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Abstract

The geographical information very often is lost during calculation of
indices for the abundance from surveys. Isoplet diagrams showing the
distribution of both fish abundance and temperature/salinity are usually
produced by hand by skilled personnel. In order to find an objective ap-
proach we explored a new stochastic method for abundance calculation
and isoplet diagram drawing, using the geostatistics presented in this
paper. The potential of geostatistical methods is to analyse the structur-
al pattern of spatially dependent variables, model it and use it to esti-
mate the unknown values at the unsampled locations. Moreover it gives
the variance of the estimation error at a location and the variance of the
global estimated value which other methods do not give. At each loca-
tion we can store the estimated values of different spatial dependent
variables for the purpose of studying the relationship among them and
presenting graphic plots showing the geographic distribution pattern of
each variable. Furthermore the structural pattern of each variable can be
used to detect the interrelationship among them. This presentation dem-
onstrates these points with the following data : Temperature, salinity,
bottom depth, and 0-group cod density in the Barents sea.
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LINTRODUCTION

When conducting surveys over geographical areas in order to study fish abundance very
often the geographical information is lost during calculation of indices for the abundance. Even
when measuring temperature and salinity over a geographical area, the measurements are often
combined without including the geographical dimension in the result.

In some cases isoplet diagrams are presented showing the distribution of both fish abundance
and temperature/salinity. Such isoplet diagrams have so far mostly been produced by hand by
skilled personel.

For many years the stratified random survey approach and related methods of calculation
have been the only standard procedure for calculating indices of abundance from trawl surveys.
It has been clear to all working with these topics that there are strong limitations to this method.
This involves both the general bias imposed by the pre-stratification of the survey area and the
neglect of the variation imposed by the sampling itself.

During the later years some new approaches have been proposed, both for abundance
calculation and isoplet diagrams, and among these are geostatistical procedures see(ref. 5). In
this paper we will look into the potential of this approach.

In many fields of survey activity involving estimation of abundance it is an aim to describe
the distribution of abundance throughout the geographical area and estimate the total quantity
with a knowledge of the precision level. This also involves detecting relationships between the
biological and environmental data. Among the-main features of this paper is how the bottom
topography influences the water movement, and the water movement influences the fish
distribution. Moreover, if we find high correlation between different variables, we may use this
information by treating some variables as covanates for another variable to improve the
estimation of the latter. :

As a case for these studies we have chosen a data series of extensive sampling, both
geographically and in time, containing pelagic trawl hauls in the upper 60m watercolumn
together with CTD measurements in the whole watercolumn. The data series extend from 1964
up until today, but we have chosen 1992 as a year to demonstrate the method in this paper. Work
on data from other years will be continued.

We have chosen to present the work into two parts The present, first part deals mainly with
the geostatistical approach and the second with model based approaches. In this paper we
emphasise more on environmental data. More work will be done on different aspects of the
application of spatial statistics to environmental and fishery data e.g. to estimate the stock size.

In this Part I the environmental data such as temperature, salinity and bottom depth, assumed
to be highly continuous in their distribution, have been chosen as the basis. It is assumed that
the measurement error can be neglected, and that the measurement therefore represents the true,
and sought, distribution at the time of sampling.™

Historically, when making isoplet diagrams, there has not been any desire to give the
underlying digitized values and variance of the estimation error. Mostly such diagrams have
been hand made by skilled and experienced personnel, but this is time consuming and may be
influenced by individual subjectivity and artistic expression.

In order to study the properties of each variable and their interrelationships by means of
mathematical and statistical methods, it is necessary to-have digitized values. This paper
presents an interpolation method (kriging) to give the required values from the observation
material. Moreover, these allow us to produce diagrams fast and objectively.

The potential of kriging is to analyse the structural pattern of spatially dependent variables,
model it and use it to estimate the unknown values at an unsampled location. Moreover it gives
the variance of the estimation error. At each location we can store the estimated values of
different spatially dependent variables for the purpose of studying the relationship among them




and for presenting graphical plots of the geographic distribution pattern of each variable. An
example of this is presented in the paper, classifying watermasses according to both temperature
and salinity. The area of mixing between two types of watermasses is identified and illustrated
with hatching on isoplet diagrams. In our work we use ISATIS (ref. 9) and BLUEPACK 3D
(ref. 2) as our geostatistical packages. We defined a 3D grid on the Barents sea and at each grid
point we estimate the value of each variable from the available data by means of kriging. Thus
we obtain values of different variables at the same position.

2. GEOSTATISTICS, FISHERY AND ENVIRONMENTAL DATA

We start with a brief survey of the geostatistical methods applied in the subsequent data anal-
ysis. For more detail on this and related topic can be found in (ref. 3), (ref. 8), (ref. 10), (ref. 11),
(ref. 12), and (ref. 15).

2.1 Random function models

A regionalized variable in a region Dc R" is a function z(x) of a point X, x€ D. For a given
x.€ D, z(x, ) means an observable value (e.g. temperature, salinity, fish density) at x,. We inter-

prete "locally” z(x,) as one realization of a random variable Z(x,). Similarly we interprete “glo-

bally” the function z(x) as one realization of a random function Z(x); arandom function can be
seen as a set of autocorrelated random variables { Z(xi)}, for X; being any position within the

field of study. Some applications include time dependence, and one may write Z(x,t) etc.

Typical data in the earth sciences come as a set of such observations {z(xi),ls i<k}, i.e. with
one realization of random function Z(x), x € 2. Among the regionalized variables z(x), 1< i<
k a certain structure in spatial variability is usually perceptible. This is the basic observation be-

hind geostatistical theory, and it calls for modelling a pattern of spatial correlation between the
various random variables Z(xi), 1£igk.

2.2 The variogram

The most crucial step in the structural analysis of a regionalized variable is a process of data
analysis which leads to a variogram model. The variogram function of Z(x) defined below acts
as a quantified summary of the structure of variability; it is estimated on the basis of all available
information. This summary of information is then a tool in all subsequent steps of reconnais-
sance and estimation. The variogram function is defined by

2Y (v, h) = E{[Z(x) ~Z(x+h)1°} EQ D

It can also be interpreted as a measure of the expectation of squared errror when Z(x+h) is
used to estimate Z(x). Intuitively one may regard it as expressing how much information about
Z(x) would be lost using Z(x+h) to inform about the unknown Z(x). Knowledge of the
variogram can be used to minimize the loss in estimating an unobserved variable by means of
neighboring observations. (This method explains only linear relationships among the data; non-
linear cases require knowledge of higher order moments.) The variogram function depends on
location x, the distance |hl between location vectors x and x+h and the direction of h. In practice
only one realization is available and the data will not suffice for a good estimate of a function

depending on Xx.



However, one can treat situations where dependence on the location x can be set aside, and
one may write Y (k) = Y (x, h) . This brings up the discussion of stationarity conditions in
the next section, which again is followed by a discussion of how to estimate the variogram.

2.3 Second order stationarity1

From their definitions, covariance and variogram functions depend simultaneously on two
points, say X, and X, Many observations of the pair of random variables {Z(xl),Z(xz)} are then

needed for any inference to be possible. But in a homogeneous zone of study (the relevant pa-
rameters of) these functions depend only on the difference between the two points, the vector
h=x - x,. Thus each pair of data with location difference equal to vector h (i.e. the data points

are separated by the same distance and direction as {Xl’ Xz})’ can be considered as a separate
realization of the pair {Z(xl), Z(x,)}.

A random function is said to be second order stationary if

(i) The expectation E{Z(x)} exists and does not depend on x:

E{Z(x)} = m, for all x; and

(ii) for each pair of random variable {Z(xl), Z(xz)} the covariance exists and depends only

on the separation vector h (modulus and direction):

2
C(h) = Cov[Z(x+h),Z(x)] = E{Z(x+h)Z(x)} -m , for all x
This means that the covariance of a pair is ini;arliant under translations. If in (ii) C(h) depends
only on the modulus Ihl , the covariance is also invariant under all rotations; this is called isot-
ropy.

This brief survey mainly assumes second order stationarity; it is, however, possible to adapt
the development to the weaker assumption of the “intrinsic hypothesis” in case the covariance
function does not exist. A random function Z(x) is called intrinsic when the variogram exists,

ie.:
(i) E Z(x) = m, for all x;

(ii) for all vectors h the increment [Z(x+h) - Z(k)] has finite variance, see (EQ1) which does
not depend on x, i.e.

Var{Z(x+h) -Z(x)} = E{[Z(x+h) ~Z(x)]°} = 2T (k)  forallx

2.4 Modelling the variogram

Under the second order stationarity it possible to estimate the variogram (EQ 1) from avail-
able data. Let N(h) be the number of pairs {xi,xj} of observation points with XX = h. The esti-

mator of 2Y (A) is an arithmetic mean:

1. Stronger stationarity assumptions are occationally made, like strict stationarity. see e.g. Cressie p.53.



(20)* (h) = 7\/‘(17)2 [Z(x) -Z(x,+h)1 1<i<SN(h) (EQ2)

A good estimate requires a large N(h); unless the data are gridded, one compromises and

groups together observation pairs where the deviations of X;X; from h (in modulus and direc-

tion) are within specified tolerances. As estimates by the above formula are obtained only for
some discrete values of the variable vector h, techniques of smoothing and completion are then
used to obtain the final variogram model. An essential requirement is to keep special theoretical
properties of variogram functions. Obviously Y (2) = 0. Moreover, it is “conditionally nega-
tive definite” in the following sense:

n n n

z zaiT (xi-xj) ajSO, wheneverz a, =0 (EQ3)

i=1j=1 i=1
for any finite number of spatial locations x . and real numbers a (oo e This follows from
the positive semi-definiteness of covariance matrices [(ref. 3) p.86,87 and (ref. 12) p35]. In
practice the modeller may choose a predefined class of functions satisfying the above
requirements and nest them together to fit the estimated values as well as possible. A list of such
functions can be found in [(ref. 3) p.61, and (ref..12) p.163-171]. The expansion of (EQ 1) under
second order stationarity,

Y(h) = Var[Z(x)] -Cov[Z(x),Z(x+h)] = C(0) =C(h) (EQ4)
shows the connection between variogram and variance/covariance. If the intrinsic hypothesis
holds and second order stationarity fails, one works with the variogram instead of the
covariance function. [(ref. 12) p306]

In practice one estimates the variogram at different distances and directions. Analyzing the
estimated variogram at different distances and directions will aid us to recover the structure of
the spatial data. It can give us ideas about themes such as the variance and range of influence
among the data in distance and direction, stationarity and isotropy, and non-stationarity (e.g.
data with presence of a trend, or banding from periodic variation in intensity in any direction,
or patchiness). S

Here we will concentrate on how the variogram structure is used for the purpose of
estimating unknown values at certain points from the neighboring known data. The task is to
assign the right amount of influence of each neighboring datum. It is intuitively clear that this
involves a delicate balance between two natural arguments: the neighbor data closer to the
unobserved point should count more to the extent they are likely to bring more reliable
information, but neighbors close to each other should have reduced weight to the extent that
they bring the same information. Kriging is a technique which makes use of the spatial
correlation information carried by the covariance/variogram (EQ 4) and the geometrical
structure of the location of the known data to obtain these weigths. It constructs an estimator
which is unbiased and has the minimal variance in the class of linear estimators. These concepts
are introduced and discussed below. '

2.5 Introduction to kriging

Kriging is a local estimation technique which provides the best linear unbiased estimator



(BLUE) for any unknown value z(xo). The information used are n available data { z(xi)l 1fig
n} in a neighborhood of the location X, where the value z(xo) is to be estimated. (ref. 10)

The need for kriging arises e.g. when values are required on a set of regular grid points, as an
intermediate step in the production of maps with isolines for the attribute observed; X, 1s then

such a grid point. Another situation is the study of interrelations among different spatially de-
pendent attributes; one then needs values for these attributes at the same location.

Here we will explain how we derive the kriging equations which can be solved to obtain the
optimal solution for the weight A , used in the estimation equation below. For simplification we

will present only the case of point kriging which suffices for contour mapping.

In (EQ 5) 1s explained what it means that the estimator is linear; then comes the determination
of its unknown weights A - First the requirement of unbiasedness puts restrictions on them in

(EQ 6) - (EQ 8); in the case of "ordinary kriging” this amounts to restricting the A ’s by the

equations (EQ 9), i.e. the estimator is as shown in (EQ 10). Then the meaning of being the best
(least squares error) is explained in (EQ 11) - (EQ 12); this requirement leads to the equations
(EQ 13). Together (EQ 10) and (EQ 13) suffice to determine the weights and get the estimator.

One should keep in mind that this whole process must be repeated for each kriging of an un-
known value z(xO) since the equations depend both on X, and on the selected set of neighbors

{xi, i=1,2,..,n}.
Each z(xi) is considered as an observed value of a random variable Z(xi),OS i< n, and the esti-

mator for the unknown value z(x,) is of the form

Z¥(xy) = A+ D AZ(x),1Si<n, (EQS5)

the coefficients A’i being determined by kriging theory as described below.

The error of the kriging estimator is
Y=2 (xoj = Z*(xg) = Z(xg) —hy— inz (x)) (EQ 6)
To get unbiased estimates, one must have EYI=O, i.e.
0=-A+E[Z(x)] =Y MEIZ(x)] (EQ7)
i

The A; will be determined below for 1<i<n, but clearly some knowledge of the
expectations is required. Second order stationarity implies that these are all equal, so

O=—7&O+(1—27Li)-E[Z(xO)] (EQ8)
i
When this common expectation E[Z(x,)] must be considered unknown, one has to choose

Ag =0k =1, 1<i<n (EQ9)
i




The kriging method which determines theki ’s constrained by (EQ 9), 1 <i<n is called
“ordinary kriging”. ("Simple kriging” assumes E{Z(x )} known; there is no constraint, and A
is finally determined by (EQ 8). On the other hand, universal kriging” treats data with a trend
by introducing more constraints on the 7»1. 's to filter out the trend.) Then

Z*(xp) = DA Z(x)withY h, =1, 1<i<n (EQ 10)
i i

The coefficients ki,l <i<n, are determined to minimize the variance of Y in (EQ 6). We
rewrite Y using (EQ 9) and the stationarity which implies E[Z(x)] = E[Z(x,)], 0<i<n:

Y=>0,[Z(x)-E[Z(x)]]1,(05i<n) 0 = Loy, = =\, , fori>0  (EQ11)
i

Var (Y) = zzoc Cov[Z(x),Z(x)] o, 0<ijs<n (EQ 12)

subject to the constraints (EQ 9); in this sense we obtam the best estimator within the class of
linear estimators described in (EQ 10). The first order equations

0 .
é-b—cz[Var(Y)—Zu(l-—Zki)] =0, 1<i<n .
with Lagrange multiplier 2|1, may be written
ZCOV[Z(x) Z(x)1 M +U = Cov[Z(xO) Z(x)] (EQ 13)

The ”normal system” (EQ 13) and (EQ 9) of ordinary kriging may be expressed in matrix
form: Let CU Cov[Z(x).,Z (xj) ] ,then

_ e - -
Ciy Cin 1[N Cop
S = . for short K- A = C, EQ14)
Cnl * Cnn 1 }‘n COn
1 1 0O u] 1]

The positive definiteness of the nXn covariance matrix G > 1<i,j<n implies the

invertibility of the (n+ 1) X (n+ 1) coefficient matrix in (EQ 14)L. Thus (EQ 14) has a
unique solution.
If second order stationarity fails but the intrinsic hypothesis holds, one can rewrite (EQ 13)
equivalently in terms of the variogram function instead of covariances. [(ref. 12) p306]
Certain properties of the best linear unbiased estimator determined by (EQ 9) and (EQ 13)

are now immediately visible:
Clustered samples. The kriging method assigns welghts to the sample points of the kriging

1. Generally let C be a symmetric nxn matrix and M an nxm matrix of rank m<n and consider the
(n+m)x(n+m) block matrix K = [A(; A('ﬂ . Then if C is positive or negative definite, det (K) #0, which

implies K is invertible. See (ref. 1) and (ref. 4)



equation by accounting for the relationship between the unknown Z(x,) and the sample

variables Z(x,), 1= 1,2,...n, through C,; and also for the degree of redundancy between sample

points themselves, through K. This puts the right amount of weight that will correct the effect
of clustered samples, which some other methods such as inverse distance can not do. [see also

(ref. 11) p17.]
For an intuitive understanding of kriging regard 7 sample points X,, X,, ..., X, (containing a

cluster) and x, where the kriging is done.

X1 X Xs
x, Xs

Xq

A sample point x, should have a high weight A, if it is close to X, (When the variables at x

and x,, are highly correlated). On the other hand sample points x, and X, that are close together

tell very much the same story and should have correspondingly small weights A, and A ;- Each

of the points in the 5-point cluster above should have a weight just slightly more than é of the

weight a single point representing the cluster area would get.
Interpolation property. Kriging is an interpolation algorithm in the sense that if x =x, (say),

then the estimate is the “exact” value, i.e. Y A.- Z(x,) = Z(x,)
1 ! 1
i

This is seen simply by checking that p = 0, A; = 1, A, = ... = A = 0 solve the
normal system. Thus the kriged surface passes exactly through all the experimental points.
However, the kriging method may be extended to treat data with measurement errors; the real
field can be obtained by filtering out the noise, thus it will not necessarily pass through these
points.

Standard regression as special case. If the ”'Z"(xi) with 1 <i<n are uncorrelated, we have a
case of linear auto-regression under constraint. Then (EQ 13) becomes

Var[Z(xy)] - M+ = Cov[Z(xy),Z(x)] (EQ 15)
Letting p mean correlation, the solutions of (EQ 15) and (EQ 9) are

A =plZ(x)),Z(x)] —n/Var(Z(xy)], where
~u/Var[Z(xy)] = [1 Y plZ(xy) ,Z.(xj)]il/n (EQ 16)
j

If also the n observed variables are uncorrelated to Z(xo), all weights become equal to 1/n,
i.e. the estimator is the arithmetic mean. In the general case ordinary least squares regression
amounts to ignoring the structural properti¢s ¢onveyed by covariances or variogram, and will
therefore by comparison of (EQ 16) with the solution of (EQ 13) and (EQ 9) give an estimator
different from the optimal one.

Precision of the ”BLUE”. The “ordinary kriging Variance”cé g = var (Y) of the error of




the optimal estimator is easily found simplifying (EQ 12) by means of (EQ 13) and (EQ 9):

ooy = Var[Z(xg)1 -3\, CovIZ(x),Z(x)]1 -t EQ17)

This gives some idea about the precision of the estimate locally, which nonstatistical
methods of interpolation do not give. The kriging variance depends on how strong the linear
relation is between the estimated Z(x ;) and the neighboring estimators, Z (x;), 1 <i<n. The
kriging variance gives the “order of magnitude” of the estimation error, but does not show the
spatial correlation of this error, nor does it indicate how to take this error into account.” This can
be perceived through simulation. (ref. 2) p.6

2.6 Cross-Validation (CV)

The cross-validation (cv) is a general procedure which checks the compatibility between a
set of data and their structure model. Each one of the test data points is temporarily removed
from the active data set and a reestimation Z is produced by kriging using its neighboring
information; then the estimate is compared to the real known value. From the estimated values
we can calculate the estimation error and its distribution. We hope that the mean, variance, and
skewness of the errors (residues) will all be as close to 0 as possible. The kriging procedure also

- 2 N . :
produces a prediction ¢ of the estimation variance o2. So we hope that the variance of the

standardized error (defined below) will be close to 1.

Let Z be the removed target value,
let Z be the estimated value, and

let error(cv) = Z-Z. Then

standardized error (cv) = ZG;Z ,
E

- 1 5
mean error = X/% (z-2),
- sample variance of error = 1%12 z-2) 2 R
. N

mean standardized error = 12(2-;-2) ,
N&\o,
. . I~(Z-2)
variance of standardized error = —2(-—-—) .
N&\"oy
It is tempting to use the variance of standardized error to adjust the sill value of the

variogram. But the discussion in (ref. 8) p. 514-517 points out the reason not to do so.

2.7 What can be kriged?

’Since it is a linear combination of data, kriging can be used to estimate any quantity obtained
by a linear operator applied to the initial variable.

Thus, we can obtain:

- Kriging of the average on a given support (area, volume);

- Kriging of the drift, in other words the average at each point of the random function;

- Kriging of drifts along the axes of coordinates or gradient kriging,

- Kriging of a convolution or deconvolution of the variable, for example to estimate a point
value when measurements are regularized on a given support.” (ref. 6)



3.ENVIRONMENTAL AND FISHERIES RESEARCH DATA

In the study of data from fish density distributions and environmental data such as
temperature and salinity the following observation is most often noted: If we grid such data and

calculate the experimental variance G, within grid cells of size V, the variance often increases

continuously with V. This is a logical consequence of the existence of spatial correlations: the
smaller V is, the closer the data points and hence the closer their values are. When they are

sufficiently far apart, the mutual influence is negligible. And thus c%, approaches a constant

which is the a priori variance of the random variable (assuming second order stationarity). So
the experimental variance is practically constant once the grid side passes a certain size; this size
indicates the range of influence among spatial samples in the region. However, various
circumstances, in particular nonstationarity, can cause the experimental variance to keep
growing with the grid size.

We may investigate the autocorrelation of the data in relation to the geographical structure
of the locations by means of analysing the estimated variogram or covariances. From this we
can get information about the geographic variation of the data, for example the primary variance
of the data, the range of influence of data in different directions, in which direction the data have
the greatest range of influence and in which direction that the values of data change fastest. The
variogram may indicate various patterns of spatial variation, e.g continuity, smoothness, high
fluctuation, drift, etc.

The information in the variograms can be used in planning surveys and sampling. For
example from the variogram plot we find out which is the direction of the longest/shortest range
of influence. We can intensify the sampling in the direction that the data seem to change faster
(direction of largest gradient). In the case of 2 dimensions, instead of having a square grid
design we can have a rectangular grid design where the axis directions are the directions of
longest/shortest range and the rectangle sides are proportional to the ranges.

The importance of second order stationarity has been explained above. However, most
fishery and oceanographic data, e.g. tempérdture and salinity, are nonstationary, especially
when the study area is large. Mainly we are interested in drawing isolines of a certain variable,
where it is clear that there must be a trend/drift in the data.

There are various ways to deal with nonstationarities. Universal kriging has been mentioned.
Alternatively, we can use a variogram model for data with a trend/drift, such as a "linear model",
or we may define a moving neighborhood inside which it is acceptable to treat the data as
quasistationary and apply the above method locally. To find out in detail we refer to (ref. 13).

3.1 Sampling

The data were collected by 5 research vessels during the 0-group survey in the Barents Sea
and adjacent water (for short ’the Barents Sea’ in the rest of the paper) in August and September
1992. It was assigned to cover a certain area from west to east by sailing along NS line transects
and collect samples when they reach the predefined stations (see (ref. 7)). The trawl and CTD
data have been sampled along the course trick at approximately 30 nautical miles distance,
which is also the approximate distance between the transects. We can regard the sampling
stations as covering the study area in the Barents Sea homogeneously (see figure 2 and 3). In
figure 2 and 3 we show, respectively, the trawl and hydrographic station positions. For
convenience the plot in figure 1 also indicates some of the 70-82 degree parallels and the 15-60
degree meridians.

All these data are temporally and spatially dependent. This may be a problem with e.g. the
day/night distribution of fish density. But in this study we disregard the temporal dependence.
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Of the observed data some are attached to 2-dimensional coordinates (fish density calculated
from O-group trawl data and bottom depth), and others to 3-dimensional coordinates

(temperature, salinity).

Figure 1
The plot shows positions at
longitudes 15, 20, 25,...,60 degrees east and
w latitudes 70, 72, 74, ..., 82 degrees north
in Polar Stereographic projection.
In this and subsequent maps the origin of the
axes is (400000m, 400000m) and the increment of
the tick marks is 100,000m.
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3.2 Gridding the data .

Using Polar Stereographic projection to transform the latitude and longitude position on the
global surface into the xy-coordinates on a flat surface! (see figure 1), the area in the Barents
Sea is subdivided into a 20 km square grid, which is extended into a 3-dimensional grid with 5
meter depth intervals. The grid point data are estimated from the observed data with the use of

1. Bjgrn Adlandsvik provided the FORTRAN program.
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the kriging method. At any unsampled point x, where an estimate is required, the kriging
method is applied using the software ISATIS. Since the data cover a large area we use a moving
neighborhood which is small enough to justify the assumption of second order stationarity
(quasi-stationarity) (see (ref. 13)). Then all coefficients of the normal equation system may be
estimated under stationarity assumption.

4. RESULTS OF THE DATA ANALYSIS

In order to prepare data for contour mapping we kriged temperature and salinity on to the 3D
grid of cell size 20kmx20kmx5m, to the depth of 100 meters. Sea bottom depth, and cod fish
density were kriged on to the 2D grid of cell size 20kmx20km, then attached to the 3D grid to
study the interelationship between these variables. In this introductory study we will consider

only these variables.

Table 1: Variogram model specification

bottom depth salinity temperature cod density
Number of valid samples 595 8463 8463 256
Angle around Z 45 0 135 135
Angle around Y 0 S ) 0 0
Angle around X 0 0 0 0
Number of basic structures 2 3 2 1
Structure #1 Spherical Spherical Spherical nugget effect
Range 340km 70km 330km
Sill 797333 0.0178 2.3 928771
Anisotropy 1,1,1) . (1,1, (1,1,2000)
Structure #2 Spherical Spherical Spherical Spherical
Range 115 km 270 km 60 km 300 km
Sill 67675 0.0658 0.3127 1440222
Anisotropy ©.,1.,1) (1,1,3500) ¢,.1,1) 1,1,
Structure #3 Spherical
Range 500 km
Sill 0.0508
Anisotropy (2,1,1)
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4.1 Variogram analysis -

First we must analyse the structure of the data and estimate the variogram model to be used
in the kriging procedure. See table 1.

The variograms of the above data were all estimated in four horizontal directions: along O (x-
direction) , 45, 90 (y-direction), 135 degrees. There is a tolerance angle of +22.5 degrees, so
that the x-direction variogram, say, is influenced by variations in the sector from -22.5 to 22.5
degrees. The x-direction is roughly ENE. Also variograms for the vertical direction were fitted
for salinity and temperature. These experimental variograms are based on the survey data, and
therefore only reflect conditions in the surveyed areas of the Barents Sea and the structural
information of data which are approximately 30 NM or more apart. The horizontal dotted line
shows the primary variance of the data set, and variable values above this line suggest the
existence of a drift. The topic of the following discussion is how the experimental variograms
capture the known dominating features in the general pattern of the spatial structure of the
studied variables. Some additional remarks indicate how the variogram models are motivated.
Figure 4 shows the variogram of temperature, salinity, sea bottom depth and O-group cod
density against distance.

Bottom topography: Along the x- and the 135 degree directions the variograms rise, fall and
rise again, which indicates a "sinusoidal" pattern; i.e. how these directions generally cut across
banks and channels in the sea bottom. There is a drift along the y-direction.

The 45 degree variogram levels off (at about 300-350 km.), which shows stationarity in this
direction.

The bottom topography strongly influences the flow direction of the water masses, generally
in the 45 degree direction, as shown in figure 5 and (ref. 14) figure 1 p.6 and (ref. 18) p. 24-31.

Salinity: The experimental variograms for salinity show drift along the 45 deg.- the ’ y-’
and the depth directions. There is stationarity along the *x-’ and 135 deg.- direction with range
about 300-350 km. We fit the mixed zonal and geometric anisotropy model to the experimental
variogram. We can see from the plot of isolines of salinity that the Atlantic water mass with
almost constant salinity is extremely elongated in the x-direction into the Barents Sea. This
slices up the domain along x thus creating a zonation along y, which explains the additional
variability in the variogram of that direction.

Temperature: The estimated variograms of the temperature along the 45 degree directions
and along the depth direction have a parabolic form which is characteristic of a highly
continuous. There is a drift along the x-, 45 deg.- and depth directions. We chose nested
spherical variogram models over gaussian variogram model because they are more stable and
give realistic estimates over the whole region and the results from crossvalidation are
satisfactory. Since the variogram appears stationary along the y- direction and the 135 degree
direction, we use the maximum value of variogram in the 135 degree direction as a guide-line
for fitting the sill in the variographic model. The observed range of variogram in 135 degree
direction is about 300-350 km. So we use two nested spherical models with 60 and 330 km
range.

Cod density: The variograms of cod density show drift in all directions and a large
variability. This is due to a very high density in one area. Again the variability along the 135
degree direction is lower than along other directions and the variogram reaches the sill at around
300-350 km range (where the variogram levels off). The downward slope of the variogram at
larger distance can come from the single-peaked shape of the cod density distribution: When
the observations are made in august/september, the O-group has already been transported by
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the Atlantic current into the Barents Sea and the waters west of Spitzbergen. The distribution
of the O-group is not uniform. Isolines show a concentration around the Bear Island, and this

single-peak pattern is captured by the variogram.

Similarities and differences. The variograms of temperature, salinity, bottom depth, and cod
density show some similarities and some differences.

Let us discuss temperature and salinity first. Similarities must be expected, as both
temperature and salinity are linked to the bulk of Atlantic water masses. Both have the similar
variogram pattern on y, 45, 135 degree and depth direction. However, the salinity and
temperature are changed by different physical factors. The movement into the Barents Sea with
a colder climate causes a gradual temperature drop, while the salinity remains constant for a
longer distance. Thus the two x-direction variograms are very different.

These considerations link both temperature and salinity to the bottom topography. The
bottom depth is stationary in the 45 deg. direction. The Atlantic water masses generally move
northeast and confront the Arctic water masses moving southwest. That explains why the
variograms of temperature and salinity show drift along the 45 degree direction and stationarity
in the perpendicular (135 deg.) direction.

The cod density variogram along the 135 degree direction has the lowest variability; this is
the direction of stationarity for salinity and temperature. The ranges also match well. On the 45
degree direction there is a drift similar to the temperature and salinity variograms. This reflects
that the distribution pattern of the 0-group cod is mainly influenced by the current.

Neigborhood specification

Because the estimation area is very large and trends exist, we use the ordinary kriging with
the moving neighborhood method in the estimation. A stationarity neighborhood of radius 150
km. was chosen (with 15 m depth in 3D case), which seems a reasonable size in the present
geographical conditions and the variographic analysis of each variable. In each neighborhood
should be at least 4 data points, while 20 are considered optimal.
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4.2 Kriged isolines

The kriging was done with the software ISATIS. We estimate the temperature and salinity
in 3-dimensions (3D) using a 3D moving neighborhood. The horizontal kriged isolines for
temperature and salinity at depths of 50 meters and 100 meters are shown in figure 5 overlaid
on the hatched area showing the bottom topography of the Barents Sea. The distribution of
inflowing warm water from the Atlantic is obviously influenced by the bottom topography. The
Atlantic water confronts cold water coming from the Arctic Sea (in the north and north east) and
a small amount from the Kara Sea (south of Novaja Zemlja). In the south there is also a coastal
current and an outflow of cold fresh water from several rivers, eg. the Pechora. [see (ref. 14)]

Figure 6 shows isolines in six vertical sections perpendicular to the x-axis. The sharp
transition between Atlantic and Arctic water masses , i.e. the polar front, appears clearly. The
Atlantic water usually has salinity above 35.0 and temperature above 3 °C, while Arctic water
is fresher and colder, at least down to 100 m.
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Figure 5:The hatched area of sea bottom depth Illl 400-500 m., //// 300-400 m., | | 1 1200-300 m, .\ \ \ \ 100-200 m.
The isoline of temperature; _ _ _ -2,0,2, -1,1, 3,4,5,6,7,....
The isoline of salinity at step of 0.1; __ _ _ '34.0-34.5, 34.6-34.9, 35.0-35.2
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Figure 6: Isolines of salinity in vertical section perpendicular to x-axis of figure 5. The observer looks from east to west,
so the north is on the right hand side.

The depth is from 0 to 100 meters, with the ticks marking steps of 10 meters.

The isoline of salinity at step of 0.2; 34.0-34.8, at step of 0.1 (double thickness line) 35.0-35.2

The polar front is an important boundary between Atlantic and Polar water. At the same time
it is a very important area for the phytoplankton production [see (ref. 18) p.94-95]; this is the
basis for the zooplankton, which again is the main food source for the 0-group fish.

The distribution of various water masses and the boundaries where Atlantic and Arctic water
masses mix are shown in figure 2 of (ref. 14). Table 1 of (ref. 14), part of which is given in table
2 below, gives some characteristics of the water masses.

Table 2: Water masses in the Barents Sea

Name of water masses Temperature, °C Salinity
North Atlantic Water NAW P >3.0 >35.0
Arctic Water AW ) <0.0 34.3-34.8
Polar Front Water PW -0.5-2.0 34.8-35.0

A digitized polar front definition: Here we use gradient kriging (see section 2.7) and the
characteristics of water masses in table 2 to define the polar front area. Computers can give a
quick and objective information on the values of salinity, temperature, bottom depth, and the
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lenght of their gradients. The "robotic" nature of the computer and the limitation of the data can
give weird results; with e.g. a pure temperature gradient definition the computer may declare
the boundary between Atlantic and Coastal waters as "polar front". By adding more criteria we
get a rough but objective polar front area, which, if needed, may be improved by human editing.
With more work on this, and perhaps with more available data, one may hope to improve the
digitized definition.

In the present paper the lenght of the horizontal gradients of temperature and salinity were
calculated and a high length value used as one criterion in defining the polar front area. We
investigate the plot of isolines along the depth profile and the horizontal profile where the polar
front occurs. We can see that the salinity is the best indication of the difference between the two

water masses. .
Here the polar front area is given as the intersection GT'nGSnSANN where

GT is the area where the length of the horizontal temperature gradient is above K, percentile

(here we choose K; = 70).
GS is the area where the length of horizontal salinity gradient is above K percentile (here

we choose K =52).
S is the area where the salinity is above 34.6.
NN is the area above the 1000000 along the y-axis. (During the survey period the polar front

is well within NN)
These criteria will give an objective map of the polar front area. The isolines of temperature,
salinity of 35.0 are shown in figure 7 for the depth of 50 and 100 meters, overlaid on the hatched

area of the polar front.
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Figure 7: The isolines of temperature at step of 1 degree C _ _ _ (single thickness line) -2 - 12 degree C
and of salinity at 35.0 (double thickness line)
and the hatched area of polar front at 50 meters depth and 100 meters depth (year 1992).

Figure 8 shows isolines of the bottom dep'tli," salinity isoline at 35.0, and hatched area of polar
front at 50 and 100 meters depth. The salinity isoline obviously conforms to the bottom
topography, which shows that the movement of water is influenced by the bottom topography.
As a consequence the polar front area, which is defined by the properties of salinity and
temperature alone, match with the area of high gradient of bottom depth.

18




polar front dep sal 100m 52
e

polar front dep sal SOm 52

Figure 8: The isolines of bottom depth at step of 100 m.; 100-600, at step of 50 m. _ _ _ 150-550
and of salinity at 35.0 (double thickness line) and the hatched area of polar front at 50 m. and 100 m. depth.

4.3 Precision of the kriging method ‘
One of the good sides of kriging method is that it also gives the estimation variance. See (EQ
17) in the case of ordinary kriging. In figures 9 and 10 we draw isolines of the estimation

standard deviation o,. We can see that within the sample area o, never exceed 1 °C for the
estimation of temperature at 50 m. and 100 m. depth. Also o, never exceed 0.2 for the
estimation of salinity at 50 m. and 100 m. depth.

» "
#d4 of temp and polar front 100 m. 92

sd of temp and plol.&:on: 50 m. 92 :
F igure 9: The isoline of estimation standard deviation for estimates of the temperature at 50 and 100 meters depth by

moving neighborhood kriging method. The double thickness lines show sd. = .5 and 1. The single thickness show sd. =.75.
The hatched area shows the polar front.
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F igure 10: The isoline of estimation standard deviation for estimates of the salinity at 50 and 100 meters depth by
moving neighborhood kriging method. The double thickness lines show sd. =.1 and .2. The single thickness show sd. =.15.
The hatched area shows the polar front. )

As described in Section 2.6 we present in tables and figure some results of the cross-
validation in this section. The calculations were done with ISATIS. The histogram of errors (not
included) shows a symmetric (non-normal) distribution with a high peak around 0. The number
column in e.g. table 3 shows that there were 8463 sample points, of which 8341 give robust data
(a datum is robust when its standardized error lies between -2.5 and 2.5. ), and that there were
74855 grid points.

The plot of + and - in figure 11 shows restlt from cross-validation respectively under- and
over estimated the removed value of cod-density.

Table 3: Temperature

number | minimum | maximum mean s.d.
temperature Z 8463 -1.726 11.68 5.19 2.407
kriged temperature at sample point Z 8463 -1.70 11.68 5.19 2.37
error (cv) 8463 -2.079 2.16 0.00025 0.2
std. error (cv) ' 8463 A -7.11 6.83 0.0056 0.69
robust error (cv) 8341 0.00019 0.0206
robust std. error (cv) 8341 0.00022 0.233
kriged temperature on to 3D grid 74855 -1.711 11.46 4.82 2.56
oy 74855 0.22 1.76 0.94 0.27
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Table 4: Salinity
number minimum | maximum mean s.d.

salinity Z 8453 30.69 35.153 34.731 0.419

kriged salinity at sample point Z 8453 31.1 35.15 34.73 0.408

error (cv) 8453 -2.065 1.18 0.00023 0.071

std. error (cv) 8453 -14.4 21.28 0.001 091

robust error (cv) 8234 -0.00113 0.033

robust std. error (cv) 8234 -0.01504 0.456

kriged salinity on to 3D grid 74819 30.73 35.17 34.65 0.450

oy 74819 0.03 0.38 0.187 0.067

Table 5: 0-group cod density
number minimum | maximum mean s.d.

cod density Z 256 0 11244.1 375.618 1226.01
kriged cod density at sample point 2 | 256 261 . | 353921 | 376315 | 655.705
error (cv) 256 -2775.16 | 9263.8 0.69771 1091.03
std. error (cv) 256 - -7.89 2.367 0.00001 0.93
robust error (cv) 251 118.25 633.34
robust std. error (cv) 251 0.1 0.537
kriged cod dnsity on to 2D grid 3240 -36.83 4749.56 252.366 578.285
oy 3240 1101.58 1616.71 1228.84 112.545
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Figure 11:

The result from cross-validation
of O-group cod density.

+ marks station where observed
value is larger than estimate,

- marks station where observed

value is smaller than estimate,

large symbols show outliers.

It seems that overestimation

: is more common than underesti-
mation along the boundery
where the density is low.

i All 5 outliers are cases of under-

i estimation, and occur where the

| density is high.

mm Gumm THNw GemY GES OSSN UMD INUEN (NN (M) MNRND JMUS) NSNS MU 180N

av_error -LE and zlu front 50 m. 92

4.4 Environmental habitat of 0-group cod.

Since the O-group fish drift along with the warm current, a study of the temperature and
salinity profile in the Barents Sea helps us to identify where we can expect to find high 0-group
concentrations. : ‘

Isolines of the 0-group cod density superimposed on the hatched area of the polar front and
the dashed isoline showing salinity at 35.0, at 50 meters depth level are shown in figure 12. It
is seen that the concentration is high in the neighborhood where the warm Atlantic water
(carrying the O-group from the spawning grounds) confronts the cold arctic water. It seems that
the location of coast line and islands and the bottom topography of the Barents Sea are important
factors in guiding the water movements, which is intern inflence the distribution of 0-group cod.

This is well known among fishery scientists, but our purpose is to demonstrate the usefulness
of geostatistical methods in fishery science. It is a verification of its reliability that it captures
important well known results. Geostatisics also give objective numerical values for calculating
the interrelations between the variables. The real ecosystem, however, is too complicated to be
explained by a few variables or data from a single year.
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Figure 12: The spatial density distribution of the
1992 0-group cod with hatched area showing the polar
front and dashed isoline showing salinity of 35.0 at

50 meters depth.

Double thickness isoline shows 85 fishes / n. mile trawled,
single thickness shows 500, 1500, 2500 fishes / n. mile
trawled.
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The block estimate can be done for each variable. We can calculate the percentage of 0-
group cod experiencing a certain level of t€mperature and salinity. In this calculation we
assume the 0-group cod is moving from surface down to 100 meters depth, the total volume of
water we use in this calculation is 120488 cubic kilometers (total volume of water in the Barents
Sea is about 322000 cubic kilometers (ref. 18) p. 24).

Let
P = percentage of 0-group cod
s = salinity categorized as in table 6 into 9 levels
= temperature categorized as in table 6 into 12 levels

¢, = number of 0-group cod in salinity level s and temperature level ¢
C = total number of 0-group cod

9 2
=§§E .

This subsection was suggested by Odd Nakken who also provided the categories for
temperature and salinity. From table 6 one can see that 93 % O-group cod live in the water of
temperature between 3-<9 °C, 80% live in salinity between 34.8-<35.2. 50 % of the 0-group

cod live in salinity of 35.0-<35.2 and temperature 3-<9 °C (Atlantic water, see table 2).
Table 6 gives estimated values in percent of the total amont of cod found in each temperature

salinity stratum.

Table 6: Percentage of 0-group cod distributed in different categories of temperature and salinity.

dini 3<3q | 34.5- | 346- | 347- | 348 | 349 350- | 35.1-
salimity ; <345 | <346 | <B47 | <348 | <349 | <350 | <351 | <352

tempera- percent
ture of cod Total

-2-<0 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.03

0-<1 0.02 0.14 0.07 0.12 0.05 0:05 0.05 0.00 0.00 0.50

1-<2 0.09 0.41 0.12 0.13 0.16 0.29 0.39 0.00 0.00 1.60
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Table 6: Percentage of 0-group cod distributed in different categories of temperature and salinity.

34- 34.5- 34.6- 34.7- 34.8- 34.9- 35.0- 35.1-

ity | 3234 45 | s | a7 | <48 | a9 | <350 | <ws1 | <s2

tempera- percent »
ture of cod Total

2-<3 0.23 0.76 0.30 0.31 0.39 0.44 1.19 0.28 0.00 3.88

3-<4 0.28 1.59 0.30 035 0.80 1.36 2.39 324 0.00 10.31

4-<5 0.61 1.69 0.44 0.66 0.90 1.45 2.79 11.52 0.00 20.06

5-<6 0.36 1.12 0.61 0.74 1.08 1.51 2.63 16.73 1.07 25.84

6-<7 0.02 0.53 0.57 0.76 1.13 2.03 2.78 7.97 0.69 16.48

7-<8 0.00 0.14 0.20 0.30 0.71 1.73 2.54 6.51 0.47 12.59

8-<9 0.01 0.20 0.12 0.15 0.20 0.96 4.02 2.26 0.00 7.93

9-<10 0.00 0.02 0.03 0.06 016 | 019 0.31 0.00 0.00 0.77

10-<11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

total 1.63 6.61 275 3.57 5.57 10.03 19.10 48.51 2.23 100

Table 6 is supplemented by table 7 which gives the percentages of water (by volume) in the
same temperature/salinity intervals. One may see, e.g., that 73% of the water has temperature

3-9 °C, 58% has salinity 34.8 - 35.2, while 45.6% has both of these properties.

Table 7: Percentage of water falling into different categories of temperature and salinity.

. 34 34.5. 346 347- 348 349. 35.0- 35.1-
salinity | 3032 | 3234 | 45 | 346 | <47 | <48 | <49 | <so | <5 <352
tempera- percent total
ture of water

-2-<0 1 0.00 0.29 2.12 0.74 0.39 0.04 0.31 0.01 0.00 0.00 3.90

0-<1 0.00 0.21 0.62 0.42 0.45 0.60 0.88 0.63 0.00 0.00 3.80

1-<2 0.03 0.80 0.80 0.27 0.60 0.88 1.45 2.24 0.06 0.00 7.13

2-<3 0.15 0.76 0.61 0.25 0.71 0.91 1.60 2.86 0.90 0.00 8.75

3<4 0.02 0.66 0.88 0.34 0.73 . | 1.80 2.87 242 2.02 0.00 11.74

4-<5 0.00 0.58 1.43 0.89 1.21 1.83 3.37 2.55 4.26 0.00 16.12

5-<6 0.00 0.61 1.96 1.26 175 ==~ 2.10 1.94 1.83 5.15 0.28 16.87

6-<7 0.00 0.40 1.52 0.65 0.89 1.08 1.71 2.40 3.83 0.64 13.12

7-<8 0.00 0.12 111 0.48 0.43 0.46 0.68 1.85 3.90 0.32 9.36

8-<9 0.00 0.60 1.01 0.19 0.27 0.38 0.74 1.72 1.14 0.00 6.06

9-<10 0.00 0.02 0.25 0.17 0.31 0.40 0.64 0.46 0.08 0.00 2.33

10~'<1 1 10.00 0.09 0.33 0.07 0.09 0.05 0.13 0.03 0.00 0.00 0.80

11-<12 1 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

Total 0.21 5.16 12.66 | 5.74 7.81 10.53 16.32 1899 | 2134 | 1.24 100.00
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Since the density of the O-group cod has very large variance we used BLUEPACK and SAS
to calculate and plot the conditional expectation curve for pairs of variables, temperature and
cod, salinity and cod, sea bottom depth and cod. See figure 13. This will give us some idea how,
on average, the density of O-group cod distributes in relation to the value of those other
variables.

The conditional expectation method classifies the conditioning variable (in this case the
value of temperature, salinity, bottom depth) into classes and in each class one finds the mean
value of the conditioned variable (in this case the density of 0-group cod).

This also demonstrates that the relationship between them are not linear. This explains why
the correlation coefficients which concern only the linear relationship are not significantly high.
See table 8. ’

Most high density cod, e.g. more than 250 fishes/1 nm trawl, live in water of temperature

between 4-8.5 °C and bottom depth deeper than 280 m and salinity above 34.9.
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Table 8: Correlation coefficients
temperature salinity cod density bottom depth
temperature 1 15 15 .30
salinity 1 17 41
cod density 1 33
bottom depth 1
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With kriging we can obtain a total estimate of the 1992 0-group stock in the Barents Sea and
adjacent waters of 6.6945019 x 10° individuals without correction for catchability. [See also
(ref. 16) p. 193 and p. 195; acoustic estimates of the stock were 56 x 10° around Svalbard, and

51x 10° in the Barents Sea. ’Asuming similar catching efficiencies and using the same formula
as Sundby et al. (1989) for the computation of total numbers of 0-group cod in 1992, estimates

of 19x10° and 8x10° ’]. Such values present other indices for the O-group stock in
studying the development of the stock over time. This will be discussed in more detail in the
next report.

5. DISCUSSION

Fishery research is concerned with spatial observations of several "attributes" such as fish
density distribution, food source distribution and €énvironmental variables and particularly with
their interrelations. Therefore they must be treated simultaneously, which calls for an extended
model where the regionalized variable is vector valued and a for a study of the cross correlations
between the vector components.

Kriging may therefore be extended to cokngmg This also allows us to take into account
cheaper, hence more plentiful data which have lower quality. Thus trawl data may be
supplemented by acoustic data; a drawback of the latter is that the acoustic observations cannot
distinguish between different species. This will be presented in the second paper.

The distribution pattern of the O-group cod is influenced by environmental variables in a
complicated way: the bottom topography, earth rotation, etc all influence the movement of
different water masses which in turn influence pattern of O-group cod density distribution. The
study of variograms illustrated some of these influences. One result is the creation of an area
called the polar front. This polar front area has influenced the ecosystem in the Barents sea to a
large extent. The movement of polar front area also determines the amount of resource habitat
for several species.

In this paper we found no significant direct linear correlations between the variables at the
same location. As illustrated in figure 13 the relationships are nonlinear. What we found is an
explainable relationship in the distribution pattern of bottom topography, temperature, salinity
and O-group cod density. This shows that all these variables are not related to each other in a
way expressible by correlation coefficient values, but are interconnected in ways that are
captured by variograms and isoline maps. This exhibits a strong side of geostatistics: it can be
used to analyze the structural patterns of spatlally dependent variables and take this information
into account in the estimation procedure. -

Many of the results above are well known among fishery scientists, but our purpose is to
demonstrate the usefulness of geostatistical methods in fishery science. A verification of its
reliability is that it captures important well known results. Moreover, geostatistics offer several
advantages; It gives numerical estimates and also numerical values to the precision of the
estimates. This allows us to make objective analysis and conclusions from the data.

Acknowledgements: Thahks to Asgeir Aglen, Odd Nakken and Bjgrn Adlandsvik for valuable
discussions and to an excellent computer system administrator Bjgrn-Erik Gjerde.
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