Fol 41 Assess

This report not to be quoted without prior reference to the Council*
International Council for the C.M. 1990/Assess:7 Exploration of the sea

PART 1

REPORT OF THE ROUNDISH WORKING GROUP

Aberdeen, 20-26 october 1989

This document is a report of a Working Group of the International Council for the Exploration of the sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.

[^0]
TABLEOF CONTENTS

Section Page
1 PARTICIPANTS 1
2 TERMS OF REFERENCE 1
3 DATA BASE REVISIONS AND PROBLEMS 2
4 STOCK UNIT DEFINITIONS 2
4.1 General 2
4.2 Cod and Whiting in Sub-area VII 2
5 CONSIDERATION OF RECENT MULTISPECIES WORKING GROUP REPORTS 3
5.1 Natural Mortality Rates 3
5.2 Long-Term Predictions 3
6 MINIMIZING THE POTENTIAL FOR EXCEEDING TACs WHILE MAXIMIZING OVERALL YIELD 5
7 QUARTERLY DATA 6
8 THE EFFECTS OF THE COD BOX IN THE GERMAN BIGHT 6
9 FISHING FOR COD WITH 120 mm MESH 7
10 ESTIMATES OF RECRUITMENT 10
10. 1 Recruitment Indices 10
10.2 Use of Indices 10
11 TUNING METHODS 11
12 COD IN SUB-AREA IV 12
12.1 Catch Trends 12
12.2 Natural Mortality Rate and Maturity at Age 12
12.3 Age Compositions 12
12.4 Mean Weights at Age 12
12.5 Commercial Catch/Effort Data and Research Vessel Indices 12
12.6 VPA Tuning 12
12.7 Abundance Estimates of the 1986-1989 Year Classes 12
12.7.1 The 1986 year class in 1988 12
12.7.2 The 1987 year class in 1988 12
12.7.3 The 1988 year class in 1989 13
12.7.4 The 1989 year class in 1990 13
12.8 Long-term Trends in Biomass, Fishing Mortality and Recruitment 13
12.9 Catch and Biomass Predictions 13
12.9.1 Status quo prediction 13
12.9.2 Prediction assuming TAC taken in 1989 13
12.9.3 Catch at age data for 1989 14
12. 10 Yield and Biomass per Recruit 14
12.11 Safe Biological Limits 14
13 COD IN DIVISION VIa 14
13.1 Catch Trends 14
13.2 Natural Mortality and Maturity at Age 14
13.3 Age Compositions 14
13.4 Mean Weight at Age 14
13.5 Commercial Catch/Effort Data and Research Vessel Indices 14
13.6 VPA Tuning 15
13.7 Abundance Estimates of the 1987-1989 Year Classes 15
13.7.1 The 1986 year class in 1988 15
13.7.2 The 1987 and later year classes 15
13.8 Long-Term Trends in Biomass, Fishing Mortality and Recruitment 15
13.9 Catch and Biomass Predictions 15
13.9.1 Status quo catch prediction 15
13.10 Catch at Age Data for 1989 16
13.11 Yield and Biomass per Recruit 16
13.12 Safe Biological Limits 16
14 COD IN DIVISION VIb 16
15 COD IN SUB-AREA VII 16
15.1 Cod in Divisions VIId, e 16
15.2 Cod in Division VIId 16
15.2.1 Catch trends 16
15.2.2 Natural mortality and maturity at age 16
15.2.3 Age compositions and mean weight at age 17
Section Page
15.2.4 VPA 17
15.2.5 Estimates of recruitment 17
15.2.5.1 The 1987 year class in 1988 17
15.2.5.2 The 1988 and later year classes
17
17
15.2.6 Long-term trends in biomass, fishing mortality, and recruitment 17
15.2.7 Catch and biomass predictions
17
17
15.2.8 Yield and biomass per recruit 17
15.2.9 Safe biological limits 18
15.2.10 Reliability of assessment 18
15.3 Cod in Division VIIe 18
15.3.1 Catch trends
18
18
15.3.2 Catch prediction 18
16 HADDOCK IN SUB-AREA IV 18
16.1 Catch Trends 18
16.2 Natural Mortality and Maturity at Age 18
16.3 Age Compositions 19
16.4 Mean Weights at Age
19
19
16.5 Commercial Catch/Effort Data and Research Vessel Indices 19
16.6 VPA Tuning
19
19
16.7 Abundance Estimates of the Year Classes 1986-1988 19
16.7.1 1986 year class in 1988 19
16.7.2 1987 year class in 1988 19
16.7.3 1988 year class in 1989 19
16.7.4 1989 year class in 1990 20
16.7.5 Abundance of the 1990 and 1991 year classes at age 0 20
16.8 Long-Term Trends in Biomass, Fishing Mortality, and Recruitment
20
20
16.9 Catch and Biomass Predictions 20
16.9.1 Prediction for 1989 20
16.9.2 Catch predictions for 1990
21
21
16.10 Safe Biological Limits 21
16.11 Further Comments on the Abundance of the 1986 Year Class
21
21
16. 12 Working Group Advice on TAC for 1990 22
16.13 Yield and Biomass per Recruit 22
16.14 Catch at Age Data for 1989 22
17 HADDOCK IN DIVISION VIa 22
17.1 Catch Trends
22
22
17.2 Natural Mortality and Maturity at Age 22
17.3 Age Compositions 22
17.4 Mean Weights at Age
22
22
17.5 Commercial Catch/Effort Data and Research Vessel Indices 23
17.6 VPA Tuning
23
23
17.7 Abundance Estimates of the Year Classes 1986-1988 23
17.7.1 1986 year class in 1988
23
23
17.7.2 1987, 1988 and 1989 year classes at age 1 23
17.8 Long-Term Trends in Biomass, Fishing Mortality, and Recruitment 23
17.9 Catch and Biomass Predictions 24
17.9.1 Status quo catch prediction 24
17. 10 Yield and Biomass per Recruit 24
17.11 Safe Biological Limits 24
17.12 Catch at Age in the First Quarter of 1989 24
18 HADDOCK IN DIVISION VIb 24
18.1 Catch Trends 24
18.2 Age Compositions 24
18.3 Mean Weight at Age 25
18.4 Abundance Indices 25
18.5 Assessment 25
18.6 Catch Forecast 25
19 HADDOCK IN SUB-AREA VII 26
20 WHITING IN SUB-AREA IV 26
20.1 Catch Trends 26
20.2 Natural Mortality and Maturi.ty at Age 26
20.3 Age Compositions 26
20.4 Mean Weight at Age 26
20.5 Commercial Catch/Effort Data and Research Vessel Indices 27
20.6 VPA Tuning 27
20.7 Abundance Estimates of the Year Classes 1986-1989 27
20.7.1 The 1986 year class in 1988 27
20.7.2 The 1987 year class in 1988 27
20.7.3 The 1988 year class in 1989 27
20.7.4 The 1989 year class in 1990 27
20.7.5 The 1990 and 1991 year classes at age 0 27
20.8 Long-Term Trends in Biomass, Fishing Mortality, and Recruitment 27
20.9 Catch and Biomass Predictions 28
20.9.1 Status quo prediction 28
20.9.2 TAC prediction 28
20. 10 Yield and Biomass per Recruit 28
20.11 Safe Biological Limits 28
20.12 Age Composition for First Half of 1989 28
21 WHITING IN DIVISION VIa 29
21.1 Catch Trends 29
21.2 Natural Mortality and Maturity at Age 29
21.3 Age Composition 29
21.4 Mean Weight at Age 29
21.5 Commercial Catch/Effort Data and Research Vessel Indices 29

Page
21.6 VPA Tuning 29
21.7 Abundance Estimates of the Year Classes 1986-1989 29
21.7.1 The 1986 year class in 1988 29
21.7.2 The 1987 year class in 1988 30
21.7.3 The 1988 and latex year classes 30
21.8 Long-Term Trends in Biomass, Fishing Mortality, and Recruitment 30
21.9 Catch and Biomass Predictions 30
21.9.1 Status quo prediction 30
21.9.2 TAC prediction 30
21.10 Yield and Biomass per Recruit 30
21.11 Safe Biological Limits 30
21.12 Catches in 1989 30
22 WHITING IN DIVISION VIb 31
23 WHITING IN SUB-AREA VII 31
23.1 Whiting in Divisions VIId, e 31
23.2 Whiting in Division VIId 31
23.2.1 Catch trends 31
23.2.2 Natural mortality and maturity at age 31
23.2.3 Age composition and mean weight at age 31
23.2.4 VPA 31
23.2.5 Recruitment estimates 31
23.2.5.1 The 1987 year class in 1988 32
23.2.5.2 The 1988 and later year classes 32
23.2.6 Long-term trends in fishing mortality, biomass, and recruitment 32
23.2.7 Catch and biomass predictions 32
23.2.8 Yield and biomass per recruit 32
23.2.9 Safe biological limits 32
23.2.10 Reliability of assessment 32
23.3 Whiting in Division VIIe 32
23.3.1 Catch trends 32
23.3.2 Catch prediction 32
23.4 Whiting in Divisions VIIb, $\mathrm{c}, \mathrm{h}-\mathrm{k}$ 33
24 SAITHE IN SUB-AREA IV AND DIVISION IIIa 33
24.1 Catch Trends 33
24.2 Natural Mortality Rate and Maturity at Age 33
24.3 Age Compositions 3.3
24.4 Mean Weight at Age 33
24.5 Commercial Catch/Effort Data 33
24.6 VPA Tuning 33
24.7 Recruitment 34
24.8 Long-Term Trends in Biomass, Fishing Mortality, and Recruitment 34
24.9 Catch and Biomass Predictions 34
24.9.1 Status quo prediction 34
Section Page
24.9.2 Prediction assuming that TAC taken in 1989 34
24.9.3 Yield and biomass per recruit 34
24.9.4 Safe Biological Limits 34
24.9.5 Catches in 1989 35
25 SAITHE IN SUB-AREA VI 35
25.1 Catch Trends 35
25.2 Natural Mortality Rate and Maturity at Age 35
25.3 Age Compositions 35
25.4 Mean Weight at Age 35
25.5 Commercial Catch/Effort Data 35
25.6 VPA Tuning 35
25.7 Recruitment 35
25.8 Long-Term Trends in Biomass, Fishing Mortality, and Recruitment 36
25.9 Catch and Biomass Predictions 36
25.9.1 Status quo prediction 36
25.9.2 Prediction assuming TAC taken in 1989 36
25.10 Yield and Biomass per Recruit 36
25.11 Safe Biological Limits 36
26 REFERENCES 36
TABLES 4.1 - 25.10 38
FIGURES 12.1 - 25.3 160

1 PARTICIPANTS

D.W. Armstrong (Chairman)	UK (Scotland)
N. Bailey	UK (Scotland)
R. Cook (part-time)	UK (Scotland)
P. Degnbol	Denmark
W. Gabriel	USA
H. Heessen	Netherlands
P. Kunzlik	UK (Scotland)
F. Lamp	Federal Republic of Germany
P. Lewy	Denmark
C.T. Macer	UK (England)
J.C. Poulard	France
H.H. Reinsch	Federal Republic of Germany
O.M. Smedstad	Norway
A. Souplet	France
T.K. Stokes	UK (England)

2 TERMS OF REFERENCE

The terms of reference for this working Group are given in C.Res.1988/2:4:12.
"The North Sea Roundfish Working Group will be renamed the Roundfish Working Group (Chairman Mr D.W.Armstrong) and will meet in Aberdeen from 12-24 October 1989 to:
a) evaluate further the validity of the present stock unit definitions for assessment and management purposes, particularly for cod and whiting in Sub-area VII;
b) assess the state of and provide catch options for 1990 within safe biological limits for the stocks of cod, haddock, whiting and saithe in Sub-areas IV and VI (Including Division IIIa for saithe); cod, haddock and whiting in Divisions VIId,e and Divisions VIIb, c,h-k (including Division VIIg for haddock); and saithe in Sub-area VII; for the stocks in Sub-area IV, the assessments should be made on the basis of the following assumptions:
i) there is no change in the existing minimum mesh regulations from 1989 to 1990 ;
ii) a minimum mesh size of 120 mm will apply to "fishing for cod" in 1990; in order to make realistic assumptions concerning the definition of "fishing for cod", a range of scenarios should be examined in which the proportion of the total catch of cod taken in the other fisheries remains in the range $30-50 \%$;
c) Consider the results of the June 1988 and 1989 meetings of the Multispecies Assessment Working Group, particularly the latter when examining the effects of a minimum mesh size when "fishing for cod";
d) advise on appropriate strategies for for minimizing the potential for exceeding the TACs on individual North sea roundfish stocks while maximising the overall yield from these stocks;
e) provide quarterly catch-at-age and catch and stock mean weight-at-age data and information on the relative distribution at different ages by quarter for cod, haddock, whiting, and saithe in the North sea for 1988 as input for the multispecies VPA;
f) assess the effects of the cod box in the German Bight.

3 DATA BASE REVISIONS AND PROBLEMS

Preliminary data were prepared for 1988 and revisions were made to the data for 1987.

Norway provided revised data on saithe in the North Sea for the period 1980-1986. France provided revised data for cod, haddock, whiting, and saithe for the North Sea for the period 1976-1988 and for cod and whiting in Division VIId for the period 19761986.

Problems remain, as described in previous reports, in obtaining sufficiently detailed and accurate landings statistics for the Netherlands.

For some nations, it is currently the case that collection of accurate data on landings and age compositions is difficult because of evasion of regulations when fleets have exhausted their quotas. It also appears likely that other nations will soon encounter this problem.

4 STOCK UNIT DEFINITIONS

4.1 General

The question of the validity of the present stock unit definitions used for assessment and management purposes has been considered on previous occasions by the Working Group. The relationship between stocks in the North Sea and the West of Scotland was examined in 1986. For haddock, there is clear evidence that there is a distinct unit stock at Rockall (Division VIb) and we repeat our previous recommendation that this should be a separate management unit. Although there is some interchange between Divisions IVa and VIa, its magnitude is uncertain and and until more data become available it is considered inappropriate to combine the assessments for these two areas.

4.2 Cod and Whiting in Sub-area VII

Currently there are two management areas for sub-area VII: Division VIIa (Irish Sea) and Divisions VIIb-k. Analytical assessments are made for cod and whiting in Divisions VIIa and Divisions VIIf,g by the Irish Sea and Bristol Channel Working Group
and for cod and whiting in Divisions VIId, e by the Roundfish Working Group.

Little is known of the relationships between whiting in the various Divisions of Sub-area VII but we are not aware of any major problems associated with the present management areas.

As regards cod, there have been major management problems relating to landings from Divisions VIId, e in recent years. A working paper on the relationships between cod in Divisions VIId, e and adjacent areas was submitted to the Group. This summarized tagging data from 1964 and also investigated CPUE correlations between rectangles for 40-59ft English trawlers over the period 1972-1985.

There have been no tagging experiments for cod in Divisions VIIe or VIIf,g. There have been several releases in Division VIId and in the southern half of Sub-area IV and results from these are summarized in Table 4.1. A significant proportion of cod released in Division VIId were recaptured in the North Sea (27%) but there was little movement westward to Division VIIe (4\%). Cod released in the southern North Sea were mostly recaptured there (96\%), with a small proportion (3\%) recaptured in Division VIId.

The analysis of CPUE corelations shows that catch rates in Division VIId rectangles were most higly correlated with catch rates in Division IVc rectangles. For Division VIIe, the highest correlations were with rectangles in Divisions VIIe and VIIf.

The evidence suggests that cod in the eastern Channel (Division VIId) have strong links with those in the southern North Sea and that there is little interchange with the western Channel (Division VIIe).

There is little information relating to cod in Division VIIe, although sampling for age distribution has been instituted by UK (England) in 1989 and a tagging experiment is planned. However, there is some indication from the CPUE analysis referred to above that cod in Division VIIe may have links with cod in Divisions VIIf,g. If so it may be appropriate for cod in VIIe to be assessed by the Irish Sea and Bristol Channel Working Group since they already assess cod in Divisions VIIf,g.

5 CONSIDERATION OF RECENT MULTISPECIES WORKING GROUP REPORTS

5.1 Natural Mortality Rates

The Working Group noted the consistency between the most recent multispecies VPA estimates of mean natural mortality rate at age (Anon., 1989a) and those used in recent years for single species assessments (Anon., 1988). No change was made to the assumed values of natural mortality rates used at this meeting.

5.2 Long-Term Predictions

For cod, haddock, whiting, and saithe in the North Sea, long-term predictions of yield and biomass assuming unchanged effort, constant recruitment and unchanged exploitation pattern are essentially similar whether derived from single species or multi-
species forecasts (Anon., 1989a). Assuming that 68% of the international human consumption roundfish fleet adopts a 120 mm mesh size then the conclusions drawn from multispecies and single species long-term forecasts diverge considerably (Anon., 1989a). Under multispecies assumptions, the gains suggested by single species assessments are much reduced or, in several cases, reversed.

In addition, the effects of selectively increasing fishing mortality rate on predators (notably whiting) have also been simulated in the multispecies context. Results of these procedures were brought to the attention of the Working Group (Anon., 1989a, ; Gislason, 1989). These simulations suggest that a reduction in the biomass of major predator(s) results in longterm gains in the biomass and hence yield of many of the other species included in the simulations.

The results of long-term multispecies forecasts and their implications are thus radically different to those of long-term single species forecasts when the effects of large changes in, for example, mesh size, are estimated. This working Group has long held doubts over the validity of long-term single species forecasts because they ignore biological interaction, technical interaction, and other factors such as spatial heterogeneity of the exploited stocks. However, doubts still remain over the specification of the multispecies model in which only biological interaction is addressed.

The EC Scientific and Technical Committee on Fisheries is currently assembling fleet and area disaggregated data specifically to examine the effects of spatial heterogeneity and technical interactions. Such a data base is thought prerequisite to the ability to predict the effects of technical measures, even in the short term. For example, when considering the effects of an increased mesh size "when fishing for cod", the multispecies data base does not allow any account to be taken of the different proportions of the different fleets which will adopt the increased mesh size or for their spatial effects. This Working Group can account for the former (see Section 9) but spatial effects are ignored. The ability even to define"fishing for cod" is severely limited by the lack of an adequate data base.

Technical interactions also impinge on experimental manipulations of the multispecies system. Whilst it is entirely appropriate for the Multispecies Assessment Working Group to investigate the behaviour of the multispecies model by selectively increasing fishing mortality rates on individual predator species and assemblages, attention must be drawn to the improbability of achieving such changes without adversely influencing fishing mortality rates on other species.

The conflicting results of single species and multispecies forecasts present a warning that added realism in prediction may well require a reassessment of long-term strategic decisions. Therefore, it is highly desirable that the assumptions under which long-term forecasts are made, and doubts about them, are clearly expressed. Furthermore, until an adequate data base is assembled and account taken of additional features such as spatial heterogeneity and technical interactions then any long-term forecast must be viewed with caution. Even then, doubts will continue to
surround the validity of the fundamental assumptions of the recruitment models under which long-term forecasts are made.

6 MINIMIZING THE POTENTIAL FOR EXCEEDING TACS WHILE MAXIMIZING OVERALL YIELD

Little progress was made on this topic largely because the type of information required to address the problem was not available. The Group acknowledged the desirability of obtaining internally consistent TACs for the North sea roundfish stocks but felt that considerable progress in a number of areas is required before this can be achieved. Particular requirements include a comprehensively disaggregated data base, information on spatial dynamics of fish species and fleets including technical interactions, information on the changes in F-at-age vectors (by species and fleet) likely to accompany a change in the F-at-age vector for any specified species and fleets(s). A model to incorporate all of this information is also required.

A preliminary investigation of the problem was made using the catch forecast program MSFP of B . Mesnil. In the investigation it was assumed that the stocks are completely mixed (i.e., that all species are available at all times to all vessels) and that there is only one fleet. Neither of these assumptions is realistic.

Using the same inputs as for the single species short-term predictions (Sections 12, 16, 20 and 24), catch predictions for 1989 and 1990 were generated for two scenarios:
a) the status guo situation with fishing effort maintained at the 1988 level throughout 1989 and 1990.
b) reduction in effort in 1989 to 90% of the 1988 level followed by further reduction in 1990 to 80% of the 1988 level. This scenario approximates to the recent intentions of ACFM for cod and haddock with associated effects on whiting. In this realisation, however, the reductions in fishing mortality were also applied to saithe.

Predicted catches and associated total and spawning biomasses for the two scenarios are presented in Table 6.1. For each species, catch is broken down into human consumption landings, discards and industrial by-catch. For scenario (a) the results are, not unexpectedly, very similar to single species status guo forecasts. Under scenario (b), landings of all four species are lower in 1989 and 1990 than they are in scenario (a). Again, this is not unexpected. Indeed, similar results could be obtained by running a series of appropriately specified single-species shortterm forecasts.

The MSFP program can accommodate different multipliers on the F-at-age arrays for the different species. However, the program requires that the user specifies the different multipliers. The Group is at present not able to make this specification and a considerable amount of analysis will be required before it is
able to do so. It was, therefore, felt that any attempt to carry out further simulations at this meeting would produce arbitrary results.

Attention was drawn to the MSF BOX program (an extension of the MSFP program) currently being used by the EC Scientific and Technical Committee on Fisheries in conjunction with an appropriately disaggregated data base. The Group felt that this type of development is prerequisite to answering the type of problem referred to in this Section.

7 QUARTERLY DATA

Quarterly catch-at-age and catch and stock mean weight-at-age data for 1988 are required by the Multispecies Assessment Working Group as input to the MSVPA program. Provisional data for 1988 have already been made available to the Multispecies Group for its meeting of June 1989. Data for 1990 will be prepared when they become available.

Several countries have revised their quarterly data and these revisions have not been included in the multispecies data set. It is recommended that all nations provide a complete set of their quarterly data on age composition and mean weight at age from 1974 (even if unrevised) to the Chairman of this Working Group. The data should be supplied on floppy disc in a format to be defined in a letter to be circulated by the Chairman. In addition, it is recommended that ICES should provide paper-tabulated data on the landings by quarter of each nation fishing in the North Sea for the period 1974-1988. The latter request is made because it is difficult to find quarterly landings data for those nations which do not supply age compositions. At present, quarterly data are "invented" for these nations by apportioning their annual totals according to data submitted in conjunction with age compositions.

A request for information on the relative distribution of roundfish stocks by age group and by quarter for 1988 has also been made - again as input to the Multispecies Working Group. During the meeting of the Study Group on the Feasability of an Atlas of North Sea Fishes (Anon., 1989b), an attempt was made to combine data for 1 - and 2 -group cod from 3 different surveys in the third quarter of 1987. The results were very promising. In addition, it is noted that the newly-established International North Sea, Skagerrak and Kattegat Bottom Trawl Survey Working Group will consider this matter in more detail. It is, therefore, the opinion of this Group that information on relative distribution by age and by quarter would most easily be obtained via correspondence between the Chairman of the Multispecies Assessment Working Group and the Chairman of the working Group on Trawl Surveys.

8 THE EFFECTS OF THE COD BOX IN THE GERMAN BIGHT

The cod box was introduced in 1986 to reduce fishing mortality on the strong 1985 year class, and although subsequent year classes have been weak, the box was retained. The recommendation from ACFM was for a mesh size of 120 mm within the box, since this is
the smallest mesh size which would afford a significant increase in selectivity for 1 -year-old cod. However, the regulation adopted included reference to a minimum mesh size of 100 mm which is unlikely to have had much effect. A positive effect of a technical measure such as the cod box would be expected to show up in the VPA as a reduction in fishing mortality rate on 1-year-olds and as an increased local abundance of this age group. No such effects can be detected in the VPA or from survey data. However, the relevant values of fishing mortality rate are as yet unconverged in the VPA. It should be stressed that tagging studies (Anon., 1971) indicate that any beneficial effects of the cod box would be confined to a radius of around 100 miles, the normal limit of cod migrations.

As noted in last year's report, measures like the cod box as recommended are likely to have a positive effect on the level of spawning biomass. However, the Roundfish Working Group does not have the data required to quantify this effect. Such data are currently being assembled by an ad hoc working group of the EC Scientific and Technical Committee for Fisheries and that Group should be able to evaluate the effects of the cod box and other technical measures in due course.

9 FISHING FOR COD WITH 120 mm MESH

The Roundfish Working Group was requested to consider the June 1989 report of the Multipecies Working Group with respect to a mesh change to 120 mm in the demersal fisheries "when fishing for cod". In addition, the Roundfish Working Group was requested to make single-species assessments under the assumption that a minimum mesh size of 120 mm will apply to "fishing for cod" in 1990 and, within this assumption, to constrain the assessments so that the proportion of cod in the total catch taken by those fleets not using the 120 mm mesh was in the range $30-50 \%$.

In its meeting of 1989 , the Multispecies Working Group simulated the effects of the required mesh change both including and excluding multispecies effects. The Multispecies Working Group implicitly assumed that at present there is only one fleet fishing in the North Sea and that this fleet uses a towed demersal fishing gear for which mesh changes would affect the selectivity. It was further assumed that the proportion of the fleet which would adopt 120 mm mesh can be estimated as the proportion of the total catch of cod, haddock, whiting, saithe, and plaice represented by cod + saithe + plaice. On this basis, it was estimated that 68% of the present fleet would choose to adopt the 120 mm mesh. The current fleet generates F-at-age vectors on each of the species incorporated in the multispecies assessment data base. These vectors can, therefore, be split into two vectors one of which (32% of the current Fs) will not be changed as a result of increasing mesh size. The other vector (68% of the current Fs) will be changed. The change in this F-at-age vector was simulated by methods previously adopted by the Roundfish Working Group using estimates of selectivity parameters presented in the Multispecies Working Group Report. The original "single" fleet was, therefore, split into two fleets, one "fishing for cod" and exhibiting selectivity associated with using 120 mm mesh, the other "not fishing for cod" and maintaining its current selectivity.

Short- and long-term predictions of the catches and associated stock biomasses were made by the Multispecies Working Group, both including and excluding species interactions. If interactions are excluded, the Multispecies Group estimated for the 9 stocks included in the simulation overall long-term gains of 4.5% in the landings and 16.3% gains in spawning biomass. When interactions were included, there were losses of 6.9% in the landings and of 1.4% in spawning biomass. These overall losses in spawning biomass are, however, comprised of gains for roundfish stocks and losses for other stocks. These increases for the roundfish are only $20-25 \%$ of those indicated in the absence of biological interaction. In the short-term predictions, the Multispecies working Group found only small differences between simulations including and excluding biological interaction.

This Working Group decided to approach the problem by basing its (single-species) simulations on a more realistic fleet disaggregation than was achievable by the Multispecies Group. A 4species, 13-fleet prediction program using the disaggregated data available to the Roundfish Group was developed during the meeting for this purpose. The species incorporated were cod, haddock, whiting, and saithe. The fleets comprised 7 "national" fleets, 5 Scottish fleets and 1 residual fleet. Most of the national fleets actually consist of several fleets using sometimes very different fishing methods, some of which (e.g., gill netters) would not be affected by changes in mesh size. Unfortunately, the data available to the Group did not permit these fleets to be specified and, therefore, it was assumed that the national fleets all use towed demersal gears whose selectivity can be affected by changes in mesh size.

In parallel with the methods of the Multispecies Working Group, a vector of F-at-age was estimated for each fleet with respect to human consumption landings, discards, and industrial by-catch. The proportion of each fleet which would adopt the 120 mm mesh was estimated by evaluating for each fleet the proportion of the total catch of cod, haddock, whiting, saithe, and plaice represented by cod + saithe + plaice. However, this estimate was not applied to the Dutch, Norwegian, and French fleets where it was thought that a lower proportion than estimated would actually change. Furthermore, it was assumed that none of the Scottish Nephrops trawlers would adopt mesh sizes higher than the 70 mm currently required by regulations. Each fleet's F-at-age vector was split into the proportion not fishing for cod and the proportion fishing for cod. The latter vector was modified in accordance with the estimated effect of the mesh change. Selectivity parameters for saithe were assumed to be the same as those for cod. No change was made to vectors of F for industrial bycatch. The simulations incorporated ages $0-11$ and did not accommodate a plus-group.

The estimated proportions of each fleet changing to the 120 mm mesh are shown in Table 9.1 where it can be seen that the proportions are very variable. The mesh sizes currently in use in each of the fleets together with values of L_{5}, and L_{25} for the current mesh and for 120 mm mesh are shown in Table $9.2 .{ }^{2}$

Estimates of percentage changes in total catch, human consumption landings, discards, and industrial by-catch, following the adoption of 120 mm mesh when fishing for cod, are presented in Tables 9.3-9.6, respectively.

The Group was unable to accommodate the request to constrain the cod catches of the "non cod" fleet to within certain limits. The main reason for this is that on the basis of the data available the various fleets specified in this work exhibit very differnt exploitation patterns. This makes it nearly impossible to predict a priori the effects on each fleet of the proposed technical measure. The only way in which the Group could attempt to accommodate the request is by trial-and-error, incorporating ever more arbitrary estimates of the proportion of each fleet which would adopt the higher mesh size. Table 9.7 gives values of the proportion of the total catch (human consumption + discards + industrial by-catch) of cod, haddock, whiting, and saithe represented by cod for the fleet retaining current mesh size. The proportion varies considerably between fleets. In addition, the proportion changes from year to year. In this simulation, the year-to-year changes are not great because constant future recruitment is assumed. In reality, with highly varying recruitment, the year-toyear changes would be greater.

Problems also arise here in that the term of reference requests estimates of the proportion of cod in the catch. The catch could be interpreted as meaning the total catch of all species (in which case there is almost no hope of carrying out a simulation) or the total catch of all major demersal species (in which case it should not be forgotten that data are not available to this Group to allow estimation of the catches of plaice and sole).

Recent Scottish investigations (Armstrong et al., 1989) cast doubt on the specification of the selectivity parameters for nonScottish fleets. For the purpose of this meeting, the Roundfish Working Group used the selectivity data presented in the Multispecies Working Group report for all except the Scottish fleets. It is possible that, given changes to nets which may have occurred relatively recently, the selection parameters imputed to many of the fleets may not be appropriate.

Overall, the results presented here indicate the complexity which emerges when attempts are made to incorporate technical interactions into assessment of the likely effect of a mesh change. In this example, the complexity is further increased by the fact that a mesh change by a proportion of each fleet is being simulated. The estimation of the proportion of each fleet which will, in fact, change to the higher mesh size is difficult and very arbitrary criteria have been adopted since no better basis exists at present. Furthermore, as already indicated, the data available to the Roundfish Group are not sufficiently disaggregated to allow separation of those fleets which will definitely not change their mesh size from those fleets which might do so.

The feeling of the Group was that, although these assessments attempted to simulate more realistically the technical interactions of the fleets than the assessments carried out by the Multispecies Group, the results should be viewed with considerable caution. Attempts should be made to amalgamate consider-
ations of technical interaction, biological interaction and associated effects of spatial and temporal heterogeneity of stocks and the fleets exploiting them. The best prospect for carrying out this kind of work in a satisfactory manner lies in the data base and associated computations currently being prepared or considered by the EC Scientific and Technical Committee for Fisheries.

10 ESTIMATES OF RECRUITMENT

10.1 Recruitment Indices

Recruitment indices for the North Sea stocks of cod, haddock, and whiting (Tables 10.1-10.3) were available from the International Young Fish Survey (1971-1989), the English Groundfish Survey (1977-1988), the Scottish Groundfish Survey (1982-1988), and for cod and whiting from the Dutch Groundfish Survey (1980-1988). Preliminary results for cod from the 1989 Dutch Groundfish Survey will become available during the November meeting of ACFM. Abun-dance indices of cod taken as by-catch in the shrimp fishery by the Federal Republic of Germany were available for the years 1968-1989. The index for the 1989 year class is still provisional.

For the stocks of cod, haddock, and whiting in Division VIa, 1and 2-group indices are available from scottish surveys (19821989) (Tables 10.4-10.6).

No research vessel surveys are available for saithe.

10.2 Use of Indices

As last year, RCRTINX2 was used to combine the available research vessel indices. The options chosen were:
a) Calibration regression;
b) Shrinkage towards the mean;
c) Minimum variance of prediction of 0.2 for any estimate;
d) Minimum of 5 data points in regression;
e) Tricubic weighting.

To estimate recruitment at age 1 and 2 for the North sea stocks of cod, haddock, and whiting various recruitment indices were used in conjunction with VPA estimates obtained by LaurecShepherd tuning. The results of the RCRTINX2 runs were used when making predictions. Estimated recruitments and associated diagnostics are shown in Table 10.7.

For the stocks of cod, haddock, and whiting in Division VIa, several runs of RCRTINX2 were made using different sets of input data:
a) Using VPA numbers and CPUE data for ages 1 and 2 for Scottish light trawlers and seiners;
b) Using VPA numbers and research vessel indices from the North Sea and from Division VIa;
c) Using VPA numbers, Scottish CPUE data as described above and the results of North Sea VPA.

The results of these runs are presented in Table 10.7. For some stocks, alternative means of estimating recruitment were adopted. The final values adopted are given in the respective stock sections (13.7, 17.7 and 21.7).

Various attempts were made to estimate recruitment of cod and whiting in Division VIId using North Sea indices but these attempts were abandoned because of the apparent lack of correlation between data for the North sea and VPA estimates of numbers at age in Division VIId.

11 TUNING METHODS

The Laurec-Shepherd tuning method was used to estimate F-at-age in the last data year and at the highest age for the stocks indicated in the text-table below. The fleets for which effort data are available and which were used in the tuning procedure are also indicated in the text table.

Country	Fleet	Sub-area IV				Division VIa			
		Cod	Had	Whi	Sai	Cod	Had	Whi	Sai
Scotland	GFS	+	$+$	+					
	TRL	$+$	$+$	$+$	+	$+$	$+$	+	$+$
	SEI	$+$	$+$	+	+	+	+	+	+
	LTR	+	+	+	$+$	$+$	+	+	$+$
		$+$	+	+		$+$	$+$	+	+
England	GFS	+	$+$	+					
	TRL	+							
	SEI	$+$							
France	TRB	$+$	$+$		$+$				
	TRS	+		$+$					
	ALL					+	+		+
Netherlands	GFS	+		+					
Norway	LTR				+				
	TRL				+				
International	GFS	+	$+$	$+$					

Full diagnostic statistics for each stock will be presented to ACFM on floppy disc.

12 COD IN SUB-AREA IV

12.1 Catch Trends

Official landings data are given in Table 12.1. Trends in landings from Working Group estimates are given in Table 12.2 and are graphed in Figure 12.1. Provisional landings in 1988 were $150,000 t$ compared to a TAC of $160,000 t$ and were the lowest in the last 20 years. Landings have declined markedly since 1981.

12.2 Natural Mortality Rate and Maturity at Age

These values are given in Table 12.3. They are unchanged from those used last year.

12.3 Age Compositions

The VPA input data for the last 20 years are given in Table 12.4. They do not include estimates of discards or industrial byCatches. Data for 1988 were provided by England, Scotland, Netherlands, Denmark, France, Belgium, and the Federal Republic of Germany.

12.4 Mean Weights at Age

Total international mean weights at age for the catch are given in Table 12.5. These were also used as stock weights at age.

12.5 Commercial Catch/Effort Data and Research Vessel Indices

These data were used to tune the VPA and to provide recruitment estimates. The fleets used in the tuning are indicated in the text table in Section 11. The research vessel indices are given in Table 10.1.

12.6 VPA Tuning

Fishing mortality-at-age and numbers-at-age resulting from the tuning are given in Tables 12.6 and 12.7, respectively.

12.7 Abundance Estimates of the 1986-1989 Year Classes

Methods employed for deriving estimates of recruitment are described in Section 10. The results from RCRTINX2, used as input values for prediction, are given in Table 10.7.
12.7.1 The 1986 year class in 1988

The RCRTINX2 estimate is 102 millions which compares with the estimate derived from tuning of 95 millions. It was decided to adopt the RCRTINX2 estimate.

12.7.2 The 1987 year class in 1988

This abundance was estimated by RCRTINX2 to be 193 millions compared to the estimate from tuning of 157 millions. Last year's Working Group estimate of this year class was 277 millions but this was revised by ACFM in May 1989 to 198 millions.

12.7.3 The 1988 year class in 1989

This was estimated to be 329 millions at age 1. Last year an average year class value (arithmetic mean) of 412 millions had to be assumed by the Working Group in the absence of research vessel data. In the ACFM assessment of May 1989, an estimate of 251 millions was used. The differences are due to additional research vessel data now available.

12.7.4 The 1989 year class in 1990

The only survey data available at present are the 0 -group index from the English Groundfish Survey of 1989. The RCRTINX2 estimate is 315 millions at age 1 . This estimate is very preliminary and, because of the use of shrinkage in RCRTINX2, is not much different from the long-term geometric mean of 351 millions.

12.8 Long-term Trends in Biomass, Fishing Mortality and Recruitment

Historical trends in mean fishing mortality, biomass and recruitment are shown in Table 12.8 and Figure 12.1. Fishing mortality peaked in 1982 and appears to have declined somewhat thereafter. Spawning stock biomass reached another historically low value of $88,000 \mathrm{t}$ in 1988 but appears to have increased to $91,000 t$ at the beginning of 1989. No trend in recruitment is apparent. The 1986 and 1987 year classes were below average but the 1988 year class is about average.

12.9 Catch and Biomass Predictions

The input data for catch predictions are given in Table 12.9. The F values for age $1(0.164)$ and age 2 (0.918) are the mean for the period 1984-1988 and replace the tuned values of 0.177 and 0.940 (Table 12.6).

12.9.1 Status quo prediction

The results of a status quo catch prediction are given in Table 12.10. The status quo catch in 1989 is $136,000 \mathrm{t}$ compared to $144,000 \mathrm{t}$ predicted by ACFM last year. The same fishing mortality in 1990 results in a catch of $143,000 t$. Spawning biomass will fall from $91,000 t$ in 1989 to $83,000 t$ in 1990 , with a further fall to $80,000 t$ at the beginning of 1991. Catches and associated biomasses in 1990 under a range of F values are given in Table 12.10 and Figure 12.2.

12.9.2 Prediction assuming TAC taken in 1989

The results of this catch prediction are given in Table 12.11. The TAC of $124,000 t$ for 1989 implies a reduction of F of 12% in 1989 compared to 1988. This will result in no change in spawning biomass in 1990 ($91,000 \mathrm{t}$). In the prediction made by ACFM in November last year, this level of catch implied a reduction in F of 20%. Catches and associated biomasses in 1990 under a range of F values are given in Table 12.11 and Figure 12.2.

12.9.3 Catch at age data for 1989

Provisional estimates for the total number landed at each age for the first six months of 1989 are given in Table 12.12. This shows an unexpectedly high number of 2 -year-old fish. Since these data are very preliminary and do not include all countries it is difficult to assess the significance of the material.

12.10 Yield and Biomass per Recruit

Plots of yield and biomass per recruit are shown in Figure 12.2

12.11 Safe Bioloqical Limits

The stock/recruitment scatter diagram is shown in Figure 12.3. $F_{\text {med }}$ is 0.72 and $F_{h i g h}$ is 0.92 and the current value of F is 0.8 .
Spawning biomass at the beginning of 1989 was estimated to be $91,000 \mathrm{t}$ which is among the lowest in the historical series. The minimum acceptable spawning biomass advised by ACFM is $150,000 \mathrm{t}$.

13 COD IN DIVISION VIa

13.1 Catch Trends

Official landings data are given in Table 13.1. Trends in landings are shown in Figure 13.1. Working Group estimates of landings are given in Table 13.2. Landings in 1988 were $20,456 \mathrm{t}$ which is an increase of $1,500 t$ on 1987. The agreed TAC for Subarea VI for 1988 was 18,430 t.

13.2 Natural Mortality and Maturity at Age

These values are given in Table 13.3. They are unchanged from those used last year.

13.3 Age Compositions

The VPA input data are given in Table 13.4. These data do not include discards or industrial by-catch. Data for 1988 were supplied by Scotland, England, Ireland, and France.

13.4 Mean Weight at Age

Total international mean weights at age for the catch are given in Table 13.5. These values were also used as stock mean weights at age.

13.5 Commercial Catch/Effort Data and Research Vessel Indices

These data were used to tune the VPA and to provide recruitment estimates. The fleets used in the tuning are indicated in the text table in Section 11. The research vessel indices are given in Table 10.4.

13.6 VPA Tuning

Fishing mortality rates and numbers at age for the tuned VPA are presented in Tables 13.6 and 13.7, respectively.

13.7 Abundance Estimates of the 1987-1989 Year Classes

The results from the RCRTINX2 method are given in Table 10.7. Various research vessel indices for both Division VIa and Subarea IV, as well as CPUE indices for Scottish light trawlers and seiners in Division VIa were input. It was decided that the RCRTINX2 results were unacceptable since the correlations between the indices and VPA were generally low.

13.7.1 The 1986 year class in 1988

The catches of this year class in 1987, 1988, and the first half of 1989 all indicate that it is very abundant. In these circumstances (lacking a definitive estimate of abundance from RCRTINX2 or other methods) the Methods Working Group suggests selection of an appropriate quantile of the historical recruitment series. The upper quartile of the historical VPA series for age 2 is 8-9 millions but this value is equalled by the catch in 1988. It was, therefore, decided to set the abundance of this year class to the highest estimated historical abundance for age 2 (1979 year class). This results in an estimate of 16 million fish.

13.7.2 The 1987 and later year classes

The value adopted for these year classes was 10 million, the geometric mean recruitment for the period 1969-1988.

13.8 Lonq-Term Trends in Biomass, Fishing Mortality and Recruitment

Estimates of biomass, fishing mortality and recruitment are given in Table 13.8 and plots are shown in Figure 13.1. Spawning biomass has declined from 1981 to reach a historically low level in 1986 of $18,000 t$ but is estimated to have increased in the following two years. Mean fishing mortality shows an upward trend but has apparently stabilized in the past 5 years. Recruitment in the past decade has been at a higher level than in previous years.

13.9 Catch and Biomass Predictions

Input data for predictions are given in Table 13.9. Stock numbers at age 3 and older in 1988 are the tuned values from VPA. The values for ages 1 and 2 in 1988 are the estimates obtained as described in section 13.7. The tuned F values for ages 1 and 2 in 1988 have been replaced by average Fs for the period 1984-1988.

13.9.1 Status quo catch prediction

The status quo catch in 1989 is predicted as 20,000 t (Table 13.10), which is close to the TAC for Sub-area VI of $18,430 \mathrm{t}$. The status quo catch in 1990 is predicted to be 17,000 t. spawning stock biomass will fall from $27,000 t$ in 1989 to $23,000 \mathrm{t}$ at the start of 1990, and to $19,000 \mathrm{t}$ at the start of 1991. The latter is close to the lowest recorded value from VPA.

13. 10 Catch at Age Data for 1989

Catch-at-age data for the first quarter of 1989 for Scotland are given in Table 13.11. The 1986 year class is prominent in the landings.

13.11 Yield and Biomass per Recruit

Plots of yield and biomass per recruit are shown in Figure 13.2

13.12 Safe Biological Limits

The stock-recruit scatter diagram is shown in Figure 13.3. Values for Fmed (0.68) and Fhigh(1.05) are shown in Figure 13.2. The current level of F is close to Fhigh. Spawning biomass is among the lowest recorded in the historic series.

14 COD IN DIVISION VIb

No age composition data are available for this stock. Landings are small and are given in Table 14.1.

15 COD IN SUB-AREA VII

15.1 Cod in Divisions VIId, e

In recent years, an analytical assessment has been attempted for cod in Divisions VIId, e. In fact, age composition data are available only for cod in Division VIId and this has been raised to include landings in Division VIIe. However, recent studies have suggested that there is little interchange of cod between the two areas and that there are closer links between Division VIId and Sub-area IV, and between Division VIIe and Divisions VIIf,g (see Section 4). It was, therefore, decided to restrict the analytical assessment to Division VIId and to predict catches in Division VIIe by the SHOT method.

The Group notes that the assessment of cod in Divisions VIIb-k has been considered several times during 1989, both by ACFM and the STCF.
15.2 Cod in Division VIId

15.2.1 Catch trends

Recent nominal landings are given in Table 15.1 which also includes Working Group estimates. The latter are plotted in Figure 15.1. There have been significant revisions to these estimates. Landings in 1986-1988 have been well above those for previous years.

15.2.2 Natural mortality and maturity at age

The values used are shown in Table 15.2

15.2.3 Aqe compositions and mean weight at age

The VPA age composition input data are given in Table 15.3, and the mean weight-at-age data (used as both catch and stock mean weights) are given in Table 15.4. The data were revised to take account of revisions in the landings data. Data for 1988 were provided by France and England.

15.2 .4 VPA

No data are available for tuning the VPA and, therefore, a separable VPA was run. Trial values of terminal F and S were input and final values of $F=1$ for age 3 and $S=1$ were adopted. The log catch ratio residuals are given in Table 15.5. They indicate the high variability of the catch at age data. The separably-generated population numbers at age in 1988 were used to initiate a conventional VPA and the resulting estimates of F and N at age are given in Tables 15.6 and 15.7, respectively. The values of fishing mortality rate in 1985 and 1986 appear to be anomalous.

15.2.5 Estimates of recruitment

There are as yet no recruitment indices for this area; however, a survey was initiated by France in October 1988. The VPA estimates for age 1 do not correlate with any of the recruitment indices or with historical VPA values from the North Sea.

15.2.5.1 The 1987 year class in 1988

In the absence of other data, the number implied by the use of mean fishing mortality for the period 1976-1985 (0.126) was accepted. The value so obtained was 6 millions.

15.2.5.2 The 1988 and later year classes

These were estimated to be 6.6 million fish at age 1 , the geometric mean for the period 1976-1988.

15.2.6 Long-term trends in biomass, fishing mortality, and recruitment

Historical values of biomass, fishing mortality, and recruitment are given in Table 15.8 and are plotted in Figure 15.1. Total biomass has apparently increased in recent years as a result of increased recruitment.

15.2.7 Catch and biomass predictions

Input data for predictions are given in Table 15.9 and the results are given in Table 15.10 and Figure 15.2. The predicted status quo catch for 1989 is $11,000 t$ followed by $9,000 t$ in 1990. Spawning biomass is predicted to increase from $4,000 t$ in 1989 to $5,000 \mathrm{t}$ in 1990 but will fall to $3,000 \mathrm{t}$ at the start of 1991.

15.2.8 Yield and biomass per recruit

Plots of yield and biomass per recruit are shown in Figure 15.2.

15.2.9 Safe bioloqical limits

The stock/recruit scatter diagram is shown in Figure 15.3. Values for $F_{\text {med }}(1.2)$ and $F_{\text {igh (1.7) }}$ (1.7re shown in Figure 15.2. The current Megel of F is estighated to be 1.33 .

15.2.10 Reliability of assessment

It was pointed out last year that the data on which this assessment is based are less reliable than for most other stocks dealt with by this Working Group. Although there has been some improvement in the data base, it remains likely that the reliability of the assessment is lower than for the other stocks.

15.3 Cod in Division VIIe

15.3.1 Catch trends

Nominal landings for recent years together with Working Group estimates are given in Table 15.11

15.3.2 Catch prediction

There are no age- and few length-composition data for past years. Sampling of landings in England started this year.

It was decided to carry out a SHOT forecast for this area using recruitment data for Divisions VIIf,g since there is, some evidence that cod in these two areas are linked. The results of the SHOT forecast using Working Group estimates of landings are given in Table 15.12. Status quo landings are predicted to fall from $1,600 \quad t$ in 1988 to $1,100 t$ in 1989, reducing further to 800 t in 1900. These predictions are sensitive to the assumption of constant yield/biomas ratios over the years and to the recruitment weights adopted.

16 HADDOCK IN SUB-AREA IV

16.1 Catch Trends

Official landings figures are given in Table 16.1. Total international catches and total international discards as estimated by the Working Group are given in Table 16.2. Catch trends are plotted in Figure 16.1. Total human consumption landings in 1988 were $105,000 \mathrm{t}$ which is rather lower than the fairly stable range of landings (130,000-160,000 t) in the period 1981-1986. Industrial by-catch remains low at $4,000 t$.

The agreed TAC for 1988 was $185,000 t$ and was largely based on an overestimate of the abundance of the 1986 year class.

16.2 Natural Mortality and Maturity at Age

These values are given in Table 16.3 and are the same as those used last year.

16.3 Age Compositions

Total international catch at age are given in Table 16.4. Age compositions for human consumption landings were supplied for 1988 by Belgium, France, Federal Republic of Germany, England, nenmark, and Scotland. Age compositions for discards were supplied by Scotland, and for industrial by-catch by Denmark and Norway.

16.4 Mean Weights at Age

Total international mean weights at age are given in Table 16.5. These values are also used as stock mean weights at age.

16.5 Commercial Catch/Effort Data and Research Vessel Indices

These data were used to tune the VPA and to provide recruitment estimates. The commercial fleet data used to tune the VPA are indicated in the text table in section 11. The research vessel indices are presented in Table 10.2.

16.6 VPA Tuning

The estimates of F-at-age and numbers-at-age resulting from the tuning are given in Tables 16.6 and 16.7 , respectively.

16.7 Abundance Estimates of the Year Classes 1986-1988

Methods for estimating recruitment are described in section 10.

16.7.1 1986 year class in 1988

The abundance of the 1986 year class at age 2 was estimated by RCRTINX2 as 944 million. This value may be compared to the value of 1,020 million obtained by Laurec-Shepherd tuning. The predicted abundance of this year class at age 2 made by last year's Working Group (April 1988) was 707 million. In the review of the 1989 TAC presented to the ACFM meeting of May 1989, the predicted abundance of this year class at age 2 was 751 million.
16.7.2 1987 year class in 1988

The RCRTINX2 estimate of the 1987 year class at age 1 is 553 million which compares favorably with the estimate of 576 million obtained from Laurec-Shepherd tuning. The Roundfish Working Group of April 1988 estimated this abundance as 825 million. In the revue of the 1989 TAC of May 1989, this year class was estimated at 470 million. While these results are somewhat variable they all indicate that the 1987 year class is one of the least abundant on record.

16.7 .31988 year class in 1989

The RCRTINX2 estimate of this year class at age 1 is 980 million. In the review document presented to ACFM in May 1989, this year class was estimated at 1,300 million at age 1 . These values may be compared to the estimate made by ACFM in November 1988 of 1,219 million.
16.7 .41989 year class in 1990

RCRTINX2 allows prediction of the abundance of this year class using abundance indices at age 0 in 1989 from the Scottish and English Groundfish Surveys carried out in August-September. The estimated abundance is 1,900 million, indicating yet another poor year class. (The approximately equivalent number at age 0 in 1989 is $1,900 * \exp (2.05)=14,870$ million,)
16.7 .5 Abundance of the 1990 and 1991 year classes at age 0

The abundances of these year classes were assumed to be 26,392 million, the geometric mean value for the period 1969 to 1988.

16.8 Long-Term Trends in Biomass, Fishing Mortality, and Recruitment

Trends in biomass, fishing mortality and recruitment are given in Table 16.8 and are plotted in Figure 16.1. Human consumption fishing mortality rate is currently among the highest on record. Industrial by-catch fishing mortality remains at the low level of recent years.

As noted above, recent recruitments have been poor. Since 1984, only the 1986 year class has been of average abundance, all other year classes being below average. This has resulted in the estimate of total stock size at the start of 1988 (which excludes 0group haddock) being the lowest on record at $398,000 \mathrm{t}$. The 1988 spawning biomass is slightly higher than in the period 1978-1980 but is among the lowest on record at $149,000 \mathrm{t}$. At the start of 1989, total stock size is estimated to be $329,000 \mathrm{t}$, while spawning stock size is estimated at 137,000 t.

16.9 Catch and Biomass Predictions

Input data for predictions are given in Table 16.9. Values of F at. ages 0,1 and 2 in 1988 obtained by tuning were replaced by mean $F s$ for the period 1984-1988.

16.9.1 Prediction for 1989

The agreed TAC is $68,000 t$. If catches for human consumption and as industrial by-catch do not exceed this value, the human consumption fishing mortality rate will decrease by 50% compared to that of 1988.

In recent weeks, Scottish fishing vessels have been prohibited from landing haddock from the North Sea because their quota of the North Sea TAC has been exhausted. However, landings of other species are permitted and, therefore, fishing will continue. It is inevitable that haddock will be caught by this fishery and these catches will not be recorded in official statistics. In these circumstances it is difficult to forecast the real fishing mortality rate on haddock in 1989. There is some preliminary evidence that scottish fishing effort in the North sea decreased prior to the prohibition on landings of haddock. It is also likely that the landings prohibition will lead to a further decrease in fishing effort. The Group decided that the best that can be done at present is to assume that human consumption fishing mortality on haddock will be reduced by 10% during 1989.

The prediction presented in Table 16.10 and graphically in Figure 16.2 is contingent on this assumption. In the absence of a prohibition on landings, it is predicted that human consumption landings in 1989 would be $92,000 t$, industrial by-catch would be $3,000 t$ and discards would be $17,000 \mathrm{t}$. If landings do not exceed the TAC of $68,000 \mathrm{t}$, it is, therefore, expected that discarding will be increased by 24,000 t. Spawning biomass at the start of 1990 is expected to be $89,000 t$ which is well below any previously recorded level.

16.9.2 Catch predictions for 1990

If human consumption fishing mortality rate in 1990 reverts to the level of 1988, it is expected that landings will be $64,000 t$ ($61,000 \mathrm{t}$ human consumption $+3,000 \mathrm{t}$ industrial by-catch) and $24,000 \mathrm{t}$ will be discarded. Spawning biomass at the start of 1991 is expected to decrease further to $76,000 \mathrm{t}$.

16. 10 Safe Biological Limits

The stock-recruitment plot is shown in Figure 16.3. In its report of 1987, the Group suggested that $100,000 t$ should be the lowest acceptable level for spawning biomass. It appears that, given the sequence of poor recruitments in recent years, spawning biomass is about to fall well below this level. If the assumptions made about likely changes in fishing mortality in 1989 are correct, it appears that a reduction in fishing mortality in 1990 to 60% of the 1988 level is required to leave a spawning biomass in the sea of $98,000 t$ at the start of 1991. To achieve this result, landings in 1990 would need to be limited to $46,000 \mathrm{t}$ (43,000 t human consumption $+3,000 t$ industrial by-catch).

16. 11 Further Comments on the Abundance of the 1986 Year Class

The predictions referred to above depend critically on the estimated abundance of the 1986 year class in 1988 since this is at present the year class on which the fishery is almost totally dependent. As indicated in Section 16.7.1, the abundance of this year class at age 2 estimated at this meeting is about 30% greater than predictions of this abundance made previously. The current estimate of abundance depends heavily on IYFS indices at age 1 and 2 which are more heavily weighted by RCRTINX2 than the other indices currently available. In the recent past, it has repeatedly been found (retrospectively) that abundance estimates of haddock based purely or largely on IYFS indices have been considerable overestimates. This has been the major contributor to setting TACs for the last 5 years which have been too great for the fleet to catch.

An alternative estimate of the abundance of the 1986 year class at age 2 was made using only the Scottish and English Groundfish Survey data. The abundance estimated in this way is 734 million . This value is much more in line with previous predictions.

If this value is accepted, the predicted landings in 1989, assuming a 10% reduction in fishing mortality, are $80,000 \mathrm{t}$. (Alternatively, strict adherence to the TAC of $68,000 \mathrm{t}$ implies a reduction in fishing mortality to 70% of the 1988 level). The associated status quo landings in 1990 are 57,000 t. Spawning biomass
in 1988 is $134,000 t$, decreasing to $117,000 t$ in $1989,79,000 t$ in 1990, and $72,000 \mathrm{t}$ in 1991.
16.12 Working Group Advice on TAC for 1990

Given the uncertainty about probable catches and hence fishing mortality in 1989, the Group suggests that the TAC for 1990 should be set at a level which, on the basis of the results presented in Table 16.10, will reduce fishing mortality by 20% compared to 1988. This will result in a TAC for 1990 of $56,000 t$ (53,000 t human consumption $+3,000 t$ industrial by-catch) and a potential spawning biomass at the start of 1991 of $86,000 t$.

The situation should be reviewed early in 1990, when the index of abundance of the 1989 year class at age 1 will be available from the IYFS and when catch-at-age data reflecting the actual yield in 1989 will also be available.
16.13 Yield and Biomass per Recruit

Plots of yield and biomass per recruit are shown in figure 16.2.

16.14 Catch at Age Data for 1989

Provisional estimates of the total international age composition for the first half of 1989 are given in Table 16.11. These data are very preliminary and were not provided by all nations which usually contribute to the data set. It is, therefore, difficult to assess the significance of this material.

17 HADDOCK IN DIVISION VIa

17.1 Catch Trends

Officially reported landings are given in Table 17.1. Total international catches and total international discards estimated by the Working Group are given in Table 17.2. Catch trends are plotted in Figure 17.1. Total human consumption landings in 1988 were $21,000 \mathrm{t}$ compared to $27,000 \mathrm{t}$ in 1987 and $20,000 \mathrm{t}$ in 1986.

There is no TAC explicitly applicable to Division VIa. The TAC for the whole of Sub-area VI is $35,000 t$.

17.2 Natural Mortality and Maturity at Age

These values are given in Table 17.3.

17.3 Age Compositions

Total international catch at age are given in Table 17.4. Age compositions for human consumption landings for 1988 were supplied by France, England, Ireland, and Scotland. Age compositions for discards were supplied by Scotland.

17.4 Mean Weights at Age

Total international mean weights at age are given in Table 17.5. These values were also used as stock weights at age.

17.5 Commercial Catch/Effort Data and Research Vessel Indices

The commercial catch and effort data used to tune the VPA are indicated in the text table in Section 11. Abundance indices from research vessel surveys and from scottish light trawlers and seiners used in attempts to estimate recent recruitment are shown in Table 10.5.

17.6 VPA Tuning

Values of F-at-age and numbers-at-age resulting from tuning are shown in Tables 17.6 and 17.7 , respectively.

17.7 Abundance Estimates of the Year Classes 1986-1988

Methods for estimating recruitment are described in section 10. None of the many attempts by the Group to estimate recruitment, using various combinations of indices as input to RCRTINX2, was considered satisfactory.

17.7 .11986 year class in 1988

This abundance was estimated as 150 million from RCRTINX2, using Scottish CPUE data at ages 1 and 2 for light trawlers and seiners and North Sea estimates of abundance at age 2 as input. This value compares reasonably well with that of 135 million obtained from Laurec-Shepherd tuning. In last year's report, this value was predicted as 68 million.

17.7.2 1987, 1988 and 1989 year classes at age 1

No acceptable results were obtained from RCRTINX2 for these year classes.

There is a historical relationship between recruitment in Division VIa and that in the North Sea. On this basis, the Group felt that it is legitimate to assume that the year classes of 1987, 1988, and 1989 are all of below-average abundance (this was also indicated by the RCRTINX2 results even though the latter were not accepted). The Group decided to assume the lower quartile value of historical recruitment at age 1 for these year classes. This value is 40 million.

17.8 Long-Term Trends in Biomass, Fishing Mortality, and Recruitment

Trends in biomass, fishing mortality, and recruitment are given in Table 17.8 and are plotted in Figure 17.1. Human consumption fishing mortality in 1988 is estimated to be less than that in 1987 and to approximate to the average level for the last 5 years. Total stock biomass and spawning biomass have been relatively stable in the last 10 years, but the estimates for 1988 are at the lower end of the historical range. In last year's assessment the 1986 year class was estimated as having average abundance. This year's assessment indicates that it is of aboveaverage abundance. All other year classes after that of 1983 are estimated to be of below-average abundance.

17.9 Catch and Biomass Predictions

Input data for predictions are given in Table 17.9. Values of F for 1988 for ages 0,1 and 2 obtained from tuning were replaced by mean values for the period 1984-1988.

17.9.1 Status quo catch prediction

Table 17.10 and Figure 17.2 give results of predictions assuming that fishing mortality in 1989 will be the same as that in 1988. The predicted human consumption landings in 1989 are $23,000 t$. This value is greater than the $18,000 t$ predicted last year, mainly because of the upward revision of the abundance of the 1986 year class in 1988. Human consumption landings at status guo fishing mortality in 1990 are predicted as $17,000 \mathrm{t}$. The decline compared to 1989 is due to the expected entry into the fishery of a succession of poor year classes.

In parallel with this sequence of predicted catches, spawning biomass is expected to decrease from $57,000 \mathrm{t}$ in 1988 to $41,000 \mathrm{t}$ at the start of 1990 and to $29,000 \mathrm{t}$ at the start of 1991. The latter value is equal to the lowest on record.

The arbitrary or unsatisfactory nature of the estimates of abundance of the year classes 1986-1989 should not be forgotten when considering the catch and biomass predictions.

17. 10 Yield and Biomass per Recruit

Plots of yield and biomass per recruit are shown in figure 17.2.

17.11 Safe Biological Limits

The value of $\mathrm{F}_{\text {med }}(0.52)$ is shown in Figure 17.2. The value of $F_{\text {high }}$ is $2.5^{\text {med }}$ Spawning biomass is expected to reach the lowest recorded level in the near future but the doubts about estimates of recent recruitment should not be forgotten in this context. The stock-recruitment plot is shown in Figure 17.3.

17.12 Catch at Age in the First Quarter of 1989

Scotish catch-at-age data for the first quarter of 1989 are presented in Table 17.11.

18 HADDOCK IN DIVISION VIb

18.1 Catch Trends

Officially reported landings for recent years are given in Table 18.1. The nominal landings in 1988 were 7,678 t which is very similar to the 1987 value.
18.2 Age Compositions

Age compositions were available from Ireland, England, and scotland. These were used to estimate total international catch at age given in Table 18.2. The 1984 year class dominates the landings, accounting for over 70% of the landed weight.

18.3 Mean Weight at Age

Mean weights at age in the catch are given in Table 18.3.

18.4 Abundance Indices

Table 18.4 gives the abundance indices obtained from various surveys since 1967. During August 1988 and 1989, Scotland conducted surveys at Rockall using the research vessel "Scotia". Only the surveys since 1985 are in any way consistent in that the gear and timing of the surveys were the same, but the vessels were different. In the assessment presented below only the survey data from 1985 were used.

18.5 Assessment

The assessment methodology is described in Cook (1989) and is an extension of the methods used in the 1988 Roundfish Working Group. A linear model has been fitted to the research vessel data to obtain an index of year-class strength corrected for changes in survey vessel. The main departure from last year's methodology is that a constant term has been omitted from the fitted model. This reduces the variance of the parameter estimates and hence makes estimation more robust. Results from fitting the model are presented in Table 18.5. The analysis indicates that the 1986 year class is not as strong as previously thought but that the 1989 year class is strong.

At the 1988 Working Group meeting, the catch-at-age data were analyzed using the same linear model. This year, the catch-at-age data were analyzed using a version of separable VPA. This separable model estimates the parameter values by minimizing the sum of squares of the log catch residuals. The year effects are constrained so that the slope of the year effects with time is the same as that of the slope of effort data with time. Relative effort data for Scottish vessels are given in Table 18.6. The slope of these data with time is 0.1803. Results of fitting the model to the catch-at-age data are given in Table 18.7. The table shows the fitted values of fishing mortality rate, fitted numbers at age, and the log catch residuals. The residuals are large and this inevitably undermines the reliability of the estimated values.

18.6 Catch Forecast

The parameterization of the catch-at-age data provides a basis for a short-term forecast since the estimated values can be used to roll the population forward in much the same way as in a conventional forecast. Estimates of recruitment are also required. These have been obtained by performing a calibration regression of the VPA-estimated populations at age 2 on the survey index at age 0 . Table 18.8 gives the input data used, the regression analysis, and the fitted recruitment values at age 2 . The regression is plotted in Figure 18.1. It should be noted that the recruitment values from VPA at age 2 for the year classes 1979-1982 are derived from the population vector in 1979 normalised to age 2 assuming status quo fishing mortality in earlier years. This has been done to use as many data points as possible to derive the regression equation. The fitted values have been shrunk towards the mean. The recruitment values used in the catch predictions
are those for the year classes 1986-1989.
Table 18.9 gives the estimated spawning stock size and fitted yield for the years 1985-1988 and the predicted values for 19891991. An approximation to a 95% confidence interval is given for these estimates. These should not be over-interpreted and simply serve to illustrate the imprecision of the forecast. It should be noted that the present forecasts are substantially lower than those in last year's report. This is primarily due to the reevaluation of the abundances of the 1985 and 1986 year classes. However, the predictions are now much more in line with recent landings. It is extremely important to interpret the forecasts cautiously since the forecast is incorporated in the TAC for the whole of Sub-area VI. A high TAC for Sub-area VI may be very damaging to haddock in Division VIa if the TAC is dominated by the Rockall forecast as it was for 1989.

19 HADDOCK IN SUB-AREA VII

Nominal landings in Divisions VIId,e are shown in Table 19.1, landings in Divisions VIIb, c are shown in Table 19.2 and landings in Divisions VIIg-k are shown in Table 19.3.

20 WHITING IN SUB-AREA IV

20.1 Catch Trends

Total nominal landings and total international catches as estimated by the Working Group are given in Tables 20.1 and 20.2, respectively. Total international catches in 1988 amounted to $128,000 t$, of which $51,000 t$ were human consumption landings and $49,000 \mathrm{t}$ were industrial by-catch. The industrial by-catch was the highest since 1981. However, total estimated landings were well below the predicted landings for 1988 of $152,000 t$ given in last year's report and also below the TAC of $120,000 \mathrm{t}$. Catch trends for the last 20 years are shown in Figure 20.1. The decline of catches and landings in the late 1970s and early 1980s appears to have stopped.

20.2 Natural Mortality and Maturity at Age

Natural mortality rate and proportion mature at age are shown in Table 20.3.

20.3 Age Compositions

Age composition data on human consumption landings were provided by Scotland, Netherlands, England, Belgium, and France. Scotland provided data on discard age compositions. Denmark and Norway provided data on age compositions of industrial by-catch. Total international catch-at-age data are given in Table 20.4.

20.4 Mean Weight at Age

Total international mean weight-at-age data for the catch (also used as stock mean weight at age) are given in Table 20.5.
20.5 Commercial Catch/Effort Data and Research Vessel Indices

Commercial fleet catch and effort data used to tune the VPA are indicated in the text table in Section 11. Research vessel indices are shown in Table 10.3.
20.6 VPA Tuning

Total international fishing mortality rates and stock numbers at age resulting from the VPA tuning are presented in Tables 20.6 and 20.7 , respectively.
20.7 Abundance Estimates of the Year Classes 1986-1989
20.7.1 The 1986 year class in 1988

This was estimated by RCRTINX2 to be 962 million compared to a tuned VPA of 1,000 million. Last year's Working Group predicted this abundance as 1,667 million.
20.7.2 The 1987 year class in 1988

RCRTINX2 estimated this year class as 3,044 million compared to the tuned VPA value of 2,022 million. Last year's Working Group predicted this abundance as 3,504 million.
20.7 .3 The 1988 year class in 1989

RCRTINX2 estimated this year class as 5,503 million. Natural mortality rate at age 0 is 2.55 , and hence the corresponding approximate number at age 0 in 1988 is $5503 \times \exp (2.55)=70,480$ million. Last year's Working Group estimated this number as the the historical arithmetic mean of 4,759 million.
20.7 .4 The 1989 year class in 1990

RCRTINX2 estimated this year class using O-group indices from English and Scottish surveys in 1989 as 3,225 million at age 1 in 1989, corresponding approximately to 41,000 million at age 0 in 1988.
20.7.5 The 1990 and 1991 year classes at age 0

The abundance of these year classes was set at 43,305 million the geometric mean value for the period 1969-1988.

20.8 $\frac{\text { Long-Term Trends in Biomass, Fishing Mortality, }}{\text { Recruitment }}$

These values are given in Table 20.8 and are plotted in Figure 20.1. Mean fishing mortality has decreased and is curently at the lowest value (0.81) since 1983. Industrial by-catch fishing mortality has increased considerably in 1988 to 0.17 , the highest value since 1981. Spawning stock biomass has decreased slightly and remains below the average of $378,000 t$ for the period 19691988. The 1988 year class is estimated to have been very abundant, being the third largest since 1969.

20.9 Catch and Biomass Predictions

Input data for predictions are given in Table 20.9. The F values for ages $0-2$ have been set to the mean values for the period 1984-1988 and differ from the tuned VPA values.

20.9.1 Status quo prediction

The results of the status quo prediction are given in Table 20.10 and Figure 20.2. The predicted human consumption landings in 1989 are $66,000 \mathrm{t}$ and the industrial by-catch is $72,000 \mathrm{t}$. The high prediction of industrial by-catch is due to the expected large numbers of young fish in the sea and to the recent apparent increase in fishing mortality rate by the industrial fishery. In 1990, the human consumption landings are expected to be $72,000 t$ and the industrial by-catch $68,000 t$. Spawning stock biomass is expected to rise to $325,000 \mathrm{t}$ n 1989 and to $391,000 \mathrm{t}$ in 1990, followed by a fall to $354,000 \mathrm{t}$ in 1991.

20.9.2 TAC prediction

The agreed TAC for North Sea whiting in 1989 is 115,000 t. This TAC was set on the basis of assumed average recruitment in 1988. Due to the strong 1988 year class, the catches by the small-mesh fisheries are expected to be much higher than predicted in the 1988 report. In such a situation strict adherence to the TAC in 1989 would require a 50% reduction in human consumption fishing mortality and this is considered unrealistic. Predictions for 1990 on the assumption of adherence to the TAC in 1989 have not been presented.
20.10 Yield and Biomass per Recruit

Plots of yield and biomass per recruit are shown in Figure 20.2

20.11 Safe Biological Limits

The scatter diagram of recruitment and spawning stock is shown in Figure 20.3. The value of $F_{\text {med }}(0.48)$ is shown in Figure 20.2. The value of $\mathrm{F}_{\text {high }}(3.0)$ is tomegreat to indicate on Figure 20.2. Current F is o.figh The spawning stock is currently above its historical minimum and is expected to increase in 1989 and 1990.

20.12 Age Composition for First Half of 1989

A very preliminary estimate of the age composition of the human consumption landings and discards in the first half of 1989 is shown in Table 20.11. Little use can be made of these data since no corresponding age composition estimates were available for the industrial by-catch which is expected to form an important component of the catch in 1989. Even if these data had been available, they would have been of relatively little use since the majority of the industrial by-catch of whiting is taken in the second half of the year.

21 WHITING IN DIVISION VIa

21.1 Catch Trends

Total nominal landings are given in Table 21.1 and total international landings, as estimated by the Working Group, are given in Table 21.2. Total international landings in 1988 amounted to $11,500 \mathrm{t}$, which is almost equal to the status quo prediction of $12,000 \mathrm{t}$ made by last year's working Group. The agreed TAC for Sub-area VI in 1988 was $16,400 \mathrm{t}$. Catch trends are plotted in Figure 21.1. Recent landings remain at a historically low level.

21.2 Natural Mortality and Maturity at Age

Natural mortality rates and proportion mature at age are given in
Table 21.3.

21.3 Age Composition

Total international age composition data are shown in Table 21.4. Age composition data for 1988 were provided by Scotland and Ireland. Data on discards are not yet included in this data set. Landings were dominated by 2 -year-old fish which represented 52% by number.

21.4 Mean Weight at Age

Total international mean weight at age data are shown in Table 21.5. These data were also used as stock mean weights at age.

21.5 Commercial Catch/Effort Data and Research Vessel Indices

The commercial catch effort data used to tune the VPA are indicated in the text table in Section 11. Research vessel abundance indices and CPUE data for ages 1 and 2 for Scottish light trawlers and seiners used in various runs of RCRTINX2 are shown in Table 10.6.

21.6 VPA Tuning

Total international fishing mortality rates and stock numbers provided by Laurec-Shepherd tuning are given in Tables 21.6 and 21.7, respectively.

21.7 Abundance Estimates of the Year Classes 1986-1989

Methods used to estimate recruitment are described in section 10.

21.7.1 The 1986 year class in 1988

Many combinations of research vessel indices and commercial CPUE data were input to RCRTINX2 in an attempt to estimate the abundance of this year class. No fully satisfactory result was obtained. The Working Group decided that the results obtained using Scottish CPUE data for ages 1 and 2 for light trawlers and seiners and North sea VPA abundances at age 2 gave the most acceptable result. On this basis, the abundance was estimated to be 60 million. This may be compared to the estimate from tuning of 54 million.

21.7 .2 The 1987 year class in 1988

The abundance of this year class was estimated to be 40 million at age 1, using the same inputs to RCRTINX2 as those used to estimate the abundance of the 1986 year class. The tuned value is 13 million.

21.7.3 The 1988 and later year classes

These were set at the geometric mean value at age 1 for the period 1969-1988 of 62 million.

21.8 Long-Term Trends in Biomass, Fishing Mortality, and Recruitment

These are given in Table 21.8 and are plotted in Figure 21.1. Mean fishing mortality has increased and is currently 0.89, one of the highest values in the last 20 years. Spawning biomass has increased slightly but remains below the historical average of $32,600 \mathrm{t}$. The 1987 year class is estimated to be of below-average abundance.

21.9 Catch and Biomass Predictions

Input data for predictions are given in Table 21.9. The F values for ages 1 and 2 in 1988 have been set to the mean value for the period 1984-1988.

21.9.1 Status quo prediction

Results of the status quo prediction are given in Table 21.10 and Figure 21.2. The predicted landings in 1989 and 1990 are both $11,000 \mathrm{t}$. Spawning stock is expected to fall to $19,000 \mathrm{t}$ in 1989 and 1990, followed by a slight increase to $20,000 \mathrm{t}$ in 1991.

21.9.2 TAC prediction

The agreed TAC for whiting in Sub-area VI in 1989 is $16,400 \mathrm{t}$. To take this TAC would require an unrealistic increase in fishing mortality in 1989 and no corresponding prediction for 1990 is presented.

21. 10 Yield and Biomass per Recruit

Plots of yield and biomass per recruit are shown in Figure 21.2.

21.11 Safe Biological Limits

The scatter diagram of spawning stock and recruitment is shown in Figure 21.3. The values for $\mathrm{F}_{\mathrm{med}}$ and $\mathrm{F}_{\text {high }}$ are shown in Figure 21.2. The current value of F (m .89) is highl above $\mathrm{F}_{\mathrm{med}}$ (0.53) but is close to the value of $F_{\text {max }}(0.84)$. The spawning medock is at a low level and is not expected to increase significantly in the near future.

21.12 Catches in 1989

The age composition of landings by Scotland in the first quarter of 1989 are shown in Table 21.11. It is difficult to interpret the significance of these data.

22 WHITING IN DIVISION VIb

Landings of whiting in Division VIb are insignificant (Table
22.1 .

23 WHITING IN SUB-AREA VII

23.1 Whiting in Divisions VIId,e

In recent years, analytical assessments have been attempted for whiting in Divisions VIId, e. Age composition data are available from England and France for Division VIId but from England only for Division VIIe, but no data for Division VIIe were available for 1988. It was, therefore, decided to restrict the analytical assessment to Division VIId and to attempt a SHOT forecast for Division VIIe

23.2 Whiting in Division VIId

23.2.1 Catch trends

Nominal landings are given in Table 23.1, together with Working Group estimates. Total landings have been decreasing since 1976 and were $52,000 \mathrm{t}$ in 1988 (Figure 23.1).

23.2.2 Natural mortality and maturity at age

Natural mortality rates and proportion mature at age are given in Table 23.2.

23.2.3 Age composition and mean weight at age

The VPA input data are given in Tables 23.3 and 23.4 , respectively. Further revisions were made to age compositions for the period 1976-1986 to take account of revisions to the landings data. Data for 1988 were provided by England and France. Weight at age in the stock was assumed to be the same as that in the landings.

23.2 .4 VPA

No data are available for tuning the VPA. A separable VPA was run. Trial values of F and S were input and final values of $F=1$ for age 3 and $S=1$ were adopted. The log catch ratio residuals are given in Table 23.5. They indicate the high variability of the catch-at-age data.

The separably generated population numbers were used to initiate a conventional VPA and the resulting estimates of fishing mortality rate and numbers at age are given in Tables 23.6 and 23.7, respectively.

23.2.5 Recruitment estimates

There are no data from which to estimate recent recruitment in this area. The historical VPA estimates of recruitment do not correlate with any of the survey indices in the North sea or with VPA estimates in that area.
23.2.5.1 The 1987 year class in 1988

In the absence of other data, the number implied by the use of mean fishing mortality rate for the period 1976-1985 (0.036) was adopted. The value so obtained was 67 million.

23.2.5.2 The 1988 and later year classes

These were set at 44 million fish at age 1 , the geometric mean for the period 1976-1988.

23.2.6 Lonq-term trends in fishing mortality, biomass, and recruitment

These are tabulated in Table 23.8 and graphed in Figure 23.1. Fishing mortality has decreased in the last two years but remains at a high level. Total biomass has increased but the spawning biomass is very close to its lowest level.

23.2.7 Catch and biomass predictions

Input data for predictions are given in Table 23.9. Results of predictions are given in Table 23.10 and Figure 23.2.

The predicted status quo landings for 1989 are 7,000 followed by $8,000 \mathrm{t}$ in 1990. Spawning stock is predicted to increase to $15,000 \mathrm{t}$ in 1989 and 1990 and to remain close to this level (14,000 t) in 1991.

23.2.8 Yield and biomass per recruit

Plots of yield and biomass per recruit are shown in Figure 23.2.

23.2.9 Safe biological limits

The stock/recruit scatter diagram is shown in Figure 23.3. The values for $F_{\text {med }}$ and $F_{\text {max }}$ are shown in Figure 23.2. The current level of F (0.9 g 9) is well malow F (1.24). Spawning biomass is low but is above the historical minimum.

23.2.10 Reliability of assessment

Although there have been some improvements in the data base since last year's meeting, it is pointed out that the reliability of this assessment is lower than that for the majority of the other stocks dealt with by this working Group.

23.3 Whiting in Division VIIe

23.3.1 Catch trends

Nominal landings for recent years together with Working Group estimates are given in Table 23.11.

23.3.2 Catch prediction

In the absence of catch-at-age data for 1986, it was decided to attempt a SHOT forecast. This method needs estimates of recruitment. Recruitment estimates were available from VPA for Divisions VIIa (from the Irish Sea and Bristol Channel Working Group) and

VIId (from this meeting). A separable VPA for the period 19761987 was carried out for Division VIIe from which recruitment estimates were obtained. These estimates were not correlated with recruitment in Division VIIa or in Division VIId. It was, therefore, decided that the SHOT forecast for Division VIId should not be attempted.

A precautionary TAC set at the average catch for the period 19761988 of $1,300 t$ could be considered.

23.4 Whiting in Divisions VIIb, $\mathrm{c}, \mathrm{h}-\mathrm{k}$

Nominal landings for the period 1984-1988 are given in Table
23.12.

24 SAITHE IN SUB-AREA IV AND DIVISION IIIa

24.1 Catch Trends

Recent nominal landings are given in Table 24.1. Working Group estimates are given in Table 24.2 and are plotted in Figure 24.1. Landings were high in the early 1970s, reaching a maximim of $320,000 t$ in 1976. Subsequently, landings declined to minimum of $114,000 \mathrm{t}$ in 1979, increased to $200,000 \mathrm{t}$ in 1985 but have since fallen again to $149,000 \mathrm{t}$ in 1987 and a preliminary value of $105,000 t$ in 1988. Small amounts of saithe are taken as industrial by-catch. Since 1976, the average industrial by-catch has been $3,100 \mathrm{t}$. The agreed TAC for 1988 was $170,000 \mathrm{t}$.

24.2 Natural Mortality Rate and Maturity at Age

Values of natural mortality rate and maturity at age are given in Table 24.3.

24.3 Age Compositions

Total international age compositions are given in Table 24.4. Data for 1988 were supplied by Denmark, Federal Republic of Germany, France, Norway, Scotland, and England. Discards are not included.

24.4 Mean Weight at Age

Mean weight at age in the landings are given in Table 24.5. These are also used as stock mean weights.

24.5 Commercial Catch/Effort Data

Commercial catch and effort data used to tune the VPA are indicated in the text table in Section 11 . There are no research vessel indices of abundance for saithe.

24.6 VPA Tuning

The quality of the catch-at-age data for the older ages is considered to be poor. This is also the case for saithe in Sub-area VI. In the latter case, the use of these poor data led to estimates of biomass which were thought to be over-optimistic. The age composition data for Sub-area VI were, therefore, aggregated
into a plus-group for ages 10 and older. A similar procedure was adopted for saithe in sub-area IV but this had little effect on the results. Fishing mortality rates estimated by Laurec-Shepherd tuning are given in Table 24.6 and stock numbers are given in Table 24.7.

24.7 Recruitment

No data to estimate recent recruitment are available. The number of saithe estimated at age 1 in 1988 (1987 year class) by tuning appeared to be unrealistically low. The Group, therefore, decided to assume geometric mean recruitment at age 1 for the year classes 1987 onwards (237 million fish).

24.8 Long-Term Trends in Biomass, Fishing Mortality, and Recruitment

These are given in Table 24.8 and are plotted in Figure 24.1. In recent years, fishing mortality has increased from 0.31 in 1981 to 0.75 in 1986. Fishing mortality in 1987 and 1988 are estimated to be 0.46 and 0.40 , respectively. This reduction is supported by the fact that fishing effort by French and Norwegian vessels (the major catchers of saithe in the North Sea) has decreased by 50% since 1986. Total biomass has declined from $713,000 \mathrm{t}$ in 1983 to $526,000 \mathrm{t}$ in 1988 and spawning biomass has declined from 463,000 t in 1974 to $114,000 t$ in 1985 which is the lowest on record.

24.9 Catch and Biomass Predictions

Input data for prediction are given in Table 24.9. The fishing mortality rate at age 1 in 1988 is the mean value for the period 1984-1988. Results of the predictions are given in Table 24.10 and Figure 24.2.

24.9.1 Status quo prediction

Maintenance of the 1988 level of fishing mortality in 1989 will lead to landings of $118,000 t$ in 1989 and $120,000 t$ in 1990. Predicted spawning stock size is predicted to increase from 186,000 t in 1988 to $240,000 t$ in 1991. However, the assumptions about recent and future recruitment should not be forgotten in this context.

24.9.2 Prediction assuming that TAC taken in 1989

The Group felt that the increase in fishing mortality required to take the TAC of $170,000 t$ in 1989 is unrealistic and no predictions on this basis are presented.

24.9.3 Yield and biomass per recruit

Yield and biomass per recruit are shown in Figure 24.2

24.9.4 Safe Biological Limits

The stock/recruit scatter diagram is shown in Figure 24.3. F (0.45) and $\mathrm{F}_{\text {gigh (}}(0.62$) are shown in Figure 24.2. The currment level of F is highttle lower than $F_{\text {med }}$. Spawning biomass is predicted to increase but this assumes ${ }^{\text {ged }}$ detric average recruitment for the year classes 1987 onwards.

24.9.5 Catches in 1989

Very provisional estimates of catch-at-age for the first quarter of 1989 are presented in Table 24.11. A catch of 18,000 t is estimated which might indicate a low catch for 1989.

25 SAITHE IN SUB-AREA VI

25.1 Catch Trends

Recent nominal landings are given in Table 25.1. Working Group estimates are given in Table 25.2 and are plotted in Figure 25.1. Landings increased in the early 1970 s reaching $42,000 \mathrm{t}$ in 1976. Landings then declined to $25,000 \mathrm{t}$ in the early 1980 s and then increased to $40,000 t$ in 1986. Landings were $31,000 t$ in 1987 and $34,000 \mathrm{t}$ in 1988 . The agreed TAC for 1988 was $35,000 t$.

25.2 Natural Mortality Rate and Maturity at Age

Values of natural mortality rate and maturity at age are given in Table 25.3.

25.3 Age Compositions

Total international age compositions are given in Table 25.4 Data for 1988 were supplied by Federal Republic of Germany France, England, and Scotland.

25.4 Mean Weight at Age

Mean weight at age in the landings are given in Table 25.5. These values were also used as stock mean weights.

25.5 Commercial Catch/Effort Data

The commercial catch and effort data used to tune the VPA are indicated in the text table in Section 11. There are no research vessel indices of abundance for saithe.

25.6 VPA Tuning

When using the full age-range of $1-15$ years in the tuning process, very low fishing mortality rates and hence very high stock sizes were estimated for the older age groups. However, it is believed that the quality of the data for older ages is poor, and the Group, therefore, decided to aggregate data for ages 10 and older into a plus-group and to carry out tuning on this revised data set. Table 25.6 gives the fishing mortality rates and Table 25.7 gives the stock numbers estimated by tuning.

25.7 Recruitment

No data are available from which to estimate recent recruitment and the Group decided to assume geometric mean recruitment at age 1 for the year classes 1987 onwards.

25.8 Long-Term Trends in Biomass, Fishing Mortality, and Recruitment

These are given in Table 25.8 and are plotted in Figure 25.1. Fishing mortality has increased in recent years from 0.31 in 1980 to 0.58 in 1986. The estimates for 1987 and 1988 are 0.48 and 0.55 , respectively. Total biomass increased from 99,000 t in 1977 to $145,000 \mathrm{t}$ in 1985 and then declined to $116,000 \mathrm{t}$ in 1988 . Spawning biomass has declined from 93,000 t in 1974 to $48,000 t$ in 1988.

25.9 Catch and Biomass Predictions

Input data for predictions are given in Table 25.9. The fishing mortality rate at age 1 in 1988 is the mean value for the period 1984-1988 obtained from tuning. Results of predictions are given in Table 25. 10.

25.9.1 Status quo prediction

Maintenance of the 1988 fishing mortality will result in landings in 1989 of $30,000 \mathrm{t}$ followed by $29,000 \mathrm{t}$ in 1990 . Assuming geometric average recruitment of the 1987 and later year classes, spawning biomass is expected to decline from $48,000 \mathrm{t}$ in 1988 to $30,000 \mathrm{t}$ in 1991 which is lower than any on record.

25.9.2 Prediction assuming TAC taken in 1989

The agreed TAC for 1989 is $30,000 t$ which is the status guo predicted catch.

25. 10 Yield and Biomass per Recruit

Yield and Biomass per recruit are shown in Figure 25.2.

25.11 Safe Biological Limits

The stock/recruit plot is shown in Figure 25.3. F \quad (0.30) and $F_{\text {high (}}(0.42)$ are shown in Figure 25.2. The current level of F is wetl above F_{h}. Spawning biomass is predicted to fall to a historically fow level even assuming geometric mean recruitment for the year classes 1987 onwards.

26 REFERENCES

Anon. 1971. Report by the North Sea Roundfish Working Group on North Sea cod. ICES, Doc. C.M.1971/F:5.

Anon. 1988. Report of the North Sea Roundfish Working Group. ICES, Doc.C.M. 1988/Assess:21.

Anon. 1989a. Report of the Multispecies Assessment Working Group. ICES, Doc. C.M.1989/Assess:20.

Anon. 1989b. Report of the Study Group on the Feasibility of an Atlas of North Sea Fishes. ICES, Doc. C.M.1989/G:7.

Armstrong, D.W., R.J. Fryer, S.S. Reeves, and K.A. Coull. 1989. Cod-end selectivity of cod, haddock, and whiting by Scottish trawlers and seiners. ICES, Doc. C.M.1989/B:55.

Cook, R.M. 1989. Assessing a fish stock with limited data: an example for Rockall haddock. ICES, Doc. C.M.1989/G:4.

Gislason, H. 1989. Multispecies yield and SSB curves for North Sea cod, haddock and whiting. Working Paper to the 1989 Roundfish Working Group.

Table 4.1 Tagged cod returns.
a) Released in eastern Enqlish Channel

Quarter of release	Area of capture					
	Western No.	$\underset{\%}{\text { Channel }}$	Easter No.	$\underset{\%}{\text { Channel }}$	North No.	Sea \%
1	15	5.6	136	51.1	115	43.2
3	0	0	24	77.4	7	22.6
4	3	1.5	183	92.0	13	6.5
Total	18	3.6	343	69.2	135	27.2

b) Released in Southern North Sea

Quarter of release	Area of capture	Western No.	Channel $\%$	Eastern No.	Channel $\%$	North No.
	4	0.2	88	4.0	2110	95.8
	4	0.3	28	2.4	1158	97.3
Total	8	0.2	116	3.4	3268	96.3

There were no recaptures in the channel of cod tagged in the German Bight, Central North Sea and off the North-East coast.

There have been no tagging experiments in the Western Channel or Celtic Sea.

Table 6.1 Combined North Sea species prediction.
NSFF - NOFTH SEA - 1989 WG Status Quo
FREDICTION of CATCHES and EIOMASSES in 1989 - Season \# 1

Metier	E1989/E Ref	COD Catches	HADDOCE Catches	WHITING Catches	SAITHE Catches	TITAL
HCL	1.000	135.55	97.94	65.36	117.84	416.67
	Val	.00	.00	. 00	. 00	.00
DIS	1.000	.00	18.97	57.07	.00	76.04
	Val	.00	.00	.00	.00	.00
IEC	1.000	.00	2.56	72.01	.49	75.07
	Val	.00	.00	.00	. 00	. 00
TOTALS	$\times 1000 \mathrm{t}$.	135.55	119.48	194.44	118. 5	
	VALUE EU	.00	.00	. 00	.00	
EIOMASS	Start	411.63	329.49	730.83	568.38	
EIOMASS	Final	422.53	386.97	641.32	597.69	
Final	Sp. St. E.	83.07	82.11	. 390.63	243.81	
Recr.	(10) 1989	328.00	14870.00	41290.00	237.09	
Fiecr.	(M) 1990	\$14.00	26592. 3.	43504.90	237.09	

MSFF - NOFTH SEA - 1989 WG
FREDICTION of CATCHES and EIDMASSES in 1990 - Season \# 1

Metier	E1.970/E Fef	COD Catches	HADDOCK Catches	WHITING Catches	SAITHE Catches	TDTAL
HCL	1.000	142.57	56.16	70.26	120.25	389.24
	Val	. 00	. 00	.00	.00	.00
DIS	1.000	. 00	24.37	55.02	.00	79.4 .1
	Val	.00	.00	. 00	.00	. 00
IBC	1.000	. 00	2.77	68.55	. 56	71.86
	Val	.00	.00	.00	. 00	. 00
TOTALS	$\times 1000 t$.	142.57	8.3 .32	193.80	120.82	
	VALUE KU	.00	.00	.00	.00	
EIOMASE	Start	422.53	886.97	641.32	597.69	
	Final	452.66	608.57	607.07	627.06	
Final Fiecr. Fiecr.	Sp. St. B.	79.73	73.15	553. 3	246.11	
	(M) 1.990	314.00	26592.31	43504.90	237.09	
	(M) 1991	350.82	26392. 31	43504.50	257.09	

cont'd.

Table 6.1 cont'd. $\quad \mathrm{F}_{89} / \mathrm{F}_{88}=0.9 \quad \mathrm{~F}_{90} / \mathrm{F}_{88}=0.8$
MSFF - NORTH SEA - 1989 WG
FFEDICTION of CATCHES and EIOMASSES in 1989 - Season \# 1

Metier	E1989/E Fef	COD Catches	HADDOCK Catches	WHITING Catches	SAITHE Catches	TOTAL
HCL	.900	125.97	91.82	60.38	107.89	\$86.05
	Val	.00	. 00	.00	.00	.00
DIS	. 900	. 00	17.49	51.89	.00	69.37
	Val	.00	.00	.00	.00	. 00
IEC	1.000	. 00	2.65	72.77	. 50	75.90
	Val	.00	. 00	.00	.00	.00

TOTALS	\%1000 t.	125.97	111.74	185.05	108.37
	VALUE kJ	. 00	. 00	.00	.00
BIOMASS	Start	411.63	329.49	730.83	568.38
EIDMASS	Fimal	435.94	395.44	650.31	610.51
Final	Sp. St. B.	89.96	89.21	397.37	253.29
Fecr.	(M) 1799	328.00	14870.00	41290.00	237.09
Fecr.	(M) 1990	314.00	26392.31	43504.90	237.09

MSFF - NDRTH SEA - 1999 WG
FKEDICTION of CATCHES and EIOMASSES in 1990 - Season \# 1

Metier	E1990/E Ref	COD Catches	HADDOCK Catches	WHITING Catches	SAITHE Catches	TOTAL
HCL	. 800	127.61	52.90	61.46	102.44	344.41
	Val	. 00	. 00	.00	.00	. 00
DIS	.800	.00	20.28	45.57	. 00	65.85
	Val	.00	.00	.00	.00	. 00
IBC	1.000	. 00	2.94	71.07	. 60	74.61
	Val	. 00	.00	.00	. 00	. 00
TOTALS	$\times 1000 \mathrm{t}$.	127.61	76.12	178.10	103.03	
	value ku	.00	. 00	.00	. 00	
biomass BIOMASS	Start	435.94	\$95.44	650.31	610.51	
	Final	491.56	624.50	6 SO .18	664.61	
Final Fiecr. Fiecr.	Sp. St. B.	97.49	86.09	376.11	274.10	
	(M) 1990	314.00	26392.31	43504.90	237.09	
	(M) 1901	350.82	26392.31	43304.90	237.09	

Nation	Gear	Current Mesh	Percentage Changing to 120 mm Mesh
Denmark	All	90	79
Netherlands	All	90	20 *
Fed. Rep. Germany	All	100	90
Belgium	All	90	78
England	All	90	68
Norway	All	100	0 *
Scotland	Trawl	90	36
Scotland	Seine	90	21
Scotland	Light Trawl	90	27
Scotland	Nephrops Trawl	70	0 *
Scotland	Pair Trawl	90	28
France	All	90	20
Other	All	90	59

Table 9.2 Current $L 50$ and $L 25, L 50$ and $L 25$ for 120 mm Mesh

Nation	Gear	Mesh	COD		HAD		WHI	
			L50	L25	L50	L25	1.50	L25
SCO	TRL	90	27.0	23.0	25.0	22.0	29.0	25.0
		120	45.0	40.0	33.0	30.0	46.0	42.0
Sco	SEI	90	22.4	18.0	19.6	16.1	24.1	20.3
		120	34.4	30.0	31.1	27.6	33.9	30.1
SCO	LTR	90	24.6	19.9	22.0	19.3	25.8	22.3
		120	41.5	36.8	30.2	27.4	42.6	39.0
Sco	NTR	70	25.0	20.0	22.0	19.0	27.0	24.0
Sco	PTR	90	22.4	18.0	19.6	16.1	24.1	20.3
		120	34.4	30.0	31.1	27.6	33.9	30.1
FRG, NOR	All	100	36.0	32.7	34.0	31.2	38.0	34.5
		120	43.2	39.3	40.8	37.4	45.6	41.5
0ther	All	90	32.4	29.5	30.6	28.0	34.2	31.1
		120	43.2	39.3	40.8	37.4	45.6	41.5

Note : Selectivity parameters for saithe assumed to be the same as those for cod

Table 9.3 Percent change in total catch following adoption of 120 mm mesh when fishing for cod.

total catches					
1990	COD	HAD	Wh		SA
DENALL	-6.1	-24.9	2.		-10.7
NETALL	-3.3	-11.6	-14.		-4.
FRGALL	-34.0	-25.3	-68.		-18.6
BELALL	-34.6	-49.7	-69.		-15.6
ENGALL	-28.2	-46.4	-59.7		-12.6
NORALL	2.9	3.0	4.		0.7
SCOTRL	-7.1	-12.0)	-30.8		-8.4
SCOSEI	1.5	-2.7	-8.9		$\theta . \theta$
SCOLTR	-2.7	-7.2	-22.7		-4.4
SCONTR	4.0	2.2	2.2		6.6
SCOOTH	1.3	-5.8	-16.0		-6.3
FRAALL	-2,3	-9.2	-14.6		-6.8
OTHOTH	-14.1	-34.5	-4.8		-12.9
ALLALL	-8.2	-19.5	-11.9		-3.6
1990	COD	HAD	HHI	SA	
SSE	$\theta .0$	$\theta . \theta$	$\theta . \theta$	0.0	
TB	$\theta \cdot 6$	$\theta .0$	$\theta . \theta$	$\theta .0$	

TOTAL CATCHES

1991	COD	HAD	HHI	SAI
dewnal	$\theta .7$	-31.8	5.9	-9.8
netall	2.1	-10.3	-9.4	-2.9
FRGALL	-36.3	-42,8	-66.2	-18.1
BELALL	-28.5	-57.6	-66.8	-14.0
EMGALL	-14.3	-51.5	-56.6	-12.1
NORALL	9.2	8.7	12.9	2.1
SCOTRL	0.9	-14.1	-23.9	-8.7
SCOSEI	8.5	0.3	-0.6	1.0
SCOLTR	4.3	-6.7	-16.3	-3.2
SCONTR	9.7	3.6	4.5	1.7
SCOOTH	7.4	-5.0	-8.9	$\theta .8$
FRAALL	5.0	-7.1	-8.8	1.0
OTHOTH	-8.2	-38.2	-0.9	-12.0
ALLALL	-2.0	-10.7	-6.9	-2.3

SSB	3.8	7.0	6.1	0.8
TB	3.8	1.4	3.6	0.9

TOTAL CATCHES				
1992	C00	HAD	4	
DENALL	5.2	-31.7	7.	
NETALL	4.3	-8.2	-6.	
frgall	-28.4	-44.4	-64,	
BELALL	-26.3	-59.7	-65.	
EMGALL	-11.4	-52.6	-54.	
NORALL	12.7	12.7	18.	
SCOTRL	4.5	-11.5	-18.	
SCOSEI	12.5	4.0	5.	
SCOLTR	7.8	-3.0	-11.	
scontr	11.7	5.1	5.	
SCOOTH	10.7	-1.6	-4.	
FRAGLL	8.7	-5.2	-5.	
OTHOTH	-4.8	-39.3	2.	
ALLALL	1.4	-8.0	-3.5	
1992	cod	HAD	㫙	SAI
5SB	$10 . \theta$	11.4	9.6	2.4
18	6.1	2.6	5.3	1.7

TOTAL CATCHES

$2 \theta 1 \theta$	COO	HAD	HHI	SA:
DENALL	12.1	-22.1	6.7	-4.8
NETALL	6.4	-4.3	-6.6	0.8
frgall	-26.9	-26.2	-64.2	-13.9
gELALL	-22.8	-51.7	-64.7	-8.8
ENGALL	-5.1	-45.9	-53.4	-6.8
NORALL	16.4	18.7	18.2	5.2
SCOTRL	7.5	-2.2	-15.5	-4.2
SCOSEI	16.6	11.8	7.6	6.1
SCOLIR	10.9	4.2	-19.0	9.9
SCONTR	12.7	6.2	5.2	2.5
SCOOTH	14.1	6.1	-3.5	5.6
FRAALL	11.0	3.6	-4.5	4.7
OTHOTH	$\theta .1$	-32.1	2.3	-7.5
ALLALL	5.8	$\theta .2$	-2.8	1.3

2010	cod	HAD	HHI	SAI
SSB	22.0	20.3	10.2	7.1
TB	9.1	5.4	5.6	3.7

Table 9.4 Percent change in human consumption landings following adoption of 120 mm mesh when fishing for cod.

HUMAK CONSUMPTIOH LANDINGS

1990	COD	HAD	whi	SAI
DEMifll	-6.1	-12.6	$\theta .0$	-10.7
NETALL	-3.3	-9.4	-13.8	-4.4
Frigall	-34.0	-12.1	-64.9	-18.8
BELALL	-34.6	-39.3	-69.1	-15.0
ENGALL	-20.2	-38.6	-59.9	-12.6
NOFALL	2.9	3.0	5.8	9.7
SCOTRL	-7.1	-1.8	-30.8	-8.4
Scose:	1.5	8.6	-5.0	$\theta .0$
ScOLTh	-2.7	6.4	-21.3	-4.4
SCONTK	4.7	4.6	4.7	6.6
SCOOTH	1.3	-7.4	-10.9	-0.3
Frithici	-2.3	-6.2	-13.9	-9.8
OTHETi	-14.1	-29.4	-51.2	-12.9
ALLARLi	-8.2	-4.5	-17.6	-3.7

HUMAN CONSUAFTIOH LARDINGE

1992	C01	Hî]		SAi
DEMALL	5.2	-17.4	0.6	-6.5
NETALL	4.3	-5.6	-6.9	-1.7
Ffrigal	-20.4	-15.7	-65.0	-15.8
BELALL	-26.3	-5t.2	-63.4	-11.5
ENGALL	-11.4	-45,9	-51.9	-9.8
NOfALL	12.7	17.7	24.5	2.9
Scotal	4.5	5.4	-15.5	-7.4
SCOSEI	12.5	12.6	14,6	2.1
SCOLTR	7.8	10.5	-6. 2	-2.3
SCONTR	11.7	12.3	18.6	2.4
SCOOTí	16.7	7.5	6.1	1.6
FRAALL	8.7	2.6	-8, 2	2.6
OTHOTH	-4.8	-34.1	-42.1	-9.7
ALLALL	1.4	3.6	-2.7	-1.1

hUMAN CONSUAPTIDK LAMDINGS

$2 \theta 10$	COD	HAD	HHic	SAI
DEMALL	12.1	-4.9	0. ${ }^{\text {a }}$	-4, 8
METALL	6.4	$\theta .2$	-0.7	-1. 8
FF6ALL	-26.9	1.4	-64.2	-13.9
BELALL	-22.8	-40.2	-62.6	-8.8
ENGALL	-5.1	-37.2	-50.0	-6.8
NORALL	16.4	25.3	27.9	5.2
SCOTRL	7.5	17.0	-11.0	-4.2
SCOSEI	16.6	20.9	19.0	6.1
SCOLTR	19.9	19.0	-2.9	0.9
SCONTR	12.7	15.3	19.0	2.5
SEOOTH	14.1	18.1	9.3	5.6
FRAALL	11.0	13.9	1.3	4.7
OTHOTH	$\theta .1$	-24.5	-49.0	-7.5
ALLALL	5.8	12.2	9.1	1.3

Table 9. 5 Percent change in discards following adoption of 120 mm mesh when fishing for cod.

discaris				
1990	COD	HALI	kil	SAI
DENALL	0.8	-72.7	日. 0	$\theta \cdot \theta$
NETALL	0.0	-15.6	-15.7	$\theta . \theta$
frbatil	$\theta \cdot \theta$	-72.4	-65.7	$\theta \cdot \theta$
BELALL	$\theta .0$	-72, 0	-68.6	Q. 0
ENâhll	0.0	-62.2	-59.5	$\theta .0$
hURALL	$\theta .0$	3.2	2.6	9, 0
SCOTFi	$\theta .0$	-27.7	- 3.9	
scosel	9.0)	-12.5	-i4.9	0.0
Stolit	$\theta \cdot \theta$	-16.9	-25.0	6.0
sconth	0.0	1.7	1. 8	0.6
SCOOTH	0.6	-18.4	-21. ${ }^{\text {a }}$	$\theta .0$
fratull	$\theta . \theta$	-16.2	-15.6	$\theta . \theta$
OThutit	9.6	-53.8	-51.7	$\theta . \theta$
ALLALL	$8 . \theta$	-25.5	-21.4	$\theta . \theta$

discardis				
1992	col	HAD	Hhi	SAI
DENALL	$\theta \cdot \theta$	-71.9	$\theta .0$	0.0
NETALL	0.6	-13.0	-13.2	0.0
Friball	0.00	-72.0	-64.2	$\theta . \theta$
BELALL	$\theta .9$	-71.2	-67.6	8.6
EMGALL	$\theta .0$	-61.1	-57.9	8.8
NORGLL	$\theta . \theta$	6.7	$6 .:$	0, 0
SCOTRL	6.0	-25.1	-28.2	$\theta .0$
SCOSEI	$\theta . \theta$	-8.8	-11.0	日. θ
SCalt	$\theta . \theta$	-15.5	-21.9	$\theta .0$
SCONTR	$\theta . \theta$	3.1	3.1	0.8
SCOOTH	$\theta .0$	-15.0	-18.1	0.0
FRAALL	$\theta \cdot \theta$	-13.6	-12.5	6.0
OTHOTH	$\theta .0$	-52.4	-56.4)	9.0
ALLALL	0.0	-22.5	-18.5	$\theta . \theta$

Oischris				
1991	coo	HAD	WHI	SAl
DERGLL	$\theta . \theta$	-72.3	$\theta . \theta$	$\theta . \theta$
NETALL	0.0	-14.3	-13.6	$\theta \cdot \theta$
FRGALL	8.0	-72.1	-64.6	$\theta .0$
BELALL	$\theta .0$	-71.6	-67.9	$\theta .0$
EMGALL	$\theta .0$	-61.7	-58.2	
NOAALL	$\theta . \theta$	5.0	5.5	$\theta . \theta$
SCOTRL	0.0	-26.7	-29.3	$\theta .0$
SCOSEI	$\theta .0$	-10.6	-11.7	0.6
SCOLTR	$\theta . \theta$	-17.5	-22.4	$\theta .0$
SCONTR	$\theta . \theta$	2.3	2.9	$\theta .0$
SCOOTH	8.0	-16.8	-18.3	$\theta . \theta$
FRAALL	$\theta .0$	-14.9	-13.1	$\theta . \theta$
OTHOTH	$\theta .0$	-53.1	-50.3	$\theta .0$
ALLALL	0.0	-24.1	-19.0	$\theta . \theta$

DISCAFDS

2010	000	HAD		SA:
DEMALL	0.0	-71.7	$\theta \cdot \theta$	8.6
NETALL	$\theta \cdot \theta$	-12.6	-13.4	0.0
FRGALL	$\theta .0$	-71,9	-64.2	6.0
BELALL	$\theta . \theta$	-71.1	-67.6	$\theta .0$
ENGALL	$\theta .0$	-66.9	-58.0	$0 . \theta$
NORALL	$\theta .0$	7.5	5.9	θ, θ
SCOTRL	$\theta . \theta$	-24.2	-28.1	$\theta .0$
SCOSEI	$\theta . \theta$	-8.0	-11.3	$\theta .0$
SCOLTR	$\theta .0$	-14.8	-22, θ	$\theta .0$
SCONTR	$\theta .0$	3.2	2.9	$\theta .6$
SCOOTH	$\theta .0$	-14.4	-18.3	0.0
FfaALL	$\theta .0$	-13.1	-12.7	$\theta .8$
OTHOIH	$\theta \cdot \theta$	-52.1	-50.1	$\theta .0$
ALLALL	$\theta .0$	-21.9	-18.6	$\theta . \theta$

Table 9．6 Percent change in industrial by－catch following adoption of 120 mm mesh when fishing for cod．

					INDUSTR				
INDUSTR					1992	COD	HAD	槲：	Sixi
1990	COD	H⿳亠二口犬土	WiHI	S4I	DENALL	\＃，\＃	5.3	7.0	$\theta .0$
					PETALL	9.9	$\theta .0$	¢1． 0	$\theta .0$
UEMALL	0.0	1.8	2，6	$\theta . \theta$	Fifichl	ษ， 0	\％． 0	$\theta .0$	9.0
fiEPALi	$\theta .0$	0.0	$\theta .0$	$\theta .8$	BELALL	$\theta .8$	$\dot{\theta} \cdot \hat{\theta}$	6.6	0.9
frgatl	$\theta .0$	0.0	0.0	0.0	ENGALL	$\theta .8$	0.9	0.8	6.0
BELALL	$\theta . \theta$	$\theta .0$	0.0	$\theta .8$	NORALL	$\theta .0$	12.0	18.7	4.2
ENGALL	$\theta . \theta$	0.5	0.0	0.0	SCOTRL	$\theta . \theta$	$\theta .6$	$\theta .0$	0.0
NORFLL	$\theta .6$	2.8	4.8	1.3	SCOSEI	8.9	0， 0	$\theta . \theta$	0.0
SCOTKL	$\theta .9$	$\theta \cdot \theta$	9.8	$\theta . \theta$	SCOLTK	\％．O	$\theta . \theta$	$\theta . \theta$	B． 0°
SCOSEI	$\theta . \theta$	0.6	B，${ }^{\text {O }}$	$0 . \theta$	SCONTR	$8 . \theta$	$\dot{\theta} \cdot \hat{\theta}$	$\theta .0$	0.0
SCOLTR	$\theta . \theta$	$\theta .0$	$\theta .0$	$\theta . \theta$	SCOOTH	$\theta . \theta$	$\theta .0$	$\theta .0$	8.0
SCONTR	0.0	$\theta . \theta$	$\theta .0$	0.0	FRAALL	$\theta . \theta$	$\theta . \theta$	$\theta .0$	$\theta \cdot \theta$
SCOOTH	$\theta .08$	$\theta . \theta$	$\theta .0$	$0 . \theta$	OTHOTH	$\theta .0$	7.4	10.2	合，$\hat{\theta}$
FRAGLL	$\theta \cdot \hat{\theta}$	$\theta \cdot \theta$	$\theta .0$	0.0	ALLALL	$\theta .0$	7.4	7.8	4.2
OTHOTH	$\theta .0$	1.8	3.0	0.0					
ALLALL	0.0	2.1	2.7	1.3					
					INDUSTRIAL CATCHES				
Inducteial catches					2010	600	HAD	WHI	SAI
1991	COE	HAD	WHI	SAI	DENALL	$\theta \cdot \theta$	8.6	6.7	$\theta . \theta$
					NETALL	0.0	$\theta, 0$	0.0	0.0
DENALL	$\theta .0$	4.1	5.9	$\theta . \theta$	FRGALL	0.0	A． 0	0.0	$\theta . \theta$
HETALL	$\theta . \theta$	$\theta . \theta$	$\theta .0$	0.0	BELALL	$\theta \cdot \theta$	6.0	$\theta .0$	$\theta .0$
FRGALL	0.8	$\theta .0$	$\theta . \theta$	$\theta . \theta$	ENGALL	$\theta \cdot \theta$	0.0	$\theta .0$	0.0
BELALL	$\theta . \theta$	$\theta .0$	$\theta .01$	$\theta \cdot \theta$	NOFALLL	H． 0	17.5	18.2	4.2
ENGALL	$\theta .0$	$\theta .8$	$\theta .0$	$\theta .0$	SCOTRL	$\theta . \theta$	$\theta .0$	0.0	0.0
HORALL	$\theta .0$	8.1	13.0	3.5	SCOSEI	$\theta \cdot \theta$	$\theta . \theta$	$\theta .0$	9.0
SCOTRL	$\theta . \theta$	$\theta . \theta$	$\theta . \theta$	0.0	SCOLTR	Q．${ }^{\text {\％}}$	$\theta . \theta$	$\theta . \theta$	$\theta .0$
SCOSEI	$\theta . \theta$	$\theta . \theta$	$\theta .0$	$\theta .0$	SCOMTR	$\theta .0$	$\theta . \theta$	$\theta . \theta$	$\theta \times \dot{\theta}$
SCOLTR	$\theta . \theta$	$\theta . \theta$	$\theta . \theta$	$\theta .0$	SCOOTH	θ, θ	$\theta .0$	0.0	$\theta . \theta$
SCONTR	$\theta . \theta$	$\theta . \theta$	$\theta . \theta$	$\theta .0$	FRAALL	$\theta \cdot \theta$	$\theta . \theta$	$\theta . \theta$	$\theta .9$
ScOOTH	$\theta .0$	$\theta .0$	$\theta . \theta$	$\theta .0$	OTHOTH	$\theta .0$	11.0	10.2	θ, θ
FRAFLL	$\theta .8$	$\theta . \theta$	$\theta .0$	$\theta . \theta$	ALLALL	9．6	10.6	7.4	4.2
OTHOTH．	$\theta . \theta$	4.6	7.6	$\theta \cdot \theta$					
ALLALL	0.0	4.8	6.4	3.5					

Table 9.7 Percentage of Cod in Catch of "Non-cod" Fleets

	1990	1991	1992	2010
DENALL	9	10	11	13
NETALL	53	54	56	58
FRGALL	34	34	33	32
BELALL	51	52	54	56
ENGALL	56	55	53	53
NORALL	7	7	7	8
SCOTRL	15	16	15	14
SCOSEI	22	22	20	19
SCOLTR	24	23	23	22
SCONTR	7	7	8	8
SCOPTR	27	26	24	23
FRAALL	10	11	11	11
OTHALL	14	14	13	13
ALLALL	21	21	21	21

Table 10.1 Coa IV RCRTINX2 input values.

$\begin{gathered} \text { YEAR } \\ \text { CLASS } \end{gathered}$	UPAI	UPA2	IYFS!	[YF²	E6F50	E6FSI	E6FS2	S6FSI	SGFS2	06FSO	DGFEI	DGF52	FFGFS
1970	847	253	98.3	34.5	-1	-1	-1	-1					
1971	159	69	4.1	10.5	-1	-1	-1	-1	-1 -1	-1	-1	-1	90.4
1972	289	114	39.0	9.5	-1	-1	-1	-1	-1	-1	-1	-1	1.3
1973	232	95	14.7	6.2	-1	-1	-1	-1	-1	-1	-1	-1	1.6
1974	427	172	40.3	19.9	-1	-1	-1	-1	-1	-1	-1	-1	3.6
1975	196	85	3.9	3.2	-1	-1	4.5	-1	-1	-1	-1	-1	8.0
1976	726	286	36.7	29.3	-1	62.7	12.5	-1	-1	-1	-1	-1	7.8
1977	426	175	12.9	9.3	13.9	22.8	5.8	-1	-1	-1	-1	-1	28.2
1978	449	180	9.9	14.8	12.6	24.2	6.7	-1	-1	-1	-1	4.5	27.2
1979	800	320	16.5	25.5	18.6	50.8	13.9	-1	-1	-1	163.8	11.2	31.1
1980	272	109	2.9	6.7	10.2	11.4	2.9	-1	3.5	43.2	46.9	1.8	
1981	557	208	9.2	16.6	74.2	32.4	11.0	E. 1	7.8	176.8	83.0	1.6 2.3	14.1 23.2
1982	271	106	3.9	8.0	2.5	15.4.	4.7	3.3	3.9	26.9	21.8	1.6	9.2 9.0
1983	528	201	15.2	17.6	95.1	61.2	11.9	3.2	11.4	121.5	121.3	3.1	43.0
1984	105	42	. 9	3.6	4.	4.3	1.2	. 7	1.0	1.3	3.6	. 2	. 9
1985	578	-1	17.0	28.8	8.3	34.4	10.7	8.0	6.9	143.6	111.2	8.0	9.5
1986	-1	-1	8.8	6.1	1.2	14.2	4.1	2.2	2.9	37.0	41.5	1.7	3.5
1987	-1	-1	3.6	6.3	. 4	8.4	2.5	1.6	1.3	38.2	11.5 17.8	-1	2.3
1988	-1	-1	13.1	-1	15.8	22.8	-1	5.6	-1	16.6	reir -1	-1	2.1 3.8
1989	-1	-1	-1	-1	6.0	-1	-1	-1	-1	-1	-1	-1	-1

Table 10.2 Haddock IV RCRTINX2 input values.

$\begin{aligned} & \text { YEAR } \\ & \text { CLASS } \end{aligned}$	UPAL	UPA2	TVFSI	IYFS2	EGFSO	EGFSI	E6F92	SGFSO	86F5	36F52	$06 F 51$	06852	FRGFS
1970	10053	1259	855	299	-1	-1	-1	-1	-1	-1	-1	-1	90.4
1971	9426	1550	740	971	-1	-1	-1	-1	-1	-	-1	-1	90.4
1972	2469	337	187	110	-1	-1	-1	-1	-1	1	-1	-1	1.3
1973	8579	1192	1092	385	-1	-1	-1	-1	-1		-1		1.6
1974.	15550	2197	1168	670	-1	-1	-1	-		-1	-1	-1	3.6
1975	1332	193	177	84	-1	-1	32	-1	-1	-1	-1	-	8.0
1976	1859	263	162	108	-1	67	26	-1	-1	-1	-1	-	7.8
1977	2945	396	385	240	535	137	55	-1	-1	-1	,	I	8.2
1978	4636	758	480	402	358	296	167	-1	-1	-1		-1	27.2
1979	8363	1353	896	675	876	623	439	-1	-1	-1	1918	4.5	31.1
1980	1750	285	268	252	374	173	80	-1	-1	100	181.8 46.9	11.2	35.5
1981	3707	606	526	400	1538	316	110	-1	249	161	83.0	3	4.1
1982	2364.	39 ¢	307	219	281	218	62	124	181	79	21.8	. 3	23.2
1983	8002	1370	1057	328	832	599	238	220	437	298	1.0	1.6	9.0
1984.	2062	328	229	244.	229	187	45	97	198	,	12.3	3.1	43.0
1985	2968	-1	579	326	246	150	43	82	73	70	3.6	. 2	. 9
1986	-1	-1	885	688	266	282	184	175	239	198	12.2	8.0	. 5
1997	-1	-1	92	97	22	29	15	28	47	21	17.5	1.7	2.3
1988	-1	-1	210	-1	61	82	-1	41	89	,	1 .	-1	2.1
1989	-1	-1	-1	-1	94	-1	-1	43	-1	-1	-1	-1	3.8 -1

Table 10.3 Whiting IV RCRTINX2 input values.

$\begin{gathered} \text { Ye.er } \\ \text { CLASSS } \end{gathered}$	UPAL	ypan	ITF51	17F52	Eff50	E6FSI	E¢FS2	$36 F 51$	56552	$06 F 50$	0.FSt	06652	FRGFS
1970	10453	8329	94.3	34.5	-1	-1	-1	-1	-1	-1	-1	-1	
1971	6301	4496	4.1	10.6	-1	-1	-1	-1	-1	-1	1	-1	90.4
1972	8521	5061	38.0	9.5	-1	-1	-1	-1	I	-1	-1	-1	1.3
1973	8297	6033	14.3	6.2	-1	-1	-1	-1	-1	-1	-1	-1	1.6
1974	11452	8289	40.3	19.9	-1	-1	-1	-1	-1	-1	-1	-1	3.6
1975	8541	4451	7.9	3.2	-1	-1	4.5	-1	-1	-1	-1	-1	8.0
1976	9800	6883	36.7	29.3	-1	62.7	12.5	-1	-1	-1	-1	-1	7.8
1977	9577	7188	12.9	9.3	13.7	22.8	5.9	-!	-1	-1	-1	-1	20.2
1978	14979	11426	9.9	14.8	12,6	24.2	6.7	-1	-1	-1	-1	-1 4.5	27.2
1979	20623	15807	16.9	25.5	18.5	50.8	13.9	-1	-1	-1	163.8	11.2	31.1
1980	$597 ?$	4478	2.9	6.7	10.2	11.4	2.9	-1	3.5	43.2	46.9	1.6	14.1
1991	15049	10675	9.2	16.6	74.2	32.4	11.0	6.1	7.8	176.8	33.0	1.6	14.12
1982	9094.	5948	3.9	8.0	2.5	15.4	4.7	3.3	3.9	176.8 26.9	3.1 .0 21.9	2.3	23.2
1983	14957	10940	15.2	17.6	95.1	61.2	11.9	8.2	11.6			1.6	9.0
1984	5948	3651	. 9	3.6	. 4	4.3	1.2	.	1.0	12.5 1.3	121.3	3.1	43.0
1985	12696	-1	17.0	29.8	8.3	34.4	10.7	8.0	6.9	143.6		9,0	. 9
1986	-1	-1	8.8	6.1	1.2	14.2	4.1	2.2	2.9	14.6 37.0		8.0	9.5
1987	-1	-1	3.6	6.3	. 4	3.4	2.5	1.2 1.6	2.9 1.3	37.0	41.5	1.7	2.3
1988	-1	-1	13.1	-1	16.8	22.8	-1	5.6	-1	16.6	1.8 -1	-1	2.1
1989	-1	-1	-1	-1	6.0	-1	-1	-1	-1	-1	-1	-1	-1

SWFSI	SuF92	HSUPAL	HSUPA2	ecseIt CPUE	$\begin{gathered} \text { ECSEI2 } \\ \text { CPUE } \end{gathered}$	$\begin{array}{r} \text { SClTRL } \\ \text { CPue } \end{array}$	SCLTR2 CPUE
-1	-1	847	353	518	3608	296	2509
-1	-1	159	59	831	3970	1867	1512
-1	-1	299	114	3600	3622	2445	4195
-1	-1	232	95	1598	4232	1227	2465
-1	-1	427	172	2657	3349	3773	3332
-1	-1	196	35	346	2875	1509	1295
-1	-1	726	286	2852	4009	2473	3154
-1	-1	426	175	2240	2984	1082	1878
-1	-1	449	180	3141	5778	1616	5767
-1	-1	900	320	6553	11012	1389	67323
-1	. 6	272	109	380	3769	200	2719
. 1	3.2	557	208	5564	10933	2908	10333
. 2	1.1	271	106	4815	1869	2498	4488
4.0	2.4	528	201	5642	5548	3547	9205
. 1	. 8	105	42	3625	4242	1632	2961
. 3	1.5	576	206	5409	19044	2193	7939
5.2	5.9	254	102	56071	15756	4515	10500
. 0	. 7	193	77	1538	-1	468	-1
. 5	-1	329	110	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1

Table 10.5 Had̉dock VIa RCRTINX2 input values.

$\begin{aligned} & \text { YEAR } \\ & \text { CLABS } \end{aligned}$	URA1	UPAZ	IYSSI	IYFS2	EGF59	EGFSI	EGFS?	96F50	SGFSL	S6F32	gUFSI	94F92	HSUPAI
1970	2463	1375	855	297	-1	-1	-1	-1	-1	-1	-1	-1	10053
197!	766	441	740	971	-1	-1	-1	-1	-1	-1	-1	-1	9926
1972	796	223	187	110	-1	-1	-1	-1	-1	-1	-1	-1	2465
1973	1687	766	1092	385	-1	-1	-1	-1	-1	-1	-1	-1	9579
1974	4390	1990	1168	670	-1	-1	-1	-1	-1	-1	-1	-1	15550
1975	373	90	177	84	-1	-1	32	-1	-1	-1	-1	-1	1332
1975	232	73	162	108	-1	67	26	-1	-1	-1	-1	-1	1859
1977	592	342	395	240	535	137	55	-1	-1	-1	-1	-1	2945
1978	1794.	842	480	402	358	296	167	-1	-1	-1	-1	-1	4636
1979	4422	3416	896	675	876	623	439	-1	-1	-1	-1	-1	8363
1990	391	318	263	252	374.	173	80	-1	-1	100	-1	10	1750
1991	802	517	526	400	1538	316	110	-1	249	161	8	90	3707
1982	456	243	307	219	281	218	62	124	181	79	17	36	2364.
1983	3882	2289	1057	828	832	598	238	220	437	238	2064	409	3002
1984	747	407	229	244	229	187	45	87	198	57	110	161	2062
1995	580	-1	579	326	246	150	43	82	233	70	89	65	2968
1985	-1	-1	885	688	266	282	184.	175	239	198	528	365	4577
1987	-1	-1	92	97	22	29	15	28	47	21	89	4	553
1988	-1	-1	210	-1	61	82	-1	41	89	-1	17	-1	985
1989	-1	-1	-1	-1	94	-1	-1	43	-1	-1	-1	-1	-1

HSUPA2 SCSEII SCSEI2 SCLTR1 3CLIR2

1259	35451	25320	9952	19537
1550	11392	5760	959	1247
339	42006	2901	595	1072
1192	42413	13533	5624	3420
2197	159953	36442	15316	2248
193	20714	2766	1485	253
263	9097	879	801	162
396	10310	9268	2011	2424
758	31709	16357	10367	3192
1353	19250	46345	4074	9008
205	94	3303	17	709
606	7949	7927	3662	5116
394	5524	4036	2821	1672
1370	29393	21950	19228	11421
328	4737	0507	2172	2028
509	4353	6863	1583	3069
944	52735	19412	13831	10953
109	5114	-1	1877	-1
233	-1	-1	-1	-1
-1	-1	-1	-1	-1

Table 10.6 Whiting VIa RCRTINX2 input values.

TEAR CLASS	1 JPAL	UPA2	ITFSI	IFFS2	EGF50	E6FSI	E6FS2	SEFSO	S6F51	S6FS2	OGF50	0GFS 1	06 F 22
1970	309	231	274	190	-1	-1	-1	-1	-1	-1	-1	-1	-1
1971	930	610	332	763	-1	-1	-1	-1	-1	-1	-1	-1	-1
1972	1949	1469	1.56	496	-1	-1	-1	-1	-1	-1	-1	-1	-1
1973	674	470	322	153	-1	-1	-1	-1	-1	-1	-1	-1	-1
1974.	1512	1103	893	535	-1	-1	-1	-1	-1	-1	-1	-1	-1
1975	513	343	679	219	-1	-1	74	-1	-1	-1	-1	-1	-1
1976	802	512	418	293	-1	220	52	-1	-1	-1	-1	-1	-1
1977	1106	76	513	183	204	257	71	-1	-1	-1	-1	-1	-1
1978	778	580	457	391	184	201	125	-1	-1	-1	-1	-1	62
1979	1307	1456	692	485	355	359	288	-1	-1	-1	-1	330	131
1590	400	296	227	232	199	183	79	-1	-1	97	166	205	105
1981	354	263	161	126	349	277	109	\because	65	58	1393	840	224
1982	430	321	128	179	69	119	108	10	56	37	166	431	141
1983	664	478	436	359	717	506	170	21	105	97	2649	1330	893
1984	546	492	341	261	173	159	66	44	158	45	143	783	75
1985	472	-1	456	544	200	152	130	17	111	115	859	334	252
1986	-1	-1	669	862	163	228	132	41	141	161	1784	2004	612
1987	-1	-1	394	542	137	188	118	12	97	74	2883	1441	-1
1988	-1	-1	1455	-1	382	295	-1	64	404	-1	629	-1	-1
1989	-1	-1	-1	-1	470	-1	-1	43	-1	-1	-1	-1	-1

SHFSL	g4F32	HSUPAL	WSUPAZ	SCSEII CPUE	3CSEI2 CPUE	SCLIRI CPUE	SCLTR2 CPUE
-1	-1	2853	743	1068	5315	283	1674.
-1	-1	5089	1420	9736	$1547 ?$	2142	7434
-1	-1	6960	2016	3394	27525	1170	9692
-1	-1	3453	897	4908	8898	1960	2740
-1	-1	7092	2181	8799	30046	1882	6022
-1	-1	4433	1431	4247	6589	1828	1633
-1	-1	4267	1068	11369	8911	3036	2797
-1	-1	4291	1413	14567	27045	2626	7555
-1	-1	4443	1359	6956	6395	1200	24.14.
-1	-1	4099	1428	4555	10081	1153	4017
-1	14.	1537	499	1724	2212	328	1091
35	80	1726	559	896	3426	556	1794
128	232	1595	500	1403	4886	842	2194.
495	179	2385	738	9375	13793	884	4342
314	186	1808	501	2290	13463	344	2005
129	172	3581	1053	1232	8855	200	1348
629	331	4710	963	3558	16578	1009	3236
49	49	3044	831	819	-1	134	-1
102	-1	5508	873	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1

Table 10.7 Predictions and Summary Statistics from RCRTINX2, 1989 Roundfish Working Group

Cod	IV	1	1986	254	0.06	0.07	0.89
			1987	193	0.08	0.09	1.11
			1988	328	0.11	0.13	1.20
			1989	314	0.44	0.18	0,41
		2	1986	102	0.08	0.07	0.88
			1987	77	0.09	0.10	1.13
			1988	110	0.13	0.14	1.11
			1989	116	0.41	0.18	0.43
Cod	VIa	1	1986a	22	0.23	0.31	1.37
			1987	8	0.29	0.26	0.95
			1986b	9	0.09	0.14	1.45
			1987	6	0.09	0.06	0.65
			1988	11	0.13	0.09	0.71
			1989	10	0.33	0.12	0.35
			1985c	16	0.18	0.19	1.05
			1986	15	0.18	0.32	1.75
			1987	7	0.21	0.16	0.84
			1988	10	0.24	0.05	0.21
		2	1986a	17	0.28	0.41	1.44
			1987	6	0.39	0.34	0.86
			1986b	6	0.10	0.16	1.55
			1987	4	0.11	0.08	0.71
			1988	6	0.19	0.14	0.73
			1989	6	0.37	0.13	0.37
			1985c	12	0.20	0.22	1.11
			1986	10	0.21	0.38	1.79
			1987	5	0.25	0.20	0.80
			1988	6	0.26	0.10	0.40
Haddock	IV	1	1986	4577	0.12	0.16	1.26
			1987	553	0.17	0.27	1.59
			1988	985	0.17	0.26	1.57
			1989	1914	0.56	0.93	1.67
		2	1986	944	0.13	0.15	1.13
			1987	109	0.16	0.21	1.29
			1988	233	0.19	0.24	1.27
			1989	309	0.63	1.04	1.65
	VIa	1	1986a	246	0.31	0.21	0.66
			1987	81	0.67	0.14	0.21
			1986b	149	0.19	0.19	1.00
			1987	13	0.24	0.48	1.97
			1988	18	0.29	0.41	1.39
			1989	51	0.89	1.44	1.62
			1985c	88	0.26	0.11	0.43
			1986	209	0.27	0.20	0.76
			1987	20	0.46	0.79	1.69

cont'd.

Table 10.7 cont'd.

		2	$\begin{aligned} & 1986 a \\ & 1987 \end{aligned}$	$\begin{array}{r} 156 \\ 45 \end{array}$	$\begin{aligned} & 0.33 \\ & 0.96 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.21 \end{aligned}$	0.72 0.22
			1986b	115	0.23	0.20	0.88
			1987	5	0.27	0.42	1.53
			1988	11	0.38	0.46	1.21
			1989	26	1.05	1.61	1.54
			1985c	49	0.30	0.12	0.41
			1986	147	0.30	0.20	0.66
			1987	9	0.61	0.77	1,28
			1988	17	0.58	0.68	1.15
Whiting	IV	1	1986	4710	0.22	0.20	0.91
			1987	3044	0.21	0.16	0.75
			1988	5503	0.28	0.35	1.26
			1989	3223	0.48	0.74	1.53
		2	1986	963	0.15	0.18	1.23
			1987	831	0.15	0.12	0.81
			1988	873	0.17	0.32	1.94
			1989	993	0.49	0.67	1.38
	VIa	1	1986a	84	0.25	0.11	
			1987	33	0.36	0.47	1.30
				80	0.14	0.13	0.95
			1987	46	0.14	0.13	0.92
			1988	64	0.17	0.26	1.59
			1989	78	0.51	0.81	1.57
			1985c	52	0.23	0.22	0.96
			1986	90	0.23	0.12	0.54
			1987	42	0.30	0.38	1.25
			1988	102	0.40	0.48	1.19
		2	1986a	61	0.28	0.13	0.48
			1987	25	0.42	0.61	1.45
			1986 b	89	0.27	0.27	1.01
			1987	55	0.26	0.23	0.89
			1988	108	0.38	0.37	0.99
			1989	57	0.54	0.76	1.41
			1985c	39	0.24	0.22	0.91
			1986	60	0.24	0.10	0.42
			1987	33	0.32	0.41	1.30
			1988	50	0.36	0.00	0.01

a CPUE, Scottish Light Trawl, Scotish Seine
b Research vessel indices, Division VIa and Sub-area IV
c CPUE and North Sea VPA results

Table 12.1 Nominal catch (in tonnes) of COD in Sub-area IV, 1979-1988, as officially reported to ICES.

Country	1979	1980	1981	1982	1983
Belgium	12,576	9,630	8,744	6,604	6,704
Denmark	48,509	56,404	64,968	61,454	48,828
Faroe Islands	113	150	38	65	361
France	12,559	10,910	11,369	8,399	7,159
German Dem.Rep.	84	63	-	-	-
Germany, Fed.Rep.	20,411	26,343	29,741	18,525	20,333
Ireland	1	-	-	-	-
Netherlands	34,752	45,400	51,281	36,490	34,111
Norway	3,575	4,506	6,766	12,163	6,625
Poland	142	28	7	62	75
Sweden	298	293	321	453	422
UK (England \& Wales)	54,923	49,951	59,856	54,277	53,860
UK (Scotland)	42,811	45,044	53,921	57,308	58,581
USSR	17	-	-	-	-
Total	230,771	248,722	287,012	255,800	237,059

Country	1984	1985	1986	1987	1988
Belgium	5,804	4,815	6,604	6,693	5,508
Denmark	46,751	42,547	32,892	36,948	34,890,
Faroe Islands	-	71	15	-1	
France	8,129	4,834	8,402	8,199	$8,138^{13}$
German Dem. Rep.	13, -	7-	7-6	- -	,
Germany, Fed. Rep.	13,453	7,675	7,667	8,230	9,060
Ireland	-	-	-	-	-
Netherlands	25,460	30,844	25,082	21,347	
Norway ${ }^{2}$	7,005	5,766	4,864	5,000	4,145
Poland	7	-	10	13	19
Sweden	575	748	839	688	367
UK (England \& Wales)	35,605	29,692	25,361	29,960	23,496
UK (Scotland)	54,359	60,931	45,748	49,671	41,382
USSR	-	-	-	-	-
Total	197,148	187,923	157,484	166,749	127,005

${ }_{2}^{1}$ Preliminary.
${ }^{2}$ Figures from Norway do not include cod caught in Rec. 2 fisheries.
${ }^{3}$ Includes Division IIa.

Table 12.2 Annual weight and numbers of cod caught in Sub-area IV between 1969 and 1988.

Table 12.3 Values of natural mortality rate and proportion mature at age.

```
| Age | Nat Mori Mat. ;
:----------------------
| 110.800 :0.010 1
1 2; 0.350:0.050;
| 3: 0.250:0.230 ;
1 4; 0.200; 0.620;
5i 0.200:0.860;
16:0.200 :1.000 :
7:0.200:1.000:
8:0.200:1.000:
9: 0.200:1.000;
10:0.200:1.000:
11:0.200:1.000 :
12:0.200:1.000;
13 1 0.200 | 1.000 :
```

Table 12.4 Total international catch at age ('000) of cod in Sub-area IV between 1969 and 1988.

- Agel	1969	1970	1971	1872	1973	1974	1975			1978		
1 11	2842 \%	527191	429721	36921	247421	146901	300811	51821	627441	249301		
\| 21	218671	328131	1489271	1808331	302591	556171	424871	902671	422751	158836 :	2	
\| 31	30453 :	17886:	165071	463691	523421	107651	170731	161721	229181	130941	31	
141	132221	129041	64751	54741	134091	149371	42031	60161	41041	8417	4	
- 51	44031	60921	68081	26271	21021	43651	68161	1542!	$2055 ;$	28091	5	
1 61	2792;	17051	2588:	30841	10571	9071	18631	27641	7521	9411	6	
171	5671	9301	856	16181	10101	4141	4051	8371	10301	366 :	71	
\| 81	4071	2021	4391	5891	4661	3731	176	1191	3351	3721	81	
1 91	1421	1801	2191	3761	761	3131	2061	611	2371	1401	9:	
[101	451	951	741	1081	551	761	861	571	231	331	10	
[11	611	221	661	71	741	1491	451	221	91	151	11	
\| 12		101	171	241	101	581	251	71	161	431	221	12 !
1 13 \|	51	1	-	I	221	51	51	11	$35:$		131	

: Agel	1979	1980	1981	1982	1983	1984	198	198	1987	1988 : Age	
111	$34113:$	608681	19933:	648361	238371	638541	78941	825911	216331	1778311	
; 21	85844 ;	961141	175920!	599471	121826	577731	111118	208281	1056171	49989121	
1 31	404581	295621	275631	532381	175181	277641	15712	289181	69621	35843131	
1 41	33321	102721	76491	72871	10104 !	34611	68741	39541	76251	25171 4;	
1 51	31301	15901	38021	31931	25011	31191	1150\|	25841	13481	223515 :	
1 6:	675	1172	7401	18831	11671	9391	11161	5211	9551	56016 1	
171	3651	4121	5551	3551	5621	4151	3281	4981	2091	274: 7:	
1 81	1291	1911	1311	2181	1421	2331	162 !	1481	1881	59181	
191	1451	711	$63!$	721	701	571	731	601	461	52191	
[10)	391	541	361	251	221	431	131	391	311	12110 :	
; 11;	21	181	161	101	131	131	201	171	61	9111 1	
\| 12		131	61	11	51	51	41	31	11	21	5112 ;
: 13 :	1	1	31	1	1	21	01	11	31	2113 :	

Table 12.5 Total international mean weight at age (kg.) of cod in Sub-area IV between 1969 and 1988.

Agel 1969	1970	1971		73	\| 1974					\| Age	
1 1 0.544	0.626	- 0.579	0.616	0.559	0.594	0.619	0.568	0.542	㖪		
2 1 0.921	- 0.961	- 0.941	0.836	- 0.869	1.039	0.899	1.027	0.973	0.938	21	
$3: 2.133$	2.041	2.193	2.086	1.919	2.217	2.348	2.477	2.161	2.025	31	
4 [3.852	4.001	4.258	3.968	3.776	4.156) 4.226	4.575	4.603	4.242	41	
5: 5.715	6.131	6.528	6.011	5.488	6.174	3.404	6.505	6.716	6.599	51	
6: 6.722	7.945	8.646	8.246	\| 7.453	8.333	8.691	8.630	8.832	8.945	3	
7 : 9.262	9.953	-10.356	9.766	9.019	9,889	\| 10.107	\| 10.137	-10.075	9.972	- 71	
$8: 9.749$	\| 10.131	+11.219	-10.228	9.810	- 10.791	-10.910	\| 11.341	- 11.052	\| 11.099	181	
$9: 10.384$	\| 11.919) 12.881	: 11.875	\| 11.077	: 12.175	: 12.339	\| 12.888	- 11.824	\| 12.427	91	
: 10112.743	\| 12.554	:13.147	:12.530	\| 12.359	- 12.425	: 12.976	: 14.140	:13.134	- 12.778	:10	
\| 11	11.017	-14.473	\| 15.676	: 14.455	- 12.892	-13.660	- 13.831	1 14.705	: 14.417	\| 13.847	+11
(12: 13.718	: 14.225	+15.176	: 14.272	\| 12.899	: 14.049	-17.410	: 14.376	: 14.513	: 13.739	+12	
1 13 \| 8.095	;	1	1	\| 12.832	: 14.309	+ 15.662	8.311	\| 14.160	- 17.148	13)	

Table 12.6 Total international fishing mortality rate at age of cod in Sub-area IV between 1969 and 1988.

- Age:	1979	1980 1	1981	1982	1983	1984	1985	1986	1987	8 - Age
\| 1 1	0.116 -	0.116	0.111	0.1831	0.136 ;	0.187	0.115 ;	0.230	0.138	
1 21	0.837	0.959 I	1.003 ;	1.002 -	1.113	0.985	1.015	0.851	0.901 1	0.940 : 2
31	0.966 -	0.951 :	0.990	1.236 :	1.155 ;	1.014	0.975	0.982	0.942	1.119 \%
41	0.575 :	0.738	$0.731 ;$	0.830 :	0.885 ;	0.785	0.798	0.745 :	0.811 ;	1.234 ${ }^{\text {a }}$
1 51	0.714	0.602 1	0.682	0.795 :	0.783	0.770	0.6631	0.821 ;	0.619	0.596 15
161	0.546:	0.649	0.634	0.889	0.782	0.787	0.709 ;	0.735 :	0.854	$0.572: 61$
171	0.627 :	0.777	0.749	0.7301	0.7421	0.724 :	0.716	0.824	0.756	0.643:71
181	0.540 :	0.812	0.613 -	0.768	0.746	0.812	0.708	0.857	0.8911	0.499:81
191	0.859	0.6631	0.709	0.829	0.6101	0.779	0.659	0.634 ;	0.7331	0.665:91
[10	0.937	0.951 :	0.853 -	0.677	0.657 i	0.959	0.418 :	0.929 ;	0.791 :	$0.442: 101$
111	0.179	2.164 1	0.883	0.622	0.9901	$1.121 ;$	2.295	1.4801	0.347	$0.601: 11:$
; 12 !	0.629 1	1.073 :	0.761	0.726	0.7491	0.879	0.959	0.945 ;	0.7041	$0.570: 12$
1 13	0.629 1	1.073 :	0.7611	0.726 :	0.7491	0.879 ;	0.959 :	0.945	0.704	$0.570: 13:$

Table 12.7 Stock numbers at age ('000) of cod in Sub-area IV between 1969 and 1988.

Age:	1769	1970	1971	1972	1973	1974	1975	1976	1977 i	1978 ;	
(1)	198819	7292671	8467111	1593481	2890891	2316171	4260991	1930111	7259081	4257891	
1 21	794241	865841	2935161	352541	39195:	$113884 ;$	945441	1719601	847001	2855701	
131	753061	379111	340651	855481	101218	239981	348941	318911	477611	25236 :	3
141	32934 :	321731	140201	122291	265701	335551	93481	12388	10834	173371	
- 51	10417	15134i	147951	56971	51221	97981	14126	38991	4775;	51961	5
1 61	63771	45921	69401	60341	23181	$23 i 31$	41221	5483:	18121	20721	6
171	1763!	27261	22321	33641	21911	9541	10821	17111	$2025 ;$	8111	
181	11711	9361	13981	10611	13101	8921	4121	5231	6541	7401	
-91	4314	5941	5841	7511	345 ;	6551	3971	1791	322	2371	
1101	1641	2251	3241	2821	2801	2141	2571	1411	921	5411	
\| 111	1321	941	1001	1991	1341	1801	1071	1331	651	551	
\|12!	271	54,	571	$23:$	1571	441	171	471	891	451	
1 13 \|	141	1	1	+	601	81	111	41	721	51	

; Age:	1979	1980 ;	1981	1982 1	1983	1984 ;	1985	1986	19	1988		
\| 11	4493161	7999971	271486	5567681	2707581	5381861	104955	5754891	241866:	1573311		
1 21	1751401	179792	3200321	1091341	2083541	1062371	200648;	42045 ;	205478:	946831	2	
\| 31	723731	534181	485831	827201	282431	482281	279451	512251	126511	588241	3	
141	93291	214471	160811	140591	18715;	69321	13621;	82061	14944 :	3841;	4	
151	66851	38381	83931	63391	50171	63271	25891	5023 :	31901	54391	5	
1 61	17531	26791	17201	34751	23431	18781	23981	1092!	18101	14071	6	
171	8561	8311	1146!	7471	11691	8781	7001	9661	4291	6311	71	
1 81	3371	3741	3131	4441	2951	4561	3481	2801	3471	1651	8	
191	2741	1611	1361	1391	1681	1141	1661	141;	971	1161		
1101	691	951	691	551	501	751	431	701	611	38: 10		
; 11 '	151	221	301	241	231	211	241	231	$23:$	23111		
\| 12 1	311	101	21	101	101	71	61	191 21	+ 41	$13: 12$		
\| 13		;	I	61	;	,	31	01	21	71	5113	

Table 12.8 Mean fishing mortality, biomass and recruitment of Cod in Sub-area IV between 1969 and 1988.

1	Hean Fishing Mortality	Fiomas			
;	Ages : Ages	1000 tor	nes		
1	2 to 8 : 1 to 11				
	H.Con : Disc i Ey-cat	Total	St 1Y.C.	on	
(1969)	$0.536 ; 0.000$ - 0.000	606	251 ; 68	97	
\| 1970		0.535:0.000: 0.000	924	271 ! 69	729
-1971	$\begin{array}{l:l:l}0.649 & 0.000: 0.000\end{array}$	1110	269:70	847	
+1972	0.810:0.000: 0.000	763	225171	159	
-1973	0.691-0.000: 0.000	606	197:72	289	
- 1974	0.667:0.000: $0.000:$	561 ;	210: 73	232	
-1975	0.683: $0.000: 0.000$	622	189:74	426	
- 1976	$0.703: 0.000: 0.000$	527 :	163:75	198	
\| 1977	0.717: $0.000: 0.000$	7131	142:76	726	
-1978	0.811: 0.000 : 0.000	709	143:77	425	
- 1979	0.687:0.000) 0.000	705	147: 78	449	
-1980	0.784: $0.000: 0.000$	887	161:79	800	
11981	$0.772: 0.000: 0.000:$	7421	174:80	271	
- 1982	$0.893: 0.000: 0.000$	738	168 : 81	557	
\| 1983	0.886 : $0.000: 0.000:$	559 !	136:82	271	
\| 1984 :	$0.840 ; 0.000: 0.000:$	629 :	117:83	538	
- 1985	0.798:0.000: 0.000	414 :	109: 84;	105	
- 1986	0.831: $0.000: 0.000$	549 :	99:85 :	575	
- 1987	0.825 : $0.000: 0.000$	478 :	$93: 86$	258	
-1988	$0.800: 0.000: 0.000:$	372	88:87;	193 :	
; Arit-mean recruits at age 1 for period 1969 to 1988 : 412 : ; Geos-agan recruits at age 1 for period 1969 to 1988 : 351 :					

Table 12.9 Input for catch prediction of cod in Sub-area IV.

Recruits at aqe 1 in $1989=328000$
Recruits at age 1 in $1990=314000$
Recruits at age 1 in 1991 $=350822$
Recruits at age 1 in $1992=350822$
H at age and proprtion mature at age are as shown in Table 12.3
Hean F for ages 2 to 8 in 1988 for human consumption landings + discards $=0.800$.
Human consusption + discard F-at-age values in prediction are mean values for the period 1984 to 1988 rescaled to produce a mean value of F for ages 2 to 8 equal to that for 1988

Hean F for ages 1 to 1 in 1988 for sall-sesh fisheries $=0.000$.
Industrial fishery F -at-age in the prediction are ayerages for the period 1984 to 1988 ,
rescaled to produce a mean value of F for ages 1 to I equal to that for 1988
Values of 1 A in 1988 from UPA have been overaritten
for the following ages
Age 1
Age 2
Values of F fer these ages in 1988 from VPA have been overuritten with scaled mean values used for predictions for 1989 onwards

Table 12.10 Predicted catches and biomasses ('000 tonnes) of cod in Sub-area IV 1989 to 1990.

$$
F_{89}=F_{88}
$$

Stock at start of and catch during 1989

1 11	328000 -	34455	01	01	34455 ;
- 21	73629 :	38295 :	01	$0:$	38295 ;
1 31	28713 ;	16231 !	0 1	01	16231 ;
- 41	14959 :	7902 ;	0 1	01	7902 1
- 51	915 ;	413 !	0 :	0 :	4131
161	2454 ;	1149 :	0 1	01	1149 !
-71	650 :	305 :	01	0:	305 :
1 81	272 !	130 :	0 :	01	130 :
191	82 :	371	01	0 :	37 :
1101	49 :	22 !	01	0:	22;
; 11 !	20 :	13 :	01	01	13 :
-12	10 ;	5 :	01	0 :	5 :
; 13 ;	6 :	31	0 1	01	31
; 肘 ;	411736 :	135525	01	01	135525 !

Stock at start of and catch during 1990 for $\mathrm{F}(1990)=F(1989)$

Table 12.11 Predicted catches and biomasses ('000 tonnes) of cod in Sub-area IV 1989 to 1990. TAC constraint in 1989.

Stock at start of and catch ouring 1989

Stock at start of and catch during 1990 for $F(1990)=F(1989)$

A Agei Stock No i H.Cons I Discardsi By-catchi Total						
111	314000 :	32984 1	01	0	32984	
1 21	127611 :	66373 ;	01	01	66373	
1 3i	23139 1	13080 :	01	01	13080	
141	9406	4968 i	0 ;	01	4968	
151	5771	2606 ;	01	0	2606	
161	413 :	1931	01	0 1	193	
171	1071 i	502 I	01	01	502	
181	283 ;	135 :	01	01	135	
191	1161	52 ;	01	01	52	
\| 10 !	371	17 !	01	01	17	
; 11 \|	22 1	14	01	0	14	
\| 12		61	31	01	0 1	3
\| 131	71	31	01	0 :	31	
\| 胜 1	438906 :	150942 1	01	01	150942 ;	

Table 12.12 Estimated age composition of cod in Sub-area IV in first half of 1989.

	Hugan Consumption		!	Stall Mesh	1	International	
1	Landings ;	Discards	1	By-catch	1	Catch	
	Number \| Height !	ber : Heig		Wher : Height		Number : Height	
101	1 1	I	1	1	1	1	
111	1162:0.460	1	1	1	1	1162 : 0.460	
121	11971 ; 0.783 \|	1	1	1	1	11971 : 0.783	
131	13379 : 1.479 !	;	1	1	1	13379 : 1.479	
141	5279 - 3.475 \|	!	1	1	;	5279 : 3.475	
1 51	433 ; 5.688 :	1	i	1	;	433 (5.698)	
161	552 \| 7.635 :	1	1	,	;	552 : 7.635	
171	$131: 10.055:$	1	1	;	1	$131 ; 10.055$;	
181	$75: 10.683:$	1	1	-	1	75:10.683:	
191	$19: 13.010:$	1	\%	,	1	19:13.010 :	
\| 10 !	$22: 14.097$;	1	1	1	1	$22: 14.097$:	
; 11 1	5 \| 14.115 :	1	1	,	1	5 \| 14.115 !	
; 12 \|	2 177.096 ;	;	1	!	1	$2: 17.096$:	
\| 13		1 i	1	;	1	!	1
1 14;	1	1	1	1	1	1	
' 15 !	1 i	1	1	1	,	1	
(No.)	33032 i	0	1	0	!	33032	
\| Ht.]	57518 ;	0	1	0	1	57518 \|	

Table 13.1 Nominal catch (in tonnes) of COD in Division VIa, 1979-1988, as officially reported to ICES.

Country	1979	1980	1981	1982	1983
Belgium	4	57	30	35	21
Denmark	-	27^{2}	-	3	-
Faroe Islands	40	3	-	2	-
France	4,590	5,495	7,601	7,160	8,140
Germany, Fed. Rep.	40	1	21	8	205
Ireland	2,237	2,331	2,725	3,527	2,695
Netherlands	20	1	-	-	-
Norway	32	48	40	238	267
Spain	-	-	-	41	52
Sweden	-	-	-	1	-
UK (England and Wales)	2,348	2,302	$3,187^{3}$	2,948	1,141
UK (N. Ireland)	2	2	7	33	37
UK (Scotland)	6,929	7,603	10,339	7,969	8,933
Total	16,242	17,870	23,950	21,965	21,491

Country	1984	1985	1986	1987	1988
Belgium	22	48	88	33	
Denmark	22	4	88	33 4	44
Faroe Islands	-	-	-	4	
France	7,637	7,411	5,096	5,044	6,473 ${ }^{4}$
Germany, Fed. Rep.	75	, 66	5,53	, 12	6, 688^{12}
Ireland	2,316	2,564	1,704	2,442	$2,11{ }^{1}$
Netherlands	-	1	-	2,	
Norway	231	204	174	77	$1 \dot{8}^{1}{ }^{1}$
Spain	64	28	17	77	
UK (England \& Wales)	692	243	106	306	184
UK (N. Ireland)	32	17	54	138	184 46
UK (Scotland)	9,483	8,032	4,251	11,143	8,465
Total	20,552	18,614	11,526	19,199	17,584
${ }_{2}$ Preliminary.					
${ }_{3}$ Includes Division VIb.					
${ }_{4}$ Including 37 tonnes caught in sub-area VI					
Includes Divisions Vb and VIb.					

Table 13.2 Annual weight and numbers of cod caught in Division VIa between 1969 and 1988.

Year	Height (1000 tonnes)				Number (millions)				
	al 1	Con :	isc :	cat	tal 1	Con :	Sc !		
\| 1969 ;	22 1	22 ;	01	01	6 1	6 :	01	0	
1 1970 \|	131	131	01	01	41	41	01	0	
\| 1971 !	11:	11 :	$0:$	01	41	4!	01	0	
\| 1972		15 !	15 !	$0:$	01	61	61	01	0
\| 1973		12 :	12 ;	01	01	5;	51	0 ;	0
\| 1974		141	14 !	0 :	01	51	51	01	0
\| 1975		131	131	01	01	51	51	0 ;	0
\| 1976 :	17 !	17.1	0 1	01	71	71	01	0	
\| 1977		13 :	13 :	01	01	5 ;	51	01	0
-1978 :	14 \|	14 ;	01	01	51	51	01	0	
\| 1979		16 :	16 :	01	0 :	6 1	6 :	0 :	0
- 1980 \|	181	18;	0 :	0 !	8 1	81	01	0	
1 1981 \|	24 !	24 :	01	01	12:	12 1	01	0	
; 1982 \|	22 !	22 I	01	0 :	8 i	81	0 :	0	
\| 1983		21 1	211	01	01	$10:$	101	01	0
\| 1984		211	21 :	01	0 :	81	81	0 :	0
\| 1985	191	19:	01	0 :	91	91	01	0	
; 1986	12:	12 ;	01	01	51	51	01	0	
\| 1987		191	19 :	01	01	151	15 1	01	0
\| 1988		201	20 :	01	0	12;	12 :	01	0

Table 13.3 Values of natural mortality rate and proportion mature at age.

: Age I Nat Hor: Hat. :			
		0.200	
	21	0.200	0.520
	3	0.200	
	41	0.200	1.000
	5	0.200	. 000
	61	0.20	1.000
	7	0.20	
	81	0.200	
	91	0.200	. 00

Table 13.4 Total international catch at age ('000) of cod in Division VIa between 1969 and 1988.

: Age:	1969	1970	971		973 1		975	976		1978 \| Age	
\| 11	641	2561	2541	7351	10151	8431	12071	9701	12651	7231	1
\| 21	1974i	11761	1903!	28911	1524 !	23181	18981	36821	13141	17611	2
+ 31	1332	16381	5501	15911	1442;	7781	11871	1467	16391	9991	31
141	19431	5711	8411	4091	5831	10681	5331	6381	6241	6951	4 ;
1 51	7591	4761	2401	5011	1611	2881	325:	2561	2691	2861	51
1 61	1491	1531	2011	1081	1931	721	901	2151	87	971	61
1 71	941	261	661	701	631	761	12:	441	571	471	71
181	651	211	151	241	281	131	131	71	111		
191	121	231	71	121	101	91	91	4	41		91
1 10 :	1	4	71	41	31	51	11	11	61		

\| Age	979 (1980 -		82		1983 \|	1985		1987 - 1988 : Age:			
' 11	9291	1195;	4611	18271	23351	21431	13551	7921	78731	10041	11
1 21	1612i	32941	70161	16731	45151	23601	50691	14861	48371	83311	21
31	21251	20011	32201	32061	11181	25641	12691	20551	9881	22011	31
141	6821	7961	9041	1189]	14001	448:	10911	4111	9051	285	41
- 51	342:	1911	1821	3671	4681	5551	1401	1911	1371	2111	$5!$
161	1341	771	291	111	1481	1851	1671	401	561	401	6 :
171	321	271	161	221	401	401	601	161	81	151	7
181	161	81	31	101	161	141	131	91	141		8 !
191	171	11	11	11	21	51	61	41	31		91
1 10 1	41	11	1	11	11	;	01	,	11		101

Table 13.5 Total international mean weight at age (kg.) of cod in Division VIa between 1969 and 1988.

Age: 1979			1992							
: 1140.693	0.624	0.550	0.692	0.583	0.735	: 0.628	- 0.710	0.531	0.806	11
: 2 \| 1.373	1.375	1.166	1.468	1.265	1.402	- 1.183	1.211	1.312	- 1.180	121
- 3 \| 2.828	3.002	2.839	2.737	2.995	- 3.168	- 2.597	- 2.785	2.783	- 2.877	- 31
1 414.853	5.277	4.923	4.749	4.398	5.375	4.892	4.655	4.574	5.123	4
- 5 : 6.433	7.422	7.518	6.113	6.305	- 6.601	- 4.872	- 6.336	6.161	6.970	5
$6: 7.784$	8.251	9.314	7.227	18.084	- 8.606	8.344	8.283	7.989	9.191	6 i
- 718.570	9.293	: 10.176	9.587	- 9.064	-10.461	9.540	9.091	9.786	8.868	71
$8: 9.452$	9.473	- 10.668) 10.264	+10.979	: 10.464	- 10.061	8.742	9.530	-12.501	
1 9 1 11.097	- 8.500	: 11.271	- 11.449	: 12,467	- 9.131	\| 11.357	+12.128	: 11.299	; 13.384	
(10) 12.736	-10.875)	- 10.306	- 11.882	1	: 13.442	12.120	-16.056	13.30	101

Table 13.6 Total international fishing mortality rate at age of cod in Division VIa between 1969 and 1988.

Age	1969	1970	1971	1972	1973	1974	975	6	1977	8 : Aqge
11	0.017	0.037	0.027	0.137	0.141 ;	0.119)	0.123)	0.178	0.153 :	0.087 : 11
21	0.341 :	0.498 ;	0.412	0.478 :	0.464	0.5421	0.423	0.6631	0.388	0.330: 21
31	0.639 ;	0.529 :	0.461 :	0.731	0.467 ;	0.459	0.596	0.682)	0.716	0.577131
1 41	1.008:	0.631 ;	0.575	0.754	0.659 ;	0.769	0.664	0.763 :	0.709 -	0.779 : 41
51	1.116:	0.740 :	0.603 ;	0.828 -	0.777	0.824 1	0.565 1	0.801 -	0.888 ;	0.857: 51
1 61	0.929 :	0.711 ;	0.830	0.603 ;	0.925	1.026	0.671	0.938	0.7131	0.992 : 61
171	1.065	0.408	0.794 :	0.799	0.877	1.3091	0.468	0.838	0.710 1	1.148:71
1 91	0.746 :	0.748 :	0.4301	0.748 :	0.9301	0.426	0.841	0.525 -	0.528 ;	0.511 - 8
91	0.973	0.648 -	0.646	0.746 :	0.834 ;	0.871 ;	0.642	0.773	0.710 1	0.857: 91
: 10 :	0.973	0.648 :	0.646	0.746	0.834 :	0.8711	0.642	0.773	0.710 -	0.857:10:

(Age:	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988 : Age
11	0.071	0.065 ;	0.089	0.143 ;	0.331 ;	0.171 ;	0.288	0.071	0.302	0.427 1 11
21	0.283 :	0.380 :	0.362 1	0.525 -	0.6201	0.6571	0.764 1	0.5881	0.786	0.604 ; 21
31	0.945 ;	0.677 ;	0.794	0.742 -	0.824	0.8981	0.935	0.837	1.037	1.081: 31
41	1.040:	0.933 :	0.763	0.792	0.8801	0.9801	1.390)	0.947	1.205:	1.026: 4 :
51	1.219	0.981 :	0.566	0.839 :	0.866	1.140 :	1.009 ;	1.042	1.023 :	1.095: 51
61	1.467 :	1.078 :	0.369	0.829 1	1.033	1.083	1.509 :	0.9841	1.080 !	1.000: 61
71	1.158 :	1.703 :	0.663 :	0.529:	0.862	0.906 :	1.458 ;	0.557 ;	0.504 ;	1.037:71
81	2,198	1.165:	0.936 :	1.195	0.985	0.844	0.866 :	0.956	1.507	0.680: 91
191	1.416:	1.172 :	0.660 :	0.8371	0.925	0.991	1.2471	0.889	1.064	0.968:91
1 10 :	1.416	1.172 :	0.6601	0.837	0.925	0.991 1	1.247	0.889	1.064	$0.968: 101$

Table 13.7 Stock numbers at age ('000) of cod in Division VIa between 1969 and 1988.

- Agel	1979	1980	1981	1982 ;	1983	1984	1985	1986	1987	1988 : Age:	

111	149791	206231	59771	150491	90941	149871	59481	126951	331611	3165:	1
1 21	71881	114261	15807:	44781	10675:	53481	103401	36511	96791	20074:	2
131	4053:	44361	63981	66731	21681	47031	22691	39441	16601	36111	31
1 41	11451	1426 :	18451	23671	26024	7781	15681	7291	13981	4821	4
151	526 ?	3311	4591	7041	8781	8841	2391	3201	2311	3431	5
161	$188:$	1271	1021	2131	2491	3031	2311	711	921	681	1
171	511	351	351	581	761	731	841	421	231	$26:$	71
181	191	131	51	151	281	261	241	161	201		81
191	241	21	31	21	41	81	91	81	51	41	91
1 101	61	11	1	21	21	1	01	;	21	11	10 1

Table 13.8 Mean fishing mortality, Biomass and recruitment of cod in Division VIa between 1969 and 1988.

Table 13.9 Input for catch prediction of cod in Division VIa.

Recruits at age 1 in 1989 $=9914$
Recruits at age 1 in $1990=9914$
Recruits at age 1 in 1991 = 9914
Recruits at age 1 in $1992=9914$
H at age and proprtion mature at age are as shoun in Table 13.3
Hean F for ages 2 to 5 in 1998 for human consumption landings + discards $=0.952$.
Huaan consumption + discard F-at-age values in prediction are mean values for the period 1984 to 1988
rescaled to produce a mean value of F for ages 2 to 5 equal to that for 1988
Mean F for ages 1 to 1 in 1988 for sall-mesh fisheries $=0,000$.
Industrial fishery F-at-age in the prediction are averages for the period 1984 to 1988 ,
rescaled to produce a mean value of F for ages 1 to 1 equal to that for 1988
Values of N in 1988 fron UPA have been overnritten
for the following ages
Age 1
Age 2
Values of F for these ages in 1988 from UPA have been overuritten with scaled mean values used for predictions for 1989 onnards

Table 13.10 Predicted catches and biomasses ('000 tonnes) of cod in Division VIa 1989 to 1990.

Stock at start of and catch during 1989

Stock at start of and catch during 1990 for $F(1990)=F(1989)$

Table 13.11 Age Composition of COD in VIa in Scottish Landings First Quarter 1989 (Numbers in '000's)

Age	Number
1	14
2	255
3	832
4	106
5	23
6	23
7	10
8	+
9	1
$10+$	0

Tonnes 2764

Table 14.1 Nominal catch (in tonnes) of coD in Division VIb, 1979-1988, as officially reported to ICES.

Country	1979	1980	1981	1982	1983
Faroe Islands	92	75	2	77	112
France	2	1	4	27	97
Germany, Fed. Rep.	111	136	443	+	195
Norway	138	80	134	51	462
Spain	-	-	70	58	42
UK (England and Wales)	129	1	67	3	163
UK (N.Ireland)	$-\bar{y}$	-	-	-	
UK (Scotland)	198	370	143	157	35
Total	670	696	863	373	1,106

Country	1984	1985	1986	1987	1988
Faroe Islands	18	-	1	-1	-1
France	9	17	5	7	\ldots
Germany, Fed. Rep.	-	3	-	-	12
Norway	373	202	95	130	195^{1}
Spain	241	1,200	1,219	808	\ldots
UK (England \& Wales)	161	114	93	69	56
UK (N. Ireland)	-	-	1	-	-
UK (Scotland)	221	437	187	284	254
Total	1,023	1,973	1,601	1,298	505

[^1]Table 15.1 Nominal catch (in tonnes) of COD in Division VIId, 1979-1988, as officially reported to ICES.

Country	1979	1980	1981	1982	1983
Belgium	690	151	329	251	368
Denmark	3,998	3,203	3,707	2,696	2,802
France	-	-	4	1	4
Netherlands	348	160	206	306	358
UK (England and Wales)	5,036	3,514	4,246	3,254	3,532
Total	4,743	3,892	5,497	4,117	4,020
WG Estimate					

Country	1984	1985	1986	1987	1988
Belgium	331	501	650	815	486
Denmark	-	-	4	-	$+{ }^{2}$
France	2,492	2,589	9,938,	7,541	$6,642^{3}$
Netherlands	-	\ldots	.	-	8
UK (England and Wales)	282	326	830	1,044	867
Total	3,105	3,416	11,422	9,400	7,995
WG Estimate	3,686	3,401	12,395	15,219	10,528

[^2]Table 15.2 Values of natural mortality rate and proportion mature at age.

: Age : Nat Hor: Hat.		
11	0.200	0.000
21	0.200	0.000
31	0.200	0.000
41	0.200	1.000
51	0.200	1.000
61	0.200	1.000

Table 15.3 Total international catch at age ('000) of cod in Division VIId between 1976 and 1988.

: Age		1977	1978 :	979 :	1980 -	1981	82	983	984 \|	1985 \| Age:	
' 11	91	50901	3771	2361	5201	571	8911	125]	5821	141	11
+ 21	6461	36971	46411	12291	15391	21151	9361	1872]	16661	1235;	21
1 31	6281	182,	1035;	9961	5211	1089:	5381	8171	4231	4631	31
141	911	561	2011	1791	2301	2081	2811	1964	751	771	4
\| 51	351	141	101	511	201	291	42i	421	381		51
$6:$	221	51	11	31	4	11	71	71	111	4	6

\| Age	1986	1987	1988 : Age	
1 11	75041	3223:	6421	1
1 21	86661	86821	29411	21
31	16771	1761	20141	3
1 41	5271	2241	2811	41
; 51	611	61		51
61	81	11		6

Table 15.4 Total international mean weight at age (kg.) of cod in Division VIId between 1976 and 1988.

	Age 1	1976	;		1	1978	;			1980				1982	i	1983				1985		ge
+	11	0.616	+	0.536	+	0.560	!	0.626	;	0.590	,	0.598	1	0.660	+	0.780	+	0.699		0.613	\|	1
1	21	1.316	1	0.672	1	1.067	1	0.951	;	0.783	+	0.963	1	0.707	+	0.748	!	0.867		1.355		2
1	31	2.311	1	2.012	1	1.990	1	2.458	1	2.302		2.142	-	2.493		1.744		2.877		2.716	1	1
!	41	4.686	1	4.854	1	2.906	1	4.034	-	4.490	1	4.406	1	4.383	I	4.118		4.286		5.138		
!	51	6.049	1	6.324	1	6.001	1	4.684	;	5.657	1	5.926	1	5.825	+	5.706		5.883		7.390		
;	61	7.417	1	7.802	;	7.932	;	6.095	;	5.880	+	6.847	1	6.978		7.707		6.422		7.767		6

Table 15.5 Results of separable VPA of cod in Division VIId.

```
Separable smalysis
froa 1976 to 1988 on äges 1 to 5
with Tervinal F of 1,000 on age 3 and ferairal 5 of 1.000
Initial sum of squared residuals was 220.012 and
    final sum of squared residuals is 5%,093 atter 3% iterations
Matrix of Rasiduals
```


Years	$1976 / 77$	$1977 / 78$
Ayes		
$1 / 2$	-3.971	2.149
$2 / 3$	0.263	0.200
$3 / 4$	1.453	-1.246
$4 / 5$	0.076	-1.216
	0.000	0.000
	1.500	1.000

Years	$1978 / 791979 / 80$		$80 / 81$	381/82	1932/83	1983/94	88/85	985/96	188/87	1987/88		WTS
Hyges												
1/2	0.765	0.050	0.717	-i).771	1.464	-0.693	0.604	-2.977	0.969	1.700	0.006	0.233
$2 / 3$	0.321	-0.337	-0.585	1.308	-9.719	0.214	-0.442	0.289	0.777	-0.292	0.006	0.546
$3 / 4$	0.568	0.327	0.047	0.353	0.186	1.155	0.120	0.407	-1.260	-2.203	0.006	0.415
$4 / 5$	-0.718	0.172	0.367	-0.258	0.261	-0.520	0.228	0.245	-0.42a	0.793	0.006	1.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.000	0.015	0.000	0.023	

Fishing Hortalities (F)

	1976	1977	1978							
F-values	0.8961	1.6869	1.1339							
	1979	1590	1981	1962	1983	1984	1985	1986	1987	1988
F-values	1,0632	0.3183	0.9806	0.9316	1.1589	1.0132	0.4033	3.1000	1.5199	1.0600

	1	2	3	4	5
E-values	0.0621	0.9073	1.0000	1.4597	1.0000

Table 15.6 Total international fishing mortality rate at age of cod in Division VIId between 1976 and 1988.

- Age	1986	1987	1988 : Agel
			--1
$1:$	0.401 ;	0.356	0.062: 11
21	2.611 ;	1.166 :	0.644 : 21
31	1.927 :	0.391 :	0.987:31
41	3.995 -	2.905	2.355:41
51	2.283	1.632	0.937 : 5
61	2.283 ;	1.632	0.937 : $\quad 1$

Table 15.7 Stock numbers at age ('000) of cod in Division VIId between 1976 and 1988.

Age:	976		978	979 :	980	1981	982	983	984	1985 - Age:	
111	69941	138981	34611	47811	47711	28101	44491	41321	54301	12140	--1
1 21	13961	57181	68201	24941	37021	34371	22491	28411	32701	39211	21
\| 31	773 :	5671	14061	14801	9451	16541	9371	1004	6691	11931	31
1 41	126	831	3011	2401	3301	3101	3901	2991	1071	1731	4 -
\| 51	601	231	181	681	381	671	701	721	631	221	51
1 61	381	91	21	31	12:	21	131	111	181	161	6 :

Age;	1986	1987	1988	
$1:$	249061	117901	117451	11
21	99261	136581	67591	21
31	21023	5971	34861	31
41	5621	2511	3301	41
51	721	81	$11 ;$	51
61	91	$1:$		61

Table 15.8 Mean fishing mortality, biomass and recruitment of cod in Division VIId between 1976 and 1988.

Table 15.9 Input for catch prediction of cod in Division VIId.

Recruits at age 1 in $1989=6608$
Recruits at age 1 in 1990 $=6608$
Recruits at age 1 in 1991 $=6608$
Recruits at age 1 in $1992=6608$
M at age and proprtion ature at age are as shown in Table 15.2
Mean F for ages 2 to 4 in 1988 for human consumption landings + discards $=1.329$.
Human consumption + discard F-at-age values in prediction are aean values for the period 1984 to 1988 rescaled to produce a mean value of F for ages 2 to 4 equal to that for 1988

Mean F for ages 1 to 1 in 1988 for saall-mesh fisheries $=0,000$.
Industrial fishery F-at-age in the prediction are averages for the period 1984 to 1988. rescaled to produce a aean value of F for ages 1 to 1 equal to that for 1988

Recruits in 1988 from F 1976-1985 (0.126)
Recruits in 1989 from R 1976-1988

Table 15.10 Predicted catches and biomasses ('000 tonnes) of cod in Division VIId 1989 to 1990.

Stock at start of and catch during 1989

Age: Stock No : H.Cons : Discards By-cateh Total ;					
1 11	6608 ;	1005 :	0	0	1005
- 21	4307 ;	2544:	01	0 1	2544
- 31	2907 :	1596	01	01	1596
1 41	1064 ;	867 ;	0 :	$0:$	867
- 51	26 ;	16 1	01	01	16
$6:$	4 1	21	01	01	2
1 Ht	20455 :	10800 :	01	0 :	10800 :

Stock at start of and catch during 1990 for $F(1990)=F(1989)$

\| 11	6608 ;	1005 :	0 1	0 -	1005
- 21	4505 ;	2661 :	0:	01	2661
1 31	1265 :	695	01	01	695
1 41	960 :	783 :	01	0 -	793
1 51	112 :	70 :	$0:$	0 :	70
1 61	$8:$	51	01	01	5
\| 紤	16794 :	8731 -	0 -	0)	8731

Table 15.11 Nominal catch (in tonnes) of COD in Division VIIe, 1979-1988, as officially reported to ICES.

Country	1979	1980	1981	1982	1983
Belgium	$2,052^{1}$	660^{1}	34	42	21
Denmark	850	798	779	653	567
France	-	-	-	-	-
Netherlands	137	205	222	262	292
UK (England and Wales)	3,048	1,675	1,035	957	880
Total	2,654	1,327	731	493	461
WG Estimate					

Country	1984	1985	1986	1987	1988
Belgium	15	12	8	10	12
Denmark	-	-	-	+	+2
France	390	359	1,305	1,122	$1,326^{3}$
Netherlands	-	1	66^{1}	-	-
UK(England and Wales)	236	243	406	524	840
Total	641	615	1,785	1,656	2,178
WG Estimate	385	458	1,447	1,700	1,644

${ }_{2}^{1}$ Includes Division VIId.
${ }_{3}^{2}$ Preliminary.
${ }^{3}$ Working Group estimate.

Table 15.12 Results of SHOT forecast for cod in Division VIIe.

rumnitig recruitoent weights											
older central younger		. 50		$\begin{array}{rr} 6-H= & .00 \\ \exp (d) & 1.00 \\ \exp (d / 2) & 1.00 \end{array}$							
		. 50									
		.00									
Year	Land Recrt U'td Y/B Hang Act'l Est'd Est'd Act'l Est'd Est'd										
	-ings Index Indax Ratio -over Prodn Prodn SqC. Expl Expl Land Bioa Biow -ings										
1973	2.1	3.3		. 50	. 50				5		
1980	1.3	5.8	5	. 50	. 50	0			3		
1981	.?	2.3	4	. 50	. 50	0			1		
1982	. 5	. 8	2	. 50	. 50	0			1		
1383	. 5	3.5	2	. 50	. 50	0	0	0	1		. 3
1984	.4	3.7	4	. 50	. 50	0	0	0	1		. 4
1985	. 5	2.5	3	. 50	. 50	1	0	0	1		. 3
1986	1.4	1.9	2	. 50	. 50	2	0	0	3		. 3
1987	1.7	12.7	7	. 50	. 50	2	1	1	3	3	1.4
1988	1.6	3.8	8	. 50	. 50	2	2	2	3	3	1.7
1989		1.1	2	. 50	. 50		1	1		2	1.1
1990		4.0	3	. 50	. 50		1	1		2	. 8
1991		4.0									

Table 16.1 Nominal catch (in tonnes) of HADDOCK in Sub-area IV, 1979-1988, as officially reported to ICES.

Country	1979	1980	1981	1982	1983
Belgium	732	1,414	1,217	966	985
Denmark	8,248	12,928	13,198	22,704	25,653
Faroe Islands	7	27	46	6	51
France	7,208	7,407	11,966	15,988	11,250
German Dem. Rep.	12	36	-	-	-
Germany, Fed. Rep.	2,549	2,354	3,387	4,510	3,654
Netherlands	955	1,557	2,279	1,021	1,722
Norway	968	1,191	2,283	2,888	3,862
Poland	106	59	31	317	150
Sweden	907	1,165	1,301	1,874	1,360
UK (England and Wales)	10,774	12,195	14,570	16,403	15,476
UK (Scotland)	54,119	64,058	82,798	107,773	100,390
USSR	18	-	-	-	
Total	86,603	104,391	133,076	174,450	164,553
Country	1984	1985	1986	1987	1988
Belgium	494	719	317	165	220
Denmark	16,368	23,821	16,397	7,767	9,171 ${ }_{1}^{1}$
Faroe Islands	-	5	4	-1	$\begin{aligned} & -1 \\ & -13 \end{aligned}$
France	8,103	5,389	4,802	3,889	$2,166^{13}$
German Dem. Rep.	-	-	-	-	
Germany, Fed. Rep.	2,571	2,796	1,984	1,231	$825{ }^{1}$
Netherlands	1,052	3,875	1,627	1,093	859^{4}
Norway ${ }^{2}$	3,959	3,498	5,190	2,610	1,505 ${ }^{1}$
Poland	17	-	1	-	-
Sweden	1,518	1,942	1,550	937	614
UK (England \& Wales)	12,340	13,614	8,137	7,491	5,537
UK (Scotland)	87,479	112,549	126,650	84,063	84,104
USSR	-	-	-	-	-
Total	133,901	168,208	166,659	109,246	105,001
${ }_{2}^{1}$ Preliminary.					
${ }^{2}$ Figures from Norway do not include haddock caught in Rec. 2					
Includes Division IIa.					

Table 16.2 Annual weight and numbers of haddock caught in Sub-area IV between 1969 and 1988.

Table 16.3 Values of natural mortality rate and proportion mature at age.

[^3]Table 16.4 Total international catch at age ('000) of haddock in Sub-area IV between 1969 and 1988.

- Age ${ }^{\text {a }}$	1969 :	1970 :	1971	1972	1973	1974	1975	1976	1977	1978 : Age
0	725591	9246011	330674	240896	598731	6014121	449471	167173:	114902	-1---1
1 11	204691	2661471	18099631	6758311	3648241	1213866	2096826	1675991	2501341	4540821
\| 21	35747971	2182931	707351	5840761	5671314	1743891	6326721	10461101	104307:	142666 2 ;
131	3030701	19065731	472241	401501	2374981	3266591	576301	2045051	376971:	28695; 31
141	75841	573621	3973281	209481	60991	531371	106048	95551	380611	10717014
151	24071	11761	102881	155922	43991	18321	153201	300441	40861	815315
161	25121	11951	4581	3516 :	388291	13201	9521	47931	59391	119016
1 7 1	190991	2561	1931	188:	12371	106721	6011	1981	12301	194217
(81	2001	5946 :	1461	331	1061	2361	26281	731	1281	377181
1 91	241	671	15781	271	281	231	2581	7281	271	108191
\| 10)	71	111	159:	4021	1081	311	611	$58:$	1901	$14: 10:$
1 11 \|	;	191	81	111	531	91	181	$3!$	41	74:11:

\| Agel	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988 (Age	
101	8413821	3749411	6463381	2786911	6397881	954881	1396031	564761	94151	108001	01
\| 11	3447301	6595461	134433:	2753411	1561231	4321051	1792171	1602561	2772371	290171	1
\| 21	1981421	323135:	4131151	838151	247614	1617091	526352]	1776911	246810:	482446:	2
\| 31	395501	687131	1381821	2878231	71188	1184981	754851	3202841	46722 i	873771	3
1 41	7068:	98371	14456	403211	1232411	213651	366191	270671	673101	13147	
\| 51	26742	1784	1883:	31981	15954	321331	52701	95041	46271	18420	5
1 61	2134:	7573:	3741	6911	16451	36971	72861	12081	28161	1546:	6
' 71	2501	5621	24621	2681	$286 ;$	5901	9541	18081	5301	6141	71
1 81	461 !	1141	1231	7801	591	761	2091	2351	7681	1521	8
191	1451	1531	631	291	1881	371	541	1011	1301	1341	91
[10	521	701	231	151	521	1101	221	431	321	4811	10
; 11 :	231	421	381	111	141	211	931	771	111	4811	11

Table 16.5 Total international mean weight at age (kg.) of haddock in Sub-area IV between 1969 and 1988.

Table 16.6 Total international fishing mortality rate at age of haddock ir Sub-area IV between 1969 and 1988.

; Age ${ }^{\text {l }}$	1969	70	1971 ;	1972						:
10 1	0.015	0.027	0.	0.029	0.002	0.012	0.010	0.027	0.012	0.018
1	0.020	0.449 :	0.428:	0.155 :	0.341	0.324	0.307	0.284	0.306	0.358 !
2	0.655	1.032	0.661 ;	0.795	0.572	0.938	0.978	0.826	1.010	1.012 !
3	1.374	1.153;	0.804 ;	1.329	1.164)	0.960 :	1,264	1.380	1.042	1.122 I
4	1.217	1.269 ;	0.875	1.198	0.792	1.006	1.110	0.789	1.246	1.1051
5	0.779	0.6321	0.870 :	1.164	0.953 :	0.612 ;	0.993	1.285	1.031	1.109 :
6	1.225	1.237 :	0.545 ;	0.8661	1.111)	0.878	0.765	1.047	1.005	1.025;
7	0.988	0.362 :	0.6681	0.452 1	0.895	1.151)	1.488	0.348	0.869	1.1701
81	0.301	1.023 :	0.362 ;	0.224	0.5001	0.416	1.053	0.728	0.397	0.732
191	0.621	0.156 -	0.864 ;	0.104	0.301 1	0.187	1.143	1.000	0.674	0.697: 91
[10	0.783 :	0.682 :	0.662 :	0.562	0.752 ;	0.649	1.0881	0.882	0.795	0.947:10:
11.1	0.783	0.682	0.662	0.562	0.752	0.649 -	1.088	0.882	0.795	0.947 : 11

Age:	1979	1980	1	1982	1983	1984	1985		1987	88
0	0.030 :	0.062 1	0.051 -	0.035 -	0.024 ;	0.014 ;	0.014	0.0031	0.005	0.003
11	0.1611	0.171 ;	0.167	0.161 1	0.142 :	0.115	0.190	0.115	0.1001	0.10711
\| 21	0.892 ;	0.7041	0.454	0.434 :	0.6631	0.668 ;	0.6101	1.013	0.851	$0.817: 21$
3	1.143	1.196	0.9401	0.810 :	1.015	0.986 :	0.961	1.230	1.046	1.090:31
141	1.067	1.146 :	0.984	0.879 -	1.146	1.128 :	1.096	1.340	1.065	1.098
5	1.010	0.9351	0.735 -	0.6331	1.198 :	1.216	1.050 ;	1.053	0.944	1.065 : 51
(61	1.050	0.927 I	0.508:	0.6661	0.806 :	1.068 :	1.075 :	0.740	1.123	$1.023: 16$
171	0.621	0.9121	0.931 ;	0.861	0.652	0.783 :	0.923 -	0.884 :	0.880	$0.810: 7$
181	1.038	0.647 ;	0.511 :	0.904	0.460	0.357	0.724 :	0.612 ;	1.317	0.688: 8
1 91	$0.713:$	1.322 :	0.962 :	0.2121	0.574 :	0.5891	0.4671	0.983	0.840	0.878: 91
[10)	0.886	0.949 :	0.729 :	0.655	0.738	0.803 ;	0.848 ;	0.854	1.021	$0.893: 10:$
11 :	0.886:	0.949 :	0.729 ;	0.655 -	0.738 :	0.803 ;	0.848:	0.854	1.021 :	$0.893: 111$

Table 16.7 Stock numbers at age ('000) of haddock ir Sub-area IV between 1969 and 1988.

Age	1969	1970	1971	1972	1973	1974	1975	1976		1978 : Ȧge	
10	17770	892	7398					149502301	23148380	366943701	
1 11	21134301	1417045:	10055060 :	94247141	2469024	85828181	155541701	1332719:	1861322	29452661	
1 21	88342221	397877:	173637:	1259322	1550268	3372741	1191885	2196966	192602	263188	
131	4461221	30761701	949981	500981	J81288:	5865231	86506	3004391	344492	470021	3
141	118821	879171	7562351	330981	12394	927601	1748311	194761	588791	1770701	41
\| 51	49451	27401	192521	2454291	77791	43711	264181	448901	68931	13184;	5
1 61	38461	1821	1192	86001	62723:	24561	19401	80131	101691	20131	
171	330431	925:	4321	5661	22731	169051	8361	7391	23041	30491	
181	9441	100761	$527!$	1821	2951	7601	43781	155 ?	4271	7911	
- 91	$56:$	5121	29671	3001	1191	1461	4101	1251 !	611	2351	
! 101	141	$25:$	3581	10231	2221	721	991	1071	3771	2511	10 !
111	i	411	181	281	1091	201	304	6	71	131: 1	11

! Age	1979		1981	1982	1983	1984	1985	1986	1987	1	
0 ; 669388301		501	30307230	19020960	63678	62	2339378	457592301	44992431	7709930	
111	46375271	8363722	17508291	37074101	23647141	80045421	20623791	2969405:	58737111	5763601	
21	3956071	7582471	13533041	2846571	6062651	3940381	1370331:	327513:	500360?	1020728 i	
31	641301	1086451	251451	5761541	1236141	2093401	135462;	498974:	79687	145522 :	
4	11916 :	159291	255751	765111	1995381	348911	60806	40345 :	1135901	218001	
5	456611	3192 ;	39451	74461	247281	494091	87921	15831:	82281	304841	
$6:$	35611	$13621 ;$	10271	15491	32371	81101	119911	25181	45221	2620 I	
71	5911	10211	44141	5061	6511	1184 :	1720 !	33501	984	$1205:$	
81	7751	2601	3361	14241	1751	2781	4431	5591	1133:	3341	
191	3111	2251	1121	1651	4721	911	1591	1761	2481	2491	
¢ 10 !	961	1251	491	351	1091	2181	411	921	541		
1 11)	421	751	801	26 !	301	421	177	1461	1881	88: 1	11

Table 16.8 Mean fishina mortality, biomass and recruitment of haddock in Sub-area IV between 1969 and 1988.

	Hean Fishing Hortality	Biomas	Recruits	
i	Ages \| Ages	1000 tonnes	Age	
i	2 to $6 \quad 10$ to 31			
Year	H.Con : Disc : By-cat :	Total : $5 p$	on:	
1969	0.749: 0.092 : 0.197			
1970	0.753: 0.123			
1971	. 603			
- 1972	0.900: 0.146: 0.049	1595	年 19743	
\| 1973		0.779 ${ }^{\text {a }}$ 0.128: $0.031:$	853 ; 283	73 \| 66811
- 1974	0.636: $0.143: 0.099:$	1453 : 246	\|7	122236
- 1975 :	0.753: 0.208: 0.083 ;	1990 : 225	$75: 10458$	
\| 1976	0.812:0.158:0.120	826 : 289	76 : 14850	
- 1977 \|	0.805: 0.132 : $0.165 ;$	522 - 222	77: 23148	
-1978	0.855: 0.192 0.057	6041123	78: 36694	
-1979	0.912: $0.088: 0.053:$	629 : 102	79 ¢6939	
- 1980 :	0.823: $0.082 ; 0.082 ;$	1168 : 144	80:14474	
- 1981	0.615: 0.089 : 0.060	636 : 228	$81: 30307$	
\| 1982 :	0.567:0.069 0.063 :	795 - 285	82 - 19021 -	
-1983	0.791: $0.148: 0.047$;	714 : 241	83:63678:	
\| 1984		0.894: 0.094 0.031;	1419 : 189	84:16245
: 1985	0.858:0.079 0.017	821: 231		
- 1986	0.893: $0.179: 0.011 ;$	692: 213	86 : 42651 -	
\| 1987	0.863: $0.138: 0.014 ;$	945: 152		
-1988	0.847: $0.148: 0.017$:	$398: 149$	88: 7550 :	
; Arit-mean recruits at age 0 for period 1969 to 1988: 37403 ; © Geom-man recruits at age 0 for period 1969 to 1988: 26392 ;				

Table 16.9 Input for catch prediction of haddock in Sub-area IV.

Recruits at age 0 in $1989=14870000$
Recruits at age 0 in $1990=26392310$
Recruits at age 0 in $1991=26392310$
Recruits at age 0 in $1992=26392310$
In at age and proprtion mature at age are as shon in Table 16.3
Hean F for ages 2 to 6 in 1988 for human consuaption landings + discards $=0.995$,
Human consulaption + discard F-at-age values in prediction are mean values for the period 1994 to 1989 rescaled to produce a mean value of F for ages 2 to 6 equal to that for 1988

Hean F for ages 0 to 3 in 1988 for small-mesh fisheries $=0.017$.
Industrial fishery F-at-age in the prediction are averages for the period 1984 to 1988.
rescaled to produce a mean value of F for ages 0 to 3 equal to that for 1988
Values of N in 1988 from UPA have been overwritten
for the folloring ages
$\begin{array}{ll}\text { Age } & 0 \\ \text { Age } & 1 \\ \text { Age } & 2\end{array}$
Values of F for these ages in 1988 froa UPA have been overaritten nith scaled mean values used for predictions for 1989 onhards

Table 16.10 Predicted catches and biomasses ('000 tonnes) of haddock in Sub-area IV 1989 to 1990.

Stock at start of and catch during 1989

Agel Stock No i H.Cons i Discards: By-catchi Total \|					
01	14870000	01	5171 1	410921	16263 ;
111	977532 ;	2144 1	40950 1	9594 ;	52688 ;
121	93706 :	15988 ;	23077 1	1166 ;	40231 1
1 31	287797 !	134277	22162 !	3192 ;	159630 :
141	38104 !	21270 !	461 1	383 !	22114 ;
i 51	5664 ;	3154 1	81	49 !	3211)
161	86031	4699 :	11	21	4703 ;
171	771 1	379 ;	01	$0:$	3791
181	4391	195 i	01	01	1951
191	137 ;	62 1	01	01	62 ;
110	85 1	431	01	01	431
1 11 !	29 !	151	01	01	151
:----1					
1 Ht	329324	92130 ;	17207 I	2617 i	111953)

Stock at start of and catch during 1990 for $F(1990)=F(1989)$

Table 16.11 Estimated age composition of haddock in Sub-area IV in first half of 1989.

	Human Consuaption		Small Hesh		International
	Landings	Discards	By-catch		Catch
- Agel Nu					
10	1	- 1	硣		Nuaker Neight
1 11	46 0.256	: 17460: 0.122	:		17506 : 0.123 :
121	$3723: 0.316$	15862 0.204	,		19584 : 0.226
1 31	75365 : 0.360	56020 0.252	+		131385 : 0.314
141	12424 : 0.560	: 724 : 0.256	+		13148: 0.543 1
1 51	$1873: 0.712$	$: \quad 610.309$	+		$\begin{array}{r}1880 \\ 180 \\ \hline 1\end{array}$
1 61	$2723: 0.943$: 610.309	+		2729 : 0.942
1 71	413 1.285	1 !	,		413:1.285
1 81	111 : 1.646	1 1	,	;	111 1.646:
191	75: 1.533	1 !	$1 \quad 1$	+	75: 1.533 ;
1 101	21 2.224 11	1		;	 21 2.224 1
111:	$11: 2.086$	1	+	+	 11 2.086
\| 121	\begin{tabular}{l\|l	l	l	l	l
\hline					
\end{tabular}	1	!	;	$11.953:$ 4	
; 13:	+	,	+	'	41.951
! 14 !	1	11	,	1	
\| 15		1	;	,	,
$1 \mathrm{No.1}$	96788	190078	10	-	186866 \|
	40049	119683	10	1	59731

[^0]: *General Secretary
 ICES
 Palægade 2-4
 DK-1261 Copenhagen K
 DENMARK

[^1]: ${ }_{2}^{1}$ Preliminary.
 ${ }^{2}$ Included in Division VIa.

[^2]: ${ }_{2}^{1}$ Included in Division VIIe.
 ${ }_{3}^{2}$ Preliminary.
 ${ }^{3}$ Working Group estimate.

[^3]: i Agge : Nat Hor: Mat.
 ;-----:--------|--------|
 $0: 2.050: 0.000:$

 | 1 1 | 650 | 0.010 |
 | :--- | :--- | :--- | :--- |

 \(2: 0.400: 0.320:\)
 3: \(0.250: 0.710\) :
 : 4 : $0.250: 0.870$
 $5: 0.200: 0.950$:
 ($6: 0.200: 1.000:$
 1 7:0.200:1.000:
 8: 0.200 : 1.000;
 9: $0.200: 1.000:$
 $10: 0.200: 1.000$:
 $11 ; 0.200: 1.000$:

