
   

ICES WKDRCS Report 2006 
ICES Oceanography Committee 

ICES CM 2006/OCC:12 
REF. ACFM, ACE, RMC 

 

Report of the Workshop on the Decline 
and Recovery of cod Stocks throughout 

the North Atlantic, including tropho-
dynamic effects (WKDRCS) 

9–12 May 2006 

St.John's, Canada 

 

 



 

International Council for the Exploration of the Sea 
Conseil International pour l’Exploration de la Mer 
H.C. Andersens Boulevard 44-46 
DK-1553 Copenhagen V 
Denmark 
Telephone (+45) 33 38 67 00 
Telefax (+45) 33 93 42 15 
www.ices.dk 
info@ices.dk 

Recommended format for purposes of citation: 
ICES. 2006. Report of the Workshop on the Decline and Recovery of cod Stocks throughout 
the North Atlantic, including tropho-dynamic effects (WKDRCS), 9–12 May 2006, St.John's, 
Canada. ICES CM 2006/OCC:12. 155 pp. 
For permission to reproduce material from this publication, please apply to the General 
Secretary. 

The document is a report of an Expert Group under the auspices of the International Council 
for the Exploration of the Sea and does not necessarily represent the views of the Council. 

© 2006 International Council for the Exploration of the Sea. 



ICES WKDRCS Report 2006 |  i 

Contents 

Executive Summery ......................................................................................................... 1 

1 Overview................................................................................................................... 3 
1.1 Introduction ..................................................................................................... 3 
1.2 Terms of reference........................................................................................... 3 
1.3 Preparation for the Workshop.......................................................................... 4 
1.4 Workshop structure and working procedure.................................................... 4 
1.5 List of participants ........................................................................................... 4 

2 Results and conclusions with regard to terms of reference.................................. 5 
2.1 ToR a) Provide an overview and comparison of the declines which have 

taken place in cod stocks ................................................................................. 5 
2.2 ToR b) Evaluate the relative roles of fishing and climate in causing 

declines in abundance.................................................................................... 10 
2.2.1 Attribution ........................................................................................ 10 
2.2.2 Effects of fishing and environment in causing stock decline............ 10 
2.2.3 Trends in fishing mortality and biomass – NW Atlantic cod 

stocks ................................................................................................ 11 
2.2.4 Trends in fishing mortality and biomass - NE Atlantic cod stocks... 13 
2.2.5 Interaction between fishing and climate ........................................... 14 

2.3 ToR c) Evaluate the causes of observed changes in rates of survival, 
growth and maturity, including a tropho-dynamic perspective ..................... 15 
2.3.1 Growth and survival ......................................................................... 15 
2.3.2 Maturity ............................................................................................ 17 

2.4 ToR d) Evaluate the consequences for stock resilience of decreases in 
mean weight and length and age/size diversity.............................................. 19 

2.5 ToR e) Document and comment on historic evidence of previous cod 
stock recoveries and the environmental and fisheries circumstances in 
which these occurred ..................................................................................... 21 

2.6 ToR f) Comment on past projections of cod stock recovery, evaluate 
whether they were correct and draw conclusions concerning how future 
projections can be improved.......................................................................... 24 

2.7 ToR g) Evaluate the role of cod forage species (e.g. capelin) for 
variability in abundance and size-at-age of cod............................................. 25 
2.7.1 Cod size-at-age and condition........................................................... 25 
2.7.2 Cod abundance.................................................................................. 25 

2.8 ToR h) Evaluate the role of cod predators (e.g. seals) for variability in 
abundance and size-at-age of cod .................................................................. 27 

2.9 ToR i) Evaluate the role of climate mediated through cod predators and 
prey................................................................................................................ 28 

2.10 ToR j) Evaluate the relationship between the decline and recovery of cod 
stocks and changes in the marine ecosystems................................................ 29 
2.10.1 Effects of Atlantic Multidecadal Oscillations (AMO) versus 

decadal-scale and interannual climate variations.............................. 29 
2.10.2 Ecosystem effects on the individuals stocks ..................................... 31 
2.10.3 Concluding remarks.......................................................................... 33 

3 Suggestions for future work and recommendations ........................................... 34 

4 References .............................................................................................................. 35 



ii  |  ICES WKDRCS Report 2006 

 

Annex 1: List of participants ....................................................................................... 45 

Annex 2: Agenda........................................................................................................... 48 

Annex 3: Extended abstracts of presentations ........................................................... 51 

Annex 4: Recommendations ...................................................................................... 155 

 

 



ICES WKDRCS Report 2006  |  1 

Executive summary 

Atlantic cod (Gadus morhua) stocks respond to long-term climate changes, such as the 
warming of the North Atlantic during the 1920s and 1930s, when cod increased rapidly in 
abundance off West Greenland and spread far to the north. At the same time there was 
increased recruitment at Iceland and increased abundance and northward expansion in the 
Barents Sea. By the time that the waters at West Greenland cooled in the late 1960s, the cod 
stock biomass had declined greatly from its peak in 1949. Both climate and the fishery 
contributed to the subsequent collapse of the stock, but it is not possible to make a quantitative 
attribution and the factors interact.  In this and other cases the effective environmental factors 
include plankton production and other ecosystem effects.  These factors often co-vary with 
temperature change, making it difficult to separate them from direct effects of temperature on 
growth, survival and recruitment.  

Cod have been subjected to changes in climate and fishing intensity for centuries, but detailed 
information on declines and recoveries comes mainly from the past 30–40 years, which is a 
short time span relative to many natural phenomena. All stocks, with the exception of the 
Celtic Sea, have suffered prolonged periods of decline since 1970. Comparison between NW 
and NE Atlantic stocks reveals two major differences: (i) most NW Atlantic stocks share a 
pattern of increase and decline in biomass, whereas the NE Atlantic stocks do not, and (ii) 
although fishing mortality is generally higher on NE than on the NW Atlantic cod stocks, the 
declines in biomass were much greater in the NW Atlantic than in the NE. Directed fishing 
was halted during the early 1990s for all NW Atlantic shelf stocks from the eastern Scotian 
Shelf northward. All these stocks have since been characterized by low productivity, and 
several have shown no sign of recovery after more than a decade without directed fishing. The 
NW Atlantic stocks from the eastern Scotian Shelf northward inhabit areas with average 
temperatures below 4oC and in all of them the mean weight-at-age began a period of decline 
before the biomass declined.  The NE Atlantic stocks all inhabit areas with average 
temperatures above 4oC and showed less variability in mean weight-at-age. 

Both fishing and climate are implicated in the declines in cod stock biomass since 1970.  In 
the NW Atlantic the fishing mortality increased until moratoria were imposed in the early 
1990s.  The decline in biomass was caused by fishing, but changes in the productivity of the 
stocks contributed to the collapse and there is good evidence that the decline in biomass also 
caused fishing mortality to increase. Fisheries management must be sensitive to possible 
changes in stock productivity and must either respond quickly, to prevent increased mortality 
and further stock decline, or regulate fishing in a precautionary way, which is robust to 
uncertainties about stock productivity.   

Changes in weight-at-age are an important component of the variation in productivity of 
coldwater cod stocks. Variation in weight-at-age appears to be mainly due to changes in the 
environment. In the S. Gulf of St. Lawrence density-dependent growth and changes in the 
direction of size selective fishing mortality appear to be the most important factors and here 
size-at-age has remained low despite good conditions for growth and low fishing mortality. 
Age and size at maturity have declined in many stocks and there appears to be a genetic 
component to this change, in response to fishing (where it has been investigated – Arcto-
Norwegian cod, S. Labrador, S. Gulf of St Lawrence).  Early maturity gives a selective 
advantage under most high mortality regimes, but reduces population productivity if fishing 
mortality is reduced. The reversion to older ages and larger sizes at maturity will be slow if 
additive genetic variance has been depleted. 

The risk of stock collapse increases when stock productivity declines. Some of the life-history 
characteristics (growth and maturation in particular) governing productivity can be monitored 
by sampling commercial and research catches and may give timely indications of changes in 
productivity and risk of collapse.  In order to develop their routine use in assessing risk of 
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collapse under different fisheries management strategies, indicators of possible change in 
productivity (weight-at-age, condition, liver index, maturation reaction norms) should be 
investigated using tropho-dynamic, life history and risk assessment models.  

Mean age and age diversity of spawners (and SSB) declined in many stocks in response to 
fishing. In many (but not all) stocks, this has resulted in a decline in recruitment rate. In Arcto-
Norwegian and Icelandic cod resilience to climate change has been shown to decrease as mean 
age of spawners declined. 

For all cod stocks, the kinds of prey and their abundance and availability vary over time. The 
boreal ecosystems and the Baltic Sea tend to have a narrower field of potential prey than the 
more southern ecosystems, and changes in the abundance or distribution of major forage 
species (e.g. capelin, herring) might cause food shortages for cod. This could lead to declines 
in condition and consequent reductions in reproductive output and even survival. Declines in 
prey availability have been implicated in declines in cod productivity that have lasted from 
one to several years, but such variability in prey has seldom been implicated as a major factor 
in cod stock declines. There have been suggestions that low abundance of prey may be 
impeding stock recovery in some areas, such as the offshore of eastern Newfoundland. 

When cod stocks decline to very low abundance, the relative importance of factors governing 
dynamics and productivity can change. When a stock is relatively large, it may be able to 
sustain predation and maintain itself at relatively high abundance even when subjected to a 
fishery. However, if the stock has declined in abundance, for whatever reason, and predator 
populations have not declined, or may even have increased, then high predation mortality may 
impede or prevent recovery. Such impacts may occur via predation by pelagic fish on eggs 
and larvae of cod, as has been hypothesized for cod in the Baltic Sea, on the eastern Scotian 
Shelf and in the southern Gulf of St. Lawrence. It may also occur via predation on juvenile 
cod and perhaps even adult cod by larger predators such as seals, as has been hypothesized for 
the eastern Scotian Shelf, the southern and northern Gulf of St. Lawrence, and eastern 
Newfoundland. 

In some stocks e.g. southern Gulf of St Lawrence, high natural mortality has replaced high 
fishing mortality, preventing recovery even when fishing pressure is low.  No substantial 
increase in the biomass of Baltic cod can be expected without a change in environmental 
conditions favouring better recruitment (even at FPA, which is 65% of the current fishing 
mortality). 

A general conclusion from the experience off eastern Canada is that humans may have limited 
ability to “rebuild” cod stocks that have declined to very low levels. Simply turning off 
directed fishing may be insufficient to promote recovery. The properties of the stocks 
themselves and the state of the ecosystems in which the cod are embedded may be such that 
the stocks remain constrained to their new levels of low abundance for a considerable time. 
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1 Overview 

1.1 Introduction 

Many of the cod stocks around the North Atlantic have experienced similar trends in 
abundance, from high values in the 1960s that in some cases persisted into the 1970s and 
1980s, to lower levels in recent years. Indeed, some Northwest Atlantic stocks declined to 
extremely low levels by the early 1990s and have not shown signs of recovery, despite fishing 
moratoria that have been in effect for more than a decade. However, the history of cod stocks 
during the past 3–4 decades has not been one of continuous decline. Some Northwest Atlantic 
stocks increased during the 1980s after reaching low levels during the 1970s, and stocks in the 
Northeast Atlantic have experienced both increases and decreases. Many of these stocks have 
also experienced changes in size-at-age and declines in age at maturity. While fishing 
mortality has obviously played a dominant role in the dynamics of most of these stocks, it is 
clear that changes in the environment have contributed to changes in recruitment, growth and 
natural mortality. Comparisons among stocks may help illuminate the relative roles of changes 
in fishing pressure, the physical environment (especially temperature) and the biotic 
environment, both predators and prey. 

Consequently, the ICES/GLOBEC Working Group on Cod and Climate Change held a 
Workshop on The Decline and Recovery of Cod Stocks Throughout the North Atlantic 
including tropho-dynamic effects in May 2006, with the aim of reviewing and synthesizing 
knowledge regarding factors influential in the decline and recovery of cod stocks. Given the 
state of several cod stocks in the Northwest Atlantic, much of the discussion concerned 
reasons for non-recovery. 

1.2 Terms of reference  

According to C.Res. 2005/2/OCC12 the Workshop on the Decline and Recovery of Cod 
Stocks throughout the North Atlantic including tropho-dynamic effects [WKDRCS] (co-
convened by Brian Rothschild, USA; George Lilly, Canada; Svein Sundby, Norway, and Kai 
Wieland, Greenland) was held in St. John’s, Canada, during 9–12 May 2006 to: 

a ) provide an overview and comparison of the declines which have taken place in  
cod stocks; 

b ) evaluate the relative roles of fishing and climate in causing declines in 
abundance; 

c ) evaluate the causes of observed changes in rates of survival, growth and maturity, 
including a tropho-dynamic perspective; 

d ) evaluate the consequences for stock resilience of decreases in mean weight and 
length and age/size diversity; 

e ) document and comment on historic evidence of previous cod stock recoveries and 
the environmental and fisheries circumstances in which these occurred; 

f ) comment on past projections of cod stock recovery, evaluate whether they were 
correct and draw conclusions concerning how future projections can be 
improved; 

g ) evaluate the role of cod forage species (e.g., capelin) for variability in abundance 
and size-at-age of cod; 

h ) evaluate the role of cod predators (e.g., seals) for variability in abundance and 
size-at-age of cod; 

i ) evaluate the role of climate mediated through cod predators and prey; 
j ) evaluate the relationship between the decline and recovery of cod stocks and 

changes in the marine ecosystems. 
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WKDRCS will report by 10 June 2006 for the attention of the Oceanography Committee and 
ACFM, ACE, and RMC. 

The co-convenors received a note from the ICES secretariat on 27 April that ‘it has been 
requested from the ICES Advisory programme if a draft version of the WKDRCS report 
would be available for the ACE (24–26 May) and ACFM (25 May–1 June) meetings’. 
According to this request, a draft executive summary with the main results and conclusions 
was prepared for presentation by Keith Brander during the ACE and ACFM meetings.  

1.3 Preparation for the Workshop 

In preparation for the Workshop, the ICES/GLOBEC coordinator established a website within 
the ICES/GLOBEC website (http://www.ices.dk/globec/) to facilitate communication among 
the participants before and after the workshop. Terms of reference and practical information 
were posted before the meeting. Data pertaining to many of the cod stocks and several papers 
of interest to the workshop were also posted.  Leif Christian Stige and Peter Shelton provided 
valuable assistance and guidance in preparing the data sets. 

Participants were asked to provide working papers, abstracts or electronic copies of 
presentations for review prior to the meeting, and these also were posted. 

1.4 Workshop structure and working procedure 

Participants are listed in the following Section and Annex 1. The agenda for the Workshop as 
adopted during the opening session of the meeting is provided in Annex 2.  

The Workshop was divided into three activities: (i) presentations, (ii) break-out groups to 
discuss individual terms of reference and (iii) plenary review of major conclusions. It was 
found that the 18 presentations took much longer than expected, leaving insufficient time to 
discuss each term of reference in plenary as had initially been intended. Instead, each term of 
reference was discussed by one of four break-out groups. The break-out groups then brought 
the major conclusions back into plenary for review. 

Each participant who made a presentation was asked to write an extended abstract that should 
summarize the information that he or she presented. The abstracts are provided in Annex 3 in 
the sequence of presentation. At the start of Annex 3 is a table that lists the first author of each 
abstract and indicates which terms of reference were addressed. 

A contribution on Baltic cod was received from Fritz Köster (Denmark), who was unable to 
attend the Workshop 

1.5 List of participants 

There were 19 participants, including representatives from 8 countries (Austria, Canada, 
Greenland, the Netherlands, Norway, Spain, Sweden and USA) and the ICES/GLOBEC 
Coordinator.  

Keith Brander  ICES/GLOBEC Coordinator 
Paul Budgell  Norway 
Jim Carscadden Canada 
Ghislain Chouinard Canada 
Niels Daan  Netherlands 
Ken Drinkwater Norway 
Katja Enberg  Austria 
Mike Hammill Canada 
George Lilly  Canada (Co-convener) 
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Anne Lucas  Norway 
Geir Ottersen  Norway 
Aqqalu Rosing-Asvid Greenland 
Brian Rothschild USA  (Co-convener) 
Garry Stenson  Canada 
Svein Sundby  Norway  (Co-convener) 
Henrik Svedäng Sweden 
Doug Swain  Canada 
Antonio Vázquez Spain 
Kai Wieland  Greenland (Co-convener) 

Participants’ affiliations, telephone numbers and e-mail addresses are provided in Annex 1. 

2 Results and conclusions with regard to terms of reference 

2.1 ToR a) Provide an overview and comparison of the declines which 
have taken place in cod stocks 

The analysis presented here is for the most part based on information for the period since 
1970, because the quality and duration of the time-series available for comparison across 
stocks diminishes prior to then.  The location and nomenclature for the stocks is given in 
Figure 1.  The best single source of data and analysis for the period prior to 1970 is the Cod 
and Climate Change Symposium held in Reykjavik in 1993 (ICES Marine Science Symposia, 
Vol. 198, 693pp).  The ICES/GLOBEC report on “Spawning and life history information for 
North Atlantic cod stocks” (ICES Cooperative Research Report, No. 274 (ICES, 2005a)) also 
includes much useful background information.  The extended abstract by Drinkwater (Annex 
3, Extended abstract 2) deals with the expansion and subsequent decline in the major cod 
stocks, which occurred during the period from 1920–1970 and which can be confidently 
ascribed, at least in part, to the multidecadal changes which occurred in climate.  (This is 
discussed more fully under ToR e in Section 2.5). 

Total landings of North Atlantic cod (Gadus morhua) declined from over three million tons in 
1970 to less than one million tons in 2000 (Figure 2) due to changes in total stock biomass, for 
which the term “collapse” has frequently been used (Harris, 1998). The downward trend has 
been particularly marked in the NW Atlantic, where fisheries for cod on most of the Canadian 
shelf have been stopped or severely restricted since the early 1990s, with the aim of allowing 
the stocks to recover. There are as yet few signs of recovery in most Canadian stocks. The 
declines which have occurred in the NE Atlantic stocks, while serious, have not been as 
extreme as those in the NW Atlantic (Figure 3 and Table 1 column 7) and cod fisheries have 
continued, with restrictions on total catch and some seasonal and area closures. 
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Figure 1.  Names of stocks that correspond to the area codes given in Table 1.  1-S.Newfoundland, 
2-W. Scotian Shelf, 3-Gulf of Maine, 4-Georges Bank. The divide between NE and NW Atlantic 
falls between East and West Greenland.  NEAFC region 1 includes the E Greenland, Iceland, 
Faroe and Arcto-Norwegian stocks.  The other NE Atlantic stocks (excluding the Baltic) are in 
NEAFC region 2. 

 

 

Figure 2.  Total landings of cod. 

Moving window time series analysis can be used to provide rule-based definitions of “periods 
of decline and recovery”, characterised by their duration and amplitude.  The rule used here to 
define “prolonged” is a period in which there is a decline in at least 5 years within any 7-year 
window. The amplitude (or % decline) can be estimated as the value at the end of the period of 
decline divided by the value at the beginning.  The outcome of applying these definitions can 
be seen in columns 6 and 7 of Table 1. 

A working definition of a collapsed stock is one which has declined to 5% or less of the 
biomass that it had at the beginning of the period of decline. A further important characteristic 
of a collapsed stock is whether (or over what time scale) the decline is reversed.  One can 
propose at least three possibilities: In the first of these, the stock immediately begins to 
recover when the adverse factors causing the collapse (excessive fishing; adverse 
environment) cease. In the second, the stock remains collapsed because the adverse factors 
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continue. In the third, the adverse factors cease, but the stock remains collapsed because of a 
system change, which is not reversible in the short or medium term (e.g. ecosystem change, 
predator pit, depensatory relationship between stock and recruitment, change of the genetic 
structure of the stock). 

Trends in total biomass since 1970 are shown in Figure 3 and the periods of prolonged decline 
in biomass are marked by a sequence of open boxes along the x-axis.  Comparison between 
NW and NE Atlantic stocks reveals two major differences: (i) the NW Atlantic stocks show 
shared patterns of increase and decline in biomass, whereas the NE Atlantic stocks do not (ii) 
the decline in the NW Atlantic stocks was much greater than in the NE Atlantic.  A further 
major difference (Table 1 column 4) is that all the NW Atlantic stocks considered, with the 
exception of Georges Bank, live in areas where the average annual bottom temperature is 
below 4oC, whereas all the NE Atlantic stocks are in warmer average temperatures.  Since the 
relationship between temperature (T) and growth rate (g) and recruitment (R) is roughly 
parabolic (Brander, 2000), dg/dT and dR/dT decline as temperature increases.  The effects of 
temperature variability are therefore expected to be greater at low (e.g. <4oC) than at high e.g. 
(>4oC) temperatures. 

The six cod stocks in Canadian waters all experienced a prolonged period of decline which 
began in the mid 1980s and ended in the mid 1990s. The decline in biomass in these six stocks 
was in every case preceded by a decline in the mean weight-at-age (marked by arrows on 
Figure 3). The relationship between changes in mean weight-at-age, temperature and biomass 
is discussed in the extended abstract and paper by Brander.    
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Table 1.  Stock names, area codes and data sources. Areas occupied by each stock are taken from 
Myers et al. (2001).  Mean bottom temperatures are from Brander (1995) and Myers et al. (2001). 
Year ranges are the first and last years of “periods of prolonged decline” identified using seven 
year moving-window time-series analysis. 

Cod Stock 
NAFO or 
ICES 
code 

Area 
(km2) 

Temp. 
oC 

Age 
range 
biomass 

Period of 
declining 
biomass 

% 
decline Data sources and ICES 

assessment WG codes 

S Labrador 2J3KL 253492 0 3-13 1985-95 5% 
(Bishop et al. 1993); (Lilly 
et al. 2003); (Lilly and 
Murphy, 2004) 

S. Grand Bank 3NO 121246 1.75 3-13 1984-95 3% (Healey et al. 2003) 
S. Newfoundland 3Ps 70510 2.5 3-13 1985-93 26% (Brattey et al. 2003) 
N Gulf 3Pn4RS 89041 1 3-13 1983-94 6% (Fréchet et al. 2003) 
S. Gulf 4TVn 118343 1.75 3-15 1986-93 20% (Chouinard et al. 2003) 
E. Scotian Shelf 4VsW 102428 3.75 1-15 1985-93 10% (Mohn et al. 1998) 

Georges Bank  5Z 102596 8 1-10 1988-95 27% (Hunt and Hatt, 2002); 
(O'Brien et al. 2002) 

Greenland 
offshore 

NAFO1 
ICES 
XIV 

 1.6 3-10 1966-75 5% NWWG (ICES, 1996) 

Arcto-Norwegian I,II 592610 4 3+ 1993-
2000 44% AFWG (ICES, 2005b) 

Iceland Va 237031 5.8 3+ 1987-94 49% NWWG (ICES, 2005c) 
Faroe Vb1 36236 7.4 2+ 1984-91 19% NWWG (ICES, 2005c) 

E. Baltic IIId, 25-
29 216833 5 2-7 1983-92 20% WGBFAS (ICES, 2005c) 

North Sea IIIa,IV,V
IId 539823 8.6 1-10 1980-93 33% WGNSSK, (ICES, 2006a) 

Irish Sea VIIa 48263 10 1-6 1987-96 38% WGNSDS (ICES 2006b) 
Celtic Sea VIIe-f 155358 11 1-6 none none WGSSDS (ICES 2006c) 

With the exception of the Celtic Sea, NE Atlantic cod stocks also declined after 1970, but the 
declines do not share a common pattern and are much smaller than those among the Canadian 
stocks. In the NE Atlantic there have also been a number of periods of rapid increase in total 
biomass. For example, the stock at Faroe declined to 19% over the period from 1984–91, but 
increased quickly to the 1984 level by 1996. On both sides of the N Atlantic, changes in mean 
weight-at-age are smaller in the warmer water stocks (Georges Bank, North Sea, Irish Sea and 
Celtic Sea) and there are no prolonged periods of decline in weight-at-age in any of these 
areas, or in the Baltic.  

The offshore cod stock at Greenland is included in Table 1, but lacks a complete, consistent 
time series since 1992 because the biomass is too small to assess. A more detailed account of 
the periods of expansion and decline in the Greenland stock is provided in Annex 3, 
Presentation 7 by Wieland et al. and also in ICES Cooperative Research Report, No. 274.  For 
West Greenland, two prolonged periods of decline in total biomass can be distinguished, i.e. 
1950 to 1975 and 1987 to 1995, for which the proportion of biomass found in the final year of 
the period amounted to 2.7 and less than 1 % of the initial value, respectively. During each of 
the two periods, fishing mortality (or exploitation rate (catch/survey biomass)) increased 
considerably and the mean latitude of the catch (or survey biomass) decreased. No general 
relationship between mean latitude of the distribution and sea temperature was found, but the 
two variables were significantly correlated for the years 1987 to 1992. The latter suggests that 
decreasing temperature has accelerated a homing migration of maturing fish towards East 
Greenland (and further to Iceland) of those year-classes, which are assumed to have originated 
mainly from Iceland (see e.g. Storr-Paulsen et al., 2004). Results from multiple linear 
regression analysis indicate that fishing mortality together with emigration (but neither 
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temperature on its own nor recruitment failure) has been the ultimate cause for the decline in 
stock biomass in both periods (Table 1). 
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Figure 3.  Trends in total biomass for North Atlantic cod stocks.  The open squares along the axis 
represent prolonged periods of decline. The arrows indicate the beginning of periods of decline in 
weight-at-age (see Annex 3, Extended abstract 1). Data sources are shown in Table 1 

In summary, all N Atlantic cod stocks have suffered prolonged periods of decline since 1970, 
with the exception of the Celtic Sea.  5 NW Atlantic stocks began a period of decline in the mid 
1980s and the biomass at the end of the decline was 10% or less of the original level. These 
stocks all inhabit areas with average temperatures below 4oC and in all of them the mean 
weight-at-age began a period of decline before the biomass declined.  The NE Atlantic stocks, 
which are in average temperatures above 4oC, declined less than those in the NW Atlantic.   
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2.2 ToR b) Evaluate the relative roles of fishing and climate1 in causing 
declines in abundance 

2.2.1 Attribution 

Variation in fish stocks is driven principally by fishing and environmental factors, but it is 
difficult to evaluate their relative roles.  The problem of attributing cause or responsibility 
(also called the identifiability problem) is common to many fields and has its own literature 
(e.g. Stone and Allen, 2005).  An example is the case of the legal liability of the tobacco 
industry for smoking-induced damage to health. Of more relevance to fisheries is perhaps the 
question recently raised concerning the possibility of suing for damage to the climate (Allen, 
2003).  A formal attribution analysis requires one or more models which can simulate 
scenarios with and without the various factors under investigation and thus evaluate the 
contribution of each factor e.g. (Sarmiento et al., 2005). Such an analysis is more difficult if 
the factors are not independent of each other and one of the principal new findings which is 
reported here and in other recent literature is that the effects of fishing and environment 
interact.   

The information here is not a formal attribution analysis, but we provide some of the evidence 
which may be relevant to set up such an analysis.  There is no doubt that both fishing and 
environment can and have caused declines in fish abundance in the past. At long time scales 
environmental effects are obvious; one need only recall the history of the North Atlantic since 
the last glacial maximum (~18000 years ago) to appreciate that cod populations in most areas 
are relatively recent.  At shorter time scales the history of the cod population at Greenland in 
the 20th century shows how rapidly a population can expand during favourable environmental 
conditions (Wieland et al., Annex 3, Extended abstract 7). 

2.2.2 Effects of fishing and environment in causing stock decline 

A great deal of interesting new research is in progress on the history of fishing and its effects 
in causing stock declines (e.g. Poulsen et al., 2006; Jackson et al., 2001).  A factor such as 
fishing, which causes mortality to exceed natural mortality, results in reduced stock biomass. 
There is a compensatory increase in productivity, which results from the higher growth rate of 
the remaining (smaller) fish and from higher recruitment per unit biomass. The compensatory 
increase (which does not require density dependent growth) provides the surplus production 
on which a sustainable fishery can be based.  In a sustainable fishery the biomass levels out 
after the initial decline from the pristine state.  However if the biomass is reduced beyond the 
level which can be sustained by increasing recruitment per unit biomass, then the stock will 
continue to decline.  The greatest fishing mortality which a stock can sustain, without collapse 
is determined by the recruitment per unit biomass and not by biomass per se.  Recruitment per 
unit biomass depends on the condition, specific fecundity and egg quality of individual fish 
and on the survival of the progeny until they recruit to the adult stock.  Since all of these are 
affected by environmental conditions, so is recruitment per unit biomass.  This means that a 
stock which had previously been able to sustain a certain level of fishing mortality may no 
longer be able to do so if the environment becomes less favourable.  Several of the 
presentations at the workshop showed evidence that environmental and ecosystem changes 
had probably affected recruitment per unit biomass (e.g. Chouinard, Annex 3, Extended 
abstract 5; Ottersen, Annex 3, Extended abstract 8). 

The two factors, fishing and environment, differ in fundamental ways.  Fishing is, in principle, 
a controllable factor (although the past record of fisheries management suggests that in 

                                                           

1 The ToR asks about effects of “climate” but we have chosen to interpret this widely to include 
environmental factors at most time and space scales. i.e. most “non-fishing” factors.  In some cases 
biological environmental factors may have a strong influence via ecosystem and trophic linkages. 
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practice the control is very weak; Figure 4).  The environment is not controllable or at least the 
agencies through which it might be controlled are less direct and longer term.  Environmental 
factors can be regarded as having both positive and negative impacts on fish stocks, whereas 
the impact of fishing is principally negative.  Thus one can confidently attribute expansion of 
range or biomass to favourable environmental circumstances but rarely to favourable fishing 
practices.  There may be ways in which fishing can have positive impacts, via cultivator 
effects, or selection (including removal of predators or competitors) which favours particular 
desirable species or properties of populations.  It is unlikely that any of the recently observed 
declines in biomass can be attributed only to one factor. 

2.2.3 Trends in fishing mortality and biomass – NW Atlantic cod stocks 

Trends in fishing mortality over the period since 1970 are shown in Figure 4 and in a 
standardised form for five of the stocks in Figure 3 of the extended abstract by Rothschild 
(Annex 3, Extended abstract 3).  The years in which a period of prolonged decline in biomass 
began (from Table 1) are marked with an arrow for each stock.  The Canadian shelf stocks 
share a common pattern of decline in biomass, which began in 1984–85 in the northern areas, 
but there is no obvious, common, large-scale change in fishing mortality preceding the 
decline.  In fact the only clear common pattern of change in fishing mortality is that it 
increased in all areas in the years after the biomass had begun to decline. This suggests that 
the decrease in biomass may have played a role in precipitating the increase in fishing 
mortality, rather than (or as well as) the other way round. There are several reasons why 
fishing mortality can increase when biomass declines: (i) if weight-at-age declines, as it did in 
all these stocks, then an equivalent weight of catch consists of larger numbers of smaller fish 
(ii) a fixed TAC regime permits (and may promote) increased fishing mortality when biomass 
declines, particularly if catchability increases as the stock declines (see Rose and Kulka, 1999 
and Figure 5)  (iii) if fish are smaller or in poor condition due to declining weight-at-age then 
“high-grading” (increase in the proportion of discarded fish) may occur.  There can therefore 
be positive feedback if a decline in biomass, which may be due in part to fishing mortality, 
causes further increase in fishing mortality.  In the case of the Canadian stocks there is good 
evidence that the stocks became less productive from 1980, due to adverse environmental 
change, which resulted in reduced weight-at-age and later to reduced reproductive output 
(Drinkwater, 2002; Dutil and Brander, 2003; Shelton et al., 2006) see also extended abstracts 
by Rothschild (Annex 3, Extended abstract 3) and by Brander (Annex 3, Extended abstract 1).  
The environmental changes are not limited to changes in the physical environment and in 
some cases ecosystem and trophic effects may have been prominent.  Figure 4 in the extended 
abstract by Rothschild (Annex 3, Extended abstract 3) show the imputed stock-recruitment 
relationship for 9 NE Atlantic stocks and provides evidence that there may be depensatory 
effects at low stock sizes. 

If, as suggested (and further discussed below), there is interaction between effects of fishing 
and of environment on stock biomass then their influence cannot be separated.  It is quite 
possible that neither the fishing pressure nor the adverse environmental regime from the mid 
1980s would on its own have caused the NW Atlantic stocks to collapse.  One of the lessons 
from this is that fisheries management regimes must either be sensitive to possible changes in 
stock productivity (by monitoring growth, realised reproductive output, natural mortality and 
environmental trends) or regulate fishing in a precautionary way, which is robust to 
uncertainties about stock productivity. 
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Figure 4.  Trends in fishing mortality for North Atlantic cod stocks. The arrows indicate the 
beginning of periods of prolonged decline in biomass, as explained in Section 2.1.  Data sources 
and the age ranges for the averages are shown in Table 1.  Note that the scale for the E Scotian 
Shelf goes up to 2.5. 
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Figure 5.  Reported landings of cod in S. Newfoundland and Total Allowable Catches.  A 
prolonged decline in biomass began in 1985 (Table 1).  TACs remained unchanged until 1988 and 
then decreased by a small amount for a further four years. (Brattey et al., 2002) 

2.2.4 Trends in fishing mortality and biomass - NE Atlantic cod stocks 

The NE Atlantic stocks in Figure 4 all show rising trends in fishing mortality at annual rates 
ranging from 0.5% (Iceland) to 1.9% (Irish Sea) since 1970, with the exception of the Baltic, 
but there is no common pattern of shorter scale variability within this.  The biomass trends 
also lack an obvious common pattern, with periods of prolonged decline beginning at different 
times (Figure 4). A number of interesting questions, which are relevant to the attribution issue, 
arise from the comparing the cod stocks in the NE Atlantic with those in the NW Atlantic. For 
example, why are the declines in biomass less extreme and of shorter duration in the NE 
Atlantic, given that fishing mortality is generally higher?  Why is there no large-scale common 
pattern of increase and decline in the NE Atlantic similar to that which occurred in the NW 
Atlantic from 1976 to 1996? 

There are probably two principal reasons for these differences: (i) with the exception of 
Georges Bank, the NW Atlantic stocks all live at lower temperatures, and growth and 
recruitment are therefore more strongly affected by changes in temperature and (ii) the NW 
Atlantic cod stocks occupy an area, whose oceanographic characteristics are influenced by the 
cold Labrador Current.  The warmer water stocks in the NW Atlantic (Georges Bank, Flemish 
Cap) fit least to the general pattern of change in biomass. Many factors other than temperature 
are of course required to account for observed changes in growth and recruitment for 
particular areas and time periods (Swain et al., 2003).  Another factor which may be acting on 
all NW Atlantic stocks, but not on NE Atlantic cod is change in natural mortality (see Sections 
2.7 and 2.8), but there is very little information on possible changes in adult natural mortality 
for NE Atlantic stocks. 

The NE Atlantic stocks have higher growth rates, mature at younger ages, and have higher 
surplus production than the colder NW Atlantic stocks (Dutil and Brander, 2003).  The 
temperature ranges at which they occur are generally less extreme and therefore have less 
effect on growth and recruitment.  However once again the exceptions are instructive, since 
the NE Atlantic stock showing the most prolonged and profound decline in biomass since 
1970 is the E Baltic, which lies at the extreme of other environmental factors, including 
salinity and oxygen (Koster et al., 2005; Köster (Annex 3, Extended abstract 11)). 

It is certainly not the case that environmental factors are unimportant in accounting for 
changes in cod biomass in NE Atlantic stocks.  In fact they are implicated in almost every 
instance (Brander, 2005; Brander and Mohn, 2004; Stige L.C et al., 2006; Beaugrand et al., 
2003; Ottersen et al., 2006; Drinkwater et al., 2003; Koster et al., 2005; Steingrund and 
Gaard, 2005), but the contributions of fishing and environment and their interactions are not 
known.   
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One of the most interesting, paradoxical examples, for which no environmental influence has 
been claimed to date, is the Celtic Sea.  This is the cod stock living at the highest average 
temperature, with the highest growth rate, condition and surplus production.  It is also the only 
NE Atlantic stock showing a rising trend in biomass from 1970–2002 (by 1.6% annually) in 
spite of fishing mortality rates which have increased annually by 1.8% over this period.  The 
explanation of these trends poses a challenge for any model which purports to predict the 
effects of future climate change on cod stocks. 

2.2.5 Interaction between fishing and climate 

For the Canadian shelf a case was made above that the cod stocks became less resilient to 
fishing mortality because of changes to their productivity (growth and reproductive output) 
caused by adverse environmental changes.  This is an example of interaction between climate 
and fishing, but by no means the only one.  Several recent papers (Brander 2004; Brander and 
Mohn 2005; Ottersen et al. 2006; Stige in press) have explored the evidence that changes in 
stock biomass and demographic structure (principally age composition), which are mainly due 
to fishing, cause stocks to become more sensitive to environmental variability.  See also the 
extended abstract by Rothschild. 

For example Ottersen (Annex 3, Extended abstract 8) shows that the recruitment of Arcto-
Norwegian cod has become sensitive to temperature variability as the mean age in the 
spawning stock has declined.  The sensitivity of European shelf cod stocks south of 62oN to 
variability in the NAO appears to be high when spawning biomass is low (Brander, 2005).  
More recently Stige et al. (in press) have confirmed the geographic pattern of the influence of 
the NAO on North Atlantic cod stocks, but ascribed the increased sensitivity to a time trend 
(the causes of which are unknown).  

With regard to attribution and the relative roles of fishing and climate, one can conclude that 
there are interactions; stocks may become more sensitive to the effects of fishing when climate 
conditions are adverse and more sensitive to climate when fishing causes changes in 
population processes (growth, condition, maturity, fecundity, realised reproductive output and 
natural mortality) and in demographic properties (age structure, geographic sub-structure). 
Many of these processes and properties are quite easy and cheap to monitor in a timely way, in 
order to give advance warning of changes in sensitivity and thus help to evaluate the risks to 
future trends in biomass with greater confidence. 
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Figure 6.  The correlation between sea temperature on the Kola Section and recruitment to the 
Arcto-Norwegian cod stock is higher when the mean age in the spawning stock is low (see Ottersen 
(2005) and Ottersen (Annex 3, Extended abstract 8) for more details). 

In summary, both fishing and climate are implicated in the declines in cod stock biomass since 
1970.  In the NW Atlantic the fishing mortality increased until moratoria were imposed in the 
early 1990s.  The decline in biomass was caused by fishing, but changes in the productivity of 
the stocks contributed to the collapse. There is good evidence that the decline in biomass 
causes fishing mortality to increase. Fisheries management must be sensitive to possible 
changes in stock productivity and must either respond quickly, to prevent increased mortality 
and further stock decline, or regulate fishing in a precautionary way, which is robust to 
uncertainties about stock productivity.  Fishing mortality on NE Atlantic stocks is generally 
higher than in the  NW Atlantic and increased at annual rates from 0.5% (Iceland) to 1.9% 
(Irish Sea) from 1970 to 2002. However although the NE Atlantic cod stocks have declined, 
none has collapsed to the extent shown in the NW Atlantic.  Growth rates have remained high. 
There are interactions between fishing and environmental factors in both directions.  

2.3 ToR c) Evaluate the causes of observed changes in rates of survival, 
growth and maturity, including a tropho-dynamic perspective 

2.3.1 Growth and survival  

Brander (in press; see Annex 3, Extended abstract 1) compared trends in total biomass and 
weight-at-age for 15 NW and NE Atlantic cod stocks. Here, trends in weight of individual cod 
are represented by stock weight-at-age averaged over five age groups, beginning in each case 
with the age at which the fish attain 1 kg in weight. For ten out of the 15 stocks investigated 
prolonged periods of decline in biomass (see Section 2.1 for definition) were preceded or 
coincided with declines in mean weight-at-age. The lag between the decline in biomass and 
the decline in weight-at-age was 5 years for 4 of the 6 stocks in Canadian waters, 2 years for 
the S. Grand Bank stock and 8 years for the S. Gulf of St Lawrence. With the exception of the 
Celtic Sea, NE Atlantic cod stocks also declined after 1970, but the declines do not share a 
common pattern and are much smaller than those among the Canadian stocks. On both sides 
of the N Atlantic, changes in mean weight-at-age are smaller in the warmer water stocks 
(Georges Bank, North Sea, Irish Sea and Celtic Sea) and there are no prolonged periods of 
decline in weight-at-age in any of these areas, or in the Baltic. 

Changes in mean weight-at-age are generally attributed to changes in growth rate due to three 
main types of cause: (i) “environmental” factors, the principal one being ambient temperature; 
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(ii) food availability (including density dependent effects); and (iii) selective effects of fishing 
(Krohn et al., 1997; Swain et al., 2003 2), but it can be difficult to disentangle these, because 
their effects can be direct or indirect and they interact with each other. For example, 
temperature has a direct (positive or negative) effect on growth rate and also an indirect effect 
by altering the production of food organisms (ICES, 2002b). Another reason why it is difficult 
to assign causes with confidence is the poor quality of field information on the contributing 
factors. Interannual changes in temperature may be represented by mean bottom temperature 
at a fixed station or by a value for the area occupied by cod during an annual fishing survey 
(i.e. ambient temperature is unknown); population biomass is used to represent density 
dependent effects (i.e. intensity of competition for food is unknown) and selective effects of 
fishing are inferred from sizes backcalculated from otolith increments (i.e. actual selection by 
fishing activity is unknown). For the S. Gulf of St Lawrence stock changes in size-selective 
mortality were the major cause of change in size-at-age (Sinclair et al., 2002a, 2002b).  Other 
detailed studies of the growth changes in individual Canadian cod stocks support the existence 
of a temperature effect, but also effects of prey availability (Krohn et al., 1997), density 
dependence and a common pattern of residuals, which may be due to size-selective mortality 
(Swain et al., 2003).  Section 2.7.1 has more on this topic and the report of the 
ICES/GLOBEC Workshop on the Dynamics of Growth in Cod (ICES, 2002b) also has a more 
extensive treatment of many of the issues.  

The hypothesis that growth is density-dependent is not refuted by the overwhelmingly positive 
relationships between total biomass and weight-at-age (Figure 7), but it suggests that density 
dependent effects are neither widespread nor influential. Density-dependent growth may occur 
in situations where there is competition for a limited supply of food or some other essential 
item, but direct evidence of such competition is difficult to obtain. By definition, density-
dependence is more likely where density is high (relative to food availability and 
requirement). The Eastern Baltic is the only stock with a significant negative relationship 
between weight-at-age and stock abundance (Figure 7), however, this has been ascribed to the 
closely coupled predator-prey relationships between cod and its principal prey species, sprat 
and herring, rather than to density-dependence (Gislason, 1999). In contrast, size-at-age 
declined sharply as abundance rapidly increased in the late 1970s and early 1980s in the 
southern Gulf of St. Lawrence stock, and recent findings support that this has been caused 
mainly by a density-dependent decrease in growth rate in addition to a change in the direction 
of size selective mortality (Sinclair et al., 2002a,b; Swain et al., 2003; Chouinard and Swain, 
unpubl.; Swain, unpubl.; see Annex 3 for extended abstracts). 

                                                           

2 The phenotypic effects of size-selective fishing may change the mean weight-at-age without affecting the 
growth rate.  Size –selective fishing may also have genotypic effects (see Section 2.3.2) 
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Figure 7.  Mean weight-at-age (kg) and biomass per unit area (kg ha-1), with regression equation, 
value of R2 and number of observations (n). From Brander (in press).   

2.3.2 Maturity  

Decline of mean age at maturity, mean age and age diversity of the spawning stock as a 
response to fishing is a common phenomenon. For cod, Marteinsdottir et al. (2005) reported a 
decrease of older fish and age diversity of mature fish for 12 out of 16 stocks for which 
sufficient data have been available (Table 2). The change in age structure of the spawning 
stock was in particular pronounced for Arcto-Norwegian cod, with a sharp decline in mean 
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age and in the proportion of repeat spawners (Ottersen et al., 2006; see Annex 3, Extended 
abstract 8). 

Changes in maturity schedule may arise through three different mechanisms: 1) direct 
demographic response, which means that as the total mortality increases, the stock becomes 
dominated by younger individuals and as result the average age at maturity decreases; 2) 
phenotypic plasticity, when growth rate and maturation are affected by environmental 
conditions (temperature, light, oxygen etc.) and food availability (including density dependent 
effects). The scope for phenotypic plasticity is well illustrated by recent experiments which 
reared Norwegian coastal cod to maturity in 2 years instead of the normal 4–8 years (Karlsen 
et al., 2006).; 3) genetic response, when harvesting selectively removes a particular size range 
and causes a change in the genetic structure of the stock. Fishing can select for earlier or for 
later maturation (Law, 2000). Such changes may occur within just a few generations (Conover 
and Munch, 2002). It is difficult to judge which of the above mechanisms is behind the 
observed decline in age and size at maturity in several cod stocks just by observing the 
maturity ogives or trends in age and size at maturity. However, fisheries-induced genetic 
changes can be inferred estimating the probabilistic maturation reaction norms (PMRN) 
(Heino et al., 2002).  

Changes in the PMRN occurred during the 1960s and 1970s in the southern Gulf of St. 
Lawrence stock, and preliminary analyses relating the change in length at age between parents 
and their offspring to the selection differential experienced by parents suggest a significant 
genetic response to size selective mortality (Swain, Annex 3, Extended abstract 14). 
Furthermore, these changes were found to be in the direction expected for evolutionary 
responses to fishing. Changes in the probabilistic reaction norms for age and size at maturation 
have also been demonstrated for several other stocks on both sides of the Atlantic, and it has 
been concluded that these are genetic responses to harvesting (Enberg, Annex 3, Extended 
abstract 13). 
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Table 2.  Rate of change in catch, stock biomass, spawning stock biomass, recruitment, proportion 
of age 6 or 10+ and age diversity (H) among cod stocks in the North Atlantic (NAC: Northeast 
Arctic / Arcto-Norwegian cod; 1) Grand Bank, 9+: Increase in proportion of 10+ in recent years 
due to the strong year classes from 1989–1990 and lower recruitment compare to the earlier 
years). From Marteinsdottir et al. (2005). 

  % changes in landings and demographic properties 

Stock 

Years of 
landings/ 

demographic 
properties 

Landings Biomass SSB R 

Prop 
old 

(10+ or 
6+) 

Age 
Diversity (H) 

Arcto-
Norwegian 

1946-2003 
1946-2003 -41 -59 -57 -53 -96 -23 

E. Baltic 1966-2003 
1966-2003 -50 -48 -45 -44 77 13 

W. Baltic 1970-2003 
1970-2003 -32 -56 -51 -71 -0.2 -14 

Kattegat 1971-2003 
1971-2003 -77 -87 -86 -88 -58 -18 

North Sea 1963-2003 
1963-2003 -50 -63 -74 -61 -67 -17 

W. Scotland 1966-2003 
1978-2003 -85 -79 -77 -81 125 3 

Irish Sea 1968-2003 
1968-2003 -59 -67 -74 -71 -89 -63 

Celtic Sea 1971-2003 
1971-2003 85 36 19 99 -64 -19 

Faroes 1961-2003 
1961-2003 29 23 4 -2 1 0 

Iceland 1955-2003 
1955-2003 -54 -64 -79 -25 -94 -14 

W. Greenland 1924-2003 
1982-2003 -79 -99 -98 na na na 

S. Labrador 1959-1993 
1962-1993 -70 Na -62 -95 -97 na 

Flemish Cap 1959-1998 
1972-2001 -84 -95 -87 -98 na na 

Grand Bank 1953-1994 
1959-2002 -82 -95 -90 -99 1361) 0.9 

S. Gulf of 
St.Lawrence 

1964-1995 
1974-2003 -91 -33 30 -61 na na 

N. Gulf of 
St.Lawrence 

1965-1995 
1971-2002 -76 -78 -78 -86 -81 -43 

E. Scotian Shelf 1958-1993 
1970-2002 -52 Na -75 -81 -72 na 

Gulf of Maine 1960-2001 
1982-2001 -67 -34 -21 -47 -48 na 

George Bank 1960-2001 
1978-2001 -49 -73 -72 -79 -74 -4.1 

2.4 ToR d) Evaluate the consequences for stock resilience of decreases 
in mean weight and length and age/size diversity 

Food intake is partitioned beween metabolic maintenance costs, somatic growth and 
reproduction.  Maintenance costs take priority. A decline in population mean weight-at-age or 
condition may be an indication that food is limited, with adverse consequences for 
reproductive output and for resilience.  The highest mortality which a stock can sustain 
without collapsing due to recruit overfishing is determined by the recruitment per unit of 
spawning biomass.  An analysis of the observed trends in weight-at-age (see Brander, Annex 
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3, Extended abstract 1) and their possible consequences for reproductive output trends would 
require a method such as Dynamic Energy Budgetting (Nisbet et al., 2000), but this has not 
been carried out to date. 

The consequences for stock resilience of decreases in mean weight-at-age have been explored 
quite extensively for the S. Labrador and S. Gulf of St Lawrence stocks (Krohn and Kerr, 
1997; Chouinard and Swain, Annex 3, Extended abstract 5; Swain, Annex 3, Extended 
abstract 14).  In both areas size-selective fishing on younger ages may have been a major 
factor in causing mean weight-at-age to decrease (food environment and temperature also 
played a part).  The reduction in mean weight-at-age was already evident before 5 years of age 
and persisted in the cohorts as they grew older.  There are a number of implications from these 
studies. 

1 ) Change in growth rate may have a big effect on the trajectory for recovery, as 
shown in Figure 8.  

2 ) Changes in growth due to selective fishing are, in principle, controlable and 
deleterious changes, such as occurred in several Canadian stocks in the 1980s, 
should be avoided.  This becomes even more important if, as seems to be the 
case, selective fishing causes genetic change. 

3 ) If changes arise at young ages and persist as the cohorts mature, then they should 
be accounted for in stock predictions.  

Figure 8.  (from ICES, 2002b) Effect of variation in growth on biomass of southern Gulf 
of St. Lawrence cod. A. Spawning stock biomass (SSB). B. Weight at age 6. C. Simulated 
recovery from stock collapse assuming either the fast growth rates of the mid 1970s or the 
slow growth of the early 1990s.  Note that the simulated recoveries do not include changes 
in natural mortality, recruitment and genetic structure which may have occurred (see 
Chouinard and Swain, Annex 3, Extended abstract 5). 
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A diverse age structure or high proportion of old fish (see Table 2) may enhance reproductive 
potential and/or reduce the sensitivity of recruitment to environmental variability. This has 
been demonstrated for a number of stocks including Icelandic cod and Arcto-Norwegian cod 
(Marteinsdottir et al., 2005; Ottersen et al., 2006) and has also been proposed for other cod 
stocks, e.g. Eastern Baltic cod and Georges Bank cod (Wieland et al., 2000). In contrast, age 
structure does not seem to affect recruitment rate for southern Gulf of St. Lawrence cod 
(Swain and Chouinard, 2000) or for S.Labrador cod (Drinkwater, pers. comm.). 

Fishing generally selects particular sizes or maturity states of fish.  The factors causing this 
selection are catchability, availability, market requirements, gear selection, fishing on 
spawning or feeding aggregations etc.  The heritability of the traits which are selected (growth 
and maturation) is sufficient to cause changes in gene frequencies and eventually loss of 
genotypes and alleles.  Because such genetic changes are not rapidly reversible this may slow 
the time trajectory for recovery of a stock.  Fishing can select for fast or slow growth rates and 
for early or late maturation.  For some stocks (Arcto-Norwegian, S. Gulf of St Lawrence) the 
age and size selection has changed over time. 

In many cases growth and maturation rates have been observed to increase quickly, 
presumably because there had not been adverse genetic changes in the population. Flemish 
Cap cod (Vázquez and Cerviño, 2005 (see Annex 3, Extended abstract 12) showed a rapid 
return to larger size-at-age when fishing pressure was released, and cod in Greenland waters, 
showed larger size-at-age when stock biomass started to increase again in the late 1990s than 
it had been at the end of the preceded period of decline (Rätz and Lloret, 2005).  

Even though some cod stocks have been closed for directed fishing, recovery of stock biomass 
has been slow.  In addition to changes in the ecosystem (see Section 2.10), e.g. resulting from 
a restructuring of the food web due to cascading effects (Frank et al., 2005), genetic changes 
associated with the population collapse may explain the unexpected delay in the response to 
released fishing pressure (Marteinsdottir et al., 2005; Chouinard et al., 2003). Reductions in 
genetic variability per se impair the ability to respond to a changing environmental. Also, size-
selective fishing mortality (see Section 2.3) may shift the life history characteristics of a 
population away from optimal trait value under natural selection. The return to the ‘natural’ 
trait optimum may then take a considerable number of generations even under a scenario of 
little contemporary fishing (Enberg, Annex 3, Extended abstract 13). 

2.5 ToR e) Document and comment on historic evidence of previous cod 
stock recoveries and the environmental and fisheries circumstances 
in which these occurred 

The long-term trend in biomass of all Atlantic cod stocks has been downward since 1970 with 
the exception of the Celtic Sea (Brander, Annex 3, Extended abstract 1). The biomass of three 
stocks collapsed to 5% or less of the level at the beginning of the prolonged period of decline 
(S. Labrador, S.Grand Bank and W. Greenland offshore) and a further two stocks collapsed to 
between 6 and 10% (N.Gulf of St Lawrence and E. Scotian Shelf).  None of these has 
recovered significantly, so in the recent history of Atlantic cod we have no examples of 
recovery from collapse or from a small biomass. 

To find examples of sustained increases in stock biomass of cod we need to examine the early 
period of the 20th century (Drinkwater, 2006; Drinkwater, Annex 3, Extended abstract 2). The 
warming period of 1920s–1960s affected air and sea temperatures for most of the northern 
North Atlantic, with the latter extending from the surface down to 200 m and more.  This 
covers most of the cod habitat except along the southeast coast of Canada and the northeastern 
United States.  Temperature anomalies were greatest in the more northern areas.   

The best documented biological change that occurred during the warm event was the increased 
abundance of Atlantic cod off West Greenland (Wieland et al., Annex 3, Extended abstract 7).  
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From the late 1910s to the early 1930s they not only increased in numbers but also spread 
gradually northward from near the southern tip of Greenland to Upernavik, a distance of over 
1200 km (Jensen, 1939).  The increased abundance led to the development of a cod fishery, 
which quickly replaced sealing as the main industry in West Greenland.   

The cod off West Greenland probably originated from Iceland. At least 5% of Icelandic 
pelagic juvenile cod larvae were caught in the Denmark Strait beween Iceland and Greenland 
in 21 out of a 26 year time-series. However, they only survive in years when conditions in 
Greenland waters are favourable (ICES, 2002a).  Zooplankton samples (1950–1985) show 
abundance, dominated by Calanus finmarchicus, was much greater during the warmer 1950s 
and very early 1960s compared to remaining relatively cool years (Pedersen and Rice, 2002).  
These authors found that approximately 25% of the interannual variability in cod larval 
abundance could be accounted for by the abundance indices of zooplankton.  

Prior to the 1920s warming, cod spawned almost exclusively off the south coast of Iceland but 
as waters warmed, cod spawning spread northward until there were major spawning locations 
completely surrounding Iceland.  Capelin, the major prey of adult cod, shifted their spawning 
from the south to the north coast, becoming scarce on the south coast that in turn resulted in a 
decrease in the condition of cod in the south, while those cod residing on the north coast were 
in good condition.  The increased influx of Atlantic waters to the north of Iceland is believed 
to have lead to an increase in primary production off northern Iceland due to reduced 
stratification and higher nutrient concentrations, based on latter studies (Thorardottir, 1984; 
Gudmundsson, 1998).  Zooplankton abundance is also significantly higher in warm years (i.e. 
more Atlantic waters) than in cold years (Astthorsson and Vilhjálmsson, 2002).  Since C. 
finmarchicus constitutes 60–80% of the zooplankton biomass in spring, interannual variations 
mainly reflect variations in this species (Astthorsson and Vilhjálmsson, 2002). This increased 
production is believed to have contributed to the higher cod abundance during the warm 
period.   

In the Barents Sea, during the 1920s and 1930s cod began appearing in high abundance and on 
Bear Island Bank a cod fishery was re-established there after an absence of almost 40 years 
(Blacker, 1957).  Cod also spread northward off West Svalbard with sufficient abundance to 
support a fishery (Beverton and Lee, 1965) and eastward reaching Novaya Zemlya by 1929-
1930 (Cushing, 1982).  At this time there was a distributional shift in spawning with 
proportionately more cod spawning in the northern regions of Norway (Lofoten and 
Finnmark) compared to southern Norway at Møre (Sundby and Nakken, 2004). The stock size 
of Arcto-Norwegian cod peaked in the 1930s and 1940s (Hylen, 2002).  Catch per unit effort 
(CPUE) was significantly higher in the period 1925–1960 than in the periods before or since 
and coincided with high recruitment (Godø, 2003).  High recruitment was believed to be, in 
large part, a result of greater food availability (Sætersdal and Loeng, 1987; Ottersen and 
Loeng, 2000). The mean weight of the cod in Lofoten rose rapidly in the 1920s into the early 
1930s and remained high before starting a general decline in the 1960s.  The increase in mean 
weight between the pre-1920s period and 1930s–1960s was over 50%.  

In summary, the increase of the West Greenland cod stock in the 1920s was caused by 
increase in the long-term temperature trend that, in turn, increased the zooplankton 
production in the Arctic-dominated ecosystem. Moreover, import of larvae and juveniles from 
the Icelandic cod was assumed to be a necessary condition for the increase of the West 
Greenland cod.  

The role of import from neighbouring cod stocks in the recovery is an issue that also is 
described by Svedang (Annex 3, Extended abstract 9). It has been hypothesised that most 
juvenile cod at the eastern Skagerrak coast are recruited from offshore spawning areas mainly 
in the North Sea (Svedäng, 2003; Cardinale and Svedäng, 2004), from which they are 
passively transported (Munk et al., 1995, 1999). The following low abundance of adult of cod 
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was suggested to be due to return migration of juvenile/ maturing fish at a certain size or age 
(Pihl and Ulmestrand, 1993). This theory was further supported by the fact that a relatively 
strong year class of cod in 2001 in the Skagerrak was genetically assigned to be originating 
from eastern North Sea cod populations, in contrast to the results in the year before when 
genetic analysis suggested local origin (Knutsen et al., 2003, 2004).  

Recolonisation of areas depleted of cod stocks, such as along the Swedish Skagerrak coast 
(Svedäng, 2003), should be related to the general recruitment level and to dispersal rates. 
However, one alternative hypothesis is that juvenile fish do not remain where they once have 
settled, unless they are in close vicinity to their parental spawning grounds. It was thus 
conjectured that the temporal development in distribution of cod in various size classes after a 
major recruitment event, should be a reflection of the migratory behaviour of its offshore 
origin. Accordingly, recolonisation in such a case will be a much slower process than 
otherwise anticipated. 

In summary, the examples above on the role of import and recolonisation from neighbouring 
cod stocks in recovery are challenging the prevailing views on genetic separation between 
Atlantic cod stocks. Novel views on marine metapopulations (Kritzer and Sale, in press) might 
throw new light on the interactions between neighbouring cod stocks. 

The North Sea cod stock increased by a factor of 2.6 from 1963 to 1971 at the start of  the 
“gadoid outburst”, which lasted  to the mid 1980s.  The increase in biomass coincided with an 
increase in fishing mortality and was due to increased recruitment over a number of years. The 
possible reasons for the increase and the circumstances in which it occurred were explored by 
a previous ICES/GLOBEC Workshop (Werner et al., 1999).  Changes in the marine 
ecosystem, involving the timing, quantity and size composition of copepod production are the 
most likely explanation for the “gadoid outburst” (Beaugrand et al., 2003) and also 
contributed to the subsequent return of the cod biomass to its former level.   

The E. Baltic cod stock increased by a factor of four from 1971 to 1983. 

The Norwegian spring-spawning herring (NSSH), which has a recruitment pattern quite 
similar to those of the adjacent stocks of Arcto-Norwegian cod and haddock, may serve as a 
case study to show some of the circumstances and conditions under which recoveries can take 
place. The NSSH went through a collapse in the late 1960s, apparently as a combined effect of 
overfishing and decrease in the long-term sea temperature trend (Toresen and Østvedt, 2000).  
The biomass of the stock, which had been above 10m tons almost uninterruptedly since 1928, 
dropped below 1m tons in 1968, hit a minimum of 2000 tons in 1972 and increased fairly 
steadily to pass through the 1m ton mark again in 1987. The relative contributions of fishing 
and environment in this collapse are disputed (Fiksen and Slotte, 2002) and in particular 
whether the relationship between spawning biomass and recruitment changed over this period.   

Some of the factors which assisted in bringing about the recovery of the stock were: 

1 ) A moratorium on NSSH was established and suceeded in keeping fishing 
mortality low for a 12 year period from 1974. The moratorium was relatively 
easy to manage, because herring is caught mainly in directed fisheries and can 
generally be avoided in the bycatch of other fisheries. Also the distribution of the 
stock collapsed into a limited area along the coastal Norwegian shelf and with 
overwintering areas limited to a couple of fjords in Northern Norway. 

2 ) In the early 1980s the long-term mean temperature in the Nordic Seas changed 
from a declining to an increasing trend.  This may have been associated with an 
increasing trend in the productivity of the ecosystem. 

3 ) During spring 1983 the environmental conditions were particularly beneficial for 
larval survival all along the Norwegian coast and in the Barents Sea, probably 
because of the strong influx of warm Atlantic water and high zooplankton 
abundances. Strong year classes of cod, haddock and herring were formed.  
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In summary, for the case of the NSSH, the effective fishing moratorium, the change in the 
long-term temperature trend and, fortuitously, one single year of extremely good larval 
survival in 1983 were key processes in the recovery. 

2.6 ToR f) Comment on past projections of cod stock recovery, evaluate 
whether they were correct and draw conclusions concerning how 
future projections can be improved 

Little attention was directed toward this ToR during the workshop. However, reference was 
made to the experience off eastern Canada, where moratoria imposed on several collapsed cod 
stocks in the early 1990s did not lead to the recoveries that were widely expected (Rice et al., 
2003; Shelton et al., 2003, 2006; Chouinard and Swain, Annex 3, Extended abstract 5; Lilly, 
Annex 3, Extended abstract 6). 

A clear, unambiguous summary of factors associated with the decline and recovery (or non-
recovery) of these stocks is difficult because of differences among the various stocks. In 
general, the stocks declined during the 1960s and 1970s as a result of overfishing, especially 
by non-Canadian trawler fleets that targetted offshore over-wintering and spawning 
aggregations. With the declaration by Canada of a 200 nautical mile zone of Extended Fishery 
Jurisdiction in 1977, landings by distant water fleets declined. Stocks increased under reduced 
fishing mortality and good productivity (good recruitment and individual growth). The stocks 
declined again during the late 1980s and early 1990s as productivity declined and fishing 
mortality increased. The decline in productivity included a decline in recruitment, a decline in 
growth rate, and an increase in natural mortality, with the magnitude and relative importance 
of these changes varying among stocks. Some of these changes in productivity have been 
attributed to changes in the physical environment, including a decline in water temperature.  

All stocks from the eastern Scotian Shelf northward were closed to directed fishing at some 
time between mid-1992 and early 1994. The responses of the stocks varied considerably. 
Some stocks, notably offshore northern (2J3KL) cod and eastern Scotian Shelf cod (4VsW), 
continued to decline after imposition of the moratoria and have shown no sustained signs of 
recovery. Other stocks, notably those in the northern and southern Gulf of St. Lawrence 
(3Pn4RS and 4TVn), did not decline to the same extent as the two just described but have 
remained at low levels of productivity. The only stock that rebounded strongly was that off 
southern Newfoundland (3Ps), but even that stock has experienced low recruitment during 
most years of the past decade. 

The general expectation that moratoria would lead to recovery is probably not a projection in 
the sense implied by the ToR. Nevertheless, one can discuss why the general expection of 
recovery was not realized. As described in various overviews (Chouinard et al., 2003; Rice et 
al., 2003; Lilly and Murphy, 2004; Shelton et al., 2003, 2006) and elsewhere in the present 
workshop report, there has been a general decline in productivity and in some cases a 
continuance of fishing mortality from directed and bycatch fisheries. The decline in 
productivity includes a decline in recruitment (e.g. 3Ps cod), a decline in growth rate (e.g. 
southern Gulf of St. Lawrence cod) and an increase in natural mortality. The latter has been an 
important feature of the two stocks in the Gulf of St. Lawrence, and is particularly important 
for cod on the eastern Scotian Shelf and the offshore components of northern cod (although 
the possible contribution of fishing to the extremely high total mortality of offshore northern 
cod has not been clarified).  

A general conclusion from the experience off eastern Canada is that humans may not have the 
ability to “rebuild” cod stocks that have declined to very low levels, at least not in the 
relatively short term of a decade or so. Stock productivity may be kept low by various natural 
phenomena, including depensation due to predation (Shelton and Healey, 1999; Bundy and 
Fanning, 2005), Allee effects (Frank and Brickman, 2000) and changed life history 
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characteristics (Hutchings, 2005). In addition, it may not be practical or even possible to 
reduce the effects of fishing to zero. 

2.7 ToR g) Evaluate the role of cod forage species (e.g. capelin) for 
variability in abundance and size-at-age of cod 

The prey spectrum of cod is broad and changes as the cod grows. For juvenile and adult cod, 
the diet consists largely of fish and crustaceans. In many ecosystems, the most important prey 
are medium-sized planktivorous fish such as capelin, sand lance and herring, but juveniles of 
groundfish are important for cod in some areas such as Flemish Cap. 

The role of prey in affecting cod abundance (through recruitment and mortality) and size-at-
age is seen more clearly toward the northern end of the cod range, especially in cod-capelin 
ecosystems (notably Barents Sea, Iceland, Labrador-Newfoundland), and in other systems that 
have relatively few species (e.g. Baltic Sea) 

2.7.1 Cod size-at-age and condition 

Change in the abundance or availability of an important prey has been found to affect cod 
size-at-age and condition. For example, declines in capelin abundance have been correlated 
with reductions in growth rate of cod in waters around Iceland (Steinarsson and Stefánsson, 
1996; Stefánsson et al., 1998) and in the Barents Sea (Mehl and Sunnanå, 1991; Jørgensen, 
1992), and with a reduction in somatic condition and liver reserves of cod in the Barents Sea 
(Jørgensen, 1992; Marshall et al., 1999; Yaragina and Marshall, 2000). For the cod off 
Labrador and eastern Newfoundland, Krohn et al. (1997) reported that capelin biomass 
explained some of the variability in cod growth and condition, but other studies did not find 
significant relationships, and it has been difficult to distinguish between the effects of changes 
in capelin abundance and the direct or indirect effects of changes in the physical environment 
(Lilly Annex 3, Extended abstract 6). 

In the Baltic Sea, changes in cod size-at-age are associated with changes in the biomass of 
prey (Gislason, 1999). 

In contrast to the positive association often seen between biomass of pelagic fish and the 
growth and condition of cod, there has been a significant decline in condition of cod and other 
groundfish species on the Eastern Scotian Shelf (DFO, 2003; Choi et al., 2004) at the same 
time as an increase in the biomass of pelagics. This is acknowledged to be perplexing (DFO, 
2003). Bundy and Fanning (2005) hypothesize that the poor condition found in small cod is 
due to competition with increased populations of planktivorous fish, and propose that cod that 
are in poor condition when they are small remain that way when they become large. 

In areas where the diversity of potential prey is higher (e.g. North Sea, Georges Bank), it 
appears that cod growth is less dependent on the abundance of any specific prey. 

2.7.2 Cod abundance 

There are several mechanisms by which changes in the abundance or availability of forage 
species might contribute to changes in recruitment and mortality of cod stocks.  

2.7.2.1 Decreased recruitment via poor condition 

It is recognized that poor condition can negatively affect spawning potential by decreasing the 
liklihood of maturing (Marteinsdottir and Begg, 2002), increasing the incidence of skipped 
spawning (Rideout et al., 2005) and decreasing the reproductive output of those fish that do 
spawn (Lambert and Dutil, 2000). It is possible, then, that changes in prey abundance or 
availability may affect condition (especially liver index), which in turn may affect spawning 
success and thus recruitment, and may ultimately contribute to stock decline or recovery. An 
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example of all steps in this mechanism occurring within a single ecosystem was not identified 
during the Workshop. 

2.7.2.2 Increased mortality via poor condition 

It has been demonstrated in laboratory studies that reduced ration will cause reduced condition 
and ultimately death. However, the question of whether a decline in cod condition has 
contributed to an increase in mortality of fish in the wild is difficult to address in the absence 
of findings of dead or moribund fish. Nevertheless, one can use the observations from 
laboratory studies to determine condition indices that are indicative of fish that might soon die. 
Fish exhibiting such low condition indices were found in the northern and southern Gulf of St. 
Lawrence (Lambert and Dutil, 1997; Schwalme and Chouinard, 1999) during the early to mid-
1990s. Dutil and Lambert (2000) concluded that natural mortality from poor condition 
contributed to lower production by cod in the northern Gulf of St. Lawrence during that 
period. 

The question for the present workshop is whether there are examples in which changes in prey 
abundance or availability have contributed to changes in cod condition (especially liver 
index), which in turn have affected rates of natural mortality and contributed to cod stock 
decline or recovery. 

It is not clear whether the decline in cod condition in the Gulf of St. Lawrence noted above 
was related to a decline in abundance of prey. However, it has been hypothesized that the 
cooling shortened the feeding season of cod, and thereby contributed to a decline in condition 
(Dutil et al. 1999).  

The decline in condition of cod on the eastern Scotian Shelf is not related to the abundance of 
pelagic prey, because species that were historically important prey for cod increased following 
the cod collapse (see above).  

For cod off southern Labrador and eastern Newfoundland, it was hypothesized that the 
collapse was related to an increase in stress associated with a change in abundance and 
availability of capelin (Atkinson and Bennett, 1994). There may be insufficient data from the 
appropriate times and locations to test this hypothesis (Lilly, 2001). With respect to the lack of 
recovery of cod in the offshore of southern Labrador, it has been stated that the high mortality 
experienced by cod since the collapse is due to poor condition attending low capelin 
availability (Rose and O’Driscoll, 2000; but see Lilly, Annex 3, Extended abstract 6). 

2.7.2.3 Increased mortality via predation 

It has been hypothesized that when forage species such as capelin are in low abundance, then 
predators may feed to a greater extent on cod. It has also been hypothesized that cannibalism 
might increase within a cod population when prey abundance is low, and that this might 
reduce year-class strength. 

2.7.2.4 Decreased recruitment via predation 

It has been hypothesized that planktivorous fish might affect recruitment of cod by preying on 
or competing with the cod’s early life stages (eggs, larvae and perhaps pelagic juveniles). For 
example, a negative relationship between the biomass of pelagic fish (herring and mackerel) 
and cod recruitment rate (number of recruits produced per unit of spawning biomass) has been 
shown for cod in the southern Gulf of St. Lawrence (Swain and Sinclair, 2000; Chouinard and 
Swain, Annex 3, Extended abstract 5). High prerecruit survival from the mid-1970s to the 
early 1980s coincides with a period during which pelagic biomass had been reduced by 
overfishing.  
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A variant of this mechanism is the cultivator effect, wherein a large predator cultivates its 
young by preying on species that are potential predators and competitors of its young. If the 
large predator becomes less abundant, then its prey becomes more abundant, via predator 
release, and then keeps the predator at a new low level by preying on the large predator’s early 
life history stages. Such a mechanism has been hypothesized for cod and its planktivorous fish 
prey in the Baltic Sea (Köster and Möllmann, 2000) and on the eastern Scotian Shelf (Bundy 
and Fanning, 2005). It is notable that there was no increase in capelin off eastern 
Newfoundland after the collapse of cod, but polar cod was more abundant during the first half 
of the 1990s and little is known about sand lance, so it is possible that predation by forage fish 
has had some effect. However, temperature associated distribution changes seems more likely 
in the case of polar cod since they retracted northward with the arrival of the warm water 
although the cod still have not returned.   

2.8 ToR h) Evaluate the role of cod predators (e.g. seals) for variability 
in abundance and size-at-age of cod 

This ToR is interpreted to refer to the predators of juvenile and adult cod. These predators are 
upper trophic level, large (or large-gaped) species, notably piscivorous fish and marine 
mammals. 

Predation is obviously an important component of natural mortality, especially for smaller 
cod, as has been illustrated by numerous diet studies and multispecies models. However, the 
role of predation in the dynamics of cod stocks has taken on increased emphasis with the 
recognition that mortality remained very high in several depressed cod stocks off eastern 
Canada after directed fishing was stopped. Several analyses (e.g. Sinclair, 2001) demonstrated 
that an increase in natural mortality started well before the fisheries were closed. For the cod 
stock in the southern Gulf of St. Lawrence, analyses suggest that the increase in natural 
mortality played a role in the collapse of the stock (Chouinard et al., 2005). 

The cause of this elevated natural mortality remains unclear and contentious. Numerous 
studies have discussed the possibility that predation by grey and (or) harp seals is an important 
component of the high mortality of cod on the eastern Scotian Shelf (Fu et al., 2001; Bundy 
and Fanning 2005), in the southern and northern Gulf of St. Lawrence (Chouinard et al., 2005; 
Duplisea et al., Annex 3, Extended abstract 17) and on the southern Labrador and Northeast 
Newfoundland shelves (Lilly, Annex 3, Extended abstract 6). Formal cod stock assessment 
meetings have concluded that predation by seals has contributed to the slow or non-existent 
recovery of these stocks (Rice et al., 2003). 

One of the numerous uncertainties associated with these analyses is that elevated mortality has 
been demonstrated not only for juvenile cod but also for adult cod (Bundy and Fanning, 2005; 
Chouinard et al., 2005; Lilly et al., 2005), whereas seal diet data generally reveal feeding on 
only small cod. It has been suggested by some (e.g. Chouinard et al., 2005) that the high 
mortality of adult cod might be a consequence of belly-feeding, a manner of feeding whereby 
the seal takes a bite from the cod’s belly, leaving the head and muscle mass. Such predation, 
which would be undetected by the examination of stomach contents or scats, has frequently 
been observed in inshore waters of eastern Newfoundland (Lilly and Murphy, 2004). The 
prevalence of such feeding is exceedingly difficult to determine, especially in open water 
away from land.  

Part of the reason for the increased attention to the role of seals and other marine mammals in 
the dynamics of cod stocks is the difference in direction of population trends. Many species of 
marine mammals were heavily exploited for centuries and declined to low numbers, but have 
increased in recent years under more restrictive management. This is particularly notable for 
harp seals and grey seals in the Northwest Atlantic. In contrast, exploitation of cod has 
increased in recent decades, and many stocks are at all-time lows. Seals and other marine 
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mammals do not have a strong dependency on cod; their major prey are usually pelagic 
species of fish and squid. However, if these marine mammals continue to eat some cod while 
the cod are at very low abundance, then they may contribute toward keeping the cod in a 
“predator pit”. In conjunction with other mechanisms of depensation, such predation by 
marine mammals may help maintain cod and their ecosystems in a state that is quite different 
from that which existed in the 1980s and before. 

Determination of predator diet (Buren et al., Annex 3, Extended abstract 18) and estimation of 
prey consumption (Stenson and Hammill, Annex 3, Extended abstract 19) are demanding in 
terms of data acquisition and analysis. For some geographic areas, there is relatively little 
study of the diet of some potential cod predators (e.g toothed whales and minke whales in the 
Northwest Atlantic), and even for those predator species that are being studied, there is 
generally less information than desired. Once the consumption of cod and other prey has been 
estimated, there still remains the difficult task of assessing the impact of that consumption 
(Duplisea et al., Annex 3, Extended abstract 17). Depending on the choice of model, this 
generally requires substantial understanding of other components of the ecosystem, 
information on predator migration patterns (Rosing-Asvid, Annex 3, Extended abstract 16) 
and functional feeding responses, and knowledge of additional causes of prey mortality. It has 
been stated (e.g. NAMMCO, 2005) that good progress in this area will require a larger 
commitment to modelling. 

The diets of many marine mammals are similar to that of cod. Thus, harp and grey seals may 
not only prey upon cod but compete with them for resources such as capelin and sand lance. 
Such competition has been cited as a possible reason for non-recovery of cod off eastern 
Newfoundland, but demonstration of competition is difficult (Link et al., Annex 3, Extended 
abstract 15). Of interest in this regard is the hypothesis by Rosing-Asvid (Annex 3, Extended 
abstract 16) that seals fare better when cod abundance is low. 

2.9 ToR i) Evaluate the role of climate mediated through cod predators 
and prey 

Variability in climate influences many aspects of the ocean environment, and thereby affects 
recruitment, growth, mortality and distribution of cod and its predators and prey. Thus, climate 
may affect not only the abundance of the predators and prey with which cod interacts, but also 
the extent and duration of the overlap between cod and those other species. The potential for 
interaction seems almost limitless. A few examples related to cod decline and recovery are 
given. 

Castonguay et al. (1999) found that cod in the northern Gulf of St. Lawrence were distributed 
more southerly and deeper in winter during the late 1980s and early 1990s, and that the 
latitudinal shift was correlated with the cooling at mid-depth that had started in the mid-1980s. 
They inferred that the cod had started to migrate earlier to overwintering grounds, and 
surmised that this might have shortened the feeding season and contributed to declines in size-
at-age and condition. As noted above (under ToR g), the low condition may have lead to 
increased mortality. Note, however, that Comeau et al. (2002) explored the causes and 
implications of a similar change in timing of migration by cod in the southern Gulf of St. 
Lawrence, and concluded that earlier departure from feeding grounds within the Gulf may not 
necessarily have been a factor contributing to the slow recovery of that stock. 

Off southern Labrador and eastern Newfoundland, there were numerous changes in the 
distribution and phenology of cod during the late 1980s and particularly the early 1990s (Lilly 
Annex 3, Extended abstract 6). Among these was a change in north-south distribution of both 
cod and capelin (Lilly, 1994). Some investigators interpret the change in cod distribution to be 
a shift, and postulate that this was in response to the decline in water temperature (deYoung 
and Rose, 1993; Rose et al., 1994; Atkinson et al., 1997; Rose et al., 2000) or the southward 
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shift in the distribution of capelin (Rose et al., 2000). It is thought by some that this shift 
increased the vulnerability of the cod to both Canadian and non-Canadian fleets (Rose et al., 
1994; Atkinson, et al., 1997; Rose and Kulka, 1999). The shift in capelin distribution may also 
have reduced feeding success of those cod that remained toward the north, and may have 
contributed to a decline in condition and an increase in mortality (Lilly, 2001).  

As noted under ToR h, there is considerable interest in the possibility that seal populations are 
hindering or preventing the recovery of several cod stocks off eastern Canada. Climate can 
mediate reproductive success and distribution of seals and alter their access to prey. Three 
examples follow. (1) It is possible that the extensive ice conditions of the 1980s and early 
1990s promoted low seal pup mortality, and contributed to the growth of the seal populations. 
Conversely, poor ice conditions, such as obtained during several recent years, might lead to 
higher pup mortality and a decrease in the seal populations. (2) Harp and hooded seals migrate 
to eastern Canadian waters during winter/spring, and it is possible that the duration of their 
stay will be longer when the water is cold and sea ice extensive. If shelf waters off eastern 
Canada become warmer, the seals may spend less time in the area and prey to a lesser extent 
on cod. (3) During the winters of the late 1990s and early 2000s there were several instances 
when cod appeared near the surface very close to shore in eastern Newfoundland (Lilly et al., 
1999). Harp seals were seen at the periphery of the aggregations and were sometimes seen 
belly-biting the cod. Dead cod were found lying on the bottom. Such events were not 
previously known to people who lived nearby, and it was speculated that the warm winters 
had lessened the coverage by shore-fast ice and had made the cod more vulnerable to the seals. 

2.10 ToR j) Evaluate the relationship between the decline and recovery of 
cod stocks and changes in the marine ecosystems 

2.10.1 Effects of Atlantic Multidecadal Oscillations (AMO) versus decadal-
scale and interannual climate variations 

Studies on ecosystem effects and climate effects on growth and recruitment in North Atlantic 
fish stocks, particularly Atlantic cod, have mainly focused on interannual to decadal-scale 
variations (e.g. Elizarov, 1963; Sætersdal and Loeng, 1987; Ellertsen et al., 1989; deYoung 
and Rose, 1993; Planque and Frédou, 1999). Studies on such time scales relate to the original 
hypothesis by Hjort (1914) where emphasis is put on the large year-to-year variations in year-
class strength. However, decline and recovery of fish stocks are probably to a larger extent 
associated with longer-term and sustained changes in the ecosystem like the Atlantic 
Multidecadal Oscillations (AMO). Although, the AMOs are generally of much smaller 
amplitudes than the interannual to decadal-scale amplitudes they seem to have much more 
profound effects on fish stocks and the ecosystems (Drinkwater, 2006; Drinkwater, Annex 3, 
Extended abstract 2). Moreover, multidecadal variations have also a larger spatial extent than 
the decadal-scale and shorter-term variations. Multidecadal variations have a pan-Atlantic 
spatial extent, while the decadal-scale variations that often are associated with the pattern of 
the North Atlantic Oscillation are limited to regions within the North Atlantic. A general 
problem with documenting the effects of AMO on fish stocks and the ecosystem is that long 
enough time series are available in only a few regions. 

The most well documented biological change that occurred during the first AMO warm event 
in the 20th century was the increased abundance of Atlantic cod off West Greenland.  From the 
late 1910s to the early 1930s they not only increased in numbers but also spread gradually 
northward from near the southern tip of Greenland to Upernavik, a distance of over 1200 km 
(Jensen, 1939). The increased abundance led to the development of a cod fishery, which 
quickly replaced sealing as the main industry in West Greenland. The cod fishery yielded 
moderate landings through the 1930s, declined during the war years but rose dramatically 
through the 1950s reaching a peak at close to 5 x 105 t in the early 1960s before declining 
rapidly later that decade during a period of decreasing air and ocean temperatures.  Cod 
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catches have remained relatively low since the 1970s.  The cod off West Greenland originated 
from Iceland due to a combination of increased transport of larvae from Iceland and better 
survival of larvae once they reached West Greenland waters.  During the warming period of 
the 1920s cod catches in Icelandic waters rose rapidly peaking in the early 1930s.   While 
increased fishing effort contributed to these record catches, there was very high recruitment in 
the 1920s, with the highest recruitment on record being in the early 1920s (Schopka, 1994).   

In the Barents Sea, during the 1920s and 1930s cod began appearing in high abundance and on 
Bear Island Bank a cod fishery was re-established there after an absence of almost 40 years 
(Blacker, 1957).  Cod also spread northward off West Svalbard with sufficient abundance to 
support a fishery (Beverton and Lee, 1965) and eastward reaching Novaya Zemlya by 1929–
1930 (Cushing, 1982).  At this time there was a distributional shift in spawning with 
proportionately more cod spawning in the northern regions of Norway (Lofoten and 
Finnmark) compared to southern Norway at Møre (Sundby and Nakken, 2004). The stock size 
of Arcto-Norwegian cod peaked in the 1930s and 1940s (Hylen, 2002).  High recruitment was 
believed to be, in large part, a result of greater food availability (Sætersdal and Loeng, 1987; 
Ottersen and Loeng, 2000). The mean weight of the cod in Lofoten rose rapidly in the 1920s 
into the early 1930s and remained high before starting a general decline in the 1960s.   

The climate changes that occurred during the warm period of the 1920s to the 1960s lead to 
significant ecosystem changes, including dramatic impacts on numerous cod stocks.  Cod 
abundance increased through the northern North Atlantic especially in the Barents Sea, 
Icelandic waters and off West Greenland driven by a combination of higher recruitment and 
higher growth. The feeding areas as well as the spawning areas of the stocks shifted 
northward. The history of the Norwegian spring-spawning herring in 20th century, which was 
introduced in Section 2.5, is another prominent example of a fish stock whose biomass 
matches the major warming and cooling trends of the 20th century (Figure 9, Toresen and 
Østvedt, 2000).  

 

Figure 9.  The relation between development of the SSB of Norwegian spring-spawning herring 
through the 20th century and long-term averaged sea temperature (after Toresen and Østvedt, 
2000). 

After 17 years of fishing moratorium the recruitment of the 1983 year class became the start of 
the new herring period. The year 1983 was an extraordinary year in Norwegian Sea – Barents 
Sea ecosystem with not only strong herring year class but strong cod and haddock year classes 
as well. 
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2.10.2 Ecosystem effects on the individuals stocks 

Barents Sea 

In the arctic and arcto-boreal regime of the North Atlantic Ocean temperature has long been 
recognized as an important factor for the productivity in fish stock. Ishevskii (1961, 1964) 
found positive correlations between temperature and recruitment of cod stocks in the Barents 
Sea and in the Northwest Atlantic region, and he noticed that temperature and recruitment 
seemed to vary inversely in the two regions. Sætersdal and Loeng (1987) analysed recruitment 
of the Arcto-Norwegian cod through the 20th century and showed that strong year classes 
tended to occur in periods of warm years and particularly at the beginning of the warm 
periods. They proposed that in warm periods the gonad production increased resulting in 
better recruitment. Ellertsen et al. (1989) analysed the time series 1946–1985 of year class 
strengths of Arcto-Norwegian cod based on virtual population analysis of 3-year-old fish. 
They found that year class strength was always low in cold years, but in warm years both good 
and bad year classes occurred. They concluded from this that a high temperature is a necessary 
but not sufficient condition for the formation of strong year classes. Ellertsen et al. (1989) 
proposed that the causal mechanism might be linked to the production of the main prey item 
for cod larvae, the Calanus nauplii, since the onset of the Calanus production was found to be 
strongly temperature dependent. .  

Skjoldal et al. (1987) linked the variations in the zooplankton abundance in the western 
Barents Sea to the variations in the inflow of zooplankton-rich Atlantic water from the 
Norwegian Sea. Skjoldal and Rey (1989) showed that the large fluctuations in the zooplankton 
biomass in the Barents Sea in late spring during the period 1978–1985 were due to variations 
in the influx of Atlantic water from the Norwegian Sea. Helle and Pennington (1999) found a 
high positive correlation between the average zooplankton abundance in the western Barents 
Sea in June-July and the influx of Atlantic water in June from the Norwegian Sea to the 
Barents Sea.  

Hence, a link between high temperature and advection of Calanus-rich water masses was 
established for the Barents Sea ecosystem. The increased inflow Atlantic water masses from 
the Norwegian Sea into the Barents Sea resulted in both higher temperatures and high 
abundances of Calanus-rich water masses. This was shown to result in good recruitment of 
cod, haddock and herring and generally increase the productivity and carrying capacity of the 
Barents Sea ecosystem. 

The influence from higher trophic levels for the Barents Sea cod is poorly investigated. From 
northern Norwegian waters we know that herring schools may consume larger amounts of 
pelagic cod eggs (Melle, 1985). On the other hand, we also know that small ctenophores are 
consumers of cod eggs and larvae (Båmstedt et al., 1994; Martinussen and Båmstedt, 1999). 
Small larvae in poor condition will probably have more difficulties to avoid attack from these 
small ctenophores, while the bigger and well fit larvae will generally be more able to avoid 
them according to the hypothesis by Houde (1989) that bigger larvae have better survival. 
Ctenophores and probably other small jelly plankton are important predators on the larval 
stages of fish off the coast of Norway in addition to krill and pelagic fish, but there is no 
documentation on their quantitative effects as predators. 

Experimental work by Kjesbu et al. (1996) shows that larger and older females tend to have a 
longer spawning period than smaller and younger fish. Larger females tend to produce a 
relatively greater number of eggs, i.e. the number of eggs produced per gram body weight 
increases with increasing length (Marteinsdottir and Thorarinsson, 1998). Repeat spawners 
also produce eggs that have a wider range of vertical distribution than recruit spawners, thus 
causing broader horizontal dispersion (Kjesbu et al., 1992). 
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Labrador Sea 

Similar temperature - cod recruitment relationships to that found for Barents Sea cod have 
been indicated for the other Atlantic cod stocks at the lower temperature range. The Northern 
cod is one of the Atlantic cod stocks living at low temperatures. Elizarov (1963) found a 
positive correlation between temperature and catches of cod in the region. deYoung and Rose 
(1993) demonstrated a similar response of cod recruitment to low temperature as for the 
Greenland cod and the Arcto-Norwegian cod. They related the temperature effect to changing 
spawning locations of the fish in warm and cold years, and suggested that a southward shift in 
the distribution of spawning cod in cold years led to a reduced recruitment because of lower 
retention of the eggs and larvae in the southern region. The cool ocean climate that developed 
at the Labrador Shelf after 1988 was followed by the collapse in the Northern cod. Although it 
was claimed that overfishing alone was the cause of the collapse (Myers et al., 1996), it cannot 
be rejected that the cool climate was an important additional factor. Taggart et al. (1994) 
found that the recruitment variability in the 1980s was in part determined by environmental 
conditions, but pointed out that the causal relationship is unclear since the thermal 
environmental conditions are correlated with most of the other climate parameters.  

The causal mechanism proposed in the Barents Sea that the effect of high temperature on cod 
recruitment is a proxy for the advection of Calanus-rich water masses (e.g. Sundby, 2000) has 
not been confirmed for the cod stocks in the Northwest Atlantic.  However, it cannot be 
rejected that there the cod recruitment - temperature relation might also be a proxy for the 
supply of Calanus-rich water masses, but there are no similar zooplankton time series to 
explore this.  

The large population of marine mammals in the Labrador Sea is thought to have an important 
influence on the ecosystem structure and function (Stenson and Hammill, Annex 3, Extended 
abstract 19).  This has lead to the view that seals can have a negative impact on commercial 
fish stocks, including Atlantic cod. Over the last decade several Atlantic groundfish stocks 
have collapsed while many marine mammal populations, particularly seals, have shown 
marked increases leading to suggestions that seals were involved in the failure of the fishery. 
Although it is now considered that seals played no, or only a minor role, in the collapse of 
Canadian groundfish stocks in the early 1990’s, they may play a more important role in 
slowing the recovery of certain Atlantic cod stocks.  

Gulf of St. Lawrence 

For the southern Gulf of St. Lawrence cod stock, increased catches starting in 1950 resulted in 
higher exploitation rate and caused the stock to decline until it reached a low level in the mid 
1970s (Chouinard and Swain, Annex 3, Extended abstract 5). The stock rebounded rapidly 
without a moratorium on the fishery.  The recovery of the late 1970s was fuelled largely by 
exceptional recruit-per-spawning stock biomass ratio during that period.  

Analyses have shown that the high recruitment rates in the mid to late 1970s appear to be 
associated with the collapse due to fishing of pelagic fish stocks (both herring and mackerel) 
in the southern Gulf at that time.  Herring and mackerel are thought to negatively impact 
recruitment of cod through predation on eggs and larvae. There also appears to be a small 
negative effect of warm temperatures in the spring and early summer on cod recruitment. 

As cod abundance and biomass recovered in the late 1970s, this was accompanied by a decline 
in growth rate.  The decline appears to have been caused by size-selective mortality in the 
fishery, a negative relationship with density and some effect of temperature. Cod biomass 
peaked in the mid 1980, then started to decline and collapsed by the early 1990s.  The decline 
coincided with a rise in fishing mortality but was accentuated by an increase in natural 
mortality starting in the mid 1980s.  Changes in natural mortality correspond to changes in the 
abundance of grey seals in the southern Gulf of St. Lawrence. Grey seal abundance in the 
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southern Gulf is estimated to have increased from approximately 20 000 animals in the 1970s 
to about 55 000 animals in recent years, a near three-fold increase. 

The lack of recovery for southern Gulf of St. Lawrence cod since the moratorium is due to 
continued poor productivity, particularly high natural mortality and low growth. Besides 
fishing, it thus appears that for southern Gulf of St. Lawrence cod, changes in the marine 
ecosystem have contributed to declines and recovery and lack of recovery of the stock. 
However, the changes implicated are primarily related to the abundance of predators of cod at 
the early (egg and larvae) and adult stages as opposed to be related to variation in climate.   

Iceland 

For the Icelandic cod Astthorsson et al. (1994) analysed the time series from 1971 to 1992 and 
concluded that neither the abundance indices nor the mean lengths of 0-group cod were 
correlated with temperature. On the other hand, they showed that there was a significant 
correlation between the zooplankton biomass in southwestern Icelandic waters and the 0-
group index of cod indicating a direct link between cod recruitment and zooplankton 
abundance. 

North Sea 

Ecosystem effects in relation to the North Sea cod stock were investigated by the Workshop 
on Gadoid Stocks in the North Sea during the 1960s and 1970s (Heath and Brander, 2001).  
Changes in the timing, abundance and size composition of Calanus and other planktonic prey 
probably resulted in major changes in the productivity of the ecosystem for cod between the 
early 1960s and the late 1990s (Beaugrand et al. 2003) 

For the North Sea the extensive time series on zooplankton from the Sir Alistair Hardy 
Foundation document the long-term decrease of C. finmarchicus after the mid 1960s and 
particularly after the 1980s (Reid et al. 2003). The decrease is highly correlated with the 
decline in North Sea cod SSB after the gadoid outburst in the early 1960s. Rothschild (1998) 
analysed the relationships between abundance of zooplankton and year-class strengths of 
North Sea cod and herring, including also the variations in fishing mortality. He found that 
large year classes of cod co-occurred with either high abundances of Calanus or 
Paracalanus/Pseudocalanus. He also found that high abundance of both Calanus and 
Paracalanus/Pseudocalanus rarely occurred. In years with low abundance of Calanus or 
Paracalanus/Pseudocalanus good recruitment of cod occurred only once while in all the other 
ten years with low zooplankton abundance bad cod recruitment occurred. Moreover, there are 
indications that the reduction in other North Sea fish stocks is linked to the decline abundance 
of C. finmarchicus (ICES, 2005e). Temperature in the North Sea has increased over the same 
period of time. Hence, there are strong indications that the general reduction in fish stocks of 
the northern North Sea is linked to the general decrease of C. finmarchicus in the ecosystem.  

2.10.3 Concluding remarks 

The role of zooplankton for growth and recruitment in Atlantic cod 

For the major cod stocks of the Northeast Atlantic, i.e. the Arcto-Norwegian cod in the 
Barents Sea, the Icelandic cod and the North Sea cod there has been documented that the 
abundance of Calanus spp has strong impact on growth and recruitment. Since one of the two 
core production areas of C. finmarchicus is located in the Norwegian Sea, advection of C. 
finmarchicus onto the surrounding shelves inhabited by the cod stocks is considered to be an 
important mechanism for supplying zooplankton food to larval and early juvenile cod 
(Sundby, Annex 3, Extended abstract 10). Moreover, it is assumed that the large biomass 
supply of C. finmarchicus also influenced adult cod indirectly as food for planktivore pelagic 
fish.  
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The increased influx of Atlantic water to the Nordic Seas and the correspondingly increased 
temperature in the Northeast Atlantic have adversely influenced the recruitment of Atlantic 
cod in the Barents Sea and in the North Sea. In the Barents Sea the increased influx of Atlantic 
water has increased the advection of Calanus-rich water masses to the Barents Sea. In the 
North Sea the increased flux of Atlantic water through the Norwegian Trench has suppressed 
inflow of Norwegian Sea Intermediate Water which is rich in overwintering C. finmarchicus 
(Sundby, Annex 3, Extended abstract 10). 

In the Northwest Atlantic there are no sufficient time series on zooplankton that could indicate 
a similar mechanism between advection of Calanus-rich water masses and Atlantic cod 
recruitment. However, the other of the two core production areas of C. finmarchicus is located 
in the oceanic region in the Subpolar Gyre to the south of Greenland and east of 
Newfoundland. Therefore, potentially, the C. finmarchicus might play a similarly important 
role for the historically large cod stocks in the Northwest Atlantic, i.e. the West Greenland cod 
and the Northern cod. Time series on C. finmarchicus in the Labrador Sea could have 
enlightened the issue. 

The role of upper trophic levels in controlling Atlantic cod growth and recruitment 

Marine mammals have the potential to influence the abundance of cod stocks, particularly in 
the Arctic habitats of Atlantic cod. Although there is no strong evidence that marine mammals 
are a major cause of declines in cod stocks, there is an indication of that marine mammals 
could play a significant role in keeping the collapsed cod stocks down and decrease the 
possibilities of recovery, particularly in the Northwest Atlantic. Marine mammals might 
presently play such a role in Northern cod. In overwintering areas in the eastern part of Gulf of 
St. Lawrence seals to a large extent have occasionally fed on cod. Also at the Scotian Shelf 
marine mammals are important predators on cod.  

Pelagic fish may be important predators on cod eggs. High recruitment rates in the Gulf of St. 
Lawrence in the mid to late 1970s appeared to be associated with the collapse due to fishing of 
pelagic fish stock, i.e. herring and mackerel. For the Barents Sea cod no similar relationship 
has been yet found, but it has been documented that herring can feed intensively on the pelagic 
cod eggs in the main spawning areas of Lofoten. 

3 Suggestions for future work and recommendations 

The effect of size-selective mortality on size-at-age should be further investigated covering 
more stocks. 

The examination how the age structure and geographical substructure of the spawning stock 
affects resilience to climate change should be extended to cover as many other stocks as 
possible, e.g. by comparing the correlation between recruitment and temperature with the 
mean age of the female spawning stock. 

It is recommended that the Working Group on Cod and Climate Change consider a publication 
of the workshop results as an ICES Cooperative Research Report and/or submit a paper to the 
proceedings of the 24th Lowell Wakefield Fisheries Symposium on Resiliency of Gadid Stocks 
to Fishing and Climate Change to be held in Anchorage, October 31–November 3, 2006. 

A summary of the recommendations is provided in Annex 4.   
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Annex 2:  Agenda 

May 9 

13:00-14:00 Welcome and Introduction  - housekeeping, purpose, history 

Local host (George Lilly) 

Conveners (Brian Rothschild, Kai Wieland, Svein Sundby, George Lilly ) 

Welcome remarks by Julian Goodyear, Regional Director of Science, Fisheries and Oceans 
Canada, Newfoundland and Labrador Region 

Keith Brander – Remarks on background to this workshop 

14:00-15:30 Presentations and Discussion in Plenary 

Presentations on major issues 

Keith Brander: An overview and comparison of the declines which have taken place in cod 
stocks (the possible role of changes in weight-at-age) 

Ken Drinkwater: Cod responses to the Atlantic Multidecadal Oscillation 

Brian Rothschild, Henrik Sparholt, and Keith Brander: Notes on similarities and differences 
among cod populations of the North Atlantic ocean. 

Niels Daan: A generalized stock-recruitment relationship for the Northeast Atlantic cod stocks 

15:30-16:00 Refreshment break 

16:00-17:30 Presentations and Discussion in Plenary 

Regional Overviews  

Ghislain Chouinard and Doug Swain: Contrasting recovery rates of southern Gulf of St. 
Lawrence cod between the 1970s and 1990s: the roles of fishing, climate and ecosystem 
change 

George Lilly: The decline and non-recovery of northern (2J3KL) cod, with brief remarks on 
cod in 3Ps and 3NO  

Kai Wieland, Marie Storr-Paulsen and Kaj Sünksen: Fishery and environmental aspects 
relevant for the decline and recovery of the Atlantic cod (Gadus morhua) stock in Greenland 
offshore waters 

Geir Ottersen, Dagø O. Hjermann, and Nils Chr. Stenseth: Long-term (1913-2004) changes in 
the age-structure of Arcto-Norwegian cod strengthens climate-recruitment link 

Henrik Svedäng: Decline and recovery of cod along the eastern Skagerrak coast in relation to 
population and offshore recruitment 

Svein Sundby, Paul Budgell, Morten D. Skogen, Eva Falk, Mari Myksvoll Skuggedal, and 
Francisco Rey: The long-term decrease of cod recruitment in the North Sea – the mechanistic 
links to ocean climate, water mass characteristics, nutrient conditions and the large-scale 
dynamics of Calanus finmarchicus 

Fritz Köster: Eastern Baltic cod recovery - The importance of species interactions Baltic cod 
(presentation given by Kai Wieland) 

Antonio Vázquez: The collapse of the Atlantic cod (Gadus morhua) stock on Flemish Cap 
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Fisheries Induced Evolutionary Change 

Katja Enberg: Fisheries induced evolutionary change and recovery potential of cod stocks 

Doug Swain: The possible role of evolutionary responses to fishing in the non-recovery of the 
collapsed southern Gulf cod stock 

Predator-prey interactions 

Jason Link, Bjarte Bogstad, Henrik Sparholt, and George Lilly: The role of cod in the 
ecosystem, with emphasis on the effect of predators and prey on cod (from draft chapter from 
cod book) 

Aqqalu Rosing-Asvid: Interactions between harp seals and Atlantic cod off west Greenland 

Daniel Duplisea, Mike Hammill and Red Méthot: Harp seal predation on Northern Gulf cod: 
fitting historical data and projecting cod recovery under various seal hunt scenarios 

Alejandro Buren, Mariano Koen-Alonso and Garry Stenson: Predator-prey interaction 
between harp seals and Atlantic cod: An exploration of sources of variation 

Garry Stenson and Mike Hammill: Quantifying prey consumption by harp seals 

May 10 

08:30-10:30 Plenary: Finish presentations 

10:30-11:00 Refreshment break 

11:00-12:30 Plenary: Finish presentations 

12:30-13:30 Lunch 

13:30-15:30 Plenary session: Finish presentations 

15:30-16:00 Refreshment break 

16:00-17:30 Plenary session: addressing Terms of Reference  

May 11 

08:30-10:30 Plenary session /Break out groups: addressing Terms of Reference 

10:30-11:00 Refreshment break 

11:00-12:30 Plenary session /Break out groups: addressing Terms of Reference  

12:30-13:30 Lunch 

13:30-15:30 Plenary session /Break out groups: addressing Terms of Reference 

15:30-16:00 Refreshment break 

16:00-17:30 Plenary session /Break out groups: addressing Terms of Reference 

May 12 

08:30-09:00 Plenary 

- Discussion of potential for external publication (s) resulting from the meeting 

 - Review the state of the report  

10:30-11:00 Refreshment Break 
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11:00-12:30 Further review of the report and closing discussion 

12:30-13:30 Lunch 

13:30-18:00 Writing continues (for those who wish) 
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Annex 3:  Extended abstracts of presentations 

The following table lists the extended abstracts by first author and in the sequence in which 
they appear below. The table also indicates which of the Terms of Reference is addressed by 
each abstract. An eleventh column has been added for “adaptive change”. 

 a b c d e f g h i j 
adaptive 
change 

Brander 1 1 1 1 1       
Drinkwater   1  1     1  
Rothschild 1 1          
Daan 1 1          
Chouinard    1  1  1 1 1 1  
Lilly  1 1 1 1 1 1 1  1  
Wieland  1 1   1       
Ottersen   1  1 1       
Svedang 1    1       
Sundby  1  1       1  
Köster  1 1  1  1 1 1 1  
Vazquez  1 1       1  
Enberg 1 1 1 1 1      1 
Swain  1 1 1 1     1 1 
Link       1 1    
Rosing-
Asvid        1    
Duplisea         1    
Buren         1    
Stensen         1  1  
            
TOTAL 7 10 9 5 10 1 4 8 2 8 2 

 

Extended abstract  1 

The role of growth changes in the decline and recovery of North Atlantic 
cod stocks since 1970 

Keith M. Brander  

ICES, H.C. Andersens Boulevard 44–46, 1553 Copenhagen V, Denmark 

This paper was produced as part of the preparation for the Workshop on Decline and Recovery 
in order to (i) bring together the data on changes in biomass, fishing mortality, recruitment and 
weight-at-age in a common format (ii) describe changes in biomass and weight-at-age which 
have taken place (iii) describe some of the characteristics of decline and recovery and propose 
some working definitions of terms such as “prolonged period of decline”, “collapse” and 
“recovery”.  The data set and a working paper describing it was made available on the 
ICES/GLOBEC website five months before the workshop in order that all workshop 
participants and others who wished to contribute ideas and working papers could make use of 
it.  A full version of the paper was submitted to the ICES Journal and will be published as an 
essay. 

When the data for fifteen stocks (seven from each side of the N Atlantic plus Greenland) were 
assembled and plotted it became apparent that there were consistent patterns of change in both 
biomass and weight at age and the paper goes on to consider what the patterns may indicate 



52  |  ICES WKDRCS Report 2006 

 

concerning the causes of change in biomass and in particular the direct and indirect role of 
change in mean weight-at-age.  There are two principal proposals which arise: 

1 ) Further analysis of the direct and indirect effects of changes in weight-at-age on 
stock decline and recovery requires tropho-dynamic modelling. 

2 ) Prolonged periods of decline in biomass have in most cases been preceded by 
periods of decline in in mean weight-at-age.  Change in mean weight-at-age 
should be monitored for the information it gives on future productivity and 
reproductive output of the stock.   

Methods 

Information on many characteristics of North Atlantic cod life histories and population 
processes has recently been assembled and published in a standard format for seventeen 
stocks, together with extensive reference lists (ICES, 2005a). Data on fifteen of these stocks 
are presented here, with some additional information from primary sources, which are either 
cited in ICES (2005a) or here. 

Trends in population biomass for each cod stock are represented by total biomass. This is the 
product of population number-at-age and weight-at-age, where the former is derived from 
catch-at-age using virtual population analysis and the latter from sampling of commercial and 
research survey catches.    

Trends in weight of individual cod are represented by stock weight-at-age averaged over five 
age groups, beginning in each case with the age at which the fish attain 1 kg in weight. This 
range was chosen to represent the most abundant and best sampled ages in the catch, i.e. those 
large enough to exceed the size over which gear selection occurs, but excluding higher ages, 
which are influenced by small number effects. The range of ages used in estimating total 
biomass and mean individual weight for each stock is given in columns 5 and 6 respectively of 
Table 1 and the % of total biomass which the age groups included in the mean weight 
represent is in column 7. Data sources, in which details of sampling and methods can be found 
are given in column 8. The ICES assessment reports can be accessed at 
http://www.ices.dk/iceswork/workinggroups.asp (codes for individual stocks are shown in 
Table 1). Weight-at-age (state) is not intended to “represent” growth (rate) in this analysis, but 
changes in weight-at-age provide evidence of changes in growth. The time series of biomass 
and weight-at-age are shown in Figure 1. A seven-year moving window analysis of the time 
series of total biomass and mean weight is used to identify “prolonged periods of decline”, 
which are defined as periods in which the variable declined in at least five of the seven years 
within the window.  

The quality and completeness of the time series was erratic prior to 1970, therefore almost all 
the data used are for subsequent years. Although the time series are referred to as “data”, they 
are in fact model output. Changes to the virtual population analyses, which are in many cases 
updated annually, alter the estimates of numbers and stock biomass, although for earlier years 
such retrospective changes are small and do not affect the major trends.  

An overview and comparison of the declines which have taken place in cod 
stocks 

Total landings of North Atlantic cod (Gadus morhua) declined from over three million tons in 
1970 to less than one million tons in 2000 due to changes in total stock biomass, for which the 
term “collapse” has frequently been used (Harris, 1998). The downward trend has been 
particularly marked in the NW Atlantic, where fisheries for cod on most of the Canadian shelf 
have been stopped or severely restricted since the early 1990s, with the aim of allowing the 
stocks to recover. There are as yet few signs of recovery in most Canadian stocks. The 
declines which have occurred in the NE Atlantic stocks, while serious, have not been as 



ICES WKDRCS Report 2006 |  53 

   

extreme as those in the NW Atlantic and cod fisheries have continued, with restrictions on 
total catch and some seasonal and area closures. 

Trends in total biomass and mean weight-at-age since 1970 are shown in Figure 1. The first 
and last years of the “prolonged periods of decline” in total biomass and weight-at-age, which 
were identified using the moving-window time-series analysis, are given in Table 2 and the 
periods of decline in biomass also marked in Figure 1 by a sequence of open boxes along the 
x-axis. 

The six cod stocks in Canadian waters all experienced a prolonged period of decline which 
began in the mid 1980s and ended in the mid 1990s. The decline in biomass in these six stocks 
was in every case preceded by a decline in the mean weight-at-age. The lag between the 
decline in biomass and the decline in weight-at-age was five years for four of the six stocks, 
two years for the S. Grand Bank stock and eight years for the S. Gulf of St Lawrence. The 
greatest decline in biomass took place in the S Grand Bank stock, where the total biomass in 
1995 was 3% of the 1984 level. The smallest decline was in the S Newfoundland stock, which 
fell to 26% between 1985 and 1993.  The decline in weight-at-age was in every case much 
smaller than the decline in biomass (from 34 to 80% of the original level). 

The Canadian cod stocks share other common patterns of change in total biomass and weight-
at-age. Both declined until about 1975, followed by a substantial increase to the early or mid 
1980s. Weight-at-age increased in all Canadian stocks after 1995, but total biomass only 
increased in some stocks. The depth-averaged 5 year mean of temperature at Stn 27 on the 
Newfoundland shelf is shown in Figure 1 and shares some of the trends described for weight-
at-age and total biomass. The southernmost stock in the NW Atlantic is the shared stock on 
Georges Bank. It underwent a prolonged period of decline in total biomass 1988–1995, but not 
in weight-at-age. 

The offshore cod stock at Greenland is included in Tables 1 and 2, but lacks a complete, 
consistent time series since 1992 because the biomass is too small to assess. This stock had a 
prolonged period of decline 1966–1975 (to 5% of its starting level), which was preceded by a 
decline in weight-at-age (lagged by three years). 

With the exception of the Celtic Sea, NE Atlantic cod stocks also declined after 1970, but the 
declines do not share a common pattern and are much smaller than those among the Canadian 
stocks. In the NE Atlantic there have also been a number of periods of rapid increase in total 
biomass. For example, the stock at Faroe declined to 19% over the period 1984–1991, but 
increased quickly to the 1984 level by 1996. On both sides of the N Atlantic, changes in mean 
weight-at-age are smaller in the warmer water stocks (Georges Bank, North Sea, Irish Sea and 
Celtic Sea) and there are no prolonged periods of decline in weight-at-age in any of these 
areas, or in the Baltic. 

Evaluate the relative roles of fishing and climate in causing declines in 
abundance 

There is considerable interest in establishing the causes of the declines which have taken 
place, in order to learn how to avoid such changes in future, to provide appropriate advice for 
ongoing management of stocks on which fishing continues and to make forecasts of the 
likelihood and timescale of stock recovery (Rice et al., 2003; Shelton et al. 2006).  All North 
Atlantic cod stocks have declined in total biomass since 1970, with the exception of the Celtic 
Sea. Overfishing is a major cause of decline in every case, but probably not the only cause.  

A period of prolonged decline in weight-at-age began between 1978 and 1982 in all Canadian 
cod stocks (Table 2) and was probably due to an adverse change in the productivity of the 
stocks (Dutil et al., 1999; Drinkwater, 2002). This must have had an immediate, proportional 
effect on biomass, but the effect is not detectable either because it was too small and/or 
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because it was obscured by other changes (e.g. in stock numbers).  The decline in biomass in 
these six stocks began two to eight years later and was much greater than proportional to the 
weight-at-age change.   

Evaluate the causes of  observed changes in rates of survival, growth and 
maturity, including a tropho-dynamic perspective 

Could a change in weight-at-age cause a lagged decline in stock biomass? Two explanations 
and proposals for further modelling can be put forward, in fulfillment of the third aim of the 
paper.  First, as growth changes, the allocation of energy to routine metabolism, somatic 
growth and reproduction changes (Nisbet et al., 2000), resulting in non-linear changes in the 
reproductive output, by altering age and size at maturity, specific fecundity and egg viability. 
Dynamic energy budget models would be suitable for exploring this process (Nisbet et al., 
2000). Second, when weight-at-age changes, the effect of fishing on the stock is affected for a 
number of reasons. For example a total allowable catch (TAC) intended to harvest a defined 
proportion of the stock will only do so if the weight-at-age has been correctly predicted. 
Unanticipated decline in weight-at-age will cause higher than intended fishing mortality 
(more, smaller fish are caught). Furthermore fishermen are known to dump poor condition fish 
(high-grading), resulting in additional mortality (Kulka, 1997).  Even before the underlying 
processes are revealed, it seems worthwhile to monitor persistent changes in mean weight-at-
age, since a decline may provide early information of increased risk of stock decline. 

All stocks have experienced periods of increasing total biomass, which are unlikely to have 
been caused by fishing and are generally attributed to one or more years of good recruitment. 
However in many cases (Figure 1) the stock increases coincided with increasing weight-at-
age, suggesting that here too changes in individual growth and productivity played a role.  

Changes in mean weight-at-age are generally attributed to changes in growth rate due to three 
main types of cause (i) “environmental” factors, the principal one being ambient temperature 
(ii) food availability (including density dependent effects) and (iii) selective effects of fishing 
(Krohn et al., 1997; Swain et al., 2003), but it can be difficult to disentangle these, because 
their effects can be direct or indirect and they interact with each other. For example, 
temperature has a direct effect on growth rate and also an indirect effect by altering the 
production of food organisms (ICES, 2002). Another reason why it is difficult to assign causes 
with confidence is the poor quality of field information on the contributing factors; for want of 
more precise, directly observed information, various proxies are used. Interannual changes in 
temperature may be represented by mean bottom temperature at a fixed station or by a value 
for the area occupied by cod during an annual fishing survey (i.e. ambient temperature is 
unknown); population biomass is used to represent density dependent effects (i.e. intensity of 
competition for food is unknown) and selective effects of fishing are inferred from sizes 
backcalculated from otolith increments (i.e. actual selection by fishing activity is unknown) 
(Sinclair et al., 2002).  

Observed changes in weight-at-age have been attributed to all of the above causes and to 
combinations of them in different stocks. The depth averaged temperature at Stn 27 on the 
Newfoundland shelf (Figure 1) is an indicator of major changes in the thermal environment of 
the Canadian shelf, with widespread consequences for the ecosystems (Frank et al., 2005). 
The prima facie evidence of patterns of change in weight-at-age and total biomass, which are 
similar to this temperature pattern, point to a causal connection. Temperature is known to 
affect growth of cod and evidence from experiments and the field shows that the effect of 
temperature change is progressively greater at low temperatures (Bjornsson and Steinarsson, 
2002; Brander, 2003; Folkvord, 2005). This may explain why the warm-water stocks (Georges 
Bank, North Sea, Irish Sea and Celtic Sea) show less variability in weight-at-age than the 
cold-water stocks.  More detailed studies of the growth changes in individual Canadian cod 
stocks support the existence of a temperature effect, but also effects of prey availability 
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(Krohn et al., 1997), density dependence and a common pattern of residuals, which may be 
due to size-selective mortality (Swain et al., 2003). Other published work (Dutil et al., 1999; 
Rätz and Lloret, 2003) showed that decline in biomass was also accompanied by decline in 
fish condition and the authors considered the implications for productivity and management. 

Unlike the NW Atlantic, where the oceanographic and biological environment of the Canadian 
shelf is dominated by changes in the Labrador Slope Current, the NE Atlantic stocks do not 
show common patterns of change in weight-at-age. A second major difference between the 
NE and NW Atlantic cod stocks is that the former all occupy areas with mean temperatures 
above 4oC, whereas the latter are all below 4oC, with the exception of Georges Bank. For 
some NE Atlantic stocks there is evidence that temperature causes changes in weight-at-age 
(Ottersen and Loeng, 2000; Brander, 2000), but it is difficult to distinguish direct temperature 
effects from the associated effects on production or dynamics of forage species, such as 
capelin (Michalsen et al., 1998). Interannual variability in capelin abundance seems to play a 
major role in changes in weight-at-age in the Arcto-Norwegian and Icelandic cod stocks and is 
important in the NW Atlantic too (Rose and O'Driscoll, 2002). Weight-at-age changes at 
Faroe, which are particulary closely coupled with changes in total biomass (see Figure 2) have 
been linked to changes in plankton production (Steingrund and Gaard, 2005). The Eastern 
Baltic is the only stock with a significant negative relationship between weight-at-age and 
stock abundance, however, this has been ascribed to the closely coupled predator-prey 
relationships between cod and its principal prey species, sprat and herring, rather than to 
density-dependence (Gislason, 1999). 
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Table 1 Stock names and area codes. Areas occupied by each stock are taken from Myers et al. 
(2001).  Mean bottom temperatures are from Brander (1995) and Myers et al. (2001). Age ranges 
used in estimating total biomass and mean weight-at-age. % of total biomass is the fraction of total 
biomass which comes from the age range used to estimate mean weight-at-age.  

Cod Stock 
NAFO or 
ICES 
code 

Area 
(km2) 

Temp. 
oC 

Age 
range 
biomass 

Age 
range 
weight 

% of 
total 
biomass 

Data sources and ICES 
assessment WG codes 

S Labrador 2J3KL 253492 0 3-13 5-9 76 
(Bishop et al. 1993); 
(Lilly et al. 2003); (Lilly 
and Murphy, 2004) 

S. Grand Bank 3NO 121246 1.75 3-13 5-9 80 (Healey et al. 2003) 
S. 
Newfoundland 3Ps 70510 2.5 3-13 4-8 68 (Brattey et al. 2003) 

N Gulf 3Pn4RS 89041 1 3-13 5-9 85 (Fréchet et al. 2003) 
S. Gulf 4TVn 118343 1.75 3-15 5-9 81 (Chouinard et al. 2003) 
E. Scotian Shelf 4VsW 102428 3.75 1-15 4-8 80 (Mohn et al. 1998) 

Georges Bank  5Z 102596 8 1-10 1-5 77 (Hunt and Hatt, 2002); 
(O'Brien et al. 2002) 

Greenland 
offshore 

NAFO1 
ICES 
XIV 

 1.6 3-10 3-7  NWWG (ICES, 1996) 

Arcto-
Norwegian I,II 592610 4 3+ 4-8 79 AFWG (ICES, 2005b) 

Iceland Va 237031 5.8 3+ 3-7 81 NWWG (ICES, 2005c) 
Faroe Vb1 36236 7.4 2+ 2-6 85 NWWG (ICES, 2005c) 

E. Baltic IIId, 25-
29 216833 5 2-7 3-7 1 95 WGBFAS (ICES, 

2005c) 

North Sea IIIa,IV,V
IId 539823 8.6 1-10 2-6 88 WGNSSK, (ICES, 

2006a) 

Irish Sea VIIa 48263 10 1-6 1-5 97 WGNSDS (ICES 
2006b) 

Celtic Sea VIIe-f 155358 11 1-6 1-5 96 WGSSDS (ICES 2006c) 

 

Table 2 Year ranges are the first and last years of “periods of prolonged decline” identified using 
seven year moving-window time-series analysis. A “periods of prolonged decline” is defined as a 
period during which biomass or weight-at-age declined in at least five out of seven consecutive 
years. % decline in total biomass and mean weight-at-age is the value in the last year of the 
“period of prolonged decline” divided by the value in the first year as a %.   

Total biomass Mean weight 
Cod Stock Years % decline Years % decline 

S Labrador 1985-95 5% 1980-88 64% 

S. Grand Bank 1984-95 3% 1982-94 72% 

S. Newfoundland 1985-93 26% 1980-94 80% 

N Gulf 1983-94 6% 1978-92 62% 

S. Gulf 1986-93 20% 1978-88 34% 

E. Scotian Shelf 1985-93 10% 1980-92 44% 

Georges Bank  1988-95 27% none none 

Greenland offshore 1966-75 5% 1963-69 63% 

                                                           

1 For the E Baltic the youngest age (3 yr old) is less than 1kg 
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Arcto-Norwegian 1993-2000 44% 1992-99 76% 

Iceland 1987-94 49% 1977-83 76% 

Faroe 1984-91 19% 1984-91 66% 

E. Baltic 1983-92 20% none none 

North Sea 1980-93 33% none none 

Irish Sea 1987-96 38% none none 

Celtic Sea none none none none 
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Figure 1 Trends in total biomass (black triangles represent tons × 103 on left axes) and mean 
weight-at-age (crosses represent kg on right axes) for North Atlantic cod stocks. The open squares 
along the X axis represent periods of prolonged declinein total biomass. Data sources can be found 
in ICES (2005). The Canadian shelf stocks are the upper six on the left. The top panel on the left 
shows the depth averaged 5 year means of temperature at Stn 27 on the Newfoundland shelf 
(Colbourne and Anderson, 2003).  
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Extended abstract  2 

The cod response to the Atlantic multidecadal oscillation 

Ken Drinkwater 

Institute of Marine Research, Bergen, Norway 

Sea surface temperatures in the North Atlantic vary on a variety of time scales.  Many recent 
studies have highlighted the approximate decadal oscillations that show strong association 
with the North Atlantic Oscillation (NAO).  There is also a strong Atlantic Multidecadal 
Oscillation (AMO) with an approximate 80-year period (Sutton and Hodson, 2005).  
Following a relatively cool period in the early 1900s, there was rapid warming in the 1920s 
through the 1930s and warm conditions prevailed through to the 1960s when temperatures 
declined (Figure 1).  The following cool period extended until 1990 when temperatures rose 
again.  In response to the AMO there have been large ecosystem changes.  Indeed, the early 
ecosystem changes, especially in commercial fish stocks, were noted in response to the 
warming in the 1920s and led to a Symposium on Climate Change in ICES in 1949 and would 
have been held much earlier if not for the World War II.  They documented many of the 
ecosystem changes, which were followed by excellent reviews by Beverton and Lee (1965), 
Cushing and Dickson (1976) and Cushing (1982).  This presentation deals mainly with the cod 
response during the warm period of the early 1900s and is derived from the recent review of 
the ecosystem changes by Drinkwater (2006). 

°C

 

Figure 1.  The AMO based on sea surface temperature anomalies in the North Atlantic Ocean 
(taken from Sutton and Hodson, 2005). 

The warming period of 1920s-1960s existed throughout most the northern North Atlantic and 
includes both air and sea temperatures, the latter extending to subsurface depths down to 200 
m and more.  The area of warming covers most of the region inhabited by cod with the 
exception of the southeast coast of Canada and the northeastern United States.  Highest 
temperatures were in the more northern areas.  Through the 1940s and 1950s temperatures 
varied but generally remained relatively high.  Thereafter, there was a rapid cooling trend with 
the exact timing of the decline varying spatially, the Northeast Atlantic declining slightly 
earlier than in the Northwest.  The high temperatures recorded during the warm period from 
1930–1960 match, and in some cases exceed, the present day warming.  A marked reduction 
in sea-ice extent that accompanied the warming in the Barents Sea, around Iceland and off 
West Greenland.  There were also increases transports in several warm ocean currents, e.g. (1) 
eastward flowing Irminger Current south of Greenland towards the Labrador Sea; (2) Atlantic 
water to the west and north of Iceland; (3) the branch of the North Atlantic Current to the west 
of Svalbard, known as the West Spitzbergen Current, and the inflow of Atlantic waters to the 
Barents Sea.  

The most well documented biological change that occurred during the warm event was the 
increased abundance of Atlantic cod off West Greenland.  From the late 1910s to the early 
1930s they not only increased in numbers but also spread gradually northward from near the 
southern tip of Greenland to Upernavik, a distance of over 1200 km (Jensen, 1939).  The 
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increased abundance led to the development of a cod fishery, which quickly replaced sealing 
as the main industry in West Greenland.  The cod fishery yielded moderate landings through 
the 1930s (< 105 mt), declined during the war years but rose dramatically through the 1950s 
reaching a peak at close to 5 x 105 t in the early 1960s before declining rapidly later that 
decade (Figure 2) during a period of decreasing air and ocean temperatures.  Cod catches have 
remained relatively low since the 1970s.  The cod off West Greenland originated from Iceland 
due to a combination of increased transport of larvae from Iceland and better survival of 
larvae once they reached West Greenland waters.  Zooplankton samples (1950–1985) show 
abundance, dominated by Calanus finmarchicus, was much greater during the warmer 1950s 
and very early 1960s compared to remaining relatively cool years (Pedersen and Rice, 2002).  
These authors found that approximately 25% of the interannual variability in cod larval 
abundance could be accounted for by abundance indices of zooplankton.  
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Figure 2.  The annual catches of cod off West Greenland. 

On the other side of the Labrador Sea, Tåning (1953) suggested that cod off Newfoundland 
expanded northward to northern Labrador, but he did not discuss the evidence for such a 
claim.  However, catches of cod off Labrador and northern Newfoundland showed no large 
changes during the warm period compared to the early 1900s.   

During the warming period of the 1920s cod catches in Icelandic waters rose rapidly peaking 
in the early 1930s at almost 6 x 105 t.  While increased fishing effort contributed to these 
record catches, there was very high recruitment in the 1920s, with the highest recruitment on 
record being in the early 1920s (Schopka, 1994).  Prior to the 1920s warming, cod spawned 
almost exclusively off the south coast of Iceland but as waters warmed, cod spawning spread 
northward until there were major spawning locations completely surrounding Iceland.  
Capelin, the major prey of adult cod, shifted their spawning from the south to the north coast, 
becoming scarce on the south coast that in turn resulted in a decrease in the condition of cod in 
the south, while those cod residing on the north coast were in good condition.  The increased 
influx of Atlantic waters to the north of Iceland is believed to have lead to an increase in 
primary production off northern Iceland due to reduced stratification and higher nutrient 
concentrations, based on latter studies (Thorardottir, 1984; Gudmundsson, 1998).  
Zooplankton abundance is also significantly higher in warm years (i.e. more Atlantic waters) 
than in cold years (Astthorsson and Vilhjálmsson, 2002).  Since C. finmarchicus constitutes 
60–80% of the zooplankton biomass in spring, interannual variations mainly reflect variations 
in this species (Astthorsson and Vilhjálmsson, 2002). This increased production is believed to 
have contributed to the higher cod abundance during the warm period.   
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In the Barents Sea, during the 1920s and 1930s cod began appearing in high abundance and on 
Bear Island Bank a cod fishery was re-established there after an absence of almost 40 years 
(Blacker, 1957).  Cod also spread northward off West Svalbard with sufficient abundance to 
support a fishery (Beverton and Lee, 1965) and eastward reaching Novaya Zemlya by 1929-
1930 (Cushing, 1982).  At this time there was a distributional shift in spawning with 
proportionately more cod spawning in the northern regions of Norway (Lofoten and 
Finnmark) compared to southern Norway at Møre (Sundby and Nakken, 2004). The stock size 
of Arcto-Norwegian cod peaked in the 1930s and 1940s (Hylen, 2002).  Catch per unit effort 
(CPUE) was significantly higher in the period 1925–1960 than in the periods before or since 
and coincided with high recruitment (Godø, 2003).  High recruitment was believed to be, in 
large part, a result of greater food availability (Sætersdal and Loeng, 1987; Ottersen and 
Loeng, 2000). The mean weight of the cod in Lofoten rose rapidly in the 1920s into the early 
1930s and remained high before starting a general decline in the 1960s.  The increase in 
weight between the pre-1920s period and 1930s–1960s was over 50%.  

In summary, the climate changes that occurred during the warm period of the 1920s to the 
1960s lead to significant ecosystem changes, including dramatic impacts to numerous cod 
stocks.  Cod abundance increased through the northern North Atlantic especially in the 
Barents Sea, Icelandic waters and off West Greenland driven by a combination of higher 
recruitment and higher growth.  Stocks also shift their distribution northward, in the case of 
West Greenland over 1200 km and off West Spitzbergen 500 km.  Spawning shifted 
northward and in some areas, such as West Greenland and Iceland, new spawning sites were 
established farther north than previously observed.  The changes in fish populations had 
significant economic impacts, especially in West Greenland where there was a shift from a 
seal-dominated economy to one dependent upon cod.  Where warm Atlantic waters replaced 
the cold Arctic waters or became relatively more important, primary and secondary 
production, especially Calanus finmarchicus, appears to have increased and this is consistent 
with a bottom-up driven increase in cod production.   

As temperatures declined in the northern North Atlantic during the 1960s, ecological 
conditions often returned to their previous state.  Cod off West Greenland collapsed with 
economic hardships but were replaced by shrimp.  By the time of the change in the 
environmental conditions in the 1960s, expanding fisheries due to more extensive use of 
trawlers, the development of large long-distance foreign fishing fleets, and the general 
increase in the number of fishermen after the last world war, lead to significant impacts on 
fish populations.  Thus, there has been much debate as to whether the observed decline in 
several fish species, such as cod in the 1960s, was mostly due to fishing or to climate.  It is 
clear that both played a significant role.   
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Time series of SSB, R, and F were examined for five cod stocks: southern Grand Bank (3NO), 
Iceland-Greenland (ICEG), North Sea (NSEA), Faeroe Plateau (FARP), and Northeast Arctic 
(NEA).  Comparisons were facilitated by normalizing the data in standard deviation units.   

There was a general downward trend in SSB.  This downward trend occurred in the presence 
of increased fishing mortality.  Fishing mortality during the latter part of the time series often 
exceeded 1.0.  The SSB for the NEA stock was negatively correlated with the SSB of the 
other stocks.  The SSB for the NSEA stock was positively correlated with the 3NO, ICEG, 
and the FARP stock.   

While the decreases in stock were coupled with increased fishing mortality over the c. fifty 
year period, decadal scale variation reflected a complex interaction between fishing mortality 
and environmental variability.   

Not all stocks were coupled with fishing mortality (Figure 1).  A linear relationship between 
standardized SSB and standardized fishing mortality is a measure of production.  The 
expected negative relation was obtained for three of the stocks.  However, the slope of the line 
was equivalent to zero for the FARP and 3NO stocks, indicating that fishing mortality did not 
affect the abundance of these stocks. 

Figure 1.  Apparent production of the five stocks suggested by a linear fit to the data.  The 
intercept can be thought of as a measure of unexploited biomass, and the slope can be thought of 
as a measure of productivity. 

The residuals from the linear fit can be interpreted as environmental variation.  These 
residuals are plotted in Figure 2, which shows that there is temporal coherence among the 
residuals.  These indicate productive and unproductive periods.  The strong correlation 
between the FARP and NSEA is interesting in the light of the presentation by Sundby et al. 
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(Annex 3, Extended Abstract 10), indicating that the flux of zooplankton into FARP and 
NSEA have a common origin. 

Figure 2.  Residuals of biomass data from linear fit of biomass to fishing mortality as displayed in 
Figure 3. 

The dynamical changes in SSB and F reflect fishery-independent mini-collapses.  This is 
shown in Figure 3. The events labeled E reflect a decrease of the stock after it reaches a 
maximum.  The downturn occurs at relatively low fishing mortality.  The increase in fishing 
mortality occurs after the decrease in stock, not before.  In other words, the cod stock reaches 
a carrying capacity at low fishing mortality.  When the carrying capacity decreases, fishing 
mortality increases.  It is significant that fishing mortality increases after the stock declines, 
not before. 
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Figure 3.  Time series of STDF and B showing decoupling events for each stock.  The vertical line 
represents a peak abundance, and the horizontal line represents “average” fishing mortality and 
abundance.  Note that there are both decoupled events and coupled events.  The coupled events are 
where the interactions occur in a normal way (e.g., 1985, FARP and 1995, NEA). 

The SR relationships generally reflect both depensation and compensation (Figure 4). 

Figure 4.  Relation between normalized recruitment (STDR) and spawning stock biomass for 
several cod populations.  A concave lower left-hand limb reflects depensation, while a convex 
upper right-hand limb reflects Ricker-type compensation.  Most stocks indicate depensation (DEP) 
while only some stocks indicate Ricker compensations (RCOMP). 
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It is interesting to observe that the stocks not only generally exhibit depensation and Ricker-
like compensation, they also reflect that large recruitments can occur at low stock sizes (see 
particularly NEA and ICEG).  The idealized setting suggests that recruitment is controlled by 
depensatory and compensatory mechanisms.  However, the residuals are driven by the 
environment, and it appears for some stocks that the coupling between the deterministic model 
and the data is least effective when the stock is at a relatively low level. 

Extended abstract  4 

A generalized stock-recruitment relationship for the Northeast Atlantic 
cod stocks 

Niels Daan  

IMARES, The Netherlands 

Standard stock assessment procedures include plots of recruitment (R) versus spawning stock 
biomass (SSB) to guide the setting of reference points for management. However, the 
functions used for different stocks may vary and the parameter estimates have wide 
confidence limits, because time series are relatively short, variation in R is high and the range 
over which SSB has varied may be restricted. Thus, the available S/R plots may 
overemphasize differences among stocks. As an alternative approach, one could assume that 
all stocks are subject to a common S/R relationship and that all observations are expressions 
of that relationship, even though the parameterization may vary. The goal of this contribution 
is to plot all S/R observations for 9 Northeast Atlantic cod stocks (North Sea, West of 
Scotland, Irish Sea, Kattegat, Baltic-South, Baltic-North, Faroe Plateau, Iceland and Arcto-
Norwegian) and to determine their relative position in recent years.  

The underlying assumption made was that the S/R relationship is characterized by a dome-
shaped curve. As a first step, all R and SSB observations were standardized by division by the 
mean and a 3rd-order polynomial (forced through zero) was fitted to each individual stock 
(Figure 1). Only for the Kattegat stock no dome could be defined. To be able to include these 
estimates, a common dome was estimated for the combined Kattegat-Baltic South data set. 
Clearly, the average conditions relative to the dome have varied considerably among stocks. 
Next all observations by stock were standardized relative to their dome by dividing all R and 
SSB observations (by stock) by the R/SSB pair characterizing the highest point on the dome. 
This allows all observations to be included in a common dome-shaped stock recruitment 
relationship for Northeast Atlantic cod (Figure 2).  

The figure also shows the average R/SSB pairs during the most recent 5 years. While the SSB 
for the Faroe Plateau and Arcto-Norwegian cod appears to be beyond the dome and in good 
shape, the recent situation for all other stocks indicates that SSB and R have been considerably 
reduced below the dome.  This suggests that the recruitment dynamics of these stocks are 
largely controlled by depensatory effects, and corresponding imminent dangers of further 
decline under continued fishing.  



ICES WKDRCS Report 2006 |  69 

   

0

1

2

3

0 1 2 3 4 5

SSB/average SSB

R
/a

ve
ra

ge
 R

NS
WS
IS
FP
IL
KG
BN
BS
AN
Poly. (NS)
Poly. (IS)
Poly. (IL)
Poly. (BS)
Poly. (FP)
Poly. (KG)
Poly. (AN)
Poly. (WS)
Poly. (BN)

 

Figure 1.  Fitted 3rd order polynomials (forced through the origin) to the stock recruitment 
observations for individual stocks (standardized by division by the mean). NS: North Sea; WS: 
West of Scotland; IS: Irish Sea; FP: Faroe Plateau; IL: Iceland; AN: Arcto-Norwegian; KG: 
Kattegat; BS: Baltic South; BN: Baltic North. 
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Figure 2.  Standardized stock recruitment plot for 9 Northeast Atlantic cod stocks with fitted 3rd 
order polynomial forced through the origin. Lower panel: detail allowing the average R and SSB 
observations during the most recent 5 years. 

Extended abstract  5 

Contrasting recovery rates of southern Gulf of St. Lawrence cod between 
the 1970s and 1990s: the roles of fishing, climate and ecosystem 
change. 

G.A. Chouinard and D. P. Swain 

Dept. of Fisheries and Oceans, Gulf Fisheries Centre, P.O. Box 5030, Moncton, N.B. E1A 
4L5,Canada 

The southern Gulf of St. Lawrence cod stock declined to low levels in the early nineties 
because of high exploitation rates. Despite the closure of the fishery for several years and 
limited catches recently, the stock has not recovered (Chouinard et al., 2005) (Figure 1). The 
stock experienced a similar decline in the mid-1970s but rebounded rapidly without a 
moratorium on the fishery.  The main cause for the lack of recovery in the recent period is the 
reduced productivity of the stock (Rice et al., 2003; Chouinard et al., 2003).  The presentation 
summarized the findings of analyses (see references) of the roles of fishing, climate and 
ecosystem change on the components of production (growth, recruitment, natural and fishing 
mortality) that explain the reduced productivity.  
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Figure 1.  Spawning stock biomass (‘000 t) for southern Gulf of St. Lawrence cod. 

Growth rates in the recent period are much lower than those of the 1970s (Figure 2).  While 
causes for the decline in growth appear to be linked in order of importance to size-selectivity 
of the fishery, density and a small effect of temperature (Sinclair et al., 2002a, 2002b; Swain 
et al., 2003), a significant portion of the explained variation could not be attributed to a single 
variable( (Figure 3).  Despite a closure and low catches in the fishery, reduced density and 
near-average temperature conditions recently, size-at-age has not recovered.  This may imply 
a fishery-induced evolutionary change in this cod population. 
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Figure 2.  Weight at age 4, 6 and 8 for cod in the southern Gulf of St. Lawrence in the period 1960–
2002. 
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Figure 3: Parameter estimates of model including direct size selection (S), cumulative size selection 
(C), population density (N) and occupied temperature on mean length for cod of ages 5-11 (a) and 
effect on the annual mean predicted L∞ (b) (adapted from Sinclair et al., 2002a) 

Ecosystem and environmental factors potentially affecting the recruitment rate of southern 
Gulf cod have been examined (Swain and Chouinard, 2000; Swain and Sinclair, 2000; Swain 
et al., 2000).  A negative relationship between pelagic fish (herring and mackerel) biomass 
and the number of cod recruits produced per unit of spawning biomass has been shown for this 
population (Figure 4). The effect is thought to be the result of predation by pelagics on cod 
eggs and larvae. There also appears to be a small negative effect of warm temperatures in the 
spring and early summer. No relationship is evident between recruitment rate and spawning 
stock characteristics (e.g., age diversity, proportion of old spawners, spawner size). Pelagic 
fish stocks in the southern Gulf were depressed in the mid-1970s and the low cod biomass 
produced an exceptionally high number of recruits. However, in the 1990s, while cod 
spawning biomass was at similar low level to that observed in the 1970s, pelagics were highly 
abundant and the recruitment rate has only been about average. 
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Figure 4.  Relationships between cod recruitment rate and (A) cod spawning stock biomass S or 
(B) pelagic fish biomass in the southern Gulf of St. Lawrence. Different symbols are used for 
different levels of pelagic fish biomass (A) or cod spawning stock biomass (B) (low – circles; 
medium – squares; high – triangles). Data are for 1963–1994 and are estimated by SPA. 

Analyses have indicated that natural mortality increased in the mid-1980s (Sinclair, 2001).  
The amount of biomass lost due to the increased natural mortality is estimated to be between 
12 to 20 kt annually during the period 1994–2005 and cannot be attributed to unreported 
catches. There is no evidence of an increase in mortality due to diseases or toxins although it 
is noted that the parasite load for cod in this stock is considered high compared to other stocks. 
Condition index of cod did not decline in the 1980s.  A correspondence between grey seal 
population abundance in the southern Gulf of St. Lawrence and natural mortality of adult cod 
was uncovered (Chouinard et al., 2005) (Figure 5). While this correspondence is not 
consistent with seal diet information which suggest that predation is mostly on juveniles, seal 
diets are based primarily on the presence of hard parts in seals stomachs and this could be 
explained if seals frequently do not consume the heads of large cod.  
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Figure 5.  Estimated natural mortality for periods of 5 (top), 7 (middle) and 9 years (bottom) from 
the calibration of sequential population analysis and trends in grey seal population with confidence 
interval (solid lines).  Error bars for estimates of M and confidence intervals for grey seal 
population estimates are +/- 2 SE.  

Finally, while the limited fishery that has been conducted since the late 1990s is not the main 
factor preventing recovery (Figure 6), however, it is further delaying rebuilding given the poor 
productivity of the stock (Shelton et al., 2006).   
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Figure 6.  Current estimate of spawning stock biomass (solid) and estimated assuming (dashed) 
that no fishery had taken place since 1994. 

Comparison of these factors in the mid-1970s and recently indicates that conditions for a 
recovery were exceptionally favorable in the earlier period.  The lack of recovery of southern 
Gulf cod recently is primarily caused by changes in productivity of the stock particularly 
growth and natural mortality. Given the less favorable conditions, a rapid recovery could not 
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be expected after the moratorium in 1993 and rebuilding of the stock will likely be protracted 
unless there are significant changes in the parameters affecting productivity. 
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The decline and non-recovery of northern (2J3KL) cod, with brief remarks 
on cod in 3Ps 

George Lilly 

Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, P.O. Box 5667, St. John’s, 
NL  A1C 5X1  Canada 



76  |  ICES WKDRCS Report 2006 

 

Introduction 

The northern (2J3KL) cod stock off southern Labrador and eastern Newfoundland was closed 
to directed commercial fishing on 2 July 1992. Within two years, moratoria were imposed on 
all other cod stocks in Atlantic Canada from the eastern Scotian Shelf northward. The stocks 
on the eastern Scotian Shelf (4VsW), the southern Grand Bank (3NO) and the offshore of 
2J3KL have remained closed. The inshore populations of northern cod were reopened for 5 
years but then closed. The stocks in the northern (3Pn4RS) and southern (4TVn) Gulf of St. 
Lawrence were reopened, reclosed, and reopened. Among the stocks that were reopened, only 
the stock off southern Newfoundland (3Ps) has remained continuously open.  

These differences in management reflect, to some extent, differences in stock dynamics, or 
more correctly, in the understanding or perception of stock dynamics. (For some stocks, there 
are strong disagreements between the status as reported by scientific assessments and the 
status as understood by fish harvesters based on their own experience and observations.) Some 
stocks, notably offshore northern cod and eastern Scotian Shelf cod, continued to decline after 
imposition of the moratoria and have shown no sustained signs of recovery. Other stocks, 
notably those in the northern and southern Gulf of St. Lawrence, did not decline to the same 
extent as the two just described but have remained at low levels of productivity. The only 
stock that rebounded strongly was that off southern Newfoundland. However, even that stock 
has experienced low recruitment during most years of the past decade, and this has contributed 
to a recent decline in biomass, which in turn has triggered a reduction in quota. 

Thus, there are many similarities in the dynamics and management of cod populations of 
Atlantic Canada since about the mid-1980s (and even earlier), but there are also many 
differences, and while it is important to seek similarities and common causes, it is also 
important to recognize and understand the differences. Note that large differences can occur 
over short distances. The rapid growth of the 3Ps stock following its closure contrasts 
dramatically with the continuance of decline followed by non-recovery in the adjacent 2J3KL 
stock to the northeast and the 4VsW stock across the Laurentian Channel to the southwest.  

The one factor that most strongly links the cod populations of Atlantic Canada from the 
eastern Scotian Shelf northward is the cooling that occurred in the Labrador Sea and adjacent 
waters during the 1980s and early 1990s. In addition, most of the ecosystems within which 
these stocks are embedded have experienced large changes in biota, including decreases in 
abundance of most groundfish, increases in abundance of smaller species (shellfish off eastern 
Newfoundland and pelagic species on the eastern Scotian Shelf) and increases in the 
abundance of seals.  

This overview briefly reports some observations regarding the decline and recovery (or non-
recovery) of the cod stocks off Newfoundland and Labrador. There are no new analyses. The 
issues are so broad and the literature so large, that all aspects must be treated superficially and 
some perilously so. Emphasis is placed on the northern (2J3KL) cod, but there is some 
discussion of the stock off southern Newfoundland (3Ps).  

This note will start with a short overview of the fishery and population dynamics of 2J3KL 
cod, followed by a brief discussion of changes in the physical environment. It will then 
attempt to address most of the workshop Terms of Reference. Much of the information is 
extracted from stock assessment reports and literature summaries (Lilly and Murphy, 2004; 
Lilly et al., 2005; DFO, 2005a). 

Fishery and population dynamics 

Historically, many of the cod in the northern (2J3KL) cod stock migrated from overwintering 
areas offshore to feeding areas inshore, where they were exploited by the traditional inshore 
fixed-gear fishery. Reported landings increased dramatically in the late 1950s and 1960s as 
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non-Canadian fleets exploited the dense offshore overwintering aggregations (Figure 1). 
Landings declined rapidly during the 1970s. Canada declared a 200 nautical mile zone of 
Extended Fishery Jurisdiction in 1977. Landings rose again during the 1980s as the inshore 
fishery experienced greater success and Canadian trawlers replaced the non-Canadian trawlers 
on the offshore grounds. However, landings declined rapidly in the early 1990s and a 
moratorium on directed commercial fishing was declared in July 1992.  

Research surveys showed that the stock continued to decline for 2 years after the start of the 
moratorium (Figure 2). By the mid-1990s, it was apparent that the offshore populations were 
barely detectable. At the same time, it was recognized that there were aggregations of cod in 
the inshore in Div. 3L and southern Div. 3K. These inshore populations appeared to be more 
productive during the 1990s than populations in the offshore. A small fishery directed at these 
inshore populations was introduced in 1998 but closed indefinitely in 2003 (Figure 1). 

Prior to the collapse of the stock, mathematical reconstruction of the population based on the 
reported catches (sequential population analysis or SPA) was the main tool used to estimate 
the size of the stock as a whole and to provide a basis for projections. The models indicated 
that the 3+ biomass declined from about 3 000 000 t in the early 1960s to about 500 000 t in 
the late 1970s (Figure 3). The stock recovered partially to just over 1 000 000 t by the mid-
1980s, but declined again during the late 1980s. The actual time course from the mid-1980s 
onward is somewhat uncertain, but the stock clearly reached an extremely low level by about 
1994. The spawner stock biomass (SSB) collapsed from about 1 500 000 t in the early 1960s 
to about 125 000 t in the late 1970s, and then increased to 400–500 000 t through most of the 
1980s (Figure 4). The SSB declined rapidly after 1988 or 1999. Patterns in recruitment and 
mortality are shown in Figures 5 and 6. 

The use of SPA was discontinued in the early 1990s (for reasons, see Lilly et al., 2003). From 
the late 1990s to the present, information on stock status has been provided for the offshore 
and inshore separately.  

In the offshore, the major source of information has been the bottom-trawl surveys. These 
surveys have shown that the biomass has remained extremely low (Figure 2), recruitment has 
been low (Figure 7) and mortality has been extraordinarily high (Figure 8). Additional 
information has come from hydroacoustic studies in specific areas. 

For the inshore, monitoring has been conducted since 1995 by limited test-fishing conducted 
by fish harvesters using commercial gears (sentinel surveys) and by hydroacoustic studies in 
one specific inlet (Rose, 2003). In 2003, SPA was reintroduced but applied to data collected in 
the inshore since the mid-1990s. In 2005, the area to which SPA was applied was further 
limited to a central portion of the inshore where resident populations were understood to 
reside. This model indicated that the 3+ biomass and spawner biomass increased to a peak in 
about 1997–1998, declined during the period of the fishery (1998–2002), and started to 
increase after reimposition of a closure (Figures 3 and 4). Trends in recruitment and fishing 
mortality are shown in Figure 5 and 6. 

Environmental trends 

The marine environment off Labrador and eastern Newfoundland has experienced 
considerable variability since the start of standardized measurements in the mid-1940s 
(Colbourne and Anderson, 2003; Colbourne et al., 2005; Petrie et al., 2005). A general 
warming phase reached its maximum by the mid-1960s. Beginning in the early 1970s there 
was a general downward trend in ocean temperatures, with particularly cold periods in the 
early 1970s, early to mid-1980s and early to mid-1990s (Figure 9). Ocean temperatures started 
to warm in 1995 and have generally been above normal for a decade, with some indices 
reaching near-record levels in recent years. 
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Attention has frequently (e.g. Drinkwater, 2002, 2005) been drawn to the conclusion by Petrie 
et al. (1992) that conditions at Station 27 (in the inner branch of the Labrador Current off St. 
John’s) represent low-frequency temperature variability throughout the area from southern 
Labrador to the southern Grand Bank. While this is accepted, it must also be recognized that 
indices from different areas, seasons and portions of the water column must vary somewhat. 
This is immediately apparent in Figure 9. Note, in particular, that the annual depth-averaged 
temperature at Station 27 reflects annual variability in the temperature of the near-surface 
waters much more than does the CIL cross-sectional area, and in this respect 1991 stands out 
as a particularly cold year. 

There have also been changes in ice cover, salinity, stratification and other aspects of the 
physical oceanography (Colbourne et al. 2005; Petrie et al. 2005). 

ToR b. Evaluate the relative roles of fishing and climate in causing declines in 
abundance. 

It has generally been assumed that the initial decline of the 2J3KL cod stock in the 1960s and 
1970s was due entirely to overfishing, but there was so little fishery-independent information 
at the time that it would be difficult to test other hypotheses. There is considerable controversy 
regarding the cause(s) of the second collapse. Many studies (e.g. Hutchings and Myers, 1994; 
Hutchings, 1996; Myers et al., 1996) have concluded that the collapse was caused entirely by 
fishing activity, which would include reported landings (Figure 1), unreported landings and 
discards.  

There has, however, been much attention to the role of the physical environment. Several 
authors have pointed to various ways in which the decline in water temperature might have 
contributed to the collapse, either directly by reducing productivity (Mann and Drinkwater, 
1994; Drinkwater, 2002, 2005; Parsons and Lear, 2001) or indirectly by affecting distribution 
(Rose et al. 2000). See Lilly (2001), Rice (2002) and Lilly and Murphy (2004) for additional 
details.  

The relative importance of fishing and environment is difficult to determine. Certainly, fishing 
played a very large role. After the extension of fisheries jurisdiction, the intent was to fish 
conservatively so as to promote stock growth, but in retrospect it is clear that fishing mortality 
was consistently underestimated and stock size consistently overestimated during the 1980s 
(Sinclair et al., 1991; Shelton, 2005). A major change in scientific perception of stock size 
occurred in 1988–1989 (Baird et al., 1991; Bishop and Shelton, 1997). This change implied a 
large reduction in total allowable catch (TAC), but the reduction in TAC was only partially 
implemented because it was feared that the consequences for the industry would be too severe. 
Fishing mortality was allowed to escalate (Figure 6) and in the words of Shelton (1998) turned 
“what might have been a severe stock decline under a fixed fishing mortality rate into a 
collapse”. Note that the actual extent to which fishing mortality increased remains uncertain 
(see ToR c).  

It is helpful, when discussing the collapse of 2J3KL cod, to distinguish between events before 
1989 and events after 1989. Athough it was recognized in 1988-1989 that the stock had been 
overestimated, assessments by DFO (Baird et al., 1991; Bishop and Shelton, 1997) and an 
independent review committee (Harris, 1989, 1990) indicated that there was still a 
considerable quantity of cod in the sea in 1989. In 1989 the review panel wrote (Harris, 1990; 
p. 64): 

“The rather stable level in the biomass since 1984 … is supported by the commercial catch 
index and the (research vessel) data. It also accords reasonably well with the trends in inshore 
catches during this same period. All this brings us to the view that the state of the stock 
measured by the biomass trends does not support a conclusion that anything drastic or 
threatening has occurred to the northern cod stock to date.” 
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There then followed, during 1990–1994, a rapid disappearance of cod from research vessel 
surveys, both bottom-trawl surveys in the spring and autumn (Figure 2) and hydroacoustic 
studies in spring/summer off southern Labrador (Anderson and Rose, 2001) and eastern 
Newfoundland (Rose and Kulka, 1999). The rapid decline in bottom-trawl survey indices 
could not be accounted for by reported landings (Bishop and Shelton, 1997; Shelton and Lilly, 
2000). Either the fish were not as abundant as indicated by the standard treatment of the 
survey data (see critique by Hutchings, 1996) or the fish were initially abundant and then 
rapidly disappeared. In the latter case, there are again two possibilities; these fish died of 
natural causes (e.g. predation, starvation) or they were caught and not reported.  The latter 
possiblity would include large quantities of fish being discarded as juveniles (Myers et al., 
1997) and large quantities being caught and under-reported by non-Canadian fleets on the 
Nose of Grand Bank in Division 3L (Rose et al., 2000). 

The extent to which scientific assessment contributed to the collapse remains in debate. If 
stock size had not been overestimated through the 1980s, then TACs would presumably have 
been lower, the stock presumably would have grown more than it did, and the stock might 
have been less susceptible to adverse environmental conditions (assuming, of course, that the 
environment did play a role in the collapse). In addition, the change in scientific perception of 
stock status in 1988–1989 was so large and sudden that politicians were concerned about the 
socioeconomic costs of reducing the quota severely as implied by the revised estimate of  
stock size. Quotas were reduced, but not sufficiently to keep fishing mortality from escalating. 

The big question, as noted above, is the extent to which fishing mortality escalated. If fishing 
was the sole cause of the disappearance of the fish, then fishing mortality must have been 
extraordinarily high (greater than an instantaneous rate of 2.0 per year). See discussion of 
natural mortality under ToR c.  

ToR c. Evaluate the causes of observed changes in rates of survival, growth 
and maturity, including a tropho-dynamic perspective 

Many changes in population vital rates (recruitment and mortality) and biological 
characteristics (length and weight at age, weight at length, age and size at maturity) have been 
documented for 2J3KL cod. Exploration of these properties is complicated by several factors.  

1 ) There are geographical differences in the temporal trends of these properties and 
the physical and biological factors that might affect them.  

2 ) There have been differences since at least the mid-1990s between populations in 
the offshore and populations in the inshore.  

3 ) Assessment meetings have not accepted a sequential population analysis (SPA) 
for the stock as a whole since the early 1990s. This makes it impossible to use 
model output to compare population productivity in the stock as a whole before, 
during and after the final collapse, and to compare model output from 2J3KL cod 
with model output from other cod stocks for the period since the early 1990s.  

Recruitment 

Year-class strength, as estimated by SPA, peaked in the early 1960s and then declined to a low 
level by 1970–1971 (Figure 5). There followed three periods of moderately good recruitment. 
The last of these (the 1986 and 1987 year-classes) is of great interest. These year-classes 
seemed moderately strong at ages 2 and 3 (Figure 7) and were caught in large numbers in the 
inshore fishery in 3L during the early 1990s, but they seemed to disappear rapidly (Shelton 
and Lilly, 2000) and made only a very small contribution to SSB. Perception of the strength of 
these year-classes, especially the 1987 year-class, varies considerably depending on the data 
and models that are chosen (Figures 5 and 7). All year-classes since the early 1990s have been 
very weak. 
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There is expectation that recruitment in 2J3KL cod might be positively influenced by warm 
temperatures, because the stock is at the northern limit of the species’ range in North America 
(Planque and Frédou, 1999), but there have been conflicting reports of whether such a 
relationship can be detected (deYoung and Rose, 1993; Hutchings and Myers, 1994; Taggart 
et al., 1994; Planque and Frédou, 1999). Drinkwater (2005) found a positive relationship 
between recruitment and temperature data from a monitoring site (Station 27) off eastern 
Newfoundland. (Details of the recruitment series and temperature index used were not 
provided.) 

A reported relationship between recruitment and salinity (Sutcliffe et al., 1983) was 
subsequently supported (Myers et al., 1993) and later rejected (Hutchings and Myers, 1994; 
Shelton and Atkinson, 1994) as data for additional years became available. 

The very weak recruitment in the offshore of 2J3KL since the early 1990s (Figure 7) is an 
important component of the lack of recovery of offshore populations and the stock as a whole. 
This low recruitment to ages 2–3 may be due to a number of factors including the production 
of relatively few eggs and larvae, which in turn might be a consequence of the very small 
number and small individual size of spawners, and poor survival of eggs, larvae, pelagic 
juveniles or demersal juveniles.  

Because there has been so little monitoring of any of the cod’s early life history stages, there 
seem to be few prospects for exploring this further.  

It has been observed that the abundance and composition of phytoplankton and zooplankton 
have changed between the 1980s and more recent years (Johns et al., 2003), but the extent to 
which this might be affecting growth and survival of larval and pelagic juvenile cod is not 
known.  

The information that bears most directly on this issue comes from pelagic net surveys 
conducted during 1994–1999 (Colbourne and Anderson 2003). It was found that the biomass 
of zooplankton and the abundance of pelagic cod on Grand Bank were very low in 1994, but 
that they increased as the waters warmed during the mid- to late 1990s. The abundance of 
pelagic juvenile cod did not increase until 2 years or so after the zooplankton started to 
increase. This is interpreted as evidence that the cold conditions of the early 1990s were 
inhibiting recruitment of cod, and that warm conditions were necessary but not sufficient for 
improved recruitment. Good feeding conditions were also necessary. An improvement in year-
class strength in the late 1990s compared to the mid-1990s was also observed in the bottom-
trawl surveys, but these year-classes were much weaker than the weakest year-classes of the 
1980s (Figure 7).  

It is important to note that the quick population growth of the stock in 3Ps and inshore 
populations in 3KL, following the cessation of fishing in 1993 and 1992 respectively, was 
based largely on year-classes that were already in the population at the time that fishing was 
stopped. In 3Ps, the 1989 and, to a lesser extent, the 1990 year-classes were important 
contributors. These year-classes appear to have been only moderately strong when young, but 
they were protected from directed fishing for four years (1993–1996), grew very well and 
were largely responsible for the increase in fish availability that lead to the reopening of 
directed fishing in 3Ps in 1997. In 3KL, sentinel surveys and other sampling revealed that the 
1989 and particularly the 1990 and 1992 year-classes were relatively strong in the inshore by 
the mid-1990s, and both the sentinel data and the SPA indicate that growth of the inshore 
populations to a peak in 1997–1998 (Figure 3,4) was based largely on the 1990 and 1992 year-
classes. The strength of these year-classes cannot be compared with earlier year-classes in the 
inshore. However, they do appear to have been stronger than any year-classes since. Note that 
the 1990 and 1992 year-classes were weak in the offshore of 2J3KL.  
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A general conclusion from these observations is that the cessation of directed fishing can have 
a positive benefit by protecting year-classes that are already in the population. This was 
clearly the situation in 3Ps and inshore 3KL. However, such a result does not always follow, 
as illustrated by events in the offshore of 2J3KL. The 1988 and 1989 year-classes, which were 
initially as strong as, or almost as strong as, the year-classes of the mid-1980s (Figure 7), 
continued to decline after the imposition of the moratorium and almost disappeared by 1994. 

Natural mortality 

The natural mortality rate assumed for all SPA modelling of the 2J3KL stock as a whole has 
been 0.2 per year. As noted above, it is difficult to account for all the cod that disappeared 
from the system without invoking either a considerable increase in non-reported fishing 
mortality or an increase in natural mortality. A similar controversy surrounds the American 
plaice stock off Labrador and northeastern Newfoundland (SA 2 + Div. 3K), which declined 
to a very low level through the 1980s and early 1990s, a period during which reported catches 
were low (Morgan et al., 2002). Most other species of demersal fish, including many of no 
commercial value, declined dramatically through the same period (Atkinson, 1994; Gomes et 
al., 1995). It has been stated that fishing was the cause of all these declines (Haedrich and 
Fischer, 1996; Haedrich and Barnes, 1997; Haedrich et al., 1997). However, the available data 
consist of indices of stock abundance and very rough estimates of removals by the fishery. 
Without information on catchability of the survey trawl, it is not possible to estimate the 
number of fish in the water each year, and with little or no information on discards and no 
information on incidental fishing mortality, it is not possible to determine the number of fish 
killed by the fishery. Under such circumstances, it remains somewhat a matter of faith to 
attribute the declines entirely to fishing and to reject the possibility of an increase in natural 
mortality. 

Note as well that total mortality rate, as estimated from catch rate at age in the autumn bottom-
trawl surveys (Figure 8), remained very high after directed fishing was stopped (Lilly et al., 
2005). Has this high total mortality been caused by the activities of fleets directing for other 
species, or is it primarily natural? If it is natural, at what point did natural mortality increase? 
Did it increase only after the stock became greatly reduced in abundance, or did it increase 
during the early 1990s, or even before? In this context, it is important to note that the common 
assumption about natural mortality (M=0.2) has been changed for SPA modelling of some 
groundfish stocks in Atlantic Canada.  For American plaice on Grand Bank (3LNO), the SPA 
model “that provided the best fit to the data included a natural mortality of 0.6 on all ages 
from 1989 to 1996 and 0.2 otherwise” (NAFO 1999).  Such an approach was not adopted for 
2J3KL cod (see Shelton and Lilly, 2000), but an increase in M was adopted for SPA 
modelling of cod in the northern Gulf of St. Lawrence, in the southern Gulf of St. Lawrence 
and on the eastern Scotian Shelf.  For each of these cod stocks, M was increased from 0.2 to 
0.4 starting in 1986.  It must be recognized, of course, that these increases in M provide a way 
of accounting for various possibilities, including true natural mortality (such as deaths 
associated with adverse environmental conditions, predation and disease), deaths caused by 
the fishery but unrecorded and changes in catchability in fishery-independent indices. 

The question of whether there was an increase in natural mortality in the late 1980s and early 
1990s, and whether any such increase was related to environmental factors, is of great 
importance to understanding the dynamics of Atlantic cod and other demersal fish (Lilly, 
2002; Rice, 2002). The possible influence of cold water is of considerable interest because of 
an apparent coincidence between the rapid disappearance of cod from research surveys 
(Figure 2) and the low temperature (Figure 9) and extensive ice cover of the early 1990s. 
While it seems unlikely that significant numbers of fish died as a direct consequence of 
exposure to cold water, there is still insufficient evidence to reject the possibility that the cold 
water and extensive ice cover led to a reduced duration of feeding opportunity, which itself led 
to poor body condition and death (Dutil and Lambert, 2000; Lilly, 2001). 
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The reason for the continuing high total mortality in the offshore (Figure 8) remains unclear. It 
could be that the fishing that has continued for other species is causing sufficient removals 
(landings and discards) and unseen mortality of cod to keep the cod populations from 
rebounding. However, recorded landings and discards appear very small relative to the survey 
estimates of biomass (Lilly and Murphy, 2004). It is also possible that natural mortality is very 
high. Such high natural mortality could be caused by inadequate quantity or availability of 
suitable prey (see ToR g) or by intensive predation (see ToR h). 

There is evidence that natural mortality of adults was unusually high in the inshore during the 
late 1980s and early 1990s. An analysis of tag returns during the inshore fishery of 1998–2002 
revealed that fish tagged in southern 3K disappeared much faster than could be accounted for 
by the catch and an assumed natural mortality of 0.2 per year (Lilly et al., 2003). The same 
phenomenon occurred in 3L, but to a lesser extent. When an inshore SPA was first attempted 
in 2003, the level of natural mortality applied was 0.5 (Lilly et al., 2003). Upon further 
consideration, the level was dropped to 0.4 for the SPA in 2005 (Lilly et al., 2005). 

Growth and condition 

The sampling of commercial landings has shown that mean weight-at-age increased during the 
late 1970s and early 1980s and then declined during the remainder of the 1980s and early 
1990s (Lilly et al., 2005). Sampling of catches during autumn bottom-trawl surveys indicates 
that the extent of the decline varied with Division: there was a strong decline in 2J, a lesser 
decline in 3K and little or no decline in 3L (Figure 10). Size at age has been shown to decline 
with environmental temperature (Krohn et al., 1997; Shelton et al., 1999).  

Size-at-age has improved since the early to mid-1990s, but remains below values observed in 
the late 1970s. Note that comparisons can be made only for young cod, because extremely few 
cod older than age 5 have been caught during the offshore surveys. The small sample sizes for 
even age 5 probably contribute importantly to the high among-year variability in point 
estimates since the mid-1990s. Note as well that commercial weights-at-age are available for 
years since the early 1990s, but these are not directly comparable to data obtained prior to 
1992 because of substantial changes in the relative contributions of the various gear types and 
changes in the location and timing of catches from each gear (Lilly et al., 2005).  

Changes in weight-at-age can result from changes in either length-at-age or weight at length 
(condition). Condition can be expressed in various formulations. Here it is presented as 
Fulton’s index (W/L3 * 105), where W is either the gutted weight of the fish or the liver weight 
in kg, and L is the length in cm. The trend in condition has differed among Divisions (Lilly et 
al., 2005). In 2J, both gutted condition and liver index declined in the early 1990s. During the 
second half of the 1990s, gutted condition returned to approximately normal, whereas the liver 
index improved but did not fully recovery. In 3K, gutted condition declined during the early 
1990s and improved during the latter half of the 1990s. Liver index changed little during the 
1990s. In 3L, gutted condition remained relatively unchanged over time whereas liver index 
increased considerably in the early 1990s and has since declined to an intermediate level. 

To explore more thoroughly the changes in condition during the 1980s and early 1990s, 
condition was computed for cod aggregated over a wider size range than used in the 
computations reported above. The results (Figure 11) show that as liver index declined in 2J, it 
increased in 3L. Additional exploration has shown that there have even been differences in 
pattern between different areas within a Division (Lilly, 1996). 

The changes noted above in size-at-age and condition have been attributed to changes in stock 
size, temperature and the abundance of capelin (see references in Lilly 2001), but many of the 
studies provide insufficient explanations because they fail to account for the spatial variability 
in the trends. 
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Maturity 

The proportion mature at age increased among young female cod during the early 1990s and 
has fluctuated since (Figure 12). When data collected prior to the initiation of stratified-
random surveys in 1978 are included in the analyses, it can be demonstrated that the female 
age at 50% maturity was generally between 6 and 7 among cohorts produced in the mid-1950s 
and about 6 among those produced from the late 1960s to the early 1980s, but declined 
dramatically thereafter to a low of 5 for the 1989 cohort. Age at maturity has remained low but 
variable (5–6) for the 1990–2000 cohorts (Lilly et al., 2005). 

Olsen et al. (2005) demostrated that maturation reaction norms shifted toward earlier ages and 
smaller sizes during the 1980s and particularly the early 1990s, providing evidence of rapid 
evolutionary change that was interpreted to be the consequence of strong selection by the 
fishery. They also demonstrated that these changes appeared to be halted and even showed 
signs of reversal upon closure of the fisheries. 

Distribution 

The ToR does not refer to distribution, but one cannot assess changes in population dynamics 
of 2J3KL cod during the late 1980s and early 1990s without considering changes in 
distribution. These changes included a delay in timing of the inshore migration (Davis, 1992), 
a movement toward the shelf break in the autumn (Lilly, 1994) and to deeper water during the 
winter (Baird et al., 1992), and a change in north-south spatial distribution as deduced from 
catches during autumn research bottom-trawl surveys (Lilly, 1994; Atkinson et al., 1997), 
winter research acoustic studies (Baird et al., 1992) and winter-spring commercial fisheries 
(Kulka et al., 1995; Wroblewski et al., 1995). With respect to the north-south changes, 
particularly the disappearance from the north, there is controversy as to whether the changes 
reflect differences in timing of the disappearance of different groups of fish (e.g. Hutchings, 
1996), or whether there was a redistribution of fish (Rose et al., 1994, 2000).  

These distribution changes have contributed to difficulties in assessing the extent and causes 
of changes in size-at-age, condition and mortality, and may have contributed to those changes. 

ToR d. Evaluate the consequences for stock resilience of decreases in mean 
weight and length and age/size diversity 

Size-at-age 

There was a decline in mean weight at age during the 1980s and early 1990s, especially 
toward the north (Figure 10). This decline included both a decline in length at age and a 
decline in weight at length (condition). Thus, the contribution of individual growth to stock 
productivity declined during the 1980s and especially during the early 1990s. 

Drinkwater (2002) states that approximately 30–50% of the decline in the spawning stock 
biomass from the early 1980s to the early 1990s was due to reduced weights-at-age. It is not 
clear what the reader is to infer from this. The weight-at-age did decline considerably, but did 
this decline contribute to the underestimation of fishing mortality and to the setting of quotas 
that, in retrospect, were too high? 

The severe declines in weight-at-age that occurred in the early 1990s, notably in the north, 
quickly reversed, so that values after the mid-1990s were not dissimilar to those in the mid- 
1980s. There have been few suggestions that reduced growth rate is a contributer to the lack of 
recovery in this stock. 

Condition 

The extent to which the severe decline in condition during the early 1990s, especially in the 
north, contributed to stock collapse remains unclear. It might have contributed to an increase 
in natural mortality (see ToR c) and an increase in the rate of dumping by fish harvesters 
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(Drinkwater, 2002), but there appears to be little information to inform either of these 
possibilities. 

There is also uncertainty about the extent to which poor condition is contributing to the lack of 
recovery. Studies of cod condition and feeding in specific areas and seasons have been 
interpreted as indicating that cod have not been faring well in certain areas (Rose and 
O’Driscoll, 2002). In contrast, the routine monitoring of cod size-at-age and condition during 
autumn bottom-trawl surveys has not identified a problem in recent years (Lilly et al., 2005). 

Age/size diversity 

The extent to which a severe reduction in age/size diversity has contributed to the lack of 
recovery is not known. The spawner biomass of cod in the offshore of 2J3KL is extremely 
small, and this in itself is expected to result in a low possibility of a good year-class. There are 
numerous word models and laboratory studies that support the contention that reduced 
size/age structure will further reduce the likelihood of successful reproduction, but it is 
exceedingly difficult to test whether the reduced age/size diversity has actually been 
contributing to lack of recovery in the offshore of 2J3KL. 

It may be noted that there was a considerable reduction in age/size diversity by the mid-1990s 
in the inshore populations of 3KL and in the 3Ps stock. Age/size diversity increased from the 
mid-1990s onward in both these areas, but this has not prevented a decline in recruitment in 
the 3Ps stock. 

Modelling the consequences of changes in life history parameters 

Hutchings (2005) conducted simulations to explore the consequences of a reduction in age at 
maturity, coupled with additional factors such as reduced reproductive success in first time 
spawners and increased mortality upon attainment of maturity. He found that a reduction in 
age at maturity might reduce annual population growth, and concluded that fishing-induced 
changes in life history traits might in themselves generate slow or negligible recovery. 

ToR e. Document and comment on historic evidence of previous cod stock 
recoveries and the environmental and fisheries circumstances in which these 
occurred 

For 2J3KL cod, it will be instructive to compare environmental and fisheries circumstances 
during recovery from the first collapse (late 1970s to mid-1980s) to circumstances during the 
second and deeper collapse (late 1980s to mid-1990s). The contrast between these two periods 
is of great significance to an understanding of the collapse of cod stocks in Atlantic Canada 
(Rice et al., 2003). 

SPA output is of limited use in comparing the two time periods. The SPA models indicate that 
total (3+) biomass reached a low of about 500 000 t in 1975–1977 (Figure 3) and spawner 
biomass reached a low of about 130 000 t in 1977 (Figure 4). At what time were comparable 
levels reached during the second collapse? This remains unclear because of the poor fit 
between model output and the index from the research vessel surveys in the late 1980s and 
early 1990s, as described above. SPA models without adjusted catch indicate that total 
biomass dropped below 500 000 t during 1989 and SSB dropped below 130 000 t during 
1990, whereas comparable dates from the SPA model in which unreported catch was added 
(Shelton et al. 2006) would be 1991 and 1992. Although the time course of the second 
collapse remains uncertain, the stock clearly dropped quickly through the floor established in 
the late 1970s and kept on going. 

Fisheries circumstances 

The collapse during the 1960s and 1970s was caused primarily by the intensive offshore 
fishing by non-Canadian fleets, although there was undoubtedly a contribution from 
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technological changes in the inshore fishery during the 1950s and 1960s. The number of 
participants in the inshore fishery had declined during the 1970s (Schrank, 2005). Inshore 
landings declined to a minimum in 1974 but started to increase even before declaration of 
Canada’s 200 mile fisheries zone in 1977. Nevertheless, the declaration of the zone displaced 
the non-Canadian fleets, and a low in offshore landings occurred in 1978. The stock started to 
increase and fishing mortality declined for a few years, even though total landings were 
increasing.  

The optimisim generated by declaration of the 200 mile limit lead to a wave of Canadian 
expansion in the catching sector and the processing sector (Schrank, 2005). When it became 
clear in 1988–1989 that stock size was significantly smaller than had been indicated by 
previous assessments, the Harris review panel in its interim report recommended that the 
quota be reduced, but not to the extent implied by the new estimate of stock size. This was 
because “the sudden reduction in catch levels designed to reduce the F value to the F0.1 level of 
approximately 0.20 would be altogether too drastic a measure in view of the social and 
economic repercussions of such action. A not unreasonable compromise position, we believe, 
would be reduce the fishing mortality from its current level to a point approximately half-way 
to the F0.1 level …” (Harris, 1989; p. 38). 

Thus, fisheries circumstances were very different during the two collapse-recovery periods. 
During the late 1970s, a substantial reduction in offshore effort and landings was 
accomplished with no social or economic repercussions to Canada, whereas in the late 1980s a 
substantial reduction in landings would have entailed substantial socioeconomic 
consequences. The reduction that was implemented in 1989 did have important consequences, 
but these were minor compared to the consequences of the moratorium imposed just a few 
years later.  

Environmental circumstances 

As noted above, there was a cool period that lasted from the early 1970s to the mid-1990s, 
with particularly cold periods in the early 1970s, early to mid-1980s and early to mid-1990s. 
Comparisons among different sections of this period of about 25 years will yield somewhat 
different results depending on the environmental index being used (Figure 13). Nevertheless, 
the period immediately after declaration of the 200 mile limit was characterized by normal or 
above-normal temperatures, whereas the period starting in 1987 was characterized by 
somewhat cooler temperatures for a few years followed by cold temperatures in 1990 or 1991 
(depending on index). The winter and spring of 1991 were particularly severe. 

The early 1990s was a period of dramatic contrast between the cod off Labrador-
Newfoundland and the cod in the Barents Sea. The intensification of the positive phase of the 
North Atlantic Oscillation that produced the cold conditions off Labrador-Newfoundland 
contributed to warmer waters and increased inflow of water rich in zooplankton in the Barents 
Sea. The northern cod off Labrador-Newfoundland collapsed while the Northeast Arctic cod 
in the Barents Sea thrived, despite high fishing mortality. This further supports the contention 
that the collapse of northern cod was not caused by fishing alone. 

Role of specific year-classes 

The recovery following declaration of the 200 mile limit was built largely on the moderately 
strong 1973–1974 (and 1975) year-classes. These year-classes had been spawned prior to the 
declaration of the 200 mile limit, were subjected to reduced fishing mortality compared to 
year-classes that had preceded them, and contributed to an increase in total biomass and 
particularly spawner biomass. 

In contrast, the moderately strong year-classes of 1978–1982 were subjected to increasing 
fishing mortality through the 1980s, despite the intention to fish conservatively.  
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The big question is what happened to the 1986–1987 year-classes. As noted above, these two 
year-classes appeared to be moderately strong in the survey indices, but they disappeared from 
the survey catches very quickly in the early 1990s and contributed very little to spawner 
biomass. 

Recruitment, size-at-age, condition and age/size structure 

Information on recruitment, growth, and condition is provided under ToR c. A detailed 
comparison between these population and biological characteristics in 1977–1983 with those 
in 1987–1993 has yet to be conducted.  

It has been stated that a reduction in size/age structure contributed to a reduction in resiliency. 
For example, Drinkwater (2002) compared the age structure of the catches in 1962 and 1991, 
and concluded that removal of the larger, older fish by heavy fishing pressure made the stock 
more susceptible to a series of weak year-classes. Of interest in the present context is a 
comparison between the age/size structure in the late 1970s, a period after which there was a 
recovery, and that during the late 1980s, a period after which there was a deeper decline and 
no recovery. Such a comparison has yet to be conducted. 

Natural mortality 

The biggest question, and the one that might be the most difficult to answer, is whether there 
was a difference in natural mortality between the two time periods. The coincidence between 
the severe cold of the early 1990s and the rapid decline in survey indices suggests that the cold 
water and extensive ice cover may have been a contributing factor. However, there is no 
evidence that there was increased mortality associated with the cold around 1972–1974 and 
1983–1985. 

Prey 

If one focuses on the biomass of capelin in the ecosystem, then it is of interest that there may 
have been considerably less capelin during the late 1970s than during the late 1980s. 
However, many aspects of capelin biology, including their accessability to hydroacoustic 
surveys, changed dramatically in the early 1990s, particularly in 1991, the year of particularly 
severe cold and ice cover.  

Predators 

Changes in the predator field are not well-documented. However, there is good evidence that 
the harp seal population increased from the early 1970s to the mid-1990s. 

ToR f. Comment on past projections of cod stock recovery, evaluate whether 
they were correct and draw conclusions concerning how future projections can 
be improved 

The projections that might be of most relevance to this workshop are those that were 
undertaken after the first decline and during the second decline (the collapse). Much has been 
written about these projections, the extent to which they were overly optimistic, and the 
consequences that followed.  

After the first decline of the 2J3KL cod stock and Canada’s declaration of a 200 mile zone of 
Extended Fishery Jurisdiction in 1977, there was hope and optimism that the stock could be 
rebuilt. Projections by government scientists (Pinhorn, 1979), as presented to a government-
industry seminar, indicated that the total allowable catch (TAC) “… could be as high as 
350 000 tons by 1985… These projections were made on the assumption that the number of 
new fish entering the commercial stock (recruitment) … would be the average of that 
observed over recent years including the strong year-classes of the 1960s. … It was stressed 
very strongly that, if recruitment in future was lower than average, then the stock would 
rebuild more slowly than projected” (Lear and Parsons, 1993). The expulsion of distant-water 
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fleets from most of the continental shelf and the projection of rapid increase in the cod stock 
created an “optimism bubble” (Schrank, 2005) that generated a tremendous wave of expansion 
in the fishing industry and contributed to overcapacity in harvesters, vessels and processing 
plants (Schrank, 2005; Vilhjálmsson et al., 2005). The stock did grow, but much less than 
projected. It has repeatedly been noted that the projected recruitment did not take into account 
the much reduced level of spawner biomass. In addition, there is no mention of the weights-at-
age used in the projections, but we now know that weights-at-age declined in the 1980s as the 
environment cooled (see above). Furthermore, fishing mortality was consistently 
underestimated (see ToR b), with the result that removals were higher than they should have 
been under the policy in place at the time.  

By the summer of 1992 it was clear that the 2J3KL cod stock had declined considerably. 
Accompanying the declaration of the moratorium was a “Backgrounder” document that stated 
that there had been a sudden decline in the stock since 1990 and that no single factor could be 
identified as the main cause of the decline. It noted, however, that the increase in mortality 
was consistent with extreme environmental conditions in 1991. It also noted that assessment 
groups had not made any catch projections past 1992. Nevertheless, there followed a graph 
(reproduced by Lear and Parsons, 1993; their Figure 10) with a projection showing spawning 
stock biomass increasing in two years to a level approaching or exceeding the long term 
average. The only information accompanying the figure was that the projection assumed a 
return to normal natural mortality rates. The projected rapid growth in SSB was clearly 
dependent on high survival, growth and maturation (at age 7) of the 1986 and 1987 year-
classes, which had appeared moderately strong in the research surveys and had contributed to 
high landings in the 1990 inshore fishery, especially in 3L. This projection has been ridiculed 
by many, and is frequently referred to as an example of bad science providing bad advice. 
However, perhaps critics should bear in mind that the rapid recovery was not an expectation of 
scientists who participated in the assessments. After all, the assessment meetings in 1992 had 
not made projections to 1993 because of uncertainties in the assessment. Whatever the source 
of the projection, it is now clear that it was far off the mark. Mortality remained high. The 
stock did not recover. The social and financial costs of waiting for a recovery were 
tremendous (e.g. Vilhjálmsson et al., 2005) 

It is noteworthy that reports from formal stock assessment meetings continued to be very 
pessimistic in 1993 (Bishop et al., 1993) and that this pessimism was picked up in the early 
reports of the Fisheries Resource Conservation Council (FRCC), a new independent body 
created in 1993 to advise the Minister on quotas and other management measures. In a letter to 
the Minister of Fisheries and Oceans in August, 1993, the FRCC (1993) provided the 
following summary of stock status and advice regarding management of 2J3KL cod. 

“Based upon the stock assessment report by scientists in the Department of Fisheries and 
Oceans, as well as the Report of the Scientific Council of NAFO, the situation of the 2J3KL 
cod (Northern Cod) stock can be characterized as follows: 

1. The Stock continues to decline and is in a very depressed state, believed to be at 
the lowest level of abundance experienced during the 20th century. 

6. Stock recovery in the near future is unlikely and substantial recovery of the 
spawning biomass is unlikely before the year 2000 at the earliest. At this stage, there 
are no reasons to be optimistic about stock recovery even then. 

7. Realistic projections about stock rebuilding are impossible until we better 
understand the reasons for the decline and until the various stock indicators reverse 
their downward trends.” 

The absence of any sustained sign of recovery in the offshore populations by 2005, 13 years 
after declaration of the moratorium, illustrates that fishing has not been the only factor 
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governing stock dynamics. It is possible that factors other than fishing contributed to the 
collapse, and that at least some of those factors are still operating. It is also possible that once 
the stock had declined to a very low level, for whatever reason, then factors other than fishing 
have assumed greater importance. The latter possibility must be tempered by the possibility 
that the fishing that has continued for other species is causing sufficient removals (landings 
and discards) and unseen mortality of cod to keep the cod populations from rebounding. 
However, recorded landings and discards appear very small relative to the survey estimates of 
biomass. 

The factors that might be preventing recovery were explored during the 2003 assessment 
meeting (Rice and Rivard, 2003; Rice et al., 2003) and reviewed by Lilly and Murphy (2004; 
their Appendix 4).  

The Term of Reference requires us to “draw conclusions concerning how future projections 
can be improved”. To do so would be trite. Problems with long-term projections are well-
known, and considerable effort has gone into improving the statistical methodology so as to 
take uncertainty into account. In addition, many fisheries scientists in Atlantic Canada are now 
highly reluctant to produce long-term projections, with good reason. The two examples 
described above are well-known to the industry and the public in general, and are frequently 
cited (along with the collapse of northern cod) as reasons why people should pay little 
attention to fisheries scientists.  

Any prediction of the long-term status of 2J3KL cod would presumably want to take global 
warming into account. Vilhjálmsson et al. (2005) and Drinkwater (2005) have discussed the 
possibility that cod off Labrador and eastern Newfoundland will become more abundant and 
expand back to the north. However, as noted by Vilhjálmsson et al. (2005;  p. 740): “The 
simple scenario of a gradual change back to a cod-capelin system under moderate warming 
conditions is uncertain. This is because the influence of oceanographic variability in the past is 
not clear, and because it is likely that the dynamics of some species are now dominated by a 
different suite of factors than was the case in the past. It is highly likely that the ecosystem off 
northeastern Canada changed substantially as a consequence of fishing during the first four 
centuries after the arrival of European fishers, changed even further with the increasingly 
intensive fishing of the 20th century, and has changed dramatically from the 1960s onward. 
The magnitude of these changes is such that it would be difficult to predict accurately the 
future state of this ecosystem even without the added complications of climate change. Thus, 
the system could remain in its current state, could revert to some semblance of an historic state 
(or at least the state of the early 1980s), or could evolve toward something previously unseen.”  

With respect to changes that might be caused by global warming, there is at this time little 
information on the manner in which global warming will affect the specifics of water 
temperature, ice coverage, stratification and many other factors of interest for predicting the 
dynamics of cod off northeastern Canada (Lilly and Carscadden, 2002; Drinkwater, 2005). For 
examples of our inability to predict oceanographic conditions on the Labrador and 
Newfoundland Shelves, we have only to look back over the past few decades. Who predicted 
the cold conditions over the Labrador and Newfoundland Shelves that accompanied 
intensification of the positive phase of the NAO in the last three decades of the 20th century, 
and particularly the severe cold and ice-cover of the early 1990s? Just when fisheries 
biologists were becoming convinced of the significance of the relationship between a high 
NAO index and cold conditions over the Labrador and Newfoundland Shelves, and were 
talking about incorporating such information into projections, the relationship broke down for 
a few years as the centre of the pressure systems moved to the east. This too was not 
predicted. (If it was, it was not made known to fisheries biologists.) See Drinkwater (2005) for 
additional information regarding uncertainty associated with predicting the effect of climate 
change at regional scales, and Vilhjálmsson et al. (2005) for some discussion associated with 
predictions specific to the Labrador and Newfoundland Shelves. Given the high degree of 
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uncertainty associated with predicting regional climate change, and the dramatic changes that 
have occurred in the Labrador/Newfoundland ecosystem, one must ask whether anything is to 
be gained from long-term predictions regarding distribution, abundance/biomass and 
phenology of cod in this area. One might also ask whether industry and government need such 
predictions, given (i) the likelihood that any resurgence of cod will be obvious (from surveys 
and bycatches) well before an offshore fishery becomes sustainable and (ii) the fact that the 
industry has demonstrated an ability to adjust to different species as opportunities arise.  

ToR g. Evaluate the role of cod forage species (e.g. capelin) for variability in 
abundance and size-at-age of cod 

Much of the following information has been extracted from a section on the cod of eastern 
Newfoundland and Labrador in Link et al. (in prep). 

Capelin has historically been the major prey of medium-sized cod off southern Labrador and 
eastern Newfoundland. Assessment of the contribution of capelin to individual growth and 
population dynamics of 2J3KL cod is hindered by the absence of a reliable long-term index of 
capelin abundance/biomass. It is generally accepted that capelin were abundant during the 
early 1970s, declined during the late 1970s and increased during the 1980s. Many aspects of 
capelin biology, including their availability to offshore fisheries and hydroacoustic surveys, 
changed dramatically during the early 1990s, with most changes being especially pronounced 
in 1991 (Carscadden et al. 2001).  

Size-at-age 

Despite the expectation that linkages among species would be strong in a system with few 
abundant members, it has proved difficult to find evidence of such links. Neither Akenhead et 
al. (1982) nor Millar et al. (1990) found a significant relationship between cod growth and 
capelin biomass. It was felt by several authors (Akenhead et al., 1982; Shelton et al., 1991) 
that measurement error may be high, given the complexities and limitations of quantifying fish 
abundances and vital rates, and that the potential for Type II error was high. Krohn et al. 
(1997) did find, however, that with the inclusion of data from the early 1990s, capelin biomass 
explained some of the variability in cod growth and condition. 

It may be noted that capelin abundance/biomass appears to have been low during the late 
1970s (Lilly, 1991, 1994), and the quantity of capelin found in cod stomachs during autumn 
surveys was also low (Lilly, 1991; Taggart et al., 1994), and yet cod growth was good at that 
time. 

Cod Mortality 

The role of capelin in the collapse of cod during the early 1990s remains unclear. Estimates of 
capelin biomass from offshore hydroacoustic surveys declined dramatically from 1991 
onward, and the capelin changed their autumn distribution toward the southeast (Lilly, 1994; 
Carscadden and Nakashima, 1997). It has been suggested that these changes, together with 
changes in the timing of capelin migrations, made the capelin less accessible to cod, thereby 
contributing to low condition and possibly an increase in mortality of the cod (Atkinson and 
Bennett, 1994; Lilly, 2001). However, it may be noted that most of the cod remaining during 
the latter stages of the collapse seemed to have undiminished access to capelin, at least in the 
offshore during the autumn (Lilly, 1994; Taggart et al., 1994; O’Driscoll et al., 2000).  

The role of capelin in the non-recovery of cod is also controversial. Rose and O’Driscoll 
(2002) concluded from studies of cod condition and feeding in specific areas and seasons that 
cod was not faring well in certain areas, and that this was due to low availability of capelin. In 
contrast, the routine monitoring of cod during autumn research surveys in the offshore and the 
observations of fish harvesters in the inshore have not identified any problems with cod 
growth or condition (Lilly et al., 2005). 
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ToR h. Evaluate the role of cod predators (e.g. seals) for variability in 
abundance and size-at-age of cod 

The following information has been extracted from a section on the cod of eastern 
Newfoundland and Labrador in Link et al. (in prep). 

The predators of cod tend to change as the cod grow (Lilly, 1987; Pálsson, 1994; Bundy et al., 
2000). Very small cod are eaten by squid, various demersal fish (such as sculpins) and some 
seabirds. Larger juveniles have many predators: demersal fish, most notably larger 
conspecifics and Greenland halibut; harp seals and hooded seals (Cystophora cristata); certain 
toothed whales, such as harbour porpoise and pilot whales (Globicephala melaena); and 
probably minke whales. Large cod seem to have few natural predators, but seals can prey 
upon them by belly-feeding, a mode of predation whereby the seal takes a bite from the cod’s 
abdomen, consuming the liver and some of the other abdominal organs, but generally leaving 
the rest of the carcass and the head (Lilly et al., 1999). 

The predator that has attracted most attention is the harp seal (Bundy et al., 2000; Hammill 
and Stenson, 2000). There was speculation that seals contributed to the collapse of the cod 
stock (Atkinson and Bennett, 1994), but it is generally thought that their contribution was 
small. However, the total mortality of cod in the offshore has remained very high since the 
moratorium on directed fishing in 1992, and analyses of tagging data have revealed that adult 
cod in the inshore experienced high mortality in addition to that caused by the reopened 
fishery in 1998-2002 (Lilly et al., 2003). It is possible that the seals could be maintaining cod 
in a “predator pit” (Shelton and Healey, 1999). It has been concluded by some (DFO, 2003; 
Rice et al., 2003), based on the large size of the harp seal population, the known predation by 
harp seals on cod, and the paucity of information pointing to other factors, that predation by 
harp seals is a contributing factor to the high mortality of cod. It must be emphasized, 
however, that there is very little information on harp seal diet in the offshore, where most of 
the seal foraging is thought to occur. The little information available for hooded seals 
indicates that they too could be important predators on cod (McLaren et al., 2001). 

There has also been concern regarding the role of harp seals as competitors of cod. Harp seals 
are estimated to have consumed about 3 million tons of food per year in the northern cod stock 
area during the late 1990s (Hammill and Stenson, 2000; Stenson and Perry, 2001). Most of 
this food was pelagic planktivores, notably capelin, so the potential for competition with cod 
exists. However, cod and seals share capelin and other planktivores (Arctic cod, sand lance, 
herring) with numerous additional predators, including other demersal fish, several species of 
baleen whales, and birds (Bundy, et al. 2000; Carscadden, et al. 2001). The complexity of the 
food web, and our rudimentary understanding of its dynamics, makes it very difficult to assess 
the effect on cod resulting from specific changes in the abundance of seals. 

ToR i. Evaluate the role of climate mediated through cod predators and prey 

There was a change in the autumn distribution of capelin during the early 1990s. It has been 
suggested that the change in capelin distribution was part of the reason for a change in cod 
distribution, and that the change in distribution of the cod resulted in their being more 
accessible to trawlers (Rose et al., 2000, but see Hutchings, 1996). The extent to which the 
low water temperatures and extensive ice cover of the early 1990s contributed to changes in 
distribution of both cod and capelin, and to the accessibility of capelin to cod, remains unclear, 
in part because of the paucity of information during seasons other than autumn. 

ToR j. Evaluate the relationship between the decline and recovery of cod 
stocks and changes in the marine ecosystem 

Much of the following information has been extracted from a section on the cod of eastern 
Newfoundland and Labrador in Link et al. (in prep). 
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As noted above, the collapse of the 2J3KL cod stock in the early 1990s was but the most 
prominent in a series of profound changes within the Newfoundland-Labrador ecosystem. 
Among these were severe declines in most other demersal fish, including species that were not 
targeted by commercial fishing (Atkinson, 1994; Gomes et al., 1995); a surge in snow crab 
and especially northern shrimp (Lilly et al., 2000); an increase in the abundance of harp seals 
from fewer than 2 million individuals in the early 1970s to more than 5 million in the late 
1990s (Healey and Stenson, 2000); and numerous changes in the biology of capelin, the 
dominant forage fish in the area (Carscadden et al., 2001).   

The role of cod within an ecosystem may become more apparent when cod biomass declines, 
as happened off Labrador and eastern Newfoundland. The surge in snow crab and particularly 
northern shrimp is consistent with a release from predation pressure from cod (Lilly et al., 
2000; Bundy, 2001; Worm and Myers, 2003) and other demersal fish, but it is difficult to 
separate the influence of predator release from the effects of environmental change. It may 
also be noted that there is no evidence that capelin or any other finfish increased following the 
cod collapse. 

There has been a change in the pattern of human exploitation of this ecosystem; the hunting of 
charismatic species has declined or stopped, such that the population of harp seals is steady at 
a level much higher than in the 1970s and some whale populations are probably increasing, 
whereas the exploitation of finfish increased and most species of groundfish are at low levels. 
It is possible that reduced hunting and continued fishing will tend to keep the ecosystem in its 
present state.  

Additional comment on the role of policy toward fisheries management 

When a stock has declined to a very low level, its management is complicated by several 
factors that are of much less importance when the stock is in good condition. These include 
bycatches in ongoing fisheries directed at other species, a difference between fish harvesters 
and the formal assessment process with respect to understanding or perception of stock size, 
and social concerns. Three examples are provided for 2J3KL cod. 

(1) Although directed fishing for cod has not been allowed in the offshore of 2J3KL since the 
moratorium was imposed in 1992, bycatches of cod have continued in fisheries directed at 
other species. Relatively large cod have been taken in otter trawls and gillnets targeting 
groundfish (especially Greenland halibut) and small cod have been caught and discarded by 
shrimp trawlers. The catches taken by these fisheries appear to be small compared to the 
biomass estimated from the research bottom-trawl surveys (Lilly and Murphy, 2004). 
However, there is no information on catchability at length for the survey trawl that has been 
used since 1995, so there is no estimate of the actual abundance of cod at length at the time of 
each survey. In addition, there is inadequate information on the magnitude and size range of 
catches (landings and discards) taken in the offshore by the various fleets, including the non-
Canadian fleets fishing outside the 200 mile limit. Under such circumstances, it is difficult to 
estimate fishing mortality. This also means that it is difficult to assess the level of natural 
mortality, and hence the contribution of predators and prey to the non-recovery. 

(2) Differences between fish harvesters and formal government assessments in the 
understanding or perception of the status of cod stocks has for many years been a prominent 
feature of the public discussion and fisheries management surrounding the cod stocks off 
eastern and western Newfoundland. An example is provided for the cod off eastern 
Newfoundland. The Fisheries Resource Conservation Council (FRCC) was established in 
1993 as an independent body to advise the Minister of Fisheries and Oceans on quotas and 
other management matters. The FRCC reviewed stock status documents produced through the 
formal assessment process, and also took into account information and recommendations 
provided by the fishing industry. Its mandate included taking social and economic 
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considerations into account. For a summary of FRCC recommendations regarding 
management of 2J3KL cod, see Lilly et al. (2003). In 1997 and 1998 the FRCC was told by 
fish harvesters that the 2J3KL stock was in (much) better shape than indicated in DFO status 
reports. With income support programmes coming to an end, the FRCC recommended first a 
test fishery (1998) and then a small commercial fishery (1999). As noted above, this inshore 
fishery continued through 2002. During this 5-year period, catch rates in both the commercial 
fishery and the sentinel surveys plummeted. A sequential population analysis (SPA) 
conducted in 2003 on inshore data alone indicated that the inshore populations had declined 
by 50% (see above). Local knowledge had been considered superior to scientific information, 
and social concerns had taken precedence over biological concerns. The consequence was a 
substantial decline in inshore populations. Similar but perhaps less severe consequences 
followed DFO’s acceptance of the FRCC advice for the two cod stocks in the Gulf of St. 
Lawrence (Rice et al., 2003) and the cod stock off southern Newfoundland.   

(3) DFO has a policy under which participants in a fishery will, over time, become more 
effectively involved in the assessment and management of the fishery, a process termed 
“shared stewardship” (DFO, 2005b). Many fish harvesters in eastern Newfoundland believe 
that the assessment process is still underestimating the size of the 2J3KL cod stock. They also 
state that the stock is sufficiently large to support a small inshore fishery, that directed fishing 
will enhance the quantity and quality of information available for assessing the stock, and that 
compliance with regulations and other aspects of conservation will be improved if fishing is 
permitted. In addition, fish harvesters state that fishing should be permitted on a depressed 
stock as long as the stock is growing. It appears that the inshore fishery of eastern 
Newfoundland and southern Labrador will be reopened to a small directed fishery in 2006 so 
as to move forward with the shared stewardship initiative. (Added note: A small directed 
commercial and recreational fishery for the inshore of southern Labrador and eastern 
Newfoundland was announced in June 2006 (DFO, 2006).) 

Decisions regarding the quantity of cod to be taken by directed and bycatch fisheries, and the 
level of risk to cod stock recovery that will be considered acceptable, are matters of policy 
developed by DFO in consultation with the fishing industry and other clients. However, in the 
context of factors affecting stock recovery, it must be acknowledged that fishing severely 
depleted populations must retard recovery (Shelton et al., 2006), and under circumstances of 
low stock productivity, adverse environmental conditions, faulty information, or excessive 
optimism, such fishing may even reverse gains that have been made (Rice et al., 2003). 
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Figure 1.  Total allowable catches (TACs) and landings (thousands of tons) from the 2J3KL cod 
stock  in 1959–2004. The left panel illustrates landings by non-Canadian and Canadian fleets, with 
the latter divided into mobile gear (offshore) and fixed gear (mainly inshore). The right panel 
shows 1995–2004 in more detail, with the landings subdivided into food/recreational fisheries, 
index/commercial fisheries (including bycatch) and sentinel(test) fisheries. (from Lilly et al., 2005) 

 

Figure 2.  Offshore biomass indices from bottom-trawl surveys in 2J3KL during autumn (left 
panel) and 3L during spring (right panel). (from Lilly et al., 2005) 
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Figure 3.  Trend in total (3+) biomass (thousands of tons) of 2J3KL cod as estimated by sequential 
population analyses (SPA). In the left panel, the solid bold line shows the biomass from the 1993 
assessment (Bishop et al., 1993, reconstructed by P. Shelton, DFO, St. John’s, NL, pers. comm.), 
the dashed line shows an “illustrative” model with no alteration of catch (Lilly et al., 1998) and the 
thin solid line shows a model with sufficient unreported catch added to allow the model to fit the 
pattern in the survey index (Smedbol et al., 2002; Shelton et al., 2006). The right panel shows 
biomass of fish from an SPA based on catches and indices from the central inshore area (Lilly et 
al., 2005). 
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Figure 4.  Trend in spawner stock biomass (SSB, thousands of tons) of 2J3KL cod as estimated by 
various SPAs. Lines as in Figure 3. 
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Figure 5.  Trend in recruitment at age 3 (in millions) of 2J3KL cod as estimated by various SPAs. 
Lines as in Figure 3. 
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Figure 6.  Fishing mortality, averaged over ages 7–9, in the 2J3KL cod stock, as estimated by SPA. 
The heavy line is from the whole stock SPA from the 1993 assessment (Bishop et al., 1993) and the 
light line is from the central inshore SPA (Lilly et al., 2005). 
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Figure 7.  Relative sizes of the 1980–2002 year-classes in the offshore of 2J3KL, as measured by the 
mean catch per tow at ages 2 and 3 during the autumn offshore bottom-trawl surveys. Number per 
tow has been scaled to a maximum of 1 within the time-series for each age. (from Lilly et al., 2005) 
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Figure 8.  Age specific mortality calculated from mean catch per tow at age during the autumn 
bottom-trawl surveys in the offshore of 2J3KL. As an example, in the age 4 panel, the value of 0.7 
in 1997 is the mortality experienced by the 1993 year-class from age 3 in 1996 to age 4 in 1997. The 
line is a 3-year moving average. (from Lilly et al., 2005) 
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Figure 9.  Two indices of temperature from the Newfoundland Shelf. The upper panel shows 
anomalies from the cross sectional area of the Cold Intermediate Layer (CIL) during summer 
occupations of a transect off Cape Bonavista. The CIL is defined by the upper and lower 0° C 
isotherms. The larger the area, the more cold water on the shelf. Note that the ordinate axis is 
reversed. The lower panel is the temperature anomaly of the annual depth-averaged temperature 
at Station 27 off St. John’s. It reflects changes in near-surface temperatures much more than does 
the CIL. (modified and updated from Colbourne et al., 2005; additional data provided by Eugene 
Colbourne, DFO, St. John’s, NL, Canada, pers. comm.) 
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Figure 10.  Mean weight (kg) at age 5 of cod sampled during autumn offshore bottom-trawl 
surveys. (from DFO, 2005a) 
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Figure 11.  Fulton’s condition index computed from gutted weight (above) and liver weight (below) 
for cod of 45–62 cm sampled during autumn bottom-trawl surveys in Divisions 2J, 3K and 3L in 
1978–1994. (from Lilly, 2001) 
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Figure 12.  Percentage of females mature at ages 5 and 6 as predicted from modeling the maturity 
data from autumn offshore bottom-trawl surveys. (from DFO, 2005a) 
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Figure 13.  A comparison of temperature on the Newfoundland Shelf during two time-periods 
(1977–1983 and 1987–1993), as determined from the two indices shown in Figure 9. 

Extended abstract  7 

Fishery and environmental aspects relevant for the decline and recovery 
of the Atlantic cod (Gadus morhua) stock in Greenland offshore 
waters 

Kai Wieland, Marie Storr-Paulsen and Kaj Sünksen 

Greenland Institute of Natural Resources, PO Box 570, 3900 Nuuk, Greenland 

Cod have not been seen in Greenland prior to about 1910. Thereafter, cod became rather 
abundant within a decade extending its distribution in West Greenland waters from about 59° 
to 73 °N (Jensen, 1939). The occupation of Greenland waters started in the end of a cold 
period and commenced when a maximum in air temperature was observed (Figure 1). Since 
then, spawning populations has been established, both at East and West Greenland, which 
provided good recruitment during the 1950s and 1960s.   

From a maximum of about 4 mill t in 1949, stock biomass at West Greenland declined to 
110 000 t in 1975, despite a regular occurrence of good recruitment (Figure 2). After 
intermediate increases of biomass to levels of 250 000 t and 640 000 t in 1978 and 1987, 
respectively, the stock collapsed in the beginning of the 1990s. At that time, the mean latitude 
of the catch and survey biomass indicated a pronounced southward shift of the distribution 
(Figure 3). Sea temperature off West Greenland increased in the mid 1990s towards record 
high values (Figure 3), but a weak sign of a potential recovery has been detected first several 
years thereafter (Figure 1). 

For West Greenland, two prolonged periods of decline in total biomass can be distinguished, 
i.e. 1950 to 1975 and 1987 to 1995, for which the proportion of biomass found their end 
amounted to 2.7 and less than 1 % of the initial value, respectively. During both of the two 
periods, fishing mortality (or exploitation rate (catch/survey biomass)) increased considerably 
and the mean latitude of the catch (or survey biomass) decreased. No general relationship 
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between mean latitude of the distribution and sea temperature was found, but the two variables 
were significantly correlated for the years 1987–1992. The latter suggests that decreasing 
temperature has accelerated a homing migration of maturing fish towards East Greenland (and 
further to Iceland) of those year-classes, which are assumed to have originated mainly from 
Iceland (see e.g. Storr-Paulsen et al., 2004). Results from multiple linear regression analysis 
indicate that fishing mortality together with emigration (but neither temperature on its own nor 
recruitment failure) has been the ultimate cause for the decline in stock biomass in both 
periods (Table 1). 

Once spawning fish had almost disappeared from the previous spawning areas of West and 
East Greenland in the late 1970s, recruitment became more or less solely dependent on larval 
transport from Iceland. This has obviously been the pre-requirement for the stock recovery 
observed in the mid 1980s and since the end of the 1990s (Figure 4, Table 2), depletion of the 
spawning stock in East and West Greenland might have caused a possible delay in the 
response of recruitment when warm conditions returned. 

Simulation experiments have shown that inter-annual variation in particle transport across 
Denmark Strait is remarkably low (Logeman et al., 2004). These findings are supported by the 
observation that a high proportion of pelagic 0-stages have regularly found in East Greenland 
shelf waters in Icelandic surveys covering both Icelandic and East Greenland areas (ICES, 
2002). Hence, in addition to effects related to the size and the age structure of the Icelandic 
spawning stock, low pre-recruit survival in Greenland waters may have prevented a more 
pronounced recovery of the cod stock at Greenland in the most recent years. However, results 
from preliminary analyses indicate that neither changes in stock size of polar cod (Figure 5) 
off West Greenland nor the geographical extension and the increase in effort in the fishery for 
northern shrimp (Figure 6) had an significant effect on the recruitment of Atlantic cod in 
Greenland waters. Other factors involved may include predation by seals and zooplankton 
production. It should, however, be noted that the data available for an analysis of pre-recruit 
survival of cod in Greenland waters are rather limited and a comparison of recruitment with 
environment variables is difficult due to the inference of an unknown (but presumable 
substantial) and varying proportion of recruits from Iceland in the recruitment time series 
derived from surveys or VPA assessments for Greenland offshore waters (Figure 7). 
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Table 1.  Stock parameters, catch and temperature for periods of decline in Atlantic cod stock size 
off West Greenland (VPA data: Buch et al., 1994; Survey data incl. bottom temperature: Fock et 
al., 2006; Catch data: Sünksen et al., 2006; Surface temperature: Ribergaard, 2006). 

 

 

Table 2.  Stock parameters, catch and temperature for periods of increase in Atlantic cod stock 
size off East and West Greenland combined (Survey data incl. bottom temperature: Fock et al. 
2006; Catch data: Sünksen et al. 2006; Surface temperature: Ribergaard 2006). 

 

 

 

 

Period: 1950 - 1975 VPA data (Biomass, SSB, Recruitment)

Recruitment Mean Temperature (°C)
Biomass (kt) SSB (kt) Catch (kt) FAge 5 to 12 at age 3 (103) latitude (°N) Surface Bottom

Range 108.4 - 4076.5 45.9 - 3092.7 39.4 - 425.3 0.06 - 0.94 10.6 - 631.5 61.1 - 65.2 0.3 - 3.2 n.a.

Average 1614.636 955.791 242.380 0.43 163.521 64.036 1.71 n.a.

Average annual change -158.723 -121.874 -5.522 0.04 -24.457 -0.047 -0.01 n.a.

Significant factors for biomass
change in multiple regression: Fishing mortality, Mean latitude of catch

Period: 1987 - 1995 Survey data (Biomass, SSB, Recruitment, Mean latitude; E': catch/survey biomass)

Recruitment Mean Temperature (°C)
Biomass (kt) SSB (kt) Catch (kt) E' (%) at age 3 (103) latitude (°N) Surface Bottom

Range 0.1 - 638.6 0.0 - 60.7 0.0 - 70.3 0.0 - 116.6 0.0 - 692.6 60.6 - 63.2 0.8 - 2.2 2.8 - 4.0

Average 180.130 15.078 17.027 20.48 89.262 61.766 1.34 3.41

Average annual change -79.816 -4.205 -0.492 3.38 -86.569 -0.146 -0.09 0.06

Significant factors for biomass
change in multiple regression: Recruitment, Mean latitude of survey biomass (significant when period is reduced to 1987-1992)

Period: 1984 - 1987 Survey data (Biomass, SSB, Recruitment)
Recruitment Temperature (°C)

Biomass (kt) SSB (kt) Catch (kt) E' (%) at age 3 (103) Surface Bottom

Range 45.3 - 690.2 21.4 - 55.7 6.0 - 22.4 1.2 - 113.2 1.0 - 710.6 1.0 - 2.2 2.7 - 4.2

Average 233.159 36.809 11.956 47.85 180.154 1.84 3.70

Average annual change 214.96 11.42 -7.589 -37.31 176.734 0.41 0.36

Significant factors for biomass
change in multiple regression: n.a. (insufficient number of observations)

Period: 1999 - 2005 Survey data (Biomass, SSB, Recruitment)
Recruitment Temperature (°C)

Biomass (kt) SSB (kt) Catch (kt) E' (%) at age 3 (103) Surface Bottom

Range 4.2 - 135.0 1.7 - 33.3 0.0 - 0.8 0.4 - 8.9 0.5 - 19.1 1.7 - 3.8 3.9 - 5.5

Average 39.568 12.709 0.332 2.63 4.651 2.62 4.77

Average annual change 21.800 5.257 0.067 -1.39 3.093 0.20 -0.11

Significant factors for biomass
change in multiple regression: n.a. (insufficient number of observations)

Both periods of recovery combined:

Significant factors for biomass
change in multiple regression: Recruitment
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Figure 1: Air temperatures at East and West Greenland (Ribergaard, 2006; arrows indicate 
period of cod invasion of East and West Greenland offshore waters).  

 

East Greenland

West Greenland
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Figure 2.  Total biomass (VPA: age 3+; survey: all ages), spawning stock biomass, average fishing 
mortality (age 5+) and recruitment at age 3 for Atlantic cod at West Greenland (VPA data: Buch 
et al., 1994; survey data: Fock et al., 2006). 
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Figure 3.  Changes of latitudinal distribution of Atlantic cod catches and survey biomass in 
comparison of time series of surface and bottom water temperature off West Greenland together 
with the change of center of mass with age for the 1984 year class (Catch data: Horsted, 2000; 
survey data incl. bottom temperature: Fock et al., 2006, Surface temperature: Ribergaard, 2006). 

 

 

 

 

 

 

Year

1925 1935 1945 1955 1965 1975 1985 1995 2005

Te
m

pe
ra

tu
re

 (°
C

)

0

1

2

3

4

5

6

Surface (Fylla Bank)
Bottom (Cod survey) 

1925 1935 1945 1955 1965 1975 1985 1995 2005

M
ea

n 
la

tit
ud

e 
(°

N
)

59

60

61

62

63

64

65

66

Fishery
Survey

Longitude (°W)
444648505254

La
tit

ud
e 

(°
N

)

59

60

61

62

63

64
1984
year
class 

Age 1
Age 2
Age 3

Age 4

Age 5
Age 6



110  |  ICES WKDRCS Report 2006 

 

 

Figure 4.  Stock-recruitment plots for Atlantic cod in East and West Greenland offshore waters 
combined (numbers at symbols indicate year classes; stippled circles enclose year classes with 
substantial contribution of recruits from Iceland; VPA data: ICES, 1996; survey data: Fock et al., 
2006). 

 

 

Figure 5.  Average distribution of polar cod and comparison of biomass of polar cod off Southwest 
Greenland (NAFO Divisions 1C to 1F) with Atlantic cod recruitment at age 3 (numbers at symbols 
indicate years; GINR: Greenland Institute of Natural Resources). 
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Figure 6.  Comparison of Atlantic cod recruitment at age 3 (VPA data; ICES, 1996) and 
recruitment at age 3 per spawner biomass (survey data; Fock et al., 2006) for East and West 
Greenland combined with effort in the fishery for northern shrimp off Southwest and East 
Greenland (NAFO divisions 1C to 1F and ICES area 14). 

 

Figure 7.  Time series of recruitment at age 2 per unit of spawner biomass for Atlantic cod off East 
and West Greenland combined (numbers at symbols indicate year classes; stippled circles enclose 
year classes with substantial contribution of recruits from Iceland; survey data: Fock et al., 2006). 
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Long-term (1913–2004) changes in the age-structure of Arcto-Norwegian 
cod strengthens climate-recruitment link 
Geir Ottersen 

Institute of Marine Research, PO Box 1870 Nordnes, N-5024 Bergen, Norway and Bjerknes 
Centre for Climate Research, GEOS, University of Bergen, Allegaten 55, N-5007 Bergen, 
Norway 

The recent overexploitation of marine fish populations typically results in the loss of the 
largest individuals, decreasing the mean age as well as the age diversity of the spawning stock 
(Law, 1991, 2000; Caddy and Agnew, 2003). Ottersen et al. (2006) document such a 
development for the large, heavily-fished Arcto-Norwegian stock of cod (Gadus morhua) for 
the period 1943–2002. They further examine the consequences with regards to the impacts of 
environmental fluctuations on recruitment and describe mechanisms that may apply also to 
other stocks with a high fishing pressure.  

In this presentation I, by means of VPA values made available by Hylen (2002), am able to 
expand the study period to 1913–2004. The age composition of the spawning stock has 
changed distinctly during this period (Figure 1). The age of the average spawner was between 
10 and 12.5 during the period 1913–1950, but has since then decreased by more than 3 years 
to 7–8 (Figure 2a). This development is unfavourable due to the reproductive capacity of 
older, larger cod being disproportionably higher than that of younger, smaller individuals. The 
mechanisms involved are, however, many and complex. 

Experimental work by Kjesbu et al. (1996) shows that larger and older females tend to have a 
longer spawning period than smaller and younger fish. Larger females tend to produce a 
relatively greater number of eggs, i.e. the number of eggs produced per gram body weight 
increases with increasing length (Marteinsdottir and Thorarinsson, 1998). Repeat spawners 
also produce eggs that have a wider range of vertical distribution than recruit spawners, thus 
causing broader horizontal dispersion (Kjesbu et al., 1992). 

The size of cod eggs and larvae generally increases with maternal size (Chambers and 
Waiwood, 1996; Kjesbu et al., 1996; Trippel et al., 1997; Vallin and Nissling, 2000), 
increasing also viability, as both field studies (Meekan and Fortier, 1996) and theory (Houde, 
1987) suggest a tendency towards increased survival among faster growing larvae (“bigger is 
better”). Furthermore, experimental studies have more directly shown that larger egg size 
leads to increased survival of cod eggs (hatching success; Solemdal et al., 1995) and yolk-sac 
larvae (Nissling et al., 1998), although the latter study found no effect of egg size on viability 
up until hatching. In addition, older fish may have a key role in spawning migrations, perhaps 
involving learned behaviour (Rose, 1993). Collectively, these studies indicate that the 
proportion of older and larger fish present in a population may contribute significantly 
towards determining the number of successful recruits. 

The development I find in the number of age classes contributing to the spawning stock of 
Arcto-Norwegian cod, as estimated by the Shannon diversity index, is characterized by 
pronounced short-term variability, but also of a decreasing trend since the early 1950s (Figure 
2b). This is expected to be an unfavourable development in regard to the stock’s reproductive 
capability.  A diverse stock structure is likely to enhance a population’s reproductive potential 
through size- or age-dependent differences in timing, duration or location of spawning, 
ensuring that a sufficient number of eggs and larvae encounter environmentally favourable 
conditions. There is extensive evidence in support of such mechanisms over a broad range of 
stocks including cod (O’Brien et al., 2003) and haddock (Melanogrammus aeglefinus; 
Marshall et al., 2003) on Georges Bank, Icelandic cod (Marteinsdottir and Thorarinsson, 
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1998), herring (Clupea harengus) on the east coast of Canada (Lambert, 1987,1990), and 
striped bass (Morone saxatilis) in Chesapeake Bay (Secor, 2000). 

 Recruitment to the Arcto-Norwegian cod stock has varied extensively. There is evidence for 
fluctuations in climate, particularly sea temperature, being a main cause for this variability, 
higher temperatures being favourable for survival throughout the critical early life stages 
(Ellertsen et al. 1989, Ottersen and Sundby 1995, Ottersen and  Stenseth 2001). The present 
analysis presents compelling evidence for a strengthening of the climate-cod recruitment link 
during the last decades. The correlations between climate and cod recruitment increase 
throughout most of the study period (Figure 3a). I propose that this enhanced climate–
recruitment link is influenced by the reduction of age and, to a lesser degree, age diversity in 
the spawning stock, leading to the cod population becoming less robust towards adverse 
climate conditions. There is statistical substantiation for the climate–recruitment link 
strengthening with reduced age of spawners, as suggested in Figure 3b. 
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SPAWNING STOCK BIOMASS BY AGE (1000 tonnes)

 

PERCENT SPAWNING STOCK BIOMASS PER AGE

 

Figure 1.  Decadal mean spawning stock biomass (SSB) in each age group (upper panel). Decadal 
mean percentage of SSB in each age group (lower panel).    
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Figure 2.  Biomass weighted mean age in the spawning stock (upper panel) and Shannon diversity 
index of spawning stock biomass by age (lower panel). For details on the calculation methods see 
Ottersen et al. (2006). 
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Figure 3.  Upper panel: 21-year moving correlations between annual mean temperatures in the 
Kola-section and cod recruitment as estimated by VPA at age 3. Lower panel: Mean age in the 
spawning stock vs the correlations from the upper panel. 

Extended abstract  9 

Decline and recovery of cod (Gadus morhua L.) along the eastern 
Skagerrak coast in relation to population structure and offshore 
recruitment 
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Introduction 

The cod stocks in the Skagerrak and Kattegatt have declined in abundance, dispersal and size 
distribution since the 1970s (Degerman, 1985; Pihl and Ulmestrand, 1993; Svedäng, 2003; 
Svedäng and Bardon, 2003; Cardinale and Svedäng, 2004; ICES, 2005a,b). This decline is 
especially pronounced in inshore areas such as the eastern Skagerrak coast. Furthermore, 
when regular trawl surveys were resumed in 2000, very low abundance of cod >300 mm was 
observed in inshore areas along the Skagerrak coast, compared to historical records from the 
1920s to 1970s (Svedäng, 2003). In contrast to low adult abundance, cod catches were 
dominated by immature fish that disappeared when they grew older. The persistently low 
abundance of adult cod thus coincides with high abundance of juvenile cod in some years 
(Pihl and Ulmestrand, 1993; Svedäng, 2003), suggests that the inshore demersal fish 
populations are presently regulated by recruitment from offshore sources, while historical 
information indicate that spawning aggregations were common in these areas. 

It has been hypothesised that most juvenile cod at the eastern Skagerrak coast are recruited 
from offshore spawning areas mainly in the North sea (Svedäng, 2003; Cardinale and 
Svedäng, 2004), from which they are passively transported (Munk et al., 1995; 1999). The 
following [unexpected] low abundance of adult of cod was suggested to be due to return 
migration of juvenile/ maturing fish at a certain size or age (c.f. Pihl and Ulmestrand, 1993). 
This theory was further supported by the fact that a relatively strong year class of cod in 2001 
in the Skagerrak was genetically assigned to be originating from eastern North Sea cod 
populations, in contrast to the results in the year before when genetic analysis suggested local 
origin (Knutsen et al., 2003; 2004).  

In similarity to 2001, cod recruitment in the Skagerrak was also high in 2003 (ICES, 2005b). 
It was therefore of interest to further elucidate the population dynamics of cod along the 
Swedish Skagerrak coast after a high, episodic recruitment event. It was thus assumed that 
also the year class in 2003, according to its strength and dispersal in the Skagerrak, originated 
from offshore spawning grounds. 

Recolonisation of areas depleted of cod stocks, such as along the Swedish Skagerrak coast 
(Svedäng, 2003), should be related to the general recruitment level and to dispersal rates (e.g. 
Stenseth et al., 2005). However, one alternative hypothesis is that juvenile fish do not remain 
where they once have settled, unless they are in close vicinity to their parental spawning 
grounds. It was thus conjectured that the temporal development in distribution of cod in 
various size classes after a major recruitment event, should be a reflection of the migratory 
behaviour of its offshore origin. Accordingly, recolonisation in such a case will be a much 
slower process than otherwise anticipated. In this study, a temporal analysis of cod juvenile 
abundance in the eastern Skagerrak coast was made by using trawl survey data 2001–2005, 
comprising intense sampling both in inshore areas and off the coast.  

In addition, as the temporal and spatial variation of the cod decline on the eastern Skagerrak 
coast is informative regarding the original population structure, a short summary on this 
subject was included. 

Material and methods  

Between 2000 and 2005, trawl surveys have been carried out by RV “Ancylus” along the 
Swedish Skagerrak coast. The stations were selected partly on previously fished stations as 
well as new information about suitable fishing grounds. Some areas were monitored already in 
2000, whereas other areas and trawling stations were established 2001–2002.  
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Figure 1.  The study area along the eastern Skagerrak coast. Positions of trawling stations are 
indicated with inverted filled triangles. Delimitation of subareas are shown: A-Northern 
Skagerrak coast; B-Outer northern Skagerrak coast; C-Brofjord area, D-Outer part of the 
Gullmarsfjord; E-Inner part of the Gullmarsfjord; F-Havstensfjord; G-Hakefjord area; H-
Marstrandfjord; I-Outer southern Skagerrak coast. 

In this study, the trawling stations have been arbitrarily classified into different subareas 
according to hydrographical conditions, geographical dispersal, and similarity in catch 
development into nine (Figure 1) 

Results 

Decline part 

Brofjord area 

Survey cpue of cod (in weight) in the Brofjord area was drastically lower in 2000 and 2003 
(unweighted mean for seven surveys: 1.5 kg h-1) compared to values obtained during similar 
surveys in 1968–1980 (mean value 96 kg*h-1; n=32; Figure 2).  

It should also be observed that the catch rate in 1968-1980 showed a pronounced seasonal 
variation: cpue values were higher from January to March than in other parts of the year.   
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Figure 2.  Mean cpue of cod by year: survey data from the Brofjord area, 1968–1980, and 2000–
2003 (Modified from Svedäng, 2003). 

This seasonal variation and the fact that sexual mature fish were observed in large amount 
indicates spawning activity in the Brofjord (Hallbäck et al., 1974). In addition, tagging 
experiments conducted in the beginning of 1970s showed a high degree of stationarity and 
return migrations during the spawning season. 

 

Figure 3.  Leisure fishing index from the southern Skagerrak coast: Mean cpue of cod in number 
per fishing participant and fishing trip for three sport fishing club data sets (Svedäng, 2003). 

The three time series obtained from sport fishing clubs varied regarding the period covered but 
all exhibit significant declines (Svedäng and Bardon, 2003; Figure 3). The declines do not 
completely coincide in time: in the more inshore area, the decline occurred at an earlier stage 
than in themore offshore area, at least for sfc A. The data from sfc B provide clear evidence 
that cod densities have remained extremely low throughout the 1980s. A comparison between 
the (normalized and smoothed) cpue in the offshore Nephrops trawl fishery in the Skagerrak 
and in the three sfc data sets suggests that the decline in inshore areas preceded the decline 
offshore by about 5–10 yr . 
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Recovery part 

Temporal development in catch rates  

Annual mean cpue of cod (in weight) was at very low levels in the beginning of 2000s along 
the entire eastern Skagerrak coast (Figure 5a).  

 

Figure 5.  The annual mean cpue of cod (kg*h-1) in the coastal survey between 2000 and 2005. a) 
Inner part of the Gullmarsfjord and Havstensfjord. A mean cpue for all other inshore subareas 
(i.e. the subareas shown in Figure 2b) is included for comparison; b) the northern Skagerrak coast, 
Brofjord area, Outer part of the Gullmarsfjord and the Hakefjord area; c) the outer northern 
Skagerrak coast, Marstrandfjord and the outer southern Skagerrak coast. 

Cpue increased substantially along the whole coast in 2003 (Figure 5a–c). The increased catch 
rate in 2004 was stronger in the inner part of the Gullmarsfjord than elsewhere. In 2005, cpue 
decreased in all inshore areas but the Havstenfjord, where a marked increase in cpue could be 
observed. This marked decline was also discernible in the Gullmarsfjord, although cpue in this 
locality remained at a higher level. Off the southern part of the coast, cpue increased rather 
monotonically between 2001 and 2005 (Spearman’s rho=0.90; p<0.05). 

Discussion 

In spite of a reduction in fishing pressure in recent years (e.g. removal of the trawling limit 
from 2 to 4 nautical miles from the base line), and high cod recruitment in the Skagerrak 
region in 2001 and 2003, no general recovery could be evidenced. The survey data clearly 
showed that low cod density areas were not recolonised, even though abundance of juvenile 
cod remained high for about a year after the recruitment episodes. Increased abundance of fish 
larger than 400 mm was only discernible at some scattered locations where other studies also 
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have suggested local populations still to be present. The intermittent high recruitment has been 
linked to an inflow of egg and larvae from the North Sea, a theory which also has gained 
support from genetic studies. It was thus argued that the disappearance of the juvenile cod 
from the inshore is an effect of a migratory behaviour; the fish of offshore origin eventually 
leave the coast for the open Skagerrak or the North Sea.  

The  results of the trawl survey reported in this study revealed a very clear-cut pattern for all 
subareas where almost no cod longer than 400 mm were observed from 2001 to 2005: 
enhanced recruitment in 2001 in some localities, and along most of the Skagerrak coast in 
2003, whereas recruitment in all other studied years was overall low. High abundance of cod, 
in size groups corresponding to one year old fish, was consistently observed in all localities in 
2004, except in the Havstensfjord. Finally, abundance of cod declined in 2005 in all those 
areas. This development coincided with an increase in cod abundance off the coast 2002–
2005.   

One simple explanation to the observed temporal development in cod abundance would be 
that cod propagules from offshore spawning grounds have successfully settled in the coastal 
region in 2001, and, in particular, in 2003. Increased abundance of one year old cod in 2004 
was consequently due to the better recruitment in 2003. The disappearance of this year class 
from the coastal region in 2005 was tentatively explained as an effect of migration off the 
coast. Increased abundance of two year old cod off the coast in 2005, was supporting for such 
a conclusion.  

Observations of cod, in size groups corresponding to higher age classes, were made in two 
specific areas in the coastal zone: in the inner part of the Gullmarsfjord and the Havstensfjord. 
Genetic analysis on adult and juvenile cod from the Gullmarsfjord has suggested a local cod 
population, genetically divergent from the west Skagerrak/ eastern North Sea  populations 
(Knutsen et al., 2003, 2004). Sexual mature cod have also been observed (Svedäng et al., 
2004) during the spawning period in winter/ early spring (c.f. Vitale et al., 2005). In the 
Havstensfjord, large catches of adult-sized cod were still made in the purse seine fishery 
during the winter 1997/1998, in contrast to most other areas along the Swedish Skagerrak 
coast (Arrhenius et al., 1998). This observation could imply that a remnant local population in 
the Havstensfjord has survived, and has begun increasing in population size in recent years. It 
is also possible that the observation in Havstenfjord is an outlier, e.g. the migration from the 
coast to the open Skagerrak in this inshore area has been delayed for a shorter period of time.  

The alternative explanation to the disappearance of two year old cod in 2005 along most of the 
Skagerrak coast would be an extremely high mortality rate for fish larger than 400 mm in total 
length. However, fishing intensity has decreased since 2004 as trawling limit has been 
removed from 3 to 4 nautical miles from the base line, including some areas inside the 
trawling limit where trawl fishery previously has been allowed. There has also been 
implemented a total ban on cod fishery in the first quarter of the year and the purse seine 
fishery has been restricted. Ironically, the environmental degradation is most prounouced in 
remote inshore areas such as the Havstensfjord (Anon. 2003), where a cod population 
evidently has shown some growth in size. All other possibilities, such as predation from seals 
and cormorants, parasites and deseases, cannot be completely ruled out, however, as our 
knowledge of all kinds of responses in the ecosystem is imperfect. Nevertheless, the 
likelihood for such massive kills, as it would inflict, has to be considered as low. 

This study support the view that the present population dynamics of cod stocks in the eastern 
part of the Skagerrak depend on transport of recruits from offshore spawning areas (Munk et 
al., 1995; 1999), and on return migration of juvenile and/or maturing fish when they reach a 
certain size or age (Pihl and Ulmestrand, 1993; Svedäng, 2003). This hypothesis has been 
supported by the observation of a general lack of correlation between recruitment (no trend 
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during the past two decades) and abundance of cod >300 mm (significant decline) in the 
Skagerrak-Kattegat area (Cardinale and Svedäng, 2004).   

In addition, a tagging study in the 1980s along the Swedish west coast, reported such a 
migratory behaviour in cod juveniles (Pihl and Ulmestrand, 1993). Already at this moment of 
time, most of the former coastal cod population structure was severely depleted (c.f. Svedäng, 
2003), and the impact on recruitment from offshore resources was obvious. Similar results 
have been obtained in on-going tagging study in the Gullmarsfjord and off the Skagerrak coast 
(pers. obs.). These findings clearly suggest a strong behavioural component in the distribution 
pattern of cod in the eastern North Sea region.  
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The long-term decrease of cod recruitment in the North Sea – the 
mechanistic links to ocean climate, water mass characteristics, and 
the large-scale dynamics of Calanus finmarchicus 

Svein Sundby, Paul Budgell, Morten D. Skogen and Vidar Lien 

Institute of Marine Research, Nordnesgaten 33, P.O. Box 1870 Nordnes, N-5817 Bergen, 
Norway 

The population of Calanus finmarchicus is a major food organism for many of the large fish 
stocks in the Northeast Atlantic region. Long-migrating pelagic species, such as the 
Norwegian spring spawning herring, the Atlantic blue whiting and Atlantic mackerel are 
summer feeding on the adult population of C. finmarchicus in its core production region in the 
Norwegian Sea. The larval and juvenile populations of the major fish species along the shelf 
regions surrounding the core production area in the Norwegian Sea are dependent on the early 
stages of C. finmarchicus for growth and survival. Since the distributions of the younger 
stages of fish at the surrounding shelves do not overlap with the distribution of the core 
production area, advective transport of C. finmarchicus onto the shelves is considered to be an 
important process in supplying food to the larval and juvenile fish populations. This 
mechanism has been described for advection of C. finmarchicus from the northeastern 
Norwegian Sea into the Barents Sea (Skjoldal and Rey, 1989; Helle and Pennington, 1999). 
Here, strong inflow of Atlantic water from the Norwegian Sea into the Barents Sea is 
associated with advection of warm and Calanus-rich water masses. For the North Sea similar 
process has been studied by Heath (1999).  

North Atlantic cod stocks show adverse recruitment responses to changes in ambient 
temperature (Ottersen, 1996; Planque and Frédou, 1999). For cod stocks living at the lower 
temperature range (e.g. Barents Sea) years of above normal temperatures are generally 
associated with higher probability of strong recruitment, while for cod stocks living at the 
higher temperature range (e.g. North Sea and Irish Sea) years of above normal temperatures 
are generally associated with higher probability of poor recruitment. For cod stocks living in 
the middle of the temperature range recruitment show lower sensitivity to temperature changes 
(e.g. Icelandic cod). Sundby (2000) proposed a unifying mechanism for this particular 
relationship between temperature and recruitment in Atlantic cod where the key issue is that 
temperature is a proxy for the advection of Calanus-rich water masses from the core 
production region of C. finmarchicus onto the surrounding shelves. The mechanism is 
conceptually described in Figure 1. The general features are that the cod stocks at the 
European shelves are distributed at the fringe around the core production area of C. 
finmarchicus in the Norwegian Sea proper. An increase in the advection of Calanus-rich water 
masses in the Norwegian Sea proper onto the surrounding shelves will be associated with a 
corresponding temperature change. For advection onto the Barents Sea this will result in a 
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temperature increase because the Calanus-rich water masses in the Norwegian Sea has higher 
temperature than in the Barents Sea (Panel A in Figure 1). For advection into the North Sea 
this will result in a temperature decrease because the Calanus-rich water masses in the 
Norwegian Sea to the north of the North Sea has lower temperatures than the water in the 
North Sea (Panel C in Figure 1). For stocks like the Icelandic cod which have ambient 
temperatures similar to the temperature in the core production area of C. finmarchicus and 
increase in the advection of the Calanus-rich water masses do not result in significant changes 
in the temperature (Panel B in Figure 1). 

 

 

Figure 1.  Conceptual model for the link between changes in advection, temperature, abundance of 
Calanus finmarchicus and recruitment in Atlantic cod stocks (Sundby, 2000).  

In the northeastern Norwegian Sea the Atlantic water masses are the Calanus-rich water 
masses. Hence, increased influx of Atlantic water masses increases the advection of C. 
finmarchicus into the Barents Sea. Russian time series of zooplankton in the northeastern 
Norwegian Sea shows increasing abundances during the second half of the 20th century. 
During the same period the time series from the Sir Alistair Hardy Foundation for the ocean 
area to the north of the British Isles shows the opposite trend for the abundance of C. 
finmarchicus (Figure 2). This trend is also caused by the increased inflow of Atlantic water 
since the downstream abundance of C. finmarchicus is lower southeast of the Nordic Seas.  

In the North Sea proper a similar decrease in the abundance of C. finmarchicus has occurred 
(Reid et al., 2003). It will be here shown that this decrease is linked to the general change in 
the ocean climate and to the advection pattern of water masses into the North Sea. Differently 
from the advection into the Barents Sea, where the Atlantic water is the conveyer for C. 
finmarchicus, it appears in the North Sea that the cool Norwegian Sea Intermediate Water 
(NSIW) is the conveyer for C. finmarchicus. The conclusion here is that the upper distribution 
of overwintering C. finmarchicus from the Norwegian Sea is carried with NSIW through the 
Norwegian Trench into the North Sea and fuels the subsequent spring and summer population 
of C. finmarchicus in the North Sea. 
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Figure 2.  General distribution pattern of  Calanus finmarchicus in the North Atlantic in relation 
to the currents (Sundby, 2000) and the long-term change of C. finmarchicus in two sub regions of 
the Northeastern Atlantic (Fromentin and Planque, 1996; Nesterova, 1990). 

We have used: 1) hydrographical time series for the spring of the east-west section Feie-
Shetland across the northern North Sea to show how the fraction of NSIW at the bottom of the 
Norwegian Trench varies between years, 2) results from the NORWECOM circulation model 
for the North Sea and adjacent waters to show that the inflow of Atlantic water (AW) to the 
North Sea and the inflow of NSIW are inversely correlated, and that the hydrographical 
observations of the fraction of NSIW from the Feie-Shetland section is positively correlated 
with the modelled inflow of NSIW, 3) results from the Atlantic basin-scale ROMS circulation 
model to show that the two branches of the Atlantic Current, northward into the Norwegian 
Sea along the Norwegian coast and southward into the North Sea, is positively correlated. 
Finally, 4) we have used the time series from the SAHFOS grids in the northern North Sea 
(C1, C2 and B2) to show that the spring/summer abundance of C. finmarchicus is positively 
correlated with the modelled inflow of NSIW during winter and inversely correlated with the 
modelled inflow of AW, and that the temperature observations at the bottom of the Norwegian 
Trench is inversely correlated with the subsequent abundance of C. finmarchicus during 
spring/summer. 

These results lead to the conclusion that C. finmarchicus in the North Sea is supplied from the 
overwintering population of C. finmarchicus in the Norwegian Sea and that the Norwegian 
Trench is the gateway for C. finmarchicus. A warmer North Atlantic ocean climate with 
increased inflow of Atlantic water to the Nordic Sea has, therefore adverse effects on cod 
recruitment in the Barents Sea and the North Sea. Figure 3 shows conceptually how the 
recruitment is the two seas is influenced by the ocean climate. 
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Figure 3.  The concept of how increased inflow of warm Atlantic water to the Nordic Seas 
influence recruitment of cod from the Barents Sea and North Sea. 
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Eastern Baltic cod recovery: the importance of species interactions 
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The Eastern Baltic cod stock declined from historic high during the early 1980’s to lowest 
levels on record in the beginning of the 1990’s, showing basically no sign of recovery 
afterwards (Figure 1). The Baltic sprat stock size increased to historic high level concurrently, 
whereas Central Baltic herring abundance remained relatively stable, while biomass declined 
due to a substantial decrease in weight at age. The decline of the cod stock was caused by a 
recruitment failure, which was mainly driven by: i) anoxic conditions in deep water layers of 
spawning sites causing high egg mortalities, ii) high egg predation by clupeid predators, iii) 
reduced larval survival due to the decrease in abundance of the main food item Pseudocalanus 
acuspes, and iv) high juvenile cannibalism at high stock size (Köster et al., 2005). The 
intensity and significance of all these processes are in one way or the other steered by the 
hydrographic conditions, which were in the 1990´s characterized by low salinity due to 
lacking inflow of highly saline water from the North Sea and increased run off, but as well by 
warmer thermal conditions. An increasing fishing pressure accelerated the decline of the cod 
stock, with current exploitation levels being still on a very high level. The decline of the cod 
stock released sprat from predation pressure, which in combination with high reproductive 
success, due to in general favourable temperature conditions enhancing egg and larval 
survival, resulted in exceptionally high sprat stock sizes in the 1990s (Köster et al., 2003). The 
present contribution investigates the importance of predation on early and juvenile life stages 
of cod for stock recovery. Indications for compensatory processes in growth, maturation and 
individual egg production exist as well, however, appear to be of limited impact on the cod 
stock dynamics. 

Predation by herring and sprat has a significant impact on cod egg survival although being 
variable in time and space (Köster and Möllmann, 2000). In spring and early summer sprat 
predation on cod is important due to the spatio-temporal overlap in sprat spawning time with 
cod. In summer, herring is the principal predator of cod after returning from their coastal 
spawning areas to their deep water feeding grounds, while sprat have mainly left the area. 
Because the population of herring is presently substantially lower than that of sprat, predation 
pressure is higher in spring than in summer. Egg predation was found to be considerably lower 
in the Gdańsk Deep and Gotland than in the Bornholm Basin (CORE, 1998). Thus, only cod 
egg predation in the Bornholm Basin is considered in the present study. 

Predation intensity in the Bornholm Basin depends on the vertical overlap between predator 
and prey. Köster et al. (2005) modelled the daily consumption of cod eggs by individual 
clupeids in spring and early summer as linearly related to cod egg abundance considering the 
vertical predator/prey overlap. The model is based on the observation that oxygen 
concentration in the bottom water limits the clupeid vertical distribution during the daylight-
feeding period, while the density regime determines the vertical distribution of cod eggs. This 
results in clupeids dwelling below cod eggs in inflow situations whereas clupeids co-occur in 
high egg density water layers during stagnation years (Köster and Möllmann, 2000). Based on 
these observations, the average capture depth of clupeids and the average depth where highest 
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cod egg concentrations occurred were combined into an index of vertical predator/prey 
overlap. Predation pressure by clupeids on cod eggs was determined over 1976-1992 using 
daily egg consumption rates by individual predators, predator population sizes from area 
disaggregated MSVPA and hydroacoustic survey results as well as standing stocks of cod 
eggs. 

Comparing daily cod egg consumption rates by sprat and herring populations in the Bornholm 
Basin during cod spawning periods with daily production rates and standing stocks of cod 
eggs confirmed high predation by sprat during the early 1990s, when the cod spawning season 
was still in spring and early summer (Figure 2a). Predation was estimated to be above daily 
production and standing stocks in 1990–1992 and above the production in 1993. After the 
shift of cod spawning to summer, the importance of predation by herring increased, 
consuming 50 to >100% of the daily production and up to 50% of the standing stock. 
Assuming these consumption estimates were unrealistically high, and expressing the predation 
pressure in relative terms, i.e. as the ratio of daily consumption to production scaled to the 
maximum value determined for sprat in spring 1992 (Figure 2b), revealed a minimum of egg 
predation in 1993–1995. This can be explained by a combination of limited vertical overlap 
between predator and prey after the 1993 major inflow and the shift of cod spawning time to 
summer.  

The effect of the shift in spawning time can be inferred from a seasonal comparison of the 
relative predation pressure during May/June and July/August 1994–1997 respectively. The 
predation pressure by sprat was approximately 2.5 times higher in spring/early summer than in 
summer, while the predation pressure by herring was approximately 8 times higher in summer 
than in spring (Figure 2b). The effect of the vertical predator–prey overlap can be deduced 
from a comparison between May/June 1990–1992 and 1993–1996. Sprat and herring 
predation decreased by a factor of 6.0 and 3.5, respectively (Figure 2b). 

Comparing average daily rations of cod eggs by individual sprat and herring with egg 
abundance (Figure 2c), confirms that the individual egg predation by sprat follows closely the 
predator-prey overlap (Figure 2d), while the relationship is less obvious for herring. 
Comparing the oxygen related egg mortality during stomach sampling cruises (Köster et al. 
2005) revealed a similar trend in hydrography induced egg mortality and predator - prey 
overlap and hence predation pressure (Figure 2d). This can be explained by the same 
hydrographic parameters affecting the vertical predator/prey overlap and oxygen related egg 
mortality, i.e. salinity and oxygen concentration. This is also obvious from a comparison of 
modelled relative predation pressure and oxygen related egg survival for the period 1966 until 
mid 1990s (Figure 3). Deviations in most recent years are caused by the shift of cod spawning 
time from spring to summer. 

Decadal changes in cod cannibalism have been described by Uzars and Plikshs (2000). During 
1963–1979 the distributions of young and adult cod were widespread, but separated in time 
and space, resulting in an overall low cannibalism. When the biomass of clupeids decreased in 
the late 1970s, competition for food and concurrently cannibalism increased. In the late 1980s, 
unfavourable oxygen conditions in the bottom water affected the benthic community 
negatively, and cod shifted from a benthic to a more benthopelagic mode of life utilising 
mysids and sprat as food resource. This distribution pattern is believed to have reduced 
cannibalism pressure substantially (BECAUSE, 2005). 

A pronounced time trend in cod cannibalism is as well apparent from Multispecies Virtual 
Population Analyses (MSVPA) applying the 4M model (Vinther, 2001). On average 50% and 
30% of the 0-group and 1-group cod were removed from the stock by cannibalism during the 
1970’s and early 1980’s respectively. During the 1990’s the corresponding values were below 
20 and 10% respectively. Age-specific differences in predation mortality are obvious, with 
cannibalism rates on 0-group being considerably higher than on 1-group cod (ICES, 2003). 



130  |  ICES WKDRCS Report 2006 

 

Predation on 2-group cod was in general low, i.e. less than 50% of the applied residual 
mortality of 0.2. 

Area-disaggregated MSVPA-runs conducted for ICES Subdivisions 25, 26 and 28 (ICES, 
2001) confirmed the trends in population abundance and spawning biomass as derived in the 
different areas by research surveys. Results showed highest cannibalism on 0-group cod in 
Subdivision 25, i.e. the larger area of the Bornholm Basin, while predation on 1-group cod 
was historically highest in eastern areas, i.e. Subdivision 26 and 28, but reduced substantially 
in Subdivision 28 since late 1980’s. The spatial/temporal trend of predation mortalities for age 
1 confirm results from previous area-disaggregated MSVPA runs (Köster et al., 2001), while 
0-group mortalities showed a different spatial pattern. The rather high predation mortalities in 
the 1970’s and 1980’s as well as the inconsistent spatial pattern raised the question on the 
reliability of the estimates. 

According to Neuenfeldt and Köster (2000), recruitment estimates from MSVPA runs are 
substantially affected by the choice of the suitability submodel and whether a suitability model 
is used at all. Deviations in recruitment estimates from MSVPA runs using different suitability 
models are obvious for the beginning of the time series. A MSVPA run without a suitability 
model (i.e. based on observed stomach content only) suggested highest recruitment for year-
classes 1976 and 1977, while otherwise highest year-classes were determined for 1979 and 
1980. The former result fits better to the larval abundance, indicating that the 1977 year-class 
may be under- and the 1980 year-class overestimated by the present MSVPA runs. However, 
independent of how prey selection is modelled in the MSVPA, cannibalism is confirmed to be 
a significant source of juvenile mortality at high cod stock size. 

Alternative MSVPA runs using different stomach content data were applied to test for the 
effect on suitabilities. The 1. scenario comprised stomach content data from 1977 to 1983. 
These data contain most of the cod cannibalism observation over the whole time series. The 2. 
scenario comprised stomach content data from 1984 to 1993. Mainly the 0-group cod was 
subject to changing suitability in the different runs (Figure 4). Up to predator age 4 there was 
no major difference, but from age 6 onwards the usage of the 1977–1983 stomach data set 
generated clearly higher suitabilities of 0-group cod as prey. 

To test for the effect of utilising these different suitabilities in medium-term multispecies 
projections the following forecast scenarios were setup: 

1 ) Key-run: Food suitabilities as estimated by using stomach content data for the 
entire time period and recruitment estimated from a stochastic Ricker SSB-
recruitment relationship. 

2 ) Fpa: Similar to the Key-run, but prediction Fs were scaled to Fpa. 
3 ) High cod stock: suitabilities based on MSPA runs with stomach data from 1977 

to 1983 and recruitment estimated from a log-normal distribution fitted to data for 
the period 1974–1983.   

4 ) Low cod stock: suitabilities based on MSPA runs with stomach data from 1984 to 
and recruitment estimated from a log-normal distribution fitted to the period 
1984–1999. 

Applied prediction weight at age in the sea and in the catch, maturity ogives and residual 
natural mortalities as well as food rations were averages of the period 1996–2000, and kept 
constant in all prediction. Status quo fishing mortalities were copied from the year 2000 
values. All forecast were made for the period 2001–2031, with stochastic recruitment, 
repeated 100 times. The key-run prediction result suggests that at status quo fishing mortality, 
the SSB and yield of cod will remain at present levels. The prediction using Fpa shows in 
contrast a steep increase in SSB in the first 7-8 years, however in the longer run the average 
SSB is lower than Bpa (Figure 5).  
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The high cod cannibalism and recruitment scenario shows a remarkable fast increase in SSB 
(Figure 6).  The highest SSB is achieved in the beginning of the prediction period with very 
few older cod and thereby a limited cannibalism. The effect of cod cannibalism causes 
considerable oscillations of stock size and yield, but the stock remains well above Bpa, even 
though status quo F is used.  The low cannibalism and low recruitment prediction revealed 
that SSB increases slightly, but staying around Blim (Figure 6). 

The main message from these simulations is that recruitment success drives stock recovery 
and that cannibalism is of second order importance. Cod egg predation by clupeids is most 
intense during periods of unfavourable hydrographic conditions for egg survival, i.e. low 
oxygen concentrations in the bottom water. Additionally, periods of prolonged stagnation are 
characterised by low availability of Pseusocalanus nauplii as food for early cod larvae. Thus, 
enhanced hydrographic conditions, i.e. major inflow situations, are a prerequisite for stock 
recovery. The rate of recovery will depend on fishing mortality and cannibalism, the latter in 
dependence of the availability of other prey and spatial overlap between juveniles and adults. 
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Figure 1.  Catch, fishing mortality, spawning stock biomass (SSB) and recruitment of cod (a), sprat 
(b) and herring (c) in the Central Baltic. 
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Figure 2.  Daily cod egg consumption by clupeids in the Bornholm Basin during main spawning 
periods in comparison to daily production rates and standing stocks of eggs (a); corresponding 
relative predation pressure (b); daily ration by individual sprat and herring per egg abundance 
(c); spatial overlap between predator and prey and daily cod egg mortality based on vertical 
resolving ichthyoplankton and hydrography sampling during stomach sampling cruises (d). 
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Figure 3.  Time series of relative predation pressure on cod eggs by clupeids (open circles and 
dashed line) and oxygen related egg survival (filled circles and solid line) in Subdivision 25. 

 

Figure 4.  Suitabilities of 0-group cod as prey for cod age-groups 1–8 from MSVPA, based on 
stomach contents from different periods. 
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Figure 5.  Medium-term projection of cod stock and catch development applying Fstatus-quo, 
results from MSVPA key run, i.e. using all stomach content data available and recruitment based 
on a stochastic ricker stock recruitment relationship utilising the entire time series for fitting. 
Presented is the mean and 95% CV’s. The solid horizontal line in the upper figure represents 
Blim, the dashed line Bpa. 
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Figure 6.  Medium-term projection of cod stock and catch development applying Fpa, results from 
MSVPA high and low cannibalism and recruitment scenario, i.e. using stomach content and 
recruitment data for periods 1977–1983 and 1984–1993 respectively. Presented is the mean and 
95% CV’s. The solid horizontal lines in the upper figures represents Blim, the dashed lines Bpa. 

Extended abstract  12 

The collapse of the Atlantic cod (Gadus morhua) stock on Flemish Cap 

Antonio Vázquez 

Instituto de Investigaciones Marinas, Vigo, Spain 

Even Flemish Cap was first described in 1750, a significant cod fishery probably did not start 
until the 20th century, when trawling was available. The activity in the bank might increase in 
parallel to the decrease yields in the Newfoundland Grand Banks. The fishing pressure was 
the highest after 1977, when the EEZ zones were established. Soon after the stock showed 
depletion signals and a fishing moratoria was agree from 1988 to 1990, however the estimated 
annual catch in those years remained high, in the level of 40 000 tons. Last abundant year-
classes were those of 1990 and 1991, which were deeply caught from 1992 to 1994. The 
fishery remained at high CPUE levels until near its end, in 1995, due to cod congregated in 
dense aggregations when it had a low abundance. The stock is under moratoria since 1999.  

The SSB decreased after 1991, but it remained higher than the current accepted Blim for the 
next four years: 1992–1995 (Figure 1). Some abundant year-class could have been produced 
in those years, but it did not happen. Variability in recruitment had been described many 
times: strong recruitment had been irregular. The continuation of an intense fishing after 
recruitment failure resulted in a depletion of the SSB. Unfavourable environmental conditions 
could impede any strong recruitment in the 1992–1995 time period, but the depletion of the 
SSB completed the conditions for the stock collapse. Finally, SSB decreased too much, bellow 
the accepted Blim level, and no abundant year-class appeared since then. The SSB in 1991 
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was formed by few year-classes, as it corresponds to a deep exploited stock, so it could not 
support four years with very poor recruitments. 
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Figure 1.  SSB and recruitment from XSA (Vázquez and Cerviño. 2005. A review of the status of 
the cod stock in NAFO Division 3M. NAFO SCR Doc. 05/38) 

The last strong year-class appeared in 1991, but it had been before the neighbouring cod 
stocks also collapsed: last reasonable strong year-class for 3NO cod appeared in 1990 and it 
was even early for the 2J3KL stock. If a decisive unfavourable oceanographic condition had 
been the main factor in the collapse, it might have affected the three stocks at the same time. 

Age at first maturity was observed at age 5 in the past; current observations indicate age 3–4, 
quite close to the assumed biological limit of the species. The growth also increased in parallel 
to the decline in total biomass (Figure 2), and it seems to indicate plenty availability of food 
or, most precisely, that the current food, being available at the same level for a more reduced 
stock, resulted in a higher ratio for the remaining individuals. Cod is a wide diversity feeder, 
as well as Greenland halibut and American plaice, and main available preys are redfish, which 
roughly maintained the same biomass level, and shrimp, which increased biomass. 
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Figure 2.  Growth in size of cod at different years and cohorts (Vázquez and Cerviño. 2005. A 
review of the status of the cod stock in NAFO Division 3M. NAFO SCR Doc. 05/38) 

Cod collapse was followed by the collapse of American plaice. Last abundant year-classes 
were: 1991 for cod and 1992 for plaice. Once the total biomass of these two species had been 
reduced, some other species invaded the Cap: Greenland halibut, which had been restricted to 
the deepest strata of the Cap, got a wider distribution, and shrimp, which had been a common 
species but with small biomass, increased so much as to allow a fishery producing 40–50 
thousand tons annual catch. Other changes were not documented, but these ones described are 
enough to indicate some change in the ecosystem on the Cap.  



138  |  ICES WKDRCS Report 2006 

 

Extended abstract  13 

Fisheries-induced evolutionary change and recovery potential of cod 
stocks 

Katja Enberg 

International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria 

Fisheries-induced changes 

Fishing subjects fish stock to substantially high mortality, and this mortality is often also 
strongly selective targeting fish of for example a certain size. Such selection may cause 
changes in for example life history, behavioural, morphological, and physiological traits. Of 
the life history traits, size and age at maturation have both been found to decline as a result of 
intensive fisheries. Decline in age and size at maturity also declines the reproductive potential 
and consequently the yields of harvested stocks because fecundity is, especially in fish, 
strongly correlated with individual size (Roff, 1992, Stearns, 1992) and age (Trippel, 1998, 
1999)  

Changes in maturity schedule may arise through three different mechanisms: 1) direct 
demographic response, which means that as the total mortality increases, the stock becomes 
dominated by younger individuals and as result the average age at maturation decreases only 
because there are no older individuals in the population, 2) phenotypic plasticity, where the 
decrease in population abundance releases the competition between individuals and with the 
extra resources they are able to grow faster and mature earlier, or 3) genetic response, when 
the harvesting has removed all the late and at big size maturing individuals and only the early 
and in smaller size maturing individuals have been able to reproduce and this has caused a 
change in the genetic structure of the stock. Unlike generally assumed, such changes may 
occur within just a few generations (Conover and Much, 2002). 

Probabilistic maturation reaction norms  

It is impossible to judge which of the abovementioned responses is behind the observed 
decline in age and size at maturation in several cod stocks by just observing the maturity 
ogives or trends in age and size at maturation. However, these fisheries-induced genetic 
changes in maturation schedule can be studied by estimating the probabilistic maturation 
reaction norms (PMRN), which describe the different phenotypic life history parameters 
produced by a one genotype and rule out the influence of growth and mortality from the 
maturation process. Traditional reaction norms describe the deterministic maturation schedule, 
but in reality there is a substantial stochastic component on the probability of individual 
maturing, as it is dependent on many other factors than just age and size, such as resource 
availability and the condition of an individual (Bernando, 1993). 
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Figure 1.  A schematic presentation of probabilistic maturation reaction norm. Within the growth 
trajectories the slowly growing individuals will grow on the right edge and fast growing 
individuals on the left. 

For calculation of PMRN a sampling of a cohort at regular intervals is needed. The individuals 
should be classified as i) immatures, ii) maturing (or newly matured) or iii) mature individuals 
(Heino et al. 2002). From this data the size distribution of immature and maturing individuals 
as well as the proportions of immature and maturing individuals in the sample can then be 
calculated. However, if data on maturing individuals is missing, it is still possible to calculate 
the PMRN based on the information on immature and mature individuals but at least 100 
individuals (mature and immature) per cohort need to be included in the analysis (Barot et al. 
2004). For more detailed methodology, see Heino et al. 2002 and Barot et al. 2004. 

The probabilistic maturation reaction norms of the cod stock around the 
Atlantic 

The probabilistic maturation reactions norms have been calculated already for several cod 
stocks (see Table 1), and work on the remaining stocks (at least on West Atlantic) is soon 
going to be initiated by some of the workshop participants.  

Modelling fisheries-induced change 

In my talk I presented also the individual based eco-genetic modelling framework (developed 
at IIASA by Erin Dunlop in collaboration with Ulf Dieckmann and Mikko Heino) which I will 
use to study the recovery processes of exploited fish stocks. This model allows the evolution 
of multiple life history traits, and at the moment the traits included in the model are the PMRN 
parameters (slope, intercept and the envelope width), somatic growth rate and reproductive 
output (gonadosomatic index GSI). With the help of this model it is possible to study the 
evolution of life history parameters caused by fisheries and also the possible recovery when 
the harvesting pressure is released. 
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Table 1.  The cod stock for which the PMRN has already been calculated.  

Cod stock Reference 

Trend 
towards 
earlier 
maturation 

Northern Olsen et al. 2004, 2005 Yes 

Southern Grand Bank Olsen et al. 2005 Yes 

South Newfoundland/St Pierre Bank Olsen et al. 2005 Yes 

Southern Gulf of St Lawrence Swain unpublished Yes 

Georges Bank  Barot et al. 2004 Yes 

Gulf of Maine Barot et al. 2004 Yes 

Arcto-Norwegian/Northeast Arctic Heino et al 2002 Yes 

Baltic Vainikka unpublished Yes 

Conclusions 

Based on the research done on several cod stock it seems evident that changes in the 
maturation schedule have occurred due to harvesting and that these changes are also likely to 
be genetic. These changes may be difficult to reverse especially if the genetic variance of the 
stock has been dimished. 
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Extended abstract  14 

Do evolutionary responses to fishing play a role in the non-recovery of the 
collapsed cod stock in the southern Gulf of St. Lawrence? 

D.P. Swain 

Department of Fisheries and Oceans, Gulf Fisheries Centre, P.O. Box 5030, Moncton, N.B.  
E1A 4L5  Canada 

Age and size at maturity 

Age and size at maturity of cod in the southern Gulf of St. Lawrence decreased in the 1960s 
and 1970s, as the stock declined due to overfishing. These changes are in the direction 
expected for evolutionary responses to fishing. They reflect substantial changes in maturation 
reaction norms (Figure 1), also consistent with a genetic response to fishing.  

Earlier maturation is expected to result in decreased adult size. Size-at-age of adults decreased 
sharply in the late 1970s and early 1980s in this stock. However, the declines in age at 
maturity preceded the declines in adult size-at-age by several years, suggesting that earlier 
maturation was not a cause of the sharp decrease in adult size-at-age in this stock (Figure 2). 
Maturation at smaller sizes has been suggested to result in increased mortality costs to 
reproduction, providing a possible explanation for increased natural mortality of adults in this 
stock. However, the decline in size at maturity preceded the increase in adult natural mortality 
by several years, again inconsistent with a causal connection. Thus, early maturation at a small 
size may contribute to the current slow growth and high adult natural mortality in this stock, 
but other factors must also be involved because rapid growth and low mortality have also been 
observed in this stock at the same early age and small size at maturity.  

These changes in age at maturity require a substantial revision to estimates of spawning stock 
biomass (SSB) in the 1950s and 1960s (which had been based on maturity ogives from the 
1990s). SSB was lower and recruitment rate higher in the 1950s and 1960s than had been 
thought (Figure 3). However, the main signal in the recruitment rate time series remains the 
unusually high rates from the mid 1970s to the early 1980s, and estimated recruitment rates in 
the mid 1990s remain greater than those in the 1950s and 1960s. Thus, conclusions about the 
factors that appear to be most closely linked to variation in the recruitment rate of southern 
Gulf cod remain unchanged. 

Following the declines in the 1960s and early 1970s, age at maturity of southern Gulf cod has 
changed little over a 25-yr period (1980–2005), despite the rapid recovery of the stock in the 
early 1980s and 12 yr with little fishing since the stock’s second collapse in the early 1990s. 
This suggests that a) little additive genetic variation for age at maturity remains in the stock 
following strong selection in the 1960s, b) selection for age at maturity has not been strongly 
directional since the 1970s, or c) high natural mortality has replaced high fishing mortality as 
an agent of selection on age at maturity.  

Genetic response to size-selective mortality 

Genetic changes in growth rate have also been predicted as a direct response to size-selective 
fishing. Size-at-age of southern Gulf cod remained small in the 1990s and early 2000s despite 
good conditions for growth and little size-selective fishing. This continued slow growth may 
reflect a genetic response to size-selective fishing in the 1980s and early 1990s. Using otolith 
backcalculation data, I calculated selection differentials for length at age 4 yr for the spawning 
stocks that produced the 1977–2001 year-classes. Selection differentials were strongly 
positive for year-classes produced in the late 1970s, switching to strongly negative for those 
produced in the early to mid 1980s. Selection differentials remained negative for subsequent 
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year-classes, though they have tended to be weaker for recent year-classes and approached 
zero for the 2001 year-class. 

I tested for a genetic response to this size selection using the following model: 

EGL Δ+Δ=Δ 4,4  

where ΔL4,4 is the change between offspring and their parents in mean back-calculated length 
at age 4 yr in fish observed in their fourth year, ΔG is the genetic change between offspring 
and their parents (i.e., the response to selection), and ΔE is the difference in environmental 
conditions experienced by parents and offspring. 

ΔG = h2S  
where h2 is the heritability and S the selection differential for L4,4. ΔE consisted of differences 
in density experienced by parents and offspring (Δd) and/or differences in temperature 
conditions during the first four years of life (Δt). The temperature index was a measure of the 
ambient temperature of cod during the feeding season, based on the age-specific temperature 
distributions of cod catches in the annual September survey of the southern Gulf. A 
temperature index based on general environmental conditions (average bottom temperature in 
the annual survey, not weighted by cod catch) was also examined but had lower explanatory 
power than the index of cod ambient temperature. 

The genetic response to selection was highly significant in all models. Δd and Δt were strongly 
confounded, making it difficult to estimate the independent effects of these two variables. The 
most parsimonious model included a term for the genetic response to selection and a term for 
the differences in density between parents and offspring, and explained 61% of the variation 
in ΔL4,4. The density-dependent effect was highly significant (P<0.0001) and in the expected 
negative direction. The genetic response to selection, also highly significant (P=0.001), 
indicated high heritability for L4,4.  

These preliminary analyses suggest that there has been a strong genetic response to size-
selective mortality in this stock, providing an explanation for the continued slow growth in 
this stock despite good conditions for growth. 
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Figure 1.  Maturation reaction norms for southern Gulf of St. Lawrence cod in early 1960s and the 
early 1990s. Circles indicate the length-at-age where the probability of maturing is 50% and 
vertical lines are the 95% confidence intervals around this length, based on bootstrapping. Dashed 
lines are the lengths where the probability of maturing is 25 or 75%. 
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Figure 2.  Trends in age at 50% maturity (A50) and mean weight at six years of age for cod in the 
southern Gulf of St. Lawrence. 
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Figure 3.  Revision to time series of spawning stock biomass (SSB) and recruitment rate 
(abundance at age 3 yr/SSB) for cod in the southern Gulf of St. Lawrence, incorporating changes 
in age at maturity. (The old time series was based on a maturity ogive from the 1990s.) 
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The Role of Cod in the Ecosystem 
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1National Marine Fisheries Service, Northeast Fisheries Science Center, Woods Hole, MA, 
02543, USA 

2Institute of Marine Research, P. O. Box 1870 Nordnes, N-5817 Bergen, Norway 

3International Council for the Exploitation of the Sea, H. C. Andersens Boulevard 44-46, 
1553 Copenhagen V, Denmark 

4Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, PO Box 5667, St. John's, 
NL, A1C 5X1, Canada 

The purpose of this abstract is to draw attention to draft text (Link et al., in prep) regarding the 
role of cod in various ecosystems across the North Atlantic. The paper reviews the extent to 
which cod dynamics can be influenced by interactions with predators, prey and competitors, 
and explores the extent to which changes in cod stock size can affect other species in the 
ecosystem. The interactions are reviewed for each of six ecosystems: three are cod-capelin 
systems toward the northern limit of cod distribution (Barents Sea, Iceland, and Labrador-
Newfoundland), two are more diverse systems toward the southern end of cod distribution on 
either side of the Atlantic (North Sea and Georges Bank – Gulf of Maine), and one is a 
species-poor system with an unusual physical and biotic environment (Baltic Sea). A synthesis 
of the role of cod is attempted based on information from these and other ecosystems. 

Reference 

Link, J.S., Bogstad, B., Sparholt, H., and Lilly, G.R. In prep. The role of cod in the ecosystem. 
Draft text for a chapter in the book on cod being written by the ICES/GLOBEC Working 
Group on Cod and Climate Change. A draft of the chapter was available on the 
ICES/GLOBEC website at the time of the Workshop. 

Extended abstract  16 

Interactions between Harp seals and Atlantic cod off west Greenland. 

Aqqalu Rosing-Asvid 

Greenland Institute of Natural Resources, PO Box 570, 3900 Nuuk, Greenland 

Harp seals prey on Atlantic cod and on species like capelin, sand eel and krill, which also are 
important prey for cod. Changes in number of harp seals in the northwest Atlantic (presently 
around 5.9 mill) or in their migratory pattern can therefore potentially be important for 
development of the cod stock in both Canada and Greenland.  

The number of harp seals caught in the subsistence hunt along the west Greenland coast gives 
a good indication of the abundance of harp seal here. A time-series on skin purchase- and 
catch statistics indicates that harp seal abundance in Greenland waters declined strongly after 
a high and unsustainable harvest on the breeding grounds in the first half of the nineteenth 
century. The catches in southwest Greenland has stayed low up until the recent recovery of the 
harp seal stock (the 1990s). Since then a high number of harp seals started to arrive in the 
fjords in Southwest Greenland (Figure1) in late May and early June to feed on pre spawning 
capelin. This pattern did also exist prior to the decline in the1860s, but to judge from the catch 
statistics only few seals came this way during the period with a small harp seal stock (1860s–
1990s).  
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The concentration of foraging seals off Labrador is exceptional high in the first weeks after 
the moult in late April. It is therefore likely that a certain threshold exists, when the area no 
longer can sustain the large number of seals. This would trigger changed behavior among the 
harp seals (like an earlier start of migration). Similar, the large number of seals is likely to 
have strong influence on the abundance and behavior of prey species in the area (could 
explain why large schools of capelin has disappeared from the area) and this would enhance 
the need to change the timing or pattern of migration. If such a threshold exist, than a 
reduction of the seal stock only have little impact on the harp seal consumption along the 
Labrador coast (consumption will not be a linear function of population size).  

Only few harp seals were caught in southwest Greenland both prior, during and right after the 
years with many cod. More harp seals were, however, caught along the northwest coast of 
Greenland during fall, when the capelin distribution moved northward with the warmer water 
around 1930 (Figure1). The harp seal migratory pattern and the degree of interaction between 
seals and cods in southwest Greenland therefore seems to be linked the status of the harp seal 
stock as well as to the distribution of the shared cod and seal prey.  

Do harp seals benefit from a large cod stock? 

The timing of increase and decline of the Atlantic cod in southwest Greenland, Labrador and 
Newfoundland were quite similar. Harp seals therefore competed with and predated on cod in 
a large fraction of their distribution. Both cods and seals were heavily exploited during the 
entire period and both stocks were therefore strongly influenced by fishing and hunting 
mortality. Stock size of both species and the reproduction rate of 4-year-old harp seals during 
1960–2005 are shown in Figure 2.  

Harp seals in the Northwest Atlantic normally mature when they are around 4-6 years old. 
Age of maturity is likely to be linked with food availability, so the fraction of females that are 
pregnant when they reach 4 years of age is therefore linked to food availability in the 
preceding 4 years. Data shows that the fraction of 4-year-old pregnant harp seals in 1978–79 
was significantly higher than during 1965–1970 and during 1991–1995 (Fisher’s exact test p< 
0.0001), whereas there were no significant difference between 1965–1970 and 1991–1995.  

This means that harp seals matured earlier in the late 1970s when the cod had disappeared 
than in the mid 1960s when the cod was still abundant (the harp seal stock was roughly same 
size in the two periods). The harp seal stock now increased strongly, due to high productivity 
and strict hunting regulations and with the increased population followed a later maturation, 
which would be expected as a consequence of intraspecific competition (density dependence).  

The fact that maturity occurred at the same age during the late 1960s and the mid 1990s 
despite an almost threefold increase in the population, indicate that the harp seal carrying 
capacity had increased. The disappearance of the cod stock seems to be an obvious cause, as 
this should release more prey for harp seals. Other more complex interactions in the system 
might also have been involved, but the data strongly indicate that seals and cod compete and 
that the seals are better off without the cods. 

References 
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Figure 1.  Catch data on harp seals in west Greenland. Data from 1792-1940 are skin purchase 
data (Vibe, 1967). Data from 1945 to 2003 are estimates based on catch statistics (Vibe, 1967; 
Anon., 1954–1983, 1993–2003). 
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Figure 2.  Cod biomass Greenland (1960–89: VPA: age 3+; 1990–2005: Survey: all ages) (Buch at 
al., 1994; Fock et al., 2006). Cod spawning biomass 2JKL+3NO (Lilly et al., 2003; Smedbol et al., 
2002) (all data divided by 1.1 to give the same starting point as the data from Greenland). Harp 
seal population numbers (Hammill and Stenson, 2005).  Pregnancy rates (PR) of 4-year-old harp 
seals (Sjare et al., 2004). 

Extended abstract  17 

Harp seal predation on Northern Gulf cod: fitting historical data and 
projecting cod recovery under various seal hunt scenarios 

 Daniel Duplisea1*, Mike Hammill1 and Red Méthot2  

1 Fisheries and Oceans Canada, Institute Maurice-Lamontagne, CP 1000, Mont-Joli, QC G5H 
3Z4 

2 Alliance Environment, 337, Boul. La Salle, Bureau 202, Baie-Comeau, QC 

The marked decline, and lack of recovery in the northern Gulf of St. Lawrence (Gulf) cod 
stock has coincided with a marked increase in the Northwest Atlantic harp seal population. 
This has lead to concerns that seals are an important factor in limiting recovery and that 
reducing the harp seal population might favour cod recovery.  Evaluating the role that seals 
may play in this conflict is complicated by trophic relationships, which involve both direct and 
indirect (cascade) effects.  However, managers often have difficulties in understanding these 
complex interactions between different components in the ecosystem. The object of this 
presentation is to examine the potential impact of harp seals on the recovery of cod, assuming 
that the removal of seals translates directly into improvements in recovery, without any 
increased mortality from other components within the ecosystem 

A simple age-based Leslie matrix model was developed for the Northern Gulf cod population 
(3Pn4RS), using all the standard assessment input data such as weight at age, maturity ogive, 
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catch at age.  The model also requires assumptions for M at age like any fish population 
cohort model. In this case however, we broke natural mortality into two components: that 
caused by harp seal predation and a residual value. These were termed M2 and M1, 
respectively, in keeping with the usage established in multispecies virtual population analysis 
(MSVPA). Recruitment was modelled as numbers of 0-group fish and results from a hockey-
stick model with recruits per spawner defining the slope and a set maximum recruitment. 
Estimates of harp seal numbers at age, a seal consumption rate and a functional response 
describing the proportion of cod in seal stomachs as a function of cod abundance were used to 
model seal predation. We included fishing mortality in the model and assumed that using this 
model structure we could reconstruct the historical trend in cod abundance (1974–2005) and 
fit parameters for recruits per spawner, M1 at age, seal functional response parameters and 
therefore M2 at age.  

The historical trend in cod spawning stock biomass from the assessment was modeled quite 
well from 1974 to 1989, but after 1989, the fit of the model to the biomass data was poor and 
no single set of parameters would fit the entire time series with any degree of certainty (Figure 
1). This poor fit is thought to be linked to a period of extremely poor recruitment, which might 
reflect natural declines in recruitment, or mis-reporting and dumping of small cod at that time. 
In the first period, the proportion of cod in seal stomachs varied between about 2% and 12%, 
consisting of cod less than five years of age, based on the length frequency distribution of cod 
in seal stomach contents (Figure 2). However, in the later period (1990–2005) no reliable 
parameter set could be obtained, though all optimizations suggest that that the proportion of 
cod in the diets of seals was much lower than in the earlier period. Though no definitive fit 
could be found, it does make sense that seals would eat less cod in the period of low cod 
abundance and especially during a period of low recruitment.  

A series of projections for cod recovery, assuming that a SSB of 80 000 t constitutes recovery, 
were made based on current fishing levels experienced by this stock,  the fitting parameters 
obtained from the fits of the model to the different periods in the history of this stock and by 
varying seal population size.  Using the whole projection period of 1974–2000 and 1974 to 
1989, 4RS cod recovered to minimum biomass conservation point (Blim) by 2012, and had 
the potential to fully recover within 25 years. During the recent period of 1990–2006, the 
stock increased to Blim by 2016, but never reached a fully recovered level. Using fitting 
conditions from 1990–2006, SSB increased to Blim by 2014, when the seal population was 
reduced by 20%, and by 2012, when the seal population was reduced by 50%. Under both 
scenarios, cod had the potential to recover fully. During the low productivity period (1986–
96), the cod stock was extirpated in spite of a 20% reduction in the harp seal population.  If 
harp seals were completely eliminated, the cod stock still failed to recover.  

This analysis assumed that fishing will continue throughout the future at rates similar to those 
currently in place on the 4RS cod stock.  We focused on evaluating the impacts of seal 
predation, since this was the focus of the meeting and how changes in seal predation might 
affect recovery. Under current conditions, almost all projections show a decrease in SSB given 
current levels of fishing.  Changes in seal predation could improve the potential rate of 
recovery of this stock, but reductions of 20–50% in the herd, would only improve the rate of 
recovery by 2–4 years. 



150  |  ICES WKDRCS Report 2006 

 

 

Figure 1.  Plot of changes in Atlantic spawning stock biomass (SSB) (dotted line) in NAFO zone 
4RS between 1975–2005.  Solid line represents the model fit to the SSB data.   

 

Figure 2.  Length frequency distribution of cod in the diet of harp seals (Stenson, unpublished 
data) 
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Predator-prey interaction between harp seals and Atlantic cod: An 
exploration of sources of variation 

Alejandro Buren1, Mariano Koen-Alonso1,2 and Garry Stenson1,2 

1 Memorial University of Newfoundland, St. John’s, NL, Canada 

2 Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John’s, NL A1C 5X1, 
Canada 

The Northwest Atlantic ecosystem has undergone dramatic changes in its structure during the 
last 30 years. Among these changes, the collapse of Atlantic cod is certainly one of the most 
important. Atlantic cod was the dominant demersal fish in the Newfoundland shelf marine 
community and now it is reduced to a relict of what it was, and without any clear sign of 
recovery. The reasons for the lack of recovery are still a matter of debate, but the potential role 
of harp seals is often put forward as a possible explanation.  

Harp seals have increased its population size from less than 2 millions in the early 1970s to 
around 5.5 million individuals in the early 1990s, remaining fairly constant since then. This 
population increase has fueled hypotheses that an increased consumption of Atlantic cod by 
harp seals may be limiting the recovery. However, harp seals are generalist predators and a 
proper assessment of their role as Atlantic cod predators needs to consider the variability in 
the diet.  

It is a fair assumption that harp seal’s diet can vary over time, age, and geographical region. 
Time variability can be considered as a surrogate for changes in prey availability over time. 
These changes can be seasonal or long-term (prey population dynamics). Age variability is 
associated with ontogenetic changes in the diet (e.g. behaviour, changes in energetic 
requirements, learning). Geographical variability is associated with foraging habitat and the 
spatial structure of prey assemblages. This variability can involve both latitudinal changes 
(e.g. north-south clines) and depth-related changes (e.g. inshore and offshore areas). 

Current estimates of trophic consumption by harp seals take into account several of these 
sources of variation, but a formal assessment of them was still lacking. In this context, the 
objectives of this work are a) examine the effect of sources of variation on the overall diet of 
harp seals, and b) look at the effect of these sources of variation on Atlantic cod predation. 

In order to examine the effect of time, age, and geographical region on the diet of harp seals 
we implemented a multicategory logit model. The response variable in this model is the 
number of harp seals that had a given prey species as main prey in terms of biomass in the 
stomach. The explanatory variables (sources of variation) are year, age group (pups, juveniles, 
adults), zone (2J3K, 3LMNO), area (inshore, offshore) and season (summer, winter). 

All these sources of variation had significant effects on the probabilities of being a main prey 
(by weight) in a harp seal stomach (p-values <0.0001). From the 12 prey groups considered, 
Atlantic cod ranked 10th; and can be considered a minor prey. However, an interesting finding 
is that the probability of Atlantic cod to be a main prey increased in the period 1986–2001, 
while capelin has shown a slight increase and Arctic cod has declined. 

In order to look at the effect of these sources of variation specifically on Atlantic cod 
predation we fitted a binomial logit model. In this case , the response variable was the number 
of harp seals that did or did not have Atlantic cod as prey, regardless if cod was the main prey 
in the stomach or not. We found that year and season did not have a significant effect on the 
probability of consuming cod (i.e. the probability of eating Atlantic cod did not change over 
time), while the factors associated with geographical (zone and area) and ontogenetic (age 
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groups) features were highly significant (p-values <0.0001). The examination of the odds-
ratios indicated that the probability of eating Atlantic cod increased with age (p-values 
<0.001), and was an order of magnitude higher in the inshore than in the offshore (p-value 
<0.0001).  

We further explored the data by repeating the previous analysis excluding the sample from the 
offshore, eliminating the non-significant sources of variation (year and season) and increasing 
the resolution of the zone factor by disaggregating the NAFO divisions. In this inshore 
analysis, we considered the NAFO divisions 2J, 3K and 3L as levels within zone. The results 
from the analysis of the inshore data confirmed the observed pattern with age, and indicated a 
significant latitudinal trend in the probability of consuming Atlantic cod from North (2J) to 
South (3L) (p-values <0.01). 

By putting all these analyses together, one interesting observation can be made: the probability 
of Atlantic cod being a main prey in a harp seal’s stomach increased over time, but the 
probability of consuming it (i.e. the proportion of seals that actually consume cod) remained 
constant over time. This means that for those seals which actually ate Atlantic cod, this prey 
has become more important over time. Considering the inshore data from NAFO divisions 
2J3KL, we examine two hypotheses that can account for this observation. For those seals that 
ate Atlantic cod: 1) the average number of Atlantic cod in a stomach has increased over time 
(i.e. each seal ate more fishes), and 2) the average weight of the individual Atlantic cod 
consumed has increased over time (i.e. each seal ate larger fishes).  The correlation between 
the average number of Atlantic cod in the stomachs and year was not significant 
(rSpearman=0.415 p-value=0.110), but the correlation between the average weight of a cod in the 
stomachs and year was highly significant (rSpearman=0.776 p-value=0.0006). These results 
suggest that the increase in importance of Atlantic cod over time is related to an increase in 
the consumption of larger fish in the inshore area, and supports previously observed data 
indicating that the age of cod consumed by harp seals in the area has increased. 

Extended abstract  19 

Estimating Consumption of Atlantic Cod (Gadus morhua) by Harp Seals 
(Pagophilus groenlandicus)  

G.B. Stenson1, and M.O. Hammill2 

1Department of Fisheries & Oceans, Science Branch, P.O. Box 5667, St. John's, 
Newfoundland, Canada A1C 5X1  

2Department of Fisheries & Oceans, Science Branch P.O. Box 1000, Mont Joli, Quebec, 
Canada G5H 3R4 

Because of their large size and abundance marine mammals are thought to have an important 
influence on the structure and function of some marine ecosystems.  This has lead to the view 
that seals can have a negative impact on commercial fish stocks, including Atlantic cod. Over 
the last decade several Atlantic groundfish stocks have collapsed while many marine mammal 
populations, particularly seals, have shown marked increases leading to suggestions that seals 
were involved in the failure of the fishery. Although it is now considered that seals played no, 
or only a minor role, in the collapse of Canadian groundfish stocks in the early 1990’s, they 
may play a more important role in slowing the recovery of certain Atlantic cod stocks.  In a 
recent review, McLaren et al. (2001) concluded that cod consumption by seals in NAFO zone 
4RS3Pn and 2J3KL was large compared to biomass estimates suggesting that seal predation 
was a substantial component of the high mortality experienced by these stocks. Similar 
concerns have been made concerning the impact of predation by seals and whales on 
commercial fish stocks in the northeast Atlantic and Barents Sea. 
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The current discussion about the impact of marine mammal predation is based upon estimates 
of consumption obtained from a bioenergetics model.  The modelling approach is similar for 
most species. The model assumes that the energy requirements of a population can be 
estimated and that the marine mammal obtains the energy required. Estimating prey 
consumption requires information on population size, energetic requirements, diet 
composition, and distribution of feeding effort, as well as size classes and energy density of 
the prey.  

Here, we model fish consumption by harp seals, taking into account seasonal changes in 
feeding and variability in seal abundance, distribution, and diet composition.   In addition, we 
incorporate all possible sources of uncertainty in these estimates and examine the impact of 
these assumptions on our estimates of total consumption.  The model is developed using harp 
seals in the Gulf of St. Lawrence.  Our overall objective is to examine the general approach to 
estimating consumption and how uncertainty might be incorporated into the model.    

Prey consumption by harp seals in northern Gulf of St. Lawrence (NAFO Divisions 3Pn and 
4RS) from 1985–2005 is estimated by: 
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 C jt     = Consumption of prey species j in year t. 

 N it     = No. of seals in age class i in year t. 

 E i      = Annual gross energy required by a seal aged i. 

D ias  = Prop.of the total annual energy obtained by a seal aged i in area a during 
season s. 

 P jas   = Prop. of prey species j in the diet of seals in area a during season s. 

 I        = Total no. of age classes, currently 13 (ages 0 - 11 and 12+). 

 A      = Total no. of areas.  

S       = Total no. of seasons, currently 2 (Winter and Summer) 

A similar model is used to estimate prey consumption by marine mammals in a number of 
areas.   

For northwest Atlantic harp seals, changes in population size over time are monitored by 
fitting the model to independent estimates of pup production.  Uncertainty  (mean and 
standard deviation in the numbers in each age group (0 through 11 and12+) for each year was 
estimated from the population trajectories.  

Energy requirements were assumed to be constant throughout the year and to also vary by 
month.  Age-specific energy requirements were calculated using a simple allometric equation 
based on body mass:  

GEIi = GPi * (AF*293 *BMi 0.75) /ME     

where:  

GEIi  = Daily gross energy intake (kjoules/day) at age i,  

GP,  = Growth premium (i.e. the additional energy required by young seals < age 6). 
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AF    = Daily activity factor  

BMi   = Body mass (in kg) at age i 

ME    = metabolizable energy 

Harp seals are highly migratory and our knowledge of their seasonal distribution is primarily 
based on historical catch data, tag returns and anecdotal reports. Recent studies of harp seal 
movements using satellite telemetry have improved our understanding of seasonal 
distributions significantly. Northwest Atlantic harp seals summer in the Canadian Arctic 
and/or West Greenland. During the fall and early winter, seals move southward along the 
Labrador coast. One component of this population remains off the east coast of 
Newfoundland/southern Labrador (i.e. 2J3KL) while the other moves into the Gulf of St. 
Lawrence in December. In the late spring, the animals return to the Arctic. Annual changes in 
ice conditions or food availability likely affect the seasonal movements of the population. The 
proportion of energy obtained from various areas was assumed to be equal to the seasonal 
residency in that area.  

The diet of harp seals was estimated using reconstructed wet weights of stomach contents 
from animals collected in various areas between 1986 and 2002. Prey lengths and weights 
were estimated from hard parts using part length – total length and part length – and/or length 
– weight regression equations. Reconstructed wet weights were converted to energy densities 
using published energy values for each prey species.  

Consumption of Atlantic cod in 2003 was estimated to be in the order of 27 000 (SD = 6800) 
tonnes.  Sensitivity analysis indicated that the model was most sensitive to changes in 
population size, the parameters required to estimate energy requirements (ME, AF, body 
mass), the proportion of seals that enter the Gulf and the length of winter residency.  
Assumptions about the proportion of animals that remain throughout the year in the Arctic or 
southern waters had little impact on the estimates of cod consumption. 

Estimates of consumption by predators often exceed estimates of prey abundance. One 
difficulty is that seals often prey on the younger age classes, which are poorly estimated from 
research surveys. An additional challenge occurs because of a lack of understanding of the 
functional relationship between prey abundance and its importance in the diet.  Estimates of 
consumption are only one component in the analysis of the impact of seal predation on the 
recovery of cod stocks.  In order to understand the role that seals may play, it is necessary to 
partition mortality into its different components and to analyse mortality within the context of 
mortality due to other sources including seal predation. 

Reference 
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Annex 4:  Recommendations 

 

RECOMMENDATION ACTION 
1. Fisheries management must be sensitive to possible changes in stock 
productivity and must either respond quickly, to prevent increased 
mortality and further stock decline, or regulate fishing in a 
precautionary way, which is robust to uncertainties about stock 
productivity. 

The Action Plan for the 
ICES/GLOBEC office should  
include proposals for developing (i) 
indicators of change in stock 
productivity, (ii) models for 
evaluating the causes and 
consequences of changes in stock 
productivity and (iii) management 
procedures which are responsive to 
changes in stock productivity or are 
robust to such changes.   

2. The effect of size-selective mortality on size-at-age should be further 
investigated including more stocks. 

Further work by the ICES 
Community and others 

3. The examination how the age structure and geographical substructure 
of the spawning stock affects resilience to climate change should be 
extended to other stocks. 

Further work by the ICES 
Community and others 
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