ERRATA

REPORT OF THE NORTH SEA FLATFISH WORKING GROUP

Changes in iv.S. HMetfish Report

p.4.- 2.6.1.
p.7.- 2.6.1./2.6.2/2.1.1.
р.6.-2.7.1/2.7.2
p.10.- 3.8
p. 28 and p. 29 : tobles 2.9 and 2.10 withdrawn

New table 2.9 and 2.10
p. 51 :table 4.11
0.64 : table 5.8 in right order and place
p. 68 : table 6.11

Figure 2.8 withdrawn
Due to the changes the numbering of the pages from page 28 has to be altered.

Ostend 30 August 1979
Dr. R. DE CLERCK
Chairman of the Flatfish Working Groun

are in very good agreement with each other. For the years 1961, 1962 and 1963 both cpue curves agree with VPA runs in which a high M for 1963 has been taken. This means that it is very likely that the natural mortality in 1963 was of the order of $0.8-1.0$.
Before 1959 the VPA stock curves shown still do not agree with the cpue curves; however, another simulation on similar lines (Houghton, pers.comm.) suggests that this discrepancy can also be resolved, so cpue and VPA curves match for the whole series.
2.5.2 The effect of the severe winter of 1979 on the natural mortality De Veen (1969) showed that the effects of a strong or severe winter can be estimated qualitatively by calculating for the North Sea the number of days in which the surface water temperature has been below $3 \frac{1}{2}{ }^{\circ} \mathrm{C}$. Surface temperatures probably represent temperature at the bottom because in the area considered the water column is homogenous throughout the year.
Figure 2.5 shows the situation in 1963. As a result of the normal east-west migration of the North Sea sole the fish moved to the deepest and warmest parts of their range but were still overrun by cold temperatures. Thus, the Silverpit and the Deepwater Channel showed the highest mortality rate later in May-June 1963 (Woodhead, 1964b). The area with reported dead or dying soles roughly coincides with 60 or more days line. Figure 2.6 shows the situation in the 1979 winter. Very high catch rates were experienced in the Belgian and Dutch sole fishery during January-March 1979 in the western half of the central and southern North Sea. However, compared with the 1963 situation, the duration of the cold water regime in these deeper parts of the North Sea was much less than in 1963, so that natural mortality owing to the 1979 severe winter may have been considerably less than in 1963.
Figure 2.7 shows the surface temperatures on four selected positions in the North Sea in 1963, 1979 and the average situation. The Galloper lightvessel temperatures in 1979 were slightly below the average in contrast to the low temperatures in 1963. The Smith Knoll lightvessel data for 1979 were below the average, but higher than in 1963. The position $55^{\circ} 05^{\prime}-55^{\circ} 14^{\prime} N, 2^{\circ} 03^{\prime}-2^{\circ} 14^{\prime} E$ in the central North Sea in the western part showed 1979 temperatures well below average and slightly above the 1963 picture. To conclude, the Elbe I lightvessel data showed 1979 temperatures far below average but somewhat higher than the 1963 situation (Eliett, 1963, 1967; Ellett and Baxter, 1963; D.H.I., 1954-77). Figure 2.7 confirms the findings of Figure 2.6.
At the moment no information on the level of M for 1979 is available. For prognosis purposes a number of values for M_{19} g has been chosen, e.g. 0.1, 0.2, 0.3, 0.4, and 0.5.

```
2.6 Catch Predictions
2.6.1 Introduction
```

To assess the order of magnitude of an increased M on catch and stock in 1980 and hence on a range of possible management measures, prediction runs have been made assuming an array of M values between 0.1 and 0.5 .

In addition, some assumptions on recruit strength have been made. In Option A average recruitment having the same natural mortality as the adults has been taken. In Options B and C the figure for the 1978 year class as taken from the latest 0 -group survey has been used. In Option B, this year class had the same M as the adult soles. In Option C an extra 50% natural mortality was assumed for the 1978 year class.

In each of the three Options three levels of F have been taken. In the first run, it was assumed that $F_{80}=F_{78}$, in the second run $\mathrm{F}_{80}=0.80 \mathrm{~F} 7$, and in the third run $\mathrm{F}_{80}=0.5 \mathrm{~F}_{78}$. In all. runs it was assumed that the TAC for 1979 will be exceeded, and that $F_{79}=F_{78^{\circ}}$ The runs were carried out for males and females separately, and the resulting stock and catch biomasses added together Th imput 1978

catch numbers por age group are taken from tables 2.2 and 2.5.

 The weight-at-age data for catch and stock are given in Table 2.8.
2.6.2 Results of catch predictions

Table 2.9 gives the details of the predictions for total and spawning stock and catch biomasses for 1980. To correct for the discrepancies mentioned in para. 2.3.1 all the figures have been raised by 10%.
Table 2.10 is a summary of the resulting total stock biomasses at the beginning of 1981. In Section 2.7 the difficulty to define a long-term objective for management will be given.
In Section 9.4 the absence of a stock/recruitment relationship in the available data is indicated. It is obvious that the stock at the befinning of 1978 was such that the good year class 1978 was produced. A short-term objective might be to restore the sole stock to at least the level at the beginning of 1978, viz.,

44700 tonnes.

Tables 2.9 and 2.10 show for different values of M in 1979 the level of TACs needed to reach the stock of 44700 tonnes, i.e. the 1978 level, at the beginning of 1981. This will depend on the magnitude of M_{7} of the adult soles and the M_{79} of the year class recruiting in 1980.
2.7 Management Options
2.7.1 The present impossibility of giving an advice on a TAC for 1980

Owing to the effects of the severe winter of this year the level of the stock and the 1978 recruitment are unknown at present.
In 1962 a good year class was born, but it nearly disappeared after the 1963 winter. At the moment the situation is roughly the same. The fate of the good 1978 year class which has to recruit in 1980 is unknown. The international spring 0-group survey this year failed to show the 1978 year class, but this may be the result of retarded migration from deefer water which has happened also after the 1963 winter. Thus, in the months to come more information will become available on the strength of the 1973 year class at present. Another uncertainty is that the level of increased natural mortality on the adult soles is unknown at present.
It is therefore difficult to give any positive advice on a TAC for 1980 in this report. It is imperative to postpone any advice on management until more information on the after-effects of this severe winter become available.
Two possible short-term management options were discussed by the Working Group and are presented below:
(1) that the 1980 TAC should be chosen to return the total stock biomass in 1981 to 44700 tonnes, which was that observed in 1978;
the 1980 TAC should be chosen to make the 1981 spawning stock biomass equal to the average level of 1970-78, i.e. 46000 tonnes.

TACs corresponding to these options for a range of values of M are given in the text tables below.

Text Table 1. TACs for North Sea sole for 1980
(in tonnes) to achieve a stock
biomass in ly81 $=1978$.

M 79	Option 1 (Average recruitment)	0ption 2 (978 recruit strength $)$	Option 3 $(0.5$ x 1978 recruit strength $)$
0.1	20500	(1)	18000
0.2	16200	(1)	14000
0.3	13600	21100	10600
0.4	9000	17800	7500
0.5	6300	14800	(1)

Text Table 2. TACs for North Sea sole for 1980
(in tonnes) to achieve a spawning stock biomass in $1981=$ average 1970-78.

M_{79}	$\begin{gathered} \text { Option } l \\ \text { Average recruitment) } \end{gathered}$	Option 2 $(1978$ recruit strength $)$	$\begin{aligned} & \text { Option } 3 \\ & \text { (} 0.5 \times 1978 \\ & \text { recruit strength }) \end{aligned}$
0.1	15300	(24000)	13000
0.2	11700	20000	10000
0.3	(7 000)	16200	(1)
0.4	(1)	12800	(1)
0.5	(1)	10000	(1)

(NB. Figures within brackets are less accurate because of extrapolation on the curves.)

(1): extrapolation on the curve too uncortain

Whatever the effects of the 1979 winter on the stock, management should be aimed at restoring the present stock level immediately to the 1978 level. This short-term objective will certainly mean a reduction in the catch possibilities in 1980. It is necessary to know what the catch possibilities will be in 1980 and this can only be assessed after the missing information has been collected. There is a chance that a sensible assessment can be carried out in OctoberNovember this year, not earlier.
2.7.2 The present impossibility of defining long-term management objectives for North Sea sole
De Veen (1976, 1978b) has shown that growth is not constant in the North Sea sole, but that a dependency on the fishery exists. Houghton coma sume that the observed change in growth rate is linked with stock biomass. In both cases a constant parameter yield per recruit

3.8 Management Objectives

For both the catch option forecast in Table 3.13, the spawning stock does not change appreciably in the short term because of the level of recruitment, and the yield per recruit curve suggests that the present maximum value of F in the exploitation pattern corresponds to the diagnosis of full exploitation made in previous years.
For the years 1963-76, two year old recruits and the female stock biomass based on the English growth data, are plotted in Figure 3.6. No fit has been made to these data, but the plot suggests that recent year classes are larger, though more variable, than hitherto. $0 n$ this basis the present management objective should be to maintain present spawning stock levels, and to prevent any further increase in fishing mortality. This would be achieved by adopting a TAC of 112000 tonnes for 1980.
4. SOLE IN DIVISION VIId
4.1 Catch Trends

Total international landings have risen continuously from 840 tonnes in 1975 to 1350 tonnes in 1978 (Table 4.1, Figure 4.1.A).

4.2 Age Composition

The 1977 age composition data were updated (Tables 4.3 and 4.7). For 1978, Belgium, France and the United Kingdom (England) provided age composition data which accounted for 100% of the reported landings.
It is believed that perhaps 40% of the English landings and an unknown but probably significant proportion of the French landings are unreported in this area. At present, no data are available which could be used to correct for this, and for this reason age compositions have been revised to represent only the reported weights.
No data are available on discards and by-catch.

4.3 Weight at Age

Values of weight at age used in estimation of spawning stock biomass and for predicting catches are shown in Table 4.4. These values are unaltered from those used last year. The sum of products of mean weight at age with numbers caught was 6% below the reported 1978 landings.
4.4 Virtual Population Analysis

It was assumed that $M=0.1$ for both sexes at all ages.
Data on fishing effort in the Belgian and United Kingdom (England) fisheries are shown in Table 4.2. Only four years' data are available for Division VIId for English vessels and only seven years' data were available for the Belgian fishery. It proved impossible to find a set of input F at age, for either males or females, such that F in years before 1978 was well correlated with either measure of fishing effort. On this basis, the input F at age for 1978 was based on the mean value for the period 1973-75. This procedure resulted in sets of input F at age which closely resembled those chosen by the Group last year (Tables 4.5 and 4.8).
Values of stock in numbers from VPA are given in Tables 4.6 and 4.9. Historical spawning stock biomasses are shown in Figure 4.l.A. Spawning stock levels declined between 1971 and 1976; the estimated level for 1978 is, however, in excess of that estimated for 1971.

Table 2. 2 North Sea SOLF. Catch predictions for 1980 (in tonnes)

	Optjon A			Option B			Option C		
	Mean Recruitment Pem 430000			Recruitment Females 73400 Males 71200			Recruitment $\begin{aligned} & \text { Females } \\ & \text { Males }\end{aligned} \begin{array}{lll}36 & 700 \\ & 6500\end{array}$		
	Run I	Run II	Run III	Run I	Run II	Run III	Run I	Run II	Run III
$\mathrm{M}=.1$ in 1972			.						
Total stock biomass	46165	46165	46165	49491	49491	49491	45461	45461	45461
Spawning stock	41861	41861	41861	41861	41861	41861	41861	41861	41861
Catch	21141	17809	12058	22652	19048	12862	20787	17517	11869
$M=.2$ in 1979									
Total stock biomass	42223	42223	42223	45549	45549	45549	41518	41518	41518
Spawning stock	37919	37919	37919	37919	37919	37919	37919	37919	37919
Catch	19333	16282	11020	20839	17521	11823	18983	15614	10831
$\mathrm{M}=.3$ in 1979									
Total stock biomass	38655	38655	38655	41981	41981	41981	37951	37951	37951
Spawing stock	34357	34357	34357	34357	34357	34357	34357	34357	34357
Catch	17699	14901	10080	19208	16138	10882	17351	14614	9895
$M=.4$ in 1979									
Total stock biomass	35428	35428	35428	38753	38753	38753	34723	34723	34723
Spawning stock	31124	31124	31124	31.124	31124	31124	31124	31124	31124
Catch	16219	13651	9230	17729	14889	10033	15863	13366	9045
$M=.5$ in 1279									
Total stock biomass	32507	32507	32507	35833	35833	35833	31802	31802	31802
biomass Spawning stock	28203	28203	28203	28203	28203	28203	28203	28203	28203
Catch	14878	12518	8460	16390	13757	9262	14535	12237	8276

Table 2. 10 North Sea SOLE. Stock size in tonnes in 1981

Table 4.11 SOLE in Divisions VIId and VIIe
Selected catch predictions

	Div. VIId		Div. VIIe	
```Spawning stock biomass }197 (tonnes x 10-3) Catch }197 (tonnes x 10-2)```	5. 13.		3.8	
Spawning stock biomass 1979   Catch 1979	$\begin{array}{r} 3.4 \\ 14.5 \end{array}$		3.8	
Spawning stock biomass 1980	6.1		4.0	
$\mathrm{F}_{80} / \mathrm{F}_{78}$	$\begin{aligned} & \text { Catch } \\ & 1980 \end{aligned}$	Spawning Stock Biomass	$\begin{aligned} & \text { Catch } \\ & 1980 \end{aligned}$	Spawning   Stock   Biomase
0	0	7.1	0	
0.1	1.6	7.9	0.8	4.7
0.2	3.0	6.7	1.7	4.4
0.4	5.9	6.5	3.3	4.3
0.6	8.5	6.1	4.8	4.2
0.8	11.3	5.9	6.3	4.1
1.0	13.8	5.6	7.8	4.0
1.5 2.0	19.4 24.4	4.9 4.4	11.0	3.7



AGE	1969	1970	1971	1972	1973	1974
2	1116	779	1831	1421	903	18.81
3	1357	966	681	1637	1233	781
A	414	1005	747	510	：248	97.3
5	571	311	743	526	382	8．63
6	1300	415	238	533	366	$2 \% 5$
7	こ71	1020	297	172	392	2t． 4
8	386	320	828	223	137	242
9	273	318	276	615	184	121
10	245	238	272	243	499	146
11	198	206	183	216	201	$4 \% 2$
12	257	$1 \in 6$	171	148	168	177
13	137	2こも	140	136	122	134
14	158	123	188	113	120	1 （13
15	ES	129	1 H 3	157	100	154
16	52	55	181	86	12.3	$\stackrel{¢}{6} \mathrm{E}$
17	57	42	46	87	71	$1: 4$
18	29	44	38	53	$7 E$	E 6
19	34	25	33	33	31	57
20	23	28	20	27	28	＜ 7
21	9	26	24	14	22	$\because 4$


AGE	1975	1976	1977	1978
$\geq$	1296	1222	ごフも	2485
3	158.8	1155	1 ctz	2419
4	SC6	1183	889	763
5	729	342	810	596
6	672	$5: 4$	225	6.11
7	198	560	404	145
8	こ12	189	449	318
9	188	157	143	346
10	88	15：	119	$1 こ 2$
11	912	ES	196	93
12	SEE	91	48	85
13	147	393	79	35
14	111	120	241	$6{ }^{6}$
15	87	85	100	197
1 E	$\varepsilon 5$	71	65	87
17	72	T2	52	47
18	100	56	51	$\bigcirc 8$
19	51	8.8	4E	41
20	46	4	58	39
21	こと	39	56	44

## Table 6.11 English Channel PLAICE

Prediction of catch and spawning stock biomass. Sexes combined

Year	Option 1			Option 2		
	F	Catch	Spawning   Stock Biomass	F	Catch	Spawning Stock Biomass
1978	$\mathrm{F}_{78}$	2894	3167	$\mathrm{F}_{78}$	2894	3167
1979	$\mathrm{F}_{78}$	2467	2935	$\mathrm{F}_{78}$	2467	29.35
1980	$\mathrm{F}_{78}$	2350	2311	$\mathrm{F}_{\max }=0.8 \mathrm{~F}_{78}$	1995	2311
1981			2119			2403

