ICES headquarters, 7-13 March 1984

This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without prior consultation with the General Secretary.
x) General Secretary, ICES, Palqgade 2-4, DK-1261 Copenhagen K, Denmark.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
1.1 Participants 1
1.2 Terms of Reference 1
1.3 Timing of Meeting and Participation 1
1.4 Management Considerations and Methodology 1
2. RECENT TRENDS IN THE INDUSTRIAL FISHERIES 2
3. BY-CATCHES IN THE INDUSTRIAL FISHERIES IN THE NORTH SEA AND DIVISION IIIa 2
3.1 Herring By-Catches in the North Sea in 1982 2
3.2 Herring By-Catches in the North Sea in 1983 2 2
3.3 Herring By-Catches in Division IIIa 3
3.4 By-Catch of Other Species 3
3.5 Problems with By-Catch Regulations 3
4. NORWAY POUT 5
4.1 Landings 1957-83 5
4.2 Bffort Data
4.2 Bffort Data 6 6
4.3 Catch at Age and VPA Results 6
4.4 Research Vessel Surveys 7
4.5 Weight at Age in the Catch 8
4.6 Percentage Landings in Weight by Age 8
4.7 Predation Mortality 8
4.8 Equilibrium Yield 8
4.9 Catch Prediction 8
5. SANDEEL 9
5.1 Lanaings in 1983 9
5.2 Fishing Effort 9
5.3 Catch at Age and VPA 10
5.4 Research Vessel Surveys 11
5.5 Weight at Age 11
5.6 Percentage Landings in Weight by Age 12
5.7 Predation Mortality 12
5.8 Yield per Recruit 13
5.9 Catch Predictions 14
6. SPRAT IN DIVISION IIIa 15
6.1 Landings 15
6.2 Effort 15
6.3 Catch at Age and VPA 15
6.4 Research Vessel Surveys 15
Research Vessel
6.5
6.6
6.7 $\{$ No information

6.7
6.86.8
6.9 Prediction
16
6.9 Prediction
Table of Contents (ctd)
Page
7. NORTH SEA SPRAT 16
7.1 Landings 16
7.2 Effort Data 17
7.3 Catch at Age and VPA 17
7.4 Acoustic Survey 17
7.5 Weights at Age 18
7.6 Age Composition by Weight 18
7.7 Predation Mortality 19
7.8 Equilibrium Yield 19
7.9 Catch Prognosis
19
19
7.10 State of the North Sea Sprat Stock 20
8. CHANNEL SPRAT (ICES Divisions VIId,e) 21
8.1 The Fishery 1983/84 21
8.2 Fishing Effort Data 22
8.3 Age Structure of the Exploited Population and VPA 22
8.4 Research Vessel Surveys 22
8.5 Weight at Age - Lyme Bay Fishery
22
22
8.6 Percentage Weight in the Catch 22
8.7 Other Mortality Estimates 23
8.8 Equilibrium Yield 23
8.9 Prediction 23
9. EVALUATION OF SAMPLING AND REPORTING PROCEDURES 23
9.1 Statistical Requirements 23
9.2 Recommendations 23
REFERENCES 24
APPENDIX A: The Shepherd Hangover TAC (SHOT) 25
Tables 2.1.1 - 8.5.1 26
Figures 3.4.1 - 8.4.1 93-118

R S Bailey	United Kingdom (Scotland)
A Corten	Netherlands
D Garrod	United Kingdom (England)
J Lahn-Johannessen	Norway
B Mesnil	France
N A Nielsen	Denmark
J G Pope (Chairman)	United Kingdom (England)
K Popp Madsen	Denmark
H Sparholt	Denmark
P Sparre	Denmark
Hoydal attended the meeting as ICES Statistician.	

1.2 Terms of Reference

It was decided at the 71st Statutory Meeting of ICES (C.Res.1983/2:8:1) that the Industrial Fisheries Working Group (Chairman: Mr J G Pope) should meet at ICES headquarters 7-13 March 1984 to:
(i) report the results for by-catch species, e.g., herring, cod, haddock, whiting, mackerel and saithe in the North Sea and adjacent waters to the relevant ICES Stock Assessment Working Groups,
(ii) assess the state of the stocks of the target species for industrial fisheries, i.e., sprat in the North Sea, Divisions IIIa and VIId-e, Norway pout and sandeels,
(iii) take into account the levels of predation mortality implied by the results of the stomach sampling project,
(iv) analyse the effect of changes in the data sets of weight at age and age at first maturity on the time series of stook and spawning stook biomass.
1.3 Timing of Meeting and Participation

The Working Group found the timing of this year's meeting more satisfactory than last year's since it allowed preliminary young fish survey data and full national statistics for 1983 to be available. They stress the need for future meetings to be held at the same time or later. As last year, the ability of the Working Group to comment fully on the Division IIIa sprat fishery and herring by-catches was hampered by the lack of Swedish participation.
1.4 Management Considerations and Methodology

The comments of the Working Group upon management considerations remain valid (Anon., 1982) as do the comments on methodology (Anon., 1983a). The Working Group has, therefore, attempted to extend its use of less traditional methods in this report. In particular, it has made use of a method of catch prediction developed by Shepherd (1983), the Shepherd TAC (SHOT). The general approach of this method, as well as the Working Group's method for estimating the coefficients, are dexcribed in Appendix A.

2. RECENT TRENDS IN THE INDUSTRTAL FISHERIES

In the previous report (Doc. C.M.1983/Assess:7) of the Industrial Fisheries Working Group, a definition of the industrial fisheries, the structure, the interrelation of fishing intensity on the target species and a description of the fisheries were dealt with in some detail (see Section 2 in last year's Report, Anon., 1983a). Revisions of these descriptions will be made in the future as necessary. Recent trends in the fisheries are shown in Table 2.1.1.
Since 1973, the total industrial landings have fluctuated between l.l million and l.9 million tonnes annually (Table 2.1.1). The figures for the period 1981-83 were somewhat lower than the average of 1.6 million tonnes.

Total annual landings of the target industrial species (Norway pout, sandeel and sprat) have ranged between 0.9 million to 1.6 million tonnes. The landings for 1981-83 were slightly below the average of 1.3 million tonnes. The substantial drop in sprat landings observed during this period has resulted in a decrease from 323000 tonnes in 1980 to 91000 tonnes in 1983, the lowest recorded level since 1971, whereas landings of Norway pout have increased from a minimum of 235000 tonnes in 1981 to a near average figure of 421000 tonnes in 1983. Sandeel landings varied irregularly around the average of 577000 tonnes, the 1981 figure being olose to this average, while those of the subsequent years were above and below, respectively.

Total annual landings of by-catch for reduction purposes have fluctuated between 150000 and 300000 tonnes. Landings of blue whiting in recent years have been at a comparatively high level, 106000 tonnes in 1982 and 89000 tonnes in 1983, whereas those of protected species (haddock, whiting and saithe) have shown a decreasing trend with a minimum of 39000 tonnes in 1983. By-catoh of herring has increased sharply in the past 3 years, from 7000 tonnes in 1980 to more than 150000 tonnes in 1982 and 1983.

3. BY-CATCHES IN THE INDUSTRIAL FISHERIES IN THE NORTH SEA AND DIVISION IIIa

3.1 Herring By-Catches in the North Sea in 1982 (revised figures)

The main revision has occurred in the central North Sea, where the preliminary figure of 90000 tonnes given in last year's report has now been changed into 150000 tonnes (Table 3.1.1). This is mainly due to the inclusion of catches in the fourth quarter of the year. These catches consisted both of 0-group and l-group herring, indicating that the fishery was conducted further offshore than in the third quarter. The total annual catch in numbers of 0-group herring has now increased from 8269 million to 9575 million, and the total catch of l-group from 392 million to 910 million (Table 3.1.2).
3.2 Herring By-Catohes in the North Sea in 1983

The annual catch figure by area (Table 3.1.1) shows a continuation of the situation in the previous year, with a relatively high catch (153000 tonnes) taken in the central North Sea. This catch again consisted mainly of $0-g r o u p$ herring (Table 3.2.1), and it was presumably taken mainly in the third quarter of the year in inshore waters of the eastern central North Sea.

Considering the sprat catches taken in this area at this time of the year (Table 7.1.3), it is clear that herring was not a by-catch but the prime target species for the fishery.

3.3 Herring By-Catches in Division IIIa

One country reported a by-catch of 393 tonnes. mainly consisting of l-ringers from the Skagerrak. This is probably only a minor fraction of the total herring by-catch in Division IIIa. Unfortunately, no by-catch data were available from other countries fishing in this Division.
3.4 By-Catch of Other Species

The most predominant species ocourring as by-catch in the fisheries are recorded in Table 3.4.1. Blue whiting form the most important by-catch in the Norway pout landings from the Norwegian Deeps and the annual landings have been at a comparatively high level in recent years, exceeding 100000 tonnes in 1982 and being close to 90000 tonnes in 1983. Recent trends for haddock and whiting are decreasing, the estimated 1983 landings being 15000 tonnes and 23000 tonnes, respectively. Reported by-catch of saithe has been at low levels since 1977, being approximately 1500 tonnes in 1983.
The quarterly distribution of haddock and whiting by-catch by subareas of the North Sea is presented in Table 3.4 .2 for 1982 and 1983 (for areas see also Figure 3.4.1). In 1982, the largest by-catch of haddock was landed in the first and third quarters, whereas in 1983 the landings were more evenly distributed throughout the year. Whiting by-catch was particularly high during the first quarter and comparatively high in the fourth quarter of 1982, while in 1983 the major landings occurred during the first and third quarters of the year.

Species compositions in the Norwegian Norway pout and sandeel fisheries are given in Tables 3.4 .3 and 3.4.4, respectively. The contribution of blue whiting in the Norway pout landings has been quite significant in 1982 and 1983, following a major influx of immature fish to the Norwegian Deeps. By-catch in the sandeel fisheries was rather small. Faroese by-catch landings for human consumption are presented in Table 3.4.5.

3.5 Problems with By-Catch Regulations

3.5.1 Background

The question was raised of problems caused to some industrial fishermen by current by-catch restrictions of 10% of protected species, by weight, in industrial catches. The Working Group, therefore, considered this problem in broad terms.
They recalled that by-catch regulations were introduced in the past because it is not always possible to harvest resources of Norway pout, sprat and other industrial species without taking an unavoidable catch of protected consumption species. A by-catch derogation can be seen as having three main purposes, which are:

1) to allow the industrial fishery to be conducted with small-meshed gear;
2) to prevent damage to the consumption fishery thus providing a measure of equity between the industrial fishermen and the consumption fishermen, who are subject to other constraints;
3) to direct the industrial fishermen's efforts towards the target industrial fish.

Since the balance between the two types of fishery is clearly a matter of overall management policy, the Working Group only concerned itself with problems with the first objective. The Working Group could not, however, examine the problem in any detail apart from pointing to its possible existence and that there may be possibilities of forecasting by-catch levels, if a more flexible regulation system should prove desirable.

3.5.2 Industrial fisheries with by-catch problems

The North Sea sprat fisheries and the Norway pout fisheries both generate significant by-catches of protected species. The North Sea sprat fishery has had a very considerable by-catch of herring and other species in recent years. For the last two years, the annual percentage by-catch for herring alone has been more than 50%. With the current low abundance of sprat, clearly a problem of this size cannot be resolved by even a doubling of the by-catch derogation, if this approach was seen to be desirable in relation to the herring stock.

The Norway pout fishery takes by-catches of haddock, whiting and saithe. Unfortunately, by-catch of these species are only documented relative to the total industrial fishery catch (less sandeels). Even on this basis, Table 3.4 .2 indicates that by-catches of haddock and whiting exceeded 10% in a number of areas and times in 1982 and 1983. It thus appears that the by-catch problem has a seasonal aspect, being most acute at the beginning and at the end of the Norway pout season.

Considering these figures, it should be kept in mind that they indicate overall percentages, while the 10% by-catoh regulations refer to single landings, i.e., an overall percentage just below 10 would suggest that an appreciable number of landings must have exceeded the legal level. It should also be kept in mind that the by-catch considered in the present report only refers to that part of the landings, which are delivered to the fish-meal plants. A certain amount of marketable fish is sorted from the catches and landed for human consumption but has not been quantified. The by-catch will consequently tend to be underestimates of the actual ones and would thus indicate that the 10% rule has not been generally enforced or strictly adhered to, even in the most recent years.
If henceforth the existing regulations were vigorously enforced, then it seems likely that the Norway pout fishery would in most years be forced to change from the previous pattern of fishing. The extent to which this would affect the overall health of the industrial fisheries is difficult to determine, since it would depend upon the extent to which the fishermen could redistribute their effort onto purer concentrations of Norway pout.

Unfortunately, at present the Working Group does not have by-catch figures in sufficient detail. These should be made available in an as disaggregated form as possible if this problem is to be pursued further.

3.5.3 Factors which affect by-catch rates

It is extremely likely that the level of unavoidable by-catch will depend upon the ratio between the abundance of the industrial stocks and the abundance of the protected species within the area of the industrial fishery and on the patchiness of the speciest distribution.

Figure 3.6.1 shows a plot of the by-catch of whiting against the calculated whiting spawning stock biomass in the same year for the total North Sea. Two separate relationships can be detected in this figure: a higher level relationship corresponding to the period 1972-77 before EEC regulations (e.g., the 'Norway pout box') came into force, while the lower level in 1978-82 represents the relationship following these regulations. It can thus be expected that by-catch levels will increase in cases where the protected species become more abundant and/or the industrial species become less abundant. When this happens, the restraints put upon the industrial fisheries by fixed by-catoh percentages will increase. If the risk of taking excessive by-catch rates becomes sufficiently high, fishermen will no longer be able to work on parts of their usual grounds and the yield of the industrial fisheries might decline. If it were to decline, then from the point of the industrial fisheries there thus might be a case for a temporary adjustment of by-catch restrictions in exceptional circumstances. Equally, from the viewpoint of consumption fisheries, there might be an argument for a temporary reduction in by-catch restriction levels when consumption stocks were in an unusually low abundance.

3.5.4 The predicted by-catch rates

To make adjustments, it would be necessary to predict by-catch rates for the next year. In the case of the by-catch of haddock and whiting, predictions of by-catch amounts are already made by the Roundfish Working Group (Anon., 1983b), using a VPA prediction method. As an alternative method, the Working Group has developed a by-catch predictor based upon Shepherd's 1983 method, which is shown in Figure 3.6.2. The predicted by-catch for 1984, using this formulation, is 48000 tonnes, which is comparatively low, mostly due to poor whiting recruitment. Since the Norway pout catch is predicted in Section 4.9 to be about 400000 tonnes, the annual average by-catch rate should be be similar to that in 1983. The by-catch in 1985 should, however, be larger at more than 60000 tonnes due to the larger 1983 year class of whiting. Whether or not this will lead to high by-catch rates will, however, depend upon the size of the 1984 Norway pout year class. At present, the Working Group is unable to predict the catch of Norway pout beyond the current year. It is, however, possible that predictors might be developed, based on surveys in the second half of the year which would enable ACFM to predict the next year's catch of Norway pout and hence the by-catch rate. Clearly, a reliable predictor of by-catch rate would be a requirement if by-catch restrictions were to be adjusted.

4. NORWAY POUT

4.1 Landings 1957-83

Landings of Norway pout from the North Sea by country for the years 1957-83 are shown in Table 4.1.1. The total landings have in the last 15 years varied between 300000 and 500000 tonnes, except for some few years. The total landings in 1983 were 421000 tonnes.

The monthly landings by country in the years 1980-83 are given in Table 4.1.2. The table shows that the largest catches are taken in the period August - November.

Division VIa

Landings of Norway pout from Division VIa by country are given in Table 4.1.3.

Division IIIa

Landings of Norway pout from Division IIIa by country are given in Table 4.1.4.

4.2 Effort Data

Norwegian effort_data
A new set of data representing the whole industrial fleet fishing for Norway pout and blue whiting is available from 1976 onwards. The cpue values (hectolitres per days fishing per mean GRT) by quarters are presented in Table 4.2.1 and Figure 4.2.1. The weighted annual means, including and excluding by-catch respectively, are shown in Figure 4.2.2.
Figure 4.2 .1 shows considerable quarterly changes in catch rates. Figure 4.2 .2 indicates a series of rather stable weighted annual mean catch rates. The similar series for Norway pout (by-catch excluded) fits comparatively well with the total annual means, thus demonstrating the importance of Norway pout in this mixed fishery.

Faroese effort_data

The updated cpue series ($k g$ per hour trawling) shows the same annual and seasonal pattern as the Norwegian data (Table 4.2 .2 and Figure 4.2.3).

4.3 Catch at Age and VPA Results

Table 4.3.1 shows the catch in numbers by quarter for the years 1974-83. Catch at age data were available in 1983 for the Danish and Norwegian landing's. These samples account for 90% of the total catches, and they were raised to give an age distribution of the total catch.
The catch at age in Table 4.3 .1 was used as an input to a quarterly VPA. In last yearis report it was attempted to estimate the total mortality, Z, on Norway pout. The results indicated a total mortality in the range $1.5-2.5$ year -1 . The natural mortality, M, was chosen at a level which gave a total mortality in the range above.
This year, preliminary data from the International ICES Stomach Sampling Project were available. These data give an estimate of the number of Norway pout taken by other fish in 1981. The natural mortality was then chosen to match the level of predation in 1981.
In the text table below the estimated number of Norway pout taken by cod, whiting, saithe and mackerel (Daan, 1983) are shown.

Age	0	1	2	3
Nos $\cdot \times 10^{-9}$	120	23	6	0.2

The natural mortalities which would produce these predation estimates were 0.4 per quarter on all ages.
Compared to the values used in the VPA in last year's report, these are higher on the young age groups and lower on the older age groups, but the total level of natural mortality is unchanged. A natural mortality of 0.4 per quarter was thus adopted.
The fishing mortalities for the last year were chosen to fullfill the requirements:

1. Constant level of fishing mortality in the latest year.
2. Recruitment in accordance with the IYFS l-group index.

These two objectives turned out to be in agreement thus placing some confidence on the VPA results.
A plot of the IYFS index of Norway pout as l-group versus the estimated recruitment as l-group is shown in Figure 4.3.1. The assumption of average fishing mortalities in the latest years produces recruitments which correlate fairly well with the IYFS index for the years 1977-82. The fishing mortality on 0- and l-group fish has been modified to give recruitment near the established line. The estimated fishing mortalities are shown in Table 4.3 .2 and the stock in numbers by quarter is shown in Table 4.3.3.
Figure 4.3 .2 shows the stock biomass and the spawning biomass as estimated in the VPA. The maturity ogive used was 0.1 on l-group and 1.0 on older age groups. The weight at age used are shown in the text table below.

Age	0			1				2				3			4
Quarter	2	3	1	2	3	4	1	2	3	4	1	2	3	4	1
Av. weight	4	6	7	15	25	23	22	34	43	42	40	50	60	58	56

The spawning stock biomass (Figure 4.3 .2) shows similar trends as the cpue plots (Figures 4.2.1, 4.2.2 and 4.2.3). To illustrate this further, a plot of the spawning stock biomass (estimated as at I April) versus the Norwegian cpue is shown in Figure 4.3.3. The data series show a good correlation ($r^{2}=0,80$).
Summarising the available data seem to be in accordance with the VPA. The stock size, with the exception of that in 1981, has been relatively stable around 1000000 tonnes in the last 8 years,although the stock size fluctuates within a year because of the rapid growth. The spawning stock has in the same period varied between $300000-$ 700000 tonnes without any trend.
The average fishing mortalities in the years $1979-83$ were estimated and are shown in the text table below.

Average fishing mortalities by age 1979-83

Age group	0	1	2	3
Av. fish	0.08	0.61	1.42	1.52
M	1.6	1.6	1.6	1.6

4.4 Research Vessel Surveys

The series of research vessel recruitment indices are given in Tables 4.4 .1 and 4.4.2. The areas to which each index applies are shown in Figure 4.4.1

In the previous report it was shown that only the IYFS I-group index correlates with the VPA estimate. On this basis it would appear that the 1982 year class was below average, while the 1983 year class is about average.
4.5 Weight at Age in the Catch

Mean weight at age by quarters are shown in Table 4.5.1.
4.6 Percentage Landings in Weight by Age

Table 4.6.1 shows the quarterly and annual landings in weight by age as a percentage of the annual landings.
The importance of the age group varies with year class strengths, but in general the l-group makes up 70% of the catches and the 2 -group comprises 25% of the annual landings.

4.7 Predation Mortality

Predation mortality estimates are discussed in Section 4.3.

4.8 Equilibrium Yield

No calculations of equilibrium yield of Norway pout were undertaken at this meeting.

4.9 Gatch Prediction

At the Working Group meeting in 1983, a prediction was given based on results from the IYFS. The catch of Norway pout in a given year was correlated with the sum of IYFS l-group + IYFS 2-group indices. However, the IYFS 2-group indices for 1983 and 1984 were not available to the Working Group this year, and a new method for prediction was investigated.
The SHOT estimates (see Appendix A) were calculated in three different ways, all based on data from the years 1975-83.
a) $Y(t)=a+b Y(t-1)+C R_{1}$

This model was fitted using multivariate regression giving the following results:

$$
Y(t)=109.4+0.24 Y(t-1)+0.05 R_{1}
$$

r^{2} for this model was 0.64 .
b) The proportion of the 2-group and older (by weight) of the catch is on average 25% (see Section 4.6). On this basis, the 'hangover coefficient was chosen as 0.25 . This is in agreement with the analysis under a) above.
A simple linear regression of $Y(t)-0.25 Y(t-1)$ on R_{1} gave the model:

$$
Y(t)=104.8+0.25 Y(t-1)+0.05 R_{1}
$$

r^{2} for this model was 0.54 .
c) A regression of $Y(t)-0.25 Y(t-1)$ on R_{1} through the origin gave a recruitment multiplier of 0.079 and hence a SHOT estimate of

$$
\mathrm{Y}(\mathrm{t})=0.25 \mathrm{Y}(\mathrm{t}-1)+0.079 \mathrm{R}_{1}
$$

Figure 4.9.1 shows the predicted catch catch from Model c) and the observed catch.

The opinion of the Working Group was that Method c) gave as reasonable results as the other methods, and this method is equivalent with SHOT methods for other stocks. Therefore, Method c) could be used as an alternative to the method given in last year's report, which was based solely on the IYFS index.
The predicted catch using Method c) in 1984 is 390000 tonnes, assuming fishing levels to be similar to those prevailaing in recent years.
5. SANDEEL
5.1 Landings in 1983

North Sea
Landings decreased from 611000 tonnes in 1982 to 536000 tonnes in 1983, the lowest level since 1976 (Table 5.l.l). Landings by all countries fishing for sandeels decreased, the largest proportionate decrease being recorded by Norway (46000 tomnes to 12000 tonnes).

Monthly landings are given by country in Table 5.1.2. Landings by Denmark and Norway were concentrated in the second quarter of the year (83% and 78%, respectively), while landings by Scottish vessels were more evenly distributed between the second and third quarters (54% in the period April-June).
Monthly landings in each of the areas shown in Figure 5.1 are given in Table 5.1.3 for Denmark, Norway and the United Kingdom. In most fishing areas, landings had finished by the end of July, exceptions being sandeel areas 3 and 6 adjacent to the Danish coast and the Shetland area. In this respect, the seasonal distribution of the landings was very similar to that in 1982.
Annual totals for each Sub-area given in Table 5.1.4 show how the geographical distribution of the sandeel fisheries are changing. Significant increases in landings occurred in areas 3 (approaches to the Skagerrak) and 4 (southwestern North Sea), while landings from the northern assessment area as a whole remained roughly at the same level as in 1982. Landings from the Shetland area decreased significantly in 1983.

Division VIa

Scottish landings from Division VIa increased from 10900 tonnes in 1982 to 13000 tonnes in 1983 (Table 5.1.5)

Division IIIa

According to the data reported to ICES, landings increased from 22000 tonnes in 1982 to 34000 tomnes in 1983 (Table 5.1.6). Almost all was taken by the Danish vessels.

5.2 Fishing Effort

Norwegian effort and catch per unit effort data were available for the northern and southern assessment areas for the years 1976-83 (Table 5.2.1), and United Kingdom data for the Shetland area for the years 1975-83 (Table 5.2.2).
Estimates of total fishing effort were obtained by raising the Norwegian effort by the ratio of total international effort to Norwegian catch. In the northern assessment area, where Norwegian landings accounted for $10-50 \%$ of the total, effort in the first half of the year decreased rather sharply in 1982 and remained at this level in 1983. In the southern area, Norwegian effort accounts for only a small fraction of the total and is unlikely to be representative.
In the Shetland fishery, the effort decreased by 24% in 1983.

5.3.1 Catch at age

Catch in numbers at age was compiled for the three assessment areas shown in Figure 5.l.1. Relevant monthly data were provided by Denmark, Norway and the United Kingdom, and the small landings by the Faroes and Sweden were allocated to age using Danish data for the northern assessment area.

The catches in number at age for 1983 are given by months in Tables 5.3.1-5.3.3. In the southern area, the catches were predominantly of 0-group in July and 2-group in April-June. The percentage of l-group was lower than in the previous year. In the northern area, l-group predominated in April and May, the 2-group in June-July, and the 0-group from August to October. Few sandeels older than 3-group were caught. At Shetland, l-group sandeels formed a higher percentage of the catch than in 1982, and the 0-group was correspondingly less well represented.

5.3.2 VPA results

VPAs were made separately as in previous years for the southern and northern areas of the North Sea and for Shetland (Figure 5.1.1). For all areas, the analyses were carried out using half-yearly data. The value of M was taken to be 0.5 year-1 for all ages in all years. Subsequent comparisons with the ICES Stomach Sampling Project data for 1981 indicate that this value is a substantial underestimate at least for the two youngest age groups. The following VPA results should, therefore, be treated with caution.

The input catch in numbers data are given in Tables 5.3.4, 5.3.7 and 5.3.10. For the southern area, values of input F for the last half of 1983 were chosen, which resulted in an annual mean F in 1983 at roughly the same level as in the previous four years. For the northern area, Norwegian effort data given in Table 5.2.1 indicated some decrease in effort in 1982, and a value of input F was chosen which gave estimates of annual F which roughly matched this decrease. In the case of the Shetlands, F values from a trial analysis were plotted against effort data to provide a method of tuning the input value. The resulting values of fishing mortality rate are given in Tables $5.3 .5,5.3 .8$ and 5.3 .11 , and the estimated stock size in numbers at 1 January in Tables 5.3.6, 5.3.9 and 5.3.12.

Southern area of the North Sea
In the absence of effort data, no independent evidence was available to substantiate the input values of F for southern North Sea sandeel and hence the stock size and recruitment in 1983. On the assumption that there had been no trend in fishing effort over the period 1980-83, the results of the VPA indicate that F on the l-group and older decreased in 1981 and 1982 and increased in 1983. The increase in 1983 can partly be explained by the size of the 1982 year class, which appears to have been the weakest so far recorded. The 1981 year class, however, appears to be a strong one and contributed heavily to the catches in the first half of 1983.
Another interpretation of these results could be that the poor 1982 year class forced effort to increase on the 2 -group in 1983 and that this year class was not particularly strong. The fishing mortality rate in 1983, however, would have had to be very high to reduce the estimate of the 1981 year class to an average level, and the high catches of this year class in the latter half of 1981 and in 1982 and 1983 would tend to indicate that it was indeed a large one.

From the small size of the 1982 year class it is likely that the spawning stook will decrease in 1983 back to the average level of the previous ten years.

Because of the large fluctuations in F on the 0 -group in the southern area, it is not possible to judge the reliability of the estimate of the strength of the 1983 year class from the VPA. Using the results of the VPA, however, there is some indication of a correlation between year class strength as 0-group and the catches of 0-group over the period when there has been a fishery on this age group (Figure 5.3.1). Since the catch of 0-group in 1983 was relatively small, this tends to indicate that the 1983 year class is lower than average.

Northern area_of the North_Sea_(Shetland)
Catches in the northern area during the second half of the year are composed almost entirely of 0-group sandeels (Table 5.3.7). Preliminary VPAs, based on assumed values of terminal F in the second half year, were tuned to Norwegian fishing effort data (raised to international effort) in both halves of the years 1976-83
(Table 5.2.1). Final selection of terminal F was such that the value for F per age group in the second half year which, with the F estimated from it for the first half year, gave the best correlation for both sets of half-yearly effort data. Estimates of F and stock size are given in Tables 5.3 .8 and 5.3.9.
Fishing mortality in the first half of 1983 has remained close to the 1982 level, following a reduction from the 1981 level. Catches in the second half of 1983 increased slightly over the very low levels of 1982 and with it the assumed level of terminal fishing mortality. There has been no distinctive trend in stock size since the second half of 1980 , and present levels appear to be close to those recorded throughout the 1970s.
VPA-catch at age data for the Shetland fishery is given in Table 5.3.10, and the resulting fishing mortalities and stock numbers are given in Tables 5.3.11 and 5.3.12. Since fishing mortality switches rather sharply from the l-group and older in the first half of the year to the 0-group in the second half of the year, two separate plots of F against fishing effort are shown in Figure 5.3.2. These show some correlation between F on ages l-4 and effort in the first half of the year over the period 1977-82. On this basis, the mortality rate on I-group and older in 1983 appears to have decreased since 1982.
There is also some correlation between F on the $0-g r o u p$ and fishing effort in the second half of the year over the same period of years, and this indicates that the fishing mortality rate on this age group in 1983 remained at its recent level of around 0.7-0.8.

On the basis of this analysis, it appears that the 1981 and 1982 year classes were above average, while the 1983 year class may be a weak one.

5.4 Research Vessel Surveys

No relevant data were available for comparison with VPA results.

5.5 Weight at Age

Data for 1983 were provided by Denmark divided into the northern and southern areas (Table 5.5.1).
To calculate the effects of seasonal closures of the sandeel fisheries (Section 5.8), mean weights at age for different seasons of the year are required. In Table 5.5 .2 are given the means of all the monthly mean values reported by the Working Group in previous reports, together with those for 1983. Since the few outlying values (presumably based on very few fish) might bias the means obtained, they were omitted.

To provide representative mean weights at age for the first and second halves of the year, the monthly means given in Table 5.5 .2 were weighted by the numbers caught at age in the respective months in 1981 and 1982 (Table 5.5.3). Since these were to be used for Y / R calculations, growth curves were fitted by eye and smoothed values for the higher ages are also given in Table 5.5.3.

5.6 Percentage Landings in Weight by Age

Table 5.6.1 gives percentage weight of landings by age updated for 1983.
In the southern area, the contribution of the 2-group was exceptionally high (84%). In the northern area, the composition was similar to that of previous years except that the 3-group fish and older made a smaller contribution than in the previous three years.

At Shetland, l-group sandeels made the largest contribution to the landings, and the 0-group was correspondingly reduced in importance to 25%.
5.7 Predation Mortality

The summed results of the VPAs for each assessment area were considered in general terms in the light of the preliminary results of the ICES Stomach Sampling Project. The numbers of sandeels estimated to have died naturally in 1981 by VPA are compared with the estimated numbers eaten by cod, whiting, saithe and mackerel in the text table below:

Age group	No. $x 10^{-9}$ VPA	Stomach sampling ${ }^{\text {Fت }}$)
	74^{3}	166
1	21	152
2	7	2
3	3	1
4	+	-
5	+	-379 eaten by
whing which		
have not been		
allocated to age		

[^0]The number of sandeels eaten by whiting is calculated from the number of whiting caught and the number eaten by other predators and not from stock numbers obtained from VPA.

These results are difficult to compare in detail, because over half the estimate of sandeels eaten have not been allocated to age. In addition, the numbers of sandeels estimated to have been eaten by whiting are probably conservative estimates, and it is known that sandeels are an important constituent in the diet of other predators. Despite these reservations, it is clear that the value of M of 0.5 year ${ }^{-1}$ used in the analyses is an underestimate at least for age groups 0 and $l_{\text {. To }}$ examine this further, it will be necessary to allocate the sandeels eaten by whiting to age and, in particular, to divide the 0-group into those eaten in the first and second halves of the year since the VPA is carried backwards only to 1 July. Because of the provisional nature of the estimates, the Working Group made no adjustments to their estimates of fishing mortality and stock size; it was recognised, however, that the estimates of stock size and fishing mortality rate are almost certain to be under- and overestimates, respectively.

5.8 Yield per Recruit

In its 1983 report, the Working Group estimated the gains in yield per recruit to be expected, if exploitation of the 0-group was ended. ACFM subsequently advised that this could best be achieved by restricting the fishery to the first half of the year. Moreover, since a considerable proportion of the yield in the first half of the year comes from the l-group, ACFM also advised that additional gains could be expected by delaying the start of the fishery until May to allow growth, thereby reducing the season to a two-month period.
Even if gains in Y / R can theoretically result from seasonal closures, the Working Group doubted if these gains could in fact be achieved because the landings in any month are limited by available outlets at least during the main part of the sandeel season. Indeed, concentration of the yield into a two- or three-month period could almost certainly result in a net loss in yield to the sandeel fisheries. It would further create fluctuations in the supply of fish, which could have the effect of transferring effort to other target species with larger by-catches.

To estimate the potential changes in yield if the fisheries in the second half of the year were closed, the Working Group calculated yield/recruit curves using the exploitation pattern in the years 1978-82. These are given in the text table below.

Mean values of F during the period 1978-82 from VPA

Age	Southern area		Northern area		Shetland	
	lst half	2nd half	lst half	2nd half	Ist half	2nd half
0	0.01	0.23	0.00	0.46	0.01	0.60
1	0.45	0.097	0.49	0.11	0.517	0.177
2	$\left.0.77\right\|_{\text {Mean }}$	0.15 Mean	1.07	0.12	0.52 Mean	0.12 Mean
3	$0.90{ }^{\text {² }} 0.84$	0.2510 .14	1.26	0.06	0.40 0.47	0.0900 .11
4	0.93	0.12	0.83	0.05	0.38	0.07
5	0.72	0.07	0.56	0.02	0.55	0.11
6	0.90	0.24			0.85	0.06

Yield per recruit was calculated with and without the F values in the second half of the year, using weights at age given in Table 5.5.3. Separate calculations were made assuming a natural mortality rate of 0.5 and 1.0 year $^{-1}$ on the $0-g r o u p$, with 0.5 year -1 on all older ages. The results of these calculations are shown for different relative values of F in Figures 5.8.1-5.8.3. For present calculated levels of F, the effects of closing the fisheries in the second half if the year are given in the text table below.

Percentage change in Y / R at current levels of F if exploitation in the second half of year is ended

	M on 0-group	
	0.5 year $^{-1}$	1.0 year-1
Southern area	$+7.7 \%$	$+5.7 \%$
Northern area	$+18.3 \%$	$+14.2 \%$
Shetland	$+4.3 \%$	-1.6%

These estimates indicate that there might be marginal gains in the yield per recruit in the Southern and Shetland areas, with rather higher gains in the Northern area (because of the higher woo in this area). The changes are also influenced by the level of M assumed for age 0 and I (see Section 5.7) and by the VPA results. In view of the uncertainty about the expected increases and in view also of the doubts about the likelihood of being able to benefit from them, the Working Group was of the opinion that there is no overriding reason for influencing the seasonality of the sandeel fisheries at current levels of stock size and recruitment.
The estimates of change in Y / R given above are lower than those given in the previous report. This is because the previous calculations took no account of the fact that there is some exploitation of the 0-group in the first half of the year, and of the older age groups in the second.

5.9 Catch Predictions

Since a variable proportion of the landings are formed by 0-group sandeels, it is not possible to make firm predictions of likely catches over the year as a whole in any of the sandeel fisheries. Accepting the results of the VPAs and also assuming that fishing mortalities and seasonal patterns of exploitation remain approximately constant, however, some rough guide to expected landings in 1984 can be given. These should, however, be treated with considerable caution. The Working Group has attempted this for the first time in order that such a procedure might be judged against events. They should not be used for management of these stocks.

Southern North Sea

Using mean values of F at age over the period 1980-83, catches in 1984 of l-group and older are estimated to be 405000 tonnes. To this might be added a further 5% of 0 -group, giving a total of 425000 tonnes.

Northern North Sea
Since the fishing mortality rate has dropped in this area in the past two years, the input level in 1983 was assumed to be carried over into 1984. In this case, the catch of l-group and older in 1984 might be in the order of 130000 tonnes. In the last four years, the $0-g r o u p$ has contributed 20% of the total, in which case the total landings in 1984 might be in the order of 160000 tonnes.

Shetland

Prediction of catches in this area is rather uncertain because of the rather high contribution of 0-group to the weight landed in most years. Catches of l-group and older are predicted to be 17000 tonnes in 1984, and since the 0-group on average contributes 33% of the total, the total annual catch could be in the order of 25000 tonnes, that is, rather lower than in the previous three years.

Total Estimate

If these predictions for each age have any validity, then the total North Sea catch of sandeels in 1984 might be in the order of 600000 tonnes. Unless there is a change in effort, there is thus no reason to expect a major change in landings from recent years.

6.	SPRAT IN DIVISION IIIa
6.1	Landings
	Landings by area and country from 1969 to 1983 are shown in Table 6.1.1, which includes revised landing figures for 1982 and preliminary data for 1983. Reporting areas are shown in Figure 6.1.1. The decline in landings since 1980 continued in 1983 in the Skagerrak, where landings were about 8000 tonnes lower than in 1982 while the Kattegat landings showed a slight increase of perhaps 2000 tonnes. It should be noted that sampling of the industrial landings in the Kattegat has been insufficient in the past, and that 1983 is the first year in which some reliance can be placed upon the species composition. The major bias in the Kattegat figures in previous years would probably be a tendency to overestimate landings of sprat and underestimate the landings of young herring at least since 1976-77.
	The landings by quarters are shown in Table 6.1.2, which shows a decline in the proportion taken in the third quarter as compared with earlier years; this may be an effect of a closure of the sprat fishery in July-September 1983.
6.2	Effort
	There are still no data available on the industrial effort in Division IIIa.
6.3	Catch at Age and VPA
	Numbers caught at age have been estimated since 1975, using Danish data raised to total catch excluding the fjords of western Norway (Division IVa East). Table 6.3.1 shows the array of data including an updating of 1982 and preliminary figures for 1983.
	A VPA was not run due to the doubts about the accuracy of the sprat catches mentioned in Section 6.1.
	For other input figures to a VPA, reference is made to last yearis report (Anon., 1983a).
6.4	Research Vessel Surveys
	Acoustic_surveys
	Acoustic surveys have been carried out in Division IIIa by Denmark, Norway and Sweden in 1976 and in 1979-83. The surveys were directed at herring and do not cover the shallow western part of the Kattegat, which is an important part of the distribution area, especially for the younger components of the sprat stock.

The sprat biomasses estimated from these surveys are shown in Table 6.4.1. The September survey form the longest time series with comparable data and indicates a continuous decline from 1979 to 1983, which is roughly in accordance with the development in landings. An evaluation of the possible use of these data could, however, not be undertaken during the Working Group meeting due to the lack of information on the age compositions of the estimated biomasses.

Trawl surveys

Recruitment indices of I-group sprat obtained by Sweden in connection with IYFS since 1971 were re-calculated in accordance with the method applied to l-group herring (Anon., 1979). While the old indices were calculated as the arithmetic mean of the geometric means of hauls within each of the 7 rectangles of the standard area, the new indices are calculated as the arithmetic mean of the arithmetic means of all rectangles sampled. Table 6.4 .2 shows the two sets of indices together with the number of squares sampled.
It appears from both sets that the 1983 year class is rather strong as compared with the two previous year classes. The same indication is found in the landings of 0-group sprat in 1983 (Table 6.3.1), which compares with the very strong 1977 year class.
6.5-6.8 No new results were available, which made calculations of weight
at age, weight percentage by age in the catches, other estimates of mortality or equilibrium yield, meaningful.

6.9 Prediction

A regression of yield in tonnes on l-group indices for 1978-83 (in which period the GOV trawl has been standard gear) gives a coefficient of $r=0.77$ and indicates a possible catch of $70000-75000$ tonnes in 1984. The regression is shown in Figure 6.9.1.
7. NORTH SEA SPRAT
7.1 Landings

Tandings of North Sea sprat by nations and by areas for the years 1974-83 are given in Table 7.1.1, and reporting areas are shown in Figure 6.1.1. The declining trend observed since 1979 is continued. Catches in 1983 were only 91000 tonnes compared to 153000 tonnes in 1982 and 209000 tonnes in 1981. This trend is apparent in all areas (and was particularly evident in Division IVc). In Division IVb west, the catches in 1983 remained at a similar level to 1982, with catches in United Kingdom coastal waters remaining very low.

Sprat catches by months and by international reporting area (see Figure 6.1.1) for 1980-83 are given in Table 7.1.3. The usual fishing pattern is unchanged. Catches are made predominantly in Area 4 (Division IVb east) in July-October, with a lesser peak in January.

Division VIa

Landing data for 1983 were reported only by Scotland (Table 7.1.2). They show an increase in catches by Scottish vessels, largely as a result of the continued growth of a fishery in the Firth of Cly.de, which accounted for 1150 tonnes in 1983.

7.2 Effort Data

No effort data were available.

7.3 Catch at Age Data and VPA

7.3.1 Catoh at age data

Sampling data were available for landings by Denmark, England, Norway and Scotland. Landings by other nations accounted for a minor part of the total.
Catch compositions by areas and quarters are given for 1982 and 1983 in Table 7.3.1. They indicate that in 1983 age group 1 contributed a major part of the catches in number in the third and fourth quarters, in Division IVb east, and in the fourth quarter in Division IVb west. Age group 2 accounts for a significant part of the fisheries during the first quarter.
$7.3 .2 \quad \mathrm{VPA}$
Input catch at age data for quarterly VPA ara given in Table 7.3.2. Due to the absence of a reliable abundance index series and effort data, trial VPAs on the range of years 1977-83 were carried out using a 'self-tuning' method as was done during previous meetings; terminal Fs in the fourth quarter of 1983 were adjusted according to the average for each age in the last quarter over the years 1979-81. No other attempt was made to modify the inputs to these preliminary VPAs.

The resulting fishing mortalities are given in Table 7.3.3, and the numbers at age and biomass in Table 7.3.4. (Results for 1974-76 are reproduced from last year's report and were not generated by the new VPA.)
Trends in fishing mortality, total stock and spawning stock biomass are shown in Figure 7.3.1.

7.4 Acoustic Survey

Acoustic surveys were carried out in the eastern part of Division IVb in December 1983 by Norway and in the western part of Divisions TVa and TVb in Tanuary 1984 by Sootland. Coverage was not adequate to make an estimate of the total North Sea biomass, but estimates for the main areas are compared with earlier estimates in Table 7.4.1. Estimates of sprat biomass for each half statistical rectangle surveyed are given in Figure 7.4.1. They were standardised to the target strength/length relationship recommended in the 1983 report of the Planning Group on an ICES-Coordinated Herring and Sprat Acoustic Survey (Anon., 1983c), i.e., TS $=-8.7 \mathrm{log} \mathrm{I}-19.6 \mathrm{~dB} / \mathrm{kg}$, where I is in cm. The results of earlier surveys standardised to this target strength/length relationship were taken from Tables 5 and 6 in Johnson et al. (1983).
Owing to the provisional nature of the estimates of target strength used to analyse the results of these surveys, little reliance can be placed on the absolute value of the biomass estimates obtained. The surveys in the winter 1983-84, however, show no evidence of any change in the abundance of sprats in the western North Sea, and it can only be concluded that the sprat population in this area is still at a very low level. In Division IVb (east), the abundance of sprats older than the recruiting year class appeared to be higher than in 1981 and 1982, but no comparison is possible with 1983 since no survey was carried out in this area in early 1983.

Other research vessel surveys

Preliminary results were available from the International Young Fish Survey in February 1984. Table 7.4 .2 shows an index of 525 for the new year class 1983. This index, however, is based on numbers of sprat $<10 \mathrm{~cm}$ which presumably contain a considerable number of 2 year olds. The index for the 1983 year class will thus be reduced when age/length keys for the 1984 IYFS become available. It is suggested that in future years the length class <9 cm will be used as a first approximation for the number of 1 year old sprat in the IYFS. No progress has yet been made in exchanging sprat data from IKMT (Isaac-Kidd mid-water trawl) catches during the IYFS prior to the Working Group meeting.
Table 7.4 .2 and Figure 7.4 .2 also show results from the Scottish midwater trawl survey in November 1983. Although the catches of 0 - and l-group sprat showed a slight increase over the previous year, it should be remembered that this survey covers only a limited part of the sprat distribution area, and that a relationship between the indices from this survey and sprat recruitment has not yet been demonstrated. Table 7.4 .2 also presents catches of I-group sprat from the commercial fisheries in order to continue this series.
7.5 Weights at Age

For the years prior to 1982 the values given in previous meeting reports were used. For 1982 and 1983, mean weights in the Danish catches were available by months and areas (Table 7.5.1). Quarterly weights in each areafor each year were calculated using arithmetic means. Using quarterly catches in number in each area, weighted averages were computed to provide quarterly estimates on mean weights in the Danish catches for the whole North Sea. These values were adopted for weights in international catches and in the stock, except for an approximate value of 1 g given for age 0 in the first part of the year.
7.6 Age Composition by Weight

The contribution of each age group to the catches in weight is given in the text table below.

Percentage contribution of each age group to the landing veight

Year	Age groups						
	0	1	2	3	4	5	
$1974-77$	1.0	32.7	51.2	13.6	1.4	0.2	
$1978-81$	0.5	56.0	29.9	12.4	1.3	+	
1982	0.2	52.7	46.7	0.2	+	+	
1983	0.6	54.5	33.3	10.0	1.5	+	

The average for the years 1974-77 is taken from last yearls report. For 1978-81, average quarterly weights at age in Danish catches in 1980 and 1981 are as given in the 1982 Working Group report and these were used together with quarterly catches in number (see Table 7.3.2) to produce average quarterly and annual catches in weight at age.
For 1982 and 1983, weights at age in Danish catches in each year were used in the same way.

The trends seen in previous reports is still apparent; age groups 1 and 2 contribute the largest part of the landings, up to 99% in 1982, and age groups 3 and older have decreased in the catoh.
7.7 Predation Mortality

The results of the ICES Stomach Sampling Project 1981 allow for some considerations of the natural mortality of sprat in the North Sea. The text table below shows the VPA number per age group on 1 January 1981, the number dying naturally during 1981 according to VPA and the number eaten by cod, whiting, saithe and mackerel calculated on the basis of Daan (1983) and Gislason (1983). The number eaten by mackerel is assumed to be 0.2×109-groups, and none of the other age groups.

Age groups	Number in stock (N x 109) at Jan. 1981 (VPA)	Number x 109 dying naturally during 1981 (VPA)	Number x 109 eaten in 1981
1	41	19.4	14.1
2	12	3.2	4.7
3	1.7	.4	.2

The number eaten fits quite well with the number dying naturally according to VPA. The $M=.8$ year $^{-1}$ used in the VPA thus seems reasonable.

7.8 Equilibrium Yield

A logistic equilibrium yield has been calculated with the same method as that used in last year's report. Using Walter's first approximation, a regression line was fitted of biomasses at the lst of January of any year t, as estimated in the preliminary VPA (see Table 7.3.4) on an index of fishing pressure being the ratio of landings during the previous season (July $t-2$, to March $t-1$) to biomass in mid-season (1 January t-1). This plot is given in Figure 7.8.1.
Equilibrium yields were then estimated for each season by multiplying each ordinate on the equilibrium line by the landing/biomass ratio for the same season. This gives the parabola plotted in Figure 7.8.2 (corrected for error in last year's report), together with the actual landings. On the basis of indications given by this figure, the high yield/biomass ratios observed in 1979-81 may have contributed to the decline in landings in recent years.
The conclusions given in the previous report remain valid. The expected maximum equilibrium yield is expected at a fishing pressure value close to natural mortality.

7.9 Catch Prognosis

An application of Shepherd's SHOT method was attempted to predict catches of North Sea sprat in 1984 (see Appendix A).
Using the figures of relative catch in weight at age given in Section 7.6, the 'hangover' factor for landings in any year t-I was chosen to be approximately 0.5 in order to take due account of the catch composition of earlier years (for the most recent years, the coefficient would be closer to 0.4 , but the final result is not changed).

For the coefficient correcting for recruitment levels, an approximate value of 0.13 was determined for use with the IYFS indices of age group 1 fish in Division IVb (RI) as given in Table 7.4.2. A preliminary predictor based on data from the years 1973-83 was not used, because this predictor tended to overestimate systematically the catch in the most recent years. Because of this, and because of a general inadequacy of the survey coverage in the earliest years, it was decided to base the predictor on data from 1976-83. No data were available for 1975.
Results for 1979 were excluded due to the inadequacy of the IYFS index for this year.

SHOT estimates of $Y(t)$ were then obtained using the equation:

$$
Y(t)=0.5 Y(t-1)+0.13 \mathrm{RI}
$$

These are plotted against actual landings in Figure 7.9.1, where the diagonal (index = exact prediction of landings) is drawn for reference. It can be seen that the SHOT indices give some prediction of landings in past years.

Using the equation given above with landings and IYFS index in 1984, landings of 115000 tonnes are predicted for 1984. Due to the biassed provisional IYFS estimate (see Section 7.4) this is an overestimate, and when the correct recruitment index becomes available, it should be re-calculated by ACFM. It should be carefully noted that this prediction for 1984 assumes the same level of fishing in 1984 as in 1983. Reductions in the level of fishing in 1984 would lead to approximately proportional reductions in this estimate.

State of the North Sea Sprat Stock
Figure 7.10.1 summarises trends in the catch and age composition of North Sea sprat in Divisions IVb (west) and IVb (east) since 1974. These two areas accounted for over 80% of the catches in the period and reflect the changes that have taken place. The fishery was based primarily on sprat in Division IVb (west) from the beginning of the period until 1977, but since then a greater proportion of the catch has been taken in Division IVb (east) with a predominance of l-group fish. This change in emphasis reached a peak in 1979, and landings have declined steadily since then.
The basic fishery and population characteristics are summarised in Table 7.10.1. It is believed that the sprat population increased in the mid-1960s, but the stock biomass and recruitment estimates up to 1974 (given separately in Table 7.10.1.A) are less reliable than those since 1974 in Table 7.10.1.B. Since 1978-79, the catch has been greater than the estimated total biomass at the beginning of the year. The balance was drawn from the growth of fish in the stock and new recruits. Table 7.10.1.B also records a sharp decline in recruitment over the same years. In this situation, some decline in stock is not unexpected. The present relatively low level of both the total and the spawning stock biomass, therefore, appears to have arisen from the combined effects of previously high catches coupled with poor recruitment.

It is not possible to decide whether the recently low level of spawning stock of North Sea sprat has influenced recruitment itself. The stock may have declined primarily as a consequence of poor recruitment following adverse environmental conditions. Whatever is the cause, all the available evidence indicates the spawning of North Sea sprat is now relatively small. Recovery is heavily
dependent on the occurrence of a new strong year class, and inspection of Table 7.10.1 suggests these may occur only once, and sometimes twice, in five years, but no one can forecast when. It is less obvious whether active management of the stock by a reduction in fishing to maintain or make a contribution towards an increase in stock size would be of material benefit. At these levels the stock may rapidly be changed by a factor of two, and if a given environmental circumstance permits a farourable level of survival, it is reasonable to expect that the resulting year class should also be raised by a factor of two. This could be of importance so there is an argument for a careful control of the fishery to prevent the stock from falling below its present level, and to ensure that any strong new year class can be used to rebuild the stock. It is especially plausible that the recent decline in sprat recruitment has been associated with increased predation by the recovering herring stocks - at least in the southeastern North Sea.
Whatever the merits of these possibilities, the fact is that the sprat stock is now at a relatively low level, and without wishing to draw too close a comparison with other pelagic stocks, the analogy with North Sea mackerel is obvious. The Mackerel Working Group (Anon., 1978) summarised the position as follows:
"With the decline in the stock size resulting from previous recruit failure, the spawning stock (of North Sea mackerel) may be below the level required to produce a year class of reasonable strength".
This applies now to the North Sea sprat. It may be capable of generating a strong year class under especially favourable conditions, but the stock is small and it may take time. Until this happens, the North Sea sprat stock must remain a cause for serious concern.
Having regard for the biological arguments, the Working Group is not convinced that any benefit would follow a prohibition on sprat fishing; in its view it would be wiser to regulate the fishery at a lower level than that predicted by the SHOT method, which assumes fishing mortalities in 1984 to continue at the level of recent years, i.e., the situation calls for some restraint short of closure of the fishery.

8. CHANNEL SPRAT (ICES Divisions VIId,e)

8.1 The Fishery 1983/84

Table 8.1.1 shows the nominal catches for Divisions VIId,e in 1974-83. Egs surveys of earlier years have shown adult stocks to be widely distributed throughout Divisions VIId and VIIe at spawning time, with a.t least partial separation east and west of longitude $2^{\circ} \mathrm{W}$. The only directed sprat fishery takes place in Lyme Bay (see Table 8.1.2), in the winter season, and in some years during the summer as well. In 1983-84, the winter fishery accounted for almost all of the estimated catch of 3857 tonnes, compared to 6612 tonnes in 1982, and over 10000 tonnes in the two previous seasons. The relatively high catches 1979/80-1981/82 were associated with the strong 1978 year class and fishing activity connected with the Cornish mackerel fishery. The decline in catch in 1983/84 has arisen through reduced recruitment and the effect on fishing activity of the implementation of the closed area for mackerel and also as a result of anomalous distribution of sprat in this season. Fish were distributed very close inshore early in the season (November) and then dispersed (Table 8.1.2). Tigure 8.1.1 shows the seasonal catches at Lyme Bay.

The relationship between the Lyme Bay sprat concentration and the Western Channel sprat as a whole is not known. It is assumed that the fishery depends on a proportion of the total stock which returns to Iyme Bay in successive seasons.

8.2 Fishing Effort Data

There is no time series of consistent fishing effort data, so the guideline to trends in the resource depends upon the age composition of the catches and the results of an acoustic survey.
8.3 Age Structure of the Exploited Population and VPA

The age composition of the catches in 1982/83 and 1983/84 (Table 8.3.1) shows changes from earlier years as the stronger year classes 1978/80 pass through the fishery. The relative age distribution of the sprat may also have been influenced by the apparently atypical seasonal distribution of the fishery - though this may itself be the result of weaker recruitment.

The results of VPA are dominated by the assumption $M=0.85$ and the broad framework of parameter estimates is stable for a range of assumptions on the selection pattern and terminal F. The analysis has, therefore, been conducted with the assumption used by the Working Group in 1983, giving the estimates of fishing mortality in Table 8.3 .2 and biomass, recruitment and numbers in the stock are summarised in Tables 8.3.3 and 8.3.4.

The variations in fishing mortality (\bar{F}_{C} (Shepherd, 1983)) over the time series reflect the increase resulting from the activity of larger pelagic trawlers early in the season in the mid-1970s, and a second increase associated with the mackerel fishery around 1980. This was almost certainly attracted by the improved abundance of Lyme Bay sprat following the appearance of a series of stronger year classes, especially that of 1978. Evidently, this part of the West Channel sprat stock has now returned closer to the level of the mid-1970s.

8. Research Vessel Surveys

8.1.1 Acoustic survey

The English vessel R / V "Clione" conducted an acoustic survey of the Lyme Bay area in December 1983. This was hampered by adverse weather conditions and the pattern of the commercial fishing activity suggests that at that time the sprat were dispersing from the area where the fishery had taken place in November and early December. The survey did, however, cover the same area as in 1981. The estimate of acoustic biomass at 8500 tonnes in 1983 is rather less than half the quantity estimated in 1981 (see Figure 8.4.1).
8.5 Weight at Age - Lyme Bay Fishery

The average weight at age 198j-84 has been added to the series in Table 8.5.1. The overall average weight in 1983/84 was somewhat less than in the same quarter of $1981 / 82$ and 1982/83, but this arises from the lower average weight of 5 to 6 year olds. The average weight of age groups providing the majority of the catch was close to that recorded in the previous year.
8.6 Percentage Weight in the Catch

No percentages were calculated for this stock.
8.7 Other Mortality Estimates
8.8 Equilibrium Yield

The data for Lyme Bay sprat, and especially the passage through the fishery of the strong year classes 1978-80, are sufficiently coherent to justify estimation of potential yield for this part of the stock. The present pattern of selection to the fishery gives an asymptotic potential yield curve with the estimated level of fishing mortality below $F_{0.1}{ }^{\circ}$
8.9 Prediction

The yield per recruit curve for Lyme Bay sprat indicates that the present level of exploitation has been below $\mathrm{F}_{0.1}$, and bearing in mind that this constitutes only a part of the Western Channel sprat stock, and that the remainder is not exploited, the stock as a whole is evidently underexploited. The maximum recorded biomass in 1979-80 of about 70000 tonnes (Table 8.3 .4) corresponds to the lower end of the range 65000 - 100000 tonnes deduced from egg surveys for Division VIIe sprat as a whole in 1981, and it may be that in these years the Lyme Bay population represented the greater part of the stock. The long-term potential for the Division VIIe sprat at that level was estimated to be in the range of $20000-42000$ tonnes.
Having regard for the apparent reduction in biomass of the Lyme Bay sprat population, as confirmed by the acoustic survey and the recently weaker year classes, it might be considered prudent to reduce the allowable catch below the long-term potential of 20000 tonnes estimated previously and recommended by ACFM in 1983. The 1983/84 catch at 3500 tonnes and the Y / R analysis indicate, however, that a modest increase in catch from the present level should not be expected to have a detrimental effect on the stock.
9. EVALUATION OF SAMPLING AND REPORTING PROCEDURES
9.1 Statistical Requirements

The Working Group considers that the statistical requirements set out in Section 7.1 of the 1982 report (Anon., 1982) remain in force. At present, annual landings, weight, and catches at age are available to the Working Group, both for the target species and the major by-catch species. In most cases, data are also available by month or quarter and by sampling sub-areas.
9.2 Recommendations

The Working Group felt that because of the very restricted time available during the actual meeting, emphasis should be placed on items to be treated between meetings and presented as working papers at the following meeting.
Apart from the general items recommended in last year's report (see Section 9.3), the following specific tasks should be undertaken by different laboratories and the results presented at the 1985 meeting of the Working Group.

These tasks are:

1) Growth curves (weight and length) for different, well defined fishing grounds for sandeel. It is known that growth rate may vary considerably between grounds or banks in close proximity to each other. (Aberdeen Lab.: Shetland grounds; Charlottenlund: southern North Sea; Norway: northeastern North Sea. Mr Popp Madsen will coordinate this research).
2) Evaluation of the influence of the final results of the stomach contents investigation in 1981 upon assessment of industrial target species. (Charlottenlund and Lowestoft laboratories to confer on this, following the Multi-Species Working Group.)
3) By-catch problems. - Disaggregated catch details are required for the Norway pout fishery to further illuminate the by-catch problems (Charlottenlund, Bergen and Torshavn laboratories).
4) Environmental factors. - A study of factors which may affect sprat abundance, and factors which affect sandeel distribution. (All members of the Working Group to consider this problem.)

REFERENCES

Anon. 1978. Report of the Mackerel Working Group. ICES, Doc. C.M.1978/H:4.
Anon. 1979. Report of the Herring Assessment Working Group. ICES, Doc. C.M. 1979/H:6.

Anon. 1982. Report of the Industrial Fisheries Working Group. ICES, Doc. C.M.1982/Assess:6.

Anon. 1983a. Report of the Industrial Fisheries Working Group. ICES, Doc. C.M.1983/Assess:7.
Anon. 1983b. Report of the North Sea Roundfish Working Group. ICES, Doc. C.M.1983/Assess:18.

Anon. 1983c. Report of the 1983 Planning Group on ICES-coordinated herring and sprat acoustic surveys. ICES, Doc. C.M.1983/H:12.
Anon. 1984. Reports of the ICES Advisory Committee on Fishery Management 1983. ICES, Coop.Res.Rep., No.128.

Armstrong et al. 1983. A preliminary report on the analysis of the whiting stomachs collected during 1981. ICES, Doc. C.M.1983/G:59.

Daan, N. 1983. Analysis of the cod samples collected during the 1981 Stomach Sampling Project. ICES, Doc. C.M.1983/G:61.
Gislason, H. 1983. A preliminary estimate of the yearly intake of fish by saithe in the North Sea. ICES, Doc. C.M.1983/G:52.
Johnson et al. 1983. Report on echo-integrator surveys for sprat undertaken in the North sea during the 1982-83 winter season. ICES, Doc. C.M.1983/H:28.

Shepherd, J. 1983. Two measures of overall fishing mortality. J.Cons.int. Explor.Mer, 41(1).
Shepherd, J. 1984. Short-cut TACs. (working document).

APPENDIX A

THE SHEPHERD HANGOVER TAC (SHOT)

A new approach to catch forecasting developed by Shepherd (1983) was used to make predictions of the 1984 North Sea catches of Norway pout and sprat. This predicts catches in year $t, Y(t)$ as

$$
\begin{equation*}
Y(t)=\alpha Y(t-1)+\beta R(t) \ldots \ldots \ldots \ldots \ldots \ldots . \tag{1}
\end{equation*}
$$

where $R(t)$ is an index of recruitment and α and β are coefficients. Both coefficients are strictly functions of fishing mortality but as a first approximation may be considered as constants on the assumption of constant fishing levels when fishing mortality predictors (e.g., fishing effort data) are unavailable. The rationale of Equation 1 is obviously that where fishing mortality remains the same, the current year's catch is a proportion $\alpha(<1.0)$ of the previous year's catch plus an increment due to recruitment. The coefficient α called the hangover factor could be calculated in a number of ways. The Working Group chose to make plausible guesses as to its value by setting it equal to the average proportion of annual catches supplied by fish aged 2 or older. The coefficient β can then either be estimated by regression or be estimated as

$$
\beta=\left\{\begin{array}{l}
\sum_{2}^{t_{2}} \tag{2}\\
t=t_{1} \\
Y(t)-\alpha \sum_{t=t_{1}}^{t_{2}} Y(t-1)
\end{array}\right] / \sum_{t=t_{1}}^{t_{2}} R(t) \ldots .
$$

where t_{1} and t_{2} are the first and last years with data.
This formulation for β gives SHOT estimates for years y_{1} to y_{2}, which have the same average value as the yield in these years. Estimated in this way, fortunately the predictions seem rather insensitive to the precise hangover factor adopted.

Table 2.1.1 Total industrial landings (tonnes $\times 10^{-3}$) from the North Sea, 1974-1983.

YEAF	Target industrial species				By-catch for reduction ${ }^{6}$)				$\text { TOTAL }{ }^{\text {4) }}$
	Norway pout	Sandeel	Sprat	Sum	$\begin{aligned} & \hline \text { Blue } \\ & \text { whiting } \end{aligned}$	$\begin{aligned} & \text { Protecte }{ }^{2} \\ & \text { species } \end{aligned}$	Herring ${ }^{3}$	Sum	
1974	735.8	524.8	313.6	1574.2	62.2	220.4		282.6	1856.8
1975	559.7	428.2	641.2	1629.1	42.0	127.8		169.8	1798.9
1976	435.4	487.6	621.5	1544.5	36.0	198.0	12.0	246.0	1790.5
1977	389.9	785.6	304.0	1479.5	38.4	147.3	9.5	195.2	1674.7
1978	270.1	786.8	378.3	1435.2	99.9	67.6	7.8	175.3	1610.5
1979	319.8	577.8	379.6	1272.2	63.3	78.0	15.3	156.6	1433.8
1980	470.4	728.5	323.4	1522.3	75.1	71.3	7.3	153.7	I 676.0
1981	235.4	568.6	209.1	1013.1	61.8	85.4	84.2	235.8	1266.9
1982	359.0	610.9	152.7	1122.6	106.6	59.0	152.9	318.5	1441.1
19835)	421.3	536.5	91.2	1049.0	88.9	39.3	154.5	282.7	1331.7

1) C.M.1984/Assess:2
2) C.M.1983/Assess:16 and 18 (Haddock, whiting, saithe)
3) C.M.1983/Assess:9

4 Does not include other species which on an average range between 20000 and 40000 tonnes
5) Preliminary
6) By-catches do not include fish l.anded for human consumption

Table 3.1.1. Herring by-catch North Sea in tonnes by year and Division

Division	1977	1978	1979	1980	1981	1982	1983
IVa West	502	27	443	705	7933	331	546
IVa East	186	-	2	48	-	491	574
IVb	8790	7545	14882	6008	75533	150357	153361
IVc	-	223	1	494	702	1699	11
Total	9478	7795	15328	7255	84	168	152878

Table 3.1.2. Revised herring by-catch North Sea in numbers at age (million) for 1982

Winterrings	0	1	2	3	4	5	6	7	$8+$
Division IVa West	-	-	-	-	-	1	1	-	1
Division IVa East	-	2	5	-	-	-	-	-	-
Division IVb	9575	898	62	3	-	-	-	-	-
Division IVc	-	10	8	8	-	-	-	-	-
Total	9575	910	75	11	-	1	1	-	1

Table 3.2.1. Herring by-catch North Sea in numbers at age (million) for 1983

Winterrings	0	1	2	3	4	5	6	7	$8+$
Division IVa West	-	-	-	1	1	-	-	-	1
Division IVa East	-	1	5	-	-	-	-	-	-
Division IVb	10029	915	81	3	-	-	-	-	-
Division IVc	1	-	-	-	-	-	-	-	-
Total	10030	916	86	4	1				1

Table 3.4.1 Total reported by-catch (tonnes) of HADDOCK, WHITING SAITHE and BLUE WHITING for reduction purposes, 1975-1983 ${ }^{1}$

Species	1975	1976	1977	1978	1979	1980	1981	1982	$1983^{2)}$
Haddock	41380	48204	34993	9659	17414	25154	17615	20980	15056
Whiting	86376	149759	106104	55274	59021	45747	66595	32990	22752
Saithe	37678	66766	6197	2566	1635	363	1280	5003	1445
Blue Whiting	41955	36024	38389	99874	63333	75129	61754	106560	88888

1) C.M.1984/Assess:2, C.M.1983/Assess:16 and 18
2) Preliminary

Table 3.4.2 North Sea. Total industrial landings in tonnes (sandeel excluded) and estimated by-catches of HADDOCK and WHITING for 1982 and 1983. Sprat is also excluded from Norwegian and United Kingdom totals.

Area	Quarter I			Quarter II			Quarter III			Quarter IV		
1982	Total ind.	Haddock	Whiting									
S.-a. I-III	9451	1546	2895	310	1		97864	3121	695	47346	1575	5041
IV	37060	3674	4632	7675	946	677	21812	772	105	39852	904	1067
$\begin{aligned} & \text { Div. } \\ & \mathrm{Va} \end{aligned}$	18706	1078	1 692	45525	1738	280	78986	3640	1046	37293	398	510
Vb	15	1	4	532	31	99	45291	56	595	17458	21	105
VI ${ }^{\text {S.-a }}$	50955	355	10514	5418	112	1524	85462		420	53791		574
1983												
$\begin{aligned} & \text { S.-a. } \\ & \text { I-III } \end{aligned}$	27910	2239	2438	9206	264	81	64425	1558	553	75413	1689	2507
IV	26271	1133	1256	6665	276	427	15079	310	116	26987	784	819
$\begin{aligned} & \mathrm{Div.} \\ & \mathrm{Va} \end{aligned}$	21949	492	503	92342	2344	211	129557	2077	1382	30566	986	1173
Vb	31	15	3	2344	63		63760	413	2627	10707	256	501
$\begin{aligned} & \text { S. }-\mathrm{a} . \\ & \mathrm{VI} \end{aligned}$	8127		2586	7217		463	102674	36	3003	66871	121	2103

S.-a. = Sub-area

Table 3.4.3 North Sea. Species composition in Norwegian Norway POUT landings (tonnes)

Year	Quarter	Landings	Norway Pout	Blue whiting	Cod	Haddock	Whiting	Saithe	Herring	Mackerel	Others
$\begin{aligned} & 1975 \\ & 1976 \\ & 1977 \\ & 1978 \end{aligned}$	$1-4$ $1-4$ $1-4$ $1-4$	$\begin{array}{ll} 297 & 222 \\ 200 & 777 \\ 143 & 001 \\ 136 & 455 \end{array}$	$\begin{array}{r} 218900 \\ 108937 \\ 98291 \\ 80755 \end{array}$	$\begin{aligned} & 40210 \\ & 34600 \\ & 20737 \\ & 39989 \end{aligned}$	$\begin{array}{r} 1188 \\ 783 \\ 661 \\ 659 \end{array}$	$\begin{array}{r} 9840 \\ 3133 \\ 920 \\ 766 \end{array}$	$\begin{array}{r} 13243 \\ 6744 \\ 2707 \\ 1462 \end{array}$	$\begin{array}{r} 4330 \\ 12850 \\ 4390 \\ 2494 \end{array}$			$\begin{array}{rr}9 & 511 \\ 33 & 730 \\ 15 & 300 \\ 10 & 351\end{array}$
1979	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 1-4 \end{array}$	$\begin{array}{r} 24504 \\ 40310 \\ 33602 \\ 19387 \\ 117803 \end{array}$	$\begin{array}{lll}17 & 087 \\ 18963 \\ 23 & 856 \\ 15 & 158 \\ 75 & 046\end{array}$	$\begin{array}{r} 4971 \\ 17504 \\ 6584 \\ 1881 \\ 30930 \end{array}$	$\begin{array}{r} 153 \\ 202 \\ 98 \\ 26 \\ 479 \end{array}$	$\begin{array}{r} 298 \\ 406 \\ 625 \\ 7254 \\ 2583 \end{array}$	$\begin{array}{r} 1032 \\ 315 \\ 132 \\ 189 \\ 1659 \end{array}$	$\begin{array}{r} 179 \\ 289 \\ 309 \\ 99 \\ 876 \end{array}$	$\begin{aligned} & 2 \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 4 \\ & 9 \end{aligned}$	995 2808 2178 1221 7202
1980	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 1-4 \\ 1-4 \end{array}$	$\begin{array}{r} 14469 \\ 36896 \\ 42900 \\ 13794 \\ 108059 \end{array}$	10355 18281 32449 8375 69460	810 13623 6400 1129 21962	$\begin{array}{r} 195 \\ 207 \\ 136 \\ 12 \\ 550 \end{array}$	$\begin{array}{r} 947 \\ 1414 \\ 655 \\ 902 \\ 3918 \end{array}$	$\begin{array}{r} 759 \\ 312 \\ 42 \\ 86 \\ 1 \quad 199 \end{array}$	$\begin{array}{r} 107 \\ 130 \\ 87 \\ 18 \\ 342 \end{array}$			$\begin{array}{rrr}1 & 296 \\ 2 & 929 \\ 3 & 131 \\ 3 & 272 \\ 10 & 628\end{array}$
1981	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 1-4 \end{array}$	$\begin{array}{r} 8565 \\ 28700 \\ 30127 \\ 9217 \\ 76609 \end{array}$	$\begin{array}{r} 6996 \\ 17276 \\ 19790 \\ 7249 \\ 51311 \end{array}$	$\begin{array}{r} 363 \\ 7826 \\ 6135 \\ 745 \\ .5069 \end{array}$	$\begin{array}{r} 58 \\ 111 \\ 64 \\ 26 \\ 259 \end{array}$	$\begin{array}{r} 102 \\ 336 \\ 841 \\ 453 \\ 1731 \end{array}$	$\begin{array}{r} 359 \\ 221 \\ 69 \\ 150 \\ 799 \end{array}$	$\begin{array}{r} 75 \\ 72 \\ 1024 \\ 50 \\ 1221 \end{array}$		$\begin{array}{r} 1 \\ 25 \\ 12 \\ 4 \\ 42 \end{array}$	$\begin{array}{rl} & 611 \\ 2 & 833 \\ 2 & 192 \\ 541 \\ 6 & 177 \end{array}$
1982	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 1-4 \end{array}$	$\begin{array}{r} 8555 \\ 48017 \\ 68498 \\ 30191 \\ 155261 \end{array}$	$\begin{array}{r} 7443 \\ 33502 \\ 28991 \\ 17408 \\ 87344 \end{array}$	158 9731 27702 10019 47610	$\begin{array}{r} 58 \\ 135 \\ 78 \\ 11 \\ 282 \end{array}$	$\begin{array}{r} 186 \\ 948 \\ 1202 \\ 288 \\ 2624 \end{array}$	$\begin{array}{r} 306 \\ 59 \\ 120 \\ 180 \\ 665 \end{array}$	$\begin{array}{r} 41 \\ 176 \\ 4368 \\ 418 \\ 5003 \end{array}$		$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{array}{rr} & 363 \\ 3466 \\ 6020 \\ 1 & 867 \\ 11 & 716 \end{array}$
1983	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 1-4 \end{array}$	$\begin{array}{r} 8631 \\ 82562 \\ 74000 \\ 17627 \\ 182820 \end{array}$	$\begin{array}{r} 5773 \\ 31545 \\ 44949 \\ 13400 \\ 95667 \end{array}$	$\begin{array}{r} 1592 \\ 38272 \\ 19963 \\ 2663 \\ 62490 \end{array}$	$\begin{array}{r} 71 \\ 386 \\ 254 \\ 29 \\ 740 \end{array}$	$\begin{array}{r} 138 \\ 2 \quad 276 \\ 949 \\ 527 \\ 3890 \end{array}$	$\begin{aligned} & 168 \\ & 141 \\ & 133 \\ & 170 \\ & 612 \end{aligned}$	$\begin{array}{r} 303 \\ 406 \\ 603 \\ 133 \\ 1455 \end{array}$	3	$\begin{aligned} & 57 \\ & 19 \\ & 76 \end{aligned}$	$\begin{array}{r} 586 \\ 9479 \\ 7127 \\ 705 \\ 17897 \end{array}$

Table 3.4.4 North Sea, species composition in Norwegian SANDEFL landings 1979-1983 (tonnes).

Year	Landings	Sandeel	Cod	Haddock	Whiting	Saithe	Herring	Mackerel	Others
1979	103273	101420	231	520	208	250	-	-	644
1980	147748	144752	54	1118	382	-	-	-	1442
1981	53370	52641	29	504	68	6	4	6	112
1982	47647	46514	86	703	107	-	8	-	229
1983	12376	12179	34	100	8		3	2	50

1
$\stackrel{\underset{-}{W}}{ }$

Table 3.4.5 By-catch landed for human consumption by Faroese Industrial Trawlers from ICES Division IVa. Target species Norway POUT-SANDEEL 1975-1983 (tonnes). Information from Vädihagtalsstovan.

Total land- ings Ind. Trawlers	1975	1976	1977	1978	1979	1980	1981	1982	$1983^{7 \pi}$

Landed for human consumption

Cod	652	448	257	50	111	150	94	60	210
Haddock	82	85	45	12	7	27	29	15	111
Whiting	-	-	-	-	7	21.	21	56	91
Ling	7	208	306	88	68	44	71	18	-
Monkfish	28	96	87	24	-	12	49	2	-
Saithe	287	425	318	213	407	1020	417	672	896
Others	269	132	159	8	201	247	56	182	5
TOTAL	1325	1394	1172	395	801	1521	737	1005	1313

[^1]Table 4.1.1 NGRify POUT. Annual landings (in thousand tonnes) in Sub-area IV by countries North Sea 1957-83

Year	Denmark	Faroes	Norway	Sweden	$\begin{gathered} \text { UK } \\ \text { (Scotland) } \end{gathered}$	Others	Total
1957			0.2				0.2
1958							
1959	61.5		7.8				69.3
1960	17.2		13.5				30.7
1961	20.5		8.1				28.6
1962	121.8		27.9				149.7
1963	67.4		70.4				137.8
1964	10.4		51.0				61.4
1965	8.2		35.0				43.2
1966	35.2		17.8			+	53.0
1967	169.6		12.9			+	182.6
1968	410.8		40.9			+	451.8
1969	52.5	19.6	41.4			$+$	113.5
1970	142.1	32.0	63.5		0.2	0.2	238.0
1971	178.5	47.2	79.3		0.1	0.2	305.3
1972	259.6	56.8	120.5	6.8	0.9	0.2	444.8
1973	215.2	51.2	63.0	2.9	13.0	0.6	345.9
1974	464.5	85.0	154.2	2.1	26.7	3.3	735.8
1975	251.2	63.6	218.9	2.3	22.7	1.0	559.7
1976	244.9	64.6	108.9	$+$	17.3	1.7	435.4
1977	232.2	$50.9{ }^{\text { }}$	98.3	2.9	4.6	1.0	389.9
1978	163.4	19.7	80.8	0.7	5.5	-	270.1
1979	219.9	21.9	75.0		3.0		319.8
1980	366.2	34.1	69.5		0.6		470.4
1981	167.5	1.6 .6	51.3		+		235.4
1982	256.3	15.4	87.3		0		359.0
$1983^{\text {³ }}$	301.1	24.5	95.7		+		421.3

${ }^{3}$ Preliminary

Table 4.1.2 NORWAY POUT. North Sea, National landinge (tonnes) by monthe 1980-1983 (Denmark, Norway, United Kingdom (Scotland).

Month	Denmark	Norway	Faroes	$\frac{\text { UK }}{\text { (Scotiand) }}$	Total
1980					
Jan	14792	4962	2299	193	22246
Feb	18620	3459	3534	315	25928
Mar	11653	1934	2010		15597
Apr	7233	2103	158	8	9502
May	7853	8004	2249	-	18106
Jun	3114	8174	2104	-	13392
Jul	55385	8673	3001	-	67059
Aug	66255	10492	2325	-	79072
Sep	71144	13284	7846	87	92361
Oct	60474	1340	3976	-	65790
Nov	28749	6248	3279	-	38276
Dec	20938	787	1282	-	23077
Total	366210	64460	34063	603	470336
1981					
Jan	11782	2 E 22	784		15388
Feb	20632	2892	1601		25125
Mar	10923	1282	1577	-	13782
Apr	6103	3119	2147	-	11369
Nay	1414	с 733	2291	-	10438
Jun	4541	7424	1726	-	13691
Jul	7471	5510	2817	-	15798
Aug	25715	10226	724	-	36665
Sep	16465	4054	-	-	20518
Oct	25721	2502	958	-	27181
Nov	17174	1413	1136	-	19723
Dec	21.540	ج 334	810	-	25684
Total	$16 \% 481$	51311	16573	0	235365
1982					
Jan	13072	3968	223	-	17263
Feb	12998	1769	641	-	15408
Mar	12117	1706	1379	-	15202
4 Am	10162	6028	1098	-	17288
May	542	7705	1068	-	9315
Jun	0	19769	1160	-	20929
Jul	32488	10984	2225	-	45697
Aug	38939	8708	1891	-	49538
Sep	66734	9299	1608	-	77. 641
Oot	25223	8104	2072	-	35399
Nov	23888	4943	1330	-	30161
Dec	20060	4361	675	-	25096
Total	256223	87344	15370	0	358937
$\underline{1983}$					1)
Jan	10343	821		-	11852
Feb	19621	2819		-	23821
Mar	19720	2133		-	23200
Apr	7628	4673		-	13059
May	1851	14819		-	17698
Jun	5563	12053		-	18702
Jul	20217	12504		-	34738
Aug	39145	20201		-	63005
Sep	70668	12244		-	88024
Oct	47949	4937		-	56146
Nov	30630	6355		-	39265
Dec	27801	2108		-	31753
Total	301136	95667	24463	0	421266

1) Estimated, assuming Faroes catoh is monthly diotributed as the Daniah and
Norwegian catoh.

Table 4.1.3 NORWAY POUT. Annual landings (tonnes) in Division VIa (For 1971-198 data officially reported to ICES)

Country	1972	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	10\%?	1983 ${ }^{\text {\% }}$
Belgium	1	-	-	-	-	-	-	-	-	-	-	-	-
Denmark	363	186	42	-	193	-	-	4443	15609	13070	2877	751	530
Faroes	-	-	1743	1581	1524	6203	2177	18484	4772	3530	3540	3026	6261
Germany, Fed.Rep,	-	-	-	179	-	8	-	-	-	-	-	-	-
Netherlands	-	-	-	-	322	147	230	21.	98	68	180	548	3)
Norway	-	-	-	$144{ }^{\text {2) }}$	-	$82^{2)}$	-	-	-	-)
Poland	-	-	-	75	-	-	-	-	-	-			-
UK (Scotland) ${ }^{\text {I }}$	1622	3760	9282	4702	6614	6346	2799	302	23	1202	115	586	+
USSR	-	-	-	40	2	7147	-	-	-	-	-	-	-
Total	1986	3946	11067	6721	8655	19933	5206	23250	20502	17870	7757	1885	

${ }^{\text {¥) }}$ Preliminary ${ }^{\text {l) }}$ Amended using national data. ${ }^{2)}$ Including by-catch. 3) Data not available

Table 4.1.4 NORWAY POUT. Annual landings (tonnes) in Division IIIa (For 1971-1988 data officially reported to ICES)

Country	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	19833)
Denmark Faroes	25800	17259	$\begin{array}{r} 23152 \\ 643 \end{array}$	10669	15666	40144	20694	23922	23951	26235	29273	51023^{41}	19391
Norway	296			$62^{\text {²) }}$	925 \%)	$50^{\text {\%) }}$	104	362	1182	141	$75 \cdot$	1259	233
Sweden		1)	1)	1)	3272	2255	318	5912)	32	39	(0)	103	515)
Total	26096	17259	23795	10731	19863	42449	21116	24875	25165	26415	30035	52385	19675

1) Included in the North Sea. 2) Includes North Sea. 3) Preliminary. 4) Landings in foreign ports Jul-Dec not included.
2) Data from Data Form 5
\#) Including by-catch

Table 4.2.1 Norway Pout. Catch per unit of effort, hectolitres per days fishing per mean GRT, by quarters in the Norwegian fishery.

QUARTHR	1	2	3	4	Weighted mean all year	By-catch ex- cluded
YEAR					1.221	0.662
1976	1.458	1.401	1.010	1.214	1.221	
1977	1.299	1.346	1.304	1.413	1.346	0.925
1978	0.916	1.251	1.631	1.427	1.353	0.801
1979	1.192	1.276	1.512	1.656	1.364	0.869
1980	1.000	2.198	1.648	1.518	1.658	1.066
1981	1.050	1.383	1.120	1.032	1.186	0.794
1982	0.841	1.693	1.674	1.571	1.559	0.877
1983	1.454	1.677	1.441	1.569	1.566	0.900

Table 4.2.2 Faroese cpue data, industrial trawlers NORWAY POUT in ICES Division IVa and IVb (kg/hours).

Month	1978	1979	1980	1981	1982	$1983{ }^{\text {7F }}$
Jenuary	1389	1830	1543	2005	1109	2625
February	932	1207	I 755	1104	1384	1575
March	896	1207	1478	1210	1839	1384
April	670	1061	1523	1204	1777	1493
May	1110	885	1978	1308	1553	2356
June	1052	1542	2508	1015	1755	1990
Juzy	784	1178	1576	1294	2301	1363
August	1242	1331	2387	1051	2571	2298
September	3007	2495	2807	-	2297	2227
October	2215	2139	2648	1663	2297	2176
November	1915	2003	1993	1387	2346	2105
December	2168	2455	2222	1496	2003	1250
Weight average/nom.	1266	1557	2084	1250	2026	1807
Total effort reported in Log books	11300	6660	9918	11256	7287	3192
Total catch reported Log books	14307	10375	20673	14072	14777	5511
Total landings	37699	21497	34064	16573	15340%)	30306

[^2]- 38 -

Table-4.3.1 Norway POUT. Input data for quarterly VPA.
Catch at age (no $\times 10^{-6}$).

		Age Groupa					
Year	Quarter	0	1	2	3	4	
1974	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 846 \\ & 5720 \end{aligned}$	$\begin{array}{r} 13450 \\ 7873 \\ 9966 \\ 7809 \end{array}$	$\begin{aligned} & 414 \\ & 193 \\ & 489 \\ & 140 \end{aligned}$	$\begin{array}{r} 26 \\ 26 \\ 145 \\ 4 \end{array}$	1 1 -	Not used in VPA
1975	1	-	3742	1726	13	-	
	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} - \\ 889 \\ 9968 \end{array}$	$\begin{array}{ll} \hline 7 & 206 \\ 7 & 117 \\ 2 & 027 \end{array}$	$\begin{aligned} & 383 \\ & 349 \\ & 461 \end{aligned}$	$\begin{gathered} 2 \\ 1 \end{gathered}$	-	
1976	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 197 \\ & 5986 \end{aligned}$	$\begin{array}{ll} 4 & 950 \\ 7 & 580 \\ 5 & 349 \\ 3 & 157 \end{array}$	$\begin{aligned} & 589 \\ & 645 \\ & 590 \\ & 320 \end{aligned}$	$\begin{array}{r} 91 \\ 58 \\ 2 \\ 15 \end{array}$		
1977	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} 61 \\ 1655 \end{array}$	$\begin{array}{ll} 9 & 171 \\ 3 & 577 \\ 3 & 580 \\ 3 & 540 \end{array}$	$\begin{aligned} & 950 \\ & 367 \\ & 861 \\ & 236 \end{aligned}$	$\begin{array}{r} 33 \\ 8 \\ 45 \\ 5 \end{array}$	3	
1978	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 304 \\ & 1225 \end{aligned}$	$\begin{array}{ll} 2 & 931 \\ 1 & 181 \\ 2 & 385 \\ 1 & 400 \end{array}$	$\begin{array}{r} 1371 \\ 650 \\ 786 \\ 322 \end{array}$	$\begin{array}{r} 93 \\ 194 \\ 30 \\ 6 \end{array}$	4	
1979	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 968 \\ & 861 \end{aligned}$	$\begin{array}{ll} 5 & 079 \\ 3 & 270 \\ 4 & 243 \\ 2 & 147 \end{array}$	$\begin{aligned} & 940 \\ & 249 \\ & 763 \\ & 166 \end{aligned}$	$\begin{array}{r} 170 \\ 27 \\ 49 \\ 11 \end{array}$	$\begin{aligned} & 3 \\ & 1 \\ & - \\ & - \end{aligned}$	
1980	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 24 \\ & 640 \end{aligned}$	$\begin{aligned} & 5025 \\ & 2576 \\ & 7709 \\ & 3913 \end{aligned}$	$\begin{array}{r} 1072 \\ \\ 686 \\ 1959 \\ 511 \end{array}$	$\begin{array}{r} 59 \\ 29 \\ 18 \\ 6 \end{array}$	2	
1981	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} 76 \\ 36 \quad 557 \end{array}$	$\begin{array}{ll} 2 & 223 \\ 1 & 072 \\ 1 & 309 \\ 1 & 036 \end{array}$	$\begin{array}{r} 1688 \\ 621 \\ 944 \\ 301 \end{array}$	$\begin{array}{r} 76 \\ 77 \\ 17 \\ 3 \end{array}$	$\begin{aligned} & 6 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	
1982	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 151 \\ & 1058 \end{aligned}$	$\begin{array}{ll} 5 & 264 \\ 3 & 243 \\ 6 & 563 \\ 3 & 015 \end{array}$	$\begin{array}{r} 415 \\ 274 \\ 429 \\ 46 \end{array}$	$\begin{array}{r} 216 \\ 23 \\ 62 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
1983	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} - \\ - \\ 420 \\ 2519 \end{gathered}$	$\begin{array}{cc} 3 & 945 \\ 1 & 714 \\ 5 & 485 \\ 4 & 052 \end{array}$	$\begin{array}{ll} 1 & 221 \\ 1 & 139 \\ 1 & 477 \\ & 358 \end{array}$	$\begin{array}{r} 14 \\ 9 \\ 16 \\ 7 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	

Table 4.3.2 Norway Pout. Quarterly VPA Fishing Mortality (quarter ${ }^{-1}$)

Year	Quarter	Age groups				
		0	1	2	3	4
1976	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.58 \end{aligned}$	-
1977	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.09 \\ & 0.16 \\ & 0.29 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.10 \\ & 0.43 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.06 \\ & 0.63 \\ & 0.15 \end{aligned}$	0.2 - -
1978	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.05 \\ & 0.16 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.19 \\ & 0.45 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.95 \\ & 0.46 \\ & 0.19 \end{aligned}$	0.20 - -
1979	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.08 \\ & 0.17 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \\ & 0.58 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.19 \\ & 0.82 \\ & 0.54 \end{aligned}$	0.20 - -
1980	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\overline{0.02}$	$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.27 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.13 \\ & 0.91 \\ & 0.86 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.18 \\ & 0.20 \\ & 0.12 \end{aligned}$	0.20 - -
1981	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\overline{0.25}$	$\begin{aligned} & 0.10 \\ & 0.08 \\ & 0.16 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.14 \\ & 0.42 \\ & 0.29 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 1.09 \\ & 1.09 \\ & 0.85 \end{aligned}$	0.20
1982	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.06 \\ & 0.22 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.21 \\ & 0.74 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.09 \\ & 0.50 \end{aligned}$ -	0.20
1983	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.003 \\ & 0.024 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.04 \\ & 0.24 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.21 \\ & 0.59 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.11 \\ & 0.37 \\ & 0.35 \end{aligned}$	-

Table 4.3.3. NORWAY POUT. Quarterly VPA. Stock in number $\times 10^{-6}$

		Age Groups				
Year	Quarter	0	1	2	3	4
1976	3 4	$\begin{array}{ll} 197 & 354 \\ 132 & 130 \end{array}$	30693 16 1658	1963 843	67 43	
1977	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	110491 74015	83 710 48 689 29737 17 037	$\begin{array}{ll}8 & 353 \\ 4 & 831 \\ 2 & 941 \\ 1 & 281\end{array}$	$\begin{array}{r} 310 \\ 181 \\ 115 \\ 41 \end{array}$	17
1978	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 196582 \\ & 131525 \end{aligned}$	$\begin{array}{ll} 48 & 269 \\ 29 & 978 \\ 19 & 136 \\ 10 & 898 \end{array}$	$\begin{array}{ll}8 & 568 \\ 4 & 636 \\ 2 & 582 \\ 1 & 101\end{array}$	$\begin{array}{r} 668 \\ 372 \\ 97 \\ 41 \end{array}$	24
1979	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	222 258 148 197	$\begin{array}{ll} 87 & 168 \\ 54 & 310 \\ 33 & 752 \\ 19 & 193 \end{array}$	$\begin{array}{ll}6 & 173 \\ 3 & 378 \\ 2 & 062 \\ & 774\end{array}$	$\begin{array}{r} 480 \\ 186 \\ 103 \\ 30 \end{array}$	23
1980	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	63253 42381	98639 62042 39496 20261	$\begin{array}{rr} 11 & 128 \\ 6 & 591 \\ 3 & 862 \\ 1 & 042 \end{array}$	$\begin{array}{r} 385 \\ 211 \\ 118 \\ 65 \end{array}$	12
1981	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	294 197 197	27889 16893 10454 5948	$\begin{array}{r} 10426 \\ 5 \\ 3266 \\ 1268 \\ 1 \end{array} 434$	$\begin{array}{r} 295 \\ 136 \\ 31 \\ 7 \end{array}$	39
1982	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 173921 \\ & 116460 \end{aligned}$	$\begin{array}{r} 102627 \\ 64521 \\ 40618 \\ 21927 \end{array}$	$\begin{array}{r} 3151 \\ 1777 \\ 970 \\ 309 \end{array}$	$\begin{aligned} & 718 \\ & 308 \\ & 188 \\ & -\quad \end{aligned}$	2
1983	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 192623 \\ & 128777 \end{aligned}$	$\begin{array}{ll} 77 & 205 \\ 48 & 551 \\ 31 & 152 \\ 16 & 456 \end{array}$	$\begin{array}{rl} 12 & 261 \\ 7 & 230 \\ 3 & 926 \\ 1 & 454 \end{array}$	$\begin{array}{r} 170 \\ 103 \\ 62 \\ 28 \end{array}$	-

Table 4.4.1 Recruitment indices of Norway POUT 1959-83 as shown by number per houris fishing on research vessel surveys.

Year class	Abundance on pelagic 0group surveys	Abundance in northwestern North Sea in Scottish autum surveys	Abundance on international young fish surveys
	Arithmetic mean 0-group	$\begin{gathered} \text { Geometric mean } \\ \text { O-group as } \\ \text { l-group } \end{gathered}$	$\begin{aligned} & \text { Arithmetic mean } \\ & \text { 1-group as } 2-\text { group } \end{aligned}$
1959		- 106.8 (22)	
1960		10.9 (22) 28.1 (14)	
1961		59.6 (14) 181.7 (15)	
1962		25.0 (15) 141.8 (15)	
1963		8.5 (15) 6.6 (14)	
1964		14.0 (14) 18.6 (11)	
1965		1.2 (11) 6.1 (13)	
1966		16.4 (13) -	
1967		- 243.2 (17)	
1968		4.5 (7) -	6
1969		- . 33.1 (4)	$35 \quad 22$
1970		101.7 (4) 111.7 (12)	1556653
1971	3347 (26)	16.7 (12) 328.8 (22)	3425438
1972	545 (28)	36.3 (22) 16.6 (10)	4207399
1973	2558 (28)	224.4 (10) 121.6 (22)	$25626 \quad 2412$
1974	3237 (28)	84.4 (22) 9.5 (11)	4242385
1975	3623 (28)	41.2 (11) -	4599334
1976	10884 (28)	- 131.5 (16)	48131215
1977	1521 (28)	77.7 (16) 83.9 (34)	1913240
1978	2974 (27)	144.3 (34) -	2690611
1979	1868 (27)	- -	4081557
1980	500 (27)	- 18.7 (22)	1375403
1981	2843 (27)	191.5 (22) 97.8 (29)	$4315 \mathrm{n} / \mathrm{a}$
1982	970	36.1 (29) 47.7 (19)	$2612 \mathrm{n} / \mathrm{a}$
1983	750 (27)	25.9 (19)	3587
	NB. Number of statistical rectangles sampled shown in brackets		

1)

From report of International Gadoid Survey Working Group; standard area C.M. 1981/H:10, standard area of 93 statistical rectangles.

Table 4.4.2. Recruitment indices of NORWAY POUT as shown by the number per hour's fishing on English research vessel surveys.

Year class	Groundfish survey August North Sea 0-group (entire North Sea)	Norway Pout survey - November			
		O-group l-group $\begin{gathered}\text { 2-group } \\ \text { main Noway Pout } \\ \text { 3-group }\end{gathered}$ (main Norway Pout distribution area)			
1976	-				5
1977	1387			222	82
1978	1210		5501	431	-
1979	1607	6449	4519	123	36
1980	151	2106	2146	42	-
1981	1770	23946	7166	1935	
1982	1817	19567	7603		
1983	1501	21852			

Table 4.5.1 NORWAY POUT. North Sea 1983. Mean weight at age by quarters, Danish and Norwegian catch combined (grammes).

Quarters I983	Age group				
	0	1	2	3	4
	-	7.72	22.54	45.41	-
II	-	10.78	26.84	50.56	-
III	8.37	22.87	36.20	61.19	62.00
IV	6.18	26.73	40.14	66.62	67.00

Table 4.6.1 Norway POUT. North Sea. Quarterly and annual landings in weight by age as a percentage of the overall landings.

Year and Quarter	$A \mathrm{ge}$				
	0	1	2	3	4
1979					
I	0	11\%	6\%	2\%	-
II	0	10\%	2\%	0.3\%	0
III	1\%	32\%	10\%	-	0
IV	2\%	19\%	3%	-	0
1979 Total	3\%	72\%	21\%	3\%	-
1980					
I	0	8\%	4\%	-	-
II	0	5\%	3%	-	-
III	-	38\%	17%	-	-
IV	1\%	19\%	4\%	-	-
1980 Total	1\%	70\%	28\%	1\%	-
1981					
I	0	7\%	16\%	1\%	-
II	0	6\%	6\%	1\%	0
III	-	16\%	16\%	-	-
IV	10\%	14\%	6\%	-	0
1981 Total	10\%	43\%	44\%	3%	-
1982					
I	-	10\%	3\%	2\%	
II		7\%	1\%	1\%	
III	1\%	42\%	5\%	1\%	
IV	2%	24\%	1\%		
1982 Total	3	83\%	10\%	4\%	-
1983 I	-	7\%	6\%	-	
II	-	4\%	7\%	-	
III	1\%	29\%	13\%	-	
IV	4\%	25\%	3\%		
1983 Total	5\%	65\%	29\%	1\%	-

Table 5.1.1 Landings of SANDEEL from the North Sea 1952-83 in thousand tonnes.

Year	Denmark	Germany Fed.Rep.	Faroes	Netherlands	Norway	Sweden	U.K。	Total
1952	1.6	0	0	0				
1953	4.5	+	0	0	-	0	0	
1954	10.8	$+$	0	0	-	0	0	4.5
1955	37.6	$+$	0	0	-	0	0	$\begin{aligned} & 10.8 \\ & 37.6 \end{aligned}$
1956	81.9	5.3	0	+				
1957	73.3	25.5	0	+	1.5	0	0	88.7
1958	74.4	20.2	0	3.7	3.2	0	0	105.7
1959	77.1	17.4	0	1.5	4.8	0	0	100.9
1960	100.8	$\begin{array}{r}17.4 \\ 7.7 \\ \hline\end{array}$	0	5.1 +	8.0 12.1	0	0	107.6
1961	73.6	4.5			12.1	0	0	120.6
1962	97.4	1.4	0	+	5.1	0	0	83.2
1963	134.4	16.4	0	0	10.5	0	0	109.3
1964	104.7	12.9	0	0	11.5	0	0	162.3
1965	123.6	2.1	0	0	10.4	0	0	128.0
1966						0	0	130.6
1967	138.5	4.4	0	0	0.2	0	0	143.1
1968	183.4	0.3	0	0	1.0	0	0	188.7
1969	112.6 112.8	+	0	0	0.1	0	0	193.7
1970	187.8	+ + +	0	0	0	0	0.5	113.3
1971	371.6	0.1			$+$	0	3.6	191.4
1972	329.0	0.1 +	0	0	2.1	0	8.3	382.1
1973	273.0	${ }_{0}^{+}$	0	0	18.6	8.8	2.1	358.5
1974	424.1	0	6.4	0	17.2	1.1	4.2	296.9
1975	355.6	0	6.4 4.9	0	78.6 54.0	0.2	15.5	524.8
1976	424.7						1.	428.2
1977	664.3	0	11.4	0	44.2	-	18.7	487.6
1978	647.5	0	12.1	0	78.7	5.7	25.5	785.6
1979	449.8	0	13.1	0	93.5 101.4	1.2	32.5	786.8
1980	542.2	0	13.2 7.2	0	101.4	0	13.4	577.8
1981	464.4	0		0	144.8	0	34.3	728.5
1982	506.9	0	4.9 4.9	0	52.6	0	46.7	568.6
1983	485.1	0	2.0	u	46.5 12.2	0.4	52.2	610.9
						U. 2	37.0	536.5

- = no j.nformation
$+=$ less than half unit,

Table 5.1.2 SANDHEHL North Sea. Monthly landings
(tonnes) by country 1980-83.

Year and Month	Denmark	Faroes	Norway	$\begin{gathered} \text { U.K. } \\ \text { (Scotland) } \end{gathered}$	Total
$\begin{array}{rr} 1980 & \text { Feb } \\ \hline & \text { Mar } \\ & \text { Apr } \\ & \text { May } \\ & \text { Jun } \\ & \text { Jul } \\ & \text { Aug } \\ & \text { Sep } \\ & \text { Oct } \\ & \text { Nov } \end{array}$	12558 31228 192155 214867 68403 10290 7827 4863	$\begin{array}{rr} & 68 \\ & 111 \\ & 735 \\ 1 & 679 \\ 3 & 566 \\ 1 & 048 \end{array}$		$\begin{array}{rr} 2 & 060 \\ 4 & 450 \\ 10 & 877 \\ 7 & 555 \\ 5 & 311 \\ 1 & 346 \end{array}$	68 18 717 41 126 235 376 290 913 87 234 18 450 12 293 20 918 716
Total	542191	7207	144813	31599	725810
$1981 \text { Jan } \begin{aligned} & \text { Feb } \\ & \text { Mar } \\ & \\ & \\ & \text { Apr } \\ & \text { May } \\ & \\ & \text { Jun } \\ & \\ & \text { Jul } \\ & \text { Aug } \\ & \\ & \text { Sep } \\ & \text { Oct } \\ & \text { Nov } \end{aligned}$	4 8 758 42 875 120 410 109 175 118 130 30 724 16836 17 502		$\begin{array}{r} - \\ 172 \\ 4731 \\ 5 \\ 2756 \\ 67100 \\ 5 \\ 5 \\ 1 \\ 1 \end{array} 4550$	$$	$\begin{array}{r} 4 \\ 317 \\ 2375 \\ 52654 \\ 15545= \\ 125402 \\ 13540 \\ 4044 E \\ 23 \\ 2055 \\ 2031 \end{array}$
Total	464414	4935	52599	46668	568 616
	- - 844 83948 168551 188963 55240 7310 2060 - -	$\left.\right\|_{n / a} ^{1}$	$\begin{gathered} - \\ - \\ 3306 \\ 8895 \\ 16797 \\ 17516 \\ - \\ - \\ - \\ - \end{gathered}$	- - - 5 953 9 349 10 011 10 889 8 017 6 458 1 329 -	$\begin{array}{r} - \\ - \\ 4150 \\ 98796 \\ 194697 \\ 216490 \\ 66129 \\ 15327 \\ 8518 \\ 1329 \\ - \end{array}$
Total	506916	4903	46514	52006	$\begin{aligned} & 605436 \\ & \text { excl. Faroe } \end{aligned}$
	$\overline{-}$ - 59388 162952 182159 59709 14253 5089 1548 $-\quad 3$	$\begin{gathered} 1_{n / a} \\ \mid \end{gathered}$	$\begin{aligned} & - \\ & - \\ & 210 \\ & 1055 \\ & 6363 \\ & 2141 \\ & 2410 \\ & - \\ & = \\ & = \\ & = \end{aligned}$	$\begin{array}{r} - \\ - \\ 24431 \\ 7477 \\ 10074 \\ 8397 \\ 6769 \\ 1729 \\ 124 \\ - \\ - \\ \hline \end{array}$	$\begin{array}{r} - \\ - \\ 210 \\ 62874 \\ 176792 \\ 194374 \\ 70516 \\ 21022 \\ 6818 \\ 1672 \\ 3 \end{array}$
Total	485101	2000	12179	37001	534281

Table 5.1.3 SANEEL, North Sea. Catch (tonnes) by month and area (Denmark, Norway, United Kingdom (Scotland)

Year	AREA										
	1 A	18	10	2A	2B	2 C	3	4	5	6	Shetlan:
1979 Mar			351			682			5	6	Shetlant
${ }_{\text {Apr }}$	11476	49	3602	2067	1130	1536	534	4090			905
May	47648	$+$	4099	23149	2044	642	5992	38584	867	8848	
Jun	119632	281	12556	4316	5886	333	7978	24277			3907
Ju1	15700	454	${ }_{2} 2149$	1253	17593	$\begin{array}{r}1997 \\ \hline 15\end{array}$	6408	12493	18645 2859	21598 12266	3907 2413
Aug		143	14883		${ }^{17} 86$	63574	7043			12266 11	2413 2518
Sep			8868	1490	112	1306	542			764	2518 649
$\begin{aligned} & \text { out } \\ & \text { Mou } \end{aligned}$		+	14455		173	2262	5630			764	26
1980 Max	581				27024	72.332	34.132	79.444	5371	44251	13, 402
$\Delta \mathrm{pr}$	6797	1031	6 6 6	1938	605	9433				1	
May	108561	821	30256	5043 27870	4 21 2985	13179 808		1956			1803
Jun	81909	1404	44828	48682	23865			11076		8 26 2622	3219
Ju1	17249	74	9 9140	5978	- 2079	102	35706 18076	11399 6812	6146 1516	26 18 18	6845 6920
Aug			2833		16		10290			18240	6920 5311
Sep			3100		19		5213			2617	${ }_{1} 3114$
Nov			15995 716			3218	242			1463	
Total	$215 \quad 0.97$	3330	119290	89511	52387	26987					
							,	30.83	8653	57.059	25444
1981 Feb	-	-	172	-	-		-				
	18116	-	4703	- 535	-	7364	-	-	-	$1{ }^{-122}$	-
May	18116	19	5257 25712	4535	-	9132	4863	2238	678	3412	5015
Jun	22388	19	25 4631	16685 8477	2840	5445	4953	19111	852	8779	7430
Jul	-	90	906	87721	5112		15475 6001	27018	11184	23429	10015
Aug	-	-	1455	8304	5112	- 227	6001 22420	15074	584	7991	10403
Sep		-	-	12081	453	-	22420 4302				710^{7}
Oct	1466	-	-	14063	2310	-	+ ${ }_{1}^{4} 596$	-	-	98	5968
Nov		-	-	-	-	-		-		98	${ }^{710}$
Total	105163	110	42836	151866	11704	23867	59610	63441	13298		
1982 Max	-	-	502	844					1329	451	46652
Apr	42046	4981	3153	23007	6071	1150	2891	1905	-		5
Mey	67920	34	139	67822	14837	370	20265	2065	-	7639	5953
Jun	73654	349	586	31521	14	139	26278 3278	${ }_{41} 2066$		11895	9349
Jul	6167	-	-	8901	1058	13	3 2 2 124	41203 30512	5916	49077	10011
Aug	-	-	-			-	6742	30512	956	5522	10889
Sep	-	-	-	-	-	-	2060	-		568	8017
004	-	-					${ }^{-}$				6456
Nov	-	-	-	-	-	-		-	-	-	1329
Total	189787	5364	4380	132095	24852	2333	37360	75686			
1983 Max											
1 Apr	$32-375$	-	186		24	-	-	-	-		
May	111701	-	627	16287	2325	-	17427	1439	-	353	2431
Jun	50096	-	1571		4395	-	$\begin{array}{r}11 \\ 7892 \\ \\ \hline\end{array}$	7 7788	-	13719	7477
Jul	3265	-	1	20359	+ 4410	-	7892 3520	57004		46675	10074
Aug		-	-	20		-	3520 11245	${ }^{21}{ }^{756}$	${ }^{8} 000$	2809	8397
Sep	-	-	-	-	-	-	11245 5018	-	-	3008	6769
Not	-	-	-		-	-	1548	-	-		$\begin{array}{r}1729 \\ \\ \hline\end{array}$
			-	3	-	\cdots					
Total	197437	-	2849	59375	17742	-	57665	87577	8000	66635	37001

Table 5.1.4 Annual landings (1000 tonnes) of SAINEELS
 by Sub-area of the North Sea (Denmari,
 Norway, United Kingdom (Scotland)).

Year	Sub-areas											Assessment Areas ${ }^{\text {3/ }}$	
	la	1b	Ic	2 a	2b	2c	3	4	5	6	Shetland	Northern	Southern
1972	98.8	28.1	3.9	24.5	85.1	0.0	13.5	58.3	6.7	28.0	0.0	130.6	216.3
1973	59.3	37.1	1.2	16.4	60.6	0.0	8.7	37.4	9.6	59.7	0.0	107.6	182.4
1974	50.4	178.0	1.7	2.2	177.9	0.0	29.0	27.4	11.7	25.4	7.4	386.6	117.1
1975	70.0	38.2	17.8	22.2	154.7	4.8	38.2	42.8	12.3	19.2	12.9	253.7	156.5
1976	154.0	3.5	39.7	71.8	38.5	3.1	50.2	59.2	8.9	36.7	20.2	135.0	330.6
1977	171.9	34.0	62.0	154.1	179.7	1.3	71.4	28.0	13.0	25.3	21.5	348.4	392.3
1978	159.7		-	346.5		0.3	42.5	37.4	6.4	27.2	28.1	163.0	577.2
1979	194.5	0.9	61.0	32.3	27.0	72.3	34.1	79.4	5.4	44.3	13.4	195.3	355.9
1980	215.1	3.3	119.3	89.5	52.4	27.0	90.0	30.8	8.7	57.1	25.4	292.0	401.2
1981	105.2	0.1	42.8	151.9	11.7	23.9	59.6	63.4	13.3	45.1	46.7	138.1	378.9
1982	189.8	5.4	4.4	132.1	24.9	2.3	37.4	75.7	6.9	74.7	52.0	74.4	479.2
1983	197.4	0	2.8	59.4	17.7	0	57.7	87.6	8.0	66.6	37.0	78.2	419.0

\# Assessment areas:
Northern - Sub-areas 1b, 1c, 2b, 2c, 3
Southern - Sub-areas la, 2a, 4, 5, 6

Table 5.1.5 SANDEEL, Division VIa
Landings in tonnes 1974-1983 as officially reported to ICES

\qquad Country	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
Denmark							109			
Norway			17	54						
UK (Scotland)	+	+	+	13	+		211	5972	10873	13051

Table 5.1.6 SANDEEL, Division IIIa
Landings in tonnes as officially reported to ICES

Country	Y E A R												
	1971	1972	1973	1974	1.975	1976	1977	1978	1979	1980	1981	1982	1983 FF\%
Denmark	21567	7919	9878	7912	16421	21418	16082	21. 731	33305	39357	59408	21540	$34286^{\text {F }}$
Faroes								2					
Sweden		1)	1)	1)	79	67	432	$1121^{2)}$	3	9	44	5	0

1) Included in the North Sea
2) Includes North Sea

* Final data for Denmark not yet available
** Preliminary

Table 5.2.1 Fishing effort in the SANDEEH fisheries - Norwegian data.

YEAR	Northernasoessmentarea					
	Fishing Days by Norwegian vessels FD	Mean gross registered tonnage GRT	Fishing Effort FD x GRT $\times 10^{-3}$	Sandeel landings ($\mathrm{t} \times 10^{-3}$) Norwegian	```Total international```	Fishing effort raised to total catch
			1 stha1f	year		
1976	595 2212	198.8	118.3	11.1.	110.3	1175.5
1977	2212	172.3	381.1	50.4	276.0	$\begin{aligned} & 1 \\ & 2 \end{aligned} 17.0$
1978	1747	203.4	355.3	44.9	109.7	868.0
1979	1407	213.8	300.8	29.6	47.7	
1980	2699	204.7	552.5	112.8	47.7 220.9	$\begin{array}{r} 484.4 \\ 7 \end{array}$
1981	1780	212.6	378.4	42.8	220.9 93.3	1 O81.7
1982	1222	210.1	256.7	42.8 27.0	93.3 62.3	$\begin{aligned} & 824.2 \\ & 591.7 \end{aligned}$
1983	324	267.8	86.8	8.5	62.3 54.5	$\begin{aligned} & 591.7 \\ & 556.4 \end{aligned}$
		165.5	- 2 nd h a 1 f	$y \in x^{-}$		
1976	119	165.5	29.7	2.0	44.9	
1977	457	184.9	84.5	11.8	44.9 110.0	442.3
1978	806	203.7	164.2	22.5	53.3	787.7
1979	1720	188.9	324.9	53.2	53.3 147.7	388.2 902.2
1980	1130	206.1	232.9	33.2	147.7	902.2
1981	414	189.0	78.2	7.2 7.9	41.1	499.6
1982	0	-	18.2	$\begin{aligned} & 7.9 \\ & - \end{aligned}$	44.9 12.0	446.0
1983	66	208.0	13.7	2.4	12.0 23.7	$1 \overline{3} 3.1$
		\cdots S 0	hern ams	$m e n t a r e a l l y$		
1976	1488	237.8	353.8	30.7		
1977	537	185.2	99.5	30.7 14.0	330.6 392.3	$\begin{array}{ll} 3 & 808 \\ 2 & 780 \end{array}$
1978	1044	222.2	232.0	14.0 24.3	392.3	$\begin{array}{ll} 2 & 780 \\ 5 & 508 \end{array}$
1979	765	240.1	183.7	4.3 18.2	577.2 355.9	5 3 3
1980	3	208.0	0.6	18.2	355.9	3595
1981	72	199.5	14.4	1.1	401.2	2407
1982	607	236.1	143.3	1.4 20.3	378.9	2826
1983	40	280.5	11.2	CO	479.2	3386
		280.5	11.2	1.2	419.2	3786

Table 5.2.2 Fishing effort (hours fishing) by month and year in
the Shetland SANDEEL fishery, 1975-1983.
UK (Scotland) data.

Year Month	1975	1976	1977	1978	1979	1980	1981	1982	1983
January	35								
February	20								
March	298	36	436	234					
April	725	1175	1209	654	308	626	1457	1153	485
May	868	1203	1408	2030	990	886	2069	2523	1477
June	989	2043	1893	1859	1027	1832	2387	2497	2187
July	1724	2632	1673	1350	693	1647	22.77	2240	1960
August	2333	2023	947	1683	760	1192	1652	1928	2228
September	730	670	528	1473	340	395	I 062	1695	1013
October	186	484	212	934	9		135	357	82
November		245							
December									
Total	7908	10511	8306	10217	4127	6578	11039	$12393 '$	9432

Table 5.3.1 SANDEELS. No. caught $\times 10^{-6}$. Southern area of the North Sea 1983.

Month	AGEGROUP									
	0	1	2	3	4	5	6	7	8	
Jan.	-	-	-	-	-	-	-	-	-	
Feb.	-	-	-	-	-	-	-	-	-	
Mar.	-	-	-	-	-	-	-	-	-	
Apr.	-	109.8	51.19 .4	71.7	-	-	-	-	-	
May	-	516.1	15375.9	387.1	73.7	43.9	13.5	-	-	
Jun.	955.4	1605.7	14533.4	475.2	160.4	77.7	11.1	-	5.6	
Jul.	9271. 3	239.8	2806.3	281.3	1.7	-	-	-	-	
Aug.	-	-	-	231.4	-	-	-	-	-	
Sep.	26.2	-	-	-	-	-	-	-	-	
Oct.	-	-	-	-	-	-	-	-	-	
Nov.	-	-	-	-	-	-	-	-	-	
Dec.	-	-	-	-	-	-	-	-	-	
Σ	10252.9	2471.4	37835.0	1446.7	235.8	121.6	24.6	-	3.7	52393.6

Table 5.3.2 SANDEELS. No. caught $\times 10^{-6}$.
Northern area of the North Sea 1983.

Month	AGE GROUP							
	0	1	2	3	4	5	6	
Jan.	-	-	-	-	-	-	-	
Feb.	-	-	-	-	-	-	-	
Mar.	-	7.9	7.4	0.5	0.1	-	-	
Apr.	-	3652.5	59.6	6.3	0.8	-	-	
May	-	1680.3	298.7	43.2	4.3	-	3.7	
Jun.	-	343.4	849.6	39.0	3.0	-	-	
Jul.	-	303.3	315.7	18.6	-	-	-	
Aug.	5471.6	-	-	-	-	-	-	
Sep.	1864.5	-	-	-	-	-	-	
Oct.	575.2	-	-	-	-	-	-	
Nov.	-	-	-	-	-	-	-	
Dec.	-	-	-	-	-	-	-	
Σ	7911.3	5987.4	153.1 .0	107.6	8.2	-	3.7	15549.2

Table $5 \cdot 3 \cdot 3$ SANDEELS - Shetland. No. caught $\times 10^{-6} 1983$.

Month	AGEGROUP								
	0	1	2	3	4	5	6	7	8
Apr.	0.1	423.8	97.1	35.0	11.6	4.6	3.0	0.6	0.2
May	0.4	1303.3	298.5	107.7	35.7	14.0	9.1	1.7	0.8
Jun.	591.9	1186.4	265.1	56.0	37.5	4.8	1.9	2.1	-
Jul.	2582.1	619.0	54.3	14.4	9.3	2.3	0.8	0.3	0.5
Aug.	892.0	373.7	62.5	13.3	7.7	3.4	+	-	$+$
Sep.	558.7	39.9	3.7	0.3	0.1	-	-	-	-
Oct.	39.9	2.8	0.3	\div	+	-	-	-	-
Σ	4665.I	3949.5	781.4	226.8	101.9	29.2	14.7	5.0	1.5

Table 5.3.4 SANDEELS in the southern North Sea. VPA catch in numbers, half year ($\mathrm{x} 10^{-6}$)

Age Groun	1972		1973		1974		1975		1976		1977	
	1	2	1	2	1	2	1	2	1	2	1	2
0	0	0	13	0	670	76	0	0	4			
1	2839	86	14497	206	5989	226	11458	480	16308	249	19500	13263
2	15695	1148	2515	53	3930	10	1694	2046	14505	2 358	19500 5596	269
3	418	35	3832	151	497	0	2838	- 170		2 392	5596 6300	27
4	128	24	183	5	1968	3	529	253	1522 1 1	392	6300	8
5	94	16	89	3	205	0	666	0		102	965	8
6	20	0	31	2	22	0		0	171	20	445	3
7	3	0	7	1	11	0	91	0	72	58	239	3
8	29	-	53	-	73	-	3	0	0^{1}	-16	124	0
Total	19225	1308	21221	423	13363	315	17280	1949	33817	3195	33204	13581

Year Age Group	1978		1979		1980		1981		1982		1983	
	1	2	1	2	1	2	1	2	1	2	1	2
0	922	41224	181	1947	62	72	415	43420	242		955	
1	58839	2774	16018	5210	33269	4738	13394	407	56545	4718	2232	240
2	16948	385	22737	2085	12472	840	11719	1892	6224	490	35029	2806
3	1793	125	4487	138	3794	575	2466	- 11.5	3277	344	3 934	513
4	1006	97	1265	110	375	9	774	36	1813	36	934 234	513
5	114	26	441	30	63	0	353	3	94	4	122	0
6	21	26	244	0	50	0	84	0	24	0	r 25	0
7	14	7	3	0	0	0	16	0	8	0	- 0	0
8	26	-	32	-	0	-	5				6	
Total	79684	44665	45409	9520	50086	6234	29226	45873	68227	10631	39537	12859

Table 5.35 SANDEELS in the southern North Sea. VPA. Fjshing mortalities per half-year, $M=0.5$ year ${ }^{-1}$

Table 5.3 .6 SANDEELS in the southern North Sea. VPA. Stock size in numbers $\times 10^{-6}$

Year Age Group	1972		1973		1974		1975		1976		1977	
	1	2	1	2	1	2	1	2	1	2	1	2
0	-	57140	-	36845	-	97826	-	56788	-	94851	-	189030
1	22390	14946	44501	22016	28695	17106	76120	49236	44227	20246	73870	40491
2	40318	17747	11565	6806	16965	9774	13123	8734	37923	16913	15549	7236
3	3372	2260	12812	6634	5254	3655	7604	3452	5884	3252	111.04	3213
4	441	232	1729	1186	5033	2208	2847	1754	2538	908	2189	867
5	264	124	160	48	920	537	1717	758	1144	741	618	101
6	603	452	83	38	35	8	418	246	591	396	560	228
7	254	195	352	268	28	12	7	0	192	149	258	94
8	82	-	152	-	208	-	10	-	0	-	101	-

	1978		1979		1980		1981		1982		1983	
	1	2	1	2	1	2	1	2	1	2	1	2
0	-	136218	-	107920	-	67345	-	312213	-	13526	-	110199
1	135562	54485	70110	40589	82336	35198	52385	29090	205068	110316	6148	2844
2	31297	9733	39996	11534	27039	10242	23256	7969	22297	11929	81766	33256
3	5612	2806	7241	1781	7156	2294	7238	3488	4551	748	8860	6080
4	2495	1068	2076	528	1266	658	1283	333	2615	486	284	24
5	668	420	747	202	315	190	504	91	228	96	347	0
6	76	41	304	30	131	58	148	43	68	0	71	0
7	175	125	9	0	24	18	45	0	33	19	0	0
8	73	-	91	-	0	-	14	-	0	-	15	-

Table 5.3.7 SANDEELS in the northern North Sea (Shetland excluded). VPA, catch in numbers, half-year ($\mathrm{x} 10^{-6}$)

	1972		1973		1974		1975		1976		1977	
	$\begin{aligned} & \text { Jan- } \\ & \text { Jun } \end{aligned}$	$\begin{aligned} & \text { Jul- } \\ & \text { Dec } \end{aligned}$	Jan- Jun	$\begin{aligned} & \text { Jul- } \\ & \text { Dec } \end{aligned}$	$\begin{aligned} & \text { Jan- } \\ & \text { Jun } \end{aligned}$	JulDec	$\begin{aligned} & \text { Jan- } \\ & \text { Jun } \end{aligned}$	JulDec	$\begin{aligned} & \text { Jan- } \\ & \text { Jun } \end{aligned}$	$\begin{aligned} & \text { Jul- } \\ & \text { Dec } \end{aligned}$	$\begin{aligned} & \text { Jan- } \\ & \text { Jun } \end{aligned}$	$\begin{aligned} & \text { Jul- } \\ & \text { Dec } \end{aligned}$
0	0	4930	0	337	472	9979	99	9282	237	6126		
1	3398	846	4057	143	19850	384	7186	74	5697			3067 2856
2	2045	0	1657	68	1347	53	5249	105	$\begin{array}{ll}5 & 130\end{array}$	648 84	24307 2351	2856 913
3	115	0	836	20	1424	11	1508	1.	- 445	368	2351 516	913
4	79	0	89	0	276	7	248	0	101	19	124	142
5	62	0	58	1	73	5	87	0	39	10	124	98
6	60	0	1	0	2	0	0	0	15	8	- 3	15
Total	5759	5776	6698	570	23444	10439	14377	9463	7664	7262	31007	7119

Year Age Group	1978		1979		1980		1981		1982		1983	
	JanJun	JulDec	$\begin{aligned} & \text { Jan- } \\ & \text { Jun } \end{aligned}$	$\begin{aligned} & \text { Jul- } \\ & \text { Dec } \end{aligned}$	JanJun	JuI- Dec	$\begin{aligned} & \text { Jan- } \\ & \text { Jun } \end{aligned}$	Jul- Dec	$\frac{19}{\mathrm{Jan}-}$ Jun	$\begin{aligned} & \text { Jul- } \\ & \text { Dec } \end{aligned}$	$\begin{aligned} & \text { Jan- } \\ & \text { Jun } \end{aligned}$	$\begin{aligned} & \text { Jul- } \\ & \text { Dec } \end{aligned}$
0	0	7820	0	44203								
1	6127	1001	2335	44203 1310		8 1	17	9128	2	6530	0	7911
2	2338	307		1310	13394.	1173	5505	346	3518	65	5684	303
3			- 328	433	8865	214	4109	94	2132	0	1215	316
4	573 78	39	242	66	1050	19	904	14	556	0	89	19
5	45	1	5	10	645	4	128	6	76	0	8	0
6	21	0	2	0	144	3	19	0	9	0	0	0
		0	5	0	38	1	27	0	0	0	4	0
Total	9181	9169	3917	46022	24155	9762	10709	9588	6293	6595	7000	8549

Table 5.3.8 SANDEELS in the northern North Sea (Shetland excluded). VPA. Fishing mortalities per half-year. $M=0.5$ year $^{-1}$. Weighted mean F ages $1-4$.

YearAgeGroup	1972		1973		1974		1975		1976		1977	
	1	2	1	2	1	2	1	2	1	2	1	2
0	0	0.27	0	0.008	0.01	0.48	0.003	0.37	0.004	0.12	0.13	0.16
1	0.31	0.12	0.40	0.02	0.90	0.04	0.82	0.02	0.44	0.08	1.08	0.36
2	0.54	0.00	0.40	0.03	0.33	0.02	1.09	0.05	0.42	0.05	0.52	0.42
3	0.26	0.00	0.66	0.03	1.21	0.02	1.26	0.003	0.35	0.58	0.52	0.28
4	0.56	0.00	0.48	0.00	0.73	0.04	1.18	0.00	0.34	0.10	0.42	0.75
5	3.37	0.00	2.07	0.19	1.68	(0.50)	0.86	0.00	0.88	0.65	0.13	0.34
6	(0.50)	-	(0.50)	-	(0.50))	-	-	(0.50)	0.65	(0.50)	0.34
$\begin{aligned} & \text { Mean } \\ & 1-4 \end{aligned}$	0.37	0.09	0.42	0.02	0.84	0.04	0.96	0.03	0.43	0.11	0.94	0.37

Year Age Group	1978		1979		1980		1981		1982		1983	
	1	1	2	1	2	1	2	1	2	1	2	
0	0	0.24	0	0.90	0.001	0.47	0	0.35	0.23	0.34	0	(0.18)
1	0.57	0.18	0.11	0.09	0.85	0.17	0.71	0.09	1.25	0.006	0.61	(0.06)
2	0.60	0.15	0.40	0.22	1.56	0.13	1.57	0.12	2.83		0.16	(0.06)
3	0.55	0.07	0.18	0.07	1.45	0.08	1.29	0.05	0.50		0.19	(0.06)
4	0.26	0.003	0.01	0.03	2.13	0.06	1.25	0.17	0.43		0.50	
5	1.06	0.07	0.01	0.00	0.80	0.03	(0.50)					
6	(0.50)	-	(0.50)		(0.50)		(0.50)					
Mean	0.56	0.16	0.15	0.10	1.11	0.16	1.01	0.09	0.44	0.01	0.42	(0.06)
$1-4$												

Table 5.3.9 SANDEELS in the northern North Sea (Shetland excluded)
VPA. Stock size in numbers $\times 10^{-6}$

YearAgeGroup	1972		1973		1974		1975		1976		1977	
	1	2	1	2	1	2	1	2	1	2	1	2
0	-	23093	-	47908	-							
1	14349	8203	13670	7104	$37-14$	$\begin{array}{ll}29 & 438 \\ 11\end{array}$	14229	33457 4862	17949	59018	40585	23833
2	5485	2492	5646	2951	5407	11 3	14229 $8 \quad 754$	4862 2898	17949 3	9009	40585	10680
3	560	336	1941	- 785	2238	1674 3034 520	8754 2316	2298 510	3722 1697	1912	6447	2974
4	207	92	262	126	- 594	223	$\begin{array}{r}2316 \\ \hline 395\end{array}$	510 94	$\begin{array}{r}1697 \\ \\ \hline 396\end{array}$	933	1416	653
5	68	2	72	$\begin{array}{r}7 \\ \hline\end{array}$	594 98	223 14	395 167	94 55	396 74 4	220	406	208
6	172		1	-	5	14	167 0	- 55	74 43	- 24	155 10	106

$\begin{aligned} & \text { Year } \\ & \text { Age } \\ & \text { Group } \end{aligned}$	1978		1979		1980		1981		1982		1983	
	1	2	1	2	1	2	1	2	1	2	1	2
0	-	40618		82358								
$\frac{1}{2}$	15871 5 5	7029	24785	17252		24835 8619						
2	5822	2502	4597	2421	12285	8619 2003		4621	19275	11929	13885	(5 873)
3	1519	685	1679	1095	12285 1506	2003 275	5684 1372	921	3296	736	9233	$\binom{6}{$ 125 }
4	384	231	499	385	$\begin{array}{r}795 \\ \hline 79\end{array}$	275 74	1372 197	293 44	634	29	573	(368)
5 6	76 59	21	179	138	291	102	$\begin{array}{r}197 \\ 54 \\ \hline\end{array}$		216 29		23	

Table 5.3.10 SANDEELS in the Shetland area.
VPA. Catch in numbers, half year $\times 10^{-6}$.

Age group	1974		1975		1976		1977		1978	
	$\begin{aligned} & \text { Jan- } \\ & \text { Jun } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Jul- } \\ \text { Dec } \end{array}$	$\begin{aligned} & \text { Jan- } \\ & \text { Jun } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Jul- } \\ \text { Dec } \end{array}$	JanJun	$\begin{aligned} & \mathrm{Jul-} \\ & \mathrm{Dec} \end{aligned}$	JanJun	JulDec	$\begin{aligned} & \text { Jan- } \\ & \text { Jun } \end{aligned}$	$\begin{aligned} & \text { Jul- } \\ & \text { Dec } \end{aligned}$
0	0	953	0	36	86	4486	464	5644	99	5430
1	6	834	117	4256	1690	527	2830	525	4406	651
2	53	34	552	63	294	152	664	153	1020	168
3	11	14	79	39	115	40	40	12	71	46
4	7	20	12	13	13	15	44	26	21	7
5	5	0	7	0	11	3	6	2	20	3
6	+	1	4	3	4	2	7	1	3	0
7	6	0	2	0	2	0	3	+	+	0
8	0	-	2	-	+	-	+	-	1	-

Age group	1979		1980		1981		1982		1983	
	Jan-	Jul- Dec	Jan- Jun	Jul- Dec	$\begin{aligned} & \text { Jan- } \\ & \text { Jun } \end{aligned}$	JuI- Dec	JanJun	Jul-	JanJun	Jul- Dec
0	0	1310	77	7134	105	13605	717	16283	592	4073
1	1488	480	569	242	1917	568	5216	416	2914	1035
2	388	137	368	104	1424	92	1184	77	66.1	121
3	68	22	273	29	399	28	494	35	199	28
4	12	14	96	13	113	6	190	9	85	17
5	8	7	80	6	53	3	86	6	23	6
6	2	0	37	$+$	26	+	26	1	14	+
7	1	0	14	0	3	$+$	9	+	4	+
8	0	-	0	-	3	-	10	-	1	-

Table 5.3.11 SANDEELS in the Shetland area.
VPA. Fishing mortalities per half-year. $M=0.5$ year $^{-1}$.

Age group	1974		1975		1976		1977		1978	
	1	1	2	1	2	1	2	1	2	1
	0	0.10	0	0.005	0.005	0.40	0.02	0.42	0.006	0.57
1	0.002	0.33	0.02	1.39	0.37	0.20	0.50	0.17	0.73	0.23
2	0.11	0.11	0.40	0.08	0.32	0.29	0.44	0.18	0.61	0.20
3	0.07	0.12	0.40	0.37	0.20	0.11	0.12	0.05	0.12	0.12
4	0.08	0.38	0.14	0.26	0.21	0.44	0.17	0.15	0.13	0.06
5	0.18	0.00	0.25	0.00	0.38	0.20	0.34	0.19	0.18	0.04
6	0.04	0.14	0.31	0.46	0.34	0.22	0.85	0.43	0.42	0.00
7	(0.50)	-	(0.50)	-	(0.50)	-	0.73	(0.5)	(0.50)	-

| Age group | 1979 | | 1980 | | 1981 | | 1982 | | 1983 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| 1 | 0.32 | 0.17 | 0.10 | 0.06 | 0.40 | 0.21 | 0.99 | 0.19 | 0.33 | (0.20) |
| 2 | 0.22 | 0.12 | 0.20 | 0.08 | 0.65 | 0.08 | 0.94 | 0.14 | 0.57 | (0.20) |
| 3 | 0.12 | 0.06 | 0.39 | 0.07 | 0.55 | 0.07 | 0.82 | 0.13 | 0.69 | (0.20) |
| 4 | 0.04 | 0.07 | 0.37 | 0.08 | 0.43 | 0.04 | 0.95 | 0.11 | 0.53 | (0.20) |
| 5 | 0.09 | 0.12 | 0.72 | 0.10 | 0.59 | 0.06 | 1.15 | 0.21 | 0.16 | (0.20) |
| 6 | 0.04 | 0.00 | 1.70 | 0.15 | 0.97 | 0.03 | 1.14 | 0.12 | 1.23 | (0.20) |
| 7 | (0.50) | - | (0.50) | - | 1.18 | (0.50) | 2.25 | (0.50) | 1.11 | (0.20) |
| Weighted mean | | | | | | | | | | |
| l-4 | 0.27 | | 0.16 | | 0.49 | | 0.97 | | 0.37 | |

Table 5.3.12 SANDEELS in the Shetland area.
VPA. Stook size in numbers $x 10^{-6}$.

Age group	1974		1975		1976		1977		1978	
	1	2	1	2	1	2	1	2	1	2
0	14768	11502	10081	7851	19832	15369	24266	18490	18040	13963
1	4293	3337	8120	6221	6083	3261	8053	3806	9475	3559
2	552	384	1870	975	1202	679	2078	1040	2504	1064
3	193	140	269	140	704	447	395	272	676	464
4	97	70	97	65	75	48	313	205	201	138
5	34	22	37	22	39	21	24	13	137	89
6	13	10	17	10	17	10	13	4	9	4
7	18	0	7	0	5	0	6	2	2	0

Age group	1979		1980		1981		1982		1983	
	1	2	1	2	1	2	1	2	1	2
0	12603	9816	21060	16334	34671	26910	43058	32903	11699	8591
1	6151	3489	6495	4559	6527	3409	9182	2652	11525	6429
2	2202	1375	2296	1465	3338	1363	2157	658	1701	750
3	681	471	951	502	1049	470	981	337	445	174
4	321	239	347	186	365	186	342	102	231	106
5	102	72	174	66	134	58	139	34	72	35
6	67	50	50	7	47	14	42	11	22	5
7	3	0	39	0	5	1	10	1	7	2

Table 5.5.1 SANDEEL - North Sea. Mean weight (g) at age by months in Danish catches, 1983.

Age	April	May	June	July	August	September
0					2.06 (127)	2.69(107)
1	5.32(142)	7.55(386)	9.55(109)	5.00		
2		16.68(42)	14.25(278)	22.08		
3		$33.50(7)$	37.50(2)	11.47		
4		33.00(1)	40.00			
5						
6		60.00(1)				
Southern Area						
0			1.95 (155)	$2.05(480)$	2.06	2.69
1	3.60 (31)	8,08(131)	8.11 (441)	7.66 (105)		
2	7.14(1483)	9.57(3039)	9.73(2286)	11.40(699)		
3	14.28(21)	16.60(101)	18,26(146)	12.58(154)	13.00(1)	
4		19.32(20)	18.99(56)	12.93 (1)		
5		16.54(13)	19.65(28)			
6		19.15(4)	30.33(4)			
7						
8			18.50(1)			
9						
10			17.50(1)			

Table 5.5.2. SANDEFL.
Mean weight at age by months. (Arithmetic mean of mean values reported to Working Group from 1974-83, excluding outlying values.)

	Month	Age								
		0	1	2	3	4	5	6	7	8
Northern Area	Mar Apr May Jun Jul Aug Sep oot Nov	1.31 1.35 2.46 3.13 3.38 3.97 7.07	$\begin{array}{r} 4.06 \\ 4.15 \\ 7.02 \\ 9.64 \\ 11.67 \\ 17.06 \\ 21.24 \\ 20.58 \\ 28.00 \end{array}$	$\begin{aligned} & 10.69 \\ & 10.94 \\ & 14.98 \\ & 19.23 \\ & 27.55 \\ & 36.39 \\ & 37.45 \\ & 34.98 \end{aligned}$	$\begin{aligned} & 20.02 \\ & 19.98 \\ & 28.46 \\ & 36.94 \\ & 36.20 \\ & 56.20 \\ & 58.04 \\ & 48.40 \end{aligned}$	28.78 35.49 38.34 49.47 57.20 63.48 64.15 67.00	$\begin{aligned} & 30.20 \\ & 35.16 \\ & 43.46 \\ & 56.80 \\ & 48.75 \\ & 75.50 \\ & 73.00 \end{aligned}$	$\begin{gathered} 18.50 \\ 26.50 \\ 45.40 \\ 59.30 \\ 51.82 \\ 81.00 \\ - \end{gathered}$		62.00
Southern	Mar Apr May Jun Jul Alug Sep Oct	- - 1.32 1.56 2.01 4.23 3.45 4.38	$\begin{array}{r} 2.58 \\ 3.20 \\ 5.88 \\ 6.88 \\ 7.44 \\ 11.99 \\ 11.63 \\ 10.14 \end{array}$	$\begin{array}{r} 5.82 \\ 6.52 \\ 9.60 \\ 12.17 \\ 10.74 \\ 23.55 \\ 19.50 \\ 21.66 \end{array}$	$\begin{array}{r} 8.18 \\ 10.43 \\ 12.58 \\ 16.39 \\ 14.08 \\ 19.16 \\ 18.73 \end{array}$	$\begin{array}{r} 8.87 \\ 14.74 \\ 15.75 \\ 19.77 \\ 17.71 \\ 26.49 \\ 21.33 \end{array}$	11.33 15.64 16.28 19.99 19.80 27.00 -	$\begin{gathered} 9.00 \\ 21.14 \\ 17.43 \\ 23.66 \\ 17.67 \end{gathered}$	$\left\|\begin{array}{c} 13.83 \\ 15.22 \\ 17.18 \\ 26.75 \\ 16.75 \\ - \end{array}\right\|$	$\begin{gathered} 13.83 \\ 14.64 \\ 17.63 \\ 17.66 \\ 16.36 \\ - \end{gathered}$
Shetland	Mar Apr May Jun Jul Aug Sep Oct	$\begin{gathered} - \\ 0.10 \\ 0.40 \\ 0.86 \\ 1.40 \\ 1.89 \\ 2.03 \\ 2.32 \end{gathered}$	$\begin{aligned} & 1.56 \\ & 2.21 \\ & 3.07 \\ & 4.40 \\ & 4.78 \\ & 4.97 \\ & 5.19 \\ & 5.04 \end{aligned}$	$\begin{aligned} & 3.78 \\ & 4.03 \\ & 4.72 \\ & 6.94 \\ & 6.86 \\ & 7.88 \\ & 7.57 \\ & 7.71 \end{aligned}$	$\begin{array}{r} 4.86 \\ 6.45 \\ 7.47 \\ 10.31 \\ 9.21 \\ 10.59 \\ 10.92 \\ 10.62 \end{array}$	$\begin{gathered} - \\ 8.70 \\ 9.06 \\ 14.09 \\ 11.91 \\ 11.58 \\ 15.23 \\ 16.45 \end{gathered}$	$\begin{aligned} & 10.08 \\ & 11.66 \\ & 16.60 \\ & 15.66 \\ & 14.12 \\ & 15.04 \\ & 16.50 \end{aligned}$	$\begin{gathered} - \\ 11.27 \\ 13.20 \\ 20.62 \\ 16.31 \\ 20.13 \\ 17.80 \end{gathered}$	$\left\|\begin{array}{c} - \\ 13.59 \\ 14.13 \\ 21.04 \\ 20.08 \\ 18.30 \\ 13.00 \end{array}\right\|$	$\begin{gathered} 16.51 \\ 15.57 \\ 23.41 \\ 23.30 \\ 17.02 \\ - \end{gathered}$

Table 5.5.3. SANDEEL - North Sea.
Mean weight at age in catches in the first and second halves of the year. (Obtained by weighting monthly means given in Table 5.5 .2 by the numbers caught in those months.)

Age	Northern Area		Southern Area		Shetland	
	lst half	2nd half	lst half	2nd half	lst half	2nd half
1	1.35	3.03	1.56	2.42	0.86	1.69
2	5.64	13.23	5.51	7.50	2.77	4.87
3	27.30	36.20	13.74	10.75	5.23	7.25
4	42.23	$57.20(44)$	$17.95(16.3)$	17.71	10.97	9.64
5	47.51	-	$16.61(17.6)$	19.80	$13.60(13.2)$	$15.00(14.7)$
6	$56.43(53)$	-	$19.11(18.5)$	-	$14.55(15.0)$	$18.74(16.5)$
7	-	-	$20.36(18.9)$	-	$16.66(16.4)$	$15.27(17.7)$
8	-	-	$17.08(19.1)$	-	17.62	-

Values in parentheses are smoothed values obtained by fitting a growth curve through the data by eye.

Table 5.6.1 SANDEFH North Sea percentage annual landings by weight by age

Stock	Year	A G E								
		0	1	2	3	4	5	6	7	8
Southern North Sea	1979	1	28	47	16	6	2	1	-	-
	1980	-	61	25	12	2	-	-	-	-
	1981	42	17	29	8	3	1	-	-	-
	1982	2	67	14	10	7	-	-	-	-
	1983	5	5	84	5	1	-	-	-	-
Northern North Sea	1979	61	16	17	6	-	-	-	-	-
	1980	12	35	21	15	13	3	1	-	-
	1981	27	23	24	18	5	1	1	-	-
	1982	21	25	32	18	4	1	-	-	-
	1983	21	44	30	4	1	-	-	-	-
Shetland	1979	11	37	45	4	2	1	-	-	-
	1980	45	16	12	11	6	6	3	1	-
	1981	34	31	22	7	3	2	1	-	-
	1982	48	25	13	8	4	2	1	$+$	$+$
	1983	25	48	16	5	3	1	1	$+$	+

Table 6.1.1 Landings of SPRAT in Division IIIa and in Norwegian fjords in Division IVa (10 ${ }^{-3}$ tonnes). (Data provided by Working Group members)

Year	SKAGERRAK				KATTEGAT			IIIa TOTAL	Fjords of Western Norway (IVa E)	$\begin{aligned} & \text { GRAND } \\ & \text { TOTAL } \end{aligned}$
	Denmark	Sweden	Norway	Total	Denmark	Sweden	Total			
1969	0.8	1.9	1.7	4.4	0.8	1.6	2.4	6.8	11.8	18.6
1970	1.1	2.4	2.4	5.9	3.1	6.0	9.1	15.0	6.4	21.4
1971	0.7	2.4	2.9	6.0	1.5	9.6	11.1	17.1	4.4	21.5
1972	0.8	3.3	2.4	6.5	1.4	17.9	19.3	25.8	6.9	32.7
1973	19.4	2.5	3.2	25.1	19.3	16.2	35.5	60.6	8.8	69.4
1974	17.3	2.0	1.2	20.5	31.6	18.6	50.2	70.7	3.3	74.0
1975	14.9	2.1	1.9	18.9	69.7	20.9	90.6	109.5	2.9	112.4
1976	12.8	2.6	2.0	17.4	30.4	13.5	43.9	61.3	0.6	61.9
1977	7.2	2.2	1.2	10.6	53.3	9.8	63.1	73.7	5.4	79.1
1978	23.1	2.2	2.7	28.0	36.1	9.4	45.5	73.5	5.2	78.7
1979*	17.3	8.1	1.8	27.2	45.8	6.4	52.2	79.4	5.0	84.4
1980*	43.1	-	3.4	46.5	35.8	6.4	35.8	102.4	2.9	105.3
1981	26.4	13.4	4.6	44.4	23.8	15.8	39.6	84.0	3.1	87.1
1982	11.0	6.7	1.8	19.5	15.4	4.8	20.2	39.7	6.0	45.7
1983	3.4	6.7	1.5	11.6	9.1	13.2	22.3	33.9	3.0	36.9

* Sweden: 20124 tonnes in Div. IIIa. Included in total but allocation to Skagerrak and Kattegat not possible.

Table E.I. 2 Landings of SPRAT in Div. IIIa by quarters (tonnes) (Norwegian fjords in Div IIIa exluded).

Year	Months	Kattegat	Skagerrak	Total
1981	Jan - Mar	10334	9993	20337
	Apr - May	3029	3682	6711
	Jun -- Aug	13635	25034	38669
	Sep - Dec	12610	5674	18284
	Total	39618	44383	84001
1982	Jan - Mar	6247	1058	7305
	Apr - May	2903	6410	9313
	Jun - Aug	7939	8156	16395
	Sep - Dec	3073	3880	6953
	Total	20162	19504	39666
$1983{ }^{\text {35 }}$	Jan - Mar	5459	2489	7948
	Apr - May	3213	806	4019
	Jun - Aug	3923	3288	7211
	Sep - Dec	9729	3530	13259
	Total	22324	10113	32437

3) Norwegian landings from the Skagerrak not included (1 500 tonnes for 1983)

Table 6.3.1 SPRAT in Div, IIIa, Numbers caught $\times 10^{-6}$

Year	Quarter	Age group					
		0	1	2	3	4	5
1975	Jan - Mar Apr - Jun Jul - Sep Oct - Dec	$\begin{array}{r} 32.81 \\ 139.22 \end{array}$	$\begin{array}{r} 435.86 \\ 230.75 \\ 5979.74 \\ 985.73 \end{array}$	$\begin{array}{r} 200.44 \\ 398.91 \\ 527.61 \\ 54.32 \end{array}$	$\begin{array}{r} 56.28 \\ 146.51 \\ 50.92 \\ 0.68 \end{array}$	$\begin{aligned} & 2.46 \\ & 0.16 \\ & 0.34 \end{aligned}$	
	Total	172.03	7632,08	1181.28	254.39	2.96	
1976	Jan - Mar Apr - Jun Jul - Sep Oct - Dec	$\begin{aligned} & 509.96 \\ & 918.64 \end{aligned}$	$\begin{array}{r} 336.00 \\ 556.41 \\ 2334.72 \\ 1084.09 \end{array}$	$\begin{array}{r} 164.95 \\ 57.07 \\ 171.39 \\ 23.24 \end{array}$	$\begin{array}{r} 9.11 \\ 27.38 \\ 16.80 \\ 0.55 \end{array}$	$\begin{aligned} & 1.23 \\ & 0.91 \\ & 2.21 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.11 \end{aligned}$
	Total	1428.60	4311.22	416.65	53.84	4.35	0.76
1977	Jan - Mar Apr - Jun Jul - Sep Oct - Dec	$\begin{array}{r} 725.13 \\ 1948,34 \end{array}$	$\begin{array}{ll} 2 & 515.11 \\ 2 & 177.51 \\ 2 & 185.47 \\ & 813.86 \end{array}$	$\begin{aligned} & 408.99 \\ & 483.23 \\ & 208.70 \\ & 142.90 \end{aligned}$	$\begin{array}{r} 11.29 \\ 20.70 \\ 30.26 \\ 0.79 \end{array}$	$\begin{aligned} & 3.37 \\ & 7.42 \end{aligned}$	1,21
	Total	2673.47	7691.95	1243.82	63.04	10.79	1.21
1978	Jan - Mar Apr - Jun Jul - Sep Oct - Dec	$\begin{array}{r} 23.99 \\ 261.12 \end{array}$	$\begin{array}{ll} 4 & 376.51 \\ 5 & 004.51 \\ 3 & 987.97 \\ & 262.21 \end{array}$	$\begin{array}{r} 203.89 \\ 33.18 \\ 61.57 \\ 16.70 \end{array}$	$\begin{array}{r} 12.52 \\ 3.57 \\ 14.70 \\ 0.84 \end{array}$	0.70	
	Total	285.11	13631.20	315.34	31.63	0.70	
1979	Jan - Nar Apr - Jun Jul - Sep Oct - Dec	$\begin{aligned} & 690.32 \\ & 260.04 \end{aligned}$	$\begin{array}{r} 1098.75 \\ 763.41 \\ 3674.64 \\ 1360.87 \end{array}$	$\begin{array}{r} 426.69 \\ 239.49 \\ 7.37 \\ 22.45 \end{array}$	$\begin{array}{r} 60.68 \\ 2.39 \\ 1.59 \\ 2.51 \end{array}$	1.92	$\begin{gathered} 1.94 \\ - \\ 1.99 \\ 3.13 \end{gathered}$
	Total	950.36	6897.67	696.00	67.37	1.92	7.06
1980	Jan - Mar Apr - Jun Jul - Sep Dct - Dec	$\begin{aligned} & 407.17 \\ & 413.46 \end{aligned}$	$\begin{array}{ll} 1 & 161.54 \\ 5 & 155.16 \\ 6 & 306.95 \\ & 671.10 \end{array}$	$\begin{array}{r} 748.60 \\ 421.79 \\ 68.40 \\ 5.65 \end{array}$	$\begin{array}{r} 25.02 \\ 3.66 \\ 14.86 \end{array}$	0.73	
	Total	820.63	13294.75	1244.44	43.54	0.73	
1981	Jan - Mar Apr - Jun Jul - Sep Oct - Dec	$\begin{array}{r} 218.29 \\ 416.08 \\ 33.69 \end{array}$	$\begin{array}{r} 1369.29 \\ 374.10 \\ 3757.70 \\ 1 \\ 1 \end{array}$	$\begin{array}{r} 1498.93 \\ 478.02 \\ 98.14 \\ 110.94 \end{array}$	$\begin{array}{r} 20.67 \\ 20.58 \\ 17.39 \\ 5.28 \end{array}$		
	Total	668.06	6614.06	2186.03	63.92		
1982	Jan - Mar Apr - Jun Jul - Sep Dct - Dec	$\begin{aligned} & 2.70 \\ & 317.62 \end{aligned}$	$\begin{array}{r} 520.09 \\ 190.36 \\ 1270.12 \\ 336.18 \end{array}$	$\begin{gathered} 423.70 \\ 374.98 \\ 173.94 \\ 28.07 \end{gathered}$	$\begin{array}{r} 48.88 \\ 103.77 \\ 27.67 \end{array}$	$\begin{aligned} & 0.47 \\ & 3.18 \end{aligned}$	
	Total	320.32	2316.75	1000.69	180.32		
1983	Jan - Mar Apr - Jun Jul - Sep Oct - Deo	$\begin{array}{r} 4.17 \\ 264.99 \\ 2386.29 \end{array}$	$\begin{array}{r} 1817.18 \\ 565.15 \\ 423.76 \\ 253.02 \end{array}$	$\begin{array}{r} 202.91 \\ 183.80 \\ 29.14 \\ 51.90 \end{array}$	$\begin{array}{r} 10.94 \\ 31.65 \\ 61.38 \\ 2.40 \end{array}$	1.36	
	Total	2655.45	3059.11	467.75	106.37	1.36	

Table 6.4.1 A summary of acoustic estimates of the sprat stock in Division IIIa.

Year	Month	Biomass tonnes
1976	6	50000
	9	135000
1979	9	130500
1980	3	150000
	9	74000
	9	65000
1981	9	20000
1982	12	24000
1983		13000
	9000	

Table 6.4.2 Indices of 1-group SPRAT abundance in Division IIIa from IYFS 1973-83.

Year class	New index (Arithmetic mean)	Old index (geometric mean)	Rectangles sampled
1973	2704	1324	8
1974	12124	5074	7
1975	4222	464	8
1976	10862	1403	12
1977	6263	4223	11
1978	4774	4253	10
1979	5307	2423	13
1980	2809	495	14
1981	1841	528	12
1982	1173	2141	113
1983	4		14

Table 7.1.1. SPRAT catches in the North Sea (1000 tonnes), 1974-83 (data provided by Working Group members).

Country	1974	1975	1976	1977	1978	1979	1980	1981	1982	$1983^{\text {E }}$
	IVa Weat									
Demmark	5.3	0.5	0.6	0.1	-	-	-	2.8	-	-
Faroe Islands	0.2	12.9	2.5	0.4	-	-	-	-	-	-
France	-	-	-	$+$	-	-	-	-	-	-
German Dem. Rep.	-	-	-	+	-	-	-	-	-	-
Germany, Fed.Rep.	-	-	+	0.6	-	-	0.1	-	-	-
Netherlands	\div	$+$	$+$	$+$	\cdots	-	-	-	-	-
Norvay	-	1.5	29.9	16.0	1.3	0	-	-	-	-
Poland	-	0.3	-	-	-	-	-	-	-	-
Sweden	2.2	11.0	$+$	0	-	-	-	-	-	-
U.K. (England)	-		-	0	-	$\overline{6}$	-	-	-	-
U.K. (Scotland)	41.2	9.4	12.7	26.9	16.9	6.8	3.8	1.0	+	-
USSR	1.0	1.3	1.2	$+$	-	-	-	-	-	-
Total	49.9	36.9	46.9	44.0	18.2	6.8	3.9	3.8	+	0
	IVa Eagt (North Sea stook)									
Denmark	-	-	0.2	0.1	-	-	-	-	+	-
Norvay	-	-	1.9	0.7	0.1	+	0.4	-	-	3.0
U.K. (Scotland)	-	-	$+$	0	-	-	-	-	-	-
Total	-	-	2.1	0.8	0.1	. ${ }^{\text {, }}$	0.4	0	+	3.0
	IVb Heat									
Belgium					-					32.6
Denmark	55.4	106.6	104.4	57.5	44.1	75.3	76.7	53.6	23.1	32.6
Faroe Islands	4.0	30.0	42.9	1.8	-	$2.8{ }^{\text {b }}$	$2.8{ }^{\text {b }}$	-	-	-
France	-	-	-	$+$	-	-	-	-	-	-
German Dem. Fep,	1.7	$4 \cdot 5$	6.4	0.7	-	-	-	-	-	-
Netherlands	-		-	0	-	\cdots	-	-	-	-
Norway	9.5	145.7	73.0	5.5	56.2	47.8	18.3	0.2	8.6	-
Poland	-	9.1	10.5	0	-	-	-	-	-	-
Sweden	-	-	7.9	0	5	12	2	-	-	-
U.K. (Hogland)	25.5	32.5	49.7	51.9	53.9	12.9	2.4	-	-	-
U.K. (Scotland)	8.6	4.9	18.1	10.9	14.8	5.0	2.5	0.7	0.2	+
USSR	32.9	47.8	50.4	1.6	-	-	-	-	-	-
Total	137.7	381.1	362.3	123.9	169.0	143.8	102.7	54.5	31.9	32.6

a) Preliminery figures as reported
b) Divigion IVb East and West.
$+=$ lese than O.1.

- = megrituáe mown to be nil.

Table 7.1.1. (Continued)
SPRAT catches in the North Sea ('000 tonnes), 1974-83 (deta provided by Working Group members).

Country	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983 ${ }^{\text {a }}$
IVb East										
Denmark	104.0	215.2	\|201.1	126.8	161.0	191.5	149.0	127.5		
German Dem, Rep.		0.4	-	0.7	-	19.5	-	127.5	$\underline{-1 .}$	3
Germany, Fed.Rep.	17.5	0.5	1.7	4.3	-	1.5	6.1	4.8	1.5	-
Norway	-	-	5.1	0	29.8	27.4	33.7	0.2	7.2	12.0
Sweden	-	-	-	1.5	-	-	0.6	-	-	-
Total	121.5	216.1	207.9	133.3	190.8	222.7	189.4	132.5	99.9	51.2
TVe										
Eelgium	+	+	-	0	-	-	-	-	-	-
Denmark	0.9	3.9	0.3	1.4	-	1.5	6.5	4.3	2.4	1.0
France	0.3	0.1	0.1	$+$	-	-	-	-	-	-
German Detn. Rep,	-	-	0.1	${ }_{0.4}^{+}$	-	-	-	-	-	-
Germany, Fed.Rep.	+	0.2	-	0.4	-	-	-	-	-	-
Netherlands Norway	+	$\stackrel{0.2}{ }$	-	${ }^{0}$	0.2	3.1	16.2	-	$\overline{3.7}$	-
Norway UK (England)	3.4	2.9	0.7	0.2	0.2 0.0	3.1 1.4	16.2 4.3	14.0	3.7 14.9	3.6
UK(England)	3.4	2.9	0.2	0.2	0.0	1.4	4.3	14.0	14.9	3.6
Total	4.6	7.1	1.3	2.0	0.2	6.0	27.0	18.3	23.0	4.6
Total Noxth Sea										
Belgium	${ }_{165}{ }^{+}$			+	+	+	+	-	-	-
Denmark	165.6	326.2	306.6	179.9	205.1	268.3	232.2	188.2	116.6	72.6
Faroe Islands	4.2	42.9	45.4	2.2	-	2.8	2.8	188.2	116.6	72.6
France	0.3	0.1	-	$+$	-	-	-	-	-	-
German Dem.Rep.	1.7	4.9	6.5	1.4	-	-	-	-	-	-
Germany, Fed.Rep.	17.5	0.5	1.7	5.3	-	3.8	6.2	4.8	1.5	-
Netherlands	+	0.2	+	+	$8{ }^{-6}$	-	-	-	-	-
Norway	9.5	147.2	109.9	22.2	87.6	78.6	68.6	0.4	19.5	15.0
Poland	-	9.4	10.5	+	-	-	-	-	-	-
Sweden	2.2	11.0	7.9	1.5	-	-	0.6	-	-	-
UK (England)	28.9	35.4	50.4	52.1	53.9	14.3	6.7	14.0	14.9	3.6
UK(Scotiand) USSR	49.8 33.9	14.3 49.1	30.8 51.8	37.8 1.6	31.7	11.8	6.3	1.7	0.2	$+$
USSR	3.9	49.1		1.6	-	-	-	-	-	-
Total	313.6	641.2	621.5	304.0	378.3	379.6	323.4	209.1	152.7	91.2

a) Preliminary figuree as reported,

Table 7.1.2. SPRAT in Division VIa.
Landings in tonnes.

1
\cdots
1

Source: ICES Statistician

1) Amended from national data.
¥) Preliminary figures.

Table 7.1.3. SPRAT catches in thousand tonnes (Denmark, Norway and United Kingdom) in Sub-divisions of the North Sea (1980-1983) (see Figure 6.1.1).

Month	AREAS				
	1	2	3	4	5
1	3.0		28.1	52.4	17.5
2	0.7		27.7	1.9	3.5
3			2.8	4.6	1.1
4	1.2		0.6	+	
5			0.2	+	+
6			0.7	1.3	
7			0.3	29.7	
8			0.5	34.9	
9.			0.1	15.1	
10			10.6	36.6	0.1
11			15.1	24.7	
12			12.1	2.8	4.3

1981

Month	AREAS				
	1	2	3	4	5
	0.6	-	12.7	3.0	10.3
2	-	-	14.4	9.1	6.9
3	-	-	+	3.1	+
4	-	-	+	0.2	+
5	-	-	1.5	0.4	0.2
6	-	-	0.4	0.6	0.2
7	-	-	-	20.5	-
8	-	-	1.4	26.3	-
9	2.8	-	2.9	35.9	-
10	+	-	-	20.1	-
11	0.1	-	13.3	8.3	-
12	0.3	-	8.0	-	0.7

1982

Month	AREAS					
	1	2	3	4	5	
1	+	-	23.7	17.9	13.3	
2	-	-	1.8	1.0	7.1	
3	-	-	0.8	0.1	+	
4	-	+	+	-	-	
5	-	-	+	0.1	-	
6	-	-	0.1	0.1	-	
7	-	-	-	4.7	+	
8	-	-	-	15.1	-	
9	-	-	-	21.2	-	
10	-	-	0.7	27.3	-	
11	-	-	1.2	4.3	-	
12	-	-	3.5	6.5	-	

1983

Month	AREAS					
	1	2	3	4	5	
	-	-	1.0	13.0	2.9	
2	-	-	0.3	0.5	0.7	
3	-	-	-	+	0.1	
4	-	-	+	0.1	+	
5	-	-	+	0.2	-	
6	-	-	0.3	0.6	+	
7	-	-	-	4.5	+	
8	-	-	+	15.8	-	
9	-	-	-	5.6	-	
10	-	-	-	3.2	-	
11	-	-	21.1	5.7	-	
12	-	-	9.7	1.8	0.9	

Table 7.3.1 North Sea SPRAT in 1982 and 1983.
Numbers caught per age group $x 10^{-6}$
in 1982.

Divisions	Months	Age groups					
		0	1	2	3	4	5
IVa W	$\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$	-	-	3.1 - -	0.5 - -	0.1 - - -	-
	Total						
$\begin{aligned} & \quad \text { IVa E } \\ & \text { (excl. } \\ & \text { Norwegian } \\ & \text { fjord } \\ & \text { catch) } \end{aligned}$	$\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$	-	- + -	-7 0.1 -	- 0.1 - -	-	-
	Total	-	+	0.1	0.1	-	-
IVb W	$\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$	-	$\begin{gathered} 35.4 \\ - \\ - \\ 17.8 \end{gathered}$	$\begin{array}{r} 2609.6 \\ 11.7 \\ - \\ 86.7 \\ \hline \end{array}$	$\begin{gathered} 254.8 \\ - \\ - \\ 5.4 \\ \hline \end{gathered}$	$\begin{gathered} 13.1 \\ - \\ 0.6 \end{gathered}$	$\begin{gathered} 4.5 \\ - \\ 1.2 \\ \hline \end{gathered}$
	Total						
IVb E	$\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$	$\begin{gathered} - \\ - \\ 20.8 \\ 34.8 \\ \hline \end{gathered}$	$\begin{array}{r} 63.1 \\ \\ 3.4 \\ 4 \\ 813.2 \\ 2682.3 \\ \hline \end{array}$	$\begin{array}{r} 729.3 \\ 7.3 \\ 60.8 \\ 537.2 \\ \hline \end{array}$	$\begin{array}{r} 100.1 \\ 5.4 \\ 2.1 \\ 5.1 \\ \hline \end{array}$	$\begin{gathered} 3.3 \\ 0.7 \\ - \end{gathered}$	-
	Total						
IVc	$\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$	-	$\begin{gathered} 922.2 \\ - \\ 0.6 \end{gathered}$	$\begin{array}{r} 1535.8 \\ 12.1 \\ \\ \end{array}$	239.7 \bar{Z}	$\begin{gathered} 99.9 \\ = \end{gathered}$	$\begin{gathered} 0.5 \\ = \end{gathered}$
	Total						
TOTAL NORTH SEA (excl.last quarter)	Jan-Mar Apr-Jun Jul-Sep Oct-Dec	$\begin{gathered} - \\ \overline{-} \\ 20.8 \\ 34.8 \end{gathered}$	$\left\lvert\, \begin{array}{rr} 1 & 020.7 \\ & 3.4 \\ 4 & 813.2 \\ 2 & 700.7 \end{array}\right.$	$\begin{array}{r} 5877.8 \\ 31.2 \\ 60.8 \\ 623.9 \end{array}$	$\begin{array}{r} 595.1 \\ 5.5 \\ 2.1 \\ 10.5 \end{array}$	$\begin{array}{r} 116.4 \\ 0.7 \\ - \\ 0.6 \end{array}$	$\begin{gathered} 5.0 \\ - \\ - \\ 1.2 \end{gathered}$
	Total	55.6	8538.0	6593.7	613.2	117.7	6.2

Table 7.3.1 (continued) North Sea SPRAT in 1982-83.
Numbers caught per age group $x 10^{-6}$ in 1983.

Divisions	Months	Age groups					
		0	1	2	3	4	5
IVa W	Jan-Mar	-	-	-	-	-	-
	Apr-Jun	-	-	-	-	-	-
	Jul-Sep	-	-	-	-	-	-
	Oct-Dec	-	-	-	-	-	-
	Total	-	-	-	-	-	-
IVa E (excl. Norweg. fjord catch)	Jan-Mar	-	-	-	-	-	-
	Apr-Jun	-	-	-	-	-	-
	Jul-Sep	-	-	-	-	-	-
	Oct-Dec	-	-	-	-	-	-
	Total	-	-	-	-	-	-
IVb W	Jan-Mar	-	118.2	59.8	39.1	0.8	-
	Apr-Jun	-	4.4	15.2	4.0	-	-
	Jul-Sep Oct-Dec	49.6	$\begin{array}{r} 7.1 \\ 1 \quad 605.5 \end{array}$	443.2	20.6	-	-
	Total	49.6	1735.2	518.2	63.7	0.8	-
IVb E	Jan-Mar	-	231.6	716.9	304.7	20.7	3.0
	Apr-Jun	1.1	18.5	40.6	1.3	-	-
	Jul-Sep	10.1	2648.6	341.0	27.0	-	-
	Oct-Dec	75.0	351.6	306.8	24.6	0.1	-
	Total	86.2	3250.3	1405.3	357.6	20.8	3.0
IVc	Jan-Mar	-	7.5	156.2	139.2	16.6	-
	Apr-Jun	0.6	2.5	0.3	-	-	-
	Jul-Sep	0.2	0.7	0.1	-	-	-
	Oct-Dec	6.1	59.5	11.4	1.5	-	-
	Total	6.9	70.2	168.0	140.7	16.6	-
TOTAL	Jan-Mar	-	357.3	932.9	483.0	38.1	3.0
NORTH	Apr-Jun	1.7	25.4	56.1	5.3	,	-
SEA	Jul-Sep	10.3	2656.4	341.1	27.0	-	-
	Oct-Dec	130.7	2016.6	761.4	46.7	0.1	-
	TOTAL	142.7	5055.7	2091.5	562.0	38.2	3.0

Table 7.3.2 North Sea SPRAT catch in 1975-83. Numbers caught per age group $x 10^{-6}$ in each three-month period.

Year	Months	Age group						
		0	1	2	3	4	5	6
1975	Jan-Mar Apr-Jun Jul-Sep Oct-Dec	$\begin{aligned} & - \\ & - \\ & 15.0 \\ & 675.2 \end{aligned}$	4096.6 446.2 10588.1 6351.6	$\begin{array}{rrr}14 & 973.2 \\ 1 & 163.2 \\ 5 & 760.0 \\ 6 & 122.5\end{array}$	$\begin{array}{r} 3929.0 \\ 68.9 \\ 75.1 \\ 660.2 \end{array}$	$\begin{array}{r} 233.7 \\ 6.5 \\ 3.1 \\ 57.3 \end{array}$	14.1 - - 4.4	
1976	Jan-Mar Apr-Jun Jul-Sep Oct-Dec	$\begin{gathered} - \\ - \\ 79.6 \\ 2780.4 \end{gathered}$	$\begin{array}{rrr}9 & 360.9 \\ 2 & 017.2 \\ 16 & 536.4 \\ 8 & 443.7\end{array}$	$\begin{array}{r} 9997.0 \\ 964.6 \\ 599.5 \\ 2659.4 \end{array}$	$\begin{array}{r} 6678.0 \\ 740.1 \\ 40.1 \\ 612.7 \end{array}$	$\begin{gathered} 373.0 \\ 40.9 \\ - \\ 37.1 \end{gathered}$	$\begin{aligned} & 6.2 \\ & 0.8 \\ & - \\ & - \end{aligned}$	1.4
1977	Jan-Mar Apr-Jun Jul-Sep Oct-Dec	$\begin{gathered} - \\ \\ \\ \hline \end{gathered}$	$\begin{array}{r} 4197.2 \\ 540.3 \\ 2803.1 \\ 4705.0 \end{array}$	$\begin{array}{r} 11962.6 \\ 670.9 \\ 3248.4 \\ 3049.5 \end{array}$	$\begin{array}{r} 962.9 \\ 52.7 \\ 165.9 \\ 311.2 \end{array}$	$\begin{array}{r} 104.7 \\ 1.5 \\ 11.1 \\ 1.5 \end{array}$	12.0	
2976	Jan-Mar Apr-Jun Jul-Sep Oct-Dec	$\begin{aligned} & - \\ & - \\ & 6.3 \\ & 636.8 \end{aligned}$		$\begin{array}{r} 2839.3 \\ 123.8 \\ 216.5 \\ 3955.8 \end{array}$	$\begin{array}{r} 3770.1 \\ 3.2 \\ 14.7 \\ 1159.0 \end{array}$	$\begin{gathered} 344.5 \\ 0 \\ 0.7 \\ 214.9 \end{gathered}$		
1979	$\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$	433.0	$\begin{array}{r} 2770.0 \\ 203.6 \\ 25379.1 \\ 8394.8 \end{array}$	$\begin{array}{r} 6422.2 \\ 452.0 \\ 388.3 \\ 1494.6 \end{array}$	$\begin{array}{r} 2670.6 \\ 14.0 \\ 2.1 \\ 122.4 \end{array}$	$\begin{gathered} 131.2 \\ 1.1 \\ 0 \\ 34.9 \end{gathered}$	$\begin{aligned} & 0.7 \\ & - \\ & - \\ & - \end{aligned}$	
1980	Jan-Mar Apr-Jun Jul-Sep Oct-Dec	$\begin{gathered} - \\ - \\ 15.1 \\ 515.7 \end{gathered}$	$\begin{array}{\|rr\|} \hline 1 & 448.0 \\ & 134.0 \\ 10 & 143.3 \\ 4 & 518.5 \end{array}$	$\begin{array}{r} 12764.4 \\ 84.5 \\ 8 \quad 811.6 \\ 2767.4 \end{array}$	$\begin{array}{r} 1323.2 \\ 2.4 \\ 4.7 \\ 111.8 \end{array}$	$\begin{gathered} 103.7 \\ 0.3 \\ - \\ 19.5 \end{gathered}$	$\begin{aligned} & 0.7 \\ & - \\ & - \\ & - \end{aligned}$	
1981	$\begin{aligned} & \text { Jan-Mar- } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$	$\begin{array}{r} - \\ 23.0 \\ 192.2 \\ 158.0 \\ \hline \end{array}$	$\begin{array}{rr} 2 & 249.3 \\ 87.0 \\ 7 & 626.5 \\ 2 & 326.8 \\ \hline \end{array}$	$\begin{array}{r} 5218.6 \\ 189.2 \\ 1140.8 \\ 1 \quad 448.9 \\ \hline \end{array}$	$\begin{array}{r} 1055.5 \\ 29.1 \\ 46.1 \\ 69.9 \\ \hline \end{array}$	$\begin{gathered} 22.1 \\ - \\ 3.0 \\ 0.7 \\ \hline \end{gathered}$	$\begin{array}{r} 1.5 \\ 1.7 \\ 0.4 \\ \hline \end{array}$	
1982	$\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$	$\begin{gathered} \overline{-} \\ 20.8 \\ 34.8 \end{gathered}$	$\begin{array}{rr} 1 & 020.7 \\ 3.4 \\ 4 & 813.2 \\ 2 & 700.7 \end{array}$	$\begin{array}{r} 5877.8 \\ 31.2 \\ 60.8 \\ 623.9 \end{array}$	$\begin{array}{r} 595.1 \\ 5.5 \\ 2.1 \\ 10.5 \end{array}$	$\begin{array}{r} 116.4 \\ 0.7 \\ - \\ 0.6 \end{array}$	$\begin{array}{r} 5.0 \\ - \\ 1.2 \end{array}$	-
1983	$\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$	$\begin{array}{r} \overline{1} .7 \\ 10.3 \\ 130.7 \end{array}$	357.3 25.4 2 656.4 2 016.6	$\begin{array}{r} 932.9 \\ 56.1 \\ 341.1 \\ 761.4 \end{array}$	$\begin{array}{r} 483.0 \\ 5.3 \\ 27.0 \\ 46.7 \end{array}$	$\begin{gathered} 38.1 \\ - \\ - \\ 0.1 \end{gathered}$	3.0 - -	- - -

Table 7.3.3 North Sea SPRAT. Fishing mortality by quarters (VPA)
$M=0.8$ year ${ }^{1}$. Input fishing mortalities are in brackets. 1974-1978 from previous report.

Year	Quarter	Age groups				
		0	1	2	3	4
1974	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & . \\ & .0003 \\ & .0141 \end{aligned}$.052 .003 .053 .087	$\begin{aligned} & .30 \\ & .13 \\ & .15 \\ & .10 \end{aligned}$	$\begin{aligned} & .59 \\ & .13 \\ & .05 \\ & .14 \end{aligned}$	$\begin{array}{r} 1.41 \\ .69 \\ .44 \\ (1.00) \end{array}$
1975	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} - \\ .000 \\ .004 \end{gathered}$	$\begin{aligned} & .046 \\ & .005 \\ & .156 \\ & .132 \end{aligned}$	$\begin{aligned} & .31 \\ & .035 \\ & .245 \\ & .446 \end{aligned}$.92 .034 .047 .706	$\begin{gathered} .84 \\ .046 \\ .028 \\ (1.000) \end{gathered}$
1976	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	- .001 .039	$\begin{aligned} & .072 \\ & .020 \\ & .224 \\ & .170 \end{aligned}$	$\begin{aligned} & .315 \\ & .045 \\ & .035 \\ & .217 \end{aligned}$	$\begin{array}{r} 1.339 \\ .488 \\ .043 \\ 1.597 \end{array}$	$\begin{array}{r} 1.213 \\ .386 \\ .000 \\ (1.000) \end{array}$
1977	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} - \\ . \\ .001 \\ .012 \end{gathered}$.077 .013 .084 .198	$\begin{aligned} & .386 \\ & .033 \\ & .220 \\ & .332 \end{aligned}$	$\begin{array}{r} .114 \\ .000 \\ .032 \\ 1.287 \end{array}$	$\begin{gathered} 1.720 \\ .086 \\ 1.568 \\ (1.000) \end{gathered}$
1978	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} - \\ - \\ .000 \\ .005 \end{gathered}$.034 .019 .478 .346	.176 .010 .022 .695	$\begin{array}{r} .889 \\ .002 \\ .008 \\ 1.615 \end{array}$	$\begin{gathered} .445 \\ .000 \\ .002 \\ (1.000) \end{gathered}$
1979	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & . \\ & .-\mathrm{C} 27 \end{aligned}$.027 .002 . 458 .268	.627 .079 .090 .575	$\begin{array}{r} 1.685 \\ .029 \\ .005 \\ .489 \end{array}$	$\begin{gathered} .829 \\ .013 \\ .000 \\ (1.000) \end{gathered}$
1980	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & .011 \end{aligned}$	$\begin{aligned} & .029 \\ & .003 \\ & .374 \\ & .284 \end{aligned}$.834 .011 .135 .904	$\begin{array}{r} 1.748 \\ .011 \\ .026 \\ 1.435 \end{array}$	$\begin{gathered} 1.041 \\ .007 \\ .000 \\ (1.000) \end{gathered}$
1981	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & .001 \\ & .006 \\ & .006 \end{aligned}$	$\begin{aligned} & .063 \\ & .003 \\ & .397 \\ & .201 \end{aligned}$.617 .039 .344 .992	$\begin{array}{r} 1.147 \\ .076 \\ .167 \\ .407 \end{array}$	$\begin{gathered} 1.478 \\ .000 \\ 1.167 \\ (1.000) \end{gathered}$
1982	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & .001 \\ & .001 \end{aligned}$.047 .000 .413 .431	$\begin{array}{r} 1.127 \\ .014 \\ .034 \\ .557 \end{array}$	$\begin{array}{r} 1.837 \\ .063 \\ .031 \\ .212 \end{array}$	$\begin{array}{r} 3.742 \\ .405 \\ .000 \\ (1.000) \end{array}$
1983	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} - \\ -.001 \\ (.008) \end{gathered}$	$\begin{gathered} .016 \\ .001 \\ .200 \\ (.230) \end{gathered}$	$\begin{array}{r} .258 \\ .022 \\ . .180 \\ \text { (.760 } \end{array}$	$\begin{gathered} 1.199 \\ .032 \\ .226 \\ (.760) \end{gathered}$	$\begin{gathered} 4.785 \\ .000 \\ .000 \\ (.900) \end{gathered}$

Table 7.3.4 North Sea SPRAT. Number in stock, $N \times 10^{-9}$, at the beginning of each quarter and biomass, tonnes $\times 10^{-3}$, at the beginning of the year. (VPA) $M=0.8$ year ${ }^{-1}$. 1974-78 from previous report.

Year	Quarter	Age groups					Biomass	
		0	1	2	3	4	Total	Adult
1974	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} \overline{-} \\ 148 \\ 121 \end{gathered}$	$\begin{array}{r} 166 \\ 129 \\ 105 \\ 82 \end{array}$	$\begin{gathered} 31 \\ 19 \\ 14 \\ 9.6 \end{gathered}$	$\begin{array}{r} 2.5 \\ 1.2 \\ .8 \\ .6 \end{array}$	$\begin{aligned} & .3 \\ & + \\ & + \\ & + \end{aligned}$	598	432
1975	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} - \\ 222 \\ 182 \end{gathered}$	$\begin{aligned} & 98 \\ & 99 \\ & 81 \\ & 57 \end{aligned}$	$\begin{aligned} & 61 \\ & 37 \\ & 29 \\ & 19 \end{aligned}$	$\begin{aligned} & 7.1 \\ & 2.3 \\ & 1.8 \\ & 1.4 \end{aligned}$	$\begin{aligned} & .4 \\ & .2 \\ & .1 \\ & .1 \end{aligned}$	702	576
1976	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \overline{-} \\ & \overline{97} \\ & 79 \end{aligned}$	$\begin{array}{r} 148 \\ 113 \\ 91 \\ 59 \end{array}$	$\begin{aligned} & 41 \\ & 24 \\ & 19 \\ & 15 \end{aligned}$	$\begin{array}{r} 9.8 \\ 2.1 \\ 1.1 \\ .8 \end{array}$	$\begin{aligned} & .6 \\ & .1 \\ & .1 \\ & .1 \end{aligned}$	613	465
1977	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} - \\ \overline{122} \\ 100 \end{array}$	$\begin{aligned} & 62 \\ & 47 \\ & 38 \\ & 29 \end{aligned}$	$\begin{aligned} & 41 \\ & 23 \\ & 18 \\ & 12 \end{aligned}$	$\begin{aligned} & 9.9 \\ & 7.2 \\ & 5.8 \\ & 4.6 \end{aligned}$	$\begin{aligned} & .1 \\ & + \\ & + \\ & + \end{aligned}$	522	460
1978	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} - \\ \overline{-} \\ 176 \\ 144 \end{gathered}$	$\begin{aligned} & 81 \\ & 64 \\ & 51 \\ & 26 \end{aligned}$	$\begin{aligned} & 19 \\ & 13 \\ & 11 \\ & 8.6 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 2.3 \\ & 1.9 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 1.1 \\ .6 \\ .5 \\ .4 \end{array}$	354	273
1979	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & 83 \\ & 68 \end{aligned}$	$\begin{array}{r} 116 \\ 93 \\ 76 \\ 39 \end{array}$	$\begin{array}{r} 15 \\ 6.6 \\ 5.0 \\ 3.7 \end{array}$	$\begin{array}{r} 3.5 \\ .5 \\ .4 \\ .3 \end{array}$	$\begin{aligned} & .3 \\ & .1 \\ & .1 \\ & .1 \end{aligned}$	288	172
1980	1 2 3 4	- 61 50	55 44 36 20	$\begin{aligned} & 25 \\ & 8.7 \\ & 7.1 \\ & 5.1 \end{aligned}$	$\begin{array}{r} 1.7 \\ .2 \\ .2 \\ .2 \end{array}$	$\begin{aligned} & .2 \\ & .1 \\ & + \\ & + \end{aligned}$	268	213
1981	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & 37 \\ & 30 \end{aligned}$	$\begin{aligned} & 41 \\ & 31 \\ & 20 \\ & 14 \end{aligned}$	$\begin{aligned} & 12 \\ & 5.5 \\ & 4.3 \\ & 2.5 \end{aligned}$	$\begin{array}{r} 1.7 \\ .4 \\ .3 \\ .2 \end{array}$	$\begin{aligned} & + \\ & + \\ & + \\ & + \end{aligned}$	159	119
1982	1 2 3 4	$\begin{aligned} & 37 \\ & 37 \end{aligned}$	$\begin{gathered} 24 \\ 19 \\ 16 \\ 8.5 \end{gathered}$	$\begin{aligned} & 9.4 \\ & 2.5 \\ & 2.0 \\ & 1.6 \end{aligned}$.8 .1 .1 .1	$\begin{aligned} & .1 \\ & + \\ & + \\ & + \end{aligned}$	173	90
1983	1 2 3 4	- - 22 18	$\begin{aligned} & 24 \\ & 20 \\ & 16 \\ & 11 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.8 \\ & 2.3 \\ & 1.6 \end{aligned}$.7 .2 .1 .1	$\begin{aligned} & + \\ & + \\ & + \\ & + \end{aligned}$	132	51

Adult $=2+3+4$

Table 7.4.1 Acoustic estimates of North Sea SPRAT biomass ($\mathrm{t} \times 10^{-3}$) standardised to the target strength - length relationship given in Section 7.4.

AREA	1980		1981		1982		1983		1984	
	1-group	01der	1-group	OIder	1-group	01der	1-group	Older	l-group	01der
Noxway IVa E IVb E IVb W IVc	$\begin{array}{r} 2.5 \\ 125.9 \\ 8.5 \\ 8.3 \end{array}$	$\begin{array}{r} 59.6 \\ 2.0 \\ 15.4 \end{array}$	No surv 10.0 - 0.4	$\begin{aligned} & 5.7 \\ & 0.8 \\ & 4.3 \end{aligned}$	$\begin{aligned} & \text { No s } \\ & 9.0 \\ & 0.9 \\ & \text { No s } \end{aligned}$	$\begin{gathered} \text { rvey } \\ 4.0 \\ 0.3 \\ \text { rvey } \end{gathered}$	No No No No No s	rvey rvey rvey rvey		$\begin{aligned} & \text { ey } \\ & 25.1 \\ & \text { ey } \\ & \text { ey } \end{aligned}$
	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 0.2 \end{aligned}$	$\begin{array}{r} 0.4 \\ 0.4 \\ <0.1 \end{array}$	$\begin{array}{r} 2.9 \\ 12.5 \\ 6.0 \end{array}$	$\begin{aligned} & 0.8 \\ & 0.1 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 2.8 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.5 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 2.5 \\ & 1.9 \end{aligned}$	$\begin{array}{r} 0.2 \\ <0.1 \\ 0.1 \end{array}$	$\begin{aligned} & 1.8 \\ & 0.8 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \\ & 2.3 \end{aligned}$
TOTAL IVa W by IVb W Norway, IVb E England and Scotland. IVc	$\begin{gathered} 2.0 \\ 11.7 \\ 125.9 \\ \left.8.3^{\text {3I }}\right) \end{gathered}$	$\begin{gathered} 0.4 \\ 7.5 \\ 59.6 \\ 15.4^{\text {玉 }} \end{gathered}$	$\begin{array}{r} 2.9 \\ 21.5 \\ 10.0 \\ 7.1 \end{array}$	$\begin{array}{r} 0.8 \\ 66.1 \\ 5.7 \\ 46.8 \end{array}$	$\begin{array}{r} 3.2 \\ 15.8 \\ 9.8 \\ 3.1 \end{array}$	$\begin{array}{r} 0.1 \\ 20.9 \\ 4.2 \\ 81.0 \end{array}$	$\begin{gathered} 1.3 \\ 4.6 \\ - \\ 1.8 \end{gathered}$	$\begin{gathered} 0.2 \\ 7.3 \\ - \\ 52.5 \end{gathered}$	$\begin{array}{r} 1.8 \\ 1.1 \\ 12.0 \\ - \end{array}$	$\begin{array}{r} 0.3 \\ 2.6 \\ 25.1 \\ - \end{array}$

F) Excluding Wash and Thames estuary.

Table 7.4.2 North Sea SPRAT
Research vessel surveys.

Year of observation	S URVEYS						Commercial fisheries	
	IYFS N. Sea $\mathrm{No} / \mathrm{hr}$ all ages	$\begin{aligned} & \text { IYFS } \\ & \text { Liv. } \\ & \text { IVb } \\ & \text { l-gr. } \end{aligned}$	$\begin{aligned} & \text { IYFS } \\ & \text { IVb E } \\ & \text { IKMTT } \\ & \text { l-gr. } \end{aligned}$	IYFS IVb E Botton trawl l-gr.	Mid-water surveys November		NE Engl. fishery winter $\times 10^{-6}$ l-gr.	North ${ }^{\text {Son: }}$ $x 10^{-6}$ Catches first quarter l-gr.
					0-gr.	1-gr.		
1970							1172	
1971							730	
1972	873	90					218	
1973	713	123					1022	
1974	2631	481					1517	7620
1975	-	-					339	4097
1976	2127	1186					557	9361
1977	3031	136					361	4197
1978	2208	1474					732	2462
1979	569 ${ }^{\text {a }}$	$248^{\text {a }}$					330	277
1980	3770	1402	328	1916	2831	81	59	1448
1981	2107	886	107	1146	1075	60	-	2249
1982	602	183	47	512	1044	38	-	1021
1983	852	399	12	730	1536	84		357
1984		$525^{\text {b }}$						

a) Low figures due to abnormal conditions on the survey.
b) Preliminary figure, probably overestimate.

Table 7.5.1 North Sea SPRAT. Mean weights at age by quarters, 1982 and 1983 (in grams)

| YEAR | QUARTHR | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | JAN-MAR | - | 3.4 | 8.1 | 16.0 | 16.9 | 20.7 |
| 9 | APR-JUN | (1) | 6.2 | 7.4 | 14.2 | 27.0 | - |
| 8 | JUL-SEP | 3.7 | 7.2 | 18.7 | 25.5 | - | - |
| 2 | OCT-DEC | 4.9 | 10.8 | 16.9 | 25.9 | 26.0 | 30.7 |
| | YEAR | 4.4 | 8.4 | 9.5 | 16.3 | 18.0 | 22.6 |
| 1 | JAN-MAR | - | 3.3 | 8.7 | 13.5 | 32.0 | - |
| 9 | APR-JUN | (1) | 6.8 | 13.8 | 21.0 | - | - |
| 3 | JUL-SEPP | 2.6 | 7.0 | 13.2 | 14.5 | - | - |
| | OCT-DEC | 3.9 | 12.4 | 18.5 | 25.4 | 19.0 | - |
| | YEAAR | 3.8 | 8.9 | 16.0 | 17.6 | 31.1 | - |

Table 7.10.1 Yield and stock charaoteristics of North Sea SPRAT.
A. 1967-73 (Anon., 1977, based on annual VPA)

Year	Catch (1000 t)	$\begin{aligned} & \text { Total biomass } \\ & (1000 \mathrm{t}) \end{aligned}$	Spawning biomass (1000 t)	$\begin{gathered} \mathrm{R}_{1} \times 10^{-9} \\ \text { (year class) } \end{gathered}$
1967	81		416	129
1968	79		626	76
1969	83		762	86
1970	69		632	46
1971	90		556	42
1972	115		331	100
1973	271		200	194
B. 1974-83 (Based on quarterly VPA)				
1974	314	598	432	98
1975	641	702	576	148
1976	621	613	465	62
1977	384	522	460	81
1978	378	354	273	117
1979	380	289	172	55
1980	323	273	213	41
1981	209	162	119	24
1982	153	100	90	24
1983	91			

Spawning stock and R_{1} 1967-73 from Doc. C.M.1977/H:3, where $R_{I}=R_{o} e^{-0.5 M}$, R_{o} being estimated at lst July.

Table 8.1.1 Nominal catch (tonnes) of SPRAT in Divisiors VIId,e, 1974-83 (data for 1974-1982 as officially reported to ICES)

Country	1974	1975	1976	1977	1978	1979	1980	1981	1982	$1983^{\text {F }}$
.Belgium	-	-	-	-	-	-	-	-	-	3
Denmark	-	-	447	74	1796	9981	7483	b)	286	$638^{\text {a) }}$
Faroe Islande	-	-	6	-	-	-	-	-	-	-
France	520	147	115	120	225	2373	1867	146	44	+
German Dem.Rep.	-	-	-	-	-	-	-	-	-	
Germany, Fed.Rep.		-	-							
de					34	6	5	1	-	
Netherlands	16	109	49	115	826	441	1401	1015	1533	NA
Norway	-	-	-	-	-	-	65	-	-	_
Poland	1	-	-	-	-	-	-	-	-	-
J.K. (Eng. \& Wales)	3256	1315	3107	2928	2118	2032	6864	10183	4749	3216
Total	3793	1571	3724	3237	4999	14833	17732	13890	6612	(3857)

F Preliminary
a) Lendings in foreign ports Jul-Dec not included
b) As per 22 February 1983, no final data available

NA) Not available

Table 8.i.2. Lyme Bay area fishery - Monthly catches (tonnes). (United Kingdom vessels only.)

Season	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Seasor Total
1961-62				1	27	4	427	428	35	922
1962-63				309	238	131	148	187	58	1071
1963-64				263	53	82	385	276	24	1083
1964-65				25	56	20	242	465	8	816
1965-66				47	81	165	610	302	17	1222
1966-67				3	152	368	703	355	1	1583
1967-б8			18	76	238	422	560	43	3	1360
1958-69	11	-	4	122	142	298	373	123	1	1074
1969-70				140	131	276	915	283	76	1821
1970-71		7	38	90	184	549	553	106	20	1547
1971-72			309	101	232	228	410	70		1410
1972-73			107	209	132	87	404	165	49	1153
1973-74			313	186	194	350	311	96	40	1490
1974-75	184	451	209	533	838	405	157	30		2807
1975-76			66	649	289	111	204	6		1325
1976-77	289	440	1039	123	594	347	234	103	5	3174
1977-78	31	680	768	725	115	84	201	54		2658
1978-79		252	368	545	450	209	58	37	28	1947
1979-80			90	674	706	337	150	38	2	1997
1980-81			458	815	1423	1872	2069	138	54	6829
1981-82			11	475	1854	4311	855	265	100	7871
1982-83			54	844	1017	641	522	90	31	3199
1983-84			82	479	1686	261				$\left.(3135)^{1}\right)$
Period Mean Values										END
1961-65				129	91	81	362	332	29	1024
1956-70	2	1	12	86	170	383	621	182	20	1477
1971-75	37	90	213	336	337	236	297	73	18	1637
1976-80	64	274	545	577	658	570	542	74	18	3322
1981-82			33	660	1436	2476	689	144	52.	5490

1) Catches Jan - March estimated as 20% of $83 / 84$ seasonal total catch

Table 8.3.1 Lyme Bay area SPRAT fishery, 1966-83.
Numbers caught per age group x 10^{-6} in each season.

Season	Age group					
	$0 / 1$	$1 / 2$	$2 / 3$			
$1966-67$	0.55	11.67	44.00	18.56	11.67	3.60
$1967-68$	2.28	46.79	33.10	5.08	0.66	0.39
$1968-69$	0.08	29.99	29.24	4.03	0.44	0.10
$1969-70$	0.13	17.53	62.78	18.60	2.73	0.35
$1970-71$	0.01	4.12	46.03	26.94	1.57	0.54
$1971-72$	0.80	20.22	28.01	22.96	4.12	0.34
$1972-73$	1.51	32.20	22.20	10.20	3.96	0.38
$1973-74$	0.50	22.91	46.12	9.08	5.06	2.42
$1974-75$	0.30	40.77	82.73	12.67	8.84	3.55
$1975-76$	0.16	13.33	25.25	23.28	6.39	1.47
$1976-77$	0.73	40.34	108.52	34.87	6.56	0.37
$1977-78$	0.12	19.48	69.33	43.89	7.50	0.48
$1978-79$	9.20	41.71	44.64	18.97	5.72	0.01
$1979-80$	1.17	26.97	55.45	7.58	4.07	0.33
$1980-81$	0.76	51.33	220.79	55.35	6.15	0.26
$1981-82$	1.08	52.00	161.91	131.28	20.94	0.55
$1982-83$	0.16	4.81	49.74	58.89	25.41	0.25
$1983-84$	9.00	11.5	40.0	52.3	22.8	$6.3^{3 n}$

F Based on catches Oct--Dec 1983

Table 8.3.2 Lyme Bay SPRAT. Annual fishing mortalities (traditional analysis, using terminal populations generated by separable VPA).
Annual $M=0.85^{-1} ; S=0.3 ; F=0.5 ; \%$ applied in estimation of biomass $=0.0$

Season	Age Groups					F_{c}	\bar{F}_{p}
	$1 / 2$	2/3	3/4	4/5	5/6		
1967-68	0.07	0.19	0.17	0.09	0.05	0.13	0.11
1968-69	0.03	0.11	0.06	0.03	0.03	0.08	0.05
1969-70	0.02	0.15	0.20	0.10	0.08	0.14	0.07
1970-71	0.01	0.11	0.18	0.05	0.05	0.12	0.05
1971-72	0.03	0.10	0.14	0.07	0.02	0.09	0.06
1972-73	0.06	0.09	0.10	0.06	0.02	0.08	0.07
1973-74	0.04	0.25	0.10	0.13	0.10	0.17	0.10
1974-75	0.09	0.40	0.20	0.26	0.25	0.27	0.18
1975-76	0.02	0.15	0.40	0.30	013	0.24	0.09
1976-77	0.08	0.43	0.69	0.39	0.05	0.38	0.20
1977-78	0.05	0.40	0.69	0.69	0.09	0.41	0.18
1978-79	0.04	0.32	0.38	0.37	0.03	0.28	0.14
1979-80	0.01	0.14	0.16	0.27	0.06	0.15	0.07
1980-81	0.04	0.24	0.43	0.40	0.05	0.26	0.12
1981-82	0.07	0.31	0.45	0.64	0.12	0.29	0.17
1982-83	0.02	0.18	0.37	0.30	0.02	0.22	0.10

1
\bar{F}_{c} and \bar{F}_{p} - see Shepherd 1982

Table 8.3.3 Iyme Bay SPRAT. Number in stock (millions) at beginning of first year of each season (traditional analysis using terminal populations generated by separable VPA). Annual $\mathrm{M}=0.85 \mathrm{year}^{-1} ; \quad \mathrm{S}=0.3 ; \mathrm{F}=0.5 ; \%$ applied in estimation of biomass $=0.0$

Season	Age Group					$\begin{gathered} 2-6 \\ \text { Biomass (tonnes) } \end{gathered}$
	1/2	2/3	$3 / 4$	4/5	5/6	
1967-68	992	283	49	12	12	
1968-69	1593	395	100		12	16415
1969-70	1583	662		18	5	25375
1970-71		602	150	40	7	31859
1970-71	988	665	243	53	16	28921
1971-72	904	420	255	87	21	25175
1972-73	763	373	162	95	35	25175
1973-74	872	306	146)	35	22390
1974-75	689	358	146	63	38	19375
1975-76	- 068	350	102	57	24	18193
	1068	269	102	36	19	18724
1976-77	770	448	99	29	11	
1977-78	581	304	125	21	8	17997
1978-79	1495	236	87		8	12259
1979-80	3634	613		27	5	25117
1980-81			73	25	8	68981
	2130	1536	227	26	8	65791
1981-82	1101	878	519	63	8	47132
1982-83	302	438	275			47132
I 1983-84	205	126				23791
		126	156	81	44	12744

Table 8.3.4 Lyme Bay SPRAT. Biomass, recruitment $\left(R_{1}\right)$ and fishing mortality (traditional analysis using terminal populations generated by separable VPA).
$M=0.85 ; S=0.3 ; F=0.5$. Biomass and age at the beginning of the lst year of each seasonal pair.

YEAR	Biomass (Ktonnes)	$R_{1} \times 10^{-6}$	$F_{F_{n}}$
1967	16.4	992	.13
1968	25.4	1593	.08
1969	31.9	1583	.14
1970	28.9	988	.12
1971	25.2	904	.09
1972	22.4	763	.08
1973	19.4	872	.17
1974	18.2	689	.27
1975	18.7	1068	.24
1976	18.0	770	.38
1977	12.3	581	.41
1978	25.1	1495	.28
1979	69.0	3634	.15
1980	65.8	2130	.26
1981	47.1	1101	.29
1982	23.8	302	.22
1983		205	.47)

¥) \bar{F}_{c} - see Shepherd (1982)

Table 8.5.1 Lyme Bay area SPRAT. Mean weight/age.

		Age Group						Gverai Mean
Season	Guarter	$0 / 1$	$1 / 2$	$2 / 3$	3/4	4/5	5/5	
1972-73	3 4 1 Season	$\begin{aligned} & 5.1 \\ & 5.3 \\ & 4.9 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 12.7 \\ & 11.3 \\ & 10.2 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 22.1 \\ & 21.9 \\ & 17.9 \\ & 19.7 \end{aligned}$	$\begin{aligned} & 24.7 \\ & 24.9 \\ & 21.2 \\ & 23.3 \end{aligned}$	$\begin{array}{r} 25.9 \\ 20.5 \\ 22.8 \\ 25.0 \\ \hline \end{array}$	$\begin{array}{r} 26.5 \\ 27.2 \\ 23.4 \\ 25.6 \end{array}$	$\begin{aligned} & 19.9 \\ & 20.3 \\ & 13.5 \\ & 16.0 \end{aligned}$
1973-74	$\begin{gathered} 3 \\ 4 \\ 1 \\ \text { Season } \end{gathered}$	$\begin{aligned} & 6.4 \\ & 4.6 \\ & 6.2 \\ & 4.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 15.6 \\ 8.0 \\ 10.0 \\ -2.2 \end{array}$	$\begin{array}{r} 18.2 \\ 18.2 \\ 15.5 \\ 17.3 \end{array}$	$\begin{aligned} & 23.5 \\ & 24.9 \\ & 23.3 \\ & 24.2 \end{aligned}$	$\begin{aligned} & 24.7 \\ & 25.8 \\ & 24.4 \\ & 25.9 \end{aligned}$	$\begin{aligned} & 25.1 \\ & 25.7 \\ & 24.4 \\ & 25.2 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 16.4 \\ & 15.0 \\ & 15.5 \end{aligned}$
1974-75	$\begin{gathered} 3 \\ 4 \\ 1 \\ \text { Season } \end{gathered}$	$\begin{array}{r} 4.4 \\ 3.6 \\ 4.7 \\ 3.9 \end{array}$	$\begin{array}{r} 11.0 \\ 9.2 \\ 8.6 \\ 9.8 \\ \hline \end{array}$	$\begin{aligned} & 17.6 \\ & 18.9 \\ & 14.8 \\ & 18.1 \end{aligned}$	$\begin{array}{r} 24.4 \\ 25.6 \\ 20.6 \\ 25.2 \\ \hline \end{array}$	$\begin{aligned} & 29.0 \\ & 29.0 \\ & 23.3 \\ & 29.4 \end{aligned}$	$\begin{aligned} & 30.7 \\ & 30.7 \\ & 24.8 \\ & 30.6 \end{aligned}$	$\begin{aligned} & 15.9 \\ & 29.0 \\ & 12.3 \\ & 17.4 \end{aligned}$
1975-76	$\begin{gathered} 3 \\ 4 \\ 1 \\ \text { Season } \end{gathered}$	$\begin{aligned} & - \\ & 3.7 \\ & 2.5 \\ & 3.1 \end{aligned}$	$\begin{array}{r} 15.4 \\ 9.5 \\ 9.6 \\ 9.7 \\ \hline \end{array}$	$\begin{aligned} & 17.1 \\ & 16.4 \\ & 15.7 \\ & 16.3 \end{aligned}$	$\begin{aligned} & 22.1 \\ & 24.1 \\ & 23.0 \\ & 23.8 \end{aligned}$	$\begin{array}{r} 28.6 \\ 29.1 \\ 28.9 \\ 29.0 \end{array}$	$\begin{aligned} & 27.0 \\ & 28.0 \\ & 26.7 \\ & 27.8 \end{aligned}$	$\begin{array}{r} 19.1 \\ 19.2 \\ 17.7 \\ 18.9 \end{array}$
1976-77	$\begin{gathered} 3 \\ 4 \\ 1 \\ \text { Season } \end{gathered}$	$\begin{aligned} & - \\ & 3.3 \\ & 2.6 \\ & 2.9 \end{aligned}$	$\begin{array}{r} 12.8 \\ 7.7 \\ 8.2 \\ 9.3 \end{array}$	$\begin{aligned} & 16.8 \\ & 17.7 \\ & 15.1 \\ & 16.8 \end{aligned}$	$\begin{aligned} & 20.4 \\ & 23.7 \\ & 21.0 \\ & 22.0 \end{aligned}$	$\begin{aligned} & 27.2 \\ & 28.1 \\ & 27.2 \\ & 27.7 \end{aligned}$	$\begin{gathered} 26.2 \\ 32.7 \\ 28.1 \end{gathered}$	$\begin{aligned} & 17.3 \\ & 17.2 \\ & 12.3 \\ & 16.5 \end{aligned}$
1977-78	$\begin{aligned} & 3 \\ & 4 \\ & 1 \end{aligned}$ Season	$\begin{gathered} - \\ - \\ 6.4 \\ -6.4 \\ \hline \end{gathered}$	$\begin{aligned} & 8.2 \\ & 6.8 \\ & 5.2 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 16.3 \\ & 18.1 \\ & 14.5 \\ & 16.7 \end{aligned}$	$\begin{aligned} & 22.4 \\ & 22.6 \\ & 18.1 \\ & 22.3 \end{aligned}$	$\begin{array}{r} 2 E .4 \\ 24.9 \\ 22.4 \\ 25.5 \end{array}$	$\begin{aligned} & 32.4 \\ & 30.5 \\ & 28.7 \\ & 31.3 \end{aligned}$	$\begin{array}{r} 18.6 \\ 19.3 \\ 9.8 \\ 17.5 \end{array}$
1978-79	$\begin{gathered} 3 \\ 4 \\ 1 \\ \text { Season } \\ \hline \end{gathered}$	$\begin{array}{r} 3.5 \\ 6.3 \\ 4.9 \\ 5.7 \\ \hline \end{array}$	$\begin{aligned} & 15.4 \\ & 11.8 \\ & 10.1 \\ & 12.1 \end{aligned}$	$\begin{aligned} & 19.2 \\ & 16.5 \\ & 13.1 \\ & 16.8 \end{aligned}$	$\begin{aligned} & 25.4 \\ & 23.9 \\ & 19.9 \\ & 24.5 \end{aligned}$	$\begin{aligned} & 29.6 \\ & 29.6 \\ & 28.3 \\ & 29.6 \end{aligned}$		$\begin{aligned} & 20.9 \\ & 15.2 \\ & 10.8 \\ & 16.2 \end{aligned}$
1979-80	$\begin{gathered} 3 \\ 4 \\ 1 \\ \text { Season } \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.5 \\ & 4.0 \\ & 3.9 \end{aligned}$	$\begin{array}{r} 18.2 \\ 16.5 \\ 9.7 \\ 14.3 \end{array}$	$\begin{aligned} & 23.6 \\ & 23.2 \\ & 19.2 \\ & 22.9 \end{aligned}$	$\begin{aligned} & 25.8 \\ & 27.0 \\ & 22.1 \\ & 26.8 \end{aligned}$	$\begin{aligned} & 32.9 \\ & 31.6 \\ & 20.7 \\ & 30.7 \end{aligned}$	$\begin{gathered} 30.7 \\ 31.0 \\ - \\ 31.0 \end{gathered}$	$\begin{aligned} & 23.1 \\ & 22.4 \\ & 12.5 \\ & 21.0 \end{aligned}$
1980-81	$\begin{gathered} 3 \\ 4 \\ 1 \\ \text { Season } \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & 5.2 \\ & 3.1 \\ & 3.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.4 \\ & 16.1 \\ & 11.8 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 24.3 \\ & 21.4 \\ & 17.1 \\ & 19.9 \end{aligned}$	$\begin{aligned} & 25.8 \\ & 24.8 \\ & 21.0 \\ & 23.8 \end{aligned}$	$\begin{aligned} & 29.9 \\ & 29.9 \\ & 28.6 \\ & 29.7 \end{aligned}$	$\begin{aligned} & 34.5 \\ & 32.0 \\ & 34.5 \\ & 32.9 \end{aligned}$	$\begin{aligned} & 24.4 \\ & 21.7 \\ & 15.3 \\ & 19.7 \end{aligned}$
1981-82	$\begin{gathered} 3 \\ 4 \\ 1 \\ \text { Season } \end{gathered}$	$\begin{aligned} & - \\ & 5.1 \\ & 6.4 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 17.3 \\ & 14.7 \\ & 12.1 \\ & 12.9 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 21.5 \\ & 16.5 \\ & 20.3 \end{aligned}$	$\begin{aligned} & 21.4 \\ & 25.5 \\ & 20.2 \\ & 25.2 \end{aligned}$	$\begin{array}{r} 33.0 \\ 28.5 \\ - \\ 28.5 \end{array}$	$\begin{gathered} - \\ 31.0 \\ - \\ 31.0 \end{gathered}$	$\begin{aligned} & 19.6 \\ & 23.4 \\ & 14.7 \\ & 21.4 \end{aligned}$
1982-83	$\begin{aligned} & 3 \\ & 4 \\ & 1 \end{aligned}$	$\begin{gathered} - \\ 6.1 \\ - \\ 6.1 \end{gathered}$	$\begin{aligned} & 16.0 \\ & 15.8 \\ & 13.0 \\ & 14.1 \end{aligned}$	$\begin{aligned} & 18.9 \\ & 19.6 \\ & 18.8 \\ & 19.3 \end{aligned}$	$\begin{aligned} & 24.9 \\ & 24.7 \\ & 22.5 \\ & 24.4 \\ & \hline \end{aligned}$	$\begin{array}{r} 27.5 \\ 27.9 \\ 26.1 \\ 27.8 \end{array}$	$\begin{array}{r} 32.9 \\ 32.4 \\ - \\ 32.4 \end{array}$	$\begin{array}{r} 23.9 \\ 23.7 \\ 20.0 \\ 22.9 \end{array}$
1983-84	4	4.1	14.3	21.0	24.0	27.1	27.6	21.7

Figure 3.4.1. Danish NORWAY POUT areas.

len

Figure 4.4.1. Sampling areas used for recruitment indices of NORWAY POUT shown in Table 4.4.1.

Figure 5.1.1. Danish SANDEEL areas and assessment areas used by the Working Group.

 $\frac{0}{4+4}+$

$\frac{1}{4}$

 $+\frac{1}{1-1}$
$\frac{1}{7}+1$
$\frac{14}{1+4}$ 4+4告 $+$ $\frac{1+6}{4+4}$ $\frac{\square 0}{\frac{4}{4}} \frac{\square}{4}$ - -1 Ta 5 F

	,		-	+						-																	8		
	\pm			T	+10.	5	+		-	+1.		1	0	,		H	$\underline{ }$						5.						
	+			4	-2	-	\%			H					-	1		-7											

\qquad $5+1+4$

(20,

\qquad
5
 Y, 1 $\frac{\square}{4+4}$ $\stackrel{7}{5}$ $4+\square$ 5 + $\frac{1+4+1}{4}$ y01 9-4

[^3]$1+$

\qquad

$+$
\qquad $\frac{1+5+1+4}{+1+4}$

Figure 6.1.1. International SPRAT reporting areas.

Figure 7.4.1. Acoustic estimates of SPRAT biomass $\left(t \times 10^{-3}\right)$ in each half statistical rectangle, December 1983 in Division VIb(E) (Norway) and January 1984 in Division IVa and IVb (W) (Scotland).

$\begin{aligned} \text { Figure 7.4.2. } & \begin{array}{l}0-g r o u p ~ S P R A T . ~\end{array} \\ & \text { No/hour, } 1983 .\end{aligned}$

元

Figure 8.4.1. SPRAT acoustic biomass estimates ('000 tonnes). December 1981 and December 1983.

Lyme bay

[^0]: अ) Only in the period July-December. ¥ᄑF) Compiled from Daan (1983) and Gislason (1983).

[^1]: \# Preliminary

[^2]: *) Preliminary

[^3]:

