This Report not to be cited without prior reference to the Council ${ }^{\text {x }}$)
C.M.1978/G:7

Demersal Fish Committee

REPORT OF THE NORTH SEA ROUNDFISH WORKING GROUP
 Charlottenlund, 3-7April 1978

This Report has not yet been approved by the International Council for the Exploration of the Sea; it has therefore at present the status of an internal document and does not represent advice given on behalf of the Council. The proviso that it shall not be cited without the consent of the Council should be strictly observed.

[^0]
Page

1. PARTICIPATION 1
2. TERMS OF REFERENCE 1
3. TOTAL ALLOWABLE CATCHES (TACs) 2
3.1 Recommended TACs 2
3.2 Stocks in Division IIIa 3
3.3 Management of Roundfish Stocks by Catch Quotas 3
4. STATE OF EXPLOITATION 4
5. NESH ASSESSMENTS 4
5.l Division VIa 4
5.2 Division VIId 5
5.3 General Comments on Mesh Size Increases 5
6. SHORTCOMINGS AND GAPS IN DATA REQUIRED FOR STOCK ASSESSNENT PURPOSES 6
6.1 Age Composition Data 6
6.2 Year Class Strength 6
6.3 Selectivity Data 6
6.4 Effort Data 6
7. MINIMUM LANDING SIZES 6
7.1 Need for a Minimum Landing Size 7
7.2 Relationship between Minimum Landing Size and Mesh Size 7
8. FISHING EFFORT 7
9. REVIEW OF FISH RESOURCES 7
NOTES ON STOCK ASSESSNENT AND TAC CALCULATIONS
10. COD 7
10.1 North Sea (Sub-area IV) 7
10.1.1 VPA 7
10.1.2 Year class strength 8
10.1.3 Catch predictions 8
10.2 West of Scotland (Division VIa) 8
10.2.1 VPA 8
10.2.2 Year class strength 8
10.2.3 Catch predictions 8
11。 HADDOCK 9
ll. 1 Sub-area IV 9
ll.l.l VPA 9
ll.l.l.l Input data (age composition) 9
llol.l.2 Input F values 9
11.1.2 Year class strength 9
ll.1.3 Catch predictions 9
Contents (ctd) Page
11.2 Division VIa 10
11.2.1 VPA 10
11.2.l.1 Input data (age composition) 10
ll.2.l.2 Input F values 10
11.2.2 Year class strength 11
11.2.3 Catch predictions 11
11. WHITING 11
12.1 Sub-area IV 11
12.1.1 VPA 11
12.1.l.1 Input data (age compositions) 11
12.1.1.2 Input F values 11
12.l.2 Year class strength 11
12.l.3 Catch predictions 11
12.2 Divisions VIa and VIb 12
12.2.1 VPA 12
12.2.1.1 Input data (age compositions) 12
12.2.l.2 Input F values 12
12.2.2 Year class strength 12
12.2.3 Catch predictions 12
12. NOTES ON MESH ASSESSMENTS 12
13. TIMING OF WORKING GROUP MEETINGS 13
14. REFERENCE 13
TABLES 1.1 - 7.16 14
FIGURES 1-7 80
APPENDIX: REVIEW OF FISH RESOURCES 87
15. PARTICIPATION
D W Armstrong
R De Clerck
N Daan
J P Hillis
A Hylen
J Lahn－Johannessen
R Jones（Chairman）
F Lamp
G Lefranc
C T Macer
E Nielsen
J G Pope
F M Serchuk
P Sparre
G Wagner

U．K．（Scotland）
Belgium
Netherlands
Ireland
Norway
Norway
UoK。（Scotland）
Germany，Fed．Rep．of
France
U．K。（England）
Denmark
UoK。（England）
USA
Denmark
Germany，Fed。Rep．of

W Panhorst，ICES Systems Analyst，also attended the meeting。

2．TERMS OF REFERENCE
At the 1977 Statutory Meeting of ICES in Reykjavik，it was decided （C．Res．1977／2：22）that：
＂the North Sea Roundfish Working Group should meet at Charlottenlund 3－7 April 1978 to：
（a）determine year class strengths for cod，haddock and whiting from data collected from the International North Sea Young Herring Surveys，
（b）assess TACs for 1979 for cod，haddock and whiting in Sub－areas IV，VI and VII（excluding Divisions VIIa and VIIf），
（c）report on the effect of increases in mesh size for these species in Sub－area VI，
（d）identify and specify in detail shortcomings and gaps in data required for stock assessment work，
（e）review and update the＂Review of Fish Resources＂ given in the Appendix to the 1977 Working Group Report＂。

At the request of the Chairman of the Advisory Committee on Fishery Management（ACFM），the Working Group also considered：
（f）the applicability of a mesh assessment largely based on Division IVa data，to other parts of Region 2， with particular reference to whiting in the eastern English Channel，
（g）appropriate minimum landing sizes in relation to proposed mesh changes，and
（h）the calculation of TACs for Division IIIa。

3．TOTAL ALLOWABLE CATCHES（TACs）

3．1 Recommended TACs
Recommended TACs for 1979 are summarised below for various options． TACs for 1979 （in 1000 metric tons）

Sub－area	Option	Cod	Haddock	Whiting
IV	I	190	85	96
	II	175	80	75
	III	165	78	-
VI	IV	155	75	-
	II	14	11	12
VII＊	14	11	5.5	
Div．IIIa		6.1	5.9	14

＊excluding Divisions VIIa and VIIf。
In Options I and II，it is assumed that F values in 1978 remain at the same level as in 1977。

Option I gives the recommended TACs for 1979 if there is no change in mesh size in 1979。
Option II gives the recommended TACs for 1979 if there is an increase in mesh size to 90 mm in 1979。

Options III and IV have been included to allow for the possibility that F values in 1978 may be influenced by TACs set for $1978{ }^{*}{ }^{*}$ 。
For example，for cod the F values in 1978 would have to increase by about 20% to just take up the 1978 TAC of 236000 tons．For whiting F values have to increase by about 100% ．For haddock F values would have to decrease by about 20\％。 Option III gives the recommended TACs for 1979 if the $F 1978$ values are adjusted in this way，and if there is no change in mesh size in 1979。
Option IV gives the recommended TACs for 1979 in the comparable situation，but assuming that there is an increase of mesh size to 90 mm in 1979。

Options III and IV have been calculated for cod and haddock but not for whiting。
Catch predictions for these and further options are given in Tables 5．l．A and 5．l．B．Recommended values were selected from the options in these tables with the object of reducing F values in 1979 below their levels in 1977.

For haddock（Options III and IV）the recommended TACs for 1979 were chosen so as to keep F values in 1979 the same as those in 1978 （ioeo， 20% below the 1977 levels）。

For haddock in Options I and II，and for all options for other species， the recommended values were chosen so as to make F values in 197910% below the 1977 values．

[^1]For haddock and whiting，the predictions in the tables for both landings and（in brackets）catches are given．The recommended TACs for these two species are based on predictions of landings，rather than catches．

Because of uncertainties in selection factors，the assessments，in which an increase in mesh size was allowed for，were made for a range of selection factors for each species．Values for high and low selection factors are given separately in Tables 5．1．A and 5。1。B． The recommended TACs are based on averages of the values obtained for high and low selection factors in each instance。
For stocks in Divisions IIIa，VIb and Submarea VII（excluding Divisions VIIa，f）TACs were determined on the basis of average landings．The values obtained for Division VIb in this way have been included in the TACs for Sub－area VI given above。

3．2 Stocks in Division IIIa

There is a certain amount of interchange between the stocks of cod， haddock and whiting in the North Sea，and those in Division IIIa。 It would be appropriate therefore to include a component of the Division IIIa landings along with the TAC for Sub－area IV。

Unfortunately，the reported landings from Division IIIa include landings from various zones，and the necessary data for separating the different components of the landings are not available。
The Group is therefore unable to recommend a TAC for that component of the Division IIIa stock，that，on biological grounds，should be included with Sub－area IV。 A TAC for the whole of Division IIIa has been given，based on the reported landings statisticso

3．3 Management of Roundfish Stocks by Catch Quotas
The Working Group wishes to draw attention to the difficulty of con－ trolling fishing mortality by means of catch quotas．
l．Due to the high rates of exploitation in the stocks considered in this report，the recruitig year classes make up a large proportion of an exploitable stock．Consequently，estimates of year class strength are an essential part of a catch predictiono

Accurate catch predictions are impossible if average year class strengths have to be assumed．The high exploitation rate also increases the errors in extrapolation。
The combination of these effects means that estimated TACs will vary considerably about their true values．Moreover，due to the small number of year classes in the fishery，the true value of a TAC will vary considerably from year to year．Pope and Garrod （1973）discuss this problem and point out that both problems may be reduced by the adoption of lower exploitation rates．The precision of estimation can also be increased by the provision of better data and，more importantly，by reducing the time period for which extrapolations have to be made。 At present the 1979 TAC has to be estimated from 1977 data。
Due to these problems the TACs estimated by the Working Group will inevitably have a considerable variability about their true value and consequently they can only provide approximate manage－ ment advice。

2．Management of fish stocks by catch quotas is aimed at control of the rate of fishing mortalityo To achieve this，it is necessary to control the catch，wheras，in practice，it is only possible to
control the landings. With the present mesh size large amounts of roưndfish are discarded at sea. The proportion of fish discarded can in fact be so large, that there is little hope that controls placed on landings are likely to be effective at restricting catches. It is possible that in some instances, TACs are more effective at influencing rates of discarding than catches.

It seems unlikely therefore that TACs can present a satisfactory solution to the problem of managing fishing effort on roundfish stock, unless : some means, such as higher mesh sizes, are found for greatly reducing the rates of discarding.
4. STATE OF EXPLOITATION

It is difficult to quantify the state of exploitation of cod, haddock and whiting stocks in Sub-areas IV, VI and VII. This is because criteria based on different asumptions lead to views that cannot easily be reconciled:

1) For some species, F values are greatly in excess of $F_{\text {max }}$ values on yield per recruit curves. According to this criterion, a number of the stocks under consideration are all seriously overexploited (Figures 1-3).
2) Yield per recruit curves are not necessarily the same as total yield curves however. It is therefore not certain to what extent changes in total yield would necessarily be the same as changes in yield per recruit, for changes in fishing mortality.
3) During the 1960s, the stocks of cod, haddock and whiting in some areas and particularly in the North Sea and Division VIa increased significantly above their pre-1960 levels. This was a consequence of good recruitment, and it is not known to what extent this, and other changes that took place in North Sea fish stocks at the time, were the result of natural processes or to what extent they were an indirect outcome of fishing.

Although there are these difficulties in evaluating the state of exploitation of these stocks, it is recommended, on the basis of yield per recruit considerations, that fishing mortality should be reduced, and that reductions in effort should be made in small steps. This should lead to gains in both yield per recruit and also spawning stock biomass (Figures $1-3$ and Figure 7).

5. MESH ASSESSMENTS

Assessments, using the method of Gulland (1961), have been made on the effects on yield per recruit of changes in mesh size in Divisions VIa and VIId.

5.1 Division VIa

Assessments were made of the long-term effects on yields/recruit of the adoption of 80 and 90 mm mesh sizes for cod, haddock and whiting in Div.VIa. Input data are shown in Tables 7.1-7.3 and 7.6-7.8. Overall results were as follows:

Species	Average catch $1970-76$ (tons)	Long-term gains 1)	
	80 mm		90 mm
Cod	13504	0% to 2%	0% to 4%
Haddock	28680	0.4% to 2%	2% to 6%
Whiting	17206	2% to 2%	3% to 5%

1) Range of values allows for range of selection factors.

More detailed results giving the gains and losses for national fleets shown in Tables 7.11 to 7.13. From the available data, long-term benefits using a 90 mm mesh size should be negligible, but the inclusion of data on discard, which were not available for these assessments, could alter this conclusion. Because of lack of data, the gains shown above can be regarded as underestimates of the likely long-term gains.

5.2 Division VIId

Assessments of the effect on yield/recruit of the adoption of 80 mm and 90 mm mesh sizes were made for cod and whiting in Division VIId. Input data are shown in Tables 7.4-7.5 and 7.9.-7.10. As for the Division VIa assessments, calculations were done for a range of selection factors. Overall results were as follows:

Species	Average catch $1970-76$ (VIId,e) (tons)		Long-term gains1)	
		80 mm	90 mm	
Cod	3641	0% to 4%	0% to 10%	
Whiting	6819	8% to 12%	15% to 19%	

1) Range of values allows for range of selection factors.

More detailed results giving the gains and losses for national fleets are shown in Tables 7.14 - 7.15 (90 mm only).
For both species, the introduction of 80 mm or 90 mm mesh sizes should lead to long-term gains even though some are not large.

5.3 General Comments on Mesh Size Increases

An increase in mesh size would appear to be particularly appropriate in fisheries in which extensive discarding is common practice.
Attention is drawn to the relatively large immediate losses for some species in some areas. Large short-term losses may be undesirable, and for this reason it may be appropriate to allow the rate of increase in mesh size to be more gradual in areas where the immediate losses would otherwise be unacceptably large.

6．SHORTCOMINGS AND GAPS IN DATA REQUIRED FOR STOCK ASSESSMENT PURPOSES
6．1 Age Composition Data
Age composition data are still not collected，or not adequately collected， by some countries．
The following text table indicates the percentages of the total inter－ national landings for which there are national sampling programmes providing age composition data。

Area	COD		HADDOCK		WHITING	
	I	D^{*}	I	D^{*}	L	D＊
$\begin{array}{rr} \text { Sub-area IV } 1976 \\ 1977 \end{array}$	$\begin{aligned} & 84 \\ & 88 \end{aligned}$	$\begin{aligned} & 10 \\ & 17 \end{aligned}$	$\begin{aligned} & 69 \\ & 80 \end{aligned}$	$\begin{aligned} & 60 \\ & 78 \end{aligned}$	$\begin{aligned} & 85 \\ & 91 \end{aligned}$	$\begin{aligned} & 59 \\ & 60 \end{aligned}$
Div．VIa $\begin{array}{ll}1976 \\ & 1977\end{array}$	$\begin{aligned} & 66 \\ & 70 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 80 \\ & 82 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 80 \\ & 74 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
```Div。IIIa Div.VVIIa:-e,g-k Div.VIb```	+ 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	+ 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	+ 0 Inc Di	

$\mathrm{L}=$ Landings．
$D=$ Discards．
＊）\％of consumption fishery covered．

In some areas（e．g．，Divisions IIIa，VIIb，c，g－k）few，if any，age composition data are collected．

## 6．2 Year Class Strength

Recruitment surveys are needed in Sub－areas VI and VII。

## 6．3 Selectivity Data

Selectivity data available for the assessment group are based on experiments carried out some time ago．Information is now needed to take account of modern fishing practice，in which towing speeds may be higher than they used to be。

## 6．4 Effort Data

Reliable indices of fishing effort are required for all countries and fleets．

7．MINIMUM LANDING SIZES
The Working Group has considered the basis for relating minimum landing size to mesh size。 This request has arisen from a suggestion that by making the minimum landing size correspond to something less than the $50 \%$ reten－ tion size of the mesh size in use，wastage of fish due to discarding could be reduced．

## 7．1 Need for a Minimum Landing Size

In the Recommendation 4 fishery a minimum landing size is intended to help the enforcement of a mesh size。 The intention is that fishermen should be discouraged from using too small meshes，because of the wastage caused by having to discard the undersized part of the catcho
If a minimum landing size is to be effective，it is，therefore，unavoidable that some wastage of fish should have to occur．This waste should be regarded as a cost to be offset against the benefit expected from a more effective enforcement of the mesh size。

It follows that：
I）If a mesh size could be effectively enforced by direct measures，there should be no need for a minimum landing size。

2）So long as mesh size sizes cannot be effectively enforced by direct mea－ sures，minimum landing sizes may be helpful for enforcement purposeso However， because discarding is also influenced by market prices，there are likely to be situations in which discarding will occur，even if there was no minimum landing size。

## 7．2 Relationship between Minimum Landing Size and Mesh Size

One procedure that has been widely used is to make the minimum landing size correspond to the $50 \%$ retention length of the mesh size in use。 This is one compromise between the need to reduce wastage on the one hand，and the need to accept some wastage for enforcement purposes on the other．

The Working Group considers that there is no optimal relationship between minimum landing size and mesh size。 To facilitate the selection of a possible enforcement policy，however，a plot is presented of possible mesh selection ogives for 90 mm meshes for the three species in Figure 40 Some examples of possible minimum landing sizes for a 90 mm mesh，related according to various criteria，are also given．

8．FISHING EFFORT（Tables 1．9－1．11）
Fishing effort data were available for trawlers and seiners of the English and Scottish fleets respectively in various areas．Estimates of total international fishing effort were obtained by raising the respective English and Scottish effort data to the total international catches of cod， haddock and whiting in the North Sea。 Statistically significant relation ships between these fishing effort effort series and the VPA estimates of fishing mortalities were only found，however，for North Sea cod，based on an index of English seiner effort。

9．REVIEW OF FISH RESOURCES
Details of the cod and whiting resources in the English Channel，and cod， haddock and whiting resources in Sub－areas VIII and IX are given in the Appendix．

## NOTES ON STOCK ASSESSMENT AND TAC CALCULATIONS

10．COD
10．1．North Sea（Sub－area IV）
10．1．1 VPA（Tables 2．1， 3.1 and 4．1）
The total international effort for cod，as calculated from English copou。eo data suggested that in 1977 the effort level had increased after the drop in 1976．For the period 1970－77 there has been no steady trend in estimated fishing effort and，therefore the average $F$ values estimated from VPA for the younger age groups during the years 1970－73 have been used as terminal

F values for 1977．For 5 year and older cod，a smoothed value was used as calculated from the $F$ values for age groups 5－8 during the same period．The terminal $F$ values used are consistent with the Inter－ national effort based on English seiners．

10．1．2	Year＿class strength（Tables 5.2 and 5
	Year classes 1976 and 1977 were estimated from the predictive regression of VPA estimates on IYHS abundance indices（cfo Tables 5.2 and 5.3 ）as $330 \times 10^{6}$ and $175 \times 10^{6} 1$ year old fish respectively． For catch predictions，the fishing mortality on the 1976 year class in 1977 was adjusted to be consistent with the predicted strength of the 1976 year classo Yeariclass 1978，entering the fishery in 1979，was assumed to be of average size（ $206 \times 10^{6} 1$ year old fish）。
10.1 .3	Catch predictions
	The values of the different parameters used in the catch predictions are given in Table 6．l。 Numbers landed are the provisional figures available for 1977．F values correspond to the VPA input terminal $F$ values with the adjustment for age group $l$ as explained under lo．l．2．Weight at age data were the same as last yearo Input data were adjusted to ensure that the sum of products of the input numbers and the average weights coincided with the actual catch in 1977。   To take account of the proposed change in mesh size to 90 mm in 1979 ， two selection factors have been applied to take account of the probable range of values．The corresponding $50 \%$ retention lengths were calculated and the corresponding $50 \%$ retention ages were estimated from the von Bertalanffy growth curve（ $L_{\infty}=115 \mathrm{~cm}$ ， $K=0.3, t_{0}=0.8$ years）。 The reduction in fishing effort on age group 1 was estimated from the proportion of the year that 1 group cod should be exploited with a 90 mm mesh size comparediwith the proportion of the year for which they should be exploited with a 75 mm mesh size。 In addition，account was taken of the increase expected in the average weight of 1 group landed，as a result of the introduction of the 90 mm mesh．The results of the catch predictions are given in Tables 5．1．A and 5oloB。
10.2	West of Scotland（Division VIa）
10．2．1	VPA   There was no new information available for adjusting the terminal $F$ values compared with those in last year＇s VPA．Therefore the same value of 0.7 was used for all older age groupso For the younger age groups，input Fs were adjusted to be equal to be the averages for the period 1970－73。
10．2．2	Year class strength   No direct estimates of the strengths of year classes 1976 and 1977 were available，and therefore average values，based on the numbers of 1 year old cod in 1966－75，had to be used in the catch predictions．The $F$ on the 1 year old fish in 1977 was adjusted so as to be consistent with the value used for the size of the 1976 year classo
10.2 .3	Catch predictions   Catch predictions were carried out for the alternative assumptions that effort remained at the level assumed for 1977，and that the effort in 1979 was $10 \%$ below the 1977 level。
	Because l group cod are exploited to only a very limited extent （ $F=0.075$ ）a change of mesh size to 90 mm in 1979 should not change the TAC significantly。


11．	HADDOCK
11．1．	Sub－Area IV
11．1．1．	VPA
11．1．1．1．	Input data（age composition）（

Data for years 1959－74 were the same as those used in last year＇s analysis． Data for 1975 and 1976 were revised to take account of new information．For 1977，provisional age composition data were available from Denmark，England， Netherlands，Norway and Scotland；length composition data were provided by Belgium and France．Numbers at age were tabulated separately for the industrial（Rec．2）landings，consumption landings（Rec．4），and for discards， and were then summed after adjusting by sums of products（ $\Sigma$ number x mean weight）。

11．1．1．2．Input F．values（Table 3．2）
In the absence of significant correlations between various measures of international effort and $F$ values，smoothed average values for the period 1971－73 were used（ 1970 values were omitted since some are rather erratic）． $F$ values for age 0 and 1 were adjusted to correspond with year class strengths estimated by the IYHS．A value of $\mathbb{M}=0.2$ was assumed，throughout．

11．1．2．Year class strengths（Table 4．2）
Values for 1976 and 1977 year classes at age 1 （obtained from the IYHS－ see Section 10．1．2）were 460 and 694 million，respectively（Tables 5.2 － 5．3）．The 1978 year class at age 0 was assumed to be 611 million，calculated from VPA as the average of the period 1959－73，but excluding the exceptional 1962 and 1967 year classes．

11．1．3．Catch predictions（Tables 6．2，6．7，6．8）
The starting point was the number of fish at each age landed from the industrial and consumption fisheries，and for the discards．Separate mean weights per age group were used for each of these categories and a weighted mean was used for the combined categories．

The Group was requested to investigate the effect on the 1979 TAC of possible changes in mesh size and predictions were made assuming an increase to 90 mm in the Rec． 4 fisheries in 1979．In view of the range in selection factors reported in the literature，it was decided to use a high and a low selection factor in the predictions involving a mesh increase．

Two main options were considered for 1978；that fishing effort remains the same as in 1977 （Option A）or that fishing effort is such that the TAC agreed between EEC and Norway（109000 tons）is taken（Option B）．

For Option A，the predicted landings will exceed the TAC and the following possibilities（referred to as run number in Tables 6.7 and 6．8）were considered for 1979．

1．No mesh change．No change in fishing effort．
2．No mesh change．Effort reduced by $10 \%$ 。
3．Mesh in Rec． 4 fisheries increased to 90 mm 。
Low selection factor．No change in fishing effort．
4．As for（3）but with high selection factor．
5．As for（3）but fishing effort reduced by $10 \%$ ．
6．As for（4）but fishing effort reduced by $10 \%$ ．

For Option B, a reduction in effort of $20 \%$ will occur in 1978 and predictions for 1979 were made on the assumption that fishing effort remains at this reduced level. Three further possibilities for 1979 were considered:

1. No mesh change.
2. Mesh in Rec. 4 fisheries increased to 90 mm . Low selection factor.
3. As for (2) but with higher selection factor.

The simulation of the various eventualities for 1979 referred to above was carried out as follows.

Values of $F$-at-age for the Rec. 2 fishery and for the Rec. 4 fishery (landings and discards) in 1977 were estimated using the following relationships.

$$
\begin{aligned}
& \text { Recommendation } 4 F_{t}=\frac{\text { Recommendation } 4 C_{t} \cdot \text { Total } F_{t}}{\text { Total } C_{t}} \\
& \text { Recommendation } 2 F_{t}=\frac{\text { Recommendation } 2 C_{t} \cdot \text { Total } F_{t}}{\text { Total } C_{t}} \\
& \left(F_{t}=F \text {-at-age, } C_{t}=\text { catch in numbers at age }\right)
\end{aligned}
$$

Mean weight at age was calculated for the Rec. 4 catch (landings and discards) and these mean weights were converted to mean length using an approprite length-weight function $\left(L=(w / .009)^{1 / 3}\right.$ for haddock).

For each eventuality considered, the ratio percent retained by new mesh; percent retained by old mesh was calculated for each mean length at age. In the case of a proposed decrease in fishing effort, each of these ratios was multiplied by an appropriate value (e.g., for a proposed $10 \%$ reduction in effort the ratios were multiplied by 0.9). The values thus obtained estimate the proportional change in F-at-age in the Rec. 4 fishery and were used to estimate new $F$-at-age arrays for that fishery.

For each simulation referred to in these tables, values of $F$-at-age for the Rec. 2 fishery were changed appropriately in cases where a decrease in fishing effort was proposed.

Table 6.7 shows the estimated changes (expressed as percentages) in the Rec. 4 F-at-age for each eventuality considered under Option A, while Table 6.8 shows corresponding values under Option B. Also included in these tables are the results of each simulation run. The results for catches and landings are summarised in Table 5.1A.

```
11.2. Division VIa
11.2.1. VPA
11.2.1.1. Input data (age composition)(Table 2.5)
```

Revised data for 1976 and provisional data for 1977 were available. For 1977, age composition data were provided by England, Ireland and Scotland. The data base for years prior to 1976 was the same as that used for last year's assessment.
11.2.1.2. Input F values (Table 3.5)

There were no significant correlations between measures of international effort and VPA $F$ values, and average values for the period 1971-73 were therefore used. The $F$ value at age $l$ was adjusted to correspond to an estimatedrecruitment value (see following section).

11．2．2．Year class strengths（Table 4．5）
A significant correlation between VPA estimates of number at age 1 in the North Sea and in Division VIa was found（Figure 5）．Using this correlation， the number of fish of the 1977 year class at age 1 was estimated（from IYHS） to be 45 million．An average recruitment of 32 million at age 1 in 1979 was assumed，calculated as the VPA average for the years 1965－73，but excluding the exceptional 1967 year class．

11．2．3．Catch predictions（Tables 6．5，6．10）
These were basically similar to those previously described（see ll．l．3） except that there was no Option B，since there is no agreed TAC for 1978. It was assumed，therefore，that fishing effort in 1978 will be the same as in 1977.

12．WHITING
12．1 Sub－area IV
12．1．1 VPA
12．1．1．l Input data（age compositions）（Table 2．3）
Data for the years $1960-75$ were the same as those in last year＇s analysis． Data for the consumption and industrial fisheries and for discards in 1976 were updated。 For 1977，age composition data were available from belgium，Denmark，England，Netherlands，Norway and Scotlando France pro－ vided a 1977 length frequency which was converted to an age frequency using Scottish age－length data．Numbers at age for the consumption and industrial fisheries and for discards were determined。

12．1．1．2 Input $F$ values（Table 3．3）
No significant correlations were found between various measures of interm national effort and values of $F$ taken from trial VPA runs．For this reasons average values of F－at－age for the period 1970－73 were used as input values in 1977。 Values of $F$ for ages 0 and 1 were adjusted to prom duce numbers of fish in the sea in agreement with recruitment estimates obtained from the IYHS data（see below）。 A value of $M=0.2$ was assumed． for all ages and yearso

12．1．2 Year Class Strength
From the results of the IYHS（see Section 10.1 .2 and Tables 5.2 and 5．3） it was estimated that there were 1201 and $1207 \times 10^{6}$ whiting of age 1 in 1977 and 1978，respectively。
The 1978 and 1979 year classes at age 0 were assessed to be 1643 million fish，this value being the mean number of 0 group fish for the period 1959－73。

12．1．3 Catch Predictions（Tables 6.3 and 6．9）
These were basically the same as those described previously（see Section ll． 1.3 ），except that Option B predictions were not made．This was because the present assessment shows that fishing effort would need to be doubled in 1978，in order to take the EEC／Norway agreed TAC。 Such an increase in fishing effort was considered to be unrealistic，and consequently only Option $A$ was run．
Mean weights were converted to mean lengths using the relationship：

$$
\left(L=5^{\mathrm{w}} \mathrm{l} / 3\right)
$$

12.2	Divisions VIa and VIb
12.2 .1	VPA
12.2 .1 .1	Input＿data（age compositions）（Table 2．6）

Revised data for 1976 and provisional data for 1977 were available。 Age composition data were provided by Scotland and Ireland。 Dáta for years prior to 1976 were unchanged．

## 12．2．1．2 Input F values（Table 3．6）

No correlation was found between measures of total fishing effort and VPA $F$ values，and therefore average values for the period 1970－73 were usede $F$ values for age groups 0 and 1 were adjusted to correspond with recruitments estimated from IYHS（see following Section）。
$M$ was assumed to be 0.2 at all ageso
12．2．2 Year Class Strength（Section 10．1．2，and Tables 5．2 and 5．3）
A significant correlation was found between the VPA abundance at age 1 in the North Sea and in Division VIa（Figure 6）。 Estimates of the strength of the 1976 and 1977 year classes in Division VIa could therefore be made on the basis of estimates for Sub－area IV from IYHS．These gave values of 71 million at age 1 for both year classes．The 1978 year class was estimated at 102 million at age 0 ， this being the VPA average for the period 1960－73．

12．2．3 Catch Predictions（Tables 6.6 and 6．11）
These were basically the same as those previously described（see Section llol．3），escept that，because there is no agreed TAC for 1978， Option $B$ was not applicable。

## 13.

NOTES ON MESH ASSESSNENTS
The mesh assessments were made using the method of Gulland（1961）1）。 The assessments were made for cod，haddock and whiting in Division VIa，and for cod and whiting in Division VIId。 Tables 7．l to 7．5 show the input length distributions used for analysis，the current mesh sizes and the calculated weights at lengtho Tables 7.6 to 7010 show the values of $t^{0, *}$ ，fishing mortality，the $50 \%$ and $75 \%$ selection points for the current mesh sizes and also for the proposed 90 mm mesh．These are given for two options of selection factor for each fleet in each stock and area．The selection factors were chosen to represent low and high values taken from the literature。 Tables 7．ll to 7.15 show the gains and losses for each fleet for each stock／area． Table 7.16 gives their values and sources．
The fishing mortalities used in the analyses were as follows：for Division VIa cod（ 0.4 ），haddock（ 0.3 ）and whiting（ 1.0 ）。 These were based on VPA results for recent years．For Division VIId cod and whiting，a value of 0.7 was used，based on French catch curve information。

1）Gulland，JoA．1961．The estimation of the effect on catches of changes in gear selectivityo JoConsoint。Explor．Mer，26（2）：204－214。
＊） $\mathrm{H}^{\prime}$ is half the estimated time required to grow from the $50 \%$ release length of the current mesh size to the $50 \%$ release length of the new mesh。

The values of to were estimated from available length at age and weight at age data.
14.
15.

TIMING OF WORKING GROUP MEETINGS
The Group discussed the timing of Working Group meetings and concluded that there would be advantages if these meetings took place during the second half of the year. The advantages are:

1) It would allow extra time for processing data for the previous year. Data from the first part of the current year should also be avallable。
2) For cod, haddock and whiting, it should enable additional recruitment estimates from pelagic 0-group surveys, to become available for the assessments.
3) It should enable TACs to be estimated with greater precision.

REFERENCE
Pope, JoGo and Garrod, D.Go, 1973. A contribution to the discussion of the effects of error on the action of catch and effort quotas. ICNAF Res.Doc. 73/110.

Table l.l Nominal catch of Cod, Haddock and Whiting (metric tons)
by Division IIIa and Sub-areas IV, VI and VII, 1967-77 (Bulletin Statistique)


* Provisional figures.
a) See footnotes on page 15.


## Cod in Division IIIa

Landings of German Democratic Republic in 1969-72 included in Sub-area IV. Landings of Sweden in 1967-74 included in Sub-area IV.
Landings of Federal Republic of Germany for 1968-70 include miscellaneous products.

## Haddock in Division IIIa

Landings of German Democratic Republic in 1969-72 included in Sub-area IV. Landings of Sweden in 1968-74 included in Sub-area IV.

Whiting in Division IIIa
Landings of Sweden in 1967-74 included in Sub-area IV.

## Cod in Sub-area IV

German Democratic Republic landings in 1969-72 included in Division IIIa. Sweden: landings 1967-74 include Division IIIa.
Germany, Fed.Rep. of landings in 1968-70 include miscellaneous products. For Netherlands: not included for 1967: 3369 tons and 1968: 1132 tons. For 1977 Faroe Islands human consumption only.

## Haddock in Sub-area IV

Landings for German Democratic Republic for 1969-72 include Division IIIa.
Landings for Sweden for 1968-74 include Division IIIa.
Netherlands: not included for 1967: 720 tons and for 1968: 306 tons caught mostly in Division IVb, rest in Division IVc.

Whiting in Sub-area IV
Landings for Sweden for 1967-74 include Division IIIa.
Netherlands: not included for 1967: 913 tons and for 1968: 267 tons.
For 1977 Faroe Islands human consumption only.
Cod in Sub-area VI
Landings for Germany, Fed.Rep. for 1968-70 include miscellaneous products.

Table l. 2 COD. Division IIIa and the Divisions of Sub-areas IV, VI and VII. Nominal catch by Divisions in metric tons 1967-77.

Area ${ }^{\text {Year }}$	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977*
IIIa	17010	16649	13243	14.238	19052	21667	22942	27452	32284	37980	1576
IVa	89923	74051	56015	79606	67370	80650	69557	72406	58343	69071	44295
IVb	134258	175949	122027	110271	184957	215160	134953	114087	107227	126218	94464
IVc	25622	35314	21216	34868	68237	51245	29956	24798	20883	18872	41310
VIa	23025	24357	21739	12682	10666	14699	12263	13652	13163	17405	12539
VIb	2189	665	2533	875	94	2567	483	1175	243	1595	129
VIIa	12652	8541	7967	6257	9540	9173	11787	10190	9790	10178	2599
VIIb, c	1479	2259	4418	2049	1302	735	1009	405	692	756	187
VIId, e	3300	4113	3856	2553	5432	3544	2077	3436	5082	3365	5818
VIIf	1321	1514	856	925	797	969	976	594	998	823	132
VIIg-k	4410	3843	4412	3318	5063	4346	3390	2725	3644	4478	2302
Total	315189	347255	258282	267642	372510	404755	289393	270920	252349	290741	205251

* Provisional figures.
a) See footnotes on pages 17 and 18 .


## Footnotes to Table 1.2

Division IIIa

German Democratic Republic figures for 1969-72 \{ included in Div. IVa
Swedish figures for $1967-74$
Germany, Fed.Rep. figures for 1968-70 include miscellaneous products.

## Division IVa

Norwegian figure for 1976 revised by the Working Group (April, 1978). Danish figures for 1967-73 included in Division IVb. German Democratic Republic figures for $1969-72$ include Divs. IIIa and IVb,c. Swedish figures for 1967-74 include Divisions IIIa and IVb.
Germany, Fed.Rep. figures for 1968-70 include miscellaneous products. Danish figure for 1977 included in Division IVb.

Norwegian figures for 1967-68
USSR figures for 1967-73
Norwegian figures for 1969-72 and 1977 include Division IVb.
Norwegian figure for 1976 revised by the Working Group (April, 1978).
Norwegian figures for 1971 and 1972 not including catches from Rec. 2 fisheries
(1971 = 1314 tons; $1972=1656$ tons) .
Netherlands figure for 1977 included in Division IVc.
Swedish figure for 1977 includes Division IVb,c data from NEAFC Form Jan-Dec.

## Division IVb

Danish figures for 1967-73 include Division IVa.
Faroe Islands figures for 1976 and 1977
German. Dem.Rep. figures for 1969-72
Norwegian figures for 1967-72 and 1977
Swedish figures for 1967-74 and 1976-77
USSR figures for 1967-73
Danish figure for 1977 include Division IVa, c.
Netherlands: not included for 1967: 3369 tons and 1968: 1132 tons caught mostly in Division IVb, rest in Division IVc.
Germany, Fed.Rep. figures for 1968-70 include miscellaneous products.
Swedish figure for 1975 include Division IVa,c.
Netherlands figure for 1977 included in Division IVc.

## Division IVc

Swedish figure for 1977
German Dem.Rep. figures for 1969-72
Norwegian figures for 1967-69
USSR figures for 1967-73
included in Division IVa

Germany, Fed. Rep. figures for 1968-70 include miscellaneous products. Netherlands figure for 1977 include Divisions IVa,b.
Swedish figure for 1975 included in Division IVb.
Division VIa
Swedish figure for 1968 includes Division VIb.
Germany, Fed.Rep. firgures for 1968-70 include miscellaneous products.

Footnotes to Table 1.2 (ctd)

## Division VIb

Swedish figure for 1968 included in Division VIa. Division VIIa
French figure for 1971 includes Division VIIf.
Division VIIf
French figure for 1971 included in Division VIIa.

Table 1.3 HADDOCK. Division IIIa and the Divisions of Sub-areas IV, VI and VII. Nominal catch by Divisions in metric tons 1967-77.

$\text { Area }^{\text {Year }}$	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977*
IIIa	469	582	1056	942	2249	2989	3091	4618	6115	9094	334
IVa	122531	75347	271953	455649	197306	135095	131819	128607	110848	142686	124666
IVb	44823	62696	361836	212646	58270	75325	62288	63695	62761	65589	28466
IVc	54	1426	5406	3538	2644	3136	1972	1127	554	418	48
VIa	20302	20526	26273	34178	46299	41044	28830	17970	13683	18758	19257
VIb	874	903	1125	840	621	9474	4018	49288	49928	43360	2996
VIIa	2614	611	807	624	1343	1318	2364	697	276	345	66
VIIb, c	787	433	758	1922	1141	1419	931	2090	2565	957	645
VIId,e	111	88	811	421	170	411	359	633	971	450	476
VIIf	66	47	50	77	152	766	1804	594	928	428	17
VIIg-k	3765	2547	2966	2887	3712	7334	7022	6571	3898	3299	1417
Total	196396	165206	673041	$713 \quad 724$	313907	278311	244498	275890	252527	285384	178388

* Provisional figures.
a) See footnotes on pages 20 and 21 .


## Footnotes to Table 1.3

## Division IIIa

German Dem. Rep. figures for 1969-72 \{ included in Division IVa
Swedish figures for 1968-74

## Division IVa

$\left.\begin{array}{l}\text { Swedish figure for } 1975 \\ \text { Danish figures for } 1967-73\end{array}\right\}$ included in Division IVb

Danish figure for 1977
German.Dem.Rep. figure for 1976
Norwegian figures for 1967-69
USSR figures for 1967-73 and 1977
Swedish figure for 1977
German Dem.Rep. figures for 1969-72 include Divisions IIIa and IVb,c.
Norwegian figures for 1969-72 and $1977 \quad$ \{ include Division IVb
Swedish figures for 1967 and 1976
Swedish figures for 1968-74 include Divisions IIIa and IVb.
Swedish figure for 1977 includes Division IVb,c.
Faroe Islands figure for 1977 include Division IVb - human consumption only.
Norwegian figures for 1971 and 1972 not including catches from the Rec. 2
fisheries (1971: 4512 tons; 1972: 5685 tons).
Norwegian landings revised for 1976 by the Working Group (April, 1978).

## Division IVb

Danish figures for 1967-73 include Division IVa.
Danish figure for 1977
Faroe Islands figure for 1977
German Dem.Rep. figures for 1969-72 and 1977
Norwegian figures for 1967-72 and 1977
Swedish figures for 1967-74 and 1976-77
USSR figures for 1967-73 and 1977
Netherlands figure for 1977
included in Division IVa

Netherlands: not included for 1967: 720 tons, and for 1968: 306 tons caught mostly in Division IVb, rest in Division IVc.
Swedish figure for 1975 includes Division IVa,c.

Division IVC
Danish figure for 1977
German Dem.Rep. figures for 1969-72 and 1976
Norwegian figures for $1967-68$ and 1976
Spanish figure for 1976
Swedish figure for 1977
USSR figures for 1967-73 and 1977
Netherlands figure for 1977
included in Division IVa.
Div.IVc ctd....

## Footnotes to Table 1.3 (ctd)

Division IVc (ctd)
Netherlands: not included for 1967: 720 tons, and for 1968: 306 tons caught mostly in Division IVb, rest in Division IVc.
Swedish figure for 1975 included in Division IVb.

Division VIIa
French figure for 1971 includes Division VIIf.

Division VIIf
French figure for 1971 included in Division VIIa.

Table l.4 WHITING. Division IIIa and the Divisions of Sub-areas IV, VI and VII. Nominal catch by Divisions in metric tons 1967-77.

Areaa)	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977*
IIIa	30157	29497	16544	13130	13989	14562	22547	28842	19690	18595	91
IVa	43218	51701	49839	32185	23451	32932	31104	81693	75444	107246	87424
IVb	41449	76928	157568	126024	70728	66789	96678	87842	41930	69904	21096
IVc	6578	16291	8422	23297	18865	9811	13409	19050	22792	20763	14931
VIa	17586	13989	12181	11222	15225	15313	16646	17057	20041	24937	16504
VIb	2123	485	369	1277	807	81	63	1	12	18	7
VIIa	18902	12875	9724	4804	8383	7680	10337	9819	9832	12193	5076
VIIb, c	2246	3249	3595	1507	287	1056	1091	1243	1829	1530	101
VIId,e	5554	6640	5066	4825	3592	3676	5647	8572	11400	10020	10593
VIIf	1573	1740	2856	2036	315	728	1366	1468	1752	1865	311
VIIg-k	4848	5187	5580	2538	5259	7705	8214	7101	7620	8185	4209
Total	174234	218582	271744	223845	160901	160333	207102	262688	212342	275256	160343

* Provisional figures.
a) See footnotes on pages 23 and 24 .


## Footnotes to Table 1.4

## Division IIIa

Swedish figures for 1967-74 included in Division IVa.

## Division IVa

Danish figures for $1967-73$
Swedish figure for 1975 $\{$ included in Division IVb
French figure for 1969
Norwegian figures for $1967-68$
USSR figures for $1967-73$ and 1977 $\left\{\begin{array}{l} \\ \text { include Divisions IVb, c }\end{array}\right.$

Swedish figures for 1967-74 include Divisions IIIa and IVb.
Norwegian figures for 1969-72 and 1976-77 include Division IVb.
Faroe Islands figure for 1977 includes Division IVb. Humanconsumption only.
Swedish figure for 1976 includes Division IVb.
Swedish figure for 1977 includes Divisions IVb,c. Data from NEAFC Form -Jan-Dec.
Norwegian figures for 1971 and 1972 not including catches from the Rec. 2 fisheries (1971: 1605 tons; 1972: 2023 tons).
Norwegian landings for 1976 revised by the Working Group (April 1978)

## Division IVb

Faroe Islands figure for 1977
French figure for 1969
Norwegian figures for 1967-72 and $1977 \quad\{$ included in Division IVa
Swedish figures for 1967-74 and 1976-77
USSR figures for 1967-73 and 1977
Danish figures for 1967-73 include Division IVa
Netherlands: not included for 1967: 913 tons and for 1968: 257 tons caught mostly in Division IVb, rest in Division IVc.
Swedish figure for 1975 includes Divisions IVa,c.
Danish figure for 1977 included in Division IVa.

## Division IVc

French figure for 1969
Norwegian figures for 1967-69
Swedish figure for 1977
included in Division IVa.
USSR figures for 1967-73 and 1977)

Footnotes to Table 1.4 (ctd)
Division IVc (ctd)
Netherlands: not included for 1967: 913 tons and for 1968: 257 tons caught mostly in Division IVb, rest in Division IVc.
Swedish figure for 1975 included in Division IVb.
Danish figure for 1977 included in Division IVa.

Division VIIa
French figure for 1971 includes Division VIIf.

Division VIIf
French figure for 1971 included in Division VIIa.

Table 1.5 Nominal catches of COD (metric tons) from Recommendation 2 fisheries in Sub-area IV (data taken from NEAFC reports).

Country	1971		1972		1973		1974		1975		1976*	
	$\begin{aligned} & \text { legal- } \\ & \text { sized } \end{aligned}$	under-   sized	$\begin{aligned} & \text { legal- } \\ & \text { sized } \end{aligned}$	$\begin{aligned} & \text { under- } \\ & \text { sized } \end{aligned}$	$\begin{aligned} & \text { legal- } \\ & \text { sized } \\ & \hline \end{aligned}$	under-   sized	$\begin{aligned} & \text { legal- } \\ & \text { sized } \end{aligned}$	under-   sized	$\begin{aligned} & \text { legal- } \\ & \text { sized } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { under- } \\ & \text { sized } \\ & \hline \end{aligned}$	legal- sized	$\begin{aligned} & \text { under- } \\ & \text { sized } \end{aligned}$
Belgium	-••	-••	-•	-••	-••	-••	-••		13			
Denmark a)	8332	3601	8213	1076	5189	1313	4215	2498	e)	e)	e)	e)
Faroe Isl.a)	-	3601	-	1	5189	1313	$4 \begin{array}{r}415\end{array}$	2498 1	e)	e)	e)	e)
German Dem.R.	-••	-•	- .	-	-••	...	,	. .	37	-	5	-.
Germany, F.R.	4125	970	555	54	?	?	-	1	249	60	45	420
Netherlands	8199	-	?	5	5931	67	7679	-	e)	e)	e)	e)
Norway (IVa)	730	584	920	736	480	659	733	368	965	223	757	27
Poland	181	6	189	23	?	?	210	11	150	7 ( )	148	7 ${ }_{\text {d) }}$
Sweden ${ }^{\text {a }}$	-		-		-	-	8260	11	6247	-	...	...
UK(England)	-	-	-	_	_	-	- 6	$\cdots$		-	$\cdots$	...
UK(Scotland)	-	-	-	-	_	-	741	_	1983	-	1357	- .
Total ${ }^{\text {b }}$	21567	5161	9877	1889	11600	2039	22259	2879	9644	290	2319	454

Nominal catches of HADDOCK (metric tons) from Recommendation 2 fisheries in Sub-area IV (data taken from NEAFC reports).

Belgium			-••									
Denmark a)	13657	7651	9088	11568	771	3155	9364	27785	e)	e)	e)	e)
Faroe Isl. ${ }^{\text {a }}$	-	-	-	-	-	315	20	186	e)	e)	e)	e)
German Dem.R. Germany, F.R.	- 927	$\cdots$	263	-	?	?	. .	...	- 27	-	3	)
Netherlands	6341	3	?	-	2088	? 1	2237		-	)	- ${ }^{\text {e) }}$	-
Norway (IVa)	2176	2336	2742	2943	1055	4102	$3 \quad 379$	2356	2613	7 227	$1 \begin{array}{ll}\text { e) } \\ 1 & 737\end{array}$	e   396
Poland	12		38		?	?	115	- 7	- 77	3d)	- 58	$3 \mathrm{~d})$
Swedena)	-	1	-	7	-	-	2954		2978	-	e)	
UK(Scotland)	-	-	-	-	-	-	553	1842	652	1582	992	546
Total	23113	10020	12131	14518	3914	7258	18622	32176	6347	8812	2790	1945

For footnotes, see page 26.

Nominal catches of WHITING (metric tons) from Recommendation 2 fisheries in Sub-area IV (data taken from NEAFC reports).

Country	1971		1972		1973		1974		1975		1976*	
	legalsized	under-   sized	$\begin{gathered} \text { legal- } \\ \text { sized } \\ \hline \end{gathered}$	$\begin{aligned} & \text { under- } \\ & \text { sized } \\ & \hline \end{aligned}$	$\begin{gathered} \text { legal- } \\ \text { sized } \\ \hline \end{gathered}$	$\begin{aligned} & \text { under- } \\ & \text { sized } \\ & \hline \end{aligned}$	$\begin{gathered} \text { legal- } \\ \text { sized } \\ \hline \end{gathered}$	$\begin{aligned} & \text { under- } \\ & \text { sized } \\ & \hline \end{aligned}$	$\begin{gathered} \text { legal- } \\ \text { sized } \\ \hline \end{gathered}$	under-   sized	legalsized	$\begin{array}{\|c\|} \text { under:- } \\ \text { sized } \\ \hline \end{array}$
Belgium   Denmark   Faroe Isl.a)   German D.R.   Germany ,F.R.   Netherlands   Norway(IVa)   Poland   Sweden ${ }^{\text {a }}$   UK(Scotland)		$\begin{gathered} 34 \begin{array}{c} 493 \\ - \\ \ldots \\ 119 \\ \overline{6} 10 \end{array} \end{gathered}$ -	$\begin{gathered} 29 \\ 446 \\ - \\ \ldots \\ 926 \\ ? \\ 1 \\ ? \\ \\ \\ \hline \end{gathered}$	20035 - $\cdots$ $\mathbf{1 8 4}$ - 769 - -		16081 - $\ldots$ $?$ 166 - -	$\begin{array}{cc} 84 \begin{array}{c} 448 \\ 31 \end{array} \\ \ldots & 1 \quad 0 \\ 4281 \\ 4 & 710 \\ 74 \\ & 860 \\ 1 & 442 \end{array}$			$\begin{gathered} -\bar{e}) \\ e) \\ - \\ 27 \\ e) \\ 693 \\ \left.2^{d}\right) \\ -\quad \\ 948 \end{gathered}$	$\left.\begin{array}{r} 42 \\ e \\ e \\ e \\ 18 \\ \\ \\ 254 \\ e \end{array}\right)$	$e$ $e$   594   e)   -   e)   67
Total	25575	35222	31626	20988	60669	16261	95847	25947	17345	1670	10210	661

a) Division IIIa inclusive.
b) Total of available data only.
c) Excluded from totals.
d) Preliminary estimates.
e) No data.
*) Provisional data.

Table 1.6 Nominal catch of COD for Divisions IVa-IVc by country in metric tons, 1972-77.
(Bulletin Statistique)

Country	1972	1973	1974	1975	1976	1977*
Belgium	21133	11741	10253	7566	7483	9855
Denmark	72520	47950	54207	46344	53277	38814
Faroe Islands	284	803	416	732	448	286
France	24038	13247	7275	8667	8079	7510
German Dem.Rep. ${ }^{\text {a }}$	122	343	132	223	69	21
Germany ,Fed.Rep.	49431	21410	17089	16457	24445	20433
Iceland	-	+	+	-	-	-
Ireland	-	-	-	-	98	123
Netherlands	47634	25758	24029	23263	21835	30049
Norway	$4377{ }^{\text {b }}$ )	4831	2481	1528	$2661^{\text {c }}$ )	2192
Poland	189	1551	4750	2991	2961	481
Spain	91	90	80	63	14	-
Sweden ${ }^{\text {a }}$	8769	8074	8168	900	532	470
UK (Engl.\&Wales)	62503	47327	39857	33615	46475	35424
UK (Scotland)	55190	48844	39887	37308	39597	34411
USSR	774	2497	2667	6796	6187	-
Total	347055	234466	211291	186453	214161	180069

* Provisional figures.
a) GDR figure for 1972 and Swedish figures for 1972-74 include Div. IIIa.
b) Norwegian figure for 1972 do not include cod caught in Recommendation 2 fisheries (1972 = 1656 tons).
c) Norwegian figure for 1976 revised for Div. IVa by the Working Group (April, 1978).

Table 1.7 Nominal catch of HADDOCK for Divisions IVa-IVc by country in metric tons, 1972-77.
(Bulletin Statistique)

Country	1972	1973	1974	1975	1976	1977*
Belgium	1601	2385	1137	2209	2166	2015
Denmark	34858	13118	44342	32930	46899	19966
Faroe Islands	5	1198	435	267	183	18
France	7814	4695	4020	4646	5500	6914
German Dem.Rep.)	90	22	8	44	20	8
Germany, Fed.Rep	4020	4587	3478	2396	3433	3790
Iceland	-	-	-	-	-	-
Ireland	-	-	-	-	31	45
Netherlands	5188	3185	3035	1901	1728	1594
Norway	$1146{ }^{\text {b }}$	5611	5954	331	3473 d)	1356
Poland	38	2553	3001	1485	1155	485
Spain ${ }^{\text {c }}$ )	-	101	210	-	-	-
Sweden ${ }^{\text {a }}$	5305	4550	3098	2083	2284	1861
$\begin{gathered} \text { UK (Engl.\& } \\ \text { Wales) } \end{gathered}$	20827	16586	10798	11499	17238	17167
UK(Scotland)	96197	88132	71679	64686	80576	89474
USSR	36467	49356	42234	49686	42852	8002
Total	213556	196079	193429	174163	207538	152695

* Provisional figures.
a) German Dem.Rep. figure for 1972 and Swedish figures for 1972-74 include Division IIIa.
b) Norwegian figure for 1972 does not include haddock caught in Recommendation 2 fisheries (1972 = 5 685 tons).
c) Spain reported 90 tons caught in 1975.
d) Norwegian figure for 1976 revised by the Working Group (April, 1978).

Table l. 8 Nominal catch of WHITING for Divisions IVa- IVc by country in metric tons, 1972-77.
(Bulletin Statistique)

Country	1972	1973	1974	1975	1976	1977*
Belgium	2745	3387	3156	3279	2640	3229
Denmark	50109	73928	109654	61941	116973	46347
Faroe Islands	-	1453	1126	764	1262	5
France	19822	20353	19825	20079	19557	17610
German Dem.Rep.	-	5	-	3	18	-
Germany, Fed.Rep.	264	403	454	446	302	413
Ireland	-	-	-	-	4	7
Netherlands	7613	8811	12057	14078	12274	9111
Norway	$28^{\text {a }}$	1527	4990	55	$6814^{\text {c }}$ )	2737
Poland	-	7	1002	888	509	445
Spain	107	119	110	65	18	-
Sweden ${ }^{\text {b }}$ )	596	2328	2440	255	145	1485
$\begin{aligned} & \text { UK (England and } \\ & \text { Wales) } \end{aligned}$	3789	4592	5519	5246	5112	6621
UK(Scotland)	23846	20756	25274	27969	26167	33019
USSR	613	3522	2978	5098	5612	2422
Total	109532	141191	188585	140166	197407	123451

* Provisional figures.
a) Norwegian figure for 1972 does not include whiting caught in Recommendation 2 fisheries ( $1972=2023$ tons).
b) Swedish figures for 1972-74 include Division IIIa.
c) Norwegian figure for 1976 revised by the Working Group (April, 1978).

Table 1. 9 United Kingdom (England and Wales) fishing effort data for different areas.

Area		1970	1971	1972	1973	1974	1975	1976	1977
	Hours	819.5	855.1	884.9	852.9	781.3	694.5	725.8	732.2
North Sea	Av. tons	56	54	60	56	58	52	59	61
(Sub-area IV)	Ton-Hours	4589	4618	5309	4776	4532	3611	4282	4466
West of	Hours	49.2	33.3	33.6	32.4	31.1	35.8	40.6	54.3
Scotland	Av. tons	254	242	445	392	351	307	310	358
(Div. VIa)	Ton-Hours	1250	- 806	1495	1270	1092	1099	1259	1944
Bristol Channel	Hours	44.1	47.4	38.4	37.0	32.2	34.3	27.4	25.2
(Div. VIIf)	Av. tons	56	49	52	57	62	41	45	52
	Ton-Hours	247	232	200	211	200	141	123	131

Note: HOURS are in thousands; TON-HOURS are in 10 thousands.

Table 1.10 United Kingdom (Scotland) fishing effort (1000 hours fishing) for different areas.

Area	Gear	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
IV	Trawl	206	203	112	110	149	177	176	179	150	122	144
	Light trawl	24	41	54	67	98	109	146	117	160	153	225
	Seine	499	537	479	411	399	379	405	350	342	308	314
	Total	729	781	645	588	646	665	727	646	652	583	683
VI (a+b)	Trawl	54	50	43	41	42	56	55	44	37	38	35
	Light trawl	83	66	105	115	129	142	91	86	129	139	144
	Seine	159	150	140	96	99	71	60	56	56	57	42
	Total	296	266	288	252	270	269	206	186	222	234	221

Table l.ll International effort data from the North Sea.

Year	COD		HADDOCK		WHITING	
	International Effort		International Effort		International Effort	
	English ${ }^{1}$ )   > 40' motor   seine units	$\begin{aligned} & \text { Scottish } 2 \text { ) } \\ & \text { units } \end{aligned}$	$\begin{aligned} & \text { Englishl) } \\ & >\text { 40' Total } \\ & \text { trawl \& seine } \\ & \text { units } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Scottish2) } \\ & \text { units } \end{aligned}$	```Englishl) >40' Total trawl & seine units```	$\begin{aligned} & \text { Scottish } \\ & \text { units } \end{aligned}$
1959			164.16			
1960			153.92		571.73 300.67	
1961			121.56		309.78	
1962			98.26		200.50	
1963	9.61		82.52		231.69	
1964	10.69		87.56		166.30	
1965	9.81		118.73		166.10	
1966	10.00		163.03		271.22	
1967	11.08	42.914	133.60	15.793	167.49	20.169
1968	10.52	48.291	101.44	16.680	290.61	37.371
1969	9.21	38.822	272.56	58.867	564.48	67.876
1970	12.69	44.934	200.74	34.974	302.70	50.629
1971	15.83 15.30	55.624	90.44	13.725	153.07	27.294
1972 1973	15.30 14.33	41.818	68.40	14.763	187.97	30.545
1973	14.33 15.64	34.898 34.220	69.99 100.64	16.175	180.66	49.454
1975	18.61	32.585	100.64 68.57	17.433 17.555	186.68	48.202
1976	13.25	31.418	59.96	15.041	124.14 189.44	32.675 44.393
1977	16.98	35.687	48.06	11.656	189.44 107.67	44.393 26.656

1) Ton-hours $x 10^{-7}$.
2) Hours $x 10^{-2}$.

Table 2.1 COD. Sub-area IV. Catch in numbers (1000 fish) by year and by age.


Table 2.2 HADDOCK. Sub-area IV. Catch in numbers (1000 fish) by year and by age.


Table 2.3 WHITING. Sub-area IV. Catch in numbers (1000 fish) by year and by age.


Table 2.4 COD. Division VIa. Catch in numbers (1000 fish) by year and by age.


Table 2.5 HADDOCK. Division VIa.
Catch in numbers (1000 fish) by year and by age.

AGE	1965	1966	1967	1968	1969	1970
1	5	278	516	9311	0	230
2	1654	359	11419	7387	48921	164
3	84419	1164	1239	3234	5928	71520
4	4697	47424	238	418	1386	3795
5	206	1606	18775	586	350	211
6	169	76	252	11729	576	32
7	139	30	20	655	3386	98
8	23	102	28	36	150	453
TOTAL						
$\begin{array}{ccc} & 91312 & 51039 \\ \text { Catches of mature\{AGE } & =\begin{array}{c}2\} \\ \text { fish } \\ \end{array} \quad 91307 & 50761\end{array}$			32487	33356	60697	76563
			31971	24045	60697	76333
AGE	1971	1972	1973	1974	1975	1976
1	2448	590	1208	1970	4861	919
2	2844	22221	6520	3425	9519	25407
3	6E27	2225	15648	9411	2773	14265
4	91387	2897	263	6131	3427	1825
5	590	56846	1147	97	1980	1698
6	86	E12	31836	447	106	1044
7	6	37	139	11488	122	32
8	97	57	114	189	3770	31
TOTAL						
Catches of mature fish		$\begin{gathered} 85485 \\ =\quad 23 \end{gathered}$	56875	33158	26558	45221
101637		84895	55667	31188	21697	44302

AGE 1977

1	215
2	2014
3	29338
4	6794
5	817
6	504
7	405
8	40

TOTAL
40131
Catches of mature (AGE $>=2$ ) 39916

Table 2.6 WHITING. Sub-area VI. Catch in numbers (1000 fish) by year and by age.

AGE	1965	1966	1967	1968	1969	1970
0	0	0	0	0	0	0
1	2239	1126	4261	7037	684	697
2	4857	12935	25182	18154	25631	2676
3	41177	2454	10755	9729	9753	30312
4	5299	28248	857	3583	2794	4514
5	784	1767	16762	$25^{-}$	1276	818
6	68	213	803	477 :	109	210
7	185	36	84	269	1708	14
$8+$	12	17	23	31	155	392
TOTAL						
Catches fish	of mature (AGE	$\begin{gathered} 46796 \\ =\quad 23 \end{gathered}$	58727	43842	42110	39633
	52382	45670	54466	36805	41426	38936
AGE	1971	1972	1973	1974	1975	1976
0	0	0	0	4	54	6
1	2640	11064	13009	7577	17551	7961
2	7712	9657	27463	42873	18712	44583
3	3936	3447	6758	12215	39477	16757
4	30759	1168	1831	2035	3243	22197
5	1394	12800	469	505	307	2509
6	249	712	5293	68	60	222
7	47	58	273	1387	6	38
$8+$	78	64	33	64	194	127
ToTAL	45815	38970	55129	66728	79604	94400
Catches fish   AGE	of mature (AGE	$=2)$				
	$44175$	27906	42120	59147	61999	86433
	1977					
0	14					
1	3078					
2	17450					
3	33246					
4	3607					
5	5701					
6	384					
7	7					
$8+$	5					
TOTAL						
Catches fish	$\begin{gathered} 63492 \\ \text { of mature } \text { iAGE } \\ 60490 \end{gathered}$	2)				

Table 3.1 COD. Sub-area IV. Fishing mortality by year and by age.

AGE		1568	1969	1970	1971	1972	1973	1974	1975	1976	1977
0		.00	. 00	.60	.00	.00	.00	.00	.00	.00	. 00
1		.13	- 07	. 15	. 16	.09	.27	. 13	.19	.06	. 35
2		. 70	. 48	. 59	. 99	1.13	. 78	. 88	. 93	1.13	. 90
3		. 66	. 67	. 75	. 74	. 92	1.16	. 82	. 84	1.06	. 90
4		. 64	. 63	. 60	. 69	. 64	. 82	. 31	.77	.96	.70
5		. 60	. 7 E	. 67	. 68	. 68	. 52	. 73	. 80	. 67	. 66
6		. 50	. 71	. 66	. 52	. 81	. 71	. 56	. 68	. $75^{\circ}$	. 66
7		. 42	. 55	. 63	. 59	. 71	. 77	. 86	. 44	. 73	. 66
8		. 46	. 49	.31	. 51	1.20	. 55	. 77	.71	. 19	. 66
9		. 59	. 49	. 60	. 50	1.20	. 22	. 83	1.08	. 64	6E
10		. 46	. 42	. 36	. 47	. 59	. 42	. 73	.47	1.28	. 66
11		. 59	1.41	.79	1.45	. 0.5	.36	.79	. 87	. 15	. 66
$12+$		. 55	. 55	. 66	. E6	. 66	. 66	. 66	. 66	. 66	. 66
MEAN F		F FOR AGES :=		2 AN	く $=$	8 (WEIGHTED		BY STOCK.78	CK IN	NUMBERS	
		. E4	.93	1.06	. 95	. 88	1.09		. 88		

## AGE-NATURAL MORTALITY

$$
\begin{array}{rrrrrrrrrrr}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
.20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 \\
.20 & .20
\end{array}
$$

Table 3.2 HADDOCK. Sub-area IV. Fishing mortality by year and by age.

AGE		1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
0		.00	.00	.00	.00	.00	.00	.00	.00	.00	00
1		. 14	. 17	. 12	.01	.80	.56	.09	. 16	.07	. 32
2		. 64	. 56	. 31	. 33	.21	. 08	. 29	.29	. 49	. 50
3		.75	. 94	. 63	. 29	. 89	. 38	. 61	. 23	. 57	1.31
4		. 71	. 76	. 78	.51	. 74	. 51	. 68	. 49	. 24	2.54
5		. 90	. 68	. 55	.70	. 98	. 76	. 92	. 83	. 30	1.33
6		1.13	. 83	. 43	. 52	1.65	1.64	1.91	. 45	. 77	. 56
7		1.07	1.20	1.33	. 43	. 70	1.59	. 80	1.68	.89	2.29
8		1.91	2.25	2.28	2.22	2.82	3.17	. 84	2.61	1.50	2.67
9		.00	2.47	1.15	. 48	1.10	1.10	. 81	1.82	1.10	1.44
$10+$		.00	. 00	1.10	1.10	1.10	.00	.80	1.10	1.10	. .00
MEAN	F	FOR .69	$\begin{gathered} \text { AGES }>= \\ .7 \Sigma \end{gathered}$	$\begin{aligned} & 2 \text { AND } \\ & .51 \end{aligned}$	$\begin{aligned} & <= \\ & .35 \end{aligned}$	$\begin{array}{cc} 6 \text { ( WE I } \\ . & 29 \end{array}$	$\begin{array}{r} \text { GHTED } \\ .38 \end{array}$	$\begin{gathered} \text { BY } 5 \text { STOC } \\ .58 \end{gathered}$	$\begin{array}{r} \text { CK IN } \\ .68 \end{array}$	NUMBER $.54$	$.56$
AGE		1970	1971	1972	1973	1974	1975	1976	1977		
0		.00	.00	. 45	.03	. 13	. 11	. 25	. 06		
1		.07	. 06	. 18	. 10	. 23	. 41	. 23	. 27		
2		. 84	. 35	. 4.3	. 39	. 61	.77	. 64	. 39		
3		1.14	. 70	. 96	1.23	. 78	1.17	1.25	. 96		
4		1.01	1.03	1.07	1.02	. 34	1.10	1.02	1.04		
5		.40	1.19	1.34	1.27	1.01	1.04	1.22	1.10		
E		. 42	1.10	1.E1	. 08	.87	. 85	1.34	1.10		
7		.10	. 30	. 60	. 06	1.02	1.29	. 75	1.10		
8		1.11	3.65	1.96	.01	. 63	1.19	. 83	1.10		
9		.07	1.71	. 23	. 07	. 16	. 70	1.32	1.10		
$10+$		1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10		

MEAN F FOR AGES $\rangle=2$ AND $\langle=6$ (WEIGHTED BY STOCK IN NUMBERS) $1.11 .93 \quad .78 \quad .63 \quad .76 \quad .86 \quad .78 \quad .77$

AGE-NATURAL MORTALITY

0	1	2	3	4	5	6	7	8	9
.20	.20	.20	.20	.20	.20	.20	.20	.20	.20
.20									

Table 3.3 WHITING. Sub-area IV.
Fishing mortality by year and by age.

AGE		1960	1961	1962	1963		1964	1965	1966	1967	1968	1969
0		.04	. 15	.03	. 15		.23	.04	. 62	. 08	. 15	.12
1		.20	. 32	.10	. 22		. 21	. 14	. 47	. 24	.20	1.04
2		. 28	. 53	. 47	. 52		.19	. 28	. 55	. 60	. 80	. 68
3		1.00	. 98	. 84	. 80		. 55	. 46	. 75	. 89	. 98	. 98
4		1.87	1.22	. 96	.94		. 84	. 66	. 92	. 84	1.15	. 95
5		1.38	1.45	1.09	. 92		. 96	. 92	. 99	. 87	. 95	. 93
6		1.88	1.27	1.20	1.17		. 93	1.04	1.22	.E.4	1.11	1.15
7		1.14	. 93	1.8 .7	. 12		1.26	.30	2.10	1.74	. 37	1.40
$8+$		. 80	. 80	. 80	. 80		. 86	.80	. 80	.80	. 80	. 80
MEAN	F	FOR AGES ?=		$\begin{aligned} & 1 \text { AND } \\ & .32 \end{aligned}$	< $=$	5	$\begin{aligned} & \text { C WE I GHTED } \\ & .29 \quad .33 \end{aligned}$		$\begin{array}{cc} \text { BY } \triangle T O C K ~ I N ~ \\ .62 & .46 \end{array}$		NUMBERS)	
		. 40	. 56		. 35							
AGE		1970	1971	1972	1973		1974	1975	1976	1977		
0		. 11	. 40	.17	.11		.17	. 16	. 21	. 18		
1		1.13	. 31	. 50	.36		. 87	. 32	. 43	. 54		
2		1.38	. 66	. 71	. 80		. 93	. 77	. 87	. 89		
3		. 91	. 67	. 74	. 86		1.01	1.02	1.06	. 80		
4		. 74	.75	. 43	. 92		. 69	1.11	. 96	.71		
5		1.09	.72	. 53	. 83		. 69	. 57	. 92	. 89		
6		1.12	. 72	. 89	1.07		. 65	.91	. 34	. 95		
7		. 44	. 69	. 67	1.44		1.20	.67	. 87	. 81		
$8+$		. 80	. 80	. 80	. 80		.80	. 80	. 80	. 80		
MEAN	F	$\begin{aligned} & \text { FOR A } \\ & 1.0 G \end{aligned}$	$\begin{gathered} \text { AGES } \vdots= \\ .46 \end{gathered}$	$\begin{aligned} & 1 \text { AND } \\ & .57 \end{aligned}$	$\begin{aligned} & \langle= \\ & .51 \end{aligned}$	5	$\begin{aligned} & \text { ( WE IG } \\ & .90 \end{aligned}$	GHTED $.50$	$\begin{gathered} \text { BY STO } \\ .73 \end{gathered}$	$\begin{array}{r} C K \quad \text { IN } \\ .69 \end{array}$	NUMBER	

age-natural mortality

$$
\begin{array}{rrrrrrrrr}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
.20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 & .20
\end{array}
$$

Table 3.4 COD. Division VIa.
Fishing mortality by year and by age.

AGE		1968	1969	1570	1971		1572	1973	1974	1975	1976	1977
1		.04	.03	.02	.04		.06	. 62	.10	.10	. 28	.03
2		. 28	. 25	. 14	. 27		.45	. 18	. 45	.47	. 68	. 26
3		. 48	. 59	. 40	. 43		. 62	.49	.45	. 61	. 67	. 48
4		. 73	.94	. 62	. 59		. 91	. 70	. 74	. 63	. 68	. 70
5		. 38	. 89	. 60	. 69		. 83	. 79	. 83	. 53	. 77	.70
6		. 54	.75	. 59	. 73		. 70	. 98	. 78	. 52	. 89	.70
7		. 66	. 91	. 38	.70		.72	. 84	1.06	. 36	1.53	.70
$8+$		.70	.70	.70	.70		.70	.70	. 70	.70	. 70	.70
MEAN F		F FOR AGES $3=$		2 AND	< $=$	6 (WEIGHTED			$\begin{gathered} \text { BY STOCK } \\ .52 \end{gathered}$		NUMBER	
		. 47	. 57	. 38	.42		. 5.5	. 42			. 69	. 41

age-natural mortality

1	2	3	4	5	6	7
.20	.20	.20	.20	.20	.20	.20
			.20			

Table 3.5 HADDOCK. Division VIa. Fishing mortality by year and by age.

AGE		1965	1966	1967	1968		1969	1970		1971		972	1973	1974
1		.00	.01	. 02	.01		.00	.03		.03		. 02	$.07{ }^{\circ}$	.03
2		. 22	. 08	. 79	. 31		. 09	.01		. 45		. 44	. 24	. 29
3		. 52	. 24	. 43	. 54		. 44	. 18		. 67		. 90	. 64	. 63
4		. 58	. 63	. 07	. 25		. 47	. 57		. 38		. 71	.24	. 56
5		.30	.40	. 56	. 24		.34	.12		.16		. 43	. 70	. 13
6		. 41	.17	.10	. 83		. 40	. 14		.07		. 25	.46	. 65
7		. 14	.12	. 06	. 40		. 61	.11		.81		.04	. 08	. 30
8		. 15	.15	. 15	. 15		. 15	.15		.15		. 15	.15	. 15
MEAN	F	$\begin{gathered} \text { FOR AGES }>= \\ .51 \quad .58 \end{gathered}$		$2 \text { AND }$ $.58$	$\begin{aligned} & <= \\ & .51 \end{aligned}$	$\begin{aligned} & \text { E ( WE I GHTED } \\ & .10 \quad .19 \end{aligned}$			$\begin{array}{cc} \text { BY STOCK IN } \\ .39 \quad .44 \end{array}$				NUMBERS )$.45 \quad .51$	
AGE		1975	1976	1977										
1		.04	. 11	. 01										
2		.19	. 31	. 38										
3		. 40	. 48	. 72										
4		. 49	. 49	. 44										
5		. 35	. 49	. 43										
6		.20	. 32	. 26										
7		.37	. 09	. 20										
8		. 15	. 15	. 15										
MEAN	F	FOR   .26	$\begin{array}{r} \text { AGES }= \\ .37 \end{array}$	$2 \text { AND }$ $. \varepsilon 1$	$<=$		( WE I	HTED		ST	CK	IN	NUMBER	

age-natural mortality

$$
\begin{array}{rrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
.20 & .20 & .20 & .20 & .20 & .20 & .20 & .20
\end{array}
$$

Table 3.6 WHITING. Sub-area VI. Fishing mortality by year and by age.

AGE		1965	1966	1967	1968		1969	1570		1971	1972	1973	1974
0		.00	. 00	.00	.00		. 00	. 00		. 00	00	00	00
1		. 05	. 02	. 88	.84		. 05	.04		.09	. 16	07	2
2		. 65	. 47	. 86	. 57		.19	. 29		. 67	- 58	. 73	- 12
3		. 45	. 82	. 93	1.04		. 70	. 36		. 90	. 74	1.10	- 86
4		. 81	. 64	. 78	. 99		1.02	. 84		. 77	. 76	1.20	1.33
5		1.00	.71	1.04	. 60		1.31	1.02		. 69	. 89	. 82	1.52
6		. 59	. 86	. 85	1.00		. 54	. 80		1.07	. 96	1.28	. 26
7		2.13	. 74	1.05	. 79		1.38	. 12		. 41	. 80	1.37	1.77
$8+$		.70	. 70	.70	.70		. 70	.70		.70	.70	. 70	. .70
MEAN	F	$\begin{gathered} \text { FOR AGES } y= \\ .49 \quad .59 \end{gathered}$		$\begin{aligned} & 2 \text { AND } \\ & .93 \end{aligned}$	$\begin{aligned} & \langle= \\ & .72 \end{aligned}$	$\begin{array}{cc} 5 \text { ( WE I GHTED } \\ .28 \quad .39 \end{array}$			$\begin{array}{cc} \text { BY STOCK IN } \\ .76 \quad .74 \end{array}$			NUMBERS )$.80 \quad .44$	
AGE		1975	1976	1977									
0		.00	.00	.00									
1		.11	.15	. 05									
2		. 49	. 47	. 57									
3		. 67	1.17	. 78									
4		. 59	1.04	. 89									
5		. 73	1.38	. 36									
6		. 74	$2 . \mathrm{EC}$	.83									
7		.03	1.82	.70									
$8+$		.70	.70	. 70									
MEAN	F	FOR A .60	$\begin{gathered} \text { GES }>= \\ .6 S \end{gathered}$	$\begin{aligned} & 2 \text { AND } \\ & .72 \end{aligned}$	$\leqslant=$	5	( WEI G	HTED	BY	STOC	IN	NUMBER	

## AGE-NATURAL MORTALITY

$$
\begin{array}{rrrrrrrrr}
0 & 1 & 2 & 3 & 1 & 5 & 6 & 7 & 8 \\
.20 & .20 & .20 & .20 & .20 & .20 & .20 & .20 & .20
\end{array}
$$

Table 4.1 COD. Sub-area IV. Stock in numbers ('000 fish) at beginning of year.

AGE	1968	1969	1970	1971	1972	1973
0	106372	448842	550039	100027	193419	168246
1	92065	87090	367481	450334	81896	158358
2	172378	E6415	66693	258245	313435	61352
3	82871	70547	33755	30119	78871	82853
4	25598	35077	29537	13011	11821	25681
5	13597	11056	15345	13285	5337	5124
6	3570	6103	4418	6428	5496	2220
7	1584	1750	2459	1863	3119	2002
8	927	1065	842	1074	846	1260
5	377	478	533	503	526	210
10	304	171	233	238	249	130
11	51	157	91	75	122	112
$12+$	12	23	31	34	14	95
TOTAL						
	500706	728804	1071463	875241	695150	507643
SPAWNING	STOCK (AGE	$7=4)$				
	46420	55510	53494	36515	27529	36834
AGE	1974	1575	1976	1977		
0	278890	149180	333315	123854		
1	137748	228335	121891	272738		
2	99247	98614	155348	93863		
3	2298¢	33589	32005	40931		
4	21165	8303	11823	3042		
5	9294	12673	3160	3927		
6	2483	3684	4663	1324		
7	891	1166	1532	1811		
8	758	309	E16	0.03		
9	595	288	124	418		
10	137	212	80	54		
11	76	54	108	18		
$12+$	35	26	19	76		
TOTAL						
	574365	536434	664690	548718		
SPAWNING	STOCK © AGE	$>=4)$				
	35435	26715	22131	17272		

Table 4.2
HADDOCK. Sub-area IV. Stock in numbers (1000 fish) at beginning of year.

AGE	1960	1961	1962	1963	1964	1965
0	173083	772302	3670249	83268		
1	229349	141708	632308	83268 3004946	76795	179312
2	271615	163986	97599	459632	68174 2437547	62875
3	20514	117468	76726	58599	2437647 270185	555806
4	12781	7962	37472	33622	270185 35853	1611915 90859
5	42564	5129	3054	14104	16574	90859
6	4750	14172	2122	1439	5752	14060 5089
7	1682	1257	5054	1128	5752 701	5089 908
8	565	475	308	1099	599	285
5	0	68	41	26	97	285
$10+$	0	0	5	11	13	0
TOTAL						
	756902	1224528	4524937	3657874	2912390	2021133
SPAWNING	STOCK (AGE	>= 2)				2021139
	354470	310517	222381	569660	2767421	1778952
AGE	1966	1967	1968	1969	1970	1971
0	937054	7690618	470670	13365	109765	
1	146809	767195	6296545	385352	199425	1617869
2	29432	109697	536247	4815949	189425	898685
3	42331	18117	66893	268740	2394373	83932
4	906026	18850	11835	30895	2394372	81226 629153
5	44676	375091	9444	7585	1983	629153 17694
6	5410	14643	133515	5715	1642	17694 1096
7	807	657	7652	50378	2664	10.96 885
8	152	297	100	5755	4184	885
9	10	54	18	18	+326	1.969
$10+$	0	4	7	0	4	$\begin{array}{r}189 \\ \hline 89\end{array}$
TOTAL						249
	2112707	8995133	7532926	5704043	3900315	3333892
SPAWNING	STOCK © AGE	$>=2)$				
	1028844	537320	76.5710	5185038	2693233	817337
AGE	1972	1973	1974	1975	1976	1977
0	487097	1631407	3529926	751610		
1	1324599	253612	1297911	2541257	552201	
2	692187	908925	187813	845606	1383758	359257
3	48300	367408	506123	83897	320837	595637
4	33047	15216	87490	189541	21337	75450
5	184347	9241	4504	28085	51435	6269
6	4400	21671	2126	1345	8103	12467
7	298	717	16324	729	471	
8	539	134	552	4818	164	1738 182
9	42	E2	109	241	1199	182 58
$10+$ TOTAL	168	27	47	76	98	261
TOTAL	2775025	3208421	56.32927	4447205	3059677	2342710
SPAWNING						
	STOCK (AGE 963329	$\begin{aligned} & y=2 y \\ & 1323402 \end{aligned}$				
			805089	1154338	1787407	1051320

Table 4.3 WHITING．Sub－area IV． Stock in numbers（ 1000 fish）at beginning of year．

AGE	1960	1961	1962	1963	1964	1965
0	489321	1153409	1890290	504463	1043066	985704
1	569887	38.6073	813150	1495430	355120	680024
2	266671	381461	229418	599819	979789	235419
3	148283	165652	183730	117178	293358	660635
4	18120	44838	50836	64633	43312	138484
5	31415	2293	10849	15993	20634	15256
6	4374	6487	440	2974	5229	6490
7	1629	548	1489	108	757	1697
$8+$	3019	425	176	189	79	176
TOTAL						
SPAWNING	1532718	2141191	3180377	2800788	2747345	2723896
	STOCK（AGE	$>=2)$				
	473511	601703	476938	800894	1343159	1058168
AGE	1966	1967	1968	1969	1970	1971
0	1220927	3435016	1214352	1074810	1153134	3239455
1	774709	975353	2609047	859892	776860	848656
2	484612	394664	629632	1752989	248352	204788
3	145073	229340	176514	232495	729403	51055
4	341394	53773	77468	54373	71345	239503
5	58640	111434	19024	20128	17258	27735
6	4958	17880	38259	6032	6529	4751
7	1874	1202	7744	10374	156.3	1752
$8+$	564	187	172	4374	2091	827
TOTAL						
SPAWNING	3032749	5218850	4772213	4015464	3006535	4618524
	STOCK（ AGE	$>=2)$				
	1037114	808481	948813	2080763	1076541	530412
AGE	1972	1973	1974	1375	1976	1377
0	3380618	2214604	3463733	1379135	1805246	1715021
1	1782188	2336729	1631206	2392432	965366	1197664
2	507160	883948	1339765	557667	1417558	515821
3	86494	205007	325371	433844	212331	487081
4	21412	33684	70832	57341	128508	60185
5	52851	11417	10981	28972	26229	40300
6	11045	29847	4085	45.24	13372	8586
7	1889	3727	8374	1755	1491	7823
$8+$	719	754	アご	2004	733	512
TOTAL						
	5884376	5719757	6855663	4897733	4570839	4032994
SPAWNING	STOCK（AGE	$\cdots=2)$				
	721570	1168424	1760729	1126167	1800227	1120309

Table 4.4 COD. Division VIa. Stock in numbers ( 1000 fish) at beginning of year.

AGE	1968	1969	1970	1971	1972	1973
1	6266	2912	5069	8792	4303	6973
2	3859	4930	2308	4067	68.96	6373
3	5340	2387	3149	1645	2535	3616
4	2727	2704	1087	1731	878	1121
5	385	1076	862	481	783	289
6	319	215	326	388	197	280
7	162	153	83	148	152	80
TOTAL	23	68	50	46	60	60
	19080	14443	12935	17298	15805	15744
SPAWNING	STOCK (AGE	$\rangle=4)$				
	3615	4215	2408	2794	2071	1830
AGE	1974	1975	1976	1977		
1	8063	14181	9046	15453		
2	5571	5946	10474	5619		
3	2268	2910	3037	4330		
4	1821	1183	1295	1270		
5	455	711	516	537		
6	107	163	341	195		
7	86	40	80	115		
$\stackrel{8+}{8+}$	28	24	23	14		
TOTAL						
	18400	25159	24812	27533		
SPAWNING	STOCK (AGE	$>=4$ )				
	2498	2122	2255	2131		

Table 4.5 HADDOCK. Division VIa.
Stock in numbers (1000 fish) at beginning of year

AGE	1965	1966	1967	1968	1969	1970
1	6329	28100	37554	772052	22313	10144
2	9188	5177	22755	30280	623694	18269
3	227432	6034	3915	8448	18153	466512
4	11643	110601	3893	2034	4021	9547
5	879	5330	48157	2973	1338	2050
6	556	535	2922	22623	1906	781
7	1137	303	36.	2165	8070	1044
8	182	'806	221	284	1185	3579
TOTAL						
	257346	156886	119787	840920	680682	511926
SPAWNING	STOCK ( AGE	$\rangle=2)$				
	251017	128786	82233	68867	658368	501782
AGE	1971	1972	1973	1974	1975	1976
1	86311	42277	19798	76348	132400	9543
2	8098	E8455	34080	15119	60723	104012
3	14803	4081	36119	22036	9299	41149
4	317540	6294	1361	15585	9628	5125
5	4.420	177944	2493	878	フ273	4812
6	1488	3087	94703	1017	631	4176
7	557	1141	1977	48955	433	421
8	76E	450	901	1493	29788	245
TOTAL						
	433389	303640	191432	181471	250181	163484
SPAWNING	STOCK (AGE	$\rangle=2$ )				
	347678	2E1363	171634	105123	117781	159941

AGE 1577

1	29767
2	6985
3	62325
4	20905
5	2561
6	2418
7	2481
8	316

TOTAL
121828
SPAWNING STOCK (AGE) $=2$ )
97992

Table 4.6 WHITING. Sub-area VI. Stock in numbers ('000 fish) at beginning of year.

AGE	1965	1966	1967	1968	1969	1970
0	72137	73956	250778	18405	26642	39285
1	48480	59061	60550	205320	15069	21812
2	11129	37671	47338	45730	161749	11720
3	124802	4771	19249	16329	21195	109349
4	10404	65258	1719	6192	4728	8644
5	1343	3794	28175	643	1884	1389
6	166	402	1529	8183	288	414
7	224	75	140	536	2459	138
$8+$	15	22	30	40	199	504
TOTAL						
	268700	245010	409511	301377	234212	193255
SPAWNING	STOCK © AGE	$>=2)$				
	148083	111994	98183	77653	192502	132157
AGE	1971	1972	1373	1974	1975	1976
0	101457	248969	88665	218265	76243	86673
1	32164	83056	203838	72543	178697	62379
2	17229	23953	58040	155152	52563	130480
3	71.9	7216	10971	23006	88530	26269
4	62310	2383	2832	2986	7956	37211
5	3055	23575	909	696	645	3613
6	410	1256	7510	32 E	125	254
7	152	115	395	1793	206	49
$8+$	100	82	42	82	24.9	163
TOTAL						
	224067	390619	373543	474849	405221	347097
SPAWNING	STOCK © AGE	$\rangle=$ )				
	90446	58585	81100	184041	150274	198039

AGE 1977

0	77241
1	70961
2	43898
3	66866
4	6655
5	10752
6	741
7	15
$8+$	6

TOTAL.
277136
SPAWNING STOCK (AGE $3=2$ ) 128934

Table 5.1.A Catch predictions for 1979 (in 1000 metric tons).
Sub-area IV
(for haddock and whiting landings are shown with catches in brackets)

Alternatives	Cod	Haddock ${ }^{\text {I }}$	Whiting
A1	203	$92(114)$	$103(150)$
A2	188	$86(103)$	$96(140)$
A3	201,	$88(102)$	$84(102)$
A4	1839	$83(92)$	$76(86)$
A5	186	$83(95)$	$78(94)$
A6	170	$77(85)$	$69(19)$
B1	179	-	-
B2	-	$78(92)$	-
B3	177	-	-
B4	159	$75(85)$	-
B5	-	$70(77)$	-
B6	-	-	-

Option A Assuming 1978 effort $=1977$ effort.
Option B Assuming 1978 effort is adjusted to just take up 1978 TAC.

1 No mesh change $F_{79}=F_{77}$
2 No mesh change $\mathrm{F}_{79}=0.9 \mathrm{~F}_{77}$
3 Mesh change to 90 mm in 1979, $\mathrm{F}_{79}=\mathrm{F}_{77}$, low selection factor.
4 Mesh change to 90 mm in 1979, $\mathrm{F}_{79}=\mathrm{F}_{77}$, high selection factor.
5 Mesh change to 90 mm in 1979, $\mathrm{F}_{79}=0.9 \mathrm{~F}_{77}$, low selection factor.
6 Mesh change to 90 mm in $1979, \mathrm{~F}_{79}=0.9 \mathrm{~F}_{77}$, high selection factor.

1) For haddock, Option $B, F_{79}=F_{78}=0.8 F_{77}$ for options given.

Table 5.1.B Catch predictions for 1979 (in 1000 metric tons).
Division VIa

Alternatives ${ }^{1}$ )	Cod	Haddock	Whiting
Al	12.4	10.1	12.7
A2	11.5	9.3	11.8
A3		9.6 )	7.5 )
A4	12.4	8.93	4.63
$\begin{aligned} & A 5 \\ & A 6 \end{aligned}\{$	11.5	$\left.\begin{array}{l} 9.1 \\ 8.9 \end{array}\right\}$	$\left.\begin{array}{l} 6.9 \\ 4.2 \end{array}\right\}$

1) As in Table 5.1.A.

	Cod	Haddock	Whiting
Div. VIb   Div. IIIa   Sub-area VII   (excluding   Div.VIIa,f)	2.6	1.2	$-{ }^{2}$

2) Not estimated separately but included with Division VIa.

Table 5.2 Revised estimates of year class strength.
Sub-area IV

Year	COD		HADDOCK		WHITING	
	IYHS ${ }^{\text {a }}$	$\begin{aligned} & \left.V P A^{c}\right) \\ & M=0.2 \end{aligned}$	IYHS ${ }^{\text {b }}$ )	$\begin{gathered} \left.V P A^{c}\right) \\ M=0.2 \end{gathered}$	IYHS ${ }^{\text {b }}$ )	$\begin{gathered} \left.V P A^{C}\right) \\ M=0.2 \end{gathered}$
1964	17.1	222		63	418	680
1965	12.8	315	25	147	600	775
1966	30.5	283	91	767	519	975
1967	5.5	92	7628	6297	2066	2609
1968	6.3	87	119	385	18	860
1969	59.9	367	35	109	71	777
1970	89.4	450	1545	899	225	849
1971	2.8	82	957	1325	356	1782
1972	31.5	158	230	254	1161	2337
1973	11.2	138	1314	1298	325	1631
1974	54.5	228	1370	2541	943	2392
1975	6.1	121	212	552	832	965
1976	44.2	330*	189	460*	436	1 201*
1977	(14.7)	175*	(477)	694*	441	1 207*

a) Geometric mean number per hours fishing during the International Young Herring Surveys (cf. ICES, Doc. C.M.1977/F:19̆).
b) Arithmetric mean number per hours fishing during the International Young Herring Surveys (cf. ICES, Doc. C.M.1977/F:19).
c) Millions of fish at age 1. (*estimated from regressions according to Table 5.3; Note that VPA estimates of recruitment in this table are different from the one used in calculating the regression (cf. ICES, Doc. C.M.1977/F:19).

Table 5.3 Predictive regressions of VPA estimates of year class size ( $y$ ) on year class strength indices ( $x$ ) from research surveys ( $y=B_{0}+B_{1} x$ ). (From ICES C.M.1977/F:19).

Data	n	B	$\mathrm{B}_{1}$	r	p.	Estimated size year class   (l-year old ) 0000000	
						1976	1977
Cod - IV - IYHS 1965-75	11	98	5.25	0.92	$\mathrm{p}<0.01$	330	175
```Haddock - IV - IYHS 1966-75```	10	307	0.81	0.98	$\mathrm{p}<0.01$	460	694
$\begin{gathered} \text { Whiting - IV - IYHS } \\ \text { 1965-75 } \end{gathered}$	11	656	1.25	0.79	p<0.01	1201	1207

Table 5.4 NORTH SEA COD, HADDOCK AND WHITING.
Total numbers (1000) at each length group landed quarterly by Norway in 1977.a)

COD	Quarter				Total
$\begin{aligned} & \text { Length- } \\ & \text { group }(\mathrm{cm}) \end{aligned}$	1	2	3	4	
15-19		41	8	1	50
20-24	5	70	16	2	93
25-29	56	36	100	3	195
30-34	209	172	63	65	509
35-39	112	160	54	4	330
40-44	10	61	89	10	170
45-49	3	6	32	3	44
50-54	1	7	16	2	26
55-59			16	2	18
60-64				7	7
65-69			8	1	9
85-89				7	7
Total	396	553	402	107	1458
HADDOCK					
5-9	33	9	490	93	625
10-14	173	127	1477	3084	4861
15-19	770	674	152	1140	2736
20-24	264	544	464	118	1390
25-29	274	341	228	158	1001
30-34	202	220	95	72	589
35-39	63	67	53	56	239
40-44	22	47	6	25	100
45-49	6	$+$		7	13
Total	1807	2029	2965	7718	11554
WHITING					
5-9			501		
10-14	6		143		149
15-19	31	22			53
20-24	394	480		33	907
25-29	1435	731	429	76	2671
30-34	1952	262	518	382	3114
35-39	717	109	152	729	1707
40-44	93	11		431	535
45-49	7	11	76	45	139
Total	4635	1626	1819	1696	9776

a) Measurements from Recommendation 2 fisheries only.

Table 6.1 COD. Sub-area IV. Input data for catch predictions. ${ }^{1)}$

Age	1977 catch (1000)	F values 1977-78	Mean weight (kg)
1	73425	.28	0.54
2	51234	.9	0.92
3	22374	.9	2.02
4	4173	.7	3.82
5	1739	.66	5.75
6	586	.66	7.64
7	802	.66	9.11
8	267	.66	10.37
$10+$	90	.66	11.24

Year	Recruitment at age 1 (000)
1978	175000
1979	206000

1) Each of the catch predictions was adjusted by $+2.4 \%$ to allow for the fact that the sum of products of the 1977 catches and the mean weights at age need to be raised by 2.4% to equal the total landings in 1977.

Table 6.2 HADDOCK. Sub-area IV.
Input data for catch predictions.

NATIIFAL MBFTALITY $=. Z$

Table 6.3 WHITING. Sub-area IV.
Input data for catch prediction.

	INDIETFIAL LANEI.		Consump. Landi		LIETAFIS		TOTAL NOE	
ADE	NOS	W	NDE	W	NDE	W		
0	24.5175	0. 020	0	0. 000	1816	0. 034	263541	
1	279694	0.06	1358	-187	166926	0.121	46020\%	
2	82660	0. 195	56095	0.29	140814	O. 148	27956	
3	2965	0. 269	164176	0. 269	あ21E1	0. 195	246315	
4	394	0. 22	2134	0. 322	1588	O. 194	28056	
5	2106	0. 380	19118	0. 380	615	0.230	21842	
$\underline{\square}$	\%08	0. 468	4497	0. 468	40	0. 283	4347	
7	12	0. 620	9777	0. 620	0	O. 000	3989	
E	0	0. 000	410	0. 765	0	0. 000	410	
TITAL..	$64: 247$		284997		3603		1308580	
			FEVISEL INFUT LATA:					
0	243162		0		1816		261326	0. $0 \geq 10$
1	27789		1358		166924		457910	0. 0878
z	81961		56095		140818		278889	0. 1779
3	29712		164176		5281		246069	0. 2529
4	3097		23184		158		28029	0. 8147
5	2099		19118		616		$218 \div 5$	0. 3758
$\stackrel{6}{7}$	305		4499		40		4344	0. 4661
7	12		3677		0		396\%	0.6200
\%	\%		410		0		410	0. 76.50
TGTAL	69796		284997		E0\% 9		30800	

TOTAL WEIGTH DF LANDINGE 17960 E

Table 6.4 COD. Division VIa.
Input data for catch prediction. ${ }^{1)}$

Age	1977 catch (1000)	F values $1977-78$	Mean weight (kg)
1	482	.075	.58
2	1171	.26	1.22
3	1508	.48	2.66
4	586	.7	4.25
5	248	.7	5.13
6	90	.7	6.41
7	53	.7	8.38
8	11		9.00

Year	Recruitment (1000)
1978	7258
1979	7258

1) Each of the catch predictions was adjusted by $+19.6 \%$ to allow for the fact that the sum of products of the 1977 catches and the mean weights at age need to be raised by 19.6% to equal the total landings in 1977.

Table 6.5 HADDOCK. Division VIa.
Input data for catch prediction.

ABE	FISH. MORT FOR YEAR	1977
0	01	
1	36	
2	72	
3	44	
4	43	
5	26	
θ	2	
7	15	
8	15	
9	15	
10	15	

NATUFAL MORTALITY $=.2$

- 60 -

Table 6.6 WHITING. Division VIa.
Input data for catch prediction.

AİE	INLIUSTFIAL LAND. Nos w		Consump. LAND		DISCARISS		toital Nos	
			Nos	W	NOS	W		
0	0	0. 000	14	0. 150	O	0. 000	14	
1	0	0. 000	3078	0. 213	0	0. 000	3078	
2	0	0. 000	17450	0. 241	O	0. 000	174.50	
3	0	0. 000	33246	0. 267	0	0. 000	35246	
4	0	0. 000	3607	0. 310	0	0. 000	3607	
5	0	0. 000	5701	0. 377	\%	0. 000	5701	
6	0	0. 000	364	0. 471	o	0. 000	384	
7	0	0. 000	7	0. 563	o	0. 000	7	
ε	\bigcirc	0.000	5	0. 690	o	0. 000	5	
total								
	0		FEVISEL INFUT [IATA				63492	
0	0		14		0		14	0. 1500
1	0		3076		0		3076	0. 2130
2	0		17452		o		17452	0. 2410
3	\bigcirc		3821		0		33251	0. 2670
4	0		8608		0		3608	0. 3100
5	\bigcirc		5702		\%		5702	0. 3770
6	0		364		0		384	0. 4710
7	0		7		O		7	0. 5630
E	0		5		0		5	0.6900
tatal								
	0		68501		0		63501	

AGE	FISH. MORT FOR YEAR	1977
0	.0002	
1	.045	
2	.57	
3	.89	
4	.86	
5	85	
6	.7	

NATURAL MORTALITY $=.2$

Table 6.7 HADDOCK. Sub-area IV.
Further input for simulation runs - Option $A^{\text {l }}$

1) See footnote to Table 5.1.A for explanation.

Table 6.8
HADDOCK. Sub-area IV.
Further input for simulation runs - Option $B^{1)}$

Age	Recommendation 4 fishery			Percent change of F_{77} in 1979		
	F_{77}	\bar{W}_{t}	\bar{I}_{t}	Runs		
				1	2	3
0	0	. 034	15.6	-20	-100	-100
1	0.11	. 132	24.5	-20	-78	-87
2	0.35	. 190	27.6	-20	-45	-74
3	0.88	. 350	33.9	-20	-22	-33
4	1.02	. 574	40.0	-20	-20	-21
5	1.07	. 709	42.9	-20	-20	-20
6	1.08	. 940	47.1	-20	-20	-20
7	1.10	1.210	51.2	-20	-20	-20
8	1.10	1.440	54.3	-20	-20	-20
9	1.10	1.500	55.0	-20	-20	-20
10+	1.10	1.600	56.0	-20	-20	-20
Year	Results of Simulations					
1978	Rec. 2 landings 8426					
	Rec. 4 landings			98977	Values identical to Run 1	
	Discards			16423		
	Total landings			107402		
	Total catch			123825		
	Sp. Stock biomass			251567		
1979	Rec. 2 landings			6326	6439	6332
	Rec. 4 landings			71424	68660	63850
	Discards			14387	9886	6364
				77750	75099	70182
	Total landings Total catch			92138	84985	76546
	Sp. Stock biomass			238818	238818	238818
1980	Sp. Stock biomass			251336	261954	274657

1) See footnote to Table 5.1.A for explanation.

Table 6.9 WHITING. Sub-area IV.
Further input for simulation runs - Option A^{l})

1) See footnote to Table 5.1.A for explanation.

Age	Recommendation 4 fishery			Percent change of F_{77} in 1979					
				Runs					
	F_{77}	\bar{W}_{t}	\bar{I}_{t}	1	2	3	4	5	6
1	. 01	. 23	29.4	0	-10				
2	. 38	. 28	31.5	0	-10	-19	-64	-37 -16	-68
3	. 72	. 41	35.7	0	-10	-1	-11	-11	-46
4	. 44	. 58	41.7	0	-10	0	-1	-10	-11
5	. 43	. 71	42.9	0	-10	0	0	-10	-11
6	. 26	. 94	47.1	0	-10	0	0	-10	-10
7	. 20	1.21	51.2	0	-10	0	0	-10	-10
8+	. 15	1.44	54.3	0	-10	0	0	-10	-10
Year	Results of Simulations								
1978	Rec. 4 landings Sp. Stock biomass			11252 35609	Values identical to Run 1				
1979	Rec. 4 landings Sp. Stock biomass			10147	931224882	963324882	888624882	907324882	813724882
				24882					
1980	Sp. Stock biomass			25909	26909	26554	27493	27196	28386

1) See footnote to Table 5.1.A for explanation.

Table 6.11 WHITING. Divisions VIa+b.
Further input for simulation runs - Option $A^{\text {I }}$)

Age	Recommendation 4 fishery			Percent change of F_{77} in 1979					
	F_{77}	\bar{W}_{t}	\bar{I}_{t}	1	2	3	4	5	6
0	. 0002	. 150	26.5	0	-10	-83	-87	-85	-88
1	. 045	. 213	29.8	0	-10	-64	-83	-68	-85
2	. 57	. 241	31.1	0	-10	-59	-80	-63	-82
3	. 78	. 267	32.2	0	-10	-50	-76	-55	-78
4	. 89	. 310	33.8	0	-10	-42	-63	-48	-67
5	. 86	. 377	36.1	0	-10	-27	-48	-34	-53
6	. 83	. 471	38.9	0	-10	-8	-20	-18	-28
7	. 70	. 563	41.3	0	-10	-4	-11	-14	-20
8+	. 70	. 590		0	-10	-2	-6	-12	-15
Year	Results of Simulations								
1978	Rec. 4 landings Sp. Stock biomass			14667	Values identical to Run 1				
				30510					
1979	Rec. 4 landings Sp. Stock biomass			12702	11769 26126	749926126	464126126	687526126	422226126
				26126					
1980	Sp. Stock biomass			27994	28942	33271	36248	33916	36658

1) See footnote to Table 5.1.A for explanation.

Table 7.1 COD - Division VIa (West of Scotland).
Input length-frequency data for mesh selection analysis.

Length category (cm)	Number of fish x 10^{-3}							$\begin{aligned} & \left.\bar{x} \text { weight }{ }^{1}\right) \\ & \text { at length } \\ & (\mathrm{kg}) \end{aligned}$
	Eng7 ${ }^{3}$.	France ${ }^{4}$	Scotland ${ }^{2}$)				Ireland	
	$\begin{gathered} \& \\ \text { Wales } \end{gathered}$		$\begin{gathered} \text { Nephrops } \\ \text { traw } \end{gathered}$	Light trawl	Seine	Trawl		
25-29	1	0	1	6	9	1	0	. 208
30-34	43	0	51	209	99	15	10	. 343
35-39	75	2	80	155	92	23	82	. 527
40-44	100	22	63	120	78	28	87	. 768
45-49	110	25	70	80	65	40	43	1.072
50-54	89	32	69	72	56	52	28	1.447
55-59	80	64	61	84	66	55	42	1.901
60-64	71	132	66	84	27	52	25	2.441
65-69	74	165	35	89	16	51	24	3.076
70-74	64	167	32	53	20	54	23	3.811
75-79	52	140	32	71	31	75	25	4.655
80-84	45	82	61	31	22	66	20	5.615
85-89	36	67	2	4	1	12	14	6.699
90-94	22	9	0	0	0	0	7	7.915
95-99	13	6	0	0	0	0	2	9.269
100-104	6	0	0	0	0	0	1	10.769
105-109	2	0	0	0	0	0	0	12.423
110-114	1	0	0	0	0	0	0	14.238
115-119	<1	0	0	0	0	0	0	16.222
Total No.	884	913	623	1059	582	523	433	
Weight landed	2371	3650	70	2169	1004	2352	984	
Sum of products	2309	3367	1295	1810	886	1551	899	
$\underset{(\mathrm{mm})}{\text { Mesh size }}$	80	75	70	70	70	75	70	

1) Derived using L-W equation: $W_{(g)}=0.01 \mathrm{~L}^{3}(\mathrm{~cm})$
2) Based on mean 1973-76 frequency distribution (4 year average)
3) Based on mean 1975-77 frequency distribution (3 year average)
4) Based on 1977 data given in 3-cm groupings.

Table 7.2 HADDOCK - Division VIa (West of Scotland). Input length-frequency data for mesh selection analysis.

Leng'th category (cm)	Number of fish x 10-3							$\begin{gathered} \bar{x} \text { weight } \\ \text { at length }) \\ (\mathrm{kg}) \\ \hline \end{gathered}$
	$\begin{aligned} & \text { Engl. } \\ & \text { and } \\ & \text { Wales } \end{aligned}$	France 4)	Ireland 4)	Scotland ${ }^{2}$)				
				Nephr	ps ${ }^{\text {Light }}$ (raw1	t. Seine	Trawl	
21-22	0	0	0	0	0	<1	1	. 096
23-24	0	0	0	0	2	1	4	. 124
25-26	0	0	0	5	17	60	44	. 158
27-28	4	139	1	33	226	687	315	.198
29-30	60	786	1	66	594	1280	956	. 243
31-32	299	1248	7	77	650	1473	1796	. 295
33-34	496	1121	20	60	447	1119	2572	. 354
35-36	656	783	47	40	329	754	2809	. 420
37-38	626	674	75	36	234	508	2201	.494
39-40	621	669	70	27	208	305	1474	. 576
41-42	507	449	66	26	180	224	956	.667
43-44	421	342	53	16	133	172	669	.767
45-46	262	258	63	13	102	127	465	. 876
47-48	211	204	70	10	74	110	318	. 995
49-50	132	169	67	9	57	74	223	1.125
51-52	94	120	59	6	38	58	158	1.265
53-54	65	80	38	6	23	54	107	1.417
55-56	36	45	21	3	20	40	66	1.581
57-58	28	29	14	3	15	18	41	1.756
59-60	15	19	5	1	13	13	23	1.944
61-62	9	10	3	1	7	8	16	2.145
63-64	4	7	3	1	5	5	7	2.359
65-66	3	7	2	<1	5	2	5	2.587
67-68	2	5	1	<1	2	2	2	2.830
69-70	1	0	0	<1	1	1	1	3.087
71-72	1	0	<1	0	2	<1	1	3.359
73-74	<1	0	<1	<1	<1	0	<1	3.647
75-76	<1	0	0	0	0	0	<1	3.951
77-78	0	0	0	0	0	0	1	4.271
Total No.	4553	7164	686	439	3384	7095	15231	
Weight landed	2337	3417	616	170	1799	2416	5268	
Sum of products	2866	3706	609	211	1584	2929	7637	
$\begin{aligned} & \text { Mesh size } \\ & (\mathrm{mm}) \end{aligned}$	80	75	70	70	70	70	75	

1) Derived using L-W equation: $W_{(g)}=0.009 \mathrm{~L}^{3}(\mathrm{~cm})$
2) Based on mean 1973-76 frequency distribution (4 year average)
3) Based on mean 1975-77 frequency distribution (3 year average)
4) Based on 1977 data.

Table 7.3 WHITING - Division VIa (West of Scotland).
Input length-frequency data for mesh selection analysis.

Length category (cm)	Number of fish x 10-3					$\begin{aligned} & \overline{\mathrm{x}} \text { weight } \mathrm{l}) \\ & \text { at length } \\ & (\mathrm{kg}) \end{aligned}$
	Ireland ${ }^{2}$)	Scotland3)				
		Nephrops trawl	Light trawl	Seine	Trawl	
21-22	37	5	75	8	6	. 085
23-24	169	109	537	131	34	. 111
25-26	741	603	2253	1879	167	. 141
27-28	1823	1111	3270	5309	405	. 176
29-30	2268	1224	3176	6348	635	. 216
31-32	1784	1050	2666	4838	666	. 262
33-34	1087	665	1782	2865	594	. 314
35-36	610	393	1081	1488	460	. 373
37-38	320	245	690	748	311	. 439
39-40	160	165	404	393	207	. 512
41-42	102	100	281	180	143	. 593
43-44	41	62	100	84	83	. 681
45-46	31	30	66	37	52	. 779
47-48	15	22	47	21	29	. 885
49-50	2	10	22	5	15	1.000
51-52	0	6	9	2	8	1.125
53-54	0	4	4	1	4	1.260
55-56	0	2	1	+	1	1.405
57-58	0	$+$	1	0	$+$	$\begin{aligned} & 1.561 \\ & 1.728 \end{aligned}$
59-60	0	0	1	0	1	1.728
$\begin{array}{lll} \text { Total number } & 9 & 190 \\ \text { Weight landed } & 2 & 580 \\ \text { Sum of products } 2 & 324 \\ \text { Mesh size (mm) } & 70 \end{array}$		5806	16466	24337	3821	
		2313	3726	5873	992	
		1549	4186	6057	1251	
		70	70	70	75	

1) Derived from L-W equation: $W_{(g)}=0.008 \mathrm{~L}^{3}(\mathrm{~cm})$
2) 1977 frequency distribution
3) Based on mean 1973-76 frequency distribution (4 year average).

Table 7.4 COD - Division VIId.
Input length-frequency data for mesh selection analysis.

$\begin{gathered} \text { Length } \\ \text { category } \\ (\mathrm{cm}) \end{gathered}$	Number of fish $x 10^{-3}$ France ${ }^{2)}$	$\overline{\mathrm{x}} \underset{\underset{(\mathrm{~kg})}{\text { weight }}}{ } \text { at length }{ }^{1)}$
$\begin{gathered} 31-33 \\ 34-36 \\ 37-39 \\ 40-42 \\ 43-45 \\ 46-48 \\ 49-51 \\ 52-54 \\ 55-57 \\ 58-60 \\ 61-63 \\ 64-66 \\ 67-69 \\ 70-72 \\ 73-75 \\ 76-78 \\ 79-81 \\ 82-84 \\ 85-87 \\ 88-90 \\ 91-93 \\ 94-96 \\ 97-99 \\ 100-102 \\ 103-105 \\ 106-108 \end{gathered}$	$\begin{array}{r} 286 \\ 349 \\ 209 \\ 367 \\ 279 \\ 220 \\ 52 \\ 74 \\ 10 \\ 101 \\ 18 \\ 6 \\ 39 \\ 7 \\ 29 \\ 25 \\ 30 \\ 2 \\ 22 \\ 7 \\ 1 \\ 1 \\ + \\ + \\ + \\ + \end{array}$	$\begin{array}{r} .306 \\ .404 \\ .521 \\ .659 \\ .819 \\ 1.004 \\ 1.214 \\ 1.451 \\ 1.718 \\ 2.016 \\ 2.346 \\ 2.710 \\ 3.110 \\ 3.549 \\ 4.026 \\ 4.545 \\ 5.106 \\ 5.711 \\ 6.363 \\ 7.063 \\ 7.813 \\ 8.613 \\ 9.467 \\ 10.375 \\ 11.340 \\ 12.363 \end{array}$
Total number Weight landed Sum of products Mesh size (mm)	$\begin{array}{ll} 2 & 135 \\ 2 & 349 \\ 2 & 226 \\ & 54 \end{array}$	

1) Derived from $L-W$ equation: $W_{(g)}=0.01 \mathrm{~L}^{3.008(\mathrm{~cm})}$
2) Based on mean 1975-76 frequency distribution (2 year average).

Table 7.5 WHITING - Division VIId (English Channel).
Input length-frequency data for mesh selection analysis.

Length category (cm)	Number of fish x 10^{-3}		$\begin{aligned} & \overline{\mathrm{x}} \text { weight }{ }^{1} \\ & \text { at length } \\ & (\mathrm{kg}) \end{aligned}$	
	$\begin{aligned} & \text { United } \\ & \text { Kingdom²) } \end{aligned}$	France ${ }^{2}$)		
23-24	0	2555	. 118	
25-26	3	3725	. 152	
27-28	50	3759	. 191	
29-30	123	7420	. 237	
31-32	152	3009	. 291	
33-34	130	380	. 351	
35-36	71	1277	. 420	
37-38	39	3759	. 498	
39-40	22	1188	. 584	
41-42	11	50	. 681	
43-44	4	3	. 788	
45-46	2	2	. 905	
47-48	0	2	1.035	
49-50	0	1	1.176	
Total number	607	27130		
Weight landed	186	7242		
Sum of products	204	7497		
Mesh size (mm)	70	54		
1) Derived from L-W equation: $W_{(g)}=0.00561 \mathrm{~L}^{3.1321}(\mathrm{~cm})$ 2) Based on mean 1976-77 frequency distribution (2 year average).				

Table 7.6 COD - Division VIa (West of Scotland).
Input parameters for mesh selection analysis.

Parameters	$\begin{aligned} & \text { England } \\ & \text { and } \\ & \text { Wales } \end{aligned}$	France	Scotland				Ireland
			Nephrops trawl	Light trawl	Seine	Trawl	
Mesh size(current)	80	75	70	70	70	75	70
$\begin{aligned} & \text { Selection factor) } \\ & \text { (low) } \end{aligned}$	2.8	2.8	2.8	2.8	2.8	2.8	2.8
$\mathrm{I}_{\mathrm{c}}(50)$	22.6	21.2	19.7	19.7	19.7	21.2	19.7
L_{c} (75)	24.6	23.1	21.5	21.5	21.5	23.1	21.5
Mesh size(new)	90	90	90	90	90	90	90
$\begin{aligned} & \text { Selection factor) } \\ & \text { (low) } \end{aligned}$	2.8	2.8	2.8	2.8	2.8	2.8	2.8
$\mathrm{I}_{\mathrm{C}}(50)$	25.4	25.4	25.4	25.4	25.4	25.4	25.4
$\mathrm{L}_{\mathrm{c}}(75)$	27.7	27.7	27.7	27.7	27.7	27.7	27.7
t ${ }^{\text {P }}$. 10	. 12	. 15	. 15	. 15	. 12	. 15
Mesh size(current)	80	75	70	70	70	75	70
Selection factor (high)	3.8	3.8	3.8	3.8	3.8	3.8	3.8
$\mathrm{L}_{\mathrm{c}}(50)$	30.2	28.3	26.4	26.4	26.4	28.3	26.4
L_{c} (75)	32.9	30.8	28.8	28.8	28.8	30.8	28.8
Mesh size(new)	90	90	90	90	90	90	90
$\begin{aligned} & \text { Selection factor) } \\ & \text { (high) } \end{aligned}$	3.8	3.8	3.8	3.8	3.8	3.8	3.8
$\mathrm{L}_{\mathrm{c}}(50)$	33.9	33.9	33.9	33.9	33.9	33.9	33.9
$\mathrm{L}_{\mathrm{c}} \mathrm{C}_{\mathrm{c}}(75)$	37.0	37.0	37.0	37.0	37.0	37.0	37.0
t'	. 10	. 15	. 30	. 20	. 20	. 15	. 20

Table 7.7 HADDOCK - Division VIa (West of Scotland). Input parameters for mesh selection analysis.

Parameters	$\begin{aligned} & \text { England } \\ & \text { and } \\ & \text { Wales } \end{aligned}$	France	Ireland	Scotland			
				Nephrops trawl	Light trawl	Seine	Trawl
Mesh size (current)	80	75	70	70	70	70	75
Selection factor (low)	3.1	3.1	3.1	3.1	3.1	3.1	3.1
$\mathrm{L}_{\mathrm{c}}(50)$	24.5	23.0	21.4	21.4	21.4	21.4	23.0
L_{c} (75)	26.4	24.8	23.1	23.1	23.1	23.1	24.8
Mesh size (new)	90	90	90	90	90	90	90
Selection factor (low)	3.1	3.1	3.1	3.1	3.1	3.1	3.1
$\mathrm{I}_{\mathrm{c}}(50)$	27.5	27.5	27.5	27.5	27.5	27.5	27.5
$\mathrm{L}_{\mathrm{c}}^{\mathrm{c}}(75)$	29.7 .25	29.7 .35	29.7 .45	29.7 .45	29.7 .45	29.7 .45	29.7 .35
	. 25	. 35	. 45	. 45	. 45	. 45	- 35
Mesh size (current)	80	75	70	70	70	70	75
Selection factor (high)	3.5	3.5	3.5	3.5	3.5	3.5	3.5
$\mathrm{I}_{\mathrm{c}}(50)$	27.9	26.2	24.4	24.4	24.4	24.4	26.2
$\mathrm{I}_{\mathrm{c}}(75)$	30.2	28.5	26.4	26.4	26.4	26.4	28.5
Mesh size (new)	90	90	90	90	90 3	90 3	90 $3 \cdot 5$
Selection factor (high)	3.5	3.5	3.5	3.5	3.5	3.5	3.5
$\mathrm{L}_{\mathrm{c}}(50)$	31.4	31.4	31.4	31.4	31.4	31.4	31.4 33.9
	33.9 .30	33.9 .40	33.9 .55	33.9 .55	33.9 .55	33.9 .55	33.9 .40

Table 7.8 WHITING - Division VIa (West of Scotland). Input parameters for mesh selection analysis.

Parameters	Ireland	Scotland			
		Nephrops	Light trawl	Seine	Trawl
Mesh size (current)	70	70	70	70	75
Selection factor (low)	3.7	3.7	3.7	3.7	3.7
$\mathrm{I}_{\mathrm{c}}(50)$	25.9	25.9	25.9	25.9	27.8
L_{c} (75)	28.2	28.2	28.2	28.2	28.2
Mesh size (new)	90	90	90	90	90
Selection factor (low)	3.7	3.7	3.7	3.7	3.7
$\mathrm{L}_{\mathrm{c}}(50)$	33.3	33.3	33.3	33.3	33.3
L_{c} (75)	36.3	36.3	36.3	36.3	36.3
$t{ }^{\text {t }}$	1.15	1.15	1.15	1.15	0.65
Mesh size (current)	70	70	70	70	75
Selection factor (high)	4.0	4.0	4.0	4.0	4.0
I_{c} (50)	27.9	27.9	27.9	27.9	29.9
L_{c} (75)	30.4	30.4	30.4	30.4	32.6
Mesh size (new)	90	90	90	90	90
Selection factor (high)	4.0	4.0	4.0	4.0	4.0
$\mathrm{I}_{\mathrm{c}}(50)$	35.9	35.9	35.9	35.9	35.9
L_{c} (75)	39.1	39.1	39.1	39.1	39.1
t ${ }^{\text {t }}$	1.25	1.25	1.25	1.25	0.90

Table 7.9 COD - Division VIId. Input parameters for mesh selection analysis.

Table 7.10 WHITING - Division VIId (English Channel). Input parameters for mesh selection analysis.

Parameters	France
Mesh size (current)	54
Selection factor (low)	2.9
L_{c} (50)	15.2
L_{c} (75)	16.7
Mesh size (new)	90
Selection factor (low)	2.9
L_{c} (50)	25.4
L_{c} (75)	27.7
t	0.3
Mesh size (current)	54
Selection factor (high)	3.8
L_{c} (50)	20.4
L_{c} (75)	22.2
Mesh size (new)	90
Selection factor (high)	3.8
$\mathrm{L}_{\mathrm{c}}(50)$	33.9
$\mathrm{L}_{\mathrm{c}}(75)$	37.0
t^{\prime}	. 35

Parameters	United Kingdom	France
Mesh size (current)	70	54
Selection factor (low)	3.7	3.7
L_{c} (50)	25.9	20.0
L_{c} (75)	28.2	21.8
Mesh size (new)	90	90
Selection factor (low)	3.7	3.7
L_{c} (50)	33.3	33.3
$\mathrm{L}_{\mathrm{c}}(75)$	36.3	36.3
t'	0.4	. 675
Mesh size (current)	70	54
Selection factor (high)	4.0	4.0
L_{c} (50)	27.9	21.6
L_{c} (75)	30.4	23.5
Mesh size (new)	90	90
Selection factor (high)	4.0	4.0
$\mathrm{L}_{\mathrm{c}}(50)$	35.9	35.9
L_{c} (75)	39.1	39.1
t'	. 4	. 675

Table 7.ll Estimates (\%) of immediate losses and long-term gains in COD yield resulting from the general use of a 90 mm mesh in Division VIa.

Country	Immediate losses		Long-term gains	
	$\begin{aligned} & \text { Sel.fac. }= \\ & 2.82 \end{aligned}$	$\begin{gathered} \text { Sel.fac. }= \\ 3.77 \end{gathered}$	$\begin{gathered} \text { Ser.fac. }= \\ 2.82 \end{gathered}$	$\begin{gathered} \text { Sel.fac. }= \\ 3.77 \end{gathered}$
England \& Wales	0	0.8	$+0.2$	$+5$
France	0	0	$+0.2$	$+5$
Ireland	0	2	$+0.2$	$+4$
Scotland ${ }^{\text {I }}$	0	2	+ 0.2	+ 4
Scotland ${ }^{2}$)	0	4	+ 0.2	+ 2
Scotland 3)	0	4	+ 0.1	$+1$
Scotland 4)	0	0.4	$+0.2$	$+5$
All countries	0	0	$+0.2$	+4

1) Nephrops trawl.
2) Light trawl.
3) Seine.
4) Trawl.

Table 7.12 Estimates (\%) of immediate losses and long-term gains for HADDOCK in Division VIa.

	90 mm			
Country and gear Selection factor	Immediate losses		Long-term gains	
England and Wales	1	4	+4	+15
France	3	11	+2	+7
Ireland	1	1	+5	+18
Scotland Nephrops trawl	4	16	+1	+0.2
Light trawl	4	16	+1	+0.2
Seine	6	21	-2	-5
Trawl	2	9	+3	+8
All Countries	-	-	+2	+6

80 mm mesh

England and Wales	0	0	+1	+4
France	0.3	2	+1	+2
Ireland	0.01	0.1	+1	+4
Scotland	Nephrops trawl	1	5	-0.03
	Light trawl	1	5	-0.5
	Seine	1	6	-0.03
	-0.5	-2		
	Trawl	0.2	1	+1
	-	-	+0.4	+2

Table 7.13 Estimates (\%) of immediate losses and long-term gains for WHITING in Division VIa.

90 mm mesh size				
Country and Sea Sel Factors	Immediate losses		Long- 3.7	gains 4.0
Ireland	56	70	-2	-3
Scotland Nephropstrawl	50	65	+10	+17
Light trawl	53	67	+4	+9
Seine	58	73	-6	-10
Motor trawl	34	49	$+47$	+71
All Countries	-	-	+3	+5

80 mm mesh

Ireland		25	40	+1	-1
Scotland	Nephrops trawl	23	36	+4	+5
	Light trawl	25	38	+1	+2
	Seine	26	41	-0.2	-4
Motor trawl	10	17	+22	+36	
All Countries	-	-	+2	+2	

Table 7.14 Estimates (\%) of immediate losses and long-term gains in COD yield resulting from the general use of 80 mm and 90 mm mesh in Division VIId.

Country	Immediate losses		Long-term gains	
	Sel.fac. $=$ 2.8	Sel.fac. 3.8	Sel.fac. $=$ 2.8	Sel. $\mathrm{fac} .=$ 3.8
France	0	8	0	10
All countries	0	8	0	10

80 mm mesh size

France	0	3	0	4
All countries	0	3	0	4

Table 7.15 Estimates (\%) of immediate losses and long-term gains for WHITING in Division VIId.

90 mm mesh size

	Immediate losses$\begin{array}{l\|l} 3.7 & 4.0 \end{array}$		Long term gains$\begin{array}{l\|l} 3.7 & 4.0 \end{array}$	
England and Wales	44	62	+39	+37
France	54	67	+14	+18
All Countries	-	-	+15	+19

80 mm mesh size

England and Wales	16	29	+32	+44
France	31	45	+8	+11
All Countries	-	-	8	+12

Table 7.16 Selection factors used in the assessment.

	COD	HADDOCK	WHITING
Lower limit	$2.82^{1)}$ U.773)	$3.06^{2)}$ $\left.3.49^{2}\right)$	$3.70^{3)}$ $3.993)$

1) Bohl - Doc. C.M.1976/B:34 "Mesh selection of Baltic cod. German experiments in 1975".
2) Bohl - Doc. C.M.1975/B:24 "Preliminary results of comparative selection experiments with midwater trawls and bottom trawls in the NorthEast Atlantic".
3) Coop.Res.Rep., No.25, 1969.

Note: selection factors in 3) are calculated for polyamide, polyester, polyethylene and polypropylene.

Figure 1. North Sea COD.
Curves of yield per recruit and spawning stock biomass per recruit for:

A: present exploitation pattern
B: expected exploitation pattern with a 90 mm mesh size (selection factor $=3.77$)

Figure 3. North Sea WHITING.
Curves of yield per recruit and spawning stock biomass per recruit.

WHITING
$M=0.2$
$Y=$ yield per recruit
S = spawning stock biomass per recruit.

Figure 4. Selection ogives for $C O D, H A D D O C K$ and WHITING at 90 mm mesh size with examples of possible minimum landing sizes according to different criteria.

Figure 5. HADDOCK (excluding 1967 year class).

Figure 6. WHITING.

Figure 7. Estimates of spawning stock biomass at the beginning of the year. Estimates from VPA for $M=0.20$. For North Sea cod 4 years and older. For North Sea haddock and whiting 2 years and older.

APPENDIX

REVIEW OF FISH RESOTJRCES

The Appendix deals with cod and whiting in the English Channel and cod，haddock and whiting in Sub－areas VIII and IX。

1．ENGLISH CHANNEL COD AND WHITING
1．1 Cod
l．l．l General biology，distribution and migrations
Although cod spawn at a low intensity in the eastern English Channel it seems likely that the cod caught in the Channel mainly originate from the Southern Bight spawning。 They first appear as 0－group during December at an average length of 22 cm （range 14 to 31 cm ）in localised areas such as the Varne Bank，Bassin de Baas and in certain parts of Rye Bay，for example．It＇is possible that they migrate actively into the area from the Southern Bight when the spawning there has been particularly successful or it may be that recruitment to the Channel is dependent upon the direction and amount of residual drift through the Straits of Dover．
Most l－group cod remainiin the eastern English Channel during their first summer although some move west into ICES Division VIIe and are caught off Plymouth in July，while others move north into the deeper parts of the Straits of Dover off Ramsgate．The accepted idea is of a northwards migration of southerly fish into the central North Sea in the summer（Bedford，1966；Lefranc，1969）．This is not so，however，for 1 year old Ghảnel cod．

I．I＇．2 Exploitation and management

Exploitation proper begins to take place as early as April on the larger l－group fish and recruitment is effectively complete by July when all of them exceed 30 cm ．Exploitation in the eastern Channel continues during the autumn and there is evidence that＂Channel＂logroups are joined in December by much smaller l－group cod which have spent the summer north of $53^{\circ} \mathrm{N}$（ioe。，＂central North Sea＂fish）。
The classic view of southerly cod migrating northwards into the central North Sea in April is possibly fulfilled by those 2 year old Channel fish which lived as l－group fish in the central North Sea，but may not be ful－ filled by those which have grown up in the Channelo Tagging experiments in progress at the moment should provide confirmation of this（De Clerk， 1973）。
There is no evidence of migration of cod between the Irish Sea or Bristol Channel and the English Channel．
The growth rate of＂Channel＂cod is certainly higher than that of＂central North Sea＂cod during their first two years of lifeo The mean weight at age of cod caught in the Channel is probably between that of the ＂Channel＂cod and that of the＂central North Sea＂cod as previously defined．

Even though Channel cod grow more quickly than North Sea cod and do not mix randomly with them，it would be inappropriate to treat them as a completely separate stock for assessment purposes．

1．2 Whiting

There is a considerable United Kingdom fishery for whiting in both ICES Divisions VIId and VIIe．The fishing caught in Division VIIe are probably spawned in Division VIIe，but it is not certain where the Division VIId whiting originate。 Small 0－group whiting are found in inshore areas such as Rye Bay in the autumn．

In Division VIId the main fishery takes place east of a line between． Beachy Head and the Somme．Some of these fish are immigrants from the southern North Sea（Rout，1962）．Trawl surveys in 1976 have shown that whiting in depths shallower than 20 m rarely exceed 30 cm ．Larger fish are found principally in water deeper than 20 m 。

In Division VIIe the United Kingdom fishery takes place from Brixham and Plymouth in inshore areas where peak catch rates are obtained in July．The growth rate in Division VIIe is very much higher than that in the North Sea．Fish of a particular age in Division VIIe are approximately twice the weight of North Sea fish of the same age （Appendix Figure 1）。

As some very large whiting have been captured in the eastern Channel in recent years by research vessels，it seems likely that the growth rate of Division VIId whiting is also high．This should be resolved finally this year when recently collected data are analysed．

As with Channel cod，it is likely that the Division VIId whiting are closely associated with whiting in the North Sea and should ben． assessed with them．For management purposes，the Division VIIe popu－ lation can possibly be treated as a separate stock．

2．SUB－AREA VIII
Relatively small landings of cod，haddock and whiting are recorded from Sub－area VIII．The fish caught here all come from the northern part of the area and can be regarded as belonging to the southern part of stocks primarily located within EEC waters。

3．SUB－AREA IX
No landings of cod，haddock or whiting are recorded from Sub－area IX。

4．REFERENCES

Bedford，B C，1966．English cod tagging experiments in the North Sea。 ICES，Doc．CoMol966／G：9， 9 ppo （mimeoo）。
De Clerck，R，l973．Tagging experiments on cod off the Belgian coast． ICES，Doc．C．M．1973／F：33（mimeo。）。
Rout，D W R，1962．Some observations in the whiting of the inshore whiting fishery off Lowestoft。JoConsointoExplor。Mer，27（3）： 316－324。
Lefranc，G ，1969。 Résultats des marquages de morue effectués en novembre－décembre 1966 dans la région du Pas－de－Calais．Bull． InformoInst。Pêches marito，Scio \＆Pêche，No．182：l－7。

Lefranc，G ，1970。Biologie de la morue du sud de la Mer du Nord et de la Manche orientale。Rev．TravoInst。Pêches marit．，34（3）：277－296。

[^0]: x) General Secretary, ICES, Charlottenlund Slot, 2920 Charlottenlund, Denmark.

[^1]: ＊＊）TACs for 1978 have been agreed between Norway and the EEC for Sub－area IV。 The values are： for cod．．．． 236000 tons
 for haddock．o．o 109000 tons
 for whitingoo．o 168000 tons．

