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The distribution of capelin was mapped in the area east of Hopen. 

Zooplankton was sampled with Juday net and 1m2 MOCNESS sampler, 

and analyzed with respect to hydrography and capelin abundance. The 

capelin "front" coincided more or less with the physical polar front, and 

this complicated the interpretation of the results. Strong indications 

for a grazing impact by capelin on zooplankton were nevertheless 

obtained. The zooplankton biomass was significantly lower in the area 

with high abundance of capelin than in the area with no capelin. This 

effect was due to a lower biomass of relatively large zooplankton 

(>1 mm size fraction) and seen most clearly in data obtained with 

MOCNESS. The biomass of zooplankton in the upper 100 m was very low 

where capelin was present, suggesting rapid depletion of the major 

prey items. The biomass (m-2) of capelin in the capelin front area was 

about 3 times higher than the biomass of zooplankton in areas without 

capelin. The capelin front would therefore have the potential to graze 

down the available prey in 3-4 days. Light seems to be an important 

factor for the predation impact by capelin, resulting in strong 

interactions between capelin predation and zooplankton vertical 

distribution. 
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INTRODUCTION 

The Barents Sea ecosystem is characterized by inflow of relatively 
warm Atlantic water in the southwestern area. The Atlantic water is 
separated from the cold Arctic water in north by a polar front, which is 
topographically determined and sharp in the western part of the 
Barents Sea while being more diffuse and variable in the eastern part 
(Loeng 1989, 1991 ). There is large seasonal and interannual variability 
in the ice cover, with from 1/3 to 2/3 of the area of the Barents Sea 
covered by ice during winter (Vinje 1983; Loeng 1989). 

The melting of ice initiates an ice edge phytoplankton bloom (Rey & 
Loeng 1985; Rey et al. 1987a, b; Skjoldal et al. 1987) which can be 
envisioned as a band of production sweeping northwards as the ice 
recedes. The ice edge bloom is utilized for reproduction and 
development of Arctic herbivorous zooplankton dominated by the 
copepod Calanus glacialis which has a two-years life cycle (Tande et 
al. 1985; Hassel 1986). The dominant herbivores in the Atlantic water 
south of the polar front are C. finmarchicus, which has a one-year life 
cycle, and several species of krill (Hassel 1986; Loeng 1989; Skjoldal & 
Rey 1989; Dalpadado & Skjoldal 1991 ). 

Capelin (Mallotus villosus Muller) is a small salmonid fish which plays 
an important role in the Barents Sea ecosystem as a plankton feeder 
(Skjoldal & Rey 1989; Hamre 1990). Capelin matures at an age of 3-5 
years when they have reached a size of about 14 cm (Forberg & 
Tjelmeland 1985). They migrate to the coasts of northern Norway and 
Murman to spawn in late winter. The spent individuals experience 
massive mortality following spawning. The immature part of the 
population overwinters in the central Barents Sea, from where they 
undertake a large scale feeding migration to the northern Barents Sea 
during summer and autumn (Ozhigin & Ushakov 1984; Dommasnes & 
R0ttingen 1984; Hamre 1990). This feeding migration can be viewed as 
an ecological adaptation whereby capelin follows, with a time lag, the 
receding ice edge, exploiting the secondary production based on the ice 
edge phytoplankton bloom (Sakshaug & Skjoldal 1989). 

The feeding conditions and growth of capelin have been investigated by 
the Institute of Marine Research since 1979. From 1984 these 
investigations have been part of PRO MARE. A conceptual model of the 
seasonal development of the Barents Sea ecosystem, based on the 
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receding ice edge, an ice edge phytoplankton bloom, zooplankton 

development, and capelin feeding migration, has been central for 

coordination of much of the research activity in PRO MARE (Loeng & 

Hassel 1986; Rey et al. 1987b; Sakshaug & Skjoldal 1989). This model 

emphasises the passive role of capelin at the receiver end of the food 

chain, harvesting the secondary production as it trails the receding ice 

edge. lt is expected, however, that capelin also plays an important 

active role in the ecosystem through feedback effects on the plankton 

populations. A pattern of higher zooplankton biomass in front of than 

behind a migrating "front" of capelin has been observed and interpreted 

to be the result of predation (Hassel 1986). 

In an attempt to obtain more direct evidence for the predation impact 

by capelin, a detailed investigation was carried out in August 1985. The 

northern boundary of the capelin distribution is typically sharp, with 

high abundance of capelin often found as a narrow band in a 

characteristic "capelin front". The location of the capelin front was 

mapped in the area east of Hopen Island, and physical and biological 

conditions were surveyed in front of and behind the capelin front (Fig. 

1). The capelin front area was revisited after about one week in order 

to assess possible changes caused by the migrating capelin. At the time 

of investigation, however, the capelin front more or less coincided 

with the physical polar front. This was an unfortunate coincidence 

which have made it difficult to provide firm evidence for the predation 

impact by capelin on the zooplankton populations. 

MATERIAL AND METHODS 

The investigation was carried out during a cruise with R/V "G. 0. Sars" 

from 29 July to 19 August 1985. The cruise track and sampling stations 

are shown in Fig. 1. A total of 134 CTD stations were taken during the 

cruise. The main area of investigation was located east of Hopen Island 

between 75°45' and 77°30'N and between 28° and 35°E. We were 

assisted in the initial localization of the capelin front and mapping of 

the physical conditions by R/V "Hakon Mosby" from the University of 

Bergen. 

Zooplankton was sampled with a 36 cm diameter Juday net and a 1-m2 

MOCNESS plankton trawl. The Juday net (180 J.Lm) was hauled vertically 

from near bottom to the surface on a total of 128 stations. Vertical 

profiles of zooplankton distribution were obtained at 30 stations with 
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the MOCNESS sampler (Fig. 1). The MOCNESS was equipped with 9 nets 
(333 J..Lm) that were electronically released from the ship (Wiebe et al. 
1976; Wiebe et al. 1985). The MOCNESS was towed horizontally at 8 
selected depths or obliquely in 8 depth intervals from a distance of 20-
30 m from the bottom to the surface (the 9th net was not used). Mean 
biomass per ms was calculated as the weighted average biomass per ms 
for the depth layers in a profile. The biomass per m2 was obtained by 
multiplying the mean biomass per ms with the water depth at the 
station. 

All zooplankton samples were divided with a Motoda divider (Motoda 
1959) into two aliquots for determination of dry weight biomass and 
species composition, respectively. The biomass subsamples were 
sieved successively through 1000 J..Lm and 250 J..Lm screens, rinsed 
briefly with fresh water and frozen in pre-weighed Al-trays. These 
samples were later dried (80 °C) and combusted (450 °C) to obtain 
their dry weight (dw) and ash-free dry weight (afdw). All specimens of 
medusae and ctenophores from the MOCNESS samples were removed 
prior to the subsampling procedure, identified to species, and sized by 
volume or length. 

RESULTS 

Hydrography and water masses 

The circulation pattern in the area east of Hopen is characterized by 
Atlantic water that divides into one branch that flows northwards 
submerged under the Arctic water west of the Great Bank and one 
branch that flows eastwards between the Great Bank and the Central 
bank. Cold Arctic water is flowing southwestwards along the eastern 
slope of the Svalbard Bank (Loeng 1989; 1991 ). The polar front closely 
follows the bottom topography in this area. 

Apart from the southern stations in Atlantic water, the investigation 
area had been influenced by ice cover, resulting in a surface layer of 
meltwater with a well defined pyknocline at 20-30 m depth. Based on 
water mass characteristics, we have, according to Loeng (1991 ), 
classified the sampling stations into the following categories: 
- Arctic water. Salinity between 34.3 and 34.8 and temperature below 

0 °C. 
- Atlantic water. Salinity above 35.0 and temperature above 3 oc. 
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- Polar front water. Salinity between 34.8 and 35.0 and temperature 

between -0.5 and 2 oc. A mixture of Arctic and Atlantic water, 

locally formed in a transition zone. 

- Svalbard Bank water, with salinity below 34.4 and temperature 

between 1-3°C. 

In addition we have defined: 

- Arctic/Atlantic water. Arctic water overlaying Atlantic water, which 

is found near the bottom. 

- "Old" Atlantic water. Salinity above 34.9 and temperature 0-2 oc. 
Atlantic water in origin, with a long residence time in the area. 

Examples of temperature and salinity profiles from the different water 

mass categories are shown in Fig. 2 A-F. The horizontal distribution of 

temperature at 50 m showed marked gradients (Fig. 3A). The 0 oc 
isoline marks the approximate position of the polar front. The 

distribution of the water mass categories at the time of this study is 

shown in Fig. 38. The polar front water mass separated the Arctic and 

Atlantic water masses, with "old" Atlantic water intermediate in 

position over the deeper areas of the Hopen Deep. The Arctic/Atlantic 

water mass was found where Atlantic water intrudes under the Arctic 

water at about 30-32 °E. Further details of the hydrographic conditions 

during the survey are presented by Loeng et al. (1986). 

Cagelin distribution 

The distribution of capelin revealed maximum abundance in an area just 

south of the polar front between 76° and 76°30'N and between 30° and 

36°E (Fig. 30). The zero isoline of capelin ran almost parallel to the 

polar front, especially along the eastern slope of the Svalbard Bank. 

South of the Great Bank, capelin was found to have penetrated just into 

Arctic water. The position of the capelin front did not change much 

during the last week of the investigation when a second survey of the 

central area was conducted (Fig. 1 ). The isoline for echo integrator 

value 100 had moved 15-20 n.miles to the north, whereas the zero 

isoline had receded slightly (Fig. 3C). lt appears that the timing of our 

cruise coincided with the time the capelin were about to cross the 

polar front. Echo registrations obtained one month later during the 

annual autumn survey of capelin revealed that the capelin 

concentrations had migrated further north to beyond 78°N south of King 

Karls Land (Anon 1985). 
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Table 1 summarizes the mean numerical abundances, condition factors 
and individual weights of 2, 3 and 4 years old capelin in the various 
water mass categories. The 3 years old individuals were the dominant 
age group, with the largest relative dominance in the Arctic, 
Arctic/ Atlantic and "old" Atlantic water masses. The lowest numerical 
abundance was found in Atlantic water where 2 years old individuals 
dominated. The mean fish weight and condition factor were highest in 
the Arctic water mass for all age groups. The individual fish weight 
was lowest in the Atlantic water where the weights were only about 
half of the weights in Arctic water. 

Zooplankton bimass 

The horizontal distributions of zooplankton ash-free dry weight 
biomass in the size fractions <'1 mm and >1 mm are shown in Fig. 4. 
Most of the biomass was in the > 1 mm fraction for both Juday and 
MOCNESS samples. The total biomass (the two size fractions combined) 
ranged from 0.6 to 14.5 g afdw m-2 with a mean of 4.6 g m-2 (standard 
deviation (SO) 2.4) for the Juday samples, and from 0.5 to 12.7 g m-2 
with a mean of 4.4 g m-2 (SO 3.0) for the MOCNESS samples. There was 
no clear cut pattern in the distribution of biomass. The Juday samples 
tended to show the highest values in the eastern part of the area for 
the smallest size fraction and scattered in the northern part and along 
the slope of the Svalbard Bank for the >1 mm fraction (Fig. 4 A,B). The 
MOCNESS samples showed the lowest values for the >1 mm fraction in 
the central part of the investigated area (Fig. 4 C), where the densest 
concentrations of capelin were found (Fig. 30). 

Zooplankton biomass data grouped according to water mass categories 
are summarized in Table 2, with levels of significance for pairwise 
comparisons of total biomass given in Table 3. For the Juday samples, 
the lowest biomass values occurred in Svalbard Bank and Atlantic 
water masses. The highest total biomass occurred in "old" Atlantic 
water. The Svalbard Bank water had significantly (p < 0.05) lower total 
biomass than all other water masses except the Atlantic, and the 
Atlantic water mass had significantly lower biomass than the 
Arctic/Atlantic water masses (Table 3). The MOCNESS data also showed 
low biomass in the Atlantic water and high biomass in the "old" 
Atlantic water (Table 2). In contrast to the Juday samples, however, 
the MOCNESS data showed low biomass values for the polar front water 
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that had significantly lower biomass than the Arctic and 

Arctic/Atlantic water masses (Table 3). 

The zooplankton data has also been grouped into 3 categories of 

stations with no, low and high abundance of capelin, respectively 

(Table 4). The mean total biomass of MOCNESS samples was only about 

1/3 at the stations with high abundance of capelin compared to the 

stations without capelin. This difference was significant (Mann

Whitney U-test, U = 151, p < 0.002) and reflected lower biomass in the 

size fraction > 1 mm (Table 4). The Juday samples showed the same 

trend, with lower total biomass and biomass in the > 1 mm size 

fraction at the stations with high abundance of capelin. The difference 

in total biomass was significant for the comparison between stations 

with high and low abundance of capelin (U = 254, p < 0.05). 

The capelin was distributed mainly in polar front and Arctic/ Atlantic 

water masses (Fig. 3 B and D). Sixteen out of the total of 30 MOCNESS 

stations were located in these water mass categories. Vertical 

profiles revealed low zooplankton biomass in the upper water layer at 

5 out of 6 polar front stations where capelin abundance was high (Fig. 5 

D-H). In contrast, the single polar front station without capelin had a 

high biomass of zooplankton (Fig. 5 A). An exception to this pattern was 

station 880 which had fairly high zooplankton biomass and high capelin 

abundance (Fig. 5 C). This station, however, was located just inside the 

northern border of the capelin front at 76°40'N and 31 °E. Station 937 

was located slightly to the northeast of station 880 (76°45'N, 31 °30'E) 

in an area with low abundance of capelin and had low biomass of 

zooplankton (Fig. 5 B). Stations 885 and 932 were from the same 

geographical position taken about one week apart. lt is noteworthy how 

little change there had been in the zooplankton biomass distribution 

(Fig. 5 D and E). 

The vertical profiles of zooplankton at the stations in the 

Arctic/ Atlantic water mass revealed the same general pattern as the 

stations in polar front water. The zooplankton biomass in the upper 

layer was considerably lower at the stations with high abundance of 

capelin (Fig. 6 F-H) than at the stations with no capelin present (Fig. 6 

A-D). The station with low abundance of capelin had intermediate level 

of zooplankton (Fig. 6 E). 

Vertical profiles of zooplankton biomass in other water mass 



8 

categories are shown in Fig. 7. Two stations in ".old" Atlantic water and 
Atlantic water with high abundance of capelin had very low zooplankton 
biomass in the upper water layer (Fig. 7 D and E). The only station in 
Atlantic water without capelin, located in the southwestern part of the 
Barents Sea, had somewhat higher biomass (Fig. 7 A). Two stations in 
"old" Atlantic water with low abundance of capelin showed fairly high 
zooplankton biomass but with different vertical distributions. Station 
850 was located on the northern slope of the Central Bank and had low 
biomass in the upper layer but high biomass from 40 m and deeper (Fig. 
7 B). Station 878 was located in the northwestern part of the capelin 
distribution and had high biomass (of krill) in the surface layer but low 
biomass below (Fig. 7 C). 

Capelin was not observed in the Arctic water proper. The zooplankton 
biomass at the Arctic water stations was generally high but with some 
variation in the vertical distribution (Fig. 7 F-L). Stations 814, 841 and 
867 along the eastern slope of the Svalbard Bank and stations 857 and 
917 southeast of the Great Bank (Fig. 1) showed a general increase in 
the zooplankton biomass with increasing depth (Fig. 7 F-H, I and L). 
Stations 896 and 913 in the northern Barents Sea showed the highest 
biomass in the upper or intermediate water layers (Fig. 7 J and K). 

There was an inverse relationship between zooplankton biomass and 
capelin abundance for all MOCNESS stations (Fig. 8). This trend was 
most clearly shown for the zooplankton in the upper 100 m, with very 
low zooplankton biomass at most stations were capelin was present 
(Fig. 8 B). 

Zooplankton taxonomic composjtjon 

The dominant groups of zooplankton based on visual examination of the 
sample vials, have been indicated on Figs. 5-7. Copepods and to a lesser 
degree siphonophores dominated the polar front and Arctic/Atlantic 
stations with high abundance of capelin. Euphausids were dominant 
together with copepods at those polar front stations where the 
zooplankton biomass was high (Fig. 5 A and C). Pteropods and amphipods 
were dominant in the surface layer at most of the stations with no 
capelin in the Arctic/Atlantic and Arctic water masses (Figs. 6 B-D and 
7 F-L). Chaetognaths were also common in the intermediate and deeper 
layers at some of these stations (Figs. 6 C and D and 7 J) as well as at 
some stations in Atlantic or "old" Atlantic water (Fig. 7 A, B and E). 
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The zooplankton species composition has been analyzed in 4 MOCNESS 

profiles. Stations 829 and 878 (Fig. 9) were from "old" Atlantic water 

with high and low abundance of capelin, respectively. Stations 890 and 

901 (Fig. 1 0) were from Arctic/ Atlantic water, located in an area with 

low abundance of capelin and north of the capelin front, respectively 

(Fig. 1 ). Station 829 had low abundance of all zooplankton species in 

the upper layer (Fig. 9), in agreement with the biomass profile (Fig. 7 

D). The dominant cope pod was Calanus finmarchicus at both the "old" 

Atlantic stations. This species showed a clear pattern, with the 

younger stages (11 and Ill) being dominant in the upper 100 m and the 

overwintering stage V found in the deepest layer (Fig. 9 A and 8). The 

abundance of the younger stages of C. finmarchicus was much higher at 

st. 878 than at st. 829. C. finmarchicus was also common at st. 890 in 

Arctic/Atlantic water, with stages 11-IVpresent in high abundance in 

the upper 40 m (Fig. 10 A). C. finmarchicus was rare at st. 901 further 

north, with stages V and adult females being present in low abundance 

(Fig. 10 B). 

Calanus glacialis was present at the "old" Atlantic stations 829 and 

878, but with much lower abundance than C. finmarchicus. Stage IV was 

the dominant stage and was found mainly in the deepest layer. C. 

glacialis was abundant in the upper layer at the Arctic/ Atlantic station 

890 where it contributed to the biomass peak at 20-40 m (Figs. 6 E 

and1 0 C). Stages Ill and IV were dominant at this station, while being 

rare at st. 901. Here stage V dominated, being found mainly from 30 to 

90 m (Fig. 10 D). 

Calanus hyperboreus occurred in fairly low abundance at all 4 stations, 

particularly st. 829. The population was comprised almost exclusively 

of stage IV copepodites at stations 829 and 878 and was distributed in 

the deepest layers (Fig. 9 C and D). Stage IV also dominated in the 

deepest layer at st. 890 but with some stage Ill and IV individuals 

present in the upper layer as well (Fig. 10 E). A similar bimodal 

vertical distribution was found at st. 901 where stage V dominated 

(Fig. 10 F). 

Metridia long a was distributed in the deeper part of the water column 

at all four stations. Young copepodites (stages 1-111) dominated at the 

stations in "old" Atlantic water, whereas older stages (IV-V) 

dominated at the stations in Arctic/ Atlantic water (Figs. 9 E, F and 10 
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G, H). 

Pseudocalanus sp. was distributed fairly evenly throughout the water 
column. The abundance was low in the surface layer, with a maximum 
around 30-50 m at the stations in Arctic/Atlantic water (Figs. 9 G, H 
and 10 I, J). Copepodite stages IV and V dominated at the "old Atlantic 
stations and at st. 890, whereas adult females were dominant at st. 
901. 

Sagitta elegans was the dominant chaetognath. At the "old" Atlantic 
stations, the larger chaetognaths (1 0-20 mm) were distributed in the 
deeper layer whereas smaller individuals were most abundant higher in 
the water column (Fig. 9 I, J). The abundance of chaetognaths was fairly 
low and dominated by small individuals (5-1 0 mm) at st. 890 in 
Arctic/ Atlantic water (Fig. 10 K). The abundance was higher and 
contributed to the higher biomass at st. 901, with larger individuals 
being found primarily between 30 and 60 m (Figs. 6 C and 10 L). 

Hyperiid amphipods were found in low abundance at all stations. 
Individuals of Parathemisto libellula larger than 10 mm were found at 
the stations in Arctic/Atlantic water with the highest abundance in the 
upper layer (Fig. 10 M, N). 

The dominant species of krill in the investigated area were 
Thysanoessa inermis and T. longicaudata (Dalpadado and Skjoldal 1991 ). 
No krill was found at st. 829 where capelin was present. In contrast, a 
high abundance of furcilia larvae of krill (about 1 os individuals m-2) 
was found at st. 878 with low abundance of capelin. The krill larvae 
were strongly concentrated in the surface layer and contributed to the 
high biomass in this layer (Figs. 7 C and 9 K). A few furcilia larvae 
were also found at stations 890 and 901 in the Arctic/Atlantic water, 
and larger individuals of T. inermis were found in low abundance at st. 
890. 

Pteropods contributed to the biomass in the surface layer at st. 901 
(Fig. 6 C). This was mainly due to large individuals of Limacina helicina 
(5-1 0 mm) and Clione limacina. 

Capeljn feeding 

The amount of stomach content of capelin varied much within the 
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investigated area (Table 5). The mean stomach fullness (expressed as 

percent of body weight) was largest in the Arctic water with 7.9 and 

7.7 °/o for small and large capelin (10-13.5 and 14-17.5 cm total 

length), respectively. The lowest stomach fullness was found in Old 

Atlantic water (1.0 and 2.7 °/o) and Arctic water (1.8 and 0.2 o/o). 

The stomach fullness values at 14 trawl stations were compared to the 

zooplankton biomass obtained with Juday net or MOCNESS at the 

nearest station (Fig. 1 ). No significant simple correlations were found. 

The MOCNESS data showed positive correlations, with correlation 

coefficients of 0.31 and 0.52 for the total zooplankton biomass in the 

whole water column and the upper 100 m, respectively. The MOCNESS 

data was limited, however, to 8 data points. The Juday data set was 

larger and included 14 stations for the comparison. There was large 

scatter in the datapoints with no clear relationship between Juday 

biomass and capelin stomach fullness (r = -0.30 and -0.17 for total 

biomass and > 1 mm size fraction, respectively; Fig. 11). The influence 

of factors other than zooplankton biomass was tested with multiple 

regression analysis. A significant overall regression was found, with 

effects of capelin length and depth of trawling being significant or 

close to significant (Table 6). 

One reason why zooplankton biomass was so poorly related to capelin 

stomach content (Fig. 11, Table 6) was probably the fact that the Juday 

data lacked vertical resolution. The 3 data points in the upper left 

corner of Fig. 11 showing low stomach fullness and high zooplankton 

biomass, were all from areas with high abundance of capelin. Two of 

these stations (829 and 852) were from "old" Atlantic water, while the 

third station (846) was from the polar front area (Fig. 1 ). The MOCNESS 

profile taken at station 829 revealed very low zooplankton biomass in 

the upper layer (Figs 7 D and 9 A-1). lt is possible that the zooplankton 

biomass was low in the upper layer also at the other two stations. 

The composition of prey in the capelin stomachs varied considerably 

between stations (Table 7). Trawl station 373 was from "old" Atlantic 

water or polar front water at the eastern slope of the Svalbard Bank. 

Station 378, 384, and 385 were situated in "old" Atlantic water, polar 

front water and Arctic water, respectively, between Hopen Island and 

the Central Bank. All stations were from areas where echo integration 

values exceeded 100. Krill and copepods were the two main prey groups 

found in the stomachs. The copepods were mainly Calanus finmarchicus 
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and C. glacialis. Individuals of Calanus with cephalothorax length from 
1 .5 to 2.5 mm strongly dominated in terms of weight at two stations 
(378, 384), while krill, mostly Thysanoessa inermis, was the most 
important food item at the other two stations. Amphipods were only 
observed as prey on station 373 and were of minor importance. The 
number and weight of Larvacea (Oikopleura sp.) are more uncertain, but 
this group was a relatively important food item at station 378. 

DISCUSSION 

Our results give strong indications for a grazing impact by capelin on 
zooplankton in the Barents Sea. Thus the zooplankton biomass was 
significantly lower in the area with high abundance of capelin than in 
the area with no capelin . This effect was due to the large size fraction 
of zooplankton and seen most clearly in the data obtained with 
MOCNESS (Table 4, Figs. 3 and 4). The effect was furthermore seen most 
clearly for zooplankton in the upper part of the water column (Figs. 5-
7). These trends are as expected for a visual predator like capelin 
which select larger zooplankton as prey (Hassel 1984). 

The evidence for grazing impact is not absolutely conclusive, however, 
due to the fact that the capelin front more or less coincided with the 
physical polar front (Fig. 3). This made our study design less suitable 
for statistically proving an inverse relationship between capelin and 
zooplankton abundance. A further element in our design was to revisit 
the capelin front area after about one week to seek evidence for any 
decrease in zooplankton abundance in r£:.:.-Jdon to the migrating capelin 
front. Observations in the summers of 1979 and 1980 had indicated a 
migration speed of 5-10 km d-1 (Gj0sceter et al. 1983). Unfortunately, 
there was little change in the capelin distribution between the first 
and second survey in the present case (Fig. 3 C). The capelin appeared to 
be reluctant to cross into the cold Arctic water on the Great Bank. 
Results from the annual capelin stock assessment cruise in September 
showed that some capelin had migrated onto the Great Bank, but the 
densest concentrations were found west of the Great Bank (Anon 1985). 

The timing of our study was unfortunate also with respect to the 
development of the capelin stock which decreased drastically from 
1984 to 1986 (Hamre 1990). The capelin stock was reduced to about 1 
million ton in the autumn 1985, compared to a stock size of 4-6 million 
tons in the late 1970s and early 80s. This made the grazing impact by 
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capelin correspondingly lower. 

Light is an important factor controlling predation by visual feeding 

predators (Giske et al. 1990). This implies that predation by capelin is 

likely to be more intensive in the upper water layer due to better light 

conditions for hunting mobile prey such as copepods, krill and 

amphipods. This would explain the strong negative relationships found 

between abundance of capelin on one hand, and zooplankton biomass in 

the upper part of the water column on the other (Figs. 5-8 and 11 ). 

Previous investigations have revealed highest stomach content of 

capelin during daytime, with lower values ~uring the night (Panasenko 

1981, 1984; Hassal & Gj0sceter, in prep.). 

The major food items of capelin are calanoid cope pods and krill, and, to 

a lesser degree, amphipods. Selectivity by size has been demonstrated, 

with small capelin feeding on copepods, and larger capelin feeding on 

krill and amphipods, if they are available (Panasenko 1984, Hassal, 

unpublished results). Size selectivity is the likely explanation why 

evidence for grazing impact by capelin was found only for the size 

fraction >1 mm (Table 4). This size fraction would contain krill and 

amphipods, as well as chaetognaths and large calanoid copepods such as 

older stages of Calanus hyperboreus and C. glacialis. The <1 mm size 

fraction would typically be dominated by small copepods and younger 

stages of the Calanus species. 

The >1 mm size fraction made up most of the zooplankton biomass (Fig. 

4). This reflected partly the dominance of large copepods (Figs. 5-7, 9 

and 1 0). The MOCNESS sampler and Juday net prodused surprisingly 

similar estimates of biomass, considering the differences in their size 

and mode of operation. The MOCNESS tended to give somewhat higher 

values than the Juday net for the largest size fraction and smaller 

values for the smallest size fraction (Tables 2 and 4). This can be 

explained by more efficient sampling by MOCNESS of large and mobile 

organisms, and less efficient sampling of small copepods due to the 

larger mesh size (333 vs. 180 Jlm). 

The vertical distribution of zooplankton will influence the feeding 

activity of capelin, but will itself be modified by capelin predation 

being highest in the upper layer. Herbivorous zooplankton such as the 

Ca/anus species have a seasonal downward migration in late summer or 

autumn. The deep distributions of Metridia longa, Calanus hyperboreus 
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and stages IV and V of C. finmarchicus no doubt reflected this seasonal 
vertical migration, whereas young copepodite stages of C. finmarchicus 
and C. glacialis were still present in the upper layer (Fig. 9 and 1 0). 
Selective grazing by capelin on the older stages would, however, 
contribute to the observed patterns of vertical distributions. 

Investigations during two 24-hour stations in the same area in August 
1984 revealed increasing stomach content of capelin during daytime, 
both for fish caught in the upper 50m and deeper than 120m (Hassel & 
Gjesceter, in prep.). A common pattern is that small capelin are found 
high in the water column while larger capelin are found deeper down (H. 
Gjesceter, pers. comm.; Hassel et al. 1984). This may be a reflection of 
the distribution of zooplankton, with small copepods in the upper part 
and large copepods in the deeper part of the water column (Figs. 5,6,9 
and 1 0). Panasenko (1981, 1984) reported that capelin performed 
diurnal vertical migration in late August. The stomach fullness was 
maximum during the day when capelin was feeding on copepods, krill 
and amphipods in the deeper layer. During night, capelin was 
distributed scattered over the water column while the stomach content 
decreased. 

The relationship between capelin and zooplankton is complex and 
dynamic. In addition to light, vertical distribution, size and species 
composition of zooplankton, the horizontal migration of capelin needs 
also to be taken into account. The inverse relationship found between 
zoo plankton biomass in the upper 1 00 m and capelin abundance (Fig. 8 
B) suggests a very rapid depletion of zooplankton by capelin. In the case 
studied here, the capelin front had a density of about 1000 echo 
integrator units (Fig. 3 D). Using routine conversion factors to numbers 
and weight (Dommasnes & Rettingen 1984), this is equivalent to a 
capelin biomass of about 15 g dry weight m-2. This is about 3 times the 
average biomass of zooplankton in areas without capelin (Table 4). 
Assuming a turnover of 24 hours and a maximum stomach content of 
1 0°/o, capelin could graze the available zooplankton biomass in 3-4 
days. 

Total depletion of zooplankton is not likely to occur. The picture which 
emerges, however, is one where a migrating capelin front quickly 
grazes down the larger zooplankton organisms available. Left behind is 
a depleted upper layer, dominated by small and less conspicuous forms, 
with most of the remaining zooplankton found in the deeper part of the 
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water column. 

The lack of correlation between capelin stomach fullness and 

zooplankton biomass obtained with Juday net (Fig. 11, Table 6) 

illustrates the problem to establish relationships between available 

food and stomach fullness. Our results show that it is important to 

consider the vertical distribution of the zooplankton, as well as the 

predator. These aspects are essential when modelling multispecies 

relations where food consumption and growth of capelin is involved 

(Tjelmeland, in prep.). 

The northwards feeding migration of capelin can be viewed as an 

adaption to exploit the plankton production associated with the 

receding ice edge (Sakshaug & Skjoldal 1989). The necessity to migrate 

would depend on the biomass of available zooplankton as well as on the 

size of the capelin stock. The annual production of capelin is about 

equal to or slightly higher than the standing stock (Hamre 1990). This 

is in good agreement with the general relationship reported by Banse & 

Mosher (1980) for size-dependency of annual P/8 ratios, which predicts 

a value of 1.2 for a fish of the size of capelin. A stock of about 5 

million tons as during the late 1970s (Hamre 1990), would have a food 

requirement of about 30 million tons assuming 20 °/o growth efficiency. 

The annual primary production in the Barents Sea is about 70 g C m-2 

(Ray et al. 1987a). Assuming 20°/o ecological efficiency from 

phytoplankton to zooplankton, this implies that the secondary 

production is 14 g C m-2, or about 150 g in terms of wet weight 

(Bamstedt 1974, lkeda 1974). A food consumption of 30 million tons 

would require all the secondary production from an area of 0.2 million 

km2 or 15 °/o of the total area of the Barents Sea. This is obviously a 

minimum estimate as it assumes that all the secondary production is 

of a form that can be consumed by capelin. This is not the case. A large 

part of the spring bloom can be left ungrazed by mesozooplankton, 

resulting in massive sedimentation (Skjoldal & Ray 1989, Wassmann 

1989, Wassmann et al. 1990). A portion of the primary production will 

also go through the microbial loop of the food web. Among the 

zooplankton produced that are suitable as prey for capelin, some will 

be consumed by other carnivores such as polar cod, herring, juvenile 

fish, chaetognaths, ctenophores and medusae. There are large 

variability in the conversion efficiency from spring bloom to 

zoo plankton among different areas and years (Skjoldal & Ray 1989). lt 
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is a fair guestimate, however, that on the average only about 1/4 of the 
secondary production will be suitable and available as prey for capelin. 
In that case a stock of 5 million tons of capelin would need to graze 
more than half the area of the Barents Sea to sustain its production. 
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Table 1. Mean weight, condition factor and number of individuals of 2, 3, and 4-year 
classes of capelin from different water masses. 

Water mass Weight(g) Weight(g) Weight(g) Cond. Cond. Cond. Nos. Nos. Nos. 
2 yrs 3 yrs 4 yrs 2 yrs 3 yrs 4 yrs 2 yrs 3 yrs 4 yrs 

Arctic 11.43 14.24 16.83 4.54 4.54 4.75 7 84 6 
ArcticiAtl. 8.20 9.78 10.86 4.08 4.34 4.45 20 55 7 
Atlantic 5.37 6.57 8.00 4.17 4.44 4.35 38 7 
Old Atlantic 7.29 11.24 12.81 4.03 4.42 4.43 35 173 21 
Polar front 6.44 11.58 13.90 4.21 4.41 4.34 201 401 41 
Svalbard bank I I I I I I I I 

Table 2. Mean zooplankton biomass in different water masses. 

A.F.D.W. MOCNESS (glm2) A.F.D.W. Juday net (g/m2) 
Total >1mm <1mm Total >1mm <1mm 

Water mass IViean St.dev. Maa1 St.dev. IViean St.dev. N Maa1 St.dev. IViean St.dev. Meal St.dev. N 

Arctic 6.4 2.6 5.8 2.7 0.5 0.3 9 4.7 2.3 3.7 2.2 0.99 0.58 56 
Arctic/Atl. 4.7 2.0 4.0 20.3 0.8 0.4 8 4.8 1.9 3.4 1. 7 1.42 0. 77 22 
Atlantic 2.3 1.2 1.8 1.0 0.5 0.3 2 3.3 1.8 2.5 1.5 0.8 0.38 7 
Old atlantic 6.8 8.4 6.0 7.7 0.8 0.6 2 5.6 2.6 3.2 1.5 2.36 1.43 1 3 
Polar front 2.1 1.2 1.5 0.9 0.7 0.3 9 4.8 2.5 3.1 2.0 1.7 0.86 23 
Svalbardbank 0 2.0 1.4 1. 7 1.3 0.32 0.13 7 

Table 3. Significance level of unequality between mean values of zooplankton biomass in 
combinations of two water masses. Mann-Whitney U-test. 

MJCf'.ESS JUDAY 

ArctiAtl. Atlantic Old Atl. Polar fr. ArctiAtl. Atlantic Old Atl. Polar fr. Svalb.bk 

Arctic 
U-65.5 U-18 U-9 U-81 

Arctic 
U-703.5 U-272.5 U-452.5 U-674 U-336.5 

t-0.97 t-1.67 t=1.36 t-0.32 t-=3.07 
P<0.4 p<0.1 P<0.2 IP<0.9 IP<0.01 

U-116 U-164 U-258.5 U-140 
t-1.99 t-o. 111 t-0.12 t-3.21 

ArctiAtl Arctl Atl 
p<0.05 P<0.5 0<0.4 IP<0.01 

U-69.5 U-108 U-37 
t-0.58 

Atlantic Atlantic 
<0.2 P<0.1 0<0.9 10<0.2 

U-10 U-172 U==81.5 
t .. o. 741 

Old Atl. Old Atl. 
P<0.2 P<0.5 'P<0.01 

U-135 
Polar fr. t-2.67 

P<0.01 
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Table 4. Mean zooplankton biomass from areas with different capelin abundance. 

A.F.D.W. MOCNESS (g/m2) A.F.D.W. Juday net (g/m2) 

Total >1mm <1mm Total >1mm <1mm 

lntegr. value Mean St.dev. Mxrl St.dev. Wean St.dev. N Meal St.dev. Mean St.dev. Weal St.dev. N 

0 5.74 2.52 5.14 2.66 0.59 0. 34 15 4.57 2.29 3.53 2.02 1.04 0.72 90 

1 -1 00 5.34 5.09 4.44 4.81 0.86 0.31 4 5.46 2.47 3.42 1.66 2.04 1.18 18 

>100 2.27 1.47 1.61 1.19 0.66 0.34 11 3.99 2.49 2.29 1. 73 1. 7 0.94 20 

Table 5. Mean values and standard deviation of fish length, fish weight, weight of stomach 

content, and stomach fullness from different water types. N = numbers of individuals. 

Water type N Length Fish Fish Stomach Stomach 

group length weight content fullness 

(cm) (cm) (g) (m g) (%) 

Arctic 1 2 10-13.5 Mxrl 13.21 10.97 812 7.91 

so 0.50 1.25 486 4.82 

40 14-17.5 tJea1 15.00 17.18 1231 7.67 

so 0.81 3.65 795 4.25 

Arct./Atl. 81 10-13.5 Meal 12.22 7.77 145 1.83 

so 0.68 1.46 123 1.39 

2 14-17.5 Meal 15.75 18.13 28 0.16 

so 0.35 1.12 40 0.23 

Old Atlantic 134 10-13.5 Meal 12.06 6.76 64 0.96 

so 1.02 2.01 79 1.14 

63 14-17.5 Meal 14.61 14.28 406 2.73 

so 0.58 2.87 431 2.76 

Polar front 213 10-13.5 Weal 12.05 7.63 228 2.88 

so 1.06 2.47 279 2.78 

137 14-17.5 Meal 13.2611.09 374 3.35 

so 1.69 4.65 490 3.59 

Table 6. Results of a multiple regression analysis between capelin stomach fullness as 

dependant variable and time and depth of sampling, mean capelin length and total zooplankton 

biomass obtained with Juday net as independant variables. 

Variable 

Time 
Depth 
Length 
Zoopl. biomass 

0.03 
-2.17 
3.23 

-1 .26 

Level of sign. (p) 

0.976 
0.058 
0.010 
0.238 

Multiple R = 0.813 0.030 

Table 7. Mean weight (mg) of prey categories in capelin stomachs from four trawl stations. 

St. 373 St. 378 St. 384 St. 385 

Calanoida 1.05 51.19 303.72 70.98 
Cyclopoida 0.002 0.10 
Ostracoda 0.003 0.53 
Cladocera 0.003 
Amphipoda 1.52 
Euphausiacea 29.12 3.75 1.26 642.58 
Larvacea 0.61 43.70 
Gastropoda 0.04 
Decapoda 0.15 
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Fig. 5. Examples of MOCNESS-biomass (AFDW) profiles from stations in polar front water. 
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Fig. 6. MOCNESS biomass profiles from stations in Arctic/Atlantic water. A-D: No capelin; 
E: Low capelin abundance; F-H: High capelin abundance. A=station 882, 8=935, C=901, 
0=909, E=890, F=934, G=886, H=888. 
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Fig. 7. MOCNESS biomass profiles from Atlantic water (A, E), "old" Atlantic water (8-D), 
and Arctic water (F-L). A and F-L: No capelin; 8-C: Low capelin abundance; D-E: High 
capelin abundance. A=station 809, 8=850, C=878, 0=829, E=848, F=814, G=841, 
H=867, 1=857, J=896, K=913, L=917. 
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Fig. 8. Relationship between capelin abundance (integrator value) and zooplankton biomass 
from bottom to surface (A) and from above 1 OOm depth (8). 
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Fig. 9. Vertical profiles of dominating zooplankton species from station 829 (above) and 
878 (below). A-8: Calanus finmarchicus; C-D: C. hyperboreus; E-F: Metridia Jonga; G-H: 
Pseudocalanus sp.; 1-J: Chaetognats; K: Euphausiids. Key to copepodite stages and length 
(mm) groups at upper right. 
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Fig. 1 0. Vertical profiles of zooplankton species from station 890 (above) and 901 (below). 
A-8: C. finmarchicus; C-D: C. glacialis; E-F: C. hyperboreus; G-H: M. longa; 1-J: 
Pseudocalanus sp.; K-L: Chaetognaths; M-N: Amphipoda. 
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Fig. 11. Relationship between stomach fullness of capelin and total zooplankton biomass 
from Juday-net samples. Open symbols: Trawl catches from above 1 00 m depth. Filled 
symbols: Catches from deeper than 100 m. 


