This report not to be quoted without prior reference to the Council*
International Council for the

## REPORT OF THE NORTH-WESTERN WORKING GROUP

Copenhagen, 3-11 May 1993

This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.

[^0]
## TABLE OF CONTENTS

1 INTRODUCTION ..... 1
1.1 Participants ..... 1
1.2 Terms of Reference ..... 1
DEMERSAL STOCKS IN THE FAROE AREA (DIVISIONS Vb AND IIa) ..... 1
2.1 Faroe Plateau Cod ..... 1
2.1.1 Trends in landings ..... 1
2.1.2 Catch at age ..... 2
2.1.3 Mean weight at age ..... 2
2.1.4 Maturity at age ..... 2
2.1.5 Stock assessment ..... 2
2.1.6 Predictions of catch and biomass ..... 3
2.1.7 Management considerations ..... 3
2.1.8 Comments on the assessment ..... 3
2.2 Faroe Bank Cod ..... 3
2.2.1 Trends in landings and effort ..... 3
2.2.2 Stock assessment ..... 4
2.2.3 Management considerations ..... 4
2.3.1 Landings and trends in the fishery ..... 4
2.3.2 Catch at age ..... 4
2.3.3 Weight at age ..... 5
2.3.4 Maturity at age ..... 5
2.3.5 Assessment ..... 5
2.3.6 Prediction of catch and biomass ..... 5
2.3.7 Managements considerations ..... 6
2.3.8 Comments on the assessment ..... 6
2.4 Faroe Saithe ..... 6
2.4.1 Landings and trends in the fishery ..... 6
2.4.2 Catch at age ..... 6
2.4.3 Weight at age ..... 6
2.4.4 Maturity at age ..... 7
2.4.5 Stock assessment ..... 7
2.4.6 Prediction of catch and biomass ..... 7
2.4.7 Management considerations ..... 7
2.4.8 Comments on the assessment ..... 7
3 DEMERSAL STOCKS AT ICELAND (DIVISION Va) ..... 8
3.1 Regulation of Demersal Fisheries ..... 8
3.2 Icelandic Saithe ..... 8
3.2.1 Trends in landings ..... 8
3.2.2 Catch in numbers ..... 8
3.2.3 Mean weight at age ..... 8
3.2.4 Maturity at age ..... 9
3.2.5 Stock assessment ..... 9
3.2.6 Prediction of catch and biomass ..... 9
3.2.7 Management considerations ..... 10
3.2.8 Comments on the assessment ..... 10

## TABLE OF CONTENTS

3.3 Icelandic Cod (Division Va) ..... 10
3.3.1 Groundfish survey design ..... 10
3.3.2 Trends in landings and effort ..... 10
3.3.3 Catch in numbers at age ..... 11
3.3.4 Mean weight at age ..... 11
3.3.5 Maturity at age ..... 11
3.3.6 Stock Assessment ..... 11
3.3.7 Prediction of catch and biomass ..... 13
3.3.8 Comments on the assessment ..... 14
4 THE COD STOCK COMPLEX IN GREENLAND (NAFO SUB-AREA 1 AND ICES SUB-AREA XIV) AND ICELANDIC WATERS (DIVISION Va) ..... 15
4.1 Inter-relationship between the Cod Stocks in the Greenland-Iceland Area ..... 15
5 COD STOCKS IN THE GREENLAND AREA ..... 16
5.1 Survey and Research ..... 16
5.1.1 Groundfish survey of the Federal Republic of Germany ..... 16
5.1.2 Greenland trawl survey ..... 17
5.1.3 West Greenland young cod survey ..... 18
5.2 Trends in Catch and Effort ..... 18
5.3 Assessment ..... 19
5.3.1 Catch in numbers ..... 19
5.3.2 Weight at age ..... 19
5.3.3 Assessment ..... 19
5.4 Management Considerations ..... 19
6 GREENLAND HALIBUT IN SUB-AREAS V AND XIV ..... 20
6.1 Trends in Landings and Fisheries ..... 20
6.2 Trends in Effort and CPUE ..... 20
6.3 Catch in Numbers ..... 20
6.4 Weight at Age ..... 20
6.5 Maturity at Age ..... 20
6.6 Stock Assessment ..... 20
6.6.1 Tuning and estimates of fishing mortalities ..... 20
6.6.2 Spawning stock and recruitment ..... 21
6.7 Prediction of Catch and Biomass ..... 21
6.7.1 Input data ..... 21
6.7.2 Biological reference points ..... 21
6.7.3 Projections of catch and biomass ..... 21
6.8 Management Considerations ..... 21
6.9 Comments on the Assessment ..... 21
7 REDFISH IN SUB-AREAS V, VI, XII AND XIV ..... 21
7.1 Species and Stock Identification ..... 21
7.2 Stock Distribution with Respect to National Fisheries Zones ..... 22
7.3 Landings and Trends in the Fisheries ..... 22
7.4 Redfish Recruitment Indices ..... 23
7.5 Redfish Assessment ..... 23
7.5.1 Traditional stocks ..... 23
7.5.2 Oceanic S. mentella ..... 23
8 DEEP-WATER FISHERIES INSIDE AND BEYOND COASTAL STATE JURISDICTION ..... 26
9 REFERENCES ..... 28
10 WORKING DOCUMENTS SUBMITTED TO THE MEETING ..... 29
Tables 2.1.1.A-Table 8.6 ..... 30
Figures 2.1.1-7.5.12 ..... 155
APPENDIX A: MEDIUM-TERM PREDICTIONS FOR THE ICELANDIC COD STOCK ..... 213

1 INTRODUCTION

### 1.1 Participants

| G. Bech | Greenland |
| :--- | :--- |
| J. Boje | Greenland |
| J.S. Campbell | Canada |
| J.J. Engelstoft | Greenland |
| J.M. Grastein | Faroe Islands |
| A. Gudmundsdottir | Iceland |
| H. Hovgaard | Greenland |
| G. Johannesson | Iceland |
| A. Kristiansen | Faroe Islands |
| J. Magnusson | Iceland |
| K.H. Nedreaas | Norway |
| A. Nicolajsen | Faroe Islands |
| S.A. Pedersen | Greenland |
| H.J. Rätz | Germany |
| J. Reinert | Faroe Islands |
| S.A. Schopka (Chairman) | Iceland |
| V.N. Shibanov | Russia |
| B.E. Steinarsson | Iceland |
| G. Stefánsson | Iceland |

### 1.2 Terms of Reference

At the 80th Statutory Meeting it was decided (C.Res. 1992/2:8:10) that the North-Western Working Group should meet at ICES Headquarters from 3-11 May 1993 to:
a) assess the status of and provide catch options for 1993 for East and West Greenland cod and for 1994 for Icelandic cod;
b) assess the status of and provide catch options for 1994 and 1995 for the stocks of redfish in Sub-areas V, VI, XII and XIV, Greenland halibut in Sub-areas V and XIV, saithe in Division Va and Division Vb, and cod and haddock in Division Vb ;
c) describe as far as possible the technical and biological interactions and evaluate the likely effects;
d) update the information provided in 1992 on the stock identity, migration, spawning areas, and state of exploitation of the oceanic stock of Sebastes mentella, especially paying attention to the question of assessment based on acoustic and catch data representing the total exploitable stock taking into account the latest survey data;
e) describe, as far as possible, the fishery in waters beyond coastal state jurisdiction in ICES Sub-areas XII, especially catch statistics by species, fleet, and gear.

In addition to this at its Eleventh Annual Meeting in November 1992 NEAFC requested ICES to provide additional information concerning:
an evaluation of the consequences in the medium term of TAC levels for the oceanic stock of Sebastes mentella in the range 50,000-150,000 tonnes [i.e, 50,000 t, 100,000 t, 150,000 t] and an indication as to whether these levels are within safe biological limits.

## 2 DEMERSAL STOCKS IN THE FAROE AREA (DIVISIONS Vb AND IIa)

### 2.1 Faroe Plateau Cod

### 2.1.1 Trends in landings

The nominal landings of cod (1983-1992) from the Faroe Plateau by nations as officially reported to ICES are given in Table 2.1.1.A. The relatively high recruitment in 1980-1983 maintained the good fishery for cod from 1983 to 1986 when the catches reached almost 40,000 tonnes. Since then, the catches have steadily decreased to the point where only 6,700 tonnes were taken in 1992. This was the lowest catch on record.

In recent years, statistics for the Faroese fishery in that part of Subdivision IIa (Figure 2.1.1) which is within the Faroese EEZ have become available. It is expected that these catches are taken from the Faroe Plateau area so they are included in the total catches used in the assessment. This is depicted in Table 2.1.1.B under the row labelled "Total used in the assessment". Included, also, are the non-officially reported French catches of Faroe Plateau cod.

During the last 15 years, the Faroe Plateau Cod has been exploited almost entirely by the Faroese fishing fleet. Table 2.1.2 shows the nominal landings disaggregated between the most important fleet categories. The data in this table are the preliminary statistics which were available at the time of compiling the catch-at-age data for the corresponding years. Minor changes are expected in the final data. In recent years, longliners and pairtrawlers have taken most of the catches. The longliners, at least those less than 100 GRT, have a directed fishery for cod during the year while the pairtrawlers take cod mainly as by-catch in the saithe fishery. Longliners less than 100 GRT have not been affected by the fishing regulations which consist of closed areas and fishing days limitation. In 1992, however, the spawning area was closed to all fishing during the main spawning period (1 month).

Figure 2.1.2 shows the catch rates per day from 1985 to 1992 for two subgroups of longliners less than 100 GRT.

The catch rates have steadily decreased during this period. The 1987 year class became available to the smaller longliners as 2 year olds in 1989 and the catch rates increased. Figure 2.1 .3 shows the catch rates per day for different categories of trawlers. The decrease follows the same pattern as for longliners with the exception of 1989. Preliminary information from the fishery during the first months of 1993 indicates slightly lower catch rates than in the same period in 1992.

### 2.1.2 Catch at age

Catch in numbers-at-age in 1992 are provided for the Faroese fishery in Table 2.1.3. Faroese landings from most of the fleet categories were sampled. The catch-innumbers for the fleets covered by the sampling scheme were calculated from the age composition in each fleet category and raised by their respective catches. Catch-innumbers for other fleets fishing cod on Faroe Plateau were raised using the overall Faroese age composition. As in 1990 and 1991, the 1987 year class (age group 5) was the most important age group in the catches. The catch-at-age in number in recent years was revised according to updated fishery statistics.

### 2.1.3 Mean weight at age

Mean weight-at-age data for 1992 are provided for the Faroese fishery in Table 2.1.4. These were calculated using the length/weight relationship based on individual length/weight measurements of samples from the landings. The sum-of-products check for 1992 showed a discrepancy of $2 \%$.

Data on the mean weight-at-age by year are available from 1978. Figure 2.1.4 A and B show plots of the mean weights for age groups 2 to 5 and 6 to 9 , respectively. The weights seem to have been relatively stable, although a decreasing trend for age groups 4 and 5 can be observed in recent years.

### 2.1.4 Maturity at age

The proportions of mature cod by age are given in Table 2.1.5. The data were obtained during the Faroese groundfish surveys carried out in the spawning period (March). Thus the data for 1993 are available to be used in the predictions of spawning stock biomass.

### 2.1.5 Stock assessment

### 2.1.5.1 Tuning and estimates of fishing mortality

Three catch and effort series were available for tuning the VPA. These were also used in the 1991 assessment of the Faroe Plateau cod. One series is derived from annual groundfish surveys initiated in 1982 (Table 2.1.6). The estimates of stratified catches in numbers by
age groups per unit time are used since the surveys represented one fleet with constant effort for all the years in the tuning process.

The research vessel "Magnus Heinason" has been used in the survey each year. Three cruises per year, with approximately 50 trawl stations in each, have been conducted between February and the end of March. From 1992, the February-cruise was moved to the autumn. Random stratified sampling based on depth stratification and on general knowledge of the distribution of fish in the area has been used to select the trawl stations (Figure 2.1.5). From 1992, one-third of the trawl stations are now fixed stations. In the 1993 survey all stations were fixed stations. The standard abundance estimates are the stratified mean catches per hour calculated using smoothed age/length keys.

The other two catch and effort series are both obtained from subgroups of longliners less than 100 GRT (Table 2.1.7). Only those longliners which have more than a certain number of fishing days each year are included in the dataset. Catches are broken down using the age composition from the sampling of longliners less than 100 GRT.

A retrospective analysis of the tuning using the LaurecShepherd (L-S) and the Extended Survivors Analysis (XSA) was carried out. The data for 1983 to 1985 in the research vessel series were not included in the runs due to negative blocks in the log catchability residuals. Analyses based on the L-S method were made with and without shrinkage while the tuning with the XSA method was run with shrinkage. The average fishing mortalities for age groups 3 to 7 from the retrospective analysis are shown in Figures 2.1.6, 2.1.7 and 2.1.8. The fishing mortalities from the L-S method with or without shrinkage appeared less consistent than those from the XSA method. The parameters in the diagnostic output from the XSA tuning are given in Table 2.1.8. It was decided to use the XSA method to tune the final VPA.

The estimated fishing mortalities are shown in Table 2.1.9 and in Figure 2.1.9 A. The average F for age groups 3 to 7 in 1992 is estimated to be 0.50 compared to 0.56 in 1991. Although the average fishing mortality has decreased in recent years, it is still at a high level.

### 2.1.5.2 Stock estimates and recruitment

The stock size in numbers is given in Table 2.1.10. A summary of the VPA, with recruitment set at 2 years old, and biomass estimates are given in Table 2.1.11 and in Figure 2.1.9 B. The stock-recruitment relationship is presented in Figure 2.1.10. The assessment confirms the poor recruitment observed in the Faroe Plateau cod stock since 1984. Due to this continuous poor recruitment and the high fishing mortalities, the spawning stock biomass
has declined steadily since 1984. In 1992 it is estimated to be only $17,000 \mathrm{t}$ which is the lowest level on record.

### 2.1.6 Predictions of catch and biomass

### 2.1.6.1 Input data

The input data for the short-term prediction are given in Table 2.1.12. The exploitation pattern estimated from the final VPA was used in the predictions. As no trends are obvious in the weight-at-age data for recent years, the average of 1990 to 1992 was used. The proportion mature observed in the Faroese groundfish surveys in 1993 was used for 1993 while for 1994 and 1995 the average of the maturity ogive for 1991 to 1993 was used.

Estimates of the year classes 1988 and older were used as estimated in the final VPA. The 1989 to 1991 year classes were predicted using the RCT3-program. As input for running RCT3, stratified mean catch-per-hour of age groups 2 to 4 in the Faroese groundfish surveys were used as well as the index obtained from the annual 0 -group surveys at Faroes (Table 2.1.13). Figure 2.1.11 shows the stratification of the 0 -group surveys. The output of the RCT3 recruitment prediction program is given in Table 2.1.14. Regarding the 1992 year class, no indices are available from the groundfish surveys. The indices from the 0 -group survey in 1992 indicate a poor 1992 year class, however. In recent years recruitment to the Faroe Plateau cod stock has been poor. Based on this, the average of the 1988 to 1990 year classes, as estimated from VPA and RCT3 ( 6 millions at an age of 2), was used as input for the 1993 and 1994 year classes.

The input data for the yield-per-recruit calculations (longterm predictions) are given in Table 2.1.15. As input for the fishing exploitation pattern, the estimated exploitation pattern from the final VPA was used. As input for mean weight-at-age the average for 1978 to 1992 was used, and for the proportion mature by age, the average for the years 1983 to 1993 was used.

### 2.1.6.2 Biological reference points

The output from the yield per recruit calculations is shown in Table 2.1.16. and in Figure 2.1.12.C. $F_{0.1}$ and $\mathrm{F}_{\text {max }}$ are calculated to be 0.10 and 0.24 , respectively. These values should be compared with the present average fishing mortality in 1992 of 0.50 . From Figure 2.1.10, showing the spawning stock biomass-recruitment relationship, the values of $\mathrm{F}_{\text {med }}=0.45$ and $\mathrm{F}_{\text {high }}=1.60$ were estimated.

### 2.1.6.3 Projections of catch and biomass

The results of the short-term predictions are shown in Table 2.1.17 and in Figure 2.1.12.D. Assuming the same average fishing mortality in 1993 and 1994 as in

1991, the catches are predicted to be about 7,500 tonnes in both years. This is only a quarter of the long-term average. Since recruitment in recent years has been poor, the spawning stock biomass is not expected to increase substantially from the lowest recorded level.

### 2.1.7 Management considerations

The assessment of the Faroe Plateau cod presented in this report has revealed that the stock size is at a very low level. Since 1984, the recruitment has almost totally failed. The reason for the low recruitment is not known. Due to the poor recruitment, the catches have decreased substantially in recent years.

Last year the ACFM indicated that the spawning stock was below the minimum biologically acceptable level (MBAL) and recommended that no fishing should take place until there was evidence of a substantial increase in recruitment and biomass. The Working Group noted that this advice has not been followed and that no additional regulations have been introduced. Given the low level of stock biomass and continuous poor recruitment, the Working Group reiterates that the advice given last year ahould be followed.

### 2.1.8 Comments on the assessment

The assessment is based on one tuning series from the annual groundfish surveys (1986-1992) and on two commercial catch/effort series (1985-1992). The distribution of $\log$ catchability residuals from the groundfish surveys series may indicate a limitation on the usefulness of the series for tuning the VPA. Due to the substantial decrease in catches in recent years, the amounts on which the tuning series from the commercial fleet categories are based have declined as well.

Although there might be some reservations on the quality of the data used for the tuning of the VPA the present assessment is found to be in accordance with the general understanding regarding the situation of the Faroe Plateau cod stock.

### 2.2 Faroe Bank Cod

### 2.2.1 Trends in landings and effort

Total nominal landings of Faroe Bank cod from 1983 to 1992 as officially reported to ICES are given in Table 2.2.1. Figure 2.2.1 shows the landings for 1965-1992. The catches reached a maximum of $5,000 \mathrm{t}$ in 1973. In recent years the catches have declined from 3,500 $t$ in 1987 to only 340 t in 1992. Since the beginning of the 1980s, trawlers have not been allowed to fish on the Bank from 1 November to 31 May.

Due to the decreasing trend in the cod catches at Faroe Bank, ACFM advised in 1990 that the Bank should be closed to all fishing. This advice was followed in June 1990 for depths shallower than 200 meters and is still in force. The catches reported for 1991 and 1992, therefore, partly originate from the deeper parts of the Bank outside the closed area.

### 2.2.2 Stock assessment

The available data for Faroe Bank cod are not adequate to allow a detailed analytical assessment of the stock.

The Faroese groundfish surveys include waters on the Faroe Bank (Figure 2.1.5). The catches of cod per trawl hour (Figure 2.2.2) declined from 250 kg in 1986 to only 25 kg in 1990. In recent years (1991-1993) an increasing trend in catches has been observed although they still remain low. The length distribution for 1993 is given in Figure 2.2.3. This information indicates that a year class appeared in 1993 at a length of $65-75 \mathrm{~cm}$.

Data from 1985 to 1992 on catch per unit effort for longliners over 100 GRT were presented to the Working Group (Figure 2.2.4). These data also show a declining trend in the fishery similar to that in the groundfish surveys. The data for 1991 and 1992 should be treated with care due to the total closure of the Bank shallower than 200 meters to fishing.

In 1992 longliners less than 100 GRT and jiggers were allowed to participate in an experimental fishery on the Faroe Bank. Due to a misunderstanding, the catches from this fishery (about 160 t ) may not have been officially reported. In 1993, one longliner more than 100 GRT was allowed to fish on the Bank for two weeks in April. The average CPUE of 129 kg can be compared to the data presented in Figure 2.2.4. Due to differences in the time of fishing and the vessel's efficiency, the Working Group felt that the results are not comparable.

### 2.2.3 Management considerations

There is some evidence indicating a recruitment failure of the Faroe Bank cod in recent years. In 1993 a new year class appeared in the groundfish survey catches, however. In spite of this, the data presented indicate that the Faroe Bank cod stock remains at a low level of abundance. The Working Group, therefore, recommends that the fishing ban should be maintained.

Since the groundfish surveys do not seem to describe the state of the stock accurately enough, the Working Group recommends that a strictly controlled fishery be set up in order to obtain the required indices of abundance. This must be based on the same vessels every year using comparable gears.

### 2.3 Faroe Haddock

### 2.3.1 Landings and trends in the fishery

Catches of haddock from the Faroe Plateau increased from a low level of $10,000 t$ in 1982 to $14,000 t$ in 1987, but have since decreased to a very low level in 1992 of less than $5,000 \mathrm{t}$ (Table 2.3.1). Catches from the Faroe Bank since 1982 have varied between 700 and $1,600 \mathrm{t}$, with the lowest catch in 1991. The catch in 1990, 1991 and 1992 was $1,100 \mathrm{t}, 500 \mathrm{t}$ and $1,200 \mathrm{t}$, respectively, even though the fishery on the shallower parts of the Bank has been closed since 1 June 1990 (Table 2.3.2). The catches reflect an increase in the Scottish fishery outside the closed area and a Faroese experimental fishery on the bank proper in 1992. Some minor French catches in Division Vb , not officially reported to ICES, and minor Faroese catches of haddock in ICES SubDivision IIa4 close to the boundary with Sub-Division Vb 1 (Figure 2.1.1), are included in the assessment (Table 2.3.1).

Faroese vessels took almost the entire catch. Table 2.3.3 and Figure 2.3.1 show the catches by fleet category from 1982 to 1992 . The proportion of the catch taken by trawlers has decreased steadily in recent years, in particular in the case of single trawlers. Pair trawlers now take most of the trawl catches. The largest proportion of the catches are now taken by longliners, especially the group less than 100 GRT. Due to poor catches and economic problems, the effort of the longliners has decreased during the most recent years. In addition, a fishing ban on the cod spawning grounds before and during the spawning period of cod since 1992 has had an impact on the haddock fishery as well. The catch per unit effort for this fleet has declined drastically since 1990 (Tables 2.3.10-2.3.11 and Figure 2.3.2).

### 2.3.2 Catch at age

For the Faroese landings, catch-at-age data were provided for fish taken from the Faroe Plateau and the Faroe Bank. Samples for each fleet category were first treated separately, then pooled. For each fleet category samples representing the different seasons were treated separately, then pooled. Table 2.3 .4 shows the catch-atage in numbers in 1992 by fleet category. Catches of some minor fleets, trawlboats and snella (jiggers) have been included in the category called single trawlers less than $1,000 \mathrm{HP}$. There are differences in selectivity between the different fleet categories; these are mainly due to different fishing areas, but different gear selectivities also play a role. Due to poor sampling, the same age composition had to be assumed for the Faroese catches on the Faroe Bank for all fleet categories, and the catches by all vessels were pooled. No catch-at-age data were available from other nations fishing in Faroese waters. Therefore, catches by UK and German trawlers
were assumed to have the same age composition as Faroese single trawlers greater than 1000 HP. The Norwegian longliners were assumed to have the same age distribution as the Faroese longliners greater than 100 GRT. The most recent data were revised according to the final catch figures (Table 2.3.5).

### 2.3.3 Weight at age

Mean weight-at-age data are provided for the Faroese fishery (Table 2.3.6). The sum-of-products check for 1992 showed a discrepancy of $5 \%$. Figure 2.3 .3 shows that the mean weights-at-age for most age groups have been declining since the mid-1980s, but they seem to have stabilized at a low level over the last 2-3 years.

### 2.3.4 Maturity at age

Maturity-at-age data were available from the Faroese Groundfish Surveys 1983-1993 (Table 2.3.7). The surveys are carried out in March-April, so the maturity at age is determined just prior to the spawning of haddock in Faroese waters.

### 2.3.5 Assessment

### 2.3.5.1 Estimates of fishing mortality

Catch and effort data from the Faroese Groundfish Surveys in 1988-1992 and commercial longliners, 25-40 GRT and 40-60 GRT, for the period 1988-1992 were used for tuning the VPA (Tables 2.3.8-2.3.11). The estimates of catches in numbers per age per trawl hour in the surveys were used as if they represented one fleet with the same effort for all the years in the tuning process. The commercial series consists of effort measured in number of fishing days and the corresponding catch at age in numbers for the two groups of longliners. Tables 2.3.8-2.3.11 contain data back to 1983 for the survey and back to 1985 for the commercial series. In this assessment, it was decided to use only the most recent 5 years' data due to a block of negative log catchability residuals for all fleets in the first part of the period as well as some very high values for some ages in these same years. A plot of the log catchability residuals derived from a Laurec-Shepherd tuning procedure without shrinkage and tri-cubic weighting of the data for 1983-1992 (Figure 2.3.4) shows no trends in the residuals. However, there seem to be two levels, especially for the survey. This was another reason for using only the most recent years for tuning.

Several tuning methods with different options were applied to the data. Most of them gave comparable estimates of terminal $F$. Results from a retrospective analysis of Laurec-Shepherd without shrinkage and with shrinkage of 0.5 , respectively, and XSA shrunk by 0.5 , 0.3 and 0.1 , respectively, are presented in Figure 2.3.5.

It was decided to apply the XSA shrunk by 0.1 to give an estimate of the terminal F values. Table 2.3.12 shows the diagnostic outputs from the XSA. Mean fishing mortality for the fully recruited age groups 3-7 is 0.43 .

Due to a consistent matrix of fishing mortalities from the XSA, it was decided to use the selection pattern from the XSA to start an extended VPA. The resulting fishing mortalities are given in Table 2.3.13 and Figure 2.3.6.

Generally, there has been an increase in fishing mortality during the most recent years. This is consistent with the decreasing stock sizes and the anecdotal information on increased effort (more hooks per set) and decreased hook sizes in the longline fishery. However, the mean F for ages 3-7 is slightly lower in 1992 than in 1991 which may be partly explained by the introduction of a fishing ban on the cod spawning grounds before and during the spawning season of cod.

### 2.3.5.2 Stock estimates and recruitment

The stock size in numbers is given in Table 2.3.14 and a summary of the VPA with the biomass estimates is given in Table 2.3.15 and Figure 2.3.6. The spawning stock biomass has decreased from over 63,000 t in 1985 to about $16,700 \mathrm{t}$ in 1992. This is the lowest on record in the history of analytical assessment of haddock in Faroese waters. However, this decline in the spawning stock started in the late 1970s due to very poor recruitment in those years. The stabilisation in the spawning stock biomass at a relatively high level in the mid-1980s was due to the relatively good 1983 and 1984 year classes, but the decline since then was partly due to poor year classes since the mid-1980s, as well as the very pronounced decline in the mean weights at age in the stock (Figure 2.3.3).

No indices of future recruitment from O-group surveys or groundfish surveys have been of use in estimating future recruitment of Faroe Haddock up to now because of poor correlations between these indices and the corresponding VPA values. However, the results from the present VPA do not indicate better recruitment. The same tendency is seen in the Faroese Groundfish Surveys (Table 2.3.9 and Figure 2.3.10).

### 2.3.6 Prediction of catch and biomass

### 2.3.6.1 Input data

The input data for the short-term predictions are given in Table 2.3.16. The year classes up to 1989 are from the final VPA while the average for the period 1986-1991 was used for the most recent year classes. Reasons for not using the RCT3 and for using only the average of the most recent 6-year period have been explained in Section 2.3.5.2. The exploitation pattern used in the prediction
was derived from the fishing mortality matrix from the extended VPA as mean $F$ values for the years 19901992. These were scaled to give the same mean $F$ for ages 3-7 as the XSA gave in the terminal year. Mean weights-at-age have been calculated as the mean values for the period 1990-1992. The maturity ogive for 1993 is based on samples from the Faroese Groundfish Surveys 1993. Maturity ogives for 1994-1995 are calculated as mean values for the period 1988-1993.

It was decided to present two yield- and spawning stock biomass per recruit (age 2) curves because of the varying recruitment in the long-term VPA period 1961-1992, the pronounced decline in mean weights at age since the mid-1980s and the recent change in exploitation pattern. The input data for the long-term yield and spawning stock biomass are listed in Table 2.3.18 and Table 2.3.20. In the first case, the input data are much the same as used in the short-term prediction, the only difference being that maturity at age is now calculated as the average of the years 1983-1993. In the second case, mean weights-at-age and recruitment are calculated as long-term averages and the exploitation pattern was derived from the fishing mortality matrix from the extended analysis as mean F-values for the period 19831992.

### 2.3.6.2 Biological reference points

The yield- and spawning stock biomass per recruit (age 2) curves based on data from the most recent period are shown in Table 2.3.19 and Figure 2.3.7. Compared to the 1992 fishing mortality level for ages $3-7$ of 0.43 the reference values for $F_{\text {max }}$ and $F_{0.1}$ are 0.95 and 0.17 , respectively. From Figure 2.3.9, showing the recruit/spawning stock relationship and from Figure $2.3 .7, \mathrm{~F}_{\mathrm{mcd}}$ and $\mathrm{F}_{\text {high }}$ were calculated to be 0.2 and 0.8 , respectively.

The yield- and spawning stock biomass per recruit (age 2) based on the long-term data are shown in Table 2.3.21 and Figure 2.3.8. $\mathrm{F}_{\text {max }}$ and $\mathrm{F}_{0.1}$ are indicated here as 0.51 and 0.16 , respectively. From Figure 2.3.9, showing the recruit/spawning stock relationship, and from Figure 2.3.8, $\mathrm{F}_{\text {med }}$ and $\mathrm{F}_{\text {high }}$ were calculated to be 0.2 and 0.9 , respectively.

The yield-per-recruit values based on data from the most recent years are about $80-85 \%$ of the yield per recruit values based on long-term data.

### 2.3.6.3 Projections of catch and biomass

The results of the short-term prediction are shown in Table 2.3.17 and Figure 2.3.7D. Assuming an unchanged fishing mortality compared to that estimated for 1992, the yields predicted in 1993 and 1994 are about $5,000 \mathrm{t}$ in both years. The spawning stock biomass would
be expected to increase slightly from about $13,500 \mathrm{t}$ in 1993 to about $14,500 \mathrm{t}$ in 1995.

### 2.3.7 Managements considerations

The present assessment confirms that the stock is in very poor condition. The spawning stock biomass is at the lowest level on record. Reasons for this are mainly due to the low level of recruitment and the pronounced decline in mean weight-at-age in the most recent years. Last year ACFM advised that the fishing mortality should be reduced in order to increase the spawning stock biomass from its lowest observed level. So far no direct regulation on the haddock fishery has been introduced.

### 2.3.8 Comments on the assessment

Assessments for this stock have been unreliable in the past due to inadequate tuning data. These data were revised last year, and this year the tuning period has been shortened to the most recent 5 years due to very inconsistent fleet data, especially in the first years of the former tuning series. CVs for the survey and for some ages in the commercial series are still high, but the catch-at-age data seem to be reliable.

### 2.4 Faroe Saithe

### 2.4.1 Landings and trends in the fishery

The catches of saithe in the Faroe area were stable at around $40,000-45,000 \mathrm{t}$ during the period 1985-1989 (Table 2.4.1). After an increase to over $60,000 \mathrm{t}$ in 1990, the highest on record, catches dropped to about $54,000 \mathrm{t}$ in 1991, and in 1992 declined even further to about $37,000 \mathrm{t}$. The preliminary catch figures for the first three months of 1993 were about 7,200 t compared to about $8,300 \mathrm{t}$ in 1992.

Catches not officially reported to ICES have been included in the assessment (Table 2.4.2).

### 2.4.2 Catch at age

Catch-at-age data in the years 1988 to 1991 were revised according to the final catch statistics. The total catch in numbers at age in 1992 reflects the age composition in the Faroese catches for that year (Table 2.4.3).

### 2.4.3 Weight at age

The SOP for 1992 shows a discrepancy of $5 \%$ which was not corrected for by the Working Group. Since 1985, the average mean weight at age generally declined and remained at a lower level for 1990 to 1991 but in 1992 there was a slight increase in the average weights at age (Table 2.4.4).

### 2.4.4 Maturity at age

Maturity at age data are available for the period 19831993 and were updated for the last year (Table 2.4.5).

### 2.4.5 Stock assessment

### 2.4.5.1 Estimation of fishing mortality

Data from the groundfish survey were not suitable for the tuning of this species. Two groups of pair trawlers greater than 1000 GRT were available (Table 2.4.6.A and 2.4.6.B). Several retrospective analyses for both the XSA and the L/S tuning were made with different combinations of fleets and shrinkage factors. The retrospective XSA and L/S tunings are provided in Figures 2.4.1-2.4.3. In the end, it was decided to use a 0.5 shrinkage XSA tuning with age groups 4 to 10 and only one CPUE series (Table 2.4.6), since this produced the best statistics (Log catchability residuals are shown in Figure 2.4.4). The series used consisted of eight pair trawlers greater than 1000 GRT which target their fishery specifically on saithe. The series extends back to 1982 and accounts for $5,000-8,000 \mathrm{t}$ each year.

The estimates of fishing mortality from the XSA tuning method are presented in Table 2.4.7. The average fishing mortality for age groups 4 to 8 is 0.49 .

The exploitation pattern from the XSA tuning proved to be rather irregular so it was decided to run a separable VPA with the same level of Fbar 4-8 yr as obtained from the tuning. The separable VPA was run with $\mathrm{F}=0.719$ on age group 6 and terminal $S=1$ yielding the same average level of fishing mortality as the XSA tuning for age groups 4-8 (Table 2.4.8). The fishing mortalities from the extended VPA are given in Table 2.4.9.

### 2.4.5.2 Stock estimates and recruitment

The stock size in numbers at age as estimated by the extended VPA is given in Table 2.4.10. The high total numbers in the stock in 1986 to 1990 are due to good recruitment. Spawning stock biomass is given in Table 2.4.11 and Figure 2.4.5.B. A summary of recruitment, total biomass, spawning stock biomass etc. for the period 1983 to 1992 is given in Table 2.4.12. Though the recruitment has been well above average in this period, the spawning stock biomass in 1992 is still low compared to the mid-1970s.

### 2.4.6 Prediction of catch and biomass

### 2.4.6.1 Input data

The input data for the short-term predictions with management option tables and for the long-term predictions are given in Tables 2.4.13 and 2.4.15. The stock in
numbers in year classes up to 1988 are from the final VPA while the average stock in numbers of the 19751988 year classes was used for 1989 and 1990. In view of the low mean weight at age in the last years, the average for 1990 to 1992 was used in the prediction. Similar trends were detected in the maturity and an average maturity ogive for 1990 to 1992 was used for 1994 and 1995. For 1993 the maturity ogive for that year was used. The exploitation pattern used in the prediction was derived from the separable VPA scaled to the same level of fishing mortality as in the extended analysis for age groups 4 to 8 . Similar input was used in the longterm prediction except that the average maturity ogive for 1990 to 1992 was used for all years.

### 2.4.6.2 Biological reference points

The yield and spawning stock biomass-per-recruit curves are presented in Figure 2.4.6. Compared to the fishing mortality level in 1992 of $\mathrm{F}_{48}=0.49$, the reference values for $F_{\text {max }}$ and $F_{0.1}$ are 0.43 and 0.15 , respectively. $F_{\text {med }}$ and $F_{\text {high }}$ were estimated to be 0.25 and 0.42 , respectively, from the recruitment/spawning stock relationship (Figure 2.4.7) and the spawning stock biomass-per-recruit/fishing mortality relationship (Figure 2.4.6.C).

### 2.4.6.3 Projection of catch and biomass

The results from the short- and long-term prediction are given in the management option table (Table 2.4.14) and yield per recruit table (Table 2.4.16). From Figure 2.4.6.D it will been seen that with the present level of fishing mortality the spawning stock biomass will be approximately $55,000 \mathrm{t}$ in 1995. With continued fishing mortality at the 1992 level, catches should remain stable at about $34,000 \mathrm{t}$ in 1993 and 1994.

### 2.4.7 Management considerations

In this assessment the spawning stock biomass has reached a historically low level. The probability of good recruitment is highest when the spawning stock biomass is between $90,000 \mathrm{t}$ and $100,000 \mathrm{t}$ (Figure 2.4.7). There are indications that when the spawning stock biomass drops below $85,000 \mathrm{t}$ the probability of poor recruitment increases. It is, therefore, advisable to maintain a spawning stock biomass above $85,000 \mathrm{t}$.

### 2.4.8 Comments on the assessment

The fishing mortality in the last year has been overestimated in the last five assessments thus underestimating the stock (Working Paper 16). No explanation was suggested by the Working Group as to why this happens repeatedly.

The concept of spawning stock biomass is of course dependent on the maturity ogive which again is dependent on the timing of sampling in relation to the actual spawning time. Some artifacts in the data may be present due to the small sampling size for some years. Smoothing of maturity data should be attempted to alleviate this problem.

## 3 DEMERSAL STOCKS AT ICELAND (DIVISION Va)

### 3.1 Regulation of Demersal Fisheries

With the extension of fisheries jurisdiction to 200 miles in 1975, Iceland introduced new measures to protect young juvenile fish. In the cod, saithe, and haddock fisheries, the mesh size in trawls was increased from 120 mm to 135 mm in 1976 and to 155 mm the following year. Only in the fisheries for redfish was 135 mm allowed in certain areas. Also the mesh size in Danish seines was increased to 170 mm to aim for flatfish, but that fishery turned out not to be profitable. It was, therefore, found necessary to change to a smaller mesh size of 135 mm .

In certain areas outside the 12 -mile limit, a temporary protection for trawling was introduced. In addition a system was implemented whereby fishing can be forbidden immediately in areas where the number of small fish in the catches exceeds a certain percentage ( $25 \%<$ 55 cm for cod and saithe and $25 \%<48 \mathrm{~cm}$ for haddock). These areas have usually been closed for a week. If small fish are still found to be present at the end of that time, the same process is either repeated or regulations are drawn up and the area closed for a longer period of time.

The frequency with which such closures have had to be implemented varies widely from year to year and depends on the year-class strength and the age structure of the stock. When strong year classes are entering the fishery, immediate closures are often necessary. On the other hand, when there are few small fish, such closures are much more infrequent.

Increases in trawl mesh size and closure of nursery areas have reduced mortality directly due to fishing effort among small cod and haddock aged three and, to some extent, four years, from the levels which they had reached before these measures were implemented. However, this proved in no way sufficient to protect the stocks. Since 1975, the Marine Research Institute in Iceland has recommended TACs for cod and a few years later also for other important demersal species. A quota system was not introduced, however, until 1984.

Attempts were made to limit cod catches from 1977-1983 by means of the so-called scratch-days system, by which cod fishing was limited to a certain number of days each year. This system failed to limit fishing effort sufficiently and the quota system was adopted instead. The quotas are transferable boat quotas. The agreed quotas were based on the Marine Research Institute's TAC recommendations, also taking socio-economic effects into account.

Until 1990, the quota year corresponded to the calendar year but at present the quota, or so-called fishing year, starts on 1 September and ends on 31 August of the following year. This was done to meet the needs of the fishing industry.

### 3.2 Icelandic Saithe

### 3.2.1 Trends in landings

Landings of saithe from Icelandic grounds (Division Va) have been fluctuating without trend between 50,000 and $70,000 \mathrm{t}$ in the period 1978-1986 (Table 3.2.1). During 1987-1989, annual landings were stable around $80,000 \mathrm{t}$. In 1990, landings increased by more than $20 \%$ to 98,000 $t$ and in 1991 the catches were the highest recorded ( $103,000 \mathrm{t}$ ). Preliminary reported landings for 1992 are $79,000 \mathrm{t}$ compared to $77,000 \mathrm{t}$ expected by the Working Group last year.

### 3.2.2 Catch in numbers

Catch-at-age data for 1980-1991 were revised according to new information on how catch by gears were distributed within the year. Data from bottom trawl and gillnets, which represented $93-97 \%$ of the Icelandic landings, were used to calculate catch-in-numbers for the period in view. For 1992, age composition data from the same sources were available for landings by Iceland which represented more than $97 \%$ of the total landings. These data were used to calculate the catch at age of the total landings used as input for the VPA (Table 3.2.2).

### 3.2.3 Mean weight at age

Weight-at-age data from 1980-1991 were revised using the same data as those used for the catch-at-age calculations. The mean weights prior to 1980 were derived from the report of the Saithe Working Group (Anon., 1981). The differences between the new and old weight-at-age data sets are minor. For the year 1992, data from the same sources were used (Table 3.2.3).

For both catch predictions and stock biomass calculations, the mean weights at ages 4-9 were predicted using multiple regression analysis where the mean weight at age was predicted by the mean weight of the year-class in the previous year and year-class strength. The
regression analysis only showed significant relationships for these age groups. For other age groups the mean weights at age were averaged over the 1990 to 1992 period. For long-term yield and spawning stock biomass predictions, the average over 1980-1992 for all age groups was used.

### 3.2.4 Maturity at age

In 1991, a decrease in proportion mature at age was observed for all age groups compared to 1990. This is especially pronounced for older age groups (7-9) (Table 3.2.4). The low proportions mature in 1991 (especially of age group 7) might be related to year-class strength and migration.

The raw maturity at age data used earlier can be misleading due to the nature of the fishery and of the species. A model was developed for predicting maturity at age, in order to alleviate some of the problems involved with the sampling. The basic model used was a GLM with a Logit link function describing maturity at age as a function of age, year class strength, weight at age and a year effect. Of those factors, age and year-class strength were both significant and no other independent variables were needed. This model was then applied, using the raw data given in Table 3.2.4, to predict the entire maturity at age table for 1980-1995 (Tables 3.2.4 and 3.2.5 and Figure 3.2.1).

For long-term predictions, averages over 1980-1992 were used.

### 3.2.5 Stock assessment

### 3.2.5.1 Tuning input

CPUE data based on Icelandic trawler logbooks are available. The basic method for computing an aggregate CPUE index consists of first selecting individual tows where the catch contains over $70 \%$ saithe. The catches and towing times are then added and the ratio computed. As the CPUE series derived from the first part of the year showed markedly different behaviour in recent years from the series based on the latter part of the year, the two series were age-disaggregated separately (Table 3.2.6) and both used in the tuning module. The agedisaggregation was based on otolith samples taken from commercial trawlers in the respective time periods. The second data set was based on trawlers effort (TRW EFFORT, Table 3.2.6) calculated by dividing trawler landings with the annual CPUE. This tuning data set was then constructed from this effort measure along with catch-in-numbers from the same fleet.

### 3.2.5.2 Estimates of fishing mortality

Retrospective analyses were made for six different combinations of fleets and methods (Table 3.2.7 and Figure 3.2.2 A-F). For each of the two fleets separate runs were made with XSA and Laurec-Shepherd. In addition one run was similar to the method used last year (Laurec-Shepherd without shrinkage using trawler CPUE as tuning data), and finally the Time Series Analysis (TSA) method was applied, using only catch at age data. The TSA seems to be the most consistent one and has a relatively low standard error in the last year, C.V. $=0.15$ on the most relevant age groups (Table 3.2.11). The bad diagnostics (high standard errors) from both XSAs (Tables 3.2.9 and 3.2.10) and Laurec-Shepherd indicate that little is gained in using them. The TSA method gives the same indications: using tuning data does not improve the estimates of $F$ in the final year. The second most consistent method seems to be the XSA, but it ends up with a higher reference F (age groups 4-9) of about 0.37 compared with the TSA, which gives 0.29 (Table 3.2.8 and Figure 3.2.3), and the former is not within the $95 \%$ confidence interval of the TSA. The terminal Fs from the TSA were used to run a traditional VPA and the Fs for the oldest age group were taken as the mean of the four younger ages. The results of this run are given in Tables 3.2.12-3.2.14 and Figures 3.2.4. A and 3.2.4.B.

### 3.2.5.3 Spawning stock and recruitment

The spawning stock biomass is shown in Figure 3.2.4B and Table 3.2.14. After a decline from 1970-1980, the spawning stock biomass was at the level of about 150 $160,000 \mathrm{t}$ in 1980-1989 and increased to $190,000 \mathrm{t}$ in 1992. The estimated spawning stock biomass in the beginning of 1993 is $205,000 \mathrm{t}$. Estimates of recruitment at age 3 are plotted in Figure 3.2.4.B. Recruitment has fluctuated in recent years without any clear trend. The 1983, 1984 and 1985 year classes are well above the 1967-1985 long-term averages ( 40 million). As no information is available for the more recent year classes, the 1988-1992 year classes were set at the same level as the average for the 1967-1985 year classes, excluding the strong year classes in the early 1960s.

### 3.2.6 Prediction of catch and biomass

### 3.2.6.1 Input data

The input data for the catch projections are shown in Table 3.2.15. It is assumed that the agreed proportional TAC of the fishing years 1992/1993 and 1993/1994 of $90,000 \mathrm{t}$ will be taken in 1993. Based on these landings, options for 1994 were calculated and are given in Table 3.2.16 and Figure 3.2.5.D.

### 3.2.6.2 Biological reference points

The yield- and spawning stock biomass-per-recruit (age 3) curves shown in Figure 3.2.5.C have been calculated
using an exploitation pattern taken as the averages of the Fs from 1980-1992 from the standard VPA run. Averages over 1980-1992 for maturity and mean weight at age for all age groups were used, along with a natural mortality of 0.2 (Table 3.2.17). Compared to the 1992 fishing mortality level of $F(4-9)=0.29$, the reference values for $F_{\max }$ and $F_{0.1}$ are 0.44 and 0.18 , respectively. From Figure 3.2.6 showing the recruit/spawning stock relationship and Figure 3.2 .5 C showing the spawning stock biomass-per-recruit relationship, $\mathrm{F}_{\text {med }}$ and $\mathrm{F}_{\text {high }}$ were estimated to be 0.28 and 0.8 , respectively.

### 3.2.6.3 Projections of catch and biomass

As can be read from the prediction table (Table 3.2.16), the reference $\mathrm{F}(4-9)$ will be 0.35 in 1993, assuming a total catch of about $90,000 \mathrm{t}$ in that year. The resulting stock size at the beginning of 1994 will be about 400,000 $t$ compared to $410,000 \mathrm{t}$ at the beginning of 1993 . The spawning stock biomass at the beginning of 1994 will be similar to that in 1992, i.e. about $200,000 \mathrm{t}$. The same reference $F$ in 1994 as in 1992 will result in a yield of $74,000 \mathrm{t}$, and both total and spawning stock in 1995 will be at about the same level as in the two previous years. Higher fishing mortalities in 1994 will lead to a decline in both total and spawning stock biomass and, correspondingly, if the Fs are lowered from that level, stock sizes will increase by 1995.

### 3.2.7 Management considerations

The stock seems to be in a fairly stable state. The reference $F$ values have been slightly over $F_{0.1}$ but below $F_{\text {max }}$ in recent years. Increase in effort from the present level will not lead to gains in the long run.

### 3.2.8 Comments on the assessment

The catch-at-age data seem to be relatively stable which is reflected in a low standard deviation of the $\log$ Fs from the TSA. The tuning data derived from commercial trawlers reflect the nature of the fishery and the shoaling behaviour of saithe and do not seem to be appropriate for the purpose of tuning the VPA. Maturity at age as well as mean weight at age have to be recalculated back to 1961 in order to have more reliable spawning stock and recruitment data.

### 3.3 Icelandic Cod (Division Va)

### 3.3.1 Groundfish survey design

The Icelandic Groundfish Survey started in 1985. The area of investigation covers the Icelandic shelf down to the 500 m depth contour. 600 stations were considered a reasonable effort to reach an acceptable level of coefficient of variation of cod indices. In order to work the

600 stations within a reasonable time limit, 5 commercial, standardized, stern trawlers are leased.

The allocation of trawling stations is based on the stratified random sampling theory. The stratification scheme is based on pre-estimated cod density patterns derived from commercial as well as research vessel catch data, which were summarized by statistical squares. The statistical square basis allows flexibility in post-stratification with respect to different species.

Based on biological and hydrographical considerations, the survey area was divided into two areas, a northern and a southern area for design purposes.

The allocation of statistical squares to strata is based on the estimated density of cod in each square. Information on cod density was derived from three different sources: The trawler captains and their advisors graded each square with respect to their experience of fishing in March. Commercial fisheries data yielded additional information on cod density, as did results from previous research surveys.

Ten strata were constructed from the statistical squares, 4 in the southern area and 6 in the northern one. Statistical squares in each stratum are not necessarily adjacent, which allows more possibilities in constructing homogeneous strata with regard to fish density.

Stations were divided between strata in direct proportion to the product of the area of each stratum and its estimated cod density. Finally, the trawl stations of a stratum were allocated to each square within the stratum in direct proportion to the area of the square.

In 1985, stations within each statistical square were divided equally between fishermen and project members from the Marine Research Institute (MRI). Project members selected random positions for their stations. Fishermen were asked to fix their stations in each square in accordance with their knowledge and experience of fishing and fishing grounds. Stations have been fixed since 1985, with the exception of some non-trawlable stations which have been dropped and some new stations which were added in 1993 in shallow water. Trawling is done both by day and night, and sampling is distributed uniformly over the 24 hours.

This sampling method may be classified as "semi-random stratified" since only half of the stations are randomly selected.

### 3.3.2 Trends in landings and effort

In the period 1978-1981, landings of cod increased from $328,000 \mathrm{t}$ to $469,000 \mathrm{t}$ due to immigration of the strong 1973 year class combined with an increase in fishing
effort. Catches then declined rapidly to only $280,000 \mathrm{t}$ in 1983. Although cod catches have been regulated by quotas since 1984, catches increased to 392,000 t in 1987 due to the recruitment of the 1983 and 1984 year classes to the fishable stock in those years (Table 3.3.1).

Since 1988 all year classes entering the fishable stock have been well below average, or even poor, resulting in a continuous decline in landings. The 1992 catch amounted to only $265,000 \mathrm{t}$ which is the lowest catch level since 1948. Effort on cod in 1992 was unchanged compared to 1991 but catch rates of the trawler fleet declined substantially ( $25-30 \%$ ) in the latter half of 1992.

### 3.3.3 Catch in numbers at age

The fleets (or "metiers") are defined by the gear, season and area combinations. The three basic gears are long lines, bottom trawl and gillnets. In the historical data sets each of these classes may contain related gears (based on sparseness of data and low catches). Notably handlines are included with long lines and pelagic trawl is included with bottom trawl. The basic area is split between the "northern" and "southern" areas. In the historical data set, seasons are split into the "spring" season (JanuaryMay) and "fall" (June-December). Thus, there are a total of $3 * 2 * 2$ or 12 basic current "fleets". Historically, there have been some changes in fleet definitions and thus there does not currently exist a fully consistent set of catch-at-age data on a fleet basis.

Total catch at age (aggregated across fleets) was used as VPA input, and seasonal data (aggregated across gears and regions) were used to estimate the proportion of fishing mortality in January-May.

The total catch-at-age data are given in Table 3.3.2 and the proportion of F and M before spawning ( 1 April ) in Table 3.3.3. For the longer VPA runs the catches in number at age in Anon. (1976) were used for the years 1955-1969. It should be noted that much higher proportions of the older age groups are taken during the first part of the year and this will considerably affect the estimation of the spawning stock at spawning time. Since the catch-at-age data have historically only been available for the period January to May, and not for shorter time periods, it is assumed that $60 \%$ of those catches were taken during the period January to March, i.e., before spawning time.

### 3.3.4 Mean weight at age

### 3.3.4.1 Mean weight at age in the landings

Mean weight at age in the landings are computed on the basis of samples of otoliths and lengths along with length distributions and length-weight relationships.

The mean weights at age are computed for the same categories as the catch numbers at age and are then weighted together across the fleet categories. The data are given in Table 3.3.4. Mean weights at age are not available on an annual basis for catches taken before 1973, and hence the average across the years 1973-1991 is used as the constant (in time) mean weight at age for the years 1955-1972.

### 3.3.4.2 Mean weight at age in the stock

The weights at age in the landings have been used without modification to compute general stock biomasses, with the exception of the spawning stock biomass (see below).

The groundfish survey provides better estimates of mean weights at age in the stock, but it is not at all clear how these should be combined across areas which have different catchabilities, and in any case these weights are only available back to 1985 .

### 3.3.4.3 Mean weight at age in the spawning stock

Data from the period January-May have been used for the estimation of the mean weights at age in the spawning stock. It is assumed that the catches in the different gears and areas appropriately reflect the stock composition with regard to mean weight at age.

These weight-at-age data are presented in Table 3.3.5.

### 3.3.5 Maturity at age

As in Anon. (1992), maturity at age is based on samples from the commercial fleets in the months January-May. It has been pointed out that using data collected throughout the year may bias the proportion mature in various ways (Stefánsson, 1992). The approach taken is, therefore, to compute the proportion mature at the time of spawning by considering only the first part of the year (January-May), but aggregating across gears and regions.

The maturity at age data are given in Table 3.3.6.
The maturity-at-age data are not available on an annual basis for the catches taken prior to 1973 and, hence, the average for the years 1973-1991 is used as a constant (in time) maturity at age for the years 1955-1972.

### 3.3.6 Stock Assessment

### 3.3.6.1 Tuning data

Commercial trawler CPUE data are analysed as described in Stefánsson (1988) to yield indices of abundance (numbers) at age. The analysis takes into account catchability changes in the fleet due to vessel
renewal and vessels shifting between regions, but not changes in the spatial distribution of the resource or changes within vessels in the fleet. For this reason the analysis of the logbook data was restricted to the years 1988-1992.

These indices are based on logbooks from demersal trawl fisheries for two parts of the year (January-May and June-December) and three areas (southwest, southeast and northern areas).

The Icelandic groundfish survey data (Pálsson et al., 1989) are used as part of the assessment. The basic data are age-disaggregated (Pálsson and Stefánsson, 1991) and indices are computed using the Gamma-Bernoulli (G-B) model of Stefánsson (1991). This is done for each of the three areas separately. This survey analysis results in indices for each age from 1 to 14 and for the years 19851993.

The resulting indices are given in Table 3.3 .7 by fleet, area and age group.

### 3.3.6.2 Assessment method

A preliminary assessment of the stock was given in WP 6.

As noted above, migrations from Greenland into the Icelandic cod stock can have major effects and hence these need to be taken into account in the assessments. An ADAPT-type of method has been used for assessing the Icelandic cod stock. The specific method is based on the principles described in Stefánsson (1988) and has been applied to this stock earlier (Anon., 1992). The Laurec-Shepherd and XSA methods have not been developed to account for migration, and hence these methods are not applicable for this stock.

It is assumed that migrations are fixed but in unknown numbers, and that the fish appear at the beginning of a year. When a backwards VPA is performed, these numbers are simply subtracted after the stock size has been computed for the beginning of a year, before continuing to the previous year.

To estimate these unknown quantities, only those years and ages in which noticeable migration is expected to have occurred are considered. For the Icelandic cod in 1983-1991, this leads to the estimation of two parameters - the migrations of the 1984 year class in 1990 and 1991. For any given value of these, the above estimation procedure allows computation of an error sum of squares (SSE). Thus, the migration can be estimated simply by minimising the SSE over that as well as over the fishing mortality.

The procedure adopted fixes the fishing pattern in the last year to the average of some previous year and then estimates only the terminal fishing mortality multiplier (along with migrations). Since there is some indication of a selection pattern change, a relatively short period (1989-1991) is used in the average. An alternative would be to use a longer time period, but since the year 1988 is highly unusual in terms of the high fishing mortalities, it is not ideal to use a short period including this year, and a longer period would seem inappropriate in view of selection pattern changes.

The SSE consists of one component for each fleet and age group. Each component is simply the sum (across years) of squared deviations from the log-log regression of CPUE/survey on stock in numbers. When minimizing the SSE, a reasonable choice of weight to each component is important. An attempt was made to weight the components in accordance with the importance of the different age groups and the accuracy of the various indices. An initial set of weights was computed on the basis of the relative catches of each age group, giving equal weight to each of the 9 sets of "fleets". After fitting the model once, the weights were revised on the basis of the resulting SSE-values. The weights used in the latter iteration are given in Table 3.3.8.

Diagnostic outputs from the estimation procedure are given in Table 3.3.8 and Fig. 3.3.1.

### 3.3.6.3 Stock and recruitment estimates

The resulting stock sizes and fishing mortalities are given in Tables 3.3.9-11. The migration estimates obtained are 31 million in 1990 and no migration in 1991.

The current spawning stock at spawning time and recruitment levels must be considered in relation to historical sizes. These are based on a longer VPA. In this VPA, data for the period 1983-1991 are as before, but migration of the 1973 year class is estimated with the procedure above, based on the trawler logbook data analyzed for the period 1979-1984, as described in Anon. (1992). The migration estimates give 39 and 7 million immigrants of the 1973 year class in 1980 and 1981, respectively. With given migration estimates, the recruitment from the SSB can be recomputed by adding backcalculated migration. The approach taken here is to do these back-calculations with natural mortality only, since it would be incorrect to use the sometimes high fishing mortalities at Iceland. This backcalculation revises the 1973 and 1984 year class estimates to 428 and 334 millions, respectively. The resulting SSB and recruitment estimates are given in Table 3.3.12 (and Figure 3.3.2b) along with average fishing mortalities. A better estimate might be obtained by backcalculating using the fishing mortality at Greenland also, but this is unlikely to have
major effects on the issue at hand which is the stockrecruitment diagram (Figure 3.3.2a).

In Table 3.3.12 recruitment in the most recent years (year classes 1988-1992 as 3 -year-olds in 1991-1995) is estimated using RCT3 as described in Section 3.3.7.3.

### 3.3.7 Prediction of catch and biomass

### 3.3.7.1 Input data to the short-term prediction

For short-term predictions, it is essential to take into account potential changes in mean weights at age due to environmental conditions.

Table 3.3.13 gives the size of the capelin stock on 1 January each year. For both sets of weight data, the mean weight at age for most of the important ages is found to be significantly correlated with the weight of the same year class the year before and the capelin biomass at the beginning of the year. This holds for ages $4-8$ in the catches and ages $5-8$ in the spawning stock at spawning time. Thus, these regressions are used to predict the mean weights at age for these age groups for the years 1993-1996. For 1994 onwards, the average capelin biomass is used. For ages 3 and 9-14 in both data sets and age 4 in the SSB, the average over the years 1989-1992 is used.

Great care needs to be taken with the maturity at age in the prediction. Firstly, the maturity at age is at record high levels in 1992 and 1993, and it is not felt reasonable to let this drop to the long-term average in 1994 nor is it reasonable to assume these record-high levels far into the future. The approach used is therefore to use a long-term (1984-1993) average for 1995 and observed JanuaryMarch data for 1993. For the purpose of obtaining an orderly development of trends in the maturity at age, the average of 1993 and 1995 was used for 1994.

The exploitation pattern from the VPA (fixed as the average over the years 1989-1991, see Section 3.3.6.2) was used for the short-term predictions.

### 3.3.7.2 Long-term prediction input

For long-term predictions, fluctuating environmental conditions can be ignored, but it is essential to take into account potential changes due to density-dependent growth. These have been investigated for this stock (Steinarsson and Stefánsson, 1991) where no significant density-dependent relationships were found concerning growth.

Mean weight and maturity at age have been predicted as the average over the years 1973-1991.

The exploitation pattern obtained from the VPA has been used as input since this pattern was fixed as the average over some recent years.

Naturally, any stock-recruitment relationship will affect yield-potential calculations.

### 3.3.7.3 Recruitment

The G-B method for the analysis of the Icelandic Groundfish Survey has considerable intuitive appeal and is found to fit the VPA well (Stefánsson, 1991; Anon., 1992b) and this has therefore been used for recruitment prediction. The resulting estimates are given in Table 3.3.14.

The size of the 1988-1992 year classes has been estimated using RCT3, with the output as given in Table 3.3.15. Default values have been used in RCT3, except for the CV value, which was raised to 0.3 . The reason for this is that the 2 -group indices seem to have a considerably higher correlation with the 3 -group VPA recruits than any of the other indices. This is somewhat unlikely since the 3-and 4-group indices are expected in reality to be a better measure of recruitment. The revised recruitment estimates are then discounted with natural and fishing mortalities for use in predictions.

For years not covered by surveys, the average of the 1985-1990 year classes has been used.

### 3.3.7.4 Long-term prediction

The yield-per-recruit curve along with biological reference points is given in Figure 3.3.3 and Tables 3.3.1617). A plot of the spawning stock biomass and recruitment is given in Figure 3.3.2. When using the full period (1952-1992, where the SSB is extrapolated back 3 years) the reference points $F_{\text {med }}$ and $\mathrm{F}_{\text {high }}$ are about 0.45 and 0.85 , respectively. In the same figure, fitted Beverton-Holt and Ricker curves are also shown. It is seen that $\mathrm{F}_{\text {high }}$ will result in stock collapse if the Ricker curve is assumed, but an equilibrium is obtained if the Beverton-Holt curve is assumed.

Values for the Beverton-Holt curve are poorly determined. Figure 3.3 .2 shows the resulting curve when the full time period available is used. In this case, values of $\mathrm{a}=2.32$ and $\mathrm{K}=98.5$ are obtained. However, if the first three years (1952-1954) are omitted, the resulting parameter estimates are $\mathrm{a}=1.86$ and $\mathrm{K}=132.9$, with a considerable change in interpretation. Thus, it is seen that merely omitting 3 data points results in a considerable change in predicted maximum recruitment (from 229 to 248) and to the SSB level which gives $50 \%$ of the maximum recruitment (from 99 to 133).

The Ricker curve ( $a=0.85, \mathrm{~K}=728$ ) gives a slightly worse fit to the data than does the Beverton-Holt curve, but the difference is marginal. Neither curve fits the data well, and a simple $\log$-log regression of $R$ on $S$ yields a slope which is only significant at the $12 \%$ level.

### 3.3.7.5 Projections of catch and biomass (short-term prediction)

Input to the projections is given in Table 3.3.18. Results from projections up to 1995 with different fishing mortalities are given in Table 3.3.19. It is seen that fishing at current levels of fishing mortality will further reduce the spawning stock and result in lower catches.

A $20 \%$ reduction in fishing mortality from the 1992 level will result in a slightly decreasing ( $10 \%$ ) SSB up to 1995. Catches will initially drop to $205,000 \mathrm{t}$ from an expected $230,000 \mathrm{t}$ in 1993.

A $40 \%$ reduction in fishing mortality will slightly increase the SSB in 1995. This will require an initial catch limit of about $162,000 \mathrm{t}$.

The average size of the incoming year classes (19851992) is 128 million. The yield-per-recruit computations indicate that the maximum obtainable yield per recruit is about 1.8 kg . These two numbers indicate that the average yield in the next few years cannot exceed $230,000 \mathrm{t}$. Since the fishing mortality is currently far above $F_{\text {max }}$, the expected yield from these year classes is somewhat lower or about $210,000 \mathrm{t}$ per year.

### 3.3.7.6 Medium term prediction

Some medium term predictions were presented to the group. These are described in Appendix A.

### 3.3.7.7 Management considerations

The SSB-recruitment relationship has a major effect on the long-term predictions, if such a relationship exists. From Table 3.3.12 it is seen that low recruitment (below the median value of 171 million) occurred 13 times out of 19 in years when the SSB was below the median value of $440,000 \mathrm{t}$. When the SSB was above $440,000 \mathrm{t}$, poor recruitment only occurred in 6 out of 19 years. The increased probability of poor recruitment at low SSB levels is of major concern and the possibility of an SSB-recruitment relationship cannot be fully ignored.

Since the expected total yield from the stock is the multiple of the yield per recruit and the number of recruits, it is seen that the expected yield decreases considerably more when the poor recruitment is taken into account than when only $\mathrm{Y} / \mathrm{R}$ is considered along with average recruitment.

In a nutshell, the choice is between:
a) Keeping current (1993) mortality levels with 1994 catches of about $225,000 \mathrm{t}$. In this case the catches will automatically start decreasing since this catch cannot be maintained. Further, the SSB will be driven below historical levels;
b) Reducing the catches to some $175,000 \mathrm{t}$ ( $30 \%$ reduction in fishing mortality). In this case the spawning stock is expected to remain stable in the near future. The probability of perpetual poor recruitment seems high at this level of spawning stock biomass. There is considerable danger of further reductions in the spawning stock size with the corresponding probability of reduced recruitment.
c) An immediate reduction of catches to levels (about $150,000 \mathrm{t}$ ) at which the SSB will increase with high certainty and do so within a few years. Although there is no guarantee that this will bring about improved recruitment, there are several indications that the probability of poor recruitment will be considerably reduced by increasing the SSB. It should be noted that there is a considerable difference between "increasing the SSB fast" and "increasing the SSB with high certainty" (Appendix A).

### 3.3.8 Comments on the assessment

All short-term results depend heavily on the assumed development in maturity at age. The question should be raised as to whether the currently high maturity rates are true reflections of high rates in the stock, or whether these could to some extent be artefacts since the samples are based on commercial gears. Naturally, if a constant maturity ogive is used, then the current estimate of the SSB drops.

An effort has been initiated to improve the separation of the catch data into different fleets. This has been done for several purposes: (1) to facilitate advice which is directed to the quota year, which starts on 1 September; (2) to ease the computation of the spawning stock biomass at the time of spawning; (3) eventually to enable advice for the cod to be based on seasons and fleets and (4) to use methods that can later be used for other species and thus facilitate advice which takes into account multi-fleet, multi-species technical interaction concerns.

The first two criteria can best be met if seasons are defined to start on 1 September and 1 May, and hence the approach taken is to split the year into three fourmonth parts (and the same seaasonal split will also work for most other stocks in Division Va). It is envisaged that this work will be completed in the near future and thus future assessments may be based on different seasons and
"years" than the current one. At present, seasonal data are available for the years 1984-1992/93.

In view of the fact that non-quarterly seasons are appropriate for Division Va, the Working Group recommends that future ICES prediction software should include the facility to work on a four-month seasonal basis.

Since the newer method of computing catch-at-age requires disaggregation into 3 seasons, 2 areas and 3 gears, a total of 18 data "cells" per year are needed. In some years, some of these cells may not have much data. In particular, it is not uncommon for cells (or métiers) with low catches not to have good corresponding otolith samples, in some cases there may be not be any otolith samples and in a few instances there may not even be length distributions. Some consistent treatment of the data is therefore required.

In the case of few otoliths in a given sampling cell, these otoliths can be used to estimate the mean length at age (since the otoliths are randomly sampled), the proportion at age and the variance of length at age. These data can then be used to regenerate a "filled" age-length key where a gamma density function, parametrised with the mean and variance, is used to obtain the frequency of lengths at age. The observed proportions at age are then used to scale the age groups back to the original scale. In this instance, all lengths will have a positive total in the key and the key can therefore be used with the observed length distribution to obtain mean lengths and proportions at age. It should be noted that when this approach is used, an age group that is not present in the otolith samples will not be present in the filled keys either. However, all length groups will be present in the filled keys.

In cases in which there are no otoliths in a given cell, a more complex model is needed. In this instance, a collection of cells is taken and a model is fitted describing, e.g., the mean lengths at a fixed age in gillnets in the south as a function of the corresponding mean lengths in the same cell in the year before (of the same cohort) and of the mean lengths of the same age groups in other gears. This model can then be used to predict the mean length at age in a given cell where no key data exist. Standard deviations of length at age can be fitted using a similar model and proportions (or numbers) at age are fitted using a GLM with a binomial distribution and a logit link function. Thus one obtains the mean length, variance and proportion at age for each age group. These values are then inserted as parameters into the gamma density as above to obtain a filled age-length key.

The last (and poorest) instance is the one where no data exist at all - not even length distributions. In this case, a model is fitted where the proportion at length is
described as a function of the corresponding proportion in other cells in the same year. In order to keep basically one approach, the age-length key is modelled using the approach above and the length distribution is then combined with the key in the usual manner to obtain proportions at age. It should be noted that for the Icelandic cod these cells always correspond to low catches and in most cases approximately the same results in terms of annual totals are obtained as were obtained in earlier assessments in which gears were usually combined when data were inadequate.

Similar models can be used to obtain maturity at age in cases of missing or inadequate data.

Unfortunately, it was not possible fully to modify the prediction and assessment to incorporate the revised seasonal data. The revised data have therefore not been used in this assessment, but it is envisaged that they will be used at the next meeting of the Working Group.

The revised analyses of historical data described above also give mean weights at age of mature individuals in each age group. These values are of course more appropriate for SSB computations than those presently used, where the mean weight in an age group is based on immature as well as mature fish. In future assessments it is likely that only observed weights of mature fish will be used when the SSB is computed.

It should be noted that there are 3 sets of mean weights at age which should be used in assessments. In most cases two of these will be the same, but this does not always happen. In particular, for the Icelandic cod the stock biomass and SSB biomass computations do not and will not rely on the same weights at age. The Working Group therefore recommends that ICES software be modified so as to incorporate 3 sets of weight at age data: for catches, stock biomass and spawning stock biomass computations.

There is further interest in knowing the landings of mature fish (particularly on a fleet basis) and these data are available, but the ICES package does not easily incorporate two different maturity ogives.

4 THE COD STOCK COMPLEX IN GREENLAND (NAFO SUB-AREA 1 AND ICES SUBAREA XIV) AND ICELANDIC WATERS (DIVISION Va)

### 4.1 Inter-relationship between the Cod Stocks in the Greenland-Iceland Area

Tagging experiments carried out at Greenland and Iceland show that mature cod at West Greenland migrate to East Greenland (Figure 4.1.1). Tagging experiments
at East Greenland also show that mature cod from that area migrate to Iceland. On the other hand, immature cod seem not to emigrate from East Greenland to Iceland, but in some years immature cod migrate from East Greenland to the West Greenland stock. Tagging experiments at Iceland show that migration of cod from Icelandic to Greenland waters occurs very seldom and can be ignored in stock assessments. Migrations from Greenland waters to Iceland can, therefore, be regarded as a one-way migration.

In egg and larval surveys cod eggs have been found in an almost continuous belt from Iceland to East Greenland, along the East Greenland coast, round Cape Farewell and over the banks at West Greenland. From 0-group surveys carried out in the East Greenland-Iceland area since 1970 it becomes quite evident that the drift of 0 -group cod from the Iceland spawning grounds to the diferent nursery areas at Iceland varies from year to year. The same applies to the drift of 0 -group cod with the currents from Iceland to East Greenland waters (Table 4.1.1). In some years it seems that no larval drift has taken place to the Greenland area, while in other years some, and in some years like 1973 and 1984 considerable numbers, drifted to East Greenland waters.

The 1973 and 1984 year classes have been very important to the fisheries off both West and East Greenland. Tagging results have shown that when these two year classes became mature, they had migrated in large numbers from West to East Greenland waters and, to some extent, to the spawning area off the southwest coast of Iceland.

This migration of mature cod from Greenland to Iceland influences the assessment of these stocks (Schopka, 1991) and it cannot therefore be ignored in the assessments.

## 5 COD STOCKS IN THE GREENLAND AREA

### 5.1 Survey and Research

### 5.1.1 Groundfish survey of the Federal Republic of Germany

Abundance and biomass estimates have been derived using annual groundfish surveys covering shelf areas and the continental slope off West and East Greenland. Surveys commenced in 1982 and were primarily designed for the assessment of cod. Because of favourable weather and ice conditions and to avoid spawning concentrations, the autumn season (Oct.-Dec.) was chosen for the survey time. Surveys were carried out by the research vessel R/V WALTHER HERWIG throughout the time period with the exception of 1984, when R/V ANTON DOHRN was used. The fishing gear used was a standardized 140 -feet bottom trawl. The net frame
was rigged with heavy ground gear because of the rough fishing grounds. A small mesh liner ( 10 mm ) was used inside the cod end. The horizontal distance between wing-ends amounted to 25 m at 300 m depth, while the vertical net opening was 4 m .

Figures presented here result from combining the two previously separate surveys for West and East Greenland. Combining the two seems appropriate as the ship and gear were identical and the surveys were conducted directly one after the other. The only difference was the survey strategy applied to the West and East Greenland components. In order to make the surveys equivalent, both survey areas were restratified. The survey area off West Greenland now extends from $59^{\circ}-67^{\circ} \mathrm{N}$ while the area off East Greenland is now limited to $66^{\circ} \mathrm{N}$.

Pronounced spatial heterogeneity in cod abundance required the subdivision of shelf areas and the continental slope into different geographic and depth strata. Both survey areas off West and East Greenland were split into four and three geographic strata, respectively. Each geographic stratum was subdivided into two depth strata covering the $0-200 \mathrm{~m}$ and $201-400 \mathrm{~m}$ zones. Figure 5.1 .1 and Table 5.1.1 indicate names of the 14 strata, their geographic boundaries, depth ranges and areas in square nautical miles ( $\mathrm{nm}^{2}$ ). All strata were delimited by the 3 mile line offshore except for some inshore regions in Strata 6.1 and 6.2 off East Greenland where there is a lack of adequate bathymetric measurements. Strata below 400 m were disregarded due to inconsistent and insufficient sampling effort. Stratum areas for East Greenland have been revised this year based on a new bathymetric chart and so differ significantly from values given in former Working Group reports. However, the reliability of bathymetric maps of the East Greenland area is believed to be questionable and effort should be made to compile new bathymetric maps.

Stratified abundance estimates were calculated from catch-per-tow data applying the 'swept area' method. Trawl parameters are listed in Table 5.1.2. Towing time was usually 30 minutes at a speed of 4.5 knots. Survey hauls which experienced net damage or hangup before 15 minutes towing time had elapsed were rejected. In 1987 and 1988, some hauls were not excluded as their towing time was intentionally reduced to 10 minutes due to large catches expected observed from echo sounder traces. Strata with less than five valid sets were rejected from the calculation. The coefficient of catchability was set arbitrarily at 1.0 implying that estimates are merely indices of abundance and biomass. Confidence intervals are given at the $95 \%$ level of significance of the stratified mean.

Fifty percent of the trawl stations were allocated proportionally to strata area and the remaining fifty percent were apportioned by reviewing the historical cod
trawl survey abundance. Hauls were randomly distributed within trawlable areas of the strata. Weather, ice, technical difficulties and changes in strategy of the East Greenland surveys have caused deviations from this design. Figure 5.1 .1 shows the positions of 1,969 hauls carried out successfully during 1982-1992. It can be seen that haul distribution is not evenly distributed over the total survey area. Non-trawlable areas are mainly located at the inshore edge of the banks. Strata off East Greenland are especially characterized by extremely rough and non-trawlable fishing grounds. Numbers of valid sets per stratum are listed in Table 5.1.3. The main feature of this table is the predominance of hauls allocated to shallow strata off West Greenland (1.1, 2.1, 3.1 and 4.1) ranging from $0-200 \mathrm{~m}$ depth. Significantly lower numbers of hauls were carried out in strata 1.2, 2.2, 3.2 and 4.2 ( $201-400 \mathrm{~m}$ depth). In contrast, the sampling effort off East Greenland has varied significantly due to changes in sampling strategy and has been mainly concentrated in deeper strata ( $5.2,6.2$ and 7.2 ) ranging from $200-400 \mathrm{~m}$. Stratum 7.1 has not been sampled adequately, because of the rough bottom throughout the time series. In September and December 1992, only 47 and 6 hauls were carried out off West and East Greenland, respectively, due to technical problems.

For the periods 1984-1986 and 1988-1992, length and age compositions were separated by stratum. Different age length keys were applied to West and East Greenland strata. In 1982-1983 and 1987, age-disaggregated abundance indices were calculated using relative age compositions reported by the ICES Working Group on Cod Stocks off East Greenland (Anon., 1984, 1988). During the past four years (1989-92) total numbers of age readings amounted to $3,519,2,513,1,953$ and 245 , respectively.

Potential inconsistencies in the definition of stratum areas and the existence of large untrawlable regions cast some doubt on the validity of the indices as absolute biomass estimates at East Greenland. Nevertheless, after comparing trends in catches and abundance estimates, the Working Group accepted that the survey results indicated the present status of the stock.

Tables 5.1.4 and 5.1.5 lists abundance and biomass indices by stratum off West and East Greenland from 1982 to 1992. Indices vary significantly between strata and years. Trends in the estimates are shown in Figures 5.1.2 and 5.1.3 illustrating the increase in stock abundance and biomass from 23 million individuals and 45,000 tonnes in 1984 to 828 million individuals and 690,000 tonnes in 1987. This was caused exclusively by the strong 1984 and 1985 year classes which were mainly distributed in the northern strata 1.1, 2.1 and 3.1 off West Greenland during 1987-1989. High indices of abundance and biomass have not been observed in strata off East Greenland although these indices increased
during the period 1989-1991 suggesting an eastward migration. Since 1987 and 1989, stock abundance and biomass off West and East Greenland have decreased dramatically to 5 and 10 million individuals, and 5,000 and $33,000 \mathrm{t}$, respectively in 1991.

In 1992, the survey effort off West Greenland was reduced by $50 \%$ and the survey off East Greenland had to be terminated due to technical problems after conducting only a few hauls at Dohrn Bank. This caused a break in the time series. The West Greenland estimates showed a decline to 2 million fish (down by $57 \%$ compared to 1991) equivalent to 607 tonnes (down by $88 \%$ compared to 1991). These results are by far the lowest since the beginning of the surveys in 1982. Estimates based on the six hauls in stratum 7.2 off East Greenland in 1992 are also the lowest ever seen for this stratum. In 1991, abundance and biomass maxima were observed in this stratum.

Length compositions are illustrated for the period 1989-1992 in Figure 5.1.4. With decreasing trends in abundance, the mean length increased from 50.1 cm in 1989 and 53.1 cm in 1990 to 58.0 cm in 1991. This is due to the prevalence of the dominant 1984 and 1985 year classes and poor subsequent recruitment. In 1992, very small cod, ranging between $25.5-34.5 \mathrm{~cm}$, predominated off West Greenland while the length composition in stratum 7.2 off East Greenland showed no pronounced peak and ranged from 10.5 cm to 82.5 cm .

Cod age compositions off West and East Greenland were found to differ substantially (Tables 5.1.6-5.1.8). The calculated mean age was $4.6,5.3$ and 5.7 years in 1989, 1990 and 1991, respectively, reflecting the predominance of the 1984 and 1985 year classes (Figure 5.1.5). The change in abundance of age groups from West to East Greenland with increasing age suggests an eastward migration. In 1992, age groups 0 to 8 and 12 were found in stratum 7.2 off East Greenland, while the cod stock off West Greenland consisted of the recruiting 1990 year class which contributed $72 \%$ of the abundance. Disappearance of the previously predominant 1984 and 1985 year classes contributed substantially to this result.

### 5.1.2 Greenland trawl survey

A stratified-random trawl survey was carried out by Greenland off East and West Greenland during JulyOctober 1992, using the chartered commercial trawler M/tr PAAMIUT ( 722 GRT). The area covered extended from $59^{\circ} \mathrm{N}$ to $72^{\circ} 30^{\prime} \mathrm{N}$ at West Greenland and from $59^{\circ}$ to $68^{\circ} \mathrm{N}$ at East Greenland from the 3 nm -line off the coast down to a depth of 600 m . The number of hauls per stratum was generally allocated proportionally to stratum size. However, as the main purpose of the survey was to estimate shrimp abundance, haul density was higher in the shrimp fishing areas off West Green-
land than off South and East Greenland. The stratification used in the shrimp areas of West Greenland was as given by Carlson and Kanneworff (1992). For this area, a restratification was performed to allow comparison with the concurrent German survey. Stratification and haul allocation in southwest Greenland and East Greenland were designed to match the German survey. A total of 291 hauls were made within the 200 nm zone of Greenland (Figure 5.1.6).

The survey gear used was a Skjervoy 3000/20 trawl with a bobbin groundrope and a double-bag 44 mm mesh size codend. The trawl doors were of the type 'Perfect'. Standard hauls were of 60 min . duration with a mean towing speed of 2.4 knots. Trawling was restricted to the daytime (0900-1900 UTC). Cod abundance was calculated by the swept area method in which trawling distance was calculated from GPS registrations and wingspread was taken as the average of Scanmar measurements ( 27.7 m ).

The survey showed an extremely low biomass of cod at both West and East Greenland (Table 5.1.9). At West Greenland total abundance and biomass was estimated to be 0.5 million fish and 198 t , respectively. For the East Greenland area the total abundance was estimated to be 0.3 million fish equivalent to a biomass of 71 t .

As 1992 was the first year for the Greenland survey, it is impossible to use the result as an indicator of changes in stock size. The very low catches are consistent with the findings in the German survey and are also in line with the low catches seen in the commercial fishery.

### 5.1.3 West Greenland young cod survey

During June-July 1992 Greenland carried out a gill-net survey on young cod in three inshore areas off West Greenland : Qaqortoq (NAFO Div. 1F), Nuuk (Div. 1D) and Sisimiut (Div. 1B). The survey has been conducted at the same time since 1985. Three mesh-sizes (16.5, 24 and 33 mm bar length) were used in the first two years, but in 1987 two additional mesh sizes were added (18.5 mm and 28 mm ). An index of recruitment for each area is calculated as the mean catch of 2-year old cod per hour taken by all five mesh sizes. Values for 1985-86 have been corrected to five mesh units based on the relationship between catches in the 3 and 5 mesh-sizes as found since 1987. The recruitment time series is shown in Table 5.1.10.

The 1984 and 1985 year classes, both believed to have drifted from Iceland to Greenland, show high age 2 abundance in all areas. For the southern area, no other year classes of any significance have been observed. Recruitment fluctuates independently in the central and northern areas. The 1989 year class, recruiting in 1993,
is very poor in both areas, however, whereas the 1990 year class is about average.

Inshore spawning is well documented in the central area and is also known to occur in the Northern area so it may be assumed that the persistent recruitment found since the appearance of the 1984 and 1985 year classes derives from local spawning populations. No spawning areas are known in the Southern area. The pattern of year class occurrence in this area closely resembles that which has been found offshore indicating that the cod in this area also originate from the Iceland area.

### 5.2 Trends in Catch and Effort

The fisheries in West Greenland have traditionally been composed of an offshore trawl fishery and an inshore fishery mostly using poundnet (Table 5.2.1). Since the spring of 1991, however, no offshore fishery has taken place. Catches in 1992 amounted to only $5,665 \mathrm{t}$ (Table 5.2.2).

Over the last decade, the fishery in West Greenland has fluctuated substantially. At the start of the 1980s the fishery yielded annual catches of 50,000 to $60,000 \mathrm{t}$ followed by a decline to a low of $7,000 \mathrm{t}$ in 1986. With the recruitment of the exceptional 1984 year class, the fishery increased to $112,000 \mathrm{t}$ in 1989. Catches have since declined with yields of $68,000 \mathrm{t}$ in 1990 and 20,000 $t$ in 1991. The catch in 1992 of only $5,700 \mathrm{t}$ is the lowest observed since the commencement of the fishery in the 1920s.

Cod in East Greenland waters have been taken mostly by trawlers, either in the directed cod fishery or as a bycatch in the redfish fishery. Both of these fisheries are to some extent mixed fisheries which take place on the offshore banks and along the slopes of the East Greenland shelf from Dohrn Bank to Cape Farewell. In addition, there is a long-line fishery offshore and a small inshore fishery at Angmagsalik.

Catches in East Greenland fluctuated during the period 1976-82, but decreased sharply from 27,000 $t$ in 1982 to $2,000 \mathrm{t}$ in 1985. In the period from 1986 to 1989, catches increased steadily from $5,000 \mathrm{t}$ to $16,000 \mathrm{t}$. Combining the TAC for West and East Greenland, reflecting the change in stock distribution, permitted the catch to double and and reach $33,000 \mathrm{t}$ in 1990 at East Greenland. Since then, the nominal catches have decreased to $22,000 \mathrm{t}$ and $11,500 \mathrm{t}$ in 1991 and 1992, respectively (Table 5.2.3).

Most fishing activity in 1992 was concentrated in the areas north of $63^{\circ} \mathrm{N} .53 \%$ of the catch was taken by Germany. UK (England and Wales), Greenland, Norway and UK (Scotland) accounted for $22 \%, 11 \%, 10 \%$ and
$4 \%$, respectively. The German fleet took $92 \%$ of the catch during the first two quarters.

Although much effort was spent searching for cod, the fishery collapsed in the second part of 1992 and did not recover in the winter season as usual. Searching continued in the first months of 1993 where ten German trawlers reported their entry into the Greenland economic zone. The fishery has been extremely poor with reported catches of only 129 t during January to April 1993. This is a reduction by $97 \%$ compared to the catches of 4,966 $t$ taken in the same area during the same period in 1992.

### 5.3 Assessment

### 5.3.1 Catch in numbers

In West Greenland, 15 samples from poundnet landings were used to convert the total inshore catch into numbers at age. Sampling in 1992 was difficult to perform due to the low catch levels. Forty percent of the catch was broken down by samples taken in the respective fishing area and month; the remaining catch had to be converted to numbers at age using samples taken from other areas or months. The catch at age in 1992 is given in Table 5.3.1. Catch at age since 1966 is presented in Table 5.3.2.

Catches were dominated by age groups 4 and 5 ( $65 \%$ and $29 \%$ of the total catch in numbers, respectively). The formerly important 1984 and 1985 year classes together accounted for about $2 \%$ of the catch in numbers.

At East Greenland, six samples were taken from German commercial trawl catches (three samples from the first quarter, two samples from the second and one in the third quarter). Total numbers of length measurements and age determinations were 2,476 and 1,251 , respectively. German catches were converted to numbers at age on a quarterly basis. This age structure was used to calculate the total catch of all nations in numbers at age (Table 5.3.3). The SOP-check resulted in $96 \%$ of the total catch.

The catch off East Greenland in 1992 was still dominated by the 1984 and 1985 year classes which accounted for $87 \%$ by number. The majority ( $59 \%$ ) were of the 1985 year class although its numbers in the catch decreased from 4.5 million in 1991 to 2.5 million in 1992 or $45 \%$.

### 5.3.2 Weight at age

Weights-at-age for West Greenland cod were based on samples from commercial fisheries. Mean weights at age by area are given in Table 5.3.1. The overall mean weight was derived by weighting according to catch size from the various areas and months .

Mean weights at age for the two important age groups (4 and 5) were slightly below that found in 1991 and well below the historical mean (Table 5.3.4). The mean weights of older fish were higher than the values found in 1991 but low compared to the long-term mean. It should be noted, however, that the mean weights are based on inshore cod only and that it has been commonly observed that size at age in the inshore catches is significantly smaller than that concurrently observed offshore. It may therefore be misleading to interpret changes in overall weight at age without considering changes in the proportion of catches taken inshore and offshore.

Mean weights-at-age in the East Greenland catch were derived from German commercial samples. Because of a lack data in 1992, the values for East Greenland were calculated using a length-weight relationship based on survey data and commercial samples. The overall weights-at-age were determined by weighting with the catch at age per quarter (Table 5.3.5).

East Greenland mean weights-at-age in 1992 were the highest on record for the the recruiting 1987 and 1988 year classes. In contrast, the estimates for the 1983 to 1985 year classes are close to the historical minimum.

### 5.3.3 Assessment

In the last two assessments of cod off Greenland the Working Group has experienced considerable difficulty caused by changes in stock composition in the area. The main problem has been the sudden disappearance of most of the dominant 1984 year class from Greenland waters in 1990. This has led to a situation in which a large proportion of the catches is taken in the inshore areas of West Greenland. As year-class strength in this areas differs considerably from that observed offshore, it was impossible to calibrate VPAs with survey indices from the offshore areas (Anon., 1992). As a result of these problems, and considering the near absence of cod in survey catches, the Working Group decided not to attempt a VPA, but instead based its evaluation on the results of the surveys and the trends observed in the fisheries.

### 5.4 Management Considerations

The 1992 swept area biomass in West Greenland, as observed by the German survey, was estimated to be only 607 t . This estimate is by far the lowest on record and is less than $0.1 \%$ of the high survey biomass observed in the late 1980s. The Greenland survey, conducted for the first time in 1992, estimated the biomass to be 198 t . Due to technical problems, the German survey in 1992 could not cover the East Greenland area but the Greenland survey estimated the biomass to be only 71 t . The trends in the fisheries are consistent
with the low biomass from the surveys as no offshore cod fishery has taken place in West Greenland since the spring of 1991 and the catches off East Greenland decreased to almost nil during the second part of 1992 (Section 5.2).

The offshore stock may, therefore, be considered to be almost non-existent at the present time. As no pre-recruit year classes of any significance were observed on the surveys, no substantial recruitment is expected in the next few years. The prospects for the offshore stock and fisheries is considered to be poor in the foreseeable future. Therefore, no fishing should take place until a substantial increase in recruitment and biomass is evident.

Based on historical catch levels, an inshore fishery of about $5,000-10,000 \mathrm{t}$ annually may be expected in the West Greenland area where local fjord populations can sustain recruitment (Section 5.1.3). The inshore fishery has historically been small compared to the offshore fishery and this stock component has never been assessed separately. Data collected from the inshore fishery should be compiled so that this stock can be adequately assessed in the future.

6

## GREENLAND HALIBUT IN SUB-AREAS V AND XIV

### 6.1 Trends in Landings and Fisheries

Total annual catches in Divisions Va and Vb and Subarea XIV are presented for the years 1980-1992 in Tables 6.1.1-6.1.4. During the period 1982-1986, catches were stable at about $31,000-34,000 \mathrm{t}$. In the years 1987-1989 catches increased to about 61,000 t followed by a decrease to about $39,000 \mathrm{t}$ in 1990 and $38,000 \mathrm{t}$ in 1991. The total catch in 1992 amounted to $35,000 \mathrm{t}$. Catches not officially reported to ICES have been included in the assessment.

More than $90 \%$ of the total annual catch is taken by Icelandic trawlers in Division Va. It should be noted that since 1990 the fishery has been expanding to deeper waters.

### 6.2 Trends in Effort and CPUE

Updated estimates of CPUE from the Icelandic trawler fleet for the period 1977-1992 are presented in Table 6.2.1. These indices are estimated using the GLIMstatistical package. A multiplicative model taking into account changes in the Icelandic trawl catch due to ship, statistical square, month and year effects provides an annual CPUE index for Greenland halibut. All hauls with Greenland halibut exceeding $50 \%$ of the total catch were
included in the CPUE estimation. This index is used to estimate the total effort from the total catch.

In the period 1977 to 1982 CPUE increased generally, but since then CPUE has decreased and is now at the lowest level recorded. Since 1977, effort has been increasing with some fluctuations to a peak in 1989. The effort decreased in the following years but increased again in 1992 to a value about $14 \%$ less than the record value in 1989.

### 6.3 Catch in Numbers

The catches in number at age were updated according to the final catch figures for the years 1991 and 1992, using the Icelandic catch-at-age data raised to the total catch for each year as no other length distributions or age/length keys were available (Table 6.3.1).

### 6.4 Weight at Age

The mean weights at age in the catch are shown in Table 6.4.1. These estimates were derived using Icelandic data. The average weight of 5 -year olds in 1992 was estimated from the mean of 1980-1991. The long-term average mean weights (1976-1992) were used in the catch predictions. Weights at age in the catch are also used as weights at age in the stock.

### 6.5 Maturity at Age

Icelandic data on maturity at age for the years 1985-1990 were not available. The maturity at age for these years was therefore estimated by averaging the data from the years 1982-1984 and 1991 (Table 6.5.1).

### 6.6 Stock Assessment

### 6.6.1 Tuning and estimates of fishing mortalities

Natural mortality was assumed to be 0.15 . The proportions of F and M before spawning are both set to zero. Estimates of total effort from Table 6.2.1 were used to tune the VPA (with weighted regressions). Two tuning methods, Laurec-Shepherd and XSA, based on the years 1985 to 1992 were applied to make an estimate of terminal F values. It turned out that there was too much noise in the Fs for the 13-year-old fish and therefore the Group decided to reject the 13 -year-old fish from the reference F . New tuning runs were made using age groups 8 to 12 for the reference $F$. With the help of retrospective analysis, the Working Group decided to use the XSA tuning method with shrinkage of 0.5 (Figure 6.6.1 and Table 6.6.1). Based on the Fs from the XSA with shrinkage of 0.5 a traditional VPA was carried out (Table 6.6.2 and Figure 6.6.2).

### 6.6.2 Spawning stock and recruitment

The recruitment shows a decrease from 40 million in 1980 and 1981 to 28 million in 1983. The recruitment reached 45 million again in 1986 but has been declining since then and is estimated to be approximately 30 million in 1990 (Table 6.6.3). Spawning stock biomass is given in Table 6.6.4.

### 6.7 Prediction of Catch and Biomass

### 6.7.1 Input data

The input data for the predictions are given in Table 6.7.1. Annual recruitment of 33 million at age 5 in 19911993 is based on the average recruitment for the years 1976-1990. Stock size is derived by using the fishing mortalities from the VPA with recalculated values for ages 6 and 7 to get average recruitment for these year classes. Mean weights were derived from the long-term average over the years 1976-1992. Maturity at age was derived by averaging over the years 1982-1984 and 1991 and 1992 where data were available. A catch level of $30,000 \mathrm{t}$, equal to the national TAC of Iceland for the 1992/1993 fishing year, was used as the predicted total catch in 1993. The fishing pattern for the short- and long-term projections was based on the average $F$ levels from 1990-1992 and standardized with the average F level for 8-12 year olds.

### 6.7.2 Biological reference points

$\mathrm{F}_{0.1}$ was estimated to be 0.18 and $\mathrm{F}_{\max } 0.44$. Due to the short time series of data for this stock, it was not meaningful to calculate $\mathrm{F}_{\text {med }}$ and $\mathrm{F}_{\text {high }}$.

### 6.7.3 Projections of catch and biomass

Table 6.7.2 and Figure 6.7.1 show the results of the predictions. At the beginning of 1993, the total stock is estimated to be about $210,000 \mathrm{t}$ and the spawning stock to be about $75,000 \mathrm{t}$. Given average recruitment, catches of about $30,000 \mathrm{t}$ in 1993 and 1994 will allow a slight increase (10\%) in SSB to about 83,000 t in 1995.

### 6.8 Management Considerations

According to the present assessment the continuation of the present fishing mortality will lead to stable SSB.

### 6.9 Comments on the Assessment

The use of only one commercial fleet for tuning is a cause for concern because of possible catchability changes. Further, there is considerable uncertainty about the recruiment process. Repeated surveys could be used for examining these issues.

### 7.1 Species and Stock Identification

In the northeast Atlantic there are at least three species of redfish: Sebastes viviparus, $S$. marinus, and $S$. mentella. Since $S$. viviparus has never been the subject of a commercial fishery, this species is not dealt with further in this report. The other two species have a wide distribution in the North Atlantic.

Within ICES assessment working groups, these species have been considered as five separate stocks:
S. marinus - Barents Sea/Norwegian stock.
S. marinus - Greenland/Iceland/Faroes stock.
S. mentella - Barents Sea/Norwegian stock.
S. mentella - Greenland/Iceland/Faroes stock.
S. mentella - Irminger Sea Oceanic stock.

The North-Western Working Group has to deal with and assess three of these stocks, i.e., the S. marinus and $S$. mentella Greenland/Iceland/Faroes stocks, and the oceanic stock of $S$. mentella in the Irminger Sea.

From time to time it has been questioned whether it is correct to consider $S$. marinus and S. mentella, respectively, from Greenland, Iceland, and Faroes waters as single stock units. At present, the Working Group has no evidence at hand which would justify splitting these stocks into separate stock units. Work related to this topic has been carried out on $S$. marinus by a Nordic group of scientists. Some differences have been observed both in genetic analyses and isotope studies. It would, however, be premature to draw any definitive conclusions from these studies, since they are incomplete and there may be some gaps in the sampling which have to be filled.

Many aspects of the migration pattern of these stocks are still uncertain. The migration of maturing fish to the spawning areas is obvious although the migration route is still not fully known. Movements of the fishing fleet and survey results show some shifts in the location of aggregations of fish which suggest a migration pattern.

Data on oceanic S. mentella presented at last year's meeting (Anon., 1992) supported the hypothesis on the life-cycle presented in an earlier Study Group Report (Anon., 1990b) and in the report of the North-Western Working Group for 1990 (Anon., 1990a) and 1991 (Anon., 1991). New information from the Icelandic acoustic survey in 1992 shows that in June that year, as in 1991, oceanic $S$. mentella were more abundant in the western part of the Irminger Sea than in the eastern part. The "spawning", however, took place in the eastern area
of the Irminger Sea and the fishery started much further to the northeast even extending into Division Va.

It was pointed out earlier (Anon., 1990a,b) that there appears to be a partial overlap of the "spawning" areas of the two stocks of S. mentella (oceanic and traditional) and that the stocks select different depths for the extrusion of larvae.

During the 1991 and 1992 cruises, hauls were taken in depths greater than 500 m at different localities in the survey area. Deep sea redfish were caught in all of these hauls. Thus the distribution area of deep sea redfish in this region seems to be much more extensive than previously assumed. These findings might put this stock into a new perspective in terms of its distribution.

According to hydroacoustic information, oceanic $S$. mentella was most abundant in the $100-200 \mathrm{~m}$ depth range and at temperatures between $4^{\circ}$ and $5^{\circ} \mathrm{C}$ at the time of the June 1991 survey. In 1992, the depth distribution was similar, but the temperature was somewhat lower, being from $3.5^{\circ}-5^{\circ} \mathrm{C}$. Results of the Russian expeditions show that this tendency started in 1990 (Table 7.5.7).

### 7.2 Stock Distribution with Respect to National Fisheries Zones

The distribution of $S$. marinus and the deep sea $S$. mentella stocks in the national fisheries zones is to some extent reflected in the catch statistics. All catches taken in ICES Sub-area XIV are within the national fisheries zone of Greenland. Likewise, catches reported in Divisions Va and Vb were taken within the national fisheries zones of Iceland and the Faroes, respectively. In Sub-area VI, the catches could be taken within the fisheries zone of the European Community (EC) or the Faroe Islands.

The conditions are different for the oceanic S. mentella stock. Reported catches have so far all been taken in Sub-areas XII and XIV, almost exclusively in international waters, i.e., outside the national fisheries zones of the neighbouring countries with the exception of minor catches within the national fisheries zones of Greenland and Iceland. In 1992 Iceland took about 900 t in Division Va.

From the information available, it is obvious that a substantial part of the adult oceanic S. mentella is, at least at times, to be found within the national fisheries zones of Iceland and Greenland.

In 1991, Iceland commenced a fishery in late April on spawning concentrations of the oceanic stock within its national zone. In 1992, the Icelandic fleet started fishing at the beginning of April on concentrations of pre-
spawners within the EEZ of Iceland and also in late March in 1993. In a short cruise to the area in early April it was confirmed that pre-spawning oceanic $S$. mentella could be found as far north as $65^{\circ} \mathrm{N}$. On the other hand, investigations during the feeding migration indicated that aggregations of this stock were within the East Greenland zone. The Icelandic acoustic surveys in 1991 and 1992 (Figure 7.5.6) confirmed these aggregations within the East Greenland zone. The Icelandic catch within the EEZ of Iceland amounted to some 2,000 $t$ in 1992.

With the present state of knowledge, there is no way to quantify the proportion of the adult stock occurring in the respective national fisheries zones.

The Working Group noted that the new information (Magnusson et al., 1992) on the distribution of deep-sea $S$. mentella in the Irminger Sea might have an implication for stock distribution with respect to national fisheries zones.

### 7.3 Landings and Trends in the Fisheries

The total catch of redfish in 1990, excluding catch figures from the "oceanic" fishery, remained at the same level ( $111,000 \mathrm{t}$ ) as in 1989. In 1991 the catches increased to about $123,000 \mathrm{t}$, i.e. an increase of about $11 \%$. The catches decreased in 1992 by about about $9 \%$ to the 1990 level.

In Division Va (Iceland), the CPUE of the Icelandic fleet was rather stable until 1992, when it showed a definite decline. This is also reflected in the relatively stable total redfish landings from that Division (Tables 7.3.1-7.3.2). The catch in 1989 and 1990 remained at the same level of about $92,000 \mathrm{t}$ and increased to $97,000 \mathrm{t}$ in 1991, but declined to $94,000 \mathrm{t}$ in 1992.

In Division Vb (Faroes) (Tables 7.3.3-7.3.4) the biggest landings on record were taken in 1986 (about 21,000 t). Since then the catches decreased steadily to about 12,000 $t$ in 1990, but increased to about $15,000 \mathrm{t}$ in 1991 and remained at the same level in 1992. This decline in the fishery is due to the decrease in the catches by the Federal Republic of Germany fleet from 5,142 t in 1986 to 441 t in 1990, and a decrease in the Faroese landings from $15,244 \mathrm{t}$ in 1986 to $10,014 \mathrm{t}$ in 1990. The increase of about $3,000 \mathrm{t}$ in 1991 and 1992 is mainly due to increased Faroese catches.

Landings from Sub-area VI have been of minor importance in recent years (Tables 7.3.5-7.3.6).

The fishery on oceanic $S$. mentella stock took place mainly outside the national zones in Sub-areas XIV and XII. In 1992 minor Icelandic catches were reported from Division Va and some $2,000 \mathfrak{t}$ were taken within the

EEZ of Iceland (Tables 7.3.7, 7.3.8, 7.3.13 and 7.3.14). The landings amounted to $38,200 \mathrm{t}$ in 1989, 31,500 t in 1990 and $22,800 \mathrm{t}$ in 1991 but increased to $56,500 \mathrm{t}$ in 1992, i.e. almost 2.5 times.

From Sub-area XIV (East Greenland) (Tables 7.3.9 and 7.3.10), the total landings (excluding oceanic $S$. mentella) were about 3,000 t in 1989 and increased from 7,000 t in 1990 to $10,000 \mathrm{t}$ in 1991 but decreased again to about $3,400 \mathrm{t}$ in 1992. This is to be explained by the increase of the catches by the German fleet from about $3,300 \mathrm{t}$ in 1990 to about $9,000 \mathrm{t}$ in 1991 and a decrease of about $3,500 \mathrm{t}$ in 1990 to about $1,200 \mathrm{t}$ in 1991 taken by the Japanese fleet in Sub-area XIV. In 1992 the German catches decreased again to about $2,200 \mathrm{t}$ and there no Japanese catches were reported. The proportional fluctuation in the catches of $S$. marinus remained at a very low level.

Apart from oceanic Sebastes mentella the redfish catches in 1992 have not been allocated to species. The allocation up to 1992 is given in Tables 7.3.11 and 7.3.12.

### 7.4 Redfish Recruitment Indices

Indices for 0 -group redfish in the Irminger Sea and at East Greenland are available from the Icelandic 0 -group surveys since 1970 (Table 7.4.1). During 1972-1974, the indices were well above the overall average of 15.6 suggesting good year classes in those years. During the ten-year period 1975-1984, the index was below average, particularly in 1976 and from 1979-1984. Values were high in 1985, 1987 and 1990. In 1991 the area surveyed was extended to include an area surveyed in earlier surveys. The 1991 index of 26.4 is the second highest on record while the 1992 index of 11.6 is below the overall average of 15.6 . The 1986 and 1989 indices were slightly below average. Thus, the indices suggest generally strong year classes after 1984, following a period of poor ones (1975-1984).

### 7.5 Redfish Assessment

### 7.5.1 Traditional stocks

### 7.5.1.1 CPUE analysis

In last year's report an analysis of redfish CPUE in Division Va was presented. The basic conclusion was that the CPUE has remained fairly stable during the 1980s. Although the models (GLMs and various averages) presented in that report attempt to account for fleet changes, the possibility remains that some factors (spatial distribution changes, new vessels learning during the period, etc.) may affect these measures adversely.

An analysis of the CPUE data is presented in Figures 7.5.1-7.5.2. This analysis (Stefánsson, Working Docu-
ment 12) attempts to reduce the various confounding effects by reducing the original logbook data to measurements of redfish CPUE in standardized locations by chosen vessels. This is done by first allocating a redfish "trip" in a statistical rectangle in a given month where a redfish trip is defined as a trip in which a vessel catches more than $50 \%$ redfish. A subset of rectangles is then chosen on the criteria that a square must have at least 10 recorded redfish trips, and that the median catch and towing time must be among the 25 largest. After this subset of the data has been selected, the 25 vessels with the largest number of recorded logbook returns in the past 10 years are selected for further analysis. All the selected vessels returned logbook data in all the years.

Results based on analyses of these data are given in Figures 7.5 .1 and 7.5 .2 . Figure 7.5 .1 shows the estimated CPUE trends based on different analyses of these data, using the mean, median and geometric mean of the values within each year. All three lines indicate a drop in the CPUE in the most recent years.

Figure 7.5 .2 shows histograms of the time series of average CPUE within each statistical rectangle. It is noted that this figure indicates a drop in the CPUE subregions in most of the area covered.

### 7.5.1.2 Management considerations

In last year's Working Group report the stability of the CPUE series in recent years indicated that the combined fisheries of $S$. marinus and $S$. mentella in Division Va was in no imminent danger. It was also indicated that both in Division Vb and Sub-area XIV (and possibly in Division Va), a depletion of $S$. marinus might be taking place. In 1992, the CPUE of the combined fisheries of S. marinus and $S$. mentella in Division Va declined considerably, a decline which might have already started in 1991. In the Icelandic groundfish survey data there is a considerable drop in CPUE of S. marinus in Division Va from 1987-1993 (Figure 7.5.3). It should be noted that the groundfish survey does not cover the entire fishable stock. The survey indicates highly variable recruitment but does not indicate that it has decreased in recent years.

### 7.5.2 Oceanic $S$. mentella

### 7.5.2.1 Landings and CPUE

Oceanic S.mentella are mostly taken from Sub-areas XII and XIV, but in 1992 Iceland also caught 877 t in Division Va (Tables 7.3.13 and 7.3.14). The fishery for oceanic S.mentella started exploiting the virgin adult stock in 1982 with landings of about $60,000 \mathrm{t}$ and an increase to about $105,000 \mathrm{t}$ in 1986. The landings then dropped suddenly from about $91,000 \mathrm{t}$ in 1988 to about $38,000 \mathrm{t}$ in 1989 due to a decrease in the Russian effort.

The decreasing trend in landings continued and in 1991 the total landings were $22,804 \mathrm{t}$. In 1992 the participation and the effort in the fishery increased, and the total landings also increased to $56,547 \mathrm{t}$.

CPUE data for the oceanic S.mentella fisheries in Sub-areas XII and XIV are given in Table 7.5.1. It is seen from the table that the CPUE for the Russian fleet has declined more or less continuously since the fishery started in 1982. The shorter series for Norway shows, on the contrary, an increasing trend. The Working Group believe that the latter fact is explained by technical modifications, by the use of trawls with larger openings and by the gain in experience. However, since the Russian fleet has used the same trawl since the start in 1982, its time series may better reflect the stock situation, although the Russian effort has varied. Although keeping the technical parameters constant, it is still reasonable to believe that a minimum amount of effort or some kind of scouting is required to get comparable stock-reflecting catch-rates from year to year.

### 7.5.2.2 Surveys in 1992

During May-July 1992, Russia conducted the traditional trawl-acoustic survey (TAS) in the international waters of the Irminger Sea and in the East Greenland zone. Biological and oceanographic data were collected from the area surveyed. The main redfish concentrations were distributed along the Greenland zone boundaries (Figure 7.5.4). Abundance and biomass of oceanic $S$. mentella, as estimated from the Russian TAS results, are given in Table 7.5.2. The exploitable stock of $S$. mentella in the open area of the Irminger Sea has been estimated to be 0.9-1.1 million $t$ or $1.5-1.7$ billion fish. In the 200-mile fishing zone of East Greenland the TAS was estimated to be $550,000-650,000 \mathrm{t}$ or $900-1000$ million redfish individuals.

Given the duration of the survey from May to July and the possibility that redfish migrated in a southwesterly direction, it is important to note that some fish may have been observed more than once.

Redfish concentrations were found in the frontal zone which divided the water masses of Arctic and Atlantic origin. Redfish from the frontal zone were concentrated in areas of local upwellings at midwater depths. Thermal conditions over the TAS area in 1992 were colder than that of the long-term mean. The densest redfish aggregations were seen in 1992 at lower temperatures than in 1991.

The redfish length distributions and age composition are presented in Tables 7.5.3 and 7.5.4. S. mentella biological parameters during the TAS were quite similar to those obtained in previous years (Table 7.5.5).

In 1992, Iceland conducted an acoustic survey on oceanic redfish from 16 June to 7 July 7 on R/V "Bjarni Sæmundsson" (B9/92). About $82,000 \mathrm{n} \mathrm{m}^{2}$ were covered between $64^{\circ} \mathrm{N}$ and $57^{\circ} \mathrm{N}$ (see Figure 7.5.5).

A 38 KHz SIMRAD EK500 split-beam echo-sounder and BI500 postprocessing system was used for the acoustic data collection. In order to have values directly comparable to the results of the redfish survey in 1991, the same threshold of -72 dB was used. A total of 27 hauls were taken of which 5 were deep-sea hauls ( $>500 \mathrm{~m}$ depth). The biological sampling was carried out according to the survey plan agreed by the ICES Study Group on Redfish Stocks. Temperature measurements were carried out by means of bathythermograph (XBT) down to 760 m depth and zooplankton samples were collected by means of longer nets.

The target strength used was based on the results of an analysis of target data obtained on this survey, giving the target strength of a single fish as -40.2 dB and -38.1 dB for 1 kg . These values are representative for redfish in the depth interval $100-200 \mathrm{~m}$ with a mean length of 36.4 cm and mean weight of 623 g .

The Icelandic acoustic estimate of the stock size of oceanic redfish was 1.3 million $t$ in the area surveyed.

According to echo values oceanic redfish were most abundant in the western part of the survey area and were aggregated in 100-200 m depth, as in 1991. The maximum densities were observed north of $61^{\circ} \mathrm{N}$, at $60^{\circ} \mathrm{N}$ and south of Cape Farvel between $58^{\circ} \mathrm{N}$ and $59^{\circ} \mathrm{N}$ (Figure 7.5.6). A correlation between temperature distribution and abundance of oceanic $S$. mentella was observed both horizontally and vertically as in 1991. Oceanic redfish were most abundant in temperatures between $3.5^{\circ}$ and $4.5^{\circ} \mathrm{C}$ which is somewhat lower than in 1991.

The length range was $23-46 \mathrm{~cm}$ (mean 36.35 cm ). The average length for males was 35.58 and for females 36.98 cm (Table 7.5.6).

The average weight of (2005) individually weighed fish in the length range $23-46 \mathrm{~cm}$ was 623 g while it was 599 g for males and 646 g for females.

Because of the time differences in the Russian and Icelandic surveys it was difficult to combine the results of the acoustic estimation. However, the southern part of the Russian survey (i.e. south of $57^{\circ} \mathrm{N}$ ) was carried out at the time the Icelandic vessel was operating in the southernmost part of its survey area. The Russian estimate from that part of the survey area, i.e. the area between $57^{\circ} \mathrm{N}$ and $53^{\circ} \mathrm{N}$ and $48^{\circ} \mathrm{W}$ and $35^{\circ} \mathrm{W}$ which is about $80,000 \mathrm{~nm}^{2}$ in size, amounted to about $630,000 \mathrm{t}$. Adding this amount to the Icelandic acoustic assessment
of ca. 1.3 million t , the total estimate covering an area of about $165,000 \mathrm{~nm}^{2}$ is 1.9 million t . It should be pointed out that this estimate dose not cover the entire area of distribution of oceanic redfish partly because of ice and also because of bad weather conditions.

Compared to the results of the surveys in 1991, the cold water isotherm ( $<3.5^{\circ} \mathrm{C}$ ) was higher in the water column in 1992. This is clearly indicated in the vertical temperature distribution along $60^{\circ} \mathrm{N}$ latitude and along the $42^{\circ} 45^{\prime} \mathrm{W}$ longitude (Figures 7.5.7-7.5.8). In 1992 the Russian survey showed that the redfish were concentrated at lower temperatures than in previous years (Table 7.5.7).

A comparison was made of the acoustic estimates for areas covered in the Icelandic survey in 1991 and 1992. In that particular area the estimate was about $615,000 \mathrm{t}$ in 1991 and $571,000 \mathrm{t}$ in 1992.

### 7.5.2.3 Stock trajectories for oceanic S.mentella based on 1992 surveys

Due to uncertainties regarding this stock, simulations with various input parameters were performed in order to examine the possible response of this stock to fishing. This work was based on a similar approach during last year's assessment and a working paper (WP no. 15) presented to this year's Working Group by Gunnar Stefansson.

The basic assumption made is that the initial stock size in 1982 was in a virgin state with an equilibrium stock composed of age groups from a constant number of recruits. The virgin stock is thus computable based on knowledge of the number of recruits and the annual natural mortality. The number of ages is taken to be very large (65), so that natural and fishing mortalities define the effective age range. Norwegian and Russian age readings have not been included in this model due to discrepancies between different methods of reading (Figure 7.5.9).

A simplified growth curve, w-(w -w0)exp(-Kw(a-tw0)), is used based on data from the acoustic survey in June/July 1992 ( w and w0 are the maximum and minimum observed weights, respectively; tw0 is the time when the weight w0 is achieved; Kw is an unknown parameter). The selection pattern is assumed to be of the form $1-\exp \left(-\mathrm{K}^{*}(\mathrm{a}-\mathrm{a} 0-1)\right)$, where a 0 is the first age in the analysis and K is an unknown constant. It is assumed that the same selection pattern applies to the acoustically measured stock as to the catches.

The unknown parameters are thus the natural mortality, the constant recruitment, the parameter in the selection function (K) and the two parameters of the growth function (Kw and tw0). Projections of the stock are
possible for any given value of the parameters based on the usual catch equations and the given catches taken from the stock in the years 1982-1992. Combined results from the Icelandic and the Russian acoustic survey in June/July 1992 yielded a biomass estimate of 1.9 million tonnes. A projection of the fishable stock from 1982 onwards should match the biomass estimate in 1992. For a given value of natural mortality and weight parameters, the single recruitment parameter can be determined such that the stock biomass trend matches this 1992 measured value.

The mean, standard deviation and skewness of the distribution of weights are computed from both the survey and the simulated population. The sum of squared deviances of these quantities are then used as a basis for determining whether the parameters are in accordance with the distribution of weights. For a given set of weight and selection parameters, the system of equations can be made to fit the catches and acoustic estimate. Thus the selection pattern and weights-at-age are determined solely from the histogram of weights. It follows that different parameterisations of the selection pattern can be compensated by choosing a different weight-at-age function. The only unestimable parameter is thus the natural mortality and it is left as such, with scenarios considered for values of $\mathrm{M}=0.03, \mathrm{M}=0.05, \mathrm{M}=0.1$ and $\mathrm{M}=0.2$.

In the first runs values of $\mathrm{M}=0.05$ and $\mathrm{M}=0.1$ were tested. For each of these, a well-fitting selection curve and growth curve were estimated. Each of the two pairs of "best" curves was then used with each $M$ value (resulting in 4 different initial population structures). The two growth curves were very similar, while the two selection patterns were totally different (Figures 7.5.10 $\mathrm{a}, \mathrm{b})$. The four combinations gave projected stock sizes under different catch assumptions. Since there is considerable interest in how far the stock will be driven down in relative terms, Figure 7.5 .11 shows the ratio of final (year 2001) to virgin biomass (year 1982). In this figure, the most optimistic scenario (with $\mathrm{M}=0.1$ ) as well as the worst case scenario (with $\mathrm{M}=0.05$ ) are shown. From these projections it is seen that an annual harvest of 150 thousand tonnes will at worst bring the biomass to about $50 \%$ of its virgin level.

The Working Group decided to do some more runs with a fixed and, on present knowledge, more probable selection pattern (Figure 7.5.12). There may also be some variance and uncertainties connected with the acoustic estimate, and projections were therefore made using a 1992-biomass of $1.0,1.5$ and 2.5 million tonnes. The results are given in Table 7.5.8. This fixed selection pattern gives a smaller stock, and in that sense leads to more pessimistic results with regard to the stock structure and the prognosis compared to the first runs. An annual harvest of 100 thousand $t$ will at worst (if the

1992 biomass is only 1.0 million t and $\mathrm{M}=0.05$ ) bring the biomass to about $35 \%$ of its virgin level. If we base our projections on the acoustic estimate of 1.9 million $t$ (also having in mind that the survey did not cover the entire area of distribution), an annual TAC of 100 thousand tonnes for the next decade or so will not reduce the stock below $50 \%$ of its virgin biomass level.

### 7.5.2.4 Management considerations

In view of the uncertainties concerning the oceanic $S$. mentella stock dynamics, it must be monitored regularly with acoustic surveys (e.g. every 3 years) while harvesting commences, in order to determine more precisely the effects of catches on the stock. Under the current state of knowledge it is conceivable that a TAC of over 100 thousand tonnes would reduce the stock to below $50 \%$ of its virgin state. It is therefore recommended that this TAC should not be exceeded.

### 7.5.2.5 Proposals for future international research work on oceanic S. mentella

The Working Group emphasizes that the oceanic $S$. mentella fisheries in Sub-areas XII and XIV have the status of a large international fishery. The migration processes and formation of schools for this species of redfish take place both in international waters and within the 200 mile economic zones of Greenland and Iceland. For this reason the Working Group recommends that the international effort to investigate the migration patterns and abundances in Division Va and Sub-areas XII and XIV should be continued. In 1992 the Study Group on Redfish Stocks made the following recommendations for further research:

1. In addition to Iceland and Russia, other countries having interests in the oceanic $S$. mentella fishery should participate in the acoustic surveys so that the large distribution area of this species could be covered simultaneously.
2. Research surveys in autumn/early winter (e.g., the time of copulation) should be promoted to find out how and where the oceanic $S$. mentella are distributed at that time of the year. All research surveys need to have access to the entire distribution area.
3. Biochemical (genetic), meristic and morphometric research on oceanic and deep-sea S. mentella should continue and the results, including those from historical studies, should be summarised. This research should aim at finding objective and diagnostic criteria for distinguishing between the two types of $S$. mentella. It is important that the characteristics also enable a correct classification of 0 - and 1 -group redfish.
4. The Study Group will encourage scientists to continue doing research on age reading as a basis for VPA assessment.
5. Further research on defining the nursery areas of the oceanic $S$. mentella should be promoted.

## 8 DEEP-WATER FISHERIES INSIDE AND BEYOND COASTAL STATE JURISDICTION

In this context the Working Group decided to gather available information and present preliminary statistics on non-traditional species that are not considered by other working groups. It should be noted that the statistics on 'skates nei' and 'skarks nei' for some countries also include shallower living species. In the following sections available information on national fisheries and research are summarised. Official landings of the most common deep-sea species are given in Tables 8.1-8.6. The countries supplying information are listed in alphabetic order below.

## Faroes

Since the late 1970s Faroese trawlers have conducted deep-sea fisheries to the SW of the Faroes in national and international waters. Target species have been redfish and blue ling, with minor catches of ling, tusk, anglerfish (Lophius spp.), halibut, Greenland halibut and skates. Catches of grenadiers, black scabbardfish (Aphanopus carbo) and various sharks have been discarded.

In recent years more effort has been exerted on this mixed trawl fishery utilizing most species in the catches. The fishing activities have gradually expanded to deeper waters. In 1992 and 1993, an exploratory trawl fishery for orange roughy (Hoplostethus atlanticus) has been conducted in national and international waters. However, the commercial fleet has not yet entered this fishery.

Since 1991, a licensed fishery with gillnets for anglerfish has been conducted with a limited number of vessels.

On several occasions, exploratory fisheries have been carried out with long line in deep waters around the Faroes; the species composition has been the same as in the trawl catches, but no commercial effort have so far been introduced to this fishery.

## France

Due to the decrease in catch rates on the continental shelf west of Scotland, the French trawler fleet has moved to the continental slope in recent years. This deep-water fishery takes place on fishing grounds below 700 m . The
fishery began in 1989 in ICES Sub-area VI and has spread into ICES Sub-area VII in 1991.

Roundnose grenadier (Coryphaenoides rupestris) and orange roughy are the two target species. The other species in the catch are black scabbard and several species of dogfish (Centroscymnus coelopedis, Centrophorus squalomus, Centroscymnus crepidater and Scymnodon ringens) which are recorded together in the landing statistics, the Portuguese shark (Centroscymnus coelolepis) being the most important.

The first large landings of roundnose grenadier and of black scabbard were recorded in 1989 and they increased considerably in 1990 and in 1991 for both species. While this was still the case in 1992 for the black scabbard, the catches of roundnose grenadier have changed slightly from 1991 to 1992. The first large landings of orange roughy and deep sea dogfishes were recorded in 1991. Catches of orange roughy decreased in 1992 but those of deep sea dogfishes doubled.

## Germany

Small catches of deep water species were taken as bycatch in an exploratory fishery targeted at redfish and blue ling in Sub-area XIV.

## Greenland

In October 1987 and July 1988, two bottom trawl surveys were carried out jointly by Japan and Greenland between $60^{\circ} \mathrm{N}$ and $67^{\circ} \mathrm{N}$ (Sub-area XIV) along the continental slope at depths down to 1400 m . An account of all species caught as well as biomass estimates have been presented in ICES reports (Yatsu and Jørgensen, 1988, 1989). Roundnose and roughhead grenadiers (Macrourus berglax) were the most numerous in the deeper waters off Greenland.

## Iceland

Iceland has shown interest in the deep-sea resources. In the 1970 s and early 1980s, several cruises and single hauls were directed to the deep sea around Iceland. Thus, the distribution of several deep-sea species is known in Icelandic waters. However, the quantity and the catchability have not been examined thoroughly.

In addition to the landings given in Tables 8.1-8.6, Iceland caught 498 t and 106 t of Chimaera spp. in 1991 and 1992, respectively. In 1992, a catch of 10 t of smooth-head (Alepocephalus bairdii) is also reported.

In March 1993, Iceland conducted a deep-sea fishing survey with two vessels in the Reykjanes Ridge area using both pelagic and bottom trawl. Hauls were taken in
depths of approximately $550-1500 \mathrm{~m}$. Over 90 species of fish were recorded during the survey.

Apart from species already commercially exploited there are several deep sea species which might have commercial potential in this area. The most likely species are black scabbard fish, smooth-head, roundnose grenadier, orange roughy, Rhinochimara atlantica, black dogfish (Centroscyllium fabricii), Centroscymnus crepidater, Deania calceus, Portuguese shark (Centroscymnus coelolepis) to name some. All these species were taken south of $63^{\circ} \mathrm{N}$.

## Norway

Norwegian research on 'deep-sea' fishes in the North-Atlantic has been a spinoff of exploratory fisheries with long-lines. During the traditional long-line fishery for ling, blueling, tusk and Greenland halibut on the continental slopes and on deeper banks, bycatches of lesser known species have always been taken. It has therefore been of interest and importance to get better utilization of this bycatch to improve the profit for the long-liners. Two exploratory fishery expeditions with long-lines in the North Atlantic took place in May-June 1991 and 1992 (Myklebust and Olsen, 1991; Stene and Buuer, 1991; Sele and Olsen, 1992).

Greater fork-beard (Phycis blennoides) is taken as a bycatch in the traditional long-line fishery. Of the other species, rough-head grenadier, mora (Mora moro) and different deep-sea shark species are of special interest, and it may be possible to conduct a directed long-line fishery on these species, but at greater depths (700-1000 $\mathrm{m})$. The interest in these fishes in the future will fully depend on how these non-traditional species will be put to use and marketed.

Different skates and rays have been landed for a longer time. As for deep-sea sharks, there is a mixture of several species and so it will be difficult to identify species in the official statistics. Roundnose grenadier is taken both as a bycatch, and in a more directed fishery, especially in the fjords and in deep trenches on the continental shelf. Most of the catches are taken by trawl.

Orange roughy is a valuable slow-growing and long-lived deep-water species about which many fishermen are concerned. Norwegian fishermen have experienced fishing this species off Australia/New-Zealand, but they have not conducted any exploratory fishing in the Atlantic.

In addition to the catches presented in Tables 8.1-8.6, Norway landed 832 t and 466 t of roughhead grenadier in 1991 and 1992, respectively (Sub-area II). The landings of Mora moro amounted to 6 t in 1991 and 26 t in 1992 (Division Vb and Sub-area VI).

## Russia

During the last ten years Russia has successfully developed a deep-sea fishery in Sub-area XII, and studied the deep-sea resources in Sub-area Vb. Coryphaenoides rupestris, Aphanopus carbo, spiny dogfishes and some other deap-sea fish species were the main object of Russian fisheries in both sub-areas. The Russian catches of C. rupestris in Sub-area XII were stable at around $12,000-15,000 \mathrm{t}$ in the period 1980-1988. After 1988 catches declined to $4,000 t$ due to current difficulties in the Russian fishing industry.

## 9 REFERENCES

Anon. 1976. Report of the North-Western Working Group. ICES, Doc. C.M.1976/F:6.

Anon. 1981. Report of the Saithe Working Group. ICES, Doc. C.M.1981/G:9.

Anon. 1984. Report of the Working Group on Cod Stocks off East Greenland. ICES, Doc. C.M.1984/ Assess:5.

Anon. 1988. Report of the Working Group on Cod Stocks off East Greenland. ICES, Doc. C.M.1988/ Assess: 11.

Anon. 1990a. Report of the North-Western Working Group. ICES, Doc. C.M.1990/Assess:20.

Anon. 1990b. Report of the Study Group on OceanicType Sebastes mentella. ICES, Doc. C.M.1990/ G:2.

Anon. 1991. Report of the North-Western Working Group. ICES, Doc. C.M.1991/Assess:21.

Anon. 1992. Report of the North-Western Working Group. ICES, Doc. C.M.1992/Assess:14.

Carlson, D.M. and P. Kanneworff. 1992. Report on a stratified random trawl survey for shrimp (Pandalus borealis) in NAFO Sub-areas $0+1$ in July September 1991, and comparisons with earlier surveys. NAFO SCR Doc. 92/67, Serial N2121.

Magnússon, J., J.V. Magnússon, P. Reynisson, I. Hallgrimsson, A. Doschenkov, A. Pedchenko, and Y. Bakay. 1992. Report on the joint Icelandic/Russian acoustic surveys on oceanic Redfish in the Irminger Sea and adjacent waters in MayJuly 1992. ICES, Doc. C.M.1992/G:51.

Myklebust, N. and Olsen, H.E. 1991. Rapport fra forsøksfiske med liner etter lange m.v. på ukjente fiskefelt og større dyp vest for Shetland og Hebridene og sydvest for Island med M/S "Fjellmøy". Fisheridirektoratet, Bergen, Norge. (In Norwegian).

Pálsson, O.K., E. Jònsson, S.A. Schopka, G. Stefannsson, and B.Æ. Steinarsson. 1989. Icelandic groundfish survey data to improve precision in stock assessments. J. Northw. Atl. Fish. Sci., 9: 53-72.

Pálsson, O.K. and G. Stefanssson. 1991. Spatial distribution of Iceland cod in March 1985-1991. ICES, Doc. C.M.1991/G:63.

Schopka, S.A. 1991. The Greenland cod at Iceland 1941-1990 and its impact on assessment. NAFO SCR Doc. 91/102.

Sele, S.A. and H.E. Olsen, 1992. Rapport fra forsøksfiske med liner etter nye fiskeslag på større dyp vest av Shetland med M/S "Hordagutt". Fiskeridirektoratet, Bergen, Norge. (In Norwegian.)

Stefànsson, G. 1988. A statistical analysis of Icelandic trawler reports, 1973-1987. ICES, Doc. C.M.1988/ D:13.

Stefansson, G. 1991. Analysis of groundfish survey data: combining the GLM and delta approaches. ICES, Doc. C.M.1991/D:9.

Steinarsson, B.Æ. and Stefànsson, G. 1991. An attempt to explain cod growth variability. ICES, Doc. C.M.1991/G:42.

Stene, A. and A. Buner, 1991. Forsøksfiske med liner vest for Shetland, Færøyene og Hebridene, samt på Reykjanesryggen. Møreforskning, Ålesund, Norge. (In Norwegian.)

Yatsu, A. and O. Jørgensen, 1988. Groundfish biomass estimates from a stratified-random bottom trawl survey off East Greenland in 1987. ICES, Doc. C.M.1988/G:61.

Yatsu, A. and O. Jørgensen, 1989. Groundfish biomass estimates and biology of redfish (Sebastes mentella and Sebastes marinus) and Greenland halibut (Reinhardtius hippoglossoides) from a stratifiedrandom trawl survey off East Greenland in 1988. ICES, Doc. C.M.1989/G:25.

## WORKIING DOCUMENTS SUBMITTED TO THE MEETING

Bech, G. Abundance and Biomass of Cod, Greenland Halibut and Redfish spp., estimated from Greenland Trawl Survey 1992. Working Paper No. 11.

Engelstoft, J.J. and S.A. Pedersen. Analysis of CPUE data from German trawlers in Greenland waters, 1988-1992. Working Paper No. 9.

Grástein, J.M. Virtual Population Analysis in a Spreadsheet. Working Paper No. 1.

Horsted, S.A. A Note to the ICES North-Western Working Group on Catches of Cod at West and East Greenland. Working Paper No. 17.

Hovgård, H. Young Cod Distribution and Abundance in West Greenland Inshore Areas, 1992. Working Paper No. 7.

Johannesson, G., S.A. Schopka, B.Æ. Steinarsson, O.K. Pålsson, and G. Stefannsson. An assessment of the Icelandic (Va) cod. Working Paper No. 6

Kristiansen, A. Preliminary assessment of the Faroe Plateau Cod. Working Paper No. 2.

Marteinsdottir, G. and A. Gudmundsdottir. Greenland Halibut in Sub-areas V and XIV. Working Paper No. 10.

Nedreaas, K. Norwegian Landings of "oceanic" Sebastes mentella from ICES fishing areas XII and XIV (Irminger Sea). Working Paper No. 14.

Nicolaisen, A. Preliminary assessment of Saithe in Division Vb, Faroes 1983-1992. Working Paper No. 4.

Nicolaisen, A. On the tendency to overestimate F-values in most recent assessments. Working Paper No. 16.

Rätz, H.J. Combined assessment for West and East Greenland cod stocks by means of survey data 1982-1992. Working Paper No. 8.

Reinert, J. Preliminary Assessment of Faroe Haddock. Working Paper No. 3.

Shibonov, V.N., Yu.I. Bakay, S.A. Melnikov, and A.P. Pedchenko. Stock status and biological characteristics of Sebastes mentella ("oceanic type") in the Irminger Sea in 1992. (Russian investigation results.) Working Paper No. 13.

Stefànsson, G. CPUE and survey analysis for redfish in Division Va. Working Paper No. 12.

Stefànsson, G. Oceanic-type S. mentella - some projections. Working Paper No. 15.

Steinarsson, B.Æ. Icelandic Saithe. Working Paper No. 5.

## Table 2.1.1.A

| Faroe Plateau COD (Subdivision Vb1). <br> Nominal catches (t) 1983-1992, as officially reported to ICES. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nation/Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| Faroe Islands | 37,916 | 36,914 | 39,422 | 34,492 | 21,303 | 22,272 | 20,535 | 12,232 | 8,203 | 6,460 |
| France ${ }^{2 /}$ | 13 | 34 | 29 | 4 | 17 | 17 |  |  |  |  |
| Germany | 128 | 9 | 5 | 8 | 12 | 5 | 7 | 24 | 16 | , |
| Norway | 76 | 22 | 28 | 83 | 21 | 163 | 285 | 124 \% | $80^{1 /}$ | 41 |
| UK England |  |  |  |  | 8 |  |  |  | 1 | 75 |
| UK Scotland ${ }^{3}$ ) |  |  |  |  |  |  |  |  |  |  |
| Denmark |  |  |  | 8 | 30 | 10 |  |  |  |  |
| Total | 38,133 | 36,979 | 39,484 | 34,595 | 21,391 | 22,467 | 20,827 | 12,380 | 8,300 | 6,578 |

1) Preliminary
2) Sub-division Vb2 included
3) Included in Sub-division Vb2

## Table 2.1.1.B

| Faroe Plateau COD (Subdivision Vb1). Catches ( t ) 1983-1992, as used in the assessment. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nation/Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| Faroe Islands | 37,916 | 36,914 | 39,422 | 34,492 | 21,303 | 22,272 | 20,535 | 12,232 | 8,203 | 6,460 |
| France | 13 | 34 | 29 | 4 | 17 | 17 |  |  |  |  |
| Germany | 128 | 9 | 5 | 8 | 12 | 5 | 7 | 24 | 16 | 2 |
| Norway | 76 | 22 | 28 | 83 | 21 | 163 | 285 | 124 | 80 | 41 |
| UK England |  |  |  |  | 8 |  |  |  | 1 | 75 |
| UK Scotland |  |  |  |  |  |  |  |  |  |  |
| Denmark |  |  |  | 8 | 30 | 10 |  |  |  |  |
| Total | 38,133 | 36,979 | 39,484 | 34,595 | 21,391 | 22,467 | 20,827 | 12,380 | 8,300 | 6,578 |
| Faroese catches | in IIA with |  |  |  |  | 715 | 1,229 | 1,090 | 351 | 154 |
| Faroe area jurisdiction |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Total used the assessmem | 38,133 | 36,979 | 39,484 | 34,595 | 21,391 | 23,182 | 22,068 | 13,487 | 8,655 | 6,735 |

Table 2.1.2

| Nomind landings (i) by faroese vessels of Faroe Plateau Cod 1983-1992 disagoregated into fleet categories. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Category/ ${ }^{\text {aear }}$ | 1983 | 1984 | 1985 | 1988 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| Open boats | 99 | 235 | 5,960 | 2,357 | 2,345 | 234 | 1,903 | 456 | 431 | 151 |
| Longliners < 100 GPT | 3,975 | 6,884 | 8,351 | 5,754 | 3,434 | 2,745 | 6,047 | 4,735 | 2,645 | 1.442 |
| Longliners > 100 GRT | 2,987 | 2,825 | 2,562 | 1,828 | 2,359 | 3,080 | 3,887 | 2,574 | 1.250 | 771 |
| Trawlers < 400 HP | 3,228 | 3,367 | 3,268 | 2,062 | 1,500 | 1,173 | 1,368 | 650 | 582 | 553 |
| Trawlers 400-1000 HP | 7,969 | 4,908 | 2,838 | 1,871 | 1,580 | 1,764 | 1,277 | 448 | 270 | 174 |
| Trawlers $>1000 \mathrm{HP}$ | 4.791 | 4,392 | 4,300 | 3,090 | 1,879 | 1,558 | 1.218 | 516 | 363 | 212 |
| Pairtrawlers <1000 HP | 5,358 | 4,454 | 4,754 | 10,411 | 6,359 | 6,475 | 2,285 | 910 | 685 | 589 |
| Pairtrawlers $>1000 \mathrm{HP}$ | 3,550 | 2,131 | 1,994 | 4,635 | 3,334 | 3,674 | 1,901 | 1,368 | 1.091 | 1106 |
| Not allocated | 5,959 | 7,718 | 5,395 | 2,483 | -1,487 | 2,284 | 1,878 | 1,668 | 1,238 | 1.516 |
| Total | 37,916 | 36,814 | 39,422 | 34,492 | 21,303 | 22,987 | 21,764 | 13,322 | 8,554 | 6.614 |

Table 2.1.3
Extended survivors analysis.

| Table 1 | Catch | numbers at | age | ers ${ }^{\text {® }}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1983, | 1984, | 1985. | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 2149, | 4396, | 998, | 210. | 257. | 509 | 2237 | 243 | 190 |  |
| 3, | 5771. | 5234, | 9484, | 3586, | 1362, | 2122, | 2151, | 284, | 190, | 215 |
| 4. | 2760 , | 3487, | 3795, | 8462, | 2611, | 1945, | 2187, | 1481, | 2129, | 490, |
| 5. | 2746, | 1461, | 1669, | 2373. | 3083. | 1484, | 1121. | 852, | 615, | 959. |
| 6. | 1204, | 912. | 770, | 907. | 812, | 2178, | 1026, | 404, | 300, | 309, |
| 7. | 510. | 314. | 872. | 236, | 224, | 492, | 997, | 294, | 141, | 439, |
| 8, | 157. | 82, | 309, | 147. | 68. | 168, | 220, | 291, | 92, | 57, |
| 9, | 104. | 34. | 65. | 47. | 69. | 33, | 61, | 50, | 52, | 31, |
| +gp, | 102, | 66. | 80. | 38. | 26, | 25, | 9. | 26, | 24, | 36, |
| TOTALNLA, | 15503, | 15986, | 18042, | 16006, | 8512, | 8956, | 10009, | 6490. | 3989, | 2715, |
| TONSLAND, | 38133. | 36979, | 39484, | 34595. | 21391. | 23182, | 22068, | 13487, | 8655, | 6735, |
| SOPCOF $X$, | 97. | 97, | 95. | 96. | 96. | 101, | 98, | 99, | 106, | 102, |

Table 2.1.4
Extended survivors analysis.

| $\begin{aligned} & \text { Table } 2 \\ & \text { YEAR, } \end{aligned}$ | Catch 1983. | ights 1984, | $\begin{aligned} & \text { age (kg) } \\ & 1985, \end{aligned}$ | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 1.3380, | 1.1950, | .9050, | 1.0990, | 1.0930 | 1.0610 | 1.0100 | . 9450 | . 7790 | . 9890 , |
| 3. | 1.9500, | 1.8880, | 1.6580, | 1.4590, | 1.5170 | 1.7490, | 1.5970, | 1.3000, | 1.2740, | 1.3640, |
| 4. | 2.4030, | 2.9800, | 2.6260, | 2.0460, | 2.1600, | 2.3000, | 2.2010, | 1.9590, | 1.5700, | 1.7790, |
| 5. | 3.1070 , | 3.6790, | 3.4000, | 2.9360, | 2.7660, | 2.9140, | 2.9340, | 2.5310, | 2.5240, | 2.3120, |
| 6. | 4.1100, | 4.4700, | 3.7520, | 3.7860 , | 3.9080 , | 3.1090 , | 3.4680, | 3.2730, | 3.1850, | 3.4770 , |
| 7. | 5.0200 , | 5.4880, | 4.2200, | 4.8990, | 5.4610, | 3.9760 , | 3.7500, | 4.6520, | 4.0860, | 4.5450 , |
| 8, | 5.6010 , | 6.4660 , | 4.7390, | 5.8930, | 6.3410 , | 4.8960, | 4.6820, | 4.7580, | 5.6560, | 6.2750, |
| 9, | 8.0130, | 6.6280 , | 6.5110 , | 9.6990 , | 8.5090 , | 7.0870, | 6.1400, | 6.7040, | 5.9730, | 7.6190, |
| +gp, | 8.0310 , | 10.9810, | 10.9810, | 8.8150, | 9.8110 , | 8.2870, | 9.1560, | 8.6890, | 8.1470, | 9.7250, |
| SOPCOFAC, | .9695, | .9685, | . 9491. | .9612, | . 9642. | 1.0061, | .9773, | . 9897 , | 1.0597, | 1.0197. |

Table 2.1.5

## Extended survivors analysis.

| Table YEAR, | 5 | $\begin{aligned} & \text { Propor } \\ & \text { 1983, } \end{aligned}$ | $\begin{gathered} \text { on matt } \\ 1984 \text {, } \end{gathered}$ | at age 1985, | 1986, | 1987, | 1988, | 1989. | 1990, | 1991, | 1992, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AgE |  |  |  |  |  |  |  |  |  |  |  |
| 2, |  | .6300, | . 4000 , | . 0000 , | . 0000 , | . 0000, | .0600, | .0500, | . 0000 , | . 0000, | . 0600 , |
| 3. |  | .7100, | . 9600 , | .5000, | . 3800 , | . 6700, | .7200, | . 5400, | .6800, | . 7200, | . 5000 , |
| 4. |  | . 9300, | . 9800 , | . 9600, | .9300, | .9100, | . 9000, | .9800, | . 9000, | .8600, | . 8200 , |
| 5. |  | . 9400 , | .9700, | .9600, | 1.0000, | 1.0000, | .9700, | 1.0000, | .9900, | 1.0000, | . 9800 , |
| 6, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000 , | 1.0000, | 1.0000 , | 1.0000, | . 9600 , | 1.0000 , | 1.0000, |
| 7. |  | 1.0000 , | 1.0000 , | 1.0000 , | 1.0000, | 1.0000, | 1.0000 , | 1.0000 , | . 9800 , | 1.0000 , | 1.0000, |
| 8 , |  | 1.0000 , | 1.0000, | 1.0000, | 1.0000 , | 1.0000, | 1.0000, | 1.0000 , | 1.0000, | 1.0000 , | $1.0000$ |
| 9, |  | 1.0000 , | 1.0000 , | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000 , | 1.0000, |
| +gp, |  | 1.0000, | 1.0000 , | 1.0000 , | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |

Table 2.1.6

| Age/Year | Stratified mean catch by age in number per trawl hour of COD in the Faroese Groundfish Surveys 1983-1993 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| 1 | 0.07 | 0.33 | 0.12 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2 | 4.72 | 11.57 | 3.96 | 0.84 | 1.28 | 1.98 | 4.46 | 1.35 | 2.55 | 1.48 | 0.46 |
| 3 | 26.02 | 22.65 | 43.99 | 27.80 | 20.38 | 14.14 | 6.17 | 8.45 | 3.55 | 2.10 | 4.79 |
| 4 | 17.93 | 16.85 | 16.34 | 101.60 | 46.80 | 25.31 | 10.65 | 16.63 | 12.32 | 4.74 | 2.44 |
| 5 | 14.49 | 5.34 | 6.72 | 29.68 | 66.15 | 17.83 | 8.94 | 15.21 | 3.17 | 18.33 | 1.70 |
| 6 | 5.32 | 3.47 | 1.43 | 12.90 | 10.38 | 19.00 | 4.42 | 4.84 | 1.51 | 4.03 | 3.40 |
| 7 | 1.48 | 1.40 | 1.78 | 6.40 | 1.13 | 3.70 | 7.20 | 5.65 | 0.52 | 1.29 | 1.21 |
| 8 | 0.51 | 0.14 | 0.67 | 4.41 | 1.50 | 0.92 | 0.71 | 3.89 | 0.12 | 0.66 | 0.44 |
| 9 | 0.08 | 0.00 | 0.00 | 1.37 | 0.00 | 0.28 | 0.00 | 0.70 | 0.23 | 0.13 | 0.12 |

Table 2.1.7

| Catc comm | ber (' categ | 00) by ories. | age ar | the | rrespo | ding | fort for |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Category : Longlin |  |  |  |  |  |  |  |  |
| Age | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2 | 84 | 6 | 18 | 24 | 112 | 9 | 9 |  |
| 3 | 476 | 79 | 25 | 41 | 71 | 66 | 15 | 7 |
| 4 | 122 | 151 | 47 | 18 | 52 | 24 | 57 | 6 |
| 5 | 57 | 43 | 58 | 13 | 23 | 16 | 11 | 8 |
| 6 | 28 | 18 | 14 | 21 | 21 | 6 | 5 | 2 |
| 7 | 43 | 5 | 3 | 5 | 17 | 4 | 2 | 1 |
| 8 | 11 | 3 | 1 | 2 | 3 | 4 | 1 | 0 |
| 9 | 3 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| 10 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Effort, days fishing | 980 | 564 | 578 | 499 | 595 | 369 | 416 | 179 |
| Catch, tonnes | 1,478 | 571 | 353 | 232 | 461 | 215 | 143 | 46 |
| Kg. per day | 1,508 | 1,012 | 611 | 465 | 775 | 583 | 344 | 257 |
| Category: Longlin |  |  |  |  |  |  |  |  |
| Age | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| 1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 2 | 174 | 16 | 57 | 109 | 374 | 40 | 31 | 21 |
| 3 | 983 | 216 | 76 | 185 | 238 | 287 | 52 | 39 |
| 4 | 253 | 415 | 146 | 82 | 172 | 106 | 202 | 32 |
| 5 | 118 | 118 | 180 | 60 | 77 | 70 | 38 | 45 |
| 6 | 57 | 49 | 44 | 95 | 69 | 26 | 16 | 10 |
| 7 | 89 | 15 | 10 | 23 | 55 | 19 | 6 | 4 |
| 8 | 23 | 9 | 4 | 8 | 9 | 19 | 3 | 2 |
| 9 | 5 | 2 | 4 | 2 | 1 | 3 | 2 | 1 |
| 10 | 6 | 1 | 1 | 1 | 0 | 2 | 1 | 2 |
| Effort, days fishing | 1,729 | 1,330 | 1,608 | 1,455 | 1,398 | 1,294 | 1,240 | 822 |
| Catch, tonnes | 3,050 | 1,574 | 1,093 | 1,053 | 1,535 | 933 | 510 | 267 |
| Kg. per day | 1,764 | 1,183 | 680 | 724 | 1,098 | 721 | 411 | 325 |

Table 2.1.8

Extended Survivors Analysis
Cod in the Faroe Plateau (Fishing Area Vbi) (run name: FINAL)
CPUE data from file /users/ifad/ifapwork/wg_109/cod_farp/FLEET.FIN
Data for 3 fleets over 32 years
Age range from 2 to 9

| Fleet, | Alpha, | Beta |
| :---: | :---: | :---: |
| LL25: Longliners 25-. | .000, | 1.000 |
| LL40: Longliners 40, | $.000,1.000$ |  |
| MH86: R/V MAGNUS HEI $, ~ .000, ~$ | 1.000 |  |

Time series weights :
Tapered time weighting applied
Power $=3$ over 20 years

Catchability analysis:
Catchability independent of stock size for all ages
Catchability independent of age for ages $>=8$

Terminal population estimation :
Final estimates shrunk towards mean of the last 3 years and the 3 oldest ages. S.E. of the mean to which the estimates are shrunk $=.500$ Minimum standard error for population estimates derived from each fleet $=\quad .300$ Prior weighting not applied

Tuning converged after 35 iterations

Total absolute residual between iterations 34 and $35=.000$

Regression weights
. .877. .921, .954, .976, .990, .997, 1.000, 1.000

Fishing mortalities
Age, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992
2, .066, .025, .029, .067, .174, .080, .060, . 056
3, .355, .358, .227, .351, .444, .350, .206, . 211
4, .510, .625, .482, .588, .755, .634, .481, . 367
5, .625, .709, .489, .563, .829, .769, .596, .416
6. . $953, .858, .564, .785,1.016, .839, .689, .693$

7, 1.217, .907, .528, .824, $1.100, .960, .822, .825$
8, 1.333, .673, .734, 1.012, 1.198, 1.253, .956, . 993
9, 1.112, .731, .798, 1.027, 1.501, 1.028, . $789,1.076$

XSA population numbers


Table 2.1.8 (cont'd)

Log catchability residuals.


Mean catchability and standard error.

$$
\begin{aligned}
& \begin{array}{rrrrrrrrr}
\text { Age }, & 2, & 3, & 4, & 5, & 6, & 7, & 8, & 9 \\
\text { Mean } 0, & -12.11, & -11.06, & -10.78, & -10.76, & -10.57, & -10.49, & -10.47, & -10.47 \\
\text { S.E } & .69, & .37, & .37, & .41, & .32, & .47, & .34, & .64
\end{array} \\
& \text { Fleet : LL40: Longliners } 40 \\
& \begin{array}{rrrrrrrrr}
\text { Age }, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992 \\
2, & -.02, & -1.55, & -.54, & .37, & 1.11, & .39, & .14, & -.02 \\
3, & .08, & -.20, & -.92, & .06, & .57, & .32, & -.02, & .06 \\
4, & -.29, & -.13, & -.44, & -.43, & .48, & .29, & .34, & .11 \\
5, & -.05, & -.02, & -.49, & -.54, & .41, & .59, & .10, & -.12 \\
6, & .25, & .09, & -.51, & -.30, & .43, & .27, & -.07, & -.15 \\
7, & .73, & .23, & -.84, & -.26, & .23, & .33, & -.19, & -.17 \\
8, & .43, & -.18, & -.32, & -.12, & -.06, & .53, & -.39, & .13
\end{array}
\end{aligned}
$$

Mean catchability and Standard error.
$\begin{array}{rrrrrrrrr}\text { Age }, & 2, & 3, & 4, & 5, & 6, & 7, & 8, & 9 \\ \text { Mean } 0, & -11.89, & -10.84, & -10.56, & -10.54, & -10.37, & -10.30, & -10.22, & -10.22 \\ \text { S.E } & .76, & .43, & .36, & .38, & .31, & .46, & .33, & .52\end{array}$
Fleet : MH86: R/V MAGNUS HEI

| Age | , | 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | , |  | -1.08, | - .72, | -.13, | .15, | . 40 , | .99, | . 27 |
| 3 | , | , | .49, | .69. | . 32, | -.29, | -.49, | -.03, | -. 61 |
| 4 | , | , | . 34 , | .49, | . 36, | -.37, | .29, | -.65, | -. 40 |
| 5 | , | , | . 16, | . 34, | - 11 , | -.13, | .60, | -.89, | . 06 |
| 6 | , |  | . 56, | .04, | -.02, | -.47, | . 37, | -.70, | . 26 |
| 7 |  |  | 1.19, | -1.03, | -.19, | .06, | . 90 , | -.90, | . 02 |
| 8 | , |  | .98, | .75, | -.32, | -.68, | . 78, | -1.81, | 41 |

Mean catchability and Standard error.

| Age, | 2, | 3, | 4, | 5, | 6, | 7, | 8, | 9 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean 0, | -12.73, | -10.99, | -9.85, | -9.51, | -9.59, | -9.52, | -9.50, | -9.50 |
| S.E | , 69, | .50, | .46, | .47, | .45, | .81, | 1.00, | 1.44 |

Table 2.1.9
Extended survivors analysis.

| $\begin{array}{ll} \text { Table } 8 \\ \text { YEAR, } \end{array}$ | Fishing 1983, | $\begin{aligned} & \text { mortality } \\ & 1984, \end{aligned}$ | (F) at 1985, | $\begin{aligned} & \text { age } \\ & 1986, \end{aligned}$ | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2. | .0994, | . 1075, | . 0663. | . 0253 , | . 0290 , | . 0671. | .1737, | .0799, | . 0598, | . 0564. |
| 3. | . 4700 , | . 3722 , | . 3553. | . 3579 , | . 2270 , | . 3514. | . 4436 , | . 3496 , | . 2063, | . 2106, |
| 4. | . 5626. | . 5849 , | .5098, | .6254, | .4824, | . 5880 , | . 7551. | . 6340 , | . 4813, | . 3673 , |
| 5, | . 6560 , | .6701, | . 6249. | .7089, | . 4889. | . 5628 , | .8287, | . 7693 , | . 5960, | .4157. |
| 6, | . 7850, | .4717, | .9528, | .8584, | . 5643. | .7853, | 1.0162, | . 8392, | .6893, | .6932, |
| 7. | 1.1263, | .4778, | 1.2172, | . 9072 , | . 5277, | .8235, | 1.0999, | . 9595 , | .8219, | . 8247 , |
| 8, | .9187, | . 5265 , | 1.3326, | . 6726, | . 7338 , | 1.0124, | 1.1982, | 1.2529, | .9559, | .9927, |
| 9, | 1.0403, | . 5081 , | 1.1115, | . 7308, | . 7984, | 1.0269, | 1.5009, | 1.0284, | . 7891. | 1.0758, |
| +gp, | 1.0403, | . 5081. | 1.1115, | . 7308 , | .7984, | 1.0269, | 1.5009, | 1.0284, | . 7891. | 1.0758, |
| 3.7 | 7200. | . 5153. | .7320, | .6916, | .4581, | .6222, | .8287, | .7103, | . 5590. | .5023, |

Table 2.1.10
Extended survivors analysis.


Table 2.1.11
Table 16
Summary
(without SOP correction)

|  | RECRUITS, | TOTALB10, | Extended TOTSPBIO, | survivors an LANDINGS, | 3-7, |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1983. | 25107, | 122048, | 97633. | 38133. | .7200, |
| 1984, | 47667, | 151238, | 114772, | 36979. | . 7320. |
| 1985, | 17192, | 130033, | 83775 73099 | 34599, | .6916, |
| 1986, | 9284, | 98099, | 60757. | 21391, | . 4581 , |
| 1987. | 9951. | 668054, | 51089, | 23182, | .6222, |
| 1988, | 8666, | 65054, | 37427, | 22068, | .8287, |
| 1989. | 15506, 3499, | 36572, | 27947, | 13487, | . 7103. |
| 1990, | 3499, | 24877, | 19767, | 8655, | . 5590 , |
| 1992, | 4335, | 23646, | 17007, | 6735, | 5023, |
| Units, | (Thousands), | (Tonnes), | (Tomes), | (ronnes), |  |

Table 2.1.12

Cod in the Faroe Plateau (Fishing Area Vb1)
Prediction with management option table: Input data

| Year: 1993 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Stock <br> size | Natural mortality | Maturity ogive | Prop. of $F$ bef. spaw. | Prop.of M bef.spaw. | Height in stock | Exploit. pattern | Height <br> in catch |
| 2 | 6000.000 | 0.2000 | 0.2500 | 0.0000 | 0.0000 | 0.904 | 0.0560 | 0.904 |
| 3 | 5300.000 | 0.2000 | 0.7300 | 0.0000 | 0.0000 | 1.312 | 0.2110 | 1.312 |
| 4 | 2900.000 | 0.2000 | 0.7800 | 0.0000 | 0.0000 | 1.769 | 0.3670 | 1.769 |
| 5 | 999.000 | 0.2000 | 0.9100 | 0.0000 | 0.0000 | 2.456 | 0.4160 | 2.456 |
| 6 | 1684.000 | 0.2000 | 0.9900 | 0.0000 | 0.0000 | 3.312 | 0.6930 | 3.312 |
| 7 | 280.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 4.428 | 0.8250 | 4.428 |
| 8 | 98.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 5.563 | 0.9930 | 5.563 |
| 9 | 30.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.765 | 1.0760 | 6.765 |
| 10+ | 31.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.854 | 1.0760 | 8.854 |
| Unit | Thousands | - | - | - | - | Kilograms | - | Kilograms |


| Year: 1994 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruitment | $\begin{array}{\|c} \text { Natural } \\ \text { mortality } \end{array}$ | Maturity ogive | Prop. of F bef.spaw. | Prop. of M bef.spaw. | Height <br> in stock | Exploit. pattern | Height in catch |
| 2 | 6000.000 | 0.2000 | 0.1000 | 0.0000 | 0.0000 | 0.904 | 0.0560 | 0.904 |
| 3 | . | 0.2000 | 0.6500 | 0.0000 | 0.0000 | 1.312 | 0.2110 | 1.312 |
| 4 | - | 0.2000 | 0.8200 | 0.0000 | 0.0000 | 1.769 | 0.3670 | 1.769 |
| 5 | - | 0.2000 | 0.9600 | 0.0000 | 0.0000 | 2.456 | 0.4160 | 2.456 |
| 6 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 3.312 | 0.6930 | 3.312 |
| 7 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 4.428 | 0.8250 | 4.428 |
| 8 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 5.563 | 0.9930 | 5.563 |
| 9 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.765 | 1.0760 | 6.765 |
| $10+$ | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.854 | 1.0760 | 8.854 |
| Unit | Thousands | - | - | - | $\bullet$ | Kilograms | $\bullet$ | Kilograms |


| Year: 1995 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruitment | Natural morta!ity | Maturity ogive | Prop. of F hef.span. | Prop. of M bef.spaw. | Weight <br> in stock | Exploit. pattern | weight in catch |
| 2 | 6000.000 | 0.2000 | 0.1000 | 0.0000 | 0.0000 | 0.904 | 0.0560 | 0.904 |
| 3 | . | 0.2000 | 0.6500 | 0.0000 | 0.0000 | 1.312 | 0.2110 | 1.312 |
| 4 | . | 0.2000 | 0.8200 | 0.0000 | 0.0000 | 1.769 | 0.3670 | 1.769 |
| 5 | - | 0.2000 | 0.9600 | 0.0000 | 0.0000 | 2.456 | 0.4160 | 2.456 |
| 6 |  | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 3.312 | 0.6930 | 3.312 |
| 7 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 4.428 | 0.8250 | 4.428 |
| 8 |  | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 5.563 | 0.9930 | 5.563 |
| 9 |  | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.765 | 1.0760 | 6.765 |
| $10+$ | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.854 | 1.0760 | 8.854 |
| Unit | Thousands | - | - | - | - | Kilograms | - | Kilograms |

Hotes: Run name : PMTAK2
Date and time: 09MAY93:11:25

Table 2.1.13

FAROE PLATEAU COD : GROUNDFISH SURVEYS/0-GROUP DATA 4132
'YCLASS' 'VPA' 'GFAGE2' 'GFAGE3' 'GFAGE4'
17.93
16.85
-11
$-11$
16.34
-11
101.60305
46.80

151
25.31

35
10.65

38
16.63

19
12.32

255
4.74

169
2.44

3
$-11$
23
$-11$
2
1
5

| 1991 | -11 | 0.46 | -11 |
| ---: | ---: | ---: | ---: |
| 1992 | -11 | -11 | -11 |

$-11$
5

Table 2.1.14

```
FAROE PLATEAU COD : GROUNDFISH SURVEYS/O-GROUP DATA
Data for 4 surveys over 13 years : 1979-1991
Regression type = C
Tapered time weighting applied
power = 3 over 20 years
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . }2
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass = 1986
```


Yearclass = 1987

| $\begin{aligned} & \text { Survey/ } \\ & \text { Series } \end{aligned}$ | Slope | Intercept | $\begin{gathered} \text { std } \\ \text { Error } \end{gathered}$ | Rsquare | $\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$ | Index value | Predicted Value | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | WAP Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GFAGE2 | 1.00 | 8.28 | . 22 | . 921 | 6 | 1.70 | 9.97 | . 299 | . 521 |
| GFAGE3 | 1.33 | 5.66 | . 50 | . 663 | 7 | 2.25 | 8.65 | . 714 | . 091 |
| GFAGE4 | 1.26 | 5.62 | . 72 | . 441 | 8 | 2.59 | 8.89 | . 941 | . 053 |
| 0-GROU | . 67 | 6.77 | . 30 | . 886 | 5 | 5.55 | 10.49 | . 479 | . 203 |
|  |  |  |  |  | VPA | Mean $=$ | 9.69 | . 594 | . 132 |

Yearclass = 1988

| Survey/ <br> Series | Slope | Intercept | $\begin{aligned} & \text { std } \\ & \text { Error } \end{aligned}$ | Rsquare | No. pts | Index <br> Value | Predicted value | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GFAGE2 | 1.00 | 8.23 | . 24 | . 887 | 7 | . 85 | 9.08 | . 325 | . 547 |
| GFAGE3 | 1.30 | 5.89 | . 58 | . 542 | 8 | 1.52 | 7.85 | . 944 | . 065 |
| GFAGE4 | 1.24 | 5.76 | . 72 | . 411 | 9 | 1.75 | 7.94 | 1.052 | . 052 |
| 0-GROU | . 65 | 6.71 | . 45 | . 713 | 6 | 5.14 | 10.06 | . 621 | . 150 |
|  |  |  |  |  | VPA | Mean $=$ | 9.68 | . 556 | . 187 |

Yearclass $=1989$


Table 2.1.14 (cont'd)


| Year <br> Class | Weighted Average prediction | Log WAP | Int std Error | Ext std Error | Var <br> Ratio | VPA | Log <br> VPA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 11369 | 9.34 | . 17 | . 24 | 1.84 | 8666 | 9.07 |
| 1987 | 19220 | 9.86 | . 22 | . 26 | 1.47 | 15505 | 9.65 |
| 1988 | 9913 | 9.20 | . 24 | . 30 | 1.57 | 3500 | 8.16 |
| 1989 | 5684 | 8.65 | . 36 | . 51 | 2.04 |  |  |
| 1990 | 6761 | 8.82 | . 39 | . 30 | . 62 |  |  |
| 1991 | 5846 | 8.67 | . 51 | .71 | 1.97 |  |  |

Table 2.1.15

Cod in the Faroe Plateau (Fishing Area Vbi)
Yield per recruit: Input data

| Age | Recruit ment | Natural mortality | Maturity ogive | Prop. of F bef.spaw. | Prop. of M bef. spaw. | Height in stock | Exploit. pattern | Weight in catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1.000 | 0.2000 | 0.1300 | 0.0000 | 0.0000 | 1.047 | 0.0560 | 1.047 |
| 3 | . | 0.2000 | 0.6500 | 0.0000 | 0.0000 | 1.542 | 0.2110 | 1.542 |
| 4 | . | 0.2000 | 0.9000 | 0.0000 | 0.0000 | 2.194 | 0.3670 | 2.194 |
| 5 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.980 | 0.4160 | 2.980 |
| 6 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 3.720 | 0.6930 | 3.720 |
| 7 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 4.721 | 0.8250 | 4.721 |
| 8 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 5.668 | 0.9930 | 5.668 |
| 9 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.298 | 1.0760 | 7.298 |
| $10+$ | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.623 | 1.0760 | 9.623 |
| Unit | Numbers | - | - | - | - | Kilograms | - | Kilograms |

Notes: Run name : YRAK1
Date and time: OSMAY93:19:31

Table 2.1.16

Cod in the Faroe Plateau (Fishing Area bl)

Yield per recruit: Summary table

|  |  |  |  |  |  | 1 Jan | uary | Spaunin | time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Factor | Reference F | Catch in numbers | Catch in weight | $\begin{aligned} & \text { Stock } \\ & \text { size } \end{aligned}$ | Stock biomass | $\begin{aligned} & \text { Sp.stock } \\ & \text { size } \end{aligned}$ | Sp.stock <br> biomass | $\begin{aligned} & \text { Sp.stock } \\ & \text { size } \end{aligned}$ | Sp.stock biomass |
| 0.0000 | 0.0000 | 0.000 | 0 | 5.517 | 23049 | 4.293 | 21549 | 4.293 | 21549 |
| 0.1000 | 0.0502 | 0.188 | 986 | 4.581 | 15430 | 3.361 | 13936 | 3.361 | 13936 |
| 0.2000 | 0.1005 | 0.287 | 1301 | 4.089 | 11878 | 2.872 | 10390 | 2.872 | 10390 |
| 0.3000 | 0.1507 | 0.351 | 1411 | 3.771 | 9844 | 2.557 | 8362 | 2.557 | 8362 |
| 0.4000 | 0.2010 | 0.398 | 1445 | 3.542 | 8531 | 2.332 | 7055 | 2.332 | 7055 |
| 0.5000 | 0.2512 | 0.434 | 1449 | 3.365 | 7611 | 2.158 | 6149 | 2.158 | 6141 |
| 0.6000 | 0.3014 | 0.463 | 1442 | 3.222 | 6929 | 2.018 | 5465 | 2.018 | 5465 |
| 0.7000 | 0.3517 | 0.487 | 1430 | 3.103 | 6400 | 1.901 | 4942 | 1.901 | 4942 |
| 0.8000 | 0.4019 | 0.508 | 1417 | 3.000 | 5976 | 1.802 | 4523 | 1.802 | 4523 |
| 0.9000 | 0.4522 | 0.526 | 1404 | 2.911 | 5626 | 1.716 | 4179 | 1.716 | 4179 |
| 1.0000 | 0.5024 | 0.542 | 1391 | 2.833 | 5332 | 1.641 | 3890 | 1.641 | 3890 |
| 1.1000 | 0.5526 | 0.556 | 1379 | 2.763 | 5080 | 1.573 | 3644 | 1.573 | 3644 |
| 1.2000 | 0.6029 | 0.569 | 1368 | 2.700 | 4861 | 1.513 | 3430 | 1.513 | 3430 |
| 1.3000 | 0.6531 | 0.581 | 1357 | 2.642 | 4669 | 1.458 | 3243 | 1.458 | 3243 |
| 1.4000 | 0.7034 | 0.592 | 1347 | 2.590 | 4499 | 1.409 | 3078 | 1.409 | 3078 |
| 1.5000 | 0.7536 | 0.602 | 1337 | 2.542 | 4346 | 1.363 | 2930 | 1.363 | 2930 |
| 1.6000 | 0.8038 | 0.611 | 1329 | 2.497 | 4208 | 1.321 | 2797 | 1.321 | 2797 |
| 1.7000 | 0.8541 | 0.620 | 1320 | 2.456 | 4083 | 1.283 | 2677 | 1.283 | 2677 |
| 1.8000 | 0.9043 | 0.628 | 1312 | 2.417 | 3969 | 1.247 | 2567 | 1.247 | 2567 |
| 1.9000 | 0.9546 | 0.635 | 1305 | 2.381 | 3865 | 1.213 | 2468 | 1.213 | 2468 |
| 2.0000 | 1.0048 | 0.642 | 1297 | 2.348 | 3768 | 1.182 | 2376 | 1.182 | 2376 |
| - | - | Numbers | Grams | Numbers | Grams | Numbers | Grams | Numbers | Grams |
| Hotes: $\begin{array}{r}\text { R } \\ \text { D } \\ \text { C } \\ \text { F } \\ \text { R }\end{array}$ | Run name |  | YRAK1 |  |  |  |  |  |  |
|  | ate and time |  | 09MAY93:19 |  |  |  |  |  |  |
|  | Computation -0.1 factor | ref. F: | Simple mean | n, age 3 - | 7 |  |  |  |  |
|  |  |  | 0.2013 |  |  |  |  |  |  |
|  | -max factor | : | 0.4749 |  |  |  |  |  |  |
|  | -0.1 reference | F | 0.1011 |  |  |  |  |  |  |
|  | -max reference $F$ |  | 0.2386 |  |  |  |  |  |  |
|  | ecruitment |  | single recr | uit |  |  |  |  |  |

Table 2.1.17

Cod in the Faroe P(ateau (Fishing Area Vb1)
Prediction with management option table

| Year: 1993 |  |  |  |  | Year: 1994 |  |  |  |  | Year: 1995 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { F } \\ \text { Factor } \end{gathered}$ | Reference F | Stock biomass | Sp.stock <br> biomass | Catch in weight | $\stackrel{\text { F }}{\text { Factor }}$ | $\begin{gathered} \text { Reference } \\ F \end{gathered}$ | stock biomass | Sp.stock biomass | Catch in weight | stock biomass | Sp.stock biomass |
| $1.0000$ | $0.5024$ | $27801$ | $20449$ | $7472$ | 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000 2.2000 2.4000 | $\begin{aligned} & 0.0000 \\ & 0.1005 \\ & 0.2010 \\ & 0.3014 \\ & 0.4019 \\ & 0.5024 \\ & 0.6029 \\ & 0.7034 \\ & 0.8038 \\ & 0.9043 \\ & 1.0048 \\ & 1.1053 \\ & 1.2058 \end{aligned}$ | $27525$ | $\begin{aligned} & 19229 \\ & 19229 \\ & 19229 \\ & 19229 \\ & 19229 \\ & 19229 \\ & 19229 \\ & 19229 \\ & 19229 \\ & 19229 \\ & 19229 \\ & 19229 \\ & 19229 \end{aligned}$ | $\begin{array}{r} 0 \\ 1761 \\ 3346 \\ 4777 \\ 6074 \\ 7251 \\ 8323 \\ 9302 \\ 10198 \\ 11020 \\ 11777 \\ 12475 \\ 13120 \end{array}$ | 36114 34012 32122 30417 28877 27480 26210 25053 23996 23028 22139 21321 20567 | $\begin{aligned} & 27482 \\ & 25475 \\ & 23676 \\ & 22059 \\ & 20603 \\ & 19287 \\ & 18096 \\ & 17014 \\ & 16029 \\ & 15139 \\ & 14309 \\ & 13556 \\ & 12865 \end{aligned}$ |
| $\checkmark$ | - | Tonnes | Tonnes | Tonnes | - | - | Tonnes | Tonnes | Tonnes | Tonnes | Tonnes |

Notes: Run name : PMTAK2
Date and time : 09MAY93:11:25
Computation of ref. F: Simple mean, age 3-7
Basis for 1993 : f factors

Table 2.2.1

| Faroe Bank COD in Subdivision Vb2. <br> Nominal catches ( t ) by countries 1983-1992, as officially reported to ICES. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nation/Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| Faroe Islands France ${ }^{2 J}$ | 2,284 | 2,189 | 2,913 | 1,836 | 3,409 | 2,960 | 1.270 | 289 | 297 | 129 |
| Norway UK (Engl.\& Wales) | 17 | 11 | 23 | 6 | 23 | 94 | 128 | 72 | $38^{1}$ | 32 5 |
| UK Scotland 3) | 66 | 16 | 25 | 63 | 47 | 37 | 14 | 207 | 90 | 176 |
| Total | 2,367 | 2,216 | 2,961 | 1,905 | 3,479 | 3,091 | 1,412 | 568 | 425 | 342 |

[^1]Table 2.3.1 Faroe Plateau (Sub-Division Vbl) HADDOCK. Nominal catches (tonnes) by countries, 1980-1992, as officially reported to ICES.

| Country | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | - | - | - | - | - | - | 1 |
| Faroe Islands | 13,633 | 10,891 | 10,319 | 11,898 | 11,418 | 13,597 | 13,359 |
| France $^{1}$ | 31 | 113 | 2 | 2 | 20 | 23 | 8 |
| Germany | 4 | + | 1 | + | + | + | 1 |
| Norway | 9 | 20 | 12 | 12 | 10 | 21 | 22 |
| UK (Engl. \& Wales) | 6 | - | - | - | - | - | - |
| UK (Scotland) | 434 | 85 | 1 | -3 | -3 | -3 | -3 |
| Others | 6 | - | - | - | - | - | - |
| Total |  |  |  |  |  |  |  |
| Total used in the | 15,123 | 11,109 | 10,335 | 11,912 | 11,448 | 13,641 | 13,391 |
| assessment ${ }^{4,5}$ |  |  |  |  |  |  |  |


| Country | 1987 | 1988 | 1989 | 1990 | 1991 | $1992{ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | 8 | 4 | - | - | - | - |
| Faroe Islands | 13,954 | 10,867 | 13,506 | 11,106 | 8,074 | 4,629 |
| France ${ }^{1}$ | 22 | 14 | - | - | - | - |
| Germany | 1 | - | - | - | + | - |
| Norway | 13 | 54 | 111 | $94^{2}$ | $125^{2}$ | 71 |
| UK (Engl. \& Wales) | 2 | - | - | 7 | - | 54 |
| UK (Scotland) | - ${ }^{\text {a }}$ | - ${ }^{\text {a }}$ | ${ }^{3}$ | - ${ }^{\text {a }}$ | - ${ }^{\text {a }}$ | - ${ }^{\text {a }}$ |
| Total | 14,000 | 10,939 | 13,617 | 11,207 | 8,199 | 4,754 |
| Total used in the assessment ${ }^{4,5}$ | 14,882 | 12,178 | 14,325 | 12,448 | 8,715 | 6,005 |

${ }^{1}$ Including catches from Sub-division Vb2.
${ }^{2}$ Preliminary.
${ }^{3}$ Catches included in Sub-division Vb2.
${ }^{4}$ Includes catches from Sub-division Vb 2 and Division $\mathrm{IIa}^{4}$ in Faroese waters.
${ }^{5}$ Includes French catches from Division Vb.

Table 2.3.2 Faroe Bank (Sub-Division Vb2) HADDOCK. Nominal catches (tonnes) by countries, 1980-1992 as officially reported to ICES.

| Country | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Faroe Islands | 690 | 1,103 | 1,553 | 967 | 925 | 1,474 | 1,050 |
| France $^{1}$ | - | - | - | - | - | - | - |
| Germany | - | - | - | - | - | - | - |
| Norway | 8 | 7 | 1 | 2 | 5 | 3 | 10 |
| UK (Engl. \& Wales) | 152 | - | - | - | - | - | - |
| UK (Scotland) | 43 | 14 | 48 | $13^{3}$ | $+^{3}$ | $25^{3}$ | $26^{3}$ |
| Total | 893 | 1,124 | 1,602 | 982 | 930 | 1,502 | 1,086 |


| Country | 1987 | 1988 | 1989 | 1990 | 1991 | $1992^{2}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Faroe Islands | 832 | 1,160 | 659 | 325 | 217 | 325 |
| France $^{1}$ | - | - | - | - | - | - |
| Germany | - | - | - | - | - | - |
| Norway | 5 | 43 | 16 | $97^{2}$ | 41 | 23 |
| UK (Engl. \& Wales) | - | - | - | - | - | 17 |
| UK (Scotland) | $45^{3}$ | $15^{3}$ | $30^{3}$ | $725^{3}$ | 287 | 869 |
| Total | 882 | 1,218 | 705 | 1,147 | 508 | 1,234 |

${ }^{1}$ Catches included in Sub-division Vbl.
${ }^{2}$ Preliminary.
${ }^{3}$ Includes catches taken in Sub-division Vbl.

Table 2.3.3


Table 2.3.4

| Hadock in ICES vivien Vb <br> Catch ege 1902 by flet cetegory |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Open 80 苞 | $\begin{aligned} & \text { LLingra } \\ & <100 G R T \end{aligned}$ | $\begin{aligned} & \text { LLunert } \\ & >100 \mathrm{GRT} \end{aligned}$ | $\begin{array}{l\|} \hline \text { S.tra } \\ <1000 \mathrm{HP} \end{array}$ | $\begin{aligned} & S . \operatorname{lr} \\ & >1000 \mathrm{HP} \end{aligned}$ | $\begin{aligned} & \hline P \text { orat. } \\ & <1000 \mathrm{HP} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline P \text { ram } \\ > \\ >1000 \mathrm{MP} \end{array}$ |  | Forengn <br> Trawlore | $\begin{aligned} & \text { Forengn } \\ & \text { Lo-liner } \end{aligned}$ | Tous |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 2 | 1 | 33 | 4 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 14 |
| 3 | 4 | 98 | 27 | 6 | 0 | 13 | 1 | 18 | 2 | 3 | 170 |
| 4 | 15 | 390 | 89 | 64 | 7 | 105 | 34 | 84 | 60 | 8 | 358 |
| 5 | 18 | 448 | 208 | 47 | 11 | 118 | 95 | 118 | 158 | 20 | 1235 |
| 5 | 10 | 282 | 181 | 24 | 14 | 80 | 133 | 118 | 218 | 17 | 1057 |
| 7 | 2 | 60 | 91 | 11 | 5 | 19 | 48 | 51 | 76 | 9 | 370 |
| 8 | 8 | 143 | 68 | 16 | 5 | 21 | 38 | 49 | 61 | 7 | 412 |
| 9 | 7 | 168 | 59 | 12 | 5 | 25 | 44 | 43 | 73 | 6 | 442 |
| $10+$ | 3 | 78 | 30 | 4 | 2 | 7 | 13 | 18 | 21 | 3 | 179 |
| Total | 68 | 1678 | 757 | 184 | 49 | 388 | 402 | 503 | 687 | 13 | 4785 |
| Catch.: | 70 | 170 | 883 | 189 | 81 | 391 | 510 | 520 | 848 | 85 | 5407 |

Notes:
Numbers in $1000^{\circ}$
Guted enger in tonmes
Frahery whin (jigging) incuded in singtia trewtre < 1000 MP

LLinere a Longtiners: S.treal a Singte trumers; P.trat a Prir tremers

Table 2.3.5

Run title : Haddock in the Faroe Grounds (Fishing Area Vb) (run name: REIN1.HAD)


Table 2.3.6
Traditional vpa ierminal populations from zeighted Separable populations

| $\begin{aligned} & \text { Table } 2 \\ & \text { YEAR, } \end{aligned}$ | $\begin{aligned} & \text { Catch } \\ & 1983, \end{aligned}$ | $\begin{aligned} & \text { ights } \\ & 1984, \end{aligned}$ | $\begin{aligned} & \text { age (kg) } \\ & 1985, \end{aligned}$ | 1986. | 1987, | 1988, | 1989. | 1990, | 1991, | 1992, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | . 4700, | .6810, | . 5280, | .6080, | . 6050, | .5010, | . 5800, | . 4380 , | . 5470, | . 5250, |
| 3. | . 7400 , | 1.0110, | .8590, | .8870, | .8310, | .7810, | . 7790 , | .6990, | .6930, | . 7240, |
| 4. | 1.0100, | 1.2550, | 1.3910, | 1.1750, | 1.1260, | . 9740 , | .9230, | .9390, | . 8840, | .8170, |
| 5, | 1.3200, | 1.8120, | 1.7770, | 1.6310, | 1.4620, | 1.3630, | 1.2070, | 1.2040, | 1.0860, | 1.0380, |
| 6, | 1.6600, | 2.0610, | 2.3260, | 1.9840 , | 1.9410, | 1.6800, | 9.5640, | 1.3840, | 1.2760, | 1.2490, |
| 7. | 2.0500 , | 2.0590 , | 2.4400, | 2.5190, | 2.1730, | 1.9750, | 1.7460, | 1.5640, | 1.4770 , | 1.4300, |
| 8. | 2.2600, | 2.1370, | 2.4010, | 2.5830, | 2.3470, | 2.3440 , | 2.0860 , | 1.8180, | 1.5740, | 1.5640, |
| 9, | 2.5400 , | 2.3680, | 2.5320, | 2.5700. | 3.1180 , | 2.2480, | 2.4240, | 2.1680, | 1.9300, | 1.6330, |
| +gp, | 3.0400 , | 2.6860, | 2.6860, | 2.9220, | 2.9330, | 3.2950, | 2.5140, | 2.3350, | 2.1530, | 2.1260, |
| SOPCOFAC, | 1.0554, | 1.0602, | 1.0559, | 1.0141, | 1.0197, | .9695, | 1.0008, | 1.0195. | 1.0628, | 1.0488, |

Table 2.3.7

Traditional vpa Terminal populations from weighted Separable populations

| Table <br> YEAR, | 5 | $\begin{aligned} & \text { Propor } \\ & 1983, \end{aligned}$ | on mature 1984, | at age 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
| 2, |  | . 1500, | . 1000 , | .0000, | .0000, | .0900, | .0500, | .0000, | . 0000 , | .2500, | .2200, |
| 3. |  | . 7900 , | . 7800 , | .7200, | . 3500 , | .2200, | . 3800 , | . 1200 , | .1600, | . 8200 , | . 7500 , |
| 4. |  | 1.0000 , | .9500, | 1.0000, | .9200, | . 9300 , | .8900, | .8600, | .8700, | .9800, | .9300, |
| 5, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000 , | . 9600 , | .9900, | 1.0000 , | 1.0000 , | 1.0000, | 1.0000 , |
| 6 , |  | 1.0000, | 1.0000, | 1.0000, | 1.0000 , | 1.0000, | . 9800 , | 1.0000 , | 1.0000, | 1.0000, | 1.0000 |
| 7. |  | 1.0000 , | 1.0000, | 1.0000, | 1.0000 , | 1.0000, | 1.0000, | 1.0000 , | 1.0000, | 1.0000, | 1.0000, |
| 8, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000 , | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000 , |
| 9. |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000 , | 1.0000, | 1.0000, | 1.0000, |
| gp, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |

Table 2.3.8

| FAROE103 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R/V MAGNUS HEINASON (Groundfish Surveys)19831992 |  |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |  |
| 210 |  |  |  |  |  |  |  |  |  |  |  |
| 100 | 27.8 | $8 \quad 16.8$ | 2.3 |  | 1.7 | 0.0 |  | 6.2 | 2.2 | 2.5 | 1.9 |
| 1001 | 196.4 | 423.1 | 10.3 |  | 0.5 | 0.6 |  | 0.2 | 2.0 | 0.7 | 2.6 |
| 100 | 67.3 | $3 \quad 35.0$ | 6.7 |  | 2.2 | 0.0 |  | 0.3 | 0.2 | 9.0 | 0.6 |
| 1001 | 114.6 | 648.5 | 22.4 |  | 4.3 | 0.8 |  | 0.0 | 0.1 | 0.3 | 1.6 |
| 100 | 19.7 | 726.9 | 17.2 |  | 8.9 | 1.6 |  | 0.0 | 0.0 | 0.0 | 0.1 |
| 100 | 88.5 | $5 \quad 15.8$ | 22.5 |  | 19.5 | 3.7 |  | 1.0 | 0.1 | 0.1 | 0.2 |
| 1001 | 150.0 | 0115.2 | 8.7 |  | 24.3 | 33.3 |  | 20.3 | 2.5 | 0.0 | 0.0 |
| 100 | 48.0 | 065.5 | 24.7 |  | 2.6 | 7.8 |  | 8.1 | 3.9 | 0.8 | 0.1 |
| 100 | 20.0 | 014.1 | 10.2 |  | 4.0 | 1.5 |  | 1.2 | 0.3 | 0.1 | 0.0 |
| 100 | 27.7 | 78.8 | 16.0 |  | 7.9 | 5.4 |  | 1.7 | 1.3 | 0.6 | 0.2 |
| LONGLINERS 25.40 BRT |  |  |  |  |  |  |  |  |  |  |  |
| 19851992 |  |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |  |
| 210 |  |  |  |  |  |  |  |  |  |  |  |
| 980 | 8234 | 342106 | 49 | 9 | 93 | 4 | 16 | 40 |  |  |  |
| 564 | 1815 | 155188 | 57 | 28 | 81 | 5 | 2 | 22 |  |  |  |
| 578 | 2291 | 192198 | 122 | 36 | 6-17 | 2 | 1 | 10 |  |  |  |
| 499 | 432 | 22119 | 100 | 55 | 5 10 | 3 | 0 | 2 |  |  |  |
| 595 | 48 | 8937 | 1431 | 116 | 686 | 27 | 6 | 5 |  |  |  |
| 369 | 0 | $38 \quad 73$ | 17 | 50 | O 55 | 29 | 10 | 6 |  |  |  |
| 416 | 22 | $29 \quad 47$ | 25 | 91 | 122 | 15 | 7 | 1 |  |  |  |
| 179 | 1 | 312 | 13 | 8 | 82 | 4 | 5 | 2 |  |  |  |
| LONGLINERS $40 \cdot 60$ BRT |  |  |  |  |  |  |  |  |  |  |  |
| $19851992$ |  |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |  |
| 210 |  |  |  |  |  |  |  |  |  |  |  |
| 1729 | 165 | 683219 | 182 |  | 186 | 8 | 32 | 3279 |  |  |  |
| 1330 | 50 | 428521 | 198 |  | $76 \quad 4$ | 15 |  | $4 \quad 61$ |  |  |  |
| 1608 | 673 | 345612 | 376 | 119 | 1152 | 7 |  | 432 |  |  |  |
| 1455 | 167 | 77435 | 392 | 214 | $14 \quad 39$ | 19 |  | 19 |  |  |  |
| 1398 | 112 | 243101 | 1390 | 317 | 17236 | 73 | 17 | 712 |  |  |  |
| 1294 |  | 154297 | 769 | 203 | 03226 | 117 | 41 | 125 |  |  |  |
| 1240 | 19 | 156248 | 1131 |  | 60119 | 82 | 36 | 36 3 |  |  |  |
| 822 | 5 | 1665 | 575 |  | 4410 | 24 | 28 | 2813 |  |  |  |

Table 2.3.9

| Flot 1. RN Magnus Hernason. The Farome Groundian Surveys $1383-93$ Stratried mean catch by age in numbers per braw hour of haddock |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YoarAge ! | ' | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 3 | '0- | Otal |
| 1983 | 4809 | 2782 | 16.75 | 2.337 | 1735 | 0 | 6.243 | 2.188 | 2529 | 1098 | '088 |
| 1984 | 148 | 116.4 | 23.12 | 10.31 | 0.47 | 0573 | 0.212 | 1994 | 072 | 2.608 | 2712 |
| 1985 | 2006 | 6725 | 35.04 | 6.681 | 2.151 | 0 | 0.285 | 0.181 | 1019 | 0627 | 3138 |
| 1986 | 266 | 1148 | 48.54 | 22.35 | 4322 | 0.804 | 0 | 0.1 | 0328 | 1593 | 2192 |
| + 987 | 4225 | 1165 | 2688 | 1719 | 8.914 | 1582 | 0 | 0 | 0 | 0.134 | - 286 |
| 1988 | 41 | 38.49 | '5.83 | 22.53 | 11.48 | 3.721 | 0.951 | 0.131 | 0097 | $\bigcirc 206$ | + 344 |
| 1989 | 42.71 | 150 | 115.2 | 8691 | 24.28 | 33.33 | 20.29 | 2.46 | 0 | 0018 | 397 |
| 1990 | 3109 | 4798 | 65.52 | 24.74 | 2.591 | 7838 | 8.057 | 3.903 | 0.896 | 0014 | . 547 |
| 1991 | 5.189 | 19.97 | 14.05 | 10.16 | 4.012 | 1555 | 1165 | 0.322 | 0.108 | 0015 | 565 |
| 1992 | 5813 | 27.72 | 8.759 | 16.02 | 7.148 | 5.351 | 1672 | 1254 | 0.588 | 0175 | 745 |
| 1993 | 28.82 | 939 | 1021 | 6.418 | 6.688 | 5.052 | 2.798 | 0.775 | 0547 | 0892 | - 6 |

Table 2.3.10

| Fleer 2 Longliners 25-40 8RT <br> Catch and offort data of haddock in Oivision Vb 1985-92 <br> Catch at age in numbers* 1000 and offort in days |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age/Year | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 992 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 82 | 18 | 22 | 43 | 4 | 0 | 2 | 1 |
| 3 | 342 | 155 | 112 | 22 | 89 | 38 | 29 | 3 |
| 4 | 106 | 188 | 198 | 111 | 37 | 73 | 47 | 12 |
| 5 | 41 | 57 | 122 | 100 | 143 | 17 | 25 | 13 |
| 6 | 9 | 28 | 36 | 55 | 116 | 50 | 11 | 8 |
| 7 | 3 | 1 | 17 | 10 | 86 | 55 | 22 | 2 |
| 8 | 4 | 5 | 2 | 3 | 27 | 29 | 15 | 4 |
| 9 | 16 | 2 | 1 | 0 | 6 | 10 | 7 | 5 |
| $10+$ | 40 | 22 | 10 | 2 | 5 | 6 | 1 | 2 |
| Total numoer | 643 | 476 | 520 | 346 | 513 | 278 | 159 | 50 |
| Total tonnes | 712 | 543 | 589 | 373 | 632 | 330 | 169 | 53 |
| Fishing days | 980 | 564 | 578 | 499 | 595 | 369 | 416 | 179 |
| Tonnes der day | 0.727 | 0.963 | 1.019 | 0.747 | 1.062 | 0.894 | 0.406 | 0.296 |

Table 2.3.11

| Flee 3 Longliners 40-60 BRT <br> Catch and offor data of haddock in Division Vb 1985-92 <br> Catch at age in numbers" 1000 and effor in days |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age/Year | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1994 | 1992 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 165 | 50 | 67 | 167 | 11 | 0 | 11 | 5 |
| 3 | 683 | 428 | 345 | 87 | 243 | 154 | 156 | 16 |
| 4 | 211 | 521 | 612 | 435 | 101 | 297 | 248 | 65 |
| 5 | 82 | 158 | 376 | 392 | 390 | 69 | 131 | 75 |
| 6 | 18 | 76 | 119 | 214 | 317 | 203 | 60 | 44 |
| 7 | 6 | 4 | 52 | 39 | 236 | 226 | 119 | 10 |
| 8 | 8 | 15 | 7 | 11 | 73 | 117 | 82 | 24 |
| 9 | 32 | 4 | 4 | 1 | 17 | 41 | 36 | 28 |
| $10+$ | 79 | 61 | 32 | 9 | 12 | 25 | 3 | 13 |
| Total number | 1284 | 1317 | 1606 | 1355 | 1400 | 1132 | 846 | 280 |
| Total tonnes | 1423 | 1503 | 1822 | 1455 | 1731 | 1347 | 901 | 296 |
| Fishing days | 1729 | 1330 | 1608 | 1455 | 1398 | 1294 | 1240 | 822 |
| Tonnes per day | 0.823 | 1.13 | 1.133 | 1 | 1.238 | 1041 | 0.727 | 0.36 |

Table 2.3.12


XSA population numbers

$1988, \quad 1.49 \mathrm{E}+04,5.86 \mathrm{E}+03,1.41 \mathrm{E}+04,1.38 \mathrm{E}+04,8.04 \mathrm{E}+03,2.20 \mathrm{E}+03,5.52 \mathrm{E}+02,7.21 \mathrm{E}+01,5.09 \mathrm{E}+02$, $1989,1.30 \mathrm{E}+04,1.16 \mathrm{E}+04,4.40 \mathrm{E}+03,9.28 \mathrm{E}+03,8.58 \mathrm{E}+03,4.64 \mathrm{E}+03,1.37 \mathrm{E}+03,3.16 \mathrm{E}+02,1.90 \mathrm{E}+02$, $1990, \quad 6.89 E+03,1.06 E+04,8.12 E+03,3.00 E+03,5.07 E+03,4.71 E+03,2.01 E+03,6.34 E+02,2.49 E+02$, $1991, \quad 1.46 \mathrm{E}+03,5.54 \mathrm{E}+03,7.42 \mathrm{E}+03,4.80 \mathrm{E}+03,1.72 \mathrm{E}+03,2.48 \mathrm{E}+03,2.02 \mathrm{E}+03,7.96 \mathrm{E}+02,8.16 \mathrm{E}+01$, $1992,1.28 E+03,1.12 E+03,3.56 E+03,4.41 E+03,2.76 E+03,7.99 E+02,1.00 E+03,1.00 E+03,4.01 E+02$,

Terminal population estimates.

Table 2.3.12 (cont'd)

Log catchability residuals.

| Fleet : MH93: magnus heinaso |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Age, | 1988, | 1989, | 1990, | 1991, |
| 2, | -.61, | .04, | -.46, | .24, |
| 3, | -.68, | .68, | .18, | -.66, |
| 4, | -.39, | -.19, | .30, | -.49, |
| 5, | -.41, | .80, | -.33, | -.37, |
| 6, | -1.17, | .98, | .12, | -.43, |
| 7, | -1.21, | 1.22, | .29, | -.95, |
| 8, | -1.41, | 1.00, | 1.13, | -1.54, |

Mean catchability and standard error.


Mean catchability and Standard erfor.


Mean catchability and Standard error.

| Age |  | 2, | 3, | 4. | 5. | 6. | 7. | 8, | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean Q | , | -12.48, | -10.94, | -10.46, | -10.48, | -10.30, | -10.20, | -10.05, | -10.05 |
| S.E | , | 1.13, | .34, | .24, | . 21, | . 24, | . 58, | .48, | . 81 |

Table 2.3.13
Extended survivors analysis.

| $\begin{aligned} & \text { Table } 8 \\ & \text { YEAR, } \end{aligned}$ | $\begin{aligned} & \text { Fishing } \\ & \text { 1983, } \end{aligned}$ | $\begin{aligned} & \text { mortality } \\ & \text { 1984, } \end{aligned}$ | $\begin{aligned} & \text { (F) at } \\ & 1985, \end{aligned}$ | $1986 \text {, }$ | 1987, | 1988, | 1989, | 1990, | 1991. | 1992, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  | . 0498 | . 0054 , | .0181, | .0626, | .0386, |
| 2, | . 0274 , | .0347 , | . 03108 | .0109, | . 10428 , | .0498, | . 1565 , | . 1529, | . 2428, | . 1835 , |
| 3. | . 2032 , | . 1281. | . 1798 , | . $2689^{\prime}$, | . 2049 , | . 2152, | . 1812, | . 3252 , | . 3194, | . 3092 , |
| 4, | . 3667 , | . 4216, | . 3678 , | . 3010 , | . 2887 , | . 2777 , | . 4041 , | . 3567 , | . 3528 , | . 3704 , |
| 5, | . 3935 , | . $33253^{\prime}$, | . 4588 , | . 4254, | . 3768 , | . 3486, | . 3997 , | . 5141. | .5673, | .5502, |
| 6, | . 1735 , | . 3953 , | . 2617 , | . 17254, | . 6240 , | . 2722, | . 6369 , | . 6451 , | . 7069 , | .7173, |
| 7. | . 280501 | . 1104, | . 23217, | . 7382 , | . 7138, | . 3596, | . $5729^{\prime}$, | . 7260 , | .5021, | . 6052, |
| 8, | . $26014^{\prime}$ | . 2690 , | . 2488 , | . 4639, | . 6783 , | . 3229, | . 6267 , | .6900, | . 6072, | . 6676 |
| +gp, | . $2624{ }^{\prime}$ | . 1909, | .2488, | . 4639 , | .6783, | .3229, | . 6267 , | . 6900 , | . 6072, | .6676 .4261 |
| fbar 3-7, | . 2835, | .2576, | .3117, | . 2557. | . 3208 , | .2402, | .3557, | .3988, | 43 | 4261, |

Table 2.3.14
Extended survivors analysis.

| Table 10 | Stock number at age (start of year) |  |  |  |  | Numbers* 10 **-3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1983, | 1984, | 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
| 2, | 18007, | 38676, | 35625, | 23546, | 7469, | 14890, | 12963, | 6888, | 1457, | 1284, | 0, |
| 3. | 11836, | 14344, | 30584, | 28276, | 19070, | 5859, | 11599, | 10557, | 5538, | 1121, | 1011, |
| 4. | 1379, | 7909, | 10332, | 20920, | 20844, | 14058, | 4395, | 8121. | 7418, | 3557, | 764, |
| 5. | 1434, | 782, | 4248, | 6472, | 13100, | 13840, | 9281, | 3002, | 4803. | 4413, | 2138, |
| 6, | 645, | 792, | 508, | 2354, | 3921. | 8036, | 8584, | 5073, | 1721, | 2763, | 2495, |
| 7. | 6524, | 444, | 437, | 263, | 1259, | 2203, | 4643, | 4712, | 2484, | 799, | 1305, |
| 8, | 3831. | 4035, | 326, | 275 | 180, | 552, | 1374, | 2011, | 2024, | 1003, | 319, |
| 9. | 4535, | 2467, | 2524, | 211. | 108, | 72. | 316, | 634, | 796, | 1003, | 448, |
| +gp, | 3784, | 6125, | 4855, | 2100, | 740, | 509, | 190 , | 249, | 82, | 401, | 590, |
| TOTAL, | 51975, | 75574, | 89436, | 84417, | 66690, | 60019. | 53344, | 41246, | 26322, | 16343, | 9069, |

Table 2.3.15
Table 16 Summary (without SOP correction)
Extended survivors analysis.


Table 2.3.16
Prediction with management option table: Input data

| Year: 1993 |  |  |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Age | Stock <br> size | Natural <br> mortality | Maturity <br> ogive | Prop.of F <br> bef.spaw. | Prop.of M <br> bef.spaw. | Weight <br> in stock | Exploit. <br> pattern | Weight <br> in catch |
| 2 | 11200.000 | 0.2000 | 0.0800 | 0.0000 | 0.0000 | 0.503 | 0.0400 | 0.503 |
| 3 | 8890.000 | 0.2000 | 0.3900 | 0.0000 | 0.0000 | 0.705 | 0.1950 | 0.705 |
| 4 | 764.000 | 0.2000 | 0.8100 | 0.0000 | 0.0000 | 0.880 | 0.3220 | 0.880 |
| 5 | 2138.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.109 | 0.3640 | 1.109 |
| 6 | 2495.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.303 | 0.5510 | 1.303 |
| 7 | 1305.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.490 | 0.6980 | 1.490 |
| 8 | 319.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.652 | 0.6180 | 1.652 |
| 9 | 448.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.910 | 0.6630 | 1.910 |
| $10+$ | 590.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.205 | 0.6630 | 2.205 |
| Unit | Thousands | - | - | - | - | Kilograms | - | Kilograms |


| Year: 1994 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruit ment | Natural mortality | Maturity ogive | Prop. of $F$ bef.spaw. | Prop. of $M$ bef. spaw. | Weight in stock | Exploit. pattern | Weight <br> in catch |
| 2 | 11200.000 | 0.2000 | 0.0600 | 0.0000 | 0.0000 | 0.503 | 0.0400 | 0.503 |
| 3 | . | 0.2000 | 0.4400 | 0.0000 | 0.0000 | 0.705 | 0.1950 | 0.705 |
| 4 | - | 0.2000 | 0.8900 | 0.0000 | 0.0000 | 0.880 | 0.3220 | 0.880 |
| 5 | . | 0.2000 | 0.9900 | 0.0000 | 0.0000 | 1.109 | 0.3640 | 1.109 |
| 6 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.303 | 0.5510 | 1.303 |
| 7 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.490 | 0.6980 | 1.490 |
| 8 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.652 | 0.6180 | 1.652 |
| 9 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.910 | 0.6630 | 1.910 |
| $10+$ | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.205 | 0.6630 | 2.205 |
| Unit | Thousands | $\bullet$ | - | - | - | Kilograms | - | Kilograms |


| Year: 1995 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | $\begin{aligned} & \text { Recruit - } \\ & \text { ment } \end{aligned}$ | Matural mortality | Maturity ogive | Prop.of F bef. spaw. | Prop. of M bef. span. | Height <br> in stock | Exploit. pattern | Weight <br> in catch |
| 2 | 11200.000 | 0.2000 | 0.0600 | 0.0000 | 0.0000 | 0.503 | 0.0400 | 0.503 |
| 3 | . | 0.2000 | 0.4400 | 0.0000 | 0.0000 | 0.705 | 0.1950 | 0.705 |
| 4 | - | 0.2000 | 0.8900 | 0.0000 | 0.0000 | 0.880 | 0.3220 | 0.880 |
| 5 | - | 0.2000 | 0.9900 | 0.0000 | 0.0000 | 1.109 | 0.3640 | 1.109 |
| 6 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.303 | 0.5510 | 1.303 |
| 7 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.490 | 0.6980 | 1.490 |
| 8 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.652 | 0.6180 | 1.652 |
| 9 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.910 | 0.6630 | 1.910 |
| $10+$ | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.205 | 0.6630 | 2.205 |
| Unit | Thousands | $\bullet$ | - | - | - | Kilograms | - | Kilograms |

Hotes: Run name : REIMI.PRED
Date and time: 10mar93:09:39

Table 2.3.17
Prediction with management option table

| Year: 1993 |  |  |  |  | Year: 1994 |  |  |  |  | Year: 1995 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { F } \\ \text { factor } \end{gathered}$ | $\begin{array}{\|c\|} \text { Reference } \\ F \end{array}$ | Stock biomass | Sp.stock biomass | Catch in weight | Factor | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | Stock biomass | Sp.stock biomass |
| 1.0000 | 0.4260 | 22831 | 13692 | 5375 | 0.0000 | 0.0000 | 23077 |  |  |  |  |
| . |  |  |  | 537 | 0.1000 | 0.0426 | 23077 | 13713 13713 | 801 | 29329 | 19655 |
| . | - |  |  |  | 0.2000 | 0.0852 |  | 13713 | 1176 | 28887 | 19043 18458 |
| - | - |  |  |  | 0.3000 | 0.1278 |  | 13713 | 1728 | 27484 | 17898 |
|  |  |  | - | - | 0.4000 | 0.1704 |  | 13713 | 2256 | 26920 | 17363 |
| - | . |  | - | - | 0.5000 | 0.2130 |  | 13713 | 2762 | 26379 | 16850 |
| - | . |  | . | - | 0.6000 | 0.2556 |  | 13713 | 3248 | 25861 | 16360 |
| - |  |  | - | - | 0.7000 | 0.2982 |  | 13713 | 3714 | 25363 | 15890 |
|  |  |  |  | , | 0.8000 | 0.3408 |  | 13713 | 4162 | 24886 | 15439 |
|  | - |  | - | , | 0.9000 | 0.3834 |  | 13713 | 4592 | 24427 | 15008 |
|  | - |  | - | - | 1.0000 | 0.4260 |  | 13713 | 5005 | 23987 | 14594 |
| - | - |  | - | - | 1.1000 | 0.4686 |  | 13713 | 5402 | 23564 | 14197 |
| - | . | , | , | . | 1.2000 | 0.5112 |  | 13713 | 5784 | 23157 | 13816 |
| - | - |  | , | . | 1.3000 | 0.5538 |  | 13713 | 6151 | 22765 | 13450 |
| . | - | , | - |  | 1.4000 | 0.5964 | . | 13713 | 6504 | 22389 | 13099 |
| - | - |  | - | - | 1.5000 | 0.6390 |  | 13713 | 6845 | 22026 | 12761 |
| - | - |  | . |  | 1.6000 | 0.6816 | . | 13713 | 7173 | 21677 | 12437 |
| - | - | . |  |  | 1.7000 | 0.7242 | . | 13713 | 7489 | 21340 | 12125 |
| - | - |  |  |  | 1.8000 | 0.7668 | . | 13713 | 7793 | 21016 | 11825 |
| - | - | . | . | . | 1.9000 | 0.8094 | . | 13713 | 8087 | 20704 | 11536 |
| - | - |  | - |  | 2.0000 | 0.8520 | . | 13713 | 8371 | 20402 | 11258 |
| - | - | . | . | - | 2.1000 | 0.8946 | . | 13713 | 8644 | 20111 | 10991 |
| - | - |  |  | - | 2.2000 | 0.9372 |  | 13713 | 8909 | 19830 | 10733 |
| - | - | . | - | . | 2.3000 | 0.9798 | . | 13713 | 9164 | 19559 | 10484 |
| $\cdot$ | - |  | . | . | 2.4000 | 1.0224 | . | 13713 | 9411 | 19297 | 10245 |
| - | - |  | . | - | 2.5000 | 1.0650 | - | 13713 | 9649 | 19044 | 10014 |
| - | - | - | - | - | 2.6000 | 1.1076 | - | 13713 | 9880 | 18799 | 9791 |
| - | - | . | - | - | 2.7000 | 1.1502 |  | 13713 | 10103 | 18562 | 9576 |
| . | - | . | - | - | 2.8000 | 1.1928 | - | 13713 | 10319 | 18333 | 9369 |
| - | - | - | - | - | 2.9000 | 1.2354 | - | 13713 | 10528 | 18111 | 9168 |
| - | - | - | - | . | 3.0000 | 1.2780 |  | 13713 | 10731 | 17896 | 8975 |
| - | - |  | - | - | 3.1000 | 1.3206 |  | 13713 | 10927 | 17688 | 8788 |
| - | - | - | . | - | 3.2000 | 1.3632 |  | 13713 | 11118 | 17486 | 8607 |
| - | - |  | - | - | 3.3000 | 1.4058 | . | 13713 | 11302 | 17291 | 8432 |
| - | - | - | - | - | 3.4000 | 1.4484 | . | 13713 | 11481 | 17102 | 8263 |
| - | - | . | . | . | 3.5000 | 1.4910 | - | 13713 | 11655 | 16918 | 8100 |
| - | - | Tonnes | Tonnes | Tonnes | - | - | Tonnes | Tonnes | Topmes | Yomes | Tonnes |

Notes: Run name
: REIN1.PRED
Date and time : 10MAY93:09:39
Computation of ref. F: Simple mean, age $3 \cdot 7$
Basis for 1993 : F factors

Table 2.3.18
Yield per recruit: Input data

| Age | Recruitment | Natural mortality | Maturity ogive | Prop. of F bef. span. | Prop. of M bef. span. | Height <br> in stock | Exploit. pattern | Height in catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1.000 | 0.2000 | 0.0855 | 0.0000 | 0.0000 | 0.503 | 0.0400 | 0.503 |
| 3 | . | 0.2000 | 0.4982 | 0.0000 | 0.0000 | 0.705 | 0.1950 | 0.705 |
| 4 | . | 0.2000 | 0.9218 | 0.0000 | 0.0000 | 0.880 | 0.3220 | 0.880 |
| 5 | . | 0.2000 | 0.9955 | 0.0000 | 0.0000 | 1.109 | 0.3640 | 1.109 |
| 6 | . | 0.2000 | 0.9982 | 0.0000 | 0.0000 | 1.303 | 0.5510 | 1.303 |
| 7 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.490 | 0.6980 | 1.490 |
| 8 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.652 | 0.6180 | 1.652 |
| 9 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.910 | 0.6630 | 1.910 |
| 10+ | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.205 | 0.6630 | 2.205 |
| Unit | Numbers | - | - | - | - | Kilograms | - | Kilograms |

Notes: Run name : REIN16. HAD
Date and time: 10may93:11:07

|  |  |  |  |  |  | 1 January |  | Spawning time |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F Factor | Reference F | Catch in numbers | Catch in weight | stock <br> size | Stock <br> biomass | $\begin{aligned} & \text { Sp.stock } \\ & \text { size } \end{aligned}$ | Sp.stock biomass | $\begin{aligned} & \text { Sp. stock } \\ & \text { size } \end{aligned}$ | Sp.stock biomass |
| 0.0000 | 0.0000 | 0.000 | 0 | 5.517 | 6837 | 4.136 | 6037 | 4.136 | 6037 |
| 0.1000 | 0.0426 | 0.153 | 223 | 4.757 | 5343 | 3.379 | 4545 | 3.379 | 4545 |
| 0.2000 | 0.0852 | 0.248 | 338 | 4.285 | 4460 | 2.910 | 3665 | 2.910 | 3665 |
| 0.3000 | 0.1278 | 0.314 | 403 | 3.957 | 3880 | 2.585 | 3087 | 2.585 | 3087 |
| 0.4000 | 0.1704 | 0.363 | 443 | 3.714 | 3469 | 2.345 | 2679 | 2.345 | 2679 |
| 0.5000 | 0.2130 | 0.401 | 469 | 3.524 | 3164 | 2.158 | 2376 | 2.158 | 2376 |
| 0.6000 | 0.2556 | 0.433 | 486 | 3.370 | 2927 | 2.006 | 2142 | 2.006 | 2142 |
| 0.7000 | 0.2982 | 0.459 | 498 | 3.242 | 2738 | 1.881 | 1955 | 1.881 | 1955 |
| 0.8000 | 0.3408 | 0.481 | 507 | 3.132 | 2583 | 1.775 | 1802 | 1.775 | 1802 |
| 0.9000 | 0.3834 | 0.500 | 513 | 3.038 | 2453 | 1.683 | 1674 | 1.683 | 1674 |
| 1.0000 | 0.4260 | 0.517 | 517 | 2.955 | 2342 | 1.602 | 1565 | 1.602 | 1565 |
| 1.1000 | 0.4686 | 0.532 | 521 | 2.881 | 2247 | 1.531 | 1472 | 1.531 | 1472 |
| 1.2000 | 0.5112 | 0.546 | 523 | 2.815 | 2163 | 1.468 | 1390 | 1.468 | 1390 |
| 1.3000 | 0.5538 | 0.558 | 525 | 2.755 | 2089 | 1.410 | 1318 | 1.410 | 1318 |
| 1.4000 | 0.5964 | 0.569 | 527 | 2.701 | 2023 | 1.358 | 1254 | 1.358 | 1254 |
| 1.5000 | 0.6390 | 0.580 | 528 | 2.651 | 1963 | 1.311 | 1196 | 1.311 | 1196 |
| 1.6000 | 0.6816 | 0.589 | 529 | 2.604 | 1909 | 1.267 | 1144 | 1.267 | 1144 |
| 1.7000 | 0.7242 | 0.598 | 529 | 2.562 | 1860 | 1.227 | 1097 | 1.227 | 1097 |
| 1.8000 | 0.7668 | 0.606 | 530 | 2.522 | 1815 | 1.190 | 1054 | 1.190 | 1054 |
| 1.9000 | 0.8094 | 0.614 | 530 | 2.485 | 1774 | 1.155 | 1014 | 1.155 | 1014 |
| 2.0000 | 0.8520 | 0.621 | 530 | 2.451 | 1735 | 1.123 | 978 | 1.123 | 978 |
| 2.1000 | 0.8946 | 0.628 | 531 | 2.418 | 1700 | 1.093 | 944 | 1.093 | 944 |
| 2.2000 | 0.9372 | 0.634 | 531 | 2.388 | 1667 | 1.065 | 913 | 1.065 | 913 |
| 2.3000 | 0.9798 | 0.640 | 531 | 2.359 | 1636 | 1.038 | 884 | 1.038 | 884 |
| 2.4000 | 1.0224 | 0.646 | 531 | 2.331 | 1607 | 1.013 | 856 | 1.013 | 856 |
| 2.5000 | 1.0650 | 0.651 | 531 | 2.305 | 1580 | 0.989 | 831 | 0.989 | 831 |
| 2.6000 | 1.1076 | 0.656 | 530 | 2.281 | 1555 | 0.967 | 807 | 0.967 | 807 |
| 2.7000 | 1.1502 | 0.661 | 530 | 2.258 | 1530 | 0.946 | 785 | 0.946 | 785 |
| 2.8000 | 1.1928 | 0.666 | 530 | 2.235 | 1508 | 0.926 | 764 | 0.926 | 764 |
| 2.9000 | 1.2354 | 0.670 | 530 | 2.214 | 1486 | 0.907 | 744 | 0.907 | 744 |
| 3.0000 | 1.2780 | 0.675 | 530 | 2.194 | 1466 | 0.889 | 725 | 0.889 | 725 |
| 3.1000 | 1.3206 | 0.679 | 529 | 2.174 | 1447 | 0.871 | 707 | 0.871 | 707 |
| 3.2000 | 1.3632 | 0.683 | 529 | 2.156 | 1428 | 0.855 | 691 | 0.855 | 691 |
| 3.3000 | 1.4058 | 0.686 | 529 | 2.138 | 1411 | 0.839 | 675 | 0.839 | 675 |
| 3.4000 | 1.4484 | 0.690 | 529 | 2.121 | 1394 | 0.824 | 659 | 0.824 | 659 |
| 3.5000 | 1.4910 | 0.693 | 528 | 2.105 | 1378 | 0.809 | 645 | 0.809 | 645 |
| - | - | Numbers | Grams | Numbers | Grams | Numbers | Grams | Numbers | Grams |



Table 2.3.20
Yield per recruit: Input data

| Age | Recruit ment | Natural mortality | Maturity ogive | Prop. of $F$ bef. spat. | Prop. of m bef.spaw. | Height in stock | Exploit. pattern | Weight in catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1.000 | 0.2000 | 0.0855 | 0.0000 | 0.0000 | 0.519 | 0.0420 | 0.519 |
| 3 | . | 0.2000 | 0.4982 | 0.0000 | 0.0000 | 0.777 | 0.2020 | 0.777 |
| 4 | . | 0.2000 | 0.9218 | 0.0000 | 0.0000 | 1.032 | 0.3540 | 1.032 |
| 5 | . | 0.2000 | 0.9955 | 0.0000 | 0.0000 | 1.357 | 0.4420 | 1.357 |
| 6 | . | 0.2000 | 0.9982 | 0.0000 | 0.0000 | 1.692 | 0.5520 | 1.692 |
| 7 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.982 | 0.5810 | 1.982 |
| 8 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.177 | 0.6510 | 2.177 |
| 9 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.435 | 0.6500 | 2.435 |
| 10 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.821 | 0.6500 | 2.821 |
| Unit | Numbers | - | - | - | - | Kilograms | - | Kilograms |

Hotes: Run name : EYKAS.VPA
Date and time: 10may93:11:21

Table 2.3.21
Yield per recruit: Summary table

|  |  |  |  |  |  | 1 January |  | Spawning time |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { f } \\ \text { factor } \end{gathered}$ | Reference F | Catch in numbers | Catch in weight | $\begin{aligned} & \text { stock } \\ & \text { size } \end{aligned}$ | Stock biomass | $\begin{gathered} \text { Sp. stock } \\ \text { size } \end{gathered}$ | Sp.stock biomass | $\begin{aligned} & \text { Sp.stock } \\ & \text { size } \end{aligned}$ | Sp.stock biomass |
| 0.0000 | 0.0000 | 0.000 | 0 | 5.517 | 8480 | 4.136 | 7627 | 4.136 | 7627 |
| 0.1000 | 0.0426 | 0.155 | 282 | 4.746 | 6546 | 3.368 | 5696 | 3.368 | 5696 |
| 0.2000 | 0.0852 | 0.252 | 427 | 4.264 | 5395 | 2.889 | 4548 | 2.889 | 4548 |
| 0.3000 | 0.1279 | 0.320 | 507 | 3.928 | 4636 | 2.556 | 3792 | 2.556 | 3792 |
| 0.4000 | 0.1705 | 0.370 | 555 | 3.679 | 4100 | 2.310 | 3259 | 2.310 | 3259 |
| 0.5000 | 0.2131 | 0.409 | 584 | 3.484 | 3701 | 2.118 | 2862 | 2.118 | 2862 |
| 0.6000 | 0.2557 | 0.441 | 602 | 3.326 | 3393 | 1.964 | 2557 | 1.964 | 2557 |
| 0.7000 | 0.2983 | 0.468 | 614 | 3.196 | 3147 | 1.836 | 2314 | 1.836 | 2314 |
| 0.8000 | 0.3410 | 0.490 | 621 | 3.085 | 2947 | 1.728 | 2116 | 1.728 | 2116 |
| 0.9000 | 0.3836 | 0.510 | 625 | 2.989 | 2780 | 1.635 | 1952 | 1.635 | 1952 |
| 1.0000 | 0.4262 | 0.527 | 628 | 2.906 | 2639 | 1.554 | 1814 | 1.554 | 1814 |
| 1.1000 | 0.4688 | 0.542 | 629 | 2.832 | 2518 | 1.483 | 1695 | 1.483 | 1695 |
| 1.2000 | 0.5114 | 0.556 | 629 | 2.765 | 2413 | 1.420 | 1592 | 1.420 | 1592 |
| 1.3000 | 0.5541 | 0.568 | 629 | 2.706 | 2320 | 1.363 | 1502 | 1.363 | 1502 |
| 1.4000 | 0.5967 | 0.579 | 628 | 2.652 | 2238 | 1.311 | 1422 | 1.311 | 1422 |
| 1.5000 | 0.6393 | 0.589 | 627 | 2.602 | 2165 | 1.264 | 1351 | 1.264 | 1351 |
| 1.6000 | 0.6819 | 0.599 | 626 | 2.557 | 2099 | 1.222 | 1288 | 1.222 | 1288 |
| 1.7000 | 0.7245 | 0.608 | 624 | 2.515 | 2040 | 1.182 | 1231 | 1.182 | 1231 |
| 1.8000 | 0.7672 | 0.616 | 623 | 2.476 | 1985 | 1.146 | 1179 | 1.146 | 1179 |
| 1.9000 | 0.8098 | 0.623 | 621 | 2.440 | 1936 | 1.113 | 1131 | 1.113 | 1131 |
| 2.0000 | 0.8524 | 0.630 | 620 | 2.407 | 1890 | 1.081 | 1088 | 1.081 | 1088 |
| 2.1000 | 0.8950 | 0.637 | 618 | 2.375 | 1848 | 1.052 | 1048 | 1.052 | 1048 |
| 2.2000 | 0.9376 | 0.643 | 617 | 2.345 | 1810 | 1.025 | 1011 | 1.025 | 1011 |
| 2.3000 | 0.9803 | 0.649 | 615 | 2.318 | 1773 | 0.999 | 977 | 0.999 | 977 |
| 2.4000 | 1.0229 | 0.654 | 614 | 2.291 | 1740 | 0.975 | 945 | 0.975 | 945 |
| 2.5000 | 1.0655 | 0.659 | 612 | 2.266 | 1708 | 0.953 | 916 | 0.953 | 916 |
| 2.6000 | 1.1081 | 0.664 | 611 | 2.243 | 1679 | 0.931 | 889 | 0.931 | 889 |
| 2.7000 | 1.1507 | 0.669 | 609 | 2.220 | 1651 | 0.911 | 863 | 0.911 | 863 |
| 2.8000 | 1.1934 | 0.674 | 608 | 2.199 | 1625 | 0.892 | 839 | 0.892 | 839 |
| 2.9000 | 1.2360 | 0.678 | 606 | 2.178 | 1601 | 0.874 | 816 | 0.874 | 816 |
| 3.0000 | 1.2786 | 0.682 | 605 | 2.159 | 1577 | 0.856 | 795 | 0.856 | 795 |
| 3.1000 | 1.3212 | 0.686 | 604 | 2.140 | 1555 | 0.840 | 774 | 0.840 | 774 |
| 3.2000 | 1.3638 | 0.690 | 602 | 2.122 | 1534 | 0.824 | 755 | 0.824 | 755 |
| 3.3000 | 1.4065 | 0.693 | 601 | 2.105 | 1515 | 0.809 | 737 | 0.809 | 737 |
| 3.4000 | 1.4491 | 0.697 | 600 | 2.089 | 1496 | 0.795 | 720 | 0.795 | 720 |
| 3.5000 | 1.4917 | 0.700 | 599 | 2.073 | 1478 | 0.781 | 704 | 0.781 | 704 |
| - | - | Numbers | Grams | Numbers | Grams | Numbers | Grams | Numbers | Grams |

```
Notes: Run name : EYKA5.VPA
    Date and time : 10mAY93:11:21
    Computation of ref. F: Simple mean, age 3-7
    F-0.1 factor : 0.3819
    F-max factor : 1.1936
    F-0.1 reference F:0.1628
    F-max reference F: 0.5087
    Recruitment : single recruit
```

Table 2.4.1 Nominal catch ( t ) of SAITHE in Division Vb, 1979-1992 as officially reported to ICES.

| Country | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | - | - | - | - | - | - | - |
| Faroe Islands | 22003 | 23810 | 29682 | 30808 | 38963 | 54344 | 42874 |
| France | 2974 | 1110 | 258 | 130 | 180 | 243 | 839 |
| German Dem.Rep. | - | - | - |  | - | - | 31 |
| Germany Fed.Rep | 581 | 197 | 20 | 19 | 28 | 73 | 227 |
| Netherlands | - | - | - | - | - | - | - |
| Norway | 1137 | 62 | 134 | 15 | 5 | 5 | - |
| UK (Eng. \& W.) | 190 | 13 | - | - | - | - | 4 |
| UK (Scotland) | 361 | 38 | 9 | 1 | - | - | 630 |
| USSR | - | - | - | - | - | - | - |
| Total | 27246 | 25230 | 30103 | 30973 | 39176 | 54665 | 44605 |
| Country | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| Denmark | 21 | 255 | 94 | - | 2 | - | - |
| Faroe Islands | 40139 | 39301 | 44402 | 43624 | 59821 | 53321 | 35980 |
| France | 87 | 153 | 313 |  |  |  |  |
| German Dem. Rep. | - | - | - | 9 | - |  |  |
| Germany Fed. Rep | 105 | 49 | 74 | 20 | 15 | 32 | 3 |
| Netherlands | - | - | - | 22 | - | 65 |  |
| Norway | 24 | 14 | 52 | 51 | 46 | 101 | 34 |
| UK (Eng. \& W.) | - | 108 | - | - | - | 5 | 74 |
| UK (Scotland) | 1340 | 140 | 92 | 9 | 33 | 79 | 98 |
| USSR/Russia ${ }^{2}$ | - | - | - | - | 30 | - |  |
| Total | 41716 | 40020 | 45027 | 43735 | 59947 | 53603 | 36189 |

[^2]Table 2.4.2 Nominal catch ( t ) of SAITHE in Division Vb, 1979-1992 as used in the assessment.

| Country | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Belgia | - | - | - | - | - | - | - |
| Denmark | - | - | - | - | - | - | - |
| Faroe Islands |  |  |  |  |  |  |  |
| Vb | 22003 | 23810 | 29682 | 30808 | 38963 | 54344 | 42874 |
| $\mathrm{IIa}_{4}$ | - | - | - | - | - | - | - |
| France | 2974 | 1110 | 258 | 130 | 180 | 243 | 839 |
| German Dem.Rep. | - | - | - | - | - | - | 31 |
| Germany Fed.Rep | 581 | 197 | 20 | 19 | 28 | 73 | 227 |
| Netherlands | - | - | - | - | - | - | - |
| Norway | 1137 | 62 | 134 | 15 | 5 | 5 | - |
| UK (Eng. \& W.) | 190 | 13 | - | - | - | - | 4 |
| UK (Scotland) | 361 | 38 | 9 | 1 | - | - | 630 |
| USSR | - | - | - | - | - | - | - |
| Total | 27246 | 25230 | 30103 | 30973 | 39176 | 54665 | 44605 |


| Country | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Belgia | - | - | - | - | - | 5 | - |
| Denmark | 21 | 255 | 94 | - | 2 | - | - |
| Faroe Islands |  |  |  |  |  |  |  |
| Vb | 40139 | 39301 | 44402 | 43624 | 59821 | 53321 | 35980 |
| IIa ${ }_{4}$ | - | - | 258 | 269 | 988 | 963 | 519 |
| France | 87 | 153 | 313 | 473 | 626 | 267 | 123 |
| German Dem.Rep. | - | - | - | 9 | - |  |  |
| Germany Fed.Rep | 105 | 49 | 74 | 20 | 15 | 32 | 3 |
| Netherlands | - | - | - | 22 | - | 65 |  |
| Norway | 24 | 14 | 52 | 51 | 46 | 101 | 34 |
| UK (Eng. \& W.) | - | 108 | - | - | - | 5 | 74 |
| UK (Scotland) | 1340 | 140 | 92 | 9 | 33 | 79 | 98 |
| USSR/Russia ${ }^{2}$ | - | - | - | - | 30 | 7 | 47 |
| Total | 41716 | 40020 | 45285 | 44477 | 61561 | 54845 | 36878 |

[^3]Table 2.4.3
Traditional vpa Terminal populations from weighted Separable populations

| Table 1 | Catch | numbers at |  | ers*10* |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1983. | 1984, | 1985, | 1986, | 1987, | 1988, | 1989. | 1990, | 1991. | 1992, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3. | 2483, | 368, | 1224, | 1967. | 1581. | 866, | 451, | 294, | 1030, | 526, |
| 4, | 1103. | 11067, | 3990, | 1997, | 5793, | 2950, | 5981, | 3833. | 5123. | 4115, |
| 5, | 5052, | 2359, | 5583. | 4473, | 3827, | 9555, | 5300, | 10120, | 7450, | 3711, |
| 6, | 1343, | 4093, | 1182, | 3730, | 2785, | 2784, | 7136, | 9219. | 5542, | 2710, |
| 7. | 575, | 875, | 1898, | 953, | 990, | 1300, | 793, | 5070, | 3486, | 1389, |
| 8, | 339, | 273, | 273, | 1077. | 532. | 621. | 546, | 477, | 1629, | 904, |
| 9. | 273, | 161, | 103, | 245, | 333, | 363, | 185, | 123, | 405, | 620, |
| 10, | 98, | 52. | 38, | 104, | 81, | 159, | 83. | 61. | 238, | 124, |
| 11. | 98. | 65. | 26. | 67. | 43, | 27. | 55. | 60, | 128, | 64. |
| 12. | 99. | 59. | 72. | 33. | 5. | 43. | 10, | 18, | 77, | 37. |
| 13, | 25, | 18, | 41, | 56, | 11. | 15, | 2, | 19. | 22, | 52. |
| 14, | 127, | 25, | 8, | 7. | 15. | 1. | 11, | 9. | 8, | 8, |
| +gp, | 289, | 151, | 154, | 62, | 66, | 1, | 16, | 33, | 11, | 12, |
| TOTALNUM, | 11904, | 19566, | 14592, | 13971, | 16062, | 18685, | 20569, | 29336, | 25149. | 14272, |
| TONSLAND, | 39176, | 54665, | 44605, | 41716, | 40020, | 45285, | 44477, | 61561, | 54845, | 36878, |
| SOPCOF \%, | 100, | 100, | 94, | 95, | 96, | 99. | 97, | 98. | 99, | 105, |

Table 2.4.4

|  | Tradi | onal vpa | Terminal | 1 pop | s from | d | Sep | popula |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Table } 2 \\ & \text { YEAR, } \end{aligned}$ | $\begin{aligned} & \text { Catch } \\ & 1983, \end{aligned}$ | weights at 1984, | $\begin{gathered} t \text { age }(k g) \\ 1985, \end{gathered}$ | 1986, | 1987. | 1988, | 1989, | 1990, | 1991. | 1992, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3, | 1.2080, | 1.4310, | 1.4010, | 1.7180, | 1.6090 , | 1.5000, | 1.3090 , | 1.2230, | 1.2400, | 1.2640, |
| 4, | 2.0290 | 1.9530, | 2.0320, | 1.9860, | 1.8350, | 1.9750, | 1.7350, | 1.6330, | 1.5860, | 1.6020, |
| 5, | 2.9650 , | 2.4700, | 2.9650, | 2.6180, | 2.3950 , | 1.9780, | 1.9070, | 1.8300, | 1.8640, | 2.0690, |
| 6, | 4.1430 , | 3.8500, | 3.5960, | 3.2770, | 3.1820, | 2.9370, | 2.3730, | 2.0520, | 2.2110, | 2.5540, |
| 7, | 4.7240, | 5.1770, | 5.3360, | 4.1860, | 4.0670, | 3.7980 , | 3.8100, | 2.8660 , | 2.6480, | 3.0570, |
| 8 8, | 5.9010 , | 6.3470 , | 7.2020, | 5.2890, | 5.1490 , | 4.4190, | 4.5670, | 4.4740, | 3.3800, | 4.0780, |
| 9, | 6.8110, | 7.8250, | 6.9660, | 6.0500, | 5.5010, | 5.1150, | 5.5090, | 5.4240, | 4.8160, | 5.0120, |
| 10, | 7.0510, | 6.7460 , | 9.8620, | 6.1500, | 6.6260, | 6.7120, | 5.9720, | 6.4690, | 5.5160, | 6.7680, |
| 19. | 7.2480 , | 8.6360, | 10.6700, | 9.5360, | 6.3430, | 8.0400, | 6.9390 , | 6.3430, | 6.4070, | 7.7540, |
| 12, | 8.2920, | 8.4670, | 10.4610, | 9.8230, | 10.2450, | 9.3640 , | 8.5430, | 8.4180, | 7.3950, | 8.3030, |
| 13, | 9.4780 , | 8.5560, | 10.2020, | 7.3030, | 8.4910, | 9.1420, | 9.5140, | 7.3830, | 8.0790, | 7.7860, |
| 14, | 10.8930, | 11.1270, | 9.6440 , | 11.8690, | 11.6340, | . 0000, | 11.7300, | 5.8220, | 7.1870, | 9.5750, |
| +gp, | 10.3400, | 10.7480, | 13.2320 , | 12.8750, | 10.2200, | . 0000 , | 9.6270, | 9.4080, | 9.7560, | 9.1020, |
| SOPCOFAC, | .9997, | .9991, | . 9415 , | .9488, | .9620, | .9939, | .9710, | .9800, | .9922, | 1.0498, |

Table 2.4.5

Proportion Mature at Year Start
(MATPROP)

| Year | Age $1$ | Age | $\begin{array}{r} \text { Age } \\ 3 \end{array}$ | Age | $\begin{array}{r} \text { Age } \\ 5 \end{array}$ | Age 6 | $\begin{array}{r} \text { Age } \\ 7 \end{array}$ | Age 8 | Age | Age 10 | Age | Age 12 | Age 13 | Age 14 | Age 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1960 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1961 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1962 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 9.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 763 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1964 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1965 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1966 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1967 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1968 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1969 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1970 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1971 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1972 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1973 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1974 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1975 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1976 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1977 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1978 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1979 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1980 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1981 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1982 | 0.00 | 0.00 | 0.04 | 0.24 | 0.55 | 0.81 | 0.92 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1983 | 0.00 | 0.00 | 0.00 | 0.13 | 0.42 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1984 | 0.00 | 0.00 | 0.00 | 0.43 | 0.84 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1985 | 0.00 | 0.00 | 0.09 | 0.19 | 0.41 | 0.85 | 0.93 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1986 | 0.00 | 0.00 | 0.04 | 0.50 | 0.88 | 0.94 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1987 | 0.00 | 0.00 | 0.20 | 0.25 | 0.36 | 0.79 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 788 | 0.00 | 0.00 | 0.10 | 0.22 | 0.52 | 0.75 | 0.91 | 0.92 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1989 | 0.00 | 0.00 | 0.00 | 0.18 | 0.67 | 0.71 | 0.82 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1990 | 0.00 | 0.00 | 0.00 | 0.20 | 0.53 | 0.56 | 0.75 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1991 | 0.00 | 0.00 | 0.00 | 0.21 | 0.46 | 0.77 | 0.82 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1992 | 0.00 | 0.00 | 0.00 | 0.06 | 0.33 | 0.77 | 0.92 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1993 | 0.00 | 0.00 | 0.00 | 0.23 | 0.62 | 0.82 | 0.92 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Table 2.4.6. A

Cuba Pair Trawlers (code: C2CAN) (Catch: Thousands) (Effort: Days)

| Year | Effort | Catch, age 3 | Catch, age 4 | Catch, age 5 | Catch, age 6 | Catch, age 7 | Catch, age 8 | Catch, age 9 | Catch, age 10 | Catch, age 11 | Catch, age 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 1805 | 0 | 984 | 275 | 516 | 107 | 47 | 37 | 34 | 14 | 12 |
| 1983 | 1792 | 225 | 231 | 1052 | 312 | 116 | 85 | 73 | 15 | 31 | 32 |
| 1984 | 1714 | 77 | 1780 | 328 | 762 | 182 | 49 | 19 | 3 | 8 | 17 |
| 1985 | 1224 | 93 | 518 | 1196 | 249 | 313 | 41 | 16 | 3 | 6 | 12 |
| 1986 | 1341 | 170 | 324 | 891 | 638 | 177 | 188 | 45 | 17 | 9 | 6 |
| 1987 | 1762 | 239 | 943 | 798 | 633 | 237 | 125 | 65 | 15 | 10 | 1 |
| 1988 | 1705 | 129 | 539 | 1706 | 599 | 244 | 102 | 67 | 16 | 2 | 2 |
| 1989 | 1473 | 96 | 1096 | 931 | 1178 | 133 | 79 | 26 | 15 | 10 | 2 |
| 1990 | 1820 | 44 | 477 | 1442 | 1395 | 768 | 71 | 19 | 8 | 8 | 3 |
| 1991 | 1985 | 72 | 994 | 1035 | 837 | 528 | 258 | 31 | 29 | 21 | 11 |
| 1992 | 1932 | 19 | 464 | 488 | 413 | 207 | 120 | 104 | 20 | 10 | 4 |

Table 2.4.6.B

7 pair trablers (code: PT7CA) (Catch: Thousands) (Effort: Days)

| Year | Effort | Catch, age 3 | Catch, age 4 | Catch, age 5 | Catch, age 6 | Catch, age 7 | Catch, age 8 | Catch, age 9 | Catch, age 10 | Catch, age 11 | Catch, age 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 | 624 | 14 | 78 | 181 | 38 | 47 | 6 | 2 | 1 | 1 | 7 |
| 1986 | 2447 | 67 | 128 | 352 | 252 | 70 | 74 | 18 | 7 | 4 | 2 |
| 1987 | 2299 | 90 | 356 | 301 | 239 | 89 | 47 | 25 | 6 | 4 | 0 |
| 1988 | 4156 | 79 | 329 | 1042 | 366 | 149 | 62 | 41 | 10 | 1 | 1 |
| 1989 | 3381 | 60 | 690 | 586 | 741 | 84 | 50 | 16 | 9 | 7 | 1 |
| 1990 | 4962 | 28 | 305 | 922 | 892 | 491 | 45 | 12 | 5 | 5 | 2 |
| 1991 | 3705 | 39 | 502 | 717 | 489 | 366 | 197 | 18 | 16 | 9 | 5 |
| 1992 | 2917 | 12 | 288 | 303 | 256 | 128 | 75 | 64 | 12 | 6 | 2 |

Table 2.4.7

Extended Survivors Analysis
Saithe in the Faroes Grounds (Fishing Area Vb) (run name: SAIFR865)
CPUE data from file /users/ifad/ifapwork/wg_109/sai_faro/FLEET. 865


Catchability independent of stock size for all ages
Catchability independent of age for ages $>=7$

Terminal population estimation :
Final estimates shrunk towards mean of the last 5 years and the 3 oldest ages S.E. of the mean to which the estimates are shrunk $=0.500$ Minimum standard error for population estimates derived from each fleet $=$ Prior weighting not applied

Tuning converged after 44 iterations

Total absolute residual between iterations
43 and $44=.000$

Regression weights . .193, .348, .515, .670, .798, .893, .954, .986, .998, 1.000

Fishing mortalities
Age, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992
4, .098, .462, .214, .130, .132, .088, .203, .202, .359, . 262
5, .332, .315, .449, .395, .391, .335, .227, .624, .756, .481
6, . $338, .495, .257, .620, .460, .554, .451, .777, .865, .697$
7. .270, .385, .450, .340, .327, .405, .298, .682, .782, . 546

8, .130, .198, .198, .501, .324, .351, .296, .294, .484, . 472
9, .090, .084, .106, .274, .282, .383, .166, .099, .437, . 342
10, .118, .170, .255, .576, .426, .347, .326, .272, .698, . 676
(cont'd)

Table 2.4.7 (cont'd)

Log catchability residuals.


Mean catchability and Standard error.

| Age, | 4, | 5, | 6, | 7, | 8, | 9, | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean $Q$, | -10.94, | -10.09, | -9.74, | -9.98, | -9.98, | -9.98, | -9.98 |
| S.E, | .40, | .28, | .14, | .18, | .46, | 1.05, | 1.89 |

Extended survivors analysis.

|  | $\begin{aligned} & \text { Table } 8 \\ & \text { YEAR, } \end{aligned}$ | $\begin{aligned} & \text { Fishing } \\ & \text { 1983, } \end{aligned}$ | $\begin{aligned} & \text { mortality } \\ & 1984, \end{aligned}$ | (F) at 1985, | 1986, | 1987. | 1988, | 1989, | 1990, | 1991, | 1992, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
|  | 4, | .0984, | .4617, | .2139, | .1295, | . 1322, | .0884, | . 2025, | . 2016, | . 3587, | .2623, |
|  | 5, | .3324, | . 3150. | .4488, | .3953, | . 3911. | . 3350 , | . 2266, | . 6236, | . 7558 , | .4808, |
|  | 6, | . 3379 , | . 4946 , | .2569, | . 6202, | .4599. | .5537, | .4509, | . 7771 , | .8650, | .6966, |
|  | 7. | . 2698 , | . 3855 , | . 4500 , | . 3404. | . 3265 , | . 4048 , | .2975, | .6821, | .7825, | .5463, |
|  | 8 , | . 1299, | . 1980, | . 1975, | . 5006 , | . 3236 , | . 3507 , | . 2957, | . 2938, | . 4842, | . 4715 , |
|  | 9. | .0901. | .0839, | . 1063, | . 2736, | . 2816, | . 3834 , | . 1659, | .0995, | .4373, | . 3419 , |
|  | 10. | .1175, | . 1697, | . 2548, | . 5758 , | . 4257. | . 3473 , | . 3261 , | . 2722, | .6985, | .6760, |
| FBAR | 4-8, | . 2337. | .3709, | .3134, | . 3972 , | . 3267. | . 3465 , | . 2947 , | .5156, | .6492, | .4915, |

Table 2.4.8
Separable analysis
from 1983 to 1992 on ages 3 to 14
with Terminal $F$ of .719 on age 6 and Terminal $s$ of 1.000
Initial sum of squared residuals was $\quad 131.233$ and
final sum of squared residuals is $\quad 42.744$ after 62 iterations

Matrix of Residuals

| Years, | 1983/84, 1984/85, 1985/86, 1986/87, 1987/88, 1988/89, 1989/90, 1990/91, 1991/92, |  |  |  |  |  |  |  |  |  | , , WTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ages |  |  |  |  |  |  |  |  |  |  |  |
| 3/4. | .355, | -. 782, | 1.585, | -.070, | 1.193, | -.467, | -.109, | -.660, | .041, | .000, | . 333, |
| $4 / 5$, | -.302, | .906, | .558, | -.522, | -.070, | -.479, | .146, | .095, | .307, | . 000, | .565, |
| 5/6, | -.047, | .199, | .359, | -.142, | . 038 , | -. 295, | -.553, | .613, | .196, | . 000 , | .767, |
| 6/7, | -.428, | -.339, | -.414, | . 074 , | -. 119, | .055, | -.229, | . 398 , | -.105, | . 000 , | 1.000, |
| $7 / 8$. | -.037, | .132, | .012, | -. 586, | -. 341, | -. 264, | .000, | .644, | -.039, | . 000 , | .785, |
| 8/9, | -.017, | -.039, | -.424, | .032, | -. 405 , | .093, | . 992. | -.296, | -.383, | .000, | .611. |
| 9/10, | .967, | .499, | -.471, | . 044, | .020, | .421, | .668, | -1.040, | -. 071. | . 000, | .439, |
| 10/11. | -. 125, | -.092, | -.875, | -.015, | .536, | .164. | .031, | -.965, | .235, | .000, | . 544, |
| 11/12, | -.037, | -. 898 , | -.555, | 1.688, | -.573, | .084, | .813, | -.480, | .155, | . 0000 | . 333. |
| 12/13, | 1.475, | -. 104, | .239, | .515. | -1.353, | 2.497 , | -.625, | -. 145, | -.376, | .000, | .233, |
| 13/14, | -.535, | .036, | 1.450, | . 407. | 1.840, | -.557, | -1.766, | . 600 , | -. 118 , | .000, | . 246 , |
|  | .001, | .000, | .000, | .000, | . 000, | .000, | .000, | .000, | . 000 , | 3.671, |  |
| HTS | .001, | .001, | .001, | . 001 , | 1.000, | 1.000, | 1.000, | 1.000, | 1.000, |  |  |


| Fishing Mortalities (F) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1983, | 1984, | 1985, | 1986, | 1987. | 1988, | 1989, | 1990, | 1991, | 1992, |
| $F$-values | .6387, | .6956, | .5831, | .8061, | .6360, | .6681, | . 4823, | .6222, | .9980, | .7190, |
| Selection-at-age ( $S$ ) |  |  |  |  |  |  |  |  |  |  |
|  | 3, | 4, |  |  |  |  |  |  |  |  |
| s-values .0351, .277 |  |  |  |  |  |  |  |  |  |  |
|  | 5. | 6. | 7. | 8, | 9. | 10, | 11. | 12, | 13. | 14, |
| $s$-values | .6689, | 1.0000, | .8958, | .8118, | .7053, | .6154, | .6065, | .5866, | .8331, | 1.0000, |

Table 2.4.9
Traditional vpa Terminal populations from weighted Separable populations

| $\begin{aligned} & \text { Table } 8 \\ & \text { YEAR, } \end{aligned}$ | $\begin{aligned} & \text { Fishing } \\ & \text { 1983, } \end{aligned}$ | $\begin{aligned} & \text { mortality } \\ & \text { 1984, } \end{aligned}$ | $\begin{aligned} & \text { (F) at } \\ & 1985, \end{aligned}$ | age 1986, | 1987, | 1988, | 1989. | 1990, | 1991. | 1992, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3, | .0698, | .0158, | . 0634, | .0211, | . 0377 , | .0218, | .0172, | .0140, | .0359, | .0252, |
| 4, | .1053, | . 4960 , | . 2366, | .1395, | .1384, | .0914, | .2046, | .1985, | . 3556 , | .1959, |
| 5, | . 3669 , | . 3409 , | . 5035, | . 4528 , | . 4289 , | . 3539 , | .2352, | .6272, | .7273, | .4735, |
| 6, | . 4520 , | . 5746 , | . 2861, | .7589, | .5703, | . 6427. | . 4885 , | . 8164, | .8703, | .6458, |
| 7. | . 4664 , | .6044, | .5793, | .3939, | . 4621 , | . 5768, | . 3784 , | . 7851, | .8735, | . 5568 , |
| 8, | .5214, | . 4229, | . 3820 , | .7813, | . 3991. | .5962, | . 5120, | .4121, | .6334, | . 5870 , |
| 9. | .8742, | . 5061. | . 2785, | .7077, | . 5953, | .5242, | . 3535 , | . 2044, | .7466, | . 5304, |
| 10, | . 2418, | . 3968 , | . 2117 , | .5020, | .5392, | . 6426, | . 2150, | .1878, | .7577, | .5386, |
| 11. | . 4433, | . 2505 , | . 3534, | .7008, | . 4002, | . 3452 , | .4810, | . 2379, | .7440, | .4684, |
| 12, | .9635, | . 5271, | . 4840 , | 1.0490, | .0981. | .9067, | . 2069, | . 2847, | .5427, | . 4967 , |
| 13, | . 3805 , | .4509, | . 8810, | .8856, | 1.3912, | .4708, | .0888, | .7523, | .6704, | . 8941 , |
| 14, | . 6336 , | .8243, | . 3706 , | . 3528 , | .6311, | .4163, | .7679, | . 7040 , | .8580, | .5533, |
| +gp, | . 6336, | .8243, | . 3706 , | .3528, | .6311, | .4162, | .7679, | . 7040 , | .8580, | . 5533, |
| FBAR 4-8, | . 3824, | .4877, | . 3975 , | .5053, | . 3998 , | .4522, | . 3637. | . 5679 , | .6920, | . 4918 , |

Table 2.4.10


Table 2.4.11
Traditional vpa Terminal populations from weighted Separable populations

| Table 13 | Spawning | stock | biomass at | age (sp | ing t |  | Tonnes |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1983, | 1984, | 1985, | 1986, | 1987. | 1988, | 1989, | 1990, | 1991, | 1992, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3, | 0, | 0, | 2770, | 4229, | 15181, | 6656, | 0, | 0, | 0, | 0 |
| 4, | 3207, | 26011, | 8036, | 16764, | 22629, | 16162, | 11101, | 7646, | 6253, | 2445, |
| 5, | 22466, | 18591, | 18773, | 30992, | 10365, | 36169, | 35511, | 23005, | 13476, | $7354{ }^{\prime}$ |
| 6, | 16756, | 38221, | 15946, | 23541, | 17605, | 14120, | 34050, | 20668, | 17658, | 12228, |
| 7, | 7979, | 10909, | 23408, | 13432, | 11913, | 11204, | 8622, | 21822, | 14133, | 10002, |
| 8, | 5385, | 5505, | 6789, | 11444, | 9123, | 6142, | 5651, | 6924, | 12812, | 9072, |
| 9, | 3470, | 3471, | 3241, | 3187, | 4461, | 4978, | 3754, | 3968, | 4041, | 8256, |
| 10, | 3535, | 1174, | 2159, | 1773, | 1408, | 2458, | 2817, | 2535, | 2693, | 2204, |
| 11, | 2172, | 2783, | 1022, | 1383, | 906, | 816, | 1094, | 1976, | 1703, | 1453, |
| 12, | 1442, | 1334, | 2149, | 541, | 604, | 734, | 503, | 672, | 1487, | 859, |
| 13. | 821, | 465, | 777. | 757, | 134, | 400, | 247, | 289, | 397, | 745, |
| 14. | 3218, | 539, | 273, | 307, | 407, | 0 , | 262, | 113, | 109, | 197, |
| +gp, | 6952, | 3147, | 7215, | 2945, | 1574, | 0, | 313, | 670, | 203, | 281, |
| TOTSPBIO, | 77404, | 112150, | 92559, | 111294, | 96311, | 99838, | 103925, | 90288, | 74965, | 55097, |

Table 2.4.12
Table 16 Summary (without SOP correction)
Traditional vpa Terminal populations from weighted Separable populations
1983,
1984,
1985,
1986,
1987,
1988,
1989,
1990,
1991,
1992,
Units, RECRUI TOTALBIO,

| 40567, | 178897, | 77404, | 39176, | . 3824 , |
| :---: | :---: | :---: | :---: | :---: |
| 25830, | 188315, | 112150, | 54665, | . 4877 , |
| 21968, | 186419, | 92559, | 44605, | . 3975 , |
| 61536, | 235276, | 111293, | 41716, | . 5053, |
| 47175, | 248028, | 96311. | 40020, | . 3998 , |
| 44373, | 256778, | 99838, | 45285, | . 4522, |
| 29093, | 227029, | 103925, | 44477, | . 3637 , |
| 23257, | 193230, | 90288, | 61561, | . 5679 , |
| 32210, | 162628, | 74965, | 54845, | . 6920, |
| 23307, | 142324, | 55097, | 36878, | . 4918 , |
| sands), | (Tonnes), | (Tonnes), | (Tonnes), |  |

Table 2.4.13
Prediction with management option table: Input data

| Year: 1993 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Stock <br> size | Natural mortality | Maturity ogive | Prop. of $F$ bef. spaw. | Prop. of M bef.spaw. | Height <br> in stock | Exploit. pattern | Weight <br> in catch |
| 3 | 29000.000 | 0.2000 | 0.0000 | 0.0000 | 0.0000 | 1.242 | 0.0255 | 1.242 |
| 4 | 23000.000 | 0.2000 | 0.2300 | 0.0000 | 0.0000 | 1.607 | 0.1953 | 1.607 |
| 5 | 17171.000 | 0.2000 | 0.6200 | 0.0000 | 0.0000 | 1.921 | 0.4654 | 1.921 |
| 6 | 5606.000 | 0.2000 | 0.8200 | 0.0000 | 0.0000 | 2.272 | 0.6371 | 2.272 |
| 7 | 2713.000 | 0.2000 | 0.9200 | 0.0000 | 0.0000 | 2.857 | 0.5565 | 2.857 |
| 8 | 1666.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 3.977 | 0.5683 | 3.977 |
| 9 | 1056.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 5.084 | 0.5181 | 5.084 |
| 10 | 819.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.251 | 0.5250 | 6.251 |
| 11 | 161.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.835 | 0.4679 | 6.835 |
| 12 | 96.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.039 | 0.4912 | 8.039 |
| 13 | 52.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.749 | 0.8891 | 7.749 |
| 14 | 32.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.528 | 0.5493 | 7.528 |
| 15+ | 24.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.422 | 0.5493 | 9.422 |
| Unit | Thous ands | - | - | - | - | Kilograms | - | Kilograms |


| Year: 1994 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruit. ment | Natural mortality | Maturity ogive | Prop. of $F$ bef.spaw. | Prop. of M bef.spat. | Height <br> in stock | Exploit. pattern | Height <br> in catch |
| 3 | 29000.000 | 0.2000 | 0.0000 | 0.0000 | 0.0000 | 1.242 | 0.0255 | 1.242 |
| 4 | . | 0.2000 | 0.1567 | 0.0000 | 0.0000 | 1.607 | 0.1953 | 1.607 |
| 5 | - | 0.2000 | 0.4400 | 0.0000 | 0.0000 | 1.921 | 0.4654 | 1.921 |
| 6 | . | 0.2000 | 0.7000 | 0.0000 | 0.0000 | 2.272 | 0.6371 | 2.272 |
| 7 | - | 0.2000 | 0.8300 | 0.0000 | 0.0000 | 2.857 | 0.5565 | 2.857 |
| 8 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 3.977 | 0.5683 | 3.977 |
| 9 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 5.084 | 0.5181 | 5.084 |
| 10 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.251 | 0.5250 | 6.251 |
| 11 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.835 | 0.4679 | 6.835 |
| 12 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.039 | 0.4912 | 8.039 |
| 13 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.749 | 0.8891 | 7.749 |
| 14 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.528 | 0.5493 | 7.528 |
| 15+ | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.422 | 0.5493 | 9.422 |
| Unit | Thousands | - | - | - | - | Kilograms | - | Kilograms |


| Year: 1995 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruitment | Natural mortality | Maturity ogive | Prop. of F bef.spaн. | Prop. of M bef.spaw. | Height in stock | Exploit. pattern | Height in catch |
| 3 | 29000.000 | 0.2000 | 0.0000 | 0.0000 | 0.0000 | 1.242 | 0.0255 | 1.242 |
| 4 | . | 0.2000 | 0.1567 | 0.0000 | 0.0000 | 1.607 | 0.1953 | 1.607 |
| 5 | - | 0.2000 | 0.4400 | 0.0000 | 0.0000 | 1.921 | 0.4654 | 1.921 |
| 6 | . | 0.2000 | 0.7000 | 0.0000 | 0.0000 | 2.272 | 0.6371 | 2.272 |
| 7 | . | 0.2000 | 0.8300 | 0.0000 | 0.0000 | 2.857 | 0.5565 | 2.857 |
| 8 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 3.977 | 0.5683 | 3.977 |
| 9 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 5.084 | 0.5181 | 5.084 |
| 10 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.251 | 0.5250 | 6.251 |
| 11 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.835 | 0.4679 | 6.835 |
| 12 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.039 | 0.4912 | 8.039 |
| 13 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.749 | 0.8891 | 7.749 |
| 14 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.528 | 0.5493 | 7.528 |
| 15+ | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.422 | 0.5493 | 9.422 |
| Unit | Thous ands | - | - | - | - | Kilograms | - | Kilograms |

Notes: Run name : SAIFR817
Date and time: 11MAY93:13:55

Table 2.4.14
Prediction with management option table

| Year: 1993 |  |  |  |  | Year: 1994 |  |  |  |  | Year: 1995 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\text { F }}{\text { factor }}$ | Reference F | stock biomass | Sp.stock biomass | Catch in weight | $\stackrel{\text { F }}{\text { Factor }}$ | Reference F | stock biomass | Sp.stock biomass | Catch in weight | stock biomass | Sp.stock biomass |
| $1.0000$ | $0.4845$ | $146320$ | $66385$ | $34092$ | 0.0000 <br> 0.1000 <br> 0.2000 <br> 0.4000 <br> 0.5000 <br> 0.6000 <br> 0.7000 <br> 0.8000 <br> 1.0000 <br> 1.1000 <br> 1.2000 <br> 1.4000 <br> 1.5000 <br> 1.6000 <br> 1.7000 <br> 1.9000 <br> 2.0000 | 0.0000 0.0485 0.0969 0.1454 0.1938 0.2423 0.2907 0.3392 0.3876 0.4361 0.4845 0.5330 0.5814 0.6299 0.6783 0.7268 0.7752 0.8237 0.8721 0.9206 0.9690 | 146311 | $\begin{aligned} & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \\ & 55056 \end{aligned}$ | $\begin{array}{r} 0 \\ 4198 \\ 8206 \\ 12033 \\ 15688 \\ 19180 \\ 22518 \\ 25709 \\ 28760 \\ 31679 \\ 34472 \\ 37146 \\ 39706 \\ 22158 \\ 44507 \\ 46758 \\ 48917 \\ 50987 \\ 52974 \\ 55880 \\ 56710 \end{array}$ | $\begin{aligned} & 183861 \\ & 179219 \\ & 174797 \\ & 170581 \\ & 166563 \\ & 162731 \\ & 159075 \\ & 155587 \\ & 152259 \\ & 149081 \\ & 146046 \\ & 143147 \\ & 140378 \\ & 137730 \\ & 135199 \\ & 132778 \\ & 130462 \\ & 128246 \\ & 126124 \\ & 12402 \\ & 122146 \end{aligned}$ | $\begin{aligned} & 83115 \\ & 79559 \\ & 76183 \\ & 72978 \\ & 69933 \\ & 67041 \\ & 64993 \\ & 61682 \\ & 59200 \\ & 56841 \\ & 54598 \\ & 52465 \\ & 50436 \\ & 48505 \\ & 46669 \\ & 44920 \\ & 43256 \\ & 41672 \\ & 40163 \\ & 38726 \\ & 37356 \end{aligned}$ |
| - | - | Tonnes | Tonnes | Tonnes | - | - | Tonnes | Tonnes | Tonnes | Tonnes | Tonnes |



Table 2.4.15
Yield per recruit: Input data

| Age | Recruit ment | $\left\|\begin{array}{c} \text { Natural } \\ \text { mortality } \end{array}\right\|$ | Maturity ogive | Prop. of F bef.spaw. | Prop. of M bef.spaw. | Height in stock | Exploit. pattern | Height in catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1.000 | 0.2000 | 0.0000 | 0.0000 | 0.0000 | 1.242 | 0.0255 | 1.242 |
| 4 |  | 0.2000 | 0.1567 | 0.0000 | 0.0000 | 1.607 | 0.1953 | 1.607 |
| 5 |  | 0.2000 | 0.4400 | 0.0000 | 0.0000 | 1.921 | 0.4654 | 1.921 |
| 6 | . | 0.2000 | 0.7000 | 0.0000 | 0.0000 | 2.272 | 0.6371 | 2.272 |
| 7 |  | 0.2000 | 0.8300 | 0.0000 | 0.0000 | 2.857 | 0.5565 | 2.857 |
| 8 | $\stackrel{\square}{*}$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 3.977 | 0.5683 | 3.977 |
| 9 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 5.084 | 0.5181 | 5.084 |
| 10 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.251 | 0.5250 | 6.251 |
| 11 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.835 | 0.4679 | 6.835 |
| 12 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.039 | 0.4912 | 8.039 |
| 13 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.749 | 0.8891 | 7.749 |
| 14 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.528 | 0.5493 | 7.528 |
| 15+ |  | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.422 | 0.5493 | 9.422 |
| Unit | Numbers | - | - | - | - | Kilograms | - | Kilograms |

Notes: Run name : SAIFR816
Date and time: 11MAY93:10:47

Table 2.4.16
Yield per recruit: Summary table

|  |  |  |  |  |  | 1 Jan | uary | Spawni | time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F Factor | $\begin{gathered} \text { Reference } \\ F \end{gathered}$ | Catch in numbers | Catch in weight | stock size | stock bionass | $\begin{aligned} & \text { Sp. stock } \\ & \text { size } \end{aligned}$ | Sp.stock biomass | $\begin{aligned} & \text { Sp. stock } \\ & \text { size } \end{aligned}$ | Sp.stock biomass |
| 0.0000 | 0.0000 | 0.000 | 0 | 5.517 | 20219 | 3.210 | 16554 | 3.210 | 16554 |
| 0.1000 | 0.0485 | 0.158 | 624 | 4.731 | 14797 | 2.455 | 11202 | 2.455 | 11202 |
| 0.2000 | 0.0969 | 0.259 | 913 | 4.226 | 11644 | 1.978 | 8114 | 1.978 | 8114 |
| 0.3000 | 0.1454 | 0.331 | 1054 | 3.874 | 9643 | 1.652 | 6173 | 1.652 | 6173 |
| 0.4000 | 0.1938 | 0.383 | 1126 | 3.613 | 8289 | 1.415 | 4875 | 1.495 | 4875 |
| 0.5000 | 0.2423 | 0.424 | 1162 | 3.411 | 7328 | 1.237 | 3966 | 1.237 | 3966 |
| 0.6000 | 0.2907 | 0.457 | 1180 | 3.259 | 6619 | 1.098 | 3306 | 1.098 | 3306 |
| 0.7000 | 0.3392 | 0.484 | 1188 | 3.120 | 6080 | 0.988 | 2812 | 0.988 | 2812 |
| 0.8000 | 0.3876 | 0.506 | 1191 | 3.011 | 5659 | 0.898 | 2434 | 0.898 | 2434 |
| 0.9000 | 0.4361 | 0.525 | 1192 | 2.918 | 5324 | 0.823 | 2138 | 0.823 | 2138 |
| 1.0000 | 0.4845 | 0.541 | 1191 | 2.838 | 5050 | 0.761 | 1902 | 0.761 | 1902 |
| 1.1000 | 0.5330 | 0.556 | 1190 | 2.769 | 4824 | 0.708 | 1711 | 0.708 | 1711 |
| 1.2000 | 0.5814 | 0.568 | 1189 | 2.708 | 4634 | 0.663 | 1554 | 0.663 | 1554 |
| 1.3000 | 0.6299 | 0.580 | 1187 | 2.654 | 4473 | 0.623 | 1423 | 0.623 | 1423 |
| 1.4000 | 0.6783 | 0.590 | 1187 | 2.605 | 4333 | 0.588 | 1314 | 0.588 | 1314 |
| 1.5000 | 0.7268 | 0.599 | 1186 | 2.561 | 4212 | 0.558 | 1220 | 0.558 | 1220 |
| 1.6000 | 0.7752 | 0.607 | 1185 | 2.521 | 4105 | 0.531 | 1140 | 0.531 | 1140 |
| 1.7000 | 0.8237 | 0.615 | 1185 | 2.485 | 4010 | 0.507 | 1079 | 0.507 | 1071 |
| 1.8000 | 0.8721 | 0.622 | 1185 | 2.451 | 3925 | 0.485 | 1010 | 0.485 | 1010 |
| 1.9000 | 0.9206 | 0.628 | 1185 | 2.421 | 3849 | 0.465 | 956 | 0.465 | 956 |
| 2.0000 | 0.9690 | 0.635 | 1185 | 2.392 | 3779 | 0.447 | 909 | 0.447 | 909 |
| - | - | Numbers | Grams | Numbers | Grams | Numbers | Grams | Numbers | Grams |
| Notes: $\begin{aligned} R \\ D \\ C\end{aligned}$ | Run name |  | SAIFR816 |  |  |  |  |  |  |
|  | Date and time |  | 11MAY93:10:47 |  |  |  |  |  |  |
|  | Computation of ref. F: Simple mean, age 4 - 8 |  |  |  |  |  |  |  |  |
|  | -0.1 factor |  | 0.3103 |  |  |  |  |  |  |
|  | -max factor |  | 0.8832 |  |  |  |  |  |  |
|  | -0.1 reference $F$ |  | 0.1504 |  |  |  |  |  |  |
|  | -max reference F |  | 0.4279 |  |  |  |  |  |  |
|  | ecruitment |  | single recruit |  |  |  |  |  |  |

Table 3.2.1 Nominal catch (tonnes) of SAITHE in Division Va, 1978-1992 as officially reported to ICES.

| Country | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 1,092 | 980 | 980 | 532 | 201 | 224 | 269 | 158 |
| Faroe Islands | 4,250 | 5,457 | 4,930 | 3,545 | 3,582 | 2,138 | 2,044 | 1,778 |
| France | - | - | - | - | 23 | - | - | - |
| Iceland | 44,327 | 57,066 | 52,436 | 54,921 | 65,124 | 55,904 | 60,406 | 55,135 |
| Norway | 3 | 1 | 1 | 3 | 1 | + | - | 1 |
| UK (Engl. \& Wales) | - | - | - | - | - | - | - | 29 |
| Total | 49,672 | 63,504 | 58,347 | 59,001 | 68,933 | 58,266 | 62,719 | 57,101 |


| Country | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | $1992^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 218 | 217 | 268 | 369 |  | 190236 | 195 |
| Faroe Islands | 783 | 2,139 | 2,596 | 2,246 | 2,905 | 2,690 | 1,570 |
| France | - | - | - | - | - | - | - |
| Iceland | 63,867 | 78,175 | 74,383 | 79,796 | 95,032 | 99,390 | 74,846 |
| Norway | - | - | - | - | - | - | - |
| UK (Engl. \& Wales) | - | - | - | - | - | - | - |
| Total | 64,868 | 80,531 | 77,247 | 82,411 | 98,127 | 102,316 | 76,611 |
| Total used in the | $66,376^{2}$ | - | - | $82,425^{3}$ | - | $102,737^{4}$ | $79,426^{5}$ |
| assessment |  |  |  |  |  |  |  |

${ }^{1}$ Preliminary.
${ }^{2}$ Additional catch by Faroe Islands of $1,508 \mathrm{t}$ included.
${ }^{3}$ Additional catch by Iceland of 14 t included.
${ }^{4}$ Additional catch by Iceland of 451 t included.
${ }^{5}$ Additional catch by Iceland of $2,815 \mathrm{t}$ included.

Table 3.2.2. Catch numbers at age Numbers*10**-3

Run title: Saithe in the Iceland Grounds (Fishing Area Va) (run name: STVPA9)
At 5-May-93 11:49
Traditional vpa using file input for terminal F

| year | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 4271 | 1534 | 6134 | 3041 | 2003 | 940 | 1116 | 836 | 1572 | 287 | 476 |
| 4 | 3936 | 4999 | 2314 | 11712 | 4825 | 2090 | 3400 | 2605 | 4395 | 5622 | 3031 |
| 5 | 4879 | 3861 | 2518 | 3586 | 7589 | 3283 | 5591 | 3563 | 5706 | 4999 | 10221 |
| 6 | 1961 | 3744 | 2902 | 2301 | 2158 | 4117 | 4326 | 6318 | 6518 | 6126 | 6736 |
| 7 | 588 | 1019 | 1869 | 1185 | 1324 | 1285 | 4931 | 3207 | 9136 | 6178 | 6694 |
| 8 | 311 | 419 | 797 | 559 | 642 | 739 | 1200 | 3008 | 2796 | 5934 | 5045 |
| 9 | 240 | 280 | 329 | 237 | 353 | 390 | 550 | 621 | 1843 | 1689 | 4272 |
| 10 | 246 | 245 | 271 | 145 | 164 | 235 | 330 | 343 | 461 | 1191 | 959 |
| 11 | 130 | 143 | 254 | 107 | 102 | 133 | 169 | 215 | 100 | 299 | 887 |
| 12 | 116 | 83 | 193 | 92 | 85 | 69 | 73 | 103 | 110 | 171 | 349 |
| 13 | 24 | 28 | 75 | 59 | 81 | 102 | 104 | 79 | 32 | 92 | 96 |
| 14 | 20 | 15 | 22 | 33 | 52 | 73 | 65 | 41 | 44 | 70 | 63 |
| +gp | 156 | 120 | 189 | 73 | 54 | 93 | 126 | 95 | 32 | 86 | 131 |
| TotN | 16878 | 16490 | 17867 | 23130 | 19432 | 13549 | 21981 | 21034 | 32745 | 32744 | 38960 |
| TotL | 50826 | 50514 | 48011 | 60257 | 60177 | 52003 | 75712 | 77549 | 115853 | 116601 | 136764 |
| SOPF | 102 | 90 | 80 | 94 | 95 | 95 | 83 | 82 | 80 | 75 | 71 |


| year | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 565 | 219 | 1269 | 526 | 329 | 59 | 548 | 480 | 275 | 203 | 508 |
| 4 | 3786 | 1768 | 3404 | 2997 | 3234 | 2099 | 1145 | 3764 | 2540 | 1325 | 1092 |
| 5 | 6524 | 5155 | 2348 | 2479 | 3045 | 2858 | 2435 | 1991 | 5214 | 3503 | 2804 |
| 6 | 8646 | 7077 | 3164 | 1829 | 2530 | 1801 | 1556 | 3616 | 2596 | 5404 | 4845 |
| 7 | 4178 | 7372 | 3452 | 3496 | 2154 | 1036 | 1275 | 1566 | 2169 | 1457 | 4293 |
| 8 | 3320 | 2616 | 3384 | 2994 | 2367 | 1068 | 961 | 718 | 1341 | 1415 | 1215 |
| 9 | 2098 | 1635 | 1303 | 1434 | 1530 | 1528 | 537 | 292 | 387 | 578 | 975 |
| 10 | 1421 | 871 | 824 | 710 | 1064 | 958 | 575 | 669 | 262 | 242 | 306 |
| 11 | 361 | 412 | 351 | 325 | 295 | 538 | 476 | 589 | 155 | 61 | 59 |
| 12 | 328 | 231 | 141 | 176 | 191 | 166 | 279 | 489 | 112 | 154 | 35 |
| 13 | 79 | 80 | 43 | 100 | 94 | 71 | 139 | 150 | 64 | 135 | 48 |
| 14 | 68 | 22 | 13 | 36 | 68 | 12 | 91 | 72 | 33 | 128 | 46 |
| + gp | 73 | 23 | 20 | 61 | 18 | 49 | 55 | 0 | 0 | 0 | 0 |
| TotN | 31447 | 27481 | 19716 | 17163 | 16919 | 12243 | 10072 | 14396 | 15148 | 14605 | 16226 |
| TotL | 111301 | 110888 | 97568 | 87954 | 82003 | 62026 | 49672 | 63504 | 58347 | 58986 | 68615 |
| SOPF | 76 | 82 | 102 | 100 | 97 | 98 | 97 | 98 | 101 | 102 | 101 |

(cont'd)

Table 3.2.2. Continued. Catch numbers at age Numbers*10**.3

| age/ |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| 3 | 107 | 53 | 376 | 3108 | 956 | 1318 | 315 | 143 | 198 | 241 |
| 4 | 1750 | 657 | 4014 | 1400 | 5135 | 5067 | 4313 | 1692 | 874 | 2921 |
| 5 | 1065 | 800 | 3366 | 4170 | 4428 | 6619 | 8471 | 5471 | 3613 | 3834 |
| 6 | 2455 | 1825 | 1958 | 2665 | 5409 | 3678 | 7309 | 10112 | 6844 | 4345 |
| 7 | 4454 | 2184 | 1536 | 1550 | 2915 | 2859 | 1794 | 6174 | 10772 | 3876 |
| 8 | 2311 | 3610 | 1172 | 1116 | 1348 | 1775 | 1928 | 1816 | 3223 | 4038 |
| 9 | 501 | 844 | 747 | 628 | 661 | 845 | 848 | 1087 | 858 | 1287 |
| 10 | 251 | 376 | 479 | 1549 | 496 | 226 | 270 | 380 | 838 | 349 |
| 11 | 38 | 291 | 74 | 216 | 498 | 270 | 191 | 151 | 228 | 196 |
| 12 | 12 | 135 | 23 | 51 | 58 | 107 | 135 | 55 | 40 | 56 |
| 13 | 2 | 185 | 72 | 30 | 27 | 24 | 76 | 76 | 6 | 53 |
| 14 | 4 | 226 | 71 | 14 | 48 | 1 | 10 | 37 | 5 | 15 |
| 4 gp | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| TotN | 12950 | 11186 | 13888 | 16497 | 21979 | 22789 | 25660 | 27194 | 27499 | 21211 |

Table 3.2.3. Catch weights at age (kg)
Run title: Saithe in the Iceland Grounds (Fishing Area Va) (run name: STVPA9)
At 5-May-93i 11:49
Traditional vpa using file input for terminal F

| year | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1.12 | 1.12 | 1.12 | 1.12 | 1.12 | 1.12 | 1.12 | 1.12 | 1.12 | 1.12 | 1.12 |
| 4 | 1.96 | 1.96 | 1.96 | 1.96 | 1.96 | 1.96 | 1.96 | 1.96 | 1.96 | 1.96 | 1.96 |
| 5 | 3.05 | 3.05 | 3.05 | 3.05 | 3.05 | 3.05 | 3.05 | 3.05 | 3.05 | 3.05 | 3.05 |
| 6 | 4.34 | 4.34 | 4.34 | 4.34 | 4.34 | 4.34 | 4.34 | 4.34 | 4.34 | 4.34 | 4.34 |
| 7 | 5.38 | 5.38 | 5.38 | 5.38 | 5.38 | 5.38 | 5.38 | 5.38 | 5.38 | 5.38 | 5.38 |
| 8 | 6.55 | 6.55 | 6.55 | 6.55 | 6.55 | 6.55 | 6.55 | 6.55 | 6.55 | 6.55 | 6.55 |
| 9 | 7.64 | 7.64 | 7.64 | 7.64 | 7.64 | 7.64 | 7.64 | 7.64 | 7.64 | 7.64 | 7.64 |
| 10 | 8.63 | 8.63 | 8.63 | 8.63 | 8.63 | 8.63 | 8.63 | 8.63 | 8.63 | 8.63 | 8.63 |
| 11 | 9.52 | 9.52 | 9.52 | 9.52 | 9.52 | 9.52 | 9.52 | 9.52 | 9.52 | 9.52 | 9.52 |
| 12 | 10.29 | 10.29 | 10.29 | 10.29 | 10.29 | 10.29 | 10.29 | 10.29 | 10.29 | 10.29 | 10.29 |
| 13 | 10.97 | 10.97 | 10.97 | 10.97 | 10.97 | 10.97 | 10.97 | 10.97 | 10.97 | 10.97 | 10.97 |
| 14 | 11.55 | 11.55 | 11.55 | 11.55 | 11.55 | 11.55 | 11.55 | 11.55 | 11.55 | 11.55 | 11.55 |
| +gp | 12.8 | 12.8 | 12.8 | 12.8 | 12.8 | 12.8 | 12.8 | 12.8 | 12.8 | 12.8 | 12.8 |
| SOPF | 1.0171 | 0.898 | 0.8041 | 0.9369 | 0.945 | 0.9469 | 0.8316 | 0.8193 | 0.7993 | 0.7475 | 0.711 |

(cont'd)

Table 3.2.3. Continued. Catch weights at age (kg)

| 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1.12 | 1.12 | 1.12 | 1.12 | 1.12 | 1.12 | 1.12 | 1.12 | 1.428 | 1.585 | 1.547 |
| 1.96 | 1.96 | 1.76 | 1.76 | 1.76 | 1.76 | 1.76 | 1.76 | 1.983 | 2.037 | 2.194 |
| 3.05 | 3.05 | 2.73 | 2.73 | 2.73 | 2.73 | 2.73 | 2.73 | 2.667 | 2.696 | 3.015 |
| 4.34 | 4.34 | 4.29 | 4.29 | 4.29 | 4.29 | 4.29 | 4.29 | 3.689 | 3.525 | 3.183 |
| 5.38 | 5.38 | 5.54 | 5.54 | 5.54 | 5.54 | 5.54 | 5.54 | 5.409 | 4.541 | 5.114 |
| 6.55 | 6.55 | 7.27 | 7.27 | 7.27 | 7.27 | 7.27 | 7.27 | 6.321 | 6.247 | 6.202 |
| 7.64 | 7.64 | 8.42 | 8.42 | 8.42 | 8.42 | 8.42 | 8.42 | 7.213 | 6.991 | 7.256 |
| 8.63 | 8.63 | 9.41 | 9.41 | 9.41 | 9.41 | 9.41 | 9.41 | 8.565 | 8.202 | 7.922 |
| 9.52 | 9.52 | 10 | 10 | 10 | 10 | 10 | 10 | 9.147 | 9.537 | 8.924 |
| 10.29 | 10.29 | 10.56 | 10.56 | 10.56 | 10.56 | 10.56 | 10.56 | 9.617 | 9.089 | 10.134 |
| 10.97 | 10.97 | 11.87 | 11.87 | 11.87 | 11.87 | 11.87 | 11.87 | 10.066 | 9.351 | 9.447 |
| 11.55 | 11.55 | 13.12 | 13.12 | 13.12 | 13.12 | 13.12 | 13.12 | 11.041 | 10.225 | 10.535 |
| 12.8 | 12.8 | 14 | 14 | 14 | 14 | 14 | 13.12 | 0 | 0 | 0 |
| 0.7552 | 0.8234 | 1.0184 | 0.9996 | 0.9706 | 0.9769 | 0.9691 | 0.984 | 1.0119 | 1.025 | 1.011 |


| year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1.53 | 1.653 | 1.609 | 1.45 | 1.516 | 1.261 | 1.403 | 1.647 | 1.224 | 1.269 |
| 4 | 2.221 | 2.432 | 2.172 | 2.19 | 1.715 | 2.017 | 2.021 | 1.983 | 1.939 | 1.909 |
| 5 | 3.171 | 3.33 | 3.169 | 2.959 | 2.67 | 2.513 | 2.194 | 2.566 | 2.432 | 2.579 |
| 6 | 4.27 | 4.681 | 3.922 | 4.402 | 3.839 | 3.476 | 3.047 | 3.021 | 3.16 | 3.287 |
| 7 | 4.107 | 5.466 | 4.697 | 5.488 | 5.081 | 4.719 | 4.505 | 4.077 | 3.634 | 4.143 |
| 8 | 5.984 | 4.973 | 6.411 | 6.406 | 6.185 | 5.932 | 5.889 | 5.744 | 4.967 | 4.849 |
| 9 | 7.565 | 7.407 | 6.492 | 7.57 | 7.33 | 7.523 | 7.172 | 7.038 | 6.629 | 6.158 |
| 10 | 8.673 | 8.179 | 8.346 | 6.487 | 8.025 | 8.439 | 8.852 | 7.564 | 7.704 | 7.936 |
| 19 | 8.801 | 8.77 | 9.401 | 9.616 | 7.974 | 8.748 | 10.17 | 8.854 | 9.061 | 8.34 |
| 12 | 9.039 | 8.831 | 10.335 | 10.462 | 9.615 | 9.559 | 10.392 | 10.645 | 9.117 | 8.986 |
| 13 | 11.138 | 11.01 | 11.027 | 11.747 | 12.246 | 10.824 | 12.522 | 11.674 | 10.922 | 11.576 |
| 14 | 9.818 | 11.127 | 10.644 | 11.902 | 11.656 | 14.099 | 11.923 | 11.431 | 11.342 | 9.417 |
| +gp | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| SOPF | 1.0312 | 1.0383 | 1.0628 | 1.0176 | 1.004 | 1 | 1.001 | 1.0061 | 1.0052 | 1.0019 |

Table 3.2.4. Icelandic Saithe. Maturity at age, data and fitted values.
Fitted:

| Year | a3 | a4 | as | a6 | a7 | a8 | a9 |
| :---: | ---: | :--- | ---: | :--- | ---: | ---: | ---: |
| 1980 | 0.0732 | 0.1121 | 0.2718 | 0.6202 | 0.785 | 0.9138 | 0.9661 |
| 1981 | 0.0855 | 0.1728 | 0.2502 | 0.4967 | 0.8119 | 0.9061 | 0.9655 |
| 1982 | 0.0798 | 0.1981 | 0.3558 | 0.4688 | 0.7229 | 0.9195 | 0.9623 |
| 1983 | 0.0695 | 0.1865 | 0.3515 | 0.5935 | 0.7 | 0.8734 | 0.9679 |
| 1984 | 0.0534 | 0.1649 | 0.3818 | 0.6333 | 0.7943 | 0.8605 | 0.948 |
| 1985 | 0.066 | 0.1299 | 0.343 | 0.6202 | 0.8203 | 0.9108 | 0.9422 |
| 1986 | 0.033 | 0.1574 | 0.283 | 0.5799 | 0.8119 | 0.9235 | 0.9643 |
| 1987 | 0.0195 | 0.0828 | 0.3305 | 0.5107 | 0.785 | 0.9195 | 0.9696 |
| 1988 | 0.0409 | 0.0499 | 0.1926 | 0.5663 | 0.734 | 0.9061 | 0.9679 |
| 1989 | 0.0574 | 0.1014 | 0.122 | 0.3868 | 0.7754 | 0.8795 | 0.9623 |
| 1990 | 0.0594 | 0.1386 | 0.2298 | 0.2686 | 0.6251 | 0.9012 | 0.9507 |
| 1991 | 0.0594 | 0.1431 | 0.2984 | 0.441 | 0.4926 | 0.8151 | 0.9602 |
| 1992 | 0.0594 | 0.1431 | 0.3063 | 0.5293 | 0.676 | 0.7197 | 0.921 |
| av.90-92 | 0.06 | 0.14 | 0.28 | 0.41 | 0.60 | 0.81 | 0.94 |

Data:

| Year | a3 | a4 | as | a6 | a7 | a8 | a9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1980 | 0 | 0.05 | 0.21 | 0.53 | 0.9 | 0.98 | 0.99 |
| 1981 | 0.04 | 0.06 | 0.32 | 0.6 | 0.76 | 0.97 | 1 |
| 1982 | 0 | 0 | 0.31 | 0.53 | 0.77 | 0.84 | 1 |
| 1983 | 0.33 | 0.5 | 0.45 | 0.86 | 0.54 | 0.97 | 0.97 |
| 1984 | 0.39 | 0.14 | 0.4 | 0.77 | 0.91 | 0.79 | 0.99 |
| 1985 | 0 | 0.76 | 0.62 | 0.65 | 0.67 | 0.82 | 0.84 |
| 1986 | 0 | 0.01 | 0.1 | 0.71 | 0.9 | 0.79 | 0.82 |
| 1987 | 0 | 0 | 0.13 | 0.52 | 0.73 | 0.97 | 0.98 |
| 1988 | 0 | 0.01 | 0.09 | 0.2 | 0.79 | 0.79 | 1 |
| 1989 | 0 | 0.04 | 0.13 | 0.38 | 0.79 | 0.97 | 0.99 |
| 1990 | 0 | 0.1 | 0.36 | 0.45 | 0.75 | 0.9 | 1 |
| 1991 | 0 | 0.06 | 0.24 | 0.42 | 0.4 | 0.58 | 0.79 |
| 1992 | 0 | 0.16 | 0.44 | 0.6 | 0.73 | 0.78 | 0.95 |
| 1993 | 0 | 0.16 | 0.44 | 0.6 | 0.73 | 0.78 | 0.95 |

Table 3.2.5. Proportion mature at age
Run title: Saithe in the Iceland Grounds (Fishing Area $V$ a) (run name: STVPA9)
At 5-May-93i 11:49 Traditional vpa using file input for terminal F

| year | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
| 5 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 |
| 6 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 |
| 7 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 |
| 8 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 |
| 9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| +gp | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |


| age/ |  |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| year | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0732 | 0.0855 | 0.0798 |
| 4 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.1121 | 0.1728 | 0.1981 |
| 5 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.2718 | 0.2502 | 0.3558 |
| 6 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.6202 | 0.4967 | 0.4688 |
| 7 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.785 | 0.8119 | 0.7229 |
| 8 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.9138 | 0.9061 | 0.9195 |
| 9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.9661 | 0.9655 | 0.9623 |
| 10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| + gp | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |


| year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.0695 | 0.0534 | 0.066 | 0.033 | 0.0195 | 0.0409 | 0.0574 | 0.0594 | 0.0594 | 0.0594 |
| 4 | 0.1865 | 0.1649 | 0.1299 | 0.1574 | 0.0828 | 0.0499 | 0.1014 | 0.1386 | 0.1431 | 0.1431 |
| 5 | 0.3515 | 0.3818 | 0.343 | 0.283 | 0.3305 | 0.1926 | 0.122 | 0.2298 | 0.2984 | 0.3063 |
| 6 | 0.5935 | 0.6333 | 0.6202 | 0.5799 | 0.5107 | 0.5663 | 0.3868 | 0.2686 | 0.441 | 0.5293 |
| 7 | 0.7 | 0.7943 | 0.8203 | 0.8119 | 0.785 | 0.734 | 0.7754 | 0.6251 | 0.4926 | 0.676 |
| 8 | 0.8734 | 0.8605 | 0.9108 | 0.9235 | 0.9195 | 0.9061 | 0.8795 | 0.9012 | 0.8151 | 0.7197 |
| 9 | 0.9679 | 0.948 | 0.9422 | 0.9643 | 0.9696 | 0.9679 | 0.9623 | 0.9507 | 0.9602 | 0.921 |
| 10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| + gp | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Table 3.2.6
TRU CPU JAM.- MAY (code: FLTOS)

|  | Year | Effort | Catch, age 4 | Catch, se 5 | Cateh, age 6 | Catch, age 7 | Catch, age 8 | Catch, ge 9 | Catch, age 10 | Catch, oge 11 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1980 | 100 | 0.0534 | 0.1919 | 0.0512 | 0.0280 | 0.0191 | 0.0040 | 0.0066 | . 0052 |  |
|  | 1981 | 100 | 0.0279 | 0.1012 | 0.2176 | 0.0473 | 0.0140 | 0.0035 | 0.0013 | . 0003 |  |
|  | 1982 | 100 | 0.0213 | 0.1374 | 0.0556 | 0.0638 | 0.0262 | 0.0164 | 0.0033 | . 0016 |  |
|  | 1983 | 100 | 0.0095 | 0.0278 | 0.0723 | 0.1359 | 0.0380 | 0.0037 | 0.0007 | . 0000 |  |
|  | 1984 | 100 | 0.0394 | 0.0516 | 0.0446 | 0.0298 | 0.0840 | 0.0053 | 0.0026 | . 0000 |  |
|  | 1985 | 100 | 0.0095 | 0.0589 | 0.0364 | 0.0524 | 0.0349 | 0.0182 | 0.0044 | . 0007 |  |
|  | 1986 | 100 | 0.0277 | 0.2478 | 0.0703 | 0.0203 | 0.0018 | 0.0000 | 0.0018 | . 0000 |  |
|  | 1987 | 100 | 0.1257 | 0.0864 | 0.1132 | 0.0440 | 0.0149 | 0.0039 | 0.0031 | . 0016 |  |
|  | 1988 | 100 | 0.0489 | 0.1013 | 0.0774 | 0.0700 | 0.0280 | 0.0206 | 0.0049 | . 0074 |  |
|  | 1989 | 100 | 0.0097 | 0.0434 | 0.1263 | 0.0531 | 0.0381 | 0.0179 | 0.0060 | . 0022 |  |
|  | 1990 | 100 | 0.0211 | 0.0484 | 0.1039 | 0.0899 | 0.0192 | 0.0123 | 0.0062 | . 0052 |  |
|  | 1991 | 100 | 0.0059 | 0.0387 | 0.0783 | 0.1292 | 0.0412 | 0.0135 | 0.0126 | . 0042 |  |
|  | 1992 | 100 | 0.0233 | 0.0479 | 0.0707 | 0.0731 | 0.0728 | 0.0184 | 0.0036 | . 0016 |  |
|  |  |  |  | 1R4 | rue | S. (code | PLYO8) |  |  |  |  |
| Year | Effort | Catch, age 3 | Catch, age 4 | Catch, age 5 | Catch, sge 6 | Catch, loge 7 | Catch. age 8 | Catch, age 9 | Carch, age 10 | Catch, age 19 | Catch, age 12 |
| 1980 | 100 | 0.0007 | 0.0203 | 0.0721 | 0.0413 | 0.0518 | 0.0263 | 0.0105 | 0.0098 | . 0058 | . 0040 |
| 1981 | 100 | 0.0114 | 0.0517 | 0.1159 | 0.1249 | 0.0270 | 0.0098 | 0.0031 | 0.0023 | . 0000 | . 00008 |
| 1982 | 100 | 0.0098 | 0.0242 | 0.0600 | 0.1590 | 0.0585 | 0.0103 | 0.0025 | 0.0015 | . 0003 | . 0008 |
| 1983 | 100 | 0.0045 | 0.1260 | 0.0386 | 0.0379 | 0.0932 | 0.0186 | 0.0013 | 0.0006 | . 0000 | . 0000 |
| 1984 | 100 | 0.0019 | 0.0139 | 0.0057 | 0.0368 | 0.0152 | 0.0780 | 0.0063 | 0.0082 | . 0076 | . 0038 |
| 1985 | 100 | 0.0105 | 0.1504 | 0.0900 | 0.0561 | 0.0197 | 0.0055 | 0.0105 | 0.0055 | . 0000 | . 0000 |
| 1986 | 100 | 0.0716 | 0.0284 | 0.0734 | 0.0400 | 0.0248 | 0.0144 | 0.0122 | 0.0160 | . 0077 | . 0025 |
| 1987 | 100 | 0.0236 | 0.0721 | 0.0676 | 0.0575 | 0.0409 | 0.0216 | 0.0112 | 0.0070 | . 0039 | . 0008 |
| 1988 | 100 | 0.0173 | 0.1087 | 0.1042 | 0.0592 | 0.0343 | 0.0959 | 0.0048 | 0.0007 | . 0007 | . 0003 |
| 1989 | 100 | 0.0022 | 0.0557 | 0.1058 | 0.0947 | 0.0156 | 0.0118 | 0.0088 | 0.0037 | . 0033 | . 0028 |
| 1990 | 100 | 0.0047 | 0.0305 | 0.0928 | 0.1423 | 0.0435 | 0.0064 | 0.0022 | 0.0006 | . 0006 | . 0000 |
| 1991 | 100 | 0.0026 | 0.0118 | 0.0440 | 0.0875 | 0.1380 | 0.0353 | 0.0041 | 0.0041 | . 0002 | . 0000 |
| 1992 | 100 | 0.0027 | 0.0497 | 0.0692 | 0.0677 | 0.0542 | 0.0522 | 0.0139 | 0.0022 | . 0011 | . 0002 |

PRU EPFORT (code: FLPO4)

| Year | Effort | Catch, age 3 | Catch, age 4 | Catch, age 5 | Catch. age 6 | Catch, age 7 | Catch, age 8 | Catch, age 9 | Catch, age 10 | Catch, -ge 19 | Catch, age 12 | Catch, age 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1980 | 26 | 275 | 2534 | 5153 | 2320 | 1525 | 704 | 176 | 154 | 101 | 67 | 132 |
| 1981 | 23 | 203 | 1325 | 3499 | 5232 | 1917 | 384 | 127 | 98 | 6 | 93 | 37 |
| 1982 | 26 | 508 | 1092 | 2683 | 48404 | 1857 | 400 | 181 | 92 | 26 | 29 | 176 |
| 1983 | 29 | 103 | 1589 | $9 \%$ | 1991 | 3563 | 1106 | 196 | 61 | 1 | 1 | 307 |
| 1984 | 35 | 53 | 657 | 680 | 1663 | 981 | 2705 | 331 | 361 | 279 | 135 | 616 |
| 1985 | 34 | 376 | 3934 | 3145 | 1765 | 1204 | 672 | 488 | 266 | 21 | 1 | 361 |
| 1986 | 32 | 3104 | 1370 | 4021 | 1965 | 1921 | 552 | 343 | 536 | 145 | 42 | 148 |
| 1987 | 43 | 956 | 5116 | 4289 | 4805 | 2008 | 842 | 337 | 239 | 141 | 27 | 85 |
| 1988 | 46 | 1318 | 5066 | 6596 | 3526 | 2368 | 959 | 447 | 90 | 127 | 35 | 19 |
| 1989 | 50 | 315 | 4302 | 8328 | 6944 | 1279 | 774 | 434 | 171 | 137 | 112 | 103 |
| 1990 | 62 | 143 | 1681 | 5378 | 9655 | 5381 | 1099 | 579 | 217 | 127 | 41 | 146 |
| 1991 | 59 | 191 | 848 | 3542 | 6664 | 10126 | 2484 | 496 | 575 | 152 | 20 | 5 |
| 1992 | 46 | 241 | 2925 | 3708 | 4163 | 3476 | 3181 | 894 | 230 | 8 | 24 | 49 |

Table 3.2.7. Icelandic Saithe. Retrospective analysis, $\mathrm{F}(4-9)$.
A.XSA1. XSA with shrinkage.

Tuning data: TRW cpue Jan.-May and Jun.-Des. 1980-1992.
First age at which $q$ is considered constant $=11$
Tapered weighting applied, power $=3$ over 20 years
Number of years for shrinking $=5$, ages $=4$
$\log (S . E$.$) used in shrinkage =0.5$

| YEAR | run87 | run88 | run89 | run90 | run91 | run92 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1976 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 |
| 1977 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
| 1978 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 |
| 1979 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
| 1980 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 |
| 1981 | 0.33 | 0.33 | 0.32 | 0.32 | 0.32 | 0.32 |
| 1982 | 0.41 | 0.41 | 0.40 | 0.40 | 0.40 | 0.40 |
| 1983 | 0.35 | 0.35 | 0.34 | 0.34 | 0.34 | 0.34 |
| 1984 | 0.32 | 0.33 | 0.31 | 0.32 | 0.32 | 0.32 |
| 1985 | 0.27 | 0.27 | 0.25 | 0.26 | 0.26 | 0.26 |
| 1986 | 0.30 | 0.30 | 0.27 | 0.28 | 0.28 | 0.28 |
| 1987 | 0.40 | 0.43 | 0.39 | 0.40 | 0.39 | 0.40 |
| 1988 |  | 0.38 | 0.39 | 0.40 | 0.39 | 0.40 |
| 1989 |  |  | 0.37 | 0.37 | 0.32 | 0.34 |
| 1990 |  |  |  | 0.47 | 0.36 | 0.39 |
| 1991 |  |  |  |  | 0.46 | 0.46 |
| 1992 |  |  |  |  |  | 0.40 |

B.XSA2 XSA with shrinkage.

Tuning data: TRW effort Jan.-Des. 1980-1992.
First age at which $q$ is considered constant $=11$
Tapered weighting applied, power $=3$ over 20 years
Number of years for shrinking $=5$, ages $=4$
$\log (S . E$.$) used in shrinkage =0.5$

| YEAR | run87 | run88 | run89 | run90 | run91 | run92 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1976 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 |
| 1977 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
| 1978 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 |
| 1979 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
| 1980 | 0.37 | 0.38 | 0.37 | 0.37 | 0.37 | 0.38 |
| 1981 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
| 1982 | 0.41 | 0.41 | 0.40 | 0.40 | 0.40 | 0.40 |
| 1983 | 0.34 | 0.35 | 0.34 | 0.34 | 0.34 | 0.34 |
| 1984 | 0.32 | 0.33 | 0.32 | 0.32 | 0.32 | 0.32 |
| 1985 | 0.28 | 0.28 | 0.26 | 0.26 | 0.26 | 0.26 |
| 1986 | 0.31 | 0.31 | 0.29 | 0.28 | 0.28 | 0.28 |
| 1987 | 0.41 | 0.45 | 0.42 | 0.41 | 0.40 | 0.40 |
| 1988 |  | 0.43 | 0.45 | 0.42 | 0.40 | 0.40 |
| 1989 |  |  | 0.44 | 0.39 | 0.33 | 0.34 |
| 1990 |  |  |  | 0.50 | 0.38 | 0.39 |
| 1991 |  |  |  |  | 0.46 | 0.44 |
| 1992 |  |  |  |  |  | 0.37 |

Table 3.2.7 (cont'd)
C.L/S1 Laurec -Shepherd with shrinkage.

Tuning data: TRW cpue Jan.-May and Jun.-Des. 1980-1992.
Oldest age $F=1.0$ * average of 4 younger ages.
Shrinking: Numer of years $=5, \log (S . E)=$.0.5 .
Tapered weighting applied, power $=3$ over 20 years.

| YEAR | run87 | run88 | run89 | run90 | run91 | run92 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1976 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 |
| 1977 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
| 1978 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 |
| 1979 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
| 1980 | 0.37 | 0.38 | 0.37 | 0.37 | 0.37 | 0.37 |
| 1981 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 |
| 1982 | 0.40 | 0.41 | 0.40 | 0.40 | 0.40 | 0.40 |
| 1983 | 0.33 | 0.34 | 0.33 | 0.34 | 0.34 | 0.34 |
| 1984 | 0.30 | 0.32 | 0.31 | 0.32 | 0.31 | 0.31 |
| 1985 | 0.24 | 0.26 | 0.25 | 0.26 | 0.25 | 0.26 |
| 1986 | 0.25 | 0.29 | 0.26 | 0.28 | 0.27 | 0.28 |
| 1987 | 0.30 | 0.41 | 0.38 | 0.41 | 0.39 | 0.40 |
| 1988 |  | 0.35 | 0.39 | 0.42 | 0.38 | 0.40 |
| 1989 |  |  | 0.38 | 0.40 | 0.30 | 0.34 |
| 1990 |  |  |  | 0.52 | 0.32 | 0.38 |
| 1991 |  |  |  |  | 0.38 | 0.42 |
| 1992 |  |  |  |  |  | 0.33 |

D.L/S2 Laurec -Shepherd with shrinkage.

Tuning data: TRW effort Jan.-Des. 1980-1992.
Oldest age $F=1.0$ * average of 4 younger ages.
Shrinking: Numer of years $=5, \log (S . E)=$.0.5 .
Tapered weighting applied, power $=3$ over 20 years.

| YEAR | run87 | run88 | run89 | run90 | run91 | run92 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1976 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 |
| 1977 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
| 1978 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 |
| 1979 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
| 1980 | 0.37 | 0.38 | 0.37 | 0.37 | 0.37 | 0.37 |
| 1981 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 |
| 1982 | 0.40 | 0.41 | 0.40 | 0.40 | 0.40 | 0.40 |
| 1983 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 |
| 1984 | 0.32 | 0.33 | 0.31 | 0.32 | 0.31 | 0.31 |
| 1985 | 0.27 | 0.27 | 0.26 | 0.26 | 0.25 | 0.26 |
| 1986 | 0.29 | 0.31 | 0.28 | 0.28 | 0.27 | 0.28 |
| 1987 | 0.37 | 0.45 | 0.43 | 0.41 | 0.39 | 0.40 |
| 1988 |  | 0.40 | 0.47 | 0.41 | 0.38 | 0.40 |
| 1989 |  |  | 0.48 | 0.38 | 0.31 | 0.33 |
| 1990 |  |  |  | 0.48 | 0.33 | 0.37 |
| 1991 |  |  |  |  | 0.39 | 0.41 |
| 1992 |  |  |  |  |  | 0.32 |

Tale 3.2.7 (cont'd)
E.L/S3 Laurec -Shepherd WITHOUT shrinkage.

Tuning data: TRW cpue Jan.-May and Jun.-Des. 1980-1992.
Oldest age $F=1.0^{*}$ average of 4 younger ages.
Tapered weighting applied, power $=3$ over 20 years.

| YEAR | run87 | run88 | run89 | run90 | run91 | run92 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1976 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 |
| 1977 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
| 1978 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 |
| 1979 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
| 1980 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 |
| 1981 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 |
| 1982 | 0.39 | 0.40 | 0.39 | 0.40 | 0.40 | 0.40 |
| 1983 | 0.31 | 0.33 | 0.32 | 0.34 | 0.34 | 0.34 |
| 1984 | 0.28 | 0.30 | 0.28 | 0.31 | 0.31 | 0.31 |
| 1985 | 0.22 | 0.24 | 0.21 | 0.26 | 0.25 | 0.26 |
| 1986 | 0.22 | 0.25 | 0.21 | 0.28 | 0.27 | 0.28 |
| 1987 | 0.27 | 0.39 | 0.30 | 0.41 | 0.39 | 0.40 |
| 1988 |  | 0.36 | 0.33 | 0.40 | 0.38 | 0.39 |
| 1989 |  |  | 0.42 | 0.45 | 0.30 | 0.32 |
| 1990 |  |  |  | 0.74 | 0.33 | 0.35 |
| 1991 |  |  |  |  | 0.40 | 0.37 |
| 1992 |  |  |  |  |  | 0.28 |

F.TSA Time series analysis.

Only catch in numbers.

| YEAR | run87 | run88 | run89 | run90 | run91 | run92 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1980 | 0.33 | 0.32 | 0.32 | 0.33 | 0.32 | 0.32 |
| 1981 | 0.30 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 |
| 1982 | 0.35 | 0.33 | 0.34 | 0.34 | 0.34 | 0.34 |
| 1983 | 0.30 | 0.29 | 0.29 | 0.30 | 0.29 | 0.29 |
| 1984 | 0.30 | 0.29 | 0.30 | 0.30 | 0.30 | 0.30 |
| 1985 | 0.28 | 0.27 | 0.28 | 0.28 | 0.28 | 0.28 |
| 1986 | 0.28 | 0.27 | 0.28 | 0.28 | 0.28 | 0.28 |
| 1987 | 0.37 | 0.34 | 0.37 | 0.37 | 0.36 | 0.37 |
| 1988 |  | 0.32 | 0.34 | 0.34 | 0.33 | 0.34 |
| 1989 |  |  | 0.30 | 0.30 | 0.28 | 0.30 |
| 1990 |  |  |  | 0.33 | 0.30 | 0.33 |
| 1991 |  |  |  |  | 0.32 | 0.35 |
| 1992 |  |  |  |  |  | 0.29 |

Table 3.2.8. Icelandic Saithe. $F(4-9)$ from different runs.

| Year | XSA1 | XSA2 | L/S1 | L/S2 | L/S3 | TSA |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1980 | 0.37 | 0.38 | 0.37 | 0.37 | 0.37 | 0.32 |
| 1981 | 0.32 | 0.33 | 0.32 | 0.32 | 0.32 | 0.29 |
| 1982 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.34 |
| 1983 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.29 |
| 1984 | 0.32 | 0.32 | 0.31 | 0.31 | 0.31 | 0.3 |
| 1985 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.28 |
| 1986 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 |
| 1987 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.36 |
| 1988 | 0.40 | 0.40 | 0.40 | 0.40 | 0.39 | 0.34 |
| 1989 | 0.34 | 0.34 | 0.34 | 0.33 | 0.32 | 0.3 |
| 1990 | 0.39 | 0.39 | 0.38 | 0.37 | 0.35 | 0.33 |
| 1991 | 0.46 | 0.44 | 0.42 | 0.41 | 0.37 | 0.35 |
| 1992 | 0.40 | 0.37 | 0.33 | 0.32 | 0.28 | 0.29 |

Table 3.2.9. Extended Survivors analysis

```
VPA Version 3.0 (MSDOS)
5-May-93î 12:25
Extended Survivors Analysis
Saithe in the Iceland Grounds (Fishing Area Va) (run name: XSA1)
CPUE data from file/users/ifad/ifapwork/wg_109/sai_icel/FLEET.X1
```



Terminal population estimation :

Tuning converged after 26 iterations

Final estimates shrunk towards mean of the last 5 years and the 4 oldest ages. S.E. of the mean to which the estimates are shrunk $=.500$ Prior weighting not applied

Total absolute residual between iterations 25 and $26=.000$

Regression weights

$$
\begin{array}{lllllllllll}
0.482 & 0.579 & 0.67 & 0.751 & 0.82 & 0.877 & 0.921 & 0.954 & 0.976 & 0.99 & 0.997
\end{array}
$$

Fishing mortalities

| year/age |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| 3 | 0.011 | 0.012 | 0.026 | 0.004 | 0.001 | 0.013 | 0.049 | 0.011 | 0.026 | 0.01 | 0.006 | 0.005 | 0.013 |
| 4 | 0.065 | 0.066 | 0.08 | 0.119 | 0.029 | 0.127 | 0.06 | 0.107 | 0.076 | 0.113 | 0.066 | 0.044 | 0.097 |
| 5 | 0.216 | 0.12 | 0.195 | 0.104 | 0.073 | 0.203 | 0.189 | 0.271 | 0.197 | 0.175 | 0.206 | 0.197 | 0.278 |
| 6 | 0.367 | 0.365 | 0.242 | 0.262 | 0.262 | 0.257 | 0.246 | 0.399 | 0.38 | 0.347 | 0.326 | 0.43 | 0.387 |
| 7 | 0.397 | 0.362 | 0.558 | 0.368 | 0.394 | 0.367 | 0.333 | 0.466 | 0.38 | 0.322 | 0.557 | 0.696 | 0.465 |
| 8 | 0.584 | 0.492 | 0.587 | 0.676 | 0.58 | 0.381 | 0.5 | 0.545 | 0.582 | 0.48 | 0.634 | 0.646 | 0.617 |
| 9 | 0.608 | 0.541 | 0.766 | 0.515 | 0.564 | 0.222 | 0.362 | 0.635 | 0.808 | 0.617 | 0.551 | 0.715 | 0.584 |
| 10 | 0.889 | 1.019 | 0.623 | 0.449 | 0.96 | 0.744 | 0.989 | 0.546 | 0.462 | 0.664 | 0.629 | 1.179 | 0.731 |
| 11 | 0.354 | 0.523 | 0.749 | 0.141 | 1.624 | 0.49 | 0.936 | 1.088 | 0.658 | 0.933 | 1.032 | 1.026 | 1.029 |
| 12 | 0.61 | 0.723 | 0.658 | 0.324 | 1.063 | 0.499 | 0.759 | 0.71 | 0.726 | 0.842 | 0.782 | 0.879 | 0.77 |

Table 3.2.9. Continued. Extended Survivors analysis

| Age / |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| YEAR | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | 10 | 11 | 12 | Plus GP |
| 1980 | 28100 | 44700 | 29600 | 9350 | 7310 | 3350 | 939 | 492 | 575 | 271 | 232 |
| 1981 | 19400 | 22800 | 34300 | 19500 | 5300 | 4020 | 1530 | 419 | 165 | 331 | 557 |
| 1982 | 21600 | 15700 | 17500 | 24900 | 11100 | 3020 | 2010 | 730 | 124 | 80 | 213 |
| 1983 | 31200 | 17300 | 11900 | 11800 | 16000 | 5200 | 1380 | 767 | 320 | 48 | 24 |
| 1984 | 45500 | 25400 | 12500 | 8760 | 7410 | 9060 | 2170 | 673 | 401 | 228 | 681 |
| 1985 | 33000 | 37200 | 20200 | 9550 | 5520 | 4090 | 4150 | 1010 | 211 | 65 | 398 |
| 1986 | 71500 | 26700 | 26800 | 13500 | 6050 | 3130 | 2290 | 2730 | 393 | 106 | 90 |
| 1987 | 95100 | 55800 | 20600 | 18200 | 8650 | 3550 | 1550 | 1300 | 830 | 126 | 161 |
| 1988 | 55700 | 77000 | 41000 | 12900 | 9990 | 4450 | 1680 | 675 | 619 | 229 | 53 |
| 1989 | 35900 | 44400 | 58400 | 27600 | 7200 | 5590 | 2040 | 615 | 348 | 262 | 164 |
| 1990 | 27400 | 29100 | 32500 | 40200 | 16000 | 4280 | 2840 | 900 | 259 | 112 | 227 |
| 1991 | 42900 | 22300 | 22300 | 21600 | 23700 | 7490 | 1860 | 1340 | 393 | 76 | 21 |
| 1992 | 20900 | 35000 | 17500 | 15000 | 11500 | 9690 | 3210 | 744 | 337 | 115 | 138 |

Terminal population estimates.

| 0 | 16900 | 26000 | 10800 | 8330 | 5930 | 4280 | 1470 | 293 | 99 | 96 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fleet : FLTO6: TRW CPUE JAN.-JUN. Log catchability residuals.

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | 0.61 | 0.65 | 0.73 | -0.09 | 0.86 | -0.86 | 0.49 | 1.26 | -0.96 | -1.04 | 0.11 | -0.88 | 0.03 |
| 5 | 0.31 | 0.04 | 1.03 | -0.19 | 0.37 | 0.04 | 1.19 | 0.42 | -0.13 | -1.34 | -0.64 | -0.47 | 0 |
| 6 | 0.17 | 0.88 | -0.74 | 0.26 | 0.09 | -0.22 | 0.09 | 0.3 | 0.26 | -0.01 | -0.59 | -0.23 | 0.03 |
| 7 | -0.44 | 0.39 | 0 | 0.35 | -0.39 | 0.45 | -0.6 | -0.15 | 0.16 | 0.19 | -0.03 | -0.04 | 0.07 |
| 8 | 0.1 | -0.41 | 0.52 | 0.37 | 0.59 | 0.47 | -2.1 | -0.2 | 0.2 | 0.26 | -0.13 | 0.08 | 0.39 |
| 9 | -0.14 | -0.65 | 0.51 | -0.55 | -0.77 | -0.21 | 0 | -0.64 | 0.97 | 0.59 | . 0.16 | 0.45 | 0.12 |
| 10 | 1.24 | -0.52 | . 0.06 | -1.24 | 0.09 | -0.07 | -1.71 | -0.65 | 0.5 | 0.81 | 0.43 | 0.91 | 0.23 |
| 11 | 0.02 | 0 | 0.72 | 0 | 0 | -0.56 | 0 | -1.12 | 0.34 | -0.28 | 0.95 | 0.31 | -0.23 |

Mean catchability and Standard error.

| Age | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | 10 | 11 | 12 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Q |  | -18.81 | -17.31 | -16.78 | -16.51 | -16.63 | -16.66 | -16.78 | -16.16 |  |
| S.E |  | 0.74 | 0.63 | 0.35 | 0.29 | 0.66 | 0.53 | 0.77 | 0.62 |  |

Fleet: FLTO8: TRW CPU JUNE Log catchability residuals.

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | -1.62 | 1.15 | 0.96 | -0.12 | -1.41 | 0.62 | 1.75 | 0.34 | 0.54 | -1.17 | 0.02 | -0.94 |
| 4 | -1.11 | 0.52 | 0.13 | 1.72 | -0.93 | 1.13 | -0.26 | -0.02 | 0.05 | -0.04 | -0.24 | -0.94 |
| 5 | -0.02 | 0.24 | 0.31 | 0.2 | -1.75 | 0.57 | 0.07 | 0.32 | 0.01 | -0.34 | 0.14 | -0.24 |
| 6 | 0.08 | 0.46 | 0.37 | -0.29 | -0.03 | 0.3 | -0.39 | -0.21 | 0.14 | -0.17 | -0.16 | 0.05 |
| 7 | 0.56 | 0.2 | 0.38 | 0.34 | -0.7 | -0.14 | -0.03 | 0.2 | -0.19 | -0.66 | -0.28 | 0.56 |
| 8 | 0.71 | -0.41 | -0.06 | 0.1 | 0.89 | -1.02 | 0.18 | 0.54 | 0.02 | -0.57 | -0.89 | 0.33 |
| 9 | 1.47 | -0.36 | -0.48 | -1.37 | 0 | -0.28 | 0.5 | 0.99 | 0.24 | 0.51 | -1.37 | -0.15 |
| 10 | 1.79 | 0.43 | -0.39 | -1.26 | 1.3 | 0.46 | 0.62 | 0.22 | -1.12 | 0.5 | -1.29 | 0.07 |
| 11 | 0.11 | 0 | 0 | 0 | 1.62 | 0 | 1.18 | -0.16 | -1.55 | 0.31 | -0.42 | 0 |
| 10 |  |  |  |  |  |  |  |  |  |  |  |  |

Mean catchability and Standard error.

| Age | $\mathbf{3}$ | $\mathbf{4}$ | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Q | -19.99 | -17.93 | -17.22 | -16.63 | -16.6 | -16.61 | -16.87 | -16.44 | -15.79 | -15.79 |
| S.E | 0.92 | 0.7 | 0.54 | 0.23 | 0.38 | 0.55 | 0.73 | 0.83 | 0.97 | 1.32 |

Table 3.2.10. Extended Survivors Analysis.
5-May-93i 12:48
Extended Survivors An VPA Version 3.0 (MSDOS)
Saithe in the Iceland Grounds (Fishing Area Va ) (run name: XSA3)
CPUE data from file /users/ifad/ifapwork/wg_109/sai_icel/FLEET.X3

Data for 1 fleets over 13 years
Age range from 3 to 12

| Fleet | Alpha | Beta |
| :---: | ---: | ---: |
| 04: TRW EFFORT | 0 | 1 |

Time series weights : Tapered time weighting applied

$$
\text { Power }=3 \text { over } 20 \text { years }
$$

Catchability a Catchability independent of stock size for all ages Catchability independent of age for ages $>=11$

Terminal population estimation :

Final estimates shrunk towards mean of the last 5 years and the 4 oidest ages.
S.E. of the mean to which the estimates are shrunk $=.500$

Prior weighting not applied
Tuning converged after 24 iterations

Total absolute residual between iterations
23 and $24=.000$
Regression weights $\begin{array}{lllllllllllllll}0.482 & 0.579 & 0.67 & 0.751 & 0.82 & 0.877 & 0.921 & 0.954 & 0.976 & 0.99 & 0.997 & 1 & 1\end{array}$

Fishing mortalities
Age

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 0.011 | 0.012 | 0.026 | 0.004 | 0.001 | 0.013 | 0.048 | 0.011 | 0.026 | 0.01 | 0.006 | 0.005 |
| 4 | 0.065 | 0.066 | 0.08 | 0.119 | 0.029 | 0.127 | 0.06 | 0.105 | 0.073 | 0.111 | 0.07 | 0.047 |
| 5 | 0.216 | 0.12 | 0.195 | 0.104 | 0.073 | 0.203 | 0.189 | 0.272 | 0.191 | 0.167 | 0.201 | 0.209 |
| 6 | 0.365 | 0.365 | 0.242 | 0.262 | 0.261 | 0.257 | 0.246 | 0.399 | 0.381 | 0.334 | 0.308 | 0.416 |
| 7 | 0.398 | 0.359 | 0.558 | 0.367 | 0.394 | 0.367 | 0.334 | 0.466 | 0.38 | 0.324 | 0.527 | 0.633 |
| 8 | 0.591 | 0.494 | 0.581 | 0.675 | 0.578 | 0.38 | 0.5 | 0.546 | 0.583 | 0.48 | 0.64 | 0.584 |
| 9 | 0.615 | 0.553 | 0.771 | 0.505 | 0.562 | 0.22 | 0.361 | 0.634 | 0.813 | 0.62 | 0.551 | 0.728 |
| 10 | 0.911 | 1.046 | 0.648 | 0.455 | 0.921 | 0.74 | 0.98 | 0.544 | 0.461 | 0.672 | 0.634 | 1.179 |
| 11 | 0.359 | 0.549 | 0.798 | 0.149 | 1.691 | 0.452 | 0.925 | 1.061 | 0.654 | 0.928 | 1.064 | 1.047 |
| 12 | 0.626 | 0.742 | 0.72 | 0.361 | 1.193 | 0.557 | 0.656 | 0.692 | 0.684 | 0.831 | 0.773 | 0.953 |
|  |  |  |  |  |  |  |  |  |  |  | 0.809 |  |
|  |  |  |  |  |  |  |  |  |  |  | $F(4-9)=$ | 0.3767 |

Table 3.2.10. Continued. Extended Survivors Analysis.
XSA population numbers

Terminal population estimates.

| 0 | 18400 | 26500 | 10000 | 7570 | 6310 | 5390 | 1850 | 277 | 99 | 89 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^4]Fleet : FLTO4: TRW EFFORT

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 0.5 | 0.69 | 1.39 | -0.69 | -1.92 | 0.39 | 1.78 | -0.01 | 0.81 | -0.21 | -0.94 | -1.12 |
| 4 | 0.28 | 0.43 | 0.49 | 0.68 | -0.82 | 0.66 | -0.03 | 0.25 | -0.18 | 0.16 | -0.52 | -0.89 |
| 5 | 0.63 | 0.17 | 0.42 | -0.26 | -0.9 | 0.24 | 0.26 | 0.34 | -0.05 | -0.29 | -0.32 | -0.23 |
| 6 | 0.53 | 0.74 | 0.14 | 0 | -0.2 | -0.07 | -0.26 | 0.11 | 0.08 | -0.15 | -0.44 | -0.07 |
| 7 | 0.32 | 0.43 | 0.17 | 0.26 | -0.43 | 0.08 | -0.03 | -0.05 | -0.13 | -0.52 | -0.05 | 0.25 |
| 8 | 0.47 | -0.25 | -0.02 | 0.4 | 0.5 | -0.15 | 0.03 | 0.06 | -0.09 | -0.66 | -0.18 | 0.02 |
| 9 | 0.51 | -0.2 | -0.17 | 0.05 | -0.03 | -0.42 | -0.05 | 0.15 | 0.36 | -0.02 | -0.33 | 0.09 |
| 10 | 0.8 | 0.69 | -0.2 | -0.88 | 1.01 | 0.27 | 0.14 | -0.41 | -0.83 | -0.08 | -0.45 | 0.39 |
| 11 | 0.15 | -1.2 | 0.55 | -4.04 | 1.77 | -0.72 | 0.91 | -0.11 | -0.15 | 0.53 | 0.61 | 0.41 |
| 17 |  |  |  |  |  |  |  |  |  |  |  |  |

Mean catchability and Standard error.

| Age | $\mathbf{3}$ | $\mathbf{4}$ | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Q | -8.29 | -6.28 | -5.44 | -4.92 | -4.86 | -4.91 | -5.05 | -4.7 | -4.87 | -4.87 |
| S.E | 0.96 | 0.48 | 0.37 | 0.26 | 0.25 | 0.29 | 0.22 | 0.53 | 1.23 | 1.6 |

Table 3.2.11 The results from the TSA

FINAL ESIIMATES
sTOCK

|  | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 44114. | 22626. | 16237. | 18788. | 27090. | 39370. | 28542. | 58585. | 81983. | 50304. | 33222. | 33345. | 43428. |
| 5 | 31210. | 33743. | 17358. | 12281. | 13934. | 21237. | 28615. | 21986. | 42981. | 62300. | 37704. | 25545. | 26037. |
| 6 | 10012. | 21020. | 23662. | 11746. | 8664. | 9970. | 14469. | 19748. | 14050. | 29218. | 42981. | 25884. | 17515. |
| 7 | 7664. | 5966. | 12753. | 14586. | 7347. | 5460. | 6245. | 9195. | 11238. | 8287. | 17871. | 26110. | 15029. |
| 8 | 3638. | 4249. | 3429. | 6682. | 8230. | 4051. | 3140. | 3678. | 4873. | 6288. | 4861. | 9387. | 12873. |
| 9 | 1196. | 1813. | 2236. | 1676. | 3397. | 3961. | 2203. | 1647. | 1809. | 2387. | 3347. | 2386. | 4495. |
| 10 | 748. | 607. | 944. | 1045. | 898. | 1788. | 2233. | 1171. | 767. | 838. | 1225. | 1721. | 1153. |

standard deviation of stock estimates

| 4 | 2714. | 1357. | 985. | 1136. | 1461. | 2628. | 1652. | 4171. | 6067. | 4931. | 3917. | 4205. | 13293. |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5 | 1809. | 2168. | 1070. | 782. | 891. | 1161. | 1940. | 1306. | 3086. | 4616. | 3838. | 3125. | 3358. |
| 6 | 791. | 1362. | 1608. | 806. | 572. | 660. | 872. | 1465. | 984. | 2308. | 3404. | 2906. | 2394. |
| 7 | 573. | 485. | 947. | 1114. | 559. | 392. | 438. | 633. | 1011. | 703. | 1618. | 2416. | 2141. |
| 8 | 344. | 367. | 329. | 666. | 737. | 386. | 256. | 298. | 441. | 693. | 487. | 1126. | 1768. |
| 9 | 196. | 235. | 261. | 236. | 473. | 544. | 261. | 189. | 213. | 324. | 471. | 343. | 818. |
| 10 | 129. | 118. | 165. | 192. | 159. | 336. | 363. | 186. | 138. | 155. | 229. | 315. | 245. |

## FISHING MORTALITY RATES

|  | 1980 | 1981 | 1982 | 1985 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 0.068 | 0.062 | 0.068 | 0.082 | 0.043 | 0.113 | 0.061 | 0.110 | 0.069 | 0.089 | 0.063 | 0.045 |
| 5 | 0.195 | 0.152 | 0.188 | 0.145 | 0.134 | 0.183 | 0.169 | 0.237 | 0.186 | 0.168 | 0.176 | 0.177 |
| 6 | 0.316 | 0.300 | 0.283 | 0.269 | 0.261 | 0.261 | 0.253 | 0.355 | 0.316 | 0.292 | 0.297 | 0.342 |
| 7 | 0.389 | 0.354 | 0.437 | 0.371 | 0.393 | 0.347 | 0.325 | 0.433 | 0.377 | 0.353 | 0.441 | 0.505 |
| 8 | 0.497 | 0.441 | 0.513 | 0.474 | 0.530 | 0.404 | 0.445 | 0.509 | 0.510 | 0.430 | 0.511 | 0.531 |
| 9 | 0.475 | 0.453 | 0.556 | 0.423 | 0.441 | 0.361 | 0.431 | 0.563 | 0.566 | 0.467 | 0.464 | 0.524 |
| 10 | 0.484 | 0.465 | 0.504 | 0.420 | 0.465 | 0.406 | 0.472 | 0.556 | 0.496 | 0.456 | 0.467 | 0.540 |

STAMDARD DEVIATIONS OF LOG(F)

| 4 | 0.17 | 0.17 | 0.13 | 0.14 | 0.17 | 0.24 | 0.18 | 0.29 | 0.33 | 0.27 | 0.21 | 0.18 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 0.08 | 0.09 | 0.08 | 0.07 | 0.06 | 0.09 | 0.08 | 0.09 | 0.10 | 0.12 | 0.19 | 0.13 |
| 6 | 0.12 | 0.09 | 0.11 | 0.09 | 0.11 | 0.19 | 0.09 | 0.10 | 0.08 | 0.11 | 0.12 | 0.13 |
| 7 | 0.11 | 0.10 | 0.10 | 0.11 | 0.10 | 0.10 | 0.11 | 0.09 | 0.10 | 0.09 | 0.11 | 0.13 |
| 8 | 0.12 | 0.12 | 0.12 | 0.11 | 0.13 | 0.12 | 0.13 | 0.12 | 0.11 | 0.12 | 0.12 | 0.14 |
| 9 | 0.15 | 0.14 | 0.14 | 0.14 | 0.14 | 0.15 | 0.15 | 0.14 | 0.14 | 0.14 | 0.15 | 0.15 |
| 10 | 0.16 | 0.17 | 0.16 | 0.16 | 0.16 | 0.16 | 0.17 | 0.16 | 0.16 | 0.16 | 0.17 | 0.17 |

STATE VECTORS

| 15 | -1.21 | -1.21 | -1.21 | -1.21 | -1.21 | -1.21 | -1.21 | -1.21 | -1.21 | -1.21 | -1.21 | -1.21 | -1.21 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 16 | -0.27 | -0.27 | -0.27 | -0.27 | -0.27 | -0.27 | -0.27 | -0.27 | -0.27 | -0.27 | -0.27 | -0.27 | -0.27 |
| 17 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 |
| 18 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 |
| 19 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 |
| 20 | -1.47 | -1.47 | -1.47 | -1.47 | -1.47 | -1.47 | -1.47 | -1.47 | -1.47 | -1.47 | -1.47 | -1.47 | -1.47 |

Table 3.2.12. Fishing mortality (F) at age
Run title: Saithe in the Iceland Grounds (Fishing Area Va) (run name: STVPA9)
At 5-May-93ï 11:49 Traditional vpa using file input for terminal F

| year/ |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| age | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 |
| $\mathbf{3}$ | 0.155 | 0.0561 | 0.0838 | 0.0626 | 0.0238 | 0.0149 | 0.0182 | 0.0156 | 0.0197 | 0.0048 | 0.0104 |
| $\mathbf{4}$ | 0.2023 | 0.2733 | 0.1123 | 0.2273 | 0.1337 | 0.0311 | 0.0684 | 0.0537 | 0.1061 | 0.0909 | 0.0638 |
| $\mathbf{5}$ | 0.3397 | 0.3121 | 0.2152 | 0.2541 | 0.2256 | 0.1266 | 0.1089 | 0.095 | 0.1593 | 0.1688 | 0.2369 |
| $\mathbf{6}$ | 0.3216 | 0.4754 | 0.4091 | 0.3113 | 0.2391 | 0.1837 | 0.2443 | 0.1727 | 0.2512 | 0.2564 | 0.359 |
| $\mathbf{7}$ | 0.2017 | 0.2757 | 0.4639 | 0.2911 | 0.2967 | 0.2188 | 0.3483 | 0.2882 | 0.403 | 0.4001 | 0.4919 |
| $\mathbf{8}$ | 0.1312 | 0.2163 | 0.3607 | 0.2439 | 0.2533 | 0.2686 | 0.3264 | 0.3716 | 0.4382 | 0.4994 | 0.6704 |
| $\mathbf{9}$ | 0.1143 | 0.1674 | 0.2631 | 0.1722 | 0.2395 | 0.2407 | 0.3283 | 0.2799 | 0.4103 | 0.5195 | 0.8357 |
| 10 | 0.1731 | 0.1636 | 0.2422 | 0.1771 | 0.173 | 0.2485 | 0.3297 | 0.3509 | 0.3462 | 0.5104 | 0.6377 |
| 11 | 0.1822 | 0.1441 | 0.2545 | 0.142 | 0.182 | 0.207 | 0.2846 | 0.3718 | 0.1627 | 0.3966 | 0.9208 |
| 12 | 0.4958 | 0.1694 | 0.2942 | 0.1375 | 0.1602 | 0.1803 | 0.1675 | 0.2812 | 0.3308 | 0.4576 | 1.1569 |
| 13 | 0.1881 | 0.2108 | 0.2276 | 0.137 | 0.1725 | 0.2932 | 0.4495 | 0.2753 | 0.1318 | 0.5097 | 0.5068 |
| 14 | 0.26 | 0.172 | 0.255 | 0.148 | 0.172 | 0.232 | 0.308 | 0.32 | 0.243 | 0.469 | 0.806 |
| +gp | 0.26 | 0.172 | 0.255 | 0.148 | 0.172 | 0.232 | 0.308 | 0.32 | 0.243 | 0.469 | 0.806 |
| F (4-9) | 0.2185 | 0.2867 | 0.304 | 0.25 | 0.2313 | 0.1783 | 0.2375 | 0.2102 | 0.2947 | 0.3225 | 0.4429 |


| year/ <br> age | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{3}$ | 0.0238 | 0.0093 | 0.0573 | 0.0226 | 0.0117 | 0.003 | 0.0123 | 0.0096 | 0.0109 | 0.0116 | 0.0252 |
| $\mathbf{4}$ | 0.1072 | 0.0966 | 0.1946 | 0.186 | 0.188 | 0.0959 | 0.074 | 0.1095 | 0.0646 | 0.0666 | 0.0796 |
| $\mathbf{5}$ | 0.1898 | 0.208 | 0.1795 | 0.212 | 0.2919 | 0.2524 | 0.1538 | 0.1777 | 0.2174 | 0.1191 | 0.1955 |
| $\mathbf{6}$ | 0.3226 | 0.3233 | 0.1905 | 0.207 | 0.3476 | 0.281 | 0.212 | 0.3574 | 0.3693 | 0.3662 | 0.2397 |
| $\mathbf{7}$ | 0.396 | 0.5031 | 0.2583 | 0.3319 | 0.4 | 0.2336 | 0.3289 | 0.342 | 0.3778 | 0.3657 | 0.5581 |
| $\mathbf{8}$ | 0.4861 | 0.4638 | 0.4571 | 0.3735 | 0.3934 | 0.354 | 0.3531 | 0.312 | 0.5534 | 0.4546 | 0.5941 |
| $\mathbf{9}$ | 0.6638 | 0.4725 | 0.4449 | 0.3573 | 0.3324 | 0.4772 | 0.3025 | 0.1715 | 0.276 | 0.4935 | 0.6592 |
| 10 | 0.7581 | 0.6498 | 0.465 | 0.4665 | 0.4916 | 0.3587 | 0.331 | 0.7625 | 0.2293 | 0.278 | 0.5315 |
| 11 | 0.5292 | 0.5162 | 0.5993 | 0.3366 | 0.3598 | 0.4977 | 0.3039 | 0.6698 | 0.3939 | 0.0763 | 0.1006 |
| 12 | 1.1404 | 0.7828 | 0.3331 | 0.6969 | 0.3386 | 0.3534 | 0.5249 | 0.5861 | 0.2524 | 0.8706 | 0.0572 |
| 13 | 0.9287 | 1.0084 | 0.3176 | 0.4184 | 1.0598 | 0.2025 | 0.5657 | 0.6027 | 0.1374 | 0.5457 | 0.7539 |
| $\mathbf{1 4}$ | 0.839 | 0.739 | 0.429 | 0.48 | 0.563 | 0.353 | 0.431 | 0.655 | 0.253 | 0.443 | 0.361 |
| +gp | 0.839 | 0.739 | 0.429 | 0.48 | 0.563 | 0.353 | 0.431 | 0.655 | 0.253 | 0.443 | 0.361 |
| F(4-9) | 0.3609 | 0.3446 | 0.2875 | 0.2779 | 0.3256 | 0.2823 | 0.2374 | 0.245 | 0.3097 | 0.3109 | 0.3877 |


| year/ |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| age |  | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| FBAR |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{3}$ | 0.0038 | 0.0013 | 0.0122 | 0.0476 | 0.0103 | 0.024 | 0.0082 | 0.0039 | 0.004 | 0.007 | 0.005 |
| $\mathbf{4}$ | 0.1134 | 0.0288 | 0.1236 | 0.0574 | 0.1034 | 0.0696 | 0.1019 | 0.0557 | 0.0299 | 0.074 | 0.0532 |
| 5 | 0.1039 | 0.0695 | 0.2013 | 0.1824 | 0.258 | 0.1879 | 0.1591 | 0.1815 | 0.1615 | 0.177 | 0.1733 |
| $\mathbf{6}$ | 0.2622 | 0.2594 | 0.2413 | 0.2427 | 0.3797 | 0.354 | 0.3259 | 0.2888 | 0.3612 | 0.297 | 0.3157 |
| 7 | 0.3618 | 0.3931 | 0.3623 | 0.3059 | 0.4552 | 0.3542 | 0.2921 | 0.5047 | 0.5686 | 0.358 | 0.4771 |
| $\mathbf{8}$ | 0.6742 | 0.5624 | 0.3794 | 0.4889 | 0.4766 | 0.5587 | 0.4303 | 0.5407 | 0.5419 | 0.433 | 0.5052 |
| $\mathbf{9}$ | 0.5262 | 0.5624 | 0.213 | 0.3596 | 0.6074 | 0.628 | 0.5737 | 0.4621 | 0.5343 | 0.433 | 0.4765 |
| 10 | 0.3495 | 0.9941 | 0.7376 | 0.903 | 0.5383 | 0.4308 | 0.4189 | 0.5521 | 0.7988 | 0.433 | 0.5946 |
| 11 | 0.1133 | 0.8849 | 0.5315 | 0.9141 | 0.8592 | 0.6412 | 0.804 | 0.4389 | 0.7724 | 0.433 | 0.5481 |
| 12 | 0.0267 | 0.7246 | 0.1497 | 0.8847 | 0.6774 | 0.4457 | 0.793 | 0.5724 | 0.1972 | 0.433 | 0.4009 |
| 13 | 0.0041 | 0.7003 | 1.1654 | 0.2965 | 2.3112 | 0.6727 | 0.6644 | 1.7174 | 0.1095 | 0.433 | 0.7533 |
| 14 | 0.123 | 0.826 | 0.646 | 0.75 | 1.096 | 0.548 | 0.67 | 0.82 | 0.469 | 0.433 | 0.574 |
| +gp | 0.123 | 0.826 | 0.646 | 0.75 | 1.096 | 0.548 | 0.67 | 0.82 | 0.469 | 0.433 |  |
| F 14-9) | 0.3403 | 0.3126 | 0.2535 | 0.2728 | 0.38 | 0.3587 | 0.3138 | 0.3389 | 0.3662 | 0.2953 |  |

Table 3.2.13. Stock number at age (start of year) Numbers*10**-3
Run title: Saithe in the Iceland Grounds (Fishing Area $V$ a) (run name: STVPA9)
At 5-May-93ï 11:49 Traditional vpa using file input for terminal F
year /

| age | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 32739 | 30999 | 84106 | 55195 | 94062 | 70223 | 68332 | 59672 | 88751 | 66328 | 50638 |
| 4 | 23635 | 22957 | 23995 | 63327 | 42446 | 75203 | 56645 | 54937 | 48100 | 71243 | 54046 |
| 5 | 18584 | 15807 | 14300 | 17559 | 41308 | 30403 | 59684 | 43309 | 42628 | 35418 | 53258 |
| 6 | 7826 | 10833 | 9472 | 9441 | 11151 | 26990 | 21932 | 43823 | 32245 | 29760 | 24495 |
| 7 | 3540 | 4645 | 5513 | 5152 | 5662 | 7188 | 18390 | 14065 | 30189 | 20537 | 18855 |
| 8 | 2784 | 2369 | 2887 | 2839 | 3152 | 3446 | 4728 | 10628 | 8632 | 16519 | 11270 |
| 9 | 2446 | 1999 | 1562 | 1648 | 1821 | 2003 | 2156 | 2793 | 6001 | 4560 | 8208 |
| 10 | 1703 | 1786 | 1384 | 983 | 1136 | 1173 | 1289 | 1271 | 1728 | 3260 | 2221 |
| 11 | 859 | 1173 | 1242 | 890 | 674 | 782 | 749 | 759 | 733 | 1001 | 1602 |
| 12 | 325 | 586 | 831 | 788 | 632 | 460 | 521 | 462 | 429 | 510 | 551 |
| 13 | 154 | 162 | 405 | 507 | 562 | 441 | 315 | 361 | 285 | 252 | 264 |
| 14 | 96 | 104 | 107 | 264 | 362 | 387 | 269 | 164 | 224 | 205 | 124 |
| + gp | 749 | 835 | 923 | 584 | 376 | 494 | 522 | 381 | 163 | 251 | 258 |


| age | 1972 | 1973 | 1974 | 9975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 26456 | 26103 | 25125 | 25927 | 31235 | 21672 | 49438 | 55214 | 27993 | 19432 | 22517 |
| 4 | 41029 | 21150 | 21173 | 19425 | 20752 | 25276 | 17690 | 39981 | 44772 | 22670 | 15726 |
| 5 | 41514 | 30178 | 15722 | 14270 | 13205 | 14078 | 18801 | 13451 | 29340 | 34364 | 17365 |
| 6 | 34407 | 28114 | 20067 | 10757 | 9452 | 8074 | 8955 | 13199 | 9219 | 19329 | 24977 |
| 7 | 14006 | 20402 | 16659 | 13580 | 7161 | 5466 | 4991 | 5931 | 7559 | 5217 | 10973 |
| 8 | 9439 | 7718 | 10100 | 10534 | 7978 | 3930 | 3543 | 2941 | 3450 | 4242 | 2963 |
| 9 | 4720 | 4753 | 3974 | 5235 | 5937 | 4407 | 2258 | 2038 | 1763 | 1624 | 2204 |
| 10 | 2914 | 1990 | 2426 | 2085 | 2998 | 3486 | 2239 | 1366 | 1405 | 1095 | 812 |
| 11 | 961 | 1118 | 851 | 1248 | 1071 | 1501 | 1994 | 1317 | 522 | 915 | 679 |
| 12 | 522 | 463 | 546 | 383 | 730 | 612 | 747 | 1205 | 552 | 288 | 694 |
| 13 | 142 | 137 | 173 | 320 | 156 | 426 | 352 | 362 | 549 | 351 | 99 |
| 14 | 130 | 46 | 41 | 103 | 173 | 44 | 285 | 164 | 162 | 392 | 166 |
| +gp | 140 | 48 | 63 | 175 | 46 | 181 | 172 | 0 | 0 | 0 | 0 |
| TOT | 176380 | 142219 | 116919 | 104043 | 100892 | 89154 | 111466 | 137168 | 127286 | 109919 | 99176 |
| year / |  |  |  |  |  |  |  |  |  |  |  |
| age | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| 3 | 31288 | 46504 | 34216 | 73743 | 102430 | 61351 | 42384 | 40123 | 55337 | 38115 | 0 |
| 4 | 17977 | 25520 | 38027 | 27675 | 57571 | 82999 | 49040 | 34417 | 32720 | 45127 | 30988 |
| 5 | 11890 | 13140 | 20301 | 27515 | 21395 | 42504 | 63382 | 36261 | 26651 | 26000 | 34312 |
| 6 | 11693 | 8774 | 10036 | 13590 | 18772 | 13534 | 28839 | 44261 | 24761 | 18565 | 17834 |
| 7 | 16090 | 7365 | 5542 | 6456 | 8729 | 10514 | 7777 | 17045 | 27147 | 14127 | 11294 |
| 8 | 5141 | 9174 | 4070 | 3159 | 3892 | 4533 | 6040 | 4755 | 8424 | 12587 | 8086 |
| 9 | 1339 | 2145 | 4280 | 2280 | 1586 | 1979 | 2123 | 3216 | 2267 | 4012 | 6683 |
| 10 | 934 | 648 | 1001 | 2832 | 1303 | 707 | 864 | 979 | 1659 | 1088 | 2130 |
| 11 | 391 | 539 | 196 | 392 | 940 | 623 | 376 | 466 | 462 | 611 | 578 |
| 12 | 503 | 286 | 182 | 94 | 129 | 326 | 269 | 138 | 246 | 175 | 324 |
| 13 | 537 | 401 | 113 | 128 | 32 | 53 | 171 | 99 | 64 | 165 | 93 |
| 14 | 38 | 438 | 163 | 29 | 78 | 3 | 22 | 72 | 15 | 47 | 88 |
| +gp | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 |
| TOT | 97820 | 114933 | 118128 | 157893 | 216856 | 219126 | 201289 | 181831 | 179752 | 160618 | 112434 |

Table 3.2.14. Summary (without SOP correction)
Run title: Saithe in the Iceland Grounds (Fishing Area Va ) (run name: STVPA9)
At 5-May-93 11:49 Traditional vpa using file input for terminal F

| year | recruits | total bio | total <br> spbio | landings | Fbar age4-9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1961 | 32739 | 268195 | 129872 | 50826 | 0.2185 |
| 1962 | 30999 | 277003 | 142184 | 50514 | 0.2867 |
| 1963 | 84106 | 336274 | 144613 | 48011 | 0.304 |
| 1964 | 55195 | 380521 | 141947 | 60257 | 0.25 |
| 1965 | 94062 | 465836 | 165999 | 60177 | 0.2313 |
| 1966 | 70223 | 550397 | 214136 | 52003 | 83 |
| 1967 | 68332 | 648019 | 279292 | 75712 | 0.2375 |
| 1968 | 59672 | 697092 | 345778 | 77549 | 0.2102 |
| 196 | 88 | 762546 | 395280 | 3 | 7 |
| 19 | 66328 | 755885 | 399454 | 116601 | 0.3225 |
| 1971 | 50638 | 717074 | 381384 | 136764 | 0.4429 |
| 1972 | 26456 | 603752 | 334676 | 111301 | 0.3609 |
| 1973 | 26103 | 516600 | 313690 | 110888 | 0.3446 |
| 1974 | 25125 | 434163 | 288072 | 97568 | 0.2875 |
| 197 | 25927 | 387979 | 264698 | 87954 | 0.2779 |
| 197 | 31235 | 347146 | 227234 | 82003 | 0.3256 |
| 19 | 21672 | 300237 | 186664 | 62026 | 0.2823 |
| 197 | 49438 | 307896 | 165549 | 49672 | 0.2374 |
| 1979 | 55214 | 342138 | 159512 | 63504 | 0.245 |
| 1980 | 27993 | 345856 | 148978 | 58347 | 0.3097 |
| 1981 | 19432 | 326915 | 149456 | 58986 | 0.3109 |
| 1982 | 22517 | 313893 | 160580 | 68615 | 0.3877 |
| 1983 | 31288 | 304838 | 159023 | 58266 | 0.3403 |
| 1984 | 46504 | 347361 | 165182 | 62719 | 0.3126 |
| 1985 | 34216 | 336319 | 147205 | 57101 | 0.2535 |
| 1986 | 73743 | 406678 | 159875 | 66376 | 0.2728 |
| 1987 | 102430 | 483747 | 155600 | 80559 | 0.38 |
| 1988 | 61351 | 505167 | 149068 | 77247 | 0.3587 |
| 1989 | 42384 | 488019 | 154199 | 82425 | 0.3138 |
| 1990 | 40123 | 495508 | 175235 | 98130 | 0.3389 |
| 1991 | 55337 | 449824 | 184145 | 102737 | 0.3662 |
| 1992 | 38115 | 424506 | 191930 | 79426 | 0.2953 |
| Units | (Thousan | Tonnes) | (Tonnes) | Tonnes) |  |

Table 3.2.15
Prediction with management option table: Input data

| Year: 1993 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | $\begin{aligned} & \text { Stock } \\ & \text { size } \end{aligned}$ | Natural mortality | Maturity ogive | Prop. of $F$ bef.spaw. | Prop. of M bef. span. | Weight in stock | Exploit. pattern | Height in catch |
| 3 | 40.000 | 0.2000 | 0.0600 | 0.0000 | 0.0000 | 1.380 | 0.0044 | 1.380 |
| 4 | 32.532 | 0.2000 | 0.1400 | 0.0000 | 0.0000 | 1.987 | 0.0464 | 1.987 |
| 5 | 24.802 | 0.2000 | 0.3100 | 0.0000 | 0.0000 | 2.725 | 0.1523 | 2.725 |
| 6 | 17.834 | 0.2000 | 0.5400 | 0.0000 | 0.0000 | 3.463 | 0.2775 | 3.463 |
| 7 | 11.294 | 0.2000 | 0.7500 | 0.0000 | 0.0000 | 4.522 | 0.4219 | 4.522 |
| 8 | 8.086 | 0.2000 | 0.8500 | 0.0000 | 0.0000 | 5.338 | 0.4473 | 5.338 |
| 9 | 6.683 | 0.2000 | 0.8700 | 0.0000 | 0.0000 | 6.231 | 0.4228 | 6.231 |
| 10 | 2.130 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.735 | 0.5304 | 7.735 |
| 11 | 0.578 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.752 | 0.4867 | 8.752 |
| 12 | 0.324 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.583 | 0.3519 | 9.583 |
| 13 | 0.093 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 11.391 | 0.6644 | 11.391 |
| 14 | 0.088 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 10.730 | 0.5086 | 10.730 |
| Unit | Millions | - | $\bullet$ | $\bullet$ | - | Kilograms | - | Kilograms |


| Year: 1994 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruitment | Natural mortality | Maturity ogive | Prop. of F bef.spaw. | Prop.of M bef. spaw. | Weight in stock | Exploit. pattern | Height <br> in catch |
| 3 | 40.000 | 0.2000 | 0.0600 | 0.0000 | 0.0000 | 1.380 | 0.0044 | 1.380 |
| 4 | . | 0.2000 | 0.1400 | 0.0000 | 0.0000 | 2.037 | 0.0464 | 2.037 |
| 5 | . | 0.2000 | 0.3100 | 0.0000 | 0.0000 | 2.775 | 0.1523 | 2.775 |
| 6 | . | 0.2000 | 0.5400 | 0.0000 | 0.0000 | 3.624 | 0.2775 | 3.624 |
| 7 | . | 0.2000 | 0.7600 | 0.0000 | 0.0000 | 4.618 | 0.4219 | 4.618 |
| 8 | - | 0.2000 | 0.8900 | 0.0000 | 0.0000 | 5.728 | 0.4473 | 5.728 |
| 9 | - | 0.2000 | 0.9400 | 0.0000 | 0.0000 | 6.617 | 0.4228 | 6.617 |
| 10 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.735 | 0.5304 | 7.735 |
| 11 |  | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.752 | 0.4867 | 8.752 |
| 12 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.583 | 0.3519 | 9.583 |
| 13 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 11.391 | 0.6644 | 11.391 |
| 14 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 10.730 | 0.5086 | 10.730 |
| Unit | millions | - | - | - | - | Kilograms | - | Kilograms |


| Year: 1995 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruitment | Natural mortality | Maturity ogive | Prop. of F bef.spaw. | Prop. of M bef.spaw. | Height in stock | Exploit. pattern | Weight in catch |
| 3 | 40.000 | 0.2000 | 0.0600 | 0.0000 | 0.0000 | 1.380 | 0.0044 | 1.380 |
| 4 | . | 0.2000 | 0.1400 | 0.0000 | 0.0000 | 2.037 | 0.0464 | 2.037 |
| 5 | . | 0.2000 | 0.3100 | 0.0000 | 0.0000 | 2.807 | 0.9523 | 2.807 |
| 6 | - | 0.2000 | 0.5400 | 0.0000 | 0.0000 | 3.680 | 0.2775 | 3.680 |
| 7 | - | 0.2000 | 0.7600 | 0.0000 | 0.0000 | 4.674 | 0.4219 | 4.674 |
| 8 | . | 0.2000 | 0.8900 | 0.0000 | 0.0000 | 5.806 | 0.4473 | 5.806 |
| 9 | . | 0.2000 | 0.9500 | 0.0000 | 0.0000 | 6.927 | 0.4228 | 6.927 |
| 10 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.735 | 0.5304 | 7.735 |
| 11 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.752 | 0.4867 | 8.752 |
| 12 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.583 | 0.3519 | 9.583 |
| 13 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 11.391 | 0.6644 | 11.391 |
| 14 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 10.730 | 0.5086 | 10.730 |
| Unit | Millions | - | - | - | - | Kilograms | - | Kilograms |

Notes: Run name : PRED 1
Date and time: OSMAY93:14:02

Table 3.2.16
Prediction with management option table

| Year: 1993 |  |  |  |  | Year: 1994 |  |  |  |  | Year: 1995 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F Factor | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | Factor | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | Stock biomass | Sp.stock <br> biomass |
| $1.1871$ | $0.3499$ | $411705$ | $204526$ | $90000$ | $\begin{aligned} & 0.6000 \\ & 0.7000 \\ & 0.8000 \\ & 0.9000 \\ & 1.0000 \\ & 1.1000 \\ & 1.2000 \end{aligned}$ | $\begin{aligned} & 0.1768 \\ & 0.2063 \\ & 0.2358 \\ & 0.2652 \\ & 0.2947 \\ & 0.3242 \\ & 0.3536 \end{aligned}$ | $397949$ | $\begin{aligned} & 195754 \\ & 195754 \\ & 195754 \\ & 195754 \\ & 195754 \\ & 195754 \\ & 195754 \end{aligned}$ | $\begin{aligned} & 47259 \\ & 54197 \\ & 60894 \\ & 67361 \\ & 73607 \\ & 79640 \\ & 85470 \end{aligned}$ | 426707 <br> 419048 <br> 411658 <br> 404526 <br> 397642 <br> 390996 <br> 384579 | $\begin{aligned} & 216815 \\ & 210486 \\ & 204398 \\ & 198540 \\ & 192905 \\ & 187482 \\ & 182262 \end{aligned}$ |
| - | - | Tonnes | Tonnes | Tonnes | - | - | Tonnes | Tomes | Tonnes | Tonnes | Tonnes |

Notes: Run name
: PRED 1
Date and time : O5mAY93:14:02
Computation of ref. F: Simple mean, age 4 - 9
Basis for 1993 : TAC constraints

Table 3.2.17
Yield per recruit: Input data

| Age | Recruitment | Natural mortality | Maturity ogive | Prop. of $F$ bef.spaн. | Prop. of M bef. span. | Height in stock | Exploit. pattern | Weight in catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1.000 | 0.2000 | 0.0600 | 0.0000 | 0.0000 | 1.471 | 0.0300 | 1.471 |
| 4 | . | 0.2000 | 0.1400 | 0.0000 | 0.0000 | 2.063 | 0.2200 | 2.063 |
| 5 | - | 0.2000 | 0.2900 | 0.0000 | 0.0000 | 2.766 | 0.5200 | 2.766 |
| 6 | - | 0.2000 | 0.5200 | 0.0000 | 0.0000 | 3.654 | 0.9500 | 3.654 |
| 7 | - | 0.2000 | 0.7300 | 0.0000 | 0.0000 | 4.691 | 1.2300 | 4.691 |
| 8 | - | 0.2000 | 0.8800 | 0.0000 | 0.0000 | 5.855 | 1.7000 | 5.855 |
| 9 | - | 0.2000 | 0.9600 | 0.0000 | 0.0000 | 7.103 | 1.7000 | 7.103 |
| 10 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.069 | 1.7000 | 8.069 |
| 11 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.026 | 1.7000 | 9.026 |
| 12 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.679 | 1.7000 | 9.679 |
| 13 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 11.042 | 1.7000 | 11.042 |
| 14 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 11.166 | 1.7000 | 11.166 |
| Unit | Numbers | - | - | - | - | Kilograms | - | Kilograms |

Notes: Run name : YIELD3
Date and time: 06MAY93:10:02

Table 3.3.1 Nominal catch (tonnes) of COD in Division Va, 1978-1992, as officially reported to ICES.

| Country | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 1,314 | 1,485 | 840 | 1,321 | 236 | 188 | 254 |
| Faroe Is. | 7,069 | 6,163 | 4,802 | 6,183 | 5,297 | 5,626 | 2,041 |
| Iceland | 319,648 | 360,077 | 429,044 | 461,038 | 382,297 | 293,890 | 281,481 |
| Norway | 189 | 288 | 358 | 559 | 557 | 109 | 90 |
| UK (Engl. \& Wales) | - | - | - | - | - | - | 2 |
| Total | 328,220 | 368,013 | 435,044 | 469,101 | 388,387 | 299,813 | 283,868 |


| Country | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | $1992^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 207 | 226 | 597 | 365 | 309 | 260 | 548 | 222 |
| Faroe Islands | 2,203 | 2,554 | 1,848 | 1,966 | 2,012 | 1,782 | 1,323 | 883 |
| Iceland | 322,810 | 365,852 | 389,808 | 375,741 | 353,985 | 333,348 | 306,697 | 255,844 |
| Norway | 46 | 1 | 4 | 4 | 3 | - | - | - |
| UK (Engl. \& Wales) | 1 | - | - | - | - | - | - | - |
| Total | 325,267 | 368,633 | 392,257 | 378,076 | 356,309 | 335,390 | 308,568 | 256,949 |
| Working Group |  |  |  |  |  |  | $310,499^{2}$ | $265,300^{3}$ |
| estimate |  |  |  |  |  |  |  |  |

${ }^{1}$ Preliminary.
${ }^{2}$ Additional catch by Iceland of $1,931 \mathrm{t}$ included.
${ }^{3}$ Additional catch by Iceland of $8,350 \mathrm{t}$ included.

Table 3.3.2


Table 3.3.3

| Proportion of | F | and M before spawning: |
| ---: | ---: | :---: |
| Age | PropF | PropM |
| 3 | 0.085 | 0.250 |
| 4 | 0.180 | 0.250 |
| 5 | 0.248 | 0.250 |
| 6 | 0.296 | 0.250 |
| 7 | 0.382 | 0.250 |
| 8 | 0.437 | 0.250 |
| 9 | 0.477 | 0.250 |
| 10 | 0.477 | 0.250 |
| 11 | 0.477 | 0.250 |
| 12 | 0.477 | 0.250 |
| 13 | 0.477 | 0.250 |
| 14 | 0.477 | 0.250 |

Table 3.3.4

Virtual Population analysis : Weight at age in the catches, in grams Run 3.1993.

| Age | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 1030 | 1050 | 1100 | 1350 | 1259 | 1289 | 1408 |
| 4 | 1420 | 1710 | 1770 | 1780 | 1911 | 1833 | 1956 |
| 5 | 2470 | 2430 | 2780 | 2650 | 2856 | 2929 | 2642 |
| 6 | 3600 | 3820 | 3760 | 4100 | 4069 | 3955 | 3999 |
| 7 | 1900 | 5240 | 5450 | 5070 | 5777 | 5726 | 5548 |
| 8 | 6110 | 5660 | 6690 | 6730 | 6636 | 6806 | 6754 |
| 9 | 6670 | 7150 | 7570 | 8250 | 7685 | 9041 | 3299 |
| 10 | 6750 | 7760 | 8580 | 9610 | 9730 | 10865 | 9312 |
| 11 | 7430 | 8190 | 8810 | 11540 | 11703 | 13068 | 13130 |
| 12 | 7950 | 9780 | 9780 | 11430 | 14394 | 11982 | 13418 |
| 13 | 10170 | 12380 | 10090 | 14060 | 17456 | 19062 | 13540 |
| 14 | 17000 | 14700 | 11000 | 16180 | 24116 | 21284 | 20072 |
|  |  |  |  |  |  |  |  |
| A99 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| 3 | 1392 | 1180 | 1006 | 1095 | 1288 | 1407 | 1459 |
| 4 | 1862 | 1651 | 1550 | 1599 | 1725 | 1971 | 1961 |
| 5 | 2733 | 2260 | 2246 | 2275 | 2596 | 2576 | 2844 |
| 6 | 3768 | 3293 | 3104 | 3021 | 3581 | 3650 | 3593 |
| 7 | 5259 | 4483 | 4258 | 4096 | 4371 | 4976 | 4635 |
| 8 | 6981 | 5821 | 5386 | 5481 | 5798 | 6372 | 6155 |
| 9 | 8037 | 7739 | 6682 | 7049 | 7456 | 8207 | 7503 |
| 10 | 10731 | 9422 | 9141 | 8128 | 9851 | 10320 | 9084 |
| 11 | 12301 | 11374 | 11963 | 11009 | 11052 | 12197 | 10356 |
| 12 | 17281 | 12784 | 14226 | 13972 | 14338 | 14683 | 15283 |
| 13 | 14893 | 12514 | 17287 | 15882 | 15273 | 16175 | 14540 |
| 14 | 19069 | 19069 | 16590 | 18498 | 16660 | 19050 | 15017 |
|  |  |  |  |  |  |  |  |
| A98 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1793 |
| 3 | 1316 | 1438 | 1186 | 1290 | 1309 | 1303 | 1272 |
| 4 | 1956 | 1805 | 1813 | 1704 | 1899 | 1782 | 1384 |
| 5 | 2686 | 2576 | 2590 | 2383 | 2475 | 2503 | 2528 |
| 6 | 3894 | 3519 | 3915 | 3034 | 3159 | 3320 | 3613 |
| 7 | 4716 | 4930 | 5210 | 4624 | 3792 | 4488 | 4651 |
| 8 | 6257 | 6001 | 6892 | 6521 | 5680 | 5690 | 6135 |
| 9 | 7368 | 7144 | 8035 | 8888 | 7242 | 6950 | 7779 |
| 10 | 9243 | 8822 | 9831 | 10592 | 9804 | 8208 | 9609 |
| 11 | 10697 | 9977 | 11986 | 10993 | 9754 | 12747 | 11370 |
| 12 | 10622 | 11732 | 10003 | 14570 | 14344 | 13448 | 13091 |
| 13 | 15894 | 14156 | 12611 | 15732 | 14172 | 15881 | 14599 |
| 14 | 12592 | 13042 | 16045 | 17290 | 20200 | 11757 | 16323 |

Table 3.3.5

| $\begin{aligned} & \text { rirtual Popu } \\ & \text { Run } 3 . \quad 1993 . \end{aligned}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 |
| 3 | 999 | 1046 | 978 | 1217 | 960 | 1031 | 1141 |
| 4 | 1580 | 1850 | 1855 | 1604 | 1723 | 1671 | 1647 |
| 5 | 3488 | 2772 | 3292 | 2516 | 2729 | 2863 | 2532 |
| 6 | 4441 | 4596 | 4165 | 4380 | 4108 | 3920 | 4027 |
| 7 | 5585 | 5859 | 5893 | 5407 | 5957 | 5976 | 5664 |
| 8 | 6844 | 7209 | 7153 | 6985 | 6696 | 6946 | 5951 |
| 9 | 7002 | 7820 | 7905 | 8752 | 7618 | 9204 | 3234 |
| 10 | 6917 | 7874 | 8753 | 10143 | 9669 | 10833 | 9500 |
| 11 | 7632 | 8301 | 8745 | 11829 | 12578 | 12920 | 12921 |
| 12 | 7899 | 9886 | 9788 | 11518 | 13884 | 12863 | 13028 |
| 13 | 13982 | 11221 | 10081 | 13916 | 17026 | 19104 | 13308 |
| 14 | 14000 | 14363 | 9876 | 15367 | 24652 | 21183 | 18930 |
| Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| 3 | 1333 | 967 | 996 | 891 | 1002 | 1131 | 1182 |
| 4 | 1680 | 1513 | 1626 | 1472 | 1479 | 1597 | 1752 |
| 5 | 2708 | 2101 | 2095 | 2139 | 2257 | 2285 | 2681 |
| 6 | 3875 | 3225 | 3006 | 2918 | 3476 | 3524 | 3562 |
| 7 | 5446 | 4520 | 4339 | 4130 | 4480 | 5010 | 4824 |
| 8 | 7106 | 5851 | 5571 | 5553 | 5887 | 6195 | 6457 |
| 9 | 8120 | 7661 | 6801 | 7007 | 7660 | 7800 | 7843 |
| 10 | 10737 | 9084 | 9259 | 7770 | 9920 | 9225 | 9419 |
| 11 | 12628 | 10833 | 11550 | 10817 | 11035 | 11336 | 10674 |
| 12 | 17528 | 12401 | 13445 | 13176 | 14531 | 13277 | 13660 |
| 13 | 15939 | 11724 | 17138 | 14175 | 15378 | 15325 | 13812 |
| 14 | 25212 | 14326 | 16554 | 18543 | 16394 | 18932 | 18479 |
| Age | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| 3 | 1289 | 1218 | 1012 | 813 | 1122 | 866 | 953 |
| 4 | 1811 | 1604 | 1542 | 1330 | 1776 | 1400 | 1512 |
| 5 | 2735 | 2499 | 2423 | 2132 | 2233 | 2223 | 2416 |
| 6 | 4202 | 3566 | 3743 | 3187 | 3044 | 3215 | 3494 |
| 7 | 5110 | 5161 | 5298 | 4691 | 3891 | 4567 | 4771 |
| 8 | 6497 | 6238 | 6910 | 6627 | 5897 | 5682 | 6197 |
| 9 | 7802 | 7302 | 7725 | 8915 | 7657 | 6878 | 7793 |
| 10 | 10220 | 8647 | 9397 | 10362 | 10573 | 8269 | 9650 |
| 11 | 11197 | 10184 | 11953 | 12093 | 11230 | 11601 | 11719 |
| 12 | 10620 | 11504 | 9529 | 15453 | 14340 | 13639 | 13240 |
| 13 | 15893 | 14159 | 12195 | 15337 | 14172 | 15434 | 14285 |
| 14 | 16514 | 10952 | 14270 | 17257 | 20200 | 11757 | 15871 |

Table 3.3.6

| Virtual Population inalysis : Sexual maturity at age in the stockRun 3.1993. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 |
| 3 | 0.026 | 0.014 | 0.007 | 0.049 | 0.000 | 0.049 | 0.000 |
| 4 | 0.069 | 0.090 | 0.112 | 0.058 | 0.047 | 0.050 | 0.019 |
| 5 | 0.408 | 0.277 | 0.342 | 0.281 | 0.213 | 0.185 | 0.139 |
| 6 | 0.611 | 0.584 | 0.536 | 0.505 | 0.611 | 0.443 | 0.531 |
| 7 | 0.842 | 0.794 | 0.857 | 0.629 | 0.381 | 0.877 | 0.793 |
| 8 | 0.941 | 0.929 | 0.950 | 0.936 | 0.960 | 0.962 | 0.929 |
| 9 | 0.980 | 0.961 | 0.986 | 0.988 | 0.990 | 0.982 | 0.782 |
| 10 | 0.996 | 0.989 | 1.000 | 1.000 | 1.000 | 1.000 | 0.919 |
| 11 | 0.996 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 12 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 13 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 14 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1985 |
| , | 0.056 | 0.000 | 0.023 | 0.000 | 0.000 | 0.027 | 0.005 |
| 4 | 0.023 | 0.029 | 0.051 | 0.087 | 0.043 | 0.058 | 0.054 |
| 5 | 0.165 | 0.085 | 0.129 | 0.167 | 0.189 | 0.202 | 0.244 |
| 6 | 0.478 | 0.289 | 0.226 | 0.338 | 0.416 | 0.548 | 0.543 |
| 7 | 0.807 | 0.659 | 0.544 | 0.515 | 0.656 | 0.774 | 0.762 |
| 8 | 0.915 | 0.890 | 0.849 | 0.717 | 0.782 | 0.903 | 0.891 |
| 9 | 0.979 | 0.952 | 0.956 | 0.857 | 0.858 | 0.938 | 0.981 |
| 10 | 0.977 | 0.962 | 0.967 | 0.979 | 0.949 | 1.000 | 0.962 |
| 11 | 1.000 | 0.988 | 1.000 | 0.985 | 0.969 | 1.000 | 0.988 |
| 12 | 0.964 | 1.000 | 1.000 | 1.000 | 0.948 | 1.000 | 1.000 |
| 13 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 14 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| 3 | 0.020 | 0.039 | 0.000 | 0.000 | 0.000 | 0.070 | 0.035 |
| 4 | 0.046 | 0.020 | 0.048 | 0.075 | 0.063 | 0.236 | 0.153 |
| 5 | 0.238 | 0.206 | 0.226 | 0.303 | 0.214 | 0.568 | 0.394 |
| 6 | 0.585 | 0.477 | 0.550 | 0.633 | 0.543 | 0.707 | 0.524 |
| 7 | 0.808 | 0.690 | 0.820 | 0.819 | 0.781 | 0.907 | 0.729 |
| 8 | 0.942 | 0.831 | 0.858 | 0.912 | 0.887 | 0.962 | 0.771 |
| 9 | 0.952 | 0.929 | 0.887 | 0.953 | 0.945 | 0.977 | 0.752 |
| 10 | 1.000 | 0.946 | 0.991 | 0.986 | 0.842 | 1.000 | 1.000 |
| 11 | 0.979 | 0.974 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 12 | 1.000 | 0.821 | 0.903 | 1.000 | 1.000 | 1.000 | 1.200 |
| 13 | 1.000 | 1.000 | 0.859 | 1.000 | 1.000 | 1.000 | 1.000 |
| 14 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.300 |

Table 3.3.7 Cpue data.

FLEET: SUR.N

|  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 |
| 3 | 628.91 | 2176.69 | 2630.80 | 1704.59 | 490.23 | 633.58 | 548.94 | 825.28 | 652.57 |
| 4 | 906.14 | 347.02 | 1628.86 | 2104.16 | 1444.27 | 319.75 | 638.93 | 470.11 | 656.03 |
| 5 | 1302.26 | 375.68 | 438.26 | 1477.87 | 1069.33 | 450.77 | 274.91 | 367.24 | 195.98 |
| 6 | 331.92 | 515.43 | 210.85 | 118.97 | 412.32 | 394.70 | 258.20 | 136.17 | 155.87 |
| 7 | 267.34 | 83.67 | 196.80 | 119.78 | 31.65 | 163.16 | 193.32 | 63.03 | 19.64 |
| 8 | 68.69 | 31.45 | 24.75 | 149.94 | 13.89 | 9.26 | 31.01 | 27.21 | 14.59 |
| 9 | 57.46 | 6.90 | 12.57 | 5.56 | 14.80 | 4.45 | 9.33 | 7.10 | 13.77 |
| 10 | 26.82 | 10.36 | 3.44 | 3.09 | 1.30 | 5.48 | 1.90 | 0.92 | 3.64 |
| 11 | 0.50 | 3.19 | 4.27 | 1.55 | 1.50 | 1.41 | 1.41 | $N A$ | 1.29 |
| 12 | 0.71 | 0.52 | 1.21 | 5.44 | 0.94 | 0.10 | $N A$ | 1.82 | 0.71 |
| 13 | 0.17 | 0.26 | 0.62 | 0.47 | $N A$ | 0.29 | 0.34 | 0.62 | NA |
| 14 | 0.17 | 0.13 | 0.67 | 0.46 | 0.48 | 0.84 | 0.41 | $N A$ | $N A$ |


| FLEET: SUR.SW |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 |
| 3 | 26.45 | 59.83 | 66.00 | 29.80 | 14.26 | 28.71 | 18.11 | 44.30 | 80.06 |
| 4 | 55.04 | 28.16 | 92.69 | 95.03 | 100.32 | 27.90 | 72.20 | 46.65 | 88.80 |
| 5 | 80.26 | 43.52 | 25.04 | 116.41 | 175.55 | 145.50 | 52.73 | 43.80 | 44.41 |
| 6 | 66.85 | 57.20 | 28.96 | 28.28 | 140.65 | 234.80 | 105.40 | 23.37 | 32.35 |
| 7 | 31.95 | 35.54 | 28.96 | 19.03 | 24.37 | 70.74 | 179.74 | 44.12 | 9.58 |
| 8 | 22.29 | 11.19 | 11.75 | 16.60 | 7.05 | 9.10 | 25.17 | 47.71 | 10.58 |
| 9 | 7.13 | 6.18 | 2.24 | 4.36 | 3.23 | 3.88 | 3.73 | 8.88 | 6.36 |
| 10 | 4.08 | 3.64 | 1.20 | 1.67 | 1.71 | 1.87 | 1.62 | 1.68 | 2.36 |
| 11 | 0.49 | 1.38 | 0.98 | 0.59 | 0.84 | 0.53 | 0.39 | 0.31 | 0.47 |
| 12 | 0.95 | 0.57 | 1.17 | 0.71 | 0.57 | NA | NA | NA | NA |
| 13 | 0.34 | 0.43 | 0.61 | 0.18 | 0.27 | 0.18 | 0.41 | 0.12 | 0.49 |
| 14 | 0.09 | 0.59 | 0.27 | 0.18 | NA | NA | NA | NA | 0.12 |

FLEET: SUR.SE

|  | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 3.00 | 26.20 | 21.69 | 50.42 | 2.72 | 4.88 | 2.13 | 23.78 | 33.77 |
| 4 | 9.48 | 22.31 | 21.20 | 190.39 | 36.86 | 2.07 | 6.26 | 16.26 | 36.82 |
| 5 | 22.55 | 37.24 | 8.38 | 107.02 | 148.73 | 15.81 | 6.36 | 16.50 | 21.75 |
| 6 | 30.06 | 46.07 | 15.01 | 31.91 | 138.34 | 60.11 | 19.03 | 15.27 | 22.42 |
| 7 | 21.29 | 22.34 | 24.05 | 12.14 | 24.20 | 70.57 | 54.53 | 25.26 | 12.18 |
| 8 | 16.66 | 10.66 | 10.76 | 9.95 | 6.48 | 11.61 | 29.59 | 37.84 | 8.31 |
| 9 | 10.66 | 6.40 | 4.10 | 3.38 | 2.73 | 1.87 | 3.75 | 11.64 | 6.93 |
| 10 | 10.73 | 7.20 | 4.71 | 1.50 | 2.92 | 1.42 | 0.49 | 1.67 | 3.09 |
| 11 | 3.14 | 3.24 | 4.08 | 0.39 | 2.85 | 0.26 | 0.53 | 0.01 | 1.81 |
| 12 | 2.23 | 0.65 | 0.92 | 1.49 | NA | NA | NA | NA | 0.49 |
| 13 | 0.61 | 1.22 | 0.71 | 1.19 | NA | 0.27 | 0.40 | 0.42 | NA |
| 14 | 0.75 | 0.15 | 1.26 | 1.06 | NA | NA | 0.62 | NA | NA |


| FLEET: TRWL.JUN.DEC.N |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 89 | 90 | 9.01 | 92 | 93 |
| 5 | 0.0141 | 0.0108 | 0.0330 | 0.0274 | 0.0449 |
| 6 | 0.1538 | 0.1281 | 0.0537 | 0.1049 | 0.0644 |
| 7 | 0.0680 | 0.0588 | 0.0875 | 0.0621 | 0.0776 |
| 8 | 0.0108 | 0.0067 | 0.1406 | 0.0693 | 0.0281 |
| 9 | 0.00377 | 0.0006 | 0.0012 | 0.0415 | 0.0198 |
| 10 | 0.0003 | 0.0003 | NA | 0.0070 | 0.00078 |
| 11 | 0.0002 | NA | 0.0001 | 0.0013 | 0.0005 |
|  |  |  |  |  |  |

FLEET: TRWL.JUN.DEC.SW
$89 \quad 90 \quad 91 \quad 92 \quad 93$
40.01980 .00600 .00770 .00620 .0314
50.08930 .07510 .02030 .06130 .0706
$\begin{array}{lllllll}6 & 0.1270 & 0.1172 & 0.0705 & 0.0487 & 0.0603\end{array}$
70.05200 .04810 .12330 .06960 .0352
80.01430 .00870 .03050 .07780 .0289
$\begin{array}{lllllll}9 & 0.0018 & 0.0014 & 0.0028 & 0.0146 & 0.0106\end{array}$
$\begin{array}{llllll}10 & 0.0005 & 0.0014 & 0.0013 & 0.0032 & 0.0011\end{array}$
11 NA $0.00090 .0018 \quad 0.0007$ NA

FLEET: TRWL.JUN.DEC.SE
$89 \quad 90 \quad 91 \quad 92 \quad 93$
40.00930 .00270 .00320 .02020 .0240
50.05260 .01610 .00820 .00870 .0161
$\begin{array}{llllll}6 & 0.0914 & 0.0680 & 0.0317 & 0.0123 & 0.0203\end{array}$
70.04430 .07510 .06310 .02450 .0142
80.01290 .01650 .03870 .03000 .0203
90.00890 .00370 .00540 .01600 .0207
100.00260 .00250 .00190 .00450 .0049
110.00120 .00090 .00120 .00090 .0009

Table 3.3.8 Standardized catchabilities (residuals), mean catchabilities, var (q) and weights used in final fit by fleet, age and year.

Standardized catchabilities. Fleet:
TRWL.JUN.DEC.N

|  | 1989 | 1990 | 1991 | 1992 | 1993 | Mean | Var | $c /$ Var | Wts |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | -1.47 | -0.59 | 0.82 | 0.77 | 0.47 | -15.39 | 0.21 | 0.24 | 0.80 |
| 5 | -1.63 | 0.78 | 0.09 | 0.85 | -0.09 | -13.66 | 0.12 | 0.42 | 1.00 |
| 6 | -0.36 | -0.90 | -0.76 | 1.48 | 0.54 | -13.03 | 0.02 | 2.33 | 1.40 |
| 7 | 1.24 | -1.48 | -0.14 | 0.48 | -0.10 | -12.61 | 0.17 | 0.30 | 0.60 |
| 8 | 0.61 | -1.33 | -0.78 | 0.47 | 1.02 | -12.92 | 0.16 | 0.30 | 0.40 |
| 9 | 0.83 | -1.35 | -0.79 | 0.71 | 0.59 | -13.57 | 0.41 | 0.12 | 0.00 |
| 10 | -0.39 | -0.54 | NA | 1.50 | -0.56 | -14.05 | 0.73 | 0.07 | 0.00 |
| 11 | -0.14 | NA | -0.93 | 1.06 | NA | -13.80 | 0.65 | 0.08 | 0.00 | Standardized catchabilities. Fleet:

TRWL.JUN.DEC.SE

|  | 1989 | 1990 | 1991 | 1992 | 1993 | Mean | Var | $c / V a r$ | Wts |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | -0.09 | -0.77 | -1.13 | 1.27 | 0.72 | -16.41 | 0.70 | 0.07 | 0.00 |
| 5 | 1.32 | -0.30 | -0.41 | -1.26 | 0.65 | -15.35 | 0.17 | 0.30 | 0.10 |
| 6 | 1.70 | -0.28 | -0.04 | -0.91 | -0.46 | -14.14 | 0.10 | 0.49 | 0.20 |
| 7 | 1.55 | 0.45 | -0.79 | -0.76 | -0.45 | -13.15 | 0.16 | 0.31 | 0.30 |
| 8 | 0.58 | 0.32 | 0.24 | -1.76 | 0.62 | -12.63 | 0.06 | 0.88 | 0.50 |
| 9 | 0.99 | -1.18 | -0.95 | 0.40 | 0.74 | -12.36 | 0.04 | 1.15 | 0.50 |
| 10 | -0.34 | -0.83 | -0.17 | 1.74 | -0.41 | -12.11 | 0.11 | 0.44 | 0.15 |
| 11 | -0.31 | -1.25 | -0.16 | 1.51 | 0.21 | -12.00 | 0.14 | 0.36 | 0.00 |

Standardized catchabilities. Fleet:
TRWL.JUN.DEC.SW

|  | 1989 | 1990 | 1991 | 1992 | 1993 | Mean | Var | $c /$ Var | Wts |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 0.85 | -0.33 | -0.83 | -0.95 | 1.26 | -16.10 | 0.20 | 0.25 | 0.40 |
| 5 | -0.56 | 0.36 | -1.40 | 0.41 | 1.20 | -14.07 | 0.15 | 0.34 | 0.40 |
| 6 | 0.17 | -1.58 | -0.18 | 1.10 | 0.48 | -13.31 | 0.06 | 0.90 | 1.00 |
| 7 | 0.70 | -1.65 | -0.25 | 0.62 | 0.58 | -12.68 | 0.20 | 0.25 | 0.50 |
| 8 | 0.29 | -1.42 | -0.61 | 0.90 | 0.84 | -12.53 | 0.22 | 0.23 | 0.20 |
| 9 | -1.07 | -0.76 | -0.10 | 1.42 | 0.51 | -13.16 | 0.31 | 0.16 | 0.00 |
| 10 | -1.04 | 0.03 | 0.54 | 1.35 | -0.89 | -13.00 | 0.70 | 0.07 | 0.00 |
| 11 | NA | -1.15 | 0.61 | 0.54 | NA | -11.94 | 0.21 | 0.24 | 0.00 |

Table 3.3.8 (Cont'd)

Standardized catchabilities. Fleet:
SUR.N

|  | 1985 |  | 987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | ean |  | c/Var | s |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | -0.70 | 0.37 | 1.35 | 1.49 | -0.01 | -0.63 | -0.66 | -1.21 | NA | -5.16 | 0.14 | 0.36 | 0.00 |
| 4 | 0.83 | -1.52 | 0.19 | 1.16 | 1.41 | -0.56 | -0.05 | -0.38 | -1.09 | -5.13 | 0.18 | 0.28 | 0.80 |
| 5 | 1.55 | -0.31 | -0.16 | 1.26 | 0.49 | -0.49 | -0.10 | -0.44 | -1.79 | -5.06 | 0.12 | 0.42 | . 20 |
| 6 | 0.97 | 1.17 | 0.84 | -1.73 | 0.05 | -1.28 | 0.18 | 0.29 | -0.50 | -5.20 | 0.08 | 0.62 | 0.80 |
| 7 | 1.67 | -0.38 | 0.59 | 1.24 | -1.08 | 0.02 | -0.23 | -0.50 | -1.31 | -5.29 | 0.38 | 0.13 | 0.10 |
| 8 | 0.97 | 0.02 | -0.17 | 2.14 | 0.04 | -0.98 | -0.49 | -1.00 | -0.52 | -5.54 | 0.50 | 0.10 | 0.00 |
| 9 | 1.72 | -1.20 | 0.24 | -0.75 | 1.11 | -0.10 | 0.54 | -1.14 | -0.40 | -5.45 | 0.41 | . 12 | 0.00 |
| 10 | 1.67 | 0.57 | -0.81 | -0.16 | -0.99 | 1.15 | 0.24 | -1.30 | -0.38 | -5.41 | 0.38 | 0.13 | 0.00 |
| 11 | -2.16 | -0.23 | 0.55 | -0.57 | 0.53 | 0.36 | 0.53 | NA | 0.99 | -5.37 | 0.53 | . 09 | 0.00 |
| 12 | -1.11 | -0.72 | -0.33 | 0.88 | 0.07 | $-1.20$ | NA | 1.24 | 1.17 | -5.12 | 1.80 | . 03 | 0.00 |
| 13 | -1.37 | -1.06 | 0.19 | -0.26 | NA | 0.26 | 0.74 | 1.51 | NA | -5.29 | 1.90 | 0.03 | 0.00 |
| -4 | -1.12 | -1.42 | -0.34 | 0.26 | 1.29 | 0.68 | 0.65 | NA | NA | $-4.71$ | 1.71 | 0.03 | 0.00 |
| Standardized catchabilities. Fleet: <br> SUR.SE |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | -1.00 | 0.40 | 0.38 | 1.79 | -0.57 | -0.47 | -1.21 | 0.69 | NA | -9.82 | 0.90 | /Var | 0.00 |
| 4 | -0.48 | 0.35 | -0.53 | 1.85 | 0.68 | -1.56 | -0.92 | 0.21 | 0.40 | -8.86 | 0.97 | 05 | 0.00 |
| 5 | -0.64 | 0.81 | -1.27 | 1.10 | 1.61 | -0.63 | -0.99 | -0.28 | 0.29 | -8.10 | 0.59 | 0.08 | 0.00 |
| 6 | -0.17 | -0.07 | -0.83 | 0.58 | 2.31 | -0.45 | -1.19 | -0.12 | -0.06 | -7.25 | 0.18 | . 28 | 0.10 |
| 7 | -0.58 | -0.74 | -1.36 | -0.65 | 1.33 | 1.69 | -0.25 | 0.38 | 0.17 | $-6.63$ | 0.09 | 0.56 | 0.20 |
| 8 | 0.09 | -1.02 | -0.63 | -1.46 | 0.09 | 0.99 | 1.21 | 1.28 | -0.56 | -6.30 | 0.09 | 0.55 | 0.20 |
| 9 | 0.76 | -0.23 | -0.71 | -0.76 | -0.75 | -0.58 | 0.82 | 2.08 | -0.62 | -6.23 | 0.07 | 0.73 | 0.30 |
| 10 | 0.98 | 0.73 | 0.36 | -1.01 | 1.19 | -0.63 | $-1.85$ | 0.32 | -0.10 | -5.76 | 0.22 | . 23 | 0.10 |
| 11 | 0.54 | 0.26 | 0.59 | -0.82 | 1.03 | -0.58 | -0.03 | -2.03 | 1.05 | -5.92 | 2.34 | 0.02 | 0.00 |
| 12 | -0.25 | -0.75 | -0.73 | 0.04 | NA | NA | NA | NA | 1.69 | -5.27 | 0.63 | 0.08 | 0.00 |
| 13 | -1.50 | -0.58 | -0.15 | 0.08 | NA | -0.30 | 0.89 | 1.58 | NA | $-4.78$ | 0.56 | 0.09 | 0.00 |
| 14 | -0.14 | -1.58 | 0.00 | 0.82 | NA | NA | 0.89 | NA | NA | -4. 52 | 1.43 | 0.03 | 0.00 |
| SUR.SW |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 993 | Mean | Var | c/Var | Wts |
| 3 | 0.01 | -0.15 | 1.77 | -0.37 | -0.76 | 0.70 | -1.58 | 0.38 | NA | -8.60 | 0.02 | 2.41 | 0.00 |
| 4 | 0.29 | -1.92 | -0.76 | -0.20 | 1.49 | -0.42 | 1.06 | 0.22 | 0.25 | -7.67 | 0.10 | 0.49 | 0.20 |
| 5 | -0.42 | -0.43 | -1.82 | -0.10 | 0.90 | 1.62 | 0.80 | -0.46 | -0.08 | -7.12 | 0.22 | 0.23 | 0.20 |
| 6 | 0.29 | -0.97 | -0.69 | -1.12 | 0.91 | 1.32 | 1.42 | -0.53 | -0.62 | -6.65 | 0.18 | 0.27 | 0.30 |
| 7 | -0.25 | -0.22 | -1.35 | -0.20 | 0.17 | 0.42 | 1.89 | 0.81 | -1.27 | -6.29 | 0.17 | 0.29 | 0.50 |
| 8 | 0.79 | -1.53 | -0.90 | -0.20 | -0.04 | -0.26 | 0.33 | 2.00 | -0.19 | -6.18 | 0.06 | 0.80 | 1.00 |
| 9 | -0.45 | -0.18 | -1.98 | 0.22 | 0.00 | 1.58 | 0.62 | 0.78 | -0.57 | -6.26 | 0.15 | 0.34 | 0.50 |
| 10 | -0.58 | -0.21 | -2.11 | -0.25 | 0.59 | 0.51 | 1.30 | 0.89 | -0.15 | -6.01 | 0.20 | 0.25 | 0.00 |
| 11 | -1.52 | -0.37 | -0.50 | -1.11 | 1.24 | 0.20 | -0.17 | 1.18 | 1.04 | -6.19 | 0.26 | 0.20 | 0.00 |
| 12 | -1.35 | -0.34 | 0.86 | -0.28 | 1.11 | NA | NA | NA | NA | $-5.88$ | 0.11 | 0.48 | 0.00 |
| 13 | -1.08 | -0.86 | 0.28 | -1.19 | -0.42 | -0.06 | 1.18 | 0.47 | 1.68 | -5.34 | 1.13 | 0.04 | 0.00 |
| 14 | -1.21 | 0.27 | -0.58 | 0.05 | NA | NA | NA | NA | 1.46 | -5.37 | 1.41 | 0.04 | 0.00 |

Tirtual population Analysis : Fishing moreality Run 3. 1993.

| Age | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.144 | 0.102 | 0.131 | 0.083 | 0.020 | 0.030 | 0.033 |
| 4 | 0.319 | 0.383 | 0.299 | 0.263 | 0.212 | 0.169 | 0.195 |
| 5 | 0.453 | 0.496 | 0.521 | 0.363 | 0.355 | 0.351 | 0.211 |
| 5 | 0.598 | 0.459 | 0.569 | 0.617 | 0.368 | 0.333 | 0.513 |
| 7 | 0.715 | 0.744 | 0.643 | 0.596 | 0.810 | 0.494 | 0.487 |
| 8 | 0.702 | 0.968 | 0.808 | 0.938 | 0.657 | 0.660 | 0.503 |
| 9 | 0.679 | 0.810 | 1.069 | 0.764 | 0.995 | 0.505 | 0.507 |
| 10 | 1.102 | 1.004 | 1.176 | 1.270 | 0.608 | 0.530 | 0.339 |
| 11 | 1.098 | 1.360 | 1.348 | 1. 363 | 0.562 | 0.343 | 0.531 |
| 12 | 0.969 | 1.262 | 1.767 | 0.940 | 0.547 | 0.719 | 0.200 |
| 13 | 0.124 | 0.583 | 0.821 | 2.490 | 0.078 | 0.806 | 1.020 |
| 14 | 0.794 | 1.004 | 1.236 | 1.365 | 0.558 | 0.580 | 0.519 |
| *.AV 5-10 | 0.585 | 0.577 | 0.569 | 0.521 | 0.438 | 0.372 | 0.403 |
| Ave 5-10 | 0.708 | 0.747 | 0.798 | 0.758 | 0.632 | 0.479 | 0.427 |
| Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| 3 | 0.034 | 0.016 | 0.028 | 0.017 | 0.055 | 0.051 | 0.071 |
| 4 | 0.176 | 0.137 | 0.221 | 0.120 | 0.211 | 0.289 | 0.224 |
| 5 | 0.358 | 0.388 | 0.400 | 0.434 | 0.323 | 0.388 | 0.583 |
| 6 | 0.378 | 0.470 | 0.541 | 0.623 | 0.540 | 0.574 | 0.697 |
| 7 | 0.442 | 0.635 | 0.581 | 0.768 | 0.599 | 0.686 | 0.890 |
| 8 | 0.554 | 0.839 | 1.046 | 0.852 | 0.902 | 0.733 | 0.943 |
| 9 | 0.514 | 0.803 | 1.187 | 0.931 | 0.747 | 0.805 | 0.812 |
| 10 | 0.453 | 0.951 | 0.910 | 1.083 | 0.635 | 0.771 | 0.772 |
| 11 | 0.425 | 0.982 | 0.480 | 0.672 | 0.641 | 0.615 | 0.742 |
| 12 | 0.700 | 0.904 | 0.404 | 0.679 | 0.588 | 0.644 | 0.677 |
| 13 | 0.171 | 1.076 | 0.417 | 0.533 | 0.686 | 0.713 | 0.449 |
| 14 | 0.453 | 0.943 | 0.680 | 0.779 | 0.659 | 0.710 | 0.690 |
| W.AV 5-10 | 0.404 | 0.529 | 0.583 | 0.610 | 0.480 | 0.487 | 0.691 |
| Ave 5-10 | 0.450 | 0.681 | 0.778 | 0.782 | 0.624 | 0.660 | 0.783 |
| Age | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1989-1992 |
| 3 | 0.045 | 0.044 | 0.034 | 0.046 | 0.080 | 0.058 | 0.055 |
| 4 | 0.314 | 0.222 | 0.262 | 0.221 | 0.291 | 0.289 | 0.266 |
| 5 | 0.525 | 0.519 | 0.485 | 0.438 | 0.480 | 0.526 | 0.482 |
| 6 | 0.793 | 0.857 | 0.628 | 0.640 | 0.758 | 0.754 | 0.695 |
| 7 | 0.978 | 0.977 | 0.763 | 0.858 | 0.957 | 0.959 | 0.884 |
| 8 | 1.013 | 1.401 | 0.930 | 0.910 | 0.975 | 1.014 | 0.957 |
| 9 | 0.996 | 1.176 | 0.833 | 0.907 | 1.019 | 1.014 | 0.943 |
| 10 | 0.717 | 1.044 | 0.620 | 0.868 | 1.280 | 1.014 | 0.946 |
| 11 | 0.594 | 1.066 | 0.758 | 0.795 | 1.075 | 1.014 | 0.911 |
| 12 | 0.668 | 0.945 | 1.067 | 1.035 | 1.531 | 1.014 | 1.162 |
| 13 | 0.749 | 2.388 | 0.630 | 0.527 | 0.674 | 1.014 | 0.711 |
| 14 | 0.745 | 1.324 | 0.782 | 0.827 | 1.116 | 1.014 | 0.934 |
| W.Av 5-10 | 0.-34 | 0.644 | 0.554 | 0.603 | 0.754 | 0.696 | 0.616 |
| Ave 5-10 | 0.037 | 0.996 | 0.710 | 0.770 | 0.911 | 0.880 | 0.818 |

Table 3.3.10
Virtual population Analysis : stock in numbers, millions
Run 3.1993.
Age
3
4

| 1973 | 1974 |
| ---: | ---: |
| 300.418 | 169.263 |
| 102.627 | 213.034 |
| 32.328 | 61.073 |
| 41.384 | 42.846 |
| 27.168 | 18.637 |
| 7.966 | 10.886 |
| 10.441 | 3.231 |
| 9.426 | 4.334 |
| 1.844 | 2.563 |
| 0.494 | 0.504 |
| 0.066 | 0.153 |
| 0.002 | 0.048 |


| 1975 | 1976 |
| ---: | ---: |
| 263.221 | 326.284 |
| 125.192 | 189.096 |
| 118.922 | 75.993 |
| 30.449 | 57.836 |
| 22.158 | 14.113 |
| 7.250 | 9.536 |
| 3.386 | 2.646 |
| 1.177 | 0.951 |
| 1.300 | 0.297 |
| 0.538 | 0.276 |
| 0.117 | 0.075 |
| 0.070 | 0.042 |

1977
143.285
245.869
119.032
43.279
25.539
6.364
3.054
1.009
0.219
0.062
0.088
0.005

| 1978 | 1979 |
| ---: | ---: |
| 221.651 | 245.472 |
| 114.952 | 175.056 |
| 162.901 | 79.443 |
| 68.301 | 93.913 |
| 24.514 | 40.086 |
| 9.306 | 12.250 |
| 2.700 | 3.938 |
| 0.925 | 1.335 |
| 0.450 | 0.446 |
| 0.102 | 0.251 |
| 0.030 | 0.041 |
| 0.067 | 0.011 |

Age
3
4
5
6
7
8
9
10
11
12
13
14

| 1980 | 1981 |
| ---: | ---: |
| 143.982 | 143.169 |
| 194.488 | 113.957 |
| 118.547 | 133.536 |
| 52.646 | 67.873 |
| 83.043 | 29.531 |
| 20.158 | 50.697 |
| 6.064 | 9.480 |
| 1.942 | 2.969 |
| 0.778 | 1.010 |
| 0.214 | 0.416 |
| 0.175 | 0.087 |
| 0.012 | 0.121 |


| 1982 | 1983 |
| ---: | ---: |
| 133.346 | 226.258 |
| 115.299 | 106.209 |
| 81.316 | 75.668 |
| 74.151 | 44.625 |
| 34.733 | 35.328 |
| 12.816 | 15.900 |
| 17.936 | 3.685 |
| 3.479 | 4.479 |
| 0.939 | 1.147 |
| 0.310 | 0.476 |
| 0.138 | 0.169 |
| 0.024 | 0.074 |


| 1984 | 1985 | 1986 |
| ---: | ---: | ---: |
| 138.628 | 143.084 | 331.452 |
| 182.035 | 107.407 | 111.319 |
| 77.121 | 120.635 | 65.865 |
| 40.153 | 45.692 | 67.002 |
| 19.598 | 19.153 | 21.064 |
| 13.419 | 8.817 | 7.901 |
| 5.552 | 4.457 | 3.469 |
| 1.189 | 2.155 | 1.631 |
| 1.242 | 0.516 | 0.315 |
| 0.480 | 0.536 | 0.223 |
| 0.198 | 0.218 | 0.230 |
| 0.081 | 0.082 | 0.088 |


| 1987 | 1988 |
| ---: | ---: |
| 277.658 | 170.280 |
| 252.745 | 217.396 |
| 72.848 | 151.099 |
| 30.088 | 35.289 |
| 27.317 | 11.146 |
| 7.085 | 8.412 |
| 2.518 | 2.106 |
| 1.262 | 0.761 |
| 0.617 | 0.504 |
| 0.318 | 0.279 |
| 0.095 | 0.134 |
| 0.120 | 0.037 |

1989
86.206
133.354
142.598
73.649
12.268
3.437
1.696
0.532
0.219
0.142
0.089
0.010

| 1990 | 1991 |
| ---: | ---: |
| 140.657 | 135.000 |
| 68.227 | 109.939 |
| 84.013 | 44.778 |
| 102.891 | 44.409 |
| 32.177 | 44.433 |
| 4.683 | 11.169 |
| 1.110 | 1.544 |
| 0.604 | 0.367 |
| 0.234 | 0.207 |
| 0.084 | 0.087 |
| 0.040 | 0.024 |
| 0.039 | 0.019 |

1992
1993
$155.000 \quad 137.000$ $102.005 \quad 119.743$
$67.275 \quad 62.537$
$22.690 \quad 32.537$
$\begin{array}{ll}17.044 & 8.744 \\ 13.970 & 5.350\end{array}$
3.451 4.:50
$0.456 \quad 1.025$
0.083

Table 3.3.11

| Age | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 7.361 | 2.304 | 1.744 | 18.341 | 0.000 | 10.689 | . 300 |
| 4 | 10.078 | 31.423 | 23.444 | 16.043 | 18.154 | 8.826 | 5.033 |
| 5 | 99.502 | 39.501 | 111.992 | 46.707 | 60.347 | 75.074 | 34.333 |
| $\bigcirc$ | 89.539 | 95.517 | 54.649 | 101.362 | 92.716 | 102.237 | 164.232 |
| 7 | 92.510 | 62.097 | 83.232 | 36.342 | 93.536 | 101.227 | 142.170 |
| 8 | 35.883 | 45.423 | 32.934 | 39.358 | 29.196 | 44.331 | 50.419 |
| 9 | 49.282 | 15.690 | 15.076 | 15.110 | 13.639 | 18.243 | 23.791 |
| 10 | 36.519 | 19.881 | 5.594 | 5.008 | 6.945 | 7.402 | 9.43: |
| 11 | 7.897 | 10.577 | 5.684 | 1.747 | 2.002 | 4.694 | 4.251 |
| 12 | 2.337 | 2.593 | 2.158 | 1.935 | 0.634 | 0.887 | 2.945 |
| 13 | 0.831 | 1.240 | 0.756 | 0.304 | 1.380 | 0.365 | 0.3:7 |
| 14 | 0.018 | 0.406 | 0.365 | 0.320 | 0.092 | 1.024 | 0.152 |
| Total | 431.856 | 326.652 | 337.628 | 282.578 | 318.643 | 374.998 | 447.179 |
| Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1985 |
| 3 | 10.267 | 0.000 | 2.912 | 0.000 | 0.000 | 4.138 | 1.352 |
| 4 | 6.865 | 4.672 | 8.740 | 12.647 | 10.552 | 8.984 | 9.577 |
| 5 | 46.053 | 20.602 | 18.915 | 23.076 | 28.927 | 48.106 | 35.464 |
| 6 | 82.987 | 52.342 | 40.877 | 34.807 | 47.102 | 70.813 | 100.235 |
| 7 | 293.368 | 65.626 | 62.433 | 53.272 | 43.559 | 54.372 | 52.434 |
| 8 | 97.892 | 174.020 | 36.489 | 41.474 | 39.633 | 34.060 | 28.530 |
| 9 | 35.891 | 44.865 | 62.967 | 13.503 | 24.317 | 21.124 | 17.239 |
| 10 | 15.612 | 15.687 | 19.188 | 19.342 | 7.865 | 13.087 | 9.728 |
| 11 | 7.632 | 6.443 | 8.211 | 8.431 | 9.301 | 4.151 | 5.745 |
| 12 | 2.468 | 3.192 | 3.269 | 4.318 | 4.746 | 4.975 | 2.150 |
| 13 | 2.450 | 0.582 | 1.844 | 1.771 | 2.086 | 2.263 | 2. $4+4$ |
| 14 | 0.233 | 1.052 | 0.277 | 0.905 | 0.927 | 1.047 | 1.:27 |
| Total | 601.718 | 389.082 | 266.122 | 213.546 | 219.014 | 267.120 | 256. 54 |
| Age | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |  |
| 3 | 6.783 | 7.665 | 0.000 | 0.000 | 0.000 | 8.894 |  |
| 4 | 18.926 | 6.374 | 8.956 | 6.221 | 11.104 | 30.432 |  |
| 5 | 39.600 | 65.061 | 65.862 | 46.317 | 18.071 | 70.914 |  |
| 6 | 55.635 | 44.310 | 119.756 | 163.386 | 55.797 | 39.252 |  |
| 7 | 73.844 | 26.000 | 37.878 | 84.727 | 89.111 | 46.563 |  |
| 8 | 26.489 | 22.483 | 12.908 | 18.092 | 36.300 | 46.642 |  |
| 9 | 11.063 | 7.753 | 7.429 | 5.819 | 6.537 | 13.601 |  |
| 10 | 8.712 | 3.600 | 3.505 | 3.876 | 1.686 | 2.214 |  |
| 11 | 4.848 | 2.861 | 1.737 | 1.844 | 1.326 | 0.568 |  |
| 12 | 2.337 | 1.597 | 0.699 | 0.755 | 0.569 | 0.463 |  |
| 13 | 1.005 | 0.576 | 0.655 | 0.454 | 0.239 | 0.139 |  |
| 14 | 1.325 | 0.204 | 0.094 | 0.428 | 0.218 | 0.070 |  |
| Total | 250.569 | 188.486 | 259.479 | 331.919 | 220.958 | 259.751 |  |

Table 3.3.12
Spawning stock biomass and recruitment in year of spawning along with average fishing mortality

```
Year Rec SSB F(5-10,u)
1955 258 1383 0.30
1956 305 1317 0.25
1957 152 1235 0.31
1958 189 1102 0.32
1959 142 979 0.32
1960 162 854 0.37
1961 289 786 0.33
1962 253 751 0.39
1963 271 701 0.45
1964 326 579 0.54
1965 172 456 0.61
1966 252 412 0.54
1967 185 474 0.49
1968 177 592 0.67
1969 135 688 0.53
1970 300 679 0.56
1971 169 609 0.62
1972 263 472 0.71
1973 432 0.71
1974 143 327 0.75
1975 222 338 0.80
1976 245 283 0.76
1977 144 319 0.63
1978}1443\quad375 0.4
1979 133 447 0.43
1980 226 602 0.45
1981 139 389 0.68
1982 143 266 0.78
1983 331 214 0.78
1984 219 0.62
1985 170 267 0.66
1986 86 267 0.78
1987 141 251 0.84
1988}13351881.0
1989 155 259 0.71
1990 137 332 0.77
1991 73 221 0.91
1992 130 260 0.88
```

Table 3.3.13

| Year | Capelin |
| ---: | ---: |
| 1979 | 2386 |
| 1980 | 1487 |
| 1981 | 988 |
| 1982 | 1049 |
| 1983 | 1000 |
| 1984 | 1950 |
| 1985 | 2380 |
| 1986 | 2479 |
| 1987 | 2358 |
| 1988 | 2076 |
| 1989 | 1732 |
| 1990 | 1159 |
| 1991 | 1045 |
| 1992 | 1819 |
| 1993 | 2214 |

Table 3.3.14 Icelandic COD. Predicting 3-group (GB-index N. and CN3 (c-no of 3-group); VPA skv. ADAPT) 5182

| 'Ycl | 'VPA' | ' CN3 ${ }^{\prime}$ | 'SUR4 ${ }^{1}$ | 'SUR3 ${ }^{\prime}$ | ' SUR2' | 'SUR1' |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 75 | 222 | 6.0 | -11 | -11 | -11 | -11 |
| 76 | 245 | 7.2 | -11 | -11 | -11 | -11 |
| 77 | 144 | 4.3 | -11 | -11 | -11 | -11 |
| 78 | 143 | 2.1 | -11 | -11 | -11 | -11 |
| 79 | 133 | 3.3 | -11 | -11 | -11 | -11 |
| 80 | 226 | 3.6 | -11 | -11 | -11 | -11 |
| 81 | 139 | 6.8 | 906 | -11 | -11 | -11 |
| 82 | 143 | 6.5 | 347 | 629 | -11 | -11 |
| 83 | 331 | 20.6 | 1629 | 2177 | 1529 | -11 |
| 84 | 277 | 11.0 | 2104 | 2631 | 1813 | 369 |
| 85 | 170 | 6.7 | 1444 | 1705 | 780 | 290 |
| 86 | 86 | 2.6 | 320 | 490 | 212 | 62 |
| 87 | 141 | 5.8 | 639 | 634 | 643 | 55 |
| 88 | 123 | 8.7 | 470 | 549 | 415 | 83 |
| 89 | -11 | 11.6 | 656 | 825 | 540 | 117 |
| 90 | -11 | -11 | -11 | 653 | 577 | 73 |
| 91 | -11 | -11 | -11 | -11 | 108 | 11 |
| 92 | -11 | -11 | -11 | -11 | -11 | 50 |

Table 3.3.15

| Data for |  | urveys | ver | 18 years |  | 75 - | 92 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Regression type $=c$ <br> Tapered time weighting applied <br> power $=3$ over 20 years |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Survey weighting not applied |  |  |  |  |  |  |  |  |  |
| Final estimates shrunk towards mean |  |  |  |  |  |  |  |  |  |
| Minimum S.E. for any survey taken as 0.30 |  |  |  |  |  |  |  |  |  |
| Minimum of 3 points used for regression |  |  |  |  |  |  |  |  |  |
| Forecast/Hindcast variance correction used. |  |  |  |  |  |  |  |  |  |
| Yearclass $m \quad 86$ |  |  |  |  |  |  |  |  |  |
| Survey/ Series | Slope | Intercept | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | No.Pes | Index <br> value | Predicted Value | $\begin{aligned} & \text { Sed } \\ & \text { Error } \end{aligned}$ | WAP Weights |
|  |  |  |  |  |  |  |  |  |  |
| CN 3 | 0.85 | 3.57 | 0.34 | 0.517 | 11 | 1.28 | 4.66 | 0.427 | 0.290 |
| SUR4 | 0.76 | -0.05 | 0.43 | 0.531 | 5 | 5.77 | 4.36 | 0.778 | 0.087 |
| SUR3 | 0.75 | -0.16 | 0.33 | 0.680 | 4 | 6.20 | 4.51 | 0.725 | 0.101 |
| SUR2 | 0.86 | -0.62 | 0.24 | 0.808 | 3 | 5.36 | 3.98 | 1. 269 | 0.033 |
| SUR1 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | VPA | Mean $=$ | 5.24 | 0.329 | 0.489 |



| Yearclass = |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Survey/ <br> Series |  |  |  |  |  |  |  |  |  |
|  | slope | $\begin{aligned} & \text { Inter- } \\ & \text { cept } \end{aligned}$ | $\begin{aligned} & \text { Sed } \\ & \text { Error } \end{aligned}$ | Rsquare | $\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$ | Index <br> Value | $\begin{gathered} \text { Predicted } \\ \text { Value } \end{gathered}$ | $\begin{aligned} & \text { sed } \\ & \text { Error } \end{aligned}$ | WAP <br> Weights |
| CN3 | 0.94 | 3.33 | 0.35 | 0.575 | 13 | 2.27 | 5.48 | 0.411 | 0.151 |
| SUR4 | 0.72 | 0.30 | 0.31 | 0.721 | 7 | 6.15 | 4.71 | 0.415 | 0.148 |
| SUR3 | 0.74 | -0.02 | 0.26 | 0.818 | 6 | 6.31 | 4.64 | 0.371 | 0.185 |
| SUR2 | 0.65 | 0.87 | 0.16 | 0.941 | 5 | 6.03 | 4.79 | 0.233 | 0.284 |
| SUR1 | 0.59 | 2.15 | 0.40 | 0.681 | 4 | 4.43 | 4.75 | 0.660 | 0.059 |
|  |  |  |  |  | VPA | Mean $=$ | 5.15 | 0.386 | 0.172 |

Yearclass $=89$

| Survey/ <br> Series | Slope | Intercept | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | No. Pts | Index <br> Value | Predicted Value | $\begin{aligned} & \text { std } \\ & \text { Error } \end{aligned}$ | WAP Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CN3 | 1.07 | 3.01 | 0.44 | 0.462 | 14 | 2.53 | 5.73 | 0.527 | 0.079 |
| SUR4 | 0.70 | 0.43 | 0.28 | 0.742 | 7 | 6.49 | 4.96 | 0.347 | 0.182 |
| SUR3 | 0.71 | 0.21 | 0.23 | 0.827 | 7 | 6.72 | 4.97 | 0.299 | 0.244 |
| SUR2 | 0.64 | 0.91 | 0.13 | 0.947 | 6 | 6.29 | 4.96 | 0.179 | 0.244 |
| SURI | 0.58 | 2.22 | 0.33 | 0.697 | 5 | 4.77 | 4.96 | 0.463 | 0.103 |
|  |  |  |  |  | VPA | Mean $=$ | 5.12 | 0.384 | 0.149 |

Table 3.3.15 (cont'd.)


| Year | Weighted | Log | Int | Ext | Var | VPA | Log |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Class | Average |  |  |  |  |  |  |
|  | Prediction |  |  |  |  |  |  |


| 86 | 131 | 4.88 | 0.23 | 0.19 | 0.67 | 86 | 4.47 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 87 | 146 | 4.99 | 0.17 | 0.11 | 0.44 | 142 | 4.96 |
| 88 | 135 | 4.91 | 0.16 | 0.13 | 0.66 | 123 | 4.82 |
| 89 | 155 | 5.05 | 0.15 | 0.09 | 0.39 |  |  |
| 90 | 137 | 4.92 | 0.18 | 0.08 | 0.23 |  |  |
| 91 | 73 | 4.30 | 0.23 | 0.41 | 3.18 |  |  |
| 92 | 130 | 4.87 | 0.32 | 0.29 | 0.84 |  |  |

Table 3.3.16

Cod in the Iceland Grounds (Fishing Area Va)
Yield per recruit: Input data

| Age | Recruitment | Natural mortality | Maturity ogive | Prop. of F bef.spaw. | Prop. of M bef. spaw. | Weight in stock | Exploit. pattern | Weight <br> in catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1.000 | 0.2000 | 0.0200 | 0.0850 | 0.2500 | 1.054 | 0.0660 | 1.255 |
| 4 | . | 0.2000 | 0.0680 | 0.1800 | 0.2500 | 1.620 | 0.3280 | 1.783 |
| 5 | - | 0.2000 | 0.2490 | 0.2480 | 0.2500 | 2.529 | 0.5990 | 2.579 |
| 6 | - | 0.2000 | 0.5130 | 0.2960 | 0.2500 | 3.698 | 0.8560 | 3.623 |
| 7 | . | 0.2000 | 0.7690 | 0.3820 | 0.2500 | 5.075 | 1.0890 | 4.898 |
| 8 | . | 0.2000 | 0.9010 | 0.4370 | 0.2500 | 6.450 | 1.1520 | 6.302 |
| 9 | - | 0.2000 | 0.9520 | 0.4770 | 0.2500 | 7.785 | 1.1520 | 7.685 |
| 10 | . | 0.2000 | 0.9750 | 0.4770 | 0.2500 | 9.343 | 1.1520 | 9.346 |
| 11 | - | 0.2000 | 0.9940 | 0.4770 | 0.2500 | 11.132 | 1.1520 | 10.923 |
| 12 | - | 0.2000 | 0.9830 | 0.4770 | 0.2500 | 12.629 | 1.1520 | 12.767 |
| 13 | - | 0.2000 | 0.9930 | 0.4770 | 0.2500 | 14.457 | 1.1520 | 14.520 |
| 14 | - | 0.2000 | 1.0000 | 0.4770 | 0.2500 | 16.839 | 1.1520 | 17.235 |
| Unit | Numbers | $\bullet$ | - | - | - | Kilograns | - | Kilograms |

Notes: Run name : YIELD1
Date and time: 10may93:11:22

Cod in the lceland Grounds (Fishing Area Va)

Yield per recruit: Summary rable

|  |  |  |  |  |  | 1 January |  | Spaming time |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F Factor | Reference F | Catch in numbers | Catch in weight | $\begin{aligned} & \text { Stock } \\ & \text { size } \end{aligned}$ | Stock biomass | $\begin{aligned} & \text { Sp.stock } \\ & \text { size } \end{aligned}$ | Sp. stock <br> biomass | $\begin{aligned} & \text { Sp.stock } \\ & \text { size } \end{aligned}$ | Sp. stock biomass |
| 0.0000 | 0.0000 | 0.000 | 0 | 5.016 | 23564 | 2.337 | 18039 | 2.223 | 17160 |
| 0.0500 | 0.0500 | 0.131 | 805 | 4.573 | 19252 | 1.939 | 13936 | 1.805 | 12935 |
| 0.1000 | 0.1000 | 0.225 | 1265 | 4.231 | 16109 | 1.638 | 10978 | 1.495 | 9954 |
| 0.1500 | 0.1500 | 0.294 | 1524 | 3.961 | 13779 | 1.406 | 8813 | 1.261 | 7816 |
| 0.2000 | 0.2000 | 0.346 | 1666 | 3.744 | 12021 | 1.225 | 7203 | 1.080 | 6258 |
| 0.2500 | 0.2500 | 0.386 | 1739 | 3.566 | 10670 | 1.080 | 5986 | 0.939 | 5102 |
| 0.3000 | 0.3000 | 0.419 | 1773 | 3.418 | 9613 | 0.964 | 5052 | 0.826 | 4229 |
| 0.3500 | 0.3500 | 0.446 | 1783 | 3.293 | 8772 | 0.868 | 4324 | 0.735 | 3560 |
| 0.4000 | 0.4000 | 0.469 | 1781 | 3.186 | 8092 | 0.788 | 3747 | 0.660 | 3039 |
| 0.4500 | 0.4500 | 0.488 | 1771 | 3.093 | 7532 | 0.722 | 3283 | 0.598 | 2626 |
| 0.5000 | 0.5000 | 0.505 | 1758 | 3.011 | 7065 | 0.665 | 2906 | 0.546 | 2294 |
| 0.5500 | 0.5500 | 0.520 | 1743 | 2.939 | 6670 | 0.616 | 2594 | 0.509 | 2024 |
| 0.6000 | 0.6000 | 0.534 | 1727 | 2.874 | 6332 | 0.573 | 2334 | 0.463 | 1801 |
| 0.6500 | 0.6500 | 0.546 | 1711 | 2.815 | 6039 | 0.536 | 2115 | 0.430 | 1615 |
| 0.7000 | 0.7000 | 0.557 | 1696 | 2.762 | 5783 | 0.503 | 1928 | 0.401 | 1459 |
| 0.7500 | 0.7500 | 0.567 | 1681 | 2.713 | 5558 | 0.474 | 1767 | 0.375 | 1325 |
| 0.8000 | 0.8000 | 0.576 | 1667 | 2.668 | 5357 | 0.448 | 1628 | 0.352 | 1211 |
| 0.8500 | 0.8500 | 0.585 | 1653 | 2.627 | 5176 | 0.425 | 1506 | 0.332 | 1111 |
| 0.9000 | 0.9000 | 0.593 | 1640 | 2.588 | 5014 | 0.404 | 1399 | 0.314 | 1025 |
| 0.9500 | 0.9500 | 0.600 | 1628 | 2.552 | 4867 | 0.385 | 1304 | 0.298 | 949 |
| 1.0000 | 1.0000 | 0.607 | 1616 | 2.519 | 4732 | 0.367 | 1220 | 0.283 | 882 |
| 1.0500 | 1.0500 | 0.614 | 1605 | 2.487 | 4609 | 0.352 | 1144 | 0.269 | 823 |
| 1.1000 | 1.1000 | 0.620 | 1595 | 2.458 | 4495 | 0.337 | 1076 | 0.257 | 769 |
| 1.1500 | 1.1500 | 0.626 | 1585 | 2.430 | 4390 | 0.323 | 1015 | 0.246 | 722 |
| 1.2000 | 1.2000 | 0.631 | 1576 | 2.403 | 4293 | 0.311 | 959 | 0.235 | 679 |
| 1.2500 | 1.2500 | 0.636 | 1567 | 2.378 | 4203 | 0.299 | 909 | 0.226 | 640 |
| 1.3000 | 1.3000 | 0.641 | 1558 | 2.354 | 4118 | 0.289 | 863 | 0.217 | 605 |
| 1.3500 | 1.3500 | 0.646 | 1550 | 2.332 | 4039 | 0.279 | 820 | 0.209 | 573 |
| 1.4000 | 1.4000 | 0.651 | 1542 | 2.310 | 3965 | 0.270 | 782 | 0.201 | 543 |
| 1.4500 | 1.4500 | 0.655 | 1535 | 2.290 | 3895 | 0.261 | 746 | 0.194 | 516 |
| 1.5000 | 1.5000 | 0.659 | 1528 | 2.270 | 3829 | 0.253 | 713 | 0.188 | 492 |
| 1.5500 | 1.5500 | 0.663 | 1521 | 2.251 | 3767 | 0.245 | 682 | 0.181 | 469 |
| 1.6000 | 1.6000 | 0.667 | 1515 | 2.233 | 3708 | 0.238 | 654 | 0.176 | 448 |
| 1.6500 | 1.6500 | 0.679 | 1509 | 2.215 | 3652 | 0.231 | 627 | 0.170 | 428 |
| 1.7000 | 1.7000 | 0.674 | 1503 | 2.199 | 3599 | 0.225 | 603 | 0.165 | 410 |
| 1.7500 | 1.7500 | 0.678 | 1497 | 2.182 | 3549 | 0.219 | 580 | 0.160 | 393 |
| 1.8000 | 1.8000 | 0.681 | 1492 | 2.167 | 3501 | 0.213 | 558 | 0.156 | 378 |
| 1.8500 | 1.8500 | 0.684 | 1486 | 2.152 | 3455 | 0.208 | 538 | 0.151 | 363 |
| - | - | Numbers | Grams | Nunters | Grams | Nunbers | Grams | numbers | Grams |

Yield per recruit: Sumary table

|  |  |  |  |  |  | 1 Jar | uary | Spawnin | time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\text { F }}{\text { factor }}$ | $\begin{array}{\|c\|} \text { Reference } \\ F \end{array}$ | Catch in numbers | Catch in weighe | Stock <br> size | Stock bionass | $\begin{aligned} & \text { Sp.stock } \\ & \text { size } \end{aligned}$ | Sp.stock biomass | sp. stock size | Sp.stock <br> biomass |
| 1.9000 | 1.9000 | 0.687 | 1481 | 2.137 | 3412 | 0.202 | 519 | 0.147 | 349 |
| 1.9500 | 1.9500 | 0.690 | 1476 | 2.123 | 3370 | 0.198 | 502 | 0.143 | 337 |
| 2.0000 | 2.0000 | 0.693 | 1472 | 2.110 | 3330 | 0.193 | 485 | 0.140 | 324 |
| - | - | Numbers | Grams | Numbers | Grans | Numbers | Grams | Numbers | Grams |
| Notes: $\begin{aligned} \text { R } \\ \text { D } \\ \text { C }\end{aligned}$ | Run name : |  | YIELD 1 |  |  |  |  |  |  |
|  | Date and time |  | 10may93:11:22 |  |  |  |  |  |  |
|  | Computation of ref. F: Simple mean, age 5-10 |  |  |  |  |  |  |  |  |
|  | -0.1 factor : |  | 0.1974 |  |  |  |  |  |  |
|  | -max factor |  | 0.3621 |  |  |  |  |  |  |
|  | -0.1 reference F : |  | 0.1974 |  |  |  |  |  |  |
|  | -max reference F : |  | 0.3621 |  |  |  |  |  |  |
|  | ecruitment |  | Single recruit |  |  |  |  |  |  |

Table 3．3．18
Cod in the Iceland Grounds（Fishing Area Va）
Prediction with management option table：Input data

| Year： 1993 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | stock <br> size | Natural mortality | Maturity ogive | Prop．of $F$ bef．spaw． | Prop．of M bef．spaw． | Height in stock | Exploit． pattern | Height <br> in catch |
| 3 | 137.000 | 0.2000 | 0.0360 | 0.0850 | 0.2500 | 0.953 | 0.0580 | 1.272 |
| 4 | 119.752 | 0.2000 | 0.1580 | 0.1800 | 0.2500 | 1.512 | 0.2890 | 1.884 |
| 5 | 62.569 | 0.2000 | 0.3940 | 0.2480 | 0.2500 | 2.416 | 0.5270 | 2.628 |
| 6 | 32.532 | 0.2000 | 0.6240 | 0.2960 | 0.2500 | 3.494 | 0.7530 | 3.618 |
| 7 | 8.747 | 0.2000 | 0.9290 | 0.3820 | 0.2500 | 4.771 | 0.9580 | 4.651 |
| 8 | 5.354 | 0.2000 | 0.9710 | 0.4370 | 0.2500 | 6.197 | 1.0140 | 6.135 |
| 9 | 4.155 | 0.2000 | 0.9520 | 0.4770 | 0.2500 | 7.794 | 1.0140 | 7.779 |
| 10 | 1.026 | 0.2000 | 1.0000 | 0.4770 | 0.2500 | 9.650 | 1.0140 | 9.609 |
| 11 | 0.136 | 0.2000 | 1.0000 | 0.4770 | 0.2500 | 11.719 | 1.0140 | 11.370 |
| 12 | 0.025 | 0.2000 | 1.0000 | 0.4770 | 0.2500 | 13.240 | 1.0140 | 13.091 |
| 13 | 0.017 | 0.2000 | 1.0000 | 0.4770 | 0.2500 | 14.285 | 1.0140 | 14.599 |
| 14 | 0.005 | 0.2000 | 1.0000 | 0.4770 | 0.2500 | 15.871 | 1.0140 | 16.323 |
| Unit | millions | － | － | － | － | Kilogrens | － | Kilograms |


| Year： 1994 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruit－ ment | Matural mortality | Maturity ogive | Prop．of $F$ bef．span． | Prop．of m bef．span． | Height <br> in stock | Exploit． pattern | Height in catch |
| 3 | 73.000 | 0.2000 | 0.0300 | 0.0850 | 0.2500 | 0.953 | 0.0580 | 1.272 |
| 4 | ． | 0.2000 | 0.1250 | 0.1800 | 0.2500 | 1.512 | 0.2890 | 1.801 |
| 5 | ． | 0.2000 | 0.3460 | 0.2480 | 0.2500 | 2.318 | 0.5270 | 2.563 |
| 6 | ． | 0.2000 | 0.6040 | 0.2960 | 0.2500 | 3.494 | 0.7530 | 3.571 |
| 7 | ． | 0.2000 | 0.8730 | 0.3820 | 0.2500 | 4.741 | 0.9580 | 4.755 |
| 8 | － | 0.2000 | 0.9400 | 0.4370 | 0.2500 | 6.214 | 1.0140 | 6.079 |
| 9 | － | 0.2000 | 0.9500 | 0.4770 | 0.2500 | 7.794 | 1.0140 | 7.779 |
| 10 | ． | 0.2000 | 0.9840 | 0.4770 | 0.2500 | 9.650 | 1.0140 | 9.609 |
| 11 | － | 0.2000 | 0.9970 | 0.4770 | 0.2500 | 11.719 | 1.0140 | 11.370 |
| 12 | － | 0.2000 | 0.9860 | 0.4770 | 0.2500 | 13.240 | 1.0140 | 13.091 |
| 13 | － | 0.2000 | 0.9930 | 0.4770 | 0.2500 | 14.285 | 1.0140 | 14.599 |
| 14 | ． | 0.2000 | 1.0000 | 0.4770 | 0.2500 | 15.871 | 1.0140 | 16.323 |
| Unit | Millions | － | － | － | － | Kilograms | － | Kilogrems |

Prediction with mangement option table：Input data

| Year： 1995 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruit－ ment | $\begin{array}{\|c} \text { Matural } \\ \text { mortality } \end{array}$ | M⿴囗十力 ogive | Prop．of F bef．span． | Prop．of M bef．spam． | Height in stock | Exploit． pattern | Height in catch |
| 3 | 130.000 | 0.2000 | 0.0230 | 0.0850 | 0.2500 | 0.953 | 0.0580 | 1.272 |
| 4 | ． | 0.2000 | 0.0910 | 0.1800 | 0.2500 | 1.512 | 0.2890 | 1.801 |
| 5 | ． | 0.2000 | 0.2990 | 0.2480 | 0.2500 | 2.318 | 0.5270 | 2.533 |
| 6 | ． | 0.2000 | 0.5830 | 0.2980 | 0.2500 | 3.419 | 0.7530 | 3.527 |
| 7 | － | 0.2000 | 0.8170 | 0.3820 | 0.2500 | 4.749 | 0.9580 | 4.714 |
| 8 | ． | 0.2000 | 0.9100 | 0.4370 | 0.2500 | 6.190 | 1.0140 | 6.137 |
| 9 | － | 0.2000 | 0.9470 | 0.4770 | 0.2500 | 7.794 | 1.0140 | 7.779 |
| 10 | － | 0.2000 | 0.9670 | 0.4770 | 0.2500 | 9.650 | 1.0140 | 9.609 |
| 19 | － | 0.2000 | 0.9940 | 0.4770 | 0.2500 | 11.719 | 1.0140 | 11.370 |
| 12 | －－ | 0.2000 | 0.9724 | 0.4770 | 0.2500 | 13.240 | 1.0140 | 13.091 |
| 13 | －． | 0.2000 | 0.9859 | 0.4770 | 0.2500 | 14.285 | 1.0140 | 14.599 |
| 14 | ， | 0.2000 | 1.0000 | 0.4770 | 0.2500 | 15.871 | 1.0140 | 16.323 |
| Unit | Millions | － | ＊ | － | $\bullet$ | Kilograms | － | Kilograms |

Notes：Run name ：PRED1
Date and time：OTMAY93：17：16

Table 3.3.19

Cod in the lceland Grounds (Fishing Area Va)
Cod in the lceland Grounds (Fishing Area Va)

Prediction with management option table

| Year: 1993 |  |  |  |  | Year: 1994 |  |  |  |  | Year: 1995 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| factor | Reference F | stock biomass | Sp.stock <br> biomass | Catch in weight | $\begin{gathered} \text { F } \\ \text { Factor } \end{gathered}$ | Reference F | Stock biomass | Sp.stock biomess | Catch in weight | Stock biomass | Sp.stock biomass |
| $0.9051$ | $0.7964$ | $695902$ | $209280$ | $230000$ | 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 1.1000 1.2000 | 0.2640 <br> 0.3520 <br> 0.4400 <br> 0.5280 <br> 0.6160 <br> 0.7040 <br> 0.7920 <br> 0.8800 <br> 0.9680 <br> 1.0560 | 630606 | $\begin{aligned} & 223211 \\ & 217547 \\ & 212067 \\ & 206764 \\ & 201632 \\ & 196664 \\ & 191854 \\ & 187996 \\ & 182685 \\ & 178315 \end{aligned}$ | $\begin{array}{r} 88908 \\ 114950 \\ 139407 \\ 162392 \\ 184010 \\ 204357 \\ 223520 \\ 241582 \\ 258617 \\ 274697 \end{array}$ | 764697 734266 705754 679022 653941 630395 608275 587481 567920 549506 | $\begin{aligned} & 291205 \\ & 265851 \\ & 243075 \\ & 222590 \\ & 204143 \\ & 187512 \\ & 172498 \\ & 158929 \\ & 146649 \\ & 135522 \end{aligned}$ |
| - | - | Tonnes | Tomnes | Tomnes | - | - | Pomes | Tonnes | Tonnes | Tomnes | Tonnes |

Hotes: Run name : PRED1
Date and time: 07may93:18:26
Computation of ref. F: Simple mean, age 5 - 10
Basis for 1993 : TAC constraints

Table 4.1.1 Abundance indices of 0 -group cod from the International and Icelandic 0-group Survey in the East Greenland/ Iceland area, 1971-1992 (except 19972).

| Year <br> Class | Dohrn <br> Bank East <br> Greenland | SE <br> Iceland | SW <br> Iceland | W <br> Iceland | N <br> Iceland | E <br> Iceland | Total |
| :--- | :---: | ---: | :---: | ---: | ---: | ---: | ---: |
|  | + | - | - | 60 | 214 | - | 283 |
| 1973 | 135 | 10 | 107 | 96 | 757 | 86 | 1,191 |
| 1974 | 2 | - | - | 22 | 30 | + | 54 |
| 1975 | + | - | 2 | 50 | 73 | 5 | 130 |
| 1976 | 5 | 9 | 30 | 102 | 2,015 | 584 | 2,743 |
| 1977 | 7 | 2 | + | 26 | 305 | 94 | 435 |
| 1978 | 2 | - | + | 169 | 335 | 47 | 552 |
| 1979 | 2 | + | 1 | 22 | 345 | + | 370 |
| 1980 | 1 | 2 | + | 38 | 507 | 10 | 557 |
| 1981 | 19 | - | - | 41 | 19 | - | 78 |
| 1982 | + | - | + | 7 | 4 | - | 11 |
| 1983 | + | - | + | 85 | 66 | 2 | 153 |
| 1984 | 372 | 5 | + | 200 | 826 | 369 | 1,772 |
| 1985 | 32 | + | + | 581 | 197 | 2 | 812 |
| 1986 | + | 1 | 2 | 15 | 32 | + | 50 |
| 1987 | 7 | - | 1 | 2 | 61 | 10 | 81 |
| 1988 | 0 | - | 1 | 7 | 12 | + | 20 |
| 1989 | 1 | - | 3 | 7 | 30 | + | 41 |
| 1990 | 3 | - | + | 2 | 30 | 2 | 37 |
| 1991 | + | - | - | + | 5 | + | 6 |
| 1992 | 0 | - | + | 15 | 21 | 5 | 42 |
|  |  |  |  |  |  |  |  |

Table 5.1.1 Specification of the strata.

| stratum | 1: $64^{\circ} 15^{\prime} \mathrm{N}$ | $67^{\circ} 00^{\prime} \mathrm{N}$ | $50^{\circ} 00^{\prime} \mathrm{W}$ | $57^{\circ} 00^{\prime} \mathrm{W}$ |
| :---: | :---: | :---: | :---: | :---: |
| Stratum | 1.1 depth | 1-200 | $\mathrm{m}, \mathrm{area}$ | $6,805 \mathrm{~mm}^{2}$ |
| Stratum | 1.2 depth | 201-400 | m, area | $1,881 \mathrm{~nm}^{2}$ |
| Stratum | 2: $62^{\circ} 30^{\prime} \mathrm{N}$ | $64^{\circ} 15^{\prime} \mathrm{N}$ | $50^{\circ} 00^{\prime} \mathrm{W}$ | - $55^{\circ} 00^{\prime} \mathrm{W}$ |
| stratum | 2.1 depth | 1-200 | m , area | $2,350 \mathrm{~nm}^{2}$ |
| Stratum | 2.2 depth | 201-400 | m, area | 1,018 $\mathrm{nm}^{2}$ |
| Stratum | 3: $60^{\circ} 45^{\prime} \mathrm{N}$ | $62^{\circ} 30^{\prime} \mathrm{N}$ | $48^{\circ} 00^{\prime} \mathrm{W}$ | - $53^{\circ} 00^{\prime} \mathrm{W}$ |
| Stratum | 3.1 depth | 1-200 | m , area | $1,938 \mathrm{~nm}^{2}$ |
| Stratum | 3.2 depth | 201-400 | m, area | $742 \mathrm{~nm}^{2}$ |
| Stratum | 4: $59^{\circ} 00^{\circ} \mathrm{N}$ | $60^{\circ} 45^{\prime} \mathrm{N}$ | $44^{\circ} 00^{\prime} \mathrm{W}$ | - $50^{\circ} 00^{\prime} \mathrm{W}$ |
| Stratum | 4.1 depth | 1-200 | m, area | $2,568 \mathrm{~nm}^{2}$ |
| stratum | 4.2 depth | 201-400 | m, area | $971 \mathrm{~nm}^{2}$ |
| Stratum | 5: $59^{\circ} 00^{\prime} \mathrm{N}$ | $63^{\circ} 00^{\prime} \mathrm{N}$ | $40^{\circ} 00^{\prime} \mathrm{W}$ | - $44^{\circ} 00^{\prime} \mathrm{W}$ |
| Stratum | 5.1 depth | 1-200 | $\mathrm{m}, \mathrm{area}$ | $2,468 \mathrm{~nm}^{2}$ |
| stratum | 5.2 depth | 201-40 | m, area | $3,126 \mathrm{~nm}^{2}$ |
| Stratum | 6: $63^{\circ} 00^{\prime} \mathrm{N}$ | $66^{\circ} 00^{\prime} \mathrm{N}$ | $35^{\circ} 00^{\prime} \mathrm{W}$ | - $41^{\circ} 00^{\prime} \mathrm{W}$ |
| Stratum | 6.1 depth | 1-200 | $\mathrm{m}, \mathrm{area}$ | 1,120 $\mathrm{nm}^{2}$ |
| Stratum | 6.2 depth | 201-400 | $\mathrm{m}, \mathrm{area}$ | 7,795 $\mathrm{mm}^{2}$ |
| Stratum | 7: $64^{\circ} 45^{\prime} \mathrm{N}=$ | $67^{\circ} 00^{\prime} \mathrm{N}$ | $29^{\circ} 00^{\prime} \mathrm{W}$ | - $35^{\circ} 00^{\prime} \mathrm{W}$ |
| Stratum | 7.1 depth | 1-200 | $\mathrm{m}, \mathrm{area}$ | $92 \mathrm{~nm}^{2}$ |
| Stratum | 7.2 depth | 201-400 | m, area | $4,589 \mathrm{~nm}^{2}$ |
| Total |  |  |  | $37,463 \mathrm{~nm}^{2}$ |

Table 5.1.2 Trawl parameters of the survey.

Gear
Horizontal net opening Standard trawling speed Towing time Coefficient of catchability

140-feet bottom trawl
22 m
4.5 kn

30 minutes
1.0

Table 5.1.3 Numbers of valid hauls per stratum and total, 1982-

STRATA: $1.1 \begin{array}{llllllllllllllllll} & 1.2 & 2.1 & 2.2 & 3.1 & 3.2 & 4.1 & 4.2 & 5.1 & 5.2 & 6.1 & 6.2 & 7.1 & 7.2 & \text { SUM }\end{array}$ YEAR

| 1982 | 20 | 11 | 16 | 7 | 9 | 6 | 13 | 2 | 1 | 10 | 3 | 12 | 1 | 25 | 136 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1983 | 26 | 11 | 25 | 11 | 17 | 5 | 18 | 4 | 3 | 19 | 10 | 36 | 0 | 18 | 203 |
| 1984 | 25 | 13 | 26 | 8 | 18 | 6 | 21 | 4 | 5 | 4 | 2 | 8 | 0 | 5 | 145 |
| 1985 | 10 | 8 | 26 | 10 | 17 | 5 | 21 | 4 | 5 | 21 | 14 | 50 | 0 | 28 | 219 |
| 1986 | 27 | 9 | 21 | 9 | 16 | 7 | 18 | 3 | 3 | 15 | 14 | 37 | 1 | 34 | 214 |
| 1987 | 25 | 11 | 21 | 4 | 18 | 3 | 21 | 3 | 19 | 16 | 13 | 40 | 0 | 18 | 212 |
| 1988 | 34 | 21 | 28 | 5 | 18 | 5 | 18 | 2 | 21 | 8 | 13 | 39 | 0 | 26 | 238 |
| 1989 | 26 | 14 | 30 | 9 | 8 | 3 | 25 | 3 | 17 | 18 | 12 | 29 | 0 | 11 | 205 |
| 1990 | 19 | 7 | 23 | 8 | 16 | 3 | 21 | 6 | 18 | 19 | 6 | 15 | 0 | 13 | 174 |
| 1991 | 19 | 11 | 23 | 7 | 12 | 6 | 14 | 5 | 8 | 11 | 10 | 28 | 0 | 16 | 170 |
| 1992 | 6 | 6 | 6 | 5 | 6 | 6 | 7 | 5 | 0 | 0 | 0 | 0 | 0 | 6 | 53 |

Table 5.1.4 Abundance indices ( $n * 1,000$ ) for West, East Greenland and total by stratum, 1982-92. Confidence intervals (CI) are given in per cent of the statified mean at $95 \%$ level of significance. () invalid due to incomplete sampling.

| Year Strata: 1.1 | 1.2 | 2.1 | 2.2 | 3.1 | 3.2 | 4.1 | 4.2 West Greenland |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |  |
| 1982 | $5,092.1$ | 729.4 | $47,956.6$ | $1,888.1$ | $15,114.0$ | $3,706.1$ | $17,789.5$ | 0.0 | $92,275.8$ |  |
| 1983 | 430.9 | 467.0 | $16,012.6$ | $5,169.5$ | $14,881.3$ | $2,326.4$ | $10,915.7$ | 0.0 | $50,203.4$ |  |
| 1984 | 376.8 | 178.6 | $4,744.0$ | 179.4 | $5,200.5$ | 689.4 | $5,353.0$ | 0.0 | $16,683.7$ |  |
| 1985 | $19,629.9$ | $2,428.0$ | $13,222.3$ | $4,395.3$ | $10,530.8$ | $1,637.9$ | $7,498.8$ | 0.0 | $59,343.0$ |  |
| 1986 | $32,438.3$ | $1,235.5$ | $50,907.6$ | 228.5 | $37,446.2$ | $1,320.6$ | $22,103.6$ | 0.0 | $145,680.3$ |  |
| 1987 | $330,943.5$ | $1,650.6$ | $248,002.1$ | 0.0 | $154,681.0$ | 0.0 | $51,114.3$ | 0.0 | $786,391.5$ |  |
| 1988 | $92,024.1$ | $2,422.9$ | $338,740.0$ | $84,935.3$ | $47,336.0$ | 88.8 | $60,946.4$ | 0.0 | $626,493.5$ |  |
| 1989 | $2,497.1$ | 919.9 | $27,930.3$ | 672.9 | $261,502.3$ | 0.0 | $65,203.4$ | 0.0 | $358,725.9$ |  |
| 1990 | 964.8 | 512.7 | $4,155.3$ | 361.8 | $6,013.7$ | 0.0 | $10,303.4$ | $12,212.6$ | $34,524.3$ |  |
| 1991 | 268.0 | 204.7 | 179.7 | 152.4 | $1,027.2$ | 610.7 | $1,839.2$ | 523.1 | $4,805.0$ |  |
| 1992 | 551.6 | 621.7 | 117.2 | 137.1 | 120.8 | 74.0 | 151.0 | 268.8 | $2,042.2$ |  |


| Year Strata: 5.1 | 5.2 | 6.1 | 6.2 | 7.1 | 7.2 | East Greenland Greenland | CI |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | 0.0 | 467.8 | 0.0 | $6,173.1$ | 0.0 | $1,449.1$ | $8,090.0$ | $100,365.8$ |
| 1982 | 0.0 | $2,228.3$ | $1,273.9$ | $2,276.4$ | 0.0 | $2,212.9$ | $7,991.5$ | $58,194.9$ | 25.2 |
| 1983 | $4,062.9$ | 0.0 | 0.0 | $1,749.9$ | 0.0 | 789.8 | $6,602.6$ | $23,286.3$ | 31.6 |
| 1984 | $3,564.3$ | 373.9 | $3,977.9$ | $3,348.1$ | 0.0 | $1,140.5$ | $12,403.9$ | $71,746.9$ | 32.5 |
| 1985 | 0.0 | 779.7 | $6,950.1$ | $6,676.3$ | 0.0 | 828.2 | $15,234.3$ | $160,914.6$ | 31.7 |
| 1986 | $18,317.0$ | $9,831.7$ | $6,527.3$ | $6,080.8$ | 0.0 | 877.5 | $41,634.3$ | $828,025.8$ | 58.9 |
| 1987 | $7,985.0$ | $8,084.6$ | $2,059.7$ | $4,374.6$ | 0.0 | $1,083.0$ | $23,586.9$ | $650,080.4$ | 47.7 |
| 1988 | $30,906.1$ | $38,407.2$ | $11,600.4$ | $9,382.9$ | 0.0 | $1,436.0$ | $91,732.6$ | $450,458.5$ | 58.9 |
| 1989 | $4,955.5$ | $2,523.8$ | $4,532.6$ | $9,040.9$ | 0.0 | $4,199.9$ | $25,252.7$ | $59,777.0$ | 42.9 |
| 1990 | $2,343.1$ | $1,786.2$ | 779.4 | $1,958.2$ | 0.0 | $3,541.2$ | $10,408.1$ | $15,213.1$ | 28.5 |
| 1991 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 658.2 | $(658.2)$ | $(2,700.4)$ | 49.9 |

Table 5.1.5 Biomass indices (tonnes) for West, East Greenland and total by stratum, 1982-92. Confidence intervals (CI) are given in per cent of the stratified mean at $95 \%$ level of significance. () invalid due to incomplete sampling.

| Year Strata: 1.1 | 1.2 | 2.1 | 2.2 | 3.1 | 3.2 | 4.1 | 4.2 West Greenland |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |  |
| 1982 | $2,378.0$ | 306.8 | $63,683.9$ | $2,631.9$ | $20,318.5$ | $8,744.8$ | $30,425.8$ | 0.0 | $128,489.7$ |  |
| 1983 | 353.4 | 205.4 | $20,215.0$ | $7,827.3$ | $22,806.1$ | $9,594.3$ | $21,373.6$ | 0.0 | $82,375.1$ |  |
| 1984 | 824.1 | 233.9 | $7,508.0$ | 233.8 | $7,218.0$ | $1,054.7$ | $8,492.6$ | 0.0 | $25,565.1$ |  |
| 1985 | $2,528.2$ | 250.7 | $12,869.4$ | $2,351.0$ | $10,730.5$ | 989.7 | $5,952.1$ | 0.0 | $35,671.6$ |  |
| 1986 | $10,640.6$ | 484.0 | $26,098.1$ | 79.6 | $28,509.5$ | $1,423.0$ | $19,482.5$ | 0.0 | $86,797.3$ |  |
| 1987 | $283,591.2$ | 544.9 | $200,632.4$ | 0.0 | $116,610.0$ | 0.0 | $37,210.2$ | 0.0 | $638,588.7$ |  |
| 1988 | $94,174.7$ | $1,367.0$ | $333,848.3$ | $77,966.8$ | $44,592.8$ | 93.3 | $55,945.0$ | 0.0 | $607,987.9$ |  |
| 1989 | 727.4 | 227.5 | $25,829.2$ | 440.5 | $231,239.0$ | 0.0 | $75,386.3$ | 0.0 | $333,849.9$ |  |
| 1990 | 224.3 | 113.5 | $3,552.3$ | 190.3 | $5,778.4$ | 0.0 | $13,185.4$ | $11,387.8$ | $34,432.0$ |  |
| 1991 | 90.8 | 71.6 | 72.9 | 45.4 | $1,208.3$ | 589.3 | $2,620.8$ | 451.0 | $5,150.1$ |  |
| 1992 | 134.5 | 194.7 | 23.4 | 36.0 | 21.1 | 14.3 | 81.3 | 101.8 | 607.1 |  |


| Year Strata: 5.1 | 5.2 | 6.1 | 6.2 | 7.1 | 7.2 | East GreenlandGreenland Cl |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | 0.0 | $1,927.4$ | 0.0 | $14,562.7$ | 0.0 | $7,127.3$ | $23,617.4$ | $152,107.1$ | 24.8 |
| 1982 | 0.0 | $6,146.7$ | $3,511.5$ | $11,344.3$ | 0.0 | $13,153.6$ | $34,956.9$ | $116,531.2$ | 25.2 |  |
| 1983 | $10,397.3$ | 0.0 | 0.0 | $4,109.6$ | 0.0 | $5,236.7$ | $19,743.6$ | $45,308.7$ | 33.7 |  |
| 1984 | $7,073.1$ | $1,355.6$ | $9,955.2$ | $9,436.7$ | 0.0 | $5,744.1$ | $33,564.7$ | $69,236.3$ | 39.2 |  |
| 1985 | 0.0 | $2,645.2$ | $18,630.9$ | $16,542.8$ | 0.0 | $3,365.7$ | $41,184.6$ | $127,901.9$ | 26.1 |  |
| 1986 | $10,315.1$ | $9,053.9$ | $9,291.4$ | $17,616.0$ | 0.0 | $5,315.8$ | $51,592.2$ | $690,180.9$ | 63.1 |  |
| 1987 | $8,750.1$ | $18,204.3$ | $6,162.4$ | $16,258.0$ | 0.0 | $3,571.9$ | $52,946.7$ | $660,934.6$ | 46.0 |  |
| 1988 | $40,614.2$ | $127,864.8$ | $34,957.0$ | $31,323.9$ | 0.0 | $4,785.6$ | $239,545.5$ | $573,395.4$ | 45.5 |  |
| 1989 | $9,229.2$ | $6,812.7$ | $12,953.7$ | $24,407.6$ | 0.0 | $12,560.0$ | $65,963.2$ | $100,395.2$ | 33.7 |  |
| 1990 | $4,236.0$ | $5,778.9$ | $1,263.2$ | $7,467.1$ | 0.0 | $14,005.5$ | $32,750.7$ | $37,900.8$ | 35.5 |  |
| 1991 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | $1,215.8$ | $(1,215.8)$ | $(1,822.9)$ | 68.7 |  |
| 1992 |  |  |  |  |  |  |  |  |  |  |

Table 5.1.6 West Greenland. Age disaggregate abundance indices (n*1,000), 1982-92. *) calculated proportionally using age compositions reported by ICES Working Group on Cod Stocks off East Greenland (Anon. 1984, 1988).

| AGE | 1982* | $1983^{\text {* }}$ | 1984 | 1985 | 1986 | $198{ }^{\text {* }}$ | 1988 | 1989 | 1990 | 1991 | 1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 186 | 890 | 0 | 65 | 434 | 12 | 158 | 0 | 0 |
| 1 | 136 | 0 | 5 | 39,277 | 10,575 | 521 | 254 | 204 | 47 | 245 | 189 |
| 2 | 612 | 1,469 | 38 | 1,531 | 114,823 | 50,817 | 3,290 | 2,583 | 1,014 | 208 | 1,473 |
| 3 | 31,089 | 2,815 | 2,094 | 898 | 4,374 | 692,832 | 101,820 | 7,618 | 2,900 | 435 | 227 |
| 4 | 9,168 | 26,619 | 1,541 | 5,958 | 1,033 | 17,176 | 511,473 | 170,469 | 1,272 | 1,260 | 48 |
| 5 | 32,867 | 4,960 | 9,648 | 2,616 | 7,837 | 5,673 | 5,435 | 174,532 | 22,120 | 160 | 89 |
| 6 | 11,539 | 10,969 | 850 | 7,184 | 2,250 | 12,653 | 616 | 2,868 | 6,964 | 2,102 | 0 |
| 7 | 4,031 | 1,882 | 1,983 | 375 | 4,167 | 1,655 | 1,134 | 0 | 47 | 356 | 28 |
| 8 | 886 | 992 | 90 | 600 | 107 | 4,543 | 662 | 259 | 0 | 6 | 0 |
| 9 | 1,699 | 317 | 201 | 18 | 449 | 0 | 1,310 | 40 | 0 | 0 | 0 |
| 10 | 107 | 168 | 29 | 19 | 23 | 426 | 34 | 141 | 0 | 0 | 0 |
| 11 | 72 | 0 | 0 | 0 | 24 | 31 | 39 | 0 | 5 | 0 | 0 |
| 12 | 59 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 |
| 13 | 0 | 13 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
| 14 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sum | 92,276 | 50,204 | 16,665 | 59,366 | 145,673 | 786,392 | 626,501 | 358,731 | 34,527 | 4,772 | 2,054 |

Table 5.1.7 East Greepnland. Age disaggregate abundance indices (n*1,000), 1982-92. *) calculated proportionally using age compositions reported by ICES Working Group on cod stocks off East Greenland (Anon. 1984, 1988). () invalid due to incomplete sampling.

| AGE | $1982{ }^{\text {* }}$ | $1983{ }^{\text { }}$ | 1984 | 1985 | 1986 | $198{ }^{\text {* }}$ | 1988 | 1989 | 1990 | 1991 | (1992) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 232 | 0 | 0 | 12 | 0 | 0 | 0 | 29 |
| 1 | 16 | 0 | 18 | 1,932 | 1,398 | 14 | 25 | 8 | 37 | 101 | 29 |
| 2 | 336 | 411 | 73 | 559 | 3,346 | 14,205 | 160 | 177 | 79 | 374 | 73 |
| 3 | 660 | 605 | 1,339 | 117 | 1.693 | 17,968 | 6,975 | 494 | 552 | 388 | 69 |
| 4 | 1,373 | 1,008 | 659 | 2,496 | 550 | 3,987 | 11,092 | 17,396 | 463 | 697 | 59 |
| 5 | 1,728 | 1,187 | 1,403 | 2,035 | 2,419 | 982 | 2,011 | 63,169 | 5,132 | 148 | 54 |
| 6 | 1,218 | 2,125 | 853 | 1,853 | 1,121 | 1,581 | 478 | 2.990 | 17,998 | 3,524 | 47 |
| 7 | 372 | 1,287 | 1,699 | 779 | 2,187 | 408 | 1,410 | 294 | 265 | 5,046 | 143 |
| 8 | 140 | 302 | 408 | 1,989 | 566 | 1,313 | 150 | 4,746 | 71 | 82 | 52 |
| 9 | 1.950 | 265 | 102 | 284 | 1,594 | 131 | 653 | 396 | 238 | 37 | 0 |
| 10 | 189 | 703 | 36 | 53 | 116 | 938 | 94 | 1,560 | 0 | 12 | 0 |
| 11 | 98 | 69 | 95 | 34 | 104 | 25 | 425 | 39 | 278 | 9 | 6 |
| 12 | 10 | 32 | 0 | 45 | 13 | 71 | 41 | 415 | 24 | 0 | 19 |
| 13 | 0 | 0 | 0 | 0 | 84 | 5 | 19 | 0 | 100 | 0 | 0 |
| 14 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 44 | 0 | 11 | 0 |
| 15 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 9 | 0 | 0 |
| 16 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 |
| SUM | 8,090 | 7,994 | 6,605 | 12,408 | 15,191 | 41,633 | 23,561 | 91,728 | 25,246 | 10,429 | 580 |

Table 5.1.8 Greenland (total). Age disaggregate abundance indices (n*1,000), 1982-92. *) calculated proportionally using age compositions reported by ICES Working Group on Cod Stocks off East Greenland (Anon. 1984, 1988). () invalid due to incomplete sampling.

| AGE | $198{ }^{*}$ | 1983 | 1984 | 1985 | 1986 | $1987{ }^{*}$ | * 1988 | 1989 | 1990 | 1991 | (1992) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 186 | 1,122 | 0 | 65 | 446 | 12 | 158 | 0 | 29 |
| 1 | 952 | 0 | 23 | 41,209 | 11,973 | 535 | 279 | 212 | 84 | 346 | 218 |
| 2 | 948 | 1,880 | 119 | 2,090 | 118,169 | 65,022 | 3,450 | 2,760 | 1,093 | 582 | 1,546 |
| 3 | 31,749 | 3,420 | 3,433 | 1,095 | 6,067 | 710,800 | 108,795 | 8,112 | 3,452 | 823 | 296 |
| 4 | 10,541 | 27,627 | 2,200 | 8,454 | 1,583 | 21,163 | 522,565 | 187,865 | 1,735 | 1,957 | 107 |
| 5 | 34,595 | 6,147 | 11,051 | 4,651 | 10,256 | 6,655 | 7,446 | 237,701 | 27,252 | 308 | 143 |
| 6 | 12,757 | 13,094 | 1,703 | 9,037 | 3,374 | 14,234 | 1,094 | 5,858 | 24,962 | 5,626 | 47 |
| 7 | 4,403 | 3,169 | 3,602 | 1,154 | 6,354 | 2,063 | 2,544 | 294 | 312 | 5,402 | 171 |
| 8 | 1,026 | 1,294 | 498 | 2,589 | 673 | 5,856 | 812 | 5,005 | 71 | 88 | 52 |
| 9 | 3,649 | 582 | 303 | 302 | 2,043 | 139 | 1,963 | 436 | 238 | 37 | 0 |
| 10 | 296 | 871 | 65 | 72 | 139 | 1,364 | 128 | 1,701 | 0 | 12 | 0 |
| 11 | 170 | 69 | 95 | 34 | 128 | 56 | 464 | 39 | 283 | 9 | 6 |
| 12 | 69 | 32 | 0 | 45 | 13 | 71 | 41 | 420 | 24 | 0 | 19 |
| 13 | 0 | 13 | 0 | 0 | 95 | 5 | 19 | 0 | 100 | 0 | 0 |
| 14 | 11 | 0 | 0 | 0 | 0 | 5 | 0 | 44 | 0 | 11 | 0 |
| 15 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 9 | 0 | 0 |
| 16 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 |
| SU用 | 100,366 | 58,198 | 23,270 | 71,774 | 160,864 | 828,025 | 650,062 | 450,459 | 59,773 | 15,201 | 2,634 |

Table 5.1.9 Swept area abundance ('000) and biomass (Tons) by stratum as observed from the Greenland trawl survey, 1992. Stations and strata are shown in Fig. 5.1.6. ${ }^{\circ}$ ) In these strata substratification on depth was impossible due to unreliable bathymetric maps.

|  | Abundance |  |  |  | Biomass |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Strata | 0-200 | 201-400 | 401-600 | Total | 0-200 | 201-400 | 401-600 | Total |
| NWGRL ${ }^{\circ}$ | - | - | - | 4.4 | - | - | - | 2.2 |
| 1AS ${ }^{\circ}$ | - | - | - | 0.0 | - | - | - | 0.0 |
| DISK09 | - | - | - | 0.0 | - | - | - | 0.0 |
| 18N | 0.0 | 14.0 | 0.0 | 14.0 | 0.0 | 18.9 | 0.0 | 18.9 |
| 1BS | 0.0 | 0.0 | 28.0 | 28.0 | 0.0 | 0.0 | 26.2 | 26.2 |
| 1 C | 0.0 | 182.0 | 18.0 | 200.0 | 0.0 | 58.3 | 2.6 | 60.9 |
| 1D | 0.0 | 245.0 | 11.0 | 256.0 | 0.0 | 81.5 | 6.6 | 88.1 |
| 1E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1 F | 6.0 | 0.0 | 0.0 | 6.0 | 1.3 | 0.0 | 0.0 | 1.3 |
| EAST1 | 66.0 | 185.0 | 0.0 | 251.0 | 36.1 | 27.8 | 0.0 | 63.9 |
| EAST2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| EAST3 | 0.0 | 7.0 | 0.0 | 7.7 | 0.0 | 1.9 | 0.0 | 1.9 |
| EAST49 | - | - | - | 6.0 | - | - | - | 5.6 |

TOTAL West Greenland Abundance : $507+-508$
Biomass : 198 +- 188
East Greenland Abundance : 264 +- 394 Biomass : 71 +- 92

Table 5,1.10 CPUE of age 2 cod by area as observed in the Greenland gill-net survey in inshore areas of West Greenland, 1985-1992

| Year | Year-class | Sisimiut <br> (Div. 1B) | Area <br> Nuuk <br> (Div. 1D) | Qaqortoq <br> (Div 1F) | Average |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1985 | 83 | 0.00 | 0.03 | 0.00 | 0.01 |
| 1986 | 84 | 5.37 | 2.01 | 2.30 | 3.24 |
| 1987 | 85 | 1.24 | 0.20 | 1.52 | 0.99 |
| 1988 | 86 | 0.38 | 0.19 | 0.01 | 0.20 |
| 1989 | 87 | 0.98 | 0.82 | 0.06 | 0.62 |
| 1990 | 88 | 1.11 | 0.16 | 0.01 | 0.42 |
| 1991 | 89 | 0.03 | 0.02 | 0.02 | 0.02 |
| 1992 | 90 | 0.43 | 0.57 | 0.03 | 0.34 |

Table 5.2.1 Nominal catches of NAFO Sub-area 1 cod by fleet ('O00 t) for 1980-1992.

| Category | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Trawlers | 14 | 29 | 42 | 18 | 7 | 1 | 1 | 40 | 73 | 39 | 2 | 0 |
| Other | 39 | 26 | 16 | 12 | 8 | 4 | 12 | 22 | 39 | 29 | 18 | 6 |
| Total | 53 | 55 | 58 | 30 | 15 | 5 | 13 | 62 | 112 | 68 | 20 | 6 |
| TAC | $50^{1}$ | 62 | 62 | 68 | 28.5 | 12.5 | 12.5 | 53 | 90 | 110 | $90^{1}$ | $83^{1}$ |

'Combined TAC for East and West Greenland.

Table 5.2.2 Nominal catch of COD in NAFO Sub-area 1, 1981-1992 as officially reported to NAFO.

| Country | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Faroe Islands | - | - | 1,339 | - | - | - |
| Germany, Fed.Rep. | 417 | 8,139 | 10,158 | 8,941 | 2,170 | 41 |
| Greenland | 53,039 | 47,693 | 44,970 | 24,457 | 12,651 | 6,549 |
| Japan | - | - | - | 13 | 54 | 11 |
| Norway | - | - | - | 5 | 1 | 2 |
| United Kingdom | - | - | 1,174 | - | - | - |
| Total | 53,456 | 55,832 | 57,641 | 33,416 | 14,876 | 6,603 |
|  |  |  |  |  |  |  |
| Country | 1987 | 1988 | 1989 | $1990^{1}$ | $1991^{2}$ | $1992^{3}$ |
| Faroe Islands | - | - | - | - | - | - |
| Germany,Fed.Rep. | 55 | 6,574 | 12,892 | 7,515 | 82 | - |
| Greenland | 12,283 | 52,166 | 92,152 | 59,043 | 20,238 | 5,665 |
| Japan | 33 | 10 | - | - | - | - |
| Norway | 1 | 7 | 2 | 57 | - | - |
| United Kingdom | - | 927 | 3,780 | 1,632 | - | - |
| Total | 12,372 | 59,684 | 108,826 | 68,247 | 20,320 |  |
| Working Group estimate ${ }^{3}$ | - | 62,684 | 111,642 | - | - | 5,665 |

${ }^{1}$ Provisional data (NAFO SCS 91/17 (except for Greenland)).
${ }^{2}$ Reported to Greenland authorities. (NAFO SCS 92/25).
${ }^{3}$ Only Greenland available.
${ }^{4}$ Includes 3,000 $t$ in 1988 and $2,741 \mathrm{t}$ in 1989 reported to be from ICES Sub-area XIV.

Table 5.2.3 Nominal catch (tonnes) of COD in ICES Sub-area XIV, 1981-1992 as officially reported to ICES.

| Country | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Faroe Islands | 292 | - | 368 | - | - | 86 |
| Germany,Fed.Rep. | 7,367 | 8,940 | 8,238 | 7,035 | 2,006 | 4,063 |
| Greenland | 890 | 898 | 438 | 1,051 | 106 | 606 |
| Iceland | 1 | - | - | - | - | - |
| Norway | - | - | - | 794 | - | - |
| UK(England \& Wales) | - | - | - | - | - | - |
| UK(Scotland) | - | - | - | - | - |  |
| Total | 8,550 | 9,838 | 9,044 | 8,880 | 2,112 | 4,755 |
| Working Group estimate | 16,000 | 27,000 | 13,377 | 8,914 | 2,112 | 4,755 |
|  |  |  |  |  |  |  |
| Country | 1987 | 1988 | 1989 | 1990 | 1991 | $1992^{1}$ |
| Faroe Islands | - | 12 | 40 | - | - | - |
| Germany,Fed.Rep. | 5,358 | 12,049 | 10,613 | 26,419 | 8,434 | 6100 |
| Greenland | 1,476 | 345 | 3,715 | 4,442 | 6,677 | 1,283 |
| Iceland | 1 | 9 | - | - | - | - |
| Norway | - | - | - | 17 | $836^{1}$ | 1,158 |
| UK(England \& Wales) | - | - | 1,158 | 2,365 | 5,832 | 2,496 |
| UK(Scotland) | - | - | 135 | 93 | 29 | 463 |
| Total | 6,835 | 12,415 | 15,661 | 33,336 | 21,808 | 11,500 |
| Working Group estimate | 6,658 | $9,415^{2}$ | $14,504^{3}$ | $33,465^{4}$ | $22,227^{4}$ | 11,500 |

${ }^{1}$ Preliminary.
${ }^{2}$ Excluding 3,000 t assumed to be from NAFO Division 1F.
${ }^{3}$ Excluding 2,741 tassumed to be from NAFO Division $1 F$ and including $1,500 \mathrm{t}$ reported from other areas assumed to be from Sub-area XIV and including 94 tonnes by Japan.
${ }^{4}$ Includes additional catches by Japan.
${ }^{5}$ Includes additional catches reported to Greenland authorities.

Table 5.3.1 Cod off West Greenland, NAFO Sub-area 1. Catch-at-age and mean weight-at-age by division in 1992.

Catch at age by div. ( 000 )

| Div. | 1A | 1 B | 10 | 10 | $1 E$ | 1 F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age |  |  |  |  |  |  |
| 3 | 0 | 0 | 5 | 2 | 1 | 33 |
| 4 | 635 | 2239 | 457 | 402 | 6 | 22 |
| 5 | 159 | 654 | 139 | 434 | 85 | 223 |
| 6 | 10 | 56 | 13 | 40 | 23 | 55 |
| 7 | 2 | 17 | 3 | 15 | 30 | 49 |
| 8 | 0 | 1 | 0 | 3 | 3 | 5 |
| 9 | 0 | 0 | 0 | 0 | 0 | 1 |
| $10+$ | 0 | 0 | 0 | 0 | 0 | 0 |
| Sum | 806 | 2968 | 617 | 897 | 149 | 387 |

Mean weight at age (Kg.), by Div.

| Div. | 1A | 18 | 1 C | 10 | 1 E | 1F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age |  |  |  |  |  |  |
| 3 | - | - | 0.55 | 0.49 | 0.70 | 0.65 |
| 4 | 0.79 | 0.81 | 0.81 | 0.95 | 0.78 | 0.79 |
| 5 | 1.04 | 1.11 | 1.14 | 1.31 | 1.09 | 1.13 |
| 6 | 1.96 | 214 | 1.63 | 1.71 | 1.32 | 1.41 |
| 7 | 1.98 | 218 | 250 | 257 | 1.53 | 1.52 |
| 8 | 4.83 | 4.83 | 297 | 274 | 1.59 | 1.55 |
| 9 | - | - | - | 9.26 | 1.99 | 200 |
| $10+$ | - | - | - | - | - | - |

Table 5.3.2 Cod off West Greenland, NAFO Sub-area 1. Catch at age from 1966 to 1992.

Cod off Hest Greenland (Fishing Area XIV)
Catch in Numbers (Thousands)
(CANLM)

| Year | Age 3 | Age 4 | Age 5 | Age 6 | Age 7 | Age 8 | Age 9 | Age 10 | Age 11 | Age 12 | Age 13 | Age 14 | Age 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1966 | 1530 | 7872 | 62130 | 26941 | 5915 | 4955 | 6912 | 1289 | 283 | 130 | 981 | 139 | 247 |
| 1967 | 1727 | 15091 | 30457 | 61848 | 24562 | 2700 | 1996 | 5237 | 352 | 93 | 166 | 453 | 248 85 |
| 1968 | 3764 | 7976 | 36670 | 29824 | 34591 | 10005 | 1725 | 833 | 2348 | 187 | 37 | 42 | 303 |
| 1969 | 662 | 12399 | 8709 | 27433 | 14664 | 12411 | 4784 | 513 | 237 | 704 | 41 | 62 | 8 |
| 1970 | 49 | 2768 | 10342 | 6465 | 13985 | 4365 | 2810 | 1280 | 149 | 85 | 201 | 27 | 41 |
| 1971 | 272 | 2519 | 10172 | 9283 | 5237 | 9158 | 2077 | 1841 | 953 | 78 | 51 | 134 | 56 |
| 1972 | 51 | 10039 | 9786 | 12020 | 4081 | 2550 | 2660 | 624 | 954 | 709 | 130 | 57 | 122 |
| 1973 | 131 | 2302 | 16378 | 3065 | 2605 | 1406 | 1203 | 552 | 165 | 237 | 93 | 37 | 44 |
| 1974 | 343 | 1079 | 2384 | 6938 | 1135 | 1806 | 800 | 194 | 177 | 152 | 272 | 147 | 11 |
| 1975 | 275 10760 | 3595 | 2677 | 1803 | 5855 | 1388 | 619 | 291 | 84 | 38 | 27 | 1428 | 10 |
| 1976 | 10760 | 4026 | 2243 | 1216 | 302 | 1594 | 139 | 148 | 53 | 27 | 17 | 14 | 26 |
| 1977 | 634 287 | 46849 5494 | 6053 30039 | 1515 | 618 509 | 425 | 446 | 168 | 79 | 88 | 22 | 1 | 1 |
| 1979 | 288 | 10654 | 30039 12505 | 18970 | 509 709 | 83 400 | 41 78 | 13 52 | 7 5 | 7 80 | 7 | 1 | 18 |
| 1980 | 2999 | 4513 | 4580 | 1978 | 8014 | 125 | 60 | 24 | 75 1 | 80 16 | 5 | 5 | 16 |
| 1981 | 12 | 16864 | 6374 | 2391 | 1053 | 3382 | 45 | 65 | 1 | 1 | 0 | 0 | 7 |
| 1982 | 1204 | 1210 | 17960 | 2965 | 2078 | 807 | 610 | 45 | 88 | 9 | 4 | 1 | 13 |
| 1983 | 77 | 12356 | 2011 | 17228 | 1581 | 995 | 344 | 343 | 3 | 22 | 0 | 2 | 19 |
| 1984 | 595 | 2018 | 10384 | 688 | 3656 | 106 | 365 | 97 | 69 | 0 | 3 | 0 | 0 |
| 1985 | 456 | 1266 | 1303 | 4915 | 161 | 750 | 42 | 140 | 15 | 8 | 0 | 0 | 14 |
| 1986 | 12 | 113 | 706 | 318 | 1193 | 12 | 332 | 80 | 13 | 35 | 0 | 0 | 0 |
| 1987 | 5705 | ${ }_{5} 1636$ | 274 | 662 | 424 | 686 | 7 | 30 | 1 | 14 | 0 | 0 | 0 |
| 1988 | 839 31 | 50214 8300 | 1070 | 501 | 652 | 524 | 751 | 21 | 85 | 0 | 0 | 0 | 0 |
| 1990 | 77 | 3355 | 24493 | 570 30316 | 84 | 161 | 253 | 525 | 0 | 72 | 0 | 0 | 0 |
| 1991 | 101 | 5395 | 4744 | 7126 | 689 | 0 | 0 | 0 | 41 | 12 | 0 | 0 | 0 |
| 1992 | 40 | 3763 | 1694 | 196 | 116 | 13 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

Table 5.3.3 Cod off East Greenland, ICES Sub-area XIV. Catch at age from 1965 to 1992.
(CANUM)

| Year | Age 2 | Age 3 | Age 4 | Age 5 | Age 6 | Age 7 | Age 8 | Age 9 | Age 10 | Age 11 | Age 12 | Age 13 | Age 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1965 | 0 | 0 | 131 | 35 | 91 | 879 | 661 | 1484 | 59 | 27 | 139 | 29 | 178 |
| 1966 | 0 | 28 | 21 | 470 | 89 | 137 | 1071 | 359 | 418 | 23 | 3 | 27 | 36 |
| 1967 | 0 | 0 | 145 | 302 | 2346 | 564 | 210 | 1292 | 492 | 371 | 37 | 17 | 81 |
| 1968 | 0 | 0 | 104 | 630 | 502 | 2505 | 238 | 62 | 144 | 69 | 27 | 5 | 25 |
| 1969 | 0 | 0 | 31 | 252 | 849 | 770 | 2103 | 170 | 38 | 82 | 68 | 24 | 86 |
| 1970 | 0 | 0 | 66 | 76 | 500 | 1539 | 1060 | 1715 | 237 | 32 | 63 | 48 | 27 |
| 1971 | 0 | 0 | 25 | 171 | 159 | 1051 | 3785 | 1580 | 1326 | 171 | 19 | 4 | 14 |
| 1972 | 0 | 0 | 27 | 85 | 254 | 295 | 1299 | 3184 | 818 | 470 | 136 | 26 | 53 |
| 1973 | 0 | 4 | 25 | 197 | 126 | 250 | 82 | 710 | 959 | 222 | 72 | 19 | 7 |
| 1974 | 0 | 4 | 63 | 22 | 488 | 176 | 185 | 52 | 329 | 259 | 65 | 11 | 2 |
| 1975 | 0 | 57 | 57 | 339 | 86 | 783 | 155 | 82 | 21 | 66 | 52 | 16 | 4 |
| 1976 | 0 | 257 | 175 | 162 | 590 | 228 | 1546 | 158 | 116 | 53 | 13 | 30 | 2 |
| 1977 | 0 | 0 | 4635 | 1205 | 513 | 652 | 208 | 424 | 164 | 77 | 29 | 9 | 1 |
| 1978 | 0 | 0 | 427 | 6808 | 1828 | 188 | 205 | 111 | 278 | 130 | 93 | 56 | 19 |
| 1979 | 0 | 5 | 145 | 1184 | 4700 | 2755 | 797 | 121 | 51 | 18 | 11 | 1 | 1 |
| 1980 | 0 | 14 | 78 | 235 | 223 | 2330 | 695 | 77 | 9 | 2 | 5 | 1 | 6 |
| 1981 | 0 | 0 | 5 | 72 | 252 | 378 | 2898 | 231 | 22 | 9 | 5 | 5 | 3 |
| 1982 | 0 | 0 | 0 | 458 | 1335 | 2012 | 1605 | 2123 | 146 | 18 | 6 | 3 | 0 |
| 1983 | 0 | 0 | 104 | 593 | 2376 | 962 | 321 | 116 | 229 | 10 | 2 | 2 | 0 |
| 1984 | 0 | 14 | 107 | 368 | 481 | 1638 | 320 | 103 | 43 | 61 | 1 | 1 | 0 |
| 1985 | 0 | 0 | 34 | 111 | 242 | 105 | 196 | 19 | 12 | 4 | 4 | 0 | 0 |
| 1986 | 0 | 68 | 50 | 432 | 287 | 738 | 66 | 122 | 5 | 4 | 0 | 0 | 0 |
| 1987 | 32 | 737 | 145 | 59 | 303 | 148 | 651 | 56 | 294 | 12 | 26 | 0 | 0 |
| 1988 | 0 | 413 | 3851 | 173 | 41 | 387 | 50 | 233 | 10 | 117 | 23 | 0 | 0 |
| 1989 | 0 | 19 | 1851 | 6480 | 151 | 34 | 236 | 56 | 163 | 2 | 41 | 0 | 0 |
| 1990 | 0 | 6 | 32 | 2217 | 10827 | 121 | 9 | 106 | 3 | 42 | 11 | 0 | 0 |
| 1991 | 0 | 0 | 328 | 298 | 4545 | 5426 | 51 | 22 | 17 | 7 | 27 | 0 | 0 |
| 1992 | 0 | 2 | 124 | 258 | 158 | 2515 | 1188 | 28 | 4 | 0 | 1 | 0 | 0 |

Table 5.3.4 Cod off West Greenland, NAFO Sub-area 1. Mean weight at age in the catch from 1966 to 1992.
Cod off West Greenland (Fishing Area XIV)
mean Weight of Catch (Kilogrems)

| Year | Age 3 | Age 4 | Age 5 | Age 6 | Age 7 | Age 8 | Age 9 | Age 10 | Age 11 | Age 12 | Age 13 | Age 14 | Age 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1966 | 0.580 | 1.280 | 1.720 | 2.510 | 3.520 | 4.660 | 5.070 | 5.680 | 5.370 | 8.650 | 9.580 | 9.600 | 9.600 |
| 1967 | 0.580 | 1.280 | 1.720 | 2.510 | 3.520 | 4.660 | 5.070 | 5.680 | 5.370 | 8.650 | 9.580 | 9.600 | 9.600 |
| 1968 | 0.580 | 1.280 | 1.720 | 2.510 | 3.520 | 4.660 | 5.070 | 5.680 | 5.370 | 8.650 | 9.580 | 9.600 | 9.600 |
| 1969 | 0.580 | 1.280 | 1.720 | 2.510 | 3.520 | 4.680 | 5.070 | 5.680 | 5.370 | 8.650 | 9.580 | 9.600 | 9.600 |
| 1970 | 0.580 | 1.280 | 1.720 | 2.510 | 3.520 | 4.660 | 5.070 | 5.680 | 5.370 | 8.650 | 9.580 | 9.600 | 9.600 |
| 1971 | 0.580 | 1.280 | 1.720 | 2.510 | 3.520 | 4.660 | 5.070 | 5.680 | 5.370 | 8.650 | 9.580 | 9.600 | 9.600 |
| 1972 | 0.580 | 1.280 | 1.720 | 2.510 | 3.520 | 4.660 | 5.070 | 5.680 | 5.370 | 8.650 | 9.580 | 9.600 | 9.600 |
| 1973 | 0.580 | 1.280 | 1.720 | 2.510 | 3.520 | 4.660 | 5.070 | 5.680 | 5.370 | 8.850 | 9.580 | 9.600 | 9.600 |
| 1974 | 0.650 | 0.990 | 1.680 | 2.770 | 3.840 | 4.720 | 5.340 | 5.340 | 5.480 | 5.390 | 8.700 | 10.190 | 10.740 |
| 1975 | 0.710 | 1.300 | 1.850 | 2.670 | 3.990 | 4.430 | 5.060 | 5.600 | 7.920 | 5.160 | 6.110 | 8.510 | 10.110 |
| 1976 | 0.850 | 1.210 | 2.030 | 2.710 | 3.420 | 4.580 | 4.490 | 5.880 | 7.020 | 6.460 | 5.140 | 9.030 | 12.870 |
| 1977 | 0.740 | 1.238 | 1.714 | 2.118 | 3.614 | 4.580 | 4.812 | 5.600 | 6.000 | 6.600 | 7.700 | 9.900 | 10.500 |
| 1978 | 0.650 | 1.150 | 2.180 | 2.890 | 3.690 | 4.580 | 5.060 | 5.600 | 6.000 | 6.600 | 7.700 | 9.000 | 10.500 |
| 1979 | 0.720 | 1.230 | 2.020 | 2.710 | 3.780 | 4.900 | 6.400 | 7.800 | 9.000 | 9.700 | 10.200 | 10.400 | 10.500 |
| 1980 | 0.870 | 1.330 | 2.060 | 3.000 | 4.280 | 5.840 | 6.400 | 7.800 | 9.000 | 9.700 | 10.200 | 10.400 | 10.500 |
| 1981 | 0.830 | 1.110 | 1.700 | 2.350 | 3.200 | 4.300 | 6.500 | 9.020 | 9.320 | 9.320 | 9.320 | 9.320 | 9.320 |
| 1982 | 0.830 | 1.110 | 1.700 | 2.350 | 3.200 | 4.300 | 6.500 | 9.020 | 9.320 | 9.320 | 9.320 | 9.320 | 9.320 |
| 1983 | 0.780 | 0.980 | 1.380 | 2.080 | 2.950 | 3.850 | 4.780 | 5.580 | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 |
| 1984 | 0.780 | 0.980 | 1.380 | 2.080 | 2.950 | 3.850 | 4.780 | 5.580 | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 |
| 1985 | 0.780 | 0.980 | 1.380 | 2.080 | 2.950 | 3.850 | 4.780 | 5.580 | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 |
| 1986 | 0.660 | 0.980 | 1.790 | 2.240 | 2.430 | 3.080 | 3.620 | 3.170 | 3.170 | 3.170 | 3.170 | 3.170 | 3.170 |
| 1987 | 0.900 | 1.070 | 1.800 | 2.120 | 2.610 | 3.240 | 4.300 | 4.700 | 4.700 | 4.700 | 4.700 | 4.700 | 4.700 |
| 1988 | 0.550 | 1.080 | 1.370 | 2.000 | 2.750 | 3.500 | 3.940 | 4.920 | 4.920 | 4.920 | -1.000 | -1.000 | -1.000 |
| 1989 | 0.520 | 0.720 | 1.270 | 1.670 | 2.310 | 3.710 | 4.210 | 4.670 | 4.070 | 3.120 | -1.000 | -1.000 | -1.000 |
| 1990 | 0.860 | 0.910 | 1.020 | 1.360 | 2.040 | 2.120 | 2.200 | 2.890 | 3.790 | 7.950 | -1.000 | -1.000 | -1.000 |
| 1991 | 0.780 | 1.030 | 1.120 | 1.160 | 1.610 | -1.000 | -1.000 | -1.000 | -1.000 | -1.000 | -1.000 | -1.000 | -1.000 |
| 1992 | 0.630 | 0.820 | 1.160 | 1.710 | 1.790 | 2.260 | 3.500 | -1.000 | -1.000 | -1.000 | -1.000 | -1.000 | -1.000 |

Table 5.3.5 Cod off East Greenland, ICES Sub-area XIV. Mean weight at age in the catch from 1965 to 1992.

Mean Weight of Catch (Kilograms)

|  |  |  |  |  |  | (HECA) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Age 3 | Age 4 | Age 5 | Age 6 | Age 7 | Age 8 | Age 9 | Age 10 | Age 11 | Age 12 | Age 13 | Age 14 |
| 1965 | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1966 | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1967 | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1968 | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1969 | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1970 | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1971. | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1972 | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1973 | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1974 | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1975 | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1976 | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1977 | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1978 | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1979 | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1980 | 0.400 | 1.130 | 1.390 | 2.260 | 3.210 | 4.380 | 5.520 | 7.090 | 8.200 | 8.700 | 9.300 | 9.700 |
| 1981 | 0.316 | 0.776 | 1.455 | 1.823 | 2.890 | 4.246 | 5.948 | 8.698 | 9.787 | 12.483 | 13.426 | 13.728 |
| 1982 | 0.359 | 0.727 | 1.258 | 1.968 | 2.874 | 3.990 | 5.328 | 6.901 | 8.721 | 10.799 | 13.145 | 15.769 |
| 1983 | 0.352 | 0.700 | 1.273 | 2.158 | 3.071 | 3.713 | 4.680 | 6.234 | 5.350 | 6.806 | 7.555 | 8.304 |
| 1984 | 0.352 | 0.700 | 1.273 | 2.158 | 3.071 | 3.713 | 4.680 | 6.234 | 5.350 | 6.806 | 7.555 | 8.304 |
| 1985 | 0.290 | 0.810 | 1.520 | 2.330 | 3.150 | 3.940 | 4.670 | 5.330 | 5.890 | 6.380 | 6.790 | -1.000 |
| 1986 | 0.250 | 0.780 | 1.580 | 2.600 | 3.730 | 4.910 | 6.090 | 7.210 | 8.270 | 9.230 | 10.110 | 11.000 |
| 1987 | 0.300 | 0.930 | 1.790 | 2.750 | 3.700 | 4.580 | 5.360 | 6.030 | 6.590 | 7.050 | 7.420 | -1.000 |
| 1988 | 0.320 | 0.900 | 1.740 | 2.760 | 3.880 | 5.020 | 6.140 | 7.200 | 8.170 | 9.450 | $-1.000$ | -1.000 |
| 1989 | 0.240 | 0.780 | 1.730 | 3.030 | 3.580 | 4.970 | 5.240 | 6.590 | 7.080 | 9.480 | -1.000 | -1.000 |
| 1990 | 0.600 | 1.060 | 1.660 | 2.400 | 3.270 | 4.270 | 5.410 | 6.690 | 8.100 | 10.500 | $-1.000$ | -1.000 |
| 1991 | -1.000 | 1.040 | 1.240 | 1.610 | 2.570 | 3.330 | 5.410 | 7.480 | 8.340 | 10.810 | -1.000 | -1.000 |
| 1992 | 1.326 | 1.770 | 1.807 | 2.071 | 2.217 | 3.586 | 4.143 | 7.660 | $-1.000$ | 10.198 | 7.758 | -1.000 |

Table 6.1.1 GREENLAND HALIBUT. Nominal catches (tonnes) in Sub-areas V and XIV, 1980-1991, as offically reported to ICES.

| Country | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | - | - | - | - | - | - | - |
| Faroe Islands | 1,042 | 767 | 1,532 | 1,146 | 2,502 | 1,052 | 853 |
| France | 51 | 8 | 27 | 236 | 489 | 845 | 52 |
| Germany, Fed. Rep. | 2,318 | 3,007 | 2,581 | 1,142 | 936 | 863 | 858 |
| Greenland | - | + | 1 | 5 | 15 | 81 | 177 |
| Iceland | 27,838 | 15,4552 | 28,300 | 28,360 | 30,080 | 29,231 | 31,044 |
| Norway | 3 | - | + | 2 | 2 | 3 | + |
| UK (Engl. \& Wales) | - | - | - | - | - | - |  |
| Total | 31,252 | 19,239 | 32,441 | 30,888 | 34,024 | 32,075 | 32,984 |
| Working Group estimate | - | - | - | - | - | - | - |


| Country | 1987 | 1988 | 1989 | 1990 | 1991 | $1992^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | 6 | + | - | - | - | - |
| Faroe islands | 1,096 | 1,378 | 2,319 | 1,803 | 1,566 | 2,092 |
| France | 19 | 25 | - | - | - | - |
| Germany, Fed. Rep. | 565 | 637 | 493 | 336 | 303 | 396 |
| Greenland | 154 | 37 | 11 | 40 | 66 | 437 |
| Iceland | 44,780 | 49,040 | 58,330 | 36,557 | 34,883 | 30,371 |
| Norway | 2 | 1 | 3 | 50 | 28 | 267 |
| UK (Engl. \& Wales) | - | - | - | 27 | 38 | 127 |
| Total | 46,622 | 51,118 | 61,396 | 38,813 | 36,884 | 33,690 |
| Working Group estimate | - | - | 61,936 | 39,326 | 38,006 | 35,460 |

${ }^{1}$ Preliminary data.

Table 6.1.2 GREENLAND HALIBUT. Nominal catches (tonnes) in Division Vb, 1980-1992, as officially reported to ICES.

| Country | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | - | - | - | - | - | - | - |
| Faroe Islands | 951 | 442 | 863 | 1,112 | 2,456 | 1,052 | 775 |
| France | 51 | 8 | 27 | 236 | 489 | 845 | 52 |
| Germany, Fed. Rep. | 172 | 114 | 142 | 86 | 118 | 227 | 113 |
| Norway | 3 | 2 | + | 2 | 2 | 2 | + |
| UK (Engl.\& Wales) | - | - | - | - | - | - | - |
| Uk (Scotland) | - | - | - | - | - | - | - |
| Total | 1,177 | 566 | 1,032 | 1,436 | 3,065 | 2,126 | 940 |
| Working Group estimate | - | - | - | - | - | - | - |


| Country | 1987 | 1988 | 1989 | 1990 | 1991 | $1992^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | 6 | + | - | - | - | - |
| Faroe Islands | 907 | 901 | 1,513 | 1,064 | 1,293 | 2,069 |
| France | 19 | 25 | - | - | - | - |
| Germany, Fed. Rep. | 109 | 42 | 73 | 43 | 24 | 73 |
| Norway | 2 | 1 | 3 | 42 | $16^{1}$ | 25 |
| UK (Engl.\& Wales) | - | - | - | - | - | 1 |
| UK (Scotland) | - | - | - | - | - | 1 |
| Total | 1,043 | 969 | - | - | 1,333 | 2,169 |
| Working Group estimate | - | - | - | - | $1,7313^{4}$ | $2,235^{5}$ |

${ }^{1}$ Preliminary.
${ }^{2}$ Includes 17 t taken by France.
${ }^{3}$ Includes 133 t taken in Division IIa (Faroes waters)
${ }^{4}$ Includes 317 t taken in Division IIa (Faroes waters) + France 12 t .
${ }^{5}$ Includes 63 t taken in Division IIa (Faroes waters) and France 3 t .

Table 6.1.3 GREENLAND HALIBUT. Nominal catches (tonnes) in Division Va, 1980-1992, as reported officially to ICES.

| Country | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | $1992^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Faroe | 91 | 325 | 669 | 33 | 46 | - | - | 15 | 379 | 719 | 739 | 273 | 23 |
| Islands |  |  |  |  |  |  |  |  |  |  |  |  |  |$r$

${ }^{\prime}$ Preliminary.
${ }^{2}$ Includes 223 t by Norway.
${ }^{3}$ Includes 12 t by Norway.
${ }^{4}$ Includes additional catches by Iceland. 257 t in 1991 and $1,588 \mathrm{t}$ in 1992.

Table 6.1.4 GREENLAND HALIBUT. Nominal catches (tonnes) in Sub-area XIV, 1980-1992, as reported officially to ICES.

| Country | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | $1992^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Faroe Islands | - | - | - | - | - | - | 78 | 74 | 98 | 87 | - | - | - |
| Germany, | 2,146 | 2,893 | 2,439 | 1,054 | 818 | 636 | 745 | 456 | 595 | 420 | 293 | 279 | 323 |
| Fed. Rep. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Greenland | - | + | 1 | 5 | 15 | 81 | 177 | 154 | 37 | 11 | 40 | 66 | 437 |
| Iceland | 2 | - | - | 1 | 2 | 36 | 17 | 136 | 40 | + | - | - | - |
| Norway | - | - | - | - | + | - | - | - | - | - | 8 | $12^{1}$ | 242 |
| UK (Engl. \& | - | - | - | - | - | - | - | - | - | + | 27 | 38 | 107 |
| Wales) | - | - | - | - | - | - | - | - | - | - | - | - | 18 |
| Total | 2,148 | 2,893 | 2,440 | 1,060 | 835 | 753 | 1,017 | 820 | 770 | 518 | 368 | 395 | 1,127 |


${ }^{1}$ Preliminary.
${ }^{2}$ Includes 370 t catches by Japan.
${ }^{3}$ Includes 315 t catch by Japan and 159 t by other countries as reported to Greenland.
${ }^{4}$ Indicates additional catches taken by Germany ( 96 t ) and UK ( 17 t ) as reported to Greenland.

Table 6.2.1 Greenland Halibut. Cpue and effort data for Icelandic trawlers.

| Year | Total Catch $(\mathrm{t})$ | Cpue $(\mathrm{t} / \mathrm{hr})$ | Total Effort $(\mathrm{hr})$ |
| :---: | :---: | :---: | :---: |
| 1977 | 16,578 | 1.0000 | 16,578 |
| 1978 | 14,349 | 0.9317 | 15,401 |
| 1979 | 23,616 | 1.2144 | 19,446 |
| 1980 | 31,252 | 1.3953 | 22,398 |
| 1981 | 19,239 | 1.4251 | 13,249 |
| 1982 | 32,441 | 1.6211 | 20,012 |
| 1983 | 30,888 | 1.2187 | 25,345 |
| 1984 | 34,024 | 1.0661 | 31,914 |
| 1985 | 32,075 | 1.0543 | 30,423 |
| 1986 | 32,984 | 1.0342 | 31,893 |
| 1987 | 46,622 | 0.9522 | 48,962 |
| 1988 | 51,118 | 1.0846 | 47,130 |
| 1989 | 61,396 | 1.0338 | 59,388 |
| 1990 | 39,326 | 0.7647 | 51,426 |
| 1991 | 37,994 | 0.8263 | 45,980 |
| 1992 | 35,298 | 0.6909 | 51,089 |

Table 6.3.1

Run title : Greenland halibut in the lceland and Faroes Grounds and East Green (run name: Fl
At 9-May-93 15:08

| Table 1 | Extended survivors analysis. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Catch | numbers at | age N | Numbers*10 | - **-3 |  |  |
| YEAR, | 1976. | 1977. | 1978, | 1979, | 1980, | 1981. | 1982, |
| AGE |  |  |  |  |  |  |  |
| 5, | 43, | 0, | 23. | , 29, | 47. | 26, | 8, |
| 6, | 296, | 34, | 91, | , 197. | , 502, | 158, | 300, |
| 7. | 584, | 671, | 347, | , 1605, | , 1536, | 580, | 1140, |
| 8, | 621 , | 1727, | 1037, | , 2253, | 2630, | 1160, | 2451, |
| 9. | 431. | 2289, | 1214, | , 3090, | , 3126, | 1430, | 2646, |
| 10, | 240, | 834, | 848, | , 1693, | 2324, | 1764, | 2456, |
| 11, | 121. | 420, | 567, | , 880, | 1739. | 1299, | 1803, |
| 12, | 86, | 423, | 312, | 394, | 849. | 664, | 963. |
| 13, | 37. | 174, | 232, | , 246, | , 578, | 435, | 609. |
| 14. | 32, | 120, | 218, | , 189, | 306, | 252, | 331, |
| 15, | 14, | 28, | 114, | , 147, | 143, | 176, | 195, |
| \$gp, | 9. | 141. | 204, | , 125, | 116. | 159, | 132, |
| TOTALNUM, | 2514, | 6861. | 5207, | , 10848, | 13896, | 8103, | 13034, |
| TONSLAND, | 6045, | 16578, | 14349, | , 23616, | 31252, | 19239. | 32441, |
| SOPCOF \%, | 100, | 100, | 100, | , 101, | 99. | 100, | 100, |


| Table 1 | Catch numbers at age Numbers* 10 由*-3 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1983, | 1984. | 1985. | 1986. | 1987, | 1988, | 1989. | 1990, | 1991, | 1992, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 5, | 10, | 83, | 125. | 245, | 182, | 129. | 499, | 188, | 289, | 17. |
| 6, | 240, | 277, | 441, | 612, | 3123, | 742, | 1657, | 463, | 1225, | 421. |
| 7, | 1611, | 891. | 1018, | 1033. | 4863. | 2068, | 4485, | 1513, | 1797, | 2023. |
| 8, | 2651, | 2139, | 2295, | 1942, | 2586, | 2985, | 5961, | 3515, | 2866, | 3262, |
| 9. | 3060, | 3568, | 3454, | 2983, | 2156, | 3166 , | 5763. | 4186, | 2935, | 2646, |
| 10, | 2443, | 2800, | 2749, | 3097. | 3476, | 2966, | 3246, | 3143, | 2074, | 3019, |
| 11. | 1693, | 1825. | 1452, | 1683, | 1847, | 1848, | 1601, | 1224, | 1130, | 1962. |
| 12. | 978, | 1134. | 627, | 820, | 1829, | 1761, | 1458, | 959, | 1072, | 1278, |
| 13, | 424, | 588, | 423, | 550. | 886, | 1851, | 1237. | 568, | 924, | 509, |
| 14, | 174, | 363. | 137, | 202. | 243, | 701, | 506. | 358, | 554, | 144, |
| 15. | 37. | 92, | 36, | 59, | 31. | 216. | 362. | 137. | 342, | 36, |
| \$gp, | 47, | 20, | 46, | 34, | 5. | 246, | 145, | 61. | 82, | 56. |
| TOTALNUM, | 13368, | 13780, | 12803, | 13260, | 21227. | 18679, | 26920, | 16315, | 15290, | 15373, |
| TONSLAND, | 30888, | 34024, | 32075, | 32984, | 46622, | 51118 , | 61396, | 39326, | 37994, | 35298, |
| SOPCOF \%, | 101. | 99. | 103. | 101. | 98. | 101, | 100, | 100, | 101. | 100, |

Table 6.4.1

Run title : Greenland halibut in the Iceland and Faroes Grounds and East Green (run name: fl At 9-May-93n 15:08

Extended survivors analysis.

| Table 2 YEAR, | $\begin{aligned} & \text { Catch } \\ & \text { 1976, } \end{aligned}$ | ights at 1977. | $\begin{gathered} \text { age (kg) } \\ 1978, \end{gathered}$ | 1979, | 1980, | 1981, | 1982, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |
| 5. | 1.1570, | 1.1570, | .9680, | . 9110 | 1.1250, | 1.0710, | 1.0100, |
| 6, | 1.5850, | 1.0460, | 1.1990, | .9420, | 1.2830, | 1.2570, | 1.3680, |
| 7. | 1.7680, | 1.4290, | 1.4230, | 1.2780, | 1.4870, | 1.4400, | 1.6180, |
| 8, | 2.1800, | 1.7940, | 1.8540, | 1.6760, | 1.7560, | 1.6600, | 1.9050, |
| 9. | 2.5700, | 2.2280, | 2.2560, | 2.0720, | 2.1530, | 1.9670, | 2.1870, |
| 10, | 3.0180 , | 2.6870, | 2.6070, | 2.3330, | 2.2790, | 2.2580, | 2.5160, |
| 11, | 3.7300, | 3.0170 , | 3.0810, | 2.7230, | 2.4980, | 2.5150, | 2.7610, |
| 12, | 4.0520, | 3.9140 , | 3.5910, | 3.2970, | 3.0590 , | 2.9500, | 3.1290, |
| 13. | 4.8150, | 4.0400, | 4.6040, | 3.9850, | 3.7830, | 3.4500, | 3.7850, |
| 14, | 5.3480 , | 4.7140, | 4.6950, | 4.6680, | 4.5070, | 4.0330, | 4.4750, |
| 15, | 5.7520, | 5.4010 | 5.1510, | 4.7920, | 5.1390 , | 4.6520, | 4.9850 , |
| +gp, | 7.0940 | 5.5970 | 6.4500, | 5.3870, | 5.9830, | 5.3300, | 6.0880 , |
| SOPCOFAC, | 1.0024, | 1.0008 , | .9993, | 1.0124. | .9902, | 1.0024, | .9997. |


| $\begin{aligned} & \text { Table } 2 \\ & \text { YEAR, } \end{aligned}$ | $\begin{aligned} & \text { Catch } \\ & 1983, \end{aligned}$ | ights at 1984, | $\begin{aligned} & \text { age }(\mathrm{kg}) \\ & 1985, \end{aligned}$ | 1986, | 1987. | 1988, | 1989, | 1990, | 1991. | 1992, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age |  |  |  |  |  |  |  |  |  |  |
| 5. | . 9840 , | .9420, | . 9950, | 1.0300, | 1.0300, | 9.1290, | .8420, | 1.0290, | 1.0010, | 1.0160, |
| 6, | 1.3380, | 1.2750, | 1.2300, | 1.2380, | 1.2180, | 1.3040, | 1.0470, | 1.2100, | 1.2470, | 1.2560, |
| 7. | 1.5770, | 1.5920, | 1.6300, | 1.4990, | 1.5330, | 1.5410, | 9.4250, | 1.5720, | 1.4720, | 1.4010, |
| 8, | 1.8480, | 1.8170, | 1.9510, | 1.9370, | 1.8240, | 1.7700, | 1.7270, | 1.7900, | 1.8100, | 1.7180, |
| 9. | 2.1590, | 2.2400, | 2.3670, | 2.3630, | 2.1870, | 2.2360, | 2.1250, | 2.1260, | 2.0880, | 2.0490, |
| 10, | 2.4340, | 2.4610, | 2.6370, | 2.6310, | 2.6660, | 2.6830, | 2.6370, | 2.5360, | 2.4400, | 2.4360 , |
| 11, | 2.6030, | 2.8350, | 2.8290 | 2.8480, | 2.9960, | 3.0820, | 3.2200, | 3.2140, | 2.9350, | 2.8680, |
| 12, | 3.0340 , | 3.2620, | 3.3530, | 3.3350, | 3.5950 , | 3.6240, | 3.7330, | 3.6930, | 3.7370, | 3.4780, |
| 13, | 3.7840, | 3.9620 , | 4.0060 , | 4.0390 , | 4.4310, | 4.3120, | 4.1350, | 4.4480, | 4.4010, | 4.5100, |
| 14. | 4.4460, | 4.9360, | 4.7920, | 4.9250, | 5.1400, | 5.0980, | 5.3800 , | 5.1970 , | 5.0220, | 4.6810, |
| 15, | 4.7510, | 5.2300, | 5.2310, | 5.4660 , | 5.7640, | 5.2130, | 6.5690, | 5.8910, | 5.9910, | 6.0100, |
| +gp, | 6.3850, | 7.1920, | 6.3230, | 5.9850, | 7.2670, | 5.7640, | 6.4970, | 6.0490 , | 6.4120, | 5.1280, |
| SOPCOFAC, | 1.0110, | .9937. | 1.0258, | 1.0060, | .9785, | 1.0063, | .9999, | .9998, | 1.0109, | . 9998 , |

Table 6.5.1

```
Run title : Greenland halibut in the lceland and Faroes Grounds and East Green (run name: Fl
At 9-may-93n 15:08
```

Extended survivors analysis.

| Table | Proportion mature at age |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1976. | 1977, | 1978, | 1979, | 1980, | 1981, | 1982, |
| age |  |  |  |  |  |  |  |
| 5. | . 0000 , | . 0000 , | . 0000 , | .0000, | . 0000 , | . 0000, | . 0000 , |
| 6, | .0300, | .0300, | .0300, | . 0300, | .0300, | .0300, | .0500, |
| 7. | . 1000, | . 1000, | . 1000, | . 1000, | . 1000, | . 1000, | . 2000, |
| 8, | . 3500 , | . 3500, | . 3500, | . 3500 , | . 3500 , | . 3500 , | . 3300 , |
| 9, | . 7700 , | . 7700 , | .7700, | . 7700 , | . 7700, | . 7700, | . 5000, |
| 10, | . 9600, | . 9600, | . 9600 , | .9600, | . 9600 , | .9600, | . 7000 , |
| 11. | 1.0000 , | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | .8500, |
| 12, | 1.0000 , | 1.0000, | 1.0000, | 1.0000 , | 1.0000, | 1.0000 | . 9400 , |
| 13, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 14. | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 15, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000 , | 1.0000, |
| +gp, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |


| Table <br> YEAR, | 5 | $\begin{aligned} & \text { Propor } \\ & \text { 1983, } \end{aligned}$ | $\begin{gathered} \text { on mat } \\ 1984, \end{gathered}$ | $\begin{aligned} & \text { at age } \\ & \text { 1985, } \end{aligned}$ | 1986. | 1987. | 1988, | 1989, | 1990, | 1991. | 1992, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
| 5, |  | . 0400, | . 0000 , | . 0100 , | .0100, | .0100, | .0100, | .0100, | .0100, | .0100, | .0200, |
| 6, |  | . 0700, | .0800, | .0600, | .0600, | .0600, | .0600, | .0600, | . 0600, | .0600, | .0400, |
| 7. |  | .1500, | . 1900, | . 2100 , | .2100, | .2100, | . 2100, | .2100, | . 2100, | .2900, | . 1100, |
| 8, |  | . 2800, | . 3200 , | . 3500 , | . 3500 , | . 3500 , | . 3500 , | . 3500 , | . 3500, | . 4800, | .2500, |
| 9, |  | . 3800, | . 4200 , | . 4600 , | . 4600, | . 4600, | . 4600 , | . 4600, | . 4600 , | .5600, | . 4700, |
| 10, |  | .6000, | .6400, | .6400, | . 6400, | .6400, | .6400, | .6400, | . 6400 , | .6200, | .6800, |
| 11. |  | .8500, | . 7500, | . 8200 , | .8200, | . 8200 , | . 8200, | . 8200 , | .8200, | .8500, | .8500, |
| 12. |  | .9800, | .9300, | .9600, | .9600, | . 9600 , | .9600, | .9600, | .9600, | 1.0000, | .9600, |
| 13. |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 14. |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000 , | 1.0000, | 1.0000, | 1.0000, |
| 15, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| +gp, |  | 1.0000, | 1.0000, | 1.0000 , | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |

Table 6.6.1

```
VPA Version 3.0 (MSDOS)
9-May-93\epsilon 15:08
Extended Survivors Analysis
Greenland halibut in the Iceland and Faroes Grounds and East Green (run name: fl
CPUE data from file /users/ifad/ifapwork/wg_109/ghl_grn/FLEET.SLU
Data for }1\mathrm{ fleets over }17\mathrm{ years
Age range from 5 to 15
\begin{tabular}{|c|c|c|}
\hline Fleet, & Alpha, & \\
\hline FLT01: Greenland hal & . 000 & \\
\hline
\end{tabular}
Time series weights :
    Tapered time weighting applied
    Power = 3 over 20 years
Catchability analysis :
    Catchability independent of stock size for all ages
    Catchability independent of age for ages >= 12
Terminal population estimation :
    Final estimates shrunk towards mean of the last 5 years and the 5 oldest ages.
    S.E. Of the mean to which the estimates are shrunk = .500
    Minimum standard error for population estimates derived from each fleet = . 300
    Prior weighting not applied
Tuning converged after 27 iterations
```

Total absolute residual between iterations
26 and $27=.000$
Regression weights
. .877, .921, .954, .976, .990, .997, 1.000, 1.000
Fishing mortalities
Age, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992
5, .003, .006, .005, .005, .017, .007, .015, . 009
6, .019, .018, .092, .025, .079, .019, .052, . 025
7. .056, .052, .182, .077, .194, .091, .091, . 109
8, .130, .136, .170, .154, .311, .217, . 236, . 224
9, .233, . 236, . 208, . .306, . 467, . $353^{\prime}, .268, \quad .336$
10, $.266, \quad .320, \quad .446, \quad .462, \quad .556, ~ .473, \quad .280, \quad .457-F_{8-12}=0.409$
11, .278, .245, .303, .427, .460, .395, .291, . 438
12, .314, .236, .431, .496, .670, .522, .678, . 588
13, . $755, .471, .406,1.004, .744, .566,1.456, .765$
14, .543, .982, . 370, .617, . 797, . $464,1.984$, . 904
15, .455, .448, .354, .620, .718, .483, $1.065, .642$

Table 6.6.1 (Cont'd)

XSA population numbers


Terminal population estimates.
$0.00 E+00,1.69 E+03,1.54 E+04,1.63 E+04,1.21 E+04,6.14 E+03,4.83 E+03,3.31 E+03,1.48 E+03,4.11 E+02,9.09 E+01,9.44 E+01$,

Log catchability residuals.

Fleet : FLTO1: Greenland hal

| Age, | 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5, | -.47, | .12, | -.44, | -.42, | .58, | -.22, | .66, |
| 6, | -.20, | -.28, | .92, | -.35, | .58, | -.70, | .43, |
| 7, | -.16, | -.27, | .55, | -.28, | .42, | -.19, | -.08, |
| 8, | .01, | .01, | -.20, | -.26, | .21, | -.01, | .19, |
| 9, | .17, | .13, | -.42, | .00, | .19, | .05, | -.11, |
| 10, | .00, | .13, | .03, | .11, | .06, | .04, | -.37, |
| 11, | .17, | .00, | -.22, | .16, | .00, | . .01, | -.20, |
| 12, | -.01, | -.34, | -.17, | .01, | .07, | -.03, | .34, |
| 13, | .86, | .35, | -.23, | .71, | .18, | .05, | 1.10, |
| 14, | .53, | 1.07, | -.32, | .22, | .25, | . .15, | 1.40, |
| 14, | .52 |  |  |  |  |  |  |

In catchability and Standard error.

| Age | , | 5, | 6, | 7, | 8, | 9, | 10, | 11, | 12, | 13, | 14, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| mean 0, | -15.63, | -14.11, | -13.05, | -12.37, | -11.95, | -11.65, | -11.78, | -11.48, | -11.48, | -11.48, | -19.48 |
| S.E, | .45, | .56, | .31, | .16, | .19, | .16, | .14, | .20, | .65, | .98, | 1.05 |

Table 6.6.2
Run title : Greenland halibut in the Iceland and Faroes Grounds and East Green (run name: FI
At $9-$ May- $93 n$ 15:08


|  | $\begin{aligned} & \text { Table } 8 \\ & \text { YEAR, } \end{aligned}$ | $\begin{aligned} & \text { Fishing } \\ & \text { 1983, } \end{aligned}$ | $\begin{gathered} \text { mortality } \\ 1984, \end{gathered}$ | (F) at 1985, | age 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | FBAR 90-92 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 5. | .0004, | .0030, | .0031, | .0059, | .0052, | . 0051 , | .0174, | .0067, | .0145, | .0093, | .0102, |
|  | 6, | .0091, | .0126, | .0186, | .0179, | .0918, | . 0248 , | .0790, | .0191, | .0524, | . 0251. | .0322, |
|  | 7. | .0627, | . 0400, | .0558, | .0524, | .1823, | .0768, | . 1940, | .0913, | . 0908 , | . 1090 , | .0970, |
|  | 8, | . 1244, | . 1052, | .1303, | .1361, | .1701, | . 1538, | . 3191 , | . 2169. | . 2361 , | . 2238, | . 2256 , |
|  | 9. | . 2390, | . 2321, | . 2332, | . 2359. | . 2084, | . 3061 , | . 4669 , | . 3535 , | . 2679, | .3364, | . 3192, |
|  | 10, | . 3814, | . 3382 , | . 2664, | .3197. | .4465, | .4624, | .5562, | . 4732 , | . 2798 , | .4574, | . 4035 , |
|  | 11. | .5347, | . 5158, | . 2777, | . 2448 , | . 3025 , | . 4279 , | . 4600 , | . 3945 , | . 2914 , | . 4383, | . 3748 , |
|  | 12, | . 6258, | .7988, | .3139, | .2358, | . 4310 , | .4965, | .6703, | .5217, | .6776, | .5880, | .5958, |
|  | 13. | . 5678, | .9352, | . 7549, | .4713, | . 4061. | 1.0040, | . 7438 , | . 5660, | 1.4556, | .7649, | .9288, |
|  | 14, | .6855, | 1.4282, | . 5430, | . 9822. | . 3697 , | .6172, | . 7966 , | . 4639 , | 1.9842, | . 9042 , | 1.1174, |
|  | 15, | .6082, | .9287, | . 4547. | . 4476, | . 3535 , | .6198, | .7179, | . 4832, | 1.0646, | . 6417. | .7298, |
|  | +gp, | . 6082, | . 9287, | .4547. | . 4476 , | . 3535 , | .6198, | .7179, | . 4832, | 1.0646, | .6417, |  |
| FBAR | 8-12, | . 3810 , | . 3980 , | .2443, | . 2344 , | .3117, | . 3692 , | .4929, | . 3920 , | . 3506 , | .4088, |  |

Table 6.6.3

| At 9-May-93n | 15:08 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Extended survivors analysis. |  |  |  |  |  |  |
| Table 10 | Stock | number at | age (start | ( of year) |  | N | mbers*10**-3 |
| YEAR, | 1976, | 1977, | 1978, | 1979, | 1980, | 1989. | 1982, |
| AGE |  |  |  |  |  |  |  |
| 5. | 25824, | , 26146, | 27246, | 33921, | 40220, | 38973, | 33369, |
| 6, | 20988, | , 22187, | 22504, | 23429, | 29169. | 34574, | 33520, |
| 7. | 15046, | , 17790, | 19065, | 19285, | 19983, | 24640, | 29612, |
| 8 , | 10045, | , 12408, | 14689, | 16087, | 15110, | 15775, | 20670, |
| 9, | 5578, | , 8070, | 9078, | 11681, | 11756, | 10565, | 12501, |
| 10, | 3266, | , 4401, | 4822, | 6687, | 7187. | 7218. | 7767, |
| 11. | 1973, | , 2588, | 3015, | 3364, | 4185, | 4030, | 4576, |
| 12, | 1591, | , 1586, | 1838, | 2069, | 2079, | 1989, | 2264, |
| 13. | 930, | 1289, | 972, | 1293, | 1415, | 1002, | 1096, |
| 14. | 213, | , 766, | 948, | 622, | 884, | 682, | 458, |
| 15, | 180, | 153, | 548, | 614, | 360, | 477, | 353, |
| +gp, | 116, 85748, | , 769, | 105702, | [19571, | 289, ${ }^{28}{ }^{\text {13638, }}$ | 4428, | 236, |
| TOTAL, | 85748, | 98154, | 105702, |  |  |  | 146422, |



## Table 6.6.4

Run title: Greenland halibut in the lceland and Faroes Grounds and East Green (run name: $F l$
At 9 -May- $93 n 15: 08$

Extended survivors analysis.
Table 13 Spawning stock biomass at age (spawning time) Tonnes
YEAR, 1976, 1977, 1978, 1979, 1980, 1981, 1982,

| AGE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5, | 0, | 0, | 0, | 0, | 0, | 0, | 0, |
| 6. | 998, | 696, | 809, | 662, | 1123. | 1304, | 2293, |
| 7. | 2660, | 2542, | 2713. | 2465, | 2971. | 3548, | 9582, |
| 8, | 7664, | 7791, | 9532. | 9437, | 9286. | 9165, | 12994, |
| 9. | 11039, | 13844, | 15769. | 18637, | 19489, | 16002, | 13670, |
| 10, | 9462, | 14353, | 12068, | 14977. | 15725, | 15647, | 13679, |
| 11. | 7358, | 7808, | 9288, | 9159, | 10454, | 10136, | 10740, |
| 12. | 6446, | 6206, | 6600, | 6820, | 6359. | 5866, | 6658, |
| 13. | 4478, | 5210, | 4476, | 5151. | 5353, | 3455, | 4147 , |
| 14, | 1137. | 3612, | 4453, | 2902, | 3985, | 2749, | 2052, |
| 15, | 1036, | 828, | 2824, | 2943, | 1848, | 2220, | 1759, |
| \$gp, | 819. | 4305, | 6301. | 2800, | 1732, | 2281. | 1437. |
| OTSPB10, | 53097. | 64196 , | 74834, | 75951. | 78326, | 72374. | 79011. |



Table 6.7.1

Greenland halibut in the lceland and Faroes Grounds and East Green
Prediction with management option table: Input data

| Year: 1993 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | stock size | Natural mortality | Maturity ogive | Prop. of F bef.spaw. | Prop.of M bef.spaw. | Height <br> in stock | Exploit. pattern | Height in catch |
| 5 | 33000.000 | 0.1500 | 0.0100 | 0.0000 | 0.0000 | 1.023 | 0.0110 | 1.020 |
| 6 | 28140.000 | 0.1500 | 0.0554 | 0.0000 | 0.0000 | 1.238 | 0.0340 | 1.236 |
| 7 | 23498.000 | 0.1500 | 0.1846 | 0.0000 | 0.0000 | 1.511 | 0.1030 | 1.506 |
| 8 | 16295.000 | 0.1500 | 0.3430 | 0.0000 | 0.0000 | 1.825 | 0.2410 | 1.826 |
| 9 | 12068.000 | 0.1500 | 0.5100 | 0.0000 | 0.0000 | 2.198 | 0.3400 | 2.202 |
| 10 | 6140.000 | 0.1500 | 0.6923 | 0.0000 | 0.0000 | 2.545 | 0.4290 | 2.548 |
| 11 | 4829.000 | 0.1500 | 0.8515 | 0.0000 | 0.0000 | 2.927 | 0.3990 | 2.935 |
| 12 | 3309.000 | 0.1500 | 0.9669 | 0.0000 | 0.0000 | 3.461 | 0.6350 | 3.468 |
| 13 | 1482.000 | 0.1500 | 1.0000 | 0.0000 | 0.0000 | 4.146 | 0.9900 | 4.172 |
| 14 | 411.000 | 0.1500 | 1.0000 | 0.0000 | 0.0000 | 4.827 | 1.1900 | 4.820 |
| 15 | 91.000 | 0.1500 | 1.0000 | 0.0000 | 0.0000 | 5.411 | 0.4090 | 5.397 |
| Unit | Thous ands | - | - | - | - | Kilograms | - | Kilograms |


| Year: 1994 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruitment | Natural mortality | Maturity ogive | Prop. of F bef.span. | Prop. of M bef.spaw. | Weight <br> in stock | Exploit. pattern | Height in catch |
| 5 | 33000.000 | 0.1500 | 0.0100 | 0.0000 | 0.0000 | 1.023 | 0.0110 | 1.020 |
| 6 | . | 0.1500 | 0.0554 | 0.0000 | 0.0000 | 1.238 | 0.0340 | 1.236 |
| 7 |  | 0.9500 | 0.1846 | 0.0000 | 0.0000 | 1.511 | 0.1030 | 1.506 |
| 8 | - | 0.1500 | 0.3430 | 0.0000 | 0.0000 | 1.825 | 0.2410 | 1.826 |
| 9 |  | 0.1500 | 0.5100 | 0.0000 | 0.0000 | 2.198 | 0.3400 | 2.202 |
| 10 | - | 0.1500 | 0.6923 | 0.0000 | 0.0000 | 2.545 | 0.4290 | 2.548 |
| 11 |  | 0.1500 | 0.8515 | 0.0000 | 0.0000 | 2.927 | 0.3990 | 2.935 |
| 12 | . | 0.1500 | 0.9669 | 0.0000 | 0.0000 | 3.461 | 0.6350 | 3.468 |
| 13 | - | 0.1500 | 1.0000 | 0.0000 | 0.0000 | 4.146 | 0.9900 | 4.172 |
| 14 |  | 0.1500 | 1.0000 | 0.0000 | 0.0000 | 4.827 | 1.1900 | 4.820 |
| 15 | - | 0.1500 | 1.0000 | 0.0000 | 0.0000 | 5.411 | 0.4090 | 5.397 |
| Unit | Thousands | - | - | - | - | Kilograns | - | Kilograms |

Prediction with management option table: Inout data

| Year: 1995 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruit ment | Natural mortality | Maturity ogive | Prop. of $F$ bef. spaw. | Prop.of M bef.spat. | Height in stock | Exploit. pattern | Height in catch |
| 5 | 33000.000 | 0.1500 | 0.0100 | 0.0000 | 0.0000 | 1.023 | 0.0110 | 1.020 |
| 6 | . | 0.1500 | 0.0554 | 0.0000 | 0.0000 | 1.238 | 0.0340 | 1.236 |
| 7 | . | 0.1500 | 0.1846 | 0.0000 | 0.0000 | 1.511 | 0.1030 | 1.506 |
| 8 | - | 0.1500 | 0.3430 | 0.0000 | 0.0000 | 1.825 | 0.2410 | 1.826 |
| 9 | . | 0.1500 | 0.5100 | 0.0000 | 0.0000 | 2.198 | 0.3400 | 2.202 |
| 10 | . | 0.1500 | 0.6923 | 0.0000 | 0.0000 | 2.545 | 0.4290 | 2.548 |
| 11 | . | 0.1500 | 0.8515 | 0.0000 | 0.0000 | 2.927 | 0.3990 | 2.935 |
| 12 | - | 0.1500 | 0.9669 | 0.0000 | 0.0000 | 3.461 | 0.6350 | 3.468 |
| 13 | . | 0.1500 | 1.0000 | 0.0000 | 0.0000 | 4.146 | 0.9900 | 4.172 |
| 14 | . | 0.1500 | 1.0000 | 0.0000 | 0.0000 | 4.827 | 1.1900 | 4.820 |
| 15 | . | 0.1500 | 1.0000 | 0.0000 | 0.0000 | 5.411 | 0.4090 | 5.397 |
| Unit | Thousands | - | - | - | - | Kilograms | - | Kilograms |

Notes: Run name : JESPER
Date and time: 11mAY93:15:04

Table 6.7.2

Greenland halibut in the Iceland and Faroes Grounds and East Green
Prediction with management option table

| Year: 1993 |  |  |  |  | Year: 1994 |  |  |  |  | Year: 1995 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\text { F }}{\text { Factor }}$ | Reference F | Stock biomass | Sp.stock <br> biomass | Catch in weight | Factor | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | Stock biomass | Sp.stock <br> biomass |
| $0.7677$ | $0.3138$ | $210198$ | $75094$ | $30000$ | 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 1.1000 1.2000 1.3000 1.4000 | $\begin{aligned} & 0.0818 \\ & 0.1226 \\ & 0.1635 \\ & 0.2044 \\ & 0.2453 \\ & 0.2862 \\ & 0.3270 \\ & 0.3679 \\ & 0.4088 \\ & 0.4497 \\ & 0.4906 \\ & 0.5314 \\ & 0.5723 \end{aligned}$ | $216981$ | $\begin{aligned} & 78322 \\ & 78322 \\ & 78322 \\ & 78322 \\ & 78322 \\ & 78322 \\ & 78322 \\ & 78322 \\ & 78322 \\ & 78322 \\ & 78322 \\ & 78322 \\ & 78322 \end{aligned}$ | $\begin{array}{r} 9395 \\ 13771 \\ 17950 \\ 21945 \\ 25768 \\ 29428 \\ 32937 \\ 36301 \\ 39531 \\ 42634 \\ 45616 \\ 48485 \\ 51246 \end{array}$ | $\begin{aligned} & 245799 \\ & 241081 \\ & 236577 \\ & 232276 \\ & 228164 \\ & 224230 \\ & 220462 \\ & 216851 \\ & 213388 \\ & 210064 \\ & 206872 \\ & 203804 \\ & 200852 \end{aligned}$ | $\begin{aligned} & 98774 \\ & 95204 \\ & 91824 \\ & 88621 \\ & 85582 \\ & 82698 \\ & 79957 \\ & 77351 \\ & 74871 \\ & 72509 \\ & 70258 \\ & 68111 \\ & 66062 \end{aligned}$ |
| - | - | Tonnes | Tomes | Tonnes | - | - | Tonnes | Tonnes | Tonnes | Tonnes | Tonnes |

Prediction with management option table

| Year: 1993 |  |  |  |  | Year: 1994 |  |  |  |  | Year: 1995 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F <br> Factor | Reference F | stock biomass | Sp.stock biomass | Catch in weight | Factor | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | stock biomass | Sp.stock biomass |
| 0.7677 . | 0.3138 | 210198 | 75094 | 30000 | $\begin{aligned} & 0.4370 \\ & 1.0820 \end{aligned}$ | $\begin{aligned} & 0.1786 \\ & 0.4423 \end{aligned}$ | 216981 | $\begin{aligned} & 78322 \\ & 78322 \end{aligned}$ | $\begin{aligned} & 19449 \\ & 42084 \end{aligned}$ | $\begin{aligned} & 234963 \\ & 210653 \end{aligned}$ | $\begin{aligned} & 90619 \\ & 72926 \end{aligned}$ |
| - | $\bullet$ | Tonnes | Tonnes | Tonnes | - | - | Tonnes | Tonnes | Tonnes | Tonnes | Tonnes |

Notes: Run name : JESPER
Date and time : 11MAY93:15:23
Computation of ref. F: Simple mean, age 8-12
Basis for 1993 : TAC constraints

Table 7.3.1 Nominal catch of REDFISH (in tonnes) by countries in Division Va (Iceland) as reported officially to ICES.

| Country | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 1,549 | 1,385 | 1,381 | 924 | 283 | 389 | 291 |
| Faroe Is. | 242 | 629 | 1,055 | 1,212 | 1,046 | 1,357 | 686 |
| Iceland | 33,318 | 62,253 | 69,780 | 93,349 | 115,051 | 122,749 | 108,270 |
| Norway | 93 | 43 | 33 | 32 | 11 | 32 | 12 |
| Total | 35,202 | 64,310 | 72,249 | 95,517 | 116,391 | 124,527 | 109,259 |


| Country | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | $1992^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 400 | 423 | 398 | 372 | 190 | 70 | 146 | 107 |
| Faroe Is. | 291 | 144 | 332 | 372 | 394 | 624 | 412 | 389 |
| Iceland | 91,381 | 85,992 | 87,768 | 93,995 | 91,536 | 90,891 | 96,770 | 87,897 |
| Norway | 8 | 2 | 7 | 7 | 1 | - | - | - |
| Total | 92,080 | 86,561 | 88,505 | 94,746 | 92,121 | 91,585 | 97,328 | 88,393 |

${ }^{1}$ Provisional data.

Table 7.3.2 Landings of REDFISH in Va (in tonnes) by countries in Division Va as used by the working group.

| Year | Belgium | Faroes | Iceland | Norway | Total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 1978 | 1,549 | 242 | 33,318 | 93 | 35,202 |
| 1979 | 1,385 | 629 | 62,253 | 43 | 64,310 |
| 1980 | 1,381 | 1,055 | 69,780 | 33 | 72,249 |
| 1981 | 924 | 1,212 | 93,349 | 32 | 95,517 |
| 1982 | 283 | 1,046 | 115,051 | 11 | 116,391 |
| 1983 | 389 | 1,357 | 122,749 | 32 | 124,527 |
| 1984 | 291 | 686 | 108,270 | 12 | 109,259 |
| 1985 | 400 | 291 | 91,381 | 8 | 92,080 |
| 1986 | 423 | 253 | 85,992 | 2 | 86,670 |
| 1987 | 398 | 332 | 87,768 | 7 | 88,505 |
| 1988 | 372 | 372 | 94,011 | 7 | 94,762 |
| 1989 | 190 | 394 | 91,488 | 1 | 92,073 |
| 1990 | 70 | 624 | 90,891 | 0 | 91,585 |
| 1991 | 146 | 412 | 96,193 | 0 | 96,751 |
| 1992 | 107 | 389 | 93,378 | 0 | 93,874 |

Table 7.3.3 Nominal catch of REDFISH (in tonnes) by countries in Division Vb (Faroe Islands) as reported officially to ICES.

| Country | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | - | - | - | - | - | - | - |
| Faroe Islands | 1,525 | 5,693 | 5,509 | 3,232 | 3,999 | 4,642 | 8,770 |
| France | 448 | 862 | 627 | 59 | 204 | 439 | 559 |
| Germany, Fed. Rep. | 7,767 | 6,108 | 3,891 | 3,841 | 4,660 | 4,300 | 4,460 |
| Iceland | - | - | - | - | 1 | - | - |
| Netherlands | + |  | - | - | - | - | - |
| Norway | 9 | 11 | 12 | 13 | 7 | 3 | 1 |
| UK | 57 | - | - | - | - | - | - |
| USSR | - | - | - | - | - | - | 142 |
| Total | 9,806 | 12,674 | 10,039 | 7,145 | 8,871 | 9,384 | 13,932 |


| Country | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | $1992^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | - | 36 | 176 | 8 | - | + | - | - |
| Faroe Islands | 12,634 | 15,224 | 13,477 | 12,966 | 12,636 | 10,014 | 14,090 | 13,985 |
| France | 1,157 | 752 | 819 | 582 | - | - | $473^{1}$ | - |
| Germany, Fed. Rep. | 5,091 | 5,142 | 3,060 | 1,595 | 1,191 | 441 | 447 | 451 |
| Iceland | - | - | - | - | - | - | - | - |
| Netherlands | - | - | - | - | - | - | - | - |
| Norway | 4 | 2 | 5 | 5 | 21 | 21 | $20^{1}$ | 35 |
| UK | - | - | - | - | - | + | 3 | 29 |
| USSR | - | - | - | - |  | - | - | - |
| Total | 18,886 | 21,156 | 17,537 | 15,156 | 13,848 | 10,476 | 15,033 | 14,500 |

${ }^{1}$ Provisional data.
${ }^{2}$ Includes former GDR.

Table 7.3.4 Landings of Redfish (in tonnes) by countries in Division Vb as used by the Working Group.

| Year | Denmark | Faroes | France | Germany | Iceland | Lithuania | Norway | UK | Russia | USSR | Total |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1978 | 0 | 1,525 | 448 | 7,767 | 0 | 0 | 9 | 57 | 0 | 0 | 9,806 |
| 1979 | 0 | 5,693 | 862 | 6,108 | 0 | 0 | 11 | 0 | 0 | 0 | 12,674 |
| 1980 | 0 | 5,509 | 627 | 3,891 | 0 | 0 | 12 | 0 | 0 | 0 | 10,039 |
| 1981 | 0 | 3,232 | 59 | 3,841 | 0 | 0 | 13 | 0 | 0 | 0 | 7,145 |
| 1982 | 0 | 3,999 | 204 | 5,230 | 1 | 0 | 7 | 0 | 0 | 0 | 9,441 |
| 1983 | 0 | 4,642 | 439 | 4,300 | 0 | 0 | 3 | 0 | 0 | 0 | 9,384 |
| 1984 | 0 | 8,770 | 559 | 4,460 | 0 | 0 | 1 | 0 | 0 | 142 | 13,932 |
| 1985 | 0 | 12,634 | 1,157 | 5,091 | 0 | 0 | 4 | 0 | 0 | 868 | 19,754 |
| 1986 | 36 | 15,224 | 752 | 5,142 | 0 | 0 | 2 | 0 | 0 | 320 | 21,476 |
| 1987 | 176 | 13,478 | 819 | 3,060 | 0 | 0 | 5 | 0 | 0 | 0 | 17,538 |
| 1988 | 8 | 13,318 | 582 | 1,595 | 0 | 0 | 5 | 0 | 0 | 0 | 15,508 |
| 1989 | 0 | 12,860 | 928 | 1,191 | 0 | 0 | 21 | 0 | 0 | 0 | 15,000 |
| 1990 | 0 | 10,364 | 1,410 | 441 | 0 | 0 | 21 | 0 | 0 | 2 | 12,238 |
| 1991 | 0 | 14,055 | 585 | 447 | 0 | 0 | 20 | 3 | 0 | 4 | 15,114 |
| 1992 | 0 | 14,213 | 173 | 451 | 0 | 4 | 35 | 39 | 47 | 0 | 14,962 |

Table 7.3.5 Nominal catch of REDFISH (in tonnes) by countries in Sub-area VI as reported officially to ICES.

| Country | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Faroe Islands | - | 1 | - | - | - | - | 19 |
| France | 307 | 215 | 202 | 24 | 44 | 93 | 102 |
| Germany, Fed. Rep. | 18 | 604 | 907 | 983 | 604 | 359 | 563 |
| Norway | 4 | 4 | 2 | 3 | 4 | 2 | 9 |
| Spain | - | - | - | 1 | - | 2 | - |
| UK (Engl. \& Wales) | 1 | - | - | - | 2 | - | 1 |
| UK (Scotland) | 1 | 1 | - | - | - | - | 1 |
| Total | 331 | 825 | 1,111 | 1,011 | 654 | 456 | 695 |


| Country | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | $1992^{1}$ |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Faroe Islands | 18 | - | - | 1 | 61 | - | 22 | 9 |
| France | 397 | 480 | 1,032 | 1,024 | 726 | $684^{1}$ | $483^{1}$ | - |
| Germany, Fed. Rep. | 76 | 24 | - | 16 | 1 | 6 | 8 | - |
| Norway | - | 14 | 2 | 1 | 2 | 5 | +1 | 4 |
| Spain | - | - | - | - | - | - | - | - |
| UK (Engl. \& Wales) | 1 | 2 | 3 | 75 | 4 | 29 | 11 | 4 |
| UK (Scotland) | - | 10 | 17 | 6 | 4 | 6 | 39 | 31 |
| Total | 492 | 530 | 1,054 | 1,123 | 798 | 730 | 563 | 48 |

'Preliminary.

Table 7.3.6 Landings of REDFISH (in tonnes) by countries in Sub-area VI as used by the Working Group.

| Year | Faroes | France | Germany, F.R. | Norway | Spain | UK | Total. |
| ---: | :---: | ---: | ---: | :---: | :---: | :---: | ---: |
| 1978 | 0 | 307 | 18 | 4 | 0 | 2 | 331 |
| 1979 | 1 | 215 | 604 | 4 | 0 | 1 | 825 |
| 1980 | 0 | 202 | 907 | 2 | 0 | 0 | 1,111 |
| 1981 | 0 | 24 | 983 | 3 | 1 | 0 | 1,011 |
| 1982 | 0 | 44 | 604 | 4 | 0 | 2 | 654 |
| 1983 | 0 | 93 | 359 | 2 | 2 | 0 | 456 |
| 1984 | 19 | 102 | 563 | 9 | 0 | 2 | 695 |
| 1985 | 18 | 397 | 76 | 0 | 0 | 1 | 492 |
| 1986 | 0 | 480 | 24 | 14 | 0 | 12 | 530 |
| 1987 | 0 | 1,032 | 0 | 2 | 0 | 20 | 1,054 |
| 1988 | 1 | 1,024 | 16 | 1 | 0 | 81 | 1,123 |
| 1989 | 61 | 726 | 1 | 2 | 0 | 8 | 798 |
| 1990 | 0 | 684 | 6 | 5 | 0 | 35 | 730 |
| 1991 | 22 | 664 | 8 | + | 0 | 50 | 745 |
| 1992 | 9 | 211 | 0 | 4 | 0 | 35 | 259 |

Table 7.3.7 Nominal catch of REDFISH (in tonnes) by country in Sub-area XII as reported officially to ICES.

| Country | 1982 | 1983 | 1984 | 1985 | 1986 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Bulgaria | - | - | - | - | - |
| Estonia | - | - | - | - | - |
| German Dem. Rep. | - | - | - | - | - |
| Germany, Fed. Rep. | 5,696 | 2,209 | - | - | - |
| Greenland | - | - | - | - | - |
| Iceland | - | - | - | - | - |
| Norway | - | - | - | - | - |
| Poland | - | - | - | - | - |
| USSR | 39,783 | 60,079 | 60,643 | 17,300 | 24,131 |
| Total | 45,479 | 62,288 | 60,643 | 17,300 | 24,131 |


| Country | 1987 | 1988 | 1989 | 1990 | 1991 | $1992^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Bulgaria | - | - | - | 1,617 | - | - |
| Estonia | - | - | - | - | - | 1,452 |
| German Dem. Rep. | - | - | 352 | - | 62 | - |
| Germany, Fed. Rep. | - | - | 1 | 7 | - | - |
| Greenland | - | - | - | - | - | 9 |
| Iceland | - | - | 567 | 185 | 95 | - |
| Norway | - | - | - | 249 | 4,122 | 7,427 |
| Poland | - | - | 112 | - | - | - |
| USSR | 2,948 | 9,772 | 15,543 | 4,274 | 6,624 | - |
| Total | 2,948 | 9,772 | 16,575 | 6,332 | 10,903 | 8,888 |

${ }^{\text {'Provisional. }}$

Table 7.3.8 Landings of REDFISH (in tonnes) by countries in Sub-area XII as used by the Working Group.

| Year | Bulgaria | Estonia | Iceland | France | Norway | Greenland | GDR | FRG | Poland | Russia | USSR | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 |  |  |  |  |  |  |  |  |  |  |  | 0 |
| 1979 |  |  |  |  |  |  |  |  |  |  |  | 0 |
| 1980 |  |  |  |  |  |  |  |  |  |  |  | 0 |
| 1981 |  |  |  |  |  |  |  |  |  |  |  | 0 |
| 1982 |  |  |  |  |  |  |  |  |  |  | 39,783 | 39,783 |
| 1983 |  |  |  |  |  |  |  |  |  |  | 60,079 | 60,079 |
| 1984 |  |  |  |  |  |  |  |  |  |  | 60,643 | 60,643 |
| 1985 |  |  |  |  |  |  |  |  |  |  | 17,300 | 17,300 |
| 1986 |  |  |  |  |  |  |  |  |  |  | 24,131 | 24,131 |
| 1987 |  |  |  |  |  |  |  |  |  |  | 2,948 | 2,948 |
| 1988 |  |  |  |  |  |  |  |  |  |  | 9,772 | 9,772 |
| 1989 |  |  | 658 |  |  |  | 352 | 1 | 112 |  | 15,543 | 16,666 |
| 1990 | 1,617 |  | $215{ }^{1}$ |  | $926{ }^{2}$ |  | 0 | 7 | 0 |  | 4,274 | 7,039 |
| 1991 | - |  | $110^{1}$ |  | $473{ }^{2}$ |  | 0 | 0 | 0 |  | 6,624 | 7,207 |
| 1992 | - | 1,452 | 46 | 2 | 196 | 9 |  | 0 | 0 | 8,555 |  | 10,260 |

${ }^{1}$ Raised by $16 \%$ to account for discarding.
${ }^{2}$ Raised by $5 \%$ to account for discarding.

Table 7.3.9 Nominal catch of REDFISH (in tonnes) by countries in Sub-area XIV (East Greenland) as reported officially to ICES.

| Country | 1982 | 1983 | 1984 | 1985 | 1986 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Bulgaria | - | - | 2,961 | 5,825 | 11,385 |
| Denmark | 11 | - | - | - | - |
| Faroe Islands | - | 27 | - | - | 5 |
| German Dem. Rep. | - | 155 | 989 | 5,438 | 8,574 |
| Germany, Fed. Rep. | 37,119 | 28,878 | 14,141 | 5,974 | 5,584 |
| Greenland | + | 1 | 10 | $5,519^{2}$ | $9,542^{2}$ |
| Iceland | 17 | - | - | + | - |
| Norway | - | - | 17 | - | - |
| Poland | 581 | - | 239 | 135 | 149 |
| UK (Engl. \& Wales) | - | - | - | - | - |
| UK (Scotland) | - | - | - | - | - |
| USSR | 20,217 | - | - | 42,973 | 60,863 |
| Total | 57,945 | 29,061 | 18,357 | 65,864 | 96,102 |


| Country | 1987 | 1988 | 1989 | 1990 | 1991 | $1992^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Bulgaria | 12,270 | 8,455 | 4,546 | 1,073 | - | - |
| Denmark | - | - | - | - | - | - |
| Faroe Islands | 382 | 1,634 | 226 | - | 115 | - |
| German Dem. Rep. | 7,023 | 16,848 | 6,444 | 7,950 | - | - |
| Germany, Fed. Rep. | 4,691 | 5,734 | 2,372 | 3,268 | 9,122 | 8,400 |
| Greenland | 670 | 42 | 3 | 24 | 42 | 962 |
| Iceland | - | - | 814 | 3,726 | 7,477 | 13,845 |
| Norway | - | - | - | 6,070 | 1 | 2,839 |
| Poland | 25 | - | - | - | - | - |
| UK (Engl. \& Wales) | - | - | 5 | 39 | 219 | 177 |
| UK (Scotland) |  |  |  | 3 | + | 28 |
| USSR | 68,521 | 55,254 | 7,177 | 3,040 | 2,665 | - |
| Total | 93,582 | 87,967 | 21,587 | 25,193 | 19,641 | 26,251 |

${ }^{\text {'Provisional. }}$
${ }^{2}$ Fished mainly by the Japanese fleet.

Table 7.3.10 Landings of REDFISH (in tonnes) by country in Sub-area XIV, as used by the Working Group.

| Year | Bulgaria | Greenland | Faroes | France | GDR | FRG | Iceland | Japan | Norway | Poland | Russia | UK | USSR | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 | 0 | 3 | 0 | 0 | 0 | 20,711 | 151 | 0 | 2 | 0 | 0 | 13 | 0 | 20,880 |
| 1979 | 0 | 0 | 0 | 490 | 0 | 20,428 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20,918 |
| 1980 | 0 | 0 | 0 | 0 | 0 | 32,520 | 89 | 0 | 0 | 0 | 0 | 0 | 0 | 32,609 |
| 1981 | 0 | 1 | 18 | 0 | 0 | 42,980 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 42,999 |
| 1982 | 0 | 0 | 0 | 0 | 0 | 42,815 | 17 | 0 | 0 | 581 | 0 | 0 | 20,217 | 63,630 |
| 1983 | 0 | 1 | 27 | 0 | 155 | 30,815 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30,998 |
| 1984 | 2,961 | 10 | 0 | 0 | 989 | 14,141 | 0 | 0 | 15 | 239 | 0 | 0 | 0 | 18,355 |
| 1985 | 5,825 | 5,519 | 0 | 0 | 5,438 | 5,974 | 0 | 0 | 0 | 135 | 0 | 0 | 42,973 | 65,864 |
| 1986 | 11,385 | 9,542 | 5 | 0 | 8,574 | 5,584 | 0 | 0 | 0 | 149 | 0 | 0 | 60,683 | 96,102 |
| 1987 | 12,270 | 2,912 | 382 | 0 | 7.023 | 4,691 | 0 | 0 | 0 | 25 | 0 | 0 | 68,521 | 95,824 |
| 1988 | 8,455 | 3.751 | 1,634 | 0 | 16,848 | 5,734 | 0 | 0 | 0 | 0 | 0 | 0 | 55,254 | 91,676 |
| 1989 | 4,546 | 285 | 226 | 0 | 6,444 | 2,372 | $3158^{1}$ | 307 | 0 | 0 | 0 | 5 | 7,177 | 24.520 |
| 1990 | 1,073 | 24 | 0 | 0 | 7,950 | 3,268 | 4,322 ${ }^{1}$ | 3,450 | 6,159 ${ }^{2}$ | 0 | 0 | 42 | 4,973 | 31,261 |
| 1991 | - | 42 | 115 | 0 | 0 | 9,122 | $8,781^{1}$ | 1,224 | 3,856 ${ }^{2}$ | 0 | 0 | 219 | 2,665 | 26,024 |
| 1992 | - | 3,769 | 0 | 0 | 0 | 8,400 | 15,137 ${ }^{1}$ | - | 15,380 ${ }^{2}$ | 0 | 4,278 | 231 | - | 48,762 |

'Raised by $16 \%$ to account for discarding.
${ }^{2}$ Raised by $5 \%$ for discarding.

Table 7.3.11 S.marinus landings by area as used by the Working Group.

| Year | Va | Vb | VI | XII | XIV | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1978 | 31,300 | 2,039 | 313 | 0 | 15,477 | 49,129 |
| 1979 | 56,616 | 4,805 | 6 | 0 | 15,787 | 77,213 |
| 1980 | 62,052 | 4,920 | 2 | 0 | 22,203 | 89,177 |
| 1981 | 75,828 | 2,538 | 3 | 0 | 23,608 | 101,977 |
| 1982 | 97,899 | 1,810 | 28 | 0 | 30,692 | 130,429 |
| 1983 | 87,412 | 3,394 | 60 | 0 | 15,636 | 106,502 |
| 1984 | 84,766 | 6,228 | 86 | 0 | 5,040 | 96,120 |
| 1985 | 67,312 | 9,194 | 245 | 0 | 2,117 | 78,868 |
| 1986 | 67,772 | 6,300 | 288 | 0 | 2,988 | 77,348 |
| 1987 | 69,212 | 6,143 | 576 | 0 | 1,196 | 77,127 |
| 1988 | 80,472 | 5,020 | 533 | 0 | 3,964 | 89,989 |
| 1989 | 59,961 | 4,140 | 530 | 0 | 685 | 65,316 |
| 1990 | 67,953 | 2,428 | 540 | 0 | 727 | 71,648 |
| $1991^{1}$ | 565 | 2,132 | 548 | 0 | 3,910 | 7,155 |

${ }^{1}$ Excluding landings from Iceland for area V .

Table 7.3.12 S. mentella landings by area as used by the Working Group.

| Year | Va | Vb | VI | XII | XIV | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1978 | 3,902 | 7,767 | 18 | 0 | 5,403 | 17,090 |
| 1979 | 7,694 | 7,869 | 819 | 0 | 5,131 | 21,513 |
| 1980 | 10,197 | 5,119 | 1,109 | 0 | 10,406 | 26,831 |
| 1981 | 19,689 | 4,607 | 1,008 | 0 | 19,391 | 44,695 |
| 1982 | 18,492 | 7,631 | 626 | 0 | 12,140 | 38,889 |
| 1983 | 37,115 | 5,990 | 395 | 0 | 15,207 | 58,707 |
| 1984 | 24,493 | 7,704 | 609 | 0 | 9,126 | 41,932 |
| 1985 | 24,768 | 10,560 | 248 | 0 | 9,376 | 44,952 |
| 1986 | 18,898 | 15,176 | 242 | 0 | 12,138 | 46,454 |
| 1987 | 19,293 | 11,395 | 478 | 0 | 6,407 | 37,573 |
| 1988 | 14,290 | 10,488 | 590 | 0 | 6,065 | 31,433 |
| 1989 | 32,112 | 10,860 | 542 | 0 | 2,284 | 46,798 |
| 1990 | 23,631 | 9,810 | 506 | 0 | 6,090 | 40,037 |
| $1991^{1}$ | 0 | 13,059 | 506 | 0 | 6,526 | 20,091 |

${ }^{1}$ Excluding landings from Iceland for area V .

Table 7.3.13 S.mentella, oceanic type. Landings (in tonnes) by area as used by the Working Group.

| Year | Va | Vb | VI | XII | XIV | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1978 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1979 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1980 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1981 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1982 | 0 | 0 | 0 | 39,783 | 20,798 | 60,581 |
| 1983 | 0 | 0 | 0 | 60,079 | 155 | 60,234 |
| 1984 | 0 | 0 | 0 | 60,643 | 4,189 | 64,832 |
| 1095 | 0 | 0 | 0 | 17,300 | 54,371 | 71,671 |
| 1986 | 0 | 0 | 0 | 24,131 | 80,976 | 105,107 |
| 1987 | 0 | 0 | 0 | 2,948 | 88,221 | 91,169 |
| 1988 | 0 | 0 | 0 | 9,772 | 81,647 | 91,419 |
| 1989 | 0 | 0 | 0 | 16,892 | 21,325 | 38,217 |
| 1990 | 0 | 0 | 0 | 7,039 | 24,477 | 31,516 |
| 1991 | 077 | 0 | 0 | 7,207 | 15,597 | 22,804 |
| 1992 | 0 | 0 | 10,258 | 45,412 | 56,547 |  |

Table 7.3.14 S. mentella, oceanic type. Landings (in tonnes) by countries as used by the Working Group.

| Year | Bulgaria | Estonia | German <br> Dem.Rep. | Germany, <br> Fed.Rep. | Green- <br> land | Faroes | Iceland Norway | Poland | Russia | USSR | Total |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1980 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - |  |
| 1981 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - |  |
| 1982 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 581 | 0 | 60,000 | 60,581 |
| 1983 | 0 | 0 | 155 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60,079 | 60,234 |
| 1984 | 2,961 | 0 | 989 | 0 | 0 | 0 | 0 | 0 | 239 | 0 | 60,643 | 64,832 |
| 1985 | 5,825 | 0 | 5,438 | 0 | 0 | 0 | 0 | 0 | 135 | 0 | 60,273 | 71,671 |
| 1986 | 11,385 | 0 | 8,574 | 0 | 0 | 5 | 0 | 0 | 149 | 0 | 84,994 | 105,107 |
| 1987 | 12,270 | 0 | 7,023 | 0 | 0 | 382 | 0 | 0 | 25 | 0 | 71,469 | 91,169 |
| 1988 | 8,455 | 0 | 16,848 | 0 | 0 | 1,090 | 0 | 0 | 0 | 0 | 65,026 | 91,419 |
| 1989 | 4,546 | 0 | 6,796 | 1 | 0 | 226 | 3,816 | 0 | 112 | 0 | 22,720 | 38,217 |
| 1990 | 2,690 | 0 | 7,950 | 7 | 0 | 0 | 4,537 | 7,085 | 0 | 0 | 9,247 | 31,516 |
| 1991 | - | 0 |  | 180 | 0 | 115 | 8,891 | 4,328 | 0 | 0 | 9,289 | 22,803 |
| $1992^{1}$ | - | 1,452 |  | 6,251 | 606 | 3,769 | 16,060 | 15,576 | 0 | 12,833 |  |  |

[^5]Table 7.4.1 Number of 0 -group REDFISH millions (nautical mile) ${ }^{2}$ from the Icelandic 0 -group survey.

| Year | Number |
| :---: | :---: |
| 1970 | 8.6 |
| 1971 | 12.6 |
| 1972 | 31.1 |
| 1973 | 74.0 |
| 1974 | 23.6 |
| 1975 | 12.6 |
| 1976 | 5.8 |
| 1977 | 13.0 |
| 1978 | 6.5 |
| 1979 | 1.3 |
| 1980 | 3.0 |
| 1981 | 9.0 |
| 1982 | 2.7 |
| 1983 | 0.7 |
| 1984 | $4.3^{1}$ |
| 1985 | $22.6^{1}$ |
| 1986 | $12.1^{1}$ |
| 1987 | $22.9^{1}$ |
| 1988 | $17.0^{1}$ |
| 1989 | $14.3^{1}$ |
| 1990 | $23.5^{1}$ |
| 1991 | $26.4^{1}$ |
| 1992 | 11.6 |

${ }^{1}$ Reduced area.

Table 7.5.1 Catch per unit effort for oceanic S. mentella in Sub-areas XII and XIV.

| Year | CPUE (t/h) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Bulgaria | GDR (FVSIV) | Iceland | Norway | USSR-Russia (BMRT) |
| 1982 | - | - | - | - | 1.99 |
| 1983 | - | - | - | - | 1.60 |
| 1984 | 1.25 | - | - | - | 1.48 |
| 1985 | 1.85 | - | - | - | 1.68 |
| 1986 | 2.04 | - | - | - | 1.35 |
| 1987 | 1.22 | 0.79 | - | - | 1.10 |
| 1988 | 1.22 | 1.28 | - | - | 1.00 |
| 1989 | 0.82 | 0.70 | 1.03 | - | 1.00 |
| 1990 | - | 0.89 | 1.12 | 1.09 | 0.99 |
| 1991 | - | - | 1.49 | 1.35 | 0.80 |
| 1992 | - | - | - | 1.73 | 0.63 |

Table 7.5.2 Abundance and biomass of oceanic $S$. mentella as estimated from Russian trawl-acoustic surveys in May-July 1982-19921.

| Year | Area surveyed ('000 sq miles) |  |  | Abundance (millions) |  |  | Biomass ('000 t) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Irminger Sea | E.Greenland | Total | Irminger Sea | E.Greenland zone | Total | Irminger Sea | E.Greenland zone | Total |
| 1982 | 40.0 | - | 40.0 | 790.0 | - | 790.0 | 560.0 | - | 560.0 |
| 1983 | 50.0 | - | 50.0 | 960.0 | - | 960.0 | 700.0 | - | 700.0 |
| 1984 | 55.0 | - | 55.0 | 660.0 | - | 660.0 | 526.0 | - | 526.0 |
| 1985 | 71.0 | - | 71.0 | 1,122.0 | - | 1,122.0 | 700.0 | - | 700.0 |
| 1986 | 43.0 | 74.0 | 117.0 | 923.0 | 989.0 | 1,912.0 | 570.0 | 610.0 | 1,180.0 |
| 1987 | 156.0 | 59.0 | 215.0 | 1,221.0 | 682.0 | 1,903.0 | 783.0 | 437.0 | 1,220.0 |
| 1988 | 91.0 | 72.0 | 163.0 | 714.0 | 796.0 | 1,510.0 | 452.0 | 504.0 | 956.0 |
| 1989 | 78.5 | 69.6 | 148.1 | 1,040.0 | 570.0 | 1,610.0 | 582.0 | 335.8 | 917.8 |
| 1990 | 73.2 | - | 73.2 | 1,495.0 | - | 1,495.0 | 847.5 | - | 847.5 |
| 1991 | 59.9 | 44.6 | 104.5 | 274.0 | 387.0 | 661.0 | 169.0 | 226.8 | 395.8 |
| 1992 | 150.0 | 40.0 | 190.0 | 1,600.0 | 950.0 | 2,550.0 | 1,000.0 | 600.0 | 1,600.0 |

Table 7.5.3 Oceanic $S$. mentella length composition in 1992. (Open part and East-Greenland zone together.

| Length cm | Frequences \% |  |  | No. ex. |
| :---: | :---: | :---: | :---: | :---: |
|  | Males | Females | Total |  |
| 24 | 0.0 | 0.1 | 0.1 | 4 |
| 25 | 0.1 | 0.1 | 0.1 | 6 |
| 26 | 0.4 | 0.2 | 0.2 | 14 |
| 27 | 0.1 | 0.1 | 0.1 | 4 |
| 28 | 0.3 | 0.2 | 0.2 | 14 |
| 29 | 0.4 | 0.2 | 0.2 | 17 |
| 30 | 0.2 | 0.4 | 0.4 | 30 |
| 31 | 1.1 | 1.6 | 1.6 | 124 |
| 32 | 2.9 | 5.5 | 5.5 | 426 |
| 33 | 7.4 | 12.4 | 12.4 | 969 |
| 34 | 9.8 | 14.0 | 14.0 | 1,093 |
| 35 | 18.6 | 17.8 | 17.8 | 1,393 |
| 36 | 15.7 | 14.1 | 14.1 | 1,107 |
| 37 | 14.8 | 13.2 | 13.2 | 1,026 |
| 38 | 12.4 | 10.3 | 10.3 | 804 |
| 39 | 8.7 | 6.3 | 6.3 | 491 |
| 40 | 5.1 | 2.7 | 2.7 | 207 |
| 41 | 1.5 | 0.7 | 0.7 | 54 |
| 42 | 0.2 | 0.1 | 0.1 | 8 |
| 43 | 0.0 | 0.0 | 0.0 | 2 |
| 44 | 0.1 | 0.0 | 0.0 | 3 |
| 45 | - | 0.0 | 0.0 | 1 |
| 46 | - | - | - | - |
| 47 | 0.0 | 0.0 | 0.0 | 1 |
| Average, cm. | 35.0 | 36.1 | 35.5 |  |

Table 7.5.4 Age composition of oceanic S. mentella in 1992 (Irminger Sea and EastGreenland zone).

|  | Age, |  | Males |  | Females |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Years | N | $\% \%$ | N | $\% \%$ | Total |  |
| 5 | - | - | 5 | 0.1 | N | $\% \%$ |
| 6 | 1 | 0.0 | 7 | 0.2 | 5 | 0.1 |
| 7 | 4 | 0.1 | 9 | 0.3 | 13 | 0.1 |
| 8 | 4 | 0.1 | 15 | 0.4 | 19 | 0.2 |
| 9 | 9 | 0.2 | 10 | 0.3 | 19 | 0.2 |
| 10 | 80 | 1.8 | 28 | 0.8 | 108 | 1.4 |
| 11 | 232 | 5.2 | 63 | 1.9 | 295 | 3.8 |
| 12 | 623 | 14.0 | 209 | 6.2 | 832 | 10.7 |
| 13 | 1,196 | 27.0 | 480 | 14.3 | 1,676 | 21.5 |
| 14 | 938 | 21.1 | 944 | 28.2 | 1,882 | 24.1 |
| 15 | 1,097 | 24.8 | 992 | 29.6 | 2,089 | 26.8 |
| 16 | 193 | 4.3 | 358 | 10.6 | 551 | 7.1 |
| 17 | 57 | 1.3 | 226 | 6.7 | 283 | 3.6 |
| 18 | 3 | 0.1 | 10 | 0.3 | 13 | 0.2 |
| 19 | - | - | 3 | 0.1 | 3 | 0.0 |
| 20 | 1 | 0.0 | - | - | 1 | 0.0 |
| 21 | - | - | 1 | 0.0 | 1 | 0.0 |
| Total | 4,438 | 100.0 | 3,360 | 100.0 | 7,798 | 100.0 |
| Average |  |  |  |  |  |  |
| age, years |  | 13.7 |  |  |  |  |

Table 7.5.5 Some biological data for oceanic S.mentella from the Irminger Sea.

| Year | Average length $(\mathrm{cm})$ |  | Average age (years) |  | Sex ratio (\%) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Males | Females | Males | Females | Males | Females |
| 1981 | 33.0 | 36.6 | 13.3 | 14.5 | 14.6 | 85.4 |
| 1982 | 34.2 | 36.2 | 14.1 | 15.4 | 25.1 | 74.9 |
| 1983 | 34.6 | 36.7 | 13.9 | 16.0 | 24.4 | 75.6 |
| 1984 | 32.6 | 35.7 | 13.2 | 14.6 | 33.2 | 66.8 |
| 1985 | 35.2 | 36.5 | 13.4 | 14.2 | 26.0 | 74.0 |
| 1986 | 34.5 | 36.5 | 12.9 | 14.1 | 24.8 | 75.2 |
| 1987 | 34.5 | 36.0 | 13.6 | 14.7 | 29.5 | 70.5 |
| 1988 | 34.1 | 35.9 | 13.4 | 14.4 | 35.7 | 64.3 |
| 1989 | 34.5 | 36.1 | 13.2 | 14.3 | 41.5 | 58.5 |
| 1990 | 34.2 | 36.1 | 13.2 | 14.4 | 47.9 | 52.1 |
| 1991 | 35.4 | 36.7 | 13.9 | 14.8 | 49.4 | 50.6 |
| 1992 | 35.0 | 36.0 | 13.7 | 14.4 | 56.9 | 42.1 |

Table 7.5.6 Length and weight distribution of oceanic $S$. mentella during Icelandic acoustic survey in 1992.

|  | Males |  |  | Females |  | Combined |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| cm | Number | Average <br> weight |  | Number <br> Average <br> weight | Number | Average <br> weight |  |
| 23 | 1 | 155.0 | 0 |  | 1 | 155.0 |  |
| 24 | 0 |  | 1 | 185.0 | 1 | 185.0 |  |
| 25 | 1 | 185.0 | 1 | 205.0 | 2 | 195.0 |  |
| 26 | 0 |  | 1 | 220.0 | 1 | 220.0 |  |
| 27 | 0 |  | 1 | 235.0 | 1 | 235.0 |  |
| 28 | 1 | 270.0 | 0 |  | 1 | 270.0 |  |
| 29 | 0 |  | 1 | 335.0 | 1 | 335.0 |  |
| 30 | 3 | 343.3 | 1 | 335.0 | 4 | 341.3 |  |
| 31 | 14 | 392.1 | 3 | 391.7 | 17 | 392.1 |  |
| 32 | 56 | 421.5 | 14 | 413.2 | 70 | 419.9 |  |
| 33 | 114 | 467.7 | 39 | 458.6 | 153 | 465.4 |  |
| 34 | 173 | 505.1 | 81 | 497.9 | 254 | 502.8 |  |
| 35 | 173 | 554.2 | 123 | 539.6 | 296 | 548.2 |  |
| 36 | 143 | 602.8 | 176 | 587.6 | 319 | 594.4 |  |
| 37 | 124 | 676.0 | 170 | 646.7 | 294 | 659.1 |  |
| 38 | 87 | 740.5 | 144 | 709.2 | 231 | 721.0 |  |
| 39 | 60 | 769.1 | 103 | 757.7 | 163 | 761.9 |  |
| 40 | 41 | 825.9 | 93 | 825.9 | 134 | 825.9 |  |
| 41 | 7 | 892.1 | 28 | 887.9 | 35 | 888.7 |  |
| 42 | 2 | 962.5 | 20 | 924.8 | 22 | 928.2 |  |
| 43 | 1 | 995.0 | 2 | 1162.5 | 3 | 1106.7 |  |
| 45 | 0 |  | 1 | 1145.0 | 1 | 1145.0 |  |
| 46 | 0 |  | 1 | 1180.0 | 1 | 1180.0 |  |
| No. total | 1001 |  | 1004 |  | 2005 |  |  |
| Ave. weight |  | 590.3 |  | 648.8 |  | 619.6 |  |
| Ave. length | 36.2 |  |  |  |  |  |  |

Table 7.5.7 Thermo-haline conditions on redfish concentrations areas during TAS 1990-1992.

| Sub-area | Year | Month | Temperature ${ }^{\circ} \mathrm{C}$ | Salinity \%o |
| :--- | :---: | :---: | :---: | :---: |
| North | 1990 | July | $4.3-6.0$ | $34.91-35.03$ |
|  | 1991 | July | $4.2-5.7$ | $34.88-35.03$ |
|  | 1992 | May | $3.7-4.8$ | $34.89-34.96$ |
| Central | 1990 | June | $3.8-5.1$ | $34.85-34.95$ |
|  | 1991 | June | $3.9-5.1$ | $34.88-34.98$ |
|  | 1992 | June | $3.7-5.3$ | $34.84-34.94$ |
| South | 1990 | June | $3.0-5.7$ | $34.68-34.84$ |
|  | 1991 | June | $3.2-3.9$ | $34.30-34.35$ |
|  | 1992 | July | $2.9-3.9$ | $34.75-34.80$ |

Table 7.5.8 Some projections of the oceanic S.mentella stock using the fixed selection pattern showed in Figure 7.5.12.

| Acoustic estimated biomass (mill. $\mathbf{t}$.) | Catch-level (t) | (in percentage)$M=0.03 M=0.05 M=0.1$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 50 |  | 53 | 63 |
|  | 100 |  | 35 | 43 |
|  | 150 |  | 15 | 24 |
|  | 200 |  | 4 |  |
| 1.5 | 50 |  | 63 | 73 |
|  | 100 | 42 | 46 | 58 |
|  | 150 |  | 29 | 43 |
|  | 200 |  | 14 |  |
| 1.9 | 50 |  | 69 |  |
|  | 100 |  | 55 |  |
|  | 150 |  | 41 |  |
|  | 200 |  | 27 |  |
| 2.5 | 50 |  | 75 | 82 |
|  | 100 |  | 64 | 72 |
|  | 150 |  | 53 | 62 |
|  | 200 |  | 42 |  |

Table 8.1 Roundnose grenadier (Coryphaenoides repestris)
Table 8.1a. Official landings of roundnose grenadier (Coryphaenoides rupestris) from Sub-areas I and il

|  | Germany Norway | Russia | TOTAL |  |
| ---: | ---: | ---: | ---: | ---: |
| 1988 | 0 | 0 | 0 |  |
| 1989 | 5 |  | 16 | 21 |
| 1990 | 5 |  | 12 | 17 |
| 1991 | 3 | 7 |  | 10 |
| 192 |  | 29 |  | 29 |

Table 8.1b. Official landings of roundnose grenadier (Coryphaenoides rupestris) from Sub-areas III and IV

|  | Denma | Norway | Sweden | Others | TOTAL |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 1988 | 612 |  | 5 |  | 817 |
| 1989 | 884 |  | 1 | 1 | 888 |
| 1990 | 785 |  | 2 | 2 | 789 |
| 1991 | 1214 | 310 | 10 | 1 | 1535 |
| 1992 |  | 211 |  |  | 211 |

Table 8.1c. Official landings of roundnose grenadier (Coryphaenoides rupestris) from Division $V_{\nexists}$

|  | Faeroes | Iceland | TOTAL |
| ---: | ---: | ---: | ---: |
| 1988 |  | 2 | 2 |
| 1989 | 2 | 2 | 4 |
| 1990 |  | 3 | 3 |
| 1991 |  | 48 | 48 |
| 1992 |  | 210 | 210 |

Table 8.1d. Official landings of roundnose grenadier (Coryphaenoides rupestris) from Division Vb

|  | Faeroes | Germany Russia | Others | TOTAL |  |
| :--- | ---: | :---: | :---: | ---: | ---: |
| 1988 |  | 1 |  |  | 1 |
| 1989 | 20 | 5 | 52 |  | 77 |
| 1990 | 75 | 4 |  |  | 79 |
| 1991 | 22 |  |  | 2 | 24 |
| 1992 | 538 |  |  | 1 | 538 |

Table 8.1e. Official landings of roundnose grenadier (Coryphaenoides rupestris) from Sub-area VI

|  | Faeroes | France | Germany Norway | Others | TOTAL |  |
| :--- | ---: | ---: | :---: | :---: | :---: | ---: |
| 1988 | 27 | 0 | 4 |  |  | 31 |
| 1989 | 2 | 2727 | 3 |  | 2 | 2734 |
| 1990 | 29 | 7501 | 2 |  |  | 7532 |
| 1991 | 0 | 10185 | 4 | 0 |  | 10169 |
| 1992 | 99 | 9870 |  | 5 |  | 9974 |

Table 8.1f. Official landings of roundnose grenadier (Coryphaenoides rupestris) from Sub-area XII

| Latvia | USSR | TOTAL |  |
| :--- | :--- | ---: | ---: |
| 1988 |  | 10808 | 10808 |
| 1989 |  | 9495 | 9495 |
| 1990 |  | 2838 | 2838 |
| 1991 | 4298 |  | 4296 |
| 1992 |  |  |  |

Table 8.1g. Official landings of roundnose grenadier (Coryphaenoides rupestris) from Sub-area XIV

| Germany Others |  |  | TOTAL |
| :---: | :---: | :---: | ---: |
| 1988 | 45 | 7 | 52 |
| 1989 | 42 | 3 | 45 |
| 1990 | 45 | 2 | 47 |
| 1991 | 28 | 6 | 32 |
| 1992 |  |  |  |

Table 8.1h. Official landings of roundnose grenadier (Coryphaenoides rupestris) from ICES areas, all countries combined

|  |  | III + IV | Va | Vb | VI | XII | XIV | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1988 | 0 | 617 | 2 | 1 | 31 | 10606 | 52 | 11309 |
| 1989 | 21 | 886 | 4 | 77 | 2734 | 9495 | 45 | 13262 |
| 1990 | 17 | 789 | 3 | 79 | 7532 | 2838 | 47 | 11305 |
| 1991 | 10 | 1535 | 48 | 24 | 10169 | 4296 | 32 | 16114 |
| 1992 | 29 | 211 | 210 | 539 | 9974 |  |  | 10963 |

Table 8.2 Orange roughy (Hoplostethus atlanticus)

Table 8.2a. Official landings (t) of orange roughy (Hoplostethus atlanticus) from Division $V$ a

| Iceland |  |  |
| :---: | ---: | ---: |
|  | TOTAL |  |
| 1988 | 0 | 0 |
| 1989 | 0 | 0 |
| 1990 | 0 | 0 |
| 1991 | 65 | 65 |
| 1992 | 382 | 382 |

Table 8.2b. Official landings ( $t$ ) of orange roughy (Hoplostethus atlanticus) from Division VI and VII

| France |  |  |
| :---: | ---: | ---: |
| TOTAL |  |  |
| 1988 | 2 | 2 |
| 1989 | 8 | 8 |
| 1990 | 19 | 19 |
| 1991 | 4952 | 4952 |
| 1992 | 4121 | 4121 |

Table 8.2c. Official landings ( $t$ ) of orange roughy (Hoplostethus atlanticus) from ICES areas, all countries combined

| $V a$ | VI $+V I I$ |  | TOTAL |
| :--- | ---: | ---: | ---: |
| 1988 | 0 | 2 | 2 |
| 1989 | 0 | 8 | 8 |
| 1990 | 0 | 19 | 19 |
| 1991 | 65 | 4952 | 5017 |
| 1992 | 382 | 4121 | 4503 |

Table 8.3 Black scabbard (Aphanopus carbo).

Table 8.3e. Official landinge (t) of black scabbard (Aphanopus carbo) from Division Vb

| Faerose |  |  |
| :---: | ---: | ---: |
| 1988 | 0 | 0 |
| 1989 | 0 | 0 |
| 1990 | 12 | 12 |
| 1991 | 0 | 0 |
| 1992 | 35 | 35 |

Tabia 8.3b. Official landings (t) of black scabbard (Aphanopus carbo) from Sub-area VI

|  | Faerose |  |  |
| ---: | ---: | ---: | ---: | France | TOTAL |  |  |  |
| ---: | :--- | ---: | ---: |
| 1988 | 0 | 0 | 0 |
| 1989 | 46 | 311 | 357 |
| 1990 | 0 | 1524 | 1524 |
| 1991 | 0 | 2912 | 2912 |
| 1992 | 3 | 4942 | 4945 |

Table 8.3c. Official landings ( $t$ ) of black scabbard (Aphanopus carbo) from Sub-areas ViII, IX and $X$

| Portugal TOTAL |  |  |
| :--- | ---: | ---: |
| 1988 | 3380 | 3380 |
| 1989 | 3496 | 3496 |
| 1990 | 3309 | 3309 |
| 1991 | 4162 | 4162 |
| 1992 |  |  |

Table 8.3d. Official landings (t) of black scabbard (Aphanopus carbo) from ICES areas,
all countries combined

| all countries combined |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Vb |  |  | $V I I I+1 X+X$ | TOTAL |
|  |  | 0 | 0 | 3380 | 3380 |
| 1988 |  | 0 | 357 | 3496 | 3853 |
| 1989 |  | 12 | 1524 | 3309 | 4845 |
| 1990 |  | 0 | 2912 | 4162 | 7074 |
| 1991 |  | 35 | 4945 |  | 4980 |
| 1992 |  |  |  |  |  |

Table 8.4 Greater forkbeard (Phycis blennoides).

Table 8.4a. Official landings of greater forkbeard (Phycis blennoides) from Sub-areas I and il

|  | Nomay | TOTAL |
| ---: | ---: | ---: |
| 1988 |  | 0 |
| 1989 |  | 0 |
| 1990 |  | 0 |
| 1991 | 41 | 41 |
| 1992 | 34 | 34 |

Table 8.4b. Official landings of greater forkbeard (Phycis blennoides) from Sub-areas III and IV

|  | England | France | Norway | TOTAL |
| :--- | :---: | ---: | ---: | ---: |
| 1988 | 3 | 12 |  | 15 |
| 1989 |  |  |  | 0 |
| 1990 |  |  |  | 0 |
| 1991 | 5 |  | 159 | 164 |
| 1992 |  |  | 130 | 130 |

Table 8.4c. Official landings of greater forkbeard (Phycis blennoides) from Division Vb

|  | Norway Others | TOTAL |  |
| :--- | ---: | ---: | ---: |
| 1988 |  | 2 | 2 |
| 1989 |  |  | 0 |
| 1990 |  |  | 0 |
| 1991 | 44 |  | 44 |
| 1992 | 33 |  | 33 |

Table 8.4d. Official landings of greater forkbeard (Phycis blennoides) from Sub-area VI

|  | England | France | Norway | Scotland Spain | Others | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1988 | 51 | 195 |  | 321 | 2 | 569 |
| 1989 | 6 |  |  |  |  | 6 |
| 1990 | 1 |  |  | 1 |  | 2 |
| 1991 |  |  | 119 | 5 |  | 124 |
| 1992 |  |  | 199 |  |  | 199 |

Table 8.40. Official landings of greater forkbeard (Phycis blennoides) from Sub-area VII

|  | England | France | Norway | Spain | Others | TOTAL |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1988 | 11 | 57 |  | 164 | 10 | 242 |
| 1989 | 7 |  |  |  | 14 | 21 |
| 1990 | 5 |  |  |  |  | 5 |
| 1991 | 13 |  | 7 |  |  | 20 |
| 1992 |  | 45 |  |  | 45 |  |

Table 8.4f. Official landings of greater forkbeard (Phycis blennoides) from Sub-areas VIII and IX

| France | Portugal | Spain | TOTAL |  |
| :--- | ---: | ---: | ---: | ---: |
| 1988 | 7 | 1 | 50 | 58 |
| 1989 |  |  |  | 0 |
| 1990 |  |  |  | 0 |
| 1991 |  | 2 |  | 2 |
| 1992 |  |  |  | 0 |

Table 8.4 g . Official landings of greater forkbeard (Phycis blonnoides) from ICES areas, all countries combined

|  | $I+I I$ | $I I I+I V$ |  | $V b$ |  | VII |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1988 | 0 | 15 | 2 | 569 | 242 | 58 | 886 |  |
| 1989 | 0 | 0 | 0 | 6 | 21 | 0 | 27 |  |
| 1990 | 0 | 0 | 0 | 2 | 5 | 0 | 7 |  |
| 1991 | 41 | 164 | 44 | 124 | 20 | 2 | 395 |  |
| 1992 | 34 | 130 | 33 | 199 | 45 | 0 | 441 |  |

Table 8.5 Skates and rays nei.
Table 8.5a. Official landings ( $t$ ) of skates and rays nei. from Sub-areas I and II

|  | Faeroes | France | Germany | Norway | Russia | Others | TOTAL |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1988 | 15 | 27 | 78 | 119 | 3698 | 10 | 3945 |
| 1989 |  |  | 32 | 152 | 2102 | 3 | 2289 |
| 1990 | 42 |  | 52 | 217 | 454 | 1 | 768 |
| 1991 |  |  |  | 240 |  |  | 240 |
| 1992 |  |  |  | 158 |  |  | 158 |

Table 8.5b. Official landings ( $t$ ) of skates and rays nei. from Sub-areas III and IV

|  | Belgium | Denmark England | France | Norway | Scotland | Others | TOTAL |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1988 | 873 | 75 | 975 | 181 | 395 | 2514 | 6 | 4819 |
| 1989 | 459 | 61 | 1104 |  | 517 | 1447 | 19 | 3607 |
| 1990 | 530 | 60 | 1116 |  | 412 | 1480 | 19 | 3817 |
| 1991 | 701 | 47 | 1375 |  | 308 | 1428 | 11 | 3870 |
| 1992 |  |  |  |  | 357 |  | 1 | 358 |

Table 8.5c. Official landings ( $t$ ) of skates and rays nei. from Division Va

|  | Beigium | Faeroes | Iceland | TOTAL |
| :---: | ---: | ---: | ---: | ---: |
| 1988 | 20 | 2 | 191 | 213 |
| 1989 | 22 | 2 | 252 | 276 |
| 1990 | 6 | 16 | 383 | 405 |
| 1991 | 9 | 5 | 588 | 802 |
| 1992 |  | 0 | 317 | 317 |

Table 8.5d. Official landings ( $t$ ) of skates and rays nei. from Division Vb

|  | Faeroes | Norway | Others | TOTAL |
| :--- | ---: | ---: | ---: | ---: |
| 1988 | 92 | 28 | 14 | 135 |
| 1989 | 136 | 84 | 1 | 221 |
| 1990 | 102 | 98 | 2 | 200 |
| 1991 | 207 | 81 | 2 | 290 |
| 1992 | 258 | 37 |  | 295 |

Table 8.5e. Official landings (t) of skates and rays nei. from Sub-area VI

|  | England | France | Ireland | Norway | Scotland | Spain | Others | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1988 | 74 | 789 | 690 | 278 | 2209 | 44 | 13 | 4075 |
| 1989 | 128 |  | 630 | 543 | 2503 |  | 14 | 3816 |
| 1990 | 207 |  |  | 274 | 1929 |  | 9 | 2419 |
| 1991 | 199 |  |  | 288 | 1959 |  | 27 | 2471 |
| 1992 |  |  |  | 318 |  |  |  | 316 |

Table 8.5f. Official landings (t) of skates and rays nei. from Sub-area VII

|  | Belgium | England | France | Ireland | Netherl | Norway | Scotland | Spain | Others | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1988 | 875 | 3477 | 11540 | 2558 | 132 |  | 211 | 90 | 77 | 18960 |
| 1989 | 983 | 2743 |  | 2498 | 137 | 40 | 122 |  | 159 | 8882 |
| 1990 | 759 | 3258 |  |  | 141 | 39 | 184 |  | 38 | 4397 |
| 1991 | 519 | 2518 |  |  | 188 | 83 | 108 |  | 51 | 3445 |
| 1992 |  |  |  |  |  | 87 |  |  |  | 87 |

Table 8.5 g . Official landings (t) of skates and rays nei, from Sub-area VIII $+\mathrm{IX}+\mathrm{X}$

|  | Belgium | England | France | Portugal | Spain | TOTAL |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 1988 | 2 | 57 | 2355 | 2351 | 1506 | 6271 |  |
| 1989 | 12 | 223 |  | 1917 |  | 2152 |  |
| 1990 | 4 |  |  | 1602 |  | 1806 |  |
| 1991 | 91 | 7 |  | 1427 |  | 1525 |  |
| 1992 |  |  |  |  |  | 0 |  |

Table 8.5h. Official landings (t) of skates and rays nei. from ICES areas, all countries combined

| $1+11$ |  | $11+1 V$ | Va | Vb | VI | VII | VIII $+1 x+x$ | total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1988 | 3945 | 4819 | 213 | 135 | 4075 | 18960 | 8271 | 38418 |
| 1989 | 2289 | 3807 | 278 | 221 | 3818 | 8682 | 2152 | 19043 |
| 1990 | 768 | 3617 | 405 | 200 | 2419 | 4397 | 1808 | 13410 |
| 1991 | 240 | 3870 | 602 | 290 | 2471 | 3445 | 1525 | 12443 |
| 1992 | 158 | 358 | 317 | 295 | 318 | 87 |  | 1531 |

Table 8.6 Sharks nei (excluding dogfish)
Table 8.6a. Official landings (t) of sharks nei. (excl. dogfish) from Sub-areas I and II

| Russia |  |  |
| :---: | ---: | ---: |
| 1988 | 37 | 37 |
| 1989 | 15 | 15 |
| 1990 |  |  |
| 1991 |  |  |
| 1992 |  |  |

Table 8.8b. Official landings (t) of sharks nei. (excl. dogfish) from Sub-areas III and IV

|  | Belgium | Denmark | England | France | Scotland | Others | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1988 |  | 9 | 4 | 1 |  | 2 | 18 |
| 1989 | 20 | 8 | 2 |  | 14 | 2 | 44 |
| 1990 | 12 | 7 | 1 |  | 10 | 2 | 32 |
| 1991 | 10 | 8 | 4 |  | 8 | 2 | 32 |
| 1992 |  |  |  |  |  |  |  |

Table 8.8c. Official landings (t) of sharks nei. (excl. dogfish) from Division $\vee \mathbf{V a}$ Iceland TOTAL

| lceland |  | TOTAL |
| ---: | ---: | ---: |
| 1988 |  | 0 |
| 1989 |  | 0 |
| 1990 | 10 | 10 |
| 1991 | 54 | 54 |
| 1992 | 181 | 181 |

Table 8.8d. Official landings ( $t$ ) of sharks nei. (excl. dogfish) from Division Vb

|  | Faeroes | TOTAL |
| :--- | ---: | ---: |
| 1988 |  | 0 |
| 1989 |  | 0 |
| 1990 |  | 0 |
| 1991 | 3 | 3 |
| 1992 | 36 | 36 |

Table 8.6e. Official landings (t) of sharks nei. (excl. dogfish) from Sub-area VI

|  | England | Faeroes | France | Scotland | Spain | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1988 |  |  | 21 |  | 42 | 63 |
| 1989 |  |  | 21 | 8 |  | 29 |
| 1990 | 1 |  | 383 | 5 |  | 389 |
| 1991 | 14 |  | 1187 | 53 |  | 1234 |
| 1992 |  | 3 | 2727 |  |  | 2730 |

Table 8.6f. Official landings ( $t$ ) of sharks nei. (excl. dogfish) from Sub-area VII

|  | Balgium | England | Netherl | Scotland | Spain | Others | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1988 |  | 95 |  |  | 60 |  | 155 |
| 1989 |  | 35 |  |  |  | 5 | 40 |
| 1990 | 4 | 36 |  | 1 |  |  | 41 |
| 1991 | 5 | 285 | 2 | 53 |  |  | 345 |
| 1992 |  |  |  |  |  |  |  |

Table 8.6g. Official landings ( $t$ ) of sharks nei. (excl. dogfish) from Sub-area VIII $+1 X+X$

|  | England | France | Portug | Spain | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1988 |  | 149 | 543 | 3545 | 4237 |
| 1989 |  |  | 358 |  | 358 |
| 1990 |  |  | 734 |  | 734 |
| 1991 | 10 |  | 642 |  | 652 |
| 1992 |  |  |  |  |  |

Table 8.6h. Official landings (t) of sharks nei. (excl. dogfish) from ICES areas, all countries combined



Figure 2.1.1 The Faroe area and adjacent areas divided into ICES divisions. The Faroese 200 miles economic zone is indicated.


Figure 2.1.2


[^6]Mean weight at age (kg)


$$
\rightarrow \text { Age } 2 \div \text { Age } 3 \rightarrow \text { Age } 4 \backsim \text { Age } 5
$$

## Figure 2.1.4.B

Mean weight at age (kg)



Figure 2.1.5 Stratification of the area around the Faroe Islands used in the groundfish survey.

## L-S with no shrinkage


$\rightarrow-1992 \rightarrow 1991 \rightarrow 1990 \backsim 1989$


## $\rightarrow-1992 \rightarrow 1991 \rightarrow 1990 \rightarrow 1989$

Figure 2.1.8
XSA with shrinkage $=0.5$


[^7]
## FISH STOCK SUMMARY

## STOCK: Cod in the Faroe Plateau (Fishing Area Vb1)

$$
7-5-1983
$$

Trends in yield and fishing mortality (F)

## — rield - - $F$



Trends in spawning stock biomass (SSB) and recruitment ( $R$ )


## Faroe Plateau Cod <br> Stock-Recruitment relationship



Figure 2.1.11 Stratification of the area around the Faroe Islands used in the 0 -group surveys.


FISH STOCK SUMMARY
STOCK: Cod th the Parce Plateau (Fishing Area Vb1)

$$
8-5-1993
$$

Long term yield and spawning stock biomoss


Short-term yield and spawning stock biomass


Average fishing mortality (ages 3-7.u)
(run: pmitakz)
D


Figure 2.2.1 Total international landings of cod from Faroe Bank (ICES Sub-division Vb2). Bulletin Statistique and preliminary reported statistics).


Figure 2.2.2 Cod catches per trawl per hour from from the Faroese groundfish survey.

Length distribution of cod catches at Faroe Bank - groundfish surveys 1993


Figure 2.2.4
Catches of cod on Faroe Bank Longliners > 100 GRT


## Haddock in ICES Division Vb

 Catches by fleet category, nom. weight

| $\square$ Open boats | $\square$ Longliners <100GR Longliners $>100 \mathrm{GR}$ |
| :--- | :--- |
| $\square$ Single trawlers | $\square Z \pi$ Pair trawlers |

Figure 2.3.2

## Commercial tuning series for haddock

Catch per unit effort (tonnes per day)


Assessment 1992 of Faroe Haddock Catch weights at age (kg) 1983-1992

$\square$ Age $2 \rightarrow$ Age $3 \rightarrow$ Age $4 \rightarrow$ Age 5

Figure 2.3.3.B
Assessment 1992 of Faroe Haddock Catch weights at age (kg) 1983-1992


$$
\square \text { Age } 6\rceil \text { Age } 7 \rightarrow \text { Age } 8-\text { Age } 9
$$



Figure 2.3.4.A

Tuning Series Fleet 2
Longliners 25-40 GRT


Figure 2.3.4.B

## Tuning Series Fleet 3

Longliners 40-60 GRT


## Retrospective Analysis : Faroe Haddock Laurec-Shepherd without shrinkage



Figure 2.3.5.A
$\underset{\substack{\text { Retrospective Analysis : } \\ \text { Laurec-Shepherd with shrinkage }}}{\text { Raroe Haddock }}$


Figure 2.3.5.B

Retrospective Analysis: Faroe Haddock XSA with shrinkage 0.5


Figure 2.3.5.C
XSA with shrinkage 0.3


Figure 2.3.5.D
XSA with shrinkage 0.1


Figure 2.3.5.E

## FISH STOCK SUMMARY

STOCK: Haddock in the Peroe Grounds (Fishing Area Vb)

$$
7-5-1893
$$

Trends in yield and fishing mortality ( $F$ )

## — Yield $-\quad-F$



Trends in spawning stock biomass (SSB) and recruitment ( $R$ )


Recruitment year class, SSB year
(run: REINIG.HAO)

## FISH STOCK SUMMARY

STOCK: Haddock in the Paroe Grounds (Fishing Area Vb)
7-5-1993

Long lerm yield and spawning slock biomass


Average fishing mortolity (oges 3-7.u) (run: REINIG.MAD)

FISH STOCK SUMMARY
STOCK: Haddock in the Paroe Grounds (Flshing Area Vb)

$$
10-5-1993
$$

Long term yield and spawning slock biomass


Average fishing mortality (ages 3-7.u)
(run: ETKAS.vPA)
C


Figure 2.3.9

Faroese Groundfish Surveys 1983-1993
Stratified mean catch at age, haddock

$\rightarrow$ Age $1 \rightarrow$ Age $2 \rightarrow$ Age $3 \rightarrow$ Age 4

Figure 2.3.10

## Faroe Saithe : Retrospective Analysis

 L/S no shrinkage (age 4-11, 2 series)

## Faroe Saithe : Retrospective Analysis XSA with shrinkage 0.5 (age 4-10, Cuba)



## Faroe Saithe : Retrospective Analysis L/S with shrinkage 0.5 (age 4-10, Cuba)



Figure 2.4.3

Faroe Saithe : log catchability res. XSA with shrinkage 0.5 (age 4-10, Cuba)


Figure 2.4.4

## FISH STOCK SUMMARY

## STOCK: Saithe in the Faroes Grounds (Fishing Area Vb)

11-5-1993

Trends in yield and fishing mortality (F)


Trends in spowning stock biomass (SSB) and recruitment ( $R$ )


Recruitment year class, SSB year (run: SAIFR813)

B

## FISH STOCK SUMMARY

STOCK: Saithe in the Faroes Grounds (Fishing Area Vb)

## 11-5-1993

Long term yield and spawning stock biomass
$\Longrightarrow$ Yield - SSB


Short-term yield and spawning stock biomass



Figure 2.4.7







Figure 3.2.3. Icelandic Saithe. $F(4-9)$ from different runs.

## FISH STOCK SUMMARY

STOCK: Salthe in the Icaland Grounds (Fishing Area Va)

$$
5-5-1993
$$

Trends in yield and fishing mortality ( $F$ )


Trends in spawning stock biomass (SSB) and recruitment ( $R$ )


Recruitment year closs, SSB year
(run: STVPAQ)

## FISH STOCK SUMMARY

## STOCK: Saithe in the Icaland Grounds (Fishing Area Va)

$$
8-5-1993
$$

Long term yield and spowning stock biomass


Averoge fishing mortality (ages 4-9,u) (run: MELOJ)

C

Short-term yield and spawning stock biomass


## Icelandic Saithe



Figure 3.3.1 Tuning diagnostics log-log plots of CPUE vs stock size.

cont'd.

```
gure 3.3.1 (cont'd.)
```




cont'd.

Figure 3.3.1 (cont'd.)











Fig. 3.3.2b. Icelandic cod. Trend in $88 B$ and recruitment


## FISH STOCK SUMMARY

## STOCK: Cod in the Icaland Grounds (Fishing Area Va)

## 7-5-1993

Long term yield and spawning stock biomass
$\longrightarrow$ Yield - - SSB


Average fishing mortality (ages 5-10,u)
(run: MELI)

## C

— Yield - - SSB


Figure 4.1.1 Main spawning grounds, migrations of mature fish and larval drift of the cod stocks at West Greenland, East



Fig. 5.1.1 Survey area. Geographic stratification scheme as specified in Table 5.1.1 and haul positions, 1982-92.


Fig. 5.1.2 Aggregate abundance indices for West and East Greenland as listed in Table 5.1.4, 1982-92. Value for East Greenland in 1992 is invalid due to incomplete sampling!


Fig. 5.1.3 Aggregate biomass indices for west and East Greenland as listed in Table 5.1.5, 1982-92. Value for East Greenland in 1992 is invalid due to incomplete sampling!


Fig. 5.1.4 Aggregate length composition for west and East Greenland, 1989-92. Values for East Greenland in 1992 are invalid due to incomplete sampling!


Fig. 5.1.5 Aggregate age composition for West and East Greenland as listed in Tables 5.1.6, 5.1.7 and 5.1.8, 1989-92. Values for East Greenland in 1992 are invalid due to incomplete sampling!


Fig. 5.1.6 Location of sub-areas and hauls in Greenland trawl survey; 1992.

Figure 6.6.1 Retrospective analysis.

(cont'd)

Figure 6.6.1 (Cont'd).

(cont'd)

Figure 6.6.1 (Cont'd)


## FISH STOCK SUMMARY

## STOCK: Greenland halibut in the Icaland and Faroes Grounds and East Green

9-5-1993

Trends in yield and fishing mortality (F)
— Yield - - F


Trends in spowning stock biomass (SSB) and recruitment ( $R$ )
$\longrightarrow S S B-\quad-R$


## FISH STOCK SUMMARY

## STOCK: Greenland halibut in the Icaland and Faroes Grounds and East Green

8-5-1993

Long term yield and spawning stock biomass


Average fishing mortality (ages 8-12.u)
(run: YR)
C

Short-term yield and spawning stock biomass

- Yield - SSB


Fiqure 7.5.2 REDFISH Time series of sqrt(CPUE) in each statistical square


Figure 7.5.3


Figure 7.5.4 Distribution of the Irminger Sea S.mentella concentrations by results from the TAS 1992.


3: : : singoous for bóN


Figure 7.5.5 Cruise tracks


Figure 7.5.6 Relative abundance of oceanic redfish based on echo values.


Figure 7.5.7 Vertical temperature distribution $\left(t^{\circ} \mathrm{C}\right)$ on a section along the 6()$^{\circ} \mathrm{N}$ latitucle

Figure 7.5.8 Horizontal temperature $\left(t^{\circ} \mathrm{C}\right)$ distribution in 150 m depth.


Figure 7.5.9
Catch curve for oceanic S.mentella


Figure 7.5.10a
Selection pattern created by the model


Figure 7.5.10b
Selection pattern created by the model


Figure 7.5.11
Terminal biomass/Virgin (\%)


Figure 7.5.12
Fixed selection pattern


## APPENDIX A

# MEDIUM-TERM PREDICTIONS FOR THE ICELANDIC COD STOCK 

by<br>Gunnar Stefánsson

Some medium-term simulations for the Icelandic cod were presented to the group. These are based on the same input data as other results in this report, but the methodology used included the following set of assumptions and models:

- Weight at age and maturity at age in 1993 was set to the same values as in the assessment, as was the baseline stock size.
- A stock estimate is simulated at the start of the year. This is done by assuming the overall fishing mortality to be known with a (log-scale) standard error $15 \%$ from the true value.
- Catches in future years were set according to one of the management rules in Figure A1. Thus, the catch level depends on the SSB estimate in the given year. It is assumed that there is a certain minimum acceptable catch level, which efforts will be taken to obtain. The $200,000 \mathrm{t}$ catch minimum scenario is closest to the current state of affairs (although it should be noted that currently the TAC is set so that with all allowances the catches could rise to almost $250,000 \mathrm{t}$ without any illegal activity).
- In the simulations, the SSB is estimated based on the fishing mortality (with an average selection pattern) and the catches are removed from the stock using the same average selection pattern as is used in the assessment in this report.
- The stock is then projected forward in numbers using the usual catch equations. The weights and maturities at age have been quite variable in recent years and therefore these are changed incrementally by taking at random one of the annual increments in the historical time series. The same year is used for computing the incrementa for all age groups in each of these forward projections.
- Recruitment in the new year is predicted based on a Beverton-Holt relationship with $a=2.59$ and $\mathrm{K}=88.51$.
- A ceiling is put on the fishing mortalities in order to avoid negative stock sizes and to avoid fishing mortalities which cannot reasonably be inflicted by the fleet. Thus, if the SSB is very low, catches are restrained by bounding the fishing mortality by 1.5 . This leads to declining catches as well as the stock size at high exploitation.

Results of these simulations are presented in Figure A2. These represent 10 out of 100 simulated stock and catch trajectories for minimum catch levels ranging from 125,000 to $200,000 \mathrm{t}$. The full simulation indicated only one instance in 100 in which the $175,000 \mathrm{t}$ catch level lead to a stock crash but there is considerable probability of this occurring in the $200,000 \mathrm{t}$ scenario.

It would seem therefore that continued fishing at current TAC levels is outside any reasonable definition of a safe biological limit.

Comparing the $150,000 \mathrm{t}$ and $175,000 \mathrm{t}$ minimum catch levels, it is seen that the build up of the stock is much more rapid if the $150,000 \mathrm{t}$ option is taken.

It should be noted that if maturity at age is not changed incrementally from one year to the next, by chosen random from the historical series of maturities, then there is a higher probability of stock collapse when the minimum catch level is set at $175,000 \mathrm{t}$.


E.
II
II
eng


Figure A2 Icelandic cod. Medium-term simulations.










[^0]:    *General Secretary ICES
    Palægade 2-4
    DK-1261 Copenhagen K
    DENMARK

[^1]:    1) Preliminary
    2) Catches included in Sub-division Vb1
    3) Sub-division Vb1 included
[^2]:    1 Provisional data.
    2 As of 1991.

[^3]:    ' Provisional data.
    ${ }^{2}$ As of 1991.

[^4]:    Log catchability residuals.

[^5]:    ${ }^{1}$ Provisional.

[^6]:    -- Trawl $>1000 \mathrm{HP}$ + Pairtrawl 4-699 HP $\rightarrow$ Pairtrawl 7-999 HP $\square$ Pairtrawl $>1000 \mathrm{H} \rightarrow$ Deepwater trawlers

[^7]:    $\rightarrow-1992 \rightarrow 1991 \rightarrow 1990 \backsim 1989$

