C.M.1980/G: 8
Demersal Fish Committee

REPORT OF THE NORTH SEA ROUNDFISH WORKING GROUP
 Copenhagen, 14 - 18 April 1980

[^0][^1]1. PARTICIPATION AND TERMS OF REFERENCE 1
2. DATA BASE 1
3. NORTH SEA COD 2
3.1 Catch Trends 2
3.2 Age Composition 2 2
3.3 Recruitment 3
3.4 Weight at Age 3
3.5 Fishing Mortality and Fishing Effort (VPA) 3 3
3.6 Spawning Stock Biomass 4 4
3.7 Yield per Recruit 4
3.8 Catch Predictions 4
4. COD IN DIVISION VIa 4
4.1 Catch Trends 4
4.2 Age Composition 5
4.3 Recruitment 5
4.4 Weight at Age 5
4.5 Fishing Mortality and Fishing Effort (VPA) 5
4.6 Spawning Stock Biomass 5
4.7 Yield per Recruit 6 6
4.8 Catch Predictions 6 6
5. COD IN DIVISION VIb 6
6. COD IN SUB-AREA VII 6
6.1 Cod in Divisions VIId and VIIe 6
6.2 Cod in Divisions VIIb,c and VIIg-k 7
7. NORTH SEA HADDOCK 7
7.1 Catch Trends 7
7.2 Age Composition 7
7.3 Weight at Age 7
7.4 Fishing Mortality and Fishing Effort (VPA) 8
7.5 Recruitment 8 8
7.6 Spawning Stock Biomass 9 9
7.7 Yield per Recruit 9
7.8 Catch Predictions 9
8. HADDOCK IN DIVISION VIa 10
8.1 Catch Trends 10
8.2 Age Composition 10
8.3 Weight at Age 10
8.4 Fishing Mortality and Fishing Effort (VPA) 10
8.5 Recruitment 11 11
8.6 Spawning Stock Biomass 11
8.7 Yield per Recruit 11
8.8 Catch Predictions 11
Table of Contents (ctd) Page
9. HADDOCK IN DIVISION VIb 12
10. HADDOCK IN SUB-AREA VII 12
11. NORTH SEA WHITING 12
11.l Trends in Landings 12
11.2 Age Compositions 12
11.3 Recruitment 13
11.4 Weight at Age 13
ll. 5 Fishing Mortality and Fishing Effort (VPA) 13
ll. 6 Spawning Stock Biomass 13
ll. 7 Yield per Recruit 13
12. 8 Catch Predictions 14
13. WHITING IN DIVISION VIa 14
12.1 Catch Trends 14
12.2 Age Composition 14
12.3 Recruitment 14
12.4 Weight at Age 15
12.5 Fishing Mortality and Fishing Effort (VPA) 15
12.6 Yield per Recruit 15
12.7 Catch Predictions 15
12.8 Whiting in Division VIb 15
14. WHITING IN SUB-AREA VII 15
13.1 Whiting in Divisions VIId and VIIe 15
13.2 Whiting in Divisions VIIb,c and VIIg-k 16
Tables 3.1-13.2 17-71
Figures 3.1 - 12.3 72-89
Annex l: Revisions to Historical Data Sets for Haddock and Whiting in the North Sea 90
Annex 2: General Management Considerations, by P Sparre 93

1. PARTICIPATION AND TERMS OF REFERENCE

1.1 Participants

D W Armstrong
H B Becker
T Benjaminsen
R Boddeke
N Cloet
J P Hillis
B W Jones, Chairman
J Lahn-Johannessen
F Lamp
G Lefranc
P Lewy
C T Macer
F M Serchuk
P Sparre
G Wagner
V Nikolaev, ICES Statistician, also attended the meeting.

1.2 Terms of Reference

At the 1979 Statutory Meeting, it was decided (C.Res.1979/2:38) that the North Sea Roundfish Working Group should meet at ICES headquarters from 14-19 April 1980 to:
"assess TACs for 1981 for cod, haddock and whiting in Sub-areas IV, VI and VII (excluding Divisions VIIa, VIIf and VIIg). The Working Group should also consider what additional data would be required to provide more realistic sub-divisions of the total TACs for these species for Sub-area VI between Divisions VIa and VIb".
2. DATA BASE

The data, on which all the analytical assessments are based, are the age compositions of the catches. Where appropriate, national age compositions are summed for each component of the fishery (human consumption, industrial and discards), these sub-totals, which may be raised to take account of catches by countries for which age compositions are unknown, are then summed to give age compositions as total numbers caught by all countries combined for each stock. This data base for most stocks extends back to 1960. However, detailed examination of the historic data series has shown that they were not consistent over the whole time period. In particular, improvements in data collection in recent years have resulted in more extensive data becoming available for the industrial fisheries and for discards. Thus, whereas in recent years the age compositions included industrial by-catches and discards, these were not included for all countries in the earlier years, when such data were not available. In addition, it appears that there have been variations in the method of processing the age composition data from year to year.

A start was made during the last year to revise the catch age composition data for the main stocks. However, this is a formidable job, and decisions have to be made on handling the data which require consultation between members of the Working Group to ensure a consistent agreed treatment for the various stocks. To enable this work to be completed, the Working Group recommends that a special meeting of the Group be convened late in 1980 to complete the revision of the age composition data base.
During the last year, it has been possible to make some improvements for some of the earlier years to the estimates of industrial by-catches and of discards. The resultant revised age compositions have been used in the assessments made at this meeting. As a consequence, there are a number of changes in the estimates of year class strengths and of fishing mortality on the younger age groups in some of the earlier years. There are likely to be further changes after the completion of the revision of the data base. The implications of these changes are discussed in the relevant sections of the report.
With regard to the data for 1978 and 1979, it is believed that the official statistics of catches did not for all countries truly reflect the quantities of fish that had been landed. Where this problem has occurred, the official statistics are given in the main part of the tables of nominal catches, and "corrected" figures representing what the Group considered to be the best estimates of total catches are given in the last line of the tables.

3. NORTH SEA COD

3.1 Catch Trends (Table 3.1 and Figure 3.1.A)

Provisional landings in 1979 of 228000 tonnes were 13% less than in 1978 and slightly below the ACFM-recommended TAC of 247000 tonnes agreed between EEC and Norway. In addition, there were discards estimated at about 15000 tonnes in 1979. The relatively high level of landings was largely maintained by the above-average contribution of the abundant 1976 year class.

3.2 Age Composition

For 1979, provisional age composition data for human consumption landings
based on sampling for length and age were provided by Belgium, Denmark, England, France, Netherlands and Scotland. For the latter country an annual estimate was provided based on data for the period January to June. The Federal Republic of Germany commenced age and length sampling of North Sea cod in the last quarter of 1979. Her age compositions for the first three quarters were derived from length compositions estimated from market category data and Dutch age/length keys. Norwegian consumption landings were assumed to have the same age composition as English landings from sample area 1.
Estimates of quantities discarded were provided by England, Netherlands and scotland, and an age composition provided by the latter country was applied to the two former countries' data. As explained below, the discard data were excluded from the VPA input.
For the industrial fisheries by-catch, estimated quantities were provided by Norway and Denmark. Norway also provided quarterly length data and these were converted to age compositions using appropriate English and Scottish age/length keys.

An inspection of the data base prior to the meeting had indicated
that there were inconsistencies, particularly with respect to by-catches in the small-mesh fisheries and to discards in the human consumption fisheries. It now appears that the latter are more important quantitatively than had been previously indicated (Table 3.2), and it is apparent that a revision of the whole data base back to the earliest year (1963) is urgently needed.
Such a revision was not possible at the meeting, but such corrections as were possible were made. These corrections related to the years 1974 to 1978 and they comprised the removal of discards and the inclusion of industrial by-catches. These changes mean that the data base is now more consistent than before, but the exploitation pattern indicated is incorrect in that the exploitation on younger age groups (principally age l) is underestimated.

3.3 Recruitment

Estimates of 160 million and 208 million at age 1 for the 1978 and 79 year classes respectively were available from the IYHS results (Table 3.3). A value for average recruitment of 207 million was derived from VPA, using the period $1963-76$ and this value was used for the 1980 year class recruiting in 1981.
The latest year class for which we have information (1979) appears to be about average. The 1976 year class is now indicated as slightly less abundant than was previously thought, though it is still obviously a strong one. Year classes 1977 and 1978 appear to be below average (Figure 3.1.B).

3.4 Weight at Age

Data for 1979 were available for the consumption fisheries from England, Denmark, France and Scotland. A weighted mean set of values gave a sum of products (SOP) of numbers x mean weight which differed from the reported landings by only 4%. For industrial by-catch landings, data were available from Norway and, when applied to all industrial landings, they gave an SOP discrepancy of only 3\%. No data for 1979 were available for discard mean weights.
For use in catch prediction the mean weights were adjusted by the percentages mentioned so that weights of landings and SOP weights were the same.

3.5 Fishing Mortality and Fishing Effort (VPA)

A constant value of $M=0.2$ was assumed throughout. A reference level VPA was obtained by firstly using the same input F values for 1979 as were used at the 1979 meeting. The average F values for the period 1974-76 were then introduced iteratively until they stabilised; these F values were used. as a reference set.
To determine how F values in 1979 might differ from those in the years 1974-76, data on fishing effort and cpue were analysed and an index of total international effort calculated, as described in Appendix I of last year's report (ICES, Doc. C.M.1979/G:7). Improved data were available, for varying time periods, from Belgium, England, France, Netherlands and Scotland for various gears, and these are shown in Table 3.4.
Two indices of relative international effort were calculated, one using English and Scottish data and another using all available data. These indicated that effort in 1979 was 22% and 11% higher, respectively, than the 1974-76 average, but neither set of data correlated significantly
with VPA weighted average F values, nor did they show any consistent trends. It was decided, therefore, that the effort data provided no justification to alter the reference level F values. The F value for age l was adjusted to produce the stock number of the 1978 year class as estimated from the IYHS.
The new VPA (Tables $3.5-3.7$) suggests that F values increased in the early 1970s and have remained high. F values on age 1 are almost certainly underestimated, due to omission of discard data.

3.6 Spawning Stock Biomass

The age at first maturity was taken to be knife-edged at age 3, based on the work of Oosthuizen and Daan (1974), who showed that 48% of female cod are mature at age 3 in the southern North Sea. The present value is considered to be more realistic than the age of 4 , as used in last year's report.

The trend in spawning biomass is shown in Figure 3.1.C. This indicates a decline from 1973, which is arrested in 1979 and 1980 due to the strong 1976 year class recruiting to the spawning biomass. The data of Oosthuizen and Daan are in the form of a maturity ogive, which will be used to replace knife-edge recruitment to the spawning stock as soon as computational facilities permit.

3.7 Yield per Recruit

Curves for yield per recruit and spawning stock biomass per recruit are shown in Figure 3.l.D. The data used (exploitation pattern, mean weight per age group, $M=0.2$) are the same as those in the catch prediction input (Table 3.8). As previously explained, the exploitation pattern excludes discards, and it is expected that a revised data base which includes them would alter the exploitation pattern and mean weight data (and hence the yield per recruit curve) significantly.

3.8 Catch Predictions

The input data which relate to the 1979 landings but which exclude discards, are given in Table 3.8. Inclusion of discard data would modify the catch prediction but the extent to which this would happen cannot be predicted without a revision of the whole data base.
The detailed results of catch predictions are given in Table 3.9 and Figure 3.2. In Option A, it is assumed that the TAC for 1980 of 200000 tonnes is adhered to and this implies a reduction of F in 1980 of 14% compared to 1979. A full range of relative F options is then shown for 1981, including the resulting spawning stock biomass values in 1982.
In Option B there is no reduction in F in 1980 or 1981, while in Option C there is a 10% reduction in 1980 and no further change in F in 1981. In Option D, a 10% reduction in F in 1980 is followed by a further 10% reduction in 1981.

The F values relating to the industrial fisheries were assumed to remain constant for all predictions over the period 1979-81, as it is not expected that setting cod TACs would affect the level of industrial fishing.

4. COD IN DIVISION VIa

4.1 Catch Trends (Table 4.1, Figure 4.1.A)

Provisional landings in 1979 of 16078 tonnes were 19% above those in 1978 and well above the ACFM-recommended TAC of 9200 tonnes (Division VIa only). Landings over the past 10 years have fluctuated between about 11000 tonnes and 18000 tonnes, but no marked trend is apparent.

4.2 Age Composition

Data for 1978 were updated and a provisional age composition for 1979 was prepared. Age compositions were provided by England, Ireland, and Scotland, the latter country's data being estimated from the January-June period. France provided quarterly length data which were converted to an age composition using Scottish age/length keys. Discard data were available for the first time from England (total weight) and Scotland (weight and age composition), relating to the years 1978 and 1979. However, the quantities are fairly small and, for the sake of consistency in the data set, were not included in the VPA input data.

4.3 Recruitment (Figure 4.1.B)

No indices of recruitment are available for this area and thus year classes 1978, 1979 and 1980 were assumed to be average. This was calculated at 6872×103 at age 1 , based on the years $1967-76$ inclusive. VPA data (Table 4.5) indicate that year classes 1974 and 1976 were particularly abundant.

4.4 Weight at Age

In the absence of any revised data, the same set of mean weights as was used last year was adopted. This gave an SOP value which was only 6% different from the reported landings. The mean weights were adjusted by the same percentage in the prediction programme, so that the SOP and weight landed were the same.

4.5 Fishing Mortality and Fishing Effort (VPA)

A reference set of fishing mortalities in 1979 which corresponded to the average for the period 1974-76 was obtained in the manner described in Section 3.5. Data on fishing effort and cpue, which were available from England, France and Scotland, were analysed as described in last year's report (Table 4.2). The data suggest an increase of about 20% in 1979, relative to the period 1974-76. However, the relative effort index does not correlate significantly with VPA F values and it was therefore decided not to adjust the 1979 F values. The results obtained from a similar analysis for Division VIa haddock, which is taken with cod in a mixed fishery, also suggest that F in 1979 should be equal to F for the period 1974-76.
The F value at age 1 in 1979 was adjusted to produce a population size corresponding to average recruitment. This was because the reference level F value for this age is influenced by a high value in 1976 and the resulting recruitment indicated in 1979 is correspondingly low.
Results of VPA are given in Tables 4.3-4.5.

4.6 Spawning Stock Biomass (Figure 4.1.C)

The age at first maturity was taken to be 3 years, the same age as used for the North Sea. Knife-edge recruitment to the spawning stock was assumed in the absence of a maturity ogive.
After a decline in spawning biomass from 1968 to 1970, it has subsequently remained at a fairly steady level. The increase in 1979 is associated with the recruitment to the spawning stock of the strong 1976 year class.

4.7 Yield per Recruit

Curves for yield per recruit and spawning stock biomass are shown in Figure 4.l.D. The data used (exploitation pattern, mean weight per age group, $M=0.2$) were the same as those used in the catch prediction (Table 4.6).

4.8 Catch Predictions

The input data (landings, mean weights, F values per age group, for year 1979) are given in Table 4.6. The results of the catch prediction are given in Table 4.7. The predicted catch in 1980, assuming no change in fishing effort from 1979, is 14800 tonnes, whereas the ACFM-recommended TAC is 10900 tonnes (Division VIa only). Since the TAC in 1979 was greatly exceeded by the landings, it was considered unlikely that in 1980 it would be possible to reduce effort to the extent necessary to just take the TAC. The predictions for 1981 therefore assume that F in 1980 will be the same as in 1979.
Figure 4.2 shows the relationship between F in 1981 (relative to 1979) and predicted catch/spawning stock biomass. If F remains constant in 1981, the predicted catch is 12600 tonnes. However, attention is drawn to the decline in spawning stock biomass over the period 1979 to 1982 if F remains constant, and under these circumstances the spawning stock biomass in 1982 would be expected to fall to 62% of the 1979 level.
5. COD IN DIVISION VIb (Table 5)

There were no age composition data for catches of cod taken in Division VIb and no analytical assessment was possible. If a TAC is set for the whole of Sub-area VI some additional allowance will need to be made for Division VIb. As reported catches from Division VIb are so low, there seems to be no point in attempting to assess data for this area separately.
6. COD IN SUB-AREA VII
6.1 Cod in Divisions VIId and VIIe
6.1.1 Catch trends

Table 6.1 gives landings since 1970. Mean value of landings during the last ten years is 5150 tonnes with, however, ll 293 tonnes in 1978 which is apparently due to the abundant 1976 year class.

6.1.2 Age composition

French age compositions are available from 1974 for Division VIId only; they represent each year nearly 70% of the international catch.
In numbers, cod of ages 1,2 and 3 are predominant and they represent 90% of the number of cod landed.

6.1 .3 VPA

In using the French age composition raised to total catch in Division VIId a VPA was attempted (Table 6.3). A trial VPA was carried out using the same input F values as were used at the 1979 meeting for North Sea cod. The average values for the period 1974-76 were then computed and reintroduced iteratively as input F values until they stabilised. After four runs the results in Table 6.3 were obtained.

No data on fishing effort are available to enable a correction to the 1979 input F values. Similarly, no recruitment data are available.

However, the recruitment at age 1 in Table 6.3 shows the same variations as in the North Sea except for the year 1975. This is probably due to emigration of cod from the North Sea. This emigration is also probably connected with a hydrographical component. Migration between Divisions VIId and VIIe and the North Sea may significantly bias estimates of fishing mortality for Division VIId.
In view of the above, no analytical assessment was carried out.
6.2 Cod in Divisions VIIb, c and VII $g-k$ (Table 6.2)

Landings since 1970 show a decline from about 5600 tonnes in 1970-72 to nearly 3000 tonnes in 1977-79.However, in 1976 and 1975 a peak was observed, probably associated with the 1974 year class.
The bulk of the catch is taken by France, about 75% calculated on the ten years' basis.
No data are available for an analytical assessment to be done.

7. NORTH SEA HADDOCK

7.1 Catch Trends

Total international landings and total international catch (including estimated discards and Norwegian industrial by-catch) are shown in Table 7.1. Figure 7.l.A shows the estimated total landings (discards excluded) for the period 1965-79.

7.2 Age Composition

The historical data set was extensively revised during the past year to take account of the following factors:

1) Amendments to Bulletin Statistique data and arithmetic errors,
2) Estimates of total international discards by the human consumption fishery,
3) Estimation of the age composition in the Danish industrial fishery for the period 1960-71.
A description of the methods involved in making this revision is given in Annex 1.

For 1978 Belgium, England, France, Netherlands and Scotland provided age composition data on human consumption landings. These accounted for 93% of the human consumption landings. Denmark and Norway provided age composition data on industrial by-catch, accounting for 100% of reported landings of the fishery. Netherlands and Scotland provided age composition data on discards which were raised to total discards for all nations.
For 1979 Belgium, England, France, Netherlands and Scotland provided data on human consumption landings accounting for 96% of this component of the fishery. Denmark, Norway and Scotland provided age composition data on industrial by-catch accounting for 100% of the reported landings. Scotland provided age composition data on discards which were raised to total discards for all nations.

7.3 Weight at Age

Mean weight at age in the human consumption, discard and industrial by-catch components of the fishery are shown in Table 7.7.

For 1978 the SOP for the human consumption fishery exceeded the reported landings by 8%, while that for the industrial by-catch exceeded the reported landings by 11%. The estimated total weight of haddock discarded was 57000 tonnes.
For 1979 the SOP for the human consumption fishery exceeded the reported landings by 6%, while that for the industrial by-catch was 31% lower than the reported landings. The estimated total weight of haddock discarded was 36000 tonnes.
Catch at age data for the industrial by-catch and human consumption landings were adjusted throughout the total data set to compensate for the SOP discrepancies.

7.4 Fishing Mortality and Fishing Effort (VPA) (Tables 7.3-7.5)

A value of $M=0.2$ was assumed for all ages.

7.4.1 F at age in 1979: ages 2 to 10

The VPA was initiated using the same input F values as those used at the 1979 meeting. The average values of F at age for the period 1974 to 1976 were then computed and reintroduced iteratively as input F values for the next run.
Weighted mean F values for ages 1 and older for the period 1963-76 were then plotted against corresponding indices of total international fishing effort (see Table 7.2 for derivation of index of effort). No clearly defined relationship was discernible from this plot. However, the effort index indicated that the 1979 level of effort should be somewhat lower than that in the period 1974 to 1976. On this basis the values of F at ages 2 to 10 obtained by the iterative technique described above were reduced by 15% and used as input F values for the final VPA.
7.4.2 F at age in 1979: ages 0 and 1
F at age I was adjusted to produce the IYHS estimate of the 1978 year class at age 1 mentioned in Section 7.5. Similarly, F at age 0 was adjusted to produce a number of fish in the sea at age 0 in 1979 such that the number of survivors at age 1 at the start of 1980 is equal to the IYHS estimate of the 1979 year class in 1980 .

7.5 Recruitment

Data on recruitment of North Sea haddock were available from the IYHS for 1979 and 1980 (Table 7.6, Figure 7.2). The estimated level of recruitment at age 1 in 1979 is 1576 million, while that for 1980 is 2232 million.
As stated in paragraph 7.4 .2 F at ages 0 and 1 in 1979 was adjusted to agree with these data. The implied number of fish in the sea at age 0 in 1978 and 1979 are 2203 million and 3011 million respectively.
A value of 2088 million fish at age 0 has been assumed for making prediction runs, this value being the average number of 0 groups from the VPA for the period 1960-76, excluding the very high values for the 1962 and 1967 year classes.
Figure 7.l.B shows the historical series of recruitment at age 1 from 1960-79.
It should be noted that the revision to the historical data sets resulted in greatly increased numbers of young fish being input to the VPA. This has had the effect of greatly increasing the absolute values of recruitment at age l; relative values of recruitment are largely unchanged.

7.6 Spawning Stock Biomass

Historical spawning stock biomass levels (age groups 2 and older) are shown in Figure 7.l.C. Biomass was very high in 1969 when the very abundant 1967 year class recruited to the spawning stock. Spawning stock biomass levels fluctuated between 300 and 600 thousand tonnes in the period 1971 to 1977. Current spawning stock biomass level is 200000 tonmes, which is only slightly in excess of the lowest levels on record,which occurred in 1962 and 1963.

7.7 Yield per Recruit

The yield and spawning stock (age groups 2 and older) biomass per recruit curves are shown in Figure 7.l.D. Current levels of F are far in excess of $F_{\text {max }}$.

7.8 Catch Predictions

Input data for the catch predictions are given in Table 7.7. The TAC for 1979 (83000 tonnes) was exceeded by about 5000 tonnes. The estimated weight of haddock discarded in 1979 was about 36000 tonnes.
The TAC for 1980 is 69000 tonnes. Assuming that the industrial fishing effort will not change in 1980, the results of the current assessment imply that the human consumption fishery will have to reduce its fishing effort on haddock by more than 60% if the TAC is not to be exceeded. (It should be noted that, in the case of haddock, assumptions involving the level of F in the industrial fishery are relatively unimportant since that fishery does not currently account for a large proportion of the total haddock landings.)
The difference between current predictions of the 1980 catch and last year's prediction has arisen mainly as a result of including total international discards for the period 1960 to 1979 and revised estimates of Danish industrial age compositions for the period 1960 to 1971 in the assessment. These changes in the data set increased the estimates of catches of young fish so that estimates of absolute recruitment level have increased substantially. Three effects result from this change:

1) The average recruitment level used for prediction is increased;
2) The relationship between IYHS indices and VPA recruitment estimates has changed (but is still highly significant), and IYHS indices now give higher estimates of recruitment than would previously have been the case;
3) The F at age values estimated for 1979 are higher than those which the Working Group in 1979 assumed would be the case in 1980.
In addition to these changes, it appears that the 1978 and 1979 year classes are of above average abundance.
The net result of these factors is to predict substantially higher catches in 1980 than were predicted last year.
The Working Group noted, however, that F in 1979 is far in excess of $F_{\max }$ and suggested that some reduction in F might be brought about in 1980. The predicted landings for 1980 on the assumption that human consumption F in $1980=0.8 \mathrm{x}$ human consumption F in 1979 and industrial F in 1980 equals industrial F in 1979 and is 130000 tonnes (Table 7.8). Table 7.8 and Figure 7.3 show a
range of catch predictions for 1981 and associated spawning stock biomass predictions for 1982, based on the afore-mentioned contingency for 1980.

The Group would like to stress, however, that the changed predictions resulting from the changes in the data base have given rise to, hopefully temporary, doubts about the validity of the assessment. This should be borne in mind when deciding on TACs for 1981.

8. HADDOCK IN DIVISION VIa

8.1 Catch Trends

Landings of haddock from Division VIa are shown in Table 8.1 and Figure 8.1.A. Landings have declined from 19000 tonnes in 1977 to about 14000 tonnes in 1979.

8.2 Age Composition

The historical age composition data set for the period 1965 to 1977 was amended to take into account a number of arithmetical errors and also various amendments to landings data. The resultant data were very similar to those used in last year's report.
For 1978 and 1979 age composition data were submitted by England, Scotland and Ireland. France submitted length frequency data which were converted to age frequencies using Scottish age/length keys. The age composition data thus obtained accounted for 99% of total weight landed.
Scottish discard age composition data were available for 1978 and 1979. The estimated weights of haddock discarded by English vessels for the period 1972 to 1979 were also available. No attempt was made to include discard age frequencies in the input data set used for VPA, since this would make the data for 1978 and 1979 incompatible with those for earlier years.

8.3 Weight at Age

The weight at age data used in prediction of catch and biomass and also to estimate historical biomass data are shown in Table 8.7. These values are unchanged from those used last year.
The sum of products of numbers landed with mean weight at age differed from the reported landings by 2% for 1978 and 18% for 1979. The numbers were adjusted by the same percentage in the prediction program, so that the SOP and weight landed were the same.
8.4 Fishing Mortality and Fishing Effort (VPA) (Tables 8.2-8.4) Natural mortality rate was assumed to be 0.2 for all ages.

8.4.1 Input F values for 1979 ages 3 and older

Trial VPA runs were initiated using the same set of input F values for 1979 as those used in the final VPA in last year's Working Group. Average values of F at age for the period 1974*76 were then calculated, smoothed slightly and were used to initiate the next run. This procedure converged to a constant result after three iterations. Weighted mean F values for ages 2 and older for the period 1965-76
were then regressed against an index of total international effort derivation of which is shown in Table 8.5 (computational details of this index are shown in the Appendix to last year's report.) The correlation coefficient for this data set is 0.65, which is significant at the 5% level. The regression line is shown in Figure 8.2. It can be seen from this figure that the weighted mean values of F for the period 1977-79 are in good agreement with data for earlier years. On this basis, the mean F at age values for the period 1974-76 were used as input for the final VPA for ages 3 to 8 。

8.4.2 Input F values for 1974, ages 1 and 2

For ages 1 and 2, input F values in 1979 were adjusted to produce the recruitment values at age 1 of the 1977 and 1978 year classes mentioned in Section 8.5.

8.5 Recruitment

Estimates of Division VIa haddock recruitment at age las from VPA are shown in Table 8.6 and Figure 8.l.B.
In recent years the 1974 year class was of above average abundance, while the 1975 and 1976 year classes were of below average abundance.
The abundance of the 1978 and 1979 year classes at age 1 was estimated using the relationship between North Sea and Division VIa recruitment values shown in Figure 8.3. The estimated recruitment values are 53.7×10^{6} and 94.5×10^{6} respectively.
The average recruitment at age 1 for the period 1965-77 (year classes 1964 to 1976) excluding the very abundant 1967 year class is 44.9×10^{6}.
8.6 Spawning Stock Biomass

Spawning stock biomass (age 2 and older) data are shown in Figure 8.1.C. Biomass was about 140000 tonnes in the period 1969 to 1971, when the very abundant 1967 year class was present in the stock. Since then, biomass has declined to a level of about 53000 tonnes.
8.7 Yield per Recruit

Yield and spawning stock biomass per recruit curves are shown in Figure 8.l.D. The yield per recruit curve has a maximum at a value of $F=0.6$. The current estimate of F in 1979 is 0.5 . It should be remembered, however, that no account of mortality due to discarding is included in this yield per recruit curve.

8.8 Catch Predictions

Input data for the catch predictions are shown in Table 8.7. The recommended TAC for Division VIa for 1979 was exceeded by 56%. In the light of this result, the Group assumed that F in 1980 will be equal to F in $1979(0.50)$. The predicted catch in 1980 is 13100 tonnes (Table 8.8). This is considerably in excess of predictions made for 1980 at last year's meeting and is probably due to the revised estimate of the 1979 year class which has been assessed to be of above average abundance.
Figure 8.4 and Table 8.8 show catch predictions for 1981 and spawning stock biomass predictions for the start of 1982 .
11.2 Age Composition

The historical data set was revised to take account of the following
factors:

1) Amendments to Bulletin Statistique data and arithmetical errors;
2) Estimation of total international discards by the human consumption fishery (see Annex l).

The age compositions for landings in 1978 were updated and the 1979 input catch at age data for VPA are given in Table ll.3. Age compositions of human consumption fisheries, industrial trawl landings and discards are presented in Table ll.7. The catch in numbers was nearly 45% above the 1978 level, due mainly to the increased contribution from 1 and 2 group fish.
For the human consumption fisheries in 1979 data on age compositions were available from Belgium, England, France, Netherlands and Scotland, accounting for 98% of the landings.
Age compositions for industrial trawl landings were provided by Denmark, Norway and Scotland accounting for all reported landings. Discard estimates including numbers per age group and mean weight at age were submitted by Scotland and total weight of discards by England. Assuming that Dutch discards were as estimated in 1978 (which were estimated from observations made in 1977), and using the weight at age data from last year, reported discards were raised to total discards for all countries.

11.3 Recruitment (Table 11.6 and Figure ll.l.B)

VPA recruitment figures correlated with recruitment indices derived from the IYHS for the years 1964-76 indicate that the year classes 1977, 1978, and 1979 at 1 year of age were 2047×10^{6}, 1932×10^{6} and 2408×10^{6}, respectively (Table 11.6). These values are close to the mean of 2213×10^{6} for the period 1959-76.

1l.4 Weight at Age

The weight at age data for the human consumption fisheries, the industrial trawl landings and the discards are presented in Table 11.7. The weight at age data for the human consumption fishery were those used last year adjusted by an SOP discrepancy of 4%. The data for industrial landings were based on observations provided by Denmark and Norway. Discard weight at age data were the same as last year.
11.5 Fishing Mortality and Fishing Effort (VPA) (Tables 11.3-11.5)

A value of $M=0.2$ was assumed for all age groups. A trial VPA was carried out using the same input F values as were used at the 1979 meeting. The average values for the period 1974-76 were then computed and reintroduced iteratively as input F values.
Relative fishing effort values were computed using the method described in Appendix 1 of the 1979 report. These values are shown in Table 11.2. The effort in 1979 appears to be only half of that in the reference period 1974-76. However, the figures of Table 11.2 are based on total landings whereas the effort data only refer to landings for human consumption. Further, landings for human consumption do not show the trend which is expected from the effort data. The Working Group, therefore, found it difficult to interpret the effort data, in terms of trend in fishing mortalities.
In order to make a proper analysis of the relationship between effort and fishing mortalities, estimates of effort in industrial fisheries must be taken into account, and relative effort calculation must be based on total catches (discards and consumption landings and industrial landings).
It was decided to assume the fishing mortalities for 1979 for the older age groups to be of the same magnitude as those for the period 1974-79. F values for 0 and 1 group were adjusted to produce the recruitment values at age 1 predicted from the regression of IYHS indices on VPA results.

11.6 Spawning Stock Biomass

Knife-edge recruitment at age 2 to the spawning stock was assumed in the absence of a suitable maturity ogive. After a decline from 1974 to 1977, the spawning stock biomass slowly increased in the following years to a level of 300000 tonnes in 1979. The mean level over the period 1974-79 is about 50000 tonnes higher than reported in the 1979 Working Group report (Figure ll.I.C) due to the revision of data on discards and industrial landings (see Annex l).

11.7 Yield per Recruit

Curves for yield per recruit and spawning stock biomass per recruit are shown in Figure 11.2 based on the exploitation pattern in 1979. As discards are estimated to constitute about 70% of the total catch in 1979, the yield per recruit curve should be treated with some
reservation, even if it is considered that the yield per recruit approach is a useful method.

Catch Predictions

Input data for catch predictions are given in Table ll. 7.
The present assessment indicates that to take the TAC for 1980 (105 000 tonnes) would require an effort reduction of about 45% in 1980 compared to that of 1979.
The Working Group considered such a reduction in effort to be unlikely. It was decided to assume a reduction by only 20% from the 1979 level for effort in 1980. The discrepancy between the results of this year's report and last year's report is caused by the revision of VPA input as explained in Annex l. In all prediction runs fishing mortalities caused by the industrial fisheries were assumed to remain constant and equal to those estimated for 1979, as TACs are not expected to be effective as a regulating factor for the industrial by-catches.
Predicted catches in consumption fisheries and industrial fisheries in 1981 are given in Table 11.8 for a range of $F_{81} / F_{7} 9$ values (for consumption fisheries), together with estimates of spawning stock biomasses at the beginning of 1982. Figure ll. 3 presents a graphical version of the predictions for 1981.
The Group would like to stress, however, that the changed predictions resulting from the changes in the data base have given rise to, hopefully temporary, doubts about the validity of the assessment. This should be borne in mind when deciding on TACs for 1981.

12. WHITING IN DIVISION VIa

Catch Trends (Table 12.1, Figure 12.1.A)
The downward trend in the catch apparent since 1976 showed a check in 1979, rising from 14677 to 16379 tonnes due to recruitment of the better than average 1977 year classes. This was mainly due to increases in the Scottish and Irish catches, whilst the French catch with a lower proportion of the younger age groups declined to 2640 tonnes from its uniformly high level of $3400-3700$ tonnes over 1976-78. Whilst a catch was estimated by the 1979 Working Group for Spain for 1978, no Spanish landings have subsequently been reported for 1978 or 1979.

Age Composition
Age composition data for 1978 and 1979 were available for Scotland, France and Ireland. Industrial fish landings in this area are very low and neither they nor discards were used in the assessment.

Recruitment

The year class strength in Division VIa during 1964 to 1977 is highly significantly correlated with that in the North Sea (Table 12.3 and Figure 12.2). Based on this, year class strengths for the 1978 and 1979 year classes were calculated at 81.5 and 110.9 million fish respectively at the beginning of the year in age group l. For the 1980 year class the mean value for 1964-77 of 96 million fish was adopted.

The values used by the 1979 Working Group were maintained unchanged, numbers being adjusted to obtain sum of products equal to reported landings; this involved use of factors of 1.09 and 1.19 for data of 1978 and 1979, respectively.
12.5 Fishing Mortality and Fishing Effort (VPA)

The F values adopted were based on the mean for years 1974-76 in the absence of the correlation between relative fishing effort (Table 12.4) and fishing mortality. In general, mean F values for fully recruited year classes have been in decline since 1972-73. Catch input data for VPA are given in Table 12.5 and calculated estimates of fishing mortality and stock size in Tables 12.6 and 12.7.

12.6 Yield per Recruit

The yield and spawning stock biomass per recruit curves evaluated on the basis of the present exploitation pattern (in 1979) are given in Figure l2.l.D. Spawning stock biomass is estimated for 2 year old and older fish.

12.7 Catch Predictions

Input data for catch predictions are given in Table 12.8, and the results in Table 12.9 and Figure 12.3.
A reduction of F values for 1980 to 55% of those for 1979 would be required to take the TAC recommended in 1979 (10 500 tonnes). The recommended TAC for 1979 was exceeded by 37%. In the light of this the Group assumed that F in 1980 will be equal to F in 1979 (1.2).

The predicted catch in 1980 is 16400 tonnes. This is considerably in excess of predictions made for 1980 at last year's meeting, when appreciably lower values of fishing mortality were assumed.

12.8 Whiting in Division VIb

There are no significant landings of whiting from Division VIb. Therefore a TAC calculated for Division VIa would be applicable to the whole of Sub-area VI.
13. WHITING IN SUB-AREA VII
13.1 Whiting in Divisions VIId and VIIe

Landings of whiting follow fluctuations similar to those in the North Sea. After declining from a peak of 11400 tonnes in 1975 to 9148 tonnes in 1978, they rose to 10665 tonnes in 1979 (Table 13.1). France has for some years taken in the region of 85\% of the landings and England nearly all of the rest, but in 1979 Denmark took 2572 tonnes (24.1%) compared to 7374 tonnes (69%) for France and 930 tonnes (9\%) for England. Existing data collected by England and France do not yet permit the use of VPA techniques, but it is hoped that this will become possible in several years.
13.2 Whiting in Divisions VIIb, c and VIIg-k

Fluctuations in landings of whiting have followed those in Division VIa closely since about 1974, decreasing, however, more sharply since 1976 when they peaked at 9715 tonnes, though they recovered more markedly between 1978 and 1979, when they rose from 5204 tonnes to 6701 tonnes (Table 13.2). From 1977 onwards, France (with 60-75\%) and Ireland (with 20-40\%) have together accounted for over 95% of the landings reported. Irish age at length data collected in recent years are not yet sufficient to permit application of VPA techniques to the material.

Table 3.1 Nominal catch (in tonnes) of CO1 n Sub-area IV, 1970-1979 (Data for: 0-78 as officially reported to ICES)

*) Prov. figs.
a) 1970-72 incl. IIIa
b) Incl. misc. products
c) Figs. from Norway do not incl.
Cod caught in Rec. 2 fisheries
d) Incl. discards
e) Incl. in IIIa

Table 3.2 Estimates of numbers of COD discarded in North Sea fisheries (Age groups 0-2)

Year	Countries Reporting	Number x 10-3 Discarded	Number Landed $)^{\text { }}$ 10-3
1974	EN	810	72780
1975	E N	8685	86030
1976	E N	2282	104023
1977	E N	26784	131400
1978	EN S	18828	193555
1979	EN S	79797	141389

1) Human consumption and industrial fisheries
E) England
N) Netherlands
S) Scotland

Table 3.3 North Sea COD. Estimates of Year class strength at l-year-old

Year Class	IYHS Index	VPA Number $\times 10^{-6}$
1962	-	104
1963	-	234
1964	16.0	222
1965	20.2	314
1966	28.5	283
1967	5.4	92
1968	6.5	86
1969	71.5	366
1970	85.0	469
1971	4.1	81
1972	37.7	162
1973	14.6	134
1974	9.7	234
1955	8.8	111
1976	40.3	414
1977	14.4	$173 *$ (average 1963-76=207)
1978	9.8	$160 *$
1979	26.4	$208 *)$

1) Unadjusted arithmetic mean number per hour per statistical rectangle
Year classes 1964-76: VPA $=$ IYHS $\times 2.889+131.8$

$$
r=0.688 \quad P=0.01
$$

*) Predicted from regression

Table 3.4 Catch and Effort Data in sel ted NORTH SEA COD fisheries

Table 3.4. cont'd

	Netherlands								
	Beamtrawl			Trawl			Pairtrawl		
	C	E	CPUE	c	E	CPUE	C	E	CPUE
1970	6428	721	892	12964	185	7014	5401	28.6	18887
1971	16110	824	1954	22832	177	12891	6950	36.5	19046
1972	13117	829	1583	26702	187	14244	7502	30.9	24286
1973	10482	942	1113	11116	167	6656	4000	23.4	17115
1974	9890	895	1105	9696	185	5238	4352	31.1	13988
1975	10981	880	1248	9904	164	6036	2204	24.4	9036
1976	7380	769	960	10708	134	7965	3933	23.6	16638
1977	11051	698	1582	15010	129	11627	3988	15.3	26006
1978	13067	595	2195	27674	166	16661	7984	27.2	29399
1979	10457	639	1636	16465	146	11312	7354	29.1	25289

RHILATIVE FISHING EFFORT NORTH SEA COD

	Rot. Int. Catch	Weighted RCPUE 1)	Weighted RCPUE 2)	Relative Eff. 1)	Relative Fff. 2)
1963	105921	.62		.65	
1964	121550	.63		.74	
1965	179469	.74		.93	
1966	220033	.89		.95	
1967	249803	1.01		.95	
1968	285314	1.16		.94	
1969	199258	.96		.79	
1970	224745	.88		.98	
1971	320564	.93		1.32	
1972	347055	1.24		1.07	
1973	234466	1.06	.92	.85	.97
1974	211291	.95	.80	.85	1.01
1975	186	453	.89	.77	.80
1976	213442	.95	.84	.86	.93
1977	185118	.68	.69	1.04	1.03
1978	261427	1	1	1	1
1979	252355	.95	.89	1.02	1.08

1) Based on Scottish and English Data
2) Based on all countries

Table 3.5 North Sea $C O D$. Input catch data for VPA.

AGE	1968	1969	1970	1971	1972	1973
				0	0	0
0	0	0	6 47304	61347	6317	33809
1	3941	5109	47304 27373	149128	195922	30551
2	79585	23009	27363 16392	14385	43709	52648
3	36676	31590	12092	. 5952	5095	13163
4	11078	14959	12179	6028	2406	1905
5	5623	5190	E6E7	2334	2802	1038
6	1275	2842	1051	760	1449	988
7	623	688	$\underline{207}$	394	545	486
8	314	379	201	182	339	38
9	154	170	13 E	82	102	41
10	103	54 110	46	53	5	64
11	21 9	110 17	24	26	11	73
$12+$	S					
AGE	1974	1975	1976	1977	1978	1979
			174	112	0	0
0	254	274 35643	6581	79909	31033	42466
1	16165	35643	97268	51379	162516	98923
2	56361	50113	97668 19345	22560	14241	39396
3	10846	17575	19345 6469	4 4170	7934	3465
4	14529	4217	6463 1415	1748	2E18	2777
5	4131	E272	-257	595	842	657
6	83 c	1608	2657 730	811	343	336
7	430	330	730 96	273	320	102
8	357	155	54	187	118	110
9	279	170	5	23	33	31
10	EE	E	14	8	15	2
11	25	34	14	58	19	13
$12+$	26	8	1.4	58		

Table 3.6 North Sea COD.
Fishing mortalities from VPA ($M=0.2$).

Table 3.7 North Sea COD. Stock size in numbers from VPA.

AGE	1968	1969	1970	1974	1972	1973
0	104577	447552	572511	98861	198475	163940
1	S20EE	85620	$36 E 424$	468732	80941	162498
2	173032	66416	6.5490	257380	328492	60571
3	82710	70591	33755	29140	78175	94939
4	25621	34946	29572	13011	11027	25119
5	13490	11074	15238	13318	5337	4478
E	3565	E01E	4433	E341	5519	2220
7	1584	1777	2383	1876	3048	2021
8	927	1065	839	1017	856	1202
9	377	478	533	501	480	218
10	304	171	239	238	247	93
11	51	157	91	75	122	111
12	12	23	31	34	14	95
AGE	1974	1975	1976	1977	1978	1979
0	285644	135938	505681	303268	197432	61543
1	134222	233636	111049	413860	248194	161643 175235
z	102633	95324	159186	84981	266941	74299
3	22352	33867	33402	44002	15918	6969
4	30883	8623	12064	10152 4116	4582	5957
5	8839	12315	3298	1435	1807	1423
E	1963	3548	4492	1435	643	728
7	891	864	1469	1685 552	640	221
8	773	346	4145	251	208	238
9	550	314	145	70	41	$E 7$
10	144	201	106	39	37	4
11	40	89	18	75	2d.	17

Table 3.8 NORTH SEA COD. 1979 Input data for catch prediction

	Consump	ion Land	ngs	Dis	ards		Industr	al Land	ings		Total	
Age	$\begin{aligned} & \text { Catch No } \\ & (000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F	$\begin{aligned} & \text { Catch No } \\ & (000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F	$\begin{aligned} & \text { Catch No } \\ & (000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F	$\begin{aligned} & \text { Catch No } \\ & (000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F
1	41505	. 533	. 332	No d	ta		961	. 208	. 008	42466	0.526	. 34
2	94951	. 984	. 912				3972	. 494	. 038	98923	0.964	. 95
3	39184	2.306	. 855				212	1.604	. 005	39396	2.302	. 86
4	3456	4.158	. 778				9.3	3.084	. 002	3465.3	4.155	. 78
5	2776	6.409	. 710				0.8	6.419	. 000	2776.8	6409	. 71
6	657	8.229	. 700							657	8.229	. 70
7	336	9.810	. 700							336	9.810	. 70
8	102	10.399	. 700							102	10.399	. 70
9	109	12.067	. 700							109	12.067	. 70
10	31	12.877	. 700							31	12.877	. 70
11	2	14.398	. 700							2	14.398	. 70
12+	13	14.802	. 700							13	14.802	. 70

Table 3.9 NORTH SEA COD. Results of Catch Predictions (1 000 tonnes)

		Option A	Option I B	Option C	Option D
1979	SSB	263.5	263.5	263.5	263.5
	TB	517.5	517.5	517.5	517.5
	F	0.95	0.95	0.95	0.95
	Yw	252.1	249.8	249.8	249.8
1980	SSB	282.9	282.9	282.9	282.9
	TB	481.7	481.7	481.7	481.7
	F	0.82	0.95	0.86	.86
	Yw	200.4	222.5	206.9	206.9
1981	SSB	261.8	232.8	253.2	253.2
	TB	493.1	458.6	482.8	482.8
	F		0.95	0.86	0.77
	Yw		209.8	206.7	191.7

F (Consumption) F_{79}	Yw 1981				1982	
	Industrial	Consumption	Discards	Total	SSB	TB
0.1	2.7	30.7	-	33.4	508.8	774.4
.2	2.6	59.1	-	61.7	467.9	728.5
.5	2.3	133.0	-	135.3	364.2	610.4
1.0	1.9	225.4	-	227.4	240.2	465.3
1.5	1.6	290.4	-	292.0	158.7	366.0
2.0	1.4	336.6	-	338.0	105.0	297.2

SSB = Spawning Stock Biomass (ages 3+)
TB = Total Stock Biomass
F $=$ Fishing mortality on age-group subject to maximum exploitation
Yw = Yield in weight

Table 4.1. Nominal catch (in tonnes) of COD in Division VIa , 1970-79 (Data for 1970-78 as officially reported to ICES)

Country	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ${ }^{\text {T) }}$
Belgium	61	41	39	75	174	49	71	-		
Denmark	-				174	4	71	-	-	4
Faroe Islands				7	-	7	-	-	-	-
Faroe Islands	-	-	-	7	13	3	39	43	-	-
France	1161	1054	2360	3445	3678	3546	5611	3583	4499	4436
German Dem.Rep.	-	-	-	-		2	-	-	4	4436
Germany, Fed.Rep.of	136 ${ }^{\text {b }}$	46	3	15	- 6	12	- 1	-	-	- ${ }^{\text {a, }}$,
Iceland			3	15	6	12	1	3	31	$63^{a, c}$
Iceland	-	+	-	-	-	-	-	-	-	-
Ireland	1135	888	686	583	883	1141	1341	984	1214	2237
Netherlands	5	10	21	4	5		11	5	1	
Norway		-	21		5	5	11	5	3	24
			-	13	14	17	22	29	40	35
Poland	199	154	491	184	175	68	18	-	-	
Spain	-	-	102	208	137	180	15	$20^{\text {a) }}$	$108^{\text {a) }}$	
UK (England + Wales)	2602	2414	3371	2074	2467	2217	2742	2434	2082	2348
UK (Scotland)	7382	5732	7018	5645	6084	5806	2742 7475	2434 $5 \quad 513$	2082 5059	2348
UK (N . Ireland)				5645	6084	5806	7475	5513	5539	6929
USSR			${ }^{2}$	3	3	3	13	5	5	2
		325	606	7	13	107	46	-	-	-
Total VIa	12682	10666	14699	12263	13652	13163	17405	12619	13521	16078
Working Group total catch ${ }^{\text {c }}$)										
									14247	16110

¥) Preliminary
a) Includes VIb
b) Including miscellaneous products
c) Includes discards.

Table 4.2. COD in Division VIa.
Catch and effort data.

Year	Scotland											
	Motor trawl			Seine			Light trawl			Nephrops trawl		
	Catch (1)	$\begin{aligned} & \text { Effort } \\ & \text { hours } \times 10^{-3} \end{aligned}$	c / f	Catch (1)	$\begin{gathered} \text { Effort } \\ \text { hours } \times 10^{-3} \end{gathered}$	c / f	Catch (1)	$\begin{aligned} & \text { Effort } \\ & \text { hours } \times 10^{-3} \end{aligned}$	c/f	Catch (1)	$\begin{aligned} & \text { Effort } \\ & \text { hours x } 10^{-3} \end{aligned}$	c / f
1970	2050	41	50.000	1820	96	18.958	1517	115	13.191	-	128	- ${ }^{-} 578$
1971	1576	42	37.523	1073	99	10.838	$\begin{array}{ll}1 & 364 \\ 2 & 179\end{array}$	129	10.574 15.134	970 926	128	7.578 5.005
1972	1595	56	30.268	1027	71	14.465	2149	142	15.134 16.275	926	185	3.205
1973	1251	55	22.745	934	59	15.831	$\begin{array}{ll}1 & 481 \\ 7 & 519\end{array}$	91 86	16.275 17.663	989	150	6.020
1974	1843	56	32.911	718	57	12.596 14.446	$\begin{array}{ll}1 & 519 \\ 1 & 879\end{array}$	86 129	17.663 14.566	983 848	202	4.198
1975	1232	37	33.297	809	56 57	14.446 15.526	$\begin{array}{ll}1 & 879 \\ 2 & 357\end{array}$	129 139	14.566 16.957	1105	225	4.911
1976	1607	35	45.914	885	57 42	15.526 13.452	2 2 2 261	139	16.911 15.811	- 906	196	4.622
1977	528	22	24.000	565 643	42 34	13.452 18.911	2661 1 1	143	15.811 12.787	662	219	3.023
1978	1535	52 33	29.519 29.636	643 888	34 38	18.911 23.368	$\begin{array}{ll} 1 & 624 \\ 1 & 867 \end{array}$	100	18.670	878	274	3.204
1979	978	33	29.636	888	38	23.368	186					

Year	France			England \& Wales		
	Trawl			Motor trawl		
	Catch (1)	Effort (2)	c/f	Catch (1)	Effort "tonnes x 10^{-4} hours"	c/f
1970	-	-	-	2167	1249	1.735
1971	1449	47800	0.030	2010	805	2.497
1972	1458	51912	0.028	2405	1225	1.963
1973	1479	53363	0.028	1680	1080	1.556
1974	1525	57411	0.026	1945	1032	1.885
1975	2179	57159	0.038	1821	1068	1.705
1976	3425	70500	0.049	2775	1259	1.807
1977	1748	59886	0.029	1932	1823	1.060
1978	2300	65137	0.035	1648	1613	1.022
1979	2259	58374	0.039	871	698	1.248

Year	International catch Whole weight	Weighted mean Icpue Relative	Relative effort
1970	12682	1.395	0.669
1971	10666	1.461	0.537
1972	14699	1.282	0.844
1973	12263	1.078	0.837
1974	13652	1.319	0.761
1975	13163	1.224	0.791
1976	17405	1.468	0.872
1977	12619	1.066	0.871
1978	13592	1.000	1.000
$1979^{\text {I }} \boldsymbol{1 9}$	16110	1.203	0.985

(1) = Gutted weight
(2) $=f=\frac{\sum H_{0} P \times \Sigma}{100}$
\#) = Preliminary

Table 4.3 COD in Division VIa.
Input catch data for VPA.

AGE	1568	1969	1970	1971	1972	1973
1	222	84	92	335	220	
2	859	986	272	884	2264	153
3	1862	970	944	523	1068	1271
4	1296	1519	457	709	483	518
5	112	E24	356	220	405	145
6	121	104	133	185	91	161
7	72	84	24	68	72	161 42
$8+$	18	53	39	36	47	42 47
AGE	1974	1975	1976	1977	1978	1979
1	$7 \Sigma 7$	1260	1988	1179		
2	1841	2043	4753	1183	680 1792	491
3	752	1217	1362	1437	1785	1441 2091
4	874	506	585	530	728	2091 696
5	235	269	255	245	289	696 350
6	53	60	185	81	96	144
$8+$	52	11	58	49	49	27
84	22	19	18	13	3 Cl	37

Table 4.4
COD in Division VIa.
Fishing mortalities from VPA $(M=0.2)$.

Table 4.5 COD in Division VIa.
Stock size in numbers from VPA.

AGE	1968	1969	1970	1971	1972	1973
1	6266	2912				
2	3859	4930	2308	8743	4383	6835
3	5346	2387	2308 3149	4076	6855	3350
4	2727	2704		1645	2543	3583
5	385	1076	ces 8.2	1731	878	1127
6	319	215	cec 326	481	783	289
7	162	153	826	388	197	280
8	23	68	50	$\begin{array}{r} 148 \\ 46 \end{array}$	$\begin{array}{r} 152 \\ 60 \end{array}$	80
AGE	1974	1.975	1976	1977	1978	1979
1	8432	13195	8053	11655	5297	037
z	5458	6248	9667	4807	8480	3724
3	2321	2818	3283	3675	2873	5331
4	1794	1226	1220	1470	1670	1425
5	460	E89	551	477	676	716
6	167	167	324	224	176	295
7	86	49	83	101	111	55
8	28	24	23	17	39	47

Table 4.6. COD in Division VIa.
1979 input data for catch prediction.

Age	Consumption landings			Discards			Industrial landings			Total		
	$\begin{aligned} & \text { Catch } \\ & (1000) \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F	$\begin{aligned} & \text { Catch } \\ & (1000) \end{aligned}$	$\begin{gathered} \bar{W} \\ (\mathrm{~kg}) \end{gathered}$	F	Catch ('000)	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F	Catch (1000)	$\begin{gathered} \overline{\mathrm{w}} \\ (\mathrm{~kg}) \end{gathered}$	F
1	491	. 606	. 08	NO DATA			NO LANDINGS			491	. 606	. 08
2	1441	1.372	. 55				1441	1.372	. 55			
3	2091	2.988	. 56				2091	2.988	. 56			
4	696	5.052	. 76				696	5.052	.76			
5	350	6.573	. 76				350	6.573	. 76			
6	144	7.966	.76				144	7.966	. 76			
7	27	8.807	.76				27	8.807	. 76			
8+	37	9.664	. 76				37	9.664	. 76			

Year	1979	1980	1981
Recruits at age 1 ('000)	6872	6872	6872

Table 4.7. COD in Division VIa.
Results of catch predictions ('000 tonnes).

1979	SSB	31.4
	TB	40.8
F	.76	
	Yw	16.1
1980	SSB	25.1
	TB	36.4
	F	0.76
	Yw	14.8
1981	SSB	20.9
	TB	32.2

$\mathrm{F}_{81} / \mathrm{F}_{79}$	Yw in 1981				1982	
	Industrial	Consumption	Discards	Total	SSB	TB
0.01	-	0.2	-	0.2	36.1	43.8
. 2	-	3.2	-	3.2	32.0	39.6
. 5	-	7.3	-	7.3	26.5	32.2
1.0	-	12.6	-	12.6	19.4	26.5
1.5	-	16.5	-	16.5	14.3	21.1
2.0	-	19.4	-	19.4	10.5	17.1

```
NOTES: SSB = Spawning stock biomass (ages 3+)
TB = Total stock biomass
    F = Fishing mortality on age group subject to maximum exploitation
    Yw = Yield in weight.
```

Table 5 Nominal catch (in tonnes) of COD in Division VIb, 1970-1979 (Data for 1970-1978 as officially reported to ICES).

Country	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ${ }^{\text {¹) }}$
Belgium	-	-	-	-	-	1	-	-	-	-
Faroe Islands					5	3	22	40	10	92
France	745	-	1659	320	1128	4	4	3	1	1
Germany, Fed.Rep. of					-	-	-	-	-	...
Ireland									3	-
Norway	-	-	-	-	3	-	8	3	69	108
Poland	-	-	-	8	-	-	-			
Spain	-	-	-	-	-	-	-	$\ldots{ }^{\text {a }}$	$\ldots{ }^{\text {. }}$)	
U.K. (Engl. + Wales)	28	37	32	1	-	28	77	89	285	129
U.K. (Scotland)	102	57	175	128	39	98	61	33	384	198
U.S.S.R.	-	-	701	26	-	110	1398	-	-	-
Total VIb	875	94	2567	483	1175	243	1571	168	752	528

¥) Preliminary
a) Included in VIa.

Table 6.1 Nominal catch (in tonnes) of COD in Divisions VIId and VIIe, 1970-1979. (Data for 1970 - 1978 as officially reported to ICES)

Country	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ${ }^{\text {²) }}$
Belgium	132	213	124	93	67	59	65	53	435	696
Denmark	-	-	-	-	-	2718	1506	1120	2160	1986
France	2139	4544	2658	1425	3099	2143	1646	5185	8044	4632
Germany, Fed.Rep. of	-	+	-	-	-	-	-	-	-	-
Netherlands	3	13	30	2	4	+	2	1	+	-
Poland	-	-	7	13	6	-	-	-	-	-
U.K. (Engl. +Wales)	- 279	662	717	499	260	159	142	581	654	485
U.S.S.R.			8	45	-	3	4	-	-	-
Total VIId, e	2553	5432	3544	2077	3436	5082	3365	6940	11293	7799

[^2]Table 6.2 Nominal catch (in tonnes) of COD in Divisions VIIb, c and VIIg-k, 1970-1979 (Data for 1970-1978 as officially reported to ICES).

Country	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ${ }^{\text {²) }}$
Belgium	223	295	77	323	167	116	159	85	52	45
Faroe Islands	-	-	-	256	-	-	-	-	-	-
France	4320	5570	4168	2791	2302	2877	3196	1972	2192	2838
Germany, Fed.Rep.of	2	2	-	1	-	-	-	-	$3^{\text {a) }}$	-
Ireland	537	347	352	568	283	474	506	315	323	530
Netherlands	38	81	22	14	9	54	46	291	279	-
Norway	-	-	-	-	-	1	-	+	-	-
Poland	59	33	130	75	39	19	40	6	-	2
Spain	-	-	137	301	232	588	1140	51	11	
U.K. (Fngl.+Wales)	72	13	56	60	26	73	44	33	28	34
U.K. (Scotland)	-	-	-	-	-	-	-	-	2	1
U.S.S.R.	116	24	139	10	72	134	203	-	-	-
Total VIIb, c, g-k	5367	6365	5081	4399	3130	4336	5234	2753	2890	3450

F) Preliminary
${ }^{\text {a) }}$ Catch in VIIg only.

Table 6.3.A COD in Division VIId.
Input catch data for VPA.

AGE	1974	1975	1976	1977	1978	1979
1	20.7	574.2	38.2	4512.6	632.8	372.7
2	465.4	1221.4	523.3	4582.7	3960.8	1306.8
3	527.7	340.3	459.3	263.7	1530.5	818.2
4	256.8	213.1	175.2	36.8	290.2	291.1
5	87.6	106.3	64.7	15.5	52.1	86.6
6	30.1	46.1	17.1	6.4	4.8	28.4
$7+$	9.4	16.1	$E .2$	1.7	1.8	2.0

Table 6.3.B $C O D$ in Division VIId.
Fishing mortalities from VPA ($M=0.2$).

AGE	1974	1975	1976	1977	1978	1979	
1	. 009	.278	.005	. 524	. 170	.100	
2	. 502	. 937	. 439	1.059	1.252	. 626	
3	.886	. 865	1.235	. 414	1.445	1.800	
4	. 969	1.203	1.908	. 277	1.145	1.400	
5	.84E	1.704	1.932	. 990	. 795	1.500	
6	. 860	1.847	2.104	1.274	1.021	1.600	
7	.300	.900	.900	. 900	. 900	1.000	
MEAN	$\begin{aligned} & \text { OR AG } \\ & .728 \end{aligned}$	$\begin{array}{r} 9= \\ .996 \end{array}$	AND .832	$\begin{gathered} 7(W) \\ .981 \end{gathered}$	$\begin{aligned} & \text { IGHTED } \\ & 1.288 \end{aligned}$	$\begin{gathered} \text { EY } \Xi T O C K \\ .82 z \end{gathered}$	(N NUMEERS)

Table 6.3.C COD in Division VIId. \quad Stock size in numbers from VPA.

AGE	1974	1975	1976	1977	1978	1979
1	2688.8	2601.7	9333.5	12372.3	4442.3	4314.0
2	1290.1	2182.7	1613.8	7607.1	5998.8	3067.1
3	976.3	639.3	700.5	852.0	2159.2	1405.0
4	49.4	329.5	220.3	166.8	461.0	416.8
5	167.0	139.6	81.0	26.8	103.5	120.1
6	56.8	58.7	20.8	9.6	8.1	30.3
7	1.5	19.7	7.6	2.1	2.2	2.4

Table 7.1 Nominal catch (in tonnes) of HADDOCK in Sub-area IV, 1970-1979 (Data for 19701978 as officially reported to ICES).

Country	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ${ }^{\text {T) }}$
Belgium	3691	971	1601	2385	1137	2209	2166	2293	1295	466
Denmark	158276	31043	34858	13118	44342	32930	46899	20069	8093	7849
Faroe Islands	-	-	5	1198	435	267	183	385	12	27
France	10392	8738	7814	4695	4020	4646	5500	6914	5122	6548
German Dem. Rep. ${ }^{\text {a) }}$	2	3	90	22	8	44	20	8	37	5
Germany, Fed.Rep. of	5075	3045	4020	4587	3478	2396	3433	3744	2589	2349
Iceland	+	1	-	-	-	-	-	-	-	
Ireland	-	-	-	-	-	-	31	53	101	-
Netherlands	8278	6914	5188	3185	3035	1901	1728	1598	857	735
Norway ${ }^{\text {b }}$)	963	1063	1146	5611	5954	331	367	374	690	908
Poland	-	-	38	2553	3001	1485	1155	485	62	106
Spain	-	-	-	101	210	-	-	-	-	-
Sweden ${ }^{\text {c }}$	8704	5857	5305	4550	3098	2083	2455	113	-	896
U.K. (Engl.+Wales)	19500	16648	20827	16586	10798	11499	17238	17167	12200	10773
U.K. (Scotland)	112952	121539	96197	88132	71679	64686	80576	89465	58406	54155
U.S.S.R.	344000	62398	36467	49356	42234	49686	42852	8010	54	49
Total IV	671833	258220	213556	196079	193429	174163	204603	150678	89518	84866
Total IVa	455649	197306	135095	131819	128607	110848	138591	116577	57967	
Total IVb	212646	58270	75325	62288	63695	62761	65594	34.030	31457	
Total IVc	3538	2644	3136	1972	1127	554	418	71	94	
W.G. Total Catch ${ }^{\text {d) }}$	709852	302048	277863	230656	364750	352810	290240	187505	139330	123956

[^3]

1) Scottish landings in tonnes (live weight).
2) Scottish catch per unit effort is in tonnes/ 10^{-3} hours.
3) Finglish landings in tonnes (live weight).
4) English motor trawl catch per unit effort is in tonnes/tonne-hours $\times 10^{-5}$.
5) English N. Shields seine catch per unit effort in tonnes/ 10^{-3} hours.
6) English pair trawl catch per unit effort is in tonnes/tonne-hours $\times 10^{-4}$.

North Sea HADDOCK． Input catch data for VPA．

AGE	1962	1963	1964	1965	1966	1567
0	12960	15354	554928	439823	1196296	192440
1	45183 L	175380	476608	564228	278587	884285
2	64785	187110	1315305	4032	15503	41270
3	42420	16865	101157	598958	5769	4302
4	17664	12580	11406	34223	371017	3159
5	1081	5760	3749	4741	9560	168904
E	E01	52 E	2027	2EE3	1459	26E3
7	3059	339	198	529	757	316
8	22e	811	282	178	130	291
5	24	7	7	11	7	49
$10+$	4	10	3	3	6	4
AGE	1968	1969	1970	1971	1972	1973
0	54597	89549	3251126	260296	153694	38160
1	3332692	1515158	128043	693082	692558	95731
2	298580	2331889	257209	34014	381361	450985
3	17159	334743	1330052	44407	31226	2761.36
4	2003	14369	55581	353962	20639 142976	6252
5	1790	3733	2307	10281	142976 3246	1605
6	$5 こ こ こ 4$	4765	1717	6.36 206	3246 115	150
7	446	34350	441 8251	1641	423	2
8	61	482	8261	1641	11	4
9	12	42	123	8 cl	117	2
$10+$	7	5	21	192	117	22
AGE	1974	1975	1976	1577	1978	1979
0	434302	55425	131936	48121	22E193	257622
1	2062862	1174697	124697	164042	497913	275605
2	55656	646526	833873	89649	149349	237809
3	280418	72678	209761	345385	28E21	43682
4	54160	136027	11026	39833	106749	8551
5	3674	18273	32802	3779	8305	24885
E	1440	1206	5843	6659	1175	4919
7	11379	742	220	1206	1814	349
8	306	3366	84	112	378	413
9	22	135	834	32	110	107
104	63	99	82	16 E	83	85

$\begin{array}{ll}\text { Table 7.4 } & \begin{array}{l}\text { North Sea HADDOCK. } \\ \text { Fishing mortalities from VPA }\end{array}(M=0.2) .\end{array}$

Table 7.5 North Sea HADDOCK. Stock size in numbers from VPA.

AGE	1962	1963	4964	1965	1966	1967
AGE				994539	3823262	12446197
0	5380212	695318	1398066 555414	648045	421247	2057064
1	1010966	4383239	555414 343852	39710	40116	98278
2	125930	424029	3438572	1637762	28877	18966
3	76955	45363	1795637	57361	804334	18452
4	31643	25255	9458	7878	16569	327219
5	2580	10192	3221	4388	2240	5067
E	1595	1145	468	840	1229	542
7	64421	768 12576	326	206	219	354
8	250	12576	12	21	14	64
9	42		4	4	8	5
10	5					
AGE	1968	1969	1370	1971	1972	1973
0	2635410	415254	5831197	2965598	640746	4389750
1	10016297	2108391	259452	1881693	2193371	386465
2	893684	5212634	389644	98213	919835	1174557
3	43558	463997	2184395	91312	49925	412015
4	11660	20306	84659	607848	35141	13181
5	12264	7744	3941	16704	183090	10433
6	117379	8428	3009	1176	4553	24372
7	1776	49440	2663	937	397	863
8	163	1059	10131	1783	582	2ぇ2
9	21	79	436	1065	47	103
10	9	6	27	247	150	28
AGE	1974	1975	1976	1577	1978	1979
0	44E6E13	464371	743918	1485832	2263045	2981946
1	3559558	3265373	330245	490262	1173054	1593781
2	230388	1080778	1621069	158726	254324	515232
3	557907	103074	310703	584026	50219	75011
4	96419	206741	20222	E8844	171336	15656
5	6745	30764	48830	6742	20958	45531
6	2990	2252	8957	10959	2158	9727
7	18506	1163	770	2158	3061	721
8	671	5054	294	433	634	895
9	180	276	1159	166	254	232
10	8.1	127	105	213	107	109

Table 7.6 North Sea HADDOCK
Estimates of year class strength at 1 year old

Year class	IYHS 1$)$ Index	VPA Number $\times 10^{-6}$
1965	12	421
1966	62	2057
1967	5855	10016
1968	81	2108
1969	27	259
1970	873	1882
1971	740	2193
1972	187	386
1973	1072	3560
1974	1168	3265
1975	177	330
1976	162	1173
1977	385	$1576^{\text {¹ }}$
1978		$2232^{\text {I }}$

$$
r=0.96 \quad P \quad<0.001
$$

${ }^{\text {\# }}$) Predicted from regression.

Table 7.7 North Sea HADDOCK. 1979 Input data for catch predictions

Age	Consumption landings Catch No. (10^{-3})	Mean Weight (kg)	F	Industrial Landings Catch No. $\left(10^{-3}\right)$	Mean Weight (kg)	F	$\left\|\begin{array}{l} \text { Discards } \\ \text { Catch No. }\left(10^{-3}\right. \end{array}\right\|$	Mean Weight (kg)	F	Total F
0	-	-	-	257437	0.0035	0.11	185	0.08	-	0.0996
1	14384	0.23	. 011	65714	0.0361	0.052	195507	0.091	. 147	0.21
2	125998	0.28	.369	12175	0.1628	. 037	99836	0.171	. 293	0.70
3	38163	0.41	. 872	1754	0.2966	. 042	3765	0.208	. 086	1.00
4	8391	0.58	. 883	119	0.489	. 013	41	0.228	. 004	0.90
5	24368	0.71	. 881	457	0.362	. 017	60	0.275	. 002	0.90
6	4894	0.94	. 796	25	0.443	. 004	-	-	0	0.80
7	349	1.21	. 750	-	-	0	-	-	0	0.75
8	410	1.44	. 695	3	1.44	. 005	-	-	0	0.70
9	106	1.50	. 693	1	1.50	. 007	-	-	0	0.70
10+	85	1.60	. 70	-		0			0	0.70

Recruits at age 0 in $1979=3011000$
$1980=2088000$
$1981=2088000$

Table 7.8 North Sea HADDOCK
Results of catch predictions ('000 tonnes)

1979
Spawning Stock Biomass:
$($ Age 2+) 199.9

Total Stock Biomass: 347.1
F: 1.0
Consumption Landings: 82.3
Industrial Landings: 6.1
Discards: 35.7
1980
Spawning Stock Biomass:
(Age 2+)
Total Stock Biomass:
$F^{\text {FIF }}$)
Consumption Landings: 119.7
Industrial Landings: 9.9
Discards: 51.8
1981
Spawning Stock Biomass:
(Age 2+)
Total Stock Biomass
603.7
740.7

Yield in 1981				1982 Spawning Stock Biomass (Age 2+)	1982 Total Biomass	
F $_{\text {81/79 }}$	Indust.	Consumption	Discards	Total		
0.01	17.1	3.5	0.9	21.5	1021.9	1158.9
0.20	16.1	64.9	17.8	98.8	912.5	1049.6
0.50	14.7	145.2	41.1	201.0	768.2	905.2
1.00	12.8	244.1	72.6	329.4	587.3	724.3
1.50	11.3	312.0	96.9	420.3	459.6	59.6
2.00	10.0	359.3	116.2	485.6	368.1	505.2

$F=$ Fishing mortality on age groups subject to maximum exploitation.
$\left.{ }^{\text {5 }}\right)_{81}=F_{80}=F_{79}$ for industrial landings, for consumption landings and discards $F_{1980}=0.8 \times F_{1979}{ }^{\circ}$

Table 8.1 Nominal catch (in tonnes) of HADDOCK in Division VIa, 1970-1979 (Data for 1970-1978 as officially reported to ICES)

Country	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979*
Belgium	13	9	44	45	98	23	45	-	-	2
Denmark	-	-	-	-	-	-	13	-	-	-
Faroe Islands	-	-	-	2	1	-	-	-	-	
France	785	2354	5014	5141	3979	2328	3026	3401	4255	4788
German Dem. Rep.	-	10	87	-	-	9	-	-	-	-
Germany, Fed. Rep.	9	15	7	15	18	3	30	$+$	20	5
Iceland	-	+	-	-	-	-	-	-	-	-
Ireland	2720	4316	3982	2631	1715	599	1115	616	441	877
Netherlands	126	78	205	169	63	19	30	28	13	2
Norway	-	-	-	-	-	-	3	7	13	11
Poland	-	10	-	402	97	20	-	-	-	-
Spain	-	-	101	497	540	-	-		-	-
Sweden	-	-	-	-	-	-	-	-	-	-
U.K. (Engl. +Wales)	1785	1491	2393	2187	1512.	1214	1971	3827	2805	1654
U.K. (Scotland)	28724	33087	27730	17631	9583	8973	11992	11422	9629	7461
U.K. (N. Ireland)	12	2	1	-	-	-	-	-	-	-
U.S.S.R.	4	4927	1480	110	364	495	533	-	-	-
Total VIa	34178	46299	41044	28830	17970	13683	18758	19301	17176	14800
Working Group Total Catch								19301	17178	14199

[^4]Table 8.2 HADDOCK in Division VIa. Input catch data for VPA.

AGE	1965	1966	1967	1968	1969	1970
1	4	286	595	10551	0	241
2	1402	362	13177	8370	58329	172
3	71550	1173	1430	3665	7068	74912
4	3981	47981	275	474	1653	3975
5	175	1618	21665	E64	417	221
6	143	77	291	13231	687	56
7	118	30	23	742	4037	103
$8+$	19	103	32	41	179	474
AGE	1971	1972	1973	1974	1975	1976
1	1924	474	867	1325	4928	1170
2	2235	17840	4681	2397	9047	19698
3	5208	1786	11235	6662	2623	14972
4	71815	2326	189	4846	3191	1561
5	464	45638	824	67	1981	1774
6	68	491	22857	314	98	1113
7	5	30	100	8840	118	35
$8+$	76	46	82	130	3783	2445
AGE	1977	1978	1979			
1	393	549	368			
2	1364	789	9721			
3	31486	757	1585			
4	6069	21544	432			
5	741	3027	12069			
6	527	403	1323			
7	387	294	177			
$8+$	E32	514	323			

```
Table 8.3 HADDOCK in Division VIa.
Fishing mortalities from VPA ( \(M=0.2\) )
```


Table 8.4 HADDOCK in Division VIa. Stock size in numbers from VPA.

Table 8.5 HADDOCK in Division VIa
Catch and Effort Data for Calculation of Relative Total International Fishing Effort

Scotland													England							
Year	Motor Trawl				Seine				L. Trawl				Motor Trawl							
	L	E	L/E	γ	L	E	L/E	γ	L	E	L/E	γ	L	E	L/E	\bigcirc	$\sum^{2} \mathrm{C}_{13}$	Γ_{j}	${ }^{\text {c }}$	E_{j}
1963	4647	37			5274	165			273	38										
1964	11114	75			9894	181			396	44										
1965	10269	73	141	1.28	16065	153	105	2.28	801	37	21.6	1.73	2438	2958	0.82	0.55	29572	1.78	32467	1.23
1966	12078	72	168	1.53	11585	157	74	1.61	444	41	10.8	0.86	2659	2486	1.07	0.72	26766	1.47	29881	1.37
1967	8324	54	154	1.40	6850	159	43	0.93	380	83	4.6	0.37	2674	2304	1.16	0.78	18228	1.11	20302	1.23
1968	8732	50	175	7.59	6557	150	44	0.96	272	66	4.1	0.33	3128	2443	1.28	0.86	18689	1.23	20469	1.12
1969	7946	43	185	1.68	11701	140	84	1.83	827	105	7.9	0.63	3294	2049	1.61	1.08	23768	1.63	26273	1.09
1970	11465	41	280	2.55	14211	96	148	3.22	2178	115	18.9	1.51	1783	1249	1.43	0.96	29637	2.70	34178	0.85
1971	14786	42	352	3.20	14304	99	144	3.13	3546	129	27.5	2.20	1490	805	1.85	1.24	34126	2.98	45323	1.30
1972	15903	56	284	2.58	6917	71	97	2.11	4523	142	31.9	2.55	2347	1225	1.92	1.29	29690	2.36	40152	1.15
1973	12932	55	235	2.14	3165	59	54	1.17	1214	91	13.3	1.06	2166	1080	2.01	1.35	19477	1.82	28535	1.06
1974	6498	56	116	1.05	1189	57	33	0.72	1040	86	12.1	0.97	1508	1032	1.46	0.98	10937	0.98	17744	1.22
1975	4857	37	131	1.19	2329	56	42	0.91	1616	129	12.5	1.00	1213	1068	1.14	0.77	10015	1.04	13683	0.89
1976	5342	35	153	1.39	3904	57	69	1.50	2430	139	17.5	1.40	1962	1259	1.56	1.05	13638	1.37	18755	0.92
1977	3895	22	177	1.61	3025	42	72	1.57	2082	143	14.6	1.17	3724	1823	2.04	1.37	12726	1.46	19301	0.89
1978	6962	52	134	1.22	1229	34	36	0.78	1235	127	9.7	0.78	2784	1613	1.73	1.16	12210	1.12	17176	1.03
1979	3615	33	110	1	1753	38	46	1	1 253	100	12.5	1	1040	698	1.49	1	7661	1.00	14812	1.00

Table 8.6 HADDOCK. Estimates of year class strength at age 1 for North Sea and West of Scotland from VPA

Year Class	Numbers $\times 10^{-6}$	
	North Sea	West of Scotland
1964	648	5.5
1965	421	28.6
1966	2057	35.4
1967	10016	602.7
1968	2108	40.0
1969	259	13.1
1970	2193	68.4
1971	386	33.6
1972	3560	17.4
1973	3265	72.7
1974	330	211.0
1975	490	6.2
1976	1173	7.2
1979	1576	23.6^{*}

Functional regression 1964-76: VIA $=$ IV x 0.0623-44.5 $r=0.955 \quad P<0.001$

* Predicted from regression

Table 8.7. HADDOCK in Division VIa, 1979 Input Data for Catch Predictions

Age	Consumption Landings (x 10tch No. $)$		
	368	Mean Weight (kg)	F
	9721	0.23	0.0076
3	1585	0.28	0.50
4	432	0.41	0.49
5	12069	0.58	0.49
6	1323	0.94	0.35
7	177	1.21	0.25
$8+$	323	1.44	0.23

Year	1979	1980	1981
Recruits at age 1(000)	53900	94500	44900

Table 8.8 HADDOCK in Division VIa
Results of Catch Predictions (1 000 tonnes)

1979	$\begin{aligned} & \mathrm{SSB} \\ & \mathrm{~TB} \\ & \mathrm{~F} \\ & \mathrm{Y}_{\mathrm{w}} \end{aligned}$	$\begin{aligned} & 50.4 \\ & 62.7 \\ & 0.50 \\ & 14.2 \end{aligned}$		tes: $B=$ Spa
1980	$\begin{aligned} & \text { SSB } \\ & \text { TB } \\ & \mathrm{F} \\ & \mathrm{Yw} \end{aligned}$	$\begin{gathered} 50.5 \\ 72.3 \\ 0.50 \\ 13.1 \end{gathered}$		$\begin{array}{r} =\text { Tot } \\ =\text { Fis } \\ \text { sub } \\ =\text { Yie } \end{array}$
1981	$\begin{aligned} & \text { SSB } \\ & \text { TB } \end{aligned}$	$\begin{aligned} & 60.5 \\ & 70.8 \end{aligned}$		
F_{81}		Yw in 1981 consumption landings	$\begin{aligned} & \text { SSB } \\ & 1982 \end{aligned}$	$\begin{gathered} \text { TB } \\ 1982 \end{gathered}$
0.01		0.2	74.9	85.2
0.2		4.0	70.3	80.6
0.5		9.4	63.7	74.0
1.0		17.0	54.5	64.8
1.5		23.3	47.0	57.4
2.0		28.4	41.0	51.3

Table 9.1 Nominal catch (in tonnes) of HADDOCK in Division VIb, 1970-1979
(Data for 1970-1978 as officially reported to ICES)

Country	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979*
Belgium	-	-	-	-	-	-	33	-	-	-
Faroe Islands	-	-	-	-	2	1	8	3	11	20
France	12	182	1527	600	353	21	4	4	3	18
Ireland							-	-	61	-
Norway	-	-	-	-	-	-	-	+	4	11
Poland	-	-	-	54	-	-	-	-	-	-
U.K. (Engl.+Wales)	220	117	27	1	-	5	2111	2694	2365	1654
U.K. (Scotland)	608	313	616	72	22	71	640	297	2060	548
U.S.S.R.	-	9	7304	3291	48971	49830	40447	-	-	-
Total VIb	840	621	9474	4018	49288	49928	43243	2998	4504	2251

* Preliminary

Table 10.1 Nominal catch (in tonnes) of HADDOCK in Divisions VIId and VIIe, 1970-1979 (Data for 1970-1978 as officially reported to ICES)

Country	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ${ }^{\text {F) }}$
Belgium	3	1	2	$1{ }^{-}$	+	+	+	1	-	-
Denmark	-	-	-	-	-	-	-	2	22	21
France	295	97	224	208	487	868	405	438	356	315
Germany, Fed.Rep. of	-	1	-	-	-	+	-	-	-	-
Ireland	-	-	-	-	-	-	-	4	-	-
Netherlands	5	-	9	1	-	1	-	-	-	-
Poland	-	-	-	12	-	-	-	-	-	-
U.K. (Engl. + Wales)	118	71	166	135	113	99	45	29	22	51
U.S.S.R.	-	-	10	2	33	3	-	-	-	-
Total VIId, e	421	170	411	359	633	971	450	474	400	387

${ }^{\text {z }}$ Preliminary.

Table 10.2 Nominal catch (in tonnes) of HADDOCK in Divisions VIIb, c and VIIg-k, 1970-1979 (Data for 1970-78 as officially reported to ICES)

Country	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ${ }^{\text {F }}$
Belgium	31	23	45	65	35	33	19	13	5	-
Faroe Islands	-	-	-	3	-	-	-	-	-	-
France	3823	3652	6456	5524	6057	4583	3726	2244	1479	1851
Germany, Fed.Rep.of	1	1	-	1		+	3	-	-	-
Ireland	783	947	1103	1348	829	507	287	153	111	150
Netherlands	98	66	56	12	2	4	14	1	-	+
Poland	-	3	-	62	143	-	-	-	-	-
Spain	-	-	733	890	1100	-	-	294	-	-
U.K. (Engl. +Wales)	46	25	107	24	39	46	24	18	13	20
U.K. (Scotland)	-	-	-	-	-	-	-	-	8	22
U.S.S.R.	27	136	253	24	456	1290	183	-	-	-
Total VIIb, c and gm	4809	4853	8753	7953	8661	6463	4256	2723	1616	2043

${ }^{\text {T) }}$ Preliminary.

Table 11.1 Nominal catch (in tonnes) of WHITING in Sub-area IV, 1970-1979 (Data for 1970-1978 as officially reported to ICES)

Country	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979*
Belgium Denmark Faroe Islands France German Dem. Rep. Germany, Fed. Rep. Iceland Netherlands Norwaya) Poland Spain Sweden ${ }^{\text {b }}$ U.K. (Engl. + Wales) U.K. (Scotland) U.S.S.R.	$\begin{gathered} 2799 \\ 102698 \\ - \\ 25842 \\ - \\ \text { } 392 \\ - \\ 10115 \\ 43 \\ - \\ - \\ 820 \\ 3 \\ 398 \\ 21080 \\ 14319 \end{gathered}$	$\begin{gathered} 2108 \\ 55618 \\ - \\ 16668 \\ - \\ 233 \\ - \\ 6322 \\ 25 \\ - \\ - \\ 616 \\ 4158 \\ 26755 \\ 541 \end{gathered}$	$\begin{array}{r} 2745 \\ 50109 \\ - \\ 19822 \\ - \\ 264 \\ - \\ 7613 \\ 28 \\ - \\ 107 \\ 596 \\ 3789 \\ 23846 \\ 613 \end{array}$		$\begin{array}{r} 3156 \\ 109654 \\ 1126 \\ 19825 \\ - \\ 454 \\ - \\ 12057 \\ 4990 \\ 1002 \\ \\ 2 \end{array}$		2 640 116973 1 262 19 557 18 302 4 12 274 71 509 18 153 5 112 26167 5 612	$\begin{array}{r} 3275 \\ 46 \quad 479 \\ \\ 472 \\ 17 \\ \hline \end{array}$		$\begin{array}{r} 3561 \\ 41890 \\ 7 \\ 22 \begin{array}{r} 358 \end{array} \\ 3 \\ 1 \\ \hline \end{array}$
Total IV	181506	113044	109532	141191	188585	140166	190672	120128	103449	132554
Total IVa	32185	23451	32932	31104	81693	75444	100001	61499	42843	
Total IVb	126024	70728	66789	96678	87842	41930	69908	42911	40943	
Total IVc	23297	18865	9811	13409	19050	22792	20753	15718	19663	
Working Group Total Catch ${ }^{\text {c }}$)	305259	163156	216334	272345	280868	335982	264632	201648	191312	275156

*) Provisional figures
a) Figures from Norway do not include Whiting caught in Rec. 2 fisheries
b) 1970-1974 includes IIIa, 1978 included in IIIa
c) Includes discards

Year	SCOTLAND									ENGIAND			relative cpue	Total ${ }^{3 \pi}$) catch 1000 tonnes	Relative effort
	Motor Trawl			Light Trawl			Seine			Motor Trawl					
	C	E	C/E												
1963	6578	182	36.1	80	6	13.3	24609	617	39.9	1487	7161	. 21	. 57	99	1.18
1964	5340	193	29.2	393	25	15.7	20868	640	32.6	1286	6130	. 21	. 46	88	1.30
1965	4505	173	26.0	912	55	16.6	29584	583	50.7	2010	5494	. 37	. 71	110	1.05
1966	5329	194	27.5	681	36	18.9	31886	501	63.6	1631	5534	. 29	. 88	158	1.22
1967	6942	215	32.3	424	28	15.1	22244	514	43.3	2126	4799	. 44	. 58	121	1.42
1968	8434	218	38.7	624	48	13.0	20447	549	37.2	1965	4577	.43	.53	145	1.86
1.969	4475	123	36.4	1095	63	17.4	14274	491	29.1	1375	4110	. 33	. 43	215	3.40
1970	4394	133	33.0	1891	69	27.4	14190	427	33.2	2247	4069	. 55	. 48	181	2.56
1971	5774	175	33.0	3494	105	33.3	17066	416	41.0	2267	3946	. 57	. 57	113	1.35
1972	5770	201	28.7	4146	121	34.3	13764	393	35.0	2149	4376	. 49	. 49	110	1.53
1973	4940	183	27.0	3830	152	25.2	17717	415	28.2	2475	3789	. 65	. 56	141	1.71
1974	5157	182	28.3	3960	118	33.6	14367	356	40.4	3525	3500	1.01	. 57	189	2.26
1975	4922	151	32.6	6492	161	40.3	14802	342	43.3	3294	2629	1.25	. 64	140	1.49
1976	4355	122	35.7	6390	153	41.8	13034	308	42.3	3371	3107	1.08	. 64	191	2.03
1977	3704	90	41.2	10827	224	48.3	14326	312	45.9	4453	3110	1.43	. 75	120	1.09
1978	7398	135	54.8	15151	239	63.4	18830	325	57.9	5504	3192	1.72	. 94	122	. 88
1979	7308	87	84.0	16275	287	56.7	19576	315	62.1	5748	2986	1.92	1.00	147	1.00

[^5]Table 11. 3 North Sea WHITING. $\begin{aligned} & \text { Input catch data for VPA. }\end{aligned}$

AGE	1962	1963	1964	1965	1966	1967
0	114298	181370	257125	117178	267143	294765
1	508301	705405	253927	336549	449191	396601
2	229172	1588930	410859	515796	743979	369625
3	284629	$156 E 13$	2733008	331417	173043	243467
4	59718	75614	32814	95341	218400	40898
5	6754	1.2749	16573	9827	43425	65331
6	278	1862	4233	4993	3268	3414
7	990	10	529	914	1511	953
84	117	140	60	136	432	156
AGE	1968	1969	1970	1971	1972	1973
0	140939	1250760	1272540	957971	507612	161635
1	647772	425056	637087	334170	873186	1030760
2	539415	1726670	194955	209044	612439	787306
3	172330	230799	829842	29502	E9296	209486
4	78136	47542	52825	137258	8842	23524
5	10273	24231	15701	15211	63302	7527
6	31640	2459	4178	2293	8246	13422
7	2047	10030	1274	822	1124	2756
84	12E	4588	1212	599	653	680
AGE	1974	1975	1976	1977	1978	1979
0	447566	256952	382893	316633	402682	437621
1	798250	1055100	390301	610425	281975	732666
2	970535	821530	977750	408497	492201	693223
3	272877	412066	151115	238058	205226	183734
4	47323	68946	78063	29288	74556	80291
5	6627	5967	14692	19754	8376	24003
6	2063	2576	3502	4614	6154	3391
7	5738	869	737	423	2125	11.32
$8+$	Ec4	2412	694	335	477	305

Table 11.4 North Sea WHITING.
Fishing mortalities from VPA ($M=0.2$).

Table ll. 5 North Sea WHITING。 $\begin{aligned} & \text { Stock size in numbers from VPA. }\end{aligned}$

AGE	1962	1963	1964	1965	1966	1967
0	3289910	1863153	2704626	1849712	2375853	6264076
1	3452513	2590369	1361892	1982519	1408693	1704395
2	540858	2368861	1487346	887322	1320177	750451
3	442183	237910	533662	848805	268057	419130
4	91315	115148	56120	193319	398305	EE155
5	10938	21878	27323	16788	73 ³6	131721
6	424	2962	6582	7658	5012	21386
7	1271	101	774	1638	1848	1209
8	143	171	73	166	528	191
AGE	1968	1969	1970	1371	1972	1973
0	1151765	2778041	3405275	4270784	4599908	2980807
1	4862557	815977	1157127	1648424	2635312	3308530
2	1038930	3397513	289331	380400	1045011	1374792
3	284717	369941	1242392	E4429	125399	314600
4	126766	80116	98171	282868	26402	41093
5	17884	34458	23563	33340	109128	13689
6	49577	5509	6815	5238	13711	33083
7	9697	12547	2279	1872	2239	3903
8	154	5608	1481	732	798	831
AGE	1974	1975	1976	1977	1978	1979
0	4255275	2205854	2650164	2890632	2788901	2967704
1	2294613	3080452	1574417	1824886	2081236	1920158
ε	1784100	1163289	1576343	938306	946822	1449938
3	425514	596733	267137	423こ11	403115	336612
4	72185	106565	124417	52224	134743	147998
5	12656	17195	26168	32637	16704	43975
5	4509	4458	5219	8355	9184	E213
7	9829	1849	1365	1175	2735	2 m 44
8	763	2948	736	499	583	274 37

Table 11.6 North Sea WHITING
Estimates of year class strength at one year old

Year class	$\begin{aligned} & \text { TYHS } \\ & \text { Index } \end{aligned}$	VPA Number $\times 10^{-6}$
1959	-	2831
1960	-	1307
1961	-	3453
1962	-	2590
1963	-	1362
1964	418	1983
1965	600	1409
1966	501	1704
1967	2019	4863
1968	19	816
1969	70	1157
1970	223	1648
1971	339	2635
1972	1159	3309
1972	322	2295
1974	893	3080
1975	679	1574
1976	427	1825 Average 1959-76= 2213
1977	513	2047 %)
1978	457	$1932^{\text {II }}$)
1979	690	$2408{ }^{\text {T) }}$

1) Unadjusted arithmetic mean number per hour per statistical rectangle.

Year classes $1964-1976: \mathrm{VPA}=$ IYHS $\times 2.04+1008$
$r=0.895 \quad P<0.001$
${ }^{3}$) Predicted from regression.

Table 11.7 North Sea WHITING. 1979 Data for Catch Predictions

Age	Consumption landings			Industrial Landings			Discards			Total		
	Catch No. (000)	$\overline{\mathrm{w}}(\mathrm{kg})$	F	Catch No. (000)	$\overline{\mathrm{w}}$ (kg)	F	Catch No. (000)	$\overline{\mathrm{w}}$ (kg)	F	Catch No. (000)	$\overline{\mathrm{w}}$ (kg)	F
0	0	-	0	427422	. 008	. 174	10199	. 034	. 003	437621	. 008	. 177
1	18426	. 180	. 013	121337	. 069	. 104	592903	. 110	. 423	732666	. 104	. 540
2	106859	. 219	. 106	211529	. 141	. 249	350841	. 154	. 345	669229	. 159	. 700
3	138211	. 258	. 675	5596	. 252	. 032	39927	. 184	. 193	183734	. 242	. 900
4	68468	. 309	. 761	4205	. 418	. 055	7618	. 208	. 084	80291	. 306	. 900
5	21233	. 365	. 788	1382	. 449	. 061	1388	. 227	. 051	24003	. 362	. 900
6	3301	. 450	. 873	60	. 412	. 019	30	. 241	. 008	3391	. 447	. 900
7	1122	. 596	. 873	26	. 609	. 024	4	. 250	. 003	1152	. 595	. 900
$8+$	274	. 673	. 838	17	. 469	. 064				291	. 659	. 900

Year	1979	1980	1981
Recruits at age 0 (millions)	3500	3110	3110
Recruits at age 1 (millions)	1932	2400	-

```
Table ll.8 North Sea WHITING
Results of Catch Predictions ('000 tonnes)
```

1979	SSB:	390
	F :	0.9
	Consumption landings:	93.6
	Industrial landings	53.8
	Discards	128.0
1980	SSB:	360
	F^{*} :	
	Consumption landings:	97
	Industrial landings:	45
	Discards:	106
1981	SSB:	404

$\mathrm{F}_{81} / \mathrm{F}_{79}$	Yield in 1981			SSB 1982
	Consumption landings	Industria. landingsFت)	Discards	
.01	1.6	61.3	1.6	639
.2	30.6	58.8	30	594
.5	69	55.1	70.2	485
1	116.5	49.7	126.3	369
1.5	149.8	45.1	171.3	283
2.0	173.4	41.2	208	219

SSB $=$ Spawning Stock Biomass (ages 2 and older)
$F{ }^{\text {F }}=$ Fishing mortality on age groups subject to maximum exploitation
\#\#) = For industrial landings, $F_{81}=F_{80}=F_{79}$
For consumption landings and discards, $\mathrm{F}_{1980}=0.8 \times \mathrm{F}_{1979^{\circ}}$

Nominal catch (in tonnes) of WHITING in Divisions VIa, 1970-1979 (Data for 1970-1978 as officially reported to ICES)

Country	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ${ }^{\text {T) }}$
Belgium	12	9	7	5	10	1	14	-		
Denmark	-	-	-	121		-		-	119	
Faroe Islands	-	-	-	5	1	30		-	119	
France	1851	2507	I 662	2777	2983	2763	3655	3395	3610	2640
German Dem. Rep.	-	-	-	-	-		31			,
Germany, Fed.Rep.of	-	+	148	127	80	62	1	1	2	4
Iceland	-	-	-	-	-	-				-
Ireland	2420	1178	1122	2117	2431	2429	3255	2752	2080	2785
Netherlands	24	28	40	57	23	85	255	78	23	16
Norway	-	-	-			-	1	-	-	-
Poland	-	2	-	10		-	-		-	-
Spain	-	-	1397	1540	1479	1871	821	$763^{\text {a }}$	-	
U.K. (Eng1.+Wales)	76	66	102	91	112		244	520	669	320
U.K. (Scotland) U.S.S.R.	6839	11435	10707 128	9796	9929	12668	16658	9873	8174	10614
Total VIa	11222	15225	15313	16646	17057	20041	24937	17382	14677	16379
Working Group total catch								17384	14677	16379
${ }^{\text {Fi) }}$ Preliminary	${ }^{\text {a) }}$ In	SIIb								

Table 12.2 Nominal catch (in tonnes) of WHITING in Division VIb, 1970-1979
(Data for 1970-1978 as officially reported to ICES)

Country	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ${ }^{\text {rIF }}$
Faore Islands	-	-	-		1	-	-	+		
France	1265	800	69	62	-	-	-	-	-	-
Ireland	-	-	-	-	-	-	-	- b)	1	-
Spain U. K. (Engl +Wales)	$+$	+	+	+	-	-	3	$\ldots{ }^{\text {... }}$		-
U.K. U.K.	${ }_{12}$	${ }^{+}$	${ }^{+}$	${ }^{+}$	+	- 12	3 15	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{array}{r}5 \\ 24 \\ \hline\end{array}$	1
Total VIb	1277	807	81	63	1	12	18	7	30	2

$\left.\left.{ }^{\mathrm{x}}\right)_{\text {Preliminary }} \quad{ }^{\mathrm{b}}\right)_{\text {Included }}$ in VIa

Table 12. 3 Estimates of WHITING year class strength at age 1 from VIa VPA and from North Sea (IV) WHITING VPA

${ }^{\text {Fi }}$ Data from predictive regression on IYHS data.
() Data from his predictive regression on North Sea values.

Year	SCOTLAND												ENGLAN D								
	Motor Trewl				Seine				Light Trawl				Motor Trawl								
	1.	F	$\frac{L}{E}$	8	I	E	$\frac{\mathrm{L}}{\mathrm{E}}$	\checkmark	L	E	$\frac{\mathrm{L}}{\mathrm{E}}$	γ	L	E	$\frac{\mathrm{L}}{\mathrm{E}}$	γ	$\Sigma_{\text {cij }}$	Γ_{j}	$\mathrm{Cj}^{\text {j }}$	$\mathrm{CJ}_{3} / \mathrm{r}_{j}$	$\mathrm{E}_{\mathrm{j}}^{\text {²) }}$
1963	567	37	15.3	. 27	5762	165	34.9	. 29	533	38	14.1	. 50	-	-	-	-	-	-	-	-	
1964	1156	75	15.4	. 27	5662	181	31.3	. 26	569	44	12.9	. 46	-	-	-	-	-	-	-	-	
1965	1343	73	18.4	. 33	6446	153	42.2	. 35	1318	37	35.6	1.27	426	2958	. 144	. 39	9534	0.476	19179	40292	2.4600
1966	2071	72	28.8	. 51	7089	157	45.1	. 37	2227	41	54.3	1.93	511	2486	. 205	. 55	11898	0.694	15542	22395	1.3673
1967	1145	54	21.3	. 38	7723	159	48.6	. 40	2348	83	28.2	1.00	304	2304	. 132	. 35	11520	0.519	17586	33884	2.0687
1968	1464	50	29.3	.52	5951	150	39.7	.33	1956	66	29.6	1.05	298	2443	. 122	. 33	9669	0.504	13989	27756	1.6946
1969	1097	43	25.5	. 45	4749	240	33.9	. 28	2449	105	23.3	. 83	180	2049	. 088	.24	8475	0.460	12181	26480	1.6167
1970	865	41	21.1	. 37	2860	96	29.8	. 24	2573	115	22.4	. 80	76	1249	. 061	.16	6374	0.483	11222	23234	1.4185
1971	783	42	18.7	. 33	5923	99	59.8	. 49	4050	129	31.4	1.12	65	805	. 081	. 22	10821	0.661	15225	23033	1.4063
1972	864	56	15.4	. 27	4376	71	61.6	. 51	4395	142	30.9	1.10	100	1225	. 082	. 22	9375	0.781	15313	19607	1.1971
1973	1135	55	20.6	.36	4846	59	82.1	.67	2250	91	24.7	. 88	90	1080	. 083	. 22	8322	0.680	16646	24479	1.4945
1974	987	56	17.7	. 31	5292	57	92.8	.76	2566	86	29.8	1.06	111	1032	.108	. 29	8956	0.791	17057	21564	1.3166
1975	762	37	20.6	.36	5591	56	99.8	. 82	4471	129	34.7	1.23	132	1068	. 124	. 33	10955	0.949	20041	21118	1.2893
1976	1422	35	40.6	. 72	7764	57	136.2	1.12	5618	139	40.4	1.44	240	1259	.190	. 51	15043	1.192	24937	20920	1.2772
1977	621	22	28.2	. 20	3830	42	91.1	. 75	3765	143	26.3	. 94	513	1823	. 281	.76	8729	0.793	17382	21919	1.3382
1978	1803	52	34.7	. 61	2334	34	68.6	. 56	2794	127	22.0	. 78	665	1613	. 412	1.11	7597	0.701	14677	20937	1.2783
1979	1862	33	56.5	1.00	4629	38	121.8	1.00	2812	100	28.1	1.00	259	698	. 371	1.00	9692	1.000	16379	16 379	1.0000

Table 12.5 WHITING in Division VIa.
Input catch data for VPA.

QGE	1965	1985	1967	4388	1963	1976
0	\varnothing	0	0	0	0	0
l	. 2921	1726	5356	7333	734	73.
2	6356	19753	31587	26193	28111	2802
3	54044	3417	12510	10125	10768	34476
4	6978	37769	1020	3828	3098	5389
5	1033	2301	18082	284	1424	948
6	286	277	879	5133	126	249
7	39	45	92	287	1906	16
84	$1 E$	22	23	34	170	446
AGE	1971	1972	1973	1974	1975	1976
0	0	0	0	4	54	6
1	2858	13337	14363	7518	17523	7962
2	8455	12407	30540	43269	18683	4456 E
3	4273	4793	7369	12381	39415	16756
4	36928	1486	2184	2070	3238	22205
5	1774	19069	556	515	307	2512
6	311	1119	6495	65	E0	223
7	56	85	332	1407	6	38
$8+$	73	85	42	62	194	127

AGE	1977	1978	1979
0			
1	3477	1	11
2	17449	15508	1707
3	33253	7256	33623
4	3608	13754	16525
5	5702	1626	3866
6	384	2110	4858
7	7	77	355
$8+$	5	11	519
			13

Table 12.6 WHITING in Division VIa.
Fishing mortalities from VPA (M = 0.2).

AGE		1965	1966	1967	1968	1969	1970	1971	1972	1973
0		. 000	.000	.000	. 000	.000	. 000	. 000		
1		. 053	. 028	.079	. 033	. 050	. 032	.908	. 000	.000
2		. 663	.592	. 954	. 6.0	. 172	. 272	. 6802	-179	. 081
3		. 481	. 354	. 971	. 981	. 635	.330	.858	.841	1.780
4		. 888	.745	.873	. 351	. 375	. 778	.710	. 860	1.20 .8
5		1.06E	. 813	1.034	. 646	1.267	.960	. 644	1.645	1.318
6		1.409	. 979	. 880	.992	. 632	.786	1.035	1.172	1.438
7		. 856	. 613	1.118	.828	1.443	.156	. 410	. 3.35	1.618
8		1.200	1.290	1.200	1.200	1.200	1.200	1.200	1.200	1.200
MEAN	F	$\begin{gathered} \text { FOR AGE } \\ .528 \end{gathered}$	$\begin{gathered} \mathrm{Es} \cdot 7= \\ .703 \end{gathered}$	$\begin{gathered} 2 A M D<= \\ .978 \end{gathered}$	$\begin{gathered} 5(\text { WEIGHTED } \\ .751 \quad .252 \end{gathered}$		BY STOCK IN NUMBERS$.362 \quad .658 \quad .853$.876
AGE		1974	1975	1976	1977	1978	1979			
0		. 090	- 96	. 000	.600	.006	. 601			
1		.122	. 116	.170	. 050	.121	. 023			
2		. 367	. 489	. 475	. 679	. 378	. 450			
3		. 893	. 675	1.143	. 801	.681	. 900			
4		1.328	. EE2	1.077	. 843	. 365	1.000			
5		1.56\%	.769	1.63E	. 338	1.286	1.200			
E		. 271	.751	2.234	1.469	1.202	1.200			
7		1.865	. 056	1.504	. 398	1.698	1.200			
8		1.200	1.200	1.200	1.200	1.200	1.200			
MEAN	F F	$\begin{gathered} \text { FOF } A G E \\ .454 \end{gathered}$	$\begin{array}{r} 5= \\ .606 \end{array}$	$\begin{gathered} 2 \mathrm{AND}< \\ .699 \end{gathered}$	$\begin{gathered} 5 \text { (WE } \\ .776 \end{gathered}$	IGHTED . 598	$\begin{gathered} \text { BY STOC } \\ .607 \end{gathered}$	IN N	BERS)	

Table 12.7 WHITING in Division VIa. Stock size in numbers from VOA.

AGE	1965	1966	1967	1968	1969	1970
0	2556\%	95434	301289	20287	31438	46535
1	62194	70057	78135	246674	16610	25739
2	14312	48284	55800	59140	195339	12936
3	154840	6039	21861	17593	25015	134610
4	13987	78340	1305	6776	5403	10855
5	1705	4500	30437	652	2143	1665
6	408	482	1633	8859	286	494
7	74	82	148	555	2691	122
8	19	26	27	40	198	520
AGE	1971	1972	1973	1974	1975	1976
0	109068	249740	89154	216025	68355	84674
1	38100	89298	204470	72993	176863	55913
2	20412	28616	61099	154448	52894	123004
3	8072	9150	12339	22790	87693	26565
4	79235	2802	3221	3042	7537	36512
5	4581	31900	971	706	660	3357
E	523	1755	9182	301	124	2E6
7	182	152	445	1784	188	48
8	85	93	49	72	226	148

Table 12.8. Whiting in Division VIa
1979 Input Data for Catch Prediction
(No data on discards or industrial landings)

Age	Catch No * (000)	\bar{W} $(\mathrm{~kg})$	F
1	1707	.213	.023
2	33623	.241	.450
3	16525	.267	.900
4	3866	.310	1.000
5	4858	.377	1.200
6	355	.471	1.200
7	519	.563	1.200
$8+$	10	.690	1.200

Year	1979	1980	1981
Recruits at age 1 (000)	81500	110900	96000

* Adjusted so that sum of products equals landings

Table 12.9. WHITING in Division VIa
Results of Catch Predictions (1 000 tonnes)

1979	$\begin{aligned} & \text { SSB } \\ & T B \\ & F \\ & Y_{W} \end{aligned}$	$\begin{array}{r} 38.2 \\ 55.5 \\ 1.2 \\ 16.4 \end{array}$		
1980	$\begin{aligned} & \mathrm{SSB} \\ & \mathrm{~TB} \\ & \mathrm{~F} \\ & \mathrm{Y}_{\mathrm{w}} \end{aligned}$	$\begin{array}{r} 34.8 \\ 58.5 \\ 1.2 \\ 16.4 \end{array}$		
1981	$\begin{aligned} & \mathrm{SSB} \\ & \mathrm{~TB} \end{aligned}$	$\begin{aligned} & 37.7 \\ & 58.1 \end{aligned}$		
$\mathrm{F}_{81} / \mathrm{F}_{79}$		Yw in 1981 consumption landings	$\begin{aligned} & \text { SSB } \\ & 1982 \end{aligned}$	$\begin{gathered} \text { TB } \\ 1982 \end{gathered}$
0.01		0.2	53.9	74.3
0.2		4.3	49.6	70.1
0.5		9.8	44.0	64.4
1.0		16.7	36.9	57.4
1.5		21.7	31.9	52.4
2.0		25.4	28.3	48.8

SSB = Spawning stock biomass (ages 2+)
TB = Total stock biomass
F = Fishing mortality on age groups subject to maximum exploitation
Yw = Yield in weight

Table 13.1 Nominal catch (in tonnes) of WHITTNG in Division VIId and VIIe in 1970-1979 (Data for 1970-1978 as officially reported to ICES)

Country	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979 ${ }^{\text {\# }}$)
Belgium	41	25	19	38	39	70	103	36	85	88
Denmark	4				-	-	18	,	1	2572
France ${ }^{\text {Netherlands }}$	4029 2	$\begin{array}{r}2999 \\ \\ \hline\end{array}$	3121	5050	7917	10060	8390	8886	8010	7374
Ireland			21	42	12	14	5	1	2	1
U.K. (Engl.+Wales)	753	567	515	498	579	1255		11	12	-
Germany, Fed.Rep. of	75	+	515	498	579 25	1255	1504	1342	1038	930
U.S.S.R.	-	+	-	19	- 2	- ${ }^{1}$	-	-	-	-
Total VIId, e	4825	3592	3676	5647	8572	11400	10020	10276	9148	10665

Table 13.2 Nominal catch (in tonnes) of WHITING in Divisions VIIb, c and VIIg-k (Data for 1970-1978 as officially reported to ICES)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Country \& 1970 \& 1971 \& 1972 \& 1973 \& 1974 \& 1975 \& 1976 \& 1977 \& 1978 \& 1979 ${ }^{\text {\# }}$)

\hline Belgium \& 113 \& 54 \& 20 \& 124 \& 75 \& 83 \& 97 \& 60 \& 37 \& 22

\hline France \& 3066 \& 4893 \& 5695 \& 4035 \& 4331 \& 3637 \& 4731 \& 3962 \& 3848 \& 3980

\hline Germany, Fed.Rep. of \& 1 \& \& - \& $+$ \& \& 2 \& 4 \& 1
1 \& 45 \& -

\hline Ireland \& 712 \& 482 \& 1141 \& 1894 \& 1641 \& 2562 \& 1980 \& 1201 \& 1172 \& 2674

\hline Netherlands \& 73 \& 100 \& 377 \& 2080 \& 915 \& 66 \& 112 \& 86 \& - 63 \& + 2

\hline ${ }^{\text {Poland }}$ \& - \& - \& - \& 14 \& 1367 \& - 9 \& \& \& \& -

\hline U.K. (Engl.+Wales) \& 80 \& 17 \& 1 491 \& $\begin{array}{r}1121 \\ \\ \\ \hline 1\end{array}$ \& 1367
15 \& 2974
61 \& 2772

21 \& \& \& 22

\hline $$
\begin{aligned}
& \text { U.K. (Scotland) } \\
& \text { U.S.S.R. }
\end{aligned}
$$ \& - \& - \& -3 \& - \& 15 \& - \& 21 \& 26

2 \& 38
1 \& 22
1

\hline Total VIIb, c and g-k \& 4045 \& 5546 \& 8761 \& 9305 \& 344 \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& 5330 \& 5204 \& 6701

\hline
\end{tabular}

[^6]

Figure 3.2 North Sea COD. Catch predictions.

Figure 4.1 COD in Division VIa.

Figure 4.2 COD in Division VIa.
Catch predictions.

Figure 7.1 North Sea HADDOCK.

1980 Year

Year

Figure 7.2 North Sea HADDOCK. IYHS abundance indices VS VPA results.

Figure 7.3 North Sea HADDOCK. Catch predictions.

Figure 8.1 HADDOCK in Division VIa.

Figure 8.2 HADDOCK in Division VIa. Mean F vs fishing effort.

Figure 8.3 HADDOCK year class strength at age 1 (from VPA results)

Figure 11.1 North Sea WHITING.

Figure ll. 2 North Sea WHITING.
 Yield and spawning stock biomass per 0-group recruit.

a) F accounts for consumption fishery, discards and industrial fishery.

Figure ll. 3 North Sea WHITING. Catch precictions.

Figure 12.I WHITING in Division VIa.

Figure l2.1 (continued) WHITING in Division VIa.

Figure 12.2 Relationship between year class strength of WHITING

Figure 12.3 WHITING in Division VIa.
Catch predictions for 1981 and spawning stock

ANNEX 1

Revisions to Historical Data Sets for Haddock and Whiting in the North Sea North Sea

The amendments described below were made prior to the meeting of the Working Group. The historical data sets were corrected to take account of arithmetical errors and to include previously submitted updatings of Bulletin Statistique data.

Discards of Haddock and Whiting

For the period 1960 to 1975, Dutch discard data (N. Daan (1976), "Report on discards of cod, haddock and whiting in the North Sea by the Dutch Fleet 1958-1975", ICES C.M. 1976/F:8, Demersal Fish (Northerm) Committee) were raised to total international discards using the factor

$$
T_{i} / D_{i}
$$

For 1976 and 1977, Dutch and Scottish discard data were raised to total international discards using the factor

$$
T_{i} /\left(D_{i}+S_{i}\right)
$$

$T_{i}=$ Total weight landed by human consumption fisheries in year i,
$D_{i}^{i}=$ Weight landed by Dutch human consumption fishery,
$S_{i}^{i}=$ Weight landed by Scottish human consumption fishery.
Danish Industrial landings of Haddock for the Period 1960 to 1971
In the previously used data set, it had been assumed that the Danish landings age composition for the period 1960 to 1971 was the same as that estimated for the human consumption fishery. From 1972 and onwards, data are available to assess the actual age composition of the Danish industrial landings. Inspection of these data show that the Danish industrial landings of haddock consist predominantly of young fish (ages 0, 1, 2, 3).

To estimate a more appropriate age composition for the Danish industrial landings for the period 1960 to 1971 the following procedures were adopted:

1) It was assumed that the nominal weight landed by Denmark as shown in Bulletin Statistique consisted entirely of industrial by-catch.
2) For the period 1972 to 1977 the ratio of the number per tonne in the Danish industrial catch to the number per tonne in the total human consumption landings was computed for ages 1 to 7 . A mean of the ratios was derived from this data set (Annex 1, Table l).
3) Using these values the estimated number per tonne for ages 1 to 7 in the Danish industrial catch for the period 1960 to 1971 were derived from corresponding values of numbers per tonne in the total human consumption landings. The total estimated number of haddock landed as industrial by-catch was then obtained by multiplying by the appropriate weight landed.
4) Using data for the period 1972 to 1977 the ratio of the number per tonne in the Danish industrial landings at age 0 in year t to the corresponding value at age 1 in year $t+1$ was evaluated. A mean value was then obtained (Annex 1, Table 2).
5) These values were then used to estimate the number at age 0 in the Danish industrial catch from the number at age 1 as estimated in paragraph 3) above.
6) The numbers at age in the Danish industrial landings were then adjusted by S.O.P. to agree with the Bulletin Statistique Danish landings. The mean weights at age used to evaluate S.O.P.s are shown in Annex 1, table 3.
It should be added that the procedure described above is far from satisfactory, especially since very large S.O.P. corrections were required to make the estimated Danish age compositions agree with Bulletin Statistique data. However, the method does at least produce Danish age compositions which are more realistic than those used previously. In addition, the method also ensures that relative year class abundances are preserved in the estimated Danish age composition.

ANNEX 1, Table 1 HADDOCK North Sea 1972-1977
Estimated no./tonne in Danish industrial landings: No/tonne in total human consumption landings.

Age	1972	1973	1974	1975	1976	1977	Mean 1972-1977
0							
1	155.84	71.50	34.92	70.07	88.82	62.60	80.6
2	1.88	1.75	2.15	1.04	2.75	3.70	2.2
3	0.23	. 25	0.64	0.32	0.60	1.12	0.53
4	0.05	. 13	0.26	0.15	0.02	0.26	$0.15{ }^{\text {m }}$)
5	0.02	. 07	-	0.02	0.32	0.29	$0.15{ }^{\text {3*) }}$
6	-	. 59	0.17	0.01	0.02	0.23	$0.15{ }^{\text {\% }}$)
7	-	1.5	0.08	-	-	-	$0.15{ }^{\text {Fi }}$)
8	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-
10+	-	-	-	-	-	-	-

$\left.{ }^{\#}\right)_{\text {Smoothed }}$ value.

ANNEX 1, Table 2 HADDOCK North Sea 1972-1977
No/tonne at age 0 in year $t: \times 0 /$ tonne at age 1 in year $t+1$ in Danish industrial landings.

$1972 / 73$	$1973 / 74$	$1974 / 75$	$1975 / 76$	$1976 / 77$	Mean
2.37	2.20	0.87	1.25	0.85	1.50

ANNHX 1, Table 3 HADDOCK North Sea. Mean weight at age in Danish industrial landings.

Age	Mean weight
0	.027
1	.074
2	.161
3	.267
4	.357
5	.341
6	$(.380)$
7	.438

The following note was contributed to the Working Group by P. Sparre. Unfortunately there was insufficient time for discussion of it in the meeting.

GENERAL MANAGEIMENT CONSIDERATIONS

by Per Sparre

In last year's report the working group expressed its doubt about the validity of the scientific basis of current advice on fish stock regulation. Especially the long term predictions based on yield per recruit curves were considered a questionable approach.
During the last year some workers have developed alternative methods (Pope, 1979, Helgason \& Gislason, 1979 and Sparre l980). The three works are based on the same basic model, namely the species interaction cohort analysis (also called "legion analysis"). The models by Pope and Helgason \& Gislason are extensions of the ordinary VPA to take predation induced species interaction into consideration. The model by sparre is an extension of legion analysis, which makes it possible to run the model in prognostic mode and to take technical interaction (mixed fisheries) into account.

The models are still developing, and the data base is not satisfactory yet. To run the model we thus have to make educated guesses on a number of parameters.

The traditional yield per recruit curve method appears to require fewer data than the legion analysis (in the prognosis mode) and thus does not force us to make any guess work. But this is only apparently the case. Actually the $Y / R-m e t h o d i s$ based on a number of tacit assumptions (i.e. a number of guessed parameters) E.g.:

1) Each stock is in a steady state situation (i.e., constant age distribution of population and catch, constant recruitment and constant mortalities year to year).
2) Natural mortality is independent of abundance of predators. (i.e., it is ignored that fish eat fish).
3) The fishery on one stock can be managed independently of the management of other fisheries (e.g. it is assumed that the North Sea fishery on whiting can be managed independently of the North Sea cod fishery).

Two advantages of using legion analysis for long term prognosis instead of $Y / R-c u r v e s ~ a r e: ~$

I: The underlying model is closer to the generally accepted opinion on what actually goes on in (and on) the sea.
II: The assumptions and guesswork are not concealed to the user of the model to the same degree as in the traditional $Y / R-m o d e l$.

Thus taking the alternative method into consideration
I felt it reasonable to present some preliminary
result from the legion analysis applied in the prognosis mode.

A detailed explanation will appear as an ICES paper this year. Table 1 shows the assumed technical interaction. Table 1 is not based on real technical measurements, but should rather be considered as a hypothetical example given for illustrative purposes. But the technical parameters are calibrated such that the resulting fishing mortalities correspond to those used in ICES W.G. reports.

Information given in ICES W.G. reports on the North Sea fish stocks is used as input. A number of parameters are educated guesswork, e.g. the socalled "food suitability matrix", which determines the predation patterns.

Two options of fishing strategy is considered.
Option A: All fishing mortalities unchanged compared to 1978.

Option B: F for the round fish fleet is reduced by 10% every year (from 1980-85). To evaluate the two strategies the yields in 1985 is considered. This exercise shows that Option A yields a higher total return than Option B (see Table 2). The present exercise assumes a rebuilding of the herring and mackerel stocks. However, the opposite assumption would not change the general conclusion.

Table 3 shows the yields of the five fleets for both fishing strategies.

The conclusion of this exercise is that if a 10% reduction in roundfish effort should result in a hihger long term yield, this gain is not obtained in the nearest future. There may be some gain obtained by the increased cpue for the round fish fleet, but the evaluation of this depends on what we actually try to achieve by the fishery regulation.

Maybe the most important conclusion from this exercise is that today it is possible to base the advice on fishery regulation upon models containing fewer tacit assumptions of dubious nature.

FLEET/	Round fish fleet	Flat fish fleet	Pelagic fish fleet	Industrial fleet	Sandeel fleet
Cod	1.0	0.2	0	0.1	0
Haddock	1.0	0.2	0	0.3	0
Whiting	1.0	0.2	0	0.5	0
Saithe	0.7	0	0	0.3	0
Herring	0	0	0.5	0.1	0
Mackerel	0	0	1.0	0.2	0
Plaice	0.2	0.6	0	0	0
Sole	0.1	1.0	0	0	0
N. Pout	0	0	0	0	0
Sprat	0	0	0.5	0	0
Sandeel	0	0	0	0	0

ANNEX II TABLE 1 TECHNICAL INTERACTION. Example:
If F on cod exerted by the round fish fleet is . 7 then F on whiting becomes .7, F on saithe becomes . $7 \mathrm{x} .7=.49$, F on plaice exerted by the round fish fleet becomes . 7 x . $2=.14$ etc. Total F on, $e_{\text {. }} \mathrm{g}_{\text {- }}$ plaice is the sum of Fs from the round fish-, the flat fish- and the industrial fleet. (The figures are not estimated from real observations).

	OPTION A		OPTION B		
	F unchangedYield SSB		```F-roundfish reduced by 10% per year Yield SSB```		Difference Yield
cod	300	347	297	621	-3
Haddock	80	141	69	186	-11
Whiting	111	170	95	245	-16
Saithe	82	204	71	328	-11
Herring	216	709	180	612	-36
Mackerel	536	1496	478	1392	-58
Plaice	91	313	80	316	-11
Sole	13	25	11	23	-2
N. Pout	634	800	547	696	-87
Sprat	486	417	450	377	-36
Sandeel	423	198	379	160	-44
Total consumption	1429		1281		-148
Total industrial	1543		1376		-167.
Total	2972		2657		-315

ANNEX II TABLE 2. Yield (landings + discards) in 1985 for two alternative fishing strategies, taking species interaction and technical interaction into account.

Fleet/year	1980	1981	1982	1983	1984	1985
Round Fish Fleet	$\begin{array}{r} 593 \\ 644 \\ \hline \end{array}$	$\begin{array}{r} 514 \\ 588 \\ \hline \end{array}$	$\begin{aligned} & 459 \\ & 528 \end{aligned}$	$\begin{aligned} & 419 \\ & 484 \end{aligned}$	$\begin{aligned} & 394 \\ & 448 \end{aligned}$	$\begin{aligned} & 367 \\ & 418 \end{aligned}$
Flat Fish Fleet	$\begin{aligned} & 111 \\ & 109 \end{aligned}$	$\begin{aligned} & 110 \\ & 102 \end{aligned}$	$\begin{array}{r} 107 \\ 94 \end{array}$	$\begin{array}{r} 110 \\ 89 \\ \hline \end{array}$	$\begin{array}{r} 114 \\ 86 \end{array}$	$\begin{array}{r} 118 \\ 84 \end{array}$
Pelagic Fish Fleet	$\begin{array}{r} 229 \\ 229 \\ \hline \end{array}$	$\begin{aligned} & 290 \\ & 291 \end{aligned}$	$\begin{aligned} & 325 \\ & 331 \end{aligned}$	$\begin{array}{r} 344 \\ 359 \\ \hline \end{array}$	$\begin{aligned} & 358 \\ & 388 \\ & \hline \end{aligned}$	$\begin{aligned} & 399 \\ & 451 \end{aligned}$
Norway Pout + Sprat Indust. fleet	$\begin{aligned} & 1344 \\ & 1347 \end{aligned}$	$\begin{aligned} & 1296 \\ & 1311 \end{aligned}$	$\begin{aligned} & 1285 \\ & 1327 \end{aligned}$	$\begin{array}{r} 1290 \\ 1369 \end{array}$	$\begin{aligned} & 1292 \\ & 1413 \end{aligned}$	$\begin{aligned} & 1285 \\ & 1449 \end{aligned}$
Sandeel Fleet	$\begin{array}{r} 647 \\ 649 \\ \hline \end{array}$	468 476	$\begin{aligned} & 411 \\ & 426 \\ & \hline \end{aligned}$	392 418	383 419	$\begin{aligned} & 379 \\ & 423 \end{aligned}$

ANNEX II Table 3

Landings (l000 tonnes) of each fleet.
Upper Figure: Option B (F for the round fish fleet reduced by 10% per year). Lower Figure: Option A (constant F).

[^0]: This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.

[^1]: x) General Secretary, ICES,
 Palægade 2-4, DK-1261 Copenhagen K, Denmark。

[^2]: ${ }^{\text {mi }}$ Preliminary .

[^3]: $\left.{ }^{\#}\right)_{\text {Provisional }}$ figures; a) ${ }_{\text {1970-1972 }}$ includes IIIa; b) Figures from Norway do not include haddock caught in Rec. 2. fisheries;
 c) 1970-1974 includes IIIa;
 ${ }^{\text {d) }}$ Includes discards.

[^4]: * Preliminary

[^5]: ${ }^{\text {3) }}$ Excluding discarda.

[^6]: $\left.{ }^{3 x}\right)_{\text {Preliminary }}$

