Fol. 41 Assess

Fre in a man white

This report not to be quoted without prior reference to the Council*

International Council for the Exploration of the Sea

C.M.1994/Assess:6

Fisher Architeraters 3. Thistele

SECTION I

REPORT OF THE WORKING GROUP ON THE ASSESSMENT OF DEMERSAL STOCKS IN

THE NORTH SEA AND SKAGERRAK

Copenhagen, 7-15 October 1993

This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.

*General Secretary ICES Palægade 2-4 DK-1261 Copenhagen K DENMARK

3106/62043

1 .

.

·

CONTENTS

PART A

1	INTRO	ODUCTI	ION	1
	1.1		pants	
	1.2		of Reference	1
	1.3		Structure	1
	1.4	Metho	ds	
		1.4.1	Catch at age analysis	
		1.4.2	Sensitivity analysis	
		1.4.3	Medium-term projections	
		1.4.4	Data	
		1.4.5	Quality control	3
0				
2			SKAGERRAK AND HADDOCK, WHITING AND PLAICE IN DIVISION IIIA	3
	2.1	Overvi	ew	3
	2.2		the Skagerrak (part of Division IIIa)	4
		2.2.1	Catch trends	4
		2.2.2	Natural mortality, maturity, age composition, mean weight at age	4
		2.2.3	Catch, effort and research vessel data	4
		2.2.4	Catch-at-age analysis	4
		2.2.5	Recruitment	5
		2.2.6	Long-term trends	5
		2.2.7	Biological reference points	5
		2.2.8	Catch forecast	5
		2.2.9	Long-term management considerations	5
		2.2.10		5
	2.3	Haddoo		6
		2.3.1	Catch trends	6
		2.3.2	Age composition and weight at age	6
		2.3.3	Research Vessel indices and catch per unit of effort	6
		2.3.4	Long-term trends	6
		2.3.5	Comments on assessment	6
	2.4	Whiting	g	6
	2.5	Plaice		6
		2.5.1	Catch trends	6
		2.5.2	Natural mortality, maturity, age compositions, mean weight at age	7
		2.5.3	Effort, CPUE, and research vessel indices	7
		2.5.4	Catch-at-age analysis	7
		2.5.5	Recruitment estimates	8
		2.5.6	Historical stock trends	8
		2.5.7	Biological reference points	8
		2.5.8	Short-term forecasts	8
		2.5.9	Medium-term forecasts	8
		2.5.10	Long-term forecast	8
		2.5.11	Comments on the assessment	8
3	NORT	H SFA (SUB-AREA IV)	0
-	3.1		EW	9 9
	3.2	Cod in	Sub-area IV	9
		3.2.1	Catch Trends	9
		3.2.2		
		~	- more more and the second of the second of the second sec	プ

-

	3.2.3 Catch, effort, and research vessel data	
	3.2.4 Catch at age analysis	
	3.2.5 Recruitment estimates	10
	3.2.6 Historical stock trends	10
	3.2.7 Biological reference points	10
	3.2.8 Catch predictions	10
	3.2.9 Medium-term projections	
	3.2.10 Long-term considerations	
	3.2.11 Comments on assessment	
3.3	Haddock in Sub-Area IV	
010	3.3.1 Catch Trends	
	3.3.2 Natural mortality, maturity, age compositions and mean weight at age	
	3.3.3 Catch, effort and research vessel data	
	3.3.4 Catch-at-age analysis	
	3.3.6 Historical stock trends	
	3.3.7 Biological reference points	13
	3.3.8 Short-term forecast	
	3.3.9 Medium-term projections	13
	3.3.10 Long-term considerations	
	3.3.11 Comments on the assessment	
3.4	Whiting in Sub-area IV	14
	3.4.1 Catch trends	
	3.4.2 Natural mortality, maturity, age compositions and mean weight at age	
	3.4.3 Commercial catch/effort data and survey indices	14
	3.4.4 Catch at age analysis	14
	3.4.5 Recruitment estimates	15
	3.4.6 Historical stock trends	
	3.4.7 Biological reference points	
	3.4.9 Medium-term projection	
	3.4.10 Long-term considerations	
	3.4.11 Comments on the assessment.	16
3.5	Saithe in Sub-area IV and Division IIIa	
	3.5.1 Catch trends	
	3.5.2 Natural mortality, maturity, age compositions, mean weight at age	
	3.5.3 Catch, effort and research vessel data	17
	3.5.4 Catch-at-age analysis	17
	3.5.5 Recruitment estimates	17
	3.5.6 Historical stock trends	
	3.5.7 Biological reference points	
		17
		18
	\mathbf{U}	18
2.6		18
3.6		18
		18
		18
	,	18
	3.6.4 Catch at age analysis	18
	3.6.5 Recruitment estimates	19
	3.6.6 Historical stock trends	19
		20
	5 I I I I I I I I I I I I I I I I I I I	20
		20
		20
		20 21
3.7		
J./	•	21
	3.7.1 Catch trends	
	3.7.3 Catch, effort, and research vessel data	21

)

		8.7.4 Catch at age analysis
		8.7.5 Recruitment estimates
		8.7.6 Historical stock trends
		8.7.7 Biological reference points
		8.7.8 Short-term forecast
		8.7.9 Medium-term projections
		8.7.10 Long-term considerations
		8.7.11 Comments on the assessment
4	DEMER	SAL STOCKS IN DIVISION VIId
	4.1	Dverview
		Cod in Division VIId 24
		.2.1 Catch trends
		.2.2 Natural mortality, maturity at age, age composition and mean weight at age 24
		.2.3 Catch, effort and research vessel data
		.2.4 VPA tuning and VPA results
		.2.5 Recruitment estimates
		.2.6 Historical stock trends
		.2.7 Biological reference points
		.2.8 Short-term forecast
)	4	.2.9 Long-term considerations
		.2.10 Comments on the assessment
	4.3	Vhiting in Division VIId
		.3.1 Catch trends
		.3.2 Natural mortality, maturity at age, age composition and mean weight at age 25
		.3.3 Catch, effort and research vessel data 25
		.3.4 Catch at age analysis
		.3.5 Recruitment estimates
	4	.3.6 Historical stock trends
	2	.3.7 Biological reference points
	4	.3.8 Short-term forecast
		3.9 Long-term considerations
	2	3.10 Comments on the assessment
	4.4 9	ole in Division VIId
	4	4.1 Catch trends
	2	4.2 Natural mortality, maturity, age compositions and mean weight at age
	4	4.3 Catch, effort and research vessel data 27
	4	4.4 Catch at age analysis
	4	4.5 Recruitment estimates
}	4	4.6 Historical stock trends
		4.7 Biological reference points
		4.8 Short-term forecast
	4	4.9 Medium-term predictions
		4.10 Long-term considerations
	4	4.11 Comments on the assessment
	-	aice
		5.1 Catch trends
		5.2 Natural mortality, maturity, age compositions and mean weight at age
		5.3 Catch, effort and research vessel data 29
		5.4 Catch at age analysis
		5.5 Recruitment estimates
		5.6 Historical stock trends
		5.7 Biological reference points
	-	5.8 Short-term forecast 31
	-	5.9 Medium-term predictions
	4	5.10 Long-term considerations
	4	5.11 Comments on the assessment
-	0 • • • c = = =	
5	SAMPLIN	G LEVELS

PART	B
------	---

6	ASSES	SSMENT COMMENTARY	2
	6.1	Cod in the Skagerrak and Plaice in the Kattegat/Skagerrak	
	6.2	Cod in Sub-area IV	
		6.2.1 Change in tuning method	2
		6.2.2 Inclusion of discards in the assessment	$\overline{2}$
		6.2.3 Data problems	$\frac{2}{2}$
	6.3	North Sea Haddock	ĩ
		6.3.1 Estimation of non-reported catch	
		6.3.2 Comparison with previous tuning method	
		6.3.3 XSA settings	
		6.3.4 Improving exploitation pattern	Δ
	6.4	Whiting in Sub-area IV	
		6.4.1 Split of the North Sea whiting assessment	т Л
		6.4.2 Age determination problems	т Л
	6.5	Saithe in Sub-area IV	+ 1
		6.5.1 Change in tuning methods	+ 1
		6.5.2 Recruitment estimates	+ 1
	6.6	North Sea Sole	+ 1
		6.6.1 Catch, effort and research vessel data	
		6.6.2 VPA tuning and results 33	+ <
		6.6.3 Management advice 33	י ד
	6.7	North Sea Plaice	י ב
	0.7	6.7.1 Other CPUE and survey data	
) ~
) -
	6.8)
	6.9	Eastern Channel Whiting	; -
	6.10	Eastern Channel Sole	5
	0.10	Eastern Channel Plaice	Ś
7	TECHN	VICAL INTERACTIONS	5
8	REFER	RENCES	1
Tables	2.2.1 - 7	7.4)
Figures	2.2.1 -	6.10.2)

1 INTRODUCTION

1.1 Participants

Frans van Beek	Netherlands
Odd Aksel Bergstad	Norway
Bill Brodie	Canada
Robin Cook	UK (Chairman)
Ulrich Damm	Germany
Poul Degnbol	Denmark
Siegfried Ehrich	Germany
Henk Heessen	Netherlands
Holger Hovgård	Denmark
P-O Larsson	Sweden
Hans Lassen	Denmark
Tim Macer	UK
Capucine Mellon	France
Richard Millner	UK
Stuart Reeves	UK
Odd Smedstad	Norway
Alain Tétard	France
Willy Vanhee	Belgium
Morten Vinther	Denmark

Dr Roger Bailey and Henrik Sparholt of the ICES Secretariat assisted during the meeting.

1.2 Terms of Reference

- assess the status of and provide catch options for 1994 for the stocks of cod, haddock, whiting, saithe, sole and plaice in Sub-area IV, Division IIIa (excluding sole in Division IIIa and cod in the Kattegat), and Division VIId (excluding haddock and saithe), taking into account as far as possible the technical interactions among stocks due to the mixed-species fisheries.
- b) provide data requested by the Multispecies Assessment Working Group.

1.3 Report Structure

Over the course of time the amount of detailed output from analytical assessments has multiplied considerably and is reaching unmanageable proportions. In an effort to simplify access to the most important information contained in the assessments, the report has been divided into two parts. Part A contains as much of the essential information on the conventional assessments as possible in as standard a format as could be achieved. Part B contains more information on the assessments in a free format to allow commentary on the analysis which helps to explain the background of what was done. This format has not been entirely successful and in the future it is intended to include much more of the bulky diagnostic output and peripheral input data in Part B. The Working Group would welcome any comments from ACFM on the report layout which would assist them in simplifying access to essential information while retaining as much information as possible.

Data requested by the Multispecies Assessment Working Group are not provided in the report and will be transmitted to the Working Group separately.

1.4 Methods

1.4.1 Catch at age analysis

Recent developments in the analysis of catch at age and CPUE data have meant that *ad hoc* methods are now in decline. It was decided this year to use XSA (Shepherd, unpublished) as implemented by a new version of the Lowestoft VPA program (Darby and Flatman, 1992) made available at the meeting. The theoretical advantages of this type of analysis are well known and there is no need here to reiterate them. Since the method differs from the *ad hoc* tuning used for most stocks last year, last year's method was repeated for each stock to check that the revised assessment was not due to the change of method. In general there was very little difference between the two methods.

In running XSA there are a number of ways of configuring the analysis. These include, for example, specifying the age range for fixed catchability etc. The procedure for the choice of configuring the run was the same as that described in detail in the report of the Working Group on the Assessment of the Northern Shelf Demersal Stocks (Anon., 1993b).

While recognising the valuable contribution which the maintenance of the program makes, the Working Group would welcome more detailed documentation of the program so that many of its features may be better appreciated and understood.

1.4.2 Sensitivity analysis

From time to time the Working Group has performed a sensitivity analysis on the catch forecasts for some stocks. This year the method has been applied systematically to the North Sea stocks to show sensitivity coefficients for the catch and SSB forecast. In addition, the method has been used to generate probability profiles for the forecast. The method used is the linear method described in Cook (1993). Implementing the method requires estimates of the coefficients of variation (CVs) for the input parameters to the forecast. For the starting populations in 1993, the CVs of these values generated by XSA or from RCT3 were used. For fishing mortality, the CVs have been taken either from a separable VPA (for North Sea cod) or simply by calculating the CV of the estimated Fs over a range of years (for other stocks). The latter method does not estimate quite the correct CV since it will include both measurement error and process error. It will tend to over-estimate the CV. Provided the year on year level of F over short periods is stable, however, the estimate should be adequate for the purpose.

Sensitivity coefficients are presented in the form of pie charts for the TAC year which show the proportion of the variance in the forecast quantity (eg catch) which is due to each input parameter. These charts show immediately which input values cause the most problems.

An important point to note in the analysis is the modelling of natural mortality. The analysis tries to examine the effect of natural variability in M, ie the process error. It, therefore, considers variability which might be due, for example, to changes in the predator population during the forecast period. For some stocks where M is large on young age groups, there is important sensitivity to M. CVs for M were set at 0.1 for both the year and age effect. This value was obtained by examining variability in predation mortality estimated in MSVPA. The analysis does not consider the problem of uncertainty in the estimate of M used in the assessment. The latter is not likely to be a major problem in forecasts because uncertainty in M in the assessment is compensated for when the forecast is performed with the same value of M.

The probability profiles presented assume that the distribution of the catch and SSB estimates are lognormal. This may not be the case but tests on North Sea cod reported in Cook (1993) suggest that, for a variety of input parameter distributions, the output variable tends to have a distribution of approximately this type. Comparative runs performed at the Methods Working Group in 1993 for North Sea cod also suggested that this method gave very similar results to full Monte-Carlo simulations of the whole assessment-projection process. Thus, while better methods may well evolve in the near future, the present method appears to perform as well as any other.

1.4.3 Medium-term projections

Following work done at the Methods Working Group in 1993 it was recommended that assessment working groups should include medium-term analyses (Anon., 1993a). A first attempt has been made to do this for the North Sea stocks. The simulation includes only variability in recruitment and the initial population estimates (in 1993). This is rather limited but most variability beyond two years is due to recruitment so simulations are probably adequate as a first attempt.

Appropriate modelling of recruitment is crucial to this type of analysis. Fitting conventional stock-recruitment curves usually fails to produce an adequate model. Much more work needs to be done on this problem. For the present meeting two models were tried. The first was the non-parametric kernel method described by Evans and Rice (1988) and Skagen (1991). The Cauchy algorithm was used and the weighting parameter estimated by cross validation.

The second model, referred to as the parametric model, fitted a Shepherd-type stock recruit model with a time series effect ie:

$$R = \frac{aS}{1 + (\frac{S}{b})^c} \exp(d\epsilon_{t-1})$$

(Cook and Forbes, 1993) where R=recruits, S=spawning stock biomass and a,b,c,d are parameters. The timelagged error, ϵ , allows for autocorrelation between successive recruitment values. This model was used for some stocks for comparison with the kernel method. In simulations, recruitment was estimated from the model and a bootstrapped error after fitting the model was added to simulate variability.

An important problem with the simulations occurs when the simulated populations give SSBs which are outside the range of observations. This inevitably means that the estimated population trajectory must be viewed with appropriate scepticism.

The results of the simulations show the stock-recruitment data with the locus of expected recruitment indicated. For a ten-year horizon, the mean and upper and lower 5 percentiles are plotted for yield, SSB and recruitment.

1.4.4 Data

All assessments depend on data of good quality. The data available at the meeting this year showed some improvements and some deterioration.

The problem of misreporting continues to grow, particularly in the roundfish fisheries which have recently been the subject of restrictive TACs. The problem of misreporting of North Sea haddock, mentioned in last year's report, has worsened substantially (see Section 6) and severely impairs the assessment. Although the total catch for North Sea cod used by the Working Group is the same as the official landings, it is known that misreporting has occurred (Section 6.2). The effect on the assessment is unknown. Problems of misreporting also affect sole and plaice in the North Sea. Misreporting will affect effort data used in tuning.

In Division IIIa existing age composition data have been revised for cod and plaice. This has improved the fleet data for tuning. There are still problems with the plaice data, however. Another difficulty with Division IIIa is the inadequate data on the industrial by-catch especially in earlier years. This has ruled out an assessment for the haddock in this area although more data are now being assembled which should be suitable for analysis in the future.

In Division VIId, data for both cod and whiting have been revised. Unfortunately, this does not appear to have improved the assessment sufficiently to provide a basis for advice. Even if the age composition problems could be resolved, conventional short-term forecasting would not be useful since there is no adequate recruitment index.

For nearly all stocks there are inadequate data for discards. A number of countries have undertaken *ad hoc* discard studies but the data cannot be incorporated into assessment databases until some pre-processing of the data has been performed to estimate discards for a range of years. It would be desirable to hold a workshop to assemble the discard data which might be used in assessments and investigate appropriate ways of using them.

The increasing problems with data from the commercial fishery combined with the need to reallocate resources to cover, for instance, discard sampling implies an increased emphasis on survey information.

The increased dependence on survey information is highlighted in the present report by the loss of tuning fleets for one stock due to problems with data from commercial fleets, and the VPA tuning for this stock is now heavily dependent on survey data.

The strain on resources used for data collection could be partly alleviated by a better utilization of available data. Age-length keys are presently obtained both from commercial samples and from surveys. This situation represents an oversampling relative to other types of data which are heavily undersampled - the most important example being discards. Age-length keys by quarter and area, based on international surveys, could be applied on length frequency information from commercial samples, thus reducing the cost of commercial sampling considerably. International cooperation on the establishment on such survey-based age-length keys could be extended to include quality control and would make the application of age-length keys consistent between countries.

1.4.5 Quality control

Prior to the meeting nearly all the basic data had been prepared and checked and preliminary VPAs had been run. This meant that is was possible to embark on the main assessments immediately. A difficulty, however, is that the large number of stocks requiring full analytical assessment precludes the possibility of full plenary sessions to discuss each assessment in detail during its preparation. This really is a necessary step in quality control of the assessment. Some cross checking was done in small groups but there is little escape from the conclusion that overall quality control during the meeting was inadequate. Solving this problem within the existing organisational structure will require that more or less completed assessments will have to be done before the meeting. This will only succeed if basic data are prepared even earlier than at present and if analytical procedures are agreed months before the meeting. This will be a difficult task but attempts will be made to do this in advance of next year's meeting.

A good deal of time at the meeting was spent preparing tables and figures of high enough quality for the draft report to be ready for ACFM in time for their meeting. It should be possible to reduce the time spent on essentially clerical activities if authors of programs wrote these to produce output ready for plotting etc. It would also help if the ICES Secretariat automated the production of quality control tables and ACFM summaries.

2 COD IN THE SKAGERRAK AND HAD-DOCK, WHITING AND PLAICE IN DIVI-SION IIIA

2.1 Overview

The stocks in Division IIIa to be assessed by the Working Group are the cod in the Skagerrak and haddock, whiting and plaice in the whole of Division IIIa.

The reported landings of cod increased in 1992, but the TAC was not reached. Haddock landings for human consumption, 4,746 t, were about 700 t above the 1991 reported landings and just above the TAC of 4,600 t. The total landings, i.e. including those for reduction, were 9,000 t. Of the whiting TAC of 17,000 t, only 1,565 tonnes were landed for human consumption. The by-catches in the Danish industrial fisheries added more than 10,000 t to this figure. The total reported catch is somewhat below the average for the previous ten years. The plaice TAC of 11,300 t was exceeded by about 500 t. About 80 % of the plaice catch was reported from the Skagerrak.

The databases for the assessments are generally poor. The major deficiencies are insufficient age sampling or lack of age compositions from fisheries for industrial purposes and some other minor fleets, lack of discard data, lack of effort data with associated catches by age and lack of recruitment indices with a convincing relationship to VPA-derived recruitment estimates. Also, misreporting and non-reporting of catches occurred particularly in cod. Estimates of the amount of cod not reported vary considerably. According to some sources these landings are comparable to the total reported fishery while other sources guess at much more limited amounts. It has not been possible to document any of these guesses.

Indices from the International Bottom Trawl Surveys (IBTS) in April, September and November exist, but are not yet useful in the assessments because the time-series cover only the period 1991 - 1993.

For cod and plaice there is, however, significant improvement in the database since the last assessment, and data have now become available which permit analytical assessments. Analytical assessments were only attempted for cod and plaice.

The analytical assessment for cod in the Skagerrak provided reasonable results in spite of the considerable variance in the estimates.

For haddock, only survey data for the IBTS (February) are available for tuning. The haddock has not been aged in all years. Furthermore, the IBTS data are most reliable for the younger age groups, i.e. age group 1. Commercial catch data for this age group are not reliable, however, not reliable as the age compositions only cover the human consumption fisheries, while the predominant part of the fishing mortality on age group 1 haddock is exerted by the industrial fleets.

Assessments of whiting cannot be made due to lack of basic age information.

For plaice available data allow a formal analytical assessment. However, the data series are not internally consistent and the estimated fishing mortalities, and hence stock sizes, vary depending on which set of data is considered the more reliable. This is analysed in detail in Section 2.5. The conclusion is that no reliable analytical assessment can be presented.

The general trend of the stocks in Division IIIa is an increase in abundance. For all four stocks several average or above-average yearclasses seem to be present.

2.2 Cod in the Skagerrak (part of Division IIIa)

2.2.1 Catch trends

Annual landings in the period 1971 to 1992 by country are presented in Table 2.2.1. Norwegian catches taken in

the fjord areas are not included in the assessment as these cod are considered to belong to a separate stock (Anon., 1991).

Total catches in 1992 amounted to 14,002 t compared to 12,059 t in 1991. Almost all of the catch was taken by Denmark and Sweden (80% and 17% of the total). The annual yield since 1978 is shown in Figure 2.2.1a.

The estimated cod landings from the Danish small-mesh trawl fishery from 1979 to 1992 are shown in Table 2.2.2. Catches from this fishery have not been included in the analysis as catch at age data for this fishery were not available.

2.2.2 Natural mortality, maturity, age composition, mean weight at age

Catch at age information was only available from Denmark and the Danish age distribution was hence raised to the total catch (Table 2.2.3). The Danish weight-at-age data (Table 2.2.4) are applied to the total catch. Weight at age in the stock is assumed to be identical to weight at age in the catches.

Natural mortality is assumed to be 0.2 per year for all ages and years. Age groups 3 + constitute the spawning stock biomass; age groups 2 and younger were considered to be immature. It should be noted that this maturity ogive is significantly different from that used for North Sea cod (see Section 3.2.2).

2.2.3 Catch, effort and research vessel data

CPUE data are available from two Swedish fleets accounting for 50-80% of the total Swedish cod landings (Table 2.2.5). From Denmark, CPUE data are available for three fleets. The fleet definitions as well as the way of deriving age-disaggregated CPUE values are given in Section B. These fleets account for about 10% of the annual Danish catches. As no age information was available from the Swedish fisheries only the Danish CPUE data were used in the tunings. Catch/effort by fleet is shown in Table 2.2.6 while Table 2.2.7 shows CPUE disaggregated by age for these Danish fleets.

The IBTS survey provides abundance indices for age groups 1 and 2. Only the February time series (former IYFS survey) covering the years 1981 to 1993 are of sufficient length to be useful for tuning (Table 2.2.8).

2.2.4 Catch-at-age analysis

Tuning of the VPA was carried out by the XSA method using the three Danish CPUE series (1987-1992) and the IBTS (February) data (1981-1992). Tri-cubic tapering over 20 years and standard shrinkage was used (Table 2.2.9). Plots of the log catchability residuals are presented in Figure 2.2.2. As the age disaggregation of CPUE data have been approximated using market size categories the residuals have been plotted by age groups. A clear dominance of negative residuals is observed for 1987.

Estimated fishing mortality and stock size in numbers as produced by the VPA based on the XSA analysis are presented in Tables 2.2.10 and 2.2.11.

Results from retrospective XSA analysis are presented in figure 2.2.3. The XSA_{92} run estimates the F(3-6) for 1991 at about 0.1 higher than the XSA_{91} while for 1990 little difference is seen in average F values between the three retrospective runs. Larger differences are seen in the retrospective analyses of year-class size. This is to be expected due to the high standard errors on the catchabilities of age 1 cod.

Figure 2.2.4 compares F(3-6) estimated in the assessment presented in Anon (1992) and that in the present assessment. The 1992 assessment was based on a Laurec/Shepherd analysis using different tuning fleets. Figure 2.2.4 shows that the assessments in 1992 and 1993 do not differ significantly.

2.2.5 Recruitment

The 1991 year class index of 96 obtained on the 1992 IBTS survey was the highest since the start of the survey series in 1981 and about three times the average. This year-class also produced the largest CPUE in the Danish fleets used for tuning (1987 to 1992 data). However, the index value of the 1991 year class as age 2 in the 1993 IBTS February survey was below average. The 1992 year-class index was 110 as age 1 cod in the 1993 IBTS survey. This is the highest index value on record.

The IBTS indices were compared to VPA year class strength by the RCT3 computer program (Table 2.2.12). The estimates were shrunk towards the mean. By this procedure, the 1991 and 1992 year classes were estimated to 16.3 million and 20.0 million age 1 respectively. The geometric mean of age 1 abundance (VPA, 1978-1990) amounts to 17.3 million cod.

2.2.6 Long-term trends

The long-term trends in the fisheries are given in Table 2.2.13 and shown in Figure 2.2.1.

Yield and SSB peaked in 1981-1982, caused by the strong year class of 1979. Since then catches and stock size have declined. Recruitment has fluctuated without trend. Except for two strong year classes, 1979 and 1985, where recruitment exceeded 30 million individuals, annual recruitment has varied between 10 and 20 million.

2.2.7 Biological reference points

Input data to yield per recruit calculations are given in Table 2.2.14 and the results in Table 2.2.15. Yield and SSB per recruit are shown in Figure 2.2.5. Figure 2.2.6 shows the stock recruitment relationship. This graph shows no apparent relationship between SSB and recruitment and it is difficult to establish a minimum biologically acceptable level (MBAL) on this basis. However, the estimate of SSB may be unreliable due to uncertainties about the appropriate maturity ogive (see Section 2.2.2)

The present fishing mortality (F(3-6) of 0.75 is well above the calculated F_{max} of 0.24 and also above the F_{med} of 0.66.

2.2.8 Catch forecast

Input for the predictions are given in Table 2.2.16. The exploitation pattern is taken as the average Fs from 1990-1992, adjusted to the reference F level of 1992. Weights at age are taken as the average of the 1988-1992 period. Stock sizes for age groups 1 to 3 in 1993 are derived from the RCT3 (Table 2.2.12) whereas the stock size of the older age groups was taken from the VPA (Table 2.2.11). The RCT3 estimate of age 3 cod was used due to its lower standard error (the two estimates are, however, not very different: VPA at 4.3 million - RCT3 at 3.8 million). Recruitment of age 1 cod in 1994 to 1995 is taken as 17.3 million calculated as the geometric mean of recruitment derived from the VPA results for the period 1978-1990.

The results of the predictions are given in Table 2.2.17. The *status quo* catch is estimated to 18,756 t in 1994, up from 15,324 t expected in 1993. The SSB, at *status quo* F is predicted to 19,625 t in 1994 and 24,230 t in 1995.

2.2.9 Long-term management considerations

The assessment indicates that the stock has fluctuated without significant trend in either biomass 3 + (proxy to SSB), recruitment, fishing mortality or yield. However, the fishing mortality is currently at a high level.

2.2.10 Comments on the assessment

The assessment is based on incomplete data in so far as data on the small mesh catches and discards are not included. Also misreporting and non-reporting of catches occurred, but estimates of the amount of cod not reported vary considerably. According to some sources these landings are comparable to the total reported fishery while other sources guess at much more limited amounts. It has not been possible to document any of these guesses. The assessment quality control diagrams are shown in Table 2.2.18.

The high level of fishing mortality makes the forecast very dependent on the estimates of recruitment. At *status quo* $F(F_{1993})$ the recruiting year classes (1992 and 1993) will in 1994 account for 82% in numbers and 60% of stock weight. The assessment provides information on the level of exploitation while the estimate of stock abundance is of little relevance in forecasting future yields.

2.3 Haddock

2.3.1 Catch trends

The landings for the period 1975-1992 are presented in Table 2.3.1. After 1983 landings are given separately for human consumption and reduction purposes. About 43% of haddock catches in 1992 came from landings for reduction. Figure 2.3.1 shows trends in landings.

2.3.2 Age composition and weight at age

Age compositions (and weight at age) are available for Danish landings; for human consumption landings for the period 1981-91 and for small-mesh landings from the periods 1981-1986 and 1991-1992. The age compositions are presented in Table 2.3.2.

The age distributions need to be reevaluated. The 0group have not been included in the distributions, and there is an unreasonably small number of 1-group in the years when the small-mesh fishery was sampled.

2.3.3 Research Vessel indices and catch per unit of effort

An index for 1-group haddock in Division IIIa is available from the IBTS February survey (Figure 2.3.2).

CPUE data for the commercial fisheries are not available.

2.3.4 Long-term trends

Long-term trends in landings and the 1-group index from the IBTS in February are presented in Figures 2.3.1 and 2.3.2. Total landings reached a maximum of more than 15,000 t in 1983 which was associated with the large 1979 year class. In the last decade the catches have been about half this level. In 1992 the catches increased to 9,000 t due to higher catches of 1-group and also 2group. The IBTS index for 1-group was in 1992 the highest in the series, and the 1993 index was even higher. The 1991 and 1992 year classes may thus be strong. In 1992 O-group haddock were abundant in Danish industrial landings.

2.3.5 Comments on assessment

No analytical assessment was made due to deficiencies in primary data: fish sampled from the small-mesh landings were not aged for the period 1987-1990; therefore, the catches in numbers of 1-group haddock are not reliable. The IBTS survey series, which may be used for tuning the VPA, mainly provide reliable estimates of juveniles.

CPUE data for the commercial fisheries are not available.

The Division IIIa haddock was not combined with the North Sea haddock. Anon. (1992) found that the recruitment pattern for Division IIIa and North Sea haddock are similar. Also other vital parameters appear to be similar between these two populations. However, no analysis was presented which could help in the discussion of whether Division IIIa haddock should be assessed as a separate unit or included in the North Sea assessment. The Working Group did, therefore, not change the status of Division IIIa haddock at this meeting.

2.4 Whiting

The landings have since 1981 been reported separately for human consumption and reduction purposes. The Danish landings for reduction purposes have been taken in a mixed clupeoid fishery and in an industrial fishery directed at Norway pout and sandeel. In 1992 an estimated 480 million 0-group whiting were included in the landings for industrial purposes. The total landings are shown in Table 2.4.1 and Figure 2.4.1.

IBTS February indices for 1-group whiting have been very high in recent years (Figure 2.4.2), but this is not reflected in the landings.

An analytical assessment of the stock was not possible on the basis of this database.

2.5 Plaice

2.5.1 Catch trends

Total international landings are presented in Table 2.5.1. The landings data are very uncertain for the period 1983-1988. Anon. (1991) adjusted the catch data assuming that misreporting was a serious source of bias. The major part of the Kattegat landings since 1984 are from the northern part of the Kattegat. The total 1992 catch was 11,796 t. Long-term trends in yield are plotted in Figure 2.5.5.

Division IIIa fisheries are affected by TAC constraints for cod and sole and there are some unreported catches of these species. There seems to be no strong incentive to under-report plaice landings, but unreported plaice catches may result from illegal activities aimed at landing other species. Also misreporting between areas or misreporting of other species as plaice may invalidate the data base. It is, however, not considered that such unreported catches are seriously affecting the quality of the Division IIIa plaice database.

2.5.2 Natural mortality, maturity, age compositions, mean weight at age

The natural mortality was assumed to be 0.1 per year for all age groups. For calculation of the spawning stock biomass age groups 2 and younger are considered to be immature, while all plaice of ages 3 and older are assumed to contribute to the mature stock component. For North Sea plaice half of the plaice population of age groups 2 and 3 are assumed to be mature. This difference should be discussed in the light of data to be made available at the next Working Group meeting.

Catch at age for 1992 was supplied by Denmark accounting for 90% of the total. These data were raised to the total international catch (Table 2.5.2). Mean weights at age for the catches are available for the Danish landings from the Skagerrak and Kattegat separately. The weights at age applied for the combined stock have been calculated as a mean of weights at age in the Kattegat and Skagerrak, weighted by landings (Table 2.5.3).

The catch data are apparently not consistent with the assumption of a stable exploitation pattern. Age group 5 is the first age group which is fully recruited and, on the assumption that mortality remains fairly stable, $\ln[Catch-5(year)/Catch-6(year + 1)]$ should be reasonably constant, but as shown in the text table below:

Year	In[Catch-5(year)/Catch-6(year+1)]
78/79	1.2
79/80	1.2
80/81	1.1
81/82	0.64 *
82/83	1.4
83/84	1.4
84/85	1.0
85/86	0.3 *
86/87	0.6 *
87/88	1.0
88/89	1.6
89/90	0.7 *
90/91	1.2
91/92	0.03 *

The ratio is not constant over years. The years marked with an asterisk (81/82, 85/86, 86/87, 89/90 and 91/92) seem out of line with the rest of the series. Either the

mortality generated by the fishery is highly variable making reliable predictions based on procedures used at present impossible - or the sampling data do not reflect the true age composition of the catch.

2.5.3 Effort, CPUE, and research vessel indices

2.5.3.1 Catch/effort data for the commercial fisheries

The Swedish C/E series were updated (Table 2.5.4a). The data are shown for the Skagerrak and Kattegat separately in Figure 2.5.1. This figure shows different trends in CPUE between the Kattegat and Skagerrak plaice fisheries. At present the fishery is dominated by the catches in the Skagerrak.

Log-book information for the Danish fisheries was analyzed as described in Part B. CPUE data (no/age group/day at sea) for three fleets are presented in Table 2.5.4b.

2.5.3.2 Research vessel data

The data series previously used in the plaice assessment, from a bottom trawl survey by R/V DANA in May, (Anon., 1992) did not correlate well with stock size derived from VPA. The survey has now been abandoned. There are thus no research vessel data available which are considered to reflect stock trends in Division IIIa plaice.

2.5.4 Catch-at-age analysis

As indicated in Section 2.5.2, the catch at age data show considerable variability. Separable VPA conducted on the catch at age data also indicates this high variability and possibly the lack of an exploitation pattern which is fairly constant over the present time series (1983-1992). The variability is clearly demonstrated by the large log-ratio residuals as seen in Figure 2.5.2.

The catch-at-age analysis presented in Anon. (1992) was based on a Laurec-Shepherd analysis of total international catch tuned with Swedish effort data. However, these effort data were obtained from CPUE data (kg/trawl hr) from Swedish logbook information. The ALKs applied to this information were the total international catch age composition, i.e. aggregated information from the Danish fisheries. These fisheries, however, are carried out by trawl, Danish seine and gillnet and the relevant ALKs are rather different between these vessel categories. This tuning procedure was abandoned.

Three Danish commercial catch rate series were constructed (see Part B) covering the period 1987-1992. An XSA analysis (no shrinkage, equal weighting between fleets, all age groups to have catchability as free parameters and no time tapering) based on these data together with the catch data was run and the results are presented in Table 2.5.5. The residuals are plotted for each fleet in Figure 2.5.3.

Tables 2.5.6-8 give fishing mortality, stock sizes and a summary of the VPA calculations based on results from this XSA run. The recruitment series (2-group) is compared with the corresponding recruitment series from Anon. (1992) in Figure 2.5.4a. The XSA analysis based on the new tuning fleets presents a major revision to the previous assessment particularly with respect to the 1988 and 1989 year classes. To confirm that this difference was the result of the change in the data used for tuning Laurec-Shepherd tuning was also applied to these data and the estimated average fishing mortalities over the age range 5 to 8 are compared in Figure 2.5.4b. This figure also shows the corresponding fishing mortality calculated in Anon. (1992). The conclusion appears to be that the change in methods is of minor importance compared to the change in the database.

The quality control diagrams for spawning stock biomass and recruitment demonstrate a very variable assessment over the years (Table 2.5.9). SSB and recruitment for assessment years prior to 1992 were obtained by summing results from the two separate assessments for the Kattegat and Skagerrak plaice.

Table 2.5.5 also gives the slopes (In CPUE vs. In stock numbers (VPA)) obtained from the XSA analysis. From this analysis age group 4 data appear to fit the model rather badly, particularly for Danish trawl and Danish seine CPUE. Removing these two fleets, i.e. running XSA analysis using only the commercial gill net fleet for tuning, provided a completely different level of fishing mortality from that obtained by the combined assessment. The stock sizes also change accordingly. The slope for, particularly, age group 4 is now more reasonable (1.6 with standard error 0.52). Checking this result by tuning XSA with trawl and Danish seine data confirmed that these data imply a total mortality of approximately twice that implied by the gillnet data. In this two-fleet analysis, the slope estimated for age group 4 (17.40 standard error 5.17) is very far from what could be desired (slope =0).

A catch curve analysis on the CPUE data indicates a Z of approximately 0.7 per year using the gill net data and 1.2 - 1.3 per year using the trawl and Danish seine data.

It is concluded that the data series are not internally consistent and that the analytical assessment cannot be used for prediction purposes.

2.5.5 Recruitment estimates

No research vessel index is available.

2.5.6 Historical stock trends

Figure 2.5.5 shows rather fluctuating recruitment and SSB. The present trend in the stock is an increasing SSB and possibly increasing recruitment.

2.5.7 Biological reference points

The stock recruitment scatter diagram presented in Figure 2.5.6 does not indicate any lower limit below which a significant stock-recruitment relationship seems to be in effect. A minimum biologically acceptable level of SSB is, therefore, not possible to estimate for this stock. However, the assessment is dominated by the Skagerrak stock component and a possible stock recruitment relationship is most likely to be seen in the Kattegat component. For this southern stock component a rather low level of recruitment has been experienced over a longer time period.

 F_{med} can be estimated from the stock-recruitment diagram, but is found to be very sensitive to the inclusion of the most recent data points. F_{med} is, therefore, not considered to provide any guidance on appropriate exploitation levels. F_{max} is well below the estimated level of fishing mortality. However, as discussed above in Section 2.5.4 (Catch-at-age analysis), the CPUE and catch data are open to different interpretations and prudence in interpretation of these biological reference points is warranted.

2.5.8 Short-term forecasts

A formal catch projection is not presented. The fishery up to the end of September 1993 does not indicate any major change in yield compared to 1992.

2.5.9 Medium-term forecasts

Medium-term forecasts for this stock are not considered to be of much value.

2.5.10 Long-term forecast

Yield per recruit analysis indicates that the current F level is much higher than the F_{max} reference point.

2.5.11 Comments on the assessment

The assessment presented is formally analytical, but no clear conclusions can be drawn. The catch data show large variability and the tuning data are in internal conflict. Any conclusion depends critically on which of the data sets are considered to be the more reliable. The Danish seine fleet should be a good guess for an appropriate tuning fleet, but the results particularly for age group 4 indicate that an interpretation of this data series is not simple.

3 NORTH SEA (SUB-AREA IV)

3.1 Overview

Virtual population analyses were carried out for four stocks of roundfish (cod, haddock, whiting, and saithe) and two stocks of flatfish (sole and plaice), all harvested for human consumption purposes in the North Sea.

The data from biological sources for age compositions and research vessel surveys are generally of good quality, but these are undermined by inadequate landings data. Misreporting and underreporting is known to occur to an increasing extent for cod, haddock and sole in several countries, and this affects the quality of the predictions.

Fishing mortalities in the most recent year were substantially higher in roundfish (0.8-1.2) than in flatfish (around 0.5). All stocks are being overexploited in terms of growth overfishing.

The SSB of cod seems to have stabilised at a very low level, and approximately one third of the level of 150,000 t which is considered by ACFM to be the lowest desirable biological level. Only one of the year classes recruited since the strong 1985 year class appears to be around average; the other year classes are all below average. Preliminary information on the 1993 year class indicates that this year class is also below average.

For cod, continued fishing at the current high F levels is likely to result in continued low levels of SSB, which, in conjunction with the recent series of poor recruitment, gives rise to serious concern that the stock is no longer able to replenish itself.

The SSB of haddock declined from 1985 to reach a historical low level in 1991. Since then a slight increase is indicated due to the recruitment of year classes that, since 1990, have been average or above average.

The estimates of the 1989 and 1990 year classes of whiting have been adjusted downwards to a considerable extent. The SSB appears to have stabilised close to the historical minimum level. The major part of the SSB now consists of two poor year classes. In the medium term, however, a slight increase in SSB is expected with the present exploitation pattern.

The SSB of saithe shows a continuous downwards trend and is at a historically low level.

The sole is considered to be within safe biological limits. The SSB is presently well above the minimum level due to the abundant 1987 year class. After a short period of decline the SSB is expected to rise again in 1994 due to the recruitment of the strong 1991 year class. The plaice stock is declining slightly, but, as the result of a series of average year classes, the SSB is estimated to be at a relatively safe level. Recruitment seems to have been overestimated in recent years. This may explain the observed decline in catches in all fleets. In the medium term SSB is expected to decline to a lower level, close to the minimum desirable level of 300,000 tonnes.

The effort data for commercial fleets, some of which were used in tuning the VPA, are shown in Figure 3.1. In the fleets directed at flatfish, it is apparent that the increase in effort observed throughout the 1980s, has leveled off in the most recent years.

3.2 Cod in Sub-area IV

3.2.1 Catch Trends

Landings data from human consumption fisheries for recent years as officially reported as well as those estimated by the Working Group are given in Table 3.2.1. A longer time series of landings from Working Group estimates is given in Table 3.2.2 and Figure 3.2.1. It is known that there were unreported landings in some countries in 1992, but these cannot be quantified, and the Working Group estimate and those officially reported were identical at 98,000 t. The agreed TAC for 1992 was 100,000 t. The landings in 1991 were 13% higher than in 1990, but they have declined markedly since 1981, when they were at a level of 300,000 t.

3.2.2 Natural mortality, maturity, age compositions, and mean weight at age

Values for natural mortality and maturity are given in Table 3.2.3, and are unchanged from those used last year. The sources of these data are multispecies VPA as performed by the Multispecies Assessment Working Group (natural mortality), and the International Young Fish Survey (maturity). The VPA catch input data are given in Table 3.2.4. They do not include discards or industrial fishery by-catches (see Section 6.4.2). Data for 1991 were updated with minor revisions, and data for 1992 were provided by Denmark, England, France, Germany, the Netherlands, and Scotland. Mean weight at age data for landings are given in Table 3.2.5. These values were also used as stock mean weights, and are therefore not biologically meaningful. SOP corrections have been applied to the mean weights at age for all fleets except those for Scotland, where the numbers at age have been corrected instead.

3.2.3 Catch, effort, and research vessel data

The data used to tune the VPA are given in Table 3.2.6. The same fleets were used as in last year's assessment, but the IYFS data were revised to include ages 3 to 6 (denoted as INTGFS2 in the data file) in addition to ages 1 and 2. Data are included for 6 commercial fleets and 5 surveys.

3.2.4 Catch at age analysis

The method used to tune the VPA was XSA (v3.1), and this was a change from last year's assessment when the Laurec-Shepherd method was used (see Section 6.4.1). Tuning was performed over a 20 year period, with shrinkage of 0.5 and a tricubic time taper. Inspection of preliminary runs indicated that there was no evidence of a correlation between catchability and abundance. The recruiting age was therefore set at age 1, and catchability was fixed for ages 6 and above. The age range used for VPA was 1 to 11 (the plus group), and F for the oldest age was set at the mean of the 5 younger ages (5-9).

The tuning results for the XSA method are given in Table 3.2.7, and the fleet residuals are plotted in Figure 3.2.2. Last year ACFM drew attention to apparent trends in catchability in some of the fleets. Some slight trends are still apparent in the current tuning results using XSA, but it is not thought that they have seriously affected the estimates of the surviving populations.

The estimates of fishing mortality rates and population numbers resulting from the tuning procedure and VPA are given in Tables 3.2.8. and 3.2.9. The results from a retrospective analysis using XSA are shown in Figure 3.2.3. There is good agreement in the last three years but before that period there was a tendency for F values to be underestimated. However, there are no gross discrepancies and it may be concluded that the results show reasonable agreement between successive estimates.

3.2.5 Recruitment estimates

The research vessel indices used in the RCT3 program estimating recruitment are given in Table 3.2.10, the same surveys being used as in last year's assessment. The indices for the English groundfish surveys in 1992 and 1993 have been corrected to take account of the change of gear to the GOV trawl in 1992 (Cotter, 1993). The results of the RCT3 analyses are given in Tables 3.2.11 and 3.2.12. They were used as estimates for ages 1 and 2 in 1993 (year classes 1992 and 1991), and age 1 in 1994 (1993 year class). The RCT3 estimate for age 2 in 1993 (159 millions) was used in preference to that from XSA (138 millions), since it is based on additional survey information in 1993.

The latest estimate for the 1990 year class (149 million at age 1) is close to that estimated last year (155 million), but the estimate for the 1991 year class has increased from 342 million last year to 410 million this year, just above the long-term arithmetic mean. The 1992 year class has also been revised upwards, from a preliminary estimate of 176 million last year to 199 millions this year. The preliminary estimate for the 1993 year class (based on a single survey 0-group index and shrunk to the mean) is 224 million at age 1. The 1994 year class at age 1 was set at 268 million, the VPA mean from the RCT3 program. The estimate has a coefficient of variation of 64%.

3.2.6 Historical stock trends

Historical trends in mean fishing mortality, spawning stock biomass, and recruitment are shown in Table 3.2.13 and Figure 3.2.1. Mean fishing mortality increased over the period 1963 to 1982, but subsequently appears to have stabilised at a value around 0.9. Spawning biomass decreased from a peak of 266,000 t in 1970 to a historical low level of 60,000 t in 1991, and is estimated to have fallen to 58,000 t at the start of 1993. Recruitment has fluctuated considerably over the period but the frequency of good year classes has decreased in recent years. The year classes spawned since 1985 have been below average, with the exception of the 1991 year class, which is near average.

3.2.7 Biological reference points

A stock-recruitment scatter plot is shown in Figure 3.2.4, which also shows F_{med} (0.72) and $F_{status quo}$ (0.86) replacement lines. For status quo F, stock replacement in the long term will occur only at atypical levels of recruitment. The minimum spawning stock level advised by ACFM is 150,000 t, which is the lowest level of SSB from which the stock has been seen to recover. A yield per recruit and spawning stock biomass per recruit plot is shown in Figure 3.2.5, and it can be seen that the current F is well above F_{max} .

3.2.8 Catch predictions

The input data for catch prediction are given in Table 3.2.14, and the results are given in Tables 3.2.15 and 3.2.16, and Figure 3.2.5.

The predicted *status quo* landings for 1993 (Table 3.2.15) are 142,000 t, which compares with a value of 118,000 t predicted in last year's ACFM assessment. Spawning biomass is predicted to be 62,000 t by the end of the year. The same level of F in 1994 would result in a catch of 131,000 t, with spawning biomass at 66,000 t by the end of the year.

The agreed TAC for 1993 is 100,700 t, and Table 3.2.16 indicates that this would imply a reduction in F of 38% and an SSB of 85,000 t at the start of 1994. The same level of F in 1994 would produce landings of 165,000 t, and SSB would reach 87,000 t by the end of the year.

The results of a sensitivity analysis of the catch prediction (see Section 1.4.2) are given in Table 3.2.17 and Figure 3.2.6. The Table shows the coefficient of variation of the various parameters, and the Figure shows the contribution to the variance of prediction for the main parameters. For yield, the prediction is most sensitive to F in 1994 (21%), survivors at age 1 in 1993 (18%), F in 1993 (17%), and recruitment in 1994 (15%). The prediction of SSB in 1995 is most sensitive to F in 1993 (21%) and 1994 (31%), with the population number at age 2 in 1993 (10%) next in importance. Figure 3.2.7 shows probability profiles for landings and SSB in 1994. For landings, the Figure shows, for example that, in order to reduce F in 1994, the TAC will need to be set significantly below 125,000 t. It also suggests that the SSB is likely to remain at the current level in the next year or two.

3.2.9 Medium-term projections

The inputs for these analyses (see Section 1.4.3) are shown in Tables 3.2.17 and 3.2.18, and the results are presented in Figures 3.2.8 and 3.2.9.

Assuming a non-parametric stock-recruitment relationship (Figure 3.2.8), in 9 years out of 10 the yield could be expected to fluctuate between about 80,000 t and 250,000 t, but would average 150,000 t. Similarly, SSB could be expected to fluctuate between about 50,000 t and 120,000 t, and on average would slowly increase to 80,000 t.

If a parametric stock-recruitment relationship is assumed (Figure 3.2.9), although the confidence intervals are similar to those above, the mean yield falls to around 125,000 t, while SSB declines to about 58,000 t. However, the simulation is generating levels of SSB well below those indicated by the observed data, so the results should be treated with caution.

The more optimistic of the two scenarios suggests that it is very unlikely that SSB will reach the ACFM target level of 150,000 t.

3.2.10 Long-term considerations

The state of this stock continues to give rise to concern. The analyses presented here all indicate that the current level of fishing mortality, which is above F_{med} , is not sustainable in the long term. SSB remains at a historically low level, and only one year class in the past 8 years has been at a near-average level. Unless F is reduced, SSB is unlikely to rise in the medium term or in the long term. SSB could also be increased by improving the exploitation pattern, and this question is shortly to be considered at an EC Task Force meeting.

3.2.11 Comments on assessment

It was not possible to include discards in the assessment, as had been requested by ACFM (see Section 6.4.2). The current stock size is now indicated to be slightly higher than that estimated at last year's meeting, the reasons identified being a small upwards revision of numbers caught in 1991, and lower estimates of F values (see Section 6.4.1). However, these changes do not affect the overall conclusion as to the state of the stock. Quality control data are given in Table 3.2.19.

It is known that in some countries restrictive TACs in recent years have led to misreporting, but unfortunately it has not been possible to quantify this problem. It is suspected that for some fleets this effect is non trivial (see Section 6.4.3).

3.3 Haddock in Sub-Area IV

3.3.1 Catch Trends

In recent years there have been considerable problems with non-reporting and misreporting in this stock. This is reflected in the discrepancy between official and Working Group estimates of human-consumption landings (Table 3.3.1). The Working Group estimate of the landings during 1992 is 70,000 t, which is a slight increase on recent years, but still close to the historic low of 51,000 t in 1990. The Working Group estimate of the 1992 human consumption catch includes correction for suspected non-reporting. Further details of this are given in Section 6.3.1. Working Group estimates of the total catch broken down by catch category are given in Table 3.3.2. Quantities of discards and industrial bycatch have increased since 1989, reflecting the relative strength of the recruiting year-classes.

Long-term trends in catches by category are shown in Figure 3.3.1.

3.3.2 Natural mortality, maturity, age compositions and mean weight at age

Natural mortality estimates are given in Table 3.3.3, along with the maturity ogive. Both are as used previously. The mortality estimates originate from MSVPA. The maturity ogive is based on IYFS data.

Age composition data for the human consumption landings were supplied by Denmark, England, France and Scotland. Discards were estimated from Scottish data. For the industrial by-catch, Denmark supplied age compositions, and Norway supplied length compositions which were converted to ages using Scottish discard agelength keys. The catch at age data are given in Table 3.3.4. The age composition data are SOP corrected during the raising process. For purely atavistic reasons the correction is applied to the weights at age, so these are not biologically meaningful. The weights at age in the total catch, which are also used as stock weights at age, are given in Table 3.3.5.

3.3.3 Catch, effort and research vessel data

The non-reporting outlined in Section 3.3.1 means that the commercial CPUE series which has formerly been used in VPA tuning for this stock is likely to have deteriorated considerably in quality. In view of this, most of these fleets were excluded from the tuning, although the French trawler CPUE series were retained as this fleet accounts for a small proportion of the total catch and is not thought to be affected by non-reporting. In addition to this series, data from four research vessel surveys were used in the tuning. These included indices for older ages from the International Young Fish Survey which had not previously been available. Full details of the tuning data used are given in Table 3.3.6, and the tuning data are given in Table 3.3.7.

3.3.4 Catch-at-age analysis

The catch-at-age analysis for this stock used XSA. Previously, Laurec-Shepherd tuning has been used. For comparison purposes a Laurec-Shepherd run, using the same settings as in the previous assessment, was also done. The results from this run, which are summarised in Section 6.3.2, were very similar to the XSA results.

Following initial runs detailed in Section 6.3.3, the final XSA treated ages younger than 3 as recruits, with catchability constant with respect to age and older. Otherwise, all defaults were accepted, i.e. a tricubic taper over 20 years was applied, with a shrinkage S.E. of 0.5. Diagnostics from this XSA run are given in Table 3.3.8, and plots of log catchability residuals for each tuning fleet are given in Figure 3.3.2. There appear to be trends in all the tuning fleets and in some cases the trend appears to be quite large.

The Scottish and English groundfish surveys receive most of the weight in the estimates of survivors from the 1991 and 1992 year classes at the start of 1993, although the shrinker also has a large weight. For the 1991 year class the estimate resulting from the Scottish survey is approximately twice that from the English survey. Both estimates receive equal weight so the estimate is clearly rather uncertain. There may be additional problems due to the change of gear on the English GFS in 1992 and 1993, although attempts have been made to correct for this (Cotter, 1993). Formatting problems in the diagnostics mean that the individual fleet estimates of the survivors of the 1992 year class are not readily available. At older ages the French trawlers and the International Young Fish Survey indices contribute more to the weighted estimates of survivors, and the individual

estimates from the fleets which receive the most weight tend to be more homogeneous.

The stock numbers at age as estimated by the final XSA run are given in Table 3.3.9, and estimates of total fishing mortality are given in Table 3.3.10. Trends in mean total F from a retrospective analysis are plotted in Figure 3.3.3. The retrospective analysis does not indicate any consistent bias, but the results for the most recent years indicate clear problems. With 1991 as the terminal year, terminal F was estimated as being at a historic high, whereas with 1992 as the terminal year, mean F in 1991 is reduced considerably, and the 1992 F is estimated as being above 1.3. Given the known problems with the catch data this value seems highly likely to be an over-estimate of the 1992 fishing mortality.

3.3.5 Recruitment estimates

As a comparison with the XSA estimates of survivors in 1993, RCT3 estimates of the strength of recent year classes at ages 0-2 were made. The RCT3 input file for the run at age 0 is given in Table 3.3.11; the runs for ages 1 and 2 used the same recruitment indices but estimates of the strength of each year class at the appropriate age from the current XSA. Output from the RCT3 runs for each age are given in Tables 3.3.12a-c. The RCT3 estimates for the 1991 and 1992 year classes in 1993 (996 million and 11185 million, respectively) are similar to the XSA estimates (802 million and 10635 million), although the RCT3 estimates are slightly larger. The Working Group decided to adopt the RCT3 estimates as they are less influenced by the commercial catch data. At the previous Working Group meeting the RCT3 estimate of the 1991 year class at age 2 (1425 million) was higher than the current estimate but the estimate of the 1992 year class at age 1 (7112 million) was lower.

RCT3 estimated the 1993 year class at age 0 as being very close to the tapered geometric mean of 176 million. This latter figure was used to estimate recruitment in 1994 and subsequent years.

3.3.6 Historical stock trends

Trends in fishing mortality, recruitment and biomass since 1960 are given in Table 3.3.13 and Figure 3.3.1. Mean total fishing mortality has fluctuated around 1, and the present assessment indicates that it is at a historic high. Recruitment shows considerable variation, with the 1992 year class being the largest since 1974. Total biomass shows peaks corresponding to the recruitment of the occasional strong year classes, but these year classes do not survive to have much impact on the spawning stock, which declined from 1985 to a historic low in 1991. Since then, a slight increase is indicated.

3.3.7 Biological reference points

The stock-recruitment plot is shown in Figure 3.3.4, and F_{med} and F_{1992} are indicated. F_{1992} is apparently in excess of F_{med} , which would mean that the stock will decline unless recruitment is above average. These two reference points are also indicated on the yield-per-recruit curve (Figure 3.3.5). This yield-per-recruit curve uses the Fs and mean weights at age given in the input to prediction table (Table 3.3.14). The plotted values are human consumption yield-per-recruit.

3.3.8 Short-term forecast

The population numbers, fishing mortalities and stock and catch weights at age used in the short-term catch forecast are given in Table 3.3.14. Natural mortalities and the maturity ogive are given in Table 3.3.3. Two predictions were run; one assuming *status quo* in 1993, and the other assuming a 30% reduction in F relative to 1992. The latter prediction was made as this results in a mean F in 1993 close to the mean over 1988 to 1992, which is considered to be more realistic than using the very high value which the *status quo* option implies. The results from the *status quo* prediction are given in Table 3.3.15, and output from the prediction assuming 30% F reduction in 1993 is given in Table 3.3.16. Trends in SSB and human consumption catch for the *status quo* forecast are given in Figure 3.3.6.

Under both scenarios the SSB at the start of 1994 is predicted to be higher than that in 1993 but this recovery is predicted to be short-lived as assuming *status quo* in 1994 results in a decline in both cases. Both scenarios indicate an increase in the human consumption landings in 1993 and 1994. Assuming *status quo* in both years indicates human consumption landings of 158,000 t in 1993 and 244,000 t in 1994. The prediction assuming 30% F reduction indicates 1993 landings of 126,000 t. This figure is closer to the agreed TAC for 1993 (133,000 t) and it is thought to be more in line with what is actually happening in the fishery in 1993. The *status quo* prediction made at the previous Working Group meeting indicated 1993 human consumption landings of 182,000 t.

A sensitivity analysis of the forecast was run using the input values given in Table 3.3.17 and corresponding to the *status quo* forecast. The estimation of uncertainties was done as described in Section 1.4.2. The results for the 1994 human consumption landings and spawning stock at the start of 1995 are shown in Figures 3.3.7 and 3.3.8. The partial variances (Figure 3.3.7) indicate the dependence of the forecast on the estimate of one-year-old fish in 1993. This year class is not well estimated. The landings are also influenced to a large degree by

natural mortality at age 1. This occurs because M at this age is large, and small percentage changes can have a large effect on survival.

The probability profiles in Figure 3.3.8 indicate the very large uncertainty in the forecast. This will make effective management by TAC extremely difficult.

3.3.9 Medium-term projections

These projections have been performed using the kernel model for the stock-recruitment data. The input values are the same as the starting values for the sensitivity analysis (Table 3.3.12) and the catch prediction (Table 3.3.14). Results of the simulations are shown in Figure 3.3.9. The upper and lower percentiles suggest that the 1995 SSB and landings can be estimated with similar precision and that the values of these quantities in 1995 will be comparable to 1993. Beyond 1995 the interval increases substantially. The upper 5 percentile appears to be unrealistically high implying that the stock recruitment relationship (essentially random recruitment) is unhelpful and needs to be further investigated.

3.3.10 Long-term considerations

Recently the stock has gone through a period of very low spawning stock biomass. This was the result of a succession of poor year classes combined with a high exploitation rate. Year classes since 1990 have been at or above the long-term geometric mean, and the SSB has increased slightly. Fishing mortality is presently estimated to be above F_{med} but a simple statistical test suggests that this difference is not significant. Furthermore, the present level of F appears higher than expected and may be distorted due to misreporting. It seems likely, therefore, that the stock is being exploited near to F_{med} . This and the medium-term projections suggest that the stock might be expected to fluctuate around an equilibrium SSB value of about 200,000 t which is in line with historical precedent.

It is well known that the demersal fisheries in the North Sea generate large quantities of discards and haddock suffers from this problem. Undoubtedly, the productivity of the fishery would improve if smaller fish were allowed to live longer. Unfortunately, the incentive to improve the selectivity of gears is only likely to occur if the overall level of exploitation is reduced (see Section 6.3.4).

3.3.11 Comments on the assessment

This assessment is seriously affected by misreporting in 1992 which undermines the whole analysis. A severe problem is the uncertainty surrounding the magnitude of recent year classes. These all have large log-standard errors as estimated from RCT3. The sensitivity analysis on the forecast shows that the uncertain 1992 year class dominates the prediction.

The quality control diagrams (Tables 3.3.18) indicate that, in general, recent assessments have been fairly consistent. However, there is evidence that problems began with the 1992 assessment. The retrospective analysis for XSA also indicates this problem (Figure 3.3.3).

3.4 Whiting in Sub-area IV

3.4.1 Catch trends

Total nominal landings are given in Table 3.4.1 and total international catches as estimated by the Working Group in Table 3.4.2. Total international catches decreased from 117,000 t in 1991 to 102,000 t in 1992, of which 45,000 t were human consumption landings, 30,000 t discards and 27,000 t industrial by-catch. The total catches have decreased in recent years from 147,000 t in 1990. The reduction reflects stable human consumption landings and reductions in both discards and industrial by-catch. The total landings of 72,000 t in 1992 are only 68% of last year's prediction and are also well below the total 1992 TAC of 135,000 t. Catch trends for the last 20 years are shown in Figure 3.4.1a.

3.4.2 Natural mortality, maturity, age compositions and mean weight at age

The natural mortality and maturity at age values used are given in Table 3.4.3.

The natural mortalities used are rounded averages of the estimates produced by a key MSVPA run (Anon., 1992).

The maturity ogive is based on IYFS data, average 1981-1985.

Human consumption landings data and age compositions were provided by Scotland, the Netherlands, England and France. Discard data were provided by Scotland. In 1991 and 1992 the age composition of the industrial bycatch was directly sampled by Denmark, whereas in earlier years the industrial by-catch age compositions were calculated from research vessel surveys. Length distributions of the industrial by-catch from Norway were available. The Norwegian industrial by-catch was separated into age groups by using the age composition of the Danish industrial by-catches. Mean weights at age were available separately for the human consumption. discard and industrial by-catch component. Total international catch at age and mean weight at age in the catch are presented in Tables 3.4.4 and 3.4.5. The mean weights at age presented are corrected for sum of products and have no biological meaning.

The mean weight at age in the catch was also used as the stock mean weight at age.

3.4.3 Commercial catch/effort data and survey indices

Catch and effort data from commercial and survey vessels were used to tune the VPA. CPUE data from surveys were used to provide recruitment estimates. The fleets used in the VPA tuning and the ages and number of years available for each fleet are listed in Table 3.4.6 while the actual values are presented in Table 3.4.7. The International Ground Fish Survey series is available for a longer period for ages 1 and 2 than for the older ages due to lack of proper sampling/ageing of these age groups in the earlier part of the time series. The data from this survey were, therefore, split into two series. Research vessel indices used for recruitment estimates are given in Table 3.4.12.

3.4.4 Catch at age analysis

The VPA was tuned using the extended survivors analysis (XSA) approach (see Section 1.4.2). The diagnostics of the tuning are presented in Table 3.4.8. Catchability residuals by age and fleet are presented in Figure 3.4.2.

The basic input parameters and conditions of the tuning are presented in Table 3.4.8. The full time series was used. On the basis of experience from trial runs the catchability was assumed to be independent of age for ages above 5 years. The estimates of terminal Fs only changed marginally with variations in this choice. Catchability was allowed to be dependent on stock size below age group 2.

There are apparent trends in the catchability residuals in some survey fleets which are difficult to explain. The fleets receiving highest weight in the estimation of terminal fishing mortality are the French trawlers, the Scottish light trawlers and the Scottish seiners. The mean gives some weight for the youngest and oldest age groups, but weights below 0.25 for ages 1 to 5 inclusive.

The results of a retrospective analysis are presented in Figure 3.4.3. The F level has historically been quite variable, and the method has not been able to pick this variation up in a series of years with underestimates of the terminal F.

In the assessment made in 1992 (Anon., 1992) the VPA was tuned using a Laurec-Shepherd approach. A L-S tuning was run with the same input parameters and run conditions as used in last year's assessment. The fishing mortalities by age in the terminal year were not found to be different from those estimated with the XSA method employed this year (Table 3.4.9).

The stock numbers and fishing mortalities at age estimated with the XSA-tuned VPA are presented in Tables 3.4.10 and 3.4.11.

The fishing mortalities in 1991 have been revised down by 25-40% for ages 2 - 5 relative to last year's assessment. This is also reflected in the retrospective analysis (Figure 3.4.3).

The VPA estimates of the sizes of the 1989 and 1990 year classes have been reduced considerably relative to the estimates used in last year's prediction, which were based on survey indices for these cohorts. The present VPA- based estimates for the two year classes are 1794 and 1548 million at age 1 compared to 3219 and 3472 million estimated by RCT3 in last year's assessment.

3.4.5 Recruitment estimates

Recruitment at ages 0, 1 and 2 in 1993 was estimated using the regression technique implemented in the RCT3 program. Input parameters and run conditions are presented in Table 3.4.12.

The results are given in Tables 3.4.13-3.4.15.

The year class estimates are close to the estimates made in the 1992 assessment. The main deviation is the 1992 year class which is now estimated to be approximately 25% larger than last year's estimate. The mean is now receiving a weight of 0.52 for the estimate of this year class recruiting at age 1 compared to 0.88 in last year's estimate of recruitment at age 0.

The RCT3 estimates of the stock at ages 1 and 2 in 1993 are approximately double the numbers emerging from the VPA and are used instead of these for the predictions.

The estimates used for the year classes 1992 onwards are the mean VPA value of recruitment at age 0 calculated in RCT3.

3.4.6 Historical stock trends

Long-term trends in fishing mortality, recruitment and spawning stock biomass are given in Table 3.4.16 and plotted in Figure 3.4.1.

Fishing mortalities have been highly variable with no clear trend.

Recruitment since 1985 has been variable between the long-term mean and 40% of this value.

The spawning stock biomass has fluctuated within the range 210,000-290,000 t over the same period. The spawning stock biomass has been decreasing for the last two years and is presently the lowest in 20 years. The

decrease in the last two years is associated with the recruitment of two small year classes (1989 and 1990) to the spawning stock, which is now dominated by these cohorts. This decrease in the spawning stock estimate was not clear in the 1992 assessment. The present revision is associated with the downward revision of the estimates of these two cohorts.

3.4.7 Biological reference points

A stock-recruitment plot is shown in Figure 3.4.4. F_{med} (0.54) is below the present *status quo* value of 0.85 year⁻¹. Given the high catch by small mesh fisheries it is not clear which yield/recruit reference point is the appropriate one to use. The equilibrium yield (landings) per recruit is plotted in Figure 3.4.5. The input for equilibrium yield prognosis is given in Table 3.4.17.

3.4.8 Short-term forecast

Input data for the short-term catch forecast are given in Table 3.4.17. Results of a *status quo* forecast are presented in Table 3.4.18 and Figure 3.4.6. The TAC in 1993 is considerably higher than the landings with *status quo* fishing mortality. This TAC is not likely to be taken and a separate forecast based on the TAC has not been made.

The catches in 1993 are similar to the predictions made in 1992 for discards and industrial by-catch but 25% lower for human consumption landings. This is connected to the downward revision of the estimate of the 1989 and 1990 year classes, which are expected to dominate the human consumption landings in 1993 both in numbers and weight.

A sensitivity analysis of the *status quo* forecast is presented in Table 3.4.19 (inputs) and Figure 3.4.7 (results). The estimate of landings in 1994 is sensitive to those year classes which are poorly estimated, to the F level and natural mortality levels in 1993 and to the F pattern at ages 2 and 3. The estimate of the spawning stock biomass in 1995 is mainly affected by recruitment at ages 0 and 1 in 1993, and the natural mortality level and pattern at the youngest ages.

Probability profiles for the yield in 1993 and the spawning stock biomass in 1994 are presented in Figures 3.4.8 and 3.4.9, respectively. Under *status quo* conditions there is a probability of 25% that the spawning stock biomass will be below 200,000 t in 1995.

3.4.9 Medium-term projection

The inputs for a medium-term projection are similar to the inputs for sensitivity analysis and are presented in Table 3.4.19. Due to the appearance of the SSB-R scatter plot only a non-parametric model was implemented. The scatter of points is so wide that the nonparametric model is equivalent to independence between SSB and recruitment.

The results are presented in Figure 3.4.10. The SSB is on average expected to increase in the medium term, with a probability of 5% that it will be below 200,000 t in the average long-term situation.

The human consumption landings are likewise expected to increase on average, but the probability distribution is very wide, from 40,000 to 100,000 t within 90% probability in the average long-term situation.

3.4.10 Long-term considerations

The present assessment indicates that the stock has been stable in the medium term but with a decrease in SSB in the last few years due to two consecutive year classes around half the long-term average.

The short-term forecast predicts increases in SSB from 1993 onwards based on the fact that estimates of the three most recent year classes are close to the long-term average.

The fishing mortality rates are high in comparison to many other stocks, especially on the older ages. Another whiting stock in Division VIa does not appear to be sustaining itself under similar or lower exploitation levels. The present mortality rate is well above F_{med} . Whiting, though a valuable fishery in some countries, tends to be a by-catch species in the mixed gadoid fisheries so the exploitation regime needs to take into account the management of other target species. Although recent experiments have shown that it is possible to fish selectively for whiting at certain times of the year in certain areas, it appears that few fish are taken this way at present.

3.4.11 Comments on the assessment.

The forecasts have been shown to be very sensitive to the estimates of recruiting year classes (Figure 3.4.7). The estimates of the 1989 and 1990 year classes have been adjusted considerably downwards in successive assessments (see Table 3.4.20). The regular occurrence of trends in the survey data in the VPA tuning (Figure 3.4.2) and the difference in recruitment estimates between the VPA and the prediction based on survey indices indicates that the surveys and the commercial fleet data are providing inconsistent information.

The survey fleets used for recruitment estimates are also the fleets showing relative trends in catchability residuals in the catchability analysis (Figure 3.4.2). The net result is that the set of fleets receiving most weight in the VPA tuning is different from the set receiving most weight in recruitment estimation and that the two sets contain conflicting signals concerning the stock. The problem with substantial revisions of the size of recruiting year classes as they are transferred from RCT3 to VPA estimates is, therefore, bound to prevail for some years into the future. There is no simple solution to this problem if all the information available is still to be used.

Primary discard data are missing for all countries except Scotland. Discards from other fleets are estimated by extrapolation from Scottish data. This introduces an error in the assessment, but the extent of this error is limited by the fact that Scotland lands 67% of the total international landings for human consumption.

The North Sea assessment of whiting has a history of being unreliable (see Table 3.4.20). Recruitment indices do not correlate well with VPA estimates and there is no doubt that there are problems with the age composition estimates of the small mesh by-catch in some years.

These problems suggest that the catch forecasts presented should be treated with caution.

3.5 Saithe in Sub-area IV and Division IIIa

3.5.1 Catch trends

Recent nominal landings are given in Table 3.5.1. Working Group estimates are given in Table 3.5.2 and plotted in Figure 3.5.1. Landings were high in the early 1970s, reaching a maximum of 320,000 t in 1976. Subsequently, landings declined to 114,000 t in 1979, mainly due to the discontinuation of the fishery of the USSR. After that, the landings followed an increasing trend to reach 200,000 t in 1985. Since then the landings have decreased considerably. In 1991 and 1992, the landings are estimated to be 99,000 t and 92,000 t, respectively (lowest on record). Small amounts of saithe are taken as industrial by-catch. Since 1976, the average industrial by-catch has been 3,000 t (Table 3.5.2). The agreed TAC in 1992 was 110,000 t. 1992 was the seventh successive year in which the TAC was not taken. In 1993 catch rates appear to be higher than expected, and the TAC will most probably be taken.

3.5.2 Natural mortality, maturity, age compositions, mean weight at age

Conventional values of natural mortality rate and maturity at age based on biological sampling are given in Table 3.5.11. Total international age compositions are given in Table 3.5.3. Data for 1991 were updated with major revisions, which led to a significant reduction in estimates of age 2 and 3 fish. Data for 1992 were supplied by Denmark, Germany, From Norway, UK (England and Scotland) accounting for 94% of the catches. Discards are not included.

The mean weights at age in the landings are given in Table 3.5.4. These are also used as stock mean weights. The weights are corrected for SOP.

3.5.3 Catch, effort and research vessel data

Commercial catch and effort data used to tune the VPA are given in Table 3.5.5. There are no research vessel indices of abundance for saithe, but a series of 0-group indices estimated by observers are given in Table 3.5.9. The index appears to be able to predict extreme year classes. A limited amount of survey data is available (Table 3.5.9) but these are insufficient and cannot be used in the analysis.

3.5.4 Catch-at-age analysis

The method used to tune the VPA was XSA (v3.1), and this was a change from last year's assessment when the Laurec-Shepherd method was used (see Section B). Tuning was performed over a 15-year period, with shrinkage of 0.5 and a tricubic time taper. Inspection of preliminary runs indicated that there was no evidence for a correlation between catchability and abundance. The recruiting age was, therefore, set at age 1, and catchability was fixed for ages 4 and above. The age range used for VPA was 1 to 10 (the plus group), and F for the oldest ages was set to the mean of the 3 younger ages. The tuning results are given in Table 3.5.6. and the residuals of the log catchability are plotted in Figure 3.5.2. Table 3.5.7 gives the values of fishing mortality rate, and Table 3.5.8 the stock numbers estimated by tuning. The F(3-6) for 1991 is reduced compared to last year's assessment.

A retrospective analysis was run for six years backwards. The results are plotted in Figure 3.5.3. There is good agreement for all runs.

3.5.5 Recruitment estimates

The time series of 0-group indices obtained from observations along the western coast of Norway is shown in Table 3.5.9. In addition, there exist some indices from a Norwegian 0-group survey, but the time series is very short. The observation indices indicate average or aboveaverage year classes from 1990 onwards.

In the absence of reliable abundance estimates the Group decided to assume mean geometric recruitment at age 1 over the years 1970-1989 for the year classes 1990 onwards (191 million fish).

3.5.6 Historical stock trends

Table 3.5.10 gives a summary of the trends in fishing mortality, biomass and recruitment as estimated by VPA. These data are also plotted in Figure 3.5.1.

Mean fishing mortality increased substantially from 1981 to 1986. Since then it has decreased to a level of about 0.6. Total biomass and spawning biomass show a continuous downward trend and are now at their lowest historical levels.

3.5.7 Biological reference points

Yield and biomass per recruit are shown in Figure 3.5.5, and input data are in Table 3.5.11. A stock/recruitment plot is shown in Figure 3.5.4. F_{high} (0.65), F_{med} (0.44) and Fstatus quo (0.59) replacement lines are shown in Figure 3.5.4. For status quo F, stock replacement in the long term will occur only with atypical levels of recruitment.

3.5.8 Short-term forecast

Input data for prediction are given in Table 3.5.11. Ages 1, 2 and 3 are estimated from the average number at age 1. The time period for calculation of mean exploitation pattern and mean weights was 1988 to 1992. Results of the predictions assuming average recruitment are given in Table 3.5.12 and Figure 3.5.5. Input data for a sensitivity analysis (see Section 1.4.2) are given in Table 3.5.13 and the results of this analysis are shown in Figures 3.5.6 and 3.5.7.

Maintenance of the 1992 level of fishing mortality in 1993 will lead to landings of 89,000 t in 1993 and 97,000 t in 1994. Spawning stock size is predicted to stabilize around 80,000 t.

The sensitivity analysis shows that the prediction is dependent on age 2 and especially age 3 in 1993 (Figure 3.5.6). These ages are assumed to be of average abundance, and the prediction is, therefore, only a steady state prediction.

The probability plots show that there is about a 40% probability that the spawning stock will drop below 70,000 t (the lowest previous record) in 1995 if the current level of fishing mortality is maintained (Figure 3.5.7) and, with a catch of 97,000 t in 1994, there is about a 60% probability that fishing mortality will be higher than in 1993.

The predicted *status quo* catch for 1993 of 89,000 t was so close to the TAC of 93,000 t that no prediction with a TAC constraint was run.

3.5.9 Medium-term projections

The input for these analyses (see Section 1.4.3) are shown in Tables 3.5.13 and 3.5.14, and the results are presented in Figures 3.5.8 and 3.5.9. Assuming a parametric stock-recruitment relationship (Figure 3.5.8) the yield in 9 years out of 10 is expected to be between about 50,000 t and 180,000 t, but would average 100,000 t. SSB is expected in 9 years out of 10 to be between 50,000 t and 170,000 t, and average 100,000 t. If a non-parametric stock-recruitment relationship is assumed (Figure 3.5.9), the confidence intervals will be almost the same, but the mean yield will increase to 130,000 t, and the mean SSB will increase to 120,000 t.

3.5.10 Long-term considerations

The current level of F is at F_{high} , which implies that high recruitment is required to sustain spawning stock biomass. However, at *status quo* fishing mortality the medium-term projections indicate that the probability of reaching a spawning stock biomass at the level seen in the 1970s is very small.

3.5.11 Comments on the assessment

Table 3.5.15 shows the quality control diagrams. This year's assessment is consistent with the assessment last year. The 1988 and 1989 year classes have been reduced from last year's assessment. This is mainly due to the revision of the catch-at-age data for 1991 and to the fact that they have been replaced by VPA values rather than being long-term means. The 0-group indices indicate that using average recruitment for the period 1988 -1993 may be reasonable.

As mentioned above, the prediction is really only a steady-state prediction, and this will make effective management by TAC difficult.

3.6 North Sea Sole

3.6.1 Catch trends

The total nominal landings in 1992 reported to ICES were 25,744 t. The Working Group estimate of the landings in 1992 was 29,116 t compared to 38,342 t in the previous year (Table 3.6.1). The agreed TAC for 1992 was 25,000 t but this has been increased by 10% to 27,500 t due to a mid-year TAC revision. Historical trends in landings are given in Figure 3.6.5.a. In recent years landings have been at a high level and are dominated by the outstanding 1987 year class. There is continuing uncertainty about the actual level of the unreported landings. The estimate of the unreported landings is the lowest in the last 10 years (Table 3.6.1).

3.6.2 Natural mortality, maturity, age compositions, mean weight at age

Age compositions, weight and length at age were available for the 1992 landings on a quarterly basis from Belgium, Denmark, the Netherlands, UK (England and Wales) and France, accounting for about 92% of the total international landings. The SOP of the combined 1992 age composition was 2% lower than the total landings. Minor revisions were made to the 1991 data as a consequence of revisions in the national 1991 landings. No estimates of discards are available to the Working Group.

Weights at age in the stock are measured second quarter weights in the catch. The age compositions and weights at age in the catch and in the stock are given in Tables 3.6.2, 3.6.3 and 3.6.4.

A knife-edged maturity ogive was used in all years, assuming full maturation at age 3. Natural mortality has been assumed constant over ages and years at a level of 0.1, except for 1963, when a value of 0.9 was used to take account of the effects of a severe winter (Anon., 1979).

3.6.3 Catch, effort and research vessel data

Catch and effort data used in the tuning were the same series as used in last year's assessment. The tuning data are presented in Table 3.6.5. The "Netherlands all Fleets" is in fact the beam trawl fleet effort measured in million horse power days. The other 2 fleets are surveys. The SNS (Sole Net Survey) is carried out by the Netherlands with a 6 m beam trawl in autumn along the continental coast. The German Solea survey is also a beam trawl survey carried out in May. CPUE and effort data not used in the tuning are presented in Section 6.6.1.

3.6.4 Catch at age analysis

The tuning procedure used in the assessment is XSA with shrinkage; the same as used in last year's assessment. However, following a recommendation of the Methods Working Group, a weaker shrinkage to the VPA mean (0.5) has been applied compared to last year (0.3). The tuning was carried out using a 10-year period with no taper. Table 3.6.6 specifies the configuration of the method.

The diagnostics of the tuning are presented in Table 3.6.6. Figures 3.6.1, 3.6.2 and 3.6.3 present the trends in log catchability in the tuning fleets. The residuals in the Dutch fleet show an increasing trend in the last 4 years for most age groups, which may be related to a change in directivity of the beam trawl fleet from plaice towards sole. The residuals in log catchability in the

other fleets fluctuate without clear trend although in general the level of catchability in the German survey data since 1987 is somewhat lower than in the previous period and the opposite pattern can be observed in the Dutch "Tridens" survey.

In the determination of the estimated survivors and the associated fishing mortalities for each age group most weight has been given by the tuning procedure to the Dutch beam trawl fleet for most age groups. The "Tridens" survey gives most weight to the ages 1 and 2 estimates but also contributes considerably to the age 3 estimates. In age groups older than 10, which are generally less well sampled in the age composition, the influence of the shrinker on the combined estimated is increasing. In general the estimates of the survivors by the shrinker are higher than those by the fleets. Consequently the fishing mortalities estimated by the shrinker are lower than those estimated by the fleets.

Retrospective runs were carried out in order to inspect the performance of the method. The retrospective results with respect to mean fishing mortality are shown in Figure 3.6.4. The mean fishing mortality estimated for 1991 appears to be close to the one estimated in last year's assessment.

In addition, trial runs were made using other tuning configurations. In general, the VPA results from these runs are not very different from the final method. A summary of the results of these trials is presented in Section 6.6.2.

The results of the VPA are presented in Tables 3.6.7 and 3.6.8. All measures of mean fishing mortality fluctuate in the last 10 years around a level of 0.5. The SSB increased from 37,000 t in 1989 to 93,000 t in 1990 due to the recruitment of the outstanding 1987 year class and decreased thereafter to 78,000 t and 66,000 t in 1991 and 1992, respectively.

3.6.5 Recruitment estimates

Average recruitment in the period 1957-1989 was 134 million (arithmetic mean) or 97 million (geometric mean) 1-year-old fish.

No independent indices of recruitment were available from pre-recruit surveys carried out in 1993 since the surveys were not yet completed. It is expected that these indices will become available after the meeting of the present Working Group and will be available to ACFM in November 1993.

A preliminary estimate of recent year classes was made using the log regressions between the indices available from surveys carried out in previous years (the same as those available at last year's meeting) with the 1-year-olds from the VPA using RCT3. The indices are given in Table 3.6.9. The options used in RCT3 were the same as those used last year and are listed in Table 3.6.10. The results are given in the same table. The S.E. of the estimated recruitments is about 20%, which is quite large. The year-class strength estimated by the surveys has been used in the short-term forecast.

Recent recruitment is characterized by the occurrence of two poor year classes and one very good one.

<u>1990 year class</u>: Almost all surveys indicate this year class to be well below GM recruitment. However, in the UK nurseries it was the strongest in the series as 1--group. The mean estimate from the surveys is 52 million 1-year-olds. Also the VPA estimates it to be poor: 37 million.

<u>1991 year class</u>: The available indices indicate that this year class appears to be a very good one. On the UK coast it was around average strength as 0-group. The mean estimate from the surveys is 274 million 1-year-olds. The VPA estimate is 435 million but this is based on the catches at age 1 in 1992 only.

<u>1992 year class</u>: This year class is virtually absent as 0-group in the continental suveys. In the UK nurseries it was about average strength. The RCT3 program estimates it at 55 million. However, most of this estimate is due to the effect of shrinking to the VPA mean recruitment. Without shrinking it is about 11 million 1-year olds.

3.6.6 Historical stock trends

Trends in landings, recruitment, fishing mortality and SSB are shown in Figures 3.6.5a-d and in the assessment summary table (Table 3.6.11).

The recruitment of North Sea sole shows considerable variation from year to year. The pattern of recruitment is characterized by the occasional occurrence of outstanding year classes (3 to 5 times average). In the period 1957-1992 these have occurred 4 times: in 1958 and 1963 and recently in 1987 and 1991.

Fishing mortality increased gradually in the period 1957-1966. It increased sharply in the mid-1960s, mainly because of the introduction of the beam trawl in the fishery and continued to increase gradually until the mid-1980s. It has remained high in recent years with fluctuating trends. The recent observed fluctuations do not reflect changes in effort but they may indicate the deteriorated quality of the estimates of landings.

Trends in SSB are associated with the occurrence of strong year classes. SSB was at a historically high level of 147,000 t in the years 1961-1963 but decreased sharply thereafter due to high natural mortality in the cold 1963 winter. The 1963 year class built it up again to 105,000 t in 1966. Thereafter it decreased almost continuously due to an increase in fishing mortality, the absence of very strong year classes and a number of poor year classes. Its lowest level was 25,000 t in 1981. It recovered sharply in 1990 to 93,000 t when the 1987 year class recruited to the SSB. It has decreased in recent years to 51,000 t in 1993.

3.6.7 Biological reference points

Figure 3.6.6 shows the SSB/recruitment scatter plot. At the observed levels of biomass there are no indications that recruitment has declined. Most historical observations of recruitment are made at SSB levels higher than 35,000 t. Only two observations are available at levels of SSB below 35,000 t, in both cases associated with aboveaverage recruitment. The plot does not indicate a particular "Minimum biologically acceptable level" (MBAL) based on biological arguments. Since recruitment is uncertain at SSB levels below 35,000 t, however, the MBAL should not be set below 35,000 t.

The SSB recruitment plot also shows the position of F_{med} and F_{92} . F_{92} is higher than F_{med} but the difference is not significant.

The input parameters for the yield and biomass-per-recruit calculations are given in Table 3.6.12. The weights at age used were the averages of the last 3 years in the catch and in the stock. The exploitation pattern used was the average of the last 3 years in the VPA scaled to the 1992 level. The results of the calculations are given in Table 3.6.13 and Figure 3.6.7.

The biological reference points are almost at the same position as last year and are as follows:

F0.1	Fmax	Fmed	
0.10	0.26	0.35	0.5

3.6.8 Short-term forecast

Catch forecasts for 1993 and 1994 were obtained using the IFAP prediction program. The inputs are given in Table 3.6.12. The stock numbers for ages 1-3 were estimated from recruitment surveys and may have to be changed by ACFM when new information on the recruitment of recent year classes becomes available from the 1993 recruitment surveys. The management options are presented in Table 3.6.14 and Figure 3.6.8. A *status quo* level of fishing mortality has been assumed for 1993 in the prediction.

The expected catch at *status quo* fishing mortality in 1993 is 27,500 t. The spawning stock biomass will increase from 50,000 t in 1993 to 66,000 t in 1994 when the strong 1991 year class recruits to the SSB. At *status quo* level of fishing mortality, the expected catch in 1994 is 30,000 t leaving a SSB of 51,000 t in 1995.

A sensitivity analysis was carried out by the Working Group using a linear model PREFAST3. The input data used in this model are given in Table 3.6.15.

Estimates of the 95% confidence intervals of the expected *status quo* catch in 1993 are 20,000 and 37,000 t, respectively. The agreed TAC of 32,000 t for 1993 is higher than the expected catch but is between these limits. If this TAC is taken, there is a 90% probability that this would require an increase of fishing mortality.

Probability profiles of the expected yield in 1994 and the SSB in 1995 are given in Figures 3.6.9 and 3.6.10. Figure 3.6.11 shows the partial variances (proportions), estimated from a linear analysis for the forecast. They show how variability in the parameters used in the forecast (recruitment, M, F, age composition of the stock in 1993) contribute to the uncertainty in the prediction of yields in 1993 and 1994 and SSB in 1994 and 1995. The analysis shows that the measurement error of the 1991 year class contributes most to the predictions of yield and SSB in 1994, but also contributes considerably to those in the other years.

3.6.9 Medium-term projections

Medium-term predictions were made for a period of 9 years to estimate 95% confidence intervals of the predicted yields, SSB and recruitment at *status quo* fishing mortality. Recruitment was modelled using the kernel method described in Section 1.4.3. The model was run over 10 years with 1000 simulations. The results are presented in Figure 3.6.12.

The estimates of the 95% confidence intervals of the predicted yield and SSB increase with time and stabilize after 1996, indicating that from this year onwards the prediction of yield and SSB is uncertain. The estimate of recruitment is uncertain from 1994 onwards.

3.6.10 Long-term considerations

In the past, management advice for North Sea sole was based on the following objective: "To prevent the spawning stock from falling below the historically safe level of 40,000 t and maintain it at a level of 50,000 t. This objective comprised a buffer of 10,000 t to allow for two successive poor year classes."

Experience from the late 1980s has confirmed that the stock can recover from 40,000 t, and one case of strong recruitment has been observed from a SSB of 31,000 t. The SSB recruitment plot (Figure 3.6.6) indicates that good recruitment can occur at a minimum level of SSB of 35,000 t.

The SPLIR model has been used to estimate the probability that SSB will decrease below this level in the long term. This model was described in Appendix IV in last year's report (ICES, C.M.1993/Assess:5) and in the Report of the Long Term Management Measures Working Group (ICES, C.M.1993/Assess:7). Basically the model estimates the variability on the yield- and biomass per recruit curves due to the observed variability in recruitment. The model was run over 1000 years.

The results are shown in Figures 3.6.13 and 3.6.14. At the present level of fishing mortality (F(2-8)=0.50) the probability that the spawning stock will be below the level of 35,000 t in any year in the long term is 0.3. To reduce this probability to 0.1, fishing mortality should be reduced to F(2-8)=0.40. This indicates the requirement of a reduction of 20% in the presently assumed level of F. The distribution of expected yields is almost the same for all levels of fishing mortality, which corresponds to the flat-topped yield/recruit curve for this stock (Figure 3.6.7).

3.6.11 Comments on the assessment

The consistency of this assessment and previous assessments is shown in the quality control diagrams (Tables 3.6.16a-d). The quality control diagrams show that there is a tendency to revise F downwards and this is a reason of concern.

The present 1993 assessment is reasonably consistent with the 1992 assessment. A comparison with the results of other tuning methods is given in Section 6.6. The choice of tuning method does not seem to make much difference to the results of the assessment.

It has already been pointed out that the reason for the problems in the assessment probably originate from the quality of the data in a number of years, especially in the level of landings and in the effort data. Effort data used in the tuning are from a mixed fishery on plaice and sole and contain a certain proportion of effort exclusively directed at plaice. Changes in the directivity of this fishery towards one or both species or other species have been observed depending on the availability of the species (catch rates, catch restrictions) but cannot be quantified. The increasing trend in catchability in the last 4 years could be explained by a change in directivity from plaice towards sole; the plaice assessment shows an opposite trend in catchability in the same years.

In the past, weights at age of sole have shown significant trends. In the mid-1960s and early 1970s a significant increase in weight at age (about 40%) was observed. This increase has been explained by an increase in growth. In recent years a relatively small, but probably significant, decrease in weight at age has been observed in sole as well as in plaice. Figure 3.6.15 shows the residuals of the weight at age for age group 3-10 from the mean in the period 1973-1993. The reasons for these changes are not yet fully understood. The short-term forecasts take account of the change in weight at age of the last 3 years. The long-term models used by the Working Group do not.

3.7 North Sea plaice

3.7.1 Catch trends

Total international catches in 1992 dropped by 23% from 1991 to about 121,000 t (Table 3.7.1, Figure 3.7.1), which compares with agreed TAC of 175,000 t. The 1992 catch was the lowest since 1979. None of the major fisheries exhausted their quotas; underreporting is therefore assumed to be of little importance in 1992.

3.7.2 Natural mortality, maturity, age composition and mean weight at age

Natural mortality and maturity were the conventional values used in previous years (Table 3.7.15). The age composition of the landings (not SOP-corrected) based on a sampling coverage of roughly 90% of the landings is given in Table 3.7.2. No discards were included in the assessment. Mean weights at age (Tables 3.7.3 and 3.7.4) are estimated from market samples; mean weights in the stock are the values from catches in the first quarter of the year.

3.7.3 Catch, effort, and research vessel data

Data used in the tuning run are given in Table 3.7.5. These originate from two commercial fleets (NL all fleets = beam trawlers, UK seiners) and two surveys (NL beam trawl survey, "Tridens" survey). The English groundfish survey was excluded this year because of a change in gear which could not be corrected in a convincing way. The "Tridens" survey covers only age groups 1, 2 and 3. All available commercial CPUE data indicate declines in both 1991 and 1992 (Table 6.7.1).

3.7.4 Catch at age analysis

Tuning was done using the XSA (with shrinkage) model. The model formulation is described in Table 3.7.6. Comparisons of this model with others attempted in tuning the VPA are contained in Section 6.7 of this report. The summary statistics for the XSA tuning (Table 3.7.6) show that the "Tridens" pre-recruit survey data have the largest influence in determining terminal Fs at the youngest ages, particularly ages 1 and 2. The Netherlands fleet data have the largest influence on all ages above 9. There is no clear pattern at the intermediate ages of any one index being particularly dominant.

Figure 3.7.2 shows the log catchability residual plots. There are large residuals at ages 3, 7, and 8 in the 1991 Netherlands fleet data, but the reasons for these values are not clear. One reason may be changes in the proportions of the catch at these ages in the Netherlands landings compared to total landings. There is also some evidence of a decline in q for this fleet in recent years. A possible explanation could be a diversion of some effort away from plaice toward sole by the Dutch fleet. There is no indication of a change in catchability in the other commercial fleet used in tuning (English seine). The "Tridens" index shows an increase in q at age 3.

A retrospective analysis was conducted using the same formulation of XSA to explore variability in estimated terminal Fs. Figure 3.7.3 shows that the current analysis estimated F to be higher in 1991 but lower in previous years compared to the analysis with 1991 as the terminal year. Both these analyses indicate lower Fs than the analyses with 1989 and 1990 as terminal years. This pattern was also seen in last year's assessment (Anon., 1993).

Figure 3.7.4 shows that the exploitation pattern peaked at age 5 in 1992, continuing the pattern of a shift in the peak F away from ages 3 and 4 (Table 3.7.8). It was noted in last year's report (Anon., 1993) that this change had occurred before the introduction of the plaice box in 1989. The mean F in 1992 of 0.46 is about the same as in 1991, which is above the recent values. The number of survivors in 1993 estimated by XSA was below the 1983-1989 average for ages 3-5, and above average for ages 6-8 (Table 3.7.7).

3.7.5 Recruitment estimates

For the forecast, the numbers of age groups 1, 2, and 3 (year classes 1992, 1991, and 1990 in 1993) were estimated from pre-recruit survey series covering the continental and UK coast. The "Tridens" spring and autumn indices are used directly to provide 6 indices (autumn: 0, 1, 2, and 3-group; spring: 1 and 2-group), while the Netherlands/Belgian, German, and UK surveys are combined into one index for each of 0-group and

Estimated numbers of 1-year-old fish from RCT3 for the most recent year classes (1989-1992) are 582, 676, 699 and 529 million, respectively. These figures look quite favourable compared to a mean of 555 (arithmetic) or 511 (geometric). (See, however, discussion in Section 3.7.11.). The RCT3 prediction was also run to predict age group 2 and 3 recruitment in 1993, yielding values of 631 and 489 millions at ages 2 and 3 with their associated log SEs of, 0.16 and 0.14, respectively. The log SE for the age 1 estimate (529 million) was 0.24.

There is no estimate for the 1993 year class because the survey had not been completed at the time of the meeting.

3.7.6 Historical stock trends

Table 3.7.13 and Figure 3.7.1 show the trends in mean F, SSB, and recruitment from 1958-1992. F increased in 1991 to the highest value in the series, and remained at about this level in 1992. After increasing throughout most of the 1980s, SSB has declined by 25% from a peak of over 400,000 t in 1989. SSB estimates for this stock have never fallen below 300,000 t. There was a general increase in recruitment in this stock from the early 1970s, although the 1988 and 1989 year classes are estimated to be the lowest in the past decade.

3.7.7 Biological reference points

The stock/recruitment relationship is shown in Figure 3.7.5 with lines indicating $F_{status quo}$ and F_{med} . The current value of F (0.46) is above $F_{med} = 0.3$ but below the calculated value for $F_{nigh} = 0.6$. Input data for the yield-per-recruit analysis are contained in Table 3.7.15 and the results in Table 3.7.14. From the yield-per-recruit curve (Figure 3.7.6) it can be seen that the present level of F is about twice F_{max} .

3.7.8 Short-term forecast

A short-term forecast was carried out using the data in Table 3.7.15. As in the past, the exploitation pattern was taken as the mean of the last 3 years scaled to the F(2-10,u) of the most recent year. Weight at age in the catch and stock were also averaged over the last 3 years only to take into account the decline in recent years. The predicted *status quo* catch for 1993 is 143,000 t, well below the agreed TAC of 175,000 t, but above the 1992 catch of 121,000 t. This projected catch in 1993 is also likely to be much higher than the actual catch in 1993, based on landings to date. The *status quo* predicted catch for 1994 is 147,000 t. With these catches, the SSB is projected to decline slightly from 338,000 t at the

beginning of 1993 to 329,000 t at the beginning of 1995 (Table 3.7.16, Figure 3.7.6).

An analysis was conducted to determine the sensitivity of the short-term forecast to uncertainties in the input parameters (Cook, 1993). The inputs to this analysis are contained in Table 3.7.17. Figure 3.7.7 indicates that the level of F in 1994 is responsible for almost half the variance in the forecast yield for 1994. The population sizes at ages 2 and 3 in 1993 are responsible for 16% and 12% of the variance, respectively. For SSB, the 1994 recruitment estimate was most important, followed by the population estimates at age 2 and age 1 in 1993. Probability profiles indicate that SSB in 1995 is likely to decline at *status quo* F in 1994 (Figure 3.7.8).

3.7.9 Medium-term projections

Table 3.7.18 contains the input data for medium-term projections. A Cauchy smoothing (kernel method) was applied to the stock/recruitment data (Figure 3.7.9). The simulation forecasts slightly declines over 10 years in both mean yield and SSB, with the latter decreasing to just under 300,000 t (Figure 3.7.9).

3.7.10 Long-term considerations

For the lowest levels of SSB calculated for this stock (around 300,000 t from 1978-1982), there was no indication of a decline in recruitment (Figure 3.7.1). The level of the SSB during this time period has been proposed as the acceptable minimum SSB (Anon., 1993).

The SPLIR model was used to estimate the probability that SSB will fall below a certain level in the long term. This model estimates the variability in the yield and biomass-per-recruit curves due to observed variability in recruitment (see Appendix IV in last year's North Sea Demersal Working Group report and also the Report of the Long-Term Management Measures Working Group). The results (Figure 3.7.10), which assumed that recruitment is independent of stock size, show that at the present F level (0.456), there is a slightly greater than 50% probability that SSB will decline below 250,000 t, and more than 80% probability that it will decline below 300,000 t. To reduce this latter probability to 50%, F would have to be reduced to about 0.37. The distribution of expected yield is about the same for all levels of F in the simulation, corresponding to the flat-topped yield-per--recruit curve for this stock.

In last year's assessment there were indications from "Tridens" survey data that survival of young plaice in the southeastern North Sea had improved since the establishment of the "plaice box". This analysis could not be extended this year because the 1993 survey data were not available. It was noted that there will be a meeting in 1994 to discuss potential modifications to the "plaice box".

3.7.11 Comments on the assessment

Some concerns are evident from this assessment:

- Fs in 1991 and 1992 are at the highest observed level, about 50% above F_{med};
- 2) the 1988 and 1989 year classes as estimated from VPA are about the same size as the lowest in the past 15 years;
- 3) SSB has declined to just above the previously observed low level in 1978-1982.

Many of the concerns expressed in last year's assessment (Anon., 1993) must be reiterated, eg. uncertainty about the accuracy of the total international landings and resulting age compositions for many years prior to 1992 and their possible effects on the VPA, and the continued decline in all CPUE indices. It was also clear that the choice of the tuning method, and options within a method, could have substantial impacts on population sizes and Fs in the terminal year. Table 3.7.19 shows also that there has been substantial downward revision in the estimated size of the 1988 and 1989 year classes. These data suggest a discrepancy between the year class sizes estimated by the recruitment indices at young ages and their subsequent estimates in the VPA. In this assessment, the size of the 1989 year class estimated by the recruitment indices was about 25% larger than the VPA estimate. At present it is not possible to explain these differences, but the Working Group recommends that these be investigated, including possible biological causes.

4 DEMERSAL STOCKS IN DIVISION VIId

4.1 Overview

Landings of cod, whiting, sole and plaice are made by France, Belgium and the UK with less than 1% taken by other countries, in recent years. Landings of cod and whiting are both at historically low levels while those of plaice and sole, in contrast, remain near their peak. Effort by small inshore vessels has increased in both France and the UK while the effort of the larger, more mobile, beam and otter trawlers is more difficult to quantify as these vessels switch effort between areas.

Trends in effort by vessels fishing for sole and plaice are shown in Sections 6.9 and 6.10.

Analytical assessments were carried out on cod, whiting, sole and plaice stocks, using Extended Survivors Analysis for the first time in each stock. The database for cod and whiting remains poor with uncertainties over the level of landings and no information available on discards. Tuning was carried out using commercial and research vessel indices of catch and CPUE. Recruitment estimates were available from the French groundfish survey in Division VIId for whiting but there were no usable estimates for cod. Recruitment estimates were available from French and English young fish surveys for sole and plaice and from the English beam trawl and French groundfish surveys in August and October, respectively.

The SSB of cod is near to the minimum level observed following a period of low recruitment since 1985. Fishing mortality remains at a high level and, at current levels of F, the SSB is expected to decline further. The SSB of whiting is close to historically low levels but appears to be relatively stable and fishing at current F is not expected to lead to a reduction in the near future. However, recruitment since 1983 appears to be at a lower level than in the period 1975-1983 and this will prevent recovery of the SSB to former high levels. The assessment for both of these stocks is rather uncertain.

The SSB of sole has declined since 1988 to close to historically low levels while F remains high. Fishing at current levels of F is likely to lead to a further slight decline in SSB, although recent recruitment appear to be above average and this could temporarily reverse the situation.

The SSB of plaice remains at a high level following recruitment of the very strong 1985 year class. Recruitment in recent years remains close to average but the spawning biomass remains within safe historical limits.

4.2 Cod in Division VIId

4.2.1 Catch trends

Total nominal landings by country and total international landings as estimated by the Working Group are given in Table 4.2.1. Total international landings have been very low in 1991 and 1992 (1,920 t and 2,680 t, respectively, which are the two lowest figures on record). In general, the catches have been rather stable over the period 1976-1992 except for two peaks in 1977-1978 (7,000 and 10,000 t) and in 1986-1987 (13,000 and 14,000 t). These peaks could be explained either by very strong year classes or by migration from other areas (e.g. the North Sea). Catch trends for the period 1976-1992 are shown in Figure 4.2.1. The TAC for the whole Sub-area VII (excluding Division VIIa) was 20,000 t in 1992.

4.2.2 Natural mortality, maturity at age, age composition and mean weight at age

Conventional values of natural mortality and maturity at age are given in Table 4.2.9.

Completely revised compositions and mean weights at age in the catch are given in Tables 4.2.2 and 4.2.3. A SOP correction to the age composition has been carried out on the weight at age data. Weight at age in the stock was assumed to be the same as in the landings. The French catch age composition data have been revised for the period 1985-1991.

4.2.3 Catch, effort and research vessel data

CPUE data were available from the French coastal trawlers fleet since 1985 and from the French groundfish survey (CGFS) conducted in this area since 1988. Unfortunately, the catch rates on the survey are very low (see Table 4.2.4) which means the abundance estimates have a high variance.

4.2.4 VPA tuning and VPA results

Due to the poor quality of data, it was impossible to tune the VPA last year. Therefore, a separable VPA was run. Because of revised data, a tuning VPA has been done this year.

Three tuning runs were made using the shrunk Extended Survivors Analysis (XSA) method. Tuning was performed for the period 1985-1992 with a shrinkage value of 0.5. In the first run there was no constraint on catchability at age below the plus group (age 7). Results showed that q is independent of the abundance for all ages. For the second run, the input ages were 2 and 5. The mean catchability of the commercial fleet became constant at age 3. The results for the survey fleet were not considered. As a result the input data for the last run assumed catchability dependent on stock size for ages less than 2 and independent of age for ages older than 5. Summary statistics from this run are given in Table 4.2.5 and the log catchability residuals for each fleet are plotted in Figure 4.2.2. There is no significant trend of log catchability residuals for the commercial fleet. Five years of data for the survey fleet are not enough to indicate a trend.

A retrospective analysis of XSA with a shrinkage value of 0.5 has been done for the commercial fleet. The results plotted in Figure 4.2.3 seem to be consistent.

Probably due to the revision of the catch at age data mentioned above, the results of the VPA seem to be more realistic than last year, but F at age values are in general very high. Fishing mortality at age from this tuned VPA and stock numbers at age are given in Tables 4.2.6 and 4.2.7, respectively.

4.2.5 Recruitment estimates

As stated above, it was impossible to derive abundance indices from the French survey. It was, therefore, decided to assume mean geometric recruitment at age 1 over the years 1976-1990 for the year classes 1991 onwards (5.00 million fish).

4.2.6 Historical stock trends

Long-term trends in mean fishing mortality, biomass and recruitment are given in Table 4.2.8 and plotted in Figure 4.2.1. The fishing mortality is variable but shows no trend in time. It is currently at its highest level. The spawning stock biomass is currently at its historical minimum of 410 t.

4.2.7 Biological reference points

 F_{med} and F_{max} are indicated on the yield and biomass-per-recruit curves in Figure 4.2.5. F_{med} has a value of 1.15, which compares with a *status quo* F of 1.49. F_{max} for total landings is 0.30, well below the current F. F_{med} is shown on the stock-recruitment plot in Figure 4.2.4.

4.2.8 Short-term forecast

The input data for short-term predictions are given in Table 4.2.9. The numbers at age 1 at the beginning of 1992 was overwritten with the geometric mean at age 1 over the period 1976-1990. For prediction, values of F at age are the mean values over 1988 to 1992 scaled to give a mean value of F over ages 2 to 4 as in 1992. Numbers at age 1 in the years 1993 onwards are the geometric mean over the years 1976-1990.

In the absence of any recommendation, only the *status quo* prediction has been run. The results of this prediction are given in Table 4.2.10. The catches are predicted to increase to 3,900 t in 1993 and to 4,900 t in 1994. From 1992 the SSB changes erratically from 400 t to 100 t in 1993 and then to 500 t in 1995. This is due to the assumed maturity ogive and the input population estimates. A more realistic ogive should be considered in the future.

4.2.9 Long-term considerations

This first trial assessment of cod in Division VIId indicates that the stock is at a very low level. The current mortality rate is well above F_{max} . The very low level of SSB should give great concern about this stock if it is really a separate stock.

4.2.10 Comments on the assessment

There is no recruitment index. The tuning process is based on data from only one commercial fleet and one survey vessel. These considerations lead to the conclusion that this assessment should be used with caution. Furthermore, it seems that "the eastern Channel acts as a nursery ground for many cod which subsequently migrate to the southern North Sea and do not return" (Meurou *et al.*, 1993). It would, therefore, be interesting to examine the correlation between the eastern Channel and North Sea stocks in order to know if the assessment in the two areas could be merged in the future. To investigate whether such as relationship exists, a comparison between recruits at age 1 in each stock has been done for the period 1976-1992. The results show that the two stocks are uncorrelated.

4.3 Whiting in Division VIId

4.3.1 Catch trends

Total nominal landings by country and total international landings as estimated by the Working Group are given in Table 4.3.1 for the period 1976-1991. Total international landings decreased from 9,110 t in 1978 to 3,480 t in 1990. They increased to 5,800 t in 1991 and 1992. Catch trends for the period 1976-1992 are shown in Figure 4.3.1. Data are provided only for the human consumption landings. The TAC for the whole of Sub-area VII (excluding Division VIIa) is 22,000 t.

4.3.2 Natural mortality, maturity at age, age composition and mean weight at age

Conventional values of natural mortality and maturity at age are given in Table 4.3.11.

The maturity ogive has been derived from data from the Channel ground fish survey (CGFS). Completely revised age compositions and mean weights at age in the catch are given in Tables 4.3.2 and 4.3.3. A SOP correction to the age composition has been carried out on the weight at age data. Weight at age in the stock was assumed to be the same as in the landings. The French catch age composition data have been revised for the period 1985-1991.

4.3.3 Catch, effort and research vessel data

CPUE data were available for the French coastal trawler fleet (FRATRC) since 1985 and for the French groundfish survey (FRAGFS) conducted in this area since 1988. Effort data and abundance indices at ages 1 and 2 provided by this survey are given in Table 4.3.4.

4.3.4 Catch at age analysis

Last year, it was impossible to tune the VPA due to the low quality of data. Therefore, a separable VPA was run. Because of revised data, this year a tuned VPA has been carried out.

Three tuning runs were made using the shrunk Extended Survivors Analysis (XSA) method. Tuning was performed for the period 1985-1992 with a shrinkage value of 0.5. In the first run there was no constraint on catchability at age below the plus group (age 8). Results showed a correlation between q and abundance but it was not clear that the catchability was dependent on stock size for ages older than 4. For the second run, the input ages were 4 and 6. The mean catchability of the commercial fleet became constant at age 4. The results for the survey fleet were not considered. As a result, the input data for the last run was catchability-dependent on stock size for ages less than 4 and independent of age for ages older than 6. Summary statistics from this run are given in Table 4.3.5 and the log catchability residuals for each fleet are plotted in Figure 4.3.2. There is no significant trend of log catchability residuals for the commercial fleet. Five years of data for the survey fleet are not enough to indicate a trend.

A retrospective analysis of XSA with a shrinkage value of 0.5 has been done for the commercial fleet. The results are plotted in Figure 4.3.3. The five years of survey data were not sufficient to do a retrospective analysis of XSA.

Probably due to the above-mentioned revision of the catch at age data, the results of VPA seem to be more realistic than last year, even if F at age values are still rather variable. Fishing mortality at age from this tuned VPA and stock numbers at age are given in Tables 4.3.6 and 4.3.7, respectively.

4.3.5 Recruitment estimates

Recruitment indices were available from the French groundfish survey in the Eastern Channel.

Estimates of numbers at age 1 and 2 in 1992 were made using the RCT3 program. Input data are given in Table 4.3.8 and outputs in Table 4.3.9a-b. For 1992, RCT3 estimates 26.5 million fish at age 1 and 22.4 million at age 2. These are effectively the VPA mean.

4.3.6 Historical stock trends

Long-term trends in mean fishing mortality, biomass and recruitment are given in Table 4.3.10 and plotted in Figure 4.3.1. The fishing mortality is highly variable but shows no trend in time. It is currently near the average level. The spawning stock biomass has remained low since 1986 and is currently at its second lowest level of 6,090 t.

4.3.7 Biological reference points

 F_{med} is indicated on the yield and biomass-per-recruit curve in Figure 4.3.5. It has a value of 0.65 which is below the *status quo* F of 0.87. F_{max} for total landings is 1.1, well above the current level of F and close to F_{high} (1.07) but the curve is flat-topped. F_{med} and F_{high} are also shown on the stock-recruitment plot in Figure 4.3.4. F_{high} is largely determined by a few large year classes.

4.3.8 Short-term forecast

The input data for short-term predictions are given in Table 4.3.11. Numbers at ages 1 and 2 at the beginning of 1992 were overwritten with RCT3 estimates. For prediction, values of F at age are the mean values over 1988 to 1992 scaled to give a mean value of F over ages 2 to 4 as in 1992. Numbers at age 1 in the years 1993 onwards are the geometric mean over the years 1976-1992.

In the absence of a separate TAC for Division VIId, only the *status quo* prediction has been run. The results of this prediction are given in Table 4.3.12. The catches are predicted to decrease to 4,800 t in 1993 and then to increase slightly to 5,200 t in 1994. At the same time, the spawning stock biomass is predicted to increase to 6,300 t and 6,800 t at the beginning of 1994 and 1995, respectively.

4.3.9 Long-term considerations

This first trial assessment of whiting in Division VIId indicates that the stock is stable at a low level. The current mortality rate is above F_{med} and may not be sustainable in the long term. Increasing the current level of fishing mortality will lead to a reduction in the SSB. No benefit in terms of long-term yield can be gained by increasing fishing mortality above the current level.

4.3.10 Comments on the assessment

Recruitment indices provided by only one survey for 5 years do not correlate well with VPA estimates. The tuning process is based on data from only one commercial fleet and one survey vessel. These considerations lead to the conclusion that this assessment should be used with caution. Furthermore, it seems that there is a relationship between whiting in Divisions VIId and IVc (Meurou *et al.*, 1993). To investigate whether this relationship exists, a comparison between recruits at age 1 in each stock has been done for the period 1976-1992. The results show that the two stocks are uncorrelated.

There are large year effects. The F at age results are indicative of a potentially large problem with the assessment. The cause of this feature is not known.

4.4 Sole in Division VIId

4.4.1 Catch trends

Landings data reported to ICES are shown in Table 4.4.1 together with the total landings estimated by the Working Group. The trend in landings is shown in Figure 4.4.3. Landings have been stable over the past 5 years since peaking at about 4,867 t in 1987. The landings in 1992 were estimated to be 4,061 t, approximately 16% higher than the agreed TAC and the figure predicted at *status quo* fishing mortality. Under-reporting of landings of up to 30% occurred in some years.

4.4.2 Natural mortality, maturity, age compositions and mean weight at age

As in previous assessments natural mortality was assumed to be constant over ages and years at 0.1. The maturity ogive used was knife-edged with sole regarded as fully mature at age 3 and older. Quarterly catch and weight at age compositions for 1985-1992 were available from Belgium, France and England. Prior to this, age data were provided from Belgium and England only and the data base prior to 1980 was considered unreliable due to poor sampling for age. The age composition data and the mean weight at age in the catch and stock are shown in Table 4.4.2. Stock weights were calculated from a smoothed curve of catch weights interpolated to 1 January. Data for 1982-1991 were updated with minor revisions. The data do not include discards which are not sampled for this stock.

4.4.3 Catch, effort and research vessel data

Data were available from 5 commercial fleets covering inshore and offshore trawlers and fixed net vessels. Age compositions were also available from the English beam trawl surveys in August in the eastern Channel since 1988. Both commercial and survey indices show that CPUE declined steadily from 1988 to 1990 with an increase in 1991 and 1992. Trends in CPUE and effort are shown in Section 6.9 (Tables 6.9.1-6.9.3 and Figures 6.9.1 and 6.9.2).

These data were used to tune the VPA. The range of ages and years used in each fleet is shown below and the input file is given in Table 4.4.3.

4.4.4 Catch at age analysis

Analysis was carried out on ages 1-10+ because the older age groups showed high levels of variance.

Fleet	Years	Ages
1. Belgian beam trawl	1980-92	2-15+
2. Hastings trammel	1981-92	2-15+
3. UK >40' beam trawl	1981-92	2-15+
4. French offshore trawlers	1983-92	2-15+
5. French inshore trawlers	1985-92	2-15+
6. English beam trawl survey	1988-92	1-6+

A four stage process was used to select the final tuning method.

- 1. Trial runs were made using XSA to select the ages to be treated as recruits and the ages for which catchability can be assumed to be constant;
- 2. Trends in catchability were examined for fleet problems;
- 3. A retrospective analysis was then made to compare the effect of different SE weightings on shrinking to the mean;
- 4. Once the level of SE had been selected, the XSA run was compared with a Laurec-Shepherd analysis and the most appropriate method adopted.

<u>1.1</u> Selection of ages to be treated as recruits (i.e. catchability likely to be influenced by year class strength).

A trial run was made with all ages below 8 treated as recruits. Examination of the regression statistics showed that the slopes +/-2 x SE for ages 2-7 were not significantly different from 1.0. The catchabilities were, therefore, assumed to be independent of year-class strength above age 1 for all subsequent runs.

<u>1.2</u> Selection of ages above which catchability is constant. Catchability was set constant above age 6, 7 and 8 in trial runs. There was little difference between the results and no obvious age at which catchability levelled off. Age 6 was selected for the final analysis.

 $\underline{2}$. Trends in fleet catchability were examined from the initial runs. There were no unacceptable trends in q and the results from the final run are plotted in Figure 4.4.1.

<u>3</u>. Retrospective analysis was carried out using SEs of 0.3, 0.5 and 0.8. There was no apparent tendency to over- or underestimate F in previous years and shrinkage

had a relatively small effect on the result. A medium shrinkage of 0.5 was, therefore, selected and the results are shown in Figure 4.4.2.

4. Comparison was made with Laurec-Shepherd tuning, since this was the method used last year. The XSA run gave mean F values which were up to 10% higher than the L-S result from last year and up to 20% higher if compared with L-S from the current year. However, since the Belgian effort series had been revised and a survey fleet added to the tuning fleets, the results were not directly comparable. A further difference comes from the way the terminal Fs are set on the older age groups. In the XSA the mean of 5 older ages is used but in the L-S the average of 4 years downweighted by a ratio of 0.8 is used for historic reasons. This will tend to give lower F values on the older age groups in the L-S analysis with a resultant effect down the cohort.

In view of the fact that the XSA method is regarded as a more robust method giving less year to year variability, the results were accepted to initiate the VPA. The diagnostics from the final run are given in Table 4.4.4 and the fishing mortality and stock numbers from the VPA output in Table 4.4.5.

4.4.5 Recruitment estimates

Research vessel survey indices of 0-, 1- and 2-year-olds were available and are shown in Table 6.9.4. The input file and results from the RCT3 program are shown in Tables 4.4.6 and 4.4.7.

The estimates of the 1990-1992 year classes as 1- yearolds from XSA and RCT3 are shown below:

	XSA	RCT3
1990	26.3	28.1
1991	12.2	12.8
1992	-	16.4

The estimate of the 1990 year class from both methods was similar and the XSA output was accepted. The 1991 year class estimate from RCT3 was strongly influenced by the English beam trawl survey which had a weighting factor of 0.65 but was based on only 3 points. If this survey was excluded, the 1991 year class was estimated to be about 19 million. As the RCT3 output including the English survey was similar to the XSA figure, the year class estimate of 12.2 million from XSA was accepted. However, in view of the strong signal from the English beam trawl survey this estimate is rather uncertain and may need to be revised. The 1992 year class was estimated from only two surveys with low correlation coefficients and the GM (19.8 million) over the period 1983-1990 was used for this and subsequent year classes. The 1989 year class which was set at average

last year appears to be about 70% above the AM of 21 million. Preliminary information from the English YFS in Division VIId (Table 6.9.4) suggests that the 1993 year class may be significantly above average.

4.4.6 Historical stock trends

Trends in yield, fishing mortality, SSB and recruitment are shown in Table 4.4.8 and Figure 4.4.3. Fishing mortality has increased since 1982 to peak in the period 1987-1989. Since then it has stabilised at around 0.5. Recruitment has shown alternate weak and moderate year classes since 1984 with only the 1989 year class substantially above average but the 1991 and 1993 year classes may also be above average.

4.4.7 Biological reference points

A stock-recruitment scatter plot is shown in Figure 4.4.4. The value of F_{med} from the plot corresponds to 0.38 kg/recruit which is equivalent to a reference $F_{3.8}$ of 0.45 and is 20% below current F (0.559). The yield per recruit input values are given in Table 4.4.9. and the output summary in Table 4.4.10. YPR and SSB/R curves are shown in Figure 4.4.5. Assuming AM recruitment of 21 million, the equilibrium yield will average 3,690 t with a corresponding SSB of 5,700 t, approximately 20% below current levels of biomass. Since there is only a relatively short time series available, it is not clear what level of SSB could be used to determine the minimum biologically acceptable level.

4.4.8 Short-term forecast

The input data for the catch forecasts are given in Table 4.4.9. Stock numbers in 1993 were taken from the VPA output for ages 2-10+ and the GM recruitment of 19.8 million was used for age 1 in 1993, 1994 and 1995. The exploitation pattern was the mean of the period 1990-1992, scaled to the 1992 F(3-8) value of 0.559. Catch and stock weights at age were the mean for the period 1990-1992 and proportions of M and F before spawning were set to zero. The results of the status quo catch prediction are given in Table 4.4.11 and Figure 4.4.5. The predicted catch in 1993 is 4,500 t from a SSB of 7,800 t. This compares with a figure of 3,600 t forecast last year. The main difference is due to the influence of the 1989 year class which was estimated to be average last year because none of the surveys were well correlated with recruitment. This was recognised as a likely underestimate and attention was drawn to the possible mismatch between predicted and observed catches in the comments on the assessment. Continuing with the same level of F implies a drop in catch to 3,800 t in 1994 and a fall in SSB from 6,000 t in 1994 to 5,700 t in 1995.

4.4.9 Medium-term predictions

No simulation was carried out on this stock.

4.4.10 Long-term considerations

The current level of F is about 20% above F_{med} and, at this level, the equilibrium SSB is predicted to fall to below 5,700 t which is slightly lower than the minimum observed in the short time series available. There does not appear to be any danger of recruitment failure even at this level of stock since the 1989 year class was very strong and it is possible that the 1991 and 1993 recruitments will also be above average. Since the fishery is so dependent on the recruiting year classes, measures to improve the exploitation pattern will benefit the fishery in the long term. The minimum landing size of 24 cm is below the 50% length of maturity which is approximately 28 cm for female sole. The Working Group notes that protection of juveniles could result in a larger sustainable yield and SSB.

4.4.11 Comments on the assessment

The quality control diagrams are shown in Table 4.4.12.

There have been a number of changes in the current assessment compared with previous years. The main difference is the use of XSA tuning which has resulted in a slightly different exploitation pattern with slightly lower Fs at younger ages and higher Fs on the older age groups. It is expected that in future years the use of XSA together with shrinkage to the mean will result in a more consistent assessment from year to year. Differences in SSB in 1992 and 1993 compared with last year's assessment are largely the result of better estimtes of recruitment, particularly of the 1989 year class.

The addition of the English beam trawl survey age composition to the tuning fleets is a further change which has influenced the F on the younger age groups because the survey was well correlated with the VPA.

It should be noted that there are indications that the 1991 year class was conservatively estimated and this could lead to some discrepancy between predicted and observed catches in 1994.

4.5 Plaice

4.5.1 Catch trends

Landings data reported to ICES are shown in Table 4.5.1 together with the total landings estimated by the Working Group. The trend in landings is shown in Figure 4.5.5. Landings peaked at 10,400 t in 1988 and have declined since then to 6,337 t in 1992 which was close to the figure of 6,600 t predicted in last year's assessment.

4.5.2 Natural mortality, maturity, age compositions and mean weight at age

As in previous assessments natural mortality was assumed to be constant over ages and years at 0.12. The maturity ogive used is shown in Table 4.5.10 (input to YPR). Age compositions for 1980-1992 were available for the UK and for 1981-1992 for Belgium. However, levels of sampling prior to 1985 were poor and those data are considered to be less reliable. Age compositions were only available for France since 1989.

Quarterly catch weights were available from the UK since 1980 and from Belgium since 1986. French catch weights have been collected since 1989. The age-composition data and the mean weight at age in the catch and stock are shown in Table 4.5.2. Stock weights were calculated from a smoothed curve of catch weights interpolated to 1 January. Data for 1980-1992 were updated with minor revisions. The data do not include discards which are not sampled for this stock.

4.5.3 Catch, effort and research vessel data

Commercial effort and CPUE data were available from 4 commercial fleets covering inshore and offshore trawlers and fixed net vessels. Most fleets show a decline in CPUE from 1988/1989 to 1992. Effort has increased in all fleets since 1983 but showed a decrease in 1992. Trends in CPUE and effort are shown in Tables 6.10.1-6.10.2 and Figures 6.10.1-6.10.2.

Age compositions were available since 1988 from the English beam trawl survey in August and the French groundfish survey in October in the eastern Channel.

The commercial and survey data were used to tune the VPA. The range of ages and years used in each fleet is shown below and the input file is given in Table 4.5.3.

Fleet	Years	Ages
1.Hastings trammel	1984-92	2-15+
2.Rye Trawl	1984-92	2-15+
3.Belgian beam trawl	1981-92	2-15+
3.UK >40' beam trawl	1983-92	2-15+
4.English beam trawl survey	1988-92	1-6+
6.French groundfish survey	1988-92	1-6+

4.5.4 Catch at age analysis

An analysis was carried out on ages 1-8+ because the older age groups showed high levels of variance,

A four stage process was used to select the final tuning method.

- 1. Trial runs were made using XSA to select the ages to be treated as recruits and the ages for which catchability can be assumed to be constant.
- 2. Trends in catchability were examined for fleet problems.
- 3. A retrospective analysis was then made to compare the effect of different SE weightings on shrinkage to the mean.
- 4. Once the level of SE had been selected, the XSA run was compared with a Laurec-Shepherd analysis and the most appropriate method adopted.

<u>1.1</u> Selection of ages to be treated as recruits (ie. catchability likely to be influenced by year-class strength). A trial run was made with all ages below 7 treated as recruits. Examination of the regression statistics showed that the slopes $+/-2 \ge 10^{-2}$ s E for ages 2-6 were mostly not significantly different from 1.0. The catchabilities were, therefore, assumed to be independent of year-class strength above age 1 for all subsequent runs.

<u>1.2</u> Selection of ages above which catchability is constant. Catchability was set constant above age 5, 6 and 7 in trial runs. There was little difference between the results and no obvious age at which catchability levelled off. Age 6 was selected for the final analysis.

2. Trends in fleet catchability were examined from the initial runs. There were no unacceptable trends in q and the results from the final run are plotted in Figures 4.5.1.

3. Retrospective analysis was carried out without including the survey fleets as the time series for these fleets was too short. Shrinking to SEs of 0.3, 0.5 and 0.8 was examined There was an apparent tendency to underestimate F in previous years. Strong shrinkage was avoided in order not to give undue weight to the historic pattern of fishing mortality. A weak shrinkage of 0.8 was, therefore, selected and the results are shown in Figure 4.5.2.3.

 $\underline{4}$. Comparison was made with Laurec-Shepherd tuning, since this was the method used last year. The XSA run gave mean F values which were slightly higher in the period 1983-1986 and up to 20% lower in more recent years (Figures 4.5.3- and 4.5.4). Since two survey fleets had been added to the tuning file, a run was made without the fleets as a comparison. The results obtained were similar, with the XSA giving lower mean F values in recent years. A separable VPA was run to see if there was any indication of a change in fishing pattern and the results are shown in Table 4.5.4. There was no clear pattern but examination of the catch at age table showed a decrease in abundance of catch at ages 3, 4 and 5 in 1992 which was clearly reflected in the XSA results. There was also a decrease in effort indices in 4 of 6 commercial fleets in 1992 which would confirm the reduction seen in the XSA output for the 1992 F values.

Despite the differences between the XSA and L-S runs, it was decided to proceed with the VPA using the final XSA run. The diagnostics from this run are given in Table 4.5.5 and the fishing mortality and stock numbers from the VPA output in Table 4.5.6.

4.5.5 Recruitment estimates

Research vessel survey indices of 0-, 1- and 2-year-olds were available and are shown in Table 6.10.4. The English beam trawl survey and French groundfish survey indices were included in the XSA tuning for ages 1 and 2 but it was still necessary to obtain a recruit estimate using RCT3 for 1-year-olds in 1993 and to check the values of the 2- and 3-year-olds in 1993. The input for RCT3 and the output results are given in Tables 4.5.7 and 4.5.8.

The estimates of the 1990-1992 year classes as 2- and 3year-olds in 1993 from XSA and comparable values from RCT3 are shown below:

Year class	XSA est. from 1993	RCT3
1990	17.2	15.4
1991	28.2	26.2

The estimates of the 1990 and 1991 year classes from both methods were similar and the XSA output was accepted. GM recruitment of 29.2 million at age 1 was used for the 1992 year class and for later year classes.

4.5.6 Historical stock trends

Trends in fishing mortality, SSB and recruitment are shown in Table 4.5.9 and Figure 4.5.5. Fishing mortality has been relatively constant over the period 1980-1991 with an apparent decrease in 1992. Spawning stock biomass increased rapidly in 1988 following recruitment of the strong 1985 year class. Since 1990 it has declined steadily. Apart from one large year class, recruitment has been close to the GM level of 29 million since 1981.

4.5.7 Biological reference points

A stock-recruitment scatter plot is shown in Figure 4.5.6. The value of F_{med} from the plot corresponds to 0.42 kg/recruit which is equivalent to a reference $F_{2.6}$ of 0.4 and is at the same level as current F (0.42). The yield per recruit input values are given in Table 4.5.10 and the output summary in Table 4.5.11. The YPR and SSB/R curves are shown in Figure 4.5.7. Assuming a recruitment of 29 million, the equilibrium yield will average 7,400 t with a corresponding SSB of 13,100 t, slightly above the current levels of biomass. Since recruitment has been very stable at levels of SSB ranging from 6,000 t to 18,000 t it is not clear what level the Minimum Biologically Acceptable Level (MBAL) should be set at from the relatively short time series available.

4.5.8 Short-term forecast

The input data for the catch forecasts are given in Table 4.5.10. Stock numbers in 1993 were taken from the VPA output for ages 2-8 + and the recruitment of 29.2 million was used for age 1 in 1993, 1994 and 1995. The exploitation pattern was the mean of the period 1990-1992, scaled to the 1992 $F_{(2-6)}$ value of 0.42. Catch and stock weights at age were the mean for the period 1990-1992 and proportions of M and F before spawning were set to zero. The results of the *status quo* catch prediction are given in Table 4.5.12 and Figure 4.5.7. The predicted catch in 1993 will be 6,600 t from a SSB of 9,500 t. This compares with a figure of 6,400 t forecast for the catch for last year. Continuing with the same level of F implies an increase in catch to 7,162 t and in SSB to 10,500 t in 1994 and 11,000 t in 1995.

4.5.9 Medium-term predictions

No simulation was carried out on this stock.

4.5.10 Long-term considerations

The current level of F is close to F_{med} and, at this level, the SSB is predicted to increase slightly. This may be an optimistic view as a result of using new procedures for tuning the VPA. The stock is being fished down from an historically high level following the strong recruitment in 1985 and, at average levels of recruitment, the decline will continue if fishing mortality increases.

4.5.11 Comments on the assessment

There have been a number of changes in the current assessment compared with previous years. The main difference is the use of XSA tuning which has resulted in a different exploitation pattern with lower Fs at all ages in 1992 and reduced mean F in recent years. The addition of the English and French trawl survey age compositions to the tuning fleets is a further change although this does not appear to have influenced the outcome of the tuning significantly. The quality control diagram are given in Table 4.5.13.

This assessment appears to be similar to that for North Sea plaice where there is a discrepancy between a high stock as indicated from the assessment and decreasing CPUE and landings in the fishery. In both areas, fishermen have complained of the absence of fish and an inability to take their quota. Also in both stocks, XSA indicates historically low fishing mortality. In the North Sea fishermen have been unable to catch the landings predicted in 1992 and in Division VIId the 1992 landings were also lower than the predicted catch but only slightly. It is not clear what is causing this anomaly but it is possible that recruitment is being over-estimated possibly as a result of using historical data series which may not reflect possible changes in plaice recruitment brought about by increasing sea temperatures in recent years.

5 SAMPLING LEVELS

Sampling levels have been reported regularly in the administrative report of the Demersal Fish Committee. The numbers given are, however, not entirely comparable between years and between countries and can thus not be presented in an overview format.

It is suggested that the countries involved prepare comparable sampling overviews for the next meeting of the Working Group. The overview should give annual figures for the period 1988-1993 and should contain:

No. of samples, no. measured and number aged.

The data should be given by stock and separately for the following categories:

Human consumption, discards, industrial by-catch and survey data.

6 ASSESSMENT COMMENTARY

6.1 Cod in the Skagerrak and Plaice in the Kattegat/Skagerrak

Assessments previously presented for cod in the Skagerrak and plaice in the Kattegat (Anon., 1992) included CPUE data broken down by age groups based on the overall age distribution estimated in Danish landings. However, the log-book primary information only provided catch (kg) by species and sorting category per trip. This procedure makes the CPUE series correlated between fleets. As a result tuning fleets have been defined for the present assessment.

The Danish log-book system, established in 1987, records landings by value and by weight for each species and market size category. The sampling unit is the trip. Also information on vessel size, fishing gear and fishing area is available.

The biological data - age and length compositions - refer to the market category of each species and the sampling is stratified between harbours and time periods. The sampling unit is the market size category by harbour and time period. It is thus not possible to make a direct estimate of the catch by age for any fleet. The age distribution may, however, be approximated using the difference in market size categories between fleets, e.g. trawler landings will have a higher share of small cod than landings from gill-netters.

The approach presented here only includes vessels between 10 and 20 GRT in order to standardize fishing effort. These vessels account for almost 50% of the annual numbers of trips in the Danish human consumption fishery. Trips which cover two areas (eg. Skagerrak/North Sea, Kattegat/The Belts) or trips where more than one type of gear have been used have been omitted from this analysis.

Fleets were defined by gear and target species. Gear included are trawl, gill net and Danish seine. Target species are inferred from the value of the landings, as follows:

<u>Target</u>	Rule species
Cod	Cod accounts for the largest value. The value of cod exceeds 20% of the total value of that landing.
Plaice	Plaice accounts for the largest value. The value of plaice exceeds 20% of the total value of that landing.

Nephrops	Nephrops accounts for the largest value.
	The value of Nephrops exceeds 40% of
	the total value of that landing.

Others All other trips.

This grouping is then supplemented with information on the gear used by the vessel.

Three cod and three plaice fleets have been selected. For cod these are:

Gill netters Trawlers directed at cod Nephrops trawl fishery

The *Nephrops* trawl fishery shows low catch rates of cod, but is based on a large number of observations.

For plaice three directed fisheries were identified

Gill netters Trawlers directed at plaice Danish seiners directed at plaice

These data were presented as CPUE (no/age group/trip) and are given in Table 2.2.7 and 2.5.4.

6.2 Cod in Sub-area IV

6.2.1 Change in tuning method

Table 6.2.1 gives a comparison of results for 1991 and 1992 between (a) the 1992 Working Group assessment, (b) the Laurec-Shepherd method used in the same way as in last year's assessment, and (c) the XSA results. The three data sets in general give similar results, but this year's assessment produces slightly lower Fs and slightly higher stock sizes than those estimated in the1992 assessment. This is true for both tuning methods but in addition the effect is accentuated by the use of XSA. A further reason is that there have been slight upwards revisions to the catch numbers for 1991.

6.2.2 Inclusion of discards in the assessment

ACFM recommended that the North Sea cod assessment should include discards. An historical series of discard data is available only for the Scottish fleets which fish mainly in the northern North Sea. Given this, and the fact that the Scottish fleets do not take as high a proportion of the total international catch as is the case for haddock and whiting, it is not considered appropriate to estimate total international discards from the Scottish data. Intermittent observations are available for other fleets, and these have indicated that at times substantial quantities of young cod are discarded. The Working Group, therefore, recognises the importance of including estimates of discards in the cod assessment. It recommends that the data which are currently available, including survey data, should be examined to see whether they could be used to construct an historical series of discard data for all fleets.

6.2.3 Data problems

The validity of the assessment is not only limited by the lack of discards in the assessment but also by problems with non-reporting and/or misreporting. The fishery has been operating under a restrictive regulation regime in recent years and various fisheries have been stopped, officially at least.

In the mixed human consumption fisheries this may lead to an increase in discards which is not reflected in the present assessment. But there are also reports of extensive misreporting and non-reporting from 1992 onwards. The apparent correspondence between the Working Group landings estimates and the official landings (Table 3.2.1) covers various levels of mismatch between these data sets for various fleets, which happen to be the same in total. It seems that there is a large spread in the local trend in stock abundance around the average emerging from the assessment. For this reason extensive unreported landings are taking place in some areas while it has been impossible to catch the quota in others.

Some adjustment has been made for some fleets, but this has been based on discussions with the industry and various semi-quantitative checks on alternative sources of information, and not on systematic sampling of landing activities outside official channels.

There is reason for concern about the possibilities to provide useful assessments in the future if this problem persists without moves being taken to quantify the extent of non reporting and misreporting.

6.3 North Sea Haddock

6.3.1 Estimation of non-reported catch

The TAC for North Sea haddock in 1992 was 60,000 t while the reported landings amount to only 50,000 t. In the UK, which has the largest share of the TAC, the fishery closed before the end of the year due to exhaustion of the quota. It is well known that significant quantities of haddock were landed without being recorded officially. It seems very unlikely, therefore, that the TAC was undershot and that there is a need to account of the non-reported landings in the assessment. Non-reporting by its nature is problematic to estimate and reports in the popular press are likely to be highly exaggerated. A figure of about 20-50% of the landings being non-reported seems likely, however. A guesstimate for the non-reported landings would be about 20,000 t. It would be desirable to obtain some objective support for this figure to provide independent corroboration.

In order to try to verify the non-reported catch estimate two analyses were performed using models which can estimate missing data within catch-at-age analysis. The first method is a model (SSV) described by Cook and Reeves (in press) which is basically a separable VPA with auxiliary data. The second approach was an extended XSA analysis developed by Skagen (personal communication). The latter is described in the 1993 Norway Pout and Sandeel Working Group report.

In the SSV analysis, the data for 1991 and 1992 were assumed to be missing since misreporting is believed to have occurred in both years. Survey data were used in the analysis. The survey indices used were obtained by combining the English, Scottish, German and IYFS groundfish surveys using factor analysis. Results from SSV are shown in Table 6.3.1. For 1991, there was little difference between the observed 1991 catches and those actually estimated from sampling.

In the XSA analysis, only the 1992 catches were treated as missing and tuning was performed with both commercial CPUE and research vessel data. A summary of the results is given in Table 6.3.2.

Table 6.3.3 shows the age compositions estimated by the two methods and the age compositions obtained from sampling. Both the analytical methods suggest that the official catch for 1992 is too low, although the XSA estimates are close to the unadjusted age compositions. This may well be due to the use of CPUE data from those fleets affected by misreporting. The addition of 20,000 t to the official landings improves the agreement between the estimates for some year classes, but not consistently. However, the disparity between the age compositions both between the models and the sampled landings does not offer sufficient basis to use the modelestimated age compositions in the assessment.

Although the model estimates support the need to augment the official landings, it remains a matter of speculation which figure to use. In the absence of any better estimates, the guess of 20,000 t has been used. This implies 13,000 t of discards. An important feature to note is that the estimated catch of one-year-old fish in 1992 appears to be very low compared with last year's prediction and the model estimates. It is difficult to explain this discrepancy. The introduction of a larger mesh size may be responsible but this seems unlikely. Unfortunately, the year class involved makes a large impact on the catch forecast since it is believed to be above average. This problem undermines the whole assessment and needs to be investigated further.

6.3.2 Comparison with previous tuning method

At the 1992 Working Group meeting the VPA for this stock used Laurec-Shepherd tuning with a tricubic taper over 10 years, and a shrinkage SE of 0.2. To determine what effect the change in tuning method had on the catch-at-age analysis, a run was made using this metho d with the current data. Trends in mean F from the two methods are shown in Figure 6.3.1. It can be seen that the trends from the two methods are very similar, suggesting that difference in the current and previous assessments result from the data rather than the methodology.

6.3.3 XSA settings

The regression statistics from an XSA run with all ages treated as recruits indicated that for all ages the slope did not differ significantly from unity. In the absence of information to the contrary, ages below three were treated as recruits. This reflects previous practice with this stock where tuned estimates of population numbers in the most recent year have typically been overwritten with RCT3 estimates. Similarly, the diagnostics from a run where catchability was allowed to vary with age for the full age range did not show any significant differences in catchability with age. Previous experience suggests that the convergence properties of the XSA are improved if the youngest age at which catchability is regarded as constant is lowered. For this reason catchability was set as constant at ages 8 and older.

6.3.4 Improving exploitation pattern

In heavily exploited stocks older and larger fish are rare because the probability of a fish reaching a high age is very low. In these circumstances, if a fisherman wishes to increase his catch, he has to catch more small fish. This can only be done if he decreases the selectivity of his gear. There is, therefore, an incentive to reduce selectivity. If managers seek to reverse this effect by increasing the mesh size, for example, they are working against the economic imperative. Enforcement of gear measures is generally poor for practical reasons. This means that fishermen will only adopt larger mesh sizes if it is to their advantage. Lowering the overall exploitation rate, to increase the probability of fish reaching a higher age, is one of the few ways to do this unless specific economic incentives are applied. Simply trying to increase the mesh size without addressing the problem of enforcability is unlikely to be effective.

6.4 Whiting in Sub-area IV

6.4.1 Split of the North Sea whiting assessment

The quarterly distribution of the total international whiting catches in 1989 (Figure 6.4.1 taken from the STCF database) indicates a division between a north-western and a southeastern component. Similar distribution patterns are found in some survey data, but closer inspection of preliminary distribution charts of the abundance of 0, 1 and 2 + age-groups from the quarterly IBTS 1991-1993 shows that the pattern changes between years and quarters.

The consistency of a division of landings and abundance should be checked further.

Based on such investigations it might be possible to split the catch at age data on areas in order to make separate assessments for the two areas and, conditional on the outcome from such experiments, to separate the North Sea whiting into two stocks in future assessments and predictions.

The usefulness of such an approach should, however, be evaluated carefully. Managers may have little interest in a split due to the practicalities involved. A more realistic assessment of the main piscivorous predator in the North Sea may, on the other hand, represent an important improvement to the realism of multispecies assessments.

6.4.2 Age determination problems

Otolith exchange programmes have demonstrated serious inconsistencies in age determination of whiting between and within countries. These problems are still not solved. The Working Group is of the opinion that it is important that moves are taken to improve the age determination of whiting. A workshop to this end should be held in 1994.

6.5 Saithe in Sub-area IV

6.5.1 Change in tuning methods

Table 6.5.1. gives a comparison of results for 1991 and 1992 between (a) the 1992 Working Group assessment, (b) the Laurec-Shepherd method used in the same way as in last year's assessment and (c) the XSA results. The differences between last year's assessment and this year's is the revision of the catch-at-age data for 1991. The XSA give slightly lower Fs and higher stock sizes than the Laurec-Shepherd tuning method.

6.5.2 Recruitment estimates

The indices of the observers in Table 3.5.9 are derived from 11 observers along the western coast of Norway. From May to November they send in each month a form in which they have evaluated the number of 0-group saithe which have been observed along the shores. The evaluation is on a scale from 0 to 10 where 5 is an average year class.

The cruise indices are derived from a survey in April-May specially conducted for 0-group saithe. However, the trawl used (a capelin trawl) was not appropriate for the purpose. In 1993 a new time series has been started using a new 0-group trawl.

6.6 North Sea Sole

6.6.1 Catch, effort and research vessel data

Table 6.6.1 gives all available series of "measured" and "derived" indices of effort and CPUE in the fleets. Figure 6.6.1 shows the CPUE trends in units standardized to the mean value in each series. Trends in effort are using similar units are plotted in Figure 3.1. The nature of and trends in these series have been described in detail in previous reports. The general trends in effort are increasing since 1983. CPUE has fluctuated but decreased in 1992 in all fleets.

The results of the Dutch, Belgian and German beam trawl surveys are given in Table 6.6.2. The 1993 results are preliminary. The German indices are derived from a subset (coastal stations) of the total indices and therefore differ from those used in the tuning. No data from 1993 were available at the Working Group meeting. The available recruitment indices from the "Tridens" SNS surveys are given in Table 6.6.3. The national indices from the DFS series, from which the international 0-group and 1-group indices are derived, are also given in Table 6.6.3.

6.6.2 VPA tuning and results

In addition to the final tuning, a number or trial tuning runs was made using various methods. The results of these methods on the VPA estimates of mean fishing mortality, SSB and recruits at age 1 have been summarized in Table 6.6.4. In general the methods without shrinkage show higher levels of fishing mortality compared to those with shrinkage. The trends in SSB are similar in all runs and the difference between the highest and lowest SSB estimate is about 10%. Recruitment patterns are also similar. All methods estimate recruitment in 1991 to be well below average. All tuning runs, except the separable, estimate recruitment in 1992 (1991 year class) to be around 430 million 1-year old recruits (4 times average). The separable analyses estimate it much higher at a level never historically observed. The exploitation patterns estimated by the various methods are shown in Figure 6.6.2.

6.6.3 Management advice

Apart from changes in technical measures such as mesh size, closed areas and closed seasons, which are directed to changes in the exploitation pattern or protection of certain stock components, most management advice given by ACFM relates to changes in the level of fishing mortality. Many heavily exploited commercial stocks require a reduction in the level of fishing mortality, either to maintain these within historically observed safe levels or to improve the expected yields. The most popular way to reduce fishing mortality is by reducing fishing effort.

In the case of North Sea sole the relationship between the level of fishing mortality and various indices of international fishing effort (derived from Table 6.6.1) is, however, rather poor. Figure 6.6.3.a-b shows the relationship between mean F and international effort derived from Dutch and Belgian CPUE indices. Over a wide range of effort levels, F remains rather constant, suggesting that catchablity decreases with increasing effort. Similar poor relationships have been demonstated in the reports of the Flatfish Working Group and the Irish Sea Working Group in the early 1980s for various different stocks, when these relationships were used to tune the final VPA.

In the case of sole it is obvious that effort has increased significantly in the observed period, while the increasing trend in all popular measures of mean F (F2-8, F3-10, Fbarc, Fbarp) is less clear. Is it possible that this relationship is not genuine? This problem clearly needs to be investigated in much more detail. In the meantime this problem should also be kept in mind when reduction is required in fishing mortality by reduction in effort.

6.7 North Sea Plaice

6.7.1 Other CPUE and survey data

Table 6.7.1 shows CPUE trends for 6 fleets, 2 of which are used in the VPA tuning (UK seine, NL beam). All 6 show a decline from 1990 to 1991 and a further decline in 1992. Four are at historical low levels (Figure 6.7.1). The NL beam trawl survey also shows a decline in recent years (Figure 6.7.2, Table 6.7.2), although this decline was reversed in 1993 for the 2+ and 3+ numbers. Table 6.7.3 shows the survey data used to derive the recruitment estimates.

6.7.2 Comments on VPA tuning

Several preliminary tuning runs were completed for this stock, revealing some substantial differences in results. Figure 6.7.3 shows Fs at age in 1992 from three different analyses: XSA shrunk, LS shrunk, and ADAPT. XSA and ADAPT gave very similar results, but the Fs

from the LS-shrunk analysis were much higher at some ages, notably 3,4,9, and 10. All three models estimated the exploitation pattern to be sharply peaked at age 5. It was thought that the Fs at ages 3 and 4 from the LS-shrunk were unrealistically high (about one-third higher than the mean F at ages 3 and 4 from 1988-1990) given the apparent trend in exploitation away from younger fish in recent years (Anon., 1993). If exploitation is shifting towards small fish again, the XSA-shrunk model used in this assessment may have underestimated F on the younger ages. Results from a LS without shrinking estimated substantially higher Fs at most ages than other methods, which was expected given the decline in the tuning indices in 1991 and 1992.

The exclusion of the English groundfish survey from the tuning for reasons noted previously had minimal effect on the results; mean F(2-10,u) = 0.47 compared to 0.46 for XSA shrunk.

Figure 6.7.4 compares the exploitation pattern in 1991 from the three models described above with that from the 1992 assessment. All three models run in 1993 show a more dome-shaped F pattern in 1991 compared with last year's assessment.

The choice of lower and upper ages in the catchability analysis module of XSA also affected tuning results. The choice of 5 as the lower limit was made after examination of preliminary analyses with 3 as the choice. It was thought that the choice of 5 improved some of the tuning relationships at ages 3 and 4. The Fs at younger ages were lower when 5 was used.

6.7.3 Comments on the catch forecast

About 40% of the *status quo* forecast for 1993 is made up of catch at ages 1-3, for which estimates of recruitment were used as input (GM at age 1, RCT3 estimates for ages 2 and 3). This figure increases to 65% at ages 2-4 in 1994. If there is a tendency for the recruitment indices to overestimate recruitment, the resulting catch forecasts will obviously be too high. This may be a factor contributing to the continued decline in catch expected in 1993.

6.8 Eastern Channel Whiting

The retrospective analysis of XSA with a shrinkage value of 0.5 was not satisfactory (Figure 4.3.3). An attempt was, therefore, made to improve the result with a shrinkage value of 0.2. The result was quite similar (Figure 6.8.1).

6.9 Eastern Channel Sole

Indices of CPUE and effort from Belgian, French and UK fleets are given in Tables 6.9.1 and 6.9.2 and the

trends shown in Figures 6.9.1 and 6.9.2. The Belgian effort and CPUE series have been completely revised using new fishing power corrections where

 $FP = 0.000204 \text{ x HP}^{**}.23$

A strong decline in CPUE was evident in the Hastings trammel and French fleets between 1986 and 1990 with some recovery in recent years. A similar decline in catch rate was seen in the English beam trawl CPUE (Table 6.9.3) followed by a recovery in 1992 and 1993 as the strong 1989 year class recruited to the fishery.

Recruit indices were available from English and French young fish surveys and the English beam trawl survey in Division VIId. The results are shown in Table 6.9.4. Preliminary data from the English young fish survey in September 1993 suggest that the 1993 year class as 0group could be the second highest in the series and the 1992 year class as 1 group appeared to be below average.

6.10 Eastern Channel Plaice

Indices of CPUE and effort from Belgian, French and UK fleets are given in Tables 6.10.1 and 6.10.2 and the trends shown in Figures 6.10.1 and 6.10.2. The Belgian effort and CPUE series have ben completely revised using new fishing power corrections where

FP= 0.000341 x HP**0.823

There was no clear trend in CPUE among the different fleets but effort showed a general increase until 1992. Four out of the 6 fleets showed a decline in effort in 1992. Results from the English beam trawl survey in Division VIId show CPUE for age 3 + declining from a peak in 1988 to a minimum in 1993 (Table 6.10.3).

Recruit indices were available from English and French young fish surveys, the English beam trawl survey and French groundfish surveys in Division VIId. The results are shown in Table 6.10.4. Preliminary data from the English young fish survey in September 1993 suggest that the 1993 year class as 0-group could be about average while the 1992 year class as 1-group appeared to be below average.

7 TECHNICAL INTERACTIONS

The STCF North Sea database for 1991 was used as a basis for the descriptions of technical interactions. The database includes catch at age data including discards for haddock and whiting for 7 countries split up on 59 fleets. The 59 fleets were combined into 8 "main fleets" representing the types of gear used. Table 7.1 shows the grouping of STCF fleets into the 8 main fleets.

The catch composition by fleet (Table 7.2) is a result of the fleet definitions used in the STCF database and the subsequent combining of fleets and therefore gives only a preliminary picture of the fleets fishing in the North Sea and their catches.

The main catch for the "HC. TRAWL" fleet was roundfish with a catch of more than 1/3 of the total of cod, haddock, saithe and whiting. The "SEINE NETS" fleet had a relatively smaller catch of saithe and a larger catch of plaice.

The "BEAM TRAWL" fleet catches more than 2/3 of the total catch of plaice and sole and 6% of the total catch of cod.

The catch of saithe was 88% of the total catch for the "SAITHE" fleet.

The "FIXED GEAR" fleet catches mainly cod, plaice and sole.

The fleet "OTHER" represents catches from countries not included in the STCF database and non-reported catches (Working Group estimate).

The ABC model (Lewy *et al.*, 1992) was used to predict equilibrium catches. Fishing mortality was estimated using catch data from the 8 fleets, the stock number estimated by the Working Group and the natural mortality estimated by the Multispecies Working Group. The Working Group recruitment estimates and the Multispecies Working Group maturity at age data were, furthermore, used in the prediction.

Eight predictions were made assuming an increase of fishing mortality of 10% for each fleet. The Fs for the other fleets in the scenario were unchanged. The results of these eight predictions were compared to the result of a *status quo* prediction. Decreasing the Fs by 10% would give the same magnitude of relative changes - of course with a reverse sign. A fixed percentage change of Fs has the largest effect for fleets having the largest catch (partial F). The changes seen are, therefore, a combination of catch weight and the exploitation pattern by fleet.

Table 7.3 gives the relative changes in the biomass by species for the eight scenarios. Because the ABC model does not include biological interaction effects, an increase in effort always reduces the biomass. The changes in biomass, therefore, reflect only the partial Fs for the particular fleet. The exploitation pattern is different for the fleets giving a different ratio between change in stock biomass and change in spawning stock biomass for the fleets.

Table 7.4 gives the change in yield by fleet and species for the eight scenarios. For all species except whiting an

increase in effort resulted in a *status quo* or decreased yield.

The catch data have not included discards for cod, saithe, plaice and sole. The negative effects on the *status quo* fleets, of an increased effort in a high discard rate fleet (BEAM TRAWL, HC.TRAWL and SEINE NETS), are therefore underestimated.

The fixed gears (gillnet) fleet is the overall "loser" with an increase in effort of all other fleets. The fixed gear fleet catches older fish and an increase in effort in other fleets will result in fewer older fish for the fleet. An increase in effort for the fixed gear fleet, however, results in only an insignificant "loss" for other fleets and a *status quo* total yield. This is caused by the relatively low total catch weight and the exploitation pattern for the "FIXED GEAR" fleet.

8 **REFERENCES**

- Anon. 1991. Report of Division IIIa Demersal Stocks Working Group. ICES, Doc. C.M.1991/-Assess:18.
- Anon. 1992. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak. ICES, Doc. C.M.1993/Assess:5.
- Anon. 1993a. Report of the Working Group on Methods of Fish Stock Assessment. ICES, Doc. C.M. 1993/Assess:12.
- Anon. 1993b. Report of the Working Group on the Assessment of the Northern Shelf Demersal Stocks. ICES, Doc. C.M.1993/Assess:20.
- Cook, R.M. 1993. The use of sensitivity analysis to quantify uncertainties in stock projections. ICES, Doc. C.M.1993/D:66.
- Cook, R.M. and Forbes, S.T. 1993. Unsafe biological limits for North Sea cod. Working paper to 1993 Methods Working Group.
- Cotter, A.J.R, 1993. Intercalibration of groundfish surveys using regression analysis of year class mortalities. ICES Doc C.M. 1993/G:21.
- Darby, C.D. and Flatman, S. 1992. Virtual Population Analysis. Version 3.0: User's Guide. MAFF Fisheries Lab. Lowestoft.
- Evans, G.T and J.C. Rice 1988. Predicting recruitment from stock size without the mediation of a functional relation. J. Cons. int. Explor. Mer, 44:111-122.

- Lewy, P., M. Vinther and L. Thomsen, 1992. Description of the STCF North Sea Database and the Prediction Model ABC, Assessment of Bio-Economic Consequences of Technical Measures. ICES C.M. 1992/D:17
- Meurou C., J. Morin, S. Jennings 1993. Biogeographical identification of English Channel fish and shellfish stocks. Report to EC Commission DG XIV. 191 p.A.I
- Shepherd, J. (unpubl.). Extended Survivors' Analysis: an improved method for the analysis of catch-atage and catch-per-unit-effort data.
- Skagen, D. 1991. Stock prediction using stochastic recruitment numbers with empirical stock-dependent distribution. ICES, Doc. C.M.1991/H:28.

Year		Open Skagerrak				Tatal	Norwegian coast
•	Denmark	Sweden	Norway	ay Germany Other		Total	Norway
1971	5,914	2,040	1,355	-	13	9,322	-
1972	6,959	1,925	1,201	-	22	10,107	-
1973	6,673	1,690	1,253	-	27	9,643	-
1974	6,694	1,380	1,197	-	92	9,363	-
1975	14,171	917	1,190	-	52	16,330	-
1976	18,847	873	1,241	-	466	21,427	-
1977	18,618	560	-	-	675	19,853	-
1978	23,614	592	-	-	260	24,466	1,305
1979	14,007	1,279	-	-	213	15,499	1,752
1980	21,551	1,712	402	-	341	24,006	1,580
1981	25,498	2,835	286	-	294	28,913	1,792
1982	23,377	2,378	314	-	41	26,110	1,466
1983	18,467	2,803	346	-	163	21,779	1,520
1984	17,443	1,981	311	-	156	19,891	1,187
1985	14,521	1,914	193	-	-	16,628	990
1986	18,424	1,505	174	-	-	20,103	917
1987	17,824	1,924	152	-	-	19,900	838
1988	14,806	1,648	392	-	106	16,952	769
1989	16,634	1,902	256	12	34	18,838	888
1990	15,788	1,694	143	110	65	17,800	846
1991	10,396	1,579	72	12		12,071	854
1992	11,194	2,436	270	-	102	14,002	923

Table 2.2.1. COD in the Skagerrak (part of Div. Illa). Landings in tonnes as estimated by Working Group (same as official landings, preliminary for 1992).

Table 2.2.2 By-catches of COD in the Skagerrak by the Danish small-meshed fishery (tonnes) as estimated by the Working Group.

Year	By-catch
1979	4,009
1980	4,036
1981	5,376
1982	9,119
1983	4,384
1984	1,084
1985	1,751
1986	997
1987	491
1988	1,103
1989	428
1990	687
1991	953
1992	1,360

39

Run title : Cod in the Skagerrak (part of Fishing Area IIIa) (run name: FINSOP)

At 12-Oct-93 17:49

Table 2.2.3 YEAR,	Catch n 1978,	umbers at 1979,	age Nu 1980,		*-3 1982,
AGE 1, 2, 3, 4, 5, 6, 7, +gp, TOTALNUM, TONSLAND, SOPCOF %,	4337, 11174, 2889, 775, 182, 166, 44, 52, 19619, 24466, 105,	432, 4325, 2956, 480, 202, 34, 33, 28, 8490, 15499, 118,	1066, 6593, 4821, 1748, 349, 94, 82, 11, 14764, 24006, 96,	389, 11030, 6202, 1169, 288, 44, 6, 19177, 28913, 98,	1080, 4448, 6653, 2009, 242, 175, 73, 27, 14707, 26110, 94,

(

Table 1 YEAR,	Catch n 1983,	umbers at 1984,	age Nu 1985,	mbers*10* 1986,	*-3 1987,	1988,	1989,	1990,	1991,	1992,
AGE										
1,	1771,	341,	928,	3253,	165,	1035,	794.	846,	432,	1792.
2, 3,	6020,	7067,	5156,	4101,	12289	2645	6237.	5243	2922,	4793
	3368,	3107,	2773,	3441,	2245,	5251	3163,	3326,	1763	1654
4,	1609,	731,	856,	1748,	503,	592,	1564	529,	871,	493.
5,	290,	280,	207,	347,	137,	150,	172,	432.	194	233,
6,	85,	70,	124,	60,	69,	56,	104	49,	81,	49,
7,	32,	22,	33,	39,	17,	8,	18,	50,	32,	43,
+gp,	69,	17,	9,	21,	19,	13,	12,	33,	15,	12,
TOTALNUM,	13244,	11635,	10086,	13010,	15444,	9750,	12064,	10508,	6310,	9069
TONSLAND,	21784,	19891,	16628,	20103,	19900,	16952,	18697,	17800,	12059	14002
SOPCOF %,	96,	99,	94,	95,	95,	100,	95,	96,	97,	95,

J

)

. 1

Run title : Cod in the Skagerrak (part of Fishing Area IIIa) (run name: FINSOP)

At 12-Oct-93 17:49

Table 2.2.4 YEAR,		veights an 1979,	t age (kg) 1980,	1981,	1982,
AGE					
1,	.5990,	.5990,	.7460,	.6190,	.6560,
2,	.8600	.8600	1.1460,	.9720,	1.2040,
3,	1.8940,	1.8940,	1.5700,	1.9020,	1.8650,
4,	3.4980,	3.4980,	3.3470,	3.7110,	2.7090,
5,	5.5100,	5.5100,	4.8650,	5.2610,	
6,	7.0930,	7.0930,	8.9320,	9.4910,	8.0180,
7,	7.3040,	7.3040,	8.3010,	8.5140,	8.7380,
+gp,	9.8880,	9.8880,	11.0850,	10.0940,	12.6580,
SOPCOFAC,	1.0453,	1.1806,	.9560,	.9799,	.9401,

Table 2 YEAR,	Catch 1983,	weights at 1984,	age (kg) 1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,
AGE										
1,	.5900,	.6470,	.6490,	.6830,	.5800,	.6370,	.6120,	.6030,	.5880,	.6580,
2,	1.0070,	1.1300,	1.0940,	1.1330,	1.0480,	1.1950,	1.0640,	1.1500,	1.2100,	1.2390,
3,	1.9670,	2.1700,	2.0890,	2.0400,	1.8590,	1.8630,	1.7040,	2.1100,	2.1320,	2.3010,
4,	3.3500,	3.6160,	3.5370,	2.6360,	3.8960,	2.9780,	3.2240,	3.7030,	3.3350,	3.6010,
5,	5.7510,	5.5050,	5.4720,	4.7020,	5.8490,	5.8300,	5.6370,	4.6780,	4.9290,	5.1580,
6,	8.0740,	7.8140,	7.7460,	7.5380,	7.9140,	8.0950,	7.8900,	5.5460,	6.9710,	7.9610,
7,	8.5860,	10.3190,	10.2550,	9.1640,	9.6070,	10.2450,	9.6860,	8.5000,	9.0680,	9.3050,
+gp,	11.9630,	12.8560,	12.8540,	9.7770,	12.4670,	13.0600,	10.8000,	10.7450,	11.7800,	8.6220,
SOPCOFAC,	.9649,	.9883,	.9442,	.9508,	.9542,	1.0004,	.9516,	.9576,	.9693,	.9464,

Year	Catch (t)	Effort	CPUE
	Bottor	<u>n trawl</u>	
		<u>II (IAWI</u>	
1978	86	-	24.5
1979	104	-	28.4
1980	263	6,651	39.6
1981	318	7,297	43.6
1982	462	8,178	56.5
1983	329	8,478	38.8
1984	371	11,991	30.9
1985	392	13,168	29.8
1986	347	11,977	29.0
1987	503	13,527	37.7
1988	344	14,405	23.9
1989	178	11,310	28.2
1990	323	11,815	27.3
1991	249	9,561	26.6
1992	417	15,112	27.6
	<u>Nephrops</u> traw	l (single trawl)	
1978	572	. · · ·	18.2
1979	936	-	27.2
1980	1,287	42,987	29.9
1981	1,619	43,785	37.0
1982	1,384	40,815	33.9
1983	1,239	52,536	23.6
1984	1,077	69,779	15.4
1985	1,149	70,869	16.2
1986	736	74,913	9.8
1987	1,062	91,875	11.5
1988	1,002	109,337	9.2
1989	1,243	85,833	12.8
1990	803	71,775	11.2
1991	508	71,854	8.1
1992	811	73518	11.0

)

Table 2.2.5COD in the Skagerrak. CPUE by gear type for the
Swedish fishery CPUE as catch in kg/hour.

Year	Catch (tonnes)	Effort	CPUE
<u>Gill-nets</u>			
1987	1,102	2,531	435
1988	1,211	2,202	550
1989	1,208	2,112	572
1990	1,367	2,398	570
1991	1,316	2,419	544
1992	1,415	2,532	559
<u>Nephrops tr</u>	awl		
1987	218	8,174	27
1988	234	7,224	32
1989	332	8,541	39
1990	384	8,494	45
1991	311	8,536	36
1992	243	5,975	41
Danish cod	trawl		
1987	644	2,534	254
1988	472	1,429	330
1989	459	1,354	339
1990	614	2,132	288
1991	406	1,888	215
1992	455	2,002	227

}

Table 2.2.6 COD in the Skagerrak. CPUE (kg/day) by gear type for the Danish cod fishery.

Table 2.2.7 Cod in the Skagerrak. CPUE by fleet and age.

Danish trawlers (code: FLTO6)

Year	Effort	Catch, age 1	Catch, age 2	Catch, age 3	Catch, age 4	Catch, age 5	Catch, age 6	Catch, age 7
1987	1	1.8	180.7	39.3	6.1	1.4	0.5	0.1
1988	1	32.2	69.7	130.6	11.1	2.2	0.7	0.1
1989	1	17.0	136.2	69.9	27.5	2.2	1.0	0.2
1990	1	9.8	96.0	66.3	10.0	7.1	0.8	0.5
1991	1	16.5	69.0	32.9	16.9	3.4	1.2	0.3
1992	1	34.2	88.1	32.2	8.4	3.3	0.6	0.5

Danish Nephrops tr. (code: FLT05)

Year	Effort	Catch, age 1	Catch, age 2	Catch, age 3	Catch, age 4	Catch, age 5	Catch, age 6	Catch, age 7
1987	1	0.3	18.0	3.0	0.8	0.2	0.1	0.0
1988	1	1.9	5.5	11.7	1.3	0.4	0.2	0.0
1989	1	2.3	17.9	7.4	2.5	0.3	0.2	0.0
1990	1	2.0	16.3	9.6	1.4	1.2	0.1	0.1
1991	1	2.2	13.2	5.9	2.3	0.5	0.2	0.1
1992	1	8.1	15.0	4.4	1.3	0.7	0.1	0.1

Danish gill-net (code: FLTO4)

Year	Effort	Catch, age 1	Catch, age 2	Catch, age 3	Catch, age 4	Catch, age 5	Catch, age 6	Catch, age 7
1987	1	0.8	98.7	68.6	19.3	4.8	2.1	0.6
1988	1	12.8	57.7	146.5	20.9	4.2	1.7	0.2
1989	1	5.2	67.8	59.2	65.5	8.9	5.6	0.8
1990	1	8.9	69.9	91.7	22.2	18.4	2.0	2.4
1991	1	6.6	64.8	75.6	51.2	11.2	4.2	1.6
1992	1	27.8	114.7	67.9	24.8	14.0	2.3	2.3

		Cod	Whiting	Haddock	
Year class	IBTS	IBTS	Norw.sur.		
	l - gr	ll - gr	0 -gr.	l - gr.	l - gr.
1974				499	ng tagin dan Birak dan kanalaran dan makan menangkan sebuah yang sebuah yang sebuah yang sebuah yang sebuah yan
1975			6.1	236	
1976			11.4	99	
1977			3.4	392	
1978			6	561	
1979		85	21.4	722	40.4
1980	15	31	7.1	968	4.3
1981	36	30.4	5	690	47.7
1982	28.4	18.6	12.4	262	33.8
1983	23.4	51.8	1.9	500	71.7
1984	13.5	10.5	4.2	940	160.8
1985	77.9	113	20.3	1,379	57
1986	5.4	18.1	4.5	2,178	250.6
1987	77	23.8	10.1	2,978	125.2
1988	56	9.6	0.2	478	. 20.2
1989	30.9	25.3	15.9	2255	8
1990	9.3	5	1.9	1,636	74
1991	96	16	5.7	1,672	258
1992	110		6.6	1,359	405
1993			3.5		

)

,

Table 2.2.8Indices of 0-group COD from the Norwegian Skagerrak coast
and indices of I- and II-groups from the IBTS in February,
and I-group whiting and haddock from the February IBTS.

Table 2.2.9 XSA run specifications and tuning diagnosdic

VPA Version 3.1 (MSDOS)

14/10/1993 14:38

Extended Survivors Analysis

Cod in the Skagerrak (part of Fishing Area IIIa) (run name: FINAL2)

CPUE data from file j:\ifapexim\wg_200\cod_skag\FLEET.FF2

Data for 4 fleets over 15 years Age range from 1 to 7

Fleet,	Alpha, Beta
FLTO4: Danish gill-n	, .000 , 1.000
FLT05: Danish Nephro	, .000 , 1.000
FLT06: Danish trawle	, .000 , 1.000
FLT08: IBTS (Catch:	.050 .150

Time series weights :

Tapered time weighting applied Power = 3 over 20 years

Catchability analysis :

Catchability independent of stock size for all ages

Catchability independent of age for ages >= 6

Terminal population estimation :

Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages.

S.E. of the mean to which the estimates are shrunk = .500

Minimum standard error for population estimates derived from each fleet = .300

Prior weighting not applied

Tuning converged after 35 iterations

```
1
```

Regression weights , .751, .820, .877, .921, .954, .976, .990, .997, 1.000, 1.000

Table 2.2.9 continued : Fleet disaggregated estimates of survivors :

Age 1 Catchability constant w.r.t. time, dependent on age

Year class = 1991

)

Year class = 1991									
FLT04: Danish gil Age Estimated Surviv Raw Weig	ors	1, 49937., .993,							
FLT05: Danish Nepl Age Estimated Survive Raw Weigl	ors	1, 51037., 1.398,							
FLT06: Danish tran Age Estimated Survivo Raw Weigl	ors	1, 30900., 1.137,							
FLT08: IBTS (Catcl Age Estimated Survive Raw Weigh	ors	1, 43224., 1.703,							
Fleet FLT04: Danish gil FLT05: Danish Nep FLT06: Danish trau FLT08: IBTS (Catch	hro wle	Estimated Survivors 49937. 51037. 30900. 43224.	Int s.e 1.004 .846 .938 .766		Ext .000 .000 .000 .000	Var Ratio .00 .00 .00 .00	N 1 1 1 1	Scaled Weights .108 .151 .123 .184	Estimated F .032 .031 .051 .037
F shrinkage mean	n	26700.	.50					.433	.059
Weighted prediction	on :								
Survivors at end of year 35057.	Int s.e .33	Ext s.e .17	N 5	Var Ratio .527	F .045				

.

Continued

Age 2 Catchability constant w.r.t. time, dependent on age

Year class = 1990			
FLT04: Danish gill-n Age Estimated Survivors Raw Weights	2, 6923., 3.139,	1, 4852., .498,	
FLT05: Danish Nephro Age Estimated Survivors Raw Weights	2, 5173., 1.819,	1, 5673., .702,	
FLT06: Danish trawle Age Estimated Survivors Raw Weights	2, 4080., 5.529,	1, 6101., .571,	
FLT08: IBTS (Catch: Age Estimated Survivors Raw Weights	2, 1065., .906,	1, 1719., .854,	

Fleet FLT04: Danish gill-n FLT05: Danish Nephro FLT06: Danish trawle FLT08: IBTS (Catch: F shrinkage mean	Estimated Survivors 6594. 5308. 4236. 1344. 4337.	Int s.e .524 .630 .405 .754		Ext s.e .122 .041 .117 .240	Var Ratio .23 .07 .29 .32	N 2 2 2 2	Scaled Weights .202 .140 .339 .098	Estimated F .505 .597 .705 1.442
Weighted prediction : Survivors Int at end of year s.e 429624	Ext s.e	.50 N 9	Var Ratio .652	F .698			.222	.693

Continued

)

Age 3 Catchability constant w.r.t. time, dependent on age

Year class = 1989

Weighted prediction : Survivors Int	Ext	N Var	F	
FLT05: Danish Nephro FLT06: Danish trawle FLT08: IBTS (Catch: F shrinkage mean	1118. 952. 1958. 748.	.454 .371 1.147 .50	.153 .34 .099 .27 .003 .00	3 .210 .850 3 .315 .945 2 .033 .568 .173 1.099
Fleet FLT04: Danish gill-n	Estimated Survivors 1272.	Int s.e .402	Ext Var s.e Ratio .088 .22	N Scaled Estimated Weights F 3 .268 .778
FLT08: IBTS (Catch: Age Estimated Survivors Raw Weights	3, 0., .000,	2, 1952., .404,	1, 1965., .356,	
FLT06: Danish trawle Age Estimated Survivors Raw Weights	3, 856., 4.568,	2, 1127., 2.466,	1, 1278., .238,	
FLT05: Danish Nephro Age Estimated Survivors Raw Weights	3, 995., 3.746,	2, 1606., .811,	1, 1819., .292,	
FLT04: Danish gill-n Age Estimated Survivors Raw Weights	3, 1207., 4.568,	2, 1379., 1.400,	1, 2308., .207,	

Continued

Age 4 Catchability constant w.r.t. time, dependent on age

Year class = 1988

FLT04: Danish gill-n					
Age Estimated Survivors Raw Weights	4, 391., 5.128,	3, 491., 1.989,	2, 447., .452,	1, 364., .069,	
FLT05: Danish Nephro Age	4,	3,	2,	1,	
Estimated Survivors Raw Weights	414 5.128,	487., 1.631,	596., .262,	564 .097,	
					·
FLT06: Danish trawle Age		7	2	1	
Estimated Survivors Raw Weights	4, 339., 4.718,	3, 319., 1.989,	2, 471., .797,	1, 598., .079,	
FLT08: IBTS (Catch:					
Age Estimated Survivors	4, 0.,	3, 0.,	2, 202.,	1, 972.,	
Raw Weights	.000,	.000,	.131,	.118,	
Fleet	Estimated Survivors	Int s.e	Ext Var s.e Ratio	N Scaled Weights	Estimated F
FLT04: Danish gill-n FLT05: Danish Nephro	418. 437.	.362	.058 .16	4 .287	.727
FLT06: Danish trawle FLT08: IBTS (Catch:	347.	.363 2.005	.071 .20 .784 .39		.826 .716
F shrinkage mean	302.	.50		.150	.906
Weighted prediction :					
Survivors Int at end of year s.e	s.e	N Var Ratio	F		
3821	9.05	15 .259	.773		

Continued

Age 5 Catchability constant w.r.t. time, dependent on age

Year class = 1987

}

fear class = 1967					
FLT04: Danish gill-n Age Estimated Survivors Raw Weights	5, 271., 1.739,	4, 331., 2.452,	3, 220., .862,	2, 176., .244,	1, 399., .037,
FLT05: Danish Nephro Age Estimated Survivors Raw Weights	5, 261., 2.976,	4, 300., 2.452,	3, 293., .707,	2, 265., .141,	1, 208., .052,
FLT06: Danish trawle Age Estimated Survivors Raw Weights	5, 201., 2.919,	4, 280., 2.256,	3, 238., .862,	2, 271., .429,	1, 505., .042,
FLT08: IBTS (Catch: Age Estimated Survivors Raw Weights	5, 0., .000,	4, 0., .000,	3, 0., .000,	2, 218., .070,	1, 597., .064,
Fleet FLT04: Danish gill-n FLT05: Danish Nephro FLT06: Danish trawle FLT08: IBTS (Catch: F shrinkage mean	Estimated Survivors 282. 279. 236. 352. 164.	Int s.e .433 .398 .392 2.733 .50	Ext Var s.e Ratio .091 .21 .036 .09 .082 .21 .503 .18	N Scale Weigh 5 .239 5 .284 5 .292 2 .006 .179	ts F .558 .563 .638 .470
Weighted prediction :				••••	.020
Survivors Int at end of year s.e 24221	Ext s.e .06	N Var Ratio 18 .294	F .626		

Continued

.

Age 6 Catchability constant w.r.t. time, dependent on age

Year class = 1986

FLT04: Danish gill-n Age Estimated Survivors Raw Weights	6, 44., 5.366,	5, 69., .586,	4, 40., .834,	3, 33., .215,	2, 36., .080,	1, 7., .013,
FLT05: Danish Nephro Age Estimated Survivors Raw Weights	6, 36., 2.769,	5, 60., 1.004,	4, 51., .834,	3, 52., .176,	2, 20., .046,	1, 9., .018,
FLT06: Danish trawle Age Estimated Survivors Raw Weights	6, 40., 5.366,	5, 66., .985,	4, 46., .767,	3, 58., .215,	2, 33., .141,	1, 8., .014,
FLT08: IBTS (Catch: Age Estimated Survivors Raw Weights	6, 0., .000,	5, 0., .000,	4, 0., .000,	3, 0., .000,	2, 44., .023,	1, 12., .022,
Fleet FLT04: Danish gill-n FLT05: Danish Nephro FLT06: Danish trawle FLT08: IBTS (Catch: F shrinkage mean	Estimated Survivors 44. 43. 44. 23. 32.	Int s.e .375 .454 .365 4.731 .50	Ext Var s.e Ratio .074 .20 .109 .24 .086 .24 .652 .14	N Scale Weigh 6 .302 6 .206 6 .319 2 .002 .170	ts F .692 .710 .699 1.066	d
Weighted prediction : Survivors Int at end of year s.e 4121	Ext s.e .05	N Var Ratio 21 .246	F .728			

Continued

Age 7 Catchability constant w.r.t. time and age (fixed at the value for age) 6

Year class = 1985

FLT04: Danish gill-n Age Estimated Survivors Raw Weights	7, 44., 4.297,	6, 35., 3.037,	5, 50., .303,	4, 44., .348,	3, 34., .122,	2, 23., .030,	1, 0., .000,
FLT05: Danish Nephro Age Estimated Survivors Raw Weights	7, 37., 3.374,	6, 32., 1.567,	5, 63., .519,	4, 34., .348,	3, 35., .100,	2, 24., .018,	1, 0., .000,
FLT06: Danish trawle Age Estimated Survivors Raw Weights	7, 34., 5.432,	6, 35., 3.037,	5, 61., .509,	4, 47., .321,	3, 45., .122,	2, 33., .053,	1, 0., .000,
FLT08: IBTS (Catch: Age Estimated Survivors Raw Weights	7, 0., .000,	6, 0., .000,	5, 0., .000,	4, 0., .000,	3, 0., .000,	2, 90., .009,	1, 50., .007,
Fleet FLT04: Danish gill-n FLT05: Danish Nephro FLT06: Danish trawle FLT08: IBTS (Catch: F shrinkage mean Weighted prediction :	Estimated Survivors 40. 37. 36. 69. 35.	Int s.e .351 .411 .325 7.879 .50	Ext Var s.e Ratio .057 .16 .080 .20 .064 .20 .295 .04	N Scale Weigh 6 .295 6 .215 6 .344 2 .001 .145	ts F .675 .721 .735 .447	I	
Survivors Int at end of year s.e 3719	s.e	N Var Ratio 21 .175	F .716				

1

}

Run title : Cod in the Skagerrak (part of Fishing Area IIIa) (run name: HS1)

At 20-Oct-93 11:31

Terminal Fs derived using XSA (With F shrinkage)

Table YEAR,	8		mortalit 1979,		age 1981,	1982,
AGE						
1,		.2467,	.0195,	.0381,	.0307,	.0716,
2,		.9314,	.4168,	.4561,	.6743,	.5704,
3,		1.1071,	.6871,	1.2172,	1.0907,	1.2352,
4,		.8804,	.5294,	1.2501,	1.2180,	1.5232,
5,		.5540,	.5969,	.9672,	.6956,	.9209,
6,		.9506,	.1850,	.6238,	.2891,	1.3699,
7,		.8942,	.4868,	.9127,	.8016,	1.1374,
+gp,		.8942,	.4868,	.9127,	.8016,	1.1374,
FBAR 3-6	,	.8730,	.4996,	1.0146,	.8234,	1.2623,

Table	8	Fishing	mortalit	y (F) at	age							
YEAR,		1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	FBAR 90-92
AGE												
1,		.1019,	.0254,	.0876,	.1131,	.0170,	.0655,	.0716,	.1035,	.0364,	.0452,	.0617,
2,		.7036,	.7394,	.6460,	.6813,	.8047,	.4101,	.6901,	.9122,	.6161,	.6979,	.7421
3,		1.2422,	1.0316,	.7436,	1.3474,	1.0581,	1.0358,	1.3491,	1.0425,	.9465,	.8888,	.9593
4,		1.2745,	1.0583,	.9354,	1.8949,	.7101,	.9309,	1.0820,	.8747,	.8852,	.7733,	.8444,
5,		1.0007,	.7935,	1.0520,	1.4551,	.7788,	.4727,	.7882,	1.0732,	.9843	.6257	.8944
6,		1.0456,	.7076,	1.0644,	1.0778,	1.5985,	.8880,	.7170,	.5402,	.5812,	.7278,	.6164,
7,		1.0656,	.8753,	.8979,	1.3074,	1.1108,	.8181,	.8244,	.9560,	.8472,	.7156,	.8396,
+gp,		1.0656,	.8753,	.8979,	1.3074,	1.1108,	.8181,	.8244,	.9560,	.8472,	.7156,	-
FBAR 3-6,		1.1407,	.8977,	.9488,	1.4438,	1.0364,	.8318,	.9841,	.8827,	.8493,	.7539	

Table 2.2.11

) j Run title : Cod in the Skagerrak (part of Fishing Area IIIa) (run name: HS1)

At 20-Oct-93	11:31					
	Termina	l Fs deri	ved using	XSA (With	F shrinkage)	
Table 10 YEAR,			age (start 1980,		1982,	Numbers*10**-3
AGE						
1,	21923,	24776,	31533,	14241,	17279,	
2,	20378,	14025,	19894,	24853,	11308,	
2, 3,	4769,	6574,	7569,	10322,	10367,	
4,	1463,	1291,	2707,	1835,	2839,	
4, 5, 6,	473,	497,	622,	635,	444,	
6,	299,	223,	224,	194,	259,	
7,	82,	95,	151,	98,	119,	
+gp,	96,	80,	20,	12,	43,	
TOTAL,	49483,	47558,	62721,	52190,	42660,	

Table 10	Stock n	umber at	age (start	of year)		Nu	*-3				
YEAR,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,
AGE											
1,	20211,	15002,	12231,	33605,	10795,	18033,	12705,	9510,	13355,	44800,	Ο,
2, 3,	13170,	14945,	11974,	9174,	24570,	8689,	13827,	9684,	7021,	10544,	35057,
3,	5233,	5336,	5842,	5138,	3800,	8997,	4720,	5677,	3184,	3104,	4296,
4,	2468,	1237,	1557,	2274,	1093,	1080,	2615,	1003,	1639,	1012,	1045,
5,	507,	565,	352,	500,	280,	440,	349,	725,	342,	554,	382,
6,	145,	153,	209,	101,	96,	105,	225,	130,	203,	105,	242,
7,	54,	42,	62,	59,	28,	16,	35,	90,	62,	93,	41,
+gp,	114,	32,	17,	31,	31,	25,	23,	58,	29,	26,	47,
TOTAL,	41903,	37311,	32242,	50882,	40693,	37385,	34499	26877,	25835,	60236,	41112,

Table 2.2.12 Input to RCT3 Analysis

IBTS, Skagerak, VPA age 1 Vs. Survey Index 2 14 2 'year-class' 'VPA' 'age1' 'age2' 1979 31533 79 85 1980 14241 15 31 1981 17279 36 30.4 1982 20211 28.4 18.6 1983 15002 23.4 51.8 1984 12231 13.5 10.5 1985 33605 77.9 113 1986 10795 5.4 18.1 1987 18033 77 23.8 1988 12705 56 9.6 1989 9510 30.9 25.3 1990 -1 9.3 5 1991 -1 96 16 1992 -1 110 -1 IBTS, Skagerak, VPA age 2 Vs. Survey Index 2 14 2 'year-class' 'VPA' 'age1' 'age2' 1979 24853 79 85 1980 11308 15 31 1981 13170 36 30.4 1982 14945 28.4 18.6 1983 11974 23.4 51.8 1984 9174 13.5 10.5 1985 24570 77.9 113 1986 8689 5.4 18.1 1987 13827 77 23.8 1988 9684 56 9.6 1989 -1 30.9 25.3 1990 -1 9.3 5 1991 -1 96 16 1992 -1 110 -1 IBTS, Skagerak, VPA age 3 Vs. Survey Index 2 14 2 'year-class' 'VPA' 'age1' 'age2' 1979 10367 79 85 1980 5233 15 31 1981 5336 36 30.4 1982 5842 28.4 18.6 1983 5138 23.4 51.8 1984 3800 13.5 10.5 1985 8997 77.9 113 1986 4720 5.4 18.1 1987 5677 77 23.8 1988 -1 56 9.6 1989 -1 30.9 25.3 9.3 5 1990 -1 1991 -1 96 16 1992 -1 110 -1

IBTS, Skagerak, VPA age 1 Vs. Survey Index

Data for 2 surveys over 14 years : 1979 - 1992 Regression type = C Tapered time weighting applied power = 3 over 20 years Survey weighting not applied

Final estimates shrunk towards mean Minimum S.E. for any survey taken as .20 Minimum of 3 points used for regression

Forecast/Hindcast variance correction used.

Yearclass = 1989

	I		Regressi	on	I	I	Pred	liction	I
Survey/ Series	Slope		- Std Error				Predicted Value		
age1 age2	.60 .59		.38 .30				9.75 9.68	.448 .352	
Yearclas	s = 1	990			VPA	Mean =	9.75	.383	.343
	I		Regressi	on	I	I	Pred	liction	I
Survey/ Series	Slope	Inter cept		•			Predicted Value		WAP Weights
age1 age2	.76 .73	7.07 7.25	.50 .39	.421 .546	11 11	2.33 1.79	8.83 8.55	.646 .551	.204 .279
Yearclas	s = 1	991			VPA	Mean =	9.68	.406	.517
	I		Regressi	on	I	I	Pred	liction	I
Survey/ Series	Slope		- Std Error				Predicted Value		WAP Weights
age1 age2	.76 .73	7.04 7.24	.52 .40	.411 .541	11 11	4.57 2.83	10.53 9.31	.668 .482	
Yearclas	s = 1	992			VPA	Mean =	9.68	.406	.481
	I		Regressi	on	I	I	Pred	liction	I
Survey/ Series	Slope	Inter cept		Rsquare			Predicted Value		WAP Weights
age1 age2	.77	7.01	.53	.400	11	4.71	10.63	.713	.246
					VPA	Mean =	9.67	.407	.754
Year Class	Weight Avera Predic	ge	Log WAP	Int Std Error	Ext Std Erroi	Rati		Log VPA	
1989 1990 1991 1992	1667 982 1633 2001	7 9	9.72 9.19 9.70 9.90	.22 .29 .28 .35	.02 .36 .30 .42	1.5	56 11	9.16	

Continued

IBTS, Skagerak, VPA age 2 Vs. Survey Index

Data for 2 surveys over 14 years : 1979 - 1992

Regression type = CTapered time weighting applied power = 3 over 20 years Survey weighting not applied

Final estimates shrunk towards mean Minimum S.E. for any survey taken as .2 Minimum of 3 points used for regression .20

Forecast/Hindcast variance correction used.

Yearclass = 1989

	I	Re	egressi	on	I	I	Prec	diction-	I
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts	Index Value	Predicted Value	Std Error	WAP Weights
age1 age2	.59 .55	7.44 7.63	.38 .25	.517 .707	10 10	3.46 3.27	9.49 9.43	.452 .301	.210 .474
Yearclas	ss = 1	990			VPA	Mean =	9.48	.369	.316
	I	Re	gressi	on	I	I	·Prec	liction-	I
Survey/ Series	Slope	Inter- cept			No. Pts	Index Value	Predicted Value	Std Error	WAP Weights
age1 age2	.59 .55	7.44 7.64	.39 .25	.510 .708	10 10	2.33 1.79	8.82 8.62	.504 .363	
Yearclas	s = 1	991			VPA	Mean =	9.48	.369	.389
			gressi	on	I	I	Pred	liction	I
Survey/							Predicted		- WAP
Series		cept	Error		Pts	Value	Value	Error	
age1 age2	.59 .54	7.44 7.65	.40 .25	.501 .709	10 10	4.57 2.83	10.13 9.19	.521 .314	.174 .479
Yearclas	s = 19	992			VPA	Mean =	9.47	.369	.347
	I	Re	gressi	on	I	I	Pred	iction	I
Survey/ Series	Slope	Inter- cept					Predicted Value		WAP Weights
age1 age2	.59	7.43	.41	.490	10	4.71	10.21	.556	.306
					VPA	Mean =	9.47	.369	.694
Year Class	Weighte Averag Predict	je l	Log √AP	Int Std Error	Ext Std Error	Var Rati		Log VPA	
1989 1990 1991 1992	12791 8061 12744 16187	8. 9.	.46 .99 .45 .69	.21 .23 .22 .31	.02 .28 .24 .34	.0 1.4 1.2 1.2	5 0		

Continued

IBTS, Skagerak, VPA age 3 Vs. Survey Index

Data for 2 surveys over 14 years : 1979 - 1992

Regression type = CTapered time weighting applied power = 3 over 20 years Survey weighting not applied

Final estimates shrunk towards mean Minimum S.E. for any survey taken as .2 Minimum of 3 points used for regression .20

Forecast/Hindcast variance correction used.

Yearclass = 1989

1989

1990 1991

1992

3788 5453

6915

	I	R	egressio	on	I	I	Pred	liction	· · · · · · · · I
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts		Predicted Value		
age1 age2	.46 .47	7.11 7.01	.29 .19	.561 .745	9 9	3.46 3.27	8.70 8.55	.356 .237	
Yearclas	s = 1	990			VPA	Mean =	8.66	.308	.291
	I	R	egressio	on	I	I	Pred	iction	I
Survey/ Series				Rsquare			Predicted Value		
age1 age2	.45 .47	7.12 7.02	.30 .19	.556 .746	9 9	2.33 1.79	8.18 7.86	.393 .303	.232 .388
Yearclas	s = 1'	991			VPA	Mean =	8.66	.307	.380
	I	R	egressio	on	I	I	Pred	iction	I
Survey/ Series							Predicted Value		
age1 age2	.45 .46	7.14 7.04	.30 .19	.550 .748	9 9	4.57 2.83	9.19 8.35	.414 .250	.180 .491
Yearclas	s = 1	992			VPA	Mean =	8.65	.305	.330
	I	R	egressio	on	I	I	Pred	iction	I
Survey/ Series	Slope		Std Error	Rsquare	No. Pts	Index Value	Predicted Value	Std Error	WAP Weights
age1 age2	.44	7.16	.31	.543	9	4.71	9.24	.440	.323
					VPA	Mean =	8.65	.304	.677
Year Class	Avera	ed ge	Log WAP	Int Std	Ext Std	Var Rati	VPA o	Log VPA	

Average Prediction	WAP	Error	Std Error	Ratio
5525	8.62	.17	.04	.07
3788	8.24	.19	.25	1.71

.18

.25

8.60

8.84

.22

.28

1.52

1.23

At 20-Oct-93 11:31

Run title : Cod in the Skagerrak (part of Fishing Area IIIa) (run name: HS1)

	Table 16	Summary	(withou	t SOP correct	ion)		
	55.05			using XSA (Wi			
,	RECR	UITS, 1	IOTALBIO,	TOTSPBIO,	LANDINGS,	YIELD/SSB,	FBAR 3-6,
1978	, 2	1923,	51081,	20424,	24466,	1.1979,	.8730,
1979	, 2	4776,	49659,	22757,	15499,	.6811,	.4996
1980	, 3	1533,	73772,	27450,	24006,	.8745,	1.0146,
1981		4241,	65549,	32576,	28913,	.8876,	.8234,
1982	, 1	7279,	58353,	33403,	26110 ,	.7817,	1.2623,
1983	•	0211,	49663,	24476,	21784,	.8900,	1.1407,
1984	•	5002 ,	47787,	21192,	19891,	.9386,	.8977,
1985		2231,	43136,	22098,	16628,	.7525,	.9488,
1986	,	3605,	53777,	20431,	20103,	.9839,	1.4438,
1987	•	0795,	46380,	14370,	19900,	1.3849,	1.0364,
1988	•	8033,	45757,	23887,	16952,	.7097,	.8318,
1989		2705,	43292,	20804,	18697,	.8987,	.9841,
1990		9510, J	38066,	21195,	17800,	.8398,	.8827,
1991		$3355)^{\perp}_{2}$	32603,	16255,	12059,	.7419,	.8493,
1992	, (44	4800 ,)2	58104,	15562,	14002,	.8998,	.7539,
Anith							
Arith.	2	000	50/45	22/50	10707	8075	0/05
Mean Units,		•	50465,	•	19787,	.8975,	.9495,
units,	(mousar	ius), (Tonnes),	(Tonnes),	(Tonnes),		

 1 Replaced in prediction by 12599 from RCT3 estimate of N₃ in 1993 back-calculated to N₁, in 1991 based on Pope's cohort analysis.

 2 Replaced in prediction by 17546 from RCT3 estimate of N₂ in 1993 back-calculated to N₁ in 1992 based on Pope's cohort analysis.

Cod in the Skagerrak (part of Fishing Area IIIa)

Yield per recruit: Input data

Age	Recruit- ment	Natural mortality		Prop.of F bef.spaw.		Weight in stock	Exploit. pattern	Weight in catch
1	1.000	0.2000	0.0000	0.0000	0.0000	0.620	0.0561	0.620
2		0.2000	0.0000	0.0000	0.0000	1.172	0.6752	1.172
3		0.2000	1.0000	0.0000	0.0000	2.022	0.8728	2.022
4	-	0.2000	1.0000	0.0000	0.0000	3.368	0.7682	3.368
5		0.2000	1.0000	0.0000	0.0000	5.246	0.8137	5.246
6		0.2000	1.0000	0.0000	0.0000	7.293	0.5608	7.293
7		0.2000	1.0000	0.0000	0.0000	9.361	0.7639	9.361
8+	-	0.2000	1.0000	0.0000	0.0000	11.001	0.7639	11.001
Unit	Numbers	-	-	-	-	Kilograms	. •	Kilograms

Notes: Run name : YPREC Date and time: 130CT93:11:44

Table 2.2.15

Cod in the Skagerrak (part of Fishing Area IIIa)

Yield per recruit: Summary table

						1 Jar	nuary	Spawni	ng time
F Factor	Reference F	Catch in numbers	Catch in weight	Stock size	Stock biomass	Sp.stock size	Sp.stock biomass	Sp.stock size	Sp.sto biomas
0.0000	0.0000	0.000	0.000	5.517	27608.496	3.698	26029.671	3.698	26029.6
0.1000	0.0754	0.228	1096.243	4.384	17312.235	2.570	15738.777	2.570	15738.7
0.2000	0.1508	0.357	1444.252	3.740	12000.794	1.930	10432.671	1.930	10432.6
0.3000	0.2262	0.441	1527.145	3.325	8907.406	1.520	7344.590	1.520	7344.5
0.4000	0.3016	0.500	1510.004	3.036	6960.189	1.236	5402.650	1.236	5402.6
0.5000	0.3769	0.544	1456.908	2.824	5664.562	1.028	4112.269	1.028	4112.2
0.6000	0.4523	0.577	1394.172	2.662	4764.971	0.870	3217.896	0.870	3217.8
0.7000	0.5277	0.603	1332.603	2.534	4118.449	0.747	2576.562	0.747	2576.5
0.8000	0.6031	0.625	1276.317	2.431	3640.141	0.649	2103.415	0.649	2103.4
0.9000	0.6785	0.643	1226.490	2.347	3277.319	0.568	1745.723	0.568	1745.7
1.0000	0.7539	0.658	1183.038	2.276	2995.979	0.502	1469.485	0.502	1469.4
1.1000	0.8293	0.671	1145.379	2.215	2773.511	0.446	1252.090	0.446	1252.0
1.2000	0.9047	0.682	1112.784	2.163	2594.482	0.398	1078.107	0.398	1078.
1.3000	0.9800	0.692	1084.529	2.118	2448.115	0.357	936.756	0.357	936.
1.4000	1.0554	0.700	1059.959	2.078	2326.731	0.322	820.361	0.322	820.3
1.5000	1.1308	0.708	1038.504	2.043	2224.756	0.291	723.347	0.291	723.3
1.6000	1.2062	0.715	1019.682	2.012	2138.082	0.264	641.606	0.264	641.6
1.7000	1.2816	0.722	1003.089	1.984	2063.629	0.240	572.058	0.240	572.0
1.8000	1.3570	0.727	988.388	1.958	1999.058	0.218	512.366	0.218	512.3
1.9000	1.4324	0.733	975.300	1.935	1942.570	0.199	460.729	0.199	460.7
2.0000	1.5078	0.738	963.593	1.914	1892.762	0.182	415.744	0.182	415.7
-	-	Numbers	Grams	Numbers	Grams	Numbers	Grams	Numbers	Grams

votes:	kun name	:	TPREC
	Date and time	:	130CT93:11:44
	Computation of ref.	F:	Simple mean, age 3 - 6
	F-0.1 factor	:	0.1958
	F-max factor	:	0.3203
	F-0.1 reference F	:	0.1476
	F-max reference F	:	0.2414
	Recruitment	:	Single recruit

61

Cod in the Skagerrak (part of Fishing Area IIIa) Cod in the Skagerrak (part of Fishing Area IIIa)

Prediction with management option table: Input data

				Year: 19	93			
Age	Stock size	Natural mortality		Prop.of F bef.spaw.	Prop.of M bef.spaw.	Weight in stock	Exploit. pattern	Weight in catch
1 2 3 4 5 6 7 8+	20016.000 12744.000 3788.000 1045.000 382.000 242.000 41.000 47.000	0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000	0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	1.172 2.022 3.368 5.246 7.293 9.361	0.0561 0.6752 0.8728 0.7682 0.8137 0.5608 0.7639 0.7639	1.172 2.022 3.368 5.246 7.293 9.361
Unit	Thousands	-	-	-	-	Kilograms	-	Kilograms

	Year: 1994											
Age	Recruit- ment	Natural mortality	Maturity ogive	Prop.of F bef.spaw.	Prop.of M bef.spaw.	Weight in stock	Exploit. pattern	Weight in catch				
1	17291.000	0.2000	0.0000		0.0000	0.620	0.0561	0.620				
23	•	0.2000	0.0000	0.0000	0.0000	1.172	0.6752	1.172				
	•	0.2000	1.0000	0.0000	0.0000	2.022	0.8728	2.022				
4		0.2000	1.0000	0.0000	0.0000	3.368	0.7682	3.368				
5	•	0.2000	1.0000	0.0000	0.0000	5.246	0.8137	5.246				
6	•	0.2000	1.0000	0.0000	0.0000	7.293	0.5608	7.293				
7	•	0.2000	1.0000	0.0000	0.0000	9.361	0.7639	9.361				
8+		0.2000	1.0000	0.0000	0.0000	11.001	0.7639	11.001				
Unit	Thousands	-	-	-	-	Kilograms	-	Kilograms				

Year: 1995											
Age	Recruit- ment	Natural mortality	Maturity ogive	Prop.of F bef.spaw.	Prop.of M bef.spaw.	Weight in stock	Exploit. pattern	Weight in catch			
1	17291.000	0.2000	0.0000	0.0000	0.0000	0.620	0.0561	0.620			
2	•	0.2000	0.0000	0.0000	0.0000	1.172	0.6752	1.172			
3		0.2000	1.0000	0.0000	0.0000	2.022	0.8728	2.022			
4		0.2000	1.0000	0.0000	0.0000	3.368	0.7682	3.368			
5		0.2000	1.0000	0.0000	0.0000	5.246	0.8137				
6		0.2000	1.0000	0.0000	0.0000	7.293	0.5608				
7		0.2000	1.0000	0.0000	0.0000	9.361	0.7639	9.361			
8+	•	0.2000	1.0000	0.0000	0.0000	11.001	0.7639	11.001			
Unit	Thousands	-	-	-	-	Kilograms	-	Kilograms			

Notes: Run name : CODPRED1 Date and time: 140CT93:10:42

Cod in the Skagerrak (part of Fishing Area IIIa) Cod in the Skagerrak (part of Fishing Area IIIa)

Prediction with management option table

	Year: 1993					Year: 1994					Year: 1995	
F Factor	Reference F	Stock biomass	Sp.stock biomass	Catch in weight	F Factor	Reference F	Stock biomass	Sp.stock biomass	Catch in weight	Stock biomass	Sp.stock biomass	
1.0000	0.7539	43182	15849	15324	0.0000	0.0000	48490	19625	0	77914	50615	
					0.2000	0.1508		19625	4885	70695	43580	
					0.4000	0.3016	-	19625	9118	64467	37536	
					0.6000	0.4523		19625	12791	59090	32340	
.	.		-		0.8000	0.6031		19625	15981	54444	27872	
			-		1.0000	0.7539		19625	18756	50424	24030	
		-			1.2000	0.9047	-	19625	21173	46943	20723	
		-	-		1.4000	1.0554		19625	23282	43924	17877	
	.	-			1.6000	1.2062	-	19625	25124	41303	15427	
	.	-			1.8000	1.3570		19625	26737	39023	13317	
•	•		•		2.0000	1.5078	•	19625	28152	37038	11499	
-	-	Tonnes	Tonnes	Tonnes	-	-	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes	

Notes: Run name : CODPRED1 Date and time : 140CT93:10:36 Computation of ref. F: Simple mean, age 3 - 6 Basis for 1993 : F factors

,

Table 2.2.18 Cod in the Skagerrak (part of Division IIIa).

Average F(3-6,)											
Date of		Year									
assessment	1987	1988	1989	1989 1990		1992					
1989	1.12	1.02		ł	1	1					
1990	1.05	0.85	1.14]							
1991	0.96	0.80	1.05	1.05							
1992	1.02	0.83	0.95	0.86	0.75						
1993	1.04	0.83	0.98	0.88	0.85	0.75					

Assessment Quality Control Diagram 1

Remarks: New tuning data in 1993.

Assessment Quality Control Diagram 2

Estimated total landings ('000 t) at status quo F											
Date of	Year										
assessment	1988	1989	1990	1991	1992	1993	1994				
1989	16.7	21.3	25.7			L	<u>.</u>				
1990		18.6	23.0	19.4							
1991			17.8	17.0	17.5						
1992				13.1	14.3	16.9					
1993				12.2	15.1	15.3	18.8				
				\ SQC ¹	SQC ²	Current	Forecast				

$${}^{1}SQC = Landings(y-1) * \frac{F(y-2)}{F(y-1)} * \exp\left[-\frac{1}{2}\{F(y-2) - F(y-1)\}\right]$$

$${}^{2}SQC = Landings(y) * \frac{F(y-1)}{F(y)} * \exp\left[-\frac{1}{2}\{F(y-1) - F(y)\}\right]$$
where F(y), F(y-1) and F(y-2) are as estimated in the assessment made in year (y+1).

Remarks: New tuning data in 1993.

Continued

Table 2.2.18 Contimued.

Recruitment (age 1) Unit: millions											
Date of		Year class									
assessment	1987	1988	1989	1990	1991	1992					
1989	30.0	27.0									
1990	22.3	15.0	16.7								
1991	17.1	14.0	16.4	17.0							
1992	17.8	16.9	16.6 ¹	10.21	20.7 ¹						
1993	18.0	12.7	16.7	9.8 ¹	16.3 ¹	20.0 ¹					

Assessment Quality Control Diagram 3

¹RCT3 estimates.

Remarks:New tuning data in 1993.

Assessment Quality Control Diagram 4

	Spawning stock biomass ('000 t)											
Date of		a) <u></u>	<u>, , , , , , , , , , , , , , , , , , , </u>	Ye	ar							
assessment	1988	1989	1990	1991	1992	1993	1994	1995				
1989	20.8	14.0	24.0 ¹	27.2 ¹		L	L	*				
1990	21.9	18.6	24.0	17.5 ¹	15.6 ¹]						
1991	23.3	19.5	18.7	15.1	15.5 ¹	16.1 ¹						
1992	23.5	20.7	21.5	17.5	20.8	19.2 ¹	25.9 ¹]				
1993	23.9	19.8	20.3	15.8	14.7	14.6	19.1 ¹	26.4 ¹				

¹Forecast.

Remarks: New tuning datya in 1993.

	Denm	Denmark			Sweden	Others		Total	
Year	Human consumption	Reduction	Total	Huma	an consump	ption	• Total consumption	reduction and consumption	
1975	-	-	5,015	122	921	57		6,115	
1976	-	-	7,488	191	1,075	301	-	9,055	
1977	-	-	6,907	156	2,485	215	-	9,763	
1978	-	-	4,978	168	1,435 ²	56	-	6,637	
1979	-	-	4,120	248	361	56	-	4,785	
1980	-	-	7,172	288	373	57	-	7,890	
1981	-	-	9,568	271	391	120	-	10,350	
1982	-	-	11,151	196	396	329	-	12,072	
1983	6,425	7,225	13,650	756	608	221	8,010	15,235	
1984	5,516	2,707	8,223	321	499	30	6,366	9,073	
1985	6,522	954	7,476	279	351	15	7,167	8,121	
1986	3,265	1,682	4,947	226	151	5	3,647	5,329	
1987	3,584	1,449	5,033	148	71	36	3,803	5,288	
1988	2,543	1,480	4,023	245	64	48	2,852	4,380	
1989	3,889	360	4,249	138	66	5	4,098	4,458	
1990	3,887	1,968	5,855	84	102	27	4,100	6,068	
1991	3,894	2,593	6,487	111 ¹	80	1	4,086 ¹	6,679 ¹	
1992	3,811	4,254	8,065	1771	744 ²	14	4,746 ¹	9,000 ¹	

 Table 2.3.1
 Landings of HADDOCK in Division IIIa (in tonnes) as supplied by Working Group members.

¹Preliminary.

²Includes \sim 350 tonnes landed for reduction.

Table 2.3.2. HADDOCK in Division IIIa. Catch in numbers (thousands).

1987 - 1990 Human consumption fishery only

Year	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8
1981	30	990 3	4962	771	151	84	36	3
1982	314	2299	12055	1113	209	22	11	6
1983	1113	4624	2728	4004	525	63	11	6
1984	18	6554	4481	713	524	91	6	16
1985	0	8279	3687	1049	78	176	29	6
1986	51	903	3722	686	230	33	27	28
1987	381	3282	866	734	122	42	10	6
1988	375	1683	1863	303	158	43	14	16
1989	32	1540	2951	510	91	45	12	6
1990	1040	1347	1576	931	144	43	31	20
1991	7614	2453	1085	460	400	66	12	19
1992	16094	4572	905	284	107	48	7	6

Table 2.4.1Nominal landings (in tonnes) of WHITING from Division IIIa as
supplied by the Study Group on Division IIIa Demersal Stocks
(Anon., 1992a) and updated by the Working Group.

Year		Denmark		Norway	Sweden	Others	Total
1975		19,018		57	611	4	19,690
1976		17,870		48	1,002	48	18,968
1977		18,116		46	975	41	19,178
1978		48,102		58	899	32	49,091
1979		16,971		63	1,033	16	18,083
1980		21,070		65	1,516	3	22,654
	Total consumption	Total industrial	Total				
1981	1,027	23,915	24,942	70	1,054	7	26,073
1982	1,183	39,758	40,941	40	670	13	41,664
1983	1,311	23,505	24,816	48	1,061	8	25,933
1984	1,036	12,102	13,138	51	1,168	60	14,417
1985	557	11,967	12,524	45	654	2	13,225
1986	484	11,979	12,463	64	477	1	13,005
1987	443	15,880	16,323	29	262	43	16,657
1988	391	10,872	11,263	42	435	24	11,764
1989	777	11,662	12,439	29	675	-	13,215
1990	1,016	17,829	18,845	46	435	73	19,333
1991	881	12,463	13,344	56	557	97	14,054
1992 ¹	538	10,675	11,213	67	959	1	12,240

¹Preliminary.

)

Table 2.5.1 PLAICE landings from the Kattegat and Skagerrak (in tonnes). Official figures, excluding misreported landings in the period 1983 - 1988. (See Anon. 1992).

Year	Denmark		Sweden		Germa	ny	Belgium	Norway	Total IIIa
	Kattegat	Skagerrak	Kattegat	Skagerrak	Kat.	Skag.			an a
1972	15504	5095	348	70		889 <u>9</u>			21017
1973	10021	3871	231	80					14203
1974	11401	3429	255	70					15155
1975	10158	4888	369	77					15492
1976	9487	9251	271	81					19090
1977	11611	12855	300	142					24908
1978	12685	13383	368	94					26530
1979	9721	11045	281	105					21152
1980	5582	9514	289	92					15477
1981	3803	8115	232	123					12273
1982	2717	7789	201	140					10847
1983	3280	6828	291	170			133	14	10716
1984	3252	7560	323	356	32		27	22	11572
1985	2979	9646	403	296	4		136		
1986	2468	10653	170	215			505	24	
1987	2868	11370	283	222	104		907	25	
1988	1818	9781	210	281	2.8		716		12850
1989	1596	5387	135	320	4	0.1	230		7705
1990	1831	8726	201	777	2	0.7		69	12078
1991	1756	5849	267	472	5.6	3.9	315		8737
1992 ¹	2071	8522	208	381			507		11796

¹Preliminary.

Run title : Plaice in Skagerak and Kattegat combined (run name: PLAICE3A9)

.

At 13-Oct-93 16:53

Table YEAR,		umbers at 1979,			
YEAR, AGE 2, 3, 4, 5, 6, 7, 8, 9, 10, +gp,	1978, 503, 16129, 40633, 25613, 8234, 637, 65, 65, 49, 62,	1979, 1105, 9791, 29662, 20812, 7648, 2515, 170, 75, 50, 55,	1980, 363, 4792, 16421, 12627, 6058, 2403, 953, 204, 54, 50,	1981, 191, 4059, 13135, 11001, 4318, 1431, 548, 214, 119, 97,	1982, 552, 2168, 9653, 11119, 5825, 1941, 795, 316, 118, 50,
TOTALNUM, TONSLAND, SOPCOF %,	91990, 26530, 97,	71883, 21152, 100,	43925, 15477, 100,	35113, 12273, 100,	32537, 10847, 95,

Table		umbers at		mbers*10*	-					
YEAR,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,
AGE										
2,	1569,	2184,	1462,	395,	592,	100,	1045,	3205.	2363,	934,
3,	10292,	12880,	8990,	4479	4235	3121,	3977	8993	8735	3995
4, 5,	9143,	12555,	22548,	15549	13081,	12374	7365,	8905	9602,	12219.
5,	8503,	4590,	6434,	20027,	18620,	14159	6489	10042	4640,	18212.
6,	2832,	2043,	1767,	4915,	10691,	7055,	2813,	3333,	2878	4493,
7,	980,	906,	725,	680,	2184,	2822,	1215,	1015,	888	1078
8,	563,	750 ,	275,	273,	386,	973	568,	495,	304,	308,
9,	272,	592,	209,	130,	237,	331,	265,	360,	156,	119,
10,	102,	300,	175,	122,	126,	140,	140,	161,	86,	28,
+gp,	112,	107,	164,	84,	165,	162,	226,	256,	135,	119,
TOTALNUM,	34368,	36907,	42749,	46654,	50317,	41237 ,	24103,	36765,	29787,	41505,
TONSLAND,	10716,	11572,	13482,	14035,	15774,	12850,	7674,	12078,	8746,	11823,
SOPCOF %,	94,	97,	97,	94,	94,	97,	96,	97,	100,	95,

Table 2.5.3

Run title : Plaice in Skagerak and Kattegat combined (run name: PLAICE3A9)

At 13-Oct-93 16:53

Table YEAR,	2		veights at 1979,		1981,	1982,
AGE 2, 3,		.2360, .2480,	.2220, .2550,	.2610,	.2300,	.2700,
4, 5,		.2680, .3220,	.2670, .2970,	.2740, .3060, .3450,	.2630, .2960, .3570,	.3010, .2860, .3180,
6, 7, 8,		.4170, .5980, .7520,	.3780, .4510, .6550,	.4140, .5790, .6400,	.4320, .5370, .6710,	.3860, .5440, .7040,
9, 10, +gp,		.8180, .9140, .8430,	.9220, 1.0200, 1.0440,	.7530, .8110, .9100,	.8130, .9120, .9990,	.8130, .9120, .9860,
SOPCOFAC,		.9729,	.9998,	.9959,	.9972,	.9535,

Table 2 YEAR,	Catch v 1983,	veights at 1984,	age (kg) 1985,	1986,	1987,	1988,	1989,	1990,	1991 ,	1992,
AGE										
2,	.2850,	.2770,	.2790,	.2520,	.3400,	.2490,	.2740,	.2910,	.2630.	.3090,
3,	.2740,	.2930,	.2840,	.2770,	.2850,	.2680,	.2630	.2880	.2700.	.3100.
4,	.2930,	.3090,	.3070,	.2840	.2860,	.2690	.2820	.2940,	.2590.	.2730
5,	.3560,	.3770,	.3520,	.3210,	.3030,	.2900	.3200	.3370	.2740.	.2800,
6,	.4230,	.4200,	.4370,	.3980,	.3740,	.3500,	.3760	.3970	.3650,	.3360,
7,	.4830,	.4190,	.5470,	.5380,	.5380,	.4740	.4660	.4980,	.4920.	.5000,
8,	.5310,	.3900,	.6610,	.6740,	.7380,	.5670,	.6350	.6850	.5860,	.6460,
9,	.6470,	.3600,	.7420,	.7910,	.9440,	.7570,	.7390	.7740,	.6710	.8170.
10,	.9860,	.4460,	.7540,	.8620,	1.0230,	.8320,	.8260	.9570	.8690.	.8040,
+gp,	1.1840,	1.1060,	.9180,	1.0260,	1.1180,	1.1920,	1.0100,	1.1520,	1.0110	.9710.
SOPCOFAC,	.9439,	.9656,	.9674,	.9366,	.9397,	.9724	.9581	.9724,	1.0030,	.9500,

Table 2.5.4 a PLAICE in Division IIIa. CPUE in four Swedish fleets.

Year	Nephrops trawl Skagerrak	Nephrops trawl Kattegat	Cod bottom trawl Skagerrak	Cod bottom trawl Kattegat
1980	1.73	3.40	2.50	6.12
1981	1.74	4.04	1.74	7.69
1982	1.95	2.92	2.24	9.05
1983	1.98	3.75	2.63	10.25
1984	3.09	4.94	4.54	7.60
1985	3.10	7.93	3.55	9.47
1986	1.81	2.78	2.87	5.05
1987	1.39	4.27	1.90	7.50
1988	1.66	3.96	2.66	7.65
1989	2.36	2.52	3.39	4.72
1990	2.91	3.31	5.62	6.27
1991	1.36	3.82	3.42	6.27
1992	2.18	3.67	2.69	2.77

Plaice in Skagerak and Kattegat combined

Year	Effort	Catch, age 2	Catch, age 3	Catch, age 4	Catch, age 5	Catch, age 6	Catch, age 7	Catch, age 8	Catch, age 9	Catch, age 10
1987 1988 1989 1990 1991	1 1 1 1	8.1 0.6 9.2 51.5	64.8 44.6 33.3 167.2	254.0 243.9 128.0 181.8	450.7 315.5 136.4 285.7	344.6 215.2 103.2 142.3	112.7 150.5 101.0 65.1	21.3 62.9 84.3 46.9	13.2 26.4 39.7 41.2	6.8 9.6 23.3 21.5
1992	1	41.4 34.8	218.1 185.0	320.3 605.2	209.1 916.0	242.5 235.0	113.5 85.4	44.1 31.2	18.5 14.2	16.0 3.9

Danish Gill-net (code: FLTO9)

Danish trawlers (code: FLT10)

Year	Effort	Catch, age 2	Catch, age 3	Catch, age 4	Catch, age 5	Catch, age 6	Catch, age 7	Catch, age 8	Catch, age 9	Catch, age 10
1987	1	4.5	59.4	212.6	319.7	157.9	20.4	2.2	1.1	0.7
1988	1	2.1	80.2	359.6	415.3	165.3	40.5	8.6	1.9	1.2
1989	1	20.0	72.5	186.4	225.6	89.5	23.1	8.2	3.3	1.2
1990	1	84.4	236.8	244.7	248.5	72.9	17.8	6.5	3.0	1.0
1991	1	51.1	231.9	283.9	138.5	75.7	17.2	5.6	3.4	1.5
1992	1	17.9	96.5	286.2	468.2	126.6	33.5	8.6	1.1	0.1

Danish Seiners (code: FLT11)

Year	Effort	Catch, age 2	Catch, age 3	Catch, age 4	Catch, age 5	Catch, age 6	Catch, age 7	Catch, age 8	Catch, age 9	Catch, age 10
1987 1988 1989 1990 1991 1992	1 1 1 1 1	9.6 3.3 41.4 108.8 95.3 26.7	93.9 145.4 183.3 350.4 341.3 134.4	351.1 495.9 323.4 358.1 376.3 555.6	607.4 582.1 329.1 402.1 201.2 845.8	329.2 269.7 142.5 121.7 133.3 210.4	40.3 83.8 53.9 31.7 36.5 35.6	5.3 19.9 17.1 10.6 10.7 7.4	3.2 4.6 6.9 6.3 4.7 2.3	1.6 1.8 3.2 2.1 1.5 0.4

Table 2.5.5 XSA analysis results on plaice in Div. IIIa.

VPA Version 3.1 (MSDOS)

14/10/1993 16:54

Extended Survivors Analysis

plaice in div 3 a

CPUE data from file pla3a\pla3atun.dat

Data for3 fleets over10 yearsAge range from2 to10

Fleet,	Alpha,	Beta
Danish Gill-net	, .000	, 1.000
Danish trawlers	, .000	, 1.000
Danish Seiners	, .000	, 1.000

Time series weights :

Tapered time weighting not applied

Catchability analysis :

Catchability independent of stock size for all ages

Catchability independent of age for ages >= 9

Terminal population estimation :

Final estimates not shrunk towards mean F

Prior weighting applied : Fleet Weight Danish G 1.00 Danish t 1.00 Danish S 1.00

Tuning converged after 38 iterations

1

Regression weights , 1.000, 1.000, 1.000, 1.000, 1.000

Fishing mortalities Age, 1987, 1988, 1989, 1990, 1991, 1992

Continued

1

Table 2.5.5 Continued

XSA population numbers

YEAR ,	2	!,	AGE 3,	4,	5,	6,	7,	8,	9,	10,
										, 1.13E+03, 4.71E+02, 1.80E+02,
1988,	3.42E+	04, 3.	.21E+0	4, 2.73	E+04,2.	.03E+04,	9.75E	+03, 4.2	9E+03	, 1.61E+03, 6.59E+02, 2.01E+02,
1989,	8.12E+	04,3.	.09E+0	4, 2.61	E +04,1 .	29E+04,	4.89E	+03, 2.1	1E + 03	1.19E+03, 5.36E+02, 2.82E+02,
1990,	1.04E+	05,7.	.25E+0	4, 2.41	E+04,1.	.66E+04,	5.52E	+03, 1.7	5E+03	, 7.53E+02, 5.39E+02, 2.33E+02,
1991,	5.36E+	04, 9.	.10E+0	4, 5.701	E+04,1.	34E+04,	5.49E	+03, 1.8	2E+03	6.18E+02, $2.11E+02$, $1.46E+02$,
1992,	7.88E+	04, 4.	.63E+0	4, 7.411	E+04,4	25E+04,	7.69E	+03, 2.2	3E+03,	, 8.04E+02, 2.70E+02, 4.24E+01,

Estimated population abundance at 1st Jan 1993

, 0.00E+00, 7.04E+04, 3.80E+04, 5.54E+04, 2.11E+04, 2.68E+03, 9.89E+02, 4.34E+02, 1.31E+02, 1.17E+01,

Taper weighted geometric mean of the VPA populations:

, 6.02E+04, 5.12E+04, 3.76E+04, 1.90E+04, 6.49E+03, 2.27E+03, 1.00E+03, 4.96E+02, 2.15E+02,

Standard error of the weighted Log(VPA populations) :

, .4155, .4015, .4594, .5069, .4537, .3482, .3732, .5157, .7053, AGE YEAR , 1987 , 1988 ,

1989, 1989, 1990, 1991, 1992,

Estimated population abundance at 1st Jan 1993

, 1.17E+01,

Taper weighted geometric mean of the VPA populations:

Standard error of the weighted Log(VPA populations) :

1

,

Log catchability residuals.

Fleet : Danish Gill-net

Age , 1987, 1988, 1989, 1990, 1991, 1992
2, .09, -2.47,60, .89, 1.34, .76
3,05,37,60, .16, .18, .69
4, .06, .38,36, .14,29, .08
5, .03, .19,43, .16,17, .22
6,14,04,28,05, .41, .10
7,39,01, .20,05, .37,12
8, -1.02,05, .41, .49, .44,26
9,75,40, .21, .44, .69,18
10,22, .01, .32, .66, .70, .61

Mean catchability and Standard error.

 Age ,
 2,
 3,
 4,
 5,
 6,
 7,
 8,
 9,
 10

 Mean Q,
 -8.4302,
 -6.1110,
 -4.7438,
 -3.7246,
 -3.1076,
 -2.7665,
 -2.6929,
 -2.4242,
 -2.4242,

S.E , 1.3870, .4527, .2773, .2552, .2355, .2644, .5865, .5421, .5404,

Regression statistics :

Ages with q constant w.r.t. time

Age, Slope, Intercept, S.e., RSquare, No Pts, Fleet Mean Q

2,	.38,	10.01,	.50,	.51, 6,	-8.43,
3,	.64,	7.78,	.27,	.78, 6,	-6.11,
4,	1.13,	3.99,	.34,	.69, 6,	-4.74,
5,	.74,	5.37,	.16,	.92, 6,	-3.72,
6,	1.12,	2.42,	.29,	.75, 6,	-3.11,
7,	1.67,	61,	.39,	.56, 6,	-2.77,
8,	2.44,	-3.34,	1.50,	.07, 6,	-2.69,
9,	1.99,	-1.13,	1.10,	.17, 6,	-2.42,
10,	1.23,	1.40,	.50,	.70, 6,	-2.08,
1					

Fleet : Danish trawlers

Age , 1987, 1988, 1989, 1990, 1991, 1992
2,75, -1.46,07, 1.13, 1.30,15
3,31, .05, .00, .33, .07,14
4 ,12, .76, .02, .43,42,67
5,18, .60, .20, .16,45,32
6,32, .31, .18,11,15, .09
7,67, .11, .16, .09,08, .38
8, -1.31,05, .07, .50, .36, .43
9,83,62, .14, .23, 1.41,33
10,08, .34,23, .01, .75,64

Mean catchability and Standard error.

Age,	2,	3,	4, 5,	6,	7,	8,	9,	10	
Mean Q,	-8.1834,	-5.9383,	-4.7415,	-3.8559,	-3.7139,	-4.2026,	-4.6794	, -4.8368,	-4.8368,
								8027, .4	

Regression statistics :

Ages with q constant w.r.t. time

Age, Slope, Intercept, S.e., RSquare, No Pts, Fleet Mean Q

2,	.39,	9.88,	.35,	.68,	6,	-8.18,
3,	.80,	6.92,	.16,	.91,	6,	-5.94,
4,	*****	*****	304.7	1, .0	0,	6, -4.74,
5,	1.28,	2.14,	.54,	.49,	6,	-3.86,
6,	1.18,	2.78,	.29,	.75,	6,	-3.71,
7,	1.76,	1.44,	.62,	.34,	6,	-4.20,
8,	15.09,	-26.25,	9.93,	.00,	6,	-4.68,
9,	-10.04,	17.99,	7.10,	.00,	6,	-4.84,
10,	.76,	4.87,	.36,	.81,	6,	-4.81,
1						

Fleet : Danish Seiners

 Age
 , 1987, 1988, 1989, 1990, 1991, 1992

 2
 , -.53, -1.55, .12, .85, 1.39, -.29

 3
 , -.37, .13, .42, .21, -.06, -.32

 4
 , -.07, .63, .12, .36, -.59, -.46

Table 2.5.5 Continued

5,	01,	.47,	.11,	.17,	54,	20
6,	13,	.25,	.10,	14,	13,	.05
7,	59,	.23,	.40,	.06,	.07,	16
8,	-1.00,	.21,	.23,	.41,	.44,	29
9,	51,	48,	.12,	.22,	.98,	34
10,	.00,	.00,	.00,	.00,	.00,	.00

Mean catchability and Standard error.

Age,	2,	3,	4, 5,	6,	7,	8,	9,	10	
Mean Q,	-7.6476,	-5.4233,	-4.2915,	-3.3887,	-3.1680,	-3.5950,	-4.1061,	-4.0879,	-4.0879,
S.E ,	1.0414,	.3091,	.4702,	.3449,	.1609,	.3467, .5	5558, .:	5715, .0	000,

Regression statistics :

Ages with q constant w.r.t. time

Age, Slope, Intercept, S.e., RSquare, No Pts, Fleet Mean Q

2,	.43,	9.56,	.40,	.62, 6,	-7.65,
3,	1.06,	5.12,	.36,	.66, 6,	-5.42,
4,	10.00,	-51.79,	2.46,	.04, 6,	-4.29,
5,	1.01,	3.34,	.39,	.65, 6,	-3.39,
6,	.99,	3.23,	.18,	.89, 6,	-3.17,
7,	1.47,	1.58,	.53,	.42, 6,	-3.59,
8,	1.65,	2.31,	.99,	.14, 6,	-4.11,
9,	3.47,	70,	1.84,	.07, 6,	-4.09,
10,	1.00,	4.09,	.00,	1.00, 6,	-4.09,
1					

Terminal year survivor and F summaries :

Age 2 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated	Int	Ex	at Va	r	N S	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Wei	ghts	F
Danish Gill-net	150699.	1.508		.000	.00	1	.224	.006
Danish trawlers	60558.	1.161		.000	.00	1	.378	.015
Danish Seiners	52866.	1.132		.000	.00	1	.398	.017
Weighted predic	tion :							

Survivors	Int	Ext	N	Var	F
at end of year	s.e	s.e		Ratio	
70388.	.71	.29	3	.410	.013

Age 3 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated	Int	Ext V	Var	N S	scaled	Estimated
	Survivors	s.e	s.e Rati	io	Wei	ghts	F
Danish Gill-net	80185.	.489	.188	.39	2	.138	.046
Danish trawlers	34980.	.240	.274	1.14	2	.571	.103
Danish Seiners	31486.	.336	.457	1.36	2	.291	.114
Weighted predict	tion :						

SurvivorsIntExtNVarFat end of years.es.es.eRatio38039..18.2061.101.095

1 Age 4 Catchability constant w.r.t. time, dependent on age

Fleet Estimated Int Ext Var N Scaled Estimated

	Survivors	s.e	s.e Ratio		Wei	ghts	F
Danish Gill-net	62668.	.281	.092	.33	3	.318	.170
Danish trawlers	54837.	.245	.238	.97	3	.420	.192
Danish Seiners	48443.	.310	.211	.68	3	.263	.215
Weighted predic	tion :						
Survivors	Int Ext	N V	'ar F				
at and of year		Dat	1.				

at end of year s.e s.e Ratio 55382. .16 .10 9 .653 .191

Age 5 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated	Int	Ext Var I		N Scaled		Estimated
	Survivors	s.e	s.e Ratio	0	Wei	ghts	F
Danish Gill-net	21472.	.266	.144	.54	4	.396	.592
Danish trawlers	22567.	.289	.191	.66	4	.336	.570
Danish Seiners	18933.	.324	.167	.52	4	.268	.650
Weighted predic	tion :						

Survivors	Int	Ext	Ν	Var	\mathbf{F}
at end of year	s.e	s.e		Ratio	
21110.	.17	.09	12	.535	.599

1

Age 6 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated	Int	Ext V	/ar	Ν	Scaled	Estimated
	Survivors	s.e	s.e Rati	0	We	ights	F
Danish Gill-net	2640.	.295	.126	.43	5	.299	.963
Danish trawlers	2680.	.310	.122	.39	5	.273	.954
Danish Seiners	2719.	.247	.128	.52	5	.428	.945
Weighted predic	tion :						
Survivors	Int Ext	NV	lor F				

Survivors	Int	Ext	N	Var	F
at end of year	s.e	s.e		Ratio	
2684.	.16	.07	15	.417	.952

Age 7 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated	Int	Ext Var		N Scaled		Estimated
	Survivors	s.e	s.e Rati	0	We	ights	F
Danish Gill-net	1039.	.297	.115	.39	6	.357	.687
Danish trawlers	1090.	.346	.111	.32	6	.263	.663
Danish Seiners Weighted predic	883. tion :	.288	.041	.14	6	.380	.771

Survivors	Int	Ext	Ν	Var	\mathbf{F}
at end of year	s.e	s.e		Ratio	
989.	.18	.05	18	.310	.711

1

Age 8 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated Survivors	Int s.e	Ext V s.e Rati	Var io	N Scale Weights	
Danish Gill-net	474.	.359	.135	.38	6.36	
Danish trawlers Danish Seiners	445. 392.	.426	.111	.26	6.26	
Weighted predic		.355	.073	.20	6.37	4 .558
Survivors at end of year	Int Ext s.e s.e		Var F itio			
434.	.22 .06	18 .2	.515			

Table 2.5.5 Continued

1

Age 9 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated Survivors	Int s.e	Ext s.e Ra	Var tio	N Scaled Weights	Estimated F
Danish Gill-net	125.	.483	.102	.21	6 .384	.645
Danish trawlers	i 139.	.622	.118	.19	6 .232	.596
Danish Seiners	133.	.484	.124	.26	6 .384	.617
Weighted predi	ction :					
Survivors at end of year 131.	Int Ext s.e s.e .30 .06	N V Ra 18 .21(
1011		10 1210	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

1 Age 10 Catchability constant w.r.t. time and age (fixed at the value for age) 9 '

Fleet	Estimated Survivors	Int s.e	Ext Va s.e Ratio	r N Scaled Weights	Estimated F
Danish Gill-net	21.	.881	.071 .	08 6 .000	.828
Danish trawlers	8.	.856	.249 .	29 6 .000	1.491
Danish Seiners	12.	.000	.000 .	20 6 1.000	1.186
Weighted predic	tion :				
Survivors at end of year 12	Int Ext s.e s.e 00 .00 1	N N Ra 18 .277			

Run title : Plaice in Skagerak and Kattegat combined (run name: PLAICE3A9)

At 13-Oct-93 16:45

Terminal Fs derived using XSA (Without F shrinkage)

Table YEAR,	8		mortality 1979,			1982,
AGE						
2,		.0086,	.0253,	.0108,	.0075,	.0112,
3,		.2393	.2050,	.1308,	.1442	.0987,
4,		.7692,	.7974,	.5477,	.5502,	.5239,
5,		1.0915,	1.0657,	.8529,	.7765,	1.1592,
6,		1.0270,	1.0585,	.9472,	.7111,	1.1614,
7,		.6049,	.9291,	1.0599,	.5312,	.7231,
8,		.2608,	.2812,	1.0263,	.6451,	.5628,
9,		.4533,	.4779,	.5631,	.5878,	.8614,
10,		.6685,	.6685,	.6685,	.6685,	.6685,
+gp,		.6685,	.6685,	.6685,	.6685,	.6685,
FBAR 4-8	,	.7507,	.8264,	.8868,	.6428,	.8261,

Table 8 YEAR,	Fishing 1983,	mortality 1984,	(F) at 1985,	age 1986,	1987,	1988,	1989,	1990,	1991,	1992,	FBAR 90-92
AGE 2, 3, 4, 5, 6, 7, 8, 9,	.0170, .2634, .6611, 1.1099, .9563, .5242, .4156, .3364,	.0317, .1691, .5212, .7336, .7767, .8357, .8357, .8745,	.0306, .1582, .4409, .4901, .6172, .6172, .5767,	.0108, .1113, .3970, .7850, .7635, .4511, .4390,	.0174, .1377, .4782, 1.0356, 1.2158, .8270, .4426,	.0031, .1077, .6477, 1.3227, 1.4305, 1.1785, 1.0035,	.0136, .1456, .3517, .7508, .9279, .9298, .6940,	.0329, .1397, .4906, 1.0084, 1.0080, .9410, 1.1735,	.0475, .1063, .1948, .4536, .8019, .7182, .7282,	.0125, .0952, .1905, .5992, .9525, .7115, .5154,	.0310, .1138, .2920, .6871, .9208, .7902, .8057,
10, +gp, FBAR 4- 8,	. 5364, . 6685, . 6685, . 7334,	.9132, .6685, .6685, .7483,	.5629, .6685, .6685, .5484,	.5236, .6685, .6685, .5671,	.7525, 1.3358, 1.3358, .7999,	.7501, 1.3191, 1.3191, 1.1166,	.7340, .7386, .7386, .7308,	1.2094, 1.3001, 1.3001, .9243,	1.5044, .9697, .9697, .5793,	.6226, 1.1860, 1.1860, .5938,	1.1121, 1.1519,

Table 2.5.7

Run title : Plaice in Skagerak and Kattegat combined (run name: PLAICE3A9)

At 13-0ct-93	16:45					
	Termina	l Fs deri	ved using	XSA (Wit	hout F shri	inkage)
Table 10 YEAR,		umber at 1979,				Numbers*10**-3
AGE 2, 3, 4, 5, 6, 7, 8, 9, 10, +gp, TOTAL,	79603, 40533, 13485, 1476, 298, 187, 106, 133,	46587, 55530, 56749, 33376, 12312, 4369, 729, 208, 108, 118, 210086,	40932, 23133, 10403, 3866, 1561, 498, 116, 107,	31768, 32633, 21417, 8920, 3651, 1212, 506, 257, 208,	24240, 24884, 17033, 8914, 3964, 1942, 575, 254, 107,	

Table 10	Stock r	number at	age (star	t of year)	Numbers*10**-3						
YEAR,	1983,	1984,	1985,	1986,	1987 ,	1988,	1989,	1990,	1991,	1992,	1993,	GMST
AGE												
2,	97818,	73672.	50927,	38664,	36139,	34217,	81212,	103965,	53593,	78771,	0	492
3,	46730,	87017	64584,	44690,	34609,	32137,	30866,	72490,	•	46245,	0, 70387,	442
									91023,	•		
4,	19871,	32493,	66484,	49886,	36176,	27287,	26110,	24145,	57037,	74052,	38044,	377
5,	13334,	9283,	17459 ,	38709,	30348,	20291,	12920,	16620,	13377,	42476,	55382,	210
6,	4836,	3977,	4033,	9677,	15975,	9749,	4891,	5518,	5486,	7690,	21110,	80
7,	2525,	1681,	1655,	1969,	4081,	4285	2110,	1750,	1822,	2226,	2684,	27
8,	1741,	1353,	660,	808,	1135,	1615,	1193,	753	618,	804,	989	10
9,	1001,	1039,	510,	335,	471,	659,	536,	539,	211,	270,	434	4
10,	220,	647,	377,	263,	180,	201,	282,	233,	146,	42,	131,	2
+gp,	240.	229,	352,	180,	233,	230,	452,	366,	227,	178,	61,	
TOTAL,	188316,		207041,	185181,	159347,	130670,	160571,	226379,	223538,	252754,	189223	

Table 2.5.8

,

_)

Run title : Plaice in Skagerak and Kattegat combined (run name: PLAICE3A9)

At 13-Oct-93 16:45

Table 16 Summary (without SOP correction)

Terminal Fs derived using XSA (Without F shrinkage) RECRUITS, TOTALBIO, TOTSPBIO, LANDINGS, YIELD/SSB, FBAR 4-8,

1978, 1979, 1980, 1981, 1982, 1983, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1989,	46587, 35491, 26990, 52225, 97818, 73672, 50927, 38664, 36139, 34217, 81212,	75844, 57094, 49143, 39348, 41701, 56589, 63262, 63196, 54847, 51589, 37656, 46532, 684,20	61236, 46752, 39880, 33141, 27600, 28711, 42855, 48988, 45104, 39302, 29136, 24280, 39214	26530, 21152, 15477, 12273, 10847, 10716, 11572, 13482, 14035, 15774, 12850, 7674, 12850,	.4332, .4524, .3881, .3703, .3930, .3732, .2700, .2752, .3112, .4014, .4410, .3161,	.7507, .8264, .8868, .6428, .8261, .7334, .7483, .5484, .5671, .7999, 1.1166, .7308, .7318, .7328, .7338,
1989, 1990, 1991, 1992,	103965, 53593,	46532, 68470, 60867, 75430,	24280, 38216, 46772, 51089,	7674, 12078, 8746, 11823,	.3161, .3160, .1870, .2314,	.7308, .9243, .5793, .5938,
Arith. Mean Units,		56105, (Tonnes),	40204, (Tonnes),	13669, (Tonnes),	.3440,	.7516,

Table 2.5.9Plaice in Division IIIa.

Recruitment (age 2) Unit: Millions.											
Date of		Year class									
assessment	1986	1987	1988	1989	1990	1991					
1989	25.3	-									
1990	73.7	-	-								
1991	38.6	81.4	47.5	-							
1992	26.0	41.8	69.3	104.2	-						
1993	34.2	81.2	104.0	53.6	78.8						

Assessment Quality Control Diagram 3

Remarks:

Assessment Quality Control Diagram 4

	Spawning stock biomass ('000 t)								
Date of Year									
assessment	1988	1989	1990	1991	1992	1993	1994	1995	
1989	36.6	-	1	1		L	1	L	
1990	40.7	43.0		1	1]			
1991	31.3	27.2	42.3	62.0	l	1			
1992	27.8	20.9	24.9	28.0	23.4	24.3 ¹	24.8 ¹		
1993	29.1	24.3	38.2	46.8	51.1	56.9	50.7 ¹	46.4 ¹	

¹Forecast.

Remarks:

Country	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992 ¹
Belgium	6,604	6,704	5,804	4,815	6,604	6,693	5,508	3,398	2,934	2,331	3,356
Denmark	61,454	48,828	46,751	42,547	32,892	36,948	34,905	25,782	21,601	18,997	18,479
Faroe Islands	65	361	-	71	15	57	46	35	96	23	166
France	8,399	7,159	8,129	4,834	8,402	8,199	8,323	2,578 ^{1,3}	1,641 ^{1,3}	975 ^{1,3}	1,947 ²
Germany	18,525	20,333	13,453	7,675	7,667	8,230	7,707	11,430	11,725	7,278	8,446
Netherlands	36,490	34,111	25,460	30,844	25,082	21,347	16,968 ⁴	12,028	8,445 ¹	6,830 ¹	11,133
Norway ²	12,163	6,625	7,005	5,766	4,864	5,000	3,585	4,813	5,168	5,425	10,053
Poland	62	75	7	-	10	13	19	24	53	15	
Sweden	453	422	575	748	839	688	367	501	620	784	823
UK (Engl.& Wales)	54,277	53,860	35,605	29,692	25,361	29,960	23,496	18,250	15,596	14,481	14,790
UK (Isle of Man)	-	-	-	-	-	-	-	1	-	-	-
UK (N. Ireland)	-	-	-	-	-	-	-	124	26	70	37
UK (Scotland)	57,308	58,581	54,359	60,931	45,748	49,671	41,382	31,480	31,120	28,748	28,367
Russia	-	-	-	-							
Total	255,800	237,059	197,148	187,923	157,484	166,806	142,306	110,444	99,025	85,957	97,597
Unreported landings	17,360	-3,397	7,723	5,043	5,745	8,671	7,815	5,180	5,483	559	333
vLandings as used by Working Group	273,160	233,662	204,871	192,966	163,229	175,477	150,121	115,624	q104,508	86,516	97,930

• •

Table 3.2.1 Nominal catch (in tonnes) of COD in Sub-area IV, 1981-1991, as officially reported to ICES.

¹Preliminary.

²Figures do not include cod caught as industrial by-actch. ³Includes Division IIa (EC).

	We	ight (100		5)	Numbers (millions)					
Year	Total	H.Cons	Disc.	Ind BC	Total	H.Cons	Disc.	Ind BC		
40/7	400	400								
1963	108	108	0	0	57	57	0	0		
1964	116	116	0		52	52	0	0		
1965		173	0	0	94	94	0	0		
1966	212	212	0		117	117	0	0		
1967	242	242	0		127	127	0	0		
1968	277	277	0		148	148	0	0		
1969	194	194	0	0	77	77	0	0		
1970	219	219	0	0	126	126	0	0		
1971	315	315	0	0	226	226	0	0		
1972	341	341	0	0	245	245	0	0		
1973	228	228	0	0	126	126	0	0		
1974	202	202	0	0	103	103	0	0		
1975	185	185	0	0	103	103	0	0		
1976	209	209	0	0	123	123	0	0		
1977	182	182	0	0	137	137	0	0		
1978	263	263	0	0	210	210	0	0		
1979	249	249	0	0	168	168	0	0		
1980	265	265	0	0	200	200	0	0		
1981	301	301	0	0	236	236	0	0		
1982	273	273	0	0	191	191	0	0		
1983	234	234	0	0	178	178	0	0		
1984	205	205	0	0	158	158	0	0		
1985	193	193	0) 0	144	144	0	0		
1986	163	163	0	0	140	140	0	0		
1987	175	175	j o	0	145	. 145	0	0		
1988	150	150	j o	j o	109	109	0	0		
1989	116	116	0	i o	75	75	0	0		
1990	105	105	0	i o	76	76	0	0		
1991	87	87	i o	i o	54	54	0	l o		
1992	98	98	Ó	i o	64	64	0	Ó		

Table 3.2.2 Cod, North Sea. Annual weight and numbers caught, 1963-1992

Table 3.2.3 Cod, North Sea. Natural Mortality and proportion mature

Age	Nat Mor	Mat.
	1	
1	.800	.010
2	.350	.050
3	.250	.230
4	.200	.620
j 5	.200	.860
6	.200	1.000
7	.200	1.000
8	.200	1.000
9	.200	1.000
j 10	.200	1.000
11+	.200	1.000

Table 3.2.4 Cod, North Sea. International catch at age ('000), total, 1963-1992.

}

Age	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	2979	4621	15078	17450	10339	5601	2842	52719	42972	3692
2	39475	20665	49476	59861	67849	80549	21867	32813	148927	180833
3	6516	18478	16825	28578	31289	40916	30453	17886	16507	46369
4	3278	3958	8755	5922	10777	11906	13222	12904	6475	5474
5	2584	1762	2276	3235	3131	5838	4403	6092	6808	2627
6	1124	1670	906	1224	1889	1359	2792	1705	2588	3084
7	75	551	627	457	850	836	567	930	856	1618
8	456	108	284	354	340	297	407	202	439	589
9	13	86	49	121	132	145	142	180	219	376
10	5	11	72	54	38	107	45	95	74	108
11+	0	4	8	80	16	23	75	39	90	17
Age	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
1	24742	14690	30081	5182	62744	24930	34113	60868	19833	64836
2	30259	55617	42487	90267	42275	158836	85844	96114	175920	59947
3	52342	10765	17073	16172	22918	13094	40458	29562	27563	53238
4	13409	14937	4203	6016	4104	8417	3332	10272	7649	7287
5	2102	4365	6816	1542	2055	2809	3130	1590	3802	3193
6	1057	907	1863	2764	752	941	675	1172	740	1883
7	1010	414	405	837	1030	366	365	412	555	355
8	466	373	176	119	335	372	129	191	131	218
9	76	313	206	61	237	140	145	71	63	72
10	55	76	86		23	33	39	54	36	25
11+	154	178	57	39	87	40	16	25	20	15
Age	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
1	23837	63854	7894	84620	21404	18093	21773	11345	13542	23126
2	121826	57773	111118	19284	105466	49353	28351	49632	20808	27024
3	17518	27764	15713	28626	7208	35878	14484	8468	14706	7100
4	10104	3461	6874	3759	7755	2425	8150	3762	2311	4579
5	2501	3119	1150	2587	1351	2287	829	1977	1143	850
6	1167	939	1116	520	956	561	888	253	896	441
7	562	415	328	498	209	274	219	244	179	289
8	142	233	162	148	188	58	124	38	118	49
9	70	57	73	60	46	52		44	23	36
10	22	43	13	39	31	11	24	9	3	16
11+	18	19	23	19	11	16	9	3	8	9

Age	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	.538	.496	.581	.579	.590	.640	.544	.626	.579	.616
2	1.004	.863	.965	.994	1.035	.973	.921	.961	.941	.836
3	2.657	2.377	2.304	2.442	2.404	2.223	2.133	2.041	2.193	2.086
4	4.491	4.528	4.512	4.169	3.153	4.094	3.852	4.001	4.258	3.968
5	6.794	6.447	7.274	7.027	6.803	5.341	5.715	6.131	6.528	6.011
6	9.409	8.520	9.498	9.599	9.610	8.020	6.722	7.945	8.646	8.246
7	11.562	10.606	11.898	11.766	12.033	8.581	9.262	9.953	10.356	9.766
8	11.942	10.758	12.041	11.968	12.481	10.162	9.749	10.131	11.219	10.228
9	13.383	12.340	13.053	14.059	13.589	10.720	10.384	11.919	12.881	11.875
10	13.756	12.540	14.441	14.746	14.271	12.497	12.743	12.554	13.147	12.530
11+	.000	7.090	15.667	15.672	19.016	11.595	11.176	14.367	15.544	14.350
Age	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
1	.559	.594	.619	.568	.542	.568	.549	.546	.725	.587
2	.869	1.039	.899	1.027	.973	.938	.940	.998	.827	.948
3	1.919	2.217	2.348	2.477	2.161	2.025	2.447	2.002	2.256	1.851
4	3.776	4.156	4.226	4.575	4.603	4.242	4.583	4.578	4.759	4.512
5	5.488	6.174	6.404	6.505	6.716	6.599	6.687	6.390	7.188	6.848
6	7.453	8.333	8.691	8.630	8.832	8.945	8.557	9.156	8.851	8.993
7	9.019	9.889	10.107	10.137	10.075	9.972	10.938	9.805	10.059	10.740
8	9.810	10.790	10.910	11.341	11.052	11.099	11.550	11.867	11.519	12.500
9	11.077	12.175	12.339	12.888	11.824	12.427	13.057	12.782	13.338	13.469
10 j	12.359	12.425	12.976	14.140	13.134	12.778	14.148	14.081	14.897	12.890
11+	12.886	13.731	14.431	14.371	14.361	13.981	15.478	15.392	18.784	14.609
Age	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
1	.634	.593	.582	.576	.620	.560	.671	.707	.652	.693
2	.917	.996	.920	.929	.933	.838	1.049	.932	1.027	1.127
3	1.814	2.144	2.126	1.834	1.948	1.909	1.830	2.140	1.981	2.591
4	3.960	4.041	4.228	3.975	3.647	3.190	3.599	3.743	4.117	4.268
5	6.589	6.255	6.457	6.421	6.011	5.924	5.179	6.091	6.156	6.476
6	8.454	8.423	8.475	8.153	8.276	7.848	7.832	8.339	7.985	8.484
7	9.919	10.317	10.406	9.956	9.911	9.723	9.500	10.523	9.637	10.172
8 j	11.837	11.352	12.034	11.713	11.413	11.607	11.087	10.742	10.937	10.422
9	12.797	13.505	13.033	12.710	12.149	13.489	12.774	12.610	13.547	11.774
10 j	12.562	13.408	13.209	13.566	15.542	14.353	14.066	15.285	13.250	13.799
11+İ	14.427	13.471	14.415	13.160	16.430	15.768	14.578	14.631	13.161	15.577

Table 3.2.5 Cod, North Sea. International mean weight at age (kg), total 1963-1992.

Cod; North Sea 112 SCOGFS 1982 1992 1 1 .50 .75	; 20 years (of effort dat	a.						
1 6 77.000 79.000 82.000 83.000 73.000 86.000 86.000 85.000 90.000 87.000	.474 .257 .672 .055 .641 .160 .140 .483 .097 .273 .559	.270 .617 .320 .948 .084 .547 .248 .116 .415 .139 .168	.441 .143 .208 .163 .317 .025 .142 .145 .050 .120 .063	.139 .156 .041 .093 .046 .067 .022 .081 .063 .012 .058	.071 .059 .047 .025 .032 .021 .028 .017 .022 .005 .025	-046 -018 -013 -020 -015 -005 -010 -007 -008 -004 -016			
SCOTRL 1973 1992 1 1 .00 1.00			-						
$\begin{array}{c} 1 & 6 \\ 185241.000 \\ 185432.000 \\ 152977.000 \\ 121841.000 \\ 144348.000 \\ 135220.000 \\ 87467.000 \\ 55475.000 \\ 51553.000 \\ 47889.000 \\ 47889.000 \\ 34574.000 \\ 33103.000 \\ 27839.000 \\ 2759.000 \\ 21559.000 \\ 16657.000 \\ 14325.000 \\ 13495.000 \\ 10887.000 \end{array}$	323.113 565.196 350.988 128.856 419.389 303.876 215.635 154.012 95.989 521.806 178.337 316.043 82.048 251.300 272.057 27.259 58.153 15.482 45.113 52.261	1405.493 1179.408 1596.945 1299.546 575.162 1424.419 914.453 849.920 928.202 305.760 1427.663 772.341 781.283 190.609 606.030 346.285 29.428 327.585 94.909 99.870	2629.921 926.321 430.985 676.244 838.778 285.883 447.243 379.327 387.683 389.066 208.383 345.964 196.005 256.042 38.463 159.513 134.388 18.792 103.953 30.235	471.165 820.284 264.991 151.830 227.668 181.926 73.875 127.393 113.695 73.236 112.430 32.726 79.313 19.914 39.401 8.077 40.929 22.486 7.731 33.291	61.021 144.050 271.991 84.905 69.898 63.974 46.921 19.965 51.256 17.394 23.261 16.831 9.116 10.431 8.443 8.077 2.974 5.118 6.998 1.153	67.023 34.012 37.999 86.903 30.955 15.993 22.961 19.965 13.979 6.408 9.692 7.480 4.558 .948 1.876 4.038 2.233 1.215 1.718 1.211			
SCOSEI 1973 1992 1_100_1.00									
$\begin{array}{c} 1 & 9 \\ 414898.000 \\ 349604.000 \\ 329432.000 \\ 307165.000 \\ 313913.000 \\ 325246.000 \\ 316419.000 \\ 297227.000 \\ 289672.000 \\ 297730.000 \\ 333168.000 \\ 38085.000 \\ 382910.000 \\ 425017.000 \\ 418536.000 \\ 377132.000 \\ 355735.000 \\ 37689.000 \\ 336675.000 \\ 300217.000 \end{array}$	$\begin{array}{c} 2657.429\\ 3859.718\\ 1821.095\\ 536.740\\ 2742.119\\ 1703.941\\ 2522.256\\ 1067.994\\ 855.604\\ 4070.478\\ 1342.728\\ 4839.125\\ 543.929\\ 5425.851\\ 1361.396\\ 842.968\\ 1684.028\\ 379.134\\ 1708.483\\ 1056.525\\ \end{array}$	7446.202 6285.798 8678.213 14237.110 4316.187 14715.490 8021.633 5957.458 13328.760 4794.063 13220.380 9954.796 18367.310 2656.135 13452.120 7091.734 3495.714 12625.370 4746.648 4120.136	6165.995 1610.717 1784.072 2889.603 3069.132 1385.952 3257.039 2341.237 2355.389 6023.739 1813.966 3783.950 2498.646 6865.172 680.241 4631.826 3173.118 1096.540 2986.177 942.427	870.141 1085.483 556.334 369.821 714.031 850.971 382.887 828.826 698.688 822.294 1289.703 453.752 835.287 824.863 1423.568 201.992 1092.297 671.531 241.370 618.214	137.022 252.112 471.283 178.913 177.008 201.993 344.898 144.370 204.816 291.107 227.494 381.259 127.187 285.816 283.434 471.982 91.156 291.604 173.924 97.903	98.016 54.024 79.048 112.945 51.002 47.998 66.980 89.579 18.169 98.353 108.292 107.343 42.826 186.518 131.995 185.066 38.807 113.164 59.252	42.007 38.017 9.005 36.982 35.002 22.999 43.987 33.049 10.736 25.095 39.341 46.539 26.159 38.171 24.686 55.998 44.650 50.407 32.981 31.805	31.005 23.010 5.003 9.995 24.001 20.999 18.994 14.785 12.388 20.913 18.815 25.954 24.355 13.965 35.658 15.999 18.698 11.534 25.229 8.852	$\begin{array}{c} 12.002\\ 15.007\\ 13.008\\ 3.998\\ 6.000\\ 8.000\\ 11.996\\ 8.697\\ 3.303\\ 11.711\\ 15.394\\ 6.265\\ 9.922\\ 7.448\\ 15.543\\ 10.000\\ 2.391\\ 3.699\\ 7.592\\ 8.416\end{array}$

SCOLTR 1973 1992 1 1 .00 1.00							
$\begin{array}{c} 1 & 7 \\ 152514.000 \\ 116982.000 \\ 161009.000 \\ 152419.000 \\ 224824.000 \\ 236929.000 \\ 207494.000 \\ 333197.000 \\ 251504.000 \\ 250870.000 \\ 240725.000 \\ 240725.000 \\ 240725.000 \\ 268136.000 \\ 279767.000 \\ 351131.000 \\ 391988.000 \\ 405883.000 \\ 398153.000 \\ 408056.000 \\ 473955.000 \end{array}$	760.513 459.202 964.444 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224 403.133 1574.048 327.094 1821.110 1401.577	$1255.847 \\1185.520 \\1558.102 \\3274.549 \\1808.008 \\5379.048 \\5845.391 \\5356.235 \\5236.821 \\2940.357 \\6293.185 \\3022.983 \\5959.050 \\1166.751 \\5662.771 \\3300.276 \\1205.534 \\5739.588 \\1904.532 \\2749.504 \\$	1899.281 438.192 775.553 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278 1912.375 1594.526 523.696 2125.128 747.952	202.136 376.165 119.931 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273 133.375 565.712 456.829 138.039 646.729	20.014 40.018 112.935 38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347 148.417 48.605 179.523 94.188 44.077	23.016 5.002 5.997 39.007 24.013 27.995 15.001 15.868 39.348 31.372 36.074 21.041 12.311 31.465 33.093 45.236 25.746 48.099 36.368	$12.008 \\ 8.004 \\ .999 \\ 10.002 \\ 13.007 \\ 6.999 \\ 3.000 \\ 4.408 \\ 5.906 \\ 8.048 \\ 14.341 \\ 9.920 \\ 3.659 \\ 8.523 \\ 10.180 \\ 14.039 \\ 13.343 \\ 11.324 \\ 8.199 \\ 11.912 \\ 11.912 \\ 11.912 \\ 11.912 \\ 11.902 \\ 11.902 \\ 11.912 \\ 11.9$
ENGGFS 1977 1992 1_15075							
$\begin{array}{ccccccc} 1 & 5 \\ & 111.000 \\ & 113.000 \\ & 117.000 \\ & 117.000 \\ & 115.000 \\ & 114.000 \\ & 72.000 \\ & 72.000 \\ & 74.000 \\ & 82.000 \\ & 73.000 \\ & 82.000 \\ & 75.000 \\ & 85.000 \\ & 85.000 \\ & 87.000 \\ & 74.000 \end{array}$	6.968 2.577 2.835 5.839 1.296 2.329 1.138 5.014 .314 2.817 1.095 .627 1.943 .523 .654 1.716	.498 1.410 .679 .770 1.582 .209 .810 .388 .868 .094 .820 .305 .211 .433 .135 .111	.359 .111 .234 .176 .145 .237 .089 .146 .078 .166 .021 .149 .101 .052 .063 .033	.064 .112 .032 .084 .044 .038 .082 .033 .041 .024 .047 .001 .052 .011 .011 .025	.012 .015 .042 .013 .046 .027 .021 .017 .015 .009 .011 .032 .005 .010 .003 .006	,	
ENGTRL 1973 1992 1 1 .00 1.00 1 7							
603481.000 557947.000 469958.000 493436.000 559930.000 559930.000 442036.000 4223658.000 4223658.000 424272.000 392364.000 358387.000 358387.000 275899.000 296092.000 310444.000 255314.000 258037.000 223702.000	$\begin{array}{c} 1289.000\\ 821.000\\ 1866.000\\ 2570.000\\ 2029.000\\ 1329.000\\ 1329.000\\ 1329.000\\ 1329.000\\ 4074.000\\ 4074.000\\ 711.000\\ 3469.000\\ 675.000\\ 9097.000\\ 447.000\\ 1173.000\\ 985.000\\ 573.000\\ 880.000\\ 1463.000\\ \end{array}$	2361.000 4129.000 2623.000 1905.000 10576.000 7698.000 3786.000 12703.000 3063.000 14220.000 3459.000 8212.000 2107.000 10435.000 2102.000 3101.000 1559.000 2171.000	5481.000 792.000 1156.000 2013.000 3341.000 2106.000 1886.000 3802.000 1185.000 2656.000 1047.000 2388.000 682.000 2428.000 718.000 513.000 1092.000 481.000	$\begin{array}{c} 1626.000\\ 1925.000\\ 303.000\\ 727.000\\ 616.000\\ 987.000\\ 393.000\\ 865.000\\ 535.000\\ 535.000\\ 535.000\\ 537.000\\ 907.000\\ 267.000\\ 267.000\\ 533.000\\ 596.000\\ 596.000\\ 596.000\\ 596.000\\ 596.000\\ 596.000\\ 596.000\\ 596.000\\ 596.000\\ 134.000\\ 88.000\\ 234.000\\ \end{array}$	461.000 617.000 738.000 320.000 338.000 403.000 122.000 250.000 298.000 127.000 217.000 217.000 121.000 36.000 126.000 126.000 25.000 101.000 25.000	$190.000\\157.000\\267.000\\98.000\\117.000\\99.000\\114.000\\38.000\\179.000\\87.000\\42.000\\54.000\\15.000\\26.000\\17.000\\34.000\\11.000\\17.000\\5.000$	$\begin{array}{c} 133.000\\ 68.000\\ 44.000\\ 100.000\\ 127.000\\ 57.000\\ 54.000\\ 38.000\\ 48.000\\ 35.000\\ 49.000\\ 32.000\\ 16.000\\ 12.000\\ 3.000\\ 10.000\\ 5.000\\ 13.000\\ 2.000\\ 5.000\\ 5.000\\ 5.000\\ \end{array}$

ENGSE I	
1973	1992

1975) 1994	-	
1 1	.00	1.00	
1	0		

1 9									
237907.000 210623.000 208508.000 211284.000 196103.000 203382.000 187180.000 201169.000 185423.000 185423.000 183209.000 177004.000 167699.000 157815.000 136358.000 123281.000 91178.000 88782.000 80537.000 84346.000 67810.000	831.000 597.000 2585.000 281.000 898.000 1718.000 2111.000 343.000 1486.000 1486.000 1232.000 125.000 890.000 262.000 297.000 343.000 176.000 129.000 408.000	$\begin{array}{c} 1968.000\\ 2764.000\\ 2437.000\\ 8523.000\\ 2453.000\\ 12831.000\\ 7004.000\\ 7004.000\\ 3191.000\\ 4741.000\\ 4741.000\\ 4741.000\\ 3191.000\\ 3242.000$	3952.000 411.000 764.000 895.000 1577.000 2438.000 1370.000 1053.000 2473.000 573.000 1215.000 326.000 572.000 82.000 594.000 216.000 116.000 207.000 57.000	$1225.000\\1085.000\\127.000\\479.000\\245.000\\547.000\\162.000\\611.000\\398.000\\330.000\\557.000\\147.000\\241.000\\241.000\\184.000\\184.000\\184.000\\184.000\\184.000\\184.000\\33.000\\45.000\\33.000\\$	174.000 487.000 350.000 116.000 182.000 131.000 280.000 294.000 294.000 290.000 72.000 139.000 44.000 80.000 9.000 58.000 26.000	127.000 116.000 290.000 60.000 78.000 210.000 61.000 189.000 150.000 72.000 117.000 34.000 77.000 19.000 46.000 4.000 38.000	$\begin{array}{c} 102.000\\ 40.000\\ 14.000\\ 84.000\\ 103.000\\ 21.000\\ 35.000\\ 54.000\\ 74.000\\ 38.000\\ 104.000\\ 50.000\\ 40.000\\ 52.000\\ 10.000\\ 12.000\\ 7.000\\ 15.000\\ 6.000\\ \end{array}$	40.000 32.000 13.000 31.000 37.000 14.000 29.000 12.000 31.000 18.000 32.000 27.000 13.000 22.000 3.000 8.000 3.000	5.000 45.000 27.000 6.000 8.000 9.000 18.000 9.000 17.000 6.000 13.000 7.000 8.000 1.000 1.000 1.000 1.000
FRATRB 1976 1992 1 1 .00 1.00	1001000	405.000	57.000	42.000	10.000	8.000	8.000	2.000	3.000
1 6 64396.000 80107.000 69739.000 89974.000 63577.000 76517.000 76517.000 76517.000 76517.000 76517.000 76149.000 53003.000 53003.000 51234.000 35482.000 36133.000 36097.000 45075.000 34138.000	$\begin{array}{c} 231.000\\ 347.000\\ 276.000\\ 263.000\\ 204.000\\ 113.000\\ 420.000\\ 379.000\\ 974.000\\ 192.000\\ 469.000\\ 415.000\\ 409.150\\ 45.839\\ 129.353\\ 159.420\\ \end{array}$	912.000 308.000 680.000 738.000 1529.000 358.000 1273.000 865.000 752.000 169.000 758.000 315.000 151.951 352.149 92.647 203.140	$\begin{array}{c} 451.000\\ 389.000\\ 130.000\\ 397.000\\ 419.000\\ 413.000\\ 491.000\\ 284.000\\ 284.000\\ 239.000\\ 474.000\\ 58.000\\ 345.000\\ 345.000\\ 131.981\\ 51.215\\ 109.162\\ 66.287 \end{array}$	$\begin{array}{c} 136.000\\ 116.000\\ 163.000\\ 67.000\\ 194.000\\ 219.000\\ 245.000\\ 182.000\\ 121.000\\ 133.000\\ 125.000\\ 118.000\\ 25.000\\ 118.000\\ 25.000\\ 78.384\\ 28.645\\ 16.003\\ 29.039 \end{array}$	$\begin{array}{c} 41.000\\ 31.000\\ 51.000\\ 41.000\\ 25.000\\ 65.000\\ 75.000\\ 37.000\\ 37.000\\ 37.000\\ 33.000\\ 33.000\\ 3.212\\ 7.475\\ 8.173\\ 2.341 \end{array}$	$\begin{array}{c} 20.000\\ 5.000\\ 12.000\\ 7.000\\ 10.000\\ 7.000\\ 17.000\\ 8.000\\ 11.000\\ 6.000\\ 2.000\\ 5.000\\ 4.000\\ 2.160\\ .808\\ 2.506\\ .721\\ \end{array}$			
FRGGFS 1983 1992 1 1 .25 .50 1 3									
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	.006 .003 .015 .007 .002 .090 .012 .015 .013	.004 .022 .022 .011 .010 .007 .015 .006 .004	.002 .001 .003 .007 .011 .005 .004 .003 .004 .001						
NETGFS 1980 1992 1 1 .50 .75 1 2									
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	.164 .047 .083 .022 .121 .004 .111 .042 .018 .017 .009 .007 .045	.005 .011 .002 .002 .003 .000 .008 .002 .002 .002 .002 .001 .001							

INTGFS 1973 1992 1 1 .00 .25

	1		ų	υ	٠	د م	
1	2	2					

2		
1.000	.038	.011
1.000	.015	.010
1.000	.040	.006
1.000	.008	.020
1.000	.037	.003
1.000	.013	.029
1.000	.010	.009
1.000	.017	.015
1.000	.003	.026
1.000	.009	.007
1.000	.004	.017
1.000	.015	.008
1.000	.001	.018
1.000	.017	.004
1.000	.009	.029
1.000	.004	.006
1.000	.013	.006
1.000	.003	.015
1.000	.002	.004
1.000	.013	.005

INTGFS2 1983 1992 1 1 .00 .25 3 6

Table 3.2.7 Tuning diagnostics for cod in IV

VPA Version 3.1 (MSDOS)

9/10/1993 9:17

Extended Survivors Analysis

Cod in the North Sea; 1963-1992.

CPUE data from file c:\demwg93\cod2\cod2Oef.dat

Data for 12 fleets over 30 years Age range from 1 to 10

Fleet, SCOGFS SCOTRL SCOSEI SCOLTR ENGGFS ENGTRL ENGSEI FRATRB FRGGFS	Alpha, .500 .000 .500 .500 .000 .000 .000 .250	Beta , .750 , 1.000 , 1.000 , 1.000 , .750 , 1.000 , 1.000 , .500
		1

Time series weights :

Tapered time weighting applied Power = 3 over 20 years

Catchability analysis :

}

Catchability dependent on stock size for ages < 2

Regression type = C Minimum of 5 points used for regression Survivor estimates shrunk to the population mean for ages < 2

Catchability independent of age for ages >= 6

Terminal population estimation :

Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages.

S.E. of the mean to which the estimates are shrunk = .500

Minimum standard error for population estimates derived from each fleet = .300

Prior weighting not applied

Terminal year survivor and F summaries :

Age 1 Catchability dependent on age and year class strength

Fleet	Estimated Survivors	Int	Ext	Var	N	Scaled	Estimated
SCOGFS	172795.	S.e	s.e	Ratio		Weights	F
SCOTRL		.355	.000	.00	1	- 146	.086
	159050.	.949	.000	.00	1	.020	.093
SCOSEI	89991.	.554	.000	.00	1	.060	.159
SCOLTR	83567.	.499	.000	.00	1	.074	.170
ENGGFS	144792.	.316	.000	.00	1	.184	.102
ENGTRL	200321.	.976	.000	.00	1	.019	.075
ENGSEI	183551.	.423	.000	.00	1	.103	.081
FRATRB	118406.	1.166	.000	.00	1	.014	.123
FRGGFS	239144	3.324	.000	.00	-	.002	
NETGFS	138162.	.316	.000				.063
INTGFS	194743.			.00		.184	.106
		.488	.000	.00	1	.077	.077
INTGFS2	1.	.000	.000	.00	0	.000	.000
P shrinkage mean	107045.	.66				.042	.135
F shrinkage mean	88405.	.50				.074	.162
Weighted prediction :							
			_				

SURVIVORS	Int	Ext	N	Var	F
at end of year	s.e	s.e		Ratio	
138092.	. 14	.08	13	.596	.106

Age 2 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated	Int		Ext	Var	Ν	Scaled	Estimated	
	Survivors	s.e		s.e	Ratio		Weights	F	
SCOGFS	20825.	.341		.285	.84	2	.145	.737	
SCOTRL	26673.	.797		.086	.11	2	.027	.615	
SCOSEI	25546.	.481		.326	.68	2	.073	.636	
SCOLTR	21548.	.386		.300	.78	2	.113	.719	
ENGGFS	13967.	.345		.238	.69	2	.142	.965	
ENGTRL	26684.	.576		.027	.05	2	.051	.615	
ENGSEI	16480.	.464		.086	.18	2	.078	.866	
FRATRB	24100.	.495		.118	.24	ž	.069	.663	
FRGGFS	18014.	1.109		.396	.36	2	.014	.815	
NETGFS	13881.	.377		.026	.07	2	.119	.969	
INTGFS	16188.	.406		.138	.34	2	.102	.876	
INTGFS2	1.	.000		.000	.00	ō	.000	.000	
						•			
F shrinkage mean	14767.	.50					.067	.931	
Weighted prediction	n :								
•									
Survivors	Int Ext	N	Var	F					

Survivors	Int	Ext	N	Var	F
at end of year 18358.	s.e .13	s.e .07	23	Ratio .516	.805

Age 3 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated Survivors	Int	Ext	Var	N	Scaled	Estimated
SCOGFS SCOTRL SCOSEI SCOLTR	3951. 5001. 4426. 3868.	s.e .452 .655 .469 .389	s.e .036 .177 .144 .085	Ratio .08 .27 .31 .22	3 3 3 3	Weights .094 .045 .087 .126	F .950 .812 .882 .963
ENGGFS ENGTRL ENGSEI FRATRB	3775. 5063. 3014. 3688.	.391 .432 .491 .499	.056 .020 .254 .250	. 14 . 05 . 52 . 50	3333	.125 .103 .079 .077	.978 .805 1.124 .993
FRGGFS NETGFS INTGFS INTGFS2	3824. 4360. 4320. 2886.	1.160 .626 .666 .484	.400 .080 .101 .000	.34 .13 .15 .00	3 2 2 1	.014 .049 .043 .082	.970 .891 .896 1.154
F shrinkage mean	3686.	.50				.077	.993
Weighted prediction :							
Survivors Int at end of year s.e 39041		Ra	Var F atio 313 .957				

Age 4 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated Survivors	Int s.e		Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
SCOGFS SCOTRL SCOSEI SCOLTR	3999. 7928. 4789. 5505.	.414 .490 .388 .333	•	.138 .095 .127 .037	.33 .19 .33 .11	4 4 4	.093 .066 .106 .144	.711 .420 .623 .561
ENGGFS ENGTRL ENGSEI FRATRB FRGGFS NETGFS	3734. 4239. 2989. 2705. 5877. 3274.	.480 .343 .435 .445 1.560 .842		.190 .021 .132 .210 .484 .076	.39 .06 .30 .47 .31 .09	444432	.069 .136 .084 .081 .007 .023	.747 .682 .870 .929 .534 .818
INTGFS INTGFS2	7061. 3221.	.898 .383		.052 .163	.06 .43	22	.020 .109	.462 .827
F shrinkage mean Weighted predictio	2738. n :	.50					.064	.921
	Int Ext s.e s.e .13 .06	N 42	Var Ratio .452	F .701				

Age 5 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
1	Survivors	s.e	s.e	Ratio		Weights	F
SCOGFS	412.	.644	.380	.59	5	.060	1.053
SCOTRL	355.	.488	.088	.18	5	.105	1.152
SCOSEI	520.	.479	.110	.23	5	.108	.908
SCOLTR	391.	.421	.091	.22	5	.140	1.087
ENGGFS	568.	.683	.096	.14	5	.053	.856
ENGTRL	376.	.453	.046	.10	5	.121	1.114
ENGSEI	350.	.552	.112	.20	5	.082	1.162
FRATRB	253.	.595	.093	.16	5	.070	1.396
FRGGFS	666.	3.195	.310	.10	3	.002	.767
NETGFS	625.	1.800	.099	.06	2	.008	.802
INTGFS	519.	1.892	.003	.00	2	.007	.909
INTGFS2	423.	.415	.069	.17	3	.144	1.036
F shrinkage mean	661.	.50				.099	.772

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of year	s.e	s.e		Ratio	
419.	.16	.05	51	.310	1.042

Age 6 Catchability constant w.r.t. time, dependent on age

Fleet		Estimated Survivors	Int s.e		Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
SCOGFS		357.	.676		.384	.57	6	.056	.750
SCOTRL		583.	.522		.085	.16	6	.095	.521
SCOSEI		443.	.536		.071	.13	6	.090	.642
SCOLTR		473.	.461		.052	.11	6	.121	.612
ENGGFS		185.	.937		.284	.30	5	.029	1.148
ENGTRL		162.	.440		.103	.23	6	.133	1.241
ENGSEI		220.	.540		.072	.13	6	.088	1.035
FRATRB		195.	.506		.117	.23	6	.101	1.113
FRGGFS		402.	4.477		.091	.02	3	.001	.690
NETGFS		359.	2.514		.156	.06	2	.004	.748
INTGFS		265.	2.659		.326	.12	2	.004	.919
INTGFS2		283.	.386		.088	.23	4	.174	.879
INIGISE		205.	.500		.000		4	• • • •	.0//
F shrinkage me	an	312.	.50					.103	.823
Weighted predict	ion :								
Survivors at end of year	Int s.e	Ext s.e	N	Var Ratio	F				
297.	.16	.07	59	.406	.851				
271.	. 10	.07		.400	.071				

Age 7 Catchability constant w.r.t. time and age (fixed at the value for age) 6

Fleet SCOGFS SCOTRL SCOSEI SCOLTR ENGGFS ENGTRL ENGSEI FRGGFS NETGFS INTGFS INTGFS2 F shrinkage mean Weighted predictio		Int s.e 1.120 .847 .682 .606 1.564 .542 .499 8.012 4.585 4.585 4.585 .628 .50	Ext s.e .220 .064 .039 .103 .156 .107 .036 .120 .070 .260 .186 .106	Var Ratio .20 .08 .06 .17 .10 .20 .07 .14 .01 .04 .17	N 667757763224	Scaled Weights .035 .061 .094 .118 .018 .148 .175 .063 .001 .002 .002 .110 .174	Estimated F 1.305 .929 .743 .816 1.006 1.014 .865 1.090 1.093 .765 .718 .950 .856
Survivors at end of year 176.	Int Ext s.e s.e .21 .04		Var F Ratio .169 .909				

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 6

Fleet SCOGFS SCOTRL SCOSEI SCOLTR ENGGFS ENGTRL ENGSEI FRATRB FRGGFS NETGFS INTGFS INTGFS2 F shrinkage mean Weighted prediction :	Estimated Survivors 36. 39. 56. 42. 22. 25. 32. 25. 96. 28. 33. 46. 38.	Int s.e 1.328 1.048 582 .787 1.752 .720 .562 1.015 7.663 5.211 4.447 .778 .50		Ext s.e .165 .132 .104 .304 .149 .210 .085 .746 .000 .264 .085	Var Ratio .12 .13 .27 .13 .17 .21 .37 .09 .10 .00 .06 .11	N 668757863124	Scaled Weights .031 .050 .162 .089 .018 .106 .174 .053 .001 .002 .003 .091 .220	Estimated F .801 .751 .582 .714 1.106 1.019 .872 1.026 .376 .939 .849 .670 .771
Survivors Int at end of year s.e 3723	Ext s.e .06	N 64	Var Ratio .235	F .781				

37. .23 .06 64 .235 .781

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 6

Fleet		timated	Int		Ext	Var	N	Scaled	Estimated
SCOGFS SCOTRL SCOSEI SCOLTR ENGGFS ENGTRL ENGSEI FRATRB FRGGFS NETGFS INTGFS INTGFS2	Su	Irvivors 45. 54. 90. 62. 108. 75. 94. 61. 75. 57. 60. 59.	s.e 1.623 1.239 .482 .890 2.270 1.202 11.084 6.623 6.955 .914		s.e .158 .042 .045 .079 .139 .047 .109 .184 .318 .227 .009 .041	Ratio .10 .03 .09 .09 .06 .23 .15 .03 .03 .00 .04	669757963224	Weights .020 .035 .229 .067 .010 .084 .240 .037 .000 .001 .001 .064	F .547 .479 .311 .427 .266 .365 .300 .432 .378 .459 .437 .446
F shrinkage mean	ר	21.	.50					.212	.948
Weighted prediction	on :								
Survivors at end of year 60.	Int s.e .23	Ext s.e .08	N 67	Var Ratio .360	F .440				

Age 10 Catchability constant w.r.t. time and age (fixed at the value for age) 6

Fleet	Estimated Survivors	Int s.e		Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
SCOGFS SCOTRL	18. 22.	2.205		.042	.02	6	.017	.596
SCOSEI	28.	.638		.169 .038	.10 .06	6 9	.028 .204	.522 .424
SCOLTR	19.	1.234		.141	.11	7	.054	.574
ENGGFS	19.	3.050		.035	.01	5	.009	.572
ENGTRL ENGSEI	12. 13.	1.111		.061 .078	.05 .12	7 9	.067 .204	.784 .756
FRATRB	31.	1.660		.097	.06	6	.030	.388
FRGGFS	10.	14.520		.416	.03	3	.000	.931
NETGFS	14.	8.569		.044	.01	2	.001	.727
INTGFS INTGFS2	13. 22.	8.989		.105	.01 .11	2 4	.001 .052	.763
INTEROL		1.205		. 135		4	.052	. 504
F shrinkage mean	12.	.50					.331	.813
Weighted prediction	:							
	nt Ext	N	Var	F				
at end of year 16.	.e s.e .29 .05	67	Ratio .184	.648				

TABLE 3.2.8; Cod, North Sea International F at age, Total , 1963 to 1992.

International F at age, Total , 1963 to 1992.											
Age	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	
1	.024	.020	.058	.055	.033	.046	.021	.111	.077	.034	
2	.526	.364	.468	.549	.495	.635	.392	.585	.889	.905	
3	.362	.575	.658	.627	.726	.738	.602	.753	.776	.903	
4	.446	.403	.619	.528	.531	.711	.584	.577	.713	.668	
5	.449	.461	.429	.489	.596	.622	.631	.590	.698	.724	
6	.557	.594	.459	.434	.596	.565	.701	.537	.541	.819	
7	.157	.590	.465	.444	.618	.582	.489	.533	.573	.793	
8	.773	.355	.707	.525	.709	.454	.633	.322	.575	1.051	
9	.308	.313	.267	.760	.376	.774	.410	.649	.696	1.254	
10	.452	.466	.469	.535	.584	.604	.578	.531	.611	.938	
11+	.452	.466	.469	.535	.584	.604	.578	.531	.611	.938	
Age	1973	1974	1975								
				1976	1977	1978	1979	1980	1981	1982	
j 1	.133	.097	.108	.039	.134	.089	.117	.117	.112	.184	
2	.714	.840	.742	.940	.870	1.032	.843	.967	1.009	1.012	
3	.857	.694	.789	.833	.764	.866	.970	.956	.996	1.245	
4	.796	.663	.672	.756	.534	.750	.578	.736	.731	.834	
5	.589	.660	.742	.561	.638	.890	.709	.609	.677	.797	
6	.738	.550	.669	.786	.595	.691	.546	.638	.648	.881	
7	.707	.738	.511	.739	.785	.660	.639	.782	.725	.765	
8	.555	.623	.840	.273	.765	.747	.514	.848	.618	.718	
9	.347	.938	.875	.805	1.449	.888	.755	.607	.778	.849	
10	.592	.709	.735	.640	.862	.808	.660	.711	.715	.822	
11+	.592	.709	.735	.640	.862	.808	.660	.711	.715	.822	
		••••••									
Age	1983	1984	1985	1986	1987	1988	1989	1000	4004	4000	
							1909	1990	1991	1992	
1	.138	.190	.115	.240	.141	.198	.135	.162	.145	.106	
2	1.127	1.014	1.044	.756	.919	.968	.944	.879	.849	.805	
3	1.173	1.027	1.036	1.022	.844	1.176	1.042	1.003	.830	.957	
4	.886	.804	.811	.786	.924	.819	1.015	.908	.892	.701	
5	.789	.772	.695	.854	.743	.793	.753	.737	.796	1.041	
6	.785	.801	.710	.809	.939	.820	.851	.541	.923	.851	
7	.723	.727	.743	.830	.943	.789	.932	.601	.969	.909	
8	.825	.770	.715	.937	.908	.759	1.097	.389	.665	.781	
9	.534	.983	.591	.646	.897	.685	.756	1.913	.438	.440	
10	.688	.736	.657	.743	.824	.575	.804	.810	.712	.648	
11+	.688	.736	.657	.743	.824	.575	.804	.810	.712	.648	

								· · · · · · · · · · · · · · · · · · ·	VPA survi	
Age	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	184163	357636	398056	486382	469941	187273	200685	748942	869039	16274
2	114955	80753	157599	168751	206848	204228	80393	88269	301183	36167
3	24301	47870	39559	69525	68666	88807	76299	38295	34657	8722
4	10061	13175	20974	15960	28926	25865	33054	32547	14040	1242
5	7890	5271	7206	9251	7709	13931	10403	15099	14971	563
6	2910	4121	2721	3840	4646	3479	6124	4534	6850	609
7	571	1366	1863	1408	2037	2095	1619	2487	2169	326
8	936	400	620	958	740	898	959	812	1195	100
9	52	354	229	250	464	298	467	417	482	58
10	16	31	212	144	96	261	113	254	178	15
11+		11	22	210	41	55	187	104	215	
				•••••						
Age	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
1	296282	236914	437672	200675	747837	436682	/ 4 2 0 8 1	92/750	279285	57452
2	70650	116543	96606				462081	824759		
3	103069	24386	35438	176494 32411	86696 48599	293966 25605	179503 73819	184760	329787 49514	11219
4	27008	34079	9491	12532	10970	17624	8386	54431 21786	16303	8472 1423
5	5218	9979	14385	3968	4817	5268	6813	3851	8542	642
6	2238	2370	4221	5610	1853	2084	1772	2746	1714	355
7	2202	876	1120	1770	2092	837	855	840	1188	73
8	1210	889	343	550	692	781	354	370	315	47
9	286	568	391	121	343	264	303	173	130	13
10	136	166	182	133	44	66	89	117	77	4
11+	377	382	120	90	164	79	35	53	43	2
Age	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
1	275902	549926	108145	591529	242873	150005	257406	113326	149823	34182
2	214691	107993	204295	43301	209069	94783	55274	101065	43316	5824
3	28741	49022	27603	50685	14326	58794	25363	15151	29555	1305
4	18997	6924	13677	7631	14211	4796	14127	6970	4327	1003
5	5063	6411	2537	4977	2846	4618	1732	4192	2302	145
6	2373	1883	2427	1036	1734	1108	1712	668	1643	85
7	1206	886	692	976	378	555	400	598	- 318	53
8	280	479	351	269	349	120	206	129	269	5
9	188	100	182	140	86	115	46	56	71	11
10	49	90	31	82	60	29	48	18	7	3
11+	40	39	52	39	22	39	19	6	18	2

Age 1993

1	0
2	138092
3	18358
4	3904
5	4076
6	419
7	297
8	176
9	37
10	60
11+	25

Table 3.2.10 Cod in the North Sea. Research vessel indices.

YEARCLASS	IYFS1	IYFS2	EGFS0	EGFS1	EGFS2	SGFS1	SGFS2	DGFSO	DGFS1	DGFS2	FRGSF	GGFS1	GGFS2
1970	98.3	34.5	- 1	-1	- 1	-1	-1	-1	-1	-1	90.4	-1	-1
1971	4.1	10.6	- 1	- 1	-1	-1	- 1	- 1	- 1	-1	1.3	-1	- 1
1972	38.0	9.5	- 1	-1	- 1	-1	-1	- 1	-1	-1	1.6	-1	- 1
1973	14.7	6.2	- 1	-1	- 1	- 1	-1	- 1	- 1	-1	3.6	-1	- 1
1974	40.3	19.9	-1	- 1	-1	- 1	- 1	- 1	-1	-1	8.0	-1	- 1
1975	7.9	3.2	-1	-1	4.5	-1	- 1	- 1	- 1	- 1	7.8	- 1	- 1
1976	36.7	29.3	- 1	62.7	12.5	- 1	- 1	- 1	- 1	-1	28.2	- 1	- 1
1977	12.9	9.3	13.9	22.8	5.8	- 1	- 1	- 1	- 1	- 1	27.2	- 1	- 1
1978	9.9	14.8	12.6	24.2	6.7	- 1	- 1	- 1	- 1	4.5	31.1	- 1	- 1
1979	16.9	25.5	18.6	50.8	13.9	- 1	- 1	-1	163.8	11.2	35.5	- 1	- 1
1980	2.9	6.7	10.2	11.4	2.9	- 1	3.5	43.2	46.9	1.6	14.1	- 1	- 1
1981	9.2	16.6	74.2	32.4	11.0	6.1	7.8	176.8	83.0	2.3	23.2	-1	7 5
1982	3.9	8.0	2.5	15.4	4.7	3.3	3.9	26.9	21.8	1.6	9.0	5.9	3.5 2.4
1983	15.2	17.6	95.1	61.2	11.9	8.2	11.4	121.5	121.3	3.1	43.0	2.6	22.4
1984	.9	3.6	.4	4.3	1.2	.7	1.0	1.3	3.6	.2	45.0	2.8	
1985	17.0	28.8	8.3	34.4	10.7	8.0	6.9	143.6	111.2	8.0	9.5	15.4	2.6 11.4
1986	8.8	6.1	1.2	14.2	4.1	2.2	2.9	37.0	41.5	1.7	2.3	7.0	9.5
1987	3.6	6.3	.4	8.4	2.5	1.6	1.3	36.2	17.8	2.2	2.1	2.0	7.2
1988	13.1	15.2	16.8	22.8	5.1	5.6	4.9	16.6	16.6	1.9	4.2	90.2	14.7
1989	3.4	4.1	6.0	6.1	1.6	1.1	1.5	13.7	9.2	.7	4.2	11.9	6.2
1990	2.4	4.5	3.9	7.5	1.5	3.0	1.9	23.5	7.2	1.1	-1	15.5	3.6
1991	13.0	19.9	48.4	23.2	6.2	6.4	7.5	39.8	45.4	-1	-1	13.4	-1
1992	12.7	- 1	16.0	7.1	-1	3.5	-1	11.6	-1	-1	- 1	-1	- 1
1993	- 1	- 1	3.6	-1	-1	-1	-1	-1	- 1	-1	-1	-1	-1
					•	•	•	•	•		- 1	- 1	- 1

]

Table 3.2.11 Recruitment analysis of cod in IV: age 1

Analysis by RCT3 ver3.1 of data from file :

c:\demwg93\cod2\codiv1.rcx

Data for 13 surveys over 24 years : 1970 - 1993

Regression type = C Tapered time weighting applied power = 3 over 20 years Survey weighting not applied

Final estimates shrunk towards mean Minimum S.E. for any survey taken as .20 Minimum of 5 points used for regression

Forecast/Hindcast variance correction used.

Yearclass = 1990

I-----Prediction-----I

Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts	Index Value	Predicted Value	Std Error	WAP Weights
IYFS1 IYFS2 EGFS0 EGFS1 EGFS2 SGFS1 SGFS2 DGFS2 DGFS2 DGFS2 FRGSF GGFS1 GGFS2	1.03 1.12 .66 .90 1.09 1.10 1.09 .57 .64 1.24 2.95 2.45	3.47 2.98 4.25 3.04 3.74 3.97 3.89 3.55 3.38 4.19 -1.02 .37	.50 .33 .67 .23 .17 .24 .21 .29 .25 .43 3.61 1.59	.657 .820 .523 .904 .943 .900 .911 .758 .894 .733 .037 .172	20 20 13 14 15 9 10 10 11 12 8 9	1.22 1.70 1.59 2.14 .92 1.39 1.06 3.20 2.10 .74 2.80 1.53	4.74 4.90 5.30 4.97 4.74 5.49 5.06 5.37 4.73 5.11 7.25 4.11	.605 .390 .781 .280 .215 .291 .261 .460 .317 .515 4.533 2.004	.029 .071 .018 .137 .233 .127 .158 .051 .107 .041 .001 .003
					VPA	Mean =	5.71	.664	.024

Yearclass = 1991

	I	Re	gressio	on	II				
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts	Index Value	Predicted Value	Std Error	WAP Weights
IYFS1 IYFS2 EGFS0 EGFS2 SGFS2 SGFS2 DGFS0 DGFS0 DGFS0 DGFS2 FRGSF GGFS1 GGFS2	1.01 1.11 .69 .90 1.05 1.17 1.10 .60 .62	3.56 3.01 4.17 3.06 3.83 3.81 3.88 3.40 3.48	.46 .31 .68 .22 .17 .29 .20 .40 .25	.702 .838 .517 .912 .942 .849 .915 .732 .894	21 21 14 15 16 10 11 11 12 9	2.64 3.04 3.90 3.19 1.97 2.00 2.14 3.71 3.84	6.22 6.39 6.85 5.91 5.90 6.16 6.23 5.63 5.86	.531 .366 .255 .201 .366 .253 .475 .289	.037 .079 .015 .163 .263 .079 .165 .047 .127
					VPA	Mean =	5.63	.668	.024

Yearclass = 1992

	I	Re	gressi	II					
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts	Index I Value	Predicted Value	Std Error	WAP Weights
IYFS1 IYFS2	1.00	3.55	.43	.708	22	2.62	6.17	.503	.107
EGFSO EGFS1	.65 .89	4.15	.68	.490	15	2.83	6.00	.790	.043
EGFS2		3.06	.21	.912	16	2.09	4.92	.251	.430
SGFS1 SGFS2	1.14	3.83	.29	.841	11	1.50	5.54	.339	.237
DGFSO DGFS1 DGFS2 FRGSF GGFS1 GGFS2	.62	3.36	.40	.718	12	2.53	4.92	.482	.117

VPA Mean = 5.62 .643 .066

Yearclass = 1993

	I	Re	gressi	on	I	I	Pred	iction-	I
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts	Index F Value	Predicted Value	Std Error	WAP Weights
IYFS1 IYFS2 EGFS0 EGFS1 EGFS2 SGFS2 SGFS2 DGFS0 DGFS0 DGFS0 DGFS2 FRGSF GGFS1 GGFS2	.65	4.15	.69	.484	15	1.53	5.14	.810	.384

VPA	Mean	=	5.59	.640	.616
-----	------	---	------	------	------

Year Class	Weighted Average Prediction	Log WAP	Int Std Error	Ext Std Error	Var Ratio	VPA	Log VPA
1990 1991 1992 1993	149 410 199 224	5.01 6.02 5.29 5.41	.10 .10 .16 .50	.08 .07 .20 .22	.65 .49 1.47 .18	150 342	5.02 5.84

Table 3.2.12 Recruitment analysis of cod in IV: age 2

Analysis by RCT3 ver3.1 of data from file :

c:\demwg93\cod2\codiv2.rcx

Data for 13 surveys over 24 years : 1970 - 1993

Regression type = C Tapered time weighting applied power = 3 over 20 years Survey weighting not applied

Final estimates shrunk towards mean Minimum S.E. for any survey taken as .20 Minimum of 5 points used for regression

Forecast/Hindcast variance correction used.

Yearclass = 1990

	I	Re	gressi	on	I	1	Pred	iction-	I
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts	Index Value	Predicted Value	Std Error	WAP Weights
IYFS1 IYFS2 EGFS0 EGFS1 EGFS2 SGFS1 SGFS2 DGFS2 DGFS2 FRGSF GGFS1 CGFS2	1.02 1.13 .65 .90 1.08 1.06 1.05 .56 .63 1.23 2.64	2.56 2.02 3.32 2.11 2.80 3.06 3.00 2.63 2.46 3.24 -1.29 53	.50 .36 .67 .25 .20 .23 .20 .40 .27 .45 3.21 1.58	.653 .787 .521 .891 .925 .899 .919 .728 .879 .713 .042 .163	20 20 13 14 15 9 10 10 11 12 8 9	1.22 1.70 1.59 2.14 .92 1.39 1.06 3.20 2.10 .74 2.80 1.53	3.80 3.95 4.36 4.03 3.80 4.53 4.12 4.41 3.79 4.16 6.10 3.17	.602 .426 .774 .297 .245 .282 .240 .481 .335 .531 4.041 1.991	.032 .063 .019 .130 .191 .144 .198 .050 .102 .041 .001 .003
GGFS2	2.42	55	1.56	. 105	•	Mean =	4.76	.654	.027

Yearclass = 1991

	I	Re	gressi	on	II				
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts	Index Value	Predicted Value	Std Error	WAP Weights
IYFS1 IYFS2 EGFS0 EGFS1 EGFS2 SGFS1 SGFS2 DGFS2 DGFS0 DGFS1 DGFS2 FRGSF	1.00 1.11 .68 .89 1.04 1.13 1.05 .59 .61	2.63 2.06 3.24 2.13 2.90 2.91 2.99 2.48 2.56	.46 .33 .67 .23 .19 .28 .19 .42 .26	.696 .810 .516 .900 .927 .848 .923 .703 .880	21 21 14 15 16 10 11 11 12	2.64 3.04 3.90 3.19 2.00 2.14 3.71 3.84	5.27 5.45 5.88 4.96 4.95 5.17 5.25 4.67 4.90	.532 .398 .825 .269 .224 .353 .232 .493 .303	.040 .071 .016 .155 .224 .090 .208 .046 .122
GGFS1 GGFS2	3.55	-3.64	4.13	.024	9	2.67	5.83	5.026	.000
					VPA	Mean =	4.68	.658	.026

Yearclass = 1992

	I	R	egressi	on	I	I	Pred	diction-	I
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts		Predicted Value	Std Error	WAP Weights
IYFS1 IYFS2	1.01	2.62	.45	.705	21	2.62	5.26	.533	.109
EGFSO EGFS1 EGFS2	.68 .89	3.24 2.13	.68 .23	.510 .901	14 15	2.83 2.09		.798 .279	.048 .396
SGFS1 SGFS2	1.13	2.91	.29	.846	10	1.50	4.61	.343	.262
DGFSO DGFS1 DGFS2 FRGSF	.60	2.46	.43	.695	11	2.53	3.97	.522	.113
GGFS1 GGFS2									
					VPA	Mean =	4.65	.659	.071
Yearclas	s = 1	993							
	I	Re	gressio	n	I	I	Pred	iction	I
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare		Index Value	Predicted Value	Std Error	WAP Weights
IYFS1 IYFS2 EGFS0	.68	3.23	. 69	.500	14	1 53	4.26	.818	702
EGFS1 EGFS2 SGFS1 SGFS2 DGFS0						1.55	4.20	.010	.392
DGFS0 DGFS1 DGFS2 FRGSF GGFS1 GGFS2									

Year Class	Weighted Average Prediction	Log WAP	Int Std Error	Ext Std Error	Var Ratio	VPA	Log VPA
1990 1991 1992 1993	59 159 80 87	4.09 5.07 4.39 4.47	.11 .11 .18 .51	.08 .07 .21 .17	.60 .45 1.37 .11	59	4.08

	Mean I H.Cons	ishing Mo Disc.	tality Ind BC	Stock E ('000 1		Recruits Age 1	
	Ages	Ages	Ages				
Year	2 to 8	2 to 8	1 to 1	Total	Spawning	Yclass	Million
1963	.467	.000	.000	424	142	1962	184
1964	.477	.000	.000	513	156	1963	358
1965	544	.000	.000	683	197	1964	398
1966	.514	.000	.000	825	221	1965	486
1967	.610	.000	.000	887	240	1966	470
1968	.615	.000	.000	758	248	1967	187
1969	.576	.000	.000	607	246	1968	201
1970	.557	.000	.000	933	266	1969	749
1971	.673	.000	.000	1127	265	1970	869
1972	.840	.000	.000	770	220	1971	163
1973	.708	.000	.000	613	196	1972	296
1974	.681	.000	.000	571	213	1973	237
1975	.709	.000	.000	634	191	1974	438
1976	.698	.000	.000	536	164	1975	201
1977	.707	.000	.000	729	144	1976	748
1978	.805	.000	.000	726	145	1977	437
1979	.686	.000	.000	722	150	1978	462
1980	.791	.000	.000	910	164	1979	825
1981	.772	.000	.000	760	177	1980	279
1982	.893	.000	.000	757	171	1981	575
1983	.901	.000	.000	571	138	1982	276
1984	.845	.000	.000	641	118	1983	550
1985	.822	.000	.000	419	109	1984	108
1986	.856	.000	.000	561	98	1985	592
1987	.889	.000	.000	467	89	1986	243
1988	.875	.000	.000	336	82	1987	150
1989	.948	.000	.000	358	76	1988	257
1990	.723	.000	.000	273	65	1989	113
1991	.846	.000	.000	253	60	1990	150
1992	.864	.000	.000	404	64	1991	410
Arit	hmetic mea	n recruits	at age 1	for the peri	iod 1963 to	1992 :	380
Geom		n recruits	-				323

TABLE 3.2.13; Cod, North Sea Mean fishing mortality, biomass and recruitment, 1963 - 1992.

TABLE $\frac{3.2.14}{1}$; Cod, North Sea Input for Catch Prediction

- - - - - ----}

	1993		F and	mean Wt a	at age us	ed in pred	diction	
Age	Stock Numbers (10**-3)		aled Mear 988 - 199 Disc.			Mean Wt. 1988 H.Cons	- 1992	
1 1	199000	.151	.000	.000	.656	.656	.000	.000
2	159000	.902	.000	.000	.994	.994	.000	.000
3	18358	1.017	.000	.000	2.090	2.090	.000	.000
4	3904	.880	.000	.000	3.784	3.784	.000	.000
5	4076	.836	.000	.000	5.965	5.965	.000	.000
6	419	.809	.000	.000	8.097	8.097	.000	.000
7	297	.852	.000	.000	9.911	9.911	000.	.000
8	176	.749	.000	.000	10.959	10.959	.000	.000
9	37	.859	.000	.000	12.839	12.839	.000	.000
10	60	.720	.000	.000	14.151	14.151	.000	.000
11	25	.720	.000	.000	14.743	14.743	.000	000.
	Mean F Unscaled Scaled		8) 851 864	(1 - 1) .000 .000	 			

Recruits at age 1 in 1994 = 224000 Recruits at age 1 in 1995 = 268000

Stock numbers in 1993 are VPA survivors. These are overwritten at Ages 1 and 2.

Cod, North Sea Catch Prediction output; Cod IV Status Quo

	Year 1993 1994							
Biomass at start of Year Total Spawning	376 58	362 62	362 62	362 62	362 62	362 62	362 62	362 62
Mean F Ages H.Cons 2 to 8 Ind BC 1 to 1	.86 .00	.00 .00	.17 .00	.35 .00	.52 .00	.69 .00	.86 .00	1.04 .00
Effort relative to 1992 H.Cons Ind BC	1.00 1.00	.00 1.00	.20 1.00	.40 1.00	.60 1.00	.80 1.00	1.00 1.00	1.20 1.00
Catch weight (′000t) H.Cons	142	0	35	65	01	447	474	4/7
Disc. Ind BC	0	0	0 0	0 0 0	91 0	113 0	131 0	147 0
Total Catch Total Landings	142 142	0	35 35	65 65	0 91 91	0 113 113	0 131 131	0 147 147
Biomass at start of 1995								
Total Spawning		572 162	518 135	473 112	435 94	404 79	377 66	355 56

Stock at start of and catch during 1993

Stock at start of and catch during 1994 For F(1994) = F(1992)

-----)

Age	Stock No.	H.Cons	Disc.	Ind BC	Total	Age	Stock No.	H.Cons	Disc.	Ind BC	Total
1	199000	19390	0	0	19390	1	224000	21825			
2	159000	81797	0	0	81797	1 2	76885	39553		0	21825
3	18358	10585	0	ŏ	10585	3	45463	26214		0	26214
4	3904	2101	Ö	Ö	2101	4	5171	2783		0	278
5	4076	2122	Ō	0	2122	5	1326	690	0	0	69
6	419	213	0	0	213	6	1446	737	Ō	Ő	73
7	297	157	0	0	157	7	153	81	Ō	Ō	8
8	176	85		0	85	8	104	50	0	0	5
9	37	20	0	0	20	9	68	36	0	0	3
10	60	28	0	0	28	10	13	6	0	0	j a
11	25	12	0	0	12	11	24	11	0	0	į 1
Wt.	376002	141793	0	0	141793	 Wt.	361632	131095	0	0	 13109

(Numbers in thousands, weights in tonnes.)

TABLE 3.2.16	Cod, North Sea
	Catch Prediction output; Cod IV TAC Option

	Year 1993 1994							
Biomass at start of Year								
Total	376	423	423	423	423	423	423	42
Spawning	58	85	85	85	85	85	85	
Mean F Ages								
H.Cons 2 to 8	.54	.00	.17	.35	.52	.69	.86	1.
Ind BC 1 to 1	.00	.00	.00	.00	.00	.00	.00	
	.00	.00	.00	.00	.00			•
Effort relative to 1992								İ
H.Cons	.62	.00	.20	.40	.60	.80	1.00	į 1.
Ind BC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
Catch weight ('000t)								
H.Cons	101	0	45	83	115	142	165	1
Disc.	0	0	0	0	0	0	0	
Ind BC	Ō	Ō	Ō	Ō	Ō	Ö	Ō	l
Total Catch	101	Ō	45	83	115	142	165	1
Total Landings	101	Ő	45	83	115	142	165	1
Biomass at start of 1995								
Total		654	586	529	481	442	409	3
Spawning		216	180	150	125	104	87	3

Stock at start of and catch during 1993

Stock at start of and catch during 1994 For F(1994) = F(1992)

Age	Stock No.	H.Cons	Disc,	Ind BC	Total
1	199000	12356	0	0	12356
Z	159000	58544	0	Q	58544
3	18358	7714	0	0	7714
4	3904	-1505	0	0	1505
5	4076	1511	0	0	1511
6	419	151	Q	0	151
7	297	112	0	0	112
8	176	60	0	0	60
9	37	14	٥	0	14
10	60	20	O I	0	20
11	25	8	0	0	8
Wt,	376002	100699	0	0	100699

Age	Stock No.	H.Cons	Disc.	Ind BC	Tota
1	224000	21825	0	0	21825
2	81401	41876	0	0	j 41876
3	63935	36864	0	j O	36864
4	7595	4087	0	0	4087
5	1849	963	0	0	963
6	1984	1011	0	0	1011
7	207	109	0	0	109
8	143	69	0	0	69
9	90	48	0	0	48
10	18	8	0	0	8
11	31	15	0	0	15
Wt.	422812	165172	0	0	165172

(Numbers in thousands, weights in tonnes.)

Table 3.2.17. Cod catch prediction - linear analysis

Input Values

Name	Value	CV	Name	Value	CV
Population	at age in 1993		Fishing mor	tality pattern	
PLN1	199000	0.2	SEL1	0.151	0.16
PLN2	159000	0.11	SEL2	0.902	0.08
PLN3	18358	0.13	SEL3	1.017	0.07
PLN4	3904	0.14	SEL4	0.88	0.06
PLN5	4076	0.13	SEL5	0.836	0.06
PLN6	419	0.16	SEL6	0.809	0.06
PLN7	297	0.16	SEL7	0.852	0.06
PLN8	196	0.21	SEL8	0.749	0.08
PLN9	37	0.23	SEL9	0.859	0.08
PN10	60	0.23	SL10	0.72	0.08
Natural mor	tality pattern		Recruitment		
m1	0.8	0.1	R94	224000	0.5
m2	0.35	0.1	R95	268000	0.5
m3	0.25	0.1	Effort multip		0.0
m4	0.2	0.1	F93	1	0.1
m5	0.2	0.1	F94	1	0.1
m6	0.2	0.1	F95	1	0.1
m7	0.2	0.1	Natural mort	ality multipliers	
m8	0.2	0.3	k93	, 1	0.1
m9	0.2	0.3	k94	1	0.1
m10	0.2	0.3	k95	1	0.1

Table 3.2.18. Values used for parametric stock-recruitment relationship.(Parameters defined in Section 1.4.3)

· · · · · · · · · j

Adjusted coefficient of determination = 0.3331

	Parameter	SD
а	2.8745	0.3123
b	221.0737	13.2487
с	6.1518	2.202
d	-0.3101	0.1653

Table 3.2.19 Cod in Sub-area IV (North Sea)

	Average F(2 - 8 ,u)										
Date of			Ye	ar							
assessment	1987	1988	1989	1990	1991	1992					
1989	0.83	0.80									
1990	0.86	0.83	0.83								
1991	0.89	0.88	0.98	0.75							
1992	0.89	0.89	1.00	0.78	0.93						
1993	0.89	0.88	0.95	0.72	0.85	0.86					

Assessment Quality Control Diagram 1

Remarks:

Assessment Quality Control Diagram 2

Estimated total landings ('000 t) at status quo F												
Date of	Year											
assessment	1988	1989	1990	1991	1992	1993	1994					
1989	150	136	143									
1990		179	142	119								
1991			121	100	108							
1992				87	100	124						
1993					97	142	131					
				SQC ¹	SQC ²	Current	\ Forecast					

¹SQC = Landings(y-1) *
$$\frac{F(y-2)}{F(y-1)}$$
 * exp $\left[-\frac{1}{2}\{F(y-2) - F(y-1)\}\right]$
²SQC = Landings(y) * $\frac{F(y-1)}{F(y)}$ * exp $\left[-\frac{1}{2}\{F(y-1) - F(y)\}\right]$
where $F(y)$, $F(y-1)$ and $F(y-2)$ are as estimated in the assessment made in year (y+1).

Remarks:

Continued

.

Table 3.2.19 Continued

Recruitment (age 1) Unit: Millions									
Date of			Year	class					
assessment	1987	1988	1989	1990	1991	1992			
1989	193	329 ¹		·	ι	1			
1990	201	324	161 ²						
1991	142	316	140	216					
1992	143	246	137	155	345				
1993	150	257	113	150	410	199			

Assessment Quality Control Diagram 3

¹Amended by ACFM to 299. ²As revised by ACFM.

Remarks:

r												
	Spawning stock biomass ('000 t)											
Date of				Ye	ar							
assessment	1988	1989	1990	1991	1992	1993	1994	1995				
1989	88	91	82 ¹	80 ^{1,2}		L	1	1				
1990	84	85	87	78 ^{1,3}	71 ^{1,3}							
1991	79	73	66	64	66 ^{1,3}	68 ^{1,3}						
1992	79	73	62	56	51	47 ^{1,4}	52 ^{1,5}					
1993	82	76	65	60	64	58	62 ^{1,5}	66 ^{1,5}				

Assessment Quality Control Diagram 4

¹Forecast. ²Assuming TAC taken in 1988, F(89) = 0.7 (87). ³Assuming status quo F in 1990. ⁴Assuming status quo F in 1991. ⁵Assuming status quo F in 1993.

Remarks:

Country	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991 ¹	1992 ¹
Belgium	966	985	494	719	317	165	220	145	192	168	415
Denmark	22,704	25,653	16,368	23,821	16,397	7,767	9,174	2,789	1,993	1,330	1,467
Faroe Islands	6	51	-	5	4	23	35	16	6	15	20
France	15,988	11,250	8,103	5,389	4,802	3,889	2,193	1,702 ^{1,3}	1,115 ^{1,3}	631 ^{1,3}	546 ³
Germany, Fed.Rep.	4,510	3,654	2,571	2,796	1,984	1,231	802	447	714	535	764
Netherlands	1,021	1,722	1,052	3,875	1,627	1,093	894	328	n/a	103	148
Norway ²	2,888	3,862	3,959	3,498	5,190	2,610	1,590	1,697 ¹	1,572	1,946	3,133
Poland	317	150	17	-	1	-	-	-	-	-	-
Sweden	1,874	1,360	1,518	1,942	1,550	937	614	1,051	900	957	1,289
UK (Engl.& Wales)	16,403	15,476	12,340	13,614	8,137	7,491	5,537	2,704	2,093	2,154	3,223
UK (N. Ireland)	-	-	-	-	-	-	-	137	11	46	4
UK (Scotland)	107.773	100,390	87,479	112,549	126,650	84,063	84,104	53,252	34,459	36,443	39,734
Total	174,450	164,553	133,901	168,208	166,659	109,269	105,163	64,235	n/a	44,330	50,743
WG estimates human consumption landings	166,000	159,000	128,000	159,000	166,000	108,000	105,000	76,000	51,000	45,000	70,000
Inallocated landings	-8,450	-5,553	-5,901	-9,208	-659	-1,269	-163	11,732	n/a	670	19,257

Table 3.3.1 Nominal catch (in tonnes) of HADDOCK in Sub-area IV, 1982-1993, as officially reported to ICES.

¹Preliminary.

²Figures do not include haddock caught as industrial by-catch. ³Includes Division IIa (EC).

n/a = Not available.

Annual weight and numbers caught, 1960 to 1992.											
Year	We Total	ight (100 H.Cons		s) Ind BC	N Total	umbers (i H.Cons) Ind BC			
Year 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987		H.Cons 75 75 59 68 131 162 226 147 105 331 525 235 193 179 150 147 166 137 86 83 99 130 166 159 128 159 166	Disc. 130 133 383 189 160 62 74 78 162 260 101 177 128 115 167 260 154 44 77 42 95 60 41 66 75 86 52	Ind BC 12 11 14 89 75 47 21 34 338 180 32 30 11 48 41 48 35 11 16 22 17 19 13 10 6 3	Total 1191 2061 3108 1683 1594 1717 3128 1420 1617 4003 3382 2669 1722 1280 2384 2958 1631 896 1030 1461 1447 1352 971 1256 866 971 755	H.Cons 207 189 149 181 352 370 407 272 221 910 1245 473 428 449 357 362 396 320 192 189 218 274 311 293 247 359 371	Disc. 842 889 2674 1246 644 254 490 448 838 1203 515 1282 760 660 1091 1862 788 226 418 286 541 298 181 389 412 458 308	Ind BC 143 983 286 256 599 1093 2232 700 558 1890 1622 914 534 1890 1622 914 534 447 350 420 985 687 780 480 574 207 154 75			
1988 1989 1990 1991 1992	171 104 87 90 129	105 76 51 45 70	62 26 33 40 48	4 2 3 5 11	644 296 315 458 758	254 168 109 99	362 111 192 215	29 17 14 143			
1987 1988 1989 1990 1991	172 171 104 87 90	108 105 76 51 45	59 62 26 33 40	4 4 3 5	657 644 296 315	228 254 168 109	334 362 111 192	95 29 17 14			

TABLE 3.3.2 Haddock, North Sea Annual weight and numbers caught, 1960 to 1992.

TABLE $3 \cdot 3 \cdot 3$, Haddock, North Sea Natural Mortality and proportion mature

Age	Nat Mor	Mat.
0	2.050	.000
	1.650	.010
2	.400	.320
	.250	.870
5	.200	.950
6	.200	1.000
7	.200	1.000
8	.200	1.000
10	.200	1.000
11	.200	1.000
12+	.200	1.000

	TABLE	<u>3.3.4</u> ; Ha Ir	addock, Nor nternationa	th Sea al catch at	age ('000), Total	, 1960 to ⁷	1992.			
	Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
	0 1 2 3 4 5 6 7 8 9 10 11 12+	51506 687709 402287 13697 7521 23929 3082 1065 435 49 33 0 0	1006475 755531 185823 93131 4035 1872 12294 936 430 150 7 1 0	26880 2949187 72429 32385 21229 1479 605 3839 272 59 27 1 0	1359 1305614 334239 20858 12952 5746 499 649 562 58 18 0 0	139777 7425 1294531 134823 9039 5333 2398 286 235 230 25 0 0	649768 367490 15136 647618 29385 4642 1963 450 107 90 40 0	1666972 1005889 25640 6412 411562 9954 1043 599 164 89 23 2 0	305249 837010 88979 4853 3576 177394 2437 214 216 57 33 0 0	11105 1096962 438696 19538 1940 2519 45804 324 40 13 5 0 0	72559 20469 3574797 303070 7584 2407 2512 19099 200 24 7 0 0
	Age	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
. }	Age 0 1 2 3 4 5 6 7 8 9 10 11 12+	924601 266147 218293 1906573 57362 1176 1195 256 5946 67 11 19 0	330673 1809964 70735 47224 397328 10288 458 193 146 1578 159 3 5	240896 675831 584076 40150 20948 155922 3516 188 33 27 402 11 0	1973 59872 364822 567133 237498 6099 4399 38829 1237 106 28 108 48 5	601412 1213867 174389 326659 53137 1832 1320 10672 236 23 31 3 5	44946 2096827 632672 57630 106048 15320 952 601 2628 258 61 11 11 7	1978 167173 167599 1046110 204506 9555 30044 4793 198 73 728 58 3 0	114954 250138 104310 376976 38062 4087 5939 1230 128 27 190 2 1	285842 454092 142668 28695 107172 8153 1190 1942 377 108 14 60 14	841439 344756 198147 39551 7068 26742 2134 250 461 145 52 11 11
	Age	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
	0 1 2 3 4 5 6 7 8 9 10 11 12+	374960 659594 323151 68715 9837 1784 7573 562 114 153 70 29 13	646419 134440 413156 138189 14457 1883 374 2462 123 63 23 30 8	278705 275372 83827 287840 40322 3198 691 268 780 29 15 7 7 4	639814 156146 247634 71192 123246 15955 1645 286 59 189 52 6 8	95502 432175 161719 118503 21366 32134 3698 590 76 37 110 14 8	139623 179244 526391 75488 36620 5271 7286 954 209 54 22 88 4	56507 160285 177699 320292 27068 9504 1208 1808 235 101 43 29 48	9419 277273 246818 46723 67312 4628 2816 530 768 130 32 47 64	10808 29040 482791 87436 13155 18433 1547 615 152 135 48 13 48 13 34	10704 47211 33538 179457 17549 2540 4001 496 195 82 28 12 12 11
	Age	1990	1991	1992							
)	0 1 2 3 4 5 6 7 8 9 10 11 12+	55509 80338 100217 17124 55872 3594 835 1288 190 73 39 9 16	123818 218581 75563 22128 3424 12120 908 388 600 138 48 5 5	270731 193504 248480 31583 6254 1140 4795 443 293 286 122 21 8							

TABLE	<u>3.3.5</u> ;н 1	addock, No nternation	rth Sea al mean we	ight at ag	e (kg), To	tal , 1960	to 1992.			
Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
0 1 2 3 4 5 6 7 8 9 10 11 12+	.020 .135 .236 .403 .459 .635 .809 1.020 1.311 1.989 2.251 .000 .000	.013 .142 .267 .372 .605 .574 .756 .961 1.274 1.412 1.702 1.849 .000	.045 .135 .277 .475 .569 .732 .768 .932 1.368 1.722 2.277 1.514 .000	.012 .123 .253 .474 .695 .806 1.004 1.131 1.173 1.576 1.825 .000 .000	.011 .119 .239 .403 .664 .814 .908 1.382 1.148 1.470 1.781 .000 .000	.010 .069 .225 .365 .648 .844 1.193 1.173 1.482 1.707 2.239 .000 .000	.010 .088 .247 .367 .533 .949 1.265 1.525 1.938 1.727 2.963 2.040 .000	.011 .115 .281 .461 .594 .639 1.057 1.501 1.922 2.069 2.348 .000 .000	.010 .126 .253 .509 .731 .857 .837 1.606 2.260 2.702 2.073 .000 .000	.011 .063 .216 .406 .799 .891 1.032 1.094 2.040 3.034 3.264 .000 .000
Age	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
0 1 2 3 4 5 6 7 8 9 10 11 12+	.013 .073 .222 .353 .735 .873 1.191 1.361 1.437 2.571 3.950 3.869 .000	.011 .106 .247 .362 .505 .887 1.267 1.534 1.337 1.275 1.969 4.306 3.543	.024 .116 .242 .388 .506 .606 1.000 1.366 2.241 2.006 1.651 2.899 .000	.044 .112 .241 .372 .585 .648 .724 1.044 1.302 2.796 1.726 2.020 2.158	.024 .128 .226 .343 .548 .891 .895 .953 1.513 2.315 2.508 4.152 2.264	.021 .101 .241 .356 .450 .680 1.245 1.124 1.093 1.720 2.217 2.854 3.426	.013 .125 .224 .401 .512 .588 .922 1.933 1.784 1.306 2.425 2.528 .000	.019 .108 .241 .345 .602 .613 .802 1.181 1.943 2.322 1.780 3.189 4.119	.012 .144 .253 .418 .441 .719 .742 .954 1.398 2.124 2.868 1.849 2.812	.009 .095 .291 .442 .637 .664 .933 1.187 1.187 1.468 2.679 1.624 1.748
Age	1980	1981	1982	1983	1984	1985	1986	1097		4080
0 1 2 3 4 5 6 7 8 9 10 11 12+	.012 .104 .284 .486 .732 1.046 .936 1.394 1.599 1.593 1.726 3.328	.009 .074 .262 .476 .744 1.147 1.479 1.180 1.634 1.764 1.554 1.554 1.492 2.972	.011 .100 .292 .461 .784 1.166 1.441 1.672 1.456 2.634 2.164 1.924 2.532	.022 .135 .297 .448 .651 .916 1.215 1.162 1.920 1.376 1.395 1.907 3.776	.010 .141 .300 .488 .670 .805 1.097 1.100 1.868 2.425 1.972 2.247	.013 .149 .279 .668 .859 1.054 1.470 1.844 2.137 2.193 1.991	.025 .124 .242 .396 .612 .864 1.260 1.202 1.719 1.526 2.482 2.632	1987 .008 .126 .265 .613 1.029 1.278 1.433 1.530 1.865 2.040 1.902 2.499	1988 .024 .164 .217 .589 .747 1.283 1.424 1.542 1.612 1.674 3.122 2.880	1989 .027 .198 .300 .372 .605 .811 .984 1.375 1.659 1.695 2.240 2.159 2.217
Age	1990	1991	1992							
0 1 2 3 4 5 6 7 8 9 10 11 11 12+	.044 .194 .291 .429 .473 .772 .968 1.169 1.533 2.034 2.658 2.310 2.580	.029 .177 .321 .638 .649 1.042 1.230 1.479 1.771 1.943 2.231 2.409	.018 .107 .306 .486 .747 1.016 .896 1.391 1.526 1.899 1.993 2.034 2.167							

Table 3.3.6 Haddock, North Sea Details of CPUE series used in tuning.

Series name	Series code	First year	Last year	Youngest age	Oldest age
Scottish Groundfish Survey	SCOGFS	1982	1992	0	6
English Groundfish Survey	ENGGFS	1977	1992	0	7
German Groundfish Survey	FRGGFS	1983	1992	1	5
International Young Fish Survey	INTGFS	1973	1992	1	2
International Young Fish Survey	INTGFS_old	1983	1992	3	6
French Trawlers	FRATRB	1976	1992	0	10

HADDOCK; 106		A; Survey D	ata only								
SCOGFS											
1982 1993											
11.50. 06	75										
77	9.493	19.13	7.659	10.273	0.888	0.056	0.015				
79							0.015 0.097				
82			6.483				0.077				
83				1.932	0.854	0.116	0.18				
88				4.774			0.03				
73 86							0.034				
86		7.613		1.46 4.932			0.02 0.058				
85		8.509	2.038	0.272			0.009				
90			1.602		0.045		0.018				
87	71.902	33.363	8.378	0.418	0,07	0.026	0.07				
ENGGFS 1977 1992	,										
1 1 .50 .1											
07											
89	47.549	5.94	2.85	5.479	0.822	0.064	0.081	0.012			
93	33.297	12.721	2.432	0.222	2.064	0.199	0.005	0.069			
94	82.191	27.745	5.126	0.819	0.102	0.41	0.033	0.004			
89 91	33.317	55.523	14.904	2.289	0.243	0.038	0.126	0.02			
58	139.525 16.328	15.717 18.308	39.848 4.631	6.858	0.673	0.058	0.003	0.055			
58	48.171	12.635	6.341	6.848 1.241	0.595 1.259	0.137 0.154	0.057	0.008			
63	14.36	37.672	3.871	1.935	0.262	0.154	0.024 0.065	0.008 0.008			
54	13.247	10.051	12.833	1.137	0.376	0.106	0.069	0.022			
64	16.995	9.567	2.857	2.161	0.178	0.112	0.024	0.023			
61	1.367	17.195	2.628	0.325	0.419	0.029	0.02	0.002			
57 63	3.462 5.945	1.628	10.462	0.883	0.091	0.159	0.023	0.007			
64	18.077	5.151 4.262	0.912 1.272	2.502	0.159 0.563	0.019	0.038	0.009			
64	16.853	7.363	0.615	0.183	0.031	0.031 0.14	0.017 0.003	0.008 0.004			
57	67.7	14.139	6.164	0.324	0.024	0.005	0.031	0.004			
FRATRB											
1976 1992											
1 1 .00 1.0 0 10	50										
64396	58.443	2678.21	23497.19	3472.049	210.884	462.649	400	1.0	_		
80107	501.444	4213.926	2566.949	11834.39	1611.667	402.049 226.384	130 444	12 121	5	43	5
69739	263.359	16183.23	6280.941	1147.044	5427.23	447.61	73.306	143	18 39	5 11	28 2
89974	131.049	15228.38	12553.55	2224.192	383.42	2193.059	198	31	65	32	5
63577	37.197	21343.17	15297.45	4106.429	558.224	153	830	71	20	33	11
76517 78523	113.457	2513.759	27949.25	9779.402	1208.453	145.235	27	355	18	14	6
	306.855 8784 263	7902.072 5079.885	4242.989		3745.898	202	58	32	112	1	2
76149	147.481	16183.16		3742.155 5577.591	7380.415 1014.54	1247.696 1972.163	162.101	32	8	31	7
53003	491.555	4642.845	12659.35	2188.01	1078.182	166.122	304 337.23	53 56	13	8	20
50350	572.051	2715.021	3694.833	6570.452	666.745	374.288	65	150	12 31	6 8	4 5
51234	30.937	5041.058	5126.018	1319.211	1840.937	185	146	31	55	10	4
35482	23.647	381.534	6139.916	1344.869	230.195	465.029	57	33	10	8	2
36133	27.186 1045.297	630.615 1382.888	375.117	2272.491	293.114	58.779	126.378	26.956	13.863	5.313	3.136
45075	94.405	2719.413	763.973	262.887 216.594	1154.713 34.659	103.099	32.281	61.516	11.967	4.899	1.51
34138	223.841		1810.415	210.334	45.138	186.361 8.71	21.289 38.315	10.809 4.697	18.391 2.912	5.12	2.076
FRGGFS						0.71	00.010	4.037	2.912	3.404	1.162
1983 1992	_										
11.25.50 15	0										
15	0.094	0.073	0.019	0.010	0.001						
1	0.034	0.073	0.019	0.019 0.004	0.001 0.003						
1	0.13	0.26	0.015	0.004	0.003						
1	0.142	0.038	0.055	0.005	0.001						
1	0.307	0.154	0.034	0.009	0.003						
1	0.069	0.18	0.117	0.009	0.006						
1	0.135	0.045	0.07	0.035	0.003						
1	0.18 0.601	0.055 0.055	0.018 0.018	0.013 0.003	0.007						
1	0.48	0.129	0.018	0.005	0.002 0.001						

)

Table 3.3.7 Continued

INTGFS 1973 1992 1 1 .00 .25 1 2				
1	0.187	0.971		
1	1.092	0.11		
1	1.168	0.385		
1	0.177	0.67		
1	0.162	0.084		
1	0.385	0,108		
1	0.48	0.24		
1	0.896	0.402		
1	0,268	0.675		
1	0.526	0.252		
1	0.307	0.4		
1	1.08	0.224		
1	0.229	0.829		
1	0.592	0.25		
1	0.897	0.33		
1	0.092	0.688		
1	0.21	0.097		
1	0.223	0.111		
1	0.676	0.13		
1	1.106	0.368		
INTGFS old				
1983 1992				
11.00.25				
36				
1	0.089	0.114	0.013	0.002
1	0.137	0.022	0.023	0.005
1	0.105	0.034	0.004	0.007
1	0.301	0.018	0.006	0.002
1	0.048	0.062	0.005	0.003
1	0.098	0.013	0.014	0.002
1	0.28	0.017	0.002	0.005
1	0.032	0.051	0.003	0.002
1	0.024	0.004	0.008	0.002
1	0.018	0.003	0.0005	0.002

Table 3.3.8Haddock, North Sea, XSA diagnostics.

VPA Version 3.1 (MSDOS)

10/10/1993 10:10

Extended Survivors Analysis

Haddock; North Sea; 1960-1992; Including under-reporting correction.

CPUE data from file hadrvef.dat

Data for 6 fleets over 33 years Age range from 0 to 11

Fleet, SCOGFS ENGGFS FRATRB FRGGFS INTGFS INTGFS_old	Alpha, 500, 500, 000, 250, 000, 000, 000,	Beta , .750 , .750 , 1.000 , .500 , .250 , .250
--	--	---

Time series weights :

```
Tapered time weighting applied
Power = 3 over 20 years
```

Catchability analysis :

Catchability dependent on stock size for ages < 3

Regression type = C Minimum of 5 points used for regression Survivor estimates shrunk to the population mean for ages < 3

Catchability independent of age for ages >= 8

Terminal population estimation :

Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages.

S.E. of the mean to which the estimates are shrunk = .500

Minimum standard error for population estimates derived from each fleet = .300

Prior weighting not applied

Tuning converged after 18 iterations

Regression weights , .751, .820, .877, .921, .954, .976, .990, .997, 1.000, 1.000

Terminal year survivor and F summaries :

Age 0 Catchability dependent on age and year class strength

Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
SCOGFS	******	.592	.000	.00	1	.227	.000
ENGGFS	******	.534	.000	.00	1	.279	.000
FRATRB	4938720.	1.107	.000	.00	1	.065	.000
FRGGFS	1.	.000	.000	.00	0	.000	.000
INTGFS	1.	.000	.000	.00	0	.000	.000
INTGFS_old	1.	.000	.000	.00	0	.000	.000
P shrinkage mean	2592905.	.85				.110	.037
F shrinkage mean	******	.50				.319	.007

Weighted prediction :

Survivors	Int	Ext	Ν	Var	F
at end of year	s.e	s.e		Ratio	
*****	.28	.30	5	1.048	.009

Continued

Table 3.3.8 Continued

Age 1 Catchability dependent on age and year class strength

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
SCOGFS	1231863.	.299	.019	.06	2	.304	.067
ENGGFS	628292.	.304	.133	.44	2	.294	.127
FRATRB	225059.	.619	.226	.37	2	.071	.320
FRGGFS	2029231.	1.209	.000	.00	1	.019	.041
INTGFS	1408099.	.401	.000	.00	1	.169	.058
INTGFS_old	1.	.000	.000	.00	0	.000	.000
P shrinkage mean	409962.	.87				.036	.188
F shrinkage mean	473863.	.50				.109	.165

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of year	s.e	s.e .19	10	Ratio 1.147	.101
801636.	.16	. 19	10	1.147	. 101

Age 2 Catchability dependent on age and year class strength

Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
SCOGFS	148563.	.324	.222	.69	3	.274	.863
ENGGFS	138135.	.352	.273	.78	3	.232	.905
FRATRB	107018.	.504	.393	.78	3	.113	1.065
FRGGFS	327348.	1.061	.590	.56	2	.026	.483
INTGFS	185191.	.368	.102	.28	2	.211	.741
INTGFS_old	1.	.000	.000	.00	0	.000	.000
P shrinkage mean	125142.	1.00				.029	.965
F shrinkage mean	136709.	.50				.115	.912

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of year	s.e	s.e		Ratio	
148309.	.17	.10	15	.609	.864

Age 3 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
SCOGFS	6769.	.545	.140	.26	4	.208	1.633
ENGGFS	7434.	.632	.225	.36	4	.155	1.558
FRATRB	5010.	.715	.159	.22	4	.121	1.881
FRGGFS	10806.	1.467	.123	.08	3	.029	1.275
INTGFS	8189.	.806	.103	.13	2	.095	1.482
INTGFS_old	4535.	.652	.000	.00	1	.146	1.966
F shrinkage mean	12437.	.50				.247	1.176

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of year	s.e	s.e		Ratio	
7495.	.25	.11	19	.425	1.552

Age 4 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
SCOGFS	1219.	.585	.145	.25	5	.209	1.710
ENGGFS	987.	.707	.102	.14	5	.143	1.886
FRATRB	827.	.822	.157	. 19	5	.106	2.038
FRGGFS	3133.	1.810	.187	.10	4	.022	1.016
INTGFS	1248.	1.722	.180	.10	2	.024	1.691
INTGFS_old	1005.	.585	.155	.26	2	.209	1.870
F shrinkage mean	2582.	.50				.286	1.143

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of year	s.e	s.e		Ratio	
1381.	.27	.11	24	.427	1.609

Table 3.3.8 Continued

Age 5 Catchabi	lity constant w.	r.t. time, d	ependent	on age			
Fleet SCOGFS ENGGFS FRATRB FRGGFS INTGFS INTGFS_old	Estimated Survivors 427. 290. 188. 1028. 472. 342.	Int s.e .615 .700 .713 1.662 2.068 .469	Ext s.e .221 .092 .126 .165 .173 .210	Var Ratio .36 .13 .18 .10 .08 .45	N 6 6 5 2 3	Scaled Weights .168 .129 .125 .023 .015 .287	Estimated F 1.228 1.517 1.869 .694 1.159 1.391
F shrinkage mea	n 687.	.50				.253	.917
Weighted prediction	on :						
Survivors at end of year 396.	Int Ext s.e s.e .25 .10	N Var Ratio 29 .415	F 1.281				

1 Age 6 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated	Int	Ext	Var	Ν	Scaled	Estimated
SCOGFS ENGGFS	Survivors 1576. 1631.	s.e .764 .907	s.e .131 .046	Ratio .17 .05	7	Weights .134	F 1.322
FRATRB FRGGFS	806. 902.	.723	.117	.16	7 5	.095 .150 .011	1.297 1.854 1.760
INTGFS INTGFS_old	1895. 1020.	3.238	.092	.03 .41	2	.007	1.191
F shrinkage mean	3660.	.50				.313	.782

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of year 1634.	s.e .28	s.e .13	33	Ratio .468	1.296

Age 7 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
SCOGFS	221.	.976	.036	.04	7	.093	1.036
ENGGFS	97.	.865	.208	.24	8	.118	1.634
FRATRB	121.	.638	.162	.25	8	.217	1.464
FRGGFS	1203.	3.535	.202	.06	5	.007	.288
INTGFS	278.	5.252	.106	.02	2	.003	.892
INTGFS_old	326.	.649	.091	. 14	4	.209	.803
F shrinkage mean	421.	.50				.353	.669

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of year	s.e	s.e		Ratio	
243.	.30	.12	35	.417	.976

1 Catchability constant w.r.t. time, dependent on age Age 8 Fleet Estimated Int Estimated Ext Var Ν Scaled s.e 1.145 1.082 Survivors s.e Ratio Weights F SCOGFS 76. 92. 7 .182 .16 .078 1.498 ENGGFS .118 .11 .087 1.354 8 9 5 2 4 FRATRB .642 3.891 66. .137 .21 .248 1.619 FRGGFS .237 .293 .700 262. .06 .007 INTGFS 121. 5.468 .05 .003 INTGFS_old .779 147. .130 .17 .168 1.033 F shrinkage mean 233. .50 .409 .760 Weighted prediction : Survivors Int Ext Ν Var F at end of year 133. s.e s.e Ratio .32 .12 36 .379 1.097

Continued

Age 9 Catchabil	ity constant w.	r.t. time	and age (f	ixed at	the va	alue for	age) 8
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
SCOGFS	130.	1.985	.047	.02	7	.037	1.098
ENGGFS	103.	1.721	.128	.07	8	.049	1.258
FRATRB	104.	.774	.141	.18	10	.244	1.253
FRGGFS	124.	7.377	.276	.04	5	.003	1.127
INTGFS	184.	9.194	.094	.01	2	.002	.880
INTGFS_old	168.	1.333	.046	.03	4	.082	.933
F∙shrinkage mean	220.	.50				.583	.779
Weighted predictio	n :						
	Int Ext s.e s.e		/ar F atio				
169.	.38 .09		239 .930				

٨		

)

Age 10 Catchability constant w.r.t. time and age (fixed at the value for age) 8

Fleet	Estimated	int	ΕXτ	var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
SCOGFS	34.	1.984	.080	.04	7	.036	1.442
ENGGFS	45.	1.795	.127	.07	8	.044	1.243
FRATRB	29.	.720	.132	.18	11	.273	1.570
FRGGFS	48.	6.883	.328	.05	5	.003	1.194
INTGFS	39.	8.308	.017	.00	2	.002	1.340
INTGFS_old	51.	1.344	.101	.08	4	.078	1.146
F shrinkage mean	70.	.50				.565	.943
Weighted prediction :	:						

Survivors	Int	Ext	N	Var	F
at end of year	s.e	s.e		Ratio	
51.	.38	.10	38	.268	1.146

Age 11 Ca	itchability	constant w.	r.t. tin	ne and	age (fi	xed at	the v	alue for	age) 8
Fleet		Estimated Survivors	Int s.e		Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
SCOGFS ENGGFS		12.	5.143		.055	.01	6 8	.008	.978 1.022
FRATRB		10.	1.186		.072	.06	11 4	.145	1.050
INTGFS		10. 10.	22.461		.078	.00	24	.000	1.096
INTGFS_old					.030	.01	4		
F shrinka	ige mean	10.	.50					.817	1.102
Weighted pr	ediction :								
Survivors at end of y	Int /ear s.e	Ext s.e	N	Var Ratio	F				
10.	.4		36	.043	1.093				

	3 <u>.3.9</u> ; Ha Tu	addock, Noi uned Stock	rth Sea Numbers at	t age (10**	*-5), 1960	to 1993,	(numbers in	n 1993 are	VPA surviv	vors)	
Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	ĺ
0 1 2 3 4 5 6 7 8 9 10 11 12+	200382 33123 7215 269 146 512 53 19 7 1 0 0	849778 25611 3348 1543 88 47 203 15 6 2 0 0 0 0	1980949 105785 1608 723 379 33 22 55 4 1 0 0 0	23622 254921 7392 485 277 108 14 12 10 1 0 0 0	91573 3036 43236 2218 193 101 37 7 4 3 0 0 0	263067 11287 551 18383 538 71 35 8 3 1 0 0 0	688489 31535 557 245 8602 159 16 11 3 1 0 0 0	3870524 82651 1648 164 134 3067 41 4 3 1 0 0 0	170386 497176 12205 376 85 73 906 11 1 1 0 0 0	121422 21895 90675 4590 121 49 37 327 6 0 1 0 1 0 0	
	1970	1971	1972	1973	1974	1975	1074	1077	1079	1070	
Age							1976	1977	1978 	1979 	
0 1 2 3 4 5 6 7 8 9 10 11 12+	871020 15371 4115 31514 900 27 18 8 95 3 0 0 0 0	771268 108813 1786 971 7717 195 11 4 4 24 24 2 0 0	212310 98103 12966 618 340 2504 66 5 2 2 2 5 0 0 0	715977 26467 15879 3909 127 80 639 22 3 1 1 1 1 0	1303740 91956 3484 6001 949 45 25 172 7 1 1 1 0 0	111701 165679 12341 908 1791 270 20 9 44 4 4 1 0 0	159308 14219 22630 3092 198 459 82 8 2 12 12 1 0 0	248805 19909 1996 6604 604 70 104 24 5 1 4 0 0	383701 31617 2727 484 1817 134 21 31 9 3 0 1 1 0	699589 48370 4082 660 124 469 36 6 8 4 4 1 0 0 0	
Age	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	
0 1 2 3 4 5 6 7 8 9	152074 87043 7779 1114 165 34 142 10 3 2 2	318413 18232 13826 2568 261 42 12 48 3 1 0	199950 38672 2912 5885 781 76 17 6 17 6 17 2 0	662691 24740 6220 1266 2043 252 33 8 3 7 7 1 0	171150 83016 4067 2142 358 504 62 12 4 2 4 0	235766 21690 14049 1402 622 90 122 17 5 2 1 2	483179 29850 3380 5108 426 162 26 34 6 2 2 1 1	38428 61999 5030 811 1151 93 46 10 11 2 1	80173 4913 10692 1351 219 303 34 12 4 2 1 0	79269 10282 816 3214 281 55 81 14 5 2 1 0 0	
10 11 12+	1 0	1 0	0 0	õ	Õ	0	1	1	1	0	
10 11 12+	1 0	0	0	0				1	1		
10 11	1							1	1		

£,

TABLE 3.3.10; Haddock, North Sea

)

.

TABLE		addock, Nor nternationa		e, Total ,	1960 to 19	92.				
Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
0 1 2 3 4 5 6 7 8 9 10 11 12+	.007 .642 1.143 .863 .878 .727 1.030 .974 1.081 1.685 2.710 .000 .000	.034 1.118 1.133 1.153 .729 .577 1.110 1.104 1.679 1.725 1.706 1.484 1.484	.000 1.011 .799 .709 1.005 .679 .368 1.496 1.257 1.295 16.799 4.299 4.299	.002 .124 .804 .669 .755 .885 .512 .876 .967 1.073 16.413 .000 .000	.043 .057 .455 1.167 .754 .871 1.290 .632 .969 1.683 16.727 .000 .000	.071 1.359 .409 .510 .965 1.289 .979 .927 .513 1.438 2.813 .000 .000	.070 1.301 .826 .352 .781 1.171 1.277 .968 1.141 1.160 16.646 4.294 4.294	.002 .263 1.077 .410 .359 1.020 1.093 1.046 1.264 2.301 17.025 .000 .000	.002 .052 .578 .888 .301 .480 .818 .388 .549 .206 15.161 .000 .000	.017 .022 .657 1.379 1.247 789 1.387 1.036 .444 .752 .158 .000 .000
Age	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
0 1 2 3 4 5 6 7 8 9 10 11 12+	.030 .503 1.044 1.157 1.281 .658 1.303 .468 1.175 .260 1.037 .858	.012 .477 .661 .801 .876 .878 .585 .752 .537 1.294 1.954 1.036 1.036	.032 .171 .799 1.333 1.200 1.165 .884 .507 .268 .174 1.741 .722 .722	.002 .378 .573 1.166 .787 .942 1.113 .606 .384 2.662 1.156 1.156	.013 .358 .945 .959 1.007 .599 .853 1.158 .455 .247 1.022 .754 .754	.011 .341 .984 1.271 1.112 .988 .734 1.378 1.070 1.465 2.450 1.438 1.438	.030 .313 .831 1.384 .789 1.287 1.033 .322 .584 1.044 2.404 1.090 1.090	.013 .338 1.017 1.041 1.254 1.031 1.003 .837 .356 .451 .881 .710 .710	.021 .397 1.019 1.114 1.104 1.114 1.025 1.171 .672 .584 .452 .781 .781	.034 .177 .899 1.136 1.042 .995 1.062 .615 1.036 .602 .623 .796 .796
Age	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
0 1 2 3 4 5 6 7 8 9 10 11 12+	.071 .190 .708 1.200 1.125 .867 .890 .938 .637 1.326 .670 .916 .916	.058 .184 .454 .941 .987 .691 .435 .844 .536 .937 .725 .674 .674	.040 .177 .433 .808 .880 .627 .590 .650 .719 .227 .614 .512 .512	.027 .155 .666 1.014 1.151 1.201 .795 .522 .282 .372 .834 .542 .542	.016 .126 .665 .986 1.130 1.222 1.072 .759 .252 .287 .389 .551	.017 .209 .612 .942 1.099 1.043 1.086 .930 .677 .288 .271 .626 .626	.003 .131 1.028 1.240 1.274 1.050 .723 .904 .617 .850 .391 .726 .726	.007 .108 .914 1.058 1.086 .801 1.117 .840 1.434 .859 .720 1.013 1.013	.004 .145 .802 1.322 1.140 1.118 .696 .793 .621 1.155 .944 .790 .790	.004 .111 .697 1.002 1.233 .722 .789 .500 .633 .830 .830 .801 .680 .680

Age	1990	1991	1992
0	.006	.010	.009
1	.199	.168	.101
2	1.179	.860	.864
3	1.244	1.164	1.552
4	1.166	1.005	1.609
5	.977	.918	1.281
6	.553	.715	1.296
7	.639	.543	.976
8	.363	.713	1.097
9	.522	.491	.930
10	1.395	.804	1.146
11	.613	.631	1.093
12+	.613	.631	1.093

.

10	23	2									
'YEARCLASS'	'VPA'	'IYFS1'	' I Y F S 2'	'EGFSO'	'EGFS1'	'EGFS2'	'SGFSO'	'SGFS1'	'SGFS2'	'GGFS1'	'GGFS2'
1971	771268	740	971	- 1	- 1	- 1	- 1	- 1	-1	- 1	-1
1972	212310	187	110	- 1	- 1	- 1	-1	-1	-1	-1	-1
1973	715977	1092	385	- 1	- 1	-1	- 1	- 1	-1	-1	- 1
1974	1303740	1168	670	-1	- 1	- 1	- 1	- 1	- 1	-1	- 1
1975	111701	177	84	-1	- 1	32.1	-1	-1	-1	-1	- 1
1976	159308	162	108	- 1	66.8	26.2	- 1	- 1	- 1	-1	- 1
1977	248805	385	240	534.8	136.9	54.6	-1	-1	-1	-1	-1
1978	383701	480	402	358.3	295.5	167.3	- 1	-1	- 1	- 1	- 1
1979	699589	896	675	875.5	623.3	439.1	-1	- 1	-1	-1	- 1
1980	152074	268	252	374	173.2	79.8	- 1	- 1	99.6	-1	- 1
1981	318413	526	400	1537.5	315.5	109.5	- 1	248.8	161.1	- 1	72.8
1982	199950	307	219	281.3	218.2	61.6	123.5	181.3	78.8	93.9	47.2
1983	662691	1057	828	831.9	599.3	238.2	220.3	436.7	298.1	272.9	259.6
1984	111150	229	244	228.5	186.6	44.7	87.3	197.6	57.4	129.7	38
1985	235766	579	326	245.9	149.7	43.1	81.8	232.9	70.4	142.3	154.4
1986	483179	885	688	266	281.9	183.5	174.7	239.3	198.2	307.4	179.9
1987	38428	92	97	22.4	28.6	14.5	27.7	46.7	21.4	68.6	45.3
1988	80173	210	114	60.7	81.7	19.8	40.6	88.6	24	135	54.7
1989	79269	219	131	94.3	65.7	9.6	43.2	100.2	17.8	180	54.9
1990	- 1	679	371	281.9	115.0	108.1	316.3	170.5	96.3	601.0	129.2
1991	- 1	1115	543	263.3	248.0	64.8	347.1	383.2	138.0	480.1	-1
1992	-1	1242	- 1	1187.6	310.1	- 1	827.0	583.6	- 1	- 1	-1
1993	- 1	- 1	- 1	194.8	- 1	- 1	85.9	- 1	- 1	- 1	- 1

HADDOCK IV RCT3 INPUT VALUES; AGE 0; 1993 WG.

1992

1993

831095

175595

13.63

12.08

.21

.32

.34

.02

2.63

.00

Analysis by RCT3 ver3.1 of data from file : hadiv0.rcx HADDOCK IV RCT3 INPUT VALUES; AGE 0; 1993 WG. Data for 10 surveys over 23 years : 1971 - 1993 Regression type = CTapered time weighting applied power = 3 over 20 years Survey weighting not applied Final estimates shrunk towards mean Minimum S.E. for any survey taken as .2 Minimum of 5 points used for regression .20 Forecast/Hindcast variance correction used. Yearclass = 1991 I-----Prediction-----I WAP Std Rsquare No. Index Predicted Std Survey/ Slope Inter-Series cept Error Pts Value Value Error Weights .189 .28 19 7.02 .357 .923 IYFS1 1.27 4.66 13.60 .37 .57 .37 .38 .31 .874 .446 1.33 4.73 19 6.30 .121 IYFS2 13.11 .89 5.58 EGFSO 7.27 .748 13 12.26 .662 .055 1.09 14 15 .874 12.60 .132 EGFS1 6.60 .428 .441 .479 .497 .863 4.19 EGFS2 .87 8.60 12.24 .124 8 9 1.39 5.85 SGFSO 5.87 .922 14.02 .105 .098 SGFS1 1.49 4.47 .37 .883 5.95 13.31 .99 10 SGFS2 7.86 .34 .890 4.93 12.72 .421 .136 2.50 GGFS1 -.60 .86 .606 8 6.18 14.86 1.398 .012 GGFS2 VPA Mean = 12.16 .927 .028 Yearclass = 1992 I-----Prediction-----I I-----Prediction-----I Survey/ Slope Inter-Std Rsquare No. Index Predicted Std WAP Series Value Value Error Weights Error Pts cept IYFS1 1.26 4.69 .27 .932 19 7.13 13.71 .354 .361 IYFS2 .754 7.08 .736 .083 EGFSO .89 7.29 .57 13 13.61 .236 EGFS1 1.09 6.59 .880 14 5.74 12.84 .438 .36 EGFS2 1.39 5.88 .31 .923 8 15.22 .605 .123 SGFSO 6.72 1.48 .38 6.37 .557 SGFS1 4.48 .883 13.93 .145 SGES2 GGFS1 GGFS2 12.12 .934 .052 VPA Mean = Yearclass = 1993 I-----Prediction-----I I-----Prediction-----I Std Index Predicted WAP Survey/ Slope Inter-Rsquare No. Std Series cept Error Pts Value Value Error Weights IYFS1 IYFS2 EGFSO .89 7.31 .57 .760 13 5.28 12.02 .684 .218 EGFS1 EGFS2 SGFSO 1.39 5.89 .31 .925 8 4.46 12.09 .391 .667 SGFS1 SGFS2 GGFS1 GGFS2 VPA Mean = 12.08 .944 .115 Weighted Year Log Int Ext Var VPA Log Class Average WAP Std Std Ratio VPĂ Prediction Error Error 13.04 1991 459188 .16 .21 1.76

Analysis by RCT3 ver3.1 of data from file :

hadiv1.rcx

HADDOCK IV RCT3 INPUT VALUES; AGE 1; 1993 WG.

Data for 10 surveys over 24 years : 1970 - 1993

Regression type = C Tapered time weighting applied power = 3 over 20 years Survey weighting not applied

Final estimates shrunk towards mean Minimum S.E. for any survey taken as .20 Minimum of 5 points used for regression

Forecast/Hindcast variance correction used.

Yearclass = 1991

	I	Re	gressi	on	I	I	Pred	liction-	I
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts	Index Value	Predicted Value	Std Error	WAP Weights
IYFS1 IYFS2 EGFS0 EGFS1 EGFS2 SGFS0 SGFS1 SGFS2 GGFS1 GGFS2	1.26 1.29 .87 1.04 .85 1.35 1.41 .97 2.48	2.73 2.94 5.38 4.80 6.65 4.05 2.82 5.90 -2.50	.30 .33 .54 .30 .37 .23 .26 .34 .86	.907 .893 .757 .910 .866 .954 .937 .887 .599	20 20 13 14 15 8 9 10 8	7.02 6.30 5.58 5.52 4.19 5.85 5.95 4.93 6.18	11.54 11.04 10.22 10.54 10.20 11.94 11.22 10.68 12.82	.386 .397 .631 .347 .425 .355 .348 .420 1.397	.127 .120 .047 .156 .104 .150 .156 .107 .010

VPA Mean = 10.12 .906 .023

Yearclass = 1992

I-----Prediction------I Survey/ Slope Inter-Std Rsquare No. Index Predicted Std WAP Series Error cept Pts Value Value Error Weights IYFS1 1.25 2.75 .30 .914 20 7.13 11.65 .393 .221 IYFS2 EGFSO .87 5.40 .54 .764 13 7.08 11.54 .699 .070 EGFS1 1.04 4.79 .29 .916 14 5.74 10.77 .351 .276 EGFS2 SGFS0 1.35 4.06 .23 .956 8 .172 6.72 13.11 .445 SGFS1 1.41 2.81 .26 .936 9 6.37 .221 11.82 .392

VPA Mean = 10.08 .914

.041

Yearclass = 1993

SGFS2 GGFS1 GGFS2

1992

1993

111853

23419

I-----Prediction-----I I-----Prediction------I Std Rsquare No. Index Predicted Survey/ Slope Inter-Std WAP Series cept Error Pts Value Value Error Weights IYFS1 IYFS2 EGFSO .87 5.42 .54 .773 5.28 9.99 13 .646 .152 EGFS1 EGFS2 SGFSO 1.35 4.06 .23 .957 8 4.46 10.08 .286 .774 SGFS1 SGFS2 GGFS1 GGFS2 .925 .074 VPA Mean = 10.04 Year Weighted Int Ext Var VPA Log Log Class Average WAP Std Std Ratio VPĀ Prediction Error Error 1991 61181 11.02 .14 .20 2.15

.37

.02

4.02

.01

.18

.25

11.62

10.06

Analysis by RCT3 ver3.1 of data from file : hadiv2.rcx HADDOCK IV RCT3 INPUT VALUES; AGE 2; 1993 WG. 24 years : 1970 - 1993 Data for 10 surveys over Regression type = CTapered time weighting applied power = 3 over 20 years Survey weighting not applied Final estimates shrunk towards mean .20 Forecast/Hindcast variance correction used. 1991 Yearclass = I-----Prediction------I I-----Prediction------I Slope Inter-Survey/ Std Rsquare No. Index Predicted Std UAD. Series Error Pts Value Value Error Weights cept .163 IYFS1 1.24 .99 .26 .929 20 7.02 9.70 .335 IYFS2 1.27 1.22 .28 .920 20 6.30 9.21 .338 .160 EGFSO .89 3.45 .59 .726 13 5.58 8.41 .687 .039 1.04 2.97 .29 .914 14 5.52 8.72 .340 .158 EGFS1 EGFS2 .85 4.81 .36 .872 15 4.19 8.38 .417 .105 SGFSO 1.37 2.16 .25 .948 8 5.85 10.17 .385 .123 SGFS1 1.44 .89 .29 .923 9 5.95 9.45 .390 .120 .98 4.05 .35 .887 10 4.93 8.89 .426 .101 SGFS2 GGFS1 2.51 -4.45 .87 .600 8 6.18 11.06 1.414 .009 GGFS2 8.30 .907 .022 VPA Mean = Yearclass = 1992 I-----Prediction-----I ₩AP Std Index Predicted Std Survey/ Slope Inter-Rsquare No. Weights Error Series cept Error Pts Value Value .98 .932 9.82 .289 .26 20 7.13 .347 IYFS1 1.24 IYFS2 .59 7.08 9.76 .758 .060 .89 3.48 .735 13 EGFSO .281 1.05 2.95 .29 .917 14 5.74 8.96 .351 EGFS1 EGFS2 .148 1.37 .949 6.72 .484 2.16 .25 8 11.37 SGFSO .30 .923 ō .440 .180 10.05 SGFS1 1.44 .88 SGFS2 GGFS1 GGFS2 .917 .041 VPA Mean = 8.27 Yearclass = 1993 I-----Prediction-----I Inter-Std No. Index Predicted Std WAP Survey/ Slope Rsquare Error Pts Value Value Error Weights Series cept IYFS1 IYFS2 3.50 .58 .746 13 5.28 8.18 .700 .151 EGFS0 .89 EGFS1 EGFS2 .951 8.28 .312 .763 SGFSO 1.37 2.16 .25 8 4.46 SGFS1 SGFS2 GGFS1 GGES2 .930 .086 VPA Mean = 8.23 VPA Weighted Log Ext Var Year Int Log

WAP

9.21

9.78

8.26

Average

Prediction

9955

17710

3875

Class

1991

1992

1993

Std

Error

.20

.37

.03

Std

Error

.14

.19

.27

Ratio

2.16

3.86

.01

VPĂ

	Mean H.Cons Ages	Fishing Mo Disc. Ages	rtality Ind BC Ages		Biomass tonnes)		cruits ge O
Year	2 to 6	2 to 6	0 to 3	Total	Spawning	Yclass	Million
1960	.723	.172	.053	676	111	1960	20038
1961	.746	.191	.022	536	98	1961	84978
1962	.575	.136	.025	1540	82	1962	198095
1963	.579	.126	.026	3385	137	1963	2362
1964	.700	.073	.130	1184	418	1964	9157
1965	.633	.067	.341	809	523	1965	26307
1966	.695	.103	.261	779	431	1966	68849
1967	.630	.142	.051	1216	229	1967	387052
1968	.479	.089	.056	6668	264	1968	17039
1969	.787	.093	. 199	2338	814	1969	12142
1970	.773	.124	.267	1400	897	1970	87102
1971	.612	.108	.078	1651	412	1971	77127
1972	.905	.147	.051	1652	297	1972	21231
1973	.777	.128	.034	886	289	1973	71598
1974	.629	.144	.102	1540	253	1974	130374
1975	.747	.209	.086	2105	232	1975	11170
1976	.810	.159	.124	857	298	1976	15931
1977	.806	.133	.171	545	228	1977	24881
1978	.855	.192	.061	640	126	1978	38370
1979 1980	.906	.089	.056	654	106	1979	69959
1980	.800	.083	.086	1212	148	1980	15207
1982	.593	.089	.065	652	234	1981	31841
983		.069	.066	821	292	1982	19995
1984	.790	.149	.049	739	247	1983	66269
985	.856	.094	.032	1469	195	1984	17115
986	.878	.079	.018	850	237	1985	23577
987	.845	.181	.012	703	219	1986	48318
988	.839	.146	.015	1038	154	1987	3843
989	.039	.152	.020	412	155	1988	8017
990		.142	.015	380	125	1989	7927
990	.736 .842	.256	.017	317	77	1990	25254
991	1.182	.074	.024	666	58	1991	45919
	1.102	.124	.026	694	89	1992	83110
Arith	metic mean	recruits	at age O f	or the peri	od 1960 to	1992 :	53354
Geome	tric mean	recruits	at and f	on the peni	-1 10(0 +-	1000	29679

 TABLE 3.3.13
 Haddock, North Sea

 Mean fishing mortality, biomass and recruitment 1960 - 1992

TABLE 3.3.14; Haddock, North Sea Input for Catch Prediction

	1993		F and	mean Wt a	n Wt at age used in prediction						
	Stock		aled Mear		!	Mean Wt. a))			
Age	Numbers		988 - 199								
	(10**-5)	H.Cons	Disc.	Ind BC	STOCK	H.Cons	Disc.	Ind BC			
	475505	000 1		004 1	020	.000	.061	.016			
0	175595	.000	.002	.006	.028	4 1					
1	111853	.010	.151	.026	.168	.306	.174	.093			
2	9955	.503	.591	.040	.287	.369	.223	.220			
3	1483	1.338	.248	.033	.435	.466	.277	.381			
4	75	1.453	.097	.035	.610	.629	.333	.552			
5	14	1.245	.024	.024	.799	.806	.370	.681			
6	4	1.009	.025	.010	1.035	1.050	.318	.978			
7	16	.876	.000	.013	1.318	1.322	.000	1.198			
8	2	.880	.000	.003	1.548	1.550	.514	1.099			
9	1	1.012	.000	.000	1.802	1.802	.000	.955			
10	2	1.307	.004	.000	2.102	2.099	.610	.560			
11	1	.981	.000	.000	2.371	2.371	.000	.000			
12	, o	.981	.000	.000	2.451	2.451	.000	.000			
	l Mean F	(2 -	 6)	(0 - 3)							
			•								
	Unscaled		014	.020							
	Scaled	1.	306	.026							

Recruits at age 0 in 1994 = 176310 Recruits at age 0 in 1995 = 176310

Stock numbers in 1993 are VPA survivors. These are overwritten at Age 0 Age 1 Age 2

Human consumption + discard Fs are obtained from mean exploitation pattern over 1988 to 1992. This is scaled to give a value for mean F (ages 2 to 6) equal to that in 1992, i.e. 1.306 Fs are distributed between consumption and discards by mean proportion retained over 1988 to 1992. N.B. Above value for H.Cons+Disc. ref F is value for both catch categories combined.

Bycatch Fs are obtained from mean exploitation pattern over 1988 to 1992. This is scaled to give a value for mean F (ages 0 to 3) equal to that in 1992, i.e. .026

239 165 .31 .03	998 248 .00 .03	998 248 .26 .03	998 248 .52 .03	998 248 .78 .03	998 248 1.04 .03	998 248 1.31 .03	998 248 1 1.57 .03
165 .31 .03	248	248	248 .52	248 .78	248 1.04	248	248
165 .31 .03	248	248	248 .52	248 .78	248 1.04	248	248
.31 .03	.00	.26	.52	.78	1.04	1.31	1.57
.03		1					
.03		1					
	.03	.03					
	İ	İ	i	i			
~~	İ	i				1	1
~~				i		1	
.00	.00	.20	.40	.60	.80	1.00	1.20
.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
158	0	73	131	177	21/	2//	268
207	-		•				1 174
							12
384							454
176	19	90	147	192	228	257	280
	1114	081	875	702	725	672	629
							146
	19 384	207 0 19 19 384 19	207 0 43 19 19 17 384 19 133 176 19 90 11114 981	207 0 43 78 19 19 17 16 384 19 133 225 176 19 90 147 1114 981 875	207 0 43 78 108 19 19 17 16 15 384 19 133 225 300 176 19 90 147 192 11114 981 875 792	207 0 43 78 108 133 19 19 17 16 15 14 384 19 133 225 300 361 176 19 90 147 192 228 1114 981 875 792 725	207 0 43 78 108 133 155 19 19 17 16 15 14 13 384 19 133 225 300 361 412 176 19 90 147 192 228 257 1114 981 875 792 725 672

TABLE<u>3_3.15;</u> Haddock, North Sea Catch Prediction output; Assuming status quo in 1993.

Stock at start of and catch during 1993

Stock at start of and catch during 1994 For F(1994) = F(1992)

	Age	Stock No.	H.Cons	Disc.	Ind BC	Total		Age	Stock No.	H.Cons	Disc.	Ind BC	Total
	0	17559500	0	14885	44656	59541		0	17631000	0	14946	44838	59784
	1	11185300	51190	772964	133093	957247		Ì 1	2242508	10263	154969	26683	191916
	2	995500	256025	300816	20360	577201		2	1781758	458236	538405	36440	1033081
	3	148300	89787	16642	2214	108644		3	214701	129989	24094	3206	157289
	4	7500	4991	333	120	5444		4	22879	15225	1016	367	16608
	5	1400	905	17	17	940		5	1197	774	15	15	804
	6	400	231	6	2	239		6	315	182	4	2	188
	7	1600	854	j o	13	867	į	7	115	62	Ó	1	62
	8	200	107	0	0	108	i	8	538	289	0	1	290
	9	100	59	0	0	59		9	68	40	0	0	40
	10	200	135	0	0	135		10	30	20	0	0	20
	11	100	58	0	0	58		11	44	25	Ō	0	25
	12	0	0	0	0	0		12	31	18	0	0	18
1							j						
I	Wt.	2238713	157910	207215	18511	383636	i	Wt.	998089	243943	154960	12654	411557

(Numbers in thousands, weights in tonnes.)

-								
	1993	1		Ye	ear 1994			
1								
Biomass at start of Year Total Spawning	2239 165	1070 291	1070 291	1070 291	1070 291	1070 291	1070 291	1070 291
Mean F Ages H.Cons 2 to 6 Ind BC 0 to 3	.91 .03	.65 .03	.78 .03	.91 .03	1.04 .03	1.18 .03	1.31 .03	1.44 .03
Effort relative to 1992 H.Cons Ind BC	.70 1.00	.50 1.00	.60 1.00	.70 1.00	.80 1.00	.90 1.00	1.00 1.00	1.10 1.00
Catch weight ('000t) H.Cons Disc. Ind BC Total Catch Total Landings	126 154 20 299 146	181 99 16 296 197	206 114 16 336 222	228 128 15 372 243	248 141 15 404 263	266 153 14 433 280	282 164 14 460 296	297 174 13 484 310
Biomass at start of 1995 Total Spawning		867 320	823 288	784 259	749 234	718 211	690 191	665 174

Stock at start of and catch during 1993

. . 1

Stock at start of and catch during 1994 For F(1994) = F(1992)

7559500	H.Cons	Disc.	Ind BC	Total							
				iotat		Age	Stock No.	H.Cons	Disc.	Ind BC	Total
995500 2 148300	0 36455 203643 74944	10422 550475 239271 13891	44665 135405 23135 2641	55087 722336 466048 91476		0 1 2 3	17631000 2243854 1869929 298105	0 10269 480912 180486	14946 155062 565048 33453	44838 26699 38244 4451	59784 192031 1084204 218391
1400 400	736 184	277 14 5 0	20 3	771 191		4 5 6 7	36820 1906 460 157	24501 1232 266 84	1636 24 7 0	590 24 3 1	26727 1280 275 85
200 100 200	84 47 110	0 0 0	0 0 0	85 47 111		8 9 10	700 88 40	376 52 27	0 0 0	1 0 0	378 52 27
0	0	0 0	0 0	0		12	41	24	0	0	38 24
	148300 7500 1400 400 1600 200 100 200 100 0	$\begin{array}{cccc} 148300 & 74944 \\ 7500 & 4153 \\ 1400 & 736 \\ 400 & 184 \\ 1600 & 668 \\ 200 & 84 \\ 100 & 47 \\ 200 & 110 \\ 100 & 46 \\ 0 & 0 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

(Numbers in thousands, weights in tonnes.)

Age	Stock No.	H.Cons	Disc.	Ind BC	Total	
0 1 2 3 4 5 6 7 8 9	17631000 2243854 1869929 298105 36820 1906 460 157 700 88	0 10269 480912 180486 24501 1232 266 84 376 52	14946 155062 565048 33453 1636 24 7 0 0 0	44838 26699 38244 4451 590 24 3 1 1 1 0	59784 192031 1084204 218391 26727 1280 275 85 378 52	
10 11	40 65	27 38	0	0	27 38	
12	41	24	Ŏ	ŏ	24	
Wt.	1069563	282381	163720	13657	459759	

Table 3.3.17

Haddock, North Sea

Input values to linear sensitivity analysis

name	value	uncertainty	Interpretation	
PLNO	17559500	0.32	Population Numbers. 1993, age	0
PLN1	11185300	0.37		1
PLN2	995500	0.2		2
PLN3	148300	0.17		3
PLN4	7500	0.25		4
PLN5	1400	0.27		5
PLN6	2600	0.25		6
SHC0	0.0001	0.42	Selectivity H.cons age	Ő
SHC1	0.01	0.27	.,	1
SHC2	0.503	0.17		2
SHC3	1.338	0.07		3
SHC4	1.453	0.15		4
SHC5	1.245	0.27		5
SHC6	1.009	0.21		6
SHD0	0.002	1	Selectivity Discards age	0
SHD1	0.151	0.28		1
SHD2	0.591	0.27		2
SHD3	0.248	0.49		3
SHD4	0.097	0.98		4
SHD5	0.024	1		5
SHD6	0.025	1		6
SINO	0.006	0.73	Selectivity Ind BC age	0
SIN1	0.026	0.46		1
SIN2	0.04	0.34		2
SIN3	0.033	0.46		3
SIN4	0.035	0.68		4
SIN5	0.024	1		5
SIN6	0.01	1		6
m0	2.05	0.1	Natural Mortality age	0
m1	1.65	0.1	indication information age	1
m2	0.4	0.1		2
m3	0.25	0.1		2
m4	0.25	0.1		
m5	0.2	0.1		4
m6	0.2	0.1		5 6
R94	17631000	0.94	Recruitment 1994	0
R95	17631000	0.94	1994 1995	
fh93	1	0.1		
fh94	1	0.1		
fh95	1	0.1	1994	
fi93	1	0.1	1995 Relative F Ind BC 1993	
fi94	1	0.1		
fi95	1	0.1	1994	
k93	1	0.1	1995 Year effect on M 1993	
k94	1	0.1		
k95	1	0.1	1994	
	1	0.1	1995	

		A	verage F(2-6,	,u)				
Date of								
assessment	1987	1988	1989	1990	1991	1992		
1989	1.00	1.00						
1990	1.00	1.05	0.95					
1991	1.02	1.05	0.91	0.98				
1992	1.01	1.03	0.91	1.10	1.23			
1993	0.991	0.99	0.87	0.99	0.92	1.31		

Assessment Quality Control Diagram 1

Remarks: Laurec-Shepherd tuning used 1989-1992, XSA used in 1993.

	Assessmen	t Quality	^v Control	Diagram	2
- torrange and an and a second					

		Estimated	total landings	('000 t) at si	tatus quo F		
Date of		<u> </u>		Year			
assessment	1988	1989	1990	1991	1992	1993	1994
1989	109	85	53				
1990	83	63	61				
1991			52	46	77		
1992				47	102	195	
1993				52	69	176	257
				\ SQC ¹	SQC ²	\ Current	\ Forecast

$${}^{1}SQC = Landings(y-1) * \frac{F(y-2)}{F(y-1)} * \exp \left[-\frac{1}{2} \{F(y-2) - F(y-1)\} \right]$$

$${}^{2}SQC = Landings(y) * \frac{F(y-1)}{F(y)} * \exp \left[-\frac{1}{2} \{F(y-1) - F(y)\} \right]$$
where F(y), F(y-1) and F(y-2) are as estimated in the assessment made in year (y+1).

Remarks: Human consumption and by-catch used as landings F_{hc} and F_{disc} used as F for calculating SQC.

	Recruitment (age 0) Unit:										
Date of		Year class									
assessment	1988	1989	1990	1991	1992	1993					
1989	7650			L	L	L					
1990	10512	1280									
1991	7802	7879	32729								
1992	7265	8351	33509	66763							
1993	8017	7927	25254	36199	831095	175595					

Assessment Quality Control Diagram 3

Remarks:

Assessment Quality Control Diagram 4

			Spawning	stock bioma	ss ('000 t)						
Date of		Year									
assessment	1988	1989	1990	1991	1992	1993	1994	1995			
1989	134 ²	117 ²	79 ^{1,2}	72 ^{1,2}			L				
1990	149	122	86	811	150 ¹]					
1991	150	122	76	64	99 ¹	1221					
1992	149	119	71	55	105	2011	235 ¹				
1993	155	125	77	58	89	165	248 ¹	177 ¹			

¹Forecast. ²As revised by ACFM.

Remarks: 1993 XSA used, 1989-1992 Laurec-Shepherd tuning used.

Country	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992 ¹
Belgium	2,623	2,272	2,864	2,798	2,177	2,275	1,404	1,984	1,271	1,040	913	1,030
Denmark	16,430	27,043	18,054	19,771	16,152	9,076	2,047	12,112	803	1,207	1,529	1,377
Faroe Islands	12	57	18	-	6	-	12	222	1	26		- 24
France	24,744	23,780	21,263	19,209	10,853	8,250	10,493	10,569	5,277 ^{1,2}	4,951 ¹	5,188 ^{1,2}	4,728
Germany, Fed.Rep.	601	223	317	286	226	313	274	454	415	692	865	511
Netherlands	14,600	12,218	10,935	8,767	6,973	13,741	8,542	5,087 ³	3,860	3,272 ¹	4,029 ¹	5,390
Norway	27	17	39	88	103	103	74	52	32	55	98 ¹	223
Poland	-	-	1	2	-	-	-	-	-	-	-	-
Sweden	9	11	44	53	22	33	17	5	17	16	48	22
UK (Engl.& Wales)	5,964	4,743	4,366	5,017	5,024	3,805	4,485	4,007	1,896	2,124	2,423	2,663
UK (N. Ireland)	-	-	-	-	-	-	_	1	61	30	47	1
UK (Scotland)	31,399	29,640	41,248	42,967	30,398	29,113	37,630	31,804	26,491	27,632	30,452	30,674
Total	96,409	100,004	99,149	99,958	71,934	66,709	64,978	66,294	40,124	n/a	45,828	46,643
Total h,c, catch used by Working Group	79,000	71,000	79,000	77,000	54,000	58,000	62,000	51,000	40,000	42,000	46,000	45,000

t. Trajar

Table 3.4.1 Nominal catch (in tonnes) of WHITING in Sub-area IV, 1981-1992, as officially reported to ICES.

¹Preliminary. ²Includes Division IIa (EC). n/a = Not available.

	Annu	al weight	and nu	mbers cau	ight, 19	60 to 199	92.	
		ight (10)		в)	N.	umbers (n	nillions)
Year	Total	H.Cons	Disc.	Ind BC	Total	H.Cons	Disc.	Ind BC
1960	180	48	122	11	1063	191	763	109
1961	325	68	241	16	2168	290	1646	232
1962	221	56	157	8	1508	222	1185	100
1963	258	58	154	45	1549	215	854	480
1964	147	60	59	28	931	221	341	369
1965	185	86	77	22	964	313	490	161
1966	240	105	84	51	1334	366	546	422
1967	234	68	143	23	1579	246	1103	231
1968	261	88	115	58	1646	299	754	593
1969	324	57	115	152	2803	204	626	1974
1970	268	79	74	115	2507	272	381	1854
1971	192	58	63	72	2118	184	458	1475
1972	188	60	67	61	1927	177	398	1352
1973	266	66	110	90	2164	232	659	1273
1974	290	75	85	130	2572	249	477	1846
1975	300	79	135	86	1965	247	699	1018
1976	361	75	136	150	2285	248	641	1396
1977	342	73	163	106	2470	259	547	1663
1978	178	88	35	55	1727	322	240	1165
1979	233	98	77	59	1869	344	640	886
1980	212	91	76	46	1411	301	466	645
1981	181	79	35	67	1396	257	210	929
1982	129	71	26	33	733	231	168	333
1983	151	79	48	24	1310	253	360	697
1984	135	77	39	19	858	245	317	297
1985	97	54	28	15	686	180	226	280
1986	154	58	78	18	1173	202	572	399
1987	132	62	53	16	917	224	408	285
1988	127	51	28	49	1370	191	227	952
1989	118	40	35	43	859	153	275	431
1990	147	42	54	51	1262	160	524	578
1991	117	46	33	38	1590	185	235	1170
1992	102	45	30	27	837	164	209	465

1

TABLE 3.4.2 ; Whiting, North Sea

TABLE 3.4.3; Whiting, North Sea Natural Mortality and proportion mature

	NT_L_NC	
Age	Nat Mor	Mat.
0	2.550	.000
1	.950	.110
2	.450	.920
3	.350	1.000
4	.300	1.000
5	.250	1.000
6	.250	1.000
7	.200	1.000
8	.200	1.000
9	.200	1.000
10+	.200	1.000

TABLE 3.4.4;	Whiting, North	Sea					
	International	catch a	at age	(′000),	Total ,	1960 to	1992.

Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	196
0	60827	215700	76256	105982	234479	63912	84279	177436	104751	12060
1	482294	1078401	1021577	549043	137315	342410	516853	971232	828855	3741
2	257330	617300	218127	745486	364670	147628	342260	213111	516865	10197
3	212115	218122	154305	93558	159602	326417	92701	119813	108548	1547
4	20948	32172	31151	43791	21861	71107	250807	23128	47737	278
5	20948	1331	5846			71183 7873 3498				1
6	3498		5646	8947	10413	7873	36933	65886	7170	127
7		4019	269	1653	2646	3498	8347	7520	29652	16
	858	377	396	8	414	/52	1486	809	1845	56
8	2053	118	109	120	2	122	333	122	93	6
9	229	225	13	13	39	2	128	31	23	
10+	7	19	0	1	12	9	0	3	5	
Aqe	1970	1971	1972	1973	1974	1075	1076	1077		
	1970	1971	1972	1973	1974	1975	1976 	1977 	1978 	197
0	1187095	1232837	553711	175647	571415	238839	425081	666975	687017	4763
1	606631	620700	938136	1153018	755217	954765	479081	1004731	417292	6111
2	82358	106187	314926	660398	976000	403599	1119601	474222	305020	4575
3	563090	18145	44793	131353	226168	295629	163420	268897	222079	2029
4	50200	123135	7445	18039	31516	53896	79425	29031	79704	897
5	11023	13021	56265	5404	4660	8792	14188	20033	6935	266
6	3577	2191	7933	17226	1163	7524	2733	5225	6864	29
7	1162	693	3284	2375	5496	109	488	505	1707	15
8	1302	162	243	345	325	1303		228	247	2
9	131	408	67	118	325 47	1303	18 527	17	247 11	2
10+	16	26	641	50	20	132	28	159	13	
Age	1980	1981	1982	1983	1984	1985	1986	1987	1988	198
0	332172	516852	100516	666558	157321	186585	225026	84650	416511	871
1	263938	160949	187656	197608	313029	200262	563918	260597	425291	3240
2	406641	334230	102216	168127	159701	143659	161518	355268	296398	1693
3	266938	253428	226384	107272	108563	83358	159440	120294	174814	1831
4	82466	92315	82823	124479	45938	37180	42550	78955	38549	762
5	47604	24065	24581	35013	57101	13531	12525	10892	15476	140
6	9858	10819	6294	8290	13142	17769	3376	4205	1937	444
7	1003	2770	1956	1669	2832	3098	3935	822	417	4
8	653	238	385	760	376	831	530	818	60	28
9	58	43	49	96	176	94	72	101	73	
10+	20	37	30	33	21	9	1	7	38	
Age	1990 	1991 	1992							
0	280695	1034586	252455							
1	246748	124868	233443							
2	493643	183793	156011							
3	123736	180527	84662							
4	82588	34769	90770							
5	31601	25155	11019							
6	1937	5440	6395							
7	642	578	2601							
8	90	263	104							
9	16	2 1	7 !							
1	16 0	2 1	7 1							

TABLE 3.4.5; Whiting, North Sea International mean weight at age (kg), Total , 1960 to 1992

	I	nternation	al mean wei	ight at age	≥ (kg), To	tal , 1960	to 1992.			
Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
0	.058	.042	.055	.049	.042	.058	.072	.062	.038	.043
1	.117	.118	.119	.112	.124	.124	.109	.118	.112	.097
2	.190	.193	.187	.195	.174	.209	.187	.198	.187	.173
3	.256	.259	.266	.272	.267	.242	.249	.268	.294	.261
4	.315	.303	.334	.352	.354	.332	.249	.331	.358	
5	.344	.412	.400	.411	.443	.421	.368	.340		.362
6	.383	.420	.521	.472	.488				.484	.414
7	.501	.493	.519	.820	.535	.499 .542	.434	.426	.447	.416
8	.457	.386	.539	.626	.601	1	.473	.495	.620	.535
9	.383	.468	.585	.499	.764	.635	.697 .694	.625	.730	.670
10+	.398	.475	.000	.610	.692	1.256 .614		.621	.779	.787
				.010	.052		.000	.486	.842	1.236
Age	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
0	.020	.036	.022	.027	.026	.030	.019	.022	.010	.009
1	.110	.116	.071	.084	.070	.100	.107	.116	.074	.098
2	.203	.219	.200	.166	.149	.215	.194	.211	.181	.166
3	.240	.285	.282	.277	.257	.277	.294	.322	.235	.260
4	.348	.318	.388	.371	.381	.376	.352	.401	.327	.304
5	.455	.433	.418	.439	.469	.470	.443	.450	.436	.419
6	.452	.531	.520	.462	.519	.356	.519	.468	.438	.457
7	.512	.637	.575	.550	.541	.817	.514	.551	.477	.502
8	.628	.560	.748	.738	.786	.596	.554	.440	.613	.584
9	.785	.728	.801	.860	1.032	.712	.740	.734	.702	.618
10+	.802	.729	.822	.846	.966	1.022	.893	.500	1.247	.559
Age	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
0	.013	.011	.029	.014	.020	.014	.015	.012	.013	.023
1	.075	.082	.059	.105	.088	.094	.105	.012	.013	.023
2	.176	.166	.182	.189	.188	.186	.182	.146	.143	1
3	.253	.241	.252	.275	.275	.265	.252	.246	.222	.156
4	.332	.326	.314	.326	.338	.324	.315	.246		.224
5	.340	.394	.378	.387	.384	.391	.373		.298	.265
6	.466	.423	.484	.427	.393	.429		.371	.335	.316
7	.479	.473	.506	.457	.464	.429	.462	.368	.413	.383
8	.573	.649	.703	.520	.586	.489	.465	.492	.428	.438
9	.539	.828	.783	.670	.500		.525	.458	.834	.347
10+	.812	1.032	1.101	.502	.871	.497 .789	1.194 .528	.852	.588	.512
							.528	.602	.642	.828
Age	1990	1991	1992							
0	.015	.017	.012							
1	.081	.100	.081							
2	.136	.161	.177							
3	.207	.212	.246							
4	.247	.271	.273							
5	.277	.292	.318							
6	.405	.331	.334							
7	.484	.356	.312							
8	.639	.381	.478							
9	.316	.495	.774							
10+	.000	1.055	1.727							

Table	3.4.6.	North Sea Whiting: Fleets us	ed
		in tuning the VPA, the initi	al
		year and the age-groups	

Country	Fleet	init.year	age-groups
Scotland	GFS TRL SEI LTR	82 73 73 73	0-6 1-7 1-7 0-8
Netherlands	GFS	80	0-3
England	GFS	77	0-6
France	TRB	76	0-9
Germany	GFS	83	1-5
Internat.	GFS	73 83	1-2 3-6

SCOGFS 1982 1992							
1982 1992							
0 6							
77.000	7.854	50.282	74.768	74 045	15 040		
79.000	16.393	44.025	45.218	74.845	17.248	4.620	1.232
80.000	36.755	87.080	30.528	31.816	39.968	9.083	1.322
83.000	13.977	130.466	80.528	14.090	6.367	7.615	1.453
80.000	32.824	89.944	36.564	20.425	5.251	6.971	1.471
73.000	8.777	102.533	36.564 82.989	18.118 15.199	2.160	.433	.419
86.000	54.154	83.516	135.424		5.633	1.177	.253
86.000	37.218	352.367		38.113	5.863	1.635	.172
85.000	165.038	190.180	64.560	63.882	13.645	1.093	.530
90.000	124.111	159.212	174.382	21.065	21.660	3.992	.425
87.000	21.062	25.429	85.501	68.311	4.590	3.600	.810
87.000	21.062	25.429	11.022	4.811	5.090	.409	.226
SCOTRL							
1973 1992							
1 1 .00 1.00							
1 7							
182541.000	9830.593	16097.090	4607.541	793.930	81.993	2169.819	215,982
185432.000	1726.041	17080.360	7424.137	987.017	207.004	35.001	533.009
152977.000	1676.704	5987.146	13287.950	2165.922	278.986	41.999	7.000
121841.000	279.872	8119.534	2847.945	3928.029	691.022	121.005	14.001
144348.000	884.881	6341.339	13055.870	1521.048	2332.069	211.009	26.001
135220.000	2270.091	12979.390	15501.090	8631.781	549.985	751.980	70.997
87467.000	2855.941	14814.150	11068.370	7828.330	2945.143	166.010	212.012
55475.000	625.943	10603.400	10100.220	3441.270	2396.287	875.041	30.005
51553.000	237.937	6655.895	8101.873	3501.369	552.285	544.279	105.053
47889.000	272.975	886.006	6625.793	2713.545	932.203	195.056	70.020
48339.000	295.644	1113.679	3203.453	7485.245	1597.008	558.467	52.001
34574.000	343.663	1561.406	1502.289	1157.083	2428.888	487.177	79.841
32674.000	1764.179	3418.456	1703.326	526.947	400.881	635.597	87.990
27839.000	714.358	3647.608	1873.731	496.387	131.373	73.208	68.194
27208.000	1336.682	2434.041	1772.188	615.308	164.303	31.263	11.463
21559.000	18.998	822.592	1300.012	361.688	65.941	9.991	.999
16657.000	452.200	302.676	1013.396	701.924	171.853	21.469	9.080
13366.000	25.991	607.437	105.071	187.550	60.755	8.082	2.235
13495.000	49.073	179.071	661.456	24.734	65.288	10.626	.982
10887.000	34.050	78.615	95.576	247.458	4.114	14.341	22.906
				21/1400	4.114	74.241	22.906

136

Continued

Table 3.4.7 Continued

SCOSEI									
1973 1992									
1 1 .00 1.0	0								
0 7									
414898.000	1542.020	72080.050	49677.450	12692.610	2514.138	245.014	4100.240	487.029	
349604.000	1666.939	44932.440	55720.080	25559.150	4326.063	720.013	102.002	1175.022	
329432.000	27.001	54358.360	31190.790	39772.010	10131.260	835.021	102.002	19.000	
307165.000	148.995	22192.290	67580.050	12456.700	10885.750	1889.958	263.994	42.999	
313913.000	745.020	22193.600	50660.370	37036.020	3336.092	2528.069	371.010	31.001	
325246.000	5345.922	14993.600	29307.940	43710.810	15390.200	1057.941	1408.921	200.989	
316419.000	302.002	90749.850	41091.740	28124.230	14745.010	6083.678	676.915	155.750	
297227.000	668.983	27032.330	73704.440	37657.650	11914.980	9367.982	2556.000	260.000	
289672.000	92.998	8726.789	22243.640	25047.810	10551.990	2401.997	2084.002	374.000	
297730.000	43.000	3720.987	7032.000	26194.140	13117.110	2713.028	539.005	277.003	
333168.000	572.013	11565.390	14957.380	21690.020	34199.110	9830.623	2154.563	406.795	
388035.000	296.722	4922.500	24015.610	20669.760	14985.590	21269.320	4715.242	959.961	
381647.000	773.215	20067.840	20263.320	19695.990	8956.377	4795.861	8013.077	1362.788	
425017.000	137.759	139498.200	48705.180	34509.260	11340.960	2624.396	1097.504	1771.080	
418536.000	1358.848	13793.330	52715.140	38938.770	18440.260	3637.712	1096.908	297.738	
377132.000	26.014	2502.074	28446.110	44869.260	12631.400	4071.612	678.724	63.973	
355735.000	10.131	6878.804	15704.130	41407.430	23710.400	4769.041	1323.229	112.076	
252732.000	184.877		124635.800	27694.110	29920.980	14767.800	720.818	206.524	
336675.000	886.651	11951.950	44964.260	63414.280	10436.100	8730.116	1742.927	195.190	
300217.000	426.209	16613.690	19452.010	21217.150	27961.870	2804.536	1958.074	564.870	
SCOLTR									
1973 1992									
1 1 .00 1.00 0 8)								
152514.000	004 006	24224 644							
116982.000	824.036	34374.240	15191.560	3506.705	709.914	72.990	1429.808	182.975	38.995
161009.000	632.940	18995.250	16611.790	5207.721	773.964	147.994	14.999	422.982	34.999
152419.000	4.000 28.998	26421.100	13339.210	18383.220	3496.889	423.989	33.999	5.000	185.995
224824.000		5574.648	30121.130	5297.682	5247.686	875.948	194.988	17.999	1.000
236929.000	709.038 7158.392	24587.140	29945.250	24840.410	1663.950	2418.911	459.981	33.999	17.999
287494.000		8785.464	19909.950	30722.310	14472.600	956.038	1612.065	635.026	72.003
333197.000	868.998	171147.300	42910.400	23154.590	17995.660	4057.925	376.993	285.995	56.999
251504.000	170.986	20805.960 6576.457	58381.990	38436.160	9525.058	9430.050	1864.014	144.001	145.001
250870.000	6390.155		19069.210	21549.750	9706.151	1777.022	1455.034	310.008	9.000
244349.000	20191.060	5214.103 37495.680	8196.975	26680.540	12944.740	3333.924	646.980	338.988	73.997
240775.000	2553.165	38266.770	17925.870	12535.310	19234.310	6123.520	1216.612	182.797	140.848
267393.000	1221.645	28760.940	16048.090 9368.367	10784.180	6306.822	9018.982	2371.186	478.594	13.127
279767.000	796.708	8138.433		7616.928	3085.792	1333.193	2901.185	443.130	173.087
351131.000	599.518	18761.180	8571.900	9577.941	4108.819	767.442	425.282	608.602	51.637
391988.000	59.996	2397.963	25933.340	16160.770	5954.478	1182.953	388.455	116.035	128.993
405883.000	491.803	20318.750	15778.770 10051.620	22525.540	5127.725	1640.626	207.218	31.033	15.015
371493.000	371.478	3676.882	35321.990	21389.720	10836.810	2394.091	448.224	33.084	54.358
408056.000	688.421	8726.876	11908.030	7664.570 22145.620	8960.094	3423.009	159.541	39.935	5.339
473955.000	1379.234	17580.580	14551.320	11822.710	3192.247	2906.398	628.632	49.904	40.866
		2,300.300	11001.020	11022./IV	15417.660	1500.403	1160.443	304.395	12.750

Continued

<u> </u>	
ŝ	
00	

ENGGFS 1977 1992 1 1 .50 .75

11.50.75 06										
111.000	31.558	24.371	8.261	1.231	.240	.100	.089			
113.000	20.788	27.858	5.806	1.189	.389	.057	.025			
117.000	41.620	23.538	8.350	2.227	.989	.057	.034			
115.000	22.788	40.448	14.321	5.508	1.379	.359	.066			
114.000	39.731	20.824	32.751	18.251	.702	.701	.092			
72.000	5.004	20.011	5.727	6.201	1.602	.246	.035			
74.000	55.002	8.765	8.063	1.409	1.257	.179	.050			
82.000	14.118	41.417	8.853	2.465	.725	.629	.309			
73.000	14.572	11.575	12.424	1.219	.715	.133	.112			
82.000	13.385	12.425	5.402	3.152	.333	.085	.012			
77.000	10.565	17.514	10.030	2.075	1.546	.271	.090			
75.000	28.676	14.128	9.887	3.415	.485	.130	.013			
85.000	99.586	25.098	10.014	6.552	1.426	.294	.016			
86.000	75.279	16.347	11.039	3.315	1.994	.280	.040			
87.000	14.557	28.974	6.669	3.321	.944	.323	.037			
74.000	30.980	18.078	8.898	2.073	1.777	.336	.401			
/4:000	50.900	10.070	0.090	2.075						
FRATRB										
1976 1992										
1 1 .00 1.00										
09										
64396.000	2718.175	12660.210	45922.270	6143.989	4686.481	1283.520	254.502	42.000	3.000	156.000
80107.000	2587.202	24164.320	21838.560	17682.810	1796.613	2279.111	554.182	54.000	31.000	6.000
69739.000	3351.785	7330.050	23791.320	19207.120	9382.748	836.852	1103.904	227.000	34.000	4.000
89974.000	591.579	61937.410	28650.200	18463.210	11830.280	3952.171	397.490	315.873	45.000	14.000
63577.000	271.781	9010.200	27059.800	18938.580	5826.699	4984.075	1071.901	78.000	71.000	10.000
76517.000	107.487	6395.469	18560.020	20258.120	9102.926	2249.323	1662.444	315.272	16.000	10.000
78523.000	2984.073	8778.596	5953.086	24941.790	14159.490	4423.757	1089.911	542.530	119.000	14.000
69720.000	9867.649	21688.240	16261.920	12818.580	19955.340	6139.751	1102.018	231.456	127.298	19.000
76149.000	1573.497	19189.370	12048.880	9046.985	4993.439	6421.895	1693.265	322.207	32.000	26.000
53003.000	570.817	10561.680	7129.542	5883.502	2466.529	1082.139	1285.780	233.338	34.000 54.708	10.000 3.000
50350.000	473.480	24324.670	10512.730	8154.293	2749.571	695.240	237.411	238.763	82.710	10.000
51234.000	558.880	9268.703	14851.100	6589.581	3721.569	708.607	209.758	76.000	7.158	7.000
35482.000	1024.471	3136.269	5860.832	7551.045	1901.380	843.634	160.791	42.000	17.157	1.147
36133.000	403.266	8819.171	3329.428	8279.531	3991.409	756.183	229.592 91.259	22.130	2.702	.128
36097.000	7597.934	4192.686	15523.180 5309.753	4221.804 7751.186	3927.771 1263.168	1600.354 971.230	211.706	35.050 33.269	4.032	.317
45075.000	297.152	3610.561		3305.109	4309.879	420.786	274.874	141.951	2.076	.137
34138.000	318.269	4710.702	3987.946	3305.109	4309.879	420.700	2/4.0/4	141.751	2.070	.137
FRGGFS										
1983 1992										
1 1 .25 .50										
1 5										
1.000	.007	.015	.009	.009	.002					
1.000	.006	.013	.011	.003	.004					
1.000	.010	.023	.007	.002	.001					
1.000	.012	.025	.019	.003	.001					
1.000	.091	.071	.019	.017	.002					
1.000	.015	.080	.041	.005	.003					
1.000	.603	.392	.145	.054	.004					
1.000	.280	.249	.086	.032	.020					
1.000	.324	.164	.117	.037	.011					
1.000	.120	.073	.057	.033	.008					

NETGFS 1980 1992 1 1 .50 .75 0 3				
1.000 1.000	.166 1.393	.330 .205	.062 .131	.027 .009
1.000	.166	.640	.105	.052
1.000 1.000	2.649 .143	.431 1.330	.224 .141	.012
1.000	.859	.783	.893	.091
1.000	1.784	.384	.075	.170
1.000 1.000	2.883 .629	2.004 1.441	.252 .612	.018 .025
1.000	1.882	1.049	.803	.212
1.000 1.000	5.544	.963	.196	.154
1.000	.806 .452	1.552 .271	.214 .309	.019 .040
IGFS12				
1973 1992				
1 1 .00 .25 1 2	1 454			
1.000 1.000	1.156 .322	.763 .496		
1.000	.893	.153		
1.000 1.000	.679 .418	.535 .219		
1.000	.513	.293		
1.000	.457	.183		
1.000 1.000	.692 .227	.391 .485		
1.000	.161	.232		
1.000 1.000	.128	.126		
1.000	.441 .342	.181 .360		
1.000	.464	.265		
1.000 1.000	.682 .396	.555 .866		
1.000	1.465	.542		
1.000 1.000	.508	.884		
1.000	1.014 .915	.675 .747		
IGFS36				
1983 1992				
11.00.25 36				
3 6 1.000	.112	.079	.033	.006
1.000	.092	.031	.026	.008
1.000 1.000	.066 .202	.019	.007	.007
1.000	.202	.034 .047	.007 .005	.004 .002
1.000	.316	.034	.012	.001
1.000 1.000	.421 .201	.112 .092	.012 .017	.005
1.000	.482	.071	.038	.003 .008
1.000	.260	.169	.016	.014

-

Table 3.4.8 Whiting in the North Sea, XSA tuning diagnostics

VPA Version 3.1 (MSDOS)

9/10/1993 14:18

Extended Survivors Analysis

Whiting in the North Sea; 1960-1992.

Input :

CPUE data from file whi20ef.dat

Data for 10 fleets over 33 years Age range from 0 to 9

Fleet,		Alpha,	Beta	
SCOGFS	,	.500	,	.750
SCOTRL	,	.000	,	1.000
SCOSEI	,	.000	,	1.000
SCOLTR	,	.000	,	1.000
ENGGFS	,	.500	,	.750
FRATRB	,	.000	,	1.000
FRGGFS	,	.250	,	.500
NETGFS	,	.500	,	.750
IGFS12	,	.000	,	.250
IGFS36	,	.000	,	.250

Time series weights :

Tapered time weighting applied Power = 3 over 20 years

Catchability analysis :

Catchability dependent on stock size for ages < 2

Regression type = C Minimum of 5 points used for regression Survivor estimates shrunk to the population mean for ages < 2

Catchability independent of age for ages >= 6

Terminal population estimation :

Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages.

S.E. of the mean to which the estimates are shrunk = .500

Minimum standard error for population estimates derived from each fleet = .300

Prior weighting not applied

Tuning converged after 23 iterations

Table 3.4.8 Continued

Terminal year survivor and F summaries :

Age 0 Catchability dependent on age and year class strength

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
SCOGFS	******	3.607	.000	.00	1	.007	.000
SCOTRL	1.	.000	.000	.00	0	.000	.000
SCOSEI	******	3.730	.000	.00	1	.007	.000
SCOLTR	1961630.	2.564	.000	.00	1	.014	.000
ENGGFS	860868.	2.553	.000	.00	1	.014	.000
FRATRB	*******	13.914	.000	.00	1	.000	.000
FRGGFS	1.	.000	.000	.00	0	.000	.000
NETGFS	84024.	5.689	.000	.00	1	.003	.000
IGFS12	1.	.000	.000	.00	0	.000	.000
IGFS36	1.	.000	.000	.00	0	.000	.000
P shrinkage mean	2453708.	.40				.583	.028
F shrinkage mean	1144390.	.50				.371	.060

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of year	s.e	s.e		Ratio	
1841365.	.30	.20	8	.644	.038

Age 1 Catchability dependent on age and year class strength

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
SCOGFS	83034.	1.314	.696	.53	2	.036	1.011
SCOTRL	430340.	.817	.000	.00	1	.093	.291
SCOSEI	1314739.	1.136	.616	.54	2	.048	.105
SCOLTR	776535.	1.274	.208	.16	2	.038	.171
ENGGFS	1812919.	2.060	.464	.23	2	.015	.077
FRATRB	616666.	.674	.377	.56	2	.137	.211
FRGGFS	6916940.	5.902	.000	.00	1	.002	.021
NETGFS	36572.	5.949	5.645	.95	2	.002	1.603
IGFS12	1902122.	1.105	.000	.00	1	.051	.074
IGFS36	1.	.000	.000	.00	0	.000	.000
P shrinkage mean	795373.	.43				.329	.168
F shrinkage mean	591209.	.50				.249	.220

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of ye	ar s.e	s.e		Ratio	
671688.	.25	.16	17	.655	.196

Age 2 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
SCOGFS	78015.	.689	.771	1.12	3	.082	.954
SCOTRL	106052.	.722	.641	.89	2	.074	.777
SCOSEI	246108.	.713	.089	.13	3	.076	.410
SCOLTR	193678.	.515	.194	.38	3	.146	.497
ENGGFS	335113.	.547	.408	.74	3	.129	.316
FRATRB	182196.	.416	.344	.83	з	.223	.521
FRGGFS	378118.	1.481	.930	.63	2	.018	.285
NETGFS	472913.	1.215	.894	.74	3	.026	.234
IGFS12	650809.	.733	.219	.30	2	.072	.175
IGFS36	1.	.000	.000	.00	0	.000	.000
F shrinkage mean	180591.	.50				.155	.525

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of year	s.e	s.e		Ratio	
207325.	.20	.15	25	.781	.471

Table 3.4.8 Continued

Age 3 Catchability constant w.r.t. time, dependent on age

Age 3 Catchab	ility c	constant w.	r.t. ti	.me, dep	pendent	on age			
Fleet		Estimated	Int		Ext	Var	N	Scaled	Estimated
		Survivors	s.e		s.e	Ratio	IN	Weights	Estimated
SCOGFS		40404.	.644		.555		4	5	F 1 015
SCOTRL		26242.	.763			.86		.070	1.015
SCOSEI		97202.			.206	.27	3	.050	1.311
SCOLTR			.490		.242	.49	4	.122	.549
ENGGFS		58972.	.381		.104	.27	4	.202	.791
		77027.	.577		.222	.38	4	.088	.654
FRATRB		66211.	.353		.034	.10	4	.235	.729
FRGGFS		192716.	1.210		.292	.24	3	.020	.314
NETGFS		99160.	1.259		.202	.16	4	.018	.540
IGFS12		141939.	1.096		.233	.21	2	.024	.406
IGFS36		137449.	.734		.000	.00	1	.054	.417
		50504							
F shrinkage me	all	59791.	.50					.117	.783
Weighted predict	ion :								
0 1									
Survivors	Int	Ext	N	Var	F				
at end of year	s.e	s.e		Ratio					
68254.	.17	.09	34	.530	.714				
Age 4 Catchab	ility c	onstant w.:	r.t. ti	me, dep	endent	on age			
Fleet			- .						
Fleet		Estimated	Int		Ext	Var	N	Scaled	Estimated
400070		Survivors	s.e		s.e	Ratio		Weights	F
SCOGFS		35167.	.636		.360	.57	5	.075	1.170
SCOTRL		35713.	.862		.123	.14	4	.041	1.159
SCOSEI		71447.	.484		.188	.39	5	.130	.739
SCOLTR		46381.	.371		.093	.25	5	.221	.987
ENGGFS		50272.	.650		.173	.27	5	.072	.938
FRATRB		48166.	.359		.112	.31	5	.236	.964
FRGGFS		98543.	1.307		.224	.17	4	.018	.584
NETGFS		18586.	1.955		.230	.12	4	.008	1.649
IGFS12		80135.	1.754		.367	.21	2	.010	.681
IGFS36		88261.	.668		.074	.11	2	.068	.634
F shrinkage mea	an	42353.	.50					.122	1.045
Weighted predicti	ion ·								
feigneed predices									
Survivors	Int	Ext	N	Var	F				
at end of year	s.e	s.e		Ratio	-				
50420.	.17	.06	42	.368	.936				
					-				
Age 5 Catchabi	LLITY CO	onstant w.r	.t. ti	me, dep	endent	on age			
Fleet	T	Estimated	Int		Ext	Var	N	Scaled	Patimated
11000		Survivors	s.e				IN		Estimated
SCOGFS					в.е	Ratio	~	Weights	F
SCOTRL		2217.	1.033		.248	.24	6	.053	1.684
		498.	1.413		.246	.17	5	.028	3.022
SCOSEI		4433.	.782		.111	.14	6	.092	1.161
SCOLTR		2637.	.535		.080	.15	6	.197	1.545
ENGGFS		7770.	1.115		.176	.16	6	.045	.812
FRATRB		2856.	.474		.077	.16	6	.250	1.483
FRGGFS		14545.	1.744		.127	.07	5	.019	.512
NETGFS		17145.	4.630		.317	.07	4	.003	.449
IGFS12		4886.	4.004		.326	.08	2	.004	1.095
IGFS36		6822.	.819		.093	.11	3	.084	.886
E abrairela		2421	-						
F shrinkage mea	111	3421.	.50					.225	1.346
Weighted predicti	on :								
_									
Survivors	Int	Ext	N	Var	F				

at end of year s.e s.e Ratio 3345. .24 .08 50 .336 1.363

Table 3.4.8 Continued

1

Age 6 Catchability constant w.r.t. time, dependent on age

Fleet		imated	Int		Ext	Var	N	Scaled	Estimated
	Sui	rvivors	s.e		s.e	Ratio		Weights	F
SCOGFS		964.	.852		.262	.31	7	.091	1.925
SCOTRL	1	1047.	1.358		.124	.09	6	.036	1.854
SCOSEI	2	2805.	.783		.079	.10	7	.108	1.103
SCOLTR	1	L856.	.658		.063	.10	7	.153	1,396
ENGGFS	e	5134.	1.368		.383	.28	7	.035	.652
FRATRB	1	L684.	.554		.081	.15	7	.215	1.471
FRGGFS	4	1181.	3.011		.130	.04	5	.007	.854
NETGFS	ç	5347.	7.090		.421	.06	4	.001	.720
IGFS12	2	2961.	5.954		.108	.02	2	.002	1.067
IGFS36	4	1341.	.877		.128	.15	4	.086	.833
F shrinkage me	an 2	2024.	.50					.265	1.332
Weighted predict	ion :								
Survivors	Int	Ext	N	Var	F				
at end of year	s.e	s.e		Ratio					
2030.	.26	.07	57	.274	1.330				

Age 7 Catchab	ility constant w	w.r.t. time	e and age	(fixed at	the val	ue for	age) 6
Fleet	Estimated	d Int	Ext	Var	N S	caled	Estimated
	Survivora	з s.e	s.e	Ratio	W	eights	F
SCOGFS	561.	1.413	.065	5.05	7	.045	1.648
SCOTRL	596.	1.527	.428	3.28	7	.038	1.599
SCOSEI	698.	.950	.114	1.12	8	.099	1.475
SCOLTR	466.	.880	.093	L .10	8	.115	1.800
ENGGFS	420.	2.266	.170	.07	7	.017	1.888
FRATRB	666.	.560	.179	9.32	8	.284	1.512
FRGGFS	1581.	5.062	.316	5.06	5	.003	.912
NETGFS	354.	11.450	.299	9.03	4	.001	2.035
IGFS12	559.	9.975	.201	7.02	2	.001	1.650
IGFS36	721.	1.465	.118	3.08	4	.041	1.450
F shrinkage me	an 774.	.50				.356	1.396
Weighted predict	ion :						
Survivors	Int Ext	N	Var I	7			
at end of year	в.е в.е		Ratio				
668.	.30 .05	5 61 .	.177 1.50	9			

Age 8 Catchability	v constant w.	r.t. ti	me and	age (fi	xed at t	che v	alue for	age) 6
Fleet	Estimated	Int		Ext	Var	N	Scaled	Estimated
0.00000	Survivors	s.e		s.e	Ratio	_	Weights	F
SCOGFS	15.	6.138		.089	.01	7	.005	1.974
SCOTRL	4.	5.924		.209	.04	7	.006	3.087
SCOSEI	15.	3.748		.025	.01	8	.015	1.957
SCOLTR	10.	2.164		.117	.05	9	.044	2.352
ENGGFS	15.	10.517		.155	.01	7	.002	1.954
FRATRB	8.	1.443		.072	.05	9	.099	2.500
FRGGFS	11.	25.855		.281	.01	5	.000	2.223
NETGFS	4.	65.797		.421	.01	4	.000	3.145
IGFS12	8.	55.925		.043	.00	2	.000	2.569
IGFS36	13.	6.490		.120	.02	4	.005	2.078
F shrinkage mean	9.	.50					.824	2.401
Weighted prediction								
Survivors Int at end of year s.e		N	Var Ratio	F				
9, .4		63	.041	2.401				

Age 9 Catchab	ility const	tant w.r.	t. time a	and age (fi	xed at t	he valu	le for age) 6	
Fleet		imated vivors	Int s.e	Ext s.e	Var Ratio		aled Estimated	d
SCOGFS			7.767	.088	.00		001 1.401	
SCOTRL		1.	.000	.000	.00	ο.	000.000	
SCOSEI		2.	9.741	.055	.01	8.	002 1.373	
SCOLTR		2.	5.421	.289	.05	9.	006 1.432	
ENGGFS		1. 2	9.216	.227	.01	7.	000 1.825	
FRATRB		1.	.000	.000	.00	ο.	000 .000	
FRGGFS		1. 6	4.556	.224	.00	5.	000 1.703	
NETGFS		6. 16	5.218	.278	.00	4.	000 .741	
IGFS12		2. 13	7.301	.019	.00	2.	000 1.684	
IGFS36		2. 1	3.257	.115	.01	4.	001 1.436	
F shrinkage me	an	2.	.50				909 1.528	
Weighted predict	ion :							
Survivors at end of year	Int s.e	Ext s.e	N Va Rat					
2.	.48		54 .15					

Table 3.4.9. North Sea Whiting Comparison of tuning methods

Fishing pattern in 1992

-		
age	XSA	LS
0	0.038	0.036
1	0.196	0.202
2	0.471	0.494
3	0.714	0.752
4	0.936	0.929
5	1.363	1.347
6	1.33	1.285
7	1.505	1.38
8	2.401	2.608
9	1,573	1.51
الدهاية بينه بينه جله حد مد مد مد		

Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
								1157207	140629	27286
0	414102	744747	816307	183679	357600	310589	587833	1157327	140629	1068
1	39677	32164	57548	63526	14046	27267	24073	45663	89870	
2	8590	12345	5733	15903	21154	4578	8416	6096	11620	2960
3	3258	3423	2943	1914	4188	10576	1740	2633	2185	328
4	269	515	581	778	563	1611	4713	448	850	62
5	325	19	105	162	200	229	581	1333	133	21
6	47	55	3	30	47	64	109	126	456	4
7	11	6	7	0	9	14	19	11	32	9
8	27	2	1	2	0	3	4	2	2	1
9	3	3	0	0	1	0	2	1	0	
10+	0	0	0	0	0	0	0	0	0	
Age	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
				40050			585212	590712	612416	55601
0	424637	724684	949836	469858	966659	593383			44260	4589
1	17936	29839	53140	72618	36196	73882	45665	44507		1452
2	1807	3164	7680	14717	20914	9302	22636	14681	10964	
3	10732	494	1169	2382	4111	5542	2708	5493	5574	455
4	1013	2836	196	448	576	998	1423	537	1613	206
5	226	319	1041	81	177	156	276	371	148	50
6	58	79	133	314	16	96	44	89	112	5
7	17	14	42	34	93	2	9	10	24	2
8	26	3	5	5	6	26	1	3	3	
9	2	9	1	2	1	2	10	0	0	
10+	0	1	10	1	0	0	1	2	0	(
 7 l	1000	1001	1002	1983	1984	1985	1986	1987	1988	1989
Age	1980	1981 	1982 							
0	215012	247515	214549	339800	241232	493127	409618	283857	525926	23283
1	42084	15860	17882	16471	24670	18396	37983	31355	21927	3990:
2	13950	14634	5133	5749	5141	7594	5869	11183	10506	583
3	5606	5648	6662	2457	2323	2003	3695	2453	4293	433:
4	1507	1710	1853	2794	831	726	712	1265	718	1558
5	757	406	472	660	999	220	218	161	258	20
6	161	169	104	151	205	274	52	59	29	64
7	16	38	36	26	44	43	57	11	9	
8	8	4	6	12	6	10	8	11	1	-
9	ĩ	1	1	2	3	1	1	1	1	
10+	ō	1	1	1	õ	ō	ō	0	1	
				·						
Age	1990	1991 	1992	1993						
0	208136	307534	244861	0						
1	17937	15467	21122	18414						
2	13416	5402	5205	6717						
3	2369	4613	1977	2073						
4	1515	630	1735	683						
5	498	412	168	504						
6	32	109	99	33						
7	11	8	37	20						
8	1	3	1	20						
		3		0						
9 10+	0	õ	0	0						

)

TABLE	3.4.11;	Whiting, North	Sea						
		International H	F at	age,	Total	,	1960	to	1992.

	1	nternation	ar r ac ag	e, iocai ,	1960 EO I	992.					
Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	-
0	.005	.010	.003	.021	.024	.007	.005	.005	.027	.172	
1	.218	.775	.336	.150	.171	.226	.424	.419	.161	.827	
2	.470	.984	.647	.884	.243	.517	.712	.576	.814	.565	
3	1.494	1.424	.980	.873	.605	.458	1.007	.781	.896	.825	
4	2.338	1.293	.976	1.061	.600	.720	.963	.915	1.058	.722	
5	1.528	1.526	1.000	.981	.894	.494	1.275	.822		1.075	
6	1.816	1.775	2.711	.978	1.002	.977	2.033	1.120	.944 1.333		
7	1.803	1.187	.927	.809	.733	.950				.631	1
8	1.932	1.912	1.626	.833			2.125	1.637	1.008	1.100	
9	1.910	1.559	1.467		.325	.491	1.946	1.333	.867	1.255	1
10+	1.910	1.559	1.467	.943	.718	.733	1.691	1.179	1.054	.967	
±0+				.943	.718	.733	1.691	1.179	1.054	.967	I
											-
Age	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	
0	.105	.063	.021	.014	.021	.014	.026	.041	.041	.031	
1	.785	.407	.334	.295	.409	.233	.185	.451	.164	.241	
2	.846	.545	.721	.825	.878	.784	.966	.518			
3	.981	.575	.609	1.069	1.065	1.009	1.268		.428	.502	
4	.857	.702	.582	.631	1.009			.875	.644	.756	
5	.803	.622	.948	1.403		.987	1.045	.990	.853	.704	i i
6	1.196	.378			.355	1.023	.876	.947	.759	.901	
7	1.467		1.123	.970	1.884	2.152	1.242	1.085	1.184	.990	
8		.821	1.973	1.505	1.064	1.066	.960	.845	1.621	1.001	1
9	.828	.841	.788	1.583	.883	.798	.486	2.535	1.570	1.296	
	1.042	.679	1.096	1.234	1.051	1.220	.922	1.292	1.186	.959	I.
10+	1.042	.679	1.096	1.234	1.051	1.220	.922	1.292	1.186	.959	1
											-
Age	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	
0	.057	.078	.017	.073	.024	.014	.020	.011	.029		
1	.106	.178	.185	.214	.228	.192	.020	.144		.014	
2	.454	.337	.287	.456	.493	.270	.423		.374	.140	
3	.838	.765	.519	.734	.813	.685		.507	.436	.452	
4	1.010	.987	.733	.729			.722	.878	.664	.701	
5	1.248	1.112	.892	.920	1.029	.905	1.186	1.291	.976	.840	
6	1.183	1.291	1.155		1.044	1.194	1.056	1.454	1.140	1.581	
7	1.239	1.596		.978	1.299	1.328	1.334	1.653	1.384	1.534	
8			.910	1.279	1.236	1.548	1.469	1.915	.744	1.521	l
9	2.278 1.372	1.241	1.104	1.218	1.252	2.081	1.487	1.890	.729	2.587	
1 - 1		1.219	.969	.956	1.122	1.419	1.343	1.608	.947	1.607	
10+	1.372	1.219	.969	.956	1.122	1.419	1.343	1.608	.947	1.607	
											-
Age	1990	1991	1992								
0	.049	.128	.038								
1	.250	.139	.196								
2	.618	.555	.471								
3	.974	.628	.714								
4	1.003	1.024	.936								
5	1.269	1.180	1.363								
6	1.149	.833	1.330								
7	1.072	1.639	1.509								
8	3.444	3.185	2.401								
9	1.690	1.522	1.574								
10+	1.690	1.522	1.574								

Table 3.4.12 Whiting in the North Sea. Research vessel indices for recruitment estimation

WHITING IV RCT3 INPUT VALUES; 1993 WG

'YEARCLASS'	'IYFS1'	'IYFS2'	'EGFS0'	'EGFS1'	'EGFS2'	'SGFS0'	'SGFS1'	'SGFS2'	'DGFS0'	'DGFS1'	'DGFS2'	'GGFS1'	'GGFS2'
1971	332	763	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1972	1156	496	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1973	322	153	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1974	893	535	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1975	679	219	-1	-1	74	-1	-1	-1	-1	-1	-1	-1	-1
1976	418	293	-1	220	52	-1	-1	-1	-1	-1	-1	-1	-1
1977	513	183	284	247	71	-1	-1	-1	-1	-1	-1	-1	-1
1978	457	391	184	201	125	-1	-1	-1	-1	-1	62	-1	-1
1979	692	485	355	353	288	-1	-1	-1	-1	330	131	-1	-1
1980	227	232	199	183	79	-1	-1	97	166	205	105	-1	-1
1981	161	126	349	277	109	-1	65	58	1393	640	224	-1	15.3
1982	128	179	69	119	108	102	56	37	166	431	141	6.8	12.9
1983	436	359	717	506	170	210	108	97	2649	1330	893	5.7	22.8
1984	341	261	173	159	66	454	158	45	143	783	75	9.6	24.6
1985	456	544	200	152	130	169	111	115	859	384	252	12.2	70.8
1986	669	862	163	228	132	406	141	161	1784	2004	612	91	79.8
1987	394	542	137	188	118	120	97	74	2883	1441	803	15.1	392.3
1988	1465	887	382	295	129	642	404	205	629	1049	196	603.1	248.3
1989	509	675	1170	194	77	427	224	95	1882	963	214	280.2	163.7
1990	1014	748	875	333	120	1943	177	127	5543	1552	310	324.3	73.3
1991	916	524	167	244	89	1379	293	117	806	272	-1	120.7	-1
1992	1087	-1	419	231	-1	2417	317	-1	453	-1	-1	-1	-1
1993	-1	-1	232	-1	-1	247	-1	-1	-1	-1	-1	-1	-1

Table 3.4.13 Whiting in the North Sea, recruitment estimates at age 0

Analysis by RCT3 ver3.1 of data from file :

whiiv0.rcx

WHITING IV RCT3 INPUT VALUES; AGE 0; 1993 WG

Data for 13 surveys over 23 years : 1971 - 1993

Regression type = C Tapered time weighting applied power = 3 over 20 years Survey weighting not applied

Final estimates shrunk towards mean Minimum S.E. for any survey taken as .20 Minimum of 5 points used for regression

Forecast/Hindcast variance correction used.

Yearclass = 1992

I-----Prediction-----I

Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts	Index Value	Predicted Value	Std Error	WAP Weights
IYFS1 IYFS2	.88	5.10	.44	.485	19	6.99	11.26	.564	.269
EGFS0 EGFS1 EGFS2	9.66 2.74	-43.45 -4.35	8.18 1.06	.003 .134	13 14	6.04 5.45	14.87 10.59	9.817 1.245	.001 .055
SGFS0 SGFS1 SGFS2	1.79 1.21	.36 4.45	1.28 .70	.083 .222	8 9	7.79 5.76	14.32 11.41	2.497 .959	.014 .093
DGFS0 DGFS1 DGFS2 GGFS1 GGFS2	1.00	3.58	1.20	.089	10	6.12	9.73	1.471	.040
					VPA	Mean =	10.45	.402	.528

Table 3.4.13 Continued

Yearclass = 1993												
	I	Regress:	ion	I	I	Pre	Prediction					
Survey/ Series	-	er- Std pt Erroi				Predicted Value	Std Error	WAP Weights				
IYFS1 IYFS2 EGFS0 EGFS1 EGFS2	13.76 -66.	49 12.00	.001	13	5.45	8.51	14.400	.001				
SGFS0 SGFS1 SGFS2 DGFS0 DGFS1 DGFS2 GGFS1 GGFS2	1.82 .	18 1.31	.080	8	5.51	10.22	1.663	.052				
				VPA 1	Mean =	10.43	.391	.947				
Year Class	Weighted Average Prediction	Log WAP	Int Std Error	Ext Std Error	Var Ratio	VPA	Log VPA					
1992 1993	48636 33437	10.79 10.42	.29 .38	.26 .05	.76 .02							

Table 3.4.14 Whiting in the North Sea, recruitment estimates at age 1 $\,$

Analysis by RCT3 ver3.1 of data from file :

whiiv1.rcx

WHITING IV RCT3 INPUT VALUES; AGE 1; 1993WG

Data for 13 surveys over 24 years : 1970 - 1993

Regression type = C Tapered time weighting applied power = 3 over 20 years Survey weighting not applied

Final estimates shrunk towards mean Minimum S.E. for any survey taken as .20 Minimum of 5 points used for regression

Forecast/Hindcast variance correction used.

Yearclass = 1991

I-----Prediction-----I I-----Prediction-----I

Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts	Index Value	Predicted Value	Std Error	WAP Weights
IYFS1 IYFS2 EGFS0 EGFS1 EGFS2 SGFS0 SGFS1 SGFS2 DGFS0 DGFS1 DGFS2 GGFS1 GGFS2	.92 1.62 11.54 3.16 2.70 1.77 1.16 .83 .97 3.85 .55	2.32 -1.77 -56.47 -9.20 -4.88 -2.07 2.13 4.04 1.24 -17.80 5.83	.45 .97 9.56 1.23 1.02 1.25 .66 .29 1.16 2.79 .99	.495 .170 .002 .106 .149 .083 .243 .626 .095 .019 .127	20 20 13 14 15 8 9 10 10 11	6.82 6.26 5.12 5.50 4.50 7.23 5.68 4.77 6.69 5.61 4.80	8.58 8.34 2.68 8.20 7.29 10.72 8.71 7.98 7.74 3.82 8.48	.545 1.132 11.315 1.428 1.194 2.077 .877 .351 1.383 3.672 1.267	.154 .036 .000 .022 .032 .011 .059 .369 .024 .003
					VPA	Mean =	7.89	.418	.261

Table 3.4.14 Continued

)

Yearclas	ss = 3	1992							
	I	R	egressi	on	I	I	Pre	diction	I
Survey/ Series	Slope	Inter- cept	Std Error	-	No. Pts		Predicted Value	Std Error	WAP Weights
IYFS1 IYFS2	.87	2.57	.43	.500	20	6.99	8.67	.551	.283
EGFS0 EGFS1 EGFS2	15.43 3.09	-78.24 -8.81	13.09 1.21	.001 .107	13 14	6.04 5.45	14.96 8.03	15.698 1.425	.000 .042
SGFS0 SGFS1	1.80 1.18	-2.23 2.01	1.28 .67	.081 .235	8 9	7.79 5.76	11.75 8.81	2.504 .927	.014 .100
SGFS2 DGFS0 DGFS1 DGFS2 GGFS1 GGFS2	1.04	.74	1.25	.084	10	6.12	7.12	1.532	.037
					VPA	Mean =	7.87	.405	.524
Yearclas	s = 2	1993							
	I	R	egressi	on	I	I	Prec	diction	I
Survey/ Series	Slope	Inter- cept		Rsquare	No. Pts		Predicted Value		WAP Weights
IYFS1 IYFS2									
EGFS0 EGFS1 EGFS2	29.64	*****	25.85	.000	13	5.45	3.74	31.031	.000
SGFS0 SGFS1 SGFS2 DGFS0	1.83	-2.42	1.32	.079	8	5.51	7.65	1.669	.052
DGFS1 DGFS2 GGFS1 GGFS2									
					VPA	Mean =	7.85	.393	.947
Year Class	Weight Avera	age	Log WAP	Int Std Frror	Ext Std Error	Var Rati		Log VPA	

Class	Average Prediction	WAP	Std Error	Std Error	Ratio	VI
1991	3329	8.11	.21	.15	.50	
1992	3728	8.22	.29	.26	.76	
1993	2536	7.84	.38	.05	.02	

Table 3.4.15 Whiting in the North Sea, recruitment estimates at age 2 Analysis by RCT3 ver3.1 of data from file : whiiv2.rcx WHITING IV RCT3 INPUT VALUES; AGE 2; 1993WG Data for 13 surveys over 24 years : 1970 - 1993 Regression type = CTapered time weighting applied power = 3 over 20 years Survey weighting not applied Final estimates shrunk towards mean Minimum S.E. for any survey taken as .20 Minimum of 5 points used for regression Forecast/Hindcast variance correction used. Yearclass = 1990 I-----Prediction-----I Survey/ Slope Inter-Index Predicted Std Rsquare No. Std WAP Series cept Error Pts Value Value Error Weights .44 .96 .95 1.90 -4.59 .524 IYFS1 20 6.92 7.56 .541 .154 IYFS2 1.15 .140 20 6.62 8.00 1.373 .024 7.90 -37.28 .005 EGFS0 6.41 13 6.78 16.25 8.189 .001 EGFS1 2.93 -9.13 1.11 .137 14 5.81 7.92 .025 1.334 2.77 -6.32 1.06 EGFS2 .150 6.96 15 4.80 1.219 .030 .91 8 9 .017 SGFS0 1.35 -.90 .168 7.57 9.33 1.635 1.08 SGFS1 1.14 .62 .761 .287 5.18 6.96 .078 .85 .29 .651 2.77 .348 .373 SGFS2 10 4.85 6.89 1.66 .053 2.236 DGFS0 1.36 -2.51 .009 10 8.62 9.19 .009 DGFS1 6.08 -33.63 4.44 11 7.35 11.06 .001 5.500 19.44 .58 DGFS2 -21.09 121.66 .001 12 5.74 22.713 .000 .51 .175 GGFS1 4.81 .89 7.77 5.78 8 1.203 .031 GGFS2 .88 2.95 1.09 .116 9 4.31 6.73 1.315 .026

VPA Mean =

6.74

Continued

.443

.230

Table 3.4.15 Continued

Yearclas	SS = 1	1991							
	I	Re	gressio	on	I	I	Pre	diction-	I
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts		Predicted Value	Std Error	WAP Weights
IYFS1 IYFS2 EGFS0 EGFS1 EGFS2 SGFS0 SGFS1 SGFS2 DGFS0 DGFS1 DGFS2 GGFS1 GGFS2	.93 1.72 8.79 2.90 2.55 1.36 1.15 .85 1.47 5.90 .52	-8.95 -5.32 96 1.00 2.77 -3.30 -32.52	.44 1.04 7.28 1.11 .94 .92 .63 .29 1.80 4.29 .90	.521 .161 .004 .137 .182 .167 .283 .657 .046 .010 .172	20 20 13 14 15 8 9 10 10 11 8 VPA	6.82 6.26 5.12 5.50 4.50 7.23 5.68 4.77 6.69 5.61 4.80 Mean =	7.42 7.20 2.75 7.01 6.16 8.87 7.53 6.82 6.56 .56 7.26	.536 1.214 8.612 1.287 1.104 1.523 .847 .346 2.154 5.647 1.153 .433	.158 .031 .001 .027 .037 .020 .063 .378 .010 .001 .034
Yearclas	s = 1	.992							
	I	Re	gressio)n	I	I	Prec	diction	I
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts		Predicted Value	Std Error	WAP Weights
IYFS1 IYFS2	.89	1.27	.43	.521	20	6.99	7.52	.552	.294
EGFS0 EGFS1 EGFS2	10.53 2.87	-52.06 -8.77	8.92 1.10	.002 .137	13 14	6.04 5.45	11.53 6.85	10.703 1.299	.001 .053
SGFS0 SGFS1 SGFS2	1.37 1.17	-1.04 .89	.93 .65	.165 .277	8 9	7.79 5.76	9.65 7.63	1.824 .894	.027 .112
DGFS0 DGFS1 DGFS2 GGFS1 GGFS2	1.65	-4.49	2.02	.038	10	6.12	5.58	2.479	.015
					VPA	Mean =	6.70	.423	.499

Table 3.4.15 Continued

Yearclas	s = 19	993							
	I	R	egressio	on	I	I	Prec	diction	I
Survey/ Series			Std Error	Rsquare			Predicted Value		WAP Weights
IYFS1 IYFS2 EGFS0 EGFS1	14.55 -	-74.63	12.68	.001	13	5.45	4.66	15.222	.001
EGFS2 SGFS0 SGFS1 SGFS2 DGFS0 DGFS1 DGFS2 GGFS1 GGFS2	1.39	-1.13	.95	.164	8	5.51	6.51	1.207	.106
					VPA	Mean ≃	6.68	.415	.894
Year	Weighte	ed	Log	Int	Ext	Var	- VPA	Loa	

Class	Average Prediction	WAP	Std Error	Std Error	Ratio	VPA	VPA
1990	1232	7.12	.21	.16	.58		
1991	1062	6.97	.21	.15	.49		
1992	1235	7.12	.30	.26	.73		
1993	782	6.66	.39	.05	.02		

	H.Cons	Tishing Mon Disc.	Ind BC	Stock H ('000 t		Rec Ac	cruits Je O
Year	Ages 2 to 6	Ages 2 to 6	Ages 0 to 4	Total	Spawning	Yclass	Million
1960	1.062	.451	.015	735	308	1960	41410
1961	.999	.393	.017	727	369	1961	74475
1962	.962	.276	.013	895	277	1962	81631
1963	.613	.302	.057	1112	451	1963	18368
1964	.507	.132	.040	684	500	1964	35760
1965	.454	.146	.034	757	448	1965	31059
1966	.910	.175	.133	625	380	1966	58783
1967	.612	.204	.034	796	307	1967	115733
1968	.723	.227	.073	1350	435	1968	14063
1969	.408	.195	.290	741	607	1969	27287
1970	.608	.232	.249	542	364	1970	42464
1971	.409	.134	.065	540	226	1971	72468
1972	.577	.140	.118	626	278	1972	94984
1973	.670	.169	.161	958	395	1973	46986
1974	.583	.137	.298	709	457	1974	96666
1975	.842	.220	.143	1145	469	1975	59338
1976	.642	.170	.276	1071	602	1976	58521
1977	.565	.118	.222	1048	562	1977	59071
1978	.604	.078	.105	721	415	1978	61242
1979	.594	.073	.106	897	478	1979	55602
1980	.651	.219	.095	788	487	1980	21501
1981	.651	.084	.175	589	454	1981	24752
1982	.491	.102	.101	451	349	1982	21455
1983	.560	.145	.071	475	311	1983	33980
1984	.743	.129	.069	454	254	1984	24123
1985	.735	.081	.056	414	249	1985	49313
1986	.735	.148	.056	634	271	1986	40962
1987	.942	.157	.070	507	283	1987	28386
1988	.710	.107	.164	396	279	1988	52593
1989	.589	.191	.145	511	261	1989	23284
1990	.492	.289	.199	429	286	1990	20814
1991	.561	.143	.126	373	228	1991	48623
1992	.682	.166	.111	368	209	1992	49573
				for the peri			48038
Geome	etric mear	n recruits	at age 0 f	for the peri	od 1960 to	1992 :	42133

TABLE 3.4.16; Whiting, North Sea Mean fishing mortality, biomass and recruitment, 1960 - 1992.

TABLE 3.4.17; Whiting, North Sea Input for Catch Prediction

			F and	mean Wt a	t age use	ed in pred	liction					
	1993 Stock		aled Mear 988 - 199		M		at age (kg 1992	1)				
Age	Numbers (10**-5)	H.Cons	Disc.		Stock	H.Cons	Disc.	Ind BC				
0	334370	.000	.006	.034	.016	.075	.033	,014				
1	37280	.005	.078	.106	.077	.188	.085	.069				
2	10620	.099	.192	.176	.155	.224	.154	.132				
3	2073	.346	.247	.138	.222	.255	.188	.209				
4	683	.661	.224	.101	.271	.296	.207	.248				
5	504	1.051	.235	.085	.308	.328	.223	.321				
6	33	1.120	.063	.111	.373	.381	.245	.367				
	20	1.092	.172	.094	.403	.430	.228	.382				
8	20	2.418	.064	.126	.536	.541	.338	.388				
9	, 0	1.568	.000	.011	.537	.538	.000	.080				
10	õ	.975	.244	.000	.850	.850	.000	.000				
	Mean F	(2 -	6)	(0 - 4)								
	Unscaled Scaled		786 848	.149 .111								

Recruits at age 0 in 1994 = 338600 Recruits at age 0 in 1995 = 338600

Stock numbers in 1993 are VPA survivors. These are overwritten at Age 0 Age 1 Age 2

Human consumption + discard Fs are obtained from mean exploitation pattern over 1988 to 1992. This is scaled to give a value for mean F (ages 2 to 6) equal to that in 1992, i.e. .848 Fs are distributed between consumption and discards by mean proportion retained over 1988 to 1992. N.B. Above value for H.Cons+Disc. ref F is value for both catch categories combined.

Bycatch Fs are obtained from mean exploitation pattern over 1988 to 1992. This is scaled to give a value for mean F (ages 0 to 4) equal to that in 1992, i.e. .111

TABLE 3.4.18; Whiting, North Sea Catch Prediction output; North Sea whiting, status quo

	1993			Ye	ear 1994			
Biomass at start of Year Total Spawning	534 265	501 315	501 315	501 315	501 315	501 315	501 315	501 315
Mean F Ages H.Cons 2 to 6 Ind BC 0 to 4	.85 .11	.00	.17 .11	.34 .11	.51 .11	.68 .11	.85 .11	1.02 .11
Effort relative to 1992 H.Cons Ind BC	1.00 1.00	.00 1.00	.20 1.00	.40 1.00	.60 1.00	.80 1.00	1.00 1.00	1.20 1.00
Catch weight ('000t) H.Cons Disc. Ind BC Total Catch Total Landings	46 47 44 137 90	0 0 50 50 50	14 11 48 73 62	26 22 47 95 73	37 32 46 114 82	46 41 45 132 91	55 50 44 149 99	63 58 43 164 106
Biomass at start of 1995 Total Spawning		567 381	545 359	524 339	506 321	489 304	473 289	459 276

Stock at start of and catch during 1993

Age	Stock No.	H.Cons	Disc.	Ind BC	Total
0	33437000	0	71649	406012	477661
1	3728000	11126	173567	235873	420566
2	1062000	68825	133479	122356	324660
3	207300	43841	31297	17486	92624
4	68300	25404	8609	3882	37894
5	50400	26217	5862	2120	34200
6	3300	1883	106	187	2175
7	2000	1107	174	95	1376
8	700	566	15	30	611
9	0	0	0	0	0
10	0	0	0	0	0
Wt.	534131	46306	46717	43524	136548

Stock at start of and catch during 1994 For F(1994) = F(1992)

Age	Stock No.	H.Cons	Disc.	Ind BC	Total
0	33860001	0	72556	411148	483704
1	2508445	7486	116787	158711	282985
2	1193478	77346	150004	137504	364854
3	424499	89776	64089	35807	189671
4	70328	26158	8864	3997	39019
5	18876	9819	2196	794	12809
6	9964	5685	320	563	6568
7	705	390	61	34	485
8	421	341	9	18	368
9	42	31	0	0	31
10	0	0	0	0	0
Wt.	501500	55124	49890	43814	148828

(Numbers in thousands, weights in tonnes.)

Table 3.4.19. Whiting catch prediction - linear analysis

Input values

Name	Value	CV	Name	Value	CV
Populat	ion at age	in 1993	Fishing	mortality pa	ttern
PLNO	33437000	0.38	Human	consumption	l
PLN1	3728000	0.29	SHC0	0.0001	0.82
PLN2	1062000	0.21	SHC1	0.005	0.29
PLN3	207300	0.2	SHC2	0.099	0.13
PLN4	68300	0.17	SHC3	0.346	0.17
PLN5	50400	0.17	SHC4	0.661	0.16
PLN6	12300	0.24	SHC5	1.051	0.27
			SHC6	1.12	0.22
Natural	mortality	pattern	Discar	ds	
mO	2.55	0.1	SHD0	0.006	1
m1	0,95	0.1	SHD1	0.078	0.16
m2	0.45	0.1	SHD2	0.192	0.16
m3	0.35	0.1	SHD3	0.247	0.11
m4	0.3	0.1	SHD4	0.224	0.29
m5	0.25	0.1	SHD5	0.235	0.81
mб	0,25	0.1	SHD6	0.063	1
			Indust	-	
	. mortality	multipliers	SINO	0.034	0.74
k93	1	0.1	SIN1	0.106	0.16
k94	1	0.1	SIN2	0.176	0.16
k95	1	0.1	SIN3	0.138	0.19
_			SIN4	0.101	0.54
Recruit			SIN5	0.085	0.95
R94	33860000	0.4	SIN6	0.111	1
R95	33860000	0.4			
	multipliers consumptio			ultipliers rial fishery	,
fh93		0.1	fi93	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.1
fh94	1	0.1	fi94	1	0.1
fh95	1	0.1	fi95	1	0.1
1133	Т	0.1	1123	Ŧ	0.1

Table 3.5.1 Nominal catch (in tonnes) of saithe in Sub-area IV and Division IIIa, 1981-1991, as officially reported to ICES.

Country	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992 ¹
Belgium	4	7	32	31	16	4	60	13	23	29	70
Denmark	10,114	10,530	8,526	9,033	10,343	7,928	6,868	6,550	5,800	6,314	4,669
Faroe Islands	746	806	-	895	224	691	276	739	1,650	671 ¹	2,430
France	47,064	38,782	43,592	42,200	43,958	38,356	28,913	30,761 ^{1,2}	29,892 ^{1,2}	14,795 ^{1,2}	8,869 ²
Germany	13,517	13,649	25,262	22,551	22,277	22,400	18,528	14,339	15,006	19,574	13,177
Netherlands	36	89	181	233	134	334	345	257	2071	190 ¹	180
Norway	72,669	81,330	88,420	101,808	67,341	66,400	40,021	24,737	19,122	34,938 ¹	50,065
Poland	793	415	413	-	495	832	1,016	809	1,244	1,336	1,238
Sweden	372	548	522	1,764	1,987	1,732	2,064	797	838	1,514	3,302
UK (Engl.& Wales)	5,627	6,845	8,183	5,455	4,480	3,233	3,790	4,441	3,654	4,709 ¹	3,158
UK (N. Ireland)	-	-	-	-	-	-	-	24	-	-	-
UK (Scotland)	8,136	6,321	6,970	9,932	15,520	11,911	10,850	8,26	7,383	3,471 ¹	6,763
USSR	-	-	-	-	-	-	-	-	-	116	-
Total reported to ICES	159,078	159,322	182,101	193,902	166,775	153,821	112,731	92,193	84,819	92,148	93,921
Unreported landings Landings as used by W C	6,899 G 165,977	9,562 168,884	15,900 198,001	5,839 199,741	-2,459 164,297	-4,627 149,194	-7,630 105,101	-200 91,993	3,256 88,075	6,659 98,807	-1,829 92,092

¹Preliminary. ²Includes IIa(EC), IIIa-d(EC). n/a = not available.

Table 3.4.20 Whiting, North Sea

	Average F(2-6,u)										
Date of		Year									
assessment	1987	1988	1989	1990	1991	1992					
1989	1.17	0.81									
1990	1.07	0.78	0.69								
1991	1.10	0.82	0.81	0.77							
1992	1.10	0.82	0.79	0.87	0.96						
1993	1.10	0.82	0.78	0.78	0.70	0.85					

Assessment Quality Control Diagram 1

Remarks:

	Estimated total landings ('000 t) at status quo F											
Date of	Year											
assessment	1988	1989	1990	1991	1992	1993	1994					
1989	100	138	140		•							
1990		83	151	152								
1991			96	139	135							
1992				84	106	108						
1993				88	94	90	99					
				\ SQC ¹	SQC ²	\ Current	Forecast					

Assessment Quality Control Diagram 2

$${}^{1}SQC = Landings(y-1) * \frac{F(y-2)}{F(y-1)} * \exp\left[-\frac{1}{2}\{F(y-2) - F(y-1)\}\right]$$

$${}^{2}SQC = Landings(y) * \frac{F(y-1)}{F(y)} * \exp\left[-\frac{1}{2}\{F(y-1) - F(y)\}\right]$$
where F(y), F(y-1) and F(y-2) are as estimated in the assessment made in year (y+1).

Remarks:

İ.

Table 3.4.20 Continued

	Recruitment (age 0) Unit: Millions											
Date of		Year class										
assessment	1987	1988	1989	1990	1991	1992						
1989	39219	70480										
1990	50113	72010	48155									
1991	28474	64780	44169	65840								
1992	26333	46065	38134	45240	43856							
1993	28386	52593	23286	20814	4862 <u>3</u>	49573						

Assessment Quality Control Diagram 3

Remarks:

Assessment Quality Control Diagram 4

	Spawning stock biomass ('000 t)														
Date of		Year													
assessment	1988	1989	1990	1991	1992	1993	1994	1995							
1989	265	325	391 ¹	354 ¹			L	1							
1990	283	365	474	444 ¹	3751										
1991	273	269	351	400	422 ¹	347 ¹									
1992	267	243	264	291	305	308 ¹	286 ¹]							
1993	279	261	286	228	209	265	315 ¹	2891							

¹Forecast.

Remarks:

		We	ight (100	00 tonnes	5)	Nu	umbers (n	nillions)			
	Year	Total	H.Cons	Disc.	Ind BC	Total	H.Cons	Disc.	Ind BC			
	1070											
	1970	222	163	0	59	142	95	0	47			
	1971	253	218	0	35	176	143	0	33			
	1972	246	218	0	28	176	153	0	23			
	1973	226	195	0	31	169	142	0	27			
	1974	273	231	0	42	165	120	0	45			
	1975	278	240	0	38	189	142	0	47			
	1976	320	253	0	67	310	223	0	87			
	1977	196	190	0	6	121	117	0	4			
	1978	135	132	0	3	97	96	0	2			
	1979	114	113	0	2	68	67	0	1			
	1980	120	120	0	0	72	72	0	0			
	1981	123	121	0	1	70	68	0	2			
	1982	166	161	0	5	115	110	0	5			
	1983	169	167	0	1	112	111	0	1			
	1984	198	192	0	6	167	161	0	6			
Ì	1985	200	192	0	8	206 j	195	0	11			
	1986	164	163	0	1	158	156	0	2			
	1987	149	145	0	4	167 j	159	0	8			
Í	1988	105	104	0	1	93	92	0	1			
Í	1989	92	90	0	2	77	74	0	3			
İ	1990	88	86	0	2	64	59	οİ	5			
İ	1991	99	98	0	1	96	95	οj	1			
İ	1992	92	92	οj	0	70	70	0	0			
-												

TABLE 3.5.2; Saithe, North Sea Annual weight and numbers caught, 1970 to 1992.

)

.

TABLE 3.5.3; Saithe, North Sea International catch at age ('000), Total, 1970 to 1992.

Age	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	-
1 1	234	594	379	4416	3947	312	235	2015	1215	907	
2	2228	10773	20189	31275	16150	71766	31335	12891	16503	16787	!
3	34392	68424	40162	47388	61201	50672	199669	22890	30972	14504	!
4	74326	53348	62290	32955	31387	23406	50339	52270	24935	13022	!
5	13194	30846	23108	24967	12123	9005	9902	13082	16771	10031	-
6	11529	3650	20779	15228	20080	6706	5137	4753	2616	7991	!
7	3654	3783	3363	7998	13734	12650	3317	3218	849	2437	
8	1596	2481	2790	1689	4308	8650	4845	3062	790	577	
9	278	1574	1550	1165	988	3304	3003	3522	607	349	
10+	144	536	1445	1927	1094	2347				1333	1
											-
											-
Age	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	
1	1276	5309	1932	270	59	214	104	780		/10/	
2	23095	18195	28263	32798	34455	6622	6078	28876	11 4887	4186	
3	14159	22267	27405	23363	75449	124122	47110	29029	27388	9119 14375	
4	11399	6362	38946	17980	29769	54405	85116	90577	23173	25767	
5	8338	6151	7934	25161	12081	13039	12197	12429	32280	11554	
6	6086	3265	5410	4903	12330	4045	4269	1942	2910	9826	
7	5189	2994	1761	4380	1357	2524	1592	1120	1132	1267	
8	956	3173	1210	1333	1113	461	1044	813	452	536	
9	418	504	846	929	279	267	265	689	492	293	I
10+	1486	1863	794	819	487	254	487	498	394	318	
Age	1990	1991	1992								
1	291	364	294								
2	3399	12383	5486								
3	30502	44340	16361								
4	13685	27281	30422								
5	9135	6478	11850								
6	3726	2969	2827								
7	2095	1304	1401								
8	490	726	626								
9	146	283	459								
10+	184	205	311								
			211								

TABLE	ABLE ^{3<u>.5.4</u> ; Saithe, North Sea International mean weight at age (kg), Total , 1970 to 1992.}										
Age	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	
1	.434	.495	.304	.154	.268	.198	.461	.429	.353	.434	
2	.697	.609	.510	.392	.494	.494	.501	.416	.520	.389	
3	.931	.838	.743	.780	.849	.887	.690	.753	.781	1.080	
4	1.442	1.357	1.158	1.407	1.556	1.497	1.302	1.251	1.294	1.590	
5	2.073	2.203	1.897	1.575	2.489	2.478	2.175	1.900	2.120	2.219	
6	2.708	3.007	2.364	2.543	2.729	3.275	3.036	3.097	3.210	3.071	
7	3.598	3.804	3.869	3.339	3.353	3.684	4.007	4.146	4.466	3.966	
8	4.420	4.635	4.184	4.657	4.386	4.190	4.325	4.551	4.784	5.128	
9	5.615	5.168	4.543	4.502	5.538	5.481	4.981	4.779	5.309	5.947	
10+	6.659	5.691	6.120	6.046	7.525	7.419	6.768	6.257	6.748	7.170	
Age	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	
1	.253	.274	.249	.418	.181	.142	.481	.360	.429	.426	
2	.411	.585	.498	.455	.482	.481	.481	.387	.547	.684	
3	.905	.937	1.087	.982	.772	.649	.648	.641	.699	.832	
4	1.812	1.859	1.566	1.701	1.600	1.244	1.000	.838	.902	.982	
5	2.370	2.694	2.497	2.118	2.270	1.889	1.674	1.770	1.326	1.377	
6	2.975	3.529	3.144	3.058	2.645	2.603	2.294	2.921	2.644	1.905	
17	4.047	4.470	3.958	3.533	3.715	3.141	3.559	3.782	3.685	3.885	
8	5.044	5.424	4.908	4.432	4.524	4.521	4.245	4.902	4.654	4.879	
19	5.812	6.907	5.606	5.336	5.897	5.094	5.779	5.491	5.681	6.350	
10+	7.322	8.349	7.748	6.948	7.720	7.218	7.900	7.040	7.144	8.432	
·											
Age	1990	1991	1992								
1	.216	.441	.623	1							
Ż	.607	.499	.570								
3	.785	.757	.936								
4	1.154	1.120	1.163								
1 7		1.120	1.105								

}

1.540 2.193 3.195 İ İ

5 6 7 8 9 1.711 2.352 3.163 4.124 5.903 7.211 1.567 2.177 3.621 4.248 5.291 6.071 8 | 4.621 9 | 6.051 10+| 8.209 1

	-
Table 3.5.5	Saithe in the North Sea; 20 years of effort data.

102 FRATRB 1978 1992 1 1 .00 1.00 2 14										
69739.000	248.000	1853.000	3183.000	5447.000	762.000	190.000	154.000	122.000	163.000	152.000
89974.000	230.000	4525.000	3618.000	4128.000	2809.000	329.000	87.000	51.000	84.000	87.000
63577.000	528.000	3149.000	4450.000	2322.000	1412.000	746.000	104.000	45.000	29.000	63.000
76517.000	4538.000	9067.000	2893.000	2423,000	939.000	456.000	258.000	36.000	48.000	43,000
78523.000	1285.000	6001.000	10009.000	2630.000	1328.000	543.000	164.000	98.000	21,000	22,000
69720.000	799.000	3487.000	5770.000	8617.000	1183.000	270.000	86.000	37.000	29.000	10.000
76149.000	1311.000	5482.000	8632.000	5121.000	3837.000	232.000	155.000	33.000	49.000	24,000
53003.000	810.000	8447.000	10230.000	3677.000	1194.000	596.000	33.000	40.000	18.000	13.000
50350.000	721.000	4648.000	12454.000	3291.000	1124.000	291.000	213.000	33,000	15.000	14.000
51234.000	873.000	2062.000	11802.000	3537:000	566.000	268.000	104.000	76.000	20.000	18.000
35482.000	451.000	2038.000	2263.000	7860.000	723.000	178.000	54.000	33.000	37.000	10.000
36133.000	553.077	3197.885	5199.979	2726.086	2846.718	143.775	37.077	13.706	11.566	8,199
36097.000	475.076	4783.261	4360.992	2555.746	525.267	495.450	67.964	31.461	16.020	11.603
45075.000	458.002	2493.662	5483.608	1560.596	673.786	230.058	136.771	26.868	13.350	8.251
34138.000	385.622	1302.925	3058.332	1080.604	153.874	57.665	24.037	18.272	5.552	1.943
NORTRL										
1980 1992										
1 1 .00 1.00										
3 10										
18317.000	186.000	1290.000	658.000	980.000	797.000	261.000	60.000	82.000		
28229.000	88.000	844.000	1345.000	492.000	670.000	699.000	119.000	64.000		
47412.000	6624.000	12016.000	2737.000	2112.000	341.000	234.000	19.000	77.000		
43099.000	4401.000	4963.000	8176.000	1950.000	2367.000	481.000	357.000	84.000		
47803.000	20576.000	7328.000	2207.000	3358.000	433.000	444.000	106.000	51.000		
66607.000	27088.000	21401.000	5307.000	1569.000	637.000	56.000	46.000	4,000		
57468.000	5297.000	29612.000	3589.000	818.000	393.000	122.000	25.000	33.000		
30008.000	2645.000	18454.000	2217.000	290.000	235.000	201.000	198.000	64.000		
18402.000	3132.000	2042.000	2214.000	141.000	157.000	74.000	134.000	43.000		
17781.000	649.000	2126.000	835.000	694.000	309.000	154.000	65.000	7.000		
10249.000	804.000	781.000	924.000	519.000	203.000	63.000	12.000	3.000		
28768.000	14348.000	4968.000	1194.000	518.000	203.000	51.000	56.000	1.000		
35440.000	3296.000	9342.000	4018.000	1085.000	452.000	162.000	106.000	5.000		

Extended Survivors Analysis Saithe in the North Sea; 1960-1992. CPUE data from file c:\ices\nsdem93\sai2Oef.dat Data for 2 fleets over 33 years Age range from 1 to 0 Fleet, Alpha, Beta FRATRB , 1.000 .000 NORTRL .000 Time series weights : Tapered time weighting applied Power = 3 over 20 years Catchability analysis : Catchability dependent on stock size for ages < 2 Regression type = C Minimum of 5 points used for regression Survivor estimates shrunk to the population mean for ages < 2 Catchability independent of age for ages >= Terminal population estimation : 4 Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages. S.E. of the mean to which the estimates are shrunk = .500 Minimum standard error for population estimates derived from each fleet = .300 Prior weighting not applied ng converged after 15 iterations Tuning converged after Fleet disaggregated estimates of survivors :

Table3.5.6 SAITHE in Sub-area IV. Tuning results

Age 1 Catchability dependent on age and year class strength Year class = 1991 Fleet Estimated Int Ext Var Ν Scaled Estimated Survivors s.e s.e Ratio Weights F FRATRB 1. .000 .000 .00 ٥ .000 .000 NORTRL 1. .000 .000 .00 0 .000 .000 P shrinkage mean 144880. .54 .463 .002 F shrinkage mean 32712. .50 .537 .008 Weighted prediction : Survivors Int Ext Var F Ν at end of year s.e Ratio s.e 2 30.310 65125. .37 11.11 .004

Age 2 Catchability constant w.r.t. time, dependent on age Year class = 1990

Fleet		Estimated Survivors	Ir S.	nt e	Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
FRATRB		90766.	.72		.000	.00	1	.324	.053
NORTRL		1.	.00		.000	.00	ò	.000	.000
F shrinkage me	an	39778.	.5	50			•	.676	.118
Weighted predict	ion :								
Survivors	Int	Ext	N	Var	F				
at end of year	s.e	s.e		Ratio					
51949.	.41	.68	2	1.650	.091				

Age 3 Catchability constant w.r.t. time, dependent on age Year class = 1989FRATRB

Age		3,		2,	1	۱,				
Estimated Surv	ivors	34720.	450	22.	0.					
Raw We	ights	3.115,		241,	.000					
NORTRL	-					,			•	
Age	9	3,		2,	1	۱.				
Estimated Surv	ivors	58973.		0.,	0.					
Raw We	ights	.414,		000,	.000					
Fleet		Estimated	In	t	Ext	Var	N	Scaled	Estimated	
		Survivors	s.	е	s.e	Ratio		Weights	F	
FRATRB		37388.	.47	9	.117	.24	2	.497	.334	
NORTRL		58973.	1.55	4	.000	.00	1	.047	.224	
F shrinkage me	ean	30588.	.5	0				.456	.395	
Weighted predict	tion :									
Survivors	Int	Ext	Ν	Var	F					
at end of year	s.e	s.e		Ratio						
34859.	.34	.12	4	.351	.354					

Table 3.5.6 continued

)

Age 4 Catchability constant w.r.t. time, dependent on age Year class = 1988 FRATER

FRAIRB										
Age	2	4,		3,	2	2,	1	,		
Estimated Survi	vors	20536.,	185	93.,	21979.		0.			
Raw Wei	ghts	2.204	1.	328,	.611	i,	.000).		
NORTRL				•		•		•		
Age		4,		3,	2	2.	1			
Estimated Survi	vors	39342.	1168	42.	0.		0.			
Raw Wei	ghts	1.825,		176,	.000),	.000),		
Fleet		Estimated	In	t	Ext	Var	N	Scaled	Estimated	
		Survivors	s.,	e	s.e	Ratio		Weights	F	
FRATRB		20092.	.49	1	.041	.08	3	.408	.863	
NORTRL		43305.	.70	7	.309	.44	2	.197	.492	
F shrinkage me	an	25769.	.5	0				.394	.727	
Weighted predict	ion :									
Survivors	Int	Ext	N	Var	F					
at end of year	s.e	s.e		Ratio						
25789.	.31	. 14	6	.447	.726					

Age 5 Catchability constant w.r.t. time and age (fixed at the value for age) 4 Year class = 1987 FRATRB

	Age		5,		4,	3	5,	2	,	1,	
	Estimated Surviv	/ors	7605.	125	98.	22317.	., 1	3190.		0.,	
	Raw Weig	ghts	1.299,	1.	262	.856	5,	.374		.000,	
	NORTRL				•		•			•	
	Age		5,		4,	3	5,	2	,	1,	
)	Estimated Surviv	/ors	17734.,	116	44.,	9209.		0.	,	0.,	
	Raw Weig	ghts	3.833,	1.	045,	.114	· ·	.000	,	.000,	
	Fleet		Estimated	In	t	Ext	Var	N	Scaled	Estimated	t
			Survivors	s.	e	s.e	Ratio		Weights	F	
	FRATRB		12112.	.51	4	.231	.45	4	.297	.634	
	NORTRL		15998.	.44	8	.135	.30	3	.391	.513	
	F shrinkage mea		7983.	.5	0				.313	.851	
	Weighted predicti	ion :									
	Survivors	Int	Ext	N	Var	F					
	at end of year	s.e	s.e		Ratio						
	11851.	.28	.16	8	.570	.644					

Age 6 Catchability constant w.r.t. time and age (fixed at the value for age) 4 Year class = 1986 FRATRB

	Age		6,		5,	4	,	3,		2,	1,
	Estimated Survivo	rs	1078.,	355	57.,	5485.		6770.	, 50	39.	0.,
	Raw Weigh	ts	1.507,	.6	579,	.686	5,	.478		.207.	.000
	NORTRL				•		•			•	•
	Age		6,		5,	4	,	3,		2,	1.
	Estimated Survivo	rs	4769.	277	76.,	2253.		1946.		0.,	0.,
	Raw Weight	ts	1.678,	2.0	004	.568	s,	.064		.000,	.000,
	Fleet		Estimated	Int		Ext	Var	N	Scaled	Estimated	
			Survivors	s.e	;	s.e	Ratio		Weights	F	
	FRATRB		2595.	.530)	.388	.73	5	.300	.686	
	NORTRL		3316.	.481		.173	.36	4	.363	.572	
ł	F shrinkage mean		2457.	.50)				.337	.713	
	Weighted prediction	n :									
	Survivors	Int	Ext	N	Var	F					
	at end of year s	s.e	s.e		Ratio						
	2785.	.29	.16	10	.557	.652					

Age 7 Catchability constant w.r.t. time and age (fixed at the value for age) 4 Year class = 1985 FRATRB

Age	7,	6,	5,	4,	3,	2.	1.
Estimated Survivors	406.	1585.	3080.		1393.	1899.	0.,
Raw Weights	1.230,	.834,	.333,	.273,	.177,		00,
NORTRL				•		•	•
Age	7,	6,	5,	4,	3,	2,	1,
Estimated Survivors	1997.,	1243.,	2553.,	1266.,	2878.	0., (0.,
Raw Weights	1.593,	.929,	.983,	.226,	.024,	.000, .00	00,
Fleet	Estimated	Int	Ext Var	N Scaled			
	Survivors	s.e	s.e Ratio	Weight	s F		
FRATRB	994.	.586	.356 .61		.822		
NORTRL	1847.	.516	.140 .27		.523		
F shrinkage mean	1402.	.50		.375	.644		
Weighted prediction :							
Survivors Int	Ext	N Var	F				
at end of year s.e	s.e	Ratio					
140631	.15	12 .501	.643				

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 4 Year class = 1984 FRATRB

Age		8,		7,	6	,	5,		4,	3,	2,	1.
Estimated Survi	vors	166.,	5	17.,	613.	,	1178.		91.	389.	700.	0.,
Raw Wei	ghts	.708,		641,	.382		.140		132,	.084,	.036.	.000,
NORTRL						-	•		•	•	,	
Age	!	8,		7,	6		5,		4,	3,	2.	1.
Estimated Survi	vors	700.	4	65.,	1388.		477.		43.	594.	0.	ο.,
Raw Wei	ghts	.586		830,	.425		.414		109.	.011.	.000,	.000,
Fleet	•	Estimated		nt	Ext	Var	N	Scaled	Estimat		,	,
		Survivors	s.	е	s.e	Ratio		Weights	F			
FRATRB		376.	.68		.255	.37	7	.250	.919			
NORTRL		628.	.64		.182	.28	6	.279	.643			
F shrinkage me	an	694.	.5			120	Ū	.471	.597			
Weighted predict				•								
Survivors	Int	Ext	N	Var	F							
at end of year	s.e	s.e		Ratio	•							
579.	.34	.13	14	.391	.682							
2171			14		.002							

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 4 Year class = 1983 FRATRB

Ag		9,		8,	7	· .	6	,	5,	4,	3,	2,	1.
Estimated Surv		122.,	3	06.,	621.	,	1191.	,	979.	323.,	203.	187.	0.,
Raw We	ights	.561,		399,	.340	, ,	.145		.045	.033,	.024	.011,	.000,
NORTRL				•		•		•	•				,
Age	е	9,		8,	7	'.	6		5,	4,	3.	2,	1
Estimated Surv	ivors	443.	1	17.	583.		384.		346.	562.	141.	0.,	r'',
Raw We	ights	.529		330,	.441		.162		.131,	.027	.003,	.000,	.00.
Fleet	-	Estimated	In	t	Ext	Var		Scaled	Estimated		,	,	,
		Survivors	s.	e	s.e	Ratio		Weights					
FRATRB		298.	.80	1	.300	.37	8	.217	.872				
NORTRL		352.	.78	5	.238	.30	7	.226	.779				
F shrinkage m	ean	430.	.5	0			-	.557	.676				
Weighted predic													
Survivors	Int	Ext	N	Var	F								
at end of year	s.e	s.e		Ratio									
380.	.37	. 13	16	.353	.739								

}

				-, Totat ,	1970 to 19	992. 				
Age	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
1	.001	.003	.002	.018	.007	.002	.002	.018	.013	.004
2	.007	.065	.128	.194	.086	.164	.241	.133	. 198	.250
3	.157	.280	.364	.499	.716	.419	.935	.278	.539	.268
4	.506	.388	.445	.579	.740	.670	.997	.682	.558	.457
5	.549	.407	.289	.321	.434	.485	.680	.783	.484	.457
6	.569	.284	.532	.314	.464	.458	.571	.846	.343	.449
7	.328	.367	.462	.401	.522	.606	.432	.889	.343	.626
8	.228	.389	.511	.447	.393	.749	.494	.939	.561	.414
9	.440	.370	.451	.415	.515	.599	.641	.837	.474	.522
10+	.440	.370	.451	.415	.515	.599	.641	.837	.474	.522
Age	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
1	.009	.030	.007	.001	.000	.002	.001	.009	.000	.023
2	.125	.164	.223	.148	.104	.023	.055	.247	.075	.071
3	.347	.170	.398	.292	.593	.656	.226	.402	.392	.327
4	.349	.258	.504	.496	.748	1.247	1.496	.901	.659	.801
5	.603	.322	.595	.727	.749	.905	1.137	.962	1.013	.838
6	.560	.504	.524	.951	1.022	.609	.888	.530	.620	1.056
7	.597	.600	.565	1.142	.770	.588	.516	.613	.688	.610
8	.540	.942	.521	1.211	1.084	.656	.518	.546	.540	.851
9	.606	.618	.714	1.026	.923	.853	1.048	.792	.770	.837
10+	.606	.618	.714	1.026	.923	.853	1.048	.792	.770	.837
• ·										
Age	1990	1991	1992							
1	.003	.005	.004							
2	.024	.169	.091							
3	.359	.480	.354							
4	.598	.639	.726							
5	.759	.641	.644							
6	.728	.600	.651							
7	.669	.612	.643							
8	.506	.517	.682							
9	.591	.623	.739							
10+	.591	.623	.739							

TABLE 3.5.7; Saithe, North Sea International F at age. Total 1970 +

.)

c

TABLE	3 <u>.5.8</u> ; sa Ti			t age (10*	*-3), 1970	to 1993,	(numbers in	n 1993 are	VPA surviv	vors)
Age	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
1 1	232043	226872	240043	270840	643291	197886	140236	126364	103676	267076
2	380819	189769	185209	196187	217749	523111	161733	114602	101634	83784
3	261850	309772	145622	133369	132326	163665	363350	104063	82164	68279
4	206776	183265	191707	82885	66315	52962	88147	116818	64488	39246
5	34495	102040	101773	100594	38041	25894	22183	26620	48346	30236
6	29352	16303	55633	62416	59768	20177	13052	9202	9958	24408
7	14424	13599	10045	26747	37322	30765	10451	6038	3233	5786
8	8642	8503	7711	5181	14661	18130	13742	5555	2032	1879
19	862	5631	4717	3788	2713	8106	7017	6867	1778	949
j 10+	445	1902	4358	6214	2975	5692	4912	7257	6277	3586
Age	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
1 1	163724	196346	324542	472343	393741	153039	178369	92391	178909	200976
2	217843	132891	155951	263964	386477	322314	125104	145942	74937	146469
3	53407	157457	92339	102109	186439	285244	257897	96927	93359	56932
4	42778	30914	108767	50804	62459	84374	121228	168521	53090	51654
5	20349	24710	19554	53811	25326	24201	19852	22237	56016	22498
6	15678	9116	14665	8831	21291	9803	8016	5216	6960	16653
17	12753	7329	4509	7111	2794	6275	4366	2701	2514	3066
8	2532	5746	3292	2098	1859	1060	2853	2134	1198	1034
9	1017	1208	1834	1600	512	515	450	1391	1012	571
10+	3570	4415	1698	1385	878	482	813	991	799	611
Age	1990	1991	1992	1993						
1	107531	85306	79869	0						
2	160757	87776	69514	65125						
3	111667	128541	60660	51949						
4	33604	63826	65121	34859						
5	18976	15130	27572	25789						
6	7965	7271	6526	11851						
7	4744	3150	3267	2785						

.

7 8

10+

Ì

1399

.

1406

.

3150 1989

.

Table 3.5.9. Norwegian 0-group indices for SAITHE

YEAR	OBSERV.	VPA	CRUISE
1981	5.4	325	
1982	7.6	472	
1983	5.0	394	
1984	4.6	153	
1985	5.3	178	
1986	2.3	92	20
1987	5.1	179	61
1988	4.3	201	
1989	3.9	108	
1990	6.0		89
1991	7.3		63
1992	5.1		132
1993	5.0		

)

TABLE <u>3.5.10</u>; Saithe, North Sea Mean fishing mortality, biomass and recruitment, 1970 - 1992.

	H.Cons	Fishing Mon Disc.	Ind BC		iomass tonnes)	Red Ag	cruits ge 1
Year	Ages 3 to 6	Ages 3 to 6	Ages 2 to 5	Total	Spawning	Yclass	Millior
1970	.374	.000	.071	1157	264	1969	232
1971	.296	.000	.045	1141	370	1970	227
1972	.365	.000	.044	941	406	1971	240
1973	.332	.000	.097	824	439	1972	271
1974	.431	.000	.162	980	455	1973	643
1975	.407	.000	.111	928	392	1974	198
1976	.694	.000	.122	769	256	1975	140
1977	.632	.000	.014	534	212	1976	120
1978	.472	.000	.008	447	189	1977	104
1979	.399	.000	.008	491	188	1978	267
1980	.463	.000	.002	448	184	1979	164
1981	.310	.000	.004	544	193	1980	196
1982	.488	.000	.017	582	159	1981	325
1983	.610	.000	.006	698	170	1982	472
1984	.757	.000	.021	644	135	1983	394
1985	.816	.000	.038	569	101	1984	153
1986	.932	.000	.005	523	95	1985	178
1987	.676	.000	.023	383	98	1986	92
1988	.666	.000	.004	350	102	1987	179
1989	.730	.000	.023	372	84	1988	201
1990	.586	.000	.025	321	69	1989	108
1991	.585	.000	.006	319	70	1990	
1992	.593	.000	.001	306	81	1991	
Arit	hmetic mear	n recruits	at age 1 1	for the peri	od 1970 to	1992 :	221
				for the peri			191

Table 3.5.11. Input for catch prediction of SAITHE in Sub-area IV

Ag	е	Stock N	Stock W.	М	Mat
	1	190550	0.427	0.2	0
	2	154990	0.582	0.2	0
	3	117320	0.802	0.2	0.15
	4	34859	1.064	0.2	0.7
	5	25789	1.504	0.2	0.9
	6	11851	2.254	0.2	1
	7	2785	3.51	0.2	1
	8	1406	4.505	0.2	1
	9	579	5.855	0.2	1
	10+	634	7.413	0.2	1
Units		Thousand	Kg		

Stock Data for 1993

Catch Data

	H.cons		D	isc.	Ind. BC			
Age	F.Ref	W.Cat	F.Ref	W.Cat	F.Ref	W.Cat		
1	0.007	0.427	0	0	0	0		
2	0.08	0.586	0	0	0	0.357		
3	0.345	0.817	0	0	0.001	0.507		
4	0.623	1.079	0	0	0.002	0.618		
5	0,722	1.512	0	0	0.001	0.822		
6	0.684	2.257	0	0	0	0.635		
7	0.605	3,51	0	0	0	0		
8	0.581	4.505	. 0	0	0	0		
9	0.668	5.855	. 0	0	0	0		
10+	0.668	7.413	0	0	0	0		

ì

)

Recruits in	1994	
Recruits in	1995	

TABLE 3.5.12; Saithe, North SeaCatch Prediction output; Status quo

				Ye	ear			
	1993		1		1994			
 Biomass at start of Year								
Total	392	412	412	412	412	412	412	412
Spawning	81	76	76	76	76	76	76	76
 Mean F Ages								
H.Cons 3 to 6	.59	.00	.12	.24	.36	.47	.59	.71
Ind BC 2 to 5	.00	.00	.00	.00	.00	.00	.00	.00
Effort relative to 1992								
H.Cons	1.00	.00	.20	.40	.60	.80	1.00	1.20
Ind BC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Catch weight ('000t)								
H.Cons	89	0	23	45	64	81	97	111
Disc.	0	0	0	0	0	i o	0	i o
Ind BC	0	0	0	0	0	j o	0	j o
Total Catch	89	0	24	45	64	81	97	111
Total Landings	89	0	24	45	64	81	97	111
Biomass at start of 1995								
Total		545	516	490	466	445	426	409
Spawning		156	138	122	108	96	85	75

Stock at start of and catch during 1993

)

Stock at start of and catch during 1994
For F(1994) = F(1992)

	L Charle No.	1 11 0										
Age	Stock No.	H.Cons	Disc.	Ind BC	Total		Age	Stock No.	H.Cons	Disc.	Ind BC	Ţ
	400554	4005										
1	190551	1205	0	0	1205		1	190551	1205		0	
2	154922	10810	0	0	10810		2	154922	10810	0	0	1
3	117322	31190	0	90	31281		3	117088	31128	0	90	3
4	34859	14788	0	47	14835		4	67960	28830	0	93	28
5	25789	12158	0	17	12175		5	15276	7202	0	10	1
6	11851	5381	0	0	5381		6	10247	4653	0	0	j 4
7	2785	1157	0	0	1157		7	4896	2034	0	0	
8	1406	567	0	0	567	Í	8	1245	502	0	0	
9	579	259	0	0	259		9	644	288	0	0	
10	634	283	0	0	283		10	243	109	0	0	
Wt.	392410	89045	0	89	89134		Wt.	412181	96670	0		

(Numbers in thousands, weights in tonnes.)

Table 3.5.13 Saithe catch prediction -linear analysis

Input Values

Name	value	CV	Name	Value	CV
Population	at age in 1993	3	Fishing mo	rtality pattern	
PLN1	190551	0.7	SEL1	0.007	0.59
PLN2	154922	0.7	SEL2	0.08	0.31
PLN3	117322	0.7	SEL3	0.346	0.25
PLN4	34859	0.34	SEL4	0.625	0.2
PLN5	25789	0.31	SEL5	0.723	0.14
PLN6	11851	0.28	SEL6	0.684	0.12
PLN7	2785	0.29	SEL7	0.605	0.11
PLN8	1406	0.31	SEL8	0.581	0.12
PLN9	579	0.34	SEL9	0.668	0.12
PN10	634	0.37	SL10	0.668	0.09
Natural mo	rtality pattern		Recruitmen	t	
m1	0.2	0.1	R94	190551	0.7
m2	0.2	0.1	R95	190551	0.7
m3	0.2	0.1	Effort multip	liers	
m4	0.2	0.1	F93	1	0.1
m5	0.2	0.1	F94	1	0.1
m6	0.2	0.1	F95	1	0.1
m7	0.2	0.1	Natural mor	tality multiplie	ers
m8	0.2	0.1	k93	1	0.1
m9	0.2	0.1	k94	1	0.1
m10	0.2	0.1	k95	1	0.1

Table 3.5.14. Values used for parametric stock-recruitment relationship (Parameters defined in section 1.4.3)

Adjusted coefficient of determination = 0.3560

	Parameter	SD
а	1.571	0.2377
b	349.1294	153.2304
С	3.8615	4.1325

Table 3.5.15 Saithe in Sub-area IV

Average F(3-6,u)								
Date of assessment	Year							
	1987	1988	1989	1990	1991	1992		
1989	0.46	0.40				•		
1990	0.62	0.51	0.39					
1991	0.69	0.65	0.72	0.64				
1992	0.68	0.67	0.75	0.65	0.73			
1993	0.68	0.67	0.73	0.59	0.59	0.59		

Assessment Quality Control Diagram 1

Remarks:

Estimated total landings ('000 t) at status quo F										
Date of assessment	Year									
	1988	1989	1990	1991	1992	1993	1994			
1989	109	118	120			L	L			
1990	162	94	116	125						
1991		102	95	91	102					
1992			96	90	123	121				
1993				99	92	89	97			
				\ SQC ¹	SQC ²	Current	\ Forecast			

Assessment Quality Control Diagram 2

$${}^{1}SQC = Landings(y-1) * \frac{F(y-2)}{F(y-1)} * \exp \left[-\frac{1}{2} \{F(y-2) - F(y-1)\} \right]$$

$${}^{2}SQC = Landings(y) * \frac{F(y-1)}{F(y)} * \exp \left[-\frac{1}{2} \{F(y-1) - F(y)\} \right]$$
where F(y), F(y-1) and F(y-2) are as estimated in the assessment made in year (y+1).

Remarks:

Table 3.5.15 Continued

Recruitment (age 1) Unit: Millions									
Date of assessment	Year class								
	1987	1988	1989	1990	1991	1992			
1989	166	237							
1990	235 ¹	230 ¹	2321						
1991	187	212 ¹	211 ¹	2111					
1992	168	308	214 ¹	214 ¹	214 ¹				
1993	179	201	108	191 ¹	191 ¹	191 ¹			

Assessment Quality Control Diagram 3

¹Geometric average recruitment.

Remarks:

Assessment Quality Control Diagram 4

Spawning stock biomass ('000 t)									
Date of	Year								
assessment	1988	1989	1990	1991	1992	1993	1994	1995	
1989	186	236	244 ¹	240 ¹					
1990	125	122	166	206 ¹	233 ¹				
1991	106	87	74	70	79 ¹	85 ¹			
1992	102	82	66	56	68	83 ¹	79 ¹		
1993	102	84	69	70	81	81	76 ¹	85 ¹	

¹Forecast.

Remarks:

Year	Belgium	Denmark	France	Germany	Netherlands	UK (Engl.	Other	Total	Unreported	Grand
				Fed. Rep.		& Wales)	countries	reported	landings	Total
4000										
1982	1,927	522	686	290	17,749	403		21,577	2	21,579
1983	1,740	730	332	619	16,101	435		19,957	4,970	24,927
1984	1,771	818	400	1,034	14,330	586	1	18,940	7,899	26,839
1985	2,390	692	875	303	14,897	774	3	19,934	4,313	24,247
1986	1,833	443	296	155	9,558	647	2	12,934	5,267	18,201
1987	1,644	342	318	210	10,635	676	4	13,829	3,539	17,368
1988	1,199	616	487	452	9,841	740	28	13,363	8,227	21,590
1989	1,596	1,020	312	864	9,620	966	65	14,443	7,378	21,821
1990	2,389	1,428	352	2,296		1,484	276	8,225	26,908	35,133
1991	2,977	1,307	465	2,107	18,771	1,605	361	27,593	10,749	38,342
1992	2,058	1,358	538	1,880	18,601	1,221	88	25,744	3,372	29,116

 Table 3.6.1
 Nominal catch (tonnes) of SOLE in Sub-area IV and landings as estimated by the Working Group, 1982-1992

all landings reported to ICES unreported landings estimated by the Working Group 1992 data are provisional No data on discards available

At 9/10/1993 9:46

Table 1	Catch nu	umbers at	age Num	bers*10**	-3					
YEAR,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,
AGE										
1,	389,	191,	165,	373,	92,	10,	115,	837,	125,	961,
2,	34408,	30734,	16618,	9351,	29208,	13187,	46140,	12023,	14658,	6821,
з,	41386,	43931,	43213,	18494,	21703,	47140,	18211,	103898,	28892,	44089,
4,	21189,	22554,	20286,	17703,	9210,	15248,	22583,	9779,	89536,	16082,
5,	624,	8791,	9403,	7745,	6623,	4400,	4700,	9360,	7592,	37458,
6,	1378,	741,	3556,	5522,	3133,	3890,	1695,	3824,	4262,	2453,
7,	1950,	854,	209,	2272,	1527,	1554,	1455,	1164,	1958,	3039,
8,	978,	1043,	379,	110,	892,	898,	655,	1273,	820,	784,
9,	386,	524,	637,	282,	94,	526,	467,	604,	819,	424,
10,	301,	242,	200,	620,	114,	38,	240,	268,	356,	474,
11,	423,	209,	192,	355,	176,	34,	45,	324,	347,	174,
12,	31,	146,	189,	173,	142,	86,	36,	59,	421,	240,
13,	14,	30,	94,	126,	69,	42,	49,	28,	19,	142,
14,	177,	24,	33,	105,	56,	10,	27,	63,	17,	7,
+gp,	230,	243,	267,	305,	167,	111,	95,	215,	177,	253,
TOTALNUM,	103864,	110257,	95441,	63536,	73206,	87174,	96511,	143719,	149999,	113399,
TONSLAND,	24927,	26839,	24248,	18200,	17367,	21590,	21821,	35133,		29116,
SOPCOF %,	100,	100,	99,	99,	99,	100,	99,	99,	99,	98,

)

Run title : North Sea Sole, sexes combined *** reduced data set *** RSOLIND.DAT

At 9/10/1993 9:46

Table 3.6.3

Table 2	Catch we	eights at	age (kg)							
YEAR,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,
AGE										
1,	.1340,	.1530,	.1220,	.1350,	.1390,	.1270,	.1180,	.1240,	.1280,	.1460,
2,	.1820,	.1710,	.1870,	.1790,	.1860,	.1750,	.1730,	.1820,	.1860,	.1770,
з,	.2170,	.2210,	.2160,	.2130,	.2050,	.2170,	.2160,	.2260,	.2090,	.2130,
4,	.3010,	.2860,	.2880,	.2990,	.2710,	.2700,	.2880,	.2900,	.2620,	.2590,
5,	.3890,	.3610,	.3570,	.3570,	.3530,	.3530,	.3350,	.3680,	.3140,	.2990,
б,	.4160,	.3860,	.4270,	.4070,	.3740,	.4280,	.3740,	.3900,	.4300,	.3800,
7,	.4670,	.4650,	.4470,	.4850,	.4280,	.4830,	.4560,	.4010,	.4360,	.4100,
8,	.4890,	.5550,	.5440,	.5430,	.4800,	.5190,	.4900,	.4970,	.4610,	.4590,
9,	.5050,	.5750,	.6120,	.5680,	.3800,	.5580,	.4720,	.4570,	.5060,	.4840,
10,	.6090,	.5120,	.6340,	.5360,	.5770,	.5940,	.5090,	.5640,	.5500,	.5270,
11,	.6220,	.6550,	.5090,	.5750,	.6370,	.8070,	.6810,	.6220,	.5230,	.5900,
12,	.6000,	.6310,	.6560,	.6330,	.6120,	.7140,	.6300,	.5170,	.5130,	.4710,
13,	.3340,	.7220,	.7670,	.6310,	.6590,	.7540,	.7110,	.5710,	.8510,	.6100,
14,	.6310,	.8450,	.8010,	.7880,	.7260,	.7710,	.6360,	.4610,	.7690,	.7760,
+gp,	.7560,	.7070,	.6800,	.7150,	.6980,	.6940,	.7290,	.6300,	.5570,	.6390,
SOPCOFAC,	1.0040,	1.0034,	.9898,	.9936,	.9932,	.9990,	.9855,	.9901,	.9876,	.9848,

Run title : North Sea Sole, sexes combined *** reduced data set *** RSOLIND.DAT At 9/10/1993 9:46

Table 3.6.4

Table	3	Stock we	eights at	age (kg)							
YEAR,		1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,
AGE											
1,		.0500,	.0500,	.0500,	.0500,	.0500,	.0500,	.0500,	.0500,	.0500,	.0500,
2,		.1400,	.1330,	.1270,	.1330,	.1540,	.1330,	.1330,	.1480,	.1380,	.1560,
з,		.2000,	.2030,	.1850,	.1910,	.1920,	.1930,	.1950,	.2030,	.1830,	.1950,
4,		.2850,	.2680,	.2670,	.2780,	.2590,	.2600,	.2900,	.2920,	.2520,	.2590,
5,		.3290,	.3480,	.3240,	.3440,	.3490,	.3350,	.3480,	.3560,	.2980,	.3080,
6,		.4350,	.3860,	.3810,	.4230,	.3810,	.4080,	.3390,	.4380,	.4060,	.3990,
7,		.4640,	.4880,	.3800,	.4940,	.4050,	.4170,	.4100,	.3910,	.4330,	.4060,
8,		.4830,	.5910,	.6260,	.4870,	.4570,	.4720,	.4750,	.4860,	.5010,	.4700,
9,		.5100,	.5670,	.5540,	.5870,	.3080,	.4850,	.4180,	.4710,	.5420,	.4950,
10,		.5830,	.5590,	.5890,	.5460,	.5120,	.4550,	.4620,	.4960,	.5370,	.5440,
11,		.6010,	.6320,	.5170,	.6810,	.6240,	.8290,	.7040,	.6820,	.5110,	.4880,
12,		.7210,	.7310,	.7340,	.6450,	.5800,	.6550,	.7870,	.5500,	.5510,	.4420,
13,		.7410,	.8730,	.7400,	.7370,	.5720,	.5350,	.7160,	.7890,	.4300,	.5780,
14,		.6800,	.9520,	.6420,	.9390,	.6900,	.8470,	.6160,	.4580,	1.1090,	.6720,
+gp,		.7190,	.7000,	.6730,	.8870,	.6810,	.6870,	.7300,	.7490,	.6500,	.6280,

NS_SOLE Tuning data < <neth>> <<tri>> <<ger>> VBEEK (7/10/93) RSOLEF.DAT</ger></tri></neth>	
103 >>NETHERLANDS ALL FLEETS<<	
79, 92 1, 1, 0, 1	
1, 15 44.9, 9.99, 7721.2, 35400.6, 12904.4, 2096.5, 2657.4, 1490.0, 641.6, 177.2, 323.3, 104.9, 85.5, 77.0, 53.7, 476.1	
45.0, 462.1, 938.3, 11061.0, 14294.5, 4914.8, 938.1, 1731.7, 1133.1, 214.3, 17.0, 347.8, 16.5, 32.5, 23.7, 432.2 46.3, 391.2, 26036.0, 2756.0, 5720.5, 6094.5, 2265.5, 586.6, 531.3, 439.4, 98.9, 15.3, 102.4, 56.9, 4.4, 173.2	
57.3, 2572.0, 24290.1, 38683.0, 1085.1, 2638.3, 3214.2, 961.1, 234.8, 352.9, 287.6, 80.2, 41.7, 157.3, 7.9, 141.1 65.6, 381.0, 31274.7, 36706.2, 16386.3, 375.1, 768.9, 1117.8, 531.2, 237.5, 168.1, 338.6, 15.0, 2.0, 157.6, 143.2	
70.7, 186.7, 26976.3, 37398.3, 18212.1, 6529.0, 301.2, 492.0, 633.5, 321.8, 123.7, 130.9, 90.3, 6.4, 14.5, 155.4 70.3, 126.2, 12923.7, 34685.4, 16979.4, 7239.6, 2536.8, 146.5, 285.1, 426.8, 84.9, 68.7, 113.3, 61.9, 9.1, 134.5	
68.1, 354.6, 8027.0, 13755.0, 13809.8, 6353.7, 4342.4, 1712.2, 71.8, 223.4, 405.6, 211.1, 124.6, 73.4, 88.5, 247.6 68.4, 73.7, 23918.9, 18282.7, 7081.1, 5313.1, 2608.3, 1095.7, 566.4, 57.0, 78.0, 79.7, 80.1, 36.4, 32.0, 123.4	
76.3, 9.99, 12191.9, 40595.2, 12448.9, 2982.9, 2955.6, 1274.8, 652.4, 384.5, 30.4, 25.4, 42.7, 26.1, 3.2, 60.9 61.6, 9.99, 40284.3, 13165.6, 17489.4, 2688.9, 1099.4, 1134.4, 409.4, 333.9, 161.6, 8.9, 22.7, 16.2, 10.0, 40.0	
71.2, 119.3, 9071.1, 84629.7, 7242.0, 6586.7, 1965.0, 634.6, 819.2, 375.9, 137.6, 134.1, 42.5, 10.1, 12.6, 138.2 68.7, 48.0, 8803.9, 20618.9, 71704.8, 5568.0, 2565.1, 819.3, 374.5, 470.7, 187.9, 118.1, 216.6, 7.6, 7.2, 57.8	
71.6, 833.9, 5055.0, 34088.9, 11138.4, 29622.1, 1458.1, 2063.2, 447.7, 216.0, 272.3, 74.5, 170.3, 74.4, 3.9, 107.5 tridens sns survey	
70, 92 1, 1, 0, 1	
1, 4 1, 4938, 745, 204, 31	
1, 613, 1961, 99, 7 1, 1410, 341, 161, 0.1	
1, 4686, 905, 73, 35 1, 1924, 397, 69, 0.1	
1, 597, 887, 174, 44 1, 1413, 79, 187, 70	
1, 3724, 762, 77, 85 1, 1552, 1379, 267, 27	
1, 104, 388, 325, 60 1, 4483, 80, 99, 45	
1, 3739, 1411, 51, 13 1, 5098, 1124, 231, 7	
1, 2640, 1137, 107, 43 1, 2359, 1081, 307, 102	
1, 2151, 709, 159, 59	
1, 3791, 465, 67, 30 1, 1890, 955, 59, 15 1, 11237, 504, 284, 84	
1, 11227, 594, 284, 81 1, 3052, 5369, 248, 50	
1, 2900, 1078, 907, 100 1, 1265, 2515, 527, 607	
1, 11081, 114, 319, 194 ger survey	
80,92 1, 1, 0, 1	
2, 10 1, 3.8, 27.6, 26.1, 15.0, 1.3, 3.5, 1.8, 0.5, 0.1	
1, 43.6, 2.7, 7.6, 4.6, 2.2, 0.4, 0.6, 0.5, 0.2 1, 17.1, 48.4, 1.4, 5.3, 2.9, 2.1, 0.4, 1.0, 0.4	
1, 74.0, 50.0, 23.3, 0.8, 1.8, 1.1, 0.9, 0.1, 0.2 1, 13.1, 84.4, 34.4, 14.9, 0.5, 1.5, 1.5, 0.8, 0.2	
1, 4.9, 32.8, 40.4, 9.0, 3.0, 0.2, 0.3, 0.2, 0.1 1, 7.1, 9.5, 8.4, 7.1, 2.3, 0.6, 0.0, 0.2, 0.1	
1, 11.8, 17.3, 7.4, 3.4, 1.8, 0.5, 0.2, 0.0, 0.0 1, 4.2, 16.3, 7.9, 1.5, 1.1, 0.9, 0.2, 0.1, 0.0	
1, 24.4, 24.9, 21.4, 4.6, 1.2, 1.0, 0.9, 0.2, 0.1 1, 7.0, 52.6, 7.8, 2.8, 0.8, 0.2, 0.1, 0.1, 0.0	
1, 9.5, 34.1, 87.2, 10.0, 6.9, 1.1, 0.4, 0.2, 0.4 1, 1.2, 25.4, 11.0, 25.1, 3.5, 0.8, 0.7, 0.0, 0.1	

VPA Version 3.1 (MSDOS)

9/10/1993 9:44

Extended Survivors Analysis

North Sea Sole, sexes combined *** reduced data set *** RSOLIND.DAT

CPUE data from file RSOLEF.DAT

Data for 3 fleets over 23 years Age range from 1 to 14

Fleet,	Alpha,	Beta
>>NETHERLANDS ALL FL	, .000	, 1.000
tridens sns survey	, .000	, 1.000
ger survey	, .000	, 1.000

Time series weights :

Tapered time weighting not applied

Catchability analysis :

Catchability independent of stock size for all ages

Catchability independent of age for ages >= 7

Terminal population estimation :

Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages.

S.E. of the mean to which the estimates are shrunk = .500

Minimum standard error for population estimates derived from each fleet = .300

Prior weighting not applied

Tuning converged after 23 iterations

Terminal year survivor and F summaries :

Age 1 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
>>NETHERLANDS ALL FL	912795.	1.670	.000	.00	1	.023	.001
tridens sns survey	390115.	.300	.000	.00	1	.718	.002
ger survey	1.	.000	.000	.00	0	.000	.000
F shrinkage mean	366702.	.50				.259	.002

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of year	5.e	5.e		Ratio	
391563.	.25	.10	3	.376	.002

Age 2 Catchability constant w.r.t. time, dependent on age

				-				
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated	
	Survivors	s.e	s.e	Ratio		Weights	F	
>>NETHERLANDS ALL FL	25690.	.470	.107	.23	2	.208	.225	
tridens sns survey	22841.	.290	.541	1.87	2	.546	.250	
der survey	9975.	.853	.000	.00	ĩ	.063	.501	
ger burvey	<i>.</i>	.055	.000	.00	т	.005	. 501	
F shrinkage mean	34220.	.50				.184	174	
r shrinkaye mean	34220.	. 50				.104	.174	
Weighted prediction :								
werduced breatcriou :								
Survivors Int	Ext	N Var	F					
			-					
at end of year s.e		Rati						
239242	1.22	6 1.029	.240					
Age 3 Catchability	constant w.r	.t. time, d	ependent	on age				
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated	
	Survivors	s.e	s.e	Ratio		Weights	F	
>>NETHERLANDS ALL FL	38950.	.343	.242	.71	3	.372	.731	
tridens sns survey	51788.	.351	.292	.83	3	.356	.593	
-	38047.				2			
ger survey	36047.	.675	.034	.05	2	.096	.743	

.175

.517

F shrinkage mean 61891. .50 Weighted prediction : Survivors Int Ext N Var F

at end of	year	s.e	s.e		Ratio	
46647.		.21	.13	9	.638	.641

Continued

Table 3.6.6 (cont.)

)

)

Age 4 Catchability constant w.r.t. time, dependent on age

	Catchabi	,								
Fleet			Estimated Survivors	Int s.e		Ext s.e	Var Ratio	N	Scaled Weights	Estimate F
>>NETHERL			14545.	.302		.107	.35	4	.459	.719
tridens s ger surve		У	28495. 16055.	.418		.240 .194	.57 .35	4 3	.239 .135	.430 .669
F shrin	ikage mea	n	18294.	.50					.167	.608
Weighted	predicti	on :								
Survivors		Int	Ext	N	Var	F				
at end of		s.e	s.e		Ratio	-				
17992.		.20	.11	12	.552	.615				
Age 5	Catchabi	lity	constant w.	r.t. ti	me, dep	pendent	on age			
Fleet			Estimated Survivors	Int		Ext	Var	N	Scaled	Estimate
>>NETHERL	ANDS ALL	FL	46460.	s.e .287		s.e .164	Ratio .57	5	Weights .528	F .569
tridens s ger surve		У	55064. 40289.	.525 .556		.139	.27	4	.158	.499
F shrin	kage mea	n	50678.	.50					.174	.532
Weighted	predicti	on :								
Survivors		Int	Ext	N	Var	F				
at end of 47487.	year	s.e .21	s.e .08	14	Ratio .396	.560				
	Catchabi						on			
	CalchaD1	ттсу	constant w.				5			
Fleet			Estimated Survivors	Int s.e		Ext s.e	Var Ratio	N	Scaled Weights	Estimate F
>>NETHERL			3713.	.264		.110	.42	6	.596	.487
tridens s ger surve		У	4901. 6087.	.685 .527		.182	.27	4 5	.088	.389 .324
F shrin	kage mean	n	3762.	.50					.166	.483
Veighted	predicti	on :								
Survivors		Int	Ext	N	Var	F				
at end of 4107.	year	s.e .20	s.e .09	16	Ratio .425	.450				
Age 7	Catchabi	lity	constant w.	r.t. ti	me, dep	endent	on age			
leet			Estimated	Int		Ext	Var	N	Scaled	Estimate
>>NETHERL	ANDS ALL	FL	Survivors 4348.	s.e .251		s.e .070	Ratio .28	7	Weights .650	F .510
ridens s ger surve	ns surve		3538. 3754.	.914		.121	.13	4 6	.049	.597
F shrin	kage mean	n	5139.	.50					.163	.446
Veighted	predictio	on :								
Gurvivors		Int	Fyt	N	Vor	F				
at end of 4335.	year	s.e .20	Ext s.e .07	N 18	Var Ratio .350	F .511				
Age 8 (Catchabil	lity	constant w.	r.t. tir	ne and	age (fi	xed at	the v	alue for	age) 7
leet		-	Estimated	Int		Ext	Var	N	Scaled	Estimate
			Survivors	s.e		s.e	Ratio		Weights	F
>NETHERL			1066. 1029.	.261 1.230		.034	.13	8 4	.682	.530
er surve			1199.	.676		.225	.18	47	.102	.545
F shrin	kage mear	n	1521.	.50					.186	.399
Weighted p	predictio	on :								
urvivors		Int	Ext	N	Var	F				
t end of 1152.		s.e .22	s.e .06	20	Ratio .289	.499				
ige 9 (Catchabil	ity o	constant w.1	r.t. tim	ne and	age (fi	xed at t	the v	alue for	age) 7
leet			Estimated Survivors	Int s.e		Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
>NETHERLA ridens sr er survey	ns survey		487. 488. 351.	.254 1.555 .824		.026 .280 .191	.10 .18 .23	9 4 7	.725 .019 .069	,603 ,603 ,765
	cage mean	ı	890.	.50					.187	.374
F shrin										
F shrin) Weighted p	predictio	on :								
		n : Int	Ext	N	Var	F				

Continued

Table 3.6.6 (Cont.)

leet		Estimated	Int		Ext	Var	N	Scaled	Estimate
		Survivors	s.e		s.e	Ratio		Weights	F
>NETHERLANDS ALL		674.	.280		.022	.08	10	.653	.512
ridens sns survey Jer survey	1	474. 344.	1.820		.145	.08	4 9	.015	.669
F shrinkage mear	r	1180.	.50					.205	.324
veighted prediction									
					-				
urvivors t end of year 690.	Int s.e .23	Ext s.e .09	N 24	Var Ratio .381	F .503				
ge 11 Catchabil	Lity	constant w.	r.t. ti	me and	age (fi	ixed at	the v	alue for	age) 7
leet		Estimated	Int		Ext	Var	N	Scaled	Estimate
NETHERLANDS ALL	FT	Survivors 306.	5.e		s.e	Ratio	10	Weights	F
ridens sns survey		346.	.313 3.513		.087	.28	10 3	.640	.432
er survey		472.	.773		.249	.04	9	.105	.300
F shrinkage mear	n	357.	.50					.251	.381
Weighted predictio	on :								
urvivors	Int	Ext	N	Var	F				
t end of year 333.	5.e .25	s.e .07	23	Ratio .289	.403				
ge 12 Catchabil	ity	constant w.	r.t. ti	me and	age (fi	xed at	the v	alue for	age) 7
leet		Estimated	Int		Ext	Var	N	Scaled	Estimate
		Survivors	s.e		s.e	Ratio		Weights	F
>NETHERLANDS ALL		205. 177.	.374		.131	.35	10	.606	.748
ridens sns survey er survey		147.	5.446 1.284		.504 .184	.09 .14	2 7	.003 .051	.828 .935
F shrinkage mean	ı	248.	.50					.340	.653
eighted predictic	on :								
urvivors	Int	Ext	N	Var	F				
t end of year 215.	s.e .29	s.e .08	20	Ratio .279	.724				
ge 13 Catchabil	ity	constant w.1	r.t. ti	me and	age (fi	xed at	the v	alue for	age) 7
leet		Estimated	Int		Ext	Var	N	Scaled	Estimate
		Survivors	s.e		s.e	Ratio		Weights	F
>NETHERLANDS ALL		102.	.501		.134	.27	10	.468	.841
ridens sns survey er survey		66. 57.	8.699 1.399		.000	.00 .19	1 7	.002	1.108
F shrinkage mean		152.	.50					.470	.636
eighted predictio									
	Int	Ext	N	Var	F				
	5.e .34	s.e .11	19	Ratio	.759				
		constant w.r				xed at	the v	alue for	age) 7
leet	-	Estimated	Int		Ext	Var	N	Scaled	Estimate
		Survivors	s.e		s.e	Ratio		Weights	F
>NETHERLANDS ALL		7.	.500		.140	.28	10	.494	.612
ridens sns survey		1.	.000		.000	.00	0	.000	.000
er survey		10.	3.374		.112	.03	3	.011	.491

)

J

 Survivors
 Int
 Ext
 N
 Var
 F

 at end of year
 s.e
 s.e
 Ratio

 8.
 .35
 .08
 14
 .235
 .601

Run title : North Sea Sole, sexes combined *** reduced data set *** RSOLIND.DAT

At 9/10/1993 9:46

Table 8	Fishing	mortality	(F) at a	ge							
YEAR,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	FBAR 90-92
AGE											
1,	.0028,	.0028,	.0021,	.0024,	.0013,	.0000,	.0012,	.0064,	.0035,	.0023,	.0041,
2,	.3077,	.2851,	.3110,	.1415,	.2332,	.2244,	.1265,	.1493.	.1331,	.2400,	.1741,
З,	.5947,	.7100,	.7187,	.5955,	.4941,	.6321,	.4845,	.4089,	.5579,	.6414,	.5361,
4,	.6744,	.6722,	.7501,	.6467,	.5941,	.6855,	.6287,	.4619,	.6561,	.6153,	.5778,
5,	.3120,	.5825,	.5827,	.6375,	.4715,	.5593,	.4087,	.5123.	.7005,	.5598,	5909,
6,	.4837,	.6551,	.4360,	.7202,	.5086,	.4959,	.3842,	.6050,	.4106,	.4499,	.4885,
7,	.4425,	.5552,	.3403,	.4875,	.3891,	.4516,	.3084,	.4395,	.6357,	.5110,	.5287,
8,	.4482,	.3991,	.4527,	.2689,	.3183,	.3698,	.3089,	.4298,	.5615,	.4993,	.4969.
9,	.3619,	.4078,	.4020,	.6364,	.3444,	.2800,	.2971,	.4603.	.4811,	.5633,	.5015,
10,	.3136,	.3597,	.2387,	.7599,	.5066,	.2030,	.1777,	.2481,	.4788,	.5029,	.4099,
11,	.5471,	.3322,	.4774,	.7527,	.4416,	.2452,	.3517,	.3434,	.5160,	.4034,	.4209,
12,	.2277,	.3254,	.5006,	.9398,	.6858,	.3565,	.3892,	.9305,	.8877,	.7236,	.8473,
13,	.1756,	.3194,	.3197,	.6515,	1.1628,	.3887,	.3120,	.5242,	.7803,	.7587.	.6877,
14,	.3187,	.4520,	.6116,	.6256,	.5998,	.4341,	.4156,	.7396,	.6198,	.6009.	.6534,
+gp,	.3187,	.4520,	.6116,	.6256,	.5998,	.4341,	.4156,	.7396,	.6198,	.6009,	···· · ,
FBARC,	.4910,	.5611,	.5707,	.5429,	.4444,	.5249,	.4433,	.4061,	.5290,	.5149,	
FBAR 2- 8,	.4662,	.5513,	.5131,	.4997,	4298	.4884,	.3786,	.4295,	.5222,	.5024,	
FBAR 3-10,	.4539,	.5427,	.4901,	.5941,	.4533,	.4597,	.3748,	.4457,	.5603,	.5429,	

_

Table 3.6.8

Run title : North Sea Sole, sexes combined *** reduced data set *** RSOLIND.DAT

At 9/10/1993 9:46

Table 10		number at	age (star	t of year	;)	Nu	umbers*10	++-3					
YEAR,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	GMST 83-89	AMST 83-89
AGE													
1,	144356,	72432,	82516,	163520,	76317,	451121,	100850,	137489,	37276,	433755,	ο,	125482,	155873,
2,	136577,	130248,	65357,	74506,	147604,	68967,	408182,	91143,	123609.	33610,	391563,	120077.	147349,
з,	97051,	90850,	88619,	43330,	58521,	105774,	49860,	325449.	71033,	97902,	23924,	72422,	76286,
4,	45411,	48448,	40416,	39080,	21615,	32308.	50867.	27793,	195647,	36791,	46647.	38414,	39735,
5,	2447,	20934,	22383,	17273,	18521,	10797.	14729,	24545,	15846,	91859,	17992,	12865,	15298,
6,	3778,	1621,	10579,	11309,	8262,	10459,	5584,	8856,	13306,	7117,	47487,	6203,	7370,
7,	5733,	2107,	762,	6190,	4980,	4496,	5763,	3441,	4376,	7986,	4107.	3567.	4290,
8,	2846,	3332,	1094,	490,	3440,	3054,	2590,	3831,	2006,	2097,	4335,	2023,	2407,
9,	1336,	1645,	2023,	630,	339,	2264,	1909,	1720,	2255,	1035,	1152,	1224,	1449,
10,	1175,	842,	990,	1225,	302,	217,	1548,	1283,	983,	1261,	533,	740,	900,
11,	1055,	777,	532,	706,	518,	164,	161,	1173,	906,	551,	690,	458,	559,
12,	160,	553,	504,	298,	301,	302,	116,	102,	753,	489,	333,	282,	319,
13,	91,	115,	361,	277,	106,	137,	191,	71,	36,	280,	215,	162,	183,
14,	682,	69,	76,	237,	131,	30,	84,	127,	38,	15,	119,	116,	187,
+gp,	883,	700,	610,	686,	387,	330,	294,	429,	401,	585,	298,	,	101,
TOTAL,	443582,	374673,		359757,	341343,	690419,	642728,		468471,	715335,	539394,		
DTALBIO,	68457,	66234,	54945,	53994,	57753,	73599,	96537,		97195,	93134,			
DTSPBIO,	42118,	45290,	42519,	35909,	31206,	41871,	37207,	92744,	78273,	66203,			

,

SOLE NORTH SEA (IV) - Indices of Recruitment (input data for RCT3)

Year	VPA	INT-0	TR1S	INT-1	TR2S	TR3S	SOL3
1968	50368	-11	-11	-11	745	99	-11
1969	141450	-11	4938	-11	1961	161	-11
1970	41865	-11	613	-11	341	73	-11
1971	76841	-11	1410	-11	905	69	-11
1972	106521	-11	4686	-11	397	174	-11
1973	110792	-11	1924	-11	887	187	31.5
1974	41896	-11	597	1.49	79	77	16.3
1975	114173	167.88	1413	5.93	762	267	34.4
1976	140657	81.91	3724	6.97	1379	325	-11
1977	47111	32.31	1552	0.87	388	99	41.5
1978	11865	95.38	104	2.27	80	51	1.9
1979	154652	391.51	4483	-11	1411	231	76.1
1980	149696	401.63	3739	12.1	1124	107	77.1
1981	153737	293.04	5098	14.58	1137	307	147.1
1982	144356	340.58	2640	21.81	1081	159	77.8
1983	72432	109.4	2359	11.23	709	67	10.8
1984	82516	194.2	2151	3.29	465	59	29.8
1985	163520	300.66	3791	11.62	955	284	24.6
1986	76317	72.36	1890	5.16	594	248	20.3
1987	451121	534.21	11227	17.08	5369	907	66.9
1988	100850	61.73	3052	6.5	1078	527	86.4
1989	137489	83	2900	8.72	2515	319	54.6
1990	-11	62.56	1265	11.21	114	-11	-11
1991	-11	369.69	11081	11.87	-11	-11	-11
1992	-11	32.81	-11	-11	-11	-11	-11
1993	-11	-11	-11	-11	-11	-11	-11

-

INT-0	INT-1	: International DFS survey
TR1S	TR2S	TR3S : Tridens SNS beam trawl survey
SOL3		: Solea beam trawl survey

Analysis by RCT3 ver3.1 of data from file :

RCRTSOL.CSV

"SOLE NORTH SEA (IV)",,,,,,,

Data for 6 surveys over 26 years : 1968 - 1993 Regression type = CTapered time weighting not applied Survey weighting not applied Final estimates shrunk towards mean Minimum S.E. for any survey taken as .00 Minimum of 3 points used for regression

Forecast/Hindcast variance correction used.

Yearclass = 1990

	II						IPredictionI				
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts	Index Value	Predicted Value	Std Error	WAP Weights		
"INT-0 "TR1S" "INT-1 "TR2S"	1.56 .78 1.45 .85	3.65 5.45 8.52 5.81	1.07 .27 .72 .40	.367 .882 .582 .772	15 21 15 22	4.15 7.14 2.50 4.74	10.14 11.04 12.14 9.85	1.238 .293 .805 .466	.032 .570 .076 .227		
					VPA	Mean =	11.45	.719	.095		

Yearclass = 1991

	1	Re	gressi	on	II					
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts		Predicted Value	Std Error	WAP Weights	
"INT-0 "TR1S" "INT-1	1.56 .78 1.45	3.65 5.45 8.52	1.07 .27 .72	.367 .882 .582	15 21 15	5.92 9.31 2.55	12.90 12.74 12.22	1.232 .309 .808	.045 .717 .105	
					VPA	Mean =	11.45	.719	.133	

Yearclass = 1992

I-----Prediction-----I Survey/ Slope Inter-Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights "INT-O 1.56 3.65 1.07 .367 15 3.52 9.15 1.321 .228 VPA Mean = 11.45 .719 .772

Year Class	Weighted Average Prediction	Log WAP	Int Std Error	Ext Std Error	Var Ratio	VPA	Log VPA
1990	52317	10.87	.22	.33	2.17		
1991	274263	12.52	.26	.26	.99		
1992	55527	10.92	.63	.96	2.33		
1993	No valid s	urveys					

Year	Yield ('000 t)	SOP ('000 t)	Sopfact	SSB ('000 t)	Tot Biom ('000 t)	Recruits age 1 (mill)	F(bar)c	F(2-8)u	Yield/ SSB
1957	12.1	11.6	1.04	79	88	164	0.147	0.137	0.15
1958	14.3	14.2	1.01	85	99	143	0.172	0.161	0.17
1959	13.8	13.7	1.01	93	116	552	0.148	0.133	0.15
1960	18.6	18.7	0.99	101	137	66	0.180	0.168	0.18
1961	23.6	23.2	1.01	147	154	115	0.179	0.161	0.16
1962	26.9	27.0	0.99	147	155	28	0.206	0.183	0.18
1963	26.2	26.4	0.99	147	149	23	0.194	0.249	0.18
1964	11.3	11.7	0.97	54	68	552	0.268	0.228	0.21
1965	17.0	17.8	0.96	49	122	121	0.242	0.246	0.35
1966	33.3	33.7	0.99	105	113	41	0.278	0.240	0.32
1967	33.4	32.7	1.02	101	109	75	0.359	0.308	0.33
1968	33.2	33.3	1.00	89	99	100	0.495	0.372	0.37
1969	27.6	27.0	1.02	70	84	50	0.514	0.423	0.39
1970	19.7	19.8	1.00	63	73	141	0.461	0.351	0.31
1971	23.7	23.4	1.01	52	73	42	0.479	0.444	0.46
1972	21.1	21.3	0.99	56	64	77	0.467	0.393	0.38
1973	19.3	19.0	1.02	42	56	107	0.526	0.453	0.46
1974	18.0	18.2	0,99	42	60	111	0.498	0.464	0.43
1975	20.8	20.6	1.01	43	59	42	0.469	0.463	0.48
1976	17.3	17.0	1.02	43	53	114	0.459	0.406	0.40
1977	18.0	17.7	1.02	36	56	141	0.437	0.383	0.50
1978	20.3	20.4	1.00	39	58	47	0.461	0.498	0.52
1979	22.6	22.3	1.01	46	53	12	0.511	0.464	0.49
1980	15.8	15.5	1.02	36	44	155	0.484	0.442	0.44
1981	15.4	15.0	1.03	25	51	150	0.458	0.448	0.62
1982	21.6	21.3	1.01	35	60	154	0.515	0.496	0.62
1983	24.9	24.8	1.00	42	68	144	0.491	0.466	0.59
1984	26.8	26.7	1.00	45	66	72	0.561	0.551	0.60
1985	24.2	24.4	0.99	43	55	83	0.571	0.513	0.56
1986	18.2	18.3	0.99	36	54	164	0.543	0.450	0.51
1987	17.4	17.5	0.99	31	58	76	0.444	0.430	0.56
1988	21.6	21.6	1.00	42	74	451	0.525	0.488	0.51
1989	21.8	22.1	0.99	37	97	101	0.443	0.379	0.59
1990	35.1	35.4	0.99	93	113	137	0.406	0.430	0.38
1991	38.3		0.99	78	98	52	0.529	0.522	0.49
1992	29.1		0.98	66	87	274	0.515	0.502	0.44
1993				51	88	56			
arith. mean	22.3	21.6	1.00	65	84	133	0.407	0.374	0.40
italic: indicated by	/ recruitmer	nt surveys							
Average recruitme	ent (arithm	atic)				134			
Average recruitme						97			
in millions at age		-							

 Table 3.6.11
 North Sea Sole assessment Summary
 (without SOP correction)

 Traditional vpa Terminal Fs estimated using XSA -shrunk method

corrected for recruitment adjustments

Sole in the North Sea (Fishing Area IV)

Prediction with management option table: Input data

	Year: 1993											
Age	Stock size	Natural mortality	Maturity ogive	Prop.of F bef.spaw.	Prop.of M bef.spaw.	Weight in stock	Exploit. pattern	Weight in catc				
1	55527.000	0.1000	0.0000	0.0000	0.0000	0.050	0.0042	0.13				
2	247585.00	0.1000	0.0000	0.0000	0.0000	0.147	0.1805	0.18				
3	33577.000	0.1000	1.0000	0.0000	0.0000	0.194	0.5557	0.21				
4	46647.000	0.1000	1.0000	0.0000	0.0000	0.268	0.5989	0.27				
5	17992.000	0.1000	1.0000	0.0000	0.0000	0.321	0.6125	0.32				
6	47487.000	0.1000	1.0000	0.0000	0.0000	0.414	0.5063	0.40				
7	4107.000	0.1000	1.0000	0.0000	0.0000	0.410	0.5480	0.41				
8	4335.000	0.1000	1.0000	0.0000	0.0000	0.486	0.5150	0.47				
9	1152.000	0.1000	1.0000	0.0000	0.0000	0.501	0.5198	0.48				
10	533.000	0.1000	1.0000	0.0000	0.0000	0.526	0.4249	0.54				
11	690.000	0.1000	1.0000	0.0000	0.0000	0.560	0.4363	0.57				
12	333.000	0.1000	1.0000	0.0000	0.0000	0.541	0.8782	0.50				
13	215.000	0.1000	1.0000	0.0000	0.0000	0.602	0.7128	0.67				
14	119.000	0.1000	1.0000	0.0000	0.0000	0.746	0.6772					
15+	298.000	0.1000	1.0000	0.0000	0.0000	0.676	0.6772	0.60				
Unit	Thousands	-	-	-	-	Kilograms	-	Kilogram				

Recruitment 1994 : 97 Millions (GM) Recruitment 1995 : 97 Millions (GM)

Table 3.6.13

)

Sole in the North Sea (Fishing Area IV)

Yield per recruit: Summary	table
----------------------------	-------

						1 Jar	nuary	Spawnir	ng time
F Factor	Reference F	Catch in numbers	Catch in weight	Stock size	Stock biomass	Sp.stock size	Sp.stock biomass	Sp.stock size	Sp.stock biomass
0.0000		0.000	0.000	10.508	4434.441	8.603	4251.430	8.603	4251.430
0.2000		0.452	169.537	7.396 5.991	2550.855	5.492	2367.900	5.492	2367.900
0.3000		0.535	184.091	5.174	1772.126 1353.889	4.087 3.270	1589.226 1171.045	4.087	1589.226
0.4000		0.589	189.271	4.634	1096.652	2.730	913.864	3.270 2.730	1171.045 913.864
0.5000	0.2512	0.628	190.520	4.250	924.639	2.347	741.907	2.750	741.907
0,6000	0.3014	0.657	190.021	3.962	802.851	2.060	620.175	2.060	620.175
0.7000	0.3517	0.679	188.743	3.740	712.928	1.838	530.307	1.838	530.307
0.8000	0.4019	0.698	187.146	3.562	644.340	1.660	461.776	1.660	461.776
0.9000	0.4522	0.712	185.455	3.417	590.637	1.516	408.128	1.516	408.128
1.0000	0.5024	0.725	183.785	3.297	547.662	1.396	365.208	1.396	365.208
1.1000	0.5527	0.735	182.191	3.196	512.626	1.295	330.228	1.295	330,228
1.2000	0.6029	0.744	180.699	3.109	483.601	1.208	301.259	1.208	301.259
1.3000	0.6531	0.752	179.316	3.033	459.214	1.134	276.927	1.134	276.927
1.4000	0.7034	0.759	178.043	2.968	438.466	1.068	256.235	1.068	256.235
1.5000	0.7536	0.765	176.876	2.909	420.618	1.010	238.442	1.010	238.442
1.6000	0.8039	0.770	175.808	2.857	405.110	0.959	222.990	0.959	222.990
1.7000	0.8541	0.775	174.831	2.811	391.515	0.913	209.450	0.913	209.450
1.8000		0.780	173.936	2.769	379.500	0.871	197.490	0.871	197.490
1.9000		0.784	173.117	2.731	368.803	0.833	186.849	0.833	186.849
2.0000	1.0048	0.787	172.366	2.696	359.215	0.798	177.317	0.798	177.317
-	-	Numbers	Grams	Numbers	Grams	Numbers	Grams	Numbers	Grams

Notes: Run name : YIELD1 Date and time : 090CT93:13:40 Computation of ref. F: Simple mean, age 2 - 8 F-0.1 factor : 0.1948 F-max factor : 0.5092 F-0.1 reference F : 0.0979 F-max reference F : 0.2558 Recruitment : Single recruit

Sole in the North Sea (Fishing Area IV) Sole in the North Sea (Fishing Area IV)

Prediction	with	management	option	table
------------	------	------------	--------	-------

	Ŷ	'ear: 1993				١	Year: 1995				
F Factor	Reference F	Stock biomass	Sp.stock biomass	Catch in weight	F Factor	Reference F	Stock biomass	Sp.stock biomass	Catch in weight	Stock biomass	Sp.stock biomass
1.0000	0.5024	89256	50085	27503	0.0000	0.0000	78089	65885	0	103337	85585
	.		-		0.1000	0.0502		65885	3798	98983	81236
	.				0.2000	0.1005		65885	7398	94861	77120
•					0.3000	0.1507		65885	10810	90959	73223
	.				0.4000	0.2010		65885	14045	87264	69534
•					0.5000	0.2512		65885	17112	83766	66041
•		-	-		0.6000	0.3014		65885	20019	80454	62734
•	.	-	-	.	0.7000	0.3517		65885	22777	77317	59602
•			•		0.8000	0.4019		65885	25392	74346	56637
			•	•	0.9000	0.4522		65885	27872	71532	53829
	•		-		1.0000			65885	30225	68867	51169
•		•	•		1.1000		.	65885	32458	66342	48649
		-	•	-	1.2000		•	65885	34576	63950	46263
•		-			1.3000		•	65885	36586	61684	44002
-		•	-		1.4000		-	65885	38493	59536	41860
•	•	-	-		1.5000		-	65885	40304	57501	39830
•		-	•		1.6000		-	65885	42023	55572	37907
•	•	-	•	-	1.7000			65885	43656	53744	36084
•	•	•	•	-	1.8000		•	65885	45206	52011	34357
•	•				1.9000		•	65885	46678	50369	32719
. •	•	•	•	•	2.0000	1.0048	•	65885	48077	48811	31167
-	-	Tonnes	Tonnes	Tonnes	-	-	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes

ì.

Run name : PRED2 Date and time : 100CT93:20:06 Computation of ref. F: Simple mean, age 2 - 8 Basis for 1993 : F factors Notes: Run name

North Sea sole catch prediction - linear analysis

Input Values

(manual)

name	value	CV	name	value	CV
Population	at age in 1993		Fishing	mortality pattern	
pin1	55527	0.96	sel1	0.0042	0.41
pln2	247585	0.26	sel2	0.1805	0.27
pIn3	33577	0.33	sel3	0.5557	0.18
pln4	46647	0.21	sel4	0.5989	0.14
pln5	17992	0.2	sel5	0.6125	0.14
pln6	47487	0.21	sel6	0.5063	0.17
pln7	4107	0.2	sel7	0.5480	0.15
pln8	4335	0.2	sel8	0.5150	0.11
pln9	1152	0.22	sel9	0.5198	0.09
pln10	533	0.22	sel10	0.4249	0.28
pln11	690	0.23	sel11	0.4363	0.17
pln12	333	0.25	sel12	0.8782	0.10
pln13	215	0.29	sel13	0.7128	0.17
pin14	417	0.35	sel14	0.6772	0.09

Natural mortality pattern

0.1	0.1
0.1	0.1 0.1
0.1	0.1
0.1	0.1
0.1	0.1
0.1	0.1
0.1	0.1
0.1	0.1
0.1	0.1
0.1	0.1
0.1	0.1
0.1	0.1
0.1	0.1
	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Recruitment

R94 R95	97000 97000	0.5 0.5
Effort multipl	liers	
F93	1	0.1
F94	1	0.1
F95	1	0.1
Natural morta	ality multipliers	
M93	1	0.1
M94	1	0.1
M95	1	0.1

	Recruitment (age 1) Unit: Millions											
Date of		Year class										
assessment	1988	1989	1990	1991	1992	1993						
1989	101 ¹	52 ¹			L	L						
1990	106 ¹	99 ¹	15 ¹									
1991	117 ¹	1251	70 ¹	137 ¹								
1992	105	147 ¹	51 ¹	275 ¹	55 ¹							
1993	101	137	52 ¹	274 ¹	56 ¹	97²						

Assessment Quality Control Diagram 3

¹Predicted from surveys. ²GM.

Remarks:

Assessment Quality Control Diagram 4

	Spawning stock biomass ('000 t)														
Date of		Year													
assessment	1988 1989		1990	1991	1992	1993	1994	1995							
1989	32.2	27.1	n/a¹	n/a ¹			1	·							
1990	37.8	29.8	69.9	58.0 ¹	46.0 ¹										
1991	40.5	34.1	67.6	56.0	47.0 ¹	37.0 ¹									
1992	42.9	38.2	94.2	80.2	73.7	54.4 ¹	69.8 ¹								
1993	41.9	37.2	92.7	78.3	66.2	50.1	65.9 ¹	51.2 ¹							

¹Forecast.

Remarks:

Continued

	Average F(2-8,u)												
Date of	Year												
assessment	1987	1988 1989		1990	1991	1992							
1989	0.51	0.55											
1990	0.48	0.58	0.53										
1991	0.45	0.52	0.42	0.55									
1992	0.41	0.46	0.36	0.40	0.47								
1993	0.43	0.49	0.38	0.43	0.52	0.50							

Assessment Quality Control Diagram 1

Remarks:

	Estimated total landings ('000 t) at status quo F												
Date of	Year												
assessment	1988	1989	1990	1991	1992	1993	1994						
1989	17.6	24.0	29.0										
1990		23.2	38.0	31.0]								
1991			28.8	32.0	25.0								
1992				33.6	32.4	28.9							
1993				33.0	30.0	27.5	30.2						
					SQC ²	Current	\ Forecast						

Assessment Quality Control Diagram 2

$${}^{1}SQC = Landings(y-1) * \frac{F(y-2)}{F(y-1)} * \exp\left[-\frac{1}{2}\{F(y-2) - F(y-1)\}\right]$$

$${}^{2}SQC = Landings(y) * \frac{F(y-1)}{F(y)} * \exp\left[-\frac{1}{2}\{F(y-1) - F(y)\}\right]$$
where F(y), F(y-1) and F(y-2) are as estimated in the assessment made in year (y+1).

Remarks:

Country	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992 ¹
Belgium	7,103	8,916	10,220	9,965	7,232	8,554	11,527	10,939	13,940	14,328	12,066
Denmark	24,532	19,114	23,361	28,236	26,332	21,597	20,259	23,481	26,474	24,355	20,891
Faroe Islands	-	-	, <u> </u>		-		43			-	
France	1,046	1,185	1,145	1,010	751	1,580	1,773	2,037 ¹	1,339	508 ¹	512
Germany	3,628	2,397	2,485	2,197	1,809	1,794	2,566	5,341	8,747	7,926	6,818
Netherlands	55,715	53,608	61,478	90,950	74,447	76,612	77,724	84,173	n/a	68,266 ¹	51,064
Norway	16	17	17	23	21	12	21	321	1,756	554 ¹	843
Sweden	6	22	14	18	16	7	2	12	169	103	53
UK (Engl. & Wales)	16,534	13,248	12,988	11,335	12,428	14,891	17,613	19,735	17,563	17,672	20,095
UK (N.Ireland)	-	-	-	-	-	-	-	540	176	992	1,163
UK (Scotland)	4,355	4,159	4,195	4,577	4,866	5,747	6,884	5,516	6,789	9,047	6,510
Total reported	112,935	102,666	115,903	148,311	127,902	130,794	138,412	152,095	76,953	143,751	119,955
Unreported landings ²	41,614	41,369	40,244	11,526	37,445	29,700	24,059	17,547	90,753	13,721	1,356
Landings as used by WC	G 154,549	144,035	156,147	159,837	165,347	160,494	162,471	169,642	167,706	157,472	121,311

Table 3.7.1 North Sea PLAICE. Nominal landings (tonnes) in Sub-area IV as officially reported to ICES, 1982-1992.

¹Provisional. ²Estimated by the Working Group.

Table 3.7.2

Run title : Plaice in the North Sea (Fishing Area IV) (run name: FIN2)

At 10-Oct-93 13:51

Table 1	Catch r	numbers at		mbers*10*	**-3					
YEAR,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992 ,
AGE										
1,	1214,	108,	121,	1674,	Ο,	Ο,	1260,	1527,	1467,	3097,
2, 3,	119695,	63252 ,	73552,	67125,	104754,	16122,	46709 ,	35077,	45949,	40163,
3,	115034,	274209,	144316,	163717,	120173,	264648,	105820,	105040,	87318,	79291 ,
4,	99076,	53549 ,	185203,	93801,	104295,	77610,	231176,	116753 ,	121155,	68348,
5,	29359,	37468,	32520,	84479,	58646 ,	49739,	52854,	171396 ,	76532,	69610,
6,	12906,	13661,	15544,	24049,			19227,	28652,	83025,	32641,
7,	8216,	6465,	6871 ,	9299,	9987 ,	17531,	10556,	8959,	16037,	29733,
8,	4193,	5544,	3650,	4490,	3838,	5667,	7553,	4664,	5756,	7028,
9,	3013,	2720,	2698,	2733,	1951,	3329,	2118,	3874,	3410,	3343,
10,	2947,	2088,	1543,	2026,	1471,	1759,	1691,	1246,	2638,	2420,
11,	2144,	1307,	1030,	1178,	908,	970,	926,	801,	1071,	1731,
12,	1219,	1143,	1070,	1084,	589,	963,	630,	511,	681 ,	975,
13,	581,	455,	727,	806,	484,	526,	446,	339,	401,	605,
14,	344,	310,	371,	628,	269,			244,		609,
+gp,	1052,	1262,	1057,	1228,	1160,	1703,	1555,	1230,	1298,	1597,
TOTALNUM,	400993,	463541,	470273,	458317 ,	440262,	467443,	482848,	480313,	447077,	341191,
TONSLAND,	144038,	156147,	159838,		153670,	162475,	169643,	167707,	157472,	
SOPCOF %,	99,	98,	98,	99,	99,	98,	99,	98,	97,	98,

Table 3.7.3

)

Run title : Plaice in the North Sea (Fishing Area IV) (run name: FIN2)

At 10-Oct-93 13:51

Table 2	Catch #	eights at	: age (kg))						
YEAR,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,
AGE										
1,	.2000,	.2330,	.2470,	.2210,	.2210,	.2210,	.2360,	.2710,	.2270,	.2510,
2,	.2500,	.2630,	.2640,	.2690,	.2490,	.2540,	.2800,	.2840,	.2860,	.2630,
3,	.3000,	.2830,	.2900,	.3040,	.3080,	.2780,	.3090,	.2980,	.2950,	.2910,
4,	.3830,	.3750,	.3370,	.3470,	.3590,	.3520,	.3320,	.3180,	.3070,	.3200,
5,	.5150,	.4910,	.4620,	.4250,	.4080,	.4540,	.3920,	.3680,	.3670,	.3440,
6,	.6040,	.6130,	.5770,	.4880,	.5050,	.5120,	.5330,	.4470,	.4550,	.4270,
7,	.6770,	.6840,	.6780,	.6750,	.5880,	.6080,	.6030,	.5950,	.5260,	.5310,
8,	.7710,	.7250,	.7290,	.7510,	.7390,	.7000,	.6700,	.6880,	.6650,	.6030,
9,	.8150,	.8370,	.8040,	.8530,	.8410,	.8150,	.7920,	.7540,	.7390,	.7040,
10,	.8930,	.9160,	.9000,	.9210,	.8260,	.9370,	.8190,	.8200,	.8280,	.7370,
11,	.9130,	.9810,	1.0010,	.9480,	.9990,	.9700,	.9230,	1.0240,	.9110,	.8090,
12,	.9840 ,	1.0260,	.9500,	1.0630,	1.0030,	1.0450,	.9520,	1.0860,	.9240,	.9240,
13,	1.2400,	1.1120,	1.0710,	1.0780,	1.0350,	1.1400,	1.1570,	1.1040,	.9850,	.9690,
14,	1.2090,	1.2500,	1.1390,	1.0740,	1.0950,	1.1280,	1.0840,	.9760,	.9570,	.8790,
+gp,	1.1670,	1.2140,	1.2150,	1.1100,	1.1360,	1.0460,	.9940,	1.0830,	1.0100,	1.0590,
SOPCOFAC,	.9938,	.9844,	.9799,	.9877,	.9872,	.9849,	.9854,	.9837,	.9667,	.9827,

.

Run title : Plaice in the North Sea (Fishing Area IV) (run name: FIN2)

At 10-Oct-93 13:51

Table	3	Stock w	eights at	: age (kg)							
YEAR,		1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,
AGE											
1,		.1500,	.1500,	.1500,	.1500,	.1500,	.1500,	.1500,	.1500,	.1310,	.1310,
2,		.2110,	.2030,	.2080,	.1950,	.1940,	.2110,	.2150,	.2450,	.2080,	.2620,
3,		.2480,	.2420,	.2430,	.2530,	.2650,	.2380,	.2480,	.2710,	.2620	.2670,
4,		.3290,	.3380,	.3100,	.3360,	.3300,	.3140,	.2820,	.2820,	.2750	.3010,
5,		.4940,	.4640,	.4520,	.4400,	.4010	.4250,	.3620,	.3420	.3410,	.3180,
6,		.5590,	.5710,	.5360,	.5330,	.5030,	.4670,	.4840,	.4200,	.4000,	.4030,
7,		.6240,	.6490	.6350,	.6920,	.5730,	.5470,	.5530,	.5550,	.4610,	.5000,
8,		.7120,	.6920,	.6560,	.7790,	.7110,	.6450,	.6160,	.6460,	.6330,	.5730,
9,		.7540,	.7870,	.7640,	.8880,	.7470,	.7070,	.7590,	.7040,	.6500,	.6830,
10,		.7910,	.8980,	.8690,	.9710,	.8170,	.8980,	.8370,	.7630,	.7470,	.7300,
11,		.8240,	.9320,	.9550,	.9530,	1.0090,	.9440,	.7910,	1.0220,	.8340,	.8030,
12,	1	1.0110,	1.0420,	.9060,	1.1070,	1.0180,	1.0130,	.9680,	1.1510,	.9660	.8520
13,	1	1.1300,	1.2350,	1.0680,	1.1530,	1.0190,	1.0760	1.2150,	1.0090,	.9620	.9580,
14,	1	1.2570,	1.1270,	1.1080,	1.1260,	1.2140,	1.1490,	.8990,	1.0500,	.8380,	.7740,
+gp,	1	1.1240,	1.2350,	1.3080,	1.3540,	1.1140,	.9840	.8570,	1.0760,	.9010	1.0160,

Tuning input data.

```
Plaice in the North Sea (Fishing Area IV) (run name: NSPLAICE)
104
>>NETHERLAND BTS<<
1985, 1992
1, 1, 0.0, 1.0
1, 10,
         113.50
                 184.90
                            44.80
                                     17.48
                                               2.43
                                                                          0.22
    1
                                                        1.27
                                                                 0.44
                                                                                   0.19
                                                                                            0.56
     1
         596.00
                  121.40
                            52.80
                                     14.35
                                               6.87
                                                        0.74
                                                                 0.47
                                                                          0.23
                                                                                   0.16
                                                                                            0.28
         203.80
                  710.80
                            30.00
                                     6.40
                                              3.08
                                                        1.14
     1
                                                                 0.46
                                                                          0.15
                                                                                   0.13
                                                                                            0.24
         541.70
                  134.40
                           188.00
                                     13.38
                                               3.58
     1
                                                        1.76
                                                                 1.05
                                                                          0.47
                                                                                   0.20
                                                                                            0.42
         398.00
                  340.20
                            51.30
                                     55.00
                                               6.63
                                                        0.80
    1
                                                                 0.39
                                                                          0.61
                                                                                   0.14
                                                                                            0.30
     1
         123.48
                 112.81
                            68.75
                                     32.02
                                               8.58
                                                        0.84
                                                                 0.21
                                                                          0.48
                                                                                   0.22
                                                                                            0.16
    1 174.74
                 133.63
                            32.32
                                     12.35
                                               4.19
                                                        5.83
                                                                 0.22
                                                                          0.20
                                                                                   0.13
                                                                                            0.16
     1
       166.33
                 108.69
                            21.64
                                      5.23
                                               2.97
                                                        2.79
                                                                 1.44
                                                                          0.22
                                                                                   0.07
                                                                                            0.09
>>NETHERLANDS ALL FLEETS<<
1979, 1992
1, 1, 0, 1
1, 15
44.9, 1267.5, 44268.9, 65005.3, 18310.6, 18066.6, 13360.2, 9189.9, 2410.3, 1539.7, 961.2, 691.6, 488.4, 429.3, 308.5, 811.4
45.0, 943.7, 50726.9, 77105.9, 35404.3, 8928.9, 8739.5, 5909.8, 3245.6, 1004.0, 794.8, 365.1, 200.9, 169.5, 142.8, 366.4
46.3, 122.0, 74461.7, 79996.2, 25008.9, 19061.8, 6615.2, 5223.6, 4203.2, 2372.4, 974.6, 688.7, 356.3, 276.9, 207.9, 455.3
57.3, 3199.6, 39899.6, 137177.0, 36203.3, 14979.8, 9577.3, 5399.5, 3713.5, 2034.8, 1924.7, 760.2, 450.6, 313.9, 141.3, 676.0
65.6, 1134.4, 96297.5, 78330.5, 55221.0, 15280.3, 7432.7, 5033.9, 2798.9, 2025.0, 1702.1, 1257.6, 1008.0, 365.2, 213.3, 385.5
70.8, 9.9, 53837.3, 180607.0, 30489.5, 22212.2, 7308.2, 3717.4, 3363.3, 1791.5, 1323.1, 768.1, 649.4, 248.6, 179.8, 465.1
70.3, 732.0, 66003.4, 105584.0, 102925.0, 17163.2, 9669.2, 4187.8, 2329.9, 1681.1, 940.6, 679.0, 599.6, 450.1, 274.9, 383.4
68.1, 1615.0, 59619.2, 119586.0, 57103.8, 46190.2, 12357.8, 5803.6, 2609.8, 1724.7, 1385.8, 828.3, 696.8, 528.4, 317.3, 415.8
68.4, 9.9, 83963.3, 80818.0, 69416.2, 34033.2, 13962.1, 4851.9, 1854.3, 836.7, 707.0, 454.7, 288.4, 195.4, 124.7, 313.3
76.2, 9.9, 11893.0, 171923.2, 41104.4, 29294.3, 15543.9, 9482.8, 3539.2, 2064.5, 1087.3, 482.6, 403.0, 263.3, 222.9, 377.1
72.5, 1151.3, 40443.3, 73696.3, 131915.1, 23063.6, 9633.8, 5239.6, 2714.5, 947.4, 630.6, 304.1, 168.4, 149.0, 68.7, 143.5
71.2, 199.2, 25173.0, 68833.9, 57166.2, 87730.9, 13972.2, 4221.7, 2052.5, 1330.8, 563.5, 287.6, 196.4, 116.7, 73.0, 135.7
68.7, 487.9, 31429,8, 48430.2, 60744.8, 35082.8, 38962.7, 7861.6, 2233.6, 1299.9, 745.3, 326.7, 139.9, 76.5, 83.4, 127.6
71.6, 1810.1, 24270.5, 44306.1, 31854.1, 27165.2, 12219.3, 9485.1, 2463.9, 992.8, 508.2, 312.9, 262.8, 95.2, 75.3, 129.3
>>TRIDENS SNS September survey<<
1982 1992
1 1 0.0 1.0
13
        70108
                 8503
    1
                         1146
     1
        34884
                14708
                          308
                10413
    1
        44667
                          2480
        27832
                13789
                          1584
        93573
                 7558
                         1155
     1
        33426
                33021
                         1232
        36672
                14430
     1
                        13140
        37238
                14952
                          3709
     1
        24903
                 7287
                         3248
    1
        57349
    1
                11148
                         1507
    1 48223
                13742
                         2257
>>English seine<<
1982 1992
1 1 0.0 1.0
2 15
  160.6
            44.4
                   3887.4
                            3202.2 1996.9
                                                985.3
                                                         332.2
                                                                  132.2
                                                                           371.6
                                                                                    427.1
                                                                                              85.4
                                                                                                       45.4
                                                                                                                36.4
                                                                                                                         37.1
                                                                                                                                  244.8
          1539.7
                   2602.1
                            5926.2
  156.0
                                     1993.0
                                                911.9
                                                         536.5
                                                                  122.0
                                                                            68.9
                                                                                    184.8
                                                                                             117.3
                                                                                                       10.4
                                                                                                                30.6
                                                                                                                         12.7
                                                                                                                                  142.5
  144.7
           400.0
                   5372.1
                            2497.3
                                     2169.5
                                                679.8
                                                         378.2
                                                                  283.3
                                                                           120.9
                                                                                     74.6
                                                                                              65.3
                                                                                                      104.4
                                                                                                                71.0
                                                                                                                         37.0
                                                                                                                                  222.1
  138.9
          1168.0
                   2968.5
                            5471.5
                                       663.2
                                                622.2
                                                         284.0
                                                                  175.1
                                                                           104.1
                                                                                     25.6
                                                                                              38.9
                                                                                                       36.1
                                                                                                                30.3
                                                                                                                         20.8
                                                                                                                                  136.4
   121.0
           282.5
                   4316.2
                            2631.9
                                     1953.4
                                                270.5
                                                         206.3
                                                                  169.4
                                                                           205.9
                                                                                    106.4
                                                                                                       31.7
                                                                                              56.5
                                                                                                                46.3
                                                                                                                         26.3
                                                                                                                                  272.6
           792.7
  112.7
                   1896.1
                            2729.0
                                      2078.0
                                               1085.3
                                                         362.0
                                                                  188.6
                                                                            58.6
                                                                                     67.2
                                                                                              30.6
                                                                                                       15.1
                                                                                                                33.9
                                                                                                                          9.7
                                                                                                                                   65.4
   78.8
           129.0
                   3071.8
                            1508.6
                                     1048.7
                                                819.5
                                                         402.0
                                                                   91.1
                                                                            78.4
                                                                                     37.8
                                                                                              23.9
                                                                                                       13.4
                                                                                                               104.8
                                                                                                                         20.8
                                                                                                                                  117.3
   83.6
            48.2
                    625.2
                            4324.9
                                     1915.1
                                                898.0
                                                         385.9
                                                                  515.6
                                                                            73.1
                                                                                    108.0
                                                                                              71.9
                                                                                                       56.5
                                                                                                                26.2
                                                                                                                         16.4
                                                                                                                                  129.6
   73.1
           120.2
                   1227.3
                            1673.6
                                     4296.7
                                               495.0
                                                         332.1
                                                                  169.9
                                                                                     45.8
                                                                           146.8
                                                                                              25.8
                                                                                                       19.0
                                                                                                                14.5
                                                                                                                         14.3
                                                                                                                                  90.5
   67.0
           130.0
                    504.1
                            1078.5
                                     1002.9
                                              1517.4
                                                         246.9
                                                                 116.6
                                                                            64.1
                                                                                     87.7
                                                                                                       26.2
                                                                                              33.8
                                                                                                                18.1
                                                                                                                         17.4
                                                                                                                                   69.0
   60.0
           177.4
                   1039.2 1015.8
                                     1145.5
                                               549.2
                                                         497.3
                                                                  140.6
                                                                            56.9
                                                                                     39.3
                                                                                              52.5
                                                                                                       12.3
                                                                                                                14.7
                                                                                                                         10.4
                                                                                                                                   44.6
```

Table 3.7.6Tuning diagnostics.

VPA Version 3.1 (MSDOS)

```
8/10/1993 14:14
 Extended Survivors Analysis
 North Sea PLAICE, sexes combined *** full data set ***
 CPUE data from file fleet4.dat
Data for 4 fleets over 14 years
Age range from 1 to 14
                                       Beta
, 1.000
, 1.000
, 1.000
                           Alpha,
, .000
, .000
      Fleet
 >>NETHERLAND BTS<<
 >>NETHERLANDS ALL FL
>>TRIDENS SNS Septem
                            , .000
 >>English seine<<
                                .000
                                        , 1.000
 Time series weights :
       Tapered time weighting not applied
Catchability analysis :
       Catchability dependent on stock size for ages < 5
          Regression type = C
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 5
       Catchability independent of age for ades >= 12
 Terminal population estimation :
       Survivor estimates shrunk towards the mean F
       of the final 5 years or the 5 oldest ages.
      S.E. of the mean to which the estimates are shrunk =
                                                                          .500
      Minimum standard error for population estimates derived from each fleet =
                                                     .300
      Prior weighting not applied
Tuning had not converged after 210 iterations
Terminal year survivor and F summaries :
Age 1 Catchability dependent on age and year class strength
Fleet
                            Estimated
                                            Int
                                                          Ext
                                                                   Var
                                                                            N Scaled
                                          s.e
1.087
                                                          s.e
.000
                                                                  Ratio
.00
.00
                                                                                Weights
.035
                            Survivors
>>NETHERLAND BTS<< 321228.

>>NETHERLANDS ALL FL 1742415.

>>TRIDENS SNS Septem 659945.

>>English seine<< 1.
                                                                            1
                                          1.380
                                                          .000
                                                                             1
1
                                                                                 .022
                                          .301
                                                          .000
                                                                    .00
                                                                                  .458
                                           .000
                                                          .000
                                                                    .00
                                                                             0
                                                                                 .000
   P shrinkage mean
                            568833.
                                            .36
                                                                                  .320
   F shrinkage mean
                         1581348.
                                            .50
                                                                                  .165
Weighted prediction :
Survivors
                      Int
                                  Ext
                                           N
                                                  Var
                                                             F
at end of year
724223.
                                                 Ratio
                      з.е
                                  s.e
.21
                                           5
                       .20
                                               1.024
                                                           .004
1
Age 2 Catchability dependent on age and year class strength
Fleet
                            Estimated
                                            Int
                                                         Ext
                                                                   Var
                                                                            N Scaled
                            Survivors
                                           s.e
.301
                                                         s.e
.027
                                                                 Ratio
.09
                                                                                Weights
.219
>>NETHERLAND BTS<<
                            318599.
                                                                            2
>>NETHERLANDS ALL FL
                            331852.
                                           .515
                                                          .313
                                                                    .61
                                                                            2
                                                                                  .075
>>TRIDENS SNS Septem
>>English seine<<</pre>
                            573218.
                                           .221
                                                          .140
                                                                            2
                                                                                  .407
                                                                    .63
                            482339.
                                           .484
                                                          .000
                                                                    .00
                                                                            1
                                                                                 .085
  P shrinkage mean
                           442069.
                                            .38
                                                                                 .134
  F shrinkage mean
                           399902.
                                           .50
                                                                                 .080
Weighted prediction :
                                                                     ŧ
Survivors
                     Int
                                 Ext
                                          N
                                                  Var
                                                            F
 at end of year
447311.
                                                 Ratio
                     s.e
.14
                                 s.e
                                          9
                                  .10
                                                 .682
                                                          .082
```

Estimated

F .009

.002

.000

.005

.002

Estimated

F .113

.109

.065

.076

.083

.091

Age 3 Catchability dependent on age and year class strength

Fleet >>NETHERLAND BTS< >>NETHERLANDS ALL >>TRIDENS SNS Sep >>English seine< P shrinkage mea F shrinkage mea	s FL 2 tem 2 2 n 2	stimated urvivors 01546. 70249. 46776. 55580. 65825. 87594.	Int 5.0 .247 .502 .216 .418 .41 .50		Ext s.e .135 .068 .163 .038	Var Ratio .55 .14 .76 .09	N 3 3 2	Scaled Weights .284 .069 .373 .100 .104 .070	Estimated F .318 .246 .267 .259 .250 .338	
Weighted predicti Survivors at end of year 232595.	on : Int 5.0 .13	Ext 5.0 .06	N 13	Var Ratio .468	F .281					

1 Age 4 Catchability dependent on age and year class strength

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
>>NETHERLAND BTS<<	102995.	.250	.129	.52	4	.321	.489
>>NETHERLANDS ALL FL	80383.	.364	.265	.73	4	.152	.593
>>TRIDENS SNS Septem	117829.	.288	.145	.51	3	.242	.439
>>English seine<<	85785.	.433	.160	.37	3	.107	.564
P shrinkage mean	134668.	.45				.097	. 394
F shrinkage mean	92037.	.50				.080	.534

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of year	3.0	5.0		Ratio	
102213.	.14	.08	16	.545	.493

Age 5 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
>>NETHERLAND BTS<<	59895.	.286	.145	.50	5	.343	.745
>>NETHERLANDS ALL FL	52119.	.333	.083	.25	5	.254	.820
>>TRIDENS SNS Septem	69583.	.428	.101	.24	3	.154	.669
>>English seine<<	50608.	.455	.241	.53	4	.136	.837
F shrinkage mean	75139.	.50				.113	.632

Weighted prediction :

Survivors	Int	Ext	N	Var	F	-
at end of year	5.e	5.0		Ratio		- .
59318.	.17	.07	18	.412	.750	

1

Age 6 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	5.0	5.0	Ratio		Weights	F
>>NETHERLAND BTS<<	45894.	.308	.134	.43	6	.289	.517
>>NETHERLANDS ALL FL	38349.	.288	.167	.58	6	.330	.593
>>TRIDENS SNS Septem	44221.	.501	.124	.25	3	.109	.532
>>English seine<<	33300.	.412	.128	.31	5	.161	.659
F shrinkage mean	40333.	.50				.110	.571

Weighted prediction :

 Survivors
 Int
 Ext
 N
 Var
 F

 at end of year
 s.e
 s.e
 Ratio

 40325.
 .17
 .07
 21
 .424
 .571

Age 7 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
>>NETHERLAND BTS<<	51831.	.343	.101	.30	7	. 259	.435
>>NETHERLANDS ALL FL	42885.	.351	.102	.29	7	.248	.507
>>TRIDENS SNS Septem	53319.	.713	.033	.05	3	.060	.426
>>English seine<<	45970.	.313	.056	.18	6	.311	.479
F shrinkage mean	44077.	.50				.122	.496

Continued

Weighted prediction :

Survivors	Int	Ext	N	Var	F (
at end of year	5.0	s.e		Ratio	
46791.	.17	.04	24	.247	.473

1 Age 8 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
>>NETHERLAND BTS<<	7893.	.351	.151	.43	8	.273	.614
>>NETHERLANDS ALL FL	10145.	.363	.221	.61	8	.255	.506
>>TRIDENS SNS Septem	7669.	.875	.080	.09	3	.044	.627
>>English seine<<	10586.	.339	.070	.21	7	.293	.490
F shrinkage mean	13901.	.50				.134	.393

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of year	s.e	3.e		Ratio	
9885.	.18	.08	27	.449	.517

Age 9 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated Survivors	Int 5.0	Ext	Var Ratio	N	Scaled Weights	Estimated F
>>NETHERLAND BTS<<	3354.	.286	.087	.30	8	.340	. 667
>>NETHERLANDS ALL FL	5520.	.313	.171	.55	9	.284	.455
>>TRIDENS SNS Septem	5184.	1.224	.108	.09	3	.019	.478
>>English seine<<	6741.	.335	.067	.20	8	.247	.386
F shrinkage mean	8125.	.50				.111	.330

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of year	3.0	5.0		Ratio	
5103.	.17	.08	29	.508	.484

1 Age 10 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated Survivors	Int s.e	Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
>>NETHERLAND BTS<<	3471.	.313	.150	.48	8	.284	.509
>>NETHERLANDS ALL FL	3517.	.283	.138	. 49	10	.346	.503
>>TRIDENS SNS Septem	3628.	1.291	.025	.02	3	.017	.491
>>English seine<<	4710.	.339	.052	.15	9	.242	.398
F shrinkage mean	6296.	.50				.111	.312
Weighted prediction :						۰.	

Survivors	Int	Ext	N	Var	F
at end of year	5.0	5.0		Ratio	
4015.	.17	.07	31	.429	.453

Age 11 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	5.0	5.0	Ratio		Weights	F
>>NETHERLAND BTS<<	4184.	.346	.153	. 4 4	7	. 226	.332
>>NETHERLANDS ALL FL	2991.	.273	.116	.43	10	.364	.439
>>TRIDENS SNS Septem	2985.	1.957	.006	.00	2	.007	.439
>>English seine<<	5993.	.302	.082	.27	10	.296	.243
F shrinkage mean	5256.	.50				.108	.273

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of year	5.0	a.e		Ratio	
4211.	.16	.08	30	.479	.330

1 Age 12 Catchability constant w.r.t. time, dependent on age

Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	5.0	3.0	Ratio		Weights	F
>>NETHERLAND BTS<<	1844.	.404	.126	.31	6	.190	.407
>>NETHERLANDS ALL FL	1534.	.278	.108	.39	10	.402	.473
>>TRIDENS SNS Septem	1009.	3.139	.000	.00	1	.003	.652
>>English seine<<	1734.	.332	.096	.29	10	.281	.428

Continued

Table 3.7.6 Continued

F shrinkage me	an	2765.	.5	0		.124	.289
Weighted predict	ion :				,		
Survivors at end of year	Int s.e	Ext s.e	N	Var Ratio	F		
1767.	.18	.07	28	.376	.422		

Age 13 Catchability constant w.r.t. time and age (fixed at the value for age) 12

Fleet	Estimated Survivors	Int 5.0	Ext s.e	Var Ratio	N	Scaled Weights	Estimated F
>>NETHERLAND BTS<<	1407.	. 4 9 4	.174	.35	5	.145	.343
>>NETHERLANDS ALL FL	925.	.285	.126	.44	10	.438	.484
>>TRIDENS SNS Septem	1.	.000	.000	.00	0	.000	.000
>>English seine<<	1374.	.359	.139	.39	10	.275	.350
F shrinkage mean	1937.	.50				.142	.260

Weighted prediction :

Survivors	Int	Ext	N	Var	F
at end of year	3.0	5.0		Ratio	
1217.	.19	.09	26	.480	.387

Ì

1 Age 14 Catchability constant w.r.t. time and age (fixed at the value for age) 12

Fleet		Estimated Survivors	Int s.e		Ext 5.0	Var Ratio	N	Scaled Weights	Estimated F
>>NETHERLAND BT.	S<<	782.	.599		.142	.24	4	.118	.554
>>NETHERLANDS A	LL FL	495.	.315		.099	.32	10	.429	.775
>>TRIDENS SNS S	eptem	1.	.000		.000	.00	0	.000	.000
>>English seine	<<	931.	.387		.152	.39	10	.283	.484
F shrinkage m	ean	1121.	.50					.170	.417
Weighted predic	tion :								
Survivors	Int	Ext	N	Var	F				

· .

20101013	Inc	DAC	14	var	r
at end of year	5.0	5.0		Ratio	
718.	.21	.10	25	.470	.592

Run title : Plaice in the North Sea (Fishing Area IV) (run name: FIN2)

At 10-Oct-93 13:51

Table 10	Stock /	number at	age (sta	rt of yea	r)	N	umbers*10 ³	**-3					
YEAR,	1983,	1984,	1985,	1986,	1987 ,	1988,	1989,	1990,	1991,	1992,	1993,	GMST 83-89	AMST 83-89
AGE													
1,	586055,	604838,	542699,	1355217,	570334,	567987,	403569,	470648,	594465,	803568,	Ο,	617108,	661528,
2,	927027,	529130,	547177,	490939,	1224658,	516060,	513936,	363966,	424407,	536499,	724222,	637515,	678418,
3,	301039,	724951,	418609,	425141,	380368,	1008472,	451614,	420598,	295964,	340312,	447310,	489442,	530028,
4,	204032,	162968,	395127,	241496,	228951,	229860,	660762,	307978,	280655,	184740,	232595,	272064	303314,
5,	75358,	90372,	96522,	181356,	129288,	107955,	134161,	377981,	167611,	138701,	102213,	112156,	116430,
6,	38388,	40260,	46131,	56403,	83738,	61199,	50369,	71117,	178974	78862,	59317,	52071,	53784,
7,	27811,	22458,	23434,	26955,	28159,	45580,	30317,	27286,	37095,	82967,	40324,	28521,	29245
8,	15538,	17349,	14171,	14668,	15545,	15980,	24567,	17391,	16168,	18310,	46790,	16563	16831,
9,	12243,	10071,	10425,	9351,	9001,	10415,	9068,	15044,	11299,	9154,	9884,	10031,	10082,
10,	9439,	8212,	6525,	6866,	5861,	6289,	6257,	6191,	9928,	6980,	5103,	6972,	7064,
11,	8107,	5737,	5444,	4436,	4286,	3904,	4017,	4053,	4416,	6474,	4014,	4976,	5133,
12,	4163,	5296,	3948,	3947,	2894,	3014,	2610,	2754,	2905,	2977,	4211,	3599,	3696,
13,	2539,	2607,	3705,	2555	2540,	2058,	1811,	1762,	2006,	1981,	1767,	2490	2545
14,	1370,	1744.	1926,	2661,	1545,	1838,	1362,	1215,	1272,	1433,	1217,	1735,	1778,
+gp,	4177,	7086,	5475,	5188,	6647,	5852,	6457,	6108,	4855,	3739,	2590,	•	•
TOTAL,						2586461,				2216695,	1681556,		

-

Run title : Plaice in the North Sea (Fishing Area IV) (run name: FIN2)

At 10-Oct-93 13:51

)

Table 8	Fishing	mortality	(F) at	age							
YEAR,	1983,	1984,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	FBAR 90-92
AGE											
1,	.0022,	.0002,	.0002,	.0013,	.0000,	.0000,	.0033,	.0034,	.0026,	.0041,	.0034,
2,	.1459,	.1343,	.1524,	.1552,	.0942,	.0334,	.1004,	.1068,	.1208,	.0820,	.1032,
3,	.5137,	.5069,	.4501,	.5189,	.4037,	.3228,	.2828,	.3045,	.3713,	.2810,	.3189,
4,	.7143	.4238,	.6787,	.5248,	.6518,	.4384,	.4586,	.5084,	.6048,	.4926,	.5352,
5,	.5269,	.5724.	.4373	.6728	.6479,	.6623,	.5347,	.6476,	.6540,	.7499,	.6838,
6,	.4361,	.4412.	.4373,	.5946	.5082	.6024,	.5130,	.5509,	.6688,	.5711,	.5969,
7,	.3719,	.3604.	.3685,	.4505	.4666,	.5181,	.4558,	.4234,	.6060,	.4728,	.5007,
8,	.3336,	.4094,	.3158,	.3883,	.3005,	.4665,	.3904,	.3312,	.4688,	.5167,	.4389,
9,	.2994,	.3340,	.3176,	.3671,	.2586,	.4095	.2817,	.3157,	.3817,	.4844,	.3939,
10,	.3978,	.3110,	.2858,	.3714,	.3063,	.3482,	.3342,	.2377,	.3276,	.4533,	.3395,
11,	.3258,	.2738,	.2217,	.3273	.2520,	.3027,	.2775,	.2329,	.2943,	.3300,	.2857,
12,	.3680,	.2573.	.3354,	.3407	.2408,	.4093	.2927,	.2170,	.2829,	.4220,	.3073,
13,	.2752,	.2027	.2310,	.4030,	.2236,	.3129,	.2996,	.2260,	.2360,	.3872,	.2830,
14,	.3065,	.2068,	.2263,	.2852	.2022,	.3637,	.2909,	.2372,	.3288,	.5918,	.3859,
+gp,	.3065,	.2068,	.2263,	.2852	.2022,	.3637,	.2909,	.2372,	.3288,	.5918,	
FBAR 2-10,	.4155,	.3882,	.3826,	.4493,	.4042	.4224,	.3724,	.3807,	.4671,	.4560,	
FBARC,	.4930	.4269.	.4500,	.4749.	.4798.	.4494,	.3783,	.4160,	.4701,	.4537,	
FBARP,	.2503,	.2317,	.2385,	.2506,	.2303,	.2044,	.2060,	.2156,	.2360,	.2152,	
•	•	•	-	-	-						

200

"Plaice North Sea - 1-Y-Rcr.",,,,,,,,, 8,26,2,,,,,,, 1967,245,-11,-11,-11,-11,-11,2813,-11,-11 1968, 326, -11, -11, -11, 7708, 9450, 1008, -11, -11 1969, 369, -11, 8641, 8032, -11, 23848, 4484, -11, -11 1970, 274, 3678, -11, 18101, 14840, 9584, 1631, -11, -11 1971,234,6708,9799,6437,8738,4191,1261,-11,-11 1972,540,9242,32980,57238,43774,17985,10744,-11,-11 1973, 451, 5451, 5835, 15648, 15583, 9171, 791, -11, -11 1974, 335, 2193, 3903, 9781, 4610, 2274, 1720, 105.73, 69.34 1975, 324, 1151, 1739, 9037, 3424, 2900, 435, 68. 29, 77.88 1976,470,11544,8344,19119,15364,12714,1577,226.29,128.65 1977,428,4378,5054,13924,7041,9540,456,158.38,66.25 1978,441,3252,6922,21681,10778,12084,785,213.62,153.28 1979,657,27835,16425,58049,37468,16106,1146,355.51,197.67 1980,421,4039,2594,19611,11132,8503,308,136.2,131.45 1981,1020,31542,20251,70108,45588,14708,2480,616.99,263.58 1982,586,23987,7615,34884,17459,10413,1584,476.36,148.97 1983,605,36722,11869,44667,37339,13788,1155,398.7,113.91 1984,543,7958,16557,27832,16277,7557,1232,260.99,103.51 1985, 1360, 47385, 56559, 93573, 62290, 33021, 13140, 721.87, 260 1986,570,8818,8523,33426,16213,14429,3709,357.8,188.31 1987, 568, 21270, 12835, 36672, 34218, 14952, 3248, 473.62, 98.16 1988,404,15598,10387,37238,16677,7287,1507,341.71,128.37 1989,-11,24198,10235,24903,-11,11148,2257,469.64,121.31 1990,-11,9559,-11,57349,-11,13742,-11,465.84,136.88 1991,-11,17120,-11,48223,-11,-11,-11,497.11,151.17 1992,-11,5398,-11,-11,-11,-11,-11,365.17,-11 "T-0",,,,,,,,,, "T-lapril",,,,,,,,, "T-loctober",,,,,,,, "T-2april",,,,,,,,, "T-2october",,,,,,,, "T-3october",,,,,,,,, "com-0",,,,,,,,,, "com-1",,,,,,,,,

"Plaice North Sea - 2-Y-Recr.",,,,,,,,, 8,26,2,,,,,,, 1967,225,-11,-11,-11,-11,-11,2813,-11,-11 1968,271,-11,-11,-11,7708,9450,1008,-11,-11 1969, 341, -11, 8641, 8032, -11, 23848, 4484, -11, -11 1970, 272, 3678, -11, 18101, 14840, 9584, 1631, -11, -11 1971,208,6708,9799,6437,8738,4191,1261,-11,-11 1972, 502, 9242, 32980, 57238, 43774, 17985, 10744, -11, -11 1973,423,5451,5835,15648,15583,9171,791,-11,-11 1974, 298, 2193, 3903, 9781, 4610, 2274, 1720, 105.73, 69.34 1975, 286, 1151, 1739, 9037, 3424, 2900, 435, 68. 29, 77.88 1976, 420, 11544, 8344, 19119, 15364, 12714, 1577, 226.29, 128.65 1977, 383, 4378, 5054, 13924, 7041, 9540, 456, 158. 38, 66. 25 1978, 395, 3252, 6922, 21681, 10778, 12084, 785, 213.62, 153.28 1979, 589, 27835, 16425, 58049, 37468, 16106, 1146, 355.51, 197.67 1980, 374, 4039, 2594, 19611, 11132, 8503, 308, 136.2, 131.45 1981,927,31542,20251,70108,45588,14708,2480,616.99,263.58 1982,529,23987,7615,34884,17459,10413,1584,476.36,148.97 1983, 547, 36722, 11869, 44667, 37339, 13788, 1155, 398.7, 113.91 1984,491,7958,16557,27832,16277,7557,1232,260.99,103.51 1985, 1220, 47385, 56559, 93573, 62290, 33021, 13140, 721.87, 260 1986,516,8818,8523,33426,16213,14429,3709,357.8,188.31 1987, 514, 21270, 12835, 36672, 34218, 14952, 3248, 473.62, 98.16 1988, 364, 15598, 10387, 37238, 16677, 7287, 1507, 341.71, 128.37 1989,-11,24198,10235,24903,-11,11148,2257,469.64,121.31 1990,-11,9559,-11,57349,-11,13742,-11,465.84,136.88 1991,-11,17120,-11,48223,-11,-11,-11,497.11,151.17 1992,-11,5398,-11,-11,-11,-11,-11,365.17,-11 "T-0",,,,,,,,,, "T-lapril",,,,,,,,, "T-loctober",,,,,,,,, "T-2april",,,,,,,,, "T-2october",,,,,,,,, "T-3october",,,,,,,,, "com-0",,,,,,,,,, "Com-1",,,,,,,,,

"Plaice North Sea - 3-Y-Recr.",,,,,,,,, 8,26,2,,,,,,, 1967,185,-11,-11,-11,-11,-11,2813,-11,-11 1968,242,-11,-11,-11,7708,9450,1008,-11,-11 1969,273,-11,8641,8032,-11,23848,4484,-11,-11 1970,198,3678,-11,18101,14840,9584,1631,-11,-11 1971,159,6708,9799,6437,8738,4191,1261,-11,-11 1972,432,9242,32980,57238,43774,17985,10744,-11,-11 1973, 341, 5451, 5835, 15648, 15583, 9171, 791, -11, -11 1974,238,2193,3903,9781,4610,2274,1720,105.73,69.34 1975,205,1151,1739,9037,3424,2900,435,68.29,77.88 1976, 322, 11544, 8344, 19119, 15364, 12714, 1577, 226.29, 128.65 1977,291,4378,5054,13924,7041,9540,456,158.38,66.25 1978, 295, 3252, 6922, 21681, 10778, 12084, 785, 213.62, 153.28 1979,437,27835,16425,58049,37468,16106,1146,355.51,197.67 1980, 301, 4039, 2594, 19611, 11132, 8503, 308, 136.2, 131.45 1981,725,31542,20251,70108,45588,14708,2480,616.99,263.58 1982,419,23987,7615,34884,17459,10413,1584,476.36,148.97 1983, 425, 36722, 11869, 44667, 37339, 13788, 1155, 398.7, 113.91 1984, 380, 7958, 16557, 27832, 16277, 7557, 1232, 260.99, 103.51 1985,1010,47385,56559,93573,62290,33021,13140,721.87,260 1986,452,8818,8523,33426,16213,14429,3709,357.8,188.31 1987, 421, 21270, 12835, 36672, 34218, 14952, 3248, 473.62, 98.16 1988, 296, 15598, 10387, 37238, 16677, 7287, 1507, 341.71, 128.37 1989,-11,24198,10235,24903,-11,11148,2257,469.64,121.31 1990,-11,9559,-11,57349,-11,13742,-11,465.84,136.88 1991,-11,17120,-11,48223,-11,-11,-11,497.11,151.17 1992,-11,5398,-11,-11,-11,-11,-11,365.17,-11 "T-0",,,,,,,,,,,, "T-lapril",,,,,,,,,, "T-loctober",,,,,,,,, "T-2april",,,,,,,,, "T-2october",,,,,,,,, "T-3october",,,,,,,,, "com-0",,,,,,,,,

"COm-1",,,,,,,,,,,

I-----Prediction-----I Analysis by RCT3 ver3.1 of data from file : WAP Index Predicted Std Slope Inter-Std Rsquare No. Survey/ pla4rec1.csv Weights Value Value Error Error Pts Series cept "Plaice North Sea - 1-Y-Rcr.",,,,,,,,, 9.75 6.48 .435 .137 19 "T-0", .55 1.15 .37 .545 "T-lap Data for 8 surveys over 26 years : 1967 - 1992 .23 .754 20 10.78 6.62 .275 .342 "T-10C .78 -1.80 "T-2ap Regression type = C"T-20C Tapered time weighting applied power = 3 over 20 years "T-30C .191 6.71 .368 .637 15 6.21 "com-0 .88 1.23 .31 Survey weighting not applied .154 .576 15 5.02 6.46 .410 "com-1 1.28 .02 .35 Final estimates shrunk towards mean VPA Mean = 6.38 .383 .177 Minimum S.E. for any survey taken as .20 Minimum of 3 points used for regression Yearclass = 1992 Forecast/Hindcast variance correction used. I-----Prediction-----I Yearclass = 1989 Survey/ Slope Inter-Std Rsquare No. Index Predicted Std WAP I-----Prediction-----I Pts Value Value Error Weights Series cept Error Survey/ Slope Inter-Std Rsquare No. Index Predicted .504 .225 Std WAP "T-0" .59 .75 .39 .520 19 8.59 5.79 Series cept Error Pts Value Value Error Weights "T-lap "T-loc "T-0", .50 1.64 .584 .394 .34 19 10.09 6.67 .091 "T-2ap "T-lap .55 1.22 .26 .703 19 9.23 6.34 .298 .159 "T-2oc "T-1oc .71 -1.03 .766 .22 20 10.12 6.15 .256 .216 "T-3oc "T-2ap .32 .621 15 5.90 6.42 .384 .388 "com-0 .95 .84 "T-2oc .84 -1.53 .669 .28 21 9.32 6.33 .323 .135 "com-1 "T-3oc .54 2.38 .38 .533 7.72 22 6.52 .431 .076 "com-0 .79 1.78 .28 .669 15 6.15 6.66 .384 .387 .330 .130 VPA Mean = 6.40 "com-1 .31 1.22 .33 .598 15 4.81 .379 .098 6.19 VPA Mean = 6.35 .384 .095 Yearclass = 1990 I-----Prediction-----T

Yearclass = 1991

					*	-	1100	ICCION-	1
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts	Index Value	Predicted Value	Std Error	WAP Weights
"T-0", "T-1ap	.52	1.45	.35	.567	19	9.17	6.19	.409	.117
"T-1oc "T-2ap	.74	-1.37	.23	.760	20	10.96	6.74	.270	.268
"T-20C "T-30C	.86	-1.71	.28	.681	21	9.53	6.50	.320	.191
"com-0	.83	1.54	.29	.654	15	6.15	6.66	.346	.163
"com-1	1.25	.18	.34	.588	15	4.93	6.33	.392	.127
					VPA	Mean =	6.37	.383	.133

Year Class	Weighted Average Prediction	Log WAP	Int Std Error	Ext Std Error	Var Ratio	VPA	Log VPA
1989	582	6.37	.12	.07	.36		
1990	676	6.52	.14	.09	.38		
1991	699	6.55	.16	.06	.13		
1992	529	6.27	.24	.18	.59		

202

Analysis by RCT3 ver3.1 of data from file :

pla4rec2.csv

"Plaice North Sea - 2-Y-Recr.",,,,,,,,, Yearclass = 1991 Data for 8 surveys over 26 years : 1967 - 1992 I-----Prediction-----I Regression type = CSurvey/ Slope Inter-Std Rsquare No. Index Predicted Tapered time weighting applied Std WAP Series cept Error power = 3 over 20 years Pts Value Value Error Weights Survey weighting not applied "T-0". .55 1.05 .37 .552 19 9.75 6.38 .432 .137 "T-lap Final estimates shrunk towards mean "T-loc .78 -1.92.759 .23 20 10.78 6.51 Minimum S.E. for any survey taken as .20 .273 .344 "T-2ap Minimum of 3 points used for regression "T-2oc "T-3oc Forecast/Hindcast variance correction used. "com~0 .88 1.15 .30 .649 15 6.21 6.61 .361 .196 "com-1 1.29 -.13 .35 .575 15 5.02 Yearclass = 1989 6.35 .413 .150 VPA Mean = I-----Prediction------I 6.28 .385 .173 Survey/ Slope Inter-Std Rsquare No. Index Predicted Std WAP Yearclass = 1992 Series cept Error Pts Value Value Error Weights I-----Prediction-----I "T-0" .50 1.53 .34 .591 19 10.09 6.56 .391 .091 "T-lap .56 1.10 .26 .710 19 9.23 6.23 .295 .160 Survey/ Slope Inter-Std Rsquare No. Index Predicted "T~1oc .71 -1.16 .22 .772 20 10.12 Std WAP 6.04 .253 .218 Series cept Error "T-2ap Pts Value Value Error Weights "T-20C .85 -1.66 .28 .672 21 9.32 6.22 .323 .134 "T-0". .59 .66 .39 .526 "T-3oc .54 2.28 .37 .540 7.72 19 8.59 5.69 22 6.42 .499 .428 .076 .226 "T-lap "com-0 .79 1.68 .28 .682 15 6.15 6.56 .323 .134 "T-1oc "com-1 1.23 .15 .33 .597 15 4.81 6.08 .384 .095 "T-2ap "T-2oc VPA Mean = 6.24 .387 .093 "T-3oc "com-0 ,94 .76 .31 .632 15 5.90 6.32 .376 .397 "com-1 Yearclass = 1990 VPA Mean = I-----Prediction-----I 6.29 .386 .377 Survey/ Slope Inter-Std Rsquare No. Index Predicted WAP Std Series cept Error Pts Value Value Error Weights "T-0". .52 1.34 .574 .35 19 9.17 6.08 .406 .118 "T-lap "T-loc -1.50 .22 .765 .74 20 10.96 6.64 .268 .271 "T-2ap Year Weighted Log Int "T-2oc Ext Var VPA .87 -1.86 .28 .682 21 9.53 6.40 .321 .188 Log Class Average WAP Std Std "T-3oc Ratio VPA Prediction Error Error "com-0 .83 1.45 .29 .666 15 6.15 6.55 .339 .169 "com-1 1.26 .02 .34 .586 15 4.93 6.23 .396 .124 1989 525 6.26 .12 .07 .37 1990 610 6.41 .14 .09 .39 VPA Mean = 6.26 .385 .131 1991 631 6.45 .16 .06 .13 1992 476 6.17 .24 .18 .59

Table 3.7.12Recruitment prediction of 3-year old

										Yearcla	ass =	1991							
											I		Regress	ion	:	I I	Pr	ediction	1
Analysis	by RCT3	3 ver3.1	of dat	ta from f	ile :					Survey/	Slope	Inter-		Rsquare	No. Pts	Index Value	Predicted Value	Std Error	WAP Weights
pla4rec3.	.csv									Series		cept	Error						-
"Plaice N	North Se	ea - 3-¥	-Recr.	",,,,,,,,,	,					"T-0", "T-1ap	.57	.63	.38	.548	19	9.75	6.15	.449	.129
Data for	8 si	urveys o	ver 2	26 years	: 19	67 - 19	92			"T-loc "T-2ap	.81	-2.39	.23	.766	20	10.78	6.29	.277	.339
Regressio	on type	= C								"T-20C "T-30C									
Tapered t				đ						"com-0	.89	.87	.29	.682	15	6.21	6.38	.347	.216
power = Survey we		er 20 y I not ap								"com-1	1.32	49	.35	.591	15	5.02	6.13	.414	.152
Final est			-												VPA	Mean =	6.05	.398	.164
Minimum S	S.E. for	r any su	rvey ta	aken as	. 20														
Minimum c	of 3]	points u	sed fo	r regress	ion					Yearclas	ss = 1	992							
Forecast,	/Hindcas	st varia	ince co	rrection	used.						I	R	egressi	on	I	I	Pre	diction-	I
Yearclass	s = 19	989								Survey/	Slope	Inter-	Std	Rsquare			Predicted		WAP
	I	Re	gressi	on	I	I	Pred	liction-	I	Series		cept	Error		Pts	Value	Value	Error	Weights
Survey/	Slope	Inter-	Std	Rsquare	No.	Index	Predicted	Std	WAP	"T-0", "T-1ap	.61	.22	.41	.519	19	8.59	5.44	.522	.208
Series		cept	Error		Pts	Value	Value	Error	Weights	"T-loc									
"T-0".	.52	1.11	.35	.591	19	10.09	6.35	.406	.085	"T-2ap									
"T-lap	.58	.65	.27	.707	19	9.23	6.00	. 309	.147	*T-20C									
"T-loc	.74		.22	.781	20	10.12	5.80	.257	.214	"T-30C "com+0	.95	.51	.30	.663	15	5.90	6.10	.362	.433
"T-2ap										"com-1	.95		. 50	.005	10	0.20			
"T-2oc	.87	-2.11	.28	.688	21	9.32	5.99	.323	.135	ÇOM 1									
"T-30C	.53	2.13	.34	.609	22	7.72	6.18	.387	.094						VPA	Mean =	6.07	.398	.359
"com-0	.80	1.38	.27	.715	15	6.15	6.33	.310	.146										
"com-1	1.27	27	.34	.607	15	4.81	5.84	.390	.092										
					VPA	Mean =	6.01	.402	.087										
Yearclas	s = 1	990																	
	I	Re	egressi	.on	I	I	Prec	liction-	I	Year	Weigh	ted	Log	Int	Ext	Va	ar VPA	Log	ſ
Survey/ Series	Slope	Inter- cept	-	Rsquare		Index	Predicted Value	Std Error	WAP Weights	Class	Avera	age	WAP	Std Error	Std Erro	Rat		VPA	

Series		cept	Error		Pts	Value	Value	Error	Weights
"T-0",	.54	.93	.36	.573	19	9.17	5.85	.422	.110
"T-lap									
"T-loc	.77	-1.98	.23	.773	20	10.96	6.42	. 272	.266
"T-2ap									
"T-20C	.89	-2.28	.28	.700	21	9.53	6.17	.319	.193
"T-3oc									
"com-0	.84	1.16	.28	.700	15	6.15	6.32	.326	.185
"com-1	1.29	37	.35	.599	15	4.93	6.00	.400	.123
					VPA	Mean =	6.03	.399	.123

Year Class	Weighted Average Prediction	Log WAP	Int Std Error	Ext Std Error	Var Ratio	VPA	Log VPA
1989	419	6.04	.12	.07	.39		
1990	489	6.19	.14	.09	.39		
1991	507	6.23	.16	.06	.13		
1992	383	5.95	.24	.18	.60		

YEAR	RECRUITS millions	TOTBIO kt	SSBIO kt	LANDINGS kt	SOP	F2_10u	FBC	FBP
58 59 60	431 434 406	472 469 503	362 354 373	73 79 88	1.063 1.022 1.007	0.21 0.22 0.24	0.25 0.24 0.28	0.14 0.14 0.15
61 62	359 317	472 550	361 436	86 87	1.016 0.967	0.23 0.23	0.28 0.28	0.14 0.14
63	314	562	453	107	1.019	0.26		0.15
64 65	1019	634	432	111	1.008	0.27		
66	309 305	589 602	422 428	97 102	1.006	0.27 0.26	0.30	0.16 0.15
67	276	607	508	102	1.020		0.29	0.13
68	245	567	472	112	1.029	0.22	0.23	0.14
69	327	560	446	122	1.058			0.16
70 71	369 275	515 521	392 389	130 114	0.974 1.033	0.33	0.38	0.20
72	234	511	389	123	1.033	0.32 0.34	0.30 0.31	0.18 0.20
73	540	514	353	130	1.051	0.38	0.39	0.23
74	451	484	320	113	1.037	0.39	0.43	0.22
75	335	524	339	109	1.062	0.37	0.38	0.19
76 77	324 470	461 479	322 330	114	1.025			0.19
78	428	479	311	119 114	1.002 0.964	0.33 0.33	0.33 0.34	0.21 0.21
79	441	471	309	145	0.998	0.46	0.45	0.21
80	657	491	299	140	1.014	0.40	0.50	0.26
81	421	493	310	140	1.018	0.40	0.46	0.26
82 83	1020 586	559 546	300	155	1.006	0.44	0.55	0.26
84	605	546	324 323	144 158	0.994 0.984	0.42 0.39	0.49	0.25 0.23
85	543	537	351	160	0.980	0.39	0.45	0.23
86	1355	656	355	165	0.988	0.45	0.47	0.25
87	570	643	391	160	1.000	0.40	0.48	0.23
88 89	568	636	380	162	0.985	0.42	0.45	0.20
89 90	404 471	592 569	423 400	170 168	0.989 0.984	0.37 0.38	0.38	0.21
91	676	489	333		0.984	0.38	0.42	0.22 0.24
92	699	537	319	121	0.983	0.46	0.45	0.24
93	529					-		

Recruits age 1 in the given year; values 1991 - 93 are RCT3 predictions

Plaice in the North Sea (Fishing Area IV)

Yield	per	recruit:	Summary	table
-------	-----	----------	---------	-------

						1 Jar	nuary	Spawnir	ng time
F Factor	Reference F	Catch in numbers	Catch in weight	Stock size	Stock biomass	Sp.stock size	Sp.stock biomass	Sp.stock size	Sp.stock biomass
0.0000	0.0000	0.000	0.000	10.508	6223.336	8.647	5869.012	8.647	5869.012
0.2000	0.0912	0.409	212.622	6.423	2747.639	4.571	2395.809	4.571	2395.809
0.4000	0.1824	0.555	243.181	4.970	1683.207	3.127	1333.816	3.127	1333.816
0.6000	0.2736	0.627	244.515	4.261	1236.826	2.427	889.824	2.427	889.824
0.8000	0.3648	0.668	241.086	3.850	1013.568	2.025	668.902	2.025	668.902
1.0000	0.4560	0.696	237.762	3.583	886.544	1.766	544.165	1.766	544.165
1.2000	0.5472	0.715	235.351	3.395	806.388	1.586	466.246	1.586	466.246
1.4000	0.6384	0.730	233.777	3.253	751.367	1.453	413.414	1.453	413.414
1.6000	0.7295	0.741	232.824	3.141	710.977	1.349	375.167	1.349	375.167
1.8000	0.8207	0.751	232.300	3.049	679.734	1.265	346.021	1.265	346.021
2.0000	0.9119	0.759	232.064	2.972	654.572	1.196	322.912	1.196	322.912
-	-	Numbers	Grams	Numbers	Grams	Numbers	Grams	Numbers	Grams

Notes: Run name

)

•

Run name: YIELD1Date and time: 100CT93:16:35Computation of ref. F: Simple mean, age 2 - 10F-0.1 factor: 0.2345F-max factor: 0.5127F-0.1 reference F: 0.1069F-max reference F: 0.2338Recruitment: Single recruit

205

Table 3.7.15Prediction and Y/R input.

Plaice in the North Sea (Fishing Area IV)

Plaice in the North Sea (Fishing Area IV)

Prediction with management option table: Input data

	Year: 1993												
Age	Stock size	Natural mortality	Maturity ogive	Prop.of F bef.spaw.	Prop.of M bef.spaw.	Weight in stock	Exploit. pattern	Weight in catch					
1	529000.00	0.1000	0.0000	0.0000	0.0000	0.137	0.0036	0.250					
2	631000.00	0.1000	0.5000	0.0000	0.0000		0.1083	0.278					
3	489000.00	0.1000	0.5000	0.0000	0.0000		0.3346	0.295					
4	232595.00	0.1000	1.0000	0.0000	0.0000	0.286	0.5616	0.315					
5	102213.00	0.1000	1.0000	0.0000	0.0000	0.334	0.7175	0.360					
6	59317.000	0.1000	1.0000	0.0000	0.0000	0.408	0.6263	0.443					
7	40324.000	0.1000	1.0000	0.0000	0.0000	0.505	0.5254	0.551					
8	46790.000	0.1000	1.0000	0.0000	0.0000	0.617	0.4605	0.652					
9	9884.000	0.1000	1.0000	0.0000	0.0000		0.4133	0.732					
10	5103.000	0.1000	1.0000	0.0000	0.0000	0.747	0.3562	0.795					
11	4014.000	0.1000	1.0000	0.0000	0.0000	0.886	0.2998	0.915					
12	4211.000	0.1000	1.0000	0.0000	0.0000	0.990	0.3224	0.978					
13	1767.000	0.1000	1.0000	0.0000	0.0000	0.976	0.2969	1.019					
14	1217.000	0.1000	1.0000	0.0000	0.0000	0.887	0.4049	0.937					
15+	2590.000	0.1000	1.0000	0.0000	0.0000	0.998	0.4049	1.051					
Unit	Thousands	-	-	-	-	Kilograms	-	Kilograms					

	-			Year: 19	94			
Age	Recruit- ment	Natural mortality		Prop.of F bef.spaw.	Prop.of M bef.spaw.	Weight in stock	Exploit. pattern	Weight in catch
1	511000.00	0.1000	0.0000	0.0000	0.0000	0.137	0.0036	0.250
2		0.1000	0.5000	0.0000	0.0000	0.238	0.1083	0.278
3		0.1000	0.5000	0.0000	0.0000	0.267	0.3346	0.295
4		0.1000	1.0000	0.0000	0.0000	0.286	0.5616	0.315
5	-	0.1000	1.0000	0.0000	0.0000	0.334	0.7175	0.360
6		0.1000	1.0000	0.0000	0.0000	0.408	0.6263	0.443
7		0.1000	1.0000	0.0000	0.0000	0.505	0.5254	0.551
8	-	0.1000	1.0000	0.0000	0.0000	0.617	0.4605	0.652
9		0.1000	1.0000	0.0000	0.0000	0.679	0.4133	0.732
10		0.1000	1.0000	0.0000	0.0000	0.747	0.3562	0.795
11		0.1000	1.0000	0.0000	0.0000	0.886	0.2998	0.915
12		0.1000	1.0000	0.0000	0.0000	0.990	0.3224	0.978
13	-	0.1000	1.0000	0.0000	0.0000	0.976	0.2969	1.019
14	•	0.1000	1.0000	0.0000	0.0000	0.887	0.4049	0.937
15+	•	0.1000	1.0000	0.0000	0.0000	0.998	0.4049	1.051
Unit	Thousands	-	-	-	-	Kilograms	-	Kilograms

				Year: 19	95			
Age	Recruit- ment	Natural mortality			Prop.of M bef.spaw.	Weight in stock	Exploit. pattern	Weight in catch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+		$\begin{array}{c} 0.1000\\ 0.000\\$	0.0000 0.5000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.137 0.238 0.267 0.286 0.334 0.408 0.505 0.617 0.679 0.747 0.886 0.990 0.976 0.887 0.998	0.0036 0.1083 0.3346 0.5616 0.7175 0.6263 0.5254 0.4605 0.4133 0.3562 0.2998 0.3224 0.2969 0.4049 0.4049	0.250 0.278 0.295 0.315 0.360 0.443 0.551 0.652 0.732 0.795 0.915 0.978 1.019 0.937 1.051
Unit	Thousands	-	-	-	-	Kilograms	-	Kilograms

Notes: Run name : PRED1 Date and time: 100CT93:15:21

Table 3.7.16 **Catch** prediction

Plaice in the North Sea (Fishing Area IV) Plaice in the North Sea (Fishing Area IV)

Prediction with management option table

	Y	'ear: 1993	*			٢		Year: 1995			
F Factor	Reference F	Stock biomass	Sp.stock biomass	Catch in weight	F Factor	Reference F	Stock biomass	Sp.stock biomass	Catch in weight	Stock biomass	Sp.stock biomass
1.0000	0.4560	551144	338101	143089	0.0000	0.0000	531424	336098	0	581085	468445
					0.2000	0.0912	5	336098	35129	546240	434873
					0.4000	0.1824		336098	67139	514604	404483
				.	0.6000	0.2736		336098	96343	485846	376945
					0.8000	0.3648		336098	123021	459673	351968
					1.0000	0.4560		336098	147423	435824	329288
•		-	-		1.2000	0.5472		336098	169773	414064	308674
		-			1.4000	0.6384	•	336098	190269	394185	289918
•			-	.	1.6000	0.7295		336098	209090	376002	272833
					1.8000	0.8207		336098	226397	359348	257256
	•		•	•	2.0000	0.9119	a	336098	242333	344075	243036
-	-	Tonnes	Tonnes	Tonnes	-	-	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes

Notes: Run name : PRED4 Date and time : 100CT93:16:31 Computation of ref. F: Simple mean, age 2 - 10 Basis for 1993 : F factors

Table 3.7.17 Sensitivity by analysis input

Table 3.7.18

Medium term prediction input

I.

.

NS Plaice sensitivity analysis input

Input Values

name,	value, uncertainty
pn1 ,	529000.0000, .24
pn2 ,	631000.0000, .16
pn3,	489000.0000, .14
pn4,	233000.0000, .13
pn5	102000.0000, .14
pn6 ,	59000.0000, .17
pn7,	40000.0000, .17
pn8,	47000.0000, .17
pn9	10000.0000, .18
pn10,	5000.0000, .17
pnll,	4000.0000, .17
pn12,	
pn13,	2000.0000, .18
pn14,	1000.0000, .19
sl1 ,	.0040, .20
sl2 ,	.1080, .19
sl3 ,	.3350, .15
sl4 ,	.5620, .11
sl5 ,	.7180, .08
sl6 ,	.6260, .11
sl7 ,	.5250, .19
sl8 ,	.4610, .22
s19 ,	.4130, .21
sl10,	.3560, .32
sl11,	.3000, .18
sl12,	.3220, .34
sl13,	.2970, .31
sl14,	.4050, .48
m1 '	.1000, .10
m 2 /	.1000, .10
- 2 '	.1000, .10
-	.1000, .10
	.1000, .10
m6,	.1000, .10
m7,	.1000, .10
m8 ,	.1000, .10
m9,	.1000, .10
m10 ,	.1000, .10
m11 ,	.1000, .10
m12 ,	.1000, .10
m13 ,	.1000, .10
m14 ,	.1000, .10
r94 ,	511000.0000, .42
r95 ,	511000.0000, .42
£93 ,	1.0000, .10
f94 ,	1.0000, .10
f95 ,	1.0000, .10
m93 ,	1.0000, .10
m94 ,	1.0000, .10
m95,	1.0000, .10
,	1.0000, .10

Plaice in area IV	Weight at age (stock)
Minimum and maximum ages	.137
1,14	.238
Number of fleets	.267
1	,286
Type of fleet	.334
1	.408
Base stock levels (numbers)	.505
529000, .24	.617
631000, .16	.679
489000, .14	.747
233000, .13	.886
102000, .14	.990
59000, .17	.976
40000, .17	.887
47000, .17	Fishing selectivity at age (F)
10000, .18	.004
5000, .17	.108
4000, .17	.335
4000, .16	.562
2000, .18	.718
1000, .19	.626
Natural mortality at age	.525
.1	.461
.1	.413
.1	.356
.1	.300 .322
.1	.297
.1	.405
.1	Proportional maturity at age
.1 .1	0
.1	.5
.1	.5
.1	1
.1	1
.1	1
Weight at age (catch)	1
.25	1
.278	1
.259	1
.315	1
.360	1
.443	1
.551	1
.652	Mean and variance of log(recruitment)
.732	1203, 47
.795	
.915	
.978	
1.019	
.937	

208

Table 3.7.19 Plaice, North Sea

Average F(2-10,u)								
Date of	Year							
assessment	1987	1988 1989 1990		1991	1992			
1989	0.39	0.44						
1990	0.48	0.60	0.55					
1991	0.48	0.56	0.53	0.56				
1992	0.43	0.44	0.38	0.39	0.46			
1993	0.40	0.42	0.37	0.38	0.47	0.46		

Assessment Quality Control Diagram 1

Remarks:

Estimated total landings ('000 t) at status quo F										
Date of	Year									
assessment	1988	1989	1990	1991	1992	1993	1994			
1989	172.6	182.0	171.0		L	L	I			
1990	172.6	180.5	189.0	169.0]					
1991		169.6	167.7	164.0	160.0					
1992			167.7	153.7	170.6	170.2				
1993				165.8	123.6	143	147			
					SQC ²	Current	\ Forecast			

Assessment Quality Control Diagram 2

.

¹SQC = Landings(y-1) *
$$\frac{F(y-2)}{F(y-1)}$$
 * exp $\left[-\frac{1}{2}\{F(y-2) - F(y-1)\}\right]$
²SQC = Landings(y) * $\frac{F(y-1)}{F(y)}$ * exp $\left[-\frac{1}{2}\{F(y-1) - F(y)\}\right]$
where F(y), F(y-1) and F(y-2) are as estimated in the assessment made in year (y+1).

Remarks:

Continued

Table 3.7.19 Continued

Recruitment (age 1) Unit: Millions								
Date of	Year class							
assessment	1988	1989	1990	1991	1992	1993		
1989	612	750		I	1	I		
1990	574 ¹	584 ¹	588 ¹]				
1991	594 ¹	617 ¹	696 ¹	690 ¹				
1992	581 ¹	598 ¹	750 ¹	687 ¹	567 ¹			
1993	404	471	676 ¹	699 ¹	529 ¹	n/a		

Assessment Quality Control Diagram 3

Remarks:

.

Assessment Q	uality Control	Diagram 4
--------------	----------------	-----------

	Spawning stock biomass ('000 t)								
Date of	Year								
assessment 1988	1989	1990	1991	1992	1993	1994	1995		
1989	361	385	364 ¹	3 61 ¹		L	L		
1990	348	382	377	345 ¹	326 ¹				
1991	341	383	376	355	354 ¹	357 ¹			
1992	377	433	402	346	385	3781	369 ¹		
1993	386	429	406	345	325	388	336 ¹	· 329 ¹	

¹Forecast.

Remarks: