This Report not to be cited without prior reference to the Council*
International Council for the Exploration of the Sea
C.M. 1985/Assess:3

Report of the Blue Whiting Assessment Working Group
Copenhagen, 26 September - 3 October 1984

This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.
*) ICES
Palægade 2-4
DK-1261 Copenhagen K
DENMARK

TABLE OF CONTENTS

Page
0.1 INTRODUCTION 1
0.1.1 Terms of Reference 1
0.1 .2 Participants 1
0.2 LANDINGS 1
0.2.1 Landings in 1983 1
0.2.2 Landings in 1984 2
0.3 STOCK IDENTITY AND STOCK SEPARATION 2
O.4 AGEING OF BLUE WHITING 2
0.4.1 Otolith exchange program 2
0.4.2 Interpretation of the first winter ring 2
0.5 AGE COMPOSITION OF LANDINGS 3
0.6 WEIGHT AT AGE 4
0.7 STOCK ESTIMATES 4
0.7 .1 Acoustic surveys in 1984 4
0.7.2 Virtual Population Analysis (VPA) 7
0.7.3 Catch per unit of effort 8
0.7.4 Bottom trawl survey on the Rockall Bank 9
0.8 MANAGEMENT CONSIDERATIONS 9
0.9 SOUTHERN AREA 10
0.9.1 Landings 10
0.9.2 Acoustic survey of the Gulf of Biscay 10
0.10 PREDATION 11
0.11 CHANGES IN THE DATA SET 11
0.11.1 Weight at age 11
0.11 .2 Age at maturity 11
0.12 SELLECTIVITY 11
0.13 FUTURE RESEARCH RECOMMENDATIONS 12
0.14 REFERENCES 12
Tables 2.1-11.1 16
Figures 7.1-12.1 36-49

0.1. INTRODUCTION

0.1.1. Terms of reference

The Blue Whiting Assessment Working Group (Chairman: H l Jakupsstovu) met at ICES headquarters from 26 September to 3 october 1984 (C. Res. 1983/2:8:12) to:
(i) assess catch options luside safe biological limits for the blue whiting stock in 1985,
(ii) take into account the levels of predation mortality 1 mplied by
(iii) the results of the stomach sampling project.
(iii) analyse the effect of changes in the data sets of weight at age and age at first maturity on the time serles of stock and spawning stock biomass.
Further, NEAFC has asked ICES to provide comprehensive assessments of the blue whiting stock, including an assessment of the effect of an increáse in the minimum mesh size to 40 mm .

0.1.2. Participants

H B Becker	The Netherlands
G Eiais	France
S Ehrlch	Federal Republic of Germany
H l Jákupsstovu (Chairman)	Faroe Islands
K Lehman	Greenland
T Monstad	Norway
A Paciorkowski	Poland
V Shlelnik	USSR
N Schultz	German Democratic Republic
T Smolianova	USSR

0.2. LANDINGS

0.2.1. Landings in 1983

Estimates of total landings by countries from the various fisheries are given in Tables $2.2-2.6$ and summarized iri Table 2.1.

The total landings from all Northern blue whiting fisheries in 1983 were estimated at 541467 tonnes compared to a total landing in 1982 of 544919 tonnes.

There was an increase of about 14% in the total landings from the spawning fishery in 1983 compared to 1982 , manly due to larger landings of Faroe Islands, Norway and USSR.

The total landings from the Norwegian Sea fisheries decreased by about 50% compared to the 1982 landings, mainly due to a marked reduction of the USSR landings in 1983.

The total landings from the maxed industrial fisheries and from the directed fisheries were at the same level as in 1982.

The total landings from the Southern Area fishery were at the same level as in 1982.

0.2 .2 . Landings in 1984

Preliminary information on landings of blue whiting has been submitted by some countries reporting on ICES Data Form 5. Data up to and including July 1984 are presented in Table 2.7.

0.3. STOCK IDENTITY AND STOCK SEPARATION

The n nvestigations on maturity curves started in 1982 in the area between 42 and $61^{\circ} \mathrm{N}$ (Ehrich and Pobles, 1982) and were continued in 1983 (Giedz. 1983 ; Ehrich and Schöne. 1983). The results of 1983 underscore the findings of Ehrich and Robles, that there is an increase in the mean lengt at maturity from the south to the north in the area west of the Britis. Isles and Ireland. A comparison between fish from the Porcupine and Rockall Banks, using the otolith width and the diameter of the second growth zone as separation characters shows no signıficant differences (Giedz, 1984).

The working Group reiterates the statement of last year, that population parameters like the size at maturity (L 50) or growth dependent characters like otolith width and ring diameters are very sensitive to extrinsic factors. They tend to characterize the environment occupied by a stock as well as the stock itself (Ihssen et al., 1981). Therefore only characters for stock separation should be used of which the phenotypic part could be excluded to a high degree.

Nevertheless. the occurrence of spawing and 0-group blue whiting in areas far away from each other (see Chapter 4) and the occurrence of a certain quantity of blue whiting on the Rockall farik throughout the year see (Chapter 7.4), along the Norwegian shelfedge and the Norweglan fjords (Egidius and Monstad, 1982) indicate the existence of several populations in the North Atlantic.

0.4. AGEING OF BLUE WHITING

0.4.1. Otolith exchange program.

The Elue whiting Assessment Working Group in 1983 (Arion 1984a) recommended that an international otolith exchange program was set up. This should serve as a control of the extent of consistency in ageing of blue whiting in various countries ard appointed v.Shleinik as coordimator of th. program. The program was lnitiated very soon after the Working Grou, meeting but has unfortunately not been completed yet.

0.4.2. Interpretation of the first winter ring.

Since Bailey (1982) discussed this problem extensively, some additional information on the distribution and length composition of immature blue whiting during the summer has been collected.

During the 0-group surveys in August-September both in 1983 and 1984 (Anon 1983a, 1984b) 0-group blue whiting were caught with a mean length of 6.6 cm and 5.8 cm respectively. In August 1983, during the Icelandic O-group survey, immature blue whiting of two distinct length groups (av. $1=8.9 \mathrm{~cm}$ and $a v .1=15.3 \mathrm{~cm}$) were caught in midwater over the continental slope west of Iceland and in the south eastern part of the Irminger Sea (Anon 1983b). Immature blue whiting were also caught on the bottom at several stations on the East Greenland -shelf in August 1983 (range $8.0-10.5 \mathrm{~cm}, a v . l=8.6 \mathrm{~cm}$). On several cruises of the federal

Republic of Germany research vessel "Walther Herwig", a-group blue whiting have been caught (Ehrich pers. comm.). In June 197971 specimens (av.l= 6.5 cm) were caught at the bottom of the southeastern slope of the Lousy Bank. At the end of May 198323 specimens (av.l=7.4 cm) were caught over the western slope of the Porcupine Bank. In January 19831 specimen of 10.5 cm and a number of larger immature blue whiting (range 16.5-20.5 and av.l=18.9) were caught with bottom trawl. Similarly in July 1984 during a bottom trawl survey on the Rockall Bank one specimen of 7.5 cm was caught and a number of larger immature blue whiting (range 13.5-19.5 cm, $a v . l=15.5$) were also obtained.

These new observations support the theory that blue whiting in their first year of life attain a lerigth of approximately 10 cm and that they sperid the first one and a half year in the upper midwater layers. In addition to the major spawning area of the northern stock component there exist some minor spawning areas where blue whiting have been reported to spawn at a later time of the year (Anon 1981, 1983b). At least some of the small blue whiting mentioned above could originate from such late spawning.

At the moment the working Group considers that these new observations are too inconclusive to allow any change in the age reading of the three mportant countries fishing for blue whiting (USSR, Norway and Faroes), which assume the blue whiting to attain a length of 20 cm in the firgt year. The Working Group. however, reiterates its previous recommendation that specific surveys are designed to study this question (See also section 13).

For the time being the working Group strongly recommends that blue whiting from the Northern Area are age determined according to the recommendations made by the Blue Whiting Ageing Workshop (Anor. 1983d).

0.5. AGE COMPOSITON OF LANDINGS

Age composition of landings were revised for 1973-1980 and 1982 and new data were available for 1983.

The age readings brought to the working Group meeting for 1983 followed the recommendations of the Ageing Workshop meeting an 1983 (Anom 1983d).

No attempt was made to standardize the age readings brought to the working Group meeting for the earlier years, and the catch in number by age group (Tables 5.1-5.3) are as provided by the Working Group members.

For the directed fisheries 1π 1983, age composition data were provided bs the USSR, Norway, the German Democratic Republic and the Faroe Islande. These data together accounted for 90% of the landings in the directed fisheries. Other landings from the Norwegian sea fisheries were assumed to have the same relative age composition as those from the USSR in Division IIa.
other landings from the spawning fishery were assumed to have the same relative age composition as that of Norway (from Divisions VIa-b,VIIb-c arid VIIg-k), Faroes from Subareas Vb and VIa, USSR from subarea Vb and Division XII and GDR from Division XII combined.

For landings of blue whiting taken 1 n the mixed industrial fisheries data on age composition were available from Norwegian and Icelandic catches only. These accounted for 59% of the total industrial catches. Other countries' landings were assumed to have the same relative age composition as those of Norway (Table 5.2).

The raised age compositions for the directed fisheries and the mixed industrial fisheries were summed to give the total age composition in the Northern area (Table 5.3).

0.6. WEIGHT AT AGE

Mean weight at age data were presented by Norway, USSP and the German Democratic Republic by areas and months.

Mean weights for the spawning fishery, the Norwegian Sea fishery and the mixed industrial fishery were calculated, weighted by the monthly catches. An overall mean was calculated, weighted by the total landings in numbers from each country. The total catch landed $2 n 1983$ was compared against the sums of products (SOP's) of total numbers landed in 1983 and mean weight at age. The calculated SOP's were within $3 / 1$ of the nominal landings. The mean weights at age used in the VPA runs are presented in Table 6.1.

0.7. STOCK SIZE ESTIMATES

0.7.1. Acoustic surveys in 1984

0.7.1.1. Surveys during the spawning season.

During the spawning season of 1984 three independent surveys on the blue whiting stock were conducted in the area west of the British isles and Ireland, by USSR, Norway and Faroes.

The Norwegian survey (Monstad 1984), which took place from the end of March to mid-april, covered the area along the Eritish shelf edge from Faroes and Shetland to the south of the Porcupirie Eank and at the Rockall Bank.

Blue whiting were localized almost continuously along the slope between $61^{\circ} 30 \mathrm{~N}$ and $52^{\circ} 00 \mathrm{~N}$. Extremely high concentrations of blue whiting were recorded within some narrow and limited localities. The distribution and relative abundance observed are shown in Fig. 7.1. Using a length dependent density coefficient (Anon 1982b) the biomass was estimated at 2.8 million tonnes. of these 2.1 million tonnes were estimated to belong to the spawning stock (either maturing or spent gonads). The estimate broken down by areas is presented in Fig.?.2.

The Faroese survey took place in the first half of April (Jakupsstovu and Thomsen. 1984) from Faroes to the northern parts of the Porcupine Bark. Using the method described in Arion (1982) to convert the echo values to biomass, the spawning component was estimated at 2.2 million tonnes (fish 26 cm and larger). The estimated biomass split by areas is presented ir Fig. 7.3.

Two separate estimates were made during the USSR survey (Ermolchev et al. 1984a), one in the second half of March the other in the first half of April. For the acoustic assessment the same method was used as for the corresponding survey in 1983 (Ermolchev et al. 1984b). In March, covering the area west of Ireland and the Porcupine Bank, the blue whiting biomass was estimated at 2.7 million tonnes of which 2.4 million tonnes consisted of fish 26 cm and larger. The distribution and relative densities recorded during this period are shown in Fig. 7.4. In April the shelf-edge from the north of shetland ($63^{\circ} \mathrm{N}$) to the Porcupine Bank($53^{\circ} \mathrm{N}$) was surveyed. Blue whiting was recorded along the entire shelf edge as far south as 56020 N (Fig.7.5). The total blue whiting biomass during this part was estimated to be 3.4 million tonnes. Of this 2.7 million tonnes were fish 20 an and larger.

In the text table below are given the different estimates (in million tonnes) obtained during the spawning season in 1984.

Country	Tlme perlod	Area	Imm.	Adulte Total		
Faroes	$31 / 3-17 / 4$	$60^{\circ} 30-54^{\circ} 00$	N	0.2	2.2	2.4
USSR	$17 / 3-31 / 3$	$56^{\circ} 20-51^{\circ} 00$	N	0.3	2.4	2.7
USSR	$9 / 4-20 / 4$	$63^{\circ} 00-53^{\circ} 00$	N	0.7	2.7	3.4
Norway	$26 / 3-17 / 4$	$61^{\circ} 30-52^{\circ} 00$	N	0.7	2.1	2.8

The 1982 and 1983 year classes. dominated in the northern areas surveyed, while the 1982 year class and older fish made up the bulk of the biomass recorded further south.

0.7.1.2. Surveys in the feeding season

In August 1984, the third ICES-coordinated acoustic assessment survey was carried out in the Norwegian sea with six research vessels from five different countries participating (Anon 1984C).

The area to cover and survey routes for each vessel were agreed upon by correspondence and telephone contact. The procedure of conveying data to the convener was as outlined by the flaming Group in 1983 (Anon 1983e).

The crulse tracks and stations are shown in Fig. 7.6. Eecause of of the participation of only six research vessels $1 n 1984$ compared to eight 14 1983, the area covered was somewhat smaller than 141983 . Areas with high concentrations of blue whiting, however, were fully covered.

The distribution and relative ahundance are shown in Fig. 7.7. Elue whiting was recorded scattered throughout most of the surveyed area. In the Norweglan sea it was found on the warmer side of the polar front from the Norwegian Deep in the south to approximately $74^{\circ} \mathrm{N}$. The distribution pattern was very similar to that recorded during the last three years (Anon $1982,1983 f$) with the highest concentrations located $1 n$ the southern part of the investıgated area. In 1984 dense recordings of blue whitang were found off the northern shelf of the faroes, the southern shelf of Iceland and within a limited area west of Iceland.

Using the same methods for assessment as in the previous years (Anon 1982) the total stock was estmated at 3.8 million tormes equivalent to 49.2*109 individuals. In Fig. 7.8 the total biomass estimate divided by areas 13 presented.

The total length distribution weighted by the abundance in the different areas $1 s$ presented in Fig. ${ }^{7.9}$. As the otoliths sampled during the surveŋ had not been age determined by all ccuntries by the time the Working Group met, the length distribution was broken down on age groups using probability paper (Harding 1949). Based on this method the total biomass was firially split into numbers and blomass by aqe groups. The results are shown in the text table below

Numbers
(Elllions)

1984	2.1	46.1
1983	30.6	1767.5
1982	14.6	1555.5
$1981+$	1.9	405.6

Total
49.2
3775.0

0.7.1.3. Discussion

The various estimates obtained in the spawning area and in the Norwegian Sea since 1981 in million tonnes are presented in the text table below (the adult component in brackets).

Area 1981
Spawning area

1982
2.5

1983
1984
4.7(4.4) $\quad 2.7(2.4)$
3.6(3.6) $\quad 3.4(2.7)$
2.8(2.1)
2.4(2.2)

Norwegian Sea $4.9 \quad 4.6(4.1) \quad 2.8(1.1 *) \quad 3.8(0.4 *)$

* The 1981 yearclass and older.

The three different spawning season surveys in 1984 covered slightly different areas. The USSR estimate in March (2.4 million tomes of adults) is from the area off Ireland only and hence is an underestimate of the spawning stock. Ir April the USSF survey covered a much larger area and the estimate (2.7 million tonnes of adults) must be considered the most representative of the two. The Norwegian estimate (2.1 million tonnes of adultg was from a smaller area than the later USSR survey, but, however, from (Aarger area than the Faroese estimate (2.2 million tonnes of adults).

Taking into account the highly migratory behaviour of the blue whiting spawning stock and the slight differences in the timing of the three surveys, the similarity of the estimates obtalned in 1984 should be noted.

The estimate of the spawning stock in 1982 must because of incomplete coverage be considered as an underestimate, but still the spawning stock surveys indicate a clear downward trend in the blue whiting spawning stock biomass. The trend is even more dramatic in the estimates of the 1981 yearclass and older fish from the Norweglan sea surveys

The increase in the total stock estimate from the Norwegian Sea survey in 1984 compared to the 1983 estimate stems from the abundant 1982 and 1983 year classes.

As discussed by the Working Group in 1983 (Anon 1984a) the Norwegian Sea surveys in previous years have covered the most important areas of the blue whiting distribution fairly well. The effort was somewhat reduced in 1984 , but the Working Group is of the opinion that it is unlikely that a major part of the blue whiting stock would be found outside the surveyed area.

The text table below glves the estimates in rumbers of the 1981 yearclass and older and of the 1982 yearclass in August 1983 and 1984 . Included i. the table is also an estimate of the catch in numbers of the same as groups in the period between the two surveys. Applying a natural mortality coefficient of 0.2 the stock in numbers from fugust 1983 to August 1984 would have been reduced to the figures given in brackets.

$$
\text { Year classes }(N * 10-9)
$$

$$
1981+
$$

1982
August 1983
5.3
22.7

Catch (1983-1984)
1.4
2.4

August 1984
$1.9(3.0)$
14.E(16.3)

A similar calculation of the numbers estimated of the 1981 year class and older during the spawning surveys of 1983 and 1984 is presented below.

April 1983	24
Catch $1983-1984$	2

April 1984
15(16.3)
The acoustic estimates of the 1982 year class from the Norwegian Sea surveys in 1984 compare well with what should have been expected from the similar estimates obtarned in 1983, taking into account the natural mortality (0.2) and the Eishery in the period between the surveys. Similarly the estimates of the 1981 year class an older fish from the spring surveys in 1984 fit well with the expected values. The lower estimate of the 1981 and earlier year classes in the Norwegian Sea $1 n 1984$ compared to the one, expected from the 1983 survey, may be explained by the reduced survey effort 1 n 1984 . The two sets of acoustic surveys may thus be considered as valid indices of the stock size.

The great reduction in the blomass estimates from August 1982 to August 1983 whach was not observed in the spawning area surveys might, however, indicate that the results from the fugust surveys iri 1983 and ' 1984 are underestimates of the adult component of the stock.

In 1983 the working Group discussed a number of plausible reasons which could explain an underestimate of the stock during the August survey compared to the spawning survey. The following reasons could explain the differences 1π the estimates.

1) The adult component of the stock was distributed in the northern and western part of the Norweglan sea whach was only partially surveyed.
2) A part of the adult component might have been distributed outside the areas surveyed e.g. the shelf edge west of the Eritish Isles and Ireland and in the Barents sea.
3) Blue whitirig is a fast swimming species and a bias might have been introduced by the trawls relatively better catching the younger fish. Two of the vessels participating lytheurvey used only small trawls (vertical opening \& 20 m) to 1 dentify the recordings. This could lead to ar underestimate of the adult stock compared to the Gbundant 1982 and 1983 yearclasses.
4) The ver" low concentrations of adult fish found over the larger areas in the Norweqian Sea might occasionally have been below the integrator threshold values.
5) In the assessmente the ame value to convert echovalues to blomass 15 applied in the spawring and the feeding season. Any differences $1 n$ the behaviour of the fish during these two seasons could affect the estimates significantly.
Based on the discussion above the working Group concluded that the most likel; estimates of the adult component in 1984 were those obtalned during the spawning season ($2.1-2.7$ million tomnes). The Norwegian Sea survey in 1984 indicates the 1982 and 1983 yearclasses to be strong, and that the total stock biomass increased during the last year.

0.7.2. Virtual Population analysis (VPA)

The working Group considered the acoustic estimates of the the adult component made during the spawning geason in 1984 to be sufficiently reliabler to be used for the calibration of a VPA. The second survey of

USSR was chosen for the calibration as it covered the largest area and thus is expected to yield the most representative estimate of 3 years old and older fish. The VPA was started with the input fishing mortality for 1983 calculated from the 1983 catch in numbers, the stock size at the end of 1983 derived from the acoustic estimate chosen and the preliminary catch in number estimated by the Working Group for the first quarter of 1984 (Tables 7.1,7.2). These 1983 input F^{\prime} 's were calculated for a fraction of 1984 and then for the whole of 1983.

The working Group considered the estimates for the 1982 and 1983 year classes from the 1984 August survey most likely to be somewhat overestimated For these yearclasses the working Group therefore decided to use input $\mathrm{F}^{\prime} \mathrm{s}$ corresponding to a recruitment of $20 * 109$ individuals as o-group (the average for the years with fairly good recruitment, 1970 - 1978).

0.7.2.1. VPA results

According to the VPA results, the total stock in No's decreased slowly from $10.3 * 109$ in 1974 to $8.9 * 109$ in 1978. These were reduced to $4.3 * 109$ iri 1981. There has been a slight increase in the stock in 1983 due to the recruitment of the 1982 and 1983 yearclasses.

0.7.2.2. Long Term Yield

The long term yield and spawning stock biomass per recruit have been calculated using the 1983 fishing pattern (tables 7.5 and 7.6). The yield per recruit curve (figure 7.11) is very flat above Fs above 0.2 and
Fmax $1 s$ consequently high ($F=0.34$, F-factor of 2.4). $F 0.1$ equals 0.18 . corresponding to a 1.3 times the fishing mortality in 1983.

0.7.2.3. Catch predictions

The catch predictions were run assumıng a recruitment in 1984 and 1985 equal to the 1982-83 level (see section 7.2). The 1983 fishing pattern was used and three runs were selected corresponding to fishing mortality levels for 1984 to 1985 equal to the 1983 level, $F 0.1$ and twace the 1983 level

0.7.3. Catch per unit of effort

Catch and effort data from the directed blue whiting fisheries for 198 ? were submitted by 3 countries $1 . e$. , the German Democratic Republic, Norwas and USSR. These countries presented their data broken down by vessel tonnage, area and month.

Comparative time series of cpue data for Divisions IIa, Vb, VIa and IVa, which may be indicative of changes $1 n$ stock abundance, are compiled 1 r Tables 7.8 and 7.9.

The German Democratic Republic catch rates (GRT-class 2000-3999.9) in the Norwegian Sea (Division IIa) for the period July- September decreased from 1980 to 1983 at an average rate of 30% per year, which would imply an overall decline of the feeding stock biomass during that period by about 65\% (Table 7.8). However, if the whole fishing season of the GDR fleet extending from May to October is taken into account (Table 7.9, second method of cpue calculation) the resulting decrease over the whole period does not exceed 43\%. In addition, the GDR catch rates in 1983 were at about the same level as in 1982 which could indicate a certain degree of stabilization.

The Polish catch and effort statistics in the same area are less conclusive. The fleet did not take part in the fishery in 1983 and its
effort exerted in 1982 was relatuvely insugnifacant compared with that of the GDR and USSR fleets. Nevertheless the drop in catch rate between 1980 and 1981 is very similar to that observed in the GDR and the USSR fisheries.

The USSR catch rates (GRT-class 2000-3999.9) in Division IIa averaged for the July-September and May-October seasons throughout the 1980-1983 period were not as consistent as the GDR data e.g. no decline was observed between 1981 and 1982 (Tables 7.8 and 7.9). On the other hand the cpue decreased by 51% from 1982 to 1983 for the May - October season (Table 7.9, second method) implying almost twice as big a decline (by 64%) over the whole time period 1980-1983 as that suggested by the GDR data. A similar picture can be derived from GDR and USSR catch rates in Division vb from fisheries based on aggregations of feeding blue whiting in Jurie-July.

According to Shevchenko (1984) the decrease noted in catch rates in the Norwegian Sea results from both a reduction of the adult stock biomass and a change in the distribution pattern of the fish caused by anomalous hydrological conditions.

The USSR and Norwegian fisheries exploiting pre-spawning and post-spawning blue whiting in Division Vb do not show the same decline in cpue as that observed during the feeding season. A decrease in catch rates which started here in most cases in 1978 (Table 7.8) but ended in 1981 when allfleets were able to increase their fishing efficiency. A further downard trend in 1982 and 1983 is seen in the USSR data (GRT-class 2000-3999.9 tonnes) averaged over the March-May period. The overall decline indicated by the latter USSR cpue time series between 1979 and 1983 equals 29%, but no change of the GDR catch rates was observed from 1982 to 1983.

The Norwegian catch rates from the spawning fishery in Division VIa show almost a constant increase every year (Table 7. \&).

The Working Group noted the usefulness of the cpue data and recommended that they are also collected in the future by as many countries as possible.

0.7.4. Bottom trawl survey on the Rockall Bank

In July 1984 a Federal Republic of Germany bottom trawl survey aiming at estimating the minimum trawlable biomass of haddock, blue whiting and greater silver smelt took place on the Fockall Eank. A total of 66 hauls were made by the R.V. "Walther Herwig" on the plateau and on the slope of the Rockall Bank at depths down to 700 m . Using the swept area method (catchability coefficient $=1$) the trawlable biomass of blue whiting was estimated to be 80500 tonnes ($+/-39 \%$) (Ehrlch, pers. comm.).

The density (t per nm2), the trawlable blomass ard the confadence limits per depth range are listed in Table 7.10 and Figure 7.12 shows the length distribution of the total catch by sex.

Using the same method and equipment the trawlable biomass 1 n Jariuary 1983 was estimated to be of nearly the same size ($77000 \mathrm{t}+1-406$) (Ehrich 1983). Both surveys took place outside the spawning season of the big northern stock. The very similar sizes of the trawlable biomasses in Jaruary 1983 and July 1984 indicate the existence of a separate blue whiting stock on the Rockall Bank which does not migrate to the feeding areas further north.

0.8. MANAGEMENT CONSIDERATIONS

The acoustic surveys in 1984 in the same way as those in 1983 gave confllcting evidence on the size of the adult stock biomass. Both sets of surveys, however, indicate a downward trend in the adult stock biomass. As discussed in section 7.1.3, the Working Group considered the assessments from the Norwegian sea as underestimates of the adult component of the stock and decided to calibrate the VPA against the largest estimate of the
adult stock obtained during the spawning season 1984 . The resulting stock size estimates from the VPA (section 7.2) presented below coincide to a large extent with the acoustic estimates of the adult stock obtained during the spawning seasons of 1981 and 1983.

> Adult stock abundance (three years and older) estimated from acoustic surveys during the spawning season against estimates from the VPA calibrated against the 1984 survey $(M=0.2)$.

0.9. SOUTHERN AREA

0.9.1. Landings.

Landings of blue whiting from the Southern Area fishery were available to the working Group from the Fortuquese, Spanish and the Netherland fisherles. The Portuguese landings were also giveri as catch in number by length group. This, however, did not give the working Group any possibilities to make an assessment of the southern blue whiting stock.

0.9.2. Acoustic Survey of the Gulf of Biscay.

Ir April - May 1984 ar acoustic survey was conducted by the French research vessel "Thalassa" (Diner et al. 1984). The survey was mainly aimed at the anchovy stock in the southern parts of the Gulf of Biscay. However, during the period $8-15$ May it was extended to include the edge of the continental shelf between 46 N and $48^{\circ} \mathrm{N}$ over depths ranging from 145-250 m . Blue whiting was recorded here mainly between 200 and 250 m . The blue whiting biomass in the area was estimated to be less than 10000 tonnes.

0.10 . PREDATION

Blue whiting has not been investigated in the International Stomach Sampling Project 1981 neither as predator nor as prey (Anon 1984d). It is, therefore, not possible for the working Group to present any predation parameters.

0.11. CHANGES IN THE DATA SET

0.11.1. Weight at age

The mean weight at age in the GDR catches increased by 25% for the age groups 2-15+from 1980 to 1983. The weight at age curves are given in Fig. 11.1. The weight-length relationships for the various years are given in Table 11.1. Orie explanation of the difference between the curve for 1982 and the other curves could be poorer sampling for the older agegroups in 1982. The increase in the weight at age seems to be density dependent and connected with the decrease of the blue whiting stock during that time. A similar trend can be observed in the mean weight at age in the total catches of blue whiting in the Northern Area from 1979 to 1983 , except for 1982 (Table 6.1)

0.11.2. Age at maturity

The acoustic surveys during the spawning season in 1984 showed that at least a part of the 1982 year class matured in 1984 as 2 year olds (Ermolchev et al 1984a, Jakupsstovu and Thomsen 1984 and Monstad 1984). As a consequence the working Group in the VPA changed the age range for the spawning stock from $5+$ to $3+$. There is the possitility that the changes in the age at maturity observed are density dependent and are connected with the decrease of the blue whiting stock in recent years.

0.12. SELECTIVITY

The minimum mesh size previously recommended by NEAFC for a directed blue whiting fishery in the North Atlantic is 16 mm. Different mesh sizes are used by commercial vessels of Norway (36 mm), France (45 mm), Federal Republic of Germany (50 mm) and USSR, Poland and German Democratic Republic (40mm).

Data on net selectivity of blue whiting are summarized in a paper by Robles et al. (1980). Using these data, which are based on very low catches, an increase of the 250%. length with increasing mesh size from 40 to 80 min is seen (Fig.12). No selectivity experiments were carried out with mesh sizes of less than 40 mm .

At a mesh size of 40 mm the $\mathrm{L} 50 \%$ varies between 16 and 18 cm , which means that an increase of the mesh size from 16 to 40 mm would only be a conservation measure for the 0 -group and the 1 -year old blue whiting in the beginning of the year. It should be pointed out that this conclusion cannot be applied to the major fishing areas of interest in the commercial fisherles.

Results of mesh selection for mackerel and horse mackerel, given by Eltink (1983), indicate that the imolementation of a certain mesh size up to 80 mm is not necessarily an effective protection due to the blocking effects of risulalready in the net.

The Working Group presently sees no necessity to "estimate the influence of a minimum mesh size of 40 mm as no countries apply mesh sizes less than

36 mm .

0.13. FUTURE RESEARCH RECOMMENDATIONS

13.1 Further investigations on stock separation ard stock identity are recommended.
13.2 The results of cruises and investigations have shown evidence of a separate southern blue whiting stock. In order to manage this stock data series on age composition of landings are required and acoustic surveys are needed.
13.3 Special surveys to investigate the distribution of blue whiting ir the first year of life are recommended. All the information on the occurrence of 0 - and 1 -group blue whiting should be reported very carefully.
13.4 The Working Group considers it very important that the northern blue whiting stock is monitored continuously. The surveys of the spawning stock during spring have proved to be very valuable and the Working Group recommends that they are continued.
13.5 Although it is difficult at present to indicate the precision of the stock estimates obtained by the acoustic surveys in the Norwegian Sea, the indices from the 1981-1984 surveys have given valuable information about the trend in abundance of the blue whiting stock. The Working Group therefare considers it important to continue these survéys. This is also the only means by which an estimate of the recruiting yearclasses can be obtairied. Furthermore the Working Group is of the opinion that not enough time has been available between the surveys and the Working Group meetings to analyse the results. The working Group therefore recommends that prior to the coordinated acoustic survey in 1985 a Workshop (convenor T Monstad) should take place to review the 1982-84 surveys and to draw up plans for the 1985 survey.
13.6 Ir order to estimate the biomass of different componerits of the blue whiting stock (pre-spawning, spawning and post-spawning), it is recommended that data on maturity stages presently available should be compiled and presented to the next meeting of the Working Group.

0.14. REFERENCES

```
Anon., 1981: Blue Whiting Assessment Working Group
    Report ICES C.M. 1981/H:12
Anon., 1982: Report of the International Acoustic Survey
```

on Blue Whiting ln the Norwegiar Sea, July/August 1982 ICES C.M. $1982 / \mathrm{H}: 5$

Anon., 1983(a): Prelimınary Report of the International 0 -Group Fish Survey in the Barents Sea and adjacent waters in August/ September 1983. ICES C.M. 1983/G:35

Anon., 1983(b): Report on the 0-Group fish survey in Icelandic and East Greenland waters, August 1983. ICES C.M. 1983/H:38

Anon., 1983(c): Report of the Blue Whiting Assessment Working Group. ICES C.M. 1983/Assess: 3

Anon., $1983(\mathrm{~d}):$ Report of the Workshop on Otolith Reading of Blue Whiting. ICES C.M. 1983/H:55

Anon., 1983(e): Report of the Blue Whiting Planning Group for the Coordinating Acoustic Survey 1983. ICES C.M. 1983/H:4

Anori., 1983(f): Report of the International Acoustic Survey on Blue Whiting in the Norweglan Sea, August 1983. ICES C.M. 1983/H:5

Anon., 1984(a): Report of the Elue Whatang Assessment Working Group. ICES C.M. 1984/Assess: 2

Anon., 1984(b): Preliminary Report of the International 0 -Group Fish Survey in the Barents Sea and Adjacent Waters, August/ September 1983. ICES C.M. 1984/H:36

Anon., 1984(c): International Acoustic Survey on Blue Whiting in the Norwegian Sea, \&ugust 1984. ICES C.M. 1984/H:67

Anon., 1984(d): Feport of the meetang of the coordinators of the Stomach sampling froject 1981. ICES C.M. 1984/G:37

Bailey, R.S., 1982:
The population biology of Blue whating in the North Atlantic. Adv. Mar. Biol., 19:257-335.

Diner, N., Masse, J., Leroy, C., and Earbaroux, 0., 1984:
Les p tites p lagiques du Golfe de Gascogne en Avril - Mal 1984. Evaluation acoustique, repartition, biologie et milleu. ICES C.M. 1984/H:23

Egidius, E.and Monstad, T., 1984:
Pseudobranchial tumours in blue whiting from Norwegian waters. ICES C.M. 1982/E:16

Ehrich, S. and Robles, R., 1982:
Investigations on maturity of Blue Whiting populations between $42^{\prime} \mathrm{N}$ (Vigo/spain) and

67 N during February and March 1982. ICES
C.M. 1982/H:44

Ehrich, S. 1983: Stock assessment of Haddock, Blue Whiting and Greater Silver Smelt on Rockall Bark. ICES C.M. 1983/G:29

Ehrich, S. and Schöne, R.1983:3:
Gonad maturation and spawning of Blue Whiting (Micromesistius poutassou) in the Rockall Trough area in 1983. ICES C.M. 1983/H:8.

Eltirk, A.. 1983: Mesh selection for Mackerel and Horse-mackerel
Mackerel. ICES C.M. 1983/B:15
Ermolchev,V.A., Isaev, N.A., Shleinik,V.N., 1984:
The results of the Soviet investigations of Blue whiting in spring 1984. Working paper brought to the Working Group 1984.

Ermolchev et al. 1984:
Results of blue whiting investigations in spring 1983 ICES C.M. 1984/H:9.

Giedz, M. 1983: Length at first spawning as an indicator of different spawning populations of blue whiting in the Northern Atlantic. ICES C.M. 1983/H:15.

Giedz, M., 1984: A comparison of otolith width of blue whiting from Porcupine Bark and Rockall Bank. ICES C.M. $1984 / \mathrm{H}: 64$.

Harding, J.P., 1949:
Use of probability paper for the graphical analysis of polymodal frequency distributions. Journ. Mar.Biol.Assoc. シal.XXVIII.

Ihssen. F.E., Booke, H.E., Casselman, J.M., Mc Glade, J.M., Tayne. N.R. and Utter,F.M., 1981:

Stock identification, Materials and Methods. Aquat. Sci. 38:1838-1855.
Jákupsstovu, S.H.1 and Thomsen, B., 1984:
Report of an acoustic survey on Blue Whiting to the spawning areas west of the British Isles in April 1984. Working paper brought to the Working Group 1984.
Monstad. T., 1984: Norwegian Blue Whiting investigations ir March/April 1984. Working paper brought to the Working Group 1984.

Robles,R., Fernandez,A. and Pereiro, F.J., 1980: Mesh selection of Hake, Elue Whiting, Horse Mackerel, Megrim, Sole and Nephrops in nylon codends on Galicia and portugal shelf. ICES C.M. 1980/B:12

Shevchenko, A.V., 1984:
Peculiarities of Blue Whiting feeding migrations in the Norwegian Sea in Summer 1983. ICES C.M. 1984/H:8

Table 2.1 Landings (tonnes) of Blue Whiting from the main fisheries 1973-1983

Area	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983*
Norwegian Sea Fishery (Sub-areas I + II and Divisions Va, XIVa + XIVb)	878	146	6746	3336	56999	236226	741042	766798	520738	110685	55511
Spawning Fishery (Divisions Vb, VIa, VIb and VIIb, c)	15027	15207	30335	81362	136787	229228	284547	250693	288316	316656	361219
Icelandic Industrial Fishery (Division Va)	2833	4230	1294	8220	5838	9484	2500	-	-	-	7000
Industrial Mixed Fishery (Divisions IVa-c, IIIa)	56826	62197	41955	36024	38389	99874	63333	75129	61754	117578	117737
```Southern Fishery (Sub-areas VIII + IX, Divisions VIId,e + VIIg-k)```	27452	25733	31715	35035	30723	33898	27176	29944	38749	30971	28378
Total	103016	107513	112045	163977	268736	608710	1118598	1122564	909557	575890	569845

* Preliminary

Table 2. 2 Landings (tonnes) of Blue Whiting from the Norwegian Sea (Sub-areas I and II, Divisions Va, XIVa, and XIVb) fisheries 1973-1983, as estimated by the Working Group.

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	$1983{ }^{1}$
Denmark	-	-	-	-	-	-	-	-	-	473	-
Faroes	-	-	-	-	593	2810	762	-	11131	-	13864
France	-	-	-	-	-	-	-	-	5093	2067	2890
German Democratic Republic	-	-	-	90	2031	7301	22502	14234	15607	3042	5553
Germany, Fed. Rep. of ${ }^{\text {2) }}$	3	2	35	33	6777	8421	1157	8919	17385	890	2
Iceland	60	119	3	569	4768	17756	12428	4562	4808	-	-
Norway	-	20	31	737	-	-	$33588{ }^{3}$	902	187	-	5061
Poland	-	-	-	95	1536	5083	4346	11307	2434	443	-
UK (England and Wales)	-	-	-	60	165	11	-	-	-	-	-
UK (Scotland)	-	-	-	-	-	-	-	-	-	-	-
USSR	815	5	6677	1752	41129	194844	666259	726874	464093	103770	28141
Total	878	146	6746	3336	56999	236226	741042	766798	520738	110685	55511

1) Preliminary
2) Including catches off East Greenland (Division XIVb). ( 327 tonnes in 1977, 896 tonnes in 1978, 204 tonnes in 1979 and 8757 tonnes in 1980).
3) Including purse-seine catches of 29162 tonnes of juvenile Blue Whiting.

Table 2.3 Landings (tonnes) of the Blue Whiting from the Spawning Fishery (Divisions Vb, VIa,b and VIIb, c) 1973-1983, as estimated by the Working Group

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983 \#
Denmark	-	-	-	-	18745	23498	21200	19272	11361	23164	28680
Faroes	1155	1527	-	12826	29096	39491	35780	37488	23107	38958	56168
France	-	-	-	-	-	-	-	-	-	1212	3600
German Democratic Republic	-	-	-	4971	1094	1714	172	181	6562	7771	3284
Germany, Fed. Rep. of	-	2655	-	85	3260	6363	3304	709	935	701	825
Iceland	319	-	-	-	5172	7537	4864	5375	10213	1689	1176
Ireland	-	-	-	160	-	-	-	-	-	-	-
Netherlands	-	-	-	-	-	1172	154	-	222	200	150
Norway	2445	3247	7301	24853	38214	116815	186737	133754	$166168^{1)}$	$169790^{2)}$	$185646^{3)}$
Poland	-	116	4704	10950	3996	2469	4643	-	2279	-	-
Spain	6571	6484	8153	5910	183	14	-	-	-	-	-
Sweden	-	-	-	-	6391	6260	-	3185	-	-	-
UK (England and Wales)	-	-	455	341	1475	5287	4136	3878	6000	-	-
UK (Scotland)	-	-	279	1488	3001	1599	1466	6819	2. 611	-	-
USSR	4537	1178	9443	19778	26160	17009	22091	40032	58858	73171	81690
Total	15027	15207	30335	81362	136787	229228	284547	250693	288316	316656	361219

1) Including 28466 tonnes from directed fisheries in Division IVa.

F Preliminary
2) Including 35001 tonnes from directed fisheries in Division IVa.
3) Including 32043 tonnes from directed fisheries in Division IVa.

Table 2.4 Landings (tonnes) of Blue Whiting from the Icelandic mixed industrial trawl fisheries Division Va $1972-1983$
\# Preliminary

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	$1983{ }^{\text {FF }}$
Iceland	2833	4230	1294	8220	5838	9484	2500	-	-	-	7000

Table 2.5 Landings (tonnes) of Blue whiting from the Mixed industrial fisheries and caught as by-catch in ordinary fisheries in the North Sea (Divisions $I V ミ-c$ and IIa), 1973-83, as estimated by the Working Group.

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983 ${ }^{\text {I) }}$
Denmark	-	-	-	-	16071	54804	28932	49947	35066	34463	38290
Faroes	3714	2510	428	1254	-	1177	1489	1895	3133	27269	12757
France	-	-	-	-	-	-	-	-	-	1417	249
German Democratic Republic ${ }^{2}$ )	-	-	-	-	-	988	49	-	-	-	-
Germany, Fed. Rep. of ${ }^{\text {2 }}$	-	-	-	-	76	1514	13	252	-	93	-
Ireland	-	-	-	-	-	-	-	-	2744	-	-
Norway	50855	59151	40210	34600	20737	39989	30930	$21962^{3}$	18627	47856	62591
Poland ${ }^{2}$ )	-	55	-	45	838	601	-		229	550	-
Spain	350	318	195	47	-	-	-	-	-	-	-
Sweden ${ }^{4)}$	-	-	-	-	639	648	1249	1071	1955	1241	3850
UK (England and Wales) ${ }^{\text {2) }}$	-	-	-	-	3	+	-	-	,	4689	3
UK (Scotland)	-	-	414	58	25	153	37	2	-	-	-
USSR ${ }^{2}$	1927	63	708	20	-	-	634	-	-	-	-
Total	56826	62197	41955	36024	38389	99.874	63333	$75 \quad 129$	61754	117578	117737

1) Preliminary.
2) Reported landings in human consumption fisheries.

3 Including mixed industrial fishery in the Norwegian Sea.
4) Reported landings assumed to be from human consumption fisheries.

Table 2.6 Landings (tonnes) of Blue Whiting from the Southern Areas (Sub-areas VIII and IX and Divisions VIIg-k and VIId,e) 1973-1983, as estimated by the Working Group

Country	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983 ${ }^{1)}$
German Democratic Republic	-	-	-	-	-	-	-	-	-	-	-
Germany, Fed. Rep. of	-	-	-	-	-	25	-	-	-	-	-
Ireland	-	-	-	-	-	-	1	-	-	-	-
Netherlands	-	-	-	-	-	7	-	31	633	200	50
Poland	-	170	-	385	169	53	-	-	-	-	-
Portugal	-	-	-	-	1557	2381	2096	6051	7388	3271	4328
Spain ${ }^{2)}$	26741	24627	30790	29470	25259	31428	25016	23862	30728	27500	24000
UK (England and Wales)	-	-	-	-	+	-	-	-	-	-	-
UK (Scotland)	-	-	-	-	-	-	63	-	-	-	-
USSR	711	936	925	5180	3738	4	-	-	-	-	-
Total	27452	25733	31715	35035	30723	33898	27176	29944	38749	30971	28378

1) Preliminary.
2) Significant quantities taken in Divisions VIIg-k not included in the Table are discarded every year.

Table 2.7. Preliminary returns on ICES Data Form 5 for 1984

Country	Area	January	February	March	April	May	June	July	Total
Faroes	$\begin{aligned} & \mathrm{Vb} \\ & \mathrm{IV}\end{aligned}+\mathrm{VI}$	1813 0	1598 3483	0 5855	24426	329 8316	0 37	$\begin{array}{r} 188 \\ 85 \end{array}$	$\begin{gathered} 3928 \\ 42202^{*} \end{gathered}$
German Democratic Republic	$\underset{\mathrm{Vb} *:!}{I+I I^{*}}$	-	-	-	-	- 351	291 1585	430 3494	$\begin{array}{r} 721 \\ 5430 \end{array}$
Federal Republic of Germany	$\begin{aligned} & \text { IV } \\ & \text { VIIg-k } \end{aligned}$		$-2$	-	246 -		93	324 247	$\begin{aligned} & 665 \\ & 247 \end{aligned}$
Norway	IV	-	-	-	2953	1884	-	-	$4837 * * *$
	Vb	-	-		-	9948	-	-	9948
	$\begin{aligned} & \text { VI } \\ & \text { VIIc } \end{aligned}$	-	11319 -	$\begin{aligned} & 24369 \\ & 23438 \end{aligned}$	$\begin{array}{r} 124213 \\ 661 \end{array}$	12995 1536	-	-	$\begin{array}{r} 172896 \\ 25635 \end{array}$
Sweden	IV	-	2	10	20	...	$\ldots$		32
U.S.S.R.	$I+I I$	-	54	18	353	11584	25504	14717	52230
	Vb	42	94	51	2966	8621	4631	15678	32083

*Norwegian Economic Zone
**FZ Faroes
***Approximately 42000 tonnes from the mixed industrial fisheries in IVa not included.

Table 5.1 Catch in number (millions) by age group in the directed fisheries (Sub-areas I and II, Divisions $\mathrm{Va}, \mathrm{XIVa}$ and XIVb, $\mathrm{Vb}, \mathrm{VIa}$, and $\mathrm{VIb}, \mathrm{VIIb}, \mathrm{c}$ and $\mathrm{VIIg}, \mathrm{h}, \mathrm{j}, \mathrm{k}, 1973-1983$

AGE	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	$1983^{\text {FI }}$
0	2.2		1.9							1.2	2.5
1	4.4	0.6	2.2	4.5			69.9	55.1	4.0	1.7	290.4
2	3.4	5.5	5.0	13.1	44.0	63.6	165.0	319.5	40.1	48.6	239.1
3	6.1	4.6	28.7	24.1	87.5	69.0	320.9	362.0	322.8	123.1	164.1
4	8.9	15.1	26.7	54.6	164.8	345.8	457.5	399.1	225.3	371.0	194.1
5	11.6	20.2	25.2	26.4	184.9	436.9	468.3	478.3	501.5	212.6	411.4
6	11.1	16.2	34.3	52.3	154.3	483.1	569.0	530.9	539.0	251.0	284.4
7	14.8	14.4	32.8	69.1	137.6	527.9	743.2	725.3	448.5	250.7	274.0
8	6.6	14.7	27.0	57.6	176.7	474.3	904.8	779.2	618.3	259.3	283.5
9	9.5	3.6	27.6	65.2	120.1	364.8	826.4	604.5	573.2	278.7	219.9
10	8.1	4.3	13.8	73.0	132.0	307.6	797.0	1008.7	718.3	259.8	152.6
11	6.6	3.7	13.0	30.2	110.1	157.4	473.2	398.1	343.6	158.5	71.5
12	4.2	2.8	11.2	36.7	56.3	121.8	359.2	394.2	232.6	133.6	45.4
13	2.0	1.6	7.3	18.8	18.2	50.4	142.7	66.8	73.9	41.0	25.0
14	0.8	0.7	4.6	9.9	13.5	20.5	69.3	64.6	49.5	45.3	12.1
15+	0.7	1.0	3.5	6.3	6.9	16.1	39.0	4.7	30.6	28.0	10.0
total	101.0	109.0	264.8	541.8	1406.9	3439.2	6405.4	6191.0	4721.2	2464.1	2680.0
TONNES	15905	15353	37081	84698	193786	465454	1025589	1017491	809054	427341	416730

* Preliminary

Table 5.2. Catch in number (millions) by age group in the mixed industrial fisheries (Sub-area IV, Divisions IIIa and Va) 1973-1983

Age	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
- 0	1817.4	379.4	811.7	128.1	428.9	956.2	2.4	23.2		3450.1	336.3
1	349.5	480.1	221.2	760.7	467.5	1030.9	1849.0	276.1	65.1	43.3	1844.2
2	46.5	48.7	73.0	98.7	111.4	168.2	78.8	329.9	81.4	41.3	90.0
3	21.5	13.0	28.2	36.9	33.8	89.7	32.3	74.8	191.9	80.9	38.4
4	12.0	7.5	14.0	22.4	31.8	74.0	22.3	22.6	58.4	112.8	47.7
5							18.2	29.1	20.1	29.2	55.6
6							20.8	23.1	16.7	21.6	12.2
7							10.8	29.3	17.8	14.8	12.8
8							8.8	26.8	15.7	12.0	2.6
?							14.0	15.2	4.4	5.2	5.8
10							6.2	13.8	4.9	1.8	4.2
11							1.0	6.4	3.6		9.6
12							4.4	1.8	1.5	2.4	3.3
13								2.2	1.2	0.6	0.6
14								1.4	0.1	0.6	0.3
15+								0.4	0.2		
TOTAL	2246.9	928.7	1148.1	1046.8	1073.4	2319.0	2069.0	860.8	483.0	3816.6	2463.6
TONNES	59659	66427	43249	44244	44227	109358	94995	75129	61754	117578	124737

BIUE WHITTHG，HORTHERH AREA

```
CATCH IN mu!qSEKS UNIT: millions
```

	1974	1975	1470	1977	1978	19\％4	1701	$1: 81$	1382	1983
7	379	814	128	429	Y 50	2	2.3	$\cap$	34b1	339
1	401	223	703	460	1031	1415	351	64	43	2135
2	34	78	112	155	25？	244	044	122	40	329
3	1 \％	57	01	12.1	159	Sos	$45 \%$	j15	2！14	203
4	23	41	77	197	420	4：11	422	204	484	242
5	211	25	？ 0	1ヵり	437	$40 \%$	319	ち2？	247	457
6	16	34	52	154	4.55	596	5 54	550	273	297
7	14	33	09	13 j	2，\％	754	7 5	400	206	287
3	15	27	br	177	474	974	xuo	0.34	$\angle 11$	280
9	4	2.6	05	120	305	S40	0：11	勺is	＜． 04	220
111	4	14	73	132	S！ 3	¢ 0	115	723	2c？	157
11	4	15	50	111	131	4；4	4ij）	$54 \%$	$1 \pm 9$	01
12	3	11	$5 \%$	So	12？	304	240	234	156	49
13	2	7	19	1 is	1i	143	04	75	42	20
14	1	$b$	10	14	21	69	00	50	46	12
$13+$	7	4	－	7	16	34	3	31	23	10
TOTAL	103：	1413	13ヶ4	2480	5758	8474	7100	5200	62is 1	5144

Table 6.1 Virtual Population Analysis
BLUE WHITING, Northern Area
Mean Weight at Age of the Stock

	1974	197b	1970	1977	1976	1979	1480	1.981	1982	1983
0	0.032	0.032	0.032	0.032	0.032	0.032	0.027	0.032	0.018	0.018
1	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.063	0.046	0.046
2	0.034	0.084	0.084	0.084	0.084	0.084	0.074	0.092	0.046 0.094	0.0186 0.094
3	0.105	0.105	0.105	0.105	0.105	0.105	$0.10 \%$	0.118	0.136	0.136
4	0.109	0.109	0.109.	0.109	0.104	$0.10 y$	0.122	0.135	0.152	0.152
5	0.129	0.129	0.129	0.129	0.129	0.129	0.135	0.145	0.102	0.162
6	0.147	0.147	0.147	0.147	0.147	0.147	0.149	0.155	0.178	0.178
7	0.100 0.170	0.160 0.170	0.160 0.170	0.160 0.170	0.160	0.160	0.105	0.170	0.195	0.195
9	0.177 0.177	0.170 0.177	0.1770 0.177	0.170 0.177	0.177 0.177	0.170	0.176	0.178	0.200	0.200
10	0.188	0.178	0.177 0.188	0.177 0.188	0.1777 0.188	0.177 0.188	0.186	$0.18 \%$ 0.198	0.2104	0.204
11	0.143	0.193	0.193	0.195	0.188 0.193	0.1788 0.193	0.199 0.202	0.199 0.208	0.213 0.234	0.213 0.234
12	0.199	0.199	0.194	0.194	0.199	0.193 0.144	0.202	0.208 0.228 0.234	0.234 0.228	0.234 0.228
13	0.200	0.200	0.200	0.200	0.200	0.200	0.207	0.234	0.258	0.258
14	0.200	0.200	0.200	0.200	0.200	0.200	0.207	0.249	0.242	0.242
$15+$	0.200	0.200	0.200	0.200	0.200	0.200	0.207	0.257	0.258	0.258

Table 7.1. BLUE WHITING
Catch in number during the first half of 1984 (in millions)

Year class	Spawning   Jan-March	Fishery   April-July	Mixed ind.   fishery   Jan-July	Norw. Sea   fishery   Jan-July	Jan-July	Jan-March
83	162.9	498.0	766.8	152.4	1580.1	
82	404.7	1237.7	191.7	109.5	1943.6	
$\leqslant 81$	246.8	754.7	-	219.2	1220.7	246.8
$\bar{\omega}(g)$	88.5	88.5	62.6	109.2		
Catch in tonnes	72076	220397	60000	58381		

Table 7.2. Calculation of Fishing Mortality in 1983

$\begin{aligned} & \text { Year } \\ & \text { Class } \end{aligned}$	$\begin{aligned} & \text { Stock }\left(10^{9}\right) \\ & 1 \text { April } 84 \end{aligned}$	$\begin{aligned} & \text { Catch }\left(10^{9}\right) \\ & \text { Jan-March } 84 \end{aligned}$	Fishing Mortality 84 Jan-March	$\begin{gathered} \text { Stock }\left(10^{9}\right) \\ 1 \mathrm{Jan} 84 \end{gathered}$	$\begin{gathered} \text { Catch }\left(10^{9}\right) \\ 1983 \end{gathered}$	$F_{83}$
$\leqslant 81$	15.0	0.250	0.02	16.0	2.670	0.14
Year Class	$\begin{gathered} \text { Stock }\left(10^{9}\right) \\ 1 \operatorname{Jan} 82 \end{gathered}$	$\begin{gathered} \text { Catch }\left(10^{9}\right) \\ 1982 \end{gathered}$	${ }^{1} 82$	$\begin{gathered} \text { Stock }\left(10^{9}\right) \\ 1 \mathrm{Jan} 83 \end{gathered}$	$\begin{gathered} \text { Catch }\left(10^{9}\right) \\ 1983 \end{gathered}$	$\mathrm{F}_{83}$
82	20.0	3.451	0.21	13.268	2.134	0.19
83				20.0	0.339	0.02

```
Tahle_7.3 VIRTUAL PUPULATIUN ANALYSIS
```

BLUE WHIIING, NORTHFRN AREA

```
FISHING MORTALITY COEFFICIEHT
```

UNIT: Year-1
NATLKAL HUKTMLITY (:OEFFICIENT = 0.2!

		1974	1975	1410	1977	1475	1974	1903	1981	1 ソこて	1983	1ソアソーが
	f）	1.02	7.75	0.01	0.04	0.116	17． 130	10.01	0.00	17.21	リ． 72	0.00
	1	11.03	9．01	0.05	0.04	1.17 ？	9． 18	11.150	1.103	1． 111	10.14	1.04
	2	0.130	0.71	0.01	0.71	0.03	9.04	1.08	11.74	0.175	ก． 14	0.05
	3	1．0）	0.017	0.01	$1] .01$	（0． 13 ？	0.13	15．154	ก． 08	0.019	1］． 14	1.077
	4	0.109	O．00	0． 01	$0.0 \%$	0.05	0． 07	7．Ois	ก．$\cap 7$	ก． 11	1.14	0.07
	$b$	0.00	0.170	0.010	17.03	0.510	0． C ¢ 8	0.110	1． 14	ก．118	1.14	1.10
	6	0.00	0.01	0.011	0.72	0.09	ก． 11	0.13	0.14	0.17	ก． 14	11.13
	7	0． 611	$0.0 \%$	ก． 112	D． 02	0.11	0.14	0．201	12.15	11．09	1）． 14	11.18
	$\checkmark$	0.01	0.01	0.02	0.03	0.11	0.27	0.51	7.20	1）． 1 ？	1）． 14	1.28
	9	13．1） 17	0.172	0.04	0.174	0.14	0.311	0.30	11.30	0.18	11.14	0.32
	11	17.171	0.01	ก． 1.00	0.17	0． 15	ก． 34	0.71	7．67	0.30	0.14	0.04
	11	13.01	0.173	17.174	0.12	0.16	17.35	11.57	0.50	17．30	0.14	0.301
	12	0． 111	ก． 73	7． 10	17.10	0.19	ก．0n	0.50	0.74	0.45	1］． 14	0.67
	13	9．007	0.172	7． 115	（1）．17	0.12	O． 30	$1] .20$	11.14	0． 31	0.14	U． 2.7
	14	0.00	0.71	0.03	0.05	0.1 .7	ก． 24	0.23	0.30	0．17	0.14	0.27
	$13+$	0.00	0.01	17.19 .3	U．$\bigcirc$	U． 10	0.24	19．23	11.50	0.17	11.14	13.27
（	$2-12) \cup$	0.170	0.01	7． 0.3	0．0．	10.17	9． 2.4	0.38	0.30	1）． 17	10.14	

Table＿7． 4 VI？TUAL POPULATIUN ANALYSIS
blue whiting，Northern area
stock size in numbers unit：millions
GIOHASS TOTALS UNIT：thoUsand tonnes
all values are given for 1 Jabuary

	1974	1975	1476	$197 \%$	1978	1979	1980	1481	1482	1483	1984
0	211724	20350	15234	12055	17016	5543	3515	4197	20500	$18072+4 *+*+++$	
1	19087	16624	15452	12373	10158	135611	$4 \bigcirc 77$	2743	$34 \leq 7$	13568	15145
2	15158	1519 s	134119	12353	47139	7.571	4373	3443	2.183	2773	9180
5	13252	12345	12369	10878	4474	7734	3815	703\％	2713	1706	1974
4	11375	$10 \times 34$	111550	101172	צフリ6	51922	011 6	4367	5559	2037	1214
5	7178	92.93	8833	3163	$870 \%$	$6: 923$	0135	4546	3319	3435	1450
6	2957	5854	7585	7205	0517	6 6．12	$314 \%$	4365	3252	2449	2001
7	2999	4847	4706	¢103	勺70́2．	4900	4554	3715	3237	2417	1779
3	2103	2442	3438	50.34	$4 \mathrm{y2}$ ？	4242	3332	31549	2.2 .1	2411	172.0
9	1279	1704	1415	3172	$24: 4$	36012	2031	2004	$14<0$	1ソ12	$1 / 16$
10	647	1044	1374	1558	2439	2114	2114	1014	1122	1321	1354
11	606	520	$\times 42$	1059	1157	1761	1012	583	$0 \% 5$	683	440
12.	504	495	419	062	703	80	11010	400	412.	410	480
13	625	454	595	310	491	519	354	471	173	216	292
14	773	510	369	3175	237	$35 \%$	291	212	323	1114	154
$15+$	1104	38\％	255	150	186	201	23	131	197	84	134
TOTAL NO	105341	10292．1	97731	9112\％	89014	75820	35033	45300	51296	54938	
ses No	43442	5074 is	53153	35540	52351	47290	38327	3311：	25310	74120	
TOT．BI O：	－¢ 5 ？	912.4	9227	4157	yob？	7941	0765	5775	5240	4827	
SPS RIO．1	0345	6697	713	7330	7519	6730	3704	3151	4310	3003	



Table 7.5. List of input variables for the ICES prediction program

BLUE WHITING - NORTHERN STOCK
The reference $F$ is the mean $F$ for the age group range from 2 to 12
Proportion F (fishing mortality) effective before spawning: 0.0000 Proportion M (natural mortality) effective before spawning: 0.0000

Data are printed in the following units:
Total yield and weight by age group in the catch: kilogram Total biomass and weight by age group in the stock: kilogram

age:	fishing:	natural: mortality:	maturity: ogive	weight in: the catcni	weight ini   the stock:
01	0.021	0.201	0.001	$0.018 i$	0.018 i
$1:$	0.191	$0.20 i$	0.001	0.040:	0.0401
$2:$	$0.14 i$	0.201	0.001	0.0941	0.0941
$3 i$	0.141	0.201	1.001	0.1301	0.1301
$4 i$	0.14 i	0.201	$1.00:$	0.1521	$0.152 i$
5:	13.14 :	0.201	1.001	$0.102:$	$0.162:$
$6:$	0.141	0.201	1.001	0.1781	0.178 i
71	0.14 i	$0.20 i$	$1.00:$	$0.195:$	$0.195:$
$8:$	0.141	0.201	1.001	0.2001	$0.200 i$
91	$0.14 i$	0.201	$1.00:$	0.2041	0.204
$10:$	$0.14 i$	0.201	1.001	$0.213:$	$0.213:$
11 i	$0.14 i$	0.201	$1.00:$	$0.234 i$	0.234 :
$12:$	0.141	0.201	$1.00:$	0.2281	$0.228:$
$13 i$	$0.14 i$	0.201	$1.00:$	$0.258:$	$0.258:$
$14 i$	$0.14 i$	0.201	$1.00:$	0.2421	0.2421
$15+i$	0.74 i	0.201	$1.00:$	0.2 ¢8i	0.258

Table 7.6 BLUE WHITTNG. Yield and spawning stock biomass per recruit.

						At 1 January		At spawning time	
$\begin{gathered} F \\ \text { factor } \end{gathered}$	$\begin{gathered} \text { Reference } \\ F \end{gathered}$	Catch in numbers	Catch in weight	Stock size	Stock biomass	$\begin{aligned} & \text { Sp.stock } \\ & \text { size } \end{aligned}$	Sp.stock   biomass	Sp.stock size	Sp. stock   biomass
0.000	0.0000	0.0000	0.0000	5.5167	0.6772	3.0276	0.5585	3.0276	0.5585
0.200	0.0280	0.1101	0.0141	4.9681	0.5673	2.5099	0.4514	2.5099	0.4514
0.400	0.0560	0.1960	0.0238	4.5410	0.4848	2.1125	0.3715	2.1125	0.3715
0.600	0.0840	0.2648	0.0306	4.1993	0.4210	1.7993	0.3103	1.7993	0.3103
0.800	0.1120	0.321 .0	0.0354	3.9200	0.3706	1.5476	0.2623	1.5476	0.2623
1.000	0.1400	0.3679	0.0388	3.6877	0.3299	1.3418	0.2239	1.3418	0.2239
1.200	0.1680	0.4076	0.0412	3.4915	0.2965	1.1712	0.1927	1.1712	0.1927
1.400	0.1960	0.4416	0.0429	3.3239	0.2687	1.0282	0.1671	1.0282	0.1671
1.600	0.2240	0.4710	0.0441	3.1791	0.2453	0.9071	0.1458	0.9071	0.1458
1.800	0.2520	0.4967	0.0448	3.0529	0.2254	0.8038	0.1278	0.8038	0.1278
2.000	0.2800	0.5193	0.0453	2.9420	0.2082	0.7149	0.1127	0.7149	0.1127
2.200	0.3080	0.5394	0.0456	2.8438	0.1934	0.6380	0.0997	0.6380	0.0997
2.400	0.3360	0.5573	0.0457	2.7563	0.1805	0.5710	0.0885	0.5710	0.0885
2.600	0.3640	0.5734	0.0457	2.6780	0.1692	0.5125	0.0789	0.5125	0.0789


| Slope of the yield curve at the origin based on a single recruit: | 0.086 |
| :--- | :--- | :--- |
| $F_{0.1}$ given by an $F$ factor of 1.294 , resulting in a reference $F$ of | 0.181 |
| $F_{\text {max }}$ given by an $F$ factor of 2.444 , resulting in a reference $F$ of | 0.342 |

Table 7.7. Effects of different levels of fishing mortality on catch, stock biomass and spawning stock biomass.
BLUE WHITING - NORTHERN STOCK


The data unit of the biomass and the catch is 1000 tonnes.
The spawning stock biomass is given for 1 January
The reference $F$ is the mean $F$ for the age group range from 2 to 12.

Table 7.8. Catch per unit effort in the directed Blue Whiting fisheries, 1976-83.
(fishing gear: mid-water trawl)

Division	GRT-class	Country	Time period	Years								
				1976	1977	1978	1979	1980	1981	1982	1983	Units
IIa	$\begin{aligned} & 2000-3999.9 \\ & 1000-1999.9 \end{aligned}$	German   Dem.Rep.   Poland   USSR   USSR	$\begin{aligned} & \text { July-Sept. } \\ & \text { July-Aug. } \\ & \text { July-Sept. } \\ & \text { Aug.-Oct. } \end{aligned}$	_ 1)	$2.38$	$\begin{gathered} 1.99^{2} \\ 14.0 \\ - \\ 2.79 \end{gathered}$	$\begin{gathered} 2.19 \\ 17.8 \\ 3.04 \end{gathered}$	$\begin{gathered} 3.11 \\ 24.0 \\ 3.82 \end{gathered}$	$\begin{gathered} 2.25 \\ 19.7 \\ 2.54 \end{gathered}$	$\begin{aligned} & 1.63 \\ & 4.5^{8} \\ & 2.85 \end{aligned}$	$\begin{aligned} & 1.10 \\ & - \\ & \left.1.58^{5}\right) \\ & \left.0.87^{6}\right) \end{aligned}$	t/hour   t/day   $t /$ hour   $t /$ hour
Vb	$2000-3999.9$	German   Dem. Rep.   Poland   USSR	June-July   May-June   March-May	27.0	$\begin{gathered} 1.38 \\ 36.7 \end{gathered}$	$\begin{gathered} 1.77 \\ 17.2 \end{gathered}$	$\left\|\begin{array}{c} 2.20 \\ \left.43.6^{4}\right) \\ 5.83 \end{array}\right\|$	$5.23$	$\begin{gathered} 3.88^{3} \\ - \\ 5.97 \end{gathered}$	$\begin{gathered} 2.12^{3} \\ - \\ 4.58 \end{gathered}$	$\begin{gathered} 2.08^{3} \\ - \\ 4.12 \end{gathered}$	$t /$ hour   $t /$ day   $t /$ hour
	1000-1999.9	Norway USSR	$\begin{aligned} & \text { April-May } \\ & \text { June-July } \end{aligned}$	-	$2.98$	$4.62$		$13.57$	$29.47$		$0 . \overline{3} 8^{7}$ )	$t /$ hour   $t$ /hour
	500-999.9	Faroes   Iceland   Norway	May   May   April-May		$\begin{aligned} & 17.6 \\ & 55.6 \end{aligned}$	$\begin{aligned} & 13.6 \\ & 57.5 \\ & 21.35 \end{aligned}$	$\begin{aligned} & 10.6 \\ & 33.8 \\ & 20.29 \end{aligned}$	$\begin{gathered} 6.2 \\ 43.3 \\ 18.14 \end{gathered}$	$\begin{gathered} 9.6 \\ 79.2 \\ 18.94 \end{gathered}$	$4.88$	-	t/hour   t/day   $t /$ hour
VIa	$\begin{array}{r} 1000-1999.9 \\ 500-999.9 \\ \\ 100-499.9 \end{array}$	Norway   Faroes Norway   Norway	March-April   April   March-April   March-April		$17.4$	$\begin{gathered} - \\ 19.8 \\ 24.93 \end{gathered}$	21.4   30.27   24.93	$\begin{aligned} & 23.92 \\ & 16.4 \\ & 26.56 \\ & 13.53 \end{aligned}$	$\begin{gathered} 57.13 \\ - \\ 34.96 \\ 23.59 \end{gathered}$	$\begin{aligned} & 42.38 \\ & 36.30 \\ & 31.00 \end{aligned}$	$\begin{gathered} 42.83 \\ - \\ 49.04 \\ 41.84 \end{gathered}$	$t /$ hour   $t$ /hour   $t /$ hour   $t /$ hour
IVa	$\begin{array}{r} 1000-1999.9 \\ 500-999.9 \\ 100-499.9 \end{array}$	Norway   Norway   Norway	April-May   April-May   April-May	-	-	-	13.98	- 9.29	$\begin{array}{r} 15.36 \\ 13.40 \\ 7.18 \end{array}$	$\begin{aligned} & 15.03 \\ & 13.75 \\ & 17.39 \end{aligned}$	$\begin{aligned} & 21.19 \\ & 18.31 \\ & 16.51 \end{aligned}$	$t /$ hour   t/hour   $t /$ hour

1) Hyphen means no fishing.
${ }^{2)}$ Refers to June-July period.
2) Refers to January-May period.
${ }^{4)}$ Refers to April-May period.
3) Refers to May-July period.
6)Refers to May only.
7)Refers to May-June period.
8)Refers to July only.

Table 7.9. Catch per unit effort in the Blue Whiting directed fisheries in Sub-division Ila for 2 COO - 3 999.9 GRT, using mid-water trawls, 1979-1983

(1) CPUE $=$ Totai catch/total effort
(2) CPUE $=$ ( Monthly CPUE)NO of months

Table 7.10. Trawlable biomass of Blue Whiting per depth range on Rockall Bank in July 1984.

Depth   Range   $(\mathrm{m})$	$\overline{\mathrm{D}}$   $\left(\mathrm{t} / \mathrm{nm}^{2}\right)$	TB   $(\mathrm{t})$	CL   $( \pm \%)$	Hauls   n
$100-200$	5.9	14960	205	7
$200-300$	7.5	21158	56	12
$300-400$	12.5	24448	56	10
$400-500$	6.3	17391	54	17
$500-600$	1.1	2412	50	11
$600-700$	0.1	124	132	9
TOTAL		80493	39	66

[^0]Table 11.1. Parameters of weight at age curves (see Figure 11.1) in GDR catches

Year	1980	1981	1982	1983
a	66.67	91.24	56.76	80.85
b	0.438	0.344	0.572	0.450
$\mathrm{r}^{2}$	0.853	0.790	0.790	0.830

Distribution and relative densities of BLUE WHITING March-April 1984 recorded during the Norwegian survey. Echo intensity in $\mathrm{m}^{2} / \mathrm{n} . \mathrm{m} .{ }^{2} \times 10$.


Figure 7.2 Biomass estimated of BLUE WHITING (1 000 tonnes) during the Norwegian survey, March-April 1984.


Figure 7.3 Biomass of BLUE WHITING by areas estimated during the Faroese survey, April 1984.


Figure 7.4 BLUE WHITING biomass ( $\mathrm{t} / \mathrm{nm}^{2}$ ), estimated during the USSR in March 1984.
1 - < 75
3-300-750
2-75-300
$4->750$


Figure 7.5 Density distribution of BLUE WHITING biomass
( $t / \mathrm{n} \cdot \mathrm{m}^{2}$ ) estimated during the USSR survey
April 1984.
For legend - see Figure 7.4


Figure 7．6 Cruise tracks and trawl stations of the six research vessels，August（26 July－ 5 September 1984）．I－Pelagic trawl； 2 －Bottom trawl．

Figure 7.7 Distribution and abundance of BLUE WHITING. August 2984. Echo intensity


Figure 7.8. Estimated biomass of BLUE WHITING in 1000 tonnes.



Figure 7.9 Total length distribution (\%) of BLUE WHITING weighted by abundance in the Norwegian Sea and adjacent waters, August $1984 . \mathrm{N}=49.2 \times 109$.



Figure 7.12 Length distribution of the total catch
in July 1984 (composed of 32 hauls) at Rockall Bank by the R/V "Walter Herwig".



Figure 12.1 Selectivity data for BLUE WHITING. (Robles et al., 1980)

 MibMoterne


[^0]:    $\overline{\mathrm{D}}=$ Relative mean density
    $\mathrm{TB}=$ Trawlable biomass
    CL $=$ Confidence limits (Confidence level $=95 \%$ )

