This report not to be quoted without prior reference to the council*
International Council for the Exploration of the Sea
C.M. 1990/Assess: 24

Brbhohket

# REPORT OF THE WORKING GROUP ON THE ASSEssment of the stocks of SARDINE, HORSE MACKEREL, AND ANCHOVY 

Copenhagen, 20-29 June 1990

This document is a report of a Working Group of the International Council for the Exploration of the sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.

[^0]```
;h Stocks do not automatically and invariably renew
nselves simply because they are called renewable
)urces" (Gulland, 1984).
ing this Working Group meeting, John Gulland died on
1 June 1990. All of the Working Group members wish
dedicate this report to him in recognition of his
`mous contribution to fisheries science.
```

1 INTRODUCTION ..... 1
1.1 Participants
1
1
1.2 Terms of Reference ..... 1
2 SARDINE (DIVISIONS VIIIC AND IXa) ..... 1
2.1 The Fishery
1
1
2.2 Effort and Catch per Unit Effort ..... 2
2.3 Fishery-Independent Information ..... 2
2.3.1 Acoustic surveys ..... 2
2.3.2 Egg surveys ..... 3
2.4 Length Composition by Fleet and by Country ..... 3
2.5 Catch in Numbers ..... 3
2.6 Mean Weight at Age ..... 4
2.7 Maturity at Age ..... 4
2.8 Fishing Mortality and Tuning of the VPA ..... 4
2.9 Recruitment ..... 5
2.10 Yield per Recruit ..... 6
2.11 Forecast ..... 6
2.12 Biologically Safe Limits ..... 6
2.13 Management Measures and Considerations ..... 6
3 HORSE MACKEREL - GENERAL ..... 7
3.1 The Horse Mackerel Fisheries ..... 7
3.2 Unit Stocks
3.2 Unit Stocks
8
8
3.3 Length Compositions by Fleet and by Country ..... 10
3.4 Age Determination ..... 10
3.5 Species Mixing ..... 11
3.6 Discards ..... 11
4 NORTH SEA HORSE MACKEREL (DIVISIONS IIIa, IVb, c AND VIId) ..... 12
4.1 The Fishery ..... 12
4.2 Fishery-independent Information ..... 12
4.2.1 Egg surveys ..... 12
4.2.2 Acoustic surveys ..... 13
4.3 Assessment ..... 13
4.4 Biologically Safe Limits ..... 14
4.5 Management Measures and Considerations ..... 14
5 WESTERN HORSE MACKEREL (DIVISIONS IIa IVa, VIa, VIIa- $c, e-k$, and VIIIa, $b, d, e$ ) ..... 14
5.1 The Fishery ..... 14
5.2 Fishery-independent Information ..... 15
Section Paqe
5.2.1 Egg surveys ..... 15
5.2.2 Trawl surveys ..... 15
5.3 Catch in Numbers ..... 16
5.4 Mean Weight at Age ..... 16
5.5 Mean Length at Age ..... 16
5.6 Reliability of the Numbers-at-Age and Weights-at-Age Data ..... 17
5.7 Maturity at Age ..... 17
5.8 Fishing Mortality and Tuning of the VPA ..... 17
5.9 Recruitment ..... 18
5. 10 Yield per Recruit ..... 19
5.11 Forecast ..... 19
5.12 Biologically Safe Limits ..... 20
5.13 Management Measures and Considerations ..... 20
6 SOUTHERN HORSE MACKEREL (DIVISIONS VIIIC AND IXa) ..... 20
6.1 The Fishery ..... 20
6.2 Effort and Catch per Unit Effort ..... 21
6.3 Fishery-independent Information ..... 21
6.3.1 Trawl surveys ..... 21
6.3.2 Egg surveys ..... 21
6.4 Catch in Numbers ..... 22
6.5 Mean Weight at Age ..... 22
6.6 Maturity at Age ..... 23
6.7 Fishing Mortality and Tuning of the VPA ..... 23
6.8 Recruitment ..... 24
6.9 Yield per Recruit ..... 24
6.10 Prediction ..... 24
6. 11 Biologically Safe Limits ..... 24
6.12 Management Measures and Considerations ..... 25
7 ANCHOVY (SUB-AREA VIII) ..... 25
7.1 Unit Stocks ..... 25
7.2 The Fishery ..... 25
7.3 Effort and Catch per Unit Effort ..... 26
7.4 Fishery-Independent Information ..... 27
7.4.1 Egg surveys ..... 27
7.4.2 Acoustic surveys ..... 28
7.4.3 Objectives of the egg and acoustic suxveys ..... 28
7.5 Recruitment ..... 29
7.6 Length Compositions by Fleet and by Country ..... 29
7.7 Catch in Numbers ..... 29
7.8 Mean Weight at Age ..... 30
7.9 Maturity at Age ..... 30
7. 10 Natural Mortality ..... 30
7.11 Assessment ..... 30
7.12 Trends in Bionass and Recruitment ..... 31
7.13 Catch Forecast ..... 31
7.14 Biologically Safe Limits ..... 32
7.15 Management Measures and Considerations ..... 32

## Section

8 DEFICIENCIES IN DATA ..... 33
8.1 Sardine
8.2 Horse Mackerel ..... 33
8.3 Anchovy ..... 33
9 RECOMMENDATIONS ..... 34
9.1 Research Recommendations
34
34
9.2 Management Recommendations ..... 36
10 WORKING DOCUMENTS ..... 36
11 REFERENCES ..... 37
Tables 2.1-7.16 ..... 41
Figures 2.1 - 7.10 ..... 114
Appendix A: Species Mixing in the Horse Mackerel Fisheries ..... 162
Appendix B: Reliability of the Numbers-at-Age and Weights-at- Age Data of the Western Horse Mackerel ..... 167-169

## 1 INTRODUCTION

### 1.1 Participants

| M.F. Borges |  |
| :--- | :--- |
| A. Eltink (Chairman) | Portugal |
| M.T. Garcia | Netherlands |
| S.A. Iversen | Spain |
| E. Kirkegaard | Norway |
| P. Lucio | Denmark |
| J. Massé | Spain |
| M. Meixide | France |
| G. Pestana | Spain |
| C. Porteiro | Portugal |
| P. Prouzet | Spain |
| B. Villamor | France |
| A. Uriarte | Spain |
|  |  |

Dr R. Grainger, ICES Statistician, also attended parts of the meeting.

### 1.2 Terms of Reference

At the 77 th statutory Meeting in The Hague in 1989, it was decided (C.Res.1989/2:4:17) that the Working Group on the Pelagic Stocks in Divisions VIIIc and IXa and Horse Mackerel (Chairman: Mr A. Astudillo) will be renamed the Working Group on the Assessment of the Stocks of Sardine, Horse Mackerel, and Anchovy and will meet at ICES Headquarters from 20-29 June 1990 to:
a) evaluate any new information available for defining stock units of horse mackerel;
b) assess the status of and provide catch options for 1991 within safe biological limits for the sardine stock in Divisions VIIIc and IXa, the horse mackerel stocks in sub-areas IV, VII, and VIII and Divisions IIa, IIIa, VIa, and IXa, and the anchovy stock in Divisions VIIIb, c.

The Chairman of this Working Group, Mr A. Astudillo, had resigned and was not available to chair the meeting of the Working Group. At the 1990 May meeting of ACFM, Mr A. Eltink was elected Chairman, subject to approval by the Council at the Statutory Meeting

## 2 SARDINE (DIVISIONS VIIIC AND IXa)

### 2.1 The Fishery

The officially reported total landings in 1989 were $137,126 \mathrm{t}$, which is $62,874 \mathrm{t}$ lower than the recommended TAC of $200,000 \mathrm{t}$ for that year. Table 2.1 and Figure 2.1 show that the total catches decreased from 1986 to 1989 after a stable level of about 200, 000 t during 1980-1985. Relative to this period, the decrease in the 1989 total catches was about $31 \%$.

The Portuguese catches in Division IXa in 1989 were at the same level as in 1987 and 1988. The Spanish catches in Divisions VIIIc and IXa have dereased since 1984, and in 1989 these catches Were
$43 \%$ lower than in 1984 (Figure 2.1). The decrease in the catches is not thought to be due to changes in the market value. The economic target for this species in Spain remained the same as in previous years.

The seasonal pattern of catches by the two countries has been constant since 1979, with about $39 \%$ and $64 \%$ of the annual catches being landed in the first and in the second half of the year, respectively (Tables 2.2 and 2.3 ).

The sardine is present along the coast of the Atlantic Iberian shelf waters (Divisions VIIIc and IXa) throughout the year, although abundance and distribution depend on the season.

The abundance of the main part of the sardine population in portuguese waters was estimated in surveys carried out during November/December (Dias et al., 1989). A survey was also conducted in spanish waters and the highest concentrations of sardine were found in the Galician waters (Pastor et al., 1986).

The availability of sardine shows seasonal and diurnal patterns being higher in the second half of the year than in the first and higher during sunset and sunrise due to its behaviour (Dias et al., 1989).

The portuguese landings during November/December decreased in 1989 compared to previous years due to bad sea conditions, but the Spanish landings remained at the same level (Table 2.3 and Table 2.3 in Anon., 1989).

Catch statistics of the 1 st quarter of 1990 were available to the meeting (Table 2.4).

Additional information on the French landings of sardine by divisions from sub-areas VII and VIII were also provided (Table 2.5).

### 2.2 Effort and Catch per Unit Effort

The available data on fishing effort and CPUE indices for Portuguese and spanish purse-seiner fleets are shown in Table 2.6. They were rather stable during the period 1980-1988 and similar changes are observed for both fleets. However, in 1989 the Portuguese CPUE increases and the spanish CPUE decreases.

### 2.3 Fishery-Independent Information

### 2.3.1 Acoustic surveys

Due to a serious accident with $R / V$ "Cornide de Saavedra" and bad weather conditions, no joint Spanish-Portuguese acoustic survey was carried out in 1989.

Considering the lack of acoustic abundance estimates for the sardine stock in 1989, which should also provide a recruitment index, efforts were made to carry out a joint acoustic survey for assessment. purposes in spring 1990. As R/V "Noruega" was not available, only Spain was able to survey ICES Divisions VIIIc and IXa north of the Portuguese border from 17 April to 7 May. This survey was carried out using the Soviet R/V "Ignat Pawlyn-
chenkov" with an acoustic system similar to the one of $R / V$ "Cornide de saavedra" and following the methods recommended by the Planning Group (Anon., 1986a). Table 2.7 shows the acoustic abundance estimates of sardine (number and biomass). These estimates are lower than those obtained from earlier surveys (Anon. 1990c).

Two kinds of abundance estimations of sardine were made by Spain for the period 1986-1989, using different calibrations:

1) the 1985 calibration (single beam transducer) was used in the 1986 estimations, and the 1987 calibration (split beam transducer) was used for 1987 and 1988 estimations;
2) the 1986-1988 estimations of sardine abundance using the calibrations done on each cruise (Porteiro et al., wD 1990).

The second option was chosen in this meeting because the results
seemed more consistent.

### 2.3.2 Egg surveys

A cruise was carried out with the purpose of evaluating the spawning biomass of the sardine, using the egg production method (batch fecundity). This cruise was coordinated with the acoustic survey for this stock.

The estimated spawning biomass of sardine in Spanish waters was $180,165 \mathrm{t}(\mathrm{cv}=0.50)$. Maximum biomass estimates occur on the Galician shelf and the western part of the Cantabrian shelf. Biomass estimates decrease towards the east. This trend is similar to the biomass estimate from the acoustic survey (Perez et al., 1989).

The estimates of spawning biomass of sardine from the egg survey in Portuguese coastal waters were as follows: northern region $32,900 \mathrm{t}(\mathrm{cv}=6.8)$; southern region $51,600 \mathrm{t}$ ( 0.63 ). These estimates were a quarter of the acoustic survey estimates. The major sources of uncertainty in the biomass estimates from the egg survey have been associated with the estimation of daily egg production (Po) and the batch fecundity (F), which together account for $70 \%$ of the sum of squares cvs of the egg production survey parameters (Cunha et al., 1989).

### 2.4 Length Composition by Fleet and by Country

The 1989 annual length compositions (million of fish in half-cm length groups) by fleet were provided by Portugal and Spain (Table 2.8). The smallest ( $5.0-8.5 \mathrm{~cm}$ ) and the largest ( $>24.5 \mathrm{~cm}$ ) fish were caught by the Spanish fleet (mean length of O-group is about 12.0 cm ).

### 2.5 Catch in Numbers

The total catch in numbers at age in Divisions VIIIc and IXa are given in Table 2.9.

The catch in numbers at age in 1989 from Portugal were calculated by quarter and area (northern, central and southern). The Spanish catch in numbers at age were calculated for half-year landings.

The 1987 year class contributes $35 \%$ of the total catch in number in 1989, and the strongest year class in the data period, that of 1983, is now included in the $6+$ age group.

### 2.6 Mean Weight at Age

At the 1989 Working Group meeting, the mean weights at age in the catch and in the stock were assumed to be the same for the whole historical series (1976-1988). These values were checked with the observed values and no differences were found. However, the Working Group decided from now on to use the annual available data for mean weights at age in the catch for 1989 to try to obtain more accuracy (Table 2.10). Revised annual catch and stock weights at age based on the available historical data will be provided to the next meeting of the working Group.

The mean weight at age of the stock adopted for 1989 was the same as for the whole period 1976-1989 (Tables 2.10 and 2.20).

### 2.7 Maturity at Age

The sardine spawning season occurs mainly between October/ November and April/May. In spring, the major spawning occurs in Cantabrian waters. In winter, there is an important spawning mainly off northern Portugal and off southern Galicia, and there is more widespread peak in the spring off the northern portuguese coast (Anon., 1988a). This makes determination of the maturity ogive difficult.

New maturity ogives were estimated from samples of the commercial landings from different areas of Division IXa (Portuguese waters) in the 4 th quarters of 1987 and 1988. These are shown in the text table below:

| Age group | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| \% Maturity |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Anon. 1989 | - | 65 | 95 | 100 | 100 | 100 |
| Pestana, 1989 | 11 | 40 | 80 | 100 | 100 | 100 |

The two maturity ogives appear considerably different. It is necessary to further investigate this problem with samples from the whole area of distribution of the sardine stock.

Maturity at age was assumed to be the same as reported last year (Anon., 1989).

### 2.8 Fishing Mortality and Tuning of the VPA

Terminal fishing mortality coefficients were estimated by tuning the VPA (Laurec-Shephered method) with catch numbers at age (ages $0-5)$ and associated effort data for both Spanish and portuguese
purse-seiner fleets (available for the periods 1981-1989 and 1980-1989, respectively) (Table 2.11). In the absence of 1989 acoustic surveys data, it was not possible to include the results from the Portuguese August surveys (1985-1988) and the Spanish March surveys (1986-1988) in the tuning analysis. A natural mortality of $M=0.4$ was assumed. In the absence of acoustic surveys in 1989, it was not possible to include the results of the Portuguese August surveys (1985-1988) and the Spanish March surveys (1986-1988) in the tuning analysis.

Table 2.12 shows the estimated fishing mortality and $\log$ catchability at age by fleet and year. Results indicate consistency among estimates (overall sigma-values ranging between 0.50 for age 4 and 0.250 for age 2, except for age 0 , which is not fully recruited and which has a value of 1.01). The log-catchability values plot against time for all age groups for each fleet are shown in Figure 2.2. There does not appear any trend with time.

It was decided to use the fishing mortality at age 2 ( $F=0.219$ ) and the value of terminal $S=1$ to run a SPVA. The results show a very flat exploitation pattern (Table 2.13).

An index of fishing level of $F=0.29$ was obtained by dividing the 1988 total catch by the total biomass estimated from the Portuguese and Spanish joint acoustic survey (March/April 1988) (Table 2.14). This is in agreement with the 1988 terminal $F$ for ages 2-5 from the separable VPA ( $F=0.22$ ), considering the underestimated biomass obtained from the acoustic surveys.

A final VPA was performed using the terminal populations of SPVA. Fishing mortalities, stock size, and biomass estimates generated by the final VPA are given in Tables 2.15 and 2.16 and Figures
$2.3 A$ and $B$.

The total biomass and spawning stock biomass for 1988 estimated from VPA are in reasonable agreement with the biomass estimates from the March-April 1988 acoustic survey (Table 2.17).
The VPA estimates of recruitment indicate a low level of 12 billion O-groups in 1985 and 10 billion in 1986 and in 1988. The strongest year class in the historical data series was that of 1983 ( 36 billion). The 1987 year class is also estimated to be strong (about 19 billion at age 0 ).

### 2.9 Recruitment

It was not possible to carry out the joint Portuguese/Spanish acoustic survey for recruitment in November-December 1989 (see
Section 2.3.1)

The RCRTINX2 program was used to regress the numbers at age 0 estimated by the final VPA against the O-group indices from acoustic surveys (Portuguese March/August and November surveys and Spanish March surveys) and indices from Portuguese and Spanish purse-seiners (Table 2.18).

Table 2.19 shows the predicted values for the 1987-1989 year classes. The predicted value for 1987 (18,680 million fish) corresponds to the value of the VPA estimate of 18,548 million fish. The predicted value for 1988 ( 15,677 million fish) is higher than the estimated year-class strength from the VPA $(9,944$
million fish). The number at age 1 in 1990 for the predictions was obtained from the predicted recruitment as O-group in 1989, the fishing mortality from the SVPA, and the natural mortality (Table 2.20).

### 2.10 Yield per Recruit

The input values for the yield per recruit and catch forecast are given in Table 2.20. The separable exploitation pattern was assumed for the prediction. Plots are shown in Figure 2.3C and $\mathrm{F}_{0.1}$ was estimated at 0.5.

### 2.11 Forecast

Stock numbers for ages 2 and older in 1990 are taken from the final VPA and for ages 0 and 1 from the RCRTINX2 analysis. It was assumed that the recruitment was the same for the period 19901992 and equal to the 1989 recruitment ( 12,949 millions at age 0$)$ predicted by the RCRTINX2 program (see Section 2.9).

Catch predictions for 1991 and 1992 are given in Tables 2.21 and 2.22 and in Figure 2.3D. Fishing at the status guo level produces catches of $145,000 t$ in both 1990 and 1991. This will leave a spawning stock biomass at spawning time in 1991 of $515,000 \mathrm{t}$, which is similar to the predicted 1990 spawning stock biomass of $519,000 t$, and 508,000 $t$ in 1991. Detailed output of this result is shown in Table 2.22.

### 2.12 Biologically Safe Limits

The fishing mortality levels of $F_{\text {high }} F_{\text {med }}$ and $F_{\text {low }}$ were estimated from the plot of recruigh'ent versus spawning stock biomass at spawning time for the period 1978-1988 (Figure 2.4).

The spawning stock biomass decreased after 1985 despite the occurrence of the strong 1983 year class. The recruitment fluctuated widely during the period 1978-1988.

After the 1983 year class, only the 1987 year class achieved a medium level. The 1984, 1985, 1986, and 1988 year classes were at a low level.

### 2.13 Management Measures and Considerations

Only one very strong (1983) year class occurred during the last eleven years, and this supported the fishery until 1988. The spawning stock biomass decreased from 1985 onwards. Current fishing mortality ( 0.23 ) is estimated to be at about the $F_{\text {med }}$ level (0.21).

Compared to the catch of $137,000 \mathrm{t}$ in 1989, the forecast for the catch in 1991 (assuming $F_{91}=F_{90}=F_{89}$ ) shows an increase to 145,000 t.

Low recruitment levels may lead to over-fishing in the near future and a sharp decrease in spawning stock biomass, therefore, a management regulation should be applied.

### 3.1 The Horse Mackerel Fisheries

The total international landings of horse mackerel in the northeastern North Atlantic in ICES Sub-areas II, IV, VI, VII, VIII, and IX are shown in Table 3.1. In the late 1970 s and early 1980s, the catches declined, but since 1982 the catches have increased steadily each year from about 100,000 to $372,000 \mathrm{t}$ in 1989. The catch in 1989 is at the same level as in 1976, which was the highest in the period 1974-1988.

The catch tables (Tables 3.1-3.7) are slightly different from last year (Anon., 1989) due to data revisions. The revisions of total catches (Table 3.1) are $0.3-1.1 \%$ for the different years except for 1988, when the catches were increased by $8 \%$ compared to that given last year (Anon., 1989).

## Division IIa

The catches in Division IIa have been at a low level except in the last three years (Table 3.2). From 1986 to 1988, the catches increased from about 200 to $6,800 \mathrm{t}$. In 1989 , the catch decreased by $2,000 t$ to $4,800 t$.

Sub-area IV
The catches in sub-area IV (Table 3.3) have increased from a level of about $20,000 t$ in the period 1984-1987 to $63,000 t$ in 1988. In 1989, the catches were $112,000 t$, which is almost twice the 1988 level. This was mainly caused by the increasing Norwegian catches.

## Sub-area VI

The catches in Sub-area VI are shown in Table 3.4. In the 1980s, the catches increased from about $10,000 t$ to $45,000 t$ in 1988. In 1989, the catches decreased to $33,000 t$.

## Sub-area VII

The catches in Sub-area VII (Table 3.5) fluctuated between 30,000 and $45,000 \mathrm{t}$ in the period 1980-1985. The catches then increased to about 138,000 $t$ in 1989, a catch level similar to that in the mid-1970s.

## Sub-area VIII

The catches in Sub-area VIII (Table 3.6) declined from about $125,000 \mathrm{t}$ in 1976-1977 to $22,000 \mathrm{t}$ in 1982. since then, the catches have increased, reaching about twice the 1982 level in 1989 (46,000 t).

## Sub-area IX

The catches in Sub-area IX (Table 3.7) have increased from 20,000 $t$ in 1985 to $38,000 t$ in 1989, which is similar to the catch level in the late 1970 s and early 1980 s.

## Quarterly distribution of the fishery

Based on data submitted by Working Group members, the Working Group was able to distribute $90 \%$ of the total catch by quarters and area (Table 3.8). The table demonstrates clearly that the fishery starts in the area south and west of Ireland in the first quarter with rather high catches. The catch in this area declines in the next three quarters, while the fishery starts further north in Division VIa and in Sub-area IV in the third and fourth quarter.

In the southern areas (Divisions VIIIc and IXa), the fishery is more stable throughout the year.

Based on catch data by rectangle submitted by Portugal, Spain, Denmark (except North Sea area), the Netherlands, and Norway, the distribution of the fishery by quarter is given in Figure $3.1 \mathrm{a}-\mathrm{d}$.

### 3.2 Unit Stocks

Egg and larval distributions suggest the existence of three spawning areas (Southern, Western, and North Sea). The main spawning periods are slightly different from area to area. In the southern area the main spawning period is January-August, in the Western area March-July, and in the North Sea May-July (Figure 3.2).

However, outside the spawning season horse mackerel are highly migratory. The distribution of the fisheries in 1989 (Figure 3.1a-d) and survey data provide indications of the migratory routes for the different spawning stocks, and these are summarised in Figure 3.2. In 1989, after spawning in the western area, horse mackerel moved northwards and were fished in the Norwegian zone in Division IIa by Norwegian purse seiners in July. In August, this fishery also entered the northeastern part of Division IVa. The bulk of the fishery then moved further southwards in September. In October, the fishery progressed further southwards in Division IVa and even into the northeastern part of Division IVb in November.

The Norwegian fishery ended during November, probably because the fish left the Norwegian zone, otherwise the fishery would have continued. During the period July-November 1989, the Norwegian catch accounted for $90,000 \mathrm{t}$ of horse mackerel, which was $77 \%$ of the total catch in Division IIa and Sub-area IV. The Working Group assumed that the horse mackerel left the fishing area mainly by a northwestern route via Scotiand and shetland. This suggestion is not supported by an increase in the catches in Division VIa during the fourth quarter (Table 3.8). However, considerable quantities of horse macerel were observed during the Scottish recruitment surveys in the fourth quarter (Anon., 1989). The migration pattern of the Western horse mackerel is assumed by the Working Group to be similar to the Western mackerel (Anon., 1990b).

During, or just after, the main spawning in the North Sea (Figure 3.2), the fishery started in the Channel in June and moved northwards along the Dutch coast in July and along the Danish west coast in August. During August, horse mackerel have been observed during the Danish acoustic surveys carried out in recent
years in this area (see section 4.2.2). During July, the North Sea component spawns in the German Bight, while the Western component enters the eastern part of Division Ila (see Figure 3.2).

Dutch trawl surveys in the third and fourth quarters in the years 1985-1987 demonstrated that horse mackerel was most abundant in the southern and southeastern part of the North Sea (Figure 3.3). As seen from the figure, only minor catches were taken north of

In October 1989, the fishery moved west and southward
3.2) through the Channel
(Figure

Results from the 1989 Basque egg surveys (Santiago and Eltink 1988; Santiago and Sanz, 1989; and Anon., 1990a) in the Bay of Biscay covering the area south of $46^{\circ} 30^{\prime} \mathrm{N}$ and east of $5^{\circ} \mathrm{W}$ show a continuous distribution of eggs during May-June, although the egg abundances are relatively low compared to the western spawning area.

Maturity and gonosomatic indices observed in catches from Divisions VIIIa,b, $c$ indicate that the main spawning period is March-July with a peak in May-June (at $15^{0}-16^{0} \mathrm{C}$ ) (Lucio and Martin, 1989; Lucio, WD 1990). Monthly egg sampling off San Sebastian, Santander, and Vigo in 1987-1989 and the egg surveys in 1987 and 1988 indicate that spawning starts in winter with a peak in March-April off Vigo, and later (April-May) off Santander and San Sebastian. The spawning is both more extensive and intensive in the Cantabrian area than in the Galician area (Sold et al., WD 1990; Lago et al., WD 1990).

Monthly plankton sampling along the Portuguese coast from October 1986 to January 1989 has shown that the main spawning starts in early winter and lasts until August, with a peak in March (Fariñha, WD 1990).

Due to the difference in development of the fishery in the northern area (Divisions IIa, IVa) and in the southern area (Divisions IVb, c and VIId,e), the Working Group suggests that the fisheries in these two areas exploited fish from two different spawning areas. The two components were probably mixing to some extent in parts of Division $I V b$ in the third and fourth quarters and in parts of Division VIIe, mainly in the fourth quarter.

However, further investigations need to be carried out to provide a firmer basis for conclusion about migration patterns and stock separation. The Working Group, therefore, recommends that tagging experiments, parasite studies (Eltink, 1988) as well as studies on fatty acid profiles and genetic variations (Borges et al., WD 1990) should be undertaken.

The age composition in the catches for the three "stocks" in 1989 are shown in figure 3.4. The age compositions of the catches prior to 1988 in the southern area must be treated with caution, because they will probably be revised after the Otolith Workshop meeting later this year.

Based on the data available, the Working Group maintained the basic assumption of the existence of three "stock units" (Anon., 1988, 1989). The Working Group allocated the catches in Divisions IIa, IVa, VIa, VIIa-c,e-k, and VIIIa,b,d,e to the Western
"stock". The catches in Divisions IIIa, $I V b, C$ and VIId were allocated to the North Sea "stock", and the catches in Division VIIIc and IXa to the Southern "stock" (Table 3.9).

### 3.3 Length Compositions by Fleet and by Country

The 1989 annual length compositions by fleet were provided by Denmark, Ireland, The Netherlands, Norway, Portugal, and Spain. These length distributions were available for all the major fishing fleets accounting for about $85 \%$ of the total landings in 1989. The length distributions by country for each fleet (in millions) of fish per cm-length group are shown in Table 3.10 for 1989. The quarterly distributions by fleet are available in the Working Group files from the Netherlands (1982-1989), Norway (1987-1989), Portugal (1989), Spain (1989), and Ireland (1989).

The working Group examined the level of sampling carried out in 1989 for the different areas. The data, which are summarised in Table 3.11, are based on the details submitted by Working Group members and the administrative report of the Pelagic Fish Committee (Anon., 1990d).

### 3.4 Age Determination

The otolith exchange programme organised since 1988 by the Working Group, and coordinated by M.F. Borges, INIP, Lisbon, is proceeding in 1990 with new samples as agreed last year, after a first evaluation of partial results from 1988-1989.

Otolith samples are circulated between different countries fishing horse mackerel. Otolith readings should be completed as soon as possible before the next otolith workshop.

Following the recommendation of the 1989 working Group, it was agreed at the 77th Statutory Meeting (C.Res. 1989/2:15) to hold a Workshop on Horse Mackerel Otolith Reading as stated below:

A Workshop on Horse Mackerel Otolith Reading (Chairman: Ms F. Borges, Portugal) will be held in Lisbon from 21-27 November 1990 at national expense to improve the otolith interpretation among the countries involved in the otolith exchange programme carried out during 1988-1990.

This Working Group recommends that the Workshop should:
a) Evaluate the results of the otolith exchange programme carried out during 1988-1990.
b) Evaluate the different methods of otolith preparation.
c) Advise on for which age groups valid age readings can be achieved.

### 3.5 Species Mixing

In the minutes of the ACFM meeting of May 1989, it is mentioned that "the presence of $T$. mediterraneus in the Bay of Biscay must be confusing catch data and the egg survey data and should be examined by the working Group", and that "for Southern horse mackerel, there is the additional problem of a mixture of two species in the catches". It is also stated in the minutes of the ACFM meeting of October-November 1989 that one other Trachurus species, $T$ picturatus, may be present in the catches.

All available information concerning species mixing is presented in Appendix A.

In the Western horse mackerel stock, species mixing is regarded as negligible.

In the Southern horse mackerel stock, mixing of Trachurus picturatus is low. Reported landings and biological sample data do not include this species which only occurs in the south of Division IXa.
T. mediterraneus occurs in the southeastern corner of the Bay of Biscay (Divisions VIIIb and c), where relatively high temperatures prevail. In recent years, the occurrence of Trachurus mediterraneus has increased to about $6 \%$ of the total landings of southern horse mackerel. T. mediterraneus should not be included in the catch statistics for southern horse mackerel. In the past, the biological samples did not contain $T$. mediterraneus.

### 3.6 Discards

The Working Group believes that considerable amounts of horse mackerel might be discarded or slipped at present or in the future when a fishery is closed after reaching the quota. Discarding seems to be very variable depending on the fleet, time period, weather conditions, catch size, loading or freezing capacity, sea area, country, and even the fishing ports involved. The discards were not only confined to juveniles but to every size of horse mackerel, because for some fleets this species is taken only as a by-catch (demersal fisheries).

In Divisions VIIIc and IXa, the discarded catches are expected to be low.

In Sub-areas IV, VI, VII, and VIII (except Divsion VIIIc), discarding is known to occur, but information on the extent to which it occurs is lacking. The fleets fishing horse mackerel for fish meal production are known not to discard.

From most countries the information on discarded catches by different fleets is very scarce. For Sub-area VII and Divisions VIIIa,b, preliminary data have been presented. These discards by Spanish trawlers in sub-area VII reached nearly $1,000 t$ in 1988. In Divisions VIIIa,b in 1987, an incomplete estimate of horse mackerel discards by the spanish trawlers indicated that they were very variable, depending on the time period and also on the ports of origin of the fleet (Igelmo et al., 1988).

The Working Group recommends that in all areas more information about the quantities of discards should be collected.

4 NORTH SEA HORSE MACKEREL (DIVISIONS IIIa, IVB, C AND VIId)

### 4.1 The Fishery

The horse mackerel fishery by sub-area is described in Section 3.1. The total landings of the North Sea horse mackerel in Divisions IIIa, IVb-C, and VIId by year are shown in Table 3.9. The North Sea horse mackerel catches before 1984 were below $10,000 t$. In 1984 the catches increased to $29,000 t$, and have been at that level until 1989 except for 1987. In 1989, the catches were $50,000 \mathrm{t}$, of which $41,000 \mathrm{t}$ were taken in Divisions IVb and c , in the third and fourth quarters (Table 3.8).

Small quantities of this stock were taken in Divisions IIIa (1,000 t) and VIId (6,000 t).

Only the fishery in Division VIId is a directed fishery for horse mackerel, while the catches in Divisions IIIa, IVb, and IVc are taken as by-catches, mainly in the small-meshed industrial fishery.

### 4.2 Fishery-independent Information

## 4.2 .1 Eqg surveys

During the period 10 April to 18 July 1989 the spawning area of North Sea horse mackerel was investigated by research vessels from The Netherlands (Eltink, WD 1990). Based on the plankton samples and temperature observations obtained during this period the egg production was estimated. To estimate the spawning stock biomass, the fecundity-weight relationship of 1,655 eggs per gran pre-spawning female was used; this has been estimated for the Western horse mackerel by Eltink and Vingerhoed (1989). The total. number of stage I eggs were converted into a pre-spawning stock biomass, and this was then increased by $5 \%$ to obtain the spawning stock biomass (Eltink and vingerhoed, 1989). The total horse mackerel egg production in 1989 of $171 \times 10^{12}$ stage I eggs represents a spawning stock biomass of $217,000 t$, which is about twice as high as the 1988 estimate of $110,000 t$ (Figure 4.1).

This increase of about $100 \%$ in the egg production and biomass from 1988 to 1989 might have been partly caused by relatively more spawning in the English Channel in 1988. This area was not covered in either year. A more noxthward spawning in 1989 would result then in a higher egg production during the third coverage in the North Sea, However, the higher egg productions during the fourth and fifth coverages in 1989 indicate that spawning took place at a higher level and that spawning continued later until the end of July 1989 (Figure 4.1).

The increase in egg production and biomass from 1988 to 1989 might partly be due to the recruitment of the two good year classes of 1985 and 1986 (Table 4.1). The mean length at age of these year classes was, respectively, 25 cm and 26 cm and already a large proportion could be spawning (see also section 5.7). This
increase of about $100 \%$ cannot have been caused by a large increase in the proportion of mature fish of the 1982 year class from one year to the next year.

### 4.2.2 Acoustic surveys

Since 1985 an acoustic survey aimed at herring has been carried out in the eastern central North Sea by the Danish Institute for Fisheries and Marine Research. The estimated biomasses of horse mackerel for the standard area (Figure 4.2) are given below:

$$
\begin{array}{r}
1985-500,000 t \\
1986-523,000 t \\
1987-207,000 t \\
1988-126,000 t \\
1989-6,000 t
\end{array}
$$

The area covered during the survey has been extended since 1985. However, the results given above refer to the standard area along seen every west coast, where the highest concentration has been over the whole area The total estimated amount of horse mackerel was 18,000 t. 1989

There has been no change in the survey strategy since 1985, but the survey conditions were very poor in 1989. Due to bad weather and very high concentrations of jellyfish, the results from this survey are rather uncertain. Compared with previous years' surveys the biomass estimated from 1989 is very low, probably due to a delay in the migration from the spawning area to the north (see Sections 4.2.1 and 4.3).

### 4.3 Assessment

The spawning stock biomass estimated by the egg survey in 1989 was 217,000 t. Spawning occurs during May-July in the southern and eastern central North Sea, close to the coast. Spawning con1988.

The reason for the very low abundance of horse
the Danish acoustic survey which cover horse mackerel during spawning area in late July and which covered the area north of the relatively late spawning in 1989 ly August, may partly be the the horse mackerel to the surveyed area
The Working Group consid
liable, indicating a in 1989 in the order of $200,000 t$. catches ind from the Dutch commercial and research vessel number in 1989) and two strong 1982 year class (about $33 \%$ in 1986 ( $13 \%$ and $28 \%$ ) (Table 4.1). The strong year classes, 1985 and Table 4.1 is based on a limited The age composition given in be taken as a rough indication of number of samples, and may only stock.

Samples from the commercial catches are only available for the last three years, and only for a small proportion of the catches. For this reason it was not possible for the Working Group to do an analytical assessment on the North sea horse mackerel.
As there is little directed fishing for horse mackerel in this area, the Working Group believes that the effort has been relatively constant, and that the high catches since 1984 are due to the strong 1982 year class.

### 4.4 Bioloqically Safe Limits

1) There is no evidence that low recruitment occurs at low SSB levels.
2) There is no indication that an historically low level of SSB will be reached in 1990 or 1991.

### 4.5 Management Measures and Considerations

The TAC for the North Sea horse mackerel should only apply to the areas where the stock is fished (Divisions IIIa, IVb, $C$, and VIId).

## 5 WESTERN HORSE MACKEREL (DIVISIONS IIa IVa, VIa, VIIa-c,e-k, and VIII $a, b, d, e)$

### 5.1 The Fishery

The horse mackerel fishery by sub-area is described in section 3.1. The total landings of the Western horse mackerel in Divisions IIa, IVa, VIa, VIIa-c,e-k, and VIIIa, b, d, e by year are shown in Table 3.9. The Western horse mackerel catches increased gradually from 40,000 t in 1982 to 250,000 t in 1989.

## Divisions IIa and IVa

The catches in these divisions increased from 0 to $73,000 t$ over the period 1982-1989 (Table 3.9), with Division IVa as the main fishing area.

## Division VIa

See Section 3. 1.
Divisions VIIa-c, e-k
Catches in Divisions VIIa-c,e-k increased from $32,000 t$ to $130,000 \mathrm{t}$ from 1982 to 1989. The catches of Division VIId, which amounted to between 1,000 and 6,500 trom 1982 to 1989, were removed from sub-area VII (Table 3.9) and were allocated to the North Sea horse mackerel area (see Section 3.1).

## Divisions VIIIa, $b, d, e$

Compared to Sub-area VII, the horse mackerel catches in Divisions VIIIa,b,d,e shown in Table 3.9 are relatively low, even if they increased from 3,000 to $12,000 t$ from 1982 to 1989.

### 5.2 Fishery-independent Information

## 5.2 .1 Egq surveys

Five coverages of the standard area were carried out during the western egg survey (Anon., 1990a). The total stage I egg production estimate for each survey period was plotted against the mid-cruise date to give a production curve based on only four points as shown in Figure 5.1 (from Anon., 1990a). No data on the egg production in period 1 were available, although it is known this survey (Anon., 1990a). Were present in some of the samples of

In addition, production curves were calculated for the area east and south of the standard area. The values for each area are presented in Table 5.1 (from Anon., 1990a).

Using the data from periods 2 to 5 , a total seasonal production of $1.51 \times 10^{15}$ stage eggs is obtained for the standard area. In cluding the areas north, east, and south of the standard area increases the estimate by $11 \%$ to $1.68 \times 10^{15}$. Spawning is also thought to occur to the west of the standard area, but it is unlikely that much egg production was missed.

Table 5.2 shows the estimates of total egg production in 1989 and the revised estimates for earlier years of pre-spawning and spawning stock biomass of Western horse mackerel derived from the western egg survey. For calculation of all total egg productions, the fecundity/weight relationship of $1,655 \mathrm{egg}$ per g female has been applied (Eltink and Vingerhoed, 1989). The arguments for using this fecundity estimate are given in Anon. (1990a). The total fecundity estimate of Nazarov (1977) used in earlier biomass estimates (Anon., 1989) was about half the recent estimate. The spawning stock biomass estimates in this year's report are, therefore, approximately doubled compared to earlier estimates.

### 5.2.2 Trawl surveys

As pointed out in last year's report (Anon., 1989), trawl surveys in the fourth quarter in the Western areas and the North Sea areas do not accurately indicate the strength of $0-$ and 1 -group horse mackerel. Therefore, these results are not used to estimate recruitment strength.

In accordance with the conclusions of the meeting of the recent Mackerel Working Group (Anon., 1990b), it is recommended that a planning group should be established by ICES, which would study all existing fish surveys carried out in the western areas with a view to establishing a proper standardized international survey which could possibly obtain recruitment indices.

### 5.3 Catch in Numbers

The landings and discards for the Western horse mackerel areas are given in Table 3.9. However, the estimates of discards are not accurate since only two countries provided data on discards. The horse mackerel is only aged by the Netherlands. Therefore, the total international catch for the Western area (Table 3.9) was raised according to the Dutch catch in numbers by age groups (see also Section 5.6).

The catch statistics were revised for some years (Section 3.1). However, these revisions were minor except for 1988. The catch this year was revised upwards, by $9.4 \%$, and the catch in numbers was revised accordingly.

The percentages of the catches covered by Dutch biological age sampling for the period 1982-1989 are shown in the text table below:

| Category | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dutch <br> catch ( $t$ ) | 27,500 | 36,200 | 54,700 | 57,500 | 51,700 | 75,150 | 49,140 | 80,350 |
| International <br> catch ( $t$ ) | 41,588 | 64,862 | 73,625 | 80,551 | 105,665 | 157,240 | 186,100 | 248,843 |
| \% covered with <br> age sampling | 66 | 56 | 74 | 71 | 49 | 48 | 26 | 32 |

### 5.4 Mean Weight at Age

## Mean weight at age in the catch

The mean weights at age in the catch from 1982-1989 are shown in Table 5.3 and were based only on Dutch biological sampling (see also Section 5.6). The mean weights at age in the catch decreased markedly for each age group during this period.

## Mean weight at aqe in the stock

The mean weights at age in the stock from 1982-1989 are shown in Table 5.4. They are the weighted means of the mean weights at age from the first and second quarters in Division VIIj and were based on fish in all maturity stages from the spawning area caught by Dutch freezer trawlers (see also section 5.6). The mean weights at age in the stock decreased markedly for each age group during this period.

### 5.5 Mean Length at Age

The mean lengths at age in the catch from 1982-1989 are shown in Table 5.5 and were based only on Dutch biological sampling. The mean length at age decreased markedly for each age group during this period.

### 5.6 Reliability of the Numbers-at-Age and Weights-at-Age Data

The validity of the numbers at age and the weights questioned at the ACFM meetings in May and Neights at age was fore, special attention is given to exp and November 1989. Thereage and the weights-at-age data are obtain how the numbers-atobtained (Eltink, WD 1990).
Until now, the Netherlands is the only country ageing the Western horse mackerel. For the biological market sampling program, most other countries usually collect length distributions by division numbers at, and then age/length keys are applied to obtain the applying a length/weight the mean weight at age is obtained by weights of the fish for relationship or by using the mean another sampling system is age/length key. In the Netherlands, reliability of the numbers discussed in Appendix A.

The Working Group regarded the Dutch age/length as appropriate to achieve reliable numbers sampling system weights at age for the Dutch catches. The Dutch at age and mean were raised according to the length distributions of some international catch, although the with the Dutch length distribuntries/fleets did not fully agree with the Dutch length distributions (see Table 3.10).

### 5.7 Maturity at Age

The Working Group decided not to change the maturity at age (Table 5.8) during this meeting, although the proportion mature of the 1982 year class in 1986 should be reduced from 0.6 to 0.1 if the spawning stock biomass is to correspond with the estimate from the egg survey (see Section 5.8).

Based on the maturity-at-length data, the length at which $50 \%$ is mature was expected to be about 23 cm (Anon., 1986b). The mean length of the 1982 year class in 1986 was 23.7 cm (Table 5.5). Therefore, the proportion mature was assumed to be 0.6 for this year class. Since there has only been one year class (1982) spawning $1^{15}$ the increase in the total egg production from 0.5 to crease in eggs from 1986 to 1989 should be ascribed to an inmaturity at le proportion mature of the 1982 year class. The of estimating the properefore, not expected to be a good way dity per gram female poportion mature. The potential total fecunconversion of realized fecundity of firsmas seems to differ very much from the at age in the stock (Table 5aturing fish. From the mean weight of the 1982 year class in 1986 (it is seen that the mean weight the weight of the 4 -year-olds in the previous years. compared to
The Working Group be undertaken to revise the mather investigations should 1990 for next year's meeting.

### 5.8 Fishing Mortality and Tuning of the VPA

To obtain the exploitation pattern, several separable VPAs were run. With a terminal fishing mortality of 0.14 , which matched the spawning stock biomass estimate for 1989 based on the egg surveys
and a reference age of 7 (the 1982 year class), the selection patterns for ages 1-14 for four different values of terminal $S$ (0.6, 1.0, 1.4, and 1.8) were obtained (Figure 5.2).

A flat exploitation pattern was assumed for the fully recruited age groups (age 6 and older). However, the year classes older than the strong 1982 year class are all weak except for the 1979, 1970, 1969, and 1968 year classes. The 1982 year class dominated the catches in 1989 ( $89 \%$ of the total catch in numbers) (Figure 5.3 and Table 5.7) as it has done every year since entering the fishery in 1984-1985. A terminal $S$ of 1.0 did not produce a flat exploitation pattern on the fully recruited age groups (Figure 5.2), and this is probably due to sampling and ageing problems. The working Group decided to run a new separable VPA with a $12+$ group to get a better exploitation pattern. The exploitation patterns for three runs with terminal $S 0.8,1.0$ and 1.2 are shown in Figure 5.4. Table 5.6 shows the output of the SVPA with terminal $F$ of 0.14 , reference age 7 and a terminal $S$ of 1.0 .

The exploitation pattern derived from this SVPA was used to generate VPA estimates of the spawning stock biomass to fit that of 2.134 million tonnes from the egg survey in 1989 (Table 5.2). The catch in numbers and maturity by age group are shown in Tables 5.7 and 5.8. The output of the VPA are given in Tables 5.9 and 5.10 and Figures 5.6 A and B .

The VPA (Table 5.10) matches the spawning stock size estimate based on the egg surveys rather well both in 1983 and 1989, while it is far out in 1986. This might be caused by a wrong maturity proportion for the strong 1982 year class assumed for that year (Table 5.8) or by the fecundity of the 1982 year class being lower than what was assumed for the spawning stock biomass estimate from the egg surveys (section 5.2.1). About 75\% of the VPA spawning stock in 1986 was the 1982 year class. If the proportion mature for this year class is reduced from $60 \%$ to $10 \%$, then the VPA-generated spawning stock biomass matches the egg survey estimate. The growth of the 1982 year class is reduced compared to other year classes and so it may also have matured later. According to Dutch data, the mean length of this year class in 1986 was 23.7 cm (Table 5.5), which is $1.6-4.5 \mathrm{~cm}$ less than usual for 4-year-old fish. The length at which $50 \%$ of the horse mackerel reach sexual maturity in Division VIa and Sub-area VII is 23-24 cm (Anon., 1986 b ). Therefore, a maturity of $60 \%$ of an average length of 23.7 cm is probably too high (Section 5.7).

### 5.9 Recruitment

Based on the frequent occurrence of weak year classes (only about 7 strong year classes in the last 50 years, Eltink and Kuiter, 1989), the predicted recruitment at age 1 in 1990, 1991, and 1992 was taken to be the average of the weak 1981, 1983, 1984, 1985, and 1986 year classes, as was assumed by the Working Group last year. Because of the new fecundity estimate used (Section 5.2.1), 1247 million recruits (rounded to 1250) has been used instead of the 100 million calculated last year. This value corresponds to about $3 \%$ of the recruitment of the 1982 year class at age 1 .

## 5. 10 Yield per Recruit

The long-term yield per recruit and spawning stock biomass per recruit curves against $F$ were calculated using input data shown in Table 5.11 and are shown in Figure 5.6 C . The $\mathrm{F}_{0.1}$ was estimated to be 0.15 for $M=0.15$.

### 5.11 Forecast

To carry out catch and stock predictions, the following parameters and assumptions were used, together with the parameters given in Table 5. 11.

1) The stock size in number at ages 4-12+ at 1 January 1990 was taken from the VPA (Table 5.10).
2) The number of 1-group in 1990, 1991, and 1992 was set at 1250 million (see Section 5.9).
3) The numbers of 2- and 3-groups in 1990 were calculated at 1050 and 900 million, respectively (which is 1250 reduced by $M$ and a low $F$ ).
4) The proportion mature at age was assumed to be the same as in 1989.
5) The weights at age in the catch and in the stock were assumed to be the same as in 1989 for ages 1-7; for older ages, weights were estimated from the following regressions based on the weight in the catch and the stock for the last five years from Ducth data (Eltink, pers. comm.) :

1979 year class: Weight in catch $=142.8+11.5 \times$ age $\left(r_{2}^{2}=0.462\right)$
1979 year class: Weight in stock $=68.8+19.7 \times$ age $\left(r_{2}^{2}=0.762\right)$
1982 year class: Weight in catch $=40.6+17.4 \times$ age $\left(r_{2}^{2}=0.895\right)$
1982 year class: Weight in stock $=26.4+19.2 \times$ age $\left(r^{2}=0.992\right)$
6) The separable fishing pattern (smoothed) from 1989 was applied (Table 5.6). Since the catches were dominated by the 1982 year class, the status quo fishing mortality was taken to be the weighted $F$ for ages $3-11$ in 1989 (Table 5.9).
7) The catch in 1990 was assumed to be about 290,000 t. This assumption is based on the agreed EC TAC of $203,000 t$ in the western areas plus a Norwegian fishery at a similar level as in 1989 (90,000 t).

The predictions for stock and catch in 1991 and 1992 wexe cal-
 are not used because $F$ is 5.12 . The options ${ }^{1}$ pigh and $F$ med uncertain because of the extremely strong 1982 and F high is rather

The spawning stock will decline under all options; even without a fishery in 1990, the spawning stock will go down. A fishery in 1990 of about $290,000 t$ corresponds to an increase of $F$ of $24 \%$ of $\mathrm{F}_{89}$.

### 5.12 Biologically Safe Limits

The results of the prediction have to be considered with caution because the stock is dominated by one year class and the recruitment is very low. If the fishery continues in 1990-1992 with the same $F$ as in 1989, the 1982 year class will account for $85 \%, 77 \%$, and $74 \%$ of the catches, respectively, for each of the years in that period (Table 5.13). In 1989, this year class also totally dominated the catches ( $89 \%$ ) (Figure 5.3).

Without significant recruitment the stock totally depends on the 1982 year class. To illustrate this, the Working Group ran a one cohort analysis for the 1982 year class. This was run to match the spawning stock biomass of 2.13 million tonnes in 1989 based on the egg surveys. The results are shown in Figure 5.5. The development of this cohort with a yearly fishery of $290,000 \mathrm{t}$ from 1990 and onwards is also shown. The weight in catch and stock are based on the regressions given in Section 5.11. With such a level of fishery, the cohort will last until the middle of the 1990s (Figure 5.5).

Due to individual growth, the biomass increased until 1987. Since then, due to natural mortality and the fishery, the biomass has declined. Therefore, until recruitment improves, the catches of Western horse mackerel taken should be rather conservative.

### 5.13 Management Measures and Considerations

The TAC set for 1991 should apply to all areas in which Western horse mackerel are caught, i.e., Divisions IIa, IVa, VIa. VIIa-c,e-k, and VIIIa,b,d,e.

Since both the stock and the fishery are rather dependent on the 1982 year class, the fishery should be reduced to a lower level until recruitment improves. The Working Group, therefore, suggests that the catch should be reduced to a level of $10 \%$ of the spawning stock size, which means a catch of $170,000 t$ in 1991 (Table 5.12).

## 6 SOUTHERN HORSE MACKEREL (DIVISIONS VIIIC AND IXA)

### 6.1 The Fishery

Total catches from Portugal and Spain in 1989 were estimated by the Working Group as 69,734 t for Divisions VIIIc and IXa. Tables 3.1, 3.6, and 3.7 present the estimated catch by country in subareas VIII and IX. Table 3.9 shows the catches by stock from 1982-1989 by division or sub-area. Table 6.1 provides more detailed information concerning Divisions VIIIc and IXa (Spanish area) and Division IXa (Portuguese area) by fleet. In Division VIIIc and IXa (Spanish area), the estimated catch for 1989 shows an increase of $19 \%$, due to an increase in the purse-seine fishery catch of about 11,000 $t$, and the estimated catch in Division IXa (Portuguese area) is at the same level as in 1988.

It is known that discards are negligible in these divisions and, therefore, the estimated landings from 1981-1989 were adopted by the Working Group to provide the stock assessment of the assumed southern stock.

### 6.2 Effort and Catch per Unit Effort

Table 6.2 presents the commercial CPUE series from 1979 to 1989 for the Portuguese trawl fleet and for the Spanish and portuguese purse-seine fleets. The CPUE of the Portuguese purse-seine fleet shows an increase of $17 \%$, while the Portuguese trawl and the Spanish purse-seine CPUE decreased by about $30 \%$. Figure 6.1 shows the effort trends for different fleet and areas. The figure indicates that in the period 1981-1989 the effort has been decreasing trawl fishery. 1989, the effort only increased in the Portuguese

### 6.3 Fishery-independent Information

### 6.3.1 Trawl surveys

Table 6.2 also shows biomass and abundance indices estimated from June/July and October/November bottom surveys carried out in Division IXa (Portuguese area), and the september survey which covers the rest of Division IXa (south Galicia) and the west of Division VIIIc (north Galicia). The latter was carried out in 1989 with a different research vessel, due to the unavailability of the usual spanish research vessel in 1989. The biomass index from the Portuguese October survey shows a decrease from 26.0
$\mathrm{Kg} / \mathrm{h}$ in 1988 to $11.7 \mathrm{Kg} / \mathrm{h}$ in 1989 . In Table 6.3, the abundance estimates of these surveys are presented by age group. It can be observed that in 1989 the estimated recruitment index in the october survey is at a higher strong by the CPUE from. The 1989 year class is indicated as September survey off Galicia confirms a from purse seine fleet. The 1989 year class.

The 1987 year class, which was indicated to be strong by the October survey in 1988, does not appear strong in the 1989 October survey. The abundance of adult fish (3+) as estimated by the October survey was very high in 1988 as compared to the previous years. In 1989, it returned to its previous level. This indicates that the adult fish (3+) are very much affected by seasonality. CPUE indices from the commercial catches show the same pattern as the survey, but much less pronounced because those data cover the whole year.

## 6.3 .2 Egg surveys

Portugal carried out monthly sampling of horse mackerel larvae from October 1986 to January 1989 along the Portuguese coast (Farinha, WD 1990). Off the north of Portugal, the peak occurrence of larvae was around April, whereas off the south of Portugal larvae were present throughout the year.

Since 1987, routine monthly ichthyoplankton sampling has been carried out along three transects off the northwest and north of Spain. A higher abundance of eggs was found from february to July (Sola et al., WD 1990; Lago et al., WD 1990).

In April 1987 and April-May 1988, two eggs surveys were carried out along the spanish coast. Horse mackerel eggs were present
throughout the Cantabrian sea, but larger concentrations were located off the Asturian coast (Lago et al., WD 1990).

Three other eggs surveys, aimed at sampling anchovy eggs, were conducted in 1987 (May-June), 1988 (May), and 1989 (May-June). The coverage of the area was limited to the eastern part of the Cantabrian Sea, but extended northwards as far as $47^{\circ} \mathrm{N}$ (Santiago et al., 1988; Santiago et al., 1989; Motos et al., 1990). Relatively low egg abundances were found in all three years in the area covered in Division VIIIc compared to the Western horse mackerel spawning area (Anon., 1990a).

The working Group recommends that egg surveys should continue to be carried out in Divisions VIIIc and IXa in order to try t.o estimate the spawning biomass of the Southern horse mackerel stock. For this purpose, the Working Group recommends that the Mackerel/Horse Mackerel Egg Production Workshop to be held at IJmuiden in early 1991 should also include the planning of egg surveys to be carried out in 1992 in Divisions VIIIc and IXa.

The Working Group recommends that complementary studies should be undertaken on the discrimination of eggs of the three Trachurus species present in the Southern waters, i.e. $\underline{\text {. trachurus, }}$. mediterraneus and $T$. picturatus.

### 6.4 Catch in Numbers

Catch in numbers at age (Table 6.4) were obtained by applying quarterly age-length keys from Division IXa (Portugal) to the quarterly raised length compositions of Portugal and Spain. These ALKs and the ones used the last year were made using the Dutch ageing method. Catch in numbers at age from Divisions VIIIc and IXa have to be revised for previous years using the 1 -ring determination technique. Nevertheless, the indication that the two different methods are in agreement up to age 5, and the fact that the bulk of the catch from the Southern stock is of fish less than 5 years old suggest that the discrepancies in the interpretation would not much change the catch-in-numbers matrix that has been used up to now. However, slight revisions might be necessary for the ALKs in accordance with the results from the otolith Workshop to be held in November 1990 in Lisbon.

### 6.5 Mean Weight at Age

The mean weights at age in the catch from 1981-1989 are shown in Table 6.5. They were estimated by weighing the total length frequency distribution for each age group. The length/weight relationship used was the same for the period 1981-1989 (Anon., 1988.).

The mean weights at age in the stock were estimated as the mean of the weights in the catch of each two consecutive age groups of the same cohort, following the procedure used last year (Anon., 1989).

In the minutes of the ACFM meeting in November 1989 it is mentioned that "the mean weights for 1984 are very low and this may be a data problem". Because the age/length keys before 1988 were not revised, some errors are expected in the mean weights at age
for these years, and they must be revised after the Workshop on Otolith Reading (see Section 3.4). For the years 1988 and 1989 , the age/length keys were made according to the 1 -ring-per-year be merpidation and so the mean weights at age in these years can be considered more accurate.

## 6. 6 Maturity at Age

 year in the assessment (Table 6.12).
### 6.7 Fishing Mortality and Tuning of the VPA

Terminal fishing mortality coefficients were estimated by tuning, using the CPUE data from four sources:

- Portuguese October survey (Division IXa)
- Portuguese trawl fleet (Division IXa)
- Spanish purse-seine fleet (Divisions VIIIc and IXa)
spanish September survey (Divisions VIIIc, IXa)
Table 6.3 presents the input file used to tune the VPA. A first trial was made using the method of Laurec and Shepherd (1983), and the log-catchability of each age by fleet was plotted (Figure 6.2) against time. These indicated that the assumption of constant catchability could be accepted.

The first run was made assuming $F$ on the oldest age $=3 \times \mathrm{F}$ of the five younger ages, an assumption used since 1988 to overcome the drop in the exploitation pattern. However, the dip in the exploitation pattern seems to have changed in recent years (Figure 6.3), and, therefore, the factor determining the $F$ on the oldest age was changed to 2 , which seems to be more consistent with the most recent fishing pattern.

The results of the tuning are given in Tables 6.6 and 6.7. These show that the two surveys have high $S E(q)$ values, and so another trial run was made without the surveys but that did not improve the fit. The run including the surveys was adopted as the best available.

Several trials of separable VPA were then run in order to match the fishing mortality array for 1989 of the final VPA to the one derived from the tuning, but given the strange shape of these exploitation patterns, it was not possible to get a close match throughout the age range. Figure 6.4 shows the plot of the exploitation patterns for 1989 derived from the tuning, from the SVPA, and from the final (terminal populations) VPA, which was chosen to match the tuning closest at younger ages because the bulk of the catches are of ages $0-3$ and these age groups are not subject to variable availability as are the (adult) fish. The final VPA was derived from separable VPA with a reference $F=$ 0.55 at age 1 and a terminal $S=1.2$ (Table 6.8). Tables 6.9 and 6.10 and Figures 6.5 A and B show the results of the final VPA.

Consideration was given to using an age range of $1-5$ for the reference fishing mortality, but because most of the catches are of young fish, it was decided to use the the age range 1-3.

### 6.8 Recruitment

Estimates of O-group recruitment were available from the Portuguese October and July bottom trawl surveys, as well as from the Spanish September survey. These indices suggest a higher level for the 1989 year class than the 1988 year class, which was a weak one (see Section 6.3.1).

Numbers at age 0 estimated by final VPA were regressed against the O-group indices from the October and June Portuguese bottom trawl surveys, the portuguese trawl and Spanish purse-seine fleets and the Spanish September survey using RCRTINX2. Table 6.11 shows the predicted values for the 1988 and 1989 year classes. The estimated value for the 1988 year class ( $1511 \mathrm{mil-}$ lion fish) is three times higher than the estimated year-class strength from VPA ( 483 million) and the 1989 year class is about 3 times lower ( 1403 million fish) than the one estimated from VPA ( 3416 million fish). The VPA value for the 1988 year class ( 483 million) and the RCRTINX2 value for the 1989 year class ( 1403 million) were adopted for the prediction.

### 6.9 Yield per Recruit

The long-term yield per recruit and spawning stock biomass per recruit curves against $F$, derived using the input data in Table 6.12 , are shown in Figure 6.5 C . $\mathrm{F}_{0.1}$ was estimated to be 0.10 for $M=0.2$.

## 6. 10 Prediction

The terminal population from final VPA was used as input to the catch forecast. A geometric mean of 1780 million 0-group from 1981-1987 fish were assumed for the recruitment in 1990 and later years. The stock size at age 1 in 1990 was considered to be 1033 million, which was calculated from the predicted value of 1403 at age 0 , assuming a fishing mortality of 0.106 . The stock size at age 2 was taken to be 160 million as estimated by the final $V P A$; it was considered that the catch at age 1 provided a better estimate of the strength of this year class than the recruitment indices. Catch and stock weights at age were taken as averages for the years 1988-1989. The separable exploitation pattern was used for the prediction.

Table 6.12 shows the input parameters and Tables 6.13 and 6.14 and Figure 6.5D show the results of the predictions for 1989 and 1990.

At status quo fishing moxtality, the predicted catch was estimated to be $69,000 t$ in 1990 and $63,000 t$ in 1991, whereas the catches in 1991 at $F_{0,1}$ and $F_{\text {med }}$ would be $22,000 t$ and $47,000 t_{\text {, }}$ respectively. Stock biomass esmedates are 186,000 tin 1990 and 163,000 t in 1991 at a status quo $F$ level.

## 6. 11 Bioloqically Safe Limits

The reference mortality levels of $F_{\text {high }}$ and $F_{\text {med }}$ are shown in Figure 6.6 which is the plot of spahining stockediomass versus recruitment for the period 1981-1989. There is no evidence of any
stock/recruitment relationship (Figure 6.6).
The spawning stock is at present at a level of 167,000 $t$. Current fishing mortality $\left(F_{89}=0.34\right)$ is close to $\mathrm{F}_{\mathrm{ol}}$ ( $=0.36$ ). To reduce the spawning stock biomass to a historicalighlow level in 1991, the fishing mortality would have to be increased by a factor of 5.6.

## 6. 12 Management Measures and Considerations

There are continuing uncertainties concerning the stock identity and this obviously is of importance for assessment and management. Nevertheless, it would seem advisable to control the juvenile fishery by TAC enforcement. The $F$ status guo is very close to the $F_{\text {high' }}$ and it would seem advisable to reduce the fishing mortality high' lower level in 1991.

## 7 ANCHOVY (SUB-AREA VIII)

### 7.1 Unit Stocks

New studies concerning morphometric characteristics of the Bay of Biscay anchovy improved our knowledge concerning the phenotypic structure of this stock (Prouzet, WD 1990b). A preliminary study was carried out on samples collected during the French acoustic survey (DAAG89, see Section 7.4.2) in Division VIIIb. The main results showed three geographic groups, well discriminated by linear discriminant function analysis ( $89 \%$ well classified). The preliminary conclusion of this work is that the dynamics of this stock are more complex than previously thought.

The distinction between groups was only based on phenotypic characteristics and the temporal stability of such differences has, therefore, to be further studied. These differences are not necessarily linked to a segregation of different genetic units, but might be caused by temperature, rate of growth, biology of reproduction. It is recommended that further investigations be made before any definitive conclusions are drawn on stock units in these areas. On the other hand, observations on the spawning dynamics of anchovy in the Bay of Biscay (Anon., 1988; Santiago and Eltink, 1988) and the two good recruitments of anchovy in 1983 and 1990 well detected from the Spanish coast to the Gironde estuary seem to indicate a homogeneous stock.

For assessment purposes, the working Group decided for the present to consider the Bay of Biscay anchovy population as a single unit in Sub-area VIII and not to restrict the assessments to Divisions VIIIb and $c$. The Working Group assumed that the minor landings of anchovy off Portugal and the West Galician coasts were from a different stock (Table 7.1).

### 7.2 The Fishery

Landings in Sub-area VIII
Total landings in Sub-area VIII amounted to $10,490 \mathrm{t}$ in 1989 (Table 7.2). Spanish landings in 1989 reached 8,174 $t$ (Figure 7.1), the same level as in 1988, but the temporal distribution of
catches is different (only $66 \%$ in spring versus $84 \%$ in spring 1988) (see Section 7.2.2).

Estimated French landings decreased by at least $65 \%$ for Sub-area VIII between 1988 and 1989. This might be due to a different distribution of anchovy during spring; in 1989 fish may have been distributed mainly in Division VIIIc where the French pelagic trawlers are not allowed to fish.

Until now it has not been possible to report the catches of 0 and 1 -year-old anchovy caught for live bait for the tuna fishing. Since the catch level in this fishery is about $500 t$ per year, the Working Group recommends that these data should be made available for future assessments.

Discarding of anchovies by the midwater trawlers might occur in some areas, but the Working Group members could not estimate this. Therefore, the working Group recommends that this problem should be investigated.

## Landings by Divisions

The distribution of Spanish catches in 1989 was totally different from the previous years (1987 and 1988). Nearly all anchovy landings came from Division VIIIc (Table 7.3). Catches in the second half of the year accounted for one third of the total landings. They were caught in Division VIIIc (Table 7.4) very late in the autumn season (November) and were partly unrecorded. Working Group members estimated the unreported component as $9 \%$ of the total autumn catches.

Table 7.3 shows that the French fishery in 1989 was distributed mainly in Divisions VIIIa and b as in 1987 and 1988. In 1989, the seasonality of catches was different. One third of the total landings appeared in January, and very small landings were recorded in autumn due to the presence of very small anchovies in Division VIIIa which were not fished by the French fleet.

## Landings by EC Categories

Table 7.5 gives the distribution of Spanish and French landings by EC market categories for Divisions VIIIb, c in spring. The main part of the landings consisted of medium size (T2) for both countries.

The temporal distribution is rather different for the two countries. Small anchovies were mainly caught by France in winter (1988 year class) and Spain in autumn (1989 year class).

### 7.3 Effort and Catch per Unit Effort

Table 7.6 gives a rough idea of the changes in the French fleet. In 1989, there was a strong decrease in fishing effort, due both to a decrease in the number of boats and also to a shorter fishing season.

The total number of Spanish purse seiners has remained more or less the same since 1984 (Table 7.7). However, in 1989 a strike of fishermen in the main harbour of the Basque country during the spring resulted in a strong reduction of the effort. In the
autumn, the effort increased because several purse seiners changed from tuna fishing to anchovy fishing. The same table also shows that the Spanish spring fishing season was more extended in 1990 than in previous years.

### 7.4 Fishery-Independent Information

### 7.4.1 Egg surveys

Four egg surveys have been conducted by AZTI/SIO (Spain) using the daily egg production method (batch fecundity method) to estimate the spawning stock biomass of the Bay of Biscay anchovy from 1987 to 1990 (Santiago and Sanz, 1989; Motos and Santagio,
wD 1990).

During the 1989 survey (Santiago and Sanz, 1989; Motos and Santiago, WD 1990) the spawning area was covered completely, except for an area close to the French coast which in previous years accounted for about $10 \%$ of total egg production. Of the two surveys at peak spawning time (one in May and another in June), the May survey was the only one considered reliable because of poor sampling of adult fish in June. However, the total anchovy egg production in the area was similar for both surveys (Figure 7.2). The spawning stock biomass estimated from the May survey was $11,861 \mathrm{t}$.

The 1990 surveys ended a couple of weeks before the meeting of the Working Group, therefore only a preliminary index of abundance was submitted (Motos, pers. comm.).

The results from the last four years of egg surveys are given in Table 7.8.

The spawning stock biomass is considered as total stock biomass since less than $1 \%$ of 1 -year-old anchovies are immature when those surveys take place and their fecundity parameters are not different from those of older anchovies. These estimations were provided as absolute biomass. However, they have to be considered with their coefficients of variation in order to estimate their precision (Figure 7.3).

These results indicate that there have been strong fluctuations of biomass in recent years with peaks in 1988 and 1990. Low recruitments have been detected both in 1987 and 1989. The good recruitment assumed for 1988 in order to explain the huge increase of biomass, was not confirmed in 1989. In last year's report (Anon., 1989), it was suggested that, based on anchovy egg abundances, the 1987 year class could be as strong as the 1982 year class. This might be explained by:

- Non-comparability of 1982 and 1987 year-class data.
- Changes in natural mortality.
- Low precision of the 1988 spawning stock biomass estimate.
- Inappropriate assumptions on parameters of adult fish in the non-sampled area.

The recent preliminary egg survey in 1990 indicates that the 1989 year class is strong.

### 7.4.2 Acoustic surveys

Five French acoustic surveys have been carried out from 1983 to 1987 in the Bay of Biscay (Massé, 1988). Two other French surveys have been carried out in the south of the Bay of Biscay in cooperation with Spain in 1989 and 1990 with the objective of studying the distribution and the abundance of anchovy in this area at the beginning of the fishing season.

Because of methodological problems encountered during the surveys 1983-1987 (Massé, 1988), the objective of surveys in 1989 and 1990 was to try to establish relative abundance indices rather than absolute estimates.

The results of the two surveys in 1983 and 1984 are comparable with those of 1989 and 1990, because they were carried out at similar times, and the same methods for sampling and computation were applied (Massé, WD 1990). It is important to notice from this comparison (Table 7.9 and Figure 7.4):

- The 1983, 1989 and 1990 surveys occurred at the end of April, whereas the 1984 one occurred at the beginning of May when about $13,000 t$ had already been landed by the Spanish and French fleets.
- In 1989, the acoustic index is overestimated because of a very low abundance in a multispecies structure where sardine was predominant.
- In 1990, at least $95 \%$ of the anchovy observed during the survey were 1989 year class (1-year-olds).

The results given in Table 7.9 confirm the high abundance of the 1982 year class which was predominant in the catches from 19831985. It also confirms the weakness of the 1983 and 1988 year classes.

The acoustic surveys seem to provide useful information, in particular 1 -group abundance indices are in good agreement with the recruitment. According to this, the 1 -group index from the 1990 survey indicates that the 1989 year class might be stronger than the 1982 year class, which was the biggest in the last decade.

### 7.4.3 objectives of the eqg and acoustic survexs

Egg surveys have already been carried out for four years and acoustic surveys for two years, with the objective of estimating the anchovy abundance in the Bay of Biscay.
At present, the Working Group members agreed that the results of both are encouraging but that a longer time series of data is necessary to verify the reliability of these estimations. Nevertheless, the commercial catches already confirm the level of some year classes from the results of the two methods.

The egg surveys provide estimates of the daily egg production and corresponding stock biomasses. The acoustic surveys provide a relative abundance index of the total biomass, and both methods also provide numbers by age groups. A longer time series could provide more knowledge about the recruitment and the natural mortality by age. For management purposes, the estimate of 1-year-old anchovy is essential because of its influence on the total biomass and on the next year's catches because of the fishing pattern of the fleet (Uriarte and Astudillo, 1987).

The Working Group members recommend that coordinated egg surveys and acoustic surveys should be carried out in future years in order to improve the precision of the results.

### 7.5 Recruitment

It is noticed from acoustic and egg survey estimates of recruitment (Table 7.10), that the recruitment for 1990 seems larger or roughly similar to those detected in 1983 and 1988. Figure 7.5 shows that the acoustic surveys according to the observations give a good index of the strength of a given cohort (expressed by year class cumulative catches).

For the time being, it seems that both the egg and acoustic surveys indicate a rather good recxuitment at age 1 in 1990. This was confirmed by significant catches in 1989 of 0 -group and of $1-$ group in 1990 in the commercial fishery.

## 7. 6 Length Compositions by Fleet and by Country

For the first time, length composition data for catches have been gathered by the two countries and comparisons can be made.

Table 7.11 and Figure 7.6a show the distribution by half year for the two countries and the differences in length distributions. A Kolmogorov-Smirnov test showed that the length distributions of French and spanish catches are significantly different for the first half of the year.

In spring, French landings have a smaller mean length than the Spanish which suggests that stock composition in Divisions VIIIa,b was of smaller size on average than in Division VIIIc.

Spanish catches in autumn (Figure 7.6b) were taken from the 0group 1989 year class, and are comparable in terms of numbers to the spring-spawning catches.

### 7.7 Catch in Numbers

Concerning the French data, a coefficient of conversion from salted weight to fresh weight of the catches was applied. This is the first time that France has provided catch-at-age data (Tables 7.12 and 7.13).

A meeting on the methods used for age determination based on otoliths reading was held in San Sebastian (Astudillo et al., WD 1990). The best agreement was found between two of the three Spanish readers. However, more disagreements were found between
the French and spanish readers. It was concluded at that meeting to continue the calibration of ageing by the interchange of otoliths.

There are some inconsistencies in the catch-at-age data, mainly in 1983 and 1984. It has to be remembered that in 1983, the catch at age was based on length distributions (Uriarte and Astudillo, 1987) since no age/length key was available. The first year for age reading was 1984 and those age determinations have not been revised. Data on catch at age prior to 1983 are not as reliable as more recent data, therefore the Working Group did not consider them for assessment purposes.

### 7.8 Mean Weight at Age

For the French estimates, the mean weights at age in the catch were calculated from biological sampling. The rest of the data came from analyses of commercial catches. Spanish mean weights at age in the catch were calculated from routine biological sampling (Tables 7.14 and 7.15).

### 7.9 Maturity at Age

The biological samples confirmed the observations made in last year's report that all age groups except 0-groups are totally mature.

### 7.10 Natural Mortality

In Figure 7.8, it can be clearly seen that for the last four years there have been wide stock biomass fluctuations which cannot be explained by variation in rates of exploitation. They may be partly due to inaccuracy of biomass estimates, natural mortality, and great variations in the level of recruitment (by a factor from 1 to 100).

Several estimates of the natural moxtality have been made based on the numbers at age from egg survey estimates and catches (Figure 7.9). The main results obtained show that the natural mortality is always 2 to 3 times higher (for the central values of biomass) than the fishing mortality (Figure 7.9). Natural mortality varies from year to year. However, some of the higher values of $M$ do not seem realistic. At present it is not possible to draw any conclusions on the absolute values of $M$ and $F$.

### 7.11 Assessment

Several trials of VPA were performed as a first exercise using the numbers from the egg survey results and catch per unit effort for tuning purposes.

However, considering the high and fluctuating natural mortality among years, it was decided to reject the results obtained by VPA analysis. There was no way for the resulting biomasses to follow the trend of SSB estimated by the survey.

For assessment purposes, the Working Group decided to run a VPA (according to Pope's formula) from a synthetic cohort built from the mean catch at age of the period 1983-1989. For a given $M$, two criteria have been chosen:

> H1 : F for the age groups 2,3, and 4 roughly similar H2 : F for the age groups 3 and 4 similar

The results are given in Table 7.16 and show that the rate of exploitation of 1 -year-old at any $M$ is low. For the 2 -year-olds according to $M$ chosen, the range of $F$ is between $0.1-0.56$. These results seem to be in agreement with the exploitation pattern observed for anchovy in the Bay of Biscay.

### 7.12 Trends in Biomass and Recruitment

As discussed in last year's report (Anon., 1989), it is clear that at the present time we are on the lowest range of biomasses of the anchovy stock since 1960 (Figure 7.1).

Recruitment at age 1 in 1991 is difficult to predict. No clear relationship exists between stock and recruitment and this is normal for short-living species.

The analyses of catch data (Figure 7.10) show that no clear relationship can be established between the abundance index at age 1 and age 2 and even between the ages of 2 and 3. This is not surprising for ages 1 to 2 because of the wide fluctuation of natural mortality, mentioned in Section 7.10 , and because age 1 is not fully recruited to the fishery. However, ages 2 and 3 are fully recruited to the fishery but still no relationship appears.

## 7. 13 Catch Forecast

1) For the time being, the uncertainties concerning natural mortality and the exploitation rate as well as the inaccuracy of the independent stock estimates make it difficult to predict the catch levels for 1991. Several attempts were made which produced too wide a range in predicted catches for any reliable catch forecast.
2) It is estimated that in 1990 , $95 \%$ of the stock belongs to the 1989 year class, therefore, catches in 1991 will consist almost entirely of this year class and of the incoming recruits of 1 -year-olds.
3) The strength of the 1989 year class can be compared to previous ones in Figure 7.7, which shows indices of 1 -year-old recruits. This year class in 1990 (age 1) seems to be at least as abundant as the 1982 year class in 1983 or the 1987 year class in 1988. The 1982 year class gave significant catches in 1984, but the 1987 year class did not produce significant catches.
4) The catch corresponding to 1-year-old anchovies in 1991 is uncertain. As stated in Section 7.10 , the recruitment produced by a given spawning stock biomass can vary widely (factor 1 to 100) and consequently it is impossible to forecast. For example, the catch levels of 1 -year-olds during the period 1983-1990 were as much as $15,000 t$ one year, between 5,000-12,000 $t$ in two years, an below 4,000 $t$ in five years.
5) At the end of october, when the results from the egg surveys are available, the estimate of the SSB will be provided to the November 1990 ACFM meeting.

### 7.14 Bioloqically Safe Limits

Biologically safe limits are, presently, difficult to define. From the data obtained from acoustic or egg surveys, it is evident that environmental factors mainly affect recruitment and thereby cause fluctuations in the stock. Similar patterns have been observed in other anchovy stocks for which a minimum spawning stock biomass has been chosen as a management objective in order to protect the stock from depletion and recruitment failure.

The very low spawning stock biomass in 1989 produced a rather good recruitment in 1990 compared to the last ten years. The current spawning stock biomass does not seem to be larger than the average for previous years. However, on a long-term basis, it seems that the spawning stock biomass is at present at a rather low level. Whether this is caused by adverse environmental conditions or not is uncertain.

### 7.15 Management Measures and Considerations

It is important to recall that:

- Natural mortality is high and fluctuates according to years
- Fishing mortality seems to be much lower than M during the years 1987-1989
- The exploitation pattern seems to be appropriate to the stock dynamics since the major fishing pressure is on the older age groups
- The influence of environmental conditions on recruitment is obvious
- There is no clear stock/recruitment relationship.

For these reasons, and in order to stabilize the fishing effort in order to maintain biomass at a safe level so as to to secure recruitment, a seasonal and/or a minimum fish size regulation would be more appropriate for the time being rather than regulation by TAC.

Some possibilities can be mentioned:

- a minimum landing size for anchovy to protect 0 -group and 1group,
- a limited or delayed fishing period to protect the spawning stock biomass at the beginning of the spawning season.


## 8 DEFICIENCIES IN DATA

### 8.1 Sardine

- Information on sardine from the south of Division IXa (Gulf of Cadiz) is lacking.
- Proportions mature at age for sardine are not representative for the whole area.


### 8.2 Horse Mackerel

## Ageing

For the Western and Southern horse mackerel, only $32 \%$ and $36 \%$, respectively, of the catches were covered by age sampling.

## Stock separation

Still more information on stock separation is required

## Catches

Catches by countries are only reported annually, whereas catches on quarterly and even rectangle basis are needed.

Maturity

Proportions mature at age appear to be unreliable, because first maturing fish seem to produce less eggs than expected.

Discards

Information on discarding is scarce. Only data from two countries are available.

## Distribution of horse mackerel

Distribution of $0-1-1$, and $2+$ group horse mackerel by rectangle were only available from a limited number of surveys.

## Length distribution

Annual and quarterly length distributions were not presented by

## Egg surveys

Horse mackerel egg production in the English Channel and around the Iberian peninsular is unknown.

## Recruitment

Recruitment surveys on which horse mackerel is caught did not indicate recruitment strength in the western and North sea areas.

Acoustic surveys
Acoustic surveys in the North sea do not cover the total horse mackerel distribution. Acoustic surveys for horse mackerel are lacking in the western area.

### 8.3 Anchovy

Ageing - There is a necessity to calibrate the age determination between Spain and France to improve the accuracy of the age readings.

Unknown Catches - Data are lacking on discards in the French fleet and catches from live bait tuna fishery in the spanish fleet.

Recruitment and Natural Mortality - The extent of variation in natural mortality and the impact of environmental factors on the recruitment success are unknown.

## 9 RECOMMENDATIONS

### 9.1 Research Recommendations

Acoustic Surveys for Sardine
The Working Group recommends that a joint acoustic survey for sardine be undertaken by spain and portugal in the period september-December 1990 in order to obtain stock abundance and recruitment estimates.

Acoustic surveys to be carried out by Spain (Divisions VIIIc and IXa) in March/April and by Portugal (Division IXa) in AugustSeptember are necessary to maintain the historical data series to be used in the assessment.

## Maturity Oqive for Sardine

The Working Group recommends further investigations on sexual maturity in order to obtain a proper maturity ogive.

Sardine Data First Ouarter 1991
It is recommended that all sardine data for the first quarter of 1991 should be provided to the next Working Group meeting.

Anisakis Investigations on Horse Mackerel
The Working Group recommends that the infestation of Anisakis in horse mackerel should be investigated in Divisions IIa + IVa (feeding season), Division VIIj (spawning season) and in Divisions $I V b+C$ (spawning season) to obtain information on stock identity of the horse mackerel catches in Divisions IIa and IVa.

The Working Group recommends that the comparison between the total fecundity method and batch fecundity method for estimating the horse mackerel biomass should be carried out in 1992.

## Western Recruitment Surveys

The Working Group recommends that a planning group should be established by ICES, which would study all existing fish surveys carried out in the Western areas with a view to establishing a proper standardized international survey which could obtain recruitment indices for as many species as possible.

## Maturity at Age for Horse Mackerel

The Working Group recommends that further investigations should be undertaken to revise the maturity-at-age table for the period 1982-1990.

## Unit Stocks of Horse Mackerel

The Working Group recommends that further investigations be carried out to provide a better basis for determining migration patterns and stock separations (e.g., tagging experiments, parasite studies, $L_{1}$ studies, genetic differences, etc.).

## Horse Mackerel/Mackerel Egg Surveys in Divisions VIIIc and IXa

The Working Group recommends that egg surveys in Divisions VIIIc and IXa be continued in order to try to estimate the spawning biomass of the Southern horse mackerel stock. For this purpose, the Working Group recommends that the Mackerel/Horse Mackerel Egg Production Workshop, to be held at. IJmuiden in early 1991, should also include the planning of egg surveys to be carried out in 1992 in Divisions VIIIc and IXa.

## Eqq Discrimination of Different Trachurus Species

The working Group recommends that studies should be undertaken on the discrimination of eggs of the three Trachurus species present in the southern waters, i.e., Trachurus trachurus, Trachurus mediterraneus, and Trachurus picturatus. Maturity studies on these species could indicate any overlap in spawning.

## Discards of Horse Mackerel

The Working Group recommends that more information on the quantities of discards should be collected in all areas.

## Mixing of Horse Mackerel Species

The Working Group recommends that catches, length distributions, and numbers at age of Trachurus trachurus provided to the Working Group should not include $\underline{T}$. mediterraneus and $T$. picturatus.

## Egq and Acoustic Surveys - Anchovy

It is strongly recommended that both egg surveys and acoustic surveys should be carried out for assessment purposes in future years and should be planned and coordinated by Spain and France.

## Age Determination - Anchovy

The accuracy and consistency of age determination by spain and France should be improved by means of otolith reading exercises.

## Natural Mortality - Anchovy

Considering the high variation of natural mortality, the working Group recommends that studies be undertaken on biological and environmental factors responsible for this variation

## Stock Discrimination - Anchovy

To improve the stock discrimination of the anchovy population in the Bay of Biscay, the Working Group recommends that phenotypic studies be continued and, if possible, the results compared to those from genetic studies.

## Discards of Anchovy

More information should be provided on discards, and estimates of the catches of live bait for the tuna fishery should be made available.

### 9.2 Manaqement Recommendations

The TAC for the North Sea horse mackerel should only apply to the areas where it is fished (Divisions IIIa, IVb, $c$, and VIId).

The TAC for the Western horse mackerel should apply to all areas where it is fished (Divisions IIa, IVa, VIa, VIIa-c, e-k, VIIIa, $b, d, e$ ).

The TAC for the Western horse mackerel should not be set at the catch corresponding to $\mathrm{F}_{0.1}$, because almost no fish younger than the 1982 year class have recruited to the spawning stock, and the stock mainly consists almost entirely of only one year class. The catches should be reduced to a level of $10 \%$ of the spawning stock size until a good year class recruits to the spawning stock.

## 10 WORKING DOCUMENTS

Astudillo, A., Lucio, P., Prouzet, P. and Uriarte, A. WD 1990. Summary of results concerning the otolith reading exexcise held in San Sebastian (Spain) in January 1990.

Borges, M.F., Turner, R.J. and Casey, J. WD 1990. Plasma transferrin polymorphismus in read (Trachurus trachurus J.) populations from the Northeast Atlantic.

Dias, Afonso C.M. and Marques, V. WD 1990. R.V. "Noruega" (INIP) acoustic system calibration with a standard target.

Eltink, A. WD 1990a. Horse mackerel egg production and spawning stock size in the North Sea in 1989.

Eltink, A. WD 1990b. Reliability of the numbers-at-age and weights-at-age data of the western horse mackerel.

Farinha, A. WD 1990. Preliminary results on the horse mackerel spawning area from Portuguese larvae surveys.

Lago de Lanzos, A., Franco, C., and Solá, A. 1990. WD 1990. (Linatial and temporal distribution of Trachurus trachurus (Linnaeus, 1758).

Lucio, P. WD 1990. New notes on the fishery of Mediterranean horse mackerel (Trachurus mediterraneus, Steindachner, 1868) in the Bay of Biscay in 1982-1983 and 1989.

Lucio, P. WD 1990
Trache Some biological data on horse mackerel, and 1989. trachurus, in the Bay of Biscay in 1982-1983

Massé, J. WD 1990. Anchovy abundance in the south of the Bay of Biscay during French acoustic surveys

Motos, L. and Santiago, J. WD 1990. An egg production estimate of biomass of the Bay of Biscay anchovy in 1989 .

Porteiro, C., Miguel, J., and Carrera, P. WD 1990. Acoustic estimates of sardine abundance during cruises in spring 1986, 1987, and 1988.

Prouzet, P. WD 1990a. French anchovy fishery in 1989.
Prouzet, P. WD 1990b. Studies concerning morphometrics and meristics characteristics of anchovy samples collected during the cruise of "Thalassa" in the Gulf of Biscay in

Sola, A., Motos, L., Franco, C., and Lago, A. WD 1990. Seasonal occurrence of pelagic fish eggs and larvae in the Cantabrian Sea and Galicia during 1987-1989.

## 11 REFERENCES

Anon., 1986a. Report of the Planning Group for Acoustic Surveys in ICES Sub-areas VIII and IX. ICES, C.M.1986/H:27.
Anon., 1986b. Report of the Working Group on the Appraisal of Sardine Stocks in Divisions VIIIc and IXa. ICES, C.M. 1986/Assess:23.

Anon., 1988. Report of the Working Group on the Assessment of Pelagic Stocks in Divisions VIIIc and IXa and Horse Mackerel. ICES, C.M.1988/Assess: 22 .

Anon., 1989. Report of the Working Group on the Assessment of Pelagic Stocks in Divisions VIIIc and IXa and Horse Mackerel. ICES, C.M.1989/Assess:19. 109 pp. (mi-
meo.)

Anon., 1990a. Report of the Mackerel/Horse Mackerel Egg Production Workshop. ICES, C.M.1990/H:2. B9 pp. (mi-
meo.)

Anon., 1990b. Report of the Mackerel working Group. ICES, C.M. 1990/Assess:19. 109 pp . (mimeo.)

Anon., 1990c. Report of the Planning Group for Acoustic Surveys in ICES Sub-areas VIII and IX. ICES, C.M.1990/H:35.

Anon., 1990. Report of Activity of the Pelagic Fish Committee. ICES, C.M.1990/H:1 (mimeo.).

Beamish, R.J. and Fourniex, D.A. 1981. A method for comparing the precision of a set of age determinations. Can. J. Fish. Aquat. Sci., 38:982-983.

Chang, W.Y.B. 1982. A statistical method for evaluating the reproducibility of age determination. Can. J. Fish. Aquat. Sci., 39:1208-1210.

Cunha, M.E., Figueiredo, J., Farinha, A., and Santos, M. 1989. Estimation of sardine spawning biomass off Portugal by egg production method. ICES, C.M. 1989/H:41.

Dias, A.C., Soares, E. and Marques, V. Acoustic abundance estimation of sardine (Sardina pilchardus Walb.) off the Portuguese coast - July-August 1988. ICES, C.M. 1989/H:52.

Eaton, D. R. 1989. Spawning stock biomass of scad (Trachurus trachurus L.) to the west of the British Isles, as indicated by egg surveys. ICES, J. Cons. int. Exp. Mer, 45:231-247.

Eltink, A. 1988. Anisakis larvae (Nematoda: Ascaridida) in mackerel, Scomber scombrus $L_{1}$., in ICES Sub-areas IV, VI, VII, and VIII in 1970-1971 and 1982-1984. ICES, C.M.1988/H:23. 27 pp . (mimeo.)

Eltink, A. and Kuiter, C.J. 1989. Validation of ageing techniques on otoliths of horse mackerel (Trachurus trachurus L.). ICES, C.M.1989/H:43. 15 pp .

Eltink, A. and Vingerhoed, B. 1989. The total fecundity of western horse mackerel (Trachurus trachurus L.). ICES, C.M.1989/H:44. 11 pp. (mimeo.)

Igelmo, A., Legarra, J. and Lerga, S. 1988. Estudio de la problematica del by-catch y pescado descartado en les pesquerias vascas. Ondarroa, 1988 (mimeo.).
Iversen, S.A., Eltink, A., Kirkegaard, E., and Skagen, D.W. 1989. The egg production and spawning stock size of the North sea mackerel and horse mackerel stocks in 1988. ICES, C.M.1989/H:16. 22 pp . (mimeo.)

Laurec, A. and Shepherd, J.G. 1983. On the analysis of catch and effort data. ICES,J. Cons. int. Exp. Mer, 41:81-84.

Lucio, P. and Martin, I. 1989. Biological aspects of horse mackerel (Trachurus trachurus L.1758) in the Bay of Biscay in 1987 and 1988. ICES, C.M.1987/H:28.

Martin, I. 1989. The fisheries of Mediterranean horse mackerel (Trachurus mediterraneus steindachner 1868) and Spanish mackexel (Scomber scombrus Houttuyn, 1782) in the Basque country in 1987 and 1988 . ICES, 1782)
1989/H:29.

Martin, I. and
Biscay anchovy and Catch assessment of the Bay of ICES, C.M.1989/H:24. catch predictions for 1989.
Massé,
halieutique (analyse des camo-integration en recherche halieutique (analyse des campagnes effectuées dans Ressources Vivantes. IFREMER. à 1987). Direction des

Motos, L., Uriarte, A. and Valencia, V. 1990. Preliminary results on mackerel and horse mackerel from AzTI-SIo 1989 egg surveys. Working document presented to the Mackerel and Horse Mackerel Egg Production Workshop, Lowestoft, 29 January - 2 February 1990.
Nazarov, N.A. 1977: A morphohistological description of the fovies of horse mackerel (Trachurus trachurus the from the Celtic Sea. J. Ichthyol., 17(3):147-423
Pastor, X., Porteiro, C., Alvarez, F., and Miquel, S. 1986. Acoustic abundance estimation of sardine (Sardina pilchardus Walb.) of Cantabrian and Galician waters. March 1986. ICES, C.M.1986/H:20.
Pérez, N. and Moquedet, Ph. 1989. Estimates of the horse mackerel (Trachurus trachurus) discards from the spanish trawler fleet in ICES Sub-area VII. Working document presented to the Working Group on the Assessment of Pelagic Stocks in Divisions VIIIc and IXa and Horse Mackerel. Copenhagen, 10-19 May 1989
and February 1990 .
Pérez, N., Garcia
production method applied to anco, C. 1989. The egg estimation of sardine the North Atlantic Spardina pilchardus Walb.) at 1989/H:23. Atlantic Spanish coasts. ICES, C.M.
Pestana, G. 1989 pilcharduscial Ibero-Atlantico de sardinha (Sardina pilchardus Walb.) sua avaliaçao e medidas de gestâo. INIP. 192 pp . (Thesis)
Prouzet, P., Astudillo, A., Giralder, A. and Lucio, C. 1990. Ana-
lyse des caractéristiques biologiques d'anchois récoltés durant la campagne DAAG89. Rapp. IFREMER RIDRV-90.37-RH/St. Pée sur Nivelle. 58 pp .
Santiago, J. Artexte, I. and Zamakona, A. 1988. Distribution and abundance of mackerel, horse mackerel, and pilchard eggs in the southern Bay of Biscay in 1987. ICES,
C.M. $1988 / \mathrm{H}: 10$.

Santiago, J. and Lucio, P. 1989. Distribution and abundance of mackerel, horse mackerel, and pilchard eggs in the southern Bay of Biscay in May 1989. ICES, C.M. 1989/H:30.

Santiago, J. and Eltink, A. 1988. Distribution and abundance of anchovy eggs in the Bay of Biscay in 1987 in comparison with 1983 and 1986. ICES, C.M. 1988/H:9.
Santiago, J. and Sanz, A. 1989. Egg production of the Bay of Biscay anchovy in 1987 and 1988, and spawning stock size estimates. ICES, C.M.1989/H:25.

Uriarte, A. and Astudillo, A. 1987. The anchovy in the Bay of Biscay: new data and analysis of the fishery 19741987. ICES, C.M. 1987/H:20.

Table 2.1 Total nominal catch (tonnes) of SARDINE by countries in Divisions VIIIc and IXa (as estimated
by the Working Group).


Table 2.2 Catch (tonnes) of SARDINE (purse seiners) by 6month period and by country.

| Year | Portugal |  | Spain |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Jan-Jun | Jul-Dec | Jan-Jun | Ju1-Dec |
| 1960 | 20,504 | 111,570 | - |  |
| 1961 | 21,006 | 114,499 | - |  |
| 1962 | 23,000 | 106,978 |  |  |
| 1963 | 20,665 | 96,134 | - |  |
| 1964 | 31,725 | 125,711 | - |  |
| 1965 | 24,229 | 111,925 |  |  |
| 1966 | 24,119 | 97,826 | - |  |
| 1967 | 21,368 | 91,855 | - |  |
| 1968 | 14,160 | 63,719 | - |  |
| 1969 | 15,018 | 45,966 | - |  |
| 1970 | 12,842 | 52,072 | - |  |
| 1971 | 19,925 | 50,260 | - |  |
| 1972 | 15,802 | 58,663 | - |  |
| 1973 | 20,255 | 74,004 | - |  |
| 1974 | 14,382 | 54,900 |  |  |
| 1975 | 23,031 | 67,815 | - |  |
| 1976 | 23,934 | 48,951 | - |  |
| 1977 | 19,592 | 55,2才5 | - |  |
| 1978 | 24,545 | 53,953 | - ${ }^{-}$ | 39 77 |
| 1979 | 29,411 | 60,573 | 22,373 | 39,774 |
| 1980 | 32,989 | 72,012 | 34,152 | 51,228 |
| 1981 | 34,198 | 77,908 | 33,115 | 67,765 |
| 1982 | 34,320, |  | 45,708 | 57,937 |
| 1983 | 25,5981 | 60,324 | 27,613 | 67,604 60,092 |
| 1984 | 30,0761 | 65,034 | 47,484 | 60,092 51,200 |
| 1985 | 34,770 28,910 | 76,939 74,541 | 41,198 31,064 | 51,200 46,091 |
| 1986 | 28,910 29,111 | 74,541 61,1031 | 31,064 30,892 | 46,091 47,719 |
| 1988 | 29,9101 | 63, $680^{1}$ | 30,667 | 34,282 |
| 1989 | 34,537 ${ }^{1}$ | 56,554 ${ }^{1}$ | 19,506 | 26,529 |

(-)Data not available.
Portugal - all gear catches.

Table 2.3 SARDINE. Monthly catches $(t)$ by gear by Spanish and Portuguese fleets in 1989.

| Country | Total | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Portuqal | 91,091 | 8,218 | 2,700 | 4,710 | 3,613 | 6,266 | 9,030 | 9,251 | 12,087 | 13,297 | 11,536 | 8,925 | 1,458 |  |
| P. seiner | 85,342 | 7,605 | 2,493 | 4,488 | 3,490 | 6,017 | 8,664 | 8,695 | 11,236 | 12,339 | 10,722 | 8,349 | 1,243 |  |
| Artisanal | 5,284 | 572 | 105 | 157 | 98 | 237 | 355 | 540 | 835 | 947 | 786 | 527 | 126 |  |
| Trawl | 465 | 40 | 103 | 65 | 24 | 13 | 12 | 17 | 16 | 10 | 27 | 49 | 89 |  |
| Spain |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| P.seiner | 46,035 | 3,089 | 2,726 | 3,447 | 2,072 | 2,930 | 5,242 | 4,473 | 5,762 | 5,193 | 5,819 | 2,494 | 2,589 |  |

Table 2.4 SARDINE. Catches ( $t$ ) from Portuguese and Spanish fleets in the 1st quarter during 1981-1990.

| Year <br> Country | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Portugal | 17,038 | 17,547 | 13,953 | 14,740 | 16,595 | 14,908 | 11,181 | 13,884 | 15,628 | 13,773 |
| (Div.IXa) |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| P.Seiner | 14,689 | 14,946 | 11,545 | 13,191 | 14,966 | 14,139 | 10,218 | 13,261 | 14,586 | 12,761 |
| Artisanal | 1,362 | 2,286 | 646 | 882 | 668 | 369 | 437 | 486 | 834 | 690 |
| Trawl | 987 | 315 | 1,762 | 667 | 961 | 400 | 526 | 137 | 208 | 322 |
| Spain |  |  |  |  |  |  |  |  |  |  |
| (DivS.VIIIC,IXa) |  |  |  |  |  |  |  |  |  |  |


| P.seiner | 13,462 | 16,376 | 13,426 | 19,686 | 15,568 | 16,078 | 14,532 | 15,348 | 9,262 | 9,630 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total | 30,500 | 33,923 | 27,379 | 34,426 | 32,613 | 30,986 | 25,713 | 29,232 | 24,890 | 23,403 |
| B total <br> catch | 14 | 16 | 15 | 17 | 16 | 17 | 15 | 18 | 18 | - |

In the north of Portugal, during two months in the 1 st quarter the fisherman close the fishery voluntarily.

Table 2.5 SARDINE. French landings (tonnes) by division and total during 1981-1989.

|  |  | Division |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Year | Total | VIId | VIIe | VIIf | VIIg | VIIh | VIIIa | VIIIb | VIIIC |  |
| 1981 | 10,800 | 172 | 952 | 0 | 0 | 0 | 8,482 | 1,194 | 0 |  |
| 1982 | 6,835 | 59 | 828 | 20 | 0 | 0 | 5,928 | 0 | 0 |  |
| 1983 | 7,269 | 211 | 590 | 0 | 0 | 2 | 6,013 | 454 | 0 |  |
| 1984 | 5,300 | 147 | 661 | 0 | 1 | 0 | 4,472 | 19 | 0 |  |
| 1985 | 10,258 | 465 | 1,624 | 0 | 0 | 0 | 8,090 | 79 | 0 |  |
| 1986 | 12,799 | 512 | 2,058 | 0 | 0 | 0 | 10,186 | 43 | 0 |  |
| 1987 | 8,673 | 67 | 682 | 0 | 0 | 216 | 7,631 | 77 | 0 |  |
| 1988 | 10,394 | 29 | 438 | 0 | 0 | 2,119 | 7,770 | 38 | 0 |  |
| 1989 | 9,199 | 88 | 66 | 0 | 0 | 957 | 7,997 | 85 | 6 |  |

[^1]Table 2.6 Number of Portuguese purse seiners and Portuguese catch per purse seiner and number of Spanish fishing days and catch per fishing days in 1980-1989.

| Category | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Portugal (Division IXa) |  |  |  |  |  |  |  |  |  |  |
| No. of purse s. | 211 | 193 | 184 | 196 | 192 | 192 | 198 | 196 | 180 | 161 |
| Tonnes/purse s. | 427 | 557 | 521 | 399 | 441 | 582 | 496 | 460 | 520 | 566 |

Spain ${ }^{1}$ (Divs. VIIIc, IXa)

| No. of fishing <br> days | 11,585 | 12,164 | 7,064 | 7,866 | 8,369 | 5,731 | 3,541 | 4,729 | 3,601 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Tonnes/Fishing <br> day | 4.33 | 5.15 | 5.30 | 4.02 | 4.65 | 4.86 | 4.22 | 4.08 | 5.06 |

${ }^{1}$ Only the two ports in Spain (Vigo and Riveira) in Division IXa.

Table 2.7 Sardine in Divisions VIIIc and IXa. Abundance estimates from acoustic
surveys $1986-1990$.


Table 2.8 $\begin{aligned} & \text { Sardine in Divisions VIIIc and IXa. } \\ & \begin{array}{l}\text { Catch/length composition by country } \\ \text { during } 1989 .\end{array}\end{aligned}$

| L ( cm) | ```Portugal }\mp@subsup{}{}{1 Division IXa``` | $\begin{aligned} & \text { Spain } \\ & \text { Divisions } \\ & \text { VIIIC+IXa } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: |
|  | All gears | P. seiner | No. (*10 ${ }^{\text {c }}$ ) |
| 5.0 | 0 | 0 | 0 |
| 5.5 | 0 | 2226 | 2226 |
| 6.0 | 0 | 9090 | 9090 |
| 6.5 | 0 | 6678 | 6678 |
| 7.0 | 0 | 6122 | 6122 |
| 7.5 | 0 | 2041 | 2041 |
| 8.0 | 0 | 5380 | 5380 |
| 8.5 | 0 | 1670 | 1670 |
| 9.0 | 272 | 1124 | 1396 |
| 9.5 | 979 | 576 | 1554 |
| 10.0 | 5158 | 4042 | 9200 |
| 10.5 | 11247 | 16271 | 27519 |
| 11.0 | 7493 | 29840 | 37333 |
| 11.5 | 7018 | 23942 | 30960 |
| 12.0 | 7781 | 28241 | 36022 |
| 12.5 | 10341 | 16199 | 26540 |
| 13.0 | 13644 | 14185 | 27829 |
| 13.5 | 14172 | 5496 | 19668 |
| 14.0 | 11932 | 4348 | 16280 |
| 14.5 | 13368 | 7109 | 20476 |
| 15.0 | 27972 | 5808 | 33780 |
| 15.5 | 29164 | 4532 | 33696 |
| 16.0 | 63938 | 3529 | 67467 |
| 16.5 | 94790 | 4278 | 99068 |
| 17.0 | 134300 | 6686 | 140985 |
| 17.5 | 141799 | 27160 | 168959 |
| 18.0 | 164482 | 23668 | 188151 |
| 18.5 | 203893 | 60797 | 264690 |
| 19.0 | 213720 | 55569 | 269289 |
| 19.5 | 200141 | 62497 | 262638 |
| 20.0 | 175031 | 56626 | 231657 |
| 20.5 | 98554 | 44749 | 143303 |
| 21.0 | 56288 | 47952 | 104240 |
| 21.5 | 15868 | 47311 | 63179 |
| 22.0 | 5368 | 49754 | 55122 |
| 22.5 | 837 | 37533 | 38370 |
| 23.0 | 501 | 27385 | 27886 |
| 23.5 | 16 | 12835 | 12851 |
| 24.0 | 64 | 5589 | 5633 |
| 24.5 | 0 | 2275 | 2275 |
| 25.0 | 0 | 628 | 628 |
| 25.5 | 176 | 108 | 284 |
| 26.0 | 0 | 56 | 56 |
| 26.5 | 0 | 4 | 4 |
| 27.0 | 3 | 23 | 26 |
| 27.5 | 0 | 0 | 0 |
| 28.0 | 0 | 3 | 3 |
| Total | 1730309 | 771930 | 2502239 |

[^2]Table 2.9 VIRTUAL POPULATION ANALYSIS
SARDINE IN FISHING AREAS VIIIC AND IXA
CATCH IN NUMBERS UNIT: millions

|  | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 854 | 643 | 842 | 1021 | 60 | 1061 | 109 | 258 | 238 | 1401 | 439 | 244 |
| 1 | 2145 | 1479 | 1997 | 1920 | 769 | 553 | 3289 | 527 | 702 | 512 | 979 | 512 |
| 2 | 913 | 935 | 1542 | 1720 | 1854 | 838 | 470 | 2343 | 987 | 615 | 525 | 895 |
| 3 | 281 | 423 | 372 | 666 | 701 | 795 | 488 | 457 | 903 | 520 | 428 | 381 |
| 4 | 127 | 187 | 155 | 192 | 350 | 322 | 295 | 290 | 322 | 521 | 303 | 215 |
| 5 | 40 | 93 | 47 | 102 | 130 | 140 | 176 | 197 | 194 | 147 | 291 | 198 |
| $6+$ | 16 | 36 | 30 | 76 | 129 | 139 | 116 | 101 | 166 | 170 | 189 | 183 |
| TOTAL | 4376 | 3796 | 4985 | 5697 | 3993 | 3848 | 4943 | 4173 | 3512 | 3886 | 3154 | 2628 |

Table 2.10 SUM OF PRODUCTS CHECK
SARDINE IN FISHING AREAS VIIIC AND IXA CATEGORY: TOTAL

MEAN WEIGHT AT AGE IN THE CATCH

|  |  |  |  |  |  |  |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 |
| 0 | .017 | .017 | .017 | .017 | .017 | .017 | .017 | .017 | .017 | .017 | .017 |
| 1 | .034 | .034 | .034 | .034 | .034 | .034 | .034 | .034 | .034 | .034 | .034 |
| 2 | .052 | .052 | .052 | .052 | .052 | .052 | .052 | .052 | .052 | .052 | .052 |
| 3 | .060 | .060 | .060 | .060 | .060 | .060 | .060 | .060 | .060 | .060 | .060 |
| 4 | .068 | .068 | .068 | .068 | .068 | .068 | .068 | .068 | .068 | .068 | .068 |
| 5 | .072 | .072 | .072 | .072 | .072 | .072 | .072 | .072 | .072 | .072 | .072 |
| $6+$ | .079 | .079 | .079 | .079 | .079 | .079 | .079 | .079 | .079 | .079 | .079 |

Table 2.11 Sardine - VPA tuning data.

SARDINE IN DIVISIONS VITIC AND IXA
102
PORTUGUESE FLEET
81,89
1,1
0,5
$557,579,1495,991,376,81,40$
521,17,506,1317,305,88,18
399, 399,513,590,478,135, 46
441,108,716,298,242,104,41
582, 222, 482,1404,302,101,39
$496,166,502,764,444,193,54$
$460,418,460,501,431,226,76$
520, 394, 705, 446, 294, 208, 66
$566,53,476,699,310,165,139$
SPANISH FLEET
80,89
1,1
0,5
$4.33,345,400,450,164,81,28$
$5.15,447,350,595,197,94,48$
$5.3,44,277,535,408,278,115$
$4.02,662,40,248,317,187,94$
$4.65, .449,1572,172,249,191,136$
$4.86,85,156,1432,252,250,201$
$4.22,53,144,143,385,103,124$
$4.08,983,52,114,89,294,71$
$5.06,59,330,92,162,114,245$
$4.04,191,36,196,71,51,59$

Table 2.12 Sardine - tuning analysis.
Module run at 18.46.07 24 JUNE 1990
DISAGGREGATED Qs
LOG TRANSFORMATION
NO explanatory variate (Mean used)
Fleet 1 ,PORTUGUESE FLEET , has terminal $q$ estimated as the mean
Fleet. 2 , SPANISH FLEET , has terminal q estimated as the mean
FLEETS COMBINED BY ** VARIANCE **
Regression weights
$, 1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000$,
01 dest age $F=1.000^{*}$ average of 3 younger ages. Fleets combined by variance of predictions
Fishing mortalities

| Age, | 81, | 82, | 83, | 84, | 85, | 86, | 87, | 88, | 89, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0, | .074, | .006, | .040, | .009, | .031, | .032, | .114, | .061, | .061, |
| 1, | .168, | .090, | .080, | .207, | .064, | .137, | .110, | .135, | .116, |
| 2, | .256, | .303, | .165, | .112, | .280, | .203, | .213, | .195, | .219, |
| 3, | .255, | .196, | .258, | .170, | .188, | .206, | .195, | .282, | .264, |
| 4, | .200, | .259, | .161, | .178, | .179, | .244, | .219, | .207, | .280, |
| 5, | .237, | .253, | .195, | .153, | .216, | .218, | .209, | .228, | .254, |

Log catchability estimates

| Age 0 <br> Fleet, | 81. | 82, | 83, | 84, | 85, | 86 | 87, | 88, | 89 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left.\begin{array}{l}1,-9.50,-12.70\end{array}\right)-10.19,-10.86,-9.98,-10.01,-9.51,-9.16,-10.66$ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

SUMMARY STATISTICS


## Table 2.12 cont'd.

$$
\begin{aligned}
& \begin{array}{l}
\text { Age } 1 \\
\text { Fleet, } 81, \quad 82, \quad 83, \quad 84, \quad 85, \quad 86,87,88,89
\end{array} \\
& 1,-8.36,-9.08,-8.59,-9.19,-9.20,-8.53,-8.45,-8.59,-8.57 \\
& 2,-5.13,-5.10,-6.54,-3.85,-5.55,-5.01,-5.90,-4.71,-6.21
\end{aligned}
$$




SUMMARY STATISTICS


[^3]
## Table 2.12 cont'd.



Age 4
Fleet, $81, \quad 82, \quad 83, \quad 84, \quad 85, \quad 86, \quad 87,88,89$
-1, -8.79, -8.99, -8.69, -8.86, $,-9.14,-8.13,-8.49,-8.20,-7.88$
$2,-3.96,-3.25,-3.76,-3.70,-3.45,-3.99,-3.50,-4.17,-4.11$

SUMMARY STATISTICS


Table 2. 13 Separable exploitation pattern and log catch residuals. Sardine in Divisions VIIIc and IXa from 78 to 89 on ages 0 to 5
with Terminal $F$ of .219 on age 2 and Terminal $S$ of 1.000
Initial sum of squared residuals was 34.485 and final sum of squared residuals is $\quad 8.902$ after 129 iteration
Matrix of Residuals


Table 2.14 Total biomass (B) from acoustic surveys, catches ( $Y$ ) by countries and the ratio $Y / B$ as an index of $F$ for SARDINE in Divisions VIIIc and IXa ('000 tonnes). (TS $=20 \log \mathrm{~L}-72.6 \mathrm{~dB}$.$) .$

| $\begin{aligned} & \text { Par- } \\ & \text { ameter } \end{aligned}$ | Country | 1986 | 1987 |  |  | 1988 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mar | Mar | Aug | Nov | Mar/Apr |
| B | Portugal Spain | $\begin{aligned} & 318 \\ & 161^{1} \end{aligned}$ | $363^{1}$ | 325 | 331 | $\begin{aligned} & 481 \\ & 176^{1} \end{aligned}$ |
|  | Total | 479 | 688 |  |  | 657 |
| Y | Portugal <br> Spain | $\begin{array}{r} 103 \\ 77 \end{array}$ | $\begin{aligned} & 90 \\ & 79 \end{aligned}$ |  |  | $\begin{aligned} & 94 \\ & 65 \end{aligned}$ |
|  | Total | 180 | 169 |  |  | 159 |
| ```Index of av. F``` | Portugal | 0.32 0.48 | $0.25$ | 0.28 | 0.27 | $\begin{aligned} & 0.20 \\ & 0.37 \end{aligned}$ |
|  | spain |  |  |  |  |  |
|  | Total | 0.38 | 0.26 |  |  | 0.29 |

[^4]Table 2.15 VIrtual population analysis
SARDINE iN FISHING AREAS VIIIC AND IXA

| FISHING MORTALITY COEFFICIENT |  |  |  | UNIT: Year-1 |  | NATURAL | MORTALITY |  | COEFFICIENT $=$ | . 40 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |  |  |  |
| 0 | . 050 | . 032 |  |  |  |  |  |  |  | 1987 | 1988 | 1989 |
| 1 | . 304 | . 140 | . 163 | . 072 | . 006 | . 037 | . 009 | . 028 | . 031 |  |  |  |
| 2 | . 303 | . 263 | . 265 | . 257 | . 088 | . 084 | . 190 | . 066 | . 120 | . 109 | . 055 | . 036 |
| 3 4 | . 265 | . 281 | . 197 | . 218 | . 197 | . 162 | . 118 | . 251 | . 211 | . 181 | . 186 | . 173 |
| 4 5 | . 235 | . 357 | . 196 | . 184 | . 212 | . 203 | . 136 | . 199 | . 180 | . 204 | . 231 | . 173 |
| 5 $6+$ | . 279 | . 341 | . 176 | . 238 | . 2227 | . 152 | . 135 | . 173 | . 263 | . 186 | . 219 | . 217 |
| $6+$ | . 279 | . 341 | . 176 | . 238 | . 227 | . 152 | . 155 | . 153 | . 209 | . 229 | . 186 | . 273 |
| ( 2-5) $u$ | . 270 | . 310 | . 209 | . 224 |  |  |  |  |  | . 229 | . 186 | . 273 |
|  |  |  |  |  | . 22 | . 170 | 143 | . 194 | 216 | . 200 | . 206 | 228 |

Table 2.16 VIRTUAL POPULATION ANALYSIS
sardine in fishing areas vilic and ixa
stock size in numbers unit: millions
BIOMASS TOTALS UNIT: thousand tonnes
all values, except those referring to the spawning stock are given for 1 January; the spawning stock data reflect the stock situation at spahning time, whereby the following values are USED: PROPORTION OF ANNUAL F BEFORE SPAWNING:

$$
\begin{array}{r}
250 \\
250
\end{array}
$$

PROPORTION OF ANNUAL M BEFORE SPAWNING: .250

|  |  |  |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| 0 | 21409 | 24664 | 26784 | 17709 | 12466 | 35468 | 14990 | 11530 | 9506 | 18547 | 9943 | 8272 |
| 1 | 9837 | 13657 | 16010 | 17270 | 11042 | 8307 | 22913 | 9959 | 7519 | 6179 | 11296 | 6308 |
| 2 | 4193 | 4867 | 7957 | 9117 | 10022 | 6778 | 5120 | 12701 | 6248 | 4471 | 3727 | 6779 |
| 3 | 1453 | 2076 | 2509 | 4091 | 4724 | 5223 | 3866 | 3051 | 6624 | 3391 | 2500 | 2074 |
| 4 | 730 | 747 | 1051 | 1381 | 2204 | 2600 | 2859 | 2197 | 1676 | 3710 | 1853 | 1330 |
| 5 | 198 | 387 | 351 | 579 | 770 | 1195 | 1483 | 1677 | 1238 | 864 | 2066 | 998 |
| $6+$ | 79 | 150 | 224 | 431 | 765 | 1186 | 977 | 860 | 1059 | 999 | 1342 | 922 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| TOTAL NO | 37898 | 46547 | 54885 | 50578 | 41994 | 60759 | 52207 | 41975 | 33871 | 38161 | 32727 | 26683 |
| NO | 10790 | 14488 | 19004 | 22705 | 21716 | 19206 | 25124 | 22755 | 18510 | 14925 | 16186 | 13721 |
| SPS |  |  |  |  |  |  |  |  |  |  |  |  |
| TOT.BIOM | 446 | 579 | 776 | 971 | 1036 | 984 | 1091 | 1106 | 955 | 806 | 799 | 681 |
| SPS BIOM | 325 | 424 | 580 | 740 | 823 | 805 | 837 | 886 | 778 | 660 | 633 | 545 |


|  | 1990 | $1978-89$ |
| ---: | ---: | ---: |
| 0 | 0 | 17607 |
| 1 | 5347 | 11692 |
| 2 | 3814 | 6832 |
| 3 | 3820 | 3465 |
| 4 | 1083 | 1862 |
| 5 | 718 | 984 |
| $6+$ | 980 | 750 |

Table 2. 17 Sardine in Divisions VIIIc and IXa. Biomass ('000 t). Estimated by egg and acoustic surveys carried out in the same spawning season (March/April 1986, 1988).

| 1986 |  |  |  | 1988 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spain <br> (VIIIc, | IXa | $\begin{aligned} & \text { Portugal } \\ & \text { (IXa) } \end{aligned}$ | Stock | $\begin{aligned} & \text { Spain } \\ & \text { (VIIIc, IXa) } \end{aligned}$ | Portugal (IXa) | Stock |

Acoustic survey:

| SSB | 161 | 294 | 455 | 173 | 325 | 498 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Tot. biomass | 161 | 318 | 479 | 176 | 481 | 661 |
| EqG survey: |  |  |  |  |  |  |
| SSB | - | - | - | 181 | 81 | $262^{1}$ |
|  |  |  |  | $(C V=0.50)$ | $(C V=0.63)$ |  |

[^5]Table 2.18 Input data for RCRTINX? analysis.

```
SARDINE DIV VIIIC IXA : RECRUITS AGE O
6,12,2 (no. surveys, no. of years, no. of vpa column)
1978, 21409, -11, -11, -11, -11, 133, 721
1979, 24664, -11, -11, -11, -11, 456, 187
1980, 26784, -11, -11, -11, -11, 497, 345
1981, 17709, -11, -11, -11, -11, 601, 420
1982, 12466, -11, -11, -11, -11, 17, 43
1983, 35468, -11, -11, -11, -11, 399, 662
1984, 14990, -11, -11, -11, 2971, 108, 1
1985, 11530, 292, 55, 2326, 2061, 186, 72
1986, 9506, 3949, 632, -11, 3545, 181, 57
1987, 18547, 4185, 221, 7743, 3690, 418, 983
1988, 9943, 3139, -11, -11, -11, 394, 45
1989, 8272, -11, 69, -11, -11 53, 191
PAUGS
SMARS
PMARS
PNOVS
PSEINE
SSEINE
```

Analysis by RCRTINX2 of data from file recruit90
SARDINE DIV VIIIC IXA : RECRUITS AGE 0
Data for 6 surveys over 12 years
REGRESSION TYPE $=\mathrm{C}$
TAPERED TLME WEIGHTING APPLIED
POWER $=3$ OVER 7 YEARS
PRIOR WEIGHTING NOT APPLIED
FINAL ESTIMATES SHRUNK TOWARDS MEAN
ESTIMATES WITH S.E.'S GREATER THAN THAT OF MEAN
MINIMUM S.E. FOR ANY SURVEY TAKEN AS
MINIMUM S.E. FOR ANY SURVEY TAKEN AS
MINIMUM OF 4 POINTS USED FOR REGRESSION

Yearclass = 1987

| Survey/ | Index | Slope |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series | Value | Slope | cept | Rsquare | No. Pts | Predicted | Sigma | Standard | Weight |
| PAUGS | 8.3395 | . 000 | . 000 | . 0000 | Pts | Value |  | Error |  |
| SMARS | 5.4027 | . 000 | . 000 | . 0000 | 0 | . 0000 | . 00000 | . 00000 | . 00000 |
| PMARS | 8.9547 | . 000 | . 000 | . 0000 | 0 | . 0000 | . 00000 | . 00000 | . 00000 |
| PNOVS | 8.2137 | . 000 | . 000 | . 0000 | 0 | . 0000 | . 00000 | . 00000 | . 00000 |
| PSEINE | 6.0379 | 1.090 | 4.098 | . 1927 | 9 | 10.6823 | . .00000 | . 000000 | . 00000 |
| SSEINE | 6.8916 | . 516 | 7.566 | . 2051 | 9 | 11.1247 | $\begin{aligned} & 1.21397 \\ & 1.16748 \end{aligned}$ | $\begin{aligned} & 1.47253 \\ & 1.54500 \end{aligned}$ | $\begin{aligned} & .09533 \\ & .08659 \end{aligned}$ |
| MEAN |  |  |  |  |  | 9.6000 | . 50266 | 50266 |  |



Yearclass $=1989$

| Survey/ <br> Series <br> PAUGS | Index Value | Slope | Intercept | Rsquare | No. Pts | Predicted Value | S Sigma | Standard Error | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMARS | 4.2485 | . 000 | . 000 | . 0000 | 0 |  |  |  |  |
| PMARS PNOVS |  |  | . 00 | . 0000 | 0 | . 0000 | . 00000 | . 00000 | . 00000 |
| PSEINE | 3.9890 | 2.348 | -3.481 |  |  |  |  |  |  |
| SSEINE | 5.2575 | . 407 | 7.687 | $.0730$ | $\begin{aligned} & 11 \\ & 11 \end{aligned}$ | $5.8874$ | 1.68254 | 2.85355 | . 01660 |
|  |  |  | 7.687 | . 2267 |  | $9.8279$ | . 87225 | . 98224 | . 14007 |
| MEAN |  |  |  |  |  | 9.4796 | . 40030 | . 40030 |  |


| Yearclass | Weighted <br> Average <br> Prediction | Internal <br> Standard <br> Error | External <br> Standard <br> Error | Virtual <br> Population <br> Analysis | Ext.SE/ <br> Int.SE |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1987 | 9.84 | 18680.25 | .45 | .36 | 9.8318548 .00 | .79 |
| 1988 | 9.66 | 15677.18 | .40 | .19 | 9.209944 .01 | .48 |
| 1989 | 9.47 | 12948.77 | .37 | .34 | 9.028273 .00 | .92 |

Table 2.20
List of input variables for the ICES prediction program.

SAROINE IN FISHING AREAS VIIIC AND IXA
The reference $F$ is the mean $F$ for the age group range from 2 to 5
The number of recruits per year is as follows:

| Year | Recruitment |
| :--- | ---: |
| 1990 | 12949.0 |
| 1991 | 12949.0 |
| 1992 | 12949.0 |

$\begin{array}{ll}\text { Proportion of } F \text { (fishing mortality) effective before spawning: } & .2500 \\ \text { Proportion of } M \text { (natural mortality) effective before spawning: } & .2500\end{array}$

Data are printed in the following units:
Number of fish: millions
Weight by age group in the catch: kilogram Weight by age group in the stock: kilogram Stock biomass: thousand tonnes
Catch weight: thousand tonnes

| age | ck size | fishing pattern | natural: mortality: | maturity ogive: | weight inl the catch! | weight in! the stock: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | 12949.01 | . 04 | . 401 | . 001 | .0131 | . 0001 |
| 1 | 8373.0 | . 141 | . 401 | . 65 | .035 | . 015 |
| 21 | 3814.01 | . 23 ' | . 401 | . 95 | . 052 | . 038 |
| 31 | 3820.01 | .231 | . 401 | 1.001 | . 059 | . 0501 |
| 4 | 1083.01 | . 231 | . 401 | 1.001 | .066 | . 064 |
| 51 | 718.0 | . $23!$ | . 40 ! | 1.001 | .0711 | . 067 |
| $6+1$ | 980.0 | .231 | . 401 | 1.001 | . 089 | . 0791 |

Table 2... 21
Effects of different levels of fishing mortality on catch, stock biomass and spawning stock biomass.
SARDINE IN FISHING AREAS VIIIC AND IXA


The data unit of the biomass and the catch is 1000 tomnes.
The spawning stock biomass is given for the time of spawning.
The reference $F$ is biomass for 1992 has been calculated with the same fishing mortality as for 1991.
The reference $F$ is the mean $F$ for the age group range from 2 to 5

Table 2.22 Effects of the $F$ status quo level on eatch, stock biomass and spawning stock biomass during 1990-1992. Sardine in Divisions VIIIc and IXa.

* Year 1990. F-factor 1.000 and reference $F$. 2280 *
$\star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$

| . |  |  |  |  | ! |  |  | at spawning time |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| age! | absolute | catch in: numbers | catch in! weight | $\begin{array}{r} \text { stock! } \\ \text { size } \end{array}$ | biomass! | $\begin{array}{r} \text { sp.stock } \\ \text { size } \end{array}$ | $\begin{gathered} \text { sp. stock } \\ \text { biomass } \end{gathered}$ | $\begin{array}{r} \text { sp.stock } \\ \text { size } \end{array}$ | $\begin{aligned} & \text { sp.stock } \\ & \text { biomass } \end{aligned}$ |
| 01 | . 03801 | $398.45!$ | 5.0601 | 12949.01 | .000! | .01 | . 0001 | . 01 | . 0001 |
| 11 | . 1400 | 905.761 | 32.064 | 8373.01 | 125.595 | 5442.51 | $81.637!$ | 4755.21 | $71.327!$ |
| 21 | . 2280 | 645.741 | 33.8371 | 3814.01 | $144.932!$ | 3623.31 | 137.685 | 3096.81 | $117.680!$ |
| $3:$ | . 2280 | 646.76 | $38.159!$ | 3820.01 | 191.0001 | 3820.01 | 191.000 ! | 3265.01 | 163.248 |
| $4 i$ | . 2280 | 183.36 ! | 12.102 | 1083.0 | 69.312 | 1083.0 ! | $69.312!$ | 925.61 | 59.241 |
| 5 | . 22801 | 121.56 | 8.595 | 718.01 | $48.106!$ | 718.01 | 48.106 | 613.71 | 41.116 ! |
| $6+1$ | . 2280 | 165.92 | 14.8501 | 980.01 | 77.4201 | 980.01 | 77.420 | 837.61 | 66.171 |
| Tota? | I | 3067.56 | 144.667! | 31737.01 | $656.365!$ | 15666.7i | $605.160!$ | 13493.91 | $518.785!$ |

Table 2.22 cont'd.

Yer 191.

* Year 1991. F-factor 1.000 and reference F $\quad 2280^{*}$

|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1ute Fi | catch in numbers | catch in: weight | $\begin{gathered} \text { stock } \\ \text { size } \end{gathered}$ | stock! <br> biomass! | sp.stock! size! | sp.stock biomass | $\begin{array}{r} \text { sp. stock } \\ \text { size } \end{array}$ | sp.stock! biomass! |
| 101 | . 03801 | 398.451 | 5.0601 | 12949.01 |  |  |  |  |  |
| $1 \begin{aligned} & 11 \\ & 1 \\ & 1\end{aligned}$ | .14001 | 903.96 | 32.000 | 12356.3 | 125.345 | 5431.61 | 81.000! | 4745.0! | .000! |
| - $2!$ | . 22801 | 826.121 | 43.289 | 4879.4 | 185.415 | 5431.61 4635.4 | $81.474!$ 176.145 | 4745.71 | 71.185 |
| 1 31 | . 22881 | 344.61 | 20.3321 | 2035.4 | 101.769 | 4635.4 2035.4 | 176.145 101.769 | 3961.91 | 150.552 |
| 1 41 | . 22881 | 345.15 | 22.780 | 2038.61 | 130.469 | 2038.6 | 101.769 | 1739.6 | 86.982 ! |
| 6+1 | . 2288 | 97.85 | 6.918 | 578.01 | 38.723 | 578.0 | 130.469 | 1742.4i | 111.512 ! |
|  |  |  | 13.731 | 906.21 | 71.586 | 906.21 | 71.586 |  | 33.096 |
|  | 1 | 3069.55 | 144.110: | $31742.7!$ | 653.306 |  |  |  | 1.185; |
|  |  |  |  |  | 65.3061 | 15625.0; | 600.165 | 13458.11 | 514.5121 |

* Year 1992. F-factor 1.000 and reference F . $1.0280^{*}$

|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| absolute |  | catch in numbers | catch in! weight | stock! size | stock <br> biomass | $\begin{array}{r} \text { sp.stock } \\ \text { size } \end{array}$ | sp.stock biomass! | $\begin{array}{r} \text { sp.stock } \\ \text { size } \end{array}$ | sp.stock! <br> biomass! |
| 01 | . 03801 | 398.451 | 5.0601 |  |  |  |  |  |  |
| 11 | .1400 | 903.96 | 32.000 | 12949.0 8356.3 | 125.000 | 5431 | 81.0001 | 4745.01 | . 000: |
| $2!$ 31 | . 22801 | 824.47 | 43.2021 | 4869.6 | 125.345 185.046 | 5431.61 4626.2 | 81.474 | 4745.71 | 71.185 |
| 31 | . 22801 | 440.861 | 26.011 | 2603.91 | 130.046 | $4626.2!$ 2603.9 | 175.794 130.195 | 3954.0 | 150.252 |
| 4 5 | . 2280 | 183.90 184.19 | 12.138 | 1086.2 | 69.516 | 1086.2 |  | 2225.6 | 111.278 |
| 6+1 | . 22881 | 184.19 | 12.001 | 1087.91 | 72.889 | 1087.9 | $\begin{aligned} & 99.516 \\ & 72.889 \end{aligned}$ | 928.4 929.8 | $\begin{aligned} & 59.416 \\ & 62.299 \end{aligned}$ |
|  |  | 134.09 | 12.001 | 792.01 | 62.568 | 792.01 | $62.568$ | 676.91 | $53.477$ |
| Total | 1 | 3069.931 | 143.435 | 31745.0 | 5601 |  |  |  |  |
|  |  |  |  |  |  | 15627.8 | 592.4371 | 13460.4 | 507.9071 |

Table 3.1 Landings (tonnes) of HORSE MACKEREL by Sub-area. (Data as estimated by the Working Group.)

| Sub-area | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| II | 50 | 2 | - | - | - | 412 |
| IV | 4,920 | 1,412 | 2,151 | 7,245 | 2,788 | 4,420 |
| VI | 408 | 7,791 | 8,724 | 11,134 | 5,036 | 24,881 |
| VII | 26,060 | 43,525 | 45,697 | 34,749 | 33,478 | 40,526 |
| VIII | 84,823 | 47,155 | 37,495 | 40,073 | 22,683 | 28,223 |
| IX | 45,371 | 37,619 | 36,903 | 35,873 | 39,726 | 48,733 |
| Total | 161,632 | 137,504 | 130,970 | 129,074 | 103,711 | 147,195 |
| Sub-area | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| II | 253 | 7,987 | 24,238 | 20,746 | 20,895 | 62,892 |
| IV | 31,716 | 32,995 | 20,455 | 35,157 | 45,842 | 33,054 |
| VI | 42,952 | 39,034 | 77,628 | 100,734 | 90,253 | 137,712 |
| VII | 25,629 | 27,740 | 36,061 | 37,703 | 34,177 | 45,918 |
| VIII | 23,178 | 20,237 | 31,159 | 34,243 | 37,888 | 38,259 |
| IX | 149,485 | 144,323 | 186,263 | 232,063 | 277,870 | 371,799 |
| Total | 149 |  |  |  |  |  |

${ }^{1}$ Preliminary.

Table 3.2 Landings (tonnes) of HORSE MACKEREL in Sub-area II by country (Data as estimated by the Working Group).

| Country | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark |  | - | - | - | - | - |
| France |  |  |  |  |  |  |
| Germany, Fed. Rep. | - | + | - | - | - | - |
| Norway | 2 | 2 | - | + | - | - |
| USSR | 48 | - | - | - | - | 412 |
| Total | - | - | - | - | - | - |
| Country | 50 | 2 | - | + | - | 412 |
| Denmark | 1984 | 1985 | 1986 | 1987 | 1988 | $1989{ }^{1}$ |
| France |  | - | - | - | 39 | - |
| Germany, Fed. Rep. | - | 1 | - | - | -2 | - |
| Norway | 22 | 78 | 214 | 3,272 | 6,285 | 4,770 |
| USSR | - | - | - | - | 469 | 27 |
| Total |  | 23 | 79 | 214 | 3,311 | 6,818 |

[^6]Table 3.3 Landings (tonnes) of HORSE MACKEREL in Sub-area IV by country (Data as estimated by the Working Group).

| Country | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Belgium | 15 |  |  |  |  |  |
| Denmark | 1,543 | 496 | 8 199 | 34 3.576 | - ${ }^{7}$ | 55 |
| Faroe Islands | 1,543 | 496 | 199 | 3,576 | 1,612 | 1,590 |
| France | 182 | 221 | 292 | 421 | 567 | 366 |
| Germany, Fed. Rep. | 1,993 | 376 | + | 421 139 | 567 30 | 366 52 |
| Netherlands | 106 | 8 | 1,161 | 412 |  |  |
| Norway | 1,037 | 88 199 | 101 | $\begin{array}{r}355 \\ \hline\end{array}$ | 559 | $2,029{ }^{4}$ |
| Poland | 1,037 | 199 | 119 | 2,292 | 7 | 322 |
| Sweden | - | + |  | - | - | 2 |
| UK (Engl, \& Wales) | 36 | $2{ }^{+}$ | 11 | $\overline{5}$ | - |  |
| UK (Scotland) | 5 | $+$ | 11 | 15 | 6 | 4 |
| USSR |  | + |  |  |  |  |
| Total | 4,920 | 1,412 |  |  |  |  |
| Country | 1984 |  |  |  |  | 4,420 |
|  | 1984 | 1985 | 1986 | 1987 | 1988 | $1989^{1}$ |
| Belgium | 20 | 13 |  |  |  |  |
| Denmark | 23,730 | 22,495 | 18,652 ${ }^{2}$ | $7.290^{2}$ | $20,323^{2}$ | 23, 102 |
| Faroe Islands | 23,730 |  |  |  | 20,323 | 23,329 |
| France | 827 | 298 | $231^{3}$ | $189^{3}$ | $78 \overline{4}^{3}$ | 248 |
| Germany, Fed. Rep. | $+$ | $+$ |  | 189 3 | 784 | 248 |
| Ireland | - | - | - | 3 | 153 | 506 |
| Netherlands | $824{ }^{4}$ | $160^{4}$ | $600^{-4}$ | $850^{-4}$ | 1,060 ${ }^{-1}$ | 14, 172 |
| Norway ${ }^{2}$ | 94 | 203 | 776 | 11,728 ${ }^{5}$ | 34,060 ${ }^{5}$ | 14,172 84,161 |
| Poland | - |  | 77 | 11,728 |  | 84,161 |
| Sweden | - | - | $2^{2}$ |  | - | - |
| UK (Engl. \& Wales) | 3 | 71 | 3 | 339 | 373 | 10 |
| JK (Scotland) | 489 | 998 | 531 | 487 | 373 5,749 | 10 2.093 |
| USSR Unallocated+discards | s | 9 | 51 | 487- | 5,749 | 2,093 |
| Unallocated+discards | s | - | - |  |  | $-12,48 \overline{2}^{5}$ |
| Total 2 | 25,987 | 24,238 | 20,746 | 20,895 |  |  |
| ${ }_{2}^{1}$ Preliminary. |  |  |  |  |  |  |
| ${ }_{3}$ Includes Division IIIa. |  |  |  |  |  |  |
| 4 Includes Division IIa. |  |  |  |  |  |  |
| 5 Estimated from biological sampling. |  |  |  |  |  |  |

Table 3.4 Landings (tonnes) of HORSE MACKEREL in Sub-area VI by country (Data as estimated by the Working Group).

| Country | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | - | 443 | 734 | 341 | 2,785 | 7 |
| Faroe Islands | - | - | - | - | 1,248 | - |
| France | 91 | 151 | 45 | 454 | 4 | 10 |
| Ireland | 59 | - | - | - | - | 15,086 |
| Germany, Fed. Rep. | - | 155 | 5,550 | 10,212 | 2,113 | 4,146 |
| Netherlands | 114 | 6,910 | 2,385 ${ }^{2}$ | $100^{2}$ | 50 | 5,500 ${ }^{2}$ |
| Norway | - | - | - | 5 | - | 94 |
| Spain | 91 | 20 | - | - | - | - |
| UK (Engl. \& Wales) | 44 | 73 | 9 | 5 | $+$ | - |
| UK (Scotland) | 9 | 39 | 1 | 17 | 83 | 38 |
| USSR | - | - |  | - |  | - |
| Total | 408 | 7.791 | 8,724 | 11,134 | 6,283 | 24,881 |
| Country | 1984 | 1985 | 1986 | 1987 | 1988 | $1989{ }^{1}$ |
| Denmark | - |  |  | 769 4.450 | 1,655 $4,000^{4}$ | 973 3,059 |
| Faroe Islands | - | 4,014 | 1,992 ${ }^{2}$ | 4,450 ${ }^{4}$ | $4,000^{4}$ | 3,059 |
| France | 14 | 13 | 12 | 20 | 10 | 2 |
| Ireland | 13,858 | 27,102 | 28,125 | 29,743 | 27,872 | 17,677 |
| Germany, Fed. Rep. | 17. 1302 | 18.4512 | ${ }_{3} 354{ }^{2}$ | 174 5.750 | 615 3 | $1,162$ |
| Netherlands | 17,500 ${ }^{2}$ | 18,450 | 3,450 | 5,750 | 3,340 | 1,907 |
| Norway | - | - | 83.3 | 75 | 413 | $\mathrm{-}_{3}$ |
| Spain | - | - | - | - | - | - |
| UK (Engl. \& Wales) | + | 996 | 198 | 404 | 475 | 44 |
| UK (Scotland) | 214 | 1.427 | 138 | 1,027 | 7,834 | 1,737 |
| USSR | - | - | - | - | - | - |
| Unallocated+discards | - | -19,168 | $-13,897$ | -7,255 | - | 6,493 |
| Total | 31,716 | 33,025 | 20,455 | 35,157 | 45,842 | 33,054 |

${ }_{2}^{1}$ Preliminary.
${ }_{3}$ Estimated from biological sampling.
${ }^{3}$ Included in Sub-area VII.
${ }^{4}$ Includes Divisions IIIa, IVa,b and VIb.

Table 3.5 Landings (tonnes) of HORSE MACKEREL in Sub-area VII by country. (Data as estimated by the Working Group.)

| Country | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Belgium | 1 | 3 |  |  |  |  |
| Denmark | 2,104 | 4,287 | 5,045 | 3,099 | 1 | - |
| France | 3,564 | 4,287 | 5,045 1,983 | 3,099 2,800 | 2 877 | 993 |
| German Dem. Rep. | 3,564 | 4,407 | 1,983 | 2,800 | 2,314 | 1,834 |
| Germany, Fed. Rep. | 2,923 | 5,333 | 2,289 | 1,079 | 12 | 1,977 |
| Ireland | 3,388 | 5,333 | 2,289 | 1,079 16 | 12 | 1,977 |
| Netherlands | 10,556 | 25,174 | 23,002 | 25,000 ${ }^{2}$ | 27,500 ${ }^{2}$ | $234,350^{2}$ |
| Poland | 29 | 959 | 394 | - |  |  |
| Spain | 516 | 676 |  | - | - | - |
| UK (Engl.\& Wales) | 2,918 | 2,686 | 12,933 | 2. 234 | 104 | 142 |
| UK (Scotland) | 2,918 | 2,686 | 12,933 | 2,520 | 2,670 | 1,230 |
| USSR | - | - | 1 |  | - |  |
| Total | 28,855 | 26,060 |  |  |  |  |
|  |  |  | ,525 | 45,697 | 34,749 | 33,478 |
| Country | 1984 | 1985 | 1986 | 1987 | 98 |  |
| Belgium | - |  |  |  |  |  |
| Denmark | 732 | $1,477^{3}$ | $30,408^{+}$ | 27, ${ }^{2} 8$ | 33,202 | 37 |
| France | 2,387 | 1,881 | 30,408 3,801 | 27,368 | 33,202 | 37,474 |
| German Dem. Rep. | 2,387 | 1,881 | 3,801 | 2,197 | 1,523 | 4,576 |
| Germany, Fed. Rep. | 228 | - | 5 |  | - ${ }^{-}$ | 7-7 |
| Ireland | 65 | 100 | 703 | 374 15 | 4,705 | 7,743 |
| Netherlands | 38,700 ${ }^{2}$ | $33,550^{2}$ | 40,750 | $69,400^{2}$ | 43,561 56 | $11,467$ |
| Norway | , |  | 40,750 | 69,400 | 43,560 | $43,582$ |
| Poland | - |  |  |  | - | - |
| Spain | 560 | 275 | $137^{3}$ | $14 \overline{8}^{3}$ | 150 | - |
| UK (Engl.\& Wales) | 279 | 1,630 | 137 1,824 | 148 | 150 | 14 |
| UK (Scotland) | 27 | 1,630 | 1,824 | 1,228 | 3,759 | 4,488 |
| USSR | 1 | 120 | + | 2 | 2,873 | + |
| Unallocated+discards | - | 120 | - | - | - | - |
|  |  |  | - | - | - | 28,368 |
| otal | 42,952 | 39,034 | 77,628 | 100,734 |  | 7 |
| ${ }_{2}^{1}$ Provisional. |  |  |  |  |  |  |
| ${ }_{3}$ Estimated from biological sampling. |  |  |  |  |  |  |

Table 3.6 Landings (tonnes) of HORSE MACKEREL in Sub-area VIII by country. (Data as estimated by the Working Group.)

| Country | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | - | 127 | - | , - | . ${ }^{-}$ | - ${ }^{\text {- }}$ |
| France | 4,662 | 4,240 | 3,361 | 3,711 | 3,073 | 2,643 |
| German Dem. Rep | - | - | - | - |  |  |
| Netherlands | 19 | - | , - | , ${ }^{-}$ | 19, ${ }^{-}$ | 25.50- |
| Spain | 80,139 | 42,766 | 34,134 | 36,362 | 19,610 | 25,580 |
| UK (Engl.\& Wales) | - | 22 | - | + | 1 | - |
| USSR | 3 | - | - | - | - | - |
| Total | 84,823 | 47,155 | 37,495 | 40,073 | 22,683 | 28,223 |
| Country | 1984 | 1985 | 1986 | 1987 | 1988 | $1989{ }^{1}$ |
| Denmark | - ${ }^{-}$ | - ${ }^{-}$ | 446 | 3,283 | 2,793 | 6,729 |
| France | 2,489 | 4,305 | 3,534 | $3,983{ }_{2}$ | 4,502 | 4,719 |
| German Dem. Rep | -2 | -2 | -2 |  | - | - |
| Netherlands Spain | $23,119^{-3}$ | $23,292^{3}$ | 31,033 | 30,098 | 26,629 | 34,402 |
| UK (Engl.\& Wales) | 1 | 143 | 392 | 339 | 253 | 68 |
| USSR | 20 | - | 656 | - | - | - |
| Unallocated+discards | - | - | - | - | - | - |
| Total | 25,629 | 27,740 | 36,061 | 37,703 | 34,177 | 45,918 |

[^7]Table 3.8 Quarterly catches of horse mackerel ('000 $t$ ) by division and sub-areas in 1989 (Data submitted by Working Group members).

| Division | Quarter |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 |  |
| IIa | - | - | 5 | + | 5 |
| IIIa | - | + | + | 1 | 1 |
| IVa | - | - | 7 | 59 | 66 |
| IVb, c | - | + | 20 | 21 | 41 |
| VIa | + | 1 | 21 | 5 | 27 |
| VIIa-c, e-k | 40 | 29 | 24 | 23 | 116 |
| VIId | 2 | - | 1 | 3 | 6 |
| VIIIa-b, d, e | 1 | 1 | 1 | 1 | 4 |
| VIIIC | 8 | 8 | 7 | 9 | 32 |
| IXa | 7 | 11 | 12 | 7 | 37 |
| SUM | 58 | 50 | 98 | 129 | 335 |
| Not given by quarter | - | - | - | - | 37 |
| TOTAL |  |  |  |  | 372 |

Table 3.9 Landings and discards of horse mackerel ( $t$ ) by year, by sub-areas, for the North Sea, Western, and Southern horse mackerel. (Data estimated by the Working Group.)

| Yeax | North Sea horse mackerel |  |  |  |  | Western horse mackerel |  |  |  |  |  |  | Southern horse mackerel |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IIIa |  | IVb, c | VIId | Total | IIa | IVa | VIa | $\begin{aligned} & \text { VIIa-c } \\ & e-k \end{aligned}$ | VIIIa, $b_{r}, \mathrm{~d}, \mathrm{e}$ | Disc- <br> ards | Total | VIIIC | IXa | Total |
| 1982 | - | 2,788 | - | 1,247 | 4,035 | - | - | 6,283 | 32,231 | 3,073 | - | 41,588 | 19,610 | 39,726 | $59,336$ |
| 1983 | - | 4,420 | - | 3,600 | 8,020 | 412 | - | 24,881 | 36,926 | 2,643 | - | 64,862 | 25,580 | 48,733 | $74,313$ |
| 1984 | - | 25,893 | - | 3,585 | 29,478 | 23 | 94 | 31,716 | 38,782 | 2,510 | 500 | 73,625 | 23,119 | 23,178 | $46,297$ |
| 1985 | 1,138 |  | 22,897 | 2,715 | 26,750 | 79 | 203 | 33,025 | 35,296 | 4,448 | 7,500 | 80,551 | 23,292 | 20,237 | 43,529 |
| 1986 | 396 |  | 19,496 | 4,756 | 24,648 | 214 | 776 | 20,343 | 72,761 | 3,071 | 8,500 | 105,665 | 31,033 | 31,159 | 60,649 |
| 1987 | 436 |  | 9,477 | 1,721 | 11,634 | 3,311 | 11,185 | 35,197 | 99,942 | 7,605 | - | 157,240 | 30,098 | 34,243 | 64,341 |
| 1988 | 2,261 |  | 20,290 | 3,120 | 25,671 | 6,818 | 40,174 | 45,842 | 81,978 | 7,548 | 3,740 | 186,100 | 26,629 | 37,888 | 62,904 |
| 1989 | 913 |  | 42,860 | 6,522 | 50,295 | 4,809 | 68,274 | 33,054 | 130,040 | 11,516 | 1,150 | 248,843 | 34,402 | 38,259 | 72,661 |

Table 3.10 Annual length distributions (millions) of horse mackerel catches by fleet by country in 1989


Table 3.11 Quarterly sampling data on horse mackerel from commercial catches and surveys in 1989, provided by different countries to the ICES Pelagic Fish Committee and and total catches (in tonnes) estimated by the Working Group for this year.
$+=$ sampling data from commercial catches.
$(+)=$ sampling data from surveys.


Table 4.1 Age composition (\%) in commercial and research vessel catches of North Sea horse mackerel taken by the Netherlands in 1987-1989.

|  | Year |  |  |
| ---: | ---: | ---: | ---: |
| Age | 1987 | 1988 | 1989 |
| 0 | 0.0 | 0.0 | 1.3 |
| 1 | 0.5 | 0.0 | 0.0 |
| 2 | 2.0 | 3.5 | 2.6 |
| 3 | 0.0 | 1.6 | 28.0 |
| 4 | 0.0 | 0.0 | 12.9 |
| 5 | 27.9 | 4.0 | 1.9 |
| 6 | 2.6 | 3.4 | 3.9 |
| 7 | 18.7 | 2.4 | 33.4 |
| 8 | 2.8 | 14.2 | 4.0 |
| 9 | 3.3 | 0.3 | 1.1 |
| 10 | 4.7 | 5.4 | 2.4 |
| 11 | 1.5 | 5.6 | 0.8 |
| 12 | 2.0 | 5.8 | 0.7 |
| 13 | 22.8 | 15.8 | 1.3 |
| 14 |  |  | 1.1 |
| $15+$ |  |  | 4.5 |

Table 5.1 Summary of the Western horse mackerel stock total egg production and spawning stock size estimate in 1989.

| Area | Total egg production $\times 10$ | Spawning stock biomass $x 10^{6} t$ of late pre-spawning fish (using fecundity of 1,655 eggs per $g$ female) | Spawning stock <br> biomass x $10^{6}$ <br> at spawning <br> time |
| :---: | :---: | :---: | :---: |
| Standard area $56^{0} N-44^{0} 30^{\prime} N$ | $1.507^{1}$ | 1.821 | 1.912 |
| North of standard area North $56^{\circ} \mathrm{N}$ | 0 | 0 | 0 |
| Western Channel <br> East of $7^{\circ} 30^{\prime} \mathrm{W}$ | $0.121^{2}$ | 0.146 | 0.153 |
| South of standard area south $44^{\circ} 30^{\prime} \mathrm{N}$ | 0.055 | 0.066 | 0.069 |
| Total | 1.683 | 2.033 | 2.134 |

Table 5.2 Estimates of total egg production of pre-spawning and spawning stock biomass of Western horse mackerel derived from the western egg surveys.

| Year | Total egg <br> production <br> $\left(10^{2}\right)$ | Horse mackerel pre- <br> spawning stock bio- <br> mass $\left(10^{5} t\right)^{2}$ | Horse mackerel <br> spawning stock <br> biomass $\left(10^{6} t\right)^{2}$ |
| :--- | :---: | :---: | :---: |
| $\frac{0.533^{3}}{1977}$ | $0.635^{3}$ | 0.644 | 0.676 |
| 1980 | 0.60 .767 | 0.806 |  |
| 1983 | $0.381^{3}$ | 0.460 | 0.483 |
| 1986 | $0.508^{3}$ | 0.613 | 0.645 |
| 1989 | $1.683^{4}$ | 2.033 | 2.134 |

[^8]Table 5.3 Mean weight at age in the catch ( $g$ ) of Western horse mackerel and between brackets the number of weight measurements.

|  | 1982 |  | 1983 |  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 54 | (5) | 39 | (19) | 34 | 29 (1) | 29 (0) | 68 (2) |  | (94) | 50 | (0) |
| 2 | 90 | (28) | 113 | (6) | 73(148) | 45 (3) | 45 (0) | 67 (10) | 75 | (21) | 75 | (0) |
| 3 | 142( | 150) | 124 | (69) | 89 (5) | 87(724) | 110 (5) | 110 (0) | 113 | (6) | 149 | (10) |
| 4 | 178 | (13) | 168 | (87) | 130 (46) | 150 (8) | 107(658) | 155 (3) | 132 | (5) | 144 | (12) |
| 5 | 227 | (26) | 229 | (28) | 176(282) | 156 (78) | 171 (16) | 143(749) | 130 | (23) | 142 | (4) |
| 6 | 273 | (30) | 247 | (74) | 216 (46) | 199(198) | 196 (95) | 174 (9) | 147 ( | 904) | 164 | (5) |
| 7 | 276 | (23) | 282 | (96) | 245 (83) | 243 (26) | 223(161) | 198 (40) | 193 | (19) | 154 | (1143) |
| 8 | 292 | (4) | 281 | (35) | 278 (71) | 256 (44) | 251 (21) | 249(124) | 228 | (30) | 168 | (4) |
| 9 | 305 | (1) | 254 | (5) | 262 (30) | 294 (15) | 296 (33) | 264 (15) | 270 | (74) | 221 | (28) |
| 10 | 369 | (4) | 260 | (11) | 259 (9) | 257 (19) | 280 (22) | 321 (17) | 313 | (10) | 233 | (47) |
| 11 | 348 | (19) | 300 | (6) | 255 (0) | 241 (2) | 319 (11) | 336 (30) | 306 | (14) | 282 | (13) |
| 12 | 348 | (57) | 310 | (30) | 344 (2) | 251 (5) | 287 (4) | 244 (10) | 357 | (26) | 324 | (9) |
| 13 | 348 | (97) | 315 | (47) | 232 (5) | 314 (11) | 345 (4) | 328 (3) | 300 | (12) | 312 | (17) |
| 14 | 356 | (67) | 311 | (70) | 306 (19) | 346 (5) | 260 (3) | 245 (5) | 355 | (8) | 333 | (8) |
| 15+ | 366 | (26) | 332 | (92) | 308(129) | 321 (86) | 360 (67) | 373 (58) | 384 | (51) | 383 | (25) |

Table 5.4 Mean weight at age in the stock ( $g$ ) of Western horse mackerel and between brackets the number of weight measurements.

|  | 1982 |  | 1983 |  | 1984 |  | 1985 |  | 1986 |  | 1987 |  | 1988 |  | 1989 |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0 | $(0)$ | 0 | $(0)$ | 0 | $(0)$ | 0 | $(0)$ | 0 | $(0)$ | 0 | $(0)$ | 0 | $(0)$ | 0 | $(0)$ |
| 2 | 50 | $(0)$ | 50 | $(0)$ | 50 | $(0)$ | 50 | $(0)$ | 50 | $(0)$ | 50 | $(0)$ | 50 | $(0)$ | 50 | $(0)$ |
| 3 | 80 | $(0)$ | 80 | $(0)$ | 77 | $(2)$ | $81(164)$ | 80 | $(0)$ | 80 | $(0)$ | 80 | $(0)$ | 80 | $(0)$ |  |
| 4 | 207 | $(3)$ | 171 | $(1)$ | 122 | $(21)$ | 148 | $(5)$ | $105(100)$ | 105 | $(0)$ | 105 | $(0)$ | 105 | $(0)$ |  |
| 5 | 232 | $(22)$ | 227 | $(6)$ | $155(162)$ | 140 | $(40)$ | 134 | $(2)$ | $126(199)$ | 126 | $(0)$ | 103 | $(1)$ |  |  |
| 6 | 269 | $(25)$ | 257 | $(21)$ | 201 | $(31)$ | $193(118)$ | 169 | $(23)$ | 150 | $(2)$ | $141(358)$ | 131 | $(2)$ |  |  |
| 7 | 280 | $(18)$ | 276 | $(36)$ | 223 | $(37)$ | 236 | $(17)$ | 195 | $(44)$ | 171 | $(13)$ | 143 | $(2)$ | $159(380)$ |  |
| 8 | 292 | $(4)$ | 270 | $(9)$ | 253 | $(34)$ | 242 | $(23)$ | 242 | $(15)$ | 218 | $(40)$ | 217 | $(13)$ | 127 | $(1)$ |
| 9 | 305 | $(1)$ | 243 | $(2)$ | 246 | $(8)$ | 289 | $(6)$ | 292 | $(9)$ | 254 | $(9)$ | 274 | $(25)$ | 210 | $(13)$ |
| 10 | 369 | $(4)$ | 390 | $(1)$ | 338 | $(2)$ | 247 | $(11)$ | 262 | $(7)$ | 281 | $(5)$ | 305 | $(4)$ | 252 | $(25)$ |
| 11 | 344 | $(15)$ | 305 | $(1)$ | 300 | $(0)$ | 300 | $(0)$ | 300 | $(0)$ | 291 | $(11)$ | 337 | $(4)$ | 263 | $(8)$ |
| 12 | 348 | $(41)$ | 309 | $(15)$ | 300 | $(0)$ | 300 | $(0)$ | 300 | $(0)$ | 297 | $(0)$ | 352 | $(14)$ | 302 | $(5)$ |
| 13 | 348 | $(61)$ | 311 | $(20)$ | 300 | $(2)$ | 325 | $(4)$ | 300 | $(0)$ | 303 | $(1)$ | 361 | $(2)$ | 411 | $(12)$ |
| 14 | 361 | $(38)$ | 312 | $(33)$ | 305 | $(11)$ | 325 | $(4)$ | 300 | $(0)$ | 303 | $(0)$ | 352 | $(4)$ | 383 | $(5)$ |
| $15+$ | 364 | $(18)$ | 310 | $(30)$ | 285 | $(65)$ | 303 | $(58)$ | 346 | $(23)$ | 339 | $(7)$ | 390 | $(24)$ | 358 | $(23)$ |

Table 5,5
Mean length (cm) at age in the Dutch commercial catch of WESTERN HORSE MACKEREL by year.

| Age | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathrm{L}}$ | $\overline{\mathrm{L}}$ | $\bar{L}$ | $\bar{L}$ | $\overline{\mathrm{L}}$ | $\bar{L}$ | $\overline{\mathrm{I}}$ | $\bar{L}$ |
| 0 | - ${ }^{1}$ | 1 | - | - | - | - | 12.2 |  |
| 1 | 18.5 | $16.9{ }^{1}$ | - | 16.5 | - | 20.0 | 12.2 16.4 | - |
| 2 | 22.3 | 24.0 | $20.8{ }^{1}$ | 17.8 | - | 20.4 | 21.1 | - |
| 3 | 25.6 | 25.1 | 23.1 | $22.0{ }^{1}$ | 23.5 | - | 23.8 | 25.8 |
| 4 | 28.2 | 27.4 | 26.0 | 26.4 | $23.7{ }^{1}$ | 27.4 | 25.3 | 26.0 |
| 5 | 30.3 | 30.3 | 28.6 | 26.9 | 27.9 | $26.2{ }^{1}$ | 25.3 | 25.8 |
| 6 | 32.0 | 31.3 | 30.7 | 29.4 | 29.0 | 27.3 | $26.8{ }^{1}$ | 27.8 |
| 7 | 32.1 | 32.9 | 31.9 | 31.6 | 30.5 | 29.5 | 28.6 | $27.2{ }^{1}$ |
| 8 | 33.0 | 32.9 | 31.9 | 31.6 | 30.5 | 31.6 | 30.5 | 28.5 |
| 9 | 34.5 | 32.3 | 31.7 | 33.5 | 33.6 | 32.5 | 32.0 | 30.7 |
| 10 | 35.5 | 30.8 | 31.3 | 32.4 | 33.0 | 34.4 | 33.7 | 31.0 |
| 11 | 35.1 | 32.8 | - | 30.9 | 33.7 | 34.9 | 33.0 | 33.5 |
| 12 | 34.7 | 34.6 | 33.9 | 31.1 | 33.0 | 30.5 | 34.9 | 34.8 |
| 13 | 35.1 | 34.7 | 30.9 | 33.8 | 34.8 | 34.2 | 32.4 | 33.6 |
| 14 | 35.4 | 34.6 | 35.4 | 35.9 | 31.2 | 31.1 | 34.9 | 34.2 |
| 15+ | 36.0 | 34.9 | 34.5 | 34.9 | 36.3 | 36.0 | 36.1 | 37.2 |

1982 year class.

## Table 5.6

Title ; HORSE MACKEREL IN FISHING AREAS IIA, IVA, VIA, VIIA-C,E-K,VIIIA-B,D-E At 15.12.11 25 JUNE 1990
from 82 to 89 on ages 1 to 11
with Terminal $F$ of .140 on age 7 and Terminal $S$ of 1.000
Initial sum of squared residuals was 324.995 and
final sum of squared residuals is 271.497 after 134 iterations
Matrix of Residuals

| Years | $82 / 83$ | $83 / 84$ | $84 / 85$ | $85 / 86$ | $86 / 87$ | $87 / 88$ | $88 / 89$ |  | WTS |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Ages |  |  |  |  |  |  |  |  |  |
| $1 / 2$ | 1.652 | -3.186 | -6.368 | 5.304 | -3.995 | -3.306 | 8.366 | .000 | .067 |
| $2 / 3$ | 1.029 | -.124 | -.860 | 1.814 | .231 | -.299 | -.887 | .000 | .366 |
| $3 / 4$ | 3.741 | 1.792 | 1.403 | 1.900 | .795 | -3.615 | -.488 | .000 | .157 |
| $4 / 5$ | 1.293 | -.388 | .036 | .125 | -.048 | -.389 | .274 | .000 | .638 |
| $5 / 6$ | -.669 | -.794 | -.480 | -.686 | .634 | .280 | .253 | .000 | .627 |
| $6 / 7$ | -.389 | .303 | .279 | .258 | .240 | -.544 | -.234 | .000 | 1.000 |
| $7 / 8$ | -.136 | .012 | .001 | -.907 | -.560 | .960 | .506 | .000 | .584 |
| $8 / 9$ | -.310 | -.428 | .640 | -.665 | -.166 | .784 | -.593 | .000 | .623 |
| $9 / 10$ | -1.861 | -.483 | -.221 | -.931 | .217 | 1.028 | -.091 | .000 | .401 |
| $10 / 11$ | -.448 | 5.480 | 1.312 | .580 | -1.296 | .322 | -.923 | .000 | .159 |
|  | .000 | .000 | .000 | .000 | .000 | .000 | .000 | 6.080 |  |
|  | . |  |  |  |  |  |  |  |  |
| WTS | .001 | .001 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |

Fishing Mortalities (F)

|  | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F-values | .1018 | .2434 | .2317 | .1294 | .1210 | .0789 | .1702 | .1400 |

Selection-at-age (S)
1
S-values . 0065

|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S-values | .0107 | .0240 | .2112 | .5686 | .5543 | 1.0000 | 1.0839 | .9624 | 1.2413 | 1.0000 |

Table 5.7 VIRTUAL POPULATION ANALYSIS HORSE MACKEREL IN FISHING AREAS IIA, IVA, VIA, VIIA-C, E-K,VIIIA-B, D-E CATCH IN NUMBERS UNIT: millions

|  | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 2.5 | 5.7 |  | .0 | 1.3 |  |  |  |
| 2 | 14.3 | 1.6 | 183.7 | 3.8 | .0 | .1 | 30.8 | .0 |
| 3 | 91.6 | 23.6 | 3.4 | 467.7 | 1.1 | .4 | 6.9 | .0 |
| 4 | 7.8 | 38.4 | 27.6 | 3.5 | 489.4 | 2.5 | 2.3 | 26.5 |
| 5 | 9.0 | 11.0 | 114.0 | 32.4 | 6.3 | 748.4 | 17.3 | 23.3 |
| 6 | 8.0 | 31.9 | 17.0 | 77.9 | 47.1 | 1.7 | 955.7 | 8.8 |
| 7 | 6.0 | 37.8 | 29.1 | 9.8 | 79.4 | 34.9 | 9.0 | 1373.5 |
| 8 | 1.1 | 12.9 | 25.9 | 12.5 | 18.6 | 76.2 | 23.6 | 3.5 |
| 9 | .3 | 2.4 | 11.2 | 4.8 | 15.3 | 9.9 | 50.7 | 22.9 |
| 10 | 1.1 | 3.9 | 3.1 | 7.2 | 11.1 | 8.0 | 7.3 | 42.9 |
| 11 | 4.5 | 2.4 | .0 | .3 | 2.3 | 16.3 | 7.6 | 8.8 |
| $12+$ | 50.8 | 90.2 | 44.4 | 31.5 | 38.9 | 36.4 | 56.6 | 30.3 |
|  |  |  |  |  |  |  |  |  |
| TOTAL | 197.0 | 261.8 | 459.5 | 652.7 | 709.5 | 934.8 | 1172.9 | 1547.0 |


| A) SOP | 42 | 66 | 73 | 81 | 107 | 157 | 191 | 250 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| B)NOMIN. | 42 | 65 | 74 | 81 | 106 | 156 | 186 | 249 |
| (B/A) $\%$ | 99 | 99 | 101 | 99 | 98 | 100 | 97 | 100 |

Table 5.8 VIRTUAL POPULATION ANALYSIS
HORSE MACKEREL IN FISHING AREAS IIA, IVA, VIA, VIIA-C,E-K,VIIIA-B,D-E
PROPORTIONS OF MATURITY
UNIT :

|  | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 |
| 2 | .400 | .300 | .100 | .100 | .100 | .100 | .100 | .100 |
| 3 | .800 | .700 | .600 | .400 | .400 | .400 | .400 | .400 |
| 4 | 1.000 | 1.000 | .850 | .800 | .600 | .600 | .600 | .600 |
| 5 | 1.000 | 1.000 | 1.000 | .950 | .900 | .800 | .800 | .800 |
| 6 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 7 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 8 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 9 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 10 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 11 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| $12+$ | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |

Table. 5. 9 VIRTUAL POPULATION ANALYSIS
HORSE MACKEREL IN FISHING AREAS IIA, IVA, VIA, VIIA-C, E-K,VIIIA-B,D-E

| FISHING MORTALITY COEFFICIENT | UNIT: Year-1 | NATURAL MORTALITY COEFFICIENT = |  |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| 1 | .017 | .000 | .000 | .015 | .000 | .000 | .010 | .000 |
| 2 | .016 | .013 | .006 | .012 | .000 | .001 | .002 | .000 |
| 3 | .053 | .031 | .031 | .019 | .004 | .000 | .005 | .008 |
| 4 | .030 | .027 | .044 | .038 | .023 | .011 | .095 | .056 |
| 5 | .032 | .052 | .098 | .063 | .087 | .042 | .095 | .172 |
| 6 | .035 | .146 | .100 | .086 | .116 | .029 | .066 | .059 |
| 7 | .064 | .214 | .181 | .073 | .112 | .111 | .197 | .122 |
| 8 | .084 | .178 | .211 | .105 | .183 | .142 | .097 | .105 |
| 9 | .011 | .239 | .221 | .052 | .171 | .132 | .125 | .122 |
| 10 | .101 | .200 | .534 | .202 | .154 | .120 | .130 | .140 |
| 11 | .102 | .312 | .000 | .072 | .086 | .334 | .152 | .215 |
| $12+$ | .102 | .312 | .000 | .072 | .086 | .334 | .152 | .215 |
| $(3-11) U$ | .057 | .155 | .158 | .079 | .104 | .102 | .107 | .111 |

Table -5. 10 VIRTUAL POPULATION ANALYSIS
HORSE MACKEREL IN FISHING AREAS IIA, IVA, VIA, VIIA-C,E-K,VIIIA-B, D-E
STOCK SIZE IN NUMBERS UNIT: millions
BIOMASS TOTALS UNIT: thousand tonnes
ALL VALUES, EXCEPT THOSE REFERRING TO THE SPAWNING STOCK ARE GIVEN FOR 1 JANUARY; THE SPAWNING STOCK data reflect the stock situation at spawning time, whereby the following values are USED: PROPORTION OF ANNUAL F BEFORE SPAWNING: . 450 PROPORTION OF ANNUAL M BEFORE SPAWNING: . 450

|  | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 165 | 37078 | 384 | 94 | 722 | 4870 | 3334 | 0 | 0 |
| 2 | 986 | 139 | 31908 | 330 | 79 | 622 | 4192 | 0 | 0 |
| 3 | 1913 | 835 | 118 | 27293 | 281 | 68 | 535 | 3602 | 0 |
| 4 | 282 | 1562 | 697 | 99 | 23058 | 241 | 59 | 458 | 3075 |
| 5 | 304 | 235 | 1309 | 574 | 82 | 19393 | 205 | 46 | 373 |
| 6 | 253 | 253 | 192 | 1021 | 464 | 65 | 15998 | 160 | 33 |
| 7 | 105 | 210 | 189 | 150 | 807 | 356 | 54 | 12885 | 130 |
| 8 | 15 | 85 | 146 | 135 | 120 | 621 | 274 | 38 | 9819 |
| 9 | 27 | 12 | 61 | 102 | 105 | 86 | 464 | 214 | 30 |
| 10 | 13 | 23 | 8 | 42 | 83 | 76 | 65 | 352 | 163 |
| 11 | 50 | 10 | 0 | 4 | 30 | 61 | 58 | 49 | 263 |
| $12+$ | 565 | 361 | 0 | 488 | 510 | 137 | 432 | 168 | 151 |
|  |  |  |  |  |  |  |  |  |  |
| TOTAL NO | 4676 | 40804 | 35012 | 30332 | 26341 | 26596 | 25669 | 17973 |  |
| SPS | 3230 | 3039 | 5269 | 12467 | 14857 | 15669 | 16469 | 13889 |  |
| TOT.BIOM | 660 | 667 | 2028 | 2775 | 2937 | 2813 | 2926 | 2613 |  |
| SPS BIOM | 545 | 570 | 518 | 1309 | 1787 | 2079 | 2443 | 2145 |  |

## Table 5.11

List of input variables for the ICES prediction program.

WSETERN HORSE MACKEREL
The reference $F$ is the mean $F$ for the age group range from 3 to 11
The number of recruits per year is as follows:

| Year | Recruitment |
| :--- | ---: |
| 1990 | 1250.0 |
| 1991 | 1250.0 |
| 1992 | 1250.0 |

Proportion of $F$ (fishing mortality) effective before spawning: . 4500 Proportion of $M$ (natural mortality) effective before spawning: . 4500

Data are printed in the following units:
Number of fish: millions
Weight by age group in the catch: kilogram
Weight by age group in the stock: kilogram
Stock biomass: thousand tonnes
Catch weight: thousand tonnes


## Table 5.. 12

Effects of different levels of fishing mortality on catch, stock biomass and spawning stock biomass.

## WSETERN HORSE MACKEREL

|  | Year 1990 |  |  | , | Year 1991 |  |  | Year 1992 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { fac- } \\ & \text { tor } \end{aligned}$ | $\begin{array}{r} \text { ref. } \\ F: \end{array}$ | stock! <br> biomass: | $\begin{gathered} \text { sp.stock } \\ \text { biomass } \end{gathered}$ | catch Basis | ref.i: | stock! <br> biomass: | $\begin{aligned} & \text { sp.stock! } \\ & \text { biomass } \end{aligned}$ | catch | stock! biomass! | $\begin{aligned} & \text { sp. stock } \\ & \text { biomass } \end{aligned}$ |
| 1.2 | . 12 ! | 2441 | 1936! | $\begin{array}{r:cr}291 & & -1 \\ & .8 F \\ & F_{89} \\ & F_{89} & \\ & \end{array}$ | .001 .081 .101 .15 | $2090$ | 1788 1712 1691 1638 | $0!$ $172!$ $217!$ 329 | 2090 1918 1873 1762 | 1823 1594 1535 1395 |

The data unit of the biomass and the catch is 1000 tonnes.
The spawning stock biomass is given for the time of spawning.
The spawning stock biomass for 1992 has been calculated with the same fishing mortality as for 1991. The reference $F$ is the mean $F$ for the age group range from 3 to 11

Table 5.13 Weoton horse mackerel.
${ }^{*}$ Year 1990. F-factor 1.000 and reference F . 0970 *


|  |  |  |  |  |  | at 1 January |  | at spawning time; |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| age | absolute: | catch in! numbers | catch in! weight | $\begin{gathered} \text { stock! } \\ \text { size! } \end{gathered}$ | stock! <br> biomass: | sp.stock size | sp,stock <br> biomass: | sp.stock: size | sp.stock! biomass: |
| \| 11 | .0000; | .00! | . 0001 | 1250.01 |  |  |  |  |  |
| 2! | . 00001 | . 001 | . 0001 | 1050.01 | 52.50 | 105.0 | 5.00 | . 01 | 4.001 |
| 1 31 | . $0000{ }^{4}$ | . 760 ! | . 0001 | 900.0 | 72.001 | 360.01 | 28.80 | 336.5 | 26.92 |
| $1{ }^{4} 1$ | . 0273 | 76.931 | 11.077 | 3075.01 | 322.88 | 1845.0 | 193.73 | 1703.5 | 178.87 |
| \| 51 | . 0818 | 27.231 | $3.867!$ | 373.01 | 38.421 | 298.4 | 30.74 | 268.8 | 27.69 |
| - 71 | . 13618 | 27.41 15.42 | . 395 | 33.0 | 4.32 20.67 | 33.01 | 4.321 | 29.71 | 3.891 |
| 81 | . 1364 | 1164.59 | 209.627 | 9819.0 | 1767.42 | 130.0! | 20.671 1767.42 | 114.3! | 18.171 |
| 91 | . 1364 | 3.56 | 209.701 | 30.01 | 1767.42 5.97 | 9819.0 | 1767.42 5.97 | 8631.7 26.4 | 1553.70 5.25 |
| 101 | . 1364 | 19.33 | 4.1571 | 163.01 | 35.531 | 163.0 | 35.53 | 143.3 | 31.24 |
| 11 $12+$ | . 1364 | 31.191 | 8.391 | 263.01 | 75.22 | 263.0 | 75.22 ' | 231.2 | 66.12 |
| 12+1 | .1364 | 17.91 | 5.033! | 151.0 | 46.06 | 151.0 | 46.061 | 132.71 | 40.49 |
| - Total | 1 | 1358.57! | 245.622 | 17237.01 | 2440.98 | 13197.4 | 2213.70 | 11716.31 | 1957.25 |

*axaxan
************************************ence F . 0970 *

|  |  |  |  |  |  | at 1 January: |  | at spawning time |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| age: | absolute F | catch in: numbers | catch in! weight | stock: size | stock! <br> biomass | $\begin{aligned} & \text { sp. stock } \\ & \text { size } \end{aligned}$ | sp.stock <br> biomass: | sp.stock | sp.stock! biomass: |
| \| 1! | . 0000 ! | .00! | .0001 | 1250.01 | 001 |  |  |  |  |
| 2! | . 00001 | . 00 | . 0001 | 1075.9 | 53.79 | 107.6 | 5.00 | 100.57 | 5.031 |
| 1 31 | . 0000 | . 001 | . 000 | 903.7 | 72.301 | 361.5 | 28.92 | 337.90 | 27.03 |
| \| 41 | . 0273 | 19.38 | 2.791 | 774.61 | 81.34 | 464.8 | 48.80 | 429.14 | 45.06 |
| 1 51 | . 0818 | 188.03 | 26.701 | 2575.4 | 265.27 | 2060.31 | 212.21 | 1856.24 | 191.19 |
| 1 61 | . 08186 | 21.60 3.10 | 3.542 | 295.81 | 38.75 | 295.81 | 38.75 | 266.53 | 34.91 |
| - 81 | . 1364 | 3.10 11.58 | .4781 2.0841 | 26.21 97.6 | 4.16 17.57 | 26.21 $97.6!$ | 4.161 17.57 | 23.01 | 3.66 15.45 |
| 91 | . 1364 | 874.56 | 172.289 | 7373.7 | 1467.37 | 7373.71 | 1467.37 | 85.82 6482.07 | 15.45 1289.93 |
| 101 | . 1364 | 2.67 | 172.281 | 22.5 | 1467.31 4.91 | 22.5 | 1467.37 4.91 | 6482.07 19.80 | 1289.93 4.32 |
| 11 $12+!$ | .1364 .1364 | 14.52 36.87 | 3.905 | 122.4 | 35.01 | 122.4 | 35.01 | 107.61 | 30.78 i |
| $12+$ | . 1364 | 36.87 | 10.362! | 310.91 | 94.821 | 310.91 | 94.82 | 273.30 | 83.361 |
| 1 Total | - | 1172.32! | 222.727. | 14828.8 ${ }^{\text {I }}$ | 2135.291 | 11243.31 | 1957.911 | 9981.981 | 1730.711 |

cont'd.

Table 5.13 cont'd.

| * Year 1992. F-factor 1.000 and $\underset{* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *}{\text { refence }}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | ! | at | 1 January: | at spawn | ing time: |
| age | absolute FI | catch in numbers: | catch in! weight | stock! <br> size! | stock <br> biomass: | $\begin{array}{r} \text { sp. stock } \\ \text { size } \end{array}$ | sp.stock! biomass | $\begin{array}{r} \text { sp.stock } \\ \text { size } \end{array}$ | sp.stock biomass: |
| 11 | . 00001 | . 000: | .000 | 1250.0. | .001 | .001 | . 001 | . 001 | . 00 ! |
| 2 | . 00001 | . 0001 | . 0001 | 1075.91 | 53.791 | 107.591 | 5.381 | 100.57! | 5.031 |
| 31 | . 0000 | . 000 | . 000 | 926.0 | 74.08 | 370.41 | 29.631 | 346.231 | 27.70 |
| 41 | . 0273 | 19.460 | 2.802 | 777.91 | 81.68 | 466.72 i | 49.01 | 430.931 | 45.25 |
| 1 51 | .0818 | 47.368 i | 6.726 | 648.8 | 66.82 ! | 519.02 | 53.46 | 467.611 | 48.16 |
| - 61 | . 0818 | 149.130 | 24.457 | 2042.61 | 267.58 | 2042.56 | 267.58 | 1840.24 | 241.07 |
| - 71 | .1364 | 27.828 | 4.285 | 234.6 | 37.31! | 234.62 | 37.31 | 206.25! | 32.79 |
| 81 | . 1364 | 2.331 | . 420 | 19.7 | 3.54 | 19.65 | 3.541 | 17.28! | 3.11 1 |
| - 91 | . 1364 | 8.695 | 1.713 | 73.31 | 14.59 | 73.31 | 14.59 | 64.45 | $12.83!$ |
| - 101 | . 1364 | 656.765 | 141.204 | 5537.4 | 1207.15 | 5537.37 | 1207.15 | 4867.79 | 1061.18 |
| -11! | . 1364 | 2.007 | . 540 | 16.9 | 4.84 | 16.92 ! | 4.84 | 14.87 | 4.25 |
| \| 12+ | . 1364 | 38.5941 | 10.845 | 325.41 | 99.25 | 325.40 | 99.251 | 286.05 | 87.241 |
| \| Total | 1 | 952.178 | 192.993\| | 12928.41 | 1910.61 | 9713.57 | 1771.711 | 8642.261 | 1568.61 |

Table 6.1 Annual landings (tonnes) of SOUTHERN HORSE MACKEREL by countries and fisheries in Divisions IXa and VIIIc.

| Year | Portugal (Division IXa) |  |  |  | Spain (Divisions IXa + VIIIc) |  |  |  |  | $\begin{gathered} \text { Total } \\ \text { VIIIc+IXa } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Trawl | Seine | Artisanal | Total | Trawl | Seine | Hook | Gillnet | Total |  |
| 1962 | 7,231 | 46,345 | 3,400 | 56,976 |  |  |  |  |  |  |
| 1963 | 6,593 | 54,267 | 3,900 | 64,760 | - |  | - | - | 53,202 53,420 | $\begin{aligned} & 110,778 \\ & 118,180 \end{aligned}$ |
| 1964 | 8,983 | 55,693 | 4,100 | 68,776 | - | - | - | - | 53,420 57,365 | $\begin{aligned} & 118,180 \\ & 126,141 \end{aligned}$ |
| 1965 | 4,033 | 54,327 | 4,745 | 63,105 |  |  |  |  | 52,282 | 115,387 |
| 1966 | 5,582 | 44,725 | 7,118 | 57,425 | - |  | - | - | 47,000 | 104,425 |
| 1967 | 6,726 11,427 | 52,643 61,985 | 7,279 7,252 | 66,648 |  |  | - | - | 53,351 | 119,999 |
| 1969 | 19,839 | 61,985 36,373 | 7,252 6,275 | 80,664 | - |  | - | - | 62,326 | 142,990 |
|  |  | 36,373 | 6,275 | 62,487 |  | - | - | - | 85,781 | 148,268 |
| 1970 | 32,475 | 29,392 | 7,079 | 59,946 | - | - | - |  |  |  |
| 1971 | 32,309 | 19,050 | 6,108 | 57,467 | - | - | - | - | 98,418 75,349 | 158,364 132,816 |
| 1972 | 45,452 | 28,515 | 7,066 | 81,033 | - | - | - | - | 75,349 82,247 | $132,816$ |
| 1973 | 28,354 | 10,737 | 6,406 | 45,497 | - | - | - | - | 82,247 114,878 | 163,280 160,375 |
| 1974 | 29,916 | 14,962 | 3,227 | 48,105 | - | - | - | - | 178,105 | 126,210 |
| 1975 | 26,786 | 10,149 | 9,486 | 46,421 | - | - |  | - | 78,105 85,688 | $132,109$ |
| 1976 | 26,850 26,441 | 16,833 16,847 | 7,805 | 51,488 | 89,197 | 26,291 | $376{ }^{1}$ | - | 115,864 | 167,352 |
| 1978 | 26,441 23,411 | 16,847 4,561 | 7,790 | 51,078 | 74,469 | 31,431 | 376 | - | 106,276 | 157,354 |
| 1979 | 19,331 | 2,906 | 4,680 | 32,043 26,917 | 80,121 48,518 | 14,945 7,428 | 3761 | - | 95,442 | 127,485 |
| 1980 | 14,646 | 4,575 | 6,003 | 4 |  |  |  |  |  |  |
| 1981 | 11,917 | 5,194 | 6,642 | 25,224 23,753 | 36,489 |  | 3761 | - | 45,813 | 71,037 |
| 1982 | 12,676 | 9,906 | 8,304 | 30,886 | 28, $71{ }_{2}$ | 19,3 ${ }^{2}$ | 376 | - | 48,4823 28,450 | $72,235{ }^{3}$ |
| 983 | 16,768 | 6,442 | 7,741 | 30,951 ${ }^{3}$ | 8,511 | 34,054 | 797 | - | 28,450 43,362 | 59,336 $74,313^{3}$ |
| 984 | 8,603 | 3,732 | 4,972 | 17,307 ${ }^{3}$ | 12,772 | 15,334 | 884 | - | 43,362 28,990 | 74,313 46,297 |
| 985 | 3,579 6,456 | 2,143 | 3,698 | 9,420 ${ }^{3}$ | 16,612 | 16,555 | 949 | - | 34,109 ${ }^{3}$ | 43,5293 |
| 987 | 6,456 11,457 | 7,206 6,744 | 4,020 3,244 | 17,682 | 9,464 | 32,878 | , 481 | 143 | $42,967{ }^{3}$ | 60,649 ${ }^{3}$ |
| 988 | 11,621 | 9,067 | 3,244 4,941 | 21,445 | 9,169 | 31,530 | 1,094 | 134 | 41,927 ${ }^{3}$ | 63,372 ${ }^{3}$ |
| 989 | 12,517 | 8,203 | 4,941 4,511 | 25,629 25,231 | 18,585 15,104 | 18,339 29,008 | 276 324 | 75 | 37,275 44,503 | $62,904^{3}$ |
| ${ }_{2}^{1}$ Estimated value. |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Estimated by the Working Group. |  |  |  |  |  |  |  |  |  |  |

Table 6.2 SOUTHERN HORSE MACKEREL. Biomass indices in commercial fisheries, CPUE and survey indices.

| Year | Portugal IXa |  | Spain IXa South Galicia | Portugal IXa |  |  | $\begin{gathered} \text { Spain }^{2} \\ >200 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Trawl | Seine | Seine | Elottoll | trawl | 20-mm codend) |  |
|  | $\mathrm{kg} / \mathrm{h}$ | $t /$ seiner | t/day | $\begin{aligned} & \mathrm{kg} / \mathrm{h} \\ & \mathrm{Jun} / \mathrm{Jul} \end{aligned}$ | $\begin{aligned} & \mathrm{kg} / \mathrm{h} \\ & \mathrm{oct} \end{aligned}$ | $\begin{gathered} \mathrm{n} / \mathrm{h}(0 \text {-group }) \\ \text { oct } \end{gathered}$ | $\begin{aligned} & \mathrm{kg} / \mathrm{h} \\ & \mathrm{Sep} \end{aligned}$ |
| 1979 | 87.7 | 10.3 | - | $12.2{ }^{3}$ | 5.53 | - | - ${ }^{-}$ |
| 1980 | 69.3 | 21.7 | - | $20.6{ }^{3}$ | $2.5{ }^{3}$ | - | 24.74 |
| 1981 | 59.1 | 26.9 | 1.2 | 11.6 | 1.8 | 22.6 | 6.42 |
| 1982 | 56.2 | 53.8 | 3.2 | 42.1 | 36.9 | 1,215.2 | 20.10 |
| 1983 | 98.0 | 32.9 | 2.4 | 79.1 | 24.6 | 127.9 | 97.27 |
| 1984 | 55.9 | 23.2 | 0.7 | - | - | - | 8.73 |
| 1985 | 24.4 | 11.2 | 0.7 | 9.5 | 3.8 | 41.7 | 22.14 |
| 1986 | 41.6 | 36.4 | 1.7 | $4.8{ }^{3}$ | 23.5 | 757.4 | 18.33 |
| 1987 | 71.0 | 32.4 | 1.1 | - | 6.9 | 88.3 | - |
| 1988 | 91.1 | 43.6 | 1.0 | - | 26.0 | - | 18.04 |
| 1989 | 69.5 | 50.9 | 0.7 | 14.9 | 11.7 | 380.0 | 9.87 |

${ }_{2}$ Provisional.
${ }^{2}$ Coyering onIy part of Divisions IXa +VIIIc, area defined by $41^{\circ} 50^{\prime} \mathrm{N}$ ${ }_{3} 08^{\prime}{ }^{\prime} \mathrm{W}_{\text {r }}$ and less than 200 m depth.
${ }^{3}$ codend mesh size 40 mm .

Table 6.3 Southern horse mackerel - tuning data.


Table 6.4 SUM OF PRODUCTS CHECK
HORSE MACKEREL IN FISHING AREAS VIIIC AND IXA CATEGORY: TOTAL

CATCH IN NUMBERS UNIT: millions

|  | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 54 | 105 | 182 | 12 | 483 | 592 | 122 | 17 | 311 |
| 1 | 316 | 123 | 1109 | 71 | 203 | 358 | 855 | 302 | 170 |
| 2 | 136 | 115 | 75 | 460 | 101 | 118 | 112 | 101 | 144 |
| 3 | 59 | 78 | 24 | 41 | 112 | 52 | 40 | 52 | 78 |
| 4 | 20 | 27 | 23 | 4 | 11 | 82 | 44 | 26 | 58 |
| 5 | 48 | 22 | 32 | 9 | 8 | 27 | 41 | 24 | 38 |
| 6 | 35 | 28 | 35 | 22 | 15 | 27 | 11 | 63 | 47 |
| 7 | 23 | 28 | 21 | 20 | 9 | 13 | 6 | 52 | 41 |
| $8+$ | 24 | 28 | 20 | 18 | 7 | 10 | 8 | 72 | 73 |
|  |  |  |  |  |  |  |  |  |  |
| TOTAL | 715 | 553 | 1520 | 656 | 949 | 1279 | 1239 | 709 | 960 |

Table 6,5 SUM OF PRODUCTS CHECK
HORSE MACKEREL IN FISHING AREAS VIIIC AND IXA CATEGORY: TOTAL

MEAN WEIGHT AT AGE IN THE CATCH
UNIT: kilogram

|  | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 |  | .023 | .020 | .013 | .015 | .010 | .013 | .017 | .013 |
| 1 | .040 | .033 | .028 | .025 | .036 | .034 | .035 | .030 | .032 |
| 2 | .067 | .082 | .061 | .049 | .070 | .055 | .069 | .053 | .059 |
| 3 | .097 | .115 | .125 | .080 | .097 | .093 | .105 | .071 | .078 |
| 4 | .174 | .152 | .159 | .124 | .158 | .122 | .124 | .091 | .105 |
| 5 | .254 | .226 | .225 | .178 | .240 | .175 | .161 | .107 | .131 |
| 6 | .292 | .261 | .267 | .246 | .281 | .267 | .230 | .132 | .158 |
| 7 | .341 | .296 | .294 | .275 | .326 | .312 | .313 | .159 | .172 |
| $8+$ | .407 | .363 | .361 | .331 | .397 | .351 | .380 | .252 | .257 |

Table 6.6 Southern horse mackerel. Results of tuning analysis.

3

Module run at 17.56.54 27 JUNE 1990
DISAGGREGATED Qs
LOG TRANSFORHATION
NO explanatory variate (Mean used)
Fleet 1 ,portuguese october $s$, has terminal $q$ estimated as the mean
Fleet 2 , portuguese traw 1 fle, has terminal q estimated as the mean
Fleet 3 , spanish purse seine, has terminal q estimated as the mean
Fleet 4 , spanish survey , has terminal $q$ estimated as the mean
FLEETS COMBINED BY ** VARIANCE **
Regression weights $, 1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000$,
01 dest age $F=2.000^{*}$ average of 5 younger ages. Fleets combined by variance of predictions
Fishing mortalities

| Age, | 82, | 83, | 84, | 85, | 86, | 87, | 88, | 89, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0, | .034, | .193, | .015, | .372, | .276, | .097, | .030, | .366, |
| 1, | .166, | .587, | .107, | .371, | .524, | .810, | .368, | .477, |
| 2, | .541, | .145, | .519, | .217, | .383, | .305, | .202, | .300, |
| 3, | .488, | .207, | .110, | .228, | .164, | .218, | .227, | .237, |
| 4, | .202, | .254, | .045, | .039, | .260, | .206, | .210, | .426, |
| 5, | .177, | .383, | .150, | .124, | .125, | .202, | .169, | .553, |
| 6, | .399, | .461, | .494, | .389, | .798, | .070, | .535, | .557, |
| 7, | .723, | .580, | .527, | .399, | .692, | .400, | .537, | .829, |

Log catchability estimates

| Age 0 Fleet, | 82 | 83, | 84, | 85, | 86, | 87, | 88, | 89 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

cont'd.


## SUMMARY STATISTICS



| Age 3 Fleet, | 82, | 83, | 84, | 85, | 86, | 87, | 88, | 89 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1, | -4.89, | -4.99, | -4.18, | -6.04, | -4.53, | -3.55, | -2.22, | -2.09 |
| 2, | -2.09, | -1.50, | -1.69, | -2.24, | -2.02, | -1.85, | -.74, | -1.63 |
| 3 | 1.46, | -.90, | -1.04, | -.73, | -.29, | -.83, | -.40, | -. 95 |
| 4 | -2.99, | -2.20, | -1.35, | -1.71, | -3.18, | -6.83, | -3.35, | $-7.41$ |

SUMMARY STATISTICS


| Age 4 Fleet, | 82, | 83, | 84, | 85, | 86, | 87. | 88, | 89 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 , | -4.64, | -6.92, | -4.12, | -7.92, | -4.92, | -4.37, | -1.59, | -2.97 |
| 2 , | -2.45, | -1.81, | -2.55, | -4.03, | -1.58, | -1.76, | -.94, | -1.43 |
| 3. | -.61, | .25, | -1.91, | -1.41, | -.77, | -.98, | -.09, | -1.00 |
| 4 , | -3.51, | -2.70, | -3.05, | -2.38, | -2.71, | -6.97, | -1.81, | -6.53 |

Table 6.6 conṭ'd.


Table 6.6 cont'd.

Age 6
Fleet, 82, 83, 84, 85, 86, 87, 88, 89
1, $-3.49,-4.73,-3.97,-6.89,-3.41,-4.81,-1.89,-3.04$
$2,-.66,-1.13,-1.60,-2.20,-.79,-3.08,-.36,-.92$
$4,-1.64,-.03,-.49,-2.93,-.98,-2.01,-.21,-1.91$

SUMMARY STATISTICS


Table 6.7 VIRTUAL POPULATION ANALYSIS from tuning. horse mackerel in fishing areas viilc and ixa

Fishing mortality coefficient
UNIT: Year-1 NATURAL MORTALITY COEFFICIENT $=.20$

|  | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 1987-89 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | . 054 | . 034 | . 193 | . 015 | . 372 | . 276 | . 097 | . 030 | . 364 | . 164 |
| 1 | . 661 | . 166 | . 587 | . 107 | . 371 | . 524 | . 810 | . 368 | . 477 | . 552 |
| 2 | . 441 | . 541 | . 145 | . 519 | . 217 | . 383 | . 305 | . 201 | . 300 | . 269 |
| 3 | . 282 | . 488 | . 207 | . 110 | . 228 | . 164 | . 218 | . 227 | . 237 | . 227 |
| 4 | . 115 | . 202 | . 254 | . 045 | . 039 | . 260 | . 206 | . 210 | . 426 | . 280 |
| 5 | . 379 | . 177 | . 383 | . 150 | . 124 | . 125 | . 202 | . 168 | . 553 | . 308 |
| 6 | . 419 | . 399 | . 461 | . 494 | . 389 | . 798 | . 070 | . 535 | . 557 | . 387 |
| 7 | . 659 | . 723 | . 580 | . 527 | . 399 | . 692 | . 400 | . 537 | . 829 | . 589 |
| $8+$ | . 659 | . 723 | . 580 | . 527 | . 399 | . 692 | . 400 | . 537 | . 829 | . 589 |
| ( 1-3) ${ }^{\text {d }}$ | . 461 | . 398 | . 313 | . 245 | . 272 | . 357 | . 444 | . 265 | . 338 |  |
| (1-5) ${ }^{\text {d }}$ | . 376 | . 315 | . 315 | . 186 | . 196 | . 291 | . 348 | . 235 | . 398 |  |

Table 6.8 Southern horse mackerel. Separable VPA results.
from 81 to 89 on ages 0 to 7
with Terminal $F$ of .550 on age 1 and Terminal $S$ of 1.200
Initial sum of squared residuals was 70.963 and
final sum of squared residuals is 31.635 after 93 iterations
Matrix of Residuals

| Years | $81 / 82$ | $82 / 83$ | $83 / 84$ | $84 / 85$ | $85 / 86$ | $86 / 87$ | $87 / 88$ | $88 / 89$ |  | WTS |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Ages |  |  |  |  |  |  |  |  |  |  |
| $0 / 1$ | -.431 | -1.075 | 1.594 | -1.286 | 1.952 | .362 | .289 | -.653 | .000 | .291 |
| $1 / 2$ | -.215 | -.752 | -1.080 | -1.311 | -.270 | -.733 | .798 | -.061 | .000 | .517 |
| $2 / 3$ | .536 | 1.964 | -.688 | 1.043 | .488 | -.135 | .052 | .081 | .000 | .572 |
| $3 / 4$ | -.103 | 1.455 | .647 | -.502 | .265 | .232 | .000 | .541 |  |  |
| $4 / 5$ | -.453 | -.337 | .052 | -.692 | -.660 | -.102 | .283 | -.179 | .000 | 1.000 |
| $5 / 6$ | -.514 | -.294 | -.131 | -.089 | -.693 | .451 | -.359 | -.091 | .000 | .846 |
| $6 / 7$ | -.021 | .254 | -.126 | 1.117 | .485 | .877 | -1.660 | .781 | .000 | .391 |
|  | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | 3.062 |  |
| WTS | .001 | .001 | .001 | .001 | .001 | 1.000 | 1.000 | 1.000 |  |  |

Fishing Mortalities (F)

|  | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F-values | .4840 | .4481 | .5010 | .2692 | .3515 | .5824 | .3543 | .3325 | .5500 |

Selection-at-age (S)

|  | S-values | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | .1920 | 1.0000 | .4435 | .3232 | .3951 | .4374 | .7376 | 1.2000 |

Table 6.9 VIRTUAL POPULATION ANALYSIS from separable VPA.
horse mackerel in fishing areas vilic and ixa
FISHING MORTALITY COEFFICIENT UNIT: Year-1 NATURAL MORTALITY COEFFICIENT $=.20$

|  | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| 0 | .063 | .032 | .174 | .012 | .294 | .222 | .084 | .039 | .106 |
| 1 | .640 | .199 | .550 | .095 | .276 | .370 | .574 | .308 | .668 |
| 2 | .440 | .510 | .179 | .465 | .189 | .255 | .187 | .120 | .236 |
| 3 | .228 | .486 | .191 | .140 | .196 | .140 | .130 | .124 | .1288 |
| 4 | .109 | .155 | .253 | .041 | .051 | .215 | .169 | .114 | .200 |
| 5 | .328 | .165 | .273 | .149 | .112 | .168 | .159 | .134 | .249 |
| 6 | .352 | .325 | .421 | .305 | .387 | .682 | .097 | .386 | .407 |
| 7 | .577 | .540 | .422 | .455 | .203 | .686 | .307 | .875 | .474 |
| $8+$ | .577 | .540 | .422 | .455 | .203 | .686 | .307 | .875 | .474 |
| $(1-3) \cup$ | .436 | .399 | .307 | .234 | .220 | .255 | .297 | .184 | .344 |
| $(1-5) U$ | .349 | .303 | .289 | .178 | .165 | .229 | .244 | .160 | .296 |

Table 6.10 VIRTUAL POPULATION ANALYSIS from separable VPA.
horse mackerel in fishing areas vilic and ixa
sTOCK SIZE IN NUMBERS UNIT: millions
BIOMASS TOTALS UNIT: thousand tonnes
ALL VALUES, EXCEPT THOSE REFERRING TO THE SPAWNING STOCK ARE GIVEN FOR 1 JANUARY; THE SPAWNING STOCK data reflect the stock situation at spawning time, whereby the following values are
USED: PROPORTION OF ANNUAL F BEFORE SPAWNING: . 080 PROPORTION OF ANNUAL M BEFORE SPAWNING: . 080

|  | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 971 | 3614 | 1254 | 1142 | 2084 | 3265 | 1659 | 483 | 3416 | 0 |
| 1 | 729 | 746 | 2865 | 863 | 924 | 1272 | 2140 | 1248 | 381 | 2517 |
| 2 | 419 | 315 | 501 | 1353 | 642 | 574 | 719 | 987 | 751 | 160 |
| 3 | 317 | 221 | 155 | 343 | 695 | 435 | 364 | 488 | 717 | 485 |
| 4 | 218 | 206 | 111 | 105 | 244 | 468 | 310 | 262 | 353 | 516 |
| 5 | 188 | 160 | 145 | 71 | 82 | 190 | 309 | 214 | 191 | 237 |
| 6 | 129 | 111 | 111 | 90 | 50 | 60 | 131 | 216 | 153 | 122 |
| 7 | 57 | 74 | 66 | 60 | 54 | 28 | 25 | 98 | 120 | 84 |
| $8+$ | 60 | 72 | 64 | 54 | 40 | 22 | 33 | 134 | 211 | 169 |
|  |  |  |  |  |  |  |  |  |  |  |
| TOTAL | 3088 | 5521 | 5272 | 4080 | 4816 | 6314 | 5690 | 4130 | 6293 |  |
| NO | 1107 | 979 | 1235 | 1273 | 1323 | 1439 | 1644 | 1803 | 1813 |  |
| SPS | 21103 |  |  |  |  |  |  |  |  |  |
| TOT.BIOM | 211 | 185 | 198 | 156 | 199 | 188 | 241 | 210 | 214 |  |
| SPS BIOM | 163 | 144 | 129 | 103 | 140 | 132 | 159 | 145 | 167 |  |

Analysis by RCRTINX2 of data from file RECRUIT3-DATA SOUTHERN HORSE MACKEREL : RECRUITS AS 0 YEARS-OLD

Data for 5 surveys over 9 years
REGRESSION TYPE $=P$
TAPERED TIME WEIGHTING NOT APPLIED
PRIOR WEIGHTING NOT APPLIED
FINAL ESTIMATES SHRUNK TOWARDS MEAN
ESTIMATES WITH S.E.'S GREATER THAN THAT OF MEAN INCLUDED
MINIMUM S.E. FOR ANY SURVEY TAKEN AS .50
MINIMUM OF 4 POINTS USED FOR REGRESSION

Yearclass $=1988$

| Survey/ <br> Series | Index <br> Value | Slope | Intercept | Rsquare | No. Pts | Predicted Value | Sigma | Standard Error | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Port-0 | 3.6702 | . 240 | 6.405 | . 5947 | 5 | 7.2873 | . 32878 | . 40931 | . 23740 |
| Port-J |  |  |  |  |  |  |  |  | . 23740 |
| Port-T | 2.8792 | . 484 | 4.949 | . 5428 | 7 | 6.3419 | . 38067 | . 62121 | . 15380 |
| Spain- | 3.7377 | . 108 | 6.937 | . 2800 | 7 | 7.3406 | . 47769 | . 52110 | . 21857 |
| Spain- | . 0000 | -. 223 | 8.028 | . 3916 | 5 | 8.0276 | . 47679 | . 59884 | . 16550 |
| MEAN |  |  |  |  |  | 7.4853 | . 51391 | . 51391 | . 22473 |

Yearclass $=1989$

| Survey/ | Index | Slope | Inter- | Rsquare | No. | Predicted | Sigma | Standard | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series | Value |  | cept |  | Pts | Value | Sigma | Error | Neight |
| Port-0 | 5.9428 | . 387 | 5.474 | . 5892 | 6 | 7.7752 | . 52734 | . 58623 | . 20085 |
| Port-J | 4.0570 | -. 061 | 8.092 | . 0404 | 4 | 7.8468 | . 58017 | . 70663 | . 13824 |
| Port-T | 2.9156 | . 522 | 4.738 | . 7609 | 8 | 6.2611 | . 34979 | . 44343 | . 27611 |
| Spain- | 7.2702 | . 142 | 6.623 | . 2612 | 8 | 7.6587 | . 61491 | . 69189 | . 14419 |
| Spain- | 1.6094 | . 019 | 7.352 | . 0015 | 6 | 7.3825 | . 84279 | . 91056 | . 08325 |
| MEAN |  |  |  |  |  | 7.3224 | . 66231 | . 66231 | . 15736 |


| Yearclass | Weighted <br> Average <br> Prediction | Internal <br> Standard <br> Error | External <br> Standard <br> Error | Virtual <br> Population <br> Analysis | Ext.SE/ <br> Int.SE |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1988 | 7.32 | 1511.03 | .24 | .24 | 6.18 | 484.00 |
| 1989 | 7.25 | 1402.88 | .26 | .28 | 8.143417 .00 | 1.00 |
|  |  |  |  |  |  |  |

Table 6.12

## List of input variables for the ICES prediction program.

HORSE MACKEREL SOUTHERN STOCK
The reference $F$ is the mean $F$ for the age group range from 1 to 3
_ The number of recruits per year is as follows:

| Year | Recruitment |
| ---: | ---: |
| 1990 | 1780.0 |
| 1991 | 1780.0 |
| 1992 | 1780.0 |

Proportion of $F$ (fishing mortality) effective before spawning: . 0800 Proportion of $M$ (natural mortality) effective before spawning: . 0800

Data are printed in the following units:
Number of fish: millions
Weight by age group in the catch: kilogram Weight by age group in the stock: kilogram
Stock biomass: thousand tonnes
Catch weight: thousand tonnes

|  | stock size | fishing pattern: | natural mortality | maturity! ogive: | weight in weight in! the catch; the stock: |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1780.01 | .11! | . 20 | . 001 | .0131 | .0001 |
| 11 | 1033.01 | . 58 | . 201 | .171 | .031 | . 021 |
| 21 | 160.0 | . 251 | . 201 | . 42 | . 056 | . 042 |
| 31 | 458.01 | . 191 | . 201 | . 70 | . 074 | . 063 |
| 41 | 516.01 | . 231 | . 20 | . 92 ! | .0981 | . 082 |
| 51 | 237.01 | . 261 | . 201 | 1.001 | .119! | . 1031 |
| 61 | 122.01 | . 431 | . 201 | 1.001 | . 145 | . 1231 |
| 71 | 84.01 | . $70!$ | . 201 | 1.00 | . 165 | . 148 |
| $8+$ | 169.0: | . 701 | . 201 | 1.001 | . 255 | . 206 |

Table 6.13 Southern horse mackerel.

```
* Year 1990. F-factor 1.000 and reference F 3400*
**********. F-factor 1.000 and reference F
```

|  |  |  |  | $\text { at } 1 \text { January }$ |  |  |  | at spawning time |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| age | absolute $\square$ | catch in! numbers | catch in! weight | stock: size | stock! biomass: | sp.stock | sp,stock! biomass: | sp.stock! size | sp.stock! biomass: |
| 101 | .1100! | 168.358 | 2.1887 | 1780.00 | .0001 | 001 |  | .001 |  |
| -11 | . 58001 | 416.014 | 12.8964 | 1033.00 | 22.209 | 175.61 | 3.776 | 164.99 | 3.547 |
| 21 | . 2500 | 32.211 | 1.8038 | 160.00 | 6.640 | 67.20 | 2.789 | 64.82 | 2.690 |
| 31 | . 1900 | 72.058 | 5.3683 | 458.00 | 28.625 | 320.601 | 20.038 | 310.75 | 19.4221 |
| 41 5 | . 2300 | 96.459 | 9.45301 | 516.00 | 42.312 ! | 474.72 | 38.927 | 458.67 | 37.611 |
| 51 61 | . 2600 | 49.392 38.921 | 5.8776 5.6435 | 237.00 | 24.411 14.945 | 237.00 | 24.411 | 228.44 | 23.529 |
| 71 | . 7000 | 38.921 38.771 | 5.6435 6.4166 | 122.00 | 14.945 12.474 | 122.00 | $14.945!$ $12.474!$ | 116.00 | 14.210 ! |
| $8+1$ | . 7000 | 78.003 | 19.8518 | 169.00 | 34.814 | 169.00 | 34.814 | 157.26 | 32.396 |
| \| Total | \| | 990.187 | 69.49981 | 4559.001 | 186.430 | 1650.13 | 152.173 | 1579.09\| | 145.013 |

Year 1991. F-factor 1.000 and reference $F$ 3400 *


|  |  |  |  |  |  | at 1 January! |  | at spawning time: |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| age | absolute F | catch in numbers: | catch in! weight | stock! <br> size | stock <br> biomass | $\begin{array}{r} \text { sp.stock } \\ \text { size } \end{array}$ | sp.stock! <br> biomass: | sp.stock | sp.stock biomass |
| 01 | . 1100 | 168.36 | 2.1887! | 1780.00! | , |  |  |  |  |
| 11 | . 5800 | 525.77 | 16.2989 | 1305.54 | 28.069 | 221.94 | 4.772 | 208.52 | 4.000 |
| $2!$ | . 2500 | 95.331 | 5.3385 | 473.53 | 19.652 | 198.88 | 8.254 | 191.85 | 7.962 |
| 31 | . 1900 | 16.05 | 1.1958 | 102.02 | 6.376 | 71.41 | 4.463 | 69.22 | 4.326 |
| 4 | . 2300 | 57.97 | 5.6808 | 310.09 | 25.428 | 285.28 | 23.393 | 275.64 | 22.602 |
| 6 | . 4300 | 69.95 47.731 | 8.3245 6.9209 | 335.661 | 34.573 18.328 | 335.661 | 34.5731 | 323.53 | 33.324 |
| 71 | . 7000 | 29.99 | 4.9209 | 149.61 | 18.328 9.649 | 149.61 | 18.328 | 142.26 | 17.427 |
| 8+1 | . 7000 | 47.48 | 12.0828 | 102.86 | 21.190 | 102.86 | 21.190 | 60.46 95.72 | 8.979 19.718 |
| Total | i | 1058.631 | 62.99431 | 4624.301 | 163.264 | 1430.64 | 124.622! | 1367.201 | 118.821! |

cont'd.

Table 6.13 cont'd.

* Year 1992. F-factor 1.000 and reference F . 3400 *
***********************************************************

|  |  |  |  |  |  | at 1 January |  | at spawn | ning time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| age! | absolute F | catch in: numbers | catch in! weight | stock! <br> size | stock: <br> biomass: | sp.stock size | sp.stock! biomass: | $\begin{array}{r} \text { sp.stock } \\ \text { size } \end{array}$ | sp.stock! <br> biomass: |
| 01 | . 11001 | 168.36 | 2.1887 | 1780.001 | . 0001 | . 001 | . 0001 | .001 | . 0001 |
| 11 | . 58001 | 525.77 | 16.2989 | 1305.54 | 28.069 | 221.94 | 4.772 | 208.52 | 4.4831 |
| 2 | . 2500 | 120.48 | 6.7470 | 598.471 | 24.836 | 251.36 | 10.431 | 242.47 | 10.062 |
| 31 | . 1900 | 47.50 ! | 3.5391 | 301.94 | 18.871 | 211.36! | 13.210 | 204.86 | 12.804 |
| 4 | . 2300 | 12.91 | 1.2654 | 69.071 | 5.664 | 63.55 | 5.211 | 61.40 | 5.035 |
| 51 | .2600 | 42.04 | 5.0026 | 201.72 | 20.777 | 201.72 | 20.777 | 194.431 | 20.026 |
| 6 | . 43001 | 67.60 | 9.8021 | 211.90 | 25.958 | 211.90 | 25.958 | 201.48 | 24.682 |
| 71 | . 7000 | 36.78 ! | 6.0868 | 79.68 | 11.8331 | 79.68 | 11.833 | 74.15 | 11.011 |
| 8+1 | . 70001 | 31.501 | 8.0157 | 68.24 | 14.057! | 68.241 | 14.057 | 63.50 | 13.080 |
| Total |  | 1052.94 | 58.9462 | 4616.55 | 150.065 | 1309.74 | 106.248 | 1250.80 | 101.184 |

Effects of different levels of fishing mortality on catch, stock biomass and spawning stock biomass.
HORSE MACKEREL SOUTHERN STOCK


The spawning stock biomass is given for the time of spawning.
The spawning stock biomass for 1992 has been calculated with
The reference $F$ is the mean $F$ for the age group 1991.號 1 to 3

Table 7.1 Portuguese annual landings of anchovy from the purse seine fleet in Division IXa (from Pestana, 1989).

| Year | Anchovy |
| :---: | :---: |
| 1943 | 9,975 |
| 1944 | 6,651 |
| 1945 | 992 |
| 1946 | 6,520 |
| 1947 | 3,392 |
| 1948 | 4,938 |
| 1949 | 2,684 |
| 1950 | 3,377 |
| 1951 | 3,594 |
| 1952 | 4,415 |
| 1953 | 1,033 |
| 1954 | 3,919 |
| 1955 | 4,523 |
| 1956 | 7,898 |
| 1957 | 12,610 |
| 1958 | 3,030 |
| 1959 | 3,788 |
| 1960 | 9,503 |
| 1961 | 2,492 |
| 1962 | 4,446 |
| 1963 | 5,714 |
| 1964 | 4,181 |
| 1965 | 4,460 |
| 1966 | 4,460 |
| 1967 | 3,818 |
| 1968 | 970 |
| 1969 | 1,243 |
| 1970 | 1,172 |
| 1971 | 326 |
| 1972 | 207 |
| 1973 | 126 |
| 1974 | 238 |
| 1975 | 372 |
| 1976 | 88 |
| 1977 | 3,261 |
| 1978 | 1,011 |
| 1979 | 655 |
| 1980 | 980 |
| 1981 | 978 |
| 1982 | 656 |
| 1983 | 673 |
| 1984 | 392 |
| 1985 | 2,122 |
| 1986 | 2,153 |
| 1987 | 1,622 |
| 1988 | 442 |
| 1989 | 823 |

Table 7.2 European anchovy in Sub-area VIII (in tonnes) as estimated by the Work-
ing Group.

| Country and division | Year |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 |
| France, VIIIb <br> Spain, VIIIb, c | 1,085 57,000 | 1,494 74,000 | 1,123 58,000 | $\begin{array}{r} 652 \\ 48,000 \end{array}$ | $\begin{array}{r} 1,973 \\ 75,000 \end{array}$ | $\begin{array}{r} 2,615 \\ 81,000 \end{array}$ | $\begin{array}{r} 839 \\ 47,519 \end{array}$ | $\begin{array}{r} 1.812 \\ 39.363 \end{array}$ |
| Total | 58,085 | 75,494 | 59,123 | 48,652 | 76,973 | 83,615 | 48,358 | 41,175 |
| Country and division | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 |
| France, VIIIb Spain, VIIIb, c | $\begin{array}{r} 1,190 \\ 38,429 \end{array}$ | 2,991 33,092 | 3,665 19,820 | 4,825 23,787 | $\begin{array}{r} 6,150 \\ 26,917 \end{array}$ | $\begin{array}{r} 4,395 \\ 23,614 \end{array}$ | $\begin{array}{r} 3,835 \\ 27,282 \end{array}$ | $\begin{array}{r} 2,913 \\ 23,389 \end{array}$ |
| Total | 39,619 | 36,083 | 23,845 | 28,612 | 33,067 | 28,009 | 31,117 | 26,302 |
| Country and division | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| France, VIIIb <br> Spain, VIIIb, c | $\begin{array}{r} 1,095 \\ 36,166 \end{array}$ | 3,807 44,384 | 3,683 41,536 | 1,349 25,000 | $\begin{array}{r} 1,564 \\ 20,538 \end{array}$ | $\begin{aligned} & 1,021 \\ & 9,794 \end{aligned}$ | $\begin{array}{r} 381 \\ 4,610 \end{array}$ | $\begin{array}{r} 1,911 \\ 12,242 \end{array}$ |
| Total | 37,261 | 48,191 | 45,219 | 26,349 | 22,102 | 10,815 | 4,991 | 14,153 |
| Country and division | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |  |
| France, VIIIa, b, c Spain, VIIIb, c | $\begin{gathered} 1,711^{2} \\ 33,468 \end{gathered}$ | $\begin{aligned} & 3,005^{2} \\ & 8,481 \end{aligned}$ | $\begin{aligned} & 2,311^{2} \\ & 5,612 \end{aligned}$ | $\begin{aligned} & 5,061^{2} \\ & 9,863 \end{aligned}$ | $\begin{aligned} & 6,743^{2} \\ & 8,266 \end{aligned}$ | $\begin{aligned} & 2,200 \\ & 8,174 \end{aligned}$ | $\begin{array}{r} 2,130^{1} \\ 15,000^{1} \end{array}$ |  |
| Total | 35,179 | 11,486 | 7,923 | 14,924 | 15,009 | 10,374 | $17,130^{1}$ |  |

Table 7.3 Distribution of Bay of Biscay anchovy catches in tonnes (\%) according to Divisions VIIIa,b,c (from Working Group members).

| Division | 1987 |  |  | 1988 |  |  | 1989 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | VIIIa | VIIIb ${ }^{1}$ | VIIIC | VIIIa | VIIIb ${ }^{1}$ | VIIIC | VIIIa | VIIIb | VIIIC |
| France | $\begin{aligned} & 2,024 \\ & (40 \%) \end{aligned}$ | $\begin{gathered} 3,036 \\ (60 \%) \end{gathered}$ | 2 | $\begin{gathered} 3,740 \\ \quad(55 \%) \end{gathered}$ | $\begin{gathered} 3,000 \\ (45 \%) \end{gathered}$ | 2 | $\begin{gathered} 924 \\ (42 \%) \end{gathered}$ | $\begin{gathered} 1,177 \\ (53.5 \%) \end{gathered}$ | $\begin{gathered} 99 \\ (4.5 \%) \end{gathered}$ |
| Spain |  | $\begin{gathered} 5,290 \\ (53,5 \%) \end{gathered}$ | $\begin{aligned} & 4,753 \\ & (46.4 \%) \end{aligned}$ |  | $\begin{aligned} & 4,548 \\ & (55 \%) \end{aligned}$ | $\begin{aligned} & 3,718 \\ & (45 \%) \end{aligned}$ |  | $\begin{array}{r} 558 \\ (6.8 \%) \end{array}$ | $\begin{gathered} 7,615 \\ (93.2 \%) \end{gathered}$ |

${ }^{1}$ Not taken into account that the main part of the French landings in Division VIIIb are salted.
${ }^{2}$ Small landings from that area.

Table 7.4 Anchovy catch distributions (in tonnes) according to half of the year for the period 1983-1989.

|  |  | 1st half year |  |  |  |
| :--- | :--- | ---: | :--- | :--- | :--- |
|  |  | 2nd half year |  |  |  |
| 1983 | Spain | 11,000 | $(90 \%)$ | 1,242 | $(10 \%)$ |
| 1984 | Spain | 31,938 | $(95.6 \%)$ | 1,485 | $(4.4 \%)$ |
| 1985 | Spain | 6,391 | $(74.6 \%)$ | 2,173 | $(25.4 \%)$ |
| 1986 | Spain | 3,274 | $(62.7 \%)$ | 1,947 | $(37.3 \%)$ |
| 1987 | Spain | 8,777 | $(89 \%)$ | 1,086 | $(11 \%)$ |
| 1988 | Spain | 6,955 | $(84 \%)$ | 1,311 | $(16 \%)$ |
| 1989 | Spain | 5,377 | $(65.8 \%)$ | 2,796 | $(34.2 \%)$ |
| 1989 | France | 1,944 | $(88.4 \%)$ | 256 | $(11.6 \%)$ |

Corresponds to the spring fishery in Divisions VIIIa,b and $c$. Corresponds to the summer and autumn fisheries in Divisions VIIIC (Spain) or VIIIa (France).

Table 7.5 Distribution (in \%) by EEC categories of the total anchovy landings in Sub-area VIII (from Working Group members).

|  | T1 | T2 | T3 | T4 |
| :--- | :---: | :---: | :---: | :---: |
| France <br> $(2,200 ~ t)$ | 6.3 | 70.2 | 13 | 10.5 |
| $\left.\begin{array}{l}\text { Spain } \\ (8,173 \\ t\end{array}\right)$ | 13.4 | 58.4 | 18.4 | 9.8 |

$\mathrm{T} 1=\leqslant 30$ per kg .
T2 $=$ between 31 and 50 per kg .
T3 $=$ between 51 and 83 per kg .
$\mathrm{T} 4=\geqslant 84$ per kg .

Table 7.6 Evolution of the French fleet for anchovy (from Working Group members).

|  | $1960^{1}$ | $1972^{1}$ | $1976^{1}$ | $1980^{1}$ | $1984^{1}$ | $1987^{1}$ | $1988^{2}$ | $1989^{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Purse <br> seiners | 52 | 35 | 24 | 14 | $\mathrm{n} / \mathrm{a}$ | 9 | 10 | 2 |
| Mid-Water <br> trawlers | 0 | 0 | 0 | $\mathrm{n} / \mathrm{a}$ | 4 | 36 | 61 | 51 |
| 1 Only St. Jean de Luz + Hendaye. <br> Provisional figure for the whole French fleet in the Gulf <br> of Biscay. <br> n/a $=$ Not available. |  |  |  |  |  |  |  |  |

Table 7.7 Numbers of Spanish purse seiners by year on the Cantabrian coast and estimate of the duration of the main fishing season in spring (from Working Group members).

| Year | Number of Boats | Days |
| :--- | :---: | :---: |
| 1966 | 571 |  |
| 1967 | 574 |  |
| 1968 | 580 |  |
| 1969 | 569 |  |
| 1970 | 550 |  |
| 1971 | 519 |  |
| 1972 | 492 |  |
| 1973 | 451 |  |
| 1974 | 433 |  |
| 1975 | 390 |  |
| 1976 | 354 |  |
| 1977 | 338 |  |
| 1978 | 323 |  |
| 1979 | 308 |  |
| 1980 | 293 |  |
| 1981 | 281 |  |
| 1982 | 280 |  |
| 1983 | 278 |  |
| 1984 | 269 |  |
| 1985 | 269 |  |
| 1986 | 269 |  |
| 1987 | 269 |  |
| 1988 | 267 | 38 |
| 1989 | 210 | 34 |
| 1990 | 265 | 42 |

${ }^{1}$ Preliminary. Anchovy - Bay of Biscay.

| Year | 1987 | 1988 | 1989 | 1990 |
| :---: | :---: | :---: | :---: | :---: |
| Period of year | 2-7 June | 21-28 May | 10-21 May | Average of |
| Positive area ( $\mathrm{km}_{2}^{2}$ ) | 23.850 | 45.384 |  | two surveys |
| Surveyed area ( $\mathrm{km}^{2}$ ) | 34.934 | 45.384 59.840 | $\begin{aligned} & 17.546 \\ & 37.930 \end{aligned}$ | $\begin{aligned} & 47.000^{1} \\ & 79.000^{1} \end{aligned}$ |
| Daily total egg production | $2.198 \cdot 10^{12}$ | $5.015 \cdot 10^{12}$ | 0.73.10 ${ }^{12}$ |  |
| C.V. | 2.198.10 | $5.015 .10^{12}$ 0.21 | $0.73 .10^{12}$ 0.4 |  |
| SSB ( $t$ ) | 29.365 | 63.500 | 11.860 |  |
| C.V. | 0.48 | 0.31 | 0.41 |  |
| Total Coastal egg | 1.129 | 2.673 | 419 |  |
| production | 2.319 |  |  |  |
| No/age : 1 | $656^{2}$ | $2.349^{2}$ | 2093 |  |
| 2 | 331 | 258 | 194 |  |
| 3 | 76 | 66 | 16 |  |
| 4 | 41 | 2 |  |  |
| 5 | 25 | $\underline{-}$ |  |  |
| Biomass referred | 30.000 | 63.000 |  |  |
| Egg abundance |  | . | $2.61 .10^{12}$ | $6.9 .10^{12}$ |
| ${ }_{2}$ Preliminary data. |  |  |  |  |
| 3 Calculated as in Martin and Uriarte (1989). |  |  |  |  |
| From sea survey results and commercial catches. |  |  |  |  |

Table 7.9 Evaluation of abundance index from French acoustic

|  | 1983 | 1984 | $1989^{2}$ | 1990 |
| :---: | :---: | :---: | :---: | :---: |
|  | 20/4-25/4 | 30/4-13/5 | 23/4-2/5 | $\overline{12 / 4-25 / 4}$ |
| Area | 3267 | 3743 | 5112 |  |
| Density (t/mille ${ }^{2}$ ) | 15.4 | 10.3 | $\frac{3112}{3.0}$ | 341 |
| Biomass ( $t$ ) | 50,000 |  | 3.0 | 12.9 |
|  | 50,000 | 38,500 | 15,500 | 44,100 |
| Number ( $10^{6}$ ) | 2,600 | 2,000 | 805 | 3,150 |
| Number of 1 -group ( $10^{6}$ ) | 1,800 ${ }^{1}$ | $600^{1}$ | 400 | 3,000 |
| ${ }_{2}^{1}$ Rough estimation. <br> ${ }^{2}$ Assumption of overestimate. |  |  |  |  |

Table 7.10 Summary of egg and acoustic surveys on Bay of Biscay Anchovy.

| Year | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SSB(tonnes) | - | - | - | - | 29,365 | 63,500 | 11,860 | (---7) |
| Positive area <br> for $\mathrm{Egg}\left(\mathrm{km}^{2}\right)$ | - | - | - | - | 23,850 | 45,384 | 17,546 | 47,000 |
| Acoustic biomass (tonnes) | 50,000 | 38,500 | - | - | - | - | 15,500 | 44,100 |
| Acoustic stock in numbers (millions) | 2,600 | 2,000 | - | - | - | - | 805 | 3,150 |
| Egg survey <br> (1-year-old) | 65 | - | - | - | 656 | 2,349 | 209 | $?$ |
| Acoustic survey <br> (1-year-old) | 1,800 | 600 | - | - | - | - | 440 | 3,000 |
| Y.C. ${ }^{0}$ | 1,444 | 352 | 177 | 267 | 340 | $505{ }^{1}$ | $157{ }^{2}$ | $890^{2}$ |
| Catch | 14,153 | 35,179 | 1,486 | 7,923 | 14,924 | 15,009 | 10,374 | 17,130 |

${ }^{0}$ Year class cumulative catches in numbers $\sum_{i: i}^{N} \operatorname{Cij}\left[\begin{array}{c}\text { Cij:Catch from year class } j \\ \text { the year } i \\ \text { N: Number of catch years } \\ \text { for the year class } j\end{array}\right.$
${ }_{2}^{1}$ Incomplete Y.C.C. only 1 and 2 year old anchovies.
${ }^{2}$ Incomplete Y.C.C. only 1 year old anchovies.

Table 7.11. Length distribution ('000) of Bay of Biscay ANCHOUY by country, gear and divisions in 1989.


Table 7.12 Anchovy in the Bay of Biscay.

| CATCH 'IN NUMBERS |  | UNIT: millions |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| 1 | 776 | 0 | 156 | 31 | 0 | 1 | 14 | 3 | 0 | 388 | 161 | 53 |
| 2 | 602 | 861 | 1322 | 1687 | 1307 | 405 | 688 | 0 | 25 | 166 | 813 | 105 |
| 3 | 0 | 77 | 262 | 435 | 574 | 535 | 267 | 330 | 133 | 69 | 309 | 177 |
| 4 | 0 | 0 | 0 | 0 | 7 | 7 | 0 | 0 | 0 | 10 | 46 | 4 |
| $5+$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| TOTAL | 1378 | 938 | 1740 | 2153 | 1888 | 948 | 969 | 333 | 158 | 633 | 1329 | 339 |
|  | 1986 | 1987 | 1988 | 1989 |  |  |  |  |  |  |  |  |
| 1 | 52 | 195 | 368 | 157 |  |  |  |  |  |  |  |  |
| 2 | 80 | 186 | 128 | 137 |  |  |  |  |  |  |  |  |
| 3 | 63 | 41 | 29 | 17 |  |  |  |  |  |  |  |  |
| 4 | 54 | 22 | 3 | 0 |  |  |  |  |  |  |  |  |
| $5+$ | 0 | 12 | 1 | 0 |  |  |  |  |  |  |  |  |
| TOTAL | 249 | 456 | 529 | 311 |  |  |  |  |  |  |  |  |

$\xrightarrow{\text { Table 7.13. Half yearly catches and at age ('000) of Bay of Biscay anchovy, by country and divisions in } 1789 .}$ ANCHDYY IN THE BAY OF gISCAY

CATCH IH NAMEERG


Table 7.14 Anchovy in the Bay of Biscay.

| MEAN WEIG | AT AG | IN THE | ATCH | UNIT: | logr |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| 1 | . 018 | . 018 | . 009 | . 009 | . 009 | . 009 | . 009 | . 018 | . 018 | . 018 | . 017 | . 017 |
| 2 | . 029 | . 029 | . 021 | . 021 | . 021 | . 021 | . 021 | . 029 | . 029 | . 029 | . 028 | . 028 |
| 3 | . 034 | . 034 | . 034 | . 034 | . 034 | . 034 | . 034 | . 034 - | . 034 | . 034 | . 030 | . 033 |
| 4 | . 041 | . 041 | . 051 | . 051 | . 051 | . 051 | . 051 | . 041 | . 041 | . 041 | . 029 | . 044 |
| $5+$ | . 042 | . 042 | . 051 | . 051 | . 051 | . 051 | . 051 | . 042 | . 042 | . 042 | . 042 | . 042 |
|  | 1986 | 1987 | 1988 | 1989 |  |  |  |  |  |  |  |  |
| 1 | . 016 | . 021 | . 021 | . 019 |  |  |  |  |  |  |  |  |
| 2 | . 028 | . 033 | . 031 | . 027 |  |  |  |  |  |  |  |  |
| 3 | . 035 | . 038 | . 035 | . 029 |  |  |  |  |  |  |  |  |
| 4 | . 037 | . 041 | . 040 | . 027 |  |  |  |  |  |  |  |  |
| $5+$ | . 042 | . 042 | . 039 | . 040 |  |  |  |  |  |  |  |  |

Iable 7.15. Half yearly aean meights at age (g) of Bay of Riscay anchovy, by country and divisions in 1989. henn weigth at age in the catch


Table 7.16 Estimation of $F$ for the different age groups from a synthetic cohort of anchovy with different assumptions for M (0.6-1.2)

| Age | Mean Catch (1983-1989) in millions | $M=0.6$ |  | $M=0.8$ |  | $M=1.0$ |  | $M=1.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | H1 | H2 | H1 | H2 | H1 | H2 | H1 | H2 |
| 1 | 196 | 0.17 | 0.18 | 0.10 | 0.12 | 0.06 | 0.07 | 0.02 | 0.04 |
| 2 | 230 | 0.50 | 0.56 | 0.33 | 0.42 | 0.23 | 0.28 | 0.09 | 0.16 |
| 3 | 101 | 0.73 | 0.91 | 0.48 | 0.71 | 0.36 | 0.50 | 0.16 | 0.28 |
| 4 | 22 | 0.55 | 0.90 | 0.35 | 0.70 | 0.30 | 0.48 | 0.13 | 0.27 |
| $\begin{aligned} & \text { H1 = } \\ & \text { H2 = } \end{aligned}$ | similar for | ages | and | $\text { d } 4 .$ |  |  |  |  |  |

FIGURE 2.1. SARDINE - TOTAL CATCH AND BY COUNTRY DURING 1940-1989



FIGURE 2.2.- LOG CATCHABILITY PLOT AGE 1


FIGURE 2.2 - LOG CATCHABILITY PLOT AGE 2

cont'd.


FIGURE 2.2.- LOG CATCHABLLITY PLOT AGE 4


FISH STOCK SUMMARY STOCK: Sardine - VIIIc and IXa

$$
18-07-1990
$$

Trends in yield and fishing mortality (F)


A
Trends in spawning stock biomass and recruitment ( R )

Figure 2.3 cont'd.

## FISH STOCK SUMMARY

STOCK: Sardine - VIIIc and IXa
18-07-1990

Long-term yield and spawning stock biomass


C

Short-term yield and spawning stock biomass


D

Figure 2.4 - SARDINE - RECRUITMENT vs. SPAWNING STOCK BIOMASS AT SPAWNING TIME







Figure 3.3 Catches of horse mackerel from Dutch GOV trawl surveys in the third and fourth quarter during the years 1985-1987.


NORTH SEA HORSE MACKEREL

cont'd.

Figure 3.4 cont'd.
WESTERN HORSE MACKEREL

cont'd.
SOUTHERN HORSE MACKEREL


Figure 4.1 Production curves for stage I horse mackerel eggs for the total area covered by egg surveys in the North Sea in 1988 and 1989.


Figure 4.2 The standard aisea covered by the Danish acoustic surveys in 1985-1989.


## HORSE MACKEREL EGG PRODUCTION



Figure 5.1 Production curves for stage I horse mackerel eggs for a) the standard survey area in 1989; b) the area south of of standard area ( $S$ of $44^{\circ} 30^{\prime} \mathrm{N}$ ) in 1989; c) the area east of the 1989 sampled area in 1988.

Figure 5.2 Horse mackerel Western stock. Selection patterns assuming various terminal $S$ values.


## Figure 5.3 Age composition of horse mackerel in the Dutch catches in Sub-areasVI and VII in 1989.



Figure 5.4 Horse mackerel Western stock. Selection patterns assuming three different terminal $S$ values.


Figure 5.5 Development of the biomass of Western horse mackerel treated as one cohort ( 1982 year class) with a yearly catch of $300,000 \mathrm{t}$ from 1990 and onwards.


FISH STOCK SUMMARY
STOCK: Western Horse Mackerel
19-07-1990

Trends in yield and fishing mortality (F)


A

Trends
$\Longrightarrow$ SSB and recruitment (R)


B
cont'd.

FISH STOCK SUMMARY
STOCK: Western Horse Mackerel

$$
19-07-1990
$$

Long-term yield and spawning stock biomass


Short-term yield and spawning stock biomass


## Evolution of effort from four fleets

in Divisions VIlle and IXa.


Figure 6.2 Southern horse mackerel.
LOG CATCHABILITY BY FLEET


Figure 6.2 cont'd. LOG CATCHABILITY BY FLEET


## Figure 6.2 cont'd.

LOG CATCHABILITY BY FLEET


Figure 6.2 cont'd.


## Figure 6.2 cont'd. LOG CATCHABILITY BY FLEET



Figure e. 2 cont'd. LOG CATCHABILITY BY FLEET



Figure 6.3
Horse mackerel Southern Stock.
Figure 6.3
selection pattern (various terminal S) 1986-1989



## FISH STOCK SUMMARY

STOCK: Southern Horse Mackerel

$$
19-07-1990
$$



FISH STOCK SUMMARY
Figure 6.5 cont'd. STOCK: Southern Horse Mackerel

$$
19-07-1990
$$

Long-term yield and spawning stock biomass


C

Short-term yield and spawning stock biomass



Figure 7.1 Bay of Biscay anchovy. Historical evolution of the Spanish purse seine fishery. The main events are marked.

CATCH 800 t


Figure 7.2 Positive and surveyed areas for the different egg surveys on the Bay of Biscay anchovy (from MOTOS personal communication).


ZZ Spawning area \# Negative area (Positive)

Figure 7.3 Probability density function for SSB estimates for the Bay of Biscay anchovy (from MOTOS and Santiago W.D., 1990).

PROBREILITY DENSITY FUNOTION

## ( $\times 1 \pm-5$ )

NOAMAL



Figure 7.4 Areas covered during the French acoustic surveys in the south of the Bay of Biscay.

Figure 7.5 Comparison of results from egg and acoustic surveys.



- French tranl Yillab + Spanish seine WIIIb ospanish seine Mill

Figure 7.6a Length distributions of landings of Bay of Biscay anchovy (Janurary-June) in Divisions VIIIa,b,c.




Figure 7.7 Summary of egg and acoustic surveys; recruitment index. (see Table 7.10 for index explanations.)

Figure 7.8 Estimates of anchovy biomass from direct observations (egg and acoustic surveys) for the last four years in the Bay of Biscay.


Catch levels in the same year after the period of Biomass estimate
(1) \% in number of Age 1 in the SSB estimate
(2) Provisional figure

* Estimates from French acoustic surveys

CV Coefficient of variation. (Minimum estimate)

Fiqure 7.9 Values of $F$ and $M$ observed from catches and fisheryindependent observations (egg surveys).



Figure 7.10 Relationship between abundance index (A.I.) (numbers at age in millions in the catches) for two consecutive age groups.

## APPENDIX A

## SPECIES MIXING IN THE HORSE MACKEREL FISHERIES

## Sub-area VIII

Quarterly and annual landing estimates and length distributions data on $T$. mediterraneus were presented by Spain from Division VIIIC (eastern, central and western parts) and from Divisions VIIIa,b in 1989 (Lucio, WD 1990). These estimates were obtained from the most important fishing ports. Length sampling was carried out for $T$. trachurus and $T$. mediterraneus (Table A.1). The data presented from the central and eastern parts of Division VIIIc and Divisions VIIIa,b, are available in the Working Group file.

It appears that important catches of $T$. mediterraneus come from Division VIIIc, eastern and central parts, mainly from the purseseiner fleet, but they are not present in the western part (Table A.1). However, the importance of the catches of $T$. mediterraneus in relation to the total catches of Trachurus sp. seems to be low (near to $12 \%$ ) for total Division VIIIc, and even lower (less than $6 \%$ ) in the total catches of the Southern stock.

The amounts and timing of the landings of $T$. mediterraneus in the eastern part of Division VIIIc in 1987-1988 (Martin, 1989) were rather similar to the values found in 1989 (Lucio, wD 1990). But in the period 1982-1983, the landings were much lower and restricted mainly to the winter season (Figure A.1). On the other hand, species mixing in length sampling can be considered as negligible during the 1980 s in the eastern part.

Data on $T$. mediterraneus landings by commercial ships (mainly trawlers) in Divisions VIIIa, b were presented by Spain for both 1988 and 1989 (Lucio, WD 1990; Martin, 1989). In both years the landings of this species were very low (less than $1 \%$ of total Trachurus sp. landed). It is possible that some of the catches by the purse seiners, which are normally located to the eastern part of Division VIIIC, could originate from the southern part of Division VIIIb.

Information from bottom trawl (in autumn 1989) and acoustic surveys (in spring 1990) in Divisions VIIIa,b was also presented by France. It demonstrates the presence of $T$. mediterraneus in the Bay of Biscay in both time periods (Massé, pers. com.), but restricted mainly to the southern part of Division VIIIb and to the coastal waters (less than 80 m depth) (Figure A.2).

The distribution of $T$. mediterraneus is restricted to the corner in the Bay of Biscay, near the French and Spanish border and its abundance decreases further to the north and west. Its distribution is related to the highest temperatures in this part of the Bay of Biscay.

The mixing species (T. trachurus and $T$. mediterraneus) in the total Western stock can be considered as negligible. In the Southern stock the landings of $T$. mediterraneus, important in the eastern and central parts of Division VIIIc, but representing
only less than the $6 \%$ of total catches, ought to be taken into account in the future, if the trend of increasing catches of T. mediterraneus continues.

In relation to the mixing of $T$. picturatus with $T$. trachurus in Divisions VIIIa, b and $c$, the Working Group considered that the former species does not appear in the commercial catches of subarea VIII.

In future years in Divisions VIIIc (eastern and western part) and in Division VIIIb, special attention should be given to the estimation of the catches of $T$. mediterraneus in each quarter. Species mixing in the length sampling should be specially avoided, as at present. All information available from past years on the catches and length distributions of $T$. mediterraneus should be made available.

To avoid errors in the biomass estimates from egg surveys, biological sampling on maturity stages ought be carried out on T. mediterraneus in the Bay of Biscay in order to define the spawning season of this species. Complementary studies on the accurate egg discrimination of both Trachurus species should be carried out.

## Division IXa

In Division IXa, significant catches of $T$. mediterraneus have not been detected in either spanish or Portuguese waters.
T. picturatus is nonexistant in the northern part of the Division. In the southern part, its presence is variable from year to year (Borges, pers. comm.) It has been observed in the groundfish surveys in the Portuguese area, but only in some years. In the past, the Portuguese annual landings of $T$. trachurus have been estimated taking out the amounts of $T$. picturatus.

In future years in Division IXa (southern part), special attention should be given to the catches of T. picturatus in each quarter, and species mixing in length sampling should be avoided.

Table A. 1 Percentages of T. mediterraneus in relation to total landings of Trachurus sp. in the Divisions VIIIc and IXa (Southern "stock") and in Division VIIIa,b (Western stock) in 1989. Division VIIIc has been separated into three (eastern, central and western) sub-divisions.

| Division | \% T. medit./Trachurus sp. |  |  |  |  | $\begin{aligned} & \frac{\text { Trachurus }}{\text { annual }} \text { sp. } \\ & \text { landings ( } t \text { ) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | 2 Q | 3 Q | 40 | 1989 |  |
| VIIIC |  |  |  |  |  |  |
| (eastern subd.) | 59.5 | 5.8 | 36.7 | 56.2 | 41.5 | 5,914 |
| (central subd.) | 21.4 | 0.2 | 24.1 | 34.9 | 22.4 | 6,467 |
| (western subd.) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17,802 |
| VIIIc (all Subd.) | 14.7 | 1.0 | 12.9 | 19.7 | 12.4 | 31,475 |
| IXa (Spain) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13,028 |
| VIIIc+IXa (Spain) | 10.4 | 0.8 | 8.4 | 14.2 | 8.8 | 44,503 |
| IXa (Portugal) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25,231 |
| $\begin{aligned} & \text { VIIIc+IXa } \\ & \text { (Portugal+Spain) } \end{aligned}$ |  |  |  |  | 5.6 | 69,734 |
| VIIIa,b (Spain) | 1.8 | 0.1 | 0.2 | 0.2 | 0.8 | 2,927 |




FIGURE A. 1 Mean monthly landings of T.mediterraneus (dotted bars) and T.trachurus (dark bars), by the purse seiners in the Basque Country (Spain), mainly from the Division VIIIc (eastern part), in two periods: a) 1982-83, b) 1987-88.


Fiqure A, 2 Distribution of $T$. trachurus (white circles) and $T$. mediterraneus (black circles) as determined from the French acoustic survey in April 1990 (J. Massé, pers. comm.).

## APPENDIX B

## RELIABILITY OF THE NUMBERS-AT-AGE AND WEIGHTS-AT-AGE DATA

OF THE WESTERN HORSE MACKEREL

The Dutch fleet is operating in most of the ICES divisions in Sub-areas IV, VI, and VII. A large number of age/length keys are required if the numbers at age are to be worked up by month and by division or sub-division. This would require a large number of length measurements and many fish to be aged if empty cells are to be avoided in these age/length keys (especially when $90 \%$ of the otoliths belong to one year class). An alternative biological sampling system has been developed at the Netherlands Institute for Fishery Investigations, which requires only low biological sampling in those divisions whith low commercial catches but which has a high biological sampling level where large commercial catches occur (both the number of length and weight measurements and ageings increase). In the Netherlands, a sample of a catch at a known position of about 200 fish is measured and sorted into cm-groups. A representative sample of only 25 fish is taken from this original sample. The text table below shows an example:

| Length | Number in or sample |  | Number in representative sample |
| :---: | :---: | :---: | :---: |
| 20 | 2 | ) |  |
| 21 | 3 | ) $1.114^{1}$ | $1^{3}$ |
| 22 | 4 | ) |  |
| 23 | 11 | 1.361 | 1 |
| 24 | 29 | 3.589 | 4 |
| 25 | 33 | 4,084 | 4 |
| 26 | 46 | 5.693 | 6 |
| 27 | 30 | 3.713 | 4 |
| 28 | 15 | 1.856 | 2 |
| 29 | 11 | 1.361 | 1 |
| 30 | 9 | 1.114 | 1 |
| 31 | 6 | ) |  |
| 32 | 0 | ) $1.114^{1}$ | $1^{2}$ |
| 33 | 3 | ) |  |
| Total | 202 | divided by $8.08{ }^{4}$ | 25 |

${ }^{1}$ Numbers are combined when there are less fish than the number you are dividing by.
${ }^{2}$ Depending on the random number it will be a fish of 32 or 33 cm .
${ }^{3}$ Depending on the random number it will be a fish of 20,21 , 4 or 22 cm .
${ }^{4} 202 / 25=8.08$.
For example, the 46 fish in the $26-\mathrm{cm}$ group should be reduced to 6. A random number below 11 (usually the last digit of the sample number) is used to get the first fish to take and from then onwards every 8th fish (because you divide by $202 / 25=$ appr. 8) should be taken until you have 6 fish collected. Of this reduced representative sample, the length, weight, sex, maturity, age, etc., are estimated of all 25 fish. The larger the commercial
catches are in a particular division in a particular month, the higher the number of representative samples taken. All biological information is obtained from one or more of these representative samples. The age and length composition, the sex ratio, the mean weight at age, mean length at age, maturity at age or length, etc., can be estimated from these samples, which should be representative for the catches in that division and month.

Table B. 1 shows theotoliths and weight measurements taken by year and by age from the Dutch horse mackerel catches in Sub-areas VI and VII, both in terms of number and percentage. Because the otoliths are taken representatively, $86 \%$ of all otoliths are of the extremely strong 1982 year class and only $14 \%$ of the otoliths are of the 15 other age groups. The age composition of these other age groups is based on a relatively low number of otoliths (in 1989, 182 otoliths of the other age groups were collected compared to 1,143 otoliths of the 1982 year class). One would need to intensify sampling by a factor of about 10 to achieve a more accurate age composition of these other age groups, while these only account only for a relatively small proportion of the total biomass. This relatively low number of ageings of these other year classes probably explains why problems exist with the SVPA. Only the two cohorts of the 1982 and 1979 year classes are sampled well enough, but these account for about $90 \%$ of the spawning stock biomass.

The reliability of the mean weights at age should increase with the strength of a year class, because this mean weight at age will determine a. large proportion of the calculated total biomass. The mean weights at age of the extremely strong 1982 year class should, therefore, be based on a very large number of weight measurements, when using the mean weights at age in the catch and in the stock for the SOP check and, respectively, for estimating the spawning stock biomass. For example, the mean weight in the catch and in the stock of the extremely strong 1982 year class is based in 1989 on, respectively, 1,143 and 380 real weight measurements of fish of that particular year class (the age/length key method would use some general length/weight relationship to obtain these or if the fish of the age/length key are weighted, the number of weight measurements would be much lower).

At the ACFM meeting in November 1989, the Working Group was requested to examine the mean weights at age for ages 1,2 , and 3 to see if they can be improved. As explained above, only mean weights of a certain age group can be obtained in a certain year if this age group occurs in the representative samples during that particular year. If certain age groups are not present in the catches, then no data are available, and a mean weight has to be assumed. The proportion of the total biomass, which is determined by this extremely weak age group, will only be low.

Table B. 1 Otoliths and weight measurements taken by year and by age from the Dutch horse mackerel catches in Subareas VI and VII.
A. In numbers. B. In percentage.

| A | AGE | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
|  | 1 | 5 | 19 | 0 | 1 | 0 | 2 | 94 | 0 |
|  | 2 | 28 | 6 | 148 | 3 | 0 | 10 | 21 | 0 |
|  | 3 | 150 | 69 | 5 | 724 | 5 | 0 | 6 | 10 |
|  | 4 | 13 | 87 | 46 | 8 | 658 | 3 | 5 | 12 |
|  | 5 | 26 | 28 | 282 | 78 | 16 | 749 | 23 | 4 |
|  | 6 | 30 | 74 | 46 | 198 | 95 | 9 - | 904 | 5 |
|  | 7 | 23 | 96 | 83 | 26 | 161 | 40 | 19 | 1143 |
|  | 8 | 4 | 35 | 71 | 44 | 21 | 124 | 30 | 4 |
|  | 9 | 1 | 5 | 30 | 15 | 33 | 15 | 74 | 28 |
|  | 10 | 4 | 11 | 9 | 19 | 22 | 17 | 10 | 47 |
|  | 11 | 19 | 6 | 0 | 2 | 11 | 30 | 14 | 13 |
|  | 12 | 57 | 30 | 2 | 5 | 4 | 10 | 26 | 9 |
|  | 13 | 97 | 47 | 5 | 11 | 4 | 3 | 12 | 17 |
|  | 14 | 67 | 70 | 19 | 5 | 3 | 5 | 8 | 8 |
|  | $15+$ | 26 | 92 | 129 | 86 | 67 | 58 | 51 | 25 |
|  | Total | 550 | 675 | 875 | 1225 | 1100 | 1075 | 1300 | 1325 |
| B |  |  |  |  |  |  |  |  |  |
|  | AGE | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
|  | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 |
|  | 1 | 0.9 | 2.8 | 0.0 | 0.1 | 0.0 | 0.2 | 7.2 | 0.0 |
|  | 2 | 5.1 | 0.9 | 16.9 | 0.2 | 0.0 | 0.9 | 1.6 | 0.0 |
|  | 3 | 27.3 | 10.2 | 0.6 | 59.1 | 0.5 | 0.0 | 0.5 | 0.8 |
|  | 4 | 2.4 | 12.9 | 5.3 | 0.7 | 59.8 | 0.3 | 0.4 | 0.9 |
|  | 5 | 4.7 | 4.1 | 32.2 | 6.4 | 1.5 | 69.7 | 1.8 | 0.3 |
|  | 6 | 5.5 | 11.0 | 5.3 | 16.2 | 8.6 | 0.8 | 69.5 | 0.4 |
|  | 7 | 4.2 | 14.2 | 9.5 | 2.1 | 14.6 | 3.7 | 1.5 | 86.3 |
|  | 8 | 0.7 | 5.2 | 8.1 | 3.6 | 1.9 | 11.5 | 2.3 | 0.3 |
|  | 9 | 0.2 | 0.7 | 3.4 | 1.2 | 3.0 | 1.4 | 5.7 | 2.1 |
|  | 10 | 0.7 | 1.6 | 1.0 | 1.6 | 2.0 | 1.6 | 0.8 | 3.5 |
|  | 11 | 3.5 | 0.9 | 0.0 | 0.2 | 1.0 | 2.8 | 1.1 | 1.0 |
|  | 12 | 10.4 | 4.4 | 0.2 | 0.4 | 0.4 | 0.9 | 2.0 | 0.7 |
|  | 13 | 17.6 | 7.0 | 0.6 | 0.9 | 0.4 | 0.3 | 0.9 | 1.3 |
|  | 14 | 12.2 | 10.4 | 2.2 | 0.4 | 0.3 | 0.5 | 0.6 | 0.6 |
|  | $15+$ | 4.7 | 13.6 | 14.7 | 7.0 | 6.1 | 5.4 | 3.9 | 1.9 |
|  | Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |


[^0]:    *General Secretary ICES
    Palægade 2-4
    DK-1261 Copenhagen K
    Denmark

[^1]:    ${ }^{1}$ Preliminary.

[^2]:    ${ }^{1}$ Includes all the portuguese fleets (purse seiner catch $90 \%$ of the total anual).

[^3]:    Age 3
    Fleet, $81, \quad 82,83, \quad 84,85,86,87,88,89$
    $\begin{aligned} & 1 \\ & 2\end{aligned},-4.26,-8.72,-7.85,-8.56,-8.45,-8.50,-7.95,-7.90,-7.88$

[^4]:    ${ }^{1}$ Revised data.

[^5]:    ${ }^{1}$ Assumed to be underestimated.

[^6]:    ${ }_{2}^{1}$ Preliminary.
    ${ }^{2}$ Included in Sub-area IV.

[^7]:    ${ }_{2}^{1}$ Preliminary.
    ${ }_{3}^{2}$ Included in sub-area VII.
    ${ }^{3}$ Data provided by the Working Group members.

[^8]:    ${ }^{1}$ Using the fecundity weight relationship of 1,655 eggs per $g$ prespawning female (Eltink and Vingerhoed, 1989) and a sex ratio of 1:1 (C.M.1990/H:2).
    ${ }^{2}$ Spawning stock biomass adjusted using the relative weight of pre-spawning and spawning fish on the spawning grounds (increase of $5 \%$ ) (Eltink and Vingerhoed, 1989).
    ${ }_{4}^{3}$ Eaton, 1989. In 1977, incomplete coverage.
    ${ }^{4}$ ICES, C.M.1990/H:2, standard area + area east and south of standard area.

