ol, ASS

Fisheridirektoratets Bibliotek

This report not to be quoted without prior reference to the Council*

International Council for the Exploration of the Sea

C.M.1995/Assess:2

PART 2

REPORT OF THE WORKING GROUP ON THE ASSESSMENT OF MACKEREL, HORSE MACKEREL, SARDINE AND ANCHOVY

ICES Headquarters, 21 June - 1 July 1994

This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.

*General Secretary ICES Palægade 2-4 DK-1261 Copenhagen K DENMARK

3106/10-3870

Table 12.1 : Length distribution ('000) of Bay of Biscay anchovy by country, gear and divisions in 1993

		Quarter 1				Quarter 2				Quarter 3				0				_		
	France	Spain	Spain		France	Spain	Spain		France	Spain	Snain		France	Quarter 4	C		-	Total		
Length	Total	Seine	Seine		Total	Seine	Seine		Total	Seine	Seine		Total	Spain	Spain		France	Spain	Spain	
(cm)	VIIIab	VIIIb	VIIIc	Total	VIIIab	VIIIb	Ville	Total	VIIIab	VIIIb	VIIIc	Total	Villab	VIIIL	Seine	Title	Iotal	Seine	Seine	
-	7			0				0		1.1.5	• me	rotai C	Villab	VIIID	VIIIC	Total	VIIIab	VIIIb	VIIIc	Total
7.5	5			0	17			17								0	0	0	0	0
8	3	127		127	82			82						101		101	17	0	0	17
8.5	5	855	34	889	522			522						663		101	82	228	0	310
9	358	3231	168	3757	2240			2240						2772	12	2176	522	1518	106	2146
9.5	922	6920	1158	9000	5277		150	5427				Ċ		27/2	1061	3170	2598	6003	572	9173
10	3254	10717	5464	19435	10427		1719	12146	5170			5170	17	2203	1764	2004	18960	10263	2369	18831
10.5	7205	6422	8953	22580	14010		3341	17351	2585			2585	1	939	1678	2619	10000	12920	8947	40735
11	5931	5821	10960	22712	19978	72	4281	24331	20888		408	21296	23	299	2374	2018	23001	7301	13972	45134
11.5	6220	3704	11495	21419	12930	1439	4598	18967	16144		817	16961	126	36	3227	2090	40820	5170	18023	/1035
12	11212	1745	16267	29224	12674	5937	8833	27444	23528	692	3463	27683	14087	68	6626	20781	61501	9442	20137	60736
12.5	11777	1829	20326	33932	10875	9501	23707	44083	7899	1166	6549	15614	7324	46	3714	11084	37975	12542	35189	105132
13	25420	1502	22293	49215	3652	13523	44079	61254	13499	1437	10418	25354	15047	31	4731	19809	57619	16403	54296	104713
13.5	32406	603	15182	48191	4430	15566	48648	68644	8593	1387	9235	19215	20430	16	3688	24134	65859	17572	76752	155632
14	26261	306	10419	36986	3693	17950	58609	80252	26639	1423	12742	40804	19882	23	4757	24662	76475	19702	96527	180184
14.5	39949	164	5185	45298	7615	16446	52688	76749	36832	661	7310	44803	19243	13	4780	24036	103639	17284	60027	182704
15	29862	112	2821	32795	12866	23672	55458	91996	70975	352	5299	76626	28868	5	2298	31171	142571	24141	65876	190880
15.5	18450	279	1467	20196	10312	23902	45591	79805	55384	296	4421	60101	23605		573	24178	107751	24141	52052	194000
10	28710	106	591	29407	2432	22403	47257	72092	45524	38	3100	48662	34795		95	34890	111461	2747	51043	195051
10.5	5382	24	195	5601	508	15727	34170	50405	28186	32	1719	29937	23198		24	23222	57274	15783	36108	109165
17 6	3994	18	91	4103	561	10481	26500	37542	10647	26	971	11644	22441		11	22452	37643	10525	27573	75741
17.5	307		23	330	107	4573	12772	17452	3161	21	703	3885	4205		1	4206	7780	4594	13499	25873
10 5	141		22	163	118	2021	8609	10748	1125	10	231	1366	4583			4583	5967	2031	8862	16860
10.0	40			40	33	295	2631	2959			185	185	37			37	110	295	2816	3221
19	35			35	30	346	603	979			2	2				0	65	346	605	1016
19.5				0			105	105				0				0	0	0	105	105
20				0				0				0				0	0	0	0	0
Total	257026	44405	100114	105.005															Ũ	0
Catch (+)	207030	44400	133114	435435	135389	183854	484349	803592	376779	7541	67573	451893	237912	10558	41878	290348	1007916	246438	726914	1981268
	43/0	10.9	1002	6964	18/3	4455	10766	17094	8010	118	839	8967	6051	63	572	6685	20912	4960	13839	39710
Mmov (cm)	14.3	0.0 כד	12.7	13.4	12.6	15.1	14.9	14.6	14.7	13.7	14.2	14.6	15.2	9.8	12.9	14.7	14.4	14.1	14.4	14.4
(y)	19.3	1.3	12.5	16	13.8	24.2	22.2	21.3	21.3	15.6	12.4	19.8	25.4	5.9	13.6	23	20.7	20.1	19	20

.

Length (cm)	1st quarter	2nd quarter	3rd quarte	er 4th quarter	Total
4	0	0		0 0	0
4.5	16	0		0 0	16
5	16	0		0 0	16
5.5	48	0		0 0	48
6	130	0		0 0	130
6.5	441	0		0 0	441
7	1342	4		0 0	1346
7.5	2564	10		0 0	2574
8	2930	24		0 0	2954
8.5	1865	40		0 0	1905
9	1119	2011	4	16 29	3205
9.5	680	5303	4	46 29	6058
10	869	5115	15	51 94	6229
10.5	2687	4129	66	67 416	7899
11	2986	2196	153	33 956	7671
11.5	2670	4093	185	50 1153	9766
12	7818	8740	230	05 1437	20300
12.5	11145	12032	229	97 1432	26906
13	6494	13850	11:	27 702	22173
13.5	2654	7144	62	25 390) 10813
14	968	3313	18	83 114	4578
14.5	343	1566	15	83 114	2206
15	0	859		0 0) 859
15.5	67	303		46 29) 445
16	0	51		0 0) 51
Total N	49852	70783	110	59 6895	138589
Catch (t)	554	839	1.	46 91	1630
Lmoy (cm)	11.5	12.3	12	.3 12.3	3 12
Wmoy (g)	11.1	11.9	13	13.2	2 11.8

Table 12.2 : Spanish length distribution ('000) of Bay of Cadiz anchovy from the purse seiner in Division IXa in 1993

.

Table 13.1:	Annual catches (in tonnes) of Bay of Biscay anchovy (Subarea VIII)
	As estimated by the Working Group.

	COUNTRY		
	FRANCE	SPAIN	INTERNATIONAL
YEAR	VIIIab	VIIIbc	VIII
1960	1085	57000	58085
1961	1494	74000	75494
1962	1123	58000	59123
1963	652	48000	48652
1964	1973	75000	76973
1965	2615	81000	83615
1966	839	47519	48358
1967	1812	39363	41175
1968	1190	38429	39619
1969	2991	33092	36083
1970	3665	19820	23485
1971	4825	23787	28612
1972	6150	26917	33067
1973	4395	23614	28009
1974	3835	27282	31117
1975	2913	23389	26302
1976	1095	36166	37261
1977	3807	44384	48191
1978	3683	41536	45219
1979	1349	25000	26349
1980	1564	20538	22102
1981	1021	9794	10815
1982	381	4610	4991
1983	1911	12242	14153
1984	1711	33468	35179
1985	3005	8481	11486
1986	2311	5612	7923
1987	5061	9863	14924
1988	6743	8266	15009
1989	2200	8174	10374
1990	10598	23258	33856
1991	9708	9573	19281
1992	15207	22468	37675
1993	20914	19173	40087
1994	6000	13000	19000 (*)
AVERAGE	3936	30553	34490
(1960-93)			

(*) Preliminary data for the first half of the year

COUNTRY:	FRANCE												
		E	M	۵	м	J	ſ	0	S	0	N	D	TOTAL
TEANIMUMIN	J 0.0			1225.0	1716.0	283.0	162.0	643.0	749.0	273.0	15.0	1.0	5067.0
1987	0.0	0.0	14.0	794.0	1388.0	781.0	296.0	1154.0	2000.0	324.0	0.2	0.0	6741.6
1988	0.0	0.4	14.0	279.4	762.4	11.0	59.4	8.8	30.8	151.8	4.4	0.0	2200.0
1989	699.6	81.4	11.0	378.4	703.4	107.0	260.2	1904 5	3274.8	1446.3	635.9	82.7	10598.1
1990	0.4	0.0	15.9	1330.0	1511.3	127.2	209.2	419.1	15873	556.7	53.7	285.5	9708.2
1991	1318.0	2135.4	603.1	808.0	1622.0	195.2	124.2	413.1	1307.5	2165.0	2205.0	0.4	152074
1992	2062.0	1480.0	941.0	783.0	48.0	10.0	335.0	1202.0	2786.0	3105.0	2395.0	47.0	200124
1993	1636.4	1805.3	1536.7	91.2	342.5	1439.2	1314.6	2639.7	4056.6	3277.3	2726.7	47.2	20913.4
	404	443	129	905	1400	279	182	826	1528	550	142	74	6863
Average 87-91	404	445	125	10.000	20.4%	4 1 9/	2 7 %	120%	223%	8.0%	2.1%	1.1%	100.0%
in percentage	5.9%	6.5%	1.9%	13.2%	20.4%	4.170	2.778	12.0 %	22.070	0.0 /0			
Auguage 02 02	1849	1643	1239	437	195	725	825	1921	3421	3221	2561	24	18060
Average 92-93	1043	0.1%		2.4.9/	1 1 94	4.0%	4.6%	10.6%	18.9%	17.8%	14.2%	0.1%	100.0%
in percentage	10.2%	9.1%	0.9%	2.4 %	1.1.70	4.0 %	-7.0 /0						

Table 13.2 Monthly catches (in tons) of the Bay of Biscay anchovy by country (Sub-area VIII)

COUNTRY:	SPAIN									N	I		
	E	M	۵	Ν	1	L	0	S	0		202.066 D		TOTAL
1007	<u> </u>	0	453 534	4133	3676.988	514.022	80.573	53.509	27.888	456.876	136.171	265.109	9797.67
1987	5 96	0.015	27 868	785 663	2931 356	3203.765	292.143	97.586	421.121	118.348	1609.636	245.945	9739.406
1900	1 954	2 258	25.056	257 759	4295.474	794.911	89.993	509.725	115.643	198.399	16.39	272.743	6580.205
1909	79.176	5.629	2084 678	1327 846	9947.4	2956.681	1202.426	3226.926	2278.31	123.239	184.385	9.545	23426.241
1990	99.587	39.675	22 957	1227 554	5290.774	1662.673	90.519	59.515	34.126	265.348	94	596.215	9482.943
1991	360	384	340	3458	13068	3437	384	286	505	63	545.8	89	22919.8
1992	101.7	591	1825	3169	7563.5	4488.2	794.9	339.7	197.5	64.9		23.5	18627
1333	101.7	00.1									398		
Auguage 87.93	93	70	683	2051	6682	2437	419	653	511	184	2.8%	215	14368
in percentage	0.6%	0.5%	4.8%	14.3%	46.5%	17.0%	2.9%	4.5%	3.6%	1.3%		1.5%	100.0%

	DIVISIONS		QUART	ERS		CATCH (†)	
		۱	2	3	4	ANNUAL	%
SPAIN	VIIIb	324.0	5014.7	117.6	62.6	5518.9	28.8%
	VIIIC	1661.8	10206.1	1214.5	571.6	13654.0	71.2%
	TOTAL	1985.8	15220.8	1332.1	634.2	19172 9	/1.2/0
	%	10.4%	79.4%	6.9%	3.3%	.,.,	100.0%
FRANCE	VIIIa	1143.0	658.0	6902.0	5106.0	13809.0	66.0%
	VIIIb	3823.0	1215.0	1110.0	942.0	7090.0	33.0%
	VIIIC	12.0	0.0	0.0	3.0	15.0	01%
	TOTAL	4978.0	1873.0	8012.0	6051.0	20914.0	0.170
	%	23.8%	9.0%	38.3%	28.9%	207110	100.0%
INTERNATION.	VIIIa	1143.0	658.0	6902.0	5106.0	13809.0	31 1%
	ИПР	4147.0	6229.7	1227.6	1004.6	12608.9	31 5%
	VIIIC	1673.8	10206.1	1214.5	574.6	13669.0	34 1%
	TOTAL	6963.8	17093.8	9344.1	6685.2	40086.9	0-1.1/0
	%	17.4%	42.6%	23.3%	16.7%		100.0%

 Table 13.3:
 ANCHOVY catches in the Bay of Biscay by country and divisions in 1993

Table 13.4 Bay of Biscay anchovy catches by country and EU categories in 1993.

QUARTERS

COUNTRY	EU CAT.	1	2	3	4	ANNUAL	%
		_			0	1 470017	7 70/
SPAIN	TI	0	1447808	26109	U	14/391/	1.1%
	T2	8095	9027901	185319	5410	9226725	48.1%
	Т3	1078349	4303604	1013269	244992	6640214	34.6%
	T4	899267	441433	107336	383752	1831788	9.6%
	TOTAL	1985711	15220746	1332034	634154	19172645	100.0%
FRANCE	TI	30349	27430	141262	189791	388832	1.9%
	T2	2884057	793937	6954601	5625239	16257834	77.7%
	T3	1878139	389603	271937	235922	2775601	13.3%
	T 4	185791	661933	643066	284	1491074	7.1%
	TOTAL	4978336	1872903	8010866	6051236	20913341	100.0%
INTERN.	TI	30349	1475238	167371	189791	1862749	4.6%
	T2	2892152	9821838	7139920	5630649	25484559	63.6%
	Т3	2956488	4693207	1285206	480914	9415815	23.5%
	T4	1085058	1103366	750402	384036	3322862	8.3%
	TOTAL	6964047	17093649	9342900	6685390	40085986	100.0%

T1 : <== 30 anchovies/Kg.

T2 : between 31 and 50 per Kg.

T3 : between 51 and 83 per Kg.

T4 : more than 84 per Kg.

Voor		France	na an an an an Anna an Anglain an	Spain		
1 eai	P. seiner	P. trawl	Total	P. seiner	Total	
1960 ¹	52	0	52	571	623	
1972 ¹	35	0	35	492	527	
1976 ¹	24	0	24	354	378	
1980 ¹	14	n/a	14	293	307	
1984 ¹	n/a	4	4	306	310	
1987 ¹	9	36	45	282	327	
1988	10	61	71	278	349	
1989	2	51	53	215	268	
1990	30	80 ¹	110	266	376	
1991	30	115 ²	145	250	395	
1992	13	123 ²	136	244	380	
1993	21	138	159	253	412	
1994 ³	26	150	176 ³	255	431	

Table 13.5 Evolution of the French and Spanish fleet for ANCHOVY (from Working Group members). Number of boats.

¹ Only St. Jean de Luz and Hendaya.
² Maximum number of potential boats; the number of mid-water trawls is roughly half of this number due to the fishing in pairs of mid-water trawlers. ³Provisional figure.

n/a = Not available.

	Table	13.6 : Catch	per Unit Effort	of the Spanish	n spring fishery	on Bay of Bis	cay anchovy	an an de l'Anna an
Year period	1987 03-06	1988 03-06	1989 04-06	1990 04-06	1991 04-06	1992 04-06	1993 03-06	1994(*) 03-06
CPUE (t)	0.9	0.65	0.79	1.5	1.2	2.55	1.72	1.37
1 y-old (**) CPUE	13.76	16.7	16.11	63.35	29.26	86.28	57.7	35.8
2 y-old and + (**)	17.49	9.09	14.9	5.25	20.56	17.94	26.6	20.8

(*) provisional ; (**) in thousand

Year		1987	1988	1989	1990	1991	1007
Period of year		02-07 June	21-28 May	10-21 May	04-15 May	16 May-07 Jun	16 May 12 Jun
Positive area (km ²)	23,850	45,384	17,546	59.757	24 264	67 706
Surveyed area (km	1 ²)	34,934	59,840	37,930	79,759	84 032	97 787
Daily total egg production Exp(-1)	2)	2,198	5,015	0,730	5,020	1,240	5,81
C.V.		0.390	0.240	0.400	0.150	0.060	0.14
SSB (t)		29,365	63,500	11.861	97.239	19.276	90.770
C.V.		0.480	0.310	0.410	0.222	0.140	0.20
Coastal egg production Exp(-12	2)	2,319	5,312	0,328	3,350	0,524	2.97
		TOTAL					
No/age:	1	656	2,349	246	5,613	647	5,571
(minons)	3		238	206	190	279	209
	4	41	2	18	40	4	17
	5	25	0	0	0	0	0
Regional estimates		Oceanic	Oceanic	Remainder	Oceanic	Remainder	Remainder
SSB (t)		21,000	23,400	9,200	32,315	12 250	41 464
No/age:	1	181	592	172	1 230	283	1 794
(millions)	2	331	258	166	1,250	235	1,784
	3	76	66	16	35	4	137
	4	41	2	0	0	0	0
	5	25	0	0	0	0	0
	C	Coastal-gar.	Coastal-gar.	Garonne	Coastal-gar.	Garonne	Garonne
SSB (t)		9,500	39,600	2,800	64,924	7,026	49,256
No/age:	1	475	1,757	74	4,383	363	3 787
(millions)	2	0	0	40	35	58	22
	3	0	0	2	5	0	0
	4	0	0	0	0	0	0
	<u> </u>	0	0	0	0	0	0

Table 13.7Daily Egg Production Method. Egg surveys on ANCHOVY - Bay of Biscay. Data revised and updated
by Motos and Uriarte (WD 93).

Table 13.8	Evaluation of abund	ance index from	Frencl	h acoustic surveys.
-------------------	---------------------	-----------------	--------	---------------------

	1983	1984	1989 ²	1990	1991	1992
	20/4-25/4	30/4-13/5	23/4-2/5	12/4-25/4	6/4-29/4	13/4-30/4
Surveyed area	3,267	3,743	5,112	3,418 ³	3,388 ³	2,440
Density (t/nm ²)	15.4	10.3	3.0	14.5-32.24	23.6	32.8
Biomass (t)	50,000	38,500	15,500	60-110,0004	64,000	89,000
Number (10^{-6})	2,600	2.000	805	4,300-7,9004	3,173	9,342
Number of 1-group (10 ⁻⁶)	1,800 ¹	600 ¹	400	4,100-7,5004	1,873	9,072

¹Rough estimation. ²Assumption of overestimate. ³Positive area.

⁴Must be revised.

Table 13.9 Summary of egg and acoustic surveys of Bay of Biscay ANCHOVY.

Year	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
SSB (tonnes)	-	-	-		29,365	63,500	11,860	97,239	19,276	90,720
Acoustic index (tonnes)	50,000	38,500	-	-	-	-	15,500	N.A.	64,000	89,000
Egg survey (million) (1-year-old)	-	-	-	-	656	2,349	246	5,613	647	5,571
Acoustic survey (1-year-old) millions	1,800	600	-	-	-	-	440	N.A.	1,373	9,072
Y.C.C. ¹	1,444	352	177	267	340	542	302	1,738	667	1,961
Catch	14,153	35,179	11,486	7,923	14,924	15,009	10,374	33,856	19,281	37,676
		N) Cij:	Catch	from year	class j in	year i			
¹ Year class cumulative in	numbers	Σ Cij	} N:	Numb	er of catch	years for	the year c	lass j		

i=1

j

Table 13.10: ANCHOVY catch at age in thousands for 1993 by country, division and quarter.

	QUA	ARTERS AND	MAIN DIVIS	IONS						ONE
	1	2	3	4	Year			10101	1 410 019131	0143
SPAIN	VIIIbc	Vilibe	Vilibc	Viiibe	Vilibe		SPAIN	Villbe	Villbo	Viliba
Age							Δαε	VIIIDG	VIIDG	AUDC
0	0	0	8520	51422	5994	2	, ng U	0	59942	6004
1	170515	407713	54644	1010	63388	2	0 1	578228	55654	62200
2	7078	259534	11903	4	278519	•	2	266612	11907	17051
3	0	971	1	0	97	2	3	200012	11907	2/001:
4	0	0	0	0	(5	4	0	0	97.
TOTAL	177593	668218	75068	52436	973315	5	τοτοι	945011	107504	
W MED.	11.38	22.48	17.27	11.43	19.43			20.15	12/504	9/3315
SOP	2020.98	15019,16	1296.74	599.09	18911 51	•	VV IVIED.	20.15	14.87	19.46
CATCH	1985.80	15220.80	1332.10	634.20	19172 90)	CATCH	17040.14	1895.83	18935.97
VAR %	1.77%	-1.32%	-2.65%	-5.54%	-1.36%	,)	VAR %	-0.97%	1966.3	-1 24 94
	1	2	2		N.				0.0070	
FRANCE	Villah	Villab	Villab	4	Year					
Δαe	V III db	VIIIab	Vinab	VIIIAD	VIIIaD		FRANCE	Villab	Villab	Villab
0	0	0	0	0	-		Age			
1	86504	130984	246122	101070	75 4000		0	0	0	c
, ,	165582	4419	340123	191272	754883		1	217488	537395	754883
2	5765	4418	30033	4/22/	247860		2	170000	77860	247860
3	3733	0	0	0	5755		3	5755	0	5755
•	0	0	0	0	C	1	4	0	0	C
TOTAL	257841	135402	376756	238499	1008498		TOTAL	393243	615255	1008498
W MED.	19.00	13.00	22.60	24.50	20.84		W MED.	16.93	23.34	20.84
SOP	4898.98	1760.23	8514.69	5843.23	21017.12		SOP	6659.21	14357.91	21017 12
CATCH	4978.34	1872.90	8010.87	6051.24	20913.34		CATCH	6851.239	14062.1	20913 34
VAR %	-1.59%	-6.02%	6.29%	-3.44%	0.50%		VAR %	-2.80%	2.10%	0.50%
τοται		2	3	4	Year					
Age	4 M	VIII	VIII	VIII	VIII	Sub-area VIII	TOTAL	VIII	VIII	VIII
0	0	0	8520	51422	59942		~Ao	0	50040	50040
1	257019	538697	400767	192282	1388765		1	795716	59342	1200705
2	172660	263952	42536	47231	526379		۱ ۲	436612	093049 90767	1388/65
3	5755	971	1	0	6727		2	430012	89/0/	526379
4	0	0	Ó	0	0		4	0726	1	6727 O
TOTAL	435434	803620	451824	200025	1001010					Ū
W MED	15.89	20.89	21 72	290930	1981813		TOTAL	1239054	742759	1981813
SOP	6919.96	16779.39	41.72	22.14	20.15		W MED.	19.13	21.88	20.16
CATCH	6964 14	17093 70	0242 07	0442.3Z	39928,63		SOP	23699.34	16253.74	39953.08
VAR %	.0 63%	.1 9/14	5342.9/	0085.44	40086.24		CATCH	24057.84	16028.4	40086.24
101/0	-0.0370	-1.0470	0.01%	-3.04%	-0.39%		VAR %	-1.49%	1.41%	-0.33%

Sub-area VIII

Age	1987	1988	1989	1990	1991	1992	1993
0	10020	97581	N/A	27993	6098	2167	3557
1	24975	17353	N/A	22238	13736	14268	20160
2	1461	203	N/A	109			
3	912	3	N/A				
			N/A				
Total	37368	115140		50340	19834	16435	23717
Catch (t)	546	493		416	353	200	306
Wmean (g)	14.6	4.3		8.3	17.8	12.1	12.9

Table 13.11 : Spanish half - yearly catches of anchovy (2nd semester) by age in ('000) of Bay of Biscay anchovy from the live bait tuna boats.

Table 13.12 : International catches of anchovy (in millions) by age from 1989 to 1993 on a half-year basis including catches of live bait anchovies for tuna fishing.

vear	1989 (1989 (*)		1990		1991		2	1993	
semester	1	2	1	2	1	2	1	2	1	2
age										
0	0	175	0	33	0	79	0	36	0	64
1	157	8	842	541	328	113	998	452	796	613
2	130	12	62	58	322	16	197	23	437	90
3	14	3	10	5	16	1	17	1	7	0
Total	301	198	914	637	666	209	1212	512	1240	766.8
Catch (t)	7321	3052	19385	14887	15025	4610	26381	11504	24057	16334

(*) live bait catches not available

177

age	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
0	0	0	0	0	0	0	0	0	0	
1	776	0	156	31	0	1	14	3 3	0 0	388
2	602	861	1322	1687	1307	405	688	0	25	166
3	0	77	262	435	574	535	267	330	133	60
4	0	0	0	0	7	7	207	0	155	10
5+	0	0	0	0	0	Ó	0	0	0	10
Total	1378	938	1740	2153	1888	948	969	333	158	633
							,,,,	555	150	033
age	1984	1985	1986	1987	1988	1989	1990	1001	1007	1003
0	0	0	0	31	128	175	33	70	36	1995
1	161	53	52	220	385	164	1383	11	1450	1400
2	813	105	80	187	128	142	120	338	220	1409
3	309	177	63	42	29	192	120	19	10	527
4	46	4	54	22	2)	10	15	10	10	/
5+	0	0	0	12	1	0	0	0	0	0
			U	14	1	U	U	U	U	0

Table 13.13 : Catch at age in numbers (millions) of Anchovy in the Bay of Biscay

Table 13.14 : Half - year mean weight at age in the catches of the Bay of Biscay anchovy in 1993.

Country	Spain	France	Spain	France	IN	TERNATION	AL
Semester	1	1	2	2	1	2	Annual
Area	VIII CB	VIII AB	VIII CB	VIII AB	VIII	VIII	VIII
Age							
1			11.72			11.72	11.72
2	16.28	12.93	16.80	21.62	15.36	21.17	17.84
3	29.25	21.94	27.09	30.02	26.40	29.63	26.95
4	43.38	28.24	39.35		30.43	39.35	30.43
Total	20.40	16.93	15.37	23.34	19.30	21.97	20.30

	from the DEPM SSB estimates and catches between surveys.										
Years	1987/88	1989/891	19891/90	1990/91	1991/92						
Age group											
1+	0.39/0.96	0.44/1.74	0.4/0.72	0.89/2.13	1.08/0.36						
2+		0.45/1.96	0.43/1.74	1.26/1.0	1.1/1.72						
1 1989 SSB e	estimate raised up	to 1 standard de	viation because o	 If the presumption	 						

ear	Portugal	Spain	TOTAL
1943	9975		
1944	6651	***	
1945	992		
1946	6520		
1947	3392		
1948	4938		
1949	2684		
1950	3377		
1951	3594		
1052	4615		
1053	1033		
105/	7055		
1055	/577		
1054	4323		
1957	12610		
1059	7070		
1950	7799		
1939	3788		
1960	9503		
1961	2492		
1962	4446		
1963	5714		
1964	4118		
1965	4460		
1966	4460		
1967	3818		
1968	970		
1969	1243		
1970	1172		
1971	326		
1972	207		
1973	126		
1974	238		
1975	372		
1976	88		
1977	3261		
1978	1011		
1979	655		
1080	980		
1081	078		
1082	454		
1083	673		
108/	202		
1095	392		
1903	2122		
1900	2155		
1907	1022		
1900	442	4263	4705
1989	825	5336	6159
1990	541	5911	6452
1991	210	5711	5921
1992	138	3028	3166
1993	23	1961	1984

Table 14.1Portuguese and Spanish annual landings (tonnes) of ANCHOVY in Division IXa.(From Pestana, 1989 and Working Group members).

--- No data

Country/Quarter	1st	2nd	3rd	4th	Year
Spain	768	921	167	105	1961
Purse seine trawl	555 213	839 82	146 21	91 14	1630 331
Portugal	3	6	0	13	23
Purse seine Artisanal Trawl	0 1 2	0 0 6	0 0 0	13 0 0	13 1 9
Total	771	927	167	117	1984

ANCHOVY IXa. Quartely catches (t) by gear and by country in 1993. Table 14.2

Distribution of ANCHOVY landings (t) by half year in Table 14.3 Division IXa.

Year	Country	1st half	f year ¹	2nd half year ²		
1988	Spain	2,534	(60%)	1,708	(40%)	
1989	Spain	3,876	(74%)	1,394	(27%)	
1990	Spain	3,806	(67%)	1,860	(33%)	
1991	Spain	4,736	(83%)	975	(17%)	
1992	Spain	2,492	(82%)	536	(18%)	
1993	Spain	1,689	(86%)	272	(14%)	
1991	Portugal	39	(18%)	172	(82%)	
1992	Portugal	38	(28%)	100	(72%)	
1993	Portugal	9	(41%)	13	(59%)	

¹Corresponds to the spring fishery in Division IXa. ²Corresponds to the summer and autumn Spanish fisheries and autumn Portuguese fisheries in Division IXa.

Table 14.4: ANCHOVY catches (t) in Division IXa by country and Sub-division in 1993

COUNTRY	SUB-DIVISIONS	QUARTERS				
، در این این این این این این این این این این		Q1	Q2	Q3	Q4	ANUAL
SPAIN	IXa North IXa South TOTAL %	1 767 768 39.2	0 921 921 47.0	0 167 167 8.5	0 105 105 5.4	1 1960 1961
PORTUGAL	IXa Central North IXa Central South IXa South TOTAL %	3 0 0 3 11.9	6 0 6 27.9	0 0 0 0.7	13 1 0 14 59.6	22 1 0 23
INTERNACIONAL	IXa North IXa Central North IXa Central South IXa South TOTAL %	1 3 0 767 771 38.8	0 6 0 921 927 46.7	0 0 167 167 8.4	0 13 1 105 119 6.0	1 22 1 1960 1984

Table 14.5 . ANCHOVY in Division IXa. Effort data: Spain IXa (Bay of Cadiz) number of

		PURSE SEINE	
YEAR	BARBATE	BARBATE	SAN LUCAR
	Single purpose	Multi purpose	Multi purpose
		No. fishing trip	
1988	3958	17	210
1989	4415	39	234
1990	4622	92	660
1991	3981	40	919
1992	3450	116	583
1993	2152	5	225

SPAIN IXa (Bay of Cadiz)

Table 14.6. ANCHOVY in Division IXa. Spain IXa (Bay of Cadiz) CPUE series in commercial fisheries.

*****	SPAIN IXa	(Bay of Cadiz)							
	PURSE SEINE								
YEAR	BARBATE Single purpose	BARBATE Multi purpose	SAN LUCAR Multi purpose						
	Ì	Kg/No.Fishing trip							
1988 1989 1990 1991 1992 1993	1047 1139 1128 1312 819 641	461 534 287 339 173 268	420 943 643 456 300 225						

SDATN TYA P. 5 C-21-1

Table 14.7. Evaluation of abundance index from Spanish acoustic survey in 1993.

	Total	Western Sector	Central Sector	Eastern Sector
Period of year Surveyed area (mn2) Biomass (t) Number (millions)	5-10 Jun 1993 2865.64 6569 462	798.1 1878 124	1232.2 3325 253	835.4 1366 86

Table 16.1. Summary results of integrated model fit using inverse-variance reweighting and fitting a stockrecruit relationship.

PARAMETER ESTIMATES +/- SD

Sep	barable	Model: Reference F by	year	
1	1986	. 1986	.1626	.2426
2	1987	.1733	.1426	.2105
3	1988	.1729	.1426	.2095
4	1989	. 1593	.1317	. 1926
5	1990	.1611	.1341	. 1937
6	1991	.1033	.0865	.1234
7	1992	.0987	.0829	.1175
8	1993	.1122	.0943	. 1335
Sep	barable	Model: Selection (S)	by age	
9	0	.2753	. 1975	.3837
10	1	.6488	.5620	.7489
	2	1.0000	Fixed :	Reference age
11	3	1.3343	1.1732	1.5174
12	4	1.3181	1.1616	1.4957
	5	1.2500	Fixed :	last true age
Sep	barable	Model: Populations in	year 1993	
13	0	12600822.	10874594.	14601071.
14	1	10489189.	9378081.	11731941.
15	2	8346475.	7364680.	9459153.
16	3	3657363.	3208442.	4169096.
17	4	2109980.	1838531.	2421507.
18	5	1167445.	1006214.	1354510.
Sepa	arable	Model: Populations at	age 5	
19	1986	1095692.3654	791454.6812	1516879.9782
20	1987	905297.6957	700101.0118	1170636.6710
21	1988	1653366.7980	1320126.1014	2070727.7629
22	198 9	1078095.4826	867722.1890	1339472.3385
23	1990	797251.8868	656717.8560	967859.4320
24	1991	910987.6318	780970.2631	1062650.5317
25	1992	1395693.3810	1206613.7065	1614402.3587

Age-structured index catchabilities Age-Structured Index 1 (Spanish Survey)

Li	inea	ar	model fitted. Slopes	s at age:	
26	1	Q	.11260E-04	.77677E-05	.16321E-04
27	2	Q	.15649E-04	.10596E-04	.23113E-04
28	3	Q	.55302E-04	.35055E-04	.87244E-04
29	4	Q	.65946E-04	.41566E-04	.10463E-03
30	5	Q	.15914E-03	.10062E-03	.25170E-03
31	6	Q	.89225E-03	.61020E-03	.13047E-02

Age-Structured Index 2 (Portuguese Survey)

L	inea	ar	model fitted. Slopes	at age:	
32	0	Q	.35497E-03	.32698E-03	.38535E-03
33	1	Q	.50550E-03	.43978E-03	.58103E-03
34	2	Q	.47606E-03	.37514E-03	.60413E-03
35	3	Q	.41029E-03	.31011E-03	.54283E-03
36	4	Q	.47733E-03	.31886E-03	.71455E-03
37	5	Q	.20497E-03	.95806E-04	.43850E-03
38	6	Q	.83738E-04	.29620E-04	.23673E-03

Par	ameters	of	the BH. s	tock-recruit	relationship)
39	а		.1301105E+	08 .12471	88E+08	1357352E+08
40	b		.2018195E-	10 .20181	195E-10 .	2018195E-10

PARAMETERS OF THE DISTRIBUTION OF In CATCHES AT AGE

Separable model fitted from 1986 to 1993 Variance : .2810 Skewness test statistic : .1215

(continued)

Table 16.1 (continued)

Kurtosis test statistic	:	7.6362
Partial chi-square	:	.5021
Probability of chi-square	:	1.0000
Degrees of freedom	:	25

PARAMETERS OF THE DISTRIBUTION OF THE AGE-STRUCTURED INDICES

DISTRIBUTION STATISTICS FOR In AGED INDEX 1

Linear catchability relationship assumed.

Age	:	1	2	3	4	5	6
Variance	:	.5231	.5734	.6654	7780	7343	ن ۵۵۵۵
Skewness test stat.	:	3583	2755	1.0053	1176	6811	- 0060
Kurtosis test stat.	:	4143	2999	1866	7765	- 6054	- 2228
Partial chi-square	:	.6975	.7791	.6243	.9858	8548	5000
Prob. of chi-square	:	.9945	.9926	.9869	.9861	9905	0078
Number of data	:	7	7	6	7	.,,05	.,,,,0
Degrees of freedom	:	6	6	5	. 6	, ,	4
Weight in analysis	:	.5336	.4876	.4179	.3579	.3791	.5580

DISTRIBUTION STATISTICS FOR In AGED INDEX 2

Linear catchability relationship assumed.

Age	:	0	1	2	٦	4	5	4
Variance	:	.0125	.0428	. 1255	1729	3715	1 3/00	0 2 5557
Skewness test stat.	:	.6680	.1499	.3545	- 7198	.3677	- 1707	- 228/
Kurtosis test stat.	:	2816	3407	3947	3051	6162	- 4857	- 2317
Partial chi-square	:	.0062	.0213	.0653	.0996	.2530	1.2261	4.6703
Prob. of chi-square	:	1.0000	.9999	.9995	.9988	.9926	.8738	.3228
Number of data	:	5	5	5	5	5	5	5
Degrees of freedom	:	4	4	4	4	4	4	4
Weight in analysis	:	23.0469	6.8524	2.2094	1.6084	.7579	2066	.1089

Weight of stock-recruit model in analysis = 2.54

Year 1988 1989							1990			-	1991									
Quarter	1	2	3	4	- Sum	1	2	3	4	Sum	1	2	3	4	Sum	1	2	3	4	Sum
	2.8	 0	25 5	71.3	-	5.5	0.6	36.4	57.5	-	13.2	0.6	22.8	63.4		31.2	0.3	25.2	45.3	
Age % 1 2 3 4 5 6 7 8 9	2.8 81 87 94 53 11 45 27 30 1	0.4 12 12 13 8 2 6 4 4 4 4	25.5 741 795 859 486 99 414 243 274 9	2,072 2,224 2,402 1,358 276 1,158 678 768 25	2,906 3,118 3,368 1,905 388 1,623 952 1,076 35	115 449 445 129 73 16 62 37 41	13 49 49 14 8 1 7 4 4	746 2,969 2,947 854 482 103 411 245 270	1,206 4,689 4,654 1,349 760 162 649 387 426	2,098 8,156 8,095 2,346 1,323 282 1,129 673 741	172 571 2,795 744 216 121 26 105 60 70	8 26 127 34 10 6 1 5 3	297 986 4,829 1,286 374 209 44 181 104	825 2,740 13,429 3,576 1,040 581 123 503 291 335	1,302 4,323 21,180 5,640 1,640 917 194 794 458 529	153 3,841 4,112 1,995 443 172 394 + 148 172	1 37 40 19 4 2 4 + 1 2	114 2,856 3,058 1,485 330 128 293 + 110 128	222 5,077 5,871 2,896 644 250 572 + 215 250	489 12,311 13,180 6,393 1,421 552 1,263 + 494 552
10 11	15 3	2 +	139 31	391 88 12	547 123 18	2 21 5	+ 2 1	13 142 32	20 223 51	35 388 88	70 2 35	5 + 2	4 60	12 168	18 265	123 49	1 +	92 37	179 72	395 158
12 13 14 15	1 4 2 16	+ 1 + 2	5 36 22 146	101 61 403	142 85 567	1 3 27	+ + 3	7 21 178	10 36 280	18 59 488	7 + 51	+ + 2	12 + 89	34 1 246	53 1 388	49 25 98	+ + 1	37 18 93	72 36 143	158 79 316

										4000 4007		
Table 18.1	Estimated catch	in numbers	('000)	of	North	Sea	mackerel	stock	۱n	1988-1993	by	quarter.

Year		1	992		_		19	-			
Quarter	1	2	3	4	- Sum	1	2	3	4	Sum	%
Age %	19.8	0.4	16.1	63.7		17.5	0.3	16.5	65.7		
1	747	15	608	2,404	3,775	331	6	312	1,242	1,870	5
2	3,005	61	3,443	9,667	15,176	1,323	23	1,247	4,960	7,554	20
3	2,444	49	1,987	7,863	12,344	2,315	40	2,183	8,681	13,219	35
4	573	12	480	1,890	2,982	1,693	29	1,596	6,149	9,669	25
5	359	7	292	1,154	1,812	562	10	530	2,108	3,210	8.5
6	112	2	91	361	566	132	2	125	496	755	2.0
7	. 45	1	37	145	227	40	1	37	149	227	0.6
8	22	+	18	72	113	26	+	25	99	151	0.4
9	+	+	+	+	+	20	+	19	74	113	0.3
, 10	+	+	+	+	+	+	+	+	+	+	+
11	15	+	12	48	76	+	+	+	+	+	0.1
12	37	1	30	120	189	7	+	6	25	38	0.2
13	15	+	12	48	76	26	+	25	99	151	0.5
14	+	+	+	+	+	13	+	12	50	96	0.3
15+	82	2	67	264	415	126	2	119	471	718	2.0

Table 18.2 Mean weight at age (g) by quarter in the North Sea mackerel stock and mean weight in the catch.

200		Quarter									
	1	2	3	4	weight in catch						
1.	180	140	180	180	180						
2	210	255	240	210	215						
3	240	330	280	240	250						
4	260	395	330	260	275						
5	300	450	375	300	320						
6	325	500	420	325	350						
7	355	540	465	355	380						
8	380	570	510	380	410						
9	410	605	550	410	445						
10	435	635	585	435	470						
11	465	670	620	465	500						
12	. 500	700	650	500	535						
13	530	730	680	530	565						
14	560	765	. 705	560	595						
15+	590	790	720	590	620						

Table 18.3 Percentage of each mackerel stock assumed to be present in the North Sea by quarter in 1993.

3	N	orth Se	a Stock	٢		Westerr	1 Stock	
Age .	1	2	3	4	1	2	3	4
1 .	100	100	100	100	-	20	30	30
2	80	100	100	80	10	10	50	70
>2	80	100	50	70	10	+	50	70

Table 18.4 Mean weight at age (g) by quarter in the catches of North Sea horse mackerel in 1993. The numbers of fish analyzed per age group are given in ().

Age		Quarter										
	1	2	3	4								
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+	NO DATA	73 (15) 115 (20) 136 (39) 152 (5) 157 (4) 187 (4) 179 (2) 207 (1) 239 (11) 299 (3) 343 (7)	56 (6) 94 (2) 123 (4) 157 (11) 195 (4) 182 (5) 198 (6) 241 (5) 263 (2) 248 (3) 266 (25) 315 (3) 255 (4) 265 (14) 328 (31)	104 (1) 186 (1) 194 (2) 193 (3) 232 (5) 188 (3) 224 (2) 269 (5) 323 (26) 272 (3) 266 (5) 318 (11) 364 (35)								

Table 18.5 Percentage of each horse mackerel stock assumed to be present in the North Sea by quarter in 1993.

100	No	orth Sea	a Stock		Western Stock						
Aye	1	2	3	4	1	2	3 '	4			
1-4 5+	100 100	100 100	100 100	100 100	0	0	0 5	0 65			

186

	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Age 0	?	?	?	?	?	?	?	?	?	?	?	?
Age 1	?	?	?	?	?	?	?	?	?			
Age 2	?	?	?	?	?	?	?	?	?	?		?
Age 3	?	?	?	?	?	?	?	?		?		?
Age 4	?	?		?	?	?	?					?
Age 5		?		?								?
Age 6												?
Age 7		?										?
Age 8	?								?	?	?	?
Age 9	?					?	?					?
Age 10	?											?
Age 11												?
Age 12	?	?		?	?	?	?	?	?	?	?	?
Age 13	?	?					?	?	?	?	?	?
Age 14		?		?		?	?	?	?	?	?	?
Age 15+	?	?					?	?	?	?		

Figure 2.1 The proportion of horse mackerel having otoliths with an opaque edge given by age group and by month of catch for ICES **Divisions VIIa-c,e-k**. A '?' is shown if less than 10 otoliths were available. A white square indicates that all otoliths have a hyaline edge. Based on Dutch otolith edge interpretation on otoliths from fish samples collected during 1990 - 1993.

	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Age 0	?	?	?	?	?	?	?	?	?		?	?
Age 1	?	?	?	?	?	?	?	-	?	?	?	?
Age 2	?	?	?	?			?			?	?	?
Age 3	?	?	?	?		?	?		?	?	?	?
Age 4	?	?	?	?			?			?	?	?
Age 5	?	?	?	?	?		?			?	?	?
Age 6	?	?	?	?	?		?		? .	?	?	?
Age 7	?	?	?	?	?	?	?		?	?	?	?
Age 8	?	?:	?	?	?:		?		?	?	? ·	?
Age 9	?	?	?	?	?		?					?
Age 10	?	?	?	?	?		?				?	?
Age 11	?	?	?	?	1	?	?				?	?
Age 12	?	?	?	?	?		?:		?	?		?
Age 13	?	?	?	?	?	?	?		?		?	?
Age 14	?	?	?	?	?	?	?		?		?	?
Age 15+	?	?	?	?	:		?					? :

Figure 2.2 The proportion of horse mackerel having otoliths with an opaque edge given by age group and by month of catch for ICES **Divisions IVb+c**. A '?' is shown if less than 10 otoliths were available. A white square indicates that all otoliths have a hyaline edge. Based on Dutch otolith edge interpretation on otoliths from fish samples collected during 1990 - 1993.

188

	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Age 0	?	?	?	?	?	?	?		?	?	?	?
Age 1	?		?									
Age 2												
Age 3	?		?									
Age 4	?			?				?				?
Age 5				?	?				?			
Age 6			?	?	?			?	?		?	?
Age 7	?		?	?	?			?	?			?
Age 8		?		?				?			?	?
Age 9		?					?	?	?	?	?	?
Age 10							?	?	?	?	?	?
Age 11	?	?	?	ŗ	?		?	?	?	?	?	?
Age 12	?	?	?	?	?		?	?	?	?	?	?
Age 13	?	?	?	?	?	?	?	?	?	?	?	?
Age 14	?	?	?	?	?	?	?	?	?	?	?	?
Age 15+		?	?	?	?		?	?	?	?	?	

Figure 2.3 The proportion of horse mackerel having otoliths with an opaque edge given by age group and by month of catch for ICES **Division IXa**. A '?' is shown if less than 10 otoliths were available. A white square indicates that all otoliths have a hyaline edge. Based on Portuguese otolith edge interpretation on otoliths from fish samples collected during 1990 - 1993.

Figure 4.1 The distribution of age 1 group mackerel, as numbers per hour, from the International Bottom Trawl Surveys of the North Sea in the second quater of 1993. (Provisional)

Figure 4.2 The distribution of age 2+ group mackerel, as numbers per hour, from the International Bottom Trawl Surveys of the North Sea in the second quater of 1993. (Provisional)

The distribution of age 1 group mackerel, as numbers per hour, from the International Bottom Trawl Surveys of the North Sea in the third quater of 1993. (Provisional)

Figure 4.4

The distribution of age 2+ group mackerel, as numbers per hour, from the International Bottom Trawl Surveys of the North Sea in the third quater of 1993. (Provisional)

The distribution of age 1 group mackerel, as numbers per hour, from the International Bottom Trawl Surveys of the North Sea in the second quater of 1992. (Provisional)

M Donald

195

The distribution of age 1 group mackerel, as numbers per hour, from the International Bottom Trawl Surveys of the North Sea in the third quater of 1992. (Provisional)

Figure 4.8

The distribution of age 2+ group mackerel, as numbers per hour, from the International Bottom Trawl Surveys of the North Sea in the third quater of 1992. (Provisional)

The distribution of age 1 group mackerel, as numbers per hour, from the International Bottom Trawl Surveys of the North Sea in the fourth quater of 1992. (Provisional)

Figure 4.10 The distribution of age 2+ group mackerel, as numbers per hour, from the International Bottom Trawl Surveys of the North Sea in the fourth quater of 1992. (Provisional)

The distribution of age 1 group mackerel, as numbers per hour, from the International Bottom Trawl Surveys of the North Sea in the fourth quater of 1993. (Provisional)

Figure 4.12The distribution of age 2+ group mackerel, as numbers per hour,
from the International Bottom Trawl Surveys of the North Sea in
the fourth quater of 1993. (Provisional)

Figure 5.1 The age composition of the western mackerel in the international catches from 1982-1993.

Figure 5.2 The SSQ surface produced by tuning the Western Mackerel, Separable VPA assessments to two time periods of the egg production spawning stock biomass estimates.

Figure 5.4

Trends in yield and fishing mortality (F)

-

Trends in spawning stock biomass (SSB) and recruitment (R)

SSB Year, Recruit year-class

Yield ('000 tonnes)

FISH STOCK SUMMARY STOCK: Mackerel in the Western Area (Fishing Areas VI, VII and VIII)

8-9-1994

Figure 5.6

(run: H1)

Figure 5.5

Long term yield and spawning stock biomass

Yield - - SSB Short-term yield and spawning stock biomass

209

(run: H1YR)

Figure 5.7 Western Mackerel stock recruitment Fhigh = > 0.450(SSB/R = 0.351)糭 Fmed = > 0.157(SSB/R = 0.777)Recruits (Millions, age 0) Flow = > 0.016(SSB/R = 1.647)

SSB ('000 tonnes)

Figure 5.8 The F at age estimates estimated by an XSA assessment and a VPA initialised with terminal F estimates generated by a tuned Separable VPA

Figure 5.9 The "smooth" F's at age estimated by the 1994 Separable VPA and ICA assessments and the status quo values used for the the 1994 forcast by ACFM in 1993

Figure 5.10 Population abundance at age estimated by three analysis methods compared with the values used for the 1993 stock projections

Figure 5.11 The time series of reference F's estimated by the 1993 and 1994 separable VPA assessments

Figure 6.2 Fbar (2-7) estimated using an XSA assessment tuned independently to 4 fleet data sets. Shrinkage s.1. = 1.5

Figure 6.3 The SSB estimated using an XSA assessment tuned independently to 4 fleet data sets. F shrinkage s.l. = 1.5

Figure 6.4 Selectivity at age of fishery for southern mackerel relative to age 1.

Figure 7.1 Total catches of horse mackerel in the northeast Atlantic during the period 1965 - 1993. The catches taken by the USSR and catches taken from the southern, western and North Sea horse mackerel stocks are shown in relation to the total catches in the northeast Atlantic.

Figure 8.1 The age composition of the North Sea horse mackerel based on commercial and research vessel samples from 1987-1993.

Figure 9.1 The age composition of the western horse mackerel in the international catches from 1982-1993.

Figure 9.2 The maturity ogives from western horse mackerel of the year classes 1979, 1982 and 1987 for the periods January-July (spawning area) and for October-December (nursery area). The ages for the period October-December have been increased with one year, because these fish will be spawning in the next year. Based on data from 1982-1993.

Figure 9.3 The sum of squared residuals between estimated SSB and egg production estimates generated by variation of terminal F on the 1982 and 1987 cohorts.

:

Figure 9.4 Sections through the SSB SSQ response surface for variation in terminal F on two Western horse mackerel cohorts

Figure 9.5 Observed age composition in the catch in 1992 (A) and in 1993 (B). In the predictions was tuned to the age composition of the catch in 1993 (therefore same age compositions observed and predicted in (B)). After this tuning the observed age composition of the catch in 1992 can be compared with the predicted age composition in 1992 (A).

Figure 9.6 The predicted decrease in spawning stock biomass of western horse mackerel if a TAC of 300,000 t is respected from 1995 onwards and assuming weak recruitment at age 1 from 1994 onwards.

Fig. 10.1.- Mean weight at age in the catch (ages: 1 - 9)

Fig. 10.2.- Southern Horse Mackerel Retrospective Analysis

Fig. 10.3.- Southern Horse Mackerel Retrospective analysis

Fig. 10.4.- Southern Horse Mackerel Retrospective Analysis

FISH STOCK SUMMARY

FISH STOCK SUMMARY STOCK: Horse mackerel in Fishing Areas VIIIc and IXa 1 - 7 - 1994

SSB in 1996 (1000 tonnes) at spaw. time

Figure 11.1 Total landings of sardine in Divisions VIIIc and IXa from 1940-1993.

D5 D6 D7 D8 D9 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 G0 G1 G 2

Figure 11.3 SARDINE-CPUE data from Purse seine fleets (DIV. VIIIc+IXa)

)

Figure 11.4c Tuning diagnostics: aged index 1 at ages 5 and 6.

Figure 11.5e Tuning diagnostics: aged index 2 at age 3, 4, 5 and 6.

Figure 11.6. Sardine Recruitment ploited against spawning stock biomass at spawning time (Assessment, S=1.0) $(F_{1331-1335} = 0, 306)$

Figure 11.7. Sardine recruitment ploited against spawning stock biomass at spawning time (Assessment, S = 1.25) $(\mathcal{F}_{1991-93} = 0.159)$

FISH STOCK SUMMARY STOCK: Sardine in Fishing Areas VIIIc and IXa 30-6-1994

254

Figure 11.8

(5=1,25)

FISH STOCK SUMMARY STOCK: Sardine in Fishing Areas VIIIc and IXa 29-6-1994

Figure 11.9

D5 D6 D7 D8 D9 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 G0 G1 G2

Figure 12.2a : Length distributions of landings of Bay of Biscay anchovy in Divisions VIIIa,b and c for the first quarter

Figure 12.2b : Length distributions of landings of Bay of Biscay anchovy in Divisions VIIIa,b and c during the second quarter

Figure 12.2c : Length distributions of landings of Bay of Biscay anchovy in Divisions VIIIa, b and c during the third quarter.

Figure 12.2d : Length distributions of landings of Bay of Biscay anchovy in Divisions VIIIa, b and c during the fourth quarter.

Figure 12.3 : Length distributions of landings of Bay of Cadiz anchovy by quarter in Sub-Division IXa South in 1993

Total length in cm

Figure 13.1 : Bay of Biscay Anchovy Historical evolution of the Fishery. Landings since 1940

Figure 13.2: Evolution of the fleets fishing for anchovy in the Bay of Biscay

Figure 13.3 Recruitment indices and variation of CPUE for age 1

Figure 13.5 : Relationship between the number of recruits (1 year old anchovies) and the SSB estimated from direct estimation method

Figure 16.1. Sardine in Divisions VIIIc and IXa. Beverton and Holt stock-recruit relationship fitted in the integrated model. There is no detectable relationship, but the variability about this fit is usable for the projections.

Figure 16.2. Sardine in Divisions VIIIc and IXa. Stock trajectory for fishing at 1993 levels of F in the period 1994-2003, and projected catches.

Figure 16.3. Sardine in Divisions VIIIc and IXa. Stock trajectory for fishing at twice 1993 levels of F in the period 1994-2003, and projected catches.

Figure 16.4. Sardine in Divisions VIIIc and IXa. Stock trajectory for fishing at half 1993 levels of F in the period 1994-2003, and projected catches.

Figure 16.5. Western Mackerel. Projected stock trajectories (+/-95% confidence intervals) for fishing at (1) 1993 levels; (2) 1.3 times 1993 levels; (3) 1.4 times 1993 levels in the period 1995-1999.

Figure 16.6. Western Mackerel. Projected catches (+/-95% confidence intervals) for fishing at (1) 1993 levels; (2) 1.3 times 1993 levels; (3) 1.4 times 1993 levels in the period 1995-1999.

APPENDIX 1

ASSESSMENT OF THE BAY OF BISCAY ANCHOVY

Assessment based only on direct estimates of biomass using them as free of errors. (=Past assessments performed by this Working Group).

This methodology for calculating natural and fishing mortalities on this stock of anchovy was explained in an earlier Working Group report (Anon., 1991). The rates of mortality were calculated from the direct estimates of abundance (Anon.1993), provided by the Daily Egg Production Method (DEPM estimates), which are considered as absolute estimates.

These estimates of F and M arising form this assessment are presented in Table A1.1 (Anon. 1993d):

- The estimates of natural mortality (M) fluctuate between years and are high, ranging from 0.5 to 2.2; In the range of values known for other species like anchovies.
- Over the period 1987-92, the estimates of fishing mortality on all age groups together show an increasing trend from 0.32 in 1987/1988 to 1.1 in 1991/1992;

This assessment of M and F is highly dependent on the precision of the direct estimates of the stock and better estimates might be obtained by taking the uncertainties of the estimates into account.

Integrated assessment of the Bay of Biscay anchovy using the ICA program.

An age-structured assessment was attempted using an integrated statistical analysis of the type used by Deriso *et al.* (1985), Gudmundsson (1986), Kimura (1989) in an implementation presented and reviewed in Anon. (1994) (ICA programmes). The ICA program was used to to look for estimates of the recruitment and fishing mortality for a set of different natural mortalities (0.8, 1.2, 1.6) in the range of those calculated by the former assessment for this stock. For every run the assumption of a constant natural mortality among years is required.

The following inputs were done:

- 50% of M and 50% of F are incurred before the egg production surveys ;
- 42% of M and 20% of F are incurred before the acoustic surveys ;
- The egg production and acoustic surveys measure stock size with lognormal error but no bias. The acoustic Index was used as a relative index of Biomass.

Age-disaggregated estimates of abundance from the egg surveys were used, but only estimates of stock size for ages 1-3 were significant in the estimates, therefore they are the only ones used for the analysis. Moreover, due to low percentages of anchovies of ages 3 or older, their estimates of abundance are considered less reliable and more subject of errors than the estimates for ages 1 and 2. Therefore the tuning to this population estimates by age will be downweighted for age 3. Concerning the data of catch at age, only the figure for the period 1983-1993 were used (Table A1.1), because it is believed that age readings for years prior to 1982 may not be consistent with later ones.

As there are so few ages in the catch-at-age matrix, the estimation of selection pattern is problematic. The approach taken here was to 'fill in' the many zeroes in the catch-at-age matrix with an arbitrary 1 Million catch in numbers, but to assign these observations a very low weight in the analysis. The model was thus fitting only to the actual observations of catches at the younger ages (ages 0-3). This approach is not usable with conventional VPA, but is an appropriate way to deal with the problem in the context of the type of integrated model fitted here.

Selection appeared to be highest on age 2 and to fall off thereafter. A reasonably consistent, if domed exploitation pattern was obtained by setting terminal selection = 0.6. The age of reference for the analysis is

age 2. Nevertheless, the analysis was robust to the use of age 1 or 2 as the reference age. Selection on age 2 has been chosen for convenience.

The form of the objective function fitted in the model was:

$$\sum_{a,y} \lambda_C (\ln(C_{a,y}) - \ln(\hat{C}_{a,y}))^2 +$$

$$\sum_{y} \lambda_{AC} (\ln(AC_y) - \ln(\hat{B}_y))^2 +$$

$$\sum_{y} \lambda_{EPB} (\ln(EPB_{a,y}) - \ln(N^*_{a,y})^2$$

where $N_{a,y}^*$ is the fitted population size at the time of the egg survey, \tilde{B} is the estimated population size at the time of the acoustic surveys, $C_{a,y}$ and $\tilde{C}_{a,y}$ are the observed and fitted catches at age, $EPB_{a,y}$ are the egg production estimates of stock size, and AC_y are the acoustic estimates of stock size. Weights on the catches at age (λC) were set = 0.1 for age 0, = 1 for age 1-3 and 0.01 for ages 4 and 5. Weights for the egg survey were set so that one year's catch-at-age information receives the same weight in the analysis as one survey observation and at the same time EPB estimates at age 3 were downweighted in relation to ages 1 and 2 ($\lambda EPB = 1.33$ for ages 1 and 2 and = 0.33 at age 3). Weights for the egg production estimate were also set so that one year's catch-at-age information receives the same weight in the analysis as one survey as the analysis as one survey observation ($\lambda ACU = 3$).

Finally a second trial was run taking into account only the DEPM estimates of Biomass both in SSB and in population numbers at age, for comparison purposes with the assessment performed in the last years.

Results : The data are known to be very noisy and highly variable. For this reason, no VPA had been presented on this stock in the past. Figure A1.1 for M = 0.8 illustrates this well : the sums of squares surface for the model fit is highly irregular, with a shallow depression around F = 0.4 and a sharp minimum at about F = 1.5, as tested using conventional separable VPAs over a range of fishing mortalities. Figure A1.3 for M=1.6 shows a SSQ surface with one minimum very flat, not very well determined and around F = 0.4. Nevertheless these figures show that the two surveys indicate rather closely similar trends in the population size.

On account of possible difficulties in convergence, the formal multidimensional programme (ICA2) was restarted from a number of possible terminal Fs. (range = 0.04 to 3). Nevertheless all these trials converge to the same unique solutions.

Table A1.2-A, shows the residuals obtained between the observed and estimated biomasses (Acoustic index) and the observed and estimated population numbers at age (DEPM values). The analysis of the residuals shows no significant differences among the sum of squares of the residuals obtained with the 3 values of M choosen (0.8, 1.2, 1.6).

With the DEPM biomass estimates used as SSB index (Table A1.2-B), the same conclusion is achieved : regardless the natural mortality used, all fits of the model result in the same level of residuals.

Table A1.3 shows, for the two kind of trials for tuning, the different estimates of fishing mortalities $[F_{bar} (87-93)]$ and explotation rates $(E_{bar} = F/Z)$ deduced from the 3 natural mortality values selected as inputs. The assessments produced similar estimates with the 2 tuning options.

Figures A1.3a,b,c give as example the different fits obtained with an M = 1.6 and a reference age = 2 and the SSB index estimated with the Acoustic survey.

Discussion: Uncertainty in the Assessment

The anchovy catch-at-age data cover only a small age-range and are highly variable on account of stronglyvariable recruitment. The fitted populations are subject to considerable uncertainty. The precision of the reference fishing mortality is poor, the estimate given in the above example for the reference age 2 is 0.92 but between 0.49 and 1.75 (+/- one standard deviation). This is not surprising as the last survey was carried out in 1992, and the rather high mortalities in this stock will mean that the F experienced by the anchovy in 1993 will be only weakly dependent on the population parameters in 1992.

The main results show that the data are very noisy and highly variable. Whatever natural mortality is used, the fits remain rather similar. Therefore the model underlying the ICA programme does not allow you to define a best constant natural mortality to this stock. The estimates of the fishing mortality show for all ages an increasing tendency up to 1991 and a decrease after this period. The evolution of the fleets however suggest a continuous increasing of fishing effort, even taking into account the recent significant recruitments. The highest rate of fishing mortality detected in 1991 coincides with a very low level of the stock spawning biomass; this F estimate could therefore indicates increasing catchability at low levels of the stock. The rate of exploitation of the fishery (F/Z) remains uncertain as far as it is dependent on the estimate of natural mortality used.

References:

- Anon. 1991. Report of the Working Group on the Assessment of the Stocks of Sardine, Horse Mackerel and Anchovy. ICES, Doc. C.M. 1991/Assess : 22, 138 pp.
- Anon. 1993. Report of the Working Group on the Assessment of Mackerel, Horse Mackerel, Sardine and Anchovy. ICES C.M. 1993/ Assess : 19, 274 pp.
- Anon. 1994. Herring Assessment Working Group for the Area South of 62°N. ICES C.M. 1994 (sous presse).
- Deriso, R.B., Quinn, T.J. and Neal, P.R, 1985. Catch-at-age analysis with auxiliary information. Can. J. Fish. Aquat. Sci. 42: 815-824.
- Gudmundsson G., 1986. Statistical considerations in the analysis of catch-at-age observations. J. Cons. Int. Explor. Mer, 43 : 83-90.
- Kimura D.K., 1986. Variability tuning and simulation for the Doubleday-Deriso Catch-at-age model. Can. J. Fish. Aquat. Sci. 46 : 941-949.

Table A1.1	: Fishing a	and natural r	nortality (F	M) estimat	es for the B	av of Bisca	av anchovy	from the
	DEPM SS	B estimates	and catche	s between	survevs	1	1	
					1			
Years	1987/88	1988/89(*)	1989(*)/90	1990/1991	1991/92			
Age group								
1+	0.39/0.96	0.44/1.74	0.4/0.72	0.89/2.13	1.08/0.36			
2+		0.45/1.96	0.43/1.74	1.26/1.0	1.1/1.72			
(*) 1989 SS	SB estimate	e raised up t	o 1 standar	d deviation	because of	the presu	mption	
of underes	imation ac	cording Mot	os & Santia	go (1990)				

TableA1.2 : Analysis of residuals obtained from ICA program

A : Use of Acoustic data for the SSB index

	M = 0.8			M = 1.2				
observed	estimated	SSQ	observed	estimated	SSQ	observed	estimated	SSQ
9.649	9.921	0.073984	9.649	9.961	0.097344	9.649	10.004	0.126025
11.067	10.681	0.148996	11.067	10.666	0.160801	11.067	10.657	0.1681
11.396	11.509	0.012769	11.396	11.485	0.007921	11.396	11.45	0.002916
	Total SSQ	0.235749		Total SSQ	0.266066		Total SSQ	0.297041
observed	estimated	SSQ	observed	estimated	SSQ	observed	estimated	SSQ
13.394	13.3886	2.92E-05	13.394	13.727	0.110889	13.394	14.087	0.480249
14.67	13.527	1.306449	14.669	13.851	0.669124	14.669	14.199	0.2209
12.413	12.952	0.290521	12.413	13.243	0.6889	12.413	13.545	1.281424
15.54	14.629	0.829921	15.541	14.86	0.463761	15.54	15.11	0.1849
13.38	13.725	0.119025	13.38	13.97	0.3481	13.38	14.227	0.717409
15.533	14.97	0.316969	15.533	15.097	0.190096	15.533	15.235	0.088804
12.71	12.321	0.151321	12.71	12.515	0.038025	12.71	12.689	0.000441
12.461	11.851	0.3721	12.461	11.966	0.245025	12.46	12.053	0.165649
12.236	11.948	0.082944	12.236	12.052	0.033856	12.235	12.128	0.011449
12.155	11.365	0.6241	12.155	11.413	0.550564	12.154	11.429	0.525625
12.539	12.689	0.0225	12.539	12.711	0.029584	12.539	12.717	0.031684
12.25	11.974	0.076176	12.25	11.923	0.106929	12.25	11.859	0.152881
11.238	11.569	0.109561	11.238	11.561	0.104329	11.238	11.516	0.077284
11.097	11.096	1E-06	11.097	10.902	0.038025	11.097	10.655	0.195364
9.798	10.465	0.444889	9.798	10.235	0.190969	9.798	9.939	0.019881
10.596	10.419	0.031329	10.597	10.174	0.178929	10.597	9.856	0.549081
8.294	9.778	2.202256	8.294	9.407	1.238769	8.294	8.971	0.458329
9.741	10.559	0.669124	9.741	10.225	0.234256	9.741	9.8	0.003481
	Total SSQ	7.649215		Total SSQ	5.46013		Total SSQ	5.164835

-

	M = 0.8			M = 1.2		M = 1.6			
observed	estimated	SSQ	observed	estimated	SSQ	observed	estimated	SSQ	
10.287	10.356	0.004761	10.288	10.379	0.008281	10.288	10.4	0.012544	
11.059	10.441	0.381924	11.059	10.484	0.330625	11.058	10.54	0.268324	
9.381	9.845	0.215296	9.381	9.842	0.212521	9.381	9.832	0.203401	
11.485	11.104	0.145161	11.485	11.145	0.1156	11.484	11.185	0.089401	
9.867	10.321	0.206116	9.867	10.252	0.148225	9.867	10.177	0.0961	
11.416	11.407	8.1E-05	11.416	11.374	0.001764	11.416	11.337	0.006241	
	Total SSQ	0.953339		Total SSQ	0.817016		Total SSQ	0.676011	
observed	estimated	SSQ	observed	estimated	SSQ	observed	estimated	SSQ	
13.394	13.437	0.001849	13.394	13.733	0.114921	13.394	14.062	0.446224	
14.669	13.787	0.777924	14.669	14.127	0.293764	14.669	14.486	0.033489	
12.413	12.893	0.2304	12.413	13.185	0.595984	12.413	13.505	1.192464	
15.541	14.648	0.797449	15.541	14.91	0.398161	15.541	15.592	0.002601	
13.38	13.326	0.002916	13.38	13.564	0.033856	13.38	13.826	0.198916	
15.533	15.029	0.254016	15.533	15.195	0.114244	15.533	15.387	0.021316	
12.71	12.305	0.164025	12.71	12.497	0.045369	12.71	12.667	0.001849	
12.46	11.874	0.343396	12.461	11.971	0.2401	12.461	12.039	0.178084	
12.235	12.131	0.010816	12.236	12.293	0.003249	12.236	12.404	0.028224	
12.155	11.228	0.859329	12.155	11.322	0.693889	12.155	11.385	0.5929	
12.539	12.622	0.006889	12.539	12.696	0.024649	12.539	12.75	0.044521	
12.25	11.537	0.508369	12.25	11.503	0.558009	12.25	11.479	0.594441	
11.238	11.552	0.098596	11.238	11.511	0.074529	11.238	11.445	0.042849	
11.097	11.067	0.0009	11.097	10.877	0.0484	11.097	10.637	0.2116	
9.798	10.365	0.321489	9.798	10.183	0.148225	9.798	9.91	0.012544	
10.597	10.428	0.028561	10.597	10.298	0.089401	10.597	10.059	0.289444	
8.294	9.579	1.651225	8.294	9.297	1.006009	8.294	8.918	0.389376	
9.741	10.373	0.399424	9.741	10.119	0.142884	9.741	9.797	0.003136	
	Total SSQ	6.457573		Total SSQ	4.625643		Total SSQ	4.283978	

Table A1.3 : Values of Fbar(87-93) and Ebar(87-93) for different values of M during the studied period (83-93)

A : With acoustic as SSB index

	M = 0.8	8	M = 1.2		M = 1.6		
Aae	Fbar	Ebar	Fbar	Ebar	Fbar	Ebar	
1	0.47	0.37	0.37	0.23	0.28	0.15	
2	1.17	0.6	1.04	0.46	0.956	0.37	
3	0.65	0.45	0.78	0.4	1.04	0.39	

B : With DEPM as SSB index

	M = 0	.8	M = '	1.2	M = 1	M = 1.6		
Age	Fbar	Ebar	Fbar	Ebar	Fbar	Ebar		
1	0.5	0.38	0.4	0.25	0.29	0.15		
2	1.43	0.64	1.19	0.5	1.21	0.43		
3	1.029	0.56	1.05	0.47	1.1	0.41	and Sector	

Figure A1.1 : Shape of the SSQ surface for M = 0.8 and SSB index estimated with Acoustic survey.

284

Figure A1.2 : Shape of the SSQ surface for M = 1.6 and SSB index estimated with Acoustic survey.

Figure A1.3a : Stock summary and Separable Model Diagnostics.

Figure A1.3b : Tuning Diagnostics : Biomass index 1 and Aged index at age 1

Figure A1.3c : Tuning Diagnostics : Aged index at age 2 and at age 3

288

APPENDIX 2

TESTING A MODEL FOR THE ASSESSMENT OF WESTERN MACKEREL

A2.1. Introduction

Three substantial problems have been identified in the assessment of the Western Mackerel:

- 1) The egg production estimates may not necessarily be best treated as absolute estimates of stock size, but could better be treated as proportionate measures of abundance (Darby, 1993a).
- 2) Selection pattern appears to be changing in this stock (Darby, 1993b; Patterson, 1994a). The method used by the Working Group to overcome this problem in 1993 was not optimal in that data in the terminal year were downweighted (Anon. 1993).
- 3) Stock assessments have been calculated using either egg-surveys using a manually-tuned separable VPA, or using an age-disaggregated demersal survey (Darby, 1993c). It is undesirable to have two separate assessments, each of which uses only a part of the available data set.

A method was proposed for resolving these three problems in the framework of an integrated statistical analysis (Patterson, 1994b). This method has been evaluated by comparing results obtained with those from the two other methods available (manually-tuned separable VPA and shrunk XSA). A retrospective analysis is calculated in Patterson (1994b), and simulation testing of the method has been performed by Patterson (1994c) and in Appendix I to Anon. (1994). A description of the programmes is given in Patterson (1994d).

A2.2. Manually-tuned assessment of Western Mackerel

A separable VPA adjusted by hand to the egg production estimates of stock size is given in Section 5.5.6.

A2.3. Integrated Analysis Using a Single Selection Pattern

Integrated catch-at-age analysis (Fournier and Archibald, 1982; Deriso *et al.*, 1985; Gudmundsson, 1986; Kimura, 1989) as implemented in the ICA programmes (Patterson, 1994) was used to fit a separable model for the Western Mackerel. Such models have already been proposed for the assessment of this stock (Anon. 1991).

An integrated model was fitted to the catch at age data, egg production estimates of biomass, and Western Approaches survey data. The objective function fitted was:

$$\frac{\sum_{a,y} \lambda_a (\ln(C_{a,y} - \ln(F_y \cdot S_a \cdot \overline{N}_{a,y}))^2 +}{\sum_{a,y} \lambda_E (\ln(EPB) - \ln(S\hat{S}B))^2 +} \sum_{a,y} \lambda_{CP} (\ln(A_{a,y} - K \cdot \ln(Q \cdot N^*))^2)$$

Here S_a represents selection at age, SSB is the spawning stock size estimated from the fitted populations, F_y are the reference fishing mortalities at age 5, N^{*} are the fitted populations calculated at the time of the surveys. $C_{a,y}$ are the observed catches at age, where λ_c was set to 1.0 for all ages except age 0, at which it was set to 0.01 in order to reduce the influence of high variability in the recruitment. λ_E was set to 5.0, corresponding to the large importance given to the egg production surveys in the traditional assessments. λ_{CP} was set = 1.0 for all ages. No inverse-variance weighting was attempted.

In prior trials which allowed a proportionate relationship between the egg production estimate of stock size, the estimate of the coefficient of proportionality was very close to 1.0, suggesting that the use of this survey as an absolute measure of biomass is appropriate.

Results are given in Table A2.1 and in Figure A2.1. These indicate a departure from the assumption of separability, with a region of high residuals above age 6 and after 1988. The model fits rather poorly to the catch at age data since 1988.

A2.4. Integrated Analysis Using A Varying Selection Pattern

An analysis by Patterson (1994a) suggested that selection was stable prior to 1988, but that a marked change in selection occurred after this year. The model was modified to allow selection pattern to change in 1989. The objective function fitted in the new formulation was:

$$\begin{split} &\sum_{a,y=1988}^{a,y=1988} \lambda_a (\ln(C_{a,y} - \ln(F_y.S1_a.\bar{N}_{a,y}))^2 + \\ &\sum_{a,y=1989}^{a,y=1993} \lambda_a (\ln(C_{a,y} - \ln(F_y.S2_a.\bar{N}_{a,y}))^2 + \\ &\sum_{y} \lambda_E (\ln(EPB) - \ln(SSB))^2 + \\ &\sum_{a,y} \lambda_{CP} (\ln(A_{a,y} - K.\ln(Q.N^*))^2 \end{split}$$

Results and diagnostics of the model fit are given in Figures A2.1 - A2.12 and Table A2.1. The revised model formulation fits well to the observed data, with no strong groups of residuals.

As in the XSA assessments, when fitting to the Western Approaches survey data with assumed power relationships, these fits departed strongly from linearity (exponent = ca. 0.2).

Performance of this assessment method in retrospective analyses has been tested by Patterson (1994b), albeit in a slightly different model formulation. As one might expect, the assessment was found to be subject to revisions in perception of stock size at three-yearly intervals, when new egg survey data are included in the assessments.

A2.5. XSA assessment of Western Mackerel

A2.5.1 The assessment methodology

Darby (1993a WD) demonstrated that the Western mackerel VPA could be tuned by applying XSA to a ground fish survey data set previously used only for the estimation of recruits (Dawson et al 1988). The resulting assessments showed good agreement with separable analyses tuned to the egg survey estimates. The tuning is independent of the egg survey results and provides a means by which the separable analysis can be cross validated, especially for the years between egg surveys. The XSA analysis has been repeated at this Working Group with the updated catch data.

The tuning diagnostics from the run are presented in Table A2.3. Ages 1 - 4 of the tuning data range exhibit high correlations between log catchability and log population abundance. The slopes are significantly different from 1. The slopes are severe and the estimated catchability values exhibit a wide range e.g. 115x for age 2. Ages < 5 were treated as recruits to the survey.

Unshrunk XSA analyses were used to examine the variation in catchability with age and time. The residuals for each area show year effects but no overall trends. Ages 5 and above had no significant differences in their log catchabilities and catchability was held constant at the value for age 5.

Anon (1993a) describes a series of retrospective runs with a range of shrinkage c.v.s, as used to examine the influence of shrinkage on the estimated F and population abundances for the most important ages. This follows the recommendations of the Working Group on Methods of Fish Stock Assessment (Anon 1993b). The optimum skrinkage cv was found to be 0.5. An examination of the contribution to the weighted mean terminal populations shows that the mean contributes approximately 20% to each of the estimates (Table A2.4).

XSA allows a minimum threshold to be set for the standard errors derived from the fleets. The value was set at 0.4 to reduce the influence of the extremely good correlations between log CPUE and log abundance noted for ages 1 -

4. This reduces the weight given to the population estimates at these ages and prevents them from dominating the assessment (Darby 1993a WD).

An examination of the tuning diagnostics for the assessment shows that the log CPUE data for the first four ages are well correlated with the log populations at age. The slopes of the regressions are severe, indicating a strong non-linear relationship in catchability. The information provided by the older ages in the tuning range is of poorer quality. The standard errors of the Log catchability are indicating high coefficients of variation (>60%) and will have a reduced influence on the weighted estimates for the terminal populations.

A.2.6. Conclusions and Recommendations

Population size estimates from the three methods are compared in Figure 5.10. They are extremely close, and at present it does not seem that the perception of the size of this stock is dependent on the assessment method used. However it would be desirable to use a single assessment method rather than three separate methods.

The XSA assessment method does not allow inclusion of the egg survey information, which in the past has been the principal measure of the size of this stock. Although useful for comparative purposes in years when there are no egg surveys, the method is not suitable for definitive assessments when new egg surveys are to be included in the assessment. Furthermore, some problems of stability in the algorithm were noted by the Working Group (Section 11.11).

The manually-tuned separable VPA which has been used as the standard method to date suffers from two disadvantages. Firstly, a changing selection pattern violates the assumption that selection is constant over the entire time series that is made in the separable VPA. In the assessment of the stock made in 1993 it was found to be necessary to downweight important data in the fit in order to obtain consistent results. This is highly undesirable. Secondly, the method does not allow the inclusion of the Western Approaches surveys in the assessments, which have been shown to fit well to VPA estimates of population size.

The ICA programmes are at present the only method that is available to the working group for the analysis of all the relevant available information on this stock in a fashion which is consistent with prior belief about the fishery. The assumption of an abrupt change in selection in 1988 is an improvement over the assumption of constant selection, but may not be a realistic way to model the behaviour of a fishery which may be concentrating on abundant cohorts, or which has gradually changed its exploitation onto older fish. Alternative methods such as ADAPT (which assumes fixed catches at age) or other models of selection pattern may be preferable, and further testing work would be welcomed. Despite these caveats, however, the Working Group notes that the ICA programmes are the most appropriate of the tools presently available for the assessment of this stock. The ICA programmes also provide a test that a solution has been reached, in contrast to the XSA programme which does not indicate whether a stable solution has been found. On account of these perceived advantages, it is recommended to perform the next assessment of the Western Mackerel using the ICA method with changing selection pattern.

Comments and advice from the Methods Working Group are welcomed.

A.3. References

- Anon. (1991). Report of the Mackerel Working Group. ICES C.M. 1991/Assess: 19, 90pp.
- Anon. (1993a). Report of the Working Group on the assessment of mackerel, horse mackerel, sardine and anchovy. ICES C.M. 1993/Assess:19, 274pp.
- Anon. (1994). Report of the herring assessment Working Group for the area South of 62°N. ICES C.M. 1994/Assess:13, 249pp.
- Anon. (1993b). Report of the Workshop on Methods of Fish Stock Assessment. ICES, Doc. C.M. 1993/Assess:12, 86 pp.
- Darby, C.D. (1993a). The use of spawning stock biomass estimates derived from egg surveys as indices for tuning separable VPA assessments. ICES C.M. 1993/D:27.
- Darby, C.D. (1993b)*. The sensitivity of the Western Mackerel separable VPA assessments to variation in exploitation

pattern. Working paper for the mackerel, horse mackerel, sardine and anchovy Working Group, June 1993.

- Darby, C.D. (1993c)*. An alternative approach to the assessment of the Western Mackerel. Working Paper for the mackerel, horse mackerel, sardine and anchovy Working Group, June 1993.
- Deriso, R.B., Quinn, T.J., and Neal, P.R. (1985). Catch-at-age analysis with auxiliary information. Can. J. Fish. Aquat. Sci. 42: 815-824.
- Fournier, D. and Archibald, C.P. (1982). A general theory for analyzing catch at age. Can. J. Fish. Aquat. Sci. 39: 1195-1207.
- Gudmundsson, G. (1986). Statistical considerations in the analysis of catch-at-age observations. J. Cons. int. Explor. Mer, 43: 83-90.
- D.K. (1986). Variability, tuning and simulation for the Doubleday-Deriso catch at age model. Can J. Fish. Aquat. Sci. 46: 941-949.
- Patterson, K.R. (1994a)*. Selection pattern changes in the western mackerel. Working Paper for the mackerel, horse mackerel, sardine and anchovy Working Group, June 1994.
- Patterson, K.R. (1994b)*. On building a model for the assessment of western mackerel. Working Paper for the mackerel, horse mackerel, sardine and anchovy Working Group, June 1994.
- Patterson, K.R. (1994c)*. Simulation testing the ICA programmes. Working paper for the herring assessment working group for the area south of 62°N, March 1994.
- Patterson, K.R. (1994d)*. Users guide for the Integrated Catch-Age Programmes. Working paper for the herring assessment working group for the area south of 62°N, March 1994.

[Papers marked * are available from the authors: K.R. Patterson, SOAFD Marine laboratory, P.O. Box 101, Aberdeen AB9 8DB, UK; and C.D. Darby, MAFF Fisheries Laboratory, Pakefield Road, Lowestoft NR 330HT, UK.]

Table A2.1 Summary results of integrated catch-at-age analysis using the objective function given in Section A2.3. The populations are fitted to the egg survey estimates of stock size and the 'Western Approaches' survey data. The latter are assumed to bear a power relationship to stock size. Selection pattern is assumed to be constant over the years of the analysis.

INDIC	CES OF SPAWN	ING STOCK I	BIOMASS								
	1977	1980	1983	1986	1989	1992					
1.	322E+07	.241E+07	.249E+07	.201E+07	.224E+07	.293E+07					
AGE	- STRUCTURE	D INDICES									
INDEX	K: 1 from	1984 to	1993								
	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	
1	.606E-01	.321E+01	.443E+00	.340E+01	.214E+02	.118E+02	.190E+01	.248E+01	.107E+01	.467E+01	
2	.611E+00	.310E-01	.940E+01	.387E+00	.130E+01	.865E+01	.476E+01	.184E+02	.320E+01	.405E+01	
3	.571E+01	.809E+00	.221E+00	.636E+01	.263E+01	.389E+01	.987E+01	.674E+01	.792E+01	.453E+01	
4	.393E+01	.515E+01	.344E+00	.304E-01	.108E+02	.354E+01	.333E+01	.580E+01	.325E+01	.331E+01	
INDEX	K: 2 from	1984 to	1993								
	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	
1	.411E+02	.212E+03	.196E+01	.134E+02	.304E+01	.223E+03	.362E+01	.162E+02	100E+01	.104E+03	
2	.441E+03	.229E+02	.431E+02	.200E+02	.485E+02	.209E+03	.640E+02	.125E+04	.138E+03	.171E+03	
з	.760E+03	.121E+03	.119E+02	.732E+02	.165E+03	.131E+03	.117E+03	.437E+03	.459E+03	.149E+03	
4	.451E+03	.275E+03	.958E+01	.433E+01	.269E+03	.417E+02	.332E+02	.216E+03	.500E+02	.141E+03	

FISHI	ISHING MORTALITY																		
	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
0	.0002	.0073	.0025	.0032	.0144	.0032	.0060	.0010	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0002
1	.0193	.0744	.0390	.0458	.1334	.1082	.0522	.0380	.0230	.0191	.0172	.0152	.0169	.0164	.0155	.0172	.0188	.0231	.0268
2	.0332	.0828	.0976	.1855	.1132	.2498	.1493	.1075	.0811	.0674	.0605	.0536	.0596	.0579	.0545	.0607	.0663	.0814	.0943
3	.0982	.1293	.0873	.1920	.2914	.1861	.1725	.1966	.1351	.1123	.1007	.0893	.0994	.0965	.0908	.1011	.1104	.1356	.1570
4	.1087	.2433	.0863	.1833	.2374	.2861	.1057	.1971	.1844	.1532	.1375	.1219	.1356	.1317	.1239	.1379	.1507	.1851	.2143
5	.2391	.1344	.1007	.1776	.2334	.2746	.1943	.1063	.2327	.1934	.1735	.1538	.1711	.1661	.1564	.1741	.1902	.2335	.2705
6	.1388	.2154	.0846	.1904	.2277	.2284	.2312	.2165	.2132	.1772	.1590	.1409	.1568	.1522	.1433	.1595	.1742	.2140	.2478
7	.4695	.4085	.1645	.1179	.3477	.2255	.2285	.2321	.2291	.1904	.1708	.1514	.1685	.1636	.1539	.1714	.1872	.2299	.2663
8	.2466	.2820	.2081	.2019	.1595	.3448	.2437	.2918	.2400	.1994	.1789	.1586	.1765	.1714	.1613	.1795	.1961	.2408	.2789
9	-2558	.1438	.1473	.2875	.3893	.2007	.3886	.2733	.2490	.2068	.1856	.1645	.1831	.1777	.1673	.1862	.2034	.2498	.2893
10	.2391	.1344	.1007	.2807	.4252	.4184	.2960	.4797	.2327	.1934	.1735	.1538	.1711	.1661	.1564	.1741	.1902	.2335	.2705
11	.2391	.1344	.1007	.2807	.4252	.4184	.2960	.4797	.2327	.1934	.1735	.1538	.1711	.1661	.1564	.1741	.1902	.2335	.2705

		MARRY AT ACE (Millians)																		
	NUMBERS A	I AGE (M.	(1111ons)	1079	1070	1000	1001	1000	1000	1004										
	197	5 197	5 19//	1978	19/9	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
	0 4870	. 5057	. 877.	3523.	5990.	6562.	6849.	2265.	1080.	5762.	2881.	3604.	6115.	4859.	5747.	4128.	3970.	5397.	91161.	5247.
	1 2964	. 4191	. 4321.	753.	3023.	5082.	5630.	5860.	1948.	930.	4958.	2479.	3101.	5263.	4182.	4946.	3552.	3417.	4644.	78451.
	2 3431	. 2502	. 3348.	3577.	619.	2277.	3926.	4599.	4856.	1638.	785.	4195.	2102.	2625.	4456.	3544.	4184.	3000.	2874.	3892.
	3 1087	. 2856	. 1982.	2614.	2557.	476.	1526.	2910.	3555.	3854.	1318.	636.	3422.	1704.	2132.	3632.	2871.	3371.	2381.	2251.
	4 3197	. 848	. 2160.	1564.	1857.	1645.	340.	1106.	2058.	2673.	2965.	1026.	501.	2667.	1332.	1676.	2826.	2213.	2533.	1751.
	5 970	. 2469	. 572.	1706.	1120.	1260.	1063.	263.	781.	1473.	1974.	2224.	782.	376.	2012.	1013.	1256.	2092.	1583.	1760.
	6 1193	. 657	. 1857.	445.	1229.	764.	824.	754.	204.	533.	1045.	1428.	1641.	567.	274.	1481.	732.	894.	1425.	1039.
	7 3561	. 894	. 456.	1469.	317.	843.	523.	563.	522.	142.	384.	767.	1068.	1208.	419.	205.	1087.	530.	621.	958.
i.	8 0	. 1916	. 511.	333.	1124.	193.	579.	358.	384.	358.	101.	279.	567.	777.	883.	309.	148.	776.	362.	410.
	90	. 0	. 1244.	357.	234.	825.	117.	390.	230.	260.	252.	73.	205.	409.	563.	647.	222.	105.	525.	236.
1	0 0	. 0	. 0.	924.	231.	137.	581.	69.	256.	155.	182.	180.	53.	147.	295.	410.	462.	156.	70.	338.
1	1 0	. 0	. 0.	Ο.	585.	150.	123.	254.	99.	131.	138.	152.	169.	86.	101.	107.	181.	205.	127.	130.

STOCK SUMMARY

Year	Recruits	Total B	Spawn B	Landings	Yld/SSB
	x10^6	tonnes	tonnes	tonnes	
1975	4870.	4111975.	3006971.	491380.	.1634
1976	5057.	3726438.	2655858.	507178.	.1910
1977	877.	3625427.	2640786.	325974.	.1234
1978	3523.	3593872.	2814604.	503913.	.1790
1979	5990.	3299273.	2468810.	605744.	.2454
1980	6562.	2935972.	1969832.	604761.	.3070
1981	6849.	2955018.	1967549.	661762.	.3363
1982	2265.	2825456.	1880415.	623819.	.3317
1983	1080.	3184565.	2334531.	614287.	.2631
1984	5762.	3203944.	2561647.	550929.	.2151
1985	2881.	3268588.	2498189.	561292.	.2247
1986	3604.	3191987.	2165205.	537615.	.2483
1987	6115.	3174234.	2457297.	615380.	.2504
1988	4859.	3529412.	2644034.	628000.	.2375
1989	5747.	3790384.	2795495.	567400.	.2030
1990	4128.	3660161.	2720127.	605937.	.2228
1991	3970.	4171801.	3177362.	646169.	.2034
1992	5397.	4377398.	3291137.	742305.	.2255
1993	91161.	4270822.	3139427.	805039.	.2564

Sepa	rable	Model: Populations	at age 10	
32	1983	255677.9805	119012.9933	549278.0908
33	1984	154556.1195	85237.7838	280246.5409
34	1985	182091.9978	108125.2488	306658.2138
35	1986	180247.4663	112234.4270	289475.7873
36	1987	52982.5892	33931.0530	82731.1417
37	1988	146746.2434	95337.8047	225875.3495
38	1989	294998.5573	197589.4902	440429.0365
39	1990	410018.6473	293428.3614	572934.7033
40	1991	461919.1578	331244.4857	644144.4842
41	1992	156205.3895	110381.0819	221053.4930

SSB Index catchabilities

SSB	Index	1 wa	is us	ed as	absolute	estimator.
No	fitted	catchability	for	this	index.	

Age-structured index catchabilities Age-Structured Index 1

	Powe	er	model	fitted.	Slopes	(Q)	and	exponent	ts (F	K) at	age:
4	12 :	1	Q	.16851E+	+02	.912	257E+	+01	.3111	L6E+02	2
ł	43 :	1	к -	41608E-	-02	50	781E+	-02 -	.3243	36E+02	2
4	14 :	2	Q	.31900E+	-02	.165	515E4	+02	.6161	L8E+02	2
4	45 2	2	к -	50316E-	+02	600)14E+	+02 -	.4061	L8E+02	2
4	16 3	3	Q	.76997E-	+01	.464	170E+	+01	.1275	58E+02	2
4	47 3	3	к -	28506E-	+02	358	356E+	-02 -	.2115	57E+02	2
4	48 4	4	Q	.16647E-	+02	.941	L77E+	+01	.2942	25E+02	2
4	49 4	4	к -	39539E-	+02	476	591E+	+02 -	.3138	37E+02	2

Age-Structured Index 2

Pov	vei	model	fitted.	Slopes	(Q)	and	expo	nents	(K)	at	age:
50	1	Q	.11137E-	+01		70	582E-	+00	.17	7571	E+01	L
51	1	ĸ	.14501E-	+01		53	925E-	+01	.82	2927	E+01	L
52	2	Q	.27043E-	+01		17	016E-	+01	.42	2980	E+01	L
53	2	K	99947E-	+01		16	821E-	+02	32	L681	E+01	L
54	3	Q	.47259E-	+01		29	528E-	+01	.75	5636	E+01	L
55	З	K	17585E-	+02		24	431E·	+02	10	0738	E+02	2
56	4	Q	.12773E-	+02		74	081E-	+01	. 22	2023	E+02	2
57	4	K	32235E-	+02		40	032E-	+02	24	1438	E+02	2

PARAMETER ESTIMATES +/- SD

S	eparable 1	Model: Reference	e F by year	
1	1983	.2327	7.1643.	3297
2	1984	.1934	4.1362.	2745
3	1985	.1735	5.1226.	2455
4	1986	.1538	8 .1089 .	2173
5	1987	.1711	1.1212.	2417
6	1988	.1661	1.1179.	2341
7	1989	.1564	4 .1110 .	2202
8	1990	.1741	1.1233.	2457
9	1991	.1902	2.1344 .	2690
10	1992	.2335	5.1634.	3337
11	1993	.2705	5.1843.	3968
S	eparable 1	Model: Selection	n (S) by age	
12	0	.0006	6 .0001 .	0054
13	1	.0990	0.0722	1358

14	2	.3485	.2555	.4754
15	3	.5807	.4283	.7872
16	4	.7925	.5901	1.0644
	5	1.0000	Fixed : H	Reference age
17	6	.9163	.6965	1.2055
18	7	.9846	.7534	1.2867
19	8	1.0313	.7918	1.3434
20	9	1.0697	.8180	1.3989
	10	1.0000	Fixed : 1	last true age

S	eparable	Model: Populations	in year	1993
21	0	91161088.	54543.	152362149163.
22	1	4644254.	3469604.	6216587.
23	2	2873814.	2348178.	3517112.
24	3	2380676.	1963762.	2886103.
25	4	2533190.	2087850.	3073523.
26	5	1582736.	1278143.	1959916.
27	6	1425483.	1106631.	1836204.
28	7	621368.	475509.	811969.
29	8	362203.	269159.	487410.
30	9	524867.	377541.	729685.
31	10	70350.	47165.	104933.

RESIDUALS ABOUT THE MODEL FIT

Separable Model Residuals: log(Observed Catch) - log(Expected Catch), and we ights in the analysis

Age	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	
1993											
0	71987E+01	.56321E+00	.70652E+01	.61782E+00	.19389E+01	14731E+01	58990E+01	87256E+00	74364E+00	38945E-01	-
.10978E+	00 .10000E	-01									
1	15047E-01	71611E-01	22146E+00	.55334E+00	.58502E-01	11808E-01	.13322E+00	38619E+00	15631E+00	14193E+00	-
.68858E-	02 .10000E	+01									
2	78858E+00	.10944E+01	98382E+00	87217E+00	.17098E+00	18724E+00	.10313E+00	_48002E-01	.52375E-01	.55118E-01	
.20104E+	00 .10000E	+01									
3	.41170E+00	30297E+00	.67063E+00	52422E+00	54311E+00	.11803E+00	.10464E+00	.17536E+00	.67262E-02	.80354E-01	
.17929E+	00 .10000E	+01									
4	.14976E+00	74744E+00	.27209E+00	.77537E+00	12865E+00	36649E+00	.68794E-01	35017E-01	18192E-01	.33935E-01	
.84030E+	00 .10000E	+01									
5	39303E-01	.21625E+00	75301E-01	.18551E+00	.50099E+00	.21580E+00	.44865E-01	.55437E-01	20206E-01	18354E+00	-
.81891E-	01 .10000E	+01									
6	.39340E+00	33151E+00	.33459E+00	.16724E+00	.12406E+00	.27406E+00	.29915E+00	29587E-01	14570E+00	19122E+00	-
.23497E+	00 .10000E	+01									
7	.26386E+00	.32470E+00	.42802E-01	.22880E+00	.21753E-01	.98673E-02	.19684E+00	.30378E+00	50164E-01	24548E+00	-
.65990E+	00 .10000E	+01									
8	.24990E+00	26698E+00	20727E+00	35918E+00	13652E-01	10793E+00	.13709E+00	.10709E+00	.70452E+00	.97297E-01	-
.91621E-	01 .10000E	+01	267607 00	125015.00		2002000	403548.01	000417 01	121050.00	045000.00	
9	.941988-01	.32746E-01	36762E+00	13501E+00	28/05E+00	30737E+00	49354E-01	.9904IE-01	13185E+00	.84592E+00	
.16024E+	00 .10000E	+01	1000000000	107617.00	100077.00		164505.00	700060 01	151000.00		
	80361E-10	.5860/E-02	16993E+00	19/61E+00	1608/E+00	3/639E+00	16458E+00	./2926E-01	.151986+00	309948-01	
.0//8/E+	00 .T0000E	+01									
Wte	100008+01	10000 - 01	100005+01	100005+01	10000	1000000+01	100005+01	100005+01	100008+01	10000E+01	
.10000E+	01	.1000000401	.1000000-01	.100000401	.1000000401	.100005+01	.1000000401		.100000+01	.1000001+01	

Biomass Index Residuals: log(Observed Index) - log(Expected Index)

Idx 1977 1979 1978 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 .19830E+00 -.10000E+01 -.10000E+01 .20168E+00 -.10000E+01 -.10000E+01 .64472E-01 -.10000E+01 -.10000E+01 -.74380E-01 -.10000E+01 -.10000E+01 1 -.22153E+00 -.10000E+01 -.10000E+01 -.11623E+00 -.10000E+01

Aged Index Residuals: log(Observed Index) - log(Expected Index)

Aged Index 1

Age	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
1	.12910E+00	63184E+00	65618E+00	.75013E+00	.10981E+01	.11473E+01	11483E+01	.52640E-01	67655E+00	64383E-01
2	.49426E+00	.52781E-01	42232E-01	83343E+00	39356E+00	33339E+00	13096E+00	.65121E+00	.68755E-01	.46656E+00
3	54969E+00	32080E+00	13834E+00	20703E+00	.33120E+00	.26344E+00	.11178E+00	.21597E+00	.64297E-01	.22916E+00
4	46181E+00	49523E+00	23138E+00	62747E+00	.53626E+00	.13687E+01	.67230E+00	23169E+00	94983E-01	43473E+00

Aged Index 2

Age	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
1	.79231E+00	.22541E+01	23549E+01	46165E+00	19990E+01	.23210E+01	18177E+01	28160E+00	10000E+01	.15473E+01
2	.19102E+01	31609E+00	13550E+01	14319E+01	76899E+00	.16646E+00	78915E+00	.20211E+01	.15115E+00	.41217E+00
3	.78500E+00	.60724E+00	58764E+00	13768E+01	.52031E+00	64192E-01	99543E+00	.68886E+00	.49906E+00	76413E-01
4	.87371E+00	.10429E+00	56197E+00	.48177E+00	.34625E+00	.24529E+00	55676E+00	44482E-02	82096E+00	10717E+00

PARAMETERS OF THE DISTRIBUTION OF ln CATCHES AT AGE

Separable model fitted from 1983 to 1993 Variance : 2.1940 Skewness test statistic : -14.8369 Kurtosis test statistic : 57.3301 Partial chi-square : 31.0827 Probability of chi-square : 1.0000 Degrees of freedom : 41

PARAMETERS OF THE DISTRIBUTION OF THE SSB INDICES

DISTRIBUTION STATISTICS FOR ln SSB INDEX 1 Index used as absolute measure of abundance.

Variance	:	.0253
Skewness test statistic	:	.1408
Kurtosis test statistic	:	7445
Partial chi-square	:	.0103
Probability of chi-square	:	1.0000
Number of observations	:	6
Degrees of freedom	:	6
Weight in the analysis	:	4.0000

PARAMETERS OF THE DISTRIBUTION OF THE AGE-STRUCTURED INDICES

DISTRIBUTION STATISTICS FOR ln AGED INDEX 1 Power catchability relationship assumed. Age : 1 2 3 4 Variance : .7143 .2341 .0952 .4713 Skewness test stat. : .2689 -.2871 -.8117 1.3648 Kurtosis test stat. : -.7907 -.4536 -.5350 -.0753 Partial chi-square : 7.1045 6.9159 1.4221 19.5881 Prob. of chi-square : .5254 .5457 .9939 .0120 Number of data : 10 10 10 10 Degrees of freedom : 8 8 8 8 Weight in analysis : 1.0000 1.0000 1.0000 1.0000

DISTRIBUTION STATISTICS FOR ln AGED INDEX 2

re	lationship	assumed.		
:	1	2	3	4
:	3.8040	1.6443	.6526	.3122
:	.0264	.7618	8556	0708
:	9148	5058	6174	5863
:	8.6449	2.8224	1.0058	.7567
:	.2792	.9450	.9982	.9994
:	9	10	10	10
:	7	8	8	8
:	1.0000	1.0000	1.0000	1.0000
	re : : : : : :	relationship : 1 : 3.8040 : .0264 :9148 : 8.6449 : .2792 : 9 : 7 : 1.0000	relationship assumed. : 1 2 : 3.8040 1.6443 : .0264 .7618 :91485058 : 8.6449 2.8224 : .2792 .9450 : 9 100 : 7 8 : 1.0000 1.0000	relationship assumed. : 1 2 3 : 3.8040 1.6443 .6526 : .0264 .76188556 :914850586174 : 8.6449 2.8224 1.0058 : .2792 .9450 .9982 : 9 10 10 : 7 8 8 : 1.0000 1.0000 1.0000

Table A2.2 Summary results of integrated catch-at-age analysis using the objective function given in Section A2.4. The populations are fitted to the egg survey estimates of stock size and the 'Western Approaches' survey data. The latter are assumed to bear a power relationship to stock size. Two selection patterns are fitted for the periods 1982 - 1988 and for 1988 - 1993 independently.

FIS	HING MO	RTALITY																		
	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	
0	.0002	.0074	.0025	.0032	.0145	.0032	.0061	.0010	.0000	.0000	.0000	.0000	.0000	.0007	.0006	.0007	.0007	.0009	.0011	
1	.0196	.0752	.0393	.0463	.1334	.1090	.0528	.0383	.0235	.0195	.0174	.0154	.0172	.0167	.0156	.0173	.0189	.0231	.0267	
2	.0341	.0842	.0987	.1871	.1146	.2498	.1505	.1087	.0864	.0716	.0641	.0567	.0632	.0565	.0528	.0587	.0638	.0781	.0903	
3	.0984	.1333	.0889	.1944	.2946	.1889	.1726	.1986	.1382	.1145	.1026	.0907	.1010	.0981	.0917	.1018	.1108	.1356	.1568	
4	.1142	.2439	.0892	.1871	.2412	.2902	.1075	.1972	.1792	.1485	.1330	.1176	.1310	.1405	.1314	.1459	.1587	.1943	.2247	
5	.2470	.1421	.1010	.1845	.2394	.2802	.1979	.1084	.2657	.2201	.1972	.1744	.1943	.1499	.1401	.1557	.1693	.2072	.2397	
6	.1442	.2243	.0900	.1911	.2387	.2359	.2374	.2214	.2208	.1829	.1639	.1449	.1615	.1567	.1464	.1627	.1770	.2166	.2505	
7	.4973	.4296	.1728	.1263	.3492	.2393	.2380	.2399	.2276	.1886	.1689	.1494	.1664	.1768	.1652	.1836	.1997	.2444	.2826	
8	.2187	.3068	.2229	.2143	.1728	.3469	.2629	.3077	.2352	.1949	.1746	.1544	.1720	.1910	.1785	.1983	.2157	.2640	.3053	
9	.2351	.1353	.1636	.3142	.4221	.2210	.3921	.3018	.2528	.2095	.1877	.1660	.1849	.1962	.1834	.2037	.2216	.2712	.3137	
10	.2470	.1421	.1010	.3205	.4842	.4734	.3356	.4863	.2657	.2201	.1972	.1744	.1943	.1799	.1682	.1868	.2032	.2487	.2876	
11	.2470	.1421	.1010	.3205	.4842	.4734	.3356	.4863	.2657	.2201	.1972	.1744	.1943	.1799	.1682	.1868	.2032	.2487	.2876	
NU	MBERS A	FAGE (M	illions)																	
	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
0	4823.	5020.	867.	3522.	5949.	6496.	6803.	2230.	1059.	5733.	2850.	3571.	6095.	4832.	5705.	4095.	3942.	5362.	13340.	5247
1	2917.	4150.	4289.	744.	3022.	5047.	5573.	5819.	1918.	912.	4934.	2453.	3074.	5246.	4156.	4907.	3522.	3390.	4611.	11470
2	3338.	2462.	3314.	3549.	612.	2276.	3895.	4550.	4821.	1612.	769.	4174.	2079.	2601.	4441.	3522.	4151.	2975.	2851.	3864
3	1085.	2777.	1948.	2584.	2534.	469.	1526.	2884.	3513.	3806.	1292.	621.	3394.	1680.	2115.	3626.	2859.	3352.	2368.	2242
4	3052.	846.	2092.	1534.	1831.	1624.	334.	1105.	2035.	2633.	2921.	1003.	488.	2641.	1311.	1661.	2818.	2203.	2519.	1743
5	943.	2343.	571.	1647.	1095.	1238.	1046.	259.	781.	1465.	1954.	2201.	768.	369.	1975.	989.	1236.	2070.	1561.	1732
6	1151.	634.	1750.	444.	1179.	742.	805.	739.	200.	515.	1011.	1381.	1592.	544.	273.	1477.	729.	898.	1448.	1057
7	3404.	858.	436.	1376.	316.	799.	504.	547.	509.	138.	369.	739.	1028.	1166.	400.	203.	1081.	526.	622.	970
8	Ο.	1782.	481.	316.	1044.	192.	541.	342.	370.	349.	98.	269.	548.	749.	841.	292.	145.	762.	354.	404
9	Ο.	Ο.	1128.	331.	219.	756.	117.	358.	217.	252.	247.	71.	198.	397.	533.	605.	206.	101.	504.	225
10	Ο.	Ο.	Ο.	825.	208.	124.	522.	68.	228.	145.	176.	176.	52.	142.	281.	382.	425.	142.	66.	317
11	0.	Ο.	Ο.	0.	527.	136.	111.	251.	88.	116.	122.	136.	150.	80.	94.	100.	171.	194.	121.	121

STOCK SUMMARY

_	_	_	_	-	_	_	_	 _	_	 _

Year	Recruits	Total B	Spawn B	Landings	Yld/SSB
1975	XIU 6	2963661	2875714	491380.	.1709
1976	5020	3580218	2525562.	507178.	.2008
1977	867.	3479306.	2509192.	325974.	.1299
1978	3522.	3453515.	2685261.	503913.	.1877
1979	5949.	3182391.	2358958.	605744.	.2568
1980	6496.	2851906.	1893459.	604761.	.3194
1981	6803.	2877935.	1900046.	661762.	.3483
1982	2230.	2776749.	1839246.	623819.	.3392
1983	1059.	3124055.	2281475.	614287.	.2692
1984	5733.	3144330.	2508018.	550929.	.2197
1985	2850.	3203311.	2437812.	561292.	.2302
1986	3571.	3126294.	2105164.	537615.	.2554
1987	6095.	3100529.	2391984.	615380.	.2573
1988	4832.	3455630.	2573031.	628000.	.2441
1989	5705.	3712006.	2726950.	567400.	.2081
1990	4095.	3597451.	2664995.	605937.	.2274
1991	3942.	4110610.	3123588.	646169.	.2069
1992	5362.	4332017.	3255220.	742305.	.2280
1993	13340.	4238564.	3113058.	805039.	.2586

PARAMETER ESTIMATES +/- SD

Sej	parable	Model: Reference F b	by year	
1	1983	.2657	.1765	.3999
2	1984	.2201	.1472	.3292
З	1985	.1972	.1332	.2920
4	1986	.1744	.1186	.2564
5	1987	.1943	.1327	.2844
6	1988	.1499	.1014	.2215
7	1989	.1401	.0946	.2076
8	1990	.1557	.1046	.2316
9	1991	.1693	.1135	.2527
10	1992	.2072	.1372	.3130
11	1993	.2397	.1544	.3719

Separable Model: Selection (S) by age

From 1983 to 1988

From 1989 to 1993

12	0	.0001	.0000	.0020	.0044	.0002	.1156
13	1	.0884	.0554	.1411	.1113	.0731	.1696
14	2	.3253	.2053	.5155	.3769	.2495	.5696
15	3	.5201	.3303	.8191	.6542	.4372	.9789
16	4	.6744	.4288	1.0605	.9376	.6289	1.3977
	5	1.0000	Fixed : H	Reference age			
17	6	.8311	.5434	1.2711	1.0451	.7126	1.5328
18	7	.8568	.5668	1.2951	1.1793	.8078	1.7216
19	8	.8855	.5880	1.3336	1.2740	.8759	1.8531
20	9	.9517	.6264	1.4462	1.3088	.8988	1.9058
	10	1.0000	Fixed :]	last true age	1.2000		

S	Separable	Model: Populations	in year	1993
30	0	13339919.	4621.	38512769025.
31	. 1	4610618.	3403645.	6245598.
32	2 2	2851473.	2307960.	3522979.
33	3	2368214.	1937317.	2894951.
34	4	2519250.	2061156.	3079157.
35	5 5	1560972.	1242810.	1960584.
36	6	1448009.	1110724.	1887714.
37	7 7	622311.	464541.	833666.
38	8	354258.	252466.	497092.
39	9	503549.	342753.	739779.
40	10	66214.	40825.	107391.

Separable Model: Populations at age 10

41	1983	228003.0823	102024.3011	509539.4429
42	1984	144726.4787	75644.3621	276897.7496
43	1985	175770.7557	99014.8119	312027.6449
44	1986	176469.3141	104951.1365	296723.0260
45	1987	51754.6833	31983.8953	83746.7489
46	1988	141697.2798	89117.0430	225300.5534
47	1989	280810.8424	182075.5417	433087.9837
48	1990	381713.9700	262711.2617	554622.4169
49	1991	424936.5247	290051.6021	622548.0183
50	1992	142235.4139	94255.4815	214639.1132

SSB Index catchabilitiesSSB Index1 was used as absoluteNo fitted catchability for this index.

Age-structured index catchabilities Age-Structured Index 1

Po	wer	model	fitted.	Slopes	(Q)	and	expone	nts	(K)	at	age:
51	1	Q	.16494E+	-02	.879	925E+	01	.30	941E	+02	
52	1	ĸ	41263E+	-02 -	.506	575E+	02	31	852E	+02	
53	2	Q	.30783E+	-02	.156	66E+	02	.60	488E	+02	
54	2	K	49758E+	-02 -	.597	/17E+	02	39	799E	+02	
55	3	Q	.75580E+	-01	.450)96E+	01	.12	667E	+02	
56	3	K ·	28215E+	-02 -	.357	'34E+	02	20	695E	+02	
57	4	Q	.16245E+	-02	.904	51E+	01	.29	177E	+02	
58	4	K ·	39152E+	-02 -	.475	43E+	02	30	761E	+02	

Age-Structured Index 2

Po	we	r model	fitted.	Slopes	(Q)	and	exponent	ts (H	() at	age:
59	1	Q	.11127E	+01	.698	93E+	00	.1771	5E+0	1
60	1	K	.14633E	+01	551	.03E+	01	.8436	59E+0	1
61	2	Q	.26682E	+01	.166	42E+	01	.4278	30E+0	1
62	2	K	97874E	+01.	167	41E+	02 -	.2834	2E+0	1
63	З	Q	.46366E	+01	.286	97E+	01	.7491	.5E+0	1
64	З	K	17291E-	+02	242	76E+	02 -	.1030)6E+0	2
65	4	Q	.12460E-	+02	.712	26E+	01	.2179	8E+0	2
66	4	K	31847E-	+02	398	60E+	02 -	.2383	3E+0	2

304

Table A2.2 Contd.

RESIDUALS ABOUT THE MODEL FIT

Separable Model Residuals: log	(Observed Catch) -	log(Expected Catch),	and we
ights in the analysis			

Age	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
1993										
0	52683E+01	.52593E+00	.65269E+01	.52828E+00	.23134E+01	26377E+01	60058E+01	56203E+00	19108E+00	.44232E+00
13412	E+00 .10000)E-01								
1	.17679E+00	68728E-01	26426E+00	.54733E+00	.10284E+00	12328E+00	.13732E+00	34960E+00	11210E+00	12086E+00
58277	E-01 .10000)E+01								
2	59602E+00	.10842E+01	10213E+01	86893E+00	.21693E+00	29397E+00	.10743E+00	.97362E-01	.10105E+00	.64025E-01
.11953E	+00 .10000E	2+01								
3	.60435E+00	30511E+00	.62050E+00	51541E+00	48723E+00	.12408E-01	.11236E+00	.22516E+00	.68945E-01	.94305E-01
.84634E	-01 .10000E	5+01								
4	.34171E+00	75237E+00	.22653E+00	.76774E+00	71244E-01	46455E+00	.72581E-01	.14041E-01	.40604E-01	.58016E-01
.74785E	+00 .10000E	5+01								
5	23275E+00	.20519E+00	42309E-01	.18427E+00	.45002E+00	.33142E+00	.59337E-01	.19599E-01	83582E-01	24277E+00
11978	E+00 .10000)E+01								
6	.20080E+00	33305E+00	.36835E+00	.16583E+00	.85023E-01	.39477E+00	.28290E+00	49704E-01	19063E+00	22030E+00
25282	E+00 .10000	DE+01								
7	.71526E-01	.32702E+00	.81302E-01	.22339E+00	22142E-01	.13620E+00	.18113E+00	.24812E+00	84244E-01	26131E+00
65298	E+00 .10000)E+01								
8	.57944E-01	25970E+00	16287E+00	35793E+00	59308E-01	.14982E-01	.12789E+00	.54372E-01	.63801E+00	.95721E-01
68281	E-01 .10000)E+01								
9	97507E-01	.42568E-01	31986E+00	12944E+00	32688E+00	18983E+00	64499E-01	.52331E-01	19483E+00	.81264E+00
.19799E	+00 .10000E	2+01								
10	27728E-16	.16685E-01	12158E+00	19083E+00	19768E+00	25602E+00	18965E+00	.19441E-01	.95943E-01	59073E-01
.88500E	+00 .10000E	2+01								
Wts	.10000E+01	.10000E+01	.10000E+01	.10000E+01	.10000E+01	.10000E+01	.10000E+01	.10000E+01	.10000E+01	.10000E+01
.10000E	+01									

Biomas	s Index Resid	duals: log(Obs	erved Index)	- log(Expecte	ed Index)						
Idx	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
1988	1989	1990	1991	1992	1993						
1	.24942E+00	10000E+01	10000E+01	.24122E+00	10000E+01	10000E+01	.87460E-01	10000E+01	10000E+01	46259E-01	10000E+01 -
.10000F	E+0119671E	C+0010000E	2+0110000E	2+01105261	S+0010000E	5+01					
Aged 1 Aged 1	Index Residual	s: log(Observ.	red Index) - 1	og (Expected)	.ndex)						
Aqe	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	
1	.13256E+00	63381E+00	65719E+00	.74951E+00	.10926E+01	.11450E+01	11421E+01	.53375E-01	67850E+00	61449E-01	
2	.50381E+00	.48884E-01	37480E-01	83381E+00	39621E+00	33716E+00	13372E+00	.65984E+00	.66384E-01	.45947E+00	
3	53469E+00	31015E+00	13468E+00	20303E+00	.33439E+00	.25726E+00	.10315E+00	.20769E+00	.61239E-01	.21882E+00	
4	45198E+00	48299E+00	22419E+00	63008E+00	.54347E+00	.13744E+01	.66385E+00	24459E+00	10738E+00	44056E+00	
Aged]	ndex 2										
Age	1984	1985	1996	1997	1000	1000	1000	1001	1000	1007	

1	.79242E+00	.22541E+01	23549E+01	46168E+00	19992E+01	.23209E+01	18175E+01	28158E+00	10000E+01	.15474E+01
2	.19114E+01	32112E+00	13521E+01	14327E+01	76977E+00	.16707E+00	78899E+00	.20251E+01	.15086E+00	.41038E+00
3	.79905E+00	.61266E+00	59113E+00	13717E+01	.52136E+00	69129E-01	99959E+00	.68378E+00	.49871E+00	84046E-01
4	.88365E+00	.11669E+00	55697E+00	.47597E+00	.35382E+00	.24964E+00	56461E+00	14930E-01	83167E+00	11160E+00

306

Table A2.2 Contd.

Degrees of freedom

PARAMETERS OF THE DISTRIBUTION OF ln CATCHES AT AGE

41

Separable model fitted from 1983 to 1993 Variance : 1.7267 Skewness test statistic : -2.9252 Kurtosis test statistic : 44.6266 Partial chi-square : 34.6400 Probability of chi-square : 1.0000

PARAMETERS OF THE DISTRIBUTION OF THE SSB INDICES

:

DISTRIBUTION STATISTICS FOR ln SSB INDEX 1

Index used as absolute measure of abundance.

Variance	:	.0285
Skewness test statistic	:	.6849
Kurtosis test statistic	:	6719
Partial chi-square	:	.0123
Probability of chi-square	:	1.0000
Number of observations	:	6
Degrees of freedom	:	6
Weight in the analysis	:	4.0000

PARAMETERS OF THE DISTRIBUTION OF THE AGE-STRUCTURED INDICES

DISTRIBUTION STATISTICS FOR ln AGED INDEX 1

Power catchability relationship assumed.

Age	:	1	2	3	4
Variance	:	.7112	.2365	.0906	.4719
Skewness test stat.	:	.2672	2668	7828	1.3811
Kurtosis test stat.	:	7955	4586	5337	0581
Partial chi-square	:	7.1109	6.9483	1.4419	18.7616
Prob. of chi-square	:	.5247	.5422	.9936	.0162
Number of data	:	10	10	10	10
Degrees of freedom	:	8	8	8	8
Weight in analysis	:	1.0000	1.0000	1.0000	1.0000

DISTRIBUTION STATISTICS FOR ln AGED INDEX 2

Power catchability relationship assumed.

Age	:	1	2	3	4
Variance	:	3.8040	1.6466	.6555	.3177
Skewness test stat.	:	.0263	.7661	8368	0707
Kurtosis test stat.	:	9149	5043	6305	5806
Partial chi-square	:	8.6448	2.8274	1.0111	.7594
Prob. of chi-square	:	.2792	.9447	.9982	.9994
Number of data	:	9	10	10	10
Degrees of freedom	:	7	8	8	8
Weight in analysis	:	1.0000	1.0000	1.0000	1.0000

Table A2.3 The tuning diagnostics from an XSA assessment of the Western Mackerel, tuned to the Western approaches ground fish survey

Lowestoft VPA Version 3.1

5/09/1994 10:42

Extended Survivors Analysis

Western Mackerel 1993 W.G.

CPUE data from file c:\data\mac\mhm94\mact93.csv

Catch data for 22 years. 1972 to 1993. Ages 0 to 12.

Fleet	First	Last	First	Last	Α	lpha	Beta
	year	year	age	age			
RV SURVEY VIIJ	1984	1993		1	10	0.23	0.35
RV SURVEY VIIh	1984	1993		1	10	0.23	0.35

Time series weights :

Tapered time weighting applied Power = 3 over 20 years

Catchability analysis :

```
Catchability dependent on stock size for ages < 5
```

Regression type = C Minimum of 5 points used for regression Survivor estimates shrunk to the population mean for ages < 5

Catchability independent of age for ages > = 5

Terminal population estimation :

Survivor estimates shrunk towards the mean F of the final 5 years or the 3 oldest ages.

S.E. of the mean to which the estimates are shrunk = .500

Minimum standard error for population estimates derived from each fleet = .400

Prior weighting not applied

Tuning converged after 44 iterations

Regression weig	hts									
	0.751	0.82	0.877	0.921	0.954	0.976	0.99	0.997	1	1
Table A2.3 The tuning diagnostics from an XSA assessment of the Western Mackerel, tuned to the Western approaches ground fish survey

Fishing mo	Fishing mortalities													
Age	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993				
0	0	0	0.006	o	0	0.005	0.001	0.001	0	0,002				
1	0.013	0.043	0.011	0.008	0.023	0.012	0.027	0.015	0.024	0.028				
2	0.065	0.016	0.091	0.075	0.055	0.088	0.068	0.062	0.056	0.078				
3	0.22	0.05	0.037	0.202	0.113	0.11	0.153	0.082	0.135	0.125				
4	0.212	0.2	0.08	0.078	0.224	0.139	0.147	0.187	0.143	0.208				
5	0.241	0.196	0.227	0.128	0.129	0.231	0.175	0.178	0.218	0.179				
6	0.25	0.237	0.224	0.238	0.169	0.117	0.235	0.202	0.211	0.268				
7	0.109	0.238	0.266	0.254	0.268	0.161	0.136	0.273	0.265	0.301				
8	0.214	0.15	0.226	0.286	0.29	0.237	0.185	0.233	0.297	0.359				
9	0.208	0.257	0.137	0.293	0.271	0.266	0.268	0.249	0.369	0.436				
10	0.197	0.256	0.264	0.324	0.263	0.248	0.183	0.361	0.326	0.485				
11	0.207	0.23	0.232	0.36	0.364	0.283	0.181	0.244	0.351	0.438				

1 XSA population numbers (Thousands)

	AC	GE								
YEAR	0	1	2	3	4	5	6	7	8	9
1984	6.92F + 03	1.25F + 03	1.36F + 03	3.62E + 03	2.11E + 03	1.20E + 03	4.48E + 02	1.63E + 02	2.88E + 02	2.26E + 02
1985	3.02E + 03	5.95E + 03	1.06E + 03	1.09E + 03	2.50E + 03	1.47E + 03	8.11E + 02	3.00E + 02	1.26E + 02	2.00E + 02
1986	3.52E + 03	2.60E + 03	4.91E+03	8.98E + 02	8.96E+02	1.76E + 03	1.04E + 03	5.51E+02	2.04E + 02	9.32E + 01
1987	5.45E + 03	3.02E + 03	2.22E + 03	3.86E + 03	7.45E + 02	7.12E + 02	1.21E + 03	7.16E + 02	3.63E+02	1.40E + 02
1988	4.52E + 03	4.69E + 03	2.57E+03	1.77E + 03	2.71E+03	5.93E + 02	5.39E + 02	8.21E+02	4.78E + 02	2.35E+02
1989	5.10E + 03	3.89E + 03	3.94E + 03	2.10E + 03	1.36E + 03	1.87E + 03	4.49E + 02	3.92E + 02	5.40E + 02	3.08E + 02
1990	4.07E + 03	4.37E + 03	3.31E + 03	3.11E+03	1.62E + 03	1.02E + 03	1.28E + 03	3.44E + 02	2.87E+02	3.67E + 02
1991	4.01E + 03	3.50E + 03	3.66E + 03	2.66E + 03	2.30E + 03	1.20E + 03	7.37E + 02	8.68E + 02	2.58E + 02	2.05E + 02
1992	5.29E + 03	3.45E + 03	2.97E+03	2.96E + 03	2.11E+03	1.64E + 03	8.65E + 02	5.18E + 02	5.69E + 02	1.76E + 02
1993	5.71E + 03	4.55E + 03	2.90E + 03	2.41E+03	2.23E + 03	1.57E + 03	1.14E + 03	6.03E+02	3.42E + 02	3.64E + 02

Estimated population abundance at 1st Jan 1994

0.00E+00 4.91E+03 3.81E+03 2.31E+03 1.83E+03 1.56E+03 1.13E+03 7.48E+02 3.84E+02 2.06E+02

Taper weighted geometric mean of the VPA populations:

11

4.18E+03 3.46E+03 2.78E+03 2.15E+03 1.57E+03 1.09E+03 7.45E+02 5.06E+02 3.47E+02 2.40E+02

Standard error of the weighted Log(VPA populations) :

0.4414	0.4697	0.4942	0.5154	0.5174	0.5021	0.4859	0.4864	0.5499	0.6953

YEAR

1984	1.51E + 02	1.23E + 02
1985	1.58E + 02	1.07E + 02
1986	1.33E + 02	1.05E + 02
1987	6.99E+01	8.79E + 01
1988	8.98E + 01	4.35E + 01
1989	1.54E + 02	5.94E + 01
1990	2.03E + 02	1.04E + 02
1991	2.42E + 02	1.46E + 02
1992	1.38E + 02	1.45E + 02
1993	1.05E + 02	8.56E + 01

AGE 10

Estimated population abundance at 1st Jan 1994

2.03E+02 5.55E+01

Taper weighted geometric mean of the VPA populations:

1.58E+02 1.11E+02

Standard error of the weighted Log(VPA populations) :

0.882 1.0913 1

Log catchability residuals.

Fleet : RV SURVEY VIIJ

Age		1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
	1	-0.09	-0.41	-0.21	0.28	0.42	0.41	-0.27	0.03	-0.21	-0.03
	2	0,36	-0.19	-0.2	-0.26	-0.09	0	0.01	0.27	0.01	0.1
	3	-0.25	0.09	-0.28	-0.27	0.12	0.12	0.13	0.11	0.08	0.05
	4	-0.03	-0.12	0.14	-0,35	0	0.37	0.19	-0.01	-0.09	-0.13
	5	0.87	0.53	-0.45	-1.52	0.63	0.92	-0.11	0.39	-0.46	-0.61
	6	-0.3	0.33	-0.04	-1.26	1.09	-0.17	0.08	0.6	-1.32	-1.02
	7	-0.44	-0.39	0.23	-0.93	0.45	-0,39	-1.56	0.74	-0.75	-0.5
	8	-0.95	0.44	-0.42	-1.26	0,96	0.32	-1.01	-0.29	-0.54	-1.05
	9	-0.08	0,06	-0.76	-2.48	1.34	0.94	-0.92	-1.16	-1.58	-1.09
	10	0,35	-0.87	-0.41	-2.61	1.11	1.37	-0.68	0.13	-0.5	99,99

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age	5	6	7	8	9	10
Mean Log	-6.4318	-6.4318	-6.4318	-6.4318	-6.4318	-6,4318
S.E(Log q)	0.7827	0.847	0.7929	0.8446	1.3282	1.2198

Regression statistics :

Ages with q dependent on year class strength

Age	Slope		t-value	Intercept RSqu		No Pts	Reg s.e	Mean Log q
	1	0.31	2.554	7.9	0.65	10	0.31	-7.29
	2	0.27	4.643	7.68	0.85	10	0.21	-7.06
	3	0.43	4.205	7.15	0.88	10	0.19	-6.4
	4	0.28	4.231	7.22	0.83	10	0.22	-6.6

Ages with q independent of year class strength and constant w.r.t. time.

Age		Slope	t-value	Intercept	RSquare	No Pts	Reg s.e	Mean Q		
	5	0.79	0.371	6.58	0.29	10	0.65	-6.43		
	6	8.15	-1.266	6.3	0	10	6.43	-6.64		
	7	0.6	1.424	6.55	0.64	10	0.4	-6.79		
	8	0.94	0.101	6.75	0.3	10	0.75	-6.81		
	9	0.53	0.914	6.26	0,34	10	0.63	-7.02		
1	0	0.49	0.881	5.79	0.33	9	0.6	-6.66		
Fleet : R	v s	URVEY VIIH	I							
Age		1984	1985	1986	1987	1988	1989	1990	1991	1992
	1	2.03	2.88	-3.15	-0.5	-3.09	3.36	-2.77	-0.36	99.99
	2	2.59	-1.15	-1.8	-2.04	-1.02	0.53	-0.89	2.99	0.24
	3	0.61	0.56	-0.77	-1	0.3	-0.03	-0.48	0.53	0.46
	4	0,38	0,06	0.04	-0.02	-0.02	0.08	-0.16	0.07	-0.3
	5	3.17	1.59	-0.69	-0.48	0.34	-0.03	-1.72	-0,32	-0,52
	6	-0.57	0.79	-0.3	0.5	1.51	-0.33	-1.08	99.99	0.26
	7	99.99	0.73	-0.02	0.63	0.91	99.99	-1.67	-0.64	-0.41
	8	-3.44	0.17	-2.78	0.59	1.15	-1.25	-0.45	0.23	-2.44
	9	-2.99	0.59	-3.82	-0.12	-0.04	99.99	-1.08	99.99	99.99
1	10	-3.07	0.61	-2.68	-1.81	1.32	-3.02	-0.58	99.99	-1.7

1993 2.1 0.56 -0.08 -0.03 -0.4 -1.19 -1.39 -1.91 -1.26 99.99

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age	5	6	7	8	9	10
Mean Log	-3.7778	-3.7778	-3.7778	-3.7778	-3.7778	-3.7778
S.E(Log q)	1.2918	0.906	1.0252	1.8591	2.0592	2.2024

Regression statistics :

Ages with q dependent on year class strength

Age	Slope		Slope		t-value	Intercept	RSquare	No Pts	Reg s.e	Mean Log q
	1	1.46	-0.187	3.66	0.03	9	2.85	-5.09		
	2	1.34	-0.244	1.56	0.07	10	1.82	-3.17		
	3	0.66	0,755	4.36	0.4	10	0,62	-2.62		
	4	0.31	4.807	6,12	0.87	10	0.18	-3.14		

Ages with q independent of year class strength and constant w.r.t. time.

Age		Slope	t-value	Intercept	RSquare	No Pts	Reg s.e	Mean Q
	5	0.98	0.013	3.83	0.09	10	1.36	-3.78
	6	3.28	-0.856	-2.71	0.02	9	3.02	-3.83
	7	0.63	0.555	4.9	0.29	8	0.65	-4.05
	8	1.24	-0.154	4.5	0.05	10	2.04	-4.75
	9	0.48	0.754	5.18	0.33	7	0.8	-4.98
	10	3.59	-0,352	5.77	0	8	6.43	-5.12

Terminal year survivor and F summaries :

Age 0 Catchability dependent on age and year class strength

Year class = 1993

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	Ν	Scaled Weights	Estimated F
RV SURVEY VIIJ	1	0	0	0	0	0	0
RV SURVEY VIIh	1	0	0	0	0	0	0
P shrinkage mean	3455	0.47				0.531	0.004
F shrinkage mean	7295	0.5				0.469	0.002
Weighted prediction :							
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
4905	0.34	8.51	2	24.846	0.002		

Age 1 Catchability dependent on age and year class strength

Year class = 1992

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	Ν	Scaled Weights	Estimated F
RV SURVEY VIIJ	3701	0.4	0	0	1	0.426	0.028
RV SURVEY VIIh	31065	3.156	0	0	1	0.007	0.003
P shrinkage mean	2783	0.49				0.287	0.038
F shrinkage mean	5235	0.5				0.28	0.02
Weighted prediction :							
Survivors	Int	Ext	Ν	Var	F		
at end of year	s.e	s.e		Ratio			
3814	0.26	0.17	4	0.648	0.028		

Year class = 1991

1

Age 2 Catchability dependent on age and year class strength

mated vivors	Int	Ext	Var	N	0	
	s.e	s.e	Ratio	IN	Scaled Weights	Estimated F
2185 0	.283 0	.156	0.55	2	0.588	0.083
4055 1.	.929	0	0	1	0.013	0.045
2152 (0.52				0.194	0.084
2766	0.5				0.206	0.066
Int	Ext	N	Var	F		
s.e	s.e		Ratio			
0.22 (0.09	5 C	0.389 0.	.078		
	2185 0 4055 1 2152 0 2766 Int s.e 0.22 0	vivors s.e 2185 0.283 0 4055 1.929 0 2152 0.52 0 2766 0.5 0 Int Ext s.e s.e s.e 0 0.22 0.09 0	vivors s.e s.e 2185 0.283 0.156 4055 1.929 0 2152 0.52 2766 0.5 Int Ext N s.e s.e 0.22 0.09 5	vivors s.e s.e Ratio 2185 0.283 0.156 0.55 4055 1.929 0 0 2152 0.52 2766 0.5 Int Ext N Var s.e s.e Ratio 0.22 0.09 5 0.389	vivors s.e s.e Ratio 2185 0.283 0.156 0.55 2 4055 1.929 0 0 1 2152 0.52 2 2 2766 0.5 2 1 Int Ext N Var F s.e s.e Ratio 0.078	vivors s.e s.e Ratio Weights 2185 0.283 0.156 0.55 2 0.588 4055 1.929 0 0 1 0.013 2152 0.52 0.194 0.206 Int Ext N Var F s.e s.e Ratio 0.078

Age 3 Catchability dependent on age and year class strength

Year class = 1990

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	Ν	Scaled Weights	Estimated F
RV SURVEY VIIJ	1891	0.231	0.01	0.04	3	0.61	0.122
RV SURVEY VIIh	1728	0.605	0.079	0.13	3	0.092	0.133
P shrinkage mean	1569	0.52				0.144	0.145
F shrinkage mean	1941	0.5				0.154	0.119
Weighted prediction :							
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
1833	0.19	0.03	8	0.165	0.125		

Age 4 Catchability dependent on age and year class strength

1

Year class = 1989

Fleet	Estimated Survivors	int s.e	Ext s.e	Var Ratio	Ν	Scaled Weights	Estimated F
RV SURVEY VIIJ RV SURVEY VIIh	1535 1745	0.201 0.34	0.115 0.306	0.57 0.9	4 4	0.545 0.209	0.21 0.187
P shrinkage mean	1090	0.5				0.122	0.285
F shrinkage mean	1960	0.5				0.123	0.168
Weighted prediction :							
Survivors at end of year	Int s.e	Ext s.e	N	Var Ratio	F		
1558	0.16	0.11	10	0.69	0.208		

Age 5 Catchability constant w.r.t. time and dependent on age

Year class = 1988

Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
RV SURVEY VIIJ	1193	0.196	0.128	0.65	5	0.622	0.171
RV SURVEY VIIh	1012	0.329	0.241	0.73	5	0.235	0.199
F shrinkage mean	1084	0.5				0.142	0.187
Weighted prediction :							
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
1132	0.16	0.1	11	0.622	0.179		

Age 6 Catchability constant w.r.t. time and age (fixed at the value for age) 5

1

Year class = 1987							
Fleet	Estimated	Int	Ext	Var	Ν	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
RV SURVEY VIIJ	741	0.195	0.162	0.83	6	0.569	0.27
RV SURVEY VIIh	571	0.313	0.233	0.74	6	0.25	0.338
F shrinkage mean	1113	0.5				0.181	0.187
Weighted prediction :							
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
748	0.16	0.13	13	0.785	0.268		

Age 7 Catchability constant w.r.t. time and age (fixed at the value for age) 5

Year class = 1986

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	Ν	Scaled Weights	Estimated F
RV SURVEY VIIJ	382	0.193	0.168	0.87	7	0.562	0.303
RV SURVEY VIIh	297	0.304	0.187	0.62	7	0.248	0.375
F shrinkage mean	545	0.5				0.189	0.221
Weighted prediction :							
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
384	0.16	0.12	15	0.724	0.301		

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 5

Year class = 1985

1

Estimated Survivors	Int s.e	Ext s.e	Var Ratio	Ν	Scaled Weights	Estimated F
185	0.196	0.173	0,88	8	0.555	0.391
168	0.322	0.284	0.88	7	0.208	0.423
314	0.5				0.237	0.249
Int	Ext	N	Var	F		
s.e	s.e		Ratio			
0.17	0.14	16	0.799	0.359		
	Estimated Survivors 185 168 314 Int s.e 0.17	Estimated Int Survivors s.e 185 0.196 168 0.322 314 0.5 Int Ext s.e s.e 0.17 0.14	Estimated Int Ext Survivors s.e s.e 185 0.196 0.173 168 0.322 0.284 314 0.5 Int Ext N s.e s.e 0.17 0.14 16	Estimated Int Ext Var Survivors s.e s.e Ratio 185 0.196 0.173 0.88 168 0.322 0.284 0.88 314 0.5 Var Int Ext N Var s.e s.e Ratio 0.173 0.196 0.773 0.88	Estimated Survivors Int s.e Ext s.e Var Ratio N 185 0.196 0.173 0.88 8 168 0.322 0.284 0.88 7 314 0.5	Estimated Survivors Int Ext Var N Scaled Weights 185 0.196 0.173 0.88 8 0.555 168 0.322 0.284 0.88 7 0.208 314 0.5 0.237 0.237 Int Ext N Var F s.e s.e Ratio 0.359

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 5

Year class $=$ 1984							
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
RV SURVEY VIIJ	181	0.214	0.169	0.79	9	0.462	0.477
RV SURVEY VIIh	115	0.324	0.244	0.75	9	0.204	0.672
F shrinkage mean	334	0.5				0.334	0.286
Weighted prediction :							
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
203	0.2	0.15	19	0.746	0.436		

1

Age 10 Catchability constant w.r.t. time and age (fixed at the value for age) 5

Year class = 1983

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	Ν	Scaled Weights	Estimated F
RV SURVEY VIIJ	40	0.198	0.169	0.85	9	0.488	0.627
RV SURVEY VIIh	41	0.319	0.225	0.71	8	0.186	0.612
F shrinkage mean	108	0.5				0.326	0.277
Weighted prediction :							
Survivors	Int	Ext	Ν	Var	F		
at end of year	s.e	s.e		Ratio			
56	0.2	0.17	18	0.864	0.485		

Age 11 Catchability constant w.r.t. time and age (fixed at the value for age) 5

Year	class	=	1982	

Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
RV SURVEY VIIJ	42	0.226	0.224	0.99	9	0.425	0.482
RV SURVEY VIIh	60	0.333	0.304	0.91	7	0.178	0.363
F shrinkage mean	49	0.5				0.397	0.429
Weighted prediction :							
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
48	0.23	0.13	17	0.586	0.438		

Run title : Western Mackerel 1993 W.G.

At 5/09/1994 10:43

Terminal Fs derived using XSA (With F shrinkage)

	l able	8	Fishing mort	ality (F) at age
	YEAR		1972	1973
	AGE			
		0	0.0008	0
		1	0.0025	0.0209
		2	0.0066	0.0117
		з	0.0117	0.0413
		4	0.0639	0.0552
		5	0	0.092
		6	0	0
		7	0	0
		8	0	0
		9	0	0
		10	0	0
		11	0	0
	+gp		0	0
0 F	BAR 4	- 8	0.0128	0.0294

Table 8	Fishing mort	ality (F) at a	ge							
YEAR	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
AGE										
0	0.0004	0.0002	0.0077	0.0024	0.0034	0.0156	0.0038	0.0059	0.0011	0
1	0.0246	0.0193	0.0769	0.0411	0.0449	0.1447	0.1176	0.0617	0.0372	0.0294
2	0.0178	0.0352	0.0832	0.1011	0.1971	0.1108	0.2765	0.1644	0.1292	0.1678
3	0.0348	0.0847	0.1381	0.0876	0.2003	0.3155	0.1818	0.1956	0.2209	0.1784
4	0.0867	0.1076	0.2051	0.0928	0.1844	0.2505	0.3184	0.1028	0.2298	0.2648
5	0.1159	0.2064	0.133	0.0824	0.1934	0.2353	0.2946	0.2228	0.1031	0.2391
6	0.1155	0.1132	0.1795	0.0835	0.1515	0.2532	0.2307	0.2532	0.2569	0.1089
7	0	0.3749	0.3158	0.1325	0.1163	0.2607	0.2581	0.2315	0.2606	0.2581
8	0	0	0.2059	0.1484	0.1565	0.1571	0.2344	0.2901	0.297	0.2559
9	0	0	0	0.1008	0.1899	0.2807	0.1972	0.2316	0.345	0.2536
10	0	0	0	0	0.1791	0.2458	0.2651	0.2898	0.2348	0.3134
11	0	0	0	0	0	0.2286	0.233	0.2715	0.2934	0.2753
+gp	0	0	0	0	0	0.2286	0.233	0.2715	0.2934	0.2753
FBAR 4-8	0.0636	0.1604	0.2078	0.1079	0,1604	0.2314	0.2672	0.2201	0.2295	0.2254
1										

Run title : Western Mackerel 1993 W.G.

At 5/09/1994 10:43

Terminal Fs derived using XSA (With F shrinkage)

Table 8	Fishing mort	ality (F) at a	ge								
YEAR	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	FBAR 91-93
AGE											
0	0.0001	0	0.0056	0.0005	0.0001	0.0052	0.0014	0.0013	0.0004	0.0025	0.0014
1	0.0132	0.0433	0.0107	0.0082	0.023	0.0119	0.0272	0.0146	0.0237	0.0275	0.022
2	0.0653	0.0164	0.0914	0.0749	0.0548	0.0876	0.0682	0.0615	0.0564	0.0784	0.0655
3	0.2195	0.0496	0.0366	0.2018	0.113	0.1104	0.1526	0.0822	0.1351	0.1255	0.1143
4	0.2122	0.1998	0.0796	0.0781	0.2241	0.1386	0.1472	0.1866	0.1432	0.2076	0.1791
5	0.2411	0.1959	0.2268	0.1279	0.1288	0.2306	0.1752	0.1781	0.2182	0.1795	0.1919
6	0.2502	0.2365	0.2243	0.2377	0.1693	0.1169	0.2346	0.202	0.211	0.2676	0.2269
7	0.1085	0.2376	0.2664	0.2537	0.2684	0.1609	0.1363	0.2728	0.2649	0.3015	0.2797
8	0.2143	0.1495	0.2264	0.2864	0.2898	0.2369	0.185	0.2329	0.297	0.3586	0.2961
9	0.2078	0.2569	0.1374	0.2933	0.2706	0.2658	0.2678	0.2491	0.3687	0.4355	0.3511
10	0.197	0.2556	0.2637	0.3244	0.263	0.248	0.183	0.3612	0.326	0.4853	0.3908
11	0.2071	0.23	0.2321	0.3602	0.3638	0.2827	0.1808	0.2438	0.3507	0.4378	0.3441
+gp	0.2071	0.23	0.2321	0.3602	0.3638	0.2827	0.1808	0.2438	0.3507	0.4378	
BAR 4-8	0.2053	0.2039	0.2047	0.1968	0.2161	0.1768	0.1757	0.2145	0.2268	0.2629	
1											

Run title : Western Mackerel 1993 W.G.

At 5/09/1994 10:43

Terminal Fs derived using XSA (With F shrinkage)

Table 10	Stock number	at age (start of year)	Numbers*10**-6
YEAR	1972	1973	
AGE			
AGE 0	2046	4484	
1	5330	1760	
	0329	1700	
2	1993	4575	
3	2727	1705	
4	8840	2320	
Б	0	7138	
6	0	0	
7	0	0	
8	0	0	
9	0	0	
10	0	0	
11	0	0	

+gp 0 0 0 TOTAL 20936 21981

	Table 10	Stock numbe	r at age (sta	rt of year)	Nun	10**-10	6				
	YEAR	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
	AGE										
	0	3439	4730	4814	896	3274	5553	5588	7009	1887	1450
	1	3859	2959	4071	4112	769	2809	4706	4792	5997	1623
	2	1483	3241	2498	3244	3397	633	2092	3601	3877	4974
	3	3892	1254	2693	1978	2524	2400	488	1365	2630	2933
	4	1408	3235	992	2019	1560	1778	1507	350	966	1815
	5	1890	1111	2500	695	1584	1117	1191	943	272	661
	6	5603	1448	778	1884	551	1123	760	764	650	211
	7	0	4297	1113	560	1492	408	751	519	510	433
	8	0	0	2542	699	422	1143	270	499	354	338
	9	0	0	0	1781	518	310	841	184	321	227
	10	0	0	0	0	1386	369	202	594	126	196
	11	0	0	0	0	0	997	248	133	383	86
	+ ap	0	0	0	0	0	0	596	795	623	563
0	TOTAL	21574	22276	22001	17868	17476	18641	19240	21549	18597	15508
	1										

Terminal Fs derived using XSA (With F shrinkage)

Table 10	Stock numbe	r at age (sta	t of year)	Num	bers*10**-6	5							
YEAR	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	GMST 72-91	AMST 72-9
AGE													
0	6919	3024	3523	5448	4522	5103	4071	4009	5293	5713	0	3664	4090
1	1248	5955	2603	3015	4687	3892	4370	3499	3446	4554	4905	3214	3603
2	1356	1060	4908	2217	2574	3942	3310	3660	2968	2897	3814	2609	2932
3	3620	1093	898	3855	1770	2097	3109	2661	2963	2415	2305	2042	2285
4	2112	2501	896	745	2712	1361	1617	2297	2110	2228	1833	1653	2052
Б	1199	1470	1763	712	593	1866	1020	1201	1640	1574	1558	442	1446
6	448	811	1040	1210	539	449	1275	737	865	1135	1132	120	1014
7	163	300	551	716	821	392	344	868	518	603	748	33	712
8	288	126	204	363	478	540	287	258	569	342	384	9	441
9	226	200	93	140	235	308	367	205	176	364	206	3	298
10	151	158	133	70	90	154	203	242	138	105	203	0	204
11	123	107	105	88	44	59	104	146	145	86	56	0	131
+ gp	254	420	312	215	184	152	175	260	245	198	158		
TOTAL	18107	17226	17028	18794	19249	20315	20251	20044	21076	22212	17300		

Run title : Western Mackerel 1993 W.G.

At 5/09/1994 10:43

Table 16 Summary (without SOP correction)

Terminal Fs derived using XSA (With F shrinkage)

		RECRUITS	TOTALBIO	TOTSPBIO	LANDINGS	YIELD/SSB	FBAR 4-8	
		Age O						
	1972	2046	4771	3646	171	0.0468	0.0128	
	1973	4484	4650	3735	219	0.0588	0.0294	
	1974	3439	4730	3737	298	0.0798	0.0636	
	1975	4730	4594	3470	491	0.1416	0.1604	
	1976	4814	4152	3073	507	0.1651	0.2078	
	1977	896	3984	3004	326	0.1085	0.1079	
	1978	3274	3882	3098	504	0.1626	0.1604	
	1979	5553	3528	2707	606	0.2238	0.2314	
	1980	5588	3185	2222	605	0.2721	0.2672	
	1981	7009	3156	2193	662	0.3017	0.2201	
	1982	1887	2994	2033	624	0.3069	0.2295	
	1983	1450	3163	2294	614	0.2678	0.2254	
	1984	6919	2939	2286	551	0.2410	0.2053	
	1985	3024	3096	2254	561	0.2490	0.2039	
	1986	3523	3080	1940	538	0.2772	0.2047	
	1987	5448	3005	2239	615	0.2748	0.1968	
	1988	4522	3246	2363	628	0.2658	0.2161	
	1989	5103	3414	2467	567	0.2300	0.1768	
	1990	4071	3301	2426	606	0.2498	0.1757	
	1991	4009	3816	2870	646	0.2251	0.2145	
	1992	5293	4095	3054	742	0.2430	0.2268	
	1993	5713	4068	2968	805	0.2713	0.2629	
Arith.								
Mean		4218	3675	2731	540	0.2119	0.1818	
0 Units		(Millions)	(000' Tonnes)	(000' Tonnes)	(000' Tonnes)			

Figure A2.1 The selection pattern and diagnostics obtained when fitting a single selection pattern over the years 1983 - 1993. Note the poor fit indicated by the diagonal band of low residuals.

Figure A2.2 The selection patterns and diagnostics obtained when fitting a double selection pattern model, allowing different selection patterns up to 1988, and from 1989 to 1993. (1) Contour plot of Log (observed catch) - Log (expected catch), (2) selection pattern over the periods 1983 - 1987 and 1989 - 1993, (4 & 5) Marginal (year and age) totals of residuals. High residuals at age 0 have been downweighted in the analysis. Note that a consistent model fit is now obtained. The assessment is fitted using egg survey estimates of stock size which are treated as absolute measures of abundance, and age disaggregeted Western Approaches survey data, assumed to bear a power relationship to stock abundance.

Figure A2.3 Summary of stock assessment calculated when fitting the double-selection pattern model. Note the increase in fishing mortality in recent years. The high recruitment estimate in 1993 is extremely uncertain (see standard errors in Table A.2.2) Landings, reference fishing mortality in the separable model (+/- one standard deviation of the parameter estimate), estimated recruitment at age 0, and estimates of total and spawning stock size.

Figure A2.4 Comparison of egg survey index with fitted stock size. The index is the egg survey estimate of spawning stock biomass, assumed to be an absolute measure of stock size. (1) Spawning stock biomass. The line drawn is the fitted estimate of spawning stock biomass at spawning time. Triangles indicate the egg survey observations, together with estimates of the standard deviation of the index calculated in fitting the model. (2) Catchability. This is a scatter plot of fitted values of SSB against observed index values. The line in this case is drawn through the origin with 45% slope, as an absolute relationship is assumed. (3 and 4) The lower two graphs are standard scatter plots of residuals against expected value (to assess the appropriateness of the model fit) and of residuals against time (to assess historical consistency of the survey).

Figure A2.5 Comparison of the Western Approaches survey Division VIIj at age 1 with fitted stock size at age 1. (1) Stock numbers. The line drawn is the fitted estimate of stock size at age 1 at the time of the survey. Triangles indicate the stock sizes predicted by the survey, <u>i.e.</u> Aa,y / Qa, where A is the index observation and Q is the estimated catchability, together with estimates of the standard deviation of the index calculated in fitting the model. (2) Catchability. This is a scatter plot of fitted values of population size against observed index values. The line has a slope = Q,, as a proportionate relationship is assumed. (3 and 4) The lower two graphs are standard scatter plots of residuals against time (to assess the appropriateness of the model fit) and of residuals against time (to assess historical consistency of the survey).

Figure A2.6 As Figure A1.5, for age 2 of the Western Approaches survey in Division VIIh.

Figure A2.7 As Figure A1.5, for age 3 of the Western Approaches survey in Division VIIj.

Figure A2.8 As Figure A1.5, for age 4 of the Western Approaches survey in Division VIIj.

Figure A2.9 As Figure A1.5, for age 1 of the Western Approaches survey in Division VIIh.

Figure A2.10 As Figure A1.5, for age 2 of the Western Approaches survey in Division VIIh.

Figure A2.11 As Figure A1.5, for age 3 of the Western Approaches survey in Division VIIh.

329

1. 1. 1. 1. 1.