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Abstract 
 

A considerable amount of research has been carried out on the complex of commercially 
important herring stocks to the west of the British Isles, from the south-west of Ireland and the 
Celtic Sea to the north-west of Scotland.  Despite all this effort, the inter-stock mixing between 
components within this complex is still an unknown.  The overall goal of WESTHER is to describe 
the population structure of herring stocks in this area through a large-scale analysis of the 
genetic, morphological, physiological and parasite faunal differences across spatial clines of 
herring stocks in these western European waters.  All the different methods of stock 
discrimination employed have been applied to the same individual herring initially aiming to 
differentiate between spawning aggregations, thereby creating reference points to help describe 
juvenile and mixed adult aggregations.  WESTHER's holistic approach allows apparent 
discrepancies implied by individual methods to be resolved and improves confidence in the 
results of stock identification.  In this paper the data were analysed using various statistical 
techniques, for example discriminant analysis and classification trees, among others.  These data 
analysis methods were used to predict a discrete outcome, as group membership, from the mix of 
variables (continuous, discrete and nominal) produced by the different techniques used to 
discriminate between stocks.  The methods are being tested and refined using data from the first 
year's samples to give an assessment of the relative merits of the various phenotypic, chemical 
and genetic techniques for examining the stock structure of herring to the west of the British Isles.   
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components 
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Introduction 
 
 Fish stocks (Ihssen et al.,1981) are identified on the basis of variation in 
characteristics between stocks, with the strongest influences on stock structure drawn 
from a suite of complementary techniques that cover multiple aspects of the biology and 
life history characteristics of a fish species (Begg and Waldman, 1999).   
 Genetic variation between stocks can provide a direct basis for stock structure 
but can prove inadequate where low and inconsistent levels of differentiation may still 
mask a high degree of demographic separation between stocks (Ward, 2000; Mariani et 
al., 2005).  Phenotypic variation between stocks, on the other hand, can provide an 
indirect basis for stock structure, and although it does not provide direct evidence of 
genetic isolation between stocks, it can indicate prolonged separation of fish in different 
environmental regimes.  It may therefore be applicable for studying short-term, 
environmentally induced variation and be highly applicable to fisheries management 
(Cadrin, 2000). 
 Stock identification is an evolving multidisciplinary field encompassing many 
techniques (Begg et al, 1999; Cadrin et al., 2005).  A multi-disciplinary, integrated 
approach to any individual study maximises the likelihood of defining correctly the 
stocks, and different methods offer complementary perspectives on stock structure 
(Begg et al, 1999; Swain et al., 2005).  
 It is only really in the last fifteen years or so that any number of studies have 
been carried out using a broad suite of techniques for stock identification of exploited 
marine species, on cephalopods (Carvalho and Pitcher, 1989; Kassahn et al., 2003); 
bivalve molluscs (Wilding et al, 1998) and finfish (Haug and Fevolden, 1986; Waldman 
et al., 1988; Spanakis et al., 1989; Suneetha and Naevdal, 2001; Walsh et al, 2001; 
Stransky, 2003; Poulet et al., 2004).  However these studies used either different 
samples of fish for the different methods compared, or different fish from the same 
samples.  The only published study we have found to compare objectively among 
alternative approaches to stock discrimination by using the same individuals was 
performed on striped bass in the USA (Waldman et al., 1997) and there are two recently 
completed EU projects that have applied a suite of complementary techniques to the 
same individuals to detect stock structure: CODTRACE – QLRT-2000-01697 and 
HOMSIR – QLRT-1999-01438. 

Atlantic herring (Clupea harengus) has played a pivotal role in the formulation of 
ideas relating to population structuring in marine fish, yet considerable uncertainty 
remains in the extent to which phenotypic and genetic differentiation coincide in such a 
highly mobile species.   There is a long history of characterisation of herring to a 
particular ‘race’ or ‘stock’ using a wide variety of different techniques: morphometric and 
meristic characters (of whole fish and of otoliths), parasite tagging and genetic 
techniques, and examples on herring to the west of the British Isles include Wood 
(1936); Blaxter (1958); Parrish and Sharman (1958); Symonds (1964); Molloy (1975); 
Grainger (1976); King (1985); MacKenzie (1985); King et al. (1987) and Jörstad et al. 
(1991).  These single technique studies have failed to address fully the interactions of 
life stage and fish population and none have been powerful enough to examine 
population identity over the scales that herring are distributed and, therefore, despite all 
this effort, the inter-stock mixing between components within this complex is still an 
unknown.   

Herring in waters to the west of the British Isles are distributed over a wide area 
where several discrete fisheries exist (ICES, 2005).  All the assessments carried out on 
these stocks show a great degree of uncertainty as to the current level of exploitation. 
This uncertainty is compounded by a lack of knowledge on the basis for the existence of 
the current stock units. Whilst the fisheries are managed in functional units, the herring 
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complex may not observe similar boundaries, or indeed current boundaries may contain 
more than a single discrete population.  Hence it is vital that the interactions between 
stocks are understood, both in terms of the mixing of adults and the supply of juvenile 
recruits.  In order to determine mixing the individual stocks of interest in the area need to 
be described and identified.   

The overall goal of WESTHER is to describe the population structure of herring 
stocks in the area to the west of the British Isles through a large-scale analysis of the 
genetic, morphological, physiological and parasite faunal differences across spatial 
clines of herring stocks in these western European waters.  All of the methods have 
been applied to the same individual herring, initially aiming to differentiate between 
spawning aggregations, thereby creating reference points to help describe juvenile and 
mixed adult aggregations. 

Six techniques have been applied within the WESTHER project (body and otolith 
morphometry, parasites as biological tags, microsatellite DNA, otolith microstructure and 
otolith microchemistry (see reviews in Cadrin et al. (2005) for detail on the various 
methods) to form the basis of a study on stock structure in the area of interest.  Full 
statistical analyses of the efficacy of each of these techniques to discriminate between 
the different spawning aggregations sampled will be carried out by the relevant project 
partners in due course. 

In this preliminary analysis we present statistical analyses of several informative 
variables from four of the methods employed (body and otolith morphometry, parasites 
and otolith microchemistry), from samples collected from spawning aggregations within 
the first sampling year of the project (March 2003 to February 2004) to determine which 
mixture of variables gives the best discrimination between spawning populations.   
 
 

Materials and Methods 
 

 Samples were collected by various partners from both commercial vessels and 
research surveys between March 2003 and February 2004 (Figure 1 and Table 1).  The 
sample from the western Baltic (Rügen – area 16) was collected to act as a biological 
outlier. 
 
Table 1.  Sampling data for herring analysed in the multidisciplinary multivariate 
analysis. 
 

Sample ID Geographical area Collection date Analysis code 
3-S01B Celtic Sea December 2003 11 
3-S04B Donegal October 2003 12 
3-S05A Clyde March 2003 13 
3-S06A Irish Sea October 2003 14 
3-S10B Cape Wrath September 2003 15 
3-X01A Rügen April 2003 16 
4-S01A Celtic Sea February 2004 17 
4-S04A Donegal January 2004 18 
4-S10A North Minch February 2004 19 
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Data exploration 
 Within each technique a full suite of variables was analysed giving a total number 
of combined variables of >100.  Individual project partners provided their assessments of  
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Figure 1.  Geographical area from across which samples were taken.  Sample labels 
refer to sample codes in Table 1. 

 
Table 2.  Variables used in the statistical analysis. 
Technique Workpackage Abbreviation Description 
Body morphometry 02.1 DPA  See Figure 2 
  DPP See Figure 2 
  HH See Figure 2 
  LA See Figure 2 
  OD See Figure 2 
Otolith morphometry 02.2 A04 Fourier descriptor of shape 
  B03 Fourier descriptor of shape 
  C03 Fourier descriptor of shape 
  Area Otolith aspect area 
  Circ Index of circularity of otolith outline 
Parasites 02.3  Caeca Numbers of pyloric caeca 
 03 Anis  Anisakis spp. 
  Dor Renicola cercaria doricha 
  Pyth Renicola cercaria pythionike 
Otolith 
microchemistry 

06 Ba137 Barium concentrations in otolith core 

  Na23 Sodium concentrations in otolith core 
  Li7 Lithium concentrations in otolith core 
  Sr88 Strontium concentrations in otolith core 
  Mg25 Magnesium concentrations in otolith 

core 
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their best (most informative) variables for discrimination of the various spawning 
aggregations using either experience of the method, or statistical methods.  The final 
suite of variables selected for the multi-disciplinary multivariate analysis presented here 
is given in Table 2 (and Figure 2 for a pictorial representation of the body morphometry 
measurements). 

  
Figure 2.  Morphometric distance and truss measurements used in WP 02.1. 

 Since all variables in the morphometry workpackages (WPs) 02.1 and 02.2 were 
highly correlated (>0.9) with fish length, the residuals of a cubic polynomial regression 
model applied on each variable, using LSM (tip of maxilla to end of caudal peduncle – 
see Figure 2) as the explanatory variable, were used in the analysis.  LSM is the most 
stable measure of fish length. The correlations between variables of the other WPs and 
fish length were relatively low (<0.5), except for Anis (=0.57).  Correlations between the 
selected variables in Table 2 and body mass were also low, except for Anis, which had a 
correlation of 0.54.  Since this indicates that there are no strong linear effects of length 
or mass, it was decided to use these data without any pre-filtering (e.g., removing length 
and body mass effects).   
 When we combined the data from different WPs, we encountered a problem as 
not every fish was analysed for each technique.  Since most statistical methods cannot 
deal with missing values, we only used those samples (fish) that were analysed by each 
technique.  Note that there are still missing values in these combined data, but this is 
due to the fact that for some samples not every variable was measured in a work 
package. This process has the result that for some areas there are only ~15 - 30 fish 
analysed instead of the original 80 -100 (Table 3).  This problem is visualised in Figure 
3.  The graph shows which fish were measured by each WP. A “-“ indicates a missing 
value (or: not measured).  Because there were only 13 fish in spawning area 13 (Clyde) 
that were measured by each WP (see Table 3), it was omitted from the statistical 
analysis. 
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Table 3.  Numbers of fish measured for each workpackage (WP) / technique used in the 
multivariate statistical analysis (refer to Tables 1 & 2 for area and WP description). 

 

Area WP 02.1 WP 02.2 WP 02.3 WP 03 WP 06 Total no. in common 
11 105 98 104 104 24 22 
12 105 93 104 105 32 32 
13 44 13 43 43 21 13 
14 103 99 103 103 38 37 
15 98 90 96 96 23 20 
16 104 99 90 90 30 30 
17 75 71 67 68 38 32 
18 105 96 94 94 35 27 
19 102 87 101 101 37 31 

 As well as the data from WPs 02, 03 and 06, there are also variables like length, 
mass, gutted mass, sex, maturity, age, year, month, latitude, longitude, vessel type, 
trawl type and catch depth available.  We did not use these variables for classification 
purposes but some of them may be used to understand why we find particular 
groupings. 

5 10 15

0
20

0
40

0
60

0
80

0

Missing values

Variables

Sa
m

pl
es

--
------
-----
----
--
--

---------------------
--------
-

-
---------------------
---

--
------
-----
----
--
--

---------------------
--------
-

-
---------------------
---

--
------
-----
----
--
--

---------------------
--------
-

-
---------------------
---

--
------
-----
----
--
--

---------------------
--------
-

-
---------------------
---

--
------
-----
----
--
--

---------------------
--------
-

-
---------------------
---

---
--
--
--
-----
-----
--------------
-----------------
-
---
------
------
------
----
--
---
---
--
---

--
---------------------
--------
---
-
----
---
----
-------------
----------------
-----
---

---
--
--
--
-----
-----
--------------
-----------------
-
---
------
------
------
----
--
---
---
--
---

--
---------------------
--------
---
-
----
---
----
-------------
----------------
-----
---

---
--
--
--
-----
-----
--------------
-----------------
-
---
------
------
------
----
--
---
---
--
---

--
---------------------
--------
---
-
----
---
----
-------------
----------------
-----
---

---
--
--
--
-----
-----
--------------
-----------------
-
---
------
------
------
----
--
---
---
--
---

--
---------------------
--------
---
-
----
---
----
-------------
----------------
-----
---

---
--
--
--
-----
-----
--------------
-----------------
-
---
------
------
------
----
--
---
---
--
---

--
---------------------
--------
---
-
----
---
----
-------------
----------------
-----
---

-

-

-

--
------
-----
----
-

--------------
----
-----
-----
--
--
--
---
-

-

-

-

--
------
-----
----
-

--------------
----
----
-----
--
--
--
---
-

-

-

-

--
------
-----
----
-

--------------
----
----
-----
--
--
--
---
-

-

-

-

--
------
-----
----
-

--------------
----
----
-----
--
--
--
---
-

-

-----------
----------------------
----------------------
----------------------
-----------
-------
----------------------
----------------------
------------------
-------------
-------
-------
-------------------
----------------------
----------------------
-------------
------
----------------------
----------------------
----------------------
---------
-------------
----------------------
----------------------
-----------
-
-------------------
----------------------
----------------------
-----
----------------------
----------------------
----------------------
---
--------------------
--------
----------------------
---------------------
----------------

-----------
----------------------
----------------------
----------------------
-----------
-------
----------------------
----------------------
------------------
-------------
-------
-------
-------------------
----------------------
----------------------
-------------
------
----------------------
----------------------
----------------------
---------
-------------
----------------------
----------------------
-----------
-
-------------------
----------------------
----------------------
-----
----------------------
----------------------
----------------------
---
--------------------
--------
----------------------
---------------------
----------------

-----------
----------------------
----------------------
----------------------
-----------
-------
----------------------
----------------------
------------------
-------------
-------
-------
-------------------
----------------------
----------------------
-------------
------
----------------------
----------------------
----------------------
---------
-------------
----------------------
----------------------
-----------
-
-------------------
----------------------
----------------------
-----
----------------------
----------------------
----------------------
---
--------------------
--------
----------------------
---------------------
----------------

-----------
----------------------
----------------------
----------------------
-----------
-------
----------------------
----------------------
------------------
-------------
-------
-------
-------------------
----------------------
----------------------
-------------
------
----------------------
----------------------
----------------------
---------
-------------
----------------------
----------------------
-----------
-
-------------------
----------------------
----------------------
-----
----------------------
----------------------
----------------------
---
--------------------
--------
----------------------
---------------------
----------------

-----------
----------------------
----------------------
----------------------
-----------
-------
----------------------
----------------------
------------------
-------------
-------
-------
-------------------
----------------------
----------------------
-------------
------
----------------------
----------------------
----------------------
---------
-------------
----------------------
----------------------
-----------
-
-------------------
----------------------
----------------------
-----
----------------------
----------------------
----------------------
---
--------------------
--------
----------------------
---------------------
----------------

 
Figure 3.  Visualisation of missing values. The horizontal axis shows the 19 variables 
and the vertical axis the approximately 1000 samples. The first five variables (1 to 5) are 
from work package 02.1, the second five from work package 02.2, then four variables 
from work package 02.3 and 03, and finally the last five variables on the right side (15 - 
19) are from work package 06. The symbol ‘-‘ was used to identify a missing value. 
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Outliers 
 Outliers or large observations might be influential in statistical techniques and 
demonstrate a requirement for data transformation. To identify these observations, a 
data exploration using dotplots, histograms, qq-plots and boxplots was performed. 
Several variables showed large/extreme observations, especially from WP 06. To 
reduce the effect of large observations in the statistical analysis, the parasite data (WP 
03) were square root transformed and the otolith micro-chemistry data (WP 06) were log 
transformed. The other WP variables were used without a transformation. The 
application of a square root, log and no transformation is justified as we are dealing with 
different types of variables (Quinn and Keough, 2002).  The choice for these particular 
transformations was based on the range and values of the data.  The transformations 
also ensured homogeneity between the areas for most variables, which is important for 
discriminant analysis (see below).  
 The dotplots indicated that the Irish Sea (area 14) showed higher RES_OD 
values. Rügen (area 16) had lower RES_HH values, the Irish Sea had higher AREA 
values, many samples had zero abundance of Pyth, two samples had considerably 
lower values of Sr88 and in the Irish Sea and off northwest Scotland (area 15) there were 
higher Li7 values. 
 
Statistical analyses 
 To identify (i) which of the morphometric, parasite and otolith microchemistry 
variables were important for the discrimination and (ii) whether we could actually 
discriminate between spawning samples from different areas, various statistical methods 
were applied. We applied discriminant analysis (DA), classification trees, multivariate 
regression trees, multinomial logistic regression and neural networks for exploratory 
purposes.   The results of DA and classification trees only are presented here but the 
other methods will be discussed later. 
 
Discriminant analysis 
 Discriminant analysis (DA) results in axes that give maximum separation of 
samples from different groups, and samples of the same group are as close to each 
other as possible.  The most important underlying assumptions for DA (Klecka, 1980; 
Jolliffe, 2002; Krzanowski, 2000; Huberty, 1994; Hair et al., 1996) are homogeneity and 
normality, and the second assumption is required for the hypothesis tests.  Another 
assumption of DA is that the size of the smallest group is larger than the number of 
variables, which indeed holds here.  
 Separation of groups can be measured in different ways.  We used the sum 
between all groups means, also called the total Mahalanobis distance.  DA cannot cope 
with missing values.  The software used here, Brodgar (www.brodgar.com), removes all 
samples with one or more missing values.  Brodgar itself uses the DA routines from the 
statistical Fortran library IMSL (IMSL manual).   
IMSL manual: http://www.colostate.edu/Services/ACNS/swmanuals/imsl/STATVol2.pdf
 
Classification trees 
 In this method, the variable identifying the eight spawning areas is the response 
variable, and all variables in Table 2 were used as explanatory variables.  The technique 
(Chambers and Hastie, 1992; De’Ath and Fabricus, 2000) tries to identify which of the 
variables in Table 2 are the best in discriminating between samples of different groups.  
Results are presented in a tree-style diagram.  Just as in regression analysis, the 
optimal model has to be found.  A tree pruning process was used for this (Chambers and 
Hastie, 1992; De’Ath and Fabricus, 2000).  
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Results 

  
Discriminant analysis 
 The data exploration indicated that for most variables, the assumption of 
homogeneity holds. 
 The results of DA are presented in Figure 4.  The upper left panel in Figure 4 
shows the scatterplot of discriminant axis 1 versus axis 2.  Groups are represented by 
triangles.  Instead of numbers and triangles, one can also draw circles that show the 
90% confidence bands around a triangle (Krzanowski, 2000).  These so-called 90% 
tolerance regions show the region in which 90% of the whole population of a spawning 
group is expected to be (see the upper right panel).  Along the first two axes, four areas 
are separated from the rest.  The eigenvalues (Table 4) indicate that these two axes 
represent 57% of the variation, and that the second axis is approximately as equally 
important as the first axis. This means that differences along either axis can be 
interpreted in the same way.  There is a clear distinction between areas 15 (Cape Wrath) 
and 16 (Rügen).  Areas 11 (Celtic Sea 2003), 14 (Irish Sea), 18 (Donegal 2004) and 19 
(North Minch) are all in the middle and cannot be distinguished.  Areas 12 (Donegal 
2003) and 17 (Celtic Sea 2004) might be slightly different.  However, the main difference 
is between areas Rügen and Cape Wrath (areas 16 and 15). 
 To obtain more insight into which of the variables are really important for the 
discrimination, three main options are available.  The first option is to inspect the 
weighting factors, also called loadings.  However, it is known (Huberty, 1994) that these 
factors can be unstable if the number of samples per group is small compared to the 
number of variables (as is the case here).  A better option is to calculate correlations 
between the original variables and the discriminant axes.  These correlations are plotted 
as lines from the origin to a point with the two correlation values in the lower left panel in 
Figure 4.  However, rather than select qualitatively between 19 lines we chose an 
arbitrary cut-off level for these correlations of >0.5, From this pruning it is evident that 
areas 15 (Cape Wrath) and 12 (Donegal 2003) are associated with high values of Na23 
(and area 17 – Celtic Sea 2004 - with low Na23). Samples from Rügen (area 16) have 
low values of Li7 and HH.  However, a more detailed picture is obtained from the lower 
left panel showing that Rügen (area 16) might also be associated with high Ba137 values, 
and Cape Wrath (area 15) with large DPP values.  
 There is a third approach to identify the most important variables for 
discrimination.  Distances between all the group averages (in the 7-dimensional DA 
space) can be measured using the total sum of Mahalanobis distance (Huberty, 1994).  
Leaving out an important variable (with respect to discriminating the areas) will result in 
a larger drop in the total sum of Mahalanobis distance compared to a less important 
variable.  Stepwise removal of each variable indicates the least important variable, with a 
backward selection procedure then employed to remove repeatedly the least important 
variables.  This process will give the order of importance of the variables (see Table 5).  
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Figure 4.  DA results using all 19 variables; axes 1 versus 2. Upper left: Scores of axes 
1 and 2.  Upper right: confidence bands indicating the 90% probability of finding the real 
population averages.  Lower left: correlations between axes and original explanatory 
variables.  Lower right: same correlations as in lower left except that only those 
correlations larger then 0.5 are plotted. 
 
Table 4.  Eigenvalues (lambda) for the discriminant analysis using all 19 variables.     

axis Lambda lambda as % lambda cumulative % 
1 2.076 32.344  32.344 
2 1.605 25.007  57.351 
3 1.310 20.401  77.752 
4 0.788 12.268  90.020 
5 0.415   6.468  96.488 
6 0.149   2.328  98.816 
7 0.076  1.184 100.000 
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Table 5.  Summary of the backwards selection.  
 

Variables Total Mah. distance Dropped variable 

19 408.9898 None 
18 405.8074 Dor 
17 401.6868 Caeca 
16 390.1357 RES_A04 
15 381.2488 RES_B03 
14 374.8280 RES_C03 
13 365.1359 RES_CIRC 
12 345.7864 Pyth 
11 324.9428 RES_AREA 
10 302.3172 Li7

9 280.8975 Sr88

8 264.9802 Mg25

7 244.4703 Ba137

6 215.0878 Anis 
5 182.8129 Na23

4 151.0967 RES_DPP 
3 126.6851 RES_DPA 

  
 Since the algorithm for DA needs at least three variables, it cannot go any 
further.   Variables that were not dropped are RES_OD, RES_HH, RES_LA.  Hence, the 
ten best variables are (from least to most important): Sr88, Mg25, Ba137, Anis, Na23, 
RES_DPP, RES_DPA and the following three variables: RES_OD, RES_HH and 
RES_LA.  Hence, all the body morphometry characters are among the five best 
discriminating variables. 
 The values and ratios between the first four eigenvalues in Table 4 indicate that it 
is also worthwhile to inspect axes 3 and 4 (Figure 5). The third axis, which represents 
about 20% of the variation, seems to show a difference between areas 12 (Donegal 
2003) and 18 (Donegal 2004) on one side versus 14 (Irish Sea), 15 (Cape Wrath) and 
19 (North Minch) on the other side.  RES_LA seems to be an important variable for this. 
The fourth axis (12% of the variation), seems to show a difference between area 19 
(North Minch) and the other areas, and AREA and Pyth are also associated with this 
discrimination axis. 
 Various hypothesis tests indicated that the separation along the first, second and 
third axes were significant.  These tests are based on normality.  Among the other 
numerical output of DA is a classification table (Table 6 below).  Rows of the table 
correspond to group memberships.  Columns refer to the group to which the observation 
was classified by the algorithm. 
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Figure 5.  DA results using all 19 variables; axes 3 versus 4.  Upper left: scores of axes 
3 and 4.  Upper right: confidence bands indicating the 90% probability of finding the real 
population averages.  Lower left: correlations between axes and original explanatory 
variables.  Lower right: correlation between axes and original explanatory variables 
larger than 0.5. 

   
 
Table 6.  Classification table derived from the discriminant analysis on 19 variables. 
   
 11 12 14 15 16 17 18 19

11 10.00   1.00   3.00  1.00  0.00  5.00  2.00  0.00
12  2.00  25.00   0.00  2.00  0.00  0.00  3.00  0.00
14  4.00   0.00  30.00  0.00  0.00  1.00  0.00 2.00
15  0.00   0.00   0.00  20.00  0.00  0.00  0.00  0.00
16  0.00   0.00   0.00  0.00  30.00  0.00 0.00 0.00
17  5.00  0.00   0.00  0.00  0.00  23.00 3.00 1.00
18  3.00  0.00   0.00  0.00  0.00  3.00 19.00 2.00
19  0.00   1.00   2.00 1.00 0.00  1.00 0.00  26.00
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     This output is interpreted as follows.  Twenty-two samples were classified as 
from area 11 (Celtic Sea 2003).  In the full 7-dimensional discriminant ordination 
diagram, ten of them were the closest to the group average of area 11.  Therefore, ten 
out of the twenty-two samples were classified correctly.  One sample was classified as 
from area 12 (Donegal 2003), three samples as from area 14 (Irish Sea), etc.  Using this 
information, percentages of correctly classified samples can be calculated.  
 
Table 7.  The percentages of correctly classified samples per group. 
 

Area % correctly classified 
11   45.45 
12   78.12 
14   81.08 
15 100.00 
16 100.00 
17   71.87 
18   70.37 
19   83.87 

 
 Thus all samples from areas 15 (Cape Wrath) and 16 (Rügen) were able to be 
classified correctly.  Area 11 (Celtic Sea 2003) gave the lowest score, followed by areas 
18 (Donegal 2004) and 17 (Celtic Sea 2004).  The hit ratio (percentage of all correctly 
classified samples) and the maximum chance criterion (percentage of correctly classified 
samples relative to chance) are 79.22 and 16.02 respectively.  Thus we could have 
classified 16.02% of the samples correctly by chance alone.  In this analysis 79% of the 
samples were classified correctly.  Another way to check whether the classification rate 
of 79% could have been obtained by chance is by using the Press Q statistic.  Its value 
is 940.191, which is highly significant as the critical value (p< 0.01) is 6.63.  Therefore 
the classification rate of 79% is significant. The problem with the interpretation of 
classification results in DA is that it is recommended (Huberty, 1994) that the smallest 
group should have a sample size of at least 3 times the number of variables (19 in this 
case), which is 57 in this case (3*19).  Hence, these classification results should be 
interpreted with care. 
 
Classification techniques 
 The classification tree is presented in Figure 6.  It reads as follows.  If a sample 
has RES_DPP>3.275 (or better: a residual DPP value of more than 3.275), then the 
sample is from area 12 (Donegal 2003).  This is the left branch.  The numbers below 
each area are the classification scores.  The leaf was labelled as area 12 since that area 
had the highest score: 1 from area 11, 25 from area 12, 2 from area 14, 6 from area 15 
etc.  This part of the tree indicates that area 12 (Donegal 2003) can be singled out based 
on high (residual) DPP values, and there are only a few misclassified samples: 1 from 
area 11, etc. 
 If RES_DPP<3.275, then we follow the right branch of the tree and the samples 
are split up again based on Mg25, but now the cut-off value is 1.85.  Within this branch, 
the left sub-branch has HH as the next criterion, and the right sub-branch uses Ba137. 
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RES_DPP>=3.275

Mg25< 1.85

RES_HH>=-0.795 Ba137< 1.295

RES_OD>=-0.305

12
1/25/2/6/3/2/4/3

14
8/1/10/1/0/0/0/0

16
0/0/1/1/20/0/0/0

17
11/1/21/1/2/31/8/4

15
1/1/0/12/0/1/7/2

19
2/4/3/0/5/2/12/22

 
Figure 6.   Classification tree. The tree was pruned using the 1-SE rule. 

 
 Following all the branches in the tree, the classification tree shows that one can 
discriminate samples from: 

• Area 12 (Donegal 2003) based on large (residual) DPP values. Samples in this 
area can be discriminated from the other areas because of large RES_DPP 
values. 

• Area 14 (Irish Sea) based on smaller RES_DPP values (<3.275), small Mg25 
(<1.85) and large HH (>-0.795) values. 

• Area 16 (Rügen) based on smaller DPP values (<3.275), small Mg25 (<1.85) and 
small HH (<-0.795) values. 

• The classification rules for samples from area 17 (Celtic Sea 2004) involve 
RES_DPP, Mg25, Ba137 and RES_OD. 

• The same holds for area 15 (Cape Wrath). 
• Area 19 (North Minch) involves RES_DPP, Mg25 and Ba137. 

 
 The classification scores at the bottom of each branch show that areas 12, 16, 15 
and 19 are classified without too much error.   Areas 14 (Irish Sea) and 15 (Cape Wrath) 
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have a large classification error (for example, 8 samples from area 14 (Irish Sea) were 
classified as area 11 – Celtic Sea 2003).  The same holds for areas 15 (Cape Wrath) 
and 17 (Celtic Sea 2004).  Areas 11 (Celtic Sea 2003) and 18 (Donegal 2004) were 
unable to be discriminated using this method. 
 We also applied a classification tree model that included the variables length, 
mass, sex, etc.  Some of these variables could be equated to the use of life-history 
parameters as discriminatory variables, being broadly equivalent to length or mass at 
maturity.  The analysis indicated that most of the latter variables could be more 
important than the morphometric, parasite and otolith micro-chemistry variables for 
classifying the samples (Figure 7).  Area 17 (Celtic Sea 2004) can be discriminated 
based on smaller mass, and area 16 (Rügen) on larger length. For smaller fish with a 
smaller body mass at maturity, RES_DPP is important (area 12 – Donegal 2003). 
  

 
Discussion 

 
 In this paper, two statistical techniques have been discussed in detail, namely 
discriminant analysis (DA) and classification tree models.  All analyses were carried out 
using variables measured on the same individual fish, leading to a lower than planned 
sample size from each spawning aggregation sampled.  For these analyses we have 
had to assume that these fish are representative of each of the sampled aggregations 
(and hence populations).  
 The DA showed that 57% of the variation could be associated with differences 
between areas 16 (Rügen – the biological outlier) and 15 (Cape Wrath), and to a lesser 
extent also areas 17 (Celtic Sea 2004) and 12 (Donegal 2003).  Important variables 
seem to be Na23, RES_HH and RES_OD.  Another 32% of variation could be related to 
differences between areas 14 (Irish Sea), 19 (North Minch) and 12 (Donegal 2003) with 
RES_LA, AREA and Pyth as the most important variables.  Another way of determining 
which variables are important is the backward selection method using the total sum of 
Mahalanobis distance.  This method works on differences between groups in the 7-
dimensional space (hence not only on the first 4 axes).  Using this method, all five 
morphometric variables were deemed best for discrimination, followed by Na23, Anis and 
three of the four other chemical variables.  Of the different methods used to assess the 
importance of the variables for discrimination, the Mahalanobis approach is probably the 
best, and most statistically informative, one. 
 Classification trees applied on the 19 selected variables singled out area 12 
(Donegal 2003) based on RES_DPP.  Areas 12 (Donegal 2003), 16 (Rügen) and 19 
(North Minch) were classified without too much error.  Interestingly, including mass, 
gutted mass, length, sex, etc. into the tree model showed that area 17 (Celtic Sea 2004) 
could be singled out based on low gutted mass values and area 16 (Rügen) on larger 
lengths.  For the remaining samples, RES_DPP was the important variable; it classified 
samples from area 12 (Celtic Sea 2003).   
 Application of other statistical methods like neural networks and multivariate 
regression trees gave similar results.  For example, the neural network analysis 
generated similar classification scores to those produced in the classification table from 
the DA.  The multivariate regression tree analysis showed that we were able to make a 
similar classification of samples in that the same populations were able to be (or not) 
discriminated. 
 Currently our multinomial logistic regression model is over-parameterised and 
unable to be run.  Decisions on further selection/de-selection of variables will need to be 
made (and these will be made as more samples become available). 

 14



Tree models

|gutted_mass< 99.25

total_length< 29.25

RES_DPP>=3.275

RES_AREA>=0.375

17
19/1/13/0/0/35/0/8

12
0/25/1/6/1/0/4/2

14
2/1/15/1/0/0/1/1

18
2/5/7/14/7/1/25/20

16
0/0/1/0/22/0/1/0

 
Figure 7. Optimal classification tree using all variables. 

 
 It is not our intention in this paper to go into the detail of why particular areas may 
be more adequately separated than other, or why some variables might be more 
informative than others.  To begin with we have not yet managed to derive a useful (or 
manageable) genetic data set from the initial nine spawner samples into a format that 
can be included in this level of analysis and it is critical to have a genetic technique 
included for a full comparison of techniques (Begg and Waldman, 1999).  Furthermore, 
our ultimate aim is to use the best mix of variables that discriminate between the 
reference (spawner) collections in a mixed-stock approach to determine what possible 
mixtures of adults (and juveniles) may exist in the different ICES stock areas.  To predict 
membership of putative spawning aggregations in potential admixtures of non-spawning 
adults collected in the four major areas in two different years it will be necessary to drop 
the Rügen sample (our biological outlier) from any future analysis of the sort presented 
here, because the prediction rules should be determined from the western stock 
complex samples only. 
 Nevertheless, the exercise presented here has been both a useful and an 
informative one.  We have demonstrated that the multivariate statistical techniques 
employed are able to discriminate between the different areas and groups.  The Rügen 
sample (area 16) was the first to be discriminated on axis 1 of the DA as it is the most 
distinct of the groups.  However, it is not responsible for the majority of the variation 
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seen (accounting for just over a third of the 90% of variation seen in the first four axes).  
This gives some comfort that the western groups alone will be able to be distinguished in 
future analyses.  Despite its strong differentiation from the rest of the groups/areas it was 
not, however, the only population to be perfectly discriminated in the DA classification 
table, as the Cape Wrath sample (area 15) was also perfectly classified.   
 It seems probable that life-history parameters will also be informative 
discriminators of the various stocks within the western stock complex and we can 
determine some parameters from the data we have and feed these into future analyses. 
 Our major drawback is that we have a good number of fish analysed for some 
techniques and very few analysed for others and this means that we are currently unable 
to carry out some of the statistical analyses we were hoping to perform.  It is hoped that 
our experience of sampling within the first year of the project will lead to better 
comparison of samples in the second year and therefore in the final analysis. 
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