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Abstract 

Due to spatial heterogeneity, the survival and growth of fishes depend upon their 
habitat. For mobile pelagic fishes, it hence becomes important to analyse the factors 
responsible for spatia! dynamics in order to understand population dynamics betler. 
The current work is an attempt to approach fisheries assessment from a theoretical 
ecological perspective. We here present individual based single species and 
multispecies models where spatial behaviour and life history strategies are evolved. 
Spatial movement for each fish is calculated using an artificial neural network with 
weights evolved by a genetic algorithm. Behaviour relies on sensory information 
about food, temperature, light and predators. A concept for modelling life history 
strategies and migration in fish using this method is presented along with an 
application of this concept for the Barents Sea capelin. A predator-prey model based 
on the same principle is also presented. Potential areas of application for these kinds 
of models are discussed. 

Keywords: genetic algorithm, artificial neural network, spatia!, distribution, predator, 
pre y. 

lntroduction 

Fish-fish and fish-environment mode/s 

Due to spatial heterogeneity, the survival and growth of fishes depends upon their 
habitat, both due to environmental impact on growth and survival, and to 
environmental impact on fish-fish interactions. It is therefore important to consider 
spatia! aspects when trying to understand the forces governing population dynamics. 

Most of the fisheries management in the ICES area is based on single-species 
approaches, such as the VPA (Virtual population analysis, Gulland 1965). This is a 
demographic teol that, by assuming stability in same vital rates (i.e. assuming no 
variation in the fish-environment interactions ), can be used to as sess the age 
structure of a stock. For the North Sea, the VPA is elaborated into a multispecies 
VPA (MSVPA, Gislason and Sparre 1987), where survival (but not growth) is 
modelled as a density-dependent process. A different class of multispecies (MS) 
models are used in the Barents Sea and in lcelandic waters. In these models, 
MULTSPEC (Tjelmeland and Bogstad 1998 a, b) and BORMICON (Stefansson and 
Palsson 1997), both growth and survival are calculated from fish-fish and fish­
environment interactions. All these three MS models also have a spatia! resolution by 



dividing the seas into a few sectors where interactions occur (Magnusson 1995). Fish 
migrations are performed by pre-described (static) movement vectors, and there is 
no behavioural component linked to the present ecological situation in the sea or in 
the vicinity of the fish. 

Current limitations 

The process of individual habitat choice in fish is central to the understand ing of how 
fish-fish and fish-environment interactions can be scaled up to the population level. 
Habitat choice is commonly considered as a process that maximises the Oarwinian 
fitness of an individual (for fish, see reviews by Tyler and Rose 1994; Giske et al. 
1998). In ecology, several methods have appeared over the past 30 years to selve 
these problems. Basically, these methods can be divided into two approaches, based 
on optimality or game theory. 

Optimisation in ecology started with optimal foraging theory (OFT) in 1966. This 
teol is able to selve short term decision problems related to feeding, but cannot find 
optimal solutions when mortality risk also varies (Table 1 ). Such trade-offs can be 
studied by methods that contain the whole life cycle of the organism. Therefore, life 
history theory (LHT) was developed from demography as a teol for predicting optimal 
behavioural decisions and life history choices. Recently, this method has been used 
to study life history responses to fishing in commercially exploited stocks (Stekes et 
al. 1991 ). However, LHT, particularly by the use of the Euler-Lotka equation, 
describes individuals by their age alene. This restricts severely the predictions 
possible by this method, and has been used as argument in favour of stochastic 
dynamic programming (SOP, Mangel and Clark 1988). This method will allow 
individuals to be characterised both by their age and by ene or several "states", e.g. 
their hunger level, fat reserves, sex, body mass. Hence, SOP is able to yield far more 
precise predictions for behaviour related to fish-environment interactions. But this 
ability comes with a price: it is practically impossible to model density-dependent 
situations, e.g. fish behaviour that in turn will impact their own resources or their 
predators. Optimal density- or frequency-dependent decisions must be sought for by 
game theoretic methods. 

Dynamic games 

Game theory (in the form of the evolutionary stable strategy, ESS) was introduced to 
ecology from economy by Maynard Smith (Maynard Smith and Price 1973, Maynard 
Smith 1974, 1982), although a version of it, the ideal free distribution (IFO) had 
already been used (Fretwell and Lucas 1970). Situations where the profitability of 
behaviours of ene actor depends on the behaviour of other actors are referred to as 
games. Garnes can yield very complex population and spatia! dynamics, especially if 
both actors are allowed to relocate (Sih 1984 ). Since spatia l overlap is inevitable for 
predation to occur, spatia! dynamics are of paramount importance to the 
understanding of predator-prey relationships. Predators tend to aggregata in areas 
where prey are abundant (Hassell 1978; Sih 1984) or easily caught, whereas prey on 
the other hand tend to avoid predators (Stein and Magnuson 1976; Sih 1984). 
However, both the two game theoretical methods, the ESS and the IFO, will require 
some stability in order to find a solution to the game. And as the possible interactions 
increase very rapidly with system complexity, they are also both best suited for 
problems of low complexity. Such, it is in practice not possible to combine spatia! 
heterogeneity, tempora! variation and individual state variation in these classical 
game theoretical approaches. A new method is wanted, that may combine the best of 
state- and density-dependencies in a variable environment. 

A discipline of interest in this respect is artificiallife (A-Iife). A-life is a new field of 
science that emerged during the late 1980s inspired by evolution and life in general. 
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It is concerned with synthetic (man-made) life in hardware (robots), wetware 
(chemistry) and software (computer programs): "life as it could be" (Langton 1989). 
Although many issues of A-life are rather abstract to biologists, same of the methods 
applied in this field are of interest to ecological modelling. For example same studies 
simulate "animats" (artificial animals, Wilson 1991) that inhabit and interact with an 
environment (Ackley and Littman 1992, Holland 1995, Menczer and Belew 1996). 
Such simulations bear resemblance to ecological systems, and correspondingly 
these A-life methods may be applicable in ecology. Here we provide an introduction 
to same A-life inspired fish migration models and discuss the possible use of such 
models in fisheries ecology. 

By combining the neurobiological method artificial neural networks (ANN) for 
information-based dedsion-making, and the adaptation-based genetic algorithm (GA) 
for finding improved solutions, a new class of ecological models emerges. Opposite 
to LHT and SDP, here is no a priori assumption of optimality, but a process of 
adaptation (the GA) that evolves near-optimal solutions to ecological trade-offs. 
Opposite to classical game theory, there is no function to control the game, but the 
res ult is ( extinction or) a dynamic and fluctuation interplay between the ecological 
players, including predation and intra- and interspecific competition. Hence, dynamic 
game methods are able to cape with several trophic levels as well as state- and 
density-dependencies. We have called this combination the lndividual-based Neural 
network Genetic algorithm (ING), and we believe that analysing such dynamic games 
may be useful for ecosystem understand ing and fisheries assessment. 
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Table 1. A comparison of tools for functional modelling (modified from Giske et al. 1998). 
Approach Demo- Optimality 

graphy 
Property\method VPA MS OFT LHT (Euler-Lotka SDP 

equation) 
Individually variable No Feeding state Age-dependent Age-, time- and 
motivation ("static" motivation) state-dependent 
Density-dependent No Only through feeding No Possible only for 
growth and survival very simple 

sceanarios 
State- dependent No Only through feeding No This is what SDP is 
growth and survival best at 
Morphological and No No, OFT covers shorter No Phen o type 
physiological intervals characterized by 
plasticity states 
Individual behaviour No No Static Only as dynamic 
at several trophic game 
levels 
Dynarnic behaviour No Does not cover the Only in stochastic Of one actor in a 
and life history whole life, concentrates LHT specified 
strategy on feeding situations environment 
Find optimal No To simple problems Y es Will fmd global 
strategies without predation risk optimum 
Learning No Y es No Y es 
Ecosystem-modelling Trophic No The environment is Scenario-modelling 

interactions in described implicitly or dynamic games 
MS models in the lx and mx 

vectors 
Heterogeneous and VPA assumes Only through feeding Assumes conditions Umealistic 
temporally variable stability, MS equal for each gene- adaptation due to 
environment models can ration, genetic perfect foresighted-

include some foresightedness ness 
variation 

Fitness measure No Partial: feeding rate Analytical, rate Full or partial, 
and growth maxirnisation (or a derived from 

derivative) analytical 
Used in assessment Y es No No No 
References 31,32,33,34 2, 3, 16, 22, 28 5, 18, 21, 24, 27, 28, 8, 12, 13, 14, 17, 18, 

30 23,28 
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Table 1 (continued). A comparison of tools for functional modelling. 
Approach Game theory 

Property\method ESS l FD ING 
lndividually variable No In despotic IFD Age-, time- and state-
motivation dependent 
Density-dependent Yes, and f(equency- Y es Y es 
growth and survival dependent 
State- dependent No Very computer-intensive Y es 
growth and survival 
Morphological and No No Probably possible, not 
physiological plasticity yetdone 
Individual behaviour at Find optimal strategies Dynamic games Two trophic levels 
several trophic levels presented in this paper 
Dynamic behaviour Frequency-dependent Density-dependent Will evolve according 
and life history solutions solutions to environment 
strategy 
Find optimal strategies Equilibrium analysis, Equilibrium analysis, May get stuck at local 

requires simple system requires simple system optima 
Learning No No Y es 
Ecosystem-modelling Can search for Predator-prey equilibrium Not granted that global 

equilibrium optimum or stability 
will be found 

Heterogeneous and No: equilibrium Computer-intensive, in Variation at all scales 
temporally variable analysis practice impossible possible, genetic 
environment foresightedness 
Fitness measure Any, but frequency- Usually partial (feeding or Endogenous (implicit) 

dependent growth) fitness function 
Used in assessment No No Not yet 
References 9, 11, 15 6, 7,9,26 1,4, 10, 19,20,25,29 

1: Ackley and Littman 1992; 2: Charnov 1976; 3: Clark and Mangel 1986; 4: Dagorn et al. 
1995; 5: Fisher 1930; 6: Fretwell and Lucas 1970; 7: Giske et al. 1997; 8: Houston et al. 1988; 
9: Hugie and Dill 1994; 10: Huse and Giske 1998; 11: lwasa 1982; 12: Katz 197 4; 13: Mangel 
and Clark 1986; 14: Mangel and Clark 1988; 15: Maynard Smith 1982; 16: McNamara and 
Houston 1985; 17: McNamara and Houston 1986; 18: McNamara and Houston 1996; 19: 
Menczer and Belew 1996; 20: Nolfi et al. 1994; 21: Raff 1992; 22: Schoener 1987; 23: Sibly 
and McFarland 1976; 24: Stearns 1992; 25: Terzopoulos et al. 1995; 26: Tregenza 1995; 27: 
Tuljapurkar and Caswell 1997; 28: Tyler and Rose 1994; 29: van Rooij et al. 1996; 30: 
Werner and Gilliam 1984; 31: Magusson 1995; 32: Rødseth 1998; 33: Tjelmeland and 
Bogstad 1998b; 34: Stefånsson and Palsson 1997. 

The model 

Made/ outline 

The model approach is inspired both by spatially explicit individual based models 
(IBMs Tyler and Rose 1994) and A-Life (Langton 1989). The technique is based on 
applying a genetic algorithm (GA, Holland 1975) to evolve the weights in an artificial 
neural network (ANN, Rosenblatt et al. 1958; Rummelhart et al. 1986; Montana and 
Oavis 1989). The GA is a heuristic technique that applies the principle of evolution by 
recombinations, mutations, and natural selection to search for improved solutions to 
a problem (Holland .1975; Goldberg 1989; Mitchell 1996). Most optimisation problems 
can be solved using the GA, although its efficiency and suitability depends upon the 
specific problem (Oavis 1991). ANNs apply a model of how the human brain works 
(sensory-based information processing and decision making) to weight input and 
calculate a behavioural output. Nodes in an ANN are linked together in the same way 
that brain cells are connected by synapses. ANNs can thus be applied to perform 
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tasks from input data and weights that are modified to accommodate certain goals. 
Presently a simple feed forward network (Anderson 1995) is applied with input, 
hidden, and output layers. The layers are connected by matrices of weights. In order 
to avoid confusion between biological genetics and GA "genetics" we adopt the GA 
terminology suggested by Goldberg (1989), hence the analogy of a chromosome will 
be termed string and gene will be termed character. The strings consist of real values 
(Oavis 1991; van Rooij et al. 1996) rather than binary digits as in the original version 
of the GA (Holland 1975). 

A schematic outline of the ING concept is shown in Fig. 1. A geographical lattice 
of squares (2 O or 3 O) confines the spatia! setting of the ING concept. At the start of 
a computer run each individual is equipped with strings of random numbers and is 
placed in a randomly chosen square. Here it feeds, grows, and it may die. At the end 
of each time step the individual decides whether to stay at its present location or 
mave to ane of the surrounding squares. Movement is calculated using the ANN from 
information about the presence of food and predators in the immediate vicinity of the 
individual (Fig. 1 ). Movement is determined in a "winner takes all" fashion where the 
output node that gets the highest output value is excited and the individual 
consequently moves in this direction or stay. 

Figure 1. The ING concept with ANN based behaviour and GA based evolution in an 
individual-based setting. A cohort of individuals with randomly set strings which code for the 
weighting of the ANN, is initiated in the first time step. The individual's life cycle is simulated, 
and when maturity is reached, individuals reproduce and new recombined, possibly mutated 
individuals emerge. The breakpoints are randomly selected. Differences between the strings 
are expressed through differences in weights of the ANN, which leads to behavioural 
differences. The i, h, and o refer to input-, hidden-, and output layers respectively. The input 
layer consists of internal (states) or environmental cues. A node fires if the value is above the 
threshold value. Each of the nodes in the i-layer are connected to all the nodes in the h-layer 
which again are connected to all the nodes in the o-layer. W;h and Who are the weight matrices 
of connection strengths between the nodes. Modified from Giske et al. 1998 and Huse 
(1998a). 
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When an individual fulfils certain criteria it can reproduce its fecundity which is 
dependent upon the body size of the individuals. The string of offspring is a mix of 
the parent individual and a randomly chosen individual, and simulates crossing over 
(Fig.1 ). Further string variability may be added through changes in character va lue 
using creep mutations (Davis 1991 ). These occur with probability (P=0.001) and 
change the cell value by a randomly chosen value (maximum 20%). The individuals 
who manage to reproduce will by definition be those which are more fit for life in the 
present environment. By repeating this procedure over and over the population will 
consist of increasingly fit members (Holland 1975). 

This is the basic outline of the model, and the various applications shown below 
apply a model based on this scheme, but with specific alterations for the different 
tasks. For a more thorough description of the ING concept see Huse and Giske 
(1998) and Huse (1998a). 

Results and Discussion 

Predator-prey model 

The first example of application of the ING concept is a small scale predator-prey 
model where the prey mave about to find food and avoid being eaten, and the 
predator feed on the prey. As shown in Fig. 2 there was a typical cyclic pattern in the 
abundance of the predator and prey. Following an increase in abundance of the prey 
was an increase in predator abundance. Also with increasing prey abundance there 
was an increase in number of cells with overlap between predator and prey (Fig. 2). 
The peak abundance of the predator is typically somewhat later than that of the prey. 
The degree of spatia! overlap (number of cells containing both predators and prey) 
shows a similar variation with a peak in between the peak in the prey and predator 
populations. 
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Figure 2. Population dynamics. Predator and prey abundance and the number of squares 
occupied by both trophic levels (over! ap). 

There was a spatia! game between the predator and prey as illustrated in Fig. 3, 
which show the average position of predators and prey at each time step. This 
indicates that there was a consistent race between the predator and prey, and that 
there was adaptation involved in the interaction between the two actors. lnitially there 
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were rather large differences in average spatial position between the predator and 
prey. After some time steps of simulation, however, the predator managed to follow 
the prey more closely (Fig. 3). Typically the prey move in one direction is followed by 
the predators responding by moving in the same direction. The prey then changes its 
direction and some time steps later the predator responds by following the prey (Fig. 
3). There is hence a time lag in spatial position between the two. Whereas the 
predator in the beginning of the simulation responds slowly to changes in prey 
position the response is much faster towards the end of the simulation (Fig. 3). This 
illustrates that the adaptation of the predator increases throughout the simulation. 

Although this simulation refers to a general predator and prey, such relationships 
are very common in the sea, and it exists for example between capelin and cod. By 
making the model more realistic through describing the environment or the 
constraints in a more detail the model could be applied to investigate how 
environmental variation or behavioural constraints influence on the predator prey 
relationship and consequently the population dynamics. 
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Figure 3. Average position of predator and prey during a computer run. The adaptation of the 
GA is seen in more close interplay after 1000 time steps. 

Migration model 

The migration model was implemented for the Barents Sea capelin in a model where 
both behaviour and life history strategies were evolved simultaneously. As illustrated 
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in Fig. 1 the model was initiated with a random population that evolved over 
successive generations to become well adapted to the environment. Timing and 
location of reproduction were evolved in the model. lnitially spawning was 
widespread, but soon became restricted to a few areas in the southern part of the 
Barents Sea (Table 2). The evolved spawning area hencu corresponds fairly well to 
the spawning area of the Barents Sea capelin. Evolutioro of timing of reproduction 
followed a similar pattern with an initially widespread timing that was restricted to the 
period March-May after 200 years of simulation. This is the period at which capelin 
spawning takes place. 

Table 2. Evolution of spawning area at given years in the initial 200 years of simulation 
(deterministic run). Data for eastern column number (geographical position) are listed (see 
Fig. 6 where there is a total of 60 columns). Since no successful spawnings were made east 
of column 35, the data are limited eastwards by this square. The number of successfully 
spawning pairs in each column is given. 

Years 
Square 1 4 8 15 30 50 75 100 125 150 175 200 

l 

2 2 
3 4 
4 
5 34 9 
6 4 1 
7 8 
8 54 15 
9 11 

10 9 4 10 
11 9 2 
12 22 9 10 
13 22 1 
14 8 8 
15 15 9 
16 2 1 
17 5 5 1 
18 4 1 1 
19 3 1 1 1 1 1 
20 2 7 8 2 12 18 4 2 10 
21 4 3 3 3 3 12 10 20 9 
22 8 6 4 11 9 9 2 15 11 8 4 
23 2 6 24 4 3 3 5 2 4 1 69 
24 3 6 20 15 6 6 7 3 5 9 1 
25 2 6 6 2 4 34 32 6 18 46 
26 3 19 16 3 12 o 1 
27 2 6 10 13 
28 3 2 
29 8 
30 
31 1 
32 
33 1 
34 1 
35 1 

In the same manner that spawning area and timing of reproduction was evolved, 
life history strategies were evolved. Two different computer runs were carried out 
with deterministic and stochastic mortality respectively. Females matured at a slightly 
higher size and age than males in the deterministic run (Table 3). In the stochastic 
run, however, size at maturity was considerable higher in males than in females. In 
the deterministic run, both the sexes were iteroparous, whereas males were 
semelparous and females were iteroparous in the stochastic run. In a former study 
(Huse 1998b) it was suggested that male and female cape lin have different life 
history strategies under the mortality regime of the Barents Sea. The differences is 
due to the possibility of males to mate with several females during a spawning 
season, whereas females are limited by the number of eggs that they can carry to the 
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spawning ground. The current results hence support the former findings that in a 
stochastic environment sex specific life history strategies could emerge. 

Table ·3. Average sex specific life history traits evolved in the simulations. "Age at spawning" 
refers to the average age of spawning individuals in the last ten years of the simulation. In the 
"Parity" row l stands for iteroparity and S stands for semelparity. "AIIocation" is investment into 
female gonads relative to somatic growth. 

Simulation 
Deterministic Stochastic 

Life history trait (J Q (J Q 
Size at maturity (g) 15.8 16.6 16.0 11.1 
Age at spawning (years) 4.65 4.83 4.02 4.02 
Parity l l s l 
Spawning month 3.6 3.6 2 2 
Allocation - 0.36 - 0.56 

Modelled temperature field for the Barents Sea and simulated fish distribution 
pattern from the deterministic run are shown in Figs. 4 and 5 respectively. Larval drift 
and counter current migration dominate the life cycle of the fish. It congregates at the 
spawning ground in March-May and in the following months the fish distribution is 
dominated by larval drift (Fig. 5). An interesting feature is the association of the 
spawning area and consequent larval drift with a warm water tongue that reaches out 
from the coast of Russia towards Novaya Zemlya (Fig. 4 ). This warm water area is 
particularly distinct during the larval drift period in late spring and early summer (Fig. 
5). During summer the juvenile and adult fish move north-east along the edge of the 
Polar front as this retracts. When winter approaches the fish starts to migrate in a 
south-east direction, and approaches the coast of Northern Norway and Russia. Most 
of the fish distribution outside of the spawning season is associated with the ooc 
isotherm, which ensures high production during summer as well as a low predation 
risk. There was a tendency for the age groups to occupy different areas. 
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Figure 4. Modelled temperature distribution for the Barents Sea at different times of the year. 
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Figure 5. Distribution of the capelin throughout the year combined for all age groups in the 
deterministic run in year 200. Land contours of the Barents Sea are drawn in. 

The population biomass varied extensively between years (Fig. 6). After about 
160 years the population biomass in the deterministic run climbed to a relatively 
stable level between 5 and 6 mill tennes (Fig. 6). In the stochastic run the biomass 
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was .:>nly about 1/6 of the biomass in the deterministic run, and the biomass varied 
relatively vigorously throughout the period. 
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Figure 6. Total biomass of the two simulations during the computer runs. 

200 

The inclusion of the entire life cycle increases the applicability of the approach by 
allowing life history strategies and behavioural strategies to be evolved within the 
same framework. Another advantage of using full life cycle is the possibility of 
applying so-called endogenous fitness (Ackley and Littman 1992; Mitchell and 
Forrest 1995; Menczer and Belew 1996). As opposed to exogenous fitness models 
where a measure of Darwinian fitness is maximised, fitness in the present model is 
determined by interactions between the individuals and their environment. The 
individuals that manage to reproduce more copies of themselves, will become more 
and more common in the "gene pool" and after a lang time period of simulations, 
these individuals will tend to dominate in the population. The advantage of the 
endogenous approach is that problems related to conventional fitness measures are 
avoided. Such problems are associated with stochasticity and density dependence 
(Raff 1992; Stearns 1992). By using the current methodology, stochastic 
environments are hand led just as easily as deterministic anes. 

Conc/usions 
The ING concept is a fruitful way to study how spatia! processes can affect 
population dynamics. It is a dynamic game tool of a very general nature and is here 
applied in two specific applications. By using such evolutionary systems, an 
increased understanding of how different processes interact to produce population 
dynamics which is a key element in fisheries biology. In general fisheries 
management uses little information about the environment when making estimations 
about future stock development. The approach taken here may be applied to 
increase aur understanding of fish-environment and fish-fish interactions which are 
important processes underlying population dynamics. 
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