## REPORT OF THE

# NORTH-WESTERN <br> WORKING GROUP 

## ICES, Headquarters

26 April - 4 May 1999

## PART 2 OF 2

This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

International Council for the Exploration of the Sea
Conseil International pour l'Exploration de la Mer

### 3.1 Regulation of Demersal Fisheries

With the extension of the fisheries jurisdiction to 200 miles in 1975, Iceland introduced new measures to protect young juvenile fish. The mesh size in trawls was increased from 120 mm to 155 mm in 1977. Only in the fisheries for redfish was 135 mm mesh size allowed in certain areas. In addition a system was implemented whereby fishing can be forbidden immediately in areas where the number of small fish in the catches exceeds a certain percentage ( $25 \%<55 \mathrm{~cm}$ for cod and saithe and $25 \%<48 \mathrm{~cm}$ for haddock). These areas are usually been closed for two weeks and can be extended in time and space if necessary.

A quota system however, was not introduced, until 1984.The quotas are transferable boat quotas. The agreed quotas are based on the Marine Research Institute's TAC recommendations, also taking socio-economic effects into account. Until 1990, the quota year corresponded to the calendar year but at present the quota-, or so-called fishing year, starts on 1 September and ends on 31 August of the following year. This was done to meet the need of the fishing industry.

Since the beginning of $1995 / 1996$ fishing year i.e. 1st of September 1995 a harvesting control law has been enforced in order to manage the cod fisheries. According to this management scheme, catch will be limited to $25 \%$ of the fishable (4+) stock biomass calculated from the average stock at 1st of January of the previous fishing year and the coming fishing year. However, with a minimum catch level of 155000 t .

### 3.2 Saithe in Icelandic waters

### 3.2.1 Trends in landings

Saithe landings from Icelandic grounds (Division Va) fluctuated between 57000 t and 70000 t during the period 19811986 (Table 3.2.1). From 1987 to 1989, annual landings were about 80000 t . In 1990, landings increased by more than $20 \%$ to 98000 t and in 1991 the catches reached 103000 t . Since 1991 , landings have decreased to a historically low level in 1997. In 1998 preliminary reported landings for saithe in Division Va (Table 3.2.1) are slightly above than the 30000 t expected by the working group last year.

The Icelandic landings in the quota year September-August 1997/1998 amounted to about 35000 t whereas the national TAC for the same period was 50000 t .

### 3.2.2 Fleets and fishing grounds

Approximately $67 \%$ of the catches were taken by bottom trawl and $15 \%$ in gillnets in 1998 . The proportion of the catch taken by the main gear types was close to that observed in 1997, although the proportion caught in gillnets has decreased while the bottom trawl catch proportion increased slightly. The proportion of the catch taken in gill nets has decreased in recent years, while Danish seine boats and jiggers have taken a steadily increasing share of the total catch. (Figure 3.2.1).

Landings from the bottom trawl fishery were highest in April in 1998 but in August from the gillnet fishery. The trawlers caught saithe fairly evenly over the year, each month constituting more than $5 \%$ of the catches, while the gill net fishery has a more seasonal character, with a winter and autumn season, although this year the catches were highest in August (Figure 3.2.2).

The main fishing grounds of the bottom trawl fishery are southwest of Reykjanes and off the south east coast (Figure 3.2.3). The gillnet fishery is concentrated on the spawning grounds southwest of Iceland.

### 3.2.3 Catch at age

Data from samples from all gear types were used to calculate the catch in numbers at age for the total landings in 1998, with the sampling level indicated in the text table below, and used as input for the assessment (Table 3.2.2).

| Gear/nation | Landings | No. of otolith <br> samples | No. of <br> otoliths read | No. of length <br> samples | No of length <br> measurements |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Gillnets | 4277 | 4 | 395 | 13 | 3590 |
| Jiggers | 2013 | 1 | 100 | 2 | 454 |
| Danish seine | 1721 | 1 | 100 | 2 | 578 |
| Bottom trawl | 21209 | 927 | 2225 | 81 | 17950 |
| Other gear | 927 | - | - | - | - |
| Faroese jiggers | 801 | - | - | - | - |
| Total | 31393 | 31 | 2820 | 98 | 22572 |

Gillnet catches were split according to a gear-specific age-length key, the rest of the catches were split according to a 'trawl' key, based on all samples except those from gill nets. The length weight relationship used was $W=0.02498 \cdot L^{2.75674}$ for all fleets.

Compared to last years prognosis, a lower proportion of age groups 3,4 and 6 and considerably higher proportions for age groups 7 and older were observed in the 1998 landings (Figure 3.2.4). The difference between last years prognosis and this years estimate is considerable for most age groups, and greater than what was found when comparing the prognosis for 1997 to the estimate of catch in numbers in 1997.

### 3.2.4 Mean weight at age

Mean weights at age in the landings are computed on the basis of samples of otoliths and lengths along with length distributions and length-weight relationships. The mean weights at age are computed for the same categories as the catch numbers at age and are then weighted together across the fleets. In recent years a slight increasing trend in mean weight at age is apparent, with the exception of the 1992 year class which has had lower than average mean weight at age as 4, 5 and 6 year olds (Figure 3.2.5 and Table 3.2.3). These weights at age where also used as weight at age in the stock.

### 3.2.5 Maturity at age

As has been pointed out in earlier reports of this working group, the maturity at age data for saithe can be misleading due to the nature of the fishery and of the species, and inadequate sampling. A GLM model, described in the 1993 Working Group report (ICES. C.M.1993/Assess:18), was used to explain maturity at age as a function of age and year class strength. This model was used to predict maturity at age for 1980-1998 (Figure 3.2.6). The maturity at age prior to 1980 is derived from ICES C.M. 1979/G:6.

### 3.2.6 <br> Stock Assessment

### 3.2.6.1 Tuning input

CPUE data, based on Icelandic trawler logbooks from 1970-1997 and from the gillnet fleet from 1988 are available. To begin with the logbooks were kept on a voluntary basis by skippers of a few vessels, but since 1991 it has become mandatory to keep logbooks for both trawl and gill net fishery. During this decade the reports have become more complete and have ranged from $60-80 \%$ of landings during the 1990 s.

In both trawler and gillnet vessel logbooks a trend is apparent in the way catches of saithe are recorded and presumably also caught. During this decade a continuous shift, from effort directed at saithe towards fishing of saithe as by-catch, is observed (Figure 3.2.7). In part, this is a result of the build-up of the cod stock, but also indicates a reduction in effort directed specifically at saithe. This necessitates a revision of the criterion used when choosing trawl hauls for constructing a CPUE-index, which has previously been to include only hauls in which saithe constitute more than $70 \%$ of the catch. GLIM indices (Stefánsson 1988) based on trawl hauls and gill net sets where saithe was more than $50 \%$ of the total catch were computed and age disaggregated as described in the 1998 report of this WG (ICES C. M. 1988/ACFM:19). Tuning data for trawlers in January-May is given in Table 3.2.4.

### 3.2.6.2 Estimates of fishing mortality

As there is a need for revision of the tuning fleets previously used in XSA of saithe in div. Va (Figure 3.2.7), no XSA results are presented this year, but examples are given in a working document (see Jonsson 1999, WD 31 to NWWG99).

Time series analysis presented (Guðmundsson 1994, WD 32 to NWWG99) is based on annual catch-at-age values from 1988-1998 and ages 4-11 years. Three sets of CPUE data were used, i.e. GLIM indices $50 \%+$ from nets, trawlers in January-May and trawlers in June-December. The results of one run are given in Table 3.2.5, and graphs of retrospective analyses and a graph of $\log q(y)$ for the three CPUE sets are shown in Figures 3.2.8-12.

Initial estimates of recruitment were produced by a linear trend. The estimated values in a joint analysis with CPUE from trawlers in January-May was
$\mathrm{N}(4, \mathrm{y})=31700-2030(\mathrm{y}-1988) \quad$ (thousand fish)
and similar values were obtained with other specifications presented in our tables. This specification of the recruitment improves the fit with the data included in the present analyses. Estimation with a constant initial estimate of recruitment produces systematic discrepancies in the retrospective patterns where the last year's biomass is consistently larger than the values obtained. An example of this where no tuning data are included is shown in Figure 3.2.8. However, it should be kept in mind that a linear trend in recruitment is certainly a misspecification of the long-term relationship although it may fit rather well over one decade. The standard deviations of estimates presented in the table are obtained by the Kalman filter. They only apply to the uncertainty produced by the random elements included in the model. Actual uncertainty is bigger because of misspecifications and errors in parameter estimates.

Neither the retrospective analyses nor statistics on residuals (not presented here) indicate systematic errors. There is little difference between the four sets of estimates and according to the estimated standard deviations there is little information in the CPUE data beyond what is already in the catch-at-age observations. According to the time series estimates, catchability has increased substantially since 1990; by 52 and 67 percent for trawlers in January-May and June-December respectively and by 112 percent for nets.

The resulting reference F's from the TSA runs vary from 0.45 (catch at age only, linear trend in recruitment to 0.37 (catch at age data and trawler GLIM $50 \%+$ January-May with linear trend in recruitment estimated). According to the estimated standard deviations and other diagnostics from the TSA-runs there is no significant difference between the four results.

A retrospective analysis was performed for the different methods and fleets (Figures 3.2.7-10). As in previous years assessments the TSA-runs seem to be more consistent than XSA-runs. From the TSA-runs, the analysis of catch at age data with linear trend estimated and trawler GLIM50+, appears to be the most consistent one and was adopted by the working group. As no retrospective pattern was apparent in the TSA runs, no raising factor was used for the terminal F . In 1997 and 1998 this working group used raising factors of 1.32 and 1.19 respectively, based on the average underestimation in the last three years according to retrospective analyses.

The terminal fishing mortalities from the TSA were used to run a traditional VPA, where the F for age groups $8-14$ was taken as the mean of age groups 8 -11 in the TSA. Natural mortality was set at a value of 0.2 . The results of this run are given in Tables 3.2.6-3.2.8 and Figures 3.2.13A and 3.2.13B

### 3.2.6.3 Spawning stock and recruitment

The spawning stock biomass is shown in Figure 3.2.13B and given in Table 3.2.8. After a decline from 1970-1977, the spawning stock biomass averaged between 160-180000 t in 1978-1989 and increased to about 190000 t in 1990. Since 1992 the spawning stock biomass has declined to a minimum in 1998 of a little less than 85000 t , which is the lowest recorded level. Spawning stock biomass at the beginning of 1999 is estimated at only 85000 t .

Estimates of recruitment at age 3 are plotted in Figure 3.2.13.B. The 1983-1985 year classes are all well above the 1967-1987 long-term average of about 40 million 3 year old recruits. The 1984 year class is the highest on record at 109 million recruits. All year classes after 1985 are well below the long term average. The average size of the 19861993 year classes is estimated at only 22 million recruits, which is below the lower quartile of the historic series of recruitment. Since no information is available for the more recent year classes, the 1994-1997 year classes were set at the rounded average for the 1986-1993 year classes, i.e. at 20 million recruits.

### 3.2.7 Prediction of catch and biomass

### 3.2.7.1 Input data

The input data for the catch projections is shown in Table 3.2.9.

For catch predictions and stock biomass calculations, the mean weight at ages $4-9$ were predicted using a multiple regression analysis where the mean weight at age was predicted by the mean weight of the year class in the previous year and the year class strength. Since the regression analysis showed significant relationships only for the above age groups, the mean weights at age for other age groups were averaged over the 1995-1997 period, excluding the strong 1984 year class as it had weight at age much lower than average.

For the short-term predictions, maturity at age was predicted as described in Section 3.2.5. For long term predictions of maturity at age, averages over the period 1980-1998 were used.

For a short term prediction the rounded average of the 1986-1993 year classes was used as recruitment.
For long-term yield and spawning stock biomass per recruit, the exploitation pattern was taken as the average of the fishing mortalities during 1980-1997 from the standard VPA run. Averages over 1980-1997 for maturity and mean weight at age for all age groups were used, along with a natural mortality of 0.2 (Table 3.2.11).

### 3.2.7.2 Biological reference points

The yield and spawning stock biomass-per-recruit (age 3) curves are shown in Figure 3.2.13C.
The ACFM has set $B_{p a}$ at $150000 t$ and $B_{\text {lim }}$ was tentatively set at $90000 t$ and $F_{p a}$ at 0.3 . $F_{\text {lim }}$ has not been set for this stock. The stock is therefore below $\mathrm{B}_{\mathrm{lim}}$ according to this assessment.

### 3.2.7.3 Projections of catch and biomass

Based on the input data given in Table 3.2.9, options for 1999 were calculated and are given in Table 3.2.10 and Figure 3.2.13.D.

As can be seen from the prediction (Table 3.2.10), total catch in 1999 is assumed 30000 t which is a likely result of the TAC of 30000 t for the 1998/99 quota year. The resulting stock size in the beginning of 2000 is estimated about 170000 t and SSB slightly above 90000 t . The same reference F in 2000 , as in 1998 , would result in a yield of approx. 37000 t , and both total and spawning stock biomass in 2001 would remain close to the 1999 level. Total and spawning stock biomass are at historically low levels and will continue to be at a low level in the coming years, even at very low fishing mortalities, unless an increase in recruitment occurs.

### 3.2.8 Management considerations

The stock was overestimated until in the 1997 assessment. It is at the lowest observed level at present. Last years assessment seems to have been too optimistic. The reference $F$ values have been at or above $F_{m e d}$ for the whole time series in the assessment (one exception), and were higher than $F_{\max }$ in 1993-1995. Recruitment in recent years (the 1986 and more recent year classes) has been well below the long term average.

### 3.2.9 Comments on the assessment

Only one of previously used tuning fleets was updated. New tuning fleets were defined and XSA runs presented in WD 31, but only one of the fleets is presented in this report.

Time series analysis has been used to assess this stock in recent years. The TSA run adopted in the 1998 assessment was based on catch at age only with no trend in recruitment, this year the TSA was tuned with an age disaggregated GLIM index for trawlers in January-May, and a linear trend in recruitment was included. Figure 3.2.8 shows retrospective analysis from a run with no trend in recruitment. From systematic patterns in retrospective analysis, it can be seen that present fishing mortalities had been consistently underestimated in recent years, but the retrospective pattern of underestimation was no longer apparent in runs with a trend in recruitment.

The range of years used in the TSA was shortened by 4 years, the year range in the 1998 assessment was 1982-1997. In this assessment the TSA starts in 1988, when the abundant 1984 year class was entering the fishery, which changes the behaviour of the model.

In the 1997 and 1998 assessments the short term average of 25 million 3 year olds for year classes 1985-1992 was used as a recruitment estimate in short term prediction. In this assessment the year class range was changed to 1986-1993, averaging 22 million recruits, which was rounded to 20 million.

Tag returns indicate migration between saithe stock units in NE-Atlantic, and indications from catch at age have been described (Reinch 1977, Jakobsen \& Olsen 1987). Little is known about their magnitude and frequency. Better understanding of saithe biology, e.g. recruitment and migrations, is needed.

Table 3.2.1. Nominal catch (tonnes) of SAITHE in Division Va by countries, 1982-1999, as officially reported to ICES

| Country | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 201 | 224 | 269 | 158 | 218 | 217 | 268 | 369 |
| Faroe Islands | 3,582 | 2,138 | 2,044 | 1,778 | 783 | 2,139 | 2,596 | 2,246 |
| France | 23 | - | - | - | - | - | - | - |
| Iceland | 65,124 | 55,904 | 60,406 | 55,135 | 63,867 | 78,175 | 74,383 | 79,810 |
| Norway | 1 | + | - | 1 | - | - | - | - |
| UK (Engl. and Wales) | - | - | - | 29 | - | - | - | - |
| Total | 70,913 | 60,249 | 64,703 | 59,086 | 66,854 | 82,518 | 79,235 | 82,425 |
| WG estimate | - | - | - | - | $66,376^{2)}$ | - | - |  |


| Country | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | $1998^{1 /}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 190 | 236 | 195 | 104 | 30 | - | - | - | - |
| Faroe Islands | 2,905 | 2,690 | 1,570 | 1,562 | 975 | 1,161 | 801 | 716 | 801 |
| France | - | - | - | - | - | - | - | - | - |
| Germany | - | - | - | - | - | - | 1 | - | 3 |
| Iceland | 95,032 | 99,390 | 77,832 | 69,982 | 63,333 | 47,466 | 39,297 | 36,360 | 30,469 |
| Norway | - | - | - | - | - | 1 | - | - | - |
| UK (Engl. and Wales) | - | - | - | - | - | - | - | - | - |
| Total | 98,127 | 102,316 | 79,597 | 71,648 | 64,338 | 48,628 | 40,099 | 37,264 | 31,393 |
| WG estimate | $102,737^{3}$ | - | - | - | - | - |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

[^0]Table 3.2.2. Saithe in division Va. Catch in numbers 1979-1998.
Run title : Saithe iceland Va (run: SVPSTJ01/V01)
At 2-May-99 15:06:07

| Table 1 <br> YEAR |  | Catch numbers at age |  | Numbers*10**-3 |  | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1979 | 1980 | 1981 | 1982 |  |  |  |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
|  | 3 | 480 | 275 | 203 | 508 | 107 | 53 | 376 | 3108 | 956 | 1318 |
|  | 4 | 3764 | 2540 | 1325 | 1092 | 1750 | 657 | 4014 | 1400 | 5135 | 5067 |
|  | 5 | 1991 | 5214 | 3503 | 2804 | 1065 | 800 | 3366 | 4170 | 4428 | 6619 |
|  | 6 | 3616 | 2596 | 5404 | 4845 | 2455 | 1825 | 1958 | 2665 | 5409 | 3678 |
|  | 7 | 1566 | 2169 | 1457 | 4293 | 4454 | 2184 | 1536 | 1550 | 2915 | 2859 |
|  | 8 | 718 | 1341 | 1415 | 1215 | 2311 | 3610 | 1172 | 1116 | 1348 | 1775 |
|  | 9 | 292 | 387 | 578 | 975 | 501 | 844 | 747 | 628 | 661 | 845 |
|  | 10 | 669 | 262 | 242 | 306 | 251 | 376 | 479 | 1549 | 496 | 226 |
|  | 11 | 589 | 155 | 61 | 59 | 38 | 291 | 74 | 216 | 498 | 270 |
|  | 12 | 489 | 112 | 154 | 35 | 12 | 135 | 23 | 51 | 58 | 107 |
|  | 13 | 150 | 64 | 135 | 48 | 2 | 185 | 72 | 30 | 27 | 24 |
|  | 14 | 72 | 33 | 128 | 46 | 4 | 226 | 71 | 14 | 48 | 1 |
|  | +gp | 0 | 58 | 141 | 99 | 174 | 190 | 291 | 95 | 22 | 1 |
| 0 | TOTAL | 14396 | 15206 | 14746 | 16325 | 13124 | 11376 | 14179 | 16592 | 22001 | 22790 |
|  | TONSL | 63504 | 58347 | 58986 | 68615 | 58266 | 62719 | 57101 | 66376 | 80559 | 77247 |
|  | SOPCC | 98 | 100 | 99 | 99 | 99 | 100 | 99 | 100 | 100 | 100 |


| Table 1 <br> YEAR |  | Catch numbers at age |  | Numbers*10**-3 |  | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1989 | 1990 | 1991 | 1992 |  |  |  |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
|  | 3 | 315 | 143 | 198 | 242 | 657 | 702 | 1573 | 2118 | 603 | 202 |
|  | 4 | 4313 | 1692 | 874 | 2928 | 1083 | 2955 | 1853 | 3465 | 2960 | 1246 |
|  | 5 | 8471 | 5471 | 3613 | 3844 | 2841 | 1770 | 2661 | 2327 | 2766 | 1944 |
|  | 6 | 7309 | 10112 | 6844 | 4355 | 2252 | 2603 | 1807 | 1838 | 1651 | 1490 |
|  | 7 | 1794 | 6174 | 10772 | 3884 | 2247 | 1377 | 2370 | 814 | 1178 | 1073 |
|  | 8 | 1928 | 1816 | 3223 | 4046 | 2314 | 1243 | 905 | 1129 | 599 | 566 |
|  | 9 | 848 | 1087 | 858 | 1290 | 3671 | 1263 | 574 | 321 | 454 | 352 |
|  | 10 | 270 | 380 | 838 | 350 | 830 | 2009 | 482 | 209 | 125 | 258 |
|  | 11 | 191 | 151 | 228 | 196 | 223 | 454 | 521 | 144 | 95 | 138 |
|  | 12 | 135 | 55 | 40 | 56 | 188 | 158 | 106 | 168 | 114 | 84 |
|  | 13 | 76 | 76 | 6 | 54 | 81 | 188 | 35 | 85 | 77 | 70 |
|  | 14 | 10 | 37 | 5 | 15 | 12 | 82 | 13 | 33 | 43 | 83 |
|  | +gp | 8 | 42 | 42 | 1 | 1 | 51 | 17 | 30 | 41 | 72 |
| 0 | TOTAL | 25668 | 27236 | 27541 | 21261 | 16400 | 14855 | 12917 | 12681 | 10706 | 7578 |
|  | TONSL | 82425 | 98130 | 102737 | 79597 | 71648 | 64338 | 48650 | 40101 | 37246 | 31393 |
|  | SOPCC | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
|  | 1 |  |  |  |  |  |  |  |  |  |  |

Table 3.2.3. Saithe in Division Va. Mean weight (kg) at age in the catches 1979-1998.
Run title: Saithe Iceland Va (run: SVPSTJ01N01)
At 2-May-99 15:06:07

| able 2 Catch weights at age (kg) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3 | 1.12 | 1.428 | 1.585 | 1.547 | 1.53 | 1.653 | 1.609 | 1.45 | 1.516 | 1.261 |
| 4 | 1.76 | 1.983 | 2.037 | 2.194 | 2.221 | 2432 | 2.172 | 2.19 | 1.715 | 2.017 |
| 5 | 2.73 | 2.667 | 2.696 | 3.015 | 3.171 | 3.33 | 3.169 | 2.959 | 2.67 | 2.513 |
| 6 | 4.29 | 3.689 | 3.525 | 3.183 | 4.27 | 4.681 | 3.922 | 4.402 | 3.839 | 3.476 |
| 7 | 5.54 | 5.409 | 4.541 | 5.114 | 4.107 | 5.466 | 4.697 | 5.488 | 5.081 | 4.719 |
| 8 | 7.27 | 6.321 | 6.247 | 6.202 | 5.984 | 4.973 | 6.411 | 6.406 | 6.185 | 5.932 |
| 9 | 8.42 | 7.213 | 6.991 | 7.256 | 7.565 | 7.407 | 6.492 | 7.57 | 7.33 | 7.523 |
| 10 | 9.41 | 8.565 | 8.202 | 7.922 | 8.673 | 8.179 | 8.346 | 6.487 | 8.025 | 8.439 |
| 11 | 10 | 9.147 | 9.537 | 8.924 | 8.801 | 8.77 | 9.401 | 9.616 | 7.974 | 8.748 |
| 12 | 10.56 | 9.617 | 9.089 | 10.134 | 9.039 | 8.831 | 10.335 | 10.462 | 9.615 | 9.559 |
| 13 | 11.87 | 10.066 | 9.351 | 9.447 | 11.138 | 11.01 | 11.027 | 11.747 | 12246 | 10.824 |
| 14 | 13.12 | 11.041 | 10.225 | 10.535 | 9.818 | 11.127 | 10.644 | 11.902 | 11.656 | 14.099 |
| +9p | 13.12 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
| 0 SOPCX | 0.984 | 0.9989 | 0.9933 | 0.9922 | 0.9915 | 0.9975 | 0.9929 | 0.9987 | 1.0005 | 0.9999 |


| Table 2 Catch weights at age (kg) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3 | 1.403 | 1.647 | 1.224 | 1.269 | 1.381 | 1.444 | 1.37 | 1.21 | 1.325 | 1.375 |
| 4 | 2.021 | 1.983 | 1.939 | 1.909 | 2.143 | 1.836 | 1.977 | 1.745 | 1.936 | 2.03 |
| 5 | 2.194 | 2.566 | 2.432 | 2.578 | 2.742 | 2.649 | 2.769 | 2.684 | 2.409 | 2.927 |
| 6 | 3.047 | 3.021 | 3.16 | 3.288 | 3.636 | 3.512 | 3.722 | 3.741 | 3.906 | 3.43 |
| 7 | 4.505 | 4.077 | 3.634 | 4.15 | 4.398 | 4.906 | 4.621 | 4.85 | 5.032 | 5.039 |
| 8 | 5.889 | 5.744 | 4.967 | 4.865 | 5.421 | 5.539 | 5.854 | 5.62 | 6.171 | 6.089 |
| 9 | 7.172 | 7.038 | 6.629 | 6.168 | 5.319 | 6.818 | 6.416 | 6.966 | 7.202 | 6.991 |
| 10 | 8.852 | 7.564 | 7.704 | 7.926 | 7.006 | 6.374 | 7.356 | 7.43 | 7.883 | 7.884 |
| 11 | 10.17 | 8.854 | 9.061 | 8.349 | 8.07 | 8.341 | 6.815 | 8.884 | 8.856 | 8.876 |
| 12 | 10.392 | 10.645 | 9.117 | 9.029 | 10.048 | 9.77 | 8.312 | 8.025 | 9.649 | 10.183 |
| 13 | 12.522 | 11.674 | 10.922 | 11.574 | 9.106 | 10.528 | 9.119 | 10.246 | 9.621 | 10.171 |
| 14 | 11.923 | 11.431 | 11.342 | 9.466 | 11.591 | 11.257 | 11.91 | 12.177 | 10.877 | 10.12 |
| +gp | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
| 0 SOPCC | 0.9998 | 1.0005 | 0.9999 | 1.0002 | 1.0013 | 1.0018 | 1.0027 | 1 | 1.0011 | 0.9958 |

Table 3.2.4. Saithe in Division Va. Tuning data series.

| EFFORT |  | Age group |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 1988 | 1 | 18.8 | 93.3 | 53.3 | 44.0 | 16.8 | 12.3 | 3.0 | 4.4 |
| 1989 | 1 | 7.8 | 34.7 | 101.2 | 42.5 | 30.5 | 14.4 | 4.8 | 1.8 |
| 1990 | 1 | 18.3 | 42.8 | 92.7 | 76.2 | 15.8 | 9.7 | 4.8 | 4.1 |
| 1991 | 1 | 5.4 | 35.5 | 71.9 | 118.6 | 37.9 | 12.4 | 11.6 | 3.9 |
| 1992 | 1 | 17.2 | 40.3 | 57.3 | 53.8 | 52.2 | 13.4 | 2.7 | 1.1 |
| 1993 | 1 | 3.4 | 17.1 | 38.6 | 50.2 | 36.8 | 33.9 | 7.9 | 1.8 |
| 1994 | 1 | 18.1 | 16.8 | 35.8 | 17.7 | 15.9 | 15.3 | 22.7 | 5.3 |
| 1995 | 1 | 22.5 | 33.8 | 32.3 | 42.2 | 13.1 | 6.1 | 5.5 | 6.8 |
| 1996 | 1 | 42.0 | 29.0 | 31.6 | 17.8 | 26.1 | 5.0 | 3.3 | 1.4 |
| 1997 | 1 | 63.2 | 28.5 | 23.9 | 34.0 | 16.3 | 10.6 | 3.0 | 1.5 |
| 1998 | 1 | 30.4 | 52.5 | 40.1 | 25.7 | 13.0 | 8.7 | 4.9 | 4.0 |

Table 3.2.5. Saithe in Division Va. Results from TSA-runs.
Catch-at-age 4-11 years
CPUE trawl Jan.-May 6-11 years Linear trend in recruitment

| STOCK IN NUMBERS (thousands of fish) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Biomass |
| 1988 | 81142. | 38463. | 12009. | 9004. | 4222. | 1490. | 444. | 541. | 388.5 |
| 1989 | 39303. | 61656. | 25217. | 6712. | 4723. | 1851. | 684. | 220. | 367.0 |
| 1990 | 24481. | 30033. | 41522. | 14618. | 3676. | 2247. | 954. | 357. | 361.9 |
| 1991 | 16644. | 18469. | 19555. | 24163. | 6883. | 1526. | 1148. | 489. | 284.3 |
| 1992 | 21239. | 12607. | 11694. | 10323. | 11407. | 2667. | 619. | 472. | 235.3 |
| 1993 | 12010. | 15073. | 7094. | 5757. | 5027. | 5378. | 1285. | 279. | 185.2 |
| 1994 | 14521. | 8844. | 9588. | 3594. | 2540. | 2025. | 2416. | 554. | 149.4 |
| 1995 | 13382. | 10391. | 5576. | 5379. | 1690. | 923. | 744. | 948. | 128.6 |
| 1996 | 16383. | 9610. | 6203. | 2909. | 2458. | 640. | 387. | 307. | 115.6 |
| 1997 | 14754. | 11857. | 5879. | 3413. | 1545. | 1059. | 307. | 183. | 118.5 |
| 1998 | 11352. | 10768. | 7402. | 3279. | 1727. | 733. | 560. | 160. | 118.0 |

STANDARD DEVIATION OF STOCK ESTIMATES

| 1997 | 2635. | 1487. | 652. | 351. | 133. | 103. | 47. | 42. |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1998 | 4618. | 1966. | 1142. | 461. | 250. | 90. | 84. | 33. |

## FISHING MORTALITY RATES

|  | 4 |  |  |  |  |  |  |  |  | je 4-9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1988 | 0.075 | 0.222 | 0.380 | 0.445 | 0.616 | 9 0.768 | 10 0.703 | 0.696 | geom 0.332 | arithm |
| 1989 | 0.066 | 0.196 | 0.345 | 0.402 | 0.543 | 0.659 | 0.648 | 0.674 | 0.294 | 0.368 |
| 1990 | 0.082 | 0.227 | 0.340 | 0.551 | 0.678 | 0.669 | 0.669 | 0.700 | 0.341 | 0.424 |
| 1991 | 0.075 | 0.256 | 0.439 | 0.550 | 0.736 | 0.876 | 0.870 | 0.812 | 0.380 | 0.489 |
| 1992 | 0.144 | 0.346 | 0.504 | 0.516 | 0.527 | 0.722 | 0.790 | 0.800 | 0.413 | 0.460 |
| 1993 | 0.096 | 0.252 | 0.439 | 0.579 | 0.700 | 0.800 | 0.835 | 0.832 | 0.389 | 0.478 |
| 1994 | 0.129 | 0.251 | 0.376 | 0.518 | 0.723 | 0.917 | 0.886 | 0.847 | 0.401 | 0.486 |
| 1995 | 0.128 | 0.296 | 0.436 | 0.575 | 0.734 | 0.832 | 0.844 | 0.822 | 0.424 | 0.500 |
| 1996 | 0.125 | 0.282 | 0.394 | 0.432 | 0.638 | 0.734 | 0.750 | 0.753 | 0.376 | 0.434 |
| 1997 | 0.116 | 0.268 | 0.384 | 0.478 | 0.545 | 0.638 | 0.652 | 0.692 | 0.354 | 0.405 |
| 1998 | 0.089 | 0.217 | 0.309 | 0.420 | 0.512 | 0.640 | 0.656 | 0.665 | 0.306 | 0.365 |

STANDARD DEVIATIONS OF LOG(F)

| 1997 | 0.48 | 0.14 | 0.11 | 0.12 | 0.12 | 0.12 | 0.15 | 0.16 | 0.120 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1998 | 0.47 | 0.17 | 0.15 | 0.16 | 0.16 | 0.17 | 0.18 | 0.18 | 0.148 |

Table 3.2.6. Saithe in Division Va. Fishing mortality.

Run title: Saithe Iceland Va (run: SVPSTJ01N01)
At 2-May-99 15:06:07
Traditional vpa using screen input for terminal $F$

| Table 8 YEAR | Fishing mortality (F) at age |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3 | 0.0096 | 0.0109 | 0.0116 | 0.0257 | 0.0036 | 0.0012 | 0.0119 | 0.0474 | 0.0097 | 0.0264 |
| 4 | 0.1095 | 0.0645 | 0.0665 | 0.0796 | 0.1161 | 0.0276 | 0.1203 | 0.0562 | 0.1029 | 0.0654 |
| 5 | 0.1777 | 0.2174 | 0.119 | 0.1952 | 0.1038 | 0.0712 | 0.192 | 0.1768 | 0.2516 | 0.1868 |
| 6 | 0.3573 | 0.3693 | 0.3662 | 0.2396 | 0.2618 | 0.2592 | 0.2486 | 0.2288 | 0.3646 | 0.3422 |
| 7 | 0.342 | 0.3777 | 0.3656 | 0.5582 | 0.3615 | 0.3922 | 0.362 | 0.3182 | 0.4192 | 0.3343 |
| 8 | 0.312 | 0.5534 | 0.4545 | 0.5941 | 0.6744 | 0.5616 | 0.3781 | 0.4882 | 0.5055 | 0.4891 |
| 9 | 0.1715 | 0.276 | 0.4934 | 0.6591 | 0.5261 | 0.5626 | 0.2126 | 0.3579 | 0.606 | 0.6974 |
| 10 | 0.7625 | 0.2293 | 0.278 | 0.5314 | 0.3493 | 0.9941 | 0.7381 | 0.8997 | 0.5342 | 0.4291 |
| 11 | 0.6698 | 0.3939 | 0.0763 | 0.1006 | 0.1133 | 0.8843 | 0.5314 | 0.9156 | 0.8518 | 0.6324 |
| 12 | 0.5861 | 0.2524 | 0.8706 | 0.0572 | 0.0267 | 0.7244 | 0.1495 | 0.8843 | 0.6798 | 0.4385 |
| 13 | 0.6027 | 0.1374 | 0.5457 | 0.7539 | 0.0041 | 0.7003 | 1.1648 | 0.2961 | 2.3062 | 0.6773 |
| 14 | 0.655 | 0.253 | 0.443 | 0.361 | 0.123 | 0.826 | 0.646 | 0.749 | 1.093 | 0.544 |
| +gp | 0.655 | 0.253 | 0.443 | 0.361 | 0.123 | 0.826 | 0.646 | 0.749 | 1.093 | 0.544 |
| 0 FBAR 4 | 0.245 | 0.3097 | 0.3109 | 0.3876 | 0.3406 | 0.3124 | 0.2523 | 0.271 | 0.375 | 0.3525 |


| Table 8 YEAR | Fishing mortality (F) at age |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | FBAR 96-98 |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 0.0112 | 0.0074 | 0.008 | 0.0182 | 0.0384 | 0.0439 | 0.0816 | 0.1087 | 0.0332 | 0.022 | 0.0546 |
| 4 | 0.1131 | 0.0769 | 0.0567 | 0.1573 | 0.1059 | 0.2413 | 0.1561 | 0.2588 | 0.2177 | 0.089 | 0.1885 |
| 5 | 0.1482 | 0.2048 | 0.233 | 0.3735 | 0.2251 | 0.2515 | 0.3561 | 0.2992 | 0.3392 | 0.217 | 0.2851 |
| 6 | 0.3236 | 0.2647 | 0.4247 | 0.4855 | 0.3915 | 0.3314 | 0.4393 | 0.4469 | 0.3594 | 0.309 | 0.3718 |
| 7 | 0.2788 | 0.4993 | 0.4988 | 0.4567 | 0.5005 | 0.4424 | 0.5713 | 0.3623 | 0.58 | 0.42 | 0.4541 |
| 8 | 0.3955 | 0.5044 | 0.5322 | 0.3529 | 0.5457 | 0.5769 | 0.59 | 0.5946 | 0.4968 | 0.618 | 0.5698 |
| 9 | 0.4594 | 0.4065 | 0.476 | 0.4218 | 0.6291 | 0.6597 | 0.5802 | 0.4296 | 0.51 | 0.618 | 0.5192 |
| 10 | 0.5022 | 0.385 | 0.6358 | 0.3629 | 0.5303 | 0.8751 | 0.5728 | 0.4316 | 0.2954 | 0.618 | 0.4484 |
| 11 | 0.7982 | 0.5888 | 0.4214 | 0.2947 | 0.4157 | 0.6285 | 0.5892 | 0.333 | 0.3567 | 0.618 | 0.4359 |
| 12 | 0.7712 | 0.5643 | 0.302 | 0.1719 | 0.5109 | 0.5884 | 0.2888 | 0.3815 | 0.48 | 0.618 | 0.4931 |
| 13 | 0.6461 | 1.5586 | 0.1074 | 0.8583 | 0.4005 | 1.6127 | 0.2459 | 0.3966 | 0.3016 | 0.618 | 0.4387 |
| 14 | 0.679 | 0.774 | 0.367 | 0.422 | 0.464 | 0.926 | 0.424 | 0.386 | 0.358 | 0.618 | 0.454 |
| +gp | 0.679 | 0.774 | 0.367 | 0.422 | 0.464 | 0.926 | 0.424 | 0.386 | 0.358 | 0.618 |  |
| 0 FBAR 4 | 0.2864 | 0.3261 | 0.3702 | 0.3746 | 0.3996 | 0.4172 | 0.4488 | 0.3985 | 0.4172 | 0.3785 |  |

Table 3.2.7. Saithe in Division Va. Stock in numbers

Run titte: Saithe Icekand Va (run: SVPSTJO1NO1)
Al 2-May-99 15:06:07

|  | Table 10 | Stock number at age (start of year) |  |  |  | Numbers*10**-3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | YEAR | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 |
|  | AGE |  |  |  |  |  |  |  |  |  |  |
|  | 3 | 55240 | 28025 | 19441 | 22039 | 32622 | 47677 | 34930 | 74064 | 108824 | 55711 |
|  | 4 | 39980 | 44793 | 22696 | 15733 | 17585 | 26612 | 38987 | 28258 | 57833 | 88234 |
|  | 5 | 13451 | 29339 | 34382 | 17387 | 11896 | 12820 | 21195 | 28301 | 21872 | 42719 |
|  | 6 | 13200 | 9219 | 19328 | 24991 | 11710 | 8779 | 9774 | 14322 | 19415 | 13924 |
|  | 7 | 5932 | 7560 | 5217 | 10972 | 16102 | 7379 | 5547 | 6241 | 9328 | 11039 |
|  | 8 | 2941 | 3450 | 4242 | 2963 | 5141 | 9184 | 4082 | 3162 | 3717 | 5022 |
|  | 9 | 2038 | 1763 | 1624 | 2205 | 1339 | 2144 | 4288 | 2290 | 1589 | 1836 |
|  | 10 | 1366 | 1405 | 1095 | 812 | 934 | 648 | 1000 | 2838 | 1311 | 710 |
|  | 11 | 1317 | 522 | 915 | 679 | 391 | 539 | 196 | 391 | 945 | 629 |
|  | 12 | 1205 | 552 | 288 | 694 | 503 | 286 | 182 | 94 | 128 | 330 |
|  | 13 | 362 | 549 | 351 | 99 | 537 | 401 | 113 | 129 | 32 | 53 |
|  | 14 | 164 | 162 | 392 | 166 | 38 | 438 | 163 | 29 | 78 | 3 |
|  | +gp | 0 | 285 | 432 | 358 | 1655 | 368 | 668 | 196 | 36 | 3 |
| 0 | TOT/ | 137194 | 127623 | 110402 | 99099 | 100453 | 117275 | 121124 | 160316 | 225109 | 220213 |


|  | Table 10 | Stock number at age (start of year) |  |  |  | Numbers*10**-3 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | YEAR | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | GMST | 6 AM |
|  | AGE |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3 | 31130 | 21509 | 27263 | 14769 | 19223 | 18005 | 22121 | 22651 | 20354 | 10239 | 0 | 37569 | 43700 |
|  | 4 | 44422 | 25202 | 17481 | 22142 | 11873 | 15145 | 14107 | 16692 | 16636 | 16120 | 8200 | 30233 | 35062 |
|  | 5 | 67668 | 32481 | 19107 | 13523 | 15490 | 8744 | 9741 | 9880 | 10550 | 10956 | 12074 | 22287 | 26041 |
|  | 6 | 29015 | 47769 | 21668 | 12393 | 7621 | 10126 | 5567 | 5586 | 5998 | 6153 | 7220 | 15119 | 17839 |
|  | 7 | 8097 | 17188 | 30015 | 11601 | 6244 | 4218 | 5952 | 2937 | 2925 | 3428 | 3698 | 9178 | 10972 |
|  | 8 | 6470 | 5016 | 8541 | 14924 | 6016 | 3099 | 2219 | 2752 | 1674 | 1341 | 1844 | 5180 | 6076 |
|  | 9 | 2521 | 3567 | 2480 | 4107 | 8585 | 2854 | 1425 | 1007 | 1243 | 834 | 592 | 2750 | 3191 |
|  | 10 | 748 | 1304 | 1945 | 1261 | 2205 | 3747 | 1208 | 653 | 537 | 611 | 368 | 1512 | 1702 |
|  | 11 | 378 | 371 | 726 | 843 | 718 | 1062 | 1279 | 558 | 347 | 327 | 270 | 795 | 880 |
|  | 12 | 274 | 139 | 168 | 390 | 514 | 388 | 464 | 581 | 327 | 199 | 144 | 425 | 484 |
|  | 13 | 174 | 104 | 65 | 102 | 269 | 253 | 176 | 285 | 325 | 166 | 88 | 218 | 266 |
|  | 14 | 22 | 75 | 18 | 48 | 35 | 148 | 41 | 113 | 157 | 197 | 73 | 98 | 148 |
|  | +gp | 18 | 85 | 150 | 3 | 3 | 92 | 54 | 103 | 149 | 171 | 162 |  |  |
| 0 | TOT/ | 190937 | 154809 | 129628 | 96106 | 78797 | 67880 | 64354 | 63798 | 61222 | 50741 | 34734 |  |  |

Table 3.2.8. Saithe in Division Va. Stock summary table.

Run titte : Saithe Iceland Va (run: SVPSTJO1/N01)
At 2-May-99 15:06:07
Table 16 Summary (without SOP correction)
Traditional vpa using screen input for terminal $F$

|  |  | RECRI Age 3 | TOTALBIO | TOTSPBIO | LANDINGS | YIELD/SSB | FBAR 4-9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1962 | 30999 | 277003 | 142184 | 50514 | 0.3553 | 0.2867 |
|  | 1963 | 84106 | 336274 | 144613 | 48011 | 0.332 | 0.304 |
|  | 1964 | 55195 | 380521 | 141947 | 60257 | 0.4245 | 0.25 |
|  | 1965 | 94062 | 465836 | 165999 | 60177 | 0.3625 | 0.2313 |
|  | 1966 | 70223 | 550397 | 214136 | 52003 | 0.2429 | 0.1783 |
|  | 1967 | 68332 | 648019 | 279292 | 75712 | 0.2711 | 0.2375 |
|  | 1968 | 59672 | 697092 | 345778 | 77549 | 0.2243 | 0.2102 |
|  | 1969 | 88751 | 762546 | 395280 | 115853 | 0.2931 | 0.2947 |
|  | 1970 | 66328 | 755885 | 399454 | 116601 | 0.2919 | 0.3225 |
|  | 1971 | 50638 | 717074 | 381384 | 136764 | 0.3586 | 0.4429 |
|  | 1972 | 26456 | 603752 | 334676 | 111301 | 0.3326 | 0.3609 |
|  | 1973 | 26103 | 516600 | 313690 | 110888 | 0.3535 | 0.3446 |
|  | 1974 | 25125 | 434163 | 288072 | 97568 | 0.3387 | 0.2875 |
|  | 1975 | 25927 | 387979 | 264698 | 87954 | 0.3323 | 0.2779 |
|  | 1976 | 31236 | 347148 | 227234 | 82003 | 0.3609 | 0.3256 |
|  | 1977 | 21672 | 300239 | 186665 | 62026 | 0.3323 | 0.2823 |
|  | 1978 | 49436 | 307897 | 165550 | 49672 | 0.3 | 0.2374 |
|  | 1979 | 55240 | 342168 | 159514 | 63504 | 0.3981 | 0.245 |
|  | 1980 | 28025 | 349650 | 166305 | 58347 | 0.3508 | 0.3097 |
|  | 1981 | 19441 | 332640 | 168799 | 58986 | 0.3494 | 0.3109 |
|  | 1982 | 22039 | 317937 | 177304 | 68615 | 0.387 | 0.3876 |
|  | 1983 | 32622 | 327671 | 193539 | 58266 | 0.3011 | 0.3406 |
|  | 1984 | 47677 | 355820 | 182597 | 62719 | 0.3435 | 0.3124 |
|  | 1985 | 34930 | 350179 | 169711 | 57101 | 0.3365 | 0.2523 |
|  | 1986 | 74064 | 415478 | 177478 | 66376 | 0.374 | 0.271 |
|  | 1987 | 108824 | 500181 | 172033 | 80559 | 0.4683 | 0.375 |
|  | 1988 | 55711 | 514960 | 164795 | 77247 | 0.4687 | 0.3525 |
|  | 1989 | 31130 | 478972 | 172287 | 82425 | 0.4784 | 0.2864 |
|  | 1990 | 21509 | 454844 | 192372 | 98130 | 0.5101 | 0.3261 |
|  | 1991 | 27263 | 376105 | 193286 | 102737 | 0.5315 | 0.3702 |
|  | 1992 | 14769 | 304936 | 182947 | 79597 | 0.4351 | 0.3746 |
|  | 1993 | 19223 | 257225 | 165253 | 71648 | 0.4336 | 0.3996 |
|  | 1994 | 18005 | 211898 | 138455 | 64338 | 0.4647 | 0.4172 |
|  | 1995 | 22121 | 179783 | 106463 | 48650 | 0.457 | 0.4488 |
|  | 1996 | 22651 | 160776 | 91238 | 40101 | 0.4395 | 0.3985 |
|  | 1997 | 20354 | 159257 | 87427 | 37246 | 0.426 | 0.4172 |
|  | 1998 | 10239 | 146886 | 83344 | 31393 | 0.3767 | 0.3785 |
| Arith. |  |  |  |  |  |  |  |
| Mean |  | 42165 | 406102 | 203670 | 73050 | 0.374 | 0.3202 |
| 0 Units |  | (Thousands) | (Tonnes) | (Tonnes) | (Tonnes) |  |  |
|  | 1 |  |  |  |  |  |  |

Table 3.2.9. Saithe in Division Va. Prediction with management option - Input data.

Saithe in the Iceland Grounds (Fishing Area Va)
Prediction with management option table: Input data


Table 3.2.10. Saithe in Division Va. Prediction with management option table.

Saithe in the Iceland Grounds (Fighing Area Va)
Prediction with management option table


Table 3.2.11. Saithe in Division Va. Yield per recruit - Input data.

```
Icelandic saithe (Division Va)
```

Yield per recruit: Input data


Table 3.2.12. Saithe in Division Va. Yield per recruit - Summary table.
Icelandic saithe (Division Va)
; 1 January Spawning time

| F Factor | \|Reference: | Catch in! numbers : | $\begin{aligned} & \text { Catch in: } \\ & \text { welght } \end{aligned}$ | Stock Stock <br> size biomass | $\begin{aligned} & \text { Sp.stock } \\ & \text { size } \end{aligned}$ | Sp. stock! <br> biomass ! | $\begin{aligned} & \text { Sp.stack! } \\ & \text { size } \end{aligned}$ | Sp.stock biomass |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00001 | 0.00001 | 0.0001 | 0.000 ; | 5.016!21381.278; | 2.711 | 6055.957 | 2.71 | 55.957 |
| 0.05001 | 0.0189 | 0.0631 | 371.668! | 4.813 19733.575\} | 2.522 | 14473.488! | 2.522 | 4473.488 i |
| 0.10001 | \| 0.03781 | 0.1171 | 665.686! | 4.633;18305.580; | 2.357! | 13108.166 | 2.357 | 3108.166: |
| 0.15001 | 10.0568 | 0.1631 | 898.499 | 4.473;17053.252' | 2.211 | 11926.0901 | 2.21 | 1926.090 |
| 0.20001 | ( 0.0757 | 0.2021 | 1083.0101 | 4.330115978 .2391 | 2.082 | 10899.039 | 2.082 | 10899.039! |
| 0.25001 | 10.09461 | 0.2361 | 1229.353! | $4.202 \backslash 15026.882$ ! | 1.967 | 10003.476 | 1.967 | 10003.476: |
| $0.3000^{\circ}$ | i $0.1135 i$ | 0.2661 | 1345.491i | 4.087114189.4001 | 1.865 ! | 9219.736 | 1.865 ; | 9219.7361 |
| 0.3500 | 0.13241 | 0.2911 | 1437.692 i | 3.983113449 .2191 | 1.773 ! | 8531.3531 | 1.773 ! | 8531.353! |
| 0.40001 | ) 0.15131 | 0.3141 | 1510.893 | 3.889112792.425! | 1.691 ' | 7924.5131 | 1.691 : | 7924.513! |
| 0.45001 | ; $0.1702 ;$ | 0.3351 | 1568.987: | 3.803!12207.311 | 1.617 ! | 7387.6031 | 1.6171 | 7387.6031 |
| 0.50001 | ; 0.1892 ; | 0.3531 | 1615.049 | 3,724111684.001! | 1.550 ! | 6910.8371 | 1.550 | 6910.8371 |
| 0.55001 | ; 0.20811 | 0.3691 | 1651.512! | 3.652;11214.149 | 1.4891 | 6485.9521 | 1.4891 | $6485.952 '$ |
| 0.60001 | 0.22701 | 0.384 | $1680.301!$ | 3.586110790.685; | 1.434 | 6105.955 | 1.434 | 6105.9551 |
| 0.65001 | 10.24591 | 0.398 | 1702.946i | 3.525!10407.600! | 1.3831 | 5764.913 | 1.383 | 5764.9131 |
| 0.70001 | \| 0.26481 | 0.410 | 1720.661! | 3.468:10059.780! | 1.3361 | 5457.779 | 1.336 ! | 5457.7791 |
| 0.75001 | 0.28381 | 0.421 i | 1734.411! | 3.415 9742.857 ! | 1.2931 | 5180.252 ! | 1.293 ! | 5180.2521 |
| 0.80001 | 1 0.30271 | 0.432 | 1744.969 | 3.365 9453.095 | 1.2541 | 4928.655 | 1.2541 | 4928.655 |
| 0.85001 | 1 0.32161 | 0.442 ! | 1752.952 | 3.319 \| 9187.285 | 1.217 ! | 4699.837! | 1.2171 | 4699.837! |
| 0.90001 | 0.34051 | 0.451 ! | 1758.852 | 3.276 ${ }^{\text {! }} 8942.667$; | $1.183!$ | 4491.094; | 1.183 ' | 4491.094! |
| 0.95001 | 0.35941 | 0.4591 | 1763.066 | 3.235; 8716.858! | 1.151 ' | 4300.093 | 1.151 | 4300.0931 |
| 1.00001 | 0.37831 | 0.4671 | 1765.9131 | 3.197! 8507.797! | 1.122 | 4124.821! | 1.122 | 4124.821 |
| 1.05001 | 0.39731 | 0.4751 | 1767.651! | 3.161! B313.696! | 1.094 | 3963.5361 | 1.094 | 3963.536 |
| 1.10001 | 0.41621 | 0.4821 | 1768.487 | 3.126: 8132.998! | 1.069 ! | 3814.7231 | 1.069 ' | 3814.723! |
| 1.15001 | 0.43511 | 0.4891 | 1768.591 | 3.094 7964.346 | 1.044 | 3677.0671 | 1.044 | 3677.067 ! |
| 1.20001 | 0.45401 | 0.495 ; | 1768.098 | 3.063:7806.550 | 1.021 ! | 3549.4151 | 1.021 ! | 3549.415 ! |
| 1.25001 | 0.4729 | 0.501 | 1767.122! | $3.033: 7658.568$ | 1.0001 | 3430.7631 | 1.000 | 3430.763 |
| 1.30001 | 0.4918 | 0.507 | 1765.752! | 3.005 7519.482! | 0.9791 | 3320.2261 | 0.979 | 3320.226 |
| 1.3500 | 0.5108 | 0.513 | 1764.065 | 2.979 7388.483! | 0.960 | 3217.0271 | 0.960 | 3217.027 |
| 1.40001 | 0.5297 | 0.518 | 1762.120 | 2.953 7264.855; | 0.942 | 3120.481 | 0.9421 | 3120.481 ! |
| 1.45001 | 0.5486 | 0.523 ! | 1759.969 | 2.928 7147.961! | 0.925 ! | 3029.9811 | 0.925 ' | 3029.981! |
| 1.50001 | 0.5675 | 0.528 ! | 1757.653 | 2.905 ${ }^{\text {( } 7037.2361}$ | 0.908 | 2944.9901 | 0.908 ! | 2944.9901 |
| 1.5500: | 0.5864 | 0.5321 | 1755.208: | 2.882! 6932.177! | 0.892 | 2865.0291 | 0.892 ! | 2865.0291 |
| 1.6000: | 0.60531 | 0.5371 | 1752.660 ! | 2.860: 6832.332 | 0.877 | 2789.671! | 0.877 ! | 2789.671! |
| 1.6500 ! | 0.6243 | 0.5411 | 1750.035 | 2.83916737 .2961 | 0.8631 | 2718.537 | 0.863 ! | 2718.5371 |
| 1.70001 | 0.6432 | 0.5451 | 1747.351 | 2.819! 6646.7071 | 0.8501 | 2651.285 | 0.8501 | 2651.285: |
| 1.7500 | 0.6621 ! | 0.5491 | 1744.625 | 2.799 6560.2381 | 0.8361 | 2587.610 | 0.8361 | 2587.610! |
| 1.8000 | 0.6810: | 0.5531 | 1741.871 | 2.780' 6477.591 ! | 0.824 | 2527.235 | 0.824 | 2527.235! |
| 1.8500! | 0.6999; | 0.5571 | 1739.100 | 2.762 6398.500! | 0.8121 | 2469.912 | 0.8121 | 2469.912! |
| 1.9000 | 0.7188 | 0.5611 | 1736.322 | 2.745 (6322.723 | 0.8001 | 2415.417 | 0.8001 | 2415.417! |
| 1.9500 ; | 0.7378! | 0.564 | 1733.545 | 2.727 6250.038 ! | 0.7891 | 2363.547 | 0.7891 | 2363.547! |
| $2.0000 ;$ | , 0.7567 | 0.5681 | 1730.775! | $2.711{ }^{\prime} 6180.244$ ! | 0.779 | 2314.116! | 0.7791 | 2314.116! |





Figure 3.2.1. Saithe in division Va. Proportional catches in different gears 1980-1998.


Figure 3.2.2. Proportional landings of saithe in div. Va by gear and month in 1998.


Figure 3.2.3. Saithe in div. Va. Bottom trawl catches in the period 1991-1998 (tonnes/square nm).


Figure 3.2.4. Saithe in div. Va. Prognosis in May 1998 (dark bars/spá) and estimate in April 1999 (lighter bars/raun) for percent (by number) age distribution in 1999 landings.


Figure 3.2.5. Saithe in div. Va. Mean weight at age in the catches 1986-1998 for age groups 3-9.


Figure 3.2.6. Saithe in division Va. Maturity at age, data and fitted values 1980-1998 for age groups 3-9.


Figure 3.2.7. Saithe in div. Va. Cumulative catch $v s$ proportion in catch from individual fishing trials for bottom trawl (top) and gillnets (botttom).


Average F 4-9 years


Biomass 4-11 years


Figure 3.2.8. Saithe in division Va. Retrospective TS Analysis. Catch in numbers at age of age groups 4-11. Biomass and $F_{4.9}$ with linear trend in recruitment, top; biomass with no trend in recruitment, bottom.



Figure 3.2.9. Saithe in division Va. Retrospective TS Analysis. Catch in numbers at age of age groups 4-11. GLIM50+ for gill nets. Linear trend in recruitment.



Figure 3.2.10. Saithe in division Va. Retrospective TSAnalysis. Catch in numbers at age of age groups 4-11. GLIM50+ for trawlers jan-may. Linear trend in recruitment.



Figure 3.2.11. Saithe in division Va. Retrospective TS Analysis. Catch in numbers at age of age groups 4-11. GLIM50+ for trawlers jun-dec. Linear trend in recruitment.


Figure 3.2.12. Saithe in division Va. Relative changes in catchability as estimated with TSA.


Figure 3.2.13. Saithe in division Va. Fish stock summary

## Stock - Recruitment



Figure 3.2.14. Saithe in division Va. Stock and recruitment.

### 3.3.1

 Trends in landings and fisheriesIn the period 1978-1981 landings of cod increased from 320000 t to 469000 t due to immigration of the strong 1973 year class from Greenland waters combined with an increase in fishing effort. Catches then declined rapidly to only 280000 t in 1983. Although cod catches have been regulated by quotas since 1984, catches increased to 392000 t in 1987 due to the recruitment of the 1983 and 1984 year classes to the fishable stock in those years (Table 3.3.1).

During the period 1988-1996 all year classes entering the fishable stock have been well below average, or even poor, resulting in a continuous decline in the landings. The 1995 catch of only 170000 t is the lowest catch level since 1942. Since 1993 a marked reduction in effort against cod has taken place (Table 3.3.2 and Figure 3.3.1) due to further reduction in quota and a diversion of the effort towards other stocks and areas. As a result of these cod catch rates for all fleet categories have been increasing sharply, except of the gillnet fleet in 1998. (Table 3.3.2 and Figure 3.3.2).

Due to an increase of the fishable stock biomass landings in 1996 to 182000 t and 204000 t in 1997. For 1997/1998 fishing year the quota was set at 218000 t and for the $1998 / 199$ fishing year the quota was increased to 250000 t . Landings in 1998 amounted 243000 t .

### 3.3.2 Catch in numbers at age and level of sampling

The fleet fishing for cod at Iceland operates throughout the year. The fishing vessels are of different sizes but can however be grouped into three main categories:

1. Trawlers; $>300$ GRT.
2. Multi-gear boats; $<300$ GRT
3. Small boats; $<20$ GRT

The trawlers operate throughout the year outside the 12 mile limits. They follow the spawning and feeding migration patterns of cod and fish on spawning grounds off the south west and south-coasts during the spawning season but move to feeding areas off the northwest coast during the summer time. During the autumn, this fleet is more spread out. The multigear boats operate mainly using gillnet during the spawning season in winter and spring along the south-west coasts but in recent years this fleet has also used gillnet in late autumn. Part of this fleet uses longlines during autumn and early winter. During summer some of these boats trawl along the coast out to the 3 mile limit. Others fish with Danish seines close to the shore. Most of the smaller boats operate with handlines mainly in shallow waters during the summer and autumn period. In recent year the mesh sizes used by the gillnet fleet have been increasing.

The data samples comprising the age-length keys for 1998 are given in the following table:

| Gear | Period | Area | Landings | Nos. samples | Nos fish measured | Nos. fish aged |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| Longline | Jan-May | S | 13592 | 13 | 3543 | 878 |
| Gillnet | Jan-May | S | 48584 | 15 | 13480 | 3869 |
| Handlines | Jan-May | S | 2188 | 5 | 1288 | 390 |
| Danish seine | Jan-May | S | 7096 | 6 | 997 | 189 |
| Bottom trawl | Jan-May | S | 18675 | 59 | 12238 | 1403 |
| Longline | Jan-May | N | 7862 | 11 | 2402 | 193 |
| Gillnet | Jan-May | N | 1448 | 2 | 1594 | 813 |
| Handlines | Jan-May | N | 731 | 1 | 2011 | 0 |
| Bottom trawl | Jan-May | N | 20587 | 53 | 12208 | 1339 |
| Longline | Jun-Dec | S | 6940 | 8 | 1883 | 51 |
| Handlines | Jun-Dec | S | 3792 | 7 | 1533 | 395 |
| Danish seine | Jun-Dec | S | 4229 | 3 | 326 | 0 |
| Bottom trawl | Jun-Dec | S | 8691 | 33 | 7448 | 363 |
| Longline | Jun-Dec | N | 12815 | 14 | 3028 | 193 |
| Gillnet | Jun-Dec | N | 1522 | 1 | 214 | 0 |
| Handlines | Jun-Dec | N | 14783 | 6 | 1329 | 298 |
| Danish seine | Jun-Dec | N | 5558 | 3 | 723 | 197 |
| Bottom trawl | Jun-Dec | N | 63892 | 146 | 30607 | 750 |
| Total |  |  | 242985 | 386 | 96852 | 11321 |

The fleets (or "metiers") are defined by the gear, season and area combinations. The gears are long lines, bottom trawl, gillnets, handlines and Danish seine. In the historical data sets each of these classes may contain related gears (based on sparseness of data and low catches). Notably handlines are included with long lines and pelagic trawl is included with the bottom trawl. The basic areas splits are the "northern" and "southern" areas. In the historical data set, seasons are split into the "spawning" season (January-May) and "non-spawning" season (June-December). Historically, there have been some changes in fleet definitions and thus there does not currently exist a fully consistent set of catch-at-age data on a per-fleet basis.

Total catch at age (aggregated across fleets) was used as VPA input, and seasonal data (aggregated across gears and regions) were used to estimate the proportion of fishing mortality in January-May.

The total catch-at-age data is given in Table 3.3.3. It should be noted that much higher proportions of the older age groups are taken during the first part of the year and this will considerably affect the estimation of the spawning stock at spawning time. Since the catch-at-age data have historically only been available for January to May, and not by shorter seasons, it is assumed that $60 \%$ of those catches were taken during January to March, i.e., before spawning time (Table 3.3.4).

In recent years emphasis has been put on improving the sampling scheme in order to obtain the most realistic information on catch at age The data for these calculations is based on samples taken from all gears on the main fishing grounds throughout the year. In recent years, annually $10000-15000 \mathrm{cod}$ otoliths have been read. The age-length keys have then been used to convert about $100000-150000$ length measurements also collected throughout the year.

Because of the quota system the question about discarding has been revived. There is, however, no information available for the time being and discarding is not thought to be a major problem at present.

### 3.3.3 Mean weight at age

### 3.3.3.1 Mean weight at age in the landings

Mean weight at age in the landings are computed using samples of otoliths and lengths along with length distributions and length-weight relationships.

The mean weights at age are computed for the same categories as the catch numbers at age and are then weighted together across the fleet categories. The data are given in Table 3.3.5. Decline in weight at age for ages was observed in 1998. Mean weights at age are not available on an annual basis for catches taken before 1973, and hence the average across the years 1973-1991 is used as the constant (in time) mean weight at age for earlier years.

### 3.3.3.2 Mean weight at age in the stock

The weights at age in the landings have been used without modification to compute general stock biomasses, with the exception of the spawning stock biomass (see below).

The Icelandic groundfish survey does provide better estimates of mean weights at age in the stock, but it is not at all clear how these should be combined across areas which have different catchabilities, and in any case these weights are only available back to 1985 .

### 3.3.3.3 Mean weight at age in the spawning stock

For years up to 1998, data from the period January-May have been used for the estimation of the mean weights at age in the spawning stock. It is assumed that the catches in the different gears and areas appropriately reflect the stock composition with regard to mean weight at age. These weight-at-age data are presented in Table 3.3.6. Decline in weight at age for younger ages was observed in 1998.

### 3.3.4 Maturity at age

Maturity at age is based on samples from the commercial fleets in the months January-May (ICES 1992/Assess:14). It has been pointed out that using data collected throughout the year may bias the proportion mature in various ways (Stefánsson, 1992). The approach taken is, therefore, to compute the proportion mature at the time of spawning, by considering only the first part of the year (January-May), but aggregating across gears and regions.

There was a marked increase in the proportion of mature fish at age during the period 1992-1997 but in 1998 some decrease could be noted (Figure .3.3.3).

The maturity-at-age data are not available on an annual basis for the catches taken prior to 1973 and, hence, the average for the years 1973-1991 is used as a constant (in time) maturity at age for the years prior to 1973.

### 3.3.5 Stock Assessment

### 3.3.5.1 Tuning data

Commercial trawler CPUE data were analysed as described in Stefansson (1988) to yield GLM indices of abundance (numbers) at age. The analysis takes into account catchability changes in the fleet due to vessel renewal and vessels shifting between regions, but not changes in the spatial distribution of the resource or changes within vessels in the fleet. For this reason the analysis of the logbook data was restricted to the years 1993-1998.

These indices are based on logbooks from demersal trawl fisheries for two parts of the year (January-May and June-December) and two areas i.e. south-western areas, and northern areas (Table 3.3.7).

The same method was applied for the gillnet fleet. Logbooks for this fleet have been analysed for the years 1993-1998 but are available since 1988. However information based on these logbooks for the years 1988-1990 is scarce as the logbooks were not mandatory until 1991. The gillnet fleet operates mainly during the spawning season and at the spawning grounds off the south and west coasts of the island. This fishery has often been referred to as "the spawning fishery" in earlier reports of this Working Group. The GLM indices presented here (Table 3.3.8).are based on the gillnet fishery in the south and west areas during January-May.

The Icelandic groundfish survey data (Palsson et al., 1989) are used as part of the assessment. A description of the Icelandic groundfish survey design is given the 1998 WG report (ICES 1998/ACFM:19). The basic data are agedisaggregated (Palsson and Stefansson, 1991) and abundance indices computed by using the a modified Gamma-Bernoulli (G-B) method to accommodate spatial information in an appropriate manner. The method is described in Working Paper by H. Björnsson, Annex I in ICES (1994/Assess:19). Indices are calculated for three areas i.e southwestern, southeastern and the northern areas separately, age groups 3 to 14 and for the years 1985-1998.

To use the latest information available in the XSA, the 1999 survey abundance indices were moved back in time of approximately three months i.e. to December 1998 for the age groups 4-9. The same applies to abundance indices for the other survey years. For the age group 3 and age group 2 no shifting in time has taken place. The resulting indices are given in Table 3.3.9 by fleet, area and age group.

### 3.3.5.2 Assessment methods

Migrations from Greenland into the Icelandic cod stock can have major effects and hence these need to be taken into account in the assessments. Time series analysis (TSA) of Gudmundsson (1984) and an ADAPT-type of method (Stefansson, 1992) which were applied to this stock earlier (ICES 1992/Assess:14) can estimate migration for a given year and age. As the ADAPT-method uses an average selection pattern in determining the terminal fishing mortality recent changes in fishing pattern can not be accounted for. In recent years the Group has used the XSA-method even though the XSA has not been developed to account for migration - but there is a way to handle this:

XSA uses a cohort-analysis to project the stock (or back calculating):

$$
\begin{gathered}
N_{a, y}=e^{-M} N_{a-1, y-1}-e^{-M / 2} C_{a-1, y-1} \text { or } \\
N_{a-1, y-1}=e^{M} N_{a, y}+e^{M / 2} C_{a-1, y-1}
\end{gathered}
$$

were $N$ is stock size and $C$ is catch in numbers and $M$ natural mortality. If fish of age $a$ and in the year $y$ is migrating, in amount of $G$, to the stock in the beginning of the year, then the cohort equation will be:

$$
N_{a, y}=e^{-M} N_{a-1, y-1}-e^{-M / 2} C_{a-1, y-1}+G_{a, y}
$$

and in back calculation the equations will be:

$$
\begin{aligned}
N_{a-1, y-1} & =e^{M}\left(N_{a, y}-G_{a, y}\right)+e^{M / 2} C_{a-1, y-1} \\
& =e^{M} N_{a, y}+e^{M / 2}\left(C_{a-1, y-1}-e^{M / 2} G_{a, y}\right)
\end{aligned}
$$

That is, if the size of the migration, $G$, is approximately known it can be implemented into the cohort equations by changing the catch-in-numbers the year before, for the cohort in question. The results are stock in numbers taking into account the migration but the fishing mortality given for age $a-1$ and year $y-1$ will be incorrect and the correct value can be calculated by:

$$
F_{a,-1, y-1}=\ln \left(\frac{N_{a-1, y-1}}{N_{a, y}-G_{a, y}}\right)-M
$$

For the Icelandic cod the estimated immigration of 6 years old cod in the year 1990 is about 30 millions at beginning of the year. The total catch of 5 years old cod 1989 is estimated about 50 millions. The "corrected" catch of 5 years old cod of Icelandic origin in 1989 will then be:

$$
50 \cdot \mathrm{e}^{0.22} 30=16.8 \text { millions }
$$

which is the number used in the assessment.

### 3.3.5.3 Estimates of fishing mortality

Tuning fleets used and the relevant tuning indices are given in Tables 3.3.7.-3.3.9. As there has been a major decline in fishing effort for this stock during the most recent period the XSA was shrunk to the mean of the three latest years instead of using a default setting of five years. The retrospective analysis for this XSA with shrinkage of s.e. $=0.5$ is given in Figure 3.3.4. The total output of the XSA is given in Table 3.3.10.

The resulting fishing mortalities from the final XSA are given in Table 3.3.11 and in Figure 3.3.5.A. The fishing mortality reached a peak in 1988 decreased in 1989 but then rose to another peak in 1993. Due to further restriction of the cod quota effort has dropped markedly in 1994 and again in 1995 . Fishing mortality has decreased correspondingly and has not been so low since the late sixties. A slight increase in fishing mortality is noted in 1997 and 1998 (see Table 3.3.14). Present fishing mortality is at the $\mathrm{F}_{\text {med }}$ level.

### 3.3.5.4 Stock and recruitment estimates

The resulting stock size in numbers and spawning stock biomasses from the final VPA are given in Tables 3.3.12-13. In the stock in numbers table, the recruitment in the most recent years (year classes 1994-1998 as 3-year-olds in 1997-2001) was estimated using RCT3 as described in Section 3.3.7.1.

The current spawning stock at spawning time and recruitment levels must be considered in relation to historical sizes. The migration estimates of 39 and 7 million immigrants of the 1973 year class in 1980 and 1981, respectively are taken from the last 1993 ADAPT-assessment (ICES 1993/Assess:18). With given migration estimates, the recruitment from the SSB can be recomputed by adding back-calculated migration. The approach taken here is to do these back-calculations with natural mortality only, since it would be incorrect to use the sometimes high fishing mortalities at Iceland. This back calculation revises the 1973 and 1984 year class estimates to 433 and 334 millions, respectively. The resulting SSB and recruitment estimates are given in Table 3.3.14 along with average fishing mortalities. A better estimate might be obtained by back calculating using the fishing mortality at Greenland also, but this is unlikely to have major effects on the issue at hand which is the stock-recruitment diagram.

### 3.3.6

## Biological and technical interactions

Several important biological interactions in the ecosystem around Iceland are connected to the cod stock. The single most important interaction is the cod-capelin connection (Pálsson, 1981) and this has been studied in some detail (Magnússon and Pálsson, 1989 and 1991a and Steinarsson and Stefánsson, 1991). Another important interaction is between cod and shrimp. This has been studied by Magnússon and Pálsson (1991b) and Stefánsson et al. (1994). The cod-capelin interaction is used in the short-term prediction in Section 3.3.7.1 based on the results in Steinarsson and Stefánsson (1996).

Various factors affect the natural mortality of cod and several of these factors will change in magnitude in the future. The cod is a cannibal and the mortality through cannibalism has been estimated in Björnsson (WD 26,1998).Table 3.3.15 shows that the cannibalism occur mainly on prerecruits and immature fish. Further, the minke whale, the harbour seal and the grey seal are apex predators, all of which consume cod to varying degrees. Most of these $M$ values will affect cod at an early age, before recruitment to the fishery.

It has been illustrated that not only may cetaceans have a considerable impact on future yields from cod in Division Va (Stefánsson et al., 1995), but seals may have an even greater impact (Stefánsson et al., 1997). These results imply that predictions which do not take into account the possible effects of marine mammals may be too optimistic in terms of long-term yields. It is therefore desirable to include marine mammals as a part of future natural mortality for the cod stock.

A number of fleets operate in Division Va. The primary gears are described in Section 3.3.2. Earlier work by this group included the separation of catches into finer seasonal and areal splits, but this has not been taken further at this meeting.

A numerical description of interactions between fisheries and species requires data on landings as well as catches in numbers at age of each species by gear type, region and season.

### 3.3.7 Prediction of catch and biomass

### 3.3.7.1 Input data to the short-term prediction

For short-term predictions, it is essential to take into account potential changes in mean weights at age due to environmental conditions.

It has been shown that cod growth is to some extent correlated to size the of the capelin stock. Table 3.3.16 gives the size of the capelin stock biomass since 1979. The present data set differs from that previously used in that the adult stock in weight on $1^{\text {st }}$ August were based on back calculations of the auturnn surveys values but the new data set is based directly on observed weight in the autumn surveys.

Regressions are used to predict the mean weights at age for age groups 4-8 in the catches and ages 5-8 in the spawning stock for the years 1999-2001. For the year 2000 onwards, the average capelin biomass is used. For ages 3 and $9-14$ respectively in both data sets and age 4 in the SSB, the average over the years 1996-1998 is used. (Table 3.3.19).

In the most recent period maturity at age has been at high levels compared to the years prior to 1992. A decline was note in 1998. For the short-term predictions the average for the years 1996-1998 has been used for the years 19992001.

The exploitation pattern used for the short-term predictions was taken as the average of the years 1996-1998 from the VPA rescaled to the 1998 fishing level.

The modified Delta-Gamma (D-E) method (ICES 1994/Assess:19) used for the analysis of the Icelandic Groundfish Survey and as tuning data for this stock was also used for recruitment prediction. The resulting indices used for recruitment prediction are given in Table 3.3.17. As an input to the RCT3 program age groups $1-4$ from the survey were chosen.

The size of the year classes 1994-1998 has been estimated using RCT3, with the output as given in Table 3.3.18. Taking natural and fishing mortalities into account the revised recruitment estimates are then used in the predictions.

### 3.3.7.2 Short term prediction results

Results from projections up to the year 2001 with different fishing mortalities are given in Table 3.3.20.

Landings in 1999 are expected to be 260000 t due an increase in the quota established. This will however mean a further decrease in fishing mortality to $\mathrm{F}=0.46$ compared to $\mathrm{F}=0.49$ in 1998.

Continuing fishing in 2000 at the 1998 level of fishing mortality ( $\mathrm{F}=0.49$ ) will stabilise the SSB at present level in the short term.

The average size of the year classes at present which mainly contribute to the fishable stock (1989-1996) is 148 million individuals. The yield-per-recruit computations indicate that the maximum obtainable yield per recruit is 1.77 kg . These two numbers indicate that the average yield from these year classes cannot be expected to exceed 262000 t . From the RCT3 output the 1997 year class is at about average size and although the size of the 1998 year class is not well estimated at present the 19980 -group index for cod is among the highest observed (Table 4.1.1).

### 3.3.7.3 Input data to the long-term prediction

For long-term predictions, fluctuating environmental conditions can be ignored, but it is essential to take into account potential changes due to density-dependent growth. These have been investigated for this stock (Steinarsson and Stefánsson, 1991 and ICES 1991/Assess:7) where no significant density-dependent relationships were found concerning growth. However, the results in Schopka (1994) contain indications of some density dependence of growth and this will affect the long-term results at low fishing mortalities. This is not taken into account in typical yield-per-recruit calculations.

Naturally, any stock-recruitment relationship will affect yield-potential calculations and this is not taken into account in the yield-per-recruit calculations.

Average exploitation pattern, mean weight at age and maturity at age over the years 1979-1998 has been used as input. (Table 3.3.21).

### 3.3.7.4 Long-term prediction results and biological reference points

The biological reference values for $\mathrm{F}_{\max }$ and $\mathrm{F}_{0.1}$ are 0.36 and 0.20 respectively. Yield per recruit at the $\mathrm{F}_{\max }$ - level is 1.77 kg . (Figure 3.3 .5 Table 3.3 .22 ).

A plot of the spawning stock biomass and recruitment is given in Figure 3.3.6. When using the period 1955-1995, the reference points $\mathrm{F}_{\text {med }}$ and $\mathrm{F}_{\text {bigh }}$ are about 0.48 and 0.77 , respectively.

The inclusion of the stock recruitment relationship has a major effect on long-term predictions. From Figure 3.3.6 it is seen that below-median recruitment occurs more frequently when the SSB is below-median than when the SSB is above the median. The increased probability of poor recruitment at low SSB levels is of major concern and the possibility of a stock-recruitment relationship cannot be fully ignored. However simulations have shown that the harvest control rule currently applied to this stock appears to be in accordance with the precautionary approach as there is a vey low probability of that the stock will be driven to very low levels.

### 3.3.8 Management considerations

In the most recent period, there has been a substantial reduction in fishing effort directed on cod (Table 3.3.2) and hence in fishing mortality (Figure 3.3.5). Fishing mortality was at the level of $\mathrm{F}=0.80-0.90$ in 1992-1993 but dropped considerably to $\mathrm{F}=0.43$ in 1996. In 1998 it increased to $\mathrm{F}=0.49$ which is at the $\mathrm{F}_{\text {med }}$ level.

Medium-term predictions have been carried out during previous meetings (Anon. 1995/Assess:19 Anon. 1997/Assess:13). The model used incorporated the cod, capelin and shrimp stocks to account for interactions between these stocks. Based on similar calculations, Iceland introduced a catch rule in 1995 which has been enforced since then. According to this harvest control rule catches are limited to $25 \%$ of the fishable (4+) stock biomass calculated from the average stock at $1^{\text {st }}$ of January of the previous year and the coming fishing year. In the long term this corresponds to a fishing mortality of about 0.4 .

Since there is an adopted strategy for harvesting the cod stock off Iceland, and this strategy appears sustainable, there was no reason to repeat the medium-term predictions at this meeting.

Applying this management strategy for the $1999 / 2000$ fishing year the catch will be 247000 t which corresponds to $\mathrm{F}=0.44$.

### 3.3.9 Comments on the assessment

Current assessment has been carried out in same manner as in recent years.

There has been a considerable decline in fishing mortality on this stock since 1993. This is verified in the sharp drop of effort for all fleets engaged in the cod fisheries (Table 3.3.2).

All short-term results on the size of SSB depend heavily on the assumed development in maturity at age, which is difficult to estimate or predict accurately.

It is clear that the stock was heavily overexploited for a long time but is now recovering which is expected to continue under the current management scheme.

Table 3.3.1 Nominal catch (tonnes) of Cod in Division Va, by countries, 1985-1998 as officially reported to ICES.

| Country | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 207 | 226 | 597 | 365 | 309 | 260 | 548 |
| Faroe Islands | 2,203 | 2,554 | 1,848 | 1,966 | 2,012 | 1,782 | 1,323 |
| Iceland | 322,810 | 365,852 | 389,808 | 375,741 | 353,985 | 333,348 | 306,697 |
| Norway | 46 | 1 | 4 | 4 | 3 | - | - |
| UK (Engl. $\quad$ and | 1 | - | - | - | - | - | - |
| Wales) |  |  |  |  |  |  |  |
| Total | 325,267 | 368,633 | 392,257 | 378,076 | 356,309 | 335,390 | 308,568 |
| WG estimate | - | - | - | - | - | - | - |


| Country | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | $1998{ }^{1}$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 222 | 145 | 136 | - | - | Germany | 9 |  |
| Faroe Islands | 883 | 664 | 754 | 739 | 599 | 408 |  |  |
| Iceland | 266,662 | 251,170 | 177,919 | 168,685 | 181,052 | 202,745 | 241,627 |  |
| Norway | - | - | - | - | 7 | - | - |  |
| UK (Engl. and | - | + | - | - | - | - | - |  |
| Wales) |  |  |  |  |  |  |  |  |
| Total | 267,767 | 251,979 | 178,809 | 169,424 | 181,658 | 203,153 |  |  |
| WG estimate | - | - | - | - | - | - | 242,994 |  |

1) Provisional.
2) Additional landings by Iceland of 655 t , and Faroes of 703 t are included.

Table 3.3.2. Cod at Iceland. Division Va. Landings (tonnes), effort, cpue and percentage changes in effort and cpue in the period 1991-1998 (with 1991 as $100 \%$ ). Data are based on logbooks which have been mandatory in the fisheries since 1991.

Bottom trawl

| Year | Catch | efforteffort <br> $\%$ <br> changes |  | cpuecpue <br> $\%$ changes |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 175142 | 234946 | 100 | 745 | 100 |
| 1992 | 131504 | 228196 | 97 | 576 | 77 |
| 1993 | 114587 | 182882 | 78 | 627 | 84 |
| 1994 | 66186 | 83975 | 36 | 788 | 106 |
| 1995 | 57787 | 67944 | 30 | 851 | 114 |
| 1996 | 64849 | 64838 | 29 | 997 | 134 |
| 1997 | 82840 | 76077 | 32 | 1095 | 147 |
| 1998 | 109947 | 85314 | 36 | 1289 | 167 |

Gillnet

| Year | Catch | efforteffort <br> \% <br> changes |  | cpuecpue <br> $\%$ changes |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 58948 | 1060 | 100 | 56 | 100 |
| 1992 | 59712 | 984 | 93 | 61 | 109 |
| 1993 | 56701 | 1008 | 95 | 56 | 101 |
| 1994 | 39192 | 718 | 68 | 55 | 98 |
| 1995 | 32309 | 437 | 41 | 74 | 133 |
| 1996 | 41764 | 492 | 46 | 85 | 153 |
| 1997 | 46742 | 483 | 46 | 97 | 174 |
| 1998 | 51554 | 721 | 68 | 71 | 127 |

Long line

| Year | Catch | effort |  | effort <br> $\%$ <br> changes | cpue |
| :---: | :---: | :---: | :---: | :---: | :---: | | cpue changes |
| :---: |
| \% |

Table 3.3.3. Cod at Iceland. Division Va. Catch in numbers (millions)
Marine Research Institute Fri Apr 23 11:45:15 1999
Virtual Population Analysis : Catch in numbers, millions FINAL-VPA99

| Age | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 7.186 | 4.348 | 2.118 | 3.285 | 3.554 | 6.750 | 6.457 |
| 4 | 28.427 | 28.530 | 13.297 | 20.812 | 10.910 | 31.553 | 24.552 |
| 5 | 13.772 | 32.500 | 39.195 | 24.462 | 24.305 | 19.420 | 35.392 |
| 6 | 34.443 | 15.119 | 23.247 | 28.351 | 18.944 | 15.326 | 18.267 |
| 7 | 14.130 | 27.090 | 12.710 | 14.012 | 17.382 | 8.082 | 8.711 |
| 8 | 4.426 | 7.847 | 26.455 | 7.666 | 8.381 | 7.336 | 4.201 |
| 9 | 1.432 | 2.228 | 4.804 | 11.517 | 2.054 | 2.680 | 2.264 |
| 10 | 0.350 | 0.646 | 1.677 | 1.912 | 2.733 | 0.512 | 1.063 |
| 11 | 0.168 | 0.246 | 0.582 | 0.327 | 0.514 | 0.538 | 0.217 |
| 12 | 0.043 | 0.099 | 0.228 | 0.094 | 0.215 | 0.195 | 0.233 |
| 13 | 0.024 | 0.025 | 0.053 | 0.043 | 0.064 | 0.090 | 0.102 |
| 14 | 0.004 | 0.004 | 0.068 | 0.011 | 0.037 | 0.036 | 0.038 |
| Juvenile | 66.657 | 74.804 | 79.027 | 73.043 | 58.426 | 65.651 | 69.001 |
| Adult | 37.748 | 43.878 | 45.407 | 39.449 | 30.667 | 26.867 | 32.496 |
| Sum 3-3 | 7.186 | 4.348 | 2.118 | 3.285 | 3.554 | 6.750 | 6.457 |
| Sum 4-14 | 97.219 | 114.334 | 122.316 | 109.207 | 85.539 | 85.768 | 95.040 |
| Total | 104.405 | 118.682 | 124.434 | 112.492 | 89.093 | 92.518 | 101.497 |
| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| 3 | 20.642 | 11.002 | 6.713 | 2.605 | 5.785 | 8.554 | 12.217 |
| 4 | 20.330 | 62.130 | 39.323 | 27.983 | 12.313 | 25.131 | 21.708 |
| 5 | 26.644 | 27.192 | 55.895 | 50.059 | 27.179 | 15.491 | 26.524 |
| 6 | 30.839 | 15.127 | 18.663 | 31.455 | 44.534 | 21.514 | 11.413 |
| 7 | 11.413 | 15.695 | 6.399 | 6.010 | 17.037 | 25.038 | 10.073 |
| B | 4.441 | 4.159 | 5.877 | 1.915 | 2.573 | 6.364 | 8.304 |
| 9 | 1.771 | 1.463 | 1.345 | 0.881 | 0.609 | 0.903 | 2.006 |
| 10 | 0.805 | 0.592 | 0.455 | 0.225 | 0.322 | 0.243 | 0.257 |
| 11 | 0.392 | 0.253 | 0.305 | 0.107 | 0.118 | 0.125 | 0.046 |
| 12 | 0.103 | 0.142 | 0.157 | 0.086 | 0.050 | 0.063 | 0.032 |
| 13 | 0.076 | 0.046 | 0.114 | 0.038 | 0.015 | 0.011 | 0.012 |
| 14 | 0.040 | 0.058 | 0.025 | 0.005 | 0.020 | 0.012 | 0.008 |
| Juvenile | 80.654 | 107.928 | 103.170 | 82.565 | 65.114 | 60.283 | 48.743 |
| Adult | 36.842 | 29.931 | 32.101 | 38.804 | 45.441 | 43.166 | 43.857 |
| Sum 3-3 | 20.642 | 11.002 | 6.713 | 2.605 | 5.785 | 8.554 | 12.217 |
| Sum 4-14 | 96.854 | 126.857 | 128.558 | 118.764 | 104.770 | 94.895 | 80.383 |
| Total | 117.496 | 137.859 | 135.271 | 121.369 | 110.555 | 103.449 | 92.600 |
| Age | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |  |
| 3 | 20.500 | 6.160 | 10.770 | 5.356 | 1.722 | 2.971 |  |
| 4 | 33.078 | 24.142 | 9.103 | 14.886 | 16.442 | 8.348 |  |
| 5 | 15.195 | 19.666 | 16.829 | 7.372 | 17.298 | 25.032 |  |
| 6 | 13.281 | 6.968 | 13.066 | 12.307 | 6.711 | 20.480 |  |
| 7 | 3.583 | 4.393 | 4.115 | 9.430 | 7.379 | 5.731 |  |
| 8 | 2.785 | 1.257 | 1.596 | 2.157 | 5.958 | 3.727 |  |
| 9 | 2.707 | 0.599 | 0.313 | 0.837 | 1.147 | 3.177 |  |
| 10 | 1.181 | 0.508 | 0.184 | 0.208 | 0.493 | 0.576 |  |
| 11 | 0.180 | 0.283 | 0.156 | 0.076 | 0.126 | 0.243 |  |
| 12 | 0.034 | 0.049 | 0.141 | 0.065 | 0.028 | 0.052 |  |
| 13 | 0.011 | 0.018 | 0.029 | 0.055 | 0.037 | 0.028 |  |
| 14 | 0.013 | 0.006 | 0.008 | 0.005 | 0.021 | 0.018 |  |
| Juvenile | 45.914 | 26.361 | 21.953 | 31.802 | 21.963 | 37.067 |  |
| Adult | 46.634 | 37.688 | 34.357 | 20.952 | 35.399 | 33.316 |  |
| Sum 3-3 | 20.500 | 6.160 | 10.770 | 5.356 | 1.722 | 2.971 |  |
| Sum 4-14 | 72.048 | 57.889 | 45.540 | 47.398 | 55.640 | 67.412 |  |
| Total | 92.548 | 64.049 | 56.310 | 52.754 | 57.362 | 70.383 |  |

Table 3.3.4. Cod at Iceland. Division Va. Proportion of fishing and natural mortality before spawning.

| Age | PropF | PropM |
| ---: | ---: | ---: |
| 3 | 0.085 | 0.250 |
| 4 | 0.180 | 0.250 |
| 5 | 0.248 | 0.250 |
| 6 | 0.296 | 0.250 |
| 7 | 0.382 | 0.250 |
| 8 | 0.437 | 0.250 |
| 9 | 0.477 | 0.250 |
| 10 | 0.477 | 0.250 |
| 11 | 0.477 | 0.250 |
| 12 | 0.477 | 0.250 |
| 13 | 0.477 | 0.250 |
| 14 | 0.477 | 0.250 |

Table 3.3.5. Cod at Iceland. Division Va. Mean weight at age in the landings (g).
Marine Research Institute Fri Apr 23 11:45:15 1999
Virtual Population Analysis : Weight at age in the catches, in grams FINAL-VPA99

| Age | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 1408 | 1392 | 1180 | 1006 | 1095 | 1288 | 1407 |
| 4 | 1956 | 1862 | 1651 | 1550 | 1599 | 1725 | 1971 |
| 5 | 2642 | 2733 | 2260 | 2246 | 2275 | 2596 | 2576 |
| 6 | 3999 | 3768 | 3293 | 3104 | 3021 | 3581 | 3650 |
| 7 | 5548 | 5259 | 4483 | 4258 | 4096 | 4371 | 4976 |
| 8 | 6754 | 6981 | 5821 | 5386 | 5481 | 5798 | 6372 |
| 9 | 8299 | 8037 | 7739 | 6682 | 7049 | 7456 | 8207 |
| 10 | 9312 | 10731 | 9422 | 9141 | 8128 | 9851 | 10320 |
| 11 | 13130 | 12301 | 11374 | 11963 | 11009 | 11052 | 12197 |
| 12 | 13418 | 17281 | 12784 | 14226 | 13972 | 14338 | 14683 |
| 13 | 13540 | 14893 | 12514 | 17287 | 15882 | 15273 | 16175 |
| 14 | 20072 | 19069 | 19069 | 16590 | 18498 | 16660 | 19050 |
|  |  |  |  |  |  |  |  |
| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| 3 | 1459 | 1316 | 1438 | 1186 | 1290 | 1309 | 1289 |
| 4 | 1961 | 1956 | 1805 | 1813 | 1704 | 1899 | 1768 |
| 5 | 2844 | 2686 | 2576 | 2590 | 2383 | 2475 | 2469 |
| 6 | 3593 | 3894 | 3519 | 3915 | 3034 | 3159 | 3292 |
| 7 | 4635 | 4716 | 4930 | 5210 | 4624 | 3792 | 4394 |
| 8 | 6155 | 6257 | 6001 | 6892 | 6521 | 5680 | 5582 |
| 9 | 7503 | 7368 | 7144 | 8035 | 8888 | 7242 | 6830 |
| 10 | 9084 | 9243 | 8822 | 9831 | 10592 | 9804 | 8127 |
| 11 | 10356 | 10697 | 9977 | 11986 | 10993 | 9754 | 12679 |
| 12 | 15283 | 10622 | 11732 | 10003 | 14570 | 14344 | 13410 |
| 13 | 14540 | 15894 | 14156 | 12611 | 15732 | 14172 | 15715 |
| 14 | 15017 | 12592 | 13042 | 16045 | 17290 | 20200 | 11267 |
|  |  |  |  |  |  |  |  |
| Age | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
| 3 | 1392 | 1443 | 1348 | 1457 | 1484 | 1294 | 1294 |
| 4 | 1887 | 2063 | 1959 | 1930 | 1877 | 1772 | 1722 |
| 5 | 2772 | 2562 | 2920 | 3132 | 2878 | 2490 | 2490 |
| 6 | 3762 | 3659 | 3625 | 4141 | 4028 | 3534 | 3534 |
| 7 | 4930 | 5117 | 5176 | 4922 | 5402 | 4923 | 4923 |
| 8 | 6054 | 6262 | 6416 | 6009 | 6386 | 7125 | 7125 |
| 9 | 7450 | 7719 | 7916 | 7406 | 7344 | 7930 | 7930 |
| 10 | 8641 | 8896 | 10273 | 9772 | 8537 | 9242 | 9242 |
| 11 | 10901 | 10847 | 11022 | 10539 | 10797 | 11573 | 115739 |
| 12 | 12517 | 12874 | 11407 | 13503 | 11533 | 14626 | 14626 |
| 13 | 14742 | 14742 | 13098 | 13689 | 10428 | 17387 | 17387 |
| 14 | 16874 | 17470 | 15182 | 16194 | 12788 | 15069 | 15069 |
|  |  |  |  |  |  |  |  |

Table 3.3.6. Cod at Iceland. Division Va. Mean weight at age in the spawning stock (g).
Marine Research Institute Fri Apr 23 11:45:15 1999
Virtual population Analysis : Weight at age in the SSB, in grams FINAL-VPA99

| Age | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1141 | 1333 | 967 | 996 | 891 | 1002 | 1131 |
| 4 | 1647 | 1680 | 1513 | 1626 | 1472 | 1479 | 1597 |
| 5 | 2532 | 2708 | 2101 | 2095 | 2139 | 2257 | 2285 |
| 6 | 4027 | 3875 | 3225 | 3006 | 2918 | 3476 | 3524 |
| 7 | 5664 | 5446 | 4520 | 4339 | 4130 | 4480 | 5010 |
| 8 | 6951 | 7106 | 5851 | 5571 | 5553 | 5887 | 5195 |
| 9 | 8234 | 8120 | 7661 | 6801 | 7007 | 7660 | 7800 |
| 10 | 9500 | 10737 | 9084 | 9259 | 7770 | 9920 | 9225 |
| 11 | 12921 | 12628 | 10833 | 11550 | 10817 | 11035 | 11336 |
| 12 | 13028 | 17528 | 12401 | 13445 | 13176 | 14531 | 13277 |
| 13 | 13308 | 15939 | 11724 | 17138 | 14175 | 15378 | 15325 |
| 14 | 18930 | 25212 | 14326 | 16554 | 18543 | 16394 | 18932 |
| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| 3 | 1182 | 12B9 | 1218 | 1012 | 813 | 1122 | 876 |
| 4 | 1762 | 1811 | 1604 | 1542 | 1330 | 1776 | 1389 |
| 5 | 2681 | 2735 | 2499 | 2423 | 2132 | 2233 | 2174 |
| 6 | 3562 | 4202 | 3566 | 3743 | 3187 | 3044 | 3185 |
| 7 | 4824 | 5110 | 5161 | 5298 | 4691 | 3891 | 4481 |
| 8 | 6457 | 6497 | 6238 | 6910 | 6627 | 5897 | 5587 |
| 9 | 7843 | 7802 | 7302 | 7725 | 8915 | 7657 | 6775 |
| 10 | 9419 | 10220 | 8647 | 9397 | 10362 | 10573 | 8225 |
| 11 | 10674 | 11197 | 10184 | 11953 | 12093 | 11230 | 11702 |
| 12 | 13660 | 10620 | 11504 | 9529 | 15453 | 14340 | 13474 |
| 13 | 13812 | 15893 | 14159 | 12195 | 15337 | 14172 | 15436 |
| 14 | 18479 | 16514 | 10952 | 14270 | 17257 | 20200 | 11267 |
| Age | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
| 3 | 1037 | 1193 | 1066 | 1264 | 1221 | 1273 | 1273 |
| 4 | 1570 | 1748 | 1826 | 1627 | 1613 | 2074 | 2074 |
| 5 | 2518 | 2382 | 2735 | 2600 | 2595 | 2384 | 2384 |
| 6 | 3611 | 3684 | 3497 | 3829 | 3807 | 3532 | 3532 |
| 7 | 4872 | 5175 | 4741 | 4605 | 5434 | 5159 | 5159 |
| 8 | 6150 | 6210 | 6126 | 5792 | 6440 | 7638 | 7638 |
| 9 | 7538 | 7676 | 7582 | 7550 | 7629 | 8229 | 8229 |
| 10 | 8840 | 8814 | 9887 | 9433 | 8606 | 9489 | 9489 |
| 11 | 11088 | 10842 | 10829 | 11293 | 10486 | 11570 | 11570 |
| 12 | 12002 | 12595 | 11307 | 12984 | 11774 | 14626 | 14626 |
| 13 | 14402 | 14402 | 13098 | 13821 | 10943 | 17387 | 17387 |
| 14 | 18383 | 17470 | 15182 | 16194 | 15225 | 15069 | 15069 |

Table 3.3.7. Cod at Iceland. Division Va. Bottom trawl CPUE (GLM) indices 1993-1998 used in XSA tuning.

| TRAWL-JUN-DEC-N |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Year/Age | 4 | 5 | 6 | 7 |  |  |
| 1993 | 1347 | 565 | 423 | 155 |  |  |
| 1994 | 2565 | 1576 | 306 | 146 |  |  |
| 1995 | 844 | 1974 | 1491 | 255 |  |  |
| 1996 | 1565 | 972 | 1159 | 637 |  |  |
| 1997 | 2546 | 1598 | 539 | 408 |  |  |
| 1998 | 929 | 2943 | 1907 | 427 |  |  |
|  |  |  |  |  |  |  |
| TRAWL-JAN-MAY-N |  |  |  |  | 8 | 9 |
| Year/Age | 4 | 5 | 6 | 7 | 8 | 78 |
| 1993 | 1595 | 989 | 812 | 128 | 54 | 78 |
| 1994 | 1619 | 1908 | 662 | 434 | 69 | 28 |
| 1995 | 363 | 2175 | 1771 | 418 | 84 | 14 |
| 1996 | 1778 | 957 | 1753 | 821 | 149 | 37 |
| 1997 | 1495 | 1900 | 704 | 690 | 589 | 37 |
| 1998 | 544 | 3506 | 2555 | 808 | 317 | 197 |

TRAWL-JAN-MAY-S

| Year/Age | $\mathbf{5}$ | 6 | 7 | 8 |
| :---: | ---: | ---: | ---: | ---: |
| 1993 | 167 | 124 | 42 | 126 |
| 1994 | 528 | 263 | 156 | 58 |
| 1995 | 428 | 469 | 291 | 150 |
| 1996 | 214 | 609 | 514 | 141 |
| 1997 | 578 | 384 | 408 | 246 |
| 1998 | 856 | 1047 | 566 | 262 |

TRAWL-JUN-DES-S

| Year/Age | 5 | 6 | 7 | 8 |
| ---: | ---: | ---: | ---: | ---: |
| 1993 | 299 | 217 | 94 | 79 |
| 1994 | 335 | 129 | 139 | 41 |
| 1995 | 738 | 455 | 131 | 79 |
| 1996 | 481 | 603 | 305 | 69 |
| 1997 | 991 | 487 | 322 | 190 |
| 1998 | 1573 | 923 | 334 | 131 |

Table 3.3.8. Cod at Iceland. Division Va. Gillnet CPUE (GLM) indices 1993-1998 used in XSA tuning.

```
GILLNET-JAN-MAY-S
```

|  | 7 | 8 | 9 |
| ---: | ---: | ---: | ---: |
| 1993 | 209 | 266 | 367 |
| 1994 | 368 | 168 | 80 |
| 1995 | 524 | 265 | 79 |
| 1996 | 617 | 280 | 140 |
| 1997 | 1349 | 420 | 94 |
| 1998 | 358 | 497 | 270 |

Table 3.3.9. Cod at Iceland. Division Va. Icelandic Groundfish survey indices used in XSA tuning.

IceGFS-N. N.

| 110.991 |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Year/Age | 3 | 4 | 5 | 6 | 7 | 8 |
| 1984 | 55261 | 48059 | 13027 | 6211 | 1990 | 868 |
| 1985 | 22540 | 18404 | 17203 | 4864 | 1388 | 375 |
| 1986 | 77227 | 15257 | 7551 | 7364 | 1453 | 345 |
| 1987 | 92490 | 49378 | 5573 | 2906 | 2306 | 265 |
| 1988 | 60113 | 46566 | 18693 | 1665 | 545 | 311 |
| 1989 | 8272 | 15722 | 18464 | 6501 | 456 | 137 |
| 1990 | 22262 | 8102 | 8772 | 9355 | 1242 | 107 |
| 1991 | 13601 | 9542 | 2499 | 2303 | 1347 | 144 |
| 1992 | 31684 | 9441 | 5124 | 1100 | 672 | 318 |
| 1993 | 18211 | 13369 | 2675 | 1550 | 263 | 168 |
| 1994 | 4301 | 11353 | 7088 | 1330 | 417 | 53 |
| 1995 | 19228 | 6083 | 6923 | 6599 | 1160 | 227 |
| 1996 | 48173 | 23365 | 5898 | 5422 | 3004 | 171 |
| 1997 | 13959 | 48786 | 20710 | 5656 | 2806 | 1010 |
| 1998 | 35495 | 7683 | 12466 | 5233 | 811 | 225 |

IceGFS. a3 on a3. N
110.170 .25

Year/Age
3
198531297
198684656
198799294
198868604
198917511
199019408
199115633
199230540
199326030
19945556
199517477
199637466
199711969
199828949
IceGFS. a2 on a3. N .
110.170 .25

| Year/Age | 3 |
| ---: | ---: |
| 1986 | 39301 |
| 1987 | 52943 |
| 1988 | 25874 |
| 1989 | 5820 |
| 1990 | 14921 |
| 1991 | 11786 |
| 1992 | 14473 |
| 1993 | 16407 |
| 1994 | 2237 |
| 1995 | 10539 |
| 1996 | 28480 |
| 1997 | 3869 |
| 1998 | 18566 |

Table 3.3.9. (Cont'd.) Cod at Iceland. Division Va. Icelandic Groundfish survey indices used in XSA tuning.

## IceGFS-SE

110.991

| Year/Age | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1984 | 233 | 561 | 470 | 524 | 373 | 345 |
| 1985 | 452 | 686 | 1171 | 608 | 294 | 138 |
| 1986 | 772 | 404 | 391 | 842 | 286 | 105 |
| 1987 | 4670 | 3153 | 519 | 333 | 385 | 62 |
| 1988 | 1914 | 4474 | 3858 | 619 | 274 | 238 |
| 1989 | 85 | 419 | 1673 | 1762 | 265 | 83 |
| 1990 | 113 | 114 | 324 | 1104 | 396 | 89 |
| 1991 | 349 | 511 | 309 | 763 | 1087 | 203 |
| 1992 | 1148 | 391 | 361 | 146 | 163 | 117 |
| 1993 | 1098 | 1189 | 356 | 321 | 79 | 57 |
| 1994 | 350 | 1943 | 2084 | 619 | 300 | 70 |
| 1995 | 792 | 460 | 1056 | 1654 | 502 | 141 |
| 1996 | 1139 | 860 | 358 | 582 | 561 | 50 |
| 1997 | 488 | 3397 | 1605 | 624 | 615 | 437 |
| 1998 | 1389 | 637 | 1591 | 915 | 214 | 116 |
| IceGFS-SW |  |  |  |  |  |  |
| 110.991 |  |  |  |  | 6 | 7 |
| Year/Age | 3 | 4 | 5 | 6 | 8 |  |
| 1984 | 1723 | 4444 | 2588 | 1911 | 813 | 417 |
| 1985 | 1413 | 2203 | 2968 | 1310 | 535 | 232 |
| 1986 | 4003 | 1266 | 1190 | 1656 | 410 | 104 |
| 1987 | 3929 | 5935 | 1144 | 860 | 873 | 102 |
| 1988 | 5857 | 9371 | 5845 | 812 | 296 | 224 |
| 1989 | 1702 | 6149 | 8867 | 4150 | 409 | 113 |
| 1990 | 3044 | 2560 | 4625 | 7491 | 1556 | 193 |
| 1991 | 1088 | 2019 | 1016 | 1702 | 2172 | 387 |
| 1992 | 4112 | 1935 | 1664 | 420 | 359 | 255 |
| 1993 | 4366 | 3533 | 851 | 573 | 114 | 66 |
| 1994 | 1298 | 4397 | 3538 | 866 | 355 | 22 |
| 1995 | 3829 | 1958 | 3133 | 3764 | 804 | 181 |
| 1996 | 3785 | 3024 | 1181 | 1655 | 1554 | 126 |
| 1997 | 911 | 5132 | 3131 | 1182 | 895 | 537 |
| 1998 | 3820 | 1874 | 5897 | 3780 | 851 | 317 |

Table 3.3.10. Cod at Iceland. Division Va. XSA diagnostic output
Lowestoft VPA Version 3.1
21/04/1999 16:41
Extended Survivors Analysis
"ICELANDIC COD (Div. Va); data from 1970-97(4/98)"
CPUE data from file codvarnt.dat
Catch data for 15 years. 1984 to 1998. Ages 3 to 14.

| Fleet | First year | Last year | First age |  | Last <br> age |  |  | Beta |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMB. N. | 1984 | 1998 |  | 3 |  | 8 | 0.99 | 1 |
| SMB. a3 on a3. N | 1985 | 1998 |  | 3 |  | 3 | 0.17 | 0.25 |
| SMB. a2 on a3. N. | 1986 | 1998 |  | 3 |  | 3 | 0.17 | 0.25 |
| SMB. SE | 1984 | 1998 |  | 3 |  | 8 | 0.99 | 1 |
| SMB. SW. | 1984 | 1998 |  | 3 |  | 8 | 0.99 | 1 |
| TRAWL-JUN-DEC-N | 1993 | 1998 |  | 4 |  | 7 | 0.42 | 1 |
| TRAWL-JAN-MAY-N | 1993 | 1998 |  | 4 |  | 9 | 0 | 0.42 |
| TRAWL-JAN-MAY-S | 1993 | 1998 |  | 5 |  | 8 | 0 | 0.42 |
| GILLNET-JAN-MAY-S | 1993 | 1998 |  | 7 |  | 9 | 0 | 0.42 |
| TRAWL-JUN-DES-S | 1993 | 1998 |  | 5 |  | 8 | 0.42 | 1 |

Time series weights :
Tapered time weighting applied
Power $=3$ over 20 years
Catchability analysis:
Catchability dependent on stock size for ages < 5
Regression type $=\mathrm{C}$
Minimum of 5 points used for regression Survivor estimates shrunk to the population mean for ages < 5

Catchability independent of age for ages $>=11$
Terminal population estimation :
Survivor estimates shrunk towards the mean $F$ of the final 3 years or the 4 oldest ages.
S.E. of the mean to which the estimates are shrunk $=0.500$

Minimum standard error for population
estimates derived from each fleet $=0.300$

Prior weighting not applied

Tuning converged after 42 iterations

Table 3.3.10 (Cont'd)

| Regression weights |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.751 | 0.82 | 0.877 | 0.921 | 0.954 | 0.976 | 0.99 | 0.997 | 1 | 1 |
| Fishing mortalities |  |  |  |  |  |  |  |  |  |  |
| Age | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
|  | 0.035 | 0.049 | 0.096 | 0.077 | 0.154 | 0.086 | 0.069 | 0.026 | 0.021 | 0.019 |
|  | 0.263 | 0.229 | 0.307 | 0.373 | 0.306 | 0.274 | 0.177 | 0.128 | 0.105 | 0.134 |
|  | 0.136 | 0.442 | 0.503 | 0.624 | 0.489 | 0.301 | 0.313 | 0.213 | 0.216 | 0.23 |
|  | 0.6 | 0.637 | 0.772 | 0.886 | 0.754 | 0.436 | 0.335 | 0.398 | 0.306 | 0.428 |
|  | 0.726 | 0.784 | 0.946 | 1.097 | 0.79 | 0.607 | 0.502 | 0.431 | 0.443 | 0.467 |
|  | 0.876 | 0.815 | 0.783 | 1.016 | 1.119 | 0.725 | 0.463 | 0.54 | 0.538 | 0.421 |
|  | 0.818 | 0.787 | 0.777 | 0.611 | 1.208 | 0.78 | 0.392 | 0.473 | 0.625 | 0.625 |
|  | 0.546 | 0.833 | 0.875 | 0.525 | 0.932 | 0.772 | 0.585 | 0.493 | 0.571 | 0.76 |
|  | 0.653 | 0.626 | 0.959 | 0.391 | 0.893 | 0.599 | 0.574 | 0.513 | 0.637 | 0.622 |
|  | 0.978 | 0.746 | 0.839 | 0.699 | 0.565 | 0.653 | 0.692 | 0.502 | 0.359 | 0.596 |
|  | 0.563 | 0.436 | 0.353 | 0.26 | 0.554 | 0.675 | 1.095 | 0.644 | 0.605 | 0.749 |
|  | 0.691 | 0.665 | 0.764 | 0.473 | 0.744 | 0.679 | 0.74 | 0.543 | 0.548 | 0.681 |

XSA population numbers (Thousands)

| YEAR | AGE |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|  | 1989 | $8.42 \mathrm{E}+04$ | $1.34 \mathrm{E}+05$ | $1.46 \mathrm{E}+05$ | $7.71 \mathrm{E}+04$ | $1.29 \mathrm{E}+04$ | $3.63 \mathrm{E}+03$ | $1.74 \mathrm{E}+03$ | 5.91E+02 | $2.47 \mathrm{E}+02$ | $1.52 \mathrm{E}+02$ |
|  | 1990 | $1.35 \mathrm{E}+05$ | $6.65 \mathrm{E}+04$ | $8.40 \mathrm{E}+04$ | $1.04 \mathrm{E}+05$ | $3.46 \mathrm{E}+04$ | $5.10 \mathrm{E}+03$ | $1.24 \mathrm{E}+03$ | $6.29 E+02$ | $2.80 \mathrm{E}+02$ | $1.05 \mathrm{E}+02$ |
|  | 1991 | $1.03 \mathrm{E}+05$ | $1.05 \mathrm{E}+05$ | $4.33 \mathrm{E}+04$ | 4:42E+04 | 4.52E+04 | $1.30 \mathrm{E}+04$ | $1.85 \mathrm{E}+03$ | $4.61 \mathrm{E}+02$ | $2.24 \mathrm{E}+02$ | 1.23E+02 |
|  | 1992 | 1.83E+05 | $7.70 \mathrm{E}+04$ | 6.32E+04 | $2.15 \mathrm{E}+04$ | 1.67E+04 | $1.44 \mathrm{E}+04$ | 4.85E+03 | $6.96 \mathrm{E}+02$ | $1.57 \mathrm{E}+02$ | 7.03E+01 |
|  | 1993 | $1.59 \mathrm{E}+05$ | $1.39 \mathrm{E}+05$ | 4.34E+04 | $2.77 \mathrm{E}+04$ | 7.25E+03 | $4.57 \mathrm{E}+03$ | 4.27E+03 | 2.15E+03 | $3.37 \mathrm{E}+02$ | $8.71 \mathrm{E}+01$ |
|  | 1994 | $8.25 \mathrm{E}+04$ | $1.11 \mathrm{E}+05$ | 8.37E+04 | $2.18 \mathrm{E}+04$ | $1.07 \mathrm{E}+04$ | $2.69 \mathrm{E}+03$ | 1.22E+03 | $1.04 \mathrm{E}+03$ | $6.94 \mathrm{E}+02$ | $1.13 \mathrm{E}+02$ |
|  | 1995 | $1.79 \mathrm{E}+05$ | $6.20 \mathrm{E}+04$ | 6.92E+04 | $5.08 \mathrm{E}+04$ | 1.15E+04 | $4.76 \mathrm{E}+03$ | 1.07E+03 | $4.59 \mathrm{E}+02$ | $3.95 \mathrm{E}+02$ | 3.12E+02 |
|  | 1996 | $2.29 \mathrm{E}+05$ | $1.37 \mathrm{E}+05$ | 4.25E+04 | 4.14E+04 | $2.97 \mathrm{E}+04$ | 5.72E+03 | $2.46 \mathrm{E}+03$ | 5.91E+02 | $2.09 \mathrm{E}+02$ | $1.82 \mathrm{E}+02$ |
|  | 1997 | $9.19 \mathrm{E}+04$ | $1.82 \mathrm{E}+05$ | $9.86 \mathrm{E}+04$ | $2.81 \mathrm{E}+04$ | $2.28 \mathrm{E}+04$ | 1.58E+04 | 2.73E+03 | 1.25E+03 | 2.96E+02 | $1.03 \mathrm{E}+02$ |
|  | 1998 | 1.71E+05 | 7.37E+04 | $1.34 \mathrm{E}+05$ | $6.50 \mathrm{E}+04$ | 1.70E+04 | $1.20 \mathrm{E}+04$ | $7.56 \mathrm{E}+03$ | $1.20 \mathrm{E}+03$ | $5.80 \mathrm{E}+02$ | $1.28 \mathrm{E}+02$ |

Estimated population abundance at 1st Jan 1999
$0.00 \mathrm{E}+00 \quad 1.37 \mathrm{E}+05 \quad 5.28 \mathrm{E}+04 \quad 8.74 \mathrm{E}+04 \quad 3.47 \mathrm{E}+04 \quad 8.70 \mathrm{E}+03 \quad 6.44 \mathrm{E}+03 \quad 3.31 \mathrm{E}+03 \quad 4.58 \mathrm{E}+02 \quad 2.55 \mathrm{E}+02$
Taper weighted geometric mean of the VPA populations:
$1.48 \mathrm{E}+05 \quad 1.15 \mathrm{E}+05 \quad 7.75 \mathrm{E}+04 \quad 4.12 \mathrm{E}+04 \quad 1.80 \mathrm{E}+04 \quad 7: 24 \mathrm{E}+03 \quad 2.54 \mathrm{E}+03 \quad 8.94 \mathrm{E}+02 \quad 3.67 \mathrm{E}+02 \quad 1.55 \mathrm{E}+02$
Standard error of the weighted Log(VPA populations) :

| 0.4105 | 0.4335 | 0.4455 | 0.4868 | 0.5313 | 0.5804 | 0.6194 | 0.5164 | 0.539 | 0.5779 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

AGE
YEAR
$13 \quad 14$

| 1989 | $9.76 \mathrm{E}+01$ | $1.11 \mathrm{E}+01$ |
| :--- | :--- | :--- |
| 1990 | $4.69 \mathrm{E}+01$ | $4.55 \mathrm{E}+01$ |
| 1991 | $4.08 \mathrm{E}+01$ | $2.48 \mathrm{E}+01$ |
| 1992 | $4.34 \mathrm{E}+01$ | $2.35 \mathrm{E}+01$ |
| 1993 | $2.86 \mathrm{E}+01$ | $2.74 \mathrm{E}+01$ |
| 1994 | $4.05 \mathrm{E}+01$ | $1.35 \mathrm{E}+01$ |
| 1995 | $4.82 \mathrm{E}+01$ | $1.69 \mathrm{E}+01$ |
| 1996 | $1.28 \mathrm{E}+02$ | $1.32 \mathrm{E}+01$ |
| 1997 | $9.01 \mathrm{E}+01$ | $5.50 \mathrm{E}+01$ |
| 1998 | $5.87 \mathrm{E}+01$ | $4.03 \mathrm{E}+01$ |

## Table 3.3.10 (Cont'd)

Estimated population abundance at 1st Jan 1999
$5.78 E+0 \uparrow \quad 2.27 E+01$
Taper weighted geometric mean of the VPA populations:

$$
6.97 E+01 \quad 3.03 E+01
$$

Standard error of the weighted Log(VPA populations) :

$$
0.6381 \quad 0.7365
$$

1
Log catchability residuals.

Fleet : SMB. N.

| Age |  | 1984 | 1985 | 1986 | 1987 | 1988 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 0.53 | 0 | -0.15 | 0.11 | 0.38 |  |  |  |  |
|  | 4 | 0.24 | 0.2 | 0 | -0.02 | 0.04 |  |  |  |  |
|  | 5 | 0.44 | 0.34 | 0.31 | -0.16 | 0.3 |  |  |  |  |
|  | 6 | 0.53 | 0.19 | 0.34 | 0.3 | -0.37 |  |  |  |  |
|  | 7 | 0.48 | 0.22 | 0.37 | 0.66 | 0.09 |  |  |  |  |
|  | 8 | 0.87 | 0.28 | 0.5 | 0.4 | 0.79 |  |  |  |  |
|  | 9 No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| Age |  | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
|  | 3 | -0.01 | 0.07 | 0.09 | -0.02 | -0.14 | -0.32 | -0.28 | -0.04 | 0.18 |
|  | 4 | -0.12 | 0.13 | -0.17 | 0.18 | -0.23 | -0.13 | -0.01 | 0.03 | 0.19 |
|  | 5 | -0.02 | 0.1 | -0.44 | 0.02 | -0.38 | -0.26 | -0.08 | 0.15 | 0.57 |
|  | 6 | 0 | 0.1 | -0.31 | -0.21 | -0.25 | -0.48 | 0.17 | 0.24 | 0.58 |
|  | 7 | -0.43 | -0.36 | -0.39 | 0.06 | -0.35 | -0.45 | 0.39 | 0.32 | 0.53 |
|  | 8 | 0.32 | -0.33 | -0.99 | -0.08 | 0.53 | -0.48 | 0.14 | -0.25 | 0.51 |
|  | 9 No data for this fleet at this age |  |  |  |  |  |  |  |  |  |

Mean $\log$ catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age | 5 | 6 | 7 | 8 |
| :--- | ---: | ---: | ---: | ---: |
| Mean $\log q$ | -1.7157 | -1.6805 | -1.9858 | -2.5262 |
| S.E $\log$ q) | 0.307 | 0.333 | 0.4095 | 0.5683 |

Regression statistics:
Ages with $q$ dependent on year class strength

| Age | Slope |  | t-value | Intercept | RSquare | No Pts | Reg s.e | Mean Log $q$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |
|  | 3 | 0.55 | 2.796 | 6.23 | 0.8 | 15 | 0.22 | -1.61 |
| 4 | 0.64 | 3.374 | 5.22 | 0.9 | 15 | 0.15 | -1.58 |  |

Ages with $q$ independent of year class strength and constant w.r.t. time.

| Age | Slope |  | t -value | Intercept | RSquare | No Pts | Reg s.e | Mean Q |  |
| :--- | :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |
|  | 5 | 0.8 | 1.176 | 3.58 | 0.79 | 15 | 0.24 | -1.72 |  |
|  | 6 | 0.87 | 0.682 | 2.82 | 0.75 | 15 | 0.3 | -1.68 |  |
|  | 7 | 0.87 | 0.627 | 3.02 | 0.7 | 15 | 0.37 | -1.99 |  |
|  | 8 | 1.03 | -0.106 | 2.31 | 0.49 | 15 | 0.62 | -2.53 |  |

Fleet: SMB. a3 on a3. N

| Age | 1984 | 1985 | 1986 | 1987 | 1988 |  |
| :--- | :--- | :---: | :---: | ---: | ---: | ---: |
|  | 3 | 99.99 | 0.19 | -0.01 | 0.27 | 0.54 |
|  | 4 | No data for this fleet at this age |  |  |  |  |
| 5 | No data for this fleet at this age |  |  |  |  |  |
| 6 | No data for this fleet at this age |  |  |  |  |  |
| 7 | No data for this fleet at this age |  |  |  |  |  |
| 8 | No data for this fleet at this age |  |  |  |  |  |
| 9 | No data for this fleet at this age |  |  |  |  |  |

Table 3.3.10 (Cont'd)

| Age |  | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 0.36 | -0.04 | 0.09 | -0.05 | 0 | -0.35 | -0.39 | -0.15 | 0.03 |
|  | 4 | No data for | fleet | age |  |  |  |  |  |  |
|  | 5 | No data for | fleet | age |  |  |  |  |  |  |
|  | 6 | No data for | fleet | age |  |  |  |  |  |  |
|  | 7 | No data for | fleet | age |  |  |  |  |  |  |
|  | 8 | No data for | fleet | age |  |  |  |  |  |  |
|  | 9 | No data for | fleet | age |  |  |  |  |  |  |

Regression statistics:
Ages with q dependent on year class strength


Fleet : SMB. a2 on a3. N .
$\left.\begin{array}{llcccc}\text { Age } & & 1984 & 1985 & 1986 & 1987 \\ & 3 & 99.99 & 99.99 & -0.21 & 0.12\end{array}\right) 0.25$

| Age |  | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 0.16 | 0.19 | 0.33 | -0.13 | 0.09 | -0.33 | -0.28 | 0.01 | -0.15 |
|  | 4 | No data for | fleet | sage |  |  |  |  |  |  |
|  | 5 | No data for | fleet | sage |  |  |  |  |  |  |
|  | 6 | No data for | fleet a | s age |  |  |  |  |  |  |
|  | 7 | No data for | fleet a | sage |  |  |  |  |  |  |
|  | 8 | No data for | fleet a | s age |  |  |  |  |  |  |
|  |  | No data for | fleet | s age |  |  |  |  |  |  |

Regression statistics:
Ages with $q$ dependent on year class strength

| Age | Slope | t-value | Intercept | RSquare | No Pts | Reg s.e | Mean Log q |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 3 | 0.53 | 2.789 | 6.84 | 0.8 | 13 | 0.22 | -2.42 |

## Table 3.3.10 (Cont'd)

Fleet : SMB. SE

Age |  |  | 1984 | 1985 | 1986 | 1987 | 1988 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  | 3 | -0.52 | -0.18 | -0.71 | 0.49 | 0.49 |
|  | 4 | -0.7 | -0.02 | -0.39 | -0.03 | 0.27 |
|  | 5 | -0.57 | -0.04 | -0.34 | -0.23 | 1.03 |
|  | 6 | -0.24 | -0.19 | -0.13 | -0.17 | 0.34 |
|  | 7 | -0.08 | -0.22 | -0.14 | -0.02 | 0.51 |
|  | 8 | 0.57 | -0.09 | -0.06 | -0.42 | 1.16 |
|  | 9 |  |  |  |  |  |

| Age |  | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 3 | -0.6 | -0.9 | 0.04 | 0.14 | 0.3 | 0.26 | -0.05 | -0.12 | 0.31 |
|  | 4 | -0.51 | -0.56 | -0.13 | 0.06 | -0.05 | 0.53 | 0.26 | -0.21 | 0.25 |
|  | 5 | -0.11 | -0.89 | -0.22 | -0.32 | -0.09 | 0.83 | 0.35 | -0.34 | 0.32 |
|  | 6 | 0.39 | -0.34 | 0.28 | -0.53 | -0.13 | 0.45 | 0.48 | -0.29 | 0.07 |
|  | 7 | 0.14 | -0.39 | 0.51 | -0.24 | -0.43 | 0.33 | 0.66 | -0.24 | 0.13 |
|  | 8 | 0.45 | 0.12 | -0.02 | -0.45 | 0.08 | 0.43 | 0.29 | -0.85 | 0.3 |

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age | 5 | 6 | 7 | 8 |
| :--- | ---: | ---: | ---: | ---: |
| Mean Log q | -4.027 | -3.3763 | -3.0992 | -3.1547 |
| S.E(Log 9$)$ | 0.5037 | 0.3466 | 0.4102 | 0.5533 |

Regression statistics:
Ages with $q$ dependent on year class strength

| Age | Slope |  | $t$-value | Intercept | RSquare | No Pts | Reg s.e | Mean Log 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 0.57 | 1.284 | 8.06 | 0.48 | 15 | 0.45 | -5.2 |
|  | 4 | 0.56 | 1.756 | 7.68 | 0.62 | 15 | 0.36 | -4.51 |

Ages with q independent of year class strength and constant w.r.t. time.

| Age | Slope |  | t-value | Intercept | RSquare | No Pts | Reg s.e | Mean Q |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |
|  | 5 | 0.7 | 1.305 | 6.23 | 0.66 | 15 | 0.34 | -4.03 |
| 6 | 1.02 | -0.092 | 3.22 | 0.65 | 15 | 0.37 | -3.38 |  |
| 7 | 1.05 | -0.181 | 2.78 | 0.61 | 15 | 0.45 | -3.1 |  |
|  | 8 | 1.34 | -0.852 | 1.23 | 0.4 | 15 | 0.75 | -3.15 |

Fleet: SMB. SW.

| Age |  | 1984 | 1985 | 1986 | 1987 | 1988 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 3 | -0.3 | -0.5 | -0.46 | -0.32 | 0.52 |
|  | 4 | -0.14 | -0.26 | -0.94 | -0.09 | 0.44 |
|  | 5 | -0.03 | -0.27 | -0.39 | -0.6 | 0.28 |
|  | 6 | 0.16 | -0.32 | -0.34 | -0.11 | -0.28 |
|  | 7 | 0.04 | -0.28 | -0.44 | 0.15 | -0.07 |
|  | 8 | 0.42 | 0.08 | -0.41 | -0.27 | 0.75 |

Table 3.3.10 (Cont'd)

| Age |  | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 3 | 0.19 | 0.22 | -0.34 | 0.18 | 0.44 | 0.02 | 0.14 | -0.15 | -0.43 |
|  | 4 | 0.57 | 0.33 | -0.29 | 0.04 | 0 | 0.42 | 0.07 | -0.32 | -0.09 |
|  | 5 | 0.4 | 0.6 | -0.19 | 0.05 | -0.38 | 0.2 | 0.28 | -0.31 | -0.17 |
|  | 6 | 0.36 | 0.68 | 0.2 | -0.37 | -0.44 | -0.11 | 0.42 | -0.14 | -0.18 |
|  | 7 | -0.09 | 0.32 | 0.55 | -0.11 | -0.73 | -0.16 | 0.48 | 0.12 | -0.16 |
|  | 8 | 0.41 | 0.55 | 0.28 | -0.01 | -0.12 | -1.08 | 0.2 | -0.27 | 0.16 |

Mean $\log$ catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age | 5 | 6 | 7 | 8 |
| :--- | ---: | ---: | ---: | ---: |
| Mean $\log q$ | -2.8638 | -2.4859 | -2.4415 | -2.8093 |
| S.E(Log q) | 0.3379 | 0.348 | 0.3492 | 0.4659 |

## Regression statistics :

Ages with q dependent on year class strength

| Age | Slope |  | $t$-value | Intercept | RSquare | No Pts | Reg s.e | Mean Log q |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 0.83 | 0.658 | 5.12 | 0.62 | 15 | 0.34 | -3.78 |
|  | 4 | 1.03 | -0.1 | 2.94 | 0.6 | 15 | 0.37 | -3.16 |

Ages with $q$ independent of year class strength and constant w.r.t. time.

| Age | Slope |  | t-value | Intercept | RSquare | No Pts | Reg s.e | Mean Q |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 | 0.71 | 2.009 | 5.31 | 0.83 | 15 | 0.21 | -2.86 |
|  | 6 | 0.65 | 3.649 | 5.35 | 0.92 | 15 | 0.15 | -2.49 |
|  | 7 | 0.72 | 2.271 | 4.5 | 0.87 | 15 | 0.21 | -2.44 |
|  | 8 | 0.78 | 1.152 | 4.13 | 0.74 | 15 | 0.36 | -2.81 |

Fleet : TRAWL-JUN-DEC-N

| Age |  | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
|  | 4 | 99.99 | 99.99 | 99.99 | 99.99 | -0.25 | 0.64 | -0.05 | -0.21 | 0.01 |
|  | 5 | 99.99 | 99.99 | 99.99 | 99.99 | -0.27 | -0.04 | 0.39 | 0.1 | -0.25 |
|  | 6 | 99.99 | 99.99 | 99.99 | 99.99 | -0.13 | -0.43 | 0.23 | 0.23 | -0.21 |
|  | 7 | 99.99 | 99.99 | 99.99 | 99.99 | 0.24 | -0.33 | 0.08 | 0 | -0.17 |
|  | 8 | No data for this fleet at this age |  |  |  |  |  |  |  |  |
|  | 9 | No data fo | s fleet a | is age |  |  |  |  |  |  |

[^1]| Age | 5 | 6 | 7 |
| :--- | ---: | ---: | ---: |
| Mean $\log q$ | -3.5836 | -3.3869 | -3.3993 |
| S.E(Log q) | 0.2451 | 0.299 | 0.2174 |

## Regression statistics :

Ages with $q$ dependent on year class strength

| Age | Slope |  | $t$-value | Intercept | RSquare | No Pts |  | Reg s.e | Mean Log q |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | 1.08 | -0.205 | 3.41 | 0.61 |  | 6 | 0.37 | -4.03 |

Ages with q independent of year class strength and constant w.r.t. time.

| Age | Slope |  | t-value |  | Intercept | RSquare | No Pts | Reg s.e |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  | Mean Q |  |  |  |  |
|  | 5 | 0.98 | 0.092 | 3.77 | 0.79 | 6 | 0.27 | -3.58 |  |
| 174 | 6 | 0.59 | 6.229 | 6.27 | 0.98 | 6 | 0.06 | -3.39 |  |
|  | 7 | 1.11 | -0.477 | 2.73 | 0.83 | 6 | 0.26 | -3.4 |  |

Table 3.3.10 (Cont'd)
Fleet : TRAWL-JAN-MAY-N

| Age |  | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
|  | 4 | 99.99 | 99.99 | 99.99 | 99.99 | 0.06 | 0.29 | -0.14 | 0.12 | -0.28 |
|  | 5 | 99.99 | 99.99 | 99.99 | 99.99 | -0.01 | -0.04 | 0.28 | -0.07 | -0.23 |
|  | 6 | 99.99 | 99.99 | 99.99 | 99.99 | -0.06 | -0.08 | 0.03 | 0.24 | -0.3 |
|  | 7 | 99.99 | 99.99 | 99.99 | 99.99 | -0.54 | 0.26 | 0.12 | -0.17 | -0.07 |
|  | 8 | 99.99 | 99.99 | 99.99 | 99.99 | -0.56 | 0.13 | -0.29 | 0.12 | 0.47 |
|  | 9 | 99.99 | 99.99 | 99.99 | 99.99 | 0.14 | 0.29 | -0.35 | -0.19 | -0.27 |

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age | 5 | 6 | 7 | 8 | 9 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Mean $\log q$ | -3.6337 | -3.2788 | -3.2937 | -3.6113 | -3.8647 |
| S.E $(\log q)$ | 0.1705 | 0.1966 | 0.3316 | 0.3639 | 0.3116 |

Regression statistics :
Ages with $q$ dependent on year class strength

| Age | Slope | t-value | Intercept | RSquare | No Pts | Reg s.e | Mean Log q |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.67 | 1.339 | 6.9 | 0.81 |  | 0.23 | -4.57 |

Ages with $q$ independent of year class strength and constant w.r.t. time.

| Age | Slope |  | t-value | Intercept | RSquare | No Pts | Reg s.e | Mean Q |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 | 1 | 0.004 | 3.64 | 0.88 | 6 | 0.19 | -3.63 |
|  | 6 | 0.76 | 1.863 | 5.04 | 0.94 | 6 | 0.12 | -3.28 |
|  | 7 | 0.89 | 0.387 | 3.98 | 0.76 | 6 | 0.33 | -3.29 |
|  | 8 | 0.77 | 1.251 | 4.78 | 0.89 | 6 | 0.27 | -3.61 |
|  | 9 | 0.83 | 1.153 | 4.56 | 0.92 | 6 | 0.25 | -3.86 |
|  | 1 |  |  |  |  |  |  |  |

Fleet : TRAWL-JAN-MAY-S

| Age |  | 1989 | $1990{ }^{\circ}$ | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
|  | 4 No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
|  | 5 | 99.99 | 99.99 | 99.99 | 99.99 | -0.32 | 0.13 | 0.12 | -0.11 | 0.04 |
|  | 6 | 99.99 | 99.99 | 99.99 | 99.99 | -0.83 | 0.1 | -0.19 | 0.29 | 0.2 |
|  | 7 | 99.99 | 99.99 | 99.99 | 99.99 | -1.02 | -0.13 | 0.39 | 0 | 0.04 |
|  | 8 | 99.99 | 99.99 | 99.99 | 99.99 | 0.27 | -0.05 | 0.27 | 0.04 | -0.42 |
|  | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age | 5 | 6 | 7 | 8 |
| :--- | ---: | ---: | ---: | ---: |
| Mean $\log q$ | -5.0962 | -4.3877 | -3.9306 | -3.5953 |
| S.E(Log q) | 0.1807 | 0.4446 | 0.5722 | 0.2596 |

Regression statistics:

Table 3.3.10 (Cont'd)
Ages with $q$ independent of year class strength and constant w.r.t. time.

| Age | Slope |  | t-value | Intercept | RSquare | No Pts | Regs.e. | Mean Q |
| :--- | :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |
|  | 5 | 0.76 | 2.575 | 6.55 | 0.97 | 6 | 0.09 | -5.1 |
| 6 | 0.73 | 0.727 | 6.03 | 0.65 | 6 | 0.34 | -4.39 |  |
|  | 7 | 0.64 | 1.169 | 5.96 | 0.73 | 6 | 0.35 | -3.93 |
|  | 8 | 1.36 | -1.783 | 1.76 | 0.86 | 6 | 0.29 | -3.6 |

Fleet : GILLNET-JAN-MAY-S

| Age |  | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 345 | No data for this fleet at this age |  |  |  |  |  |  |  |  |
|  |  | No data fo | s fleet | s age |  |  |  |  |  |  |
|  |  | No data for this fleet at this age |  |  |  |  |  |  |  |  |
|  | 6 | No data for this fleet at this age |  |  |  |  |  |  |  |  |
|  |  | 99.99 | 99.99 | 99.99 | 99.99 | -0.07 | 0.07 | 0.33 | -0.47 | 0.58 |
|  | 8 | 99.99 | 99.99 | 99.99 | 99.99 | 0.31 | 0.3 | 0.14 | 0.03 | -0.59 |
|  | 9 | 99.99 | 99.99 | 99.99 | 99.99 | 0.55 | 0.19 | 0.24 | -0.01 | -0.48 |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age | 7 | 8 | 9 |
| :--- | ---: | ---: | ---: |
| Mean $\log q$ | -3.2765 | -2.89 | -2.7173 |
| S.E $\log q)$ | 0.4211 | 0.3414 | 0.4048 |

Regression statistics:

Ages with $q$ independent of year class strength and constant w.r.t. time.

| Age | Slope |  | t-value | Intercept | RSquare | No Pts | Reg s.e | Mean Q |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7 | 1.17 | -0.361 | 2.21 | 0.54 | 6 | 0.54 | -3.28 |
|  | 8 | 1.93 | -5.062 | -2.54 | 0.88 | 6 | 0.27 | -2.89 |
|  | 9 | 1.28 | -0.857 | 1.3 | 0.71 | 6 | 0.53 | -2.72 |

Fleet : TRAWL-JUN-DES-S

| Age |  | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  | 5 | 99.99 | 99.99 | 99.99 | 99.99 | -0.08 | -0.76 | 0.23 | 0.22 | 0.1 |
|  | 6 | 99.99 | 99.99 | 99.99 | 99.99 | -0.1 | -0.6 | -0.25 | 0.27 | 0.38 |
|  | 7 | 99.99 | 99.99 | 99.99 | 99.99 | 0.15 | 0.03 | -0.18 | -0.33 | 0 |
|  | 8 | 99.99 | 99.99 | 99.99 | 99.99 | 0.56 | 0.17 | 0.07 | -0.19 | -0.2 |
|  | 9 | No data for | fleet | s age |  |  |  |  |  |  |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age | 5 | 6 | 7 | 8 |
| :--- | ---: | ---: | ---: | ---: |
| Mean $\log q$ | -4.4115 | -4.0855 | -3.8051 | -3.706 |
| S.E(Log $q)$ | 0.3908 | 0.3821 | 0.2401 | 0.334 |

Table 3.3.10 (Cont'd)
Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.

| Age | Slope |  | t-value | Intercept | RSquare | No Pts | Reg s.e | Mean Q |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |
|  | $\mathbf{5}$ | 1 | 0.007 | 4.43 | 0.58 | 6 | 0.44 | -4.41 |  |
| 6 | 0.72 | 0.936 | 5.89 | 0.74 | 6 | 0.28 | -4.09 |  |  |
|  | 7 | 1.23 | -0.883 | 2.47 | 0.79 | 6 | 0.3 | -3.81 |  |
|  | 8 | 1.52 | -1.816 | 1.09 | 0.76 | 6 | 0.42 | -3.71 |  |

Terminal year survivor and $F$ summaries :
Age 3 Catchability dependent on age and year class strength
Year class $=1995$


| P shrinkage mean | 114562 | 0.43 | 0.098 | 0.023 |
| :--- | :---: | :---: | :--- | :--- |
| F shrinkage mean | 68054 | 0.5 | 0.074 | 0.039 |

Weighted prediction :


1
Age 4 Catchability dependent on age and year class strength
Year class $=1994$

| Fleet | Estimated Survivors | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s. } \end{aligned}$ | Var <br> Ratio | $N$ | Scaled Weights | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMB. N. | 56018 | 0.212 | 0.122 | 0.58 | 2 | 0.233 | 0.126 |
| SMB. a3 on a3. N | 54348 | 0.3 | 0 | 0 | 1 | 0.115 | 0.13 |
| SMB. a2 on a3. N . | 45361 | 0.3 | 0 | 0 | 1 | 0.115 | 0.154 |
| SMB. SE | 69128 | 0.293 | 0.03 | 0.1 | 2 | 0.123 | 0.104 |
| SMB. SW. | 38560 | 0.283 | 0.121 | 0.43 | 2 | 0.131 | 0.179 |
| TRAWL-JUN-DEC-N | 45452 | 0.435 | 0 | 0 | 1 | 0.056 | 0.154 |
| TRAWL-JAN-MAY-N | 50333 | 0.3 | 0 | 0 | , | 0.118 | 0.14 |
| TRAWL-JAN-MAY-S | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| GILLNET-JAN-MAY-S | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| TRAWL-JUN-DES-S | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

## Table 3.3.10 (Cont'd)

| P shrinkage mean | 77494 | 0.45 | 0.061 | 0.093 |
| :--- | :--- | ---: | :--- | :--- | :--- |
| F shrinkage mean | 51350 | 0.5 | 0.048 | 0.137 |

Weighted prediction :


Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1993$

| Fleet | Estimated Survivors | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ | Var Ratio | N | Scaled <br> Weights | Estimatec F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMB. N. |  |  |  |  |  |  |  |
|  | 85167 | 0.177 | 0.124 | 0.7 | 3 | 0.208 | 0.236 |
| SMB. a3 on a3. N | 75410 | 0.3 | 0 | 0 | 1 | 0.069 | 0.263 |
| SMB. a2 on a3. N . | 87851 | 0.3 | 0 | 0 | 1 | 0.069 | 0.229 |
| SMB. SE | 94570 | 0.264 | 0.113 | 0.43 | 3 | 0.093 | 0.215 |
| SMB. SW. | 86354 | 0.211 | 0.101 | 0.48 | 3 | 0.147 | 0.233 |
| TRAWL-JUN-DEC-N | 91842 | 0.247 | 0.024 | 0.1 | 2 | 0.112 | 0.22 |
| TRAWL-JAN-MAY-N | 79625 | 0.212 | 0.179 | 0.84 | 2 | 0.149 | 0.25 |
| TRAWL-JAN-MAY-S | 99414 | 0.3 | 0 | 0 | 1 | 0.078 | 0.205 |
| GILLNET-JAN-MAY-S | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| TRAWL-JUN-DES-S | 114094 | 0.422 | 0 | 0 | 1 | 0.04 | 0.181 |
| $F$ shrinkage mean | 80338 | 0.5 |  |  |  | 0.036 | 0.248 |

Weighted prediction :


1
Age 6 Catchability constant w.r.t. time and dependent on age
Year class $=1992$

| Fleet | Estimated Survivors | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ | Var <br> Ratio | $N$ | Scaled Weights | Estimatec F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMB. N . | 35681 | 0.16 | 0.193 | 1.21 | 4 | 0.185 | 0.418 |
| SMB. a3 on a3. N | 23563 | 0.302 | 0 | 0 | 1 | 0.043 | 0.58 |
| SMB. a2 on a3. N. | 26318 | 0.302 | 0 | 0 | 1 | 0.043 | 0.533 |
| SMB. SE | 30704 | 0.212 | 0.118 | 0.56 | 4 | 0.11 | 0.472 |
| SMB. SW. | 34817 | 0.185 | 0.136 | 0.74 | 4 | 0.142 | 0.427 |
| TRAWL-JUN-DEC-N | 34304 | 0.194 | 0.185 | 0.95 | 3 | 0.136 | 0.432 |
| TRAWL-JAN-MAY-N | 35763 | 0.175 | 0.126 | 0.72 | 3 | 0.165 | 0.418 |
| TRAWL-JAN-MAY-S | 40562 | 0.256 | 0.161 | 0.63 | 2 | 0.078 | 0.376 |
| GILLNET-JAN-MAY-S | 1 | 0 | 0 | 0 | 0 | 0 |  |
| TRAWL-JUN-DES-S | 42332 | 0.297 | 0.082 | 0.28 | 2 | 0.061 | 0.363 |
| F shrinkage mean | 44472 | 0.5 |  |  |  | 0.036 | 0.348 |

## Table 3.3.10 (Cont'd)

Weighted prediction :

| Survivors at end of year | Int |  | Ext | $N$ | Var |  | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | s.e |  |  | Ratio |  |
|  | 34715 | 0.07 | 0.05 |  | 25 | 0.753 | 0.428 |

Age 7 Catchability constant w.r.t. time and dependent on age
Year class $=1991$

| Fleet | Estimated | Int | Ext | Var | N | Scaled |  | Estimated |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | Survivors | s.e | s.e | Ratio |  | Weights | $F$ |  |
| SMB. N. | 8900 | 0.154 | 0.178 | 1.15 | 5 | 0.157 | 0.459 |  |
| SMB. a3 on a3. N | 6147 | 0.32 | 0 | 0 | 1 | 0.025 | 0.612 |  |
| SMB. a2 on a3. N. | 6261 | 0.304 | 0 | 0 | 1 | 0.028 | 0.603 |  |
| SMB. SE | 7719 | 0.197 | 0.18 | 0.91 | 5 | 0.105 | 0.514 |  |
| SMB. SW. | 8238 | 0.172 | 0.084 | 0.49 | 5 | 0.137 | 0.488 |  |
| TRAWL-JUN-DEC-N | 9052 | 0.17 | 0.094 | 0.55 | 4 | 0.153 | 0.453 |  |
| TRAWL-JAN-MAY-N | 8475 | 0.161 | 0.156 | 0.97 | 4 | 0.158 | 0.477 |  |
| TRAWL-JAN-MAY-S | 9942 | 0.241 | 0.215 | 0.89 | 3 | 0.07 | 0.42 |  |
| GILLNET-JAN-MAY-S | 5577 | 0.455 | 0 | 0 | 1 | 0.027 | 0.657 |  |
| TRAWL-JUN-DES-S | 12131 | 0.215 | 0.038 | 0.18 | 3 | 0.105 | 0.356 |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 0.036 | 0.462 |  |

Weighted prediction :


Age 8 Catchability constant w.r.t. time and dependent on age
Year class $=1990$

| Fleet | Estimated Survivors | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ | Var <br> Ratio | $N$ | Scaled Weights | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMB. N . | 6253 | 0.166 | 0.192 | 1.16 | 6 | 0.122 | 0.431 |
| SMB. a3 on a3. N | 6456 | 0.307 | 0 | 0 | 1 | 0.015 | 0.42 |
| SMB. a2 on a3. N . | 7057 | 0.307 | 0 | 0 | 1 | 0.015 | 0.391 |
| SMB. SE | 5704 | 0.206 | 0.214 | 1.04 | 6 | 0.092 | 0.464 |
| SMB. SW. | 6405 | 0.179 | 0.111 | 0.62 | 6 | 0.123 | 0.423 |
| TRAWL-JUN-DEC-N | 7216 | 0.175 | 0.161 | 0.92 | 4 | 0.109 | 0.383 |
| TRAWL-JAN-MAY-N | 7433 | 0.164 | 0.067 | 0.41 | 5 | 0.153 | 0.374 |
| TRAWL-JAN-MAY-S | 6405 | 0.207 | 0.076 | 0.37 | 4 | 0.125 | 0.423 |
| GILLNET-JAN-MAY-S | 6815 | 0.293 | 0.341 | 1.17 | 2 | 0.072 | 0.402 |
| TRAWL-JUN-DES-S | 5860 | 0.195 | 0.144 | 0.74 | 4 | 0.131 | 0.455 |
| $F$ shrinkage mean | 4973 | 0.5 |  |  |  | 0.042 | 0.518 |

Weighted prediction :

| Survivors |  | Int | Ext | N |  | Var | F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year |  |  | s.e | s.e |  | Ratio |  |
|  | 6444 |  | 0.07 | 0.05 | 40 | 0.722 | 0.421 |

Table 3.3.10 (Cont'd)
Age 9 Catchability constant w.r.t. time and dependent on age
Year class $=1989$


Weighted prediction :


Age 10 Catchability constant w.r.t. time and dependent on age
Year class $=1988$

| Fleet | Estimated Survivors | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ | Var <br> Ratio | N |  | Scaled <br> Weights | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMB. N. | 417 | 0.181 | 0.151 | 0.83 |  | 6 | 0.086 | 0.811 |
| SMB. a3 on a3. N | 502 | 0.32 | 0 | 0 |  | 1 | 0.009 | 0.712 |
| SMB. a2 on a3. N. | 639 | 0.32 | 0 | 0 |  | 1 | 0.009 | 0.596 |
| SMB. SE | 497 | 0.22 | 0.266 | 1.21 |  | 6 | 0.068 | 0.717 |
| SMB. SW. | 450 | 0.193 | 0.15 | 0.78 |  | 6 | 0.09 | 0.769 |
| TRAWL-JUN-DEC-N | 399 | 0.192 | 0.162 | 0.85 |  | 3 | 0.075 | 0.835 |
| TRAWL-JAN-MAY-N | 417 | 0.185 | 0.086 | 0.46 |  | 5 | 0.192 | 0.811 |
| TRAWL-JAN-MAY-S | 470 | 0.216 | 0.103 | 0.48 |  | 4 | 0.098 | 0.746 |
| GILLNET-JAN-MAY-S | 388 | 0.258 | 0.221 | 0.86 |  | 3 | 0.112 | 0.852 |
| TRAWL-JUN-DES-S | 363 | 0.201 | '0.082 | 0.41 |  | 4 | 0.104 | 0.89 |
| $F$ shrinkage mean | 704 | 0.5 |  |  |  |  | 0.159 | 0.554 |

Weighted prediction:


Age 11 Catchability constant w.r.t. time and dependent on age
Year class $=1987$

| Fleet | Estimated Survivors | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ | Var <br> Ratio | $N$ |  | Scaled Weights | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMB. N . | 222 | 0.212 | 0.106 | 0.5 |  | 6 | 0.073 | 0.689 |
| SMB. a3 on a3. N | 246 | 0.331 | 0 | 0 |  | 1 | 0.006 | 0.64 |
| SMB. a2 on a3. N. | 309 | 0.331 | 0 | 0 |  | 1 | 0.006 | 0.538 |
| SMB. SE | 287 | 0.249 | 0.13 | 0.52 |  | 6 | 0.061 | 0.568 |
| SMB. SW. | 242 | 0.217 | 0.105 | 0.49 |  | 6 | 0.082 | 0.645 |
| TRAWL-JUN-DEC-N | 194 | 0.237 | 0.089 | 0.38 |  | 2 | 0.055 | 0.758 |
| TRAWL-JAN-MAY-N | 223 | 0.206 | 0.102 | 0.49 |  | 4 | 0.182 | 0.686 |
| TRAWL-JAN-MAY-S | 295 | 0.258 | 0.219 | 0.85 |  | 3 | 0.09 | 0.558 |
| GILLNET-JAN-MAY-S | 271 | 0.258 | 0.048 | 0.19 |  | 3 | 0.121 | 0.594 |
| TRAWL-JUN-DES-S | 265 | 0.224 | 0.035 | 0.16 |  | 3 | 0.1 | 0.605 |

Table 3.3.10 (Cont'd)

| F shrinkage mean | 280 | 0.5 | 0.225 | 0.58 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Weighted prediction :


Age 12 Catchability constant w.r.t. time and age (fixed at the value for age) 11
Year class $=1986$

| Fleet | Estimated Survivors | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ | Var Ratio | $N$ | Scaled <br> Weights | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMB. N. | 43 | 0.23 | 0.087 | 0.38 | 6 | 0.052 | 0.745 |
| SMB. a3 on a3. N | 83 | 0.346 | 0 | 0 | 1 | 0.004 | 0.448 |
| SMB. a2 on a3. N . | 68 | 0.346 | 0 | 0 | 1 | 0.004 | 0.529 |
| SMB. SE | 51 | 0.274 | 0.196 | 0.72 | 6 | 0.044 | 0.652 |
| SMB. SW. | 29 | 0.234 | 0.188 | 0.81 | 6 | 0.06 | 0.962 |
| TRAWL-JUN-DEC-N | 74 | 0.307 | 0 | 0 | 1 | 0.028 | 0.494 |
| TRAWL-JAN-MAY-N | 44 | 0.242 | 0.158 | 0.65 | 3 | 0.159 | 0.722 |
| TRAWL-JAN-MAY-S | 50 | 0.281 | 0.282 | 1 | 2 | 0.069 | 0.664 |
| GILLNET-JAN-MAY-S | 73 | 0.276 | 0.075 | 0.27 | 3 | 0.115 | 0.5 |
| TRAWL-JUN-DES-S | 68 | 0.253 | 0.008 | 0.03 | 2 | 0.071 | 0.527 |
| F shrinkage mean | 69 | 0.5 |  |  |  | 0.394 | 0.522 |

Weighted prediction :


Age 13 Catchability constant w.r.t. time and age (fixed at the value for age) 11
Year class $=1985$

| Fleet | Estimated Survivors | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ | Var <br> Ratio | N |  | Scaled Weights | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMB. N. | 27 | 0.254 | 0.138 | 0.54 |  | 6 | 0.022 | 0.654 |
| SMB. a3 on a3. N | 39 | 0.367 | 0 | 0 |  | 1 | 0.002 | 0.502 |
| SMB. a2 on a3. N . | 29 | 0.367 | 0 | 0 |  | 1 | 0.002 | 0.626 |
| SMB. SE | 22 | 0.295 | 0.134 | 0.45 |  | 6 | 0.019 | 0.769 |
| SMB. SW. | 23 | 0.258 | 0.113 | 0.44 |  | 6 | 0.026 | 0.735 |
| TRAWL-JUN-DEC-N | 1 | 0 | 0 | 0 |  | 0 | 0 | 0 |
| TRAWL-JAN-MAY-N | 26 | 0.287 | 0.333 | 1.16 |  | 2 | 0.096 | 0.685 |
| TRAWL-JAN-MAY-S | 30 | 0.307 | 0 | 0 |  | 1 | 0.031 | 0.617 |
| GILLNET-JAN-MAY-S | 28 | 0.327 | 0.056 | 0.17 |  | 2 | 0.067 | 0.636 |
| TRAWL-JUN-DES-S | 40 | 0.37 | 0 | 0 |  | 1 | 0.022 | 0.493 |
| $F$ shrinkage mean | 21 | 0.5 |  |  |  |  | 0.715 | 0.789 |

Weighted prediction :

| Survivors at end of year | Int |  | Ext | $N$ | Var |  | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | s.e |  |  |  |  |
|  | 23 | 0.36 | 0.05 |  | 27 | 0.144 | 0.749 |

Table 3.3.10 (Cont'd)

Age 14 Catchability constant w.r.t. time and age (fixed at the value for age) 11
Year class $=1984$

| Fleet | Estimated Survivors | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ | Var <br> Ratio | N | Scaled Weights | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMB. N . | 16 | 0.222 | 0.078 | 0.35 | 6 | 0.01 | 0.718 |
| SMB. a3 on a3. N | 22 | 0.413 | 0 | 0 | 1 | 0.001 | 0.558 |
| SMB. a2 on a3. N. | 19 | 0.394 | 0 | 0 | 1 | 0.001 | 0.621 |
| SMB. SE | 16 | 0.275 | 0.187 | 0.68 | 6 | 0.008 | 0.715 |
| SMB. SW. | 22 | 0.236 | 0.14 | 0.59 | 6 | 0.011 | 0.558 |
| TRAWL-JUN-DEC-N | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| TRAWL-JAN-MAY-N | 19 | 0.345 | 0 | 0 | 1 | 0.025 | 0.612 |
| TRAWL-JAN-MAY-S | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| GILLNET-JAN-MAY-S | 29 | 0.448 | 0 | 0 | 1 | 0.015 | 0.448 |
| TRAWL-JUN-DES-S | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| F shrinkage mean | 16 | 0.5 |  |  |  | 0.929 | 0.688 |

Weighted prediction :

| Survivors at end of year | $\mathrm{e}^{\text {Int }}$ |  | Ext | N | Var |  | F |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | s.e |  |  | Ratio |  |  |
|  | 17 | 0.46 | 0.05 |  | 23 | 0.099 |  | 0.681 |

Table 3.3.11. Cod at Iceland. Division Va. Fishing mortality.
Marine Research Institute Fri Apr 23 11:45:15 1999
Virtual Population Analysis : Fishing mortality FINAL-VPA99

| Age | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.033 | 0.034 | 0.016 | 0.027 | 0.017 | 0.055 | 0.051 |
| 4 | 0.195 | 0.176 | 0.137 | 0.221 | 0.120 | 0.211 | 0.288 |
| 5 | 0.211 | 0.358 | 0.388 | 0.400 | 0.433 | 0.323 | 0.388 |
| 6 | 0.513 | 0.378 | 0.470 | 0.541 | 0.622 | 0.539 | 0.572 |
| 7 | 0.487 | 0.442 | 0.635 | 0.581 | 0.767 | 0.598 | 0.683 |
| 8 | 0.503 | 0.554 | 0.839 | 1.046 | 0.852 | 0.900 | 0.731 |
| 9 | 0.507 | 0.514 | 0.802 | 1.187 | 0.930 | 0.746 | 0.801 |
| 10 | 0.339 | 0.453 | 0.950 | 0.910 | 1.082 | 0.634 | 0.770 |
| 11 | 0.531 | 0.425 | 0.982 | 0.479 | 0.671 | 0.639 | 0.613 |
| 12 | 0.200 | 0.700 | 0.904 | 0.404 | 0.678 | 0.587 | 0.641 |
| 13 | 1.020 | 0.171 | 1.076 | 0.417 | 0.533 | 0.685 | 0.711 |
| 14 | 0.519 | 0.453 | 0.943 | 0.679 | 0.779 | 0.658 | 0.707 |
| W.Av 5-10 | 0.403 | 0.404 | 0.529 | 0.582 | 0.609 | 0.479 | 0.486 |
| Ave 5-10 | 0.427 | 0.450 | 0.681 | 0.777 | 0.781 | 0.623 | 0.658 |
| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| 3 | 0.070 | 0.045 | 0.045 | 0.035 | 0.049 | 0.096 | 0.077 |
| 4 | 0.222 | 0.309 | 0.222 | 0.265 | 0.230 | 0.309 | 0.374 |
| 5 | 0.580 | 0.519 | 0.506 | 0.485 | 0.445 | 0.505 | 0.624 |
| 6 | 0.697 | 0.785 | 0.837 | 0.601 | 0.639 | 0.775 | 0.884 |
| 7 | 0.883 | 0.976 | 0.952 | 0.726 | 0.784 | 0.946 | 1.095 |
| 8 | 0.936 | 0.994 | 1.393 | 0.874 | 0.815 | 0.783 | 1.016 |
| 9 | 0.806 | 0.975 | 1.111 | 0.819 | 0.783 | 0.776 | 0.613 |
| 10 | 0.763 | 0.707 | 0.986 | 0.545 | 0.834 | 0.863 | 0.526 |
| 11 | 0.740 | 0.582 | 1.031 | 0.663 | 0.622 | 0.958 | 0.385 |
| 12 | 0.672 | 0.665 | 0.904 | 0.973 | 0.768 | 0.824 | 0.701 |
| 13 | 0.445 | 0.739 | 2.333 | 0.574 | 0.436 | 0.375 | 0.356 |
| 14 | 0.685 | 0.733 | 1.273 | 0.715 | 0.689 | 0.759 | 0.516 |
| W.Av 5-10 | 0.689 | 0.697 | 0.629 | 0.543 | 0.595 | 0.749 | 0.780 |
| Ave 5-10 | 0.778 | 0.826 | 0.964 | 0.675 | 0.717 | 0.775 | 0.793 |
| Age | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1995-1998 |
| 3 | 0.155 | 0.086 | 0.069 | 0.026 | 0.021 | 0.019 | 0.034 |
| 4 | 0.306 | 0.275 | 0.178 | 0.129 | 0.105 | 0.134 | 0.136 |
| 5 | 0.490 | 0.301 | 0.313 | 0.213 | 0.216 | 0.230 | 0.243 |
| 6 | 0.753 | 0.437 | 0.336 | 0.398 | 0.307 | 0.428 | 0.367 |
| 7 | 0.789 | 0.606 | 0.502 | 0.432 | 0.443 | 0.467 | 0.461 |
| 8 | 1.114 | 0.723 | 0.463 | 0.541 | 0.539 | 0.421 | 0.491 |
| 9 | 1.202 | 0.778 | 0.392 | 0.474 | 0.626 | 0.625 | 0.529 |
| 10 | 0.930 | 0.770 | 0.585 | 0.493 | 0.571 | 0.760 | 0.602 |
| 11 | 0.889 | 0.601 | 0.573 | 0.514 | 0.637 | 0.622 | 0.586 |
| 12 | 0.549 | 0.651 | 0.695 | 0.501 | 0.361 | 0.596 | 0.538 |
| 13 | 0.558 | 0.639 | 1.074 | 0.651 | 0.601 | 0.749 | 0.769 |
| 14 | 0.826 | 0.688 | 0.664 | 0.526 | 0.559 | 0.681 | 0.605 |
| W.Av 5-10 | 0.671 | 0.371 | 0.344 | 0.351 | 0.301 | 0.326 | 0.362 |
| Ave 5-10 | 0.880 | 0.603 | 0.432 | 0.425 | 0.450 | 0.488 | 0.449 |

Table 3.3.12. Cod at Iceland. Stock in numbers (millions).

Marine Research Institute Fri Apr 23 11:45:15 1999
Virtual Population Analysis : Stock in numbers, millions FINAL-VPA99

| Age | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 245.522 | 144.034 | 143.276 | 133.578 | 226.328 | 139.017 | 144.046 |
| 4 | 176.062 | 194.529 | 113.999 | 115.392 | 106.399 | 182.092 | 107.726 |
| 5 | 79.448 | 118.551 | 133.570 | 81.351 | 75.744 | 77.276 | 120.682 |
| 6 | 93.925 | 52.650 | 67.877 | 74.179 | 44.653 | 40.215 | 45.819 |
| 7 | 40.087 | 83.048 | 29.534 | 34.736 | 35.350 | 19.621 | 19.204 |
| 8 | 12.250 | 20.159 | 50.702 | 12.818 | 15.903 | 13.437 | 8.835 |
| 9 | 3.939 | 6.065 | 9.481 | 17.940 | 3.687 | 5.554 | 4.472 |
| 10 | 1.335 | 1.942 | 2.970 | 3.480 | 4.482 | 1.191 | 2.156 |
| 11 | 0.446 | 0.778 | 1.011 | 0.940 | 1.147 | 1.244 | 0.517 |
| 12 | 0.261 | 0.214 | 0.417 | 0.310 | 0.476 | 0.480 | 0.538 |
| 13 | 0.041 | 0.175 | 0.087 | 0.138 | 0.170 | 0.198 | 0.219 |
| 14 | 0.011 | 0.012 | 0.121 | 0.024 | 0.075 | 0.081 | 0.082 |
| Juvenile | 526.240 | 477.621 | 450.108 | 383.315 | 444.552 | 405.984 | 361.297 |
| Adult | 127.086 | 144.537 | 102.937 | 91.571 | 69.861 | 74.424 | 92.998 |
| Sum 3-3 | 245.522 | 144.034 | 143.276 | 133.578 | 226.328 | 139.017 | 144.046 |
| Sum 4-14 | 407.804 | 478.124 | 409.768 | 341.308 | 288.085 | 341.391 | 310.249 |
| Total | 653.326 | 622.158 | 553.044 | 474.886 | 514.414 | 480.408 | 454.295 |
| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| 3 | 335.905 | 277.711 | 168.566 | 83.222 | 133.149 | 102.584 | 181.628 |
| 4 | 112.107 | 256.391 | 217.439 | 131.951 | 65.785 | 103.791 | 76.274 |
| 5 | 66.125 | 73.489 | 154.079 | 142.633 | 82.865 | 42.780 | 62.392 |
| 6 | 67.040 | 30.300 | 35.814 | 76.078 | 102.920 | 43.473 | 21.148 |
| 7 | 21.168 | 27.348 | 11.318 | 12.693 | 34.154 | 44.457 | 16.404 |
| 8 | 7.942 | 7.169 | 8.437 | 3.575 | 5.028 | 12.769 | 14.127 |
| 9 | 3.484 | 2.551 | 2.173 | 1.716 | 1.222 | 1.823 | 4.779 |
| 10 | 1.643 | 1.274 | 0.788 | 0.586 | 0.620 | 0.457 | 0.687 |
| 11 | 0.817 | 0.627 | 0.514 | 0.241 | 0.278 | 0.220 | 0.158 |
| 12 | 0.230 | 0.319 | 0.287 | 0.150 | 0.102 | 0.122 | 0.069 |
| 13 | 0.232 | 0.096 | 0.134 | 0.095 | 0.046 | 0.039 | 0.044 |
| 14 | 0.088 | 0.122 | 0.038 | 0.011 | 0.044 | 0.025 | 0.022 |
| Juvenile | 531.565 | 608.205 | 516.344 | 345.609 | 313.114 | 249.017 | 268.031 |
| Adult | 85.216 | 69.191 | 83.243 | 107.341 | 113.098 | 103.523 | 109.702 |
| Sum 3-3 | 335.905 | 277.711 | 168.566 | 83.222 | 133.149 | 102.584 | 181.628 |
| Sum 4-14 | 280.876 | 399.685 | 431.021 | 369.728 | 293.062 | 249.956 | 196.104 |
| Total | 616.781 | 677.396 | 599.587 | 452.951 | 426.211 | 352.540 | 377.733 |
| Age | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
| 3 | 157.373 | 81.958 | 177.670 | 227.790 | 101.000 | 173.000 | 83.000 |
| 4 | 137.683 | 110.376 | 61.545 | 135.746 | 181.663 | 80.974 | 138.975 |
| 5 | 42.960 | 82.996 | 68.659 | 42.190 | 97.721 | 133.906 | 57.981 |
| 6 | 27.368 | 21.557 | 50.275 | 41.090 | 27.906 | 64.438 | 87.107 |
| 7 | 7.153 | 10.557 | 11.400 | 29.425 | 22.597 | 16.816 | 34.388 |
| 8 | 4.492 | 2.661 | 4.715 | 5.647 | 15.633 | 11.884 | 8.631 |
| 9 | 4.188 | 1.207 | 1.057 | 2.429 | 2.693 | 7.465 | 6.387 |
| 10 | 2.119 | 1.031 | 0.454 | 0.584 | 1.239 | 1.179 | 3.271 |
| 11 | 0.332 | 0.684 | 0.391 | 0.207 | 0.292 | 0.573 | 0.451 |
| 12 | 0.088 | 0.112 | 0.307 | 0.180 | 0.101 | 0.127 | 0.252 |
| 13 | 0.028 | 0.042 | 0.048 | 0.126 | 0.090 | 0.058 | 0.057 |
| 14 | 0.025 | 0.013 | 0.018 | 0.013 | 0.054 | 0.040 | 0.022 |
| Juvenile | 225.687 | 152.837 | 217.367 | 390.004 | 243.415 | 363.863 | 288.207 |
| Adult | 158.122 | 160.356 | 159.171 | 95.424 | 207.574 | 126.596 | 132.316 |
| Sum 3-3 | 157.373 | 81.958 | 177.670 | 227.790 | 101.000 | 173.000 | 83.000 |
| Sum 4-14 | 226.436 | 231.236 | 198.869 | 257.638 | 349.989 | 317.460 | 337.523 |
| Total | 383.809 | 313.194 | 376.539 | 485.428 | 450.989 | 490.460 | 420.523 |

Table 3.3.13. Cod at Iceland. Division Va. Spawning stock biomass (tonnes).
Marine Research Institute Fri Apr 23 11:45:15 1999
Virtual Population Analysis : SSB in 1000 x tons FINAL-VPA99

| Age | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.000 | 10.271 | 0.000 | 2.917 | 0.000 | 0.000 | 4.166 |
| 4 | 5.033 | 6.867 | 4.674 | 8.747 | 12.670 | 10.555 | 9.012 |
| 5 | 34.391 | 46.055 | 20.608 | 18.924 | 23.102 | 28.991 | 48.127 |
| 6 | 164.297 | 82.994 | 52.345 | 40.895 | 34.834 | 47.190 | 71.054 |
| 7 | 142.178 | 293.392 | 65.636 | 62.440 | 53.320 | 43.625 | 54.569 |
| 8 | 60.423 | 97.902 | 174.044 | 36.502 | 41.484 | 39.719 | 34.165 |
| 9 | 23.794 | 35.896 | 44.874 | 62.994 | 13.517 | 24.330 | 21.233 |
| 10 | 9.432 | 15.614 | 15.691 | 19.197 | 19.366 | 7.881 | 13.103 |
| 11 | 4.251 | 7.633 | 6.445 | 8.215 | B. 440 | 9.326 | 4.166 |
| 12 | 2.946 | 2.469 | 3.193 | 3.271 | 4.322 | 4.755 | 5.000 |
| 13 | 0.317 | 2.450 | 0.582 | 1.845 | 1.773 | 2.090 | 2.271 |
| 14 | 0.152 | 0.233 | 1.052 | 0.277 | 0.906 | 0.928 | 1.051 |
| Total | 447.212 | 601.775 | 389.144 | 266.225 | 213.734 | 219.391 | 267.918 |
| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| 3 | 1.877 | 6.784 | 7.588 | 0.000 | 0.000 | 0.000 | 10.826 |
| 4 | 9.749 | 19.217 | 6.376 | 8.857 | 5.989 | 10.449 | 21.198 |
| 5 | 35.631 | 40.009 | 66.557 | 65.881 | 45.598 | 17.159 | 62.114 |
| 6 | 100.360 | 56.164 | 45.227 | 124.704 | 163.444 | 54.347 | 34.820 |
| 7 | 52.830 | 73.980 | 26.647 | 39.747 | 92.520 | 89.521 | 41.690 |
| 8 | 28.878 | 27.034 | 22.635 | 13.764 | 20.247 | 45.129 | 46.288 |
| 9 | 17.358 | 11.324 | 8.253 | 7.568 | 6.797 | 8.666 | 22.460 |
| 10 | 9.836 | 8.838 | 3.833 | 4.001 | 4.045 | 2.566 | 4.182 |
| 11 | 5.759 | 4.952 | 2.967 | 1.996 | 2.378 | 1.491 | 1.463 |
| 12 | 2.165 | 2.348 | 1.674 | 0.773 | 1.035 | 1.125 | 0.635 |
| 13 | 2.463 | 1.020 | 0.595 | 0.720 | 0.550 | 0.435 | 0.544 |
| 14 | 1.115 | 1.347 | 0.213 | 0.103 | 0.518 | 0.329 | 0.182 |
| Total | 268.022 | 253.019 | 192.565 | 268.115 | 343.121 | 231.215 | 246.402 |
| Age | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |  |
| 3 | 11.950 | 8.863 | 7.701 | 21.315 | 8.548 | 5.438 |  |
| 4 | 47.870 | 49.083 | 40.793 | 19.912 | 83.421 | 40.233 |  |
| 5 | 42.832 | 99.474 | 120.480 | 50.671 | 114.764 | 137.677 |  |
| 6 | 53.716 | 52.835 | 128.556 | 98.709 | 68.297 | 123.214 |  |
| 7 | 23.030 | 36.898 | 36.197 | 94.187 | 86.799 | 57.304 |  |
| 8 | 15.890 | 10.531 | 21.407 | 22.380 | 69.763 | 67.668 |  |
| 9 | 16.471 | 6.080 | 6.321 | 11.706 | 14.077 | 42.720 |  |
| 10 | 11.067 | 5.101 | 3.229 | 4.144 | 7.198 | 6.851 |  |
| 11 | 2.293 | 5.218 | 3.064 | 1.741 | 2.151 | 4.678 |  |
| 12 | 0.774 | 0.982 | 2.371 | 1.731 | 0.873 | 1.325 |  |
| 13 | 0.295 | 0.421 | 0.357 | 1.175 | 0.700 | 0.670 |  |
| 14 | 0.297 | 0.158 | 0.189 | 0.160 | 0.595 | 0.419 |  |
| Total | 226.486 | 275.645 | 370.666 | 327.831 | 457.185 | 488.195 |  |

Table 3.3.14. Cod at Iceland. Division Va. Average fishing mortality of age groups 5-10, recruitment (at age 3 , in millions), spawning stock at spawning time ('000 tonnes).

| Year | F5-10 | Recruitment | SSB |
| :---: | :---: | :---: | :---: |
| 1955 | 0.31 | 260 | 1261 |
| 1956 | 0.26 | 307 | 1199 |
| 1957 | 0.32 | 153 | 1145 |
| 1958 | 0.32 | 191 | 1034 |
| 1959 | 0.33 | 143 | 928 |
| 1960 | 0.38 | 163 | 825 |
| 1961 | 0.33 | 292 | 760 |
| 1962 | 0.40 | 255 | 729 |
| 1963 | 0.45 | 273 | 683 |
| 1964 | 0.54 | 328 | 569 |
| 1965 | 0.61 | 174 | 454 |
| 1966 | 0.54 | 255 | 412 |
| 1967 | 0.49 | 186 | 476 |
| 1968 | 0.67 | 178 | 594 |
| 1969 | 0.53 | 136 | 693 |
| 1970 | 0.56 | 303 | 684 |
| 1971 | 0.62 | 170 | 615 |
| 1972 | 0.71 | 265 | 477 |
| 1973 | 0.71 | 432 | 436 |
| 1974 | 0.76 | 143 | 329 |
| 1975 | 0.81 | 222 | 339 |
| 1976 | 0.76 | 246 | 283 |
| 1977 | 0.63 | 144 | 319 |
| 1978 | 0.48 | 143 | 375 |
| 1979 | 0.43 | 134 | 447 |
| 1980 | 0.45 | 226 | 602 |
| 1981 | 0.68 | 139 | 389 |
| 1982 | 0.78 | 144 | 266 |
| 1983 | 0.78 | 336 | 213 |
| 1984 | 0.62 | 278 | 219 |
| 1985 | 0.66 | 169 | 268 |
| 1986 | 0.78 | 83 | 268 |
| 1987 | 0.83 | 133 | 253 |
| 1988 | 0.96 | 103 | 193 |
| 1989 | 0.68 | 182 | 268 |
| 1990 | 0.72 | 157 | 343 |
| 1991 | 0.78 | 82 | 231 |
| 1992 | 0.79 | 178 | 246 |
| 1993 | 0.88 | 228 | 226 |
| 1994 | 0.60 | 101 | 276 |
| 1995 | 0.43 | 173 | 371 |
| 1996 | 0.43 | 83 | 328 |
| 1997 | 0.45 | 206 | 457 |
| 1998 | 0.49 | 173 | 488 |
|  |  |  |  |

Table 3.3.15. Cod at Iceland. Division Va. Estimated mortality due to cannibalism on cod in period 1982-1997 ${ }^{1}$.

| Year/Age | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1982 | 0.10 | 0.60 | 0.49 | 0.16 | 0.06 | 0.04 |
| 1983 | 0.06 | 0.47 | 0.39 | 0.19 | 0.09 | 0.02 |
| 1984 | 0.11 | 0.42 | 0.38 | 0.18 | 0.11 | 0.02 |
| 1985 | 0.15 | 0.52 | 0.39 | 0.2 | 0.08 | 0.02 |
| 1986 | 0.14 | 0.68 | 0.40 | 0.19 | 0.08 | 0.02 |
| 1987 | 0.10 | 0.74 | 0.49 | 0.19 | 0.09 | 0.02 |
| 1988 | 0.07 | 0.53 | 0.53 | 0.22 | 0.10 | 0.02 |
| 1989 | 0.06 | 0.47 | 0.42 | 0.26 | 0.11 | 0.02 |
| 1990 | 0.08 | 0.38 | 0.43 | 0.24 | 0.14 | 0.03 |
| 1991 | 0.06 | 0.41 | 0.29 | 0.20 | 0.11 | 0.03 |
| 1992 | 0.06 | 0.33 | 0.28 | 0.13 | 0.07 | 0.02 |
| 1993 | 0.06 | 0.33 | 0.27 | 0.12 | 0.07 | 0.02 |
| 1994 | 0.06 | 0.33 | 0.26 | 0.14 | 0.07 | 0.02 |
| 1995 | 0.06 | 0.35 | 0.30 | 0.16 | 0.08 | 0.02 |
| 1996 | 0.08 | 0.39 | 0.32 | 0.18 | 0.08 | 0.02 |
| 1997 | 0.07 | 0.47 | 0.4 | 0.22 | 0.09 | 0.02 |

1) No data for 1998 were available at the WG meeting.

Table 3.3.16. Cod at Iceland. Division Va. Capelin biomass ('000 tonnes) at 1 . August used for prediction of cod mean weights.

| Year <br> Total | Total |
| ---: | ---: |
| 1979 | 3177 |
| 1980 | 2110 |
| 1981 | 1500 |
| 1982 | 1209 |
| 1983 | 2385 |
| 1984 | 3373 |
| 1985 | 3724 |
| 1986 | 4195 |
| 1987 | 3994 |
| 1988 | 3094 |
| 1989 | 2780 |
| 1990 | 2197 |
| 1991 | 2519 |
| 1992 | 3164 |
| 1993 | 3405 |
| 1994 | 3350 |
| 1995 | 3921 |
| 1996 | 4705 |
| 1997 | 4481 |
| 1998 | 3487 |
| 1999 | 3610 |
| Average | 3161 |

Table 3.3.17. Cod at Iceland. Division Va. Input file for the RCT3 program.

| Yearclass | VPA age3 | Surv4 | Surv3 | Surv2 | Surv1 |
| :--- | :---: | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| 1981 | 139 | 55261 | -11 | -11 | -11 |
| 1982 | 144 | 22540 | 31297 | -11 | -11 |
| 1983 | 336 | 77227 | 84656 | 39301 | -11 |
| 1984 | 278 | 92490 | 99294 | 52943 | 16492 |
| 1985 | 169 | 60113 | 68604 | 25874 | 13903 |
| 1986 | 83 | 8272 | 17511 | 5820 | 2605 |
| 1987 | 133 | 22262 | 19408 | 14921 | 1711 |
| 1988 | 103 | 13601 | 15633 | 11786 | 2048 |
| 1989 | 182 | 31684 | 30540 | 14473 | 3509 |
| 1990 | 157 | 18211 | 26030 | 16407 | 1712 |
| 1991 | 82 | 4301 | 5556 | 2237 | 223 |
| 1992 | 178 | 19228 | 17477 | 10539 | 1312 |
| 1993 | 228 | 48173 | 37466 | 28480 | 8920 |
| 1994 | 92 | 13959 | 11969 | 3869 | 487 |
| 1995 | -11 | 35495 | 28949 | 18566 | 2454 |
| 1996 | -11 | -11 | 5985 | 3570 | 530 |
| 1997 | -11 | -11 | -11 | 31265 | 5299 |
| 1998 | -11 | -11 | -11 | -11 | 5587 |

Table 3.3.18. Cod at Iceland. Division. Va. Output from RCT3.
Analysia by RCT3 ver3. 1 of data from file :
Recnwwg $1 . d a t$
Iceland Cod: VPA and groundfish survey data
Data for 4 surveys over 18 years: 1981 - 1998
Regression type $=\mathbf{C}$
Tapered time weighting applied
power = 3 over 20 years
Survey weighting not applied
Final estimates ghrunk towards mean
Minimum S.E. for any survey taken as .20
Minimum of 3 pointa uged for regreggion
Forecast/Hindcast variance correction used.

| Yearclass = 1994 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Survey/ Series | I-----------Regression----------I I-----------Prediction--------- |  |  |  |  |  |  |  |  |
|  | Slope | Intercept | $\begin{aligned} & \text { std } \\ & \text { Error } \end{aligned}$ | Requare | No. Pts | Indese <br> Value | Predicted Value | $\begin{aligned} & \text { std } \\ & \text { Error } \end{aligned}$ | WAP <br> Weights |
| Surra | . 52 | -. 19 | . 23 | . 779 | 13 | 9.54 | 4.76 | . 274 | . 336 |
| Sury | . 63 | -1.34 | . 29 | . 702 | 12 | 9.39 | 4.55 | . 356 | . 199 |
| Surv 2 | . 56 | -. 34 | . 26 | . 768 | 11 | 8.26 | 4.33 | . 331 | . 230 |
| Suzv1 | . 44 | 1.57 | . 41 | . 514 | 10 | 6.19 | 4.27 | . 534 | . 089 |
|  |  |  |  |  | VPA | Sean $=$ | 5.05 | . 416 | . 146 |

## Yearclass $=1995$




Table 3.3.18 (Cont'd)


| Year | Weighted <br> Average | Log <br> WAP | Int <br> Std <br> Prediction |  | Ext <br> Std <br> Error | Var <br> Ratio | VPA |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Log |
| :---: |
| VPA |

Table 3.3.19
Cod in the Iceland Grounds (Fishing Area Va)
Prediction with management option table: Input data


Table 3.3.20

Cod in the Iceland Grounds (Fishing Area Va)
Prediction with management option table


Table 3.3.21

Icelandic cod (Division Va)
Yield per recruit: Input data


Table 3.3.22
Icelandic cod (Division Va)

Yield per recruit: Summary table
| 1 January | Spawning time


Figure 3.3.1. Cod at Iceland Division Va. Percentage changes in CPUE for the main gears since 1991.


Figure 3.3.2. Cod at lceland. Division Va. Percentage changes in for the main fishing gear since 1991.

Cod in Division Va. Percentage changes in effort since 1991


Figure 3.3.3. Cod at iceland. Division Va. Propotion mature at the spawning time.


Figure 3.3.4. Cod at Iceland. Division Va. Retrospective analysis of the XSA.


Figure 3.3.5

Yield and fishing mortality

(run: XSASASO7)
A

## Spawning stock and recruitment


(run: XSASAS07) B

Long term yield and spawning stock biomass

(run: YLDSAS03) C

Short term yield and spawning stock biomass

(run: MANSAS01) D

Stock - Recruitment

3.4.1 Introductory comment

Haddock (Melanogrammus aeglefinus) in Icelandic waters is only connected with other haddock stocks in that 0-group and occasionally young fish found in E-Greenland waters originate from the Icelandic stock. The species is distributed all around the Icelandic coast, principally in the relatively warm waters off the west and south coast, on fairly shallow grounds.

Icelandic haddock was assessed at the North-Western Working Group in 1970 and 1976 but otherwise assessments have been conducted by the Marine Research Institute in Iceland.

### 3.4.2 Trends in landings and fisheries

During the sixties haddock landings rose to the record level of around 100000 tonnes for several years (Figure 3.4.2.1). After that, landings fell to $40-60000$ tonnes (Table 3.4.2.1). Historically landings by foreign fleets accounted for up to half of the total landed catch but since 1976 landings by other nations have been negligible. The only other nation catching haddock in Icelandic waters are the Farocse. Haddock landings are subject to fluctuations, reflecting variability in stock biomass and recruitment.

In $1998,60 \%$ of landings were by demersal trawl, $9 \%$ by Danish seine, $26 \%$ by long line and $5 \%$ by gillnet.

Although fleet composition has been relatively stable for many years, during this decade an increased proportion of landings have been by long line while the share by gill-netting has decreased. (Figure 3.4.2.2).

### 3.4.3 Catch at age

Catch at age for 1998 for the Icelandic fishery is provided in Table 3.4.3.1. Catch at age is calculated by 3 fleets, from the age composition in each fleet category and the respective catches. Fleets are defined by gear and for 1998, season. The gears are gill nets, long line and bottom trawl. Hand line is included in the long line fleet. Danish seine (as well as minor units such as pelagic trawl and other gears which are dragged or hauled) are included in the trawl feet. The Faroese catch is assumed to be by long line and included in that category. Numbers sampled in 1998 are given in Table 3.4.3.2.

### 3.4.4 Weight at age

Mean weight at age in the catch (Table 3.4.4.1) is computed for the same categories as the catch at age and then weighted by the share of the landings in each category.

Mean weight at age in the stock for 1978 -1998 is given in Table 3.4.4.2. These data were calculated from the Icelandic groundfish survey. Weights for 1985-1992 are calculated using length-weight relationship for the actual years. Weights from 1993 onwards are based on weight data. Stock weights prior to 1985 have been taken to be the mean of 1985-1999.

Originally mean weights at age in the stock were taken from the landings. After 1994, mean weights at age from the groundfish survey were applied, but as this data represents early year (March) values the survey values were "projected" to mid year values (assuming linear growth). The weights from the groundfish survey have been used for the assessment this year, replacing the old stock weights back to 1978.

### 3.4.5 Maturity at age

Maturity at age is based on samples from the Icelandic groundfish survey for the years 1985-1998. For 1979-84, maturity at age is based on samples from the commercial fleet from the 12 months of the year.

There was an increase in the proportion of mature fish at age after 1992. This development was especially notable for the youngest age group (2) but since 1994 there has been a gradual decline in the proportion mature at age 2 (Figure 3.4.5.1). The maturity at age data are given in Table 3.4.5.1.

### 3.4.6.1 Tuning input

CPUE data, based on Icelandic trawler logbooks from 1970-1998 and from the gillnet fleet from 1988 are available. For the nets component, CPUE from the commercial boats as number (abundance) at age were used (GLIM indices as described by Stefansson (1988)). For the trawler fleet the same method (GLIM) was disproportionally affected by a small part of total landings so raw CPUE indices distributed on age groups by the GLIM method, were used. The Icelandic groundfish survey indices (Palsson et al., 1989) were used. The basic data are disaggregated (Palsson and Stefansson, 1991) and abundance indices computed by using the Cochran method (Palsson, 1989). To use the latest information available, survey abundance indices were moved back in time approximately 3 months. The resulting indices of the trawl, gillnet and the survey are given in Table 3.4.6.1.1.

### 3.4.6.2 Tuning and estimation of fishing mortality

Two main tuning runs were tried with XSA, one using survey data alone and another including survey indices along with bottom trawl and gillnet CPUE. The survey data covers the years 1985-1999 age groups 3-9; trawl 1992-1998 age groups 4-9; gill nets 1991-1998 age groups 5-8.

The tuning runs generated comparable estimates of recruitment and stock numbers. Although there are blocks of positive and negative log catchability residuals when tuning with the 2 CPUE indices and survey indices, the standard errors of log catchability are low (Table 3.4.6.2.1). It was decided to adopt that XSA as it includes information from the catch CPUE rather than relying entirely upon the survey alone. Retrospective analyses were conducted with a range of shrinkage levels (Figure 3.4.6.2.1). As varying the shrinkage produces little difference, the default of 0.5 was used.

Fishing mortalities are given in Table 3.4.6.2.2. The resulting mean $F$ in 1998 for age groups $4-7$ from the final run was 0.60 compared 0.72 when survey indices alone are used to tune the XSA. The plot of yield and fishing mortality (Figure 3.4.6.2.2) indicates that fishing mortality increased substantially in 1986 before falling slightly the following year and has been stable since then.

### 3.4.6.3 Stock and recruitment estimates

The resulting stock size in numbers and summary table from the final XSA are given in Tables 3.4.6.3.1 and 3.4.6.3.2. The spawning stock and recruitment plot (Figure 3.4.6.2.2) shows that although SSB is highly variable - ranging from a low of 42000 tonnes in 1987 to a maximum of 110000 tonnes in 1982 - there are no trends.

### 3.4.7 Prediction of catch and biomass

### 3.4.7.1 Input data

The input data for the prediction is shown in Table 3.4.7.1.1.
For the short-term catch prediction and stock biomass calculations, the mean weight at age 3-8 in the catches were predicted using regression analysis, where the mean weight at age was predicted by the mean weight of the year class in the previous year. For the age groups 2 and 9, means of the years 1996-1998 were used. For the stock weights, means of the years 1997-1999 were used for all age groups beyond the year 1999. For 1999, weight and maturity values from the 1999 survey are used. After 1999, the mean proportion mature at age from 1997-1999 was used. The exploitation pattern was taken as the mean from 1996-1998, scaled to the level in 1998.

Recruitment for 1999 and 2000 was estimated using a prediction program (RCT3, as described in Section 3.3.7.3.) with input from the VPA runs and the survey (age groups 1-4), Tables 3.4.7.1.2 and 3.4.7.1.3. Recruitment for 2001 was taken to be the geometric mean of recruitment from 1978-1997. Ages 3 and 4 in 1999 were also adjusted using RCT3 to reflect the more accurate information from the survey in estimating the size of these age classes. A TAC constraint of 37000 tonnes was applied to the prediction for 1999 as that is the forecast catch for the 1999 fishing year.

For the long-term yield and spawning stock biomass per recruit, the exploitation pattern was taken as the mean relative fishing mortality from 1978-1997. Mean weight at age in the stock and the maturity ogive are means from 1985-1998. Mean weight at age in the catch is the mean from 1978-1998. Input data for long term yield per recruit are given in Table 3.4.7.1.4.

### 3.4.7.2 Biological reference points

The yield and spawning stock biomass per recruit curves are shown in Figure 3.4.7.2.1
Compared to the estimated fishing mortality of $\mathrm{F}_{4-7}=0.60$ for $1998, \mathrm{~F}_{\max }=0.55$ and $\mathrm{F}_{0.1}=0.29$.
Yield per recruit at $\mathrm{F}_{\max }$ corresponds to 0.90 kg . (Table 3.4.7.2.1)
A plot of spawning stock biomass and recruitment from $1978-1998$ is shown in Figure 3.4.7.2.2.. The SSB-recruit reference points $F_{\text {med }}$ and $F_{\text {high }}$ are 0.47 and 1.10 respectively, where $F_{\text {high }}$ is the fishing mortality rate with $S S B / R$ equal to the inverse of the 90 th percentile of the observed R/SSB.

Since $1986 \mathrm{~F}_{4-7}$ has exceeded $\mathrm{F}_{\text {max }}$ and for only 2 years since 1978 has $\mathrm{F}_{4-7}$ been lower than $\mathrm{F}_{\text {med }}$.
It is proposed that $\mathrm{F}_{\text {lim }}$ is set to the $\mathrm{F}_{\text {med }}$ value of 0.47 and that $\mathrm{F}_{\mathrm{pa}}$ be $0.34\left(\mathrm{~F}_{\mathrm{pa}}=\mathrm{F}_{\text {lim }} \times 0.72\right)$.

### 3.4.7.3 Projection of catch and biomass

At the beginning of 1999 , the total stock is estimated to be 109000 tonnes with a spawning stock of 70000 t . (Table 3.4.7.3.1.) With a catch of 37000 t in 1999 , fishing mortality is estimated to be 0.44 , the stock biomass 118000 t and the spawning stock biomass $68000 t$ at the start of 2000 . Assuming fishing mortality in 2000 to be the same as in 1999 , landings in 2000 are estimated to increase slightly to 42000 t and stock biomass and spawning stock biomass should increase to 126000 t and 75000 t respectively at the start of 2001 . This level of fishing mortality is significantly lower than that of recent years.

### 3.4.8 Management considerations

For more than a decade fishing mortality on haddock has been high with $F_{4-7}$ between 0.6 and 0.7 since 1986. For the first time, advice in the 1998 fishing year was based on $F_{\text {med }}$ and a reduction in fishing mortality is forecast for 1999.

### 3.4.9 Comments on the assessment

Fishing mortality on haddock increased after 1985 (Figure 3.4.6.2.2.) The high fishing mortality in recent years is at least partly due to an overestimation of the stock biomass through the use of stock weights that are $20-25 \%$ higher than at present. The assessment this year has been carried out in a similar manner to previous years within MRI, the only difference being that more appropriate stock weights have been used. $\mathrm{F}_{\text {med }}=0.35$ when calculated from the stock weights used in 1998, compared to 0.47 with stock weights calculated directly from the survey.

Work is currently being carried out in constructing a longer time series of data than that used in the present assessment. As the current biomass is well above the lowest observed, the working group decided to delay the proposal of biomass reference points until that time series becomes available. As $F$ values in recent years have been high, the working group decided not to delay the definition of fishing mortality reference points.

As the oldest age in the assessment is not a plus group, this created problems in using IFAP. For the XSA run a dummy oldest age was created, the use of which generated the same result as with the standard XSA without a plus group. This run was done with the actual age range (i.e. ages 2 to 9 ) and the "plus group" was ignored. When the retrospective analyses were carried out, however, if the true age range was used age 9 was considered to be a plus group and setting the oldest age to be 10 produced the correct result. One problem with this is that IFAP allows a choice of whether to have a plus group but the oldest age is always used as a plus group in the analyses. Another problem is the difference between the age range input for XSA and the retrospective analysis to generate comparable results.

Table 3.4.2.1. Haddock Division Va. Nominal landings (tonnes) of haddock by nation since 1978 as officially reported to ICES

HADDOCK Va

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Country \& 1978 \& 1979 \& 1980 \& 1981 \& 1982 \& 1983 \& 1984 <br>
\hline Belgium \& 807 \& 1010 \& 1144 \& 673 \& 377 \& 268 \& 359 <br>
\hline Faroe Islands \& 2116 \& 2161 \& 2029 \& 1839 \& 1982 \& 1783 \& 707 <br>
\hline Iceland \& 40552 \& 52152 \& 47916 \& 61033 \& 67038 \& 63889 \& 47216 <br>
\hline Norway \& 13 \& 11 \& 23 \& 15 \& 28 \& 3 \& 3 <br>
\hline UK \& \& \& \& \& \& \& <br>
\hline Total \& 43488 \& 55334 \& 51112 \& 63560 \& 69425 \& 65943 \& 48285 <br>
\hline \multicolumn{8}{|c|}{HADDOCK Va} <br>
\hline Country \& 1985 \& 1986 \& 1987 \& 1988 \& 1989 \& 1990 \& 1991 <br>
\hline Belgium \& 391 \& 257 \& 238 \& 352 \& 483 \& 595 \& 485 <br>
\hline Faroe Islands \& 987 \& 1289 \& 1043 \& 797 \& 606 \& 603 \& 773 <br>
\hline Iceland \& 49553 \& 47317 \& 39479 \& 53085 \& 61792 \& 66004 \& 53516 <br>
\hline Norway \& + \& \& 1 \& + \& \& \& <br>
\hline UK \& 2 \& \& \& \& \& \& <br>
\hline Total \& 50933 \& 48863 \& 40761 \& 54234 \& 62881 \& 67202 \& 53774 <br>
\hline \multicolumn{8}{|c|}{HADDOCK Va} <br>
\hline Country \& 1992 \& 1993 \& 1994 \& 1995 \& 1996 \& 1997 \& $1998{ }^{17}$ <br>
\hline Belgium \& 361 \& 458 \& 248 \& \& \& \& <br>
\hline Faroe Islands \& 757 \& 754
46932 \& 911 \& 758
0 \& 664 \& 340

43245 \& <br>
\hline Iceland \& 46098 \& 46932 \& 58408 \& 60061 \& 56223 \& 43245 \& 40615 <br>
\hline Norway \& \& \& 1 \& + \& 4 \& \& <br>
\hline UK \& \& \& \& \& \& \& <br>
\hline Total \& 47216 \& 48144 \& 59567 \& 60819 \& 56891 \& 43585 \& <br>
\hline
\end{tabular}

Table 3.4.3.1. Haddock in Division Va. Catch at age 1978-1998.
Run title : Haddock Iceland Va (run: XSALOA01/X01)

At 1-May-99 18:04:14

```
        Table 1 Catch numbers at age Numbers*10**-3
        YEAR 1978
```

        AGE
        108
        579
        2132
        7188
        4481
        1821
        627
        94
    TOTALNUM 17030
    TONSLAND 43488
    SOPCOF \% 105
    Table 1 Catch numbers at age Numbers*10**-3
    \(\begin{array}{lllllllllll}\text { YEAR } & 1979 & 1980 & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988\end{array}\)
    \(\begin{array}{lllllllllll} & \text { AGE } \\ & 161 & 595 & 1 & 50 & 1 & 60 & 427 & 196 & 2237 & 133\end{array}\)
    \(\begin{array}{lllllllllll}2 & 161 & 595 & 1 & 50 & 1 & 60 & 427 & 196 & 2237 & 133 \\ 3 & 2065 & 1384 & 516 & 286 & 705 & 755 & 1773 & 3681 & 7559 & 10068\end{array}\)
        \(\begin{array}{llllllllll}4047 & 11476 & 4929 & 2698 & 1498 & 4970 & 4981 & 3822 & 7500 & 15968\end{array}\)
        \(\begin{array}{llllllllll}4047 & 11476 & 4929 & 2698 & 1498 & 4970 & 4981 & 3822 & 7500 & 15927 \\ 6559 & 4296 & 16961 & 10703 & 4645 & 1176 & 6058 & 4933 & 2696 & 5598\end{array}\)
        \(\begin{array}{lllllllllll}6559 & 4296 & 16961 & 10703 & 4645 & 1176 & 6058 & 4933 & 2696 & 5596 \\ 9769 & 3796 & 6021 & 14115 & 10301 & 4875 & 837 & 5761 & 2249 & 1260\end{array}\)
        \(\begin{array}{llllllllll}9769 & 3796 & 6021 & 14115 & 10301 & 4875 & 837 & 5761 & 2249 & 1260 \\ 1887 & 3730 & 2835 & 2289 & 8808 & 3772 & 1564 & 493 & 1194 & 1009 \\ 474 & 544 & 1810 & 1167 & 874 & 4446 & 2475 & 852 & 151 & 577\end{array}\)
        \(\begin{array}{llllllllll}474 & 544 & 1810 & 1167 & 874 & 4446 & 2475 & 852 & 151 & 577 \\ 61 & 91 & 169 & 816 & 241 & 171 & 2212 & 898 & 208 & 58\end{array}\)
    $0 \quad$ TOTALNM $\quad 25024259123324232123270732022520327206362379434630$
$\begin{array}{llllllllllllll}\text { TOTALNUM } & 25024 & 25912 & 33242 & 32123 & 27073 & 20225 & 20327 & 20636 & 23794 & 34630 \\ \text { TONSLAND } & 55334 & 51112 & 63580 & 69325 & 65943 & 48285 & 50933 & 48863 & 40801 & 54235\end{array}$
$\begin{array}{llllllllllll}\text { TONSLAND } & 55334 & 51112 & 63560 & 69325 & 65943 & 48285 & 50933 & 48863 & 40801 & 54236 \\ \text { SOPCOF } 8 & 94 & 100 & 100 & 101 & 102 & 100 & 101 & 103 & 102 & 101\end{array}$
1
Run title : Haddock Iceland Va (run: XSALOA01/X01)
At 1-May-99 18:04:14
Table 1 Catch numbers at age Numbers*10**-3
$\begin{array}{llllllllllll}\text { YEAR } & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998\end{array}$
AGE
$\begin{array}{lllllllllll} & 2 & 78 & 446 & 2461 & 2726 & 218 & 280 & 2357 & 1467 & 1375 \\ 3 & 2603 & 2603 & 1282 & 7343 & 11617 & 3030 & 6327 & 8982 & 3690 & 8469\end{array}$
$\begin{array}{llllllllll}2603 & 2603 & 1282 & 7343 & 11617 & 3030 & 6327 & 8982 & 3690 & 8469 \\ 23077 & 7994 & 3942 & 4181 & 12642 & 27025 & 5667 & 7076 & 11127 & 5057\end{array}$
$\begin{array}{lllllllllll}9703 & 23803 & 6711 & 415 \mathrm{~A} & 3167 & 10722 & 23357 & 7076 & 11127 & 5067 \\ 91751 & 4885 & 8071\end{array}$
$\begin{array}{llllllllll}3118 & 6654 & 13650 & 3989 & 1786 & 1550 & 5605 & 13963 & 2540 & 2349 \\ 541 & 857 & 2956 & 5936 & 1504 & 756 & 610 & 2446 & 4981 & 1566\end{array}$
$\begin{array}{llllllllll}541 & 857 & 2956 & 5936 & 1504 & 756 & 610 & 2446 & 4981 & 1566 \\ 507 & 167 & 398 & 1314 & 2263 & 404 & 263 & 228 & 692 & 1793 \\ 144 & 72 & 52 & 132 & 379 & 700 & 210 & 87 & 52 & 245\end{array}$
$\begin{array}{lllllllllllll}9 & 144 & 71 & 52 & 132 & 379 & 700 & 210 & 87 & 52 & 245 & \\ \text { TOTALNUM } & 39771 & 42595 & 31452 & 29779 & 33576 & 44457 & 44396 & 39000 & 29342 & 27713\end{array}$

$\begin{array}{llllllllllll}\text { TONSLAND } & 62979 & 100 & 100 & 100 & 100 & 101 & 102 & 100 & 100 & 100\end{array}$
1

Table 3.4.3.2 Length and age sampling in 1998.

| Gear | Total Landings | Samples - length | Samples - aged |
| :---: | :---: | :---: | :---: |
| Longline | 10689 | 7244 | 1058 |
| Gillnet | 2186 | 599 | 292 |
| Trawl | 28559 | 82672 | 4240 |
| Total | 41434 | 90515 | 5590 |

Table 3.4.4.1. Haddock in Division Va. Mean weight at age in the catch 1978-1998.

Run title : Haddock Iceland va (xun: XSALOA01/X01)

At 1-May-99 18:04:15

Table 2 Catch weights at age (kg)
YEAR 1978
AGE
0.62
$3 \quad 0.96$
$4 \quad 1.41$
$5 \quad 2.03$
$6 \quad 2.91$
$7 \quad 3.8$
$8 \quad 4.56$
$9 \quad 4.72$

Run title : Haddock Iceland va (run: XSALOA01/X01)

At 1-May-99 18:04:15

Table 2 Catch weights at age (kg)
$\begin{array}{lllllllllll}\text { YEAR } & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998\end{array}$
AGE
$\begin{array}{lllllllllll}0.745 & 0.357 & 0.409 & 0.32 & 0.42 & 0.568 & 0.475 & 0.387 & 0.45 & 0.689\end{array}$ $\begin{array}{lllllllllll}0.856 & 0.716 & 0.868 & 0.856 & 0.756 & 0.72 & 0.874 & 0.841 & 0.829 & 0.777\end{array}$ $\begin{array}{lllllllllllll}1.17 & 1.039 & 1.111 & 1.253 & 1.372 & 1.058 & 1.145 & 1.189 & 1.192 & 1.166\end{array}$ $\begin{array}{llllllllllll}2.01 .542 & 1.546 & 1.597 & 1.87 & 1.742 & 1.365 & 1.528 & 1.663 & 1.692\end{array}$


4.0354 .1863 .4643 .1332 .9753 .4473 .2513 .4993 .0592 .882
$\begin{array}{lllllllllllllll}9 & 4.706 & 4.969 & 4.642 & 4.022 & 3.442 & 3.156 & 3.899 & 3.526 & 3.01 & 3.417 \\ \text { SOPCOFAC } & 1.0042 & 1.0024 & 1.0007 & 1.004 & 1.0022\end{array}$
SOPCOFAC 1.0483

Table 2 Catch weights at age ( kg ) $\begin{array}{llllllllll}\text { YEAR } 1979 & 1980 & 1981 & 1982 & 1983 & 1984 & 1985 & 1966 & 1987 & 1988\end{array}$
$\begin{array}{lllllllllll} & \text { AGE } & 0.62 & 0.837 & 0.534 & 0.33 & 0.655 & 0.98 & 0.599 & 0.867 & 0.446\end{array} 0.468$
$\begin{array}{lllllllllll}2 & 0.62 & 0.837 & 0.534 & 0.33 & 0.655 & 0.98 & 0.599 & 0.867 & 0.446 & 0.468 \\ 3 & 0.96 & 0.831 & 0.693 & 0.819 & 0.958 & 1.041 & 1.002 & 1.187 & 1.048 & 0.808\end{array}$
$\begin{array}{lllllllllll}3 & 0.96 & 0.831 & 0.693 & 0.819 & 0.958 & 1.041 & 1.002 & 1.187 & 1.048 & 0.808 \\ 4 & 1.41 & 1.306 & 1.081 & 1.365 & 1.436 & 1.476 & 1.783 & 1.755 & 1.629 & 1.474\end{array}$
$\begin{array}{lllllllllllllllllll}2.03 & 2.207 & 1.656 & 1.649 & 1.827 & 2.105 & 2.201 & 2.377 & 2.373 & 2.23\end{array}$
$\begin{array}{llllllllllll}2.91 & 2.738 & 2.283 & 2.329 & 2.355 & 2.46 & 2.727 & 2.71 & 2.984 & 2.934 \\ 3.8 & 3.188 & 3.214 & 3.012 & 2.834 & 3 & 028 & 3.431 & 3 & 591 & 3.55 & 3.545\end{array}$

$4.56 \quad 3.843 \quad 3.4093 .3843 .569 \quad 3.0143 .7833 .764 .483 \quad 3.769$
Run title : Haddock Iceland va (run: XSALOA01/X01)
At 1-May-99 18:04:15
1.0057

$1.0171 .0043 \quad 1.0011 \quad 1.0006$

Table 3.4.4.2 Mean weight (kg) at age in the stock 1978-1998.

```
Run title : Haddock Iceland va (run: XSALOA01/X01)
```

At 1-May-99 18:04:15

Table 3 Stock weights at age (kg)
YEAR 1978
AGE
0.185
0.475
0.901
1.411
2.004
2.526
3.201
3.266

Table 3 Stock weights at age (kg)
YEAR 1979198019811982198319841985198619871988
AGE

|  | AGE |  |  |  |  |  |  |  |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0.185 | 0.185 | 0.185 | 0.185 | 0.185 | 0.185 | 0.245 | 0.234 | 0.157 | 0.176 |
| 3 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.555 | 0.677 | 0.564 | 0.453 |
| 4 | 0.901 | 0.901 | 0.901 | 0.901 | 0.901 | 0.901 | 1.158 | 1.128 | 1.211 | 0.969 |
| 5 | 1.411 | 1.411 | 1.411 | 1.411 | 1.411 | 1.411 | 1.629 | 1.929 | 1.825 | 1.826 |
| 6 | 2.004 | 2.004 | 2.004 | 2.004 | 2.004 | 2.004 | 2.349 | 2.371 | 2.596 | 2.679 |
| 7 | 2.526 | 2.526 | 2.526 | 2.526 | 2.526 | 2.526 | 2.736 | 3.149 | 3.02 | 3.089 |
| 8 | 3.201 | 3.201 | 3.201 | 3.201 | 3.201 | 3.201 | 3.213 | 3.241 | 3.626 | 3.464 |
| 9 | 3.266 | 3.266 | 3.266 | 3.266 | 3.266 | 3.266 | 3.302 | 3.688 | 3.818 | 3.294 |

[^2]At 1-May-99 18:04:15


Table 3.4.5.1 Proportion mature at age 1978-1998.
Run title : Haddock Iceland Va (run: XsALOA01/X01)

At 1-May-99 18:04:15

Table 5 Proportion mature at age
YEAR 1978
AGE
0
0.13
0.3
0.46
0.68
0.86
0.96

1


Run title : Haddock Iceland va (run: XSALOA01/X01)

At 1-May-99 18:04:15

Table 5 Proportion mature at age
$\begin{array}{llllllllllll}\text { YEAR } & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998\end{array}$
AGE
$\begin{array}{llllllllll}0.04 & 0.11 & 0.04 & 0.04 & 0.12 & 0.25 & 0.15 & 0.17 & 0.09 & 0.03\end{array}$
$\begin{array}{llllllllll}0.2 & 0.28 & 0.2 & 0.14 & 0.33 & 0.32 & 0.49 & 0.36 & 0.44 & 0.48\end{array}$
$\begin{array}{llllllllll}0.2 & 0.28 & 0.2 & 0.14 & 0.33 & 0.32 & 0.49 & 0.36 & 0.44 & 0.48 \\ 0.53 & 0.59 & 0.58 & 0.42 & 0.47 & 0.57 & 0.43 & 0.58 & 0.56 & 0.55\end{array}$
$\begin{array}{llllllllll}0.53 & 0.59 & 0.58 & 0.42 & 0.47 & 0.57 & 0.43 & 0.58 & 0.66 & 0.66 \\ 0.72 & 0.81 & 0.75 & 0.77 & 0.66 & 0.78 & 0.78 & 0.65 & 0.71 & 0.78\end{array}$
$\begin{array}{llllllllll}0.72 & 0.81 & 0.75 & 0.77 & 0.66 & 0.78 & 0.78 & 0.65 & 0.71 & 0.78 \\ 0.7 & 0.84 & 0.82 & 0.85 & 0.89 & 0.86 & 0.83 & 0.78 & 0.75 & 0.76\end{array}$
$\begin{array}{llllllllll}0.8 & 0.84 & 0.82 & 0.86 & 0.88 & 0.86 & 0.83 & 0.78 & 0.75 & 0.76 \\ 1 & 0.92 & 0.91 & 0.87 & 0.97 & 1 & 0.69 & 0.73 & 0.86 & 0.85\end{array}$ $\begin{array}{lllllllll}0.9 & 0.91 & 0.87 & 0.97 & 1 & 0.69 & 0.73 & 0.86 & 0.85 \\ 0.9 & 0.94 & 0.71 & 0.93 & 0.9 & 1 & 0.96 & 0.89 & 0.85\end{array}$ $\begin{array}{lllllllll}0.9 & 0.94 & 0.71 & 0.93 & 0.9 & 1 & 0.96 & 0.89 & 0.85 \\ 1 & 1 & 1 & 0.85 & 1 & 1 & 0.98 & 1 & 1\end{array}$

Table 3.4.6.1.1 Tuning input for XSA. Demersal trawl and gillnet CPUE and groundfish survey indices.

| Haddock in the Iceland Grounds (Fishing Area Va) (run name: XSALOA01) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT03: TRW EFF (Catch: Unknown) (Effort: Unknown) |  |  |  |  |  |  |  |  |
| 19921998 |  |  |  |  |  |  |  |  |
| 110.001 .00 |  |  |  |  |  |  |  |  |
| 49 |  |  |  |  |  |  |  |  |
| 1 | 839 | 837 | 808 | 1081 | 170 | 24 |  |  |
| 1 | 2807 | 538 | 224 | 201 | 300 | 55 |  |  |
| 1 | 6129 | 1927 | 211 | 84 | 40 | 57 |  |  |
| 1 | 1147 | 4723 | 853 | 72 | 30 | 11 |  |  |
| 1 | 1426 | 944 | 2693 | 433 | 34 | 4 |  |  |
| 1 | 3048 | 1396 | 624 | 1118 | 122 | 10 |  |  |
| 1 | 1532 | 2699 | 580 | 271 | 321 | 38 |  |  |
| FLTO4: NET CPU (Catch: Unknown) (Effort: Unknown) |  |  |  |  |  |  |  |  |
| 19911998 |  |  |  |  |  |  |  |  |
| 110.001 .00 |  |  |  |  |  |  |  |  |
| 58 |  |  |  |  |  |  |  |  |
| 0.1 | 37.3 | 153.8 | 101.8 | 23.8 |  |  |  |  |
| 0.1 | 19.4 | 53.6 | 164.3 | 91.3 |  |  |  |  |
| 0.1 | 33.8 | 49.0 | 60.1 | 94.8 |  |  |  |  |
| 0.1 | 69.2 | 38.4 | 15.8 | 23.8 |  |  |  |  |
| 0.1 | 118.5 | 190.9 | 28.4 | 13.5 |  |  |  |  |
| 0.1 | 45.6 | 229.8 | 81.4 | 9.0 |  |  |  |  |
| 0.1 | 48.9 | 64.9 | 168.5 | 35.0 |  |  |  |  |
| 0.1 | 140.2 | 53.3 | 56.8 | 78.1 |  |  |  |  |
| FLT05: SUR CPU (Catch: Unknown) (Effort: Unknown) |  |  |  |  |  |  |  |  |
| 19841998 |  |  |  |  |  |  |  |  |
| 110.991 .00 |  |  |  |  |  |  |  |  |
| 28 |  |  |  |  |  |  |  |  |
| 0.1 | 17.2 | 19.6 | 21.0 | 2.6 | 8.0 | 3.4 | 4.3 |  |
| 0.1 | 53.8 | 12.2 | 15.2 | 12.1 | 0.9 | 2.4 | 1.1 |  |
| 0.1 | 141.5 | 54.8 | 13.1 | 11.0 | 8.0 | 0.6 | 1.3 |  |
| 0.1 | 173.7 | 82.8 | 21.5 | 1.3 | 2.1 | 1.8 | 0.2 |  |
| 0.1 | 37.3 | 125.0 | 39.4 | 11.0 | 0.8 | 0.7 | 0.4 |  |
| 0.1 | 25.6 | 33.9 | 76.9 | 26.9 | 3.0 | 0.8 | 0.2 |  |
| 0.1 | 38.0 | 16.6 | 19.1 | 30.6 | 7.2 | 0.3 | 0.1 |  |
| 0.1 | 126.1 | 31.6 | 14.4 | 11.9 | 14.3 | 2.1 | 0.2 |  |
| 0.1 | 248.9 | 86.5 | 10.9 | 3.6 | 1.5 | 4.1 | 0.8 |  |
| 0.1 | 39.0 | 142.5 | 41.8 | 6.8 | 2.8 | 1.4 | 4.0 |  |
| 0.1 | 48.0 | 20.2 | 64.2 | 7.6 | 1.4 | 0.1 | 0.4 |  |
| 0.1 | 112.6 | 32.7 | 18.0 | 37.9 | 6.0 | 0.6 | 0.1 |  |
| 0.1 | 48.0 | 52.5 | 9.9 | 6.7 | 10.7 | 1.4 | 0.1 |  |
| 0.1 | 105.8 | 27.5 | 22.3 | 4.4 | 3.2 | 4.2 | 0.3 |  |
| 0.1 | 24.7 | 94.4 | 12.5 | 9.4 | 1.4 | 1.6 | 1.0 |  |

Table 3.4.6.2.1 Haddock in Division Va. XSA tuning diagnostic output.

```
Lowestoft VPA Version 3.1
    1-May-99 18:03:47
Extended Survivors Analysis
Haddock Iceland Va (run: XSALOA01/X01)
CPUE data from file /users/fish/ifad/ifapwork/nwwg/had_iceg/FLEET.X01
Catch data for 21 years. 1978 to 1998. Ages 2 to 10.
```



```
Time series weights :
    Tapered time weighting applied
    Power = 3 over 20 years
Catchability analysis :
    Catchability independent of stock size for all ages
    Catchability independent of age for ages >= 7
Terminal population estimation :
    Survivor estimates shrunk towards the mean F
    of the final }5\mathrm{ years or the 2 oldest ages.
    S.E. of the mean to which the estimates are shrunk = .500
    Minimum standard error for population
    estimates derived from each fleet = . 300
    Prior weighting not applied
Tuning converged after 27 iterations
1
Regression weights
, .751, .820, .877, .921, .954, .976, .990, .997, 1.000, 1.000
Fishing mortalities
    Age, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
\begin{tabular}{lllllllllll}
2, & .003, & .022, & .034, & .018, & .006, & .007, & .034, & .046, & .016, & .011 \\
3, & .077, & .142, & .082, & .136, & .098, & .117, & .231, & .178, & .156, & .131 \\
4, & .290, & .357, & .331, & .418, & .366, & .346, & .332, & .438, & .350, & .332 \\
5, & .466, & .552, & .581, & .705, & .653, & .612, & .573, & .516, & .623, & .463 \\
6, & .925, & .689, & .727, & .848, & .771, & .801, & .774, & .831, & .581, & .708 \\
7, & .952, & .715, & .771, & .838, & .954, & .918, & .892, & .974, & .831, & .899 \\
8, & 1.448, & .917, & .898, & .998, & .944, & .741, & 1.019, & 1.071, & .843, & .843 \\
\(9,1.185\), & .814, & .847, & .890, & .925, & .899, & 1.193, & 1.257, & .764, & .850
\end{tabular}
```


## Table 3.4.6.2.1 (Cont'd)

XSA population numbers (Thousands)


Estimated population abundance at 1st Jan 1999

```
.00E+00, 1.23E+04, 5.48E+04, 1.16E +04, 1.24E+04, 2.06E+03, 9.72E+02, 1.23E+03,
```

Taper weighted geometric mean of the VPA populations:

$$
4.97 \mathrm{E}+04,4.36 \mathrm{E}+04,2.96 \mathrm{E}+04,1.73 \mathrm{E}+04,7.74 \mathrm{E}+03,3.06 \mathrm{E}+03,1.10 \mathrm{E}+03,3.17 \mathrm{E}+02,
$$

Standard error of the weighted Log(VPA populations) :

| , | . 7434, | .6822, | . 7012, | . 7506 , | . 8224, | . 8691 | . 9729. | 1.0213. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Log catchability residuals.

Fleet : FLTO3: TRW EFF \{Catc


Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age, | 4, | 5, | 6, | 7, | 8, |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -2.4794, | -2.0657, | -2.0101, | -1.9827, | -1.9827, |
| S.E (Log q), | .1351, | .2094, | .2348, | .2381, | .2879, |

## Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 4, | 1.03, | -.306, | 2.26, | .96, | 7, | .15, | -2.48, |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5, | 1.04, | -.319, | 1.74, | .92, | 7, | .24, | -2.07, |
| 6, | .87, | 1.148, | 2.88, | .94, | 7, | .20, | -2.01, |
| 7, | .81, | 3.486, | 3.12, | .99, | 7, | .11, | -1.98, |
| 8, | .96, | .317, | 2.28, | .93, | 7, | .28, | -2.09, |
| 9, | 1.04, | -.174, | 2.17, | .79, | 7, | .50, | -2.31, |

## Table 3.4.6.2.1 (Cont'd)



Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age, | , | 6, | 7, | 8 |
| ---: | ---: | ---: | ---: | ---: |
| Mean $\log q$, | -3.0763, | -1.8671, | -1.2375, | -1.2375, |
| $\mathrm{~S} . \mathrm{E}(\log q)$, | .3900, | .3646, | .2565, | .5257, |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 5, | 1.30, | -1.035, | 1.11, | .68, | 8, | .50, | -3.08, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6, | 1.31, | -1.593, | -.39, | .82, | 8, | .43, | -1.87, |
| 7, | 1.09, | -.706, | .58, | .91, | 8, | .29, | -1.24, |
| 8, | 1.05, | -.497, | .48, | .95, | 8, | .23, | -.79, |

Fleet : FLT05: SUR CPU (Catc

| Age, | 1984, | 1985, | 1986, | 1987, | 1988 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2, | -.39, | .01, | .22, | -.20, | -.49 |
| 3, | -.34, | -.30, | -47, | .11, | -.13 |
| 4, | -.09, | .05, | .52, | .26, | .08 |
| 5, | .10, | .11, | -65, | -.83, | .51 |
| 6, | .67, | -.16, | 1.03, | -.11, | -.35 |
| 7, | -.39, | .42, | .64, | .60, | -.12 |
| 8, | -.11, | -.43, | 1.03, | .59, | .48 |
| 9, | No data for this fleet at this age |  |  |  |  |

Age , 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998

| 2, | -.29, | .30, | .23, | .14, | -.20, | -.10, | .17, | .08, | -.12, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3, | -.20, | -.27, | .50, | .30, | -.01, | -.44, | .05, | -.11, | -.02, |
| 4, | -.02, | -.11, | .23, | .17, | .24, | -.15, | .09, | -.40, | -.31, |
| 5, | .45, | -.10, | .29, | -.17, | .63, | -.56, | .18, | -.10, | -.30, |
| 5, | -32, | .01, | -06, | -.75, | .54, | .05, | .17, | -.06, | -.06, |
| 7, | .88, | -.98, | -.16, | -.07, | .42, | -1.59, | .37, | -.03, | .11, |
| 8, | .27, | -.08, | -.29, | .07, | 1.05, | .11, | -.37, | -.15, | -.53, |
| ,$~$ | -.28 |  |  |  |  |  |  |  |  |

, No data for this fleet at this age

## Table 3.4.6.2.1 (Cont'd)

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age, | 2, | 3, | 4, | 5, | 7, | 8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean $\log G$, | -4.1565, | -4.2621, | -4.3736, | -4.4605, | -4.4538, | -4.5362, |
| $S . E(\log q)$, | .2389, | .2785, | .2421, | .4382, | -4268, | -6767, |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean $Q$

| 2, | 1.00, | -.031, | 4.13, | .91, | 15, | .25, | -4.16, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3, | -97, | .215, | 4.44, | .86, | 15, | .28, | -4.26, |
| 4, | 1.12, | -1.002, | 3.64, | -87, | 15, | .27, | -4.37, |
| 5, | 1.02, | -.109, | 4.35, | .74, | 15, | .47, | -4.46, |
| 6, | .96, | .257, | 4.64, | .79, | 15, | .43, | -4.45, |
| 7, | 1.02, | -.083, | 4.46, | .60, | 15, | .73, | -4.54, |
| 8, | .93, | .498, | 4.66, | .83, | 15, | .47, | -4.48, |

1

Terminal year survivor and $F$ summaries :
Age 2 Catchability constant w.r.t. time and dependent on age

```
Year class = 1996
```



| Weighted prediction : |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| Survivors, |  |  |  |  |  |
| at end of year, | Int, | Ext, | N, | Var, | F |
| $12277 .$, | .26, | .48, | 2, | 1.877, | -011 |

Age 3 catchability constant w.r.t. time and dependent on age

| Fleet, | Estimated, Survivors | Int, | Ext, | Var, | N, | Scaled, Weights | Estimated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT03: TRW EFE (Catc, | Survivors. | $\begin{aligned} & \text { s.e, } \\ & .000, \end{aligned}$ | $\begin{aligned} & \text { s.e. } \\ & .000 \end{aligned}$ | $.00$ | 0. | $.000$ | F |
| FLT04: NET CPU (Catc. | 1 | . 000. | . 000, | . 00. | 0. | . 000. | .000 |
| FLT05: SUR CPU (Catc, | 57009. | . 212 , | . 161, | . 76 , | 2, | .829. | .126 |
| F shrinkage mean | 45249. | . 50, |  |  |  | . 171 , | .156 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | , | Ratio, |  |
| $54795 .$, | .20, | .12, | 3, | .633, | .131 |

## Table 3.4.6.2.1 (Cont'd)

Age 4 Catchability constant w.r.t. time and dependent on age
Year class = 1994

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio, | N, | scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & F \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT03: TRW EFF (Catc, | 13847., | . 300 , | . 000, | . 00, | 1 | . 240 , | . 286 |
| FLTO4: NET CPU (Cate, | 1., | . 000 , | .000, | . 00 , | 0 | . 000, | . 000 |
| FLT05: SUR CPU (Catc, | 11156 | .174, | . 071 , | -41, | 3 | .640, | . 344 |
| F shrinkage mean | 10288. | . 50, |  |  |  | . 120, | . 369 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $11635 .$, | .15, | .07, | 5, | .448, | .332 |

Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1993$

|  | Estimated, | Int, | Ext, | Var, | N, Scaled, | Estimated |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fleet, | Survivors, | s.e, | s.e, | Ratio, | Weights, | $F$ |  |
| FLT03: TRW EFF (Catc, | $14610 .$, | .215, | .032, | -15, | 2, | .335, | .405 |
| FLT04: NET CPU (Catc, | $21421 .$, | .415, | .000, | .00, | 1, | .103, | .293 |
| FLT05: SUR CPU (Catc, | $10519 .$, | .166, | .125, | .75, | 4, | .450, | .527 |
| F shrinkage mean , | $8876 .$, | $.50, \ldots$, |  |  |  | .112, | .600 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | S.e, | Ratio, |  |  |
| $12395 .$, | .13, | .11, | 8, | .893, | .463 |

Age 6 Catchability constant w.r.t. time and dependent on age
Year class $=1992$

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio, |  | Scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT03: TRW EFF (Catc, | 2612., | .189, | . 068 , | . 36 , | 3 | . 372 , | 595 |
| FLT04: NET CPU (Catc, | 2302., | . 295 , | .123, | . 42 , | 2 | . 174 , | 654 |
| FLT05: SUR CPU (Catc, | 1532., | .176, | .108, | .62, | 5 | . 310 , | 870 |
| F shrinkage mean | 1871., | . 50, |  |  |  | 144, | . 759 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $2064 .$, | .13, | .09, | 11, | .679, | .708 |

Age 7 Catchability constant w.r.t. time and dependent on age
Year class $=1991$

| Fleet, | Estimated, | Int, | Ext, | Var, | N, | Scaled, | Estimated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | Survivors, | s.e, | s.e, | Ratio, |  | Weights, | $F$ |
| FLTO3: TRW EFF (Catc, | 975.. | .171, | . 081 | . 47 , | 4. | . 370 , | 897 |
| FLTO4: NET CPU (Catc, | 1034., | . 222, | . 044 | . 20, | 3, | . 263, | . 863 |
| FLT05: SUR CPU (Catc, | 922. | .176, | . 115 | . 66, | 6 , | . 213, | . 931 |
| F shrinkage mean | 933., | . 50. |  |  |  | . 154 , | . 924 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | S.e, | s.e, | Ratio, |  |  |
| $972 .$, | .12, | .04, | 14, | .357, | .899 |

1
Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class $=1990$

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio. |  | Scaled, Weights, | $\begin{gathered} \text { Estimated } \\ F \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLTO3: TRW EFF (Catc, | 1384., | .187, | .057, | . 30. | 5, | . 414. | . 776 |
| FLTO4: NET CPU (Catc, | 1228., | .239, | . 105 , | . 44 , | 4. | .211, | . 842 |
| FLT05: SUR CPU (Catc, | 1095., | .255, | . 070. | . 28 , | 7. | .177, | . 909 |
| F shrinkage mean | 1051., | . 50. |  |  |  | .198, | . 934 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | S.e, | Ratio, |  |  |
| $1226 .$, | .14, | .04, | 17, | .314, | .843 |

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 7

```
Year class = 1989
```

| Fleet, | Estimated, Survivors. | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | Ext, s.e, | Var, Ratio. |  | Scaled, Weights, | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLTO3: TRW EFF (Catc, | 170., | . 212 , | .048, | . 23. | 6. | . 391 , | 834 |
| FLTO4: NET CPU (Catc, | 208. | . 247 , | .109, | . 44. | 4. | .144, | 725 |
| FLT05: SUR CPU (Catc, | 134. | . 273 , | .147, | -54, | 7. | . 120 , | 978 |
| F shrinkage mean | 157., | . 50. |  |  |  | . 345 . | . 880 |

Weighted prediction :
Survivors, Int, Ext, N, Var, F
$\begin{array}{rrrrr}\text { at end of year, } & \text { s.e, } & \text { s.e, } & \text { Ratio, } & \\ 165 ., & .20, & .05, & 18, & .247,\end{array}$

Table 3.4.6.2.2 Haddock in Division Va. Fishing mortality.

| At | 1-May-99 | 18:04:15 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Terminal Fs derived using XSA (With F shrinkage) |  |  |  |  |  |  |  |  |
|  | Table 8 | Fish | morta | Y (F) |  |  |  |  |  |  |
|  | YEAR 19 |  |  |  |  |  |  |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2 | 0.0008 |  |  |  |  |  |  |  |  |  |
| 3 | 0.0185 |  |  |  |  |  |  |  |  |  |
| 4 | 0.0901 |  |  |  |  |  |  |  |  |  |
| 5 | 0.2658 |  |  |  |  |  |  |  |  |  |
| 6 | 0.799 |  |  |  |  |  |  |  |  |  |
| 7 | 1.1627 |  |  |  |  |  |  |  |  |  |
| 8 | 1.8932 |  |  |  |  |  |  |  |  |  |
| 9 | 1.5483 |  |  |  |  |  |  |  |  |  |
| FBAR $\begin{array}{rr}4 \\ & \\ \\ & \\ & Y\end{array}$ | 4-7 0.5 | 794 |  |  |  |  |  |  |  |  |
|  | Table B | Fishing mortality (F) at age |  |  |  |  |  |  |  |  |
|  | YEAR 1979198019811982198319841985198619871988 |  |  |  |  |  |  |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2 | 0.0021 | 0.0181 | 0.0001 | 0.0013 | 0 | 0.0033 | 0.0114 | 0.0024 | 0.0149 | 0.0031 |
| 3 | 0.0186 | 0.0226 | 0.0195 | 0.0405 | 0.0228 | 0.0344 | 0.1283 | 0.1281 | 0.1219 | 0.0862 |
| 4 | 0.1734 | 0.1361 | 0.1047 | 0.1345 | 0.3067 | 0.2218 | 0.331 | 0.4472 | 0.4158 | 0.4061 |
| 5 | 0.4376 | 0.2817 | 0.3055 | 0.3462 | 0.3605 | 0.4219 | 0.4615 | 0.6437 | 0.6653 | 0.635 |
| 6 | 0.704 | 0.4912 | 0.8143 | 0.4513 | 0.6662 | 0.8127 | 0.6093 | 1.1429 | 0.6994 | 0.7753 |
| 7 | 0.992 | 0.6472 | 0.864 | 0.8764 | 0.5704 | 0.5507 | 0.676 | 0.9256 | 0.7781 | 0.8094 |
| 8 | 1.2006 | 0.9099 | 0.7754 | 1.1714 | 1.0621 | 0.6427 | 0.8884 | 1.0292 | 0.8438 | 1.187 |
| 9 | 1.1093 | 0.7864 | 0.8282 | 1.0357 | 0.8247 | 0.6019 | 0.7938 | 1.0058 | 0.7687 | 0.9721 |
| FBAR 4-7 | 70.5768 | 0.3891 | 0.5221 | 0.4521 | 0.476 | 0.5018 | 0.5194 | 0.7899 | 0.6396 | 0.6564 |

Run title : Haddock Iceland va (run: XSALOA01/X01)

At 1-May-99 18:04:15
Terminal Fs derived using XSA (With F shrinkage)

Table 8 Fishing mortality (F) at age

|  | YEAR | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 FBAR | 96-98 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2 | 0.0032 | 0.0222 | 0.0343 | 0.0178 | 0.0065 | 0.0074 | 0.0345 | 0.0459 | 0.0162 | 0.0112 | 0.0244 |
|  | 3 | 0.0771 | 0.1419 | 0.0822 | 0.136 | 0.0979 | 0.1165 | 0.2308 | 0.1781 | 0.1558 | 0.1309 | 0.1549 |
|  | 4 | 0.2904 | 0.3574 | 0.3313 | 0.4177 | 0.3659 | 0.3457 | 0.3318 | 0.438 | 0.3496 | 0.3322 | 0.3733 |
|  | 5 | 0.4664 | 0.5524 | 0.5808 | 0.7053 | 0.6533 | 0.6118 | 0.5726 | 0.5157 | 0.6227 | 0.4632 | 0.5338 |
|  | 6 | 0.9251 | 0.6886 | 0.7267 | 0.8478 | 0.7709 | 0.801 | 0.7737 | 0.8308 | 0.5809 | 0.708 | 0.7066 |
|  | 7 | 0.9525 | 0.7153 | 0.7715 | 0.8381 | 0.9535 | 0.918 | 0.892 | 0.9741 | 0.8309 | 0.8992 | 0.9014 |
|  | 8 | 1.4484 | 0.9169 | 0.8981 | 0.9981 | 0.9438 | 0.7407 | 1.0192 | 1.0711 | 0.8433 | 0.843 | 0.9191 |
|  | 9 | 1.1845 | 0.8141 | 0.8465 | 0.8902 | 0.9252 | 0.8991 | 1.1932 | 1.2573 | 0.7645 | 0.85 | 0.9573 |
| FBAR |  | 4-7 | 0.6586 | 0.5784 | 0.6026 | 0.7022 | 0.6859 | 0.6691 | 0. 6425 | 0.6897 | 0.596 | 0.6007 |

Table 3.4.6.3.1

Run title : Haddock Iceland Va (run: XSALOA01/X01)
At 1-May-99 18:04:15
Terminal Fs derived using XSA (With F shrinkage)
Table 10 Stock number at age (start of year) Numbers*10**-3
YEAR, 1978,

|  | AGE |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 , | 151570, |  |  |  |  |  |  |  |  |  |
|  | 3 , | 34951 , |  |  |  |  |  |  |  |  |  |
|  | 4, | 27337, |  |  |  |  |  |  |  |  |  |
|  | 5, | 34037 , |  |  |  |  |  |  |  |  |  |
|  | 6 , | 9001, |  |  |  |  |  |  |  |  |  |
|  | 7, | 2928. |  |  |  |  |  |  |  |  |  |
|  | 8, | 816, |  |  |  |  |  |  |  |  |  |
|  | 9. | 132, |  |  |  |  |  |  |  |  |  |
|  | +gp, |  | 0 , |  |  |  |  |  |  |  |  |
| 0 | TOTAL, | 260771, |  |  |  |  |  |  |  |  |  |
|  | Table 10 | Stock | number at | age \{star | of year |  |  | bers*10 |  |  |  |
|  | YEAR, | 1979. | 1980, | 1981, | 1982. | 1983, | 1984, | 1985, | 1986, | 1987, | 1988, |
|  | AGE |  |  |  |  |  |  |  |  |  |  |
|  | 2, | 83821, | 36709, | 9737, | 42204, | 30161. | 19935. | 41787, | 89101 , | 167043, | 47518, |
|  | 3. | 123997, | 68481. | 29517. | 7973, | 34509. | 24693. | 16267, | 33826. | 72772, | 134739, |
|  | 4. | 28092. | 99651, | 54815, | 23699. | 6267, | 27615. | 19534, | 11714, | 24364, | 52741 , |
|  | 5. | 20452, | 19338. | 71203, | 40419. | 16962, | 3776. | 18112, | 11486 , | 6133. | 13161, |
|  | 6. | 21363. | 10810, | 11945, | 42949. | 23408 , | 9684 , | 2027. | 9348 , | 4940, | 2581, |
|  | 7 , | 3315. | 8651. | 5416 , | 4332, | 22392, | 9844. | 3518 , | 902, | 2440, | 2010, |
|  | 8. | 749 , | 1006 , | 3708, | 1969, | 1476. | 10363, | 4647, | 1465 , | 293, | 918. |
|  | 9. | 101. | 185. | 332, | 1398, | 474, | 418. | 4462, | 1565. | 429. | 103, |
|  | +gp, | 0. | 0 , | 0. | 0. | 0 , | 0. | 0 , | 0. | 0. | 0. |
| 0 | TOTAL, | 281890, | 244831. | 196673, | 164842. | 135649, | 106329, | 110354, | 159407. | 278414. | 253771, |

Run title : Haddock Iceland Va (run: XSALOAOl/X01)
At 1-May-99 18:04:15
Terminal Fs derived using XSA (With $F$ shrinkage)

| Table 10 | Stock number at age (start of year) |  |  |  |  | Numbers*10**-3 |  |  | 1997. | 1998, | 1999, | GMST 78-96 | AMST 78-96 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1989. | 1990. | 1991, | 1992, | 1993, | 1994. | 1995. | 1996. |  |  |  |  |  |
| age |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2, | 26646, | 22412, | 80657. | 171144. | 37421, | 41741, | 76914, | 36157, | 94697. | 15154, | 0 , | 48837. | 63825, |
| 3, | 38784, | 21746 , | 17946, | 63810. | 137654, | 30440 , | 33921. | 60939, | 28275, | 75287. | 12277, | 39948, | 51940 , |
| 4. | 101205. | 29398, | 15448. | 13533, | 45599, | 102190, | 22181, | 22047, | 41684. | 19811, | 54796 , | 29247, | 38236. |
| 5. | 28770 , | 61979 , | 16836. | 9081 , | 7297, | 25894, | 59213, | 13032, | 11648. | 24060, | 11635, | 18923. | 25115 , |
| 6 , | 5710, | 14775, | 29206, | 7712 , | 3673 , | 3108, | 11499, | 27345, | 6371 , | 5117, | 12395, | 9527, | 13215, |
| 7. | 973. | 1854, | 6076, | 11561, | 2704, | 1391, | 1142, | 4343. | 9754, | 2918, | 2064, | 3444 , | 5042, |
| 8. | 732. | 307. | 742. | 2300, | 4094, | 853. | 455. | 383. | 1342. | 3479. | 972, | 1192, | 1957, |
| 9. | 229. | 141. | 101. | 24B, | 594. | 1304. | 333, | 134. | 108, | 473. | 1226. | 351 , | 673. |
| +gp, | 0. | 0. | 0. | 0 , | 2. | 0 , | 0 , | 0. | 0. | 0 , | 165, |  |  |
| TOTAL, | 203050. | 152612, | 167012, | 279388, | 239136, | 206923, | 205659, | 164282, | 193880. | 147309. | 95530. |  |  |

Table 3.4.6.3.2 Haddock in Division Va. Summary.

Run title : Haddock Iceland Va (run: XSALOA01/X01)

At 1-May-99 18:04:15
Table 16 Summary (without SOP correction)
Terminal Fs derived using XSA (With F shrinkage)

|  | RECRUITS | TOTALBIO | TOTSPBIO | LANDINGS | YIELD/SSB | FBAR $4-7$ |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 1978 | 151570 | 145774 | 53203 | 43488 | 0.8174 | 0.5794 |
| 1979 | 83821 | 182486 | 67469 | 55334 | 0.8201 | 0.5768 |
| 1980 | 36709 | 203732 | 80936 | 51112 | 0.6315 | 0.3891 |
| 1981 | 9737 | 216249 | 103375 | 63580 | 0.615 | 0.5221 |
| 1982 | 42204 | 197540 | 111380 | 69325 | 0.6224 | 0.4521 |
| 1983 | 30161 | 161298 | 101462 | 65943 | 0.6499 | 0.476 |
| 1984 | 19935 | 124438 | 79233 | 48285 | 0.6094 | 0.5018 |
| 1985 | 41787 | 115441 | 59465 | 50933 | 0.8565 | 0.5194 |
| 1986 | 89101 | 114644 | 56165 | 48863 | 0.87 | 0.7899 |
| 1987 | 167043 | 130859 | 41469 | 40801 | 0.9839 | 0.6396 |
| 1988 | 47518 | 161180 | 65874 | 54236 | 0.8233 | 0.6564 |
| 1989 | 26646 | 174423 | 99258 | 62979 | 0.6345 | 0.6586 |
| 1990 | 22412 | 150308 | 109957 | 67200 | 0.6111 | 0.5784 |
| 1991 | 80657 | 134999 | 90658 | 54732 | 0.6037 | 0.6026 |
| 1992 | 171144 | 124107 | 55620 | 47212 | 0.8488 | 0.7022 |
| 1993 | 37421 | 136899 | 68828 | 48844 | 0.7096 | 0.6859 |
| 1994 | 41741 | 135916 | 83154 | 59345 | 0.7137 | 0.6691 |
| 1995 | 76914 | 133757 | 87804 | 61131 | 0.6962 | 0.6425 |
| 1996 | 36157 | 117237 | 70167 | 56958 | 0.8118 | 0.6897 |
| 1997 | 94697 | 107200 | 64941 | 44053 | 0.6784 | 0.596. |
| 1998 | 15164 | 102158 | 67490 | 41434 | 0.6139 | 0.6007 |.

$\begin{array}{lc}\text { Arith. } & \\ \text { Mean } & 62978 \\ 0 \text { Units } & \text { (Thousands) }\end{array}$
14622177043
540850.7248
0.5966
(Tonnes) (Tonnes) (Tonnes)


Table 3.4.7.1.2 Haddock in division Va. Input file for RCT3.
VPA and Groundfish survey indices

| Yearcl | VPA | Survey4 | Survey3 | Survey2 | Survey1 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1976 | 155 | -11 | -11 | -11 | -11 |
| 1977 | 88 | -11 | -11 | -11 | -11 |
| 1978 | 37 | -11 | -11 | -11 | -11 |
| 1979 | 10 | -11 | -11 | -11 | -11 |
| 1980 | 42 | -11 | -11 | -11 | -11 |
| 1981 | 30 | 196 | -11 | -11 | -11 |
| 1982 | 20 | 122 | 172 | -11 | -11 |
| 1983 | 42 | 548 | 538 | 312 | -11 |
| 1984 | 89 | 828 | 1415 | 984 | 260 |
| 1985 | 167 | 1250 | 1737 | 2677 | 1194 |
| 1986 | 48 | 339 | 373 | 394 | 218 |
| 1987 | 27 | 166 | 256 | 221 | 154 |
| 1988 | 22 | 316 | 380 | 307 | 93 |
| 1989 | 81 | 865 | 1261 | 1425 | 655 |
| 1990 | 171 | 1425 | 2489 | 2016 | 849 |
| 1991 | 37 | 202 | 390 | 342 | 182 |
| 1992 | 42 | 327 | 480 | 593 | 280 |
| 1993 | 77 | 525 | 1126 | 823 | 561 |
| 1994 | 36 | 275 | 480 | 669 | 353 |
| 1995 | -11 | 944 | 1058 | 1186 | 894 |
| 1996 | -11 | -11 | 247 | 177 | 82 |
| 1997 | -11 | -11 | -11 | 863 | 227 |
| 1998 | -11 | -11 | -11 | -11 | 765 |

Table 3.4.7.1.3 Haddock in division Va. Output file from RCT3.
Analysis by RCT3 ver3. 1 of data from file :

Recrun5.dat

Iceland Haddock: VPA and groundfish survey data

Data for 4 surveys over 23 years : 1976-1998

Regression type $=\mathrm{C}$
Tapered time weighting applied
power $=3$ over 20 years
Survey weighting not applied

Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression

Forecast/Hindcast variance correction used.


Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP
Series cept Error Pts Value Value Error Weights

| Surv4 | .97 | -1.90 | .29 | .855 | 14 | 6.85 | 4.77 | .351 | .212 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Surv3 | .90 | -1.87 | .23 | .907 | 13 | 6.97 | 4.43 | .267 | .366 |
| Surv2 | .90 | -1.81 | .29 | .855 | 12 | 7.08 | 4.56 | .341 | .225 |
| Surv1 | .97 | -1.56 | .34 | .815 | 11 | 6.80 | 5.01 | .432 | .141 |

VPA Mean $=3.95 \quad .688 \quad .055$

Yearclass $=1996$


Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP
Series cept Error Pts Value Value Error Weights

| Surv4 |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Surv3 | .91 | -1.89 | .23 | .908 | 13 | 5.51 | 3.11 | .284 | .477 |
| Surv2 | .91 | -1.86 | .29 | .853 | 12 | 5.18 | 2.84 | .384 | .261 |
| Surv1 | .97 | -1.57 | .34 | .817 | 11 | 4.42 | 2.71 | .465 | .178 |

VPA Mean $=3.97 \quad .681 \quad .083$

Table 3.4.7.1.3 (Cont'd
Yearciass $=1997$
|-----------Regression--------| |-----------Prediction---.-----|

Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP
Series cept Error Pts Value Value Error Weights

Surv4
Surva

| Surv2 | .91 | -1.92 | .29 | .851 | 12 | 6.76 | 4.27 | .350 | .501 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Surv1 | .97 | -1.58 | .34 | .818 | 11 | 5.43 | 3.68 | .410 | .364 |

VPA Mean $=3.98 \quad .674 \quad .135$

Yearclass $=1998$
|-----------Regression---------| |-----------Prediction-------|

Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP
Series cept Error Pts Value Value Error Weights

Surv4
Surv3
Surv2
Surv1 $\quad .97-1.61 \quad .34 \quad .818 \quad 11 \quad 6.64 \quad 4.84 \quad .438 \quad .699$

$$
\text { VPA Mean }=3.99 \quad .667
$$

| Year Weighted Log Int Ext Var VPA | Log |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Class Average | WAP Std Std Ratio | VPA |  |
| Prediction | Error Error |  |  |


| 1995 | 98 | 4.59 | .16 | .13 | .61 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1996 | 20 | 3.04 | .20 | .19 | .90 |
| 1997 | 55 | 4.01 | .25 | .19 | .60 |
| 1998 | 98 | 4.59 | .37 | .39 | 1.12 |

Icelandic haddock (Division Va)
Yield per recruit: Input data


Table 3.4.7.2.1
Haddock in the Iceland Grounds (Fishing Area Va)

Icelandic haddock (Division Va)
Yield per recruit: Summary table

(cont.)

Table 3.4.7.2.1 (Cont'd)
Icelandic haddock (Division Va)
Yield per recruit: Summary table


Table 3.4.7.3.1 Haddock in the Iceland Grounds (Fishing Area Va)
Prediction with management option table


Figure 3.4.2.1 Haddock Division Va, Nominal landings (tonnes) 1950-1998


Figure 3.4.2.2 Haddock Division Va. Percentage changes in CPUE for the main gears since 1992


Figure 3.4.5.1. Haddock, Division Va. Sexual maturity at age in the stock 1985-1998.

## Sexual maturity in the stock





3 fleets shrinkage 0.7


Figure 3.4.6.2.1. Haddock in Division Va. Retrospective analyses of XSA runs, varying the shrinkage.

Figure 3.4.6.2.2 Summary plots of yield, fishing mortality, spawning stock and recruitment.


Figure 3.4.7.2.1 Summary plots of yield and spawning stock biomass per recruit.

## Long term yield and spawning stock biomass



Short term yield and spawning stock biomass


## Stock - Recruitment



## 4.1

Inter-relationship Between the Cod Stocks in the Greenland-Iceland Area
Tagging experiments carried out at Greenland and Iceland show that mature cod at West Greenland migrate to East Greenland. Tagging experiments at East Greenland also show that mature cod from that area migrate to Iceland (Tåning, 1937; Hansen, 1949; and Anon. 1971). On the other hand, immature cod seem not to emigrate from East Greenland to Iceland, but in some years immature cod migrate from East Greenland to the West Greenland stock (Anon. 1971). Tagging experiments at Iceland show that migration of cod from Iceland to Greenland waters occurs very seldom and can be ignored in stock assessments (Jonsson 1965, 1986). Migrations from Greenland waters to Iceland can, therefore, be regarded as a one-way migration.

In egg and larval surveys cod eggs have been found in an almost continuos belt from Iceland to East Greenland, along the East Greenland coast, round Cape Farewell and over the banks at West Greenland (Tåning 1937, Anon. 1963). From O-group surveys carried out in the East Greenland-Iceland area since 1970, it becomes quite evident that the drift of Ogroup cod from the Iceland spawning grounds to the different nursery areas at Iceland varies from year to year. The same applies to the drift of O-group cod with the currents from Iceland to East Greenland (Table 4.1.1). In some years it seems that no larval drift has taken place to the Greenland area, while in other years some, and in some years like 1973 and 1984, considerable numbers drifted to East Greenland waters (Vilhjalmsson and Fridgeirsson 1976, Vilhjalmsson and Magnússon 1984, Sveinbjörnsson and Jónsson 1998). Since 1995, O-group surveys were continued with the area coverage reduced to the Icelandic EEZ. However, the estimates of the 1997 and 1998 year classes are exceptional high also west of Iceland. More than $60 \%$ of the O -group cod were distributed in northern areas off Iceland (Table 4.1.1).

The 1973 and 1984 year classes have been very important to the fisheries off both West and East Greenland. Tagging results have shown that when these two year classes became mature, they had migrated in large numbers from West to East Greenland and, to some extent, to the spawning area off the southwest coast off Iceland. This migration of mature cod from Greenland to Iceland influences the assessment of these stocks (Schopka, 1993) and it cannot therefore be ignored in the assessments.

Table 4.1.1 Abundance indices of O-group cod from international and Icelandic O-group surveys (Sveinbjörnsson and Jónsson, 1998) in the East Greenland/Iceland area, 1971-97 (except 1972 and 1995-96).

| Year class | Dohrn Bank East Greenland | SE Iceland | $\begin{array}{r} \text { SW } \\ \text { Iceland } \end{array}$ | W Iceland | N Iceland | E Iceland | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 | + | - | - | 60 | 214 | - | 283 |
| 1973 | 135 | 10 | 107 | 96 | 757 | 86 | 1191 |
| 1974 | 2 | - | - | 22 | 30 | + | 54 |
| 1975 | + | - | 2 | 50 | 73 | 5 | 130 |
| 1976 | 5 | 9 | 30 | 102 | 2015 | 584 | 2743 |
| 1977 | 7 | 2 | + | 26 | 305 | 94 | 435 |
| 1978 | 2 | - | + | 169 | 335 | 47 | 552 |
| 1979 | 2 | + | 1 | 22 | 345 | + | 370 |
| 1980 | 1 | 2 | + | 38 | 507 | 10 | 557 |
| 1981 | 19 | - | - | 41 | 19 | - | 78 |
| 1982 | + | - | + | 7 | 4 | - | 11 |
| 1983 | $+$ | - | + | 85 | 66 | 2 | 153 |
| 1984 | 372 | 5 | + | 200 | 826 | 369 | 1772 |
| 1985 | 32 | $+$ | + | 581 | 197 | 2 | 812 |
| 1986 | + | 1 | 2 | 15 | 32 | + | 50 |
| 1987 | 7 | - | 1 | 2 | 61 | 10 | 81 |
| 1988 | 0 | - | 1 | 7 | 12 | + | 20 |
| 1989 | 1 | - | 3 | 7 | 30 | + | 41 |
| 1990 | 3 | - | + | 2 | 30 | 2 | 37 |
| 1991 | + | - | - | + | 5 | + | 6 |
| 1992 | 0 | - | + | 15 | 21 | 5 | 42 |
| 1993 | 1 | - | + | 36 | 116 | 2 | 155 |
| 1994 | 0 | - | 0 | 1 | 71 | 2 | 74 |
| 1997 | $4^{1}$ | + | + | 97 | 1007 | 46 | 1152 |
| $1998{ }^{2}$ |  | + | 2 | 814 | 1799 | 137 | 2752 |

${ }^{1}$ ) Figure reflects Dohrn Bank area only due to reduced survey area.
${ }^{2}$ ) No estimate available for the Dohrn Bank-East Greenland area due to reduced survey area.

### 5.1 Cod off Greenland (offshore component)

Prior to 1996, the cod stocks off Greenland have been divided into West and East Greenland or treated as one stock unit for assessment purposes to avoid migration effects. Fjord populations (inshore) have always been included. In 1996, the offshore component off West and East Greenland, the so called Bank Cod, was assessed separately as one stock unit and distinguished from the inshore populations for the first time. The completion of a re-evaluation of available German sampling data for the offshore catches back to 1955 enabled such an analysis given in the 1996 North-Western Working Group report (ICES 1996/Assess:15). Due to the severely depleted status of the offshore stock component, the directed cod fishery was given up in 1992, the final year in the VPA. Since then, no adequate data were available to update the assessment. Therefore, the present report includes the summary table and figures of the 1996 assessment only appended by long term management considerations and updated survey results and catch information.

### 5.1.1 Results of the German groundfish survey

Annual abundance and biomass indices have been derived using stratified random groundfish surveys covering shelf areas and the continental slope off West and East Greenland. Surveys commenced in 1982 and were primarily designed for the assessment of cod (Gadus morhua L.). A detailed description of the survey design and determination of these estimates was given in the report of the 1993 North-Western Working Group (ICES 1993/Assess:18) and Working Doc. 15. Figure 5.1.1 indicate names of the 14 strata, their geographic boundaries, depth ranges and areas in nautical square miles $\left(\mathrm{nm}^{2}\right)$. All strata were limited at the 3 mile line offshore except for some inshore regions in Strata 6.1 and 6.2 off East Greenland where there is a lack of adequate bathymetric measurements. In 1984, 1992, and 1994 the survey coverage was incomplete off East Greenland partly due to technical problems.

### 5.1.1.1 Stock abundance indices

Table 5.1.1 lists abundance and biomass indices for West and East Greenland, respectively and then combined for the years 1982-98. Trends of the abundance and biomass estimates for West and East Greenland were shown in Figures 5.1.2 and 5.1.3, respectively. These Figures illustrate the pronounced increase in stock abundance and biomass indices from 23 million individuals and 45000 tons in 1984 to 828 million individuals and 690000 tons in 1987. This trend was the result of the recruitment of the predominating year classes 1984 and 1985, which were mainly distributed in the northern and the shallow strata 1.1, 2.1 and 3.1 off West Greenland during 1987-89. Such high indices were never observed in strata off East Greenland, although their abundance and biomass estimates increased during the period 1989-91 suggesting an eastward migration. During the period 1987-89, which were years with high abundance, the precision of survey indices was extremely low due to enormous variation in catch per tow data. Since 1988, stock abundance and biomass indices decreased dramatically by $99 \%$ to only 5 million fish and 6000 tons in 1993. The 1998 survey results confirmed the severely depleted status of the stock.

### 5.1.1.2 Age composition

Age disaggregated abundance indices for West, East Greenland and the total are listed in Tables 5.1.2-4, respectively. In 1998, the stock structure off West Greenland was found to be composed almost exclusively of the pre-recruiting age group 1 ( $95 \%$ ). However, the 1997 year class is considered to be very poor as compared with strong 1984 and 1985 year classes. The age composition off East Greenland was found to be more diverse and comprised mainly mature cod at ages 5-6 years ( $54 \%$ ).

### 5.1.1.3 Mean weight at age

Mean weight of the age groups 1-10 years for West, East Greenland and weighted by abundance to the total were listed in Tables 5.1.5-7, respectively. Weight (g) at age calculations are based on the regression $\mathrm{f}(\mathrm{x})=0.00895 \mathrm{x}^{3.00589}, \mathrm{x}=$ length (cm), which has been determined on the basis of 3482 individual measurements. The trends of these values are illustrated in Figure 5.1.4 for the period 1982-98. They revealed pronounced areal and temperature effects (WP 15). Age groups 2-10 years off East Greenland were found to be bigger than those off West Greenland. Driven by the high abundance of cod off West Greenland, weighted mean length and weight for the age groups 1-5 displayed a decrease during 1986-87 and remained at low levels until 1991. Since then, the weight at age at ages 3 to 8 years increased significantly and remained at that high level in 1998.

Officially reported catches are given in Tables 5.1.8 and 5.1.9 for West and East Greenland including inshore catches, respectively. Landings as used by the working group are listed in Table 5.1 .10 by inshore and offshore areas and gear for both West and East Greenland combined, their trends being illustrated in Fig. 5.1.5. Until 1975, offshore landings have dominated the total figures by more than $90 \%$. Thereafter, the proportions taken offshore declined to $40-50 \%$ and the most recent yields have been dominated by inshore landings since 1993. Otter trawl board catches (OTB) were most important throughout the time series for offshore fisheries. Miscellaneous gears, mainly long lines and gill nets, contributed $30-40 \%$ until 1977 but have disappeared since then.

Annual landings taken offshore averaged about 300000 t during the period 1955-60. Until 1968, figures increased to a higher level between 330000 t and of 440000 t in 1962 . Landings decreased sharply by $90 \%$ to 46000 t in 1973. Subsequently, the landings dropped below 40000 t in 1977 and were very variable. The level of 40000 t was only exceeded during the periods 1980-83 and 1988-1990. Since 1970, there have been large changes in effort which increased during exploitation of the strong year classes born in 1973 and 1984. The offshore fishery was closed in 1986 and for the first 10 months in 1987. During 1990-92, the landings decreased from 100000 t by $90 \%$ to 11000 t . Since then, almost no directed cod fishery has taken place offshore and the reported landings varied from 187 t to 736 t . A total offshore catch amounting to 278 t was reported for 1998.

It is important to note that catch figures, especially since 1992, are believed to be incomplete due to unreported bycatches in the shrimp fishery which has recently expanded to all traditional areas of the groundfish fisheries. Discards of fin-fish by-catches were difficult to record due to the processing of the shrimp catch on board. A first assessment of the catch taken by the shrimp fishery amounted to 32 t or 110000 individuals of cod in 1994. This estimate was added to the catch figures used by the Working Group for the 1992-95 period.

### 5.1.3 Biological sampling of commercial catches

No commercial sampling data were available to assess recent catch in numbers, weight and maturity at age.

### 5.1.4 Results from the $\mathbf{1 9 9 6}$ assessment

The historical stock status was assessed based on the terminal Fs derived from an XSA tuning run applying 1992 as the final year.

Trends in yield and fishing mortality are shown in Figure 5.1.6. An increasing trend in Fbar from 0.1 to 0.4 was determined during the period 1955-68. During the same period, the yield increased from a level of 280000 t to 380000 t but decreased drastically to 100000 t in the early 70s. Thereafter, the fishing mortality was highly variable and seemed to be dependent on the changes in effort directed to the exploitation of individual strong year classes. Periods when Fbar for ages 5-8 years exceeded 0.5 were 1974-1977, 1980-1984 and 1988-1992.

Trends in spawning stock biomass and recruitment were shown in Figure 5.1.7. During 1955 to 1973, the spawning biomass decreased almost continuously from 1.8 million $t$ to 110000 t , a decrease of $94 \%$. Thereafter, the spawning stock biomass averaged 50000 t . During the period 1955-73 before the spawning stock decreased below 100000 t , the recruitment at age 3 varied enormously between 4 million and 700 million and averaged 220 million. Since 1974, the spawning stock varied around the mean of 50000 t and produced an average recruitment of 41 million representing a mean reduction by $95 \%$ and $80 \%$, respectively. The long term mean recruitment was not exceeded for 8 of 19 years from 1955 to 1973, while it has been below that value for 17 of 19 years since then. During the last 29 years, only 2 year classes have reached the long term mean recruitment level at age 3, namely those produced in 1973 and 1984.

### 5.1.5 Estimation of management reference points

Input parameters for the estimation of long term yield and spawning stock biomass per recruit are listed in Table 5.1.11 for age groups 3-12. Maturity and weight at age vectors were calculated as long-term means covering the period 195592. The natural mortality M was increased to 0.3 for age groups 5 and older to account for an emigration to Iceland. The exploitation pattern was derived as Fbar from the three most recent years from the final VPA. Determined F-factors for $F_{0.1}$ and $F_{\text {max }}$ were scaled according to the mean reference $F$ over the age groups 5-8. The resulting estimates of yield and spawning stock biomass per recruit are illustrated in Figure 5.1.8. The values of $\mathrm{F}_{0.1}$ and $\mathrm{F}_{\max }$ are indicated by arrows and amounted to 0.3 and 0.72 , respectively. The lack of a well definite peak in the yield per recruit curve is due to increased natural mortality.

Recruitment at age 3 is plotted against the spawning stock biomass in Figure 5.1.9. $\mathrm{F}_{\text {med }}$ amounted to 0.09. The corresponding spawning stock biomass per recruit was as high as 4.5 kg . $\mathrm{F}_{\text {high }}$ amounted to 0.59 with the accompanied spawning stock biomass per recruit of 1.0 kg .

However, neither the determined Beverton \& Holt nor the Ricker model fitted the observed recruitment-spawning stock biomass points well. The Beverton \& Holt curve quickly reached the long term mean recruitment level affected by the strong 1973 and 1984 year classes related to low biomass values and extremely poor year classes 1969-72 produced by spawning stock sizes exceeding 250000 t . The Ricker curve did not reach a maximum over the available range of observed spawning stock sizes. This suggested that, during the period of investigation, the recruitment appeared at all times to be adversely affected by reductions in spawning stock biomass.

Given suitable environmental conditions, cod in the offshore areas of Greenland are considered to be self-sustaining. An example of restricted recruitment was identified for the period 1969-72 when a continued cold event off West Greenland and an almost complete recruitment failure was observed. Figure 5.1.9 indicates that the reduced recruitment was observed at a SSB of less than 1000000 t . Following the instructions given by the SGPAFM this value could be taken as the limit reference point $\mathrm{B}_{\text {lim }}$. Given the depleted stock status, no limit and precautionary reference points for fishing mortality and biomass were proposed.

### 5.1.6 By-catch and discard of cod in the shrimp fishery

No information about the amount of by-catch and discard of cod in the shrimp fishery off East and West Greenland was available. Long term simulations based on a recruitment model (Rätz et al., 1999) were carried out last year (ICES 1998/ACFM:19) and indicated a significant adverse effect of even low fishing mortality of pre-recruits on the potential stock recovery.

### 5.1.7 Management considerations

The assessment of the offshore component of the cod stocks off Greenland revealed that over-fishing was a major cause for the collapse of this unit in the beginning of the 70s. Since that time, the spawning stock has remained below 100000 $t$ and has not been able to produce adequate recruitment. Only two strong year classes have been observed in 1976 and 1987 as 3 year olds. An increase in effort directed towards the 1973 and 1984 year classes resulted in high fishing mortality. Both year classes contributed only negligible amounts to the severely declined spawning stock. The most recent trend in the fishery and German survey data which were not included in this assessment, are consistent with this picture. Further, no indication of stock recovery was derivable based on the lack of strong pre-recruiting year classes. In the present situation, catches of young cod in the shrimp fishery should be kept to a minimum in order to increase the probability of stock recovery. No fishing should take place until a substantial increase in recruitment and biomass is evident.

### 5.1.8 Comments on the assessment

The present assessment is based on survey indices only due to the termination of the cod directed offshore fishery in 1992.

The VPA assessment conducted in 1996 was affected by several uncertainties in data as well as ecological factors. The effect of emigration was only directly covered for the 1973 and 1984 year classes and had been taken into account by an increase of the natural mortality to 0.3 for age groups 5 and older. The sampling of commercial catches was historically rather inconsistent and did not cover the $30 \%$ taken by miscellaneous gears, mainly longlines and gill nets up to 1977 . Since 1991, catch at age and weight at age data had to be calculated using survey data. Maturity data were poorly reported implying uncertainties in spawning stock estimates.

No XSA tuning could be applied for the most recent period 1993-97 when low levels in landings, effort and stock abundance were observed. The age disaggregated survey indices had to be adjusted to account for incomplete coverage of the survey area in 1992 and 1994.

Table 5.1.1 Cod off Greenland (offshore component). Abundance (1000) and biomass indices (t) for West, East Greenland and total by stratum, 1982-98. Confidence intervals (CI) are given in per cent of the stratified mean at $95 \%$ level of significance. () incorrect due to incomplete sampling.

|  | Abundance |  |  |  |  |  | Biomass |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| YEAR | WEST | EAST | TOTAL | CI | Spawn. St. | WEST | EAST | TOTAL | CI | Spawn. St. |
| 1982 | 92276 | 8090 | 100366 | 28 | 33592 | 128491 | 23617 | 152107 | 25 | 78466 |
| 1983 | 50204 | 7991 | 58195 | 25 | 23889 | 82374 | 34157 | 116531 | 25 | 57223 |
| 1984 | 16684 | $(6603)$ | $(23286)$ | 32 | 17531 | 25566 | $(19744)$ | $(45309)$ | 34 | 36246 |
| 1985 | 59343 | 12404 | 71747 | 33 | 16472 | 35672 | 33565 | 69236 | 39 | 44297 |
| 1986 | 145682 | 15234 | 160915 | 32 | 14244 | 86719 | 41185 | 127902 | 26 | 46864 |
| 1987 | 786392 | 41635 | 828026 | 59 | 25376 | 638588 | 51592 | 690181 | 63 | 66144 |
| 1988 | 626493 | 23588 | 650080 | 48 | 128208 | 607988 | 52946 | 660935 | 46 | 153387 |
| 1989 | 358725 | 91732 | 450459 | 59 | 311086 | 333850 | 239546 | 573395 | 46 | 438599 |
| 1990 | 34525 | 25254 | 59777 | 43 | 46705 | 34431 | 65964 | 100395 | 34 | 79021 |
| 1991 | 4805 | 10407 | 15213 | 29 | 6565 | 5150 | 32751 | 37901 | 36 | 18518 |
| 1992 | 2043 | $(658)$ | $(2700)$ | 50 | 574 | 607 | $(1216)$ | $(1823)$ | 69 | 1127 |
| 1993 | 1437 | 3301 | 4738 | 36 | 2321 | 359 | 5600 | 5959 | 41 | 4014 |
| 1994 | 574 | $(801)$ | $(1375)$ | 36 | 457 | 140 | $(2792)$ | $(2930)$ | 68 | 1744 |
| 1995 | 278 | 7187 | 7463 | 93 | 2215 | 57 | 15525 | 15581 | 155 | 9720 |
| 1996 | 811 | 1447 | 2257 | 38 | 592 | 373 | 3599 | 3973 | 56 | 2025 |
| 1997 | 315 | 4153 | 4469 | 75 | 3394 | 284 | 13722 | 14007 | 90 | 10385 |
| 1998 | 1723 | 1671 | 3394 | 54 | 1133 | 130 | 4348 | 4479 | 91 | 3820 |

Table 5.1.2 Cod off West Greenland (offshore component). Age disaggregate abundance indices (1000), 1982-1998. *) calculated proportionally using age compositions reported by the ICES Working Group on Cod Stocks off East Greenland (ICES 1984/Assess:5).

| YEAR | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | $11+$ | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 0 | 176 | 884 | 33472 | 11368 | 32504 | 9525 | 2610 | 574 | 928 | 91 | 124 | 92256 |
| *1983 | 0 | 0 | 1469 | 2815 | 26619 | 4960 | 10969 | 1882 | 992 | 317 | 168 | 13 | 50204 |
| 1984 | 186 | 5 | 38 | 2094 | 1541 | 9648 | 850 | 1983 | 90 | 201 | 29 | 0 | 16665 |
| 1985 | 890 | 39277 | 1531 | 898 | 5958 | 2616 | 7184 | 375 | 600 | 18 | 19 | 0 | 59366 |
| 1986 | 0 | 10575 | 114823 | 4374 | 1033 | 7837 | 2250 | 4167 | 107 | 449 | 23 | 35 | 145673 |
| 1987 | 0 | 317 | 45474 | 692566 | 24230 | 5929 | 11813 | 1637 | 4006 | 0 | 366 | 30 | 786368 |
| 1988 | 434 | 254 | 3290 | 101820 | 511473 | 5435 | 616 | 1134 | 662 | 1310 | 34 | 39 | 626501 |
| 1989 | 12 | 204 | 2583 | 7618 | 170469 | 174532 | 2868 | 0 | 259 | 40 | 141 | 5 | 358731 |
| 1990 | 158 | 47 | 1014 | 2900 | 1272 | 22120 | 6964 | 47 | 0 | 0 | 0 | 5 | 34527 |
| 1991 | 0 | 245 | 208 | 435 | 1260 | 160 | 2102 | 356 | 6 | 0 | 0 | 0 | 4772 |
| 1992 | 0 | 189 | 1473 | 227 | 48 | 89 | 0 | 28 | 0 | 0 | 0 | 0 | 2054 |
| 1993 | 0 | 10 | 832 | 546 | 20 | 28 | 6 | 0 | 0 | 0 | 0 | 0 | 1442 |
| 1994 | 0 | 286 | 45 | 199 | 38 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 578 |
| 1995 | 0 | 0 | 241 | 16 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 279 |
| 1996 | 0 | 147 | 11 | 638 | 10 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 816 |
| 1997 | 0 | 12 | 27 | 15 | 263 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 317 |
| 1998 | 48 | 1642 | 0 | 0 | 5 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 1720 |

Table 5.1.3 Cod off East Greenland (offshore component). Age disaggregate abundance indices (1000), 1982-1998. *) calculated proportionally using age compositions reported by the ICES Working Group on Cod Stocks off East Greenland (ICES 1984/Assess:5). () incomplete sampling.

| YEAR | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | $11+$ | TOTAL |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1982 | 0 | 0 | 236 | 837 | 1758 | 1993 | 1222 | 377 | 130 | 1370 | 73 | 87 | 8083 |
| $* 1983$ | 0 | 0 | 411 | 605 | 1008 | 1187 | 2125 | 1287 | 302 | 265 | 703 | 101 | 7994 |
| $(1984)$ | 0 | 18 | 73 | 1339 | 659 | 1403 | 853 | 1619 | 408 | 102 | 36 | 95 | 6605 |
| 1985 | 232 | 1932 | 559 | 117 | 2496 | 2035 | 1853 | 779 | 1989 | 284 | 53 | 79 | 12408 |
| 1986 | 0 | 1398 | 3346 | 1693 | 550 | 2419 | 1121 | 2187 | 566 | 1594 | 116 | 201 | 15191 |
| 1987 | 0 | 13 | 13785 | 17789 | 3890 | 1027 | 1767 | 452 | 1562 | 180 | 1023 | 131 | 41619 |
| 1988 | 12 | 25 | 160 | 6975 | 11092 | 2011 | 478 | 1410 | 150 | 653 | 94 | 501 | 23561 |
| 1989 | 0 | 8 | 177 | 494 | 17396 | 63169 | 2990 | 294 | 4746 | 396 | 1560 | 498 | 91728 |
| 1990 | 0 | 37 | 79 | 552 | 463 | 5132 | 17998 | 265 | 71 | 238 | 0 | 411 | 25246 |
| 1991 | 0 | 101 | 374 | 388 | 697 | 148 | 3524 | 5046 | 82 | 37 | 12 | 20 | 10429 |
| $(1992)$ | 29 | 29 | 73 | 69 | 59 | 54 | 47 | 143 | 52 | 0 | 0 | 25 | 580 |
| 1993 | 0 | 17 | 45 | 1860 | 370 | 279 | 278 | 88 | 263 | 95 | 0 | 9 | 3304 |
| $1994)$ | 0 | 87 | 0 | 29 | 261 | 143 | 87 | 145 | 0 | 29 | 0 | 0 | 781 |
| 1995 | 0 | 7 | 2523 | 1125 | 370 | 1730 | 450 | 141 | 460 | 36 | 217 | 125 | 7184 |
| 1996 | 0 | 0 | 0 | 502 | 258 | 295 | 255 | 60 | 77 | 0 | 0 | 0 | 1447 |
| 1997 | 0 | 0 | 37 | 28 | 1508 | 1611 | 566 | 236 | 140 | 0 | 0 | 19 | 4145 |
| 1998 | 63 | 240 | 192 | 21 | 45 | 462 | 435 | 156 | 43 | 0 | 0 | 0 | 1657 |

Table 5.1.4 Cod off Greenland (offshore component). Age disaggregate abundance indices (1000), 1982-1998. *) calculated proportionally using age compositions reported by the ICES Working Group on Cod Stocks off East Greenland (ICES 1984/Assess:5). () incomplete sampling.

| YEAR | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ | TOTAL |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1982 | 0 | 176 | 1120 | 34309 | 13126 | 34497 | 10747 | 2987 | 704 | 2298 | 164 | 211 | 100339 |
| $* 1983$ | 0 | 0 | 1880 | 3420 | 27627 | 6147 | 13094 | 3169 | 1294 | 582 | 871 | 1140 | 58198 |
| $(1984)$ | 186 | 23 | 111 | 3433 | 2200 | 11051 | 1703 | 3602 | 498 | 303 | 65 | 95 | 23270 |
| 1985 | 1122 | 41209 | 2090 | 1015 | 8454 | 4651 | 9037 | 1154 | 2589 | 302 | 72 | 79 | 71774 |
| 1986 | 0 | 11973 | 118169 | 6067 | 1583 | 10256 | 3371 | 6354 | 673 | 2043 | 139 | 236 | 160864 |
| 1987 | 0 | 330 | 59259 | 710355 | 28120 | 6956 | 13580 | 2089 | 5568 | 180 | 1389 | 161 | 827987 |
| 1988 | 446 | 279 | 3450 | 108795 | 522565 | 7446 | 1094 | 2544 | 812 | 1963 | 128 | 540 | 650062 |
| 1989 | 12 | 212 | 2760 | 8112 | 187865 | 237701 | 5858 | 294 | 5005 | 436 | 1701 | 503 | 450459 |
| 1990 | 158 | 84 | 1093 | 3452 | 1735 | 27252 | 24962 | 312 | 71 | 238 | 0 | 416 | 59773 |
| 1991 | 0 | 346 | 582 | 823 | 1957 | 308 | 5626 | 5402 | 88 | 37 | 12 | 20 | 15201 |
| $(1992)$ | 29 | 218 | 1546 | 296 | 107 | 143 | 47 | 171 | 52 | 0 | 0 | 25 | 2634 |
| 1993 | 0 | 27 | 877 | 2406 | 390 | 307 | 284 | 88 | 263 | 95 | 0 | 9 | 4746 |
| $(1994)$ | 0 | 373 | 45 | 228 | 299 | 148 | 87 | 150 | 0 | 29 | 0 | 0 | 1359 |
| 1995 | 0 | 7 | 2764 | 1141 | 392 | 1730 | 450 | 141 | 460 | 36 | 217 | 125 | 7463 |
| 1996 | 0 | 147 | 11 | 1140 | 268 | 295 | 265 | 60 | 77 | 0 | 0 | 0 | 2263 |
| 1997 | 0 | 12 | 64 | 43 | 1771 | 1611 | 566 | 236 | 140 | 0 | 0 | 19 | 4462 |
| 1998 | 111 | 1882 | 192 | 21 | 50 | 487 | 435 | 156 | 43 | 0 | 0 | 0 | 3377 |

Table 5.1.5 Cod off West Greenland (offshore component). Weighted mean weight (g., by stratum abundance) at age 110 years, 1982, 1984-1998.

|  |  |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| YEAR | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 9 | 9 |
| 1982 | 45 | 191 | 570 | 921 | 1770 | 2163 | 2962 | 4080 | 5083 | 7008 |  |
| 1983 |  |  |  |  |  |  |  |  |  |  |  |
| 1984 | 68 | 137 | 384 | 799 | 1359 | 2010 | 2922 | 3611 | 4498 | 6208 |  |
| 1985 | 97 | 168 | 571 | 987 | 1481 | 2023 | 2941 | 3315 | 4531 | 3909 |  |
| 1986 | 74 | 332 | 504 | 1130 | 1669 | 2182 | 2696 | 3713 | 3880 | 4147 |  |
| 1987 | 36 | 223 | 699 | 925 | 1195 | 2163 | 2250 | 3035 |  | 3563 |  |
| 1988 | 38 | 218 | 457 | 1021 | 1148 | 1948 | 2986 | 2779 | 3711 | 4122 |  |
| 1989 | 36 | 170 | 454 | 699 | 1248 | 1192 |  | 2947 | 3292 | 5346 |  |
| 1990 | 40 | 115 | 340 | 598 | 906 | 1373 | 1111 |  |  |  |  |
| 1991 | 52 | 142 | 354 | 659 | 954 | 1379 | 1768 | 920 |  |  |  |
| 1992 | 80 | 235 | 371 | 632 | 935 |  | 2057 |  |  |  |  |
| 1993 | 41 | 133 | 406 | 501 | 921 | 921 |  |  |  |  |  |
| 1994 | 45 | 129 | 459 | 609 | 1111 |  | 2461 |  |  |  |  |
| 1995 |  | 186 | 329 | 482 |  |  |  |  |  |  |  |
| 1996 | 42 | 104 | 512 | 753 |  | 3645 |  |  |  |  |  |
| 1997 | 68 | 334 | 375 | 994 |  |  |  |  |  |  |  |
| 1998 | 50 |  |  | 1567 | 1516 |  |  |  |  |  |  |

Table 5.1.6 Cod off East Greenland (offshore component). Weighted mean weight (g., by stratum abundance) at age 110 years, 1982, 1984-1998. () Incomplete sampling.

| YEAR | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1982 |  | 424 | 770 | 1422 | 2333 | 3507 | 4607 | 5521 | 6584 | 6504 |
| 1983 |  |  |  |  |  |  |  |  |  |  |
| $(1984)$ | 104 | 351 | 801 | 1799 | 2216 | 3050 | 3892 | 4969 | 4639 | 5456 |
| 1985 | 112 | 438 | 1045 | 1772 | 3163 | 3374 | 4471 | 4745 | 5662 | 7851 |
| 1986 | 89 | 375 | 916 | 1717 | 2677 | 4229 | 4147 | 4960 | 5969 | 6731 |
| 1987 | 34 | 283 | 652 | 916 | 1747 | 3605 | 4519 | 5107 | 5988 | 7556 |
| 1988 | 921 | 278 | 741 | 1797 | 3089 | 4305 | 4720 | 6522 | 6908 | 7441 |
| 1989 | 68 | 255 | 530 | 1124 | 2558 | 3715 | 3958 | 4985 | 5652 | 6203 |
| 1990 | 53 | 424 | 517 | 1150 | 1636 | 2637 | 3899 | 5707 | 6735 |  |
| 1991 | 87 | 195 | 411 | 1203 | 1896 | 2330 | 3382 | 4359 | 5186 | 10198 |
| $(1992)$ | 22 | 416 | 683 | 1706 | 3175 | 3028 | 3271 | 3469 |  |  |
| 1993 | 82 | 353 | 732 | 1363 | 2363 | 2860 | 3609 | 4739 | 6159 |  |
| $(1994)$ | 41 |  | 1111 | 2271 | 3054 | 4791 | 4827 |  | 5743 |  |
| 1995 | 68 | 250 | 445 | 1521 | 2949 | 4179 | 5248 | 5923 | 9646 | 7442 |
| 1996 |  |  | 744 | 1944 | 2462 | 3592 | 5148 | 5847 |  |  |
| 1997 |  | 104 | 1525 | 1931 | 3454 | 4062 | 4562 | 4685 |  |  |
| 1998 | 101 | 155 | 1045 | 1779 | 3028 | 3541 | 3858 | 6745 |  |  |

Table 5.1.7 Cod off Greenland (offshore component). Weighted mean weight (g., by stratum abundance) at age 1-10 years, 1982, 1984-1998. () Incomplete sampling.

| YEAR | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1982 | 45 | 240 | 574 | 988 | 1803 | 2316 | 3169 | 4346 | 5978 | 6784 |
| 1983 |  |  |  |  |  |  |  |  |  |  |
| 1984 | 96 | 277 | 547 | 1098 | 1468 | 2531 | 3358 | 4724 | 4545 | 5791 |
| 1985 | 97 | 240 | 626 | 1219 | 2217 | 2300 | 3974 | 4413 | 5594 | 6811 |
| 1986 | 75 | 333 | 619 | 1334 | 1907 | 2863 | 3195 | 4762 | 5510 | 6304 |
| 1987 | 36 | 237 | 698 | 923 | 1276 | 2351 | 2741 | 3616 | 5988 | 6504 |
| 1988 | 118 | 221 | 475 | 1037 | 1672 | 2978 | 3947 | 3470 | 4774 | 6560 |
| 1989 | 37 | 176 | 459 | 738 | 1596 | 2480 | 3958 | 4880 | 5436 | 6132 |
| 1990 | 46 | 138 | 369 | 746 | 1043 | 2284 | 3479 | 5707 | 6735 |  |
| 1991 | 62 | 176 | 381 | 853 | 1407 | 1975 | 3276 | 4124 | 5186 | 10198 |
| 1992 | 72 | 244 | 443 | 1224 | 1781 | 3028 | 3072 | 3469 |  |  |
| 1993 | 67 | 144 | 658 | 1319 | 2232 | 2819 | 3609 | 4739 | 6159 |  |
| 1994 | 44 | 129 | 542 | 2060 | 2988 | 4791 | 4748 |  | 5743 |  |
| 1995 | 68 | 244 | 443 | 1463 | 2949 | 4179 | 5248 | 5923 | 9646 | 7442 |
| 1996 | 42 | 104 | 615 | 1899 | 2462 | 3594 | 5148 | 5847 |  |  |
| 1997 | 68 | 180 | 1000 | 1761 | 3454 | 4062 | 4562 | 4685 |  |  |
| 1998 | 56 | 155 | 1045 | 1761 | 2923 | 3541 | 3858 | 6745 |  |  |

Table 5.1.8 Nominal catch (tonnes) of Cod in NAFO Sub-area 1, 1985-1998 as officially reported to NAFO.

| Country | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Faroe Islands | - | - | - | - | - | 51 | 1 |
| Germany | 2.170 | 41 | 55 | 6.574 | 12.892 | 7.515 | 96 |
| Greenland | 12.651 | 6.549 | 12.284 | 52.135 | 92.152 | 58.816 | 20.238 |
| Japan | 54 | 11 | 33 | 10 | - | - | - |
| Norway | 1 | 2 | 1 | 7 | 2 | 948 | - |
| UK | - | - | - | 927 | 3780 | 1.631 | - |
| Total | 14.876 | 6.603 | 12.373 | 59.653 | 108.826 | 68.961 | 20.335 |
| WG estimate | - | - | - | $62.653{ }^{2}$ | $111.567^{3}$ | $98.474{ }^{4}$ | $\cdots$ |
| Country | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | $1998{ }^{1}$ |
| Faroe Islands | - | - | - | - | - | - |  |
| Germany | - | - | - | - | - | - |  |
| Greenland | 5.723 | 1.924 | 2.115 | 1.710 | 948 | 904 | 319 |
| Japan | - | - | - | - | - | . |  |
| Norway | - | - | - | - | - | - |  |
| UK | - | - | - | - | - | - |  |
| Total | 5.723 | 1.924 | 2.115 | 1.710 | 948 | 904 | 319 |
| WG estimate | - | - | - | - | . | - | - |

[^3]Table 5.1.9 Nominal catch (tonnes) of cod in ICES Sub-area XIV, 1985-1998 as officially reported to ICES.

| Country | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Faroe Islands | - | 86 | - | 12 | 40 | - |  |
| Germany | 2.006 | 4.063 | 5.358 | 12.049 | 10.613 | 26.419 | 8.434 |
| Greenland | 106 | 606 | 1.550 | 345 | 3.715 | 4.442 | 6.677 |
| Iceland | - | - | 1 | 9 | - | - | . |
| Norway | - | - | - | - | - | 17 | 828 |
| Russia |  |  |  |  | - | . | - |
| UK (Engl. and | - | - | - | - | 1.158 | 2.365 | 5.333 |
| Wales) |  |  |  |  |  |  |  |
| UK (Scotland) | - | - | - | - | 135 | 93 | 528 |
| United Kingdom | - | - | - | - | - | - | - |
| Total | 2.112 | 4.755 | 6.909 | 12.415 | 15.661 | 33.336 | 21.800 |
| WG estimate | - | - | - | $9.457{ }^{2}$ | $14.669^{3}$ | $33.513^{4}$ | $21.818^{5}$ |
| Country | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | $1998{ }^{6}$ |
| Farce Islands | - | - | 1 | - | - | - |  |
| Germany | 5.893 | 164 | 24 | 22 | 5 | 39 | 128 |
| Greenland | 1.283 | 241 | 73 | 29 | 5 | 32 | 14 |
| Iceland | 22 | - | - | 1 | - | - |  |
| Norway | 1.032 | 122 | 14 | + | $1^{6}$ | $15^{6}$ | 1 |
| Russia | 126 | - | - | - | - | - |  |
| UK (Engl. and | 2.532 | 163 | - | - | - | - |  |
| Wales) |  |  |  |  |  |  |  |
| UK (Scotland) | 463 | 46 | - | - | - | - |  |
| United Kingdom | - | - | 296 | 232 | 181 | 284 | 149 |
| Total | 11.351 | 736 | 408 | 284 | 192 | 370 | 292 |
| WG estimate | - | - | - | - | - | - | - |

${ }^{1}$ ) Includes estimates of discards and catches reported in Sub-area XII
${ }^{2}$ ) Excluding 3,000 t assumed to be from NAFO Division 1 F and including 42 t taken by Japan
${ }^{3}$ ) Excluding 2,741 tassumed to be from NAFO Division 1F and including 1,500 t reported from other areas assumed to be from Sub-area XIV and including 94 t by Japan and 155 t by Greenland (Horsted, 1994)
${ }^{4}$ ) Includes 129 t by Japan and 48 t additional catches by Greenland (Horsted, 1994)
${ }^{5}$ ) Includes 18 t by Japan
${ }^{6}$ ) Provisional data

Table 5.1.10 Cod off Greenland (offshore component). Catches ( $t$ ) as used by the Working Group, inshore and offshore by gear based on Horsted (1994).

| Year | inshore | Offshore | offshore | offshore | total |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | Miscellaneous | OBT | total |  |
| 1955 | 19787 | 117238 | 136028 | 253266 | 273053 |
| 1956 | 21063 | 121876 | 193593 | 315469 | 336532 |
| 1957 | 24790 | 104632 | 151666 | 256298 | 281088 |
| 1958 | 26684 | 121636 | 182516 | 304152 | 330836 |
| 1959 | 28184 | 97457 | 128777 | 226234 | 254418 |
| 1960 | 28708 | 115273 | 122859 | 238132 | 266840 |
| 1961 | 35164 | 140110 | 192007 | 332117 | 367281 |
| 1962 | 36283 | 168092 | 273598 | 441690 | 477973 |
| 1963 | 24173 | 138451 | 289143 | 427594 | 451767 |
| 1964 | 23106 | 118495 | 243714 | 362209 | 385315 |
| 1965 | 25209 | 133855 | 225150 | 359005 | 384214 |
| 1966 | 29956 | 149234 | 200086 | 349320 | 379276 |
| 1967 | 28277 | 132415 | 293519 | 425934 | 454211 |
| 1968 | 21215 | 64286 | 323800 | 388086 | 409301 |
| 1969 | 22119 | 36276 | 174031 | 210307 | 232426 |
| 1970 | 16114 | 16101 | 102196 | 118297 | 134411 |
| 1971 | 14039 | 25450 | 113207 | 138657 | 152696 |
| 1972 | 14753 | 29765 | 94730 | 124495 | 139248 |
| 1973 | 9813 | 16740 | 46141 | 62881 | 72694 |
| 1974 | 8706 | 18086 | 27695 | 45781 | 54487 |
| 1975 | 6779 | 13363 | 33692 | 47055 | 53834 |
| 1976 | 5446 | 8710 | 32157 | 40867 | 46313 |
| 1977 | 14964 | 10081 | 21726 | 31807 | 46771 |
| 1978 | 20295 | 46 | 26059 | 26063 | 46358 |
| 1979 | 36785 | 36 | 20056 | 20092 | 56877 |
| 1980 | 40122 | 0 | 57584 | 57584 | 97706 |
| 1981 | 40021 | 0 | 40266 | 40266 | 80287 |
| 1982 | 26934 | 26689 | 2020 | 49827 | 51847 |
| 1983 | 2689781 |  |  |  |  |
| 1984 | 19967 | 3339 | 40991 | 44330 | 71019 |
| 1985 | 8488 | 5 | 22358 | 22363 | 42330 |
| 1986 | 5320 | 1 | 8499 | 8500 | 16988 |
| 1987 | 8445 | 2 | 6036 | 6038 | 11358 |
| 1988 | 22814 | 1 | 10836 | 10837 | 19282 |
| 1989 | 38788 | 7 | 49089 | 49096 | 71910 |
| 1990 | 29513 | 2 | 85946 | 85948 | 124736 |
| 1991 | 18950 | 948 | 99535 | 100483 | 129996 |
| 1992 | 5723 | 0 | 22966 | 22966 | 41916 |
| 1993 | 1924 | 0 | 11351 | 11351 | 17074 |
| 1994 | 2115 | 0 | 736 | 736 | 2660 |
| 1995 | 1739 | 0 | 408 | 408 | 2523 |
| 1996 | 953 | 0 | 254 | 254 | 1993 |
| 1997 | 936 | 0 | 187 | 187 | 1140 |
| 1998 | 333 | 0 | 278 | 338 | 1248 |
|  |  |  | 278 | 611 |  |
|  |  |  |  |  |  |

Table 5.1.11 Cod off Greenland (offshore component). Input parameters in for calculations of yield and spawning stock biomass per recruit.

| Age | WEIGHT $(\mathrm{kg})$ | MATURITY | Exploit. pattern | M |
| ---: | ---: | :--- | :--- | :--- | :--- |
| 3 | 0.815 | 0.001 | 0.154 | 0.2 |
| 4 | 1.255 | 0.004 | 0.425 | 0.2 |
| 5 | 1.863 | 0.15 | 0.643 | 0.3 |
| 6 | 2.549 | 0.449 | 0.931 | 0.3 |
| 7 | 3.295 | 0.795 | 1.07 | 0.3 |
| 8 | 4.157 | 0.946 | 1.145 | 0.3 |
| 9 | 4.967 | 0.99 | 1.267 | 0.3 |
| 10 | 5.836 | 1 | 1.027 | 0.3 |
| 11 | 6.447 | 1 | 1.027 | 0.3 |
| 12 | 7.09 | 1 | 1.027 | 0.3 |



Figure 5.1.1 Cod off Greenland (offshore component). Survey area, stratification and position of hauls carried out in 1998.


Figure 5.1.2 Cod off Greenland (offshore component). Aggregated survey abundance indices for West and East Greenland and spawning stock size, 1982-98. *) incomplete survey coverage.


Figure 5.1.3 Cod off Greenland (offshore component). Aggregated survey biomass indices for West and East Greenland and spawning stock biomass, 1982-98. *) incomplete survey coverage.

AGE 1


AGE 2


AGE 3


AGE 4


AGE 5



AGE 7


AGE 8


AGE 9


AGE 10


Figure 5.1.4 Cod off Greenland (offshore component). Weighted mean weight at age 1-10 years for West, East Greenland and total, 1982-98.


Figure 5.1.5 Cod off Greenland. Catches $1955-98$ as used by the Working Group, inshore and offshore by gear (Horsted, 1994).


Figure 5.1.6 Greenland cod (offshore component). Trends in yield and fishing mortality.


Figure. 5.1.7 Greenland cod (offshore component). Trends in spawning stock biomass (SSB) and recruitment.


Figure 5.1.8 Greenland cod (offshore component). Long term yield and spawning stock biomass. $\mathrm{F}_{0.1}$ reference age 5$8=0.297 ; \mathrm{F}_{\text {max }}$ reference age $5-8=0.722$.


Figure 5.1.9 Greenland cod (offshore component). Spawning stock-recruitment plot for year classes 1955-89 and fitted recruitment curves. $\mathrm{F}_{\text {mat }}=0.09$ corresponding to a $\mathrm{SSB} / \mathrm{R}=4.44 \mathrm{~kg} ; \mathrm{F}_{\text {high }}=0.59$ corresponding to a $S S B / R=0.98 \mathrm{~kg}$.

In the last decade, the inshore cod fishery at West Greenland has contained cod from two different spawning areas. Icelandic cods spawned off South-western Iceland which in some years are carried by the Irminger current to settle off South Greenland, and local, possibly self-sustained, fjord populations. Spawning cod are found in several fjords of the West Greenland, especially in NAFO Division 1B, 1C and 1D.

### 5.2.1 Trends in Landings and Effort

Historically, the inshore landings have been of limited importance as the inshore fisheries have accounted for only 5$10 \%$ of the total international catch. Annual landings of $15,000-20,000 \mathrm{t}$ have been taken inshore during the period 1955-1973. Since then the landings have been varying consistently with the recruitment of strong year classes to the offshore fishery. High landings of about $50,000 \mathrm{t}$ in 1980 and 1989 have been followed by periods of very low landings. In recent years the landings has decreased dramatically from about 2000 tons yearly in 1993-1995 to only 319 tons in 1998 (Table 5.1.1.2).

The inshore fishery takes place from small vessels (<40 GRT). Pound nets, gillnets and handlines are used to take about $95 \%$ of the inshore catch.

A commercial pound net CPUE series is available since 1992 (Table 5.2.1). The mean catch pr pound net setting has decreased from 804 t in 1992 to 248 t in 1998.

### 5.2.2 West Greenland young cod survey

A survey using gangs of gill nets with different mesh-sizes ( $16.5,18,24,28$, and 33 mm ) has been conducted since 1985. The objective of the program is to assess the abundance and distribution of pre recruit cod in inshore areas of Greenland. The survey has usually been carried out in three inshore areas off West Greenland: Qaqortoq (NAFO Div. 1F), Nuuk (Div. 1D) and Sisimiut (Div. 1B). The Greenland inshore cod stock is not distributed in the Qaqortoq area, but occasional inflow of pre recruited cod from East to West Greenland shows up here.

Analysis of the selectivity of the fleet of gill-nets have shown, that selection is best towards age 2 cod, whereas only the larger individuals of the age 1 cod are adequately selected. In the 1998 -survey a total of 174 net settings were made. Nets were sat at bottom and it was attempted to set the fleets at constant depths and to divide the survey effort evenly on the depth zones of $0-5 \mathrm{~m}, 5-10 \mathrm{~m}, 10-15 \mathrm{~m}$, and $15-20 \mathrm{~m}$.

An index of recruitment is calculated as the mean catch of 2-year old cod per 100 hours net setting taken by all fivemesh sizes. The recruitment index is shown in Figure 5.2 .1 and reveals a strong 1985 and 1987 year-class, a moderate 1990- and 1993 year class and three successive weak year-classes in recent years.

### 5.2.3 Assessment

The available data for the Greenland inshore cod is not adequate to allow for a detailed analytical assessment of the stock, but the results of a general production model are presented. A Schaefer general production model was fitted to the Greenland inshore cod landing data using the commercial pound net CPUE results for 1993 to 1997 as an index of stock biomass. The model was fitted using Excel Solver to minimise the sum of squared residuals between the observed CPUE and the predicted CPUE where the predicted CPUE is given by:

```
CPUEpredr = Bl * q
And the biomass is:
Bt+1}=\mp@subsup{\textrm{B}}{\textrm{t}}{+}+(\mp@subsup{r}{}{*}\mp@subsup{\textrm{B}}{\imath}{*}(1-\textrm{B}/\textrm{k}))-\mp@subsup{\textrm{C}}{t}{
Where C is the catch
```

Parameter values obtained last year were used as starting values. Parameter values achieved from the general production model are shown in Table 5.2.2. Observed and predicted CPUE-values are shown in figure 5.2.2.

The model parameters are not very stable and needs to be constrained. The initial biomass $\mathrm{B}_{1}$ was constrained to be lower than the virgin biomass ( k , r was constrained to be between zero and one, while q was constrained to be higher than 0,001 . The model implies an FMSY of about 0.15 , but the results should be used with caution as they are based on very limited data. In addition the model does not account for the present recruitment failure of the stock

No specific values can be put forward as reference points

### 5.2.5 Management considerations

The inshore fishery exploiting possible self-sustained local fjord populations off West Greenland has historically been small. The data presented indicate that the stock is continuously declining. The stock has undergone a series of recruitment failures in recent years. The three latest year classes are all estimated very poor in the juvenile survey. No fishing should take place until a substantial increase in recruitment and biomass is evident.

Table 5.2.1 Greenland cod (inshore component) Landings, observe and predicted CPUE based on data from inshore pound net fishery.

| Year | Predicted <br> Biomass | Predicted <br> CPUE | Observed <br> CPUE | Ln (CPUE/B) | Observed <br> Catch |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1993 | 6120 | 936 | 730 | -2.13 | 1924 |
| 1994 | 5038 | 771 | 768 | -1.88 | 2215 |
| 1995 | 3661 | 560 | 600 | -1.81 | 1710 |
| 1996 | 2694 | 412 | 536 | -1.61 | 948 |
| 1997 | 2363 | 362 | 423 | -1.72 | 904 |
| 1998 | 2021 | 309 | 248 | -2.10 | 326 |
| 1999 | $2195^{*}$ |  |  |  |  |

*predicted

Table 5.2.2 Input values and parameter values obtained form general production model.

| Year of assess. | Virgin biomass | Rate of increase | $q$ | Init. biomass |
| :---: | :---: | :---: | :---: | :---: |
| 1998 | 12001 | 0,303 | 0,11 | 7428 |
| 1999 | 11268 | 0,300 | 0,15 | 6120 |



Figure 5.2.1 CPUE (number of age 2 cod caught per 100 hours net setting) in the Greenland Young cod survey 1987-1997.


Figure 5.2.2 Greenland cod (inshore component) Observed and model-predicted CPUE rates

### 6.1.1 Landings

Total annual landings in Divisions Va, Vb and Sub-area XIV are presented for the years 1981-1998 in Tables 6.1.16.1.5. During the period 1982-1986, landings were stable at about $31000-34000 \mathrm{t}$. In the years $1987-1989$ landings increased to about 62000 t , followed by a decrease to about 35000 t in 1992. The landings increased to 41000 t in 1993, but have thereafter decreased to 20000 t in 1998. Catches not officially reported to ICES have been included in the assessment. Landings within Icelandic EEZ have traditionally been reported as caught in Division Va. Therefore, when referring to Division Va (or Icelandic waters) the area covers both Va and the Icelandic EEZ part of XIVb. Landings and fishery relates to the Greenland EEZ part of XIVb as well as international waters on the Reykjanes Ridge.

Catches in Icelandic waters have, due to quota regulations, decreased from 37000 t in 1990 to 10700 t in 1998. Faroese catches in Vb increased from a level of about 1000 t in 1981-1991 to 6500 t in 1996, whereafter it decreased to about 3800 t in 1998. Catches in division XIVb have increased from below 1000 t in 1987-1991 to 8500 t in 1997, but have decreased again to 5900 t in 1998.

### 6.1.2 Fisheries and fleet

Most of the fishery for Greenland halibut in Divisions Va, Vb and XIVb is a directed fishery, only minor catches in Va by Iceland, and in XIVb by Germany and the UK comes partly from a redfish fishery. A detailed description of the fishery performance and areas is given in ICES CM 1998/ACFM 19. No changes occur for 1998 except that no catches are reported on the Reykjanes Ridge.

### 6.2 Trends in Effort and CPUE

Catch rates of Icelandic bottom trawlers decreased for all fishing grounds during 1990-1995, but stabilised in 19951997. In 1998 an increase of $50 \%$ in CPUE was observed for all fishing grounds, partly due to a drastic reduction of effort. For the years 1990-1998 CPUE on the western fishing grounds have been about two to three times higher than for the other fishing grounds.

Indices of CPUE for the Icelandic trawl fleet for the period 1985-1998 (Table 6.2.1) are estimated from a GLIM multiplicative model, taking into account changes in the Icelandic trawl catch due to vessel, statistical square, month and year effects. All hauls with Greenland halibut exceeding $50 \%$ of the total catch were included in the CPUE estimation. The CPUE indices from the Icelandic trawling fleet in Division Va were used to estimate the total effort for each year ( y ) for all the fleets operating on Greenland halibut in area V and XIV according to:

$$
E_{y, V \& X I V}=Y_{y, V \& X V} / C P U E_{y, V a_{\text {travi }}}
$$

where E is total effort, Y are the total reported landings in region V and XIV.

The total effort increased up to 1989, decreased somewhat in the next two years, but increased steeply since 1991 to a maximum in 1997. In 1998 the effort was at the level of 1991. The CPUE was relatively stable in 1985-1989, but has declined sharply since then to a historic low in the last two years. The CPUE declined by $70 \%$ from 1989 to 1997 but in 1998 it was around $60 \%$ of the maximum value.

For division XIVb, CPUE from logbooks in the years 1991-1998 were standardised using a multiplicative model taking into account locality, fleet, season and year. CPUE increased from 1991 to 1993 thereafter it remains relatively stable. In the same period the calculated effort has increased continuously until 1996 but has declined by $20 \%$ since then. However, the fishery in XIVb is new and catches have increased from a level of less than 500 tons annually before 1991 to 5000 to 8000 tonnes in the last four years. The fishery was therefore assumed to be in the process of learning in the beginning of the CPUE Series. However, the stability in CPUE in recent years is in accordance with observations from the Icelandic fleet.

The data set comprising the age-length key for 1998 were from 2 different sources. One consisted of 120 samples (1346 otoliths) from the Icelandic trawl fleet and long line fleet operating in Icelandic water (Va-key). This key is from samples taken in 1997 since the WG determined that the age-length key from 1998 samples from Icelandic waters was unreliable due to: 1) limited number of otoliths analysed and, 2) discrepancy in the length at age between ages 5-10 and ages above 11 years old, resulting in no growth between year 1997 and 1998 for year classes 1987 and older. Using the 97 key to the 98 data was considered to be acceptable as low variation in length at age has been observed during 19951997. The other age-length key ( 758 otoliths) was from the East Greenland 1998 fall survey. These keys were used to obtain catch in number for the length samples for each of the following commercial fleets and areas:

| Gear | Area | Landings | No. samples | No. fish | Key |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Long line | Iceland | 590 | 20 | 356 | Va |
| Bottom trawl | Iceland-west | 8088 | 242 | 8088 | Va |
| Bottom trawl | Iceland-north \& east | 1195 | 14 | 1195 | Va |
| Bottom trawl | Iceland-southeast | 855 | 36 | 855 | Va |
| Gill Net (\&line) | Faroe Islands | 2867 | 3 | 548 | Va |
| Bottom trawl | Faroe Islands | 917 | 1 | 196 | Va |
| Long line | East Greenland | 609 | 0 | 0 | XIV |
| Bottom trawl | East Greenland | 4955 | 32 | 6167 | XIV |
| Total |  | 20076 | 348 | 17405 |  |

Length measurements from the Icelandic long line fleet were applied to the long line catch in East Greenland waters. The length-weight relationship used was $\mathrm{W}=0.01758 * \mathrm{~L}^{2.84387}$ for all fleets except the bottom trawl fleet in East Greenland water, where $\mathrm{W}=2.433^{*} 10^{-3} * \mathrm{~L}^{3.331}$ was used. The total catch in numbers (Table 6.3.1) were obtained from the sum of the above weighted with the catch within each group.

### 6.4 Weight at Age

The mean weight at age in 1998 (Table 6.4.1) was derived from the weighted average of the above groups. Apart from 1994 and 1996 to 1998 only Icelandic data has been available. Weights at age in the catch are also used as weights at age in the stock.

### 6.5 Maturity at Age

Data on maturity at age were available for the years 1982-1984 and 1991-1995, based on samples from the Icelandic trawl fishery. Data on maturity at age for the years 1985-1990 were not available. The maturity at age for these years was therefore estimated by averaging the data from the years 1982-1984 and 1991 (Table 6.5.1). Due to unreliable data for 1994, 1993 data were applied to 1994. The data on maturity for 1996 and 1997 were based on information from the Icelandic October groundfish survey and the data for 1998 from the Icelandic October groundfish survey and the East Greenland June/July groundfish survey.

### 6.6 Stock Assessment

### 6.6.1 Tuning and estimates of fishing mortalities

Age-disaggregated CPUE values for age groups 7-12 over the period 1985-1998, obtained from the Icelandic trawling fleet operating in Division Va, were used in the XSA tuning process with the same settings as in last year stock assessment. The diagnostics are presented in Table 6.6.1.1.

The terminal fishing mortalities from the accepted XSA run were used to run a traditional VPA. Natural mortality was assumed to be 0.15 and the proportions of F and M before spawning were set to 0 . The results of this run are given in Tables 6.6.1.2.-4. and Figures 6.6.1.1 C and D.

Spawning stock biomass is shown in Table 6.6.1.4 and Figure 6.6.1.1.D. The spawning stock was between 70 and 80000 t between 1978-1983, and increased to a maximum of 122000 t in 1988 . Since then it has declined to a low of 56000 t in 1998.

Estimates of recruitment at age 5 are shown in Table 6.6.1.4 and Figure 6.6.1.1.D. The long term average for the period 1975-1998 is 31 million fish. The 1980 and 1981 year classes are the highest on record at about 46 million. Since then there has been a decline in recruitment with the size of the 1986 year class and onwards being below average. Estimates of the more recent year classes of 1992 and 1993 are thought to be unreliable, since they are just entering the fisheries and calculated VPA stock numbers thus based on few numbers.

### 6.7 Prediction of Catch and Biomass

### 6.7.1 Input data

The input data for the short term prediction are given in Table 6.7.1.1. Mean weight at age is average from 1996-98 and the exploitation pattern is average fishing mortalities from 1996-1998 rescaled to the level of 1998. Maturity at age is the average of 1996-1998. Natural mortality was set to 0.15 and the proportions of F and M before spawning were set to 0 . Year classes 1994-96 were set to the lower quartile value of the recruitment of the 1970-1991 year classes. This is a reflection of the recruitment being below average since 1986 year-class.

Since TAC for the Greenland EEZ was not reached in 1998 and since in the Icelandic area the fishing is regulated not to exceed 10000 t for the current fishing year, a catch constraint of 20000 t was applied to 1999 . This is based on the expectancy that the TAC constraint in Iceland will hold and on the assumption that the catch in other areas remains the same as in 1998.

The Y/R calculation uses the mean weight and maturity at age averaged for the period 1975-1998. The exploitation pattern is based on an average exploitation pattern over the period 1975-1998 rescaled to the level of 1998 (Table 6.7.1.2).

### 6.7.2 Biological reference points

ACFM proposed a $B_{\text {lim }}$ as $B_{\text {loss }}=50,000 t$. This is the estimated SSB in the beginning of the 1975-1997 data series $B_{p a}$ of 80000 t was derived by using $\mathrm{B}_{\mathrm{pa}}=\mathrm{B}_{\text {lim }} \mathrm{e}^{1.645 \sigma}$, where $\sigma=0.3$. $\mathrm{F}_{\mathrm{pa}}$ was defined as $\mathrm{F}_{\mathrm{med}}=0.36$.

### 6.7.3 Projections of catch and biomass

At the beginning of 1999, the total stock is estimated to be 133000 t , and the spawning stock 59000 t (Table 6.7.3.1). The catch prediction of 20000 tonnes in 1999 will result in an estimated fishing mortality of 0.32 and a stock biomass and spawning stock biomass of 137000 and 61000 , respectively in the beginning of 2000 . Assuming an $F$ in 2000 to be the same as in 1999, results in the stock remaining in a stable, although low, state in the beginning of 2001. A linear reduction in F from the proposed $\mathrm{F}_{\mathrm{pa}}$ in accordance with the estimate of biomass in 2000 in relation to $\mathrm{B}_{\mathrm{pa}}$ and $\mathrm{B}_{\mathrm{lim}}$ results in $\mathrm{F}=0.14$ and catch of no more than 10000 t in 2000 .

### 6.8 Management Considerations

The Greenland halibut stock biomass has been falling rapidly from a peak in 1987. The fishing mortality has been substantially above $\mathrm{F}_{0.1}$ since 1986 and is currently at the level of $\mathrm{F}_{\mathrm{pa}}$. The SSB in 1998 and 1999 is also below the $\mathrm{B}_{\mathrm{pa}}$.

The stock recruitment relationship is highly negative (Figure 6.8.1), indicating that the highest recruitment is to be expected at low SSB. With respect to time, however, the recruitment in the beginning of the period (year classes 19751985) was above average but recruitment in the latter part of the period (year classes 1986-1990) have been below average, i.e., 38 and 23 million, respectively. The yield-per-recruit computations indicate that the obtainable yield at $\mathrm{F}_{\mathrm{pa}}$ is 1.06 kg per recruit. The average yield from the year classes $1975-85$ and $1986-95$ were or are thus not expected to exceed 40000 t and 24000 t , respectively.

Considerable reduction in catch is needed to rebuild the stock, necessitating strict management regulations.

No formal agreement on the management of the Greenland halibut exists among the three coastal states, Greenland, Iceland and the Faeroe Islands. The regulation schemes of those states have previously resulted in catches well in excess of advised TAC's by ICES.

### 6.9 Comments on the Assessment

Improved sampling of catch data is needed. At present information on age composition and maturation for all areas is insufficient. Improved precision and standardisation in methods of determination of maturity are badly needed. Short term predictions are based on assumed recruitment values. Indices of recruitment of Greenland halibut are an obvious prerequisite for sound management advice.

The use of only one commercial fleet for tuning is a cause of concern since the fleet covers only a part of the total fishing area. Fleet data from Division XIVb may hopefully be included in future assessments. Although Iceland and Greenland, respectively, have initiated, annual surveys, on the Greenland halibut grounds within Division Va and XIVb, they will not become of use in stock assessment until 2001.

Although some tagging experiments and stock discrimination analysis (DNA, electrophoresis, parasite burden, meristic studies) have been carried out in recent years, further understanding on the basic biology of the Greenland halibut components in the area is needed.

Table 6.1.1. GREENLAND HALIBUT. Nominal catches (tonnes) by countries, in Sub-areas V, XII and XIV 1981-1998, as officially reported to ICES.

| Country | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | - | - | - | - | - | - | 6 | + | - |
| Faroe Islands | 767 | 1532 | 1146 | 2502 | 1052 | 853 | 1096 | 1378 | 2319 |
| France | 8 | 27 | 236 | 489 | 845 | 52 | 19 | 25 | - |
| Germany | 3007 | 2581 | 1142 | 936 | 863 | 858 | 565 | 637 | 493 |
| Greenland | + | 1 | 5 | 15 | 81 | 177 | 154 | 37 | 11 |
| Iceland | 15457 | 28300 | 28360 | 30080 | 29231 | 31044 | 44780 | 49040 | 58330 |
| Norway | - | - | 2 | 2 | 3 | + | 2 | 1 | 3 |
| Russia | - | - | - | - | - | - | - | - | - |
| UK (Engl. and Wales) | - | - | - | - | - | - | - | - | - |
| UK (Scotland) | - | - | - | - | - | - | - | - | - |
| United Kingdom | - | - | - | - | - | - | - | - | - |
| Total |  |  | - | - | - | - | - | - | - |


| Country | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | $1996^{1}$ | $1997^{1}$ | $1998^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | - | - | - | - | - | - | 1 | - |  |
| Faroe Islands | 1803 | 1566 | 2128 | 4405 | 6241 | 3763 | 6148 | 4971 | - |
| France | - | - | 3 | 2 | - | - | 29 | 11 | 8 |
| Germany | 336 | 303 | 382 | 415 | 648 | 811 | 3368 | 3342 | 3404 |
| Greenland | 40 | 66 | 437 | 288 | 867 | 533 | 1162 | 1129 | - |
| Iceland | 36557 | 34883 | 31955 | 33987 | 27778 | 27383 | 22055 | 18569 | 10709 |
| Norway | 50 | 34 | 221 | 846 | $1173^{1}$ | 1810 | 2157 | 1939 | 1246 |
| Russia | - | - | 5 | - | - | 10 | 424 | 37 |  |
| UK (Engl. and Wales) | 27 | 38 | 109 | 811 | 513 | 1436 | 386 | - |  |
| UK (Scotland) | - | - | 19 | 26 | 84 | 232 | 25 | - |  |
| United Kingdom |  |  |  |  |  |  |  |  |  |
| Total | 38813 | 36890 | 35259 | 40780 | 37305 | 35978 | 35755 | 29998 | 15367 |
| Working Group estimate | 2 | 39326 | 37950 | 35423 | 40817 | 36958 | 36300 | 35825 | 30267 |

1) Provisional data
2) Working group best estimates.

Table 6.1.2. GREENLAND HALIBUT. Nominal catches (tonnes) by countries, in Division Va 1981-1998, as officially reported to ICES.

| Country | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Faroe Islands | 325 | 669 | 33 | 46 | - | - | 15 | 379 | 719 |
| Germany | - | - | - | - | - | - | - | - | - |
| Greenland | - | - | - | - | - | - | - | - | - |
| Iceland | 15455 | 28300 | 28359 | 30078 | 29195 | 31027 | 44644 | 49000 | 58330 |
| Norway | - | - | + | + | -2 | - | - | - | - |
| Total | 15780 | 28969 | 28392 | 30124 | 29197 | 31027 | 44659 | 49379 | 59049 |
| Working Group estimate | - | - | - | - | - | - | - | - | $59272^{2}$ |


| Country | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | $1998^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Faroe Islands | 739 | 273 | 23 | 166 | 910 | 13 | 14 | 26 |  |
| Germany | - | - | - | - | 1 | 2 | 4 | - | 9 |
| Greenland | - | - | - | - | 1 | - | - | - |  |
| Iceland | 36557 | 34883 | 31955 | 33968 | 27696 | 27376 | 22055 | 16766 | 10709 |
| Norway | - | - | - | - | - | - | - | - |  |
| Total | 37296 | 35156 | 31978 | 34134 | 28608 | 27391 | 22073 | 16792 | 10718 |
| Working Group estimate | $37308^{3}$ | $35413^{4}$ | - | - | - | - | - | - | $10737^{5}$ |

1) Provisional data
2) Includes 223 t catch by Norway.
3) Includes 12 t catch by Norway.
4) Includes additional catch of 257 t by Iceland.
5) Includes additional catch of 19 t by Iceland.

Table 6.1.3. GREENLAND HALIBUT. Nominal catches (tonnes) by countries, in Division Vb 1981-1998, as officially reported to ICES.


1) Provisional data
2) Includes $17 t$ taken by France
3) Includes 133 t taken in Division IIa (Faroese waters).
4) Includes 317 t taken in Division Ifa (Faroese waters) + France 12 t .
5) Includes 63 t taken in Division II (Faroese waters).
6) Quantity unknown 1989-1991
7) Includes $16 t$ by France
8) Includes 3661 t taken in by Faroe Islands.

Table 6.1.4. GREENLAND HALIBUT. Nominal catches (tonnes) by countries, in Sub-area XIV 1981-1998, as officially reported to ICES.

| Country | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Faroe Islands | - | - | - | - | - | 78 | 74 | 98 | 87 |
| Germany | 2893 | 2439 | 1054 | 818 | 636 | 745 | 456 | 595 | 420 |
| Greenland | + | 1 | 5 | 15 | 81 | 177 | 154 | 37 | 11 |
| Iceland | - | - | 1 | 2 | 36 | 17 | 136 | 40 | + |
| Norway | - | - | - | - | - | - | - | - | - |
| Russia | - | - | - | - | - | - | - | - | + |
| UK (Engl. and Wales) | - | - | - | - | - | - | - | - | - |
| UK (Scotland) | - | - | - | - | - | - | - | - | - |
| United Kingdom | - | - | - | - | - | - | - | - |  |
| Total | 2893 | 2440 | 1060 | 835 | 753 | 1017 | 820 | 770 | 518 |
| Working Group estimate | - | - | - | - | - | - | - | - | - |


| Country | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | $1998^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | - | - | - | - | - | - | 1 | + |  |
| Faroe Islands | - | - | - | 181 | 168 | 147 | 130 | 148 |  |
| Germany | 293 | 279 | 311 | 391 | 639 | 808 | 3343 | 3301 | 3395 |
| Greenland | 40 | 66 | 437 | 288 | 866 | 533 | 1162 | 1129 |  |
| Iceland | - | - | - | 19 | 82 | 7 | - | 1803 |  |
| Norway | 8 | 18 | 196 | 511 | 1120 | $1668^{1}$ | $1874^{9}$ | $1897^{1}$ | 1132 |
| Russia | - | - | 5 | - | - | 10 | 424 | 37 |  |
| UK (Engl. and Wales) | 27 | 38 | 108 | 796 | 513 | 1405 | 264 | 218 |  |
| UK (Scotland) | - | - | 18 | 26 | 84 | 205 | 13 | - |  |
| United Kingdom | - | - | - | - | - | - | - |  | 190 |
| Total | 368 | 401 | 1075 | 2212 | 3472 | $4783^{1}$ | 7211 | 8533 | 4717 |
| Working Group estimate | $736^{2}$ | $875^{3}$ | $1176^{4}$ | $2249^{5}$ | $3125^{6}$ | $5077^{7}$ | $7283^{8}$ | $8558^{11}$ | 5930 |

1) Provisional data
2) Includes 370 t catches taken by Japan
3) Includes 315 t catch taken by Japan and 159 t by other countries as reported to Greenland.
4) Indicates additional catches taken by Germany ( 96 t ) and UK ( 17 t) as reported to Greenland.
5) Indicates additional catches taken by Germany ( 37 t ), Norway ( 238 t ), UK ( 182 t ) and Japan ( 62 t ) as reported to Greenland.
6) Total reported to Greenlandic authorities are used in assessment: 159 t trawl (Norwegian charter), 205 t gillnets (Norwegian charter). 405t from Norway not included in working group estimate.
7) Includes 273 t offshore gillnets (Greenland charter)
8) Working group estimates as in Table 6.1.5. Includes 72 t by Germany
9) Inside 200 EEZ: 1505 t. Outsude 200 EEZ: 369 t.
10) Includes catches taken both inside and outside the 200 EEZ
11) Includes additional catch of 25 t as reported by Norwegian authorities ( 1858 tinside 200 EEZ , 64 toutside EEZ)

Table 6.1.5. GREENLAND HALIBUT. Nominal catches (tonnes) by countries in Sub-area XII 1996-1998, as officially reported to the ICES.

| Country | 1996 | 1997 | 1998 |
| :--- | ---: | ---: | ---: |
| Faroe Islands |  | 47 | - |
| Norway | 2 |  | - |
| Total | 2 | 47 | - |

Table 6.2.1.CPUE indices of the Icelandic trawl fleet estimated from a GLIM multiplicative model for the period 1985-1998.

| - cpue | \% change <br> in CPUE <br> between | years | landings | effort | \% change <br> in effort <br> between <br> years |
| ---: | ---: | ---: | ---: | ---: | ---: |
| year | 1.000 |  | 32075 | 32075 |  |
| 85 | 0.971 | -2.9 | 32984 | 33970 | 5.9 |
| 86 | 0.934 | -3.8 | 46622 | 49907 | 46.9 |
| 87 | 1.108 | 18.6 | 51118 | 46138 | -7.6 |
| 88 | -3.1 | 61396 | 57173 | 23.9 |  |
| 89 | 1.074 | -27.8 | 39326 | 50718 | -11.3 |
| 90 | 0.775 | 5.1 | 37950 | 46561 | -8.2 |
| 91 | 0.815 | -20.2 | 35423 | 54438 | 16.9 |
| 92 | 0.651 | -15.8 | 40817 | 74522 | 36.9 |
| 93 | 0.548 | -23.7 | 36958 | 88463 | 18.7 |
| 94 | 0.418 | -25.3 | 36300 | 116375 | 31.6 |
| 95 | 0.312 | -11.5 | 35826 | 129758 | 11.5 |
| 96 | 0.276 | 0.9 | 30267 | 108642 | -16.3 |
| 97 | 0.279 | 55.3 | 20493 | 47379 | -56.4 |
| 98 | 0.433 |  |  |  |  |

Table 6.3.1 Catch in number at age (Numbers in $\mathbf{1 0}^{\mathbf{- 3}}$ )

| YEAR. | 1975 | 1976 | 1977 | 1978 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 5 | 120 | 43 | 0 | 23 |  |  |  |  |  |  |
| 6 | 800 | 296 | 34 | 91 |  |  |  |  |  |  |
| 7 | 1775 | 584 | 671 | 347 |  |  |  |  |  |  |
| 8 | 1782 | 621 | 1727 | 1037 |  |  |  |  |  |  |
| 9 | 1259 | 431 | 2289 | 1214 |  |  |  |  |  |  |
| 10 | 926 | 240 | 834 | 848 |  |  |  |  |  |  |
| 11 | 464 | 121 | 420 | 567 |  |  |  |  |  |  |
| 12 | 459 | 86 | 423 | 312 |  |  |  |  |  |  |
| 13 | 279 | 37 | 174 | 232 |  |  |  |  |  |  |
| 14 | 193 | 32 | 120 | 218 |  |  |  |  |  |  |
| 15 | 137 | 14 | 28 | 114 |  |  |  |  |  |  |
| +gp. | 85 | 9 | 141 | 204 |  |  |  |  |  |  |
| TOTALNUM. | 8279 | 2514 | 6861 | 5207 |  |  |  |  |  |  |
| TONSLAND. | 23494 | 6045 | 16578 | 14349 |  |  |  |  |  |  |
| SOPCOF \% | 126 | 100 | 100 | 100 |  |  |  |  |  |  |
| Catch in number at age (Numbers in 10-3) |  |  |  |  |  |  |  |  |  |  |
| YEAR. | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 5 | 29 | 47 | 26 | 8 | 10 | 83 | 125 | 245 | 182 | 129 |
| 6 | 197 | 502 | 158 | 300 | 240 | 277 | 441 | 612 | 3123 | 742 |
| 7 | 1605 | 1536 | 580 | 1140 | 1611 | 891 | 1018 | 1033 | 4863 | 2068 |
| 8 | 2253 | 2630 | 1160 | 2451 | 2651 | 2139 | 2295 | 1942 | 2586 | 2985 |
| 9 | 3090 | 3126 | 1430 | 2646 | 3060 | 3568 | 3454 | 2983 | 2156 | 3166 |
| 10 | 1693 | 2324 | 1764 | 2456 | 2443 | 2800 | 2749 | 3097 | 3476 | 2966 |
| 11 | 880 | 1739 | 1299 | 1803 | 1693 | 1825 | 1452 | 1683 | 1847 | 1848 |
| 12 | 394 | 849 | 664 | 963 | 978 | 1134 | 627 | 820 | 1829 | 1761 |
| 13 | 246 | 578 | 435 | 609 | 424 | 588 | 423 | 550 | 886 | 1851 |
| 14 | 189 | 306 | 252 | 331 | 174 | 363 | 137 | 202 | 243 | 701 |
| 15 | 147 | 143 | 176 | 195 | 37 | 92 | 36 | 59 | 31 | 216 |
| +gp. | 125 | 116 | 159 | 132 | 47 | 20 | 46 | 34 | 5 | 246 |
| TOTALNUM. | 10848 | 13896 | 8103 | 13034 | 13368 | 13780 | 12803 | 13260 | 21227 | 18679 |
| TONSLAND. | 23616 | 31252 | 19239 | 32441 | 30888 | 34024 | 32075 | 32984 | 46622 | 51118 |
| SOPCOF \% | 101 | 99 | 100 | 100 | 101 | 99 | 103 | 101 | 98 | 101 |
| Catch in number at age (Numbers in 10-3) |  |  |  |  |  |  |  |  |  |  |
| YEAR. | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 5 | 499 | 188 | 289 | 17 | 44 | 78 | 503 | 178 | 86 | 90 |
| 6 | 1657 | 463 | 1225 | 421 | 397 | 672 | 1587 | 1488 | 549 | 550 |
| 7 | 4485 | 1513 | 1797 | 2023 | 1896 | 2197 | 3031 | 2908 | 2723 | 1882 |
| 8 | 5961 | 3515 | 2866 | 3262 | 5024 | 3815 | 3287 | 3181 | 2579 | 2051 |
| 9 | 5763 | 4186 | 2935 | 2646 | 4324 | 3648 | 2608 | 2119 | 2331 | 1657 |
| 10 | 3246 | 3143 | 2074 | 3019 | 2859 | 2330 | 1963 | 1755 | 1247 | 1067 |
| 11 | 1601 | 1224 | 1130 | 1962 | 1539 | 1715 | 1548 | 1610 | 975 | 737 |
| 12 | 1458 | 959 | 1072 | 1278 | 1412 | 990 | 1132 | 1216 | 937 | 710 |
| 13 | 1237 | 568 | 924 | 509 | 576 | 422 | 657 | 665 | 652 | 359 |
| 14 | 506 | 358 | 554 | 144 | 136 | 371 | 444 | 548 | 374 | 195 |
| 15 | 362 | 137 | 342 | 36 | 135 | 168 | 240 | 238 | 282 | 150 |
| +gp. | 145 | 61 | 82 | 56 | 14 | 177 | 232 | 503 | 700 | 237 |
| TOTALNUM. | 26920 | 16315 | 15290 | 15373 | 18356 | 16583 | 17232 | 16409 | 13435 | 9685 |
| TONSLAND. | 61396 | 39326 | 37950 | 35423 | 40817 | 36958 | 36300 | 35826 | 30267 | 20493 |
| SOPCOF \% | 100 | 100 | 101 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |

Table 6.4.1 Catch weights at age (kg)

| YEAR, | 1975, | 1976, | 1977, | 1978, |
| ---: | ---: | ---: | ---: | ---: |
| AGE |  |  |  |  |
| 5, | .9680, | 1.1570, | 1.1570, | .9680, |
| 6, | 1.1990, | 1.5850, | 1.0460, | 1.1990, |
| 7, | 1.4230, | 1.7680, | 1.4290, | 1.4230, |
| 8, | 1.8540, | 2.1800, | 1.7940, | 1.8540, |
| 9, | 2.2560, | 2.5700, | 2.2280, | 2.2560, |
| 10, | 2.6070, | 3.0180, | 2.6870, | 2.6070, |
| 11, | 3.0810, | 3.7300, | 3.0170, | 3.0810, |
| 12, | 3.5910, | 4.0520, | 3.9140, | 3.5910, |
| 13, | 4.6040, | 4.8150, | 4.0400, | 4.6040, |
| 14, | 4.6950, | 5.3480, | 4.7140, | 4.6950, |
| 15, | 5.1510, | 5.7520, | 5.4010, | 5.1510, |
| +gp, | 6.9020, | 7.0940, | 5.5970, | 6.4500, |
| SOPCOFAC, | 1.2550, | 1.0024, | 1.0008, | .9993, |


| Catch weights at age (kg) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, | 1986, | 1987. | 1988 |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 5, | .9110, | 1.1250, | 1.0710, | 1.0100, | . 9840 , | .9420, | .9950, | 1.0300, | 1.0300, | 1.1290, |
| 6, | .9420, | 1.2830, | 1.2570, | 1.3680, | 1.3380 , | 1.2750, | 1.2300, | 1.2380, | 1.2180, | 1.3040, |
| 7, | 1.2780, | 1.4870, | 1.4400, | 1.6180, | 1.5770, | 1.5920, | 1.6300, | 1.4990, | 1.5330, | 1.5410, |
| 8, | 1.6760, | 1.7560, | 1.6600, | 1.9050, | 1.8480, | 1.8170, | 1.9510, | 1.9370, | 1.8240, | 1.7700, |
| 9, | 2.0720, | 2.1530, | 1.9670, | 2.1870 , | 2.1590, | 2.2400, | 2.3670, | 2.3630, | 2.1870 , | 2.2360 |
| 10, | 2.3330, | 2.2790, | 2.2580, | 2.5160, | 2.4340, | 2.4610, | 2.6370, | 2.6310, | 2.6660, | 2.6830 , |
| 11, | 2.7230, | 2.4980, | 2.5150, | 2.7610, | 2.6030 , | 2.8350, | 2.8290, | 2.8480, | 2.9960 , | 3.0820 , |
| 12. | 3.2970, | 3.0590, | 2.9500 , | 3.1290 , | 3.0340, | 3.2620, | 3.3530, | 3.3350, | 3.5950, | 3.6240 , |
| 13. | 3.9850 , | 3.7830, | 3.4500 , | 3.7850, | 3.7840, | 3.9620, | 4.0060, | 4.0390, | 4.4310, | 4.3120 |
| 14. | 4.6680, | 4.5070, | 4.0330, | 4.4750, | 4.4460, | 4.9360 , | 4.7920, | 4.9250, | 5.1400, | 5.0980 |
| 15, | 4.7920, | 5.1390, | 4.6520, | 4.9850, | 4.7510, | 5.2300, | 5.2310, | 5.4660, | 5.7640, | 5.2130, |
| +gp, | 5.3870, | 5.9830, | 5.3300, | 6.0880 , | 6.3850, | 7.1920, | 6.3230, | 5.9850, | 7.2670, | 5.7640 |
| SOPCOFAC, | 1.0124, | .9902, | 1.0024, | .9997, | 1.0110, | .9937, | 1.0258, | 1.0060, | .9785, | 1.0063 |

Catch weights at age ( kg )
YEAR, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
AGE

| 5, | .8420, | 1.0290, | 1.0010, | 1.0160, | .9910, | 1.1630, | .9500, | 1.1010, | .9190, | .7960, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6, | 1.0470, | 1.2100, | 1.2470, | 1.2560, | 1.2490, | 1.2540, | 1.2130, | 1.1240, | 1.1070, | 1.0520, |
| 7, | 1.4250, | 1.5720, | 1.4720, | 1.4010, | 1.4010, | 1.4880, | 1.4130, | 1.3460, | 1.3340, | 1.3420, |
| 8, | 1.7270, | 1.7900, | 1.8100, | 1.7180, | 1.6850, | 1.7360, | 1.7030, | 1.6490, | 1.6400, | 1.6950, |
| 9, | 2.1250, | 2.1260, | 2.0880, | 2.0490, | 1.9820, | 2.1500, | 2.0280, | 1.9250, | 1.8810, | 1.9580, |
| 10, | 2.6370, | 2.5360, | 2.4400, | 2.4360, | 2.4250, | 2.3520, | 2.2790, | 2.3420, | 2.2400, | 2.2800, |
| 11, | 3.2200, | 3.2140, | 2.9350, | 2.8680, | 2.9520, | 2.7360, | 2.6430, | 2.5950, | 2.5380, | 2.5450, |
| 12, | 3.7330, | 3.6930, | 3.7370, | 3.4780, | 3.4290, | 3.0820, | 2.9920, | 3.0130, | 2.8460, | 2.9120, |
| 13, | 4.1350, | 4.4480, | 4.4010, | 4.5100, | 4.4790, | 3.6070, | 3.5680, | 3.5150, | 3.3850, | 3.3700, |
| 14, | 5.3800, | 5.1970, | 5.0220, | 4.6810, | 6.0430, | 4.2420, | 4.0680, | 4.1230, | 4.3590, | 4.3450, |
| 15, | 6.5690, | 5.8910, | 5.9910, | 6.0100, | 5.8320, | 5.2930, | 5.3020, | 4.9960, | 4.8510, | 5.0300, |
| +gp, | 6.4970, | 6.0490, | 6.4120, | 5.1280, | 2.7560, | 6.0870, | 5.6140, | 5.8450, | 5.8000, | 5.8030, |
| AC, | 9999, | 9998, | 1.0097, | 1.0033, | 1.0010, | 1.0001, | 1.0014, | 1.0011, | 1.0044, | 1.0016, |

Table 6.5.1 Proportion mature at age

| YEAR, | 1975, | 1976, | 1977, | 1978, |
| ---: | ---: | ---: | ---: | ---: |
| AGE |  |  |  |  |
| 5, | .0000, | .0000, | .0000, | .0000, |
| 6, | .0300, | .0300, | .0300, | .0300, |
| 7, | .1000, | .1000, | .1000, | .1000, |
| 8, | .3500, | .3500, | .3500, | .3500, |
| 9, | .7700, | .7700, | .7700, | .7700, |
| 10, | .9600, | .9600, | .9600, | .9600, |
| 11, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 12, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 13, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 14, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 15, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| +gp, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |

Proportion mature at age

| YEAR, | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, | 1986, | 1987, | 1988, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 5, | .0000, | .0000, | .0000, | .0000, | .0400, | .0000, | .0100, | .0100, | .0100, | .0100, |
| 6, | .0300, | .0300, | .0300, | .0500, | .0700, | .0800, | .0600, | .0600, | .0600, | .0600, |
| 7, | .1000, | .1000, | .1000, | .2000, | .1500, | .1900, | .2100, | .2100, | .2100, | .2100, |
| 8, | .3500, | .3500, | .3500, | .3300, | .2800, | .3200, | .3500, | .3500, | .3500, | .3500, |
| 9, | .7700, | .7700, | .7700, | .5000, | .3800, | .4200, | .4600, | .4600, | .4600, | .4600, |
| 10, | .9600, | .9600, | .9600, | .7000, | .6000, | .6400, | .6400, | .6400, | .6400, | .6400, |
| 11, | 1.0000, | 1.0000, | 1.0000, | .8500, | .8500, | .7500, | .8200, | .8200, | .8200, | .8200, |
| 12, | 1.0000, | 1.0000, | 1.0000, | .9400, | .9800, | .9300, | .9600, | .9600, | .9600, | .9600, |
| 13, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 14, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 15, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| +gp, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |

Proportion mature at age

| YEAR, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, | 1996, | 1997, | 1998, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 5, | .0100, | .0100, | .0100, | .0200, | .0300, | .0300, | .1780, | .3040, | .2240, | .2700, |
| 6, | .0600, | .0600, | .0600, | .0400, | .1200, | .1200, | .1810, | .3100, | .2910, | .3180, |
| 7, | .2100, | .2100, | .2900, | .1100, | .2700, | .2700, | .4770, | .3930, | .3680, | .3600, |
| 8, | .3500, | .3500, | .4800, | .2500, | .4000, | .4000, | .5970, | .4640, | .4380, | .4010, |
| 9, | .4600, | .4600, | .5600, | .4700, | .4500, | .4500, | .5860, | .5260, | .4950, | .5000, |
| 10, | .6400, | .6400, | .6200, | .6800, | .5400, | .5400, | .7050, | .6260, | .5880, | .4840, |
| 11, | .8200, | .8200, | .8500, | .8500, | .6500, | .6500, | .7860, | .6900, | .6680, | .6310, |
| 12, | .9600, | .9600, | 1.0000, | .9600, | .7800, | .7800, | .7640, | .7730, | .7450, | .6700, |
| 13, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | .8300, | .8300, | .9610, | .8700, | .8500, | .8030, |
| 14, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | .9700, | .9700, | 1.0000, | .9530, | .9480, | .8820, |
| 15, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | .9810, | .9710, | .9250, |
| Hp, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | .9860, | .9120, |

Table 6.6.1.1 Output from XSA

Lowestoft VPA Version 3.1
Extended Survivor analysis
G. Halibut V \& XIV (run XSAEHJ02/X02)

CPUE data from file /users/fish/ifad/ifapwork/nwwg/ghl_grn/FLEET.X02
Catch data for 24 years. 1975-1998. Age 5-16.

| Fleet, | First, | Last, | First, | Last, | Alpha, | Beta |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FLT01: Va TRW 85-98 | year, | year, | age | , | age |  |
| FL985, | 1998, | 7, | 12, | .000, | 1.000 |  |

Time series weights
Tapered time weighting applied
Power $=3$ over 20 years

Catchability analysis
Catchability dependent on stock size for ages < 7
Regression type $=\mathrm{C}$
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages $<7$

Catchability independent of age for ages $>=13$
Terminal population estimation:
Survivor estimates shrunk towards the mean $F$ of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk $=.500$

Minimum standard error for population estimates derived from each fleet $=.300$

Prior to weighting not applied
Tuning converged after 24 iterartions

| Regression weights |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | .751, | .820, | .877, | .921, | .954, | .976, | .990, | .997, | 1.000, | 1 |
| Fishing mortalities |  |  |  |  |  |  |  |  |  |  |
| Age, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, | 1996, | 1997, | 1998 |
| 5, | . 015 , | .006, | .012, | .001, | .002, | .004, | .024, | .009, | .004, | 0.004 |
| 6 , | .062, | .017, | .045, | .020, | .022, | .035, | .091, | .087, | .032, | 0.029 |
| 7, | .179, | .070, | . 080 , | .092, | .113, | .153, | .206, | .226, | .214, | 0.14 |
| 8 , | . 302 , | .197, | .174, | .193, | . 327 , | .327, | . 338 , | .327, | .303, | 0.234 |
| 9 , | .429, | . 339 , | .237, | .228, | . 396 , | . 396 | . 367 , | . 359, | . 399 , | 0.307 |
| 10, | .476, | .414, | .264, | . 386 , | . 389 , | . 363 , | . 361 , | .426, | . 350 , | 0.302 |
| 11, | . 383 , | . 311 , | .241, | .404, | . 327 , | .402, | .413, | .536, | . 420 , | 0.339 |
| 12, | .649, | .393, | .464, | . 444 , | .538, | . 341 , | .477, | .628, | .653, | 0.583 |
| 13, | .633, | .534, | .774, | . 394 , | . 347 , | .284, | .377, | .540, | .786, | 0.528 |
| 14, | .704, | . 352 , | 1.608, | .238, | .163, | . 371 , | . 514 , | .586, | .632, | 0.536 |
| 15, | .543, | . 388 , | .632, | . 359 , | . 346 , | .292, | .412, | .542, | .646, | 0.529 |

Table 6.6.1.1 Cont'd
XSA population numbers (Thousands)
AGE
$\begin{array}{llllllllllllll}\text { YEAR } & 5, & 5, & 7, & 8, & 9, & 10, & 11, & 12, & 13,\end{array}$
$1989 \quad, 3.52 \mathrm{E}+04,2.98 \mathrm{E}+04,2.94 \mathrm{E}+04,2.47 \mathrm{E}+04,1.78 \mathrm{E}+04,9.23 \mathrm{E}+03,5.42 \mathrm{E}+03,3.29 \mathrm{E}+03,2.84 \mathrm{E}+03,1.08 \mathrm{E}+03$, $1990 \quad, 3.51 \mathrm{E}+04,2.98 \mathrm{E}+04,2.41 \mathrm{E}+04,2.12 \mathrm{E}+04,1.57 \mathrm{E}+04,9.99 \mathrm{E}+03,4.93 \mathrm{E}+03,3.18 \mathrm{E}+03,1.48 \mathrm{E}+03,1.30 \mathrm{E}+03$, $1991 \quad, 2.67 \mathrm{E}+04,3.00 \mathrm{E}+04,2.52 \mathrm{E}+04,1.93 \mathrm{E}+04,1.50 \mathrm{E}+04,9.63 \mathrm{E}+03,5.68 \mathrm{E}+03,3.11 \mathrm{E}+03,1.85 \mathrm{E}+03,7.47 \mathrm{E}+02$, $1992 \quad, 2.31 \mathrm{E}+04,2.27 \mathrm{E}+04,2.47 \mathrm{E}+04,2.01 \mathrm{E}+04,1.40 \mathrm{E}+04,1.02 \mathrm{E}+04,6.37 \mathrm{E}+03,3.84 \mathrm{E}+03,1.68 \mathrm{E}+03,7.34 \mathrm{E}+02$, $1993 \quad, 2.46 \mathrm{E}+04,1.98 \mathrm{E}+04,1.92 \mathrm{E}+04,1.94 \mathrm{E}+04,1.42 \mathrm{E}+04,9.57 \mathrm{E}+03,5.94 \mathrm{E}+03,3.66 \mathrm{E}+03,2.12 \mathrm{E}+03,9.77 \mathrm{E}+02$, $1994 \quad, 2.30 \mathrm{E}+04,2.11 \mathrm{E}+04,1.67 \mathrm{E}+04,1.47 \mathrm{E}+04,1.20 \mathrm{E}+04,8.24 \mathrm{E}+03,5.58 \mathrm{E}+03,3.69 \mathrm{E}+03,1.84 \mathrm{E}+03,1.29 \mathrm{E}+03$, $1995 \quad, 2.30 \mathrm{E}+04,1.97 \mathrm{E}+04,1.76 \mathrm{E}+04,1.23 \mathrm{E}+04,9.14 \mathrm{E}+03,6.98 \mathrm{E}+03,4.93 \mathrm{E}+03,3.21 \mathrm{E}+03,2.26 \mathrm{E}+03,1.19 \mathrm{E}+03$, $1996 \quad, 2.18 \mathrm{E}+04,1.93 \mathrm{E}+04,1.55 \mathrm{E}+04,1.23 \mathrm{E}+04,7.57 \mathrm{E}+03,5.45 \mathrm{E}+03,4.18 \mathrm{E}+03,2.81 \mathrm{E}+03,1.72 \mathrm{E}+03,1.33 \mathrm{E}+03$, $1997 \quad, 2.44 \mathrm{E}+04,1.86 \mathrm{E}+04,1.53 \mathrm{E}+04,1.06 \mathrm{E}+04,7.63 \mathrm{E}+03,4.55 \mathrm{E}+03,3.06 \mathrm{E}+03,2.11 \mathrm{E}+03,1.29 \mathrm{E}+03,8.61 \mathrm{E}+02$, $1998 \quad, 2.38 \mathrm{E}+04,2.09 \mathrm{E}+04,1.55 \mathrm{E}+04,1.06 \mathrm{E}+04,6.75 \mathrm{E}+03,4.41 \mathrm{E}+03,2.76 \mathrm{E}+03,1.73 \mathrm{E}+03,9.44 \mathrm{E}+02,5.07 \mathrm{E}+02$,

Estimated population abundance at Ist Jan 1999
$.00 \mathrm{E}+00,2.04 \mathrm{E}+04,1.75 \mathrm{E}+04,1.16 \mathrm{E}+04,7.22 \mathrm{E}+03,4.28 \mathrm{E}+03,2.80 \mathrm{E}+03,1.69 \mathrm{E}+03,8.32 \mathrm{E}+02,4.79 \mathrm{E}+02$,
Taper weighted geometric mean of the VPA populations:
$2.79 \mathrm{E}+04,2.46 \mathrm{E}+04,2.10 \mathrm{E}+04,1.66 \mathrm{E}+04,1.19 \mathrm{E}+04,7.97 \mathrm{E}+03,5.03 \mathrm{E}+03,3.14 \mathrm{E}+03,1.73 \mathrm{E}+03,8.87 \mathrm{E}+02$,
Standard error of the weighted Log (VPA populations):

|  | .2441, | .2552, | .2694, | . 3045 , | . 3408 , | . 3408 , | . 3095 , | . 3226 , | . 3785 , | .4551, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AGE |  |  |  |  |  |  |  |  |
| YEAR | , | 15, |  |  |  |  |  |  |  |  |
| 1989 |  | $9.31 \mathrm{E}+02$, |  |  |  |  |  |  |  |  |
| 1990 |  | $4.60 \mathrm{E}+02$, |  |  |  |  |  |  |  |  |
| 1991 |  | $7.87 \mathrm{E}+02$, |  |  |  |  |  |  |  |  |
| 1992 |  | 1.29E+02, |  |  |  |  |  |  |  |  |
| 1993 |  | $4.98 \mathrm{E}+02$, |  |  |  |  |  |  |  |  |
| 1994 |  | $7.14 \mathrm{E}+02$, |  |  |  |  |  |  |  |  |
| 1995 |  | 7.66E+02, |  |  |  |  |  |  |  |  |
| 1996 |  | $6.14 \mathrm{E}+02$ |  |  |  |  |  |  |  |  |
| 1997 |  | $6.39 \mathrm{E}+02$, |  |  |  |  |  |  |  |  |
| 1998 |  | $3.94 \mathrm{E}+02$, |  |  |  |  |  |  |  |  |

Estimated population abundance at 1st Jan 1999
2.55E+02.

Taper weighted geometric mean of the VPA populations:
$4.23 \mathrm{E}+02$,
Standard error of the weighted Log (VPA populations):
.7303,
Log catchability residuals

| Age | , | 1985, | 1986, | 1987, | 1988 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 7 | , | .03, | -.44, | .31, | 0.15 |
| 8 | , | .12, | -.43, | -.28, | 0.04 |
| 9 | , | .27, | .16, | -.14, | 0.31 |
| 10 | , | .33, | .28, | .18, | 0.31 |
| 11 | , | .32, | .26, | .24, | 0.33 |
| 12 |  | .22, | .19, | .17, | 0.17 |
|  |  |  |  |  |  |
| Age | , | 1989, | 1990, | 1991, | 1992, |
| 7 | , | .26, | -.07, | -.38, | .10, |
| 8 |  | .26, | .22, | -.14, | .04, |
| 9 | , | .40, | .35, | -.16, | -.14, |
| 10 | , | .48, | .29, | . .23, | .06, |
| 11 |  | .26, | .01, | -.23, | -.07, |
| 12 | , | .63, | -.08, | .46, | -.03, |

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

## Table 6.6.1.1 Cont'd

Regression statistics
Ages with q independent of year class strength and constant w.r.t. time.

| Age, | Slope | t -value Intercept, RSquare, |  |  |  |  |  |  | No Pts | Reg s.e, | Mean Q |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: |
| 7, | .90, | .464, | 6.72, | .71, | 14, | .18, | -6.38, |  |  |  |  |
| 8, | .83, | .977, | 6.35, | .78, | 14, | .17, | -5.66, |  |  |  |  |
| 9, | .73, | 1.634, | 6.44, | .79, | 14, | .18, | -5.34, |  |  |  |  |
| 10, | .76, | 1.099, | 6.13, | .69, | 14, | .25, | -5.22, |  |  |  |  |
| 11, | 1.18, | -.501, | 4.61, | .44, | 14, | .38, | -5.22, |  |  |  |  |
| 12, | 1.24, | -.493, | 4.23, | .30, | 14, | .51, | -4.99, |  |  |  |  |

Fleet disaggregated estimates of survivors:


| Age 6 | Catchability constant w.r.t time and dependent on age |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year class | = | 1992 |  |  |  |  |  |
| FLT01: | Va | TRW | 85-98 |  |  |  |  |
| Age, | 6, | 5, |  |  |  |  |  |
| Survivors, | $0 .$, | 0. |  |  |  |  |  |
| Raw weights | . 000 , | .000, |  |  |  |  |  |
| Fleet, <br> FLT01: Va TRW 85-98 | Estimated, Survivors, 1., | $\begin{array}{r} \text { Int, } \\ \text { s.e, } \\ .000, \end{array}$ | $\begin{array}{r} \text { Ext, } \\ \text { s.e, } \\ .000, \end{array}$ | Var, Ratio, . 00 , | $\mathrm{N},$ $0$ | Scaled, Weights, .000 , | mated F 0 |
| P shrinkage mean | 21010., | . 27 , , , |  |  |  | .775, | 0.024 |
| F shrinkage mean | 9304. | .50,,, |  |  |  | .225, | 0.053 |

Weighted prediction

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | ---: | ---: | ---: | ---: |
| at end of year | s.e, | s.e, | Ratio, |  |  |
| $17493 .$, | .24, | 9.78, | 2, | 41.224, | 0.029 |

Table 6.6.1.1 Cont'd

Age 7
Year class
FLT01:
Survivors,
Raw weights

Age 9
Year class
FLT01:
Age,
Survivors,
Raw weights
Fleet,
FLT01: Va TRW 85-98

F shrinkage mean
Weighted prediction
Survivors,
at end of year
4276.,

| Fleet, <br> FLT01: Va TRW 85-98 | Estimated, Survivors, 13047., | $\begin{array}{r} \text { Int, } \\ \text { s.e, } \\ .300, \end{array}$ | $\begin{array}{r} \text { Ext, } \\ \text { s.e, } \\ .000 \end{array}$ | Var, Ratio, .00 , |  | Scaled, Weights, .707, | $\begin{array}{r} \text { imated } \\ F \\ 0.126 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F shrinkage mean | 8703., | . $50, \ldots$, |  |  |  | 293, | 0.183 |
| Weighted prediction |  |  |  |  |  |  |  |
| Survivors, at end of year 11588. | Int, <br> s.e, <br> .26. | Ext, s.e, 22 | $\mathrm{N},$ | Var, Ratio, 850 | F 0.14 |  |  |

Age 8 Catchability constant w.r.t time and dependent on age

| Year class | $=$ | 1990 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT01: | Va | TRW | 85-98 |  |  |  |  |
| Age, | 8 , | 7. | 6. | 5, |  |  |  |
| Survivors, | 8981., | 6831., | 0. | 0. |  |  |  |
| Raw weights | 8.794, | 7.099, | .000, | . 000 , |  |  |  |
| Fleet, | Estimated, Survivors | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | Ext, <br> s.e, | Var <br> Ratio, | N, | Scaled, Weights, | stimated F |
| FLT01: Va TRW 85-98 | 7948., | .213, | .136, | .64, | 2. | .799, | 0.215 |
| F shrinkage mean | 4938., | . $50 \ldots$ |  |  |  | .201, | 0.326 |
| Weighted prediction |  |  |  |  |  |  |  |
| Survivors, | Int, | Ext, | $\mathrm{N},$ | Var, | F |  | , |
| 7222. | . 20, | .17, | 3 , | .878, | 0.234 |  |  |

Catchability constant w.r.t time and dependent on age
$=\quad 1991$

| Va | TRW | $85-98$ |
| ---: | ---: | ---: |
| 7, | 6, | 5, |
| $13047 .$, | $0 .$, | $0 .$, |
| 9.656, | .000, | .000, |

Catchability constant w.r.t time and dependent on age

| Va | TRW | $85-98$ |  |  |
| ---: | ---: | ---: | ---: | ---: |
| 9, | 8, | 7, | 6, | 5, |
| $5492 .$, | $3685 .$, | $4207 .$, | $0 .$, | $0 .$, |
| 8.173, | 6.032, | 4.798, | .000, | .000, |


| Estimated, | Int, | Ext, | Var, | N, | Scaled, Estimated |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Survivors, | s.e, | s.e, | Ratio, | , | Weights, | F |
| 4524., | .177, | .124, | .70, | 3, | .826, | 0.293 |
|  |  |  |  |  |  |  |
| 3270., | $.50 \ldots$, |  |  |  | .174, | 0.385 |

Table 6.6.1.1 Cont'd

Age 10

Year class $=\quad 1988$

Weighted prediction
Survivors,
at end of year
2805.,

Age 11
Year class $=\quad 1987$

FLT01:
Age,
Survivors,
Raw weights

Age,
Survivors,
Raw weights

Fleet,
FLT01: Va TRW 85-98

F shrinkage mean

Weighted prediction
Survivors,
at end of year 1693.,

| FLT01: | Va | TRW | $85-98$ |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Age, | 10, | 9, | 8, | 7, | 6, | 5, |  |
| Survivors, | $4218 .$, | $2481 .$, | $2240 .$, | $2858 .$, | $0 .$, | $0 .$, |  |
| Raw weights | 6.325, | 5.508, | 3.962, | 3.202, | .000, | .000, |  |
|  |  |  |  |  |  |  |  |
| Fleet, | Estimated, | Int, | Ext, | Var, | N, | Scaled, | Estimated |
| SLT01: Va TRW 85-98 | Survivors, | s.e, | s.e, | Ratio, | , | Weights, | F |
| FLT, | $2968 .$, | .164, | .150, | .91, | 4, | .826, | 0.288 |
| F shrinkage mean |  |  |  |  |  |  | .174, |

Catchability constant w.r.t time and dependent on age
$=\quad 1988$
2144., . $50, \ldots$,

| Int, | Ext $_{y}$ | N, | Var, | F |
| ---: | ---: | ---: | ---: | ---: |
| s.e, | s.e, | Ratio, |  |  |
| .16, | .14, | 5, | .843, | 0.302 |

Catchability constant w.r.t time and dependent on age

$$
=\quad 1987
$$

Va TRW 85-98
11,
3166.,
6.955,

| 10, | 9, | 8, | 7, | 6, | 5, |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $1228 .$, | $1073 .$, | $1493 .$, | $1840 .$, | $0 .$, | $0 .$, |
| 4.295, | 3.884, | 2.750, | 2.327, | .000, | .000, |


| Estimated, | Int, | Ext, | Var, | N, | Scaled, | Estimated |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Survivors, | s.e, | s.e, | Ratio, | , | Weights, | F |
| $1783 .$, | .154, | .222, | 1.44, | 5, | .835, | 0.325 |
|  |  |  |  |  |  |  |
| $1303 .$, | $.50, \ldots$, |  |  |  | .165, | 0.422 |


| Int, | Ext, | N, | Var, | F |
| :--- | ---: | ---: | ---: | ---: |
| s.e, | s.e, | Ratio, |  |  |
| .15, | .19, | 6, | 1.245, | 0.339 |

Table 6.6.1.1 Cont'd
Age 12

| Year class | $=$ |  | 1986 |  |
| :--- | ---: | ---: | ---: | ---: |
|  |  |  |  |  |
| FLT01: |  | Va | TRW | $85-98$ |
| Age, |  | 12, | 11, |  |
| Survivors, |  | $1264 .$, | $748 .$, |  |
| Raw weights |  | 3.285, | 3.580, |  |


| Age, | 10, | 9, | 8, | 7, | 6, | 5, |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Survivors, | $549 .$, | $611 .$, | $878 .$, | $739 .$, | $0 .$, | $0 .$, |
| Raw weights | 2.043, | 1.824, | 1.297, | 1.132, | .000, | .000, |


| Fleet, | Estimated, Survivors, | Int, s.e, | Ext, s.e, | Var, Ratio, | N, | Scaled, Weights, | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT01: Va TRW 85-98 | 802., | .156, | .132, | .84, | 6, | .767, | 0.6 |
| F shrinkage mean | 941., | . $50 \ldots$ |  |  |  | .233, | 0.531 |

Weighted prediction
Survivors,
at end of year
832.,

| Int, | Ext, | N, | Var, | F |
| ---: | ---: | ---: | ---: | ---: |
| s.e, | s.e, | Ratio, |  |  |
| .17, | .11, | 7, | .659, | 0.583 |

Age 13 Catchability constant w.r.t time and dependent on age

| Year class | $=$ | 1985 |  |  |
| :--- | ---: | ---: | ---: | ---: |
|  |  |  |  |  |
| FLT01: |  | Va | TRW | $85-98$ |
| Age, | 13, | 12, | 11, |  |
| Survivors, | $0 .$, | $503 .$, | $383 .$, |  |
| Raw weights |  | .000, | 1.807, | 1.749, |


| Age, | 10, | 9, | 8 , | 7, | 6, | 5, |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Survivors, | $320 .$, | 444., | 606. | 530., | $0 .$, | $0 .$, |  |
| Raw weights | 1.060, | .914, | .644, | .567, | .000, | .000, |  |
| Fleet, | Estimated, Survivors, | Int, | Ext, <br> s.e, | Var, <br> Ratio | N, | Scaled, Weights, | Estimated |
| FLT01: Va TRW 85-98 | 439., | .159, | .088, | .55, | 6, | .628, | 0.565 |
| F shrinkage mean | 556., | . $50 \ldots$ |  |  |  | .372, | 0.469 |

Weighted prediction
Survivors,
at end of year 479.,

| Int, | Ext, | N, | Var, | F |
| ---: | ---: | ---: | ---: | ---: |
| s.e, | s.e, | Ratio, |  |  |
| .21, | .09, | 7, | .411, | 0.528 |

Table 6.6.1.1 Cont'd

Age 14

| Year class | $=$ | 1984 |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| FLT01: |  |  |  |  |  |  |  |
| Age, | 14, | TRW | $85-98$ |  |  |  |  |
| Survivors, | $0 .$, | 13, | 12, | 11, |  |  |  |
| Raw weights |  | $0 .$, | $183 .$, | $175 .$, |  |  |  |
|  |  | .000, | .000, | .836, |  |  |  | .911,

## Weighted prediction <br> Survivors,

at end of year
255.,

Age 15
Year class
FLT01:
Age,
Survivors,
Raw weights

Age,
Survivors,
Raw weights
Fleet,
FLT01: Va TRW 85-98

F shrinkage mean

Weighted prediction
Survivors,
at end of year
200.,

| Age, Survivors, <br> Raw weights | $\begin{array}{r} 10, \\ 201, \\ .548, \end{array}$ | $\begin{array}{r} 9, \\ 279 . \\ .467, \end{array}$ | $\begin{array}{r} 8, \\ 267 . \\ .372, \end{array}$ | $\begin{array}{r} 7, \\ \text { 174., } \\ .327, \end{array}$ | $\begin{array}{r} 6, \\ 0, \\ .000 \end{array}$ | $\begin{array}{r} 5, \\ 0, \\ .000, \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fleet, FLT01: | Estimated, Survivors, 201., | Int, <br> s.e, <br> .154, | Ext, <br> s.e, <br> . 081 , | Var, Ratio, .52, | N. <br> 6, | Scaled, Weights, .464, | Estimated $\begin{array}{r} \mathbf{F} \\ 0.641 \end{array}$ |
| FLT01: Va TRW 85-98 | 314., | . $50 \ldots$, |  |  |  | .536, | 0.455 |

Catchability constant w.r.t time and dependent on age (fixed at the value of age 13)

Estimated
F
0.641
0.455

| Int, | Ext, | N, | Var, | F |
| ---: | ---: | ---: | ---: | ---: |
| S.e, | s.e, | Ratio, |  |  |
| .28, | .14, | 7, | .511, | 0.536 |

Catchability constant w.r.t time and dependent on age (fixed at the value of age 13)
$=\quad 1983$

| Va | TRW | $85-98$ |  |  |
| ---: | ---: | ---: | ---: | ---: |
| 15, | 14, | 13, | 12, | 11, |
| $0 .$, | $0 .$, | $0 .$, | $106 .$, | $167 .$, |
| .000, | .000, | .000, | .660, | .722, |


| 10, | 9, | 8, | 7, | 6, | 5, |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $185 .$, | $174 .$. | $174 .$, | $186 .$, | $0 .$, | $0 .$, |
| .419, | .418, | .334, | .292, | .000, | .000, |


| Estimated, | Int, | Ext, | Var, | N, | Scaled, | Estimated |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Survivors, | s.e, | s.e, | Ratio, | Weights, | F |  |
| $156 .$, | .153, | .096, | .63, | 6, | .416, | 0.638 |
|  |  |  |  |  |  |  |
| $238 .$, | $.50, \ldots$ |  |  |  | .584, | 0.46 |


| Int, | Ext, | N, | Var, <br> Ratio, | F |
| ---: | ---: | ---: | ---: | ---: |
| s.e, | s.e, | 7, | .481, | 0.529 |

Figure 6.6.1.2 Fishing mortality (F) at age
Terminal Fs derived using XSA (with shrinkage)

| YEAR, | 1975, | 1976, | 1977, | 1978, |
| ---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |
| 5, | .0053, | .0018, | .0000, | .0009, |
| 6, | .0480, | .0153, | .0017, | .0044, |
| 7, | .1515, | .0426, | .0415, | .0198, |
| 8, | .2564, | .0688, | .1619, | .0791, |
| 9, | .2990, | .0857, | .3640, | .1549, |
| 10, | .3559, | .0803, | .2245, | .2095, |
| 11, | .2382, | .0671, | .1864, | .2217, |
| 12, | .3647, | .0597, | .3311, | .1946, |
| 13, | .7896, | .0421, | .1561, | .2879, |
| 14, | .6760, | .1747, | .1767, | .2822, |
| 15, | .4876, | .0849, | .2157, | .2400, |
| +gp, | .4876, | .0849, | .2157, | .2400, |
| FBAR $8-12$ | .3028, | .0723, | .2536, | .1720, |

Fishing mortality (F) at age

| YEAR, | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, | 1986, | 1987, | 1988, |  |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
| 5, | .0009, | .0012, | .0007, | .0003, | .0004, | .0028, | .0030, | .0058, | .0048, | .0040, |  |
| 6, | .0090, | .0183, | .0049, | .0094, | .0090, | .0118, | .0173, | .0170, | .0897, | .0231, |  |
| 7, | .0941, | .0858, | .0251, | .0420, | .0611, | .0397, | .0522, | .0487, | .1728, | .0749, |  |
| 8, | .1636, | .2080, | .0818, | .1334, | .1233, | .1022, | .1294, | .1265, | .1567, | .1445, |  |
| 9, | .3352, | .3377, | .1579, | .2561, | .2319, | .2296, | .2254, | .2339, | .1911, | .2763, |  |
| 10, | .3167, | .4277, | .3057, | .4175, | .3756, | .3251, | .2627, | .3057, | .4412, | .4105, |  |
| 11, | .3299, | .5883, | .4256, | .5527, | .5361, | .5037, | .2632, | .2404, | .2847, | .4193, |  |
| 12, | .2236, | .5763, | .4390, | .6106, | .6257, | .8031, | .3030, | .2201, | .4202, | .4539, |  |
| 13, | .2191, | .5571, | .6237, | .8849, | .5629, | .9350, | .7637, | .4473, | .3697, | .9520, |  |
| 14, | .3794, | .4370, | .4743, | 1.4499, | .6392, | 1.3935, | .5427, | 1.0106, | .3419, | .5297, |  |
| 15, | .2949, | .5203, | .4561, | .7889, | .5512, | .7979, | .4292, | .4471, | .3733, | .5463, |  |
| $+g p$, | .2949, | .5203, | .4561, | .7889, | .5512, | .7979, | .4292, | .4471, | .3733, | .5463, |  |
| FBAR $8-12$ | .2738, | .4276, | .2820, | .3941, | .3785, | .3927, | .2367, | .2253, | .2988, | .3409, |  |

Fishing mortality (F) at age

| YEAR, | 1989, | 1990, | 1991, | 1992, | 1993. | 1994, | 1995, | 1996, | 1997, | 1998, | FBAR 96-98 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
| 5, | .0154, | .0058, | .0117, | .0008, | . 0019, | .0037, | .0239, | . 0088 , | .0038, | .0041, | .0056, |
| 6, | .0619, | .0169, | .0449, | .0202, | .0218, | .0349, | .0909, | .0866, | .0323, | .0288, | .0492, |
| 7, | .1794, | .0701, | .0798, | .0923, | .1128, | . 1528 , | .2059, | . 2262 , | .2137, | .1403, | .1934, |
| 8 , | . 3017 , | .1971, | .1742, | .1927, | . 3273 , | . 3272 , | . 3384 , | . 3268 , | . 3033 , | .2339, | .2880, |
| 9, | . 4288 , | . 3388, | .2374, | .2284, | . 3965 , | . 3955 , | . 3673 , | . 3589 , | . 3991 , | . 3071 , | . 3551 , |
| 10. | .4764, | .4143, | . 2641 , | . 3860 , | . 3887 , | . 3633, | . 3614 , | . 4262 , | . 3499 , | . 3023 , | . 3595 , |
| 11. | . 3831, | .3111, | 2414, | .4038, | . 3272 , | .4021, | .4127, | . 5360 , | .4201, | . 3392 , | .4317, |
| 12, | .6492, | . 3929 , | 4643, | . 4443 , | . 5378 , | . 3415 , | .4773, | .6278, | .6529, | . 5829 , | .6212, |
| 13. | .6326, | .5339, | .7738, | . 3944 , | . 3466 , | .2841, | . 3766 , | . 5405 , | .7855, | . 5277 , | .6179, |
| 14, | .7038, | . 3521 , | 1.6076, | .2376, | . 1626 , | . 3710 , | .5137, | . 5855 , | .6319, | . 5357 , | .5844, |
| 15. | .5431, | . 3876 , | .6318, | . 3585 , | . 3455 , | .2923, | .4119, | . 5415 , | .6460, | .5286, | . 5720 , |
| +gp, | . 5431 , | . 3876 , | .6318, | . 3585 , | . 3455 , | .2923, | . 4119 , | .5415, | .6460, | . 5286 , |  |
| FBAR 8-12 | .4479, | . 3309 , | .2763, | . 3310 , | . 3955 , | . 3659 , | . 3914 , | .4551, | .4251, | . 3531 , |  |

Table 6.6.1.3 Stock number at age (start of the year). Numbers * $\mathbf{1 0}^{-\mathbf{3}}$
Terminal Fs derived using XSA (with shrinkage)

| YEAR, | 1975, | 1976, | 1977, | 1978, |
| ---: | ---: | ---: | ---: | ---: |
| AGE |  |  |  |  |
| 5, | 24536, | 25824, | 26124, | 27466, |
| 6, | 18407, | 21007, | 22187, | 22485, |
| 7, | 13606, | 15101, | 17807, | 19065, |
| 8, | 8494, | 10064, | 12455, | 14704, |
| 9, | 5252, | 5658, | 8086, | 9118, |
| 10, | 3333, | 3352, | 4470, | 4836, |
| 11, | 2360, | 2010, | 2663, | 3073, |
| 12, | 1619, | 1601, | 1617, | 1902, |
| 13, | 551, | 968, | 1298, | 1000, |
| 14, | 423, | 215, | 798, | 956, |
| 15, | 383, | 185, | 156, | 576, |
| +gp, | 236, | 119, | 781, | 1026, |
| TOTAL, | 79199, | 86103, | 98441, | 106207, |

Stock number at age (start of the year)

| YEAR, | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, | 1986, | 1987, | 1988, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 5, | 34680, | 40553, | 39978, | 33579, | 29460, | 32277, | 45484, | 45872, | 40868, | 34714, |
| 6, | 23619, | 29822, | 34860, | 34385, | 28895, | 25347, | 27704, | 39032, | 39255, | 35007, |
| 7, | 19269, | 20146, | 25203, | 29858, | 29317, | 24647, | 21560, | 23436, | 33027, | 30890, |
| 8, | 16088, | 15096, | 15915, | 21154, | 24641, | 23739, | 20387, | 17612, | 19213, | 23915, |
| 9, | 11694, | 11756, | 10553, | 12622, | 15934, | 18750, | 18448, | 15418, | 13357, | 14138, |
| 10, | 6722, | 7198, | 7219, | 7756, | 8409, | 10875, | 12828, | 12674, | 10503, | 9497, |
| 11, | 3376, | 4215, | 4039, | 4577, | 4397, | 4971, | 6763, | 8491, | 8035, | 5815, |
| 12, | 2119, | 2089, | 2014, | 2272, | 2266, | 2214, | 2586, | 4474, | 5747, | 5203, |
| 13, | 1348, | 1459, | 1010, | 1118, | 1062, | 1043, | 854, | 1644, | 3090, | 3249, |
| 14, | 645, | 932, | 719, | 466, | 397, | 520, | 353, | 342, | 905, | 1837, |
| 15, | 620, | 380, | 518, | 385, | 94, | 180, | 111, | 176, | 107, | 553, |
| +Gp, | 525, | 306, | 465, | 258, | 119, | 39, | 141, | 101, | 17, | 625, |
| TOTAL, | 120704, | 133951, | 142494, | 148430, | 144992, | 144604, | 157218, | 169272, | 174125, | 165444, |

Stock number at age (start of the year)

| YEAR, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | GMST |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |
| 5, | 35194, | 35105, | 26709, | 23069, | 24588, | 22968, | 22994, | 21791, | 24394, | 23795, | 0, | 30698, |
| 6, | 29759, | 29829, | 30041, | 22721, | 19840, | 21122, | 19697, | 19325, | 18591, | 20916, | 20397, | 26286, |
| 7, | 29442, | 24077, | 25244, | 24720, | 19165, | 16708, | 17557, | 15481, | 15252, | 15492, | 17493, | 21845, |
| 8, | 24668, | 21180, | 19319, | 20061, | 19400, | 14737, | 12342, | 12299, | 10626, | 10602, | 11588, | 16939, |
| 9, | 17815, | 15702, | 14969, | 13969, | 14240, | 12037, | 9145, | 7574, | 7635, | 6754, | 7222, | 11885, |
| 10, | 9231, | 9987, | 9631, | 10161, | 9569, | 8245, | 6976, | 5451, | 4553, | 4409, | 4276, | 7633, |
| 11, | 5422, | 4934, | 5680, | 6366, | 5945, | 5584, | 4935, | 4183, | 3064, | 2762, | 2805, | 4609, |
| 12, | 3291, | 3181, | 3111, | 3840, | 3659, | 3689, | 3215, | 2811, | 2106, | 1732, | 1693, | 2740, |
| 13, | 2844, | 1480, | 1849, | 1683, | 2120, | 1839, | 2257, | 1717, | 1292, | 944, | 832, | 1469, |
| 14, | 1079, | 1300, | 747, | 734, | 977, | 1290, | 1191, | 1333, | 861, | 507, | 479, | 727, |
| 15, | 931, | 460, | 787, | 129, | 498, | 714, | 766, | 614, | 639, | 394, | 255, | 338, |
| +gp, | 370, | 203, | 187, | 199, | 51, | 749, | 736, | 1287, | 1571, | 618, | 513, |  |
| TOTAL, | 160047, | 147438, | 138274, | 127651, | 120051, | 109682, | 101810, | 93865, | 90584, | 88923, | 67554, |  |

Table 6.6.1.4 Summary (without SOP correction)

|  | RECRUITS, Age 5 | TOTALBIO, | TOTSPBIO, | LANDINGS, | YIELD/SSB | FBAR 8-12, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975, | 24536, | 122673, | 46780, | 23494, | .5022, | . 3028 , |
| 1976, | 25824, | 158171, | 53957, | 6045, | .1120, | .0723, |
| 1977, | 26124, | 159829, | 65043 , | 16578, | .2549, | .2536, |
| 1978, | 27466, | 176092, | 75982, | 14349, | .1888, | .1720, |
| 1979, | 34680, | 175704, | 76641, | 23616, | . 3081 , | .2738, |
| 1980, | 40553, | 212485, | 79079, | 31252, | . 3952 , | .4276, |
| 1981, | 39978, | 213780, | 73197, | 19239, | .2628, | .2820, |
| 1982, | 33579, | 246234, | 80005 , | 32441, | .4055, | .3941, |
| 1983, | 29460, | 239600, | 72360 , | 30888 , | .4269, | . 3785 , |
| 1984, | 32277, | 243100, | 83825, | 34024, | .4059, | . 3927 , |
| 1985, | 45484, | 266129, | 96129, | 32075, | .3337, | .2367, |
| 1986, | 45872, | 283589, | 104835, | 32984, | . 3146 , | .2253, |
| 1987, | 40868, | 296613, | 116203, | 46622, | .4012, | .2988, |
| 1988, | 34714, | 298505, | 121452, | 51118, | .4209, | . 3409 , |
| 1989, | 35194, | 263381, | 111079, | 61396, | .5527, | .4479, |
| 1990, | 35105, | 251572, | 96871, | 39326, | .4060, | . 3309 , |
| 1991, | 26709, | 237178, | 105746, | 37950, | . 3589 , | .2763, |
| 1992, | 23069, | 218883, | 85484, | 35423, | .4144, | . 3310 , |
| 1993, | 24588, | 208651, | 87105, | 40817, | .4686, | . 3955 , |
| 1994, | 22968, | 196008, | 80997, | 36958, | .4563, | . 3659 , |
| 1995, | 22994, | 169761, | 93049, | 36300, | . 3901 , | . 3914 , |
| 1996, | 21791, | 155619, | 82340 , | 35826, | .4351, | .4551, |
| 1997, | 24394, | 139439, | 68166, | 30267, | .4440, | .4251, |
| 1998, | 23795, | 126001, | 55690, | 20493, | . 3680 , | .3531, |
| Arith. |  |  |  |  |  |  |
| Mean | 30918, | 210792, | 83834, | $32062 \text {, }$ | . 3761 , | . 3260 , |
| Units, | (Thousands), | (Tonnes), | (Tonnes), | (Tonnes), |  |  |

Greenland halibut (Fishing Areas V and XIV)
Prediction with management option table: Input data


Greenland halibut (Fishing Areas $V$ and XIV)
Yield per recruit: Input data


Table 6.7.3.1

Greenland halibut (Fishing Areas $V$ and XIV)
Prediction with management option table


Table 6.7.3.2

Greenland halibut (Fishing Areas V and XIV)
Yield pex recruit: Summary table

|  |  |  |  |  | 1 | 1 Jan | 1ary | Spawnin | time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { F } \\ \text { Factor } \end{gathered}$ | \|Reference | Catch in! numbers | Catch in! weight | Stock <br> size | Stock biomass | Sp.stock size | Sp.stock biomass | $\begin{gathered} \text { Sp.stock } \\ \text { size } \end{gathered}$ | Sp.stock\| biomass |
| 0.00001 | 10.00001 | 0.0001 | 0.0001 | 5.800 | $12636.817!$ | 2.761 | B171.489! | 2.761! | 8171.4891 |
| 0.05001 | 10.01771 | 0.0591 | 182.715 | 5.6341 | 11998.894 | 2.614 | 7582.363! | 2.614 | $7582.363!$ |
| 0.10001 | 0.03531 | 0.111 ! | 334.863 ! | 5.482 ! | 11423.257! | 2.480 ! | 7053.335 | 2.480 ! | 7053.335 |
| 0.1500 ! | 10.0530 | 0.156 ; | 461.519' | 5.3431 | 10902.796! | $2.358{ }^{\prime}$ | 6577.445' | 2.358 | 6577.445; |
| 0.2000 | 0.07061 | 0.1951 | 566.9161 | $5.215!$ | 10431.278 | 2.248 | 6148.595 | 2.248 ! | 6148.595 |
| 0.25001 | 0.0883; | 0.2291 | 654.5891 | 5.0971 | 10003.232 | 2.146 | 5761.4401 | 2.1461 | 5761.4401 |
| 0.30001 | 0.1059 | 0.2601 | 727.4831 | 4.988 | 9613.855 | 2.0531. | 5411.291 | 2.0531 | 5411.291! |
| 0.35001 | 0.12361 | 0.2871 | 788.0571 | 4.887 | 9258.922! | 1.9681 | 5094.0291 | 1.9681 | 5094.029! |
| 0.40001 | \| 0.1412 ! | 0.3101 | 838.364 | 4.794 | 8934.7171 | 1.8901 | 4806.031! | 1.8901 | 4806.031 |
| 0.45001 | 0.15891 | 0.3321 | 880.114; | 4.707! | 8637.964 | 1.818 | 4544:112 | 1.818 | 4544.112! |
| 0.5000 | \| 0.1765 | 0.3501 | 914.734; | 4.627 | 8365.775 | 1.751 | 4305.465; | 1.751 | 4305.465! |
| 0.5500 i | 1 0.1942 | 0.3671 | 943.414i | 4.552 | 8115.5991 | 1. 590 ! | 4087.614 | 1.6901 | 4087.6141 |
| 0.60001 | 1 0.21191 | 0.3831 | 967.148! | 4.481 ' | 7885.1831 | 1.633! | 3888.3761 | 1.633 ! | 3888.376 |
| 0.65001 | 0.2295 | 0.3971 | 986.762 ! | 4.416 | 7672.5321 | 1.5801 | 3705.819: | 1.580 ; | 3705.8191 |
| 0.70001 | - 0.2472 | 0.409 | 1002.948 | 4.3541 | 7475.877 | 1.531 ' | 3538.235 | 1.531 | 3538.235 |
| 0.75001 | 0.2648 | 0.421 | 1016.280 | 4.2961 | 7293.651 | 1.485 | 3384.112; | 1.485 ' | 3384.112 |
| 0.80001 | 0.2825 | 0.431 | 1027.237! | 4.241: | 7124.462 | 1.442 | 3242.108 | 1.442 ' | 3242.108; |
| 0.85001 | 0.3001 | 0.441 ! | $1036.221 '$ | 4.190 | 6967.0701 | 1.402 ; | 3111.0321 | 1.402 ; | 3111.032 ' |
| 0.90001 | O 0.3178 | 0.4501 | 1043.563; | 4.141! | $6820.372!$ | 1.365 ! | 2989.8261 | 1.365 ! | 2989.826 |
| 0.95001 | 0.3354 | 0.458 | 1049.541! | 4.095; | 6683.386! | 1.3301 | 2877.5481 | 1.330; | 2877.548 |
| 1.00001 | $0.3531!$ | 0.466 ! | 1054.3871 | 4.052 ' | 6555.233 ! | 1.2971 | 2773.358 | 1.297 ' | 2773.358 |
| 1.05001 | 0.3708 | 0.473 | 1058.293! | 4.0101 | 6435.128 | 1.2661 | 2676.508 | 1.2661 | 2676.508 |
| 1. 10001 | 0.3884 | 0.480 ; | 1061.4201 | 3.971 ! | 5322.368 ! | 1.2371 | 2586.3291 | 1.2371 | 2586.329 |
| 2.1500 | 0.4061 | 0.4861 | 1063.900: | 3.9331 | 6216.3231 | 1.2091 | 2502.2211 | 1.2091 | 2502.221! |
| 1. 2000 | 0.4237 | 0.4921 | 1065.845 | 3.898 ; | 6116.427! | 1.183 ' | 2423.649 | 1.1831 | 2423.649 |
| 1.2500 ! | ! 0.4414 | 0.4981 | 1067.348 | 3.864; | 6022.1711 | 1.159 | 2350.132! | 1.1591 | 2350.132 |
| 1.30001 | 0.45901 | 0.5031 | 1068.484 | 3. 831 ! | 5933.0981 | 1.135 | 2281.238! | 1.1351 | 2281:23B' |
| $1.3500:$ | 0.47671 | 0.5081 | 1069.319 | 3.8001 | 5848.7941 | 1.113 ! | 2216.579 | 1.113 ! | 2216.579 |
| 1.4000! | 0.49431 | 0.5131 | 1069.905: | 3.7701 | 5768.8861 | 1.092 | 2155.804 | 1.092 ! | 2155.804 |
| '1.45001 | 0.51201 | 0.5181 | 1070.286! | 3.742 | 5693.0371 | 1.072 | 2098.5991 | 1.072 ! | 2098.5991 |
| 1.50001 | 0.52971 | 0.5221 | 1070.498: | 3.714 | 5620.9421 | 1.053 ! | 2044.678 | 1.053 ! | 2044.678 |
| 1.55001 | 0.54731 | 0.5261 | 1070.573 | 3.6881 | 5552.322 1 | 1.035 | 1993.784; | 1.035 | 1993.784! |
| 1.6000! | 0.56501 | 0.5301 | 1070.536: | 3.662 ! | 5486.928 | 1.018 ! | 1945.683! | 1.018 ! | 1945.683) |
| 1.6500: | 0.58261 | 0.5341 | 1070.406 | 3.6381 | 5424.5291 | 1.002 ! | 1900.164! | $1.002!$ | 1900.164 |
| 1. 70001 | 0.60031 | 0.5381 | 1070.202 | 3.614 ! | 5364.917 | 0.9861 | 1857.0351. | $0.986!$ | 1857.035 |
| 1.7500 | 0.61791 | 0.542 ! | 1069.938 | 3.591! | $5307.902!$ | 0.971 | $1816.120^{\prime}$ | 0.971 | 1816.120 |
| 1.8000 | 0.63561 | 0.545 | 1069.625! | 3.5691 | 5253.309! | 0.956 | 1777.261! | 0.9561 | 1777.261 |
| 1.8500 ! | 0.6532 | 0.548 | 1069.274! | 3.548 ! | 5200.981 ! | 0.9431 | 1740.313! | 0.9431 | 1740.3131 |
| 1.90001 | 0.67091 | 0.551 | 1068.892 | 3.528 ! | 5150.770 | 0.9291 | $1705.142!$ | 0.9291 | 1705.142 |
| 1.9500 | 0.68851 | 0.555 ! | 1068.487 | 3.508 ! | 5102.544 | 0.9171 | 1671.628 | 0.9171 | 1671.628 |
| $2.0000{ }^{\text {i }}$ | 0.70621 | 0.558 ; | 1068.0631 | 3.489 i | 5056.179 | 0.9041 | 1639.660 ! | 0.904 | 1639.6601 |
| - | - | Numbers | Grams | umbers | Grams | Numbers | Grams | Numbers | Grams |
| Notes: Run name |  | : YLDEHJ03 |  |  |  |  |  |  |  |
| Date and time |  |  | 04MAY99:12:18 |  |  |  |  |  |  |
| Computation of ref. F: Simple mean, age B - 12 |  |  |  |  |  |  |  |  |  |
| F-0.1 factor : 0 |  |  | 0.6196 |  |  |  |  |  |  |
| - F-max factor |  | , | 1.5567 |  |  |  |  |  |  |
| F-0.1 reference $F$ : 0 |  |  | 0.2188 |  |  |  |  |  |  |
| $F$-max reference $F$ : 0 |  |  | 0.5497 |  |  |  |  |  |  |
| Recruitment |  | : Single recruit |  |  |  |  |  |  |  |

Figure 6.6.1.1 Fish Stock Summary - Greenland Halibut (Fishing Areas V and XIV)


Spawning stock and recruitment

(run: XSAEHJO2) B

## Figure 6.6.1.1 (Cont'd)

Long term yield and spawning stock biomass

(run: YLDEHJO3)
C

Short term yield and spawning stock biomass

(run: MANEHJO5) D

Figure 6.8.1 Greenland Halibut (Fishing Areas V and XIV)

## Stock - Recruitment



The genus Sebastes is very common and widely distributed in the North Atlantic. It is found off the coast of Britain, along Norway in the Barents Sea and Spitzbergen, off the Faroe Islands, Iceland, East - Greenland, West - Greenland, and along the east coast of North America from Baffin Island South to Cape Cod (Magnússon and Magnússon, 1995). All Sebastes species are viviparous. The extrusion of the larvae takes place in late winter - late spring/early summer but copulation occurs in autumn-early winter.

### 7.1 Description of the species and stocks in the area

In ICES Divisions V, VI, XII and XIV there are at least 3 species of redfish, S. marinus, S. mentella and $S$. viviparus. The latter has only been of minor commercial value. Iceland has started to fish $S$. viviparus in 2 small areas south of Iceland at depths of $150-250 \mathrm{~m}$. The catches of S. viviparus in 1997 were $1,160 \mathrm{t}$ and 994 t in 1998.

In the stocks in areas assessed by the NWWG, one stock of $S$. marinus exists in the area of East Greenland - Iceland Faroes. Large redfish, $S$. marinus type named "Giant", have been recorded and fished in different areas of the entire $S$. marinus distribution area including the Reykjanes Ridge. Due to uncertainties related to the stock identification of "Giants", NWWG concluded to collect separately all biological and fisheries data for future considerations.

During last years the existence of more than one stock of $S$. mentella in the area was discussed. Historically $S$. mentella was fished on the shelves and banks of Faroe Islands, Iceland and East Greenland and was considered as one stock. With the start of a new pelagic fishery in the open Iminger Sea in 1982, a new stock was defined for management purposes for $S$. mentella inhabit in Irminger Sea. In 1992, the Study Group on Redfish Stocks distinguished between these types as deep-sea $S$. mentella and oceanic S. mentella. In early 90 's, the pelagic fishery in the open Irminger Sea moved to deeper layers beyond 500 m and some researchers considered that some of the fish caught below 500 m were different to those living above 500 m but resembling more the deep-sea $S$. mentella living on the shelves. This new type of $S$. mentella living below 500 m has been called "pelagic deep-sea $S$. mentella".

There has been a strong controversy about whether these types are more than one stock and different hypotheses have been put forward:

The single stock hypothesis suggests that all redfish from Faroes Island to Greenland, segregated according to age/size.

The two stock hypothesis suggests that the $S$. mentella living on the shelves (deep-sea $S$. mentella) and that living in deeper pelagic waters of Irminger Sea (pelagic deep-sea $S$. mentella) constitute one stock unit which is separated from the oceanic $S$. mentella living in upper layers of the Irminger Sea.

The three stock hypothesis support the idea that each of the described types constitutes a distinct stock.
At the present NWWG-meeting the draft summary of the ICES WGAGFM (12-15 April 1999, Reykjavik) was presented, based on preliminary results of genetic studies on the stock structure of $S$. mentella in the Irminger Sea (WD 8). It was stated, that:
"Significant differences in allele frequencies based on preliminary studies on three polymorphic isozyme loci ...and three polymorphic microsatellite loci ... of the deep-sea and oceanic $S$. mentella types in the Irminger Sea indicate that the two types represent separate genetic stocks.

Differences between Icelandic and Irminger Sea deep-sea S. mentella are less but significant indicating also probably distinct genetic stocks.

Heterogeneity among samples of deep-sea and oceanic types $S$. mentella in the Irminger Sea, respectively, could indicate sub-structuring within each group and awaits further study....".

Based on the information given above, the NWWG stresses that there are still uncertainties in the stock structure of S.mentella in ICES Divisions V, XII and XIV (see Figure 7.1). In accordance with the precautionary approach the units must, until the problem have been clarified, treated in such way that each of the possible components will not be overexploited.

The official statistics sent to ICES do not report catch figures specified by species/stocks (Tables 7.2.1. - 7.2.5)
Therefore, based on various information from different laboratories, the catches were split into species/stock (Table 7.2.6).

The technique and data for such splitting were described in 1998 NWWG report.

### 7.3 Abundance and distribution of 0-group and juvenile redfish

Available data on distribution patterns of 0 -group and juvenile $S$. marinus indicate that there are nursery grounds in Icelandic and Greenland waters only but no nursery grounds are known around the Faroe Islands. In the 1983 Redfish Study Group report (ICES C.M. 1983/G:3) and in Magnússon and Jóhannesson (1997) the distribution of S. marinus 0group at East Greenland was evaluated, showing that there are considerable amounts of S. marinus at East Greenland mixed with $S$. mentella (Magnússon et al., 1988 and 1990) in variable proportions in different sub-areas and periods (Sigurǒsson, WD1 in ICES CM 1998/G:3). In Icelandic waters, nursery areas for S. marinus are found mostly west and north of Iceland at depths between 50 and approximately 350 m , but also in the south and east (ICES C.M. 1983/G:3; Einarsson, 1960; Magnússon and Magnússon 1975; Pálsson et al. 1997). As the length (age) increases, migration of young $S$. marinus along the north coast to the west coast takes place towards the most important fishing areas around Iceland.

Indices for 0 -group redfish in the Irminger Sea and at East Greenland areas were available from the Icelandic 0 -group surveys from 1970-1995. Thereafter, survey was discontinued. Above or average year class strengths were observed in 1972, 1973-74, 1985-91, and in 1995.

Abundance, biomass indices and length compositions have been derived using German annual groundfish surveys covering shelf areas and the continental slope off West and East Greenland down to 400 m depth (Rätz, WD 14). Due to difficult identification the juvenile redfish $(<17 \mathrm{~cm})$ were not classified to species level but treated as a single unit called Sebastes spp. Trends in survey abundance for juvenile redfish ( $<17 \mathrm{~cm}$ ) are shown in Figure 7.3.1 for West and East Greenland, respectively. Since 1993, small and unspecified redfish were very abundant and distributed mainly off East Greenland.

Juvenile redfish are caught both off West and East Greenland during the Greenland trawl survey (directed towards shrimp), which were conducted since 1992 off West Greenland and during1992-96 off East Greenland (Engelstoft, WD 20 in ICES CM 1997/A:13). The survey was discontinued off East Greenland after 1996. Abundance estimates were quite variable off West Greenland but indicated also a significant increase in abundance off East Greenland.

### 7.4 Discards and by-catch of small redfish

### 7.4.1 Discards of redfish in East and West Greenland

An offshore shrimp fishery with small meshed trawls ( 44 mm ) began in the carly 1970s off the west coast of Greenland and expanded to the east coast in the beginning of the 1980s, mainly on the shallower part of Dohm Bank and on the continental shelf from $65^{\circ} \mathrm{N}$ to $60^{\circ} \mathrm{N}$. Observer samples derived from the Greenland Fishery Licence Control revealed that the shrimp fishery at both West and East Greenland takes small redfish as a by-catch but there was no information available to quantify the by-catches and their length composition in 1998.

### 7.4.2 Regulations of small redfish by-catch at East and West Greenland

Present regulation concerning by-catches in the Greenland shrimp fishery permit a by-catch maximum of $10 \%$ of the total catch per each haul by weight. In 1994, a new arrangement with observers on board the vessels was implemented to strengthen the enforcement of the regulations and improve the reliability of the log-books.

The Redfish Box was created in 1981 off East Greenland as recommended by ACFM to protect that part of the nursery area of redfish (S. marinus and S. mentella) against the directed cod and redfish trawl fishery. Currently, the redfish box is effective also to the shrimp fishery

Bearing in mind the declining fishery and biomass of $S$. mentella and S. marinus in all areas, and increased interest of fishing redfish, concern must be expressed on the discard of small redfish of both species where ever it takes places.

The Working Group suggest the following measures for prevent young redfish by-catch and discards:

- legislate the mandatory use of a "fish grid or grate" for the shrimp fisheries as is the case in the Barents Sea, in Icelandic waters and in NAFO Regulatory Area.
- permit the temporary closure of areas when the by-catch of small fish exceeds a defined level as enforced at Iceland and in the Barents Sea.

Table 7.2.1. REDFISH. Nominal catches (tonnes) by countries, in Division Va 1985-1998, as officially reported to ICES.

| Country | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 400 | 423 | 398 | 372 | 190 | 70 | 146 |
| Faroe Islands | 291 | 144 | 332 | 372 | 394 | 624 | 412 |
| Germany | - | - | - | - | - | - | - |
| Iceland | 91,381 | 85,992 | 87,768 | 93,995 | 91,536 | 90,891 | 96,770 |
| Norway | 8 | 2 | 7 | 7 | 1 | - | - |
| Total | 92,080 | 86,561 | 88,505 | 94,746 | 92,121 | 91,585 | 97,328 |
| WG estimate | 92,080 | 86,670 | 88,505 | 94,762 | 92,121 | 91,585 | 97,328 |
|  |  |  |  |  |  |  |  |
| Country | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
| Belgium | 107 | 96 | 50 | - | - | - | - |
| Faroe Islands | 389 | 438 | 202 | 521 | 309 | 242 |  |
| Germany | - | - | 46 | 229 | 233 | - | 284 |
| Iceland ${ }^{2}$ | 94,382 | 96,577 | 95,091 | 89,474 | 67,757 | 73,976 | 68,164 |
| Norway | - | - | - | - | 134 | - | - |
| Total | 94,878 | 97,111 | 95,389 | 90,224 | 68,433 | 74,218 | 68,448 |
| WG estimate | 96,846 | 99,714 | 110,861 | 91,767 | 72,909 | 89,519 | 112,646 |

1) Provisional
2) Oceanic $S$. mentella not included in the officially reported catches

Table 7.2.2 REDFISH. Nominal catches (tonnes) by countries, in Division Vb 1985-1998, as officially reported to ICES.

| Country | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | - | 36 | 176 | 8 | - | + | - |
| Faroe Islands | 12,634 | 15,224 | 13,477 | 12,966 | 12,636 | 10,017 | 14,090 |
| France | 1,157 | 752 | 819 | 582 | 996 | 909 | 473 |
| Germany ${ }^{2}$ | 5,091 | 5,142 | 3,060 | 1,595 | 1,191 | 441 | 447 |
| Iceland | - | - | - |  | 21 |  |  |
| Norway | 4 | 2 | 5 | 5 | - | 21 | 20 |
| UK (Engl. and Wales) | - | - | - |  | - | + | 3 |
| Total | 18,886 | 21,156 | 17,537 | 15,156 | 14,844 | 11,388 | 15,033 |
| WG estimates | 19,754 | 21,476 | 17,538 | 15,508 | 15,068 | 11,737 | 15,037 |
|  |  |  |  |  |  |  |  |
| Country | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
| Denmark | - | - | - | - | - | - |  |
| Faroe Islands | 15,279 | 9,687 | 8,872 | 7,978 | 7,286 | 7,199 |  |
| France ${ }^{1}$ | 114 | 32 | 90 | 111 | 62 | 98 | 110 |
| Germany ${ }^{2}$ | 450 | 239 | 155 | 91 | 189 | 36 | - |
| Norway | 34 | 16 | 34 | 36 | $35^{1}$ | 25 | 38 |
| Russia | 15 | 44 | 3 | - | - | - | - |
| UK (E/W/NI) | 21 | 28 | 1 | 2 | 40 | + | - |
| UK (Scotland) | 8 | 1 | 18 | 24 | 43 | 36 |  |
| United Kingdom |  |  |  |  |  |  | 30 |
| Total | 15,921 | 10,047 | 9,173 | 8,242 | 7,655 | 7,394 | 178 |
| WG estimates | 15,993 | 10,422 | 9,173 | 8,251 | 7,655 | 7,397 | 6,654 |

1) Provisional
2) Former GDR and GFR until 1991

Table 7.2.3 REDFISH. Nominal catches (tonnes) by countries, in Sub-area VI 1985-1998, as officially reported to ICES.

| Country | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Faroe Islands | 18 | - | - | 1 | 61 | - | 22 |
| France | 397 | 480 | 1,032 | 1,024 | 726 | 684 | 483 |
| Germany | 76 | 24 | - | 16 | 1 | 6 | 8 |
| Ireland | - | - | - | - | - | - | - |
| Norway | - | 14 | 2 | 1 | 2 | 5 | + |
| Spain | - | - | - | - |  |  |  |
| UK (Engl. and Wales) | 1 | 2 | 3 | 75 | 1 | 29 | 12 |
| UK (Scotland) | - | 10 | 17 | 6 | 6 | 6 | 40 |
| Total | 492 | 530 | 1,054 | 1,123 | 797 | 730 | 565 |
| WG estimates | 492 | 530 | $I, 054$ | 1,123 | 797 | 730 | 565 |
|  |  |  |  |  |  |  |  |
| Country | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
| Faroe Islands | 6 | - | - | 2 |  | 12 |  |
| France 1 | 127 | 268 | 555 | 529 | 489 | 395 | 297 |
| Germany | - | 77 | 87 | 5 | 9 | 1 | 1 |
| Ireland | 1 | 1 | - | 4 |  | 10 |  |
| Norway | 4 | 3 | 2 | 1 | 6 | $5{ }^{1}$ | 3 |
| UK (E/W/NI) | 4 | 4 | 9 | 105 | 54 | 19 |  |
| UK (Scotland) | 32 | 94 | 118 | 500 | 603 | 518 |  |
| United Kingdom |  |  |  |  |  |  | 377 |
| Total | 174 | 447 | 771 | 1,146 | 1,161 | 960 | 678 |
| WG estimates | 174 | 447 | 771 | $I, 146$ | $I, 71$ | 960 | 678 |

1) Provisional

Table 7.2.4 REDFISH. Nominal catches (tonnes) by countries, in Sub-area XII 1985-1998, as officially reported to ICES and/or FAO.

| Country | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bulgaria | - | - | - | - | - | 1,617 | - |
| Estonia | - | - | - | - | - | - | - |
| Faroe Islands | - | - | - | - | - | - | - |
| France | - | - | - | - | 353 | 7 | 62 |
| Germany | - | - | - | - | 567 | - | - |
| Greenland | - | - | - | - | - | 185 | 95 |
| Iceland | - | - | - | - | - | - | - |
| Latvia | - | - | - | - | - | - | - |
| Lithuania | - | - | - | - | - | 249 | 726 |
| Netherlands | - | - | - | - | 112 | - | - |
| Norway |  |  |  |  |  |  |  |
| Poland |  |  |  |  |  |  |  |
| Portugal | 17,300 | 24,131 | 2,948 | 9,772 | 15,543 | 4,274 | 6,624 |
| Russia |  |  |  |  |  |  |  |

Spain
UK(E/WNI)
UK (Scotland)
Ukraine

| Total | 17,300 | 24,131 | 2,948 | 9,772 | 16,575 | 6,332 | 7,507 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WG estimates | 17,300 | 24,131 | 2,948 | 9,772 | 17,233 | 7,039 | 10,061 |
| Country | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | $1998{ }^{1}$ |
| Bulgaria | 628 | 3,216 | 3,600 | 3,800 | 3,500 |  |  |
| Estonia | 1,810 | 6,365 | 17,875 | 421 | 4,697 | 3,720 | 3,968 |
| Faroe Islands | - | 4,026 | 2,896 | 3,467 | 3,127 | 3,822 |  |
| France |  |  |  |  |  |  | 3 |
| Germany | 1,084 | 6,459 | 6,354 | 9,673 | 4,391 | 8,866 | 9,746 |
| Greenland | 9 | 710 | - | 1,856 | 3,537 | - |  |
| Iceland | 361 | 8,098 | 17,892 | 19,577 | 3,613 | 3,856 | 1,430 |
| Latvia | 780 | 6,803 | 13,205 | 5,003 | 1,084 | - | - |
| Lithuania | 6,656 | 7,899 | 7,404 | 22,893 | 10,649 |  |  |
| Netherlands | - | - | - | 13 |  | - | - |
| Norway | 380 | 5,911 | 4,514 | 3,893 | 1,010 ${ }^{1}$ | 2,699 ${ }^{1}$ | 488 |
| Poland | - | - | - |  |  | 662 | - |
| Portugal |  |  |  |  |  |  | 503 |
| Russia | 2,485 | 4,106 | 10,489 | 34,730 | 606 | - | 89 |
| Spain |  |  |  | 20 | 410 |  |  |
| UK(E/WNI) |  |  |  |  | 33 | - |  |
| UK(Scotland) |  |  |  |  | 13 | - |  |
| UK | - | + | - |  |  |  | - |
| Ukraine | - | 2,782 | 5,561 | 3,185 | 518 |  |  |
| Total | 14,193 | 56,375 | 89,790 | 108,531 | 37,188 | 23,625 | 16,227 |
| WG estimates | 23,249 | 72,529 | 94,189 | 132,039 | 42,441 | 18,578 | 19,538 |

1) Provisional
2) Former USSR until 1991

Table 7.2.5 REDFISH. Nominal catches (tonnes) by countries, in Sub-area XIV 1985-1998, as officially reported to ICES and/or FAO.

| Country | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bulgaria | 5,825 | 11,385 | 12,270 | 8,455 | 4,546 | 1,073 | - |
| Denmark | - | - | - | - | - | - | - |
| Faroe Islands | - | 5 | 382 | 1,634 | 226 | - | 115 |
| Germany, Dem. Rep, | 5,438 | 8,574 | 7,023 | 22,582 | 8,816 |  |  |
| Germany, Fed. Rep. | 5,974 | 5,584 | 4,691 |  |  |  |  |
| Germany |  |  |  |  |  | 11,218 | 9,122 |
| Greenland | 5,519 | 9,542 | 670 | 42 | 3 | 24 | 42 |
| Iceland | + | . | - | - | 814 | 3,726 | 7,477 |
| Norway | - | - | - | - | - | 6,070 | 4,954 |
| Poland | 135 | 149 | 25 | - | - |  |  |
| Russia ${ }^{2}$ | 42,973 | 60,863 | 68,521 | 55,254 | 7,177 | 3,040 | 2,665 |
| UK (Engl. and Wales) | - | - | - | - | 5 | 39 | 219 |
| UK (Scotland) | - | - | - | - | - | 3 | + |
| United Kingdom |  |  |  | - | - | - | - |
| Total | 65,864 | 96,102 | 93,582 | 87,967 | 21,587 | 25,193 | 24,594 |
| WG estimates | 65,864 | 96,102 | 95,824 | 91,676 | 24,520 | 31,261 | 28,400 |
| Country | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
| Bulgaria | - | - |  |  |  |  |  |
| Denmark | - | - | - |  |  |  |  |
| Faroe Islands | 3,765 | 3,095 | 164 | 8 | 298 | 123 |  |
| Germany | 7,959 | 26,969 | 22,406 | 9,702 | 16,996 | 11,610 | 9,671 |
| Greenland | 962 | 264 | 422 | 2,936 | 2,699 | 193 |  |
| Iceland ${ }^{3}$ | 12,982 | 11,650 | 29,114 | 8,947 | 49,381 | 33,820 | 44,740 |
| Norway | 14,000 | 8,351 | 2,546 | 2,890 | 6,286 ${ }^{1}$ | $433{ }^{1}$ | 594 |
| Poland |  |  |  |  |  | 114 |  |
| Portugal | - | - | 1,887 | 5,125 | 2,379 | 3,644 | 3,369 |
| Russia | 1,844 | 6,560 | 13,917 | 9,439 | 45,142 | 36,930 | 25,748 |
| Spain |  |  |  | 4,534 | 3,897 |  |  |
| UK (E/W/NI) | 178 | 241 | 138 | 48 | 247 | 28 |  |
| UK (Scotland) | 28 | 8 | 4 | 10 | 6 |  |  |
| United Kingdom | - | - |  |  |  |  | 43 |
| Total | 41,718 | 57,138 | 70,598 | 43,639 | 127,331 | 90,793 | 84,165 |
| WG estimates | 48,513 | 57,269 | 59,776 | 43,142 | 134,782 | 88,018 | 57,223 |

1) Provisional data
2) Former USSR until 1991.
3) Officially reported catches includes Oceanic redfish caught in Subdivision Va.

Table 7.2.6. Proportions used for splitting the 1998 REDFISH landings between S.marinus and S.mentella stocks.

| Area | Va |  |  | Vb |  | VI |  | XII |  | XIV |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species/stock | S.mar. | S.ment. deep-sea | S.ment. oceanic | S.mar. | S.ment. deep-sea | S.mar. | S.ment. deep-sea | S.ment. oceanic | S.mar. | S.ment. deep-sea | S.ment. oceanic |
| Belgium | 1.00 |  |  |  |  |  |  |  |  |  |  |
| Estonia |  |  |  |  |  |  |  | 1.00 |  |  |  |
| Farces | 1.00 | 0.00 | 0.00 | 0.25 | 0.75 |  |  | 1.00 | 0.00 | 1.00 | 0.00 |
| France |  |  |  |  | 1.00 |  |  | 1.00 |  |  |  |
| Germany | 0.00 | 1.00 | 0.00 . |  | 1.00 | 0.00 | 1.00 | 1.00 | 0.06 | 0.51 | 0.43 |
| Greenland |  |  |  |  |  |  |  | 1.00 | 0.10 | 0.90 |  |
| Iceland | 0.35 | 0.51 | 0.14 |  |  |  |  | 1.00 |  |  | 1.00 |
| Latvia |  |  |  |  |  |  |  | 1.00 |  |  |  |
| Lithuania |  |  |  |  |  |  |  | 1.00 |  |  |  |
| Norway |  |  |  | 1.00 | 0.00 | 1.00 | 0.00 | 1.00 | 0.02 |  | 0.98 |
| Portugal |  |  |  |  |  |  |  |  |  |  | 1.00 |
| Russia |  |  |  | 1.00 | 0.00 |  |  | 1.00 | 0.00 | 0.47 | 0.53 |
| UK |  |  |  | 1.00 | 0.00 | 1.00 |  |  | 0.11 | 0.90 |  |

In Sub-area XIV the landings for Germany, Greenland and UK have been splitted between S.marinus and deep-sea S.mentella according to the German surveys.
For Faroe Islands, Germany, Iceland, Norway and Russia the splitting in most areas has been based on biological information presented to the Working Group and/or from log-books.


Figure 7.1.1 Schematically possible relationship between different stocks of redfish in the Irminger Sea and along the continental slope of E-Greenland-Iceland-Faroe Island.


Figure 7.3.1 Sebastes spp. ( $<17 \mathrm{~cm}$ ). Survey abundance indices for East and West Greenland as derived from the German groundfish survey, 1982-98. *) incomplete survey coverage.

### 8.1 Landings and Trends in the Fisheries

The total catch of S. marinus in Divisions Va and Vb and in the Sub-areas VI and XIV has decreased from about $130,000 \mathrm{t}$ in 1982 to about 40,00 and $39,000 \mathrm{t}$ in 1997 and 1998, respectively (Table 8.1.1). This decline of about $70 \%$ over this period has been continuous but with few exceptions. Since 1990, catches have decreased from about 67,000 t or about $45 \%$. The relative highest decline in last years occurred in area Va (Table 8.1.1).

Catches of S. marinus in Division Va have declined from $63,000 \mathrm{t}$ in 1990 to only $34,000 \mathrm{t}$ in 1996, a $55 \%$ reduction. The catch in 1998 was about $37,000 \mathrm{t}$. The decline in the catch in 1994 was at least partly due to area closures imposed on the fishery by Iceland in order to reduce the catches of S. marinus. The catches in 1995 increased again to approximately $42,000 \mathrm{t}$ despite the area closures. The catches in 1996-1998 are the lowest catch of $S$. marinus in Va since 1978. The length distributions in the Icelandic landings in 1989-1997 along with measurements at sea from the commercial trawler fleet are shown in Figure 8.1.1. The location and number of measured fishes by statistical square is given in Figure 8.1.2.

About $90-95 \%$ of the total redfish catches in area Va in recent years have been taken by bottom trawlers (both fresh fish and freezer; length $48-65 \mathrm{~m}$ ) targeting on redfish. The remainder is taken by different gears and partly as a bycatch in the gill net and long line fishery. A total of $100-150$ vessels landed more than 10 t of redfish during the last years. In 1998, as in previous years, most of the catches are taken in the area from SE of lceland to W of Iceland.

In Division Vb, the catches were highest in 1985 approximating 9000 t with steady decline to about $2,400 \mathrm{t}$ in 1990 . They have since then remained at the level of $2,100-2,600 \mathrm{t}$ except in 1992 when the catch was about $3,400 \mathrm{t}$ (Table 8.1.1). Most of the $S$. marinus catches in Vb have been taken by pair trawlers and single trawlers ( $<1000 \mathrm{HP}$ ). No length distribution from the catches was available for this year.

In Sub-area VI, the catches in the period from 1978-1994 were highest in 1987, at almost 600 t , but then declined to a level of 100 t from 1988-1994. In 1995-1996 the catches increased to over 600 t which are the highest catches in the whole period from 1978 (Table 8.1.1). The catch in 1997 were over 500 t and in 1998, the provisional catch is about 400 t . The major proportion of the catches has been taken by trawlers. No length distribution was available from the catch.

In Sub-area XIV, the catches have shown a relatively larger decrease than in the other Divisions and Sub-areas. Thus the catches dropped from almost 31000 t in 1982 to 5000 t in 1984 (an $84 \%$ decrease). In the period 1984 to 1988, they varied between $1,200-5,000 \mathrm{t}$. In 1989 they amounted to only 685 t (only $2.2 \%$ of the catches in 1982). The catches remained at this low level for two years, then they increased again to $3,900 \mathrm{t}$ in 1990. In the period from 1991-1994 the catches were between $1,100-1,700 \mathrm{t}$ but in 1995-1997 the catches were less than 100 t , the lowest on record (Table 8.1.1). In 1995 and 1996, there was almost no directed fishery for $S$. marinus nor deep sea $S$. mentella in area XIV, but in 1998 a directed redfish fishery started again and S.marinus catches from that were estimated around 150 t . The remainder of the catches were taken as a bycatch in the shrimp fishery. Large bottom trawlers took the catches taken in directed redfish fishery.

Following text-table shows the sampling by gear type and Divisions.

|  | Area | Gear | Landings | Nos. samples | Nos. fish measured |
| :--- | :---: | :--- | :---: | :---: | :---: |
| S.marinus | Va | Bottom trawl | 36,000 | 164 | 34989 |
|  | Vb | Bottom trawl | 2,500 | 0 | 0 |
|  | XIV | Bottom trawl | $<100$ | 16 | 1310 |
|  | VI | Bottom trawl | 380 | 0 | 0 |

### 8.2.1

Trends in CPUE and survey indices

Figure 8.2.1 shows the $S$. marinus abundance index with $95 \%$ confidence intervals using Icelandic groundfish survey data down to 400 m depth. The index is a biomass index of the fishable stock computed by using a fishable stock ogive (see WD 10). The index is a Cochran index (see Pálsson et.al, 1989) and the stratification is based on depth intervals and is shown in Figure 8.2.3. In Table 8.2.1 the contribution of each strata to the index is given.

The index indicates an increase in the fishable biomass from the record low level in 1995. The length distribution from the survey shows that the peak in the length distribution (Figure 8.2.4) which have been followed during the last years (first in 1987) now has reached the fishable stock and can clearly been seen in the length distributions of the catches (Figure 8.1.1) as a peak around $35-37 \mathrm{~cm}$. That is in accordance to the peak in earlier years, showing a growth of about $1.5-2 \mathrm{~cm}$ each year. The increase in the survey index in recent years therefore reflects the recruitment of a strong year class (probably the 1985 year class). This indication of strong ear classes is also confirmed by age readings which have been going on since 1998. Based on the age reading, the 1985 year class have been dominating in the catches since 1995 with about $30 \%$ of total number (Figure 8.2.2).

Indices of CPUE for the Icelandic trawl fleet for the period 1980-1998 are also estimated from a GLIM multiplicative model, taking into account changes in the Icelandic trawl catch due to vessel, statistical square, month and year effects. All hauls with redfish at depths above 500 m , exceeding $10 \%$ of the total catch were included in the CPUE estimation (Figure 8.2.5). Also, a simple CPUE was calculated (sum of catch / sum of effort for each year each haul where redfish exceeding $10 \%$ of the total catch in each haul). The results from the trawler fleet also reflect the situation shown in the groundfish survey and although the CPUE has been at a low level in recent years it increased in 1997 and has been at similar level in 1998 as in 1997.

In summary, the Icelandic groundfish survey as well as the CPUE data seem to indicate a considerable decline in the fishable biomass of $S$. marinus during the period from 1986 to 1994. The stock seems to have started to recover in 1995 - 1999 but it is still at a low level.

In Division Vb, CPUE of S.marinus were available from the Faroes groundfish survey 1983-1998 showing an increase since 1995 although this was not seen in the catch statistics which still are on a very low but seemingly stable level (Figure 8.2.6).

For the period 1982-98, abundance and biomass indices from the German groundfish survey for $S$. marinus ( $\geq 17 \mathrm{~cm}$ ) are illustrated in Figures 8.2.7 and 8.2.8. From 1986-1995, an almost continuous reduction in survey biomass has occurred. However, in the most recent survey results, a weak signal of possible recovery is shown. It can be taken from Figures 8.2.7 and 8.2.8 that the redfish were mainly distributed off East Greenland, while the minor abundance and biomass indices off West Greenland decreased almost to zero.

The length frequencies from the German groundfish survey in 1998 are illustrated for West and East Greenland in Figures 8.2.9. The low mean length and left-skewed size composition in 1998 indicate relatively good recruitment which caused a slight stock increase. The adults, however, remain depleted. Growth increments of single cohorts and the annual abundance and biomass indices at West - and East Greenland for the period 1992-1998 were presented in WP 10 .

### 8.2.2 Alternative assessment methods

During previous meetings, the working group have tried an age-production model which has been described in Stefánsson and Sigurð̈́sson (ICES C.M. 1997/DD10). Applying the model to S. marinus the model showed the same general trend in the fishable biomass as the Icelandic groundfish survey and it seems to be able to reflect the peak in the recruitment of the assumed 1985 and 1990 year classes. This year, an alternative model (BORMICON(BOReal MIgration and CONsumption model)) was applied to the S.marinus stock. The model is described in WD 18. BORMICON is a simulation model and estimation model developed at the Marine Research Institute. It is described in Stefánsson and Pálsson (1997). The model is designed as multispecies - multiarea model but can also be used as a single species model as was done for the redfish. The main characteristics that distinguish the model from most stock assessment model is that it stores the number and mean weight of fish in each age and length group, not only in each age group as traditional models do. This means that growth has to be modelled. It is done by calculating the mean growth for each length group according to some growth model (for example von Bertalanfy's) model. The next step is
then to distributed the growth. Then certain proportion of the fishes do not grow, some proportion grows one length group, some proportion 2 length groups etc.

All fleets (predators) in the model have length based selection pattern. This means that fleets catch only the largest individuals of each recruiting age group and therefore affect mean weight at age. The model does not use catch in number directly as input data but rather length distributions, otolith samples and other data used to calculate catch in numbers. An objective function is then used to minimise the discrepancy between the model output and these data. This means that the model can use data that are not sampled regularly enough to calculate catch in number. Several runs were done and presented in WD 18, by using two types of fleets:

1) The total amount calculated by the fleet is specified and it is distributed on different length groups according to abundance and the selection pattern. The same proportion is caught of each age group in a length group.
2) The proportion caught (approximately fishing mortality for short timesteps) is specified. This proportion is then multiplied by the selection pattern so it is only for the length groups that are fully recruited that this proportion is caught. Fishing mortality refers to this proportion.

In calculation for the past the flects where the total amount is specified area used but in simulations into the future proportion caught is specified

The formulation used is a relatively simple one. It's main characteristics are.

- One area
- Two fleets catching each species, a commercial fleet and a survey. Selection patterns of both fleets are described by a logit function, whose parameters are estimated.
- Growth is described by the von Bertalanffy's function.

Data used in the objective function to be minimised are:

- Length distributions from commercial catch and survey
- Age length keys $p(a / L)$ from commercial catch and survey
- Length disaggregated survey indices
- Mean length at age from survey, and commercial catches
- Understocking (Not enough biomass exists to cover the catch)

Estimated parameters are then:

- Initial number in each age group
- Recruitment each year
- Parameters in the growth equation
- Selection patterns of commercial fleet and survey. Two parameters for each fleet

Simulation period is from 1970 to 1999. Two timesteps are used each year
Natural mortality is set to 0.15 for the youngest decreasing gradually to 0.05 or 0.1 for age 5 and older. The ages used are 1 to 30 years. The oldest age is treated as a plus group. Recruitment was at age 1. Prior to 1989 length at recruitment was 7.1 cm but 8.1 cm after that. This was supposed to reflect length of the 1985 and 1990 ear classes in the groundfish survey.

3 alternatives were tested.

- $\mathrm{M}=0.05$
- Same as the first alternative but age readings were not used in the objective function
- $\mathrm{M}=0.1$

Figure 8.2 .10 shows the estimated fishing mortality on fully recruited fishes for the period 1975-1998. As seen, the fishing mortality rate has decreased in last years, after having being increasing in the period 1978-1990. The fishing
mortality rate in 1998 is estimated to 0.25 (on fully recruited fish), and the average F for the whole period from 19751998 is 0.33 .

Figure 8.2.11 shows estimated recruitment as age 1 according to one of the alternatives model ( $M=0.05$ ). The main indicator for recruitment is the groundfish survey, which does not indicate that anything is on the way after the 1990 year class. Here the 1990 year class seems somewhat smaller than the 1985 year class. Much less data are available to estimate the recruitment prior to 1985.

As may be seen on figure 8.2.11 the cacheable biomass will increase in the nearest future, for F between $0.2-0.3$, but thereafter, the biomass will decrease again due to no indication of recruitment. Also, the catches (Figure 8.2.12 will increase in next years, but in all cases decrease thereafter. If the groundfish survey is to be accepted as a measure of recruitment no new year class will show up in the catch until 2010 so the 1985 and 1990 ear classes need to be preserved at least until then.

### 8.2.3 State of the stock and catch projections

All available survey information and CPUE data from Division Va show that the S.marinus stock decreased considerably to the lowest recorded biomass level in 1995. An improvement in fishable biomass has, however, been seen in the most recent years due to improved recruitment. During the last few years, the 1985 year class has contributed significantly to the fishable stock, and the 1990 year class is expected to contribute significantly to the fishable biomass in next years. In Division Vb the CPUE from the Faroes groundfish survey show an increase in last years but the catches are still at a very low level. The adult stock of S.marinus in Sub-area XIV has nearly been depleted in the most recent years, but there are indications of a recruitment in the area.

The Icelandic groundfish survey indices ( $U$ ) may be assumed to be related to overall biomass ( $B$ ) by a simple linear relationship ( $U=k B$ ). If catches in time, $t$, are assumed to be proportional to stock size and effort ( $Y=c E B$ ), then it follows that catch over survey index is proportional to effort ( $Y / U=a E$ ) and this allows a one-year prediction of catch assuming a status-quo effort level.

| Year |  | Survev index | Catch Va | Effort |
| :---: | :---: | :---: | :---: | :---: |
| 85 | 1000 | 67,312 | 67 |  |
| 86 | 1137 | 67,772 | 60 |  |
| 87 | 1167 | 69,212 | 59 |  |
| 88 | 875 | 80,472 | 92 |  |
|  | 89 | 953 | 51,852 | 54 |
|  | 90 | 683 | 63,156 | 93 |
|  | 91 | 559 | 49,677 | 89 |
| 92 | 516 | 51,464 | 100 |  |
| 93 | 423 | 45,890 | 108 |  |
| 94 | 480 | 38,669 | 81 |  |
| 95 | 359 | 41,516 | 116 |  |
|  | 535 | 33,558 | 62 |  |
| 96 | 535 | 36,342 | 63 |  |
| 97 | 567 | 36,310 | 64 |  |
| 98 | 568 |  |  |  |
| 99 | 710 |  |  |  |

By assuming same effort in 2000 as it was in 1998 (calculated from the survey index from depth down to 400 m ) and calculating the catch in 2000 as:

$$
\text { Catch }_{2000}=\text { Survey index } 1999 \text { * Effort } 1998,
$$

the catch in Va would be around 46000 t .
In Division Vb the CPUE from the Faroes fleet show similar trend as the Icelandic (increase in last three years) but in Sub-area XIV the fishable stock of S.marinus is almost depleted. Based on Icelandic age reading data and a lengthweight relationship from commercial catches, an unexploited year class will reach maximum biomass at an age of approx. $16-18$ or length of $40-42 \mathrm{~cm}$ (Table 8.2.2). Keeping fishing effort lower than in the last 2 or 3 years should therefore result in an increased total yield from the 1985 and 1990 year classes.

In order to protect the new incoming year classes any fishing effort on these components should be kept low to allow the stock to rebuild. It should also be kept in mind that, based on the groundfish survey there is no indication of new year class after the 1990 year class. Therefore as described in 8.2.2, the two ear classes, 1985 and 1990 needs to be preserved, since it is unlikely that other ear classes than the 1985 and 1990 will contribute substantially to the catch in next years. Therefore, the working group recommends that the catches should not be increased from the present level.

### 8.3 Biological reference points

S. marinus is mainly caught in Division Va and the relative state of the stock can be assessed through survey and cpue index series from that Division. ACFM proposed to define reference points in "terms of current state with respect to $\mathrm{U}_{\mathrm{lim}}=\mathrm{U}_{\max } / 5$ and $\mathrm{U}_{\mathrm{pa}}=\mathrm{U}_{\max } / 2$ ". Based on survey data, the highest recorded biomass was reached in 1987. Based on the proposed reference points, the Upa is then 133 and $\mathrm{U}_{\text {lim }}$ around 53. Further, based on these definitions, the stock has been below $\mathrm{U}_{\mathrm{pa}}$ during the last years, but the survey index from 1999 indicates that it now is above that reference limit point. Based on the BORMICON model the corresponding values for reference points (for the period 1985-1999) are then $\mathrm{U}_{\max }=230$ (in 1985); $\mathrm{U}_{\mathrm{lim}}=46$ and $\mathrm{U}_{\mathrm{pa}}=115$, and the stock seems to have been below $\mathrm{U}_{\mathrm{pa}}$ in the period from 19931996. As for the survey series, the stock has been above that level during past 2 years.

The survey index series is only available back to 1985. Due to the long time lag between spawning and recruitment to the fishable stock (at least 10 years) it is very difficult to see the consequences of the low fishable stock in early 1990's. There are, however indications that the recruitment has been low ever since. Index of fishable biomass have, in last 9 years, been above $\mathrm{U}_{\max } / 2$ for 6 years. Therefore, based on both the survey index as well as the BORMICON model a Upa limit set as $\mathrm{U}_{\text {max }} / 2$ might result in to low fishable biomass to produce strong year class, and therefore the Upa might be set to high. The working group, therefore proposes that $\mathrm{U}_{\mathrm{pa}}$ be set at $60 \%$ of $\mathrm{U}_{\max }$, which corresponds to the level of fishable biomass associated with the last strong year class.

## 8.4 "Giant" S.marinus.

In March 1996 a new fishery with longlines and gillnets started on the Reykjanes Ridge deeper than 500 meters. In addition to traditional bottom longlines, vertical longlines were used on the steep sea mountains. One or two vessels also used gillnets. One of the main species caught in this fishery were the "giant" Sebastes marinus (see chapter 7.1). The main fishery has taken place from within the Icelandic EEZ (north to approx. $63^{\circ} \mathrm{N}$ ) and southwards in international waters to approx. $56^{\circ} \mathrm{N}$, although occasionally "giant" redfish have been caught south to $52^{\circ} 30^{\prime} \mathrm{N}$.

ACFM decided in 1997 to treat all S. marinus in ICES Sub-areas V, XII and XIV, including the 'giant', as one management unit.

The only landing statistics presented in 1996 were by Iceland, the Faroes and Norway (Table 8.1.2). The total reported landings of "giant" S. marinus taken by these countries in Sub-areas XII and XIV in 1996 were 900 t . The fishery since then decreased, with only minor catches reported by Norway in 1997 and there were no reportings of "giant" catch in 1998. There was however a considerable fishing effort on the Reykjanes in 1997, but the target demersal species seems to have been Greeniand halibut and other deep sea species.

Taking all available information and knowledge into account it is the view of the Working Group that the demersal redfish caught on the Reykjanes ridge in international waters, of which nearly $100 \%$ have been documented to belong to a separate genetic pool, the 'giants', should be managed separately and in a very conservative and cautious way. Although these 'giants' living in international waters extend the distribution into the EEZs, one should avoid including 'giants' that can be identified as 'giants' (i.e., nearly $100 \%$ in international waters) in a TAC meant for $S$. marinus within the EEZs.

Table 8.1.1 S. marinus. Landings (in tonnes) by area used by the Working Group.

| Year | Va | Vb | VI | XII | XIV | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 | 31,300 | 2,039 | 313 | 0 | 15,477 | 49,129 |
| 1979 | 56,616 | 4,805 | 6 | 0 | 15,787 | 77,214 |
| 1980 | 62,052 | 4,920 | 2 | 0 | 22,203 | 89,177 |
| 1981 | 75,828 | 2,538 | 3 | 0 | 23,608 | 101,977 |
| 1982 | 97,899 | 1,810 | 28 | 0 | 30,692 | 130,429 |
| 1983 | 87,412 | 3,394 | 60 | 0 | 15,636 | 106,502 |
| 1984 | 84,766 | 6,228 | 86 | 0 | 5,040 | 96,120 |
| 1985 | 67,312 | 9,194 | 245 | 0 | 2,117 | 78,868 |
| 1986 | 67,772 | 6,300 | 288 | 0 | 2,988 | 77,348 |
| 1987 | 69,212 | 6,143 | 576 | 0 | 1,196 | 77,127 |
| 1988 | 80,472 | 5,020 | 533 | 0 | 3,964 | 89,989 |
| 1989 | 51,852 | 4,140 | 373 | 0 | 685 | 57,050 |
| 1990 | 63,156 | 2,407 | 382 | 0 | 687 | 66,632 |
| 1991 | 49,677 | 2,140 | 292 | 0 | 4,255 | 56,364 |
| 1992 | 51,464 | 3,460 | 40 | 0 | 746 | 55,710 |
| 1993 | 45,890 | 2,621 | 101 | 0 | 1,738 | 50,350 |
| 1994 | 38,669 | 2,274 | 129 | 0 | 1,443 | 42,515 |
| 1995 | 41,516 | 2,581 | 606 | 0 | 62 | 44,765 |
| 1996 | 33,558 | 2,318 | 663 | 0 | 59 | 36,598 |
| 1997 | 36,342 | 2,839 | 542 | 0 | 37 | 39,761 |
| $1998{ }^{1}$ | 36,310 | 2,565 | 380 | 0 | 175 | 39,593 |

1) Provisional

Table 8.1.2 Catches of "giant" S. marinus in Divisions XII and XIV.

|  | XII |  |  | XIV |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1996 | 1997 |  | 1996 | 1997 |
| Norway | 76 | 21 |  | 750 | 22 |
| Faroes ${ }^{1}$ |  |  | 80 |  |  |
| Total | 76 | 21 |  | 830 | 22 |

1) Includes area XII

Catch figures for other areas or nations are not available for the meeting.

Table 8.2.1. Index on fishable stock of S.marinus in the Icelandic groundfish survey by depth.

| Depth interv/year | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| <100m | 7 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 0 | 1 | 1 | 2 |  |
| $100-200 \mathrm{~m}$ | 87 | 84 | 119 | 93 | 99 | 66 | 74 | 60 | 47 | 57 | 37 | 44 | 59 | 56 | 55 |
| $200-400 \mathrm{~m}$ | 134 | 173 | 145 | 106 | 117 | 87 | 52 | 56 | 49 | 52 | 44 | 77 | 70 | 72 | 106 |
| $400-500 \mathrm{~m}$ | 22 | 12 | 10 | 4 | 11 | 25 | 9 | 10 | 19 | 1 | 13 | 25 | 41 | 3 | 48 |
| Total 0-400m | 228 | 259 | 266 | 200 | 217 | 156 | 128 | 118 | 97 | 109 | 82 | 122 | 129 | 130 | 162 |
| Total 0-500 m | 252 | 273 | 277 | 221 | 231 | 195 | 139 | 129 | 118 | 112 | 96 | 147 | 170 | 132 | 210 |

Table 8.2.2. S.marinus. Estimated weight of a year class, based on Icelandic age reading data and a lengthweight relationship from commercial catches. Input parameters are given below.

| Age | Estim. Mean length | Number in stock | Weight in stock |
| ---: | ---: | ---: | ---: |
| 7 | 27.24 | 1000 | 289 |
| 8 | 29.45 | 951 | 350 |
| 9 | 31.41 | 905 | 406 |
| 10 | 33.14 | 861 | 456 |
| 11 | 34.67 | 819 | 498 |
| 12 | 36.03 | 779 | 534 |
| 13 | 37.23 | 741 | 562 |
| 14 | 38.29 | 705 | 583 |
| 15 | 39.22 | 670 | 597 |
| 16 | 40.05 | 638 | 606 |
| 17 | 40.79 | 607 | 610 |
| 18 | 41.44 | 577 | 609 |
| 19 | 42.01 | 549 | 605 |
| 20 | 42.52 | 522 | 597 |
| 21 | 42.97 | 497 | 586 |
| 22 | 43.37 | 472 | 574 |
| 23 | 43.72 | 449 | 560 |
| 24 | 44.03 | 427 | 544 |
| 25 | 44.31 | 407 | 528 |
| 26 | 44.55 | 387 | 511 |
| 27 | 44.76 | 368 | 493 |
| 28 | 44.96 | 350 | 475 |

Input parameters

| Vonbertanlanffy |  |
| ---: | ---: |
| tO | -0.2089 |
| KI | 0.1226 |
| Linf | 46.4167 |
| Natural mortality |  |
| $\mathbf{M}$ | $\mathbf{0 . 0 5}$ |
| Length-weight relationship ( $\mathrm{a}^{*}$ length ${ }^{\text {6 }}$ ) |  |
| $\mathbf{a}$ | 0.011 |
| $\mathbf{b}$ | $\mathbf{3 . 0 8 9}$ |



Figure 8.1.1. S. marinus. Length distribution from Icelandic landings and from samples taken at sea from the trawler fleet 1989-1998.


Figure 8.1.2. Number of measrured S.marinus from Icelandic catch by statistical square.


Figure 8.2.1. Index on fishable stock of S.marinus from Icelandic groundfish survey and $95 \%$ confidence intervals. The index is based on all strata at depths from 0-400 m .


Figure 8.2.2. Age composition of S.marinus in Sub-division Va, based on samples from catch.


Figure 8.2.3. Stratification in the icelandic groundfish survey.


Length distribution of S.marinus in IGS 1985-99 (No. of fish per towing mile).

Figure 8.2.4. Length distribution of $S$. marinus in the Icelandic groundfish survey.


Figure 8.2.5. CPUE in S.marinus from Icelandic trawlers both based on results from GLIM model 1980-1998 (solid line with $95 \%$ CV) and based on simple mean (dotted line) since 1986.


Figure 8.2.6. CPUE of S.marinus in the Fareoese groundfish survey 1983-1999.


Figure 8.2.7. S. marinus ( $\geq 17 \mathrm{~cm}$ ). Survey abundance indices for East and West Greenland, 1982-98, as drived from the German groundfish survey. *) incomplete survey coverage.


Figure 8.2.8. S. marinus ( $\geq 17 \mathrm{~cm}$ ). Survey biomass indices for East and West Greenland, 1982-98, as drived from the German groundfish survey. *) incomplete survey coverage.


Figure 8.2.9 S. marinus ( $\geq 17 \mathrm{~cm}$ ). Length frequencies for East and West Greenland, 1998, as derived from the German groundfish survey


Figure 8.2.10. Fishing mortality of fully recruited S.marinus, as estimated by the BORMICON model ( $\mathrm{M}=0.05$ ).


7879808182838485868788899091929394959697 yearclass

Figure 8.2.11. Estimated recruitment of S.marinus, according to the BORMICON model


Figure 8.2.11 Development of catchable biomass of redfish with $\mathrm{M}=0.05$, using 4 different values of $F$.
$!$
$!$


Figure 8.2.12. Development of catches of redfish with $\mathbf{M}=0.05$ using 4 different values ofF (on the largest fish).

Traditionally, the $S$. mentella on the shelves and banks around the Faroe Islands, Iceland and at East Greenland have been treated as one stock unit, with a common area of larval extrusion to the SW of Iceland, a drift of the pelagic fry towards the nursery areas on relatively shallow waters at East Greenland, and feeding and copulation areas on the shelves and banks around Faroe Islands, Iceland and at East Greenland. In Faroese waters spawning has been observed in some years to the south and west of the islands, implying that there could be a local component in the area; no nursery areas have, however, been found so far (Reinert, 1990). A relationship to other ICES areas (II and IV) have also been suggested (Reinert et al., 1992; Reinert and Lastein, 1992). The question of a possible relationship between the deep-sea $S$. mentella on the shelf in Subareas V and XIV and the pelagic deep-sea S.mentella in the Irminger Sea has been raised several times. The ICES Working Group in 1999 on the Application of Genetics in Fisheries and Mariculture (WGAGFM) states that the presence of significant genetic differences between these two deep-sea components indicating probably distinct genetic stocks. The NWWG therefore continues treating the deep-sea $S$. mentella on the shelf as a separate self-contained stock unit. For management purposes the Icelandic authorities separate the deep-sea $S$. mentella on the shelf (some of which are caught in pelagic trawls) from the pelagic S.mentella in the Irminger Sea (both oceanic and pelagic deep-sea type) by straight lines through three positions (Figure 9.1.1).

### 9.1 Landings and Trends in the Fisheries

The total annual landings of deep-sea $S$. mentella from Divisions Va and Vb and Sub-areas VI and XIV varied considerably in the 1980s mainly from 30000 to 60000 t .

In 1990, the landings were 44000 t , and reached 67000 t in 1991, decreased slightly in 1992 ( 63000 t ) but increased to about 83000 t in 1994. Since then the landings have decreased to approximately 37400 t in 1998 . In summary, the average annual landings in the period from 1991-1994 increased substantially from the average in the 1980s ( 42000 t ), but is now (1998) back to the 1980s level again (Table 9.1.1).

From Division Va, total landings in 1998 were about 33000 t , decreasing from the record high catches in 1994 of 57000 t . In the 1980 s landings varied from $10000-40000 \mathrm{t}$. From 1990 to 1994 the landings doubled from 28000 t to 57000 t . This increase in the catch coincides with the introduction of large pelagic trawls used by a part of the Icelandic fleet during the autumn and early winter months. This fishery has now decreased to $14 \%$ of the 1994 level due to low catch rates. About $90-95 \%$ of the total deep-sea S.mentella catches in area Va in 1998 have been taken by bottom trawlers (both fresh fish and freezer trawlers). During the last three years the fishery has been regulated by quotas. Length distributions from the Icelandic catches in 1989-1998 are shown in Figure 9.1.2. A decrease in the mean length of the landed fish is seen in recent years. In Division Va the proportion of redfish below 33 cm in the catches is not allowed to exceed $20 \%$ in numbers, unless the fishing area may be closed.

In Division Vb annual catches of deep-sea $S$. mentella varied from $5000-8000 \mathrm{t}$ until 1984. Then catches increased rapidly to about 15000 t in 1986. The catches declined again to 9000 t in 1990. They increased to about 13000 t 1991. Since then they have remained very low and the catches in 1998 of only 4000 t is the lowest catch since early 1970s (Table 9.1.1). Length distributions of the Faroes catches from Division Vb are given in Figure 9.1.3.

In Sub-area VI the annual catches were highest in 1980 ( 1000 t ), but have varied from $130-640 \mathrm{t}$ during recent years, except for 1996 when the catches were about $1,100 t$ the highest recorded catch in the series since 1978 (Table 9.1.1).

In Sub-area XIV, annual catches have varied considerably. In the beginning of the 1980s, the landings were between $10000-15000 \mathrm{t}$, but then decreased to 6000 t in 1987-1992 and increased to 19000 t in 1994. At that time the fleet was mainly fishing very small redfish. Since then there has been a drastic decrease to 200 t in 1997 when the only catches taken were bycatches in the shrimp fishery. In 1998, however, Germany started again a directed fishery on the juveniles in this area and this resulted in a total catch of about 1300 t .

Biological sampling from catch and landings of deep-sea S.mentella from the continental shelf in each Division and by gear type is shown in the text table below.

| Area | Gear | Landings | Nos. samples | Nos. fish measured |
| :---: | :---: | :---: | :---: | :---: |
| Va | Pel.trawl | 2,000 | 4 | 864 |
| Va | Bottom trawl | 26,000 | 79 | 16196 |
| Vb | Bottom trawl | 6,596 | 128 | 12013 |

### 9.2.1 Trends in CPUE and survey indices

CPUE for deep-sea $S$. mentella in Division Va is based on bottom trawl tows taken below 500 m depth and where the total catches of redfish compose a certain percentage of the total catch in each tow. Data prior to 1986 are poor. In the period from 1986-1990 CPUE was rather stable. From 1989 to 1993 CPUE declined by about $45 \%$ (see text table below and Figure 9.2.1), and it has remained rather stable at this lower level since then. However, if not the effort had decreased considerably it is unlikely that the catch rates had remained this stable in recent years. The effort which peaked in 1993-1995 had by 1998 decreased to $58 \%$ and $12 \%$ of that peak level in the demersal and pelagic fisheries, respectively.

| Year | Total <br> landings (t) in <br> Va | CPUE <br> $(\mathbf{1 0 \%} \%$ | CPUE <br> relative <br> to $\mathbf{1 9 8 6}$ | Total effort <br> $(\mathbf{1 0 0 0}$ hours) |
| :---: | :---: | :---: | :---: | ---: |
| 86 | 18,898 | 943 | 1.000 | 20 |
| 87 | 19,293 | 974 | 1.033 | 20 |
| 88 | $\mathbf{1 4 , 2 9 0}$ | 886 | 0.940 | 16 |
| 89 | 40,248 | 974 | 1.033 | 41 |
| 90 | 28,429 | 804 | 0.853 | 35 |
| 91 | 47,651 | 770 | 0.816 | 62 |
| 92 | 43,414 | 611 | 0.648 | 71 |
| 93 | 51,221 | 547 | 0.581 | 94 |
| 94 | 56,720 | 488 | 0.517 | 116 |
| 95 | 48,708 | 514 | 0.545 | 95 |
| 96 | 34,741 | 489 | 0.518 | 71 |
| 97 | 37,876 | 562 | 0.596 | 67 |
| 98 | 32,710 | 501 | 0.531 | 65 |

The effort in Division Va in the time when the stock was considered in stable condition i.e., from 1986-1990 was 20000-40 000 hours. After a peak in 1994 of about 116000 hours the total effort in 1998 had decreased to about 65000 hours or $56 \%$ of the maximum level in the time series 1986-1998.

Regarding Division Vb a CPUE-series (1985-1997) of decp-sca S. mentella was presented in last year's Working Group report. The series shows a decrease since 1993, which seems to have stabilized at a level below $50 \%$ of the maximum level in the time series.

Survey abundance and biomass indices from the German groundfish survey for deep sea $S$. mentella ( $>=17 \mathrm{~cm}$ ) are broken down by stratum at West and East Greenland and illustrated in Figures 9.2.2-9.2.4. The surveys in 1991, 1993 and 1995-98, when'the whole area was covered, registered high abundances of deep-sea S.mentella at East-Greenland. The survey results show recruiting juveniles only while mature deep sea $S$. mentella are almost absent. Comparing the proportions between West and East Greenland, deep sea redfish is almost exclusively distributed off East Greenland. Record high values in the time series were measured in 1997 mainly composed of fish with a mean length of about 25 cm . This dominant year class had in the 1998 survey grown to about 27 cm , and the abundance and biomass had at the same time decreased by about $50 \%$. Since there are no significant commercial fishery for this species at EastGreenland at present, the decrease indicate an emigration out of the area. The origin of these very abundant recruits and to which fishing area they will recruit is uncertain but there are indications that at least some of these juveniles will recruit to the fishery within Division Va. This may be hypothesized from survey results at East-Greenland in 1991 which observed deep-sea $S$.mentella of about 26 cm to be relatively abundant. Three years later, in 1994, incoming recruits of about 32 cm were seen in the length distributions of deep-sea S.mentella catches in Division Va (Figure 9.1.2).

Survey results were also presented to the Working Group from the Icelandic groundfish survey in Division Va. Since this survey only covers depths down to approx. 500 m and there seem not to be any nursery grounds of major importance in Division Va, these results add little to the current stock evaluation. A recently started deep-water survey (approx. $500-1200 \mathrm{~m}$ ) around Iceland in autumn may, however, add valuable information about the fishable stock of deep-sea S.mentella in future.

The CPUE decreased drastically from a high level in the late 80 s and seems to have stabilised in the 90 s at or below $50 \%$ of that level. New recruits have entered the fishable biomass in recent years. It is, however, difficult with current state of knowledge to be sure about to what extent the rich yearclass(es) of juvenile S.mentella currently at EastGreenland will recruit to this stock.

The fishermen report of less $S$.mentella in the fishing areas. The fishermen have also reduced their use of pelagic trawls on the continental shelf. Apart from catching less fish pelagic the fishing area has remained unchanged. A precautionary reference point for this stock has been defined corresponding to $50 \%$ of the maximum CPUE-level in the time series from the commercial fishery (see chapter 9.3). U (or CPUE) is at present below Upa, and the immediate management action should therefore be to decrease the effort in order to increase $U$ above Upa.

It is possible to compute effort as well as a TAC corresponding to different reductions in effort for deep sea $S$. mentella by using a similar method as described above for $S$. marinus, although for the deep-sea $S$. mentella, the survey index is replaced by CPUE index. The working group, taking all the uncertainties into account, recommends that the effort should be further reduced in order to let the stock increase from the present low level and suggests a $25 \%$ reduction in effort. Using the CPUE data in the same way as the Iceland groundfish survey used for $S$. marinus indicates that a $25 \%$ reduction in effort would lead to catches of 24800 t in Division Va in 2000.


In Division Vb the recent years development in CPUE resembles that in Division Va, i.e., the CPUE seems to have stabilized at or below a level $50 \%$ of the maximum level in the time series (1985-1997). Since the deep-sea S.mentella in Div.Va and Div.Vb belong to the same stock, a similar reduction in effort as in Div.Va is recommended also for Div.Vb.

For deep-sea S.mentella on the continental shelf in Sub-area XIV the Working Group recommends maximum protection of the juveniles and no directed fishery. This is seen necessary in order to rebuild the stock to safe biological limits.

### 9.3 Biological reference points

The relative state of the stock can be assessed through survey and CPUE index series ( U ) from the commercial fishery, which imply a maximum, $\mathrm{U}_{\text {max }}$, as well as the present state. Given these data, it has been proposed by ACFM that reference points be defined in terms of the current state with respect to $\mathrm{U}_{\mathrm{lim}}=\mathrm{U}_{\max } / 5$ and $\mathrm{U}_{\mathrm{pa}}=\mathrm{U}_{\max } / 2$.

### 9.4 Management considerations

The two types of pelagic redfish in the Irminger Sea (i.e., the oceanic and the pelagic deep-sea S.mentella) in the present context are treated separately from the deep-sea $S$. mentella on the continental shelf. It can, however, not be excluded that there may be a relationship between the demersal deep-sea $S$. mentella on the continental shelves of the Faroe Islands, Iceland, Greenland and the pelagic deep-sea $S$. mentella in the Irminger Sea and this should be keep in mind in the management of this stock.

Table 9.1.1 Deep-sea $S$. mentella on the continental shelf. Landings (in tonnes) by area used by the Working Group.

| Year | Va | Vb | VI | XII | XIV | Total |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1978 | 3,902 | 7,767 | 18 | 0 | 5,403 | 17,090 |
| 1979 | 7,694 | 7,869 | 819 | 0 | 5,131 | 21,513 |
| 1980 | 10,197 | 5,119 | 1,109 | 0 | 10,406 | 26,831 |
| 1981 | 19,689 | 4,607 | 1,008 | 0 | 19,391 | 44,695 |
| 1982 | 18,492 | 7,631 | 626 | 0 | 12,140 | 38,889 |
| 1983 | 37,115 | 5,990 | 396 | 0 | 15,207 | 58,708 |
| 1984 | 24,493 | 7,704 | 609 | 0 | 9,126 | 41,932 |
| 1985 | 24,768 | 10,560 | 247 | 0 | 9,376 | 44,951 |
| 1986 | 18,898 | 15,176 | 242 | 0 | 12,138 | 46,454 |
| 1987 | 19,293 | 11,395 | 478 | 0 | 6,407 | 37,573 |
| 1988 | 14,290 | 10,488 | 590 | 0 | 6,065 | 31,433 |
| 1989 | 40,269 | 10,928 | 424 | 0 | 2,284 | 53,905 |
| 1990 | 28,429 | 9,330 | 348 | 0 | 6,097 | 44,204 |
| 1991 | 47,651 | 12,897 | 273 | 0 | 7,057 | 67,879 |
| 1992 | 43,414 | 12,533 | 134 | 0 | 7,022 | 63,103 |
| 1993 | 51,221 | 7,801 | 346 | 0 | 14,828 | 74,196 |
| 1994 | 56,720 | 6,899 | 642 | 0 | 19,305 | 83,566 |
| 1995 | 48,708 | 5,670 | 540 | 0 | 819 | 55,737 |
| 1996 | 34,741 | 5,337 | 1,048 | 0 | 730 | 41,856 |
| 1997 | 37,876 | 4,558 | 418 | 0 | 199 | 43,050 |
| $1998^{\text { }}$ | 32,710 | 4,089 | 298 | 3 | 1,319 | 37,424 |

1) Provisional data.


Figure 9.1.1. Map showing the line used by Icelandic authorities to separate the landing statistics between deep-sea S.mentella on the continental shelf and pelagic S.mentella (oceanic and pelagic deep-sea) in the Irminger Sea. In addition the figure shows parts of the pelagic fishery distribution pattern in 1998.


Figure 9.1.2. Length distributions of deep-sea S.mentella catch and landings from the Icelandic bottom trawl fishery in ICES Division Va.


Figure 9.1.3. Length distribution of deep-sea S.mentella caught by Faroes otterboard trawlers in Division Vb in 1998.


Figure 9.2.1. CPUE, relative to 1980, from the Icelandic bottom trawl fishery for deep-sea S.mentella on the continental shelf in Division Va. "Simple 10\%" means CPUE calculated on hauls where redfish deeper than 500 m compose $10 \%$ or more of the total catch in each haul. "Glim_50\%" shows the modelled development using GLIM including hauls where redfish deeper than 500 m compose $50 \%$ or more of the total catch in each haul. For explanation of UPA and ULim see text-chapter 9.3.


Figure 9.2.2. Deep-sea $S$. mentella $(\geq 17 \mathrm{~cm})$ on the continental shelf. Survey abundance indices for East and West Greenland as derived from the German groundfish survey, 1982-98. *) incomplete survey coverage.


Figure 9.2.3. Deep-sea $S$. mentella ( $\geq 17 \mathrm{~cm}$ ) on the continental shelf. Survey biomass indices for East and West Greenland as derived from the German groundfish survey, 1982-98. *) incomplete survey coverage.


Figure 9.2.4. Deep-sea $S$. mentella on the continental shelf. Length composition off Greenland as derived from the German groundfish survey, 1995-1998.

This section includes information on the pelagic fishery for oceanic redfish $S$. mentella and pelagic deep-sea $S$. mentella in the Irminger Sea (Sub-area XII, parts of Division Va and Sub-area XIV).

### 10.1 On the possible relationship between S.mentella units

In the ToR the WG was asked to "comment on the possible relationship between pelagic "deep sea" Sebastes mentella and the Sebastes mentella fished in demersal fisheries on the continental shelf and slope"

As has been described in section 7.1, there are great uncertainties in the stock structure of $S$. mentella in the area. The Working Group concerns about current situation of the fishery in the area related with the possible existence of more than one stock of $S$. mentella. Prior to 1994, the problem of stock mixing was considered minor as only small proportion of the catches was taken at depths below $500-600 \mathrm{~m}$. The problem has been of greater magnitude during the last few years as the fishery has shifted towards greater depths (WD 7, 20 and 21; Sigurðsson and Pórarinsson, 1998). As the fishery has shifted towards greater depths, greater proportion of the catch might originate from the deeper stock (deeper than 500 m ). The problem of separate the catches has magnified even further due to the fact that the oceanic type $S$. mentella also has been distributed deeper than 500 m in recent years.

As shown in WD 7 and in previous NWWG reports (ICES C.M 1998/ACFM:19) a major proportion of the fishery takes place at depths below 500 m . In fact in 1998, more than $90 \%$ of the Icelandic oceanic redfish landings was caught below 500 m depth, according to the log - books. Also, more than $50 \%$ of the Spanish effort was at depth greater than 600 m (WD21). Based on the German observer program, it is assumed that about $30 \%$ of the German catches were taken below 600 m depth (Table 10.1.1.)

The problem of distinguish between stock component also magnified even further, as the Icelandic oceanic fishery in 1998 has extended very close to the areas where the traditional shelf fishery has been ongoing for years. It is difficult to estimate how much of the pelagic deep sea component is taken as deep sea belonging to the shelf component and vice versa.

In May 1998, Iceland conducted a pelagic trawl survey in the northern part of the Irminger Sea. The purpose was to map the deeper layer of oceanic redfish at depths below 500 m , the part of the stock which is the target of commercial fishing during spring-early summer (Sigurðsson and Reynisson 1998). The results indicate an even distribution of redfish with low densities except for two very small areas where the fishing fleet was concentrated and fishing at depths between $650-800 \mathrm{~m}$ with catch rate of $2-3 \mathrm{t} / \mathrm{h}$. During the survey, acoustic recordings definitely identifiable as redfish were rare, and then mostly in the uppermost 400 m . The results from that survey show that the distribution in the study area is continuous.

Given all the uncertainties mentioned above, the future development of the stock(s) and catches must be described as uncertain because it is at present not known how much of each component is actually caught in recent years. An attempt to improve the situation has been made by some nations to report the catches on a depth base. For the same purposes, Iceland has discriminated between the types of redfish in the oceanic redfish fishery since 1995 (WD7) and the Icelandic results are given in Table 10.1.2.

Fishery

### 10.2.1 Historical development of the fishery

Russian trawlers started fishing oceanic S. mentella in 1982. Vessels from Bulgaria, the former GDR and Poland joined those from Russia in 1984. Total catches increased from $60,600 \mathrm{t}$ in 1982 to 105000 t . in 1986. Since 1987, the total landings decreased to a minimum in 1991 of 25000 t . The main reason for this decrease was a reduction in fishing effort, especially by the Russian fleet. Since 1989, the number of countries, participating in the oceanic S. mentella fishery gradually increased. As a consequence, total catches have also increased and reached the historically highest level in 1996 at 180000 t (Tables $10.2 .1-10.2 .2$ ). In 1998 the total provisional catch was 120000 t , but some countries have not reported their catches yet.

In the period 1982-1992, the fishery was carried out mainly from April to August. In 1993-1994, the fishing season was prolonged considerably, and in 1995 the fishery was conducted from March to December. In 1997 and 1998 the main fishing season occurred during the second quarter. Few trawlers of Russia, Iceland and Spain conducted their fishery during the whole year. The fleets participating in this fishery have continued to develop their fishing technology, and most trawlers
now use large pelagic trawls ("Gloria"-type) with vertical openings of $80-150$ meters. The vessels have operated in 1998 at a depth range of 200 to 950 m , but mainly deeper than 600 m . Icelandic trawlers fished mainly on depth $600-800 \mathrm{~m}$ during the period 1995-1998 (Figure 10.2.1).

### 10.2.2 Description of the various fleets in 1998.

Trawlers from at least 12 countries participated in the fishery in 1998. Most of them were freezer-factory trawlers. Up to 90 different trawlers fished in Sub-areas XII and XIV during the season with the vessels varying in length, horsepower, gears, type of fish processing etc.

The following text table summarises the available information from fishing fleets in the Irminger Sea in 1998:

| Russia | 25 factory trawlers of five types, ranged from 2500 to 4500 hp |
| :--- | :--- |
| Iceland | 25 factory trawlers and 2 freshfish trawlers |
| Norway | 2 factory trawlers |
| Greenland | 1 factory trawler |
| Spain | 6 freezing trawlers |
| Germany | 9 factory trawlers |
| Faroes | 1 factory trawler and 6 freshfish trawlers |

### 10.2.3 Discard and conversion factors

Prior to 1996, Icelandic landings of oceanic redfish have been raised by $16 \%$ due to discards of redfish infected with Sphyrion lumpi. This value of was based on measurements from 1991-1993 when the fishery was mostly on depths above 600 m . During the 1997 fishing season measuring was made on discard from different depths and on 10 different vessels in the period from May to July, showing discard rate of $10 \%$ which was then added to the landings in 1996 and 1997. A new measurement shows that the discard rate has decreased to $2 \%$ in 1998 (WD 7). This new value was used for raising the Icelandic catches.

Norwegian fishermen currently report approximately $3 \%$ discards of redfish infected with the parasite. This percentage has in recent years become less due to a change in the production from Japanese cut to mainly fillets at present.

No information on possible discards was available from other countries participating in this fishery.
The factors used for converting the weight of "Japanese cut" fish and fillets into round weight may cause errors in the statistics if these factors are incorrect and/or differ between countries.

The Working Group reiterates its recommendation that each country should investigate and conduct scientific work to find the best factors for a particular product and fishery, and that the results are published/documented and made available for the assessment work. The text table below show the conversion factors used for the most common products by some of the countries participating in the Oceanic S. mentella fishery:

|  | Japanese cut | Fillet | Fillet with skin | Fillet without skin |
| :--- | :---: | :---: | :---: | :---: |
| France |  | 3.37 | 3.37 | 3.37 |
| Germany |  | 2.84 |  | $3.00^{2}$ |
| Greenland | 1.900 | 3.00 |  |  |
| Iceland | 1.818 | 3.333 | 3.571 | $3.636^{2}$ |
| Norway | 1.650 | $3.00-4.77^{1}$ |  |  |
| Russia | 1.984 |  | 2.577 | 2.825 |
| UK |  | 2.7 | 2.7 | 2.7 |

${ }^{1}$ Factor 3.00 used in log-books, while factor 4.77 used on landings.
${ }^{2}$ With bone.

### 10.2.4 Trends in landings and fisheries

A preliminary estimate of a total catches in 1998 are estimated to be 120000 tonnes, which is similar catch as in 1997. In 1995 and 1996 the catches amounted 176000 and 180000 respectively, the highest catches on record (Table 10.2.1-10.2.2). The actual catches in 1998 will increase due to the lack of reporting from some countries participating in the fishery.

At the beginning of the fishery in 1982, catches of pelagic redfish were reported from both Sub-areas XII and XIV. But most of the catches were taken in Sub-area XII ( $40000-60000 \mathrm{t}$ ) until 1985, then the greater part of the catches were reported from Sub-area XIV. The landings from Sub-area XII were again in the majority in 1994 and in 1995 with 94000 t and 129 000 t landed respectively. In 1996-1998 the main part of the total catch were taken from Sub-area XIV (Table 10.2.1).

Pelagic $S$. mentella fishery in Division Va started in 1992. The catch varied from $2000-14000$ from 1992-1997. Since 1995, the catches have increased every year and in 1998 the catches were 44000 t , more than three times the catches in 1997 (Table 10.2.1).

In Table 10.2.3 the CPUE series for Bulgarian, German, Icelandic, Norwegian, Russian, and Spanish fleets are given. Table 10.2.4 gives catches, effort and CPUE by depth for the Icelandic fleet during the period 1989-1998. As can be seen from the table more than $90 \%$ of the Icelandic catches were taken below 500 m . In Figure 10.2.2. the development of CPUE in three depth intervals is illustrated graphically. The figure shows that after a constant decrease in the CPUE from 1994-1997, there was a slight increase in all depth categories in last year. Figure 10.2.3 shows the overall CPUE from different fleets in recent years.

Greenland presented a catch rate index for 1993-1998 of the fishery within the Greenland EEZ based on log-book data from selected vessels reporting to Greenland authorities (WD 27). After a possible learning period in the fishery the estimated indices show a rather stable situation since 1994.

Length distributions of pelagic S. mentella from German, Icelandic, Russian and Spanish commercial catches were reported for 1998 and are given in Figure 10.2.4.

### 10.3 Assessment

### 10.3.1 Acoustic assessment

There was no trawl-acoustic survey on "oceanic" S. mentella in the Irminger Sea and adjacent waters carried in 1998.
Trawl-acoustic surveys have for many years been carried out in the Irminger Sea and adjacent waters. Because of the limited depth range coverage (down to 500 meters) the surveys have mainly covered the oceanic S.mentella, and should therefore only be used as an index for this component.

The following text table gives the results of acoustic estimates during the period 1991-1997.

| Year | Acoustic estimate <br> down to 500 m <br> (thousand tonnes) | Area surveyed, <br> thousand sq. nautical <br> miles |
| :---: | :---: | :---: |
| 1991 | 2235 | 105 |
| 1992 | 2165 | 190 |
| 1993 | 2556 | 120 |
| 1994 | 2190 | 190 |
| 1995 | 2481 | 167 |
| 1996 | 1600 | 256 |
| 1997 | 1240 | 159 |

### 10.3.2 Ichthyoplankton assessment

The traditional ichthyoplanktonic survey, conducted by Russia in 1982-1995 was not carried out in 1997. The historical series of icthyoplanktonic surveys is presented in Table 10.3.1.

### 10.3.3 State of the stock

Data available to the Working Group for evaluating the stock status of pelagic Sebastes mentella were the acoustic estimates of the fishable biomass shallower than approximately 500 meters in the period 1991-1997 and CPUE from the commercial trawl fishery.

Both survey estimates and CPUE of four fleets decreased in a similar manner during the period from 1994-1997. In 1998, the CPUE (both above and below 500 m ) from the Icelandic fleet show an increase, but all the other fleets have similar value for 1998 as they had in 1997. The Working Group considers the period up to 1993-1994 as a learning period including gear technology development. However, since 1994, the overall CPUE has been decreasing substantially. During 1995-97, the survey estimates decreased by $50 \%$ from 2.5 million t to 1.2 million t . However, catches alone can not explain the observed decline in the biomass indices during that period.

There have been observed changes in the environmental conditions in the Irminger Sea during the last years, which could affect the behaviour of the redfish in the area. At $200-500 \mathrm{~m}$ depth, the sea water temperature increased by around $2^{\circ} \mathrm{C}$ since 1994. This increase during the last years have also been observed by the Icelandic fleet where information from log-books show increase in temperature at $600-800 \mathrm{~m}$ depth by a similar magnitude as in the uppermost 500 meters. The observed vertical changes in the hydrographical environment may have caused a change in the behaviour of oceanic redfish and in the depth distribution of the scattering layer.

Some uncertainties arise regarding the indices used in the assessment (both in the CPUE and survey estimate) in relation to the environmental changes and survey design.

Based on the information available, the working group considers the status of the stock/stocks components as highly uncertain.

### 10.4 Management considerations

For the oceanic redfish there have been some discussion in the past about MBAL (previous NWWG reports), and it has been suggested as $50 \%$ of the virgin biomass of around 3 million $t$. In the 1994 acoustic survey, the biomass was estimated to be around 2.2 million $t$ in the uppermost 500 m but in most recent years the survey results and CPUE series have indicated lower stock size. Based on these information one might conclude that we are perhaps reaching this MBAL level of around 1.5 million $t$. It is, however, not clear so far, to which degree the environmental changes have contributed to the sudden decrease in the stock indices.

In June/July 1999, Germany, Iceland and Russia will conduct a trawl-acoustic survey in Irminger Sea and adjacent waters. The survey plan is described in ICES CM 1999/G:9. The main objective is to obtain an acoustic abundance estimate of the oceanic redfish and there will also be an attempt to estimate the redfish abundance below 500 m ., both acoustically and by pelagic trawl. The working group recommends that the results from the survey will be presented to and evaluated by ACFM during it's autumn meeting.

### 10.5 Precautionary approach

Experience has shown that deep-water fisheries develop rapidly and that resources which they exploit may be especially vulnerable to over-fishing. Species such as these may become depleted before sufficient data has been accumulated to provide advice on appropriate management measures based on standard assessment methodology. These data are not available for all the redfish stocks in the Irminger Sea.

It is well known that lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental degradation. It is also well know that when stock identification is an issue, there is considerable safety in allocating catches to each potential unit separately rather than to treat the whole complex as one unit. This is the case for the redfish stocks in the area. Available indices include CPUE data and acoustic measurements. To date only the acoustic measurements have been used to illustrate stock trends. Suppose first that the two components, "oceanic" and "pelagic dee-sea" are really a single stock, and hence there is some (considerable) mixing between the two (Fig. 7.1.1). In this case the management of the stock is only a question of monitoring the acoustic index since the mixing will take care of depletion in one depth zone over another. However, if there are two different stocks then it must be recalled that the acoustic measurements apply only to the "oceanic" component. There will in this case be no indication in the acoustic index if this "new" fishery of the "pelagic deep sea" component is overfished.

Given the current situation, action must be taken in accordance with the precautionary approach and attempts be made to assess each stock separately until better knowledge on the relationship between each stock or stock components are known. Such assessment must be based on what information is currently available

Although the stock size and catch from each stock or stock component are as yet unknown, as are all of the basic parameters used for calculation on reference points, information is available on the range of the catches and the fishing
effort in each component. Therefore, by regulating effort by depth, the risk of irreversible or slowly reversible changes can be reduced, in accordance with the intent of the precautionary approach.

Based on the Icelandic calculations given in Table 10.1.1, assuming that the "pelagic deep sea" and the shelf deep sea belongs to the same stock, the catches of deep sea $S$. mentella could have increased drastically during the last years. As an example based on that exercise, the catch of deep sea redfish in 1996 could have been between 40000 and 140000 t , depending on how the catch of different fleets is estimated (WD9).

Based on above, it is clear that if advice and management is to be in accordance with the precautionary approach each stock must be handled separately. In particular advice must be given for each part separately. The most troublesome of the components is the "pelagic deep sea" component since there is no accepted measure of stock abundance or trend in abundance for this component. Such measures are available for the other components and hence it is possible to provide advice and control catches based on acoustic estimates for oceanic S. mentella or CPUE data for deep-sea S. mentella on the shelf. Such advice could lead to sustainable management for these stock components.

For "pelagic deep sea" it can be seen that the effort (and the catch) has increased substantially each year during the last years. A continuation of such increase will probably not be sustainable and a continued lack of advice for this component is not in accordance with the precautionary approach. The current progress in the fishery gives cause for serious concern and it is imperative that advice be given in such a fashion as to limit catches from this particular component. Given that there is no other information at all, the minimum restriction to be placed on catches is that they should not be allowed to increase until further information is available.

## 10.6 <br> Special comments

In order to gain important knowledge on the location of the nursery areas for the Oceanic redfish stock and of the recruitment to the Irminger Sea, a joint international synoptic trawl survey for 0 -group and/or juvenile redfish covering the entire distribution area would be necessary. A different approach to this would be to follow the extruded larvae from the spawning grounds in the Irminger Sea on their way to the nursery grounds by conducting e.g., monthly surveys covering the larvae/0-group as they drift/swim.

Table 10.1.1. Pelagic $S$. mentella landings (in tonnes) in 1998 by countries and depth (A), and in 1996-1998 by depth (B). (Working Group figures and/or as reported to NEAFC).

| A. | Total | not splitted | shallower than <br> 600 m | deeper than <br> 600 m |
| :---: | ---: | :---: | :---: | :---: |
| Estonia | 3,968 | $100 \%$ |  |  |
| Faroes | 5,681 |  |  | $100 \%$ |
| Germany | 18,046 |  | $70 \%$ | $30 \%$ |
| Iceland | 52,284 |  | $9 \%$ | $91 \%$ |
| Lithuania | 1,768 | $100 \%$ |  |  |
| Norway | 1,084 |  |  | $5 \%$ |
| Portugal | 3,872 | $100 \%$ |  |  |
| Russia | 25,837 | $22 \%$ | $13 \%$ | $65 \%$ |
| Greenland | 1,351 | $70 \%$ | $8 \%$ | $22 \%$ |
| Spain | 5,000 |  | $48 \% *$ | $52 \%$ |
| Total | 118,891 | 16237.84 | 24234.45 | 78418.71 |
| *Derived from effort data |  |  |  |  |
| B. | Total | not splitted | shallower than | deeper than |
|  |  |  | 600 m | 600 m |
| 1996 | 180138 | $43 \%$ | $14 \%$ | $43 \%$ |
| 1997 | 122 | $37 \%$ | $20 \%$ | $43 \%$ |
| 1998 | 119 | $14 \%$ | $20 \%$ | $66 \%$ |

Table 10.1.2. Results of dividing the Icelandic pelagic redfish catch according to the Icelandic samples from the fishery.

| Year | Total Catch | Catch oceanic | Catch deep sea | Not classified | \% oceanic |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 1995 | 34631 | 24976 | 9521 | 134 | $72 \%$ |
| 1996 | 62903 | 28361 | 32737 | 1805 | $46 \%$ |
| 1997 | 41272 | 15001 | 26271 | 0 | $36 \%$ |
| 1998 | 46202 | 4932 | 40824 | 446 | $11 \%$ |

Table 10.2.1 Pelagic S. mentella. Landings (in tonnes) by area as used by the Working Group. Due to to the lack of area reportings for some countries, the exact share in Divisions XII and XIV is just approximate in latest years.

| Year | Va | Vb | VI | XII | XIV | Total |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1978 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1979 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1980 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1981 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1982 | 0 | 0 | 0 | 39,783 | 20,798 | 60,581 |
| 1983 | 0 | 0 | 0 | 60,079 | 155 | 60,234 |
| 1984 | 0 | 0 | 0 | 60,643 | 4,189 | 64,832 |
| 1985 | 0 | 0 | 0 | 17,300 | 54,371 | 71,671 |
| 1986 | 0 | 0 | 0 | 24,131 | 80,976 | 105,107 |
| 1987 | 0 | 0 | 0 | 2,948 | 88,221 | 91,169 |
| 1988 | 0 | 0 | 0 | 9,772 | 81,647 | 91,419 |
| 1989 | 0 | 0 | 0 | 17,233 | 21,551 | 38,784 |
| 1990 | 0 | 0 | 0 | 7,039 | 24,477 | 31,516 |
| 1991 | 0 | 0 | 0 | 10,061 | 17,089 | 27,150 |
| 1992 | 1,968 | 0 | 0 | 23,249 | 40,745 | 65,962 |
| 1993 | 2,603 | 0 | 0 | 72,529 | 40,703 | 115,835 |
| 1994 | 15,472 | 0 | 0 | 94,189 | 39,028 | 148,689 |
| 1995 | 1,543 | 0 | 0 | 132,039 | 42,261 | 175,843 |
| 1996 | 4,610 | 0 | 0 | 42,365 | 133,163 | 180,138 |
| 1997 | 15,301 | 0 | 0 | 18,557 | 87,760 | 121,618 |
| $1998{ }^{1}$ | 43,626 | 0 | 0 | 19,535 | 55,729 | 118,891 |

[^4]Table 10.2.2 Pelagic $S$. mentella catches (in tonnes) by countries used by the Working Group.

| Year | Bulgaria | Canada | Estonia | Faroes | France | Germany ${ }^{3}$ | Greenland | Iceland | Japan | Latvia | Lithuania | Netherland | Norway | Poland | Portugal | Russia ${ }^{2}$ | Spain | UK | Ukraine | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1979 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1980 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1981 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1982 |  |  |  |  |  |  |  |  |  |  |  |  |  | 581 |  | 60,000 |  |  |  | 60,581 |
| 1983 |  |  |  |  |  | 155 |  |  |  |  |  |  |  |  |  | 60,079 |  |  |  | 60,234 |
| 1984 | 2,961 |  |  |  |  | 989 |  |  |  |  |  |  |  | 239 |  | 60,643 |  |  |  | 64,832 |
| 1985 | 5,825 |  |  |  |  | 5,438 |  |  |  |  |  |  |  | 135 |  | 60,273 |  |  |  | 71,671 |
| 1986 | 11,385 |  |  | 5 |  | 8,574 |  |  |  |  |  |  |  | 149 |  | 84,994 |  |  |  | 105,107 |
| 1987 | 12,270 |  |  | 382 |  | 7,023 |  |  |  |  |  |  |  | 25 |  | 71,469 |  |  |  | 91,169 |
| 1988 | 8.455 |  |  | 1,090 |  | 16,848 |  |  |  |  |  |  |  |  |  | 65,026 |  |  |  | 91,419 |
| 1989 | 4,546 |  |  | 226 |  | 6,797 | 567 | 3,816 |  |  |  |  |  | 112 |  | 22,720 |  |  |  | 38,784 |
| 1990 | 2,690 |  |  |  |  | 7,957 |  | 4,537 |  |  |  |  | 7,085 |  |  | 9,247 |  |  |  | 31,516 |
| 1991 |  |  | 2,195 | 115 |  | 571 |  | 8,783 |  |  |  |  | 6,197 |  |  | 9,289 |  |  |  | 27,150 |
| 1992 | 628 |  | 1,810 | 3,765 | 2 | 6.447 | 9 | 15,478 |  | 780 | 6,656 |  | 14,654 |  |  | 15,733 |  |  |  | 65,962 |
| 1993 | 3,216 |  | 6,365 | 7,121 |  | 17,813 | 710 | 22,908 |  | 6,803 | 7,899 |  | 14,990 |  |  | 25,229 |  |  | 2,782 | 115,835 |
| 1994 | 3,600 |  | 17,875 | 2,896 | 606 | 17,152 |  | 53,332 |  | 13,205 | 7,404 |  | 7,357 |  | 1,887 | 17,814 |  |  | 5,561 | 148,689 |
| 1995 | 3,800 | 602 | 16,854 | 5,239 | 226 | 18,985 | 1,856 | 34,631 | 1,237 | 5,003 | 22,893 | 13 | 7,457 |  | 5,125 | 44,182 | 4,555 |  | 3,185 | 175,843 |
| 1996 | 3,500 | 650 | 7,092 | 6,271 |  | 21,245 | 3,537 | 62,903 | 415 | 1,084 | 10,649 |  | 6,658 |  | 2,379 | 45,748 | 7,229 | 260 | 518 | 180,138 |
| 1997 |  | 111 | 3,720 | 3,945 |  | 20,476 |  | 41,276 | 31 |  |  |  | 3,179 | 776 | 3,674 | 36,930 | 7.500 |  |  | 121,618 |
| $1998{ }^{\text { }}$ |  |  | 3,968 | 5,681 |  | 18,046 | 1,351 | 52,284 |  |  | 1,768 |  | 1,084 |  | 3,872 | 25,837 | 5,000 |  |  | 118,891 |

1) Provisional data.
2) Former USSR until 1991.
3) Former GDR and GFR.

Table 10.2.3 Pelagic S. mentella. Catch per unit effort (t/h) by country in Sub-areas XII and XIV.

| Year | Bulgaria | Germany | Iceland | Norway | USSR-Russia (BMRT) | Spain |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | - | - | - | - | 1.99 | - |
| 1983 | - | - | - | - | 1.60 | - |
| 1984 | 1.25 | - | - | - | 1.48 | - |
| 1985 | 1.85 | - | - | - | 1.68 | - |
| 1986 | 2.04 | - | - | - | 1.35 | - |
| 1987 | 1.22 | 0.79 | - | - | 1.10 | - |
| 1988 | 0.82 | 1.28 | - | - | 1.00 | - |
| 1989 | - | 0.70 | 1.11 | - | 1.00 | - |
| 1990 | - | 0.89 | 1.02 | 1.09 | 0.99 | - |
| 1991 | - | - | 1.52 | 1.42 | 0.80 | - |
| 1992 | - | - | 1.66 | 1.79 | 0.63 | - |
| 1993 | - | - | 3.27 | 2.02 | 0.63 | - |
| 1994 | - | - | 2.64 | 2.83 | 1.70 | - |
| 1995 | - | 2.06 | 2.00 | 2.05 | 1.00 | - |
| 1996 | - | 1.45 | 1.74 | 1.20 | 1.30 | - |
| 1997 | - | 1.31 | 1.11 | 0.66 | - | 0.83 |
| $1998{ }^{1}$ |  | 1.30 | 1.56 | 0.73 |  | .0 .87 |

1 Preliminary
2 1987-1990 reported as GDR (FVSIV)

Table 10.2.4 Catch, trawling time and CPUE of pelagic redfish by depth intervals since 1989 as reported in logbooks from the Icelandic fleet.

| Data | Depth range | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sum of Catch | 100-199 | 226 | 839 | 2035 | 908 |  | 12 |  | 1 | 121 |  |
|  | 200-299 | 279 | 415 | 1336 | 2115 |  | 611 | 2874 | 2165 | 453 | 130 |
|  | 300-399 | 174 | 315 | 1408 | 3021 | 2402 | 863 | 1572 | 75 | 1693 | 886 |
|  | 400-499 |  | 7 | 951 | 385 | 1950 | 1298 | 1141 | 537 | 792 | 278 |
|  | 500-599 |  |  | 24 | 915 | 3515 | 9463 | 2960 | 3674 | 2390 | 2092 |
|  | 600-699 |  |  |  | 757 | 2539 | 12149 | 10402 | 12203 | 12548 | 11792 |
|  | 700-799 |  |  |  | 113 | 33 | 1210 | 4083 | 19093 | 10246 | 16785 |
|  | 800-899 |  |  |  |  |  | 252 | 50 | 1370 | 466 | 252 |
|  | 900+ |  |  | 6 |  |  |  | 88 | 326 |  | 76 |
| Sum of Hours | 100-199 | 300 | 844 | 1564 | 847 |  | 9 |  | 16 | 96 |  |
|  | 200-299 | 152 | 367 | 1009 | 1447 |  | 325 | 2019 | 949 | 303 | 122 |
|  | 300-399 | 161 | 318 | 738 | 1221 | 428 | 269 | 656 | 78 | 1111 | 501 |
|  | 400-499 |  | 13 | 420 | 228 | 483 | 424 | 439 | 475 | 929 | 321 |
|  | 500-599 |  |  | 49 | 776 | 1329 | 3233 | 1471 | 2910 | 2453 | 1736 |
|  | 600-699 |  |  |  | 405 | 937 | 4866 | 4840 | 8095 | 10948 | 8663 |
|  | 700-799 |  |  |  | 36 | 15 | 586 | 2080 | 9196 | 9506 | 9151 |
|  | 800-899 |  |  |  |  |  | 73 | 25 | 577 | 500 | 182 |
|  | $900+$ |  |  | 46 |  |  |  | 46 | 318 |  | 130 |
| CPUE (t/h) | 100-199 | 0.75 | 0.99 | 1.30 | 1.07 |  | 1.31 |  | 0.08 | 1.26 |  |
|  | 200-299 | 1.83 | 1.13 | 1.32 | 1.46 |  | 1.88 | 1.42 | 2.28 | 1.49 | 1.07 |
|  | 300-399 | 1.08 | 0.99 | 1.91 | 2.47 | 5.61 | 3.21 | 2.40 | 0.96 | 1.52 | 1.77 |
|  | 400-499 |  | 0.53 | 2.27 | 1.69 | 4.04 | 3.06 | 2.60 | 1.13 | 0.85 | 0.87 |
|  | 500-599 |  |  | 0.48 | 1.18 | 2.64 | 2.93 | 2.01 | 1.26 | 0.97 | 1.20 |
|  | 600-699 |  |  |  | 1.87 | 2.71 | 2.50 | 2.15 | 1.51 | 1.15 | 1.36 |
|  | 700-799 |  |  |  | 3.14 | 2.28 | 2.07 | 1.96 | 2.08 | 1.08 | 1.83 |
|  | 800-899 |  |  |  |  |  | 3.44 | 2.00 | 2.37 | 0.93 | 1.39 |
|  | 900+ |  |  | 0.12 |  |  |  | 1.93 | 1.02 |  | 0.59 |

Table 10.3.1. Pelagic $S$. mentella biomass from the the Russian ichthyoplankton surveys in 1982-1995. N S.- No survey

|  | Square surveyed (thou. sq. miles) |  |  | Redfish abundance (mill. spec.) |  |  | Redfish biomass (thou. t) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Iceland EZZ | Intern. waters | Total | Iceland EZZ | Intern. waters | Total | Iceland EZZ | Intern waters | Total |
| 1982 | - | 88 | 88 | - | 662 | 662 | - | 421.3 | 421.3 |
| 1983 | - | 148 | 148 | - | 1944 | 1944 | - | 1198 | 1198 |
| 1984 | - | 96 | 96 | - | 1423 | 1423 | - | 957 | 957 |
| 1985 | - | 100 | 100 | - | 1169 | 1169 | - | 687 | 687 |
| 1986 | 42 | 98 | 140 | 9602 | 1136 | 10738 | 1011.9 | 680.3 | 1692.2 |
| 1987 | - | 114 | 114 | - | 1032 | 1032 | - | 646.1 | 646.1 |
| 1988 | 178 | 99 | 277 | 723 | 1212 | 1936 | 396.4 | 636.2 | 1031.6 |
| 1989 | 90 | 100 | 190 | 393 | 998 | 1391 | 263.3 | 607.6 | 870.9 |
| 1990 | 39 | 81 | 120 | 420 | 890 | 1310 | 280.7 | 677.3 | 863 |
| 1991 | - | 115 | 115 | - | 1390 | 1390 | - | 801.6 | 801.6 |
| 1992 | N S |  |  |  |  |  |  |  |  |
| 1993 | - | 126 | 126 | - | 4460 | 4460 | - | 3119.4 | 3119.4 |
| 1994 | N S |  |  |  |  |  |  |  |  |
| 1995 | - | 136 | 136 | - | 3640 | 3640 | - | 2948.7 | 2948.7 |



Figure 10.2.1. Depth distribution of Icelandic trawl hauls for pelagic redfish as reported in the log-books since Iceland began its pelagic redfish fishery in 1989.


Figure 10.2.2. Catch per unit effort in the pelagic redfish fishery for the Icelandic fleet for different depth intervals.


Figure 10.2.3. Trends in CPUE of pelagic $S$. mentella in the Irminger Sea and estimated acoustic biomass..


Figure 10.2.4. Length distributions from landings of pelagic S. mentella in 1995-1998.

32 working documents were presented to the working group during the meeting and they are all listed below. In addition the following documents were presented: a) Report of the Study Group on Redfish Stocks (ICES C.M. 1999/G:9).

1. Jesper Boje, 1999. The fishery for Greenland halibut in ICES Div. XIVb in 1998.
2. Ole A.Jørgensen, 1999. Survey for Greenland halibut in ICES Div. XIVb, June-July 1998.
3. Jákup Reinert, 1999 . Faroe Haddock: Preliminary Assessment.
4. Jákup Reinert, 1999 . Redfish in ICES Division Vb.
5. Agnes Gundersen \& Astrid Woll. 1999. Trawl fishery for Greenland halibut in ICES XIVb, 1998.
6. Bjarni Mikkelsen, 1999. Preliminary assessment of Faroe Saithe 1998
7. Thorsteinn Sigurdsson, 1999. Information on the Icelandic fishery of Oceanic redfish (S.mentella TRAVIN); information based on log-book data and sampling from the commercial fishery.
8. Report of ICES WGAGFM 12.-15. April Reykjavik 1999: T.Johansen, A.K. Danielsdottir, K. Meland and G. Navdal. Studies of genetic relationship between deep-sea and oceanic Sebastes mentella in the Irminger Sea.
9. Thorsteinn Sigurdsson and Gunnar Stefansson 1999. Oceanic redfish and precautionary approach.
10. Thorsteinn Sigurdsson 1999. Preliminary assessment on Sebastes marinus in ICES Sub-division XIV and V.
11. Thorsteinn Sigurdsson. 1999. Deep Sea redfish in Division Va -some tables and figures
12. Petur Steingrund. 1999. Preliminary assessment of Faroe Plateau cod.
13. Petur Steingrund. 1999. Faroe Bank cod.
14. Hans-Joachim Rätz and Christoph Stransky. 1999. Abundance, length composition and temporal trends in mean lengths for Sebastes marinus L., deep-sea S. mentella and juvenile redfish (Sebastes spp.) off Greenland, based on German groundfish surveys 1982-1998.
15. Hans-Joachim Rätz 1999. Groundfish survey results for cod off Greenland (offshore component) 1982-98.
16. Hans-Joachim Rätz 1999. On the German Fishery and biological characteristics of Oceanic Redfish (Sebastes mentella Travin) 1991-98.
17. Hans-Joachim Rätz . Data on German catches and effort for Greenland halibut (Reinhardtius hippoglossoides), redfish (Sebastes marinus and deep sea S. mentella), and Atlantic cod (Gadus morhua) in ICES Div. Va, Vb, Via and XIV, 1995-98.
18. Höskuldur Björnsson 1999. Use of the BORMICON model to estimate the stock size of Plaice, Redfish, Wolffish and Haddock in Icelandic waters.
19. E. Jonsson 1999. A view on the Icelandic haddock.
20. Kjell Nedraas. 1999. Information about the Norwegian fishery for pelagic Sebastes mentella in the Irminger Sea, S.marinus and Greenland halibut in ICES Sub-areas XII and XIV (revised) and 1998 (provisional).
21. S. Junquera 1999. Report of the fishing activity of the spanish fleet in ICES Div. XII and XIVb in 1998.
22. L.Taylor. 1999. Stock dynamics and assessment of haddock in Icelandic waters.
23. V.S. Mamylov 1999. Methodical aspects of trawl-acoustic surveys on redfish stock in the Irminger Sea.
24. Yu,I. Bakay 1999. On using the copepod Sphyrion lumpi and pigment spots on body to differentiate local aggregations of redfish from Sebastes genus.
25. Yu. I. Bakay and A.B. Karasev 1999. Registration of ectolesions of marine redfish of Sebastes genus of the north Atlantic (methodical guidelines).
26. V. N. Shibanov 1999. Preliminary information about Russian fishery for the Oceanic S. mentella in ICES Subareas XII and XIV in 1998.
27. J.J.Engelstoft 1999. Redfish fishery in ICES Division XIVb and XII (inside Greenland EEZ) in 1998.
28. J.J.Engelstoft 1999. Inshore cod stock at West Greenland.
29. S. A. Schopka 1999. Cod at Iceland (Division Va).
30. E. Hjörleifsson 1999. A view on the Greenland halibut.
31. Sigurdur Jonsson 1999. Saithe in Division Va.
32. G. Gudmundsson 1999. Time series analysis of catch-at-age values for saithe in Division Va, 1988-1988.

## REFERENCES

Guð̌mundsson, G. 1984. Time series analysis of catch-at-age observations - Appl. Statist. 43(1):117-126

Horsted, Sv. A. 1994. A Review with some Proposals for Amendments of the Catch Statistics for the Cod Fisheries in Greenland Waters since 1911. NAFO SCR Doc. 94/38, Ser. No. N2407

ICES 1984 Report of the Working Group on Cod Stocks off East Greenland. ICES CM 1994/Assess:5
ICES 1993 Report of the North Western Working Group. ICES CM 1993/Assess: 18.
ICES 1996 Report of the North Western Working Group. ICES CM 1996/Assess 15.
ICES 1996 Report of the North Western Working Group. ICES CM 1996/Assess: 15.
ICES 1998 Report of the North Western Working Group. ICES CM 1998/ACFM:19.
Jakobsen, T. and S. Olsen 1987. Variation in the rates of migration of saithe from Norwegian waters to Iceland and Faroe Islands. - Comparative biology, assessment, and management of gadoids from the North Pacific and Atlantic oceans, Gunderson, D. R. and S. Sundby (eds.), Fisheries Research 5(2-3):217-222

Magnússon, J. and Magnússon, J. V., 1975. On the distribution and abundance of young redfish at Iceland 1974. Rit fiskideildar Vol V, nr. 3, 22 pp.
Magnússon, J. V. and Jóhannesson, G., 1997. Distribution and abundance of 0-group redfish in the Irminger Sea and off East Greenland: relationships with adult abundance indices. ICES Journal of Marine Science, 54: 830-845.

Magnússon, J., K. Kosswig and J. V. Magnússon 1988. Young redfish on the nursery grounds in the East Greenland shelf area. ICES C.M. G:38:1-12

Magnússon, J., K. Kosswig and J. V. Magnússon 1990. Further Studies on Young Redfish in the East Greenland Shelf Area. ICES C.M. G:43:1-15

Pálsson, Ó.K., Steinarsson, B.Æ., Jónsson, E., Guđ̛̃mundsson G., Jónsson, G., Stefánsson, G., Björnsson, H., and Schopka, S.A., 1997. Icelandic groundfish survey. ICES C.M. 1997/Y:29. 35 pp.
Rätz, H.-J., M. Stein and J. Lloret 1999. Variation in growth and recruitment of Atlantic cod (Gadus morhua) off Greenland during the second half of the $20^{\text {th }}$ Century. NAFO Journal, Symposium on Variation in Maturation, Growth, Condition and Spawning Stock Production in Groundfish, Lisbon 9-11 September 1998, in press.

Reinch, H. H. 1976. Köhler und Steinköhler. Wittenberg, A.Ziemsen, 156 p.

Sinclair, A. and S. Gavaris. 1996. Some examples of probabilistic catch projections using ADAPT output. DFO Atlantic Fisheries Res. Doc. 96/51: 12p.

Stefánsson, G. 1988: Statistical analysis of Icelandic trawler reports, 1973-1987. ICES C.M. 1988/D:13.
Sveinbjörnsson, S. and S. p. Jónsson 1998. Report on the 0-group fish survey in Icelandic waters, August 1998. ICES C.M. 1998 /D:14, 19 pp.

## ANNEX 1

## NORTH-WESTERN WORKING GROUP

ICES, Headquarters, 26 April - 4 May 1999

## LIST OF PARTICIPANTS

| NAME | ADDRESS | TELEPHONE | FAX | E-MAIL |
| :---: | :---: | :---: | :---: | :---: |
| Jesper Boje (Chair) | Greenland Institute of Natural Resources <br> Pilestræde 52, P.O. Box 2151 <br> DK-1016 Copenhagen K, <br> Denmark | +4533693400 | +4533693406 | jesper.boje@inet. uni2.dk |
| Jens Jacob Engelstoft | Greenland Institute of Natural   <br> Resources    <br> P.O. Box 570    <br> 3900 Nuuk    <br> Greenland    | +299 321095 | +299325957 | Jen@natur.gl |
| Agnes C. Gundersen | Møre Research, Section of Fisheries <br> P.O. Box 5075 <br> 6021 Aalesund <br> Norway | +4770161350 | +4770138978 | Agnes.Gundersen @ hials.no |
| Einar Hjörleifsson | Marine Research Institute Skúlagata 4 121 Reykjavik Iceland | +354 5520240 | +354 5623790 | einarhj@hafro.is |
| Einar Jonsson | Marine Research Institute P.O. Box 1390 <br> Skulagata 4 121 Reykjavik Iceland | +354 5520240 | +3545623790 | einarj@hafro.is |
| Michael C.S. Kingsley | Greenland Institute of Natural Resources P.O. Box 570 3900 Nuuk Greenland | +29932 1095 | +299325957 | mcsk@natur.gl |
| Jean-Jacques Maguire | 1450 Godefroy <br> Sillery <br> Québec <br> Canada G1T 2E4 | +14186885501 | +14186887924 | jij_maguire@ compuserve.com |
| Bjarni Mikkelsen | Fiskirannsóknarstovan Nóatún <br> P.O. Box 3051 <br> 100 Toshavn <br> Faroe Islands | +298315092 | +298318264 | mikkelsenb. @ frs.fo |
| Kjell H. Nedreaas | Institute of Marine Research P.O. Box 1870, Nordnes 5817 Bergen <br> Norway | +4755238500 | +4755238687 | kjelln@imr.no |
| Jákup Reinert | Fiskirannsóknarstovan Nóatún P.O. Box 3051 FR-110 Tórshavn Faroe Islands | +298 15092 | +298 18264 | jakupr@frs.fo |


| NAME | ADDRESS | TELEPHONE | FAX | E-MAIL |
| :--- | :--- | :--- | :--- | :--- |
| H.J. Rätz | Institute for Sea Fisheries <br> Palmaille 9 <br> D-22767 Hamburg <br> Federal Republic of Germany | +4038905169 | +4038905263 | raetz@bfa-fisch.de |
| Sigfús A. Schopka | Marine Research Institute <br> Skúlagata 4 <br> 121 Reykjavik <br> Iceland | +3545520240 | +3545623790 | sas@hafro.is |
| Torsteinn Sigurdsson | Marine Research Institute <br> Skúlagata 4 <br> 121 Reykjavik <br> Iceland | +3545520240 | +3545623790 | steini@hafro.is |
| Vladimir N. Shibanov | Knipovich Polar Research Institute of <br> Marine Fisheries \& Oceanography <br> (PINRO) <br> 6 Knipovich Street <br> 183763 Murmansk <br> Russia | +78152473461 | +4778910518 | inter@pinro. |
| murmansk.ru |  |  |  |  |


[^0]:    1) Provisional
    2) Additional catch of 1,508 t
    by Faroe Islands included 3) Additional catch of 451 t by Iceland included
[^1]:    Mean log catchability and standard error of ages with catchability
    independent of year class strength and constant w.r.t. time

[^2]:    Run title : Haddock Iceland Va (run: XSALOA01/X01)

[^3]:    ${ }^{T}$ ) Provisional data reported by Greenland authorities
    ${ }^{2}$ ) Includes 3,000 t reported to be caught in ICES Sub-area XIV
    ${ }^{3}$ ) Includes 2,741 t reported to be caught in ICES Sub-area XIV
    ${ }^{4}$ ) Includes 29,513 t caught inshore

[^4]:    1) Provisional data
