International Council for the

REPORT OF THE PLANNING GROUP ON
 ACOUSTIC SURVEYS IN SUB-AREA IV AND DIVISION III

Aberdeen, 9 - 10 January 1991

This document is a report of a Working Group of the International Council for the Exploration of the sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.

[^0]1
INTRODUCTION 1
1.1 Participants 1
1.2 Terms of Reference 1
2 REVIEW OF THE 1990 ACOUSTIC SURVEY 1
2.1 Report on the 1990 Herring Acoustic Survey by FRV "Scotia" in the Northern North Sea (E.J. Simmonds, DAFS Marine Laboratory, Victoria Road, Aberdeen, Scotland) 1
2.2 Report on the 1990 Acoustic Survey by R/V "ELDJARN" in the Northern North Sea (A. Aglen and E. Bakken, Institute of Marine Research, Bergen, Norway) 2
2.3 Report on the Acoustic Survey by R/V "DANA" in the Central North Sea (P. Degnbol and E. Kirkegaard, Danish Institute for Fisheries and Marine Research, Denmark) 4
2.4 Report of the 1990 Acoustic Survey by R/V "Argos" in the Northeastern North Sea, Skagerrak and Kattegat (O. Hagström and L-E. Palmén, Institute of Marine Research, Lysekil, Sweden) 5
2.5 Report on the Acoustic Survey by RV "Tridens" in the Northern North Sea 6
2.6 Combined Results 6
2.7 Evaluation of Survey Results 6
3 ACOUSTIC SURVEY IN 1991 8
3.1 Survey Programme 8
3.2 Survey strategy 9
4 REPORTING OF ACOUSTIC ESTIMATES FOR SPECIES OTHER THAN HERRING 9
5 REFERENCES 9
Tables 2.1.1-2.6.3 10
Figures 2.1.1-3.2 32

1.1 Participants

A. Aglen	Norway
R.S. Bailey	UK (Scotland)
A. Corten	Netherlands
O. Hagström	Sweden
P.J. Hopkins	UK (Scotland)
E. Kirkegaard (Chairman)	Denmark
D.G. Reid	UK (Scotland)
E.J. Simmonds	UK (Scotland)

1.2 Terms of Reference

In accordance with C.Res.1990/2:21, the Planning Group for Acoustic Surveys in Sub-area IV and Division IIIa met in Aberdeen from 9 - 10 January 1991 to:
a) discuss the re-allocation of sampling areas in the 1991 herring acoustic survey in view of the changing international participation, and a possible extension of the survey area into Divisions Vb and VIa;
b) investigate possibilities for a better synchronization of the cruises by different countries;
c) evaluate possibilities for exchange and reporting of acoustic estimates for species other than herring;
d) review the results of the 1990 survey.

2 REVIEW OF THE 1990 ACOUSTIC SURVEY

2.1 Report on the 1990 Herring Acoustic Survey by FRV "Scotia" in the Northern North Sea (E.J. Simmonds, DAFS Marine Laboratory, Victoria Road, Aberdeen, Scotland)

Methods

The acoustic survey by FRV "Scotia" was carried out using a Simrad EK400 38 kHz sounder with echo-integration on a computer-based Aberdeen Echo Integrator.

The survey track (Figure 2.1.1) was selected to cover the area in two levels of sampling density based on densities found in previous years, an area with high density sampling with transect spacing 7.5 nautical miles and a lower density area with transect spacing of 15 nautical miles. The ends of the tracks were positioned at $1 / 2$ the actual track from the area boundary, giving equal track length in any rectangle within each density area. The betweentrack data were then included in the data analysis.

Trawl hauls (Figure 2.1.1) were carried out during the survey on the denser echo traces. Each haul was sampled for length, age, maturity and weight of individual herring. Up to 350 fish were measured to $1 / 2 \mathrm{~cm}$ from each haul, otoliths were taken: 2 per $1 / 2 \mathrm{~cm}$ below 20 cm 5 per $1 / 2 \mathrm{~cm}$ from 20 to 25.5 cm and 10 per $1 / 2 \mathrm{~cm} 26 \mathrm{~cm}$ and above. Fish weights were collected at sea from a random sample of 50 fish per haul.

Data from the echo integrator were summed over quarter hour periods (2.5 Nm at 10 Knots). The echo integrator was set from 9 meters below the surface to 1 m above the seabed. The data were divided into three categories, by visual inspection of the echo-sounder paper record and the integrator cumulative output; "herring traces", "probably herring traces" and "probably not herring traces". For the 1990 survey, 91% of the stock by number was attributable to the "herring traces" and only 9% to the "probably herring traces". The third category was which gave 29% of total fish attributable mainly to mackerel, whiting, sprat, haddock and blue whiting in that order of importance. Most of
these species were either easily recognizable or did not appear to occupy the same area as the herring.

Two calibrations were carried out during the survey, the results of these can be seen in Table 2.1.1.

To calculate integrator conversion factors the Target strength of herring was estimated using the TS/length relationship recommended by the acoustic survey planning group (Anon. 1982):

$$
T S=20 \log _{10} \mathrm{~L}-71.2 \mathrm{~dB} \text { per individual }
$$

The weight of fish at length was determined by weighing fish from each trawl haul with more than 50 specimens. Lengths were taken by $1 / 2 \mathrm{~cm}$ to the nearest $1 / 2 \mathrm{~cm}$ below.

The resulting weight-length relationship from fish was:

$$
\mathrm{W}=1.218 \quad 10^{-3} \mathrm{~L}^{3.604} \mathrm{~g}
$$

L measured in cm.

Survey results

A total of 39 trawls hauls were carried out, the results of these are shown in Table 2.1.2. More than 100 herring were caught in 28 of these hauls and they were used to define 4 survey sub areas (Figure 2.1.2). The mean length keys, mean lengths, weights and target strengths for each haul and for each sub-area are shown in Table 2.1.3. 2,823 otoliths were taken to establish the four age-length keys. The numbers and weights of fish by quarter statistical rectangle are shown in Figure 2.1 .3 along with the number of 2.5 Nm integration intervals. A total of 4,493 million herring or $800,000 \mathrm{t}$ were estimated within the area, of which 728,000 were mature. Herring were found mostly in water deeper than 100 m with traces extending into waters with depths of about 250 m . The survey was extended to 300 m depth for most of the western and northern edge between 4 W and 0 degrees. Fish were generally found over deeper water than previous years. Table 2.1 .4 shows the numbers and weights of fish by sub-area by age class.

Discussion

The stock found in this area is dominated by 3- and 4-ring fish with an unexpected shortage of 2 -ring fish, only 16% of the estimate by number. Fishing appeared to be successful after initial problems were solved. Catches were good with some hauls providing good samples from multiple shoals after fishing for less than 15 minutes. Identification of traces was not difficult, and although other species were found in the area, the major concentrations appeared to be herring with relatively small numbers of mackerel and whiting found as well. In addition to the $800,000 t$, approximately $250,000 t$ of other fish were observed in mid water. Examination of the trawl data in Table 2.1.2 showing the catch by species shows the difficulty of allocating this between species so this has not been attempted. The proportions of mature $2-r i n g$ and 3-ring fish were estimated at 89% and 94% respectively. This is a larger proportion of mature $2-r i n g$ fish than in previous years.

2.2 Report on the 1990 Acoustic Survey by R/V "ELDJARN" in the Northern North Sea (A. Aglen and E. Bakken, Institute of Marine Research, Bergen, Norway)

Acoustic data were collected from a Simrad EK 400 echo sounder, calibrated during the survey. Technical data are given in Table 2.2.2. Fishing was made with a Fotø herring trawl and a G.O.V. trawl.

Figure 2.2.1 shows survey grid and trawl stations. A systematic grid of about 15 nautical mile distance between transects was applied. Table 2.2.1 shows the catch data. Most trawl hauls were made close to surface by aid of large buoys on the wings (Aglen and Misund, 1990). Figure 2.2 .2 defines the sub-areas used for averaging of fish samples.

The integrator values allocated to "herring" in the upper 50 m were considered to be a mixture of herring and mackerel. The split between these species was based on the trawl catch compositions and the following target strength values (L is fish length in cm):

$$
\begin{aligned}
& \text { Herring: } T S=20 * \log L-71.2 \mathrm{~dB} \text { per individual } \\
& \text { Mackerel: } \mathrm{TS}=20 * \log \mathrm{~L}-77.2 \mathrm{~dB} \text { per individual }
\end{aligned}
$$

The estimated numbers of mackerel are shown in Table 2.2.3 and Figure 2.2.3 and those for herring in Table 2.2.4 and Figures 2.2.4-2.2.5. Table 2.2.5 gives mean weights of herring by age and sub-area.

The total estimates for the surveyed area are:

	$\begin{aligned} & \text { Number } \\ & \text { (millions) } \end{aligned}$	$\begin{aligned} & \text { Biomass } \\ & (\prime 000 \text { t) } \end{aligned}$
Mackerel	1,802	492
Herring: North Sea autumn spawners, mature	6,453	1,280
North Sea autumn spawners, immature	915	86
Division IIIa Baltic spring spawners	772	93

The split between North Sea autumn spawners and Division IIIa Baltic spring spawners was based on vertebral counts. Within each sub-area all vertebral count samples were combined and the distribution of counts was split into two components by a model described by Mann et al. (1983). Components with mean counts between 56.35 and 56.60 were accepted as North sea autumn spawners and components between 55.65 and 56.00 were accepted as Division IIIa Baltic spring spawners. If the components did not match with these intervals, the mean value of one component was fixed to 56.44 (the average of a number of "pure" North Sea samples). Then the other component usually fell within one of the intervals. Table 2.2 .6 shows mean vertebral count and estimated percentage of Division IIIa Baltic spring spawners by age group and sub-area. In sub-areas $1-5$ there were no evidence of Division IIIa Baltic spring spawners, while in the south eastern sub-areas they tended to dominate the older age group. Sub-area 12 were also sampled during two coverages of the 1990 mackerel egg survey. The results included in Table 2.2 .6 indicate an increasing proportion of Division IIIa Baltic spring spawners in that area during the period 20 June to 17 July. A minor component (1-2\%) of AtlantoScandian herring were identified on the bases of otolith characters in the north east (sub-areas 5,6,9,10 and 11). These are included in the estimate of North Sea autumn spawners.

Discussion

Most of the herring were found in the upper 50 m in areas with bottom depths between 150 and 300 m . In shallower areas most of the herring were found along the bottom. This tendency has been found in the Northern North Sea during the three latest summer acoustic surveys. The proportion of fish staying in the upper 50 m has increased during this period. Sonar observations have been used to evaluate the risk of"loosing" schools above the echo sounder transducer depth (Aglen and Misund, 1990). Such losses seem most evident during the 1989 survey, and less evident in 1990 and 1988.

The weather conditions during the 1990 survey were satisfactory. In the most important herring areas very little plankton was recorded. o-group haddock and
whiting were recorded over large areas but they were easy to distinguish from herring recordings. In the southern areas plankton was mixed with herring recordings during night. Night time observations represent a small proportion of the material, and the herring densities in these areas were generally low. Therefore, allocation errors due to plankton do not have a large impact on the total estimate of herring.

The largest likely allocation error is caused by the mackerel. The applied split assumes an equal catchability for the two species and a 6 dB lower target strength of mackerel compared to herring. Due to the target strength difference, any error in the estimated species proportion will make much less impact on the abundance estimates of herring compared to those of mackerel.

The catch figures (Table 2.2.1) show remarkably higher catches of mackerel close to surface compared to larger depths. The ratio between average catch close to surface (29 hauls at 5 m) and average catch at depths between 20 and 50 m (8 hauls) is 20 for mackerel and 2 for herring. Aglen and Misund (1990) report the same tendency during the 1989 survey; a ratio of 5 for mackerel and 2 for herring. They point out that with the applied rigging, the, trawl is catching more efficiently close to surface. The larger ratio observed for mackerel may indicate that a larger proportion of the mackerel tends to stay close to surface and above echo sounder transducer depth. This means that mackerel may have contributed less to the integrator values than indicated by the trawl catch composition. If the mackerel is neglected in the calculations, the total herring estimate increases by 123.000 t (10\%).
2.3 Report on the Acoustic Survey by R/V "DANA" in the Central North Sea (P. Degnbol and E. Kirkegaard, Danish Institute for Fisheries and Marine Research, Denmark)

The acoustic survey on R/V "DANA" was carried out from 24 July to 12 August using a Simrad EK400 38 kHz sounder and a QD integrator.

The cruise track and positions of trawl hauls are shown in Figure 2.3.1. To cover the central North Sea in 18 days, a rather large spacing of approximately 30 Nm between transects was used.

The surveyed area was stratified in sub-areas (1° lat - 2° long) as shown in Figure 2.3.1. Sub-areas with a large variation in depth were divided into up to six strata according to depth: 1) $0-20 \mathrm{~m}, ~ 2) 20-40 \mathrm{~m}, ~ 3) 40-60$, 4) 60$100 \mathrm{~m}, ~ 5) 100-300 \mathrm{~m}, ~ 6)>300 \mathrm{~m}$.

For each stock, fishing was carried out on denser echo traces. During daytime an Expo bottom trawl was used, while the night fishery was performed by a Fotö pelagic trawl, both gears with a mesh size of 16 mm in the cod-end. A total of 44 trawl hauls were taken (16 Expo and 28 Fotö). The species composition per trawl haul is shown in Table 2.3.1.

The echo integrator output was divided into two categories by visual inspection of the echograms; "herring schools" and "mixed traces". For "herring schools" the number of herring per stratum was estimated using the TS-length relationship shown below and the length composition of herring in the trawl catches. For "mixed traces" the total number of fish per stratum was estimated using species and length compositions of the trawl catches and the following TS-length relationship:

```
Herring, sprat and horse mackerel
    TS = 20 log L - 71.2
Mackerel and dogfish
        TS = 20 log L - 77.2
Gadoids
        TS = 20 log L - 67.5
```

As shown in Table 2.3.1 whiting, mackerel and herring accounted for more than 60\% of the total catch in weight, with whiting as the most abundant. Mackerel and herring were caught in about 85% of all trawl hauls.

The estimated numbers, mean weights and biomass at age of herring are given per sub-area in Tables 2.3.2-2.3.4.

Compared with previous years surveys in the central North Sea, the abundance of juvenile herring was low in 1990. The estimated number of whiting has increased in the latest years.

Very high concentrations of jellyfish were observed in the eastern and northern part of the surveyed area, and this makes the results from these areas very uncertain.
2.4 Report of the 1990 Acoustic Survey by R/V "Argos" in the Northeastern North Sea, Skagerrak and Kattegat (O. Hagström and L-E. Palmén, Institute of Marine Research, Lysekil, Sweden)

Methods

The Swedish survey was carried out by R/V "ARGOS" during the period 30 July-18 August 1990. The survey area and cruise track with trawl stations are shown in Figure 2.4.1. The integration was carried out using a Simrad EK 40038 kHz echosounder and a Nord 10 computer with a Simrad $Q X$ as a interface. The software program for integration is developed by Institute of Marine Research in Bergen. A description of the system is given in Blindheim et al. (1982). The technical data and settings of the equipment are shown in Table 2.4.1.

The acoustic system was calibrated at the start of the survey. The results of the calibration and system calibration constant $C I$ are given in the Table 2.4.2.

The method of calculation, stratification and TS-length relations used are given in the section on results of the Danish survey. The sub-areas used are shown in Figure 2.4.2. The acoustic energy was separated to species based on the catch composition in trawl hauls.

A model length analysis was used to separate the two main components, Division IIIa - Southwestern Baltic spring spawners and North Sea autumn spawners. Mean vertebral counts was calculated for each components to test the result of the separations.

Results

A total of 30 pelagic and 5 bottom-trawl hauls were carried out. The number of integrated miles was 2,007 and the survey area is estimated to be 228 square n. miles. The survey statistics are given in Table 2.4.2.

The estimated numbers of herring, mean weights and biomass at age and strata are shown in Tables 2.4.3-2.4.5. A total of 4.275 million herring or about $391,000 \mathrm{t}$ were estimated in the surveyed area. The biomass were equally divided between Division IIIa and the eastern part of the North Sea whereas the estimated number were 2,695 and 1,580 , respectively.

The mean vertebral counts per age group and rectangle are given in Figures $2.4 .3 a$ and b. The mean counts show that 3-group and older herring in Division IIIa were exclusively spring spawners. In Division IIIa, the spring spawners appear to be very dominant in the North Sea sub-area. The data suggest a dominance of local autumn spawners but some samples indicate a mixture of spring spawners in $2-g r o u p$ and older herring. The autumn spawners seems to be the major component in $0-$ and 1 -group herring in all sub-areas. A model length analysis was applied on age-groups in those areas where a mixture was
indicated. The results of analysis are summarized in Table 2.4.6. The calculated mean VS for the component indicates that the separation of 2 -group and older fish in the North Sea sub-area is not complete. The vertebral counts for component 1 of the 0 -group in the Skagerrak and 0 -group and 1 -group in the Kattegat still indicate a mixture of autumn and spring spawners. The result of using an alternative method based on the assumption of spring spawners having 55.80, which is the mean for age-group 2-5 in Division IIIa, and autumn spawners having 56.50 are shown in Table 2.4.7. The maturity stages for $2-$ group and older herring in the eastern North sea are presented in Figure 2.2.4.

2.5 Report on the Acoustic Survey by RV "Tridens" in the Northern North Sea

The Dutch RV "Tridens" surveyed part of the Scotland/Orkney area from 26 June to 10 July. This was an experimental survey, designed to test the equipment, and to compare the results with those of the Scottish survey in the same area. Results from the Tridens survey have not been incorporated in the final stock estimates.

2.6 Combined Results

The surveyed area was divided into six areas as shown in Figures 2.6.1 2.6.2. For the North Sea the combined results for herring were taken as the sum of the results from the surveys, carried out by RV SCOTIA, ELDJARN and RV DANA. For the Skagerrak and Kattegat the results from RV ARGOS were used. No correction was made for uncovered areas.

The combined results for herring by area and age, split into spring and autumn spawners are given in Tables 2.6.1-2.6.2. The geographical distributions of 0-, 1-, 2- and 3+- ringers are shown in Figures 2.6.1-2.6.2.

The estimated size of the spawning stock of autumn spawners is $11,080 \mathrm{mill}$. fish or 2,174 mill. tonnes. The total number of 1 -ringers and $0-r i n g e r s$ was found to be 6,247 millions and 2,279 millions, respectively.

For comparison the results of the surveys in the period 1987-1990 are given in Table 2.6.3. The results of the 1990 survey indicate a major increase in the SSB.

The quality of the results are discussed in section 2.7.

2.7 Evaluation of Survey Results

While it was not possible to provide quantitative measures of the accuracy and precision of the survey results, the Planning Group considered a number of potential sources of error.

Random error resulting from the distribution pattern of the herring and from the survey design has not been measured but from the results of earlier investigations it is likely to be in the order of 25% of the total estimate (Aglen, 1990, Pittegas, 1990, Bailey \& Simmonds, in press). The possibility that systematic errors might have occurred in the 1990 survey was considered under the following headings:
a. Boundary problems.
b. Double counting due to migration during the survey.
c. A change in depth distribution.
d. A change in the degree to which echotraces were identifiable.

a. Boundary problems

On previous surveys there is some evidence that the northern and western boundaries of the survey area cut across concentrations of herring. To reduce the possibility of this occurring on the 1990 survey, the northern and western boundaries were extended into deep water and beyond the point at which echotraces attributable to herring concentrations occurred. Concentrations further offshore cannot be ruled out but this is not thought to be a major source of underestimation.

It is known that autumn spawning herring, probably from the North sea and Division VIa, were present in Faroese waters in July (Jakobsen, 1990). It is understood, however, that a large proportion of these herring had migrated out of the Faroese area by about mid-July (Jakobsen, pers. comm.). It is, therefore thought unlikely that the North Sea survey missed a significant quantity of herring for this reason.

There is also the possibility that North Sea herring were present in Division VIa. This has not been evaluated, but there was no evidence of large concentrations of herring along the 4 degree W boundary.

The more complete coverage in 1990 may have resulted in a fuller estimate of the total North Sea population than in previous years. The extent of this is not known, but can be judged very approximately from the estimated quantity of herring recorded in the additional area surveyed in 1990. This figure is approximately 100.000 tonnes which is a negligible proportion of the total North Sea estimate.

b. Double counting

The possibility that some concentrations of herring may have been counted twice either by the same vessel or by different vessels as a result of migration within the survey period was investigated by examining the dates on which each part of the area were surveyed.

There is little a priori information about likely migration routes during July, except the belief that herring are likely to be moving in a general southwesterly direction towards the spawning areas. The herring in the Faroese area are likely to have moved southeast while herring feeding to the east of 0 degrees are likely to have moved southwest.

The main areas of concern are thus the boundary between the Scottish and Norwegian survey areas at 0 degree longitude north of 58 degrees north and the boundary between the Norwegian and Danish survey areas at 57 degrees 30^{\prime} latitude. The coverage either side of the 0 degree line was less than four days apart between 58 and 59 degrees north. It is thus unlikely that migration resulted in double counting of the important concentration north of 60 degrees N , but this cannot be entirely ruled out. There is a greater potential for double counting of the concentration between 58 and 59 degrees N. At the most these areas could account for an overestimation of about 250 thousand tonnes, but this would imply a major westward movement within a space of 5-10 days.

The concentration found between 55 and 56 degrees N in early August could conceivably have been counted further north during July. However, the southerly concentration consisted predominantly of 2-3 ringers, whereas that north of the boundary was a mixture of roughly equal quantities of 3 and 4 ringers.

In summary, some double counting cannot be entirely ruled out but would imply a remarkable degree of coincidence, at least so far as more northerly concentrations are concerned.

c. Depth distribution

During the 1990 survey it was noted that a high proportion of the echotraces identified as those caused by herring were in the upper 50 m of the water column, particularly in the north of 61 degrees and in the Norwegian Trench.

In these areas, this pattern was observed in 1988 and 1989. In the period 1988-1990 an increasing proportion of the stock has been recorded in these areas. The possibility that target strength of herring may be affected by depth as a result of changes in swim bladder dimensions has been demonstrated (Halldorsson, 1984). If it occurs, then it would be expected to result in underestimation of fish living at greater depths (because the swim-bladder would be more compressed). The extent of a possible change in target strength compared with previous years cannot be quantified from present information.

d. Trace identification

From reports of earlier surveys there is some evidence that the behaviour of herring and other fish species may change from year to year thereby affecting the ease of identification. A large proportion of fish traces were identifiable in 1990 whereas in 1988 there were considerable difficulties in some areas. The effects of these changes have not been evaluated but could result in some imprecision.

Conclusion

The Planning Group is not in a position to quantify the possible bias arising from the factors discussed above, but found no evidence of any major source of bias on the 1990 survey compared previous years.

3 ACOUSTIC SURVEY IN 1991

3.1 Survey Programme

Five vessels will be available for the 1991 survey as shown in Figure 3.1. As mentioned in Section 2.7, two sources of errors could be related to the boundary of the surveyed area and to the migration of herring during the survey.

In 1990, autumn spawning herring were present in Faroese waters in June. A survey will carried out in this area in June 1991. For the July surveys the same boarder as in 1990 will be used in 1991 ($62^{\circ} \mathrm{N}$).

North Sea herring may be present in Division VIa and the survey will be extended westward in 1991 to cover Division VIa.

The Planning Group discussed the allocation of effort to different parts of the area. The highest abundance of mature autumn spawners has been found in the northern and western parts of the area. In the eastern part of Division IVb large quantities of juvenile herring have been found during previous years surveys, whereas the concentration of mature fish is normally very low.

As information on abundance of juveniles is available from other sources, e.g., trawl surveys, the Planning Group decided to allocate the effort by area according to the distribution of the mature part of the population.

In Section 2.7 the possibility of double counting some concentrations of herring in the North Sea because of migration within the survey period is discussed. To minimize this possibility, it was decided to work for as short a survey period as possible, and it was recommended that the North Sea part of the survey should take place in the first three weeks of July. As it is doubtful that it will be possible to get shiptime to survey Division IIIa in the same period, it is recommended that the skagerrak and the Kattegat are covered in late July and early August.

The recommended areas to be covered by the different vessels are shown in Figure 3.2. The North Sea and Division VIa will be surveyed by RV "Johan Hjort", RV "Tridens" and RV "Scotia", Division IIIa by RV "Dana", and the Faroese waters by "M. Heinason".

It is proposed that the surveys should be carried out in the same way as in previous years. Counts of vertebral number will be made in the eastern parts of Divisions IVa,b and Division IIIa to provide a basis for distinguishing North Sea autumn spawners from spring spawners.

4 REPORTING OF ACOUSTIC ESTIMATES FOR SPECIES OTHER THAN HERRING

In the Terms of Reference, the Planning Group was asked to evaluate possibilities for exchange and reporting of acoustic estimates for species other than herring.

The Planning Group agreed that it may in principle be possible to report estimates for other species, as has been the practice for Danish and Swedish surveys.

The surveys are however targeted at herring and the results for other species may not be representative of the abundance and age/length composition of that species.

The Planning Group recommends that estimates of abundance, distribution and age/length composition are reported for all species for which the data are considered to be representative.

5 REFERENCES

Anon. 1983. Report on the 1983 Planning Group on ICES coordinated herring and sprat acoustic surveys. ICES, Doc. C.M.1983/H:12.

Jacobsen, J.A. 1990. A survey on herring south of the Faroes in June 1990. ICES, DOC. C.M.1990/H:34.

Aglen, A. 1990. Empirical results on precision - effort relationships for acoustic surveys. ICES, Doc. C.M.1989/B:30.

Halldorsson, O. and Reynisson, P. 1983. Target strength measurements of herring and capelin in situ at Iceland. FAO Fish. Rep. (300):78-84.

Aglen, A. and Misund, O.A. 1990. Swimming behaviour of fish schools in the North Sea during acoustic surveying and pelagic sampling trawling. ICES, Doc. C.M.1990/B:38.

Mann, R.C., Hand Jr., R.E. and Braslawsky, G.R. 1983. Parametric analysis of histograms measured in flow cytometry. Cytometry (4):47-82.

Foote, K.G., Knudsen, H.P., MacLennan, D.N., Simmonds, E.J., and Vestnes, G. 1987. Calibration of acoustic instruments for fish density estimation: A practical guide. ICES Coop. Res. Rep. No. 144.

Table 2.1.1

	$\underset{\text { Haul Date }}{\text { Number }}$	Time	Position Latitude	Longitude	Herring	Sprat	Whiting	Haddock	Mackerel	B. Whiting	Comments
	217 5/7	13:30	5912 N	01 24W	34		11			1	5 Gurnards
	218 57	18:35	5912 N	0206 W	32		369	12	102		1 Gurnard
	$\begin{array}{ll}219 & 67 \\ 220 & 7 \Pi\end{array}$	20:55	5934 N 59 94 N	0139 W 0016 W			392				Foul haul
	2217%	10:20	5940 N	0015 W	124		2	4	1	13	1 Horse Mackerel
	22270	17:45	5942 N	01 19W	57						2 Gurnards
	$\begin{array}{ll}223 & 77 \\ 224 & 87\end{array}$	$18: 55$ $10: 15$	59 60032 N	0121 W 0109 W	3,328						repeat of 222 'O' Group pout meshed
	22587	17:20	60 12N	0026 W	7.400						
	226 227 97	05:20 10:37	60 29N	0006 W	1,272						
	228 97	17:40	60 42N	0032 W	12,561						
	229107	08:50	61 18N	0121 W							No catch
	230107	17:10	61 37N	00 07W	680						
	$\begin{array}{ll}231 & 11 / \\ 232 & 11 /\end{array}$	08:10	6054 N 6049 N	0145 W 0210 W	8,640				100 23		1 Gurnard
	$23311 / 7$	20:26	6049 N	0121 W	3,775						1 Gurnard
	$\begin{array}{ll}234 & 137 \\ 235\end{array}$	21:05	6009 N	0132 W	2,798		60		804		12 Gurnards
	${ }^{236} 1414 / 7$	27:18	60 60	0251 W	637 81		2		6		
	237 238 238 157	$11: 35$ $16: 25$	$6019 N$ $6010 N$	0204 W	213		2		14		7 Gurnards 1 Lumpsucker
	$\begin{array}{ll}238 & 15 / \\ 239 & 167\end{array}$	16:25	6010 N 5956 N	0221 W	2,200 3		8		40		
$\stackrel{\rightharpoonup}{ }$	240167	14:15	5956 N	0334 W	1,883				127		
\sim	241	11:40	5941 N	${ }^{03} 57 \mathrm{~W}$	148		1		2		11 Gurnards
	$\begin{array}{ll}242 & 17 \Pi \\ 243 & 187\end{array}$	15:55	5933 N 5849 N	- 0351 W	17,672		125		9		
	244197	09:30	5857 N	0006 W	6,160				20		
	$\begin{array}{ll}245 & 197 \\ 246 & 197\end{array}$	15:45	5849 N 5841 N	0137 W 0003 W	3,180				60		
	2471207	05:30	5841 N	0005 W	7.197						
	248207	11:32	5833 N	01 23W	6,150				125		
	250	18:15	5836 N 58	0056W	3,292				8		Sandeels meshod
	$\begin{array}{ll}251 & 21 / \\ 252 & 22 /\end{array}$	11:40	5818 N	0008 W	769						
	${ }^{253}$	14:10	5751 N	0147 W	783						
	254227	17:20	5752 N	0104 W	949				8	2	1 Gurnard
	255 23/7	05:30	5736 N	0054 W	1,981	160		8	16	4	

253	254	255 0.7	mean	243	245	248	mean	223	234	250	m.ean	221	225	226	227	228	230	231	233	235	237	238	239	240	241	242	244	247	251	252	mean
1.4 6.9	0.3	0.7	0.7																												
12.9	0.9	0.7	1.9	0.2			0.1																								
12.9	1.8	0.4	5.0	1.1			0.4																								
17.5	4.2	3.8	8.5	2.6			0.9																								
17.5 15.2	7.2 17	${ }^{8.2}$	11.0	5.0			1.7																		0.7						0.0
7.8	17.7	19.6	15.0	9.1			3.0																								0.0
2.8	22.9	22.0	15.9	6.1		0.4	2.2																		0.7						0.0
3.7 1.0	14.1 5.4	15.1 8.2	11.0 4.9	7.1		0.4	2.5																								
0.1	3.1	2.7	2.0	2.0		0.4	${ }_{0.8}$																								
0.1	1.2	0.8	0.7	0.9		0.4	0.4																			0.4					0.0
	0.1	0.2	0.2	${ }^{2.2}$		1.6	1.3			0.2	0.1												0.4			0.4					0.0
	0.4	0.8	0.4 0.3	3.7 4.3	${ }^{3} 8.8$	4.9	4.15	0.4		0.5 1.0	0.2 0.5												0. ${ }^{0}$			1.7				0.5 1.3	- 0.2
0.1	1.5	0.6	0.7	6.7	15.8	14.2	12.3	1.1	0.8	4.6	2.1												1.2			2.6					
	0.2		0.1	6.3	${ }_{23}^{23.8}$	16.3	15.4	5.0	3.8	8.7	5.8		0.3								0.5	0.9	1.2 1.2	0.5	1.3	2.2 4.3		0.3	1.0 2.3	1.3	0.3 0.7
	0.2	0.4 0.4	0.2 0.1	7.1	25.3 13.2	21.5	18.0	16.0 27.3	14.6 16.1	17.2 14.2	15.9	0.8 4.8	3.4 6.3	2.6 9.0	0.3 0.6	1.5 3.0			0.4 1.6	0.8	1.4	1.3 1.5 3.5	1.9	0.5	2.0	3.5	2.3	1.0	3.6 4.9	2.5 5.4	1.5 3.2
				4.3	4.9	11.0	6.7	20.9	21.8	21.4	21.4	10.5	19.4	11.2	7.7	6.4		2.6	6.8	2.2	3.3	3.5	${ }_{7} 9.6$		4.0	3.9 6.2	2.6	13.5	11.4	5.4 9.9	3.2 7.2
	. 2		0.1	2.6	2.3	3.3	2.7	16.7	19.2	14.2	16.7	17.7	18.4.	22.0.	13.8	11.7	2.2	4.5	11.5	13.8	9.4	4.0	10.4	2.5	1.3	7.5	8.1	20.0	10.7	7.9	10.4
	0.2		0.1	3.7	0.8	0.4	1.6	6.4	14.6	7.4	9.5	20.2	18.8	17.9	18.3	13.3	3.4	11.0	13.1	20.4	14.6	9.3	19.3	6.5	8.7	6.6	10.1	21.6	10.4	12.4	13.5
				2.8	0.8	0.4	1.3	3.5	3.5	4.9	4.0	15.3	14.4	10.5	14.2	16.7	3.7	14.1	13.1	25.0	10.8	7.5	12.7	6.5	19.3	${ }_{8.8}$	9.4	15.2	6.2	11.2	12.3
				1.5	0.8		0.7	1.4	2.3	1.8	1.8	12.9	7.2	7.1	12.2	15.5	10.6	14.4	10.3	15.2	9.4	11.5	15.0	10.9	10.7	11.4	11.7	10.6	6.5	14.0	11.4
				0.2		0.8	0.3	0.7	1.5	1.3	1.2	6.5	3.1	7.9	9.6	9.1	14.3	10.5	11.5	7.4	13.6	8.9	7.0	15.4	13.3	7.1	8.8	5.5	8.5	9.9	9.4
				0.6 0.2		0.4	0.3	0.7	0.8 1.1	1.5 0.5	${ }_{0}^{1.0}$	4.0	2.5	4.5	6.4	5.7	9.3	9.2	${ }_{5}^{6.4}$	6.0	6.1	10.2	7.0	18.4	12.0	10.1	11.4	2.6	6.8	5.4	7.6
										0.2	0.1	1.6	2.5 1.6	3.0 1.1	6.1 1.9	4.2	12.1 10.1	4.9	5.2 5.6	${ }_{0}^{1.1}$	6.6 6.6	8.9 6.2	3.5	9.0	5.3	8.8 4.3	${ }_{8}$	1.9	5.2	5.4	6.1 4.6
										0.2	0.1	3.2	0.6	1.1	3.2	1.5	8.7	6.0	3.6	0.8	2.3	5.8	1.6	6.5	2.7	3.9	4.2	0.3	4.6	2.5	3.3
													0.6	2.5	2.6	0.8	8.4	5.8	2.8	0.3	4.2	8.8	1.2	4.0	2.7	3.0	4.2	0.6	4.6	2.5	3.1
													0.9	0.4	1.3	1.5	5.9	2.1	3.2		4.7	3.1	0.4	3.5	3.3	0.9	2.6	0.6	2.0	1.3	2.0
														0.4	0.6	0.8	6.8	2.6	1.2	0.3	1.4	2.7	0.8	3.5	3.3	0.9	0.6	0.6	2.6	0.8	1.6
												0.8			1.0	0.4	2.2	1.0	1.2		0.5	1.8		2.0	1.3	0.4	0.3		0.7		0.7
																0.4	2.2	1.0	2.4		0.5	1.8		0.5		0.9		0.3	0.3		0.5
																		0.3	0.4							0.4					0.1
																	0.3					0.5									0.0
383	949	1981		17672	3180	6150		3328	2798	3292		124	7400	1272	7775	12561	680	8640	3775	637	${ }_{213}^{0.5}$	2200	3092	1883	150	692	6160	7197	769	878	0.0
18.7	20.3	20.3	19.8	23.0	25.2	25.3	24.5	26.4	26.6	26.4	26.5	27.8	27.5	27.7	28.4	28.3	30.1	29.2	28.8	27.9	28.8	3	27.9	. 6	29.9	28.2	28.8	27.8	28.4		
48,	64	64	59	106	139	140	128	162	169	163	155	199	189	194	213	212	265	236	226	200	226	242	201	248	${ }_{228}$	211	224	197	217	207	218
45.7	-45.0	-45.0	-45.3	-43.9	-43.2	-43.1	-43.4	-42.8	-42.7	-42.8	-62.7	-42.3	-42.4	-42.4	-42.1	-42.1	-41.6	-41.9	-42.0	-42.3	-42.0	-41.8	-42.3	-41.8	-42.0	-42.2	-42.0	-42.3	-42.1	-42.2	-42.1
-32.5	-33.1	-33. 1	-32.9	-34. 2	-34.6	-34.6	-34.5	-34.9	-35.0	-34.9	34.9	-35.3	-35.2	-35.2	35.	35.	-35.8	35.	-35.5											-35	-35.5

Table 2.1.3 Percentage length keys for trawl hauls with greater than 100 herring, and mean length keys for each sub-area.
Showing the total number of fish, the mean length, the mean weight, and calculated mean target strengths per individual and per unit weight at the base of the table.

Table 2.1.4 Numbers (10^{-6}), mean length (cm), mean weight (g) and biomass (tonnes 10^{-3}) by sub-area and for the total area by age and maturity state. All fish 4 ring and older were taken to be mature, 2 and 3 ring fish with a maturity state of 3 or greater were taken as mature and all 1 ring fish were taken as immature.

Table 2.2.1 Trawl catches R/V "Eldjarn", 3-20 July 1990. Station numbers refer to Figure 2.2.1.
b means bottom trawl. * means pure 0-group. Species dominating "others" are indicated by the abbrevations: Lum $=$ Lumpsucker, Hor $=$ Horse mackerel, Sei = Seith, Mau = Maurolicus, Dab = Long rough dab, Cod $=$ Cod, Pou $=$ Norway pout, Gob $=$ Goby, Dog $=$ Spiny dogfish.

						c	A T C	(g)		
				H			M				
				\bigcirc	D	H	a	H	W		
				u	e	e	c	a	h	0	
				r	p	r	k	d	i	t	
			D		\pm	r	e	d	t	h	
St.	Positi	on	a	G	h	i	r	\bigcirc	i	e	
		E	$\stackrel{t}{\mathrm{t}}$	M	m	n	e	c	n g	$\stackrel{r}{s}$	
340	$60^{\circ} 45^{\prime}$	$4^{0} 02 \prime$	3	17	5	7.4	3.9	0.2*	0.1*	1.7	Lum
341	$61^{\circ} 06^{\prime \prime}$	$3{ }^{\circ} 15^{\prime}$	4	01	5	128.0	38.0			0.3	Hor
342	$61^{\circ} 23^{\prime}$	$2^{\circ} 19^{\prime}$	4	07	5	0.5	4.5	0.3*	0.1*	1.6	Lum
343	61033 '	$3^{\circ} 46^{\prime}$	4	13	5	71.0	22.0	$0.4 *$	$0.2 *$	0.8	Lum
344	$61^{0} 50 \prime$	$4{ }^{\circ} 10^{\prime \prime}$	4	21	5	15.5	24.5	0.1*	0.1*	5.2	Lum
345	$60^{\circ} 45^{\prime}$	$1036{ }^{\prime}$	5	14	30				0.1*		
346	$60^{\circ} 43^{\prime}$	$0^{0} 20^{\prime}$	5	19	112	136.0					
347	$61^{\circ} 07^{\prime \prime}$	$0^{0} 16^{\prime \prime}$	6	03	130	465.0		-	-	3.2	Sei
348	$61^{0} 39^{\prime \prime}$	$0^{0} 17^{\prime}$	6	09	25	124.0	13.2	-	-		
349	$61^{\circ} 53^{\prime}$	$2^{0} 04^{\prime}$	6	20	5	30.0	525.6	-		5.0	Lum
350	$62^{\circ} 07^{\prime \prime}$	$2038{ }^{\prime}$	7	00	5	1.1	-		0.2*	6.0	Lum
351	$61^{\circ} 36^{\prime \prime}$	$1^{0} 11^{\prime \prime}$	7	10	150			+		20.4	Mau
352	$61^{\circ} 23^{\prime}$	$100{ }^{\prime}$	7	15	5	87.0	0.1				
353	$60^{\circ} 34^{\prime \prime}$	$3^{0} 22^{\prime}$	8	12	5	121.0	6.3	+ *	+ *	1.4	Lum
354	$60^{\circ} 34^{\prime \prime}$	$4^{0} 01^{\prime \prime}$	8	15	5	69.7	20.7	0.1*	0.1*	1.7	Lum
355	$60^{\circ} 10^{\prime}$	$4^{0} 14^{\prime}$	8	21	5	372.0	6.5	+ *	+	1.5	Lum
356	60022^{\prime}	3044%	9	02	5	384.0	116.0	-		1.5	Lum
357	$60^{\circ} 07^{\prime \prime}$	$1^{0} 46^{\prime}$	9	13	5		0.5		1.0*		
358	$60^{\circ} 13^{\prime \prime}$	$1^{0} 14^{\prime}$	9	17	118	990.0			0.6	13.2	Sei
359	$59^{\circ} 55^{\prime}$	$0^{\circ} 13^{\prime}$	10	02	125	6.5	0.8	0.7	${ }_{0}^{2.0}$ *		
360 b	$59^{\circ} 48^{\prime \prime}$	$0{ }^{\circ} 45^{\prime}$	10	07	125	74.5	0.3	1.0	0.2	30.5	
361 b 362	59050'	${ }^{0}{ }^{0} 44^{\prime}$ ',	10	15	12	7.5 6.4	0.3	+ *	0.2*	3.1	
363	$58^{\circ} 52^{\prime \prime}$	$0^{0} 25^{\prime}$	10	20	128	360.0	-				
364	$58^{\circ} 19^{\prime \prime}$	$0^{0} 18{ }^{\prime}$	11	02	20	80.0	1.6	1.0*	1.0*	0.6	Lum
365	$57^{\circ} 51^{\prime \prime}$	$0^{0} 53^{\prime}$	13	02	100				3.2	+	Pou
366	$58^{0} 04^{\prime \prime}$	$0^{0} 41^{\prime}$	13	05	130	210.0	-		0.2	3.4	Sei
367 b	$59^{\circ} 16^{\prime \prime}$	$0^{0} 12^{\prime}$	13	17	100	1.3	-	83.0	10.5	51.6	Cod
368	$59^{0} 46^{\prime}$	1045 '	13	23	30	-	0.2	0.5*	10.4	2.0	Lum
369	$59^{0} 25^{\prime \prime}$	1045^{\prime}	14	02	100	305.0	0.4		2.4	3.5	Sei
370	$57^{0} 38^{\prime \prime}$	$1{ }^{10} 45^{\prime}$	14	13	67		-			1.0	Pou
371	$57^{\circ} 37^{\prime \prime}$	$3{ }^{\circ} 45^{\prime}$	14	20	62	-	-	+ *	0.4	+	Gob
372	570371	$3{ }^{\circ} 53^{\prime}$	14	22	24			0.1*	8.6	9.1	Pou
373	$57^{\circ} 37 \prime$	$5^{0} 06^{\prime}$	15	02	5	14.5	25.0			0.6	Lum
374	$57^{\circ} 36^{\prime \prime}$	$6^{0} 02^{\prime}$	15	06	120	32.3	-	1.4	+ *	8.0	Lum
375	$57^{\circ} 53^{\prime \prime}$	7032 '	15	14	100	30.0		0.7			
376	570 54'	$6010{ }^{\prime}$	15	19		39.7	1.9		0.2*	9.1	Lum
377	57053^{\prime}	$4027 \prime$	16	02	5	61.0	72.0	0.1	1.0*	-	
378	57053^{\prime}	$4^{0} 23^{\prime}$	16	03	77	96.0	-	-		-	
379	$58^{0} 08^{\prime \prime}$	$2^{0} 23^{\prime}$	16	11	5	-	76.0	-			
380	$58^{0} 06^{\prime \prime}$	$400{ }^{\prime}$	16	17	81	-		-	2.8*	0.4	Sei
381	$58^{\circ} 23^{\prime \prime}$	$5^{0} 27 \prime$	17	02	5	28.0	20.0	-	0.1*	0.2	Sei
382	$58^{0} 23^{\prime \prime}$	$2^{\circ} 28^{\prime \prime}$	17	12	5		46.5	-			
383	$58^{\circ} 38^{\prime \prime}$	$2^{0} 55^{\prime \prime}$	17	17	90	105	-	+	$0 .{ }^{\text {* }}$	3.4	Lum
384	$58^{0} 38^{\prime}$	$2^{\circ} 51^{\prime \prime}$	17	18	81	105.0	-	+	+ *	1.9	Lum
385	$58^{\circ} 37{ }^{\prime}$	$3{ }^{0} 10^{\prime \prime}$	17	20	5	1. 1	9.4	-	0.6*	4.4	Hor
386	$58^{\circ} 52 \cdot$	$400{ }^{\prime}$	18	09	5	173.2	9.0	-	0.1*	1.3	Lum
387	$58^{\circ} 53^{\prime}$	$3^{0} 04^{\prime}$	18	13	5	0.5	0.9	-	+ *		
388	$59^{\circ} 16^{\prime \prime}$	$2017{ }^{\prime}$	18	19	60	-	-		0.4	8.9	Lum
3896	$59^{\circ} 21^{\prime}$	$2^{\circ} 18^{\prime}$	18	20	124	7.8	6.0	0.2	0.2	23.2	Sei
390	$59^{0} 30^{\prime \prime}$	$2^{0} 16^{\prime}$	18	23	5	0.7	6.0	-	5.0*	0.3	Lum
391	$59^{\circ} 53^{\prime}$	$2^{0} 31^{\prime \prime}$	19	03	50	-	-		0.5*	2.1	Lum
392	$60^{\circ} 22^{\prime \prime}$	$3038{ }^{\prime}$	19	18	25	2.2		0.1*	$0.3 *$		
393	59039.	$3^{0} 46^{\prime}$	19	23	5	22.5	3.9	+ *	$0.1 *$	61.5	Lum
394	$59^{0} 20^{\prime \prime}$	$4^{0} 46^{\prime}$	20	06	27	22.3		-	+ *	0.2	Dog
395	$59037 \prime$	$4^{0} 25^{\prime}$	20	11	5	170.0	0.5	-	$0.1 *$	0.1	Dog
396	$59^{0} 53^{\prime}$	$4^{0} 41^{\prime}$	20	15	5	0.8	41.0	-	$0.1 *$	2.5	Hor
397	$60^{\circ} 08^{\prime}$	$4^{0} 15^{\prime}$	20	19	5	42.3	5.0	0.1*	0.2*	7.1	Lum

Table 2.2.2 Settings and technical data of acoustic equipment, R/V "Eldjarn", July 1990.

Echo sounder	EK 400
Frequency	38 kHz
Receiver gain	-20 dB
Time varied gain	$20 \cdot \log R+2 \cdot 0.008 \cdot R$
Pulse length	1.0 millisecond
Bandwidth	3.3 kHz
Range	150 m
Transducer	$8^{0} \times 8^{\circ}$ (half value angles)
Equivalent beam angle	-19.6 dB // 1 steradian
Integrator	Inst. of Marine Research, Bergen (NORD computer)
Threshold	14 millivolts (peak)
Calibration 3 July 1990 :	
SL+VR (incl. TVG)	139.25 dB ref 0 dB receiver gain
Instrument constant	1.88 (as defined by Foote et al.

Table 2.2.3 Estimated number of mackerel (N , millions) by sub-area, R/V "Eldjarn", July 1990. B = Biomass ('000 Tonnes).

$\begin{gathered} \text { SUB } \\ \text {-AREA } \end{gathered}$	A G E			(winter rings)					$T \bigcirc T A L$		
	1	2	3	4	5	6	7	8	9+	N	B
1	-	282	423	47	16	6	6	-	6	784	217.2
2	-	-	-	-	-	-	-	-	-	0	0
3	-	+	1	+	+	+	+	-	+	1	0.3
4	-	+	1	+	+	+	+	-	+	1	0.3
IVa W	-	283	424	47	16	6	6	-	6	786	217.8
5	-	258	350	26	3	-	3	-	13	654	189.9
6	1	34	22	2	2	-	-	-	1	61	17.3
7	1	26	21	4	3	3	-	+	+	61	18.9
8	1	8	10	3	2	3	+	1	2	29	9.7
9	-	7	6	+	1	+	-	-	+	15	4.2
10	3	21	7	1	1	1	1	1	2	35	9.9
11	125	10	1	-	-	-	-	-	-	136	18.4
12	-	6	11	7	1	+	+	+	+	25	6.2
IVa E	131	370	428	43	11	6	4	1	18	1016	274.5
TOTAL	131	653	852	90	27	12	10	1	24	1802	492.3

Table 2.2.4 Estimated number (N , millions) of herring by age and subarea, R/V "Eldjarn" 3-20 July 1990. B = Biomass ('000 Tonnes).
AUTUMN SPAWNERS, IVa West (between 0° and 2° East)

winter rings	s u_b-area				TOTAL
	1	2	3	4	
1	-	-	-	38.7	38.7
2 imm	-	-	-	74.0	74.0
2 mat	43.1	10.1	53.1	296.0	402.3
3 imm	4.6	-	-	-	4.6
3 mat	507.7	159.8	154.8	458.8	1281.1
4	590.0	207.4	193.6	437.4	1428.4
5	355.4	62.4	48.5	110.4	576.7
6	100.1	30.2	7.4	18.6	156.3
7	62.1	10.1	2.3	-	74.5
8	48.3	-	2.3	-	50.6
$9+$	13.8	-	-	-	13.8
Tot N	1725.0	480.0	462.0	1434.0	4101.0
Tot B	379.1	99.5	87.0	244.2	809.8
Mat N	1720.4	480.0	462.0	1321.3	3983.7
Mat B	378.4	99.5	87.0	232.4	797.4

AUTUMN SPAWNERS, IVa East

winter rings	$s u b-a r e a$								TOTAL
	5	6	7	8	9	10	11	12	
1	1.9	-	17.1	264.0	0.3	17.1	84.6	254.7	639.7
2 imm	6.0	-	3.3	43.5	0.6	9.1	33.2	45.5	141.2
2 mat	24.2	78.4	78.4	228.4	0.6	18.4	30.6	32.9	491.9
3 imm	-	-	-	4.1	1.0	2.6	4.7	4.1	16.5
3 mat	151.7	165.5	119.9	54.6	3.0	5.8	21.6	17.7	539.8
4	326.4	223.6	182.8	42.6	3.9	13.8	14.5	-	807.6
5	220.6	87.1	27.4	15.7	1.3	3.9	2.9	-	358.9
6	99.7	11.7	6.9	6.7	0.5	1.2	1.6	-	128.3
7	52.8	8.7	4.4	-	0.3	0.2	-	-	66.4
8	53.3	2.9	-	-	0.2	0.2	0.2	-	56.8
9+	16.4	2.9	-	-	0.1	0.2	0.2	-	19.8
Tot N	953.0	580.8	440.2	659.6	11.8	72.5	194.1	355.0	3266.9
Tot B	208.8	114.5	81.3	86.2	2.2	9.9	22.4	31.3	556.5
Mat N	945.1	580.8	419.8	348.0	9.9	43.7	71.6	50.7	2469.5
Mat B	208.1	114.5	79.1	55.6	2.0	6.9	10.1	6.5	482.9

SPRING SPAWNERS, IVa East

winter rings	s u_b-are a							TOTAL
	6	7	8	9	10	11	12	
2	5.0	42.1	76.7	0.8	6.4	9.5	92.1	232.6
3	10.6	61.7	52.1	1.1	10.7	27.4	56.2	219.8
4	14.3	94.2	37.8	3.2	9.6	37.2	49.4	245.7
5	5.6	14.1	13.9	1.0	2.7	7.5	3.9	48.7
6	0.7	3.6	6.0	0.4	0.9	4.0	2.8	18.4
7	0.6	2.2	-	0.3	0.1	-	1.7	4.9
8	0.2	-	-	0.2	0.1	0.6	-	1.1
9+	0.2	-	-	0.1	0.1	0.6	-	1.0
Tot N	37.2	217.9	186.5	7.1	30.6	86.8	206.1	772.2
Tot B	5.6	31.9	23.1	1.1	3.4	9.6	18.5	93.2

Table 2.2.5 Estimated mean weights (g) of herring by age and subarea, R/V "Eldjarn" 3-20 July 1990.

AUTUMN SPAWNERS, IVa West (between 0° and 2° East)

winter rings	sub-area				TOTAL
	1	2	3	4	
1	-	-	-	90.5	90.5
2 imm	-	-	-	111.8	111.8
2 mat	170.8	173.7	157.7	146.4	151.2
3 imm	148.0	-	-	-	148.0
3 mat	204.9	182.2	177.0	165.5	184.6
4	219.0	205.1	192.1	189.4	204.3
5	224.6	238.2	226.5	234.8	228.2
6	237.1	268.3	238.3	235.0	242.9
7	268.9	311.2	290.0	-	275.3
8	275.3	-	280.0	-	275.5
9+	310.7	-	-	-	310.9

AUTUMN SPAWNERS, IVa East

winter rings	sub-area								TOTAL
	5	6	7	8	9	10	11	12	
1	81.8	-	104.0	95.2	102.1	96.1	96.5	78.7	89.0
2 imm	92.1	-	115.0	111.5	119.1	109.9	106.1	95.3	104.2
2 mat	155.1	156.2	161.7	145.0	154.9	142.9	138.0	123.9	148.0
3 imm	-	-	-	136.5	142.2	136.2	102.6	103.3	118.2
3 mat	198.9	187.4	185.5	177.5	184.9	177.1	133.3	134.3	185.2
4	207.7	207.6	195.5	195.8	199.7	154.3	148.8	-	202.3
5	224.2	213.0	214.6	194.1	212.0	193.2	182.1	-	218.7
6	244.7	223.3	193.9	214.2	227.6	201.3	184.7	-	237.3
7	244.2	259.3	278.9	-	228.8	224.2	-	-	248.3
8	271.1	191.7	-	-	261.1	203.2	220.7	-	266.6
9+	316.7	281.9	-	-	405.1	290.0	290.0	-	311.6

SPRING SPAWNERS, IVa East

winter rings	6	7	8	9	10	11	12	TOTAL	
	113.6	122.4	99.9	107.0	86.3	87.8	75.7	93.8	
2	145.2	149.4	128.2	100.4	102.0	95.8	88.3	119.3	
3	159.7	150.4	150.7	153.7	118.7 .114 .5	106.6	135.6		
4	163.8	165.1	149.3	163.1	148.7	140.1	125.3	152.6	
5	171.8	149.2	164.8	175.1	154.9	142.1	206.6	163.6	
6	199.5	214.5	-	176.0	172.5	-	163.0	191.8	
7	147.4	-	-	260.9	156.3	169.7	-	181.8	
8	216.9	-	-	311.6	220.0	220.0	-	220.0	
$9+$									

Table 2.2.6 Number (n) of herring sampled for vertebral counts, mean count (v) and estimated percentage (p) of IIIa/ Baltic spring spawning herring by age and sub-area.

$\begin{aligned} & \text { sub- } \\ & \text { area } \end{aligned}$	2-ringers			3-ringers			$4+$-ringers			remarks
	n	v	p	n	v	p	n	v	p	
6	200^{1}	56.52^{1}	61	2001	$56.52{ }^{1}$	6^{1}	200^{1}	$56.52{ }^{1}$	6^{1}	dubious
7	91^{1}	$56.21{ }^{1}$	34^{1}	91^{1}	56.21^{1}	341	91^{1}	56.21^{1}	34^{1}	
8	82	56.30	22	54^{2}	56.28^{2}	47^{2}	$54{ }^{2}$	56.28^{2}	47^{2}	
9	23	56.04	40	53	56.15	22	95	56.17	45	
10	116	56.27	19	64	55.98	56	113	56.13	41	
11	76	56.37	13	56	56.11	51	74	55.99	72	
12	46	56.33	20	28^{2}	$56.21{ }^{2}$	32^{2}	28^{2}	56.21^{2}	$32{ }^{2}$	20-22 June
12	60	56.05	60	43	56.12	48	36	55.53	100	2-5 July
12	216	56.14	54	91	55.91	72	62	55.89	100	15-17 July

[^1]| \|STATION | \|POSITIO | | COD 1 | H.M \| | HAD | HER | MAC | WH I | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \| 2079 | \| 57202 N | 292W | . 1 | . | 41 | 178 | 58 | 161 | 2571 |
| \| 2097 | \| 57208 N | 548W | . 1 | . | 11 | 37 | 81 | 4 \| | 501 |
| \| 2228 | \| 56451 N | 257 E | 51 | . 1 | 371 | 6 | -1 | 222 | 324 |
| \| 2309 | \| 56555 N | 2417 E | . 1 | - | . 1 | 65 | 931 | . 1 | 166 |
| \| 2327 | \| 56559 N | 3125 E | . 1 | . 1 | . 1 | 250 | 601 | . | 3101 |
| \| 2444 | \| 56394 N | 1243 E | 111 | . 1 | 81 | 21 | . 1 | 31 | 5571 |
| \| 2551 | \| 56294 N | 1231w | . 1 | 01 | . 1 | 2 | 71 | 111 | 311 |
| \| 2566 | \| 56296 N | 1581 W | . 1 | . | . 1 | 11 | $1)$ | 01 | 7 |
| 12709 | \| 56047 N | 1110 E | 291 | . | 276 | 8 | 1 \| | 2981 | 7321 |
| \| 2788 | \| 56051 N | 3234 E | . 1 | . | . 1 | . | 120 | . | 218 \| |
| 12802 | \| 55598 N | 3399 E | . 1 | . 1 | . 1 | . | 901 | . 1 | 901 |
| \| 2969 | \| 55489 N | 315W | 101 | . | 1431 | 67 | . 1 | 3381 | 6241 |
| 13023 | \| 55198 N | 1085 E | . 1 | . | . 1 | 10 | 11 | 21 | 441 |
| \| 3042 | \| 55139 N | 499W | . 1 | . | 15 \| | 111 | 21 | 181 | 125 |
| \| 3181 | \| 55175 N | 3123 E | . 1 | 41 | . \mid | . 1 | 91 | 81 | 2051 |
| \| 3269 | \| 55151 N | 5338 E | . 1 | . | . 1 | . | 4271 | . 1 | 4271 |
| \| 3432 | \| 54418 N | 7416 E | . 1 | 51 | . 1 | 0 | 01 | 21 | 1641 |
| \| 3533 | \| 54196 N | 5207 E | .1 | 21 | . 1 | . 1 | 4921 | 141 | 5171 |
| \| 3552 | \| 54211 N | 4497 E | . 1 | 21 | . 1 | 01 | 7081 | 27 | 7371 |
| \| 3682 | \| 54266 N | 1140 E | 11 | . 1 | 01 | 0 | 41 | 824 \| | 8941 |
| \| 3754 | \| 55299 N | 1116 E | . 1 | 41 | . 1 | 1 | 801 | . | 881 |
| \| 3771 | \| 55252 N | 589 E | . 1 | 21 | . 1 | 194 | 301 | . | 2261 |
| \| 3924 | \| 54178 N | 331 E | 441 | 231 | . 1 | 9 | 51 | 20211 | 23161 |
| \| 3966 | \| 54468 N | 1015 E | . 1 | 31 | . 1 | . 1 | 551 | 161 | 911 |
| \| 3982 | \| 54534 N | 1106 E | - | 321 | - | 0 | 220 | . 1 | 2641 |
| \| 4105 | \| 54485 N | 4305 E | 11 | 1 | 1 \| | 0 | 11 | 2741 | 3401 |
| \| 4156 | 154500 N | 5594 E | - | . 1 | - | 01 | 821 | 21 | 841 |
| \| 4175 | \| 54503 N | 6301 E | . 1 | 11 | - | 431 | 4481 | . 1 | 6201 |
| \| 4253 | \| 55362 N | 7051 E | 871 | 01 | . 1 | - | 0 | 3191 | 1621 |
| \| 4357 | \| 55566 N | 5294 E | . 1 | -1 | . 1 | 54 | 148 | . 1 | 2021 |
| 14375 | \| 55546 N | 5161 E | . | 01 | . 1 | 401 | 208 | . 1 | 2481 |
| 14483 | \| 56142 N | 5307 E | 131 | 01 | 1 \| | 751 | . 1 | 106 | 3071 |
| 14553 | \| 56082 N | 7277E | . 1 | . 1 | . 1 | 991 | 51 | - | 14231 |
| \| 4571 | \| 56150 N | 7454 E | 01 | 21 | . 1 | 131 | 561 | 21 | 2181 |
| \| 4681 | \| 56264 N | 5050 E | 21 | . 1 | 11 \| | 361 | $1)$ | 1981 | 4001 |
| \| 4774 | \| 56365 N | 5415 E | . 1 | 01 | . 1 | 18 \| | . 1 | 01 | 701 |
| 14792 | \| 56358 N | 6160 E | . 1 | . 1 | - | $1)$ | - | 01 | 401 |
| 14885 | \| 56554 N | 7151 E | 41 | 11 | 14 | . 1 | 81 | 251 | 2351 |
| 14993 | \| 56515 N | 4163 E | . 1 | . 1 | - | 01 | 261 | . 1 | 261 |
| \| 5015 | \| 57019 N | 3585 E | . 1 | . 1 | . 1 | 31 | . 1 | . 1 | 491 |
| \| 5096 | \| 57177 N | 4497 E | 341 | . 1 | 881 | 01 | 41 | 11 | 2001 |
| \| 5223 | \| 57214 N | 7476 E | -1 | .1 | . 1 | 111 | 86 | . 1 | 971 |
| \|total | | | 2391 | 841 | 5981 | 13511 | 35451 | 47601 | 156441 |

Table 2.3.1. Catch in $k g$ of cod, horse mackerel, haddock, herring, mackerel and whiting by station.

Table 2.3.2. Estimated number (millions) of herring by age and strata. RV DANA.

\|STRATA	AGE								
	0	1 \|	2	31	4	5	6	8	total
540E00.0	1.51	1.01	2.01	. 1	. 1	.	.	. 1	4.5
540 E 02.0	1	0.11	0.01	0.01	. 1	. 1	-1	. 1	0.11
540 E 04.0	0.71	1.61	0.11	0.11	. 1	. 1	-	. 1	2.51
540 E06.0	323.51	5.61	.1	. 1	. 1	- 1	- 1	. 1	329.11
540W02.0	5.51	2.91	1.71	. 1	. 1	- 1	. 1	. 1	$10.2 \mid$
550 E 00.0	. 1	61.11	432.51	281.71	64.31	7.11	- 1	7.11	853.91
550E04.0	23.31	1505.1\|	13.41	$\cdot 1$. 1	- 1	. 1	.1	1541.8
$550 \mathrm{W0} 2.0$. 1	12.11	15.51	16.81	2.11	0.21	0.21	. 1	46.91
560 E00.0	. 1	0.2	0.31	0.21	0.11	0.01	0.01	. 1	0.8
560 E02.0	. 1	501.41	174.91	12.21	3.41	. 1	\|	. 1	691.91
560 E04.0	4.41	937.51	20.61	. 1	. 1	$\cdot 1$. 1	. 1	962.41
560E06.0	2151.41	379.91	2.61	. 1	. 1	. 1	. 1	. 1	2534.0
560 W 02.0	0.41	6.21	1.31	1.41	- 1	,	. 1	. 1	9.31
570 E 00.0	. 1	425.71	150.21	32.61	25.01	7.51	. 1	. 1	641.01
570 E 06.0	44.61	237.71	440.81	14.91	. 1	. 1	. 1	. 1	738.01
570 W02.0	. 1	561.81	255.01	31.91	35.91	12.01	. 1	. 1	896.51
\|total	2555.31	4639.91	1511.01	391.81	130.81	26.91	0.21	7.11	9263.01

Table 2.3.3. Estimated biomass (tonnes) of herring by age and strata. RV DANA.

Table 2.3.4. Mean weight (g) of herring by age and strata. RV DANA.

\|STRATA	AGE							
\|	0	1	2	3	4	5	6	8
1540E00.0	16.71	62.51	126.31	. 1	. 1	. 1	-	
\|540E02.0	.1	65.01	45.01	85.01	. 1	. 1	- 1	
540E04.0	12.21	57.81	45.01	85.01	. 1	- 1	- 1	
540E06.0	29.01	43.31	- 1	. 1	. 1	- 1	. 1	
\| 540 W02.0	16.71	62.51	126.31	. 1	. 1	. 1	-	
1550E00.0	. 1	85.01	123.51	157.71	197.71	232.51	-1	205.01
1550E04.0	30.01	58.51	98.11	. 1	. 1	. 1	. 1	
550 WO 2.0	. 1	64.01	131.11	155.61	185.01	270.01	250.01	- 1
560 E 00.0	. 1	96.41	130.81	142.71	159.61	200.81	151.61	. 1
560 E 02.0	. 1	70.01	88.71	133.51	86.11	.1	. 1	
560E04.0	25.01	65.01	121.91	. 1	. 1	- 1	- 1	. 1
1560E06.0	15.81	54.11	115.01	- 1	.1	. 1	. 1	. 1
560W02.0	32.41	51.51	97.81	112.41	. 1	. 1	- 1	
570E00.0	. 1	53.51	59.71	145.71	164.3\|	216.71	. 1	
570E06.0	18.31	58.21	85.91	173.31	. 1	. 1	. 1	.
\| 570w02.0	.1	50.31	120.81	171.61	178.51	253.51	. 1	. 1

Table 2.4.1. Technical data and settings of the acoustic equipment onboard R/V "Argos"

Vessel	R/V "Argos"
Echosounder	EK400/ES400
Frequency	38 KHz
Transducer	$38-29 / 25 \mathrm{E}$
Beam angle	$9^{\circ} \times 9^{\circ}$
Integrator	QX $+\mathrm{ND}-10 \mathrm{~S}$
Calibration	Copper sphere
10 Log Y	-19.3 dB
Attenuator coeff	$0.00801 \mathrm{~dB} / \mathrm{m}$
TVG range	581 m
Pulse length	1.0 ms
Band width	$3: 3 \mathrm{KHz}$
Attenuator	-10 dB
Treshold	7 mV increasing
	with depth

Table 2.4.2. Calibration results and system calibration for R/V "Argos"

System	Date	SL+VR (dB)	Cl (m2/mile2)	Place
$\begin{aligned} & \text { EK } 400 \\ & 38 \mathrm{KHz} \end{aligned}$	85-08-23	137.55	16.47	Bornö
	85-10-24	137.24	18.77	Högön
	86-09-10	137.17	18.63	Bornö
	86-10-13	136.89	20.06	Högön
	87-08-25	136.85	19.85	Bornö
	87-10-22	136.70	20.82	Högön
	88-09-13	136.91	18.17	Bornö
	88-10-24	136.30	22.04	Högön
	89-10-23	136.69	18.77	Högön
	90-07-31	136.37	20.33	Bornö

Table 2.4.3. Survey statistics R/V "Argos"

Area	Stratum	Area sq.mile	No of mile integrated	Sa Values (pelagic) ref. 0 dB	No. of trawl hauls	\% of herring in the trawl hauls
East part of Sub area IV	AB	900	48	9,98	4 *	20,59
	$A C$	1841	142	7,78	4 *	44,66
	Z	1841	98	20,15	4	20,59
	T	1890	76	14,50	1	9,01
	O	3790	254	9,60	4	44,66
	P	3894	154	5,94	1	87,01
	1	3894	230	5,07	2	38,98
	Total:	18050	1002		12	
Skagerrak	AO	397	2	1,20	1	52,29
	A1	339	28	0,77	1	52,29
	A2	191	12	3,53	1 *	52,29
	A3	212	12	20,98	1	52,29
	A4	523	30	5,37	1 *	0,00
	A5	655	68	2,66	1	0,00
	B0	539	10	4,84	1 *	13,25
	B1	324	28	42,00	1 *	13,25
	B2	156	14	29,69	1	13,25
	B3	278	28	17,84	2 *	65,65
	B4	490	26	22,22	2	65,65
	B5	1124	70	6,27	2	65,65
	C3	200	18	11,48	1	8,23
	C4	476	62	14,12	2	39,80
	C5	127	4	16,30	2	39,80
	D1	71	8	30,28	1	0,47
	D2	169	14	41,53	1 *	0,47
	D3	433	66	28,75	1	0,47
	D4	733	98	39,06	2	95,91
	D5	295	26	16,07	1	89,38
	Total:	7732	624		12	
Kattegat	E0	3493	14	3,04	5 *	61,54
	E1	1216	248	26,51	5	61,54
	E2	382	136	18,66	4	70,62
	E3	137	42	23,72	4 *	70,62
	Total:	5228	440		9	

[^2]Table 2.4.4. Estimated number of herring by age group and strata. Numbers in thousands. R/N "Argos"

East part of Sub area IV	Stratum	Number	Age 0	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8+
	AB	30664			1564	9935	11223	5642	552	1227	399
	$A C$	116940		37070	28066	13448	24440	10408	1520	1520	117
	Z	126705			6462	41052	46374	23314	2281	5068	1647
	T	57671		40658	14072	865	1153	865			
	0	296296		93926	71111	34074	61926	26370	3852	3852	296
	P	619804		584475	31610	3099					
	1	114570		36548	49838	13863	8593	3552	917	917	
	Total:	1362650		792677	202723	116336	153709	70151	9122	12584	2459
	Autumn sp.	1225569		792677	170287	74455	118356	51912	6750	9312	1820
	Spring sp.	134192			32436	41881	35353	18239	2372	3272	639
Skagerrak	AO	4610		4540	37	23					
	A1	2624		2585	21	13					
	A2	6468		6371	52	32					
	A3	43077		42431	345	215					
	B 0	17225	2446	12161	2480	121					
	B1	90601	12865	63964	13047	634					
	B2	30847	4380	21778	4442	216					
	B3	90516		17108	39918	26159	4164	2897			
	B 4	198981		37607	87751	57505	9153	6367			
	B 5	129530		24481	57123	37434	5958	4145			
	C3	13878	6717	3914	2581	208	430				
	C4	36058	2632	4760	17452	7500	1406	1406	721		
	C5	11122	812	1468	5383	2313	434	434	222		
	D 1	785	2	208	470	71	19	3	3	4	2
	D 2	2559	5	678	1533	230	61	10	10	13	5
	D 3	4550	9	1206	2725	410	109	18	18	23	9
	D 4	650656	1301	172424	389743	58559	15616	2603	2603	3253	1301
	D 5	96592		12074	33711	27722	15841	6568	386		
	Total:	1430679	31169	429758	658815	219364	53191	24452	3964	3292	1317
	Autumn sp.	518435	16208	429758	72470						
	Spring sp.	906886	14961		586345	219364	53191	24452	3964	3292	1317
Kattegat	E0	184099	2209	69405	88920	17858	4602	184	184	184	
	E1	566124	6793	213429	273438	54914	14153	566	566	566	
	E2	177407	25369	104315	38320	6387	1419	1242			
	E3	80637	11531	47414	17418	2903	645	564			
	Total:	1008267	45902	434563	418096	82062	20819	2556	750	750	
	Autumn sp.	329226	29377	299848							
	Spring sp.	676272	16525	134715	418096	82062	20819	2556	750	750	

Table 2.4.5. Mean weight of herring by age group and strata. Mean weights by age. R/V "Argos"

	Stratum	Mean weight	Age 0	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8+
East part of Sub area IV	AB	210,87			169,46	198,47	206,54	229,45	247,89	291,57	306,55
	AC	133,92		83,62	129,72	152,36	174,52	190,86	202,97	185,84	240,00
	Z	210,87			169,46	198,47	206,54	229,45	247,89	291,57	306,55
	T	94,99		80,98	111,38	192,67	244,25	197,00			
	0	133,92		83,62	129,72	152,36	174,52	190,86	202,97	185,84	240,00
	P	77,21		74,89	108,35	213,00					
	1	109,19		87,10	111,35	120,73	133,27	183,59	158,73	175,50	
Skagerrak	A0	57,48		56,75	91,67	169,00					
	A1	57,48		56,75	91,67	169,00					
	A2	57,48		56,75	91,67	169,00					
	A3	57,48		56,75	91,67	169,00					
	BO	52,55	20,15	56,10	66,00	82,82					
	B1	52,55	20,15	56,10	66,00	82,82					
	B2	52,55	20,15	56,10	66,00	82,82					
	B3	98,16		83,40	100,53	100,82	105,77	126,90	145,86	145,86	
	B 4	98,16		83,40	100,53	100,82	105,77	126,90	145,86	145,86	
	B 5	98,16		83,40	100,53	100,82	105,77	126,90	145,86	145,86	
	C3	38,13	11,18	59,88	66,83	80,74	70,66				
	C4	72,86	15,00	63,40	73,10	86,98	106,56	109,51	74,60		
	C5	72,86	15,00	63,40	73,10	86,98	106,56	109,51	74,60		
	D1	90,29	9,00	85,26	88,13	114,37	100,27	142,18	152,58	147,93	136,35
	D2	90,29	9,00	85,26	88,13	114,37	100,27	142,18	152,58	147,93	136,35
	D 3	90,29	9,00	85,26	88,13	114,37	100,27	142,18	152,58	147,93	136,35
	D 4	90,29	9,00	85,26	88,13	114,37	100,27	$142,18$	$152,58$	147,93	136,35
	D5	109,56		93,17	92,52	108,51	140,19	158,21	183,00		
Kattegat	E0	65,04	19,23	49,32	71,91	88,07	100,93	138,80	155,50	126,59	
	E1	65,04	19,23	49,32	71,91	88,07	100,93	138,80	155,50	126,59	
	E2	50,59	19,86	50,69	65,02	75,33	94,34	61,88			
	E3	50,59	19,86	50,69	65,02	75,33	94,34	61,88			

Table 2.4.6. Estimated biomass in metric tonnes by age group and strata. R/V "Argos"

	Stratum	Biomass	Age 0	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8+
East part of Sub area IV	AB	6466			265	1972	2318	1295	137	358	122
	$A C$	15660		3100	3641	2049	4265	1986	309	283	28
	Z	26718			1095	8148	9578	5349	565	1478	505
	T	5478		3292	1567	167	282	170			
	0	39679		7854	9225	5191	10807	5033	782	716	71
	P	47857		43772	3425	660					
	1	12510		3183	5549	1674	1145	652	145	161	
	Total	154368		61201	24767	19861	28395	14485	1938	2996	726
	Autumn sp.	131488		61201	20804	12711	21864	10719	1434	2217	537
	Spring sp.	22881			3963	7150	6531	3766	504	779	189

	AO	265		258	3	4					
	A1	151		147	2	2					
	A2	372		362	5	5					
	A3	2476		2408	32	36					
	B0	905	49	682	164	10					
	B1	4761	259	3588	861	53					
	B2	1621	88	1222	293	18					
	B3	8885		1427	4013	2637	440	368			
Skagerrak	84	19531		3136	8821	5798	968	808			
	B5	12714		2042	5742	3774	630	526			
	C3	529	75	234	173	17	30				
	C4	2627	39	302	1276	652	150	154	54		
	C5	810	12	93	394	201	46	48	17		
	D1	71	0	18	41	8	2	0	0	1	0
	D 2	231	0	58	135	26	6	1	2	2	1
	D 3	411	0	103	240	47	11	3	3	3	1
	D 4	58751	12	14701	34349	6697	1566	370	397	481	177
	D5	10587		1125	3119	3008	2221	1039	71		
	Total	125698	534	31905	59664	22993	6070	3317	544	487	179
	Autumn sp.	38746	278	31905	6563						
	Spring sp.	86948	256		53101	22993	6070	3317	544	487	179
	EO	11974	42	3423	6394	1573	465	26	29	23	
	E1	36822	131	10525	19663	4837	1429	79	88	72	
Kattegat	E2	8975	504	5288	2492	481	134	77			
	E3	4079	229	2403	1132	219	61	35			
	Total	61850	906	21639	29681	7110	2089	217	117	95	0
	Autumn sp.	15511	580	14931							
	Spring sp.	46343	326	6708	29681	7110	2089	217	117	95	

Table 2.4.7. Estimated number of species and strata. Numbers in thousands. Mackerel and Doglish: TS=20log 1-77.2 R/N"Argos".

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{East part of Sub area IV} \& Stratum \& Sprat \& cod \& Haddock \& Hake \& Whiting \& Blue Whiting \& Mackerel \& Saithe \& Horse Mackerel \& Norway Pout \\
\hline \& \[
\begin{aligned}
\& \mathrm{AB} \\
\& \mathrm{AC} \\
\& \mathrm{Z} \\
\& \mathrm{~T} \\
\& 0 \\
\& \mathrm{P} \\
\& 1 \\
\& \hline
\end{aligned}
\] \& \& 290 \& 2318 \& \[
\begin{array}{r}
11 \\
47 \\
290 \\
448 \\
\hline
\end{array}
\] \& 36189
12306
149536
47528
31179
63139
35440 \& 40843
239892
261466
2676
346018
28633
242116 \& \[
\begin{array}{r}
12949 \\
11771 \\
53507 \\
1159 \\
29824 \\
\\
8070
\end{array}
\] \& \[
\begin{array}{r}
1235 \\
12751 \\
3129
\end{array}
\] \& \[
\begin{aligned}
\& \hline 238 \\
\& 984
\end{aligned}
\] \& \[
\begin{array}{r}
212 \\
486146 \\
538 \\
29403
\end{array}
\] \\
\hline \& Total: \& \& 290 \& 2318 \& 796 \& 375317 \& 1161645 \& 117280 \& 17115 \& 1222 \& 516299 \\
\hline \multirow[t]{2}{*}{Skagerrak} \& \begin{tabular}{l}
AO \\
A1 \\
A2 \\
A3 \\
A4 \\
A5 \\
B 0 \\
B1 \\
B2 \\
B3 \\
B4 \\
B 5 \\
C3 \\
C4 \\
C5 \\
D1 \\
D2 \\
D3 \\
D4 \\
D 5
\end{tabular} \& \& 165
94
232
1546 \& 764
434
1072
7136

207
455
296

523
1706

3033 \& $$
\begin{array}{r}
5 \\
3 \\
7 \\
49
\end{array}
$$ \& 2749

1565
3857
25688
758
475
56682
298134
101507
39267
86321
56192
1108
10527
3247
165477
539476
959219
10888

9386 \& $$
\begin{array}{r}
13428 \\
19549 \\
\\
7485 \\
63406 \\
68274 \\
43907 \\
14513 \\
\\
543 \\
50678 \\
29277
\end{array}
$$ \& \[

$$
\begin{array}{r}
184 \\
967 \\
329 \\
529 \\
1163 \\
757 \\
97 \\
60 \\
18 \\
\\
\\
490 \\
174
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
11 \\
6 \\
16 \\
104
\end{array}
$$
\]

$$
117
$$

$$
704
$$ \& \[

$$
\begin{array}{r}
2729 \\
1709 \\
61 \\
322 \\
110 \\
\\
\\
\\
\\
\\
\\
\\
\end{array}
$$
\] \& 324

185
455
3031
17282
10822
55783
293405
99897

153342
10453
3224

\hline \& Total: \& 0 \& 2037 \& 15626 \& 64 \& 2372523 \& 311061 \& 4768 \& 958 \& 5105 \& 648203

\hline \multirow[t]{2}{*}{Kattegat} \& $$
\begin{aligned}
& \text { E0 } \\
& \text { E1 } \\
& \text { E2 } \\
& \text { E3 }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline 15084 \\
& 46385 \\
& 27356 \\
& 12434
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 323 \\
& 993 \\
& 940 \\
& 427 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
68 \\
208 \\
102 \\
46 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
629 \\
1935 \\
99 \\
45 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
79333 \\
243956 \\
33067 \\
15030 \\
\hline
\end{array}
$$
\] \& \& $\begin{array}{r}8 \\ 26 \\ 15 \\ \hline\end{array}$ \& 7

20 \& 272
836
3
1 \&

\hline \& Total: \& 101259 \& 2683 \& 424 \& 2708 \& 371386 \& 0 \& 56 \& 27 \& 1112 \& 1033

\hline
\end{tabular}

Table 2.4.8. Mean weight of species and strata. R/V"Argos".

Estimated biomass metric tonnes of species and strata. R/V"Argos".

Table 2.4.10. Mean length of species and strata. $R N^{\prime \prime}$ "Argos".

East part of Sub area IV	Stratum	Sprat	Cod	Haddock	Hake	Whiting	Blue Whiting	Mackerel	Saithe	Horse Mackerel	Norway Pout
	$A B$				48,50	8,32	21,83	28,84		33,30	
	$A C$					9,59	21,95	27,99	36,71	33,30	14,90
	Z				48,50	8,32	21,83	28,84		33,30	
	T		22,50	13,25	82,50	10,41	21,83	27,87	41,45		14,39
	0					9,59	21,95	27,99	36,71		14,90
	P					7,59	21,95				6,34
	1				47,83	9,24	23,75	29,06			
Skagerrak	A0		28,87	28,49	51,72	17,60			34,08		15,03
	A1		28,87	28,49	51.72	17,60			34,08		15,03
	A2		28,87	28,49	51,72	17,60			34,08		15,03
	A3		28,87	28,49	51,72	17,60			34,08		15,03
	A4					10,70	32,17			35,11	9,45
	A5					10,70	32,17			35,11	9,45
	B 0					11,63		28,25		33,50	8,07
	B1					11,63		28,25		33,50	8,07
	B2					11,63		28,25		33,50	8,07
	B3			10,50		7,46	22,44	30,08			
	B4			10,50		7,46	22,44	30,08			
	B5			10,50		7,46	22,44	30,08			
	C3					17,42		28,35	43,75		8,25
	C4					11,05	28,74	31,50			8,58
	C5					11,05	28,74	31,50			8,58
	D1			12,25		8,42					
	D2			12,25		8,42					
	D3			12,25		8,42					
	D 4					7,78	25,05	29,75	60,50		
	D5					8,44	26,79	29,25		36,50	
Kattegat	E0	12,89	27,84	11,50	20,02	18,21					
	E1	12,89	27,84	11,50	20,02	18,21		44,75	14,50	5,21	
	E2	14,89	24,35	10,30	13,50	11,78		31,55		38,50	
	E3	14,89	24,35	10,30	13,50	11,78		31,55		38,50	14,84

Table 2.4.11. Mean length, vertebral count and proportions of seperated herring components in eastern North Sea and Div. Illa 1990.

Area	Component	Age-group	0	1	2	3	4	5
Eastern North Sea	2	Mean length Mean VS Proportion Mean length Mean VS Proportion		22,05 56,50 1,00	24,70 56,39 1,00	$\begin{array}{r} 27,30 \\ 56,24 \\ 0,90 \\ 23,40 \\ 55,99 \\ 0,10 \\ \hline \end{array}$	$\begin{array}{r} 28,50 \\ 56,39 \\ 0,82 \\ 25,80 \\ 56,00 \\ 0,18 \\ \hline \end{array}$	$\begin{array}{r} 29,03 \\ 56,32 \\ 1,00 \end{array}$
Skagerrak	2	Mean length Mean VS Proportion Mean length Mean VS Proportion	$\begin{array}{r} 13,80 \\ 56,21 \\ 0,88 \\ \\ 10,10 \\ 55,86 \\ 0,12 \\ \hline \end{array}$	$\begin{array}{r} 20,20 \\ 56,50 \\ 1,00 \end{array}$	$\begin{array}{r} 22,80 \\ 55,88 \\ 1,00 \\ \hline \end{array}$	$\begin{array}{r} 23,90 \\ 55,68 \\ 1,00 \\ \hline \end{array}$	$\begin{array}{r} 24,70 \\ 55,91 \\ 1,00 \\ \hline \end{array}$	$\begin{array}{r} 26,10 \\ 55,86 \\ 1,00 \\ \hline \end{array}$
Kattegat	2	Mean length Mean VS Proportion Mean length Mean VS Proportion	14,40 56,25 1,00	19,30 56,28 1,00	$\begin{array}{r} 21,50 \\ 55,75 \\ 1,00 \end{array}$	$\begin{array}{r} 22,80 \\ 55,78 \\ 1,00 \end{array}$	$\begin{array}{r} 24,20 \\ 55,68 \\ 1,00 \end{array}$	

Table 2.4.12. Proportions of herring components and initial mean vertebral. count per age-group. Separation based on assumption of mean VS: spring spawners 55.80 and autumn spawners 56.50

Area	Age-group	0	1	2	3	4	5
Eastern North Sea	Mean VS Proportion autumn Proportion spring		$\begin{array}{r} 56,50 \\ 1,00 \end{array}$	$\begin{array}{r} 56,39 \\ 0,84 \\ 0,16 \end{array}$	$\begin{array}{r} 56,25 \\ 0,64 \\ 0,36 \end{array}$	$\begin{array}{r} 56,34 \\ 0,77 \\ 0,23 \end{array}$	$\begin{array}{r} 56,32 \\ 0,74 \\ 0,26 \end{array}$
Skagerrak	Mean VS Proportion autumn Proportion spring	$\begin{array}{r} 56,16 \\ 0,52 \\ 0,48 \end{array}$	$\begin{array}{r} 56,49 \\ 1,00 \end{array}$	$\begin{array}{r} 55,88 \\ 0,11 \\ 0,89 \end{array}$	$\begin{array}{r} 55,68 \\ 1,00 \end{array}$	$\begin{array}{r} 55,91 \\ 0,16 \\ 0,84 \end{array}$	$\begin{array}{r} 55,86 \\ 0,09 \\ 0,91 \end{array}$
Kattegat	Mean VS Proportion autumn Proportion spring	$\begin{array}{r} 56,25 \\ 0,64 \\ 0,36 \end{array}$	$\begin{array}{r} 56,28 \\ 0,69 \\ 0,31 \end{array}$	$\begin{array}{r} 55,75 \\ 1,00 \end{array}$	55,78 1,00	55,68 1,00	

Table 2.6.1. Estimated numbers of herring at age (millions) per spawning stock and area. $N=$ numbers; $B=$ biomass (; $000 t$); $I=$ immature; $M=$ matur SS = spawning stock; TS = total stock.

Age				IVlo W			SKAC	RRAK	KAI	GAT	TOTA	
rings	au	sp	au	au	sp	24	$s p$	au	sp	$a u$	sp	au
0	0	0	0	7	0	2526	15	16	17	29	31	2579
1	853	0	640	828	0	3199	0	430	135	300	135	6249
21	154	233	141	188	115	258	586	72	418	0	1352	813
2M	1024		492	555		87		0		0	0	2158
31	87	220	17	3	0	2	219	0	82	0	521	108
3M	2538		540	334		10		0		0	0	3422
4	2462	246	808	99	0	2	53	0	21	0	320	3370
5	973	49	359	17	0	0	24	0	3	0	76	1349
6	266	18	128	0	0	0	4	0	1	0	23	395
7	144	5	66	0	0	0	3	0	1	0	9	211
8	70	1	57	7	0	0	1	0	0	0	2	134
$9+$	23	1	20	0	0	0	0	0	0	0	1	43
TSN	8593	772	3267	2038	115	6084	907	518	676	329	2470	20829
SSN	7500	-	2470	1012	-	99	-	0	-	0	-	11080
TSB	1610	93	557	227	10	259	87	39	46	16	236	2707
SSB	1525	-	483	154	-	12	-	0	-	0	-	2174

Table 2.6 .2 . Mean weight at age (g) per spawning stock and area. $I=$ immature; $M=$ mature.

Year					
Age	1987				1988
1	13,736	6,431	1989	1990	
2	4,303	4,202	3,333	6,249	
3	955	1,732	3,751	2,971	
4	657	528	1,612	3,530	
5	368	349	488	1,370	
6	77	174	281	399	
7	38	43	120	211	
8	11	23	44	134	
$9+$	20	14	22	43	

Table 2.6.3 Estimates of North Sea autumn spawners (millions) at age from acoustic surveys, 1987-1990.

Figure 2.1.1 Cruise track and positions of trawl hauls for FRV "Scotia" 4-24 July 1990.

Figure 2.1.2 Sub-areas of consistent length composition.
61 N
60
9
58
57

Figure 2.1.3 Results of FRV "Scotia" survey showing the number of 15 minute (2.5 N mile) echo-integrator runs top left, number of fish (10^{-6}) centre and weight of fish (tonnes 10 ${ }^{-3}$) bottom for each quarter statistical rectangle surveyed.

Figure 2.2.1 Survey grid and trawl stations, R/V "Eldjarn".
Δ : Pelagic trawl
■ : Bottom trawl
\diamond : Plankton station

Figure 2.2.2 Definition of sub-areas.

Figure 2.2.3 Estimated number (millions) of mackerel (lower, right figures) by rectangle. Upper, left figure: number of 5 -mile integrals per rectangle. R/V "Eldjarn", July 1990.

Figure 2.2.4 Estimated number (millions) of North Sea autumnspawning herring by rectangle. R/V "Eldjarn", July 1990.

Upper figures: 1-ringers.
Middle figures: 2-ringers.
Bottom figures: 3 -ringers and older.

Figure 2.2.5 Estimated number (millions) of Division IIIa/Baltic springspawning herring by rectangle. No figure or - means zero. R/V "Eldjarn", July 1990.

Upper figures: 1-ringers.
Bottom figures: 2-ringers.
togt 81980

Figure 2.3.1 Cruise track and trawl positions, RV DANA.

Fig. 2.4.1.

Figure 2.4.2 The strata used for survey evaluation in the Swedish survey.

Figure 2.4.3a Mean vertebral count per age group and statistical rectangle. To the numbers illustrated 50 should be added.

Figure 2.4.3b Mean vertebral count per age group and statistical rectangle. To the numbers illustrated 50 should be added.

Figure 2.4.4 Maturity stages ≥ 2-group herring in North Sea.

Figure 2.6.1 $\begin{aligned} & \text { Estimated numbers (millions) of } 0 \text {-(top) and 1-(bottom) ring } \\ & \text { herring. }\end{aligned}$

Figure 2.6.2 Estimated numbers (millions) of 2-(top) and 3+-ringers (bottom) herring.

Fig. 3.1 Research vessels participating in the 1991 survey.

[^0]: *General Secretary
 ICES
 Palægade 2-4
 DK-1261 Copenhagen K
 DENMARK

[^1]: 1 represents 2 -ringers and older
 2 represents 3 -ringers and older

[^2]: * = Trawl data from other area

