFM stated that the stock is still outside safe biological limits. SSB in 2002 is below $\mathbf{B}_{\mathrm{pa}}$ and fishing mortality in 2001 was above $\mathbf{F}_{\mathrm{pa}}$. ICES recommends that the fishing mortality be less than $\mathrm{F}=0.23$ in order to bring SSB above $\mathbf{B}_{\mathrm{pa}}$ in 2004. This corresponds to landings of less than 60000 t in 2003. This implies a reduction in fishing mortality of at least $40 \%$. Management of fisheries taking plaice must respect the stringent restrictions on the catch and discard rates advised for cod, with effective monitoring of compliance with those restrictions.

### 9.1.2 Management applicable to 2002 and 2003

The TAC in 2002 was agreed at 77,000 tonnes, which was in line with the ACFM recommendation. For 2003 the TAC was set at 73,250 , which is substantially higher than the ACFM recommendation.

In 1999, the EU and Norway have agreed to implement a long-term management plan for the plaice stock, which is consistent with the precautionary approach and is intended to constrain harvesting within safe biological limits and designed to provide for sustainable fisheries and greater potential yield. The plan is re-instigated every year and consists of the following elements:

1. Every effort shall be made to maintain a minimum level of SSB greater than 210,000 tonnes ( $\boldsymbol{B}_{\text {lim }}$ )
2. For 2000 and subsequent years the Parties agreed to restrict their fishing on the basis of a TAC consistent with a fishing mortality of 0.3 for appropriate age groups as defined by ICES.
3. Should the SSB fall below a reference point of 300,000 tonnes ( $\boldsymbol{B}_{p a}$ ), the fishing mortality referred to under paragraph 2, shall be adapted in the light of scientific estimates of the conditions then prevailing. Such adaptation shall ensure a safe and rapid recovery of SSB to a level in excess of 300,000 tonnes.
4. In order to reduce discarding and to enhance the spawning biomass of plaice, the Parties agreed that the exploitation pattern shall, while recalling that other demersal species are harvested in these fisheries, be improved in the light of new scientific advice from, inter alia, ICES.
5. The Parties shall, as appropriate, review and revise these management measures and strategies on the basis of any new advice provided by ICES."

The current Multi-annual guidance program (MAGP-IV) has defined national targets for EU fleet reductions in fleet capacity and/or days at sea.

Technical measures applicable to the plaice fishery in the North Sea in 2001 included mesh size regulations, minimum landing size, gear restrictions and a closed area (the plaice box). Mesh size regulations for towed gears require that vessels fishing North of $55^{\circ} \mathrm{N}$ (or $56^{\circ} \mathrm{N}$ east of $5^{\circ} \mathrm{E}$, since January 2000) should have a minimum mesh size of 100 mm , while to the south of this limit, where the majority the plaice fishery takes place, an 80 mm mesh is allowed. In the fishery with fixed gears a minimum mesh size of 100 mm is required. In addition to this, since 2002 a small part of North Sea plaice fishery is affected by the additional cod recovery plan (EU regulation 2056/2001) that prohibits trawl fisheries with a mesh size $<120 \mathrm{~mm}$ in the area to the north of $56^{\circ} \mathrm{N}$.

The minimum landing size of North Sea plaice is 27 cm . A closed area has been in operation since 1989 (the plaice box). Since 1995 this area was closed in all quarters. The closed area applies to vessels using towed gears, but vessels smaller than 300 HP are exempted from the regulation. An additional technical measure concerning the fishing gear is the restriction of the aggregated beam length of beam trawlers to 24 m . In the 12 nautical mile zone and in the plaice box the maximum aggregated beam-length is 9 m .

### 9.1.3 The fishery in 2002

## Landings

Total landings of North Sea plaice in 2002 (Table 9.1.1) were estimated by the WG to be just over 70 thousand tonnes, which is approximately 10 thousand tonnes lower than in the previous 3 years. The TAC was not taken in 2002.

The national uptake rates by the Netherlands (main plaice landing country) indicate that approximately $53 \%$ of the national quota was taken by the beginning of September 2003.

## Discards

There are indications that the North Sea plaice stock has been subject to increased discarding in recent years. It has been suggested that the slow growth of the strong 1996 year class contributed to changes in discard patterns. This would have an impact on the catch at age matrix, thereby giving rise to an underestimate of fishing mortality. In 1999 a discard sampling programme was started to obtain discard estimates from the Dutch beam trawl fleet. However, the time series is too short to be incorporated in the assessment. Therefore, catch at age will be equated to landings at age in subsequent analyses. A qualitative assessment of the effects of discarding is presented in section 9.4.3.

### 9.2 Natural mortality, maturity, age compositions and mean weight at age

Natural mortality and maturity at age were the conventional values as used in previous assessments (Table 9.2.1). Maturity is taken as a step function representing the difference in maturation of males and females and is assumed constant over time. Estimation of maturation was originally based on biological sampling of maturity and sex ratio. Maturity at age is not likely to be constant over time. A recent study (Grift et al. 2003) has found that in North Sea plaice the age and length at maturation have decreased over the past half century. WD13 describes an ongoing international collaboration (under the name of COMPASS) to explore how to determine annually varying maturity ogives for North Sea flatfish from market and research samples, and the consequences of such ogives on the stock assessment and on the biological reference points. The explorations are preliminary and cannot yet be used for assessment purposes.

Market sampling programmes supplied age distributions representative for $68 \%$ of the official total landings in 2002. Age compositions by sex and quarter were available for the English and Dutch landings. Combined age compositions by quarter were available from Belgium, Denmark and France. The age composition of the landings is presented in Table 9.2.2 and Figure 9.2.1. No SOP-correction was applied to the results of the assessment.

The landings of the flag vessels were not sampled prior to 2002 . From 2002 onwards, following EU regulation (1639/2001), each country is obliged to sample landings from foreign vessels that land in their country. However, as the market category data are not available, these catch data cannot be converted to age compositions. These landings and the landings from countries that do not provide age compositions, were raised to the international age composition.

Mean weights at age in the catch were estimated from market samples taken throughout the year (Table 9.2.3). Weights-at-age in the stock were first quarter weights (Table 9.2.4). Weight at age has varied considerably over time. For the
most important age groups (4-6), weights appear to have decreased strongly ( 25 to $32 \%$ ) in the past five years (Figure 9.2.2). A decrease in weights is also observed in the older age groups since 2000. These changes in weight at age in the older age groups affect the SSB estimates and the catch forecasts. The patterns clearly show a year effect as opposed to a year-class effect. The mean weight at age is mainly determined by the Dutch market sampling programme, but the decrease was observed in the Danish and English market samples as well (see Figure 9.2.3). Length at age data, which are only available for the English and Dutch samples, also indicate a decline since 1998. No apparent trends in the sex ratio clarify the observed changes in weight at age (Figure 9.2.4). These recent changes in weight at age can indicate a change in growth pattern. However, they may also be caused by a shift in the distribution of the fisheries.

### 9.3 Catch, effort and survey data

### 9.3.1 Commercial CPUE data

At the ACFM meeting in October 2001 the validity of the information provided by commercial tuning fleets was discussed and it was decided to exclude commercial tuning fleets from the assessment. A working document presented to ACFM October 2001 showed that "The CPUE series of the Dutch beam trawl fleet and the new English beam trawl fleet (excluding flag vessels) are reasonably consistent, and show a decreasing trend in CPUE in the early 1990s. However, the time series of the English flag vessels show a different pattern of a more or less flat CPUE trend. The observed differences can be due to different spatial coverages by the different fleets or to different management measures applicable to the fleets. Therefore, CPUE data may rather reflect trends in management rather than trends in the stock." (Pastoors et al. 2002). Poos et al. (2001) showed that the CPUE of individual vessels indeed declined when quota restrictions were more severe. The commercial CPUE data was again excluded from the assessment that is presented by this WG.

Although the commercial CPUE series are not included in the assessment as tuning fleets they are presented in this section to provide a full overview of the available data. The WG acknowledges that it may be important to monitor the developments in the fishery as they are shown by trends in CPUE from different fleet segments. One reason for this is that the perceptions of the fishermen will be driven by their catch rates. Discrepancies between the stock assessment results and their perceptions do need to be addressed by working groups and ACFM so that the overall results of the group can be understood by a wider group of people. Therefore the WG has evaluated a method to derive spatial based indices from commercial CPUE series in an attempt to remove the potential bias of TAC limited CPUE series. Furthermore the WG has examined the CPUE data of a subgroup of the flag vessels for which market-category data are available.

CPUE series that have previously been used for North Sea plaice assessment:

- NL commercial beam trawl CPUE
- UK commercial beam-trawl CPUE, excluding all flag vessels

CPUE series that have been made available to this WG:

- A spatial based CPUE index for a subgroup vessels within the NL beam trawl fleet (4-16 vessels)
- The CPUE of a subgroup of the Dutch flag vessels under UK registry (approx. 35 vessels)

The Dutch commercial beam-trawl CPUE consists of the total catch at age by the Dutch (beam trawl) fleet and the effort in horsepower days (days absent from port times the horsepower of the vessel). The effort series are estimated by the Agricultural Economics Institute (LEI-DLO), except for the final year, which is a preliminary estimate by the WG. The series are available for 1980 onwards and for the age 2 to 9 .

The UK commercial beam-trawl CPUE is derived from the catch at age of the beam trawlers registered in England and Wales but excluding Scottish registered vessels and Dutch flag vessels. Effort was calculated on a trip basis as hours fishing multiplied by the horsepower (HP) of the vessel. The series is available for 1990 onwards and for the age 4 to 12.

For this WG, a working document was presented on the trends in CPUE data from a group of Dutch beam trawl vessels (NL registry) that have kept logbooks of haul-by-haul landings by species (WD 08). The data has been collected under collaborative projects between the Netherlands Institute of Fisheries Research and the Dutch fishing industry in the years 1993-1999. A similar collaboration has been re-instigated in September 2002 and is now still ongoing. The WD
describes a method that has been applied with the attempt to remove the potential bias of TAC limited CPUE series by deriving an index of CPUE rather than an average CPUE. The CPUE for the group of vessels in each ICES rectangle and for each month was calculated by dividing total catch by total effort within a rectangle. Then the CPUE was averaged by month over all the rectangles that had been fished in that month. The average CPUE in a year was calculated as the average of CPUE of all months. The assumption of calculating the CPUE as an index is that the catch rate by rectangle are unlikely to be affected by TAC restrictions; restrictive TAC's would rather drive the directivity of the fishery to those rectangles where the catch rates are lower.

Results of the CPUE analysis are shown in Figure 9.3.1.1. The overall trend in CPUE from either the direct division of catch and effort and the index method do not appear to give very different perceptions on the developments of catch rates. The WG considers that the index method could be improved by defining index areas, which are covered by the fleet in most years.

A consultation with the Dutch fishing industry has also resulted in data being made available on catch rates of a group of so-called flag vessels. This information is based on all vessels that have landed in two major ports in the north of the Netherlands (Urk and Harlingen) and included data by market category. A preliminary analysis of the data has been carried out during the WG and is briefly summarized here. The group of vessels consists of around 35 vessels with engine powers of around 2000 HP . Figure 9.3.1.2 shows the trends in CPUE for the vessels based on the auction data. The data is compared to the official logbook data in the Netherlands and are found to be in close agreement. This fleet segment - which is directed towards plaice - has been able to keep relatively high catch rates over the whole period (1992-2002). In Figure 9.3.1.3, the same information is shown by market category. This figure indicates the overall contribution of the strong 1996 year-class to the CPUE in the different market categories. Furthermore, the CPUE of the largest plaice appears to have decreased over the course of the time series.

From the above information it appears that the conclusion from the working document presented to the ACFM meeting in October 2001 (=WD08 to WGNSSK2002) still holds: the signal in commercial CPUE is different for different fleet segments. The additional information of CPUE by market category does add to the possibility of interpreting the CPUE signal, notably the decrease in CPUE for the largest market category. The method of deriving an indexed CPUE does not appear to be successful at present. This could be improved by incorporating fixed index areas.

### 9.3.2 Survey data

CPUE series that have previously been used for North Sea plaice assessment:

- Beam Trawl Survey RV 'Isis' (BTS)
- Sole Net Survey in September-Oktober (SNS)
- Demersal Young Fish Survey (DFS)

New survey series available to the working group

- Beam Trawl Survey RV 'Tridens’ (BTS-tri)
- Sole Net Survey in April-May (SNSQ2)

The Beam Trawl Survey (BTS \& BTS-tri) was initiated in 1985 and was set up to obtain indices of the younger age groups of plaice and sole. However, due to its spatial distribution the BTS survey also catches considerable numbers of older plaice and sole. Initially, the survey only covered the south-eastern part of the North Sea (RV Isis). Since 1996 the survey area of the BTS has been extended. The RV Tridens now covers the north-western part of the North Sea (Figure 9.3.2.1). Both vessels use an $8-\mathrm{m}$ beam trawl with 40 mm stretched mesh cod-end, but the Tridens beam trawl is rigged with a modified net. The BTS-Isis survey is used as a tuning series for the plaice assessment and consists of average catches in numbers by fishing hour. Previously age groups 1 to 4 were used for tuning the North Sea plaice assessment, but the age range has been extended to 1 to 9 in the revision done by ACFM in October 2001. This year the BTS-isis series was revised. The procedure to convert length distributions into age distributions was improved and database corrections were carried out. The changes in the indices series are minimal (Figure 9.3.2.2). The 2003 indices of the BTS and BTS-tri were not available to the working group, but preliminary indices will be made available to the ACFM meeting in October 2003.

The Sole Net Survey (SNS \& SNSQ2) was carried out with RV Tridens until 1995 and then continued with the RV Isis. The gear used is a 6 m beam trawl with 40 mm stretched mesh cod-ends. The stations fished are on transects along or perpendicular to the coast (Figure 9.3.2.1). This survey is directed to juvenile plaice and sole. Ages 1 to 3 are used for
tuning the North Sea plaice assessment, the 0 -group index is used in the RCT3. Due to the timing of the working group the SNS was moved to spring in 2003. Until 1990 this survey was carried out in both spring and autumn. However, because of the gap in the spring series these data cannot be used in the plaice assessment or in RCT3.

The Demersal Young Fish Survey (DFS) is an international survey (The Netherlands, England, Belgium and Germany), which covers the coastal and estuarine areas of the southern North Sea. This survey is directed to 0 and 1 -group plaice and sole. The area sampled by the Dutch survey is shown in Figure 9.3.2.1. In the Wadden Sea and Scheldt estuaries a light 3 meter beam trawl is used with a 20 mm cod-end and one light tickler chain. The coastal area is fished with a 6 m beam trawl rigged with a similar net as the 3 meter beam trawl. The combined index is calculated as mean of the national indices with a weighting by country, based on the size of the nursery area. In 1998 and 1999 no estimates of the DFS were available due to bad weather conditions during the period of the survey and technical problems with one of the Dutch research vessels. The combined DFS index is only used for the RCT3 analysis and not for tuning the VPA. The 2003 indices of the DFS were not available to the working group and will not be available before the ACFM meeting in October 2003.

The standardised CPUE of the commercial fleets and all surveys are plotted by age in Figure 9.3.2.3. All fleets indicate at some age that the 1996 and 1985 year classes are strong. The 2001 year class appears to be strong based on the SNSQ3 survey at age 0 and the BTS surveys at age 1 . However the DFS survey at age 1 suggests that this year-class is one of the weakest year-classes on record. There are some indications that nowadays plaice move offshore at younger ages and smaller sizes compared to some years ago. Furthermore the increased visibility in estuarine waters may have affected the catchability of the larger fish. This will need further investigation to find out if the DFS is still suitable to estimate 1 -group abundances.

For reasons previously discussed only the BTS(isis), BTS-tri and the $\operatorname{SNS}(\mathrm{Q} 3)$ are used as tuning fleets in the final assessment (Tabel 9.3.1).

### 9.4 Catch at age analyses

### 9.4.1 Data explorations

International catches-at-age data were examined using a separable VPA, with a reference age of 5, terminal $\mathrm{F}=0.6$ and terminal selectivity set to 0.5 . The age range was set at 1-14 and the year range at 1993-2002. The diagnostics are presented in Table 9.4.1.1 and Figure 9.4.1.1. A dome-shaped selection pattern is apparent for plaice in the North Sea, with S declining from age 5 to approximately age 10 , and thereafter remaining at more or less the same level. Residuals in log-catch ratios were low apart from age $1 / 2$ in some years. No consistent trends could be detected.

Single fleet XSA runs were carried out for the BTS, BTS-tri and SNS, using a low F-shrinkage (1.5), no power model, no tuning window and no time taper. The age range was set at $1-15+$ and the $q$-plateau at age 10 , as in last years assessment. The tuning fleets provide information for ages 1-3 (SNS) and 1-9 (BTS and BTS-tri). Log-catchability residuals derived from these analyses are presented in Figure 9.4.1.2. No obvious trends were observed in the catchability residuals for the BTS and SNS. These surveys have high log-q residuals indicating noisy data. The new tuning fleet, BTS tridens, has high log-q residuals at age 1 , because the survey area does not cover the mayor areas of distribution of 1 -group plaice. Therefore age 1 is removed from this tuning fleet. The residuals at the older ages are relatively low compared to the other 2 tuning fleets.

The results of the single fleet XSA runs are presented in Figure 9.4.1.3 and compared to a high shrinkage multi-fleet run. The multi-fleet run includes all 3 surveys and F-shrinkage is set at 0.5 , all other settings are the same as in the single fleet runs. Although the single fleet runs generate different signals on the overall pattern of SSB and Fbar(2-10), they all suggest a decrease in SSB and an increase in Fbar in the last 3 years. Note that tuning the VPA using only the SNS is not very reliable because only ages 1-3 are included in this survey. The low shrinkage single fleet runs all suggest a higher SSB and lower Fbar in the most recent years compared to a high shrinkage multi-fleet run.

Surba was used as a supplementary analysis tool to explore trends in survey index inferred SSB. Surba is a survey only method, which fits survey indices assuming a separable F selection pattern. Prior input of survey index to relative abundance ratios ( $\mathrm{q}_{\mathrm{a}}$ ) are required for each age. Estimations of these parameters were based on exploratory runs, bounded by prior knowledge of likely survey catchability performance for each age. Estimated mean F cannot reasonably be relied upon due to bootstrap estimation of quantiles from residuals, but this method is especially good at elucidating trends in relative SSB. Summary plots are presented in Figure 9.4.1.4 and $q_{a}$ values for each survey fitted (BTS-tri, BTS, SNS) are shown in Table 9.4.1.2. In Figure 9.4.1.5, the (fitted) relative SSB estimates are compared to the multi-fleet XSA run described above. Evidently estimating relative SSB using the SNS survey is useless because the SNS survey only includes indices for ages 1 to 3 , comprising only a small proportion of the spawning stock. Although
the BTS and BTS-tri include indices for the older ages, the relative SSB estimates appear to be driven by indices of the strong 1996 year class at younger ages. This indicates that the BTS and BTS-tri do not sample all ages sufficiently well to be able to produce survey only SSB estimates.

### 9.4.2 Model explorations

In previous years assessments the plus-group was set at $15+$. However, since the commercial fleets have been removed from the assessment (in 2001) the survivor and F estimates at the older ages is mainly determined by F-shrinkage, because the survey provide poor (variable) information at the older ages and no information above age $=9$. The top panel in Figure 9.4.2.1 shows the relative weight of the fleets and shrinkage if an 'update' assessment would have been carried out. From age 8 upwards more than $50 \%$ of the estimation is based on F-shrinkage.

From the single fleet runs it became apparent that the new fleet (BTS tridens) is suitable tuning fleet to include in a multi-fleet XSA, despite the short time range. The middle panel in Figure 9.4.2.1 shows the relative weight of the fleets and shrinkage in the case that this new fleet is included and all other model settings remain unchanged. This change to the model brings down the weight of shrinkage in ages 6 to 10 to approximately $20 \%$. In the older age groups the weight of shrinkage is still high, because the BTS-tridens series does not provide data for ages over 9 .

High shrinkage in older ages is generally considered to be undesirable because the model outcome for these ages is then closer to a mean value than a VPA estimate, which makes the model insensitive to changes in fishing mortality (Fbar is set at 2-10). Therefore it was decided to decrease the age of the plus group. The most obvious choice is to set the plus group at age 10, as this corresponds to the age range covered by the BTS and the BTS-tridens surveys. But because the reliability of the survey indices at older ages declines due to small sample sizes, it can be argued that the plus group should be brought down further. Another aspect that should be taken into account is the position of the plus group in relation to the dome-shaped selection curve (see Figure 9.4.1.1). If the plus group is set close to the breakpoint in the selection curve than the estimated F may be biased by F-shrinkage at the oldest ages. In the $10+$ scenario, little difference between the level of F was observed in a comparison between low shrinkage and high shrinkage runs, whereas a distinct difference was observed in the $9+$ scenario. Therefore it was decided to set the plus-group at age 10 and to reduce the age range of F -shrinkage to 2 .

The major changes in the model up to this point required re-evaluating the age at which catchability is related to yearclass strength (power model) and the age at which catchabilty is constant ( $q$-plateau). The appropriateness of the power model was tested (stepwise reduction of the ages using the power model) and it was decided that that there is no relationship between catchability of the recruiting ages and year-class strength. The slope seems to deviate from 1 at age 1 in the BTS, but this was considered to be doubtful due to high discarding of 1 -group fish. To define the q-plateau, the mean $\log$ catchability based on a model with the $q$-plateau set at highest possible age was plotted (Figure 9.4.2.2). This plot shows that catchability increases with age to a plateau at the age of 6 . Therefore the q-plateau was set at 6 in the final XSA run.

Finally, we examined the retrospective pattern to investigate if the level of shrinkage could be brought down. Figure 9.4.2.3 shows the retrospective pattern at a high (0.5) and low (2.0) level of F-shrinkage. The retrospective analysis can only be run for 3 years due to the short time series of the BTS-tridens fleet. F-shrinkage improves the retrospective pattern. It was concluded that F -shrinkage of 0.5 is required due to the noise in the survey indices, which are used to tune the XSA.

After these explorations we arrived at the final model described in section 9.4.4. For this model (at a F-shrinkage level of 0.5 ) the relative weight of shrinkage was less than $30 \%$ at all ages (see bottom panel in Figure 9.4.2.1). As a consequence of reducing the age of the plus group to 10, Fbar 2-10 can no longer be estimated. We propose to set the new reference F at Fbar 2-6, so only the ages that are predominant in the catch are included.

In Figure 9.4.2.4 the results of the final run are compared to the results of last years assessment and some of the exploratory runs. Lowering the age of the plus group has an effect on the level of F and especially on the level of SSB (Figure 9.4.2.4 top right and bottom left panel). However the difference in levels does not appear to be constant over time. This is more evident when if the full year range is plotted (Figure 9.4.2.5 top panel and middle panel). Changing the reference $F$ has an effect on both the level and the pattern of Fbar (Figure 9.4.2.4 top left panel and Figure 9.4.2.5 bottom panel).

Addition of the 2002 data has drastically changed our perception of the stock. The SSB in 2002 is now estimated at 142,300 tonnes which is slightly higher than the lowest point ever observed, whereas in last years catch forecast the SSB in 2002 was estimated at 250,000 tonnes. The conclusion that the SSB has decreased in the last 3 years to a level
slightly above the lowest SSB ever observed is independent of which model is chosen, all models show very similar trends in the most recent years.

### 9.4.3 Sensitivity analysis

### 9.4.3.1 The effect of discarding on the stock assessment of North Sea plaice.

The catch numbers do not include discard data due to lack of sufficiently long time series of discard sampling programmes. We however do know that the level of discarding is high in plaice and may have increased in recent years. The sensitivity of the XSA results to discarding has been examined using 2 different modelling approaches.

Kraak et al. (2002) carried out a simulation study based on very simplified assumptions. Discard scenarios were compared to the assessment of North Sea plaice that was performed in 2002, one in which a constant level of discarding was assumed ( $50 \%$ by numbers), and one in which discarding increased over the last three years (from $50 \%$ to $80 \%$ by numbers). Accounting for discarding at a constant level, as expected, only re-scales the estimates. However, accounting for a recent increase in discarding does not only change the absolute values of the estimates but also the relative values: $\mathrm{R}, \mathrm{SSB}$, and F strongly increase towards the end of the time series.

An update of this study is presented in Figure 9.4.3.1. Two crude assumptions concerning discards are made: (1) in 1999 discarding has step-wise increased from a level of $50 \%$ to a level of $80 \%$ (percentage of the catch by numbers); (2) The age composition of discards is constant throughout the time series. The results are compared to the final XSA-run. The age composition is derived from a discard sampling programme carried out in 1999-2001 (Storbeck \& Pastoors 2002). It is however unlikely that the age composition of discards has remained unchanged through time (see below). The assumption of $80 \%$ discarding since 1999 is realistic (Storbeck \& Pastoors 2002), as is the assumption of $50 \%$ discarding in the 1970s and 80s (Van Beek 1998), but discard rates in other periods are unknown. Although this simulation is crude it clearly shows increased discard rates will have affected our perception of SSB and F. Increased discarding will result in an underestimation SSB and F compared to a period with lower discard rates. However the magnitude of the bias cannot be estimated due to lack of sufficiently long time series of discard data.

Van Keeken et al. (2003, WD05) investigated the hypothesis that variability in annual and cohort growth rates affects the potential to be selected by the fishery and the potential to be discarded, and thereby causes a variable bias in the assessment. Simulated populations were constructed, derived from mean length at age data obtained from otolith backcalculations and from two distinct surveys (BTS and SNS). Selection ogives and discarding (sorting) ogives were derived from the literature. Two different selection ogives were explored: for 80 mm and for 60 mm mesh size. The minimum mesh size allowed for beam trawling in the southern North Sea is 80 mm . The selection by 60 mm mesh size was explored because there are indications that liners are regularly used by commercial beam trawlers, which may substantially reduce the effective mesh size. The selection and discarding ogives were used to estimate discard proportions at age, given the simulated populations. Quarterly catch at age numbers were then calculated from the quarterly landings at age using these discard proportions at age. Unfortunately, 1 -group plaice could not be included in the analysis because the landings of this age group were often zero. This is a serious shortcoming because the 1 -group is an important part of the discards and natural mortality is assumed to be relatively low. Compared to the (scanty) observer trips, otolith back-calculations give an apparent underestimation of proportions discarded and the surveys an overestimation (Figure 9.4.3.2). Figure 9.4.3.3 shows the simulated proportion discarded assuming a 80 mm mesh size fishery. The inclusion of estimated discards in the assessment increases the perceived values of $F$ on young ages, but this increase is not constant over all years, reflecting the variable bias in the assessment. The variability in discarding affects estimates of recruitment and SSB mainly when recruitment is high. The effects are much stronger with the 60 mm than with the 80 mm mesh size simulations (Figure 9.4.3.4). Discarding mainly appears to impact on our perception of F, SSB, and R, during periods of high recruitment. This can be understood because high recruitment (associated with slow growth) causes more young fish to be vulnerable to the fishery and an extension of the discard phase.

Both studies point in the same direction: variable discarding causes a variable bias in the assessment. The second study shows that variable discarding may be a function of variable growth. The magnitude of the bias appears to be lower in the second study, but this is due to the fact that 1 -group discarding is not included. Although these simulation studies clearly show that the absence of discard data may have a serious effect on the plaice assessment, they cannot substitute the final assessment, because the magnitude of the bias in each year cannot yet be determined. However when evaluating the quality of the assessment the potential effect of discarding should be taken into account.

### 9.4.3.2 ICA analyses including SBB indices from commercial fleet segments.

The commercial CPUE data have been removed from the assessment because of potential bias caused by TAC constraints (see section 9.3.1). This however leaves us with survey indices, which are noisy and less reliable for the
older age groups. The coverage of the older age groups has improved after including the new survey fleet (BTS tridens), and the model has been adjusted to the age range covered by the surveys ( $10+$ group in stead of a $15+$ group). Nevertheless, unbiased CPUE series, which target older age groups would certainly improve the North Sea plaice assessment.

Three commercial CPUE series have been made available to the WG as aggregated biomass indices: a spatial based CPUE index for a subgroup vessels within the NL beam trawl fleet (4-16 vessels), and two CPUE series of a subgroup of the Dutch flag vessels under UK registry (approx. 35 vessels): either for the whole year or for the first half year only. All three CPUE series were not been included in the final assessment for reasons discussed in detail in section 9.3.1. Furthermore, both CPUE series are not age structured (which is required for a XSA analysis), although in future it should be possible to convert the flag vessel data to age structured data because of the additional information on CPUE by market category.

ICA allows tuning by SBB indices, besides age-structured indices. To test the sensitivity of the final XSA run, an ICA analyses was carried out using these CPUE series and the (age structured) indices obtained from the BTS, BTS-tri and SNS. The number of years for separable analysis was set at 6 , the age range was set at $1-15+$, the reference at 4 and manual weighting of the indices was applied.

The SSB estimates of the ICA assessment are presented in Figure 9.4.3.5 and compared to the results of 3 XSA runs: last years assessment, this years final run (age range 1-10+) and an exploratory run called 'fleet addition'(age range 1$15+$, see section 9.4.2). The ICA results are very similar to the comparable 'fleet addition' XSA run. Figure 9.4.3.5b shows the residual patterns of the commercial fleets as SSB indices. All three commercial indices show similar patterns in residuals indicating that the catching opportunities in the commercial fleets appear to be different from the stock reconstruction. The positive residuals in recent years suggest that the commercial fleets experiences larger stock sizes than in the assessment. However, in 2003 only the flagvessels still showed positive residuals where the other fleets show negative residuals.

### 9.4.3.3 Fishermen's survey

Skippers were asked to compare the state of their catch in January to June 2003 with the same period in 2002. Findings were based upon the catch not the landings. The skippers were asked to describe the catch rates (less, the same or more than last year), the size range (mostly small, all sizes, mostly large) and the discard rates (less, the same or more than last year). Questionnaire returns were received from skippers of vessels registered in Belgium, Denmark, England, the Netherlands, Scotland and Sweden. A total of 348 views were collected on the state of plaice catches (all gear types combined). The area covered by this survey was subdivided into 10 zones, 8 within the North Sea and 2 in subdivision IIIa. Figure 9.4.3.6 shows the overall results of the fishermen's survey and the results segregated into 3 regions.

Overall the catch rates appear to have remained unchanged: $40 \%$ catch the same, $30 \%$ catch less and $30 \%$ catch more than last year. However if these results are split up by region, a clear increase in catch rates in subdivion IIIa is observed. In the south-eastern North Sea the average catch rates appear have declined slightly, whereas in the rest of the North Sea the average catches rates remain unchanged. These results correspond to the CPUE data presented in section 9.3.1. The Dutch beam trawl vessels mainly fish in the south-eastern North Sea and these vessels observe a decline in their CPUE (Figure 9.3.1.1), whereas the flag vessels fish further north-west and have been able to maintain a relatively stable CPUE (Figure 9.3.1.2).

The views of the skippers on the size range of plaice indicate the larger specimens are scarce in all regions. This corresponds to the age composition observed in the market samples (Figure 9.2.1). The majority of the catch consists of 2 to 6 year old fish.

In the North Sea, there appears to be a tendency towards less discarding in 2003 compared to 2002. This may be related to the fact that the strong (slow growing) 1996 year class no longer dominates the discards. The subsequent year classes have been much weaker, resulting in lower numbers of under-sized fish. We however do not have the 2003 discard sampling data available yet to compare with the fishermen's survey.

### 9.4.4 Final assessment

The settings of the final XSA assessment are given in the text table below.


As last year, the 1997 survey results for the year classes 1995 and 1996 in the BTS and SNS surveys were not used in the assessment and will not be used in RCT3, due to age reading problems in that year.

Diagnostics of the final run are presented in Table 9.4.4.1. Figure 9.4.4.1 shows the log catchability residuals for the tuning fleets in the final run. Fishing mortality and stock numbers are shown in Tables 9.4.4.2 and 9.4.4.3. Weighting of the different data sources in the assessment is shown in Figure 9.4.2.1 (bottom panel). The surveys account for most of the weight on all ages.

The retrospective analysis is shown in Figure 9.4.2.3 (left panels) and was carried out by chopping off one year at the end and without a tuning window. The retrospective analysis can only be run for 3 years due to the short time series of the BTS-tridens fleet. The analysis does not show a clear retrospective pattern in fishing mortality, but a systematic overestimation of SSB seems to occur,

### 9.5 Recruitment estimates

Input to the RCT3 analysis is presented in Table 9.5.1. Results for ages 1 to 2 are presented in Tables 9.5.2-9.5.3. The Geometric mean recruitment is 395 million and the arithmetric mean is 424 million.

The 2001 year class in 2003 (at age 2) is estimated at 297 million in XSA and 396 in RCT3. All but the international DFS ('comb') at age 1 survey indices estimate this year class to be above average ( 354 million), and therefore the RCT3 estimate was used for further analysis ( $80 \%$ of the weight is coming from the surveys).

The 2002 year class in 2003 (at age 1) is poorly estimated by the RCT3 analysis (only two available indices, which gave very different estimates). The long term GM for this year class was used for further analysis.

For the 2003 and subsequent year classes the long term GM was used as there were no estimates.

The text table below summarises the year class strength estimates that have been used.

Year class	At age in 2003	XSA	RCT3	GM 57-00	Accepted Estimate
$\mathbf{2 0 0 1}$	2	296719	$\underline{396233}$	353703	RCT3
$\mathbf{2 0 0 2}$	1	-	350650	$\underline{394687}$	GM 1957-00
$\mathbf{2 0 0 3}$ \& subsequent	recruits	-	-	$\underline{394687}$	GM 1957-00

Figure 9.6 .1 shows the trends in landings, mean Fbar(2-6), SSB and recruitment since 1957. The landings have gradually increased up to the late 1980s and rapidly declined until 1996, in line with the decrease in TAC. The landings have levelled off in the most recent years.

Fishing mortality increased until the late 1990s and reached its highest observed estimate in 1997. Current fishing mortality ( 0.53 ) remains high and is estimated to be well above $\mathbf{F}_{\mathrm{pa}}(0.3)$.

The SSB increased to a peak in 1967 when the strong 1963 year class became mature. Since then, SSB declined to a level of around 270 kt in the early 1980s. Due to the recruitment of the strong year classes 1981 and 1985, SSB again increased to a peak in 1989 followed by a rapid decline (up to 1997). SSB remains low in the most recent years.

Except for the occurrence of strong year classes (1963, 1981, 1985 and 1996), which coincided with cold winters, interannual variability in recruitment is relatively small. VPA estimates of recruitment show a periodic change with relative poor recruitment in the 1960s and relatively strong recruitment in the 1980s. The recruitment level in the early 1990s appears to be somewhat lower than in the 1980s. The 1996 year class is estimated to be strong, while the 2000 year class is one of the lowest observed.

### 9.7 Short term prognosis

The input for the short term forecast is given in Table 9.7.1. Weight at age in the stock and weight at age in the catch are taken as the average over the last 3 years. The exploitation pattern was taken as the mean value of the last three years and scaled to the average F over 2002 ( 0.51 ). Population numbers at ages 3 and older are XSA survivor estimates. Numbers at age 2 are estimated from RCT3. Numbers at age 1 and recruitment of the 2003 year class are taken from the long term geometric mean (1957-2000)

A management option table for status quo fishing mortality in 2003 in presented in Table 9.7.2. Detailed tables for F status quo are given in Table 9.7.3. A detailed deterministic plot of the catch forecast is given in Figure 9.7.1. At status quo fishing mortality in 2003 and 2004 the SSB is expected to be at around 149,000 tonnes in 2004 and 166,000 tonnes in 2005.

The yield at status quo $F$ is expected to be around 71,000 tonnes in 2003 , about $24 \%$ lower than the predicted value for 2003 from last years status quo forecast. The status quo catch prediction for 2003 is slightly lower than the TAC for 2003 ( 73,250 tonnes). The yield in 2004 is predicted to be 75,200 tonnes at status quo F .

A sensitivity analysis has been carried out to identify the different sources of uncertainty underlying the predictions (Figure 9.7.2). Most of the variability ( $89 \%$ ) of the SSB in 2005 is explained by the uncertainties of the year classes 2001 to 2003 estimates.

The probability profiles relative to the short term forecast are given in Figure 9.7.3. At the current yield of around 70,000 tonnes, the probability that F is higher that $\mathbf{F}_{\mathrm{sq}}$ is around $35 \%$. The probability that SSB will stay below 210,000 tonnes is predicted to be about $80 \%$.

### 9.8 Medium term prognoses

A 10 year average was used for the catch weight at age and stock weight at age. A constrained Shepherd stock recruit curve was used to fit the model. The estimated parameters and the residuals from the fit were exported to the input-file for the WGTERMC program. Figure 9.8.1 shows the stock-recruitment fit and the medium term forecasts at $\mathbf{F}_{\mathrm{sq}}$. There is a high probability $(90 \%)$ that the SSB remains under 240,000 tonnes over the medium time period.

Figure 9.8.2 shows the probability of SSB to remain below 300,000 tonnes over the next 10 years. At $\mathrm{F}=0.3$, the probability of remaining below 300,000 tonnes is around $35 \%$ in 2012.

### 9.9.1 Biological reference points

In this benchmark assessment some major changes were made compared to previous assessments. The plus group has been brought down from $15+$ to $10+$ and the reference $F$ has been changed from $F_{b a r}(2-10)$ to $F_{b a r}(2-6)$. Therefore the reference points are likely to have changed (see Figure 9.4.2.5). The estimated biological reference points are presented in the text table below and Figure 9.9.1.

Reference point	Deterministic	Median	75th percentile	95th percentile	Hist SSB < ref pt \%	
MedianRecruits	372349	369554	396055	404123		
MBAL	0				0.00	
Bloss	134383					
SSB90\%R90\%Surv	283254	284006	305869	338111	32.61	
SPR\%ofVirgin	8.39	8.46	9.42	10.90		
VirginSPR	5.57	5.56	6.20	7.46		
SPRloss	0.55	0.51	0.57	0.65		
	Deterministic	Median	25th percentile	5th percentile	Hist F > ref pt \%	
	0.51	0.50	0.48	0.44	26.09	
FBar	0.23	0.23	0.21	0.17	95.65	
Fmax	0.11	0.11	0.10	0.08	100.00	
F0.1	0.18	0.20	0.18	0.16	100.00	
Flow	0.33	0.30	0.28	0.25	67.39	
Fmed	0.53	0.56	0.48	0.42	10.87	
Fhigh	0.11	0.12	0.10	0.09	100.00	
F35\%SPR	0.43	0.46	0.41	0.36	45.65	
Floss						

$\mathbf{B}_{\text {loss }}$ (SSB in 1997) is now estimated to be 134383 tonnes, whereas in last year's assessment it was estimated at 144,440 tonnes. Note that $\mathbf{B}_{\text {loss }}$ was the basis for setting $\mathbf{B}_{\text {lim }}$ at 210,000 tonnes.
$\mathbf{F}_{\text {max }}$ is revised downwards from 0.24 to $0.23 . \mathbf{F}_{\text {med }}$ is revised downwards from 0.35 to $0.33 . \mathbf{F}_{\text {high }}$ is revised downwards from 0.68 to 0.53 .

Figures 9.9.2-5 give respectively a stock recruitment plot with a LOWESS smoother and reference points, a plot of YPR and SPR curves and reference points, a plot of historical SSB against $F_{b a r}$ with an equilibrium curve based on the LOWESS stock recruitment relationship, and a plot of historical yield against $\mathrm{F}_{\text {bar }}$ with an equilibrium curve based on the LOWESS stock recruitment relationship.

### 9.9.2 PA reference points

In the report of the SGPRP (ICES 2003) North Sea plaice was classified as having no S/R signal and a distinct plateau (wide range of SSB). The segmented regression for North Sea plaice presented by SGPRP (ICES 2003) is not significant, and "the WG is requested to evaluate a change in reference points for North Sea plaice based on an updated version of $\mathbf{B}_{\text {loss }}$ ".

Furthermore, $\mathbf{F}_{\text {lim }}$ and $\mathbf{F}_{\mathrm{pa}}$ need to be re-established because the current assessment changed the age range for the reference $F$ from 2-10 to 2-6.

The revision of PA reference points is discussed in section 16 of this report.

### 9.10 Quality of the assessment

9.10.1 Comparison between WG2002 assessment with the new WG2003 assessment for North Sea plaice

have been overestimated by a factor of $30 \%$.

The current assessment gives a rather different perspective of stock development compared to the ACFM advice from October 2002. The SSB in 2002 is now estimated at 142,300 tonnes, which is slightly higher than the lowest point ever observed, whereas in last years catch forecast the SSB in 2002 was estimated at 250,000 tonnes. In this section, the contribution of different sources of data and model assumptions to this difference in perception are investigated by adjusting the input data and model settings of the assessment. Four main elements are explored: landings in 2002, weights at age, inclusion of the BTS-Tridens survey and model formulation.

- landings in 2002

In the ACFM 2002 forecast for plaice in the North Sea, a status quo fishing mortality was assumed for 2002. This gave predicted landings in 2002 of around 95,000 tonnes. The TAC in 2002 was 77,000 tonnes and the WG estimate of landings was 70,000 tonnes. In a first scenario, the WG estimate of landings at age in 2002 was multiplied by a factor of 1.3 in order to generate total landings of around 95,000 tonnes. In this scenario we used the average stock weight at age of 1999-2001 for 2002. The results in terms of SSB are very close to the WG2002 assessment. This indicates that the stock may

- weights at age

In the second scenario, we used the observed landings in 2002, however, we still used the mean weights at age of 19992001 instead of the mean weights of 2002. This is because the forecast provided in 2002 was based on an average weight at age of 1999-2001. This provides an estimate of SSB in 2002 of 200,000 tonnes, which is 50,000 tonnes below the estimate of ACFM 2002. When instead we used the observed mean weight at age in 2002, the estimate is further reduced to 173,000 tonnes. The declining trend in mean weight at age has continued and this has a noticeable effect on the SSB estimates.


- incorporation of BTS-Tridens survey

The next scenario used the observed 2002 weight at age, but we here introduced the BTS-Tridens index as an additional source of calibration data. The reason for including the BTS-Tridens survey are explained more fully in section 9.4.2. The inclusion of the BTS-Tridens survey gave an estimate of SSB in 2002 of 155,000 tonnes.

- model formulation

The last scenario is actually the final run proposed by the WG in 2003. Here the model formulation has been substantially changed to remove the undesirable effects of shrinkage. This has been achieved by reducing the plusgroup to age 10, application of a catchability plateau at age 6 and the usage of shrinkage over 2 ages (instead of 5). In this case the SSB estimate for 2002 is 143,000 tonnes.

From the above analysis it is shown that the largest effect on the SSB estimates is generated by the addition of the 2002 catch at age data ( $46 \%$ ). The second largest effect was generated by the (low) mean weights at age in 2002 ( $26 \%$ ). Finally, the addition of the new BTS-Tridens (16\%) and the new model formulation (12\%) have a relatively low contribution to the re-estimate of the SSB in 2002. The main features of the new stock estimates are the strength of the 1996 yearclass and the low estimates of fishing mortality on the youngest ages.

The strength of the 1996 yearclass was initially estimated from the research surveys only. When the landings at age from this yearclass were lower than expected from the abundance, this was interpreted by the model as a low fishing mortality on the youngest ages and the most recent years (see text table below). So the model predicted high stocknumbers of the 1996 yearclass and low F's.

Run title : Plaice in IV						
Table 8	shing m	ality (F)				
YEAR	1996	1997	1998	1999	2000	2001
1	0.005	0.001	0.001	0.002	0.009	0.017
2	0.170	0.223	0.039	0.033	0.080	0.153
3	0.553	0.544	0.587	0.255	0.184	0.362
4	0.755	0.808	0.729	0.714	0.413	0.299
5	0.752	0.932	0.746	0.708	0.567	0.361
6	0.669	0.737	0.665	0.694	0.581	0.516
7	0.674	0.622	0.588	0.601	0.424	0.541
8	0.550	0.453	0.471	0.508	0.411	0.385
9	0.517	0.494	0.367	0.517	0.366	0.427
10	0.528	0.442	0.350	0.397	0.311	0.372
11	0.360	0.386	0.281	0.304	0.197	0.264
12	0.364	0.452	0.362	0.319	0.356	0.362
13	0.326	0.471	0.366	0.322	0.250	0.348
14	0.423	0.458	0.350	0.360	0.280	0.333
15	0.423	0.458	0.350	0.360	0.280	0.333
F2-10	0.574	0.584	0.505	0.492	0.371	0.380

In the most recent assessment, additional catch at age data has become available (2002) in which the 1996 yearclass (at age 6) was again lower than expected from the surveys. The catches of this yearclass have now for a number of years been lower than expected from the surveys. As additional data is available on the catches, the effects of the catches on the perception of the cohort becomes more important compared to the survey information. Therefore the strength of the 1996 yearclass has been brought more in line with the signal from the catches and therefore this yearclass is now estimated substantially lower than in previous years. Consequently, the fishing mortality on the youngest ages and recent years is estimated to be higher compared to the estimates from last year.


The comparison of the catch at age in 2002 from the ACFM forecast of 2002 and WG2003 are shown in the graph below. This graph indicates that the forecast was based on a high contribution of the 1996 yearclass in the catches which has not materialized in the data that was available to WGNSSK in 2003.


Also the fishing mortality at age in 2002 is substantially higher than assumed by ACFM in it's 2002 advice.


## Conclusion

It is shown above that the difference in perception between this year's assessment SSB estimates. and last year's assessment is mainly driven by the addition of the 2002 catch data. The second largest effect was caused by the decrease in mean weight at age. The catch data of 2002 has caused a re-evaluation of the strength of the important 1996 yearclass, which is now estimated to be substantially lower than estimated last year.

### 9.10.2 Other remarks concerning the quality of the assessment

The observed decrease in SSB in the last 3 years appears to be robust to the use of different models. Essentially this means that the 2002 data included in this years assessment all point in the same direction. Despite the similarity of the outcome of the different model settings, the WG thinks the XSA model settings used in this years assessment are an improvement compared to previous years settings (see section 9.4.2).

The North Sea plaice stock assessment generally shows a retrospective pattern in which the SSB is overestimated and F underestimated in the current year. This pattern clearly still exists for SSB but is less evident for F when F-shrinkage is used. At low F-shrinkage both SSB and F show a strong retrospective pattern.

The quality of the catch-at-age data are questionable. The catch numbers do not include discard data due to lack of a sufficiently long time series of discard sampling programmes. Discarding is known to be high in plaice and may have increased in recent years. In this years assessment, the sensitivity of the XSA results to the lack of discard data was tested using simulated discard data. It was shown that in periods slow growth, discarding may increase, and this may impact the estimates of fishing mortality, recruitment and to a lesser extend SSB (see section 9.4.3.1).

The commercial CPUE data have been removed from the assessment because of potential bias caused by TAC constraints (see section 9.3.1). This however leaves us with survey indices, which are noisy and less reliable for the older age groups (see section 9.4.1). The coverage of the older age groups has improved after including a new survey fleet, and the model has been adjusted to the age range covered by the surveys (see section 9.4.2). But because of the noise in the survey-tuning fleets, F-shrinkage is set at a relatively high value (0.5). The disadvantage of choosing a high level of shrinkage is that the assessment will react slowly to changes in the fishery. Therefore, additional information on the older fish would improve the North Sea plaice assessment.

Table 9.1.1 North Sea plaice. Nominal landings (tonnes) in Sub-area IV as officially reported to ICES

| YEAR | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 7093 | 5765 | 5223 | 5592 | 6160 | 7260 | 6369 | 4859 |  |
| Denmark | 13358 | 11776 | 13940 | 10087 | 13468 | 13408 | 13797 | 12552 |  |
| France | 442 | 379 | 254 | 489 | 624 | 547 | 429 | 548 |  |
| Germany | 6329 | 4780 | 4159 | 2773 | 3144 | 4310 | 4739 | 3927 |  |
| Netherlands | 44263 | 35419 | 34143 | 30541 | 37513 | 35030 | 33290 | 29081 |  |
| Norway | 527 | 917 | 1620 | 965 | 643 | 883 | 1926 | 1996 |  |
| Sweden | 3 | 5 | 10 | 2 | 4 | 3 | 3 | 2 |  |
| UK (E/W/NI) | 15801 | 13541 | 13789 | 11473 | 9743 | 13131 | 11025 | 8504 |  |
| UK (Scotland) | 8594 | 7451 | 8345 | 8442 | 7318 | 7579 | 8122 | 8236 |  |
| Others |  |  |  | 1 |  |  |  |  |  |
| Total | 96410 | 80033 | 81483 | 70365 | 78617 | 82151 | 79700 | 69705 |  |
| Unallocated | 1946 | 1640 | 1565 | 1169 | 2045 | -1001 | 2263 | 512 |  |
| WG estimate | 98356 | 81673 | 83048 | 71534 | 80662 | 81150 | 81963 | $\mathbf{7 0 2 1 7}$ |  |
| TAC | 115000 | 81000 | 91000 | 87000 | 102000 | 97000 | 78000 | 77000 | 73250 |

Table 9.2.1 North Sea plaice: natural mortality and maturity at age

Age	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Natural mortality	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Maturity	0	0.5	0.5	1	1	1	1	1	1	1	1	1	1	1	1

Table 9.2.2 North Sea plaice, catch numbers at age


Table 9.2.3 North Sea plaice, catch weights at age (kg)

Table 2 Catch weights at age (kg)											
YEAR		1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
AGE											
	1	0	0	0	0	0	0	0.217	0.315	0.256	0.246
	2	0.253	0.25	0.242	0.232	0.232	0.267	0.294	0.286	0.318	0.296
	3	0.286	0.273	0.282	0.27	0.279	0.298	0.31	0.318	0.356	0.352
	4	0.319	0.312	0.321	0.348	0.322	0.331	0.333	0.356	0.403	0.428
	5	0.399	0.388	0.385	0.436	0.425	0.366	0.359	0.419	0.448	0.493
	6	0.533	0.487	0.471	0.484	0.547	0.517	0.412	0.443	0.514	0.541
	7	0.624	0.628	0.539	0.559	0.597	0.59	0.573	0.499	0.542	0.608
	8	0.667	0.7	0.663	0.624	0.662	0.596	0.655	0.672	0.607	0.646
	9	0.715	0.737	0.726	0.69	0.738	0.686	0.658	0.744	0.699	0.674
+gp		1.0281	1.0049	0.8866	0.9332	0.9781	0.9109	0.8934	0.8916	0.8906	0.9388
SOPCOFAC		1.0193	1.0075	1.0057	1.0182	1.0198	1.0291	1.0582	0.9744	1.0331	1.0283
YEAR		1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
	1	0.272	0.285	0.249	0.265	0.254	0.244	0.235	0.238	0.237	0.279
	2	0.316	0.311	0.3	0.295	0.323	0.315	0.311	0.286	0.274	0.262
	3	0.344	0.354	0.33	0.338	0.353	0.369	0.349	0.344	0.329	0.311
	4	0.405	0.405	0.42	0.375	0.38	0.397	0.388	0.401	0.416	0.424
	5	0.486	0.476	0.495	0.513	0.418	0.438	0.429	0.473	0.505	0.514
	6	0.539	0.554	0.587	0.594	0.556	0.491	0.474	0.545	0.558	0.608
	7	0.605	0.609	0.636	0.641	0.647	0.609	0.55	0.588	0.604	0.664
	8	0.627	0.693	0.703	0.705	0.721	0.687	0.675	0.662	0.642	0.712
	9	0.677	0.707	0.783	0.741	0.715	0.776	0.796	0.772	0.725	0.738
+gp		0.8417	0.9256	1.0187	0.9802	0.9781	0.9498	0.9603	1.013	1.0072	0.9838
SOPCOFAC		1.0508	1.0369	1.0624	1.0254	1.0016	0.9643	0.9983	1.0136	1.0175	1.0062
YEAR		1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
	1	0.2	0.233	0.247	0.221	0.221	0.221	0.236	0.271	0.227	0.251
	2	0.25	0.263	0.264	0.269	0.249	0.254	0.28	0.285	0.286	0.263
	3	0.3	0.283	0.29	0.304	0.3	0.278	0.309	0.298	0.294	0.29
	4	0.383	0.375	0.337	0.347	0.351	0.352	0.332	0.317	0.306	0.318
	5	0.515	0.491	0.462	0.425	0.402	0.453	0.392	0.366	0.365	0.341
	6	0.604	0.613	0.577	0.488	0.504	0.512	0.533	0.447	0.455	0.425
	7	0.677	0.684	0.678	0.675	0.583	0.608	0.603	0.597	0.528	0.531
	8	0.771	0.725	0.729	0.751	0.728	0.699	0.67	0.692	0.671	0.605
	9	0.815	0.837	0.804	0.853	0.829	0.813	0.792	0.761	0.747	0.715
+gp		0.9838	1.0347	1.0213	1.0132	0.9901	1.0144	0.9427	1.004	0.9206	0.891
SOPCOFAC		0.9938	0.9844	0.9799	0.9877	0.9875	0.9848	0.9854	0.9846	0.9634	0.9818
YEAR		1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
	1	0.249	0.229	0.272	0.24	0.208	0.152	0.245	0.228	0.238	0.22
	2	0.273	0.263	0.277	0.28	0.271	0.26	0.253	0.267	0.267	0.243
	3	0.289	0.286	0.301	0.307	0.313	0.31	0.28	0.284	0.292	0.268
	4	0.326	0.339	0.338	0.355	0.364	0.394	0.355	0.314	0.309	0.297
	5	0.356	0.397	0.402	0.42	0.457	0.497	0.455	0.432	0.365	0.33
	6	0.423	0.449	0.454	0.486	0.524	0.607	0.547	0.5	0.482	0.419
	7	0.518	0.502	0.528	0.499	0.603	0.633	0.63	0.684	0.592	0.496
	8	0.631	0.611	0.611	0.589	0.616	0.695	0.682	0.71	0.708	0.662
	9	0.721	0.732	0.734	0.72	0.683	0.7	0.752	0.751	0.795	0.74
+gp		0.8558	0.9066	0.9081	0.8576	0.9242	0.9141	0.813	0.8873	0.8006	0.8781
SOPCOFAC		0.9767	0.9738	0.9935	0.9846	0.992	0.9842	0.986	0.9711	0.9901	0.9775

Table 9.2.4 North Sea plaice, stock weights at age derived from first quarter catch weights


Table 9.3.1 North Sea plaice: tuning fleets

Plaice		in	the	North	Sea	(Area	IV)				
BTS											
		1985	2002								
		1	1	0.66	0.75						
		1	9								
	1	115.577	179.898	38.813	11.843	1.371	1.048	0.362	0.167	0.098	0.246
	1	660.199	131.772	51.003	8.886	3.285	0.428	0.338	0.129	0.038	0.211
	1	225.822	764.285	33.065	4.773	2.039	1.017	0.352	0.087	0.072	0.314
	1	577.319	140.105	173.719	9.241	2.594	0.775	0.421	0.036	0.115	0.22
	1	428.699	319.272	38.66	47.305	5.85	0.822	0.289	0.661	0.144	0.096
	1	112.063	102.639	55.674	22.78	5.572	0.801	0.205	0.379	0.261	0.165
	1	185.442	122.051	28.553	11.86	4.264	5.691	0.259	0.231	0.118	0.102
	1	171.538	125.93	27.314	5.62	3.184	2.662	1.136	0.259	0.053	0.091
	1	124.762	179.103	38.399	6.116	0.931	0.812	0.636	0.444	0.173	0.085
	1	145.212	64.217	35.242	10.875	2.857	0.638	0.861	0.957	0.401	0.032
	1	252.168	43.622	14.235	8.106	1.195	0.868	0.357	1.135	0.223	0.119
	1	218.284	212.134	22.882	4.834	3.717	0.919	0.047	0.173	0.131	0.118
	1	-11	-11	19.914	2.788	0.219	0.39	0.171	0.121	0	0.034
	1	338.198	436.197	47.413	8.906	1.44	0.755	0.145	0.078	0.105	0.087
	1	305.874	130.001	182.54	3.656	2.109	0.137	0.139	0.029	0.032	0.085
	1	278.776	75.219	31.594	24.21	0.613	0.174	0.539	0.029	0.019	0.055
	1	225.784	78.903	19.557	10.049	9.525	0.294	0.15	0.041	0.043	0.192
	1	568.654	45.463	15.365	5.501	2.683	1.427	0.083	0.14	0	0.113
SNS											
		1982	2002								
		1	1	0.66	$0.75$						
		1	3								
		1	70108	8503	1146						
		1	34884	14708	308						
		1	44667	10413	2480						
		1	27832	13789	1584						
		1	93573	7558	1155						
		1	33426	33021	1232						
		1	36672	14430	13140						
		1	37238	14952	3709						
		1	24903	7287	3248						
		1	57349	11149	1507						
		1	48223	13742	2257						
		1	22184	9484	988						
		1	18225	4866	884						
		1	24900	2786	415						
		1	24663	10377	1189						
		1	-11	-11	1393						
		1	33391	29431	5739						
		1	35188	9235	14347						
		1	23028	2489	905						
		1	10193	2416	356						
		1	30265	1047	264						
BTS	Tridens										
	1996	2002									
	1	1	0.66	0.75							
	2	9									
	1	5.576	4.39	3.307	2.388	1.841	0.83	0.479	0.177	0.495	
	1	-11	10.355	3.96	2.837	1.927	0.463	1.123	0.447	0.59	
	1	30.786	9.969	5.521	2.705	1.349	0.899	0.782	0.327	0.448	
	1	8.292	36.931	6.462	2.649	2.133	0.6	0.764	0.333	0.169	
	1	9.453	12.736	17.227	2.936	1.893	1.076	0.954	0.247	0.621	
	1	6.926	9.051	7.224	7.646	1.204	0.691	0.48	0.593	0.605	
	1	14.405	10.724	7.611	4.262	4.132	0.519	0.629	0.358	0.779	

Table 9.3.1 (cont.) North Sea plaice: tuning fleets (not used in the assessment)


Table 9.4.1.1 North Sea Plaice: Separable VPA output
Title : Plaice in IV
At 17/09/2003 9:23
Separable analysis
from 1993 to 2002 on ages 1 to 14
with Terminal F of .600 on age 5 and Terminal $S$ of .500
Initial sum of squared residuals was 159.581 and
final sum of squared residuals is 13.641 after 60 iterations
Matrix of Residuals

Years	1993/94	1994/95	1995/96	1996/97	1997/98	1998/99	1999/2000	2000/2001	2001/2002
1/2	0.47	-0.493	1.343	-0.676	-0.731	-0.783	-0.581	0.439	1.655
2/3	0.484	0.293	0.588	0.372	0.456	-0.488	-0.571	0.018	0.585
3/4	-0.001	-0.171	0.439	0.185	0.093	0.455	-0.331	-0.178	-0.038
4/5	-0.201	-0.278	0.17	-0.091	0.013	0.179	0.123	0.075	-0.389
5/6	-0.114	-0.522	-0.005	-0.158	0.087	0.014	-0.126	0.046	-0.02
6/7	-0.255	-0.406	-0.273	-0.067	-0.038	0.077	0.207	0.116	-0.361
7/ 8	-0.142	0.114	-0.037	0.18	-0.115	0.018	0.01	-0.027	0.114
8/9	0.126	0.142	-0.037	0.105	-0.058	-0.028	0.14	0.058	-0.113
9/10	-0.259	0.194	-0.304	0.014	-0.016	-0.232	0.188	-0.024	0.085
10/11	0.042	0.076	-0.235	0.202	0.077	-0.021	0.296	0.106	-0.457
11/12	0.449	0.344	0.379	0.054	0.161	0.135	-0.069	-0.215	-0.013
12/13	-0.235	0.071	-0.15	-0.471	-0.164	-0.073	-0.214	-0.008	0.46
13/14	0.391	0.251	-0.498	-0.387	0.113	0.027	-0.121	-0.2	0.182

Table 9.4.1.2 North Sea Plaice: Input values to Surba: Survey to relative abundance ratio (q) for each survey.
$N_{a, y}^{\text {relative }}=q_{a} * I_{a, y}$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
BTS - Tridens	1.0	1.0	1.0	1.0	1.0	1.0	1.0	$*$	$*$			
BTS	1.0	1.0	1.0	1.0	1.0	1.0	0.99	0.78	0.5			
SNS	1.0	1.0	1.0									

* ages 8 and 9 removed due to inherent noise in signal

Table 9.4.4.1 North Sea Plaice: Final XSA output
Lowestoft VPA Version 3.1

## 15/09/2003 22:31

Extended Survivors Analysis
Plaice in IV
CPUE data from file fleet
Catch data for 46 years. 1957 to 2002. Ages 1 to 10.


XSA population numbers (Thousands)

			AGE						
YEAR	1,	2,	3,	4,	5,	6 ,	7,	8,	9,
1993	$2.86 \mathrm{E}+05$,	3.60E+05,	$2.84 \mathrm{E}+05$,	1.71E+05,	1.04E+05,	$6.16 \mathrm{E}+04$,	3.09E+04,	2.72E+04,	8.31E+03
1994	$2.39 \mathrm{E}+05$,	$2.55 \mathrm{E}+05$,	$2.74 \mathrm{E}+05$,	$1.63 \mathrm{E}+05$,	$8.64 \mathrm{E}+04$,	4.49E+04,	2.81E+04,	$1.51 \mathrm{E}+04$,	1.39E+04,
1995	3.22E+05,	$2.15 \mathrm{E}+05$,	1.88E+05,	$1.51 \mathrm{E}+05$,	7.15E+04,	4.15E+04,	$2.12 \mathrm{E}+04$	$1.09 \mathrm{E}+04$,	$7.58 \mathrm{E}+03$
1996	2.50E+05,	$2.84 \mathrm{E}+05$,	1.60E+05,	$9.27 \mathrm{E}+04$,	$6.25 \mathrm{E}+04$,	$3.00 \mathrm{E}+04$,	2.05E+04,	9.89E+03,	$5.68 \mathrm{E}+03$,
1997	$7.51 \mathrm{E}+05$,	$2.25 \mathrm{E}+05$,	2.17E+05,	8.32E+04,	3.98E+04,	2.60E+04,	1.34E+04,	$8.44 \mathrm{E}+03$,	$4.64 \mathrm{E}+03$,
1998	2.66E+05,	6.79E+05,	1.63E+05,	1.13E+05,	3.38E+04,	$1.46 \mathrm{E}+04$	1.06E+04,	$6.05 \mathrm{E}+03$,	4.19
1999	$2.48 \mathrm{E}+05$,	2.41E+05,	5.86E+05,	8.18E+04,	$4.89 \mathrm{E}+04$,	1.47E+04,	7.08E+03,	$4.88 \mathrm{E}+03$,	$3.09 \mathrm{E}+03$
2000	2.51E+05,	$2.24 \mathrm{E}+05$,	$2.09 \mathrm{E}+05$,	3.81E+05,	$3.61 \mathrm{E}+04$,	2.13E+04,	$6.76 \mathrm{E}+03$,	$3.75 \mathrm{E}+03$,	$2.28 \mathrm{E}+03$
2001	1.43E+05,	$2.24 \mathrm{E}+05$,	1.87E+05,	1.52E+05,	$1.89 \mathrm{E}+05$,	1.84E+04,	$1.04 \mathrm{E}+04$,	4.09E+03,	$2.42 \mathrm{E}+03$
2002	$3.29 \mathrm{E}+05$,	1.25E+05,	1.69E+05,	1.20E+05,	9.15E+04,	$8.53 \mathrm{E}+04$	$1.01 \mathrm{E}+04$	$5.22 \mathrm{E}+03$	$2.63 \mathrm{E}+03$
Estimated population abundance at 1st Jan 2003									
					91E+04,	60E+04,	89E+04,	60E+03,	. $95 \mathrm{E}+03$,
Taper weighted geometric mean of the VPA populations:									
		. $42 \mathrm{E}+05$,	. $85 \mathrm{E}+05$,	. 85E+05,	. $03 \mathrm{E}+05$,	$5.38 \mathrm{E}+04,2.91 \mathrm{E}+04,1.68 \mathrm{E}+04,1.00 \mathrm{E}+04$,			
Standard error of the weighted Log(VPA populations)									
	. 4244 ,	.4395,	.4217,	. 4560,	. 5245 ,	. 5860 ,	.6335,	. 6776 ,	7331,

## Log catchability residuals.

Age	,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992
1	,	99.99,	99.99,	-1.17,	-.29,	-.53,	. 37 ,	. 41,	-. 91,	-. 42,	-. 50
2	,	99.99,	99.99,	-. 14,	-.31,	. 52,	-.37,	. 46 ,	-. 34,	-. 11,	-. 10
3	,	99.99,	99.99,	-. 27 ,	. 04 ,	-. 33,	. 33,	-. 40 ,	-.02,	-. 32,	-. 26
4	,	99.99,	99.99,	-.39,	-.29,	-. 72 ,	-. 24 ,	. 42 ,	. 46 ,	-. 14,	-. 54
5	5 ,	99.99,	99.99,	-.61,	-.23,	-. 32,	.13,	. 59,	-. 32,	.18,	-. 01
6	6 ,	99.99,	99.99,	. 25,	-. 76,	-. 34,	-. 16,	.03,	-. 42,	. 88,	. 83
7	,	99.99,	99.99,	. 02 ,	-. 24 ,	-.20,	-. 52,	-.42,	-.73,	-.85,	. 10
8	,	99.99,	99.99,	-.08,	-. 31,	-1.00,	-1.70,	. 58,	. 45 ,	. 07 ,	-. 15
9	,	99.99,	99.99,	-.19,	-. 72 ,	-. 15,	.01,	. 36 ,	. 20,	-.03,	-. 51
Age	,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
1	,	-.48,	-. 15,	. 12 ,	. 21,	99.99,	.59,	. 56,	. 46 ,	. 82,	. 89
2	,	.28,	-.38,	-.60,	.68,	99.99,	. 45,	. 27 ,	-. 18,	-.06,	-. 05
3	,	. 10,	.08,	-. 37,	. 23 ,	-.21,	. 97 ,	. 85,	. 05 ,	-.23,	-. 26
4	,	-. 30,	.43,	. 25 ,	.19,	-.21,	. 60,	. 02 ,	. 29,	.19,	-. 03
5	,	-. 92 ,	. 31 ,	-.28,	1.00,	-1.30,	.63,	. 64,	-.40,	. 77,	. 15
6	6 ,	-. 26 ,	-.21,	.15,	. 60,	-. 05 ,	1.07,	-.61,	-.79,	-. 20 ,	-. 02
7	,	.14,	. 70,	-.03,	-1.93,	-. 28 ,	-.23,	. 04 ,	1.34,	-. 24,	-. 73
8	,	-.12,	1.25,	1.72,	. 01,	-.23,	-.36,	-1.07,	-1.03,	-.77,	. 30
9	,	.15,	.41,	. 34,	. 29 ,	99.99,	. 32 ,	-.47,	-. 80 ,	-. 21 ,	99.99

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3 ,	4,	5,	6,	7,	8,
9								
Mean Log q,	-7.1820,	-7.6913,	-8.6235,	-9.4602,	-10.1077,	-10.4263,	-10.4263,	-10.4263,
-10.4263,								
S.E(Log q),	. 6083,	. 3745 ,	. 3955 ,	. 3770,	. 6095 ,	. 5476,	.7106,	.8458,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	2.65,	-2.178,	-2.06,	.10,	17,	1.45,	-7.18,
2,	.79,	1.494,	8.74,	.78,	17,	.29,	-7.69,
3,	.91,	.505,	8.99,	.65,	18,	.37,	-8.62,
4,	1.02,	-.107,	9.41,	.68,	18,	.40,	-9.46,
5,	.98,	.092,	10.14,	.52,	18,	.61,	-10.11,
6,	.90,	.551,	10.45,	.63,	18,	.50,	-10.43,
7,	1.30,	-.846,	10.89,	.33,	18,	.88,	-10.65,
8,	.63,	1.661,	10.05,	.55,	18,	.50,	-10.56,
9,	.67,	2.895,	9.87,	.84,	16,	.22,	-10.49,



Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3
Mean Log q,	-2.4138,	-3.6556,	-4.9617,
S.E(Log q),	.2881,	.4557,	.8534,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	1.28,	-1.809,	-.51,	.70,	20,	.35,
2,	.72,	2.210,	6.27,	.77,	20,	.30,
3,	.76,	.806,	6.80,	.38,	21,	.66,


Age	,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
1		No data	for th	is fle	at t	is age					
2	,	99.99,	99.99,	99.99,	-. 69,	99.99,	. 06 ,	-. 22 ,	.01,	-. 23 ,	1.07
3	,	99.99,	99.99,	99.99,	-. 55,	. 00,	. 28 ,	.13,	. 01,	-. 13,	. 25
4	,	99.99,	99.99,	99.99,	-. 30,	.03,	.01,	. 48,	-. 16,	-. 25 ,	. 18
5	,	99.99,	99.99,	99.99,	-. 34,	. 37 ,	. 37 ,	-.03,	. 27,	-.35,	-. 28
6	,	99.99,	99.99,	99.99,	-. 20 ,	. 05 ,	.15,	. 64,	.10,	-. 29 ,	-. 45
7	,	99.99,	99.99,	99.99,	-. 56,	-. 78 ,	.10,	. 00 ,	. 54,	-.21,	-. 39
8	,	99.99,	99.99,	99.99,	-. 47,	. 50,	. 45 ,	. 70,	. 96 ,	. 19,	. 31
9	,	99.99,	99.99,	99.99,	-. 91,	. 23 ,	-.05,	. 38,	. 27,	. 91 ,	. 35

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8 ,	9
Mean Log $q$,	-9.9575,	-9.4946,	-9.3487,	-9.2089,	-8.9281,	-8.9281,	-8.9281,	-8.9281,
S.E(Log q) ,	. 5855,	. 2810 ,	. 2708 ,	. 3312 ,	. 3583,	. 4874,	. 6083,	. 5858 ,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean $Q$

2,	1.94,	-1.019,	7.62,	.23,	6,	1.13,	-9.96,
3,	.88,	.497,	9.82,	.78,	7,	.27,	-9.49,
4,	1.27,	-1.030,	8.71,	.75,	7,	.34,	-9.35,
5,	1.80,	-3.328,	7.78,	.78,	7,	.36,	-9.21,
6,	1.73,	-2.305,	8.07,	.67,	7,	.47,	-8.93,
7,	10.60,	-2.711,	7.68,	.02,	7,	3.28,	-9.12,
8,	5.81,	-1.952,	8.08,	.03,	7,	2.17,	-8.55,
9,	-4.05,	-2.937,	5.55,	.06,	7,	1.49,	-8.76,

## Terminal year survivor and $F$ summaries :

Age 1 Catchability constant w.r.t. time and dependent on age
Year class $=2001$

Fleet,		Estimated,	Int,	Ext,	Var,	N,	Scaled,	Estimated
,		Survivors,	s.e,	s.e,	Ratio,	,	Weights,	F
BTS	,	725420.,	. 626,	. 000 ,	. 00 ,	1,	. 144,	. 002
SNS	,	328004.	. 300 ,	. 000 ,	. 00 ,	1,	. 628,	. 004
BTS Tridens	,	1.,	. 000 ,	. 000 ,	. 00 ,	0 ,	. 000 ,	.000
F shrinkage mean	,	127431.,	. 50,				. 227 ,	. 010

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$296719 .$,	.24,	.42,	3,	1.747,	.004

Age 2 Catchability constant w.r.t. time and dependent on age
Year class $=2000$

Fleet,		Estimated, Survivors,	Int, s.e,	Ext, s.e,	Var,   Ratio,	N,	Scaled, Weights,	Estimated F
BTS	,	116771	. 328,	. 388 ,	1.18,	2 ,	. 290 ,	130
SNS	,	66568.	. 252 ,	. 374,	1.48,	2,	. 484,	. 217
BTS Tridens	,	282152.,	. 632 ,	. 000 ,	. 00 ,	1,	. 079 ,	. 056
F shrinkage mean	,	133244.,	. 50,				.147,	. 115

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$97264 .$,	.18,	.24,	6,	1.366,	.154

Age 3 Catchability constant w.r.t. time and dependent on age

Fleet,		Estimated,	Int,	Ext,	Var,	N,	Scaled,	Estimated
,		Survivors,	s.e,	s.e,	Ratio,	,	Weights,	F
BTS	,	86610.,	. 256 ,	. 171,	.67,	3,	. 288 ,	. 526
SNS	,	75029.,	. 243 ,	. 308,	1.27,	3,	. 299,	. 587
BTS Tridens	,	$110694 .$,	. 272 ,	. 175,	. 64,	2 ,	. 276 ,	. 433
F shrinkage mean		118784.,	. 50,				. 138,	. 408

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$92731 .$,	.15,	.12,	9,	.828,	.498

Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=1998$

Fleet,		Estimated, Survivors,	Int, s.e,	Ext, s.e,	$\begin{aligned} & \text { Var, } \\ & \text { Ratio, } \end{aligned}$	N,	Scaled, Weights,	$\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$
BTS	,	$55621 .$,	. 217,	.127,	. 58 ,	4,	. 303,	. 632
SNS	,	63565.	. 243,	. 447 ,	1.84,	3 ,	. 199,	. 572
BTS Tridens	,	62267.	. 205,	. 104 ,	. 51 ,	3,	. 367 ,	. 581
F shrinkage mean		52804.,	. 50 ,				.131,	. 657

Weighted prediction :
Survivors, Int, Ext, N, Var, F
$\begin{array}{rrrrr}\text { at end of year, s.e, } & \text { s.e, } & \text { Ratio, } & \\ 59132 ., & .13, & .804, & .604\end{array}$

## Age 5 Catchability constant w.r.t. time and dependent on age



Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$46028 .$,	.12,	.08,	13,	.670,	.587

Age 6 Catchability constant w.r.t. time and dependent on age
Year class $=1996$

Fleet,		Estimated,	Int,	Ext,	Var,		Scaled,	Estimated
,		Survivors,	s.e,	s.e,	Ratio,	,	Weights,	F
BTS	,	55099.	. 251,	.167,	.67,	5,	. 254 ,	. 528
SNS	,	89797.,	. 412,	. 393 ,	. 95 ,	2,	. 033,	. 355
BTS Tridens	,	29324.,	.193,	.101,	. 52 ,	5,	. 481 ,	. 835
F shrinkage mean	'	42425.,	. 50,				. 232 ,	. 643

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$38896 .$,	.16,	.11,	13,	.684,	.685

Age 7 Catchability constant w.r.t. time and age (fixed at the value for age) 6

Year class $=1995$


Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$4599 .$,	.18,	.11,	14,	.611,	.689

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 6
Year class $=1994$

Fleet,		Estimated, Survivors,	Int, s.e,	Ext,	Var, Ratio,	N,	Scaled, Weights,	Estimated F
BTS	,	2971.,	. 323,	.191,	.59,	8,	. 228,	. 469
SNS	,	3399.,	. 243,	. 190,	. 78 ,	3,	. 028,	. 421
BTS Tridens	,	3095.	. 235 ,	. 081 ,	. 35 ,	7 ,	. 432 ,	. 454
F shrinkage mean		2706.,	. 50 ,				. 312 ,	. 505

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	S.e,	Ratio,		
$2948 .$,	.20,	.07,	19,	.338,	.472


Fleet,		Estimated, Survivors,	Int		Ext, s.e,	Var,   Ratio,	N,	Scaled, Weights,	Estimated   F
BTS	,	1677.,	. 317		. 323 ,	1.02,	8,	.189,	. 360
SNS	,	1446.,	. 243		.191,	. 79,	3,	. 022 ,	. 408
BTS Tridens	,	2363.,	. 23		.100,	. 42 ,	7,	. 491 ,	. 268
F shrinkage mean		920.,	. 50, , , ,				. 298,		. 583
Weighted prediction :									
Survivors,	Int,	Ext,	N,	Var,	F				
at end of year, 1653	s.e,	s.e,	19',	Ratio, 746,	. 365				

Table 9.4.4.2 North Sea Plaice: F derived from final XSA run

Run title : Plaice in IV
At 15/09/2003 22:37


Table 9.4.4.3 North Sea Plaice: stock numbers at age derived from the final XSA run


Table 9.5.1 North Sea Plaice: inputs to RCT3 analysis


Table 9.5.2 Plaice in IV. RCT3 output (1 year olds)
Analysis by RCT3 ver3.1 of data from file:
P4RCT-1.TXT
Plaice North Sea - 1-Y-Rcr.
Data for $\quad 9$ surveys over 36 years : $1967-2002$
Regression type $=C$
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as .20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass = 2000

Yearclass $=2000$


Yearclass = 2001


Yearclass $=2002$


Year	Weighted	Log	Int	Ext	Var VPA	Log
Class	Average	WAP	Std	Std	Ratio	VPA
	Prediction	Error		Error		
2000	173096	12.06	. 18	. 31	2.99	
2001	443058	13.00	. 23	. 42	3.46	
2002	350650	12.77	. 30	. 39	1.75	

Table 9.5.3 Plaice in IV. RCT3 output (2 year olds)

```
Analysis by RCT3 ver3.1 of data from file :
P4RCT-2.TXT
Plaice North Sea - 2-Y-Rcr.
Data for 9 surveys over 36 years : 1967-2002
Regression type = C
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
```

Yearclass $=2000$

Survey/	Slope	Inter-	Std	Rsquare		. Index		$x$ Predicted		Weights
Series		$t$ Error		Pts	Value		Value	Error W		
SNS-0	. 84	5.00	. 72	. 264	29	10.09		13.49	. 772	. 056
SNS-1	. 97	2.99	. 50	. 415	29	9.23		11.92	. 544	. 112
SNS-2	. 83	5.22	. 40	. 527	30	6.95		11.02	. 485	. 140
SNS-3										
BTS-1	1.74	3.26	. 92	. 204	14	5.42		12.70	1.033	3.031
BTS-2	. 73	9.20	. 28	. 742	15	3.83		11.99	. 337	. 292
BTS-3										
comb D	1.56	$6 \quad 3.66$	. 44	. 561	17	75.	5.23	11.80	. 522	2.121
comb D	1.05	$5 \quad 7.95$	. 41	. 590	16	61.	. 79	9.83	. 729	9.062

$$
\mathrm{VPA} \text { Mean }=12.82 .421 .186
$$

Yearclass $=2001$


Yearclass $=2002$


Year	Weighted	Log	Int	Ext	Var VPA	Log
Class	Average	WAP	Std	Std	Ratio	VPA
	Prediction		or	Error		
2000	154630	11.95	. 18	. 32	3.01	
2001	396233	12.89	. 23	. 43	3.48	
2002	31703					

Table 9.6.1 North Sea Plaice: summary table derived from the final XSA run

```
Run title : Plaice in IV
At 15/09/2003 22:37
 Table 16 Summary (without SOP correction)
 Terminal Fs derived using XSA (With F shrinkage)
```



Table 9.7.1 North Sea Plaice: Input data for catch forecast and linear sensitivity analysis


Table 9.7.2 North Sea Plaice. Catch forecast output and estimates of coefficient of variation (CV) from linear analysis.

	2003 Year 2004							
Mean F Ages   H.cons 2 to 6	0.51	0.00	0.10	0.20	0.30	0.40	0.51	0.61
Effort relative to 2002 H.cons	1.00	0.00	0.20	0.40	0.60	0.80	1.00	1.20
Biomass								
Total 1 January	255	271	271	271	271	271	271	271
SSB at spawning time	152	149	149	149	149	149	149	149
Catch weight (,000t)   H.cons	71.1	0.0	17.8	34.1	49.0	62.7	75.2	86.8
Biomass in year.... 2005								
Total 1 January		359	342	325	311	297	285	274
SSB at spawning time		235	218	203	190	177	166	156
	Year							
	2003	2004						
Effort relative to 2002 H.cons	1.00	0.00	0.20	0.40	0.60	0.80	1.00	1.20
Est. Coeff. of Variation								
Biomass								
Total 1 January	0.17	0.18	0.18	0.18	0.18	0.18	0.18	0.18
SSB at spawning time	0.14	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Catch weight								
H.cons	0.16	0.00	0.56	0.32	0.26	0.23	0.22	0.21
Biomass in year.... 2005								
Total 1 January		0.17	0.17	0.18	0.18	0.18	0.19	0.19
SSB at spawning time		0.18	0.19	0.19	0.20	0.20	0.20	0.21

Table 9.7.3 North Sea Plaice. Detailed forecast tables.

Forecast for year 2003
F multiplier H.cons $=1.00$


Forecast for year 2004
F multiplier H.cons=1.00


Figure 9.2.1 North Sea plaice: Relative age compositions of the catches by country in 2002. The percentages in the legend indicate the proportion of the total landings for each country.



Figure 9.2.2 North Sea plaice: mean weights in the stock


Figure 9.2.3 North Sea plaice: Weight at age (top panels) and length at age (bottom panels) at ages 4 to 6 in the first quarter.


Figure 9.2.4 North Sea plaice: Sex-ratio by age.


Figure 9.3.1.1 North Sea plaice: Trends in CPUE from a group of Dutch beam trawl vessels ( $>300 \mathrm{HP}$ ) based on haul-by-haul data. CPUE is calculated either directly from the catch and effort data ("raw") or as an index by first averaging over the rectangles and months ("index"). The estimates for 2003 are based on the first half year only.


Figure 9.3.1.2 North Sea plaice: Trends in CPUE (kg/HPday) for a group of flagvessels landing in the ports of Urk and Harlingen. The estimates for 2003 are based on the first half year only.


Figure 9.3.1.3 North Sea plaice: Trends in CPUE (kg/HPday) for a group of flagvessels landings in the ports of Urk and Harlingen. The estimates for 2003 are based on the first half year only.


Figure 9.3.2.1 North Sea plaice: Survey areas of the BTS (left panel), SNS (middle panel) and Dutch DFS (right panel)




Figure 9.3.2.2 North Sea plaice: Comparison of the BTS indices before and after revision.


Figure 9.3.2.3 North Sea plaice: Standardised CPUE for commercial fleets and surveys by age group. The fleets between brackets have not been used in the assessments of previous years.


Figure 9.3.2.3 (cont'd) North Sea plaice: Standardised CPUE for commercial fleets and surveys by age group. The fleets between brackets have not been used in the assessments of previous years.


Figure 9.4.1.1 North Sea Plaice: Separable VPA output



Figure 9.4.1.2 North Sea plaice: Log-catchability residuals derived from single-fleet XSA (F-shrinkage=1.5)

SNS



BTS-Tridens


SNS
$\rightarrow-1 \rightarrow-2 \rightarrow 3$


BTS

$$
5 \pm 3
$$



BTS-Tridens



Figure 9.4.1.3 North Sea plaice: The results of single fleet XSA runs (F-shrinkage=1.5) compared to the results of a multi-fleet XSA run (F-shrinkage $=0.5$ ).



Figure 9.4.1.4 North Sea plaice: Surba output for the BTS-tridens, BTS and SNS survey


Figure 9.4.1.4 (continued) North Sea plaice: Surba output for the BTS-tridens, BTS and SNS survey.


$\begin{array}{lllll}1985 & 1989 & 1993 & 1997 & 2001 \\ \text { Year }\end{array}$

Figure 9.4.1.4 (continued) North Sea plaice: Surba output for the BTS-tridens, BTS and SNS survey.







Figure 9.4.1.5 North Sea plaice: Surba estimates of relative SSB compared to the results of a multi-fleet XSA run (Fshrinkage $=0.5$ ).


Figure 9.4.2.1 North Sea plaice: relative weighting of the tuning fleets and shrinkage.




Figure 9.4.2.2 North Sea plaice: Catchability at age plot


Figure 9.4.2.3 North Sea plaice: retrospective pattern at high and low F-shrinkage.


Figure 9.4.2.4 North Sea plaice: The results of the final model compared to the results of last years assessment (ACFM 2002) and some exploratory models.


Figure 9.4.2.5 North Sea plaice: The results of the final model compared to the results of last years assessment (ACFM 2002) for the full time scale.




Figure 9.4.3.1 North Sea plaice: The effect of (increased) discarding on the estimation of SSB and Fbar2-6.


Figure 9.4.3.2 North Sea plaice: Comparison of observed discards proportions from onboard sampling of Dutch beam trawl vessels (1999-2001) with simulated discards proportions based on growth data from otolith back-calculations and BTS and SNS surveys respectively by quarter.











Figure 9.4.3.3 North Sea plaice: Simulated proportion discarded assuming a 80 mm mesh size fishery.


$$
4
$$






,







——Otolith back-calculations
$\rightarrow$ BTS survey $\quad$ - SNS survey
Figure 9.4.3.4 Stock assessment results (SSB, recruitment at age 2 and mean fishing mortality for ages 2 and 3) for three different catch scenario's (landings only, landings and
 respectively).







Figure 9.4.3.5 North Sea plaice: (a)The results of the ICA model compared to the results of last years assessment (ACFM 2002), this years final run and an exploratory XSA run (fleet addition). (b) residuals of SSB indices from commercial fleets in an ICA assessment of North Sea plaice.
(a)

(b)


Figure 9.4.3.5 North Sea plaice: The results of the Fishermen's survey.



Figure 9.4.4.1 North Sea plaice: Log catchability residuals of final run.






Figure 9.6.1 North Sea Plaice: Overview of the final assessment





Figure 9.7.1 North Sea plaice, short term forecast


Fishing mortality ( 2-6)

- Yield 2004

SSB 2005

Data from file:W:\Personal\Joel\sec9_ple\projection\PLEIV_MT.SEN on 17/09/2003 a
Figure 9.7.2 North Sea plaice, sensitivity analysis of short term forecast



Figure 9.7.3 North Sea Plaice: Probability profiles for short-term forecast


Data from file:W:|Personal\Joel 1 sec9_plelprojection\PLEIV_MT.SEN on 17/09/2003 a
Figure 9.8.1 North Sea Plaice: Medium term analysis

Plaice,North Sea. Medium term analysis. Prob[SSB< 300.0kt].


Figure 9.9.1. North Sea plaice. Estimated reference points.


Figure 9.9.2. North Sea plaice. Stock and recruitment relationship


Figure 9.9.3 North Sea Plaice. Long-term projections of stock and yield per recruit, including BRP.


Figure 9.9.4 North Sea Plaice. Stock and fishing mortality relationship.


Figure 9.9.5 North Sea Plaice. Yield and fishing mortality relationship.


The assessment of plaice in Division IIIa is presented here as an update assessment. All the relevant biological and methodological information can be found in the stock annex dealing with this stock. Here, only the basic input and output from the assessment model will be presented.

### 10.1 The Fishery

The fishery is dominated by Denmark, with Danish landings accounting for more than $90 \%$ of the total. A directed plaice fishery is carried out during summer by Danish seiners. Plaice is also an important catch to otter-trawlers and gillnetters, within a mixed cod-plaice fishery.

### 10.1.1 ACFM advice applicable to 2002 and 2003

ACFM recommended for 2002 to reduce fishing mortality below the proposed $\mathbf{F}_{\mathrm{pa}}\left(\mathbf{F}_{\mathrm{pa}}=0.73\right)$, corresponding to landings in 2002 of less than $8,500 \mathrm{t}$, and also to maintain spawning stock biomass above $\mathbf{B}_{\mathrm{pa}}\left(\mathbf{B}_{\mathrm{pa}}=24,000 \mathrm{t}\right)$. $\mathbf{F}_{\mathrm{pa}}$ was set to the value of $\mathbf{F}_{\text {med }}$ in 1998. $\mathbf{B}_{\text {pa }}$ was set to a smoothed value of $\mathbf{B}_{\text {loss }}$. Neither $\mathbf{F}_{\text {lim }}$ nor $\mathbf{B}_{\text {lim }}$ are defined. A reevaluation of the advice was requested in April 2002. At the re-evaluation ACFM noted that "the re-evaluation is based on preliminary data and the uncertainty on the estimates is larger than in an assessment based on the full dataset. The fishing mortality to be used for a possible adjustment of the TAC should be below $=0.94 * \mathbf{F}_{\mathrm{sq}}\left(\mathbf{F}_{\mathrm{pa}}=0.73\right)$. The TAC 2002 should be set below 11,600 t."

ACFM recommended for 2003 to reduce fishing mortality below the proposed $\mathbf{F}_{\mathrm{pa}}\left(\mathbf{F}_{\mathrm{pa}}=0.73\right)$, corresponding to landings in 2003 of less than 18,400 t .

### 10.1.2 Management applicable in 2002 and 2003

TAC in 2002 was 8000 t and in 200316700 t .

The use of beam trawl in the Kattegat is prohibited. Minimum mesh size is 90 mm for towed gears, and 100 mm for fixed gears. The minimum landing size is 27 cm .

### 10.1.3 The fishery in 2002

The official landings reported to ICES are given in Table 10.1.3.1. The annual landings used by the Working Group, available since 1972, are given by country for Kattegat and Skagerrak separately in Tables 10.1.3.2 and 10.1.3.3. In the start of this period, landings were mostly taken in Kattegat but from the mid-1970s, the major proportion of the landings has been taken in Skagerrak. In 2002, around $80 \%$ of the landings were taken in Skagerrak.

According to ICES official tables (Belgian, Norwegian and German landings) and national statistics (Danish and Swedish landings) total landings in 2002 were estimated to be $25 \%$ less than in 2001 . No quantitative information on mis-reporting is available, but it is not suspected to be major in this fishery.

### 10.2 Data available

### 10.2.1 Landings

Landings data by country and TACs are presented in table 10.1.3.1-3.

### 10.2.2 Age compositions

Age compositions of the landings are presented in table 10.2.2.1.

Age disaggregated discard data from the Swedish trawl fishery was made available in 2003 and should be included in future assesments. Some discard estimates in the Skagerrak (Report of the Study Group on Discards and By-Catch Information, ICES CM 2002/ACFM:9) indicate that the otter trawlers catch and discard the highest amount of small fish. However, these data are not related to the number of fish retained, nor are they age-disaggregated. Therefore, at present these discard estimates cannot be included in the assessment

### 10.2.3

## Weight at age

Weights at age in the stock were assumed equal to those in the catch. Weight at age data is presented in Table 10.2.3.1. The procedure for calculating mean weights is described in the stock annex.

### 10.2.4 Maturity and natural mortality

Maturity and natural mortality are assumed constant for all years. Natural mortality is set at 0.1 for all ages. A knifeedge maturity distribution was employed: age group 2 was assumed to be immature whereas age 3 and older plaice were assumed mature.

### 10.2.5 Catch, effort and research vessel data

Survey data used for calibration of the assessment are presented in Tables 10.2.5.1. The tuning fleets consist of three commercial tuning fleets and the four survey tuning series that were added in the 2002 stock assessment.

### 10.3 Catch at age analysis

Catch at age analysis was carried out according to the specifications in the stock annex. The model used was XSA. Results of the analysis are presented in table 10.3.1 (diagnostics), 10.3.2 (fishing mortality at age), 10.3.3 (population numbers at age), and 10.4.4 (stock summary). The stock summary is also shown in Figure 10.3.1 and the historical performance of the assessment is shown in Figure 10.3.2.

SSB in 2003 is well above $\mathbf{B}_{\mathrm{pa}}$ and fishing mortality is about $\mathbf{F}_{\mathrm{pa}}$. Stock and recruitment indices are indicated in Figure 10.3.3.

### 10.4 Recruitment estimates

Recruitment estimation was carried out according to the specifications in the stock annex. Average recruitment in the period 1978-2001 was 47 million (geometric mean) 2-year-old-fish used as recruitment in 2003-2005.

Year   Class	Age   in 2003	XSA	GM   $(1978-2002)$   Thousands
1999	4	81108	
2000	3	34161	
2001	2		47356
2002	Recr. age 2		47356

### 10.5 Short term prognosis

The short-term prognosis was carried out according to the specifications in the stock annex. The model used was MFDP. Input parameters are presented in Table 10.5.1. Results are presented in Table 10.5.2. The strong 1998 and 1999 year-classes will comprise $75 \%$ of the landings and $54 \%$ of SSB in 2004. Their proportion will decrease to $31 \%$ in SSB in 2005.

### 10.6 Comments

### 10.6.1 Compilation of commercial tuning series

During its October 2002 meeting ACFM appreciated the inclusion of new survey tuning series, and recommended that WGNSSK reconsidered using the commercial tuning series in the assessment. The data exploration in 2003 was deliberately limited as assessment of the plaice stock in Div. IIIa was regarded as subject to the effort category "update assessment" only. Some comments are, however, provided on this issue for a forthcoming benchmark assessment.

Present commercial tuning series as measures for stock abundance are considered questionable due to the aggregated level of information provided in the logbooks, where catch and effort, are provided by statistical square and fishing trip
only. Consequently, fishing effort is defined as standardised days fishing calculated from duration of total trip. Furthermore, catch composition is available as market weight categories only and a common ALK, obtained from the market sorting categories irrespective of geartype and fishing area, is applied to the catch by market categories of the fleets. The poor information on catch length composition (only 4 market weight categories) from the fisheries, results in poor precision of calculated age composition of catches. In addition, application of a common ALK results in a smoothen calculated age composition. The procedure also causes an auto-correlation between the commercial tuning fleets and the catch-at-age matrix.

The commercial tuning series are therefore considered of poor quality as stock abundance measures and further inclusion in calibration of assessment in their present format should be evaluated in a forthcoming benchmark assessment.

### 10.6.2 Issues to be addressed in a forthcoming benchmark assessment

Although discard in the plaice fishery in Div. IIIa is not supposed to be significant, inclusion of available discard data from Sweden (per age, length and quarter) for otter trawlers, should be attempted in a benchmark assessment.

Use of weight at age and maturity data available from Swedish IBTS, quarter 1 and 3, should be attempted in future assessments. Also inclusion of Danish maturity data available for the recent years. Inclusion of those data will improve the overall quality of the assessment significantly, as only a knife-edge assumption is used presently.

The present indices for stock abundance do not convey the same trend and thus results in a wide range of stock perceptions if used individually. In addition to the validity of commercial tuning series as described in Sec. 10.6.1, all indices should be explored properly in order to justify the different signals.

Abundance indices from a Danish 0-group survey with R/V "Havkatten" since 1957 should be explored for possible inclusion as a recruitment estimator.

A benchmark assessment for this stock is foreseen in 2005
Table 10.1.3.1 Plaice in Illa. Official landings in tonnes as reported to ICES and WG estimates, 1972-2002

Year	Denmark		Sweden		Germany		Belgium		Norway		Total			
	Official	WG est.	Official	Unalloc.	WG est.	TAC								
1972		20,599		418		77				3			21,097	
1973		13,892		311		48				6			14,257	
1974		14,830		325		52				5			15,212	
1975		15,046		373		39				6			15,464	
1976		18,738		228		32		717		6			19,721	
1977		24,466		442		32		846		6			25,792	
1978		26,068		405		100		371		9			26,953	
1979		20,766		400		38		763		9			21,976	
1980		15,096		384		40		914		11			16,445	
1981		11,918		366		42		263		13			12,602	
1982		10,506		384		19		127		11			11,047	
1983		10,108		489		36		133		14			10,780	
1984		10,812		699		31		27		22			11,591	
1985		12,625		699		4		136		18			13,482	
1986		13,115		404		2		505		26			14,052	
1987		14,173		548		3		907		27			15,658	19,250
1988		11,602		491		0		716		41			12,850	19,750
1989		7,023		455		0		230		33			7,741	19,000
1990		10,559		981		2		471		69			12,082	13,000
1991		7,546		737		34		315		68			8,700	11,300
1992		10,582		589		117		537		106			11,931	14,000
1993		10,419		462		37		326		79			11,323	14,000
1994		10,330		542		37		325		91			11,325	14,000
1995	9,722	9,722	470	470	48	48	302	302	224	224	10,766	0	10,766	14,000
1996	9,593	9,641	465	465	31	11			428	428	10,517	28	10,545	14,000
1997	9,505	9,504	499	499	39	39			249	249	10,292	-1	10,291	14,000
1998	7,918	7,918	393	393	22	21			98	98	8,431	-1	8,430	14,000
1999	7,983	7,983	373	394	27	27			336	336	8,719	21	8,740	14,000
2000	8,324	8,324	401	414	15	15			67	67	8,807	13	8,820	14,000
2001	11,112	11,114	385	385	1	0			61	61	11,559	1	11,560	11,750
2002	8,275	8,276	322	338	29	29			58	58	8,684		8,701	12,800

Table 10.1.3.2 Plaice in Kattegat. Landings in tonnes Working Group estimates, 1972-2002

Year	Denmark	Sweden	Germany	Belgium	Norway	Total
1972	15,504	348	77			15,929
1973	10,021	231	48			10,300
1974	11,401	255	52			11,708
1975	10,158	296	39			10,493
1976	9,487	177	32			9,696
1977	11,611	300	32			11,943
1978	12,685	312	100			13,097
1979	9,721	333	38			10,092
1980	5,582	313	40			5,935
1981	3,803	256	42			4,101
1982	2,717	238	19			2,974
1983	3,280	334	36			3,650
1984	3,252	388	31			3,671
1985	2,979	403	4			3,386
1986	2,470	202	2			2,674
1987	2,846	307	3			3,156
1988	1,820	210	0			2,030
1989	1,609	135	0			1,744
1990	1,830	202	2			2,034
1991	1,737	265	19			2,021
1992	2,068	208	101			2,377
1993	1,294	175	0			1,469
1994	1,547	227	0			1,774
1995	1,254	133	0			1,387
1996	2,337	205	0			2,542
1997	2,198	255	25			2,478
1998	1,786	185	10			1,981
1999	1,510	161	20			1,691
2000	1,644	184	10			1,838
2001	2,069	260				2,329
2002	1,806	198	26			2,030

* years 1972-1990 landings refers to IIIA

Table 10.1.3.3 Plaice in Skagerrak. Landings in tonnes. Working Group estimates, 1972-2002

Year	Denmark	Sweden	Germany	Belgium	Norway	Total
1972	5,095	70			3	5,168
1973	3,871	80			6	3,957
1974	3,429	70			5	3,504
1975	4,888	77			6	4,971
1976	9,251	51		717	6	10,025
1977	12,855	142		846	6	13,849
1978	13,383	94		371	9	13,857
1979	11,045	67		763	9	11,884
1980	9,514	71		914	11	10,510
1981	8,115	110		263	13	8,501
1982	7,789	146		127	11	8,073
1983	6,828	155		133	14	7,130
1984	7,560	311		27	22	7,920
1985	9,646	296		136	18	10,096
1986	10,645	202		505	26	11,378
1987	11,327	241		907	27	12,502
1988	9,782	281		716	41	10,820
1989	5,414	320		230	33	5,997
1990	8,729	779		471	69	10,048
1991	5,809	472	15	315	68	6,679
1992	8,514	381	16	537	106	9,554
1993	9,125	287	37	326	79	9,854
1994	8,783	315	37	325	91	9,551
1995	8,468	337	48	302	224	9,379
1996	7,304	260	11		428	8,003
1997	7,306	244	14		249	7,813
1998	6,132	208	11		98	6,449
1999	6,473	233	7		336	7,049
2000	6,680	230	5		67	6,982
2001	9,045	125			61	9,231
2002	6,470	140	3		58	6,671

Table 10.2.2.1 Plaice in Illa. Catch numbers at age Numbers* ${ }^{*}{ }^{* *}-3$

	YEAR	1978	1979	1980	1981	1982					
AGE											
	2	489	1105	362	190	526					
	3	15692	9789	4772	4048	2067					
	4	39531	29655	16353	13098	9204					
	5	24919	20807	12575	10970	10602					
	6	8011	7646	6033	4306	5554					
	7	620	2514	2393	1427	1851					
	8	63	170	949	546	758					
	9	63	75	203	213	301					
	10	48	50	54	119	113					
	+gp	60	55	50	97	48					
0	TOTALNUM	89496	71866	43744	35014	31024					
	TONSLAND	26953	21976	16445	12602	11047					
	SOPCOF \%	102	104	106	103	102					
	YEAR	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
AGE											
	2	1481	2154	1400	375	623	101	1012	3147	2309	904
	3	9715	12620	8641	4366	4227	3052	3844	8748	8611	3858
	4	8630	11140	21798	14749	12400	12037	7102	8623	9583	11759
	5	8026	4463	6232	19193	17710	13783	6255	9718	4663	17427
	6	2673	2183	1715	4477	10205	6860	2708	3222	2893	4297
	7	925	985	698	633	2089	2745	1171	981	892	1033
	8	531	904	260	274	373	946	549	481	306	296
	9	257	695	197	154	242	322	254	349	156	115
	10	96	337	168	141	125	136	136	155	87	27
	+gp	106	120	156	98	190	156	236	273	137	115
0	TOTALNUM	32440	35601	41265	44460	48184	40138	23267	35697	29637	39831
	TONSLAND	10780	11591	13482	14052	15658	12850	7741	12082	8700	11931
	SOPCOF \%	101	100	100	100	100	100	100	100	100	100
	YEAR	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
AGE											
	2	1038	1411	446	4527	529	563	687	1223	3981	364
	3	3505	6919	2277	5353	4733	6710	2704	3937	9172	5008
	4	10088	8016	6606	7971	6379	8219	8432	8302	9399	8861
	5	13233	9859	11530	5283	9465	6856	8520	11212	11001	7528
	6	6891	8002	6622	4751	5104	2971	7419	3599	4744	4843
	7	1657	2780	4929	1812	3072	791	1301	888	410	1766
	8	376	448	853	1355	1369	385	380	139	102	448
	9	104	111	137	151	849	234	77	17	19	51
	10	47	38	65	23	114	170	106	7	14	17
	+gp	69	55	51	45	36	64	43	29	33	12
0	TOTALNUM	37008	37639	33516	31271	31650	26963	29669	29353	38875	28898
	TONSLAND	11323	11325	10766	10545	10291	8430	8740	8820	11560	8701
	SOPCOF \%	100	100	100	101	100	100	100	101	100	102

Table 10.2.3.1. Plaice in Illa. Catch and stock weights at age (kg)

	YEAR	1978	1979	1980	1981	1982					
	AGE										
	2	0.236	0.222	0.261	0.23	0.27					
	3	0.248	0.255	0.274	0.263	0.301					
	4	0.268	0.267	0.306	0.296	0.286					
	5	0.322	0.297	0.345	0.357	0.318					
	6	0.417	0.378	0.414	0.432	0.386					
	7	0.598	0.451	0.579	0.537	0.544					
	8	0.752	0.655	0.64	0.671	0.704					
	9	0.818	0.922	0.753	0.813	0.813					
	10	0.914	1.02	0.811	0.912	0.912					
	+gp	0.843	1.044	0.91	0.999	0.986					
0	SOPCO	1.0159	1.039	1.0625	1.0268	1.0184					
	YEAR	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
	AGE										
	2	0.285	0.282	0.278	0.25	0.322	0.252	0.274	0.292	0.263	0.309
	3	0.274	0.299	0.282	0.277	0.28	0.267	0.263	0.288	0.27	0.31
	4	0.293	0.304	0.308	0.284	0.281	0.268	0.282	0.294	0.259	0.272
	5	0.356	0.372	0.354	0.31	0.292	0.29	0.32	0.337	0.274	0.28
	6	0.423	0.403	0.437	0.384	0.363	0.35	0.376	0.397	0.365	0.336
	7	0.483	0.406	0.544	0.531	0.527	0.475	0.466	0.498	0.492	0.5
	8	0.531	0.383	0.68	0.707	0.711	0.567	0.635	0.684	0.584	0.646
	9	0.647	0.36	0.737	0.85	0.904	0.755	0.741	0.775	0.67	0.817
	10	0.986	0.443	0.755	0.903	1.036	0.833	0.825	0.951	0.882	0.804
	+gp	1.184	1.061	0.914	1.099	1.084	1.193	1.002	1.15	1.08	0.976
0	SOPCO	1.006	1.0009	1.0012	0.9997	0.9996	1.0002	0.9999	1.0004	1.0006	0.9999
	YEAR	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
	AGE										
	2	0.267	0.275	0.263	0.266	0.3	0.26	0.271	0.257	0.257	0.25
	3	0.272	0.263	0.301	0.268	0.294	0.25	0.271	0.262	0.272	0.279
	4	0.271	0.272	0.303	0.294	0.283	0.28	0.29	0.276	0.29	0.274
	5	0.295	0.289	0.289	0.384	0.299	0.327	0.29	0.302	0.322	0.278
	6	0.338	0.33	0.328	0.399	0.341	0.398	0.294	0.355	0.31	0.317
	7	0.441	0.381	0.368	0.436	0.41	0.464	0.336	0.388	0.425	0.391
	8	0.566	0.516	0.499	0.43	0.465	0.515	0.37	0.517	0.589	0.462
	9	0.712	0.658	0.736	0.561	0.445	0.587	0.656	0.857	0.836	0.752
	10	0.802	0.766	0.752	0.87	0.531	0.641	0.567	0.97	0.679	1.037
	+gp	1.168	0.979	1.022	0.957	0.76	0.863	0.831	0.967	0.818	1.014
0	SOPCO	0.9991	1.0001	1.0015	1.0113	1.0003	1.0016	1	1.0061	1.0014	1.0225

Table 10.2.5.1. Plaice IIIa. Tuning data by fleet
Danish Gillnetters

1987	2002									
1	1	0	1							
2	11									
4168	20592	169059	650916	1071313	803165	286784	58777	33991	18818	24877
3988	27444	168504	529771	606818	410016	309311	134000	55393	19492	23977
3795	18882	63447	175206	186617	129661	111415	85514	44764	24564	43810
4208	64308	246880	272984	362432	157274	62094	42383	38230	20604	41001
3805	43034	181507	242271	148622	168826	68492	32399	14923	11663	17809
4879	67456	350855	854331	1065380	260669	108795	39021	18755	5675	21064
5639	4846	80411	339540	652443	591404	199282	42122	12860	3774	2597
11463	93332	788950	992744	1280086	1145581	443000	78443	26304	7859	14155
9905	93997	320239	744931	1661991	911912	979462	185418	30434	13976	10309
9655	431700	632571	858288	762350	711940	291167	215022	22193	3298	8388
8048	67268	468037	544401	912161	684171	509591	271094	101874	19323	7745
7109	52000	481000	803000	854000	380000	112000	63000	42000	31000	15000
6997	62000	183000	698000	841000	1001000	206000	70000	21000	13000	9000
7351	44000	250000	847000	1044000	439000	93000	19000	4000	1000	6000
7816	257408	421089	734508	1514962	901478	101935	32356	4397	3983	4543
6643	36711	451342	573342	561560	555556	336972	105617	16792	4906	5391
Danish Trawlers										
1987	2002									
1	1	0	1							
2	11									
33443	255915	1177661	2468347	2379126	1046122	215078	50415	32514	24420	37438
30661	108178	839066	1906117	1819047	700988	226895	75481	23885	20953	22426
33982	430316	927355	1291748	1026225	456678	165557	71803	37576	18121	35819
38873	1181442	2311097	2020630	2065160	631904	200416	85590	45586	22634	42975
37884	660031	2459249	2424238	1085399	580774	151470	52786	31364	18475	27441
35126	324054	1244765	2463167	3594631	910595	232058	62318	14226	3014	12454
30062	172192	866648	2265364	2200206	1312213	455227	82231	15921	12071	15309
29412	506609	1815439	1886714	2177012	1785146	732729	113303	17909	12336	11983
26141	262364	791718	1217689	2119319	1052643	706432	144496	23084	11096	8823
28119	1044742	1432920	1503021	1053244	772862	329651	235696	24501	4352	9874
26062	166014	1234787	1637715	1843447	841073	352324	143468	96237	15809	6255
25274	210000	1613000	1953000	1285000	495000	120000	54000	36000	23000	9000
26802	223000	761000	1739000	1403000	1024000	212000	58000	10000	11000	8000
28039	514000	1392000	2182000	2529000	762000	168000	25000	6000	3000	6000
27579	1213134	2297369	2297400	2241237	982424	99667	19672	6921	4216	5405
27736	132625	1517394	2419247	1910112	1210114	368511	82071	7932	3153	1656
Danish Seiners										
1987	2002									
1	1	0	1							
2	11									
7897	97426	1157332	4050596	5227390	2536790	426009	72398	40925	20944	22943
6959	466750	1343996	3116463	3368983	1446989	521283	158464	47106	16431	19006
9579	334835	1483241	3030013	2733969	1193297	477612	171227	76749	33563	39868
9369	1116082	3542256	3431384	3748325	1097119	299716	116328	81119	32922	60674
8911	515012	2426848	3289407	1838074	1057052	265606	88516	42174	17972	28587
8767	106267	791895	4199036	6819566	1725235	324760	77400	27070	4686	17868
7367	139121	509253	1721085	2800822	1649545	413535	89601	21958	5718	3978
7249	336892	1620907	1883228	2514844	1977352	552285	69993	19937	4536	4288
6802	195908	569871	1348638	2282155	1664669	1118605	153081	23915	11391	8384
6384	949342	1363113	1878662	980782	913661	327089	230807	22762	3019	6502
5769	165538	1193786	1794123	2572264	1359436	909634	392850	278160	26736	5420
5508	144000	2251000	2489000	2044000	884000	231000	109000	61000	49000	14000
6041	173000	721000	2487000	2755000	2425000	367000	103000	16000	36000	9000
5893	286000	1240000	2954000	4300000	1202000	334000	46000	3000	1000	3000
6138	1534686	3619758	3159809	3377381	1347729	137169	33892	5948	4204	4928
5518	109606	1732101	3339718	2960753	1745554	566533	131577	11847	3376	2136

Table 10.2.5.1. con't. Plaice IIla. Tuning data by fleet

Havfisken_q4						
1994	2002					
1	1	1	1			
1	6					
1	0.87	10.51	5.88	0.37	0.99	
1	1.67	10.33	3.77	0.19	1.10	
1	2.48	37.87	11.07	0.36	0.42	
1	11.14	11.27	4.32	1.25	0.64	
1	17.85	14.80	5.19	3.50	0.00	
1	89.27	33.15	7.70	0.27	0.60	
1	99.71	121.08	15.63	0.00	0.47	
1	52.84	99.58	29.67	1.70	0.49	
1	46.10	18.36	25.18	12.40	1.23	
Havfisken_q1_shifted						
1995	2002					
1	1	0.99	1			
1	5					
1	23.26	26.79	7.00	1.69	0.81	
1	11.52	20.47	4.77	1.03	0.67	
1	-9.00	-9.00	-9.00	-9.00	-9.00	
1	25.82	22.27	2.92	1.25	0.15	
1	196.46	47.55	9.06	1.88	1.64	
1	127.68	74.02	6.68	1.71	1.41	
1	45.73	78.31	32.05	2.30	0.44	
1	134.21	36.87	34.79	8.27	0.16	
IBTSQ1_Shifted						
1991	2002					
1	1	0.99	1			
1	6					
1	4.17	9.29	6.44	1.62	0.38	0.08
1	6.50	6.02	5.78	5.11	2.03	0.22
1	8.50	6.48	1.89	1.09	1.19	0.25
1	4.48	10.40	4.20	1.13	0.85	0.40
1	17.05	13.35	4.90	1.54	0.46	0.13
1	6.86	12.90	3.26	1.14	0.12	0.04
1	8.06	8.00	4.24	1.48	0.32	0.12
1	17.31	9.14	2.59	2.32	0.13	0.07
1	57.85	30.98	10.31	3.08	1.71	0.17
1	42.45	73.24	16.92	2.91	1.76	0.65
1	11.71	46.89	31.90	9.37	1.71	1.27
1	31.80	16.42	17.02	11.59	2.59	0.59
IBTSQ3						
1995	2002					
1	1	0.83	0.92			
1	6					
1	7.52	9.71	10.01	2.93	1.62	0.86
1	8.78	16.62	6.60	2.04	0.73	0.35
1	15.15	18.42	9.22	2.54	0.88	0.54
1	18.51	20.86	5.13	3.77	0.47	0.00
1	46.59	46.17	13.90	1.50	1.51	0.28
1	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
1	7.75	81.52	49.97	7.53	2.72	0.95
1	11.97	30.14	33.41	26.65	7.68	1.26

Table 10.3.1 Plaice in IIIa. Diagnostic from XSA tuning
Lowestoft VPA Version 3.1
$1 / 10 / 2003$ 9:51

Extended Survivors Analysis
Plaice IIIa VPA data, 2003 WG,ANON, COMBSEX,PLUSGROUP
CPUE data from file ple3aFL1.dat
Catch data for 25 years. 1978 to 2002. Ages 2 to 11.


Time series weights :
Tapered time weighting applied
Power $=3$ over 20 years
Catchability analysis :
Catchability independent of stock size for all ages
Catchability independent of age for ages >= 8
Terminal population estimation :
Survivor estimates shrunk towards the mean $F$
of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk $=$
.500
Minimum standard error for population
estimates derived from each fleet $=$. 300
Prior weighting not applied
Tuning converged after 23 iterations
Regression weights

'	. 751 ,	. 820,	. 877,	. 921 ,	. 954 ,	. 976 ,	. 990,	. 997,	1.000,	1.000
Fishing mortalities										
Age,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
2,	.031,	. 043,	. 012 ,	. 125 ,	. 012,	. 014,	. 015,	.013,	.039,	. 010
3,	. 096 ,	. 268 ,	. 082 ,	. 180 ,	.167,	.183,	. 078,	.099,	.118,	. 057
4,	. 350 ,	. 294 ,	. 392 ,	. 401,	. 302 ,	. 430,	. 327 ,	. 324 ,	. 320,	. 144
5,	. 542,	. 602,	. 786 ,	. 551,	1.045,	. 541,	. 955,	. 841 ,	. 822 ,	. 406
6 ,	. 924,	. 656 ,	. 949 ,	. 785 ,	1.536,	1.020,	1.961,	1.371,	. 959,	. 970
7,	1.202,	1.131,	. 997,	. 652,	1.909,	. 979,	1.953,	1.648,	. 462 ,	1.084
8,	. 956,	1.188,	1.244,	. 734 ,	1.457,	1.591,	2.138,	1.254,	. 762 ,	1.235
9,	. 954,	.739,	1.473,	. 660,	1.386,	. 972 ,	1.994,	. 462 ,	. 475 ,	. 997
10,	1.148,	1.033,	1.231	97	1.511,	1.09	73	0	76	. 921



Log catchability residuals.

## Fleet : Danish Gillnetters

Age	,	1987,	1988,	1989,	1990,	1991,	1992				
2	,	-. 24 ,	.13,	-.88,	.15,	. 22 ,	. 52				
3	,	. 19,	.29,	-.59,	. 00 ,	-.29,	. 46				
4	,	. 56 ,	. 77 ,	-.38,	.08,	-.70,	. 24				
5	,	. 50,	. 50,	-.38,	. 03,	-.80,	. 20				
6	,	. 28 ,	. 22 ,	-.36,	-.28,	-.18,	-. 35				
7	,	.19,	. 41,	. 04 ,	-.39,	-.11,	-. 10				
8	,	-.45,	. 25 ,	. 02,	-. 14,	-.10,	-. 08				
9	,	-.09,	. 26 ,	.18,	.12,	. 28 ,	. 11				
10	,	.14,	. 42 ,	. 47 ,	. 31,	. 25 ,	. 45				
Age	,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
2	,	-2.00,	. 26 ,	. 31,	1.86,	-.03,	-.05,	-.01,	-1.08,	. 52,	-. 23
3	,	-1.07,	. 85,	. 02,	. 66 ,	. 59,	. 48,	-. 41,	-.29,	-. 50,	-. 39
4	,	-.49,	-.07,	. 27 ,	. 28 ,	-.06,	. 55,	.13,	.28,	-.06,	-. 88
5	,	-.63,	-. 27,	. 25,	-.08,	. 33,	. 06 ,	. 41,	.18,	. 48 ,	-. 67
6	,	-. 20 ,	-. 73,	-. 26 ,	-. 34,	. 40 ,	. 07 ,	. 78,	. 28 ,	. 31 ,	-. 02
7	,	. 14,	-. 35,	-.10,	-.71,	. 57 ,	-. 13,	. 68,	. 05,	-. 41,	. 34
8		-. 38,	-. 42 ,	-.02,	-.83,	. 25 ,	. 27 ,	. 70,	-.17,	.11,	. 46
9		-. 28 ,	-.59,	.17,	-1.01,	-. 30,	-. 12,	1.02,	-.62,	-.67,	. 58
10	,	-.53,	-.40,	-.04,	-.65,	.13,	.01,	.09,	-. 34,	. 01 ,	. 37

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8,	9,
Mean Log q,	-8.5536,	-6.7768,	-5.6884,	-4.7248,	-4.0755,	-3.8173,	-3.5949,	-3.5949,
S.E (Log q),	.8762,	.5594,	.4397,	.4268,	.4062,	.4067,	.4112,	.5849,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	1.24,	-.271,	8.01,	.11,	16,	1.14,	-8.55,
3,	2.97,	-1.650,	-.93,	.07,	16,	1.54,	-6.78,
4,	12.31,	-3.025,	-47.45,	.01,	16,	4.09,	-5.69,
5,	1.20,	-.378,	3.68,	.26,	16,	.54,	-4.72,
6,	1.45,	-.987,	1.87,	.33,	16,	.59,	-4.08,
7,	1.01,	-.058,	3.77,	.69,	16,	.43,	-3.82,
8,	1.19,	-.995,	3.05,	.74,	16,	.49,	-3.59,
9,	1.04,	-.208,	3.63,	.72,	16,	.63,	-3.69,
10,	.88,	1.217,	3.69,	.92,	16,	.31,	-3.61,


Age	,	1987,	1988,	1989,	1990,	1991,	1992				
2	,	-.10,	-.84,	-.25,	. 54,	. 35,	-. 19				
3	,	. 02 ,	-.17,	-. 13,	-. 02 ,	-.01,	-. 27				
4	,	. 10,	. 30 ,	-.28,	. 15,	-. 40 ,	-. 38				
5	,	-.17,	. 17 ,	-. 25 ,	. 16,	-. 50,	. 05				
6	,	-. 60,	-. 34,	-. 35,	-.18,	-. 31,	$-.13$				
7	,	-.97,	-.74,	-. 55,	-. 23 ,	-.41,	-. 11				
8	,	-1.24,	-.92,	-.89,	-. 22 ,	-.47,	-. 13				
9		-.77,	-1.17,	-. 74,	-. 48,	.17,	$-.70$				
10	,	-. 23 ,	-.09,	-. 58,	-. 38,	-. 14,	-. 70				
Age	,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
2	,	-.41,	. 71,	. 07 ,	1.37,	-.60,	-. 22,	-.38,	-. 26 ,	. 51,	-. 67
3	,	-. 39,	. 71,	-.07,	. 38 ,	. 36 ,	. 39 ,	-. 35,	. 06 ,	-.09,	-. 63
4	,	. 03 ,	-.07,	. 09 ,	. 06 ,	. 16 ,	. 47 ,	-.01,	. 18 ,	.11,	-. 58
5	,	-.48,	-.07,	. 13,	-. 21 ,	. 48 ,	-.19,	. 19,	. 33,	. 23,	-. 26
6	,	-. 13,	-.29,	-.15,	-.39,	. 37 ,	. 00 ,	. 40 ,	. 43,	. 07 ,	. 27
7	,	. 50,	. 42 ,	-.19,	-. 45 ,	. 23 ,	-. 12 ,	. 57 ,	. 51,	-. 48 ,	. 20
8		. 07 ,	. 45 ,	. 21,	-. 36,	-.11,	. 30 ,	. 62 ,	. 21,	-. 20,	. 22
9		-. 29 ,	-.47,	. 37 ,	-.53,	-.08,	-. 10,	. 39 ,	-.11,	-. 03 ,	-. 15
10	,	. 41,	. 56 ,	. 21,	. 01,	. 21 ,	-. 11,	. 02 ,	. 87 ,	. 25 ,	-. 06

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8,	
Mean Log q,	-8.2553,	-6.7496,	-5.9819,	-5.3367,	-5.0151,	-5.0232,	-5.0429,	-5.0429,
S.E (Log q),	.6098,	.3761,	.2864,	.2949,	.3072,	.4362,	.4223,	.4292,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time. Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	.85,	.363,	8.65,	.36,	16,	.54,	-8.26,
3,	1.96,	-1.875,	2.94,	.28,	16,	.67,	-6.75,
4,	3.25,	-4.229,	-3.94,	.26,	16,	.58,	-5.98,
5,	1.13,	-.376,	4.74,	.45,	16,	.35,	-5.34,
6,	1.32,	-1.031,	3.73,	.51,	16,	.41,	-5.02,
7,	1.07,	-.277,	4.84,	.63,	16,	.49,	-5.02,
8,	1.22,	-1.142,	4.71,	.72,	16,	.51,	-5.04,
9,	1.17,	-1.248,	5.22,	.84,	16,	.44,	-5.23,
10,	1.27,	-1.876,	5.13,	.83,	16,	.46,	-4.95,


Age	, 1987,	1988,	1989,	1990,	1991,	1992				
2	, -.86,	.87,	-.47,	.67,	. 31,	-1.15				
3	, -.03,	. 31,	.13,	. 35,	-.05,	-. 81				
4	, .31,	.55,	.11,	. 38 ,	-.38,	-. 19				
5	, .18,	. 39,	. 12,	. 30,	-. 41,	. 20				
6	, -.21,	-.08,	-. 07 ,	-.14,	-.20,	-. 05				
7	, -.75,	-. 32 ,	-. 13,	-.31,	-.30,	-. 29				
8	, -1.30,	-.56,	-.63,	-.36,	-.37,	-. 40				
9	, -.97,	-.88,	-.63,	-.35,	. 05,	-. 53				
10	, -.81,	-. 72,	-.57,	-.45,	-.59,	-. 74				
Age	, 1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
2	, -.45,	. 46 ,	-.11,	1.52,	-.33,	-.31,	-. 38,	-.52,	1.01,	-. 49
3	, -1.00,	. 52,	-.53,	. 34,	. 35,	. 77,	-. 40 ,	. 03,	. 39,	-. 36
4	, -.57,	-.40,	-. 19,	. 04 ,	.03,	. 50,	.11,	. 32 ,	. 21 ,	-. 37
5	, -.71,	-.40,	-.33,	-.68,	. 44,	-.08,	. 48,	. 55,	. 26 ,	-. 09
6	, -.44,	-.73,	-. 29 ,	-.68,	. 41,	. 17,	. 81,	. 51,	-.05,	. 30
7	, -.09,	-. 36,	-. 29,	-.88,	. 78 ,	. 15,	. 71,	. 86 ,	-.57,	. 35
8	, -.31,	-.50,	-. 25 ,	-.77,	. 54,	. 66,	. 81 ,	. 51,	-.02,	. 44
9	, -.43,	-.83,	-.11,	-.99,	. 62 ,	. 09,	. 48 ,	-1.11,	-.55,	-. 01
10	, -.80,	-.91,	-.29,	-. 74,	. 37 ,	. 30,	. 83,	-.54,	-. 12,	-. 24

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8,
Mean Log q,	-7.0197,	-5.2718,	-4.2541,	-3.4591,	-3.0724,	-3.1208,	-3.1731,
S.E (Log q),	.7391,	.5255,	.3364,	.4326,	.4626,	.5655,	.5671,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time. Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	.77,	.484,	7.88,	.32,	16,	.59,	-7.02,
3,	1.05,	-.118,	4.99,	.34,	16,	.58,	-5.27,
4,	2.08,	-1.875,	-2.37,	.23,	16,	.63,	-4.25,
5,	1.25,	-.448,	1.83,	.24,	16,	.56,	-3.46,
6,	2.38,	-1.772,	-5.07,	.14,	16,	1.01,	-3.07,
7,	1.34,	-.884,	1.56,	.41,	16,	.76,	-3.12,
8,	1.41,	-1.387,	1.80,	.54,	16,	.77,	-3.17,
9,	.86,	.932,	3.74,	.81,	16,	.48,	-3.49,
10,	.83,	1.236,	3.60,	.85,	16,	.44,	-3.46,


Age	, 1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
2	, 99.99,	-.54,	-.67,	. 67 ,	-.79,	-.41,	. 24,	. 86 ,	. 57 ,	-. 10
3	, 99.99,	. 00 ,	-.59,	. 46 ,	-. 44 ,	-.51,	-.09,	. 48,	. 46 ,	. 15
4	, 99.99,	-1.06,	-1.21,	-. 73 ,	.41,	1.59,	-1.31,	99.99,	. 40 ,	1.57
5	, 99.99,	. 04 ,	. 33,	-.31,	.39,	99.99,	. 30,	-.40,	-. 37 ,	. 05
6	, 99.99,	-3.08,	-1.69,	-1.11,	1.12,	-.18,	1.80,	1.54,	1.27,	-. 43
7	, No data	for t	is fle	$t$ at t	s age					
8	, No data	for t	his fle	$t$ at thin	s age					
9	, No data	for t	his fle	$t$ at thil	s age					
10	, No data	for t	his fle	$t$ at th	s age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6
Mean Log q,	-7.4465,	-8.2483,	-9.9901,	-9.4741,	-9.5391,
S.E (Log q),	.6253,	.4321,	1.2168,	.3297,	1.6291,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	.50,	2.295,	9.13,	.77,	9,	.25,	-7.45,
3,	.68,	1.375,	9.03,	.74,	9,	.28,	-8.25,
4,	.40,	1.195,	10.21,	.42,	8,	.48,	-9.99,
5,	1.19,	-.261,	9.41,	.26,	8,	.42,	-9.47,
6,	-.53,	-2.349,	8.72,	.26,	9,	.69,	-9.54,

```
Fleet : Havfisken_q1_shifted
\begin{tabular}{rlrlllllll}
Age, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001,
\end{tabular} 2002
```

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5
ean Log q,	-7.1063,	-8.3208,	-9.2403,	-9.6554,
. $\mathrm{E}(\mathrm{Log}$ q),	.2360,	.5656,	.2773,	1.2290,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean $Q$

2,	.94,	.248,	7.32,	.81,	7,	.24,	-7.11,
3,	.57,	1.695,	9.39,	.76,	7,	.28,	-8.32,
4,	.71,	1.568,	9.58,	.86,	7,	.17,	-9.24,
5,	-.68,	-1.099,	9.94,	.08,	7,	.82,	-9.66,



Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6
Mean Log q,	-7.9344,	-8.5757,	-9.0388,	-9.3807,	-9.3265,
. $\mathrm{E}(\log \mathrm{q})$,	.5440,	.6428,	.6421,	1.0410,	1.1784,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	.59,	1.645,	9.10,	.66,	12,	.30,	-7.93,
3,	.67,	.928,	9.28,	.48,	12,	.44,	-8.58,
4,	.69,	.721,	9.47,	.38,	12,	.45,	-9.04,
5,	.49,	.908,	9.64,	.27,	12,	.52,	-9.38,
6,	21.77,	-.940,	16.13,	.00,	12,	25.81,	-9.33,


Age	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
2	99.99,	99.99,	-.76,	-.18,	-.33,	-.10,	. 54,	99.99,	. 34,	. 37
3	, 99.99,	99.99,	.09,	-. 35,	. 02 ,	-. 82 ,	. 20 ,	99.99,	. 69,	. 14
4	99.99,	99.99,	.10,	-. 42 ,	-. 31 ,	. 24,	-1.02,	99.99,	. 46 ,	. 91
5	, 99.99,	99.99,	-. 10,	-.57,	-.11,	-1.30,	. 40 ,	99.99,	. 53,	1.06
6	99.99,	99.99,	-. 16,	-. 99,	.39,	99.99,	-.17,	99.99,	. 29 ,	. 56
7	, No data	for t	is flee	at th	s age					
8	, No data	for t	is flee	at th	s age					
9	, No data	for t	is flee	at this	s age					
10	, No data	for t	is flee	at th	s age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6
Mean Log q,	-7.4171,	-7.9503,	-8.5657,	-8.6536,	-8.4100,
S.E (Log q),	.4577,	.4775,	.6478,	.7853,	.5638,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	.67,	.986,	8.55,	.65,	7,	.31,
3,	.68,	1.160,	8.84,	.74,	7,	.32,
4,	.52,	1.473,	9.42,	.67,	7,	.31,
4,	.37,	1.219,	9.36,	.44,	7,	.28,
6,	-1.20,	-1.238,	9.85,	.08,	6,	.64,

## Terminal year survivor and $F$ summaries :

Age 2 Catchability constant w.r.t. time and dependent on age
Year class $=2000$

Fleet,	Estimated,	Int,	Ext,	Var,	N,	Scaled,	Estimated
,	Survivors,	s.e,	s.e,	Ratio,	,	Weights,	F
Danish Gillnetters	27109.,	. 912,	. 000 ,	. 00,	1,	. 040 ,	. 013
Danish Trawlers	17406.	. 635,	. 000 ,	. 00 ,	1,	. 083 ,	. 020
Danish Seiners	21017.,	. 770 ,	. 000 ,	. 00 ,	1,	. 056 ,	. 016
Havfisken_q4 ,	31037.	. 661,	. 000 ,	. 00 ,	1,	. 076 ,	. 011
Havfisken_q1_shifted,	44942.	. 300,	. 000 ,	. 00 ,	1,	. 370 ,	. 008
IBTSQ1_Shifted ,	45816.	. 569,	. 000 ,	. 00 ,	1,	. 103,	. 008
IBTSQ3 ,	49471.,	. 491,	. 000 ,	. 00 ,	1,	. 138 ,	. 007
F shrinkage mean	18387.,	. 50,				. 134,	. 019

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$34161 .$,	.18,	.16,	8,	.854,	.010

Age 3 Catchability constant w.r.t. time and dependent on age
Year class $=1999$

Fleet,	Estimated,	Int,	Ext,	Var,	N,	Scaled,	Estimated
,	Survivors,	s.e,	s.e,	Ratio,	,	Weights,	F
Danish Gillnetters	71014.,	. 491,	. 407 ,	. 83,	2,	. 074 ,	. 065
Danish Trawlers	$58526 .$,	. 333,	. 505,	1.51,	2,	. 160 ,	. 078
Danish Seiners	88447 .	. 446 ,	. 644 ,	1.44,	2,	. 089 ,	. 052
Havfisken_q4 ,	107615.	. 376,	. 194,	. 52 ,	2,	. 126,	. 043
Havfisken_q1_shifted,	91400.	. 269,	. 225 ,	. 84 ,	2 ,	. 241,	. 051
IBTSQ1_Shifted	101988.,	. 435,	. 106 ,	. 24 ,	2,	. 093 ,	. 046
IBTSQ3 ,	103137.,	. 354 ,	. 102,	. 29 ,	2 ,	. 141,	. 045
F shrinkage mean	34492.	. 50,				. 076 ,	. 129

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$81108 .$,	.13,	.12,	15,	.932,	.057

Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=1998$

Fleet,	Estimated, Survivors,	Int,	Ext,	Var, Ratio,	N,	Scaled, Weights,	Estimated   F
Danish Gillnetters	Survivors,	s.e, .336,	s.e, .145,	Ratio,	3',	Weights,	. 293
Danish Trawlers	36720	. 223,	. 159,	. 71 ,	3,	. 219,	. 207
Danish Seiners	44200 .	. 276,	. 238 ,	. 86 ,	3,	. 144,	. 175
Havfisken_q4	106949.	. 361 ,	. 233,	. 64,	3,	. 079,	. 076
Havfisken_q1_shifted,	73327	. 201,	. 158,	. 79 ,	3,	. 267,	.109
IBTSQ1_Shifted	118622	. 366 ,	. 096 ,	. 26 ,	3,	. 079,	. 069
IBTSQ3	117798.	. 413,	. 110,	. 27 ,	2 ,	. 063 ,	. 069
F shrinkage mean	20708.,	. 50,				. 053,	. 341

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$54363 .$,	.10,	.13,	21,	1.272,	.144

Age 5 Catchability constant w.r.t. time and dependent on age

Fleet,	Estimated, Survivors,	Int,	Ext,	Var, Ratio,	N,	Scaled, Weights,	Estimated
Danish Gillnetters	9857.,	.272,	.163,	.60,	4,	.114,	. 546
Danish Trawlers	13058.,	.184,	.109,	. 59,	4,	. 250,	. 437
Danish Seiners	14747.,	.239,	.101,	. 42 ,	4,	. 144 ,	. 396
Havfisken_q4	17197.,	.257,	.106,	. 41,	4,	.134,	. 348
Havfisken_q1_shifted,	14653.,	.199,	. 214 ,	1.08,	4,	.179,	. 398
IBTSQ1_Shifted	34758.,	. 350 ,	. 122,	. 35 ,	4,	. 060,	. 187
IBTSQ3	27400.,	. 368 ,	. 171 ,	. 46 ,	3,	.057,	. 232
F shrinkage mean	5391.,	. 50,				.061,	. 845

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$14282 .$,	.09,	.09,	28,	.963,	.406

Age 6 Catchability constant w.r.t. time and dependent on age
Year class $=1996$

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,		Scaled, Weights,	$\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$
Danish Gillnetters	$3096 .$,	. 258,	. 128 ,	. 50,	5,	.141,	. 911
Danish Trawlers	3332.,	.180,	.094,	. 52,	5,	. 275 ,	. 868
Danish Seiners	3458.,	. 243 ,	. 115,	. 48 ,	5,	. 141,	. 847
Havfisken_q4	2062.,	. 266,	.071,	. 27 ,	4,	. 080,	1.174
Havfisken_q1_shifted,	2313.,	. 200,	.084,	. 42 ,	4,	.103,	1.096
IBTSQ1_Shifted	3859.,	. 376 ,	. 248 ,	. 66,	5,	. 043,	. 786
IBTSQ3	3989.,	. 341 ,	.155,	. 45 ,	4,	. 075,	. 768
F shrinkage mean ,	1553.,	. 50 ,				.141,	1.378

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$2813 .$,	.11,	.07,	33,	.623,	.970

Age 7 Catchability constant w.r.t. time and dependent on age
Year class $=1995$

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,		Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
Danish Gillnetters	1165.,	. 271 ,	.035,	. 13,	6,	.199,	. 893
Danish Trawlers	1003.,	.209,	.069,	. 33,	6,	. 262 ,	. 984
Danish Seiners	1098.,	. 288 ,	.110,	. 38 ,	6,	. 142,	. 928
Havfisken_q4	581.,	. 265 ,	. 227 ,	. 85,	5,	. 046 ,	1.359
Havfisken_q1_shifted,	737.,	. 267 ,	. 306 ,	1.15,	3 ,	. 035,	1.187
IBTSQ1_Shifted	1051.,	. 387 ,	.470,	1.21,	5,	. 024,	. 955
IBTSQ3	710.,	. 347 ,	. 302 ,	. 87 ,	4,	.043,	1.214
F shrinkage mean	550.,	. 50,				. 248,	1.399

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	S.e,	Ratio,		
858.,	.15,	.07,	36,	.467,	1.084


Fleet,	Estimated, Survivors,	Int,	Ext,	Var, Ratio,	N,	Scaled, Weights,	Estimated
Danish Gillnetters	205.,	. 267 ,	.168,	.63,	7,	.239,	1.125
Danish Trawlers	189.,	. 244 ,	.149,	. 61,	7,	. 254,	1.182
Danish Seiners	206.,	. 332 ,	.196,	.59,	7,	.140,	1.123
Havfisken_q4	238.,	. 275 ,	. 260 ,	.95,	5,	.018,	1.027
Havfisken_q1_shifted,	158.,	. 218,	. 268 ,	1.23,	3,	.018,	1.306
IBTSQ1_Shifted	361.,	. 422 ,	. 393 ,	.93,	5,	.009,	. 779
IBTSQ3	191.,	. 314 ,	. 126 ,	. 40 ,	4,	.009,	1.173
F shrinkage mean	131.,	. 50,				. 313,	1.449

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$175 .$,	.19,	.07,	39,	.372,	1.235

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 8

Fleet,	Estimated,	Int,	Ext,	Var,	N,	Scaled,	Estimated
,	Survivors,	s.e,	s.e,	Ratio,		Weights,	
Danish Gillnetters	39.,	. 337 ,	.092,	. 27 ,	8,	. 203,	. 802
Danish Trawlers	25.,	. 305 ,	. 065 ,	. 21,	8,	. 281,	1.073
Danish Seiners	30.,	. 428,	.088,	. 21,	8,	.136,	. 961
Havfisken_q4	40.,	. 390 ,	.411,	1.05,	4,	. 001,	. 800
Havfisken_q1_shifted,	24.,	. 282 ,	. 237 ,	. 84,	3,	. 002,	1.114
IBTSQ1_Shifted	22.,	. 372 ,	. 328 ,	. 88,	5,	. 002 ,	1.180
IBTSQ3	18.,	. 306 ,	.184,	. 60 ,	5,	. 003,	1.314
F shrinkage mean	26.,	. 50,				. 373,	1.064

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	S.e,	s.e,	Ratio,		
$28 .$,	.22,	.04,	42,	.178,	.997

Age 10 Catchability constant w.r.t. time and age (fixed at the value for age) 8

Year class $=1992$

Fleet,	Estimated, Survivors,	Int,	Ext, s.e,	Var, Ratio,	N,	Scaled, Weights,	$\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$
Danish Gillnetters	12.,	. 286 ,	. 141,	. 49,	9,	. 296 ,	. 834
Danish Trawlers	11.,	. 282 ,	. 037 ,	. 13,	9,	. 281,	. 928
Danish Seiners	9.,	. 412,	. 118,	. 29,	9,	. 129,	1.065
Havfisken_q4 ,	11.,	. 282 ,	. 226 ,	. 80 ,	5,	. 001 ,	. 899
Havfisken_q1_shifted,	8.,	. 282 ,	. 190,	. 67,	2,	. 001 ,	1.101
IBTSQ1_Shifted	8.,	. 437,	. 146,	. 33,	5,	. 001 ,	1.131
IBTSQ3 ,	10.,	. 398,	. 149 ,	. 38 ,	3,	. 000 ,	. 987
F shrinkage mean ,	10.,	. 50 ,				. 290 ,	. 943

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$11 .$,	.19,	.04,	43,	.224,	.921

Table 10.3.2. Plaice in IIIa. Fishing mortality (F) at age.

Table 8   YEAR	Fishing mortality (F) at age						
		1978	1979	1980	1981	1982	
AGE							
	2	0.0084	0.0257	0.0111	0.0078	0.0115	
	3	0.2335	0.2058	0.1326	0.1487	0.0988	
	4	0.7571	0.7969	0.5479	0.5626	0.5156	
	5	1.0753	1.0747	0.8465	0.7786	1.1259	
	6	1.0199	1.0636	0.9627	0.7009	1.0771	
	7	0.5951	0.9543	1.0673	0.5502	0.6587	
	8	0.2824	0.2829	1.0973	0.6559	0.5633	
	9	0.4844	0.5608	0.5648	0.6834	0.8317	
	10	0.6945	0.791	0.9124	0.6767	0.8556	
		0.6945	0.791	0.9124	0.6767	0.8556	
+gp		0.746	0.8345	0.9043	0.6497	0.7881	


Table 8	Fishing mortality ( $F$ ) at age										
YEAR		1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
AGE											
	2	0.0166	0.0326	0.0305	0.0107	0.0191	0.0032	0.0162	0.0462	0.049	0.0212
	3	0.2684	0.1721	0.1591	0.113	0.1434	0.1103	0.1454	0.1697	0.1543	0.0972
	4	0.6524	0.4946	0.4438	0.3936	0.4706	0.6639	0.3565	0.4911	0.2535	0.2901
	5	1.0501	0.7463	0.5035	0.7843	1.0215	1.34	0.7792	1.0436	0.4763	0.8671
	6	0.8685	0.8176	0.6369	0.7332	1.2031	1.4309	0.9471	1.1134	0.9292	0.9712
	7	0.4406	0.8286	0.5925	0.4514	0.8159	1.1801	0.9173	0.9993	0.9825	0.9283
	8	0.3503	0.9114	0.4721	0.4319	0.4645	0.9976	0.6899	1.146	0.8957	0.9489
	9	0.3333	0.9336	0.4437	0.5025	0.7492	0.8302	0.7092	1.1973	1.4657	0.9208
	10	0.6111	0.8517	0.5317	0.583	0.8811	1.18	0.9262	1.1916	1.0125	1.0135
+gp		0.6111	0.8517	0.5317	0.583	0.8811	1.18	0.9262	1.1916	1.0125	1.0135
0 FBAR 4-8		0.6724	0.7597	0.5297	0.5589	0.7951	1.1225	0.738	0.9587	0.7074	0.8011

Run title: Plaic 2003 WG ANON COMBSE)PLUSGROUP
At 13/09/2003 11:53


Table 10.3.3. Plaice in IIla. Stock number at age (start of year) Numbers* $10^{* *}-3$

	Table 10	Stock number at age (start of year)				Numbers*10**-3									
	YEAR		1978	1979	1980	1981	1982								
	AGE														
		2	61661	45792	34421	25726	48501								
		3	79225	55328	40383	30801	23097								
		4	78264	56759	40751	32001	24020								
		5	39763	33213	23149	21318	16496								
		6	13172	12276	10260	8984	8854								
		7	1453	4298	3834	3545	4033								
		8	269	725	1497	1193	1850								
		9	173	184	495	452	560								
		10	101	96	95	254	207								
	+gp		125	105	87	206	87								
0	TOTAL		274206	208776	154973	124481	127705								
	Table 10	Stock number at age (start of year)				Numbers*10**-3									
	YEAR		1983	1984	1985	1986	1987	1988	1989	1990	1991	1992			
	AGE														
		2	94317	70513	48963	37162	34608	33107	66184	73275	50799	45379			
		3	43385	83933	61754	42972	33269	30722	29860	58923	63309	43768			
		4	18933	30015	63941	47657	34730	26082	24895	23362	44995	49093			
		5	12979	8922	16562	37121	29092	19629	12150	15771	12937	31597			
		6	4842	4109	3827	9058	15332	9478	4651	5044	5026	7270			
		7	2729	1838	1641	1832	3937	4166	2050	1632	1499	1796			
		8	1889	1589	726	821	1055	1575	1158	741	544	508			
		9	953	1204	578	410	483	600	526	526	213	201			
		10	221	618	428	336	224	206	237	234	144	45			
	+gp		242	218	396	232	338	234	408	408	224	188			
0	TOTAL		180488	202959	198817	177601	153069	125800	142119	179916	179688	179844			
	Table 10	Stock number at age (start of year)				Numbers*10**-3									
	YEAR		1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	GMST 78-**	* AMST 78-**
	AGE														
		2	35310	35082	38149	40467	47155	42238	49354	96701	109068	38136	0	473565	50211
		3	40201	30962	30402	34094	32310	42164	37683	44004	86335	94902	34161	41634	44024
		4	35933	33041	21434	25343	25758	24733	31769	31525	36071	69394	81108	33453 3	35871
		5	33236	22918	22272	13111	15349	17239	14561	20725	20628	23698	54363	19722	21309
		6	12013	17485	11359	9185	6838	4885	9077	5071	8088	8201	14282	7850	8613
		7	2491	4315	8210	3979	3791	1332	1594	1156	1165	2805	2813	2562	2920
		8	642	677	1260	2740	1876	508	453	204	201	664	858	885	1065
		9	178	223	187	329	1190	396	94	48	53	85	175	342	444
		10	72	62	97	39	154	269	135	12	28	30	28	138	186
	+gp		105	89	75	75	48	100	54	47	64	21	18		
0	TOTAL		160181	144856	133443	129360	134469	133865	144774	199493	261701	237936	187807		
		1 ( ${ }^{(1)}$													

Table 10.3.4. Plaice in IIIa Summary table (without SOP correction).

Year	$\begin{array}{c}\text { Recruitment } \\ \text { Age 2 } \\ \text { thousands }\end{array}$	SSB	Landings	$\begin{array}{c}\text { Mean F } \\ \text { tonnes }\end{array}$
tonnes 4-8				


		Fish Mort   Ages 4-8	Yield/R	SSB/R
Average last 3	0.840	0.234	0.664	
years		0.199	0.267	1.714
$\mathbf{F}_{\text {max }}$		0.096	0.243	2.796
$\mathbf{F}_{0.1}$		0.684	0.238	0.740
$\mathbf{F}_{\text {med }}$				

Table 10.5.1. Plaice IIIa. Input to short-term prediction

2003   Age	$\mathbf{N}$	$\mathbf{M}$	Mat	PF	PM	SWt	Sel	CWt
2	47356	0.1	0	0	0	0.255	0.019	0.255
3	34161	0.1	1	0	0	0.271	0.084	0.271
4	81108	0.1	1	0	0	0.280	0.240	0.280
5	54363	0.1	1	0	0	0.301	0.631	0.301
6	14282	0.1	1	0	0	0.327	1.005	0.327
7	2813	0.1	1	0	0	0.401	0.973	0.401
8	858	0.1	1	0	0	0.523	0.990	0.523
9	175	0.1	1	0	0	0.815	0.589	0.815
10	28	0.1	1	0	0	0.895	0.823	0.895
11	18	0.1	1	0	0	0.933	0.823	0.933


2004								
Age	$\mathbf{N}$	$\mathbf{M}$	Mat	PF	PM	SWt	Sel	CWt
2	47356	0.1	0	0	0	0.255	0.019	0.255
3.	0.1	1	0	0	0.271	0.084	0.271	
4.	0.1	1	0	0	0.280	0.240	0.280	
5.	0.1	1	0	0	0.301	0.631	0.301	
6		0.1	1	0	0	0.327	1.005	0.327
7.	0.1	1	0	0	0.401	0.973	0.401	
8.	0.1	1	0	0	0.523	0.990	0.523	
9.	0.1	1	0	0	0.815	0.589	0.815	
10	0.1	1	0	0	0.895	0.823	0.895	
11.	0.1	1	0	0	0.933	0.823	0.933	


2005								
Age	$\mathbf{N}$	$\mathbf{M}$	Mat	PF	PM	SWt	Sel	CWt
2	47356	0.1	0	0	0	0.255	0.019	0.255
3.		0.1	1	0	0	0.271	0.084	0.271
4.	0.1	1	0	0	0.280	0.240	0.280	
5.	0.1	1	0	0	0.301	0.631	0.301	
6.	0.1	1	0	0	0.327	1.005	0.327	
7.	0.1	1	0	0	0.401	0.973	0.401	
8.	0.1	1	0	0	0.523	0.990	0.523	
9.	0.1	1	0	0	0.815	0.589	0.815	
10.	0.1	1	0	0	0.895	0.823	0.895	
11.	0.1	1	0	0	0.933	0.823	0.933	

Input units are thousands and kg - output in tonnes

Table 10.5.2. Plaice in IIIa. Management options table


Input units are thousands and kg - output in tonnes

Figure 10.3.1. Plaice in IIIa. Stock summary plots





Figure 10.3.2. Plaice in IIIa. Historic performance of assessments.




The assessment of plaice in Division VIId is presented here as an update assessment. All the relevant biological and methodological information can be found in the stock annex dealing with this stock. Here, only the basic input and output from the assessment model will be presented.

### 11.1 The fishery

Plaice is caught all year in a mixed fishery with sole by Belgian and UK offshore beam trawlers and French inshore trawlers. During the winter plaice in VIId is a seasonal target for some French offshore trawlers and the Belgium beam trawlers

### 11.1.1 ACFM advice applicable to 2002 and 2003

ACFM advice for 2002 and 2003 was that the stock was harvested outside safe biological limits.
The fishing mortality in 2002 should be reduced to less than the proposed $\mathbf{F}_{\mathrm{pa}}(0.45)$, corresponding to landings in 2002 of less than 5800t.

The fishing mortality in 2003 should be reduced to less than the proposed $\mathbf{F}_{\mathrm{pa}}(0.45)$, corresponding to landings in 2003 of less than 5300t.

The precautionary fishing mortality and biomass reference points proposed by ACFM are as follows :
$\boldsymbol{B}_{\text {lim }}=5600 t ; \boldsymbol{B}_{p a}=8000 \mathrm{t}, \boldsymbol{F}_{\text {lim }}=0.54, \boldsymbol{F}_{p a}=0.45$.

### 11.1.2 Management applicable in 2002 and 2003

There is no separate TAC for VIId plaice which at present is managed together with area VIIe. The TAC in 2002 and 2003 were set respectively to 6690 t and 5970 t . for the combined areas. Technical conservation measures include a minimum mesh size of 80 mm for trawling and minimum landing size ( 27 cm ).

### 11.1.3 The fishery in 2002

Landings data as reported to ICES together with the total landings estimated by the Working Group are shown in Table 11.1.1. Since 1992, the landings remained steady between 5100 t . to 6300 t . The 2002 landing of 5777 t . (Figure 11.6.1) was still between these boundaries and was at the same magnitude as the 5800 t predicted at status quo F from last year's assessment. France contributed to $63 \%$ of the official landings in 2002 followed by Belgium ( $22 \%$ ) and UK (15 \%).

The first quarter is the most important for the fisheries and the landings (in weights) in 2002 for this period was $35 \%$ of the annual total, compared to $44 \%$ in 2000 and $41 \%$ in 2001.

### 11.2 Data available

### 11.2.1 Landings

Landings data by country and TACs are presented in table 11.1.1. No correction was made for SOP discrepancies which have been very low since 1992.

### 11.2.2 Age compositions

Age compositions of the landings are presented in table 11.2.1

### 11.2.3 Weight at age

Weight at age in the catch is presented in table 11.2.2 and weight at age in the stock in table 11.2.3. The procedure for calculating mean weights is described in the stock annex.

### 11.2.4 Maturity and natural mortality

Maturity and natural mortality are assumed at fixed values and are presented in table 11.2.4.

### 11.2.5 Catch, effort and research vessel data

Survey data used for calibration of the assessment are presented in tables 11.2.5. Additional information that is used for recruitment estimation is presented in table 11.4.1.

### 11.3 Catch at age analysis

Catch at age analysis was carried out according to the specifications in the stock annex. The model used was XSA. Results of the analysis are presented in table 11.3.1 (diagnostics), 11.3.2 (fishing mortality at age), 11.3.3 (population numbers at age), and 11.3.4 (stock summary). The stock summary is also shown in figure 11.3.1 and the historical performance of the assessment is shown in figure 11.3.2.

### 11.4 Recruitment estimates

Recruitment estimation was carried out according to the specifications in the stock annex. The model used was RCT3. Input to the RCT3 model is presented in table 11.4.1. Results are presented in table 11.4.2 and table 11.4.3.

Average recruitment in the period 1980-2002 was 23.275 millions (geometric mean) 1-year-old-fish. Year class strength estimates used for short term prognosis are summarised in the text table below.

Year	Age	XSA	RCT3	GM (1980-2002)
Class	in 2003	Thousands	Thousands	Thousands
2000	3	$\underline{\mathbf{1 7 1 2 5}}$		13898
2001	2	23135	$\underline{\mathbf{2 2 5 5 6}}$	20261
2002	1		18198	$\underline{\mathbf{2 3 2 7 5}}$
2003	0			$\underline{\mathbf{2 3 2 7 5}}$

### 11.5 Short term prognosis

The short term prognosis was carried out according to the specifications in the stock annex. Input to the WGFRANSW model is presented in table 11.5.1. Results are presented in tables 11.5.2 and 11.5.3.

### 11.6 Comments

- This assessment has been carried out with exactly the same parameters as last year
- The strong 2000 year class ( 32 millions at age 1 in 2001) is confirmed and has contributed to $29 \%$ of the 2002 total catch numbers. The increase landings in 2002 and SSB at the start of 2003 can be partly explained by the strength of this 2000 year class
- The age readings of Eastern channel plaice otoliths have been the object of investigation in an International workshop. This workshop was held in Ostend in may 2003 and has permitted to increase the ability of the age readers. Samples from the 2002 age sampling program has been read by all the specialists and therefore, the 2002 age-length keys can be considered as very reliable.
- All the commercial fleets have slightly increased their effort from last year coming back to the 2000 level.
- The fleets used for tuning this assessment give very unstable signals from the stock one to each others and from one year to another.
- This assessment doesn't include discards

Workplan for benchmark.

- Analyse the consistency of the tuning fleets by individual retrospective analysis
- Investigate the reliability of the number at ages estimation by each tuning fleet (log catchabilities residuals, standardised CPUE, ...)
- Consider redefinition of the current tuning fleets (prior to the Working Group) and/or the integration of new ones. UK have provided beam trawlers data for this assessment but this new tuning fleet has not been used given that this was an update assessment.
- Integrate the ongoing discard estimation into the assessment

The next benchmark assessment for this stock is foreseen in 2005

Table 11.1.1.- Plaice in VIId. Nominal landings (tonnes) as officially reported to ICES, 1976-2001.

Year	Belgium D	Denmark	France	UK(E+W)	Others	Total reported	$\begin{aligned} & \text { Un- } \\ & \text { allocated } \end{aligned}$	Total as used by WG
1976	147	1(1)	1439	376		1963		1963
1977	149	81(2)	1714	302		2246		2246
1978	161	156(2)	1810	349		2476		2476
1979	217	28(2)	2094	278		2617		2617
1980	435	112(2)	2905	304		3756	-1106	2650
1981	815 -		3431	489		4735	34	4769
1982	738 -		3504	541	22	4805	60	4865
1983	1013 -		3119	548		4680	363	5043
1984	947 -		2844	640		4431	730	5161
1985	1148 -		3943	866		5957	65	6022
1986	1158 -		3288	828	488 (2)	5762	1072	6834
1987	1807 -		4768	1292		7867	499	8366
1988	2165 -		5688 (2)	1250		9103	1317	10420
1989	2019 +		3265 (1)	1383		6667	2091	8758
1990	2149 -		4170 (1)	1479		7798	1249	9047
1991	2265 -		3606 (1)	1566		7437	376	7813
1992	1560	1	3099	1553	19	6232	105	6337
1993	877	+(2)	2792	1075	27	4771	560	5331
1994	1418 +		3199	993	23	5633	488	6121
1995	1157 -		2598 (2)	796	18	4569	561	5130
1996	1112 -		2630 (2)	856		4598	795	5393
1997	1161 -		3077	1078		5316	991	6307
1998	854 -		3276 (23)	700		4830	932	5762
1999	1306 -		3259 (23)	743		5437	889	6326
2000	1298 -		3183	752		5233	781	6014
2001	1346 -		2962	655		4963	303	5266
2002	1204 -		3454	841		5499	278	5777

${ }^{1}$ Estimated by the Working Group from combined Division VIId+e
${ }^{2}$ Includes small landings in Division VIIe
${ }^{3}$ Provisional

Table 11.2.1.- Plaice in VIId. Catch numbers at age

	1	2	3	4	5	6	7	8	9	10+
1980	53	2644	1451	540	490	75	45	44	4	103
1981	16	2446	6795	2398	290	159	51	42	56	200
1982	265	1393	6909	3302	762	206	96	62	21	88
1983	92	3030	3199	5908	931	226	92	122	4	101
1984	350	1871	7310	2814	1874	533	236	101	34	100
1985	142	5714	6195	4883	413	612	164	99	139	50
1986	679	4884	7034	3663	1458	562	254	69	19	34
1987	25	8499	7508	3472	1257	430	442	154	105	77
1988	16	5011	18813	4900	1118	541	439	127	105	174
1989	826	3638	7227	9453	2672	588	288	179	81	197
1990	1632	2627	8746	5983	3603	801	243	203	178	231
1991	1542	5860	5445	4524	2437	1681	286	120	113	125
1992	1665	6193	4450	1725	1187	1044	698	200	116	118
1993	740	7606	3817	1259	542	468	334	287	102	152
1994	1242	3633	6968	3111	850	419	312	267	275	312
1995	2592	4340	2933	2928	922	228	277	225	122	258
1996	1119	4847	3606	1547	1436	488	179	176	165	347
1997	550	4246	7189	3434	1080	752	464	199	114	306
1998	464	4400	8629	3419	537	143	136	81	52	188
1999	741	1758	12104	6460	1043	171	86	81	38	111
2000	1383	6214	4284	7241	1652	307	82	27	42	98
2001	2682	4159	4380	2141	1985	310	87	22	13	78
2002	902	7204	5191	1907	1565	888	234	62	25	92

[^7]Table 11.2.2.- Plaice in VIId. Weight in the catch

	1	2	3	4	5	6	7	8	9	10+
1980	0.309	0.312	0.499	0.627	0.787	1.139	1.179	1.293	1.475	1.557
1981	0.239	0.299	0.373	0.464	0.712	0.87	0.863	0.897	0.992	1.174
1982	0.245	0.271	0.353	0.431	0.64	0.795	1.153	1.067	1.504	1.355
1983	0.266	0.296	0.349	0.42	0.542	0.822	0.953	1.144	0.943	1.591
1984	0.233	0.295	0.336	0.402	0.508	0.689	0.703	0.945	1.028	1.427
1985	0.254	0.278	0.301	0.427	0.502	0.57	0.557	1.081	0.849	1.421
1986	0.226	0.306	0.331	0.406	0.546	0.486	0.629	0.871	1.446	1.579
1987	0.251	0.282	0.36	0.477	0.577	0.783	0.735	1.142	1.268	1.515
1988	0.292	0.268	0.321	0.432	0.56	0.657	0.77	0.908	1.218	1.328
1989	0.201	0.268	0.321	0.37	0.473	0.648	0.837	0.907	1.204	1.519
1990	0.201	0.256	0.326	0.378	0.483	0.61	0.781	0.963	1.159	1.31
1991	0.225	0.277	0.311	0.39	0.454	0.556	0.745	1.087	0.924	1.602
1992	0.182	0.277	0.352	0.429	0.509	0.585	0.701	0.837	0.85	1.195
1993	0.22	0.272	0.336	0.432	0.507	0.591	0.741	0.82	0.934	1.156
1994	0.243	0.27	0.288	0.356	0.466	0.576	0.686	0.928	0.969	1.287
1995	0.218	0.271	0.313	0.39	0.485	0.688	0.612	0.806	1.15	1.298
1996	0.221	0.3	0.29	0.396	0.475	0.643	0.764	0.934	1.057	1.312
1997	0.199	0.252	0.298	0.332	0.442	0.577	0.801	0.894	1.055	1.395
1998	0.159	0.244	0.267	0.381	0.502	0.762	0.839	0.981	0.986	1.379
1999	0.197	0.245	0.235	0.306	0.461	0.751	0.768	0.868	0.885	1.508
2000	0.182	0.256	0.314	0.37	0.44	0.607	0.768	0.972	0.975	1.193
2001	0.215	0.252	0.303	0.37	0.447	0.642	0.876	1.008	1.144	1.223
2002	0.254	0.256	0.309	0.376	0.438	0.562	0.627	0.880	0.909	1.330

Table 11.2.3.- Plaice in VIId. Weight in the stock

	1	2	3	4	5	6	7	8	9	10+
1981	0.11	0.216	0.317	0.414	0.506	0.594	0.677	0.756	0.83	1.042
1982	0.105	0.208	0.308	0.406	0.502	0.596	0.687	0.776	0.862	1.118
1983	0.097	0.192	0.286	0.379	0.47	0.56	0.648	0.735	0.821	1.169
1984	0.082	0.164	0.248	0.333	0.42	0.507	0.596	0.686	0.777	1.086
1985	0.084	0.171	0.259	0.348	0.44	0.533	0.628	0.725	0.824	1.206
1986	0.101	0.205	0.311	0.42	0.532	0.646	0.763	0.882	1.004	1.313
1987	0.122	0.242	0.361	0.479	0.596	0.712	0.826	0.939	1.051	1.306
1988	0.084	0.168	0.254	0.34	0.427	0.514	0.603	0.692	0.783	0.952
1989	0.079	0.162	0.25	0.342	0.439	0.541	0.648	0.759	0.874	1.211
1990	0.085	0.23	0.322	0.346	0.465	0.549	0.748	0.899	0.979	1.766
1991	0.065	0.219	0.275	0.335	0.375	0.472	0.633	1.057	1.022	1.502
1992	0.088	0.241	0.336	0.421	0.477	0.521	0.634	0.713	0.741	1.229
1993	0.108	0.258	0.296	0.379	0.493	0.539	0.573	0.699	0.787	1.056
1994	0.165	0.198	0.276	0.331	0.383	0.493	0.603	0.903	0.781	1.15
1995	0.058	0.257	0.286	0.354	0.442	0.707	0.531	0.703	1.092	1.194
1996	0.178	0.229	0.263	0.347	0.354	0.474	0.536	0.907	0.958	1.126
1997	0.059	0.202	0.256	0.266	0.417	0.53	0.665	0.686	0.972	1.364
1998	0.072	0.203	0.273	0.361	0.53	0.67	0.629	0.656	0.915	1.107
1999	0.072	0.172	0.213	0.351	0.429	0.644	0.76	0.782	0.593	1.166
2000	0.068	0.184	0.204	0.246	0.355	0.554	0.693	0.817	0.89	1.131
2001	0.093	0.206	0.274	0.338	0.404	0.624	0.844	0.989	1.153	1.405
2002	0.102	0.206	0.281	0.379	0.467	0.558	0.610	0.759	1.053	1.250

Table 11.2.4 Plaice in VIId. Natural mortality and proportion mature

Age	Natural   Mortality	Maturity
1	0.100	0.000
2	0.100	0.150
3	0.100	0.530
4	0.100	0.960
5	0.100	1.000
6	0.100	1.000
7	0.100	1.000
8	0.100	1.000
9	0.100	1.000
$10+$	0.100	1.000

Table 11.2.5- Plaice in VIId. Tuning fleets
Plaice in Division VIId (Eastern English Channel) (run name: XSAEDB01) 106

FLTO1: UK INSHORE TRAWL METIER $<40$ trawl lands all trawl age comps fleet (Catch: Unknown) (Effort: Unknown)
19852002
110.001 .00

210

2520	618.3	419.7	221.1	18.8	0.0	0.0	0.0	19.0	0.0
1804	237.9	300.2	132.9	51.6	6.5	4.7	2.9	0.0	0.0
2556	456.0	430.2	153.2	48.0	25.1	5.0	6.3	4.3	0.0
2500	382.4	856.1	141.7	57.8	30.1	14.1	2.8	4.0	5.2
2131	47.4	221.7	465.4	97.1	41.3	19.0	5.5	1.2	6.2
1094	34.3	92.1	52.6	56.9	18.0	7.5	5.5	3.6	3.1
2349	240.2	229.7	166.6	76.6	64.9	10.7	4.3	2.1	1.3
2527	298.0	225.5	140.4	77.8	55.3	44.2	14.6	2.9	2.4
2503	309.3	181.4	66.6	40.5	30.1	21.5	25.1	8.5	3.8
2635	176.0	240.2	99.7	37.8	21.0	17.0	8.9	17.9	3.5
1531	124.1	70.7	54.6	23.5	8.5	5.0	5.5	3.9	6.8
1659	274.4	63.8	16.9	19.1	10.0	2.5	3.1	2.5	2.5
2024	317.1	223.8	20.4	7.7	10.2	8.0	4.9	2.8	4.0
813	104.3	77.7	27.6	3.7	1.7	3.9	1.4	1.2	0.3
861	53.4	222.2	27.0	8.7	1.2	0.4	1.4	0.5	0.4
652	75.0	46.0	81.3	13.8	4.5	1.1	0.5	1.0	0.4
493	29.5	21.4	13.8	17.6	3.3	0.9	0.6	0.2	0.2
608	36.4	120.3	77.2	17.2	8.5	14.7	2.2	1.5	0.3

FLTO2: BELGIAN BEAM TRAWL( HP corr) all gears age comp [rev: 05/09/03-WD] (Catch: Unknown) (Effort: Unknown)
19812002
110.001 .00

210

24.4	285.9	1126.5	593.3	67.3	21.6	8.3	7.1	13.3	14.1
29.8	147.8	1065.4	688.2	187.2	55.1	21.1	6.5	4.6	4.0
26.4	476.7	654.3	1384.5	165.0	52.2	23.0	31.6	1.3	1.4
35.4	92.0	1570.4	712.1	467.5	134.3	61.0	28.2	5.4	6.8
33.4	557.2	1125.3	1115.1	93.9	197.2	52.9	31.9	5.3	6.1
30.8	700.6	1141.8	667.8	269.9	145.9	60.3	11.3	5.6	6.4
49.3	1944.8	1639.7	889.0	343.1	92.7	154.5	41.1	28.0	14.1
48.9	773.0	4264.6	1301.8	237.1	109.9	113.2	35.8	25.4	24.0
43.8	73.6	1733.7	2950.5	973.4	212.8	113.1	61.1	21.7	0.1
38.5	372.1	2687.5	1942.8	1007.0	184.8	43.9	50.5	13.1	14.0
32.8	595.4	1689.2	1149.4	1089.5	698.4	86.9	36.0	58.9	1.7
30.9	889.8	1031.7	403.8	277.6	282.1	159.7	58.2	60.7	6.7
28.2	488.8	684.2	274.3	197.6	121.6	74.7	62.8	10.6	19.3
32.8	424.6	1259.2	1426.5	268.0	132.6	109.5	75.5	90.0	37.6
31.7	39.8	591.9	925.2	396.5	82.0	140.1	82.6	26.1	0.7
32.6	259.3	689.3	541.5	503.7	137.6	46.4	49.9	38.4	44.4
39.7	0.0	287.3	931.8	570.2	295.7	143.7	37.3	27.7	11.2
23.6	164.6	900.7	616.6	122.0	39.0	40.0	18.2	18.4	13.7
27.6	40.7	1687.7	1366.6	370.5	67.5	25.4	13.5	14.0	12.7
37.0	60.4	369.7	529.0	235.4	43.4	12.1	5.9	10.4	1.5
40.2	422.6	1759.9	1085.0	705.3	119.4	26.5	9.3	7.6	26.9
41.11	412.7	1361.3	641.0	578.0	138.7	62.7	9.6	5.0	26.1

FLT03: FRENCH TRAWLERS (EFFORT H*KW*10-4) 1989-90 DERAISED 1991-98 TRUE (Catch: Unknown) (Effort: Unknown)
19892002
110.001 .00

210

6983	1190.1	1635.9	1643.2	466.2	73.5	34.3	34.1	19.3	16.1
8395	698.2	1876.1	1289.5	728.3	153.7	42.6	33.1	46.5	14.4
10689	1938.7	1474.1	1430.0	399.5	255.2	41.0	17.6	11.9	
10519	1802.9	1396.1	370.2	269.4	230.7	143.5	21.2	12.1	
10217	2124.4	1118.2	268.4	56.0	73.4	48.7	32.3	14.3	11.6
10609	1034.2	2271.2	476.4	177.6	69.5	48.2	48.3	32.0	25.0
12384	1354.7	686.5	578.5	95.4	21.4	19.5	27.5	21.8	
14476	1133.3	1283.9	352.7	317.5	98.8	43.6	33.3	34.6	28.2
10921	1396.2	3536.0	1155.4	139.0	170.7	88.3	50.8	22.4	26.9
11707	1446.0	3541.9	1534.4	205.4	29.8	20.2	17.8	6.9	8.2
10625	1139.1	5654.6	2456	254.4	36.1	24.8	23.5	4.4	16.6
13779	2757.4	1634	3110.4	781.5	130.9	21.2	6.1	12.9	19.9
11376	2113.6	1726.3	663.1	642.5	81.3	21.6	1.4	1.2	16.4
13489	3130.4	1134.9	336.6	230.9	186.2	36.7	9.5	2.9	13.1

Table 11.2.5-(continued) Plaice in VIId. Tuning fleets


Table 11.3.1- Plaice in VIId. Tuning diagnostic
Lowestoft VPA Version 3.1
12/09/2003 12:45

Extended Survivors Analysis
PLaice in VIId (run 09/2003)
CPUE data from file e:\wgnssk\fleet.dat
Catch data for 23 years. 1980 to 2002. Ages 1 to 10 .

Fleet, First, Last, First, Last, Alpha, Beta

,	year	year,	age	age		
FLT01: UK INSHORE TR,	1988	2002,	2,	9,	. 000 ,	1.000
FLT02: BELGIAN BEAM	1988	2002,	2,	9 ,	. 000,	1.000
FLT03: FRENCH TRAWLE,	1989	2002,	2,	9 ,	. 000 ,	1.000
FLT04: UK BEAM TRAWL,	1988	2002,	1,	6 ,	. 500,	. 750
FLT05: French GFS [0,	1988	2002,	1,	5,	. 750 ,	1.000
FLT06: Intl YFS [rev,	1988	2002,	1,	1,	. 500,	. 750

Time series weights :

Tapered time weighting not applied

Catchability analysis :

Catchability independent of stock size for all ages
Catchability independent of age for ages >= 7

Terminal population estimation :

Survivor estimates shrunk towards the mean $F$
of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk =

Minimum standard error for population
estimates derived from each fleet $=$. 300

Prior weighting not applied

Tuning had not converged after 30 iterations

Total absolute residual between iterations
29 and $30=.00030$

Final year $F$ values

Age ,	1,	2,	3,	4,	5,	6,	7,	8 ,	9
Iteration 29,	. 0364 ,	. 3366 ,	. 5656 ,	. 6092 ,	. 7621 ,	. 5771,	. 4917,	. 5697 ,	. 6324

1
Regression weights
, $1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000$

Fishing mortalities
Age, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002

1, . $061, .078, .115, .039, .015, .032, .041, .069, .092, .036$
2, .412, .415, . 378, . 290, . 183, . 146, .144, .485, .272, . 337
3, . 478, . 726, . 614, . 548, .803, . 601, .652, .542, .667, . 566
$4, .495, .803, .684, .681,1.464,1.044,1.144, .937, .507, .609$
5, . 343, . 649, .517, .758, 1.395, .853, .969, .929, .635, .762
6, .352, . 430, .316, . 504, 1.070, .588, . 643, . 758, . 382, . 577
$7, \quad .385, \quad .373, \quad .499, \quad .389,1.166, \quad .482, \quad .758, \quad .650, \quad .439, \quad .492$

8,	.340,	.536,	.447,	.606,	.879,	.556,	.524,	.501,	.317,
9,	.440,	.559,	.444,	.610,	.907,	.522,	.486,	.503,	.424,
.632									

Table 11.3.1 (continued)- Plaice in VIId. Tuning diagnostic

1
XSA population numbers (Thousands)

				AGE						
YEAR	,	1,	2,	3,	4,	5,	6 ,	7,	8 ,	9,
1993	,	1.32E+04,	2.37E+04,	1.06E+04,	3.39E+03,	1.96E+03,	1.66E+03,	1.10E+03,	1.05E+03,	3.01E+02,
1994	,	1.73E+04,	$1.13 \mathrm{E}+04$,	1.42E+04,	5.92E+03,	1.87E+03,	1.26E+03,	1.05E+03,	6.76E+02,	6.75E+02,
1995	,	2.51E+04,	1.45E+04,	6.72E+03,	6.22E+03,	$2.40 \mathrm{E}+03$,	8.85E+02,	7.41E+02,	6.57E+02,	3.58E+02,
1996	,	$3.06 \mathrm{E}+04$,	2.02E+04,	8.98E+03,	3.29E+03,	$2.84 \mathrm{E}+03$,	1.30E+03,	5.84E+02,	$4.07 \mathrm{E}+02$,	3.80E+02,
1997	,	3.81E+04,	$2.67 \mathrm{E}+04$,	1.37E+04,	4.70E+03,	1.51E+03,	1.20E+03,	7.09E+02,	3.58E+02,	2.01E+02,
1998	,	1.57E+04,	3.40E+04,	2.01E+04,	5.55E+03,	9.83E+02,	3.38E+02,	3.74E+02,	$2.00 \mathrm{E}+02$,	1.34E+02,
1999		1.96E+04,	1.37E+04,	2.66E+04,	9.96E+03,	1.77E+03,	3.79E+02,	1.70E+02,	$2.09 \mathrm{E}+02$,	1.04E+02,
2000		2.17E+04,	1.70E+04,	1.08E+04,	1.25E+04,	2.87E+03,	$6.07 \mathrm{E}+02$,	1.80E+02,	7.21E+01,	1.12E+02,
2001	,	3.21E+04,	1.83E+04,	9.46E+03,	5.66E+03,	4.44E+03,	1.03E+03,	2.57E+02,	8.51E+01,	3.95E+01,
2002		$2.65 \mathrm{E}+04$,	$2.65 \mathrm{E}+04$	6E+04	9E+03	9E+03	$3 \mathrm{E}+03$	$6.33 \mathrm{E}+02$	$50 \mathrm{E}+02$,	61

Estimated population abundance at 1st Jan 2003
$, \quad 0.00 \mathrm{E}+00,2.31 \mathrm{E}+04,1.71 \mathrm{E}+04,6.49 \mathrm{E}+03,2.16 \mathrm{E}+03,1.30 \mathrm{E}+03,1.08 \mathrm{E}+03,3.51 \mathrm{E}+02,7.68 \mathrm{E}+01$,
Taper weighted geometric mean of the VPA populations:
$2.37 \mathrm{E}+04,2.04 \mathrm{E}+04,1.36 \mathrm{E}+04,6.36 \mathrm{E}+03,2.53 \mathrm{E}+03,1.08 \mathrm{E}+03,5.34 \mathrm{E}+02,2.83 \mathrm{E}+02,1.35 \mathrm{E}+02$,
Standard error of the weighted Log(VPA populations) :

,	. 3506 ,	. 3600 ,	. 4450 ,	. 5120,	. 5117,	. 6629,	. 7147,	. 7636,	1.0739,

Log catchability residuals.

Age	,	1988,	1989,	1990,	1991,	1992					
1	,	No data	for t	is fle	eet at t	this age					
2	,	.18,	-1.60,	-.69,	. 52,	. 47					
3	,	. 20 ,	-. 42 ,	-. 39,	. 41 ,	. 49					
4	,	-.24,	. 56,	-. 50,	. 32 ,	. 68					
5	,	.17,	. 41,	-. 06 ,	-. 05,	. 32					
6	,	. 07 ,	. 69,	. 28 ,	. 05 ,	. 35					
7	,	-. 34,	. 30,	. 26,	-.40,	. 25					
8	,	-. 78 ,	-. 56,	. 29,	-.55,	. 38					
9	,	-.11,	-.82,	. 30,	-. 80 ,	-. 44					
Age	,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
1	,	No data	for t	his fle	eet at t	this age					
2	,	. 24,	. 37 ,	. 29,	. 63,	. 25 ,	-. 21,	-.03,	. 53,	-. 30,	-. 63
3	,	-.09,	-.05,	-.03,	-.53,	. 22 ,	-.40,	. 33,	-.11,	-.41,	. 77
	,	. 05,	-. 02,	-.17,	-.79,	-.84,	. 04 ,	-.58,	.48,	-.40,	1.41
5	,	. 05 ,	.11,	-.13,	-.48,	-.69,	-. 30,	-. 04 ,	.19,	.15,	. 34
6	,	-. 05,	-. 15,	-.21,	-.43,	-.29,	-.10,	-. 60,	. 58,	-. 14,	-. 05
7	,	.03,	-. 22 ,	-.49,	-1.08,	.03,	.57,	-. 86 ,	. 33,	-.04,	1.66
8	,	. 21 ,	-.35,	-.30,	-. 40 ,	.10,	. 20,	.09,	. 39,	. 60,	1.24
9	,	. 42 ,	. 36,	-.04,	-. 55,	.13,	. 43,	-.26,	. 65,	. 32 ,	1.87

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3 ,	4 ,	5,	6,	7,	8,	9
Mean Log $q$,	-12.1554,	-11.5237,	-11.5276,	-11.5407,	-11.5659,	-11.5561,	-11.5561,	-11.5561,
S.E(Log q) ,	. 6045 ,	. 3926 ,	. 6144,	. 3074 ,	. 3534 ,	. 6481 ,	. 5348 ,	. 6819,

Table 11.3.1 (continued)- Plaice in VIId. Tuning diagnostic
Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time. Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	1.91,	-.937,	14.23,	.08,	15,	1.16,	-12.16,
3,	.99,	.030,	11.51,	.61,	15,	.40,	-11.52,
4,	.93,	.214,	11.35,	.45,	15,	.60,	-11.53,
5,	.80,	1.694,	10.83,	.85,	15,	.23,	-11.54,
6,	.86,	1.126,	10.95,	.84,	15,	.30,	-11.57,
7,	.94,	.247,	11.25,	.57,	15,	.63,	-11.56,
8,	1.54,	-2.153,	14.61,	.55,	15,	.73,	-11.52,
9,	1.64,	-1.773,	15.39,	.37,	15,	1.03,	-11.46,

## Fleet : FLT02: BELGIAN BEAM

Age	,	1988,	1989,	1990,	1991,	1992					
1		No dat	for	is fle	at t	is age					
2	,	. 38,	-1.71,	. 60,	1.26,	1.53					
3	,	-. 07 ,	-. 29 ,	. 52 ,	. 86,	. 60					
4	,	-. 47,	-.09,	. 07 ,	. 14 ,	-. 24					
5	,	-.96,	. 12 ,	-. 33,	. 39 ,	$-.49$					
6	,	-. 84 ,	. 08 ,	-. 19,	. 56 ,	. 24					
7	,	-. 36,	-.06,	-. 66,	-. 06 ,	-. 10					
8	,	-. 33,	-. 30,	-.17,	-. 19,	. 14					
9	,	-. 36,	-. 08 ,	-1.09,	. 77 ,	. 98					
Age	,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
1		No data	for $t$	is fle	$t$ at t	is age					
2	,	. 75,	1.20,	-1.40,	. 07 ,	99.99,	-. 65,	-1.30,	-1.25,	. 44,	. 06
3	'	-.09,	. 18,	. 16 ,	-. 03 ,	-1.42,	-. 22 ,	-.01,	-.97,	.69,	. 08
4	,	-. 43,	. 65,	. 15 ,	. 22 ,	. 53,	. 30 ,	. 40 ,	-1.16,	. 09 ,	-. 16
5	,	-.36,	-.03,	. 09 ,	. 24,	1.06,	. 25,	. 66,	-. 58,	-. 13,	. 07
6	,	-.31,	-. 06 ,	-. 21,	-.01,	. 87 ,	. 43,	. 73 ,	-. 42,	-.19,	-. 70
7	,	-. 27 ,	. 00 ,	. 69,	-. 26 ,	. 81,	. 41,	. 70 ,	-. 44 ,	-.19,	-. 22
8	,	-. 42,	. 14 ,	. 26 ,	. 27 ,	. 03 ,	. 28 ,	-. 24 ,	-. 30,	-. 18,	-. 62
9	,	-. 90 ,	. 33 ,	-. 29,	. 08 ,	. 32 ,	.67,	. 48,	-.17,	. 43,	-. 27

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age	2,	3,	4,	5,	6,	7,	8,	9
Mean Log $q$,	-7.7230,	-5.7111,	-5.1448,	-5.0571,	-5.4275,	-5.5245,	-5.5245,	-5.5245,
S.E(Log q) ,	1.0816 ,	. 5982 ,	. 4542 ,	. 5088,	. 4961 ,	. 4461 ,	. 3016 ,	5953,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.

Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	1.98,	-.509,	5.65,	.02,	14,	2.20,	-7.72,
3,	1.32,	-.718,	4.50,	.28,	15,	.80,	-5.71,
4,	1.28,	-.924,	4.13,	.46,	15,	.58,	-5.14,
5,	1.44,	-1.224,	3.79,	.37,	15,	.72,	-5.06,
6,	1.19,	-.788,	5.11,	.56,	15,	.60,	-5.43,
7,	1.13,	-.666,	5.40,	.66,	15,	.52,	-5.52,
8,	.92,	.963,	5.65,	.91,	15,	.26,	-5.63,
9,	1.16,	-.657,	5.49,	.56,	15,	.70,	-5.46,

Table 11.3.1 (continued)- Plaice in VIId. Tuning diagnostic


Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8,
Mean Log q,	-11.6141,	-10.9181,	-10.9309,	-11.2507,	-11.5572,	-11.7618,	-11.7618,
S.E (Log q),	.4188,	.3741,	.5815,	.6408,	.5778,	.5374,	.6245,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	2.76,	-1.882,	14.73,	.09,	14,	1.06,	-11.61,
3,	.76,	1.193,	10.57,	.68,	14,	.28,	-10.92,
4,	.68,	1.654,	10.24,	.69,	14,	.37,	-10.93,
5,	1.02,	-.069,	11.33,	.42,	14,	.68,	-11.25,
6,	1.11,	-.404,	12.05,	.53,	14,	.66,	-11.56,
7,	1.53,	-1.751,	14.60,	.48,	14,	.76,	-11.76,
8,	.94,	.303,	11.48,	.66,	14,	.60,	-11.86,
9,	.81,	1.203,	10.53,	.77,	14,	.45,	-11.76,

Fleet : FLTO4: UK BEAM TRAWL

Age,	1988,	1989,	1990,	1991,	1992
1,	.67,	-1.26,	-.56,	.10,	.18
2,	.49,	-.31,	-.65,	.05,	.16
3,	.70,	.27,	-.50,	.36,	.02
4,	.04,	.55,	-.08,	.14,	.46
5,	.64,	-.08,	.09,	.25,	.69
6,	.02,	.18,	.12,	-.05,	.91
7,	No data for this fleet at this age				
8 , No data for this fleet at this age					
9 , No data for this fleet at this age					

Table 11.3.1 (continued)- Plaice in VIId. Tuning diagnostic

Age,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
1,	-.72,	-.02,	-.06,	-.15,	.53,	.37,	.14,	.21,	.14,	.44
2,	-.05,	.12,	-.76,	-.09,	-.30,	.13,	.38,	.78,	.09,	-.04
3,	-.24,	.23,	-.21,	-1.38,	-.47,	-.47,	.10,	.84,	.68,	.07
4,	-.35,	.47,	-.07,	-1.10,	-1.12,	.10,	-.49,	.71,	.57,	.18
5,	-.05,	.18,	-.38,	-.55,	-.99,	-.89,	-.20,	.54,	1.06,	-.30
6,	-.05,	-.43,	-.43,	-.29,	-.96,	-.40,	-.48,	.63,	.61,	.62
7 , No data for this fleet at this age										
8 , No data for this fleet at this age										
9 , No data for this fleet at this age										

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age,	1,	2,	3,	4,	5,	6
Mean Log q,	-7.5096,	-7.1078,	-7.0558,	-6.8732,	-6.6093,	-6.6053,
S.E (Log q),	.5084,	.4019,	.5751,	.5650,	.5820,	.5214,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time. Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	.51,	2.538,	8.75,	.67,	15,	.22,	-7.51,
2,	.88,	.376,	7.43,	.45,	15,	.37,	-7.11,
3,	.80,	.804,	7.56,	.54,	15,	.46,	-7.06,
4,	.69,	1.684,	7.48,	.69,	15,	.36,	-6.87,
5,	.63,	2.314,	7.10,	.75,	15,	.32,	-6.61,
6,	.79,	1.267,	6.71,	.74,	15,	.40,	-6.61,

Fleet : FLT05: French GFS [o

Age,	1988,	1989,	1990,	1991,	1992
1,	-.18,	-.48,	-.84,	-1.47,	.91
2,	.86,	.13,	-1.52,	-.81,	-.45
3,	.47,	-.34,	-.40,	-.80,	.14
4	.48,	-.47,	.15,	-.54,	-.74
5	.78,	-1.32,	.37,	-.42,	-.47

No data for this fleet at this age No data for this fleet at this age No data for this fleet at this age No data for this fleet at this age

Age,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
1,	1.44,	-.12,	-.52,	-.87,	.96,	.81,	.22,	.33,	-.37,	.19
2,	.53,	-.12,	-.10,	-.65,	.15,	.39,	.18,	1.29,	-.27,	.39
3,	.80,	-.94,	.03,	-1.62,	.89,	-.04,	.62,	.65,	-.18,	.72
4	.82,	-.97,	.13,	-1.18,	.24,	.22,	.68,	1.14,	.20,	-.15
5	.52,	-.56,	-.23,	-.19,	.31,	99.99,	.47,	1.34,	-.33,	-.27

No data for this fleet at this age

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3,	4,	5
Mean Log q,	-7.8335,	-7.9683,	-8.1224,	-8.5361,	-8.6262,
S.E (Log q),	.8007,	.6935,	.7294,	.6697,	.6701,

Table 11.3.1 (continued)- Plaice in VIId. Tuning diagnostic

```
Regression statistics :
Ages with q independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q
\begin{tabular}{rrrrrrrr}
1, & 1.60, & -.511, & 6.52, & .05, & 15, & 1.32, & -7.83, \\
2, & .50, & 1.836, & 8.91, & .51, & 15, & .32, & -7.97, \\
3, & .75, & .819, & 8.47, & .45, & 15, & .55, & -8.12, \\
4, & .74, & 1.054, & 8.61, & .55, & 15, & .49, & -8.54, \\
5, & 1.65, & -.996, & 9.03, & .16, & 14, & 1.11, & -8.63,
\end{tabular}
Fleet : FLT06: Intl YFS [rev
```



Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	1
Mean Log q,	-10.0886,
S.E(Log q),	.4028,
Regression statistics	:

Ages with $q$ independent of year class strength and constant w.r.t. time. Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q
1, 2.79, -1.957, $10.21, ~ 15,1.03,-10.09$,

Terminal year survivor and $F$ summaries :

Age 1 Catchability constant w.r.t. time and dependent on age
Year class $=2001$


Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$23135 .$,	.26,	.18,	4,	.693,	.036

Table 11.3.1 (continued)- Plaice in VIId. Tuning diagnostic
1
Age 2 Catchability constant w.r.t. time and dependent on age
Year class $=2000$

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,		Scaled, Weights,	$\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$
FLT01: UK INSHORE TR,	9078.,	. 624 ,	. 000,	.00,	1,	.080,	. 562
FLT02: BELGIAN BEAM,	18098.,	1.120,	. 000 ,	. 00 ,	1 ,	. 025,	. 321
FLT03: FRENCH TRAWLE,	20479.,	. 434 ,	.000,	. 00 ,	1 ,	. 167,	. 289
FLT04: UK BEAM TRAWL,	17567.,	. 326 ,	. 085 ,	. 26 ,	2,	. 285,	. 329
FLT05: French GFS [0,	18598.,	. 542,	. 378 ,	. 70 ,	2,	.103,	. 314
FLT06: Intl YFS [rev,	12012.,	.416,	. 000 ,	. 00 ,	1,	. 165,	. 451
F shrinkage mean	24469.,	. 50,				.175,	. 247

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	g'	Ratio,	
$17125 .$,	.18,	.11,	9,	.632,	.337

Age 3 Catchability constant w.r.t. time and dependent on age

Year class $=1999$

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,	N,	Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
FLT01: UK INSHORE TR,	10851.	. 342 ,	.459,	1.34,	2,	.170,	. 375
FLT02: BELGIAN BEAM,	$7536 .$,	. 544,	.140,	. 26 ,	2,	. 068 ,	. 504
FLT03: FRENCH TRAWLE,	4735.,	. 291,	.476,	1.63,	2,	. 227,	. 714
FLT04: UK BEAM TRAWL,	7280.,	.288,	. 041 ,	.14,	3,	. 208,	. 518
FLT05: French GFS [0,	8602.,	.445,	. 304 ,	. 68,	3,	.091,	. 454
FLT06: Intl YFS [rev,	3840.,	.416,	.000,	. 00 ,	1,	. 087 ,	. 827
F shrinkage mean	5328.,	. 50,				.149,	. 656

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$6493 .$,	.15,	.13,	14,	.885,	.566

1
Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=1998$

Fleet,	Estimated, Survivors,	Int, s.e,	Ext, s.e,	Var, Ratio,	N,	Scaled, Weights,	Estimated F
FLT01: UK INSHORE TR,	3270.,	. 325,	. 598,	1.84,	3,	. 157,	. 441
FLT02: BELGIAN BEAM	2120	. 375 ,	. 307 ,	. 82 ,	3,	. 150,	. 618
FLT03: FRENCH TRAWLE,	2023	. 286 ,	. 397 ,	1.39,	3,	. 192,	. 640
FLT04: UK BEAM TRAWL,	3301	. 293,	. 164,	. 56 ,	4,	.179,	. 438
FLT05: French GFS [0,	2395.	. 419,	. 298,	. 71,	4,	. 099 ,	. 564
FLT06: Intl YFS [rev,	2208.,	. 416 ,	. 000 ,	. 00 ,	1,	. 043 ,	. 600
F shrinkage mean	1016.,	. 50,				. 180,	1.025

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$2162 .$,	.15,	.16,	19,	1.054,	.609

Table 11.3.1 (continued)- Plaice in VIId. Tuning diagnostic
Age 5 Catchability constant w.r.t. time and dependent on age

```
Year class = 1997
```

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,	N,	Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
FLT01: UK INSHORE TR,	1555.,	. 240,	.151,	.63,	4,	. 269,	. 672
FLT02: BELGIAN BEAM ,	1184.,	. 317 ,	.234,	. 74 ,	4 ,	.141,	. 814
FLT03: FRENCH TRAWLE,	1016.,	. 271 ,	.087,	. 32 ,	4,	.148,	902
FLT04: UK BEAM TRAWL,	1669.,	. 268 ,	. 205,	. 77 ,	5,	.157,	. 638
FLT05: French GFS [0,	1459.,	.368,	.188,	. 51,	5,	. 093,	. 703
FLT06: Intl YFS [rev,	1738.,	. 416 ,	.000,	. 00 ,	1 ,	.032,	. 619
F shrinkage mean	922.,	. 50,				.161,	. 961

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$1303 .$,	.13,	.08,	24,	.593,	.762

1
Age 6 Catchability constant w.r.t. time and dependent on age
Year class $=1996$

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var,   Ratio,	N,	Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
FLT01: UK INSHORE TR,	1150.,	. 228,	.072,	. 32 ,	5,	. 327,	. 551
FLT02: BELGIAN BEAM ,	$607 .$,	. 320 ,	. 174 ,	. 54,	5,	. 162 ,	. 872
FLT03: FRENCH TRAWLE,	1160.,	. 331 ,	. 174 ,	. 53,	5,	.133,	. 547
FLT04: UK BEAM TRAWL,	2082.,	. 315 ,	. 121 ,	. 38 ,	6,	.155,	. 341
FLT05: French GFS [0,	1344.,	. 416,	. 315 ,	. 76 ,	5,	. 047 ,	. 488
FLT06: Intl YFS [rev,	602.,	. 416 ,	. 000 ,	. 00 ,	1 ,	.012,	. 877
F shrinkage mean	848.,	. 50 ,				. 164,	. 691

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$1082 .$,	.14,	.09,	28,	.633,	.577

Age 7 Catchability constant w.r.t. time and dependent on age
Year class $=1995$
Fleet,
FLT01: UK INSHORE TR,
FLT02: BELGIAN BEAM,
FLT03: FRENCH TRAWLE,
FLT04: UK BEAM TRAWL,
FLT05: French GFS [o,
FLT06: Intl YFS [rev,
F shrinkage mean ,

Estimated,	Int,	Ext,	Var,	N, Scaled,	Estimated	
Survivors,	S.e,	s.e,	Ratio,	, Weights,	F	
478.,	.240,	.322,	1.34,	6,	.283,	.383
280.,	.296,	.089,	.30,	5,	.235,	.585
325.,	.334,	.175,	.52,	6,	.174,	.522
527.,	.353,	.174,	.49,	6,	.103,	.352
838.,	.439,	.326,	.74,	5,	.025,	.236
198.,	.416,	.000,	.00,	1,	.006,	.753
219.,	$.50, \ldots$,				.174,	.702

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$351 .$,	.15,	.11,	30,	.726,	.492

Table 11.3.1 (continued)- Plaice in VIId. Tuning diagnostic
Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 7

```
Year class = 1994
```

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var,   Ratio,	N,	Scaled, Weights,	Estimated   F
FLT01: UK INSHORE TR,	145.,	. 268 ,	.221,	. 82,	7,	. 217,	. 341
FLT02: BELGIAN BEAM ,	48.,	.235,	.114,	. 49,	7,	. 393 ,	. 805
FLT03: FRENCH TRAWLE,	91.,	. 341 ,	.161,	.47,	7,	. 152,	. 501
FLT04: UK BEAM TRAWL,	108.,	. 363 ,	.171,	. 47 ,	6,	. 043,	. 435
FLT05: French GFS [0,	107.,	. 448 ,	.184,	. 41,	5,	.010,	. 438
FLT06: Intl YFS [rev,	142.,	. 416 ,	. 000 ,	. 00,	1 ,	. 002 ,	. 348
F shrinkage mean	79.,	. 50,				.183,	. 558

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$77 .$,	.15,	.10,	34,	.639,	.570

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class $=1993$

Fleet,	Estimated, Survivors,	Int,	Ext, s.e,	$\begin{aligned} & \text { Var, } \\ & \text { Ratio, } \end{aligned}$	N,	Scaled, Weights,	$\begin{gathered} \text { Estimated } \\ \text { F } \end{gathered}$
FLT01: UK INSHORE TR,	47.,	. 273,	. 342 ,	1.25,	8,	. 212,	. 411
FLT02: BELGIAN BEAM,	23.	. 228,	. 098,	. 43,	8,	. 360 ,	. 713
FLT03: FRENCH TRAWLE,	18.,	. 320,	. 272,	. 85,	8,	. 188,	. 844
FLT04: UK BEAM TRAWL,	14.	. 368 ,	. 117,	. 32 ,	6,	. 030,	. 977
FLT05: French GFS [o,	20.,	. 404 ,	. 428,	1.06,	4,	. 002 ,	. 779
FLT06: Intl YFS [rev,	33.,	. 416,	. 000 ,	. 00 ,	1,	. 001 ,	. 541
F shrinkage mean ,	33.,	. 50 ,				. 206 ,	. 548

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$27 .$,	.16,	.11,	36,	.704,	.632

Table 11.3.2 - Plaice in VIId. Fishing mortality at age

Run title : PLaice in VIId (run 09/2003)
At 12/09/2003 12:47

Table 8	Fishing mortality ( F ) at age			
YEAR		1980	1981	1982
AGE				
	1	0.0022	0.0013	0.0111
	2	0.1674	0.1183	0.1344
	3	0.2789	0.729	0.4974
	4	0.3373	0.8858	0.8586
	5	0.6175	0.2719	0.6939
	6	0.4144	0.3658	0.2815
	7	0.399	0.4875	0.3492
	8	0.2537	0.7048	1.8579
	9	0.3567	0.5213	0.8336
+gp		0.3567	0.5213	0.8336
0 FBAR 2-6		0.3631	0.4742	0.4932


YEAR		1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
AGE											
	1	0.0049	0.0148	0.005	0.0119	0.0008	0.0006	0.0548	0.0956	0.0776	0.0647
	2	0.1524	0.116	0.3135	0.2137	0.1816	0.2064	0.174	0.2206	0.5077	0.4433
	3	0.4541	0.5777	0.598	0.6949	0.5189	0.6679	0.4546	0.703	0.8333	0.8101
	4	0.9393	0.8181	0.861	0.7655	0.7927	0.6744	0.7499	0.7478	0.8746	0.6078
	5	0.5512	0.7901	0.2299	0.599	0.573	0.5628	0.8683	0.6357	0.6946	0.5198
	6	0.3979	0.626	0.5699	0.4922	0.3111	0.4588	0.5783	0.6127	0.6126	0.644
	7	0.1749	0.8301	0.3508	0.4344	0.8046	0.5306	0.4194	0.4426	0.4059	0.4909
	8	0.8841	0.2638	0.9157	0.2174	0.4534	0.4983	0.379	0.5206	0.3622	0.4892
	9	0.4874	0.5756	0.6147	0.3825	0.525	0.5661	0.6074	0.706	0.5451	0.6278
+gp		0.4874	0.5756	0.6147	0.3825	0.525	0.5661	0.6074	0.706	0.5451	0.6278
0 FBAR 2-6		0.499	0.5856	0.5145	0.5531	0.4755	0.5141	0.565	0.584	0.7046	0.605


YEAR		1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	FBAR **_*
AGE												
	1	0.0607	0.0784	0.115	0.0392	0.0153	0.0316	0.0407	0.0693	0.0919	0.0364	0.0659
	2	0.4119	0.4147	0.3782	0.2903	0.1832	0.1463	0.1445	0.4854	0.2724	0.3366	0.3648
	3	0.478	0.7257	0.6135	0.5483	0.8032	0.6009	0.6522	0.5423	0.6669	0.5656	0.5916
	4	0.4947	0.803	0.6835	0.6806	1.4637	1.0438	1.1445	0.9366	0.5069	0.6092	0.6842
	5	0.3431	0.6492	0.5168	0.7585	1.3955	0.8535	0.9685	0.929	0.6349	0.762	0.7753
	6	0.3525	0.4303	0.316	0.5039	1.0698	0.5877	0.6431	0.7584	0.3823	0.5771	0.5726
	7	0.3852	0.373	0.4991	0.3893	1.1661	0.4824	0.7585	0.6505	0.4391	0.4917	0.5271
	8	0.3396	0.5363	0.4468	0.606	0.8791	0.5556	0.5244	0.5006	0.3171	0.5696	0.4624
	9	0.4396	0.5591	0.4438	0.6097	0.9072	0.5223	0.4865	0.5027	0.4242	0.6323	0.5197
+gp		0.4396	0.5591	0.4438	0.6097	0.9072	0.5223	0.4865	0.5027	0.4242	0.6323	
0 FBAR 2-6		0.416	0.6046	0.5016	0.5563	0.9831	0.6465	0.7105	0.7303	0.4927	0.5701	

Table 11.3.3 - Plaice in VIId. Stock numbers at age
Run title : PLaice in VIId (run 09/2003)
At 12/09/2003 12:47


	YEAR	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
	AGE										
	1	19943	25040	29639	60170	31251	26486	16287	18816	21715	27926
	2	22540	17957	22324	26683	53798	28253	23950	13951	15473	18182
	3	9214	17512	14469	14764	19498	40594	20798	18211	10125	8426
	4	10197	5295	8892	7199	6668	10501	18836	11944	8158	3982
	5	2310	3607	2114	3401	3030	2731	4840	8051	5117	3078
	6	724	1204	1481	1520	1691	1546	1408	1838	3858	2311
	7	603	440	583	758	841	1121	884	714	901	1892
	8	219	458	174	371	444	340	597	526	415	543
	9	11	82	318	63	270	255	187	370	283	262
	+gp	274	239	114	112	197	421	452	477	311	265
0	TOTAL	66033	71833	80107	115042	117688	112248	88239	74898	66355	66866


	YEAR	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	GMST 80-**	AMST $80-$
	AGE													
	1	13212	17318	25076	30639	38131	15672	19555	21716	32106	26516	0	23275	24867
	2	23684	11251	14489	20224	26659	33979	13739	16989	18334	26499	23135	20261	21755
	3	10561	14195	6724	8982	13689	20083	26560	10759	9461	12633	17125	13898	15417
	4	3392	5925	6216	3294	4697	5548	9964	12519	5660	4394	6493	6509	7406
	5	1962	1871	2402	2840	1509	983	1767	2870	4440	3085	2162	2436	2785
	6	1656	1260	885	1296	1203	338	379	607	1026	2129	1303	1053	1279
	7	1098	1054	741	584	709	374	170	180	257	633	1082	548	680
	8	1048	676	657	407	358	200	209	72	85	150	351	309	385
	9	301	675	358	380	201	134	104	112	40	56	77	149	217
	+gp	447	762	754	795	535	484	302	260	236	205	126		
0	TOTAL	57361	54987	58301	69440	87690	77794	72748	66085	71645	76302	51853		

Table 11.3.4 - Plaice in VIId. Stock summary

Run title : PLaice in VIId (run 09/2003)
At 12/09/2003 12:46
Table 16 Summary (without SOP correction)
Terminal Fs derived using XSA (With F shrinkage)

	RECR	TOTALBIO	TOTSPBIO	LANDINGS	YIELD/SSB	FBAR $2-6$	
	Age 1						
1980	25533	16509	5585	2650	0.4745	0.3631	
1981	12890	14337	6560	4769	0.727	0.4742	
1982	25189	15061	7577	4865	0.6421	0.4932	
1983	19943	15133	8127	5043	0.6205	0.499	
1984	25040	14129	7461	5161	0.6917	0.5856	
1985	29639	15760	8140	6022	0.7398	0.5145	
1986	60170	23070	10064	6834	0.6791	0.5531	
1987	31251	31727	13412	8366	0.6238	0.4755	
1988	26486	24325	13077	10420	0.7968	0.5141	
1989	16287	21431	14145	8758	0.6191	0.565	
1990	18816	21768	14520	9047	0.6231	0.584	
1991	21715	17516	10113	7813	0.7726	0.7046	
1992	27926	16125	8545	6337	0.7416	0.605	
1993	13212	15880	7739	5331	0.6889	0.416	
1994	17318	14951	8280	6121	0.7392	0.6046	
1995	25076	14789	7523	5130	0.6819	0.5016	
1996	30639	17151	6605	5393	0.8165	0.5563	
1997	38131	15298	6774	6307	0.9311	0.9831	
1998	15672	17284	7635	5762	0.7547	0.6465	
1999	19555	14633	8418	6326	0.7515	0.7105	
2000	21716	11875	6521	6015	0.9224	0.7303	
2001	32106	13707	6890	5266	0.7643	0.4927	
2002	26516	16903	7744	5777	0.746	0.5701	
				8759	6240	0.7195	0.5714

Table 11.4.1 - Plaice in VIId. Input to RCT3


Table 11.4.2 - Plaice in VIId. RCT3 ouput for Age 1
Analysis by RCT3 ver3.1 of data from file :
recpl7d1.in
7D PLAICE - VPA AGE 1 / indices all * per 100
Data for 5 surveys over 17 years : 1986 - 2002
Regression type $=C$
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 00
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass $=2000$


Yearclass $=2001$


Yearclass $=2002$

Survey/   Series	Slope	Intercept	Std   Error	Rsquare	No.   Pts	Index   Value	Predicted Value	Std   Error	WAP Weights
yfs0	1.70	-. 47	. 69	. 169	13	4.22	6.68	1.259	. 054
yfs1   bts1									
$\begin{aligned} & \text { gfs0 } \\ & \text { gfs1 } \end{aligned}$	. 84	5.93	1.61	. 038	12	4.01	9.30	1.848	. 025
					VPA	Mean =	10.01	. 304	. 921


Year	Weighted	Log	Int	Ext	Var	VPA	Log
Class	Average   Prediction	WAP	Std	Std	Ratio		VPA
			Error	Error			

Table 11.4.3 - Plaice in VIId. RCT3 ouput for Age 2
Analysis by RCT3 ver3.1 of data from file :
recpl7d2.in
7D PLAICE - VPA AGE 2 / indices all * per 100
Data for 5 surveys over 17 years : 1986 - 2002
Regression type $=C$
Tapered time weighting not applied
Survey weighting not applied

Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 00
Minimum of 3 points used for regression

Forecast/Hindcast variance correction used.
Yearclass $=2000$


Yearclass $=2001$

Survey/   Series	Slope	Intercept	Std   Error	Rsquare	No.   Pts	Index   Value	Predicted Value	Std   Error	WAP   Weights
yfs0	1.76	-1.06	. 74	. 172	12	5.93	9.37	. 861	. 051
yfs1	2.10	. 33	. 76	. 171	13	4.53	9.86	. 860	. 051
bts1	. 50	6.36	. 23	. 688	12	7.63	10.18	. 270	. 520
gfs0	. 72	6.31	1.45	. 054	11	6.14	10.76	1.707	. 013
gfs1	1.24	1.56	1.14	. 082	12	7.03	10.32	1.309	. 022
					VPA	Mean =	9.86	. 332	. 343

Yearclass $=2002$


Year	Weighted						
Class	Logerage   Prediction	WAP	Int   Std   Error	Ext   Std   Error	Var	VPA	Log
						VPA	
2000	22094	10.00	.19	.10	.28		
$\mathbf{2 0 0 1}$	$\mathbf{2 2 5 5 6}$	10.02	.19	.10	.29		
2002	15510	9.65	.32	.55	3.05		

Table 11.5.1 - Plaice in VIId. Input for short term prediction
input data for catch forecast and linear sensitivity analysis

Label	Value	CV	Label	Value	CV
Number at	age		Weight	the st	
N1	23275	0.36	WS1	0.08	0.23
N2	22556	0.19	WS2	0.20	0.06
N3	17124	0.18	WS 3	0.25	0.17
N4	6493	0.15	WS 4	0.32	0.21
N5	2162	0.16	WS5	0.41	0.14
N6	1303	0.13	WS 6	0.58	0.07
N7	1081	0.14	WS 7	0.72	0.17
N8	350	0.15	WS 8	0.86	0.14
N9	77	0.15	WS 9	1.03	0.13
N10	125	0.16	WS10	1.26	0.11
H.cons selectivity			Weight in the HC catch		
sH1	0.06	0.55	WH1	0.22	0.17
sH2	0.35	0.09	WH2	0.26	0.01
sH3	0.56	0.30	WH3	0.31	0.02
SH4	0.65	0.12	WH4	0.37	0.01
sH5	0.74	0.03	WH5	0.44	0.01
sH6	0.55	0.15	WH6	0.60	0.07
sH7	0.50	0.02	WH7	0.76	0.16
sH8	0.44	0.25	WH8	0.95	0.07
sH9	0.50	0.24	WH9	1.01	0.12
sH10	0.50	0.24	WH10	1.25	0.06
Natural mortality			Proportion mature		
M1	0.10	0.10	MT1	0.00	0.10
M2	0.10	0.10	MT2	0.15	0.10
M3	0.10	0.10	MT3	0.53	0.10
M4	0.10	0.10	MT4	0.96	0.10
M5	0.10	0.10	MT5	1.00	0.10
M6	0.10	0.10	MT6	1.00	0.00
M7	0.10	0.10	MT7	1.00	0.00
M8	0.10	0.10	MT8	1.00	0.00
M9	0.10	0.10	MT9	1.00	0.00
M1 0	0.10	0.10	MT10	1.00	0.00
Relative effort			Year effect for natural mortality		
in HC fishery					
HFO3	1.00	0.20	K03	1.00	0.10
HFO4	1.00	0.20	K04	1.00	0.10
HFO5	1.00	0.20	K05	1.00	0.10

Recruitment in 2004 and 2005
R04 232750.36
$\begin{array}{lll}\text { R05 } & 23275 \quad 0.36\end{array}$

```
Proportion of F before spawning = .00
Proportion of M before spawning = . 00
Stock numbers in 2003 are VPA survivors.
These are overwritten at Age 2
```

Table 11.5.2 - Plaice in VIId. Short term prediction (management option table)
Catch forecast output and estimates of coefficient of variation (CV) from linear analysis.


	Year							
	2003	2004						
Effort relative to 2002 H.cons	1.00	0.00	0.20	0.40	0.60	0.79	1.00	1.20
Est. Coeff. of Variation								
Biomass								
Total 1 January	0.11	0.15	0.15	0.15	0.15	0.15	0.15	0.15
SSB at spawning time	0.11	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Catch weight H.cons	0.20	0.00	0.96	0.47	0.32	0.25	0.21	0.18
Biomass in year.... 2005								
Total 1 January		0.15	0.17	0.17	0.17	0.17	0.18	0.18
SSB at spawning time		0.16	0.19	0.20	0.20	0.20	0.20	0.21

Table 11.5.3 - Plaice in VIId. Short term prediction (detailed output)
Detailed forecast tables.

Forecast for year 2003
F multiplier H.cons=1.00
Populations Catch number


Forecast for year 2004
F multiplier H.cons=1.00


Figure 11.3.1. Plaice in Division VIId. Stock summary.


Figure 11.3.2. Plaice in Division VIId. Comparison of historical performance of the assessments


Fishing mortality: 2-6



The 2003 assessment of Norway pout in the North Sea and Skagerrak is an update assessment. Relevant information on the biology of the stock and general assessment methodological information can be found in the stock quality control handbook.

### 12.1 The fishery

The fishery is mainly performed by Danish and Norwegian (large) vessels using small mesh trawls in the northern North Sea at Fladen Ground and along the edge of the Norwegian Trench. Main fishing seasons are $1^{\text {st }}, 3^{\text {rd }}$, and $4^{\text {th }}$ quarters of the year.

### 12.1.1 ACFM advice applicable to 2002 and 2003

There is no management objective set for this stock. With present fishing mortality levels the status of the stock is more determined by natural processes and less by the fishery. The ACFM advice for 2002 and 2003 was that the stock was considered to be within safe biological limits and the stock could on average sustain current fishing mortality.

There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. By-catches of other species should also be taken into account in management of the fishery. Existing measures to protect other species should be maintained.

Biological reference points for the stock have been set by ICES at $\mathbf{B}_{\text {lim }}=90,000 t$ as the lowest observed biomass and $\mathbf{B}_{\mathrm{pa}}=150,000 \mathrm{t}$ which should be maintained. Advised TAC was $220,000 \mathrm{t}$.

### 12.1.2 Management applicable to 2002 and 2003

In 1996-2003 the TAC was set to $220,000 \mathrm{t}$. In managing this fishery by-catches of other species have been taken into account. Existing technical measures such as the closed Norway pout box, minimum mesh size in the fishery, and bycatch regulations to protect other species have been maintained.

### 12.1.3 The Fishery in 2002 and 2003

Nominal landings of Norway pout as officially reported to ICES are given in Table 12.1.1. Annual landings as provided by Working Group members are shown in Tables 12.1.2-3 and trends in yield are shown in Figures 12.3.2-3.

While landings in year 2000 were high ( $185,000 \mathrm{t}$ mainly based on fishery on the strong 1999 year class as age 1 ) then landings in 2001 were the lowest observed since 1966 ( $66,000 \mathrm{t}$ ), and landings only slightly increased in 2002 to $77,000 \mathrm{t}$ being well below average for the last five years for all quarters of the year (Table 12.1.3; see also Table 12.2.1 under section 12.2).

The effort in the Norway pout fishery in 2002 nearly doubled from effort in 2001 being at the same level as in the previous 8 years before 2001 .

Landings in the $1^{\text {st }}$ and $2^{\text {nd }}$ quarter of 2003 were below average within the last 5 year period (as shown in section 12.2, Table 12.2.1), and also effort for Norway pout was historically low in 2003 compared to previous years.

### 12.2 Data available

### 12.2.1 Landings

Data for annual nominal landings of Norway pout as officially reported to ICES are shown in Table 12.1.1. Data for annual landings as provided by Working Group members are presented in Table 12.1.2, and data for national landings by quarter of year and by geographical area are given in Table 12.1.3

### 12.2.2 Age compositions in Landings

Age compositions were available from Norway and Denmark. Catch at age by quarter of year is shown in Table 12.2.1.

### 12.2.3 Weight at age

Mean weight at age in the catch is shown in Table 12.2.2 and mean weight at age in the stock is given in Table 12.2.3. The estimation of mean weights at age in the catches and in the used mean weights in the stock in the assessment is described in the stock quality handbook.

### 12.2.4 Maturity and natural mortality

Proportion mature and natural mortality by age and quarter used in the assessment is given in Table 12.2.3. Maturity and natural mortality used in the assessment is described in the stock quality handbook.

In the 2001 and 2002 assessment exploratory runs were made with revised input data for natural mortality based on the results from two papers presented to the working group in 2001, Sparholt, Larsen and Nielsen 2002a,b (both published in ICES J. Mar. Sci.). This has not been explored further in the 2003 up-date assessment but should be investigated in future benchmark assessment of the stock.

### 12.2.5 Catch, Effort and Research Vessel Data

Description of catch, effort and research vessel data used in the assessment is given in the stock quality control handbook. Data used in the present assessment is given in Tables 12.2.4-10 as described below.

## Effort standardization:

The method for effort standardization of the commercial fishery tuning fleet is described in the stock quality control handbook. Results and parameter estimates from the yearly regression analyses on CPUE versus GRT for the different Danish vessel size categories used in the effort standardization of both the Norwegian and Danish commercial fishery are shown in Table 12.2.5.

## Norwegian effort data

Observed average GRT and effort for the Norwegian commercial fleets are given in Table 12.2.6.

## Danish effort data

Table 12.2.4 shows CPUE data by vessel size category and year for the Danish commercial fishery in area IVa. The basis for these data is described in the stock quality handbook.

## Standardized effort data

The resulting combined and standardized Danish and Norwegian effort for the commercial fishery used in the assessment is presented in Table 12.2.7, and combined CPUE indices by age and quarter for the commercial fishery tuning fleet are shown in Table 12.2.8.

## Research vessel data

Survey indices series of abundance of Norway pout by age and quarter were available from the IBTS and the EGFS and SGFS, Table 12.2.9. The use of survey data in the assessment is described in the stock quality control handbook.

As age data from the EGFS performed in $3^{\text {rd }}$ quarter of 2003 were not available to the working group the catch per length group of Norway pout caught in this survey was applied to age-length keys from the commercial Danish fishery performed in $2^{\text {nd }}$ quarter of 2003 in area IV in order to obtain age disaggregated CPUE indices. The results of this are shown in Table
12.2.10. Even if the age dis-aggregation of data is uncertain the CPUE indices from this survey indicate under all circumstances a relatively small 0 -group recruiting to fishery in 2003 compared to the previous 5 years EGFS 0-group indices (Table 12.2.9). In comparison the SGFS 0 -group index in $3^{\text {rd }}$ quarter of 2003 was only reduced to around half compared to the $20023^{\text {rd }}$ quarter 0 -group index.

Research vessel indices from the $3^{\text {rd }}$ quarter IBTS are also presented in Table 12.2.9 but for comparison purposes only. These survey data are not used in the assessment.

### 12.3 Catch at Age Analyses

The SXSA (Seasonal Extended $\underline{\text { Survivors }} \underline{\text { Analysis) was used to estimate quarterly stock numbers and fishing mortalities }}$ for Norway pout in the North Sea and Skagerrak in 2003. The catch at age analysis was carried out according to the specifications in the stock quality control handbook. The parameter settings and options of the SXSA were the same this year as in the last year's assessment (Table 12.3.1).

Results of the analysis are presented in Table 12.3.2 (population numbers at age, SSB and TSB), Table 12.3.3 (partial fishing mortalities by fleet), Table 12.3 .4 and Figure 12.3 .1 (diagnostics), as well as Table 12.3 .2 (stock summary). The stock summary is also shown in Figures 12.3.2-3, and the historical performance of the assessment is shown in Figure 12.3.4. In the stock summary total stock biomass is given for $3^{\text {rd }}$ quarter of the year because this is the biomass including 0 -groups available for the commercial fishery.

The three surveys and the seasonally (by quarter) divided commercial fleets were all used in the tuning (Table 12.3.1). The data time series for the tuning fleets used in the SXSA are given in Tables 12.2.7-12.2.9. The $3^{\text {rd }}$ quarter IBTS was not used in tuning as it contains shorter time series than the SGFS and the EGFS and because it is not an independent tuning fleet of the separate SGFS and EGFS tuning fleets.

Fishing mortality has generally been lower than the natural mortality and has decreased in recent years well below the long term average (0.8). It has increased in 2002 to a level around $0.4-0.5$ similar to that in 1999-2000, but has been relatively low in $1^{\text {st }}$ and $2^{\text {nd }}$ quarter of the year 2003. However, the main fishery is usually in $3^{\text {rd }}$ and $4^{\text {th }}$ quarter of the year therefore giving only little indication of total fishing mortality in 2003.

Stock biomass (SSB) is just above $\mathbf{B}_{\mathrm{pa}}$ in $1^{\text {st }}$ quarter of 2003.

### 12.4 Recruitment Estimates

The long-term average recruitment (age $0,3^{\text {rd }}$ quarter) is 129 billions (arithmetric mean) and 109 billions (geometric mean) for the period 1974-2002 (Table 12.3.5). Recruitment is highly variable and influences SSB and TSB rapidly due to the short life span of the species.

Recruitment in 2000-2002 was low. The SXSA show that recruitment of 0 -group Norway pout in $3{ }^{\text {rd }}$ quarter of the year in 1997-98 was well below the long term averages while the 1996 and 1999 year classes were well above average. Recruitment in 2000 was historically low within the last 12 years period and much below the long term average, and also in 2001-2002 rrecruitment was well below long term average. Recruitment in 2003 will probably also be low according to the EGFS and SGFS 0-group survey indices in $3{ }^{\text {rd }}$ quarter of 2003 (Table 12.2.9).

There is a change in the recruitment estimate for the 2001 year class from the 2002 assessment to the 2003 assessment because of revised Danish catch numbers in $1^{\text {st }}$ quarter of the year 2002.

### 12.5 Short-Term Predictions (Forecasts)

No forecast is given for this stock. The reason for this is described in the stock quality control handbook.
$\underline{\text { Short term developments in the stock: }}$
Recruitment has been low in the whole period 2000-2002, and recent $20033^{\text {rd }}$ quarter survey indices also indicate low recruitment of 0-group Norway pout as well in 2003 (Table 12.3.5 and Table 12.2.9). Stock biomass (SSB) is just above
$\mathbf{B}_{\mathrm{pa}}$ in $1^{\text {st }}$ quarter of 2003 (Table 12.3.5), and well below long term average because the majority of the strong 1999 year class is dead now. Fishing mortality has increased in 2002 to a level around 0.4-0.5 similar to that in 1999-2000 (Table 12.3.5). The fishing mortality of the first half year in 2003 has been low however, the main Norway pout fishery is usually in $3^{\text {rd }}$ and $4^{\text {th }}$ quarter of the year therefore giving only little indication of total fishing mortality in 2003. Taking all this into consideration it can be expected that the SSB in the second half of 2003 and in $1^{\text {st }}$ quarter of 2004 will decrease further from the $1^{\text {st }}$ quarter 2003 level $(172,000 \mathrm{t})$. Consequently, in the first half year 2003 the stock seems still to be within safe biological limits $\left(\mathbf{B}_{\mathrm{pa}}=150,000 \mathrm{t}\right)$, however the stock are in risk of decreasing below $\mathbf{B}_{\mathrm{pa}}$ in second half of 2003 and in $1^{\text {st }}$ quarter of 2004. This should be taken into consideration when setting a TAC for the stock.

### 12.6 Comments

It appears from the quality control diagrams made from the results of the assessment (Figure 12.3.4) that the estimates of the SSB , recruitment and the average fishing mortality of the 1- and 2-group are consistent with the estimates of previous years assessment. Only the standardization procedure introduced in 2001-2002 has resulted in slightly higher estimates of SSB and slightly lower estimates of F in the latest years of the assessment period. Furthermore, there can be observed a change in the recruitment estimate for the 2001 year class from the 2002 assessment to the 2003 assessment because of revised Danish catch numbers in $1^{\text {st }}$ quarter of the year 2002.

## Future benchmark assessment of the stock:

The next benchmark assessment for this stock is foreseen to be in 2004.

## Potential workplan and suggestions for investigations to be included in this benchmark assessment:

1. Test of assessment output and improvements in assessment performance in relation to single fleet assessment runs for both the commercial and survey tuning fleets.
2. Test of assessment output and improvements in assessment performance by making runs where the combined (and effort standardized) Danish and Norwegian commercial tuning fleet is divided into two national tuning fleet components. It should among other be taken into consideration that there are some geographical differences in the distribution of the between the national fisheries.
3. Test of assessment output and improvements in assessment performance by including the combined $3^{\text {rd }}$ quarter IBTS time series as a tuning fleet replacing the $3^{\text {rd }}$ quarter EGFS and SGFS tuning fleets. Future exploratory assessment runs should be made using the 3Q IBTS fleet as tuning fleet instead of 3Q EGFS and 3Q EGFS independently, as the 3Q IBTS is now beginning to contribute with a relatively long data time series from 1991 and onwards.

For the SXSA recruitment estimates are available from the EGFS and SGFS surveys carried out in August as well as the $3^{\text {rd }}$ quarter IBTS and the commercial fishery in $3^{\text {rd }}$ and $4^{\text {th }}$ quarter of the year. The SGFS recruitment indices from 1998-2003 should be used with caution as a new survey design (new vessel from 1998 and new gear and extended survey area from 1999) was introduced. Historically, the EGFS estimates the strong year classes as 1 -group better than as 0 -group. Recruitment indices are also available for the IBTS $3^{\text {rd }}$ quarter survey for the period 1991-2003. This new time series seems to estimate 0 -groups better than the EGFS alone and it gives a longer time series than the new SGFS alone, however, it should also be taken into consideration that it contains shorter time series than the EGFS and the full time series of the SGFS used as separate tuning time series and, furthermore, it is not independent of EGFS and SGFS. The 0 -group are recruited to the $4^{\text {th }}$ quarter commercial fishery that tends to predict strong year classes well as 0 -group.
4. Scrutinize available age-disaggregated catch data in the historical commercial fleet databases in order to obtain longer time series in the tuning fleets and expand number of tuning fleets available. Investigate this in relation to background for decisions made in early ICES working group reports dealing with this stock.
5. Scrutinize CPUE indices per cohort and raw data for all survey tuning fleets. Investigate with respect to this the potential for real time monitoring of the stock only based on catch rates indices from surveys (maybe combined with data from commercial fleets). Can the surveys based on estimation of total mortality (slope of catch curve) with given natural mortality describe the trends in fishing mortality in the stock over years?

Possible test of whether it is more appropriate to formulate reference points based on total stock biomass (TSB) based on estimates of total mortality from surveys for use within management of this stock.
6. Evaluate the effect of assessment runs with new natural mortality estimates for the stock published in Sparholt, Larsen and Nielsen (2002a,b). (See also stock quality control handbook under natural mortality). This will be a continuation of the analyses (and provisional runs) made during the 2001 and 2002 assessments.
7. Possibly include revised maturity at age estimates for the stock based on the results from another paper presented to the working group in 2000, (Larsen, Lassen, Nielsen and Sparholt, 2001).
8. Run the assessment with and without cosine time taper applied as a continuation of the analyses (and provisional runs) made during the 2001 assessment.
9. There seems to be two levels of the stock-recruitment-relationship for the stock, a level well above and well below recruitment around 125 billions. There are no periodical and historical trends to explain these two levels. Evaluation of the stock-recruitment relationship for this stock and the factors and biological processes affecting it, as well as fisheries interactions, should be performed in order to investigate the possibilities for producing a realistic stock-recruitment-model and realistic medium term predictions for this stock. Recruitment is highly variable and influences SSB and TSB rapidly due to the short life span of the species.
10. Possible evaluation of the Norway pout in Division VIa. ACFM (October 2001) asked the Working Group to verify the justification of treating Division VIa as a management area for Norway pout and sandeel separately from IV and IIIa. Preliminary results from an analysis of regionalized survey data on Norway pout maturity, presented in a Working Document to the 2000 meeting of the Working Group (Larsen, Lassen, Nielsen and Sparholt,2001 in ICES C.M.2001/ACFM:07), gave no evidence for a stock separation in the whole northern area.

Possible evaluation of availability of data necessary for performing assessment of the VIa stock.

### 12.7 Norway Pout in Division VIa

### 12.7.1 Catch trends and assessment

Landings of Norway pout from Division VIa as reported to ICES are given in Table 12.7.1 and Figure 12.7.1. Reported landings in 2002 were $4,800 \mathrm{t}$. This level of landings is well below the series average of nearly $11,000 \mathrm{t}$ (1974-2002). No data are available on by-catches in this fishery. Since no age compositions are available, data are insufficient for an assessment of this stock.

### 12.7.2 Stock identity

ACFM (October 2001) asked the Working Group to verify the justification of treating Division VIa as a management area for Norway pout and sandeel separately from IV and IIIa. Preliminary results from an analysis of regionalized survey data on Norway pout maturity, presented in a Working Document to the 2000 meeting of the Working Group (Larsen, Lassen, Nielsen and Sparholt, 2001 in ICES C.M.2001/ACFM:07), gave no evidence for a stock separation in the whole northern area.

The WG considers that the extent of the data that is available on VIa Norway pout is assessed before the discussion on the merging of the VIa stock with the North Sea stock is finalized.

Table 12.1.1 Nominal landings (tonnes) of Norway pout from the North Sea and Skagerrak / Kattegat, ICES areas IV and IIIa in the period 1995-2002, as officially reported to ICES.

Norway pout   Division IIIa								
Country	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2 * *}$
Denmark	67.841	57.529	34.746	11.080	7.194	14.545	13.619	3.780
Sweden	68	237	2			133	780	0
Norway								
Total IIla	67.909	57.766	34.748	11.080	7.194	14.678	14.399	3.876


Norway pout   Division IVa								
Country	1995	1996	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2 * *}$
Denmark	141687	95708	106.958	42.154	39.319	133.149	44.818	68.858
Faroe Islands	7669	5717	7.033	4.707	2.534			
Germany	34							
Netherlands	114		35					
Norway	110017	90042	39.006	22.213	44.841	$48061^{*}$	17.158	23.657
Sweden			74	+				
UK (Scotland)								
Total IVa	259.521	191.541	153.032	69.074	86.694	181.210	61.976	92.515


Country	1995	1996	1997	1998	1999	2000	2001	2002**
Denmark	28.584	3.531	1.794	3.258	5.299	158	632	556
Faroe Islands	1.180	1.857						
Germany						2		
Netherlands	17	5	50	2		3		
Norway	14	139		57		34		
UK (E/W/NI)						+		
UK (Scotland)	+	+	+					
United Kingdom							+	
Total IVb	29795	5532	1844	3317	5299	197	632	556

Norway pout Division IVc

Country	1995	1996	1997	1998	1999	2000	2001	2002**
Denmark					514	182	304	
Netherlands					+			
UK (E/W/NI)								
UK (Scotland)		+						
United Kingdom							+	
Total IVc	0	0	0	0	514	182	304	0

Sub-area IV and IIla (Skagerrak) combined

Country	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2 * *}$
Denmark								
Faroe Islands	238112	156768	143498	56492	52326	148034	59.373	73194
Norway	8849	7574	7033	4707	2534			
Sweden	110031	90181	39006	22270	44841	48095	17.158	23753
Netherlands	68	237	2			133	780	
Germany	131	5	85	2		3		
UK	34					2		
Total nominal landings		74						
By-catch of other species and other	-120425	-91039	-19924	-3671	-7701	-11867	-11711	-19747
WG estimate of total landings (IV+IIlaN)	236800	163800	169700	79800	92000	184400	65600	77200
Agreed TAC	180000	220000	220000	220000	220000	220000	220000	220000
* provisional								

provisional
** provisional

+ Landings less than 1
n/a not available

Table 12.1.2 Norway pout annual landings ('000 t) in the North Sea and Skagerrak (not incl. Kattegat, IIIaS) by country, for 1961-2002 (Data provided by Working Group members). (Norwegian landing data include landings of by-catch of other species).

Year	Denmark		Faroes	Norway	Sweden	UK	Others	Total
	North Sea	Skagerrak						
1961	20.5	-	-	8.1	-	-	-	28.6
1962	121.8	-	-	27.9	-	-	-	149.7
1963	67.4	-	-	70.4	-	-	-	137.8
1964	10.4	-	-	51.0	-	-	-	61.4
1965	8.2	-	-	35.0	-	-	-	43.2
1966	35.2	-	-	17.8	-	-	+	53.0
1967	169.6	-	-	12.9	-	-	+	182.5
1968	410.8	-	-	40.9	-	-	+	451.7
1969	52.5	-	19.6	41.4	-	-	+	113.5
1970	142.1	-	32.0	63.5	-	0.2	0.2	238.0
1971	178.5	-	47.2	79.3	-	0.1	0.2	305.3
1972	259.6	-	56.8	120.5	6.8	0.9	0.2	444.8
1973	215.2	-	51.2	63.0	2.9	13.0	0.6	345.9
1974	464.5	-	85.0	154.2	2.1	26.7	3.3	735.8
1975	251.2	-	63.6	218.9	2.3	22.7	1.0	559.7
1976	244.9	-	64.6	108.9	+	17.3	1.7	437.4
1977	232.2	-	50.9	98.3	2.9	4.6	1.0	389.9
1978	163.4	-	19.7	80.8	0.7	5.5	-	270.1
1979	219.9	9.0	21.9	75.4	-	3.0	-	329.2
1980	366.2	11.6	34.1	70.2	-	0.6	-	482.7
1981	167.5	2.8	16.6	51.6	-	+	-	238.5
1982	256.3	35.6	15.4	88.0	-	-	-	395.3
1983	301.1	28.5	24.5	97.3	-	+	-	451.4
1984	251.9	38.1	$19.1{ }^{1}$	83.8	-	0.1	-	393.0
1985	163.7	8.6	9.9	22.8	-	0.1	-	205.1
1986	146.3	4.0	6.6	21.5	-	-	-	178.4
1987	108.3	2.1	4.8	34.1	-	-	-	149.3
1988	79.0	7.9	1.5	21.1	-	-	-	109.5
1989	95.7	4.2	0.8	65.3	+	0.1	0.3	166.4
1990	61.5	23.8	0.9	77.1	+	-	-	163.3
1991	85.0	32.0	1.3	68.3	+	-	+	186.6
1992	146.9	41.7	2.6	105.5	+	-	0.1	296.8
1993	97.3	6.7	2.4	76.7	-	-	+	183.1
1994	97.9	6.3	3.6	74.2	-	-	+	182.0
1995	138.1	46.4	8.9	43.1	0.1	+	0.2	236.8
1996	74.3	33.8	7.6	47.8	0.2	0.1	+	163.8
1997	94.2	29.3	7.0	39.1	+	+	0.1	169.7
1998	39.8	13.2	4.7	22,1	-	-	+	79.8
1999	41.0	6.8	-	44.2	$+$	-	-	92.0
2000	127.0	9.3	-	48.0	0.1	-	+	184.4
2001	40.6	7.5	-	16.8	0.7	+	+	65.6
2002	50.2	2.8	-	23.6	-	-	-	76.7

Table 12.1.3 Norway Pout, North Sea and Skagerak. National landings ( t ) by quarter of year 1992-2003. (Data provided by Working Group members. Norwegian landing data include landings of by-catch of other species).

Year	Quarter   Area	Denmark									Norway		Total
		IllaN	IIIaS	Div. Illa	IVaE	IVaW	IVb	IVc	Div. IV	Div. IV + IIIaN	IVaW	Div. IV	Div. IV + IIIaN
1992	1	2.330	619	2.950	29.701	8.862	1.096	-	39.659	41.989			
	2	9.235	1.684	10.919	1.610	264	1.529	-	3.403	12.638			
	3	22.586	817	23.402	9.908	34.053	6.465	-	50.426	73.012			
	4	7.561	263	7.824	4.102	47.704	1.630	2	53.439	61.000			
	Total	41.713	3.383	45.095	45.321	90.883	10.720	2	146.926	188.639			
1993	1	319	30	350	16.471	6.581	151	-	23.203	23.522			
	2	1.052	77	1.129	594	102	802	-	1.498	2.550			
	3	3.629	531	4.161	7.461	25.072	409	-	32.941	36.570			
	4	1.728	406	2.133	10.685	28.994	9	-	39.688	41.416			
	Total	6.729	1.044	7.773	35.210	60.748	1.371	-	97.330	104.058			
1994	1	568	75	643	18.660	3.588	533	-	22.781	23.350			
	2	4	0	4	511	170	-	-	681	685			
	3	2.137	74	2.211	5.674	12.604	493	-	18.772	20.908			
	4	3.623	116	3.739	5.597	49.935	91	-	55.622	59.246			
	Total	6.332	265	6.598	30.442	66.298	1.117	-	97.857	104.189			
1995	1	576	9	585	19.421	1.336	7	-	20.764	21.339	15521	15521	36.860
	2	10.495	290	10.793	2.841	30	3.670	-	6.540	17.035	10639	10639	27.674
	3	20.563	976	21.540	13.316	17.681	11.445	-	42.442	63.004	5790	5790	68.794
	4	14.748	2.681	17.430	10.812	56.159	1.426	-	68.396	83.145	11131	11131	94.276
	Total	46.382	3.956	50.347	46.390	75.205	16.547	-	138.142	184.524	43.081	43081	227.605
1996	1	1.231	164	1.395	6.133	3.149	658	2	9.943	11.174	10604	10604	21.778
	2	7.323	970	8.293	1.018	452	1.476	-	2.946	10.269	4281	4281	14.550
	3	20.176	836	21.012	7.119	17.553	1.517	-	26.188	46.364	27466	27466	73.830
	4	5.028	500	5.528	9.640	25.498	42	-	35.180	40.208	5466	5466	45.674
	Total	33.758	2.470	36.228	23.910	46.652	3.692	2	74.257	108.015	47.817	47817	155.832
1997	1	2.707	460	3.167	6.203	2.219	7	-	8.429	11.137	4183	4183	15.320
	2	5.656	200	5.857	141	-	45		185	5.842	8466	8466	14.308
	3	16.432	649	17.081	19.054	21.024	740	-	40.818	57.250	21546	21546	78.796
	4	4.464	1.042	5.505	6.555	38.202	7		44.765	49.228	4884	4884	54.112
	Total	29.259	2.351	31.610	31.953	61.445	799	-	94.197	123.456	39.079	39079	162.535
1998	1	1.117	317	1.434	7.111	2.292	-	-	9.403	10.520	8913	8913	19.433
	2	3.881	103	3.984	131	5	124	-	259	4.140	7885	7885	12.025
	3	6.011	406	6.417	7.161	1.763	2.372	-	11.297	17.308	3559	3559	20.867
	4	2.161	677	2.838	1.051	17.752	77	-	18.880	21.041	1778	1778	22.819
	Total	13.171	1.503	14.673	15.454	21.811	2.573	-	39.838	53.009	22.135	22135	75.144
1999	1	4	12	15	2.769	1.246	1	-	4.016	4.020	3021	3021	7.041
	2	1.568	36	1.605	953	361	418	-	1.731	3.300	10321	10321	13.621
	3	3.094	109	3.203	7.500	3.710	2.584	-	13.794	16.887	24449	24449	41.336
	4	2.156	517	2.673	3.577	16.921	928	1	21.426	23.583	6385	6385	29.968
	Total	6.822	674	7.496	14.799	22.237	3.931	1	40.968	47.790	44.176	44176	91.966
2000	1	0	11	12	3.726	1.038	-	-	4.764	4.765	5440	5440	10.205
	2	929	15	944	684	22	227	-	933	1.862	9779	9779	11.641
	3	7.380	139	7.519	1.708	5.613	515	-	7.836	15.216	28428	28428	43.644
	4	947	209	1.157	1.656	111.732	76	-	113.464	114.411	4334	4334	118.745
	Total	9.257	375	9.631	7.774	118.406	818	-	126.998	136.255	47.981	47981	184.236
2001	1			302	7.341	9.734	103	72	17.250	17.250	3838	3838	21.088
	2			2.174	31	30	269	-	330	330	9268	9268	9.598
	3			2.006	15	154	191	-	360	360	2263	2263	2.623
	4			3.059	2.553	19.826	329	-	22.708	22.708	1426	1426	24.134
	Total			7.541	9.940	29.744	892	72	40.648	40.648	16.795	16795	57.443
2002	1	-	1	1	4.869	1.660	114	-	6.643	6.643	1896	1896	8.539
	2	883	161	1.045	56	9	22	-	87	970	5563	5563	6.533
	3	1.567	213	1.778	2.234	14.739	104	-	17.077	18.644	14147	14147	32.791
	4	393	100	492	1.787	24.273	335	-	26.395	26.788	2033	2033	28.821
	Total	2.843	475	3.316	8.946	40.681	575	-	50.202	53.045	23.639	23639	76.684
2003	1	-	1	1	1.109	87	22	-	1.218	1.218	1927	1927	3.145
	2	246	160	405	64	-	33	-	97	343	2763	2763	3.106

Table 12.2.1 NORWAY POUT in the North Sea and Skagerrak. Catch in numbers at age by quarter (millions). SOP is given in tons. Data for 1990 were estimated within the SXSA program used in the 1996 assessment.

Age	Year	1984				1985	2	3	4	1986	2	3	4
			2	3	4								
0		0	0	1	2,231	0	0	6	678	0	0	0	5,572
1		2,759	2,252	5,290	3,492	2,264	857	1,400	2,991	396	260	1,186	1,791
2		1,375	1,165	1,683	734	1,364	145	793	174	1,069	87	245	39
3		143	269	8	0	192	13	19	0	72	3	6	0
4+		0	0	0	0	1	0	0	0	3	0	0	0
SOP		56790	56532	152291	110942	57464	15509	62489	92017	37889	7657	45085	89993
Age	Year	1987				1988				1989			
			2	3	4		2	3	4		2	3	4
0		0	0	8	227	0	0	741	3,146	0	0	151	4,854
1		2,687	1,075	1,627	2,151	249	95	183	632	1,736	678	1,672	1,741
2		401	60	171	233	700	73	250	405	48	133	266	93
3		12	0	0	5	20	0	0	0	6	6	5	13
4+		1	0	0	0	0	0	0	0	0	0	0	0
SOP		33894	15435	38729	60847	22181	3559	21793	61762	15379	13234	55066	82880
Age	Year	1990				1991				1992			
			2	3	4		2	3	4		2	3	4
0		0	0	20	993	0	0	734	3,486	0	0	879	954
1		1,840	1,780	971	1,181	1,501	636	1,519	1,048	3,556	1,522	3,457	2,784
2		584	572	185	116	1,336	404	215	187	1,086	293	389	267
3		20	19	6	4	93	19	22	18	118	20	1	2
4+		10	0	0	0	6	0	0	0	3	0	0	0
SOP		28287	39713	26156	45242	42776	20786	62518	64380	64224	27973	114122	96177
Age	Year	1993				1994				1995			
			2	3	4		2	3	4		2	3	4
0		0	0	96	1,175	0	0	647	4,238	0	0	700	1,692
1		1,942	813	1,147	1,050	1,975	372	1,029	1,148	3,992	1,905	2,545	3,348
2		699	473	912	445	591	285	421	134	240	256	47	59
3		15	58	19	2	56	29	71	0	6	32	3	3
4+		0	0	0	0	0	0	0	0	0	0	0	0
SOP		36206	29291	62290	53470	34575	15373	53799	79838	36942	28019	69763	97048
Age	Year	1996				1997				1998			
			2	3	4		2	3	4		2	3	4
0		0	0	724	2,517	0	0	109	343	0	0	94	339
1		535	560	1,043	650	672	99	3,090	1,922	261	210	411	531
2		772	201	1,002	333	325	131	372	207	690	310	332	215
3		14	38	37	0	79	119	105	35	47	18	2	13
4+		0	0	0	0	0	0	0	0	8	24	0	0
SOP		21888	13366	74631	46194	15320	8708	78809	54100	19562	12026	20866	22830
Age	Year	1999				2000				2001			
			2	3	4		2	3	4		2	3	4
0		0	0	41	1127	0	0	73	302	0	0	32	368
1		202	318	1298	576	653	280	1368	4616	220	133	122	267
2		128	220	338	160	185	207	266	245	845	246	27	439
3		73	93	35	23	3	48	20	6	35	100	1	1
4+		1	0	0	0	0	0	0	0	0	0	0	0
SOP		7833	12535	41445	30497	10207	11589	44173	119001	21400	11778	4630	26565
Age	Year	2002				2003							
			2	3	4		2						
0		0	0	340	290	0	0						
1		485	351	621	473	58	70						
2		148	24	284	347	75	51						
3		17	5	24	26	22	25						
4+		0	0	0	0	0	0						
SOP		8553		32922	28947	3145	3263						
		6686											

Table 12.2.2 Norway pout in North Sea and Skagerrak. Mean weights (grams) at age in catch, by quarter, 19832003, from Danish and Norwegian catches combined. Data for 1974 to 1982 are assumed to be the same as 1983.

Year   Quarter of year	$\begin{array}{r} 1983 \\ 1 \end{array}$	2	3	4	$\begin{array}{r} 1984 \\ 1 \end{array}$	2	3	4	1985 1	2	3	4
Age 0			4,00	6,00			6,54	6,54			8,37	6,23
1	7,00	15,00	25,00	23,00	6,55	8,97	17,83	20,22	7,86	12,56	23,10	26,97
2	22,00	34,00	43,00	42,00	24,04	22,66	34,28	35,07	22,7	28,81	36,52	40,90
3	40,00	50,00	60,00	58,00	39,54	37,00	34,10	46,23	45,26	43,38	58,99	
4									41,80			
Year Quarter of year	1986				1987				1988			
	1	2	3	4	1	2	3	4	1	2	3	4
Age				7,20			5,80	7,40			9,42	7,91
	6,69	14,49	28,81	26,90	8,13	12,59	20,16	23,36	9,23	11,61	26,54	30,60
	29,74	42,92	43,39	44,00	28,26	31,51	34,53	37,32	27,31	33,26	39,82	43,31
	44,08	55,39	47,60		52,93			46,60	38,38			
	82,51				63,09				69,48			
Year Quarter of year	1989				1990				1991			
	1	2	3	4	1	2	3	4	1	2	3	4
Age			7,48	6,69			6,40	6,67			6,06	6,64
	7,98	13,49	26,58	26,76	6,51	13,75	20,29	28,70	7,85	12,95	30,95	30,65
	26,74	28,70	35,44	34,70	25,47	25,30	32,92	38,90	20,54	28,75	44,28	43,10
	39,95	44,39		46,50	37,72	40,35	39,40	52,94	35,43	49,87	67,25	59,37
					68,00				44,30			
Year Quarter of year	1992				1993				1994			
	1	2	3	4	1	2	3	4	1	2	3	4
Age 0    1    2    3    4		8,00	6,70	8,14			4,40	8,14			5,40	8,81
	8,78	11,71	26,52	27,49	9,32	14,76	25,03	26,24	8,56	15,22	29,26	31,23
	25,73	31,25	42,42	44,14	24,94	30,58	35,19	36,44	25,91	29,27	38,91	49,59
	41,80	49,49	50,00	50,30	46,50	48,73	55,40	70,80	42,09	46,88	53,95	
	43,90											
Year Quarter of year	1995				1996				1997			
	1	2	3	4	1	2	3	4	1	2	3	4
Age 0    1    2    3    4			5,01	7,19			3,88	5,95			3,61	10,18
	7,70	10,99	25,37	24,6	8,95	12,06	27,81	28,09	7,01	11,69	20,14	22,11
	24,69	22,95	33,40	39,57	21,47	25,72	40,90	38,81	23,11	26,40	31,13	32,69
	50,78	37,69	45,56	57,00	37,58	37,94	50,44	56,00	39,11	34,47	44,03	38,62
Year   Quarter of year	1998				1999				2000			
	1	2	3	4	1	2	3	4	1	2	3	4
Age 0    1    2    3    4			4,82	8,32			2,84	7,56			7,21	13,86
	8,76	12,55	23,82	24,33	8,98	12,40	22,16	25,60	10,05	15,65	23,76	22,98
	22,16	25,27	31,73	30,93	25,84	24,15	32,66	37,74	19,21	25,14	38,90	34,48
	34,84	32,18	44,92	33,24	36,66	35,24	43,98	51,63	32,10	41,30	39,61	50,04
	42,40	40,00			46,57	46,57						
Year Quarter of year	2001				2002				2003			
	1	2	3	4	1	2	3	4	1	2		
$\begin{array}{ll}\text { Age } & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4\end{array}$			6,34	7,90			7,28	7,20				
	8,34	16,79	27,00	30,01	8,59	16,40	27,13	27,47	11,62	13,33		
	21,50	23,57	39,54	35,51	25,98	30,39	43,37	36,87	22,80	26,58		
	39,84	37,63	54,20	55,70	32,30	40,10	54,11	41,28	34,80	39,79		

Table 12.2.3 Norway pout. Mean weight at age in the stock, proportion mature and natural mortality.

Age	Weight (g)				Proportion   mature	M (per   quarter)
	Q1	Q 2	Q 3	Q 4		0.4
0	-	-	4.0	6.0	0.0	0.4
1	7.0	15.0	25.0	23.0	0.1	0.4
2	22.0	34.0	43.0	42.0	1.0	0.4
3	40.0	50.0	60.0	58.0	1.0	0.4
4	56.0	56.0	-	-	1.0	0.4

Table 12.2.4 Danish CPUE data (tonnes/day fishing) and fishing activities by vessel category for

Vessel GRT	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
$51-100$	11.73	20.27	14.58	10.03	12.56	31.75	31.00	24.80	29.53	-	20.00	-	-	-	-
$101-150$	20.70	18.83	19.59	17.38	24.14	26.42	23.72	26.76	38.96	20.48	22.68	-	-		
$151-200$	22.26	22.71	23.17	25.60	28.22	34.20	27.36	31.52	34.73	22.05	27.45	16.85	12.43	29.13	-
$201-250$	25.63	30.44	26.10	24.87	29.74	36.00	27.76	4.59	39.34	24.96	30.59	19.68	2.669	48.55	25.35
251.45	17.09														
$251-300$	26.10	23.29	26.14	21.30	28.15	31.90	32.05	36.98	38.84	31.43	32.55	17.48	23.98	45.92	20.02
301-	32.73	38.81	28.58	24.96	36.48	42.60	34.89	44.91	57.90	39.14	43.01	32.32	31.00	64.33	52.95

Table 12.2.5 Results of regression of Danish CPUE-data used for effort standardization of the Danish and Norwegian fishery (com-mercial) tuning fleet. Parameter estimates from regressions of $\ln$ (CPUE) versus $\ln$ (Aver. GRT) by year together with estimates of standardized CPUE to the group of Danish 175 GRT industrial trawlers. Data for 1994-2003 combined.

Regression models: $\mathrm{CPUE}=\mathrm{b} * \mathrm{GRTa}=>\ln (\mathrm{CPUE})=\ln (\mathrm{b})+\mathrm{a} * \ln (($ GRT-50 $))$

Year	Slope	Intercept	R-Square	CPUE(175 tonnes)
1987	0,39	3,51	0,98	22,75
1988	0,22	8,81	0,71	25,27
1989	0,28	5,91	1,00	22,91
1990	0,37	3,32	0,91	20,24
1991	0,40	3,79	0,96	25,98
1992	0,10	20,74	0,56	33,69
1993	0,05	23,23	0,31	29,33
1994	0,17	14,13	0,78	32,73
1995	0,17	14,13	0,78	32,73
1996	0,17	14,13	0,78	32,73
1997	0,17	14,13	0,78	32,73
1998	0,17	14,13	0,78	32,73
1999	0,17	14,13	0,78	32,73
2000	0,17	14,13	0,78	32,73
2001	0,17	14,13	0,78	32,73
2002	0,17	14,13	0,78	32,73
2003	0,17	14,13	0,78	32,73

Table 12.2.6 Effort in days fishing and average GRT of Norwegian vessels fishing for Norway pout by quarter, 1983-2003.

	Quarter 1		Quarter 2		Quarter 3		Quarter 4	
Year	Effort	Aver. GRT						
1983	293	167,6	1168	168,4	2039	159,9	552	171,7
1984	509	178,5	1442	141,6	1576	161,2	315	212,4
1985	363	166,9	417	169,1	230	202,8	250	221,4
1986	429	184,3	598	148,2	195	197,4	222	226,0
1987	412	199,3	555	170,5	208	158,4	334	196,3
1988	296	216,4	152	146,5	73	191,1	590	202,9
1989	132	228,5	586	113,7	1054	192,1	1687	178,7
1990	369	211,0	2022	171,7	1102	193,9	1143	187,6
1991	774	196,1	820	180,0	1013	179,4	836	187,7
1992	847	206,3	352	181,3	1030	202,2	1133	199,8
1993	475	227,5	1045	206,6	1129	217,8	501	219,8
1994	436	226,5	450	223,5	1302	212,0	686	211,4
1995	545	223,6	237	233,8	155	221,7	297	218,1
1996	456	213,6	136	219,9	547	208,3	132	207,2
1997	132	202,4	193	218,9	601	194,8	218	182,3
1998	497	192,6	272	213,6	263	176,8	203	193,8
1999	267	173,0	735	180,1	1165	187,4	229	166,9
2000	294	197,1	348	180,7	929	205,3	196	219,3
2001	252	203,4	297	192,9	130	165,0	65	219,4
2002	90	208,6	246	189,1	1022	211,7	205	197,9
2003	140	155,5	215	160,0				

Table 12.2.7 Norway pout. Combined Danish and Norwegian fishing effort
(standardized number of fishing days per year) to be used in assessment.

Year	Quater 1			Quarter 2			Quater 3			Quater 4			Year toal		
	Norway	Desmark	Toal	Norvay	Denmark	Toal	Norway	Demmark	Toal	Norway	Demmak	Toal	Noway	Denmark	Toal
1987	441	1124	1565	${ }_{547}$	31	578	197	1191	${ }_{1387}$	335	1633	1988	1540	3978	5518
1988	315	880	1195	144	13	156	75	416	491	${ }_{617}$	1890	2506	${ }^{1150}$	3198	4388
1989	146	776	92	485	196	${ }_{680}$	1093	1745	2838	1701	2279	3980	${ }^{3424}$	4996	8420
1990	406	989	1394	202	87	2089	1162	462	1623	1185	1648	2833	4734	3186	7940
1991	824	1315	2139	${ }_{83}$	33	866	1027	483	1510	89	1719	2588	${ }^{3553}$	3551	7104
1992	866	2087	2933	${ }_{354}$	17	371	1051	1526	2577	${ }^{1154}$	1239	2392	${ }^{324}$	4869	8294
1993	${ }^{483}$	1231	1714	1056	${ }^{37}$	1094	1145	${ }^{1355}$	2701	508	1166	2175	${ }_{3193}$	4990	7683
1994	463	1262	1225	476	${ }^{74}$	${ }^{550}$	1362	${ }^{615}$	1977	717	${ }^{1223}$	1940	3019	${ }^{3174}$	6193
1995	577	807	${ }^{1384}$	253	99	352	164	850	1014	${ }^{313}$	1482	1795	1307	${ }^{237}$	4544
1996	478	577	1054	${ }^{143}$	184	328	570	757	1327	${ }^{137}$	1235	${ }^{1373}$	${ }^{1329}$	2753	4081
1997	137	${ }^{393}$	529	203	17	220	617	1239	1856	220	1116	${ }^{1336}$	1177	2765	${ }^{3941}$
1998	509	444	953	285	34	319	264	560	823	208	455	${ }_{6} 63$	${ }^{1265}$	1492	2788
1999	266	304	570	740	56	796	1184	385	1570	226	${ }^{730}$	956	2417	1475	3892
2000	302	302	${ }^{604}$	${ }_{351}$	74	425	965	220	1184	207	1895	2102	1825	2491	${ }^{4316}$
2001	261	439	701	304	15	319	128	48	${ }^{176}$	n	${ }_{539}$	${ }_{6} 67$	,	1041	${ }^{1803}$
2002      2003	${ }^{94}$	${ }_{\substack{386 \\ 21}}$	${ }_{480}$	251	${ }_{2}^{21}$	271	1069	674	1742	207	549	${ }^{756}$	1620	1630	3250

Table 12.2.8 CPUE indices ('000s per fishing day) by age and quarter from Danish and

Year	CF, 1st quarter				CF, 2nd quarter				CF, 3rd quarter				CF, 4th quarter			
	0-group	1-group	2-group	3-group												
1982	.	2144,5	169,0	87,9	.	1705,7	144,3	12,1	30,3	1320,2	86,5	12,4	368,4	1050,5	16,0	0
1983	.	1524,2	470,0	5,4	.	1044,9	706,5	5,5	74,3	969,6	262,0	2,8	604,9	972,9	85,9	1,7
1984	.	1137,9	566,8	59,1	.	1518,0	784,9	181,1	0,2	990,2	314,9	1,5	462,0	723,1	152,1	0
1985	.	877,1	528,2	74,3	.	1310,5	221,5	20,3	2,6	599,0	339,0	8,3	183,6	809,5	47,2	0
1986	.	108,5	292,9	19,8	.	267,9	89,3	3,0	0,0	531,1	109,7	2,7	892,9	277,1	5,9	0
1987	.	1702,9	254,3	7,7	.	1856,4	103,8	0,0	5,8	1142,8	119,0	0,0	111,2	1075,5	115,7	2,5
1988	.	205,7	584,5	16,4	.	525,6	457,7	0,0	48,3	373,1	510,0	0,0	1176,0	252,1	161,6	0
1989	.	1862,8	52,1	7,6	.	1019,8	214,9	9,6	2,4	386,4	69,7	0,0	1186,1	488,7	22,7	3,2
1990	.	1065,9	451,8	25,8	.	865,0	258,2	14,7	9,5	571,7	126,7	7,2	444,9	395,2	39,7	2,3
1991	.	694,2	624,1	43,4	.	484,3	458,2	22,0	50,3	669,1	44,1	1,0	1007,3	398,0	71,7	6,6
1992	.	1130,9	361,3	39,7	.	2686,5	619,9	53,4	13,1	1012,0	144,2	0,4	190,6	1105,0	106,1	1,0
1993	.	1123,0	404,0	7,9	.	689,2	431,6	52,7	4,0	385,0	329,0	6,9	427,3	475,0	203,3	0,8
1994	.	1102,7	341,5	32,7	.	677,0	518,0	52,5	94,1	520,4	203,5	35,7	1955,6	591,6	69,0	0
1995	.	2852,2	171,4	4,0		3188,5	728,3	90,3	117,9	1866,0	38,6	3,0	198,8	1706,6	33,0	1,7
1996	.	366,0	732,7	13,2	.	121,1	408,5	115,7	122,0	346,9	716,0	27,5	1067,3	473,8	242,6	0,2
1997		992,5	481,1	147,1	.	435,0	593,0	540,5	1,9	1257,3	154,4	56,5	75,3	1349,1	153,1	25,9
1998		150,2	724,2	49,4	.	182,8	756,7	54,8	31,1	319,9	350,5	1,1	233,1	775,7	322,9	20,0
1999	.	351,6	225,0	128,2	.	280,3	230,0	116,8	0,0	726,4	213,8	22,0	1087,9	516,8	167,1	24,2
2000	.	1081,1	305,8	4,5	.	576,7	427,9	113,9	20,0	896,4	207,2	17,2	122,3	2182,4	115,0	2,8
2001	.	300,7	1198,6	50,1	.	216,0	662,1	312,0	30,5	369,2	142,7	6,3	560,1	323,2	721,9	1,5
2002	.	1010,9	308,4	34,8		1144,1	59,2	18,1	194,6	321,7	158,0	13,6	383,7	602,8	455,5	34,9
2003		166,7	216,2	63,1		257,4	208,6	110,1								

Research vessel indices (CPUE in catch in number per trawl hour) of abundance for Norway pout.

Year	IBTS/IYFS ${ }^{1}$ February			EGFS ${ }^{2,3}$ August				SGFS ${ }^{4}$ August				IBTS $3^{\text {rd }}$ Quarter ${ }^{\text {1 }}$			
	1-group	2-group	3-group	0-group	1-group	2-group	3-group	0-group	1-group	2-group	3-group	0-group	1-group	2-group	3-group
1970	35	6	-	-	-		-	-	-	-	-	-	-		-
1971	1,556	22	-	-	-	-	-	-	-	-	-	-	-	-	-
1972	3,425	653	-	-	-	-	-	-	-	-	-	-	-	-	-
1973	4,207	438	-	-	-	-	-	-	-	-	-	-	-	-	-
1974	25,626	399	-	-	-	-	-	-	-	-	-	-	-	-	-
1975	4,242	2,412	-	-	-	-	-	-	-	-	-	-	-	-	-
1976	4,599	385	-	-	-	-	-	-	-	-	-	-	-	-	-
1977	4,813	334	-	-	-	-	-	-	-	-	-	-	-	-	-
1978	1,913	1,215	-	-	-	-	-	-	-	-	-	-	-	-	-
1979	2,690	240	-	-	-	-	-	-	-	-	-	-	-	-	-
1980	4,081	611	-	-	-	-	-	-	1,928	346	12	-	-	-	-
1981	1,375	557	-	-	-	-	-	-	185	127	9	-	-	-	-
1982	3,315	403	-	6,594	2,609	39	77	8	991	44	22	-	-	-	-
1983	2,331	663	9	6,067	1,558	114	0.4	13	490	91	1	-	-	-	-
1984	3,925	802	58	457	3,605	359	14	2	615	69	9	-	-	-	-
1985	2,109	1,423	71	362	1,201	307	0	5	636	173	5	-	-	-	-
1986	2,043	384	23	285	717	150	80	38	389	54	9	-	-	-	-
1987	3,023	469	65	8	552	122	0.9	7	338	23	1	-	-	-	-
1988	127	760	13	165	102	134	21	14	38	209	4	-	-	-	-
1989	2,079	260	178	1,530	1,274	621	20	2	382	21	14	-	-	-	-
1990	1,320	773	46	2,692	917	158	23	58	206	51	2	-	-	-	-
1991	2,497	677	129	1,509	683	399	6	10	732	42	6	7,383	1,105	222	3
1992	5,121	902	33	2,885	6,193	1,069	157	12	1,715	221	24	2,588	4,366	640	48
1993	2,681	2,644	259	5,699	3,278	1,715	0	2	580	329	20	3,953	1,861	597	53
1994	1,868	375	67	7,764	1,305	112	7	136	387	106	6	3,196	704	102	14
1995	5,941	785	77	7,546	6,174	387	14	37	2,438	234	21	1,762	4,527	317	42
1996	912	2,635	234	3,274	1,262	303	2	127	412	321	8	4,554	763	362	12
1997	9,752	1,474	670	1,103	5,579	364	32	1	2,154	130	32	490	3,521	169	40
1998	1,006	5,343	300	2,684	411	248	0	2,628	938	1,027	5	2,931	806	743	11
1999	3,527	597	667	6,358	1,930	88	26	3,603	1,784	180	37	7,844	2,367	201	94
2000	8,097	1,533	65	2,005	6,261	141	2	2,094	6,656	207	23	1,644	7,868	282	11
2001	1,304	2,861	235	3,547	970	667	5	756	727	710	26	2,084	1,279	860	27
2002	1,791	809	880	3,677	780	40	11	2,559	1,192	151	123	-	-	-	-
2003	1,243	573	92	389	594	168	0	1,767	779	126	1		-	-	-

Table 12.2.9

[^8]Table 12.2.10 Provisional Norway pout index from English Groundfish Survey (EGFS) 3rd quarter 2003. Evaluated number per age group based on sampled number per length group of Norway pout from EGFS 3rd quarter 2003, and based on age length estimates of Norway pout from Danish landings in 2nd quarter 2003 in area IV. Length groups obtained from IBTS manual.

Length   $(\mathbf{c m})$	Number sampled   EGFS Q3 2003	Evaluated age   EGFS	Age	Mean length (cm);   Danish fishery IV Q2 2003
$<13$	389	0	0	
$13-15$	594	1	1	12,7
$>15$	168	2	2	13,7

Table 12.3.1 Seasonal extended survivor analysis (SXSA) of Norway pout in the North Sea and Skagerrak. Parameters, settings and the options of the SXSA as well as the input data used in the SXSA.

```
SURVIVORS ANALYSIS OF: Norway pout stock in 2003
Run: npns3a03 (Summary from NPNS3A03)
The following parameters were used:
Year range: 1983-2003
Seasons per year: 4
The last season in the last year is season : 2
Youngest age: 0; Oldest age: 3; (Plus age: 4)
Recruitment in season: 3
Spawning in season:
 1
The following fleets were included:
Fleet 1: commercial
Fleet 2: ibts-1q
Fleet 3: egfs
Fleet 4: sgfis
The following options were used:
1: Inv. catchability: 2
 (1: Linear; 2: Log; 3: Cos. filter)
2: Indiv. shats: 2
 (1: Direct; 2: Using z)
3: Comb. shats: 2
 (1: Linear; 2: Log.)
4: Fit catches: 0
 (0: No fit; 1: No SOP corr; 2: SOP corr.)
5: Est. unknown catches: 0
 (0: No; 1: No SOP Corr; 2: SOP Corr; 3: Sep. F)
6: Weighting of rhats: 0
 (0: Manual)
7: Weighting of shats: 2
 (0: Manual; 1: Linear; 2: Log.)
8: Handling of the plus group:
1
 (1: Dynamic; 2: Extra age group)
Factor (between 0 and 1) for weighting the inverse catchabilities
at the oldest age versus the second oldest age (factor 1 means that
the catchabilities for the oldest age are used as they are): 0
Specification of minimum value for the survivor number (this is
Used instead of the estimate if the estimate becomes very low): 0
Iteration until convergence (setting 0): 0
Data were input from the following files: canum.grt
Weight in catch: weca.grt
Weight in stock: west.grt
Natural mortalities: natmor.qre
Maturity ogive: matprop.qret
Tuning data (CPUE):
Weighting for rhats:
tuning.xsa
rweigh.xsa
```

Table 12.3.2 Seasonal extended survivor analysis (SXSA) of Norway pout

2	3	4
$*$	57283.	38393.
20756.	13212.	7709.
3037.	1917.	636.
144.	86.	42.
15.	10.	7.
23952.	72508.	46787.






$\begin{gathered} \text { ñ } \\ \stackrel{\rightharpoonup}{\circ} \end{gathered}$		
${ }^{4}$		


$\begin{array}{rrr}1984 & & \\ 1 & 2 & 3 \\ * & * & 79134 . \\ 66705 . & 42455 . & 26614 . \\ 13576 . & 7975 . & 4392 . \\ 802 . & 420 . & 62 . \\ 0 . & 0 . & 0 .\end{array}$
50850.
928991. 1174462. 21049.
377471.








in the North Sea and Skagerrak. Stock numbers, SSB and TSB at start of season
m $\dot{\sim} \dot{\sim}$

51300.
622313.



29720.
477672.

7424.
98446.
48126.


12559.
250059.




Year   Season   AGE	1992		3	1993			1994					
	1	2		4	1	2	3	4	1	2	3	4
0	*	*	77002.	50896.	*	*	60801.	40677.	*	*	234740.	156821.
1	71540.	45043.	28947.	16573.	33336 .	20756.	13247.	7941.	26305.	16016.	10431.	6149.
2	6067.	3178.	1890.	948.	8830.	5347.	3197.	1396.	4463.	2508.	1448.	626.
3	380.	159.	90.	59.	417.	268.	132.	73.	572.	337.	202.	78.
$4+$	16.	8.	6.	4.	41.	27.	18.	12.	55.	37.	25.	17.
SSN	13618.				12622.				7721.			
SSB	199673.				236571.				142571.			
TSN	78004.	48388.	107935.	68481.	42624.	26398.	77395.	50099.	31395.	18898.	246846.	163691.
TSB	650377 .	792086.	1118356.	729852.	446587 .	508042.	719771.	489563.	308290.	344448 .	1274118.	1113153.
Year	1995				1996				1997			
Season	1	2	3	4	1	2	3	4	1	2	3	4
AGE												
0	*	*	72961.	48334.	*	*	177868.	118636.	*	*	50999.	34097 .
1	101650.	64870.	41924.	26019.	31014.	20352.	13183.	7983.	77463.	51375.	34356.	20500.
2	3182.	1937.	1088.	691.	14700.	9221.	6017.	3213.	4819.	2964.	1879.	955.
3	310.	203.	110.	71.	415.	267.	148.	69.	1881.	1196.	705.	386.
$4+$	63.	42.	28.	19.	58.	39.	26.	18.	58.	39.	26.	17.
SSN	13720.				18274.				14504.			
SSB	157095.				364956.				238712.			
TSN	105206.	67052.	116112.	75135.	46187.	29879.	197242.	129918.	84220.	55573.	87966.	55956.
TSB	797493.	1051428.	1393351.	921618.	560346 .	634317.	1308638.	1034379.	726729.	933363.	1185994.	738624.
Year	1998				1999				2000			
Season	1	2	3	4	1	2	3	4	1	2	3	4
AGE												
0	*	*	77005.	51541.	*	*	180827.	121179.	*	*	56204.	37615.
1	22575.	14919.	9828.	6251.	34272 .	22808.	15028.	9011.	80306.	53296.	35496 .	22674.
2	12168.	7591.	4835.	2969.	3756.	2413.	1437.	687.	5568.	3581.	2231.	1278.
3	471.	277.	171.	113.	1814.	1156.	699.	440.	330.	219.	107.	55.
$4+$	242.	156.	85.	57.	103.	69.	46.	31.	297.	199.	133.	89.
SSN	15139.				9100.				14225.			
SSB	315896.				184943.				208509.			
TSN	35457 .	22943.	91924.	60931.	39945.	26445.	198037.	131347.	86500.	57294.	94171.	61710.
TSB	458122.	504469.	771878.	584286.	400856.	485788.	1202743.	988688.	714437.	943260.	1214552.	804038.
Year	2001				2002				2003			
Season	1	2	3	4	1	2	3	4	1	2		
AGE												
0	*	*	69564.	46604.	*	*	64686.	43082.	*	*		
1	24967.	16556.	10989.	7267.	30938.	20341.	13348.	8439.	28641.	19151.		
2	11419.	6963.	4466.	2971.	4652.	2997.	1989.	1101.	5270.	3471.		
3	656.	411.	194.	129.	1632.	1080.	720.	463.	454.	287.		
$4+$	92.	62.	41.	28.	104.	70.	47.	31.	310.	208.		
SSN	14664.				9483.				8898.			
SSB	300088.				195132.				171512.			
TSN	37134.	23991.	85254.	56999.	37327.	24489.	80790.	53117.	34675.	23117.		
TSB	457380 .	509069.	756647.	579028.	390044.	464963.	721195.	525704.	351952 .	431249 .		

fleet．
y


サ

$\begin{array}{ll}6 \varepsilon 0 \cdot 0 & \text { รо } \\ & \varepsilon\end{array}$


$\stackrel{N}{N}$
 n．
$\stackrel{1}{0}$
0


m

$\stackrel{n}{N}$
$\vdots$



N
＊ $\begin{array}{r}1 \\ \text { No } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array} 0$
00
10
$\Gamma$
$\Gamma$
0
0

N$\begin{array}{ll}\text { on } & 0 \\ \text { N } & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0\end{array}$ | $\infty$ |
| :--- |
| $\infty$ |
| $\stackrel{\infty}{0}$ |




7

7

 $\underset{\sim}{n}$
$\stackrel{-}{0}$
$\varepsilon$
응서우충ㅇㅇ
0.430

$\varepsilon$

$m$ No
 T9Z•0

N

N
＊
 $\stackrel{0}{\text { No }}$ $\stackrel{N}{\stackrel{N}{N}}$

N＊
 $-\infty$
0
0
0

 $\underset{H}{H}$
$\underset{\sim}{1}$

$\angle 80^{\circ} 0$

モ

$\ddot{H}$

$\Rightarrow$

$\stackrel{H}{2}$
$\stackrel{0}{0}$

m

0.304
$m$ $\begin{array}{lllll}H & n & N & H & 0 \\ -1 & n & \infty & \ddots & 0 \\ 0 & \sim & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}$
$\stackrel{\infty}{\stackrel{\infty}{1}} \underset{0}{+}$

N $\begin{array}{rrrr}6 & 0 & 0 \\ M & \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$
0.078

N＊ $\begin{array}{llll}\text { N } & \infty & \text { H } \\ \text { H } \\ 0 & 0 \\ 0 & H & 0 \\ 0 & 0 & 0 & 0\end{array}$

0
$\infty$
0
0
0


モTと・0
$\infty-1$
$\infty$
$\infty$
-1
 10
0
0
0 N
N
H
0
0
0
0.043

92
1
$\square$気気华筑 $\stackrel{-1}{3}$ $\begin{array}{ll}\text { Year } \\ \text { Season } \\ \text { AGE } & \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4+\end{array}$ F（1－2） Year
Season －$N$ m F（1－2）


Table 12.3.4
Seasonal extended survivor analysis (SXSA) of Norway pout in the North Sea and Skagerrak.Diagnostics fr

1 (commercial)
The same for al
of year);
Log inverse catchabilities, fleet no:
$\begin{aligned} & \text { Year } \\ & \text { Season }\end{aligned}$
AGE

0
(VSXS
( VSXS UṬ Uoṭłdo se xeəK Kq quezsuoə


Table 12.3.4


Table 12.3.5 Norway pout in Sub-area IV and Division IIIa. Trends in Recruitment ( 0 -group beginning of $3^{\text {rd }}$ quarter), SSB (beginning of the year), Yield and average fishing mortality for 1- and 2-group. Values from 1974-1982 are based on previous assessments and is the same as given in previous years reports.

Year	RECRUITS Age 0; Q3	$\begin{gathered} \hline \text { TSB } \\ \text { Q3 } \end{gathered}$	$\begin{gathered} \text { SSB } \\ \text { Q1 } \end{gathered}$	LANDINGS   (Yearly)	YIELD / SSB	FBAR 1-2   (Mean F Ages 1-2)
1974	176000000		171000	735800	4,3029	1,840
1975	212000000		208000	559700	2,6909	1,206
1976	198000000		200000	437400	2,1870	1,204
1977	102000000		242000	389900	1,6112	0,835
1978	201000000		241000	270100	1,1207	0,907
1979	233000000		198000	329200	1,6626	1,006
1980	61000000		332000	482700	1,4539	1,233
1981	306000000		278000	238500	0,8579	0,777
1982	238000000		174000	395300	2,2718	1,016
1983	153867000	1935650	380904	451400	1,1851	0,828
1984	79134000	1174462	377471	393000	1,0411	1,216
1985	57283000	647004	179200	205100	1,1445	1,137
1986	110802000	744672	90612	178400	1,9688	1,154
1987	32308000	622313	98446	149300	1,5166	0,858
1988	88738000	599614	136449	109500	0,8025	0,591
1989	99450000	821745	92443	166400	1,8000	0,751
1990	94022000	825022	136320	163300	1,1979	0,656
1991	166464000	1165160	167224	186600	1,1159	0,687
1992	77002000	1118356	199673	296800	1,4864	0,763
1993	60801000	719771	236571	183100	0,7740	0,750
1994	234740000	1274118	142571	182000	1,2766	0,768
1995	72961000	1393351	157095	236800	1,5074	0,381
1996	177868000	1308638	364956	163800	0,4488	0,352
1997	50999000	1185994	238712	169700	0,7109	0,479
1998	77005000	771878	315896	79800	0,2526	0,246
1999	180827000	1202743	184943	92000	0,4975	0,513
2000	56204000	1214552	208509	184400	0,8844	0,434
2001	69564000	756647	300088	65600	0,2186	0,210
2002	64686000	721195	195132	76700	0,3931	0,433
2003			171512			
Average	128680172	1010144	213958	261114	1,3235	0,801
Units	No in '000	Tonnes	Tonnes	Tonnes		

Table 12.7.1 Norway pout in Division VIa.
Officially reported landings (tonnes)

Country	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Denmark	5849	28180	3316	4348	5147	7338	14147	24431	6175	9549
Faroes	376	11	-	-	-	-	-	-	-	-
Germany	-	-	-	-	-	-	-	1	-	-
Netherlands	-	-	-	-	10	-	-	7	7	-
Norway	-	-	-	-	-	-	-	-	-	-
Poland	-	-	-	-	-	-	-	-	-	-
UK (E+W)	-	-	-	-	1	-	1	-	-	-
UK (Scotland)	517	5	-	-	-	-	+	-	140	13
Total	6742	28196	3316	4348	5158	7338	14148	24439	6322	9562


Country	1998	1999	2000	2001	2002
Denmark	7186	4624	2005	3214	4815
Faroes	-	-	-	-	-
Germany	-	-	-	-	-
Netherlands	-	1	-	-	-
Norway	-	-	-	-	-
Poland	-	-	-	-	-
UK (E+W)	-	-	-	-	-
UK (Scotland)	-	-	-	-	-
Total	7186	4625	2005	3214	4815

Figure 12.3.1 Log residual stock numbers $(\log (\mathrm{Nhat} / \mathrm{N}))$ per age group divided by fleet and season. SXSANorway pout in the North Sea and Skagerak.








Figure 12.3.2 Norway pout in Sub-area IV and Division IIIa. Historical trends in landings yield, annual fishing mortality, recruitment and spawning stock biomass.





Figure 12.3.3 Trends in yield, SSB and TSB for Norway pout in the North Sea and Skagerrak during the period 1983-2002.


Figure 12.3.4 Quality Control Diagram for Norway pout in the North Sea and Skagerrak covering the present assessment period 1983-2003.



Figure 12.7.1 Trends in catches of Norway pout in ICES Division VIa


### 13.1 Sandeel in IV

The assessment of sandeel in sub-area IV is presented here as an update assessment. All the relevant biological and methodological information can be found in the stock annex dealing with this stock. Here, only the basic input and output from the assessment model will be presented.

### 13.1.1 The Fishery

### 13.1.1.1 ACFM advice applicable to 2002 and 2003

There is no management objective set for this stock. However, there is a need to develop management objectives that ensure that the stock remains high enough to provide food for a variety of predator species. The fishing mortality should not increase because of the consequences of removing a larger fraction of the food-biomass for other biota is unknown. Further, local depletion of sandeel aggregations should be prevented, particularly in areas where predators congregate.

### 13.1.1.2 Management applicable in 2002 and 2003

The TAC was set to 1,020,000 tonnes for 2002 and 918.000 tonnes in 2003.

Technical measures for the sandeel fishery include a minimum percentage of the target species at $95 \%$ for meshes $<16$ mm . Sandeels are only fished using mesh sizes $<16 \mathrm{~mm}$.

### 13.1.2 The fishery in 2002

Official landings statistics of sandeel by country and area of the North Sea are presented in Table 13.1.2.1. Total official landings of sandeels in area IV was 848.000 tonnes in 2002 which is just above the average on 779.000 tonnes for the period 1980-2002. The majority of the catches were taken in the southern fishing area in the second quarter of the year while the landings in the northern fishing area were on a low level compared to the previous 6 years. Especially the landings in the north western part of the North Sea were on a low level in 2002 compared to the previous 5 years.

In the light of studies linking low sandeel availability to poor breeding success of kittiwake, ICES advised in 2000 for a closure of the sandeel fisheries in the Firth of Forth area east of Scotland. All commercial fishing was excluded, except for a maximum of 10 boat days in each of May and June for stock monitoring purposes. The closure was maintained for three years and has been extended until 2006, with a small increase in the effort of the monitoring fishery, after which the effect of the closure will be evaluated.

### 13.1.3 Data available

### 13.1.3.1 Landings

Official landings data by country and TACs are presented in table 13.1.2.1.

### 13.1.3.2 Age compositions

Age compositions of the landings are presented in table 13.1.3.1. No 0 -group sandeels was recorded in the catches in the second half of 2002 which is unusual. Most of the sandeels in the catches in 2002 were 1 -group of the very large 2001 year class.

### 13.1.3.3 Weight at age

Weight at age in the catch is presented in table 13.1.3.2 and weight at age in the stock in table 13.1.3.3.

### 13.1.3.4 Maturity and natural mortality

Maturity and natural mortality are assumed at fixed values and are described in the stock annex.

### 13.1.3.5 Catch, effort and research vessel data

Commercial tuning fleets used for calibration of the assessment are presented in tables 13.1.3.4.

Total international standardised effort was for the years prior to 1987 estimated as described in the WG report from 1996 (ICES, 1996/Assess:6). For the time period from 1987 to 2002 a slightly different method was applied for the Danish CPUE. This change in the estimation of effort was not found to have any effect on F, SSB and recruitment.

### 13.1.4 Catch at age analysis

Catch at age analysis was carried out using the XSA with the same settings as last year and the settings specified in the stock annex. Results of the analysis are presented in table 13.1.4.1 (diagnostics), 13.1.4.2 (fishing mortality at age), 13.1.4.3 (population numbers at age), and 13.1.4.4 (stock summary). The stock summary is also shown in figure 13.1.4.1 and the historical performance of the assessment is shown in figure 13.1.4.2.

The present assessment estimate SSB for 2002 to be below $\mathbf{B}_{\text {lim }}$. Fishing mortality in 2002 is below the average F in the assessment period (Table 13.1.4.4).

A tendency of underestimation of Fbar is observed in recent years (Figure 13.1.4.2). The same tendencies of mean F as in the quality control plot were seen in the retrospective analysis. This confirms that there is no effect of changing methodology for the estimation of effort (section 13.1.3.5). An additional runs was carried out with the XSA to explore the reason for the retrospective pattern observed for mean $F$. In this run the minimum standard error for population estimates derived from each fleet was changed from 0.3 to 0.5 to evaluate the effect of down weighting the influence of the fleet in the southern part of the North Sea in the first half year, as this fleet has far the highest tuning weight for age 3 sandeels. However, this change did only improve the patterns of Fbar in the quality control plot and in the retrospective pattern very little. As far the largest proportion of age 3 sandeels are caught in the southern part of the North Sea during the first half year changing minimum standard error for population estimates seems inappropriate.

### 13.1.5 Recruitment estimates

As no recruitment estimates from surveys are available, recruitment estimates are based exclusively on commercial catch-at-age data. The tuning diagnostics indicate that the 0 -group CPUE is a rather poor predictor of recruitment. Very small landings in the period up to August 2003 confirm however a small 2002 recruitment well below average (section 13.1.4).

The recruitment in 2001 is estimated as the second highest in the time series. The 2002 recruitment is estimated to 0 . Very small landings in the first half year of 2003 (section 13.1.6) confirm a low 2002 recruitment. However, these landings are not used in this years assessment.

### 13.1.6 Short term prognosis

The high natural mortality of sandeel and the few year classes in the fishery make the stock size and catch opportunities largely dependent on the size of the incoming year classes. Although recruits (age 0 ) have appeared in the fishery at the time of the WG the biological samples from the fishery has not been processed to a stage where number of 0 -sandeels caught can be estimated. 0-group CPUE is a poor predictor of recruitment (ICES C.M. 2003/ACFM:2) and traditional deterministic forecasts are therefore not considered appropriate.

Provisional Danish and Norwegian landings statistics for the period until the end of June 2003 show very small landings. Danish and Norwegian landings were at 221.250 tons compared to a mean value of 494.218 t in the same period for the years 1997-2002. In 2003 the 2002-year class contributed with only $38 \%$ in numbers and $15 \%$ in weight in the Norwegian landings in the northern assessment area, underlining an extraordinary poor 2002 year-class. The results from 2003 also suggest that the strong 2001 year-class was mainly exploited at the 0 - and 1 -group stage in the northern assessment area, with 35.5 billion 0 -groups, 10 billion 1 -groups and 0.5 billion 2-groups (estimates from Norwegian landings).

Landings of sandeel are normally composed of large numbers of 1 year olds and have no relationship with SSB. The lack of sandeels observed by the fishery in 2003 can therefore largely be attributed to the very low recruitment of 2002. There are, however, conflicting signs of the size of the remaining 2001 year class as age 2 in 2003 from the Danish and Norwegian fisheries indicating some uncertainty as to their survivorship to age 2.

SSB in 2003 is estimated to 1.374 .357 tons, which is above the average on 1.054 .131 tonnes in the period 1983-2002 (Table 13.1.4.4). The increase in SSB in 2003 is due to a relative high estimate of age 2 sandeels in 2003 from the large 2001 year class, and the knife-edge assumption about age at maturity, i.e. all sandeel are assumed to mature at age- 2 and all sandeels of age- 0 and age- 1 are assumed immature.

### 13.1.7 Comments

The next benchmark assessment for this stock is foreseen in 2004. Terms of tasks for this assessment may include:

- Exploration of the effect on the sandeel assessment of changing natural mortality values with update estimates from the MSVPA.
- Review the procedure for estimating catch at age data used in the sandeel assessment.
- Estimate the uncertainty in catch at age figures using boot strap analyses.
- Evaluate the effect of changing the tuning fleets from being combined Danish and Norwegian fleets to being separate fleets for each of the countries.
- Evaluate the effect of changing area definition of the tuning fleets.
- Exploring the possibilities for carrying out area based assessments based on the newest knowledge about sandeel population structure.
- Evaluate the effect of including sandeel in IIIa in the assessment of sandeel in IV.
- The fishery in the northern area assessment area is usually carried out in a very limited area. Hence, the possibility of growth over-fishing should be evaluated for the benchmark assessment in 2004.
- It should be evaluated if the catch of the first half year of the assessment year could be used in the assessment.


### 13.2 Sandeel in Subarea IIIa

Sandeels in IIIa are considered to include a number of species of Ammodytoidei spp. as for the North Sea. The dominance of Ammodytes marinus in the North Sea is, however, not that pronounced in IIIa, so that traditionally onespecies assessment is not feasible.

The catches in 2002 were 48.879 t , which is higher than the average of 31.598 t for the period 1996-2002.

### 13.3 Sandeel at Shetlands

### 13.3.1 Catch trends

The sandeel population adjacent to the Shetlands has been exploited since the early 1970s. The grounds fished are close inshore and the vessels involved are generally small and local. Seasonal closures were introduced in 1989 following a decline in SSB and recruitment and poor breeding success of sandeel-dependent seabird populations, and the fishery was closed completely from 1991-1994. A restricted fishery has operated since 1995. Landings in 2002 were 543 t , which is far less than the 7000 t TAC.

### 13.3.2 Management in 2001-2003

The fishery re-opened at the start of the 1998 season with a TAC of 7000 t , limited licensing, and seasonal closures. The fishery is closed during the months of June and July to avoid the possibility of the fishery having an impact on the availability of 0 -group sandeels to Shetlands seabird populations during their chick-rearing season.

Management of the Shetland fishery is based on a three-year multi-annual regime which is agreed among the main stakeholders. These include the Scottish Executive, fishing industry representatives, local government authorities, and NGOs. The regime agreed to cover the period 2001-2003 is effectively the same as the one for 1998-2000.

ACFM (October 2001) suggested that the management plan be evaluated before the agreed end date. The evaluation has been carried out and all interest groups have agreed to the continuation of the current measures.

### 13.3.3 Assessment

In the current WG no attempt was made to update the assessment, as this is only done every third year.

### 13.4 Sandeel in Division VIa

### 13.4.1 Catch trends

Landings of sandeel in Division VIa as officially reported to ICES are given in Table 13.4.1.1. In 2002 landings were 706 t , which is an insignificant quantity compared to the long-term average of 11000 t (1981-2001).

### 13.4.2 Assessment

As with the fishery at Shetland, management of this fishery is on a three-yearly basis, with the management measure that effort is being agreed and then kept in place for a three-year period. No age composition samples were obtained from the fishery since 1999, so it is not possible to provide an updated assessment for this stock. However, it can be seen from the catch and effort data (Figure 13.4.1.1) that the catch trends in former years are closely related to the amount of annual effort, and the recent decrease in landings corresponds to a similar reduction in fishing effort. On this basis it seems likely that recent exploitation of this stock has been at a very low level.

Table 13.1.2.1 Sandeel in IV. Official landings (tonnes) reported to ICES
SANDEELS IVa

Country	1996	1997	1998	1999	2000	2001	2002
Denmark	12,367	26,498	23,138	3,388	4,742	1,058	111
Faroe Islands	15	11,221	11,000	6,582			
Norway	61,593	98,386	172,887	44,620	$11,522^{*}$	$4,121^{*}$	$185^{*}$
Sweden	-	-	55	495	55	-	-
UK (E/W/NI)	550	-	-	-	-	-	-
UK (Scotland)	1,311	3,463	5,742	4,195	4,781	970	543
Total	75,836	139,568	212,822	59,280	21,100	6,149	839

"Preliminary.

SANDEELS IVb

Country	1996	1997	1998	1999	2000	2001	2002
Denmark	607,290	731,184	603,491	503,572	533,905	638,657	627,097
Faroe Islands	5,008	-	-	-			
Ireland	-	-	-	389	-	-	
Norway	99,109	252,177	170,737	142,969	$107,493^{*}$	$183,329^{*}$	$175,799^{*}$
Sweden	-	-	8,465	21,920	27,867	47,080	36,842
UK (E/W/NI)	1,130	2,575	-	-	-	-	-
UK (Scotland)	6,688	20,554	18,008	7,280	5,978	2,442	
United Kingdom					-	8	
Total	719,225	$1,006,490$	800,701	676,130	675243	869066	842180
${ }^{*}$ Preliminary.							

SANDEELS IVe

Country	1996	1997	1998	1999	2000	2001	2002
Denmark	1,481	3,163	9,674	10,356	11,993	7,177	4,996
Netherlands	-	-	+	+	1	-	+
UK (E/W/NI)	-	-	-	-	+	-	-
Total	1,481	3,163	9,674	10,356	11,994	7,177	4,996

${ }^{*}$ Preliminary.

Summary table official landings

	1996	1997	1998	1999	2000	2001	2002
Total IV tones	796,542	$1,149,221$	$1,023,197$	745,766	708,337	882,392	848,015
TAC						$1,020,000$	$1,020,000$
By-catch and other landings	1996	1997	1998	1999	2000	2001	2002
	19,598	11,439	18,797	10,628	9,188	20,781	37,315
Area IV tones: official - WG							

Summary table - landing data provided by Working Group members

	1996	1997	1998	1999	2000	2001	2002
Total IV - tonnes	776,944	$1,137,782$	$1,004,400$	735,138	699,149	861,611	810,700

Table 13.1.3.1. Sandeel in IV. Catch numbers at age


Table 13.1.3.2. Sandeel in IV. Catch weight at age (kg)


Table 13.1.3.3. Sandeel in IV. Stock weight at age (kg)

```
 Run title : Sandeel in IV
 At 9/09/2003 19:18
```

Stock weights at age (kg)										
YEAR,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,
AGE										
0 ,	. 0010,	. 0010,	. 0010,	. 0010,	. 0010,	. 0010,	. 0010,	. 0010,	. 0010,	. 0010,
1,	. 0050,	. 0041 ,	. 0042 ,	. 0042 ,	. 0047 ,	. 0044 ,	. 0044 ,	.0043,	. 0043 ,	. 0041 ,
2,	.0129,	.0138,	.0128,	.0131,	. 0128,	. 0148,	.0135,	.0133,	.0132,	.0131,
3,	. 0169,	. 0163,	. 0188,	. 0163,	. 0160 ,	. 0158,	. 0196,	. 0176,	. 0170,	. 0172,
+gp,	. 0248,	. 0210,	. 0221,	.0278,	. 0212,	. 0192,	. 0183,	.0193,	. 0206 ,	.0212,
Stock weights at age (kg)										
YEAR,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,
AGE										
0 ,	. 0010,	. 0010,	. 0010,	. 0010,	. 0010,	. 0010,	. 0010,	. 0010,	. 0010,	. 0010,
1,	. 0045 ,	. 0063 ,	.0071,	. 0068 ,	. 0056 ,	. 0050 ,	. 0056 ,	. 0064 ,	. 0044 ,	. 0061,
2,	. 0127 ,	. 0130,	. 0154 ,	. 0100,	. 0094 ,	. 0085 ,	. 0088 ,	. 0086 ,	. 0085 ,	. 0090 ,
3,	. 0164 ,	. 0146 ,	. 0200,	. 0145,	. 0118,	. 0120,	. 0134,	. 0133,	.0135,	. 0141,
+gp,	.0213,	.0187,	. 0209 ,	.0211,	. 0216,	. 0163,	. 0222,	. 0170,	. 0152 ,	.0238,

Table 13.1.3.4. Sandeel in IV. Tuning fleets

$\begin{aligned} & \text { Sandeel IV } \\ & 104 \end{aligned}$					
North IV 1.half year					
19762002					
110.250 .50					
5.90	5697.20	1130.00	445.00	155.10	
11.30	24306.50	2350.50	516.30	144.00	
4.30	6126.90	2337.80	572.50	143.50	
2.30	2335.20	1327.60	242.20	11.80	
5.40	13394.10	8865.00	1049.60	827.30	
3.90	5505.00	4109.00	904.00	174.00	
2.40	3518.00	2132.00	556.00	85.00	
2.00	5684.00	1215.00	89.00	12.00	
1.80	11692.20	1646.70	152.70	4.50	
1.60	2688.00	3292.00	1002.00	480.00	
4.40	23934.00	2600.00	200.00	0.00	
6.79	26236.00	10855.00	350.00	155.00	
8.41	9855.00	25922.00	1319.00	26.00	
12.43	56661.00	2219.00	3385.00	0.00	
5.94	13101.00	3907.00	578.00	175.00	
7.24	41855.00	2342.00	908.00	318.00	
4.06	9871.00	4056.00	486.00	305.00	
5.03	15768.00	2635.00	1023.00	646.00	
7.69	28490.20	7225.30	5953.50	2155.50	
6.42	36140.00	3360.00	1091.00	145.00	
5.05	11523.60	5384.60	760.80	300.70	
7.15	67037.80	3640.30	5254.30	1205.70	
5.43	6667.10	33215.80	2038.90	410.10	
4.01	2117.70	3490.80	5086.00	1022.70	
6.40	22887.20	8809.90	1419.80	1469.70	
1.74	6433.80	2407.80	472.00	1034.60	
1.89	21718.80	2649.00	401.50	219.20	
South IV 1.half year 19822002					
110.250 .50					
14					
8.90	56545.00	6224.00	3277.00	1939.00	
8.40	2232.00	35029.00	934.00	387.00	
9.10	62517.00	2257.10	13271.70	442.10	
10.00	7790.00	39301.00	2490.00	265.00	
7.20	43629.00	7333.00	1604.00	30.00	
5.19	4351.00	22771.00	1158.00	165.00	
9.89	2349.00	10074.00	17914.00	2769.00	
11.54	44444.00	4525.00	957.00	3368.00	
11.03	20179.00	16670.00	2467.00	745.00	
6.95	20058.00	9224.00	1320.00	454.00	
11.31	60337.00	10021.00	1002.00	621.00	
6.94	3581.00	14659.00	3707.00	1012.00	
4.24	24697.10	2594.20	2654.40	715.30	
7.56	39060.00	6503.00	1531.00	1226.00	
7.05	10193.90	16015.30	6403.40	1169.10	
6.55	52358.70	3647.90	2404.60	683.30	
9.61	9545.80	39552.90	3188.00	2260.30	
10.56	31950.90	6498.70	13149.80	946.70	
8.36	35612.80	5972.90	1825.30	3528.00	
11.20	64084.00	13530.70	1158.00	2389.10	
12.70	84858.00	8666.70	1059.90	250.00	
04					
2.40	6125.60	648.00	83.50	367.80	36.60
4.20	3067.20	2855.70	913.30	141.90	141.10
1.90	7820.20	1001.00	307.30	38.90	1.90
4.80	44202.90	1310.10	433.10	66.20	9.50
2.40	8348.80	1172.70	213.90	19.40	7.50
2.30	9128.00	346.00	94.00	14.00	6.00
0.40	6530.00	65.00	0.00	0.00	0.00
0.60	7911.00	303.00	316.00	19.00	0.00
0.60	0.00	1207.20	120.60	42.60	0.00
0.40	349.00	109.00	239.00	89.00	11.00
2.70	7105.00	7077.00	473.00	0.00	0.00
1.82	455.00	5768.00	198.00	0.00	0.00
2.43	13196.00	1283.00	340.00	119.00	17.00
2.36	3380.00	4038.00	274.00	0.00	0.00
2.26	12107.00	1670.00	342.00	51.00	15.00
2.47	13616.00	866.00	28.00	8.00	3.00
0.71	6797.00	48.00	3.00	0.00	0.00
2.95	26960.00	1004.00	112.00	34.00	22.00
1.73	457.00	828.60	1211.00	396.30	24.70
1.49	4046.00	3374.00	338.00	26.00	2.00
3.25	31817.40	1705.70	1771.50	135.80	55.30
2.18	2431.00	11345.60	633.20	24.90	1.90
3.34	35220.00	10005.30	1837.00	78.80	0.60
3.02	33652.80	693.50	550.70	57.80	0.00
0.30	0.00	467.20	83.90	23.60	46.10
2.10	46385.40	771.20	72.80	134.30	0.00
0.34	0.00	157.00	6.40	0.00	0.00



Table 13.1.4.1 Sandeel in IV. XSA diagnostics
Lowestoft VPA Version 3.1
15/09/2003 18:07
Extended Survivors Analysis
Sandeel in IV

CPUE data from file fleet.dat
Catch data for 20 years. 1983 to 2002. Ages 0 to 4.

Fleet,	First, Last, year, year,	First, Last, age, age	Alpha,	Beta
North IV 1.half year,	1983, 2002,	1, 3,	. 250,	. 500
South IV 1.half year,	1983, 2002,	1, 3,	. 250,	. 500
North IV 2.half year,	1983, 2002,	0, 3,	. 500,	. 750
South IV 2.half year,	1983, 2002,	0, 3,	. 500,	. 750
Time series weights :				

Catchability analysis :
Catchability independent of stock size for all ages
Catchability independent of age for ages >= 2

Terminal population estimation :
Survivor estimates shrunk towards the mean $F$
of the final 5 years or the 2 oldest ages.
S.E. of the mean to which the estimates are shrunk $=1.500$

Minimum standard error for population
estimates derived from each fleet $=\quad .300$
Prior weighting not applied

Tuning converged after 26 iterations
1

Regression weights
, $1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000$

Fishing mortalities										
Age,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
0,	. 056 ,	. 001 ,	. 016,	. 024,	. 012,	. 141,	. 106 ,	. 018,	. 119,	. 000
1,	. 312 ,	. 398,	. 492,	. 332 ,	. 340 ,	. 392,	. 505,	. 781 ,	. 762 ,	. 370
2,	. 454,	. 650,	. 316 ,	. 728 ,	. 388,	. 748 ,	. 624,	1.240,	1.367,	. 615
3 ,	.509,	. 745 ,	. 576,	. 520,	. 867,	. 830,	. 727 ,	. 772 ,	. 721 ,	. 666

1
XSA population numbers (Thousands)

$1993,7.59 \mathrm{E}+08,1.45 \mathrm{E}+08,6.79 \mathrm{E}+07,1.70 \mathrm{E}+07$,
1994 , $8.60 \mathrm{E}+08,3.22 \mathrm{E}+08,3.21 \mathrm{E}+07,2.36 \mathrm{E}+07$, $1995,3.71 \mathrm{E}+08,3.86 \mathrm{E}+08,6.52 \mathrm{E}+07,9.18 \mathrm{E}+06$,
1996 , 2.11E+09, 1.64E+08, 7.11E+07, 2.61E+07,
$1997, \quad 3.41 \mathrm{E}+08,9.24 \mathrm{E}+08,3.55 \mathrm{E}+07,1.88 \mathrm{E}+07$,
1998 , 4.12E+08, 1.51E+08, 1.98E+08, 1.32E+07,
1999 , $5.20 \mathrm{E}+08,1.61 \mathrm{E}+08,3.08 \mathrm{E}+07,5.14 \mathrm{E}+07$,
$2000,5.58 \mathrm{E}+08,2.10 \mathrm{E}+08,2.92 \mathrm{E}+07,9.06 \mathrm{E}+06$,
$2001,1.60 \mathrm{E}+09,2.46 \mathrm{E}+08,2.90 \mathrm{E}+07,4.64 \mathrm{E}+06$,
2002 , $2.23 \mathrm{E}-06,6.37 \mathrm{E}+08,3.46 \mathrm{E}+07,4.06 \mathrm{E}+06$,
Estimated population abundance at 1st Jan 2003
$0.00 \mathrm{E}+00,1.00 \mathrm{E}-06,1.33 \mathrm{E}+08,1.03 \mathrm{E}+07$,
Taper weighted geometric mean of the VPA populations:
, $6.10 \mathrm{E}+08,2.52 \mathrm{E}+08,4.87 \mathrm{E}+07,1.19 \mathrm{E}+07$,

Standard error of the weighted Log(VPA populations) :

$$
4.8086, .6343, \quad .6375, \quad .8117,
$$

1
Log catchability residuals.

Age	,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992
0 , No data for this fl											
1	,	. 64 ,	. 22 ,	. 04 ,	-. 50,	. 02,	-.16,	. 23 ,	. 22 ,	. 45,	-. 63
2	,	-1.52,	. 36,	. 63,	. 07 ,	-. 73 ,	1.23,	-1.00,	-. 04 ,	-. 24 ,	-. 07
	,	-.84,	-2.35,	1.12,	-1.42,	-1.18,	-1.88,	1.00,	-. 35,	-. 13,	. 32
Age	,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
0 , No data for this fleet at this age											
1		. 47,	-.12,	.15,	. 04 ,	-.27,	-.47,	-1.34,	.41,	. 28 ,	. 32
2		-1.03,	. 38 ,	-1.04,	-. 26 ,	-. 43,	.47,	. 33 ,	1.07,	1.13,	. 69
3		-.57,	. 53,	-.11,	-1.29,	. 75,	. 42 ,	. 23,	. 24,	1.10,	. 97

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age,	1,	2,	3
Mean Log q,	-10.6581,	-10.3523,	-10.3523,
S.E (Log q),	.4658,	.7845,	1.0496,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	1.08,	-.407,	10.00,	.62,	20,	.51,
2,	1.54,	-1.260,	6.39,	.23,	20,	1.19,
3,	2.24,	-2.048,	3.36,	.13,	20,	2.15,

1

Fleet : South IV 1.half year
Age , 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992 0 , No data for this fleet at this age
$1,-1.39,-61,-.39,-.05,-1.16,-1.42, \quad .40, \quad .38, \quad .10, \quad .50$ , $17,-1.18,1.04, .38, .05,-.11,-.45, .55, .94,-.43$ $3,-.16, ~ .26,-.03,-.07, .06, .33,-.43, .25, .05,-.22$

Age , 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
0, No data for this fleet at this age $-.35, \quad .75, .92,1.05, .12$ $2, \quad .13,-.28,-.78, \quad .26,-.58,-.16,-.25, \quad .18, \quad .76, \quad-.26$ $3, .16, .08,-.17, .27,-.18, .06,-.02,-.01,-.10,-.20$

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age,	1,	2,	3
Mean Log q,	-10.9987,	-10.1183,	-10.1183,
S.E (Log q),	.7490,	.5666,	.1952,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	.68,	1.838,	13.67,	.65,	20,	.48,
2,	.95,	.273,	10.53,	.59,	20,	.55,
3,	.87,	3.242,	10.91,	.97,	20,	.14,
3,	-10.12,					

Fleet : North IV 2.half year

Age	,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992
0	,	. 91 ,	99.99,	-2.26,	-.31,	-1.65,	. 23 ,	-.27,	. 31 ,	.16,	1.63
1	,	. 26 ,	.47,	-.41,	.15,	1.21,	. 42,	. 78 ,	.59,	-.89,	-2.78
2	,	. 23 ,	. 67 ,	1.56,	. 80,	-1.54,	. 29 ,	.47,	. 55,	-1.55,	$-3.65$
3		. 72,	-. 62 ,	2.12,	99.99,	99.99,	-1.09,	99.99,	.17,	-1.88,	99.99
Age	,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
0		. 78 ,	-2.93,	. 25 ,	-. 20,	-. 56,	1.58,	1.38,	99.99,	. 95,	99.99
1		-. 36,	-. 76 ,	.67,	-.03,	. 54,	1.83,	-. 73 ,	1.08,	-.53,	-1.49
2		-1.77,	2.01,	-.03,	1.01,	.87,	. 01 ,	.69,	1.55,	-. 45,	-1.70
3		-1.55,	1.26,	-.48,	-.68,	-1.44,	-.38,	-2.01,	1.16,	1.60,	99.99

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	0,	1,	2,	3
Mean Log q,	-11.5687,	-11.6686,	-11.9662,	-11.9662,
S.E (Log q),	1.2886,	1.0418,	1.4003,	1.3362,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

0,	1.31,	-.443,	8.89,	.12,	17,	1.73,
1,	1.41,	-.759,	8.54,	.16,	20,	1.48,
2,	1.52,	-.671,	8.97,	.08,	20,	2.16,
3,	4.48,	-1.943,	-2.92,	.02,	15,	5.40,
3,						

1

Fleet : South IV 2.half year

Age	,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992
0		1.85,	99.99,	1.05,	-2.12,	-.63,	99.99,	-5.19,	. 41,	1.79,	-1.46
1		-1.52,	. 78,	-.11,	-.12,	-. 30,	99.99,	. 74 ,	1.21,	1.10,	12
2	,	. 41,	-1.82,	1.14,	-. 12,	. 63,	-.21,	. 38 ,	1.19,	-.09,	-. 76
3	,	2.01,	-.22,	2.33,	. 67 ,	. 07 ,	1.65,	. 68 ,	. 81,	-.29,	. 92
Age	,	1993,	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002
0		. 20 ,	99.99,	99.99,	-.87,	-1.61,	. 75 ,	1.01,	2.16,	2.66,	99.99
1		. 24 ,	. 97,	. 30 ,	-.15,	-.05,	-. 52,	-1.43,	1.01,	-1.56,	-. 70
2		. 47 ,	. 36 ,	1.31,	1.10,	-. 64,	. 19,	-1.48,	. 75 ,	-3.57,	. 76
3		. 61,	. 23 ,	1.22,	-.06,	. 01,	. 40 ,	1.24,	1.26,	99.99,	99.99

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age,	0,	1,	2,	3
Mean Log q,	-13.4544,	-11.2203,	-11.0589,	-11.0589,
S.E(Log q),	2.0461,	.8699,	1.1960,	1.0836,

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

0,	.40,	1.949,	17.57,	.45,	15,	.74,	-13.45,
1,	.79,	.780,	12.92,	.45,	19,	.70,	-11.22,
2,	.59,	1.725,	13.81,	.49,	20,	.67,	-11.06,
3,	1.14,	-.493,	9.48,	.45,	18,	.88,	-10.31,

1

Terminal year survivor and $F$ summaries :
Age 0 Catchability constant w.r.t. time and dependent on age
Year class $=2002$

Fleet,	Estimated, Survivors,	Int, s.e,	Ext, s.e,	Var,   Ratio,	N,	Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
North IV 1.half year,	1.,	. 000,	. 000,	. 00,	0 ,	. 000 ,	. 000
South IV 1.half year,	1.	. 000,	. 000 ,	. 00 ,	0 ,	. 000,	. 000
North IV 2.half year,	1.	. 000,	. 000 ,	. 00 ,	0,	. 000 ,	. 000
South IV 2.half year,	1.,	. 000,	. 000 ,	. 00 ,	0 ,	. 000 ,	. 000
F shrinkage mean	0.	1.50				. 000,	. 000

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$0 .$,	.00,	.00,	0,	.000,	.000

Age 1 Catchability constant w.r.t. time and dependent on age
Year class $=2001$

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	Ext, s.e,	Var,   Ratio,		Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
North IV 1.half year,	182085500.,	. 477,	. 000,	. 00 ,	1,	. 459,	282
South IV 1.half year,	148845600.,	. 767 ,	. 000 ,	. 00 ,	1,	.177,	335
North IV 2.half year,	$72741920 .$,	. 833,	1.178,	1.41,	2,	. 145,	. 596
South IV 2.half year,	103876500.,	. 823,	1.155,	1.40,	2,	. 152 ,	. 452
F shrinkage mean	71297700.,	1.50,				. 067 ,	. 605

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$132656600 .$,	.33,	.30,	7,	.919,	.370

1
Age 2 Catchability constant w.r.t. time and dependent on age

Year class $=2000$

Fleet,	Estimated,	Int,	Ext,	Var,	N,	Scaled,	Estimated
,	Survivors,	s.e,	s.e,	Ratio,		Weights,	F
North IV 1.half year,	16180410.,	. 440 ,	. 204 ,	. 46,	2,	. 345 ,	. 432
South IV 1.half year,	10412700.,	. 486,	. 538,	1.11,	2,	. 360 ,	. 609
North IV 2.half year,	$3197237 .$,	. 919,	. 584,	. 64,	2,	. 086 ,	1.317
South IV 2.half year,	8970833.,	. 733 ,	. 915,	1.25,	3,	. 130 ,	. 680
F shrinkage mean	5911917.,	1.50,				. 079,	. 907

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$10274490 .$,	.29,	.25,	10,	.883,	.615



Table 13.1.4.2. Sandeel in IV. Fishing mortality at age
Run title: Sandeel in IV
At 15/09/2003 18:07
Terminal Fs derived using XSA (With F shrinkage)
Fishing mortality $(F)$ at age

YEAR	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
AGE										
0	0.0276	0	0.0125	0.0171	0.005	0.0262	0.0154	0.0277	0.0467	0.0315
1	0.1575	0.4693	0.2181	0.2528	0.2969	0.2767	0.878	0.6025	0.5909	0.4699
2	0.5166	0.2284	1.6076	0.7211	0.4433	1.5526	0.5405	1.1813	1.0997	0.4882
3	0.5525	0.5793	1.0805	0.3899	0.3662	0.7724	1.6716	0.8579	0.6005	0.6992
+gp	0.5525	0.5793	1.0805	0.3899	0.3662	0.7724	1.6716	0.8579	0.6005	0.6992
FBAR 1-2	0.33705	0.34885	0.91285	0.48695	0.3701	0.91465	0.70925	0.8919	0.8453	0.47905


YEAR	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
AGE										
	0	0.0562	0.0008	0.0164	0.0243	0.0116	0.1413	0.1057	0.018	0.1187
	1	0.3121	0.3983	0.492	0.3321	0.3397	0.3922	0.5053	0.7807	0.7619
	2	0.4545	0.6503	0.3163	0.7284	0.3884	0.7481	0.6243	1.2399	1.3675
+gp	0.5089	0.7453	0.5762	0.5204	0.8668	0.8301	0.7269	0.7717	0.7212	0.6657
FBAR 1-2	0.5089	0.3833	0.5243	0.5762	0.5204	0.8668	0.8301	0.7269	0.7717	0.7212

Table 13.1.4.3. Sandeel in IV. Stock numbers at age (millions)
Run title : Sandeel in IV
At 15/09/2003 18:07
Terminal Fs derived using XSA (With F shrinkage)


Table 13.1.4.4 Sandeel in IV. Assessment summary
Run title : Sandeel in IV
At 15/09/2003 18:07

Table 16 Summary (without SOP correction)
Terminal Fs derived using XSA (With F shrinkage)

	RECRUITS   Year	Tge 0	TOTALBIO	SSB	Landings	YIELD/SSB
1983	944244928	3287694	1811547	530640	0.2929	Mean F   Ages 1-2
1984	258324672	3058503	1107940	750040	0.6770	0.3489
1985	1470523264	3218631	1261763	707105	0.5604	0.9129
1986	633458432	3874114	513159	685950	1.3367	0.4870
1987	227399264	3652744	2110316	791050	0.3748	0.3701
1988	760517248	3118729	1910853	1007304	0.5271	0.9147
1989	331112704	2348179	552408	826835	1.4968	0.7093
1990	693243712	2043341	725955	584912	0.8057	0.8919
1991	840513728	2624390	484097	898959	1.8570	0.8453
1992	333929312	2592706	788267	820140	1.0404	0.4791
1993	758748288	2676268	1263228	576932	0.4567	0.3833
1994	860121728	3777208	899525	770747	0.8568	0.5243
1995	371326848	4407518	1282790	915043	0.7133	0.4042
1996	2105871488	4474545	1260757	776126	0.6156	0.5303
1997	340877152	6193049	652858	1114044	1.7064	0.3641
1998	411668736	3121493	1951291	1000375	0.5127	0.5702
1999	520393024	2498615	1080464	718668	0.6651	0.5648
2000	558328576	2493280	588499	692498	1.1767	1.0103
2001	1597382656	3123648	439599	858619	1.9532	1.0647
2002	0	4311107	397303	806921	2.0310	0.4925
2003			$1374357^{*}$			
Average	700899277	3344788	1054131	791645	0.9828	0.6102
Units	(Thousands)	(Tonnes)	(Tonnes)	(Tonnes)		

*Calculated using the 2002 weight in the stock

Figure 13.4.1.1 Sandeel in VIa, Trends in landings (tonnes) and effort (days absent)

Country	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
Denmark	-	-	-	-	-	-	-	-	-	-
UK, Scotland	5972	10786	13051	14166	18586	24469	14479	24465	18785	16515
Total	5972	10786	13051	14166	18586	24469	14479	24465	18785	16515
Total effort	-	-	447	446	475	530	290	455	315	281
Country	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Denmark	-	-	80	-	-	-	-	-	-	-
UK, Scotland	8532	4935	6156	10627	7111	13257	12679	5320	2627	-
United Kingdom										5771
Total	8532	4935	6236	10627	7111	13257	12679	5320	2627	5771
Total effort	116	83	134	162	131	203	203	60	17	
Country	2001	2002								
Denmark										
UK, Scotland										
United Kingdom	295	706								
Total	295	706								
Total effort	-	-								

Figure 13.1.4.1. Sandeel in IV. Stock summary





Figure 13.1.4.2. Sandeel in IV. Comparison of historical performance of the assessments




### 14.1 Expired regulations and proposals

### 14.1.1 COMMISSION REGULATION (EC) No 259/2001 establishing measures for the recovery of the

 stock of cod in the North Sea (ICES subarea IV) and associated conditions for the control of activities of fishing vessels of 7 February 2001
### 14.1.1.1 Description

It must be noted that this emergency measure enforced by the COM is not considered to be a part of the long term cod recovery plan but is mentioned here as an accompanying measure. The area closed from 14 February to 30 April 2001 was defined on the basis of the ICES statistical rectangles which represented the top $80 \%$ landings of cod from the first 6 months of 1999 and was intended to protect mature fish while they spawned. The closed area and the resulting fishing effort distributions before, during and after the closure as well cumulative landings during the first months of 2001 are illustrated in the report of the expert group meeting in Brussels, 28 April - 7 May 2003 (EC 2003).

### 14.1.1.2 Evaluation

The measure was evaluated during an expert meeting in Brussels, 28 April - 7 May 2003 and WGNSSK endorses the results elaborated during that meeting. Details can be taken from its report while main findings were that

- from the quarterly catch at age analysis it is concluded that the apparent reduction in catch rates of mature fish in the first quarter 2001 is part of a general shift in exploitation pattern and can not be solely attributed to the closure.
- the closure had an insignificant effect upon the spawning potential for cod in 2001. The redistribution of the fishery, especially along the edges of the box coupled to the increases in proportional landings from January and February appear to have been able to negate the potential benefits of the box. The conclusion from this study is therefore that the box would have to be extended in both space and time to be more effective.

From more detailed simulations about the application of closed areas as a management tool the expert group concluded that

- Closed areas can be used to beneficial effects in the management of fish stocks.
- If effort is removed from the fishery at the time of closure (and not reallocated) the effects on the reduction in fishing mortality are generally of significantly greater magnitude.
- Redistributed effort can lead to no beneficial and sometimes significant negative effects on unprotected age groups and species. Discussions with fishers with regard to the potential changes in effort distribution would be required before a full modelling evaluation of any box can be carried out.
- Cod spawn throughout much of the North Sea but the adult and egg data do indicate a number of spawning aggregations.
- However, the limited data does suggest a contraction in significant spawning areas, beginning with the loss of sites at Great Fisher bank and Aberdeen bank by the 1980s, and more recently further coastal spawning sites around Scotland and the Forties area.


### 14.1.2 Proposal of a COUNCIL REGULATION establishing measures for the recovery of cod and hake stocks COM (2001) 724 final of 11 December 2001

This proposal is no longer relevant as the proposal for the cod recovery plan has been revised on 6 May 2003 (COM (2003) 237 final) and separated from the proposal of the northern hake recovery plan published on 27 June 2003 (COM(2003) 374 final).

### 14.2.1 COMMISSION REGULATION (EC) No 2056/2001 establishing additional technical measures for the recovery of the stocks of cod in the North Sea and to the west of Scotland of 19 October 2001 and unilateral measures

### 14.2.1.1 Description

Table 14.2.1 provides an overview about changes in the technical gear properties according to new regulations since 2000. Apart from the technical measures set by the Commission additional unilateral measures are in force in the UK. In August and December 2000 Scottish Statutory Instruments (SI) 227 and 405 introduced additional measures on square mesh panels and multiple rigs (equivalent Westminster Statutory Instruments 649 and 650 followed in April 2001). These also implemented, in March 2001, a further restriction on twine size in both whitefish and Nephrops gears. In August 2001, Scottish SI 250 banned lifting bags and limited extension length for whitefish gear.

### 14.2.1.2 Evaluation

There are analyses in the experts group report presented which are endorsed by the WGNSSK. The experts demonstrated only the potential effects of the technical regulations as their actual uptake is unknown. Based on newly estimated selection parameters of the amended gear configurations and assuming full compliance with the regulations the expert group concluded that

- For whiting, the effects of the gear regulations alone, result in immediate and short term (ca 2-3 years) losses in consumption landings that do not revert to gains in the medium term (ca 10 years). Discards are substantially reduced over both the short and medium terms.
- For haddock there are also immediate losses, but these revert to small gains within the short term, and to greater gains over the medium term. As with whiting, discards are substantially reduced over both the short and medium terms.
- For cod there is little noticeable effect on consumption landings or spawning biomass if discards are excluded from the analysis. Using a series of "derived" discard data produces a moderate benefit to the medium term consumption yield and spawning biomass.
- For cod, a substantially greater benefit accrues to the spawning biomass in the medium term if fishing mortality is reduced in addition to the effects of the gear measures. This also applies to a lesser extent for haddock and whiting. Similarly, there are substantially greater gains in the medium term consumption landings of cod in these circumstances, whilst those for haddock are little affected by the additional reduction in mortality. Losses to the consumption landings of whiting are greater in these circumstances.

The conclusions of the experts group were also reviewed during a second expert meeting with a Norwegian delegation during 30 June- 1 July 2003 in Bergen. The results of the first meeting were generally endorese and are also in line with agreements and findings elaborated during a series of meetings between delegations from the European Community and Norway during 2001 (WGNSSK 2001).

The WGNSSK estimated an increase of mean weight at age 1 and 2 in the catch for cod in 2002. It was concluded that this increase could be due to improved size selection but also to high grading or sampling error (Figure 14.1).

The most recent cod assessment also revealed significant changes in exploitation patterns. Fishing mortalities of ages 2, 3 and 4 decreased since 2001 (Figure 14.2). The WGNSSK concludes that the apparent changes are likely to be an effect of directed fishing on the 1996 year class at ages 1 to 4 . Is could be an effect improved selectivity due to technical gear changes, of the low landings in 2001 and 2002 or high grading. The working group also emphasise that the final year estimates in the XSA are uncertain.

### 14.2.2 COUNCIL REGULATION (EC) No 2341/2002 of 20 December 2002

### 14.2.2.1 Description

The quota regulation for 2003 includes interim measures that could be interpreted as accompanying measures of the cod recovery plan, i.e. multi fisheries TAC settings for the demersal fishery in the North Sea and Skagerrak are considered for the first time. This can be seen when comparing the actual TAC changes from 2002 to 2003 leading to much lower fishing possibilities for haddock and whiting than those that would be expected when adopting ACFM single species advice. Haddock and whiting fisheries are closely associated with cod fisheries and their TAC reductions amount to about $50 \%$. However, ACFM advice on a closure for those fisheries was not adopted by the management. It must also be noted, that the TACs of the stocks of saithe, plaice, sole and nephrops, which are also associated with the cod fishery, remained relatively unaffected by the cod crises.

As a new and interim element, the quota regulation includes a detailed effort regulation described in its Annex XVII in terms of days at sea by area and by each licensed vessel, classified by the gear type exerted. The new interim effort regulation for 2003 is no longer relevant as it was updated in Council Regulation 671/2003 (see 14.2.3).

### 14.2.2.2 Evaluation

The simultaneous TAC reductions for the closely associated fisheries on cod, haddock and whiting do not necessarily translate into effort reductions. Different assessment methods (including survey only) reveal decreased fishing mortalities. The working group considers that this decrease is mainly driven by low landings in 2001 and 2002. Prediction scenarios applying low fishing mortalities in 2003 and later indicate that the stock has still the potential to recover.

### 14.2.3 COUNCIL REGULATION (EC) No 671/2003 of 10 April 2003 amending Council Regulation (EC) No 2341/2002 fixing for 2003 the fishing opportunities and associated conditions for certain fish stocks and groups of fish stocks, applicable in Community waters and, for Community vessels, in waters where catch limitations are required

### 14.2.3.1 Description

The revised regulations mainly consider amendments in the area definition, for which the effort reductions apply. 10 previously included rectangles are no longer considered part of the regulatory area, namely $52 \mathrm{~F} 3,52 \mathrm{~F} 4,51 \mathrm{~F} 3,51 \mathrm{~F} 4$, $50 \mathrm{~F} 3,50 \mathrm{~F} 4,48 \mathrm{~F} 3,48 \mathrm{~F} 4,47 \mathrm{~F} 4,47 \mathrm{~F} 5$ and 2 additional foot notes describe the way of cutting some rectangles. The effort regulatory area is shown in Figure 14.3.

The effort regulation defines days at sea by area and month for each licensed vessel, classified by the gear type exerted. According to the distinguished gear types, the six classes of fisheries are

4a) demersal trawls, seines or similar towed gears of mesh size equal to or greater than 100 mm except beam trawls; refers to the towed gear mixed demersal fishery for cod, haddock, whiting, saithe and plaice as main targets.

4b) beam trawls of mesh size equal to or greater than 80 mm ; refers to towed gear mixed fishery for plaice and sole as main targets.

4c) static demersal nets including gill nets, trammel nets and tangle nets; refers to mixed static gear fishery for cod, plaice and sole as main targets.

4d) demersal longlines; refers to mixed fishery mainly for cod.
4e) demersal trawls, seines or similar towed gears of mesh size between 70 and 99 mm except beam trawls; refers to mixed fishery for nephrops, cod, haddock, whiting, plaice and sole as main targets.

4f) demersal trawls, seines or similar towed gears of mesh size between 16 mm and 31 mm except beam trawls; industrial fisheries for sandeel, Norway pout and sprat as main targets.

### 14.2.3.2 Evaluation

Paragraphs regulating the possible allocation of additional days at sea through permission by the EC in relation of steaming time or progress made in implementing decommissioning programmes and the allowances of transferring days at sea between months and vessels will complicate the effort control and any analyses of the potential effects on effort changes. Paragraph 7 defines any trip of a vessel to only one gear category (one net rule).

The working group is not aware of any suitable data base from which information about days at sea by area, month, vessel and gear type could be obtained. These data are required for the analyses of the effect of the effort restrictions on the exploitation rates. Several recent approaches to collate these aggregated effort data through scientific frame works (ICES SGDDF, STECF, expert meeting) are still ongoing. The WG express concerns about the quality of the fishing effort data included in these data bases. Effort was given by fleet, using various measures, and was not standardised (e.g. to KW*hours). Scottish effort data are based on the voluntary effort information from logbooks and might be biased. Other nations have derived effort from days absent from harbour and allocated to rectangles according to catch distributions from logbook data. Thus, the working group is again not in the position to estimate the effect of the effort restrictions on exploitation rates.

### 14.2.4 Proposal of a COUNCIL REGULATION establishing measures for the recovery of cod stocks COM (2003) 237 final of 6 May 2003

### 14.2.4.1 Description

The proposed regulations define multi-annual TAC setting rules (harvest control rules) for 4 cod stocks, including the cod stock in North Sea, the Skagerrak and Eastern Channel (3a47d). TAC settings are subject to the status of the spawning stock (SSB).

In the case that the stock is below the recommended level ( 150000 t ) but above the minimum level ( 70000 t ), the stock is subject to the recovery plan and will not been harvested at higher rates than $\mathrm{F}=0.65$. Furthermore, TAC should be set to achieve an increase of the SSB by $30 \%$ at the start of the following year. TAC changes should not be set in excess of $\pm 15 \%$ after the first year of its implementation.

In the case that the SSB is below the minimum level, the TAC with a maximum annual variation of $\pm 15 \%$ should be set at a level to allow for an increase in the SSB by $30 \%$ leading to a SSB in excess of the minimum level at the start of the following year. If this goal is not achieved by a maximum annual reduction in the TAC of $-15 \%$, the TAC reduction should be set in the order to achieve the annual increase in SSB of $30 \%$.

The second main issue of the proposed cod recovery plan considers a calculation of maximum permissible fishing effort in terms of kilowatt days. The regulation of the effort is by member state and aimed at being proportional to the required reduction in fishing mortality overall to avoid discarding. It requests 2 data sets listing all fishing vessels that have landed cod, and secondly, that have landed sandeel or Norway pout but no cod in a reference period 2000-2002 and thereafter, to allow a calculation of kilowatt days at sea (product) by member states. The allocated kilowatt days should be managed by the member states and not be transferred between areas or vessels included in lists 1 or 2 .

The reduction of effort by member states is proportional to required reduction in fishing mortality and to the cod landed by member state and will be applied only to its vessels that are authorised to land cod (list 1). Vessels that are not authorised to land cod but sandeel or Norway pout have to decrease their effort by $10 \%$ in general.

The stock should be subject to the recovery plan until it has reached $\mathbf{B}_{\mathrm{pa}}$ for 2 consecutive years.

### 14.2.4.2 Evaluation

The proposed rules to derive a TAC for cod stocks under the recovery plan have been evaluated by STECF, during an EU-Norway expert meeting and ACFM in 2002.

The results produced at the three meetings indicate that

- none of the cod stocks are likely to recover within a five-year period for any of the scenarios evaluated.
- the simulations presented assume complete compliance with the management measures implemented to obtain the required reductions in fishing mortality and thereby the recovery of the stocks.
- in general, it should be remembered that predictions and simulations of this kind have had a tendency to be overly optimistic (bias and error in the assessments).

The working group is not in the position to evaluate the proposed regulations of maximum permissible fishing effort in kilowatt days. Proposed dead lines for the required effort data by vessel for an analysis are set as 15 November 2003 for the years 2000-2002 and 30 July for future years, respectively. However, a reduction of effort proportional to the reduction in fishing mortality in accordance with the required TAC change could enhance the achievement of the aimed SSB level at the start of the following year through expected discard reductions in the mixed fisheries.

The multi species working group simulated the cod recovery plan assuming single and multi species interactions. In cases where multi species (biological) interactions are taken into account, recovery periods will last only about one year longer. Again, it should be remembered that such medium term simulations may be overly optimistic.

Table 14.2.1 Changes in Technical Measures relating to gear design in force in 2001(Council Regulation (EC) No 850/98), and in 2002 (Council Regulation (EC) No 2056/2001) in the North Sea (ICES Sub-area IV and IIIa). Technical Measures for which no changes occurred are not enclosed. This includes ICES Division VIId but no changes in gear related technical measures took place in the period considered.

	Year	Mesh size (mm)	Twine thickness $(\mathrm{mm})$	Cod-end: max number of meshes round	Square mesh panel	Large mesh panel	Others
Demersal towed gears - whitefish	2001	100	$8 \mathrm{~S} / 2 \times 6 \mathrm{D}$	100	No	No	
	2002	110 (2002 only)	$8 \mathrm{~S} / 2 \times 5 \mathrm{D}$	100	YES - 90mm	No	
		$120$	$8 \mathrm{~S} / 2 \times 5 \mathrm{D}$	$100$	No	No	
Demersal towed gears - saithe	2001	100	$8 \mathrm{~S} / 2 \times 6 \mathrm{D}$	100	No	No	
	2002	110	$8 \mathrm{~S} / 2 \times 5 \mathrm{D}$	100	No	No	
Demersal towedgears - Nephrops gears - Nephrops	2001	70	$8 \mathrm{~S} / 2 \times 6 \mathrm{D}$	No	Yes - 80mm	No	
	2002	$70 \text { (2002 only) }$	$8 \mathrm{~S} / 2 \mathrm{x} 5 \mathrm{D}$	$120$	Yes - 80mm	Yes - 140 mm	$\begin{aligned} & \text { Square mesh } \\ & \text { cod-end } \end{aligned}$
		80	$8 \mathrm{~S} / 2 \times 5 \mathrm{D}$	120	Yes -80 mm	Yes -140 mm	
		$100$	$8 \mathrm{~S} / 2 \times 5 \mathrm{D}$	100	$\text { Yes }-90 \mathrm{~mm}$	No	
$\begin{aligned} & \text { Beam trawl - Sth } \\ & 56^{\circ} \mathrm{N}-5^{\circ} \mathrm{E} \end{aligned}$	2001	80	$8 \mathrm{~S} / 2 \mathrm{x} 6 \mathrm{D}$	N/A	No	No	
	2002	80	$8 \mathrm{~S} / 2 \mathrm{x} 5 \mathrm{D}$	N/A	No	Yes - 180 mm	
$\begin{aligned} & \text { Beam trawl - Nth } \\ & 56^{\circ} \mathrm{N}-5^{\circ} \mathrm{E} \text { (sole) } \end{aligned}$	2001	100	$8 \mathrm{~S} / 2 \times 6 \mathrm{D}$	N/A	No	No	
	2002	120	$8 \mathrm{~S} / 2 \times 5 \mathrm{D}$	N/A	No	Yes - 180 mm	
Fixed gears	2001	120	N/A				
	2002	140	N/A				



Figure 14.1 Trends in weight at ages 2 and 3 in the catch of cod in the North Sea, Skagerrak and Eastern Channel.


Figure 14.2 Trends in fishing mortality at ages 1 to 6 as derived from the final XSA for cod in the North Sea, Skagerrak and Eastern Channel.


Figure 14.3 Definitions of the effort regulated areas 2a-c in the North Sea, Skagerrak and West of Scotland as defined in COUNCIL REGULATION (EC) No 671/2003 of 10 April 2003.

### 15.1 Background

In 1992, assessment working groups were re-organised on to an area-basis in order to facilitate the provision of advice on an area and fishery basis. Although some progress was made (ICES; 1992a,b), the ultimate goal of providing fishery-based advice has not been achieved. In 2001, the European Commission sent to ICES a request for provision of advice in a fisheries context rather than on an individual stock basis (EC, 2001). The Commission suggested that ICES should prepare plans for developing a database, which would collate catch at age data disaggregated by fleet and by area.

At the Fisheries Council of December 2001, the Council and the Commission emphasized the need to further develop the scientific basis for management that takes appropriate account of the mixed nature of the fisheries, and stressed the importance that objective information about the consequences of fisheries interactions be available when TACs are being considered for the year 2003. This issue resulted in the Commission sending to ICES a more explicit request regarding scientific advice on mixed fisheries (EC, 2002). In the short term, ICES should, (i) propose appropriate definitions of operational fishing units and, (ii) provide the STECF (SGRST sub-group) with catch data, disaggregated by species, fleet and ICES rectangle. For the longer term, EC(2002) recommended that ICES should establish a working group to address a number of questions, including fleet definitions, age-structured data assembly, development of multi-fleet and multi-species short term projection software, collation of datasets including partial and total fishing mortalities at age.

In 2002, the WGNSSK responded to the request of $\mathrm{EC}(2002)$ by providing fleet-disaggregated landings data over recent years for the North Sea. The SGRST/STECF used these to calculate fishery-based forecasts.

In 2003, ICES initiated the Study Group for the Development of Fishery-based Forecasts (ICES, 2003). ICES(2003), (i) investigated the definition of appropriate fishing units, (ii) established a framework for collating catch and effort disaggregated by fishing unit, ICES rectangle and age group and, (iii) evaluated software developed to calculate mixed-fisheries forecasts.

WGNSSK03 has given a high priority to the development of mixed-fisheries forecasts applicable to the North Sea demersal fisheries. The progress made by the WG are reported in this section.

### 15.2 Data

### 15.2.1 Description of the data available

The group produced two different databases. These databases were used to derive the inputs to the MTAC model (section 1.4.6).

The first database provides landings or catch data disaggregated by country, fishery, ICES rectangle and species. This database covers the period 2000-2002, and ICES divisions IV, VIId and IIIaN (Skagerrak). A fishery was defined as a combination of engine power category, gear and mesh size. The species investigated are cod, whiting, haddock, saithe, sole, plaice and Nephrops. In order to simplify the case study being investigated, pelagic and industrial species (e.g. herring, sandeel, Norway pout), as well as the fisheries exploiting them, were excluded from the database. The selection criterion was mesh size, and only fisheries with a mesh size exceeding 70 mm were retained in the database. The coverage of information was uneven across countries. Thus, not all countries provided landings disaggregated by ICES rectangle and not all countries provided Nephrops landings. Fisheries with low catches of any of the species under investigation (e.g. dredges or pots) were removed. In the end, 77 fisheries were included in the database. Table 15.2.1.1 shows the international catch by fishery and by species in the database for 2002. Figures 15.2.1.1 and 15.2.1.2 show the same information by country and by gear respectively.

The second database provides catch numbers at age and catch weight at age by country and by species. Data have been calculated on the basis of the age-disaggregated information from countries that provided it, and then raised to the total international catches. No discard data were available for cod, saithe, plaice and sole, so catches were
equated to landings for these species. International discards of haddock and whiting were calculated based on the Scottish discards monitoring programme. Landings/Catch at age data were provided by country and not by fishery. Again here, the coverage of information was uneven across countries. Thus, only one country provided discards data, and not all countries provided landings at age data. Figure 15.2.1.3 shows the derived international catch at age data for 2002.

### 15.2.2 Inputs to modeling

As explained in section 1.4.6, while the group is aware that several on-going approaches to mixed-fisheries forecasts are being developed (WD4, WD15), it decided to make in-depth exploratory runs of the MTAC model. The data inputs to MTAC include catch at age by fishery providing such data, and total catch for the other fisheries. As stated in section 15.2.1, catch at age data were only available by country. Therefore, the same exploitation pattern was applied as a first proxy to all the fisheries belonging to the same country. This assumption has been debated in section 15.4.

Other model requirements include the usual VPA input data and outputs, including stock numbers at age and Fsq. However, the most up-to-date stock numbers at age for cod, haddock, whiting, saithe, plaice and sole were only made available late during the WG, so they could not be used in the final runs of MTAC. The 2003 stock predictions from WGNSSK02 were used instead as a first proxy. Stock numbers at age of Nephrops could not be derived in a simple way, as several Nephrops functional units are defined and assessed in the North Sea, and these could not be used as inputs to MTAC.

### 15.3 Model explorations

### 15.3.1 Sensitivity analyses

A revised version of MTAC (model section) and a sensitivity test is presented in section 1.4.6 and in WD04. In this section, MTAC will be further tested and the effects of the different options that can be chosen in MTAC will be illustrated. For this exercise a data set was chosen that is suitable for illustration only. It is based on one of the datasets used at the SGRST/STECF meeting (STECF, 2002), namely the country based catch at age data of 19992001. For this exercise two countries with minor catches are left out so that we arrive at 9 fleets, and the country names are replaced by the first nine letters of the alphabet respectively. The scenario that is investigated is the one that was proposed by the Commission at the SGRST meeting (Tab. 15.3.1.1).

The model contains three options for weighting the species-specific fleet effort reduction.

- $\mathrm{p}=0$ : Equal for all fleets.
- $\mathrm{p}=1$ : In proportion to the catch (in weight) of the species within the catch of the fleet.
- $\mathrm{p}=2$ : In proportion to the catch (in weight) of the species by the fleet of the total catch of that species.

The model contains an option for modifying the decision weights through multiplication by a fleet target factor q (see description of MTAC in WD04), which can be switched off ( $\mathrm{q}=0$ ) and on ( $\mathrm{q}=1$ ). The fleet target factor describes the relative importance of a given species for a given fishery. When $q=1$, greater effort reductions will be applied to those fleets which are targeting the species which are of greater conservation concern (i.e. which have a high decision weight).

All combinations of options p and q are tested (six combinations). The influence of the decision weight on cod (priority given to cod) is explored by running MTAC with all six combinations of options while the decision weights vary (from 2 for cod vs 1 for all other species to 40 for cod vs 1 for all other species) with the scenario above.

The influence of the value of the target F multiplier on cod is explored by running MTAC with all six options while the target F multiplier for cod varies from 0.1 to 1 (all other F multiplier as in the scenario above) with decision weights of 40 for cod vs 1 for all other species.

Figures 15.3.1.1-15.3.1.4 below show respectively the catch weight by species, the catch weight by species and fleet, the catch composition of the fleets, and the allocation of species catches to the fleets (average of 1999-2001). From figures 15.3.1.3 and 15.3.1.4, the following points can be noted:

- Fleet A takes the largest proportion of the cod catch.
- Fleets E and H take the smallest proportion of the cod catch; however, the two fleets contrast in that their respective cod catches represent a higher proportion of the catch of fleet H than of the catch of fleet E .
- Fleets D and I are quite similar with respect to their share in the cod catch and the proportion of cod in their catch, but are highly contrasting in that fleet D takes no saithe whereas fleet I catches mainly saithe.

The results of the twelve runs are given in figures 15.3.1.5-15.3.1.16.

Run 1 is set so the fleet-specific effort reduction is consistent across fleets ( $p=0$ ), while the decision weight is not weighted by a fleet target factor $(\mathrm{q}=0)$. The outcome of run 1 (figure 15.3.1.5) is straightforward: all fleets catch cod and have to reduce effort equally, and the more so when higher decision weight is put on cod.

Run 2 is set so the fleet-specific fleet effort reduction is still the same across fleet $(p=0)$, but the decision weight is weighted by a fleet target factor $(\mathrm{q}=1)$. By contrast with run 1 , the decrease in the fleet factor is different across fleets (figure 15.3.1.6). In particular, fleets E and I are favoured, due to the low proportion of cod in the catch. Fleet E suffers the least from restricting cod catches, and only when decision weight is high, because it has the lowest proportion of cod in its catch. Although both fleets D and I have similar cod proportions in their catch composition, only fleet I is favoured because it targets saithe, for which Fsq does not have to be reduced.

Run 3 is set so the fleet-specific effort reduction is in proportion to the species proportions in the fleets catches ( $\mathrm{p}=$ $1)$, while the decision weight is not weighted by a fleet target factor $(\mathrm{q}=0)$. Given these settings, the fleet factor profiles differentiate only slightly between the fleets (figure 15.3.1.7).

Run 4 is set so the fleet-specific effort reduction is in proportion to the species proportions in the fleets catches ( $\mathrm{p}=$ $1)$, while the decision weight is weighted by a fleet target factor ( $q=1$ ). Compared to run 3, the fleet factor profile differs between fleets, as the decision weight is weighted by a fleet target factor $(\mathrm{q}=1)$. Again, modifying the decision weight by fleet target factors favours fleets E and I, which take small proportion of cod (figure 15.3.1.8).

Run 5 is set so the fleet-specific effort reduction is in proportion to fleets' contribution to the total catch of that species ( $p=2$ ), while the decision weight is not weighted by a fleet target factor ( $q=0$ ). Choosing these settings differentiates only slightly between the fleets, and slightly favours all fleets except fleet A which takes most of the cod (figure 15.3.1.9).

Run 6 is set so the fleet-specific effort reduction is in proportion to fleets' contribution to the total catch of that species $(p=2)$, while the decision weight is weighted by a fleet target factor $(q=1)$. Choosing these settings differentiates most between the fleets (figure 15.3.1.10).. This differentiation appears to be driven as much by the distribution of saithe catches as by the distribution of cod catches. Fleets that suffer take a high proportion of cod and/or take a low proportion of saithe. Similarly, fleets that benefit take little cod and/or target saithe. Note that this effect comes about because the Fsq for saithe does not have to be reduced whereas the Fsq for cod has to be reduced to 0 . Reduction of Fsq for the other species is intermediate.

Run 7 is set so the fleet-specific effort reduction is consistent across fleets ( $p=0$ ), while the decision weight is not weighted by a fleet target factor $(\mathrm{q}=0)$. The outcome of run 7 (figure 15.3.1.11) is straightforward: all fleets have to reduce effort equally. Their level of effort linearly increases with the level of the chosen F multiplier for cod.

Run 8 is set so the fleet-specific fleet effort reduction is still the same across fleet $(p=0)$, but the decision weight is weighted by a fleet target factor $(\mathrm{q}=1)$. Modifying the decision weights by fleet target factors $(\mathrm{q}=1)$ discriminates between the fleets (figure 15.3.1.12). In particular, fleets, such as fleet E, suffer less as they take little cod (in terms of proportion within the fleets' catch).

Run 9 is set so the fleet-specific effort reduction is in proportion to the species proportions in the fleets catches ( $\mathrm{p}=$ 1), while the decision weight is not weighted by a fleet target factor ( $q=0$ ). When species-specific fleet effort has to be reduced in proportion to the species composition within the fleet ( $p=1$ ), fleets such as fleet E suffer less due to their low proportion of cod in their catch (figure 15.3.1.13). Fleets such as fleets B, C and G, which have a high proportion of cod in their catches, have to limit their effort when the F multiplier for cod is low, but can gradually increase their effort at higher F multipliers. Note that the plateau at low F multipliers for these fleets are due to the fact that species-specific fleet effort cannot be below zero.

Run 10 is set so the fleet-specific effort reduction is in proportion to the species proportions in the fleets catches ( $\mathrm{p}=$ $1)$, while the decision weight is weighted by a fleet target factor $(\mathrm{q}=1)$. Modifying the decision weights by fleet target factors ( $\mathrm{q}=1$ ) does not bring about much change compared to run 9 , except that most fleets seem to suffer a bit more at the highest F multipliers for cod (figure 15.3.1.14).

Run 11 is set so the fleet-specific effort reduction is in proportion to fleets' contribution to the total catch of that species ( $\mathrm{p}=2$ ), while the decision weight is not weighted by a fleet target factor $(\mathrm{q}=0)$. The contrast between run 11 (figure 15.3.1.15) and run 9 (figure 15.3.1.13) is quite clear. In the run 11, fleets such as $G$ and $H$ are favoured compared to run 9 because they contribute little to the total cod catch (although within these fleets' catches cod represents a high proportion as compared to the other fleets). For similar reasons, fleet A, taking a high proportion of total cod catch, is disadvantaged with run 11's setting compared to run 9's setting.

Run 12 is set so the fleet-specific effort reduction is in proportion to fleets' contribution to the total catch of that species $(p=2)$, while the decision weight is weighted by a fleet target factor ( $q=1$ ). Modifying the decision weights by fleet target factors does not bring about much change (figure 15.3.1.16).

To conclude, the exercise of varying decision weights on the $x$-axis of the figures (runs 1-6) illustrates the difference between choosing to modify the decision weights by fleet target factors or not ( $\mathrm{q}=1$ or $\mathrm{q}=0$ ). The choice of modification differentiates well between the fleets. On the other hand, the exercise of varying the F multiplier for cod on the x -axis (runs 7-12) illustrates the difference between choosing reducing species-specific fleet effort in proportion to a fleet's proportion of a species catch within the catch of that fleet or among fleets within the catch of that species ( $\mathrm{p}=0, \mathrm{p}=1, \mathrm{p}=2$ ). Choosing between these options ( p ) allows managers to either 'penalize' fleets when the proportion of cod within the fleet's catch is high, or when they take a high proportion of the total cod catch.

### 15.3.2 Mixed-fisheries forecasts using MTAC

### 15.3.2.1 Preliminary MTAC investigations

MTAC has been applied to the 2002 catch data collated during the WG. The data have been aggregated at two different levels: by fishery and by country. The fleet code names may be found in Table 15.3.2.1. A simple scenario set up, with arbitrary F-multipliers, has been used to evaluate the forecasts based on the different levels of aggregation (Table 15.3.2.2).

Figures 15.3.2.1-15.3.2.4 show the outcomes of MTAC using fisheries-aggregated data. When the species-specific fleet effort reduction is in proportion to the catch of the species within the catch of the fleet ( $p=1$, figure 15.3.2.1), most fisheries are penalized as the decision weight on cod increases. This results from these fisheries having a substantial proportion of cod in their catches. With this setting, the decrease in the F-multiplier of cod when the cod decision weight increases is of the same order of magnitude than that of haddock, whiting and Nephrops. (figure 15.3.2.2). By contrast, the decrease in the saithe F-multiplier when the cod decision weight increases is modest relative to that of cod. The change in the F-multipliers of sole and plaice is intermediate between that of cod, haddock, whiting, Nephrops on the one hand, and that of saithe on the other hand. These results stress the level of technical interaction between the cod fishery and the fishery for the other species: strong in the case of haddock, whiting and Nephrops, moderate in the case of sole and plaice, weak in the case of saithe.

When the species-specific fleet effort reduction is in proportion to the catch of the species by the fleet of the total catch of that species (figure 15.3.2.3), fewer fisheries are penalized as the decision weight on cod increases. The fisheries penalised are those which contribute most to the international cod landings. However, the distance between the F-multipliers profiles of cod and of the other species (figure 15.3.2.4) is comparable to that observed when the species-specific fleet effort reduction is in proportion to the catch of the species within the catch of the fleet (figure 15.3.2.2).

Figures 15.3.2.5-15.3.2.8 show the outcomes of MTAC using country-aggregated data. When the species-specific effort reduction is in proportion to the catch of the species within the catch of the country ( $\mathrm{p}=1$, figure 15.3.2.5) , all countries are penalized as the decision weight on cod increases. The changes of the F-multiplier of cod when the cod decision weight increases are almost confounded with those of the other species, except saithe (figure 15.3.2.6). This suggests that aggregating data by country does not provide sufficient information to identify technical interactions. When the species-specific fleet effort reduction is in proportion to the catch of the species by the country of the total catch of that species ( $\mathrm{p}=2$, figure 15.3.2.7), the Swedish fisheries are less penalized as the decision weight on cod increases. The Swedish fleet has the smallest cod landings such that the reduction effort rate for this fleet is modest. The sharp decrease in the fleet factor for the Belgian fleet was not expected, as this country contributes only little to the international cod catches. However, the cod F-multiplier was set to 0.01 from which the Swedish fleet benefited. All other countries will get a cod-specific fleet effort factor at zero so that the reduction becomes independent of the size of the national cod landings. The different rates for the fleet effort reduction factor are due to the q -option. Countries with a large proportion of cod in their landings (e.g. Belgium and Denmark) are penalized more than countries (e.g. France and Norway) with a low proportion of cod The distance between the Fmultipliers profiles of cod and of the other species (figure 15.3.2.8) is comparable to that observed when the speciesspecific fleet effort reduction is in proportion to the catch of the species within the catch of the fleet ( $\mathrm{p}=1$, figure 15.3.2.6).

## Summary of the results of the scenarios presented in Figure 15.3.2.1-15.3.2.8

When the species-specific effort reduction is in proportion to the catch of the species within the catch of the country $(p=1)$, most fisheries are penalised since most fisheries catch a substantial proportion of cod in their total catch. When the species-specific fleet effort reduction is in proportion to the catch of the species by the country of the total catch of that species $(p=2)$, the only fisheries penalised are those contributing most to the international cod landings. However, setting the p-option to 1 or 2 hardly affects the F-multiplier profiles for the species under consideration.

The outcomes of MTAC are dependent on the level of aggregation of the landings data. With the highest level of desegregation available (by fishery), the reduction in the fleet factor are well differentiated across fisheries. With the lowest level of desegregation (by country), there is overall little discrepancy between the fleet factors across countries. In order to make use of all the information available, further investigations will be based on the data broken down by fishery.

### 15.3.2.2 Further MTAC investigations using F-multipliers as proposed by ACFM in 2002.

MTAC was investigated using the fleet database for 2002 in its most dis-aggregated form and the scenario configuration shown below:

Species	F multiplier   $(\underline{\text { as proposed by }}$   $\underline{\text { ACFM in 2002 })}$	Decision weight (relative   numbers)
Cod	0 or 0.2	$0-1000$
Haddock	0.60	1
Whiting	1.00	1
Saithe	1.61	1


Plaice	0.60	1
Sole	0.77	1
Nephrops	1	0

One groups of runs used a cod F-multiplier on 0.0 and another group of scenarios used a F-multiplier of 0.2 . For both groups of scenarios, the decision weight on cod was varying from zero to very close to one. The remaining fish species receive the remaining decision weight equally splitted between species. The decision valued on Nephrops was set to zero in all runs, because it was not possible to make a real age-based forecast for that species. By having a decision weight on zero, the actually values of the F-multiplier on Nephrops will not influence the mixed-species TAC on other species. However, F-multipliers on other species will influence the TAC for Nephrops.

The scenarios were made using combinations of the p-option (1 or 2 ) and q -option ( 0 or 1 ) and the values given in the table above.

Figure 15.3.2.9 shows the effect of varying cod decision weight when p-option=1 (the rate of the species specific effort decrease is proportional to the relative catch of the species within the fleet), q-option=0 (no weighting of individual species specific fleet effort factors) and a cod F multiplier at 0.0 is applied. The individual fleet factors as function of the cod decision weight are show in the upper part of the figure. There is a linear relation between the fleet factors and the decision weight on cod. As the F-multiplier on cod is set to 0.0 the cod specific fleet factor will become 0.0 for all values of cod decision weight. The absolute value of the species specific fleet factor for the other species depend of the cod decision weight, but the relative value is the same for all the non-cod species. This will create the linear relation between the fleet factor and the cod decision weight as the F-multipliers are fixed. The intercept for all the fleet factors - cod decision weight relations are in this case close to one. The intercept value of approximately one is close to the average of the input F-multiplier for the non-cod fish species, however as some fleets do not catch all species the value is not the exact average.

The lower left part of figure 15.3.2.9 shows the resulting mixed fisheries F-multiplier for by species together with the F-multiplier for cod for varying decision weight on cod. The individual species F-multipliers is almost identical to the F-multiplier for cod, even though the individual species F-multipliers varies from 0.60 to 1.61 . The lower right part of Figure 15.3.2.9 shows the mixed species TAC and the "single species TAC (horizontal line) for varying cod decision weight. As the mixed fisheries F-multipliers are closed to 1 for all species at a cod decision weight equal 0.0 , the mixed fisheries TAC at that point will simply be higher for species with an input F -multiplier smaller than one and lower for the rest.

Figure 15.3.2.10 presents runs with p-option=2 (rate of effort decrease proportional to the species catch compared to the total international species catch) and q-option=0. As the F-multiplier on cod is set to 0.0 all the cod specific fleet factor will become 0.0 for all values of cod decision weight. The effect of choosing a different value for the p-option is therefore limited and the results presented in Figure 15.3.2.9 and 15.3.2.10 become very similar

The effect of using p-option=1 and q-option=1 is presented in Figure 15.3.2.11. As for the two previous configurations all the cod specific fleet factor will become 0.0 for all values of cod decision weight. As the fleet species proportion is used ( $q$-option=1) to find the weighted average of the species specific fleet factors, fleet with a relatively high proportion of cod will get a concave shape of the fleet factor - cod decision weight plot (e.g. fleet F017, F018 and F019 all with more than $80 \%$ cod). The intercept of the relation is highest for the fleets having a large proportion of saithe in their catch (e.g. F034 with $89 \%$ saithe). Fleet F074 catch $58 \%$ saithe, which gives it a high intercept, however its catch of $35 \%$ cod makes the curve concave. With saithe as the exception, the Fmultipliers for cod follows the F-multipliers for the other species rather close.

A p-option=2 has be used to create the results presented in Figure 15.3.2.12. This figure is very similar to Figure 15.3.2.11 which indicate that the value of the p-option has little impact for the chosen configuration. For fleets with a very low total cod catch (e.g. fleets F045 and F073) there are however, a clear differences in the fleet factor plot, where the "small" fleet in general have a higher intercept when p-option=2 is used

### 15.3.3 Summary of the results of the scenarios presented in Figure 15.3.2.9-15.3.2.12

The F-multiplier for cod was 0.0 , which made the estimated fleet factors almost independent of the p-option when $q$ option $=0$ was applied. The q-option=0 produces mixed species F-multipliers close to the average value of the input F-multipliers of non-cod species, when the decision weight for cod was zero. For q-option=1 the fleet factors were highly dependent on the choice of the P-option, but the resulting mixed-fisheries F-multipliers or TAC were quite similar for the two values of the p-option

To investigate further the effect of having an F-multiplier on cod at 0.0 this F-multiplier is raised to 0.2 in the following scenarios.

Figure 15.3.2.13 shows the results of applying p-option=1 and q-option=0. The Fleet factor plots show now a linear dependence of the cod decision weight as seen in Figure 15.3.2.9 and 15.3.2.10 as well. The intercept of the fleet factor curves is almost constant at one as seen previously for $q$-option $=0$, but the slopes vary now with the proportion of cod in the fleet catch. As the intercept is of the F-multipliers plots is the same, the resulting mixed species TAC is almost similar to the one seen in for the cod runs using F-multiplier at 0 (Figure 15.3.2.9), when the cod decision weight is low. The mixed-species F-multipliers for cod and other species has now a different slope, with the smallest slope for species (saithe, plaice and sole) less associated with cod. The same intercept at the Fmultiplier plot for all species and smaller slopes give in general a higher mixed species TAC for saithe and flatfish, compared to the single species TAC.

When the p-option is changed to 2 the fleet factors changes a lot. (Figure 15.3.2.14). Fleets with a low absolute cod landing (e.g the Swedish fleets F074-F077) get as expected the smallest reduction. As seen before, using qoption $=0$ the F-multiplier plots have the same intercept but variable slopes. The slopes are closer to the slope for cod, compared to Figure 15.3.2.13, where the p-option=1 was used. .

For p-option=1 and q -option $=1$ the fleet factors plot has changed (Figure 15.3.2.15) compared to Figure 15.3.2.11 which uses the same option, but has a F-multiplier on 0.0 . The difference is biggest for fleets with a relatively small proportion of cod catches due to the p-option=1. As an example, Fleet F072 and F073 have a $2 \%$ cod in their landings and they both have a convex curve in the fleet effort plot when F-multiplier on cod was 0.0 (Figure 15.3.2.11). When the F-multiplier on cod is raised to 0.2 their fleet factors get higher and the shape of the curve is now concave. For cod decision weight at 0.0 the mixed species F-multiplier is close to the input values, however increased for plaice and decreased for the associated species sole. The same happens for haddock and whiting.

The effect of changing the p-option from 1 to 2 is presented in Figure 15.3.2.16.
With $\mathrm{p}=2$, fleets taking a small part of the total international landings receive the smallest effort reduction. In some cases these fleets have a high proportion of cod in their landings but they can remain at a relatively high effort. Fleet F046 is an example for such a fleet. It has a total catch of 1700 t of which $51 \%$ was cod.

By contrast, other fleets taking a large part of the total international landings suffer large effort cuts, although the proportion of cod in their catch is small. The beam-trawl fleet F062 is an example of such a fleet. Fleet F062 targets flatfish with a $5 \%$ catch of cod, and it overall takes the largest total catch. The input F-multiplier for all species but saithe is substantially lower than 1. Given the saithe catches by this fleet are negligible, it has to reduce its effort drastically. For p-option=1 the fleet factor curve for F062 is almost horizontal (Figure 15.3.2.15). Using poption $=2$ this fleet reduces half its effort for a low decision weight on cod, and its effort is decreased to almost zero for a high decision weight on cod. Fleet F062 takes most of the international landings of sole and has a high share of the plaice catches as well.

Overall, these contrasting examples illustrate why the choice of p-option gives a rather big difference in mixed species TAC for flat fish. The choice of p-option effects less the mixed species TAC for roundfish.

## Summary of the results of the scenarios presented in Figure 15.3.2.13 to 15.3.2.16

A F-multiplier for cod at 0.2 gives a much higher difference between the fleet factors derived when using a p-option at 1 or 2 compared to the scenarios where the cod F-multiplier was 0.0 . The increase in Cod F-multiplier did not change the effect of using $q$-option $=0$ very much, so in both cases the $q$-option $=0$ produces mixed species F multipliers close to the average value of the input F-multipliers of non-cod species, when the decision weight for cod is relatively low. Therefore $q$-option $=1$ is the only option that allows integrating technical interactions in the calculation of the F-multiplier. The use of p-option=2 decreases effort for fleets having the highest international catch. However, when the fleet database includes very few large fleets targeting only few species the mixed-fishery TAC depends much on the actual species composition of the large fleets and on the choice of p-option.

### 15.4 Discussion

ICES has traditionally given fishery management advice on a stock by stock basis. Recent problems in implementing this advice, particularly for the demersal fisheries of the North Sea, have highlighted the limitations of this approach. In the long-term it would be desirable to give advice which accounts for such mixed-fishery effects, but in the short-term there is a need for approaches which can resolve the conflicting management advice for different species within the same fishery and generate routine advice which accounts for the mixed-species nature of the fishery.

The MTAC approach takes the (possibly inconsistent) single-species advice for each species in the fishery as a starting point, then attempts to resolve these into consistent catch or effort advice using fishery-disaggregated catchforecasts in combination with explicitly stated management priorities for each stock.

MTAC estimates first a set of fleet effort multipliers for each fleet and species combination to obtain the single species TAC. The estimated fleet-species factors are then combined into a fleet effort factor for each fleet, which afterwards are used to calculate the mixed-fisheries TAC. These calculations require a set of rules or options describing how individual fleet should change effort and how the species specific efforts factors should be combined into a fleet factor. The fleet-factor is determined by the product between three management inputs
a) a species-specific fleet reduction rate
b) a decision weights
c) a fleet target factor
and these are described below

## Species-specific fleet reduction rate

The rules to be used for the calculation of species-specific fleet effort are given by the so-called p-option used in MTAC. The rate of effort change can be:

- p-option=0: Equal for all fleets.
- p-option=1: In proportion (weight) to the catch of the species within the catch of the fleet.
- p-option=2: In proportion (weight) to the catch of the species by the fleet of the total catch of that species.

The choice of the p-options is a policy decision. p -option=1 will require a higher effort reduction from fleets having a high proportion of the species in their landings and p -option $=2$ will penalize fleets which take a large proportion
of the total international species landings. The sensitivity analysis has shown that the choice of p-option as a large influence on the fleet effort reduction. The mixed fisheries TAC also depends on the choice of p-option. In the special case where a TAC is set to zero for a species the influence of the p-option is quite low, as all fleets catching the species are penalized equally.

## Decision weight

The choice of the decision weight is a policy decision. A high decision weight for a species implies that it is very important that the mixed-species TAC is close to the single species TAC for that species.

## Fleet target factor

The value of the fleet target factor $\left(q_{k, j}\right)$ is determined by the so-called q-option, which can have two values:

- q-option=0: $q_{k, j}$ is set to a constant 1
- q -option=1: $q_{k, j}$ is set to the proportion the catch weight of the species within the fleet.

A q-option $=0$ will change the effort factors proportionally to the decision weight applied for the species. That means that a species, which contributes very little to a fleets catch can have a major impact of the effort reduction for the fleet. If for example the single species TAC for cod is set to zero, all fleets catching cod will be penalized the same way irrespective of their proportion of cod in their catches. When $q$-option=1 is used fleets having just a small proportion of cod in their catch will get a relatively small effort reduction. In general, q-option=1 will favour fisheries with a limited catch of species for which stock rebuilding is needed, and $q$-option $=0$ will penalize all fisheries equally.

The sensitivity analyses did not reveal programming bugs in the MTAC. Output was not always as first expected. Further analysis did however confirm that MTAC responded reasonable, given the input values and options.

The mixed-fisheries TACs calculated by MTAC are sensitive to both the level of aggregation of the database and the options.

## Level of aggregation of the fleet database:

The output of MTAC are dependent on the level of aggregation of the landings data. With the highest level of desegregation available (by fishery), the reduction in the fleet factor are well differentiated across fisheries. With the lowest level of desegregation, there is overall little discrepancy between the fleet factors across fleets. The most disaggregated database is the best way to integrate technical interactions in the calculation of the mixed fisheries Fmultiplier.

## q-option:

A q-option $=0$ produces mixed species F-multipliers close to the average value of the input F-multipliers when decision weights were not highly differentiated between species. q-option=1 that allows better integrating technical interactions in the calculation of the F-multiplier.

## p-option

The choice of p-option should be left to managers. As an example, using p-option=2 decreases effort for fleets having the highest international catch and not necessarily the highest proportion of a species at risk. From a technical view some guidance can however be given. When the fleet database includes few large fleets targeting only few species the mixed-fishery TAC depends much on the actual species composition of the large fleets and on the choice of p-option.

The group has investigated the issue of mixed-fisheries forecasts using the case study of the North Sea demersal fisheries. A mixed-fisheries database has been set up and the model MTAC initiated by $\operatorname{STECF}$ (2002) has been further developed and tested by the WG. This approach may be considered as a step forward towards providing routine, fishery-based, advice. However, the group recommends that further developments be needed before this approach be considered as an operational framework for providing routine, fishery-based, forecasts. These developments could consist in, (i) improving the mixed-fisheries database, (ii) further evaluating MTAC and also, (iii) restructuring the current assessment working groups to accommodate more fully the fishery interactions. These points are elaborated below.

A major limitation of developing mixed-fishery forecasts is the lack of an appropriate mixed-fishery database. A number of critical assumptions have been made in order to create input data for MTAC, based on the data available to the group. These assumptions are presented below.

- The database collated by the group did not include all the information required to run the model. Thus, discards data were only estimated for haddock and whiting, and it was assumed that for the other species, catch would equate landings. However, substantial discards are thought to happen for other species such as cod and plaice. In addition, landings or catch at age data were provided by country and not by fishery. Therefore, the same exploitation pattern was applied to all the fisheries belonging to the same country. This extrapolation is likely to be a poor proxy, given the high desegregation level of the fisheries under investigation. E.g. an otter-trawler of mesh size $100-109 \mathrm{~mm}$ is unlikely to have the same exploitation pattern than an otter-trawler of mesh size 120 mm or than any gill-netter. A structure and format for an appropriate mixed-fishery database has been suggested by ICES(2003). The WG recommends that future collation of mixed-fisheries data should be made according to the framework proposed by SGDFF, and that the SGDFF should initiate the compilation of these data.
- The WG focused on a selection of species living in the North Sea: cod, haddock, whiting, saithe, plaice, sole and Nephrops. In the case of Nephrops, only the total landings by fishery could be used, and even not all countries supplied landings data for this species. However, the fleets harvesting any of these species may also catch some species, which have not been dealt with here because they are evaluated by other assessment WGs. For example, vessels targeting saithe in VIa may take by-catches of some of the species evaluated by either the WGNSDS, the WGDEEP or the WGHMM. Ideally, any mixed-fishery advice provided for the WGNSSK stocks should account for the stocks and fisheries evaluated by other relevant WGs. The group was not in a position to carry out this exercise, which lies beyond the scope of an area- and stock-specific group such as WGNSSK.
- The most up-to-date stock numbers at age for cod, haddock, whiting, saithe, plaice and sole were only made available the last day of the WG, so they could not be used in the final runs of MTAC. Stock predictions from WGNSSK02 were used instead as a first proxy. Besides, no stock numbers at age could be made available for Nephrops.
- The fisheries were defined on a rather $a d$ hoc basis. Besides, the fishery definitions were sometimes different between countries. Given some outcomes of MTAC proved sensitive to the fisheries definition, the basis for defining fisheries should be further investigated, possibly along the lines suggested by ICES(2003).

There is scope for further testing and possibly developing the current mixed-fishery forecasts model. First, it was investigated the extent to which the outcomes of MTAC were sensitive to input parameters. No errors could be detected in the MTAC program. However, the group recommends MTAC be thoroughly examined by the ICES Methods WG, which is entitled to evaluate whether MTAC could be used as a tool to provide routine fishery-based advice. Second, a critical assumption underlying MTAC is that the fishery-, species- and age-dependent exploitation pattern used in the forecasts is estimated from the last years average. However, this assumption is likely to be violated in the case of shifts in fishing tactics, as a result of e.g. changes in management regulations. There are a number of on-going approaches aiming at modeling fishermen's adaptation to management changes, which could at a later stage be incorporated in the mixed-fisheries model. Nevertheless, MTAC is seen as a step further towards providing mixed-fisheries forecasts.

Within the current working group framework, stock assessments (including forecasts) are undertaken on a stock by stock basis with little consideration of fisheries and the linkage between the two. Using the North Sea demersal fisheries as an example, assessment working groups do not deal well with linkages between cod, haddock, whiting, plaice and Nephrops at various levels, such as the overall change in forecast fishing mortality on haddock, whiting, plaice and Nephrops that corresponds to a given percentage change in fishing mortality on cod. At a more detailed level, they cannot currently consider how such changes are distributed over different fisheries within the region. In this example it is not sufficient simply to argue that data need to be provided to the working groups in a fisheriesbased format rather than a stock-based format. This is because Nephrops assessments and forecasts are undertaken in an entirely separate working group (WGNEPH) and currently it assesses functional units within the geographical domain of three ICES demersal assessment working groups (WGNSSK, WGNSDS, WGSSDS). ICES(2003) considered three separate solutions to this sort of problem:

- To maintain the current working group structure whilst improving interchanges between working groups
- To create a permanent ICES fishery-based forecast group, corresponding to the current STECF sub-group on resource status (SGRST)
- To restructure the current assessment working groups to accommodate more fully the fishery interactions. This could involve the assimilation of, for example, Nephrops assessments into the area-based demersal working groups including WGNSSK.

ICES groups that are currently considering the working practices and structure of the assessment and advisory process need to consider these points when considering the appropriate framework under which fishery-based forecasts are to be undertaken. WGNNSSK suggests that the first option is the easiest to implement in the short term.

To conclude, the group suggests that the approach presented here to develop fishery-based forecasts be considered by ACFM as a prototype tool. Due to the limitations identified above, the group suggests that it may be premature to use this approach for providing fishery-based advice in 2003. The WG considers that there is an urgent need for the ICES SGDFF to collate the appropriate data and for the Methods WG to evaluate the MTAC model.

Table 15.2.1.1. International catches( t ) in ICES division IV for year 2002.

Catch(t)	species						
fleet	COD	HAD	NEP	PLE	POK	SOL	WHG
B __OTB	229.9	17.1	0.0	96.3	77.7	26.9	126.7
B O_Other	302.0	21.1	0.0	182.3	1.5	43.7	268.9
B__TBB	2002.0	1104.2	0.0	4285.3	27.4	1543.5	320.2
DK_GNS _ < 140	284.2	40.9	3.4	515.0	2.5	309.4	3.2
DK__GNS_140-200	3984.4	231.3	3.3	2827.7	204.7	173.3	. 5
DK_LL	325.0	235.9	0.0	0.7	18.4	1.6	0.0
DK__OTB_070-099	261.8	106.6	931.3	567.7	222.5	18.2	51.4
DK__OTB_100-109	85.3	140.7	91.6	968.6	38.8	5.7	14.2
DK__OTB_110-119	65.5	332.5	26.8	523.3	20.5	3.0	2.5
DK__OTB_120-	2034.9	5871.7	813.4	1683.0	1834.8	10.4	103.8
DK_Other	497.5	236.6	267.4	635.7	56.0	108.3	8.8
DK__SDN_070-099	0.4	0.2	1.1	2.6	0.0	0.0	35.0
DK_SDN_100-109	12.7	82.5	0.0	29.5	1.0	0.0	4.6
DK__SDN_110-119	79.6	712.0	0.0	1144.6	3.4	1.2	2.0
DK_SDN_120-	1059.0	2012.8	0.0	1550.6	141.0	1.9	3.1
DK_TBB_100-	91.6	54.9	0.0	1884.5	3.1	5.6	0.2
ENG_GNS	147.6	35.6	0.0	10.1	0.1	68.8	54.0
ENG_GNS__<140	48.7	0.0	0.0	0.6	0.1	3.3	4.7
ENG_GNS_140-200	397.9	1.0	0.0	2.1	0.3	3.2	4.2
ENG_GNS_200-	5.8	0.0	0.0	0.0	0.0	0.0	0.0
ENG_LL	224.8	52.5	0.0	0.1	0.3	0.6	17.1
ENG_OTB_070-099	163.5	690.7	1410.9	39.5	0.5	67.0	599.6
ENG_OTB_100-109	219.0	1362.2	287.0	330.3	4.5	7.4	755.1
ENG_OTB_110-119	281.3	2526.1	224.3	418.6	2039.2	1.4	1311.1
ENG_OTB_120-	1257.4	2545.7	32.7	121.6	470.9	5.5	786.0
ENG_Other	1.2	3.5	0.0	0.0	0.0	0.4	0.2
ENG_TBB_080-099	61.2	45.9	0.7	2316.9	0.0	142.2	25.6
ENG_TBB_100-	244.3	172.2	0.7	5205.1	5.0	87.5	10.3
FR_GNS	14.4	0.0	0.0	3.1	0.0	13.0	8.5
FR_GNS__<140	76.2	0.0	0.0	110.2	0.0	455.6	31.5
FR__GNS_140-200	53.8	0.0	0.0	41.4	0.0	5.5	16.1
FR_OTB_070-099	1088.0	12.6	0.0	174.5	0.0	24.6	6807.7
FR_OTB_100-109	48.7	35.0	0.0	3.6	696.1	0.1	70.3
FR_OTB_110-119	71.8	1755.7	0.0	0.0	23779.0	0.0	1008.4
FR_OTB_120-	322.2	22.1	0.0	22.1	247.4	0.8	597.4
FR_TBB_080-099	11.1	0.0	0.0	123.7	0.0	59.7	25.9
FR_TBB_100-	23.9	0.0	0.0	9.0	0.0	0.1	5.0
GER_GNS __<140	5.0	0.1	0.0	6.1	0.0	74.4	0.7
GER_GNS_140-200	12.7	0.1	0.0	0.9	0.0	1.0	0.0
GER_OTB_070-099	64.1	47.1	84.0	531.5	0.0	8.1	551.7
GER_OTB_100-109	102.5	213.1	8.8	1141.9	4401.8	2.8	81.1
GER_OTB_110-119	2.9	1.4	0.0	28.8	0.0	0.1	0.0
GER_OTB_120-	746.2	738.2	0.3	111.4	6197.7	0.3	60.6
GER_SDN_070-099	1.1	0.3	0.0	33.6	0.0	0.0	52.5
GER_SDN_100-109	1.1	0.8	0.7	53.6	3.2	0.0	4.2
GER_SDN_120-	903.8	500.6	0.0	26.3	331.0	0.0	4.5
GER_TBB_080-099	64.1	4.7	31.7	1642.8	0.0	633.8	113.3
GER_TBB_100-	27.2	32.0	0.1	358.3	0.5	41.0	2

Table 15.2.1.1. (cont'd) International catches(t) in ICES division IV for year 2002.

Catch(t)	species						
fleet	COD	HAD	NEP	PLE	POK	SOL	WHG
N___GNS	1876.4	996.3	1.7	17.7	5910.2	0.0	8.0
N__LL	1310.4	1285.2	0.1	6.7	427.0	0.0	1.8
N	919.1	1408.7	92.7	1015.3	45806.7	0.5	55.4
N ___Other	38.6	1.3	17.3	0.1	6079.0	0.0	0.0
N	226.7	502.2	0.0	49.3	54.1	0.0	11.9
N	23.8	10.3	1.8	891.5	0.4	49.2	5.5
NL__OTB	23.9	8.8	3.4	7.2	0.2	1.1	24.5
NL__OTB_070-099	219.6	16.2	406.6	506.1	0.0	12.8	1740.2
NL__OTB_100-109	72.9	31.5	6.4	153.4	0.2	0.9	234.5
NL__OTB_110-119	2.3	0.0	0.0	0.0	0.0	0.0	2.7
NL__OTB_120-__	1837.4	250.0	0.1	45.5	3.4	1.3	1145.1
NL_Other	183.1	58.2	47.5	61.6	1.6	57.5	148.4
NL_TBB	26.3	5.7	4.7	136.8	0.0	34.4	29.9
NL__TBB_080-099	2196.8	337.4	494.5	26814.0	0.0	11949.2	3226.6
NL_TBB_100-	64.3	32.3	1.1	1091.3	0.2	26.4	16.4
SCO_OTB_070-099	453.4	1924.2	4625.8	57.2	102.7	0.1	1356.8
SCO_OTB_100-109	131.3	445.1	944.8	234.6	24.2	1.3	309.8
SCO_OTB_110-119	5356.2	25920.0	1047.1	363.3	2435.9	0.1	6621.1
SCO_OTB_120-	5356.2	25920.0	1047.1	363.3	2435.9	0.1	6621.1
SCO_Other	542.6	2176.9	957.8	35.9	156.5	0.0	822.2
SCO_SDN_110-119	1263.5	10425.1	5.3	113.2	364.5	0.0	2029.9
SCO_SDN_120-	1263.5	10425.1	5.3	113.2	364.5	0.0	2029.9
SCO_TBB	3.9	2.3	0.0	29.9	0.0	4.1	3.2
SCO_TBB_080-099	75.9	66.6	0.1	2845.5	0.0	160.5	66.0
SCO_TBB_100-	75.6	70.7	2.5	3349.2	0.4	48.8	12.0
SWE_OTB_070-099	1.9	0.1	0.3	0.0	3.2	0.0	0.1
SWE_OTB_100-109	1.3	7.8	0.0	0.0	1.4	0.0	0.0
SWE_OTB_110-119	0.9	0.2	0.0	0.0	5.2	0.0	0.0
SWE_OTB_120-	394.3	866.7	12.1	2.1	1324.5	0.0	8.5
TOTAL	41951	105195	13946	68069	106333	16309	40496

Table 15.3.1.1. Target F multiplier for the sensitivity analysis of MTAC

species	$\mathbf{1 6}$
COD	0.0
HAD	0.60
PLE	0.60
POK	1.0
SOL	0.77
WHG	0.60

## Table 15.3.2.1. Fleet code and name

F001 B__OTB
F002 B ___Other
F003 B__TBB
F004 DK__GNS__<140
F005 DK__GNS_140-200
F006 DK__LL
F007 DK_OTB_070-099
F008 DK__OTB_100-109
F009 DK_OTB_110-119
F010 DK__OTB_120-
F011 DK_Other
F012 DK__SDN_070-099
F013 DK__SDN_100-109
F014 DK__SDN_110-119
F015 DK__SDN_120-
F016 DK__TBB_100-
F017 ENG_GNS
F018 ENG_GNS__<140
F019 ENG_GNS_140-200
F020 ENG_GNS_200-
F021 ENG_LL
F022 ENG_OTB_070-099
F023 ENG_OTB_100-109
F024 ENG_OTB_110-119
F025 ENG_OTB_120-
F026 ENG_Other
F027 ENG_TBB_080-099
F028 ENG_TBB_100-
F029 FR GNS
F030 FR __GNS _ < 140
F031 FR _GNS_140-200
F032 FR_OTB_070-099
F033 FR__OTB_100-109
F034 FR_OTB_110-119
F035 FR_OTB_120-
F036 FR __TBB_080-099
F037 FR_TBB_100-
F038 GER_GNS__<140
F039 GER_GNS_140-200
F040 GER_OTB_070-099
F041 GER_OTB_100-109
F042 GER_OTB_110-119
F043 GER_OTB_120-
F044 GER_SDN_070-099
F045 GER_SDN_100-109
F046 GER_SDN_120-
F047 GER_TBB_080-099

F002 B__Other $\qquad$
F003 B TBB $<140$
F005 DK_GNS_140-200
F006 DK_LL
F007 DK_OTB_070-099
F008 DK__OTB_100-109
F009 DK_OTB_110-119
F010 DK_OTB_120-
F011 DK__Other_
F012 DK__SDN_070-099
F013 DK__SDN_100-109
F014 DK_SDN_110-119
F015 DK _SDN_120-
F016 DK_TBB_100-
F017 ENG_GNS
F018 ENG_GNS $\qquad$
F019 ENG_GNS_140-200
F020 ENG_GNS_200-
F021 ENG_LL
F022 ENG_OTB_070-099
F023 ENG_OTB_100-109
F024 ENG_OTB_110-119
F025 ENG_OTB_120-
F026 ENG_Other $\qquad$
F027 ENG_TBB_080-099
F028 ENG_TBB_100-
F029 FR_GNS
F030 FR__GNS__<140
F031 FR__GNS_140-200
F032 FR_OTB_070-099
F033 FR_OTB_100-109
F034 FR_OTB_110-119
F035 FR_OTB_120-
F036 FR__TBB_080-099
F037 FR_TBB_100-
F038 GER_GNS $<140$
F039 GER_GNS_140-200
F040 GER_OTB_070-099
F041 GER_OTB_100-109
F042 GER_OTB_110-119
F043 GER_OTB_120-
F044 GER_SDN_070-099
F045 GER_SDN_100-109

F047 GER_TBB_080-099

F048 GER_TBB_100F049 N_G_GS $\qquad$
F050 N__LL $\qquad$
F051 N_OTB $\qquad$
F052 N_O_Other___
F053 N__SDN $\qquad$
F054 N_TBB $\qquad$
F055 NL OTB $\qquad$
F056 NL_OTB_070-099
F057 NL_OTB_100-109
F058 NL_OTB_110-119
F059 NL__OTB_120-
F060 NL__Other $\qquad$
F061 NL__TBB $\qquad$
F062 NL_TBB_080-099
F063 NL_TBB_100-
F064 SCO_OTB_070-099
F065 SCO_OTB_100-109
F066 SCO_OTB_110-119
F067 SCO_OTB_120-_
F068 SCO_Other $\qquad$
F069 SCO_SDN_110-119
F070 SCO_SDN_120-
F071 SCO_TBB $\qquad$
F072 SCO_TBB_080-099
F073 SCO_TBB_100-
F074 SWE_OTB_070-099
F075 SWE_OTB_100-109
F076 SWE_OTB_110-119
F077 SWE_OTB_120-
Figure 15.2.1.1. International catches(t) in area IV by country and by species for year 2002.

Figure 15.2.1.2. International catches $(\mathrm{t})$ in area IV by species and by fishing gear for year 2002.

Figure 15.2.1.3. International catches $(\mathrm{t})$ at age in area IV by species and by country for year 2002.




Figure 15.3.1.1. Catch weight by species and fleet used to test MTAC


Figure 15.3.1.2. Catch weight by species used to test MTAC


Figure 15.3.1.3. Catch percentages of species by fleet used to test MTAC


Figure 15.3.1.4. Catch percentages of species within fleet used to test MTAC


Figure 15.3.1.5. Sensitivity analysis of MTAC. Run 1: the species-specific fleet effort reduction is equal for all fleets $(p=0)$; the fleet target factor is switched off $(q=0)$; decision weights vary.


Figure 15.3.1.6. Sensitivity analysis of MTAC. Run 2: the species-specific fleet effort reduction is equal for all fleets $(p=0)$; the fleet target factor is switched on $(q=1)$; decision weights vary.


Figure 15.3.1.7. Sensitivity analysis of MTAC. Run 3: the species-specific fleet effort reduction is in proportion to the catch of the species within the catch of the fleet $(p=1)$; the fleet target factor is switched off $(q=0)$; decision weights vary.


Figure 15.3.1.8. Sensitivity analysis of MTAC. Run 4: the species-specific fleet effort reduction is in proportion to the catch of the species within the catch of the fleet $(p=1)$; the fleet target factor is switched on $(q=1)$; decision weights vary.


Figure 15.3.1.9. Sensitivity analysis of MTAC. Run 5: the species-specific fleet effort reduction is in proportion to the catch of the species by the fleet of the total catch of that species $(p=2)$; the fleet target factor is switched off $(q=0)$; decision weights vary.


Figure 15.3.1.10. Sensitivity analysis of MTAC. Run 6: the species-specific fleet effort reduction is in proportion to the catch of the species by the fleet of the total catch of that species $(p=2)$; the fleet target factor is switched on $(q=1)$; decision weights vary.


Figure 15.3.1.11. Sensitivity analysis of MTAC. Run 7: the species-specific fleet effort reduction is equal for all fleets $(p=0)$; the fleet target factor is switched off $(q=0)$; F multiplier for cod varies.


Figure 15.3.1.12. Sensitivity analysis of MTAC. Run 8: the species-specific fleet effort reduction is equal for all fleets $(p=0)$; the fleet target factor is switched on $(q=1) ; F$ multiplier for cod varies.


Figure 15.3.1.13. Sensitivity analysis of MTAC. Run 9: the species-specific fleet effort reduction is in proportion to the catch of the species within the catch of the fleet $(p=1)$; the fleet target factor is switched off $(q=0)$; F multiplier for cod varies


Figure 15.3.1.14. Sensitivity analysis of MTAC. Run 10: the species-specific fleet effort reduction is in proportion to the catch of the species within the catch of the fleet $(p=1)$; the fleet target factor is switched on $(q=1)$; F multiplier for cod varies.


Figure 15.3.1.15. Sensitivity analysis of MTAC. Run 11: the species-specific fleet effort reduction is in proportion to the catch of the species by the fleet of the total catch of that species $(p=2)$; the fleet target factor is switched off ( $q=$ 0 ); F multiplier for cod varies.


Figure 15.3.1.16. Sensitivity analysis of MTAC. Run 12: the species-specific fleet effort reduction is in proportion to the catch of the species by the fleet of the total catch of that species $(p=2)$; the fleet target factor is switched on $(q=1)$; F multiplier for cod varies.


Figure 15.3.2.1. Fleet effort factor as function of the decision weight on cod. the species-specific fleet effort reduction is in proportion to the catch of the species within the catch of the fleet $(p=1)$; the fleet target factor is switched on $(q=$ 1).


Figure 15.3.2.2. F multipliers by species as a function of the decision weight on cod. F multipliers by species are presented by dots. F multipliers for cod are presented by the line. the species-specific fleet effort reduction is in proportion to the catch of the species within the catch of the fleet $(\mathrm{p}=1)$; the fleet target factor is switched on $(\mathrm{q}=1)$.


Figure 15.3.2.3. Fleet effort factor as function of the decision weight on cod. the species-specific fleet effort reduction is in proportion to the catch of the species by the fleet of the total catch of that species $(\mathrm{p}=2)$; the fleet target factor is switched on $(q=1)$.


Figure 15.3.2.4. F multipliers by species as a function of the decision weight on cod. F multipliers by species are presented by dots. F multipliers for cod are presented by the line. the species-specific fleet effort reduction is in proportion to the catch of the species by the fleet of the total catch of that species $(p=2)$; the fleet target factor is switched on ( $q=1$ ).


Figure 15.3.2.5. Fleet effort factor as function of the decision weight on cod. the species-specific fleet effort reduction is in proportion to the catch of the species within the catch of the fleet $(p=1)$; the fleet target factor is switched on ( $q=$ 1).


Figure 15.3.2.6. F multipliers by species as a function of the decision weight on cod. F multipliers by species are presented by dots. F multipliers for cod are presented by the line. the species-specific fleet effort reduction is in proportion to the catch of the species within the catch of the fleet $(\mathrm{p}=1)$; the fleet target factor is switched on $(\mathrm{q}=1)$.







Figure 15.3.2.7. Fleet effort factor as function of the decision weight on cod. the species-specific fleet effort reduction is in proportion to the catch of the species by the fleet of the total catch of that species $(p=2)$; the fleet target factor is switched on ( $q=1$ ).


Figure 15.3.2.8. F multipliers by species as a function of the decision weight on cod. F multipliers by species are presented by dots. F multipliers for cod are presented by the line. the species-specific fleet effort reduction is in proportion to the catch of the species by the fleet of the total catch of that species $(p=2)$; the fleet target factor is switched on $(\mathrm{q}=1)$.


Figure 15.3.2.9. Sensitivity analysis of MTAC. The species-specific fleet effort reduction is in proportion to the catch of the species within the catch $(p=1)$; the fleet target factor is switched of $(q=0)$; cod F-mult=0; decision weights vary.

Fleet factor plot:


F-multiplier plot:
TAC plot:


Figure 15.3.2.10. Sensitivity analysis of MTAC. The species-specific fleet effort reduction is in proportion to the catch of the species by the fleet of the total catch of that species $(p=2)$; the fleet target factor is switched of $(q=0)$; cod Fmult $=0$; decision weights vary.



Figure 15.3.2.11. Sensitivity analysis of MTAC. The species-specific fleet effort reduction is in proportion to the catch of the species within the catch $(\mathrm{p}=1)$; the fleet target factor is switched on $(\mathrm{q}=1)$; cod F -mult=0; decision weights vary.

Fleet factor plot:


F-multiplier plot:
TAC plot:


Figure 15.3.2.12. Sensitivity analysis of MTAC. The species-specific fleet effort reduction is in proportion to the catch of the species by the fleet of the total catch of that species $(\mathrm{p}=2)$; the fleet target factor is switched on $(\mathrm{q}=1)$; cod F mult $=0$; decision weights vary.

Fleet factor plot:


F-multiplier plot:
TAC plot:


Figure 15.3.2.13. Sensitivity analysis of MTAC. The species-specific fleet effort reduction is in proportion to the catch of the species within the catch $(p=1)$; the fleet target factor is switched of $(q=0)$; cod $F$-mult $=0.2$; decision weights vary.

Fleet factor plot:


F-multiplier plot:
TAC plot:


Figure 15.3.2.14. Sensitivity analysis of MTAC. The species-specific fleet effort reduction is in proportion to the catch of the species by the fleet of the total catch of that species $(p=2)$; the fleet target factor is switched of $(q=0)$; cod Fmult $=0.2$; decision weights vary.

Fleet factor plot:


F-multiplier plot:
TAC plot:


Figure 15.3.2.15. Sensitivity analysis of MTAC. The species-specific fleet effort reduction is in proportion to the catch of the species within the catch $(\mathrm{p}=1)$; the fleet target factor is switched on ( $\mathrm{q}=1$ ); cod F-mult=0.2; decision weights vary.


#### Abstract

Fleet factor plot:




F-multiplier plot:
TAC plot:


Figure 15.3.2.16. Sensitivity analysis of MTAC. The species-specific fleet effort reduction is in proportion to the catch of the species by the fleet of the total catch of that species $(\mathrm{p}=2)$; the fleet target factor is switched on $(\mathrm{q}=1)$; cod F mult $=0.2$; decision weights vary.


F-multiplier plot:
TAC plot:


This section consists of three parts:

- comments on SGPRP suggestions
- general comments on the SGPA/SGPRP approach (including simulations of segmented regression)
- updating reference points when the assessment setup has changed


### 16.1 Stock specific comments on the PA reference points proposed by the Study Group on Precautionary Reference Points for Advice on Fishery Management.

### 16.1.1 Cod in the North Sea, VIId and Skagerrak (cod-347d)

SGPRP: "For cod in the North Sea, the segemented regression was significant ( $\mathrm{p}<0.01$ ). The change point was around 160 thousand tonnes and was not very sensitive to the addition of years in the retrospective analysis. See the conclusions sections for a more detailed discussion of the results for North Sea cod. The WG is requested to evaluate a change in reference points for North Sea cod."

WGNSSK: the WG agrees with SGPRP that $S^{*}=160000$ tonnes is a candidate for $\mathbf{B}_{\text {lim }}$. Section 16.1 describes different sources of estimation bias. The $S^{*}$ is close to the previous MBAL (where recruitment was thought to be impaired). Using the proposed value as a new $\mathbf{B}_{\text {lim }}$ and an associated new $\mathbf{B}_{\mathrm{pa}}$ (not estimated yet) as basis for advice would have a rather large impact on the perception of recovery plans. See also the subsection on biological reference points in section 3 of this report.

### 16.1.2 North Sea Haddock (had-34)

SGPRP: "This stock shows a very high recruitment variation. There is one exceptional and two extremely high yearclasses. The segmented regression is not significant. There appear to be two different states of the change point which is dependent on the number of years included in the analysis. This stock is categorized as a spasmodic stock that merits special consideration for the estimation of $\mathbf{F}_{\text {loss }}$ rather than biomass reference points directly. The WG is requested to evaluate a change in reference points for North Sea haddock based on F reference points primarily."

WGNSSK: The most obvious feature of this SRR relationship are sporadic large recruitments. Even without these occasional outbreaks there is little in the way of a stock-recruit relationship. The WG has not commented on the suggestion to work with $F$ reference points primarily.



### 16.1.3 Norway pout

SGPRP: "The segmented regression is not significant. The regression is sensitive to individual years being removed. There exists a trend in SSQ in the retrospective analysis. Classification: no $\mathrm{S} / \mathrm{R}$ relationship and relatively narrow spread in SSB (use $\mathbf{B}_{\text {loss }}$ as proxy for $\mathbf{B}_{\text {lim }}$ ). $\mathbf{B}_{\text {loss }}$ is close to the current $\mathbf{B}_{\text {lim }}$. Therefore the current reference points can be maintained. "

WGNSSK: There seems to be two levels of the stock-recruitmentrelationship for the stock, a level well above and well below recruitment around 125 billions. There seems not to be periodical and historical trends to explain these two levels.

Historically, there has been no high recruitments below $150,000 \mathrm{t}$ which indicates at least some relationship between R and SSB even if the segmented regression was not significant.

Evaluation of the stock-recruitment relationship should be carried out, taking into account biological processes and fisheries interactions. This will allow medium term simulations to be carried out which are needed before decisions on limit reference points are taken.

The working group recommends that either $\mathbf{B}_{\mathrm{pa}}$ should be set at the breakpoint of the segmented regression OR that $\mathbf{B}_{\text {loss }}$ should be used as the $\mathbf{B}_{\text {lim }}$.

### 16.1.4 Plaice North Sea

SGPRP: "The segmented regression is not significant. There appear to be two different states of the change point which is dependent on the number of years included in the analysis. The regression is sensitive to the addition of the 1996 data and onwards in the retrospective analysis. Classification: no S/R relationship and relatively large spread in SSB (use $\mathbf{B}_{\text {loss }}$ as proxy for $\mathbf{B}_{\text {lim }}$ ). Assessment has been substantially revised compared to the assessment that gave rise to the original estimate of $\mathbf{B}_{\text {lim }}$ (as $\mathbf{B}_{\text {loss }}$ ). The WG is requested to evaluate a change in reference points for North Sea plaice based on an updated value of $\mathbf{B}_{\text {loss }}, "$

WGNSSK: The WG discussed how to estimate $\mathbf{B}_{\text {lim }}$, in which process three possible bases for $\mathbf{B}_{\text {lim }}$ estimates came up:

- Using $\mathbf{B}_{\text {lim }}$ with an updated value of $\mathbf{B}_{\text {loss }}$ (134 000 tonnes)
- Keep $\mathbf{B}_{\text {lim }}$ at current level (210 000 tonnes)
- Set $\mathbf{B}_{\mathrm{lim}}$ is at $\mathrm{S}^{*}$, given by segmented regression, at 154000 tonnes

The WG did not make a choice between these three options but has explored the consequences of the three options. This is further discussed in section 16.3.3.



SSB

### 16.1.5 Plaice Skagerrak

SGPRP: "The segmented regression is not significant. The regression is sensitive to the addition of the 1998 data and onwards in the retrospective analysis. Classification: Inverse relationship between SSB and R (use $\mathbf{B}_{\text {loss }}$ as proxy for $\mathbf{B}_{\mathrm{pa}}$ ). The WG is requeste to evaluate the $\mathbf{B}_{\text {loss }}$ as a potential $\mathbf{B}_{\mathrm{pa}}$ for this stock."

WGNSSK: This stock was up for an update assessment during this working group. The working group does not agree with the study group proposal of $\mathbf{B}_{\text {loss }}$ as a candidate for $\mathbf{B}_{\mathrm{pa}}$.

- The reason for the inverse relationship between the stock and recruits are not known. Can the linkage with the North Sea explain this?
- The performance of the stock forecasts has not been evaluated.

Not setting a biomass reference point should be considered.

### 16.1.6 Plaice VIId

SGPRP: "The segmented regression is not significant. Classification: no $S / R$ relationship and relatively narrow spread in SSB (use $\mathbf{B}_{\text {loss }}$ as proxy for $\mathbf{B}_{\text {pa }}$ ?). $\mathbf{B}_{\text {loss }}$ is close to the current $\mathbf{B}_{\text {lim }}$. The working group should review the situation."

WGNSSK: This stock was up for an update assessment during this working group. The working group does not agree with the study group proposal of $\mathbf{B}_{\text {loss }}$ as a candidate for $\mathbf{B}_{\mathrm{pa}}$. This stock has experienced fishing mortalities well above $\mathbf{F}_{0.1}$ for a long number of years. Therefore, the WG suggests to use $\mathbf{B}_{\text {loss }}$ as the $\mathbf{B}_{\text {lim }}$, in line with the reasoning by SGPRP.



### 16.1.7 Saithe North Sea and VIa

SGPRP: "The segmented regression is not significant. The analysis is also considered invalid because recruitment has been included up to the 1999 yearclass which is taken as a mean recruitment in the assessment. The analysis was sensitive to the addition of 1992 data and onwards in the retrospective analysis. There appear to be two different states of the change point which is dependent on the number of years included in the analysis. Classification: no $S / R$ relationship and relatively large spread in SSB (use $\mathbf{B}_{\text {loss }}$ as proxy for $\mathbf{B}_{\mathrm{lim}}$ ). However, because of the problems in the analysis mentioned above, a new analysis should be carried out with fewer years included. The WG is requested to carry out a new segmented regression analysis with the appropriate number of years included. The WG is requested to analyse a potential update of the $\mathbf{B}_{\text {lim }}$ reference point based on the $\mathbf{B}_{\text {loss }}$."

WGNSSK: The reference points for saithe in sub-area IV, VI and division IIIa have not been evaluated since 1999. The SGPAFM then used the MBAL concept to define the $\mathbf{B}_{\mathrm{pa}}$. Following this rationality an appropriate $\mathbf{B}_{\mathrm{pa}}$ for the combined stock in the North Sea, Skagerrak and West of Scotland was set to $200,000 \mathrm{t}$. There are indications of increased probability of impaired recruitment for SSB values below $200,000 \mathrm{t}$ from the SSB-recruitment plot. However, the SSB-recruitment plot is scattered. $\mathbf{B}_{\text {loss }}$ amounts to $106,000 \mathrm{t}$ and $\mathbf{B}_{\text {lim }}$ is set at $\mathbf{B}_{\text {loss }}$.

### 16.1.8 Sandeel

SGPRP: "The segmented regression is not significant. The regression is sensitive to two individual years being removed; for all other years the change point appears to be constant (this could be a bug in the program?). There is a clear upward trend in the residual SSQ in the retrospective analysis. Classification: no $\mathrm{S} / \mathrm{R}$ relationship and relatively large spread in SSB (use $\mathbf{B}_{\text {loss }}$ as proxy for $\mathbf{B}_{\mathrm{lim}}$ ). The WG is requested to evaluate a change in reference points for North Sea sandeel based on an updated value of $\mathbf{B}_{\text {loss }} "$.

WGNSSK: Using the new $\mathbf{B}_{\text {loss }}$ as a reference point, instead as previously $\mathbf{B}_{\lim }(430.000 \mathrm{t})$ and $\mathbf{B}_{\mathrm{pa}}(600.000 \mathrm{t})$, will only lead to a minor change in the perception of the stock situation for sandeels in IV. Given the uncertainties in the stock assessment the previously proposed $\mathbf{B}_{\text {lim }}$ at 430.000 t seems appropriate.


SSB


SGPRP: "The segmented regression is not significant. There appear to be two different states of the change point which is dependent on the number of years included in the analysis. The regression is sensitive to the addition of the 1997 data and onwards in the retrospective analysis. Classification: no $\mathrm{S} / \mathrm{R}$ relationship and relatively large spread in SSB (use $\mathbf{B}_{\text {loss }}$ as proxy for $\mathbf{B}_{\text {lim }}$ ). Given that the new $\mathbf{B}_{\text {loss }}$ is close to the old $\mathbf{B}_{\text {lim }}$, the current reference points can be maintained."

WGNSSK: In the report of the SGPRP (ICES 2003) North Sea sole was classified as having no $\mathrm{S} / \mathrm{R}$ signal and a relatively large spread in SSB, and it was stated that the current reference points could be maintained because $\mathbf{B}_{\text {loss }}(21000)$ was close to $\mathbf{B}_{\text {lim }}(25000)$. The current assessment estimates $\mathbf{B}_{\text {loss }}$ at 20941 . Therefore, the WG proposes that the current reference points can still be maintained: $\mathbf{B}_{\text {lim }}$ at 25000 and $\mathbf{B}_{\mathrm{pa}}$ at 35000 .

### 16.1.10 Sole Eastern Channel

SGPRP: "The segmented regression is not significant. There appears to be only one state of the change point but with different slopes dependent on the number of years included in the analysis. The regression is insensitive to the addition of the data in the retrospective analysis. Classification: no $\mathrm{S} / \mathrm{R}$ relationship and relatively narrow spread in SSB (use $\mathbf{B}_{\text {loss }}$ as proxy for $\mathbf{B}_{\mathrm{pa}}$ ). The WG is requested to evaluate the $\mathbf{B}_{\text {loss }}$ as a potential $\mathbf{B}_{\mathrm{pa}}$ for this stock."

WGNSSK: See the comments for Plaice in in VIId.



### 16.1.11 Whiting North Sea

SGPRP: "The segmented regression was considered significant ( $\mathrm{p}<0.01$ ). The change point was around 285 thousand tonnes. There is a clear upward trend in the residual SSQ in the retrospective analysis. If the change point would be interpreted as a $\mathbf{B}_{\text {lim }}$ point, this would imply a substantial revision of the reference point from 225,000 to 285,000 tonnes. See the conclusions sections for a more detailed discussion of the results for North Sea whiting. The WG is requested to evaluate a change in reference points for North Sea whiting."

WGNSSK: Given the ICES definition of Blim, the segmented regression gives satisfactory results for whiting. The WG notes that using the proposed value as a new Blim, with an associated new Bpa (still to be estimated) as basis for advice would have a substantial impact on the advice.

### 16.2 Generic comments on the new PA reference point system

### 16.2.1 Simulations on segmented regressions

If $\mathrm{S}^{*}$ is a stable estimate of the level of biomass at which recruitment is impaired then it would be expected, in contrast to $\mathbf{B}_{\text {loss }}$ (the lowest observed biomass), that there should be a point at which additional S-R pairs from low SSBs will no longer affect the estimate of S*. Therefore simulations were performed for North Sea cod, haddock, plaice and sole to determine the stability of $S^{*}$ and in particular the relationship between $S^{*}$ and the availability of observations from low SSBs.

In addition for North Sea cod the sensitivity of $S^{*}$ (and the associated limit fishing mortality reference point derived from) it to changes in data quality and the environment was evaluated. The intention was to determine how robust the estimate is relative to assumed underlying stock dynamics and data quality.

## Evaluation of the relationship between $S^{*}$ and data points from low SSBs

A time series of SSB that linearly declined from half of Virgin to zero biomass was generated for 50 years. This was then used to generate recruitments residuals drawn from a lognormal distribution for two CVs ( $30 \%$ or $50 \%$ ) assuming a Ricker stock recruitment relationship for the roundfish and Beverton and Holt for the flatfish stocks (see Table 16.1. and Figure 16.1).

Figure 16.2 evaluates how estimates of $\mathrm{S}^{*}$ are influenced by the availability of data from low SSB levels. In the first panel (North Sea cod with a CV of $30 \%$ ) it can be seen that $S^{*}$ linearly declines for the first 40 years. The lowest estimate is equal to the lowest observed SSB ( $\mathbf{B}_{\text {loss }}$ ). After 40 years the linear decline in $\mathrm{S}^{*}$ as indicated by box plots is less pronounced, indicating that $S^{*}$ is less influenced by additional data points when data are available from SSBs at about $5 \%$ of Virgin SSB. For an assumed CV of $50 \%$ levelling off is even less pronounced. A similar result is seen for haddock but the levelling off occurs slightly earlier. A CV of $50 \%$ results in more variability in the observed relationship between $S^{*}$ and number of data points than a CV of $30 \%$. For the flatfish stocks $\mathrm{S}^{*}$ declines linearly with SSB for all stock sizes and there is no evidence of a stabilisation in the estimate of $\mathrm{S}^{*}$. Increasing the CV increases the variance of the relationship.

Since $S^{*}$ is intended to indicate a level of biomass at which recruitment is impaired the ratio of the expected recruitment at $S^{*}$ to maximum recruitment is shown in figure 16.3. For North Sea cod and haddock expected recruitment when S-R pairs are available in this simulation from low SSBs is about $80 \%$ of the maximum level. However for the flatfish stocks expected recruitment declines sharply as more data points are obtained from S-R pairs obtained from low SSB levels.

In conclusion it appears that where the underlying stock recruitment relationship is of the Ricker form then there is no point at which the estimate of $S^{*}$ stops changing as additional data points from low SSBs are obtained, but the rate of change to the $S^{*}$ estimate is reduced. However for an underlying Beverton and Holt relationship the reduction in the estimate of $\mathrm{S}^{*}$ continues.

These results are conditional on the assumed stock recruitment relationship. However, alternative equally plausible stock recruitment relationship could also have been evaluated. The assumed stock recruitment relationships assume that recruitment declines to the origin although there is evidence that recruitment can fail at SSBs greater than 0 . Also occasional high recruitments are seen even at low biomass. The impact of such behaviour could also be explored.

## Evaluation of impact on $S^{*}$ of discarding, mis-reporting and regime change

A more detailed evaluation of $S^{*}$ for North Sea cod was performed by O’Brien et al (2003) and the results are summarised in figures 4 and 5. These shows the results from simulations of a North Sea cod like stock, using three underlying stock recruitment relationships, two treatments evaluated the effect of bias in the stock assessment data (due to discarding and misreporting) and a regime shift where the expected recruitment declined in the recent period.

Figures 16.4 compare $S^{*}$ to $\mathbf{B}_{\text {loss }}$ and Figure 5 compares $\mathbf{F}_{\text {lim }}$ (derived from $S^{*}$ ) to $\mathbf{F}_{\text {loss, }}$ O'Brien et al (op. cit.). In Figure 16.4 for each S-R relationship times treatment panel, the assumed S-R relationship is shown; the points represent $\mathrm{R}^{*}$ - $\mathrm{S}^{*}$ (blue) or the expected recruitment at $\mathbf{B}_{\text {loss }}$ (red). The grey and pink points represent the estimates without systematic departures in the data. The marginal empirical distributions of S* * and $\mathbf{B}_{\text {loss }}$ are shown.

It can be seen that for a Ricker S-R model S* tends to occur at higher values of SSB and the empirical distribution is more markedly peaked than those for a Beverton-Holt S-R or constant S-R relationships. Also S* tends to occur at higher SSBs than $\mathbf{B}_{\text {loss }}$ for the Ricker S-R model, slightly higher for the Beverton-Holt S-R model and at $\mathbf{B}_{\text {loss }}$ for constant recruitment model. Discarding appears to have little affect on the estimates of the biomass reference points.

When increasing mis-reporting occurs $S^{*}$ occurs at higher SSB levels whilst $\mathbf{B}_{\text {loss }}$ occurs at lower values. However, the effect is much less pronounced for $S^{*}$ than it is for $\mathbf{B}_{\text {loss }}$. The consequences for a change in the recent recruitment levels are very similar to those produced by mis-reporting and might imply that in reality it will not be possible to distinguish between the two cases.

In Figure 16.5 the first sub-plot shows the expected slope at the origin and contrasts it with the assumed S-R relationship. The lower sub-plots show the empirical distributions of $\mathbf{F}_{\text {lim }}$ (derived from $S^{*}$ ) and $\mathbf{F}_{\text {loss }}$. In contrast to the biomass reference points the fishing mortality reference points are much less sensitive either to bias in the data, to changes in the dynamics, or to the S-R relationships.

## Discussion

S*, the estimate of the biomass at which recruitment is impaired, is only one of a number of candidate approaches that might be employed and has been adopted by ICES for the revision of the reference points for North-east Arctic cod (ICES 2003) at the May 2003 meeting of ACFM. Ultimately, the choice of method and estimation procedure will depend upon specific stock dynamics, knowledge of fisheries and management objectives. However, in reality our knowledge of the stock and fishery dynamics will always be incomplete and it may be difficult to choose between alternative hypotheses about the dynamics. There will also be confounding between changes in the dynamics and the response to management so that it might not be possible to distinguish between real effects and biases in the data. The provision of advice, in respect of management objectives, cannot be postponed until we have full knowledge of the relevant processes. It is therefore important, that any advice is robust to our uncertainty in the dynamic processes and our ability to monitor and control them. Therefore, the simulation approach is important in that it allows the robustness of the change-point method for estimating $S^{*}$ and its corresponding fishing mortality to be evaluated.

		Ricker	Beverton \& Holt	Constant
Discarding	$\mathbf{S}^{*}$	No noticeable effect	No noticeable effect	No noticeable effect
	$\mathbf{F}_{\text {lim }}$	No noticeable effect	No noticeable effect	No noticeable effect
Misreporting	$\mathbf{S}^{*}$	Positively biases $\mathbf{S}^{*}$	Positively biases $\mathbf{S}^{*}$	Positively biases $\mathbf{S}^{*}$
	$\mathbf{F}_{\text {lim }}$	Little effect	Little effect	Little effect
Decline in R	$\mathbf{S}^{*}$	Positively biases $\mathbf{S}^{*}$	Positively biases $\mathbf{S}^{*}$	Positively biases $\mathbf{S}^{*}$
	$\mathbf{F}_{\text {lim }}$	Little effect	Little effect	Little effect

In general, it appears from the simulations that systematic departures in the data tend to increase the estimate of $\mathrm{S}^{*}$ (see text table above). Presumably, this may be because all treatments cause the perceived recent recruitment to decline, recent SSBs are also lower and consequently, the change-point occurs at a higher value of SSB. However, note that the opposite effect is seen for $\mathbf{B}_{\text {loss }}$. Discarding had minimal effect presumably because discard mortality was less than natural mortality. The fishing mortality corresponding to $S^{*}$ is similar in magnitude to that estimated by $\mathbf{F}_{\text {loss }}$.

The following points are clear from the results:

- In contrast to the biomass reference points the fishing mortality reference points are much less sensitive either to bias in the data, to changes in the dynamics, or to the $\mathrm{S}-\mathrm{R}$ relationships.
- minimal difference between estimates of $S^{*}$ from the Beverton-Holt and constant stock-recruitment models;
- minimal effect of discards on biomass reference points;
- the other treatments (mis-reporting and a decline in recruitment) both suggest that $\mathbf{B}_{\text {loss }}$ is biased downwards and $\mathrm{S}^{*}$ biased upwards;
- In the case of a recent decline in recruitment the effect is to increase the value of $S^{*}$, this means that a decline in recruitment and hence the carrying capacity of the stock results in the limit biomass value being increased which is counter-intuitive.
- F corresponding to $S^{*}$ tends to be slightly biased downwards in the mis-reporting and decline in recruitment treatments;
- $\quad \mathbf{F}_{\text {loss }}$ tends to be slightly larger than the F corresponding to $\mathrm{S}^{*}$. The latter is not unexpected since both these estimates of $F$ are linear proxies for $\mathbf{F}_{\text {crash }}$ but $\mathbf{F}_{\text {loss }}$ is estimated at the lower extreme range of the data margin and hence, nearer to the origin. Both of the estimates of fishing mortality seem less affected by the systematic departures explored.

The next step will be to identify appropriate pa-values for biomass and fishing mortality that avoid the lim-values with a specified probability, and take into account the management regime.

Previously, it has been demonstrated that two different ways to formulate advice - one based on a TAC constraint and the other based upon status quo F - could imply different precautionary reference values for fishing mortality and biomass if there is an tendency for an overall assessment bias. (Anon 2002). One should note that any future change to the current basis for advice is most likely to change the corresponding precautionary reference values. Before recommendations can be made for specific target levels or harvesting strategies scenario modelling should be used for the investigation of candidate reference points and their incorporation within a management procedure. Such methodological investigations fall within the remit of the ICES Working Group on Methods on Fish Stock Assessments [WGMG] and further research is planned for presentation at their next meeting in 2004.

### 16.2.2 Comments on the proposed method to derive PA reference points.

The Study Group on Precautionary Reference Points for Advice on Fishery Management stated in their 2003 report that: " $\ldots$. the distance between LIMIT points and PA point (the distance between $\mathbf{B}_{\text {lim }}$ and $\mathbf{B}_{\mathrm{pa}}$ and between $\mathbf{F}_{\text {lim }}$ and $\mathbf{F}_{\mathrm{pa}}$ respectively) relate to our ability to measure the present spawning stock biomass and fishing mortality and are thus related to data quality and estimation methodology."

The Study Group stated later in the report that: "SGPA 02b noted that the comparison between the observed SSB and the true SSB can be made in either the assessment year, or in the forecast year, and concluded that the assessment year should be used since that was the value that was used to compare with the reference point value in giving the advice. However, at the present meeting SGPRP concluded that to be consistent with the estimation of assessment uncertainty, the observed SSB should be that forecast for the end of the TAC year."

WGNSSK agrees with the Study Group that the prediction error of the SSB after fishing could be used as the basis for calculating the distance between $\mathbf{B}_{\mathrm{lim}}$ and $\mathbf{B}_{\mathrm{pa}}$.

Some important issues to adress:

1) Assuming status quo $F$ in the intermediate year would give a different estimate of $\mathbf{B}_{\mathrm{pa}}$ than using a TAC constraint if the assessment has a tendency to be biased. The Study Group on Biological Reference Points for Northeast Arctic Cod estimated one $\mathbf{B}_{\mathrm{pa}}$ for assuming status quo F in the intermediate year and one $\mathbf{B}_{\mathrm{pa}}$ assuming a TAC constraint. (Anon 2003).
2) The prediction error brought forward from the assessment error is much larger than the assessment error and also depending on F . This means that the estimation of $\mathbf{B}_{\mathrm{pa}}$ must rely on assumptions regarding the level of F or possibly even different $\mathbf{B}_{\mathrm{pa}}$ 's for different F levels. (If you climb higher you need a bigger safety net.)
3) If $\mathbf{B}_{\mathrm{pa}}$ is estimated assuming $\mathrm{F}=\mathbf{F}_{\mathrm{pa}}$ in the prediction year then aiming at $\mathrm{F}>\mathbf{F}_{\mathrm{pa}}$ should be evaluated relative to an increased ( F dependent) $\mathbf{B}_{\mathrm{pa}}$. A not so uncommon wish from managers is to aim at $\mathbf{B}_{\mathrm{pa}}$ allowing for $\mathrm{F}>\mathbf{F}_{\mathrm{pa}}$. And the opposite case: If managers (?) are rebuilding the stock and aiming at $\mathrm{F}<\mathbf{F}_{\mathrm{pa}}$ then the safety margin represented by the distance between $\mathbf{B}_{\mathrm{lim}}$ and $\mathbf{B}_{\mathrm{pa}}$ could be reduced.
4) Fishing at higher F's (above 0.7) makes it almost impossible to use a deterministic forecast for a single yearclass if the assessment error has overestimated the yearclass with $20 \%$ or more. The predicted catch of the yearclass in the TAC year will easily be higher than the yearclass size after the intermediate year. A stock completely dominated by one yearclass could easily demonstrate such effects. General symptoms of overestimation would be that the fishery was unable to take the TAC or there is a change in fishing pattern (compensating the unexpected low level of one or more yearclasses with fishing on younger agegroups).
5) The WG urges the WGMG or SGPRP to come forward with practicle software solutions to implement the estimation of prediction error without having to go down the detailed route that was followed for North East Arctic cod.

### 16.3 Update of reference points for "changed" assessments

### 16.3.1 North Sea Cod $(\operatorname{cod}-347 d)$

Changes to the range of ages used for the assessment of this stock resulting from the lack of reliable tuning information at the oldest ages necessitated a recalculation of the PA reference points for this stock. The PA soft program was therefore applied to the stock and exploitation estimates derived from the XSA model fit based on the fit to landings data only. The stock and recruit time series used for the estimation of reference points was $1963-2001$, that is the 1962 - 2000 year classes. The final year of XSA estimates was removed from the estimation procedure. Figure 3.9.2 and Table 3.9.1 present the PAsoft output from the reference point estimation procedure.

The revised assessment age range has not significantly altered the level or trend in the estimates of SSB and recruitment. Therefore the structure of the stock and recruitment data pairs is relatively unchanged. This implies that the position of the break point in the stock and recruitment plot is unchanged at about 150,000 t. There remains a high probability of poor recruitment at SSB below this value. ACFM has previously recommended that this value should be used as $\mathbf{B}_{\mathrm{pa}}$ but this is currently under review.

Using the previously applied criteria for the selection of fishing mortality reference points (ACFM report 2002) $\mathbf{F}_{\text {lim }}=$ $\mathbf{F}_{\text {loss }}$, the new value of $\mathbf{F}_{\text {loss }}$ estimated for this stock is 0.91 based on the median of the bootstraped value derived from Gloss. This compares to the value of 0.86 based on the $1-11+$ age range and $\operatorname{Fbar}(2-8)$ used previously by this working group. Using the previous ACFM formulation $\mathbf{F}_{\mathrm{pa}}$ is therefore taken from the 5th percentile of $\mathbf{F}_{\text {loss }}$ and is estimated to be 0.72 . This compares with the previous value of 0.65 .

The working group notes that the $\mathbf{F}_{\text {loss }}$ estimate may be an over-estimate. The PAsoft diagnostic plots indicate that nonparametric smoother is over estimating the recent low recruitment near to the origin of the stock and recruitment relationship. Given that region around the origin of the stock and recruitment curve is currently being explored, and that there is a well defined curvature in the pairs of estimates, the working group consider that a parametric model estimate of the slope at the origin may be more robust to random variation in recent recruitment. This should be examined in detail before the $\mathbf{F}_{\text {lim }}$ and $\mathbf{F}_{\mathrm{pa}}$ values are revised.

The estimates of biological reference points and management reference points for cod are given in the text tables below.

Management reference point	1998 choice	2003 proposal
$\mathbf{B}_{\text {lim }}$	$70,000 \mathrm{t}$	$70,000 \mathrm{t}$
$\mathbf{B}_{\mathrm{pa}}$	$150,000 \mathrm{t}$	$150,000 \mathrm{t}$
$\mathbf{F}_{\mathrm{lim}}$	0.86	0.91
$\mathbf{F}_{\mathrm{pa}}$	0.65	0.72

### 16.3.2 North Sea Haddock (had-34)

The reduction of the mean $F$ age range from 2-6 to 2-4 necessitated a reanalysis of the biological reference points for haddock, particularly those based on $F$. The PASoft program was run on the output from the final-configuration XSA model. A lowess span of 0.8 was chosen on the basis of the AIC minimum shown in Figure 4.9.1.

The stock-recruit plot with a lowess smoother is shown in Figure 4.9.2. The most obvious feature of this relationship are sporadic large recruitments. Even without these occasional outbreaks there is little in the way of a stock-recruit relationship.

ACFM state that $\mathbf{B}_{\text {lim }}$ for this stock is determined as a smoothed estimate of $\mathbf{B}_{\text {loss }}$ and $\mathbf{B}_{\text {pa }}$ is $1.4 * \mathbf{B}_{\text {lim }}$. A new estimate of $\mathbf{B}_{\text {loss }}$ was not made in this assessment, but there appears to be no compelling reason to change the current $\mathbf{B}_{\text {lim }}$ and $\mathbf{B}_{\mathrm{pa}}$. The average scaling factor between F2-6 and F2-4 is 0.97 over the whole time-series. The differences between the two average fishing mortalities may have been slightly larger in recent years. Nevertheless, the WG proposes that in the first instance the fishing mortality reference points with the new age range can be kept at the old values: $\mathbf{F}_{\mathrm{pa}}=0.7$ and $\mathbf{F}_{\text {lim }}=1.0$.

	$\mathbf{F}_{\max }$	$\mathbf{F}_{0.1}$	$\mathbf{F}_{\operatorname{med}}$	$\mathbf{F}_{\mathrm{pa}}$	$\mathbf{F}_{\lim }$	$\mathbf{B}_{\mathrm{pa}}$	$\mathbf{B}_{\lim }$
2002	$0.25^{*}$	0.18	0.49	0.7	1.0	$140,000 \mathrm{t}$	$100,000 \mathrm{t}$
2003	$0.32^{*}$	0.19	0.57	0.7	1.0	$140,000 \mathrm{t}$	$100,000 \mathrm{t}$

*corresponding to HC landings only

### 16.3.3 Plaice North Sea

In the report of the SGPRP (ICES 2003) North Sea plaice was classified as having no S/R signal and a distinct plateau (wide range of SSB), and it was suggested that $\mathbf{B}_{\text {lim }}$ should be estimated according to standard method. The segmented regression for North Sea plaice presented by SGPRP (ICES 2003) is not significant, and "the WG is requested to evaluate a change in reference points for North Sea plaice based on an updated version of $\mathbf{B}_{\text {loss }}$ ". Up to now $\mathbf{B}_{\text {lim }}$ was set at 210000 tonnes.

The WG discussed how to estimate $\mathbf{B}_{\text {lim }}$, in which process three possible bases for $\mathbf{B}_{\text {lim }}$ estimates came up:

- Using $\mathbf{B}_{\text {lim }}$ with an updated value of $\mathbf{B}_{\text {loss }}$ (134 000 tonnes); this is the SSB in 1997 which was the basis for setting the current $\mathbf{B}_{\text {lim }}$. The original estimate of $210,000 \mathrm{t}$. has been revised over subsequent assessment and is now estimated to be 134,000 tonnes.
- This choice is consistent with the previous choice of $\mathbf{B}_{\text {lim }}$ set at $\mathbf{B}_{\text {loss }}$.
- Since there is no significant $\mathrm{S} / \mathrm{R}$ relation, no impaired recruitment is observed at any observed SSB.

However:

- The Lowess smoother through the SSR plot shows a breakpoint around 270,000 tonnes.
- There are now six years of low recruitment at relatively low SSB. This may point to recruitment impairment.
- Keep $\mathbf{B}_{\text {lim }}$ at current level (210 000 tonnes)
- The Lowess smoother through the SSR plot shows are breakpoint around 270,000 tonnes.
- There are now six years of low recruitment at relatively low SSB. This may point to recruitment impairment.

However:

- The change in age range for the reference $F$ necessitates re-establishment of $\mathbf{F}_{\text {lim }}$ and $\mathbf{F}_{\mathrm{pa}}$. Following the technical basis (ACFM 2002) for these reference points will result in them being inconsistent with $\mathbf{B}_{\text {lim }}$ and $\mathbf{B}_{\mathrm{pa}}$ remaining at their current values.
- The technical basis for the present $\mathbf{B}_{\mathrm{lim}}$ was $\mathbf{B}_{\mathrm{lim}}=\mathbf{B}_{\mathrm{loss}}$. Keeping it at 210000 has no basis.
- Set $\mathbf{B}_{\mathrm{lim}}$ is at $\mathrm{S}^{*}$, given by segmented regression, at 154000 tonnes
- Although the segmented regression is not significant, it may still give the best estimate of SSB below which recruitment is impaired.
- $\mathrm{S}^{*}$ corresponds to the lowest observed SSB at which a strong year class can still be produced (this argument is used as a basis for spasmodic spawners).

However:

- The segmented regression is not significant, hence spurious. Therefore, it gives no estimate of SSB below which recruitment is impaired.
- Based on visual inspection of the S/R plot, the SSB at which recruitment is impaired does not correspond with $\mathrm{S}^{*}$.
- The segmented regression is very sensitive to the exclusion of single data points, e.g. those corresponding to strong year classes.

To conclude: the WG cannot choose between two alternative lines of reasoning. One line of reasoning is that the old technical basis for the estimation of $\mathbf{B}_{\mathrm{lim}}$ should be re-applied because the current assessment gives a very different estimate of the SSB in 1997 which was the basis for setting the $\mathbf{B}_{\mathrm{lim}}$. Given that the segmented regression is not significant this would mean that the $\mathbf{B}_{\text {lim }}$ would be updated from 210,000 to 134,000 tonnes. The second line of reasoning is that a strict application of the technical basis from ACFM 2002 is no longer valid because additional information has now shown that recruitment may have been impaired since the low biomasses from 1997 onwards. This suggests that we should preferably change the technical basis for estimating $\mathbf{B}_{\mathrm{lim}}$.
$\mathbf{F}_{\mathrm{lim}}$ and $\mathbf{F}_{\mathrm{pa}}$ needed to be re-established because the current assessment changed the age range for the reference F from 2-10 to 2-6.

- The technical basis for $\mathbf{F}_{\text {lim }}$ was $\mathbf{F}_{\text {loss }}$ (ACFM 2002) and is maintained. This sets $\mathbf{F}_{\text {lim }}$ at 0.43 .
- The technical basis for $\mathbf{F}_{\mathrm{pa}}$ was the $5^{\text {th }}$ percentile of $\mathbf{F}_{\text {loss }}$ or lower such that it implies Beq $>\mathbf{B}_{\mathrm{pa}}$ and a less than $10 \%$ probability that $\mathrm{SSB}_{\mathrm{MT}}<\mathbf{B}_{\mathrm{pa}}$ (ACFM 2002).

The different scenario's for estimating $\mathbf{B}_{\mathrm{lim}}$ result in the following calculated refernce points.

$\mathbf{B}_{\text {lim }}$	$\mathbf{B}_{\mathrm{pa}}$	$\mathbf{F}_{\text {lim }}=\mathbf{F}_{\text {loss }}$	$\mathbf{F}_{\mathrm{pa}}{ }^{\mathbf{1}}$
$134,000 \mathrm{t}$	$190,000 \mathrm{t}$.	0.43 ??	0.40
$155,000 \mathrm{t}$.	$220,000 \mathrm{t}$.	$0.43 ?$	0.37
$210,000 \mathrm{t}$.	$300,000 \mathrm{t}$.	0.43	0.30

### 16.3.4 Sole North Sea

$\mathbf{F}_{\text {lim }}$ is undefined for this stock (ACFM 2002). $\mathbf{F}_{\mathrm{pa}}$ needs to be re-established because the current assessment changed the age range for the reference $F$ from 2-8 to 2-6.

The technical basis for $\mathbf{F}_{\mathrm{pa}}$ was the $5^{\text {th }}$ percentile of $\mathbf{F}_{\text {loss }}$ or lower such that it implies Beq $>\mathbf{B}_{\mathrm{pa}}$ and a less than $10 \%$ probability that $\mathrm{SSB}_{\mathrm{MT}}<\mathbf{B}_{\mathrm{pa}}$ (ACFM 2002).

The $5^{\text {th }}$ percentile of $\mathbf{F}_{\text {loss }}=0.55$ and implies Beq $\sim \mathbf{B}_{\mathrm{pa}}$, but $\mathrm{P}\left(\mathrm{SSB}_{\mathrm{MT}}<\mathbf{B}_{\mathrm{pa}}\right)>10 \%$.
$\mathrm{F}=0.35$ implies $\mathrm{P}\left(\mathrm{SSB}_{\mathrm{MT}}<\mathbf{B}_{\mathrm{pa}}\right) \sim 10 \%$ where MT is run over 25 years, and implies Beq $>\mathbf{B}_{\mathrm{pa}}$.

Following this argumentation, the WG proposes 0.35 as the new $\mathbf{F}_{\mathrm{pa}}$.

Management reference point	1998 choice	2003 proposal
$\mathbf{B}_{\text {lim }}$	$25,000 \mathrm{t}$.	$25,000 \mathrm{t}$.
$\mathbf{B}_{\mathrm{pa}}$	$35,000 \mathrm{t}$	$35,000 \mathrm{t}$
$\mathbf{F}_{\text {lim }}$	undefined	undefined
$\mathbf{F}_{\mathrm{pa}}$	0.40	0.35

[^9]Table 16.1 Assumed stock recruitment relationships, with corresponding virgin biomass and maximum recruitment (at virgin biomass for the Beverton and Holt and $\mathbf{B}_{\text {MSY }}$ for the Ricker relationships)

Stock	Relationship	Alpha	Beta	V. Biomass	Max $R$
Cod	Ricker	$\mathbf{3 . 7 3}$	$\mathbf{3 . 1 8 E - 0 6}$	$\mathbf{1 1 9 2 1 2 1}$	$\mathbf{4 3 1 6 4 6}$
Haddock	Ricker	$\mathbf{2 1 1 . 0}$	$\mathbf{2 . 1 5 E - 0 6}$	$\mathbf{1 2 6 5 8 5 1}$	$\mathbf{3 6 1 4 0 9 9 5}$
Plaice	Beverton \& Holt	$\mathbf{1 . 8 5 E - 0 6}$	$\mathbf{0 . 1 8 5 3}$	$\mathbf{3 0 2 4 4 2 7}$	$\mathbf{5 2 3 0 2 2}$
Sole	Beverton \& Holt	$\mathbf{8 . 1 8 E - 0 6}$	$\mathbf{0 . 1 1 0 5}$	$\mathbf{4 6 7 5 5 7}$	$\mathbf{1 1 8 7 8 1}$

Figure 16.1. SSB and expected recruitment, from the stock recruitment relationship, by data year.


Figure 16.2. Plots showing S* as a ratio of Virgin SSB for each stock, top row for a CV of $30 \%$ and bottom row a CV of $50 \%$. Boxes show the inter-quartile range, the whiskers extend to the most extreme data point but not more than 1.5 times the inter-quartile range from the box.


Figure 16.3. Plots showing expected recruitment, given by the assumed stock recruitment relationship, at $S^{*}$ as a ratio of maximum recruitment for each stock, top row for a CV of $30 \%$ and bottom row a CV of $50 \%$ Boxes show the interquartile range, the whiskers extend to the most extreme data point but not more than 1.5 times the inter-quartile range from the box.


Figure 16.4. Plots show the simulated values for each stock-recruitment relationship along with the marginal density for $S^{*}$ (blue) and $\mathbf{B}_{\text {loss }}$ (red). The thick lines are for estimates with systematic departures in the data; namely, discarding, mis-reporting and a decline in recruitment; the thin lines (grey and pink) show the distribution without these systematic departures. Pair wise comparisons may only be made between the grey and blue points/curves and between the pink and red points/curves as their simulations are linked.


Figure 16.5. Plots show the expected values of the slope at the origin for each stock-recruitment relationship along with the marginal density for $\mathbf{F}_{\text {lim }}$ (blue) and $\mathbf{F}_{\text {loss }}$ (red). The thick lines are for estimates with systematic departures in the data; namely, discarding, mis-reporting and a decline in recruitment; the thin lines (grey and pink) show the distribution without systematic departures. Pair wise comparisons may only be made between the grey and blue points/curves and between the pink and red points/curves as their simulations are linked.


## WORKING DOCUMENTS AND REFERENCES

### 17.1 Working Documents

Rätz, H.J., Panten, K. and Ulleweit, J. German Otter Trawl Board Fleet as Tuning Series for the Assessment of Saithe in IV, VI and IIIa, 1995-2002. WGNSSK WD: 1.
P.J., Wright, F.M., Gibb, I.M., Gibb, M.R., Heath, and H.A., McLay. North Sea cod spawning grounds. WGNSSK WD: 2.

Weber, W. A new recruitment index for whiting in the North Sea. WGNSSK WD: 3.
Vinther, M., S., Reeves, and K., Patterson. From single-species advice to mixed-species management: taking the next step. ICES C.M. 2003/V:01. WGNSSK WD: 4.

Van Keeken,, O., M., Dickey-Collas, S.B.M., Kraak, J.J., Poos, and M.A., Pastoors. The use of simulations of discarding to investigate the potential impact of bias, due to growth, on the stock assessment of North Sea plaice (Pleuronectes platessa). ICES C.M. 2003/X:17. WGNSSK WD: 5.

Kraak, S.B.M., M.A., Pastoors, and A.D., Rijnsdorp. Analysis of the ICES short-term forecasts of North Sea plaice and sole: dealing with the "current year" assumption. WGNSSK WD: 6

Patterson EC., and Kirkegaard E. Database on fisheries/fleet statistics and mixed fisheries. WGNSSK WD: 7
Quirijns F., Rijnsdorp A. Detailed catch and effort data of Dutch beam trawl vessels. WGNSSK WD: 8
Turrell, W. R., and Bannister, C. Ocean climate in relation to north sea cod. WGNSSK WD: 9
Bell, E. and Dobby, H. Ecosystem considerations for WGNSSK: Multispecies interactions (seals and "industrials"). WGNSSK WD: 10

Darby, C. The effect of including discards on the assessment of north sea cod. WGNSSK WD: 11
Panten K.. Discards in Norway lobster fishery. WGNSSK WD: 12
Kraak, S. B. M., Dickey-Collas, M., Rackham, B., Kell, L., Bromley, P., Bromley, D., Pilling, G., Blanchard J. Second meeting of a Workshop on Comprehensive Assessment for North Sea Flatfish (COMPASS); Analysis of maturity data for North Sea plaice and sole. Lowestoft, 30 April-2 May 2003. WGNSSK WD: 13.

Anon.. North Sea Stock Survey 2003. Preliminary Results 9 September 2003. WGNSSK WD: 14.
Rätz H.J., A programme for multi species/multi fleets stock and catch projections in Visual Basic for Applications (EXCEL). WGNSSK WD: 15.

Tuck, I. Analysis of individual haul data for Scottish Nephrops trawlers at the Fladen Ground (2000 - 2001). WGNSSK WG: 16.

Horwood J. Closed areas: The North Sea cod. Working paper to the STECF Working Group 28 April-5 May 2003. WGNSSK WD: 17.

Jennings S. and Rogers S. Note on human impacts on the mortality of fish. WGNSSK WD: 18.

Report of the Expert Meeting on Cod Assessment and Technical Measures, 28 April-7 May 2003, Brussels. WGNSSK OD:1.

ICES 2003. Report of the Study Group on the Development of Fishery-based Forecasts. ICES ACFM:08. WGNSSK OD:2.

ICES 2003. Report of The Study Group on Precautionary Reference Points For Advice on Fisheries Management. ICES CM 2003/ACFM:15. WGNSSK OD:3.

ICES 2003. Report of the Study Group on Multispecies Assessments in the North Sea. ICES CM 2003/D:09. WGNSSK OD:4.

ICES 2003. ACFM May Report - cod recovery plans. WGNSSK OD:5.

### 17.3 References

Anon 2002. Study Group on the Further Development of the Precautionary Approach to Fisheries Management (Lisbon, 4-8 March 2002) ICES CM 2002/ACFM: 10

Anon 2003. Study Group on Biological Reference Points for Northeast Arctic Cod (Svanhovd, 13-17 January 2003). ICES CM 2003/ACFM:11

Arnott S.A. and Ruxton G.D. 2002. Sandeel recruitment in the North Sea: demographic, climatic and trophic effects. Mar. Ecol. Prog. Ser., 238: 199-210.

EC 2001. Request AIW/mrD(2001).

EC 2002. Request FISH/A1/KP D(2002) 11226.

EC 2003. Expert group meeting in Brussels, 28 April-7 May 2003, and in Bergen, 30 June - 1 July.

Grift, R. E., A. D. Rijnsdorp, S. Barot, M. Heino, U. Dieckmann. 2003). Fisheries-induced trends in reaction norms for maturation in North Sea plaice. Mar. Ecol. Prog. Ser. 257: 247-257.

ICES 1979. Report of the Flatfish Working Group. ICES CM 1979/G:10
ICES 1998. Report of the study group on the precautionary approach to fisheries management. ICES Copenhagen, 3-6 February 1998. ICES CM 1998 / Assess:10. Ref. D.

ICES 1989. Multispecies Assessment Working Group. ICES CM 1989/Asssess:20
ICES 1992a. Report of the study group on fisheries units in sub-areas VII and VIII. ICES CM 1992/G:15.
ICES 1992b. Description of the STCF North Sea database system and the prediction ABC, assessments of bioeconomic consequences of technical measures. ICES CM 1992/D:17.

ICES 1996. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. ICES C.M. 1996/Assess:6.

ICES 1997. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1996. ICES CM 1997/Assess :6

ICES 1998. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1997. ICES CM 1998/Assess :7

ICES 1999. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1998. ICES CM 1999/ACFM :8

ICES 1999. Report of the Working Group on the Assessment of Northern Shelf Demersal Stocks, 1998. ICES CM 1999/ACFM:1

ICES 2000. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1999. ICES CM 2000/ACFM:7

ICES 2001. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 2000. ICES CM 2001/ACFM:7

ICES 2001. Report of the ICES Advisory Committee on Fishery Management, 2001. ICES Co-op. Res. Rep 2001/246.

ICES 2001. ACFM October report.

ICES 2002. Report of the Working Group on the Assessment of Northern Shelf Demersal Stocks, 2001. ICES CM 2002/ACFM:01

ICES 2002. Report of the Study Group on Discards and By-catch Information. ICES CM 2002/ACFM:9, Ref.D,G
ICES 2002. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak. ICES CM 2002/ACFM:01.

ICES 2002. Study Group on the Further Development of the Precautionary Approach to Fisheries Management (Lisbon, 4-8 March 2002) ICES CM 2002/ACFM: 10

ICES 2002. ACFM October Report.
ICES 2003. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak. ICES CM 2002/ACFM:02.

ICES 2003. Report of the Study Group on the Development of Fishery-based Forecasts. ICES CM 2003/ACFM:08 Ref:D.

ICES 2003. Report of the Working Group on Multispecies Assessment in the North Sea. ICES CM 2003/D:09 Ref. ACFM, ACE, G.

ICES 2003. Study Group on Biological Reference Points for Northeast Arctic Cod (Svanhovd, 13-17 January 2003). ICES CM 2003/ACFM:11

ICES 2003. Report of the Study Group on Precautionary Reference Points for Advice on Fishery Management. ICES CM 2003/ACFM: 15

Kimura S., Kishi M.J., Nakata H. and Yamashita Y. 1992. A numerical analysis of population dynamics of the sand lance (Ammodytes personatus) in the eastern Seto Inland Sea, Japan. Fish. Oceanogr. 1: 321:332

Kraak, S. B. M., M. A. Pastoors, and A. D. Rijnsdorp (2002). Effecten van discarding en high-grading op de toestandsbeoordeling van schol: een Quick-scan. RIVO. CVO 02.019.

Larsen, L.I., Lassen, H., Nielsen, J.R. and Sparholt, H. 2001. Spatial distribution and spawning maturity of Norway pout in the North Sea and Skagerrak. In Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1999. ICES CM 2000/ACFM:7 Working document.

O’Brien, C.M., Kell, L.T. and Smith, M.T. 2003, Evaluation of the use of segmented regression through simulation for a characterisation of the North Sea cod (Gadus morhua L.) stock, in order to determine the properties of $\mathbf{B}_{\mathrm{lim}}$ (the biomass at which recruitment is impaired). ICES, Reference Point Approaches to Management within the Precautionary Approach CM 2003/Y:10

Pastoors M.A., Dol, W., Rijnsdorp, A.D., 1997. Individual quota and the catch composition of Dutch beamtrawl vessels. RIVO. IJmuiden. RIVO-DLO report number C061/97. 51p.

Pastoors, M. A., F. A. Van Beek, C. Needle and P. M. Marchal (2002). Some further explorations into the assessment of North Sea plaice. (WD to ACFM Oct. 2001; WD08 to WGNSSK June 2002).

Poos, J.J., Pastoors, M.A. and Rijnsdorp, A.D., 2001. Quota regulation and efficiency in the Dutch beam trawl fleet. International Council for the Exploration of the Sea. CM 2001/N:14.

Poulding, D. 1997. M.Sc. thesis, University of Aberdeen. 69pp.
Quirijns, F., A.D. Rijnsdorp (2003). Detailed catch and effort data of the Dutch beam trawl vessels (WD08).
Riou et al. 2001. Relative contributions of different sole and plaice nurseries to the adult population in the Eastern Channel : application of a combined method using generalized linear models and a geographic information system. Aquatic Living Resources. 14 (2001) 125-135

Sparholt, H., Larsen, L.I., Nielsen, J.R. 2002a. Verification of multispiesces interactions in the North Sea by trawl survey data on Norway Pout (Trisopterus esmarkii). ICES Journal of Marine Science 59:1270-1275.

Sparholt, H., Larsen, L.I., Nielsen, J.R. 2002b. Non-predation natural mortality of Norway pout (Trisopterus esmarkii) in the North Sea. ICES Journal of Marine Science 59:1276-1284.

STECF 2002. Report of the Subgroup on Resource Status (SGRST) of the Scientific, Technical and Economic Committee for Fisheries (STECF). Mixed Fisheries. Brussels, 22-26 October 2002.

Storbeck, F. and M. A. Pastoors (2002). Discards in de Nederlandse Kottervloot in de period juli 1999 tot en met juni 2001. RIVO Report C006/02.

Stratoudakis, Y., Fryer, R. J., Cook, R. M. and Pierce, G. J. 1999. Fish discarded from Scottish demersal vessels: estimators of total discards and annual estimates for targeted gadoids. ICES Journal of Marine Science, 56, 592605.

Van Beek, F. A. (1998). Discarding in the Dutch beam trawl fishery. ICES C.M. 1998 / BB:5.

Van Keeken, O. A., M. Dickey-Collas, S. B. M. Kraak, J. J. Poos, M. A. Pastoors (2003). The use of simulations of discarding to investigate the potential impact of bias, due to growth, on the stock assessment of North Sea plaice (Pleuronectes platessa). ICES C.M. 2003/X:17 (WD05).

Wright P.J. and Bailey M.C. 1996. Timing of hatching in Ammodytes marinus from Shetland waters and its significance to early growth and survivorship. Mar. Biol. 126: 143-152.

Zuur, A.F., Fryer, R.J. and Newton, A.W. 2001. The comparative fishing trial between Scotia II and Scotia III. FRS Marine Laboratory, Report No 03/01.

## Annex - Quality Handbook

Stock specific documentation of standard assessment procedures used by the ICES WGNSSK

Text to be written

Text to be written

Text to be written

Text to be written

Stock specific documentation of standard assessment procedures used by ICES.
Stock: Whiting in Division IV
Working Group: Assessment of Demersal Stocks in the North Sea and Skagerrak
Date:
29 August 2003
Last updated:

### 5.1 General

### 5.1.1 Stock definition

Whiting is known to occur exclusively in some localised areas, but for the most part it is caught as part of a mixed fishery operating throughout the entire year. Adult whiting are widespread in the North Sea, while high numbers of immature fish occur off the Scottish coast, in the German Bight and along the coast of the Netherlands.

Tagging experiments, and the use of a number of fish parasites as markers, have shown that the whiting found to the north and south of the Dogger Bank form two virtually separate populations (Hislop \& MacKenzie, 1976). It is also possible that the whiting in the northern North Sea may contain 'inshore' and 'offshore' populations.

### 5.1.2 Fishery

### 5.1.3 Ecosystem aspects

Results from key runs of the North Sea MSVPA in 2002 and 2003 indicate three major sources of mortality. For ages two and above, the primary source of mortality is the fishery, followed by predation by seals, which increases with fish age. For ages $0-1$, though more notable on 0 -group, there is evidence for cannibalism. This is corroborated by Bromley et al. (1997), who postulate that multiple spawings over a protracted period may provide continued resources for earlier spawned 0 -group whiting.
Results from key runs of the North Sea MSVPA in 2002 and 2003 indicate that, as a predator, whiting tend to feed on (in order of importance): whiting, sprat, Norway pout, sandeel and haddock.

### 5.2 Data

### 5.2.1 Commercial catch

For North Sea catches, human consumption landings data and age compositions were provided by Scotland, the Netherlands, England, and France. Discard data were provided by Scotland and used to estimate total international discards. Other discard estimates do exist (Section 1.11.4, 2002 WG ), but were not made available to Working Group data collators. Since 1991 the age composition of the Danish industrial by-catch has been directly sampled, whereas it was calculated from research vessel survey data during the period 1985-1990. Norway provides age composition data for its industrial by-catch.

For eastern Channel catches, age composition data were supplied by England and France. No estimates of discards are available for whiting in the Eastern Channel, although given the relatively low numbers in the Channel catch compared to that in the North Sea, this is not considered to be a major omission. There is no industrial fishery in this area.

### 5.2.2 Biological

Weight at age in the stock is assumed to the same as weight at age in the catch. Further paragraphs.
Natural mortality values are rounded averages of estimates produced by previous key runs of the North Sea MSVPA (see Section 1.3.1.3 of the 1999 WG report: ICES CM 2000/ACFM:7). The values used in both the assessment and the forecast are :

Age	1	2	3	4	5	6	7	8+
Natural Mortality	0.95	0.45	0.35	0.30	0.25	0.25	0.20	0.20

The maturity ogive is based on North Sea IBTS quarter 1 data, averaged over the period 1981-1985. The maturity ogive used in both the assessment and forecast is:

Age	1	2	3	4	5	6	7	$8+$
Maturity Ogive	0.11	0.92	1.00	1.00	1.00	1.00	1.00	1.00

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to zero.

### 5.2.3 Surveys

The Scottish Groundfish Survey (SCOGFS) is carried out in August each year, and covers depths of roughly 35 m to 200 m in the North Sea to the north of the Dogger Bank. It samples at most one survey station per statistical rectangle. In 1998 the coverage of this survey was extended into the central North Sea, but the index available to the Working Group has been modified so as to cover a consistent area throughout the time-series.

The English Groundfish Survey (ENGGFS) is carried out in August each year, and samples at most one station per rectangle. It covers depths of roughly 35 m to 200 m in the whole of the North Sea basin.
The time-series of the survey indices of whiting supplied by the French Channel Groundfish Survey (FRAGFS) was revised in 2002. In 2001, the Eastern Channel was split into five zones. Abundance indices were first calculated for each zone, and then averaged to obtain the final FRAGFS index. This procedure was not thought to be entirely satisfactory, as the level of sampling was inconsistent across geographical strata. In 2002, it was thought more appropriate first to raise abundance indices to the level of ICES rectangles, and then to average those to calculate the final abundance index. Previous to the 2002 WG, only the hauls in which whiting were caught were used to derive abundance indices. This procedure biased estimates, and therefore, the indices supplied from 2002 are calculated on the basis of all hauls.

The first quarter International Bottom Trawl Survey (IBTS Q1) is undertaken in February and March of each year, and covers depths of roughly 35 m and 200 m in the whole of the North Sea basin. It uses a higher density of survey stations than either the SCOGFS or the ENGGFS, with several hauls per statistical rectangle.

### 5.2.4 Commercial CPUE

Effort data are available for two Scottish commercial fleets: seiners (SCOSEI) and light trawlers (SCOLTR). Nonmandatory reporting of fishing effort for these fleets means that they cannot strictly be used for catch-at-age tuning.

French commercial fleets....

### 5.2.5 Other relevant data

None

### 5.3 Historical Stock Development

### 5.3.1 Weight at age

### 5.4 Short-term Projection

Model used:
Software used:
Initial stock size:
XSA terminal population numbers
Natural mortality:
XSA input
Maturity:
XSA input
F and M before spawning:
XSA input
Weight at age in stock:

Mean of last three years by age
Weight at age in catch:
Mean of last three years by age
Exploitation pattern:
Mean of last three years. Level of exploitation defined $\mathbf{F}_{\text {sq }}$. Exploitation pattern was scaled by to mean of last two years.
F at age * [ $\mathbf{F}_{\text {sq }} / \operatorname{Fbar}($ Fexplotation $)$
Intermediate year assumptions:
Stock recruitment model used:
Ricker with parameters : alpha $=$, Beta $=$.
Procedures used for splitting projected catches:
Mean proportion over last three years

### 5.5 Medium-Term Projections

N/A for the time being
5.6 Yield and Biomass per Recruit / Long-Term Projections
5.7 Biological Reference Points
5.8 Other Issues
5.9 References

Bromley, P. J., Watson, T., and Hislop, J. R. G. (1997). Diel feeding patterns and the development of food webs in pelagic 0 -group cod (Gadus morhua L.), haddock (Melanogrammus aeglefinus L.), whiting (Merlangius merlangus L.), saithe (Pollachius virens L.), and Norway pout (Trisopterus esmarkii Nilsson) in the northern North Sea. Ices Journal of Marine Science 54: 846-853.

Hislop, J. R. G \& MacKenzie, K. (1976). Population studies of the whiting (Merlangius merlangus L.) of the northern North Sea. Journal du Conseil International pour l'Exploration de laMer. 37: 98-111.

### 6.1.1 STOCK DEFINITION

The geographical distribution of juveniles (<age 3) and adults differs. Typical for all saithe stocks are the inshore nursery grounds. Juveniles are therefore mainly distributed along the west and south coast of Norway, the coast of Shetland and the coast of Scotland. Around age 3 the individuals gradually migrate from the costal areas to the northern part of the North Sea $\left(57^{\circ} \mathrm{N}-62^{\circ} \mathrm{N}\right)$, where the feeding grounds of the adult part of the stock are situated. The age at maturity is between 4 and 6 years, and spawning takes place in January-March at about 200 m depth along the Northern Shelf edge and the western edge of the Norwegian deeps. Mature fish migrate during the season between the feeding grounds (summer) and spawning grounds (winter).

Before 1999 saithe in Sub-area IV and Division IIIa and saithe in Sub-area VI was treated as a separate stock units. These stock boundaries were more for management purposes than a biological basis for stock separation. Present biological knowledge shows no evidence that saithe in Division IVa and Via belong to separate stock units. There seems to be a similar recruitment pattern and the spawning areas in these divisions are not separated (ICES 1995).

Tagging experiments by various countries have shown that exchange between all saithe stock components in the northeast Atlantic takes place to a variable extent (ICES 1995). For example, a substantial migration of immature saithe from the Norwegian coast between $62^{\circ} \mathrm{N}$ and $66^{\circ} \mathrm{N}$ to the North Sea has been shown to occur (Jakobsen 1981). 0-group saithe, on the other hand, drifts from the northern North Sea to the coast of Norway north of $62^{\circ} \mathrm{N}$.

### 6.1.2 FISHERY

Saithe in the North Sea are mainly taken in a direct trawl fishery in deep water near the Northern Shelf edge and the Norwegian deeps. The majority of the catches are taken by Norwegian, French, and German trawlers. In the first half of the year the fishery are directed towards mature fish, while immature fish dominate in the catches the rest of the year. In recent years the French fishery deployed less effort along the Norwegian deeps, while the German and Norwegian fisheries have maintained their effort there. The main fishery developed in the beginning of the 1970s. Recently trawlers have also been targeting deep sea fish, and it is necessary to take account of that when tuning series are established. The fishery in Area VI consists largely of a directed French, German, and Norwegian deep-water fishery operating on the shelf edge, and a Scottish fishery operating inshore. In both areas most of the saithe do not enter the main fishery before age 3, because the younger ages are staying in inshore waters. A small proportion of the total catch is taken in a limited purse seine fishery along the west coast of Norway targeting juveniles (age 2 and 3). Minimum landing size for saithe is currently 35 cm in the EU zone and 32 cm in the Norwegian zone (south of $62^{\circ} \mathrm{N}$ ). Since the fish are distributed inshore until they are 2-3 years old, discarding of young fish is assumed to be a small problem in this fishery. Problems with bycatches in other fisheries when saithe quotas are exceeded may cause discarding. Data from SGDBI and Scotland indicate that the discard in the UK fleets in 2000 and 2001 was about 22000 t and 15000 t , respectively, mainly age 3 and age 4 . French and German trawlers are targeting saithe and they have larger quotas, so the problem may be less in these fleets. The Norwegian trawlers move out of the area when the boat quotas are reached, and in addition the fishery is closed if the seasonal quota is reached.

### 6.1.3 ECOSYSTEM ASPECTS

Saithe in the North Sea mainly preys on krill and Norway pout.

### 6.2 Data

### 6.2.1 COMMERCIAL CATCH

Catch at age data by fleet are supplied by Denmark, Germany, France, Norway, UK (England), and UK (Scotland) for Area IV and only UK(Scotland) for Area VI. Aberdeen (FRS) is responsible for the database with catch at age data from the different countries.

### 6.2.2 BIOLOGICAL

Average weights at age in the stock are assumed to be equal to average weights at age in the catches. Average weights at age by fleet are supplied by Denmark, Germany, France, Norway, UK (England), and UK (Scotland) for Area IV and only UK(Scotland) for Area VI.

Aberdeen (FRS) is responsible for the database with weights at age in the catches from the different countries.

A natural mortality rate of 0.2 is used for all ages in all years. A constant maturity ogive based on historic biological sampling is used for all years:

Age	1	2	3	4	5	6	$7+$
Proportion mature	0.0	0.0	0.0	0.15	0.7	0.9	1.0

### 6.2.3 SURVEYS

A Norwegian acoustic survey is conducted in conjunction with the IBTS Q3 survey, covering the area north of $56^{\circ} 30^{\prime} \mathrm{N}$ up to $62^{\circ} \mathrm{N}$ and directed towards saithe. The time series of indices from this survey is the only survey data used for tuning, and it extends back to 1995.

Time series from the English and Scottish Groundfish surveys are also available for tuning but since saithe is not well represented they are, at the time being, excluded.

A survey along the Norwegian coast targeting saithe larvae (0-group) started in 1999. The time series from this survey is currently too short to evaluate its potential as a year class strength predictor (i.e. to investigate the correlation between the 0 -group indices and the corresponding VPA numbers at age 3 ).

### 6.2.4 COMMERCIAL CPUE

Three time series of CPUE are used in the tuning: Norwegian bottom trawl, German bottom trawl and French fresh fish trawlers. All fleets are targeting saithe along the Northern Shelf edge and along the western edge of the Norwegian deep, primarily at depths between 150-250 m. A more detailed description of the CPUE time series follows.

Norwegian bottom trawl: This time series extends back to 1980. The resolution of the logbook data is day-by-day (i.e. a record comprises total daily catch and total hours trawled for each vessel). Only records where the weight proportion of saithe exceeds $50 \%$ and records from vessels larger than 30 m are used to calculate CPUE ( $\mathrm{kg} / \mathrm{h}$ ). Samples of age compositions in commercial trawl catches are used to age disaggregated the CPUE time series.

German bottom trawl: This age disaggregated CPUE time series extends back to 1995, and it is described in (Rätz et al. 2002)

French fresh fish trawlers: This time series extends back to 1990. The French saithe fishery has developed in the seventies, during the gadoid outburst. At the beginning of the nineties, the saithe stock reached its lowest historical level. Part of the French vessels reacted by fishing in different areas and in deeper waters. The remaining vessels have been harvesting saithe, almost exclusively in the North Sea, and with by-catches of deep-water species (blue ling) west of Scotland. The French fleet targeting saithe is now made up of large trawlers and freezer trawlers over 50 m . The vessels are registered in Boulogne and Lorient.

Series of CPUE ( $\mathrm{kg} / \mathrm{h}$ ) at age were not supplied for the French freezers after 2002, as the landings from this fleet were neither length- nor age-sampled. The French tuning fleet is therefore made up of the non-freezer trawlers. Data are restricted to the fishing trips with more than $10 \%$ of saithe landings.

### 6.2.5 OTHER RELEVANT DATA

None.

### 6.3 Historical Stock Development

### 6.3.1 DETERMINISTIC MODELLING

Modell used: XSA (Darby and Flatman 1994)
Software used: Lowstoft VPA suite.

The settings of the final run in 2003 are given in the following table.
Year of assessment 2003
Assessment model XSA

French trawlers (TRB) IV	$1990-2002$	$\mathbf{3 - 9}$
Norwegian trawlers IV	$1980-2002$	$3-9$
German trawlers IV	$1995-2002$	$3-9$
SGFS	not used	
EGFS	not used	
Norwegian acoustic survey IV	$\mathbf{1 9 9 5 - 2 0 0 2}$	$\mathbf{3 - 7}$

Time-series weights tricubic over 20 yrs
Power model used for catchability $\quad 1-2$
Catchability plateau age 7

Surv. est. shrunk towards mean F	5 years / 3 ages
s.e. of the means	1.0
Min. stand. error for pop. estimates	0.3
Prior weighting	none

### 6.3.2 UNCERTAINTY ANALYSIS

Nothing here yet.

### 6.3.3 RETROSPECTIVE ANALYSIS

### 6.4 Short-Term Projection

Model used:

WGFRANSW (Reeves and Cook 1994)

Recruitment at age 1:
The geometric mean of historic XSA numbers at age 1 (in 2003 the geometric mean from the period 1985-00 was used).

Initial stock structure:

The number at age 2 are found by applying natural mortality ( 0.2 ) and XSA fishing mortality at age 1 from the last year to the number of recruits at age 1 (geometric mean). The number at age 3 are found by first applying natural mortality ( 0.2 ) and XSA fishing mortality at age 1 from the second last year (i.e. for the 2003-assessment $\mathrm{F}_{1}$ from 2001) to the number of recruits at age 1 (geometric mean) and, second, apply natural mortality ( 0.2 ) and XSA fishing mortality at age 2 from the last year to this number (i.e. for the 2003-assessment $F_{2}$ from 2002). For ages older than 3, XSAnumbers for the current year are used.

## Mortality:

Natural mortality is 0.2 for all ages. Fishing mortalities at age is the mean of the XSA fishing mortalities at age for the 3 last years. (The fishing pattern is not scaled to $\mathrm{F}_{3-6}$ for the last year.)

## Maturity:

The constant maturity ogive used (see section 2.2).

Mean weights at age in the stock and catch:

The average of mean weights at age for the last three years.

### 6.5 Medium-Term Projections

Initial stock size, maturity at age, natural mortality, fishing mortality and mean weights at age in the stock/catch are the same as in the short-term projection.

Recruitment:

A Ricker stock-recruitment curve is fitted to the historic data (SSB and age 1 from XSA).

### 6.6 Long-Term Projections, yield per recruit

Nothing here yet.

### 6.7 Biological reference points

$\mathbf{F}_{0.1}$	0.09	$\mathbf{F}_{\text {lim }}$	0.60
$\mathbf{F}_{\text {max }}$	0.17	$\mathbf{F}_{\mathrm{pa}}$	0.40
$\mathbf{F}_{\text {med }}$	0.49	$\mathbf{B}_{\text {lim }}$	106000 t
$\mathbf{F}_{\text {high }}$	$>0.49$		$\mathbf{B}_{\mathrm{pa}}$

### 6.8 Other Issues

None

### 6.9 References

Darby, C.D. and Flatman, S. 1994. Virtual Population Analysis: version 3.1 (Windows/DOS) user guide. Info. Tech. Ser., MAFF Direct. Fish. Res., Lowestoft, (1): 85pp.

ICES 1995. Report of the saithe study group. ICES CM 1995/G:2.
ICES 2003. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, June 2002. ICES CM 2003/ACFM:02.

Jakobsen, T. 1981. preliminary results of saithe tagging experiments on the Norwegian coast. ICES CM 1981/G:35.

Reeves, S. and Cook, R. 1994. Demersal assessment programs, September 1994. WD in WGNSSK 1994.

Rätz, H.J., Panten, K. and Ulleweit, J. 2002 German Otter Trawl Board Fleet as Tuning Series for the Assessment of Saithe in IV, VI and IIIa, 1995-2001. WD:1 in ICES CM 2003/ACFM:02.

Text to be written

DRAFT TEXT - to be completed by next WG
Stock specific documentation of standard assessment procedures used by the ICES WGNSSK.
Working group: North Sea Demersal Working Group
Updated: 3/9//2003
By: Richard Millner (r.s.millner@cefas.cu.uk) and Wim Demaré (wim.demare@dvz.be)

### 8.1 General

### 8.1.1 Stock definition

The sole in the eastern English Channel (VIId) are considered to be a separate stock from the larger North Sea stock to the east and the smaller geographically separate stock to the west in VIIe. There is some movement of juvenile sole from the North Sea into VIId (ICES CM 1989/G:21) and from VIId into the western Channel (VIIe) and into the North Sea. Adult sole appear to largely isolated from other regions except during the winter, when sole from the southern North Sea may enter the Channel temporarily (Pawson, 1995).

### 8.1.2 Fishery

There is a directed fishery for sole by small inshore vessels using trammel nets and trawls, who fish mainly along the English and French coasts and possibly exploit different coastal populations. Sole represents the most important species for these vessels in terms of the annual value to the fishery. The fishery for sole by these boats occurs throughout the year with small peaks in landings in spring and autumn. There is also a directed fishery by English and Belgian beam trawlers who are able to direct effort to different ICES divisions. These vessels are able to fish for sole in the winter before the fish move inshore and become accessible to the local fleets. In cold winters, sole are particularly vulnerable to the offshore beamers when they aggregate in localised areas of deeper water. Effort from the beam trawl fleet can change considerably depending on whether the fleet moves to other areas or directs effort at other species such as scallops and cuttlefish. A third fleet is made up of French offshore trawlers fishing for mixed demersal species and taking sole as a by-catch.

The minimum landing size for sole is 24 cm . Demersal gears permitted to catch sole are 80 mm for beam trawling and 90 mm for otter trawlers. Fixed nets are required to use 100 mm mesh since 2002 although an exemption to permit 90 mm has been in force since that time.

### 8.1.3 Ecosystem aspects

No information is available.

### 8.2 Data

### 8.2.1 Commercial catch

The landings are taken by three countries France (50\%), Belgium (30\%) and England (20\%). Age sampling for the period before 1980 was poor, but between 1981 and 1984 quarterly samples were provided by both Belgium and England. Since 1985, quarterly catch and weight-at-age compositions were available from Belgium, France, and England.

### 8.2.1. $\quad$ Belgium

Belgian commercial landings and effort information by quarter, area and gear are derived from log-books (CHECK).
Sampling for age and length occurs for the beam trawl fleet (main fleet operating in Belgium).

Quarterly sampling of landings takes place at the auctions of Zeebrugge and Oostende (main fishing ports in Belgium). Length is measured to the cm below. Samples are raised per market category to the catches of both harbours.

Quarterly otolith samples are taken throughout the length range of the landings (sexes separated). These are aged and combined to the quarterly level. The ALK is used to obtain the quarterly age distribution from the length distribution.

In 2003 a pilot study started on on-board sampling with respect to discarded and retained catch.

### 8.2.1.2 France

French commercial landings in tonnes by quarter, area and gear are derived from log-books for boats over 10 m and from sales declaration forms for vessels under 10 m . These self declared production are then linked to the auction sales in order to have a complete and precise trip description.

The collection of discard data has begun in 2003 within the EU Regulation 1639/2001. This first year of collection will be incomplete in term of time coverage, therefore the use of these data should be investigated only from 2005.

The length measurements are done by market commercial categories and by quarter into the principal auctions of Grandcamp, Port-en-Bessin, Dieppe and Boulogne. Samplings from Grandcamp and Port-en-Bessin are used for raising catches from Cherbourg to Fecamp and samplings from Dieppe and Boulogne are used to raise the catches from Dieppe to Dunkerque

Otoliths samples are taken by quarter throughout the length range of the landed catch for quarters 1 to 3 and from the october GFS survey in quarter 4. These are aged and combined to the quarterly level and the age-length key thus obtained is used to transform the quarterly length compositions. The length not sampled during one quarter are derived from the same year close quarter.

Weight, sex and maturity at length and at age are obtained from the fish sampled for the age-length keys.

### 8.2.1.3 England

English commercial landings in tonnes by quarter, area and gear are derived from the sales notes statistics for vessels under 12 m who do not complete logbooks. For those over 12 m (or $>10 \mathrm{~m}$ fishing away for more than 24 h ), data is taken from the EC logbooks. Effort and gear information for the vessels $<10 \mathrm{~m}$ is not routinely collected and is obtained by interview and by census. .No information is collected on discarding from vessels $<10 \mathrm{~m}$ but it is known to be low. Discarding from vessels $>10 \mathrm{~m}$ has been obtained since 2002 under the EU Data Collection Regulation and is also relatively low.

Length samples are combined and raised to monthly totals by port and gear group for each stock. Months and ports are then combined to give quarterly total length compositions by gear group; unsampled port landings are added in at this stage. Quarterly length compositions are added to give annual totals by gear. These are for reference only, as ALK conversion takes place at the quarterly level. Age structure from otolith samples are combined to the quarterly level, and generally include all ports, gears and months. For sole the sex ratio from the randomally collected otolih samples are used to spli the unsexed length composition into sex-separate length compositions. The quarterly ses separate age-length-keys are used to transform quarterly length compositions by gear group to quarterly age compositions. At this stage the age compositions by gear group are combined to give total quarterly age compositions.

A minimum of 24 length samples are collected per gear category per quarter. Age samples are collected by sexes separately and the target is 300 otoliths per sex per quarter. If this is not reached, the $1^{\text {st }}$ and $2^{\text {nd }}$ or $3^{\text {rd }}$ and $4^{\text {th }}$ quarters are combined.

Weight at age is derived from the length samples using: to be completed
1.2.1.4 The text table below shows which country supply which kind of data:

[^10]| Country | Caton (catch <br> in weight) | Canum (catch <br> at age in <br> numbers) | Weca (weight <br> at age in the <br> catch) | Matprop <br> (proportion <br> mature by age) | Length <br> composition in <br> catch |
| :--- | :--- | :---: | :---: | :--- | :---: |
| Belgium | x | x | x |  | x |
| England | x | x | x |  | x |
| France | x | x | x |  | x |

Data are supplied as FISHBASE files containing quarterly numbers at age, weight at age, length at age and total landings. The files are aggregated by the stock coordinator to derive the input VPA files in the Lowestoft format. No SOP corrections are applied to the data because individual country SOPs are usually better than $95 \%$. The quarterly data files by country can be found with the stock co-ordinator

The resulting files (FAD data) can be found at ICES and with the stock co-ordinator, either in the IFAP system as SAS datasets or as ASCII files on the Lowestoft format, either under w:\acfm\nsskwg\2002\datalsol_eche or w: lifapdataleximport|nsskwg\sol_eche.

### 8.2.2 Biological

Natural mortality was assumed constant over ages and years at 0.1 , and the maturity ogive used was knife-edged with sole regarded as fully mature at age 3 and older as in the North Sea.

Prior to 2001 WG, stock weights were calculated from a smoothed curve of the catch weights interpolated to the $1^{\text {st }}$ January. Since the 2002 WG, second quarter catch weights were used as stock weights in order to be consistent with North Sea sole.

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

### 8.2.3 Surveys

A dedicated 4 m beam trawl survey for plaice and sole has been carried out by England using the RV Corystes since 1988. The survey covers the whole of VIId and is a depth stratified survey with most samples allocated to the shallower inshore stations where the abundance of sole is highest. In addition, inshore small boat surveys using 2 m beam trawls are undertaken along the English coast and in a restricted area of the Baie de Somme on the French coast. In 2002, The English and French Young Fish Surveys were combined into an International Young Fish Survey. The dataset was revised for the full period back to 1981. The two surveys operate with the same gear (beam trawl) during the same period (September) in two different nursery areas. Previous analysis (Riou et al, 2001) has shown that asynchronous spawning occurs for flatfish in Division VIId. Therefore both surveys were combined based on weighting of the individual index with the area nursery surface sampled. Taking into account the low, medium, and high potential area of recruitment, the French YFS got a weight index of 55\% and the English YFS of 45\%.

### 8.2.4 Commercial CPUE

Three commercial fleets have been used in tuning. The Belgian beam trawl fleet (BEL BT), the UK Beam Trawl fleet (UK BT) and a French otter trawl fleet (FR OT). The two beam trawl fleets carry out fishing directed towards sole but can switch effort between ICES areas. The UK BT CPUE data is derived from trips where landings of sole from VIId exceeded $10 \%$ of the total demersal catch by weight on a trip basis. Effort from both the BT fleets is corrected for HP. The French otter trawl fleet is description needed.

### 8.2.5 Other relevant data

None.

### 8.3 Historical Stock Development

### 8.3.1 Deterministic modelling

Model used: XSA

Software used: IFAP / Lowestoft VPA suite

Model Options chosen:
Tapered time weighting not applied
Catchability independent of stock size for all ages
Catchability independent of age for ages $>=7$
Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages
S.E. of the mean to which the estimate are shrunk $=0.500$

Minimum standard error for population estimates derived from each fleet $=0.300$
Prior weighting not applied
Input data types and characteristics:
Catch data available for 1982-present year. However, there was no French age compositions before 1986 and large catchability residuals were observed in the commercial data before 1986. In the final analyses only data from 1986present were used in tuning

Type	Name	Year range	Age range	Variable from year   to year
Caton	Catch in tonnes	$1982-$ last data   year	$2-11+$	Yes
Canum	Catch at age in   numbers	$1982-$ last data   year	$2-11+$	Yes
Weca	Weight at age in   the commercial   catch	$1982-$ last data   year	$2-11+$	Yes
West	Weight at age of   the spawning stock   at spawning time.	$19682-$ last data   year	$2-11+$	Yes - assumed to   be the same as   weight at age in   the Q2 catch
Mprop	Proportion of   natural mortality   before spawning	$1982-$ last data   year	$2-11+$	No-set to 0 for all   ages in all years
Fprop	Proportion mortality   fishing mear   before spawning	$1982-$ last data   year	$2-11+$	No-set to 0 for all   ages in all years
Matprop	Proportion mature   at age	$1982-$ last data   year	$2-11+$	No - the same   ogive for all years
Natmor	Natural mortality   $1982-$ last data   year	$2-11+$	No - set to 0.2 for   all ages in all years	

Tuning data:

Type	Name	Year range	Age range
Tuning fleet 1	Belgian commercial   BT	1986 - last data year	$2-10$
Tuning fleet 2	English commercial   BT	1986 - last data year	$2-10$
Tuning fleet 3	English BT survey	1988 - last data year	$1-6$
Tuning fleet 4	International YFS	1994 - last data year	$1-1$

### 8.3.2 uncertainty analysis

### 8.3.3 Retrospective analysis??

Model used: Age structured

Software used: WGFRANSW

Initial stock size is taken from the XSA for age 3 and older and from RCT3 for age 2. The long-term geometric mean recruitment is used for age 1 in all projection years.

Natural mortality: Set to 0.1 for all ages in all years

Maturity: The same ogive as in the assessment is used for all years

F and M before spawning: Set to 0 for all ages in all years
Weight at age in the stock: Average weight over the last three years
Weight at age in the catch: Average weight over the three last years

Exploitation pattern: Average of the three last years, scaled to the level of Fbar (3-8) in the last year

Intermediate year assumptions: F status quo
Stock recruitment model used: None, the long term geometric mean recruitment at age 1 is used

Procedures used for splitting projected catches: Not relevant

### 8.5 Medium-Term Projections

Model used: Age structured

Software used: WGMTERMc

Settings as in short term projection except for the weights in the catch and in the stock which are averaged over the last 10 years

### 8.6 Long-Term Projections, yield per recruit

Model used: Age structured
Software used: WGMTERMc

Settings as in short term projection except for the weights in the catch and in the stock which are averaged over the last 10 years

### 8.7 Biological Reference Points

Biological reference points

$\mathbf{B}_{\mathrm{aa}}$	$\mathbf{F}_{\mathrm{pa}}$	$\mathbf{F}_{\text {lim }}$
$8,000 \mathrm{t}$	0.4	0.55

## 8.8 <br> Other Issues

None.

## References

CEFAS 1999. PA software users guide. The Centre for Environment, Fisheries and Aquaculture Science, CEFAS, Lowestoft, United Kingdom, 22 April 1999.

Text to be written

Stock specific documentation of standard assessment procedures used by the ICES WGNSSK.

Working group: North Sea Demersal Working Group
Updated: 15/09/2003

By:

### 10.1 General

### 10.1.1 Stock definition

The stock boundaries are arbitrary and more for management purposes than based on a biological recognised stock separation. Electrophoresis and meristic character indicated that the plaice in IIIa is a mixed population of the Kattegat and the Skagerrak component, which is dominating and a Belt Sea component (Simonsen et al., 1988).

The influence of the North Sea stock component, especially via the transport of eggs or larvae could also contribute to the IIIa plaice stock abundance (see Ecosystem aspects).

### 10.1.2 Fishery

The fishery is dominated by Denmark, with Danish landings accounting for more than $90 \%$ of the total. A directed plaice fishery is carried out during summer by Danish seiners. Plaice is also an important catch for otter trawlers and gillnetters, often within a mixed cod-plaice fishery. Plaice is also caught as by-catch in the directed Nephrops fishery. Since 1978, landings have declined from 27000 to 9000 tonnes in the late nineties. However, landings in 2001 were the highest since 1992. The fishery exploits traditionally three age classes (ages 4 to 6 ).

The use of beam trawl in the Kattegat is prohibited. Minimum mesh size is 90 mm for towed gears, and 100 mm for fixed gears. The minimum landing size is 27 cm .

### 10.1.3 Ecosystem aspects

The large scale circulation pattern in the Northern Kattegat depends mainly on interaction between Baltic runoffs and local variation due to win stress. Nielsen et al., (1998) demonstrated that the abundance of settled 0 -group plaice along the Danish coast of the Kattegat depends on transport from the Skagerrak. The 0 -group abundance measured in JulyAugust was significantly higher in years when wind conditions during the larval development period (March-April) were moderate to strong. This might imply that larval plaice are food-limited in years when calm conditions prevail during the larval drift period (Nielsen et al., 1998).

### 10.2 Data

### 10.2.1 Commercial catch

Data from three Danish fleets, i.e., trawlers, gillnetters, and Danish seiners, are available. The age-disaggregated indices were derived by merging logbook statistics supplying catch weight per market category with the age distribution within these categories available from the market sampling. Catch-at-age and mean weight-at-age in the catch information are provided by Denmark only. The sampling scheme is broken down by quarter, landing harbours, and fishing area. The total international catches-at-age have been estimated for Kattegat and Skagerrak separately since 1984.

### 10.2.2

Weights-at-age in the stock were assumed equal to those of the catch.
Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

A fixed natural mortality of 0.1 per year was assumed for all years and ages.
A knife-edge maturity distribution was employed: age group 2 was assumed to be immature, whereas age 3 and older plaice were assumed mature.

### 10.2.3 Surveys

Data from four surveys are available. IBTS survey data for Kattegat and Skagerrak for the first and third quarter are provided by Sweden as numbers-per-age and hour on a haul-by-haul basis for the period 1992-2002 and 1995-2002 respectively (no survey was performed in third quarter 2000). Two Danish bottom trawl surveys are conducted by the vessel 'Havfisken' in Kattegat, Belt Sea, and Western Baltic in the first and fourth quarter of each year. The indices available from these surveys cover the period 1996-2002 for the first quarter survey (except 1998), and 1994-2001 for the fourth quarter survey. The survey indices of the IBTS and 'Havfisken' surveys first quarter is shifted from February to the preceding December to allow for full use of the available data.

Very few plaice aged 7-9 were caught during the surveys and these ages were removed from the analysis.

### 10.2.4 Commercial CPUE

Three Danish fleets, i.e., trawlers, gillnetters, and Danish seiners, are available. The age-disaggregated indices were derived by merging logbook statistics supplying catch weight per market category with the age distribution within these categories available from the market sampling. Fishing effort has been defined as standardised days fishing. The fishing effort appears to have been fairly stable over the last decade. There has been a decrease in the fishing effort of towedgeared fleets since 1990, but this trend has been reversing since 1998. The fishing effort of gillnetters has steeply increased over 1990-1994, and steadily decreased since then. All commercial fleets show increase in both the yield and the CPUE in 2001. Highest values and increases are observed for the Danish seiners.

### 10.2.5 Other relevant data

None.

### 10.3 Historical Stock Development

### 10.3.1 Deterministic modelling

Model used: XSA

Software used: IFAP / Lowestoft VPA suite

## Model Options chosen:

Tapered time weighting applied, power $=3$ over 20 years
Catchability independent of stock size for all ages
Catchability independent of age for ages $>=8$
Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages
S.E. of the mean to which the estimate are shrunk $=0.500$

Minimum standard error for population estimates derived from each fleet $=0.300$
Prior weighting not applied
Input data types and characteristics:

Type	Name	Year range	Age range	Variable from year to   year


			Yes/No	
Caton	Catch in tonnes	Catch at age in   numbers	1978 - last data year	$2-11+$
Canum	Weight at age in the   commercial catch	1978 - last data year	$2-11+$	Yes
Weca	Weight at age of the   spawning stock at   spawning time.	1978 - last data year	$2-11+$	Yes
West	Proportion of natural   mortality before   spawning	$1978-$ last data year	$2-11+$	Yes/No - assumed to   be the same as   weight at age in the   catch
Mprop	Proportion of fishing   mortality before   spawning	$1978-$ last data year	$2-11+$	No set to 0 for all   ages in all years
Fprop	Proportion mature at   age	$1978-$ last data year	$2-11+$	No - set to 0 for all   ages in all years
Matprop	Natural mortality	$1978-$ last data year	$2-11+$	No - the same ogive   for all years
Natmor	No - set to 0.1 for all   ages in all years			

Tuning data:

Type	Name	Year range	Age range
Tuning fleet 1	Danish Gillnetters	1987 - last data year	$2-10$
Tuning fleet 2	Danish Trawlers	1987 - last data year	$2-10$
Tuning fleet 3	Danish seiners	1987 - last data year	$2-10$
Tuning fleet 4	IBTS Q1	1991 - last data year	$1-6$
Tuning fleet 5	Havsfisken Q4	1994 - last data year	$1-6$
Tuning fleet 6	Havsfisken Q1	1995 - last data year	$1-5$
Tuning fleet 6	IBTS Q3	1995 - last data year	$1-6$

### 10.3.2 Uncertainty analysis

### 10.3.3 Retrospective analysis??

### 10.4 Short-Term Projection

Model used: Age structured
Software used: MFDP

Initial stock size. Stock sizes for age 3 and older are taken from the estimated number of survivors from the XSA. The age 2 recruitments are taken as the geometric average over the entire period.

Natural mortality: Set to 0.1 for all ages in all years
Maturity: The same ogive as in the assessment is used for all years
$F$ and $M$ before spawning: Set to 0 for all ages in all years
Weight at age in the stock: Assumed to be the same as weight at age in the catch

Weight at age in the catch: Average weight of the three last years
Exploitation pattern: Average of the three last years, scaled by the Fbar (3-6) to the level of the last year

Intermediate year assumptions: TAC constraint
Stock recruitment model used: None, the long term geometric mean recruitment at age 2 is used

Procedures used for splitting projected catches: Not relevant

Stock specific documentation of standard assessment procedures used by the ICES WGNSSK.

Working group: North Sea Demersal Working Group
Updated: 5/9//2003
By: Richard Millner (r.s.millner@cefas.cu.uk) and Joel Vigneau (joel.vigneau@ifremer.fr)

### 11.1 General

### 11.1.1 Stock definition

There is mixing of plaice between the North Sea and VIId both as adults and juveniles. Analysis of tagging data shows that around $40 \%$ of the juvenile plaice in VIId come from nursery grounds in the North Sea. The eastern Channel supplies very few recruits to the North Sea. There is also an adult migration between the North Sea and Channel with $20-30 \%$ of the plaice caught in the winter in VIId were from migratory North Sea fish. Separation between VIId and the western Channel (VIIe) is much clearer. VIId does not receive significant numbers of juvenile plaice from VIIe but contributes around $20 \%$ of the recruits to VIIe. Similarly, around $20 \%$ of the adult plaice spawning in VIId may have spent part of the year in VIIe but few plaice tagged in VIIe during the spawning period are recaptured in VIId. It can be concluded that there is considerable interchange of plaice from the North Sea into VIId but a much smaller interchange between VIId and VIIe. Since the exploitation patterns between the three areas are very different, it has been concluded that separate assessments should be carried out.

The management area for channel plaice is a combined one between VIId and VIIe. TACs are obtained by combining the agreed TAC from each area.

### 11.1.2 Fishery

Plaice is mainly caught in beam trawl fisheries for sole or in mixed demersal fisheries using otter trawls. There is also a directed fishery during parts of the year by inshore trawlers and netters on the English and French coasts. The main fleet segments are the English and Belgian beam trawlers. The Belgian beam trawlers fish mainly in the $1^{\text {st }}$ and $4^{\text {th }}$ quarters and their area of activity covers almost the whole of VIId south of the 6 mile contour from the English coast. There is only light activity by this fleet between April and September. The second offshore fleet is mainly large otter trawlers from Boulogne, Dieppe and Fecamp. The target species of these vessels are cod, whiting, plaice mackerel, gurnards and cuttlefish and the fleet operates throughout VIId. The inshore trawlers and netters are mainly vessels $<10 \mathrm{~m}$ operating on a daily basis within 6 miles of the coast. There are a large number of these vessels (in excess of 400) operating from small ports along the French and English coast. These vessels target sole, plaice, cod and cuttlefish.

The minimum landing size for plaice is 27 cm . Demersal gears permitted to catch plaice are 80 mm for beam trawling and 100 mm for otter trawlers. Fixed nets are required to use 100 mm mesh since 2002 although an exemption to permit 90 mm has been in force since that time.

There is widespread discarding of plaice, especially from beam trawlers. The 25 and $50 \%$ retention lengths for plaice in an 80 mm beam trawl are 16.4 cm and 17.6 cm respectively which are substantially below the MLS. Routine data on discarding is not available but comparison with the North Sea suggests that discarding levels in excess of $40 \%$ by weight are likely. Discard survival from small otter trawlers can be in excess of $50 \%$ (Millner et al., 1993). In comparison discard mortality from large beam trawlers has been found to be between less than $20 \%$ after a 2 h haul and up to $40 \%$ for a one-hour tow (van Beek et al 1989).

### 11.1.3 Ecosystem aspects

No information is available.

### 11.2 Data

### 11.2.1 Commercial catch

The landings are taken by three countries France ( $55 \%$ of combined TAC), England (29\%) and Belgium (16\%). Quarterly catch numbers and weights were available for a range of years depending on country; the availability is presented in the text table below. Levels of sampling prior to 1985 were poor and these data are considered to be less reliable. In 2001 international landings covered by market sampling schemes represented the majority of the total landings.

### 11.2.1.1 Belgium

Belgian commercial landings and effort information by quarter, area and gear are derived from log-books (CHECK).

Sampling for age and length occurs for the beam trawl fleet (main fleet operating in Belgium).
Quarterly sampling of landings takes place at the auctions of Zeebrugge and Oostende (main fishing ports in Belgium). Length is measured to the cm below. Samples are raised per market category to the catches of both harbours.

Quarterly otolith samples are taken throughout the length range of the landings (sexes separated). These are aged and combined to the quarterly level. The ALK is used to obtain the quarterly age distribution from the length distribution.

In 2003 a pilot study started on on-board sampling with respect to discarded and retained catch.

### 11.2.1.2 France

French commercial landings in tonnes by quarter, area and gear are derived from log-books for boats over 10 m and from sales declaration forms for vessels under 10 m . These self declared production are then linked to the auction sales in order to have a complete and precise trip description.

The collection of discard data has begun in 2003 within the EU Regulation 1639/2001. This first year of collection will be incomplete in term of time coverage, therefore the use of these data should be investigated only from 2005.

The length measurements are done by market commercial categories and by quarter into the principal auctions of Grandcamp, Port-en-Bessin, Dieppe and Boulogne. Samplings from Grandcamp and Port-en-Bessin are used for raising catches from Cherbourg to Fecamp and samplings from Dieppe and Boulogne are used to raise the catches from Dieppe to Dunkerque

Otoliths samples are taken by quarter throughout the length range of the landed catch for quarters 1 to 3 and from the october GFS survey in quarter 4. These are aged and combined to the quarterly level and the age-length key thus obtained is used to transform the quarterly length compositions. The length not sampled during one quarter are derived from the same year close quarter.

Weight, sex and maturity at length and at age are obtained from the fish sampled for the age-length keys.

### 11.2.1.3 England

English commercial landings in tonnes by quarter, area and gear are derived from the sales notes statistics for vessels under 12 m who do not complete logbooks. For those over 12 m (or $>10 \mathrm{~m}$ fishing away for more than 24 h ), data is taken from the EC logbooks. Effort and gear information for the vessels $<10 \mathrm{~m}$ is not routinely collected and is obtained by interview and by census. . No information is collected on discarding from vessels $<10 \mathrm{~m}$. Discarding from vessels $>10 \mathrm{~m}$ has been obtained since 2002 under the EU Data Collection Regulation.

The gear group used for length measurements are beam trawl, otter trawl and net.

Separate-sex length measurements are taken from each of the gear groupings by trip. Trip length samples are combined and raised to monthly totals by port and gear group. Months and ports are then combined to give quarterly total length compositions by gear group; unsampled port landings are added in at this stage. Quarterly length compositions are added to give annual totals by gear. These are for reference only, as ALK conversion takes place at the quarterly level.

Otoliths samples are taken by 2 cm length groups separately for each sex throughout the length range of the landed catch. These are aged and combined to the quarterly level, and include all ports, gears and months. The quarterly sexseparate age-length-keys are used to transform quarterly length compositions by gear group to quarterly age compositions.

A minimum of 24 length samples are collected per gear category per quarter. Age samples are collected by sexes separately and the target is 300 otoliths per sex per quarter. If this is not reached, the $1^{\text {st }}$ and $2^{\text {nd }}$ or $3^{\text {rd }}$ and $4^{\text {th }}$ quarters are combined.
1.2.1.4 The text table below shows which country supplies which kind of data:

Country	Numbers	Weights-at-age
Belgium	1981-present	1986-present
France	1989-present	1989-present
UK	1980-present	1989-present

Data are supplied as FISHBASE files containing quarterly numbers at age, weight at age, length at age and total landings. The files are aggregated by the stock co-ordinator to derive the input VPA files in the Lowestoft format. No SOP corrections are applied to the data because individual country SOPs are usually better than $95 \%$. The quarterly data files by country can be found with the stock co-ordinator

The resulting files (FAD data) can be found at ICES and with the stock co-ordinator, either in the IFAP system as SAS datasets or as ASCII files on the Lowestoft format, either under w:\acfm\nsskwg\2002\data\ple_eche or w: lifapdata $\backslash$ eximport $\mid n s s k w g \backslash p l e _e c h e . ~$

### 11.2.2 Biological

Natural mortality was assumed constant over ages and years at 0.1 as in the North Sea. The maturity ogive used assumes that $15 \%$ of age $2,53 \%$ of age 3 and $96 \%$ of age 4 are mature and $100 \%$ for ages 5 and older.

Prior to 2001, stock weights were calculated from a smoothed curve of the catch weights interpolated to the $1^{\text {st }}$ January. From 2001, second quarter catch weights were used as stock weights in order to be consistent with North Sea sole. The database was revised back to 1990.

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

### 11.2.3 Surveys

A dedicated 4 m beam trawl survey for plaice and sole has been carried out by England using the RV Corystes since 1988. The survey covers the whole of VIId and is a depth stratified survey with most samples allocated to the shallower inshore stations where the abundance of sole is highest. In addition, inshore small boat surveys using 2 m beam trawls are undertaken along the English coast and in a restricted area of the Baie de Somme on the French coast. In 2002, The English and French Young Fish Surveys were combined into an International Young Fish Survey. The dataset was revised for the period back to 1987. The two surveys operate with the same gear (beam trawl) during the same period (September) in two different nursery areas. Previous analysis (Riou et al, 2001) has shown that asynchronous spawning occurs for flatfish in Division VIId. Therefore both surveys were combined based on weighting of the individual index with the area nursery surface sampled. Taking into account the low, medium, and high potential area of recruitment, the French YFS got a weight index of $55 \%$ and the English YFS of $45 \%$.

A third survey consists of the French otter trawl groundfish survey (FR GFS) in October. Prior to 2002, the abundance indices were calculated by splitting the survey area into five zones, calculating a separate index for each zone each zone, and then averaging to obtain the final GFS index. This procedure was not thought to be entirely satisfactory, as the level of sampling was inconsistent across geographical strata. A new procedure was developed based on raising abundance indices to the level of ICES rectangles, and then by averaging those to calculate the final abundance index. Although there are only minor differences between the two indices, the revised method was used in 2002 and subsequently.

### 11.2.4 Commercial CPUE

Three commercial fleets have been used in tuning. UK inshore trawlers, Belgian beam trawl fleet and French otter trawlers as well as three survey fleets.
The effort of the French otter trawlers is obtained by the log-books information on the duration of the fishing time weighted by the engine power (in KW) of the vessel. Only trips where sole and/or plaice have been caught is accounted for.

### 11.2.5 Other relevant data

None.

### 11.3 Historical Stock Development

### 11.3.1 Deterministic modelling

Model used: XSA

Software used: IFAP / Lowestoft VPA suite

Model Options chosen:
Tapered time weighting not applied
Catchability independent of stock size for all ages
Catchability independent of age for ages $>=7$
Survivor estimates shrunk towards the mean F of the final 5 years or the 3 oldest ages
S.E. of the mean to which the estimate are shrunk $=0.500$

Minimum standard error for population estimates derived from each fleet $=0.300$
Prior weighting not applied
Input data types and characteristics:

Catch data available for 1982-present year. However, there was no French age compositions before 1986 and large catchability residuals were observed in the commercial data before 1986. In the final analyses only data from 1986present were used in tuning

Type	Name	Year range	Age range	Variable from year   to year
Caton	Catch in tonnes	$1980-$ last data   year	$2-10+$	Yes
Canum	Catch at age in   numbers	$1980-$ last data   year	$2-10+$	Yes
Weca	Weight at age in   the commercial   catch	$1980-$ last data   year	$2-10+$	Yes
West	Weight at age of   the spawning stock   at spawning time.	$1980-$ last data   year	$2-10+$	Yes - assumed to   be the weight at   age in the Q1 catch
Mprop	Proportion mof   natural mortality   before spawning	year   ye last data   ages in all years all		
Fprop	Proportion mor of   fishing mortality   before spawning	$1980-10+$   year	No - last data to 0 for all   ages in all years	
Matprop	Proportion mature   at age	$1980-10+$   year	last data	$2-10+$
Natural mortality	$1980-$ last data	$2-10+$	No - the same   ogive for all years	


		year		all ages in all years

Tuning data:

Type	Name	Year range	Age range
Tuning fleet 1	English commercial   Inshore trawl	1985 - last data year	$2-10$
Tuning fleet 2	Belgian commercial   Beam trawl	1981 - last data year	$2-10$
Tuning fleet 3	French trawlers	1989 - last data year	$2-10$
Tuning fleet 4	English BT survey	1988 - last data year	$1-6$
Tuning fleet 5	French GFS	1988 - last data year	$1-5$
Tuning fleet 6	International YFS	1987 - last data year	$1-1$

### 11.3.2 Uncertainty analysis

### 11.3.3 Retrospective analysis

### 11.4 Short-Term Projection

Model used: Age structured
Software used: IFAP prediction with management option table and yield per recruit routines

Initial stock size: Taken from XSA for age 3 and older. The number at age 2 in the last data year is estimated using RCT3. The recruitment at age 1 in the last data year is estimated using the geometric mean over a long period (1980 last data year)

Natural mortality: Set to 0.1 for all ages in all years

Maturity: The same ogive as in the assessment is used for all years
$F$ and $M$ before spawning: Set to 0 for all ages in all years
Weight at age in the stock: Average weight of the three last years

Weight at age in the catch: Average weight of the three last years

Exploitation pattern: Average of the three last years, scaled by the Fbar (2-6) to the level of the last year

Intermediate year assumptions:

Stock recruitment model used: None, the long term geometric mean recruitment at age 1 is used

Procedures used for splitting projected catches: Not relevant

### 11.5 Medium-Term Projections

The segmented stock/recruitment relationship is considered not significant (ICES, 2003a). There is therefore no consistent basis to build a medium term projection

### 11.6 Long-Term Projections

### 11.7 Biological Reference Points

$$
\mathbf{B}_{\lim }=5400 \mathrm{t} .
$$

$\mathbf{B}_{\mathrm{pa}}=$	8000 t.
$\mathbf{F}_{\text {lim }}=$	0.54
$\mathbf{F}_{\mathrm{pa}}=$	0.45

## 11.8

Other Issues

None.

### 11.9 References

Beek, F.A. van, Leeuwen, P.I. van and Rijnsdorp, A.D. 1989. On the survivalof plaice and sole discards in the otter trawl and beam trawl fisheries in the North Sea. ICES C.M. 1989/G:46, 17pp

ICES 2003a. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 2002. ICES CM 2003/ACFM:02

ICES 2003b. Report of the Study Group on Precautionary Reference Points For Advice on Fishery Management ICES CM 2003/ACFM:15

Millner, R.S., Whiting, C.L and Howlett, G.J. 1993. Estimation of discard mortality of plaice from small otter trawlers using tagging and cage survival studies. ICES C.M. 1993/G:24, 6pp

Riou et al. 2001. Relative contributions of different sole and plaice nurseries to the adult population in the Eastern Channel : application of a combined method using generalized linear models and a geographic information system. Aquatic Living Resources. 14 (2001) 125-135

Stock specific documentation of standard assessment procedures used by ICES.
Stock: $\quad$ Norway pout in North Sea and Skagerrak (ICES Area IV and IIIa)
Working Group: WG on the Assessment of Demersal Stocks in the North Sea and Skagerrak
Date: $\quad 10.9 .03$

### 12.1 General

### 12.1.1 Stock definition

Norway pout is a small, short-lived gadoid species, which rarely gets older than 5 years (Sparholt, Larsen and Nielsen 2002a). It is mainly distributed in the northern North Sea ( $>57^{\circ} \mathrm{N}$ ) and in Skagerrak at depths between 50 and 250 m (Raitt 1968, Sparholt, Larsen and Nielsen 2002b).

ICES ACFM (October 2001) asked the ICES WGNSSK to verify the justification of treating ICES Division VIa as a management area for Norway pout (and sandeel) separately from ICES areas IV and IIIa. Preliminary results from an analysis of regionalized survey data on Norway pout maturity, presented in a Working Document to the 2000 meeting of the WGNSSK (Larsen, Lassen, Nielsen and Sparholt, 2001 in ICES C.M.2001/ACFM:07), gave no evidence for a stock separation in the whole northern area.

### 12.1.2 Fishery

The fishery is mainly by Danish and Norwegian (large) vessels using small mesh trawls in the northern North Sea at Fladen Ground and along the edge of the Norwegian Trench. Main fishing seasons are $1^{\text {st }}, 3^{\text {rd }}$, and $4^{\text {th }}$ quarters of the year. Norway pout is caught in small meshed trawls $(16-31 \mathrm{~mm})$ in a mixed fishery with blue whiting. The fishery is mainly carried out by Denmark ( $\sim 70 \%$ ) and Norway ( $\sim 30 \%$ ) at fishing grounds in the northern North Sea at Fladen Ground and along the edge of the Norwegian Trench. Norway pout is landed for reduction purposes (fish meal and fish oil).

With present fishing mortality levels the status of the stock is more determined by natural processes and less by the fishery.

### 12.1.3 Ecosystem aspects

There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. Bycatches of other species should also be taken into account in management of the fishery. Existing technical measures such as the closed Norway pout box, minimum mesh size in the fishery, and by-catch regulations to protect other species have been maintained.

Recruitment in Norway pout is highly variable and influences spawning stock biomass (SSB) and total stock biomass (TSB) rapidly due to the short life span of the species. The fishing mortality is lower than the natural mortality, and this stock is important as food source for other species, which means that the population dynamics for Norway pout in the North Sea and in Skagerrak are very dependent on changes caused by recruitment variation and predation mortality (or other natural mortality causes) and less by the fishery

### 12.2 Data

### 12.2.1 Commercial catch and effort data

The assessment uses the combined catch and effort data from the commercial Danish and Norwegian small meshed trawler fleets fishing mainly in the northern North Sea.

For the Danish and Norwegian commercial landings sampling procedures of the commercial landings, which vary between the countries, were described in detail in the report of the WGNSSK meeting in 1998 (ICES 1999).

From 2002 onwards, an EU regulation (1639/2001) was endorsed which affects the market sampling procedures. First, each country is obliged to sample all fleet segments, including foreign vessels landing in their country. Second, a minimum number of market samples per tonnes of landing are required. The national market sampling programmes have been adjusted accordingly.

## Method of effort standardization of the commercial fishery tuning fleet

Background descriptions of the commercial fishery tuning series used and methods of effort standardization of the commercial fishery between different vessel size categories and national commercial fleets are given in the 1996 working group report (ICES CM 1997/Assess:6). Previous to the 2001 assessment the effort has been standardized by vessel category (to a standard 175 GRT vessel) only using the catch rate proportions between vessel size categories within the actual year.

In the 2003 (as well as in the 2001 and 2002) assessments the output of the regression analyses using time series from 1987-2003 has been applied to the Danish and Norwegian commercial fishery as well. Effort standardization of both the Danish and the Norwegian part of the commercial fishery tuning series is performed by applying standardization factors to reported catch and effort data for the different vessel size categories. The standardization factors are obtained from regression of CPUE indices by vessel size category over years of the Danish commercial fishery tuning fleet. The number of small vessels in the Danish Norway pout fishing fleet has decreased significantly and the relative number of large vessels has increased in the latest years. Furthermore, there was found no trends in CPUE between vessel categories over time. For these reasons the CPUE indices used in the regression has been obtained from pooled catch and effort data over the years 1994-present assessment year by vessel category in order to obtain and include estimates for all vessel categories also for the latest years where no observations exists for the smallest vessels groups. Results and parameter estimates from the yearly regression analyses on CPUE versus GRT for the different Danish vessel size categories used in the effort standardization of both the Norwegian and Danish commercial fishery are yearly updated and shown in the input data to the yearly performed assessment.

In 2002 the assessment was run both with and without the new standardization method (regression). The differences in results of output $\mathrm{SSB}, \mathrm{TSB}$ and F between the two assessment runs were small.

## Norwegian effort data

In 1997, Norwegian effort data were revised as described in sections 13.1.3.1 and 1.3.2 of the 1997 working group report (ICES CM 1998/Assess:7). Furthermore, in the 2000 assessment Norwegian average GRT and Effort data for 1998-99 were corrected because data from ICES area IIa were included for these years in the 1998-99 assessments. Observed average GRT and effort for the Norwegian commercial fleets are given in the input data to the yearly performed assessment.

## Danish effort data

In each yearly assessment the input data as CPUE data by vessel size category and year for the Danish commercial fishery in area IVa is given. This is based on fishing trips where total catch included at least $70 \%$ Norway pout and blue whiting per trip, and where Norway pout was reported as main species in catch in the logbook per fishing day and fishing trip. There has been a relative reduction in the number and effort of small vessels and an increase for the larger vessels in the fleet in the latest years. Minor revisions (up-dating) of the Danish effort and catch data used in the effort standardization and as input to the tuning fleets have been made for the 2001 assessment.

## Standardized effort data

The resulting combined and standardized Danish and Norwegian effort for the commercial fishery used in the assessment is presented in the input data to the yearly performed assessment, as well as the combined CPUE indices by age and quarter for the commercial fishery tuning fleet. The seasonal variation in effort data is one reason for performing a seasonal VPA.

### 12.2.2 Biological data

## Weight at age

Mean weight at age in the catch is estimated as a weighted average of Danish and Norwegian data. In general, the mean weights at age in the catches are very variable between years and seasons, and also between countries, for the same age groups in the same year. The same mean weight at age in the stock is used for all years. Mean weight in catch is not used as estimator of weight in the stock partly because the smallest 0 -group fish are not fully recruited to the fishery in $3^{\text {rd }}$ quarter of the year.

## Maturity and natural mortality

The same proportion mature and natural mortality are used for all years in the assessment. The natural mortality is set to 0.4 for all age groups in all seasons that result in an annual natural mortality of 1.6 for all age groups. The proportion mature used is $0 \%$ for the 0 -group, $10 \%$ of the 1 -group and $100 \%$ of the $2+$-group independent of sex.

In the 2001 and 2002 assessment exploratory runs were made with revised input data for natural mortality based on the results from two papers presented to the working group in 2001, Sparholt, Larsen and Nielsen 2002a,b (both published in ICES J. Mar. Sci.). This has not been explored further in the 2003 up-date assessment but should be investigated in future benchmark assessment of the stock.

## Research results on population dynamics parameters (e.g. natural mortality and maturity)

Investigations on population dynamics (natural mortality, distribution, and spawning and maturity as well as growth patterns) of Norway pout in the North Sea are ongoing. Exploratory runs of the SXSA model was presented in the 2002 assessment report with revised input data for natural mortality by age based on the results from two papers presented to the working group in 2001, (Sparholt, Larsen and Nielsen, 2002a,b). The resulting SSB, TSB ( $3^{\text {rd }}$ quarter of year), TSB ( $1^{\text {st }}$ quarter of year) and $F$ for the final exploratory run was compared to those for the accepted run with standard settings. It appears that the implications of these revised input data are very significant. Year 2002 was the second assessment year where exploratory runs with revised natural mortality values were made. The working group in 2002 suggested that an assessment with partly the traditional settings (constant $M$ ) and a new assessment with the revised values for $M$ were made for at least a 3 year period in order to compare the output and the performance of the assessments before the working group decided on final adoption of the revised values for $M$ to be used in the assessment.

Preliminary results from an analysis of regionalized survey data on Norway pout maturity is presented in a Working Document to the 2000 meeting of the Working Group (Larsen, Lassen, Nielsen and Sparholt,2001 in ICES C.M.2001/ACFM:07).

### 12.2.3 Survey data

Survey indices series of abundance of Norway pout by age and quarter are for the assessment period available from the IBTS (1. and 3. quarter) and the EGFS (English Ground Fish Survey, 3. quarter) and SGFS (Scottish Ground Fish Survey, 3. quarter) The SGFS data from 1998 onwards are used with caution due to new survey design (new vessel from 1998 and new gear and extended survey area from 1999). The 0 -group indices from this survey are not used in the assessment. The same trends for the $1+$-group is observed for the SGFS as for the EGFS for which reason the SGFS survey index for the age groups 1-3 are included in the SXSA. Research vessel indices from the $3^{\text {rd }}$ quarter IBTS are used for comparison purposes only due to relatively short time series (since 1991). Furthermore, the $3^{\text {rd }}$ quarter IBTS is not an independent tuning fleet of the separate SGFS and EGFS tuning fleets.

### 12.2.4 Commercial CPUE data

Combined CPUE indices by age and quarter for the Danish and Norwegian commercial fishery tuning fleet is calculated from effort data obtained from the method of effort standardization of the commercial fishery tuning fleet described under section B. 1 and vessel category specific catches by area. CPUE is estimated on a quarterly basis for the Danish and Norwegian commercial fleets.

### 12.3 Historical Stock Development

The SXSA (Seasonal Extended Survivors Analysis: Skagen (1993)) was used to estimate quarterly stock numbers and fishing mortalities for Norway pout in the North Sea and Skagerrak. The catch at age analysis is carried out according to the specifications given in the present stock quality handbook.

The SXSA (Seasonal Extended Survivors Analysis: Skagen (1993)) is used to estimate quarterly stock numbers and fishing mortalities for Norway pout in the North Sea and Skagerrak. The assessment is analytical using catch-at-age analysis based on quarterly catch and CPUE data. The assessment is considered appropriate to indicate trends in the stock and immediate changes in the stock because of the seasonal assessment taking into account the seasonality in fishery. The seasonal variation in effort data is one reason for performing a seasonal VPA.

In the SXSA the catchability, $r$, per age and quarter and fleet is assumed to be constant within the period 1983-2003 where the estimated catchability, rhat, is a geometric mean over years by age, quarter and tuning fleet. Tuning is performed over the period 1983 to present producing $\log$ residual $(\log (\mathrm{Nhat} / \mathrm{N}))$ stock numbers and survivor estimates by year, quarter, age and tuning fleet. The contributions from the various age groups to the survivor estimates by year and quarter and fleet are in the SXSA combined to an overall survivors estimate, shat, estimated as the geometric mean over years of $\log ($ shat $)$ weighted by the exponential of the inverse cumulated fishing mortality as described in Skagen (1993).

## Software used:

SXSA program available from ICES.

## Model Options chosen:

The parameter settings and options of the SXSA has been the same in all recent years assessments. No time taper or shrinkage is used in the catch at age analysis. The three surveys and the seasonally (by quarter) divided commercial fleets are all used in the tuning.

```
The following parameters were used:
Year range: 1983 - present
Seasons per year:
The last season in the last year is season : 2
Youngest age: 0; Oldest age: 3; (Plus age: 4)
Recruitment in season: 3
Spawning in season: 1
The following fleets were included: commercial
Fleet 2: 1: ibts-1q
Fleet 3: egfs
Fleet 4: sgfs
The following options were used:
1: Inv. catchability: 2
 (1: Linear; 2: Log; 3: Cos. filter)
 (1: Direct; 2: Using z)
3: Comb. shats:
4: Fit catches: 0
 (0: No fit; 1: No SOP corr; 2: SOP corr.)
5: Est. unknown catches:
 (0: No; 1: No SOP Corr; 2: SOP corr; 3: Sep. F)}
6: Weighting of rhats: 0
 (0: Manual)
7: Weighting of shats: 2
 (0: Manual; 1: Linear; 2: Log.)
8: Handling of the plus group:
 (1: Dynamic; 2: Extra age group)
Factor (between 0 and 1) for weighting the inverse catchabilities
at the oldest age versus the second oldest age (factor 1 means that
the catchabilities for the oldest age are used as they are):
0
Specification of minimum value for the survivor number (this is
Used instead of the estimate if the estimate becomes very low):
 0
Iteration until convergence (setting 0):
0
```

Input data types and characteristics:

Type	Name	Year range	Age range	Variable from year to year Yes/No
Caton	Catch in tonnes	1983-present	0-3+	Yes
Canum	Catch at age in numbers	1983-present\|	0-3+	Yes
Weca	Weight at age in the commercial catch	1983-present\|	0-3+	Yes
West	Weight at age of the spawning stock at spawning time.	1983-present\|	0-3+	No
Mprop	Proportion of natural mortality before spawning	Not relevant in SXSA\|		
Fprop	Proportion of fishing mortality before spawning	1983-present\|	0-1	Yes
Matprop	Proportion mature at age	1983-present\|	1-3+	$\begin{aligned} & \text { No, 10\%age 1, 100\% } \\ & 2+ \end{aligned}$
Natmor	Natural mortality	1983-present\|	0-3+	No, 0.4 per quarter per age group

Tuning data:

Type	Name	Year range	Age range
Tuning fleet 1	Commercial fleet	1983-present	$0-3+$
Tuning fleet 2	IBTS	1983-present	$0-3+$
Tuning fleet 3	EGFS	1983-present	$0-3+$
Tuning fleet 4	SGFS	1983-present	$0-3+$

### 12.4 Short-Term Projection

No forecast is given for this stock.
Catch predictions for 0 - and 1 -groups are important as the fishery target the 0 -group already in $3^{\text {rd }}$ and (especially in) $4^{\text {th }}$ quarter of the year as well as the 1 -group in the $1^{\text {st }}$ quarter of the following year. Survey indices in the $3^{\text {rd }}$ quarter seems to predict strong 0 -group year classes relatively well when comparing with 0 -group indices from commercial fishery ( $4^{\text {th }}$ quarter) and to 1 -group survey indices the following spring. The 0 -group are recruited to the $4^{\text {th }}$ quarter commercial fishery which tends to predict strong year classes well as 0 -group. Deterministic catch forecasts are uncertain due to the catch possibilities are largely dependent on the size of a few year classes, the large dependence on the strength of the recruiting 0 -group year class, and the added uncertainty in the assessment and forecast arising from variations in natural mortality (Sparholt, Larsen and Nielsen. 2002a,b).

### 12.5 Medium-Term Projection

### 12.6 Long-Term Projection

### 12.7 Biological Reference Points

$$
\begin{aligned}
& \hline \mathbf{B}_{\text {lim }} \text { is } 90000 \mathrm{t} \\
& \mathbf{B}_{\text {pa }}=150000 \mathrm{t} \\
& \mathbf{F}_{\text {low }}=0.23 \\
& \mathbf{F}_{\text {med }}=0.67 \\
& \mathbf{F}_{\text {high }}=1.21 \\
& \hline
\end{aligned}
$$

$\mathbf{B}_{\mathrm{pa}}$ be established at $150,000 \mathrm{t}$. This affords a high probability of maintaining SSB above $\mathbf{B}_{\mathrm{lim}}$, taking into account the uncertainty of assessments. Below this value the probability of below average recruitment increases.
$\mathbf{F}_{\text {lim }}$ None advised.
$\mathbf{F}_{\mathrm{pa}}$ None advised.

### 12.8 Other Issues

There is no management objective set for this stock. With present fishing mortality levels the status of the stock is more determined by natural processes and less by the fishery. There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. In managing this fishery by-catches of other species have been taken into account. Technical measures such as the closed Norway pout box, minimum mesh size in the fishery, and by-catch regulations to protect other species have been used in managing this stock and the fishery.

### 12.9 References

ICES 1996. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. ICES C.M. 1996/Assess:6.

ICES 1998. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1997. ICES CM 1998/Assess :7

ICES 1999. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1998. ICES CM 1999/ACFM :8

Larsen, L.I., Lassen, H., Nielsen, J.R., and Sparholt, H. 2001. Working Document to the 2000 meeting of the WGNSSK. ICES C.M.2001/ACFM:07)

Raitt, D.F.S. 1968. The population dynamics of Norway Pout in the North Sea. Marine Research 5:1-23.

Skagen, D. 1993. Revision and extension of the Seasonal Extended Survivors Analysis (SXSA). Working document for Norway pout and Sandeel Working Group. Unpublished

Sparholt, H., Larsen, L.I., Nielsen, J.R. 2002a. Verification of multispiesces interactions in the North Sea by trawl survey data on Norway Pout (Trisopterus esmarkii). ICES Journal of Marine Science 59:1270-1275.

Sparholt, H., Larsen, L.I., Nielsen, J.R. 2002b. Non-predation natural mortality of Norway pout (Trisopterus esmarkii) in the North Sea. ICES Journal of Marine Science 59:1276-1284.

Stock specific documentation of standard assessment procedures used by ICES.
Working group: North Sea Demersal Working Group
Updated: 13/9//2003 by: Henrik Jensen (hj@dfu.min.dk)

### 13.1 General

### 13.1.1 Stock definition

For assessment of sandeels the European continental shelf has been divided into four regions until 1995: Division IIIa (Skagerrak), northern North Sea, southern North Sea, Shetland Isl. and Division IVa. These divisions were based on regional differences in growth rate and evidence for a limited movement of adults between divisions (e.g. ICES CM 1977/F:7, ICES CM 1991/Assess:14.). The two North Sea divisions were revised in 1995, and it was decided to amalgamate the two stocks into a single stock unit. The Shetland sandeel stock was kept as a separate stock unit. ICES assessments have used these stock definitions since 1995.

Sandeels are largely stationary after settlement and the North Sea sandeel fishery must be considered as exploiting a complex of local populations. However, recruitment to local areas may not only be related to the local stock, as interchange between areas seems to take place during the early phases of life before settlement. Based on the distribution and simulated dispersal of larval stages, Wright et al. (1998) suggest that the North Sea stock could be split into six areas including the Shetland population. Assessments have tentatively been made for some of the areas (Pedersen et al. 1999) and there were high correlation between the results from the study and the one-area assessment made by the WG.

### 13.1.2 Fishery

Sandeel is taken by trawlers using small meshed trawls with mesh sizes $<16 \mathrm{~mm}$. The fishery is seasonal, taking place mostly in the spring and summer. Most of the sandeel catch consists of the lesser sandeel Ammodytes marinus, although small quantities of other Ammodytoidei spp. are caught as well. There is little by-catch of protected species (ICES 2004).

Technical measures for the sandeel fishery include a minimum percentage in weight of sandeel at $95 \%$ for meshes $<16$ mm .

### 13.1.3 Ecosystem aspects

ACFM consider that there is a need to ensure that the sandeel stock remains high enough to provide food for a variety of predator species.

In 1999 the U.K called for a moratorium on sandeel fishing adjacent to seabird colonies along the U.K. coast and in response the EU requested advice from ICES. An ICES Study Group, was convened in 1999 to assess whether removal of sandeel by fisheries has a measurable effect on sandeel, whether establishment of closed areas and seasons for sandeel fisheries could ameliorate any effects, and to identify possible spatial and/or temporal restrictions of the fishery as specifically as possible. The ICES Advisory committees (ACFM and ACE) accepted the advice from the study group. STECF (1999) agreed with this ICES advice and the EU advised to close the fishery whilst maintaining a commercial monitoring. A 3 -year closure, from 2000 to 2002, was decided. All commercial fishing was excluded, except for a maximum of 10 boat days in each of May and June for stock monitoring purposes. The closure was maintained for three years (see e.g. Wright et al. 2002) and has been extended until 2006, with a small increase in the effort of the monitoring fishery, after which the effect of the closure will be evaluated.

### 13.2 Data

### 13.2.1 Commercial catch

In the last 20 years the landings of sandeels in IV have been taken by 5 countries: Denmark (78\%), Norway (19\%) UK/Scotland (1\%), Sweden (1\%) and Faroes Isl. (1\%). In the 1950's also Germany and the Netherlands participated in this fishery, but since the start of the 1970's no landings have been recorded for these countries.

Age, length and weight at age data are available for Denmark and Norway to estimate numbers by age in the landings. Prior to 1996, the Norwegian age composition data were based on Danish ALK's. Catch numbers and weight at age for the southern North Sea are based only on Danish age compositions.

Denmark More details to be included in this section

Industrial species are not sorted by species before processing and it is assumed that the landings consist of one species only in the calculation of the official landings. The WG estimate of landings is based on samples for species composition taken by the Fishery Inspectors for control of the by-catch regulation. At least one sample ( $10-15 \mathrm{~kg}$ ) per 1000 tons landings is taken and these samples are used to estimate average species composition by area (ICES rectangles) and month. This species/area/period key, logbook data (spatial distribution) and landings slip data (quantity) are used to derive the Danish WG estimates of landings of sandeel and by-catch of other species (further information can be found in ICES, 1994/Assess:7; Dalskov, 2002).

Norway Text to be inserted by Norway
For Norway and Sweden, the official landings and the WG estimated landings are the same.
UK/Scotland Text to be inserted by UK/Scotland
Sweden Text to be inserted by Sweden
The text table below shows which country supplies which kind of data:

	Data				
Country	Caton (catch in   weight)	Canum (catch at   age in numbers)	Weca (weight at   age in the catch)	Matprop   (proportion   mature by age)	Length   composition in   catch
Denmark	x	x	x		x
Norway	x	x	x	x	
UK/Scotland	x				
Sweeden	x				
Farao Islands	x				

All input files are Excel spreadsheet files.
The national data sets have been imported in a database aggregated to international data by DIFRES.

The combined Danish and Norwegian age composition data and weight at age data are applied on the landings of UK, Sweeden and Farao Isl., assuming catches from these countries have the same age composition and weight at age as the Danish and Norwegian landings. Excel spreadsheet files can be found with the Danish stock co-ordinator and in the ICES computer system under w: $\backslash \mathbf{a c f m} \backslash \mathbf{W G N S S K} \mid * *$.

The result files can be found at ICES and with the stock co-ordinator as ASCII files on the Lowestoft format under w: $\backslash \mathbf{a c f m} \mid$ WGNSSK ${ }^{* * *}$.

### 13.2.2 Biological

Historically, assessments were done separately for the Northern and Southern North Sea. In recent years, the assessment has been done for the whole North Sea, but data are still compiled separately for the two areas. The catch numbers and weight at age data for the Northern North Sea are constructed by combining Danish and Norwegian data by half-year.

The mean weight at age in the catch used in the assessment is the mean weights at age in the catch for the Southern and Northern North Sea weighted by catch numbers. The mean weight at age in the stock is copied from the mean weight in the catch first half-year, and an arbitrary chosen weight at 1 gram was used for the 0 -group.

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

Values for natural mortalities are the same as used since 1989 (ICES CM 1989/Asssess:13). MSVPA (ICES CM 2002/D:04) estimates of natural mortalities are relatively stable in the period covered by this assessment. The values used in this assessment are quite similar to the MSVPA M, except for the 0 -group where MSVPA estimates a value of approximately 1.2 for the second half of the year. This assessment uses a value of 0.8 for the whole year for the 0 group, 1.2 for the 1 -group, and 0.6 for the 3 -group and $4+$-group.

The proportion mature is assumed constant over the whole period with $100 \%$ mature from age 2 and $0 \%$ of age 0 and 1 . Recent research indicates however, that there are large regional variations in age at maturity of Ammodytes marinus in the North Sea (see e.g. Jensen et al. 2001). Whilst sandeels in some areas seem to spawn at age 2 or older, sandeels in other regions seem to mature and spawn at age 1 . As the decision to spawn at age 1 or 2 is an annual event, it is likely that there are large regional and annual variations in the fraction of the populations of the sandeels that contribute to the spawning. The age at maturity keys used in the assessment might thus considerably underestimate the spawning biomass of sandeels in the North Sea.

The fishing fleet catch sandeels in different parts of the North Sea during the year, and the fishing pattern changes from year to year. Because sandeels, Ammodytes marinus, in the North Sea possibly consist of a number of sub populations (see section ${ }^{* *}$ ) the industrial fishery target different part of the sandeel populations during the year and between years. There seem to be significant spatial and temporal variations in emergence behaviour (e.g. Rindorf et al. 2000) and growth (e.g. Pedersen et al. 1999; Wright et al. 1998) of sandeels in the North Sea. Further, there are age/length dependent variations in the burrowing behaviour of sandeels (Kvist et al. 2001). The information about age compositions in the catches and the age and weight relationships thus represent average values over time and space and reflect the variability in emergence behaviour and growth. For example, weight at age of sandeels seems to vary both between years and between Danish and Norwegian catches.

The effect of variations in the biological data on the performance of the assessments has not yet been analysed. Such an analysis requires information about spatial and temporal variations in emergence and growth. A new sampling programme for such data for the Danish industrial fleet was initiated in 1999 in which a part of the fleet is monitored in detail (Jensen et al. 2001). In 1999, information about catches of sandeel was collected on a trawl haul basis from 17 Danish vessels. In total 231 samples was taken from 49 grounds, corresponding to $2.6 \%$ of the Danish landings of sandeel in the North Sea in 1999. This sampling programme was continued in 2000 to 2003 with about the same sampling level. Basic analysis of the data from 1999-2003 is not completed. However, the data have been used for estimation of assessment catch at age numbers. Due to the new sampling program, the number of fish measured and aged has since 1999 increased by a factor of around 10 compared to previous years.

### 13.2.3 Surveys

There are no survey time series available for this stock.

### 13.2.4 Commercial CPUE

Four commercial tuning fleets are used in the assessment. One fleet in the northern North Sea in first half year and one in the same area the second half year, one fleet in the southern North Sea first half year, and one in the same area in the second half year. The effort data for the Southern North Sea prior to 1999 are only available for Danish vessels. Since 1999 Norwegian vessels have also provided effort data. The tuning fleet used for the northern North Sea is a mixture of Danish and Norwegian vessels, even though separate national fleets would have been preferable. Such separation is however not suitable due to the use of a common Danish ALK for the period before 1996 (see section ${ }^{* *}$ ).

Total international standardised effort used in the assessment is calculated from CPUE and total catch. CPUE is standardized to a vessel size of 200 Gross Register tones (GRT) using the relationship:

CPUE $=a * \mathrm{GRT}^{b}$
where $a$ and $b$ are constants and GRT is vessel size in GRT

The constants a and b are estimated for each year by performing the regression analysis:

$$
\begin{equation*}
\operatorname{Ln}(\mathrm{C} / \mathrm{e})=\ln (a)+b^{*} \ln (\mathrm{GRT}) \tag{2}
\end{equation*}
$$

where $\mathrm{C}=$ catch in ton, $\mathrm{e}=$ effort in days spend fishing, and the rest of the parameters are as in (1).
The parameters in (2) are from 2003 estimated using catch and effort data on single trip level. Prior to 2003 average values of catch and effort for each vessel size categories were used in the estimation (ICES, 1996/Assess:6). This change in the estimation procedure of effort was not found to have any effect on F, SSB and recruitment.

As no recruitment estimates from surveys are available, recruitment estimates are based exclusively on commercial catch-at-age data. The tuning diagnostics indicate that the 0 -group CPUE is a poor predictor of recruitment.

There is a relatively poor correlation between the tuning indices and the stock, which may be due to the fact that several sub-stocks are assessed as a single unit.

### 13.2.5 Other relevant data

None.

### 13.3 Estimation of Historical Stock Development

The Seasonal XSA (SXSA) developed by Skagen (1993) was from 19** to 2002 used for stock assessment of sandeel in IV. Annual XSA was tried in 2002 WG where it was concluded that the two approaches gave similar results. For a standardization of methodology, it was decided to shift to XSA in 2003. For analysis of alternative procedures see WG reports from previous years (ICES 1986, ... $2003 * *$ to be updated with references prior to 1986).

The assessment of sandeels in IV now use the XSA method with the following settings for tuning:

stockarea	Sandeel   IV	
	XSA	
Combined Northern 1st half-year	1983-2001	0-4+
Combined Northern 2nd half-year	1983-2001	0-4+
Combined Southern 1st half-year	1983-2001	0-4+
Combined Southern 2nd half-year	1983-2001	0-4+
Time series weights	none	
Power model used for catchability Catchability plateau age	$\begin{aligned} & \text { not used } \\ & 2 \end{aligned}$	
Surv. est. shrunk towards mean $F$ s.e. of the means Min. stand. error for pop. estimates Prior weighting	$\begin{array}{\|l\|} \hline 5 \text { years } / \\ 1.5 \\ 0.3 \\ \text { none } \\ \hline \end{array}$	

Input data types and characteristics:

Type	Name	Year range	Age range	Variable from year   to year   Yes/No
Caton	Catch in tonnes	1974 - last data year	$0-4+$	Yes
Canum	Catch at age in numbers	1974 - last data year	$0-4+$	Yes
Weca	Weight at age in the   commercial catch	1974 - last data year	$0-4+$	Yes
West	Weight at age of the   spawning stock at   spawning time.	1974 - last data year	$0-4+$	Yes
Mprop	Proportion of natural   mortality before spawning	1974 - last data year	$0-4+$	No - set to 0 for all   ages in all years
Fprop	Proportion of fishing   mortality before spawning	1974 - last data year	$0-4+$	No - set to 0 for all   ages in all years
Matprop	Proportion mature at age	1974 - last data year	$0-4+$	No (see section $* *)$
Natmor	Natural mortality	$1974-$ last data year	$0-4+$	No (see section $* *)$

Tuning data:

Type	Name	Year range	Age range
Tuning fleet 1	Northern North Sea   first half year	1976 - last data year	$1-4+$
Tuning fleet 2	Northern North Sea   second half year	1976 - last data year	$0-4+$
Tuning fleet 3	Southern North Sea   first half year	1982 - last data year	$1-4+$
Tuning fleet 4	Southern North Sea   second half year	1982 - last data year	$0-4+$

The low number of age groups makes the assessment highly sensitive to estimated terminal fishing mortalities for the oldest age (age 3). This in combination with an assumed constant and poorly determined proportion mature makes the SSB estimate highly uncertain.

### 13.4 Short-Term Projection

Not done

The high natural mortality of sandeel and the few year classes in the fishery make the stock size and catch opportunities largely dependent on the size of the incoming year classes. Quantitative estimates of recruits (age 0 ) in the year of the assessment are not available at the time of the WG. Traditional deterministic forecasts are therefore not considered appropriate.

### 13.5 Medium-Term Projections

Not done

### 13.6 Long-Term Projections

Not done

### 13.7 Biological Reference Points

There is no management objective set for this stock. There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. Management of fisheries should try to prevent local depletion of sandeel aggregations, particularly in areas where predators congregate.

In 1998 ACFM proposed that $\mathbf{B}_{\text {lim }}$ be set at $430,000 t$, the lowest observed SSB. The $\mathbf{B}_{\mathrm{pa}}$ was estimated at $600,000 \mathrm{t}$, approximately $\mathbf{B}_{\mathrm{lim}} * 1.4$. This corresponds to that if SSB is estimated to be at $\mathbf{B}_{\mathrm{pa}}$ then the probability that the true SSB is less than $\mathbf{B}_{\mathrm{lim}}$ will be less than $5 \%$ (assuming that estimated SSB is $\log$ normal distributed with a CV of 0.2 ). No
fishing mortality reference points are given. These reference points are based on an assessment using another tuning method than used from 2002 (see section 1.2.4). Due to the few age-groups, SSB is highly dependent on the terminal F and thereby tuning method. Even though the previously used SXSA and XSA give similar results, an update of the reference points is needed.

The TAC was set to $1,020,000$ tonnes for 2002 and 918.000 t for 2003. The ACFM advice for 2003 was that the stock can sustain the current fishing mortality and that the fishing mortality should not be allowed to increase because the consequences of removing a larger fraction of the food-biomass for other biota are unknown.

### 13.8 Other Issues

None

### 13.9 References

ICES 1986. Report of the Industrial Fisheries Working Group. ICES C.M. 1986/Assess:15.
ICES 1987. Report of the Industrial Fisheries Working Group. ICES C.M. 1987/Assess:17.

ICES 1988. Report of the Industrial Fisheries Working Group. ICES C.M. 1988/Assess:15.
ICES 1989. Report of the Industrial Fisheries Working Group. ICES C.M. 1989/Assess:13.
ICES 1990. Report of the Industrial Fisheries Working Group. ICES C.M. 1990/Assess:13.
ICES 1991. Report of the Industrial Fisheries Working Group. ICES C.M. 1991/Assess:14.
ICES 1992. Report of the Industrial Fisheries Working Group. ICES C.M. 1992/Assess:9.
ICES 1994. Report of the Working Group on the Assessment of Norway Pout and Sandeel. ICES C.M. 1994/Assess:7.
ICES 1995. Report of the Working Group on the Assessment of Norway Pout and Sandeel. ICES C.M. 1995/Assess:5.

ICES 1996. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 1996/Assess:6.

ICES 1997. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 and 3. ICES C.M. 1997/Assess:6.

ICES 1998. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 and 3. ICES C.M. 1998/Assess:7.

ICES 1999. Report of the Study group on effects of sandeel fishing. ICES 1999/ACFM:19.

ICES 1999b. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 1999/ACFM:8.

ICES 2000. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 2000/ACFM:7.

ICES 2001. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 2. ICES C.M. 2001/ACFM:7.

ICES 2003. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 2003/ACFM:2.

ICES 2004. Report of the Working Group on the Ecosystem Effects of Fishing Activities. ICES C.M. 2004/ACE:0*, Ref. D,E,G.

Jensen H.; Rindorf A.; Horsten M.B.; Mosegaard H.; Brogaard P.; Lewy P.; Wright P.J.; Kennedy F.M.; Gibb I.M.; Ruxton G.; Arnott S.A. and Leth J.O. 2001. Modelling the population dynamics of sandeel (Ammodytes marinus) populations in the North Sea on a spatial resolved level. DG XIV no. 98/025..

Jensen H., Mosegaard H., Rindorf A., Dalskov J. and Brogaard P. 2002. Indsamling af detaljerede oplysninger om tobisfiskeriet i Nordsøen. DFU rapport no. 97-02.

Jensen and Vinther. 2003. Estimation of fishing effort for the Danish sandeel fishery in the North Sea based on catch per unit effort data. Working document for the 2003 ICES WGNSSK meeting in Bolougne.

Pedersen, S.A., Lewy, P. and Wright, P., 1999. Assessment of the lesser sandeel (Ammodytes marinus) in the North Sea based on revised stock divisions. Fisheries Research, 41: 221-241.

Proctor, R., Wright, P.J. and Everitt, A. (1998). Modelling the transport of larval sandeels on the north west European shelf. Fisheries Oceanography.7, 347-354.

Rindorf, A, Wanless, S and Harris, MP (2000) Effects of changes in sandeel availability on the reproductive output of seabirds. Marine Ecology Progress Series 202:241-252.

Wright P., Verspoor E., Andersen C., Donald L., Kennedy F., Mitchell A., Munk P., Pedersen S.A., Jensen H., Gislason H. and Lewy P. 1998. Population structure in the lesser sandeel (Ammodytes marinus) and its implications for fisherypredator interactions. DG XIV no. 94/071.

Wright P.J., Jensen H., Mosegaard H., and Dalskov J. 2002. European Commission's annual report on the impact of the Northeast sandeel fishery closure and status report on the monitoring fishery in 2000 and 2001.


[^0]:    ${ }^{1}$ Date was afterwards changed to 6-7 October 2003.

[^1]:    0 denotes < 0.5 tonne

[^2]:    ${ }^{1}$ Same Procedure As Last Year

[^3]:    Run title : Haddock in the North Sea and Skagerrak, ages 0-10+ (19/08/2003 CLN)

[^4]:    Data from file:C:\Working Files\NS 2003\haddock\forecasts\hadiv.sen on 18/09/200

[^5]:    ${ }^{1}$ RCT3
    ${ }^{2}$ GM
    ${ }^{3}$ Assuming mean weights at age in 2003 as the average over 2000-2002.

[^6]:    * Unallocated mainly due misreporting
    ** Preliminary

[^7]:    At 17/09/2002 11:41

[^8]:    ${ }^{1}$ International Bottom Trawl Survey, arithmetic mean catch in no./h in standard area. $\quad$. 3 .
    ${ }^{2}$ English groundfish survey, arithmetic mean catch in no./h, 22 selected rectangles with
    ${ }^{2}$ English groundfish survey, arithmetic mean catch in no./h, 22 selected rectangles within Roundfish areas 1, 2, and 3
    ${ }^{3}$ 1982-91 EGFS numbers adjusted from Granton trawl to GOV trawl by multiplying by 3.5 .
    ${ }^{5}$ Scottish groundfish surveys, arithmetic mean catch no./h. Survey design changed in 1998 and 2000. 0-group indices not used from this survey. . EGFS 3 rd quarter 2003. See Table 12.3.7.
    ngth group in

[^9]:    ${ }^{1} \mathrm{P}\left(\mathrm{SSB}_{\mathrm{MT}}<\mathrm{Bpa}\right) \sim 10 \%$ where MT is run over 25 years

[^10]:    Kind of data supplied quarterly

