# REPORT OF THE INDUSTRIAL FISHERIES WORKING GROUP 

Copenhagen, 6-12 March 1985

This document is a report of a Working Group of the International Council for the Exploration of the sea and does not necessarily represent the views of the council. Therefore, it should not be quoted without consultation with the General Secretary.

[^0]TABLE OF CONTENTS
1 INTRODUCTION1
1.1 Participants ..... 1
1.2 Terms of Reference ..... 1
1.3 Timing and Participation ..... 2
1.4 The Format of the Data Reported to the other Working Groups ..... 3
2 TRENDS IN THE INDUSTRIAL LANDINGS FROM THE NORTH SEA ..... 4
3 BY-CATCHES IN THE INDUSTRIAL FISHERIES IN THE NORTH SEA AND DIVISION III ..... 5
3.1 By-Catch of Protected Species in the North Sea ..... 5
3.2 By-Catches in Division III ..... 5
3.3 By-Catch Regulations ..... 5
4 NORWAY POUT7
4.1 Landings 1957-1984 ..... 7
4.2 Fishing Effort ..... 8
4.3 Catch at Age and VPA Results ..... 10
4.4 Research Vessel Surveys ..... 11
4.5 weight at Age ..... 12
4.6 Predation Mortality ..... 12
4.7 Catch Prediction ..... 13
5 SANDEEL ..... 14
5. 1 Landings in 1984 ..... 14
5.2 Fishing Effort ..... 15
5.3 Catch at Age and VPA ..... 17
5.3.1 Catch at age ..... 17
5.3.2 VPA Results ..... 18
5.4 Research Vessel Surveys ..... 22
5.5 Weight at age ..... 22
5.6 Predation Mortality ..... 23
5.7 Catch Prediction ..... 25
5.8 Yield per Recruit ..... 25
6 SPRAT IN DIVISION IIIA ..... 28
6. 1 Landings ..... 28
6.2 Fishing Effort ..... 28
6.3 Catch at Age and VPA ..... 28
6.4 Research Vessel Surveys ..... 29
6.5 Prediction ..... 29
7 NORTH SEA SPRAT ..... 30
7.1 Landings ..... 30
7.2 Fishing Effort ..... 30
7.3 Catch at Age Data and VPA ..... 30
7.4 Research Vessel Surveys ..... 31
7.4.1 Acoustic surveys
31
31
7.4.2 International Young Fish Surveys
7.4.2 International Young Fish Surveys ..... 32
7.5 Weight at Age32
7.6 Predation Mortality
7.7 State of the Stock and Catch Prediction ..... 32
8 CHANNEL SPRAT (ICES DIVISIONS VIId,e) ..... 34
8. 1 Landings ..... 34
8.2 Fishing Effort ..... 35
8.3 Catch at Age and VPA ..... 35
8.4 Research Vessel Surveys ..... 36
8.5 Weight at Age - Lyme Bay Fishery ..... 36
8.6 Predation Mortality ..... 36
8.7 Equilibrium Yield and Catch Prediction ..... 36
9 SPECIAL QUESTIONS37
9.1 The Ban on Fishing for Sprat and Herring in Certain Areas of the North Sea ..... 37
38
9.2 Regulatory Measures in Division IIIa38
10 THE USE OF IYFS DATA4011 DATA REQUIREMENTS0

## 〈iv>

Section

12 REFERENCES

Tables 42
Figures 118

## 1 INTRODUCTION

### 1.1 Participants

| R S Bailey | United Kingdom (Scotland) |
| :--- | :--- |
| J Casey | United Kingdom (England) |
| D J Garrod | United Kingdom (England) |
| J Lahn-Johannessen | Norway |
| N A Nielsen (Chairman) | Denmark |
| K Popp Madsen | Denmark |
| H Sparholt | Denmark |

Mr K Hoydal attended the meeting as ICES Statistician.

### 1.2 Terms of Reference

At the 72 nd Statutory Meeting of ICES it was decided (C.Res.1984/2:4:4) that the Industrial Fisheries Working Group (Chairman: Mr N A Nielsen) should meet at ICES headquarters 6-12 March 1985 to:
i) estimate monthly quantities and quarterly geographical distribution and size composition of by-catches of herring, cod, haddock, whiting, mackerel and saithe in the North Sea and adjacent waters and report them to the relevant stock Assessment Working Groups,
ii) assess the state of the stocks of the target species for industrial fisheries, i.e., sprat in Sub-area IV, Divisions IIIa and VIId,e and Norway pout and sandeel in Sub-area IV. Data should be made available to allow assessments of Norway
pout and sandeel in Sub-area VI and Division IIIa.

In addition to the specific terms of reference for this working Group, C.Res.1984/4:13 asked the Assessment Working Groups to:
i) provide quarterly catch-at-age data and mean weight-at-age data as input for the Multispecies VPA for the period 1974 to 1984 and, as far as possible, for earlier years back to 1963 for the North Sea stocks,
ii) evaluate the evidence of natural mortality for the oldest age groups,
iii) assess the effects of applying the estimates of total natural mortality calculated by the Multispecies Working Group.

With reference to Item (i) in the terms of reference, $H$ Sparholt offered to coordinate and collect the data for the Multispecies Working Group.

### 1.3 Timing and Participation

In previous years, and also in 1984, the meeting of the Industrial Fisheries Working Group has been held before the meetings of other Assessment Working Groups. This timing has been used because the Industrial Fisheries Working Group should report by-catch data to the other Assessment Working Groups. However, in practice, these data are reported from the national laboratories via their national members of the Working Group. Thus, there seems to be no need for the meeting of the Industrial Fisheries Working Group to be held in advance of the other Assessment Working Groups.

It is noted, however, that the meeting of the Industrial Fisheries Working Group cannot be held earlier than the second week of March. The data from the IYFS are essential for this Working Group, and they need to be available to the Working Group. For the
use of IYFS data, reference is made to Chapter 10.

### 1.4 The Format of the Data Reported to the other Working Groups

The terms of reference ask the working Group to report data on bycatch species to the relevant ICES Working Groups. This year, the terms of reference specifies a more disaggregated format of the by-catch data and the Working Group discussed the need for a presentation of this detailed information in the working Group report.

The Roundfish Working Group and the Working Group on Assessment of Herring South of $62^{\circ} \mathrm{N}$ in general use the data in an aggregated form, i.e., annual catch in numbers for the North sea. These data are reported from the national laboratories via their national members of the Working Group, and this Working Group found it only of little use to include these data in the report of the Industrial Fisheries Working Group.

The disaggregated data are intended to improve the available description of the industrial fisheries and their by-catch. However, this involves a large volume of data and the Working Group found it difficult to choose an appropriate format for the tables.

The Working Group decided to report data on the catch composition in a relative aggregated form in order to describe the industrial fishery in general (see Section 3). The detailed data are available to the Working Group and in the Working Group file, and can be reported and analysed if the purpose and methods are identified.

All data on by-catches were provided by working Group members and have no official status.

## 2 TRENDS IN THE INDUSTRIAL LANDINGS FROM THE NORTH SEA

The long-term trend over the past decade (1974-83) suggests an overall decrease in the total annual landings (Table 2.1). Total landings in 1984 amounted to $80 \%$ of the average of $1,590,000$ tonnes during this period. Inspection of the predominant species shows a recent continuous decline in the sprat landings, reaching a minimum of 80,000 tonnes in 1984 , or $23 \%$ of the previous average figure. Contrary to this, herring catches rapidly increased since 1980 to a level of more than 150,000 tonnes in both 1982 and 1983. Preliminary figures for 1984, however, went down to 114,000 tonnes.

Herring landings in the central North Sea (Division IVb) declined in 1984 to a level lower than that in 1981, whereas a fishery for adults has developed in the northern North Sea (Table 2.2). Annual landings for Norway pout, sandeel and blue whiting have fluctuated rather irregularly without presenting any regular trend, except possibly for blue whiting where recent landings have increased. Those of 1982 and 1983 reached a maximum level of 118000 tonnes. Landings of protected species (haddock, whiting and saithe) have substantially decreased in recent years, reaching a level of 34,000 tonnes in 1984, the lowest level since 1974.

The present Working Group previously used the term: target species to indicate the relative importance of these in contrast to the so-called by-catch species. In the most recent years, however, this picture has changed and the distinction between target and by-catch species is no longer obvious, and the landings in Table 2.1 are, therefore, not grouped in these categories.

## 3 BY-CATCHES IN THE INDUSTRIAL FISHERIES IN THE NORTH SEA AND DIVISION IIIa

### 3.1 By-Catch of Protected Species in the North Sea

Table 3.1.1 presents the major by-catch species in the industrial fisheries. Data available from Working Groups have been updated and those from 1984 have been provided by members of the present Working Group. By-catches of both haddock and whiting indicate a decreasing trend, whereas those of saithe fluctuate rather irregularly.

Tables 3.1 .2 and 3.1 .3 give the estimated species compositions in the Norwegian Norway pout and sandeel fisheries, respectively. Table 3.1.2 presents an updated version for the years 1979-83. The species composition in 1984 follows roughly the same pattern as in recent years. Table 3.1 .3 indicates that by-catches in the sandeel fishery were particularly small in 1984, possibly as a result of inadequate sampling.

### 3.2 By-Catches in Division IIIa

Incomplete data from Division IIIa in 1984 amount to 2.707 tonnes of haddock and 12102 tonnes of whiting and 450 tonnes of herring.

### 3.3 By-Catch Requlations

At its 1984 meeting the Working Group was asked to comment on the effect of variations in relative stock abundance in the proportion of by-catch species in a total catch. The Group provided general comments based on annual statistics for the 'industrial' fisheries (Doc. C.M.1984/Assess:9, para. 3.5).

The present Working Group was provided with catch and by-catch data by ICES rectangle for the Norway pout fishery in the last quarter of 1984 by Denmark with supporting data from Norway and from U.K. inspections of Danish vessels fishing for Norway pout. These are summarised in Figure 3.3.1. showing the unsorted part of the by-catch of cod, haddock, whiting, and saithe as a percentage of the total catch of these species with Norway pout. The total catches from October to December were as follows:

|  | Tonnes | \% a) |
| :--- | ---: | ---: |
| Norway Pout | 94344 | 93 |
| Cod | 277 | + |
| Haddock | 1968 | 2 |
| Whiting | 4868 | 5 |
| Saithe | 86 | + |
| SUB TOTAL | 101543 |  |
| Blue Whiting | 2942 |  |
| Other species | 4113 |  |
|  |  |  |
| TOTAL | 108598 |  |
|  | $======$ |  |

The number of rectangles in which each by-catch proportion was recorded by Denmark was as follows:

$$
\begin{array}{lllllllllllc}
\text { By-catch \% } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 10+ \\
\mathrm{N}^{0} \text { of Rectangles } & 2 & 3 & 3 & 1 & 8 & 7 & 15 & 3 & 3 & 2 & 2
\end{array}
$$

Data from the Norwegian Norway pout fishery cover a similar range, and the U.K. inspection data correspond with the mode of the Danish data. Despite uncertainties that arise through the allocation of fishing trips to single rectangles, and the

[^1]aggregation over three months, the estimated by-catch has been consistent over a wide area of the fishery in the central northern North Sea. Considering these figures the Working Group recalled that the by-catch regulation refers to single landing including that part of the catch which has been sorted for human consumption. It would be expected therefore that the real distribution of percentage by-catch would include trips with a bycatch proportion excess of $10 \%$. It was not possible to go further with data from only one quarter of one year.

## 4 NORWAY POUT

4. 1 Landings 1957-1984

Landings of Norway Pout from the North sea by country for the years 1957-84 are shown in Table 4.1.1. The total landings have in the last 15 years varied between 300,000 and 500,000 tonnes, except for some few years. The total landings in 1984 were 355000 tonnes.

The monthly landings by country in the years 1980-1984 are given in Table 4.1.2. The table shows that the largest catches are taken in the period August-November.

## Division VIa

Landings of Norway pout from Division VIa by country are given in Table 4.1.3.

## Division IIIa

Landings of Norway pout from Division IIIa by country are given in Table 4.1.4.

### 4.2 Fishing Effort

## Danish effort data

Danish effort and cpue data for each size group of vessels participating in the Norway pout fishery were available for the years 1982-84 (Table 4.2.1). To condense these into usable summary statistics, cpue (tonnes/day) figures for the whole of each year were plotted against the mean tonnage of each vessel category (Figure 4.2.1), and the resulting plot of all three years fitted by one power regression of the form

$$
y=a x^{b}
$$

where $y=$ tonnage/days fishing, $x=$ mean tonnage of each vessel category minus 50 tonnes to force the curve through the point (50, O) which by eye was judged to be the starting point of the curve. The resulting values of the parameters are $a=2.3, b=0.48(r=$ 0.93).

The level of sampling for Danish effort data can be seen from Table 4.2 .2 where the percentage of catches (in weight) sampled is shown. Generally, more than half of the Danish Norway pout catches have been sampled.

## Norweqian effort data

Norwegian effort data are available from 1976 and onwards. The cpue (hectolitres per days fishing per GRT) by quarters are presented for the combined Norwegian Norway pout and blue whiting fishery in Table 4.2.3. The cpue for the directed Norway pout fishery, defined as containing more than $70 \%$ Norway pout, are given in Table 4.2.4 and Figure 4.2.2. The weighted annual means for these two cpue series are shown in Figure 4.2.3.

Figure 4.2.2 shows considerable quarterly changes in catch rates. Figure 4.2 .3 indicates rather stable weighted annual mean catch rates. The two cpue indices were closely related in all years except 1984, thus demonstrating the importance of Norway pout in this mixed Norwegian fishery in the previous years. As appearing from the by-catch table (Table 3.1.2) the blue whiting has in recent years become more important.

Faroese effort data

No Faroese effort data are available to the Working Group for 1984.

## Total Danish and Norweqian effort

With the purpose of tuning the VPA, a total Danish and Norwegian effort index was attempted. The Norwegian effort data were available as quarterly number of fishing days not separated into vessel categories, but with the mean vessel GRT recorded (Table 4.2.5). To scale the Danish effort data which are available as number of fishing days per vessel category to the Norwegian data, the model described above, $y=a x^{b}$ was used. By this model the fishing days on a quarterly basis of each vessel category were converted to fishing days by a vessel equal in size to the mean Norwegian vessel in the quarter. Summing over the vessel categories and raising the fishing days to the total Danish catch by using the percentage from Table 4.2 .2 were then done. The resulting fishing efforts are shown in Table 4.2.5.

The annual Norwegian fishing effort was $36 \%, 30 \%$ and $25 \%$ of the annual Danish and Norwegian effort in 1982, 1983 and 1984. The corresponding Norwegian catches in percentages of the sum of the total Danish and Norwegian catches were $25 \%, 24 \%$ and $25 \%$, thus indicating that the scaling of the Danish effort data to the Norwegian effort data are rather good (the cpue assumed approximately equal for the two countries).

It also appears from Table 4.2.5 that the quarterly distribution of the Danish fishing effort is different from the Norwegian distribution. The Danish effort in the second quarter is only about one third of the effort in the other quarters, because the Danish industrial fleet is fishing sandeel in this quarter. The Norwegian fishing effort is low in the first and fourth quarter.

## 4. 3 Catch at Age and VPA Results

Table 4.3.1 shows the catch in numbers by quarter for the years 1974-84. Catch at age data were available in 1984 for the Danish, Norwegian and Scottish landings. These samples were raised to give an age distribution of the total catch.

The catch at age in Table 4.3.1 was used as an input to a quarterly VPA. In the 1983 working Group report the total mortality, $Z$, in Norway pout was estimated to be in the range of 1.5-2.5 year ${ }^{-1}$ on the basis of IYFS indices for 1 - and 2 -groups of Norway pout. This was in last year's report compared to the number of Norway pout eaten by the predators cod, whiting, saithe and mackerel according to data from the International ICES Stomach Sampling Project, and it was concluded that a natural mortality of 0.4 per quarter for all age groups was a reasonable assumption. This is in broad agreement with estimates from catch curves from lightly exploited Norway pout stocks (Bailey et al., 1984).

The effort data (Section 4.2) was used as a basis for selecting input $F$-values in the VPA. The effort in the fourth quarter increased by $25 \%$ from 1982 to 1984. The 1982 fishing mortality on 1 - and 2 -group, increased by $25 \%$, was then used as an input $F$ for the fourth quarter in 1984 in an initial VPA run.

The resulting VPA output gave a poor relation between $F$ and effort in the years considered. In the final run the relation between $F$ and effort was improved by decreasing fishing mortality on 1-group and increasing it on 2 -group in a way that kept the mean $\mathrm{F} 25 \%$ higher in 1984 than in 1982 corresponding to the increase in
effort.

The time series of effort data is rather short and only longer time series will show whether the above procedure is valid. However, it seems possible to estimate fishing mortalities which by quarter match the effort fairly well.

The output from the final VPA run is shown in Tables 4.3.2 and 4.3.3.

The total stock biomass and spawning stock biomass from the VPA are shown in Figure 4.3.1.

VPA Stock in Numbers and Survey Indices

Figure 4.3.2 shows the IYFS 1 -group index and the English November 1 -group index against the VPA number of 1 -group Norway pout at 1 January. The chosen terminal $F$ for 2 -group in the fourth quarter in 1984 in the final VPA run is too low to bring the number of 1 group at 1 January 1983 in line with the IYFS index. However, even a value of this $F$ equal 1.2 year $^{-1}$ would only reduce the number of l-groups to $100 \times 10^{9}$, which is still out of line with the IYFS index. It thus seems impossible to tune the VPA to the IYFS index in a proper way. As the relation between the IYFS index and the VPA numbers is usually rather poor, it is probably not unrealistic to assume that the IYFS index underestimates the 1982 year class. This assumption is supported by the English 1-group survey which shows that the 1982 year class is approximately equal to the 1981 and 1983 year classes.

### 4.4 Research Vessel Surveys

The series of research vessel recruitment indices are given in Table 4.4.1. The time series of abundance on pelagic O-group surveys and of $O$ and 1 -groups in the northwestern North sea in Scottish autumn surveys have ended in 1983 and no further such surveys will be done.

The IYFS 1-group index indicates a recruitment below average for the 1984 year class. The English November survey showed a recruitment of about $25 \%$ of the previous three years. Contrary to the IYFS index the English index did not show that the 1982 year class should be smaller than the 1981 and 1983 year classes.

The sampling areas for the IYFS and the English surveys are indicated in Figure 4.4.1.

During the second half of July in 1984 a Norwegian acoustic survey covered the potential area of pelagic O-group Norway pout in the northern North sea and the Shetland-Orkney area. The results will be reported to the Statutory Meeting.

## 4. 5 Weight at Age

Mean weight at age by quarters are shown in Table 4.5.1.

Table 4.5.2 shows the quarterly and annual landings in weight by age as a percentage of the annual landings.

The importance of the age groups varies with the year class strengths, but in general the 1 -group makes up $70 \%$ of the catches and the 2 -group comprises $25 \%$ of the annual landings.

### 4.6 Predation Mortality

No definitive new values of predation mortalities have come up from the Multi-Species VPA Working Group. Therefore, the natural mortalities used this year are the same as those used last year (see Section 4.3).

### 4.7 Catch Prediction

At the Working Group meeting in 1983, a prediction was given based on results from the IYFS. The catch of Norway pout in a given year was correlated with the sum of IYFS 1-group and IYFS 2 -group indices. However, the IYFS 2-group indices for 1983, 1984 and 1985 were not available to the Working Group this year, and therefore an alternative method, introduced in 1984, was used again this year.

A SHOT estimate (see Appendix A, Doc. C.M.1984/Assess:9) was calculated using the formula.

$$
Y(t)=0.30 Y(t-1)+0.078 \mathrm{R} 1
$$

where $Y$ is yield and R1 is the 1 -group IYFS index. A "hangover" coefficient of 0.30 was chosen because this is the average proportion of the $2-g r o u p$ and older (by weight) of the catch (see Section 4.5). A regression of $Y(t)-0.30 Y(t-1)$ on $R 1$ through the origin gave the recruitment multiplier of 0.078 .

Figure 4.7.1 shows the predicted catch from the model versus the observed catch. In 1984, the catch was only $9 \%$ less than that predicted.

The predicted catch using this method in 1985 is 322000 tonnes, assuming fishing levels to be similar to those prevailing in recent years.

If the strength of the 1984 year class is lower than that used in the prediction, as indicated by the English groundfish survey indices, the present estimate will be an overestimate.

5 SANDEEL

## 5. 1 Landings in 1984

## North Sea

Landings increased from 536,000 tonnes in 1983 to 668,000 tonnes in 1984 (Table 5.1.1). Landings by Denmark, Faroe Islands and Norway increased whereas those in Scotland decreased.

Monthly landings are given in Table 5.1.2. The seasonal pattern of landings was similar to that in previous years, most ( $84 \%$ ) being caught in the second quarter of the year. The Norwegian fishery ended by the end of June.

Monthly landings in each of the areas in Figure 5.1 are given in Table 5.1.3 for Denmark, Norway and the United Kingdom. In most areas the seasonal pattern of landings followed that of total landings, although in the coastal areas 3, 4, 6 and shetland, a significant proportion of the annual total was taken in the third quarter $(29 \%, 69 \%, 20 \%$ and $38 \%$ respectively).

Annual totals for each sub-area given in Table 5.1.4 show the overiding importance of area Ia (the area north of Dogger Bank) in 1984 ( $54 \%$ of the total North Sea catch). Otherwise there were no major changes in the distribution of landings. Increases took place in both the northern andsouthern assessment areas whereas the catch from the Shetland area decreased.

## Division VIa

Scottish landings from Division VIa increased from 13,100 in 1983 to 14,200 tonnes in 1984 (Table 5.1.5).

## Division IIIa

Provisional data from Working Group participants indicated a decrease in catch from 34,300 tonnes in 1983 to 27,700 tonnes in 1984 (Table 5.1.6).

### 5.2 Fishing Effort

Norwegian effort and catch per unit effort data were available to update the series given in the 1984 report (Table 5.2.1). These data, however, apply to only a small proportion of the total international landings.

Monthly Danish effort data for each size group of vessels participating in the sandeel fishery were available for the years 1982-84. To condense these into summary statistics, cpue (tonnes/day) figures for the whole of each year were plotted against the mean tonnage of each vessel category, and the resulting plots fitted by a power regression of the form

$$
y=a x^{b}
$$

where $Y=$ tonnes/days fishing, $X=$ mean tonnage of vessel category. The resulting values of these parameters are as follows:

|  |  | $a$ | $b$ |
| :--- | :---: | :---: | :---: |
| Southern assessment area | 1982 | 6.12 | 0.385 |
|  | 1983 | 5.08 | 0.394 |
|  | 1984 | 6.33 | 0.381 |
| Northern assessment area | 1982 | 3.60 | 0.383 |
|  | 1983 | 6.66 | 0.231 |
|  | 1984 | 4.44 | 0.353 |

Since the data for the southern area are based on a much larger number of samples than those taken for the northern area, and since the values of $b$ were very similar for the southern area in
the three years, the mean of the three southern area values was used to provide scaling factors for each vessel size. The resulting effort data raised to the total international catch are given in Table 5.2.2.

The level of sampling for effort can also be seen in Table 5.2.2 by comparing the catch to which the effort data apply with the total international catch. This shows that while the 1982 data applied to only a small part of the total international catch, the sampling level in 1983 and 1984 was very much higher. The comparable figures are given below in terms of the percentage of the total international catch accounted for by effort sampling:-

| Southern area | Northern area |
| :---: | :---: |
| $(\%)$ | $(\%)$ |
| 31 | 17 |
| 60 | 37 |
| 78 | 61 |


| 1982 | 31 | 17 |
| :--- | :--- | :--- |
| 1983 | 60 | 37 |
| 1984 | 78 | 61 |

The data in Table 5.2.2 indicate that effort in the southern area remained constant from 1982 to 1983, and increased to a small extent in 1984. In the northern area, effort increased in 1983 and remained at the 1983 level in 1984.

In the Shetland fishery. the number of hours fishing and days absence were available for the period 1975-84 on a monthly basis. Examination of the number of hours fished per day's absence, however, indicated that up to 1983 a more or less constant factor had been applied. In 1984, the mean number of hours fishing recorded per day's absence rose significantly and while the value for 1984 may be correct, there is no basis to re-evaluate the data from previous years. The number of days absence is therefore likely to be a more objective measure of fishing effort even though it may conceal annual differences in the amount of fishing carried out per day. Effort expressed in days fishing for each month is given in Table 5.2.3.

### 5.3 Catch at Age and VPA

### 5.3.1 Catch at age

Catch in numbers at age were compiled for the three assessment areas in Figure 5.1.1. Appropriate monthly data were supplied by Denmark, Norway and the United Kingdom. In the absence of Norwegian catches after June, Danish catches in the northern area in the second half of the year $(17,677 t)$ were allocated to age on the basis of Danish samples taken in June. Faroese catches (11,254 t) were assumed to have been taken in the area of the main Danish fishery during the first half of the year and have been allocated on the basis of Danish catches in the Southern area from May-July.

The catches in numbers at age for 1984 are given by month in Tables 5.3.1-5.3.3. In the southern area, the catches were predominantly of 1 -group sandeels. As in the previous year, the 1982 year class (2-group in 1984) were very poorly represented, while 3 -group were six times as abundant in the catches as 2group. A feature of the 1984 catches in this area, however, was the almost total absence of 0-group. In the northern area $87 \%$ of the catches were 1 -group and no sandeels older than 4 -group were reported in the samples. No samples were obtained in the second half of the year, and so the representation of the 0-group is not known.

In the Shetland area 0-group constituted $62 \%$ of the total catch with a steady decrease in the contributions made by progressively older age groups.

Division VIa

Catch at age for Division VIa sandeel were supplied by UK (Scotland) for the period 1980-84. These are tabulated by quarter in Table 5.3.14. Because of the short time series the data have not been used in a VPA. Instead the age compositions transformed to natural logarithms were plotted against age to obtain catch curves. For the years 1982-84, a regression line was calculated for age-group $1-6$ and the following estimates of $z$ obtained:

| 1982 | 0.62 |
| :--- | :--- |
| 1983 | 0.70 |
| 1984 | 0.75 |

This method of estimating $Z$ is sensitive to variations in recruitment but the mean of several years' values when a fishery is in its early stages gives some indication of the likely value of $M$. On this basis the value of $M$ on fully recruited age groups in this area is likely to be around 0.6-0.7.

### 5.3.2 VPA Results

VPAs were made on a half-yearly basis separately for the southern and northern assessment areas and for Shetland (see Figure 5.1.1).

In previous years a value of $M$ of 0.5 year $^{-1}$ has been used on all age groups. As pointed out in the 1984 report, however, this value is not consistent with preliminary results from the 1981 stomach sampling project, especially for the first two age groups. The Working Group therefore examined the outputs from the trial runs of the MSVPA given in the report of the ad hoc Multi-Species Assessment Working Group (C.M. 1984/Assess: 20). These indicate considerable changes in fish predation mortality over the period 1974-83, but for the period 1979-83, most of the trial runs based on alternative assumptions have a measure of agreement and indicate predation mortality to be around 0.5 yeare on 0 - and 1 group sandeels, 0.4 on 2 -group and around 0.2 on older sandeels.

At the present meeting, however, it was felt that the value of residual natural mortality rate 0.1 used in the MSVPA (i.e., that due to causes other than predation by the four species of predator included in the MSVPA) was too low. In particular several other predators are known to feed on sandeels including haddock. For the present VPA the following values of $M$ were chosen :

| O-group | 2.0 year $^{-1}$ | ```(applied to second half of year only, i.e., 1.0 half year }\mp@subsup{}{}{-1}\mathrm{ )``` |
| :---: | :---: | :---: |
| 1-group | 0.75 year $^{-1}$ |  |
| >2-group | 0.5 year $^{-1}$ |  |

The validity of these values is discussed further in the section on predation mortality.

The input catch in number data are given in Tables 5.3.4, 5.3.7, and 5.3.10. For the southern area the Danish fishing effort indices for the years 1982-84 (see Table 5.2.2) were used to choose the most appropriate values of input $F$. In this area fishing effort in the first half of the year was almost constant in the three years and there was a small increase over the same period in effort in the second half of the year. Input values of $F$ in the second half of the year above 0.1 result in an increasing trend in $F$ in the first half of the year from 1982-84 while values less than 0.05 result in a decreasing trend. The value of 0.08 chosen for the definitive VPA matched both sets of effort figures as closely as was possible (Table 5.3.13). A comparison with the longer series of Norwegian cpue data is given in Figure 5.3.1, but it should be noted that these data apply to a very small proportion of the total catch in this area. It should also be noted, that three years' data are insufficient to tune the level of input $F$ very finely, particularly because the Danish effort data indicate stable $F$ whereas the respective VPA estimates of $F$ are variable. The results should therefore be treated with caution.

In the northern assessment area, no sampling was carried out in the second half of 1984, and because of the major effect that age misallocation would have in the input half-year period, this period has not been included in the VPA. Danish data given in Table 5.2.2 indicate that effort in the first half of the year increased slightly over the period 1982-84. Only input values of $F$ of more than 1.0 half year $^{-1}$ give an increasing trend in $F$ over this period (Table 5.3.13).

A VPA carried out using an input $F$ of 1.2 , however, indicates a decrease in stock size from 1976-80 to 1981-84 which is incompatible with Norwegian cpue data (Figure 5.3.1). A much lower input $F$ value matches the Norwegian cpue data most closely and, to calculate an appropriate value, biomass calculated by VPA was plotted against Norwegian cpue data (Fig. 5.3.2). On this basis a value of 0.6 was used for the definitive run of the VPA.

As in the case of the southern North Sea, however, VPA estimates of $F$ are not closely matched by effort data and the results should be treated with caution.

For the Shetland area fishing effort expressed as number of days fishing was used to choose the appropriate input value of $F$ in the second half of 1984. Plotting the weighted mean $F$ on the $1-4$ groups against fishing effort for the first half of the year indicated that an input $F$ value in the second half of the year of around 0.3 would be appropriate for ages 1 and older (Figure 5.3.3). The number of hours fishing reported for 1984, however, indicated that effective effort may have increased to a greater extent than is suggested by the number of days fishing. Since this cannot be quantified (see Section 5.2) a slightly higher value of 0.4 was chosen for the VPA. The regression of $F$ on the 0 -group against days fishing in the second half of the year indicated that an input $F$ of 0.4 was appropriate for this age group also (Figure 5.3.3).

Estimates of fishing mortality rate from VPA are given in Tables $5.3 .5,5.3 .8$ and 5.3.11, and the estimated stock size in numbers at 1 January and 1 July in Tables 5.3.6, 5.3.9 and 5.3.12.

## Southern area of the North Sea

The results of the VPA support the earlier conclusion that the 1981 year class was a strong one and indicate that the 1982 year class is the weakest on record. The earlier diagnosis that the 1983 year class might be a poor one, however, does not appear to have been correct and if the effort data are a reliable indicator of fishing mortality rate, this year class is now estimated to be the largest on record. The last few years have therefore seen very large fluctuations in recruitment.

In last year's report, a weak correlation was identified between catches of 0 -group in the second half of the year and year class strength. On this basis the virtual absence of 0 -group in the catches in 1984 would tend to indicate the likelyhood that the 1984 year class is poor. The fishing mortality rate on the 0 group, however, is variable and in the years prior to 1977 was effectively zero. A new relationship between catch of 0 -group and year class strength is given in Figure 5.3.4, but it is clear that it only gives in the broadest terms an indication of whether the year class strength is likely to be above or below average.

Although the sampling level of Norwegian catch per unit effort is relatively poor, comparison of the annual values with stock biomass estimates from VPA (Figure 5.3.1) show considerable similarity. These data thus add some support to the validity of the VPA for this area.

## Northern area of the North Sea

The VPA results from the northern North Sea are particularly diffult to interpret because they do not match to the available effort data at all closely.

On the basis of the results given in Table 5.3.9, there appears to have been a run of rather low recruitments from 1980 to 1982 with some increase in 1983. There is no information about the 1984 year class.

## Shetland area

The VPA for the shetland sandeel assessment area indicates that after the two good year classes of 1981 and 1982 there have been two rather poor year classes, the 1983 year class being the lowest on record. In consequence, the stock biomass in 1984 was the lowest since 1974 and, despite some increase in effort, the total catch decreased.

## 5. 4 Research Vessel Surveys

No surveys currently carried out provide information of use in sandeel assessments.

## 5. 5 Weight at age

Data for 1984 were provided by Denmark for the southern and northern assessment areas and by the UK for Shetland. These are tabulated by month and assessment unit in Table 5.5.1. The values for the northern area are rather low compared with the long-term mean given in Table 5.5.2 of the 1984 report, whereas those for Shetland are slightly higher. In view of the need for stability, however, any subsequent calculations have been based on mean values given in the previous report. Summary mean weights at age for each half of the year are included in the stock size in number (Tables 5.3.6, 5.3.9 and 5.3.12) for ease of reference when calculating stock biomass.

Table 5.2.2 gives percentage weight of landings by age updated for 1984. In the southern area, 1 - and 3 -group contributed most to the catches. In the northern area, the catches were predominantly 1 group, while at shetland the first three age groups together contributed $82 \%$ of the total catch.

## 5. 6 Predation Mortality

In attempting to assess the effects of applying the estimates of total natural mortality coefficient calculated by the Multispecies Working Group (C.M.1984/Assess:20), problems were experienced because the range of possible values was high and because there was an indication that $M$ had changed dramatically over the period 1974-83. To examine this problem in a relatively simple way, the Working Group attempted to calculate the number of sandeels of each age group eaten by the three main predators (cod, whiting and saithe) in 1981 using data reported by the coordinator of the 1981 Stomach Sampling Project (C.M. 1984/G:37). For this purpose, stock size in numbers of the three predators at 1 January 1981, and annual values of $Z$ at age were taken from the reports of the 1984 Roundfish and Saithe Assessment Working Groups (C.M.1984/Assess: 10 and C.M.1984/Assess:7, respectively).

The number of sandeels of each age eaten by cod, whiting and saithe in each quarter of 1981 was calculated from the following data:

1) the total weight of food consumed by individuals of each age group of each predator in each quarter;
2) the proportion that sandeels of each group made of the total stomach contents of each age group of predator in each quarter;
3) the mean ingested weight of individuals of each age group of sandeels found in the stomachs of each age group of predator in each quarter;
4) estimates of the mean number of each age group of predator in the sea at the mid-point of each quarter.

A comparison between the estimated number of sandeels eaten in each half year and the number dying naturally from the VPAs given in the present report is given in Table 5.7.1, based on values of M of

| O-group (second half year) | 1.0 half-year <br> 1 -group <br> Greater than or equal to <br> 2 -group |
| :--- | :--- |
| 0.75 year $^{-1}$ |  |

From this it is clear that there are major discrepancies between the two series. VPA appears to have overestimated the number of ogroup eaten, whereas it has grossly underestimated the number of 1 -group (and to a lesser extent 2 -group).

Another factor to be considered, however, is the fact that other predators on sandeels are not taken into account. In particular, the preliminary data on haddock stomach contents indicate that a significant proportion of their diet consisted of sandeels. Mackerel also contained considerable numbers of sandeels in their stomachs.

On such a rough and ready basis it is quite impossible to draw firm conclusions. It seems likely, however, that the values of $M$ used by the present working Group are not overestimates of the true values, and may indeed be underestimates, particularly for 1group sandeels.

The Working Group would encourage further analysis of the stomach data with a view to providing more refined estimates of number eaten, if possible broken down by area of the North sea.

### 5.7 Catch Prediction

Because of the lack of reliable estimates of the strength of the 1984 year class in all the assessment areas, no catch predictions have been made for 1985.

## 5. 8 Yield per Recruit

At its meeting in May 1984, ACFM decided not to use the Industrial Fisheries Working Group's $Y / R$ calculations to evaluate the effects of seasonal closures in the sandeel fisheries because these calculations were done on a half yearly rather than a monthly basis. To evaluate this question further, the Working Group carried out an analysis on a monthly basis to evaluate the expected changes in $Y / R$ and $S S B / R$ resulting from seasonal closures. Yield per recruit calculations are essentially ways of comparing yield assuming constant recruitment for different arrays of fishing mortality at age. In this exercise, the standard for comparison is the status quo, defined as the mean monthly values of fishing mortality at age in each assessment unit for the years 1979-83. Since the effect of exploitation is felt on spawning stock biomass as well as on yield per recruit, the latter is also calculated for 2-group and older at 1 January which is approximately the spawning date of Ammodytes marinus.

Calculations were done using two values of M (0.5 and 1.0 ) on all age groups and for the purpose of calculation it has been assumed that natural mortality is equally divided between all months of the year. For the calculations based on $M=0.5$ recent values of $F$ in each half year were taken from the VPA in the 1984 Working Group report, and as an approximation, monthly values of $F$ were calculated $b$ allocating the half yearly values of $F$ in proportion
to the catch in number of the respective age group in each month.

For the calculations based on $M=1.0$, a new annual VPA was run prior to the meeting using an input value of $F$ of 0.2 on all ages in 1983 and on the oldest age group in all years, and monthly values of $F$ were calculated by allocating the annual value in proportion to catches in number at age in each month.

For all combinations of assessment area and value of $M$, the matrix of monthly $M$ against age was examined and mean values of $F$ calculated for all age groups between which there were no consistent differences. The resulting values of $F$ used in the calculations are given in Tables 5.8.1 and 5.8.2.

For the $Y / R$ calculations mean monthly weights at age were taken from Table 5.5.2 in the 1984 Working Group report. For the $S S B / R$ values for the first half of the year in Table 5.5.3 of that report were used.

In all calculations recruitment was assumed to take place at 1 June as 0-group, and each year class was assumed to become extinct at the end of the 7 -group. For each area a standard calculation was carried out using the $F$ values in Tables 5.8.1 and 5.8.2.

In addition to the standard calculation, calculations were made assuming

1) no fishing mortality each year after the end of June, and
2) fishing only in the months of May and June.

In all cases no compensatory changes in the values of $F$ were made to allow for loss of fishing mortality in the months of closure.

Since the Working Group used age-dependent values of $M$, a further calculation was done assuming

```
M O-group = 0.167 month }\mp@subsup{}{}{-1}\mathrm{ from 1 July
M 1-group = 0.0625 month }\mp@subsup{}{}{-1
M 2-group = 0.0417 month }\mp@subsup{}{}{-1
```

with recruitment defined at 1 July of the o-group. The matrix of monthly $F$ values taken from VPAs carried out in 1985 is given in Table 5.8.3.

## Results

The results of the calculations are given in Table 5.8.4.

If one assumes an $M$ of 0.5 , the two closures considered have a relatively small effect in the southern North Sea because in that area exploitation is already mostly confined to the first half of the year. Much larger gains in yield per recruit are calculated for both closures in the northern North Sea, whereas the effect in the Shetland area is negligible. If one assumes an $M$ of 1.0 , then the closures in all areas result in a reduction in $Y / R$. Using the age-dependent values of $M$ the northern North Sea is the only area in which any increase in $Y / R$ would be expected (17\%), but only by a closure in both Max-Apr as well as after June.

Expected changes in $S S B / R$ also vary between areas. They are most pronounced in the northern North sea and in all areas less pronounced with an $M$ of 1.0 than with an $M$ of 0.5 .

The results of the $Y / R$ calculations indicate that the likely gains to be expected are highly dependent on the values of $M$ used. Using the values of $M$ and $F$ from the VPAs carried out by the working Group, however, the only area in which gains are likely to be made are in the northern area (Shetland excluded), and then only by a combination of both closures.

In addition to changes in $Y / R$, there would be more pronounced changes in $S B B / R$. These are only relevant, however, if recruitment itself is affected by a decrease in stock size. The implication of this is that seasonal closures would be a powerful tool in the conservation of sandeel stocks if any of the stocks show any evidence of sustained decreases in recruitment. There is no evidence of this in any of the North Sea stocks at the present time.

6 SRRAT IN DIVISION IIIA

## 6. 1 Landings

Landings by areas and country from 1969 to 1983 are shown in Table 6.1.1 based upon data provided by Working Group members. For 1984 only Danish and Norwegian landing figures were available and nothing definite can be said about the latest development in the Division IIIa sprat fisheries.

### 6.2 Fishing Effort

No data were available to the Working Group.

### 6.3 Catch at Age and VPA

Without information on the Swedish landings, which are at least half of the totals, no catch at age figures could be calculated.

### 6.4 Research Vessel Surveys

## Acoustic surveys

A joint acoustic survey was carried out in July/August by Denmark and sweden. The survey was directed at herring and the shallow, major part of the Kattegat, which is an important part of the distribution area of the sprat is poorly covered. In 1984 large masses of jellyfish made any attempts of echo-survey in this area impractible.

Trawl surveys

Swedish indices of 1 -group sprat from IYFS in 1980-85 are shown below:

| 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4960 | 2809 | 1577 | 1173 | 4141 | 2077 |

The year class 1984 would thus appear to be weaker than the previus one. Without complete data on 0-group catches in 1984 there is no evidence to corroborate this estimate.

### 6.5 Prediction

A regression of sprat yields in Division IIIa on IYFS indices of 1 -groups over a 10-year-period is shown in Figure 6.1. Even though $r=0.68$ the intercept is so large as to render the 1 -group index rather useless as a predictor. According to the regression the 1985 index would indicate a catch of about 62,000 tonnes. Considering the large intercept, a catch possibility of $40-50,000$ tonnes would appear more likely.

## 7. 1 Landings

Landings of North Sea sprat (nations, areas) 1975-84 are given in Table 7.1.1. and reporting areas in Figure 7.1.1. The landings in 1984 ( 80,000 tonnes) were slightly lower than the 91,000 tonnes landed in 1983. Landings in both years were well below the average of 465,000 tonnes recorded in the five years 1975-79. Landings in 1984 show a marked reduction in Division IVb (west) partly offset by a small increase in landings in Division IVb (east), but the overall pattern of landings remained much the same (Table 7.1.3).

Landings of sprat reported in Division VIa by the United Kingdom (Scotland) for 1984 show some recovery from the low 1982 level (Table 7.1.2).

### 7.2 Fishing Effort

No effort data were available.

### 7.3 Catch at Age Data and VPA

All countries reporting landings in 1984 provided sampling data. Age composition of the catches by area and quarter are given for 1983 and 1984 in Table 7.3.1. As in former years, 1-group sprat provided the major part of catches in the third and fourth quarters and continued to dominate catches as 2-group fish in the first quarter of the following year.

Input catch-at-age data for quarterly VPA are given in Table 7.3.2, but in the absence of any data to judge variation in terminal $F$ or exploitation pattern, the VPA was conducted using the same terminal $F$ values as in 1984. The resulting fishing
mortalities are shown in Table 7.3 .3 and the stock composition in Table 7.3.4. The estimates of biomass show the stock remaining at a low level in 1984, with some further reduction in spawning stock biomass following the reduced recruitment of recent years.

### 7.4 Research Vessel Surveys

### 7.4.1 Acoustic surveys

Scotland conducted an acoustic survey of sprat off the north-east coast in December 1985. This showed a slight recovery from the very low abundance recorded in $1983 / 4$ with some variation in the local distribution of sprat within the area. The results are summarised in Table 7.4.1 (note that the survey was conducted in December 1984 so that 0 -group sprat are to be compared with 1group of previous years). There are indications of a slight improvement from the very low levels of $1983 / 84$ in the northwestern coastal area of the North Sea.

There are no acoustic survey estimates for other areas.

### 7.4.2 International Yound Fish Surveys

It has not yet been possible to carry out a comprehensive review of IYFS data for aged sprat from either the GOV or IKMT trawl surveys. The index for 1 -group sprat 1985 was therefore estimated from the number of sprat $<10 \mathrm{~cm}$ length as in previous years. This gave a preliminary index for 1985 of 512 -group sprat in Division IVb for comparison with the revised index of 349 for 1984 (Table 7.4.2, Figure 7.4.2).

The Scottish November midwater trawl survey has been discontinued.

## 7. 5 Weight at Age

All countries reporting landings of North sea sprat recorded mean weight at age by quarter except for the third quarter. Using the average weight at age $1982 / 83$ for that quarter gave the annual average weighted mean weight at age given in Table 7.5.1. This combined with the catch numbers (Table 7.5.2) showed an increase in the proportion of the catch weight provided by 1 -group sprat following reduced recruitment in recent years.

## 7. 6 Predation Mortality

The ad hoc Multispecies Assessment Working Group (1984) gave preliminary estimates of predation mortality in sprat as: 0-group 0.21 - 0.57 , 1-group 0.62 - $0.97,2$-group $1.14-1.95$ (Table 3.3.1). The Industrial Fisheries Working was not convinced of the increasing trend in $M$ with age indicated by these estimates but noted that the range of values for 1 -group, with the addition of non-predation mortality, spans the assumption of $M=0.8$ year ${ }^{-1}$. This value was therefore retained for the present assessment in conformity with earlier analyses of $M$ in fully recruited oldex age groups (Bailey, 1980; Johnson, 1970).

### 7.7 State of the Stock and Catch Prediction

There is no independent estimate of the terminal fishing mortality used to initiate the VPA which largely determines the assessment of the present state of the stock. With that reservation, the updated key stock characteristics (Table 7.7.1) show the sharp reduction in stock size both in 1983 and 1984. The reduction in spawning stock size which appears to be particularly marked in 1984 follows from the reduction in yearclass strength 1981/82. The broad trend is confirmed from widespread observation of the
fishery itself, with the landings in 1984 dominated by 1 -group sprat of the slightly improved 1983 year class.

It is clear that in 1984 the North Sea sprat stock has remained at the low level recorded in 1983. The preliminary estimates of the 1984 year class as 1 -group in the 1985 IYFS indicate a modest improvement in recruitment for the $1985 / 86$ season. SHOT estimates carried out as for 1984 indicate a prospective catch in 1985 of 120000 tonnes at the present level of fishing (Figure 7.7.1).

In its previous report which confirmed the sharp decline of the North Sea sprat stock first seen in 1981/82, the Working Group noted that the reduced spawning stock may be capable of generating a strong year class under especially favourable environmental conditions. The stock and recruitment data are shown in Figure 7.7.2 with limits passing through the origin enclosing the observed distribution of recruitment. The upper line corresponds to recruitment arising from 'good' survival, the lower one reflects 'poor' survival. Under average survival that has so far been observed the recovery of the stock could be slow at the present reduced stock size. The Working Group cannot forecast when a 'good' survival will occur but the slight improvement in the 1984 year class is not regarded as a sufficient basis for recovery at the present level of fishing mortality.

Whilst the recent decline of the stock could reflect an adverse environmental trend leading to a succession of poor year classes in recent years as well as an effect of fishing, it is not certain that a reduction in fishing mortality would ensure rapid recovery. A gradual recovery, based on average survival from a stock slowly increasing in response to a reduced fishery, could be dwarfed by the beneficial effect of a good survival from a very small stock which has not been protected.

In other stocks that have declined to such a low level, Working Groups have recommended closure of the fishery. For sprat, because of the high level of $M$, this would not be expected to promote a much more rapid recovery of the spawning stock under average environmental conditions and on balance, the Working Group considers that catches should be held at the lowest practicable level. The rate of recovery under a continued low level of fishing on a reduced stock (however that may have been caused) would help to resolve the scientific controversy as to whether the closure of a fishery under these circumstances is or is not beneficial. But certainly unless a very strong year class does appear (either as a result of 'good' survival on a small stock, or 'average' survival on an improved stock), the North sea sprat stock will remain a cause for concern by comparison with production from the stock in earlier years.

## 8 CHANNEL SPRAT (ICES DIVISIONS VIId,e)

### 8.1 Landings

Table 8.1.1 shows the nominal catches for Divisions VIId,e in 1975-84. Denmark reported an increase in landings in 1984 but their location is not known and details of catches by the Netherlands were unavailable to the Working Group. Hence, as in previous years, a detailed description is only possible for the United Kingdom component. The uK catches are taken mainly in a directed fishery in the Lyme Bay area between september and February. In the 1984-85 season, the English catch was about half that in 1983-84, the bulk of which ( $66 \%$ ), was taken in October and November (Table 8.1.2). Due to a scarcity of shoals in the area, the fishery had fallen away by the end of December, although some vessels continued fishing at a low level up to the end of February. It would appear that the Lyme Bay fishery has reverted to the level experienced prior to the relatively high catches in the period 1980-81-1981-82, but with the majority of the catch
being taken in the early months of the season.

### 8.2 Fishing Effort

There is no time series of consistent fishing effort data, and in the absence of any acoustic estimate for the 1984-85 season, a guideline to trends in the resource is dependent upon the age composition of the Lyme Bay catches only.

## 8. 3 Catch at Age and VPA

Table 8.3.1 shows the age composition of the catches for 1966-67 to 1984-85. In contrast to the seasons 1982-83 and 1983-84, when the bulk of th catch consisted of $2 / 3$ and $3 / 4$ group sprat, the catch in the 1984-85 season appears to have reverted to the pattern of earlier years with a larger proportion of 1 to 2 year old individuals present, now that the strong 1978-79 year classes have passed out of the adult stock.

As in previous years a value of $M=0.85$ on all ages was assumed for input to VPA. A separable VPA was used, and in the absence of any information on fishing effort the same values of $F$ and $S$ as last year were assumed. The age of unit selection was again taken as age 2/3. Estimates of fishing mortality are given in Table 8.3.2 and biomass and numbers in the stock are summarised in Table 8.3.3. The apparently increased fishing mortality on $3 / 4$ and $4 / 5$ year old sprat in the $1983 / 84$ season may be an overestimate due to the terminal $F$ value but the working Group had no alternative independent data with which to tune the parameters and select an alternative value.

### 8.4 Research Vessel Surveys

No research vessel surveys were conducted during 1984-85.

## 8. 5 Weight at Age - Lyme Bay Fishery

Average weight-at-age by quarters and by seasons for the period 1973-85 are presented in Table 8.5.1. The overall average weight in the fourth quarter is considerably less than in the same quarter in the 1982-83 and 1983-84 seasons. This is a reflection of both the lower average weights in the $2-3$ and $3-4$ year olds and the relatively higher proportion of 1 to 2 year olds in the 198485 catches. The mean weight of 0 to 1 year old fish in the fourth quarter is higher than in 1983-84 and is about the same as that for the 1981-82 and 1982-83 averages.

### 8.6 Predation Mortality

No predation mortality estimates were available for this stock.

### 8.7 Equilibrium Yield and Catch Prediction

The relationship between the Lyme Bay sprat populations and those further offshore in the western Channel (Division VIIc), and the relationship between sprat populations in Division VIIe with those in Division VIId is not known. It is therefore not possible to use the stock estimates for Lyme Bay sprat in any wider context and the apparent stock sizes and levels of fishing mortality are not necessarily a reliable guide to the state of the stock as a whole. It is, however, reasonable to conclude that the stock in Division VIIe has returned to much lower levels than those recorded in 1979-80-1981-82, and there is no obvious reason to expect much change in catches at the present level of fishing in the western Channel.

## 9 SPECIAL QUESTIONS

### 9.1 The Ban on Fishing for Sprat and Herring in Certain Areas of the North Sea

The EEC Commission has asked ICES, whether alternative management measures to the so called sprat boxes could be envisaged without reducing the potential conservation effects. The background for this question is, that the ban on fishing for sprat and herring within these areas affect small vessels far more than large vessels, which can fish further offshore.

The present boxes are defined as follows (EEC regulations of 19.12.1984):

Fishing for sprat shall be prohibited:
a) from 1 July to 31 October 1985 within the area bounded by the following coordinates:

- the west coast of Denmark at $55^{\circ} 30^{\prime} \mathrm{N}$,
- latitude $55^{\circ} 30^{\prime} \mathrm{N}$ longitude $07^{\circ} 00^{\prime} \mathrm{E}$,
- latitude $57^{\circ} 00^{\prime} \mathrm{N}$ longitude $07^{\circ} 00^{\prime} \mathrm{E}$,
- the west coast of Denmark at $57^{\circ} 00^{\prime} \mathrm{N}$;
b) in ICES statistical rectangle 39 E 8 from 1 January to 31 March 1985 and from 1 October to 31 December 1985. For the purposes of this Regulation, this ICES rectangle is bounded by a line running due east from the east coast of England along latitude $55^{\circ} 00^{\prime} \mathrm{N}$ to longitude $1^{\circ} \mathrm{OO}{ }^{\prime} \mathrm{W}$, due north to latitude $55^{\circ} 30^{\prime} \mathrm{N}$ and due west to the English coast;
c) in the inner waters of the Moray Firth west of longitude $3^{\circ} 30^{\prime} \mathrm{W}$ and in the inner waters of the Firth of Forth west of longitude $3^{\circ} 00^{\prime} \mathrm{W}$ from 1 January to 31 March 1985 and from 1 October to 31 December 1985.

As the sprat is regulated by TACs, the closures were introduced in 1983 in order to protect o-group herring, which wexe caught in increasing amounts in the sprat fisheries as the sprat stock declined and strong herring year classes appeared. Consequently, the question raised by EEC lies outside the competence of the present Working Group.

### 9.2 Requlatory Measures in Division IIIa

ICES has also been asked to consider the merits of different regulatory measures in the sprat fisheries in the skagerrak and the Kattegat. Protection of o-group herring is again the main aim of regulations and thus outside the scope of the Industrial Fisheries Working Group. It may be stated, however, that any regulatory measure aimed at o-group herring will encompass problems for the small vessels and to an even higher degree than in the North Sea.

## 10 THE USE OF IYFS DATA

The Working Group on the International Young Fish Surveys decided at its meeting in January 1985 to exchange length distributions on tape immediately after the survey had finished. The standard tapeformat is used and each country submit preliminary length distributions. When the biological information has been analysed the final tapes are exchanged.

Preliminary tapes were available from England, The Netherlands, and Denmark. These length distributions could be used in combination with the preliminary index of the 1 -group Norway pout and sprat, which were available as in previous years. The preliminary indices are based on an estimated 1-group catch, where the 1 -group is determined as fish beneath a given length (Norway pout $<15 \mathrm{~cm}$, sprat $<10 \mathrm{~cm}$ ). In previous years this approximation has shown to overestimate the number of 1 -group
fish, however, the bias is varying from year to year.

This year, preliminary age-length keys were available from Norway, Scotland, and Denmark. These were used to identify a more appropriate separation length between the 1 -group fish and older.

Norway Pout

| Length (cm) | 11 | 12 | 13 | 14 | 15 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Proportion of <br> 1 -group (\%) | 100 | 100 | 66 | 0 | 0 |

The use of this age/length key compared to the rough "less than 15 $\mathrm{cm} "$ age/length key reduces the number of 1 -group fish by $20 \%$. This decrease can be excpected to be an overestimate, because only agelength keys from the northeastern area were available.

## Sprat

## Area

North $55^{\circ} \mathrm{N}$,
East $4^{0}$ E

North $55^{\circ} \mathrm{N}$,
West $4^{\circ} \mathrm{E}$

South $55^{\circ} \mathrm{N}$,
West $4^{\circ} \mathrm{E}$

South $55^{\circ} \mathrm{N}$,
East $4^{0}$ E

| Length (cm) | 8.5 | 9 | 9.5 | 10 | 10.5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Proportion <br> 1 -group (\%) |  | 100 | 40 | 33 | 0 |
| Proportion <br> 1 -group (\%) |  | 100 | 16 | 0 | 0 |
| Proportion <br> 1 -group (\%) | 100 | 100 | 40 | 0 |  |
| Proportion <br> 1 -group (\%) | 100 | 88 | 50 | 8 | 0 |

The use of the above age/length key compared to the rough "less than 10 cm " age-length key reduces the number of 1 -group in Division IVb with $3 \%$

The Working Group consider the preliminary length distributions very useful and in future years hopefully all participating countries will be able to submit the preliminary exchange tapes. In addition to the preliminary data the Working Group will have access to data from earlier years, and it will be possible to calculate rather precise preliminary indices and analyse changes in the distribution.

This year the exchange of preliminary tapes were intended to test whether the quick exchange was possible in practice. The conclusion from this Working Group was that the exchange was succesful and the data were very useful for the analyses of Norway pout and sprat.

## 11 DATA REQUIREMENTS

The Working Group noted that for some stocks the collection of catch data and biological data was insufficient to provide a basis for an analytical assessment.

## Division IIIa Sprat

The lack of biological data and catch data divided into Skagerrak and Kattegat for the Swedish landings hampered the analysis of sprat in Division IIIa.

## Channel Sprat

Biological data on the catches taken by Denmark and the Netherlands need to be available for this area.

Sandeel, Norway Pout

The Working Group made use of the effort data from the Danish fishery, and expected it to be even more useful in future as the time series increase.

## 12 REFERENCES

Bailey, R S. 1980. Problems in the management of North sea sprat. Rapp.p-v. Réun. Cons.int.Explor. Mer, 177:477-488.

Bailey, $R$ and $P$ A Kunzlik. 1984. Variation in growth and mortality rates of Norway pout Trisopterus esmarkii (Nilsson). ICES, Doc. C.M. 1984/G:70, 8 pp (mimeo.)

Johnson, P O. 1970. The Wash sprat fishery. Fish.Invest., Ser.II, 26(4):77.

Iable 2a1.: Total Industrial Landings (tommes $\times 10^{-3}$, from the North Sea.

| Year | Norway pout | Sandeel | Gprat | Elue ${ }^{1}$ ) whiting | Herming ${ }^{2}$, | Protected species ${ }^{3}$. | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1974 | 736 | 525 | 314 | 62 |  | 2 O | 1857 |
| 1975 | 560 | 428 | 641 | 42 |  | 128 | 1799 |
| 1776 | 435 | 488 | 629 | 36 | 12 | 198 | 1791 |
| 1977 | 390 | 78.6 | 304 | 38 | 10 | 147 | 1675 |
| 1978 | 270 | 787 | 378 | 100 | 8 | S8 | 1611 |
| 1979 | 320 | 578 | 380 | 64 | 15 | 77 | 14.34 |
| 1780 | 471 | $7 \% 9$ | 323 | 76 | 7 | 69 | 1675 |
| 1981 | 236 | 569 | 209 | 62 | 84 | 85 | 124.3 |
| 1582 | 360 | 620 | 153 | 118 | 153 | 57 | 14.61 |
| 1583 | 423 | 537 | 91 | 118 | 154 | 38 | 1366 |
| Avelnage $1774-83$ | 420 | 605 | 342 | 72 | 45 | 109 | 1591 |
| Per cent of total. | 26.4 | 38.0 | 21.5 | 4.5 | 2.8 | 6.8 | 100.0 |
| $1884^{5}$ | 355 | 669 | 80 | 79 | 114 | 34 | 1335 |
| Per cent of total | 26.7 | 50.3 | 6.0 | 5.9 | 8.6 | 2.6 | 100.0 |
| Pen cent of average | $84.5$ | 110.6 | 23.3 | 109.7 | 254.5 | 31.2 | 83.7 |

1) C.M.1785/Assess:3;
2) $\mathrm{C} M \mathrm{M} .1784 / \mathrm{Assess} \times 12$
3) C.M. 1784/Assess:7 and 10 (Saithe, haddock, whiting);

* Does not include other species which on an average range from 20000 to 40000 tonnes:

5) Preliminary;

Table 2.2. Nortif Sea. HERRIAG catches for reduction purposes (tonnes) by year and Division.

| Division | 1977 | 1978 | 1979 | 1980 |  | 1581 |  | 1982 |  | 1983 |  | 198 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IVa, West | 502 | 27 | 443 | 705 |  | 933 |  | 331 |  | 546 | 13 | 59 |
| IVa, East | 186 | - | 2 | 48 |  | - |  | 491 |  | 574 |  |  |
| IVb | 8790 | 7545 | 14882 | 5008 | 75 | 533 | 150 | 357 | 155 | 361 | 52 |  |
| IVC | - | 223 | 1 | 494 |  | 702 | 1 | 699 |  | 11 |  | 5 |
| Total | 9478 | 7795 | 15328 | 7255 | 84 | 168 | 152 | 878 | 158 | 492 | 113 |  |

2ethe_3.1.1. North Sea. Total reported by-catch (tonnes) of HADOOCK, WHITING and SAITHE for reduction purposes. ')

| Speries | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | $1984^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Haddock | 41380 | 48204 | 34993 | 9659 | 16380 | 22461 | 16985 | 19378 | 13075 | 9216 |
| Whiting | 86376 | 149759 | 106104 | 55274 | 59021 | 45747 | 66595 | 32990 | 23637 | 18214 |
| Saithe | 37678 | 66766 | - 197 | 2566 | 1635 | 363 | 1280 | 5003 | 1445 | 6166 |

1)C.M.1984/Assess:7 and 10
2) Preliminary

Iable_3.1.2. North Sea. Species composition in Norwegian NORWAY Pout Landings (tonnes) for reduction purposes.

| Year | Quarter | Landings | Norway Pout | Blue Whiting | Cod | Haddock | Whiting | Saithe | Herring | Mackerel | Others |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 | 1-4 | 297222 | 218900 | 40210 | 1188 | 9840 | 13243 | 4330 |  |  | 9511 |
| 1976 | 1-4 | 200777 | 108937 | 34600 | 783 | 3133 | 6744 | 12850 |  |  | 33730 |
| 1977 | 1-4 | 143001 | 98291 | 20737 | 661 | 920 | 2707 | 4390 |  |  | 15300 |
| 1978 | 1-4 | 136455 | 80755 | 39989 | 659 | 766 | 1462 | 2494 |  |  | 10351 |
| 1979 | 1-4 | 117803 | 75350 | 31111 | 479 | 1549 | 1659 | 876 | 3 | 9 | 6767 |
| 1980 | 1 | 14469 | 10569 | 9.13 | 195 | 306 | 759 | 107 |  |  | 1620 |
|  | 2 | 36896 | 18473 | 14093 | 207 | 359 | 312 | 130 |  |  | 3322 |
|  | 3 | 42900 | 32532 | 6499 | 136 | 346 | 42 | 87 |  |  | 3258 |
|  | 4 | 13794 | $8 \quad 614$ | 1247 | 12 | 214 | 86 | 18 |  |  | 3603 |
|  | 1-4 | 108059 | 70188 | 22752 | 550 | 1225 | 1199 | 342 |  |  | 11803 |
| 1781 | 1 | 8565 | 6996 | 363 | 58 | 106 | 359 | 75 |  | 1 | 607 |
|  | 2 | 28700 | 17276 | 7826 | 111 | 392 | 221 | 72 |  | 25 | 2777 |
|  | 3 | 30127 | 20001 | 6214 | 64 | 365 | 69 | 1024 |  | 12 | 2378 |
|  | 4 | 9217 | 7342 | 777 | 26 | 239 | 150 | 50 |  | 4 | 629 |
|  | 1-4 | 76609 | 51615 | 15180 | 259 | 1102 | 799 | 1221 |  | 42 | 6391 |
| 1982 | 1 |  | 7468 | 175 | 58 | 129 | 306 | 41 |  |  | 378 |
|  | 2 | 480.17 | 33659 | 9949 | 135 | 467 | 59 | 176 |  |  | 3572 |
|  | 3 | 68498 | 29 383 | 27937 | 78 | 321 | 120 | 4368 |  | 17 | 6274 |
|  | 3 | 30171 | 17459 | 10065 | 11 | 97 | 180 | 418 |  |  | 1961 |
|  | 1-4 | 155261 | 87969 | 48126 | 282 | 1014 | 665 | 5003 |  | 17 | 12185 |
| 1983 | 1 | $8 \quad 631$ | 6018 | 1652 | 71 | 133 | 168 | 303 |  |  | 286 |
|  | 2 | 82562 | 32367 | 38569 | 386 | 431 | 141 | 406 |  | 57 | 10205 |
|  | 3 | 74000 | 45493 | 20157 | 254 | 240 | 133 | 603 | 3 | 17 | 7098 |
|  | 4 | 17627 | 13429 | 2693 | 29 | 129 | 170 | 133 |  |  | 1044 |
|  | 1-4 | 182820 | 97307 | 63071 | 740 | 933 | 612 | 1455 | 3 | 76 | $18 \quad 623$ |
| 1984 | 1 | 15282 | 8932 | 4302 | 141 | 102 | 225 | 357 |  |  | 1223 |
|  | 2 | 81039 | 36876 | 31134 | 595 | 900 | 690 | 3839 | 6 |  | 6999 |
|  | 3 | 50448 | 31786 | 14445 | 90 | 289 | 35 | 590 | 6 | 2 | 3205 |
|  | 4 | 11028 | 6169 | 2779 | 36 | 83 | 231 | 830 |  | 1 | 899 |
|  | 1-4 | 157797 | 83763 | 52660 | 862 | 1374 | 1181 | 5616 | 12 | 3 | 12326 |

Table_3.1.3. North Sea. Species composition in Norwegian SAMDEEL Landings 1979-1984 (tomes)

| Year | Landings | Sandeel | Cod | Haddock | Whiting | Saithe | Herring | Mackerel | Others |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1979 | 103273 | 101420 | 231 | 520 | 208 | 250 | - | - | 644 |
| 1980 | 147748 | 144752 | 54 | 1118 | 38.2 | - | - | - | 1442 |
| 1981 | 53370 | 52641 | 29 | 504 | 68 | 4 | 6 | 6 | 112 |
| 1782 | 47647 | 46514 | 86 | 703 | 107 | - | 8 | - | 229 |
| 1983 | 12376 | $12 \quad 179$ | 34 | 100 | 8 |  | 3 | 2 | . 50 |
| 1984 | 23479 | 23383 | - | 10 | 16 | - | - | - | 70 |

Tablens.1. 1 NORWAY FOUT Annusl landings (in thousand tomes) in Sub-area IV by countries North Sea 1957-1984.

UK

| Yease | Qenmark | Earoes | Norway | Sweden | SScotland ${ }^{\text {a }}$ | Qthers | Iotal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1957 |  |  | 0.2 |  |  |  | 0.2 |
| 1953 |  |  |  |  |  |  |  |
| 1.959 | 61.5 |  | 7.8 |  |  |  | 69.3 |
| 1960 | 17.2 |  | 13.5 |  |  |  | 30.7 |
| 1961 | 20.5 |  | 8.1 |  |  |  | 23.6 |
| 1762 | 121.5 |  | 27.9 |  |  |  | 14.7 |
| 1963 | 67.4 |  | 70.4 |  |  |  | 137.8 |
| 1764 | 10.4 |  | 51.0 |  |  |  | 61.4 |
| 1965 | 8.2 |  | 35.0 |  |  |  | 43.2 |
| 1966 | 35.2 |  | 17.8 |  |  | + | 53.0 |
| 1967 | 169.6 |  | 12.9 |  |  | + | 182.6 |
| 1968 | 410.8 |  | 40.9 |  |  | + | 451.8 |
| 1969 | 52.5 | 19.6 | 41.4 |  |  | + | 113.5 |
| 1970 | 142.1 | 32.0 | 63.5 |  | 0.2 | 0.2 | 238.0 |
| 1971 | 178.5 | 47.2 | 79.3 |  | 0.1 | 0.2 | 305.3 |
| 1972 | 257.6 | 56.8 | 120.5 | 6.8 | 0.9 | 0.2 | 444.8 |
| 1973 | 215.2 | 51.2 | 63.0 | 2.9 | 13.0 | 0.6 | 345.9 |
| 1974 | 464.5 | 85.0 | 154.2 | 2.1 | 26.7 | 3.3 | 735.8 |
| 1975 | 251.2 | 63.6 | 218.9 | 2.3 | 2.7 | 1.0 | 559.7 |
| 1976 | 244.9 | 64.6 | 108.9 | + | 17.3 | 1.7 | 435.4 |
| 1977 | 232.2 | 50.9 | 98.3 | 2.9 | 4.6 | 1.0 | 389.9 |
| 1978 | 163.4 | 19.7 | 80.8 | 0.7 | 5.5 | - | 270.1 |
| 1979 | 219.9 | 21.9 | 75.4 |  | 3.0 |  | 320.2 |
| 1780 | 366.2 | 34.1 | 70.2 |  | 0.6 |  | 471.1 |
| 1981 | 167.5 | 16.6 | 51.6 |  | + |  | 235.7 |
| 1982 | 256.3 | 15.4 | 88.0 |  | 0 |  | 359.7 |
| 1983 | 301.1 | 24.5 | 97.3 |  | + |  | 422.9 |
| 1984 | 251.9 | 19.1* | 83.8 |  | 0.1 |  | 354.97 |

*including by-catch

Table 4 ana NORWAY FOUT. North Sean National Landings (tonnes) by monthes 1980-1984 CDenmark, Norway, United K゙ingdom (Scotland)

| Month | Denomak | Mgrway | Earoes | $\begin{gathered} \text { United King } \\ \text { csognand } \end{gathered}$ | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1980 |  |  |  |  |  |
| Jan | 14792 | 5065 | 2299 | 193 | 2 E 340 |
| Feb | 18620 | 3530 | 3534 | 315 | 25979 |
| Nar | 11653 | 17974 | 2010 | - | $15 \quad 637$ |
| Apr | 7 233 | 2125 | 158 | 8 | 9524 |
| May | 7853 | 8088 | 2245 | - | 18190 |
| Jun | 3114 | \% 260 | 2104 | - | 13478 |
| Jul | $55 \quad 385$ | 8695 | 3001 | - | 67081 |
| Aug | 66255 | 10517 | $23: 5$ | - | 79097 |
| Sep | 71.144 | 13318 | 7846 | 87 | $92 \quad 395$ |
| Oct | 60474 | 1378 | 3976 | - | 55828 |
| Nov | 28749 | 6426 | 3279 | - | 38454 |
| Dec | 20938 | 810 | 1282 | - | 23100 |
| TOTAL | 366210 | 70.188 | 34063 | 60.3 | 471064 |
| 1951 |  |  |  |  |  |
| Jan | 11782 | 2822 | 784 |  | 15388 |
| Feb | 20632 | 2892 | 1601 |  | 25125 |
| Mar | 10923 | 1282 | 1577 | - | 13782 |
| Apr | $\checkmark 103$ | उ 119 | 2147 | - | 11369 |
| May | 1414 | 6733 | 2291 | - | 10438 |
| Jun | 4541 | 7424 | 1726 | - | 13691 |
| Jul | 7471 | 5569 | 2817 | - | 15857 |
| Aug | 25715 | 10335 | 724 | - | 36774 |
| Sep | 15465 | 4097 | - | - | 20561 |
| oct | 23721 | 2534 | 958 | - | 27213 |
| Nov | 17174 | 1431 | 1136 | - | 19741 |
| Dec | 21540 | 3377 | 610 | - | $2 \cdot 5727$ |
|  |  |  |  |  |  |
| TOTAL | 167481 | 51615 | 16 371 | 0 | 235666 |
| 17882 |  |  |  |  |  |
| Jan | 13072 | 3981 | 223 | - | 17276 |
| Fet | 12998 | 1775 | 641 | - | 15414 |
| Mar | 12117 | 1712 | 1379 | - | 15208 |
| Apr | 10162 | 6056 | 1098 | - | 17316 |
| May | 542 | $7 \quad 741$ | 1068 | - | 9351 |
| Jun | - 0 | $19 \quad 862$ | 1160 | - | 21 022 |
| Jul | 32488 | 11132 | 22.23 | - | 45845 |
| Aug | $38 \quad 937$ | $\begin{array}{ll}8 & 826\end{array}$ | 1891 | - | 49656 |
| Sep | 66734 | $8 \quad 425$ | 16018 | - | 77767 |
| Mov | 25 23 2388 | $\begin{array}{ll}8 & 128 \\ 4 & 957\end{array}$ | 2072 | - | 35423 |
| Nov | 23 2088 2060 | 4 4 4 | 13301 | - | 30175 |
| Dec | 20060 | 4374 | 675 | - | $25 \quad 109$ |
| TOTAL | 256 | 87-969 | 15.390 | 0 | 359562 |


| Month | Qenmark | Norway | Earoes | $\begin{gathered} \text { United Kingdom } \\ \text { Scotland } \end{gathered}$ | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 |  |  |  |  |  |
| Jan | $10 \quad 343$ | 856 |  | - | 11887 |
| Feb | 17 621 | 2739 |  | - | 23941 |
| Mar | 19720 | 223 |  | - | 23250 |
| Apr | 7628 | 4795 |  | - | 13181 |
| May | 1851 | 15.205 |  | - | 18084 |
| Jun | 5563 | 12367 |  | - | 19016 |
| Jul | 20.217 | 12655 |  | - | 34889 |
| Aug | $\begin{array}{lll}37 & 145\end{array}$ | 20446 |  | - | $63 \quad 250$ |
| Sep | $70 \quad 668$ | 12392 |  | - | $88 \quad 172$ |
| oct | 47847 | 4948 |  | - | 56157 |
| Nov | 30.630 | 6369 |  | - | 39279 |
| Dec | 27801 | 2112 |  | - | 31757 |
| TOTAL | 301136 | 97 306 | 24463 | 0 | 422903 |
| 1984 | 14176 |  |  |  | $1{ }^{1)} 770$ |
| Feb | $15 \quad 681$ | 2455 |  |  | 17870 |
| Mar | 5656 | 3838 |  |  | 10076 |
| Ap: | 6 OOD | 6949 |  |  | 13685 |
| May | 7097 | 15861 |  |  | 28489 |
| Jum | 1057 | 10065 |  |  | 11755 |
| Jul | 16.598 | 6948 |  |  | 24884 |
| Aug | 40362 | 13909 |  | 89 | 57443 |
| Sep | 49965 | 10929 |  |  | 64311 |
| Oet | 37469 | 5100 |  |  | 4.4987 |
| Now | 36525 | 366 |  |  | 38987 |
| Dec | 18290 | 703 |  |  | 20072 |
| TOTAL | 291 386 | 8.376 .3 | 19067 | 89 | 354 806 |

1) estimated, assuming Faroes catch is distributed monthly as the Danish and Norwegian catch.

Teble 4．1．3 NORWAY FOUT．Annual Landings（tannes）in division VIa （for 1971－84 data officially reported to ICES）．

| Countiry | 1971 | 1972 | 1973 | 1774 | 1975 | 1976 | 1977 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Belgium | 1 | － | － | － | － | － | － |
| Denmerkt | 363 | 186 | 42 | － | 193 | － | － |
| Famoes | － | － | 1743 | 1581 | 1524 | 6203 | 2177 |
| Germany，Fed．Rep． | ． | － | － | 179 | － | 8 | － |
| NetherLand | － | － | － | － | 322 | 147 | 230 |
| Morway | － | － | － | 14.4 | － | $8.2+$ | － |
| Poland | － | － | － | 75 | － | － | － |
| UK゙（Scotland）＊＊ | 1622 | 3760 | 9282 | 4702 | $6 \quad 614$ | 63446 | 2799 |
| USER | － | － | － | 40 | 2 | 7147 | － |
| TOTAL | 1986 | 3946 | 11067 | 6721 | 8655 | 19733 | 5206 |
| Country | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984＊ |
| Belgium | － | － | － | － | － | － | － |
| Denmark | 4443 | 15609 | 13070 | － 877 | 751 | 530 | 4301 |
| Faroes 1 | 18484 | 4772 | 3530 | 3540 | 3026 | 6261 | 3400 |
| Gerinany，Fed．Fep． | － | － | － | － | － | － | 70 |
| Metherlands | 21 | 98 | 68 | 182 | 548 | 1040 | ＊＊＊ |
| Norway | －－ | － | － | － | － | － | － |
| Potand | － | － | － | － | － | － | － |
| UkcScotiland）＊＊ | 302 | 23 | 1202 | 1158 | 586 | ＋ | 23 |
| USSR | － | － | － | － | － | － | － |
| Total 2 | 23.250 | 20502 | 17870 | 7757 | 4911 | 78.31 | 7794 |
| ＊＊amended using national data ＊央米 data not available <br> ＋ineluding by－catch |  |  |  |  |  |  |  |

```
Table...4.1.4 NOFWAY FOUT Annual Landings (tonmes)
in Division IILa (for 1571-84 data
officially reported to ICES).
```

| Gquntry | 1971 | 1972 | 1973 |  | 1974 |  | 1979 | 1976 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | 25800 | 17 255 2 | 3152 | 10 | 6699 |  | 666 | 40 | 14.4 |  |  |  |
| Farges | 643 |  |  |  |  |  |  |  |  |  |  |  |
| Norway | 296 | 62\% |  |  |  |  | 925** | 50\%* |  |  |  |  |
| Sweden |  | 1) 1) 1) |  |  |  | 2255 |  |  |  |  |  |  |
| Total | 26096 | 1725923 | 3795 | 10 | 731 |  | 863 | 42 | 449 |  |  |  |
| Cguntry | 1977 | 1778 | 1979 |  | -1980 | 198.1 |  | 1989 |  | 1983 |  | 1984* |
| Denmark | 20647 | 2382 | 239 | 951 | 26235 |  | 29273 | 51 | 1317 | 36 | 124 | 66895 |
| Faroess |  |  |  |  |  |  |  |  |  |  |  |  |
| Norway | 104 | 36.2 |  | 182 | 141 |  | 752 |  | 126.5 |  | 990 | - |
| Sweden | 318 | 571 |  | 32 | 39 |  | 60 |  | 0103 |  | 52 | - |
| Total | 21116 | 24875 | 251 | 165 | 26415 |  | 30085 |  | 52685 | 37 | 166 | 66895 |

* preliminary
** including by-catich
+ includes North Sea

1) included in the North Sea

## Iable - . 4. En 1 Norway PoUT. Danish cpue data itonmes/days fishing) by vessel category for 1982-B4.

| Vessel GRt | 198\% | 1983 | 1784 | Scaling |
| :---: | :---: | :---: | :---: | :---: |
| ----... | ----- | ---- | ---- | factor ${ }^{\text {* }}$ |
| 51-100 | 12.81 | 8.90 | 8.44 | 1.000 |
| 101-150 | 22.84 | 22.44 | 19.52 | 1.69 |
| 151-200 | 27.39 | 28.43 | 23.36 | 2.15 |
| 201-250 | 29.31 | 32.28 | 26.01 | 2.53 |
| 251-300 | 29.22 | 30.96 | 20.20 | 2.85 |
| $301-$ | 26.46 | 3.3 .37 | 31.07 | 3.00 |

[^2]Iable 4. 2 az Norway POUT. Percentage of the Danish catches (by weight) sampled for fishing effort in the Danish fishery.

| Year | 10 | 20 | 30 | 40 | Whole year |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdots$ | - |  |  | - |  |
| 1982 | $79 \%$ | $48 \%$ | $33 \%$ | $50 \%$ | $46 \%$ |
| 1983 | $60 \%$ | $52 \%$ | $68 \%$ | $81 \%$ | $70 \%$ |
| 1984 | $84 \%$ | $62 \%$ | $57 \%$ | $70 \%$ | $66 \%$ |

# Table $4 a z 3$ Norway FOUT, Catch per unit effort, hectolitres per days fishing per mean GRT, by quarters in the Norwegian fishery. 


 Except that those catches with Less than or equal to 70\% Norway pout in weight are exchuded.
Guarter $1 \quad 2 \quad 3 \quad$ Weightedmean

Year

| 1776 | 1.435 | 1.451 | 0.992 | 1.200 | 1.2 .23 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1977 | 1.302 | 1.397 | 1.304 | 1.450 | 1.362 |
| 1978 | 0.926 | 1.254 | 1.527 | 1.447 | 1.306 |
| 1977 | 1.272 | 1.217 | 1.559 | 1.676 | 1.425 |
| 1980 | 0.989 | 2.351 | 1.734 | 1.552 | 1.634 |
| 1781 | 1.068 | 1.429 | 1.194 | 1.055 | 1.218 |
| 1982 | 0.341 | 1.676 | 1.681 | 1.603 | 1.548 |
| 1983 | 1.381 | 1.703 | 1.466 | 1.555 | 1.556 |
| 1984 | 1.243 | 2.151 | 1.461 | 1.163 | 1.668 |

 fishing days). The mean Norwegian vessel size in each quarter is shown. The Danish effort data have been scaled to this vessel size in each quarter. The Norwegian Landings with Less than or equal to $70 \%$ Norway pout have been excluded.

| Quarters | 91 | Q2 | 23 | 04 |
| :---: | :---: | :---: | :---: | :---: |
| 1982 |  |  |  |  |
| Norwegian |  |  |  |  |
| av. GRT | 181.2 GRT | 122.5 GRT | 160.5 GRT | 170.9 GRT |
| Norwegian |  |  |  |  |
| effort | 733 | 2240 | 193.4 | 740 |
| Danish |  |  |  |  |
| effort | 2233 | 764 | 4565 | 2463 |
| Total | 3016 | 30014 | 6499 | 3208 |
| 1983 |  |  |  |  |
| Norwegian |  |  |  |  |
| av. GRT | 150.3 GRT | 155.4 GRT | 147.8 GRT | 154.8 GRT |
| Norwegian |  |  |  |  |
| effort | 302 | 1671 | 2302 | 811 |
| Danish |  |  |  |  |
| effort | 3077 | 934 | 4546 | 4237 |
| Total | 3379 | 2605 | 6848 | 5048 |


| 1984 |  |  |  | cont. |
| :---: | :---: | :---: | :---: | :---: |
| Norwagian |  |  |  |  |
| av. GRT | 146.2 GRT | 121.0 GRT | 139.9 GRT | 175.5 GRT |
| Norwegian |  |  |  |  |
| effort | 473 | 1633 | 1622 | 28.2 |
| Danish |  |  |  |  |
| effort | 2587 | 1077 | 4752 | 3759 |
| Total | 3060 | 2710 | 6374 | 40.41 |

Table_ 4 .n. 1 Norway POUT. Input data for quarterly VPA. Catch at age © no $\times 10^{-6}$,

| Year | Quanter | $\square$ | 1 |  | 2 | 3 | 4. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1974 | 1* | - | 13450 |  | 414 | 20 |  | 1 |
|  | 2* | - | 7870 |  | 193 | 26 |  | 1 |
|  | 3* | 846 | 9766 |  | 487 | 145 | - |  |
|  | 4* | 5720 | 7809 |  | 140 | 4 | - |  |
| 1975 | 1* | - | 3742 | 1 | 726 | 13 | - |  |
|  | 2 | - | 7206 |  | 38.3 | 2 | - |  |
|  | 3 | 839 | 7117 |  | 349 | - | - |  |
|  | 4 | 9763 | 2027 |  | 461 | 1 | - |  |
| 1976 | 1 | - | 4950 |  | 589 | 91 | - |  |
|  | 2 | - | 7580 |  | 64.5 | 58 | - |  |
|  | 3 | 197 | 5349 |  | 590 | 2 | - |  |
|  | 4 | 9986 | 3157 |  | 320 | 15 | - |  |
| 1977 | 1 | - | 7171 |  | 950 | 33 |  | 3 |
|  | 2 | - | 3.577 |  | 367 | 8 | - |  |
|  | 3 | 61 | 3580 |  | 861 | 45 | - |  |
|  | 4 | 1655 | 3540 |  | 236 | 5 | - |  |
| 1978 | 1 | - | 2931 | 1 | 371 | 93 |  | 4 |
|  | 2 | - | 1181 |  | 650 | 194 | - |  |
|  | 3 | 304 | 2385 |  | 786 | 30 | - |  |
|  | 4 | 1225 | 1400 |  | 322 | 6 | - |  |
| 1779 |  | - | 5079 |  | 940 | 170 |  | 3 |
|  | 2 | - | 3270 |  | 249 | 27 |  | 1 |
|  | 3 | 968 | 4244 |  | 763 | 49 | - |  |
|  | 4 | 864 | 2154 |  | 167 | 11 | - |  |
| 1980 | 1 | - | 504.4 | 1 | 075 | 59 |  | 2 |
|  | 2 | - | 2586 |  | 685 | 29 |  | 5 |
|  | 3 | 24 | 7711 | 1 | 960 | 18 | - |  |
|  | 4 | 641 | 3920 |  | 512 | 6 | - |  |
| 1981 | 1 | - | 2223 | 1 | 688 | 76 |  | 6 |
|  | 2 | - | 1072 |  | 621 | 77 |  | 0 |
|  | 3 | 77 | 1316 |  | 944 | 17 |  | 1 |
|  | 4 | 36560 | 1038 |  | 301 | 3 |  | 1 |

[^3]Table 4 . 3 . 1 contd.

| Year | Quarter | $\square$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 1 | - | 5267 | 415 | 216 | 0 |
|  | 2 | - | 3251 | 275 | 23 | 0 |
|  | 3 | 151 | ¢ 576 | 431 | 62 | 0 |
|  | 4 | 1058 | 3017 | 46 | 0 | $\square$ |
| 1983 | 1 | - | 3769 | 1224 | 14 | 0 |
|  | $z$ | - | 1723 | 1165 | 9 | 0 |
|  | 3 | 421 | 5495 | 1485 | 15 | 1 |
|  | 4 | 2520 | 4053 | 358 | 7 | 1 |
| 1984 | 1 | - | 2732 | 1361 | 142 | 0 |
|  | 2 | - | 2230 | 1153 | 266 | 0 |
|  | 3 | 1 | 5238 | 1666 | - | 0 |
|  | 4 | 2209 | 34.57 | 727 | - | 0 |

Iablemana Norway POUT. Quarterly UPA fishing mortality

| Year | Quarter | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1976 | 3 | 0.001 | 0.24 | 0.45 | 0.04 | --- |
|  | 4 | 0.06 | 0.27 | 0.60 | 0.58 | - |
| 1977 | 1 |  | 0.14 | 0.15 | 0.14 | 0.2 |
|  | 2 |  | 0.09 | 0.10 | 0.06 | -- |
|  | 3 | 0.001 | 0.16 | 0.43 | 0.63 | - |
|  | 4 | 0.03 | 0.29 | 0.25 | 0.15 | - |
| 1978 | 1 |  | 0.08 | 0.21 | 0.18 | 0.20 |
|  | 2 |  | 0.05 | 0. 19 | 0.95 | - |
|  | 3 | 0.002 | 0.16 | 0.45 | 0.46 | - |
|  | 4 | 0.01 | 0.17 | 0.43 | 0.17 | - |
| 1979 | 1 |  | 0.07 | 0.20 | 0.55 | 0.20 |
|  | 2 |  | 0.08 | 0.09 | 0.17 | - |
|  | 3 | 0.005 | 0.17 | 0.58 | 0.82 | - |
|  | 4 | 0.007 | 0.15 | 0.30 | 0.54 | - |
| 1980 | 1 |  | 0.06 | 0.12 | 0.20 | 0.20 |
|  | 2 |  | 0.05 | 0.13 | 0.18 | - |
|  | 3 | - | 0.27 | 0.71 | 0.20 | - |
|  | 4 | 0.02 | 0.26 | 0.86 | 0.12 | - |
| 1981 | 1 |  | 0.10 | 0.21 | 0.37 | 0.20 |
|  | 2 |  | 0.08 | 0.14 | 1.09 |  |
|  | 3 | - | 0.16 | 0.42 | 1.07 |  |
|  | 4 | 0.25 | 0.24 | 0.29 | 0.85 |  |
| 1982 | 1 |  | 0.064 | 0.173 | 0.446 |  |
|  | 2 |  | 0.063 | 0.206 | 0.095 |  |
|  | 3 | 0.001 | 0.217 | 0.745 | 0.500 |  |
|  | 4 | 0.008 | 0.181 | 0.197 | - |  |
| 1983 | 1 |  | 0.046 | 0.128 | 0.105 | - |
|  | 2 |  | 0.031 | 0.216 | 0.112 |  |
|  | 3 | 0.002 | 0.161 | 0.601 | 0.373 |  |
|  | 4 | 0.020 | 0.213 | 0.355 | 0.350 |  |
| 1984 | 1 |  | 0.033 | 0.127 | 0.292 | - |
|  | 2 |  | 0.042 | 0.187 | 2.234 |  |
|  | 3 | - | 0.162 | 0.575 | 0.500 |  |
|  | 4 | 0.026 | 0.190 | 0.700 | - | - |

Iable_4.E. 3 Norway POUT\& Guarterty UPA. Stock in number $\times 10^{-6}$

A ge Groups

| Year | Quarter | 0 | 1 | 2 |  | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1976 | 3 | 177354 | 30693 | 1 | 963 | 67 |  |
|  | 4 | 132130 | 16258 |  | 843 | 43 |  |
| 1977 | 1 |  | 83710 | 8 | 353 | 310 | 17 |
|  | 2 |  | 48689 | 4 | 831 | 181 |  |
|  | 3 | 110471 | 29737 | 2 | 941 | 11.5 |  |
|  | 4 | 74015 | $17 \quad 037$ | 1 | 281 | 41 |  |
| 1978 | 1 |  | $45 \quad 269$ | 8 | 568 | 668 | 24 |
|  | 2 |  | 29978 | 4 | 636 | 372 |  |
|  | 3 | 176582 | 17136 | 2 | 582 | 97 |  |
|  | 4 | 131519 | 10966 | 1 | 116 | 37 | - |
| 1979 | 1 |  | $87 \quad 164$ | 6 | 218 | 490 | 20 |
|  | 2 |  | 54307 | 3 | 409 | 192 |  |
|  | 3 | 222405 | 33750 | 2 | 083 | 107 |  |
|  | 4 | 148295 | 19191 |  | 787 | 33 |  |
| 1980 | 1 |  | 98703 | 11 | 120 | 393 | 13 |
|  | 2 |  | 62069 | 6 | 584 | 216 |  |
|  | 3 | 63388 | 39506 | 3 | 855 | 121 |  |
|  | 4 | 42471 | 20266 | 1 | $\square 37$ | 67 |  |
| 1981 | 1 |  | 27948 | 10 | 424 | 290 | 40 |
|  | 2 |  | 16932 | 5 | 625 | 134 |  |
|  | 3 | 294360 | 10481 | 3 | 268 | 29 |  |
|  | 4 | 197253 | 5961 | 1 | 433 | 6 |  |
| 1782 | 1 |  | 102736 | 3 | 158 | 718 | - |
|  | 2 |  | 64 59\% | 1 | 781 | 308 |  |
|  | 3 | 240983 | 40659 |  | 972 | 182 |  |
|  | 4 | 161413 | 21944 |  | 309 | - |  |
| 1953 | i |  | $10733 \overline{8}$ | 12 | $27 \cdot 1$ | 170 | - |
|  | 2 |  | 68728 | 7 | 234 | 103 |  |
|  | 3 | 230697 | 44670 | 3 | 908 | 62 |  |
|  | 4 | 154299 | 25498 | 1 | 436 | 28 |  |
| 1784 | 1 |  | 101381 | 13 | 818 | 675 | - |
|  | 2 |  | 65738 | 8 | 161 | 338 |  |
|  | 3 | 155657 | 42255 | 4 | 538 | 24 |  |
|  | 4 | 104339 | 24087 | 1 | 712 | - |  |

Toble_4.4.1. Norway Pout
Recruitment indices fron 1970-85 as shown by number per hour"s fishing on research vessel surveys

| Year <br> class | IYFS |  | English surveys |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Arithmetic means as |  | August North Sea 2 ) D-group (entire North Sea) | Norway pout survey November <br> O-group 1-group 2-group |  |  | 3-group |
| 1968 |  | 6 |  | (main Norwa | y pout d | stributi | on area) |
| 1969 | 35 | 22 |  |  |  |  |  |
| 1970 | $\pm 556$ | 653 |  |  |  |  |  |
| 1971 | 3425 | 438 |  |  |  |  |  |
| 1972 | 4207 | 399 |  |  |  |  |  |
| 1973 | 25626 | 2412 |  |  |  |  |  |
| 1974 | 4242 | 385 |  |  |  |  |  |
| 1975 | 4599 | 334, |  |  |  |  |  |
| 1976 | 4813 | 1215 |  |  |  |  | 5 |
| 1977 | 1913 | 240 | 1387 |  |  | 222 | 82 |
| 1978 | 2690 | 611 | 1210 |  | 5501 | 431 | - |
| 1979 | 4081 | 557 | 1607 | 6449 | 4519 | 123 | 36 |
| 1980 | 1375 | 403 | 151 | 2106 | 2146 | 42 | - |
| 1981 | 4315 | n/3 | 1770 | 23946 | 7166 | 1935 | $74^{1}$ ) |
| 1982 | 2 612* | n/a | 1817 | 19567 | 7603 | 132 ${ }^{1}$ |  |
| 1983 | 3 587* | n/a | 1501 | 21852 | ( $524{ }^{1}$ ) |  |  |
| 1984 | $2764 *$ |  | 177 | $5416^{1}$ |  |  |  |

[^4]2) Ground fish survey

```
Table_4.5. 1 Norway POUT. North Sea 1984. Mean weight at age by quarters, Danish and Norwegian catch combined (grammes).
```

$$
A g E G r \circ u p s
$$

| Quarters <br> 1984 | 0 | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| 1 | - | 6.55 | 24.04 | 37.54 | - |
| 2 | - | 8.97 | 22.66 | 37.00 | - |
| 3 | - | 17.83 | 34.28 | 34.10 | - |
| 4 | 6.54 | 20.22 | 35.07 | 46.23 | - |



Table 5.1.1 Landings of SANDEEL from the North Sea 1952-84 in '000 tonnes

| Year | Denmark | Germany, Fed.Rep. | Faroes | Netherland | Norway | Sweden | U.K. | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1952 | 1.6 | 0 | 0 | 0 | - | 0 | 0 | 1.6 |
| 1953 | 4.5 | $+$ | 0 | 0 | - | 0 | 0 | 4.5 |
| 1954 | 10.8 | + | 0 | 0 | - | 0 | 0 | 10.8 |
| 1955 | 37.6 | $+$ | 0 | 0 | - | 0 | 0 | 37.6 |
| 1956 | 81.9 | 5.3 | 0 | $+$ | 1.5 | 0 | 0 | 88.7 |
| 1957 | 73.3 | 25.5 | 0 | 3.7 | 3.2 | 0 | 0 | 105.7 |
| 1958 | 74.4 | 20.2 | 0 | 1.5 | 4.8 | 0 | 0 | 100.9 |
| 1959 | 77.1 | 17.4 | 0 | 5.1 | 8.0 | 0 | 0 | 107.6 |
| 1960 | 100.8 | 7.7 | 0 | $+$ | 12.1 | 0 | 0 | 120.6 |
| 1961 | 73.6 | 4.5 | 0 | + | 5.1 | 0 | 0 | 83.2 |
| 1962 | 97.4 | 1.4 | 0 | 0 | 10.5 | 0 | 0 | 109.3 |
| 1963 | 134.4 | 16.4 | 0 | 0 | 11.5 | 0 | 0 | 162.3 |
| 1964 | 104.7 | 12.9 | 0 | 0 | 10.4 | 0 | 0 | $128.0{ }^{\circ}$ |
| 1965 | 123.6 | 2.1 | 0 | 0 | 4.9 | 0 | 0 | 130.6 |
| 1966 | 138.5 | 4.4 | 0 | 0 | 0.2 | 0 | 0 | 143.1 |
| 1967 | 187.4 | 0.3 | 0 | 0 | 1.0 | 0 | 0 | 188.7 |
| 1968 | 193.6 | + | 0 | 0 | 0.1 | 0 | 0 | 193.7 |
| 1969 | 112.8 | + | 0 | 0 | 0 | 0 | 0.5 | 113.3 |
| 1970 | 187.8 | + | 0 | 0 | + | 0 | 3.6 | 191.4 |
| 1971 | 371.6 | 0.1 | 0 | 0 | 2.1 | 0 | 8.3 | 382.1 |
| 1972 | 329.0 | $+$ | 0 | 0 | 18.6 | 8.8 | 2.1 | 358.5 |
| 1973 | 273.0 | 0 | 1.4 | 0 | 17.2 | 1.1 | 4.2 | 296.9 |
| 1974 | 424.1 | 0 | 6.4 | 0 | 78.6 | 0.2 | 15.5 | 524.8 |
| 1975 | 355.6 | 0 | 4.9 | 0 | 54.0 | 0.1 | 13.6 | 428.2 |
| 1976 | 424.7 | 0 | - | 0 | 44.2 | - | 18.7 | 487.6 |
| 1977 | 664.3 | 0 | 11.4 | 0 | 78.7 | 5.7 | 25.5 | 785.6 |
| 1978 | 647.5 | 0 | 12.1 | 0 | 93.5 | 1.2 | 32.5 | 786.8 |
| 1979 | 449.8 | 0 | 13.2 | 0 | 101.4 | 0 | 13.4 | 577.8 |
| 1980 | 542.2 | 0 | 7.2 | 0 | 144.8 | 0 | 34.3 | 728.5 |
| 1981 | 464.4 | 0 | 4.9 | 0 | 52.6 | 0 | 46.7 | 568.6 |
| 1982 | 506.9 | 0 | 4.9 | 0 | 46.5 | 0.4 | 52.2 | 610.9 |
| 1983 | 485.1 | 0 | 2.0 | 0 | 12.2 | 0.2 | 37.0 | 536.5 |
| 1984 | 596.3 | 0 | 11.3 | 0 | 28.3 | - | 32.6 | 668.5 |

- = no information
$+=$ less than half unit

Table 5.12 .2 SAMDEEL. Morth Sea. Monthly Landings ("ODO) by country 1981-84

| Year/Month | Denmark | Faroes | Norway | Scotland | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 1931 \text { Jan } \\ \text { Feb } \\ \text { Mar } \\ \text { Apr } \\ \text { May } \\ \text { Jun } \\ \text { Jul } \\ \text { Aug } \\ \text { Sep } \\ \text { Oet } \\ \text { Mov } \end{array}$ |  | $\begin{aligned} & - \\ & - \\ & 268 \\ & 415 \\ & 439 \\ & 196 \\ & 1300 \\ & 142 \\ & 1481 \\ & 169 \\ & -\quad 74 \end{aligned}$ | - 472 4731 5 27 2756 6 5 5 100 1455 2 2 | -  <br> 5 018 <br> 7 430 <br> 10 032 <br> 10 403 <br> 7 107 <br> 5 968 <br>  710 |  4 <br>  172 <br> 13 757 <br> 53 664 <br> 155 458 <br> 125 403 <br> 135 408 <br> 40 448 <br> 23 985 <br> 20 317 |
| Total | 464414 | 4935 | 52597 | $46 \quad 668$ | 568516 |
| 1932 JanFeb <br> Mar <br> Apı <br> May <br> Jun <br> Jul <br> Aug <br> Sep <br> Oct <br> Moy | - - 844 83948 168551 188963 55240 7310 2 | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ $n / a$ $1$ | - - 3 5065 16797 17516 - - |  |  |
| Total | 506916 | 4903 | 46514 | 52006 | 605 436* |
| $\begin{array}{r} 19 g 3 \mathrm{Jan} \\ \text { Feb } \\ \text { Mar } \\ \text { Apr } \\ \text { May } \\ \text { Jun } \\ \text { Jul } \\ \text { Aug } \\ \text { Sep } \\ \text { Oct } \\ \text { Nov } \\ \text { Dec } \end{array}$ | - - - 59388 162952 182159 59709 14253 5089 1548 $-\quad 3$ | 1 <br> n/a <br> 1 | - - 210 1055 6363 2141 2410 - - - | $\begin{array}{r} - \\ - \\ \hline- \\ 2 \end{array} 431$ |  |
| Total | 4.85101 | 2000 | 12179 | 37001 | 534 281* |

* Excl. Faroese

Table 5. $1.2 \operatorname{contg}$

| Yearmonth | Denmare | Faraes | Norway | Scothand | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1984 Jan | - |  | - | - | - |
| Feb | - |  | - | - | - |
| Mar | 1334 |  | 20 | - | 1354 |
| Apr ${ }^{\text {r }}$ | 62510 |  | 20 | 5499 | 68029 |
| May | 210598 |  | 2167 | \% 134 | 220899 |
| Jun | 232 497 | n/a | 26123 | ¢ 413 | 265033 |
| Jul | 67590 |  | - | 6349 | 73939 |
| Aug | 18373 |  | - | 5005 | 23378 |
| Sep | 3.364 |  | - | 1134 | 4498 |
| oct | 5 |  | - | 44 | 49 |
| Nov | -- |  | - | - | - |
| Dec | - |  | - | - | - |
| Total | 596 271 | 11254 | 28330 | 32578 | $657179 \%$ |

* Excl. Fraroese

Table 5.1.3 SANDEEL. North Sea: Catch ('000 tonnes) by month and area Cenmark, Narway, UK(Scotland)).

| YearkMonth |  | IC |  |  |  | $\begin{gathered} R \\ 2 C \end{gathered}$ |  | 4 | 5 | ShetLand- |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1979 Mar |  |  | 351 |  |  | 682 |  |  |  |  |  |
| Apr | 11476 | 49 | 3602 | 2067 | 1130 | 1536 | 534 | 4090 |  |  | 906 |
| May | 47648 | + | 4097 | 23149 | 2044 | 642 | 5992 | 38584 | 867 | 8848 | 2985 |
| Jun | 119632 | 281 | 12556 | 4316 | 5885 | 333 | 7978 | 24277 | 1645 | 21598 | 3907 |
| Jul | 15700 | 454 | 2149 | 1253 | 17593 | 1897 | 6408 | 12493 | 2859 | 12265 | 2413 |
| Aug |  | 143 | 14883 |  | 86 | 63574 | 7043 |  |  | 12 r | 2518 |
| Sep |  |  | 8868 | 1490 | 112 | 1306 | 542 |  |  | 764 | 649 |
| Oct |  | + | 14455 |  | 173 | 2262 | 5630 |  |  | 764 | 26 |
| Nov |  |  |  |  |  |  | 5 |  |  |  |  |
| Total | 194456 | 927 | 60963 | 32275 | 27024 | 72332 | 34132 | 79444 | 5371 | 44251 | 13404 |
| 1980 | 581 |  | 6048 | 1938 | 605 | 9433 |  |  |  | 1 |  |
|  | 6797 | 1031 | 6374 | 5043 | 4208 | 13179 |  | 1956 |  |  | 1803 |
|  | 108561 | 821 | 30256 | 27870 | 21595 | 809 | 20477 | 10676 | 951 | 3422 | 3219 |
|  | 81909 | 1404 | 44828 | 48682 | 23865 | 247 | 35706 | 11399 | -146 | 26316 | 6845 |
|  | 17249 | 74 | 7140 | 5978 | 2079 | 102. | 18076 | 6812 | 1516 | 18240 | 6920 |
|  |  |  | 2833 |  | 16 |  | 10290 |  |  |  | 5311 |
|  |  |  | 3100 |  | 19 |  | 5213 |  |  | 2617 | 1346 |
|  |  |  | 15995 |  |  | 3218 | 242 |  |  | 1463 |  |
|  |  |  | 716 |  |  |  |  |  |  |  |  |
| Total | 215097 | 3330 | 119290 | 89511 | 52387 | 26987 | 90004 | 30843 | 8653 | 57059 | 25444 |
| 2981 | - | - | 172 | - | - | - | - | - | - | - |  |
|  |  | - | 4 5 2 |  | - |  |  |  |  | 1422 |  |
|  | $\begin{array}{ll}18 & 116 \\ 63 & 193\end{array}$ | ${ }^{-19}$ | 5 25 2512 | 4535 16885 | 2840 | 9132 5445 | 4863 | $1 \frac{2}{2} 238$ | 678 | 3412 | 5019 |
|  | 22388 | 1 | 4631 | 8477 | 2 990 |  | 15475 | 27018 | 11.184 | 8779 23429 | 10.30 |
|  | - | 90 | 906 | 87721 | 5111 | 227 | 15001 | 15074 | 115 | 23 7991 | $10406$ |
|  | - | - | 1455 | 8304 | - | - | 22420 | , | , | , | 7107 |
|  | - | - | - | 12081 | 453 | - | 4302 | - | - | - | 5968 |
|  | 1466 | - | - | 14063 | 2310 | - | 1596 | - | - | 98 | 710 |
| Noy | - | - | - | - | - | - | - | - | - | , | , |
| Total | 105163 | 110 | 42836 | 151866 | 11704 | 23867 | 59610 | 63441 | 13258 | 45131 | $46 \quad 652$ |

Table 5. 1 -3


Table 5.1.4. Annual Landings ("OOD tonnes) of SANDEELS by Sut-area of the North Sea [Dermark, Horway, United Kingdom (ScotLand)].

| Year | Sub-areas |  |  |  |  |  |  |  |  |  |  | Assessment Areas* |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1 a$ | 16 | 15 | 2 a | 26 | 2 c | 3 | 4 | 5 | 6 | Shetland | Northern | Southern |
| 1972 | 98.8 | 28.1 | 3.9 | 24.5 | 85.1 | 0.0 | 13.5 | 58.3 | 6.7 | 28.0 | 0.0 | 130.6 | 216.3 |
| 1973 | 59.3 | 37.1 | 1.2 | 16.4 | 60.6 | 0.0 | 8.7 | 37.4 | 9.6 | 59.7 | 0.0 | 107.6 | 182.4 |
| 1974 | 50.4 | 178.0 | 1.7 | 2.2 | 177.9 | 0.0 | 29.0 | 27.4 | 11.7 | 25.4 | 7.4 | 386.6 | 117.1 |
| 1975 | 70.0 | 38.2 | 17.8 | 12.2 | 154.7 | 4.8 | 38.2 | 42.8 | 12.3 | 19.2 | 12.9 | 253.7 | 156.5 |
| 1976 | 154.0 | 3.5 | 39.7 | 71.8 | 38.5 | 3.1 | 50.2 | 59.2 | 8.9 | 36.7 | 20.2 | 135.0 | 330.6 |
| 1977 | 171.9 | 34.0 | 62.0 | 154.1 | 179.7 | 1.3 | 71.4 | 28.0 | 13.0 | 25.3 | 21.5 | 348.4 | 392.3 |
| 1978 | 159.7 |  |  | 346.5 |  |  | 42.5 | 37.4 | 6.4 | 27.2 | 28.1 | 163.0 | 577.2 |
| 1979 | 194.5 | 0.9 | 61.0 | 32.3 | 27.0 | 72.3 | 34.1 | 79.4 | 5.4 | 44.3 | 13.4 | 195.3 | 355.9 |
| 1980 | 215.1 | 3.3 | 119.3 | 89.5 | 52.4 | 27.0 | 90.0 | 30.8 | 8.7 | 57.1 | 25.4 | 292.0 | 401.2 |
| 1981 | 105.2 | 0.1 | 42.8 | 151.9 | 11.7 | 23.9 | 59.6 | 6.3 .4 | 13.3 | 45.1 | 46.7 | 138.1 | 378.9 |
| 1982 | 189.8 | 5.4 | 4.4 | 132.1 | 24.9 | 2.3 | 37.4 | 75.7 | 6.9 | 74.7 | 52.0 | 74.4 | 479.2 |
| 1983 | 197.4 | 0 | 2.8 | 59.4 | 17.7 | 0 | 57.7 | 87.6 | 8.0 | 66.0 | 37.0 | 78.2 | 419.0 |
| 1984 | 337.8 | 4.1 | 5.9 | 74.9 | 30.4 | 0.1 | 51.3 | 56.0 | 3.9 | 50.2 | 32.6 | 91.8 | 532.8 |

[^5]Table 5.1.5. SANDEEL, Division VIa.
Landings in tonnes 1975-1984 as officially reported to ICES.

| Country/Year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark <br> Norway <br> United Kingdom <br> (Scotland) |  |  |  |  |  |  |  |  |  |  |

Table 5.1.6. SANDEEL, Division IIIa.
Landings in tonnes as officially reported to ICES except where indicated.

| Country | Year |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 198.3 | 1984 |
| Denmark | 21567 | 7919 | 9878 | 7912 | 16421 | 21418 | 6082 | 21731 | $33 \quad 305$ | 39357 | 59408 | 21540 | 34 286* | 27 679** |
| Faroes |  |  |  |  |  |  |  | 2 |  |  |  |  |  |  |
| Sweden |  | (1) | (1) | (1) | 79 | 67 | 432 | $\begin{gathered} 1121 \\ (2) \end{gathered}$ | 3 | 9 | 44 | 5 | 31 | n/a |

(1) Included in the North Sea
(2) Includes North Sea

* Final data for Denmark not yet available
** Preliminary estimate from Working Group members
n/a Not available

Table_E.2.1. Fishing effort in the SANDEEL fisheries - Norwegian data.
Northemn ascesament ares

| Year | Fishing Days Norwegian veならe! ! FD | dean gross registered bonnage GRT | Effort$\times 10^{-3}$ | Sandeel Landings it $\times 10^{-3}$ ) |  | ```Fighing effort raised to total catch``` |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Norwegian | Total internetionel. |  |
|  |  |  | -1st ha | of year |  |  |
| 1976 | 395 | 198.8 | 118.3 | 11.1 | 110.3 | 1175.5 |
| 1977 | 2212 | 172.3 | 381.1 | 50.4 | 276.0 | 2087.0 |
| 1978 | 1747 | 203.4 | 355.3 | 4.4 .9 | 109.7 | 868.0 |
| 1979 | 1407 | 213.9 | 300.8 | 29.6 | 47.7 | 484.4 |
| 1780 | 2699 | 204.7 | 552.5 | 112.8 | 220.7 | 1081.7 |
| 1981 | 1780 | 212.6 | 378.4 | 42.8 | 93.3 | 824.2 |
| 1982 | 1222 | 210.1 | 256.7 | 27.0 | 62.3 | 591.7 |
| 1983 | 324 | 267.8 | 86.8 | 8.5 | 54.5 | 556.4 |
| 1984 | 145 | 185.8 | 26.7 | 3.5 | 74.1 | 569.5 |
|  |  |  | End ha | of year |  |  |
| 1976 | 119 | 165.5 | 19.7 | $2.0$ | 44.9 | 442.3 |
| 1977 | 457 | 184.9 | 84.5 | 11.8 | 110.0 | 787.7 |
| 1978 | 806 | 203.7 | 164.2 | 22.5 | 53.3 | 385.2 |
| 1979 | 1720 | $18 \mathrm{EL}$. | 324.9 | 53.2 | 147.7 | 902.2 |
| 1980 | 1130 | 206.1 | 232.9 | 33.2 | 71.1 | 499.6 |
| 1981 | 414 | 189.0 | 78.2 | 7.9 | 44.9 | 446.0 |
| 1982 | 0 | - | - | - | 12.0 | - |
| 1983 | 66 | 208.0 | 13.7 | 2.4 | 23.7 | 133. 2 |
| 1984 | - | - | - | - | 17.7 | - |
|  |  |  | Southern aseess | nt area - all | - |  |
| 1976 | 1488 | 237.8 | 353.8 | 30.7 | 330.6 | 3808 |
| 1977 | 537 | 185.2 | 99.5 | 14.0 | 392.3 | 2780 |
| 1978 | 1044 | 222.2 | 232.0 | 24.3 | 577.2 | 5508 |
| 1979 | 765 | 240.1 | 183.7 | 18.2 | 355.9 | 3595 |
| 1980 | 3 | 208.0 | 0.6 | 0.1 | 401.2 | 2407 |
| 1981 | 72 | 199.5 | 14.4 | 1.4 | 378.9 | 2826 |
| 1982 | 607 | 236.1 | 143.3 | 20.3 | 479.2 | 3386 |
| 1983 | 40 | 280.5 | 11.2 | 1.2 | 418.2 | 3786 |
| 1784 | 504 | 246.6 | 124.3 | 22.2 | 532.8 | 2983 |

Table_5.2.2. Danish fishing effort indices
(days fishing multiplied by scaling factors for each vessei category), $1982-1984$

| Southern area |  |  |  | Morthern area |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fishing effort index | $\begin{aligned} & \text { Catich } \\ & \text { sampled } \\ & \text { for } \\ & \text { fishing } \\ & \text { effort } \\ & t \end{aligned}$ | ```Total international catch t``` | ```Semjued talal international effort index``` | ```Fishing effort index``` | Catch sampled for fishing effort $t$ | ```Total international catch \(t\)``` | ```Derived total international effort index``` |



Table 5.2.3. Fishing effort (days absence) by month and year in the Shetland Sandeel Fishery 1775-1784. U.K. (Scotland) data

|  | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Jan}$ | - | $t$ | - | - | - | - | - | - | - | - | - |
| Feb | - | 1 | -. | - | - | - | - | - | - | - | - |
| Mar | - | 22 | 6 | 77 | 12 | - | - | - | - | - | - |
| Apr | - | 95 | 132 | 191 | 116 | 38 | 75 | 234 | 242 | 83 | 227 |
| may | 5 | 104 | 127 | 217 | 316 | 134 | 156 | 289 | 355 | 295 | 385 |
| Jun | 142 | 112 | 222 | 305 | 250 | 161 | 229 | 299 | 359 | 385 | 303 |
| [ | 147 | 330 | 437 | 790 | 694 | 333 | 480 | 822 | 956 | 763 | 915 |
| Jut | 165 | 205 | 312 | 277 | 187 | 106 | 242 | 440 | 361 | 339 | 337 |
| Aug | 116 | 219 | 241 | 160 | 234 | 108 | 212 | 346 | 297 | 297 | 263 |
| Sep | 117 | 80 | 79 | 89 | 204 | 44 | 72 | 198 | 254 | 127 | 102 |
| oct | 88 | 13 | 65 | 35 | 78 | 1 | - | - | - | 11 | 7 |
| Nov | 16 | - | 4 | - | - | - | - | - | - | - | - |
| [ec | - | - | - | - | - | - | - | - | - | - | - |
| [ | 502 | 517 | 701 | 561 | 703 | 259 | 526 | 1024 | 977 | 774 | 709 |
| Annual total | 645 | 847 | 1188 | 1351 | 1397 | 592 | 1006 | 1846 | 1933 | 1537 | 1624 |

TobLE S.3.1 SANDEELS. No. Caughti $x 0^{-6}$. Southern area of Nonth Sea 1984

| Month | 0 | 1 | A G E G rab |  |  |  |  |  |  | $\Sigma$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| Jan | - | - | - | - | - | - | - | - | - |  |
| Feb | - | - | - | - | -- | -- | - | - |  |  |
| Mar | - | - | - | - | - | -- | - | - | - | - |
| Apr | - | 92.11 | 394.5 | $4280 \times 4$ | 30.4 | 7.6 | - | - | - | 3934.1 |
| May | 4.6 | 16462.3 | 897.9 | 6320.5 | 214.9 | 91.4 | 64.0 | - | - | 24055.6 |
| Jun | 15.3 | 35384.9 | 91504 | 2438.4 | 15.3 | 7.6 | - | - | -- | 38779.9 |
| Jut | - | 8302.1 | 80.2 | 554.4 | 43.8 | - | - | - | - | 8.980 .9 |
| Aug | - | 1037 n | 10.6 | 21.2 | - | - | - | - | - | 1069.6 |
| $\operatorname{Sep}$ | - | 8.2. 2 | 0.3 | 1.7 | - | - | - | - | - | 84.7 |
| oct | - | 0.4 | - | - | - | - | - | - | - | -1.4 |
| Nov | - | - | - | - | - | - | - | - | - | - |
| Dec | - | - | - | - | - | - | - | - | - | - |
| $\Sigma$ | 19.9 | 70490.8 | 2302.5 | 13616.5 | 304.4 | 106.6 | 64.0 | - | - | 869048 |

Excluding Faroese - allocated to Znd quarter

Table. 5. 3.2 SANDEEL. No. Caught $\times 10^{-6}$. Northern area of North Sea 1984

| Month | 0 | 1 | 2 | 3 | 4 | 5 | 6 | $\Sigma$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jan | $\rightarrow$ | - | - | - | - | - | - | - |
| Feb | - | - | - | - | - | - | - | - |
| Mar | - | 9.2 | 394.3 | 0.1 | - | - | - | 403.6 |
| Apr | - | 3664.6 | 451.7 | 36.8 | - | - | - | 4153.3 |
| May | - | 7173.7 | 716.1 | 86.0 | 4.5 | - | - | 7980.3 |
| Jun | - | 844.7 | 84.4 | 28.8 | - | - | - | 958.7 |
| , Ju(*) |  |  |  |  |  |  |  |  |
| Aug* ) | - | 1207.1 | 120.6 | 42.6 | - | - | - | 1370.3 |
| Sep* ) |  |  |  |  |  |  |  |  |
| Oct | -- | 0.1 | - | - | - | - | - | 0.1 |
| Nov | - | - | - | - | - | - | - | - |
| Dec | - | - | - | - | - | - | - | - |
| $\Sigma$ | - | 12897.4 | 1767.3 | 195.3 | 4.5 | - | - | 14866.5 |

* Allocated in same proportion as June catches

Table 5.3.3 SANDEELS. Shetland. No. caught x $10^{-6} 1984$

A q e $\quad$ G r $0 \quad u \quad p$

| Month |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\Sigma$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Apr |  | - | 867.6 | 448.7 | 101.8 | 16.2 | 2.4 | 2.1 | 2.1 | - | 1440.8 |
| May |  | 1.7 | 654.2 | 419.5 | 237.7 | 89.1 | 29.0 | 10.6 | 3.9 | 1.4 | 1447.1 |
| Jun | 1 | 938.5 | 321.0 | 195.4 | 61.7 | 28.7 | 6.4 | 1.5 | 0.9 | 0.5 | 2554.6 |
| Jul | 3 | 005.3 | 366.2 | 99.9 | 27.4 | 7.9 | 7.9 | 1.1 | 1.2 | - | 3516.8 |
| Aug | 1 | 532.6 | 100.9 | 51.2 | 8.6 | 2.1 | 1.2 | - | - | - | 1,696.7 |
| Sep |  | 284.4 | 13.0 | 2.3 | 0.3 | 0.1 | 0.1 | 0.1 | - | - | 300.3 |
| Oct |  | 11.1 | 0.5 | 0.1 | - | - | - | - | - | - | 11.7 |
| [ | 6 | 773.5 | 2323.3 | 1217.2 | 437.6 | 144.1 | 47.1 | 15.3 | 8.0 | 1.9 | 10968.1 |

Table 5. 3.4 SAMOEELS in the southern North Sea. UPA catch in numbers, half year ( $x$ 10 $0^{-6}$ )

| Age Group | Year |  | 1972 |  | 1973 |  |  | 1974 |  |  | 1975 |  |  |  |  | 1976 |  |  |  | 1977 |  |  |  | 1978 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 |  | 2 |  | 1 | 2 |  | 1 | 2 |  | 1 |  | 2 |  | 1 |  | 2 |  | 1 |  | 2 |  | 1 |  | 2 |
| 0 |  | 0 |  | 0 |  | 13 | $1]$ |  | 670 | 76 |  | 0 |  | 0 |  | 4 |  | 0 |  | 0 | 13 | 263 |  | 922 |  | 224 |
| 1 | 2 | 839 |  | 86 | 14 | 497 | 205 | 5 | 989 | 226 | 11 | 458 |  | 480 | 16 | 308 |  | 249 | 17 | 500 |  | 269 | 58 | 839 | 2 |  |
| 2 | 15 | 695 | 1 | 148 | 2 | 515 | 53 | 3 | 930 | 10 | 1 | 694 | 1 | 046 | 14 | 505 | 2 | 358 | 5 | 596 |  | 27 | 16 | 948 |  | 385 |
| 3 |  | 418 |  | 35 | 3 | 832 | 151 |  | 497 | 0 | 2 | 838 |  | 170 | 1 | 523 |  | 392 | 6 | 300 |  | 8 | 1 | 793 |  | 125 |
| 4 |  | 128 |  | 24 |  | 183 | 5 | 1 | 988 | 3 |  | 529 |  | 253 | 1 | 234 |  | 102 |  | 965 |  | 8 | 1 | 008 |  | 97 |
| 5 |  | 94 |  | 16 |  | 89 | 3 |  | 205 | 0 |  | 666 |  | 0 |  | 171 |  | 20 |  | 445 |  | 3 |  | 114 |  | 26 |
| 6 |  | 20 |  | 0 |  | 31 | 2 |  | 22 | 0 |  | 91 |  | 0 |  | 72 |  | 58 |  | 239 |  | 3 |  | 21 |  | 26 |
| 7 |  | 3 |  | 0 |  | 7 | 1 |  | 11 | 0 |  | 2 |  | 0 |  | 1 |  | 16 |  | 124 |  | 0 |  | 14 |  | 7 |
| 8 |  | 29 |  | - |  | 53 | - |  | 73 | - |  | 3 |  | - |  | 0 |  | - |  | 36 |  | - |  | 26 |  | - |



| Age Group | Year |  | 1979 |  | 1980 |  |  |  | 1981 |  |  |  | 1982 |  |  |  | 1983 |  |  |  | 1984 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 |  | 2 |  | 1 |  | 2 |  | 1 |  | 2 |  | 1 |  | 2 |  | 1 |  | 2 |  | 1 |  | 2 |
| 0 |  | 181 | 1 | 947 |  | 62 |  | 72 |  | 415 | 43 | 420 |  | 242 | 5 | 039 |  | 955 | 9 | 298 |  | 20 |  | [] |
| 1 | 16 | 018 | 5 | 210 | 33 | 269 | 4 | 738 | 13 | 374 |  | 407 | 56 | 545 | 4 | 718 | 2 | 232 |  | 240 | 62 | 517 | 9 | 422 |
| 2 | 22 | 737 | 2 | 085 | 12 | 472 |  | 840 | 11 | 719 | 1 | 892 | 6 | 224 |  | 490 | 35 | 029 | 2 | 806 | 2 | 257 |  | 92 |
| 3 | 4 | 487 |  | 138 | 3 | 794 |  | 575 | 2 | 466 |  | 115 | J | 277 |  | 344 |  | 934 |  | 51J | 13 | 272 |  | 577 |
| 4 |  | 265 |  | 110 |  | 375 |  | 9 |  | 774 |  | 36 | 1 | 813 |  | 36 |  | 234 |  | 2 |  | 257 |  | 44 |
| 5 |  | 441 |  | 30 |  | 6.3 |  | 0 |  | 353 |  | 3 |  | 94 |  | 4 |  | 122 |  | 0 |  | 109 |  | 0 |
| 6 |  | 244 |  | 0 |  | 50 |  | 0 |  | 84 |  | 0 |  | 24 |  | 0 |  | 25 |  | 0 |  | 66 |  | 0 |
| 8 |  | 32 |  | 0 |  | 8 |  | 0 |  | 16 |  | 0 |  | 8 |  | 0 |  | 0 |  | 0 |  | 8 |  | 8 |
| TOTAL | 45 | 409 | 9 | 520 | 50 | 086 | 6 | 234 | 29 | 226 | 45 | 873 | 68 | 227 | 10 | 631 | 37 | 537 | 12 | 859 | 78 | 508 |  | - |

Table 5.3. 5 SANDEELS in the southern North Sea. UPA fishing mortality per half year.

$$
\begin{aligned}
M= & 0 \text {-group } 2.0 \text { year } \\
& 1 \text {-group } 0.75 \text { year }^{-1} \text { (used for } 2 \text { nd half only) } \\
& >2 \text {-group } 0.5 \text { year }
\end{aligned}
$$

| Age Group | Year 1972 |  | 1973 |  | 1974 |  | 1975 |  | 1776 |  | 1977 |  | 1\%78 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| 0 | - | 0 | - | 0 | - | 0 | - | 0 | - | 0 | - | 0.05 | - | 0.24 |
| 1 | 0.13 | 0.006 | 0.39 | 0.01 | 0.23 | 0.01 | 0.16 | 0.01 | 0.46 | 0.01 | 0.30 | 0.007 | 0.57 | 0.24 |
| 2 | 0.57 | 0.08 | 0.28 | 0.009 | 0.30 | 0.001 | 0.16 | 0.14 | 0.56 | 0.17 | 0.51 | 0.004 | 0.92 | 0.05 |
| 3 | 0.15 | 0.02 | 0.41 | 0.03 | 0.11 | $\square$ | 0.54 | 0.06 | 0.34 | 0.15 | 0.79 | 0.003 | 0.44 | 0.05 |
| 4 | 0.39 | 0.12 | 0.13 | 0.004 | 0.57 | 0.002 | 0.23 | 0.18 | 0.78 | 0.14 | 0.68 | 0.01 | 0.60 | 0.11 |
| 5 | 0.50 | 0.16 | 0.96 | 0.06 | 0.29 | 0 | 0.57 | 0 | 0.18 | 0.03 | 1.56 | 0.03 | 0.21 | 0.117 |
| 6 | 0.04 | 0 | 0.54 | 0.05 | 1.17 | 0 | 0.28 | 0 | [. 15 | 0.18 | 0.65 | 0.01 | 0.38 | 1.22 |
| 7 | 0.01 | 0 | 0.02 | 0.002 | 0.56 | 0 | (0.50) | - | 0.004 | 0.13 | 0.76 | 0 | 0.09 | 0.06 |
| 8 | (0.50) | - | (0.50) | - | (0.50) | - | (0.50) | - | - | - | (0.50) | - | (0.50) | - |
| We ighted |  |  |  |  |  |  | (B.50) |  |  | - | (0.50) | - | (1.50) | - |
| mean 1-4 | 0.38 | 0.04 | 0.37 | 0.01 | 0.26 | 0.008 | 0.18 | 0.03 | 0.50 | 0.09 | 0.40 | 0.007 | 0.62 | [106 |


| Age Group | Year | 79 | 1980 |  | 1981 |  | 1982 |  | 1983 |  | 1784 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| 0 | - | 0.01 | - 50 | 0.001 | - | 0.09 | - | 0.22 | - | 0.02 | - | 0 |
| 1 | 0.25 | 0.14 | 0.50 | 0.15 | 0.43 | 0.02 | 0.30 | 0.04 | 0.25 | 0.05 | 0.30 | 0.08 |
| 2 | 0.97 | 0.23 | 0.70 | 0.09 | 0.75 | 0.27 | 0.71 | 0.11 | 0.61 | 0.09 | 0.90 | 0.09 |
| 3 | 1.15 | 0.09 | 0.85 | 0.33 | 0.46 | 0.04 | 1.11 | 0.33 | 0.34 | 0.34 | 0.86 | 0.08 |
| 4 | 1.10 | 0.26 | 0.40 | 0.02 | 1.10 | 0.13 | 1.27 | 0.07 | 0.41 | 0.006 | 0.31 | 0.08 |
| 5 | 1.06 | 0.18 | 0.24 | $\square$ | 1.46 | 0.04 | 0.62 | 0.05 | 0.37 | 0 | (0.50) | - |
| 5 | 2.06 | 0 | 0.56 | 0 | 0.92 | 0 | (0.50) | - | (0.50) |  | (0.50) | - |
| 7 | (0.50) | - | 0.005 | 0 | (0.50) | - | 0.28 | 0 | - | - | - | - |
| 8 | (0.50) | - | 0 . | - | (0.50) | - | - | - | (0.50) | - | - | - |
| We ighted mean 1-4 | 0.53 | 0.16 | 0.56 | 0.14 | 0.54 | 0.05 | 0.35 | 0.05 | 0.56 | 0.10 | 0.35 | 0.08 |

Table_5.3.6 SANDEELS in the southern North Sea. UPA. Stock size in numbers $\times 10^{-6}$



Sp.St. biom.* 535

| 372 | 448 | 553 |
| :--- | ---: | ---: |
| 867 | 1 | 323 |

[^6]

| Age <br> Group | Year |  | 1980 |  |  | 1981 |  |  |  | 1982 |  |  |  | 1983 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 2 |  | 1 |  | 2 |  | 1 |  | 2 |  | 1 |  | 2 |  |
| 0 |  | - |  | 123 | 672 | - | - | 764 |  |  | - |  |  |  |  | 796 | 415 |
| 1 |  | 99 | 741 | 41 | 552 | 45 | 455 | 20 | 347 | 256 |  | 129 | 899 | 12 | 031 |  | 443 |
| 2 |  | 27 | 500 | 10 | 597 |  | 671 | 9 | 057 |  | 649 | 5 | 231 | 85 | 395 | 36 | 059 |
| 3 |  |  | 156 |  | 294 | 7 | 515 | 3 | 702 | 5 | 397 | 1 | 383 | 了 | 643 |  | 021 |
| 4 |  |  | 266 |  | 658 | 1 | 283 |  | 333 | 2 | 782 |  | 611 |  | 776 |  | 401 |
| 5 |  |  | 325 |  | 198 |  | 504 |  | 91 |  | 228 |  | 96 |  | 444 |  | 239 |
| 6 |  |  | 131 |  | 58 |  | 154 |  | 48 |  | 68 | - | - |  | 71 |  | - |
| 7 |  |  | 24 |  | 18 |  | 45 | - |  |  | 37 |  | 22 | - |  |  | - |
| 8 |  | - |  |  |  |  | 14 | - |  | - | - | - | - |  | 17 |  | - |

Sp. St. biom.* 401
Total biom.* 951

383
261
1673
923
633
989
*(1 000 tonnes)

| Age <br> Group | Year | 1984 |  | Mean weight (g) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 15t half | 2nd half |
| 0 |  | - | - | - | 2.42 |
| 1 | 287 | 528 | 146602 | 5. 51 | 7.50 |
| 2 |  | 231 | 1344 | 9. 96 | 10.75 |
| 3 |  | 618 | 8472 | $13 \quad 74$ | 14012 |
| 4 |  | 126 | 643 | 16. 3 | 17.71 |
| 5 |  | 310 | - | 17. 6 | 19.80 |
| 6 |  | 186 | - | 18. 5 | - |
| 7 |  | - | - | 18.9 | - |
| 8 |  | - | - | 19. 1 | - |

Sp.St. biom.* 421
Total biom.* 2006
*(1 000 tonnes)



Iable 5. 3. 3 EAMOEELS in the morthern North Sea shetland exduded. VPA fighing montaliting per half year.

| Age Group | Year | 772 | 1973 |  | 1974 |  | 1775 |  | 1976 |  | 1977 |  | 1978 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| $\square$ | - | 0.16 | - | 0.005 | - | 0.30 | - | 0.22 |  |  |  |  |  |  |
| 1 | 0.24 | 0.12 | 0.34 | 0.02 | 0.77 | 0.04 | 0.72 | 0.22 0.02 | 0.38 | 0.088 0.08 | 0.97 | 0.09 0.34 | 0.49 | 0.14 |
| $z$ | 0.54 | $\square$ | 0.40 | 0.03 | 0.33 | 0.02 | 1.07 | 0.05 | 0.42 | 0.105 | 0. 5 | 0.42 | 0.49 | 0.16 |
| 3 | 0.26 | 0 | 0.66 | 0.013 | 1.21 | 0.02 | 1.26 | 0.003 | 0.35 | 0. 5.8 | 0.52 | 0.42 | 17.55 | 0.15 |
| 4 | 0.56 | 0 | 0.49 | 0 | 0.73 | 0.04 | 1.15 | 0 | 0.34 | 0.10 | 0.42 | 0.75 | 0.25 | 0.07 |
| 5 | 3.37 | 0 | 2.07 | 0.19 | 1.68 | (0.50) | 0.86 | [] | 0.88 | 0.65 | 0.13 | 0.15 | 0.25 1.06 | 0.013 |
| ${ }^{6}$ | (0.50) | - | (0.50) | - | (0.50) | (a. | - | . | (0.50) | - | (0.50) | 0.34 | 1.06 0.50 | 0.7 |
| Weighted |  |  |  |  |  |  |  |  |  | - | (0.20) | - | 0.00 | - |
| mean 1-4 | 0.33 | 0.07 | 0.38 | 0.02 | 0.76 | 0.03 | 0.89 | 0.02 | 0.38 | 0.11 | 0.90 | 0.36 | 0. | 0.15 |


| Age <br> Group | Year | 979 | 1980 |  | 1901 |  | 1982 |  | 1983 |  | 1984 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
| 0 | - | 0.60 | - | 0.32 | - | 0.44 | - | 0.21 | - | 0.14 |  |
| 1 | 0.09 | 0.08 | 0.75 | 0.16 | 0.73 | 0.11 | 0.55 | 0.02 | 0.55 | 0.06 | 0.60 |
| 2 | 0.39 | 0.22 | 1.56 | 0.13 | 1.57 | 0.12 | 2.37 | 0.00 | 17.51 | 0.55 | 0.60 |
| 3 | 0.10 | 0.07 | 1.45 | 0.08 | 1.29 | 0.06 | 2.83 | 0 | 1.15 | 0.91 | 0.60 |
| 4 | 0.01 | 0.03 | 2.13 | 0.06 | 1.26 | 0.17 | (0.50) |  | (0.50) | - 71 | 0.60 |
| 5 | 0.01 | 0 | 0.80 | 0.04 | (0.50) | . | 0.43 | [) | (1.30) | - | - |
| ${ }^{\Sigma}$ | (0.50) | - | (0.50) | , | (0.50) | - | 0.40 | - | (0.50) | -- | - |
| Weighted |  |  |  |  |  |  |  |  | (0.50? | - |  |
| mean 1-4 | 0.13 | 0.10 | 1.02 | 0.15 | 1.02 | 0.11 | 1.05 | 0.02 | 10. 59 | 0.12 | 0.50 |

Table_5.3.9. SANDEELS in the Northern North Sea (Shetland excluded) UPA. Stock size in numbers $\times 10^{-6}$

|  | 1972 |  |  |  | 1973 |  |  |  | 1974 |  |  |  | 1975 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| group |  | 1 |  | 2 |  | 1 |  | 2 |  | 1 |  | 2 |  | 1 |  | 2 |
| 0 |  | - | 52 | 576 |  | - | 115 | 880 |  | - | 60 | 089 |  | - |  | 943 |
| 1 | 17 | 464 | 9 | 225 | 16 | 510 | 8 | 038 | 42 | 434 | 13 | 197 | 16 | 436 | 5 | 503 |
| 2 | 5 | 485 | 2 | 492 | 5 | 646 | 2 | 951 | 5 | 407 | 3 | 0.34 | 8 | 754 | 2 | 298 |
| 3 |  | 560 |  | 336 | 1 | 941 |  | 785 | 2 | 238 |  | 520 | 2 | 316 |  | 510 |
| 4 |  | 207 |  | 92 |  | 262 |  | 126 |  | 594 |  | 223 |  | 395 |  | 94 |
| 5 |  | 68 |  | 2 |  | 72 |  | 7 |  | 98 |  | 14 |  | 167 |  | 55 |
| 6 |  | 172 |  | - |  | 1 |  | - |  | 5 |  | - |  | 0 |  | - |
|  |  | 108 |  |  |  | 141 |  |  |  | 162 |  |  |  | 202 |  |  |
| Total |  | 206 |  |  |  | 234 |  |  |  | 401 |  |  |  | 295 |  |  |


|  | 1976 |  |  |  | 1977 |  |  |  | 1978 |  |  |  | 1979 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | - | 133 |  |  | - |  | 653 |  | - |  |  |  | - | 147 | 544 |
| 1 | 21 | 528 | 10 | 155 | 45 | 556 | 11 | 860 | 18 | 705 | 7 | 882 | 31 | 078 | 19 | 441 |
| 2 | 3 | 721 | 1 | 912 | 6 | 447 | 2 | 974 | 5 | 822 | 2 | 502 | 4 | 597 | 2 | 42.1 |
| 3 | 1 | 697 |  | 933 | 1 | 416 |  | 653 | 1 | 519 |  | 685 | 1 | 679 | 1 | 095 |
| 4 |  | 376 |  | 220 |  | 406 |  | 208 |  | 384 |  | 231 |  | 499 |  | 385 |
| 5 |  | 74 |  | 24 |  | 155 |  | 106 |  | 76 |  | 21 |  | 179 |  | 138 |
| 6 |  | 43 |  | - |  | 10 |  | - |  | 59 |  | - |  | 15 |  | - |
| $\text { Eiom:3 } \Gamma^{\text {SSE }}$ |  | 117 |  |  |  | 148 |  |  |  | 140 |  |  |  | 136 |  |  |
| Total stock |  | 238 |  |  |  | 405 |  |  |  | 246 |  |  |  | 311 |  |  |


|  | 1980 |  |  |  | 1981 |  |  |  | 1982 |  |  |  | 1983 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | - |  | 671 |  | - |  |  |  | - |  |  |  | - | 95 | 300 |
| 1 | 29 | 765 | 9 | 669 | 12 | 436 | 4 | 111 | 9 | 395 | 3 | 609 | 15 | 854 | 6 | 291 |
| 2 | 12 | 285 | 2 | 003 | 5 | 684 |  | 920 | 2 | 541 |  | 185 | 2 |  |  | 838 |
| 3 | 1 | 506 |  | 275 | 1 | 372 |  | 293 |  | 634 |  | 29 |  | 144 |  | 35 |
| 4 |  | 795 |  | 74 |  | 197 |  | 44 |  | 216 |  | 0 |  | 23 |  | 0 |
| 5 |  | 291 |  | 102 |  | 54 |  | 0 |  | 29 |  | 15 |  | 0 |  | 0 |
| 6 |  | 107 |  | - |  | 77 |  | - |  | 0 |  | - |  | 11 |  | - |
| Biom: ${ }^{\text {SSE }}$ |  | 255 |  |  |  | 127 |  |  |  | 61 |  |  |  | 37 |  |  |
| Total stock |  | 423 |  |  |  | 197 |  |  |  | 114 |  |  |  | 127 |  |  |


|  | 1984 | Mean weight (g) |  |
| :---: | :---: | :---: | :---: |
|  |  | 1st half | 2 nd half |
| 0 | - | - | 3.03 |
| 1 | 30507 | 5.64 | 13.23 |
| 2 | 4074 | 13.05 | 27.84 |
| 3 | 378 | 27.30 | 36.20 |
| 4 | 11 | 42.23 | 44.00 |
| 5 | 0 | 47.51 | 65.75 |
| 6 | 0 | 53.00 | - |
| Biom:3 5SB | 64 |  |  |
| Total stock | 236 |  |  |

IGLLE Sus. 10 SANDEELS in the Shethand area.
VPAn Catch in numbers, half year $\times 10^{-6}$.

| 1074 |  |  | 1075 |  | 1976 |  | 1977 |  | 1978 |  | 1978 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age Group | $\begin{aligned} & \text { Jan- } \\ & \text { Jun } \end{aligned}$ | $\begin{aligned} & \text { Jul- } \\ & \text { Dec } \end{aligned}$ | Janー <br> Jun | JuL- Dec | Jan- | Jul- <br> Dec | Jan- <br> Jun | JulDec | JanJun | JulDec | JanJun | $\begin{aligned} & \text { Jul- } \\ & \text { Dec } \end{aligned}$ |
| $1]$ | 0 | 953 | $\square$ | 36 | 86 | 4,486 | 4.64 | 5,64.4 |  |  |  |  |
| 1 | 6 | 834 | 117 | 4,256 | 1,690 | 5 527 | 2,830 | $3,64.4$ 525 | 4. 979 | 5,430 | 0 1.488 | 1,310 |
| 2 | 53 | 34 | 552 | 6.3 | 1294. | 152 | - 604 | 153 | 4,406 1,020 | 651 | 1,488 | 480 |
| 3 | 11 | 14 | 79 | 37 | 115 | 40 | 864 | 153 | 1,020 | 158 | 385 | 137 |
| 4 | $\stackrel{7}{6}$ | 20 | 12 | 13 | 13 | 15 | 44 | 26 | 81 | 45 | 68 | 22 |
| 5 | 5 | 0 | 7 | 0 | 11 | 3 | 6 | 26 | 21 | 7 | 12 | 14 |
| 6 | + | 1 | 4 | 3 | 4 | 2 | $\bigcirc$ | 2 | 3 | 3 | 8 | 7 |
| 7 | 6 | 0 | 2 | 0 | 2 | $\square$ | 3 | $+1$ | + 3 | 0 | 2 | 0 |
| 8 | 0 | - | 2 | - | $+{ }^{2}$ | - | $+$ | + | ${ }^{+}$ | - 0 | 1 | 0 |


| 1980 |  |  | 1981 |  | 1982 |  | 1983 |  | 1984 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age Group | Jan- | Jul- <br> Dec | JanJun | JulDec | JanJun | JuL- Dec | JanJun | $\begin{aligned} & \text { Jul- } \\ & \text { dec } \end{aligned}$ | JanJun | $\begin{aligned} & \text { Jul- } \\ & \text { dec } \end{aligned}$ |
| 9 | 77 | 7,134 | 105 | 13, 505 | 717 | 16,233 |  |  |  |  |
| $\underline{2}$ | 5698 | 1242 | ${ }_{1} 1917$ | 568 | 5,216 | 16, 416 | 2,914 | 4,073 1,035 | 1,940 1,843 | $4,83.3$ |
| $\frac{3}{3}$ | 273 | 104 | 1, 424 | 92 28 | 1.184 494 | 77 | -681 | 121 | 1,064 | 154 |
| 4 | 96 | 13 | 113 | 6 | 494 | 35 | 159 | 28 | 401 | 36 |
| 5 | 80 | 6 | 53 | 3 | 190 | \% | 85 | 17 | 134 | 10 |
| 6 | 37 | $+$ | 26 | + |  | 1 | 23 | 6 | 38 | 9 |
| 7 | 14 | 0 | -3 | + | 29 | 1 $+\quad$ | 14 | $+$ | 14 | 1 |
| 5 | $\bigcirc$ | , | 3 | - | $10^{\circ}$ | + | 4 1 | + | 2 | - 1 |

Table_5.3.11. SANDEELS in the Shetland Area. UPA. Fishing mortalities per half year

| Age | 1974 |  | 1975 |  | 1976 |  | 1977 |  | 1975 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| 0 | - | 0.06 | - | 0.003 | - | 0.24 | - | 0.25 | - | 0.35 |
| 1 | 0.001 | 0.31 | 0.01 | 1.34 | 0.32 | 0.19 | 0.43 | 0.16 | 0.62 | 0.21 |
| 2 | 0.11 | 0.11 | 0.40 | 0.08 | 0.32 | 0.27 | 0.44 | 0.18 | 0.61 | 0.20 |
| 3 | 0.07 | 0.12 | 0.40 | 0.37 | 0.20 | 0.11 | 0.12 | 0.05 | 0.12 | 0.12 |
| 4 | 0.08 | 0.38 | 0.14 | 0.26 | 0.21 | 0.44 | 0.17 | 0.15 | 0.13 | 0.06 |
| 5 | 0.18 | 0 | 0.25 | 0 | 0.38 | 0.20 | 0.34 | 0.19 | 0.18 | 0.04 |
| 4 | 0.04 | 0.14 | 0.31 | 0.46 | 0.34 | 0.22 | 0.85 | 0.43 | 0.42 | 0 |
| 7 | (0.50) | - | (0.50) | - | (0.50) | - | 0.73 | (0.50) | (0.50) | - |
| $\mathrm{F}_{1}{ }_{4}$ | 0.01 |  | 0.08 |  | 0.31 |  | 0.42 |  | 0.59 |  |


| Age | 1779 |  | 1980 |  | 1781 |  | 1982 |  | 1983 |  | 1984 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| 0 | - | 0.09 | - | 0.40 | - | 0.53 | - | 0.68 | - | 0.40 | - | 0.40 |
| 1 | 0.27 | 0.16 | 0.08 | 0.06 | 0.32 | 0.18 | 0.83 | 0.16 | 0.47 | 0.38 | 0.62 | 0.40 |
| 2 | 0.21 | 0.11 | 0.20 | 0.08 | 0.63 | 0.08 | 0.80 | 0.11 | 0.49 | 0.16 | 1.01 | 0.40 |
| 3 | 0.12 | 0.04 | 0.35 | 0.06 | 0.56 | 0.07 | 0.77 | 0.12 | 0.49 | 0.12 | 1.33 | 0.40 |
| 4 | 0.04 | 0.07 | 0.38 | 0.08 | 0.37 | 0.03 | 0.98 | 0.11 | 0.46 | 0.17 | 1.47 | 0.40 |
| 5 | 0.09 | 0.12 | 0.72 | 0.10 | 0.61 | 0.06 | 0.85 | 0.12 | 0.48 | 0.22 | 0.72 | 0.40 |
| 6 | 0.04 | 0 | 1.70 | 0.15 | 0.97 | 0.03 | 1.27 | 0.15 | 0.53 | 0.05 | 1.38 | 0.40 |
| 7 | (0.50) | - | (0.50) | - | 1.15 | (0.50) | 2.25 | (0.50) | 1.68 | (0.50) | 0.90 | 0.40 |
| $\mathrm{F}_{1}{ }_{4}$ | 0.24 |  | 0.14 |  | 0.42 |  | 0.82 |  | 0.48 |  | 0.80 |  |

Table 5.3.12. SANDEELS in the Shetland Area. VPA.
Stock size in numbers $\times 10^{-6}$


Table. 5.3.13 Comparison of trend in $F$ (weighted mean for ages 1-4 with trend in fishing effort in southern and northern SANDEEL assessment areas.

## Southern Area

Input $F$ ( $>1$-group)


## Northern Area

| Input $F$ ( $>1$-group) <br> (first half year) | $\mathrm{F}_{1}-{ }_{4}$ first half year |  |  |
| :---: | :---: | :---: | :---: |
|  | 1982 | 1983 | 1984 |
| 0.4 | 0.99 | 0.47 | 0.40 |
| 0.6 | 1.05 | 0.59 | 0.60 |
| 0.8 | 1.08 | 0.67 | 0.80 |
| 1.0 | 1.09 | 0.73 | 1.00 |
| 1.2 | 1.11 | 0.78 | 1.20 |
| 1.4 | 1.11 | 0.81 | 1.40 |
| Danish effort index | 16.9 | 18.6 | 19.1 |



Table 5.5.1 SANDEEL North Sea. Mean weight (g) at age by month 1984

Southern area (Danish data)

| Age | Mar | Apr | May | Jun | Jul | Aug | Sep | oct |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | - | - | $\begin{aligned} & 1.00 \\ & (1) \end{aligned}$ | $\begin{gathered} 1.00 \\ (2) \end{gathered}$ | - | - | - | - |
| 1 | - | $\begin{gathered} 3.25 \\ (1215) \end{gathered}$ | $\begin{gathered} 5.48 \\ (3579) \end{gathered}$ | $\begin{gathered} 6.77 \\ (4363) \end{gathered}$ | $\begin{gathered} 6.67 \\ (1138) \end{gathered}$ | $\begin{gathered} 7.43 \\ \quad(98) \end{gathered}$ | - | - |
| 2 | - | $\begin{array}{r} 6.57 \\ (52) \end{array}$ | $\begin{aligned} & 9.43 \\ & (195) \end{aligned}$ | $\begin{array}{r} 12.15 \\ (115) \end{array}$ | $\begin{array}{r} 12.07 \\ (11) \end{array}$ | $\begin{array}{r} 10.67 \\ (1) \end{array}$ | - | - |
| 3 | - | $\begin{aligned} & 8.83 \\ & (564) \end{aligned}$ | $\begin{aligned} & 11.03 \\ & (1382) \end{aligned}$ | $\begin{array}{r} 15,16 \\ (318) \end{array}$ | $\begin{array}{r} 12.29 \\ (76) \end{array}$ | $\begin{array}{r} 10.33 \\ (2) \end{array}$ | - | - |
| 4 | - | $16.88$ | $\begin{array}{r} 16.90 \\ (47) \tag{4} \end{array}$ | $\begin{array}{r} 19.57 \\ (2) \end{array}$ | $\begin{array}{r} 15.36 \\ (6) \end{array}$ | - | - | - |
| 5 | - | $\begin{array}{r} 25.00 \\ (1) \end{array}$ | $\begin{gathered} 16.33 \\ (20) \end{gathered}$ | $\begin{aligned} & 13.00 \\ & (1) \end{aligned}$ | - | - | - | - |
| 6 | - | - | $\begin{gathered} 17.27 \\ (14) \end{gathered}$ | - | - | - | - | - |

Northern area (Danish data)

| 0 | - | - | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.19 | 3.47 | 5.52 | - | - | - | - | - |
|  | (4) | (1095) | (1573) | - | - | - | - |  |
| 2 | 3.32 | 6.17 | 11.92 | - | - | - | - | - |
|  | (236) | (135) | (158) | - | - | - | - | - |
| 3 | - | 9.09 | 21.34 | - | - | - | - | - |
|  |  | (11) | (19) | - | - | - | - | - |
| 4 | - | - | 35.00 | - | - | - | - | - |
|  |  |  | (1) |  |  |  |  |  |
|  |  |  | etland | rea (S | tish |  |  |  |
| 0 | - | . | 0.2 | 0.5 | 1.2 | 2.4 | 2.9 | 2.7 |
| 1 | - | 2.3 | 3.2 | 6.0 | 5.9 | 6.5 | 7.0 | 6.4 |
| 2 | - | 4.3 | 5.4 | 8.2 | 8.8 | 8.5 | 9.4 | 8.6 |
| 3 | - | 5.1 | 6.9 | 10.3 | 9.7 | 10.4 | 13.2 | 12.1 |
| 4 | - | 7.7 | 8.0 | 11.4 | 13.0 | 9.8 | 12.0 | 11.0 |
| 5 | - | 9.8 | 12.1 | 18.1 | 19.1 | 12.3 | 17.2 | 15.8 |
| 6 | - | 14.7 | 13.5 | 24.7 | 23.5 | 12.3 | 20.8 | 19.1 |
| 7 | - | 13.8 | 16.7 | 25.0 | 22.8 | _ | 20.8 | 19.1 |
| 8 | - | - | 17.2 | 22.4 | - | - | - | - |

Table 5.5.2 SANDEEL North Sea percontage annual landings by weight by age

| Stock | Year | 0 | 1 | 2 | A G E |  | 5 | 6 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 3 | 4 |  |  |  | 8 |
| Southern | 1979 | 1 | 28 | 47 | 16 | 6 | 2 | 1 | - |  |
| North Sea | 1980 | - | 61 | 25 | 12 | 2 | - | - | - | - |
|  | 1981 | 42 | 17 | 29 | 8 | 3 | 1 | - | - | - |
|  | 1982 | 2 | 67 | 14 | 10 | 7 | - | - | - | - |
|  | 1983 | 5 | 5 | 84 | 5 | 1 | - | - | - | - |
|  | 1984 | - | 70 | 4 | 25 | 1 | $+$ | + | - | - |
| Northern | 1979 | 61 | 16 | 17 | 6 | - | - | - | - | - |
| North Sea | 1980 | 12 | 35 | 21 | 15 | 13 | 3 | 1 | - | - |
|  | 1981 | 27 | 23 | 24 | 18 | 5 | 1 | 1 | - | - |
|  | 1982 | 21 | 25 | 32 | 18 | 4 | 1 | - | - | - |
|  | 1983 | 21 | 44 | 30 | 4 | 1 | - | - | - | - |
|  | 1984 | - | 77 | 18 | 4 | + | - | - | - | - |
| Shetland | 1979 | 11 | 37 | 45 | 4 | 2 | 1 | - | - | - |
|  | 1980 | 45 | 16 | 12 | 11 | 6 | 6 | 3 | 1 | - |
|  | 1981 | 34 | 31 | 22 | 7 | 3 | 2 | 1 | - | - |
|  | 1982 | 48 | 25 | 13 | 8 | 4 | 2 | 1 | $+$ | $+$ |
|  | 1983 | 25 | 48 | 16 | 5 | 3 | 1 | 1 | + | + |
|  | 1984 | 30 | 29 | 23 | 10 | 4 | 2 | 1 | $+$ | $+$ |

Table 5.8.1 Mean monthly values of $F$ 1979-82, based on $M=0.5$

|  | Age | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Southern | 0 | 0 | 0 | 0 | .006 | .171 | .003 | .005 | .004 |
| North Sea | 1 | .009 | .062 | .133 | 199 | .093 | 0 | .003 | .002 |
|  | $2-5$ | .006 | .114 | .484 | .305 | .164 | .001 | .001 | .001 |
|  |  |  |  |  |  |  |  |  |  |
| Northern | 0 | 0 | 0 | 0 | .058 | .062 | .315 | .066 | .072 |
| North Sea | 1 | .111 | .224 | .268 | .127 | .065 | .017 | .001 | .007 |
|  | 2 | .182 | .662 | .584 | .162 | .104 | .006 | 0 | .007 |
|  | $3-4$ | .011 | .056 | .261 | .465 | .052 | 0 | 0 | 0 |
|  |  |  |  |  |  |  |  |  |  |
| Shetland | 0 | 0 | 0 | 0 | .007 | .316 | .187 | .097 | .013 |
|  | 1 | 0 | .237 | .117 | .099 | .095 | .046 | .014 | .003 |
|  | $2-5$ | 0 | .068 | .222 | .225 | .049 | .037 | .010 | .001 |

Table 5.8.2 Mean monthly values of F 1979-82, based on $\mathrm{M}=1.0$

|  | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Southern North Age |  |  |  |  |  |  |  |  |
| 0 | 0 | 0 | 0 | . 002 | . 038 | . 001 | . 001 | . 001 |
| 1 | . 004 | . 024 | . 055 | 088 | . 022 | 0 | . 001 | 0 |
| $2+$ older | . 002 | . 051 | . 213 | .137 | . 028 | 0 | 0 | 0 |
| Northern North Sea |  |  |  |  |  |  |  |  |
| Age |  |  |  |  |  |  |  |  |
| 0 | 0 | 0 | 0 | 0 | . 019 | . 126 | . 025 | . 031 |
| 1 | . 047 | . 073 | . 120 | . 069 | . 021 | . 006 | . | . 002 |
| 2 | . 115 | . 316 | . 259 | . 095 | . 029 | . 002 | 0 | . 002 |
| $3+$ older | . 009 | . 075 | . 254 | . 306 | . 012 | - | 0 | . 0 |
| Shetland |  |  |  |  |  |  |  |  |
| Age |  |  |  |  |  |  |  |  |
| 0 | 0 | 0 | 0 | . 004 | . 088 | . 050 | . 028 | 004 |
| 1 | 0 | . 083 | . 038 | . 032 | . 017 | . 008 | . 003 | . 001 |
| $2+$ older | 0 | . 021 | . 070 | . 064 | . 007 | . 005 | . 002 | . 0 |

## Table 5.8.3 Mean monthly values of $F 1980-83$, based on $M$ values in VPAs

| Area Age Mar Apr May Jun Jul Aug Sep Oct |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


|  | 0 | - | - | - | - | .08 | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Southern | 1 | .01 | .06 | .12 | .19 | .06 | - | - | - |
|  | $\geq 2$ | .01 | .10 | .34 | .28 | .14 | .01 | - | - |


|  | 0 | - | - | - | - | 0.07 | 0.15 | 0.05 | 0.05 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Northern | 1 | 0.13 | 0.26 | 0.30 | 0.18 | 0.09 | 0.02 | - | 0.02 |
|  | 2 | 0.31 | 0.68 | 0.58 | 0.33 | 0.35 | - | - | 0.02 |
|  | 3 | 0.05 | 0.41 | 1.17 | 1.10 | 0.38 | - | - | - |
|  | $\geq 4$ | - | 0.03 | 0.44 | 1.92 | 0.13 | - | - | - |


|  | 0 | - | - | - | - | .28 | .13 | .08 | .01 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Shetland | 1 | - | .20 | .13 | .10 | .12 | .06 | .02 | - |
|  | 2 | - | .13 | .23 | .18 | .05 | .05 | .01 | - |
|  | $\geq 3$ | - | .07 | .25 | .22 | .05 | .04 | .01 | - |

```
Table_s.B.& Yield per recruit and spuwning stock biamess per recruit
(2-7 group at 1 larmary) at recent levels of F assuming closures for different periods of the year
```

YIELEPER RECRUIT (g)

|  | $\mathrm{M}=0.5$ |  |  | $M=1.0$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stan= <br> dand <br> Run | No. fistro ing aft. June | Fishing <br> only <br> May-June | 5tan- <br> derd <br> Run | Mo.fish ing aft. June | Eishing <br> gnty <br> May-June |
| Southern Morth Sea | 2.57 | 2.65 | 2.76 | 0.54 | 0.47 | 0.42 |
| Northern Morth Sea | 2.96 | 3.34 | 4.30 | 1.28 | 1.14 | 1.06 |
| Shettand | 1.36 | 1.35 | 1.40 | 0.35 | 0.21 | 0.17 |

SFAHYING STOCK EIOMASS PER RECFUIT (g)

| Southern Morth Sea | 2.54 | 3.59 | 4.09 | 1.71 | 1.85 | 1.96 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Northern North Sea | 1.62 | 3.09 | 6.11 | 1.51 | 1.93 | 2.59 |
| Shetland | 1.07 | 2.50 | 3.37 | 0.90 | 1.11 | 1.23 |


|  | $\underline{Y}$ [ $\underline{E}$ |  |  | SSE/R |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Southern ares | 1.39 | 1.28 | 1.32 | 1.54 | 1.91 | 2.19 |
| Northern 3rea | 1.97 | 1.74 | 2.30 | 0.69 | 1.14 | 2.15 |
| Shetland | 0.99 | 0.68 | 0.68 | 0.54 | 1.19 | 1.59 |

Table 6.1.1 Landings of SPRAT in Division IIIa and in Norwegian fjords in Division IVa (10 ${ }^{-3}$ tonnes). (Data provided by Working Group members).

| Year | SKAGERRAK |  |  |  | KATTEGAT |  |  | IIIa TOTAL | Fjords of Western Norway (IVa E) | $\begin{aligned} & \text { GRAND } \\ & \text { TOTAL } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Denmark | Sweden | Norway | Total | Denmark | Sweden | Total |  |  |  |
| 1969 | 0.8 | 1.9 | 1.7 |  | 0.8 |  |  |  |  |  |
| 1970 | 1.1 | 2.4 | 2.4 | 4.4 5.9 | 0.8 3.1 | 1.6 6.0 | 2.4 | 6.8 15.0 | 11.8 | 18.6 |
| 1971 | 0.7 | 2. 4 | 2.9 | 6.0 | 1.5 | 6.6 | 11.1 | 15.0 | 6. 4 | 21.4 |
| 1972 | 0.8 | 3.3 | 2.4 | 6.5 | 1.4 | 17.9 | 19.3 | 25.8 | 4.4 6.9 | 21.5 |
| 1973 | 19.4 | 2.5 | 3.2 | 25.1 | 19.3 | 16.2 | 35.5 | 25.8 60.6 | 6.9 8.8 | 32.7 69.4 |
| 1974 | 17.3 | 2.0 | 1.2 | 20.5 | 31.6 | 18.6 | 50.2 | 70.7 | 8.8 3.3 | 69.4 74.0 |
| 1975 | 14.9 | 2.1 | 1.9 | 18.9 | 69.7 | 20.9 | 90.6 | 109.5 | 2. 2.9 | 74.0 112.4 |
| 1976 | 12.8 | 2.6 | 2.0 | 17.4 | 30.4 | 13.5 | 43.9 | 61.3 | 2. 0.6 | 112.4 61.9 |
| 1977 | 7.2 | 2.2 | 1.2 | 10.6 | 53.3 | 9.8 | 63.1 | 73.7 | 5.4 | 61.9 79.1 |
| 1978 | 23.1 | 2.2 | 2.7 | 28.0 | 36.1 | 9. 4 | 45.5 | 73.5 | 5.2 | 78.7 |
| 1979 1980 * | 17.3 | 8.1 | 1.8 | 27.2 | 45.8 | 6.4 | 52.2 | 79.4 | 5.0 | 78.7 84.4 |
| 1980** | 43.1 26.4 | 13.4 | 3.4 | 46.5 | 35.8 | - | 35.8 | 102.4 | 2.9 | 105.3 |
| 1981 | 26.4 11.0 | 13.4 | 4.6 | 44.4 | 23.8 | 15.8 | 39.6 | 84.0 | 3.1 | 87.1 |
| 1983** | 11.0 3.4 | 6.7 | 1.8 | 19.5 | 15.4 | 4.8 | 20.2 | 39.7 | -6.0 | 45.7 |
| 1984** | 5.4 | 6.7 5.4 | 1.5 1.7 | 11.6 | 9.1 10.0 | 13.2 | 22.3 | 33.9 | 3.0 | 36.9 |
|  |  |  | 1.7 | 12.5 | 10.0 | 5.2 | 15.2 | 27.7 | 3.6 | 31.3 |

** Sweden 20124 tonnes in Div. IIIa. Included in total but allocation to skagerrak and Kattegat not possible. ** Preliminary figures.

Table 7.1.1 SPRAT catches in the North Sea ('OOO tonnes) 1975-84 (data provided by Working Group Members)

| Year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | $1984{ }^{\text {A }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| Denmark Faroe Islands |  |  |  |  |  |  |  |  |  |  |
| France ${ }^{\text {a }}$ | 12.9 | 2.5 | 0.4 | - | - | - |  | - | - | - |
| German Dem. Rep. | - | - | $+$ | - | - | - | - | - | - | - |
| Germany, Fed. Rep. | - | + | 0.6 | - | - | 0.1 | - | - | - | - |
| Netherlands | + | + | + |  | - | 0.1 | - | - | - | - |
| Norway | 1.5 | 29.9 | 16.0 | 1.3 | 0 | - |  |  | - | - |
| Poland | 0.3 | - | $0^{-}$ |  | - | - | - | - | - | - |
| U.K. (England) | 11.0 | + | 0 | - | - | - | - | - | - | - |
| U.K. (Scotland) | 9.4 | 12.7 | 26.9 | 16.9 | 6.8 | 3.8 | 1.0 | + | - | + |
| USSR | 1.3 | 1.2 | + | . | 6 | 3.8 | 1.0 | - | - | - |
| Total | 36.9 | 46.9 | 44.0 | 18.2 | 6.8 | 3.9 | 3.8 | + | 0 | + |
| Denmark 1 - IVa East (North Sea) Stock |  |  |  |  |  |  |  |  |  |  |
| Norway | - | 1.9 | 0.11 0.7 | 0.1 | $+$ | 0.4 | - | $\pm$ | $3-0$ | 3-6 |
| U.K. Scotland | - | + | 0.7 |  | $\pm$ | 0.4 | - | - | 3.0 | 3.6 |
| Total | - | 2.1 | 0.8 | 0.1 |  | 0.4 | 0 | + | 3.0 | 3.6 |
| IVb West. |  |  |  |  |  |  |  |  |  |  |
| Denmark | $106^{-} .6$ | 104.4 | 57.5 | 44.1 | 75.3 | 76.7 | 53.6 | 23.1 | 32.6 | $5 .-6$ |
| Faroe Islands | 30.0 | 42.9 | 1.8 | 44. | $2.8{ }^{8}$ | $2.8{ }^{\text {8 }}$ | 53.6 | 23.1 | 32.6 | 5.6 |
| France |  |  | + | - | - | - | - | - | - | - |
| German Dem. Rep. | 4.5 | 6.4 | 0.7 | - | - | - | - | - | - | - |
| Netherlands |  |  | ${ }_{5}{ }^{\circ}$ | 56. | - |  |  | - | - | - |
| Norway | 145.7 | 73.0 | 5.5 | 56.2 | 47.8 | 18.3 | 0.2 | 8.6 | - | - |
| Poland | 9.1 | 10.5 | 0 |  | - | - | - | - | - | - |
| U.K. (England) | 32.5 | 49:7 | 51.9 | 53.9 | 12.9 | 2.4 | - | - | - | - |
| U.K. (Scotland) | 4.9 47.8 | 18.1 50.4 | 10.9 | 14.8 | 5.0 | 2.5 | 0.7 | 0.2 | + | - |
| Total |  |  |  |  |  |  |  |  |  |  |
|  | 381.1 | 362.3 | 123.9 | 169.0 | 143.8 | 102.7 | 54.5 | 31.9 | 32.6 | 5.6 |

) Preliminary figures as reported
) Division IVb East and West
$+=$ less than 0.1

- = magnitude known to be nil

Table 7.1.1 (Continued)
SPRAT catches in the North Sea ('000 tonnes) 1975-84 (data provided by Working Group Members

A) Preliminary figures as reported
$+=$ less than 0.1

- = magnitude known to be nil

Table 7.1.2 SPRAT in Division VIa
Landings in tonnes.

| Year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark |  |  |  | 259 |  |  | 242 |  |  |  |
| Faroes | 56 | 181 |  |  |  |  |  |  |  |  |
| France |  |  |  |  |  |  |  |  |  |  |
| Germany, Fed. Rep. | 123 | 37 | + |  | 97 |  | 2 |  |  |  |
| Ireland | 517 | 673 | 282 | 533 | 12 | 1787 | 790 | 287 |  |  |
| Netherlands | 140 | 661 | 49 | 46 | 125 | 428 | 892 | 2156 | 1447 |  |
| Norway |  | 35 | 267 |  |  |  |  | 24 |  |  |
| Poland |  |  |  |  |  |  |  | - |  |  |
| UK (Scotland)** | $8 \quad 127$ | 6455 | 4246 | 11563 | 1087 | 2987 | 1488 | 1057 | 1971 | 2438 |
| Total | 9053 | 8042 | 4844 | 12401 | 1321 | 5202 | 3414 | 3524 | 3418 | 2438 |

Source: ICES Statistician

* preliminary figures
** amended from national data

Table 7.1.3 SPRAT catches in thousand tonnes (Denmark, Norway and United Kingdom) in Sub-divisions of the North Sea (1981-1984).

1981

| Month | AREAS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 |  |
|  |  |  |  |  |  |  |
| 1 | 0.6 | - | 12.7 | 3.0 | 10.3 |  |
| 2 | - | - | 14.4 | 9.1 | 6.9 |  |
| 3 | - | - | + | 3.1 | + |  |
| 4 | - | - | + | 0.2 | + |  |
| 5 | - | - | 1.5 | 0.4 | 0.2 |  |
| 6 | - | - | 0.4 | 0.6 | 0.2 |  |
| 7 | - | - | - | 20.5 | - |  |
| 8 | 2.8 | - | 1.4 | 26.3 | - |  |
| 9 | + | - | 2.9 | 35.9 | - |  |
| 10 | 0.1 | - | 13.3 | 20.1 | - |  |
| 11 | 0.3 | - | 8.0 | 8.3 | - |  |
| 12 |  |  |  | - | 0.7 |  |

1982

| Month | AREAS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 |  |
|  |  |  |  |  |  |  |
| 2 | + | - | 23.7 | 17.9 | 13.5 |  |
| 3 | - | - | 1.8 | 1.0 | 7.1 |  |
| 4 | - | - | 0.8 | 0.1 | + |  |
| 5 | - | + | + | - | - |  |
| 6 | - | - | + | 0.1 | - |  |
| 7 | - | - | 0.1 | 0.1 | - |  |
| 8 | - | - | - | 4.7 | - |  |
| 9 | - | - | - | 15.1 | - |  |
| 10 | - | - | 0.7 | 21.2 | - |  |
| 11 | - | - | 1.2 | 4.3 |  |  |
| 12 | - | - | 3.5 | 6.5 | - |  |

Table 7.1.3 (continued)

1983

| Month | AREAS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 |  |
|  |  |  |  |  |  |  |
| 1 | - | - | 1.0 | 13.0 | 2.9 |  |
| 2 | - | - | 0.3 | 0.5 | 0.7 |  |
| 3 | - | - | - | + | 0.1 |  |
| 4 | - | - | + | 0.1 | + |  |
| 5 | - | - | + | 0.2 | - |  |
| 6 | - | - | 0.3 | 0.6 | + |  |
| 7 | - | - | - | 4.5 | + |  |
| 8 | - | - | - | 15.8 | - |  |
| 9 | - | - | 21.1 | 3.6 | - |  |
| 10 | - | - | 9.7 | 1.8 | - |  |
| 11 |  |  |  |  | - |  |
| 12 | - |  |  |  | 0.9 |  |

1984

| Month | AREAS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 |  |
|  |  |  |  |  |  |  |
| 2 | + | - | 1.2 | 3.0 | 2.3 |  |
| 3 | - | - | - | + | 2.3 |  |
| 4 | - | - | - | - | 0.1 |  |
| 5 | - | - | + | + | - |  |
| 6 | - | - | 0.1 | + | - |  |
| 7 | - | - | - | + | - |  |
| 8 | - | - | - | 2.1 | + |  |
| 9 | - | - | 1.6 | 19.3 | - |  |
| 10 | + | - | 1.2 | 12.0 | + |  |
| 11 | - | - | 1.5 | 16.4 | - |  |
| 12 |  | - | - | + | 0.1 |  |

Table 7.3.1 North Sea SPRAT in 1983-1984.
Numbers caught per age group $\times 10^{-6}$

| Divisions | Months | Age Groups |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 1 | 2 | 3 | 4 | 5 |
| IVa W | $\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$ | - | - - - - | - | - - - | - | - |
|  | Total | - | - | - | - | - | - |
| $\begin{aligned} & \text { IVa E } \\ & \text { (excl. } \\ & \text { Norweg. } \\ & \text { fjord } \\ & \text { catch } \end{aligned}$ | $\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$ | - - - | - | - | - | - | - |
|  | Total | - | - | - | - | - | - |
| IVb W | $\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$ | $\begin{gathered} - \\ - \\ - \\ 49.6 \end{gathered}$ | $\begin{array}{r} 118.2 \\ 4.4 \\ 7.1 \\ 1605.5 \end{array}$ | $\begin{array}{r} 59.8 \\ 15.2 \\ 443.2 \end{array}$ | $\begin{array}{r} 39.1 \\ 4.0 \\ -\quad 20.6 \end{array}$ | 0.8 - - - | - - - |
|  | Total | 49.6 | 1735.2 | 518.2 | 63.7 | 0.8 | - |
| IVb E | $\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$ | $\begin{array}{r} - \\ 1.1 \\ 10.1 \\ 75.0 \end{array}$ | $\begin{array}{r} 231.6 \\ 18.5 \\ 2 \quad 648.6 \\ 351.6 \end{array}$ | $\begin{array}{r} 716.9 \\ 40.6 \\ 341.0 \\ 306.8 \end{array}$ | $\begin{array}{r} 304.7 \\ 1.3 \\ 27.0 \\ 24.6 \end{array}$ | $\begin{gathered} 20.7 \\ - \\ 0.1 \end{gathered}$ | 3.0 - - - |
|  | Total | 86.2 | 3250.3 | 1405.3 | 357.6 | 20.8 | 3.0 |
| IVC | $\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$ | $\begin{gathered} - \\ 0.6 \\ 0.2 \\ 6.1 \end{gathered}$ | $\begin{array}{r} 7.5 \\ 2.5 \\ 0.7 \\ 59.5 \end{array}$ | $\begin{array}{r} 156.2 \\ 0.3 \\ 0.1 \\ 11.4 \end{array}$ | $\begin{gathered} 139.2 \\ - \\ 1.5 \end{gathered}$ | 16.6 - - - | - |
|  | Total | 6.9 | 70.2 | 168.0 | 140.7 | 16.6 | - |
| TOTAL NORTH SEA | Jan-Mar <br> Apr-Jun <br> Jul-Sep <br> Oct-Dec | $\begin{array}{r} 1.7 \\ 10.3 \\ 130.7 \end{array}$ | $\begin{array}{r} 357.3 \\ 25.4 \\ 2.656 .4 \\ 2016.6 \end{array}$ | $\begin{array}{r} 932.9 \\ 56.1 \\ 341.1 \\ 761.4 \end{array}$ | $\begin{array}{r} 483.0 \\ 54.3 \\ 27.0 \\ 46.7 \end{array}$ | $\begin{gathered} 38.1 \\ - \\ - \\ 0.1 \end{gathered}$ | 3.0 - - - |
|  | Total | 142.7 | 5055.7 | 2091.5 | 562.0 | 389.2 | 3.0 |

.../contd.

Table 7.3.1 contd.

| Divisions | Age Grouprs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Months | 0 | 1 | 2 | 3 | 4 | 5 |
| IVa W | Jan-Mar | - | 0.9 | 0.1 | - | - | - |
|  | Apr-Jun | - | - | - | _ | - | - |
|  | Jul-Sep | - | - | - | - | - | - |
|  | Oct-Dec | 6.7 | + | - | - | - | - |
|  | Total | 6.7 | 0.9 | 0.1 | - | - | - |
| IVa E | Jan-Mar |  |  |  |  |  |  |
|  | Apr-Jun |  |  |  |  |  |  |
|  | Jul-Sep |  |  |  |  |  |  |
|  | Oct-Dec |  |  |  |  |  |  |
|  | Total |  |  |  |  |  |  |
| IVb W | Jan-Mar | - | 6.8 | 40.6 | 47.9 | 8.4 | - |
|  | Apr-Jun | - | 1.0 | 3.7 | 2.9 | , | - |
|  | Jul-Sep | - | 12.9 | 27.4 | 36.5 | 3.0 | - |
|  | Oct-Dec | - | 15.1 | 45.4 | 63.5 | 5.0 | - |
|  | Total |  | 35.8 | 117.1 | 150.9 | 16.4 | - |
| $\overline{\text { IVb E }}$ | Jan-Mar | - | 22.4 | 255.6 | 32.3 | 2.6 | - |
|  | Apr-Jun | - | 21.4 | 1.2 | 0.1 | 2.6 | - |
|  | Jul-Sep | - | 4,081.2 | 313.8 | - | - | - |
|  | Oct-Dec | 84.7 | 2,180.7 | 100.5 | - | - | - |
|  | Total | 84.7 | 6,305.8 | 671.1 | 32.4 | 2.6 | - |
| IVC | Jan-Mar | - | 104.0 | 284.2 | 126.6 | 23.8 | 0.3 |
|  | Apr-Jun | - | - | . | 126. | - | 0.3 |
|  | Jul-Sep | - | 0.4 | 0.1 | 0.1 | - | - |
|  | Oct-Dec | - | 8.4 | 5.9 | 0.9 | - | - |
|  | Total | - | 112.8 | 290.2 | 127.6 | 23.8 | 0.3 |
| $\begin{aligned} & \text { Total North } \\ & \text { Sea } \end{aligned}$ |  | - | 134.1 | 580.5 | 206.8 | 34.8 | 0.3 |
|  | Apr-Jun | - | 22.4 | 4.9 | 3.0 | - | O. |
|  | Jul-Sep | - | 4,094.5 | 341.3 | 36.6 | 3.8 | - |
|  | Oct-Dec | 91.4 | 2,204.2 | 151.8 | 64.4 | 5.0 | - |
|  | Total | 91.4 | 6,455.2 | 1,078.5 | 310.8 | 42.8 | 0.3 |

Table 7.3.2 North Sea SPRAT catch in 1976-84. Numbers caught per age group $\times 10^{-6}$ in each three-month period.

| Year | Months | Age group |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1976 | $\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { JuI-Sep } \\ & \text { Oct-Dec } \end{aligned}$ | $\begin{gathered} - \\ - \\ 79.6 \\ 2,780.4 \end{gathered}$ | $\begin{array}{r} 9,360.9 \\ 2,017.2 \\ 16,536.4 \\ 8,443.7 \end{array}$ | $\begin{array}{r} 9,997.0 \\ 964.6 \\ 599.5 \\ 2,659.4 \end{array}$ | $\begin{array}{r} 6,678.0 \\ 740.1 \\ 40.1 \\ 612.7 \end{array}$ | $\begin{array}{r} 373.0 \\ 40.9 \\ - \\ 37.3 \end{array}$ | $\begin{gathered} 6.2 \\ 0.8 \\ - \end{gathered}$ | $1.4$ |
| 1977 | $\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$ | $\begin{gathered} - \\ - \\ 1,060.8 \end{gathered}$ | $\begin{array}{r} 4,197.2 \\ 540.3 \\ 2,803 \cdot 1 \\ 4,705.0 \end{array}$ | $\begin{array}{r} 11,962.6 \\ 670.9 \\ 3,248.4 \\ 3,049.5 \end{array}$ | $\begin{array}{r} 962.9 \\ 52.7 \\ 165.9 \\ 311.2 \end{array}$ | $\begin{array}{r} 104.7 \\ 1.5 \\ 11.1 \\ 1.5 \end{array}$ | $12.0$ |  |
| 1978 | Jan-Mar <br> Apr-Jun <br> Jul-Sep <br> Oct-Dec | $\begin{aligned} & - \\ & - \\ & 6.3 \\ & 636.8 \end{aligned}$ | $\begin{array}{r} 2,461.9 \\ 1,077.5 \\ 17,785.5 \\ 6,932.7 \end{array}$ | $\begin{array}{r} 2,839.3 \\ 123.8 \\ 216.5 \\ 3,955.8 \end{array}$ | $\begin{array}{r} 3,770.1 \\ 3.2 \\ 14.7 \\ 1,159.0 \end{array}$ | $\begin{gathered} 344.5 \\ 0 \\ 0.7 \\ 214.9 \end{gathered}$ |  |  |
| 1979 | $\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$ | $\begin{aligned} & - \\ & - \\ & 433.0 \end{aligned}$ | $\begin{array}{r} 2,770.0 \\ 203.6 \\ 25,379.1 \\ 8,394.8 \end{array}$ | $\begin{array}{r} 6,422.2 \\ 452.0 \\ 388.3 \\ 1,494.6 \end{array}$ | $\begin{array}{r} 2,670.6 \\ 14.0 \\ 2.1 \\ 122.4 \end{array}$ | $\begin{gathered} 131.2 \\ 1.1 \\ 0 \\ 34.9 \end{gathered}$ | $0.7$ |  |
| 1980 | $\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$ | $\begin{aligned} & - \\ & - \\ & 15.1 \\ & 515.7 \end{aligned}$ | $\begin{array}{r} 1,448.0 \\ 134.0 \\ 10,143.3 \\ 4,518.5 \end{array}$ | $\begin{array}{r} 12,764.4 \\ 84.5 \\ 811.6 \\ 2,767.4 \end{array}$ | $\begin{array}{r} 1,323.2 \\ 2.4 \\ 4.7 \\ 111.8 \end{array}$ | $\begin{array}{r} 103.7 \\ 0.3 \\ -9 . \\ 19.5 \end{array}$ | $0.7$ | - - - - |
| 1981 | $\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$ | $\begin{array}{r} - \\ 23.0 \\ 192.2 \\ 158.0 \end{array}$ | $\begin{array}{r} 2,249.3 \\ 87.0 \\ 7,626.5 \\ 2,326.8 \end{array}$ | $\begin{array}{r} 5,218.6 \\ 189.2 \\ 1,140.8 \\ 1,448.9 \end{array}$ | $\begin{array}{r} 1,055.5 \\ 29.1 \\ 46.1 \\ 69.9 \end{array}$ | $\begin{gathered} 22.1 \\ - \\ 3.0 \\ 0.7 \end{gathered}$ | $\begin{aligned} & 1.5 \\ & 1.7 \\ & -0.4 \end{aligned}$ | - |
| 1982 | $\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$ | $\begin{aligned} & - \\ & - \\ & 20.8 \\ & 34.8 \end{aligned}$ | $\begin{array}{r} 1,020.7 \\ 3.4 \\ 4,813.2 \\ 2,700.7 \end{array}$ | $\begin{array}{r} 5.877 .8 \\ 31.2 \\ 60.8 \\ 623.9 \end{array}$ | $\begin{array}{r} 595.1 \\ 5.5 \\ 2.1 \\ 10.5 \end{array}$ | $\begin{gathered} 166.4 \\ 0.7 \\ -. \\ 0.6 \end{gathered}$ | $\begin{aligned} & 5.0 \\ & - \\ & 1.2 \end{aligned}$ | - |
| 1983 | Jan-Mar <br> Apr-Jun <br> Jul-Sep <br> Oct-Dec | $\begin{array}{r} - \\ 1.7 \\ 10.3 \\ 130.7 \end{array}$ | $\begin{array}{r} 357.3 \\ 25.4 \\ 2,656.4 \\ 2,016.6 \end{array}$ | $\begin{array}{r} 932.9 \\ 56.1 \\ 341.1 \\ 761.4 \end{array}$ | $\begin{array}{r} 483.0 \\ 5.3 \\ 27.0 \\ 46.7 \end{array}$ | $\begin{gathered} 38.1 \\ - \\ - \\ 0.1 \end{gathered}$ | $3.0$ | - |
| 1984 | Jan-Mar <br> Apr-Jun <br> Jul-Sep <br> Oct-Dec | $\begin{aligned} & - \\ & - \\ & 91.4 \end{aligned}$ | $\begin{array}{r} 134.1 \\ 22.4 \\ 4.094 .5 \\ 2,204.2 \end{array}$ | $\begin{array}{r} 580.5 \\ 4.9 \\ 341.3 \\ 151.8 \end{array}$ | $\begin{array}{r} 206.8 \\ 3.0 \\ 36.6 \\ 64.4 \end{array}$ | $\begin{array}{r} 34.8 \\ 3.0 \\ 5.0 \end{array}$ | 0.3 - - | - |

Table 7.3.3 North Sea SPRAT. Fishing mortality by quarters (VPA). $M=0.8$ year ${ }^{-1}$. Input fishing mortalities are in brackets. 1974-77 from previous report.

Age Groups

| Year/Quarter |  | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1974 | 1 | - | . 052 | . 30 | . 59 | 1.41 |
|  | 2 | - | . 003 | . 13 | . 13 | . 69 |
|  | 3 | . 0003 | . 053 | . 15 | . 05 | . 44 |
|  | 4 | .0141 | . 087 | . 10 | . 14 | (1.00) |
| 1975 | 1 | - | . 046 | . 31 | . 92 | . 84 |
|  | 2 | - | . 005 | . 035 | . 034 | . 046 |
|  | 3 | . 000 | . 156 | . 245 | . 047 | . 028 |
|  | 4 | . 004 | . 132 | . 446 | . 706 | (1.000) |
| 1976 | 1 | - | . 072 | . 315 | 1.339 | 1.213 |
|  | 2 | - | . 020 | . 045 | . 488 | .2136 .386 |
|  | 3 | . 001 | . 224 | . 035 | . 043 | . 000 |
|  | 4 | . 039 | . 170 | . 217 | 1.597 | (1.000) |
| 1977 | 1 | - | . 077 |  |  |  |
|  | 2 | - | . 013 | . 033 | . 008 | . 086 |
|  | 3 | . 001 | . 084 | . 220 | . 032 | 1.568 |
|  | 4 | . 012 | . 198 | . 332 | 1.287 | (1.000) |
| 1978 | 1 | - | 0.03 |  | 0.89 | 0.44 |
|  | 2 | - | 0.02 | 0.01 | - | . |
|  | 3 | - | 0.48 | 0.02 | 0.01 | - |
|  | 4 | - | 0.35 | 0.69 | 1.61 | (1.0) |
| 1979 | 1 | - | 0.03 |  |  |  |
|  | 2 | - | - | 0.08 | $0.03$ | $0.01$ |
|  | 3 | - | 0.46 | 0.09 | 0.01 |  |
|  | 4 | 0.01 | 0.27 | 0.58 | 0.49 | (1.0) |
| 1980 | 1 | - | 0.03 | 0.83 |  |  |
|  | 2 | - | - | 0.01 | $0.01$ | $\begin{aligned} & 1.04 \\ & 0.01 \end{aligned}$ |
|  | 3 | -- | 0.37 | 0.14 | 0.03 | - |
|  | 4 | 0.01 | 0.28 | 0.9 | 1.43 | (1.0) |
| 1981 | 1 | - | 0.06 | 0.62 |  |  |
|  | 2 | - | - | 0.04 | 0.08 |  |
|  | 3 | 0.01 | 0.39 | 0.34 | 0.17 | $1.17$ |
|  | 4 | 0.01 | 0.20 | 0.99 | 0.41 | $(1.0)$ |
| 1982 | 1 | - | 0.05 | 1.10 |  | 3.79 |
|  | 2 | - | - | 0.01 | 0.06 | 0.40 |
|  | 3 | - | 0.42 | 0.03 | 0.03 | - |
|  | 4 | - | 0.44 | 0.53 | 0.21 | (1.0) |
| 1983 | 1 | - | 0.03 | 0.27 | 1.06 | 4.85 |
|  | 2 | - | . | 0.02 | 0.03 | 4.85 |
|  | 3 | - | 0.44 | 0.19 | 0.18 | - |
|  | 4 | - | 0.70 | 0.82 | 0.53 | (1.0) |
| 1984 | 1 | - | 0.01 | 0.45 | 0.56 | 1.01 |
|  | 2 | - | , | 0.01 | 0.01 | - |
|  | 3 | , | 0.27 | 0.68 | 0.22 | 0.26 |
|  | 4 | (0.01) | (0.22) | (0.76) | (0.76) | (0.9) |

Table 7.3.4 North Sea SPRAT. Number in stock, $\mathrm{N} \times 10_{-3}^{-9}$ at the beginni of each quarter and biomass, tonnes $\underline{x}_{1} 10^{-3}$ at the beginning of each year(VPA) M=0.8 year ${ }^{-1}$ 1974-77 from previous report.

| Year | Quarter | 0 | Age Groups |  |  | 4 | Biomass |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3 |  | Total | Adult |
| 1974 | 1 | - | 166 | 31 | 2.5 | . 3 | 598 | 432 |
|  | 2 | - | 129 | 19 | 1.2 | + |  |  |
|  | 3 | 148 | 105 | 14 | . 8 | + |  |  |
|  | 4 | 121 | 82 | 9.6 | . 6 | + |  |  |
| 1975 | 1 | - | 98 | 61 | 7.1 | . 4 | 702 | 576 |
|  | 2 | - | 99 | 37 | 2.3 | . 2 |  |  |
|  | 3 | 222 | 81 | 29 | 1.8 | . 1 |  |  |
|  | 4 | 182 | 57 | 19 | 1.4 | . 1 |  |  |
| 1976 | 1 | - | 148 | 41 | 9.8 | . 6 | 613 | 465 |
|  | 2 | - | 113 | 24 | 2.1 | . 1 |  |  |
|  | 3 | 97 | 91 | 19 | 1.1 | . 1 |  |  |
|  | 4 | 79 | 59 | 15 | . 8 | . 1 |  |  |
| 1977 | 1 | - | 62 | 41 | 9.9 | . 1 | 522 | 460 |
|  | 2 | - | 47 | 23 | 7.2 | + |  |  |
|  | 3 | 122 | 38 | 18 | 5.8 | + |  |  |
|  | 4 | 100 | 29 | 12 | 4.6 | * |  |  |
| 1978 | 1 |  | 81 | 19 | 7.0 | 1.1 | 354 | 273 |
|  | 2 |  | 64 | 13 | 2.3 | 0.6 |  |  |
|  | 3 | 174 | 51 | 11 | 1.9 | 0.5 |  |  |
|  | 4 | 143 | 26 | 9 | 1.6 | 0.4 |  |  |
| 1979 | 1 | - | 116 | 15 | 3.5 | 0.3 | 288 | 172 |
|  | 2 | - | 93 | . 6.6 | 0.5 | 0.1 |  |  |
|  | 3 | 83 | 76 | 5.0 | 0.4 | 0.1 |  |  |
|  | 4 | 68 | 39 | 3.7 | 0.3 | + |  |  |
| 1980 | 1 | - | 55 | 24.5 | 1.7 | 0.2 | 268 | 213 |
|  | 2 | - | 44 | 8.7 | 0.2 | $+$ |  |  |
|  | 3 | 62 | 36 | 7.1 | 0.2 | + |  |  |
|  | 4 | 51 | 20 | 5.1 | 0.2 | + |  |  |
| 1981 | 1 | - |  |  |  | + | 160 | 118 |
|  | 2 | - | 31 | 5.5 | 0.4 | + | 160 | 118 |
|  | 3 | 36 | 26 | 4.3 | 0.3 | + |  |  |
|  | 4 | 30 | 14 | 2.5 | 0.2 | $+$ |  |  |
| 1982 | 1 | - |  |  |  |  | 173 | 92 |
|  | 2 | - | 19 | 2.6 | $+$ | $+$ | 173 | 92 |
|  | 3 | 19 | 15.4 | 2.1 | $+$ | $+$ |  |  |
|  | 4 | 16 | 8.3 | 1.7 | + | $+$ |  |  |
| 1983 |  | - |  |  |  |  |  |  |
|  | 2 | 1 | 10 | 2.7 | 0.2 | + | 92 | 50 |
|  | 3 | 43 | 8.2 | 2.2 | 0.2 | - |  |  |
|  | 4 | 35 | 4.4 | 1.5 | 0.1 | - |  |  |
| 1984 | 1 |  | 28 | 1.8 |  |  | 98 | 24 |
|  | 2 | - | 23 | 0.9 | 0.2 | + | 98 | 24 |
|  | 3 | 16 | 19 | 0.8 | 0.2 | + |  |  |
|  | 4 | 13 | 12 | 0.3 | 0.1 | + |  |  |

Table 7.4.1 Acoustic estimate of North Sea SPRAT biomass ( t x $10^{-3}$ ) standardised to the target strength - length relationship given in section 7.4


[^7]Table 7. 7.2 North Sea SPRAT.Research vessel surveys.

|  | SURVEYS |  |  |  |  | Commercial <br> Fisheries |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | I YFS | IYFS | IYFS | IYFS |  | NE Engl | NSea |
|  | N.sea | Div. | IVb E | IVb E | Mid-water | fishery | $\times 10^{-6}$ |
| Year of | No/tro | IVb | IKMT | Bottons | Surveys Nov. | winter | Catches |
| otserv. | all | 1-gr. | 1-gr. | trawl | - | $\times 10^{-6}$ | 1 qrit . |
|  | 3 es |  |  | 1-gr. | O-gr. 1-gr. | $1-g r^{r}$. |  |


| 1970 |  |  |  |  |  |  | 1,172 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 |  |  |  |  |  |  | 730 |  |
| 1972 | 873 | 90 |  |  |  |  | 218 |  |
| 1973 | 713 | 123 |  |  |  |  | 1,022 |  |
| 1974 | 2,631 | 481 |  |  |  |  | 1,517 | 7,620 |
| 1975 | - | - |  |  |  |  | 337 | 4,097 |
| 1976 | 2,127 | 1,186 |  |  |  |  | 557 | 9,361 |
| 197\% | 了, 031 | 136 |  |  |  |  | 361 | 4,197 |
| 1978 | 2,208 | 1,474 |  |  |  |  | 732 | 2,462 |
| 1979 | $569{ }^{\text {A }}$ | $248{ }^{\text {A }}$ |  |  |  |  | 330 | 2,770 |
| 1980 | 3,770 | 1,402 | 328 | 1,916 | 2,831 | 81 | 59 | 1,448 |
| 1981 | 2,107 | 886 | 107 | 1,146 | 1,075 | 60 | - | 2,249 |
| 1982 | 602 | 183 | 47 | 512 | 1,044 | 38 | - | 1,021 |
| 1983 | 852 | 399 | 12 | 730 | 1,536 | 84 |  | 357 |
| 1984 |  | 349 |  |  |  |  |  | 134 |
| 1985 | 638 | 512 |  |  |  |  |  |  |

A Low figures due to abnormal conditions on the survey

Table 7.5.1 North Sea SPRAT. Mean weights at age by quarters, 1983 and 1984 (in grams)

| YEAR | $\begin{aligned} & \text { AGE } \\ & \text { QUARTER } \end{aligned}$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | $\begin{gathered} \text { JAN-MAR } \\ \text { APR-JUN } \\ \text { JUL-SEP } \\ \text { OCT-DEC } \\ \text { YEAR } \end{gathered}$ | - | 3.3 | 8.7 | 13.5 | 32.0 | - |
|  |  | (1) | 6.8 | 13.8 | 21.0 | - | - |
|  |  | 2.6 | 7.0 | 13.2 | 14.5 | - | - |
|  |  | 3.9 | 12.4 | 18.5 | 25.4 | 19.0 | - |
|  |  | 3.8 | 8.9 | 16.0 | 17.6 | 31.1 | - |
| 1984 | $\begin{gathered} \text { JAN-MAR } \\ \text { APR-JUN } \\ \text { JUL-SEP } \\ \text { OCT-DEC } \\ \text { YEAR } \end{gathered}$ | - | 2.6 | 9.3 | 12.9 | 15.4 | 21.4 |
|  |  | - | 3.8 | 9.1 | 16.1 | - | - |
|  |  | (3, 1) | (7.1) | (16.0) | (20.0) | (25.0) | - |
|  |  | 3.4 | 12.9 | 21.1 | 25.5 | 22.5 | - |
|  |  | 3.4 | 9.1 | 15.8 | 18.7 | 18.2 | 21.4 |

Table 7.5.2 Percentage contribution of each age group to the landing weight.

|  | Age groups |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 0 | 1 | 2 | 3 | 4 | 5 |  |
|  |  |  |  |  |  |  |  |
| $1974-77$ | 1.0 | 32.7 | 51.2 | 13.6 | 1.4 | 0.2 | $\%$ |
| $1978-81$ | 0.5 | 56.0 | 29.9 | 12.4 | 1.3 | + | $\%$ |
| 1982 | 0.2 | 52.7 | 46.7 | 0.2 | + | + | $\%$ |
| 1983 | 0.6 | 54.5 | 33.3 | 10.0 | 1.5 | + | $\%$ |
| 1984 | 0.4 | 80.3 | 13.8 | 4.8 | 0.6 | + | $\%$ |

Table 7.7.1 Yield and stock characteristics of North Sea SPRAT.
A. 1967-73 (Anon., 1977, based on annual VPA)

| Year | $\begin{aligned} & \text { Catch } \\ & (' 000 \text { t) } \end{aligned}$ | Total biomass $\text { ( } 000 \mathrm{t})$ | Spawning biomass $(.000 \text { t) }$ | $\begin{aligned} & \mathrm{R}_{1} \times 10^{-9} \\ & \quad(\text { year class) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1967 | 81 |  | 416 | 129 |
| 1968 | 79 |  | 626 | 76 |
| 1969 | 83 |  | 762 | 86 |
| 1970 | 69 |  | 632 | 46 |
| 1971 | 90 |  | 556 | 42 |
| 1972 | 115 |  | 331 | 100 |
| 1973 | 271 |  | 200 | 194 |

B. 1974-83 (based on quarterly VPA)

| 1974 | 314 | 598 | 432 | 98 |
| ---: | ---: | ---: | ---: | ---: |
| 1975 | 614 | 702 | 576 | 148 |
| 1976 | 621 | 613 | 465 | 62 |
| 1977 | 384 | 522 | 460 | 81 |
| 1978 | 378 | 354 | 273 | 117 |
| 1979 | 380 | 289 | 172 | 55 |
| 1980 | 323 | 273 | 213 | 41 |
| 1981 | 209 | 160 | 118 | 24 |
| 1982 | 153 | 173 | 92 | 13 |
| 1983 | 91 | 92 | 50 | 28 |
| 1984 | 80 | 98 | 24 |  |

Spawning stock and $R_{1}$ 1967-73 from Doc. C.M. 1977/H:3, where $R_{1}=R_{O} e^{-0.5 M}, R_{O}$ being estimated at lst July

Table 8.1.1 Nominal catch (tonnes) of SPRAT in Divisions VIId, e, 1975-1984 (data for 1975-1983 as officially reported to ICES)

| Country | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Belgium | - | - |  | - | - | - | - | -. |  |  |
| Denmark | - | 447 | 74 | 1796 | 9981 | 7483 | b) | 286 | $638 * *$ | 1417 |
| Faroe Islands | - | 6 | - | - | - | - |  |  |  |  |
| France | 147 | 115 | 120 | 225 | 2373 |  |  |  |  |  |
| German Dem. Rep |  |  |  |  | 2373 | 1867 | 146 | 44 | 60 | - |
| erman Dem. Rep |  |  |  |  |  | - | - | - | - | - |
| Germany, Fed. Rep. |  | - | - | 34 | 6 | 52 | 1 |  | .. | - |
| Netherlands | 109 | 49 | 115 | 826 | 441 | 1401 | 1015 | 1533 | 2350 | - |
| Norway | - | - | - | - | . | 65 | - | - |  |  |
| Poland |  | - | - | - | - |  | - |  |  |  |
| UK (England + Wales) | 1315 | 3107 | 2928 | 2118 | 2032 | 6864 | 10183 | 4749 | 4756 | 2288 |
|  |  |  |  |  |  |  |  |  |  |  |
| Total | 1571 | 3724 | 3237 | 4999 | 14833 | 17732 | 13890 | 6612 | 7807 | 3705 |

*preliminary
**Landings in foreign ports Jul-Dec not included

Table 8.1.2. Lyme Bay area fishery - Monthly catches (tonnes). (United Kingdom vessels only)

| Season | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Season Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1961-62 |  |  |  | 1 | 27 | 4 | 427 | 428 | 35 | 922 |
| 1962-63 |  |  |  | 309 | 238 | 131 | 148 | 187 | 58 | 1071 |
| 1963-64 |  |  |  | 263 | 53 | 82 | 385 | 276 | 24 | 1083 |
| 1964-65 |  |  |  | 25 | 56 | 20 | 242 | 465 | 8 | 816 |
| 1965-66 |  |  |  | 47 | 81 | 165 | 610 | 302 | 17 | 1222 |
| 1966-67 |  |  |  | 3 | 152 | 368 | 703 | 355 | 1 | 1583 |
| 1967-68 |  |  | 18 | 76 | 238 | 422 | 560 | 43 | 3 | 1360 |
| 1968-69 | 11 | - | 4 | 122 | 142 | 298 | 373 | 123 | 1 | 1074 |
| 1969-70 |  |  |  | 140 | 131 | 276 | 915 | 283 | 76 | 1821 |
| 1970-71 |  | 7 | 38 | 90 | 184 | 549 | 553 | 106 | 20 | 1547 |
| 1971-72 |  |  | 369 | 101 | 232 | 228 | 410 | 70 |  | 1410 |
| 1972-73 |  |  | 107 | 209 | 132 | 87 | 404 | 165 | 49 | 1153 |
| 1973-74 |  |  | 313 | 186 | 194 | 350 | 311 | 96 | 40 | 1490 |
| 1974-75 | 184 | 451 | 209 | 533 | 838 | 405 | 157 | 30 |  | 2807 |
| 1975-76 |  |  | 66 | 649 | 289 | 111 | 204 | 6 |  | 1325 |
| 1976-77 | 289 | 440 | 1039 | 123 | 594 | 347 | 234 | 103 | 5 | 3174 |
| 1977-78 | 31 | 680 | 768 | 725 | 115 | 84 | 201 | 54 |  | 2658 |
| 1978-79 |  | 252 | 368 | 545 | 450 | 209 | 58 | 37 | 28 | 1947 |
| 1979-80 |  |  | 90 | 674 | 706 | 337 | 150 | 38 | 2 | 1997 |
| 1980-81 |  |  | 458 | 815 | 1423 | 1872 | 2069 | 138 | 54 | 6829 |
| 1981-82 |  |  | 11 | 475 | 1854 | 4311 | 855 | 265 | 100 | 7871 |
| 1982-83 |  |  | 54 | 844 | 1017 | 641 | 522 | 90 | 31 | 3199 |
| 1983-84 |  |  | 82 | 477 | 706 | 1772 | 157 | 101 | 55 | 4350 |
| 1984-85* |  |  | 331 | 834 | 643 | 166 | 172 | 90 |  | 2 236* |

Period Mean Values (indicated by first year of seasonal pair)

| 1961-65 |  |  |  | 129 |  | 91 |  | 81 | 362 | 332 | 29 | 1 | 024 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1966-70 | 2 | 1 | 12 | 86 |  | 170 |  | 383 | 621 | 182 | 20 | 1 | 477 |
| 1971-75 | 37 | 90 | 213 | 336 |  | 337 |  | 236 | 297 | 73 | 18 |  | 637 |
| 1976-80 | 64 | 274 | 545 | 577 |  | 658 |  | 570 | 542 | 74 | 18 | 3 | 322 |
| 1981-83 |  |  | 49 | 599 | 1 | 526 | 2 | 241 | 511 | 157 | 62 |  | 140 |
| 1984 |  |  | 331 | 834 |  | 643 |  | 166 | 172 | 90 |  | 2 | 236* |

*Provisional

Table 8.3.1. Lyme Bay SPRAT fishery, 1966-83. Numbers caught per age group $x 10^{-6}$

|  | Age group |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Season | $0 / 1$ | 1/2 | 2/3 | 3/4 | 4/5 | 5/6 |
| 1966-67 | 0.55 | 11.67 | 44.00 | 18.56 | 11.67 | 3.60 |
| 1967-68 | 2.28 | 46.79 | 33.10 | 5.08 | 0.66 | 0.39 |
| 1968-69 | 0.08 | 29.99 | 29.24 | 4.03 | 0.44 | 0.10 |
| 1969-70 | 0.13 | 17.53 | 62.78 | 18.60 | 2.73 | 0.35 |
| 1970-71 | 0.01 | 4.12 | 46.03 | 26.94 | 1.57 | 0.54 |
| 1971-72 | 0.80 | 20.22 | 28.01 | 22.96 | 4.12 | 0.34 |
| 1972-73 | 1.51 | 32.20 | 22.20 | 10.20 | 3.96 | 0.38 |
| 1973-74 | 0.50 | 22.91 | 46.12 | 9.08 | 5.06 | 2.42 |
| 1974-75 | 0.30 | 40.77 | 82.73 | 12.67 | 8.84 | 3.55 |
| 1975-76 | 0.16 | 13.33 | 25.25 | 23.28 | 6.39 | 1.47 |
| 1976-77 | 0.73 | 40.34 | 108.52 | 34.87 | 6.56 | 0.37 |
| 1977-78 | 0.12 | 19.48 | 69.33 | 43.89 | 7.50 | 0.48 |
| 1978-79 | 9.20 | 41.71 | 44.64 | 18.97 | 5.72 | 0.01 |
| 1979-80 | 1.17 | 26.97 | 55.45 | 7.58 | 4.07 | 0.33 |
| 1980-81 | 0.76 | 51.33 | 220.79 | 55.35 | 6.15 | 0.26 |
| 1981-82 | 1.08 | 52.00 | 161.91 | 131.28 | 20.94 | 0.55 |
| 1982-83 | 1.16 | 4.81 | 49.74 | 58.89 | 25.41 | 0.25 |
| 1983-84 | 7.19 | 13.18 | 47.05 | 74.09 | 40.61 | 9.16 |
| 1984-85* | 0.77 | 34.84 | 41.23 | 26.82 | 9.07 | 1.15 |

*Provisional

Table 8.3.2. Lyme Bay SPRAT.
Annual fishing mortalities (traditional analysis, using terminal populations generated by separable VPA).
Annual $\mathrm{M}=0.85^{-1} ; \mathrm{S}=0.3 ; \quad \mathrm{F}=0.5$;
$\% \mathrm{Z}$ applied in estimation of biomass $=0.0$

|  | Age group |  |  |  |  | Fc | Fp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Season | 1/2 | 2/3 | $3 / 4$ | 4/5 | 5/6 |  |  |
| 1967-68 | 0.07 | 0.19 | 0.17 | 0.09 | 0.05 | 0.13 | 0. 11 |
| 1968-69 | 0.03 | 0.14 | 0.06 | 0.03 | 0.02 | 0.10 | 0.06 |
| 1969-70 | 0.02 | 0.15 | 0.25 | 0.11 | 0.08 | 0.16 | 0.07 |
| 1970-71 | 0.01 | 0.11 | 0.18 | 0.06 | 0.05 | 0.12 | 0.05 |
| 1971-72 | 0.03 | 0.10 | 0.14 | 0.07 | 0.02 | 0.09 | 0.06 |
| 1972-73 | 0.06 | 0.09 | 0.10 | 0.06 | 0.02 | 0.08 | 0.07 |
| 1973-74 | 0.04 | 0.24 | 0.10 | 0.13 | 0.10 | 0.17 | 0.10 |
| 1974-75 | 0.09 | 0.40 | 0.20 | 0.25 | 0.25 | 0.27 | 0.17 |
| 1975-76 | 0.02 | 0.15 | 0.39 | 0.29 | 0.12 | 0.23 | 0.09 |
| 1976-77 | 0.07 | 0.41 | 0.67 | 0.37 | 0.05 | 0.37 | 0.19 |
| 1977-78 | 0.05 | 0.37 | 0.64 | 0.65 | 0.09 | 0.34 | 0.17 |
| 1978-79 | 0.04 | 0.29 | 0.34 | 0.33 | 0.03 | 0.25 | 0.13 |
| 1979-80 | 0.01 | 0.12 | 0.14 | 0.23 | 0.05 | 0.13 | 0.66 |
| 1980-81 | 0.08 | 0.20 | 0.36 | 0.33 | 0.04 | 0.22 | 0.11 |
| 1981-82 | 0.06 | 0.26 | 0.37 | 0.48 | 0.10 | 0.24 | 0.14 |
| 1982-83 | 0.01 | 0.15 | 0.29 | 0.23 | 0.02 | 0.19 | 0.07 |
| 1983-84 | 0.06 | 0.39 | 0.80 | 0.75 | 0.24 | 0.43 | 0.19 |

Fc and Fp - see Shepherd 1982

Table 8.3.3 Lyme Bay SPRAT. Number in stock (millions) at beginning of lst year of each season (traditional analysis using terminal popoulation generated by VPA) Annual $M=$ 0.85 year $^{-1} ; S=0.3 ; F=0.5 ; \% Z$ applied in estimation of biomass $=0.0$.

|  | Age group |  |  |  |  |  | 2-6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Season |  | 1/2 | $2 / 3$ | 3/4 | 4/5 | 5/6 | Biomass (tonnes) |
| 1968-69 | 1 | 584 | 331 | 93 | 19 | 8 | 24993 |
| 1969-70 | 1 | 584 | 658 | 123 | 37 | 8 | 32122 |
| 1970-71 |  | 995 | 666 | 242 | 41 | 14 | 29459 |
| 1971-72 |  | 913 | 423 | 256 | 86 | 16 | 25898 |
| 1972-73 |  | 776 | 377 | 163 | 95 | 34 | 22220 |
| 1973-74 |  | 889 | 311 | 147 | 63 | 38 | 20990 |
| 1974-75 |  | 704 | 365 | 104 | 57 | 24 | 18496 |
| 1975-76 | 1 | 104 | 275 | 105 | 37 | 19 | 20213 |
| 1976-77 |  | 821 | 463 | 102 | 31 | 12 | 20306 |
| 1977-78 |  | 640 | 325 | 131 | 22 | 9 | 16377 |
| 1978-79 | 1 | 707 | 261 | 96 | 29 | 5 | 25244 |
| 1979-80 | 4 | 170 | 703 | 84 | 29 | 9 | 57933 |
| 1980-81 | 2 | 490 | 1765 | 266 | 31 | 10 | 64627 |
| 1981-82 | 1 | 287 | 1032 | 616 | 79 | 9 | 48937 |
| 1982-83 |  | 502 | 517 | 340 | 182 | 21 | 28273 |
| 1983-84 |  | 324 | 211 | 190 | 109 | 62 | 16446 |
| 1984-85 |  | 653 | 130 | 61 | 37 | 22 | 12074 |

Table 8.5.1. Lyme Bay area SPRAT Mean weight/age









Figure 5.1.1. Danish SANDHEL areas and assessment areas used by the Working Group.

促


128
आ



Figure 7.1.1 International SPRAT reporting areas.


Figure 7.4.2 IYFS February 1985. Number/hour of SPRAT <10 cm. All countries.



Addendum to Doc. C.M. 1985/Assess:8

| Sandeel <br> Age Group | Period |  | Whiting | Saithe Total |  | Estimated no. dying naturally From V P A |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Total | Northern | Shetland | Southern |
| 0 | Jan-Jun | 24,696 | 130,701 | 19,586 | 174,983 | - | - | - | - |
|  | Jul-Dec | 6,795 | 43,357 | 124,280 | 174,432 | 472,668 | 18,058 | - | 454,610 |
| 1 | Jan-Jun | 10,577 | 166,044 | 155,395 | 332,016 | 21,694 | 6,214 | 2,436 | 13,044 |
|  | Jul-Dec | 87 | 523 | 997 | 1,607 | 10,967 | 3,569 | 1,143 | 6,255 |
| 2 | Jan-Jun | 1,405 | 29,780 | 800 | 31,985 | 6,344 | 970 | 663 | 4,711 |
|  | Jul-Dec | 236 | 716 | 906 | 1,858 | 2,037 | 186 | 196 | 1,655 |
| 3 | Jan-Jun | 235 | 514 | 239 | 988 | 1,956 | 242 | 203 | 1,511 |
|  | Jul-Dec | 29 | 146 | 202 | 377 | 958 | 62 | 98 | 798 |
| 4 | Jan-Jun | 127 | 2,479 | 91 | 2,697 | 352 | 35 | 84 | 233 |
|  | Jul-Dec | 18 | 54 | 87 | 159 | 108 | 9 | 32. | 67 |
| 5 | Jan-Jun | 48 | 1,003 | 48 | 1,099 | 129 | 10 | 22 | 87 |
|  | Jul-Dec | - |  | 1 | 1 | 37 | 6 | 11 | 20 |
| 6 | Jan-Jun | 28 | 36 | 10 | 74 | 52 | 15 | 9 | 28 |
|  | Jul-Dec | - | - | - | 0 | 20 | 8 | 1 | 11 |

Finkeriductrorchlots Bubhowh


[^0]:    *General Secretary ICES
    Palægade 2-4
    DK-1261 Copenhagen $K$
    Denmark

[^1]:    a) Proportion calculated on range of species for which rectangle data were available (Norway pout, cod, haddock, whiting, saithe).

[^2]:    * According to the model in Figure 4.2.1.

[^3]:    * Not used in VPA

[^4]:    * Preliminary

    1) 1984 Figures for English survey (semi-pelagic trawl) Octaber/November 1934. Average No/hr for Roundfish Areas 1.2.3 (40 hours fishing in total).
[^5]:    *Assessment areas: Northern - Sub-areas 1b, 1c, 2b, 2c, 3
    Southern - Sub-areas 1a, 2a, 4, 5, 6

[^6]:    (1 000 tonnes)

[^7]:    * Excluding Wash and Thames Estuary

