International Council for the Exploration of the Sea
C.M.1979/G:2

Demersal Fish Committee

REPORT OF AN AD HOC WORKING GROUP ON THE NORWAY POUT BOX PROBLEM

Charlottenlund, 29 January - 2 February 1979

This Report has not yet been approved by the International Council for the Exploration of the Sea; it has therefore at present the status of an internal document and does not represent advice given on behalf of the Council. The proviso that it shall not be cited without the consent of the Council should be strictly observed.

[^0]C.M.1979/G:2

Demersal Fish Committee

ERRATA SHEET

REPORT OF THE AD HOC WORKING GROUP ON THE NORWAY POUT BOX PROBLEMS

Please note the following changes:
(1) Page 29, Table 5.2: the first figure from the top in the fourth column from the left: delete "O", insert " -5".
(2) Page 68, Table A.3.3: in the extreme right hand column, the seventh figure from the bottom: delete "2", insert "l2".

1. INTRODUCTION

1.1 Participation

D W Armstrong	United Kingdom
R S Bailey	United Kingdom
B E Brown (Chairman)	USA
A C Burd	United Kingdom
N Daan	Netherlands
K Hoydal	Faroe Islands
B W Jones	United Kingdom
H Lassen	Denmark
P Lewy	Denmark
K Popp Madsen	Denmark
C J Rørvik	Norway

Mr R Noë assisted at part of the meeting as Observer from EEC. V Nikolaev, ICES Statistician, acted as Secretary to the ad hoc Group.

1.2 Terms of Reference

At the request of the Commission for the European Economic Communities, the Council agreed at its 66th Statutory Meeting to convene an ad hoc meeting of a Working Group to discuss a number of topics related to the Norway pout box problem. The terms of reference given to the Group were:

```
"to make a quantitative assessment of:
```

l. The effect on the yield of the industrial fishery and of the human consumption fishery on the assumption that a Norway pout Box is closed to the industrial fishery for the following areas and time periods indicated below:
la) Areas
Box 1 is delimited to the west: $4^{\circ} \mathrm{W}$ longitude and United Kingdom coasts to the east: 0° longitude
Box 2 is delimited to the west: $4^{\circ} \mathrm{W}$ longitude and United Kingdom coasts to the east: $1^{\circ} \mathrm{E}$ longitude

Box 3 is delimited to the west: $4^{\circ} \mathrm{W}$ longitude and United Kingdom coasts to the east: $2^{\circ} \mathrm{E}$ longitude
in all cases between $56^{\circ} \mathrm{N}$ and $60^{\circ} \mathrm{N}$ latitude.
lb) Time Periods relating to areas
Case 1: no closure of the boxes in winter and summer.
Case 2: Box 1 closed in winter, opened in summer.
Case 3: Box 1 closed in winter and summer.
Case 4: Box 2 closed in winter and opened in summer.
Case 5: Box 2 closed in winter and Box 1 closed in summer.

Case 6: Box 2 closed in winter and summer.
Case 7: Box 3 closed in winter and opened in summer.
Case 8: Box 3 closed in winter and Box 2 closed in summer.
Case 9: Box 3 closed in winter and Box 1 closed in summer.
Case 10: Box 3 closed in winter and summer.
Explanation: winter $=1$ October to 31 March summer $=1$ April to 30 September.
2. Possible effects of redistribution of fishing effort by the industrial fishery on the basis of the assumption stated in point A.l. In particular an assessment of the effects of an increase in effort outside a Norway pout box
a) within the North Sea
b) within EEC waters outside the North Sea
c) within 3rd country waters.
3. The possibility of regulating fishing mortality on the Norway pout in such a way that adverse effects to the haddock and whiting stocks are significantly reduced. In particular with regard to gears selective for Norway pout, TAC regulation for Norway pout, by-catch limitations.
4. The effect on the haddock and whiting stocks of discarding in the human consumption fishery in comparison to the effect of industrial fishery on these stocks.
5. The effects on the haddock and whiting stocks of
a) the allocation of quotas in 1978 as compared to 1977.
b) the reduction in the permissible by-catch in the industrial fishery from 25% in 1977 10\% in 1978.
c) the closure of Norway pout boxes in previous years.
d) the proposed increase in mesh size to 80 mm in the human consumption fisheries.
6. The effects of the industrial fishery on stocks exploited for human consumption other than haddock and whiting."

1. 3 Background

A previous ad hoc meeting of the "Working Group on the Norway Pout Box" was held in August 1977. In the report of that meeting, the basic problem was summarised by the following statements:
"there is no doubt that in general the human consumption fisheries would profit considerably from reduced by-catches in the industrial fisheries. the industrial fisheries represent, however, also an important and valuable resource usage, and in attempting to reduce the losses, one must also consider the effects of the relevant conservation measures on these fisheries."

The Working Group considered the predicted long-term gains and losses to these fisheries resulting from various area and time closures of the Norway pout fishery. The assessments carried out suggested that elimination of by-catches in the Norway pout fisheries would result in increases in yield in the human consumption fisheries which depended in a rather complex way on the extent and duration of the closures. It was stressed that this conclusion depended on the assumption of no redistribution of effort and that the predicted increases were therefore a direct result of a reduction of fishing mortality on young haddock and whiting. In addition, it was pointed out that any such increases would be at the expense of losses in yield in the industrial fisheries.
The purpose of the present meeting of the Working Group was to reassess the likely effect on yields and stocks under several alternative patterns of closure taking into account likely redistribution of effort. The remit of the Group was also widened to consider other types of regulation on both the industrial and the human consumption fisheries with a view to identifying the most effective means of reducing fishing mortality on immature protected species.
2. BACKGROUND FISHERY INFORMATION
2.1 The Industrial Fishery for Norway Pout

Information on the distribution, biology and fishery for Norway pout in the North-East Atlantic was summarised by the Liaison Committee of ICES in Cooperative Research Report, No. 74 (1978). The brief summary below is largely taken from this report.

Basic biology and distribution

The Norway pout is a small gadoid which lives typically within a few metres of the sea-bed. Its distribution shown in Figure 2.l.l is centered between depths of 100 and 250 m . The largest population occurs in the northern North Sea, but there are other populations in adjacent areas.

The spawning season of Norway pout in the North Sea is March-April, and the young recruit to the population on the sea-bed during the late summer. The fish first spawn at an age of 1 or 2 years and in the North Sea the normal maximum age is 4 . The yield from the fishery is almost entirely composed of two age classes and annual catches are consequently very dependent on annual recruitment.

The fishery

Fishing for Norway pout in the northern North Sea using light high headline demersal trawl began in the late 1950s. Landings have since shown an increasing trend, culminating in a maximum catch of 736000 tons in 1974. The main landings are made by vessels from Denmark, Norway, Faroes and, to a lesser extent, the United Kingdom (Scotland). The catches are mainly used for reduction to meal and oil. The distribution of the catches in the years 1972-77 inclusive is shown in Appendix 1 .
As a result of the rapid increase in catches of Norway pout, ICES in 1977 set up the Working Group on Norway Pout and Sandeels in the North Sea, one aim of which was to make an assessment of the state of the Norway pout stock in the North Sea. At its meetings in both 1977 and 1978 the ICES Advisory Committee on Fishery Management found, on the basis of the reports of this Working Group, no clear need for any regulations on the exploitation of Norway pout.

As indicated in Figure 2.1.1, the distribution of Norway pout extends into other areas of the North-East Atlantic. There is a small fishery in Division VIa (the North Minch) by United Kingdom vessels, which began in 1971, and a fishery by Denmark and Faroes in the area south of the Outer Hebrides in the latter part of 1978. There is also a mixed fishery for Norway pout and blue whiting at Iceland.

By=catch

As in all trawl fisheries, the gear used in the Norway pout fishery is not able to select Norway pout and a variable proportion of other species of fish occur in the catches. Indeed in some areas the Norway pout fishery merges into industrial fisheries predominantly for other species. In the northeastern North Sea along the edge of the Norwegian Deeps, for example, catches contain a high proportion of immature blue whiting, this proportion increasing with depth of haul. In the central North Sea the industrial fishery is largely based on sprats; in shallower sandy areas of the North Sea there is an industrial fishery for sandeels, but there is little overlap in the distribution of this fishery and that for Norway pout, and indeed rather different gears are used. Other non-protected species occurring regularly, but usually in small proportions in the catches of Norway pout in the northern North Sea, are long rough dab, gurnards and silver smelts.

In addition to these other NEAFC Recommendation 2 species, the by-catch contains a proportion of protected species, that is species which can legally be caught only using large mesh nets and which have a minimum landing size. These can be divided into fish above and below the legal size. A proportion of the industrial fishing vessels pick the larger fish out of the catch and offer them for sale on human consumption markets. In general, however, the protected species of all sizes are left in the catch and form part of the industrial landing.
The only data available on that part of the by-catch extracted for the human consumption market are the Scottish data in Table 2.l. These data show that in some years a considerable part of the by-catch was extracted for human consumption markets. It is important to note, however, that the extent to which this occurs may differ markedly between individual fishing fleets.

The history of the Norway pout box
The United Kingdom Government first ratified a statutory instrument setting up an area closure of the Norway pout fishery in February 1977. The subsequent events are shown in the text table below and in Figure 2.1.2.

Dates	Extent of Box			
	Northern boundary	Eastern boundary	Southern boundary	Western boundary
21 Feb-31 Mar 77	$60^{\circ} \mathrm{N}$	0°	$56^{\circ} \mathrm{N}$	$4^{\circ} \mathrm{W}$
1 Apr-31 Aug 77		No closure		
1 Sep-15 Oct 77	$60^{\circ} \mathrm{N}$	0°	$56^{\circ} \mathrm{N}$	$4^{\circ} \mathrm{W}$
$\begin{aligned} & 16 \text { 0ct 77- } \\ & 30 \text { Sep } 78 \end{aligned}$	$60^{\circ} \mathrm{N}$	0°	$56^{\circ} \mathrm{N}$	$3^{\circ} \mathrm{W}$
1 Oct 78-present	$60^{\circ} \mathrm{N}$	$\begin{gathered} 2^{\circ} \mathrm{E} \text { median } \\ \text { line } \\ \hline \end{gathered}$	$56^{\circ} \mathrm{N}$	$3^{\circ} \mathrm{W}$

2.2 Roundfish Fishery

Table 2.2 summarises the average landings by countries for the period 1973-77. The number of countries reporting roundfish catches gives an indication of the heterogeneity of the fisheries. In actual
fact, the situation is still far more complicated because within individual countries a large number of different gears are in use (otter trawl, pair trawl; seine, gill nets, beam trawl, etc.). Some fisheries may be directed primarily to one species or another, but essentially they represent mixed fisheries, in which ever changing proportions of groundfish, including both roundfish and flatfish, are caught.
In Figure 2.2 is shown an index of tatal hours fishing summed for a variety of vessels by statistical rectangles for the United Kingdom (average 1969 to 1972) and the Netherlands (1972 to 1973) (see Doc. C.M.1975/F:5). This might be interpreted as an index of the chance of observing a fishing vessel of those countries in a particular square. Obviously, the chart is incomplete. Danish and the Federal Republic of Germany fisheries concentrate in the eastern North Sea, French and Belgian fisheries in the southern parti In general, the conclusion seems justified that the roundfish fisheries cover the entire North Sea. However, there are differences for the individual species: haddock and saithe are caught in the northern part of the North Sea, whereas the main cod fisheries are in the southern part.
In recent years, more than 50% of the whiting and 15% of the haddock were caught in the industrial fisheries. In addition an estimated 40% of the total whiting catch and 20% of the total haddock catch taken in the human consumption fisheries were discarded. The major proportion of these discards represented fish above minimum legal landing size.
This indicates that for the smallest market category of these species the market demand is limited. Therefore management measures, which result in a higher biomass of small fish, but which do not significantly change the abundance of larger fish, do not necessarily improve the economic yields of the stock. They may just result in higher discard rates.
In addition, conservation measures like TACs, which are aimed at limiting the fishing mortality, do not necessarily have that effect because few fisheries are primarily directed to these two species. When a TAC for one species in a mixed catch would be reached, the fishery would continue at a higher discard rate of that species.

For these reasons, the ICES Roundfish Working Group concluded (see Doc. C.M. 1978/G:7) that TAC regulations are unlikely to have any measurable effect and to improve the yield of these stocks, unless some means, such as an increase in minimum mesh size, are found for greatly reducing the rates of discarding.
2.3 General Comments on the Effects of Box Closures in the Industrial Fishery

The effect on the industrial fisheries can only be fully assessed if the economic aspects are taken into consideration. This is outside the scope and expertise of the present Working Group which can only review the likely loss in catch due to box closures and the possible alternatives for the fishery.

The problems are somewhat different for the national fleets involved in the Norway pout fishery:*

United Kingdom. Only about 20-30 vessels are taking part in the fishery and none of them are full-time engaged in industrial fisheries. In periods of Box closures their effort has partly been redistributed in Area 4 (for description of the Areas, see Section 4.1 and Figure 4.1), and partly directed onto fishing for Nephrops, sandeels and groundfish.

Norway. The Norwegian industrial fishery is mainly taking place in the northeastern part of the North Sea, and the major part of the catches of Norway pout are taken at the edge of the Norwegian Deeps together with blue whiting. It appears that Box closures even extending to $2^{\circ} \mathrm{E}$ longitude will not create serious problems.

The Faroes. In 1975-76 about 32 Faroese vessels were engaged in the N̄orway pout fisheries in the North Sea. In 1977 and 1978 respectively only 25 and 17 vessels have conducted this fishery as a result of the Box closure in those years. Their effort has mainly been redistributed in Areas 4 and 5 A and southwest of the Hebrides, i.e. outside the North Sea area. The remaining vessels have taken up fishing for human consumption in their home waters and have thereby created rather severe problems for a major part of the Faroese fishing fleet due to the added fishing pressure on the restrictive catch quotas in force.

Denmark. The Danish industrial fleet is apt to suffer severe losses from an extensive closure in area and/or time. For a part of the fleet (approximately 240 vessels) the outcome is based upon fishing for Norway pout in autumn and winter and for sandeels during spring and summer. The smaller vessels concentrate in Areas $5 B$ and 6 fishing for sprat in winter and for sandeels in summer.

2.4 Potentials for Redistribution of Effort from the Present

Norway Pout Area

In case of a closure of Box 1 a major part of the effort in this area can be distributed in adjacent areas (2, 3, and 4). If Boxes 2 or 3 are closed the possible areas of redistribution become very restricted:
Area 4 is an area where the fishing grounds are restricted by the continental slope and by the shallow depth around the Shetlands. It is highly unlikely that this area can support anything like the effort hitherto exerted in Areas 1, 2, and 3. Any significant increase in fishing intensity may reduce the present high catch rates apparent in Table 4.6 to a level at which the fishery becomes unattractive.

Area 5A could be a potential area of redistribution for some of the effort. This possibility depends, however, entirely on the amount of Norway pout which Norway will allot the EEC-countries, Area 5A being essentially within Norwegian jurisdiction.
Areas 5B and 6 are not able to absorb any further effort. The sandeel fishery is already exploited by the same vessels which are engaged in the Norway pout fishery, and the sprat fishery is subject to quota regulations which necessitate a reduction of effort and certainly leave no room for increases.

Alternative fisheries

A conversion of the effort exerted in the Norway pout fishery, i.e. an industrial effort, into fisheries for human consumption is not possible in case of any of the major consumption species. In the North Sea these species are all subject to very restrictive quotas which again necessitate a decrease of effort rather than the opposite. Outside the North Sea the only major fish stocks which may be able to support additional effort are the Western mackerel stock, the horse mackerel and blue whiting. As alternatives to a Norway pout fishery in winter the value of these species is restricted by the long voyage and weather conditions. This will only allow the biggest vessels to participate, or perhaps 10% of the number deployed in the Norway pout fishery.
3. PRINCIPLES OF FISHERY MANAGENENT RELATIVE TO MIXED INDUSTRIAL FISHERIES

3.1 General

The industrial fishery which is exploiting the Norway pout also catches juvenile components of haddock and whiting stocks of the North Sea. The NEAFC Recommendation 1 fisheries catch a significant amount of juvenile haddock and whiting which are discarded. The mortality of juveniles reduces the yield to the consumption fisheries.
A strategy to resolve this competitive situation may be either to direct each fishery towards different resources or to solve the optimality problem of finding the rational exploitation pattern taking all fisheries into account.
The problem is, therefore, that there may be losses if there are to be gains in the yield of consumption fisheries. The present report attempts to evaluate the gains and losses for the various regulatory measures proposed.
Restricting the industrial fishery may affect the overall mortality generated on the haddock and whiting stocks. The fisheries for human consumption will gain by such a measure.
A regulatory measure may affect the exploitation pattern in the industrial fishery. For example, if it were possible to completely avoid catching, say, 0-group haddock in the industrial fishery, this would result in a gain for haddock and whiting roughly equivalent to that obtainable by a reduction of 30% in the industrial fishery.
The effect of reducing fishing mortality generated by the industrial fishery on the juvenile components of the haddock and whiting stocks may be achieved by simultaneously applying several different regulatory measures. Closed area, quota and by-catch regulations are in effect in the North Sea at present. The various regulatory measures, however, affect the industrial fishery very differently. While the closed area (Norway pout Box) may cause a general decline in the fleet, by-catch regulations and quotas may not produce such a decline if the fishery has a wider range of possible adjustments to
the changed situation. The loss to the industrial fishery corresponding to the gain to the fisheries for human consumption can therefore only be worked out for each regulatory measure separetely and the same gain to the human consumption fisheries can be obtained at widely different losses to the industrial fishery.

The proposed regulatory measures to achieve a gain to the fisheries for human consumption fall into three categories: closed areas (Norway pout Box), quotas and by-catch regulations and an increase in the minimum trawl mesh size applicable to the fisheries for human consumption.

3.2 Norway Pout Box

The objective of closing an area is to protect a component of the stock, in this case the juvenile component. This should achieve a change in the relative exploitation pattern which the industrial fishery is generating on the haddock and whiting stocks provided that the distribution of haddock, whiting and Norway pout stocks and their migratory behaviour is such that the proportion of the haddock and whiting stocks under exploitation will be effectively reduced.
The detrimental effects to the industrial fleet will be caused by redistribution of effort, the changed catch rate realized and the possibility of the fleet not being able to operate at all due to too low catch rates for economic survival.

3.3 Catch Quotas and By-Catch Limitations
 These measures will limit the catches of protected species in the small-meshed fisheries, provided they are effectively enforced. The North Sea catch quotas of haddock and whiting alone will not necessarily restrict the industrial landings as the pay-off between industrial fishery and fishery for human consumption still has to be resolved at a national level. Combined with a catch quota on the Norway pout and a by-catch restriction, an upper bound on the catches of haddock and whiting taken in the industrial fishery might result. The effect of by-catch regulations will vary from year to year depending on the relative strength of year classes of the stocks involved.
 The detrimental effects to the industrial fleet will be dependent on whether it is possible to fish with a profit under the regulations introduced.

3.4 Mesh Size Changes

Significant amounts of haddock and whiting are discarded at present. An increase in the minimum mesh size in the NEAFC Recommendation 1 fisheries will cause an immediate loss followed by a long-term gain to these fisheries.

The industrial fleet will not be adversely affected.
4. EVALUATION OF PROPOSED MANAGEMENT MEASURES
4.1 Description of Basic Available Data

Area division
National data were arranged by quarters of the year, and by the areas of the North Sea shown in Figure 4.1. Combinations of Areas 1-3 correspond to the so-called Norway pout Boxes, which have either been contemplated (see Section l.2) or are actually in force as closed areas (see text table on p. 5) for various periods of time.

The correspondence between the Areas and the closure options is also shown on the chart in Figure 4.1 (Box $1=$ Area 1, Box $2=A r e a s 1+2$, Box $3=$ Areas $1+2+3$). Area 4 is the northernmost part of the EEC-zone, while Area 5 A roughly speaking comprises that part of the Norwegian fishing zone which is pertinent to the Norway pout fisheries.
The industrial fisheries in Areas $5 B$ and 6 are almost exclusively based on sandeels and sprat.

Catch statistics
Table 4.1 shows the total catch in the industrial fisheries in 1975-78 of all species except sandeels. Tables $4.2-4.5$ show the by-catch of haddock and whiting contained in the total catch figures. In case of the Faroese data no estimate of by-catch species was available and was, therefore, made by applying Danish by-catch percentages for each Area, respectively. The detailed country statistics upon which these tables are based are given in Appendix 2.

Effort and catch rate data

From Danish data on catch and effort in 1976, 1977 and the first two quarters of 1978 catch rates by Areas and quarters were calculated as shown in Table 4.6. The data comprise all catches by industrial bottom trawls except sandeel gears. By dividing the total catches in Table 4.1 by the respective catch rates in the Danish fishery, estimates of total effort were derived at and are shown in Table 4.7.

Description of Simulation of Box Closures and Evaluation of Yield per Recruit
The Working Group considered possible models to evaluate the effect of area closure of the industrial fishery. While spatial models can be developed along the lines presented in the previous (1977) Working Group report, it was impossible to obtain estimates of the exchange of fish between areas. It was then decided that a simulation based on 1976 data could be used to calculate what might have happened had various management measures been undertaken in that year. This year was selected because it was the only year for which Area catch per unit effort values were available that were not affected by regulations. The effect on the industrial fishery was evaluated by the change in catch in that fishery. The long-term effect on the consumption fishery was evaluated by estimating the change in fishing mortality rate into a yield per recruit model.
The various combinations of closed Areas suggested by the EEC were examined in the following manner: the effort (Table 4.7) based on the Danish catch/effort statistics in the closed Area and time was redistributed in adjacent areas in a manner judged likely by the Working Group. The expected catch of industrial fish was then calculated by multiplying the re-allocated effort in the new Area by the corresponding catch per unit effort for each quarter and Area (Table 4.6) and substituting the new value for that actually taken in 1976 by these displaced effort units. The expected catches of haddock and whiting were computed by multiplying the new expected industrial catch of the redistributed effort by the corresponding 1976 by-catch ratios (Tables 4.4-4.5). The values for haddock and whiting were then used to adjust the Fvalues on these species for the industrial fishery in the yield per recruit analyses as described in Appendix 3.
The options listed below with the assumption as to distribution of effort were examined by the Working Group (winter refers to the period from October to March and summer from April to September).

1) No restriction as to area fished. Effort as occurred in 1976.
2) Closure of Box 1 in winter. Redistribution of the effort to Areas 2 and 4 in proportion to the 1976 ratio of the effort between 2 and 4.
3) Closure of Box 1 in summer and winter. Redistribution of the effort to Areas 2 and 4 in proportion to the 1976 ratio of the effort between 2 and 4.
The above redistribution of effort was based on the general impression of the 1977 closure.
4) Closure of Box 2 in winter. Redistribution of one half of the effort in the closed period to Areas 3 and 4. The withdrawing of one half of the effort was based on the present situation in the Danish fleet under the 1978 closure. It was thought likely by the Working Group that the effort withdrawn from the fishery during the winter would stay withdrawn from the fishery the remainder of the year, in effect being the same as a complete closure which is Option 6.
5) Closure of Box 2 in winter and Box 1 in summer. This was assumed to result in a loss of one half of the winter effort for the entire year. The differential catch rates and by-catch in the areas were considered such that the catch would not be greatly different from that which would occur under Option 6, that of closing Box 2 the entire year.
6) Closure of Box 2 the entire year. One half of the effort from Box 2 was redistributed to Areas 3 and 4.
7) Box 3 closed in winter and open in summer. This was judged likely to have the same effect as Option l0, i.e. one half of the effort in Box 3 would drop out of the fishery. Therefore, it was decided to calculate only Option l0, i.e., 50% of this effort redistributed to Area 4. The difference in catch from allowing the summer effort to redistribute itself to Areas 2 as well as 4 was considered to be minimal. This is not to discount the possibility of differential costs of fishing, but that question is beyond the scope of the Working Group.
8) Box 3 closed in winter, Box 2 closed in summer. This was considered essentially equivalent to Option 10 as far as catches would be concerned.
9) Box 3 closed in winter and Box 1 in summer. This was considered essentially equivalent to Option 10 as far as catches would be concerned.
10) Closure of Box 3 in summer and winter. Redistribution of 50% of the effort to Area 4.
11) Reduction of effort equivalent to that used in Option 6 applied proportionately to the distribution of 1976 effort in Areas 1-4.
12) Reduction of effort equivalent to that used in Option 10 applied proportionately to the distribution of 1976 effort in Areas 1-4. The catches estimated by this simulation are given in Table 4.8.

It is realised that the redistributions of effort assumed in this report are only some of several possibilities that might actually occur. However, the Working Group decided that these were sufficient to evaluate the effect of area closures considering the available data.
The estimates of the catches of the redistributed effort assume the catch per unit effort in the area receiving the additional effort would not be reduced by the effect of the additional effort. This is, in effect, assuming that the additional effort would not reduce the abundance of the fish in that local area over time. This lack of reduction in abundance could occur by fish moving from the protected to the unprotected areas, but no estimates of the amount of movement could be made.
The relatively small amount of effort being redistributed from the closure of Box 1 would tend to mitigate the ability to measure any effect, particularly as the fishery depends on very few year classes. The re-direction of effort into Area 4 from the closure of Boxes 2 and 3 is more significant. There have been increases in oatches in that Area in the period 1972 through 1976, and the 1976 catch/effort values were still higher than in Areas l-3. However, there were reductions from 1976 to 1977 in Area 4. The extent that further effort could be placed on this Area without an effect on catch rates cannot be estimated, but it is unlikely that the present catch rate could be maintained.
4.3 Description of Input used in evaluating the Effect of Management Measures

Because no valid estimates can be obtained of transport coefficients between any system of Boxes, the Group decided that it was not possible to employ the model described in the Annex of the Norway Pout Box Working Group report of 1977, and to evaluate the long-term gains for haddock and whiting in the consumption fishery a yield per recruit approach was used. This model was also used to evaluate the effects of changes in mesh regulations in the consumption fishery. A detailed description of the model is presented in Appendix 3, with the exact input values used and the complete output for the various runs made.
This model regards Box closures simply as a means of preventing the industrial fishery catching as great a quantity of haddock and whiting as they would have caught in the absence of Box closures. The only way in which the Box effect as such is referred to by the model is in the input values of the proportion of the obtainable industrial. catch of haddock and whiting which will be realised under each specified system of closure.

The model embodies a number of conceptual difficulties:

1) The model does not specify any assumptions about migration between Boxes and for this reason results obtained from a more realistic model might be expected to be considerably different to those obtained from the model used in this report, and on this basis the values of the expected gains to the consumption fishery should be treated with considerable caution.
2) It should also be remembered that these expected gains relate to an equilibrium population. In 1976, the whiting stock in particular was at a level much higher than that expected at equilibrium, mainly as a result of high recruitment in recent years. The output from the model indicates what gains might be realised if we start from a stock which is at equilibrium. In this context also, it should be remembered that any gain brought about by increasing the mesh size in the human consumption fishery implies a short-term loss in that fishery.
3) The model assumes the same proportional age distribution of haddock and whiting over the whole North Sea.
4) There is considerable uncertainty as to the value of the natural mortality rate for haddock and whiting, espceially during the first year of life. In the present case, however, the output of the model is relatively insensitive to such uncertainties, only small decreases in the estimated gains will result from very high values of mortality at age 0 .
5) The model assumes that reduction of catch of haddock and whiting by the industrial fishery will result in a decrease in mortality rates of about the same percentage amount in all age groups exploited by the industrial fishery. If, for example, the real effect of a Box closure is to reduce mortality on the 0 group by a greater factor than on other age groups, then the results of the model will be altered. The effect, for example, of not changing the mortality rates on 1 year old and older fish and setting the mortality rate on 0 group fish to zero would be to decrease the expected long-term gains to consumption fishery by at most 15%.
6) The model predicts gains to the human consumption fishery, not concomitant changes as the result of losses to the industrial fishery.

Given the similarity of the results for haddock and whiting for the various options, only three runs were made: 1) Option 2 , 2) the average of Options 4 and 6, and 3) Option 10.

4.4 Results of Simulation of Box Closures on the Industrial Fishery

Assuming that the actual result of a winter closure of Box 2 would be the same as a winter and summer closure, the essential effects on the industrial fishery are summarised in Table 4.9. Under a closure of Area 1 there would have been a direct loss of 69000 tons, which would be compensated with a catch of 64000 tons in adjacent areas resulting in an overall loss of 1%. The Working Group felt that the redirection of effort to the adjacent areas could likely compensate for the loss. A closure of Box 2 or 3 would have resulted in a direct loss of 327000 tons and 365000 tons, respectively. With half of the effort redirected, the corresponding compensated values would be only 177000 tons and 218000 tons. The higher catch when closing Box 3 is a result of the higher catch rates in Area 4, to which the effort would be diverted, compared with Area 3, which is the Area to which effort is assumed to be diverted in case of the Box 2 closure. The Working Group considered the difference in catches between these two options to be unlikely. Comparison of all options demonstrates that the effect on catches is in fact the result of effort reductions. It should be noted, however, that the actual compensations for catch from the redirected areas could well be less than calculated due to decreases in areal abundance from increased fishing effort.

4.5 Results of Simulation of Box Closures on Haddock and Whiting

The effects of the Box closure on long-term gains in haddock and whiting are presented in Table 4.9. The increase in long-term yield
from a closure of Box 1 would be 3% for haddock and 7% for whiting. Such values, while potentially real, would be difficult to detect from observations on the fishery. With the closure of Box 2 the gains are 11% and 38% for haddock and whiting and with Box 3, 17% and 47%. The slightly higher by-catches in Area 3 than Area 4 result in the gains in yield per recruit being greater than the concomitant loss of effort in the industrial fishery.

However, when compared with the straight reductions in effort throughout all areas one finds that the gains in haddock and whiting yields are caused by the reduction in industrial effort resulting from the Box closures rather than a "Box" effect due to significantly differing by-catch ratios in the areas where effort could be redistributed to as compared with the entire fishing area.
5. EFFECTS ON THE HADDOCK AND WHITING STOCKS OF MESH SIZE INCREASES
5.1 Effects of the Proposed Increase in Mesh Size to 80 mm in the Human Consumption Fisheries

The options incorporated in the stock simulation model included the possibility of increases in mesh size in the human consumption fisheries to 80 mm and 90 mm as well as no change in mesh size from 75 mm now in use. Table 5.1 gives the results of the calculations in terms of the expected long-term percentage changes in yields of haddock and whiting in the industrial fisheries and in human consumption fisheries. The calculations made to obtain the results given in Table 5.1 assume that there will be no changes in the fisheries other than the indicated changes in mesh size in the human consumption fishery.
An increase of mesh size in the human consumption fishery to 80 mm will increase the long-term yields of haddock and whiting in both the industrial fishery and the human consumption fishery. For haddock the expected increases in landings are 6% and 7% for the industrial fishery and the human consumption fishery, respectively. For whiting, the corresponding increases are 17% and 10%. An increase in mesh size will also result in a reduction of the quantity of haddock and whiting discarded by the human consumption fishery. For an 80 mm mesh size, discards would be reduced by 10% for haddock and by 27% for whiting.
It will be noted that for whiting the percentage increases to the industrial fishery may cause difficulty in adhering to the bycatch regulations.
The increase to the industrial fishery is a consequence of the fact that industrial fishing mortality on whiting is greatest on age groups 2 and 3 while the greater part of discarding is of 1 and 2 group fish. Thus the benefits of the increased mesh size and reduced discarding accrue, in a large part, to the industrial fishery. For haddock, on the other hand, discarding is greatest on age groups 2 and 3 while the main industrial fishing mortality is on younger age groups.
5.2 Effects of Discarding in the Consumption Fisheries

From the results of the stock simulation model given in Table 5.l, it can be seen that under the 1976 fishing pattern situation, the discards of whiting would be expected to decrease by 65% and 33% for haddock if the mesh size was increased to 90 mm . Little of the potential gain would accrue to the consumption fishery in the case
of whiting because of the relative patterns of exploitation by age group of the industrial and consumption fisheries. In contrast, a gain of 22% might be expected in haddock consumption fisheries and 18% in the industrial fishery.
The effects of reducing industrial effort while maintaining the present mesh size are illustrated in Table 5.2. It is seen that the simulation model indicates that any saving from the industrial catch would simply add to the present level of discards, to a great extent for whiting and less so for haddock.
6. EFFECTS OF REDUCING EFFORT IN THE INDUSTRIAL FISHERY

The effort reduction in the industrial fishery will result in a direct loss of yield to the processing industry while the NEAFC Recommendation 1 fisheries will gain. The result is given in the text table below:

> Percentage long-term gains to the fisheries for human
> consumption relative to the equilibrium yield as a
> function of general decrease in the industrial fishery

	Total industrial landings				
	-20	-40	-60	-80	-100
Haddock	10	22	35	49	65
Whiting	25	58	100	156	228

7. EFFECTS ON THE HADDOCK AND WHITING STOCKS OF THE REDUCTION IN THE PERMISSIBLE BY-CATCH IN THE INDUSTRIAL FISHERY FROM 25\% IN 1977 T0 10% IN 1978

The quantities and percentages of haddock and whiting by-catch in the landings of industrial (excluding sandeel) fisheries were as follows:

	Total industrial (all areas) Tons	Haddock		Whiting		$\frac{\text { Haddock }+ \text { Whiting }}{\%}$
		Tons	\%	Tons	\%	
1977	689071	15862	2.3	50611	$7 \cdot 3$	9.7
$\begin{aligned} & 1978 \\ & \text { Quarters } \end{aligned}$	$-3 \backslash 473206$	7958	1.7	37150	7.9	9.5

There was no change in the percentage by-catch of haddock or whiting recorded in the first three quarters of 1978 compared with the whole of 1977. In both years the by-catch of haddock and whiting combined amounted to close to 10% of the total landings of the industrial fisheries.

The permissible by-catch levels relate not only to haddock and whiting but to the total by-catch of all protected species. If protected species other than haddock and whiting were present in the industrial fishery by-catches in 1978 to any significant extent,it is likely that the 10% by-catch level will have been exceeded in the overall average for the year. Saithe is an important component of industrial fisheries and the average annual by-catch in the period 1972-77 was 35000 tons (ICES, Doc. C.M.1978/G:3). From 1977, saithe by-catches have been at a much lower level than in previous years. Consequently, overall by-catch levels in 1977 probably did not exceed 10\%, and there was no change from this level in 1978. It is not at present possible to evaluate the effect of this by-catch regulation on the consumption fisheries because of lack of precise information on year class strength.

8.
 EFFECTS ON THE HADDOCK AND WHITING STOCKS OF THE CLOSURE OF NORWAY POUT

 BOXES IN EARLIER YEARSDuring 1977 Norway pout Boxes were closed as follows:

21 Feb - 31 Mar	$56^{\circ} \mathrm{N}=60^{\circ} \mathrm{N}, 4^{\circ} \mathrm{W}-0^{\circ}$
1 Sep - 15 Oct	$56^{\circ} \mathrm{N}-60^{\circ} \mathrm{N}, 4^{\circ} \mathrm{W}-0^{\circ}$
16 Oct - 31 Dec	$56^{\circ} \mathrm{N}-60^{\circ} \mathrm{N}, 3^{\circ} \mathrm{W}-0^{\circ}$

(See Figure 2.1.2).
The main effect of these closures would have been in the last quarter of the year when most of Area 1 was closed for the whole quarter of the year.

It is difficult to distinguish effects of the closure from stock fluctuations. However, it is clear (Tables 4.1-4.3) that catches of all species in Area 1 in the last quarter of 1977 were reduced to a very low level. However, it would appear from the text table below that the reduced industrial (all species) landings in 1977 compared with 1976 were in proportion to the reduction in estimated fishing effort. In 1977 the by-catches of haddock and whiting constituted a smaller proportion of the industrial landings than in 1976. However, for haddock the reduction in the last quarter of 1977 compared with the last quarter of 1976 was no different from the reduction from 1976 to 1977 in the first three quarters of each year and the reduced bycatch percentage of haddock cannot be shown to be associated with the closure of the Norway pout Box in the last quarter of 1977. For whiting the reduction in by-catch percentage in the last quarter of 1977 compared with the last quarter of 1976 is not as great as the reduction in the first three quarters of 1977 compared with the same period of 1976. It is not clear whether this is in any way attributable to the closure of the Norway pout Box.

	Total industrial (Areas l-6)	Haddock		Whiting		Estimated effort hours
	Tons	Tons	\%	Tons	\%	
Quarters 1-3 1976	812310	39817	4.9	121660	15.0	521722
1977	483448	13753	2.8	37387	$7 \cdot 7$	350514
RATIO 1977:1976	0.60	0.35		0.31		0.67
Quarter 41976	287587	6435	2.2	23183	8.1	183715
1977	205587	2109	1.0	13224	6.4	129019
RATIO 1977:1976	0.71	0.33		0.57		0.70

9. EFFECTS OF INDUSTRIAL FISHERY ON STOCKS EXPLOITED FOR HUMAN CONSUMPTION OTHER THAN HADDOCK AND WHITING

In earlier years substantial catches of saithe were taken in the industrial fisheries. Since saithe became a protected species the industrial by-catch of this species has been reduced to a low level.
10. POTENTIAL FOR USE OF GEARS SELECTIVE FOR NORWAY POUT

The Working Group was requested to consider the possibility of gear regulations for the industrial fishery which would reduce the bycatch. However, the Working Group did not have any knowledge of gear which would apply to this situation.
11. DISTRIBUTION OF NORWAY POUT, HADDOCK AND WHITING IN THE NORTHERN NORTH SEA
11.1 Distribution of Norway Pout, Haddock and Whiting in Research Vessel Cruises

11.1.1 International Young_Herring_Surveys

The most extensive series of independent estimates are those from the International Young Herring Surveys conducted in February/March each year. The data for the years 1975-78 have been examined in some detail. It has been said that Norway pout, and juvenile haddock and whiting are differentially distributed with respect to depth. From commercial fishery data on Norway pout and by-catches, it is not possible to examine this statement due to the rather general manner of reporting fishing positions.
For the area north of $56^{\circ} \mathrm{N}$ the location was plotted of every fishing position made by vessels engaged in the Young Herring Surveys in 1975-78. From the depths reported in the log sheets, depth contours were drawn at 20 m intervals. The area covered extended from $56^{\circ}-61^{\circ} \mathrm{N}$ and $3^{\circ} \mathrm{W}-8^{\circ} \mathrm{E}$. The research vessel catches were grouped by these 20 m depth intervals and related to day and night hauls. In 1975 very few night hauls were made as the surveys were mainly directed at herring. In
later years in the northern North Sea more hauls were conducted at night aimed at juvenile haddock and whiting. In examining day and night variation, day has been defined as 1 hour after dawn to l hour before sunset; night is defined as l hour after sunset to 1 hour before dawn.

The mean catches by day and night for 1977 and 1978, for 1 and 2 group haddock and whiting and 1 and >1 group Norway pout are shown in Figure 11.l. As Norway pout was not aged in the 1976 data reports, this year could not be included. In view of the diurnal variation in catch it was decided to consider only the daylight hauls. Figure ll.2 shows the mean distribution of abundances by depth in the area north of $56^{\circ} \mathrm{N}$ for 1977 and 1978.

Because of the large differences between catches by USSR vessels and other countries fishing adjacent to one another in the same depths, the USSR data have been excluded from this analysis. Declining abundance indices for all ages of haddock and whiting occur in depths over 120 m , where the abundances of Norway pout are high. Peak abundances of 1 and 2 group haddock occur in depths of $80-120 \mathrm{~m} .1$ and 2 group whiting show a marked difference in distribution, the 1 group being most abundant in depths less than 90 m .

11.1.2 Norwegian acoustic survey (July/August 1978) for 0-group gadoids

Figure 11.3 shows the distribution of higher echo-integrator values recorded in a combined trawl and acoustic survey by the Norwegian research vessels "G. O. Sars" and "Johan Hjort" in July and August 1978, excluding those values attributable to blue whiting and Maurolicus. Most of the echo-recordings were found by trawling to stem from 0-group Norway pout with a proportion of 0 group haddock. The contribution from other species and from l+ group Norway pout and haddock was negligible. During the daytime most of the 0 group Norway pout and some of the 0 group haddock were distributed close to the bottom. At night all the 0 group gadoids were found in the upper 40 m . As shown in the Figure, the major concentrations of 0 group Norway pout and haddock combined were enclosed by the 120 m depth contour.
11.1.3 Netherlands trawl survey, September 1978, and the International Young_Gadoid Survey
During September 1978 a bottom trawl survey was made in daylight in the area between $2^{\circ} \mathrm{W}$ and $3^{\circ} \mathrm{E}$ between $57^{\circ} 301 \mathrm{~N}$ and $61^{\circ} \mathrm{N}$. Catches were made of 0 and 1 group Norway pout, haddock and whiting. The results indicate that the 0 group Norway pout mainly occurs in the area east of the 120 m contour. In contrast, higher abundances of 1 group Norway pout occur in the areas deeper than 120 m .
The Dutch results are in good agreement with the distribution of 0 group Norway pout as given by the International Young Gadoid Survey conducted each year in June/July. The average abundance for 1974-77 are shown in Figure 11.4. These surveys are made using a fine-meshed mid-water trawl fished obliquely. The 0 group gadoids are taken in their pelagic phase before descending to the bottom.

From this review of the distribution of Norway pout, a general description of the area of distribution of a year class emerges. Spawning takes place in March/April, the 0 group are first taken in the Young Gadoid Survey as post-larvae as indicated in Figure 11.4. The Norwegian results in June-July by both bottom and mid-water trawls indicate a spread westwards into deeper water.

The Dutch survey in September indicates that young 1 group Norway pout have already reached the deeper waters and considerable catches of late 0 group are taken on the bottom. The same 0 group is not observed in the International Young Herring Surveys occurring in the deep water in depths below 120 m in February/March the following year.
11.2 Area of Peak Commercial Catches

Figure 11.5 presents the total catches of Norway pout by statistical rectangles summed over the years 1972-76 in relation to depth zones. The highest catches have been reported from rectangles which are hit by the 140 m depth contour.
11.3 Relative Abundance of Haddock and Whiting in the Peak Area

The differences in distribution of Norway pout and juvenile haddock and whiting in terms of depth are pertinent to the question of a rational exploitation of the Norway pout resources with minimal interference with the roundfish stocks.

By definition, the areas of main concentration of Norway pout have to be accessible in order to maintain a viable fishery. Therefore, the deep water zone has been split in 3 main compartments (see Figure 11.5). In the years 1972-76 altogether 78\% of the Norway pout catches were taken in these 3 compartments, 53% in $A, 7 \%$ in B and 18% in C. As a guideline for further management decisions, the potential interference of an industrial fishery in these areas with the juvenile roundfish has been assessed, using the long-term average abundance indices by rectangles from the annual Young Herring Surveys in February (Anon., 1977). The results are presented in Table ll.l as proportions of the total year classes which are in these areas. The figures suggest that only minor proportions of the haddock and whiting year classes are available in the deep water zone, and consequently the potential impact of an industrial fishery in that area on year class strength is limited by those percentages.
This conclusion applies essentially to the winter situation, because the surveys were carried out in February. However, the summer observations that are available do not indicate that the situation is essentially different in other seasons, except for a more easterly and widespread distribution of the 0 group Norway pout.
11. 4 Potential for a Norway Pout Fishing Area which would reduce By-Catch in the EEC Zone of the Northern North Sea

In the area north of $56^{\circ} \mathrm{N}$ there are two sets of evidence for the potential of fishing for Norway pout minimising the catch of other species, particularly whiting and haddock. Results from research surveys indicate that there are depth zone separations between these species and Norway pout. This is true to a greater extent with young whiting than with haddock. The fishery statistics indicate that the statistical squares with the greater industrial catches are also those in the deep water contrasting with the distribution of effort in the consumption fisheries (Figures 11.5 and 2.2). Examination of the plots of the distribution of Norway pout catches (see Figure 2.2) indicates that these peak areas for the industrial fishery are the areas of Norway pout concentration. These distributional data hold out the hope that an area could be found where an industrial fishery could concentrate on Norway pout while minimising the by-catch by containing itself within an area as close as feasible to depths greater than the 130 m contour.

Table 2.1. By-catch of haddock and whiting (in tons). Scottish industrial trawl landings sold on human consumption markets, compared with estimated bymcatch remaining in the industrial part of the catch.

Year	Haddock		Whiting	
	Extracted for human consumption	Industr. landing	Extracted for human consumption	Industr. landing
	437	2327	1393	1063
1976	517	482	1601	245
1977	120	17	360	93
1978	39	43	227	14

Table 2.2. Average annual landings of cod, haddock, whiting and saithe (1973-1977).

Country	Cod ${ }^{1}$)	Haddock ${ }^{\text {1) }}$	Whiting ${ }^{\text {I }}$	Saithe ${ }^{\text {2) }}$
Belgium	9380	1982	3138	70
Denmark	48118	31451	81769	41431
Faroe Islands	537	420	922	435
France	8956	5155	19485	31919
German Dem.Rep.	158	20	5	4777
Germany, Fed.Rep.of	19967	3537	404	23247
Iceland	+	,	-	
Ireland	44	15	2	-
Netherlands	24987	2289	11266	9453
Norway	2739	3345	3225	21904
Poland	2547	1736	570	22643
Spain	50	62	62	133
Sweden	3629	2775	1331	1230
UK (Eng. \& Wales)	40540	14658	5418	4800
UK (Scotland)	40009	78909	26637	10970
USSR	3629	38426	3926	85728
Total	205290	184780	158160	258746
Human consumption	197562 3)		64589	221873
Industrial landings	$77283)$	$308994)$	93 5714)	36873
Discards	?	34000	43000	?

1) Data from ICES C.M.1978/G:7.
2) Data from ICES C.M.1978/G:3.
3) Average catch in Recommendation 2 fisheries Denmark and Norway 1973 and 1974.
4) Average catch in Recommendation 2 fisheries Denmark and Norway 1973 and 1974 and Data 1975-1977 from Tables 4.2. and 4.3.

Table 4.1. Landings (tons) from North Sea industrial fisheries (all species except sandeels) and estimated quantities of Norway pout (tons) included in these landings.

Year	Quarter	Area							$\begin{aligned} & \text { Total } \\ & \text { areas } \\ & 1-5 \mathrm{~A} \end{aligned}$	Total all areas	Norway pout
		1	2	3	4	5A	5B	6			
1975	I	34006	27665	8092	16304	44243	4676	143043	130310	278029	
	II	9344	16305	3978	13188	122173	5819	23458	164988	194265	
	III	31140	101738	17688	17914	78465	57086	139555	246945	443586	
	IV	45711	91438	10383	26212	44708	10663	69797	218452	298912	
	Total	120201	237146	40141	73618	289589	78244	375853	760695	1214792	559700
1976	I	43515	32441	9403	25755	34330	5159	98456	145444	249059	
	II	8024	8457	2159	38160	65004	6417	39381	121804	167602	
	III	42609	67985	13863	21202	78652	63578	107760	224311	395649	
	IV	53154	70754	12457	15986	20266	23756	91214	172617	287587	
	Total	147302	179637	37882	101103	198252	98910	336811	664176	1099897	435700
1977									125172		
	II	10870	671	148	5181	35307	4064	20179	52177	76420	
	III	36721	39931	4597	12542	44983	16244	58961	138744	213979	
	IV	1640	71537	2224	35584	27166	12458	54978	138151	205587	
	Total	75427	134344	21469	78923	144111	37273	197488	454274	689035	387400
1978	I	0	16616	4045	30437	36115	339	43358	87213	130910	
	II	188	9112	631	6814	41417	4012	37437	58162	99611	
	III	0	36414	7561	25473	67768	17937	87530	137216	242683	
	$\begin{aligned} & \text { Total } \\ & \text { Jan-Sep } \end{aligned}$	188	62142	12237	62724	145.300	22288	168325	282591	473204	

Table 4.2. Quantities of haddock (tons) taken as by-catch in the North Sea industrial fisheries.

Year	Quarter	Area							Total areas 1-5A	Total all areas
		1	2	3	4	5A	5B	6		
1975	$\begin{aligned} & I \\ & \text { II } \\ & \text { III } \\ & \text { IV } \\ & \hline \end{aligned}$	$\begin{array}{r}3638 \\ 1550 \\ 1856 \\ 980 \\ \hline\end{array}$	$\begin{aligned} & 3894 \\ & 2186 \\ & 2452 \\ & 1902 \\ & \hline \end{aligned}$	$\begin{array}{r} 760 \\ 620 \\ 2368 \\ 189 \end{array}$	$\begin{array}{r} 1143 \\ 1202 \\ 170 \\ \\ 171 \end{array}$	$\begin{aligned} & 4083 \\ & 2954 \\ & 2951 \\ & 1496 \\ & \hline \end{aligned}$	$\begin{array}{r} 18 \\ 160 \\ 402 \\ 1092 \\ \hline \end{array}$	$\begin{aligned} & 182 \\ & 183 \\ & 887 \\ & 525 \\ & \hline \end{aligned}$	$\begin{array}{r} 13518 \\ 8512 \\ 9797 \\ 5138 \end{array}$	$\begin{array}{r} 13718 \\ 8.855 \\ 11086 \\ 6755 \end{array}$
	Total	8024	10.434	3937	3086	11484	1672	1777	36965	40414
1976	$\begin{aligned} & \text { I } \\ & \text { II } \\ & \text { III } \\ & \hline \end{aligned}$	$\begin{array}{r} 8372 \\ 455 \\ 964 \\ 1952 \\ \hline \end{array}$	$\begin{array}{r} 5660 \\ 1408 \\ 1679 \\ 2 \quad 550 \\ \hline \end{array}$	$\begin{array}{r} \hline 1667 \\ 72 \\ 310 \\ 568 \\ \hline \end{array}$	$\begin{array}{r} 3105 \\ 1534 \\ 548 \\ 518 \\ \hline \end{array}$	$\begin{array}{r} 1030 \\ 585 \\ 1669 \\ 181 \\ \hline \end{array}$	$\begin{array}{r} 1117 \\ 187 \\ 5563 \\ 449 \\ \hline \end{array}$	$\begin{array}{r} 2409 \\ 828 \\ 1655 \\ 217 \\ \hline \end{array}$	$\begin{array}{r} 19834 \\ 3054 \\ 5 \\ 5760 \\ 5 \\ \hline \end{array}$	$\begin{array}{r} 23360 \\ 4069 \\ 12388 \\ 6435 \\ \hline \end{array}$
	Total	11743	10297	2617	5705	3465	7316	5109	33827	46252
1977	$\begin{aligned} & \hline I \\ & \text { II } \\ & \text { III } \\ & \hline \end{aligned}$	2617 948 1505 1	$\begin{array}{r} 1642 \\ 1 \\ 1714 \\ 1001 \end{array}$	$\begin{array}{r} \hline 1392 \\ 3 \\ 64 \\ 67 \\ \hline \end{array}$	$\begin{array}{r} 1972 \\ 135 \\ 318 \\ 722 \\ \hline \end{array}$	$\begin{array}{r} 1049 \\ 161 \\ 222 \\ 205 \\ \hline \end{array}$	$\begin{array}{r} 277 \\ 96 \\ 170 \\ 25 \\ \hline \end{array}$	$\begin{array}{r} 196 \\ 131 \\ 140 \\ 88 \\ \hline \end{array}$	$\begin{aligned} & 8672 \\ & 1248 \\ & 2823 \\ & 1996 \\ & \hline \end{aligned}$	$\begin{aligned} & 9145 \\ & 1475 \\ & 3133 \\ & 2109 \\ & \hline \end{aligned}$
	Total	5071	3358	1526	3147	1637	568	555	14739	15862
1978	$\begin{aligned} & I \\ & I I \\ & \text { III } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1103 \\ & 471 \\ & 1105 \end{aligned}$	$\begin{array}{r} 152 \\ 26 \\ 486 \end{array}$	$\begin{array}{r} 653 \\ 165 \\ 1593 \end{array}$	$\begin{aligned} & 719 \\ & 330 \\ & 457 \end{aligned}$	$\begin{aligned} & 13 \\ & 63 \\ & 73 \end{aligned}$	$\begin{array}{r} 101 \\ 441 \\ 6 \end{array}$	$\begin{array}{r} 2627 \\ 993 \\ 3641 \end{array}$	$\begin{aligned} & 2741 \\ & 1497 \\ & 3720 \end{aligned}$
	$\begin{gathered} \text { Total } \\ \text { Jan-Sep } \end{gathered}$	1	2679	664	2411	1506	149	548	7261	7958

Table 4.3. Quantities of whiting (tons) taken as by-catch in the North Sea industrial fisheries.

Year	Quarter	Area							Total areas l - 5A	Total all areas
		1	2	3	4	5A	5B	6		
1975	I	6375	5773	1444	2003	7389	28	1948	22984	24960
	II	1639	2738	962	1945	2367	1346	2878	9651	13875
	III	444	3001	107	438	341	1471	6417	4331	12219
	IV	8721	13164	2197	3699	465	1093	3199	28246	32538
	Total	17179	24676	4710	8085	10562	3938	14442	65212	83592
1976			16993				2179	16603	58933	77715
	II	1847	1035	382	4290	1036	852	14534	8590	23976
	III	2477	3122	407	878	1266	2023	9796	8150	19969
	IV	5361	8403	1923	962	1029	2224	3281	17678	23183
	Total	34912	29553	7474	14281	7131	7278	44214	93351	144843
1977	I	3603	2378	1779	2557	3016	519	3255	13333	17107
	II	833	0	11	398	573	811	4084	1815	6710
	III	2627	827	95	183	1004	2326	6508	4736	13570
	IV	120	3942	128	2768	246	2288	3732	7204	13224
	Total	7183	7147	2013	5906	4839	5944	17579	27088	50611
1978	I	0	930	249	1552	1880	20	6351	4611	10982
	II	2	265	0	313	676	1268	8099	1256	10623
	III	0	286	30	262	92	3662	11213	670	15545
	$\begin{aligned} & \text { Total } \\ & \text { Jan-Sep } \end{aligned}$	2	1481	279	2127	2648	4950	25663	6537	37150

Table 4.4. By-catches of haddock as percentages of total landings (all species except sandeels) from North Sea industrial fisheries.

Year	Quarter	Area							Total areas 1-5A	Total all areas
		1	2	3	4	5A	5B	6		
1975	$\begin{aligned} & I \\ & I I \\ & I I I \\ & \text { IV } \end{aligned}$	10.7	14.1	9.4	7.0	9.2	0.4	0.0	10.4	4.9
		16.6	13.4	15.6	9.1	2.4	2.7	0.8	5.2	4.6
		6.0	2.4	13.4	0.9	3.8	0.7	0.6	4.0	2.5
		2.1	2.1	1.8	2.2	3.3	10.2	0.8	2.4	2.3
		6.7	4.4	9.8	4.2	4.0	2.1	0.5	4.9	3.3
1976	$\begin{aligned} & \text { I } \\ & \text { II } \\ & \text { III } \\ & \text { IV } \end{aligned}$	19.2	17.4	17.7	12.1	3.0	21.7	2.4	13.6	
		5.7	4.8	3.3	4.0	0.9	2.9	2.1	2.5	2.4
		2.3	2.5	2.2	2.6	2.1	8.7	1.5	2.3	3.1
		3.7	3.6	4.6	3.2	0.9	1.9		3.3	2.2
		8.0	5.7	6.9	5.6	1.7	7.4	1.5	5.1	4.2
1977	$\begin{aligned} & \text { I } \\ & \text { II } \\ & \text { III } \\ & \text { IV } \end{aligned}$	10.0	7.4	9.6	7.7	2.9	6.1	0.3	6.9	4.7
		8.7	0.1	2.0	2.6	0.5	2.4	0.6	2.4	1.9
		4.1	1.8	1.4	2.5	0.5	1.0	0.2	2.0	1.5
		0.0	1.4	3.0	2.0	0.8	0.2	0.2	1.4	1.0
		6.7	2.5	7.1	4.0	1.1	1.5	0.3	3.2	2.3
1978	I II III IV	-	6.6	3.8	2.1	2.0	3.8	0.2	3.0	2.1
		0.5	5.2	4.1	2.4	0.8	1.6	1.2	1.7	1.5
		-	3.0	6.4	6.3	0.7	0.4	0.0	2.7	1.5
		0.5	4.3	5.4	3.8	1.0	0.7	0.3	2.6	1.7.

Table 4.5. By-catches of whiting as percentages of total landings (all species except sandeels) from North Sea industrial fisheries.

Year	Quarter	Area							Total areas$1-5 A$	$\begin{aligned} & \text { Total } \\ & \text { all } \\ & \text { areas } \end{aligned}$
		1	2	3	4	5A	5B	6		
1975	$\begin{aligned} & I \\ & \text { II } \\ & \text { III } \\ & \text { IV } \end{aligned}$	18.7	20.9	17.8	12.3	16.7	0.6	1.4	17.6	9.0
		17.5	16.8	24.2	14.7	1.9	23.1	12.3	5.8	7.1
		1.4	2.9	0.6	2.4	0.4	2.6	4.6	1.8	2.8
		19.1	14.4	21.2	14.1	1.0	10.3	4.6	12.9	10.9
		14.3	10.4	11.7	11.0	3.6	5.0	3.8	8.6	6.9
1976	$\begin{aligned} & I \\ & \text { II } \\ & \text { III } \end{aligned}$	57.9	52.4	50.6	31.6	11.1	42.2	16.9	40.5	31.2
		23.0	12.2	17.7	11.2	1.6	13.3	36.9	7.1	14.3
		5.8	4.6	2.9	4.1	1.6	3.2	9.1	3.6	5.0
		10.3	11.9	15.4	6.0	5.1	9.4	3.6	10.2	8.1
		23.7	16.5	19.7	14.1	3.6	7.4	13.1	14.1	13.2
1977	$\begin{aligned} & I \\ & \text { II } \\ & \text { III } \end{aligned}$		10.7	12.3	9.9	8.2	11.5	5.1	10.7	8.9
		7.7	0.0	7.4	7.7	1.6	19.9	20.2	3.5	8.8
		7.2	2.1	2.1	1.5	2.2	14.3	11.0	3.4	6.3
		7.3		5.8		0.9				
		9.5	5.3	9.4	7.5	3.4	15.9	8.9	6.0	7.3
1978	$\begin{aligned} & \text { I } \\ & \text { II } \\ & \text { III } \\ & \text { IV } \end{aligned}$	-	5.6	6.2	4.4	4.6	5.9	14.6	5.3	8.4
		1.1	2.9	0.0	3.0	1.6	31.6	21.6	2.2	10.7
		-	0.8	0.4	1.0	0.1	20.4	12.8	0.5	6.4
		1.1	2.4	2.3	3.4	1.8	22.2	15.2	2.3	7.9

Table 4.6. Average catch (all species) per hour trawling (tons) in Danish industrial fisheries (sandeel fisheries excluded).

-	1976				1977				1978	
	I	II	III	IV	I	II	III	IV	I	II
1	1841	1823	1482	1718	1323	1559	1413	0	0	-
2	1483	1563	1241	1644	1170	. 853	1174	1430	847	701
3	1625	1121	1101	1492	866	1633	1138	1290	807	701
4	2267	2348	1601	1681	1392	1249	1285	1598	1077	1123
5A	1394	1615	1468	1274	1280	2049	1853	1346	1036	1730
5B	$\begin{array}{r}891 \\ \hline\end{array}$	1522	1295	740	629	2235	2056	1251	- 493	2080
6	1585	3009	1563	2052	1054	2459	1664	2126	1192	2328

Table 4.7. Estimates of total hours trawling in industrial fisheries (excluding sandeel). (Based on Danish catch per unit effort data).

	1976				1977				1978	
	I	II	III	IV	I	II	III	IV	I	II
1	23637	4402	28751	30357	19800	6972	25988	?	0	?
2	21875	5411	54782	43038	18979	787	34013	50026	19617	12999
3	5786	1926	12591	8349	16744	91	4040	1724	5012	?
4	11361	16252	13243	9510	18402	4148	9760	22268	28261	6068
5A	24627	40250	53578	15907	28637	17231	24276	20183	34860	23940
5 B	5790 6277	4216	49095	32103	7165	1818	7901	9958	688	1929
6	62117	13088	68944	44451	60123	8206	35433	25860	36374	16081
Total	155193	85545	280984	183715	169850	39253	141411	129019	124812	61017

Table 4.8. Change in catches in the industrial fishery from simulation of options described in Section 4.2.

Option	Catch (all species) of industrial fishery in tons Areas 1 - 5A	\% change from baseline	By-catch of whiting in tons All areas	\% change from baseline	By-catch of haddock in tons All areas	\% change from baseline
1) No closure	664176	-	144843	-	46252	-
2) Closure Box l, winter	659007	-1\%	137558	-5\%	43913	-5\%
3) Closure Box l, all year	655540	-1\%	135978	-6\%	43852	-5\%
4) Closure Box 2, winter	569361	-14\%	111903	-23\%	36592	-21\%
6) Closure Box 2, all year	509762	-23\%	106465	-26\%	35112	-24\%
10) Closure Box 3, all year	516927	-22\%	100056	-31\%	33380	-28\%
11) Reduction of effort equivalent to closure of Box 2 all year	464923	-30\%	116837	-19\%	36103	-22\%
12) Reduction of effort equivalent to closure of Box 3 all year	438856	-34\%	113103	-22\%	34953	-24\%

Table 4.2. Results of simulation study of industrial fishery with 1976 as baseline.

Option	Direct loss to industrial fishery in tons (\% of total)	```Compensation tons (% of total) (Area)```	```Total loss in industrial fishery in tons (% of total) Areas l - 5A (baseline = 6 6 4 0 0 0 ~ t)```	Percent reduction in industrial fishery effort Areas 1 - 5A	In equilibrium situation, current mesh size	
					Haddock long-term \% gain in yield per recruit	Whiting long-term \% gain in yield per recruit
Closure Box 1 in winter	69000 (10\%)	$\begin{aligned} & 64000(10 \%) \\ & \text { (all effort into } \\ & \text { Areas } 2+4) \end{aligned}$	$5000-1 \%$	0\%	3\%	7\%
Closure Box 2 all year	327000 (49\%)	177000 (27%) ($\frac{1}{2}$ effort into Areas 3 + 4)	$150000-23 \%$	-25\%	11\%	38\%
Closure Box 3 all year	365000 (55\%)	```218 000 (33%) (\frac{1}{2} effort into Area 4)```	$147000-22 \%$ direct from above due to higher catch in Area 4	-28\%	17\%	47\%
Reduction of effort in the industrial fishery by 30\%	200000 (30\%)	-	$200000-30 \%$	-30\%	20\%	50\%

Table 5.1. Long-term percentage changes of haddock and whiting in the North Sea fisheries as estimated by the stock simulation model for mesh sizes in the human consumption fisheries of 80 and 90 mm relative to the 75 mm mesh size.

Mesh size (mm)	Fishery	Haddock $\%$ change	Whiting $\%$ $\%$
80	Industrial	+6	+17
	Human consumption landings		
90	Human consumption discards	+7	+10
	Industrial	-27	
	Human consumption landings	+18	+43
	Human consumption discards	-33	+19
		-65	

Table 5.2. Expected changes in by-catch and discard levels at current exploitation pattern (75 mm mesh) from effort reductions.

Effort reduction equivalent to Box closure	Whiting		Haddock	
	By-catch	Discards	By-catch	Discards
1	-5	+4	0	+2
2	-25	+19	-20	+8
3	-30	+23	-30	+12

Table ll.l. Percentage abundance of age groups I and II of haddock, whiting and Norway pout in deep water areas A, B and C (cf. Figure 13) according to the long-term average abundance indices per statistical square from Young Herring Surveys (Anon., 1977).

Species Area	A	B	C	Total
Haddock I-group	13.0	7.9	3.2	24.1
II-group	6.0	5.1	1.4	12.5
Whiting I-group	1.3	0.2	0.4	1.9
II-group	9.3	1.3	0.9	11.5
Norway pout I-group	23.1	10.8	22.6	56.5
II-group	40.2	29.3	6.7	76.2

[^1]E6 E7 E8 E9 F0 F1 F2 F3 F4 F5 F6 F7 F8

Figure 2.1. 2 Extent of area closures of the Norway pout Box, 1977-79.

Figure 2.2
Distribution of fishing effort by United Kingdom, Netherlands and Danish vessels fishing for demersal species for human consumption.

Figure 4.1 Chart of fishing areas adopted by the
Working Group.

NORWAY POUT

HADDOCK

Figure ll. D Diurnal variation in catches of Norway pout, haddock and whiting.
No.

- 36-
per
Figure ll. 2 Abundance indices of by depth.

1977-1978
$\begin{array}{lrl}\text { Norway } & 1 & 0 \\ \text { Pout } & >1 & \end{array}$
Haddock $\begin{gathered}\text { I } X \\ \\ \text { II X }\end{gathered}$
Whiting $\begin{array}{cc}1 & 0 \\ & 11\end{array}$
Day hauls only

Figure 11.3 Distribution of total intergrator units greater than 100, in relation to 120 and 140 m depth contour, July/August 1978.

Figure ll. 4 Average abundance indices of 0-group Norway pout in June/July. Young Gadoid Survey.

Figure 11. 5 Summed catches of Norway pout 1972-76 (1000 tons) with an indication of deep water areas used in Section 11.3.

APPENDIX 1
to the Report of an ad hoc Working Group on the Norway Pout Box Problem
(Charlottenlund, 29 Jan. - 2 Feb. 1979)

1. Distribution by statistical rectangle of total Norway pout catches taken by Denmark, Norway, and Scotland in 1972-1977, in thousand tons.

- Appendix Figures 2.1-2.6

2. Combined 1977 Norway pout catches by Denmark, Norway, and Scotland by month and statistical rectangle, in tons.

- Appendix Figures 2.7 - 2.18

APPENDIX 2

to the Report of an ad hoc Working Group on the Norway Pout Box Problem (Charlottenlund, 29 Jan. - 2 Feb. 1979)

Appendix 2, Tables 1-4
Total industrial catches (excluding sandeel fisheries) in tons by countries, and the estimated by-catches of haddock and whiting 1975-1978. The data are grouped by quarters and the areas as given in Figure 4.l.

Appendix 2, Table 1. Total industrial catches (excluding sandeel fisheries) in tons by countries, and the estimated by-catches of haddock and whiting for 1975. The data are grouped by quarters and the areas as given in Figure 4.l.

Area	¥)	Quarter I			Quarter II			Quarter III			Quarter IV		
		Total indust.	Haddock	Whiting									
1	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \\ & \mathrm{~S} \\ & \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{array}{r} 27765 \\ 229 \\ 2966 \\ 3046 \\ \hline \end{array}$	$\begin{array}{r} 2996 \\ 29 \\ 284 \\ 329 \\ \hline \end{array}$	$\begin{array}{r} 5692 \\ 45 \\ 14 \\ 624 \\ \hline \end{array}$	$\begin{array}{r} 856 \\ 15 \\ 2 \quad 255 \\ 6 \quad 218 \\ \hline \end{array}$	$\begin{array}{r} 123 \\ 0 \\ 534 \\ 893 \\ \hline \end{array}$	$\begin{array}{r} 198 \\ 0 \\ 3 \\ 1438 \\ \hline \end{array}$	$\begin{array}{r} 9278 \\ 659 \\ 5145 \\ 16058 \\ \hline \end{array}$	$\begin{array}{r} 325 \\ 10 \\ 958 \\ 563 \\ \hline \end{array}$	$\begin{array}{r} 63 \\ 8 \\ 264 \\ 109 \\ \hline \end{array}$	$\begin{array}{rr} 33 & 133 \\ 2 & 362 \\ 4 & 065 \\ 6 & 151 \\ \hline \end{array}$	$\begin{aligned} & 549 \\ & 115 \\ & 214 \\ & 102 \\ & \hline \end{aligned}$	$\begin{array}{r} 6459 \\ 366 \\ 697 \\ 1 \quad 199 \\ \hline \end{array}$
	T	34006	3638	6375	9344	1550	1639	31140	1856	444	45711	980	8721
2	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~N} \\ & \mathrm{~S} \\ & \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{array}{r} 19384 \\ 6588 \\ 5 \\ 1 \quad 688 \\ \hline \end{array}$	$\begin{array}{rr} 2 & 298 \\ 1 & 395 \\ 1 \\ & 200 \\ \hline \end{array}$	$\begin{array}{rr} 3 & 971 \\ 1 & 456 \\ 0 \\ & 346 \\ \hline \end{array}$	$\begin{array}{r} 4735 \\ 10226 \\ 108 \\ 1236 \\ \hline \end{array}$	$\begin{array}{r} \hline 1538 \\ 223 \\ 24 \\ 401 \\ \hline \end{array}$	$\begin{array}{r} 2171 \\ 0 \\ 0 \\ 567 \\ \hline \end{array}$	$\begin{array}{r} 38246 \\ 59231 \\ 713 \\ 3548 \\ \hline \end{array}$	$\begin{array}{r}1357 \\ 852 \\ 117 \\ 126 \\ \hline\end{array}$	$\begin{array}{r}416 \\ 2510 \\ 36 \\ 39 \\ \hline\end{array}$	$\begin{array}{r} 60 \\ 28 \\ \hline 8054 \\ \\ \\ \hline \end{array}$	$\begin{array}{r} \hline 1288 \\ 546 \\ 0 \\ 68 \\ \hline \end{array}$	$\begin{array}{r} 10867 \\ 1720 \\ 0 \\ \\ 577 \\ \hline \end{array}$
	T	27665	3894	5773	16305	2186	2738	101738	2452	3001	91438	1902	13164
3	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~N} \\ & \mathrm{~S} \\ & \mathrm{~F} \end{aligned}$	$\begin{array}{r} 7856 \\ 0 \\ 0 \\ 236 \\ \hline \end{array}$	738 0 0 22	$\begin{array}{rr} 1402 \\ 0 \\ & 0 \\ & 42 \end{array}$	$\begin{array}{r} 3283 \\ 425 \\ 0 \\ 270 \\ \hline \end{array}$	558 16 0 46	883 6 0 73	$\begin{array}{rr\|} \hline 17 & 688 \\ & 0 \\ & 0 \\ & 0 \\ \hline \end{array}$	2368 0 0	107 0 0	9953 430 0 0	$\begin{array}{r} 174 \\ 15 \\ 0 \end{array}$	$\begin{array}{r} 2166 \\ 31 \\ 0 \end{array}$
	T	8092	760	1444	3978	620	962	17688	2368	107	10383	189	2197
4	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \\ & \mathrm{~S} \end{aligned}$	5 336 2 012 5 037 3 919	$\begin{array}{r} 590 \\ 54 \\ 66 \\ 433 \\ \hline \end{array}$	$\begin{array}{r} \hline 1064 \\ 110 \\ 48 \\ 781 \\ \hline \end{array}$	$\begin{array}{r} 1601 \\ 8 \quad 889 \\ 2306 \\ 2 \quad 392 \\ \hline \end{array}$	$\begin{array}{r} 327 \\ 382 \\ 4 \\ 489 \\ \hline \end{array}$	$\begin{array}{r} 472 \\ 768 \\ 0 \\ 705 \\ \hline \end{array}$	6 839 1 289 1 842 7 944	$\begin{aligned} & 51 \\ & 38 \\ & 22 \\ & 59 \\ & \hline \end{aligned}$	$\begin{array}{r} 173 \\ 64 \\ 0 \\ 201 \\ \hline \end{array}$	$\begin{array}{ll} 9 & 675 \\ 3 & 777 \\ 3 & 953 \\ 8 & 807 \\ \hline \end{array}$	$\begin{aligned} & 182 \\ & 120 \\ & 103 \\ & 166 \\ & \hline \end{aligned}$	$\begin{array}{r} 1804 \\ 252 \\ 1 \\ 1 \quad 642 \\ \hline \end{array}$
	T	16304	1143	2003	13188	1202	1945	17914	170	438	26212	571	3699
5A	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~N} \\ & \mathrm{~S} \\ & \mathrm{~F} \\ & \hline \end{aligned}$	18 25 511 0 0 0	$\begin{array}{r}2986 \\ 1 \\ \hline\end{array}$	$\begin{array}{rr}4 & 369 \\ 3020 \\ & 0\end{array}$	$\begin{array}{r} 49075 \\ 72120 \\ 0 \\ 978 \\ \hline \end{array}$	$\begin{array}{rr} \hline 1789 \\ 1 & 127 \\ & 0 \\ & 36 \\ \hline \end{array}$	$\begin{array}{r} 909 \\ 1440 \\ 0 \\ \\ \\ \hline \end{array}$	$\begin{array}{r} 44103 \\ 34132 \\ 0 \\ 230 \\ \hline \end{array}$	$\begin{array}{r} 2763 \\ 174 \\ 0 \\ \\ \\ \hline \end{array}$	131 209 0 1	$\begin{array}{r} 4718 \\ 39362 \\ 0 \\ 628 \\ \hline \end{array}$	$\begin{array}{r} 142 \\ 1335 \\ 0 \\ 19 \\ \hline \end{array}$	$\begin{array}{r} 66 \\ 390 \\ 0 \\ 9 \\ \hline \end{array}$
	T	44243	4083	7389	122173	2954	2367	78465	2951	341	44708	1496	465
5B	$\begin{aligned} & \hline D \\ & N \\ & S \\ & \mathrm{~S} \end{aligned}$	$\begin{array}{r} 4676 \\ 0 \\ 0 \\ 0 \end{array}$	18 0 0	28 0 0	$\begin{array}{r} 4383 \\ 113 \\ 0 \\ 1 \quad 323 \\ \hline \end{array}$	121 2 0 37	$\begin{array}{r} 1034 \\ 0 \\ 0 \\ \\ \\ 312 \\ \hline \end{array}$	57086 0 0 0	402 0 0	$\begin{array}{r}1471 \\ 0 \\ \\ \hline\end{array}$	10663 0 0 0	1092 0 0	$\begin{array}{r} 1093 \\ 0 \\ \\ \\ \hline \end{array}$
	T	4676	18	28	5819	160	1346	57086	402	1471	10663	1092	1093
6	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~N} \\ & \mathrm{~S} \\ & \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{array}{r} 142540 \\ 0 \\ 0 \\ 503 \\ \hline \end{array}$	181 0 0 1	$\begin{array}{r}1941 \\ 0 \\ 0 \\ \\ \\ \\ \hline\end{array}$	$\begin{array}{r} 21999 \\ 0 \\ 18 \\ 1 \quad 441 \end{array}$	172 0 0 11	$\begin{array}{r} 2701 \\ 0 \\ 0 \\ 177 \\ \hline \end{array}$	139555 0 0 0	887 0 0	6417 0 0	69797 0 0 0	525 0 0	$\begin{array}{r} 3199 \\ 0 \\ -\quad 0 \end{array}$
	T	143043	182	1948	23458	183	2878	139555	887	6417	69797	525	3199

$\left.{ }^{\text {ri }}\right)_{D}=$ Denmark, $N=$ Norway,$S=$ Scotlanc $F=$ Faroe Islands, $T=$ Total

Appendix 2, Table 2. Total industrial ce hes (excluding sandeel fisheries) i. ons by countries, and the estimated by-catches of haddock and whiting for 1976. The data are grouped by quarters and the areas as given in Figure 4.1.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Area} \& \multirow[b]{2}{*}{포)} \& \multicolumn{3}{|c|}{Quarter I} \& \multicolumn{3}{|c|}{Quarter II} \& \multicolumn{3}{|c|}{Quarter III} \& \multicolumn{3}{|c|}{Quarter IV} \\
\hline \& \& Total indust. \& Haddock \& Whiting \\
\hline \multirow[t]{2}{*}{1} \& \[
\begin{aligned}
\& D \\
\& N \\
\& N \\
\& S \\
\& F \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{r}
34355 \\
0 \\
960 \\
8 \quad 200 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
6718 \\
0 \\
51 \\
1 \quad 603 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
20237 \\
0 \\
160 \\
4830 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
2791 \\
0 \\
553 \\
4 \quad 680 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
170 \\
0 \\
0 \\
285 \\
\hline
\end{array}
\] \& \begin{tabular}{r}
690 \\
0 \\
0 \\
\(1 \quad 157\) \\
\hline
\end{tabular} \& \[
\begin{array}{r}
27699 \\
228 \\
2807 \\
11875
\end{array}
\] \& \[
\begin{array}{r}
656 \\
4 \\
23 \\
281 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
1732 \\
2 \\
0 \\
743 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
41399 \\
139 \\
2747 \\
7869 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
591 \\
1 \\
58 \\
302 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
4478 \\
18 \\
14 \\
851 \\
\hline
\end{array}
\] \\
\hline \& T \& 43515 \& 8372 \& 25227 \& 8024 \& 455 \& 1847 \& 42609 \& 964 \& 2477 \& 52154 \& 1952 \& 5361 \\
\hline \multirow[t]{2}{*}{2} \& \[
\begin{aligned}
\& \mathrm{D} \\
\& \mathrm{~N} \\
\& \mathrm{~S} \\
\& \mathrm{~F} \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{r}
30205 \\
111 \\
69 \\
2056
\end{array}
\] \& \[
\begin{array}{r}
5292 \\
4 \\
4 \\
360 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
15893 \\
5 \\
13 \\
1082 \\
\hline
\end{array}
\] \& 3559
4204
74
620 \& \[
\begin{array}{r}
282 \\
77 \\
0 \\
49
\end{array}
\] \& \[
\begin{array}{r}
560 \\
377 \\
0 \\
98
\end{array}
\] \& \(\begin{array}{r}49792 \\ 16.570 \\ 1 \quad 224 \\ \\ \hline\end{array}\) \& 1424
231
13
11 \& \[
\begin{array}{r}
3029 \\
69 \\
0 \\
24
\end{array}
\] \& 54917
15119
718
0 \& \[
\begin{array}{r}
2286 \\
258 \\
6
\end{array}
\] \& \[
\begin{array}{r}
5665 \\
2738 \\
\\
0
\end{array}
\] \\
\hline \& T \& 32441 \& 5660 \& 16993 \& 8457 \& 408 \& 1035 \& 67985 \& 1679 \& 3122 \& 70754 \& 2550 \& 8403 \\
\hline \multirow[t]{2}{*}{3} \& \[
\begin{aligned}
\& \hline D \\
\& \mathrm{~N} \\
\& \mathrm{~S} \\
\& \mathrm{~F}
\end{aligned}
\] \& 9403
0
0

0 \& $\begin{array}{r}1667 \\ 0 \\ -\quad 0 \\ \hline\end{array}$ \& 4762
0
$-\quad 0$ \& 2121
29
9
0 \& 71
1
0 \& 382
0
0 \& 13863
0
0
0 \& 310
0
0 \& 407
0
0 \& 12344
46
67
0 \& 563
2

3 \& $$
\begin{array}{r}
1912 \\
11 \\
0
\end{array}
$$

\hline \& T \& 9403 \& 1667 \& 4762 \& 2159 \& 72 \& 382 \& 13863 \& 310 \& 407 \& 12457 \& 568 \& 1923

\hline \multirow[t]{2}{*}{4} \& $$
\begin{aligned}
& \hline D \\
& N \\
& S \\
& \mathrm{~F} \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
13535 \\
824 \\
3967 \\
7 \quad 429 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1953 \\
10 \\
70 \\
1 \quad 072 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
5219 \\
9 \\
58 \\
2 \quad 865 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
26422 \\
4993 \\
56 \\
6689 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1144 \\
100 \\
0 \\
290 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
3477 \\
186 \\
0 \\
627 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{rr}
10 & 791 \\
2 & 847 \\
1 & 266 \\
6 & 298 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
288 \\
53 \\
39 \\
168 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
521 \\
53 \\
0 \\
304 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 5967 \\
& 1 \\
& 4 \\
& 4
\end{aligned}
$$ 403

\] \& \[

$$
\begin{array}{r}
163 \\
27 \\
215 \\
113 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
421 \\
249 \\
0 \\
292 \\
\hline
\end{array}
$$
\]

\hline \& T \& 25755 \& 3105 \& 8151 \& 38160 \& 1534 \& 4290 \& 21202 \& 548 \& 878 \& 15986 \& 518 \& 962

\hline \multirow[t]{2}{*}{5A} \& D
N
S
F \& 11
220808
0

0 \& \[
$$
\begin{array}{r}
345 \\
656 \\
0 \\
29 \\
\hline
\end{array}
$$

\] \& | 1228 | |
| ---: | ---: |
| 2468 | |
| 0 | |
| | 104 | \& $\begin{array}{r}19 \\ 45 \\ \hline 1507 \\ 0 \\ 257 \\ \hline\end{array}$ \& 325

256
0
4 \& 796
229
0
11 \& 27
51
522

0 \& 1169
500
0 \& 220
1046

0 \& | 15 |
| ---: |
| 1 |
| 18 |
| 837 |
| 729 |
| |
| |
| 0 | \& 29

152

0 \& $$
\begin{array}{r}
40 \\
989 \\
0
\end{array}
$$

\hline \& T \& 34330 \& 1030 \& 3800 \& 65004 \& 585 \& 1036 \& 78652 \& 1669 \& 1266 \& 20266 \& 181 \& 1029

\hline \multirow[t]{2}{*}{5B} \& D
N
S
F \& 5159
0
0
0 \& $\begin{array}{r}1117 \\ 0 \\ 0 \\ \hline\end{array}$ \& $\begin{array}{r}2179 \\ 0 \\ -\quad 0 \\ \hline\end{array}$ \& 6417
0
0
0
0 \& 187
0
0 \& 852
0
0 \& 63578
0
0
0 \& 5563
0
0 \& 2023
0
0 \& 23756
0
0
0 \& 449
0

0 \& $$
\begin{array}{r}
2224 \\
0 \\
0
\end{array}
$$

\hline \& T \& 5159 \& 1117 \& 2179 \& 6417 \& 187 \& 852 \& 63578 \& 5563 \& 2023 \& 23756 \& 449 \& 2224

\hline \multirow[t]{2}{*}{6} \& D
N
S
F \& 98456
0
0

0 \& $\begin{array}{r}2409 \\ 0 \\ 0 \\ -\quad \\ \hline\end{array}$ \& $$
\begin{array}{r}
1603 \\
0 \\
0 \\
-\quad 0 \\
\hline
\end{array}
$$ \& 39294

87
0
0 \& 828
0

0 \& $$
14534
$$ \& 107760

0
0
0 \& 1655
0
0 \& 9796
0

0 \& $$
\begin{array}{r}
\hline 91214 \\
0 \\
0 \\
0
\end{array}
$$ \& 217

0

0 \& $$
\begin{array}{r}
3281 \\
0 \\
0
\end{array}
$$

\hline \& T \& 98456 \& 2409 \& 16603 \& 39381 \& 828 \& 14534 \& 107760 \& 1655 \& 9796 \& 91214 \& 217 \& 3281

\hline
\end{tabular}

$\left.{ }^{\mathrm{F}}\right)_{\mathrm{D} .}=$ Denmark, $\mathrm{N}=$ Norway, $\mathrm{S}=$ Scotland, $\mathrm{F}=$ Faroe Islands,$T=$ Total.

Appendix 2, Table 3. Total industrial catches (excluding sandeel fisheries) in tons by countries, and the estimated by-catches of haddock and whiting for 1977. The data are grouped by quarters and the areas as given in Figure 4.l.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Area} \& \multirow[b]{2}{*}{¥)} \& \multicolumn{3}{|c|}{Quarter I} \& \multicolumn{3}{|c|}{Quarter II} \& \multicolumn{3}{|c|}{Quarter III} \& \multicolumn{3}{|c|}{Quarter IV} \\
\hline \& \& \begin{tabular}{l}
Total \\
indust.
\end{tabular} \& Haddock \& Whiting \& Total indust. \& Haddock \& Whiting \& \begin{tabular}{l}
Total \\
indust.
\end{tabular} \& Haddock \& Whiting \& Total indust. \& Haddock \& Whiting \\
\hline \multirow[t]{2}{*}{1} \& \[
\begin{aligned}
\& \mathrm{D} \\
\& \mathrm{~N} \\
\& \mathrm{~S} \\
\& \mathrm{~F} \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{r}
21076 \\
0 \\
721 \\
4 \quad 399 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
2158 \\
0 \\
9 \\
450 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
2981 \\
0 \\
0 \\
622 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
7953 \\
0 \\
10 \\
2 \quad 907 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
694 \\
0 \\
0 \\
254 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
610 \\
0 \\
0 \\
223 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
32378 \\
21 \\
68 \\
4 \quad 254 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
1329 \\
0 \\
1 \\
175 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
232 \\
0 \\
0 \\
305 \\
\hline
\end{array}
\] \& \(\begin{array}{r}1640 \\ 0 \\ \\ 0 \\ \\ \hline\end{array}\) \& 1
0
0 \& \[
\begin{array}{r}
120 \\
0 \\
0 \\
-\quad 0
\end{array}
\] \\
\hline \& T \& 26196 \& 2617 \& 3603 \& 10870 \& 948 \& 833 \& 36721 \& 1505 \& 2627 \& 1640 \& 1 \& 120 \\
\hline \multirow[t]{2}{*}{2} \& \[
\begin{aligned}
\& \hline \mathrm{D} \\
\& \mathrm{~N} \\
\& \mathrm{~S} \\
\& \mathrm{~F} \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{r}
20158 \\
843 \\
209 \\
995 \\
\hline
\end{tabular} \& \[
\begin{array}{r}
1563 \\
0 \\
2 \\
\\
\\
\hline
\end{array}
\] \& \[
\begin{array}{r}
2266 \\
0 \\
0 \\
112 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
64 \\
31 \\
0 \\
576 \\
\hline
\end{array}
\] \& 0
1
0 \& 0
0
0 \& \begin{tabular}{rr}
36138 \\
3591 \\
52 \\
150 \\
\hline
\end{tabular} \& \[
\begin{array}{r}
677 \\
33 \\
1 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
824 \\
0 \\
0 \\
3 \\
\hline
\end{array}
\] \& \(\begin{array}{r}66945 \\ 4592 \\ 0 \\ 0 \\ \hline\end{array}\) \& 831
170
\(-\quad 0\) \& \[
\begin{array}{r}
342 \\
0 \\
-\quad 0 \\
\hline
\end{array}
\] \\
\hline \& T \& 22205 \& 1642 \& 2378 \& 671 \& 1 \& 0 \& 39931 \& 714 \& 827 \& 71537 \& 1001 \& 3942 \\
\hline \multirow[t]{2}{*}{3} \& \[
\begin{aligned}
\& \mathrm{D} \\
\& \mathrm{~N} \\
\& \mathrm{~S} \\
\& \mathrm{~F} \\
\& \hline
\end{aligned}
\] \& 14500
0
0
0 \& \(\begin{array}{r}1392 \\ 0 \\ 0 \\ -\quad \\ \hline\end{array}\) \& \(\begin{array}{r}1779 \\ 0 \\ -\quad 0 \\ \hline\end{array}\) \& 148
0
0
0 \& \(\begin{array}{r}3 \\ 0 \\ 0 \\ -\quad \\ \hline\end{array}\) \& 11
0
0 \& \(\begin{array}{r}4597 \\ 0 \\ 0 \\ \\ 0 \\ \hline\end{array}\) \& 64
0
0 \& 95
0
0 \& \(\begin{array}{r}2224 \\ 0 \\ 0 \\ 0 \\ \hline\end{array}\) \& 67
0
0 \& \[
\begin{array}{r}
128 \\
0 \\
0 \\
-\quad . \\
\hline
\end{array}
\] \\
\hline \& T \& 14500 \& 1392 \& 1779 \& 148 \& 3 \& 11 \& 4597 \& 64 \& 95 \& 2224 \& 67 \& 128 \\
\hline \multirow[t]{2}{*}{4} \& D
N
S
F \& \[
\begin{array}{rr}
18 \& 046 \\
1 \& 543 \\
1 \& 423 \\
4 \& 604
\end{array}
\] \& \[
\begin{array}{r}
1562 \\
6 \\
5 \\
399 \\
\hline
\end{array}
\] \& 2260
116
93
88 \& \[
\begin{array}{r}
1987 \\
106 \\
0 \\
3088 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
53 \\
0 \\
0 \\
82 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
156 \\
0 \\
0 \\
242 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
3385 \\
856 \\
23 \\
8 \quad 278 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
89 \\
11 \\
0 \\
218 \\
\hline
\end{array}
\] \& \(\begin{array}{r}53 \\ 0 \\ 0 \\ 130 \\ \hline\end{array}\) \& \begin{tabular}{rr}
16 \& 437 \\
2 \& 200 \\
2 \& 130 \\
14 \& 817 \\
\hline
\end{tabular} \& \[
\begin{array}{r}
373 \\
1 \\
12 \\
336 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
1456 \\
\\
\\
\\
1 \quad 312 \\
\hline
\end{array}
\] \\
\hline \& T \& 25616 \& 1972 \& 2557 \& 5181 \& 135 \& 398 \& 12542 \& 318 \& 183 \& 35584 \& 722 \& 2768 \\
\hline \multirow[t]{2}{*}{5A} \& D
N
S
F \& \[
\begin{array}{rr}
19 \& 920 \\
15 \& 181 \\
\& 0 \\
1 \& 554 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
962 \\
75 \\
0 \\
12 \\
\hline
\end{array}
\] \& \[
\begin{array}{rr}
1 \& 862 \\
1 \& 009 \\
0 \\
\& 145 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
6937 \\
28 \quad 281 \\
0 \\
09 \\
\hline
\end{array}
\] \& 73
87
0
1 \& 206
364
0
3 \& \begin{tabular}{rr}
14 \& 281 \\
30 \& 702 \\
\& 0 \\
\& 0 \\
\hline
\end{tabular} \& 156
66
0 \& 962
42
0 \& \[
\begin{array}{r}
3325 \\
21205 \\
0 \\
2636 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
101 \\
24 \\
0 \\
80 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
64 \\
131 \\
0 \\
51 \\
\hline
\end{array}
\] \\
\hline \& T \& 36655 \& 1049 \& 3016 \& 35307 \& 161 \& 573 \& 44983 \& 222 \& 1004 \& 27166 \& 205 \& 246 \\
\hline \multirow[t]{2}{*}{5B} \& D
N
S
F \& \(\begin{array}{r}4507 \\ 0 \\ 0 \\ 0 \\ \hline\end{array}\) \& 277
0
0
\(-\quad 0\) \& 519
0
0 \& \(\begin{array}{r}4.064 \\ 0 \\ 0 \\ 0 \\ \hline\end{array}\) \& 96
0
0 \& 811
0
0
\(-\quad\) \& 16244
0
0

0 \& 170
0
0 \& 2326
0
0 \& $\begin{array}{r}12458 \\ 0 \\ \\ 0 \\ 0 \\ \hline\end{array}$ \& 25
0

0 \& $$
\begin{array}{r}
288 \\
0 \\
-\quad 0
\end{array}
$$

\hline \& T \& 4507 \& 277 \& 519 \& 4064 \& 96 \& 811 \& 16244 \& 170 \& 2326 \& 12458 \& 25 \& 2288

\hline \multirow[t]{2}{*}{6} \& D
N
S
F \& 63370
0
0
0
0 \& $\begin{array}{r}196 \\ 0 \\ 0 \\ -\quad \\ \hline\end{array}$ \& $\begin{array}{r}3255 \\ 0 \\ 0 \\ -\quad 0 \\ \hline\end{array}$ \& $\begin{array}{r}20 \quad 179 \\ 0 \\ 0 \\ 0 \\ \hline\end{array}$ \& 131
0
0 \& 4084
0
0
$-\quad 0$ \& $\begin{array}{r}58961 \\ 0 \\ 0 \\ 0 \\ \hline\end{array}$ \& 140
0
0 \& 6508
0
0
$-\quad$ \& $\begin{array}{r}54978 \\ 0 \\ 0 \\ 0 \\ \hline\end{array}$ \& 88
0
0 \& 3732
0
0

\hline \& T \& 63370 \& 196 \& 3255 \& 20179 \& 131 \& 4084 \& 58961 \& 140 \& 6508 \& 54978 \& 88 \& 3732

\hline
\end{tabular}

$\left.{ }^{\#}\right)_{D}=$ Denmark, $N=$ Norway, $S=$ Scotland, $F=$ Faroe Islands, $T=$ Total.

Appendix 2, Table 4. Total industrial ca nes (excluding sandeel fisheries) in ons by countries, and the estimated by-catches of haddock and whiting for 1978. The data are grouped by quarters and the areas as given in Figure 4.l.

Area	¥)	Quarter I			Quarter II			Quarter III			Quarter IV		
		Total indust.	Haddock	Whiting	Total indust.	Haddock	Whiting	Total indust.	Haddock	Whiting	Total indust.	Haddock	Whiting
1	D	0	0	0	0	0	0	0	0	0			
	N	0	0	0	188	1	2	0	0	0	0	0	0
	S	0	0	0	0	0	0	0	0	0	0	0	0
	F	0	-	-	0	-	-	0	-	0	0	0	
	T	0	0	0	188	1	2	0	0	0			
2	D	16616	1103	930	7867	465	238	35357	1087	286			
	N			0	1245	6	27	1057	18	0	0	0	0
	S	0	0	0		0	0	0	0	0	0	0	0
	F	0	-	-	0	-	0	0	-	-	0	-	0
	T	16616	1103	930	9112	471	265	36414	1105	286			
3	D	4045	152	249	362	26	0	7469	484	30			
	N		0	0	269	0	0	92	2	0	0	0	0
	S	0	0	0	0	0	0	0	0	0	0	0	0
	F	0	-	-	0	-	-	0	-		0	-	0
	T	4045	152	249	631	26	0	7561	486	30			
4	D	23306	531	1302	3602	100	199	21533		255			
	N	257	5	13	1179	9	4	3940	50	7	2523	24	6
	S	2874	26	14		0	0	0	0	0	985	17	0
	F	4000	91	223	2000	56	110	0	-	-	2000	-	-
	T	30437	653	1552	6814	165	313	25473	1593	262			
5 A	D	20612	437	1024	3020	34	306	17679	203	51			
	N	11203	191	642	38397	296	370	50089	254	41	25556	97	116
	S	0	0	0		0	0		0	0	0	0	0
	F	4300	91	214	0	-	-	0	-	-	1000	-	
	T	36115	719	1880	41417	330	676	67768	457	92			
5B	D	339	13	20	4012	63	1268	17937	73	3662			
	N	0	0	0		0	0	- 0	0	0	0	0	0
	S	0	0	0	0	0	0	0	0	0	0	0	0
	F	0	-	-	0	-	-	0	0	-	0	-	
	T	339	13	20	4012	63	1268	17937	73	3662			
6	D	43358	101	6351	37437	441	8099	87530	6	11213			
	N	0	0			0	0	0	0	- 0	0	0	0
	S	0	0	0	0	0	0	0	0	0	0	0	0
	F	0	-	6	0	-	-	0	-	-	0	-	-
	T	43358	101	6351	37437	441	8099	87530	6	11213			

$\left.{ }^{\#}\right)_{D}=$ Denmark, $N=$ Norway, $S=$ Scotland, $F=$ Faroe Islands, $T=$ Total.

APPENDIX 3

ESTIMATES OF LONG-TERM GAINS TO THE HUMAN CONSUMPTION FISHERIES

AS A RESULT OF CLOSURE OF NORWAY POUT BOXES

Input Parameters for the Model

I) For haddock and whiting respectively and for each combination of closures specified by the Commission of the EEC a value of the amount of fish which would be caught as compared to the no closure situation was evaluated in the manner described in Section 4 of this Report.
It was evident that the values obtained for either species in the cases of involving no closure in summer were not greatly changed by involving considerations of summer closures. For this reason, a series of simulations was run for Option 2, the average of Options 4 and 6 and Option 10 (see Section 4.2). Input values appropriate to these simulations are shown in Table 4.8.
2) An array of values of F at age which the industrial fishery would generate in the absence of any restraint on that fishery was evaluated. It was decided that these values should be based on the industrial F at age array for 1976. In the case of haddock the values of F at age for 1976 were slightly modified before being used as input to the model as a result of discussions within the Working Group. The major difference was to change F at age 0 from 0.25 to 0.14 , i.e. the average of 1974 to 1977. No modification was made to the industrial F at age array on whiting.
3) The arrays of F at age generated by the consumption fishery in 1977 were used as typifying that fishery in terms of fishing mortality.
4) Values of mean weight at age in the industrial and consumption fisheries were taken from the 1977 Roundfish Working Group Report. for haddock and from the 1978 Roundfish Working Group Report for whiting.
5) Mean numbers of haddock and whiting in the sea at age 0 were taken from the 1978 Roundfish Working Group Report.
6) It was assumed that $M=0.2$ at all ages.

The input values referred to above are summarised in Tables A. 3.1 and A.3.2 for haddock and whiting, respectively.

Calculations

1) An equilibrium stock in numbers was generated from the average recruits by applying the input F and M values.
2) The catch in numbers at age was obtained for this equilibrium stock for the industrial fishery, consumption landings fishery and for discards. Corresponding values of total weight caught were evaluated by applying the mean weight at age data to the appropriate catch at age array. The values thus calculated were stored as baseline statistics.
3) To assess the effect of a box closure on the industrial catch of haddock and whiting the values of catch at age in the industrial fishery as evaluated in 2) above were reduced by the amount appropriate to that closure as shown in the Tables of input parameters.
4) The value of F at age in the industrial fishery corresponding to the reduced values of catch at age was then evaluated. This resulted in a new array of F at age for all fisheries combined.
5) A new catch at age array of consumption landings and discards was then evaluated on the basis of this new F at age array. Total weight caught under the new conditions was evaluated by applying the appropriate mean weight at age arrays to the revised catch at age arrays.
6) If the effects of a mesh change in the consumption fishery were also being investigated, the values of F at age in that fishery were adjusted in the following way:
The mean lengths at age in the consumption fishery were evaluated from the corresponding mean weight data by means of an appropriate weight/length relationship given in the Tables of input values. The proportion retained by the existing mesh (75 mm) was worked out using a logistic function. The proportions retained using a new mesh size (80 or 90 mm) were similarly evaluated. The values of F at age were then adjusted by the ratio $S 2 / S l$ where, $S l=$ proportion retained by old mesh, and $S 2=$ proportion retained by new mesh.

Simulations

A simulation appropriate to each closure specified by the Commission of the EEC was run for mesh sizes 75,80 and 90 mm respectively for haddock and whiting. The results of these simulations are summarised in Tables A.3.3 and A.3.4.

Table A. 3.1
Haddock.
Input data for pout box assessments.

$$
M=0.2 \text { all ages. } \quad \text { Recruits at age } 0=611 \times 10^{6} .
$$

| | Industrial | | Consumption | | Discards | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | F | $\overline{\mathrm{W}}$ | F | $\overline{\mathrm{W}}$ | F | $\overline{\mathrm{W}}$ |
| 0 | .14 | .025 | .00 | - | .00 | .041 |
| 1 | .14 | .064 | .01 | .230 | .10 | .108 |
| 2 | .14 | .157 | .11 | .280 | .24 | .185 |
| 3 | .14 | .324 | .64 | .410 | .24 | .246 |
| 4 | .01 | .423 | 1.00 | .580 | .02 | .253 |
| 5 | .01 | .556 | 1.07 | .710 | .00 | - |
| 6 | .01 | .666 | 1.08 | .940 | .00 | - |
| 7 | .00 | - | 1.10 | 1.210 | .00 | - |
| 8 | .00 | - | 1.10 | 1.440 | .00 | - |
| 9 | .00 | - | 1.10 | 1.500 | .00 | - |
| 10 | .00 | - | 1.10 | 1.600 | .00 | - |

Proportion of obtainable industrial catch realised after closure

Closure			
None	IW or $1 W+1 S$	$2 W$ or or $2 W+1 S$	$3 W$ or $3 W+1 S$ or $3 W+2 S$ or $3 W+3 S$
1.00	0.95	0.80	0.70

Data for mesh changes

Mesh size	75	80	90
Selection range	2.1	2.3	2.5

Selection factor 3.4
$W=0.008 \mathrm{~L}^{3}$

Table A.3.2 Whiting.
Input data for pout box assessments. $M=0.2$ all ages. \quad Recruits at age $0=1643 \times 10^{6}$.

| Age | Industrial | | Consumption | | Discards | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | F | \bar{W} | F | \bar{W} | F | \bar{W} |
| 0 | .20 | .020 | .00 | | | |
| 1 | .35 | .063 | .01 | .187 | .20 | .034 |
| 2 | .50 | .195 | .18 | .228 | .45 | .121 |
| 3 | .46 | .269 | .53 | .269 | .17 | .198 |
| 4 | .09 | .322 | .58 | .322 | .04 | .194 |
| 5 | .02 | .380 | .78 | .380 | .03 | .233 |
| 6 | .01 | .468 | .88 | .468 | .01 | .233 |
| 7 | .01 | .620 | .81 | .620 | .00 | - |
| 8 | .01 | .765 | .80 | .765 | .00 | - |
| | | | | | | |

Proportion of obtainable industrial catch realised after closure

Data for mesh changes

Closure			
None	$\begin{array}{\|ll} & \text { IW } \\ \text { or } & \text { IW+1S } \end{array}$	$\begin{array}{ll} & 2 W \\ \text { or } & 2 W+1 S \\ \text { or } & 2 W+2 S \end{array}$	$\begin{array}{ll} & 3 W \\ \text { or } & 3 W+1 S \\ \text { or } & 3 W+2 S \\ \text { or } & 3 W+3 S \end{array}$
1.00	.95	. 75	. 70

Mesh size	75	80	90
Selection range	2.6	2.9	3.3

Selection factor 3.8
$W=0.0093 L^{2.9456}$

Table A. 3.3 Long-term effect of box closures on Haddock catches.

		Closures			
		None	$\begin{aligned} & \left.1 W^{2}\right) \\ & \text { or } 1 W+1 S \end{aligned}$	$\begin{array}{cc} & 2 W \\ \text { or } & 2 W+1 S \\ \text { or } & 2 W+2 S \end{array}$	$\begin{array}{ll} & 3 W \\ \text { or } & 3 W+1 S \\ \text { or } & 3 W+2 S \\ \text { or } & 3 W+3 S \\ \hline \end{array}$
Proportion realis	obtainable industrial catch after closure	1.00	. 95	. 80	. 70
Mesh size	Fishery	$\Delta \%^{1)}$	$\triangle \%$	$\Delta \%$	$\Delta \%$
75 mm	Industrial landings Consumption landings Consumption discards	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	-5 3 2	-20 11 8	-30 17 2
80 mm	Industrial landings Consumption landings Consumption discards	$\begin{array}{r} 6 \\ 7 \\ -10 \end{array}$	1 10 -8	-15 19 -3	-26 25 1
90 mm	Industrial landings Consumption landings Consumption discards	$\begin{array}{r} 18 \\ 22 \\ -33 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ 25 \\ -32 \end{array}$	-6 36 -27	$\begin{array}{r} -17 \\ 43 \\ -25 \end{array}$

I) $\Delta \%=\%$ change in catch in weight as compared to the values obtained for no closure and 75 mm mesh.
2) IW means Box 1 closed in winter. $2 W+1 S$ means Box 2 closed in winter, Box 1 closed in summer, etc.

Table A. 3.4 Long-term effect of box closures on Whiting catches.

		Closures			
		None	$\begin{array}{r} 1 W^{2} \\ \text { or } 1 W+1 S \end{array}$	$\begin{array}{r} 2 W \\ \text { or } 2 W+1 S \\ \text { or } 2 W+2 S \end{array}$	$\begin{array}{ll} & 3 W \\ \text { or } & 3 W+1 S \\ \text { or } & 3 W+2 S \\ \text { or } & 3 W+3 S \\ \hline \end{array}$
$\begin{array}{r} \text { Proportior } \\ \text { reali } \\ \hline \end{array}$	obtainable industrial catch after closure	1.00	- 95	. 75	- 70
Mesh size	Fishery	$\Delta \%^{\prime \prime}$	$\Delta \%$	$\Delta \%$	$\Delta \%$
75 mm	Industrial landings Consumption landings Consumption discards	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	-5 7 4	$\begin{array}{r} -25 \\ 38 \\ 19 \end{array}$	$\begin{array}{r} -30 \\ 47 \\ 23 \end{array}$
80 mm	Industrial landings Consumption landings Consumption discards	$\begin{array}{r} 17 \\ 10 \\ -27 \end{array}$	11 18 -24	$\begin{array}{r} -12 \\ 57 \\ -12 \end{array}$	$\begin{array}{r} -18 \\ 68 \\ -8 \end{array}$
90 mm	Industrial landings Consumption landings Consumption discards	$\begin{array}{r} 43 \\ 19 \\ -65 \end{array}$	$\begin{array}{r} 36 \\ 30 \\ -63 \end{array}$	$\begin{array}{r} 8 \\ 79 \\ -56 \end{array}$	$\begin{array}{r} 0 \\ 93 \\ -54 \end{array}$

1) $\Delta \%=\%$ change in catch in weight as compared to values obtained for no closure and 75 mm mesh.
2) $1 W$ means Box l closed in winter. $2 W+1 S$ means Box 2 closed in winter, Box 1 closed in summer, etc.

APPENDIX 4

REFERENCES

Anon., 1975. "Report of the North Sea Roundfish Working Group, Charlottenlund, 10-14 March 1975". ICES, Doc. C.M.1975/F:5 (mimeo.).

Anon., 1977. "Report of the Gadoid l-Group Working Group". ICES, Doc. C.M.1977/F:19 (mimeo.).

Anon., 1977. "Report of the North Sea Roundfish Working Group, Charlottenlund, 21-25 March 1977". ICES, Doc. C.M.1977/F:8 (mimeo.).

Anon., 1977. "Report of the Working Group on the Norway Pout Box, Charlottenlund, 23-26 August 1977". ICES (mimeo.).

Anon., 1978. "Compilation of the Gadoid Data Collected during the International Young Herring Survey 1978". ICES, Doc. C.M.1978/G:51 (mimeo.).

Anon., 1978. "Report of the North Sea Roundfish Working Group, Charlottenlund, 3-7 April 1978". ICES, Doc. C.M.1978/G:7 (mimeo.).

Anon., 1978. "Report of the Saithe (Coalfish) Working Group, Charlottenlund, 13-17 February 1978. ICES, Doc. C.M.1978/G:3 (mimeo.).

Anon., 1978. "Report of the Working Group on Norway Pout and Sandeels in the North Sea, Charlottenlund, 30 January-3 February 1978". ICES, Doc. C.M.1978/G:12 (mimeo.).

Anon., 1978. "Reports of the Liaison Committee of ICES, November 1976 to October 1977". ICES Coop.Res.Rep., No.73.

Anon., 1978. "The Biology, Distribution and State of Exploitation of Shared Stocks in the North Sea.Area". ICES, Coop.Res.Rep., No.74.

Anon., 1978. "Toktrapporter fra to tokt i Nordsjøen i tiden 10 juli til 11 August 1978". Norsk Fiskeridir.Havforskningsinstitutt (mimeo.).

Anon., 1979. "Reports of the ICES Advisory Committee on Fishery Management, 1978". ICES, Coop.Res.Rep., No. 85 (in print).

Benjaminsen, T, N Daan, J R G Hislop, M J Holden, J Lahn-Johannessen and W G Parnell, 1978. "The Results of the International 0-Group Gadoid Survey in the North Sea, 1978". ICES, Doc. C.M.1978/G:IO (mimeo.).

$$
-0-0-0-
$$

[^0]: x) General Secretary, ICES, Charlottenlund Slot, DK-2920 Charlottenlund, Denmark.

[^1]: Figure 2.1.1 The distribution of adult Norway pout and known fishing areas.
 Source: data supplied by national laboratories Coop.Res.Rep., No.74 (1978).

