
 Demersal Fish Committee

 Biblioternat
REPORT OF THE ARCTIC FISHERIES WORKING GROUP

(Copenhagen, 5 - 10 May 1980)

This document is a report of a Working Group of the
International Council for the Exploration of the Sea
and does not necessarily represent the views of the
Council. Therefore, it should not be quoted without
consultation with the General Secretary.
*) General Secretary ICES
Palægade 2-4 DK 1261 Copenhagen K Denmark

CONTENTS

Page

1. Participants 1
2. Terms of Reference 1
3. North-East Arctic Cod
3.1 Status of the Fisheries 1
3.2 Stock Abundance 2
3.3 Fishing Mortality versus Effort 2
3.4 Virtual Population Analysis (VPA) 3
3.5 Recruitment 4
3.6 Mean Weight at Age 4
3.7 Yield and Spawning Stock Biomass per Recruit 4
4. North-East Arctic Haddock
4.1 Status of the Fisheries 4
4.2 Stock Abundance 4
4.3 Fishing Mortality versus Effort
5
5
4.4 Virtual Population Analysis (VPA) 5
4.5 Recruitment 5
4.6 Mean Weight at Age 5
4.7 Yield and Spawning Stock Biomass per Recruit 6
5. Conclusions 6
6. Conservation Measures
6.1 Mesh Size 8
6.2 Minimum Landing Size 9
6.3 Closed Areas 9
6.4 Midwater Trawl 10
7. Shortcomings and Gaps in Data required for Stock Assessment Purposes 10
References 10
Tables 1 - 24 11
Figures 1 - 16 35

REPPORT OF THE ARCTIC FISHERIES WORKING GROUP

Copenhagen, 5 - 10 May 1980

1. PARTICIPANIS

A. Hylen	Norway
T. Jakobsen	Norway
J. Janusz	Poland
A. I. Muhkin	USSR
L. G. Nazarova	USSR
J. G. Pope	United Kingdom
A. Schumacher, Chairman	Federal Republic of Germany
V. L. Tretyak	USSR

V. Nikolaev, ICES Statistician, also participated in the meeting.
2. TERMS OF REFFERFINCE

At the 67th Statutory Meeting the Council decided (C.Res.1979/2:42):-
"that the Arctic Fisheries Working Group should meet at ICES Headquarters 5-10 May 1980 to assess TACs for 1981 for cod and haddock".

3. NORTH-FAST ARCTIC COD

3.1 Status of the Fisheries (Table 1-6)

Final figures for cod landings in 1978 amounted to 698715 tonnes, about 14500 tonnes higher than the preliminary figure used in the previous Working Group Report (Doc. C.M.1979/G:20). This is 151285 tonnes (about 18\%) lower than the total TAC of 850000 tonnes, Murman cod included, and represents a substantial reduction in yield compared to 1977 (905 301 tonnes). Preliminary figures for the 1979 fishery indicate a futher reduction of about 39% to a level of 427500 tonnes. This reduction in catch was repeated from all areas and was very pronounced in Sub-area I (-57%) and Division IIb (-53%). The catch figure for Sub-area I of about 182000 tonnes is the lowest on record since 1960 . The further reduction in catch in Division IIb is a continuation of the trend observed in 1978 when the catch dropped by 84% from the 1977 level.

The reduced catch in Sub-area I might be partially explained by a more westward distribution of cold water masses and a corresponding westward movement of the cod concentrations resulting in low stock density in this area. Consequently, fishing activity of the different fleets was adapted to the new distribution pattern. This trend was already observed in 1978 and did continue in 1979. Total intermational effort on cod decreased by about 32%.

Catch per unit of effort figures continued to decline in 1979 except for the United Kingdom fishery in Division IIa. United Kingdom effort in Division IIa was reduced by 50% compared to 1978 to the lowest level on record and presumably United Kingdom fishermen tended to select the most profitable part of the season. Therefore, the slight increase in cpue of this fishery in Division IIa should not be interpreted as an indication of an increase in stock abundance.

3.2 Stock Abundance

Stock abundance has been estimated from the Norwegian Acoustic survey for the period 1976 - 1981. The method used in the survey is described in a paper by Dalen and Smedstad (1979). Data obtained from the survey in 1977-1980 are assumed to be the most reliable.

Abundance estimates are given in Table 7. Year class abundance estimates for the period 1977-1979 differ to a small extent from the figures given by Dalen and Smedstad (1979). These differences are caused by a change made in the density coefficient used in the calculations, the change having been made possible by the new information about this parameter.

The data in Table 7 indicate that the survey gives underestimates of the abundance of I- and II-groups. As mature fish have passed the survey area in February on their way to spawning, the abundance estimates of age groups 7 and older are underestimates. This may also be true for the 6 year olds, but to a lesser extent.

The survey does not cover Division IIb which means that the abundance estimates even for the $3-5$ year olds are underestimates. However, in the period 1977-1980 the year classes 1973-1977, which are of most interest for the catch predictions at present, were poor in that area (Table 13).

The results of the survey indicate large reductions in the biomasses of young cod and haddock, both from 1978 to 1979 and from 1979 to 1980 (see Tables 7 and 18). Preliminary results of the USSR groundfish survey in April-May 1979 and 1980 indicate a similar but somewhat smaller reduction in the abundance indices of cod.

The final results of the USSR survey will be made available to ICES. A great change in the distribution of cod and haddock has been observed from 1978 to 1979 and 1980 (Figure I). In 1978 cod and haddock were observed as far east as $50^{\circ} \mathrm{E}$ and $43^{\circ} \mathrm{E}$ respectively. Later Norwegian observations showed a westward shift in the distribution in 1979 and 1980 to west of $36^{\circ} \mathrm{E}$ and $34^{\circ} \mathrm{E}$ respectively (Dalen and Smedstad, 1979).

Such a shift in the distribution will create a higher availability of fish, especially 3 and 4 year olds, in 1979 and 1980, compared with earlier years. This is expected to cause a bias in the cpue data for the fleets which have been concentrating their fishery in the more western areas for a long time. The high cpue observed for the Norwegian and the English trawler fleets for cod and haddock in 1979 would therefore to a certain degree be an effect of the change in distribution.

Under this condition the total effort estimated for 1979 in Sub-area I in United Kingdom units (Tables 3 and 16) will be underestimates for both cod and haddock.

The English trawler catch per unit of effort is now based on very low fishing effort and must consequently be interpreted with caution.

3.3 Fishing Mortality versus Effort

Mean fishing mortalities for $4-7$ year olds derived from a preliminary VPA run were plotted on the estimate of total international effort derived in Table 3. A line was fitted through the origin and the mean values for 1967-75. In
selecting input F values for these age groups, account has been taken of the total effort in 1978 and 1979. The mean F values from the final. VPA run have been used in Figure 6. It was felt that the effort data which have been based on English trawler catch per unit effort might be unrealistic for the most recent years where the United Kingdom catch was greatly reduced. However, additional regressions of fishing mortality in Region I against international effort based on Norwegian and USSR effort units resulted in basically similar estimates for the fishing mortality on $4-7$ year old fish in 1979.

No cormelation exists between fishing mortalities of $8-12$ year olds and the estimate of the international effort. As has been shown earlier, these data are derived from English trawler catch per unit effort and in recent years their catch rates may be biased in Division IIa. As much of the fishing mortality in Division IIa is generated by passive gears, the increase in efficiency of these resulting in increased fishing mortality may not be reflected in the intemational effort estimate. It has been estimated that 53% of the fishing mortality on the $8-12$ year olds was generated by these gears for the period 1967-1977. It is clearly important that a method for estimation of the mortalities on these older ages should be developed since the spawning stock estimate is based on these ages.

3.4 Virtual Population Analysis (VPA)

The age compositions used for the 1978 landings were adjusted for the final catch figures and preliminary age compositions were derived for 1979 (Table 8).

The assessment of stock size has been made using a natural mortality of 0.2 .
Fishing mortalities for 4-7 year olds were chosen following the reasoning discussed in Section 3.3. The mean mortality of $4-7$ year olds was set at .29. The distribution of F with age was set using the exploitation pattern given in Table 9 which is the same as used in the previous report (C.M.1979/G:20).

In addition to the relation between fishing mortality on $4-7$ year olds and fishing effort (Figure 6), the relationships between the final VPA estimates of stock of 3, 4, and 5 year olds and the catches per unit effort in the English trawl fishery in Sub-area I were also considered. These are given in Figures 7-9. All are highly correlated and the position of the estimated cpue for 1979 is shown.

In view of the fact that 53% of the fishing mortality on $8-12$ year olds is generated by the passive gears, and that they may still be increasing in efficiency, the Working Group considered that the fishing mortality on these age groups would not be likely to differ greatly from the 1970-75 average. A level of $F=0.70$ would give a catchability coefficient (q) for 1979 consistent with the recent values for each of the gears (Figures 2 and 3). The lower value of F used in the VPA, however, which results from using the standard exploitation patterm, suggest a drop in "q" for these gears which is probably unrealistic (Figures 2 and 3). There is obviously a need to generate a predictor for fishing mortalities on these older ages which may be used independently of the estimate of the age 4-7 fishing mortalities. This might change the exploitation patterm to be used in future assessments.

The calculated estimates of fishing mortalities for earlier years resulting from VPA are given in Table 10, and stock size estimates in Table 11.

3.5 Recruitment

The correlation of the VPA results from last year's report and the USSR young fish survey for recruits at age 3 (Table 13) is shown in Figure 10. The year classes 1976 and 1977 have been estimated as poor in earlier surveys and the most recent survey has confirmed the previous results. The year classes 1978 and 1979 so far seem to be even poorer which would mean that there are four consecutive poor year classes entering the fishery. A comparably low level of recruitment over a long period has previously been recorded only for the year classes 1965-68.

3.6 Mean Weight at Age

The problem of the age-weight relationship was considered and, though some weight differences between the Working Group data and recent USSR data were established, it was decided to use the former for assessments since the differences between the reported catch and the calculated catch weight (sum of products) were relatively small in 1978 (0.4%) and 1979 (6.0%). However, the dynamics of weight at age should be given special attention in the future so that proper adjustments are made if required. Mean weights at age are given in Table 12.

3.7 Yield and Spawning Stock Biomass per Recruit

Curves for yield per recruit and spawning stock biomass per recruit are shown in Figures 11 and 12. They are based on the exploitation pattern and mean weight at age data used in last year's report (see Tables 8 and 12) and thus remain unchanged.

4. NORTH-FAST ARCTIC HADDOCK

4.1 Status of the Fisheries (Tables 14-17).

The final figure for the catch of haddock of 95422 tonnes in 1978 differs only slightly from the preliminary figure given in the previous report. The catch in 1978 is 14736 tonnes (-13%) less than the catch of 1977. The preliminary catch figure for 1979 of 101429 tonnes shows an increase of about 6000 tonnes ($+6 \%$) over the 1978 level. The increase is exclusively due to the higher catch in Division IIa where it is 7000 tonnes $(+23 \%)$ higher than in
1978 .

In 1979 the catch per unit effort followed an upward trend and was higher in all areas than in 1978. This is particularly shown by the Norwegian data for Sub-area I (an increase by about 3 times) where the catch per unit effort was close to the 1973 level. However, this may have been partially due to the westward shift in the distribution of haddock in 1979. The United Kingdom cpue data were thought to be unrepresentative due to the lower effort in the United Kingdom fishery in 1979. The increase in the catch per unit effort was mainly due to 4-year-old fish of the good 1975 year class. Significant contributions were also made by the 1974 and 1976 year classes which were estimated from the USSR young fish survey data as moderate.

4.2 Stock Abundance

The Norwegian echo-survey in the Barents Sea referred to in Section 3.2 gives abundance estimates for both cod and haddock. This survey underestimates the abundance of the I-group haddock (Table 18). As for cod, the survey also underestimates the fully and, to a lesser extent, also partly matured age groups, which have passed the survey areas at the time when the survey takes place.

Therefore, the abundance of the 6 year and older fish is expected to be underestimated by the survey.

The Norwegian survey does not cover Division IIb. Howeve:n, usually only a very small part of the year classes is present in this area, and the addition to the survey data would be small.

4.3 Fishing Mortality versus Effort

Mean fishing mortalities for $3-6$ year olds derived from a preliminary VPA run were plotted on the estimate of the total international effort derived in Table 16 (Figure 13). A line was fitted through the origin and the mean values for 1965-1976. The international effort level in 1979 was the lowest in the time series. This was possibly due to the United Kingdom catch rates on which the effort was estimated being based on very low levels of fishing compared to previous years. The effort levels for 1977 and 1978 were therefore also considered carefully when choosing the level of fishing mortality for 1979. An additional regression of fishing mortality in Region I against intemational effort based on Norwegian effort units led to essentially the same conclusions as Figure 13.
4.4 Virtual Population Analysis (VPA)

The age compositions used for the 1978 landings were adjusted for the final catch figures and preliminary age compositions were derived for 1979 (Table 20). The assessment has been made using a natural mortality of 0.2 .
Fishing mortalities for $3-6$ year olds were chosen following the reasoning given in Section 3.4. The mean fishing mortality of $3-6$ year olds was set at .38. This was distributed over all ages using a revised exploitation pattern based on the average of the years 1970-75 (Table 20).

Estimates of fishing mortalities for earlier years resulting from VPA are given in Table 21. The stock size estimates are given in Table 22.

4.5 Recruitment

The number of recruits at age 3 as estimated in last year's Working Group Report are given in Table 17 together with the USSR young fish survey indices. The correlation between them is shown in Figure 14. The USSR survey indices indicate that the 1976 year class is of about average strength whereas so far the year classes 1977, 1978 and 1979 are estimated to be poor. Previous year classes with similar indices (1) from the USSR survey have averaged 44 millions 3 years old.

4.6 Mean Weight at Age

The 1979 Working Group Report noted the difference between the weight of the catches calculated from the catch in numbers and the average weight per age group used in previous reports on the one hand and the reported catches on the other. The latter were about 40% higher than the calculated catches because the average welght of young haddock used in the previous assessments was too low. Respective weight correction factor obtained from the regression against the proportion of 3 to 5 year old fish in the catches was used in the 1979 Horking Group Feport. This problem was discussed and it was decided that a revision of the mean weights at ages $3-8$ was necessary. The USSR (1976-79) and United Kingdom (1979) data given in Table 23 were averaged and multiplied by a factor of 1.057 to adjust for the discrepancy between the sum of products of weights multiplied by the number landed at each age and the reported total catches in 1979. The United Kingdom weights at age were constructed from mean
length at age data for 1979 assuming a cubic relationship between length and weight.

The weight-at-age problem requires further consideration at the next Working Group meeting, particularly the possibility of systematic changes in growth for different year classes of fish.

4.7 Yield and Spawning Stock Biomass per Recruit

Yield per recruit and spawning stock biomass per recruit were calculated using a new exploitation patterm (Section 4.4) and new weight-at-age data (Section 4.6, Table 23). The resulting curves are shown in Figures 15 and 16. On the new yield-per-recruit curve $F_{\text {max }}=0.27$ and $F_{0.1}=0.14$ compared to values of 0.22 and 0.11 respectively in last year's report. At $F_{\max }$ the yield per recruit is more than 40% higher than at $F_{\text {max }}$ on the curve presented last year. Nearly all of the difference is due to the new weight-at-age data.

5. CONCLUSIONS

The Working Group was not able to estimate fishing mortality for 1979 for either cod or haddock and therefore it was not possible to calculate stock size and catches for future years. Therefore, no scientific basis for advice on management can be provided to the ACFM at present for the following reasons:-

The cpue data from the United Kingdom conventional trawler fleet which have served in the past to estimate total international effort for both species are no longerreliable as explained in Section 3.2 of this report. Therefore, the estimate of fishing mortality from the regression of F from VPA against total international effort seems to be an underestimate for 1979. However, additional estimates using data from Norway and USSR indicate a reduction in total international effort for cod to $2 / 3$ of the 1978 level which corresponds to the reduction in reported landings. The resulting (age 4-7) from the regression is about 0.3. For haddock total international effort estimate for 1979 was only 1/4 of the 1978 level while total catch has increased by 6%. This is the result of the high cpue figures on which the estimate is based. The corresponding \bar{F} (age 3-6) of 0.15 from the regression seems to be unrealistically low and therefore, as a result of the discussion on several preliminary VPA runs, fishing mortality has been adjusted to about half the level used in last year's report for 1978. It should be noted that the VPA results for both species given in this report are not intended to serve as a basis for further catch projections, they are included in the report only for the purpose of demonstrating the difficulties confronting the Working Group.

Two revisions of the previous assessment have been made during 1979 based on the results of the Norwegian acoustic survey (see Section 3.2 of this report) which were not available to the Working Group at the 1979 meeting. The revision of the cod assessment was done by the ACFM in July 1979 when the results of the Norwegian acoustic survey for that species were made available to the ACFM.

The haddock assessment has been revised by the Working Group at a meeting in Warsaw in October 1979 and the reassessment was accepted by the ACFM as a basis for management advice.

At the present meeting an assessment was done on the basis of the numbers per age group in the population as estimated by the Norwegian acoustic survey. Catches and fishing mortalities have been calculated which would account for the decrease in year class abundance from 1978 to 1979 and 1980. The results are given in

Table 24 together with the results from the VPA for the age groups covered by the survey.

The results of a comparison of the two assessments are:-
COD

The catch in numbers of 3 to 5 year old cod required to account for the decrease in year class abundance in the acoustic survey from 1978 to 1979 is 2.3 times higher than the reported catch for these age groups. It even exceeds the total catch in numbers for all ages in 1978 by about 50\%. The corresponding figures for 1979 and 1980 are almost identical. This means that for both 1978 and 1979 an additional catch of about 200000 tonnes of 3 to 5 year old fish is required to account for the annual decrease in abundance derived from survey data and thereby generating average fishing mortalities on these age groups which are 2.7 and 4.2 times higher for 1978 and 1979, respectively, compared to the VPA figures.

The size of the population of 3 to 5 year old cod at the beginning of 1978 as estimated from the survey is about the same as that derived from VPA. However, the high level of exploitation on these ages as indicated by the survey results for 1978 and 1979 reduces the population at the beginning of 1980, the basis for projecting catches and stock sizes for 1981, to 50% of the VPA level.

HADDOCK

Since the survey results for age 6 haddock are not reliable, the assessment based on the results of the Norwegian acoustic survey have been used only for the age groups 3 to 5 .

The proportion of 3 to 5 year old haddock in the catches has always been higher than in the cod fishery and therefore the discrepancies between the VPA assessment and the acoustic survey assessment are even greater.

The catch in numbers of 3 and 4 year old haddock in 1978 required to account for a reduction in year-class abundance as indicated by the survey from 1978 to 1979 is 5.8 times larger compared to the reported catches of these ages and even 4.5 times higher than the total catch in numbers. The corresponding figures for 1979 are 4.8 and 3.5. For both 1978 and 1979, additional catches in the order of 200000 tonnes of 3 and 4 year old haddock would be required to account for the annual reduction in the abundance of these age groups as estimated from the acoustic survey. Fishing mortalities estimated on this basis are 3.1 and 3.7 times higher than the VPA values for 1978 and 1979 , respectively.

The size of the population of 3 and 4 year old haddock as estimated from the survey is about 2.6 times greater than that estimated from VPA for the beginning of 1978 and is reduced by the beginning of 1980 to about the same level as estimated by VPA.

The comparison of the two assessments demonstrates clearly the difficulties experienced by the Working Group in its efforts to produce a reliable and scientifically justifiable basis for advice on management for North-East Arctic cod and haddock.

Ignoring the results of the acoustic survey would mean completely disregarding valuable fisheries-independent data. The reliability of these data has not been questioned, and they have already served as a basis for management advice. On the other hand, accepting the survey data as a basis for an assessment would
imply that one accepts that total catches have not been reported completely and/or that the age compositions available to the Working Group are not representative of the age composition of the catches. The magnitudes involved are thought to be too large to be attributed entirely to discarding. Theoretically, one could expect complete agreement between fisheries-independent survey data on the one hand, and quantity and age composition of catches on the other. It is well known, however, that in practice both survey data and data from commercial fisheries are subject to a sometimes large margin of error. In realizing this, the Working Group made several attempts to bridge the gap between the results of the two assessments, but none of these approaches resulted in an estimate of fishing mortality and stock size for 1979 which could be considered as a sound scientific basis for developing further advice on management. All attempts to compromise or to combine the two sets of information required too much manipulation of data to be scientifically justified. In addition to the difficulties in assessing the 1980 stock size the definition of management objectives on the basis of reference points on the yield per recmit curve would create further difficulties for both stocks. The VPA results would suggest that fishing mortality in 1978 and 1979 was below the Fmar point and probably approaching $F_{0.1}$ on the yield per recruit curve, whereas the estimates of from acoustic surveys indicate F in 1978 and 1979 to be far on the right hand descending limit of the yield per recruit curve as in previous years.

After considerable discussion, the Working Group felt that in this conflicting situation a decision is required on which of these data sets is to be used for assessment.

In view of the problems outlined above, the Working Group could not make this decision. It felt that this problem might be of a general importance for the ICES assessment work and is therefore seeking the ACFM advice on this matter.

6. CONSERVATION MEASURES

6.1 Mesh Size

Norway and the USSR which are responsible for the management of the cod and haddock stocks have decided to introduce a mesh size of 125 mm from not later than 1 January 1981.

The long-term effect by applying a 125 mm mesh size on the average situation for the period 1967 - 1977 would be $2-3 \%$ for cod and haddock as extrapolated from the 1979 Working Group report. Considering, however, the accuracy of the method, this would be hardly measurable. The beneficial result of this increase is expected to be a reduction in fishing mortality mainly on 3 and 4 year old fish.

The 1979 Working Group report gave both short and long term effects of applying a higher effective mesh size than that used at present. These were assessed on the basis of an average situation for the period 1967-1977 for the cod and haddock fisheries. These calculations showed that a higher effective mesh size for the level of fishing in the period 1967-1977 would create great benefit to the total fishery and the spawning stocks. At the same time, a higher effective mesh size will reduce discards in the total fishery.
Despite the long term gains to be expected from the average situation by applying a higher effective mesh size, the major concern of the Working Group was the spawing stock of cod. The year classes 1976-1979 are all indicated to be poor in the USSR young fish survey. The two rich year classes 1973 and

1975 have already suffered from heavy fishing before maturing. Under these conditions, the spawning stock is expected to be at a very low level in the mid-80s. In realising this situation, the ACFM recommended in 1979 to increase mesh size to 155 mm from 1 January 1980 and pointed out that the spawning stock biomass can only be expected to reach the desired long-term level if the pattern of exploitation is improved considerably, or if fishing mortality is immediately set at much lower levels".

6.2 Minimum Landing Size

According to the agreement between Norway and USSR the minimum landing size for 1980 is 39 cm for cod and 35 cm for haddock. The minimum landing sizes will be further considered by Norway and USSR before 1981 when the 125 mm mesh size will be in use.

ACFM recommended that the minimum landing size should correspond to the 25% retention length of the mesh size in force. Following this recommendation the minimum landing sizes were calculated to be as follows for a mesh size of $120,125,135$, and $155 \mathrm{~mm}:-$

Minimum landing sizes (cm)
corresponding to mesh sizes

	Mesh size (mm)				
Species	120	125	135	155	
Cod	43	45	49	56	
Haddock	39	41	44	51	

The parameters used in the calculation are the same as used by the Working Group (ICES, Doc. C.M.1979/G:20) in the mesh assessments (selection factor 3.96 for cod and 3.63 for haddock, ratio 75% to 50%, retention length 1.09 for cod and 1.10 for haddock).

In addition to the minimum landing size regulation the agreement between Norway and USSR allows for a by-catch of undersized cod and haddock of 15% by numbers in each catch.

6.3 Closed Areas

According to the ACFM report of 1979, an effective method of reducing exploitation of young cod and haddock, as an addition to mesh size regulation, would be a short-term closure of areas at times when small fish are dominant in catches: Such regulation has been introduced jointly by Norway and USSR. The minimum landing sizes as given in the agreement would be used as guidelines for closing the areas where fish below these sizes are dominant in the catches. The agreement between the two countries make it further possible to close an area when the undersized cod and haddock exceed 15% by numbers or weight.

In addition, the areas in the USSR fishing zone where young cod and haddock are concentrated are closed for fishery throughout the year or for certain periods during the year. The areas and the periods of closure may vary depending. on the distribution of the young fish in a particular year.

Following the intention behind the cod TAC for 1980 , the mortality had to be reduced on a.l components of the stock. In order to meet this requirement Nomay introcuced in the first weeek of April 1980 a total ban on the fishery for mature fish in the main spawning area (Lofoten).

6.4 Midwater Trawl

No new data were available for mid-water trawl fishery. Therefore, the effect on the exploitation by this gear on the cod and haddock stocks has not been further studied. However, the Working Group has recognised that Norway and the USSR have already agreed to allow only experimental midwater trawling in 1980 for cod and haddock.
7. SHORTCOMINGS AND GAPS IN DATA REQUIREI FOR STOCK ASSESSMENT PURPOSES

Since little progress was made during 1979, the Working Group reiterates the views expressed in Sections 8 and 9 of the previous Report.

Special emphasis should be given to expand survey work in spring in order to obtain fisherieswindependent data for estimating abundance of age-groups and total mortality for both cod and haddock in the North-East Arctic.

RFFFERENCES

Dalen, J. and Smedstad, O.M. 1979. Acoustic Method for estimating absolute abundance of young cod and haddock in the Barents Sea. ICES, Doc. C.M.1979/G:51 (mimeo).

ICES, 1979. Report of the Arctic Fisheries Working Group. Doc. C.M.1979/G:20 (mimeo).

Table 1 COD. Total nominal catch (tonnes) by fishing areas (landings of Norwegian coastal cod not included).

Year	Sub-area I	Diviaion IIb	Divibion IIa	Total catch
1960	375327	91599	155116	622042
1961	409694	220508	153019	783221
1962	548621	220797	139848	909266
1963	547469	111768	117100	776337
1964	206883	126114	104698	437695
1965	241489	103430	100011	444930
1966	292253	56653	134805	483711
1967	322798	121060	128747	572605
1968	642452	269160	162472	1074084
1969	679373	262254	255599	1197226
1970	603855	85556	243835	933246
1971	312505	56920	319623	689048
1972	197015	32982	335257	565254
1973	492716	88207	211762	792685
1974	723489	254730	124214	1102433
1975	561701	147400	120276	829377
1976	526685	103533	237245	867463
1977	538231	109997	257073	905301
1978	418265	17293	263157	698715
1979 ${ }^{\text {²) }}$	182106	8088	237264	427458

[^0]| Year | Fatoe
 Iblande | France | $\begin{aligned} & \text { German } \\ & \text { Dem.Rep. } \end{aligned}$ | Germany Fed.Rep. | Norway | Poland | Dnited Ringdom | USSR | Othere | Total
 all countries |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1960 | 3306 | 22321 | | 9472 | 231997 | 20 | 141175 | 213400 | 351 | 622042 |
| 1961 | 3934 | 13755 | 3921 | 8129 | 268377 | - | 158113 | 325780 | 1212 | 783221 |
| 1962 | 3109 | 20482 | 1532 | 6503 | 225615 | - | 175020 | 476760 | 245 | 909266 |
| 1963 | - | 18318 | 129 | 4223 | 205056 | 108 | 129779 | 417964 | - | 775577 |
| 1964 | - | 8634 | 297 | 3202 | 149878 | - | 94549 | 180550 | 585 | 437695 |
| 1965 | - | 526 | 91 | 3670 | 197085 | - | 89962 | 152780 | 816 | 444930 |
| 1966 | - | 2967 | 228 | 4284 | 203792 | - | 103012 | 169300 | 121 | 483704 |
| 2967 | - | 664 | 45 | 3632 | 218910 | - | 87008 | 262340 | 6 | 572605 |
| 1968 | - | - | 255 | 1073 | 255611 | - | 140387 | 676758 | - | 1074084 |
| 1969 | 29374 | - | 5907 | 5343 | 305241 | 7856 | 231066 | 612215 | 133 | 1197226 |
| 1970 | 26265 | 44245 | 12413 | 9451 | 377606 | 5153 | 181481 | 276632 | - | 933246 |
| 1971 | 5877 | 34772 | 4998 | 9726 | 407044 | 1512 | 80102 | 144802 | 215 | 689048 |
| 1972 | 1393 | 8915 | 1300 | 3405 | 394181 | 892 | 58382 | 96653 | 166 | 565287 |
| 1973 | 1916 | 17029 | 4684 | 16751 | 285184 | 843 | 78808 | 387196 | 276 | 722 686 |
| 1974 | 5717 | 46028 | 4860 | 78507 | 287276 | 9898 | 90894 | $540801^{1)}$ | 38453 | 1102434. |
| 1975 | 11309 | 28734 | 9981 | $30 \quad 037$ | 277099 | 7435 | 101834 | 343580^{1}) | 19368 | 829377 |
| 1976 | 11511 | 20941 | 8946 | 24369 | 344502 | 6986 | 89061 | $343057^{1)}$ | 118090 | 867463 |
| 1977 | 9167 | 15414 | 3463 | 12763 | 388982 | 1084 | 86781 | $369876^{1)}$ | 17771 | 905301 |
| 1978 | 9092 | 9394 | 3029 | 5434 | 363088 | 566 | 35449 | $267138^{\text {1) }}$ | 5525 | 698715 |
| $1979{ }^{\text {F }}$ | 6320 | +2) | 547 | 2515 | 284779 | 15 | 17991 | 105846 | 9 445 | 427458 |

${ }^{\text {x }}$) Provisional figures.

1) Mrurman cod included.

[^1]

Table 4 COD. Catch per unit effort (tonnes, round fresh)

* Provisional figure

1) Norwegian data - tonnes per 1000 tonne-hours fishing
2) United Kingdom data - tonnes per 100 tonne-hours fishing
3) USSR data - tonnes per hour fishing
4) Norwegian data - tonnes per gill-net boat week in Lofoten

Table 5
COD. Catch per unit effort. Data from the Lofoten Fishery are given in gutted weight with head off. The United Kingdom data are given in round fresh weight.

Year	Norwegian vessels			Fnglish trawlers	
	Catch (kg per man per day worked in the Lofoten Fishery (Division IIa)			```t/100 tonne-hour of age groups \geq 8```	t/100 tonne-hour of 4-7 year olds
	Gill-net	Long-Line	Hand-Line	Division IIa	Sub-area I
1960	77.8	148.3	56.7	. 0214	. 064
1961	101.5	141.1	75.5	. 0129	. 067
1962	94.9	134.4	57.8	. 0304	. 084
1963	80.8	116.3	56.2	. 0291	. 082
1964	104.5	62.1	51.5	.0230	. 055
1965	81.8	78.3	68.4	. 0039	. 053
1966	121.8	131.9	72.6	. 0223	. 056
1967	107.9	245.4	120.7	. 0166	. 076
1968	158.0	184.6	61.5	. 0095	. 105
1969	170.6	200.4	142.8	. 0068	. 110
1970	180.3	304.3	127.6	. 0079	. 089
1971	334.3	510.7	192.7	. 0179	. 036
1972	318.7	400.1	110.2	. 0151	. 021
1973	189.7	366.5	112.1	. 0209	. 038
1974	96.3	146.4	63.9	. 0027	. 076
1975	122.0	188.3	96.1	. 0020	. 069
1976	131.4	258.4	134.8	. 0015	. 047
1977	173.2	279.6	143.5	. 0043	. 046
1978	237.6	381.7	134.6	. 0074	. 037
1979	201. 3	306.0	125.1		
$1980^{\text {F }}$	169.9	207.8	100.9		

[^2]Table 6
COD. Catch per unit effort for Norwegian freezers and for English conventional trawlers.

	Sub-area I		Sub-area II	
	Norway	England	Norway	Fintiand
	$t /$ tonne-hour $\times 10^{-3}$	t/tonne-hour x 10^{-4}	$t /$ tonne-hour $\times 10^{-3}$	t/tonne-hour x 10^{-4}
1972	0.34	. 047	0.40	. 055
1973	0.53	. 057	0.34	. 043
1974	0.93	. 079	0.70	. 028
1975	0.78	. 077	0.54	. 033
1976	0.72	. 060	0.79	. 035
1977	0.90	. 052	0.68	. 044
1978	0.54	. 062	0.58	.037
1979	0.45	. 046	0.69	. 042

Table 7. North-East Arctic COD. Estimates of year class abundance. (No. $\times 10^{-6}$) from the Norwegian Acoustic Survey.

Year		Year Class										Total No.
	1979	1978	1977	1976	1975	1974	1973	1972	1971	1970	01der	
1977				45	882	104	315	139	52	47	12	1596
1978			9	56	1009	125	194	36	10	4		1443
1979		7	14	112	522	77	44	14	7	1		799
1980	1	9	26	80	182	17	8	2	+	$+$		325

Table 8．North－East Arctic COD．
Input catch data for VPA．

$A G E$	1962	1963	1964	1965	1966	1967
1	1	1	103	1	1	1
2	1715	4	E75	2522	869	151
3	42.416	13196	5298	15725	55937	34467
4	170566	106834	45312	25939	55.544	160078
5	167241	205549	97950	78299	34676	69335
6	89469	95498	58575	68511	42539	2206i
7	28237	35518	19642	25444	37169	262．5
8	21996	15221	9162	8438	18500	25133
9	7956	11834	6196	3569	5077	11323
10	27ç	3884	3553	1467	1495	2323
11	2603	1021	783	：161	380	6e？
12	1647	1025	172	131	403	ご家
13	395	498	367	$6 ?$	77	225
14	280	129	264	91	3	\therefore
159	103	157	13	179	76	1 \therefore
otal	537399	491579	248803	231604	252846	352331
AGE	1968	1959	1379	1371	1972	1973
1	1	1	1	38	1	＇i
2	1	275	591	2210	4701	8277
3	3709	2307	7164	7754	35536	294203
4	174585	24545	10732	13739	45431	13149%
5	267961	238511	25813	11831	26832	61000
6	107651	181235	137829	9527	12089	20565
7	E6701	79353	964.20	59290	7918	724%
8	16393	26853	31320	52003	34385	8320
9	11537	13463	8.833	12033	22315	19136
10	3557	5092	3249	2434	4572	4493
11	657	1313	1232	7E2	1215	E\％
12	122	414	200	418	353	195
13	124	121	106	143	315	8：
14	70	23	33	42	121	59
$15+$	45	46	35	25	49	ち¢
Total	612681	574302	324384	172315	196324	555874
AGE	1974	1975	1976	1977	1978	1975
1	115	1	706	1	3	3
2	21347	1484	1948	11288	802	203
3	91255	45232	85357	39594	78.22	806
4	437377	59798	114341	168609	45400	8235
5	203772	2こ6日46	79993	136335	38495	46E5
E	47006	118507	118205	52925	56823	34750
7	12 ESO	20592	4 ¢E：	E1821	25407	18TE
8	＋376	5553	$1396 \geq$	23335	31 ± 21	954：
10	25こう	2817	4051	5 E5G	3498	12 G
11	569\％	1555	935	15：1	1227	E15
$\therefore 2$	c． 32 88	13.88	568	EiG	313	$4{ }^{4} \mathrm{~B}$
13	151	－5		$27!$	4 t	$\therefore \mathrm{S}$
14	\bigcirc	－	189 80	12 z	748	$\because \cdots$
： 5 t	Eご	37	53	54	5	\cdots
Total	829347	497311	468560	502240	340414	216259

Table 2. North East Arctic COD. Relative Fishing pattern used for VPA Input in 1979
$\bar{F}_{8-12}=1.00$

Age	Fishing Pattern
3	0.28
4	0.41
5	0.69
6	0.85
7	0.93
8	0.95
9	10.11
11	1.08
12	1.05
13	0.83
15	0.87

Table 10．North－East Arctic COD．
Fishing mortalities from VPA．（ $M=0.2$ ）

$A G E$	15ec	1963	1964	1965	1966	1967	1968	1369	1970
1	． 900	． 0 ge	.000	． 0000	.000	． 000	． 090	． 000	． 000
2	． 063	.000	． 0001	． 001	.601	.001	． 000	． 001	． 001
3	－0ge	，031	． 017	．023	． 040	． 836	． 0 ど4	． 023	.040
4	． 305	． 236	． 14.4	．111	.103	.153	． 207	219	.140
5	． 648	，738	． 352	． 389	． 211	． 181	． 409	． 438	． 377
ϵ	． 823	1.092	． 489	4447	． 380	． 202	． 468	． 538	． 570
7	－E0E	． 963	． 570	.357	． 457	． 420	． 599	． 767	． 621
8	． 654	． 858	．788	.520	． 564	． 672	． 522	． 918	． 834
9	． 793	． 934	1.02 i	． 694	． 8.94	． 031	． 775	1.141	． 336
19	． 983	1． 250	． 832	.742	.717	－820	.718	． 98.3	． 393
11	． 777	1． 234	．989	． 731	． 430	． 884	． 578	1.101	． 688
12	． 731	． 833	－8E日	． 423	． 612	.783	．3\％2	． 91.18	． 411
13	． 707	．592	． 3.2	1．060	． 476	． 852	． 8.41	． 782	．6車i
14	． 750	－535	． 78	． 563	． 375	． 478	.718	． 358	－Esor
15	． 610	． 490	.810	． 960	． 370	． 750	.749	．Ese	.540
MEAN	$\begin{gathered} \text { F FOR AGE } \\ .796 \end{gathered}$	$\begin{aligned} & E 5 \quad 3= \\ & 1 \cdot e^{4} 4 E \end{aligned}$	$\begin{gathered} 8 \mathrm{AND}<= \\ .285 \end{gathered}$	$\begin{aligned} & 12 \text { NOT } \\ & .621 \end{aligned}$	$\begin{gathered} \text { T WEIGH } \\ .003 \end{gathered}$	$\begin{aligned} & E D E Y \\ & .79 E \end{aligned}$	$\begin{array}{r} \text { STOCK } \\ .593 \end{array}$	IN NUME 1.012	$\begin{aligned} & 5) \\ & .772 \end{aligned}$
Ages 4－7	． 596	． 735	． 387	． 336	． 290	． 241	． 370	． 501	． 427
AGE	1971	1972	1973	1974	1975	1976	1977	1978	1979
1	． 606	． 060	－ 0 ctic	． 060	． 800	.001	． 060	． 900	． 000
2	． 206	． 028	． 813	． 428	． 002	.004	． 012	． 093	.302
3	． 92	.039	． 183	． 190	． 978	.143	.169	．111	.112
4	． 201	$\therefore 16 E$	． 198	． 468	． 189	． 276	． 469	．17E	． 164
5	． 224	－ 293	． 343	． 525	.475	.413	． 616	． 470	－ 276
E	． 232	． 376	． 383	． 498	． 572	． 490	． 53	． 570	． 240
7	． 517	． 367	． 406	． 430	． 680	． 640	． 516	． 532	． 372
8	． 834	． 6.64	． 617	． 459	．EE2	． 825	－TE1	． 553	． 380
9	． 9 ：	1.137	． 389	． 378	． 555	．6EE	1．902	． 823	． 444
10	－ 728	1．188	． 744	，928	． 424	． 393	． 502	． 515	． 432
11	． 572	1．050	． 539	1.00 E	1.926	． 264	． 48.	． 323	． 420
12	． 527	．779	． 453	． 530	． 855	.761	． 158	． 800	． 332
13	． 439	1.304	． 484	． 793	． 968	． 512	． 422	1.290	． 348
14	． 517	． 785	．503	． 96.3	－ 80	． 254	.34	． 231	． 232
15	． 546	．910	． 319	． 79	860	． 430	，406	． 536	． 304
MEAN	$\begin{gathered} \text { F FOR } A G E \\ : 3 E \end{gathered}$		$\begin{gathered} 8 \mathrm{AND}<= \\ .609 \end{gathered}$	$\begin{aligned} & 12 \text { (NOT } \\ & .6 E 2 \end{aligned}$	HEIGH $.704$	EL EY .574	$\begin{array}{r} \text { STOCK } \\ .809 \end{array}$	$\begin{gathered} \text { IN NUHIR } \\ .743 \end{gathered}$	S $.402$
Ages 4－7	.269	． 285	.334	． 480	． 504	． 455	． 531	． 437	． 288

Table 11．North－East Arctic Cod．Stock size in numbers from VPA．

AGE	1962	1963	1964	1965	1966	1967
1	506916	1162673	2364139	1531738	256192	169473
2	579995	415027	951915	1935500	1581573	203752
3	730267	473312	339792	778752	1582376	1294057
4	711706	559619	375601	273414	623389	1245043
5	382651	425397	361913	266142	264410	460209
6	173583	163820	168121	208344	147624	132867
7	68054	62390	49256	85152	109145	82675
8	50009	30410	19497	22751	46883	56043
9	15824	21287	10452	7783	11070	21828
10	4751	5862	6847	3053	3185	4525
11	5247	1497	1361	2440	1191	1273
12	3282	1974	323	418	962	6.34
13	843	1218	763	111	225	427
14	575	341	552	231	32	115
151	137	221	163	216	108	18
Total	3233880	3329048	4650635	5516047	4564363	3678985
Spawning stock age ≥ 8	880708	62810	39898	37005	63655	84867
AGE	1968	1969	1970	1971	1972	1973
1	298037	610019	1539731	2822372	857839	1052193
2	138749	244012	439440	1269625	2319729	702338
3	171554	113597	159531	408373	1030116	1887618
4.1	1028398	137140	90922	156895	327346	811367
5	875145	684813	98189	64715	116065	227082
6	314433	476086	346929	50668	42337	70905
7	88921	161478	227518	160702	32311	23810
8	44106	48841	61413	104065	78469	19829
9	23426	21425	15971	21838	35588	33075
10	7781	88.36	5603	5129	7119	9348
11	1632	310 E	2708	1699	2027	17ア7
12	431	749	846	1116	711	580
13	237	243	245	459	540	267
14	149	84	91	105	24ご	162
$15+$	53	60	48	40	49	86
Total	2993099	2510488	3081185	5054803	4842086	4840379
Spawning stock $\text { age } \geq 8$	77821	83344	86924	130452	124744	65128
$A G E$	1974	1975	1976	1377	1978	1979
110	1053503	63124E	1245426	12 E 150	136918	50
2	861459	862432	516819	1019031	103282	112085
3	567551	686029	705030	421412	824117	83836
412	1280465	$38196 E$	520820	506325	309322	603659
5	545848	656312	258879	323596	258479	212360
6	131134	264419	334209	140186	143028	132304
7	39589	65250	114562	167683	67385	66こ5こ
8	12996	21025	27051	47730	31918	32425
9	8787	6718	8908	9765	18258	38585
10	10075	4929	315	3673	こヨ17	6567
11	3633	3260	2641	1745	1647	1ここ1
12	849	1089	55.7	1660	8.82	536
13	300	407	379	308	1115	325
14	145	111	127	186	209	25：
154	86	46	78	81	70	120
Total 4	4516416	3585298	3735042	2763553		
Spawning stock		358298	3735042	2763553	1949547	1290607
≥ 8	36866	37645	43297	65170	107016	80100

Table 12. North-East Arctic COD. Mean weight at age

Age	Mean Weights (kg)
3	0.65
4	1.00
5	1.55
6	2.35
7	3.45
8	4.70
10	6.17
11	7.70
13	9.25
14	10.85
15	13.90

Year clase	OSSR Survey No. per hour trawling			USSR assessment	O-group survey index	Virtual Population No. of 3 year olds x 10-6*$M=0.2$
	$\begin{gathered} \text { Sub-area } \\ I \\ \hline \end{gathered}$	Division IIb	Mean			
1957	12	16	13	-Average		791
1958	16	24	19	+Average		919
1959	18	14	16	+Average		730
1960	9	19	13	Poor		473
1961	2	2	2	Poor		340
1962	7	4	6	Poor		779
1963	21	120	76	Rich		1582
1964	49	45	46	Rich		1294
1965	<1	<1	<1	Very poor	6	177
1966	2	<1	1	Very poor	<1	115
1967	1	<1	1	Very poor	34	201
1968	7	1	5	Poor	25	407
1969	11	6	9	Poor	93	1030
1970	74	86	76	Rich	606	1860
1971	37	24	32	Average	157	542
1972	53	17	40	Average	140	672
1973	74	5	46	Rich	684	685
1974	6	1	4	Poor	51	279
1975	93	4	62	Rich	343	(476)
1976	4	<1	3	Poor	43	
1977	2	<1	1	Poor	173	
1978	(<1)	(<1)	(<I)	Poor	106	
1979	(<1)	(<1)	(11$)$	Poor	94	

$(\quad)=$ estimated
*USSR Murman cod included for 1974-77.

Table 14. HADDOCK. Total nominal catch (tonnes) by fishing areas (Data provided by Working Group members)

Year	Sub-area I	Division IIb	Division IIa	Iotal
1960	125675	1854	27925	155454
1961	165165	2427	25642	193234
1962	160972	1727	25189	187888
1963	124774	939	21031	146744
1964	79056	1109	18735	98900
1965	98505	939	18640	118079
1966	124115	1614	34892	160621
1967	108066	440	27980	136486
1968	140970	725	40031	181726
1969	88960	1341	40208	130509
1970	59493	497	26611	86601
1971	56300	435	21567	78302
1972	221183	2155	41979	265317
1973	283728	12989	23348	320065
1974	159037	15068	47033	221138
1975	121686	9726	44330	175742
1976	94064	5649	37566	137279
1977	72159	9547	28452	110158
1978	63965	979	30478	95422
$1979 *$	63434	517	37478	101429

[^3]Table 15. I JDOCK. Nominal catch (tonnes) by col. cries.
(Sub-area I and Divisions IIa and IIb combined)
(Data provided by Working Group members)

Year	Faroe Islande	France	German Dem.Rep.	Germany Fed.Rep.	Norway	Poland	U.K.	USSR	Others	Total
1960	172	-	-	5597	47263	-	45469	57025	125	
1961	295	220	-	6304	60862	-	35469	57025	125	155651
1962	83	409		- 804	60862	-	39650	85 345	558	193234
	17	409	-	2895	54567	-	37486	91340	58	187438
1963	17	363	-	2554	59955	-	19809	63526	-	146224
1964	-	208	-	1482	38695	-	14653	43870	250	
1965	-	226	-	1568	60447	-	14345	41750	250	99158
1966	-	1072	11	0			14345	41750	242	118578
1967					82090	-	27723	48710	74	161778
1967	-	1208	3	1705	51954	-	24158	57346	23	136397
1968	-	-	-	1867	64076	-	40129	75654	-	102726
1969	2	-	309	1490	67549	-	37234	24211	25	130800
1970	541	-	656	2119	36716	-	20	25802		130820
1971	81	-	16	896	45715	43	16373	15778	3	87257
1972	137	-	829	1433	46700	1433	17166	15		78905
1973	1212	3214	22	9534	86767	434	$\begin{array}{ll}17 & 166 \\ 32 & 408\end{array}$			266153
1974	925	3601	454	23409	66164	3045		186534	2	32? 626
1975	299	5191	437			3045	37663	78 5481)	7348	221157
	29	5191	437	15930	55966	1080	28677	$650151)$	3163	175758
1976	537	4459	348	16660	49492	986	16940	$42485^{1)}$	5358	137265
1977	213	1510	144	4798	40118	-	10878	52 2101)	287	110158
1978	466	1411	369	1521	39955	1	5766	45895^{1})	38	95422
1979*	343	+ 2)	10	1952	65116	2	6454	26365	1187	101429

* Provisional figures

1) Murman haddock included
2) Estimated catch included in other countries catches

HADDOCK. Catch per unit effort and estimated total international effort.

Year	Sub-area I		Division IIb		Division IIa		Estimated total international effort in U.K. units (Total catch in $t \times 10^{-3}$ t/100 tonne-hours in Sub-area I)
	Norway ${ }^{\text {I }}$	U.K. ${ }^{2)}$	Norway ${ }^{\text {² }}$	U. K. ${ }^{2}$)	Norway ${ }^{1}$)	U.K. 2)	
1960		33		2.8		34	4.7
1961		29		3.3		36	6.7
1962		23		2.5		42	8.2
1963		13		0.9		33	11.3
2964		18		1.6		18	5.5
1965		18		2.0		18	6.6
1966		17		2.8		34	9.4
1967		18		2.4		25	7.6
1968		19		1.0		50	9.6
1969		13		2.0		42	10.0
1970		7		1.0		31	12.4
1971		8		3.0		25	9.8
1972	0.06	14	0.02	23.0	0.09	18	19.0
1973	0.35	22	0.18	20.0	0.39	20	14.5
74	0.27	20	0.09	15.0	0.51	74	11.1
1975	0.26	15	0.06	4.0	0.44	60	11.7
1976	0.27	10	+	3.0	0.24	38	13.7
1977	0.11	4	+	0.2	0.14	16	27.5
1978	0.13	5	0.0	4.0	0.14	15	19.1
1979	0.36	(33) 22	0.07	-	0.18	19	(3.1) 4.6

* Provisional figure

1) Norwegian data - tornes per 1000 tonne-hours fishing
2) United Kingáom data - tonnes per 100 tonne-hours fishing

Year class strength. The number per hour trawling for USSR Young Fish Surveys is for 2 year old fish.

Year clabs	$\begin{gathered} \text { USSR Survey No. per hour } \\ \text { trawling } \\ \text { Sub-area I } \end{gathered}$	$\begin{aligned} & \text { 0-group survey } \\ & \text { Index } \end{aligned}$	Virtual population No. of 3 year olds $\times 10^{-6}$ *
1957	9		
1958	4		242
1959	14		110
1960	40		241
1961	50		276
1962	3		319
1963	9		100
1964	12		241
1965	<1	7	291
1966	<1	<1	17
1967	13	42	164
1969	61 69	8	94
1970	69 3	82	1017
1971	3	115	265
1972	9	73 46	54
1973	8	46 54	$\left(\begin{array}{l}45 \\ 56\end{array}\right.$
1974	35	147	(116)
1975	96	170	(193)
1976	13	112	(170)
1978	(<1)	116	(100)
1979	(<1)	61 69	

() = Estimated

* = USSR Murman haddock included for 1974-77.

Table 18. North-East Arctic HADDOCK.
Estimates of year class abundance (No. x 10^{-6}) from the Norwegian Acoustic Survey.

Table 19．
North－East Arctic HADDOCK．
Input catch data for VPA．

$A G E$	1962	1963	1964	1965	1966	1967
1	1	3	149	1	1	1
2	4536	2151	831	3483	2559	53
3	39604	28567	22305	5911	26157	15918
4	30947	72595	49162	46161	22469	41373
5	49028	19035	36592	40032	62724	13505
2	33922	13627	5800	12578	28840	25736
7	3209	9290	3519	1672	5711	8878
8	1344	1243	2705	979	578	161\％
9	1778	561	8.32	893	435	213
10	243	409	104	122	188	176
11	247	79	206	204	186	155
12	482	84	234	123	25	76
13	20	169	121	14	8	27
14	8	41	67	205	7	7
Total	165369	148254	116631	112369	149888	107740
AGE	1968	1969	1970	1571	1972	1973
1	1	1	480	15	133	1
2	33	1958	276	3535	9369	5915
3	657	1520	23004	1975	230229	79204
4	67632	1963	2468	24359	22246	258773
5	41267	44526	1870	1258	42849	24018
E	7748	18956	21995	318	3196	E872
7	15599	3611	7948	3279	1606	418
8	5292	4925	1974	3056	6736	422
5	655	1624	1578	826	2630	1690
10	182	315	726	1043	896	525
11	101	43	166	369	988	146
12	115	43	26	130	538	340
13	18	14	52	27	53	68
14	19	2	19	4	42	15
Total	139319	78601	62922	46798	321511	369395
AGE	1974	1975	1976	1977	1978	1973
1	281	$13 こ 1$	3475	184	45	6
2	3713	4355	7496	18456	2033	67
3	9684	10637	13989	55957	47311	178E\％
4	41701	14083	13443	22043	18512	39359
5	88111	33871	6808	7368	4076	12043
6	5827	49712	207E9	2585	1389	1345
7	4138	2135	40044	7781	1626	94%
8	SE	1ごも	1247	11043	2596	570
9	E1\％	92	1349	3 il	E215	1613
10	2043	131	133	388	162	257\％
11	935	500	279	96	258	55
12	275	147	652	192	E	0
13	458	53	331	84	74	\％
14	143	ge	48	98	65	16
Total	158309	117771	110147	126506	84666	76773

Table 20. North-East Arctic EADDOCK
Relative fishing pattern used for VPA input in 1979. $\overline{\mathrm{F}}_{9}-14=1.00$

Age	Fishing Pattern
3	0.582
4	1.075
5	1.493
6	1.403
7	1.194
8	1.060
9	1.0
10	1.0
11	1.0
13	1.0
14	1.0

North-East Arctic HADDOCK.
Fishing Mortalities from VPA. ($M=0.2$)

MEAN F FOR AGES $=3$ AND $=$ = (NOT WEIGHTED RY STOCK IN NUMBERS)

Table 22．
North－East Arctic HADDOCK．
Stock size in numbers from VPA．

AGE	1962	1963	1964	1965	1966	1967
1	479318	150285	364191	438314		
2	341843	392432	123040	298949	29633	25883
3	240721	275780	319353	298046	358860	23745
4	75314	161428	200036	24．1342	240863	291499
5	81374	34387	66962	119538	76528	173628
6	57015	23092	11216	27502	156059 62020	42489
7	7524	16550	6800	4014	62028 11283	71648
8	3085	3231	52Es	2431	11283	25034
5	3119	1324	1582	1913	＋1791	4146
10	812	972	583	554 5	17.23 -123	948
11	1488	447	430	3.5	－63	539
12	893	996	295	38.	344	$4 E 1$
13	143	383	73.	160 36	132 38	115
14	19	99	182	496	29	8
Total	1293267	1061468	1700676	49 E	17	17
awning stock		1061468	1100676	1234778	938836	660230
（ Age ≥ 6 ）	74197	47154	27093	37498	77517	102986
AGE	1968	1969	1979	1971	1372	
1	247551	146834	1548658	425588		
2	21180	202677	120217	1265500	90712	80676
3	19393	17319	164982	1267500 98176	348674 1034549	74149
4	224294	15284	12809	114353	1034543	2770.1
5	104969	122948	10745	11453	78592	64001 S
6	22674	49008	60774	8320	71717	4.4374
7	35604	$116: 9$	23156	764 30954	5679	20E63
8	12541	15209	6273	36054	4397	18 SO
9	1947	5536	803	11834 3356	16281	ces 1
10	580	1097	3075	3365 4892	6944	7365
11	276	312	542	4802 1855	2913	3370
12	238	135	217	295	2993	845
13	28	93	72	154	1195 125	1565
14 Total	46	7	63	154 13	125 062	438
Total Spawning stock	691332	587987	1959618	1973734	1664574	1154940
（age ≥ 6 ）	73935	82926	102207	59496	40329	1154940 38721
AGE	1974	1975	1376	1977	1378	197
1	33195	214872				－97
2	EEOS1	70048	368450	160469	2352	\％
3	55373	50727	174129 5833	29ESS5	137716	188.7
4	16372 2	36018	58333 32502	136291	226417	110916
5	292478	96579	－2502	35185	61523	142822
6	14947	160394	48750	14582	9259	35452
7	10756	7028		8126 81392	5369	393\％
8	1184	5192	380.4	21302	4334	3142
10	1791	561	3068	35243	10.41	2052
10	4471	813	3087 37	ことこも	18948	624
11 12	2.254	1336	37 623	1365	1374	994：
12	558	1008	628 1054	136	720	－93
13	375	214	E．3．	260	27	－5\％
14	346	300	E－	ここ，	1－7	1.
Total	708025	652286	LS	273	157	33
Spawning stock	708025	652286	794604	720309	478795	315869
（Age ≥ 6 ）	37206	177441	145222			
				6895	41529	26755

Table 23. North-East Arctic HADDOCK

Age	Mean Weights (kg)				
	70-79 WG	$\frac{\text { USSR }}{76-79}$	UK	$\begin{gathered} \text { AV. } \\ \text { USSR }+ \text { UK } \end{gathered}$	Adjusted for S.O.P. discrepancy
3	. 41	. 53	. 70	. 62	.66
4	. 62	. 95	. 99	. 97	1.03
5	. 97	1.61	1.77	1.69	1.79
6	1.59	2.23	2.27	2.25	2.38
7	2.33	2.65	2.76	2.71	2.86
8	2.72	3.15	3.15	3.15	3.33
9	3.56		3.5	3.5	3.70
10	4.41		3.74		4.41
11	5.40				5.40
12	6.70				6.70
13	7.40				7.40
14	8.00				8.00

1.bl. A. North-Enst Arctic COL and HADDOCK stock, catch, and fishing mortality values estimated on the basis of the Norweeian acoustic survey dati versus those estimated by VFA.

keiflet in thousani tonner

Figure 1. Distribution of Cod and Haddock during the Norwegian Acoustic Survey (1978-1980)

Figure 2. Catchability coefficient, q, for gillnets and handine in the Lofoten spawning fishery for COD 1962-80.

Figure 3. Catchability coefficient, q, for longline in the Lofoten spawning fishery for COD $1962-80$

Figure 5. The correspondence between catch per unit effort of 4-7 years old cod (tonnes per 100 tonne-hour trawling) by Finglish trawlers in Sub-area I, and the estimated stock size of $4-7$ year old cod.

Figure 6. The average fishing mortality on 4-7 year old cod versus the total international effort (UK units)

Figure 7. COD. Number of 3 year olds versus catch per unit effort of 3 year olds by UK trawlers in Sub-area. I.

Figure 2. COD. Number of 5 year olds versus catch per unit effort of 5 year olds by UK trawlers in sub-area I.

Figure 10. COD. Correlation of VPA recruitment estimates on USSR young fish survey for 1957-1974. 1975 year class is not included in the regression

No. of 3 year old (VPA) $\operatorname{cod} \times 10^{-6}$

Figure 1l. COD. Yield per recruit (at age 3) versus the average fishing mortality on 8 to 12 year olds

Figure 12. COD. Spawning st $=$ biomass per recruit (at age 3) vel s the average fishing mortality on 8-12 year olds.

Figure 13. HADDOCK. Average fishing mortality on $3-6$ year olds versus the total
international effort (in UK units) from final VPA run
Figure 13. HADDOCK. Average fishing mortality on 3 - 6 year olds versus the total
international effort (in UK units) from final VPA run

Figure 14. HADDOCK. Correlation of numbers of 3 year olds (from VPA)
and USSR young fish surveys for the year classes 1957-1974.

Figure 15. HADDOCK. Yield per recruit (at age 3) versus fishing mortality on 7 years and older fish.

$$
\bar{F}_{7-14}
$$

Figure 16. HADDOCK. Spawning biomass per recruit (at age 3) versus fishing mortality on 7 years and older fish.

[^0]: *) Provisional figures.

[^1]: 2) Estimated catch included in other countries' catches.
[^2]: * Provisional figures

[^3]: * Provisional figures.

