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~9stract 

The geographical information very often is lost during calculation of 
indices for the abundance from surveys. Isoplet diagrams showing the 
distribution ofboth fish abundance and temperature/salinity are usually 
produced by hand by skilled personnel. In order to find an objective ap­
proach we explored a new stochastic method for abundance calculation 
and isoplet diagram drawing, using the geostatistics presented in this 
paper. The potential of geostatistical methods is to analyse the structur­
al pattern of spatially dependent variables, model it and use it to esti­
mate the unknown values at the unsampled locations. Moreover it gives 
the variance of the estimation error at a location and the variance of the 
global estimated value which other methods do not give. At each loca­
tion we can store the estimated values of different spatial dependent 
variables for the purpose of stud)ring the relationship among them and 
presenting graphic plots showing the geographic distribution pattem of 
each variable. Furthermore the structural pattem of each variable can be 
u sed to detect the interrelationship among them. This presentation dem­
onstrates these points with the following data: Temperature, salinity, 
bottom depth, and 0-group cod density in the Barents sea. 





l.INTRODUCTION 

When conducting surveys over geographical areas in order to study fish abundance very 
often the geographical information is lost during calculation of indices for the abundance. Even 
when measuring temperature and salinity over a geographical area, the measurements are often 
combined without including the geographical dimension in the result. 

In some cases isop let diagrams are presented showing the distribution of both fish abundance 
and temperature/salinity. Such isoplet diagra..rns have so far mostly been produced by hand by 
skilled personel. 

For many years the stratified random survey approach and related methods of calculation 
have been the only standard procedure for calculating indices of abundance from trawl surveys. 
It has been clear to all working with these topics that there are strong limitations to this method. 
This involves both the general bias imposed by the pre-stratification of the survey area and the 
neglect of the variation imposed by the sampling itself. 

During the later years some new approaches have been proposed, both for abundance 
calculation and isoplet diagrams, and among these are geostatistical procedures see(ref. 5). In 
this paper we willlook in to the potential of this approach. 

In many fields of survey activity involving estimation of abundance it is an aim to describe 
the distribution of abundance throughout the geographical area and estimate the total quantity 
with a knowledge of the precision le vel. This also involves detecting relationships between the 
biological and environmental data. Among ·the, main features of this paper is how the bottom 
topography influences the water movement, and the water movement influences the fish 
distribution. Moreover, ifwe find high correlation between different variables, we may use this 
information by treating some variables as covariates for another variable to improve the 
estimation of the latter. ' , · 

As a case for these studies we have chosen a data series of extensive sampling, both 
geographically and in time, containing pelagic trawl hauls in the upper 60m watercolumn 
together with CTD measurements in the whole ~atercolumn. The data series extend from 1964 
up until today, but we have chosen 1992 as a year to demonstrate the method in this p aper. W ork 
on data from other years will be continued. 

We have chosen to present the work into two parts The present, first part deals mainly with 
the geostatistical approach and the second with model based approaches. In this paper we 
emphasise more on environmental data. More work will be done on different aspects of the 
application of spatia! statistics to environment~ and fishery data e.g. to estimate the stock size. 

In this Part I the environmental data such as temperature, salinity and bottom depth, assumed 
to be highly continuous in their distribution, have been chosen as the basis. It is assumed that 
the measurement error can be neglected, and that the measurement therefore represents the true, 
and sought, distribution at the time of sampling>· 

Historically, when making isop let diagrams, there has not been an y desire to gi ve the 
underlying digitized values and variance of the estimation error. Mostly such diagrams have 
been hand made by skilled and experienced personnel, but this is time consuming and may be 
influenced by individual subjectivity and artistic expression. 

In order to study the properties of each variable and their interrelationships by means of 
mathematical and statistical methods, it is necessary to .have digitized values. This paper 
presents an interpolation method (kriging) to give the required values from the observation 
material. Moreover, these allow us to produce diagrams fast and objectively. 

The potential of kriging is to analyse the· stiuctural pattem of spatially dependent variables, 
model it and use it to estimate the unknown values at an unsampled location. Moreover it gives 
the variance of the estimation error. At each location we can store the estimated values of 
different spatially dependent variables for the purpose of studying the relationship among them 

2 



and for presenting graphical plots of the geographic distribution pattern of each variable. An 
example of this is presented in the paper, classifying watermasses according to both temperature 
and salinity. The area of mixing between two types of watermasses is identified and illustrated 
with hatching on isoplet diagrams. In our work we use ISATIS (ref. 9) and BLUEPACK 3D 
(ref. 2) as our geostatistical packages. We defined a 3D grid on the Barents sea and at each grid 
point we estimate the value of each variable from the available data by means of kriging. Thus 
we obtain values of different variables at the same position. 

2. GEOSTATISTICS, FISHERY AND ENVIRONMENTAL DATA 

We start with a brief survey of the geostatistical methods applied in the subsequent data anal­
ysis. For more detail on this and related topic C?Il be found in (ref. 3), (ref. 8), (ref. 10), (ref. 11), 
(ref. 12), and (ref. 15). 

2.1 Random function models 

A regionalized variable in a region De Rn is a function z(x) of a point x, XE D. For a given 
x.E D, z(x.) means an observable value (e.g. temperature, salinity, fish density) at x .. We inter-

l l l 

prete "locally" z(x.) as one realization of a random variable Z(x.). Similarly we interprete "glo-
l o 00 o l 

ball y" the function z(x) as one realization of a random function Z(x); a random function can be 
seen as aset of autocorrelated random variables {Z(x.)}, for x. being any position within the 

l l 

field of study. Some applications include time dependence, and one may write Z(x,t) etc. 

Typical data in the earth sciences come as aset of such observations { z(x), 1:::; i:::; k}, i.e. with 

one realization of random function Z(x), x Eo·B. Among the regionalized variables z(x.), 1:::; i:::; 
l 

k a certain structure in spatial variability is usually perceptible. This is the basic observation be­
hind geostatistical theory, and it calls for modelling a pattem of spatia! correlation between the 
various random variables Z(x.), 1:::; i:::; k. 

l 

2.2 The variogram 

The most crucial step in the structural analysis of a regionalized variable is a process of data 
analysis which leads to a variogram model. The variogram function of Z(x) defined below acts 
as a quantified summary of the structure ofvariability; it is estimated on the basis of all available 
information. This summary of information is then a o tool in all subsequent steps of reconnais­
sance and estimation. The variogram function is defined by 

i; z:•; 
2T(x,h) = E{ [Z(x) -Z(x+h)] } (EQ l) 

It can also be interpreted as a measure of the expectation of squared errror when Z(x+h) is 
used to estimate Z(x). Intuitively one may regard it as expressing how much information about 
Z(x) would be lost using Z(x+h) to inform about the unknown Z(x). Knowledge of the 
variogram can be used to minimize the loss in estimating an unobserved variable by means of 
neighboring observations. (This method explains only linear relationships among the data; non­
linear cases require knowledge of higher order moments.) The variogram function depends on 
location x, the distance lhl between location vectors x and x+h and the direction ofh. In practice 
only one realization is available and the data will not suffice for a good estimate of a function 
depending on x. 
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However, one can treat situations where dependence on the location x can be set aside, and 
one may write Y (h) = Y (x, h) . This brings up the discussion of stationarity conditions in 
the next section, which again is followed by a discussion of how to estimate the variogram. 

2.3 Second order stationarity1 

From their definitions, covariance and variogram functions depend simultaneously on two 
points, sa y x

1 
and x

2
. Man y observations of the pair of random variables {Z(x

1
),Z(x

2
)} are then 

needed for any inference to be possible. But in a homogeneous zone of study (the relevant pa­
rameters of) these functions depend only on the difference between the two points, the vector 
h=x( x

2
. Thus each pair of data with location difference equal to vector h (i.e. the data points 

are separated by the same distance and direction as {x
1
, x2}), can be considered as a separate 

realization of the pair { Z(x
1 
), Z(x

2
)}. 

A random function is said to be second order stationary if 

(i) The expectation E{Z(x)} exists and does not depend on x: 

E{Z(x)} = m, for all x; and 

(ii) for each pair of random variable {Z(x
1
), Z~x2)} the covariance exists and depends only 

on the separation vector h (modulus and direction): 

2 
C ( h) = C ov [ Z ( x + h) ,Z ( x) ] = E { Z ( x + h) Z ( x) } - m 

1 ~ ~· i 

, for all x 

This means that the covariance of a pair is invariant under translations. If in (ii) C(h) depends 
only on the modulus lhl, the covariance is ålso invariant under all rotations; this is called isot­
ropy. 

This brief survey mainly assumes second order stationarity; it is, however, possible to adapt 
the development to the weaker assumption of the "intrinsic hypothesis" in case the covariance 
function does not exist. A random function' Z(x) is called intrinsic when the variogram exists, 
i.e.:. 

(i) E Z(x) = m, for all x; 

(ii) for all vectors h the increment [Z(x+h)- Z(x)] has finite variance, see (EQl) which does 
not depend on x, i.e. 

Var{Z(x+h) -Z(x)} = E{ [Z(x+h)'--Z(x)]
2

} = 2Y(h) ,for all x 

2.4 Modelling the variogram 

Under the second order stationarity it possible to estimate the variogram (EQ l) from avail­
able data. Let N(h) be the number of pairs { x.,x.} of observation points with x.-x. = h. The es ti-

t J J l 

mat or of 2 Y ( h) i§ an arithmetic mean: 

l. Stronger stationarity assumptions are occationally· m·ade, like strict stationarity. see e.g. Cressie p .53. 
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(2Y)*(h) = Nth)L, [Z(x;) -Z(x;+h)] 2,1~i~N(h) 
l 

(EQ2) 

A good estimate requires a large N(h); unless the data are gridded, one compromises and 
groups together observation pairs where the deviations of K_j-xi from h (in modulus and direc-

tion) are within specified tolerances. As estimates by the above formula are obtained only for 
some discrete values of the variable vector h, techniques of smoothing and completion are then 
used to obtain the final variogram model. An essential requirement is to keep special theoretical 
properties of variogram functions. Obviously Y (h) ~O. Moreover, it is "conditionally nega­
tive definite" in the following sense: 

n n n 

(EQ 3) 

i= 1} = l i =: J 

for an y finite number of spatiallocations x 1 , ... ,x n and real numbers a 1 , ... ,an' This follows from 
the positive semi-definiteness of covariance matrices [(ref. 3) p.86,87 and (ref. 12) p35]. In 
practice the modeller may choose a predefined class of functions satisfying the above 
requirements and nest them together to fit the estimated values as well as possible. A list of such 
functions can be found in [(ref. 3) p.61, and (ref._l2) p.163-171]. The expansion of (EQ l) under 
second order stationarity, 

Y ( h) = V ar [ Z (X) ] - C o V [ Z (X) , Z (X + h) ] = C ( 0) - C ( h) (EQ 4) 

shows the connection between variogram and variance/covariance. If the intrinsic hypothesis 
holds and second order stationarity fails, one works with the variogram instead of the 
covariance function. [(ref. 12) p306] 

In practice one estimates the variogram at different distances and directions. Analyzing the 
estimated variogram at different distances and directions will aid us to recover the structure of 
the spatia! data. It can give us ideas about themes such as the variance and range of influence 
among the data in distance and direction, stationarity and isotropy, and non-stationarity (e.g. 
data with presence of a trend, or banding from periodic variation in intensity in an y direction, 
or patchiness). " ·· ·'" 

Here we will concentrate on how the variogram structure is used for the purpose of 
estimating unknown values at certain points from the neighboring known data. The task is to 
assign the right amount of influence of each neighboring datum. It is intuitively clear that this 
involves a delicate balance between two natura! arguments: the neighbor data closer to the 
unobserved point should count more to the extent they are likely to bring more reliable 
information, but neighbors close to each other should have reduced weight to the extent that 
they bring the same information. Kriging is a technique which makes use of the spatia! 
correlation information carried by the covariance/variogram (EQ 4) and the geometrical 
structure of the location of the known data to obtain these weigths. It constructs an estimator 
which is unbiased and has the minimal variance in the el ass of linear estimators. These concepts 
are introduced and disc us sed below. 

2.5 Introduction to kriging 

Kriging is a local estimation technique which provides the best linear unbiased estimator 
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(BLUE) for an y unknown value z(x
0
). The information used are n available data { z(x)l 1:::; i:::; 

n} in a neighborhood of the location x
0 

where the value z(x
0

) is to be estimated. (ref. 10) 

The need for kriging arises e.g. when values are required on a set of regular grid points, as an 
intermediate step in the production of maps with isolines for the attribute observed; x

0 
is then 

such a grid point. Another situation is the study of interrelations among different spatially de­
pendent attributes; one then needs values for these attributes at the same location. 

Here we will explain bow we derive the kriging equations which can be solved to obtain the 
optimal solution for the weight A i u sed in the estimation equation below. For simplification we 

will present only the case of point kriging which suffices for contour mapping. 

In (EQ 5) is explained what it means that the estimator is linear; then comes the determination 
of its unknown weights A .. First the requirement of unbiasedness puts restrictions on them in 

l 

(EQ 6)- (EQ 8); in the case of "ordinary kriging" this amounts to restricting the A .'s by the 
• l 

equations (EQ 9), i.e. the estimator is as shown in (EQ 10). Then the meaning ofbeing the best 
(least squares error) is explained in (EQ 11)- (EQ 12); this requirement leads to the equations 
(EQ 13). Together (EQ 10) and (EQ 13) suffice to determine the weights and get the estimator. 

One should keep in mind that this whole process must be repeated for each kriging of an un­
known value z(x

0
) since the equations depen~ both on x

0 
and on the selected set of neighbors 

{x., i=l, 2, ... , n}. 
l 

Bach z(x.) is considered as an observed value of a random variable Z(x.),O:::; i:::; n, and the esti-
t l 

mator for the unknown value z(x
0

) is of the form 

the coefficients A. being de termin ed by kriging theory as described below. 
l 

The error of the kriging estimator is 

To get unbiased estimates, o ne must have EY =0, i.e. 

(EQ5) 

(EQ 6) 

(EQ 7) 

The A. will be determined below for l :::; i:::; n, but el earl y some knowledge of the 
l 

expectations is required. Second order stationarity implies that these are all equal, so 

O = - A.0 + ( 1- ~A.i)- E [Z (x0) l (EQ 8) 

When this common expectation E[Z(x
0
)] must be considered unknown, one has to choose 

(EQ9) 
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The kriging method which determines theA.. 's constrained by (EQ 9), l:::; i:::; n is called 
l 

"ordinary kriging". ("Simple kriging" assumes E{Z(x
0

)} known; there is no constraint, and A.
0 

is finally determined by (EQ 8). On the other hand, "universal kriging" treats data with a trend 
by introducing more constraints on the A.. 'S to filter ou.t the trend.) Then 

l 

(EQ 10) 

The coefficients A.., l :::; i :::; n , are de termin ed to minimize the variance of Y in (EQ 6). W e 
. l 

rewrite Y using (EQ 9) and the stationarity which implies E [Z (x)] = E [Z (x0 )] , O:::; i:::; n: 

Y= L,ai[Z(x) -E[Z(x)]],(O:s;i:s;n),a0 = l,ai =-A.i ,fori>O (EQll) 

Var (Y) = L, L, ai· Cov [Z (xi), Z (x)] ·aj, O:::; iJ:::; n (EQ 12) 
i j 

subject to the constraints (EQ 9); in this sense we obtain the best estimator within the class of 
linear estimators described in (EQ l 0). The first order equations 

a 
-s-[Var(Y) -2J!(l- I.,A.;)] =O, l:s;i:s;n. 
o ai 

with Lagrange multiplier 2 Jl , may be written 

I, Cov [Z (x), Z (xj)] · Aj+ Jl. = Cov [Z (x0 ), Z (x;)] (EQ 13) 

.i 
The "normal system" (EQ 13) and (EQ 9) of ordinary kriging may be expressed in matrix 

form: Let Cij = Cov [Z (xi) ,Z (x)] , then 

C u ... cln l A.l COl 

l ; for short K · A = C0 (EQ 14) = 
en l enn l An Con 

l l o Jl l 

The positive definiteness of the n x n covariance matrix Cij , l :::; i, j :::; n implies the 

invertibility of the ( n + l) x ( n + l) coefficient matrix in (EQ 14) 1. Thus (EQ 14) has a 
unique solution. 

If second order stationarity fails but the intrinsic hypothesis holds, one can rewrite (EQ 13) 
equivalently in terms of the variogram function instead of covariances. [(ref. 12) p306] 

Certain properties of the best linear unbiased estimator determined by (EQ 9) and (EQ 13) 
are now immediately visible: 

Clustered samples. The kriging method assigns weights to the sample points of the kriging 

l. Generally let C be a symmetric nxn matrix and M an nxm matrix of rank m<n and consider the 

(n+m)x(n+m) block matrix K = ~ ~ . Then if C is positive or negative definite, det ( K) * O , which 

implies Kis invertible. See (ref. l) and (ref. 4) 
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equation by accounting for the relationship between the unknown Z(x
0

) and the sample 

variables Z(xi)' i = l ,2, ... n, through C0 ; and also for the degree of redundancy between sample 

points themselves, through K. This puts the right amount of weight that will correct the effect 
of clustered samples, which some other methods such as inverse distance can not do. [see also 
(ref. Il) p17.] 

For an intuitive understanding of kriging re gard 7 sample points x
1
, x

2
, ... , x

7 
( containing a 

duster) and x
0 

where the kriging is done. 

A sample point xi should have a high weight Å i if it is close to x0 (when the variables at xi 

and x0 are highly correlated). On the other hand sample points xi and xj that are close together 

tell very much the same story and should hav~-correspondingly small weights Å i and Åj . Each 
.. ,_ ,'._ 

of the points in the 5-point cluster above should have a weight just slightly more than ~ of the 

weight a single point representing the duster area would get. 
lnterpolation property. Kriging is an interpolation algorithm in the sense that if x

0
=x

1 
(say), 

then the estimate is the "exact" value, i.e. L Å i · Z ( x) · = Z ( x 1) 

i 
This is seen simply by checking that Jl = O, ').."1 = l, ').."2 = ... = Ån = O solve the 

normal system. Thus the kriged surface passes exactly through all the experimental points. 
However, the kriging method may be extended to treat data with measurement errors; the real 
field can be obtained by filtering out the noise, thus it will not necessarily pass through these 
points. 

Standard regression as special case. If the'.Z(x.) with l:::; i:::; n are uncorrelated, we have a 
l 

case of linear auto-regression under constraint. Then (EQ 13) becomes 

Var [Z (x0)] · Åi + J.L = Cov [Z (x0), Z (x)] (EQ 15) 

Letting p mean correlation, the solutions of (EQ 15) and (EQ 9) are 

Ai = p [Z (x0), Z (x)] - f.l/Var [Z (x0) 1, where 

-J.L/Var [Z (x0 ) l = [l-~) [Z (x0) ,Z(x) l J In (EQ 16) 

If also the n observed variables are uncorrelated to Z(x0), all weights become equal to 1/n, 
i.e. the estimator is the arithmetic mean. In the general case ordinary least squares regression 
amounts to ignoring the structural properties ·2onveyed by covariances or variogram, and will 
therefore by comparison of (EQ 16) with the solution of (EQ 13) and (EQ 9) give an estimator 
different from the optimal one. 

Precision of the "BLUE". The "ordinary kriging variance"cr~K = var (Y) of the error of 
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the optimal estimator is easily found simplifying (EQ 12) by means of (EQ 13) and (EQ 9): 

(EQ 17) 

This gives some idea about the precision of the estimate locally, which nonstatistical 
methods of interpolation do not give. The kriging variance depends on how strong the linear 
relation is between the estimated Z(x0) and the neighboring estimators, Z (x), l ::; i::; n. 'The 
kriging variance gives the "order of magnitude" of the estimation error, but does not show the 
spatia! correlation of this error, nor does it indicate how to take this error in to account.' This can 
be per~eived through simulation. (ref. 2) p.6 

2.6 Cross-Validation (CV) 

The cross-validation (ev) is a general procedure which checks the compatibility between a 
set of data and their structure model. Bach one of the test data points is temporarily removed 
from the active data set and a reestimation z is pro~uced by kriging using its neighboring 
information; then the estimate is compared to the real known value. From the estimated values 
we can calculate the estimation error and its distribution. W e hope that the mean, variance, and 
skewness of the errors (residues) will all be as el,~~~ to O as possible. The kriging procedure also 

produces a prediction cr~ of the estimation variance cr2 . So we hope that the variance of the 

standardized error ( defined below) will be el ose to l. 

Let Z be the removed target value, 

let Z be the estimated value, and 

let error( ev) = Z-Z. Then 

standardized error (ev) = z-z, 
aE 

l" A mean error = Fik. (Z-Z) , 
N 

· sample variance of error = ~L (Z-2) 
2

, 
N 

mean standardized error = ..!. 2:(2 - z) , 
NN aE 

A 2 

variance of standardized error = ~~(z;E2) . 

It is tempting to use the variance ~f standardized error to adjust the sill value of the 
variogram. But the discussion in (ref. 8) p. 514-517 points out the reason not to do so. 

2. 7 What can be kriged? 

'Since it is a linear combination of data, kriging can be used to estimate an y quantity obtained 
by a linear operator applied to the initial variable. 

Thus, we can obtain: 
-Kriging of the average on a given support (area, volume); 
- Kriging of the drift, in other words the average at each point of the random function; 
- Kriging of drifts along the axes of coordinates or gradient kriging, 
- Kriging of a convolution or deconvolution of the variable, for example to estimate a point 

value when measurements are regularized on a given support.' (ref. 6) 

9 



3.ENVIRONMENTAL AND FISHERIES RESEARCH DATA 

In the study of data from fish density distributions and environmental data such as 
temperature and salinity the following observation is most aften noted: If we grid such data and 

calculate the experimental variance at within grid cells of size V, the variance aften increases 

continuously with V. This is a logical consequence of the existence of spatial correlations: the 
smaller V is, the closer the data points and hence the closer their values are. When they are 

sufficiently far apart, the mutual influence is negligible. And thus at approaches a constant 

which is the a priori variance of the random variable (assuming second order stationarity). So 
the experimental variance is practically constant once the grid side passes a certain size; this size 
indicates the range of influence among spatia! samples in the region. However, various 
circumstances, in particular nonstationarity, can cause the experimental variance to keep 
growing with the grid size. 

We may investigate the autocorrelation of the data in relation to the geographical structure 
of the locations by means of analysing the estimated variogram or covariances. From this we 
can get information about the geographic variation of the data~ for example the primary variance 
of the data, the range of influence of data in different directions, in which direction the data have 
the greatest range of influence and in which direction that the values of data change fastest. The 
variogram rna y indicate various pattems of spatial variation, e.g continuity, smoothness, high 
fluctuation, drift, etc. 

The information in the variograms can be used in planning surveys and sampling. For 
example from the variogram p lot we find out which is the direction of the longest/shortest range 
of influence. W e can intensify the sampling in the direction that the data seem to change faster 
( direction of l argest gradient). In the case of 2 dimensions, instead of ha ving a square grid 
design we can have a rectangular grid design where the axis directions are the directions of 
longest/shortest range and the rectangle sides are proportional to the ranges. 

The importance of second order stationarity has been explained above. However, most 
fishery and oceanographic data, e.g. temperåture and salinity, are nonstationary, especially 
when the study area is large. Mainly we are interested in drawing isolines of a certain variable, 
where it is clear that there must be a trend/drift in the data. 

There are various ways to deal with nonstationarities. Universal kriging has been mentioned. 
Altematively, we can use a variogrammodel for data with a trend/drift, such as a "linearmodel'', 
or we may define a moving neighborhood inside which it is acceptable to treat the data as 
quasistationary and apply the above method locally. To find out in detail we refer to (ref. 13). 

3.1 Sampling 

The data were collected by 5 research vessels during the 0-group survey in the Barents Sea 
and adjacent water (for short 'the Barents Sea' in the rest of the paper) in August and September 
1992. It was ass i gned to cover a certain area from west to east by sailing along NS line transects 
and collect samples when they reach the predefined stations (see (ref. 7)). The trawl and CTD 
data have been sampled along the course track at approximately 30 nautical miles distance, 
which is also the approximate distance between the transects. W e can re gard the sampling 
stations as covering the study area in the Barents Sea homogeneously (see figure 2 and 3). In 
figure 2 and 3 we show, respectively, the tr~wl and hydrograp,hic station positions. For 
convenience the plot in figure l also indicates same of the 70-82 degree parallels and the 15-60 
degree meridians. 

All these data are temporally and spatially dependent. This may be a problem with e.g. the 
day/night distribution of fish density. But in this study we disregard the tempora! dependence. 

lO 

.' · ... ., 



Of the observed data some are attached to 2-dimensional coordinates (fish density calculated 
from 0-group trawl data and bottom depth), and others to 3-dimensional coordinates 
(temperature, salinity). 
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Figure 2 

3.2 Gridding the data 

Figure l 
The plot shows positions at 
longitudes 15, 20, 25, ... ,60 degrees east and 

· · ·, ·r~t~:- latitudes 70, 72, 74, ... , 82 degrees north 
in Polar Stereographic projection. 
In this and subsequent maps the origin of the 
axes is ( 400000m, 400000m) and the increment of 
the tick marks is l OO,OOOm. 
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gfN!Wj!' .~· .. . :· ... : ... · ....... : : .: ......... . :· .. ·.. . .· ... · ..... . 

~hia atat1on t2 

Figure 3 

U sing Polar Stereographic projection to transform the latitude and longitude position on the 

global surface into the xy-coordinates on a flat surface1 (see figure 1), the area in the Barents 
Sea is subdivided into a 20 km square grid, which is extended into a 3-dimensional grid with 5 
meter depth intervals. The grid point data are estimated from the observed data with the use of 

l. Bjørn Ådlandsvik provided the FORTRAN program. 

11 



the kriging method. At any unsampled point x0 where an estimate is required, the kriging 

method is applied using the software ISATIS. Since the data cover a large area we use a moving 
neighborhood which is small enough to justify the assumption of second order stationarity 
(quasi-stationarity) (see (ref. 13)). Then all coefficients of the normal equation system may be 
estimated under stationarity assumption. 

4. RESULTS OF THE DATA ANALYSIS 
In order to prepare data for contour mapping we kriged temperature and salinity on to the 3D 

grid of cell size 20kmx20kmx5m, to the depth of l 00 meters. Sea bottom depth, and cod fish 
density were kriged on to the 2D grid of cell size 20kmx20km, then attached to the 3D grid to 
study the interelationship between these variables. In this introductory study we will consider 
only these variables. 

Table 1: Variogram ~odel specification 

bottom depth salinity temperature cod density 

Number of valid samples 595 8463 8463 256 

Angle around Z 45 o 135 135 

Angle around Y o .. , . o o o 

Angle around X o o o o 

Number of basic structures 2 3 2 l 

Structure #l Spherical Spherical Spherical nugget effect 

Range 340km 70km 330km 

Sill 797333 0.0178 2.3 928771 .. - . ~ 

Anisotrop y (l ,l ,1) (l ,l ,l) (l ,l ,2000) 

Structure #2 Spherical Spherical Spherical Spherical 

Range 115km 270km 60km 300km 

Sill 67675 0.0658 0.3127 1440222 

Anisotropy (O ,l ,l) (l ,l ,3500) (5 ,l ,1) (l ,l ,l) 

Structure #3 Spherical 

Range 500km 

Sill 0.0508 

Anisotrop y (.2 ,l ,1) 

...... -· .... 
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4.1 Variogram analysis · 

First we must analyse the structure of the data and estimate the variogram model to be used 
in the kriging procedure. See table l. 

The variograms of the above data were all estimated in four horizontal directions: along O (x-
direction), 45, 90 (y-direction), 135 degrees. There is a tolerance angle of ±22.5 degrees, so 
that the x-direction variogram, say, is influenced by variations in the sector from -22.5 to 22.5 
degrees. The x -direction is roughly ENE. Also :variograms for the vertical direction were fitted 
for salinity and temperature. These experimental variograms are based on the survey data, and 
therefore only refl.ect conditions in the surveyed areas of the Barents Sea and the structural 
information of data which are approximately 30 NM or more apart. The horizontal dotted line 
shows the primary variance of the data set, and variable values above this line suggest the 
existence of a drift. The topic of the following discussion is how the experiment~l variograms 
capture the known dominating features in the general pattem of the spatial structure of the 
studied variables. Some additional remarks indicate how the variogram models are motivated. 
Figure 4 shows the variogram of temperature, salinity, sea bottom depth and O-gro up c od 
density against distance. 

Bottom topography: Along the x-and the 135 degree directions the variograms rise, fall and 
rise again, which indicates a "sinusoidal" pattem; i.e. how these directions generally cut across 
banks and channels in the sea bottom. There is a drift along the y-direction. 

The 45 degree variogram levels off (at about 300-350 km.), which shows stationarity in this 
direction. 

The bottom topography strongly influences the flow direction of the water mas ses, generally 
in the 45 degree direction, as shown in figure 5 and (ref. 14) figure l p.6 and (ref. 18) p. 24-31. 

Salinity: The experimental variograms for··salinity show drift along the 45 deg.- the ' y-' 
and the depth directions. There is stationarity along the 'x-' and 135 deg.- direction with range 
about 300-350 km. We fit the mixed zonal and geometric anisotropy model to the experimental 
variogram. We can see from the plot of isolines .~f salinity that the Atlantic water mass with 
almost constant salinity is extremely elongated in the x-direction into the Barents Sea. This 
slices up the domain along x thus creating a zonation along y, which explains the additional 
variability in the variogram of that direction. 

..· .) 

Temperature: The estimated variograms of the temperature along the 45 degree directions 
and along the depth direction have a parabolic form which is characteristic of a highly 
continuous. There is a drift along the x-, 45 deg.- and depth directions. We chose nested 
spherical variogram models over gaussian variogram model because they are more stable and 
give realistic estimates over the whole region and the results from crossvalidation are 
satisfactory. Since the variogram appears stationary along the y- direction and the 135 degree 
direction, we use the maximum value of variogram in the 135 degree direction as a guide-line 
for fitting the sill in the variographic model. The observed range of variogram in 135 degree 
direction is about 300-350 km. So we use two nested spherical models with 60 and 330 km 
range. 

Cod density: The variograms of cod density show drift in all directions and a large 
variability. This is due to a very high density in one area. Again the variability along the 135 
degree direction is lower than along other directions and the variogram reaches the sill at around 
300-350 km range (where the variogram levels off). The downward slope of the variogram at 
larger distance can come from the single-peaked shape of the cod density distribution: When 
the observations are made in august/september, the 0-group has already been transported by 
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the Atlantic current into the Barents Sea and the waters west of Spitzbergen. The distribution 
of the 0-group is not uniform. Isolines show a concentration around the Bear Island, and this 
single-peak pattem is captured by the variogram. 

Similarities and differences. The variograms of temperature, salinity, bottom depth, and cod 
density show some similarities and some differences. 

Let us discuss temperature and salinity first. Similarities must be expected, as both 
temperature and salinity are linked to the bulk of Atlantic water masses. Both have the similar 
variogram pattem on y, 45, 135 degree and depth direction. However, the salinity and 
temperature are changed by different physical factors. The movement into the Barents Sea with 
a colder climate causes a gradual temperature drop, while the salinity remains constant for a 
longer distance. Thus the two x-direction variograms are very different. 

These considerations link both temperature and salinity to the bottom topography. The 
bottom depth is stationary in the 45 deg. direction. The Atlantic water masses generally move 
northeast and confront the Arctic water masses moving southwest. That explains why the 
variograms of temperature and salinity show drift along the 45 degree direction and stationarity 
in the perpendicular ( 135 deg.) direction. 

The cod density variogram along the 135 degree direction has the lowest variability; this is 
the direction of stationarity for salinity and temperature. The ranges also match well. On the 45 
degree direction there is a drift similar to the temperature and salinity variograms. This reflects 
that the distribution pattem of the O-gro up cod is mainly influenced by the current. 

Neigborhood specification 
Because the estimation area is very large and .trends exist, we use the ordinary kriging with 

the moving neighborhood method in the estimation. A stationarity neighborhood of radius 150 
km. was chosen (with 15m depth in 3D case), which seems a reasonable size in the present 
geographical conditions and the variographic analysis of each variable. In each neighborhood 
should be at !east 4 data points, while 20 are considered optimal. 
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4.2 Kriged isolines 

The kriging was done with the so.ftware !SATIS. We estimate the temperature and salinity 
in 3-dimensions (3D) using a 3D moving neighborhood. The horizontal kriged isolines for 
temperature and salinity at depths of 50 meters and l 00 meters are shown in figure 5 overlaid 
on the hatched area showing the bottom topography of the Barents Sea. The distribution of 
inflowing warm water from the Atlantic is obviously influenced by the bottom topography. The 
Atlantic water confronts cold water coming from the Arctic Sea (in the north and north east) and 
a small amount from the Kara Sea (south of Novaja Zemlja). In the south there is also a coastal 
current and an outflow of cold fresh water from several rivers, eg. the Pechora. [see (ref. 14)] 

Figure 6 shows isolines in six vertical sections pe.rpendicular to the x -axis. The sharp 
transition between Atlantic and Arctic water masses , i.e. the polar front, appears clearly. The 
Atlantic water usually has salinity above 35.0 and temperature above 3 o C, while Arctic water 
is fresher and colder, at least down to 100m. 

. . .,, 

:bottca depth lind aalillity 100. 9:Z 

Figure S:The hatched area of sea bottom depth 1111400-500 m., Ill/ 300-400 m., 1111200-300 m,. \\\\ 100-200 m. 
The isoline oftemperature; ___ -2,0,2, __ -l, l, __ 3,4,5,6,7, .... 

The isoline of salinity at step of O.l; ___ ·34.0-34.5, __ 34.6-34.9, __ 35.0-35.2 
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Figure 6: Isolines of salinity in vertical section perpendicular to x-axis of figure 5. The observer looks from east to west, 
so the north is on the right hand side. 
The depth is from O to l 00 meters, with the ticks marking steps of 10 meters. 
The isoline of salinity at step of0.2; _ 34.0-34.8, at step of O.l __ (double thickness line) 35.0-35.2 

The polar front is an important boundary between Atlantic and Polar water. At the same time 
it is a very important area for the phytoplankton production [see (ref. 18) p.94-95]; this is the 
basis for the zooplankton, which again is the main food source for the 0-group fish. 

The distribution of various water masses and the boundaries where Atlantic and Arctic water 
masses mix are shown in figure 2 of (ref. 14). Table l of (ref. 14), part ofwhich is given in table 
2 below, gives some characteristics of the ~~~~! masses. 

Table 2: Water masses in the Barents Sea 

Name of water masses 
•( 

Temperature, ° C Salinity 

North Atlantic Water NAW . ~ . .._ . >3.0 >35.0 

Arctic Water AW <0.0 34.3-34.8 

Polar Front Water PW -0.5-2.0 34.8-35.0 

A digitized polar front de.finition: Here we·use gradient kriging (see section 2.7) and the 
characteristics of water masses in table 2 to defme the polar front area. Computers can gi ve a 
quick and objective information on the values of salinity, temperature, bottom depth, and the 
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lenght of their gradients. The "robotic" nature of the computer and the limitation of the data can 
give weird results; with e.g. a pure temperature gradient definition the computer may declare 
the boundary between Atlantic and Coastal waters as "polar front". By adding more criteria we 
get a rough but objective polar front area, which, if needed, may be improved by human editing. 
With more work on this, and perhaps with more available data, one may hope to improve the 
digitized definition. 

In the present paper the lenght of the horizontal gradients of temperature and salinity were 
calculated and a high length value used as o ne criterion in defining the polar front area. W e 
investigate the plot of isolines along the depth profile and the horizontal profile where the polar 
front occurs. We can see that the salinity is the best indication of the difference between the two 
water masses. 

Here the polar front area is given as the intersection GT n GS n s n NN where 

GT is the area where the length of the horizontal temperature gradient is above KT percentile 

(here we choose KT = 70). 

GS is the area where the length of horizontal salinity gradient is above Ks percentile (here 

we choose Ks =52). 
S is the area where the salinity is above 34:6. 
NN is the area above the 1000000 along the y-axis. (During the survey period the polar front 

is well within NN) 
These criteria will gi ve an objective map of the polar front area. The isolines of temperature, 

salinity of 35.0 are shown in figure 7 for the depth of 50 and 100 meters, overlaid on the hatched 
area of the polar front. 

----- -·~._·-·-·-.-·--·-

Figure 7: The isolines oftemperature at step of l degree C ___ (single thickness line) -2- 12 degree C 
and of salinity at 35.0 __ (double thickness line) 

and the hatched area of polar front at 50 meters depth and l 00 meters depth (year 1992). 

l :· , ... 

Figure 8 shows isolines of the bottom depth~ salinity isoline at 35 .0, and hatched area of polar 
front at 50 and l 00 meters depth. The salinity isoline obviously conforms to the bottom 
topography, which shows that the movement of water is influenced by the bottom topography. 
As a consequence the polar front area, which .is defined by the properties of salinity and 
temperature al o ne, match with the area of high gradient of bottom depth. 
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Figure 8: The isolines of bottom depth at step of l 00 m.~ __ l 00-600, at step of 50 m. ___ 150-550 
and of salinity at 35.0 __ (double thickness line) and the hatched area of polar front at 50 m. and 100m. depth. 

4.3 Precision of the kriging method 

One of the good sides of kriging method is that it also gives the estimation variance. See (EQ 
17) ·in the case of ordinary kriging. In figures 9 and l O we draw isolines of the estimation 

standard deviation cr E. We can see that within th:_ sample area cr E never exceed l o C for the 

estimation of temperature at 50 m. and 100 m. depth. Also crE never exceed 0.2 for the 

estimation of salinity at 50 m. and l 00 m. depth. 

alS of t-.p and polar front 100 •· 9:Z 

Figure 9: The isoline of estimation standard deviation for estimates of the temperature at 50 and l 00 meters depth by 

moving neighborhood kriging method. The double thickness lines show sd.= .5 and l. The single thickness show sd.= .75. 
The hatched area shows the polar front. 
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•d of ••l and polar front 50 111. 92 sd of ••l and polar front lO o m. 9 2 

Figure l O: The isoline of estimation standard deviation for es ti mates of the salinity at 50 and l 00 meters depth by 

moving neighborhood kriging method. The double thiekness lines show sd.= .l and .2. The single thiekness show sd.= .15. 

The hatehed area shows the polar front. 

As described in Section 2.6 we present in tables and figure some results of the cross­
validation in this section. The calculations were done with !SATIS. The histogram of errors (not 
included) shows a symmetric (non-normal) distribution with a high peak around O. The number 
column in e.g. table 3 shows that there were 8463 sample points, of which 8341 gi ve robust data 
(a datum is robust when its standardized error lies between -2.5 and 2.5. ), and that there were 
74855 grid points. 

The plot of +and- in figure 11 shows result from cross-validation respectively under- and 
over estimated the removed value of cod-density. 

Table 3: Temperature 

number minimum maximum mean s.d. 

temperature Z 8463 -1.726 11.68 5.19 2.407 

kriged temperature at sample point Z 8463 -1.70 11.68 5.19 2.37 

error (ev) 8463 -2.079 2.16 0.00025 0.2 

std. error (ev) 8463 -7.11 6.83 0.0056 0.69 
•• ;,{j 

robust error (ev) 8341 0.00019 0.0206 

robust std. error (ev) 8341 0.00022 0.233 

kriged temperature on to 3D grid 74855 -1.71 11.46 4.82 2.56 

74855 0.22 1.76 0.94 0.27 
CJE 
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Table 4: Salinity 

num ber minimum maximum mean s.d. 

salinity Z 8453 30.69 35.153 34.731 0.419 

kriged salinity at sample point Z 8453 31.1 35.15 34.73 0.408 

error (ev) 8453 -2.065 1.18 0.00023 0.071 

std. error (ev) 8453 -14.4 21.28 0.001 0.91 

robust error (ev) 8234 
l 

-0.00113 0.033 

robust std. error (ev) 8234 -0.01504 0.456 

kriged salinity on to 3D grid 74819 30.73 35.17 34.65 0.450 

74819 0.03 0.38 0.187 0.067 
CJE 

Table 5: 0-group cod density 

number minimum maximum mean s.d. 

cod density Z 256 o 11244.1 375.618 1226.01 
-· 

kriged cod density at sample point Z 256 -26.1 3539.21 376.315 655.705 

error (ev) 256 -2775.16 9263.8 0.69771 1091.03 

std. error (ev) 256 ' -7.89 2.367 0.00001 0.93 

robust error (ev) 251 118.25 633.34 

robust std. error (ev) 251 O.l 0.537 

kriged cod dnsity on to 2D grid 3240 -36.83 4749.56 252.366 578.285 

3240 1101.58 1616.71 1228.84 112.545 
(JE 
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4.4 Environmental habitat of 0-group cod. 

-·-

-
-

Figure 11: 
The result from cross-validation 

of 0-group cod density. 

+ marks statibn where observed 
value is larger than estimate, 

- marks station where observed 
value is smaller than estimate, 

large symbols show outliers. 
It seems that overestimation 
is more common than underesti-

mation along the boundery 
where the density is low. 

All 5 outliers are cases of under­

estimation, and occur where the 
density is high. 

Since the 0-group fish drift along with the warm current, a study of the temperature and 
salinity pro file in the Barents Sea helps us to iden~fy where we can expect to fmd high 0-group 
concentrations. 

Isa lines of the 0-group cod density superimposed on the hatched area of the polar front and 
the dashed isoline showing salinity at 35.0, at 50. meters depth level are shown in figure 12. It 
is seen that the concentration is high in the neighborhood where the warm Atlantic water 
(carrying the 0-group from the spawning grounds) confronts the cold arctic water. It seems that 
the location of coast line and islands and the bottom topography of the Barents Sea are important 
factors in guiding the water movements, which is intern inflence the distribution of O-gro up cod. 

This is well known among fishery scientists, but our purpose is to demonstrate the usefulness 
of geostatistical methods in fishery science. It .is a verification of its reliability that it captures 
important well known results. Geostatisics also gi ve objective numerical values for calculating 
the interrelations between the variables. The real ecosystem, however, is toa complicated to be 
explained by a few variables or data from a single year . 

..... , .. 
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Figure 12: The spatia! density distribution of the 
1992 0-group cod with hatched area showing the polar 
front and dashed isoline showing salinity of 35.0 at 
50 meters depth. 
Double thickness isoline shows 85 fishes l n. mile trawled, 
single thickness shows 500, 1500, 2500 fishes l n. mile 
trawled. 

The block estimate can be done for each variable. W e can calculate the percentage of O­
gro up cod expepencing a certain le vel of teifiperature and salinity. In this calculation we 
as surne the O-gro up cod is mo ving from surface down to l 00 meters depth, the total volume of 
water we use in this calculation is 120488 cubic kilometers (total volume of water in the Barents 
Sea is about 322000 cubic kilometers (ref. 18) p. 24). 

Let 
P = percentage of O-gro up cod 
s = salinity categorized as in table 6 into 9 levels 
t = temperature categorized as in table 6 into 12levels 

c st = number of O-gro up cod in salinity level s and temperature level t 

C = total. number of 0-group cod 

9 12 c 
P= L L .Æx 100 

s=It=I C 

This subsection was suggested by Odd Nakken who also provided the categories for 
temperature and salinity. From table 6 one can see that 93% 0-group cod live in the water of 
temperature between 3-<9 o c, 80% live in salinity between 34.8-<35.2. 50% of the 0-group 

cod live in salinity of 35.0-<35.2 and temperature 3-<9 o C (Atlantic water, see table 2). 
Tab le 6 gives estimated values in percent of the total amont of cod found in each temperature 

salinity stratum. 

Table 6: Percentage of 0-group cod distributed in different categories of temperature and salinity. 

salinity 32-<34 
34- 34.5- 34.6- 34.7- 34.8- 34.9- 35.0- 35.1-

<34.5 <34.6 <34.7 ~~4.8 <34.9 <35.0 <35.1 <35.2 .. 

tempera- percent Total 
ture ofcod 

-2-<0 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.03 

0-<1 0.02 0.14 0.07 0.12 0.05 0~05 0.05 0.00 0.00 0.50 

1-<2 0.09 0.41 0.12 0.13 0.16 0.29 0.39 0.00 0.00 1.60 
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Table 6: Percentage of 0-group cod distributed in different categories of temperature and salinity. 

salinity 32-<34 
34- 34.5- 34.6- 34.7- 34.8- 34.9- 35.0- 35.1-

<34.5 <34.6 <34.7 <34.8 <34.9 <35.0 <35.1 <35.2 
-

tempera- percent 
Total ture ofcod 

2-<3 0.23 0.76 0.30 0.31 0.39 0.44 1.19 0.28 0.00 3.88 

3-<4 0.28 1.59 0.30 0.35 0.80 1.36 2.39 3.24 0.00 10.31 

4-<5 0.61 f.69 0.44 0.66 0.9'0 1.45 2.79 11.52 0.00 20.06 

5-<6 0.36 1.12 0.61 0.74 1.08 1.51 2.63 16.73 1.07 25.84 

6-<7 0.02 0.53 0.57 0.76 1.13 2.03 2.78 7.97 0.69 16.48 

7-<8 0.00 0.14 0.20 0.30 0.71 1.73 2.54 6.51 0.47 12.59 

8-<9 0.01 0.20 0.12 0.15 0.20 0.96 4.02 2.26 0.00 7.93 

9-<10 0.00 0.02 0.03 0.06 0.16 0.19 0.31 0.00 0.00 0.77 .. 

10-<11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

total 1.63 6.61 .2.75 3.57 5.57 10.03 19.10 48.51 2.23 100 

Tab le 6 is supplemented by tab le 7 which gives the percentages of water (by vol urne) in the 
same temperature/salinity intervals. One rna y see, e.g., that 73% of the water has temperature 

3-9 o C, 58% has salinity 34.8 - 35.2, while 45.6% has both of these properties. 

Table 7: Percentage of water falling into different categories of temperature and salinity. 

- - . 

salinity 30-<32 32-<34 
34- 34.5- 34.6- 34.7- 34.8- 34.9- 35.0- 35.1-

<34.5 <34.6 <34.7 <34.8 <34.9 <35.0 <35.1 <35.2 

tempera- percent total 
ture of water 

-2-<0 0.00 0.29 2.12 0.74 0.39 0.04 0.31 0.01 0.00 0.00 3.90 

0-<1 0.00 0.21 0.62 0.42 0.45 0.60 0.88 0.63 0.00 0.00 3.80 

1-<2 0.03 0.80 0.80 0.27 0.60 0.88 1.45 2.24 0.06 0.00 7.13 

2-<3 0.15 0.76 0.61 0.25 0.71 0.91 1.60 2.86 0.90 0.00 8.75 

3-<4 0.02 0.66 0.88 0.34 0.73 1.80 2.87 2.42 2.02 0.00 11.74 

4-<5 0.00 0.58 1.43 0.89 1.21 1.83 3.37 2.55 4.26 0.00 16.12 

5-<6 0.00 0.61 1.96 1.26 1.75 .. ~ 2.10 1.94 1.83 5.15 0.28 16.87 

6-<7 0.00 0.40 1.52 0.65 0.89 1.08 1.71 2.40 3.83 0.64 13.12 

7-<8 0.00 0.12 1.11 0.48 0.43 0.46 0.68 1.85 3.90 0.32 9.36 

8-<9 0.00 0.60 1.01 0.19 0.27 0.38 0.74 1.72 1.14 0.00 6.06 

9-<10 0.00 0.02 0.25 0.17 0.31 0.40 0.64 0.46 0.08 0.00 2.33 

10-<11 0.00 0.09 0.33 0.07 0.09 0.05 0.13 0.03 0.00 0.00 0.80 

11-<12 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

Total 0.21 5.16 12.66 5.74 7.81 10.53 16.32 18.99 21.34 1.24 100.00 
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Since the density of the 0-group cod has very large variance we used BLUEPACK and SAS 
to calculate and plot the conditional expectation curve for pairs of variables, temperature and 
cod, salinity and cod, sea bottom depth and cod. See figure 13. This will gi ve us some idea how, . 
on average, the density of 0-group cod distributes in relation to the value of those other 
variables. 

The conditional expectation method classifies the conditioning variable (in this case the 
value of temperature, salinity, bottom depth) in to classes and in each c lass one finds the mean 
value of the conditioned variable (in this case llie density of 0-group cod). 

This also demonstrates that the relationship between them are not linear. This explains why 
the correlation coefficients which concem only the linear relationship are not significantly high. 
See table 8. 

Most high dens.ity cod, e.g. more than 250 fishes/1 nm trawl, live in water of temperature 

between 4-8.5 o c and bottom depth deeper than 280m and salinity above 34.9. 
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Figure 13: 

Experimental conditional expectation curves of 

0-group cod density vs. temperature 

0-group cod density vs. salinity 

0-group cod density vs. bottom depth 

Table 8: Correlation coefficients 

temperature salinity cod density bottom depth 

.15 .15 .30 

l :17 .41 

l .33 

l 

25 



With kriging we can obtain a total estimate of the 1992 0-group stock in the Barents Sea and 

adjacent waters of 6.6945019 x 10
9 

individuals without correction for catchability. [See also 

(ref. 16) p. 193 and p. 195; acoustic estimates of the stock were 56 x 10
9 

around Svalbard, and 

51 x l 0
9 

in the Barents Sea. 'Asuming similar cat~hing efficiencies and using the same formula 
as Sundby et al. (1989) for the computation of total numbers of 0-group cod in 1992, estimates 

of 19 x 10
9 

and 8 x 10
9 

']. Such values present other indices for the 0-group stock in 
studying the .development of the stock over time. This will be discussed in more detail in the 
next report. 

5. DISCUSSION 

Fishery research is concerned with spatia! observations of several "attributes" such as fish 
density distribution, food source distribution and environmental variables and particularly with 
their interrelations. Therefore they must be treated simultaneously, which calls for an extended 
model where the regionalized variable is vector valued and a for a study of the cross correlations 
between the vector components. 

Kriging may therefore be exte.nded to cokriging·. This also allows us to take into account 
cheaper, hence more plentiful data which have lower quality. Thus trawl data may be 
supplemented by acoustic data; a drawback of the latter is that the acoustic observations cannot 
distinguish between different species. This will be presented in the second p aper. 

The distribution pattern of the 0-group cod is influenced by environmental variables in a 
complicated way: the bottom topography, 'earth rotation, etc all influence the movement of 
different water masses which in turn influence pattern of 0-group cod density distribution. The 
study of variograms illustrated some of these influences. One result is the creation of an area 
called the polar front. This polar front area has influenced the ecosystem in the Barents sea to a 
large extent. The movement· of polar front area also determines the amount of resource habitat 
for several species. 

In this paper we found no significant direct linear correlations between the variables at the 
same location. As illustrated in figure 13 the relationships are nonlinear. What we found is an 
explainable relationship in the distribution pattern of bottom topography, temperature, salinity 
and O-gro up cod density. This shows that all these variables are not related to each other in a 
way expressible by correlation coefficient values, but are interconnected in ways that are 
captured by variograms and isoline maps. This exhibits a streng side of geostatistics: it can be 
used to analyze the structural patterns of spatially dependent variables and take this information 
into account in the estimation procedure. · · .;.. 

Many of the results above are well known among fishery scientists, but our purpose is to 
demonstrate the usefulness of geostatistical methods in fishery science. A verification of its 
reliability is that it captures important well known results. Moreover, geostatistics offer several 
advantages; It gives numerical estimates and also numerical values to the precision of the 
estimates. This allows us to make objective analysis and conclusions from the data. 

Acknowledgements: Thanks to Asgeir Aglen, Odd Nakken and Bjørn Ådlandsvik for valuable 
discussions and to an excellent computer system administrator Bjørn-Erik Gjerde. 
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