Fol. 41 Assess

Fisheridizations tot

Biblioteket

This Report not to be quoted without prior reference to the Council^{x)}

International Council for the Exploration of the Sea

C.M.1984/Assess:20

REPORT OF THE AD HOC MULTISPECIES ASSESSMENT WORKING GROUP

Copenhagen, 18 - 22 June 1984

This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.

x) General Secretary ICES Palægade 2-4 DK-1261 Copenhagen K Denmark • ð

TABLE OF CONTENTS

u!

Page

the second second and the second and the second s

1.	INT	RODUCTION	1
	1.1	Participants	1
	1.2	Terms of Reference	1
	1.3	Background to the Working Group Meeting	1
2.	TES	T RUNS WITH THE MULTISPECIES VPA (MSVPA)	2
	2.1	FORTRAN Program	2
	2.2	Catch-At-Age-Data for MSVPA	2
	2.3	Relative Food Compositions	4
	2.4	Estimates of Ration Used in MSVPA Runs	5
	2.5	Ml Levels Used in Runs	8
	2.6	Feeding Models Used in MSVPA and Assumptions about External Food	9
	2.7	Problems With the Choice of Appropriate Mean Weights at Age for Prey Items in MSVPA 1	.0
	2.8	The Key Run of the MSVPA 1	2
	2.9	Comparing Runs Under Different Assump- tions with the Key Run 1	.3
	2.10	Preliminary Advice for Single Species Assessment Working Groups 1	4
3.	SOME SPECI MENTS	IMPLICATIONS OF THE RESULTS OF MULTI- ES VPA TO SHORT-TERM (TACTICAL) ASSESS-	4
	3.1.	Introduction 1	4
	3.2.	Estimation of Recruitment at Age 1 in Various Stocks 14	4
	3.3.	Estimates of Predation Mortality at Age 19	5
	3.4.	General Considerations 15	5
4.	LONG-	TERM ASSESSMENTS 16	5
	4.1.	Introduction 16	ò
	4.2.	Previous Attempts 17	/
	4.3.	Alternative Presentations 17	,
	4.4.	Discussion 18	3

5.	ADVICI	E ON FUTURE DATA COLLECTION	18					
	5.1.	Future Stomach Sampling Programmes	18					
	5.2.	Further Research	20					
6.	OTHER	MATTERS	22					
	6.1.	Comparison of the 1981 Stomach Sampling Results with Earlier Data	22					
	6.2.	Who Eats Who?	23					
	6.3.	Biological Considerations and the Problems of "Other Food" and Suita- bility	23					
	6.4.	Comparison of Predation Mortalities with Earlier Estimates	25					
	6.5.	Catchability Coefficients	26					
	6.6.	Existence and Uniqueness of MSVPA Solutions	26					
	6.7.	Sources of Variance of Consumption Estimates	28					
	6.8.	Two Possible Ways of Correcting the Bias in MSVPA Results due to Systematic Differences between Weights of Prey in the Sea and in Predators' Stomachs	29					
7.	CONCLU	JSIONS AND RECOMMENDATIONS	33					
8.	ACKNOWLEDGEMENTS							
9.	REFERI	INCES	36					
	Tables	3 2.2.1 - 6.8.2 3	39 - 79					
	Figure	es 2.1.1 - 6.8.1 8	30 - 99					

- 0 - 0 -

 \mathbb{C}_{0}^{1}

REPORT OF THE AD-HOC MULTISPECIES ASSESSMENT WORKING GROUP

1. INTRODUCTION

1.1 Participants

D W Armstrong UK (Scotland) H-P Cornus Federal Republic of C N Daan Netherlands W Dekker Netherlands J-E Eliassen Norway P Grotnes Norway P Grotnes Norway H Hansen Denmark J-P Lussiaé-Berdou Canada J J Maguire Canada S Murawski USA E Nielsen Denmark J G Pope (Chairman) UK J G Shepherd UK H Sparholt Denmark P Sparre Denmark V Ultang Norway E Ursin Denmark	Germany
--	---------

The ICES Statistician, K. Hoydal, also participated in the meeting.

1.2 <u>Terms of Reference</u>

It was decided at the 71st Statutory Meeting of ICES (C.Res.1983/2:7) that an <u>ad hoo</u> Multispecies Assessment Working Group should be set up, which would meet at ICES headquarters from 18-22 June 1984 (after the routine Assessment Working Groups dealing with North Sea fish species have been convened), under the chairmanship of Mr J G Pope in order to:

- (i) start trial runs with MSVPA models,
- discuss the implication of their results of multispecies assessments in the formulation of management advice,
- (iii) provide advice on possible further needs in relation to collection of stomach content data.

1.3 Background to the Working Group Meeting

Following the pioneering work of multispecies modelling of the North Sea by Andersen and Ursin, 1977, it became apparent that the problem of predation mortality was not a trivial one in the North Sea. This problem was further addressed in two papers to the 1979 Statutory Meeting of ICES by Helgason and Gislason, 1979, and by Pope, 1979. Both describe multispecies extensions of the familiar VPA techniques used by Working Groups and thus gave an approach to estimating predation mortality which was:

- 1. "Charmingly simple" (Ursin, 1982)
- 2. Which being retrospective enabled some of the problems inherent in a prospective model to be ignored (e.g., recruitment levels).

An <u>ad hoc</u> ICES Working Group was set up to consider the data requirements for multispecies assessment. The results of the ICES programme of stomach sampling (the 1981 Year of the Stomach) which that Working Group set up became available to the 1983 Statutory Meeting (Daan 1983, Armstrong, 1983 Mehl and Westgård 1983 and Gislason 1983).

The results caused considerable interest and led to the setting up of the present \underline{Ad} hoc Working Group on Multispecies Assessments.

Clearly the immediate tasks for the Group has been to use the stomach data finalised in the report of the coordinators of the 1981 stomach sampling programme, Anon.1984, to make preliminary multispecies (VPA) (MSVPA) runs. This has been successfully achieved and the more obvious consequences of the results discussed. The results of such a large and complex undertaking are, however, necessarily provisional and a further meeting of the <u>Ad hoc</u> Working Group will certainly be needed next year to consolidate the advances made at this meeting and to develop means of giving long-term multispecies assessment advice.

The <u>Ad hoc</u> Working Group therefore <u>recommends that it meet again at about</u> the same time in 1985.

2. TEST RUNS WITH THE MULTISPECIES VPA (MSVPA)

2.1 FORTRAN Program

Before the Working Group meeting, a FORTRAN 77 program was developed for the VAX/11/750 computer at the Danish Institute for Fisheries and Marine Research. A listing of the program will appear in an ICES paper this year (Sparre, 1984).

The program is based on the MSVPA models of Pope (1979) and Helgason and Gislason (1979). The estimation of suitability indices are based on Sparre (1980). A description of the computational procedure is given in Sparre (1980), Appendices A, B and C. A flow chart of the MSVPA procedure is shown in Figure 2.1.1. The program differs from the one described in Sparre (1980), only with respect to the time unit. The MSVPA used by the Working Group is based on quarterly data, whereas Sparre (1980) used annual data. A run with one particular set of parameters takes about 5 minutes on the VAX-computer.

2.2 Catch at Age Data for MSVPA

To satisfy the requirements of MSVPA it is neccessary to input quarterly catch at age data for each of the species to be considered. For most fish stocks definitive versions of these are not available. To test the program, preliminary estimates of these quarterly catch at age data had been derived in advance of the meeting from annual data available in various Working Group documents.

Quarterly catch at age data were estimated, assuming that fishing mortality does not vary appreciably between quarters within years. In the time available to it the Working Group were clearly unable to produce precise quarterly catch at age data.

More-over it was felt that the production of definitive quarterly catch at age data is the responsibility of the various species Working Groups who have the required data and experience. The Working Group therefore decided to check that the test quarterly catch at age data were broadly sensible in order that MSVPA results should not be greatly altered when the definitive data become available. In the case of cod, haddock and whiting, the test data were found to be reasonable. Explicit quarterly data for England, Denmark, Netherlands, Norway and Scotland for the period 1981-1983 were made available to the Group. The data for 1981 were worked up on a quarterly basis and the resultant age frequencies were compared with those used in the trial MSVPA runs.

For ages 1 and older in the case of haddock and whiting and for ages 2 and older in the case of cod it was found that the age frequencies derived from the explicit data were reasonably similar to those used in the trial MSVPAs. It was apparent, however, from the explicit data that no 0-group haddock and whiting or 1-group cod are caught in the first and second quarters.

Because, however, only a partial data set was available for the explicit calculation of quarterly age frequencies it was not possible to work up definitive data for all years over which MSVPA was to be run. It was therefore decided to retain the data used in the trial MSVPAs for ages 1 and older in the case of haddock and whiting and for ages 2 and older in the case of cod. For O-group haddock and whiting and for 1-group cod it was decided to partition the estimated annual catch equally between quarters III and IV.

Also for saithe, the quarterly catch data from the trial runs of MSVPA were accepted.

In the case of Norway pout and sprat, the quarterly data given in reports of the Industrial Fisheries Working Group were used.

For sandeel, Working Group reports showed No/month for years 1979 to 1983 and No/half-year for years 1974 to 1978. Catch numbers were combined to quarterly values for years 1979 to 1983. From that, a mean percentage distribution was calculated for half-year catch numbers per age:

Age	0	1	2	3	4	5	6+
Q1	0	3	3	1	0	1	0
Q2	100	97	97	99	100	99	100
Q3	89	98	99	100	99	100	100
Q4	11	2	1	0	1	0	0

The reported half-year catch numbers for years 1974 to 1978 were converted to No/quarter using the distribution pattern above.

For mackerel, the quarterly catch in number by age was estimated from Norwegian data by quarter for 1982 and 1983, and from Norwegian and Scottish data for 1981. For years prior to 1981, the quarterly data estimated in trial MSVPAs were used.

In the case of adult herring (2+), in 1981-1983, 80% of the catches in Divisions IVc - VIId was allocated to the 4th quarter each year, and the rest was allocated to the 1st quarter. In Divisions IVa - IVb, catches were assumed to be equally divided between the 2nd and 3rd quarters. Again for years prior to 1981, the catch data in the trial MSVPA were used. The seasonal distribution of 1-group catches was estimated from Danish data from 1983, applying the same percentage distribution to earlier years. 75% of the O-group was assumed to be caught in the 3rd quarter, and 25% in the 4th quarter. The catch data used for the different species are given in Table 2.2.1.

The Stomach Sampling Project was limited to ICES Sub-area IV, and Sub-area IV was taken as the appropriate area for a North Sea multispecies model.

The Working Group recognised in this connection two problems. Firstly, for some stocks (e.g. mackerel), catches in Division IIIa are included in the assessment, and estimated stock sizes will, therefore, include some fish not present in the North Sea. No attempt was made to correct for this at the present meeting. Secondly, there are stocks which at certain times of the year, or during certain life stages, are partly outside the North Sea proper. One example is mackerel, which during summer and autumn is partly in Division IIa, and during winter partly in Division VIa. Another example is saithe. The youngest age groups of saithe are to a large extent distributed in Norwegian coastal waters and should therefore not be included in a North Sea multispecies model.

The problem with the saithe was considered the most serious. By including the youngest age groups one would heavily overestimate predation by saithe in the North Sea. It was therefore decided to exclude age groups 0-3 when calculating saithe predation.

The best way of dealing with such problems as mentioned above in the future would be that the relevant Assessment Working Groups gave some guidance, trying to quantify the proportions being outside the North Sea.

<u>Recommendation</u>: The different Assessment Working Groups should at future meetings supply quarterly catch at age data for use in a MSVPA. They should also try to give some guidance concerning the proportions of different fish stocks included in the MSVPA which are outside the North Sea at different ages or different times of the year.

2.3 Relative Food Compositions

The input on the relative stomach contents in weight units by prey age group, and predator age group and quarter for cod, whiting, saithe and mackerel from the stomach sampling project 1981 were derived from Anon. (1984), Tables 5.2.1.a-d, 5.4.1.a-d, 5.5.1.a-d and 7.5.3). Haddock data were not yet available in the proper format and this predator had to be excluded from the MSVPA.

Although mackerel, plaice and sole had been recorded in cod stomachs, there is evidence on the basis of the size distribution of these species in the stomachs that they represent discarded fish from the commercial fisheries and therefore they have been excluded as prey.

For cod and whiting, estimates of average prey weights at time of ingestion had also been provided by Anon. (1984), which deviated in some cases considerably from the average weights by age group in the various fish stocks.

It was realised that this discrepancy between the whole weight of fish found in predators' stomachs and the mean weight of fish of the same age in the sea might bias the results of MSVPA. To attempt to compensate for this, bias estimates of whole weight of fish in stomachs were used as additional inputs to some runs of the MSVPA. A more detailed discussion of this problem will be found in Section 2.7.

2.4 Estimates of Ration Used in MSVPA Runs

<u>What was actually done</u>. The total rations by quarter for the various predators entering the MSVPA as input were derived from the report of the Coordinators of the Stomach Sampling Project (Anon., 1984). It should be noted that in their report there is no consistency in the models used to estimate the consumption by the various fish species.

For cod and whiting the method of Daan (1973) has been applied according to a linear model of the equation:

where $\overline{\mathbf{R}}$ represents food consumption, S average stomach contents in weight and ρ the digestion time in days. For whiting a constant digestion time of 2.5 days was applied over all age groups. For cod allowance has been made for digestion time to vary with size of predator in view of the larger prey items consumed according to the equation

 $\rho = \sigma_{\mathbf{H}} L^2$

where L is the mean length per age group and σ is a digestion constant which has been estimated for cod at 0.06 by Daan (1973).

For saithe and mackerel exponential digestion models have been applied, taking into account the ambient temperature (T). The model used for saithe has been given by Gislason (1983):

$$R = 0.0266 \text{ m EXP} (0.096 \text{ m T}) \text{ m W}^{0.74}$$

where W represents the average weight of an age group. For mackerel a slightly different formulation is used where the ration is directly derived from the stomach content weights (Mehl and Westgård, 1983):

$$R = 0.005 \text{ m EXP} (0.2 \text{ m T}) \text{ m S}$$

Various other possible approaches

A. Some guesses

1. Estimates of ration assuming ration proportional to body weight

Rations of 1-2% bodyweight per day is often found only in the summer half year. The range of ration per year could thus be from 1.6W to 7.3W.

2. Estimates of ration based on requirements to be met

Growth, spawning, metabolic losses (routine metabolism).

If the efficiency of food conversion is assumed known: range 0.1 - 0.5 and:

 a) spawning and metabolic losses disregarded. In this case ration per year could be from 2 x growth increment to 10 x growth increment.

- b) Spawning accounted for: the weight of eggs, adjusted for calorific contents, included in growth (male losses to be disregarded ?). This would give rations larger than a by 2 -10 times calorific content of eggs.
- c) Routine metabolic losses included: the weight loss of a fasting fish; this could be established by experiments, and would add a further increment to the estimate of ration.

B. Feeding experiments

- 1. One possibility would be to feed the fish so much that they grow as in nature. It should then be possible to express food consumption as a function of body-weight. The risk in this is that the fish might not behave naturally.
- 2. Estimate rates of digestion (or time to digest). Calculate ration from stomach contents and coefficient of digestion. There are unsolved problems: Cod on Georges Bank and in the North Sea seem to have the same growth rate and live at similar temperatures. Yet, North Sea cod has twice as much in the stomach as Georges Bank cod. Many approaches to the estimation of digestion rates have been published, ranging from linear models to expontential models to more complicated models, yet, it does not seem well known what determines the rate of digestion in a given situation.

C. Calculation of requirements from the growth equation

Another possibility is to estimate ration from consideration of the growth equation: Consider the expression

$$dw/dt = Hw^{2/3} - kw$$

The positive term can be perceived as proportional to the ration dR/dt. Some food is not digested and the equivalent of some is spent on energy for processes of feeding, digestion, etc. ("apparent specific dynamics action"). Thus:

$$Hw^{2/3} = v \frac{dR}{dt}$$
$$\frac{dR}{dt} = \frac{H}{v} w^{2/3}$$

where $H = 3KW^{1/3}_{\infty}$. If 90% of the food is assimilated and 15% of this covers "expenses" we have v = 0.9 (1-0.15) = 0.765. As an example, take the growth parameters of cod in the North Sea as estimated by Beverton and Holt 1957:

$$W_{\infty} = 20 \ 000 \text{g}, \ \text{K} = 0.2.$$
 We have
 $H = 3 \ \text{x} \ 0.2 \ \text{x} \ 20 \ 000^{1/3} = 16.29$
 $\frac{dR}{dt} = \frac{H}{v} w^{2/3} = 21.3 w^{2/3}.$

Annual cons.	(g)
99	
459	
2 130	
9 887	
	459 2 130

Different sets of the four parameters of the growth equation ${\rm Hw}^m$ - ${\rm kw}^n$ may represent the observed growth equally well.

Consider the ratio of annual consumption to body-weight for three such parameter sets shown in the text table below:

w	16.29w ^{2/3} - 0.6w	$30w^{0.58} - 2.0w^{0.78}$	$26w^{0.69} - 5.1w^{0.84}$
100	4.6	5.7	8.2
1 000	2.1	2.2	4.0
10 000	1.0	0.8	2.0

The two right-hand columns represent attempts at finding physiologically plausible parameter values. The left-hand column is the standard growth equation with parameters as estimated above. The middle column parameters were adopted by Andersen and Ursin 1977 (cf.6.4). For comparison, the computer output presented at the beginning of the meeting produces the following values for four species:

COD		WHITING		SAITHE		MACKEREL	
W	ratio	w	ratio	w	ratio	w	ratio
520 13 500	4.2 1.6	100 780	2.4 1.7	330 8 700	3.9 2.1	200 680	4.8 2.1

Ratio = annual consumption/body-weight

The value for cod of 520 g is similar to that obtained with the standard growth equation. The value for large cod compares better to the righthand column of the previous table, whose parameters were estimated from metabolic rates of fed and fasting cod in aquaria. The parameters of the other two columns were estimated from field data on size-at-age. Generally, the consumptions calculated by the Stomach Group are in fair agreement with the more theoretical approach. It does not seen likely that the actual food consumption can have been less than half the values estimated by the Stomach Group. Such halved values would give the lower range of believable values.

2.5 Ml Levels Used in Runs

The MSVPA model partitions natural mortality into two components.

- M 1 = "other cause" natural mortality
- M 2 = natural mortality caused by predation by species included in the $\ensuremath{\mathtt{MSVPA}}$

Some sources of M1 mortality are:

- 1. Diseases
- 2. Physiologically-based mortality (higher metabolic rates giving high mortality)
- 3. Spawning strain
- 4. Senility
- 5. Starvation
- 6. Emigration (immigration: negative M1)
- 7. Predation by species not included in the MSVPA

Traditionally, we assume sources of mortality independent of each other (F + M = Z). The possibility that a fish is caught because it was dying from "natural" causes is disregarded. The problem may be more important when it comes to separate M1 and M2 putting M1 + M2 = M. R Jones (1982) suggests that fish consumed are "displaced" specimens, weaker than others. Predation mortality might therefore be overestimated when all fish in the stomach are assumed to be viable in the absence of predation. Some may have been eaten because they were damaged (even killed) by fishing gear. The choice of MI is thus a difficult one.

At the present stage of multispecies modelling it seems advisable not to diverge from assumptions made by the Assessment Working Groups unless species interactions clearly indicate changes. Therefore, the natural mortality of large fish which are not preyed upon should be close to the constant M adopted by the Assessment Working Groups. For old age groups of smaller species on which there is still some predation, MI should be chosen such that MI + M2 approximately equal the M of the Assessment Working Groups.

One precaution seems pertinent: in order not to overestimate predator stocks, M1 for these should perhaps be chosen smaller than tradition indicates.

The text table below shows:

- A. MI values used to produce preliminary test in the computer output available at the beginning of the meeting.
- B. M2 as an average for the two oldest age groups in the same output
- C. M1 + M2 = M, (A+B)
- D. M as adopted by recent Assessment Working Groups

Species	Natural Mortalities			Working Grou	
	Ml	M2	м	м	
	Α	В	С	D	
Cod	0.1	0	0.1	0.2	
Haddock	0.1	0	0.1	0.2	
Whiting	0.1	0	0.1	0.2	
Saithe	0.1	0	0.1	0.2	
Sprat	0.2	0.76	0.96	0.8	
Norway pout	0.2	0.62	0.82	1.6	
Sandeels	0.2	0.60	0.80	0.5	
Mackerel	0.08	0	0.08	0.15	
Herring	0.024	0	0.024	0.1	

Thus, estimates of M for old age groups should approximate the values in column D. The values of MI finally used in the MSVPA runs are shown in Table 2.5.1. In one run these were halved to investigate the effect of the assumed value of MI.

C. Theoretical Approaches

Jones and Johnston (1977) and Myers and Doyle (1983) relate adult mortality to spawning strategies. These papers are of similar importance to single species and multi-species assessment and seem to provide improved estimates of M for mature fish. It seems appropriate to leave the possible application of such methods to the Assessment Working Groups, who should be best able to estimate sensible levels of total M on older ages.

2.6 Feeding Models Used in MSVPA and Assumptions about External Food

The MSVPA programme works with three models of feeding. The models are of Pope (1979), Helgason and Gislason (1979) and Sparre (1980). They differ mainly in the way external food is treated.

Pope (1979) explicitly ignores external food but assumes that a certain fraction of the total food consumed by a given fish is obtained from external source. Thus, it can be said that external or other food is directly proportional to the food supply consisting of fish within the model. So if a certain prey stock increases so does also the external biomass.

In Sparre's model (1980), he assumes the total biomass in the corresponding ecosystem to be constant. Thus, an increase in the biomass of fish included in the system results in a corresponding decrease of other external biomass. The treatment of other biomass in Helgason and Gislason (1979) can be regarded as a compromise since they basically assume external food to be constant independent of the biomass of fish.

2.7 <u>Problems With the Choice of Appropriate Mean Weights at Age for Prey</u> <u>Items in MSVPA</u>

Background. Results of the MSVPA are doubtlessly sensitive to the mean stock weights at age used in the analysis. Underestimates of weights will result in a larger number of individuals being eaten from a cohort and vice versa. Preliminary analyses of the stomach contents data bases (Anon., 1964) indicate that mean weights at age of prey in the stomachs of cod and whiting were, in some cases, significantly different from the assumed mean stock weights at age. These discrepancies were often substantial (mean prey weights at age in cod stomachs ranged from 0.01 to 15 times the assumed stock weights at age for those prey items; whiting prey weights in stomachs ranged from 0.01 to 6 times the assumed stock weights). Thus, there is a potential for bias in MSVPA estimates of predation mortality unless some adjustments are made to the MSVPA model to deal with the differences in prey weights found in stomachs and in the sea. Two approaches were proposed, and it was not possible in the course of the meeting to resolve which was the more proper adjustment to the MSVPA model. The two methods of adjustment suggested involved:

- 1) Adjusting the suitability index for weight differences
- Directly adjusting M2 estimates for weight differences. These are described in Section 6.8.

In practice only the former method was investigated on an MSVPA run. An attempt to run the second method failed due to lack of convergence of the MSVPA when using this option. In the circumstances therefore all other runs were made using unadjusted stock weights for prey. Clearly further work is required on this problem.

It was pointed out that regardless of observed differences in mean-weightat-age in the catch and in the stomachs it would be consistent to stick to the same weights-at-age throughout the models. Indeed one point of view was that what really matters is the balances of biomasses. Natural mortality (including predation mortality) is used to describe the disappearance of biomass which otherwise could be fished. On the other hand, a standardisation of mean-weight-at-age might introduce a bias in the observed growth rate of fish. The ultimate cure to these problems might ultimately be to base the MSVPA on length and age classes.

Studies of the Relationship of the Discrepancy Between Prey Weight in the Stomach and in the Sea, to Other Factors

The second approach to adjusting for the bias suggested that the logarithm of the adjustment factor AF might be linearly related to the logarithm of the ratios of predator to prey weight in the sea. This proved a useful starting point for a more detailed study of the discrepancies between weight of prey in the stomach and weight of prey in the sea.

C

This relationship between the ratio of weight of the predator to the assumed mean prey stock weights and the ratio of prey weight in stomachs to prey stock weights are illustrated in Figures 2.7.1 and 2.7.2, where:

Ribliote het

 $AF = ln \left(\frac{Wprey}{Wprey} \left(\frac{stomach}{stock} \right) \right)$ Fisheridirentoratet

Ratio = ln $\left(\frac{Wpredator}{Wprey (stock)}\right)$

Prey species of cod exhibiting AF values greater than 0 (and thus ratios of prey weights in stomachs to those in the stock greater than one) were primarily some age groups of sprat, sandeel, herring, and Norway pout. Conversely, AF values for cod eating cod, haddock, and whiting were generally less than 0. Prey species of whiting exhibiting AF values greater than 0 were primarily sprat and sandeel, with virtually all other prey items giving negative AF values.

The differences in mean prey weights in the stomachs from the assumed mean prey weights can potentially arise from two circumstances:

- 1. the assumed stock weights-at-age of the prey are in error;
- 2. the predator species selects only a portion of the size range of the prey available.

It is quite possible, particularly for the industrial species, and for young age groups of all species, that the assumed mean stock weights may not be representative of the population. Generally, these species/age groups are minimally sampled, and the timing of these samples during the quarter may be critical since growth rates may be quite rapid.

If the size distribution of prey items is roughly equal to the optimum prey size distribution of a predator, then the values of AF should be centered at 0 with some negative and positive values. As can be seen in Figures 2.7.1 and 2.7.2, some extremely low AF values are apparent, particularly for the larger prey items (e.g., cod, haddock, whiting). These data imply that only the lower portion of the size distribution of these prey items is suitable as prey.

Further analysis was undertaken to define those variables likely to influence the log-ratio of prey weights estimated from stomach contents data to prey stock weights (defined as AF). Prey weights are utilized in the MSVPA program by predator type, prey type, predator age, prey age, and calendar quarter. Some prey species were considered: cod, haddock, whiting, Norway pout, herring, sprat, and sandeels. Overall ANOVAs were conducted with AF as the dependent variable and prey type, and quarter as the categorical variables. The log-ratio of predator weight to prey stock weight was taken as a covariate in the ANOVA to remove the effects of scale. Separate analyses were conducted for the two predator species (cod, whiting) for which data were available. Results of the two overall ANOVA analyses are presented in Tables 2.7.1 and 2.7.2.

These analyses generally indicated significant prey species, quarter, and interaction (prey/quarter) effects. Most of the variation in the ratio was explained by prey species, followed by the prey/quarter interaction. The significance of the prey/quarter interaction implies relatively rapid growth ratios of prey and thus changing size selection by predators during the year. The main quarter effect was significant in both ANOVA analyses, but explained relatively little of the total variability. The ratio covariate was significant for the cod analysis, but non-significant in the whiting case.

Thus correction factors for differences between prey weights observed in stomachs and those in the stock should be calculated for all prey types, quarters, and interactions. The Working Group did not analyse age effects for predators or prey. Continued research on the analyses of these data are suggested.

2.8 The Key Run of the MSVPA

A number of runs of the MSVPA were needed in order to test the effects of various of the assumptions made. Since the MSVPA generates considerable amounts of output it was decided to provide detailed output for one key run and to make all other runs differing from this on the various assumptions taken one at a time. The results from these could then be described by simple comparisons with the key run.

The "key run" adopted for purposes of comparison was based on

- the Helgason-Gislason feeding relationship
- the consumption figures as estimated by the coordinators of the stomach sampling programme
- residual natural mortalities to fit the standard Working Group assumptions on the oldest ages
- no correction for the difference between weights of prey in stomachs and in the stock.

Some of the central results from the key run are presented for the species considered (cod, whiting, saithe, mackerel, haddock, herring, sprat, Norway pout and sandeels) in Table 2.8.1 which give the multispecies equivalents of conventional VPA tables, i.e., fishing mortality, population numbers, and predation mortality (total due to all predators considered). (NB. These do not include M1).

As further discussed in Section 3.1, the results do not contain any major surprises. The levels of fishing mortality are very close indeed to those obtained by the single-species Working Groups. There are substantial predation mortalities on younger age groups, mostly in the range 0 to 1, and the numbers-at-age of the youngest age groups, estimated year class strengths, and stock biomass estimates are therefore higher than the traditional estimates by factors of up to 2 or thereabouts. These factors are not,however, very variable for a particular stock.

The average fishing mortality, predation mortality and number in the stock at age for each stock are given in Table 2.9.1. (a comparison of different MSVPA runs), and these are plotted together with the estimates made by the most recent Working Group in Figures 2.8.1(a)-(j). The close agreement is clearly apparent.

The discrepancies for fishing mortality on the older ages in Figures 2.8.1.f, g,h and j are very probably due to different assumptions concerning terminal mortality, since the MSVPA was not "tuned" in any way. Note that in these runs the predation mortality on saithe and mackerel has not been estimated, because of the difficulties discussed above concerning their distributions outside the North Sea, and the zero estimates should therefore be disregarded.

2.9 Comparing Runs Under Different Assumptions With the Key Run

Additional to the key run, time permitted a number of other runs to be made. In each of these one of the assumptions was changed. The runs are specified in the text table below:

- 1. Key run. No adjustment factor. Helgason-Gislason "Other Food" model M1 as in Assessment Working Groups Feeding level = 1
- 2. As 1, but feeding level = 0.5 for all predators
- 3. As 1, but total biomass assumed constant (Sparre, 1980).
- 4. As 1, but ignoring other food (Pope, 1979).
- 5. As 1, but M1 halved
- 6. As 1, but with stomach/stock weight adjustment factor based on suitability (See Sections 2.7 and 6.8.).
- 7. As 1, but with stomach/stock weight adjustment factor based on M2. (See Sections 2.7 and 6.8). This run did not converge.

A comparison of the results of the different runs is given by species. The 1978-1983 average for F, N and M2 by age were calculated for each run and these averages are summarised in Table 2.9.1.

In order to make it possible to make a more easy comparison between the runs, the averages over years again were averaged over the age groups where predation mortality is important. The runs were then compared to the key run by expressing year-age averages as percentages of the estimates from the key runs. The percentages are given in Table 2.9.2.

Some preliminary conclusions can be made at this stage although the results are preliminary and a careful checking of the outcome was not possible during the meeting. These were:

- 1. The effect of halving the feeding level are higher estimates of F and lower estimates of N and M2
- 2. Ignoring "Other Food" (run 4) assumption in all cases give higher estimates of N and M2 in several cases 2 times the key run value. The largest differences seem to stem from the O-group estimates
- 3. Assuming total biomass to be constant (run 3) does not make any change.
- 4. Halving M1 mainly affects F and hence estimates of N. For sandeel and Norway pout there are, however, major changes in all three estimates
- 5. Adjusting for differences between the mean-weight-at-age in the stomachs and in the sea with a suitability adjustment factor gave changes in the estimates without any pattern
- It was not possible, during the meeting, to get any runs of the Multispecies VPA using the M2 adjustment factor.

It is interesting to note that the MSVPA responds to the changes in assumptions in a predictable and stable way. Only the use of adjustment factors seemed to cause problems.

2.10 Preliminary Advice for Single Species Assessment Working Groups

Results from the MSVPA are as yet preliminary and the Working Group could not therefore advocate any particular set of natural mortality estimates as being the "best" ones. It was felt that should natural mortality estimates from this work need to be used in the short-term assessments then the safest set to use would be those based on the ration x 0.5 run of MSVPA (Run 2).

3. <u>SOME IMPLICATIONS OF THE RESULTS OF MULTISPECIES VPA TO SHORT-TERM</u> (TACTICAL) ASSESSMENTS

3.1. Introduction

The results described in Sections 2.8 and 2.9 have been examined, in order to ascertain to what extent it is necessary and possible to advise changes to current Working Group practices to take account of multispecies effects. This advice is best considered in two parts:-

- 1) Short-term tactical advice (in this section)
- 2) Long-term strategic advice (in Section 4).

Short-term advice particularly involves the computation of short-term catch forecasts (TAC's etc.) but might also involve interim decisions, as to the direction in which fishing mortality should change, pending long-term advice becoming available.

3.2. Estimation of Recruitment at Age 1 in Various Stocks

Several runs of MSVPA were obtained. It was apparent from these that the results from MSVPA may vary depending on the assumptions referred to in Sections 2.3 - 2.7. It was therefore decided that only the "key run" would be investigated.

Estimates of the population numbers at age 1 of cod, haddock, whiting, herring, sprat and sandeel from MSVPA were plotted against corresponding Working Group estimates and against associated IYFS indices where the latter exists. Results for saithe and mackerel were not included in this procedure since, in the MSVPA, it was assumed that these species are not subject to predation. Results for Norway pout were also excluded because the Working Group series of estimatés is not yet long enough.

It was found that for cod, haddock and whiting, the MSVPA results highly correlated with the Working Group results (Figures 3.2.1 - 3.2.3). For herring, sprat and sandeel, a less good but still quite strong correlation exists (Figures 3.2.4 - 3.2.6).

If the MSVPA results so far studied turn out in future to be acceptable, it appears that almost all of the single species' assessments have been remarkably or reasonably successful in obtaining a valid picture of the relative changes occurring in recruitment to many of the commerciallyimportant fish stocks. For this reason, it is generally found that MSVPA estimates of recruitment at age 1 do not correlate better with IYFS indices than do those obtained by the single species assessments (see Figures 3.2.1 - 3.2.6).

It thus appears on the basis of very limited experience that assessment by MSVPA is not likely to produce better relationships between recruitment indices and estimates of population number at age.

3.3. Estimates of Predation Mortality at Age

Predation mortality results from the "key run" of MSVPA are shown in Table 2.8.1.

A summary of the range of predation mortality on the three youngest age groups on which it was generally of greatest importance is shown for various species in Table 3.3.1. The results are from the "key run" MSVPA. As well as the extreme values of M2, the table shows a statistic called "upset".

This is calculated as exp (/M2(HIGH) - M2(LOW)//2) and indicates the percentage change in survival that a half-range deviation would cause. Thus, in the case of O-group haddock, the highest M2 is 1.77 and the lowest 1.24. If the lower value occurred, then the survival of fish might be increased by a factor of about 1.30 from the mid-range value, while if the higher value occurred, then the survival of fish might be decreased by a factor of 1/1.30 = .77 from the mid-range value.

The value of upset therefore indicates to what extent the range of M2 values might interfere with normal single species management approaches t: predicting catches. Factors of less than 1.20 might perhaps be thought of as being within the noise level of catch-at-age data, but values more than this might require some adjustment of M from its average level in order to make a catch prediction. Such an adjustment should properly be made on a multispecies basis but might perhaps be "fixed up" on a single species basis given the biomass at age of important predators and perhaps of their alternative prey.

3.4. General Considerations

The results of the MSVPA runs described above all indicate substantial predation mortalities on the younger age groups of the species considered.

The effect of these on assessment calculations is not yet fully understood, and it was not possible to carry out detailed studies in the time available. The question requires careful consideration, and might be a suitable topic for studies by the Working Group on Fish Stock Assessment.

However, it is clear that the effect depends very much on the type of calculation being performed. The Working Group is reasonably confident that the effect of increasing M by a fixed amount on the younger ages (especially pre-recruits) will have little effect on the calculation of short-term catch forecasts if fishing mortalities remain close to recent levels (approximately status quo forecasts).

Conversely, increased natural mortality (especially on exploited age groups) is likely to have a substantial effect on calculations used for the evaluation of longer-term strategies and biological reference points (such as yield per recruit calculations). However (see further discussion in Section 4), these changes are of course intimately related to the interaction of one species with another, and the Working Group considers that it would be unwise to attempt to take account of such increases of natural mortality in a single-species context, until both the levels to be used and the appropriate techniques are better understool.

The increases of natural mortality do of course increase the estimates of the actual numbers of young fish in the sea, and this will have an appreciable effect on the evaluation of the consequences of the exploitation of young fish, even in the short term. If estimates of natural mortality are required for this purpose, the Working Group considers that it would be prudent to use the estimates based on the 1/2 ration (Run No.2) for the time being, since these are unlikely to be overestimates. Such results should, however, be regarded as provisional, and it must be remembered that they may be substantially revised in the near future when the methodology for allowing for the different weight of fish in stomachs compared with the stock, and the suitability of the different forms of functional feeding relationship have been settled. It should also be remembered that the estimates made include an element which is on pre-recruits (which are either too young or too small to be fished), and this should be taken into account, since the mortality on pre-recruits should be of little consequence in practice in yield per recruit calcultations (and like egg and larval mortality, are part of the recruitment process).

Finally, the estimates of year class strength from MSVPA correlate very closely with the conventional VPA estimates, and do not improve the correlation with survey estimates (such as those from the IYFS). This is disappointing, but there are still interesting correlations <u>between</u> survey estimates which deserve to be examined, and further investigations are required, since the present results must not be considered as other than preliminary. The same conclusion applies to the study of stock-recruitment relationships, where some clarification by inclusion of predation is still a possibility.

4. LONG-TERM ASSESSMENTS

4.1. Introduction

The effects of including inter-species predation in assessment calculations are expected to be fully expressed only in the long-term assessments. They can therefore be examined either by repeating short-term forecast calculations for many years, or by carrying out analyses of yield-perrecruit type.

However, both types of calculations are a little more difficult than in conventional, single species calculations, because the natural mortalities depend on the <u>absolute</u> abundances of the predators. In order to determine these, the expected level of recruitment must be specified - the simple scaling of yield proportional to recruitment (which makes yield-perrecruit such a useful quantity) no longer holds good.

Forecasting recruitment in the long term is rather difficult. There seems at present to be only two reasonably workable alternatives, that is either holding all recruitments at some mean level, or specifying all the stock-recruitment relationships. The first is likely to be misleading, and the second to be contentious. The results of all long-term forecast calculations should therefore be interpreted with great caution. It is however most important to appreciate that the full benefit of work aimed at allowing for inter-species interactions will only be apparent in long-term assessments, where it is inextricably linked with the stock-recruitment problem.

4.2. Previous Attempts

There have so far been relatively few investigations aimed explicitly at exploring the long-term effects of predation.

The model of Andersen and Ursin (1977) tackles this problem and particularly when a refined stock-recruitment relationship is introduced (Ursin, C.M.1978/G:47). The approach, however, is of limited applicability until the initial slopes of stock-recruitment curves for important species become known.

Calculations of repeated forecast type have been carried out by Sparre (1980), who points out that the definition of an appropriate goal function is an essential feature of longer-term strategic assessments. He also stresses the difficulties of presenting the results of any extended exploration using such models in a comprehensible way.

An example of the part of calculation which may be carried out using the yield-per-recruit approach has been given by Shepherd (1984), and the same model has been used with more realistic assumptions on a real fishery with a powerful and economically important predatory interaction by Brander (1983).

The type of calculation described by Shepherd (1984) is of a global type, i.e., designed to fully explore a wide range of fishing mortalities in a variety of competing fisheries. Such calculations are of great interest, particularly in acquiring an understanding of the way that multispecies systems work, and the implications of the assumptions made. They are, however, probably dangerous, because for choices of fishing mortalities far from current levels they are likely to involve massive extrapolations of stock size, far outside the range of recent experience. It would therefore be wise to regard the results of such calculations outside a range of about $^{+}$ 2dB ($\frac{1}{2}$ a factor of 1.5) around the current position as being illustrative only.

In addition, Shepherd (1984) points out that it becomes extremely difficult to display the results of this type of calculation when more than about three distinct fisheries are considered. In the real situation in the North Sea and elsewhere, a reasonably precise description of the major fisheries will certainly require the identification of more fisheries than this.

4.3. Alternative Presentations

The Working Group therefore considered alternative ways of organising and presenting the results of similar calculations, allowing for only small changes of fishing mortality, but many distinct fisheries. The most promising approach was felt to be an assessment of the likely changes of yield (in all fisheries) biomass and recruitment of each species, resulting from a small (10% increase or decrease) in the fishing mortality in each fishery. This would lead to a small stock of tables (one for each fishery), and should be relatively manageable and comprehensible.

The program used by Shepherd was available to the Working Group, and was modified by the author to permit these calculations to be carried out. Unfortunately, it was not possible in the time available to complete a working version of the program, nor to assemble the considerable amount of data necessary to describe enough recognisable fisheries to construct a worthwhile example.

A sketch of the content and layout of the results of such calculations is however, given in Tables 4.3.1 - 4.3.4, and it is recommended that work aimed at enabling this type of information to be provided should continue.

It was however apparent from the work done that the calculations could be carried out and the results presented without any particular difficulty, for up to about 30 distinct fisheries. If it were necessary to consider more fisheries than this, some careful organisation of the calculation might be necessary, but using suitable methods, hundreds of fisheries could be considered if required (and if the necessary data were available!!).

4.4. Discussion

It should be noted that the parameterisation of the feeding relationship adopted by Shepherd (1984) demands estimates of parameters not immediately available from current versions of MSVPA, and that in general formulations which are convenient for hindcasting are inconvenient for forecasting (Ursin and Sparre, pers.comm.). It would therefore be desirable if a parameterisation of the feeding relationship could be constructed which allows a realistic treatment of "other food", yet can be expressed directly in terms of prey mortality, which is most useful for prognoses. This would permit direct transfer of parameter estimates from MSVPA to forecast calculations without intermediate re-interpretation.

There do not at present seem to be any particular advantages in using either the yield-per-recruit method, or repeated time-stepping forecasts to achieve equilibrium. Both require the stocks-recruit relationship to be specified. The YPR probably requires fewer iterations (usually less than 10), whilst the time-stepped method gives potentially useful information on the dynamics of the system (or the model), since one may observe the transient approach to equilibrium, and possibly also real instabilities and cycling behaviour.

When yield curves are calculated, it should be noted that the functional feeding relationships for fish (i.e., the mortalities exerted by predators on prey as a function of predator abundance, prey abundance (all species) and external factors) are very uncertain and will be difficult to determine. The form of the feeding model is critical for long-term assessment.

5. ADVICE ON FUTURE DATA COLLECTION

5.1. Future Stomach Sampling Programmes

The results of the 1981 stomach sampling project having been implemented in the MSVPA, it is thus a suitable time to discuss the need for similar information in future. First of all, it is clear that the extensive data collected in 1981 have actually served the original purpose to get the MSVPA going by taking account of the interactions of the exploited fish species in terms of predation. However, it is also evident that although some confidence has been gained from the general agreement between the cod results for 1981 with earlier data (Section 6), the basis for running a MSVPA over prolonged time periods is still narrow, because the tuning of the suitability matrices relies entirely on the one-year stomach content data set.

From comparing the level of intensity of sampling reached in 1981, some major differences emerge for the various species. For cod, whiting and haddock, the original aim of collecting approximately 3 000 stomachs per quarter with adequate coverage of the entire North Sea was exceeded in all instances. In contrast, for saithe and mackerel, neither the intensity nor the distribution of samples has been adequate to provide reliable figures of average consumption by age groups for the total North Sea population and samples from other years had to be added. Thus, the prerequisite of tuning relative consumption in 1981 to the specific stock sizes in 1981 had to be violated. Obviously, the need for intensive stomach sampling of these species in order to improve the estimated suitability matrices still has a high priority. However, in practice, there are considerable logistic problems both in obtaining samples and in obtaining information on the seasonal spatial distribution for these species and it will be doubtful if at present any follow-up could be expected to meet the ultimate requirements.

One of the major underlying assumptions of the MSVPA is that the suitability by prey and predator age class and quarter is constant over time. After tuning the suitability matrices for the reference year to have the estimated stomach contents corresponding to the observed stomach contents, these indices are applied to calculate the food composition over all other years. However, there are various reasons why suitability indices may vary over time, the more likely ones being that 'prey switching' may occur when major changes in prey abundance take place or when the measure of overlap between a predator and prey population varies from year to year. Thus, there is a strong need to test the hypothesis of constant suitability, which requires that the stomach sampling program is repeated for at least some species for which 1981 has yielded a reliable estimate of suitabilities.

Since a measure of overlap could actually be estimated outside the model on the basis of research vessel data and thus used as additional input in MSVPA for years for which no stomach content data are available, it would seem appropriate to investigate possible changes in the estimated suitability matrices for individual quarters with direct estimates of the measure of overlap. This would require that stomach sampling is repeated in the same season over several years, rather than that sampling is spread over all quarters in one specific year, particularly since useful surveys for estimating measures of overlap are confined to some seasons only. Intensive surveys are carried out annually in February (IYFS), but less internationally coordinated surveys are routinely being carried out in summer as well (England, Federal Republic of Germany and Scotland). If stomach sampling were confined to these seasons, effective use could be made of existing trawl surveys and there would be no need for additional research vessel effort. It is suggested therefore that over a period of three years, intensive stomach sampling programs are continued for both

cod and whiting because these represent the two main fish predators that can be sampled adequately. However, it should be noted that with the present quarterly basis of the MSVPA, any stomach sampling program that is set up to provide an estimate of relative stomach contents for any species and quarter can be efficiently used for tuning, as long as the requirement that it reflects the total average North Sea stock is fulfilled. Thus, the continuity in sampling is a less important factor than the coverage of the total area.

There are a number of related problems, which require further research and which may affect the planning of future programs. Firstly, it has been suggested that ration may be more efficiently estimated from the means of the square root of the stomach contents than from the mean stomach contents (Pennington, 1984). In order to be able to make the necessary adjustment, information has to be collected on the frequency distribution of individual stomach content weights. This problem might be solved by analysing individual stomachs instead of grouped samples, but in view of the increased workload implied, it would seem that this problem might be more efficiently solved by collecting only a subset of all the samples on an individual basis or alternatively by creating a specific independent program.

Another problem is related to the fact that the estimated indices may reflect a real change or that they may result from sampling variance. The problem of sampling variance is dealt with in more detail in Section 6.7. One solution to this problem would be to split each sample in two fractions, which are analysed separately, so that ultimately two sets of average stomach contents will be available to estimate the inherent variances. Lastly, some revisions may be required in the sub-division of predators and preys in size classes because in some instances the classes defined in the former project appear to be too large to be used efficiently in estimating average prey weights by age and size classes, and also in size preference studies. A further breakdown would facilitate the analysis. In addition, a separation of the observed prey in stomachs into two classes according to stage of digestion might result in more accurate reporting of sizes and number of prey as well as speed up the analysis. These aspects should be more closely investigated in the actual planning process for future work.

Lastly, it was stressed that the predator prey interactions taken account of in the MSVPA by no means can be expected to give the final answer to multispecies assessment. Interactions during the egg and larval phase may prove to be more important in regulating year class strength, but it seems unlikely that these earlier life phases could be effectively included in the MSVPA, because of mathematical restrictions in obtaining unique solutions as indicated by Magnus and Magnusson, 1983. It was felt, however, that, particularly in view of the expected upsurge of the North Sea herring stock in the near future, further studies on predation of eggs and larvae of this species would be extremely valuable, but, as yet, the background knowledge to set up a comprehensive project to study this aspect appears to be lacking.

5.2. Further Research

Food preference estimates

Apart from the most obvious future work detailed in Section 5.1, there are a number of problems which could usefully be addressed by field research. The following would be particularly useful.

1. Fish as food

At present, elements of the suitability matrix are estimated empirically in the MSVPA model for each separate prey age, and predator age interaction. This creates problems with age groups poorly represented in the stomach data. For instance, the suitability of large herring becomes zero because in 1981 there were few in the North Sea and none in the stomach samples. Such problems can be overcome by estimating species-specific vulnerabilities to predation and by finding functional relations of predator size to prey size. A theory is available (Andersen, 1982). It was tentatively applied by Dekker, 1983, and by Arntz and Ursin, 1981. The model requires data on food abundance by species and size class, and corresponding stomach data. Coverage of a large area or a long time is not required. It is therefore applicable to a single effort of local sampling of stomachs with simultaneous estimates of abundances in the environment. Such work might be a useful adjunct to future stomach sampling programs.

2. Invertebrates as food

The "other food" compartment in the three feeding models applied in the MSVPA program remains an arbitrary and somewhat obscure quantity. Its real nature could be investigated if relative suitabilities of fish and benthos were estimated for demersal predators. This requires data on the abundance of fish and important invertebrates by size class and per unit area. Data might be obtained by trawling and benthos sampling in the same place and at the same time if catchability coefficients can be estimated. A comparison of prey in the stomachs of fish in a unit area (adjusted by digestion rate) might, with food abundance data, provide estimates of the mortality coefficients created upon the benthos stocks by fish.

Such sampling might be a part of a benthos monitoring scheme which would disclose major changes in the ratio of invertebrate predators to detritus and plankton feeding in the benthos. This relates to the conceptional background of the assumption on "other food" that this is always available. The assumption is that with increased fish predation, the invertebrate predator biomass would be reduced so that the fish could feed on, for instance, what the crabs would normally eat. This phenomenon is known from cage experiments (Arntz and Brunswig, 1976; and Reise, 1977), but remains conjectural in the field.

Ration estimates

Digestion experiments have often been performed, also in connection with the ICES Stomach Sampling Program, yet it seems that some decisive factor in the determination of digestion rates in nature has been overlooked. The difference in digestion rates estimated for cod in the North Sea and on Georges Bank are worrying (Ursin <u>et al</u>, 1984). The only way open to solve this problem appears to be by digestion experiments with natural foods of different species, sizes, etc. A considerable difference in food item sizes between Georges Bank and the North Sea points to item size as a possible cause, effects of which are at present poorly described in literature. Observations on efficiencies of food conversion for different natural foods are also needed. The difference between cod in the two areas might be at least partly described as differences in food conversion. These might even be due to physiological differences in cod stocks, although this seems perhaps far-fetched. Some clear advice on how to proceed with research on this topic needs to be given by an expert.

6. OTHER MATTERS

In the course of work on the MSVPA, the Working Group raised various problems and made various analyses. These may well prove the basis of further studies by individuals in the Working Group. They are presented here to stimulate these studies.

6.1. Comparison of the 1981 Stomach Sampling Results with Earlier Data

Since for cod extensive data on stomach contents have been collected in earlier years, it is possible to make a comparison between those earlier results and the results for 1981. However, there are considerable differences in the raising procedures from primary analysis to ultimate figures of total consumption, which have to be taken into account when comparing such figures.

Table 6.1.1. presents the estimated consumption in weights of various exploited fish species for 1981 with the estimates given by Daan, 1973. The values for 1981 have been obtained by multiplying the percentage weights of the different prey by age group (Daan, 1983; Table 7) with the estimated consumption for the total year (Anon., 1984; Table 7-1-2) times the estimated average stock size in 1981 from traditional VPA (Daan, 1983; Table 9). For reasons of comparability, the effect of MSVPA on the estimates of cod stock consumption has not been taken into account.

From the Table, the estimates for individual species appear to be in the same order of magnitude, and even if ranked according to importance, the two sets appear to be very close. This suggests that the two data sets are fairly consistent and that even over a period of 10 years, no major differences in the food spectrum of a predator may occur.

Daan (1983) made a comparison between the estimated feeding coefficients from three sampling programs, and the essential values are given in Table 6.1.2. These feeding coefficients are based on regressions of log transformed stomach content weights against log transformed length of cod. Since the exponent of the underlying relationship $S = a L^b$ did not deviate significantly from 3 in any of the data sets, the model has been changed to $S = \emptyset L^3$, where the parameter \emptyset represents an index of stomach fullness and thus can be interpreted as an index of feeding level.

The values of the feeding coefficient \emptyset are very close for all the three data sets (coefficient of variation 4%), which seems to indicate that over a prolonged period, no major changes in the rate of food intake have occurred.

6.2. Who Eats Who?

The standard output tables from MSVPA provide detailed information on the weights and numbers consumed of each prey age group by each predator age group during each quarter of all the years included in the VPA. A major logistic problem arose when this information had to be reduced to a tractable format. Since a more comprehensive summary would have required additional programing, only some aspects could be explored.

Since all predation is tuned to 1981 and estimates for other years reflect extrapolations, it appeared appropriate to compare the overall predation in 1981 and 1974, being the year most remote from 1981. Table 6.2.1. summarises the total weights of the various prey stocks consumed by the four predators with the estimated stock biomasses (including O-group) in the two years. From this Table, it would appear that the percentage of the stocks removed by predation may easily double from one year to another. Still, the relative pressure of individual predator species is even more variable, indicating that total predation is considerably buffered by differential trends in predator stock sizes.

In order to obtain a general idea of the impact of various predator age groups on different prey age groups in any particular year, the partial predation coefficients can be calculated according to:

M2 (i,a,j,b) = M2 (i,a) $\frac{D(i,a,j,b)}{\sum \sum D(i,a,j,b)}$

where D(i,a,j,b) represents the total predation in numbers of prey i, age a by predator j, age b. The thus estimated partial mortalities will clearly be strongly depending on the predator stock sizes and, more interesting, division by the average number of the specified age in the predator stock should represent the chance of a prey being consumed by the average predator. It is thus analogous to a catchability coefficient.

As an example in Table 6.2.2, the estimated partial predation mortalities and the mortality coefficients relating to the individual predator are given for haddock as prey. In general, the impact appears to increase with age of predator and decrease with age of prey, but particularly for cod eating haddock, the peaks appear to shift in much the same way as can be expected from a size preference.

If predators are treated like fleet operations and the assumption is made that 'catchability' by a predator is independent of prey stock size, such estimates might provide a useful starting point for shortterm predictions of expected predation mortalities given the predator stock size. Although it is not intended that the data presented here should be used in this fashion, this approach would appear to present an interesting field for further studies.

6.3. Biological Considerations and the Problems of "Other Food" and Suitability

The three feeding models (Helgason and Gislason, Sparre, and Pope) handle the role of "other foods" in different ways. These differences

may produce important differences in predictions from the same starting data (Ursin, 1982; Section 2.6 of this Report). Biological considerations may provide some guidance for decisions, when the predictions of the feeding models differ. These considerations would be particularly important when models allow "other food" to support a substantial portion of predator populations in model runs.

To make biologically sound conclusions about the true role of other foods, we must know something about them. On biological grounds, one might expect to recognise years when predators had to rely on "other foods" as years when the predators had low growth rates. Historical data from North Sea stocks might be examined for such patterns. Interestingly, in the northwest Atlantic, examination of cod growth over several years of differing capelin abundance and cod feeding habits showed no relationship between cod growth and capelin abundance (Akenhead et al., 1982). It has also been suggested that because other foods are generally of sizes most appropriate for smaller size groups of predators, the true role of other food may appear as faster growth and/or higher survivorship of younger age groups than of older ages. However, even this relationship could be absent, because if older predators are finding few prey at a time when their younger age groups are doing relatively better, it is quite plausible that older ages increase cannibalism, and obscure the suggested differences among age groups.

Although biological thinking can suggest possible roles for other food, the examples above imply that expected relationships are not present, unconvincing, or both. Long-term studies of stomach contents do, however, demonstrate great variation in use of different prey among years (Lilly, 1984; Maurer and Bowman, 1975). To clarify the role of other foods in the multispecies system, directed research efforts will probably be required. This may be possible for the demersal species, but assessing availability of other foods for pelagic species is less possible.

Because of its role in the various feeding models, other food warranted specific consideration. However, it may be a special case of a more general concern, regarding the reality of the suitability coefficients in the model. The single parameter set "suitability" is intended to reflect behavioural aspects of predation (for example, prey-palatability), local availability of prey to predators, and larger-scale distributional overlap of predator and prey stocks (Ursin, 1982). Requiring a single parameter to do several jobs at once, presents a number of modelling difficulties, but there are, however, even more aspects of predator-prey interactions which possibly need to be represented in multispecies models, rather than fewer.

The suitability coefficients should be, and are, independent of prey abundance (as long as some predator is using each prey); and they do reflect size selectivity of both predators and prey. The size preference is based on predator and prey ages though, rather than sizes, and this had led to some modelling difficulties. For reasons of both theory of predator behaviour and practical model structure, it may be desirable to develop a size-structured model of multispecies interactions and dynamics. Currently, the suitability coefficients do not provide for responses of predator feeding to prey abundance. There are theoretical and behavioural reasons to expect such density dependent relationships on both the increasing and decreasing phases of changes in prey abundance (Dill, 1983).

Predators apparently stick with a previously abundant prey as it becomes rarer than alternative foods. They also may not commence feeding on a previously rare food, until that species' biomass is much higher than foods which were more common earlier. Models lacking these density dependent relationships between predators and prey, may smooth pulses in prey abundance artificially. When prey in the model begins to increase, the suitability-prey biomass product tracks that change, whereas the predator's response may be more abrupt. Likewise, predators in models may switch from a prey of decreasing abundance more quickly than actual predators do, so in real systems, prey biomasses may become more depressed than occurs in models. If additional sampling is carried out synchronously with prey biomass assessments (Section 5.1), it will be possible to look for such smoothing of prey abundance changes in model predictions when compared with observed predator behaviour.

Current models treat the entire North Sea as if it were homogeneous. Realistic future models may need to address problems of spatial overlap of predators and prey. Individual age classes of both predators and prey are known to school together, at least in some cases. Such age, and by inference, size separation of prey stocks especially, would accentuate the lags in predator responses to changes in prey abundance discussed earlier. Such size separation, and larger-scale geographic limitations of distributions of some species (saithe, for example) could make the use of a single suitability measure for each predatorage group, prey age group unrealistic. In this context, it would be interesting to attempt to model multispecies interactions of a spatially much more restricted, fisheries area, where the assumption of spatial homogeneity was met more closely. For such a system, model accuracy should be greater.

6.4. Comparison of Predation Mortalities with Earlier Estimates

The results of the extensive exercises with the North Sea echosystem model by Andersen & Ursin (1977) were compared with estimates from MSVPA. As an example, the estimated predation mortalities for 1976 from the two models are compared in Table 6.4.1 (all model-unpublished run). In this comparison, it should be taken into account that both models assume very similar feeding mechanisms and total consumption rates. On the other hand, the basic information on feeding available to the Andersen and Ursin model was very limited, and the input was to a large extent based on logic inferences from the available literature, whereas the MSVPA is entirely dependent on the information collected in 1981.

Inspection of the differences between the two data sets reveals two major differences: (1) The predation mortalities on saithe and mackerel are estimated at zero value in the MSVPA, since they were not recorded as prey in 1981. This is now being interpreted as young fish of at least saithe, being almost completely outside the North Sea. (2) For older sprat, the estimates from the ecosystem model have been largely underestimated. In spite of these differences, the close agreement between both the estimated trends in mortality with age and the actual levels, indicates that the impact of predation in both exercises is virtually the same.

6.5. Catchability Coefficients

Age-specific catchability coefficients to the fishing gear of research vessel surveys have been calculated on a single species basis by the "Survivor" method (Doubleday, 1981) for the North Sea cod, haddock and whiting stocks.

The results showed that the catchability coefficients were higher on younger ages. This could result from the design of the survey or from the gear used. However, it could also be interpreted as meaning that there were more fish of these ages in the sea than estimated by single species VPA, assuming constant natural mortality rate on all age groups. Thus, one conclusion could be that M on these younger age groups is higher than on older age groups. Estimates equivalent to M2 values are given in the text-table below, calculated as $\ln f_q(i)/q(i+1)$.

	I	North Se	North Sea Cod North Sea Haddock			North Sea	Whiting
A	.ge	q(i) M2 Equivalent		q(i)	M2 Equivalent	q(i)	M2 Equivalent
	1	1.217×10^{-2}	0.66	2.840×10^{-2}	-0.01	1.840×10^{-2}	0.45
		6.263×10^{-3}	0.21	2.876×10^{-2}	0.53	1.179×10^{-2}	0.44
	3	5.091 x 10 ⁻³		1.700 x 10 ⁻²		7.561 x 10 ⁻³	

This suggests that to a limited extent we may be able to directly observe the high levels for predation mortality that MSVPA calculates on younger ages of fish.

6.6. Existence and Uniqueness of MSVPA Solutions

To run a MSVPA requires the solution of a system of non-linear equations. This is done in the available computer programs with a natural iterative approximation. Questions regarding existence, uniqueness and stability are a matter of concern to the Working Group.

The Working Group has mainly focussed on the Helgason-Gislason version of MSVPA. For that, and other reasons, the following discussion is limited to that version, although some, but not all, of the following remarks apply to the versions of Pope and of Sparre. Furthermore, the following discussion relies upon the original formulae of Helgason and Gislason (1979). The computer program developed by Sparre (1984) and used in the present study, differs in the suitability coefficients. These are assumed fixed by Helgason and Gislason, whereas Sparre derives them (in an initial phase) from observed stomach contents in the year 1981. It is most likely that the following remarks apply just as much to the Sparre program. Dekker (1982) raised these questions but was not able to prove nor disprove uniqueness of the (Helgason-Gislason) equations when used, as in the present study of the Working Group, in retrospective mode. On the other hand, he produced a simple example showing that existence and uniqueness are not guaranteed when the model is used for predictions, i.e., in forward mode.

Magnus and Magnusson (1983) tackle the problem from a mathematical standpoint. They make, in general, the so-called "triangular assumption", i.e., that no fish preys on a fish equal or larger than itself, or more precisely, that the cohorts can be linearily ordered in such a way that a particular fish only predates upon fish in cohorts with a lower number than the number of its own cohort. Their findings can be summarised as follows:

- 1. There always exists a solution. This statement is also true when the triangular assumption does not hold.
- 2. If there are no more than 4 cohorts in the system and the triangular assumption holds, the solution is unique.
- 3. If (suitable) external food is sufficiently plentiful, uniqueness is guaranteed. This is not surprising, as the MSVPA approaches traditional VPA as the quantity of other food approaches infinity. On the other hand, this observation is not very useful, since a numeric value cannot be assigned to the "sufficient" quantity of external food.
- 4. If certain inequalities involving the data alone are true, then uniqueness holds. Here again the triangular property is assumed. These inequalities could be verified by the computer, but a corresponding sub-routine has not yet been incorporated into the program package.
- 5. A set of inequalities are given that guarantee the existence of a solution to the multi-species model when used for predictions. These inequalities basically require the existence of sufficient food for the fish stocks entering the model.

It should be stressed that the mentioned conditions guarantee uniqueness if fulfilled. Nevertheless, uniqueness may hold even when none of these conditions is satisfied. Thus, it still may be true that there is a unique solution in all sensible cases. The Working Group expresses the hope that further progress will soon be made in clarifying this issue.

In order to illustrate the uniqueness property, let us consider the following example.

Two species preying on each other and having the parameters:

N ₁ (1)	= 823,87	N ₂ (1)	= 1.24
W ₁	= 10	W2	= 10
R	= 10	^R 2	= 10 (Food cons. ration)
	M1 = 0		
G_{1}^{1} G_{2}^{1} C_{1}	= 0	G ² 1	= 1)
G_2^1	= 1 '	G1 G2 G2	= 0) Suitability coefficients
c	= 100	C2	= 100 (catch)
F ₁	= 5 000	F ₂	= 0 (external food)

In this simple case, it is easy to derive functional relationships between the average stock size of each species \overline{N}_1 and \overline{N}_2 . Let these be

$$\overline{\overline{N}}_{1} = f_{1} (\overline{\overline{N}}_{2})$$
$$\overline{\overline{N}}_{2} = f_{2} (\overline{\overline{N}}_{1})$$

Table 6.6.1. shows solutions for \overline{N}_1 given \overline{N}_2 at \overline{N}_2 given \overline{N}_1 , and Figure 6.6.1. shows these two curves.

The MSVPA solutions are the intersections between f_1 and f_2 .

It can be demonstrated that the two curves shown in the Figure intersect only at the point shown. This proves that there is only one solution to the MSVPA in this example. This cannot, however, be concluded from the conditions of Magnus and Magnusson (1983) since the triangular assumption is not satisfied. It should be pointed out that in the real data used in the main study of the Working Group, the triangular assumption is not satisfied. It is therefore of great importance to expand Magnusson's conditions so that they apply to realworld situations.

6.7. Sources of Variance of Consumption Estimates

The Report of the <u>ad hoc</u> Working Group on Multispecies Assessment Model Testing (Anon., 1980) recognises the many sources of variation and systematic error that stomach content data and consumption estimates are hampered with. However, since optimal stratification and sample size were impossible to evaluate at that moment, the Group did not give any requirements of confidence limits in their recommendations to the North Sea Stomach Sampling Program, 1981. Due to other priorities, the coordinators of the Stomach Sampling Program did not pay much attention to these problems in their report (Anon., 1984), and no indication of the likely confidence limits of the results is given. Such estimates will also be extremely difficult to obtain since both random sampling variance (e.g., introduced by individual sampling of stomachs from a trawl haul) and systematic errors of unknown size due to raising factors and uncertainties in respect of digestion models, temporarily emigration of fish out of the North Sea (ref. 2.2., page 4), etc., operate simultaneously. The likely errors of the consumption estimates will also vary between species. Cod, for instance, is probably adequately sampled by bottom trawl, while several years' work had to be applied to sample the whole population of pelagic species like saithe and mackerel.

Pennington, Bowman and Langton (1980) evaluated the variability in the weight of the stomach content of cod sampled at the east coast of the USA by trawl. The general conclusion was that the individual variance within a haul is larger than variance between season, time of day, etc. The coefficient of variation was about 1.4 for all size classes of cod. If the stomach contents were to be split into individual prey categories, the coefficient of variation would become even larger.

J. Pope (unpublished data) investigated the number of O-group Norway pout in the stomachs of 30-34 cm whiting sampled haphazardly throughout the North Sea in 1978, and obtained a coefficient of variation of 1.1, being the same size range as the American cod data.

Pennington (1981) sets up formulae to estimate variance of the consumption estimates when random samples are taken from a population. He gives results for silver hake indicating a standard error of 30% of the estimated total consumption. Again, a higher value might be expected if the stomach content were split into several prey species.

The present Working Group had only the data for cod in hand and there was not sufficient time to explore these data in any detail. However, some trial runs were set-up to come to grips with the problem.

No conclusive results were obtained, but the Working Group suspects, however, that the confidence limits for the consumption estimates on any one single prey species size group has rather wide limits and that if possible a higher number of stations is required than the number taken in the 1981 project.

If a new sampling scheme is to be set-up in the North Sea, a careful stratification of sampling effort should be set-up, based on the experience derived from the total data base of the 1981 program, aiming at keeping the coefficient of variation of consumption estimates of each prey species at a reasonable level. A first step should be an analysis of the variation exhibited by the 1981 stomach content data.

6.8. <u>Two Possible Ways of Correcting the Bias in MSVPA Results due to</u> <u>Systematic Differences between Weights of Prey in the Sea and in</u> <u>Predators' Stomachs</u>

Section 2.7 describes the discrepancies found between the weight of some prey species in the sea and in predators' stomachs. This effect seems to be systematically related to predator size with larger predators taking larger individuals from a prey cohort and smaller predators taking smaller individuals. Two approaches were developed to deal with the resulting bias in the MSVPA, but in the time available to the Working Group, only the former could be inserted in the program, which if either is the appropriate form of correction, has to be resolved, and it is hoped that the following expositions of the alternative approaches will stimulate further work on this subject.

Correcting for bias by adjusting the suitability estimates

Let \overline{W}_{sea} (s,a) be the mean weight of age group a of species s in the sea (the population mean). Let \overline{W}_{stom} (j,b,s,a) be the mean weight of prey s age group a observed in the stomach of predator j age group b.

The model presented in Sparre (1980) assumes that

$$\overline{W}_{sea}(s,a) = \overline{W}_{stom}(j,b,s,a)$$
 6.8.1.

However, as demonstrated in Section 2.7, great deviations from assumption (1) were observed. This is likely to give biassed estimates of predation mortalities, and it was attempted to correct for that. To circumvent the bias problem, a 'correction factor' was derived as follows.

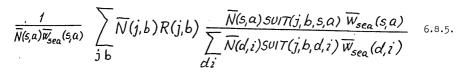
Ideally, the suitability concept SUIT (j,b,s,a) based on age groups should be replaced by a suitability concept based on lengths.

SUIT
$$(j,b,s,a) = \sum_{l} SUIT_{L} (j,b,s,a,l) \dots 6.8.2.$$

where 1 is index of prey length group.

Let \emptyset (s,a,1) be the relative length distribution of prey (s,a) in the sea (lengths are used rather than weights to match the actual observations of the stomach content sampling scheme).

Thus


where $W_{\text{sea}}(s,a,1)$ is the weight of prey (s,a) of length 1 in the sea. The expected mean length of (s,a) in the stomach of (j,b) is

$$\overline{W}_{stom}(j,b,s,\alpha) = \sum_{\ell} \frac{SUIT_{L}(j,b,s,\alpha,\ell)}{SUIT(j,b,s,\alpha)} \phi(s,\alpha,\ell) W_{sac}(s,\alpha,\ell)$$
6.8.4.

(see Figure 6.8.1 and compare Equation 6.8.1).

Ideally, the formula

M2(s,a) =

should be replaced by
$$M2(s,a) = 6.8.6.$$

$$\frac{1}{\overline{N}(s,a)\overline{W_{sea}}(s,a)} \sum_{j,b} \overline{N}(j,b)R(j,b) \frac{\sum_{k} \overline{N}(s,a)surr_{L}(j,b,s,a,k)\phi(s,a,k)w_{sea}(s,a,k)}{\sum_{k} \sum_{l} \overline{N}(d,l)surr_{L}(j,b,d,i,k)\phi(d,i,k)w_{sea}(d,i,k)}$$

Thus, the correction factor becomes

$$C.F. = \frac{\sum_{\ell} \overline{N}(s, \alpha) \, \text{surr}_{L}(j, b, s, q, \ell) \, \phi(s, q, \ell) \, W_{sea}(s, \alpha, \ell)}{\overline{N}(s, \alpha) \, \text{surr}(j, b, s, \alpha) \, \overline{W}_{sea}(s, \alpha)} \quad \dots \qquad 6.8.7.$$

C.F. is to be applied both to the nominator and the denominator in Equation 6.8.6.

Inserting Equation 6.8.4 into Equation 6.8.7, we get

$$C.F. = \frac{\overline{W}_{stom.}(j,b,s,a)}{\overline{W}_{sea}(s,a)} \qquad \dots \qquad 6.8.8.$$

Thus, to repair for the bias, $\overline{W}_{\text{sea}}(s,a)$ in Equation 6.8.5 should be replaced by $\overline{W}_{\text{stom}}(j,b,s,a)$.

Note that an unbiassed estimate is obtained only if the condition (Equation 6.8.4) is fulfilled.

The correction for bias is to change the SUIT-values by the correction factor.

The main reason for this particular way of repairing for bias stems from the iterative manner in which the suitability coefficients are calculated in the FORTRAN program.

The mathematical equivalence: relative stomach content =

$$CON (j,b,s,a) = \frac{\overline{N}(s,a) \cdot \overline{W}(s,a) \cdot SUIT (j,b,s,a)}{\sum \overline{N}(d,i) \cdot \overline{W} (d,i) \cdot SUIT (j,b,d,i)}$$
6.8.9.

$$SUIT (j,b,s,a) = \frac{\overline{\tilde{N}(s,a)} \quad \overline{\tilde{W}(s,a)}}{\sum_{di \quad \overline{\tilde{N}}(d,i,) \quad \overline{\tilde{W}(d,i)}}} \qquad 6.8.10.$$

must be fulfilled to secure that the iterative process converges. To replace SUIT by SUIT x C.F. does not change/spoil the equivalence.

Another approach would be to run the iterative process and afterwards repair for bias in M2 by multiplying M2 by

$$\overline{\overline{W}}_{sea}$$

This idea is developed in the next Sub-section.

Correcting for bias by adjusting the M2 estimate

A second approach to this problem studied was by specifying some theoretical function for \emptyset (s,a,l) and

$$\frac{\text{SUIT}_{L}(j,b,s,a,1)}{\text{SUIT}(j,b,s,a)}$$
 in Equation 6.8.4, and from this

derive a regression function for the data presented on prey weights in stomachs of the report of the Meeting of the Coordinators of the Stomach Sampling Project, 1981 (Anon, 1984). The success of this regression can be used as a test on the assumption that the observed differences in weight are the results of the predators having a size preference for certain prey sizes within one prey year class. On the other side, the estimated regression function can be used as a predictor for the best correction factor. Following the lines of reasoning of Andersen (1982), it was assumed that:

- a) the weight of a prey in the population within one year class has a log-normal distribution (with mean μ and variance $\boldsymbol{\tau}^2$).
- b) the size preference of a predator has the shape of a log-normal frequency distribution (with log mean/(prey to predator weight \underline{ratio}) = η , and variance σ^2 , i.e., mean log (preferred prey weight) = $\eta + \log W_{\text{pred}}$).

If the fraction of a year class removed by predation is not too large, it follows that the weight of a prey in a predator stomach within one year class is log-normally distributed with mean

 $Co \times \eta + Co \times \ln W_{\text{pred}} - Co \times \mu + \mu \qquad 6.8.11$ where $Co = \frac{\chi^2 \times \sigma^2}{\chi^2 + \sigma^2}$

and variance Co x σ^2 6.8.12

Assuming that \neg , σ^2 and \mathbf{r}^2 are independent of prey and predator age group, the different age groups were treated as multiple observations of one and the same regression function (6.8.11).

The log of the mean weight at age given by the various Assessment Working Groups was used as an estimate of μ . Taking the value for σ^2 estimated in Dekker (1983) for cod eating gadoids as a reasonable estimate for any prey category for any predator ($\sigma^2\approx 1$), and the estimated values of the slope of the regression lines given below, it follows that the log of the mean prey weight in the predator stomach does not deviate from the mean of the log very significantly. Furthermore, the intercept of the regression (6.8.11) divided by its slope, should be an estimate of η . Comparing these η -estimates (given in Tables 6.8.1 and 6.8.2) to Dekker (1983), it is obvious that some η -values estimated here are utterly wrong but the general trend is in reasonable agreement.

7. CONCLUSIONS AND RECOMMENDATIONS

Broad conclusions and recommendations are summarised below. To aid clarity, these are cross-referenced to the relevant report section.

Section 1

7.1.a. The <u>ad hoc</u> Working Group had a successful and productive first meeting. The results detailed, however, are necessarily provisional and a further meeting of the <u>ad hoc</u> Working Group will certainly be needed to consolidate the advances made at this meeting and to develop means of giving long-term multi-species assessment advice.

The <u>ad hoo</u> Working Group on Multispecies Assessment therefore recommends that it meet again at about the same time in 1985.

Section 2

- 7.2.a. A number of the inputs to MSVPA need to be estimated more precisely than was currently possible. This may be partly achieved by further research by members of the <u>ad hoc</u> Working Group but specific advice on quarterly catch-at-age data and proportions of the fish stocks outside the North Sea would best be provided by the relevant Assessment Working Groups. The <u>ad hoc</u> Working Group therefore recommend that the various Assessment Working Groups should at future meetings supply quarterly catch-at-age data for use in a MSVPA. They should also try to give some guidance concerning the proportions of different fish stocks included in the MSVPA which are outside the North Sea at different ages and different times of the year.
- 7.2.b. It would also be helpful if they could advise on suitable levels at natural mortality (M1 + M2) to apply to the oldest ages of each fish stock.
- 7.2.c. The problem of how best to adapt MSVPA to allow for differences in the weight of fish found in stomachs and in the sea, needs further research.
- 7.2.d. The results of the MSVPA runs all indicate substantial predation mortalities on the younger age groups of the species considered.

Section 3

- 7.3.a. The effect of including these mortalities in assessment calculations depends very much on the calculation being carried out.
- 7.3.b. It is the considered opinion of the Working Group that the effect of increasing M by a fixed amount on younger ages will have little effect on short-term catch forecasts if fishing mortalities remain close to current levels.
- 7.3.c. The effect on long-term assessments (e.g., yield-per-recruit) is likely to be substantial, but it would be unwise to consider these effects of predation mortalities in a single-species context, until both the levels to be used and the appropriate techniques are better understood.
- 7.3.d. Inclusion of predation mortalities increases estimates of the actual number of young fish in the sea, and will have an appreciable effect on the evaluation of the consequences of the exploitation of young fish, even in the short-term.
- 7.3.e. If revised estimates of natural mortality are required, it would be prudent to use the estimates based on the half ration assumption (Run No.2) for the time being, since these are unlikely to be overestimates.
- 7.3.f. Estimates of predation mortality may include an element which is on pre-recruits, which should (like egg and larval mortality) be of little consequence in practice, for making some types of calculation (e.g., yield per recruit).

7.3.g. Current estimates of year class strength from MSVPA do not correlate better with survey indices or clarify the stockrecruitment relationship, compared with traditional estimates. This may yet be because of imperfections in the estimates, and further investigations are required.

Section 4

- 7.4.a. The effects of including predation mortalities in assessment calculations are expected to be fully expressed only in the long-term.
- 7.4.b. Predation mortalities depend on absolute predator abundances, so that yield-per-recruit calculations alone are no longer adequate, and the stock-recruitment relationships become of crucial importance.
- 7.4.c. The form of the functional feeding relationship assumed is of great importance in long-term assessments, affecting both the stability and the validity of the results. The adequacy of current assumptions is uncertain and requires further investigation.
- 7.4.d. The presentation of the results of long-term assessments is not easy, particularly when many fisheries are considered, and further work is required.
- 7.4.e. Long-term assessments may imply fish biomasses well outside the range of recent experience. The extrapolation of present interpretations of data outside a range of ± 50% of the current situation should be regarded as illustrative only.
- 7.4.f. Exercises involving running the MSVPA for years earlier than 1974, going back to the middle 60's, would give indications of the robustness of the MSVPA model due to the great changes in North Sea fish biomass that occurred during that period.

Section 5

- 7.5.a. The ad hoc Working Group recommends that future stomach sampling should be particularly for cod and whiting, and should be carried out for particular quarters in 1985, 1986 and 1987 using existing research vessels surveys for sampling purposes.
- 7.5.b. Studies of the variability of the 1981 sampling programme should be made.
- 7.5.c. Studies aimed at increasing our understanding of the suitability matrix should be made and would involve the joint sampling of stomach contents and prey (including invertebrate prey).
- 7.5.d. Studies need to be conducted on factors of importance to predator ration size. Expert help should be sought on this problem.

Section 6

7.6.a. The contents of the various sub-sections of Section 6 should form the starting point for a number of studies to be conducted during the year by individuals and presented to the next meeting of the ad hog Working Group.

8. ACKNOWLEDGEMENTS

The <u>ad hoc</u> Working Group wishes to record its thanks to the coordinators of the 1981 Stomach Sampling Program for their valuable results, to the Danish Institute of Fisheries for the use of their VAX computer for MSVPA runs and to Per Sparre of that Institute for producing the MSVPA computer program.

9. REFERENCES

- Akenhead, S.A., J. Carscadden, H. Lear, G.R. Lilly, and R. Wells, 1982. Cod-capelin interactions off northeastern Newfoundland and Labrador. <u>In</u> M.C. Mercer (ed.). Multispecies approaches to fisheries management advice. Can.Spec.Publ.Aquat.Sci.,59. pp. 141-148.
- Andersen, K.P. and E. Ursin, 1977. A multispecies extension to the Beverton and Holt theory of fishing, with accounts of phosphorus circulation and primary production. Meddr.Danm. Fisk.-Havunders.NS.7
 - Andersen, K.P., 1982. An interpretation of the stomach contents of fish in relation to prey abundance. Dana 2:1-50.
- X Anon., 1980. Report of the <u>ad hoc</u> Working Group on Multispecies Assessment Model Testing. ICES, Doc. C.M.1980/G:2.
- X Armstrong, D.W., J.R.G. Hislop, A.P. Robb and M.A. Brown, 1983. A preliminary report on the analysis of the whiting stomachs collected during the 1981 North Sea Stomach Sampling Project. ICES, Doc. C.M.1983/G:59.
 - Arntz, W.E. and D. Brunswig, 1976. Studies on structure and dynamics of macrobenthos in the western Baltic. <u>In</u> Persoone and Jaspers (eds.), 10th Europ.Symp.Mar.Biol.
 - Arntz, W.E., 1981. Estimates of food consumption parameters for dab utilizing information on food concentrations. ICES, Doc. C.M.1931/L:41.
- Arntz, W.E. and E. Ursin, 1931. On the estimation of food preference parameters when food concentrations are not known. ICES, Doc. C.M.1981/L:40.
 - Beverton, R.J.H. and S.J. Holt, 1957. On the dynamics of exploited fish populations. Fish.Inv., Ser.II, <u>19</u>.
 - Brander, K., 1983. Application of a multispecies steady state yield model to the cod and <u>Nephrops</u> stocks in the Irish Sea. ICES, Doc.C.M. 1983/K:9.

- * Daan, N., 1973. A quantitative analysis of the food intake of North Sea cod (<u>Gadus morhua</u>). Neth.J.Sea.Res. <u>6</u>, 279-517.
- * Daan, N., 1983. Analysis of the cod data collected during the 1981 Stomach Sampling Project. ICES, Doc. C.M.1983/G:61.
- -- Dekker, W., 1982. Theoretical aspects of the multispecies virtual population analysis. ICES, Doc. C.M.1982/G:32.

 Dekker, W., 1983. An application of the Andersen consumption model in estimating prey size preference of North Sea cod. ICES, Doc. C.M.1983/G:63.

- Dill, L.M., 1983. Adaptive flexibility in the foraging behaviour of fishes. Can.J.Fish.Aquat.Sci. <u>40</u>:398-408.
- Doubleday, W.G., 1981. A method for estimating the abundance of survivors of an exploited fish population using commercial catch-at-age and research vessel abundance indices. Can.Spec.Publ.Fish. Aquat.Sci., 58:164-178.
- Gislason, H., 1983. A preliminary estimate of the yearly intake of fish by saithe in the North Sea. ICES, Doc. C.M.1983/G:52.
- - Helgason, T. and H. Gislason, 1979. VPA analysis with species interaction due to predation. ICES, Doc. C.M.1979/G:52.
 - Jones, R. and C. Johnston, 1977. Growth, reproduction and mortality in gadoid fish species. Fisheries Mathematics (ed. J. Steele). Academic Press, London, New York, San Francisco, 1977.
 - Jones, R., 1978. Estimates of the food consumption of haddock (<u>Melanogrammus</u> <u>aeglefinus</u>) and cod (<u>Gadus morhua</u>). J.Cons.int.Explor.Mer, <u>38</u>(1): 18-29.
 - Jones, R., 1982. Ecosystems, food chains and fish yields, pp.195-239 <u>In</u> D. Pauly and G.I. Murphy (eds.) Theory and management of tropical fisheries. ICLARM Conference Proceedings 9, 360 p. International Center for Living Aquatic Resources Management, Manila, Philippines and Division of Fisheries Research, Commonwealth Scientific and Industrial Research Organisation, Cronulla, Australia.
 - Lilly, G.R., 1984. Annual variability in the diet of Atlantic cod (<u>Gadus morhua</u> L.) off southern Labrador and northeast Newfoundland (Div. 2J + 3K) in autumn, 1977-82. NAFO SCR Doc.
 - Magnus, R.J. and K.G. Magnusson. Existence and uniqueness of solutions to the multispecies VPA equations. ICES, Doc. C.M.1983/D:20 (mimeo).
 - Maurer, R.O. and R.E. Bowman, 1975. Food habits of marine fishes of the northwest Atlantic. Data Report. Northeast Fisheries Center. Lab.Ref. 75-3. 90 pp.
 - K Mehl, S. and T. Westgård, 1983. The diet and consumption of mackerel in the North Sea. ICES, Doc. C.M.1983/H:34.

- Myers, R.A. and R.W. Doyle, 1983. Predicting natural mortality rates and reproduction - mortality trade-offs from life history data. Can.J.Fish.Aquat.Sci., 40:612-620.
- Ohguchi, O., 1981. Prey density and selection against oddity by three-spined sticklebacks. Z. Tierpsychol., Suppl. <u>23</u>:1-79.
- Pennington, M., R. Bowman and R. Langton, 1980. Variability of the weight of stomach contents of fish and its implications for food studies. ICES, Doc. C.M.1980/L:63.
- Pennington, M., 1981. Estimating the average food consumption by fish in the field. ICES, Doc. C.M.1981/G:69.
- Pennington, M., 1984. Estimating the average food consumption by fish in the field from stomach contents data. ICES, Doc. C.M.1984/H:28.
- Pope, J.G., 1979. A modified cohort analysis in which constant natural mortality is replaced by estimates of predation levels. ICES, Doc. C.M.1979/H:16 (mimeo).
 - Reise, K., 1977. Predator exclusion experiments in an intertidal mud flat. Hel.Wiss.Meeresunters. <u>30</u>:263-271.
- Shepherd, J.G., 1984. A promising method for the assessment of multispecies fisheries. ICES, Doc. C.M.1984/G:4.
 - Sparre, P., 1980. A goal function of fisheries (legion analysis). ICES, Doc. C.M.1980/G:40.
- Sparre, P., 1984. A computer program for estimation of food suitability coefficients from stomach content data and multispecies VPA. ICES, Doc. C.M.1984/G:25.
- Ursin, E., 1978. Continued exercises with a North Sea model for multispecies fish stock assessments. ICES, Doc. C.M.1978/G:47.
- Ursin, E., 1982. Multispecies fish stock and yield assessment in ICES. pp.39-47 <u>In</u> M.C. Mercer (ed.). Multispecies Approaches to Fisheries Management Advice. Can.Spec.Publ.Aquat.Sci. 59.
 - Ursin, E., 1984. On the growth parameters of Atlantic cod as a function of body size. Dana <u>3</u>:1-20.
 - Ursin, E., M. Pennington, E.B. Cohen and M.D. Grosslein, 1984. Stomach evacuation rates of Atlantic cod (<u>Gadus morhua</u>) estimated from stomach contents and growth rates. ICES, Doc. C.M.1984/G:43.
 - Werner, E.E. and G.G. Mittelbach, 1981. Optimal foraging: Field tests of diet choice and habitat switching. Amer.Zool. 21:813-829.

-0-0-

 In species where no quarterly data were available to the Group, the annual catches were split by inserting the quarterly fishing mortality coefficients and the annual natural mortality coefficients given here into the appropriate equations (Sparre, 1964), i.e.

$$F_{quarterly} = 0.5$$
 $M_{year} = 0.2$

- 2) Catch in numbers by age and year. The first line is the annual catch of age groups 0 to 10. The next line contains the quarterly catches of the oldest age group and the fishing mortality coefficient for the last quarter (input to the MSVPA). For species and periods for which quarterly data exist, these are given.
- 3) Quarterly fishing mortality coefficients for the last year.
- Quarterly weight by age in the stock (weight at age in the catch assumed to be the same).

Please note that the lay-out is only shown for cod, but applies to all species in Table 2.2.1.

Table 2.2.1. Number of years with quarterly data.

COD CATCH NUMBER 1 Δ. ! 0 : ANNUAL CATCH 1) 0.5 0.5 0.5 0.5 0.2 FACTORS TO SPLIT ON DUARTERS 14677 55431 10716 14869 4392 926 417 373 318 75 (YEAR 1974 0 71 54 26 28 0.19 LAST AGE GR. F(OLDEST) Ù 30305 48051 18232 4220 6484 1732 372 149 180 80 ! YEAR 1975 14 10 5 4 0.19 0 6238 93083 17584 6608 1589 2439 770 98 49 49 ! YEAR 1976 13 9 0.19 4 Э Ö 60267 48281 23082 4307 2190 675 926 307 223 20 ! YEAR 1977 32 24 12 13 0,19 28358 156890 14231 Ű. 8469 2884 961 371 364 131 32 ! YEAR 1978 15 11 5 7 0.19 2 36314 86741 39700 0 3596 3061 660 342 113 127 34 ! YEAR 1979 5 3 3 0.20 9702 1523 1037 0 55522 94284 29942 384 159 69 46 ! YEAR 1980 7 9 З 4 0.20 Ö 21829 187169 27318 7627 3777 757 546 136 62 33 ! YEAR 1981 7 3 9 3 0.20 Ö 64659 57307 51770 6424 2939 1662 321 197 62 24 ! YEAR 1982 G 7 З 4 0.20 28193 105022 25680 9443 2705 1053 424 118 1.1 54 8 ! YEAR 1983 4 3 1 1 0.20 0.0001 .068 .20 .37 .19 .23 .19 .17 .22 .22 .20 ! TERM. FS 3 003 ! NAME OF SPECIES NO. 1. 12З ! NUMBER OF AGE GR., AGE AT MATURITY Age .01 .05 .10 .20 .05 .30 - 40 .52 .62 .05 .85 .74 1.06 1.35 .05 1.93 1.64 2.36 2.91 ! BODY WEIGHTS OF COD BY AGE GROUP .05 3.48 4.03 4.58 5.13 .05 ! AND QUARTER OF YEAR 5.67 6.22 6.77 7.32 .05 F AND RESIDUAL NAT. MORTALITY 4 7.82 8.42 8.87 9.31 .05 9.54 9.88 10.21 10.52 .05 10.84 11.16 11.48 11.81 .05 12.14 12.47 12.70 12.83 .05 12.97 13.30 13.66 13.10 .05 13.98 14.31 14.47 14.47 .05 Ql Q2 Q.3 94 M2 /Continued

i 40

		5 A		្ល		76		62		00 F		С. С.		80		ст Ю	į	(* 4 00	0) (n		у 1 2	01	AT MAY.					A					
I	100	I YEAR	6	YEAR		YEAR		YEAR		YEAR		χ_{EAR}		убак		大田戸田	ţ	(EAR	YEAR		Wanı :	NO	÷СÉ				DMITING	ULARTS					
. CATCH	AFTER	20	3T AGE	142 !		i 167				5		2		45		- 90		20 10	e Ce L		92. 1	SUEDIES	ыК.,				HM (1)	AND OUARTE	. MOPT				
ANNUAL	INTO QUARTERS	30≥ 30	(ULDES	1385		222		167		242		194		工作で		(0 00 00	9 9 9 9		÷	0E 30	369 41					STORES.					
	UL LITAS	NNA99	0F, E	90		រា។ ហ		406		14.22		6411		រា ហេ ស		1761	-	2777	1367		56."	30	111 U.				EUDY NEIGHIS	AGR GROUP	e kes.				
	TO SP	N N N	AGE GROUP, F(ULDEST AGE	7987		77.16		e637		いてつの		3115		8047		10186	ţ	5279	1403		. 28		-				10.4	, н ^с	1 ANU				
			LAST AU			3316 .		8392		7618		25082 :		8185 0		31701		14004	35390		82.			0.05	0.00	0.05	0.05	0.05	0°°0	0.05	0.05	0.05	0 012
	14	23094 x		54482 1		26447 IS		31540 10		. 48769		86230 23		83419 31		93063	, , 1	91123	27966		.21			0.40.0	0.122	0.210	0.202	0.355	0.440	0.63.0	0,552	0,66%	0 = 2523
	0.2	228625	0.25	294652	0.25	161154	0 ° 5 0	261985	0.25	202499	0,25	211628	0.25	169282	0.25	361111	0.50	232200 25220	103070 1		.20			0.028	0.100	0.189	0.269	0.322	0.420	0.476	0.549	0.619	182 0
	0.5		en		.25 .25		:0	480400		335745		56684	ي ت	407785	<u>1</u>	54910	0	- 16827 5		1	. 16		ù	9.0.6	080"0	0.167	0.2522	0.307	0.411	0.46]	0.533	0.550	6.748
5NI LTHM	0.5	4672	0	956417 4		BG51	rs)-	F 1612101	00 11	8262	i	619543 4		1704		X (9 4 N	¢		0540		.068		11	0.01	0,063	0.145	0.231	0.29A	0.383	0.401	0.514	0.576	0.205
CAIUH UF 0	୍	2	œ	239142	~	6- 10		664985 1		686383		477685		332373		543293		124919	661477	19	000	Ŀ											

/Continued

- 41 -

СA	TCH O	SALTHE				;										
	0					1 0:	ANNILAS	. CATCH	4							
	.3	.3	.3	. 3 .	. 2	! FAC	102S 1	10 SPLI	י רד ואים		ppe					
O	3670	14750	60680		12431 .	20595	14504	5028	1427		412	222	132	20 1	14 m A m	<i></i>
	11	8 4		. 1		1 LAS	T AGE		FOL			ana ana ang	شد هد ش	av :	YEAR	/4
0	311 10	72546 8 4	51287	23585	9028	6717	12660	8656	3299	1100		254	375	22 1	YEAR	75
0	228	8 4 23125 :	3 999696	") 51407	00000	F10.0.1										
4	26	20 12	20060	.1	9852	5111	3309	4842	2978	1068	420	253	121	161 !	YEAR	76
Q	2586	12993	22567	51861	12914	4684	3173	2902	3466	2.000						
	52	39 20	18	.1	1 M 3 1 1		9170	4004	3466	1895	825	342	341	123 /	YEAR	77
Q	1237	16970	29504	27679	17251	3787	1162	1069	207	736	640	415	213	04 1	1.0 20 4 10	
	44	34 16	14	.06						1.000	0.40	-5 L C	413	90 !	YEAR	78
0	894 41	16959 30 16	10076	14756	12843	6878	2641	873	470	282	402	343	157	154 /	YEAR	79
0	974	30 16 17642	$14 \\ 10498$.06 11029												
ů	36	27 14	10420	.06	9601	6503	4512	985	500	406	303	254	216	147 !	YEAR	80
0	5595	17674	18941	9079	7109	4413	0.0.00									
	134 1		40	.06	1103	4410	3207	3269	673	293	389	345	297	253	! YEAR	81
Q	1462	22474	23636		10645	6466	1816	1346	978	294	140					
	58	44 24	20	.06			40 YO 10 YO	10-20	270	204	108	129	98	146	! YEAR	82
1	176 35	33655	19497		25842	4866	4752	1360	955	318	118	80	95	38	1 1/11 1 1.	
0		26 15)2 .03	11 .04	.05						~ ~ ~	4.4.0	00	20	30	! YEAR	83
	0.1 N.V.	/4 ×V2		.06	• 0S	.02	.07	.08	.07	. 05	.05	.05	.05	.05		
	9	GAITHE	1				I N	AME UF	(20.00	~					
		16		5			I N	IÚ. DE	102 CD 002 CD	55 NU. 01000	3 402 4					
		0.010	0.050	0.100	0.150	0.05			Har ar	oors.	HG2 6	IT MAT				
		0.200	0.250	0.340												
		0.440	0,490	0.570												
		0.800	0.920) 1.060				10 M 11 77 1								
		1.39	1.55	1.71	1.88	0.05		DY WEI	UHIS ()	F SAIT	HE					
		2.05	2.22	2.41	2.62		! BI	AGE G	RUUP A	ND QUA	RTER					
		2.83	3.04	3.24	3.45	0.05	I AN	D RES.	NAT.	MORT.						
		3.66	3.87	4.09		0.05										
		4.55	4.78	5.02	4.32	0.05										
		5,49	5.72		5.25	0.05										
		6.36	6.57	5.94	6.15	0.05										
		7.01	2.15	6.74	6.88	0.05										
				7.24	7.28	0.05										
		7.33	7.34	2.45	2.58	0.05								/Co	ntinued	
		7.71	7.84	7.98	8.13	0.05										
		8.28 9.02	8.43		8.84	0.05										
		2.07	9.3	9.30	9,30	0.05										

	.25		NUMBER	15		y 01	ANNUAI	CATCH	DATA		5. 1971 (788							
		18700		39900	240800	AE000	51-68-3-1	U-SPL 11										
•		2500	1500	39900 :	1000		/500			500	300	6600	6000	6000	I YE	AR 74		
0 1	1900	10100	16200					-20400	ST AGE	GROUP	AND F	COLDES:	E)					
ب الله الله		3000	2000	1000	1000	05	50000	- 24444	20000		300		a700	->000	BOH TE	AB 75	国际强制	繁生
0	2700	73600		13900	33800	19500	118600	31300	8000	9000	4000	-00	100	1000	I.VP	AR 76		354 . T
ЧĊ.,		700	500	200	- 104	.05	2 M 6 7	1999 i 1-4		107						10	3.3834	6.21
0	1100	19300	58900	54300				125900		8300	8800	-4500	800	100	TYP	48-77		55 T
	1.1	1000	800		301	0 .05	т. А.							가 문 문	241 - E		- 2	
0	0	8200	34700		27900	6000	14200	16100	45700	14600	5500	5500	2900	600	. I YE	AR 78	1. (April 1.	
		1300	1000	500 21200	- 40	0 .06		4. ÷ .].						1.1		2		· .
0	2300	500	11300	21200	33300	14300	° 4200	9200	2000	27000	5200	2000	2000	1200.	1 YE	AR 79	- 1. ⁴⁴	
		1000	800	300	201	0												
0	2700	5600		14300	23500	25900	15300	12300	14000	3500	19300	3800	1300	1600	1 YE	AR 80	99 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	
0		1000	700	300		0.04					î					1. J. S.		
Š	0	-	58	-	113	157		95						23		! YEA		
ŏ	3900	48 5952	12		1375		1958			825		2244			165			. 02
ö	3900	2923	11293	924				8621	4433			16748			1232			03
.1	v	v	138	47	190	1044	1068	630	324	450	132	1224	108	150	90	ેવું છે.		.Q4
<u>.</u>	0	0	1054	922	FO	193	100	000										"
ŏ	ă	ő	1054	126	270	1040	190 1026	208 1121	133	75 405		55				T YEA	R-1982	: 01
õ	3000	14300	1330		1616	6222	6141	6706	4282		48G - 2909		1161	230				02
õ.	õ	1054	2000	485	68	262	258	282	180		122		292					03
. 04	4		•			202		. 202	100	1.0.2			404				251	64
0-	0	0	1008	672	107	16	86	104	80	69	29	51	19	128		I YEA	0 1000	. คำ
0	0	0	140	66	342	51	275	332	255	219	92		61	408		- 1 I E H.	4. 1 203	02
0	100	17000	24780	14006	6043	. 902	4871	5863	4510			2886		7216	1624			.03
1	1	1	2072	1640	214	32	173	209	160				- 38		. 58-			
07							1/0		100	1.50		102	. 30	200		- - 1		64
2001		000 .000	01 0.	45 .067	5 .062	z 1,17	50 .02				17 M.C.			1 Sec. 1	영화 영상 전	S		

MACKEREL 16	з			NAME OF SPECIES NO. 4
0.005	0.010	0.020	0.070	0.04
0.100	0.150	0.260	0.280	0.04
.30	.32	.33	.34	.04
.35	.36	.37	.37	.04
.38	.39	.40	.41	.04 T BODY WEIGHTS OF MACKEREL
.42	.43	.44	.44	.04 BY AGE GROUP AND DUARTER
.45	- 45	.46	.48	.04 AND RES. NAL. MORT.
,50	.51	-53	.54	.04
.56	.57	.58	.58	.04
.58	.58	.59	.59	.04
.60	.61	-61	.62	.04
.63	.63	-64	.64	.04
.65	.65	-66	.66	.04
.66	.67	.67	.67	-04
.67	.67	.68	.68	.04
.68	.68	.68	-68	.04

- 43 -

Table 2.2.1. (Continued)

i

	CATCH NUMBI	ER		1									
0	, ,				: ANNUAL								
1 J.		.2			CTORS TO			UARTERS					
601454		174438	326841		1834	1330	10583	237	22	33	ļ	YEAR	74
	4 2	1	1	.22									
44913	2097418	632852			15315	953	599	2625	255	61	1	YEAR	75
	8 6	2	2	. 22									
167010	167563	1045329	206721	9624	30523	4786	187	67	682	52	1	YEAR	76
	1.5 1	.25	.25	.22									
115080	250416	103734	376518	39348	3949	6000	1136	115	24	163	- (YEAR	77
	1.5 1	.25	.25	.22									
289807	458727	141915	28439	109212	8583	1186	1911	386	112	24	1	YEAR	78
	25 20	10	9	.22									
960092	348597	198797	39750	7131	26908	2136	249	451	136	52	I.	YEAR	79
	96	5	з	. 22									
388300	726409	321523	70544		1826	8228	601	123	182	71	1	YEAR	80
	15 12	6	5										
688754	141833	408901	140766		1835	342	2631	127	67	22	1	YEAR	81
	16 13	3	6		4. 100 100 100	9.0	and her has all					~ ~ 1141	
355133	297376	82202	287181		3160	659	187	945	21	78	1	YEAR	82
	9 6	5	3	. 22	~~~~			2			·		~ ~
685230	229031	238103	79279		19136	2215	465	57	337	20		YEAR	00
000200	3 3	200100	1		1.01.00	14 KH 4 CH	-100		447	/ 7	:	a 10 17 K	00
1 0					~ /	60 B			ar			10 17 71 M	7 7 (
.10	.10	.25	.35	- A.U	- 23 U	. 25	.35	• xi Xi	.25	.22	1	TERM	. E

нарроск						I NAME OF SPECIES NO. 5	
12	2					/ NO. OF AGE GR., AGE AT MAT.	
.010	.015	.026	.049	.05			
.072	.095	.125	.163	.05			
.20	- 24	.28	-33	.05			
.36	.40	. 44	.49	.05			
.54	.59	.63	.69	.05	1	RUDY WEIGHTS OF HADDOCK	
. 74	.79	.83	.89	.05	ļ	BY AGE GROUP AND QUARTER	
.94	.99	1.04	1.09	.05	ļ	AND RES. NAT. MORT.	
1.14	1.18	1.23	1.29	.05			
1.34	1.40	1.51	1.57	.05			
1.63	1.69	1.76	1.85	.05			/Continued
1.94	2.04	2.13	2.22	.05			,
2.31	2.41	2.45	2.45	.05			

3	CATCH NUP	i an an An		! 		48. 4. 141								
. 3	.3 .3	.3	15	1 0	ANNUAL	CATCH DA	ìΤΑ							
996100	846100	772600	.15	126000	ACTORS TO	SPLIT I	NTO QUA	ETERS						
. 500		100		126000	56100	22300	5000	2000	ΙY	EAR	1974			
263800	2460500	541700	259600		IT IT IT IT IT		! LAST	AGE G	ROUP	AND) F(O	LDEST)	
60(200	200 .:		57200	16100	9100	3400	1 Y	EAR	1975			
238200	126600	901500	117300		10 1 Jun 1									
20(50	50 .:		34500	6100	4400	1000	1 Y.	EAR	1976			
256800	144300	44700	186400											
20		33777	7 .1		7000	4100	1500	700	! X)	EAR	1977			
130000		4900	5700		-									
120		45	45 .(300	300	200	200	! Y	EAR	1978			
542000	159200	34100	10000											
40		15	15 .(2100	200	800	600	1 Y)	EAR	1979			
791700	161100	108000	91800		61 Y 19 A 4									
40		15	15 .0		21700	2300	1400	400	- (Y)	EAR	1980			
0	14751	44500	8100	3900	1300									
Û	26328	20900	8300	10100		200	100	ϕ		0	1	YEAR	1981	G 1
5916525	355768	20900	6300	10100	10900	A.00	9400	2800	6	500				02
1972175	50153	178100	32300	15400	10900	9200	8100	2800	6	500	Į			Q3
0001			02000	10400	54()()	2600	500	1.0		1 Ú	i.			Q.4
0	27733	40200	44300	5300	1400									
0	49500	38100	4400	3600	3800	400	300	100		Ċ	!	YEAR	1982	01
7167525	668874	38100	4400	3600		5300	3200	1600	Li. V	500	1		1900	Q2
2389175	94293	161000	177100	31300	3800	2300	3200	1600	12	500	1			QЗ
3				44400	5400	1800	1500	400	1	00	1			04
Q	37838	50300	21000	13900	2200									W -8
0	67535	146600	55700	20300	2200	600	100	100		0	i	YEAR	1983	01
522425	912579	146600	55700	20300	7600	9900 9900	6200	5500		.00	ļ.			QŽ
3507425	128648	201400	84100	51600	8900	2400	6000	5500		00	1			03
96 20				01000	0000	2400	400	400	.I.	00	1			Q.4
. 30	"OG	-06	.06	.06	.06	.06	,06	.06	I TE	RMJI	NAI. E	S		
	HERRING					NAME OF	CDECTEC							
	9	з			י. או	U OF AGE	orsoits Ann	NU: 5	14 4 67					
	.002	.005	.010	.020	.025		4 " AL	us AT	nar "					
	.030	.045	.060	-079	.025									
	.098	a .1. 3)	.13	.15	.025									
	.16	.17	-18	- 19		SODY HOS	CUMC AN							
	.20	. G 1	.22	. V 23		BY ARE G	00115 QE 10 6444	HERRI	NG					
	• 23	.24	.24	.25		BY AGE G AND RES.	MAR AND	UUARTE	Ъ				/Cont	inued
	.25	.25	. 315	- 26	.025 .025	end KRS*	NGI. M	ORT.					,	
	.36	- 37	* 217		.025									
	.27	.27	. 32	n 617	.025									

.

- 45

1

	······································	/			
SPRAT CA	TCH NUMBE	R		į	
10				! 1 : QU	ARTERLY CATCH
0	100000	100000	100000	100000	1 YEAR 1974 01 m
Q.	100000	100000	100000	100000	1 0.2 36
10000	100000	100000	100000	100000	I Q3 ж
10000	100000	100000	100000	100000	1 134 35
.25					(F(OLDEST)
Ú	4096600	14973300	3929000	233700	1 YEAR 1975 Q1
Û	446200	1163200	68900	6500	1 0.2
15000	10588100	5760000	75100	3100	1 0.3
675200	6351600	6122500	660200	57300	! 04
. 25					
0	9360900	9997000	6678000	373000	1 YEAR 1976 Q1
Ó	2017200	964600	740100	40900	1 02
79600	16536400	599400	40100	0	1 03
2780400	8443700	2659400	612700	37100	! 04
.25					! F(OLDEST)
Q	4197200	11962600	962900	1047000	! YEAR 1977 Q1
Ŭ	540300	670900	52700	1500	1 02
57300	2803100	3248400	165900	11100	1 03
1060800	4705000	3049500	311200	1500	1 04
.25					F(OLDEST)
0	2461900	2839300	3770100	344500	1 YEAR 1978 Q1
Ŷ	1077500	123800	3200	0	93
6300	17785500	216500	14700	700	1 03
636800	6932700	3955800	1159000	214300	1 (14
.35					(OLDEST)
0	2770000	6422200	2670600	131300	! YEAR 1979 Q1
Û	203600	452000	14000	1100	! 02
Ú	25379100	388300	2100	0	1 0.3
433000	8394800	1494600	122400	34900	! 0.4
.25					! E(OLDEST)
Õ	1448000	12764400	1323200	103700	1 YEAR 1980 Q1
Û	134000	84500	2400	300	1 02
15100	10143300	811600	4700	00	1 03
515700	4518500	2767400	111800	19500	1 (24
.25					F(OLDEST)
0	2249300	5218600	1055500	22100	! YEAR 1981 Q1
23000	82000	189200	29100	1700	1 0.3
192200	7626500	1140800	46100	3000	1 03
158000	2326800	1448900	69900	700	1 04
.25					! F(OLDEST)
0	1020700	5877800	595100	116900	! YEAR 1982 Q1
0	3400	31200	5500	700	! Q2
20800	4813200	60800	2100	00	! `Q3
34800	2700700	623900	10500	600	! Q4
.25					F(OLDEST)
0	357300	932900	483000	38100	! YEAR 1983 Q1
1700	25400	56100	5300	0	1 02
10300	2665400	341100	27000	ŏ	I Q3
130700	2016600	761400	46700	100	! Q4
.25			107.74	1.0.0	F(OLDEST)
.008	. 20	.50	.5	.5	I TERMINAL FS
				# W	. LANDINHA EQ

/Continued

ſ

¥	CATCH UNE	(NOWN)				Continued
	SPRAT	ņ				! NAME OF SPECIES NO. 7 ! NO OF AGE GR. AND AGE AT MAT.
	.0005	.001	.0030 .0071	.0042 .0090	.025 .025	: NO DE HOE DK. HND HOE AI MAI.
	.0085 .018 .027	.0100 .020 .028	.0140 .025 .028	.0160 .027 .028	.025 .025	! BODY WEIGHTS OF SPRAT ! BY AGE GROUP AND QUARTER
	.V⊿/	. V & O	• V 20	- V 4 B	.025	! AND RES. NAT. MORT.

NURWAY PUUT 10	CATCH NU	MBER		1
20 Ú	13450000	41 6440		1 : QUARTERLY CATCH DATA
õ	7873000	414000	26000	! IEAR 1974 Q1
846000	9406000) 93000	36000	1 03
57 00000	7805000	489000	145000	Q 3
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1003000	140000	4000	13 4
0	3242000	1204366	10000	! E(ULDEST)
õ	7206000	1726000 383000	13000	YEAR 1975 Q1
889000	7117000	349000	2000	Q.2
9968000	2027000		0	03
-2	9747700	461000	1000	Q.4
•~ 0	6055555	E B B A A A		(F(OLDEST)
Ŭ Ŭ	4950000	589000	91000	! YEAR 1976 NI
197000	7580000	645000	58000	02
	5349000	590000	3000	Q (3
5986000	3157000	320000	15000	0.4
				(CLDEST)
0	9171000	950000	33000	1 YEAR 1977 Q1
0	3577000	367000	8000	1 0.2
61000	3580000	861000	45000	(Q3
1655000	3540000	236000	5000	! (2.4
- 2				' F(O).DEST)
Ú	2931000	1371000	93000	! YEAR 1978 Q1
i)	1181000	650000	194000	! Q2
304000	2385000	786000	30000	· R3
1225000	1400000	333000	6000	
. 2			0000	/ Q4 / F(OLDEST)
Ŭ	5079000	940000	170000	
0	3023000	249000	27000	the second se
968000	4243000	763000		LE AIT
861000	2147000		49000	! Q3
-2	X1 K *27 0 0 0	166000	11000	0.4
* 20 ()	5025000	10.000000	1.0.400.00.00.00	(F(OLDEST)
Ő.	3526000	1072000	59000	I YEAR 1980 N1
24000	7709000	686000	33000	
640000	3913000	1959000	18000	Ω.3
.2	0010000	511000	6000	4
دي ن	00000000			(OLDEST)
	2223000	1688000	76000	! YEAR 1981 Q1
0 76000	1072000	621000	22000	Q 2
36557000	1309000	944000	17000	03
	1036000	301000	3000	! Q4
.3				! F(OLDEST)
0	5264000	415000	216000	' YEAR 1982 Q]
0	3243000	274000	23000	02
151000	6563000	429000	62000	03
1058000	3015000	46000	1	0.4
.000002				! F(OLDEST)
Ŷ	3945000	1221000	14000	! YEAR 1983 Q1
0	1714000	1139000	9000	! 02
420000	5485000	1477000	16000	. 03
2519000	4052000	358000	8000	94
- 13 - 13				F(OLDEST)
.2	.35	.35	. 2	
		1 W L2	K AL	I IERMINAL ES
NURWAY POUT				
q q	L			I NAME OF SPECIES NO, 8 NO OF AGE GROUPS AGE AT MAT
	010 .005	50 .0062	.25	! NO OF AGE GROUPS , AGE AT MAT.
	108 .022			BODY WEIGHTS OF NORMAY ROUT
	300 .035			
	500 .057			
			a 23 c.J	! AND RES. NAT. MORT.

SANDEEL	CATCH NUME	BER		į							ŀ
10				· 1	1 : QUAL	TERLY (CATC	H DA	٢A		
0	775000	158000	19200	0	2800	0	!	YEAR	74	Q 1	
11420	00 250630	00 51180	00 19008	300 23420	00 2752	00 108	000	ł		Q	2
89500	00 5980	00 634	100 100	00 119	00 60	000 2	000	1		Q	3
11060	00 120	000	500		.00	0	1				Q4
.0001								•			
0	559300	208300	43500	0	7500	0	I.	YEAR	75	Q 1	
100000	18084700		4302500	778000	744500	96000	i			02	
8261000	542900	1140500	172000	249500	2000	1000	i.			Q3	
1021000	11100	11500	0	2500	0	1	1			Q4	
.000001											
0	66200	469100	19700	0	2100	Ó	I	YEAR	76	01	
242000	21354800	15166900	1946300	1336000	207900	88000	i			02	
5452100	878100	2417600	76000	118800	30000	82000	i			Q 3	
673900	17900	24400	,0000	1200	00000	1	i			04	
.000001	27 200	211 100	v		0	-	•			Gr **	
00000	1314200	238400	68200	0	4600	0	1	YEAR	517	Q1	
3686000	42491800			1090000		402000	1	1714112		02	
14533700	3063500	930600	150000	106900	30000	18000	1			03	
1496300	62500	9400	100000	1100	0,000	10000	1			04	
.0001	02000	2200	v	4.1.0.0	v	1	:			(7.42	
.0001	1950000	578600	23700	0	3000	0		YEAR	12.0	(*) 1	
-								1.2118	7.0		
922000	63017000	18707400		1084000	158000	85000	;			Q2	
43649200	3700500	685100	164000	99000	26000	34000	ļ			03	
5394800	75500	6900	0	. 1000	0	1	ĩ			Q4	
.00001	M 100 10, 11, 15										
0	25900	121500	0	0	0	0	1	YEAR	79		
180700	18327400	22943400		1269600	443000	252700	ļ			Q2	
38801700	6449700	2493700	197200	118400	29800	Û	I.			QЗ	
7347600	20100	24500	5300	1500	0	J.	1			Q4	
.000001											
0	3086100	1779900	21200	0	0	0	ţ	YEAR	80	Q 1	
78800		19558900		1020800	206800	89400	1			62	
6579900	5575700	1011900	594700	12900	3100	1100	ł			63	
1840600	334800	43300	0	0	0	1	ļ			14	
.000001											
0	1499200	843900	83000	19500	7500	1800	į	YEAR	81	Q 1	
428400	17221200	14624200	3255500	874700	361700	129700	ļ			Q2	
47483900	736600	1963400	127800	41600	3400	0	ļ			63	
4567800	8900	3600	0	0	0	1	1			()4	
.000001											
0	707200	57800	8300	Ű	0	Ö	1	YEAR	82	Q1	
241400	58785900	8219600	3788000	1871100	101800	31300	!			02	
11459400	4757400	485900	340800	35700	3900	10	1			03	
Ö	0	0	0	0	0	1	1			Q.4	
.000001											
0	7900	7400	500	100	0	0	1	YEAR	83	Q1	
955400	7907800	36236600	1022500	242200	121600	33900	i		w w	Q2	
16633600	543100	3122000	531300	1700	100	100	1			Q3	
575200	1	1	1	1,00	1	1	1			Q4	
00.00000		.1,	-		1	Ţ	:			CX ~2	
.05		.0000001	.0000001			0000	naar		rppi	w po	
						svv	ar ar Ar A			14 E O	

SANDEEL 7	2			! NAME OF SPECIES NO. 9 ! NO OF AGE GR AGE AT MAT.
0.0008	0.0015	0.0022	0.0032	0.025
0.0050	0.0060	0.0080	0.0100	0.025
0.0110	0.0130	0.0140	0.0150	0.025 ! BODY WEIGHTS OF SANDEEL
0.0170	0.0200	0.0220	0.0230	0.025 ! BY AGE GROUP AND QUARTER
0.0250	0.0260	0.0270	0.0280	0.025 ! AND RES. NAT. MORT.
0.0290	0.0300	0.0310	0.0330	0.025
0.0330	0"0330	0.0330	0.0330	0.025

8 and a stranger of the second Biblioteket

Table 2.5.1 Residual natural mortality, M1, used in MSVPA Key run.

SPECIES	AGE-gr	COEFFICIENT Year-1
Cod Saithe	A11 "	0.2
Mackerel	11	0.16
Haddock Herring	"	0.2 0.1
Sprat	11	0.1
Norway Pout	н	1.0
Sandeel	"	0.1

Table 2.7.1 ANOVA of COO log-ratio prey Weight (stomach)/Prey Weight (stock)as a function of prey type and calendar quarter. COVARIATE is the log ratio predator weight/prey weight (stock).

Source	Sum of Squares	Degree of Freedom	Mean Square	F	Tail Prob.	Regression Coefficient
Prey Species Quarter Prey/Quarter 1st Covariate Error	53.87 8.17 37.17 7.56 165.13	6 3 18 1 452	8.98 2.72 2.06 7.56 0.36	24.58 7.45 5.65 20.70	0.00 0.00 0.00 0.00 0.00	0.1065

<u>Table 2.7.2</u> ANOVA of WHITING log-ratio prey Weight (stomach)/Prey Weight (stock) as a function of prey type and calendar quarter. COVARIATE is the log-ratio predator weight/prey weight (stock).

Source	Sum of Squares	Degree of Freedom	Mean Square	F	Tail Prob.	Regression Coefficient
Prey Species Quarter	130.92 14.73	6 3	21.82 4.91	58.78 13.23	0.00	
Prey/Quarter	89.65	18	4.98	13.42	0.00	
lst Covariate	1.20	1	1.20	3.22	0.07	-0.0630
Eccor	104.68	282	0.37			

1 - A value for whiting eating cod in the 3rd quarter was specified in order to specify the full design.

FISHI	G MORTALITY		Con	Table 2.8.	1					
¥3		N. 1	a (11) et	1.200		and the second	الرايم الدراة متعواهم	The second second		
AGE	19-4	1975	1976	1977	1978	1979	1980 -	1981	1982	1983
<u>ن</u>	0.0000	0.0000	0.0000	0.0000.	0.0000		0.0000	0.0000	والمرجوبين ميركم للمشاه متركار لتترك	na ana ana ana ana ana ana ana ana ana
1	0.1205	0.1486	0.0607	0.1827	0.1406	0.1753	0.1425	0.1495	0.0000	0.0006
2	0.8512	0.8264	1.0243	0.9736	1.1098				0.2190	0.2833
2	0.7031	0.8064	0.8880	0.7973		v. 3000	1.0257	1.1031	0.8008	0.7281
3	0.6992	0.6799			0.9235	1.0149	0.9953	1.0313	1.1811	1.1554
-			0.8005	0.5608	0.7938	0.6348	0.7479	0.7599	0.7344	0.7029
	0.6992	0.7744	0.5940	0.6864	0.9540	0.7657	0.6137	0.7529	0.7671	0.8154
2	0.5813	0.6685	0.7705	0.5463	0.7522	0.5911	0.6465	0.7222	0.9252	0.7029
	0.6644	0.5019	0.7268	0.7728	0.6692	0.6686	0.8500	0.8779	0.7950	0.6434
8	0.5250	0.5306	0.3320	0.7347	0.8203	0.4378	0.7772	0.8663	0.9663	0.7880
9	1.0974	0.5224	0.3302	1.2904	0.8332	0.7803	0.5269	0.8204	1,4564	0.7880
-10	0.8058	0.9506	0.2590	0.2170	0.6199	0.5318	0.7403	0.5196	0.9190	0.7318
11	0.8707	1.0272	1.1311	0.8558	0.7777	0.8498	0.8245	0.9683	0.8245	1.0983
hean F	WEIGHTED BY ST	OCK NUMBERS	FOR THE MAT	URE STOCK (A	AGE AT FIRST	MAT. 3)			0.0240	1.0903
	0.1719	0.1872	0.1997	0.1819	0.2110	0.2259	0.2165	0.2236	0.2558	0.2303
									V-2000	0.2303
STOCK	NUNBERS		C0 11						· -	
AGE	1974	1975	1976	1977	1000					
				1977	1978	1979	1980	1981	1982	1983
i n o	513634.	249747.	797296.	490156.	576341.	970031.	403819.	050004	354405	
1	179587.	283758.	135953.	446049.				853204.	274085.	10762.
÷.	109450.	96202.	162286.		277109.	285553.	528525.	206969.	417033.	150125.
1	23570.			86318.	260072.	162064.	163265.	311916.	115857.	226372.
-	32340.	36404.	33002.	46294.	26010.	68536.	52341.	46787.	82318.	41361.
-		9358.	13122.	10979.	16909.	8372.	20154.	15675.	13510.	20403.
2	9552.	13159.	3882.	4825.	5131.	6259.	3633.	7811.	6002.	5307.
-	2283.	3687.	4967.	1755.	1989.	1618.	2383.	1610.	3012.	2282.
	940.	1045.	1631.	1382.	832.	767.	734.	1022.	640.	978.
8	999.	396.	518.	645.	711.	349.	322.	257.	348.	337.
9	522.	484.	191.	336.	253.	256.	184.	121.	88.	108.
10	148.	143.	235.	112.	76.	90.	96.	89.	44.	17.
11	325.	54.	45.	149.	74.	33.	43	38.	43.	14.
TOTAL S	IOCK BIOMASS (· .		-				• 71
	395922.	379033.	356903.	390454.	448333.	420901.	493320.	505363.	465463.	413381.
		S ON 1. JANU	ARY (AGE AT	FIRST MAT.	3)				1001001	410001.
SPAWNIN	255927.	220219.								

PPEDATI	ON MORTALITY		COD			이 같이 있는 것이 같다.			
AGE	1974	1975	1976	1977	1978	1979	1980	1981 1982	1983
0 1 3 5 4 5 5 5 7 <u>1</u> 9 10 11	$\begin{array}{c} 0.3914\\ 0.3037\\ 0.6496\\ 6.0207\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$	0.4081 0.2102 0.0434 0.0140 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.3208 0.1936 0.0300 0.0125 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	$\begin{array}{c} 0.3703\\ 0.1568\\ 0.0259\\ 0.0099\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$	$\begin{array}{c} 0.5023\\ 0.1958\\ 0.0238\\ 0.0101\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$	0,4073 0,1837 0,0050 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	0.4684 0.1849 0.0241 0.0105 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0290 0.0293 0.0109 0.0109 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.5059 0.2345 0.0302 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AGE .	1974	1975	1976	977	1978	1979	-1980	1981	1982	1983
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0-0000	0.0000	0.0000	. 0.0020
1	0.0058	0.0016	0.0016	0.0167	0.0094	0.0028	0.0050	0.0257	0.0043	0.0090
2	0.0749	0.1511	0.1574	0.1148	0.1451	0.1729	0.0692	0.1175	0.1365	0.1282
з.	0.6748	0.4008	1.0255	0.2271	0.4112	0.1202	0.1540	0.0986	0.2277	0.1683
4	0.6500	0.6115	0.9246	0.6624	0.4811	0.3721	0.1872	0.1934	0,2556	0.2451
5	0.4051	0.3821	0.5625	0.6288	0.4816	0.4311	- 0.4435	0.1768	0.3646	0.3179
6	0.4574	0.4000	0.3892	0.5771	0.3763	0.3585	0.4054	0.3759	0.2419	0.2819
7	0.4736	0.5716	0.3509	0.4458′	0,2700	0.4928	0.4239	0.3583	0.2606	0.2819
8	0.3634	0.5826	0.4468	0.5980	0.2629	0.3347	0.3428	0.6293	0.2496	0.3178
9	0.3007	0.4325	0.4039	0.6779	0.2792	0.1761	0.3259	0.4173	0.3861	0.2819
10	0.2817	C.4008	0.2408	0.4891	0.2898	0.1707	0.2271	0.3236	0.3234	0.2073
£1	0.3042	0.3603	0.2613	0.3191	0.3015	0.2540	0.2801	0.2543	0.1881	0.2073
12	0.2042	0.3115	0.2455	0.3524	0.2446	0.2618	0.2525	0.5968	0.1891	0.2073
13	0.4188	0.4197	0.2391	0.6122	0.3877	0.1370	0.2616	0.5279	0.3330	0.2073
14	0.4754	0.4630	0.4666	0.4085	0.3389	0.5415	0.1838	0.5579	0.5404	0.2073
15	0.7288	0.8505	0.8453	0.7624	0.6679	0.6337	0.6131	0.7139	0.6401	0.6325
EAN B	S WEIGHTED BY	STOCK NUMBERS		STOCK (AT. 5)				
	0.1059	0.1163	0.1058	0.1399	0.1017	0.0954	0.1003	0.0723	0.0752	0.0762

STOCK	NUMBERS		SAITHE							
AGE	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
0		196632.	209275.	176585.	433729.	262488.	296106.	460082.	26487.	596.
1	697607.	213275.	160989.	171340.	144576.	355107.	214907.	242431.	376683.	21685.
2	224430.	367852.	174335.	131601.	137956.	117256.	289933.	175075.	193456.	307088.
з	135703.	170487.	399701.	121945.	96065.	97693.	80756.	221516.	127450.	138184.
4	73022.	56583.	93489.	117360.	79554.	52135.	70936.	56680.	164334.	83101.
5	40965.	31310.	25134.	30365.	49543.	40259.	29422.	48155.	38244.	104200.
6	61585.	22367.	17439.	11725.	13257.	25059.	21419.	15460.	23035.	21744.
7	42199.	31913.	12275.	9684.	5391.	7450.	14335.	11692.	6692.	21235.
e	18116.	31515.	14753.	7076.	5077.	3369.	3726.	7681.	6690.	5484.
9	6033.	10313.	9837.	7726.	3186.	3196.	1974.	2165.	3352.	4267.
1.0	3618.	3656.	5479.	5377.	3211.	1973.	2194.	1166.	1166.	1865.
11	1725.	2235.	2005.	3526.	2700.	1968.	1362.	1431.	692.	692.
13	1320.	1042.	1276.	1264.	2100.	1635.	1250.	843.	823.	469.
13	423.	881.	625.	817.	728.	1346.	1030.	795.	380.	557.
14	87.	328.	474.	403.	363.	404.	961.	649.	384.	223.
15	52.	41.	118.	243.	219.	212.	193.	655.	304.	183.
TOTAL S	TOLK BIUMASS C	IN L. JANUAR	ŕ							
	1028415.	963736.	895684.	640121.	546108.	543408.	588188.	659283.	770812.	794713.
SHAWRIN	6 STUCK BIOMAS	S ON 1. JAN	JARY (AGE AT	FIRST MAT.	57					
	577476.	454219.	334977.	285496.	264722.	267546.	251483.	273165.	379706.	429194.
										Continued

35

'Continued --

PREDATION MORTALITY

Table 2.8.1. (Continued)

1.		5 A A		11 g 1	en en ser en ser					
AGE	1974	1975	1976	1977	1978	1979	1980	1981 -	1983	1983
Û	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1 1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 -	0.0000	0.0000 -
2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	0.0000	0.0000	0.0000	0.0000 -	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-
7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
ອ	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
. 9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
- 11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
13	0.0000	0.0000	6.0006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

BIOMASS OF OTHER FOOD ASSUMED TO REMAIN CONSTANT

FISHI	NG MORTALITY		MACKEREL			1				
AGE	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
Û	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0010
3	0.0072	0.0258	0.0113	0.0099	0.0000	0.0386	0.0340	0.0317	0.0209	0.3961
2	0.1209	0.0302	0.2099	0.1000	0.0909	0.0469	0.1194	0.0968	0.1615	0.1512
3	0.0312	0.1400	0.2851	0.2475	0.2508	0.1671	0.3150	0.3750	0.0481	0.4681
4	0.2027	0.1963	0.1641	0.3590	0.2592	0.2286	0.3148	0.2274	0.5935	0.5129
5	0.2287	0.2031	0.2267	0.1596	0.3016	0.3332	0.4067	0.4901	0.7842	1.0760
6	0.2123	0.2770	0.2050	0.2679	0.1328	0.2380	0.4476	0.5888	0.6098	1.2028
7	0.0892	0.1685	0.2613	0.5665	0.2138	0.1240	0.4114	0,6249	0,5285	1.1775
8	0.2064	0.3536	0.3057	0.4652	0.6081		0.6045	0.5420	0.6432	1,2026
9	0.0846	0.3066	0.2172	0.5416	0.2908	0.1302	0.5029	0.5740	0.5544	1.0192
10	0.0409	0.1766	0.2742	0.3500	0.5020	0.2666	0.3361	0.5437	0.7026	1.2248
11	0.0269	0.0503	0.2000	0.4494	0.3943	0.3182	0.2961	0.3580	0.5214	1,2686
12	0.2935	0.0216	0.0624	0.3457	0.5380	0.2311	0.3876	0.5730	0.7016	1.2526
13	0.4317	0.6877	0.0129	0.1289	0.3745	0.3626	0.2210	0.3130	0.4817	1.0535
14	0.3242	1.3414	0.3134	0.0153	0.1291	0.2492	0.5280	0.8427	0.5225	1,1276
15	0.5484	0.6033	1.0809	0.7170	0.7417	0.8370	0.8102	1.4137	1.5366	1.8021
EAN E			FOR THE NATUR					140/	1.0000	2.0023
	0.0493	0.0617	0.0628	0.0902	0.0724	0.0611	0.0989	0.1354	0.1114	0.1891
										/Continue

STOCK	NUMBERS		MACKEREL	- <u>Teol</u>							
AGE	1974	1975	1976	1977		1978	1979	1980	1981	1982	1983
0	592649.	304768.	141594.	16223.		76836-	102302.	162090.	188147.		1151.
1	433275.	505022.	259706.	120658-		13825.	6547G.	87176.	138124.	160328.	341.
2	177132.	366547.	419411.	218824.		101807.	11781.	53680.	71804.	114029.	133798
з	326627.	133752.	303065.	289744.	- 3	168727,	79216.	9579.	40595.	55541.	82677.
4	234537.	. 256637.	99084.	194190.		192764	111884.	57116.	5957.	23775.	45104
. 5	1270381.	163182.	179717.	71656.		115570.	126760.	75854.	35527.	4044.	11191
6	258341.	861203.	113500.	122075.	A.A	52052.	72838.	77411.	43041.	18545.	1573.
7	94785.	178043.	556286.	78794.		79576.	38840.	48924.	42162.	20355.	8589.
8		738/6.	128186.	365021.		38105.	54757.	29237.	27629.	19233.	10225.
9	42558.	64542.	44203.	80463.		195346.	17676	38204.	13611.	13693.	8614.
10		33324.	40476.	30314.		39895.	124457.	13224.	19689.	6533.	6702.
13	12174.	10998.	2,300.	26219.		18203.	20579.	81238.	805	9741.	2757.
	27986.	10098.	8913.	16605.		14255.	10457.	12757.	51487.	4797.	4928.
13	18458.	17782.	8421.	7135.		10013.	7093.	7072	7378.	24738.	2027.
14	23373.	10215.	7618.	7084.				4206.	4832.	4598.	13022.
15	13363.	14403.	2276.	4745.		5945.	4003.	3897.	2114.		2323
TOTAL S	TOCK BIOMASS ON	 JANUARY 									10101
	1147761.	992090.	855630.	686685.		469907	332958.	257917.	19/401.	151439.	127284.
SPAWNIN	G STOCK BIOMASS	ON 1. JANU	ARY (AGE AT	FIRST MAT.	3)						10,0011
	1048331.	d30100.	703139.	608891.		437598.	322365.	232285.	155106.	101195.	87105.
					. •	1. St. 1997					

.

PREDATI	ION MORTALITY		MACKERE	L	+ + * 					
AGE	1974	1975	1976	1977	1978	1979:	1980	1981	1982	1983
Q.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
ь	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

/Continued

- 54 -

1

AGE	1974	1975	1976	1927	1978	1979	1980	THEFT	3.000 State	
				يتقاد لمجي سيبر م	بي مي الياني بير مي من مي من مي		1900	1981	1982	1983
0	0.0859	0.0611-	0.1049	0.1519	0-1462	0.1172	0.1726	0.2871	0.0694	- 0.1209
1	0.4820	0.2978	0.2557	0.5667	0.2091	0.3019	0.1619	0-2567		0.3257
2	0.9106	0.8106	1.0694	0.6134	0.4970	0.5389	0.5045	0.3748	0.3735	
з	1.0919	1.0812	1.2394	0.9734	0.6737	0.8105	0.8985	0.7735	0.5343	0-5976
4	1.0195	1.0716	1.1364	1.0389	0.8677		1.0799	1.0352		0.7205
5	0.3591	1.0918	0.9323	1.0546	0.8353	1.0377	1.1635	1.0574	0.6900	0.7526
6	1.9227	2.2354	1.3456	1,1162	1.1675	1.1034	1.3098	1.3295	0.9511	0.8136
7	1.1968	1.1630	1.2303	0.7429	1.4986	0.9082	0.9241	1.3149	1,1495	0.9417
3	0.9416	1.1120	0.7128	2.3601	1.6692	0.8663	1.8287		0.8609	0.8688
9	2.7313	1.4710	0.7420	0.2626	0.6770		0.4953	0.8916	1.1705	0.8688
10	0.9487	1.0930	1.0677	1.0033	1.0109	1.0930		0.4306	0.5532	0.8688
EAN E	WEIGHTED BY		FOR THE MATUR		1.0100	1.0530	1.1786	1.0635	1.0560	1.1751
	0.2201	0.2198	0.2529	0.1762						2
			0.5323	0.1/64	0,1436	0.1545	0.1611	0.1315	0.1271	0.1676
										÷
						1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -			· · ·	

STOCK #	NUMBERS		WHITING							
AGE	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
Ú.	(9815720.	12794668.	10553794.	12334750.	13557780.	10810565.	6926672.	5330321.	3892811.	
3	3282560,	5848661.	3421845.	3481757.	3638598.	3919540.	3450926.	1573970.	1472154.	12734852.
3	3310046.	952732.	2210849.	1308244.	1086102.	1411223.	1389250.	1462304.		1323191.
3	438880.	556468.	275199.	500147.	491653.	452300.	566008.	578146.	518044.	488662.
يد	61824.	99267.	132869.	56981.	138925.	185412.	148158.	169863.	674096.	241915.
5	18850.	15830.	25138.	31866.	15252.	44234.	63123.		195360.	287274.
ii.	1625.	10060.	4128.	7708.	8724.	5210.	12280.	37871.	45146.	72783.
;	9123.	195.	842.	847.	2002.	2161.		15482.	10304.	13595.
8	631.	2257.	47.	201.	330.	366.	1369.	2632.	3344.	2576.
9	01.	202.	608.	19.	16.	51.	713.	445.	579.	1123.
10	34.	3,	38.	237.			126.	94.	149.	147.
	COCK BIOMASS C			437.	12.	6.	28.	63.	50.	70.
	862561.	804437.	756733.	681133.	687726.	739311.	687367.	571206.	444030.	458050.
SPAWEIN	STOCK BIOMAS	IS ON 1. JANU	ARY (AGE AT	FIRST MAT.	2)			0,12001		400000.
	467603.	308014.	435619.	338435.	322917.	384274.	406692.	418743.	311356.	247340.

FREUA	TION MORTALITY		WHITING							
#GE	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
10 10 10 10	0.8827 0.5551 0.1945 0.1945 0.0705 0.0527 0.0000 0.0000 0.0000	1.0576 0.4750 0.2312 0.1511 0.0523 0.0452 0.0050 0.0000 0.0000 0.0000	$\begin{array}{c} 0.8043\\ 0.5058\\ 0.2169\\ 0.1354\\ 0.0914\\ 0.0380\\ 0.0380\\ 0.0380\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.6000\\ 0.6000 \end{array}$	0.8689 0.3982 0.1653 0.076 0.0791 0.0409 0.03211 0.0000 0.0000 0.0000 0.0000	0.8950 0.5381 0.1790 0.1014 0.0767 0.0387 0.0280 0.0000 0.0000 0.0000 0.0000 0.0000	0.8249 0.5354 0.1747 0.0867 0.0439 0.0329 0.0020 0.0000 0.0000 0.0000	$\begin{array}{c} 1.0186\\ 0.4968\\ 0.1722\\ 0.1051\\ 0.0842\\ 0.0419\\ 0.0304\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$	0.7996 0.6546 0.1996 0.1115 0.0899 0.0442 0.0333 0.0000 0.0000 0.0000 0.0000	0.8097 0.5477 0.1880 0.1186 0.0491 0.0491 0.0370 0.0000 0.0000 0.0000 0.0000	0.7117 0.6878 0.2251 0.1257 0.1001 0.0496 0.0356 0.0000 0.0000 0.0000 0.0000
								0.0000	0.0000	0.0 /Con

GE	1974	1975	1976	1977	1978	1972	1700	1961		<u> </u>
υ.	0.0367	0.0355	0.1029	C.0432	0.0705	- 0.1359	0.2119	0.2135	0.1203	0.1560
1 .	0.4803	0.4948	0.4783	0.5231	0.5945		0.3309	0.2969	0.3593	0.3996
2	0.9285	0.9691	0.8327	1.0519	- 1.0445	0.9109	0.6987	0.4753	0.4426	0.964
3	0.9302	1.2201	1.3344	1.0180	1.1341	1.1375	1.1866	0.8744	0.8317	1,245
4 .	0.9890	1.0714	0.7621	1.2281	1.0867	1.1285	1.1672	0.9488	0.7374	1.361
5	0.5910	0.9833	1.2720	0.9511	1.1177	0.9467	1.1227	0.7062	0.5482	1.021
6	0.8277	0.7343	1.0563	1.0015	0.8973	1.0029	0.9045	0.6540	0.6058	1.000
7.	1.1724	1.2505	0.3010	0.7851	1.1085	0.4663	0.8997	0.8543	0.9581	1.262
8	0.4692	1.1257	0.4167	0.3062	0.6832		0.4438	0.4727	0.8967	0.911
9	0.2422	1.5420	1.0813	0.2564	0.5553	0.5480	1.1886	0.4647	0.1302	1.000
10 .	0.6954	2.6052	2.4583	0.8414	0.4415	0.5464		0.4114	1.8327	0.911
11.	1.0502	1.1293	1.3284	1.3284	- 0.9802	1.0295	1.0219	0.9711	1.0295	1-036
EAN F WE	EIGHTED BY ST		FOR THE MATL		GE AT EIRST M					
	0.2322	0.2447	0.2217	0.2557	0.2627	0.2351	0.1931	0.1397	0.1774	0.268

STOCK N	UMBERS		HADDOCK		1			-		
AGE	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
	103343056.	6844334.	6039249.	9953983.	16192081.	35247326.	7854988.	14009270.	14168492.	16313359.
1	11598661.	14174803.	1077205.	1243861.	2221221.	3204233.	5216298.	1290745.	2242907.	2100361.
2	373934.	1256142.	2355660.	190119.	260433.	397050	765023.	1298435.	278272.	469295.
3	609538.	92053.	316795.	657112.	46548.	64773.	112648.	267480.	564690.	123723.
-4	94772.	181317.	20426.	62019.	182599.	11652.	16264.	26818.	87519.	191513.
5	4509.	36901.	46749.	7054.	13944.	48027.	2958.	3955.	8189.	32681.
6	3546.	1969.	7964.	10294.	2174.	3662.	15006.	774.	1575.	3804.
7	16637.	911.	782.	2268.	3096.	726.	1100.	4973.	329.	704.
8	687.	4217.	214.	474.	847.	837.	373.	366.	1733.	103.
9	111.	352.	1120.	115.	285.	350.	284.	196.	187.	579.
10	69.	71.	62.	311.	73.	. 134.	166.	71.	101.	134.
11	13.	28.	4.	4.	110.	38.	64.	73.	38.	13.
TOTAL ST	TOCK BIOMASS	ON 1. JANUAR	Y							
	2239894.	1500551.	759373.	516089.	507183.	634049.	675443.	613925.	620404.	586110.
SPAWN IN	G STOCK BIOMA			FIRST MAT.	2)					
	371359.	411522.	621422.	326991.	185334.	150870.	221319.	380899.	317029.	271751.
				· ·				197		

AGE	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
	1.7501	1.6136	1.2775	1,2568	1,3499	1.2416	1.3941	1.4185	1.5900	1.6219
1	1.5426	1.1432	1.0562	0.8406	0.9273	0.9568	0.8597	1.0375	1.0050	1,3392
3	0.3732	0.2085	0.2007	0.1553	0.1469	0.1489	0.1522	0.1574	0.1680	0.1839
3	0.0823	0.0855	0.0964	0.0626	0.0509	0.0445	0.0486 -	0.0428	0.0497	0.0523
4	0.0704	0.0841	0.1012	0.0643	0.0489	0.0435	0.0468	0.0375	0.0477	0.0466
5,	0.02/2	0.0338	0.0412	0.0259	0.0195	0.0166	0.0185	0.0146	0.0182	0.0182
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
ż.	0.0000	0.0000	0.0000	0.0000	6.0000	0.0000	0.0000	0.0000	0.0000	0.0000
8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000
ιö	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
					i sa shi shi		· ·	16 - 1		/Continued

י גל

FISHIN	G MORTALITY		HERRING.	Table 1	2 <u>.8.1</u> . (Continus	d)				
AGE	1974	1975	1976	1977	1978	979	1980	1981	1982	1983
0 1 2 3 4 5	0.1533 0.6548 0.9882 0.8480 0.9120 1.2266	0.3442 0.9955 1.2306 1.4280 1.3572 1.8695	0.3610 0.4070 1.3353 1.2024 1.8248 2.0351	0.3256	0.0129	0.1187 0.1947 0.0910 0.0728 0.1096 0.0598	0.1214 0.0583 0.1849 0.4108 0.3716 0.3422	0.6623 0.1296 0.1230 0.1718 0.3383 0.6457	1.0013 0.1720 0.1027 0.1844 0.1455 0.1893	0.6071 0.4253 0.1505 0.1319 0.1159 0.1638
6 7 8 mEAW F	1.1230 1.1539 1.3308 WEIGHTED BY 0.2030	1.4475 2.7291 1.0837 STOCK NUMBERS 0.3137	1.0424 3.9877 1.1089 FOR THE MATURE 0.3088	2.0767 0.6914 1.0082 SIDCK (AGE 0.2694	0.1596 0.4725 0.2086 AT FIRST MAT. 0.0143	0.0095 1.4474 0.3371 . 3) 0.0204	0.0774 0.0765 0.4912 0.0881	0.6447 1.3079 0.4343 0.0707	0.2747 0.4289 0.7697 0.0392	0.4494 1.0719 1.8120 0.0334
				10 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				 		

STOCK N	UMBERS		HERRING						- -	
AGE	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
		2093898.	3014206.	3181711.	3913619.	11725483.	30425526.	41669764.	40705400.	4888.3488.
1		5618455.	579177.	505054.	879492.	1296656.	4004819.	5736201.	7564271.	4957013.
3	1334310.	822774.	1312361.	230007	209339.	419270.	682446.	2506336.	3109824.	4263174.
з	888112.	430899.	210541.	303336.	161411.	180382.	338142.	501916.	1952020.	2474681.
4	234830.	206446.	67182.	41542.	50943.	103914.	110493.	149436.	271995.	1060744.
5	100357.	80161.	46127.	9469.	26600.	40430.	82602.	67797	94347.	208647.
÷.	34620.	22045.	9870.	4908.	1420.	22243.	32343.	50362.	30000.	66395.
7	7650.	10189.	4690.	3148.	557.	1095.	19931.	27078.	23909.	20620.
9	1398.	2183.	602.	79.	1427.	314.	233.	16707.	6625.	14088.
UTAL SI	OCK BIOMASS ON	1. JANUARY							0010.	14000.
	486618. S STOLK BIOMASS	391993.	211597.	105143.	97744.	168312.	336406.	651375.	1017029.	1346117.
PHIN THE	223167.	137420.	61381.	61067.	3) 43017.	64873.	108530.	149929.	403927.	681851.

PREVATION	MORTALITY	

HERRING

n GE	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
0 1 2 3 4 5 5 5 7 8	1.1833 0.4867 0.0421 0.5111 0.0628 0.1891 0.0002 0.0000 0.0000	1.0929 0.3586 0.0324 0.3305 0.0414 0.1251 0.0002 0.0000 0.0000	0.9231 0.4164 0.0294 0.3206 0.0347 0.1055 0.0002 0.0000 0.0000	0.9464 0.2884 0.0218 0.2826 0.0202 0.0628 0.0002 0.0000 0.0000	0.9146 0.3276 0.0235 0.2967 0.0203 0.0660 0.0002 0.0000 0.0000	0.8562 0.3472 0.0241 0.3173 0.0199 0.0634 0.0003 0.0000 0.0000	1.0488 0.3103 0.0223 0.3058 0.0168 0.0526 0.0002 0.0000 0.0000	0.9488 0.3827 0.0269 0.3409 0.0216 0.0696 0.0003 0.0000 0.0000	1.0043 0.3014 0.0258 0.3255 0.0198 0.0620 0.0003 0.0000 0.0000	0.8263 0.3713 0.0322 0.3796 0.0369 0.1211 0.0003 0.0000 Continued

FISH	ING MURTALITY		NORWAY POUT Table 2.8.1. (Continued)							
AGE	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
 U	0.0392	0.0625	0.0495	0.0261	0.0120	0.0018	0.0079	0.2236	0.0072	0.2202
1	0.9586	0.8792	0.7581	0.6889		0.5217	0.0787	0.2713	0.6033	0.6658
2	2.0159	0.7855	1.2257	0.7274		1.1767	1.5834	0.0484	0.2772	1.4296
э	1.7623	0.5847	0.5437	0.9796		0.9014	0.7892	1.3839	0.0227	0,4172
MEAN	E WEIGHTED BY	STOCK NUMBERS	FOR THE MATURN	STOCK	(AGE AT FIRST	MAT. 1) -				3
	0.1300	0.1435	0.1340	0.1462	0.1221	0.1129	0.0187	0.0273	0.0834	0.1100
										··

STOCK	TOCK NUMBERS NORWAY POUT									
AGE	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
 0	930970240.	851525376.	534479904.	249875776.	432158656.	3039867904.	283406752.	607993920.	568583488.	43912880.
1	391510944.	137218240.	142543328.	10647412B.	56886668.	103549016.	774175232.	73968816.	128052840.	142896704.
2	2703816.	8806204.	5446292.	7817074.	8720719.	5014788.	9428303.	121353392.	7906907.	9913181.
з	3142553.	107357.	1264951.	515271.	1271032.	1214864.	517604.	656337.	39340256.	1995579.
TOTAL	STOCK BIOMASS	ON J. JANUA	Rτ							
		1724942.	1568796.	1179037.	946763.	2507330.	6380709.	4179634.	3209097.	1479718.
SPAWNI	NG STUCK BIOM	ASS ON 1. JA	NUARY (AGE AT	I FIRST MAT.	1)					
	3229592.	1299179.	1301556.	1054099.	730683.	987396.	623900G.	3875637.	2924805.	1457762.

PREUAT	ION MORTALITY		NORWAY	POUT						
∺6 £	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
	0.8754	0.7249	0.5640	0.4539	0.4158	0.3660	0.3353	0.3341	0.3738	0.4450
1	1.8359	1.3475	1.1453	0.8133	0.8871	0.8747	0.7744	0.9646	0.9552	1.4749
2	0.2177	0.1549	0.1323	0.0891	0.0967	0.0942	0.0814	0.1038	0.0996	0.1713
з	2.1570	1.3443	1.1438	0.9085	1.2358	1.0559	0.9211	1.2569	1.2644	2.3548

BIOMASS OF OTHER FOOD ASSUMED TO REMAIN CONSTANT

1 100 100	G MURTALITY		SPRAT	Tabl	e 2.8.1. (Continued)				
AGE	i 974	1975	1976	1977	1978 1979	1980	1981	1982	1983
0 1 2 3 4 iEAN F 1	0.0905 0.1030 0.0272 0.1168 0.3777 WEIGHTED B\ S 0.0142	0.0031 0.1306 0.5592 1.0681 0.3629	0.0204 0.2724 0.3502 1.6845 0.6046 FOR THE MATURE 0.1508	0.0090 0.1711 0.6048 0.1597 3.5421 STOCK (AGE 0.1532	0.0044 0.0052 0.5767 0.5043 0.6411 1.0306 0.3121 0.3785 AI FIRST MAT. 2) 0.1548 0.3272	0,4972 1:4581 3.0099 0.4254	0.0152 0.5339 1.7487 1.8668 1.2698 0.4507	0.0020 0.6681 1.4143 2.3095 2.5332 0.6292	0.1242 0.4201 0.8464 1.3697 3.4551 0.2316

STOCK	NUMBERS		SPI	RAT						
AGE	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
0 2 2 4 THTAL	734334208. 622699712. 52766768. 6618425. 2859123. STOCK \$10MASS	556014720. 388311904. 203586416. 10646629. 2489771. ON 1. JANUA	242462448. 285080320. 116807352. 14994168. 1546034.	199574176. 137323904. 39198600. 15174110. 1185736.	291960000. 122813440. 50703048. 10499755. 6303181.	138671472. 177535296. 30508298. 5561363. 1209596.	83598296. 82137240. 47379524. 2128781. 703031.	47660172 51272184 21362010 2146703 47029	38816432. 32239780. 14660516. 895684. 141605.	24703812, 28090622, 7840584, 949254, 43242,
SPAWNI	4168011. NG STOCK BIOM		3851134. NUARY (AGE A1	1849744. I FIRST MAT.	1350205. 2)	1349096.	912511.	501679.	335167.	237704.
		1989348.	1304501.	1063337.	790157.	392084.	460036.	221458.	144560.	84899.

PREDATI	ION MORTALITY		SPR	AI						
AGE	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
0 1 2 3 4	0.4466 0.9150 1.5640 0.7609 1.1464	0.5651 0.9706 1.9491 0.7614 1.8881	0.4482 0.7896 1.5908 0.7528 1.3616	0.3765 0.7253 1.4347 0.6188 1.3856	0.3931 0.7161 1.4691 0.7181 1.2836	0.4185 0.7169 1.5319 0.7182 1.4336	0.3786 0.7495 1.5361 0.7026 1.4245	0.2757 0.6191 1.3230 0.7518 1.0973	0.2214 0.6458 1.2229 0.6213 1.0960	0.2137 0.6521 1.1435 0.6714 0.7436 /Continued

AGE		1974	1975	1976	1977	1.248			*301			
0		0.0648	0.1535	0.1051	0.0678	0.2527	0.2566	0.1175	0.1	973	0.3049	019285
1		0.5632	0.2531	0.5588	0.6458	0.7603	- 0.4035	0,8035			0.3800	1 4573
2		0.3204	0.6294	0.7502	0.6641	0.9566	1.1486	0.9299				0.1374
3	-	0.4110	0.7560	0.4506	1.0525	Q.5 320	0.9432	0.6489		698	0.7208	0.1944
4		0.7926	0.5712	0.8708	0.6729		0.8584			782	0.2824	0.1087
5		0.4824	0.8608	0.3641	1.3174		0.8111	0.3771			0.1411	0.1480
ú	-	3.9017	0.3352	0.5553	5.3174	1,9266		0.3738	U_4	899	0.1411	0-1400
EAN	F WEI		STOCK NUMBERS			AGE AT FIRST					0.1641	0.3796
		0.1369	0.2136	0.2296	0.2776	0.3069	0.3717	0.3241	. 0.2	938	0.1641	0.3/98
						· ·						

STOCK	NUMBERS		SANDEE	L	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			그는 흔	· .	
AGE	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
	1421964928.	932929726.	848484224.	726962112.	520712512.	529062592.	290627584.	531611232.	72728520.	46497884.
1	162723296.	215579760.	128731688.	188127552.	241306064	158925120.	177824608.	116406728.	227770256.	29868792.
ŝ	34722156.	30205862.	57931413.	26664214.	45400904	53107748.	50087040.	39101716.	38386728.	67093400.
3	6911630.	10095706.	6730407.	12301489.	7084221.	9367872.	9149574.	10601697.	7119861.	14117784.
-	2031209.	3336586.	3520299.	3190616.	3310548.	3215219.	2806744.	3210780.	4898780.	1785511.
5	1064968.	1763474.	1077880.	850939.	1010486.	1092476.	836618.	901272.	341857.	1442793.
ő	144145.	421337.	506024.	504060.	166077.	561245.	349978.	424149.	291019.	299716.
DTAL	STOCK BIOMASS	ON L. JANUA	ARY							
	2662063.	2476594.	2210073.	2145716.	2360490.	2091898.	1934105.	1713074.	1888113.	1260941.
PAWNI			ANUARY (AGE A	I FIRST MAT.	2)					
	710875.	652351.	887627.	623508.	737390.	874032.	812480.	705751.	691079.	1074399

PREDAT	ION MORTALITY		SANDEEL				· .			
AGE	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
0 1 2 3 4 5	1.7217 1.0208 0.8148 0.2172 0.4905 0.3448	1.7271 0.9610 0.7720 0.1976 0.4588 0.2876	1.3014 0.9157 0.6994 0.1958 0.4492 0.2960	0.9350 0.6757 0.5613 0.1601 0.3769 0.2164	0.8340 0.6534 0.5217 0.1580 0.3743 0.2200	0.7338 0.6512 0.5101 0.1621 0.3879 0.2272	0.6974 0.6112 0.5229 0.1619 0.3871 0.2022	0.5502 0.6479 0.5596 0.1850 0.4363 0.2523	0.4850 0.5094 0.5202 0.1655 0.4016 0.2098	0.4245 0.4382 0.3886 0.1296 0.3294 0.1787
6	0.2470	0.2092	0.2193	0.1690	0.1814	0.1970	0.1733	0.2122	0.1885	0.1820

Table 2.9.1. Comparison of different runs of the Multispecies VPA. For each run on assumption changed compared to the "Key kun". Run 2: Half feeding level **** Run 3: Total biomass constant Run 4: "Other Food" disregarded **** Run 5 :Half M1 Run 6: Suitability adjustment factor.

(for a more detailed description of the runs see sect 2.8. and 2.9) Species: COD

Ac e	· ;	Key Run	*	Run 2	1	Run 3	;	Run 4	;	Run 5	;	kun o
F	isu	ing Mor	ta.	lity		(lean l'	979	-35)				
	,			,								
1)	÷	0.00		0.00		0.00		0.00	- 1	0.00	1	Ú.U1
1		0.19		0.20	- į	0.19		0.19	1	U.21	- ;	0.20
2 3	i	7.91		0.92	į	0.91	- 1	0.91	į	0.99	1	0.92
	1	1.08		1.(18	į.	1.07	i	1.08		1.16	- 1	1.08
4 5	- 1	0.72 0.74		0.72	÷	0.72		0.72		0.79		0.72
6	1	0.74 0.72		0.74	-	0.74		0.74		1).01	- <u>i</u>	0.74
7	1	9.77		0.72	1	n.72	į	0.72	i	0.73	÷	0.72
x	-	0.77		0.77	1	0.77		U.77	į	0.34	i	0.77
ý,	-	0.87		0.17		1.67		0.70	j,	0.84	i	C.77
in		n.80		0.37 0.30	-	າ.87 ລ.8ຄ		0.87		0.95	- 1	0.87
	•	1. CU	*	· · · · · ·	ł	1.01	'	11, 80	'	0.87	i	0.30
- r	red	ation a	ort	ality	(dean 19	179	-35)				
0	:	1.46		0.26	,	1.02		J.46		0.49		0.10
1	÷	1.21		0.10		0.29		0.46	:		;	0.10
Ś		0.027		0.013		0.030			- 1	U.21	1	0.059
r. 5		0.027		0.0051		0.015		0.023	:	0.027	į	0.012
á	i	0.00		1.00		n.un		0.011	1	0.011		0.0037
5	1	0.60		0.00		0.00		0.00		0.00	1	0.00
5	ł	0.00		0.00		0.00		0.00	- !	0.00 0.00	1	0.00
7	1)_{(1)		0.00	1	0.00		0.00 0.00	- 1	0.00	1	0.00
, ×	÷	0.00		ີ . ເດ		0.00		0.00	:	0.00	:	0.00
9	1	0.00		0.00		0.00		0.00	- !	0.00	1	0.00
10	i	0.00		0.00		າ.∖ງ∩	- 1	0.00	- :	0.07 6.0	-	0.00
1.1.1	•	• • •	*	• • • • •	'		'	0.00	'	0.00	1	0.00
:	sto	ck in n	ստհ	ers	(4ean 19	79	-83) (tr	ou:	sands) -		
)	;	280570	+	249753	;	303309	;	200402	:	233049	:	237455
1	1	197700				200131		197657		179299	-	194674
>	1	36312		35758	i	36727		36308	÷	80893	i	85×25
5	1	23651		23639	i.	23660	i	23651	÷	71034	-	23643
÷	1	7950		7950	1	795 0	į	7950	i	7348	÷	7950
5	1	ن 2 3 9 ن		2393		2398		2393	÷	2601	÷	2879
ć	1	1104	*	1104		1104	-	1104	i	1021	i	1104
7	1	411		411	÷.	411	i	411	i	382		411
8	1	152	÷	15?	1	152		152	- İ	138	i	152
)	1	75	4	75	1	75	i	75		68	i	75
10	1	51	+	51	1	51	:	51		47	1	51

Comparison of different runs of the Multispecies VPA. For each run, one assumption has been changed compared to the Key run. Run 2: Half feeding level **** Run 5: Total biomass constant Run 4:"Other food" disregarded **** Run 5 :Half M1 Run 6: Suitability adjustment factor.

(For a more detailed description of the runs see sect 2.8 and 2.9)

Species: WHITING

Age	1	Key ⊻un	+	Run 2	;	Run 3	1	Run 4	;	Run 5	1	Runo
			*- *									
F	ist	ning Mor	ta	lity	(Mean 19	79.	-83)				1
п	:	0.15	+	0.20	:	0.15	!	0.13	!	0.17		0.18
1	-	1.28		0.32		0.28	-	0.24	-	0.31		0.29
ż	i	0.48		0.51		n.48		0.46		0.53		0.48
3	1	0.75		0.78	1	0.75	i	0.73	÷	0.82	÷	0.75
4	1	0.37	*	n. 39	1	n.87		N.86	ł	0.94	1	0.88
5		1.00		1.01	÷	1.00	÷	1.00	;	1.03	- 1	1.01 :
6		1.17		1.17	1	1.17	ł	1.16	- 1	1.25		1.17
7	1). 78		0.93	1	0.98		0.98	1	1.05	1	0.98
х 9	i	1.13		1.13	1	1.13	i	1.13	1	1.22	1	1.13
9 10	- i	U.55 1.11		1.55	i	n.55 1.11		0.55	i	0.60	÷	0.55
111	'	1.11	*	1.11	1	1.11	•	1.11	1	1.19	'	1.11
- P	red	lation ad	٦r	tality	¢	Hean 19	79-	-33)				
n		3ە. ل		0.52		0.34		1.71		n 47	,	0.37
1	-	0.58		0.32	1	1).58	1	1.71	1	U.86 U.61	1	0.23
ż		0.19		0.10	1	n.19	1	0.27	1	0.20	- 1	0.16
3		0.11		0.06		0.11	-	0.15	-	U.11		0.10
4		0.09		n.04		0.09			÷	0.09	÷	0.09
5	1	0.05		0.02		0.05		U. D6	÷.	0.04	i	0.04
6	1	0.03	*	n.02	÷	0.03		0.05	1	0.03	i	0.03
7		0.00	+	0,00		n.un	ł	0.00	÷	0.00	ł	0.00 1
8		0.00		0.00	1	0.00	ł	0.00	1	0.00	1	0.00
ÿ		0.00		0.00	1	0.00	1	0.00	1	0.00	1	0.00
10	i	0.00	*	0.00	;	0.00	i	n.()n	ł	0.00	ł	0.00
	sto	ck in n	1W	pers	(4ean 19	79-	-83) (thr	านร	sands)		
0	:	32.01170	÷	2500724	1	3199577	1	5998045	;	2399090	;	2095554
1	;	786529		372796		986026		1082085	i	862274	i	959606
2	1	538926		5 03 82 8		538483	ł	564070	ł	483547	ł	531865
3		231415		221462		231193		238812	ł	212638		229252 1
4	1	36032		845 07		86010		87131	ł	80898	1	85634
5	1	21761		21597		21759		21872	ł	20582	ł	21690
6 7		434:7				4339		4350	i	4099	i	4339
7 8	1	1049 265		1049 265		1()49 265		1049	i.	986	i	1049
8 4		64		202		205	1	265 64	i.	246 59		265
10		16		16		16		16	1	15	ì	10
					•				. <u>.</u> .		- - -	

Comparison of different runs of the Multispecies VPA. For each run, one assumption has been changed compared to the Key run. Run 2: Malf feeding level **** Run 3: Total biomass constant Run 4: "Other food" disregarded **** Run 5 :Half MM Run 6: Suitability adjustment factor.

(For a more detailed description of the runs see sect 2.8 and 2.9)

Species: FADDOCK

Ade	l K≏y Run	+	Run 2 ¦	Run	n 3	;	Run	4	;	Run	5	ł	Run o
		*- +											
Fi	shing Mor	ta.	lity	(Nean	19	79-	33)						
0	1 0.17	*	n.25	0.17	,	:	0.11		1	0.19		ł	0.20
1	0.33		0.39	0.53			0.28			U.37		÷	0.34
S	1 0.70		0.72	0.70			0.68			0.76		ł	0.70
3	1.06			1.06			1.05			1.14		÷	1.05
4 5	1.07		1.08	1.07			1.06			1.15		ł	1.06
6	0.87		0.83	0.87			0.83			0.91		÷.	0.83
7	0.89		1.89	0.39			0.88			0.97		i.	0.89
3	0.72	+	n.72	0.72			0.72			0.79		ł	0.72
9	0.67		0.07	11.67			11.07			0.7.5		÷	0.67
10	0.87	*	0.87	n.87	,	i	n.87		i	0.94		i	0.87
- Pr	edation M	nr	tality	(dean	19	79-	. (دە						
()	1.45		1.08	1.45	5	:	2.43		1	1.50		:	0.99
1	1.04		7.61	1.03			1.00			1.03			0.91
Ś	0.16		0.08	0.16			0.23		Ì.	0.16		÷.	0.13
3	1 0.05	÷	0.02	0.05	5		0.06			0.05		ł	0.05
4	0.04		0.02	n.n4			0.05			0.05		1	0.06 ¦
5	0.02			0.02			0.02			0.02		÷	0.03
6	0.00			0.00			0.00			0.00		÷	0.00
7	1 0.00 1 0.00			0.00			0.00			0.00		1	0.00
В У	1 0.00			0.01			0.00			0.00		1	0.00
10	0.00			0.01			0.00			0.00		i.	
													1
S	stock in n	umt	pers	(ilean	19	(9-	ა3) (tho	us	ands)			
()			332 51 97										3854035 :
1	1 770313				031			279		6863			749990
2	293541				352		296			2683			293604
5	93170				3096		930			867			93805
4 5	24366			24	361 1076			388 170		232	55 30		24431 8075
5 6	2154		2154	2	154			154			72		2154
7	703				703			105			35		703
8	322				322			322		2	93	ł	322
9	159		1591		159	ł		159			47		159
10	5.3	+	58		58	1		53	i		53	1	58 1

Comparison of different runs of the Aultispecies VPA. For each run, one assumption has been changed compared to the Key run. Run 2: Half feeding level 4.4.4. Run 3: Total biomass constant Run 4: "Other food" disregarded 4.4.4.4 Run 5 :Half M1 Run 6: Suitability adjustment factor.

(For a more detailed description of the runs see sect 2.8 and 2.9)

Species: MERKING

Age	l Key Run	i ↓ Run 2	l Run 3	l Run 4	l Run 5	l kun o l
		*				
Fi	shiny Mor	tality	(.1ean 1.97	9-33)		
0	0.50	* * 0.57	1 7.51	0.42	0.53	1 0.54
1	0.20	+ 0.21	1 0.20		1 0.21	1 0.19 1
2	0.13	* 0.15	0.13	0.11	0.14	0.13
3	1 0.19	+ 0.21	0.19	1.13	1 0.21	1 0.19 1
4	0.23	* 0.22	0.22	0.20	0.24	0.22
5	10.28	🖕 ().28	0.28		0.30	1 0.28
	0.29	* U'5A	0.29			0.29
1	0.37	+ ().87				0.87
8	0.77	★ 0.77	1 9.77	9.77	0.95	0.77
- Pr	edation M	lortality	(Mean 197	y-33)		
0	1 0.94	• J.52	0.94	1.52	0.94	11.02
1	0.34	+ 0.18	0.34	0.53	1 0.33	0.20
5	0.03	. 0.01	0.03	0.04	0.03	1 23.03 1
3	0.33	+ 0.18	1 0.33	1.48	1 0.33	10.38
4	0.02	+ 0.01			1 0.05	0.02
5	0.07	. 0.03			0.05	0.00
	0.0003	* n.0nn1			0.0003	0.0003
7	0.00	+ 0.00	0.00		0.00	0.00
×	1 0.00	* U.AU	1 0.00	1 0.00	1 0.00	0.00
 S	tock in n	umbers	(Mean 197	9-03) (Mil	lions)	
a.	1 91 95	+ 7198	9103	11705	8617	5354
1	2695	. 2467	2683	3175	1 2501	1 2777 1
2	1 857	* 1085	1 345	1 2133	1769	1923 1
3	606	+ 656	605	697	639	1 007 1
4	5.85	* 512	1 241	296	272	282
5	71	+ 71	1 /1	71	68	71
6	1 28	* 28	23	28	26	28
7	10	+ 10	10	10	8	10
بر	1 2	* 3	3	1 3	2	3

- 65 -

Comparison of different runs of the Hultispecies VPA. For each run, one assumption has been changed compared to the Key run. Run 2: Half feeding level +*++ Run 3: Total biomass constant Run 4: "Other food" disregarded ++++ Run 5 :Half M1 Run 6: Suitability adjustment factor.

(For a more detailed description of the runs see sect 2.8 and 2.9) Species: SPRAT

Ace | Key Run 🐳 Run 2 | Run 3 | Run 4 | Run 5 | Run 6 Fishing Nortality (Mean 1979-83) 0 1 0.03 + 0.02 10.03 10.11 : U.N4 0.13 * 0.09 | 0.53 | 0.58 * 1.63 | 1.50 | 1.03 * 2.35 | 2.06 | 1.77 0.56 1.36 2.13 1 0.52 1 0.49 2 1.30 1 1.28 3 1 2.06 1 2.10 4 1,01 + 1.07 1.02 1.49 1 1.65 1,70 - Predation mortality (Bean 1979-33) ------

 * 0.19
 10.31
 10.45
 10.29
 10.46

 * 0.59
 10.66
 11.10
 10.66
 10.24

 * 0.75
 1.35
 12.00
 1.30
 1.42

 * 0.35
 10.69
 11.12
 10.66
 10.68

 * 0.60
 1.16
 1.50
 1.11
 10.98

 0.30 n 1 0.08 1 1.35 2 3 0.69 4 1.10 -- Stock in numbers (Mean 1979-83) (Millions)------44280 + 29766 44333 79440 40406 51282 27767 + 19340 27962 39913 25782 29700 5280 + 5578 5309 6572 5001 4989 0 1 2
 32 R
 +
 237
 329
 384
 307
 297

 21-8
 +
 171
 292
 347
 274
 252
 3 4 ------Species: PORWAY POUT Ace | Key Run + Run 2 | Run 3 | Run 4 | Run 5 | Run 0 | Fisning Mortality (Mean 1979-83)

 *
 0.10
 0.09
 0.21
 0.10
 0.09

 *
 0.51
 0.43
 0.33
 0.56
 0.42

 *
 1.09
 0.91
 0.72
 1.17
 0.90

 *
 0.78
 1.70
 0.68
 0.91
 0.70

 Ω 0.09 0.43 1 2 1 0.90 3 1 0.70 - Predation Mortality (dean 1979-83) -----

 1
 0.36
 1.90
 0.41
 0.35

 1
 1.04
 1.13
 1.34
 1.08

 0.11
 0.28
 0.28
 0.06

 1.35
 1.93
 1.47
 1.39

 Π 0.37 * 0.21 **∗** 0.80 1 1 1.01 2 0.11 + 0.08 | 0.11 Z, 1.37 * 0.78 1.35 -- Stock in numbers (Mean 1979-83) (Millions)-------| 365792 + 200969 | 371592 | 679382 | 158876 | 597482 | 54773 + 34949 | 54346 | 84274 | 24820 | 89038 | 11309 + 6672 | 11011 | 16635 | 4540 | 21241 | 1050 + 1050 | 1050 | 1050 | 536 | 2050 |/Continued 0 1 2 3

Commarison of different runs of the Multispecies VPA. For each run, one assumption has been changed compared to the Key run. Run 2: Half feeding level **** Run 3: Total biomass constant Run 4: "Other food" disregarded **** Run 5 :Half M1 Run 6: Suitability adjustment factor.

(For a more detailed description of the runs see sect 2.8 and 2.9)

Species: SAMDEEL

Fishing Mortality (lean 1979-83) The field of the field
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5 1 0.47 0.36 0.55 0.55 6 1 0.39 1 0.39 1 0.33 1 0.47 1 0.51 - Predation Mortality (Mean 1979-83)
6 0.39 ± 0.47 0.39 0.33 0.47 0.51 - Predation Mortality (Mean 1979-83)
0 0.58 + 0.35 0.59 1.98 0.56 0.54 1 0.57 + 0.34 0.57 0.99 0.56 0.62 2 0.50 + 0.25 0.50 0.95 0.48 0.24 3 0.16 + 0.08 0.16 0.30 0.15 0.04 4 0.39 + 0.22 0.39 0.49 0.40 0.65 5 0.21 + 0.12 0.21 0.36 22 0.21 6 0.19 + 0.10 0.19 0.32 0.20 0.21 Stock in numbers (Mean 1979-85) (Millions)
1 0.57 0.34 0.57 0.99 0.56 0.62 2 0.50 * 0.25 0.50 0.95 0.48 0.24 3 0.16 0.08 0.16 0.30 0.15 0.04 4 0.39 * 0.22 0.39 0.49 0.40 0.65 5 0.21 * 0.12 0.36 22 0.21 6 0.19 * 0.10 0.19 0.32 0.20 0.21 stock in numbers (Mean 1979-85) (Millions)
2 0.50 * 0.25 0.50 0.95 0.48 0.24 3 0.16 * 0.08 0.16 0.30 0.15 0.04 4 0.39 * 0.22 0.39 0.49 0.40 0.65 5 0.21 * 0.17 0.21 0.36 22 0.21 6 0.19 * 0.10 0.19 0.32 0.20 0.21 stock in numbers (Mean 1979-83) (Millions)
3 10.16 0.08 10.16 10.30 10.15 10.04 4 10.39 + 0.22 10.39 10.49 10.40 10.65 5 10.21 + 0.17 10.21 10.36 22 10.21 6 10.19 + 0.10 10.19 10.32 10.20 10.21 Stock in numbers (Mean 1979-83) (Millions)
5 0.21 0.12 0.21 0.36 22 0.21 6 0.19 0.10 0.19 0.32 0.20 0.21 Stock in numbers (Mean 1979-83) (Millions)
5 0.21 0.12 0.21 0.36 22 0.21 6 0.19 0.10 0.19 0.32 0.20 0.21 Stock in numbers (Mean 1979-83) (Millions)
6 0.19 & 0.10 0.19 0.32 0.20 0.21 Stock in numbers (Mean 1979-83) (Millions)
Stock in numbers (Mean 1979-83) (Millions)
0 125467 🖌 90390 125371 219661 115096 123779
1 42991 + 35207 42810 64707 40165 53798
2 11376 🗼 9920 11346 13958 10752 20997
3 4507 + 4032 4500 5255 4313 13775
4 1040 \star 880 1037 1328 963 6129
5 488 426 480 624 440 2301
6 198 * 158 198 274 161 179

SPECIES		RUN 2 ling] 0.5	level		RUN 3	ass	"Otł	RUN 4 ler foo gnored	d"	ł	<u>RUN 5</u> Ml nalved	1	S	<u>RUN 6</u> itabi adjus	Lity ted	COMMENTS
	F	N	M2	F	N	M2	F	N	M2	F	N	M2	F	N	M2	
COD	100	94	49	100	100	100	94	104	139	109	88	103	100	92	30	Age groups 1 - 3
WHITING	104	68	57	100	100	100	97	299 *	159	113	85	102	100	62	54	Age groups 0 - 6
SATTHE	_	-	-	-	-	-	-	-	-	?	?	?	-	-	-	
MACKEREL	_	-	-	_	-	-	-	-	-	?	?	?	-	-	-	
HADDOCK	104	56	65	100	100	100	97	279	158	109	85	101	100	66	79	Age groups 0 - 5
HERRING	105	67	54	100	99	100	91	186 🏾	151	107	92	95	102	244 ***	96	Age groups 0 - 6
SPRAT	120	58	54	100	100	100	86	226	149	104	88	96	103	123	104	Age groups 0 - 4
N. POUT	116	55	65	100	102	100	90	269	174	129	37	111	100	155	100	Age groups 0 - 4
SANDEEL	116	64	58	100	101	100	82	485	200	85	88	81	68	99	78	Age groups 0 - 6
								L			ļ			L		

Table 2.9.2 Changes compared to Key run

Run 1: Key run - No adjustment

Helgason-Gislason other food model M1 as in Fish Stock Assess. Working Group Feeding level = 1 In each subsequent run only one assumption changed

*)0-group 1983 extremely high

HH) Abnormal Y.C. (not raised run)

- 67 -

<u>Table 3.3.1</u> Extreme values of predation mortality for the 3 youngest ages of each species (excluding SAITHE and MACKEREL) together with upset = exp { (M2 (high) - M2 (low))/2 }

Age	0-Group			1-Group			2-Group		
Species	M2(Low)	M2(High)	UPSET	M2(Low)	M2(High)	UPSET	M2(Low)	M2(High)	UPSET
Cod	•37	•52	1.08	.16	•30	1.07	.02	•05	1.02
Whiting	.80	1.06	1.14	.40	.69	1.16	.16	•31	1.08
Haddock	1.24	1.77	1.30	.84	1.55	1.43	.15	.27	1.06
Herring	. 84	1.21	1.20	.29	•49	1.11	.02	.04	1.01
Sprat	.21	•57	1.20	.62	•97	1.19	1.14	1.95	1.50
Norway Pout	•33	, 88	1.32	•77	1.84	1.71	.08	.22	1.07
Sandeel	•43	1.73	1.92	•43	1.02	1.34	.40	.84	1.22
				L		l			

	Cod	Whiting	Saithe	Mackerel	Haddock	Herring	Sprat	Norway Pout	Sandeel
Biomass									
Recruitment									
Total Yield									
.									

<u>Table 4.3.1</u> Estimated state of fish stocks at steady-state under current levels of fishing mortality

Fishery	Cod	Whiting	Saithe	Mackerel	Haddock	Herring	Sprat	Norway Pout	Sandeel
Roundfish (human con- sumption)									
Demersal (Industrial)									
Pelagic (Industrial)									
Herring (human con- sumption)									
Saithe									
Mackerel									

<u>Table 4.3.2</u> Estimated steady-state yield in each fishery ('000 tonnes)in each fishery at current levels of fishing mortality.

Fishery in which F is increased	Cod	Whiting	Saithe	Mackerel	Haddock	Herring	Sprat	Norway Pout	Sandeel
Roundfish (human con- sumption)									
Demersal (Industry)									
Pelagic (Industry)									
Herring (Human con- sumption									
Saithe Mackerel									

<u>Table 4.3.3</u> Expected change of steady-state biomass[#] ('000 t) resulting from a 10% increase of F in each fishery.

* Together with similar tables for total yield and recruitment

<u>Table 4.3.4</u> Estimated change of steady-state yield ('000 t) in each fishery resulting from a 10% increase of F in each fishery. Fishery = Roundfish (Human consumption)^{\pm}

Fishery in which F is increased	Cod	Whiting	Saithe	Mackerel	Haddock	Herring	Sprat	Norway Pout	Sandeel
Roundfish (Human con- sumption)									
Demersal (Industry)		8							
Pelagic (Industry)									
Herring (Human con- sumption)									
Saithe									
Mackerel									
								-	

* Together with similar tables for all other fisheries

<u>Table 6.1.1</u>. Comparison of estimated weights (in '000 tonnes) consumed by North Sea COD of various exploited fish species in the years 1967 to 1970 (Daan,1973) with values obtained using similar procedures for 1981

Species	Average 1967/1970	1981
Cod	56	38
Haddock	134	112
Whiting	47	98
Norway pout	not available	101
Herring	57	50
Sprat	not available	41
Sandeels	not available	131
Plaice	17	3
Sole	7	2
Mackerel	41	22

<u>Table 6.1.2</u>. Comparison of feeding coefficients for COD ($\emptyset = L^3/s$) where L represents the average length and S represents average stomach content weights obtained using various sampling programs (from Daan, 1983).

Period	Area	Ø - value
1966–1972 1980 1981	Total North Sea Roundfish area 6 Total North Sea Average	.000158 .000147 .000151 .000152

Table 6.2.1	Comparison of Total consumption in tonnes by individual predators with
	estimated stock biomasses of prey in 1974 and 1981.

PREY	COD	PREDA WHITING	TORS SAITHE	MACKEREL	TOTAL	STOCK BIOMASS	% Consumed
Cod Whiting Saithe Mackerel Haddock Herring Sprat Norway Pout Sandeel	14 143.5 87 729.1 0.0 0.0 188 849.4 21 634.1 112 124.0 81 239.6 64 256.1	695.1 43 030.5 0.0 154 544.9 21 022.7 425 022.9 90 287.0 243 660.4	718.2 3 472.9 0.0 341 288.2 5 553.5 5 726.4 577 533.9 17 416.8	220.2 406.7 0.0 28 243.7 4 629.5 209 858.7 281 071.7 705 537.8	$\begin{array}{c} 15 & 777.8 \\ 134 & 639.4 \\ 0.0 \\ 0.0 \\ 712 & 926.2 \\ 52 & 839.9 \\ 752 & 732.1 \\ 1 & 030 & 132.3 \\ 1 & 030 & 871.1 \end{array}$	395 922 862 561 1 028 415 1 147 761 2 239 894 486 618 4 168 011 3 695 078 2 662 063	3.6 15.6 - 31.8 10.9 18.1 27.9 38.7
TOTAL Predation	569 975.9 Summary Tabl	978 263.7 e for the (To	951 710.1 tal) Year 19	1 229 969.0 81	3 729 918.8	16 686 323	
Cod Whiting Saithe Mackerel Haddock Herring Sprat Norway Pout Sandeel	34 252.3 87 042.6 0.0 90 048.1 41 264.5 48 234.5 81 463.9 121 856.1	2 036.4 34 884.0 0.0 85 931.9 114 472.0 119 885.9 145 031.2 273 832.4	1 004.3 1 780.8 0.0 0.0 45 734.7 6 570.5 538.2 287 377.0 9 779.4	35.5 11.8 0.0 450.0 1 650.2 3 084.3 46 487.5 84 945.6	37 328.5 123 719.1 0.0 222 164.7 163 957.2 171 742.9 560 359.6 490 413.6	505 363 571 206 659 283 191 401 613 925 651 375 501 679 4 179 634 1 713 074	7.4 21.7 - 36.0 25.2 34.2 11.7 27.2
TOTAL	504 162.0	776 073.9	352 784.9	136 664.9	1 769 685.8	9 586 940	

Predation Summary Table for the (Total) Year 1974

ZPURGE-I-NOFILPURG = No files purged for DUAl:(PER.MS) # #:

- 74 -

Table 6.2.2	Environmental impact st	tatement in	respect	of	predation	exercised	hv	various	predator	gnacios	in +	ha
	North Sea on HADDOCK.		-				~3	(actoub	Dreamout	abearea	111 0	,ne

				COD		·			WHITING						SAITHE		
Haddock	M2	1	2	3	4	5	6+	1	2	3	4	5	6+	4	5	6	
lge O	1.4197	.0076	.1696	•0456	.0207	.0058	.0011	.016	•345	.293	.080	.02	.014	.0196	.167	.20	
l	1.0376	.0052	.1881	.1902	.1180	.0480	.0168	.016	.019	.056	.026	.007	.006	.033	.144	.17	
2	.1567		.0051	.0348	.0531	.0314	.0275		.00009	.0016	.0008	.0002	.0002	.0002	.0006		
3	.0424		.0005	.0022	.0080	.0057	.0260		-						.0000	1.00	
4	•0375		.0001	.0018	.0026	.0013	.0317										
5	.0146				.0005		.0141					l					
	AL PREDATI						:										
0		.037	-54	•97	1.3	.7	.3	.01	.2	.5	.4	.5	.7	.35	3.0	4.8	
1		.025	•60	4.1	7.5	6.2	5.4	.0099	.013	.09	.16	.20	•3	.58	3.0	4.0	
2			.016	•74	3-4	4.0	8.8		.00006	.0028	.0020	.0051	.013	.0038	.013	.02	
3			•002	.048	•51	•73	8.3										
4			•000	•038	.17	.17	10.1										
					.030			1						1		1	

PARTIAL PREDATION MORTALITIES

- 75 -

Table 6.4.1. Andersen and Ursin Model versus the "Key Run"

Predation mortalities per year by species and age group in 1976 KR: Key Run AU: Andersen and Ursin

		Cod	Whit	ing	Sai	the	Mack	erel	Haddo	ock	Herr	ing	Sp	rat	Sa	ndeel	Norway	Pout
Age	KR	AU	KR	AU	KR	AU	KR	AU	KR	AU	KR	AU	KR	AU	KR	AU	KR	AU
0	0.4	1.5	0.8	0.9	0	1.9	0	0.5	1.3	1.0	0.9	1.1	0.4	0.8	1.3	1.6	0.6	1.8
1	0.2	0.4	0.5	0.7	0	0.5	0	0.2	1.0	0.8	0.4	0.3	0.8	0.5	0.9	0.7	1.1	0.9
2	0.03	0.03	0.2	0.4	0	0.1	0	0.07	0.2	0.3	0.03	0.1	1.6	0.3	0.7	0.5	0.1	h
3	0.01	0.005	0.1	0.2	0	0.04	0	0.04	0.09	0.1	0.3	h	0.8	2	0.2	0.4	1.1	0.7
4	0	0	0.1	0.1	0	h	0	1	0.1	2	0.03	0.1	1.4	0.3	0.09			2
5	0	0	0.05	}0.07	0	0.01	0	{ 0.04	0.04	0.07	0.1	{ 0.1		,	0.6	0.3		
6	0	0	0.04] 0.01	0)	0)	0)	0)			0.9	}		

Notes: AU exercise was done in January 1980. (Unpubl.)

O-Group: A&U count from hatching .

KR counts from a later age (after metamorphosis) .

Saithe: KR excludes young saithe from the North Sea; AU admit them.

Mackerel: KR has zero: material not ready.

Decrease with age: AU is smoother because food preference functions were used.

Ration: KR uses digestion rates as estimated from experiments. AU calculated requirements from the growth equation (cf. Section 2.1.4).

Frank and a state of the state	
fl	
[™] 1	N ₂
800	-147.27
820	.107.73
540	-67.53
860	-26.70
880	14.75
900	56.81
920	99.46
940	142.69
960	186.49
f ₂	
N _l	N ₂
- 95.97	22.00
483.57	27.00
409.38	32.00
1241.64	34.00
1512.42	42.00

(Weight (predator)/W (prey stock)) for COD and WHITING preying on seven prey spe by calendar guarter.	<u>Table 6.8.1</u>	Estimated regression coefficients of ln (W (prey in stomach)/W(prey stock)) vs. (Weight (predator)/W (prey stock)) for COD and WHITING preying on seven prey sp by calendar quarter.	ln pecies,
--	--------------------	--	---------------

	PREDATOR									
Parameter	Q1	R2	<u>COD</u> 1 ^Q 3	Q4	ΣQ	Q1	е 1 ^Q 2	<u>LTIN</u> I ^Ú 3	<u>-</u> ^Q 4	ΣQ
α β √2 η	-1.34 0.25 0.41 -5.36	-1.84 0.33 0.27 -5.58	-0.70 0.15 0.13 -4.67	-1.30 0.29 0.36 -4.48	-1.33 0.26 0.27 -5.12	-0.94 0.03 0.002 -31.33	-2.74 0.59 0.28 -4.64	-1.93 0.47 0.28 -4.11	-2.03 0.48 0.35 -4.23	-1.80 0.34 0.16 -5.29
Ho: Slopes = 0 Ho: Slopes	179.66 ж ж 3.93 ж ж 6.55 ж ж					56.18 ж ж				
are = Ho: Adjusted means =										

A) Prey species are: cod, haddock, whiting, Norway pout, herring, sprat, sandeel.

B) All age groups of all prey are included.

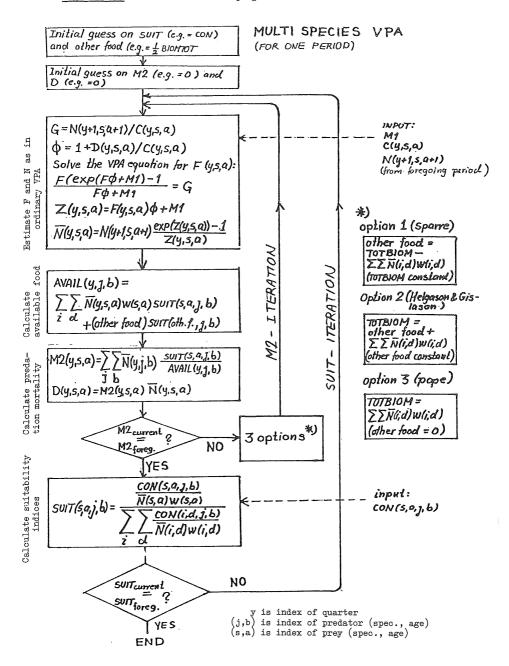
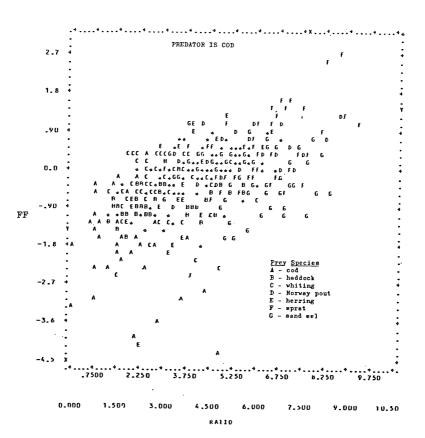
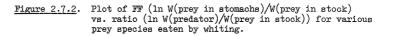
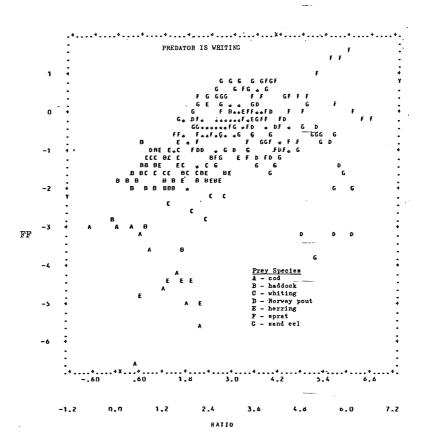

		Regression Coeff.				Ho:	Ho:	Ho:	
Predator	Prey Species	α	β	Y-2	η	Slopes = \emptyset	Slopes =	A.M.'S =	
СОД	Cod	-1.14	-0.24	0.07	-4.75				
	Haddock	-1.01	0.10	0.07	-10.10				
	Whiting	-0.50	0.05	0.01	-10.00				
	Norway Pout	-0.35	0.13	0.16	-2.69	19.52 ж ж	8.57 ж ж	21.73 x *	
	Herring	-1.84	0.45	0.28	-4.09				
	Sprat	-1.32	0.30	0.27	-4.40				
	Sandeel	-0.08	0.00	< 0.01	-				
	All	-1.33	0.26	0.27	-5.12				
WHITING	Cod	-3.48	-0.85	0.35	-4.09				
	Haddock	-2.13	0.37	0.20	-5.26				
	Whiting	-0.95	-0.43	0.23	2.21				
	Norway Pout	0.34	-0.31	0.26	-1.10	0.17 n.s.	14.14 жж	39.35 x	
	Herring	-4.00	1.04	0.27	-3.85	012, 11020	14014 IL IL	<i>))</i> •))	
	Sprat	-0.96	0.23	0.22	-4.17				
	Sandeel	0.34	-0.23	0.12	-1.48				
	All	-1.80	0.35	0.16	-5.14				
					2027				

Table 6.8.2Estimated regression coefficients of ln (W(prey in stomach) /W (prey in stock))vs. ln (Weight (predator) W(prey in stock)) for COD and WHITING preying on
seven prey species.

A) All age groups of prey included.


- 79 -


Figure 2.1.1. Flow chart for the program "MSVPA".



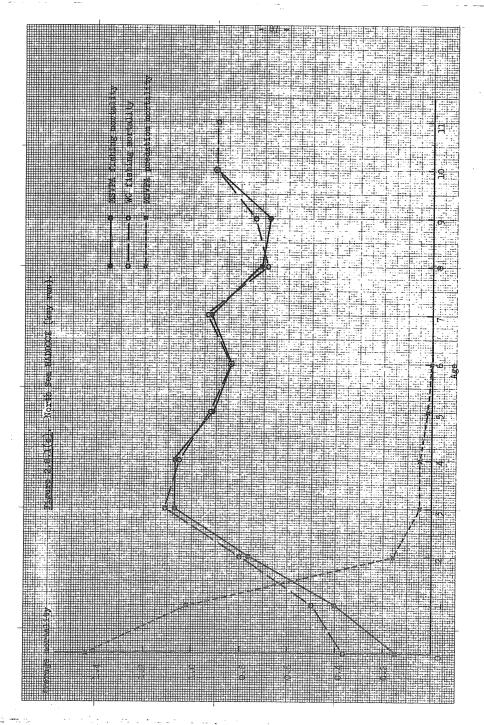
- 80 -

Figure 2.7.1. Plot of FF (ln W(prey in stomachs)/W(prey in stock)) vs. ratio (ln W(predator)/W(prey in stock)) for various prey species eaten by cod.

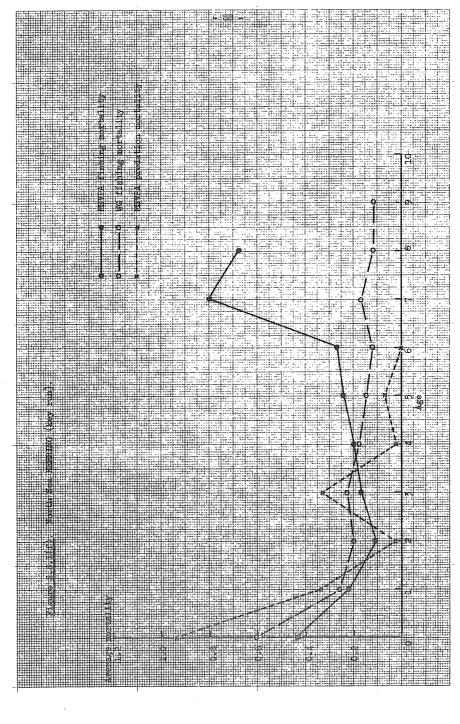
.

-3 4 1 T. :EEF 14 16# Ħ 1 Th ΕΞ Ę 1 -iji 11 1.00 MSR 141 MSR 谨 117 - T. Ē <u>- 191</u> ŦĘ Ŧ 494 1 FEE io -Ŧ -1. E. . . L. ÷ ĒĘ Ή÷β -11 ÷ -È. -1-1þ 48 1<u>0.1</u> 291 L. 36- F'I ø η. ÷ - ET Ì 1 Ξų. 'n o <u>H</u> --=1 1-..... 圳 ---- (E (ang 1 14 111 4 12 I P I िञ्च 44 . ШĒ **I**III III iH i i 詽 i i (E) (E) lir. ŝŦ. 1:3:19 出日 Si Kush Si Kush 1.444 tille, finiti initi 0 90 8 0 0 0

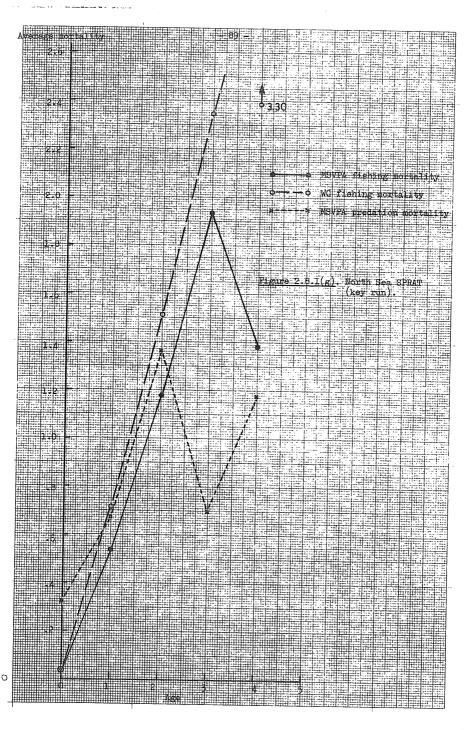
1.FE f III


đη

Ø <u>111</u> B


tana kuku mak

• • •


÷...;

•

.

+ 20 + . Pigure 2.8:1(h). Nown des Norway pobl (key pub). Pigure 2.8.1(b). North Sea Norwal POU (set run).

日間 Average mortality

/6T289 MDTP#1+19/ /, 1-4 L. į. ET. 1.2 1. Ш÷С

1.2 - politi 1.11 1.0 Ē₩Ē -----+ 14 -----1 1 0.8 1 1

0.6 111111 ÷E 0.4 1 11.11.1 11.7 1 0.2 13

0 -11-1

11.1.1.1. 29 h 14.1 同期

鞐

• • SYPA Tisking mortality **Orthony Worthing mortality** NEVPA predation mortality

H.

÷

+.... 1..... <u>|</u>____

____ H 1-1-2 1. -

.

.

Б<mark>ецеч 2.8:1(1)</mark>;-1 Fleure Sea =if : HUF

Average mortalit

1.8 nut: 176 1 1 1 117 臝

1.2 1 1 5**4**354

1.0 i i +81. 145 T. +0:... 14

. 151 / ¥6 ii-ii: -44 /

÷

Щđ Top: 謹 ÷ 2.112

間 開曲

91. SANDER ^{II} (rey run). SANDOUL (Key run). 世田町.

1.11

1111 1 HIL

: Ir

ΞĒ

- HHE

HIF:

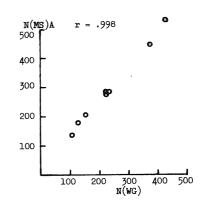
iII

НЩ III

172

i i fi

HH-HH


隶

MSVPn fiching mortality MSVPn fiching mortality MSVPA predation mortality Шi πū

> 詽 , F ŧē

A services succes

Figure 3.2.1. Relationship of multispecies VPA estimates of 1-year-old COD, Assessment Working Group VPA estimates of one-year-old cod and IYFS estimates.

Í,

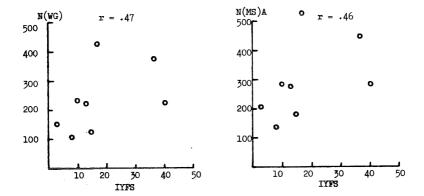


Figure 3.2.2. Relationship of multispecies VPA estimates of 1-year-old HADDOCK, Assessment Working Group VPA estimates of one-year-old haddock and IYFS estimates.

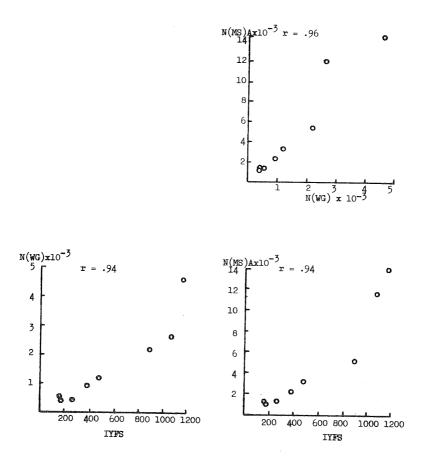


Figure 3.2.3. Relationship of multispecies VPA estimates of 1-year-old WHITING, Assessment Working Group VPA estimates of one-year-old whiting and IYFS estimates.

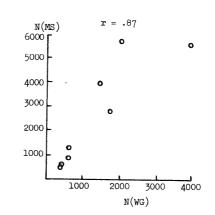
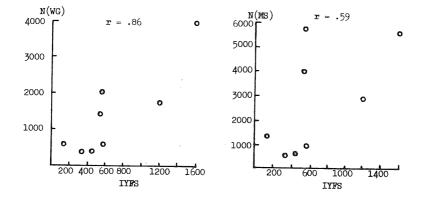
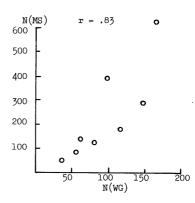
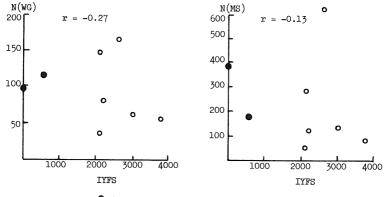
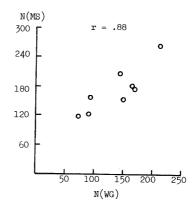



Figure 3.2.4. Relationship of multispecies VPA estimates of 1-year-old HERRING, Assessment Working Group VPA estimates of one-yearold herring and IXFS estimates.


Figure 3.2.5. Relationship of multispecies VPA estimates of 1-year-old SPRAT, Assessment Working Group VPA estimates of one-year-old sprat and IYFS estimates.

Abnormal years excluded from regression

Figure 3.2.6. Relationship of multispecies VPA estimates of 1-year-old SANDEEL and Assessment Working Group VPA estimates of one-year-old sandeel made by summing the northern and southern sandeel stocks.

E La

 $\frac{x_2}{800} = \frac{x_2}{800} =$

 (\overline{x}_{1}) = $\overline{x}_{1} - \underline{c}_{2} - (\overline{x}_{2})$ = $2 - 000 - \overline{x}_{1}$ 100 Solution

、 .