This report not to be quoted without prior reference to the council*
International Council for the Exploration of the Sea
C.M. 1987/Assess:8

HAVFORSKMINGSNSTIUTT Pb. 1870 - Nordnes
5024 Bergen

REPORT OF THE WORKING GROUP ON ATLANTO-SCANDIAN HERRING AND CAPELIN
Copenhagen, 27-31 October 1986

This document is a report of a Working Group of the International Council for the Exploration of the sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.

[^0]1 INTRODUCTION AND PARTICIPATION 1
1.1 Terms of Reference 1
1.2 Participants 1
2 NORWEGIAN SPRING-SPAWNING HERRING 1
2.1 Working Papers Presented 1
2.2 Catch Statistics 1
2.3 Recruitment 2
2.3.1 Larval survey in 1986 2
2.3.2 The o-group index from the international o-group survey 2
2.3.3 Acoustic O-group estimates in the Barents sea 2
2.3.4 Acoustic O-group estimates in Norwegian coastal areas 3
2.3.5 Acoustic estimates of the 1983 year class in the Barents Sea 3
2.4 Adult Stock 4
2.4.1 Tagging 4
2.4.2 Mortality estimates 4
2.4.3 Stock abundance estimate 5
2.4.4 Virtual population analysis 6
2.4.5 Catch and stock prognosis 7
2.4.5.1 Input data for the component in Norwegian coastal waters 7
2.4.5.2 Input data for the Barents Sea component 7
2.4.5.3 Results of prognosis 8
3 BARENTS SEA CAPELIN 8
3.1 Working Papers Presented 8
3.2 Regulation of the Barents Sea Capelin Fishery 8
3.3 Catch Statistics 9
3.4 Stock Size Estimates 9
3.4.1 Larval and 0 -group surveys 9
3.4.2 Acoustic stock estimates 9
3.4.3 History of catch and stock 10
3.4.4 Management considerations 11
4 THE ICELANDIC CAPELIN 12
4.1 The Fishery 12
4.2 The October 1986 Stock Abundance Estimate 13
4.3 TAC for the December 1986 - March 1987 Period 14
4.4 TAC for the Summer - Autumn 1987 Season 14
Section Page
5.1 Introduction 15
5.2 Norwegian Spring-Spawning Herring 16
5.3 Barents Sea Capelin 16
5.4 Icelandic Capelin 17
6 REFERENCES 17
Tables 2.1-4.4 18
Figures 2.1-4.4 40
Appendix A, Tables 1 - 6 51

1 INTRODUCTION AND PARTICIPATION

1.1 Terms of Reference

The Working Group on Atlanto-Scandian Herring and Capelin met at ICES headquarters from 27 to 31 October 1986 to:
a) assess the status of the Norwegian spring-spawning herring and capelin in sub-areas I, II, V, and XIV and advise on any necessary management measures for these stocks;
b) provide time series of catch in numbers, fishing mortality, and stock size at age from VPA for all stocks as far back as possible.

1.2 Participants

J. Carscadden	Canada
H. Gjøsæter	Norway
J. Hamre	Norway
O. Halldorsson	Iceland
H. J. Jakupsstovu	Faroes
P. Kanneworff	Denmark
V. Shleinik (Chairman)	USSR
R. Toresen	Norway
H. Vilhjalmsson	Iceland

2 NORWEGIAN SPRING-SPAWNING HERRING

2.1 Working Papers Presented

The following working papers were presented: "Norwegian springspawning herring" by J. Hamre and R. Toresen, and "Spawning efficiency of Atlanto-Scandian herring on the Norwegian Shallow in 1986" by I.V. Borkin and A.I. Krysov.

2.2 Catch Statistics

A national catch quota of $61,380 t$ was set for Norwegian vessels in 1985. The fishery is regulated with a quota per vessel.

The catch of Norwegian spring-spawning herring from 1972 to 1985 in terms of weight and number is presented in Tables 2.1 and 2.2. A quantity of $10,000 t$ was added in Table 2.2 for herring of age 3 and older to compensate for unreported catches. These tables also include the by-cafches of 0 - and 1 -group herring in the sprat fishery north of $62^{\circ} \mathrm{N}$, and the by-catches of 2 -group herring by the USSR and Norway in the capelin fishery in the Barents Sea. In the winter of 1986, a USSR catch of 3 -group herring in the Barents sea is reported to be $26,000 t$. The preliminary 1986 catch in Norwegian coastal waters up to 1 November is reported to be $65,000 \mathrm{t}$.

2.3 Recruitment

2.3.1 Larval survey in 1986

The USSR conducted a herring larval survey in April 1986 as in previous years. The number of herring larvae caught was lower in 1986 compared with 1983, and their distribution was more southern.

2.3.2 The 0-group index from the international o-group survey

Indices of 0 -group Norwegian spring-spawning herring have been estimated for the period 1965-1986 based on data from the international o-group surveys in the Barents sea. The estimated indices of abundance for the last 14 years are given in Table 2.3.

The recruitment of herring has been very low in the period since the 0-group surveys started in 1965. However, in spite of the fact that the spawning stock biomass is still at a low level, a very strong year class was recorded in 1983. The strength of this year class has been verified several times by acoustic abundance estimation (R申ttingen, 1985; 1986). The estimated O-group indices of the 1984 and 1985 year classes were on a considerably lower level than that for the 1983 year class. However, compared to the level of recruitment in the 1970s and early 1980s, these year classes were considered as strong at the O-group level. In 1986, only a few individuals of o-group herring were caught during the O-group survey in the Barents Sea. Thus, the estimated logarithmic index this year is zero indicating a weak year class.

2.3.3 Acoustic 0-qroup estimates in the Barents Sea

The acoustic estimates of O-group herring in the Barents Sea for the last four years are shown in the text table below:

Year class	Estimated number $\times 10^{-9}$	Time of survey
1983	35.7	Nov 1983
1984	6.2	Nov 1984
1985	41.5	Sep 1985
1986	0	Sep 1986

The estimates for the years 1983-1984 are looked upon as underestimates. The conditions for abundance estimation of 0-group herring in 1985 were more favourable, and the estimate was considered far more reliable than the corresponding estimates for the two previous years. In 1986, no O-group herring were detected in the Barents Sea.

The correlation between the index of the international o-group survey and the acoustic 0 -group estimates in the Barents sea in 1983-1985 is rather poor. There has been no doubt about the strength of the 1983 year class since it appeared strong in both surveys. The 1984 year class came out with a fairly high index in
the O-group survey, but later it failed to appear either at the o-group stage in late autumn or at the 1 -group stage last year. The lack of appearance during the acoustic survey in 1984 can be explained by the lack of coverage due to bad weather conditions. However, the reasons for the almost complete absence of this year class during the acoustic survey last autumn cannot be explained in the same way. The severe decline in the stock of capelin in recent years indicates a dramatic increase in predation pressure caused by the increase in the stocks of cod and haddock in the area. These species are also feeding heavily on small herring, and the disappearance of the 1984 year class is assumed to be caused by predation. According to the acoustic estimate of the 1985 year class last year, it was also found to be abundant as 0group herring. However, the results from the international survey this autumn also indicate that this year class is severely reduced.

2.3.4 Acoustic 0-group estimates in Norwegian coastal areas

An acoustic survey of 0 -group herring distributed in the coastal areas of Norway has been conducted in November-December each year since 1975. The results are presented in Table 2.4.

2.3.5 Acoustic estimates of the 1983 year class in the Barents Sea

The text table below reviews the acoustic abundance estimates of the 1983 year class in the Barents sea:

Time	Abundance of 1983 year class in the Barents
Sep 1985	23.3
Jan 1986	14.5
May 1986	5.9

The conditions for acoustic abundance estimation of herring in the Barents Sea have usually not been good. The main problem in September 1985 was small dense schools near the surface, and in January 1986 most of the herring were recorded on the sea bed. In May 1986, the herring were recorded under good weather conditions as a scattering layer in $150-200 \mathrm{~m}$ depth. These should normally be good conditions for acoustic abundance estimation. However, an intercalibration in the summer of 1986 showed that the threshold level for the R/V "Eldjarn", which carried out the May 1986 survey, was high for depths below 100-150 m. The May 1986 abundance may, therefore, be underestimated. During the international blue whiting survey in the Norwegian sea in the summer of 1986 , the integrator outputs for recordings for the R/V "Eldjarn" from under 150 m depth were multiplied by 1.82 before application in the abundance estimates (Monstad, 1986).

2.4 Adult Stock

2.4.1 Tagqing

With respect to the tagging method and the model used in computing the tagging data, reference is made to the working paper on Norwegian spring-spawning herring presented to the AtlantoScandian Herring and Capelin Working Group in 1985.

As in previous years, the herring is assessed in two separate components: a southern and a northern component. The assessment of the adult stock is based on recoveries retained from winter catches taken in the wintering areas and on the spawning grounds. In the winter of $1986,2,246 \mathrm{t}$ of prespawners caught in the wintering area and on the spawning grounds of the northern stock component were screened for tags and 286 tagged herring were recovered. From 2,586 t of herring caught on the spawning grounds of the southern stock component, 397 tags were recovered. Details of the recoveries are shown in Tables 2.5 and 2.6 for the southern and northern components, respectively. The boundary between the spawning grounds of the two components is at about $63^{0} \mathrm{~N}$.

The releases allocated to the southern component have given 347 recoveries from catches taken south of $63^{\circ} \mathrm{N}\left(r_{s}\right)$ and 50 recoveries in catches from north of that latitude ${ }^{s}\left\{r_{s n}\right.$). For the northern component, $r_{n m}$ and $r_{n s}$ are 272 and 14 respectively. The screened catches by number, age, and component are shown in Table 2.7 .

2.4.2 Mortality estimates

Prior to 1982, the herring used for tagging were caught by purse seine, towed to the shore, and kept in keepnets before tagging. This was the tagging procedure used in the 1950s, and in assessing stock size from these data, a tagging mortality of 30% was applied (Dragesund and Jakobson, 1963). In 1982, a new method of tagging was introduced. The herring are now brailed onboard the seiner by a special brailing net and kept in RSV tanks before tagging. This new method of handling the tagged herring seems to have increased the mortality due to tagging (decreased the survival coefficiornt s). In order to investigate the magnitude of the change in s after 1982, the recoveries are grouped in two time series: the releases in the period 1975-1981 and those tagged in 1982 - 1985 (Tables 2.5 and 2.6). This investigation indicates that s is reduced by some 50% after introducing the new tagging method. For further explanation, reference should be made to the working paper by Hamre and Toresen presented at this meeting and available at the ICES secretariat.

The estimates of total mortality Z over the period 1975-1981 are derived from recoveries retained from combined samples of winter catches in 1984 - 1986 as shown in Tables 2.5 and 2.6 . Using the data combined, the plot of $\ln K\left(K=m / r \times 10^{2}\right.$) against time in liberty is shown in Figures 2.1A and 2.1B for the southern and northern components, respectively. The 1976 releases in both components and the 1980 releases in the north yield very few recoveries. They are regarded as unsuccessful releases and, therefore, are excluded. Fitting regression lines to the remaining
points, the slopes of the lines (Z values) are estimated to 0.18 and 0.16 for the southern and northern stock components, respectively. These estimates are in accordance with the corresponding estimates obtained last year ($Z=0.17$).

2.4.3 Stock abundance estimate

Since there is no change in the fishing mortality in 1982 and 1983 (Table 2.11), the number of surviving tagged herring in 1984 by components is calculated by assuming no change in Z in 1982 and 1983:

$$
\begin{aligned}
& {\left[m_{s}^{\prime}\right]_{84}=\left[m_{s}^{\prime}\right]_{82} e^{-2[0.18]}=26,598} \\
& {\left[m_{n}^{\prime}\right]_{84}=\left[m_{n}^{\prime}\right]_{82} e^{-2[0.16]}=39,014}
\end{aligned}
$$

Due to the uncertainties of the relative tagging mortality before and after 1982, only the releases before 1982 are used in this estimate, and the (m^{\prime}) 82 values for these releases are shown in the right hand columns of Tables 2.5 and 2.6 . The 1976 release in both components and the 1980 release in the southern component are, moreover, considered unsucessful tagging and excluded. The calculated Z values for the years 1975-1981 (0.18 and 0.16) are assumed to be valid for the years 1982 and 1983.

The releases are allocated to components according to the position of the catches from which the bulk of the recoveries are retained, and the recoveries $r_{s n}$ and $r_{n s}$ are considered to represent mixed releases. The ${ }^{s n}$ former ${ }_{r}^{n}{ }^{\text {eppresents tagged }}$ and released herring in the southern area, which are expected to belong to the northern stock component, and the latter represents herring tagged in the north but belonging to the southern stock component. The corresponding numbers of surviving tagged herring, $m_{s n}$ and $m_{n s}$, were calculated by the formulas:
where

$$
m_{s n}=\frac{X \times m_{n}^{\prime}-m_{s}^{\prime}}{X \times Y-1} \quad \text { and } \quad m_{n s}=\frac{Y \times m_{s}^{\prime}-m_{n}^{\prime}}{X \times Y-1}
$$

$$
\frac{r_{s s}}{r_{n s}}=X \quad \text { and } \quad \frac{r_{n n}}{r_{s n}}=Y
$$

These two equations are applied to estimate $m_{s}=m_{s}^{\prime}-m_{s n}$ and $m_{n}=m_{n}^{\prime}-m_{n s \prime}$ respectively, where m and m are the actual ${ }^{s n}$ number on survivings'tagged herring in the respective areas by components. For further description of the method, reference is made to the 1985 working paper.

Disregarding tagging mortality, the surviving tagged fish in 1984 by area of component distribution is calculated by inserting the relevant data in the two formulas:

$$
\begin{aligned}
& m_{s_{84}}=m_{s}-m_{s_{8}}=26,598-7,753=18,845 \\
& m_{s_{84}}=m_{s}^{\prime}-m_{s_{84}}=39,014-312=38,702
\end{aligned}
$$

The 1979 and older year classes are supposed to be fully recruited in 1984 and, assuming 30% tagging mortality as in previous years, the following stock abundance estimate of 5 years and older herring in the spring of 1984 is obtained:

$$
\begin{aligned}
& N_{s}=\frac{0.7 \times 18,845 \times 6,582 \times 10^{3}}{121}=718 \times 10^{6} \\
& N_{n}=\frac{0.7 \times 38,702 \times 5,906 \times 10^{3}}{149}=1,074 \times 10^{6} \\
& N=N_{s}+N_{n}=1,792 \times 10^{6}
\end{aligned}
$$

The corresponding stock abundance estimate made last year is (in millions of individuals):

$$
N_{79+}=\left(N_{s}+N_{n}\right)_{79+}=804+1,470=2,274
$$

The present estimate is about 25% lower than the estimate made last year, but corresponds with the estimates made in 1984 (1,718). The main reason for the reduced stock abundance calculated this year is the exclusion of the releases after 1982, but the exclusion of the 1975 release in both components and the 1980 release in the southern component has also contributed to this reduction.

2.4.4 Virtual population analysis

The state of stock at 1 January 1986 has been assessed by tuning the VPA against the estimated state of stock in 1984 referring to the 1979 and older year classes. The 1980 and 1981 year classes were assessed by assuming an F value in 1985 equal to the calculated avexage F of the 1978 and 1979 year classes. The 1982 year class in 1985 is assessed according to the acoustic 0-group estimate in 1982 and the regression function shown in Figure 2.2.

The following input data were applied:

> Catch in number per year class Table 2.2
> Weight at age Table 2.8
> Maturation Table 2.9
> Natural mortality M 0.13

Initial stockAbundance estimates of age 5+ in 1984 from tagging experiments

The results of the VPA back to 1976 are shown in Tables 2.10 and 2.11 and the results of the VPA back to 1961 are shown in Appendix A. The back-calculated stock and corresponding fishing mortality in 1973-1981 are in close agreement with the VPA estimates based on the stock abundance estimate obtained from tagging
prior to 1985. According to the stock estimate and VPA made last year, the spawning stock was found to increase from about 500,000 t in 1981 to $840,000 t$ in 1984. With a calculated F value in 1984 of 0.066 and assuming a similar F in 1985, this stock was projected forward to a level of $850,000 \mathrm{t}$ in 1986.

The present assessment shows a similar growth in the spawning stock in the 1970 s and in the beginning of the 1980s, but flattens out at a maximum of $635,000 t$ in 1984. This is mainly due to poor recruitment from the 1980 year class. The 1981 year class is also very poor, and since the fishing mortality is increased in 1984, the stock decreases to 580,000 t in 1985. The fishing mortality is further increased in 1985, and although the recruitment from the 1982 year class is somewhat improved, the stock has continued to decrease and is estimated at about $540,000 \mathrm{t}$ in 1986 .

2.4.5 Catch and stock prognosis

Due to a reduced growth rate for that portion of the 1983 year class which is distributed in the Barents Sea, the prognosis of catch and stock size for the period 1987-1988 was run in two separate sections, as last year.

2.4.5.1 Input data for the component in Norweqian coastal waters

The input data (Table 2.12) refer to the stock component at 1 January 1986. The estimate of the 1985 year class as 1 -year-olds is taken from the 0-group acoustic estimate (Table 2.4). The estimates of the 1984 and 1983 year classes are derived from the acoustic estimates of 0-group herring (Table 2.4) reduced by an annual conversion factor (C) of 0.41 . This estimate of C was obtained from the relationship between the numbers of 3 -year-old herring from VPA and the 0-group acoustic estimates (Figure 2.2). The estimates for ages 4 and older were from the VPA.

The fishing pattern was changed from that used in last year's assessment. The fishing pattern in 1986 was assumed to be the same as in 1985 when most of the flshing occurred in the south. Results from the O-group acoustic surveys (Table 2.4) indicated that most of the 1982 and 1983 year classes occurred in the north and, therefore, the fishing patterns were adjusted accordingly. The maturity ogive was the same as that used in the VPA.

The weights in the catch have also changed from those used last year. Previously, the catches were taken in the autumn, but now catches will be taken throughout the year and average annual weights are used.

2.4.5.2 Input data for the Barents Sea component

Only the 1983 year class is considered in this prognosis because the strengths of other year classes are considered to be negligible compared to the 1983 year class. The input data (Table 2.13) refer to the stock component at 1 January 1986. The estimate of the 1983 year class (14.5 x 10^{9}) was the January 1986 acoustic estimate obtained during the joint Norwegian-USSR acoustic survey. The value of $M=0.40$ was in order to compensate for the expected predation before the stock left the Barents sea in the
summer of 1986. The maturity ogive, weight in the catch, and weight in the stock were the same as used last year.

2.4.5.3 Results of prognosis

The results of the prognoses for the coastal component and the Barents Sea component are given in Tables 2.14 and 2.15, respectively. The combined prognosis for 1987 and 1988 is given in the text table below and in Figure 2.3. This combined prognosis

1986			1987				1988	
Stock biomass	SSB	C	Stock biomass	SSB	F	C	Stock biomass	SSB
1,791	543	123	1,772	755	0.00	0	2,317	1,635
					0.02	40	2,278	1,607
					0.04	89	2,232	1,572
					0.07	159	2,166	1,521
					0.11	242	2,086	1,464
					0.14	306	2,024	1,416

Weights are in '000 t.
assumes that both components are completely mixed or subjected to the same fishing mortality.

These results are less optimistic than the prognosis made last year, with the largest difference occurring in the coastal component.

In 1985, the spawning stock biomass was estimated at $840,000 t_{\text {, }}$ which was about $200,000 \mathrm{t}$ above the 1984 stock estimate. The present stock estimate is $540,000 \mathrm{t}$, which is about $300,000 \mathrm{t}$ less than predicted. The difference is due to the overestimate in 1985 which can be explained by changes in the tagging method.

3 BARENTS SEA CAPELIN

3.1 Working Papers Presented

The following working papers were presented: "The Barents Sea Capelin" by H. Gjøsæter, "On peculiarities of capelin approaches to coasts for spawning in spring 1986" by N.G. Ushakov, "Soviet investigations of larval capelin in the Barents Sea in $1986^{\prime \prime}$ by N.V. Mukhina and E.I. Seliverstova, and "Report of the joint Norwegian/USSR acoustic survey of capelin, herring, and polar cod in the Barents Sea in September-October 1986".

3.2 Requlation of the Barents Sea Capelin Fishery

Since 1979, the Barents Sea fishery has been regulated by a bilateral fishery management agreement between the USSR and Norway. A TAC has been set separately for the winter fishery and for the autumn fishery. The fishery was closed from 1 May to 15 August until 1984. Since 1984, the fishery has been closed from 1 May to

1 September. A minimum landing size of 11.0 cm has been enforced and a minimum mesh size of 16 mm introduced.

3.3 Catch Statistics

The international catch by country in the years 1965-1986 is given in Table 3.1. The capelin catch (USSR and Norway combined) in numbers by age and month for the period 1 September 1985 - 30 April 1986 is given in Table 3.2. No catches have been taken in the autumn of 1986.

3.4 Stock Size Estimates

3.4.1 Larval and 0-group surveys

Larval surveys based on Gulf III plankton samples have been conducted in June each year since 1981. The calculated numbers by year are shown in Table 3.3. From 1981 to 1985, there has been a constant larval production, aside from a 20% reduction in 1984. In 1986, however, no larvae were caught in the Norwegian larval survey. This can partly be explained by the late approach of the capelin to the coast, and consequently a late spawning this year. Some spawning is known to have taken place in the Varangerfjord area (this is confirmed by plankton sampling conducted in the area in June), but the extent is not known. Judging from the migration route of the aproaching capelin this year, probably very little spawning has taken place further west. The Norwegian larval cruise covered the area to the west of $35^{\circ} \mathrm{E}$, but no larvae were observed.

A Soviet larval survey based on the ring trawl and IKS-80 egg nets was carried out from 24 March to 15 July, Larval capelin were found only at three coastal stations of the Kola section on 14-15 July (Figure 3.1). A total of 772 larvae was captured with an average length of 11.9 mm .

This result confirms the results of a Soviet investigation on the capelin approaches to the coast for spawning and also a joint investigation in the Barents Sea in January which showed that the spawning stock in 1986 was at an extremely low level.

During the international o-group survey in the Barents sea in August (Anon., 1986), o-group capelin was observed in only a few trawl hauls spread over most of the surveyed area and in a small continuous area in the southeastern part of the sea (Figure 3.2). No index was calculated for capelin. However, the narrow distribution area and the low density of larvae indicates the 1986 year class to be even poorer than the 1985 year class.

3.4.2 Acoustic stock estimates

The 1986 acoustic survey was carried out in the period 6 september - 13 October as a joint Soviet-Norwegian cruise. The distribution of capelin in 1986 is shown in Figure 3.3. Five research vessels (three Norwegian and two Soviet) participated in
this survey. The following abundance estimates by year class were obtained:

Year	class	$\begin{gathered} \text { Number } \\ \left(10^{-\delta}\right) \end{gathered}$		Mean weight (g)		Biomass$\left(10^{-3} t\right)$	
1985	(1984)	8	(35)	4.2	(4.3)	32	(150)
1984	(1983)	3	(47)	11.7	(8.7)		(389)
1983	(1982)	3	(21)	14.3	(13.0)	42	(268)
1982	(1981)	0.2	(1)	16.0	(15.6)	2	(14)

The estimates of the same age groups in 1985 are shown in parenthesis for comparison. The 1985 year class is 5 times lower by number than the 1 -group measured last year.

The 1984 year class is less than 10% of the size by number of the 2-group measured last year and is the lowest 2 -group estimate ever obtained.

The strength of the 1983 year class is likewise the lowest 3group estimate recorded and is about 7 times lower by number than the 3 -group estimate obtained last year.

In addition, the 4-year-old fish have almost disappeared from the stock.

The observed mean weights of the various age groups are slightly above those measured last year. Nevertheless, the total stock biomass is estimated to be $116,000 \mathrm{t}$ (Table 3.4), compared to $820,000 t$ in 1985 .

It is assumed that the acoustic method of estimating stock abundance underestimates stock size in general, and it is likely that the relative error will be larger when the stock density is low. Moreover, the occurrence of the capelin together with a dominating stock of polar cod has added a new source of error to the abundance estimate of the capelin stock. Nevertheless, it must be concluded that the stock is now seriously depleted and may also suffer from recruitment failure in the years to come.

3.4.3 History of catch and stock

Table 3.5 provides information on stock size and mortality of the Barents Sea capelin stock since 1974. The model-dependent quantities are calculated from the same assumptions as used by the Working Group in 1984 (adjusting the 1982 estimate). The model used is documented in a paper by Hamre and Tjelmeland (1982) and in a working paper presented to the 1985 Working Group meeting. The computation of the various quantities in the table is explained below.

Stock size by 1 January

This quantity is calculated by taking the stock size estimate in September of the previous year and reducing it by fishing and natural mortality in the last three months of the year.

The natural mortality is estimated using the model "CAPELIN" for two periods with different levels of mortality: the mortality was 0.051 per month from 1973-1978 and 0.072 per month from 19791984. These two periods were chosen not only because annual estimates revealed that a change to higher mortalities took place around 1978-1979 (Figure 3.4), but also because biological considerations make such a change plausible. The total stock of capelin was much reduced that year, both because the growth rate was faster resulting in a larger-than-usual proportion of the stock that matured, spawned, and died and because fishing was heavy. If the stocks of capelin predators took an equal amount of capelin as in previous years, this must have led to an increased natural mortality. As the natural mortality and the length at maturity cannot be separated in the estimations, the maturing length is also decisive for the calculations of stock sizes. For the two periods mentioned, the length at maturity was 14.01 cm and 13.94 cm , respectively. For $1984-1985$, the natural mortality was estimated to be 0.14 per month for a length at maturity of 13.06. These values are also tentatively used for the 1985-1986 period.

Spring catch and autumn catch

The catch per season is the sum of Norwegian and Soviet catches. The catches from other countries are negligible.

Spawning stock size by 31 March

An estimate of the abundance of the mature portion of each age group contributing to the spawning stock is calculated from the total population by the model according to the length at maturity. This estimation is done by January, and the spawning stock is reduced by catch and natural mortality in January, February, and March.

Stock at 1 August

The number of 2- to 5-year-old fish is back-calculated from the acoustic stock estimate in September, adjusting for the catch in August and prior to the survey in September.

For the 1 -year-old capelin, the stock size is back-calculated from the acoustic estimate of the year class as 2-year-olds the next september, adjusting for the catch in the previous 14 months.

Autumn fishing mortality

The fishing mortality in the autumn by age group is calculated from the stock size estimate at 1 August, the estimated natural mortality, and the catch in the autumn season.

3.4.4 Management considerations

The natural mortalities for immature capelin, estimated on a yearly basis, are shown in Figure 3.4. Prior to 1978, this mortality was at a low and constant level. From this year onwards, the mortality estimates fluctuate around an increasing mean value. From 1982 to 1985, the natural mortalitiy has increased almost fourfold. The fishing mortalities on immature fish in the
autumn fishery (represented by the mean fishing mortalities for the 2- and 3 -year-olds) are also depicted in Figure 3.4. Although there is an increasing trend in the fishing mortality during the period, the fishing has probably had a small impact on the stock compared to the natural mortality, except in the years 1982 and 1983.

In the report of the Atlanto-Scandian Herring and Capelin Working Group meeting in 1985, it was pointed out that the decline of the capelin stock exceeds by far what can be explained by the fishery, and is probably connected to the substantial change in the Barents Sea ecosystem observed in recent years. This change is first of all reflected in a series of four strong year classes of cod and haddock, and is probably connected to an increased inflow of Atlantic water in the period. For the capelin stock, these changes have led to an increased natural mortality and recruitment failure. The serious decline in the capelin stock size observed in 1986 supports these considerations.

Thus, the working Group concludes that the decline in the stock size is not primarily a problem of overfishing, but is mainly an effect of natural causes.

Up to 1985, the larval investigations indicated a constant larval production, and the recruitment failure observed for the 1984 and 1985 year classes was explained by an increased predation on the 0 - and 1 -group stage rather than by an effect of an insufficient spawning stock. However, in 1986, the larval production has probably been very small, and the expectations for the 1986 year class are consequently poor. This low larval production is also supported by the results of the international o-group survey. Therefore, at least three poor year classes will recruit to the stock, and it is expected that the stock will remain at the present low level in the coming years.

Based on the present low estimate of capelin abundance, the poor recruitment of the 1984-1986 year classes, and the increased natural mortality due to predation by the cod and haddock stocks which are increasing in abundance, the working Group recommends that no fishing of Barents Sea capelin should take place in 1987.

4 THE ICELANDIC CAPELIN

4.1 The Fishery

The total annual and seasonal catch of capelin in the IcelandEast Greenland-Jan Mayen area since 1964 is shown in Table 4.1 .

On the basis of the October survey, a TAC for the whole 1985/1986 season was set at l,280,000 t. The final catch figure for the 1985/1986 season is $1,307,000 t$ (Table 4.1). Surveying carried out in February 1986 indicated that the target of $400,000 \mathrm{t}$ of capelin spawning in 1986 was attained.

In February 1986, Iceland carried out an acoustic survey of the distribution and abundance of immature capelin of the 1984 and 1983 year classes which will constitute the fishable stock in the 1986/1987 season. The survey yjelded an abundance estimate by number of 72.3×10^{9} and 52.6×10^{5} for the above year classes,
respectively. This stock estimate indicated that the abundance in number of the fishable stock in the $1986 / 1987$ season might be similar to that of the previous $1985 / 1986$ season.

Due to the large variations in mean weight which may occur from one year to another, as well as in the maturity ratio of the younger year class, a TAC of $800,000 t$ was set for the JulyNovember 1986 period. A TAC for the December 1986/March 1987 period could then be set after a new stock abundance estimate became available in late October 1986.

When the October 1986 survey was completed, Norwegian and Icelandic capelin catches amounted to 150,000 and $280,000 \quad t$, respectively, and Faroese and Danish vessels had caught 70,000 t under Greenlandic license.

4.2 The October 1986 Stock Abundance Estimate

The autumn 1986 acoustic survey was carried out during the period 4-22 october. Two vessels participated and obtained the following abundance estimate by year class:

Year class	Number $\left(\mathrm{x} 10^{-5}\right)$	Mean weight (g)	Biomass $\left(10^{-3} \mathrm{t}\right)$
1985	58.6	4.0	237.1
1984	20.5	17.8	364.9
1983	29.9	24.1	719.3
1982	0.3	28.8	9.7
Total	109.3	12.2	$1,331.0$

Further details of this stock estimate are given in Table 4.2.
Judging by the maturity stage, approximately $1,090,000 t$, comprising practically all the capelin belonging to the 1983 and 1984 year classes, will mature and spawn in March 1987. The maturity ratio in the younger year class is, thus, very high which probably results from favourable feeding conditions as well as its relatively low abundance.

During the year's survey, there was little interference by drift ice except in the westernmost part of the distribution area of the juvenile 1985 year class. Otherwise, conditions for surveying were normal for this time of the year, with the possible exception of schooling near the surface at night in parts of the distribution area of the adults which, therefore, may be somewhat underestimated. The distribution and relative abundance of 1 - to 3 -group capelin in October 1986 is shown in Figure 4.1. The distribution of the O-group in August 1986 is shown in Figure 4.2 .

When taking account of the natural mortality rate $M=0.035 / \mathrm{month}$ (Table 4.3), as well as catch in numbers in the July-October 1986 period (Table 4.4), the February 1986 and October 1986 estimates of the abundance in number of the 1983 year class are in good agreement. Compared in the same way the October 1986 estimate of the 1984 year class is, however, much lower than that obtained last February.

The age distribution in the catches taken in the 1986 summer/ autumn season is, on the other hand, practically the same as recorded in the October 1986 survey. Consequently, the abundance of the 1984 year class must have been overestimated in February 1986 compared to the estimate obtained in October 1986.

4.3 TAC for the December 1986 - March 1987 Period

The October 1986 stock abundance estimate was accepted as valid and used as a basis for calculating the TAC.

The following assumptions were made:
a) All capelin 13.5 cm and larger will mature to spawn in 1987. This length at maturity is derived from maturity observations made during the survey. These capelin will be in the catch during the whole fishing season.
b) Immature capelin will be an insignificant proportion of the catch in the present season.
c) Natural mortality rate will be $M=0.035 /$ month.
d) The mean weight of the 1984 and 1985 year classes will increase by 1.0 and 2.2 g , respectively (Figure 4.3).
e) There will be 400,000 t left to spawn in 1987 .

Based on these assumptions, it is calculated that the October 1986 survey results correspond to a TAC of $660,000 t$ to be evenly distributed over the 4 -month period November 1986 - February 1987. At the time of the October survey, about $370,000 t$ of the TAC for the July-November period remained to be taken. Consequently, it is recommended that the TAC for December 1986 February 1987 be set at about $300,000 t$.

4.4 TAC for the Summer - Autumn 1987 Season

According to the age composition, as well as the present maturity stage of the 1984 year class in the October 1986 survey, the fishery will be almost entirely based on the 1985 year class (the present 1-group capelin).

In the last two seasons, TACs have been recommended for the summer/autumn period on the basis of results of acoustic surveys carried out in February 1985 and 1986 as well as forecasts of average weights and using a fixed mortality rate. TACs for the remaining parts of the seasons were then set on the basis of surveys carried out in the autumn in the same years.

It is now clear, however, that the forecast of the abundance of the younger year class (1984) in the present fishable stock must have been overestimated in the February 1986 survey. Alternative methods of forecasting the abundance of 2 -group capelin by number at the beginning of the fishing season have, therefore, been considered.

The abundance by number of 1-group capelin of the 1981-1985 year classes has been measured in acoustic surveys carried out in August 1982-1986. The resulting estimates have been plotted against the abundance of these same year classes as measured later in their lives, taking account of catches and mortality rates. These comparisons, however, give unacceptable deviations and cannot be considered suitable for recommendations of TACs.

Apart from the adult or fishable capelin, which have been the main target of the autumn acoustic surveys of stock abundance, 1group juveniles are also recorded. It has always been clear that the 1 -group is underrepresented in the autumn surveys, probably mainly because of trawl selection. Nevertheless, when 1-group abundance by number as recorded in autumn is plotted against the acoustic estimate of the same year classes in the following autumn, taking account of catch and the mortality rate, a high correlation coefficient of $r=0.93$ is obtained for the six pairs of data available (Figure 4.4).

On the basis of the 1986 October survey, the 1 -group abundance by number of 58.6×10^{9} thus corresponds to about 68×10^{9} fish by the end of October 1987 or 75×10^{9} on 1 August in the same year. Based on this criterion, a TAC for the 1987-1988 seasons has been calculated making the following assumptions:

1) The 1987-1988 fishable stock and, therefore, the 1988 spawning stock will consist almost exclusively of the 1985 year class.
2) The mean weight in the fishable stock will be the same as the average weight of 2 -group capelin in the autumn surveys in the period 1979-1986 or 16.5 g (Table 4.4).
3) The mean weight in the 1988 spawning stock will be 17.8 g .
4) The natural mortality rate will be $M=0.035 /$ month .
5) There will be 400,000 teft to spawn in 1988.

Based on these criteria, it has been calculated that the TAC for the 1987-1988 season could be about $700,000 \mathrm{t}$, spread evenly over the period. This corresponds to $450,000 \mathrm{t}$ for the period AugustNovember 1987 based on the same criteria as used for the 19861987 season.

It is expected that additional information on immature capelin of the 1984 year class will be obtained from surveys during JanuaryFebruary 1987. The working Group, therefore, recommends that advice on the TAC for the 1987 summer and autumn season be deferred until spring 1987.

5 BIOLOGICALLY SAFE LIMITS

5.1 Introduction

In addition to the terms of reference given in section 1.1 of this report, the Working Group also addressed the issue of "Safe Biological Limits" as requested by the Chairman of ACFM (letter dated 20 January 1986). As a basis for considering this topic, the Working Group used, as guidelines, the questions adopted by
the Irish Sea and Bristol Channel Working Group. These questions are as follows:

1) Is there any evidence from the stock-recruit data that recruitment is reduced at the lowest levels of spawning stock which have been observed in the historic series?
2) Is the spawning stock currently at a level which is lower than any previously observed?
3) Does spawning biomass show a declining trend, which, taken with available evidence on recruitment, might indicate that a historically low level will be reached in 1986 or 1987 ?
4) What level of F in 1987 would be needed to reduce the spawning stock biomass to an historically low level in 1988 and what would the corresponding catch be in 1987?

5.2 Norwegian Spring-Spawning Herring

According to historical stock-recruit data, this stock has suffered from recruitment failure after the spawning biomass declined below 2.5 million t (Dragesund et al., 1980). The stock was at a very low level during the early 1970s, and although there has been an increase in abundance during the 1970s and 1980s, the spawning stock is still far below that biomass.

The Working Group, therefore, concluded that the Atlanto-Scandian herring should still be defined as a depleted stock.

5.3 Barents Sea Capelin

In the 1970s and early 1980s, the Barents Sea capelin stock was managed by a target spawning stock biomass of $500,000 \mathrm{t}$. There is strong evidence that the stock is presently at the lowest level ever recorded. The 1984 and 1985 year classes have been reduced to very low levels because of increased predation on the 0 - and 1 -group stage and the 1986 year class will be low in abundance because of poor larval production. The spawning stock has shown a arastic decline, not only because of overfishing, but because of natural factors such as increased predation, resulting in increased natural mortality.

Because of the low stock size, poor recruitment, and increased predation, the Working Group advises that no fishing should occur on this stock.

The Working Group notes that changes in stocks of cod, herring, and capelin now occurring in the Barents Sea ecosystem have been observed before. During 1962, the capelin fishery was a complete failure apparently because of very low capelin stocks (no capelin abundance estimates are available). At that time, the 1959 and 1960 year classes of both cod and herring were strong.

5.4 Icelandic Capelin

For Icelandic capelin, both recruitment and the spawning stock are at a high level. During the early 1980s, this capelin stock was very low in abundance but now has recovered. The aim in managing this stock has been to maintain a minimum spawning stock biomass of $400,000 t$. So far, this target spawning biomass has shown to be adequate in maintaining proper recruitment.

6 REFERENCES

Anon. 1986. Report of the Atlanto-Scandian Herring and Capelin Working Group, 29 October to 1 November 1985. ICES, DOC. C.M.1986/Assess:7.

Anon. 1986. Preliminary report of the International 0-group Fish Survey in the Barents Sea and Adjacent Waters in AugustSeptember 1986. ICES, DOC. C.M.1986/G:78.

Dragesund, O. and Jakobsson, J. 1986. Stock strengths and rates of mortality of the Norwegian spring spawners as indicated by tagging experiments in Icelandic waters. Rapp. p,-v. Réun. Cons. int. Explor. Mer, 154:83-90.

Dragesund, O., Hamre, J., and Ulltang, \emptyset. 1980. Biology and population dynamics of the Norwogian spring-spawning herring. Rapp. P.-V. Réun. Cons. int. Explor. Mer, 177:43-71.

Hamre, J. and Tjelmeland, S. 1982. Sustainable yield estimates of the Barents Sea capelin. ICES, Doc. C.M.1982/H:45.

Monstad, T. 1986. Report of the Norwegian surveys on blue whiting during spring 1986. ICES, Doc. C.M.1986/H:53.

R ϕ ttingen, I. 1985. Norwegian investigations on juvenile herring in 1984-85. ICES, DOC. C.M. 1985/H:55.

R申ttingen, I. 1986. Data on the 1983 year class of Norwegian spring-spawning herring from the period June 1985 - August 1986. ICES, DOC. C.M. 1986/H:19.

Toresen, R. 1985. Recruitment indices of Norwegian spring-spawning herring based on results from the international o-group survey in the Barents Sea. ICES, Doc. C.M.1985/H:54.

Table 2.1 International catches of Norwegian spring-spawning herring (t) since 1972.
$\left.\begin{array}{lcccc}\hline \text { Year } & \begin{array}{c}\text { Catches of } \\ \text { adult herring } \\ \text { in winter }\end{array} & \begin{array}{c}\text { Mixed herring } \\ \text { fishery in } \\ \text { autumn }\end{array} & \begin{array}{c}\text { By-catches of 0-and } \\ \text { 1-group herring in } \\ \text { the sprat fishery }\end{array} & \begin{array}{c}\text { USSR-Norway by-catch } \\ \text { in the capelin } \\ \text { fishery }\end{array}\end{array} \begin{array}{rl}\text { (2-group) }\end{array}\right]$

[^1]${ }^{2}$ In 1972, there was also a directed herring 0-group fishery.

Table 2.2 Catch in numbers ($x 10^{-3}$) of Norwegian springspawners. Unreported catches are included for age 3 and older herring.

Age	1972	1973	1974	1975	1976	1977	1978
0	347,100	29,300	65,900	30,600	20,100		
1	41,000	3,500	7,800	3, 3 ,600	20,100 2,400	43,000 6,200	20,100 2,400
2	20,400	1,700	3,900	1,800	1,200	6,200	2,400 1,200
3	35,376	2,389	100	3,268	23,248	22,103	3,019
4	3,476	25,220	241	- 132	5,436	23,595	12,164
5	3,583 2,481	651 1506	24,505	$\begin{array}{r}910 \\ \hline 6\end{array}$, 436	23,396	12,164
7	2,481	1,506 278	257 196	30,667	13,086	419	870
8	1,486	178	196	5 2	13,086	419 10.766	620
9	198	-	-		_	10,766	620 5,027
10	-	-					5,027
11	494	-	-				
12	593	-	-				
13	593	-	-				
14	-	178					
15	-	-	-	~	-		
Age	1979	1980	1981	1982	1983	1984	1985
0	32,600	6,900	8,300	22,600	127,000	33,857	28,571
1	3,800	800	11,100	1,100	4,679.	1,700	13,149
2	1,900	400	11,900	200	1,675	2,489	207,224
3	6,352	6,407	4,166	13,817	3,183	4,483	15,615
4	1,866	5,814	4,591	7,892	21,191	5,388	11,268
5	6,865	2,278	8,596	4,507	9,521	62,083	11,605
6	11,216	8,165	2,200	6,258	6,181	18,202	77,203
7	326	15,838	4,512	1,960	6,823	12,638	27,803
9	-	441	8,280	5,075	1,29.3	15,608	18,306
10	2,534	-	345 103	6,047	4,598 7,329	7,215 16,338	22,631
11	-	2,688	114	37	143	6,478	16,552
12	-	-	964	37	40	6,	14,496
13	-	-	-	37	143	-	14, 49
14	-	-	-	-	862	-	-
15	-	-	-	-	-	1,652	-

Table 2.3 Abundance indices for 0- group herring in the Barents Sea, 19731986 (Toresen, 1985; Anon., 1986).

Year	log index
1973	0.05
1974	0.01
1975	0.00
1976	0.00
1977	0.01
1978	0.02
1979	0.09
1980	0.00
1981	0.00
1982	0.00
1983	1.77
1984	0.34
1985	0.23

Table 2.4 Norwegian spring-spawners. Acoustic abundance of o-group herring in
$1975-1985\left(\mathrm{~N} \times 10^{-6}\right)$. Norwegian coastal waters in

	Area			
Year	$62^{0} \mathrm{~N}-65^{0} \mathrm{~N}$	$65^{0} \mathrm{~N}-68^{0} \mathrm{~N}$	North of $68^{0} 30^{1}$	Total
1975	328	692	55	1,075
1976	415	2,610	750	3,775
1977	70	305	37	412
1978	302	511	392	1,205
1979	909	2,260	488	3,457
1980	12	4	218	234
1981	263	571	1	2655
1982	64	4,543	2,301	2,936
1983	323	467	8,864	13,730
1984	4	354	930	1,401
1985	441		208	1,003

Table 2.5 Details of tagging samples, southern component of Norwegian spring-spawning herring.

Year of release	m_{s}^{\prime}	1986		$1984+1985$				$\left(m_{s}^{\prime}\right) 82$
		$\mathrm{r}_{5 S}$	$r_{\text {sn }}$	$\bar{r}_{\text {s }}$	${ }^{\text {s, }}$	${ }^{51} r_{s}$	$\ln \mathrm{K}_{\mathrm{S}}$	
1975	5,000	7	-	8	1	16	1.14	1,418
1976	7,998	-	1	10	1	12	1.90	2,716
1977	16,044	14	7	29	3	53	1.11	6,523
1978	11,988	13	6	19	8	46	0.96	5,835
1979	5,995	16	3	21	3	43	0.32	3,494
1980	19,994	19	13	31	7	70	1.05	13,949
1981	24,967	71	14	107	10	202	0.21	20,854
Sum 1975-1981		140	44	225	33	442		54,789
Sum excluding1976 and 1980								
		121	30	184	25	360		38,124

	1986				
Year of					
release	m_{s}	$r_{s s}$	$r_{s n}$	Σr_{s}	$\ln \mathrm{~K}$
1982	38,124	121	30	151	0.92
1982	12,380	15	1	16	2.04
1983	15,891	46	3	49	1.18
1984	15,338	99	12	111	0.32
1985	14,981	66	4	70	0.76
Sum $1982-1985$	226	20	246		

Table 2.6 Details of tagging samples, northern component of Norwegian spring-spawning herring.

Year of release	m_{n}^{\prime}	1986		$1984+1985$				$\left(m_{n}^{\prime}\right) 82$
		$r_{n n}$	$r_{n s}$	$r_{n n}$	$r_{\text {ns }}$	Σr_{n}	$\ln \mathrm{K}_{\mathrm{n}}$	
1975	20,991	21	1	10	3	35	1.79	6,849
1976	15,946	4	-	7	3	14	2.43	6,106
1977	23,989	34	-	16	-	50	1.57	10,779
1978	19,998	27	-	23	4	54	1.31	10,545
1979	8,797	12	-	11	-	23	1.34	5,443
1980	15,988	26	1	21	1	49	1.18	11,610
1981	9,977	29	-	21	-	50	0.69	8,502
Sum 1975-1981		153	2	109	11	275		59,834
Sum excluding1976								
		149	2	102	8	261		53,728

	1986				
Year of recoveries					
release	m_{n}	$r_{n n}$	$r_{n s}$	\sum_{n}	$\ln K_{n}$
$\Sigma 1982$	53,728	149	2	151	1.26
1982	14,884	16	2	18	2.11
1983	17,925	36	2	38	1.55
1984	13,975	32	5	37	1.33
1985	19,000	39	3	42	1.51
Sum $1982-1985$	123	12	135		

Table 2.7 Effectively screened catches (C) in 1986 (in '000s, C_{N} in $000 \mathrm{~s}, \mathrm{C}_{\mathrm{W}}$ in t) of Norwegian spring-spawning herring.

Component		Year class									C	C_{N}	C_{W}
		1983	1982	1981	1980	1979	1978	1977	1976	1975 +			
Southern	$\begin{aligned} & n \\ & \% \end{aligned}$	$\begin{array}{r} 947 \\ 9 \end{array}$	$\begin{array}{r} 1,551 \\ 15 \end{array}$	$\begin{array}{r} 877 \\ 8 \end{array}$	$\begin{array}{r} 398 \\ 4 \end{array}$	$\begin{array}{r} 4,088 \\ 40 \end{array}$	$\begin{array}{r} 888 \\ 9 \end{array}$	$\begin{array}{r} 433 \\ 4 \end{array}$	$\begin{array}{r} 595 \\ 6 \end{array}$	$\begin{array}{r} 578 \\ 6 \end{array}$	10,335	10,495	2,845
Northern	n	$\begin{array}{r} 249 \\ 4 \end{array}$	208 3	62	$\begin{array}{r} 214 \\ 3 \end{array}$	$\begin{array}{r} 827 \\ 12 \end{array}$	$\begin{array}{r} 1,307 \\ 20 \end{array}$	$\begin{array}{r} 501 \\ 8 \end{array}$	$\begin{array}{r} 907 \\ 14 \end{array}$	$\begin{array}{r} 2,412 \\ 36 \end{array}$	6,639	6,722	2,246

Table 2.8 Average weight in stock (1 January), in grammes, Norwegian spring spawners, 1975-1985.

Age	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
3	181	181	181	180	178	175	170	170	155	140	155
4	259	259	259	294	232	283	224	204	249	204	233
5	342	342	342	326	359	347	336	303	304	295	281
6	384	384	384	371	385	402	378	355	368	338	348
7	409	409	409	409	420	421	387	383	404	376	371
8	444	444	444	461	444	465	408	395	424	395	408
9	461	461	461	476	505	465	397	413	437	407	428
10	520	520	520	520	520	520	520	453	436	413	442
11	543	543	543	543	551	534	543	468	493	422.	434
12	412	412	412	500	500	500	512	512	480	459	456
13	412	412	412	500	500	500	512	500	470	449	469
14	412	412	412	500	500	500	512	500	500	427	460
15	412	412	412	500	500	500	512	500	500	437	460
16	412	412	412	500	500	500	512	500	500	437	445

Table 2.9 VIRTUAL POPULATION ANALYSIS.

NORWEGIAN SPRING SPAWNING HERRING
PROPORTIUNS JF MATUPITY

UNIT:										
	1916	1977	1978	1474	1480	1981	1982	1985	1984	1935
3	. 500	.730	.130	.100	.250	.300	.100	.100	.100	.100
4	.900	. 890	.900	. 020	- 500	.500	.480	.500	. 500	. 500
5	1.000	1.000	1.000	.450	.970	. 900	.700	.690	.900	.900
6	1.000	1.000	1.000	1. 400	1.000	1.000	1.000	- $\% 10$.950	1.000
7	1.000	1.000	1.000	1.000	1. 0100	1.700	1.000	1.000	1.000	1.000
3	1.50\%	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.0170
11	1.00!	1.000	1.000	1.000	1.000	1. 1.00	1.000	1.000	1.000	1.000
12	1.009	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
13	1.0]	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.070
14	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.050
15	1.000	1.300	1.000	1.000	1.000	1. 100	1.000	1.000	1.007	1.000
104	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table 2.10 VIRTUAL POPULATION ANALYSIS.

NORWEGIAN SPRING SPAWNING HERFING
STOCK $3 I Z E$ IN NUMBERS UNIT: thousands
BIOMASS TOTALS UNIT: tonnes
ALL VALUES ARE GIVEN FOR 1 JANUARY

	1976	1977	1978	1479	1930	1981	1982	1983	1984	1985	1986
3	836256	574123	119442	ל 40088	409589	394498	633658	87254	70703	602895	
4	10101	156455	433441	$10<055$	510450	553659	342506	87354 54371	73659	602895 51889	514782
5	559	3825	042153	413125	37867	433421	306248	293365	457391	59621	4147807
5	<113	412	3044	244850	350556	75025	372558	264096	248690	345595	41513
7	21570	1907	414	1862	467955	305254	6381%	321265	226642	201345	41513 229629
9	19	177160	1<34	305	1330	39606%	265817	54204	215713	187196	150810
9	83	63	145490	b51	317	7ち7	340033	226906	46586	227497	147246
10	16	76	59	12304\%	483	271	540034	292920	19.4940	227497 35988	178598
11	51	60	66	51	105676	423	142	189	250351	155893	178598 23058
12	44	44	57	51	44	902%	<05	90	54	213768	121409
15	27	38	38	47	49	38	78369	198	42	213768 29	1714145
14	17	17	$5<$	34	42	42	3	68781	42	36	174745 25
15	14	14	14	27	27	30	36	68781 27	59539	36	25 31
$10+$	14	14	14	27	27	50	50	27	59509 56	36 36	31 61

$\begin{array}{lrrrrrrrrrrr}\text { TOTAL NO } & 1115172 & 1514279 & 1345553 & 1774192 & 1940174 & 2049802 & 2401843 & 2153400 & 1904199 & 2083813\end{array}$

 $\begin{array}{lllllllllllll} & 172003 & 55132 c & 411344 & 441144 & 517514 & 545852 & 550193 & 614003 & 635063 & 579400\end{array}$

Table 2.11 VIRUTAL POPULATION ANALYSIS.

NORWEGIAN SPRING SPAWNING HERRING

FISHING MORTALITY COEFFICIENT UNIT: Year-1 NATURAL MORTALITY COEFFICIENT = .13

		1976	1977	1978	1979	1980	1981	1982	1983	1984	1935	1976-83
	3	. 028	. 042	.027	.012	. 017	. 011	$.0<4$. 040	.010	. 028	. 025
	4	. 841	. 034	. 027	.0120	. 034	. 014	. 025	. 042	.081	.232	.130
	5	. 002	. 0.98	. 0.34	. 018	. 1028	. $0<1$.0116	.035	.156	.232	.032
	6	.000	. 002	.362	. 022	. 025	.032	. 018	. 025	. 081	.273	. 061
	1	. 06.7	.266	.003	- $\angle 06$. 037	. 016	.035	.023	. 001	.159	.081
	3	. 014	.067	.716	. 003	. 434	. 023	. 021	. 026	.1062	.110	.163
	\bigcirc	.012	. 016	. 038	. 002	. $0<7$. 659	.019	. 022	.181	. 112	. 099
	17	.014	. 014	. 018	. 022	. 0172	. 515	. 467	. 027	. 094	.258	.135
	11	. $0<1$. 016	. 010	.027	$.0<7$.357	.344	1.573	. $0<8$.120	.292
	12	. 025	.025	.019	. 019	. 025	. 011	.161	. 633	. 051	. 075	.115
	13	. 054	.029	.029	.022	.022	.029	.001	1.418	.026	.037	.200
	14	.065	.065	. 034	. 034	. 026	. 026	. 034	. 013	. 026	. 030	. 037
	15	. 030	.080	. 080	. 0140	. 040	. 030	.050	. 0440	. 050	. 030	. 053
	$10+$.080	.080	.080	.040	.040	.030	.050	. 040	.030	. 030	.053
($3-4) W$. $0 \leq 8$.031	.027	. 015	.026	.013	$.0<4$. 042	.076	. 046	
(5-10) W	. 066	. 069	.037	.021	. 032	. 022	. 019	. 027	.103	.185	

Table 2.12

List of input variahles for the ICES prediction program.
AORIEGIAN SPRING-SHAHNING HERRINO: COASTAL COMPONENT
The reference F is the mean F for the age aroup range from s to 9
The number of recruits per year is as follows:

Year	Recruitment.
1986	1003.0
1981	2400.0
1938	2900.0

Data are printed in the following unita:
Number of fish:
Weight by age group in the catch millions Weiynt by age uroup in the catch: kilogran stock biomass: in the stock: kilogram Catch weight:

Table 2.13

```
List of input variables for the ICES prediction program.
```

'NORWEGIAIV SPKING-SPAWNING HERRING: BARENTS SEA COMPONENT
The reference F is the F of age jroup 3
The number nt recruits per year ia as follows:

Year	kecruitment
1986	14500.0
1981	00
1983	0

Data are printer in the following units:

Jumber of fish:	millions
Weignt by age jroup in the catch: kilogram	
weight by age group in the stock: kilogram	
Stock oiomass:	tnousand tonnes
catch weight:	thousand tomnes

age:	ck sizel	fishingi pattern:	naturali mortality	maturity ogive:	weignt in: the catch:	weignt in: the stock:
31	14300.0:	. 051	. 401	. 001	.0811	. 0561
41	. 01	. 031	.15:	.101	. 1461	.081:
51	. 01	.0si	.13i	.62:	. 2021	.1461
61	. $0:$.031	.13	. 951	.2161	. 2 ก2

Table 2.14

Effects of different levels of fishing mortality on catcn, stock biomass and spawniny stock biomass.

NORWEGIAN SPRIAGG-SPANNING HEREING: COASTAL COMPONENT

The data unit of the hiomass and the catch is 1000 tonnes.
The spawning stock biomass is given for 1 January.
The reference F is the mean f for the age aroup ranae from b to 9

Table 2.15

Effects of different levels of fishing mortality on
catch, stock biomass and spawning stock biomass.
NORWEGIAN SPRING-SPANNTNG HERRJNG: BARENTS SEA COPAPONENT

The data unit of the biomass and the catch is 1000 tonnes.
The spawning stock biomass is given for 1 January.
The reference F is the F of age group s

Table 3.1 International catch of Barents Sea capelin ('000 tonnes) in the years 1965-1985.

Year	Norway	USSR	Other	Total
1965	217	7	-	224
1966	380	9	-	389
1967	403	6	-	409
1968	522	15	-	537
1969	679	1	-	680
1970	1,301	13	-	1,314
1971	1,371	21	-	1,392
1972	1,556	37	-	1,593
1973	1,291	45	-	1,336
1974	987	162	-	1,149
1975	943	431	43	1,417
1976	1,949	596	-	2,545
1977	2,116	822	2	2,940
1978	1,122	747	25	1,894
1979	1,109	669	5	1,783
1980	999	641	9	1,649
1981	1,238	721	28	1,987
1982	1,158	596	5	1,759
1983	1,421	812	-	2,233
1984	811	624	42	1,477
1985	4531	398	-	851
1986	72^{2}	51^{2}	-	123^{2}
18				

${ }^{1}$ Preliminary figure.
${ }^{2}$ Preliminary catch winter 1986.

Table 3.2 Capelin catches in the Barents sea in August-December 1985 and in January-April 1986 in numbers ($x 10^{-9}$).

Age	1985					1986			
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr
1	-	0.46	0.01	0.16	0.14	-	-	-	
2	-	5.21	0.58	0.50	0.43	0.01	0.002	0.01	0.002
3	-	6.06	0.69	0.62	0.54	0.44	0.05	0.44	1.00
4	-	0.32	0.07	0.11	0.09	0.67	0.10	0.78	2.95
5	-	-	-	0.003	0.02	0.05	0.02	0.11	0.56
6	-	-	-	-	-	0.003	0.02	0.01	0.02
7	-	-	-	-	-	0.003	-	0.001	0.02 0.001

Table 3.3 Larval index for Barents Sea capelin.

Year	Index
1981	9.71
1982	9.88
1983	9.94
1984	8.15
1985	9.25
1986	-

Table 3.4 Acoustic estimate, autumn 1986, for Barents Sea capelin.

Total length (cm)	Age				$\begin{aligned} & \text { Total } \\ & \text { number } \\ & \left(\times \quad 10^{-7}\right) \end{aligned}$	$\begin{aligned} & \text { Biomass } \\ & \text { tonnes } \\ & \left(t \times 10^{-3}\right) \end{aligned}$	Biomass (Cum.)
	1	2	3	4+			
6.5-7.0	37	-	-	-	37	0.4	-
7.0-7.5	26	-	-	-	26	0.3	-
7.5-8.0	19	-	-	-	19	0.2	-
8.0-8.5	25	1	-	-	26	0.4	-
8.5-9.0	37	-	-	-	37	0.7	-
9.0-9.5	33	1	-	-	34	0.9	-
9.5-10.0	59	-	-	-	59	2.5	-
10.0-10.5	95	-	-	-	95	1.8	-
10.5-11.0	132	5	-	-	137	3.6	-
11.0-11.5	118	7	-	-	125	6.2	-
11.5-12.0	95	9	-	-	104	6.4	-
12.0-12.5	39	18	2	-	59	4.3	-
12.5-13.0	22	34	3	-	59	4.9	-
13.0-13.5	12	47	6	-	65	6.2	-
13.5-14.0	-	61	33	-	94	10.0	-
14.0-14.5	-	56	42	-	98	12.2	62.6
14.5-15.0	-	41	66	2	109	15.1	50.4
15.0-15.5	-	30	74	9	113	17.6	35.3
15.5-16.0	-	26	40	4	70	12.2	17.7
16.0-16.5	-	4	20	-	24	4.5	5.5
16.5-17.0	-	1	4	-	5	1.0	1.0
Number	749	341	290	15	1,395	-	-
$\begin{aligned} & \text { Biomass } \\ & \left(10^{-3} \mathrm{t}\right) \end{aligned}$	31.8	39.7	41.5	2.4	-	115.5	-
Mean length (cm)	10.35	13.85	14.89	15.32	11.55	-	-

Table 3.5 The development of the Barents sea capelin stock since 1974.

1975				$\mathrm{M}=0.051 \quad \mathrm{LM}=$		14.01
Age	Stock 1 Jan 10^{-}	Catch spr. 10		$\begin{aligned} & \text { Stock } \\ & 1 \text { Aug } \\ & 10^{-7} \end{aligned}$	Catch aut. 10	$\begin{gathered} \text { F } \\ \text { aut. } \end{gathered}$
1	- -	-	-	50,895	-	-
2	58,867	250.3	-	41,076	1,364.9	0.03
3	48,181	1,009.6	138	35,050	1,795.5	0.05
4 5	15,225	3,499.3	64	10,108	613.8	0.06
5	300	390.5	-	107	-	-
Σ		5,149.7	203	137,236	3,774.2	

1976				$M=0.051 \quad L M$		14.01
Age		$\begin{aligned} & \text { Catch } \\ & \text { spry. } \\ & 10^{-\frac{1}{4}} \end{aligned}$		3 tock $10^{\text {A }}$ -	Catch aut. 10	$\begin{gathered} \mathrm{F} \\ \text { aut. } \end{gathered}$
1	-	-	-	44,445	-	
2	39,378	83.8	-	27,492	1,726.2	0.07
3	30,586	672.5	117	20,325	2,752.4	0.15
4	25,547	4,400.1	578	10,074	1,960.0	0.22
5	7,284	2,802.5	520	1,661	394.0	0.28
Σ		7,958.9	1,215	103,997	6,832. 6	

Table 3.5 (cont'd)

1977				$\mathrm{M}=0.051 \mathrm{LM}=$		14.01
Age	Stock 1 Jan 10	$\begin{aligned} & \text { Catch } \\ & \text { spr } \\ & 10^{7} . \end{aligned}$	$\begin{gathered} \text { Sp. } \\ \text { stock } \\ 10^{-3} t \end{gathered}$	Stock 1 Aug 10^{-}	Catch aut. 10	$\begin{gathered} \text { F } \\ \text { aut. } \end{gathered}$
1	-	-	-	78,519	-	- ${ }^{-}$
2	34,388	683.0	-	23,609	4,517.9	0.22
3	19,764	1,424.9	291	12,733	2,617.9	0.24
4	13,320	5,022.1	454	5,064	862.5	0.19
5	6,084	3,028.7	381	902	146.2	0.18
Σ		10,158.7	1,126	12,0827	$8,144.5$	

1978				$\mathrm{M}=0.051 \quad \mathrm{LM}=14.01$		
Age	$\begin{aligned} & \text { Stock } \\ & 1 \text { Jan } \\ & 10^{-7} \end{aligned}$	Catch spry. 10	sp . stoçk $10^{-3} t$	$\begin{aligned} & \text { Stock } \\ & 1 \mathrm{Aug} \\ & 10^{-7} \end{aligned}$	Catch aut. 10	$\begin{gathered} \mathrm{F} \\ \text { aut. } \end{gathered}$
1	-	-	-	95,113	99.5	-
2	60,752	53.6	-	42,547	2,875.2	0.07
3	14,327	1,227.5	68	12,050	1,726.5	0.16
4	7,568	3,507.3	401	1,699	265.3	0.17
5	3,165	1,780.8	206	96	19.8	0.23
[6,569.2	675	151,505	4,986.3	

1979				$\mathrm{M}=0.072 \quad \mathrm{LM}=$		13.94
Age	Stock 1 Jan 10	Catch 10 spry.		$\begin{aligned} & \text { Stock } \\ & 1 \text { AHg } \\ & 10^{-7} \end{aligned}$	Catch aut. 10^{-}	$\begin{gathered} F \\ \text { aut. } \end{gathered}$
1	-	-	-	55,220	30.5	- ${ }^{-}$
2	73,510	8.1	-	40,024	2,767.2	0.07
3	30,408	1,047.2	29	14,829	3,047.5	0.24
4	7,814	2,883.5	252	681	224.1	0.41
5	1,082	634.9	-	4	2.2	0.84
[4,573.7	281	110,758	6,071.5	

(cont'd)

Table 3.5 (cont'd)

1980				$\mathrm{M}=0.072 \mathrm{LM}=$		13.94
Age	$\begin{aligned} & \text { Stock } \\ & 1 \text { Jan } \\ & 10^{-7} \end{aligned}$	Catch $10^{\text {spr }}$.		$\begin{aligned} & \text { Stock } \\ & 1 \text { Aug } \\ & 10^{-7} \end{aligned}$	Catch aut. 10	$\begin{gathered} F \\ \text { aut. } \end{gathered}$
1	- -	-	-	59,131		
2	38,418	10.0	-	23,195	90.4 683.9	0.03
3	25,575	468.1	70	19,420	2,109.0	0.03
4	7,817	3,834.8	49	3,996	$2,109.0$ 334.1	0.12 0.09
5	290	344.7	-	38	7.5	0.23
Σ		4,657.6	119	105,780	3,224.9	

1981				$M=0.072$		13.94
Age	Stock 1 Jan 10^{-}	Catch spry. 10	Sp. stoçk $10^{-3} \mathrm{t}$	Stock 1 Aug 10	Catch aut. 10	$\begin{gathered} \text { F } \\ \text { aut. } \end{gathered}$
1	-	-	-	44,327		
2	41,094	59.0	-	24,831	2,596.7	0.11
3	15,581	339.9	337	7,002	1,564.9	0.26
4	11,777	3,452.0	1,226	1,920	$1,564.9$ 372.3	0.26 0.22
5	2,505	1,417.1	204	43	15.8	0.48
Σ		5,268.0	1,767	78,123	4,752.7	

1982				$M=0.072 \quad \mathrm{LM}=$		13.94
Age	$\begin{aligned} & \text { Stock } \\ & 1 \text { Jan } \\ & 10^{-7} \end{aligned}$	Catch spry. 10	$\begin{gathered} \text { Sp. } \\ \text { stoçk } \\ 10^{-3} \mathrm{t} \end{gathered}$	$\begin{aligned} & \text { Stock } \\ & 1 \mathrm{~A} \mu \mathrm{~g} \\ & 10^{-7} \end{aligned}$	Catch aut. 10	$\begin{gathered} \text { F } \\ \text { aut. } \end{gathered}$
1	-	1.0				
2	30,691	47.1	-		107.0 $2,139.0$	0.06
3	15,142	1,127.7	214	18,526 8,464	$2,139.0$ $2,443.0$	0.06
4	3,588	1,655.7	259	$\begin{array}{r}1 \\ \hline 57\end{array}$	$2,443.0$ 149.0	0.32 0.55
5	1,030	513.9	109	3	6.0	0.55
Σ		3,345.4	582	88,551	4,844.0	

Table 3.5 (cont'd)

1983				$\mathrm{M}=0.072 \mathrm{LM}=$		13.94
Age	$\begin{aligned} & \text { Stock } \\ & 1 \text { Jan } \\ & 10^{-7} \end{aligned}$	$\begin{aligned} & \text { Catch } \\ & \text { spry. } \\ & 10^{-7} \end{aligned}$	$\begin{gathered} \text { sp. } \\ \text { stoçk } \\ 10^{-3} t \end{gathered}$	Stock 1 Aug 10	Catch aut.	$\begin{gathered} \mathrm{F} \\ \text { aut. } \end{gathered}$
1	-	4.0	-	53,790	298.1	0.01
2	42,519	40.0	-	25,705	3,634.9	0.16
3	11,131	1,298.8	68	6,383	2,671.9	0.56
4	3,890	3,371.2	55	78	120.7	
5	127	718.9	-	-	0.2	
[5,432.9	122	85,956	6,725.8	

1984				$M=0.140 \quad L M=$		13.06
Age	$\begin{aligned} & \text { Stock } \\ & 1 \text { Jan } \\ & 10^{-7} \end{aligned}$	$\begin{aligned} & \text { Catch } \\ & 10^{\text {spr }} . \end{aligned}$	$\begin{gathered} \text { Sp. } \\ \text { stoçk } \\ 10^{-3} \mathrm{t} \end{gathered}$	Stock 1 A 10	Catch aut. 10	$\begin{gathered} F \\ \text { aut. } \end{gathered}$
1	-	-	-	37,122	219.9	0. 10
2	37,200	6.6	-	22,428	2,109.6	0.10
3	14,897	839.7	251	6,528	1,571.6	0.28
4	2,270	2,264.6	-	442	165.0	0.48
5	-	225.2	-	-	9.0	
Σ		3,336.1	251	66,520	4,075.1	

1985				$\mathrm{M}=0.140 \quad \mathrm{LM}=$		3.06
Age	Stock 1 Jan 10^{-}	$\begin{gathered} \text { Catch } \\ \text { spry. } \\ 10^{-7} \end{gathered}$	$\begin{gathered} \text { Sp. } \\ \text { stock } \\ 10^{-3} t \end{gathered}$	$\begin{aligned} & \text { Stock } \\ & 1 \text { Aug } \\ & 10^{-7} \end{aligned}$	Catch aut. 10^{-7}	$\begin{gathered} \mathrm{F} \\ \mathrm{aut} . \end{gathered}$
1	-	-	-	- ${ }^{-}$	78.6	- 17
2	25,660	35.1	-	6,821	672.6	0.17
3	13,870	571.0	240	3,414	790.8	0.52
4	3,253	1,698.5	104	157	59.3	0.15
5	173	326.4	-			
Σ		2,631.0	344	10,392	1,601.3	

Table 4.1 The total annual and seasonal catch of capelin in the Iceland - East Greenland - Jan Mayen area since 1964 (in ' 000 t).

Year	Winter season		Summer and autumn season				Total
	Iceland	Far/Nor	Iceland	Norway	Faroes	EEC	
1964	8.6	-	-				
1965	49.7	-	-	-	-	-	8.6
1966	124.5	_	-	-	-	-	49.7
1967	97.2	_	-		-	-	124.5
1968	78.1	-			-	-	97.2
1969	170.6	_	-			-	78.1
1970	190.8	-	-		-	-	170.6
1971	182.9	_	-			-	190.8
1972	276.5	-	-		-	-	182.9
1973	440.9	_	-	-		-	276.5
1974	461.9	-	-	-	-	-	440.9
1975	457.6	-	3.1	-	-	-	461.9
1976	338.7	-	114.4	-	-	-	460.7
1977	549.2	25.0	259.7	-	-	-	453.1
1978	468.4	38.4	497.5	154.1		-	833.9
1979	521.7	17.5	441.9	126.0	2.5	-	1,158.4
1980	392.0	17.5	367.2	118.6	2.5	14.3	1,109.6
1981	156.0	-	484.6	118.6 91.4	24.4	14.3	916.5
1982	13.0	-	484.6	91.4	16.2	20.8	769.0
1983	-	_	133.3	-	-	-	13.0
1984	439.6	-	425.2		10.2	5	133.3
$1985{ }^{1}$	348.5	-	644.8	188.7	10.2	8.5	988.1
1986	342.0	49.9	380.0	154.3	81. 69.		$\begin{array}{r} 1,263.4 \\ 995.9 \end{array}$

Table 4.2 Biomass computations for capelin, October 1986, Iceland - Jan Mayen - East Greenland.

```
Average length: cm
Average volume: ml
No. in region:
Weight in region: \(t \times 10^{-3}\)
Condition: \(C=2.820 \times 10^{6} \times 1^{-1} .9090 \times \mathrm{vol} / \mathrm{length}{ }^{3}\)
```

Region: all

Length (cm)	Age						g	Total	Weight	Average volume
	1	2	3	4	5	64				
8.0-8.4	109	-	-	-	-	-	-	109	-	2.0
8.5-8.9	4,270	-	-	-	-	-	-	4,270	8	2.1
9.0-9.4	7,561	-	-	-	-	-	-	7,561	22	2.9
9.5-9.9	12,766	-	-	-	-	-	-	12,766	43	3.4
10.0-10.4	11,358	-	-	-	-	-	-	11,358	4.3	3.8
10.5-10.9	8,312	-	-	-	-	-	-	8,312	36	4.4
11.0-11.4	6,229	-	-	-	-	-	-	6,229	30	5.0
11.5-11.9	4,467	-	-	-	-	-	-	4,467	26	5.9
12.0-12.4	2,345	72	-	-	-	-	-	2,417	16	6.6
12.5-12.9	794	112	-	-	-	-	-	906	7	8.0
13.0-13.4	376	406	22	-	-	-	-	804	7	9.0
13.5-13.9	. -	967	-	-	-	-	967	967	10	10.7
14.0-14.4	26	1,500	50	\sim	-	-	1,576	1,576	19	12.5
14.5-14.9	-	3,583	379	-	-	-	3,962	3,962	57	14.5
15.0-15.4	-	3,915	1,991	16	-	-	5,922	5,922	96	16.4
15.5-15.9	-	2,914	3,378	-	-	-	6,292	6,292	114	18.2
16.0-16.4	-	3,007	5,383	42	-	-	8,432	8,432	172	20.5
16.5-16.9	-	1,818	4,738	-	-	-	6,556	6,556	155	23.7
17.0-17.4	-	1,080	6,460	103	-	-	7,643	7,643	194	25.5
17.5-17.9	-	793	4,170	82	-	-	5,045	5,045	142	28.3
18.0-18.4	-	246	2,044	43	-	-	2,333	2,333	73	31.6
18.5-18.9	-	50	853	24	-	-	927	927	32	34.9
19.0-19.4	-	24	312	26	-	-	362	362	14	40.8
19.5-19.9	-	-	17	-	-	-	17	17	-	42.0
20.0-20.4	-	-	65	-	-	-	65	65	3	47.7
Number	58,613	20,487	29,862	336	-	-	50,099	109,298		
Av.length	10.33	15.56	16.86	17.54	-	-	16.38	13.11		
Weight	237.1	364.9	719.3	9.7	-	-	1,088.9	1,331.0		
Av.vol.	4.0	17.8	24.1	28.8	-	-	21.7	12.2		
Cond.	3.6	4.6	4.9	5.2	-	-	4.8	4.1		

Table 4.3 Natural mortality rates of the Icelandic capelin as calculated from successive acoustic estimates of spawning stock abundance and catch.

Table 4.4 Average weight of 2-group capelin in autumn surveys in the years 1979-1986.

Year	Average weight (g)
1979	15.7
1980	19.3
1981	19.4
1982	15.7
1983	15.1
1984	14.8
1985	14.1
1986	17.8
Total average	16.5

Figure 2.1 Plot of $\ln K \quad\left(K=\frac{m}{r} \times 10^{2}\right)$ against time at liberty. $A=$ Southern component, $B=$ Northern component.

STOCK: Norwegian Spring-Spawning Herring

$$
10-11-1986
$$

Trends in yield and fishing mortality (F)
Trends in spowning stock biomass (SSB)
and recruitment (R)

A.

B
(cont'd)

FISH STOCK SUMMARY

Figure 2. 3 (cont'd)
STOCK: Norwegian Spring-Spawning Herring
10-11-1986
Long-term yield and spawning stock biomass
Short-term yield and spawning stock biomass

Figure 3.1 Stations taken at the Soviet larval survey, July 1986. Numbers denote the number of capelin larvae caught. The length distribution of the larvae is also shown. (-.-.-. $=1,000-\mathrm{m}$ isobath).

Figure 3.2 o-group distribution of capelin,

Figure 3.3 Estimated total density distribution of capelin ($t / \mathrm{n} \mathrm{mi}{ }^{2}$).

Figure 3.4 Natural mortality of immature fish per year (M) (mean of ages 2-3 and ages 3-4) estimated on a yearly basis by the model CAPELIN, and fishing mortality (F) in the autumn fishing season (mean of age 2 and age 3). The natural mortality for the period 1985-1986 is a preliminary figure.

Figure 4.1 The relative distribution and density of 1- to 3-group capelin of the 1983-1985 year classes, 4-22 October
1986 .

Appendix A, Table 1 VIRTUAL POPULATION ANALYSIS. NORWEGIAN SPRING SPAWNING HERRING. CATCH IN NUMBERS. UNIT: thousands.

	1914	1976	1976	1916	1918	19\%9	1980	1981	$198<$	1983	1984	1985
8	65900	30600	20100	43000	20107	57600	6900					
1	1300	5600	2400	$0<00$	$\angle 400$	53600 3300	0900	8300	22600	127000	33857	28571
2	5900	1300	$1 \angle 00$	2100	$1<00$	1000	400	1170 11900	1100	4679	1700	13149
3	107	326%	13248	22103	3019	6352	400 6407	11900	< 1300	1075	4499	207224
4	241	156	5430	25595	$1<164$	19506	6407 15814	4166	13617	3183	4483	15615
5	24505	$91]$	1	330	20515	69365	15814	4591	7302	21191	5388	$11<68$
6	257	3i3501	1	1	36?	11216	2270	2596	4507	9521	62083	11605
7	176	j	15080	41%	1	326	1b 65	$2 \angle 00$	- 258	0131	$13 \angle 0<$	77605
3	1	$<$	1	10,60	020	1	15050	412	1960	6823	12638	27803
9	1	1	1	1	5027	1	441	3<90	5015	$1 \angle 93$	1506	18506
17	1	1	1	1	3027 1	2534	\bigcirc	345	6147	4598	7215	22031
11	1	1	1	1	1	2534	1 $\begin{array}{r}1 \\ 208\end{array}$	175	$1 く 1$	7329	16358	7268
12	1	1	1	1	1	1	20 30	114	37	143	6478	16552
15	1	1	1	1	1	1	1	964	57	40	1	14496
14	1	1	1	1	1	1	1	1	37	143	1	1
15	1	1	1	1	1		1	1	1	862	1	1
$10+$	1	1	1	1	1	1	1	1	1	1	1052	1
TOTAL	102908	70992	65481	1095?6	05123	67467	59745	55175	6Y0y1	194653	183135	716

Appendix A, Table 2 VIRTUAL POPULATION ANALYSIS. NORNEGIAN SPRING SPAWNING HERRING.
IEAN WEIGHT AT AGE OF THE STOCK UNIT: kilogram

	1962	1965	1964	1465	1466	1967	1963	1969	1970	1971	1972	1973
.]	-000	- 900	. 000	. 400	- 1110	- 1]0	. 000	.000	-000	. 011	. 001	. 001
1	. 1103	. 0 ¢	. 003	- cno	. 108	. 008	- 00 is	.008	. 1008	. 015	. 010	. 010
2	$.04 \%$.041	. 047	. 047	.1047	.047	.047	.047	.1347	.080	.020	. 035
j	- 100	.100	.100	.10	.109	- 100	.100	.100	. 100	.140	- 050	. 170
'	.219	. 185	.144	. 1×0	.135	.180	.100	.170	. 209	.197	. 090	.259
5	- <91	.253	. 213	. 199	.<19	. 228	. 200	.145	. 212	- c25	.140	- 542
6	. 307	. 294	.264	.230	.222	. 269	. 260	.270	. 250	.250	.210	- 584
1	.316	.314	- 31%	. 460	. 440	. 2701	- 615	.500	. 295	- 275	- $\angle 40$	- 409
\cdots	. 524	. 529	. 363	.363	. 506	.244	. 274	.306	.517	.290	.270	. 404
${ }^{\prime}$. $5<6$. 321	. 555	. 550	. 254	- 5.4	.285	. 508	- $5<3$. 310	. 3100	. 461
10	- 555	. 334	. 549	.370	. 317	.420	. 550	.318	. 525	. 325	. 325	. 520
11	. 548	. 341	. 534	.260	. 591	. 450	- $3<5$. 540	$-5<0$. 535	- 355	. 534
12	. 334	. 34.9	. 357	. 578	. 579	. 366	. 363	. 368	.380	. 545	. 345	.412
13	. 547	. 541	- 59	. 281	.319	. 208	. 408	. 360	. 570	. 355	. 355	- 500
14	. 354	. 35 is	. 365	.390	.301	.433	. 336	.395	. 560	. 365	.365	- 370
15	- 358	.355	. 402	. 304	. 385	. 414	.578	. 397	- 591	- 500	. 390	- 500
$10+$. 558	. 375	.402	. 394	.333	.414	. 375	.397	. 541	. 30	.390	. 570
	1											
	1974	1975	1970	1477	1978	1974	1980	1981	$19 \% 7$	1983	1984	1985
0	-0.1	. 001	. 1011	- 001	- 001	- 017	- 001	. 001	. 101	. 001	. 001	- 1001
1	.017	.710	- 1110	. 010	.017	.010	. 010	. 0110	. 010	. 010	-010	. 010
2	.035	.785	.085	.085	.085	. 785	. 085	.085	. 085	. 035	. 085	. 085
5	. 110	.181	.181	.131	.130	. 118	.115	.170	$.1 / 0$. 155	. 140	. 155
4	. 259	. 254	- 390	.259	.294	. 252	.283	. 224	.204	.249	. 204	. 233
5	. 342	.344	.342	.345	- $3<6$. 559	. $54 i$. 536	. 303	. 3174	- 295	- $\angle 81$
5	. 384	. $3: 14$. 364	. 584	.371	.385	.402	. 378	- 555	. 358	. 538	. 548
7	. 400	. 409	.409	. 409	.400	. $4<0$	$.4<1$. 581	- 3is	.474	. 576	- 371
2	. 444	.444	.444	.444	.451	. 444	. 405	. 478	. 545	.424	.395	-418
\bigcirc	. 461	.461	. 401	.461	. 416	- 505	. 405	. 597	. 413	.457	$.40 \%$	-4く8
10	.520	.520	. 5213	. 320	- 20	. 5\% 1	.520	. 520	.433	.456	. 415	. 442
11	. 543	. 543	. 545	. 542	. 345	- 5\%	. 524	.543	. 468	. 493	. 426	.434
12	.412	. 412	.412	. 416	- 300	.500	.500	. 312	. 512	. 480	. 459	. 456
15	. 5010	. 500	- 500	- ל00	- 200	.500	- 500	. 200	. 5110	.470	. 449	. 469
14	. 500	.500	.500	$.5 \cap 0$. 500	.500	.5100	.500	.500	. 390	. 427	.460
15	. 513 T	- 300	. 5010	. 200	. 5190	. 5110	- 300	. 500	- 500	- 500	. 437	.460
$16+$	-	.5 nol	.5110	$.5 \cap 0$. 590	. 500	. 5170	.500	. 200	. 500	.437	.460

				UWIT:								
	1902	1963	1964	1963	1906	190%	1908	1969				
\bigcirc	. 000	- 000					196	1969	1970	1971	1972	1973
	- 700	. 7 -	- 0000	- U00	- 100n	- 9000	. 000	-010				
$<$	- 0 -	. 000	-000	- 0100	- ! 0 ?	. 000	. 7100	- 1 -	- 1000	- 1100	- 000	.000
3	.007	. 040	- 000	- Lioj	- 1000	. 1000	. 1300	-1090	-110	- 070	.000	. 010
4	. 110	. 030	-029	- 100	. 010	- 100	- !) 01	- 620	-000	-100	- Uno	.100
5	.670	. 320	- 280	. 240	.150	- 110	-1)00	- 620	- 100	- 100	- 000	.500
6	1. 11.10	. 900	- 280	$.351]$	1.1.0n	. 2.30	. 110	.890 .950	-130	- 650	.100	.900
7	1.907	1. 1 . 10	$.3<0$ 1.000	. 160	- 900	1.000	- -160	1.000	. 310	-607	.250	1.000
8	1.000	1.000	1.000	$1 . \operatorname{linO}$	1.000	1. H	1. 500	1.000	1-170	- 9.900	- 600	1.000
9	1.90\%	1.0n0	1.000	1-1150	1. Uun	1. 0001	1.000	1.000	1.1.000	1.070 1.000	. 900	1.000
10	1.000	1.000	1.000 1.000	1. [00	1. 0000	1. 1 1. 0	1.000	1.000	1.000 1.000	1.000	1.000	1.000
11	1. 000	1. Drab	1. 0 .10	1.	1. 1.000	1. 100	1.000	1.000	1.0.0n	. 000	1.000	1.000
12	1.000	1. 0 -	1.000	1. lon	1. 0000	1. 1.00	1.000	1.070	1.000	. 000	1.000	1.000
13	1. กu?	1. 1.00	1.1900	1. 1.00	1.1100	1. 000	1.0:00	1.000	1.000	1.000	1.000	1.000
14	1.000	1.100	1.1.00	400	1.110)	1. 1.00	7.000	1. 1.00	1. 1.00	- 000	1.000	1.000
15	1.010	1. กก!	1.1000	1. 1.000	1. 1.000	1. 1.00	1.0ı0	1.0ワ0	1.000	- 0 -	1. 1000	1.000
$1 \mathrm{5}+$	1. 200	1.1700	1.100	1.1 .100 1.000	1.0170	1. 000	1.9000	1. 000	1.000	- 000	1.000	1.1000
		1.1100	-	1.000	1.1110	7.000	1. 1.10	1.000	1.000	1.000 1.000	1.000	$\begin{aligned} & 1.000 \\ & 1.000 \end{aligned}$
	1914	1275	19\%	1976	1979	10\%9						
0	- Du)					1079	1980	1981	1982	1983	1984	1985
1	- 0, 0	. 000	- 0000	- binu	.000	- 000	- 000	.0170	. 000			
2	.107	.100	. 100	- 1100	- 000	- 000	.000	. 000	.000	-00\%	- 000	. 000
5	.507	.570		- 130	- 000	- 700	.000	.000	. 000	- 000	- 000	. 000
4	.800	1.000	.300 .900	. 130	.130	.100	.250	. 300	- 100	- Ujo	- 000	.000
5	1.010	1. 1010	.900 1.000	-69 ${ }^{-60}$. 900	- $6<0$.500	. 500	- 4×0	- 100	.100	.100
6	1.000	1. 1.00	1.000	1.000	1.000	-950	.970	. 901	-480	- 570	. 500	.500
7	1.70\%	1. 1.00	1.000	1. 0 - 100	1.000	1. 1.00	1.000	1.000	1.700	. 697	.900	.800
2	1.000	1.000	1.000	1.000	1.000	1.700	1. 1000	1.000	1.00n	- 110	. 950	1.000
9	1.00\%	1.0no	1.000	1. 400	1.000	1.700	1.000	1.0)0	1.1.000	-00n	1. 000	1.0no
10	1.010	1.000	1.000	1. 1100	1.000	. 1.100	1.000	1.000	1.100	1.000	1.000	1.000
11	1.000	1.000	1.000	1. 400	1.007	7.000	1.000	1.000		1.09n	1.000	1.000
12	1.000	1.000	1.000	1. 2.001	1.000	1. 700	1.000	1.1590		1.000	1.000	1.000
15	1. (i)	1. 7 \% 0	1. 1.000	1. 200	1. טun	1.nue	1.000	1.000		1.000	1.000	1.000
14	1.000	1.000	1.000	1.000 1.000	1.0in	1. nop	1.000	1.000	1.000	1.000	1.100	1. 1.00
15	1.110n	1. 7.00	7.01)	1.0010	1.1)00	1.000	1.000	1.090	1.000 1.000	1.0.0n	1. 000	1. 100
$15+$	1. (1) 0	1.0no	1.000	1. 1.100	1.1000	1. 100	1.900	1. $1.0 \cap 0$	1. 1100	1.0ijo	1.000	1.000
		-	1.000	\%. 410	1.000	1. 100	1.000	1. T . 00	1.000	1.090	1. 1000	1.000
								-	- our	1.000	1.000	1.100

Appendix A_{2}, Table 4 VIRUTIAL POPULATION ANALYSIS. NORWEGIAN SPRING SPAWNING HERRING.

```
NATURAL HORTALITY COEFFICIENT
NATURAL HORTALITY COEFFICIENT
```

vilIT: year-1

	1902	1965	1904	1763	1966	1907	1908	1969	17:7	1971	1972	1973
					100	. 160	. 150	.160	.160	.130	.130	.130
0	. 150	. 160	.160 .160	.160 .160	. 100	. 160	.100	.160	.100	.150	. 130	.130
2	. 160	.160 .160	. 160	. 100	. 160	. 100	. 160	. 160	. 100	. 130	. 130	- 130
3	. 160	. 160	. 160	. 160	. $16 n$.160	.160	.160	.167	. 130	. 130	.130 .130
4	. 160	.160	. 160	. 160	.160	. 100	.160	- 160	- 100	+130 -130	. 130	. 130
5	. 107	. 160	. 160	. 160	.150	. 160	- 160	. 160	. 100	.130 .130	. 130	.150
6	. 100	.160	. 160	. 160	-160	. 160	-160	- 160	. 100	. 130	. 130	. 130
7	. 160	. 160	. 160	. 160	. 16 n	. 160	. 160	. .160	. .160	. 150	. 130	. 150
3	. 160	.160	. 100	. 160	- 10	-160	- 160	- 160	. 160	.150	. 130	. 130
9	. 100	. 160	. 160	. 160	-160	.160 .100	. 160	. 160	. 160	.150	.150	.150
10	.100	.160	. 760	. 160	. 160	. 100	. .160	-160	.100	. 13 n	. 130	.130
11	. 160	. 1617	. 100	. 160	.107	-160	.160 .100	. .160	. 160	. 130	. 130	.130
12	. 160	.160	. 160	- 160	. 100	-100	. 160	. 160	. 160	-130	. 150	. 130
13	. 160	. 160	. 160	- 160	. 160	-100	- 160	. 160	.160	.130	. 150	.130
14	- 167	. 160	. 100	. 160	- 160	- 160.	-160	. 160	-160	. $13 n$. 730	. 130
15	.167	.160	. 160	-160	. 160	.160 .160	. 1760	. 160	-160	.130	.150	. 130
16^{+}	.100	. 160	.100	.160	-100							
	$17 / 4$	1975	19/0	1976	1918	1979	1930	1981	1982	1983	1984	1.985
η	.130	. 130	.130	. 130	.150	. 130	.150	.130	.150	.130	. 130	.130 .130
1	.150	.150	-130	.150	.150	-130	.130	. 130	- 150	133 .150	.130	. 130
2	. 130	. 150	.130	. 130	. 150	-130	.130	- 130	- 150	-130	- 130	. 130
3	. 137	. 130	.150	. 130	. 150	. 130	-130	- 130	- 1 -	-130	. 130	.130
4	. 150	. 130	- 150	. 130	-130	-150	-130	-130	-150	. 130	. 130	.130
5	.150	.130	. 150	. 130	.150	-130	-130	- 150	-1」0	.130	. 130	.150
6	. 120	.130	. 130	-134	- 130	. 130	.130	-130	-130	. 130	. 130	. 130
7	. 150	.130	.130	.130	. 130	. 130	-130	-130	-. 150	.130	. 150	.150
8	. 120	.130	.130	-150	. 150	-150	-130	-130	-130	. 130	. 130	. 130
9	. 130	. 130	.150	. 130	. 150	-130	.130	130	-	-150	. 130	.130
10	. 150	. 130	. 130	. 130	. 150	. 130	-130	-130	-1s\%	.130	. 130	. 130
11	.137	. 130	.130	. 130	. 130	. 130	. 150	-130	-120	.130	. 130	. 130
12	. 150	. 150	. 150	-150	. 150	-130	- 150	- 130	-150	.130	.130	. 130
15	. 150	. 130	. 150	. 130	. 150	. 130	- 150	. 130	-100	.130	. 130	. 130
14	. $1>0$. 130	. 130	. 130	- 150	-130	- 150	- 130	-1sn	. 130	. 130	.130
15	.130	. 130	.130	. 130	. 150	- 130	-1s0	. 130	\cdots -	.130	.130	.130
$16+$.120	. 130	-120	. 130	-150	-130	-150	-150				

Appendix, Table 5 VIRTUAL POPULATION ANALYSIS. NORWEGIAN SPRTNG SPAWNING HERRING.

Appendix A，Table 6 VIrIUAL POPULATION ANALYSIS．NORNEGIAN SPRING SPAWNING HERRING．

```
STOCK SIZE IN NUMBERS UNIT：thousands
```

3IOMASS TOTALS UNIT：tomes
all values are given for 1 January

	1702	1963	1964	1465	1966	1967	1968	1969	1470	1971	1976	1973
0	72313322	25248484	7304228	35ら945\％	7529308	1237135	2585425	2201776	220026	84650	592926	1352183
1	98919う	＜1973211	$179470<01$	$114<5170$	941961	$1160<04$	665004	534016	1500944	79657	43918	＜1378
2	9621008	47017154	4694651	2184U30	0264538	2022.48	683060	163320	44038	675341	24769	2394
	$\angle 1064440$	$7<417400$	212416	173110	心く17912	3302119	107850	223ゝ61	16038	154\％	ל 1 ¢ 1 ¢	1＜92
4	17517601	6251970	54098850	1715241	07206	5167460	1964495	5768	25500	7916	4929	417529
5	30435	1413041	15063i98	4＜9350j	$1 く 2443 \mathrm{C}$	49640	1445354	17140	4486	4812	5997	1119
5	817173	65727	115953	9263260	515buy	616152	$18 \div 45$	11192	$7 门 3$	1559	5060	1947
1	130355	65020	5450	80199	נ®\％ 190	1417206	140016	2574	$5<33$	$30<0$	1055	408
3	192174	149151	52190	44432	לうら37	2370973	256841	36530	1551	1454	1018	265
7	174804	15 ぐフo	$110 \angle 53$	41024	$<40<9$	12038	40う25j	79663	C0400	413	<45	68
17	665514	546166	121030	71076	$\therefore 3605$	7967	$2 y 15$	82799	3714%	5218	34	34
11	1011339	$5<0 \leq 11$	Soó413	\％0，41	$451) 25$	3599	$10<9$	119	570.4	1922	340	29
12	554135177	¢05693	358576	224461	23402	12841	4124	590	SSM	6677	636	24
13	540110	405：041	） 4 6537	C10091	99401	1453	SCLl	2779	$1>0$	$\angle 0$	355	20
14	S．73 31	$\angle 54316$	2.609458	306541	47237	$22 \cap 78$	45199	494	2134	37	17	201
15	3131く7	219300	145111	1514010	13）9 ${ }^{\text {¢ }}$	$1 / 671$	2041	150 ó	C38	1617	14	14
$10+$	575329	434888	413101	$3 \times 5 \leq 23$	546152	111341	23683	6530	4 4 21	14	14	14
NO	ちह1 $60<5$ So	40426430	011161444	－く 1012	$44<9 \leq 916$	＜0＜01150	8355808	3420564	1786325	881207	$1 \mathrm{JOO} / 89$	1811917
	1715295 ？	8076462	9326usol	こ108442	11553853	4735432	$970 \angle 6 y$	580167	115035	3541%	ช＇28	383855
3104	60：1932	0500317	617 1170	$\bigcirc<21180$	4019000	2766386	800451	1 1ヵソ05	$5 \times 1<6$	63022	30522	112853
BIUA	S41くらす！	c625194	2190＜41	＜16054	＜946313	1351830	259191	31469	Slくし1	10135	$\checkmark 104$	99575

	1714	1975	1910	1976	1913	1979	1930	1981	1732	1933	1984	1985
0	924217	215189	849215	056316	6199267							
1	1159016	149804	101231	110173	550014	$\begin{aligned} & 988060 \\ & 5161 \% 4 \end{aligned}$	137857 851115	116722 114579	923603 94403	6010830 784925	363316	624390
2	21207	1011212	－ 55108	1392＜4	611011	46341%	449602		94903 $905 \% 1$	784925	5159188	287558
3	956	14979	366256	374125	114442	583088	449602 4119504	134316 394498	79531 65305%	$8<204$	089643	4528668
4	$41 / 7$	754	10101	75045	433441	$10<055$	510450	594498 555659	653058 342506	81254 543477	70703	602895
5	345007	3442	554	5i．25	642153	413125	＋7807	153659 43421	342506 30624%	545477	73033	57889
6	510	＜73304	21is	476	2044	544350	350550	+53421 75023	30624 $3 \% 25$	295565 204096	457391	54621
7	323	95	215700	140%	414	1862	467935	75025 305254	312538 65018	204096	448690	345395
9	101	$10<$	19	111160	1＜24	305	1500	59006%	26531\％	321265	220642	201345
7	0%	盛	ぶ	6¢	143477	5 1	317	757	340053	$54<04$ 226906	275715	181186
$1)$	59	57	10	10	50	$1<3 n 4 i$	435	＜ 71	34134	220906 $29<920$	40386	227497
11	27	51	31	60	06	51	1050	423	2	296920	194940	35988
12	<4	<4	44	44	57	51	44		142	139	250351	155893
13	27	20	21）	3 s	53	4.9	44	9） 27	265 74509	90	34	215168
14	17	$1 i$	18	18	32	$3{ }^{2}$	，	38	78509	198	42	29
15	14	14	14	14	14	27	21	4	32	68731	42	36
$10+$	14	14	14	14	14	41	21	36	56	27	57589	36
				1	14	c	4	36	26	<7	50	36

TOTAL WO 243453122752002851724 3U6070S $22110493746923 \quad 33648183015619352001190364603115450 \quad 7524230$

[^0]: *General Secretary
 ICES
 Palægade 2-4
 DK-1261 Copenhagen K
 DENMARK

[^1]: ${ }^{1}$ Includes also by-catches of adult herring in other fisheries.

