

This paper not to be cited without prior reference to the author

International Council for the Exploration of the Sea

C.M. 1986/G:81 Demersal Fish Committee

PRELIMINARY REPORT OF THE NORWEGIAN GROUNDFISH SURVEY AT BEAR ISLAND AND WEST-SPITZBERGEN IN THE AUTUMN 1985

by

Olav Rune Godø and Kjell Nedreaas Institute of Marine Research P.O.Box 1870, N-5011 Bergen-Nordnes Norway

ABSTRACT

This report describes the results from a stratified bottom trawl survey carried out in September/October 1985. The cod stock was dominated by the 1982 and the 1983 year classes. Also the 1984 year class recruited considerably to the area. The year classes 1982-1984 made up 84% of the total index in numbers and the index increased by 130% from 1984 to 1985.

The haddock was totally dominated by the 1983 and 1984 year classes and the total index in numbers decreased while the corresponding in weight increased from 1984 to 1985.

Acoustic abundance estimation of cod and haddock gave figures of roughly half the size of the trawl indices.

The most abundant species in the area were long rough dab and redfish.

ti tak Bradisa Matana

INTRODUCTION

The investigations are partly a supplement to described the investigations carried out on cod and haddock in the Barents Sea during the winter (Hylen, Jakobsen, Nakken and Sunnanå 1985), and partly a monitoring of the demersal fish stocks in the area. During the first years of the Spitzbergen investigations, acoustic surveys were carried out (Dalen, Rørvik and Smedstad 1977 and Dalen and The drastic reduction of the cod stock in the area Smedstad 1978). has, however, made it almost impossible to record the cod with acoustic equipment. Therefore the investigations in 1981,1982,1983 and 1984 (Randa and Smedstad 1982, 1983 and Godø, Randa and Smedstad 1984) were carried out as stratified bottom trawl surveys. The cod stock is now again increasing in the Svalbard - Bear Island area (Godø 1985), and in 1985 the survey was carried out as a combined acoustic and bottom trawl survey.

MATERIALS AND METHODS

Trawl survey

The survey was carried out by R/V "Eldjarn" and M/Tr "Raiti" in the period September 9 - October 5 1985. Both vessels were equipped with a Campelen 1800 meshes shrimp trawl with rubber bobbins and codend mesh size of 35 mm. The length of the sweepwires were 80 m. During a standard haul the trawl was towed for three nautical miles at a speed of three knots. The trawl stations are shown in Fig.3. Hydrographical observations were obtained on all stations with CTD-sonde(Fig.2).

The survey was designed as a stratified random trawl survey. The

investigated area was devided into 45 strata based on depth and geographic location (Fig.1). The following depth intervals were used: 0 -100 m, 100 - 200 m, 200 - 300 m, 300 - 400 m and >400 m. The total area was devided into two subareas. The area north of 76° N consists of the strata 1-22 and the southern area of the strata 23-45. The allocation of trawl hauls and the statistical calculations are described by Randa and Smedstad (1982) who presented the results as mean catch indices while swept area indices are calculated from the cruise results in 1985.

Acoustic survey

The acoustic survey was carried out as in the winter survey in the Barents Sea (Hylen <u>et al</u>. 1985). The method is described by Dalen and Smedstad (1979, 1983).

EK-400 (Simrad), connected to a Nord 10 echo integrator with a Simrad QX preprocessor was used in the abundance estimation. The integrator system developed at the Institute of Marine Research, Bergen, is fully described by Blindheim, Eide, Knudsen, and Vestnes (1982). The acoustic system was calibrated according to the method described by Foote, Knudsen, and Vestnes (1982). Echo sounder settings and performance were as follows:

<u>EK-400</u>

SL + VR = 136.7 dB Transducer 8 x 8⁰ TVG/Atten. = 20logR - 10dB $C_{I} = 0.29 \text{ m}^{2}/\text{n.mil}^{2}$ The abundance calculations were performed with the target strength relation

 $TS = 21.8 \log L - 74.96 (dB)$ and was further used to calculate the fish constant (C $_{\sf F}$)

 $C_{F} = 2.49 \cdot 10^{6} \cdot L^{-2.18}$ numb. fish/m²

where L is fish length. Total number (N_{tot}) is given by

$$N_{tot} = i = 1 \quad C_{F_i} \cdot \bar{M}_i \cdot A_i$$

where

°_{Fi} is the fish constant in a given subarea i Ñ, is mean integrator value in subarea i Ai is the area of subarea i is the number of subareas n

RESULTS

Hydrography

The temperature distributions in 50 m and at the bottom are shown in Fig. 4 and 5. Only minor differences compared to the 1984 results were observed.

Cod

Bottom trawl survey

Cod were recorded in the trawl catches in all areas. As in 1984 considerable quantities of cod were found on the western side of Spitzbergen north of 76 $^{
m O}$ N (Fig. 6). The highest mean catch rate in numbers was obtained in stratum 6 (Fig. 1), this year as in 1984. The maximum catch rate was 3093 specimens in 1985 against 1685 in 1984. In all strata north of 76 $^{
m 0}$ N with depth less than 100 m, the mean catch exceeded 150 specimens per hour. The mean stratum catches decreased with depth.

In 12 of the 23 strata south of 76 $^{
m 0}$ N, the mean catches exceeded 100

specimens per hour. These strata were in depths shallower than 300 meter. Maximum calculated density was observed in stratum 25 in the 0-100 meter zone (967 specimens per hour). North and northeast of Bear Island, in areas with depth less than 100 meter, the mean catches were 200 specimens per hour in the four strata. The distribution of cod is shown in Fig. 6.

Age compositions of cod on area and depth are shown in Fig. 14. In the northern area (north of 76⁰ N) the recorded cod were mainly made up of the 1983 and the 1984 year classes which almost exclusively were distributed shallower than 200 meter. In the southern area the 1982 and the 1983 year classes dominated in the shallowest areas. In areas of 100 to 300 meters depth, the 1983 year class was most numerous. The highest densities of older fish was also observed in the same depths (100-300 meter). A major difference between the northern and the southern areas in 1985 was the recruitment of the 1984 year class. In the northern area this year class is recorded as the best since the investigations started in 1981. South of 76⁰ N the 1984 year class is on the recruitment level of the 1982 year class or less.

Stratified indices of cod in numbers and weight are presented in Table 1 and 2. They show that the main cod consentrations were south of 76° N, however, the difference between the two main areas was not so prominent this year because of the good recruitment of the 1984 year class in the northern area. The indices in numbers show a decreasing trend with increasing depth, while the corresponding in weight varied leas as the largest cod werg found in the deeper areas.

The stratified indices in numbers for the different year classes (Table 3 and 4) confirmed that the 1982 and especially the 1983 year class are strong compared to the previous ones. It is further indicated that the strength of the 1984 year class is between the two previous ones. Because of the northern recruitment of the 1984 year class, there is now a relatively high density of cod in the entire investigated area, especially in areas shallower then 300m. During the

е,

-34

5

last year the indices in numbers increased with about 150 %. Table 5 and 6 demonstrate the difference between the two main areas in the historic development of the indices.

In the discussion of the indices, it must be kept in mind that the confidence limits are in many cases rather high (Table 3).

It is known from the bottom trawl surveys in the Barent Sea and in the Spitzbergen-Bear Island area that the indices in numbers usually increase for a year class up to an age of 3-4 years (Table 4, Hylen <u>et al</u>. 1985). In the 1985 survey it is seen from Table 4 that there is a remarkable increase of the indices in numbers for the 4-6 year old cod. Especially the increase of the 1981 year class is considerable (from 5.6 in 1984 to 27.9 in 1985). Cońcerning the 1981 year class, a similar problem is observed in the Barents Sea (Hylen <u>et al</u>.1985). The increase of the 1981 year class has been classified as 4 year olds in 1985. Neither the 1984 - 1985 indices (Table 4), nor the mean length increase of the two year classes from 1984 to 1985 in the following text table indicate such an error.

```
YEAR YEAR CLASS
1981 1982
1984 45.4 34.0
1985 54.0 45.4
```

In general there may have been an overall increase in catchability of cod resulting in higher indices in 1985 compared to earlier. In that case the 1985 estimates are too high compared to earlier years. There is, however, no known reason for such an increase. The survey was carried out as in earlier years with the exception of the introduction of Scanmar instrumentation for observation of trawl geometry during trawling. According to Engås and Godø (1986), a better control of each trawl haul was obtained, which resulted in increased possibility of for example to rise a fallen door and control the exact time of bottom contact. It is possible that the use of this instrumentation has caused some of the unexpected increase of the trawl indices but hardly all. The instruments were used on about 100 of the 202 trawl hauls.

Acoustic survey

Based on experiences from last year (Godø 1985), an acoustic survey was carried out together with the bottom trawl survey. Geographic distribution of acoustic abundance is presented in Fig. 7. Areas of high abundance are the same as indicated by the trawl survey (Fig.6). In Table 4 the estimated numbers on age groups are given together with the corresponding figures from the bottom trawl survey. The total estimated abundance was 146.3 million cod, which is roughly half the bottom trawl estimate. Important reasons for the large discrepancy between the two estimates are supposed to be:

> -in the main areas of distribution, the cod was consentrated very close to the bottom, and it is believed that a considerable proportion of the fish may have avoided integration

> -the cod was mainly distributed in relatively shallow areas. According to Engås and Godø (1985) and Ona (1986), ship avoidance effects may thus have caused an underestimation

The open isolines in Fig. 6 and 7 show that the survey do not cover the total area of distribution of cod especially north-northeast of the Hopen Island, which thus indicate that the presented estimates are too low.

The mean lengths of the 1982 and the 1983 year classes were about 45 cm and 30 cm respectively in September 1985. Most of the 1982 year

class will pass the minimum landing size of 42 cm in 1986. Undersized fish will probably make up a considerable proporsion of the commercial catches if the 1982 year class to a considerable extent mix up with the abundant 1983 year class, as was indicated in this survey.

<u>Haddock</u>

A small reduction of the indices of haddock from 1984 to 1985 was observed in spite of a considerable recruitment of the 1984 year class (Table 5 and Fig.15). The indices in weight increased in the southern area (Table 6). The haddock was composed of almost exclusively the 1983 and 1984 year classes (97%). The main areas of distribution were shallower than 300 m. Compared to the 1984 results, the haddock was more evenly distributed; i.e. the highest catches were avoided. The patchy distribution observed last year, (Godø 1985), may thus have created a too high estimate in 1984.

The acoustic abundance estimate gave 27.3 million fish which is roughly half the bottom trawl estimate. The reason for the descrepancy between the two estimates are believed to be the same as for cod.

<u>Redfishes</u>

Together with long rough dab, the redfishes were the dominant species in the area. Also in 1985 <u>Sebastes mentella</u> was the dominating redfish species in the Bear Island and West-Spitzbergen area. <u>Sebastes</u> <u>marinus</u> constituted about 2% of the catches in numbers in the southern area (Table 1), while being insignificant in the northern area. The <u>total</u> indices in numbers indicate minor variation in abundance compared to last year for <u>S. mentella</u>, while <u>S. marinus</u> decreased considerably (75%). The <u>total</u> index in weight, however, indicates a considerably decrease of 56% in abundance also for <u>S.mentella</u>. These reductions may be a result of emigration since the main area of distribution is at the southern border of the area of investigation.

<u>S.mentella</u> was most numerous in depths between 100 m and 300 m north of 76^0 N and deeper than 200 m south of 76^0 N (Table 1). The influence of larger fish increased with depth as observed during the previous cruises.

<u>S.marinus</u> was most numerous in depths between 300 m and 400 m north of 76^{0} N and between 100 m and 300 m south of 76^{0} N. Comparison with last year indicate that the preferable depth interval for <u>S.marinus</u> north of 76^{0} N may vary, while it seems to be more constant south of 76^{0} N. The influence of larger <u>S.marinus</u> also increased with depth.

In numbers and weight respectively 37% and 41% of <u>S.mentella</u> is distributed north of 76° N while the corresponding percentages for <u>S.marinus</u> are 8% and 18%. This indicates that relatively more large <u>S.marinus</u> are distributed north of 76° N which correspond to the length distribution in Fig. 19.

The overview below shows the percent changes in numbers and weight of <u>S.mentella</u> and <u>S.marinus</u> from last year (1984).

	North c	of 76 ⁰ N	South of 76 ⁰ N							
	<u>S</u> . <u>mentella</u>	<u>S</u> . <u>marinus</u>	<u>S</u> . <u>mentella</u>	<u>S.marinus</u>						
In numbers In weight	- 29% - 21%	+ 86% + 132%	+ 24% - 67%	- 77% - 59%						

South of 76⁰N there is a relative increase of <u>S.mentella</u> in numbers, while there is a decrease in weight. This indicate more young fish in this southern area compared with 1984. Except for this fact and for

the great percent increase of <u>S.marinus</u> in the northern area, which, however, is rather insignificant in absolute numbers, the quantities of redfishes have diminished. These surveys do not cover the entire area of redfish distribution, and migrations to and fro the covered area may influence the results from year to year. In 1986 the survey will be enlarged to cover the entire area of distribution.

Geographic distribution and length distributions are presented in Figs. 9, 10, 18, and 19.

The main limitation in estimating redfish abundance by stratified bottom trawl survey, is the vertical distribution of the species.

Greenland halibut

Total indices in numbers of Greenland halibut increased slightly from 1984 to 1985 while the corresponding indices in weight exhibited a similar decrease. It has earlier been assumed that the recruitment mainly comes from the northern area (Godø and Haug 1985). In the two last years, however, there has been a considerable recruitment failure of fish less than 30 cm (Fig.21). In contrary there is in 1985 observed a certain recruitment of small Greenland halibut in the southern area. Compared to the rich recruitment in the northern area in the beginning of this decade, the recruitment in 1984 and 1985 must be considered poor (Godø and Haug, manus.). Consequently the stock now probably face a recruitment problem, which will result in a decreasing commercial exploitable stock during the comming years. In spite of reduced recruitment during the last years, the indices in numbers have till now increased. This is probably a result of increasing catchability up to a certain size (compare with the indices on year classes of cod in Table 4).

Concerning the recruitment problem, it should be mentioned that the main nursery areas frequently coincide with important shrimp fishing

10

grounds. It is thus possible that bycatch of small Greenland halibut has reduced the recruitment; to what extent is , however, unknown.

Long rough dab

Together with the redfishes long rough dab was the most numerous species in the area. Its distribution covered all the area investigated, but it was most abundant in depths between 100 and 300 m around the Bear Island where the mean catchrates exceeded 1000 individuals per hour trawling (Fig. 12). The stratified indices in numbers were reduced with about 30% compared to the 1984 results (Table 5).

Blue whiting

Blue whiting was mainly caught in the southern area. The catches were largest in 200-300 m depth (Table 1 and 2). The catches were mainly made up of fish between 30 and 40 cm (Fig. 17). The stratified indices in numbers were reduced with about 60 % compared to the 1984 results, which were exceptionally high (Table 5). Migration is believed to be a main reason for the great fluctuation in the blue whiting indices.

<u>Saithe</u>

Saithe was found in high concentrations off the Spitzbergen coast between the Hornsund Bank and the Kings Bay in 1984. Catches of several tons were obtained. The catches were 0-group saithe of 13-15 cm in length. Also in 1985 saithe was caught in the same areas, but the catches were much smaller than the previous year. The mean length was 22.5 cm (Fig.16), and age samples confirmed that the 1984 year class made up the bulk of the catches.

Shrimps

All catches in the strata deeper than 200 m contained shrimps. Catchrates higher than 100 kg per hour were obtained in limited areas off West-Spitzbergen as well as in the Storfjord channel and east-southeast of the Bear Island (Fig. 13). The stratified total indices were reduced with about 50% compared to the 1984 results (Table 6).

<u>Catfishes</u>

In all area small quantities of catfishes were caught. The indices of the smaller catfish were roughly doubled compared to 1984, while the two other species only showed minor changes (Table 5 and 6).

REFERENCES

- Blindheim, J.,Eide, P.K., Knudsen, H.P. and Vestnes, G. 1982. A shipborne data logging and processing system for acoustic fish surveys. <u>Fish Res., 1</u>: 141-153.
- Dalen,J., Rørvik,C.J. and Smedstad, O.M. 1977. Bunnfiskundersøkelser ved Bjørnøya og Vest-Spitsbergen høsten 1976. Investigations on demersal fish at Bear Island and West-Spitsbergen in autumn 1976. <u>FiskenHav., 1977</u>(3): 29-51.

- Dalen,J. and Smedstad, O.M. 1978. Bunnfiskundersøkelser ved Bjørnøya og Vest-Spitsbergen høsten 1977. Investigations on demersal fish at Bear Island and West-Spitsbergen in autumn 1977. <u>FiskenHav., 1978</u>(3): 1-14.
- Dalen, J. and Smedstad, O.M. 1979. Acoustic method for estimating absolute abundance of young cod and haddock in the Barents Sea. <u>Coun. Meet. int. Coun. Explor. Sea. 1979</u> (G:51): 1-24. [Mimeo]
- Dalen, J. and Smedstad, O.M. 1983. Abundance estimation of demersal fish in the Barents Sea by an extended acoustic method. In: Nakken O. and Venema S.C.(Eds), Symposium on fisheries acoustics. Bergen, Norway, 21-24 June 1982. <u>FAO Fish.</u> <u>Rep.</u> (300):232-239.
- Foote, K.G,Knudsen,H.P. and Vestnes,G. 1983. Standard calibration of echosounders and integrators with optimal copper spheres. <u>Fisk. Dir. Skr. Ser. HavUnders., 17</u>: 335-346.
- Godø,O.R., Randa,K. and Smedstad,O.M. 1984. Preliminary report of the Norwegian groundfish survey at Bear Island and West-Spitsbergen in the autumn 1983. <u>Coun. Meet. int. Coun.</u> <u>Explor. Sea. 198</u>4(G:46): 1- 17. [Mimeo]
- Godø,O.R. 1985. Preliminary report of the Norwegian groundfish survey at Bear Island and West-Spitsbergen in the autumn 1983. <u>Coun. Meet. int. Coun. Explor. Sea. 1985</u>(G:65): 1- 17. [Mimeo]
- Godø,O.R. and Haug,T. 1985. A preliminary report on the migration and recruitment to the commercial stock of Greenland halibut, <u>Reinhardtius</u> <u>hippoglossoides</u>, in the Svalbard area. <u>Coun. Meet. int. Coun Coun. Explor. Sea. 1983</u>(G:18): 1-19. [Mimeo]

- Hylen,A., Jakobsen,T., Nakken,O., Sunnanå,K. 1985. Preliminary report of the Norwegian investigations on young cod and haddock in the Barents Sea during the winter 1985. <u>Coun.Meet.int.</u> <u>Coun. Explor. Sea, 1985</u>(G:68): 1-15. [Mimeo]
- Randa,K. and Smedstad,O.M. 1982. The Norwegian groundfish survey at Bear Island and West-Spitsbergen in the autumn 1981. <u>Coun.Meet.int.</u> <u>Coun. Explor.</u> <u>Sea.</u> <u>1982</u>(G:42): 1-17. [Mimeo]
- Randa,K. and Smedstad,O.M. 1983. Preliminary report of the Norwegian groundfish survey at Bear Island and West-Spitsbergen in the autumn 1982. <u>Coun. Meet. int. Coun. Explor. Sea.</u> <u>1983</u>(G:34): 1-17. [Mimeo]

			North of	76 ⁰ N			South of 76 ⁰ N								
Species	0-100	100-200	200-300	300-400	>400	Total	0-100	100-200	200-300	300-400	>400	Total	Total		
Cod Haddock Saithe <u>S.Marinus</u> <u>S.Mentella</u> Greenland halibut Long rough dab Blue whiting Jelly cat Catfish Smaller catfish	45830 24230 14470 0 + 5 0 643 2 0 72 121	30900 5200 26660 150 108610 126 33830 0 27 903 967	4727 637 513 133 62330 2373 48130 17 33 2169 719	985 11 0 388 23930 687 2005 251 45 165 468	364 15 0 23 3554 10740 492 51 12 67 205	82810 30090 41640 695 198430 13930 85100 322 116 3376 2481	119500 10370 24 0 0 8188 0 4 77	34840 5281 0 598 92 50 172300 192 827 668	27860 9511 0 6906 92730 8733 157700 10120 540 717	9644 557 0 168 176300 6460 42160 6506 536 59	5949 44 0 39 68410 10270 23280 9131 416 39	197700 25760 24 7711 338400 25520 403500 25950 2323 1561	280600 55850 41660 8405 536820 39450 488600 26270 2439 4936		

Table 1. Stratified indices on numbers for different depths and areas in 1985.

.

Ta	able	2.	Stratified	indices	on	weight	for	different	depths	and	areas	in	1985.
Г			·····										

Species0-100100-200200-300300-400>400Total0-100100-200200-300300-400>400TotalTotalCod10830150003624269883532980713102000017300133201153013350016640Haddock32217766129406846331327110165171221119S.Marinus024472061829501011107116221346164S.Mentella082553032335548915130053437689648639220303716Greenland halibut0731093477623978820853186370812290192702716Blue whiting+036115790743236194323907643772Jelly cat01316415524373317965543440682788202902066Smaller catfish45115574815575163816016961025563873323496				North of	76 ⁰ N									
Cod 10830 15000 3624 2698 835 32980 71310 20000 17300 13320 11530 133500 16640 Haddock 3221 776 61 2 9 4068 4633 1327 1101 65 1 7122 1119 Saithe 1873 2911 58 0 0 4842 + 0 0 0 + 484 S.Marinus 0 24 47 206 18 295 0 101 1107 116 22 1346 164 S.Mentella 0 8255 3032 3355 489 15130 0 53 4376 8964 8639 22030 3716 Long rough dab 56 4217 2512 234 63 7082 1755 27290 16300 4420 3247 53010 6009 Jelly cat 0 131 64 155 74 373 31 7965 5434 4068 2788 20290 2066 <td>Species</td> <td>0-100</td> <td>100-200</td> <td>200-300</td> <td>300-400</td> <td>>400</td> <td>Total</td> <td>0-100</td> <td>100-200</td> <td>200-300</td> <td>300-400</td> <td>>400</td> <td>Total</td> <td>Total</td>	Species	0-100	100-200	200-300	300-400	>400	Total	0-100	100-200	200-300	300-400	>400	Total	Total
Shrimps 0 18 2143 705 965 3830 0 1863 565 483 25110 2817	Cod Haddock Saithe <u>S.Marinus</u> <u>S.Mentella</u> Greenland halibut Long rough dab Blue whiting Jelly cat Catfish Smaller catfish Shrimps	10830 3221 1873 0 0 56 + 0 45 451 0	15000 776 2911 24 8255 73 4217 0 131 615 1558 18	3624 61 58 47 3032 1093 2512 3 64 748 652 2143	2698 206 3355 477 234 61 155 155 297 705	835 9 0 18 489 6239 63 15 24 75 965	32980 4068 4842 295 15130 7882 7082 79 373 1638 3055 3830	71310 4633 + 0 0 1755 0 31 160 844	20000 1327 0 101 53 85 27290 74 7965 1696 21360	17300 1101 0 1107 4376 3186 16300 3236 5434 1025 1863	13320 65 0 116 8964 3708 4420 1943 4068 56 565	11530 1 0 22 8639 12290 3247 2390 2788 387 483	133500 7122 + 1346 22030 19270 53010 7643 20290 3323 25110	166400 11190 4842 1641 37160 27160 60090 7721 20660 4961 28170

			······			Ag	e					
	Depth	1	2	3	4	5	6	7	8	9	10+	Total
North of 76 N	0-100 100-200 200-300 300-400 >400	11.4 <u>+</u> 17.4 6.3 <u>+</u> 3.8 0.8 <u>+</u> 0.3 + +	27.7 <u>+</u> 27.5 13.2 <u>+</u> 7.2 2.1 <u>+</u> 2.2 + +	5.5 <u>+</u> 6.0 6.5 <u>+</u> 3.3 0.9 <u>+</u> 0.9 + +	1.0 <u>+</u> 0.4 3.1 <u>+</u> 2.7 0.4 <u>+</u> 0.2 0.2 <u>+</u> 0.1 0.1 <u>+</u> 0.1	0.2 <u>+</u> 0.2 0.7 <u>+</u> 1.1 0.2 <u>+</u> 0.1 0.2 <u>+</u> 0.1 0.1 <u>+</u> 0.1	+ 0.7 <u>+</u> 0.1 0.3 <u>+</u> 0.2 0.4 <u>+</u> 0.1 0.1 <u>+</u> 0.1	+ 0.2 <u>+</u> 0.2 0.1 <u>+</u> 0.1 0.1 <u>+</u> 0.1 +	0 + + + +	0 0 0 0 0	0++++++++++++++++++++++++++++++++++++++	45.8 <u>+</u> 43.7 30.9 <u>+</u> 27.7 4.7 <u>+</u> 3.1 1.0 <u>+</u> 0.4 0.4+0.3
	Total	18.5 <u>+</u> 17.5	43.0 <u>+</u> 27.8	12.9 <u>+</u> 1.6	4.8 <u>+</u> 1.6	1.4 <u>+</u> 0.6	1.5 <u>+</u> 0.7	0.3 <u>+</u> 0.1	+	0	+	82.8+51.8
South of 76 N	0 - 100 100 - 200 200 - 300 300 - 400 >400	1.5 <u>+</u> 1.0 4.1 <u>+</u> 1.6 2.6 <u>+</u> 1.6 0.3 <u>+</u> 0.2 0.1 <u>+</u> 0.1	52.2 <u>+</u> 29.4 18.1 <u>+</u> 5.2 15.5 <u>+</u> 10.7 2.3 <u>+</u> 0.9 1.0 <u>+</u> 0.8	49.4 <u>+</u> 32.7 6.3 <u>+</u> 2.9 3.1 <u>+</u> 2.9 1.6 <u>+</u> 1.0 1.0 <u>+</u> 0.5	13.1 <u>+</u> 9.9 3.4 <u>+</u> 1.1 2.9 <u>+</u> 1.1 2.4 <u>+</u> 0.7 1.4 <u>+</u> 0.9	1.6 <u>+</u> 1.2 0.8 <u>+</u> 0.2 1.1 <u>+</u> 0.4 1.0 <u>+</u> 0.2 0.7 <u>+</u> 0.4	0.8 <u>+</u> 0.6 0.8 <u>+</u> 0.2 1.6 <u>+</u> 0.9 1.5 <u>+</u> 0.7 1.4 <u>+</u> 0.7	0.1 <u>+</u> 0.1 0.1 <u>+</u> 0.1 0.2 <u>+</u> 0.1 0.3 <u>+</u> 0.1 0.3 <u>+</u> 0.2	+ 0.1 <u>+</u> 0 0.1 <u>+</u> 0.1 0.1 <u>+</u> 0.1 0.1 <u>+</u> 0.1	+++++++++++++++++++++++++++++++++++++++	+ 0.1 <u>+</u> 0 0.1 <u>+</u> 0.1 + +	119.5 <u>+</u> 66.9 34.8 <u>+</u> 9.1 127.9 <u>+</u> 17.0 9.6 <u>+</u> 2.8 6.0+3.1
	Total	8.5 <u>+</u> 2.4	90.0 <u>+</u> 31.7	61.4 <u>+</u> 33.1	23.1 <u>+</u> 10.1	5.1 <u>+</u> 1.3	6.2 <u>+</u> 1.5	1.1 <u>+</u> 0.2	1.1 <u>+</u> 0.2	0.1 <u>+</u> 0	0.2 <u>+</u> 0	 197.7 <u>+</u> 65.0
Total a	ll areas	27.0 <u>+</u> 17.7	133.1 <u>+</u> 17.7	74.3 <u>+</u> 33.8	27.9 <u>+</u> 10.2	6.5 <u>+</u> 1.4	7.7 <u>+</u> 1.6	1.4 <u>+</u> 0.3	1.4 <u>+</u> 0.3	0.1 <u>+</u> 0	0.3 <u>+</u> 0	280.6 <u>+</u> 83.2

•

Table 3. Stratified trawl indices on numbers for different ages of cod in 1985. _____

Table 4. Stratified trawl indices on numbers for different year-classes of cod in 1981 - 1985. For 1985 the acoustic indices have also been presented.

Year of		Year-class														
investigation	1984	1983	1982	1981	1980	1979	1978	1977	1976	1975	1974	1973	1972	1971	Total	
1981					0.1	22.2	9.0	5.5	1.3	6.1	3.8	0.7	 N 4	Ω <u>κ</u>	. <u> </u>	
1982			14 6	1.5	4.0	22.2	9.3	2.8	1.9	2.9	0.4	0.1	0.1	0.4	45.6	
1984		52.2	42.7	5.6	6.2 4.2	9.5 5.3	3.U 2.2	2.5	1.3	1.6 n 4	0.4	0.2			44.4	
1985 trawl	27.0	133.1	74.3	27.9	6.5	7.7	1.4	1.4	0.1	0.3	0.2				279.7	
1985 acoustic	13.7	73.3	41.6	13.1	2.9	1.3	0.4	0.1	+	+		······		· · · · · ·	146.4	

	Year	Number of hauls		Cod	Ha	ddock	<u>S.mari</u>	<u>nus</u>	<u>S.mente</u>	<u>lla</u>	Greenl halit	and. out	Long 1 dat	ough)	Blı whit	ue ting	Je	elly cat	Cat	ish	Sma. Cat	ller fish
North	1981	66	1	467		327	3	415	45	680	13 6	00	48	720	1	821		35		621	1	209
l of	1982	70	4	140		56		204	59	190	12 9	40	34	190		537		30	1	527	•	279
76 N	1983	70	3	251		362	36	330	58	360	14 3	60	32	560		128		56		690	, I	975
	1984	72	20	700	3.8	490	:	373	278	600	12 6	80	73	410		422		34	2	167	1	518
	1985	77	82	810	30	090	l	695	198	430	13 9	70	85	100		322		116	3	376	2	481
South	1981	119	48	310		481	58	250	133	800	64	92	287	500	26	650	1	235		790	1	262
of	1982	121	41	460		928	11	790	218	500	13 0	70	336	100	27	230	1	360	1	082	1	452
76 N	1983	117	42	670	3	358	6	070	248	100	12 3	30	339	800	30	480	1	456	•	960	2	155
	1984	122	90	810	30	160	33	100	273	500	23 9	60	592	400	67	110	2	083	1	358	L.	190
	1985	125	197	700	25	760	7	711	338	400	25 5	20	403	500	25	950	2	323	1	561	6 (686
	1981	185	49	770		808	61	670	179	500	20 1	00	336	300	28	470	1	270	1	411	2	450
Total	1982	192	45	600		984	11 9	990	277	600	26 0	00	370	300	27	760	1	391	2	609	1	730
	1983	187	45	920	3	720	42	400	306	500	26 6	90	372	400	30	610	1	511	1	650	3	130
	1984	194	111	500	68	640	33	470	552	100	366	30	665	800	67	530	2	117	3	525	5 5	709
L	1985	202	280	600	55	850	8	405	536	820	394	50	488	600	26	270	2	439	4	936	9 1	167

~

Table 5. Stratified trawl indices on numbers for different species in 1981 - 1985.

Table 6. Stratified trawl indices on weight for different species in 1981 - 1985.

.

	Year	Cod	Haddock	<u>S.marinus</u>	<u>S.mentella</u>	Greenland halibut	Long rough dab	Blue whiting	Jelly cat	Catfish	Smaller Catfish	Shrimps
North	1981	3 156	942	453	11 030	3 645	4 125	400	30	1 032	343	17 060
of	1982	3 348	5	63	9 804	6 550	2 858	158	130	1 359	363	24 810
76 N	1983	3 226	35	3 984	6 869	4 967	2 322	38	217	. 462	1 104	13 240
1	1984	5 704	5 136	127	19 250	6 840	5 132	83	197	. 1 238	1 376	6 901
	1985	32 980	4 068	295	15 130	7 880	7 082	79	373	1 638	3 055	3 830
South	1981	73 270	988	10 230	31 510	5 794	40 770	4 968	9 4 2 7	1 054	3 764	50 650
of	1982	61 180	469	4 325	49 830	15 660	45 510	7 741	12 590	1 849	6 4 2 5	68 780
76 N	1983	54 350	474	1 252	35 350	18 170	46 610	9 349	14 130	2 335	6 309	60 090
	1984	66 510	3 201	3 262	65 670	24 220	82 160	20 530	19 260	4 538	13 480	31 740
	1985	133 500	7 122	1 346	22 030	19 270	53 010	7 643	20 290	3 323	25 110	12 670
	1981	76 430	1 930	10 680	42 530	9 4 3 9	44 890	5 368	9 4 5 7	2 086	4 407	67 710
Total	1982	64 530	502	4 388	59 640	22 221	48 370	7 899	12 720	3 209	6 788	93 590
1	1983	57 580	509	5 236	42 350	23 130	48 930	9 387	14 350	2 797	7 412	74 330
	1984	72 210	8 337	3 389	84 920	31 060	87 290	20 610	19 450	5 776	14 850	38 640
	1985	166 400	11 119	1 641	37 160	27 160	60 090	7 721	20 660	4 961	28 170	16 500

Fig.1. The area of investigation with the different strata.

Fig.2. Survey tracks and hydrographic stations taken by R/V "Eldjarn" in the period 10 September - 5 October 1985.

Fig.3. Bottom trawl stations taken by R/V "Eldjarn" and M/Tr "Raiti" 10 September - 5 Octobe `985.

Fig.6. Distribution of cod in the trawl catches (numbers per hour trawling).

Fig.7. Distribution of acoustic abundance of cod and haddock together.

Fig.8. Distribution of haddock in the trawl catches (numbers per hour trawling).

Fig.9. Distribution of <u>Sebastes mentella</u>in the trawl catches (numbers per hour trawling).

Fig.10. Distribution of <u>Sebastes marinus</u> in the trawl catches (numbers per hour trawling).

Fig.11. Distribution of Greenland halibut in the trawl catches (numbers per hour trawling).

Fig.12. Distribution of long rough dab in the trawl catches (numbers per hour trawling).

Fig.13. Distribution of shrimps in the trawl catches (kilograms per hour trawling).

Fig.14. Age distribution of cod. A:0-100m, B:100-200m, C:200-300m, D:300-400m, E:deeper than 400m, F:Northern area, G:Southern area, H:Total area.

Fig.15. Age distribution of haddock. A:0-100m. B:100-200m. C:200-300m. D:300-400m. E:deeper than 400m. F: Northern area. G:Southern area. H:Total area.

Fig.16. Length distribution of saithe.

Fig.17. Length distribution of blue whiting.

Fig.18. Length distribution of <u>S.mentella</u>. A:O-100m, B:100~ 200m, C:200-300m, D:300-400m, E:deeper than 400m, F:Northern area, G:Southern area, H:Total area.

¢ .

Fig.19. Length distribution of <u>S.marinus</u>. A:0-100m. B:100-200m. C:200-300m. D:300-400m. E:deeper than 400m. F:Northern area. G:Southern area, H:Total area.

Fig.20. Length distribution of long rough dab. A:0-100m. B:100-200m. C:200-300m. D:300-400m. E:deeper than 400m. F:Northern area. G:Southern area. H:Total area.

Fig.21. Length distribution of Greenland halibut. A:O-100m. B:100-200m. C:200-300m. D:300-400m. E:deeper than 400m. F:Northern area. G:Southern area. H:Total area.

. ка г