ICES 1990
PAPER
C.M. 1990/G:32

Ref. B
EFFECTS OF TRAWLING AND LONGLINING ON THE YIELD AND BIOMASS OF COD STOCKS - NUMERICALLY SIMULATED
by
Asmund Bjordal 1) and Taivo Laevastu 2)
of Fisheries Technology Research, P.O. Box 1964 ,
rgen, Norway.
sheries Science Center, 7600 Sand Point Way N.E.
WA 98115, USA.

ABSTRACT

Numerical studies were conducted on the effects of trawl and longline catches on a cod stock and possible yields from it.

Five year mean age composition of Pacific cod (Gadus macrocephalus) from the Bering Sea was used as initial age composition of the stock, which was normalized to 1 ton. Age specific 2 (total mortality) was computed from this distribution and natural mortality was derived by subtracting fishing mortality from Z. Age compositions of catches were either prescribed from empirical data or created with fishing mortality coefficient (F), which was assumed constant with age after the age of full recruitment. The computations were done with different catch levels for six years assuming average constant recruitment.

Essential results of this study are: a) The stock left in the sea decreases with increasing catch and reaches an equilibrium if recruitment and catches remain constant. With similar catch levels this equilibrium is reached earlier with longline and is higher than that of trawl. b) If a given level of stock in sea is desired, higher annual catches can be taken with longlines than with trawl. c) By the same catch size longlines remove more older and more piscivorous fish which is beneficial to recruitment if the latter is largely controlled by predation.

The above mentioned essential results indicate, among others that some longline fishing might be allowed to continue when TAC for trawlers has been reached.

INTRODUCTION

Until the 1950-ies it was believed that fishing had a minor impact on the size and variability of the fish stocks. The relative impact of fishing on stocks versus natural fluctuations is to some extent still unclear. However, increased fishing effort and improvement of fishing gear and methods have during the last 30 years coincided with a considerable decrease of major fish stocks despite a rising number of regulations to manage the fish resources.

Today there seems to be general agreement among fisheries scientists that fishing has a significant impact on the dynamics of fish populations, and that this impact is dependent on the status of the stocks. Further, it is known that the main fishing gears operate with different principles of capture and with different size- and species-selective properties. Proper management of fish stocks should therefore not only be based on recommendations on total catch quotas but also on how these quotas should be taken. However, the catching regime for harvesting a given quota is to a large extent decided on the basis of the traditional composition of gear types within a fishing fleet, with little attention to the conservation effects on the fish stock of given gear types.

Some authors have recently focused on multigear exploitation of groundfish stocks. Laevastu and Favorite (1988) reviewed the effects of fishing and the "optimum take". Analyzing the effect of different trawl gears in a mixed species fishery, Murawski et al. (1989) pointed out the negative impact of discards of
undersized target species on proper stock assessment and future yield. Wespestad et al. (1982) recommended restrictions on bottom trawling to reduce the by-catch problem of crabs and halibut in the Bering Sea groundfish fishery, while similar restrictions were not found necessary for longlines and off bottom trawling. O'Boyle et al. (1989) compared the bioeconomical effects of trawl and longline fishing in the Scotian shelf groundfish fishery and concluded that the yield and employment picture was superior for the longline fishing and that regulatory acts were necessary only for the trawler fleet. Comparing the size distribution of landed cod catches (not including discards), Bjordal (1989) showed that trawl and seine net catches contained 19% small cod while corresponding values for longline and gillnet were 6% and 2%, respectively. He also compared the conservation aspects of trawls and longlines and, although data are scarce on several conservation topics such as discards, survival after escapement and environmental effects, existing knowledge clearly indicates the conservational superiority of longlines versus trawl.

In order to recommend an optimal catching regime (gear type and effort) in a certain fishery, total bioeconomical models should be developed which include data on the conservational aspects of the different gear types: species- and size selectivity, discards, survival after escapement, fish quality, ghost fishing, environmental aspects and energy conservation as a basis for socio-economic and management considerations.

In the present study we have focused on the effects of
trawling and longlining with different catch levels and age composition of: catch on the stock remaining in the sea, using a numerical model.

Materials and Methods
A numerical simulation was used in this study. The initial age composition of the stock in the sea was taken as the five year mean (1983 to 1987) age composition of the cod (Gadus macrocephalus) stock in the Bering Sea (Fig. 1). The recruitment to the exploitable stock was assumed to be constant and equal to the five year mean recruitment. The initial stock size was normalized to 1000 kg and the corresponding initial distribution of numbers in different age classes was computed.

The five year mean age composition of the stock was also used to compute total mortality (Z) (Fig. 2), from: which age dependent natural (or senescent) mortality was obtained by subtracting estimated fishing mortality which was assumed to be 15 percent of exploitable population and constant with age after full recruitment to the exploitable stock.

Two different age compositions of trawl and longline catches were used in the study. In one set of simulation runs, a number based fishing mortality was used, which was assumed to be constant with age after the age of full recruitment. In the second set of runs mean age compositions of Japanese trawl and longline catches from the Bering Sea in 1983 were used (Fig. 3). Computations were done for six years with each prescribed catch level ($80 \mathrm{~kg}, 160 \mathrm{~kg}$, and 240 kg , and $\mathrm{F}=0.10,0.15$, and 0.20). The quantitative interaction between fishing mortality and senescent

Figure 1. Initial age composition of Bering Sea

Figure 2. Total mortality of Bering Sea cod, expressed as instantaneous fishing mortality coefficient and as percentage mortality of a given age group (re. numbers).

Figure 3. Age composition of Japanese trawl and longline catches (cod, Bering Sea, 1983).
mortality was taken from a numerical study by Laevastu and Bax (1986). The numerical simulation model (documented in the Appendix) can be used for the study of the effects of trawling and longline fishing in any combination of effort (catch) by these gears. In this report we present only some essential differences of these gears on the biomass remaining in the sea.

Results
The basic difference between the age composition of trawl and longline catches is that the age (size) of full recruitment to exploitable stock is one year earlier in trawl catches than in longline catches (Fig. 3). More prefishery juveniles are caught with trawls than with longlines, and consequently the amount of discards is higher from the trawl catch than from the longline catch. The amount of discards depends on several conditions. In our model the trawl was assumed to catch 26 percent of fish (numbers) younger than the fully recruited age class (3 year old). The corresponding value for longlines was assumed to be 17 percent (4 year old).

In the runs with prescribed catch amount both trawl and longline were assumed to catch equal given weight. However, if the catch is prescribed with number based fishing mortality coefficient F the amount (in weight) caught by the same F is not necessarily equal due to higher catch of young fish by trawl. The senescent (or natural) mortality remains higher than the fishing mortality even if fishing mortality (F) is 0.2.

If the recruitment to prefishery juveniles remains constant
from one year to another (as was prescribed in the simulation runs), then with equal fishing mortality (F) a lower number of fish remain in the sea with trawl than with longline fishing (Fig. 4). This is mainly because the fishing mortality of trawl catches starts one year earlier than longline catches. The difference in fish biomass (weight) remaining in the sea after four years of fishing with trawls versus longlines is even more noticeable than the difference in numbers (Fig. 5).

With increasing annual catches the number of fish left in the sea decreases. By the same amount (weight) of catch this decrease is considerably greater when the stock is exploited by trawl compared with that of longlining (Figs. 6 and 7). Consequently the fish biomass in the sea decreases with increasing annual catch during the first 4 to 5 years. However, if the annual catch remains constant, the biomass left in the sea reaches an equilibrium level which is dependent on the size of the annual catch. At the same catch level this equilibrium biomass is higher in case of longline catches than trawl catches (Figs. 8 and 9).

Discussion

This numerical study demonstrates that the exploitation strategy may have a marked influence on the dynamics of a fish stock. In this case it is predicted that if a given catch quota of cod is taken by longlines, a higher biomass will remain in the sea than if the same quota is fished with trawls. This effect is mainly caused by the different selective properties of the two gears, as the first fully recruited year class in the trawl

Figure 4. Number of fish in the sea of different age groups, initially and after four years of trawling or longlining ($F=0.2$).

Figure 5. Weight of fish in the sea of different age groups, initially and after four years of trawling or longlining ($F=0.2$).

Figure 6. Age composition of fish in the sea after 4 years of trawling with different fishing mortalities ($\mathrm{F}=0.05,0.10$, and 0.20).

Figure 7. Age composition of fish in the sea after 4 years of longlining with different fishing mortalities ($F=0.05,0.10$, and 0.20).

Figure 8. Biomass reduction during six years of trawling or longlining with fishing mortalities of 0.1 (A), 0.15 (B), and 0.2 (C) (initial biomass $=1000 \mathrm{~kg}$).

Figure 9. Biomass reduction (from original 1000 kg) of longlining or trawling at 3 different catch levels, a) 80 kg, b) 160 kg , and c) 240 kg .
catches is one year younger than in the longline catches. Cod also become more piscivorous with increasing age. As the longline catches include more large fish, longlines do thus remove more piscivorous and potentially cannibalistic individuals. If recruitment to the exploitable population is largely influenced by predation on juveniles, then longline fishing may also be more beneficial to recruitment.

After sustained fishing the model predicts that the biomass do stabilize around a certain equilibrium level, determined by fishing method and exploitation level. With reference to Figs. 8 and 9 , it is apparent that the choice of catching strategy is relatively unimportant at low catch levels or in periods with good recruitment. However, with increasing exploitation rate, care should be taken with respect to choice of fishing gear and catching strategy. The trends that are predicted in Figs. 8 and 9 also suggest that this simulation model can be used to determine the total allowable catch taken by different gears, if a biologically or economically determined minimum level of remaining biomass is prescribed.

This study clearly indicates that the catching strategy should be taken into consideration for proper management of fish stocks. In this case the model is used in a fairly simple approach on one stock that alternatively is exploited by two different gears. As a management tool it could be extended for application on different multigear and multispecies situations.

References
Bjordal, A., 1989. Recent developments in longline fishing catching performance and conservation aspects. Proceedings World Symposium on Fishing Gear and•Fishing Vessel Design, St. John's, Nov. 1988, pp. 19-24.

Laevastu, T., and N. Bax, 1986. Numerical simulation for the determination of effects of fishing, and the sensitivity of fish stocks to various parameters and processes. Int. Counc. Explor. Sea, C.M. 1986/D:2, 30 pp (Mimeo).

Laevastu, T., and F. Favorite, 1988. Fishing and stock fluctuations. Fishing News Books Ltd., England, 239 p.

Murawski, S.A., A.M. Lange, and J.S. Idoine, 1989. An analysis of technical interactions among Gulf of Maine mixed species fisheries. Int. Counc. Explor. Sea, Multispecies modelling symposium, The Hague, Oct. 2-4, 1989, Paper 7, 33 p. (Mimeo).

O'Boyle, R., A. Sinclair, and P. Hurley, 1989. A bioeconomical model of an age-structured groundfish resource, exploited by a multi-gear fishing fleet. Int. Counc. Explor. Sea, Multispecies modelling symposium, The Hague, Oct. 2-4, 1989, Paper 23, 63 p. (Mimeo).

Wespestad, V., S.H. Hoag, and R. Narita, 1982. Reducing the incidental catch of prohibited species in the Bering Sea groundfish fishery through gear restrictions. Int. Pac. Halibut Comm. Techn. Rep. No. 19, pp. 3-14.

Appendi: Frogramme GEAFEF of the effects of trawl and longli	
List of Abbreviations and Symbols (*-inputs)	
AFA	-Adjustment factor. (to adjust numbers to 1000 kg biomass)
AFRL	-ARL+1
AFFT	-AFT +1
AGI (12)	-Age group weight
* AMA	-Age at which 60% of population is mature
*AF'L	-Age of full recruitment, longlines
* ART	-Age of full recruitment, trawl
* EIM	-Factor to reduce "natural" mortality
ETF'	-Weight of fish left in sea
ETS (10)	-Total biomass in sea (1-initial, 2-after first year, उ-after second year, others are intermediate bins)
*CAI (12)	-Initial age composition, normalized (\%)
CLNF (12)	-Catch, longlines, numbers
CLWF (12)	-Catch, longlines, weights
CNU	-Total number of full recruited with given catch
*CTC (12)	- Normalized trawl catch (\%)
*CTL (12)	-Normalized longline catch (\%)
CTNF (12)	-Catch, trawl, numbers
CTWF (12)	-Catch, trawl, weights
DCLW	-Discards, longline
DCTW	-Discards, trawl
DIFA	-Difference of fishing mortality from 15\%
FA	-Approximate F for total population (in fraction of numbers)
FAC	-Factor (intermediate)
*FL	-Initial catch estimates for longline <kg from 1000 kg biomass)
FAR	-F for first fully recruited age-class
*FLF (3)	-"Prerecruit" catches by longlines (in fraction of first fully recruited age class)
*FLFD(3)	-Fraction of prerecruits discarded (trawl)
*FSI	-Factor to reduce mortality difference
*FT	-Initial catch estimates for trawl (kg from 1000 kg biomass)
*FTF (3)	-"Prerecruit" catches by trawls (in fraction of first fully recruited age class)
*FTFD(3)	-Fraction of prerecruits discarded (trawl)
* IF'C	-Index, IFC=0 - catch prescribed as quantity, IFC=1 - catch prescribed as fraction of catch (F constant with age, except prerecruits)
k	-Counter of number of catch iterations
LEF (12)	-Longlines, inst. F mortality
LME (12)	-Longlines, instant. senesc. mort. coeff.
LMF'(12)	-Longlines, \%mortality
LO	-Counter

```
    LFD
    LF\cdotDN
    LFF
    M,N
*M
    MM
*MO(12)
    MORY
    MR
    MTN{12)
    MTW(12)
    N
    NSF (12)
    NSI(12)
    NSS(12)
*FCFL
*F'CFT
FFE (12)
FUK⑿
F
*FiAD
FFL
FFT
*FL
FiLN
FSL
FST
*FT
RTN
S
SCN
SCNT
SLNF (12)
SLNS (12)
SLTF
SLTS
SLWF (12)
SLWS (12)
STNF (12)
STTF
STWF (12)
TEF (12)
TME (12)
TMF' (12)
TMT
TNI
TFD
TFDN
```

-Discards, longlines (weight)
-Discards, longlines (numbers)
-Longlines, \% removed
-Counters, indices
-Indice for trawl (1) or longline (2), both (0)
-Intermediate ($N+1$)
-Predation and senescent mortality, $F=0$
-Intermediate (mortality)
-Intermediate (mortality)
-Mortality, numbers
-Mortality, weight
-Counter, index

- Number in sea after first year
- Number in sea (initially) re. 1000 kg total biomass
- Number in sea after second year
-Frescribed longline catch as fraction (0.05, $0.10,0.15$ etc.) (Number based.F)
-Frescribed trawl catch as fraction (O.OS, $0.10,0.15$ etc.) (Number based F)
- Numbers in sea (intermediate)
-Catch (intermediate)
-Intermediate (for inst. mort.)
-Recruitment change (adjustment) factor
-Fecruitment, first year, longlines
-Recruitment, first year, trawl
-Recruitment to first fully recruited age class in percent of initial age composition, $F=0$ (langlines)
-Recruitment (number), longlines (norm. 1000 kg)
-Recruitment, second year, longlines
-Recruitment, second year, trawl
-Recruitment to first fully recruited age class in \% of initial age composition, $F=0$ (trawl)
-Fiecruitment (number), trawl (norm. 1000 kg)
-Intermediate (for inst. mort.)
-Total catch number
-Total catch numbers (intermediate)
-Spawning stress mortality longlines, numbers
-Spawning stress mortality, total numbers
-Total spawning stress mortality, longlines
-Total spawning stress mortality
-Spawning stress mortality longlines, weights
-Spawning stress mortality, total, weights
-Spawning stress mortality, trawl, numbers
-Total spawning stress mortality, trawl
-Spawning stress mortality, trawl, weights
-Trawl, instantaneous fishing mortality ffirst year)
-Trawl, instantaneous mortality coefficient
-Trawl, mortality in \%, first year
-Total mortality (weight)
-Total initial numbers
-Discards, trawls (weight)
-Discards, trawls (numbers)

```
TFF(12)
TWI
TWIT
VAD(12)
VAT (12)
*WM(12)
WSF(12)
WSI(12)
WSS (12)
X
```

```
-Trawl, percent of fish removed by fishing
```

-Trawl, percent of fish removed by fishing
(first year, number)
(first year, number)
-Total initial weight (imput)
-Total initial weight (imput)
-Total catch (intermediate)
-Total catch (intermediate)
-Intermediate, working array
-Intermediate, working array
-Intermediate, working array
-Intermediate, working array
-Weight, midyear
-Weight, midyear
-Weights in sea after first year \
-Weights in sea after first year \
-Initial weights (re. 1000 kg biomass)'
-Initial weights (re. 1000 kg biomass)'
-Weights after second year
-Weights after second year
-Counter (M+1)

```
-Counter (M+1)
```

```
I% FEM FROGFAMME GEEIEF
2g FEM EIOLOGICAL EFFECTS OF DIFFEFENT GEAF
SO DIM CAI(12),CTC(12),CTL(12),WM(12),MO(12),FLF(\Xi),FTF(\Xi)
40 DIM FLFD(3),FTFD(J),NSI(12),NSF(12),NSS(12),VAD(12),FA(S)
50 DIM WSI (12),WSF (12),WSS(12), ETS(10),CLNF (12),CLWF (12)
60 DIM CTNF (12), CTWF(12),MTN(12),MTW(12),TFF(12),TEF (12)
70 DIM SLNF (12),SLWF(12),SLNS(12), AGI(12),TMF (12),TME (12)
80 DIM SLWS (12),STNF(12),STWF(12),FUF゙(12),FFE(12)
9% DIM VAT(12),FAR(J),LFD(\Xi),TFD(S),LFF(12),LEF(12),LMF(12),LME(12)
10め DIM TFDN(S),LFDN(\Xi)
110}\mathrm{ FEM XXXXXINPUTSXXXXX
120}\mathrm{ FEM INITIAL AGE COMP.,NOFMALIZED
130 FOF N=1 TO 12
14% FEAD CAI (N)
15% NEXT N
1ם0, DATA 22.24,16.45,14.15,12.83,11.21,9.0.3
170 DATA 6.21,4.13,2.27,1.044,0.30.0.019
180% FEM NOFMALIZED AGE COMF.: TRAWL CATCH
19% FOR N=1 TO 12
20g READ CTC(N)
210 NEXT N
22g DATA \Xi.51,8.77,14.10.22.05,18.84,14.64
2\Xi0 DATA 8.01,5.58, 5.06,1.47,0.49.0.08
24g REM NOFMALIZED AGE COMF:, LONGLINE CATCH
250] FOF N=1 TO 12
26g FEAD CTL (N)
270% NEXT N
28% DATA 0. %, \.46,5.92.12.66.24.11.23.76
290 DATA 16.06,10.51,5.64,2.1こ.0.65,0.07
S00| REM WEIGHT,MIDYEAR
310 FOR N=1 TO 12
320) READ WM(N)
BEg NEXT N
34% DATA 0.1.0.3.0.95,1.7.2.6.3.5
З5% DATA 4.5,5.4,6.2,6.9,7.6.8.2
SGgl REM PREDATION AND SENESCENT MORT., F=%.
\Xi7\emptyset FOR N=1 TO 12
\Xi8% READ MD(N)
\Xi9$ NEXT N
40% DATA 26.0.14.1,11.0,12.6.19.5.31.2
410 DATA S5.5,45.0,54.2,62.5,82.0,75.0
4201 FEM FFEFECFUIT CATCHES: TRAWL, LINGLINES
4\Xi@ FTF(1)=19.0:FTF(2)=12.0:FTF(3)=6.%
440) FLF(1)=14.0:FLP(2)=7.5:FLF(\Xi)=2.0
45% FEM FFACTION OF PRERECRUITS DISCARDED, TRAWL, LL
46% FTFD(1)=.55 :FTFD(2)=.8 :FTFD(ふ)=1!
47% FLFD(1)=.4 :FLFD(2)=.65 :FLFD(\Xi)=1.
48% AMA=4 : ART=3:ARL=4
49@) AFFT=AFT+1
50% AFFL=ARL+1
51% FEM FECF. TO FIFST FULLY RECF. AGECL.
52g RT=12.8S : FL=11.21
5ङG FEM EASE MORTALITY FEDUCER - EMM
54% EM=. \G
S50 FSI=.4
```

```
SG# REM RECR. ADJUST. FACTOF
570) RAD=1
58g REM XXXXEXFERIMENTAL INFUTSXXXXXXXX XXXXXXXX
590 FEM GEAR INDICE
品g M=1
G10) IFC=1
620}\textrm{FEM INITIAL CATCH, K゙G/YEAR FEF 1gIOg K゙G.
GS| FT=80 :FL=80
640 FCFT=.05
650 PCFL=.85
Go®l FEM XXXXX QUTFUTS FOR CHECKING INF.XXXXX ';
67@ LFRINT :LFRINT
G8g LFRINT" EIOLOGICAL EFFECTS OF TRAWLS AND LONGLINES"
690}
70g LFRINT :LFRINT
710 LFRINT" AGE NUMEEF WEIGHT SEN. MDFT"
720) FDF N=1 TD 12
7S6 NN=N-1
74g LFRINT USING" #####.##";NN:CAI(N);WM(N);MO(N)
75G NEXT N
7Gg}\mathrm{ LFFINT :LFRINT
77% LFFINT" AGE COMFOSITION OF CATCHES (F'RESCFIEED IF IF'C=0!)"
78% LFRINT" AGE TRAWL . LONGLINE"
790) FOR N=1 TO 12
80% NN=N-1
810}
820 NEXT N
8\Xigl LPRINT :LPRINT
840 LFRINT" FRERECFUIT CATCHES AND DISCARDS"
850 LPRINT" TRAWL"
8G0) LFRINT" AGE CATCH DISCARD
87\emptyset FOR N=1 TO S
88% NN=AFRT-N
89%! LFRINT LUSING" ########":NN:FTP(N);FTFD(N)
90% NEXT N
91% LFRINT
9201 LFRINT" LONGLINE"
9ङ# LFFINT" AGE CATCH DISCAFD"
940% FOR N=1 TO S
95% NN=AFRL-N
960) LPRINT USING" #####.##":NN;FLP(N):FLFD(N)
970 NEXT N
980% LFRINT
99% LFRINT" AGE OF MAT.";AMA
10%0 LFRINT" AGE, FLLLL FECR.,TRAWL":ART: "LONGLINE";ARL
1g1% LPRINT" RECF. TO FIFST FULL AG. CL.,TFAWL";RT;"LONGLINE":FL
1020} LFRINT" RECR. ADJUST. FACT.";RAD
10IE& REM CONVEFT MOFTALITY TO FRACTION
1%4% FEM (DES. FEDULTION EY 5 %)
10\Xi FOR N=1 TO 12
1060)MO(N)=(MO(N)/100!)**95
1976 NEXT N
1%8% REM NORMALIZE NUMEEFS AND WEIGHTS TO 1%g% K゙G
10\@ TWI=@ :TNI=&
11%%) FOF N=1 TO 12
```

```
1110}\operatorname{AGI}(N)=CAI(N)HWM(N
1.20 TWI=TWI+AGI (N)
1130 NEXT N
1140 FAC=10%0/TWI
11Eg FOF N=1 TO 12
1100% NSI(N)=FAC*CAI(N)
1170 WSI (N)=AGI (N)*FAC
118% TNI=TNI +NSI (N)
1196 NEXT N
12%%RLN=FAC*FL
1210 FTTN=FAC*FT
1220 REM CATCHES: FIFST YEAR
12उ@ ド=1
1240}\mathrm{ REM LONG RUN COUNTER
1250 LO=%
1260 IF(IFC=O) THEN 127% ELSE 100%
1270 IF (M-1<=0) THEN 1290 ELSE 1420
12g% FEM TFAWL CATCH
1290 TWI=0 : SCN=0
130% FOF N=1 TO 12
1.10 VAO (N)=CTC (N)*WM (N)
1.2g TWI=TWI +VAO(N)
1SSO NEXT N
1.40 FAC=FT/TWI
135め FOR N=1 TO 12
1.Gig CTNF (N)=CTC (N)*FAC
1-70) CTWF(N)=VAO(N)*FAC
138% SCN=SCN+CTNF (N)
1こ9め NEXT N
140% FA(1)=SCN/TNI
1410 FAF(1)=CTNF (4)/RTN
1420 IF (M-2=%) THEN 145% ELSE 14.% %
1430) IF (M=01) THEN 145% ELSE 2010%
1440}\mathrm{ FEM LONGLINE CATCH
145% TWI=% : SCN=%
146% FOR N=1 TO 12
147@ VAO(N)=CTL (N)*WM(N)
148% TWI=TWI+VAO(N)
1490% NEXT N
150% FAC=FL/TWI
1519 FOF N=1 TO 12
152% CLNF (N)=CTL (N)*FAC
15.% CLWF (N)=VAD(N)*FAC
1540} SCN=SCN+CLNF (N
155% NEXT N
1560 FA(2)=SCN/TNI
1570) FAR(.2)=CLNF(5)/FLN
158% GOTO 20G%
1590 FEM XXXXXXXXXX
160% IF (M-1<=0) THEN 16S% ELSE 18E%
1610 REM FFESCRIEED CATCH AS CONSTANT FFAACTION
162g FEM AFTEF FULL FECRUITMENT
16.O REM TRAWL CATCH, F CONST. WITH AGE
1&4% TWIT=% : SCNT=0
165% FOR N=AFRT TO 12
```

```
1GO0 CTNF (N)=F'CFT*NSI (N)
1ם70 CTWF(N)=CTNF(N)*WM(N)
1680 NEXT N
1690}\quadY=AFF
17000 CTNF (Y-1)=(FTF'(1)/10%!)*NSI (AFFT) *FCFT
1710 CTWF (Y-1)=CTNF (Y-1)*WM (Y-1)
1720 CTNF (Y-\Omega)=(FTF(\Omega)/100!)*NSI (AFRT)*FCFT
17\Xi% CTWF (Y-2)=CTNF (Y-2)*WN (Y-2)
174g CTNF (Y-J)=(FTF(J)/10g!)*NSI (AFFT)*FCFT
1750}\mathrm{ CTWF (Y-J)=CTNF (Y-J)*WM (Y-S)
176% FOF N=1 TO 12
1770 SCNT=SCNT+CTNF (N)
17Bg TWIT=TWIT+CTWF(N)
1790 NEXT N
1800) FAR(1)=FCFT
1810}\textrm{FA}(1)=SCNT/TN
1820 REM XXXXXXXX
18301 IF (M-?=0) THEN 1860% ELSE 184%
134% IF (M=0) THEN 18G% ELSE 20%%
18S% FEM LONGLINE CATCHES, F CINST. WITH AGE
1860 TWIL=% :SCNL=0
1870 FOR N=AFFL TO 12
1380 CLNF (N)=PCFL*NSI (N)
1890 CLWF (N)=CLNF (N)*WM (N)
1900 NEXT N
1910) Y=AFRL
1920}\operatorname{CLNF}(1)=
1936 CLWF(1)=6
1940 CLNF (Y-1)={FLF(1)/100!)*NSI (AFFL)*FCFL
1950) CLWF (Y-1)=CLNF (Y-1)*WM(Y-1)
1960 CLNF (Y-2)=(FLF(2)/10%!)*NSI (AFRL)*FCFL
1970 CLWF (Y-2)=CLNF (Y-2)*WM (Y-2)
19日g! CLNF (Y-\Xi)={FLF(3)/10%!)*NSI (AFFL)*FCFL
1796 CLWF (Y-\Xi)=CLNF (Y-J)*WM (Y-S)
20%0 FOR N=1 TO 12
2010}
2%20}\mathrm{ TWIL=TWIL+CLWF(N)
20G0 NEXT N
204% FAR (2) =FCFT
2056 FA(2)=SCNL/TNI
20G0 REM TOTAL CATCHES FIRST Y AND ND AND W IN SEA
207% IF (M=0) THEN 208% ELSE 2S40
2%8% FA(\Xi)=FA(1)+FA(2)
209Q FAR(3)=FAR(1)+FAR(2)
210% TMT=%
2119 DIFA=FAF(S)-EM
212% FOF N=1 TO 12
21\Xi| IF (N-AMA<<#) THEN 2140 ELSE 2160
2148 MR=MO(N)
215% GOTO 217%
216% MR=MO(N)-FSI*DIFA
217# MTN(N)=MR*NSI (N)
218% VAO(N)=NSI (N)-CTNF (N)-CLNF (N)-MTN (N)
2190 MTW (N)=MTN(N)*WM (N)
22gg TMT=TMT +MTW(N)
```

```
221% NEXT N
2220 ETS (4)=4
22こ% FOK N=1 TO 11
224%}MM=N+
22\Xi0}1\textrm{NSF}(MM)=VAO(N
22G
2270] ETS (4)=BTS (4.) +WSF (MM)
228% NEXT N
2290) NSF(1)=NSI (1)
2उष分 WSF(1)=NSI (1)*WM(1)
2\Xi1\otimes ETS(4)=BTS (4)+WSF(1)
2\Xi2% GOTO 2990
2SEOG FEM TFAWL CATCHES FIFST Y AND NO AND W IN SEA
2\Xi4% IF (M-1=%)THEN 2\Xi5% ELSE 2670
2S50 TMT=%
2S6@ FOF N=1 TO 12
2370 DIFA=FAR(1)-EM
2\Xi80% IF(N-AMA<<=0) THEN 2\Xi9% ELSE 2410
2\Xi9%i MR=MO(N)
240% GOTO 2420
2410 MR=MO(N)-FSI*DIFA
2420}\operatorname{MTN}(N)=MR*NSI(N
24\Xig VAO(N)=NSI (N)-CTNF (N)-MTN (N)
2440 MTW (N)=MTN(N)*WM (N)
245% TMT=TMT +MTW(N)
2460 NEXT N
24701 BTS(5)=0
248@ FOR N=1 TO 11
2490) MM=N+1
25%g NSF (MM)=VAO(N)
2510 WSF(MM)=VAO(N)*WM (MM)
2520}\textrm{BTS}(5)=ETS(5)+WSF (MM
25ड0 NEXT N
2540 NSF (1)=NSI (1)
25501 WSF(1)=NSI(1)*WM(1)
256% BTS (5) = ETS (5) +WSF (1)
2570 FOR N=1 TO 12
258g TPF (N)=(CTNF (N)/NSI (N))*1gq
259g}\operatorname{TMF}(N)={MTN(N)/NSI(N))*10g
260% R=NSI (N)/(NSI (N)-CTNF (N))
2610) TEF(N)=LOG(R)
2620 S=NSI (N)/(NSI (N)-MTN(N))
2630}\operatorname{TME (N)=LOG(S)
264% NEXT N
265% GOTO 299%
266% REM LONGLINE CATCHES FIRST Y, NO IN SEA
2670 IF(M-2=0) THEN 2680 ELSE 2990
268% TMT=6
2690 DIFA=FAR(2)-EM
27%G FOR N=1 TO 12
271%. IF(N-AMA<<=%) THEN 272% ELSE 274%
27201 MR=MO(N)
27S& GOTD 275@
274% MR=MD(N)-FSI*DIFA
2750 MTN(N)=MR*NSI (N)
```

```
2760 VAO(N)=NSI (N)-CLNF (N)-MTN(N)
27701MTW (N)=MTN (N)*WM (N)
27B@ TMT=TMT+MTW(N)
2790% NEXT N
2800 ETS (b)=0
281% FOR N=1.TO 11
2820 MMN=N+1
28ङ% NSF(MM) = VAO (N)
2840 WSF (MM) =VAO (N)*WM (MM)
2850 ETS (G)=BTS(6)+WSF (MM)
286% NEXT N
2870 NSF(1)=NSI(1)
288% WSF(1)=NSI (1)*WM(1)
2日90; ETS (b)=ETS (b) +WSF (1)
29@g FOF N=1 TO 12
2910 LFF (N)=(CLNF (N)/NSI (N))*100
2920 LMF'(N)={MTN(N)/NSI(N))*10\varnothing
2930 R=NSI (N)/(NSI (N)-CLNF (N))
2940 LEF(N)=LOG(F)
295% S=NSI(N)/(NSI(N)-MTN(N))
2960 LME (N)=LOG (S)
2970% NEXT N
2990% FEM XXXX FIRST YEAR OUTFUTS XXXX
2990) X=M+1
300%% ON X GOTO 301%, 3020, S0心30
ङめ10) ETS(2)=ETS(4) :GOTO ङ区4%
Ј0%% ETS(2)=BTS(5) :GOTD З%44
\Xi|ミめ BTS(2)=BTS(6) :GOTO J&4め
3%401 LFRINT :LFRINT
3@5% LD=Lロ+1
306凶 LFRINT" M=":M
307母 LPRINT
S08g IF(IFC=0) THEN S110 ELSE S0%0
B090% LFRINT" FISHING MORTALITY COEFF.,TFAWL ";FCFT;" LONGL. ":FCFL
31%% GOTO 312%
3110% LPRINT" FRESCRIRED CATCH FT=";FT;" FL=";FL
\Xi120 LFRINT
313% LPRINT" INITIAL ND AND WEIGHT, NORM. 1$%g%G"
\Xi14% LFFINT" AGE NUMEEF WEIGHT
3150 FOR N=1 TO 12
\Xi160 MM=N-1
J170] LPRINT USING"########";MM:NSI(N);WSI(N)
\Xi18@ NEXT N
319@ LFRINT" NUMEEF OF RECRUITS,TRAWL";FTN;"LDNGL.";FLNN
3205 LFFINT
321g IF(M-1<=g) THEN 3220 ELSE SS70
S22@ LFRINT" FIFST YEAF CATCH, REMAIN. IN SEA AND MOFT. ' TFANL"
32\Xi% LFFINT" CATCH IN SEA MOFTALITY"
3240
325% FOR N=1 TO 12
S2601 MM=N-1
3270 LFRINT USING "#####.#";MM;CTNF(N);CTWF(N):NSF(N):WSF(N):MTN(N);MT
```

```
328% NEXT N
```

328% NEXT N
3290 LFRINT
3290 LFRINT
ST0g LFRINT" FISHING AND SENESC. MOFT., % AND INST. COEFF. (EX)"

```
ST0g LFRINT" FISHING AND SENESC. MOFT., % AND INST. COEFF. (EX)"
```

```
TSI% LFRINT" AGE %FM FM,EX. %SM SM.EX."
EE20 FOF N=1 TD 12
らBEQ MM=NV-1
TS40}
SEOg NEXT N
3`昭 LFRINT
SS70 IF(M-2=%) THEN SS90 ELSE 3`G%
```



```
S\Xi`% LFFINT" FIFST YEAR CATCH, FEMAIN. IN SEA AND MDRT. " LDNGLINES"
\Xi40\emptyset LFFINT" CATCH IN SEA MDRTALITY"
S410 LFRINT" AGE NUMEEF' WEIGHT NUMEEF WEIGHT NUME. WEIGHT"
3420 FOR N=1 TO 12
3430 MM=N-1
\Xi440] LFRINT USING "#####.#":MM:CLNF (N):CLWF (N);NSF(N);WSF (N);MTN(N);MT.
345% NEXT N
3460 LFFINT
S470 LFFINT" FISHING AND SENESC.MORT.. % AND INST. COEFF. (EX)"
\Xi48@ LPRINT" AGE %FM FM,EX. %SM SM,EX."
34901 FOF N=1 TO 12
BE60) MM=N-1
\Xi510 LFRINT USING "####.##":MM:LFF(N):LEF(N):LMF(N):LME(N)
SE20 NEXT N
S5`#
```



```
S55% LFRINT" FIFST YEAR TOT. CATCH, REMINDER AND MORTALITY"
35G% LFRINT" CATCH IN SEA MOFTALITY"
\Xi57@ LFFINT" AGE NUMEER WEIGHT NLIMEEF WEIGHT NUMEER WEIGHT"
3580 FOR N=1 TO 12
359# MM=N-1
360%% VAO(N)=CTNF (N)+CLNF (N)
\XiG1% VAT (N)=CTWF (N)+CLWF (N)
SG20 LFRINT USING "#####.#":MM:VAO(N);VAT(N);NSF(N);WSF(N);MTN(N);MTW(N
36こØ NEXT N
SG40] LFFINT
SG5@ LFFINT" FI.MOR. FAR(1)=";FAR(1);"FAR(2)=";FAR(2);"FAR(\Xi)=";FAF(\Xi
\Xi6\measuredangle\emptyset LFRINT" FI.MOR.TOT.% FA(1)=";FA(1);"FA(2)=":FA(2);"FA(\Xi)=";FA(3)
ふ́\mp@code{60 LFRINT}
3G8| LFFINT" WEIGHT OF FISH IN SEA AFTEF FIFST YEAF";BTS(2)
3696 LFRINT
37%% LFFINT" TOTAL MORTALITY, WEIGHT";TMT
3710 REM XXXXXX SECOND YEAR XXXXX
3720) IF (M=0) THEN S7S0 ELSE 40IS%
37S@ TOTAL CATCHES AND SECOND YEAR IN SEA
374% DIFA=FAR(उ)-EM
#750 FOF N=1 TO 12
3760% IF (N-AMA<=&) THEN 3770 ELSE 379%
3770 MR=MO (N)
378% GOTO उ80%
3790 MF:=MO(N)-FSI*DIFA
SGg%)VAO(N)=NSF(N)-CTNF (N)-CLNF (N)-(MR*NSF (N))
S1% NEXT N
3824 ETS(7)=4
38.3@ FOR N=1 TO 11
\Xi34% MM=N+1
\Xi85% NSS(MM)=VAO(N)
```

```
こ86\% WSS (MM) = VAO (N) *WM (MM)
3870 ETS (7) = ETS (7) +WSS (MM)
38Bg NEXT N
उ89\% NSS (1)=NSI (1)
5900 WSS (1) \(=\) NSI (1) *WN(1)
S910 ETS (7) =ETS (7) +WSS (1)
उ92\% DIFA=FAR(こ)-EIM
39.
\(3940 \mathrm{FOR} N=1\) TO 12
उ95\% IF (N-AMA \(=0\) ) THEN 3960 ELSE 3980
\(3960 \operatorname{SLNS}(N)=M O(N) * N S F(N)\)
3976 GOTO 4010
398
5990 IF (SLNS (N) : = 0 ) THEN 400\% ELSE 4010
\(400 \mathrm{SLNS}(N)=0\)
4010 SLTS=SLTS+SLNS (N)
402 g NEXT N
4g历 REM TFAWL CATCHES AND SECDND YEAR IN SEA
4040 IF (M-1< = 0 ) THEN 405 ELSE 428
405 DIFA=FAR(1)-EM
4060 STTF \(=8\)
\(407 \mathrm{FOF} N=1 \mathrm{TO} 12\)
4080 IF (N-AMA<: = 0 ) THEN 4090 ELSE \(411 \%\)
\(4090 \mathrm{STNF}(N)=M O(N) * N S F(N)\)
\(410 \%\) GOTO 4140
\(4110 \operatorname{STNF}(N)=(M D(N)-F S I * D I F A) * N S F(N)\)
\(4120 \operatorname{IF}(S T N F(N):=0)\) THEN 4130 ELSE 4140
\(4130 \operatorname{STNF}(N)=0\)
414 VAO \((N)=N S F(N)-C T N F(N)-S T N F(N)\)
4150 STTF=STTF+STNF (N)
416日 NEXT N
4170 BTS (8) \(=0\)
4180 FOR \(N=1\) TO 11
\(4190 \quad \mathrm{MM}=\mathrm{N}+1\)
\(4200 \mathrm{NSS}(\mathrm{MM})=\mathrm{VAO}(\mathrm{N})\)
4210 WSS (MM) \(=\) VAO (N) *WM (MM)
422g ETS (8) =ETS ( 8 ) +WSS (MM)
4230 NEXT N
424\% NSS (1) \(=\) NSI (1)
\(4250 \operatorname{WSS}(1)=\operatorname{NSI}(1) * W M(1)\)
4268) ETS (8) =ATS (8) +WSS (1)
4270 REM LONGLINE CATCHES AND SECOND YEAR IN SEA
4280 IF (M-2=0) THEN 4
429@ IF (M=母) THEN 4Sめ\% ELSE 45ड0
\(4 . \overline{3} \% \mathrm{DIFA}=F A R(2)-\mathrm{EM}\)
4.310 SLTF=
4.20 FOR \(N=1\) TO 12
```



```
\(4 \therefore 4 \% \operatorname{SLNF}(N)=M O(N) * N S F(N)\)
4.55 GOTO 4S9
\(4 . \dot{G} \otimes \operatorname{SLNF}(N)=(M O(N)-F S I * D I F A) * N S F(N)\)
\(4 \Xi 70\) IF (SLNF (N) < = 0 ) THEN 4SB\# ELSE 4.390
\(438 \% \operatorname{SLNF}(N)=g\)
\(439 \%\) VAO \((N)=N S F(N)-C L N F(N)-S L N F(N)\)
440 SL SF \(=S L T F+S L N F(N)\)
```

```
441% NEXT N
442% ETS(9)=%
44.%% FOF N=1 TO 11
444% MM=N+1
445% NSS (MM)=VAO (N)
44601 WSS (MM) =VAO (N) *WM (MM)
4470 ETS (9)=ETS (9) +WSS (MM)
4480 NEXT N
449% NSS(1)=NSI (1)
450% WSS (1)=NSI (1) *WM (1)
451% ETS (%)=BTS (9) +WSS (1)
452% REM RECFUITMENT AND DISCARDS
45ड% RTN=NSF (4)
4540 FTLL=NSF(5)
45Sg DIST=0! :DISL=0
4568 FOF N=1 TO S
457g I=5-N
4580 J=4-N
4590}\operatorname{TPD}(N)=FTFD(N)*CTWF(J
460% TFDN(N)=FTFD(N)*CTNF(J)
4\sigma10}\operatorname{LFD(N)=FLPD(N)*CLWF(I)
462g LFDN(N)=FLDP (N)*CLNF (I)
46S% DIST=DIST+TFD(N)
4640 DISL=DISL+LFD(N)
465% NEXT N
4660 X=M+1
4670 ON X GOTO 468%, 469%, 470%
468@ ETS(ङ)=ETS(7) :GOTD 4719
469% ETS(ङ)=ETS(8) :GOTD 4710
470@ BTS(3)=BTS(9):GOTO 471@
4710) REM XXXX SECQND YEAF OUTPUTS XXXX
4720 LFRINT :LFRINT
47ड@ LO=LO+1
4740}\mathrm{ IF(IFC=0) THEN 4750 ELSE 4770
475% LFRINT" SECOND YEAF; SAME GEAR AND CATCH"
4760゙ GOTO 4780
4770 LFFINT" SECOND YEAR, CATCH; TRAWL "; TWIT;" LONGLINE ";TWIL
478@ LFRINT" NUMEEFS AND WEIGHTS IN SEA AFTEF SECOND YEAF CATCH"
479%% LFRINT" AGE NUMEER WEIGHT"
480% FDR N=1 TD 12
4810] MM=N-1
4820) LFRINT USING "#####.#";MM:NSS(N);WSS(N)
48S@ NEXT N
484% LPRINT
485\Omega LFFINT" WEIGHT OF FISH IN SEA";ETS(S)
4860 LF'RINT :LFRINT
487% LFRINT" FESIDUAL MORTALITY"
488% IF(M=$) THEN 4890 ELSE 497@
489%I LPRINT" RESIDUAL MORT.: TOTAL
49@I| LFRINT" AGE MORT. NUMEERS"
4910/ FOR N=1 TO 12
492g MM=N-1
49\Xi| LFFINT USING "#####.#":MM;SLNS(N)
4940 NEXT N
495% LFFINT" TOTAL SENESCENT MORT. SUM, NOS";SLTS
```

```
4960 GOTO 514%
4970 IF(M-1=0) THEN 4980 ELSE 50%0
498% LFRINT" FESIDUAL MORT. TRAWL"
499% LFFINT" AGE MOFT. NUMEEFS"
50%0 FOF N=1 TO 12
5%10 MM=N-1
5g`g LFRINT USING "########";MM;STNF(N)
5ySQ NEXT N
5%4% LFRINT" TFAWL, FESIDUAL MOFT. SUM: NOS";STTF
5$5% GOTD 514%
5060) IF(M-2=6) THEN 5@170 ELSE 5140
5@170 LFFINT" FESIDUAL MORT. LONGLINES"
5080 LPRINT" AGE MOFT. NUMBERS"
5099| FOR N=1 TO 12
519G MM=N-1
511% LPRINT USING "######.#":MM:SLNF(N)
512g NEXT N
513# LFFINT" LONGLINE, FESIDUAL MORT. SUM, NOS":SLTF
514% LFRINT: LPRINT
515% LFRINT" RECFUITMENT NO*S,SECOND YEAR,TRAWL":RTN
S160̈ LFRINT" FECRUITMENT: LONGLINES":FTL
S17% LFRINT
S180% LFRINT" DISCARDS K:G, TRAWL";DIST:" LLINES:";DISL
S190 LFFINT" TFAWL LONGLINES
52%GOPRINT" AGE NO*S WEIGHT NO*S WEIGHT
5210 FDR N=1 TO S
522% LPRINT USING "#####.#";N;TFDN(N);TPD(N):LFDN(N);LFD(N)
523g NEXT N
52401 LFRINT:LFRINT
525% LF'RINT:LPRINT
526% IF(Lロ-5<=0) THEN 5``0% ELSE 528%
527g REM XXXXXXXXX
5280 FT=FT+8%
529% FL=FL+80
5%0% PCFT=FCFT+.85
5S1@ PCFL=FCFL+.05
5.30% K=K
5ご心め LD=あ
5S40] IF (IFC=0%) THEN 5SG0}\mathrm{ ELSE 5S5%
5S50 IF(k<4<=0) THEN 1260 ELSE 59S@
5.360% IF (K゙ージ=0) THEN 126% ELSE 59ङ心
5%7% IF(M=0) THEN 528% ELSE 5ड8%
5S8% IF (M-1=01) THEN 5S9% ELSE 5430
5ङ90 FOR N=1 TD 12
54g(0) FUK:(N)=CTNF (N)
5410 NEXT N
5420 GOTO 5470
5430) FOR N=1 TO 12
5440 FUK: (N)=CLNF (N)
545% NEXT N
5460% REM ENTER 3 TO 5 YEAF LOOF
5470 FOR N=1 TO 12
548% FFE (N)=NSS (N)
5 4 9 0 \% ~ N E X T ~ N
55%% IF (M-1=%) THEN 5510 ELSE 55S%
```

```
551% DIFA=FAR(1)-EM
552% GOTO 554%
55S6 DIFA=FAR(2)-EM
554% ETR=年
555% FOR N=1 TO 12
556% IF (N-AMA<=00) THEN 557% ELSE 559%
5570 MORY=MO (N)*FFE (N)
558% GOTO 56010
5S90 MORY= (MO(N)-FSI*DIFA)*FFE (N)
56@\emptyset IF(MORY<:=0) THEN 5610 ELSE 5620
5610 MORY=0
562% VAO (N)=PRE (N)-FUK (N)-MORY
56こ% IF(VAO(N)<=6) THEN 5640 ELSE 565%
```



```
5650} NEXT 
5660) FOR N=1 TO 11
5670 MM=N+1
568% NSS(MM)=VAO(N)
569% WSS (MM) =VAO(N)*WM (MM)
S7%% BTF=ETR+WSS (MM)
571% NEXT N
5720 NSS (1)=NSI (1)
57\Xi@ WSS(1)=NSI (1)*WM(1)
574% ETR=ETR+WSS (1)
575% LD=Lロ+1
576@ REM XXXXXXXXXXXX OUTFUTS Y J TO 5 XXXXXXXXXXXXXXXXX
577% LFRINT
5780̈l LFRINT" YEAR ":L口;" GEAR ";M
5790 LFRINT
58%g IF(IFC=\emptyset) THEN 5820 ELSE 581%
5810 LFRINT" CATCH, TRAWL ";TWIT;" LONGLINE ":TWIL
582@ LFRINT" IN SEA AFTER YEAF ":L口
58`\emptyset LFRINT
584% LPRINT" AGE NUMEER WEIGHT"
5850 FOR N=1 TO 12
586% MM=N-1
587!\mp@code{LFRINT USING"#####.#";MM:NSS(N);WSS(N)}
588% NEXT N
589% LFRINT
590% LFRINT" WEIGHT OF FISH IN SEA AFTER Y ":LD:" ";ETR
5910 LPRINT :LFRINT
592% IF(Lロ-5<゙=0) THEN 546% ELSE 528%
5930 END
```

