# This Report not to be cited without prior reference to the Council ${ }^{x}$ ) 

International Council for the Exploration of the Sea
C.M. 1981/G:12

Demersal Fish Committee Ref. Pelagic Fish Committee

Copenhagen, 18.-24. March 1981

This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.

[^0]
## CONTENT

## Page

INTRODUCTION ..... 1
HERRING ..... 2
SPRAT ..... 6
COD ..... 11
HADDOCK ..... 16
WHITING ..... 17
PLAICE ..... 18
COMPOSITION OF THE BY-CATCHES IN THE PANDALUS FISHERIES ..... 23
TABLES ..... 24
FIGURES ..... 47

## 1. INTRODUCTION

### 1.1. Venue and Terms of Reference

The Working Group on Division IIIa stocks met at ICES Headquarters in the period $18-24$ March 1981 with the following terms of reference (C.Res. 1980/2:6,3):-
(i) evaluate any new data available on stock components in Division IIIa herring,
(ii) assess TACs for 1982 for cod, whiting, haddock, plaice and sprat in Division IIIa,
(iii) examine any new data available which might cast more light on the interrelations between cod and herring in Division IIIa and in the Baltic,
(iv) estimate the species composition of by-catches in the Pandalus borealis fisheries and advise on an appropriate by-catch limit.

The Working Group did not make an assessment of the herring stocks in Div. IIIa. It did, however, do some of the preparatory work necessary for an assessment which is referred to the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$.
1.2. Participation
D.S. Danielssen
O. Hagström
S.A. Iversen
F. Lamp
P. Lewy
K. Popp Madsen

E, Nielsen
R. Rosenberg
B. Sjöstrand
R.J. Wood

## Norway

Sweden
Norway
Federal Republic of Germany
Denmark
Denmark (Chairman)
Denmark
Sweden
Sweden
United Kingdom

## 2. HERRING

### 2.1. The Fisheries

The landings of herring during the last decade are given in Table 2.1. The preliminary total landings based on of ficial figures in 1980 for Div. IIIa amounted to approx. 64000 tonnes, i.e., about the same as in the previous year. However, estimates made by the WG indicated that at least 20000 tonnes should be added as unallocated landings.

These include misreported and illegal landings, by-catches in the sprat fisheries and landing of undersized herring (minimum landing size is 18 cm ). The total landing in 1980 was then calculated to about 84000 tonnes and exceeded the landings from the previous year by approx. 10000 tonnes. The recommended TAC in 1980 of 50000 tonnes was thus exceeded by almost 70 percent.

The figure of the total landings should be regarded as an underestimate of the catches as the discards at sea of small herring are not included. As no information were available, the WG suggested last year that the discards were between 4 and 10 percent of the landings. The WG agreed that an addition of 7 percent, giving a total catch of approx. 90000 tonnes, could still be an underestimate but closer to the actual catch.

### 2.2. Stock Components

### 2.2.1. Separation by Otolith and Fish Length Criteria.

Studies regarding herring stock separation in Div. IIIa have been continued at the Institute of Marine Research, Sweden, and the results summarized below are taken from a manuscript by Rosenberg and Palmén (in prep.). Samples of herring in spawning condition (mainly maturity stages VI and VII) from Div. IIIa, the North Sea and adjacent waters were characterized by their mean values of VS, $K_{2}$ and $O_{1}$ (Fig. 2.1), where $O_{1}$ is the distance between the outher margins of the first winter ring along the
length axis of the otolith (rostrum - post rostrum). From the figure it is clear that autumn spawners have higher mean values of $0_{1}(>65)$ than spring spawners (generally <61), as allready found by the herring otolith workshop held in Lysekil, Sept. 1979. Today, no autumn spawning herring of any importance to the fisheries are spawning in Div. IIIa. Four types of indigenous spring spawners were distinguished: The Skagerrak Spring Spawners, the Kattegat Spring Spawners, the Kattegat Coastal Spring Spawners and the Skagerrak Fjordic Spring Spawners. The latter stock occurs only locally and in low numbers.

Based on length measurements and with reference to meristic characters of spawning fish it was possible also to separate young herring into spring and autumn spawned fish (Fig. 2.2) and thereby estimate the proportion of indigenous young herring in Div. IIIa. The l-group herring were separated by fish length measurements and 2-group and older herring by $O_{1}$ measurements. Samples from the seventies and 1980 clearly indicated that the vast majority of 2 group and older herring originated from that area. However, a proportion of the l-group herring were autumn spawned. In the hauls taken in February 1980 during the International Young Fish Survey (IYFS) in Div. IIIa 60 percent were indigenous herring and 40 percent autumn spawned probably mainly deriving from the North Sea and its adjacent waters. In a trawl survey in the same area in September 1980 the percentage of indigenous spring spawners was 80 percent. This indicates that part of the l-group autumn spawned herring population could by then have already migrated out of the area.

The Working Group concluded that the abundance indices of l-group herring derived from the IYFS in Div. IIIa could be of much greater value if they were separated into both spring and autumn spawned components. It is clear that for herring up to the age when the first winter ring is laid down this can be achieved directly from the total length measurements of the fish. With older herring, however, the otolith mea-
surement $\left(O_{1}\right)$ must be used. In many cases $K_{2}$ and VS provided a valuable check on the validity of the separations achieved.

### 2.2.2. Additional Data on Stock Composition in 1980 from Norwegian Samples

## Skagerrak.

Samples of purse-seine-caught herring in spawning condition were obtained from the Norwegian coast in March and April. In the 6 March samples, age 3 predominated and 2 and 3 -ring fish combined made up $82 \%$ of the total age composition. Mean VS varied between 57.0 and 57.6. A sample in April had a predominance of 2-ring fish, with 2 and 3 ringers combined making up $78 \%$ of the sample. The mean VS of 56.5 was much lower than in March. Purse seine samples from the Norwegian coast in August and September included appreciable numbers of l-ring immatures and had a very wide range of mean VS from 56.3 to 57.2.

Kattegat.
Some research vessel samples taken in the Kattegat during March by pelagic trawl had a mean VS 56.0. The fish were almost entirely $l$ and $2-r i n g$ immatures. Samples for all age groups combined in November showed mean VS values of 56.4 in the northern part, and values of 56.0 - 55.8 in the rest of the Kattegat.

### 2.2.3. Separation by Muscle Fibre Counts

Greer - Walker et alia (1972) showed that the number of fibres in skeletal muscles could be used to separate components amongst the autumn spawning herring in the North Sea.

In Division IIIa immigrants from the Baltic (e.g., the Rügen spring spawner) may be abundant outside the actual spawning period. They are, however, very close to the local Kattegat spring spawners in growth rate and meristic characters. In order to try other means of separation the Danish Research Institute have initiated a pilot experiment using the counts of muscle fibres as described by Greer-Waker et alia. So far,
the best results have been obtained by tissue fixed in Bouins solution and stained with Haematoxylen-eosin. Sections are cut out to a thickness of 10. Fibre numbers counted on dorsal tissue do not appear to differ from counts made on ventral tissue from the same fish. It appears, however, that the dorsal fibres are somewhat easier to count and will hence be used in future routines.

While the counting procedure apparently can be much reduced by use of electronic scanners the preparation of the tissue is a rather tidious and time-consuming task. The pilot work will therefore be centered on developing a routine that permits a large number of sections to be prepared.
3.1. The Fishery

Table 3.1 shows the landings of sprat in Divisions IIIa and IVa East (Norwegian fiords). The landings in the latter areas were somewhat lower than in the previous years While in Division IIIa there was a considerable increase, amounting to some 20000 tonnes. As in the last three years, the Danish landings made up about $75 \%$ of the total. The 1980 fishery was supposed to be restricted by a $T A C$ of 75000 tonnes while the actual landings amounted to 102000 tonnes.

The quarterly landings in the Kattegat and the Skagerrak are shown in Table 3.2. As in 1979, the highest catches were taken in the third quarter of the year. The low figures in October-December were, however, due entirely to the closure of the Danish fishery following the exhaustion of the national quotum.

### 3.2. Stock Assessment

### 3.2.1. Age Composition

The landings in numbers at age were calculated for each quarter for the Danish landings in the period 1975-80 (Table 3.3). No data were available from the Swedish and Norwegian landings, which are assumed to contain a higher percentage of older age groups due to sorting. Consequently, the observed Danish age compositions are not applied to these.
3.2.2. Recruitment

From the Young Herring Surveys the following indices of year class strength have been derived for sprat in Division IIIa (Calculated as the geometric mean of the aritmetic means within squares):

| Yearclass |  | Index |
| :---: | :---: | :---: |
| 1971 |  | 1004 |
| 1972 | 1 | 122 |
| 1973 |  | 1324 |
| 1974 |  | 5074 |
| 1975 |  | 464 |
| 1976 | 4 | 403 |
| 1977 |  | 4253 |
| 1978 | 2423 |  |

The abundance of the 1980 year class seems to be only about half that of the strong 1979 year class. The latter year class dominated the Danish landings in 1980. Because of the closed period for the Danish fleet in the last quarter of the year, the total number landed is not quite comparable to earlier years.

### 3.2.3. Estimates of Stock_Biomass_from Acoustic_Surveys

Two estimates of sprat stock biomass in the open sea were available to the Working Group from surveys carried out in September and November 1980. Both estimates were based on a length dependent conversion factor.

The September survey was carried out by RV ARGOS using a 120 $K H z$ scientific echo sounder and a QM MK II integrator. Bjomass estimates were based on $T S_{k g}=-38.3 \mathrm{~dB}$ for herring and sprat, and a target strength four times lower was assumed for species lacking swim bladders. The value -38.3 dB had been established from a cage experiment on 23.7 cm herring (Aglen et al in prep.). Integrated echo intensities were converted to biomass using a length dependent conversion factor $\left(C_{1}\right)$ calculated as:

$$
10 \log _{10} C_{1}=-T S_{k g}-48.8-A d B
$$

Where 48.8 dB was established by calibration and the amplification Factor $A$ was 200B. The conversion factor for herring with a mean length of 23.7 cm was found to be 3 tonnes/MM. NM ${ }^{2}$. This value corresponds to
$C=0.13 \mathrm{x}$ fish length (in cm ) for herring and sprat and
$C=0.52 \mathrm{x}$ fish length (in cm ) for fish without swim bladders.

Each biomass (B) was calculated from

$$
B=\frac{K_{i} M}{\sum_{i}^{K_{i}}} \cdot Y
$$

where $K$ is the proportion by weight of species 'i' in the catch and $M$ is the mean deflection in $M M$ in area $Y$.

I November, the area was surveyed again, this time by RV JOHAN HJORT. The equipment used was a Simrad 38 KHz echo sounder working through a ceramic transducer ( $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ ) with an effective half-power beam angle of $7^{\circ}$. The TVG unit operated on a $2010 g R$ basis and the signals were integrated and processed by a "MARIUS" computer.

The observed fish echo intensities were divided into different species and age groups. The proportions, $P_{i}$, of the different categories (species and length) were calculated from trawl catch composition and fish length measurements using

$$
P_{i}=\frac{N_{i} \cdot L_{i}{ }^{2}}{\sum_{i}^{n} N_{i} \cdot L_{i}{ }^{2}}
$$

where $L_{i}$ is the mean length and $N_{i}$ the number of each category in the catches.

Biomass estimates made using a length dependent target strength were based on measurements made by Nakken and Olsen (1977).

$$
T S_{k g}=-10 \log \mathrm{~L}-25.4
$$

where $L$ is the fish length in cm
or $\frac{39 \mathrm{x} \text { L tonnes/square nautical mile }}{\text { MM deflection/nautical mile }}$ (Aglen per.com.)
The applied target strength formula fits very well with measurements made last year by Ag len and Hagström (in prep.). They found a target strength per kilo as -38.3 dB for herring of 23.7 cm in caged experiments. The applied formula for the November survey gives a target strength for this length as - 39.15 dB per kg .

From the acoustic survey carried out in September 1980, the sprat stock biomass in Division IIIa was estimated to be about 74000 tonnes, corresponding to $6317 \times 10^{6}$ individual fish in an area of approximately $11000 \mathrm{~nm}{ }^{2}$, which is about $75 \%$ of the total Division IIIa area. This may be compared with the results of the survey conducted in September 1979 when an area of $6170 \mathrm{~nm}^{2}$, or about $40 \%$, was covered. If sprat are distributed mainly in the southeastern part of the Skagerrak and in the Kattegat then the estimates in the two years may be considered comparable as these localities had equal coverage in both years. The biomass estimates and calculated age compositions are given in the texttable below:


The age composition in 1979 is considered to be less reliable than that for 1980, owing to the low level of sprat sampling during the 1979 acoustic survey.

From the results of the acoustic survey in November 1980, the sprat biomass in the open sea of Division IIIa was estimated to be 65000 tonnes, of which 13000 tonnes consisted of 0 -group sprat and 52000 tonnes of older sprat mainly 1-group.

Alternative estimates of biomass were made using a length independent target strength of -29 dB for sprat and -31 dB for herring, as proposed for the North Sea by the ICES Planning Group for Acoustic Surveys at its meeting in Aberdeen (February 1981).

Using length independent target strength reduces the biomass estimates for sprat in Division IIIa to 17000 tonnes in

September and 16000 tonnes in November. Catches of sprat amounted to 54000 tonnes in the third quarter and 16000 tonnes in the fourth quarter of 1980, but, due to the closure of the Danish fishery at the end of August, these figures do not reflect the true abundance of sprat in Division IIIa. The total sprat biomass must have been much higher than indicated by those catch statistics, moreover, there were no indications of a decline in sprat abundance from the Swedish fishery which continued until the end of the year. The acoustic biomass estimates therefore appear to be unrealistically low for sprat in Division IIIa when based on the length independent target strength. The Working Group decided to accept the values based on a lengthdependent target strength as being better estimates of sprat biomass in Division IIIa in 1980.

### 3.2.3. Management Advice

The landings from the fisheries in 1980 consisted predominantly of l-group sprat.

An estimate of the stock size of this age group for 1981 could not be made during the two acoustic surveys in the autumn of 1980 because only a minority appeared in the surveyed area as 0-group sprat at that time. The Young Fish Survey in February 1981 indicated that the l-group sprat could be of about average strength compared with the indices of the last decade. Based on this abundance index and the catch statistics, the Working Group could not find any strong reason to change the earlier proposed recommendation of a TAC of 70000 tonnes for 1981. However, for 1982 no recommendation for a TAC can be given as the yearclass 1981 is not yet born. Thus, the Working Group recommends that the strength of the 1981 year class should be assessed in early 1982 and that a precautionary TAC for 1982 be adjusted in accordance with the results.
4. COD

### 4.1. The Fisheries

Danish, Swedish and Norwegian landings from Division IIIa are reported for the Kattegat and the Skagerrak respectively. In the case of the Federal Republic of Germany, landings from Div. IIIa were split by assuming a Kattegat portion of 30 percent. (In accordance with the 1979 landings from cutters larger than 35 GRT.). For the first time since 1976 , the United Kingdom has reported landings from Division IIIa, presumably from the Skagerrak (2900 tonnes included in "others", Table 4.3).

Landings from the Kattegat decreased from about 14800 tonnes in 1979 to about 13000 tonnes in 1980 or about 1800 tonnes. (Table 4.1).

In the Skagerrak the landings increased from about 17200 tonnes in 1979 to about 27700 tonnes in 1980 (Table 4.4). Danish cod landings by quarters from the Kattegat and the Skagerrak are shown in Table 4.2 .
4.2. Stock Assessment (the Kattegat)
4.2.1. Age Distribution

Only the Danish age distribution for 1980 was available. The Danish landings at age figures are therefore raised to the total international landings for the Kattegat and the Skagerrak respectively. The 1979 figures for landings at age are revised. The age distributions are shown for the Skagerrak in Table 4.5 and for the Kattegat as input figures for the VPA (Table 4.7).
4.2.2. Weights at_Age

The average weights at age figures for 1978-1980 are given in Table 4.6. The table shows that the weight at age for the Kattegat are rather different in the three years. As it is not known whether the variation is due to biological changes or statistical errors in the weight estimation, the average for the three years available have been used in calculating the spawning stock biomass for the period 1971-1978. For 1979 and 1980 the actual average
weights at age are used.

### 4.2.3. Fishing Mortality

The natural mortality is assumed to be 0.2 for all age groups as there is no additional information which would make it possible to estimate the exchange rate between the Baltic and Div. IIIa.

The fishing mortalities for 1980 used as input values in the VPA are for each age group older than 2, assumed to be equal to the averages of the reference period 1975-77. This assumption has been made because no effort information is available.

The assumption of an unchanged level of fishing mortality should furthermore lead to a conservative estimate of the biomass.

The fishing mortality of the 2-year-old cod (yearclass 1978) is chosen so that it corresponds to 22 million l-year-old recruits, being the average recruitment for the years 1972-77 obtained from the VPA.

The 1980 landings of 13000 tonnes probably do not indicate any major decrease in effort even though the recommended TAC of 16400 tonnes was not taken, as this could be caused by the weak appearance of the 1978 year class in the 1980 landings.

The reason for maintaining the assumption of year class 1978 as being of average strength despite its weak appearance in the landings is the increase in the legal minimum landing size from 33 cm to 38 cm which Denmark introduced in her fisheries in 1979.

The mean lengths calculated from the Bertalanffy parameters: $L_{\infty}=116.07 \mathrm{~cm}, \mathrm{t}_{\mathrm{o}}=-0.02 \mathrm{yrs}$ and $\mathrm{K}=0.15$ (Bagge, pers. communication) are shown below:

| 2 | years old | 30.3 cm | average length |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.5 | $"$ | $"$ | 36.5 | $"$ | $"$ | $"$ |
| 3 | $"$ | $"$ | 42.3 | $"$ | $"$ | $"$ |
| 3.5 | $"$ | $"$ | 47.6 | $"$ | $"$ | $"$ |

Evidently the effect of the increase in minimum landing
size will be the removal from the landings of a major part of fish less than 3 years of age.

As Sweden did not increase the minimum landing size and as the Danish age composition was applied also to the Swedish landings, the calculated number of 2 -year-old fish caught is likely to be an underestimate.

The fishing mortality of the $2-g r o u p$ could also be underestimated possibly even more so as the increase in legal size could lead to an increase in discards. The Working Group had, however, no means by which to assess such effects.
4.2.4. Results of the VPA

The results are shown in Tables $4.7,4.8$ and 4.9.
The spawning stock biomass calculated from the VPA is for the period 1971-78 based on mean weights at age averaged for the years 1978-80.

This is a revision compared with last year's biomass calculations, where weights at age data for 1979 only were used. The development of the spawning stock biomass is shown in the Table below:
$\left.\begin{array}{cc|cc}\hline \text { Year } & \begin{array}{c}\text { Spawning stock } \\ \text { biomass } \\ (\text { age } \geq 3)\end{array} & \text { Year } & \begin{array}{c}\text { Spawning stock } \\ \text { biomass }(\text { age } \geq 3)\end{array} \\ \hline 1971 & 31521 & 1976 & 32121 \\ 1972 & 37807 & 1977 & 33416 \\ 1973 & 38 & 355 & 1978 \\ 1974 & 36 & 697 & 1979\end{array}\right)$

### 4.3. Prognosis for Cod in the Kattegat.

### 4.3.1. Recruitment

The abundance index for l-group cod from IYFS 1981 is estimated at 18.4 very close to the average (14.9) of the previous years, excluding the very high 1980 figure. As the correlation between the VPA and the abundance index is very poor (Table 4.10) the recruitment in 1981 is assumed to be the VPA mean of the year classes 197l-76, i.e., 22 million l-year-
old fish.
The 1979 yearclass will be of major importance to the fishery in 1982. In last year report it was assumed at 50 million l-groups because of the very high abundance index obtained from the International Young Fish Survey in 1980. There were other indications that this yearclass is good, i.e. above average, but it has not been possible to quantify its absolute strength.

As this appears to be the most decisive component of the prognosis and because of the poor correlation between abundance indices and VPA figures the Working Group agreed to run two options: One assuming yearclass 1979 at average strength (22 mill. l-year olds) and another using last years assumption of yearclass 1979 being about twice as strong.
4.3.2. Weight at age

Danish gutted mean weights at age for 1980 , raised by a factor 1.18 , were used in the prognosis (Table 4.6).

### 4.3.3. Fishing Pattern

The exploitation pattern used as input in the VPA are used in the prognoses. It is assumed, that to take the TAC of 16400 tonnes in 1981, will not lead to significant changes in the fishing mortality relative to 1980.
4.3.4. Results

The input data for the prognosis are given in Table 4.11 while the calculated landings in 1982 and spawning stock biomass in 1983 for an array of values of $\mathrm{F}_{82} / \mathrm{F}_{80}$ are shown in Table 4.12 and in Figures 4.1 and 4.2 .

The difference between the results of the two options illustrates very clearly, that a reasonable forecast of the catch possibilities are not feasible without reliable estimates of the strength of recruiting yearclasses.

### 4.4. Cod in the Skagerrak.

4.4.1. The Fishery (Table 4.4)

The 1980 landings increased from last year's figure of 17200 tonnes to about 27700 tonnes, the highest total in the period 1971-80. The increase is due both to higher Danish landings and landings of 3000 tonnes from the United Kingdom, which had not reported any from Division IIIa during the previous 5 years.

The Norwegian landings consist mainly of local coastal stocks, while about 500 tonnes come from the open sea fishery, but could not be separated into North Sea and Skagerrak landings.
4.4.2. Age Distribution

Age distributions are only available for 1978-80 and are entirely based on Danish data given in Table 4.5.

Because of the short period in which catch data are established and because no other vital parameters of the fisheries can be estimated, the Working Group felt that no factual management advice could be given.

## 5. HADDOCK

### 5.1. Landings

Table 5.1 shows the landings for the period 1971-80. Even though the landings of some countries could not be divided between Sub-area IV and Division IIIa in the first half of the seventies and consequently are not included in the total landings for IIIa, it is reasonable to assume that they increased gradually until 1976-77 when the total landings amounted to 9 - 10000 tonnes. The landings dropped again in 1978, and in 1979 they were about half of the 1976-77 level. The TAC for 1979 was set to 9000 tonnes, the decrease must therefore be explained by a reduction in the availability. In 1980, however, the landings were about 1000 tonnes above the TAC (6 600 tonnes).

### 5.2. Prognosis

There were no data available from the Danish landings in 1980. Due to the lack of a data base the Working Group felt that it would not be appropriate to suggest a TAC for 1982.

## 6. WHITING

### 6.1. Landings

The landings are shown in Table 6.1. Prior to 1975, it was not possible to split the Swedish landings into Divisions IVa and IIIa. Since 1975, however, the Danish landings contributed more than $90 \%$, and therefore the Danish landings can be assumed to give a fairly precise picture of the development during the whole period.

From a peak of about 29000 tonnes in 1974, the landings decreased to a level of 19000 tonnes in 1975-76. A sharp increase to 48000 tonnes took place in l978, followed by a decline in 1979 to 18000 tonnes. This was mainly due to a closure of the fishery in the period 17-31 March immediately followed by a ban on directed fishing for whiting for industrial purposes. In 1980, the landings increased to more than 22000 tonnes as a dispensation from the ban was given in part of that year.

### 6.2. Stock Assessment

As in the previous years there were no data available to the WG which could permit a proper assessment to be made. The Swedish participation in the IYFS, rendered an index of recruitment strength which are shown below together with those of earlier cruises (calculated as the arithmetic mean of the arithmetic means within squares);

| Year class | Whiting <br> $<20 \mathrm{~cm}$ |
| :---: | :---: |
| 1976 | 134 |
| 1977 | 497 |
| 1978 | 592 |
| 1979 | 945 |
| 1980 | 669 |

The 1980 year class appears to be a good one, though not as strong as that of 1979. The distribution pattern of the lgroup was more or less the same as for the 1979 year class. The $W G$ felt that in want of any relevant biological data it was not able to indicate a TAC for 1982.

## 7. Plaice.

### 7.1. The Fisheries

7.1.1. Landings from the Kattegat.

Only Denmark and Sweden provided catch data for the
Kattegat and the Skagerrak respectively. The very small landings by the Federal Republic of Germany (below 50 tonnes) have been omitted from Table 7.l, which only shows the Danish and Swedish landings in the Kattegat.

The Danish landings declined sharply in 1980 and have not been at such a low level since 1966 .

The pronounced decline in the catch is not only caused by the closed fishery during weekends. The fishermen have reported that it was very difficult to catch plaice in 1980 especially in the southern part of the Kattegat.

Table 7.3 shows the Danish landings by quarters, where the decrease in the 1980 catch can also be seen. The decline is apparent in all four quarters.

### 7.1.2. The Skagerrak.

In the last two years, Danish landings have shown a declining tendency. In 1980 , they only reached about $70 \%$ of the peak landings in 1978. Other reasons than potential effort restrictions caused by the closed weekends are not known.

The total landings from Division IIIa, showing Danish, Swedish and other countries' landing are included in Table 7.2. In 1980 , the figure for "others", contributed by Federal Republic of Germany, United Kingdom and Norway is rather low. Belgium and the Netherlands provided no information.

### 7.2. VPA in the Kattegat

7.2.1. Age Distribution

The age compositions as numbers landed per age group are given in table 7.5 (input to VPA). The data are based only on Danish sampling. The Danish landings were raised to the total landings in the Kattegat.

Comparing the last 3 years (1978-80) with the previous time period, it appears that a change in age composition has taken place. The importance of 2 and 3 years old fish in the recent landings have been reduced, while that of 5 and 6 years old plaice have increased both in relative and absolute terms. This could be the result of a change in the exploitation pattern but there is no information in support of that. Another reason could be, that a sequence of relatively good yearclasses is followed by 3 decidedly weak ones, i.e. yearclasses 1976, 1977 and 1978. The apparant change after 1977 is concommitant with a change in the Danish sampling system. At present, however, it is not possible to explain, how an intensified and more efficient sampling could result in a change in the age composition as radical as the one observed.

The Working Group therefore concluded that recruitment in recent years have been below average.

There are no estimate of yearclass strength in plaice based on surveys. A series of such were unfortunately stopped in 1973 and only resumed in 1980. A correlation between the early data and the strength of l-group calculated by VPA as shown below gives a correlation koefficient of 0.89 .

```
1-group (VPA)
    1968 68.3 74
    1969 49.1 33
    1970 44.8 53
    1971 17.7 18
    1972 56.8 62
    27.9 37
```

    1973
    1980
    The intercept of the regression line (VPA on abundance) is, however, so large as to render the regression almost useless for predicting the strength of the 1979 yearclass.

The abundance index shows, however, that the yearclass must be anticipated as being well below average.

From the catch data available the Working Group thought it unrealistic to assume the average strength of 50 million I-group plaice in case of the recent yearclasses. The Working Group agreed instead upon the following assumptions:

| Yearclass | 1977 | 12.5 | millions |
| :---: | :---: | :---: | :---: |
| " | 1978 | 25 | $"$ |
| " | 1979 | 25 | $"$ |
| $"$ | 1980 | 25 | $"$ |

### 7.2.2. Weight at Age Data

Danish mean weights at age data were available for 1978, 1979 and 1980 (Table 7.4).

The Working Group decided to use the means of 1978-1980 as input weights for the period $1968-77$ and to use the actual weight data for 1978,1979 and 1980 respectively.

### 7.2.3. Fishing Mortalities

No effort data are available for the Kattegat area by Which an estimate of the level af $F$ in 1980 could be obtained. Average $F$ at age based on 1972-76 values by a trial VPA run were used as input figures for fish older than 3-years while fishing mortalities for the younger age groups were fitted to produce the yearclass strength shown above (Table 7.6). Natural mortality was assumed at $M=0.1$.

### 7.3. Prognosis

### 7.3.1. The Kattegat

The landings in 1982 and the spawning stock as at 1. January 1983 were calculated for several values of $F$ in 1982 and on the following assumptions:
(i) The exploitation pattern in 1981-82 will be the same as assumed for 1980.
(ii) The fishing mortalities in 1981 will be the same as in 1980. This means that the TAC in 1981 will not be taken. To do so would require an unrealistic increase in the fishing effort.
(iii) Recruitment of recent yearclasses will only be half the average strength (see 7.2.2). This is perhaps the most critical of the assumptions made and the Working Group wants to stress the uncertainty of the entire assessment caused by the lack of knowledge concerning the recruitment. For this reason it also thoughtit pointless to give other options based on various assumptions about the strength of recent yearclasses.
(iv) Mean weights at age for 1980 were applied in the prognosis, the results of which are shown in Figure 7.l and in the texttable below:

Calculated landings in 1982

Spawning biomass 1983


| .2 | 1241 | 25463 |
| :--- | :--- | :--- |
| .4 | 2357 | 24314 |
| .6 | 3362 | 23280 |
| .8 | 4270 | 22348 |
| 1.0 | 5092 | 21505 |
| 1.2 | 5838 | 20741 |
| 1.4 | 6518 | 20047 |
| 1.8 | 7706 | 18838 |

### 7.3.2. The Skagerrak

Since 1978, Denmark has provided data on landings in numbers from the Skagerrak.

Although the age groups 4 and 5 still form the major components of the landings in 1980 the proportion of fish older than 6 years was substantially higher than in the previous years.

The Working Group felt that without any adequate data base available it could not give any management advice on the plaice in the skagerrak.
8. COMPOSITION OF THE BY-CATCHES IN THE PANDALUS FISHERIES

Data on species composition in the Danish and Swedish Pandalus fisheries were presented to the Working Group.

The Danish data comprise the species composition of landings sampled in the harbours of Skagen, Hirtshals and Hanstholm during the period 1973-77 (Table 8.1). The proportions of cod, haddock, whiting and Nephrops landed for human consumption are specified. The amounts of these species included in landings for industrial purposes are not given.

Catch composition in the Swedish Pandalus fishery were obtained from a number of selected vessels (about $10 \%$ of the fleet) delivering daily catch reports during 1976-80. The figures given refer to catches irrespective of their use. Discards are included (Table 8.2).

The "unspecified" portion in both data sets is dominated by species such as Norway pout, blue whiting, grenadier, Argentina sp., rays, skates and sharks.

The data show that the catches of protected fish species are small in the Pandalus fisheries.

No single species exceeds $10 \%$ by weight on a yearly basis. Most species make up less than $5 \%$ each of the total catch. The data presented to the Working Group were not sufficiently specific to allow an analysis of the seasonal and area variations in the catch composition of the Pandalus fisheries. Advice on an appropriate by-catch percentage for single landings must consequently await a more detailed analysis of the basic data which were not presented to the Working Group.

Table 2.1 HERRING in Division IIIa. Landings in tonnes 1971-80.
(Data mainly provided by Working Group members)

|  | Country/Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | $1980{ }^{\text {x }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Denmark | 26985 | 34900 | 42098 | 35732 | 29997 | 7326 | 19889 | 6425 | 5253 | 5180 |
|  | Faroe Islands | 5636 | 4115 | 5265 | 7132 | 8053 | 1553 | 10064 | I 041 | 817 | 526 |
|  | Germany, Fed.Rep. |  | - | - | 36 | 108 | 6 | 32 | 28 | 181 | - |
|  | Iceland | 3066 | 7317 | 15938 | 231 | 1209 | 123 | - | - | - | - |
|  | Norway (Open Sea) | 6120 | 1045 | 836 | 698 | 196 | - | - | 1860 | 2460 | I 350 |
|  | Norway (Fjords) | 3166 | 4222 | 1680 | 1720 | 1459 | 2304 | 1837 | 2271 | 2259 | 2795 |
|  | Sweden | 19763 | 19644 | 20429 | 11683 | 12348 | 6505 | 8109 | 11551 | 8104 | 10701 |
|  | Total | 64736 | 71243 | 86246 | 57232 | 53370 | 17817 | 39931 | 23176 | 18974 | 20552 |
| $\begin{aligned} & \text { Ey } \\ & \text { 気 } \\ & \text { 思 } \\ & \text { E } \\ & \text { B } \end{aligned}$ | Denmark | 50177 | 52755 | 78125 | 54540 | 48974 | 41749 | 38205 | 29241 | 21337 | 25380 |
|  | Sweden | 49760 | 39972 | 40418 | 39779 | 23769 | 30263 | 37160 | 35193 | 25272 | 18260 |
|  | Total | 99937 | 92727 | 118543 | 94319 | 72743 | 72012 | 75365 | 64434 | 46609 | 43640 |
| Division IIIa Total |  | 164673 | 163970 | 204789 | 151551 | 126113 | 89829 | 115296 | 87610 | 65583 | 64192 |
| Unallocated |  |  |  |  |  |  |  |  |  | 8117 | $20 \quad 053$ |
| GRAND TOTAL |  |  |  |  |  |  |  |  |  | 73700 | 84245 |

x) Preliminary

Table 3.1. Landings of SPRAT in Division IIIa and in Norwegian fjords in Division IVa (10 ${ }^{-3}$ tonnes). (Data provided by Working Group members)

| Year | SKAGERRAK |  |  |  | KATTEGAT |  |  | $\begin{array}{r} \text { IIIa } \\ \text { total } \end{array}$ | Norwegian fjords south of $62^{\circ} \mathrm{N}$ | Grand total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Denmark | Sweden | Norway | Total | Denmark | Sweden | Total |  |  |  |
| 1969 | 0.8 | 1.9 | 1.7 | 4.4 | 0.8 | 1.6 | 2.4 | 6.8 | 11.8 | 18.6 |
| 1970 | 1.1 | 2.4 | 2.4 | 5.9 | 3.1 | 6.0 | 9.1 | 15.0 | 6.4 | 21.4 |
| 1971 | 0.7 | 2.4 | 2.9 | 6.0 | 1.5 | 9.6 | 11.1 | 17.1 | 4.4 | 21.5 |
| 1972 | 0.8 | 3.3 | 2.4 | 6.5 | 1.4 | 17.9 | 19.3 | 25.8 | 6.9 | 32.7 |
| 1973 | 19.4 | 2.5 | 3.2 | 25.1 | 19.3 | 16.2 | 35.5 | 60.6 | 8.8 | 69.4 |
| 1974 | 17.3 | 2.0 | 1.2 | 20.5 | 31.6 | 18.6 | 50.2 | 70.7 | 3.3 | 74.0 |
| 1975 | 14.9 | 2.1 | 1.9 | 18.9 | 69.7 | 20.9 | 90.6 | 109.5 | 2.9 | 112.4 |
| 1976 | 12.8 | 2.6 | 2.0 | 17.4 | 30.4 | 13.5 | 43.9 | 61.3 | 0.6 | 61.9 |
| 1977 | 7.2 | 2.2 | 1.2 | 10.6 | 53.3 | 9.8 | 63.1 | 73.7 | 5.4 | 79.1 |
| 1978 | 23.1 | 2.2 | 2.7 | 28.0 | 36.1 | 9.4 | 45.5 | 73.5 | 5.2 | 78.7 |
| 1979 | 17.3 | 8.1 | 1.8 | 27.2 | 45.8 | 6.4 | 52.2 | 79.4 | 5.0 | 84.4 |
| 1980 | 43.1 | - | 3.4 | 46.5 | 35.8 | - | 35.8 | $102.4{ }^{\text {x }}$ ) | 2.9 | 105.3 |

x) Sweden: 20124 tonnes in Div. IIIa。 No allocation on the Skagerrak and the Kattegat possible.

Table 3. 2. Landings of sprat in Division IIIa by quarters (tons) (Norwegian fiords in Div. IV not included).

| Year | Months | Kattegat | Skagerrak | Total |
| :---: | :---: | :---: | :---: | :---: |
| 1975 | Jan-Mar | 6569 | 2316 | 8885 |
|  | Apr-Jun | 11610 | 450 | 12060 |
|  | Jul-Sep | 53347 | 7976 | 61323 |
|  | Oct-Dec | 19541 | 8248 | 27789 |
|  | Total | 91067 | 18990 | 110057 |
| 1976 | Jan-Mar | 9462 | 913 | 10375 |
|  | Apr-Jun | 4867 | 997 | 5864 |
|  | Jul-Sep | 18070 | 5493 | 23563 |
|  | Oct-Dec | 10253 | 10001 | 20254 |
|  | Total | 42652 | 17404 | 60056 |
| 1977 | Jan-Mar | 9340 | 1507 | 10847 |
|  | Apr-Jun | 10499 | 189 | 10688 |
|  | Jul-Sep | 24217 | 2808 | 27025 |
|  | Oct-Dec | 18938 | 6067 | 25005 |
|  | Total | 62994 | 10571 | 73565 |
| 1978 | Jan-Mar | 13139 | 2899 | 16038 |
|  | Apr-Jun | 7949 | 6313 | 14262 |
|  | Jul-Sep | 18511 | 15175 | 33686 |
|  | Oct-Dec | 6757 | 4398 | 11155 |
|  | Total | 46356 | 28785 | 75141 |
| 1979 | Jan-Mar | 8848 | 2817 | 11665 |
|  | Apr-Jun | 5549 | 1042 | 6591 |
|  | Jul-Sep | 25898 | 8053 | 33951 |
|  | Oct-Dec | 11922 | 15218 | 27140 |
|  | Total | 52217 | 27130 | 79347 |
| $1980^{\text {x }}$ | Jan-Mar | 10312 | 2345 | 16992 |
|  | Apr-Jun | 8078 | 7012 | 15385 |
|  | Jul-Sep | 15010 | 31421 | 54072 |
|  | Oct-Dec | 2351 | 5775 | 15979 |
|  | Total | 35751 | 46553 | 102428 |

x) Swedish landings 1980 only included in total.

Table 3. 3. Danish landings of sprat ir vision IIIa in numbers at age $\left(x 10^{-6}\right)$.

| Year | Months | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 | Jan-Mar <br> Apr-Jun <br> Jul-Sep <br> Oct-Dec | $\begin{array}{r} 32.81 \\ 139.22 \\ \hline \end{array}$ | $\begin{array}{r} 435.86 \\ 230.75 \\ 5979.74 \\ 985.73 \\ \hline \end{array}$ | $\begin{array}{r} 200.44 \\ 398.91 \\ 527.61 \\ 54.32 \\ \hline \end{array}$ | $\begin{array}{r} 56.28 \\ 146.51 \\ 50.92 \\ 0.68 \\ \hline \end{array}$ | $\begin{aligned} & 2.46 \\ & 0.16 \\ & 0.34 \end{aligned}$ |  |
|  | Total | 172.03 | 7632.08 | 1181.28 | 254.39 | 2.96 |  |
| 1976 | $\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$ | $\begin{aligned} & 509.96 \\ & 918.64 \\ & \hline \end{aligned}$ | $\begin{array}{r} 336.00 \\ 556.41 \\ 2334.72 \\ 1 \quad 084.09 \\ \hline \end{array}$ | $\begin{array}{r} 164.95 \\ 57.07 \\ 171.39 \\ 23.24 \end{array}$ | $\begin{array}{r} 9.11 \\ 27.38 \\ 16.80 \\ 0.55 \\ \hline \end{array}$ | $\begin{aligned} & 1.23 \\ & 0.91 \\ & 2.21 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 0.11 \end{aligned}$ |
|  | Total | 1428.60 | 4311.22 | 416.65 | 53.84 | 4.35 | 0.76 |
| 1977 | $\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$ | $\begin{array}{r} 725.13 \\ 1 \quad 948.34 \\ \hline \end{array}$ | $\begin{array}{ll} 2 & 515.11 \\ 2 & 177.51 \\ 2 & 185.47 \\ & 813.86 \\ \hline \end{array}$ | $\begin{aligned} & 408.99 \\ & 483.23 \\ & 208.70 \\ & 142.90 \\ & \hline \end{aligned}$ | $\begin{array}{r} 11.29 \\ 20.70 \\ 30.26 \\ 0.79 \\ \hline \end{array}$ | $\begin{aligned} & 3.37 \\ & 7.42 \end{aligned}$ | 1.21 |
|  | Total | 2673.47 | 7691.95 | I 243.82 | 63.04 | 10.79 | 1.21 |
| 1978 | Jan-Mar <br> Apr-Jun Jul-Sep <br> Oct-Dec | $\begin{array}{r} 23.99 \\ 261.12 \\ \hline \end{array}$ | 4 376.51 <br> 5 004.51 <br> 3 987.97 <br>  262.21 | $\begin{array}{r} 203.89 \\ 33.18 \\ 61.57 \\ 16.70 \\ \hline \end{array}$ | $\begin{array}{r} 12.52 \\ 3.57 \\ 14.70 \\ 0.84 \\ \hline \end{array}$ | 0.70 |  |
|  | Total | 285.11 | 13631.20 | 315.34 | 31.63 | 0.70 |  |
| 1979 | $\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Okt-Dec } \end{aligned}$ | $\begin{aligned} & 690.32 \\ & 260.04 \\ & \hline \end{aligned}$ |  | $\begin{array}{r} 426.69 \\ 239.49 \\ 7.37 \\ 22.45 \\ \hline \end{array}$ | $\begin{array}{r} 60.68 \\ 2.39 \\ 1.59 \\ 2.51 \\ \hline \end{array}$ | $1.92$ | $\begin{gathered} 1.94 \\ - \\ 1.99 \\ 3.13 \\ \hline \end{gathered}$ |
|  | Total | 950.38 | 6897.67 | 696.00 | 67.37 | 1.92 | 7.06 |
| 1980 | $\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \\ & \text { Jul-Sep } \\ & \text { Oct-Dec } \end{aligned}$ | $\begin{aligned} & 407.17 \\ & 413.46 \end{aligned}$ | $\begin{array}{ll} 1 & 161.54 \\ 5 & 155.16 \\ 6 & 306.95 \\ & 671.10 \end{array}$ | $\begin{array}{r} 748.60 \\ 421.79 \\ 68.40 \\ 5.65 \end{array}$ | $\begin{array}{r} 25.02 \\ 3.66 \\ 14.86 \end{array}$ | 0.73 |  |
|  | Total | 820.63 | 13294.75 | 1244.44 | 43.54 | 0.73 |  |

Table 4.1. COD landings from the Kattegat 1971-80 (tonnes).

| Year | Denmark | Sweden | Germany, <br> Fed. Rep. of | Total |
| :---: | :---: | :---: | :---: | :---: |
| 1971 | 11748 | 3962 | 22 | 15732 |
| 1972 | 13451 | 3957 | 34 | 17442 |
| 1973 | 14913 | 3850 | 74 | 18837 |
| 1974 | 17043 | 4717 | 120 | 21880 |
| 1975 | 11749 | 3642 | 94 | 15485 |
| 1976 | 12986 | 3242 | 47 | 16275 |
| 1977 | 16668 | 3400 | 51 | 20119 |
| 1978 | 10293 | 2893 | 204 | 13390 |
| 1979 | 11045 | 3763 | 22 | 14830 |
| 1980 | 9219 | 3780 | 38 | 13037 |

I) Landing statistics incompletely split on the Kattegat and the Skagerrak. The figures are estimated by the Working Group.

Table 4.2. Danish landings of COD by quarters (tonnes).

| Kattegat 1973-80 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 |
| Jan-Mar | 8229 | 10038 | 5824 | 7010 | 10899 | 5949 | 6839 | 6303 |
| Apr-Jun | 2391 | 2331 | 2650 | 2093 | 1960 | 1822 | 1996 | 1030 |
| Jul-Sep | 1619 | 1706 | 1426 | 1433 | 1629 | 886 | 636 | 707 |
| Oct-Dec | 2663 | 2967 | 1848 | 2450 | 2180 | 1636 | 1574 | 1179 |
| Total | 14902 | 17042 | 11748 | 12986 | 16668 | 10293 | 11045 | 9219 |
| Skagerrak 1973-80 |  |  |  |  |  |  |  |  |
| Jan-Mar | 1837 | 1829 | 3752 | 4452 | 4941 | 3848 | 3963 | 5407 |
| Apr-Jun | 1970 | 1598 | 3932 | 4124 | 4071 | 5671 | 5143 | 5242 |
| Jul-Sep | 1487 | 1246 | 3335 | 4856 | 4472 | 5873 | 2244 | 5252 |
| Oct-Dec | 1382 | 2021 | 3151 | 5415 | 5134 | 8222 | 2657 | 5430 |
| Total | 6676 | 6694 | 14170 | 18847 | 18618 | 23614 | 14007 | 21331 |

29. 

Table 4.3. COD landings from Division IIIa - Kattegat and Skagerrak.
(Danish and Swedish landings from national sources, other countries from Bulletin Statistique)

| Year | Denmark | Norway | Sweden | Others | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 | 17662 | 1355 | 6002 | 35 | 25054 |
| 1972 | 20410 | 1201 | 5882 | 56 | 27549 |
| 1973 | 21586 | 1253 | 5540 | 101 | 28480 |
| 1974 | 23737 | 1197 | 6097 | 212 | 31243 |
| 1975 | 25920 | 1190 | 4559 | 146 | 31815 |
| 1976 | 31833 | 1241 | 4115 | 513 | 37702 |
| 1977 | 35286 | 979 | 3960 | 726 | 40951 |
| 1978 | 33907 | 1442 | 3485 | 464 | 39298 |
| 1979 | 25052 | 1745 | 5042 | 235 | 32074 |
| 1980 | 30550 | 1820 | 5319 | 3032 | 40721 |

x) Mainly landings from Norwegian fiords

Table 4.4 COD landings from the Skagerrak 1971-80.

| Year | Denmark | Sweden | Norway | Others | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 | 5914 | 2040 | 1355 | 13 | 9322 |
| 1972 | 6959 | 1925 | 1201 | 22 | 10107 |
| 1973 | 6673 | 1690 | 1253 | 27 | 9643 |
| 1974 | 6694 | 1380 | 1197 | 92 | 9363 |
| 1975 | 14171 | 917 | 1190 | 52 | 16330 |
| 1976 | 18847 | 873 | 1241 | 466 | 21427 |
| 1977 | 18618 | 560 | 979 | 675 | 20832 |
| 1978 | 23614 | 592 | 1442 | 260 | 25908 |
| 1979 | 14007 | 1279 | 1745 | 213 | 17244 |
| 1980 | 21331 | 1539 | 1820 | 2994 | 27684 |

x) Mainly landings from Norwegian fiords

Table 4.5 COD in the Skagerrak. Total international landings in numbers in 1978-80 (x $10^{-3}$ ). (Including Norwegian fiord cod)

| Age | 1978 | 1979 | 1980 |
| :---: | ---: | ---: | ---: |
| 1 | 4593 | 481 | 1129 |
| 2 | 11833 | 4812 | 6956 |
| 3 | 3059 | 3289 | 5428 |
| 4 | 821 | 534 | 2009 |
| 5 | 193 | 225 | 401 |
| 6 | 176 | 38 | 108 |
| 7 | 47 | 37 | 99 |
| $8+$ | 55 | 31 | 13 |
| Total | 20777 | 9447 | 16143 |
| Catch in | 25908 | 17244 | 27684 |

Table 4.6 Average weights at age. COD in the Kattegat and the Skagerrak 1978-1980. (grammes)

| AGE | KATTEGAT |  |  |  | SKAGERRAK |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1978 | 1979 | 1980 | avg. 78-80 | 1979 | 1980 |
| 0 |  |  |  |  |  |  |
| 1 | $716^{1)}$ | 708 | 723 | 716 | 599 | 743 |
| 2 | $830^{1)}$ | 868 | 791 | 830 | 860 | 1146 |
| 3 | 1170 | 1086 | 937 | 1064 | 1894 | 1542 |
| 4 | 1690 | 1890 | 1431 | 1670 | 3498 | 3308 |
| 5 | 2860 | 2215 | 2436 | 2504 | 5510 | 4825 |
| 6 | 4120 | 3382 | 3154 | 3552 | 7093 | 8855 |
| 7 | 5180 | 7314 | 3533 | 5342 | 7304 | 8287 |
| $8+$ | 6900 | 6101 | 6835 | 6612 | 9888 | 11343 |

1) average of 1979 and 1980

UNIT: THOUSANDS

|  | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 15049 | 38 | 5 | 591 | 188 | 166 | 1 | 88 | 213 |
| 2 | 7937 | 3811 | 623 | 4250 | 3610 | 4431 | 2218 | 6015 | 3161 |
| 3 | 6936 | 6422 | 2167 | 6943 | 2906 | 6983 | 7078 | 2551 | 0116 |
| 4 | 1918 | 2427 | 3954 | 4543 | 3251 | 1835 | 4942 | 2100 | 991 |
| 5 | 887 | 809 | 2280 | 1538 | 661 | 1039 | 492 | 913 | 1039 |
| 6 | 207 | 433 | 780 | 349 | 429 | 287 | $3 / 6$ | 83 | 230 |
| 7 | 30 | 94 | 212 | 68 | 47 | 189 | 137 | 99 | 11 |
| $8+$ | 30 | 38 | 160 | 31 | 19 | 52 | 102 | 71 | 47 |
| TOTAL | 32994 | 14072 | 10181 | 18313 | 11111 | 14982 | 15346 | 11920 | 11808 |

Table 4.8. Cod in the Kattegat. Fishing Mortality.


|  | 1980 |  |
| ---: | ---: | ---: |
|  |  |  |
|  |  |  |
| 2 | 0.007 |  |
| 3 | 0.070 |  |
| 4 | 0.800 |  |
| 5 | 1.100 |  |
|  | 6 | 0.800 |
| 7 | 0.800 |  |
| mean $F(3-8) . W$ | 0.800 |  |

Table 4.9. Cod in the Kattegat. Stock in numbers

|  | 1971 | 1972 | 1973 | 1974 | 1975 | 1.976 | 1977 | 1.978 | 197.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 37411 | 22887 | 15532 | 30269 | 20321 | 10580 | 27344 | 21161 | 2261.4 |
| 2 | 28806 | 17164 | $18 \% 04$ | 12712 | 24249 | 2.1380 | 8512 | 22386 | $1 / 246$ |
| 3 | 15359 | 164.57 | 10026 | 14751 | 0597 | 16602 | 13519 | 4977 | 12926 |
| 4 | 4634 | 6379 | 7726 | 6751 | 5879 | 2805 | 7348 | 4762 | 180.1 |
| 5 | 1982 | 2079 | 3050 | 280.1 | 1508 | 1920 | 6.71 | 1644 | 2022 |
| 6 | 453 | 830 | 978 | 490 | 924 | 644 | 647 | 116 | 536 |
| 7 | 73 | 186 | 2.94 | 117 | 93 | 374 | 271 | 196 | 22 |
| 8+ | 73 | 75 | 222 | 53 | 38 | 103 | 202 | 140 | 93 |
| TOTAL | 88790 | 66057 | 57131 | 67944 | 65609 | 54407 | 58514 | 55383 | 57257 |
| SFAWN. ST. $(\geq 3)$ | 22573 | 26006 | 22895 | 24962 | 15040 | 22448 | 22658 | 11835 | 17398 |
|  | 1980 |  |  |  |  |  |  |  |  |
| 1 | 22774 |  |  |  |  |  |  |  |  |
| 2 | 18322 |  |  |  |  |  |  |  |  |
| 3 | 11275 |  |  |  |  |  |  |  |  |
| 4 | 5.1 .24 |  |  |  |  |  |  |  |  |
| 5 | 592 |  |  |  |  |  |  |  |  |
| 6 | 730 |  |  |  |  |  |  |  |  |
| 7 | 231 |  |  |  |  |  |  |  |  |
| 8+ | 67 |  |  |  |  |  |  |  |  |
| TOTAL | 59116 |  |  |  |  |  |  |  |  |
| SPAWN. ST. ${ }^{(\geq 3)}$ | 180.19 |  |  |  |  |  |  |  |  |

Table 4.10. COD in the Kattegat. Recruitment.

| Year <br> class | $R_{1}$ <br> $(1$from VPA <br> 000 fish $)$ | Abundance indices <br> for l-group cod <br> from IYHS |
| :--- | :---: | :---: |
| 1971 | 22887 | 8 |
| 1972 | 15532 | 18 |
| 1973 | 30269 | 29 |
| 1974 | 26321 | 5 |
| 1975 | 10580 | 3 |
| 1976 | 27344 | 8 |
| 1977 | $(21$ | $161)$ |

Table 4.11 COD in the Kattegat.
Input data for the prognosis.

| Age | $\begin{gathered} \text { Stock in Number } \\ 1980 \\ \text { Option 1 Option 2 } \end{gathered}$ | Mean Weight | Exploitation <br> Pattern | Natural <br> Mortality |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $22 \underbrace{774 \cdot} 5000$ | 0.723 | 0.006 | 0.2 |
| 2 | 18322 | 0.791 | 0.064 | 0.2 |
| 3 | 11275 | 0.937 | 0.636 | 0.2 |
| 4 | 5124 | 1.431 | 1 | 0.2 |
| 5 | 592 | 2.436 | 0.909 | 0.2 |
| 6 | 730 | 3.154 | 0.727 | 0.2 |
| 7 | 231 | 3.533 | 0.727 | 0.2 |
| $8^{+}$ | 67 | 6.835 | 0.727 | 0.2 |



1
1

Table 4.12. Cod in the Kattegat. Prognoses for catches in 1982 and spawning stock biomasses in 1983.

|  | $\mathrm{R}_{79}=22 \mathrm{mill}$. 1 -group |  | $\mathrm{R}_{80}=50 \mathrm{mill}$. l-group |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{82} / \mathrm{F}_{80}$ | $\begin{gathered} \text { Landings } \\ 1982 \end{gathered}$ | $\begin{aligned} & \text { SSB } \\ & 1983 \end{aligned}$ | Landings 1982 | $\begin{aligned} & \text { SSB } \\ & 1983 \end{aligned}$ |
| 0.2 | 4071 | 41683 | 5918 | 58263 |
| 0.4 | 7526 | 37041 | 10987 | 51463 |
| 0.6 | 10467 | 33132 | 15339 | 45678 |
| 0.8 | 12979 | 29833 | 19085 | 40747 |
| 1.0 | 15132 | 27041 | 22317 | 36535 |
| 1.2 | 16983 | 24671 | 25114 | 32930 |
| 1.4 | 18583 | 22654 | 27541 | 29838 |
| 1.6 | 19969 | 20930 | 29652 | 27180 |
| 1.8 | 21.177 | 19453 | 31495 | 24890 |
| 2.0 | 22232 | 18182 | 331.09 | 22912 |

Table 5.1. Nominal landings of HADDOCK from the Skagerrak and the Kattegat.

| Country | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 x) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Belgium | - | - | - | - | - | 181 | 118 | 25 | 50 | - ${ }^{\text {( }}$ |
| Denmark | 2101 | 2816 | 2832 | 4417 | 5015 | 7488 | 6907 | 4978 | 4120 | 7072 |
| German Dem.Rep. | ...a) | a) | 1 | - | - | 1 | - | - | - | - ¢) |
| Germany, Fed.Rep.of | 9 | 20 | + | + | 12 | 1 | 16 | 11 | 1 | $6^{\text {h) }}$ |
| Netherlands | - | - | - | - | 5 | 59 | 81 | 20 | 5 |  |
| Norway | 139 | 153 | 242 | 175 | 122 | 191 | 156 | 168 | 248 | 236 |
| Sweden | .. b) | b) | b) | $\ldots \text { b) }$ | 921 | 1075 | 2485 | $1435{ }^{\text {c }}$ | 361 | 302 |
| U.K. (England and Wales) | - | - | 16 | 26 | 40 | 59 | - | - | - |  |
| U.K. (Scotland) | - | - | - | $+$ | - | - | - | - | - | - |
| Total | 2249 | 2989 | 3091 | 4618 | 6115 | 9055 | 9763 | 6637 | 4784 | 7617 |

a) Division IIIa included in Sub-area IV
x) preliminary
b) Division IIIa included in Division IVa
c) Division IIIa includes Division IVa,b
f) Jan-Nov. from Data Form 5
g) Data Form 5
h) Jul-Dec. catch estimates based on information from fishing vessels

Table 6.1 WHITING landings from Division IIIa (from Bulletin Statistique).

| Year | Denmark | Norway | Sweden | Others | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 | 13971 | 17 | IIIa incl. | 1 | 13989 |
| 1972 | 14538 | 24 | in IVa | - | 14562 |
| 1973 | 22479 | 67 |  | 1 | 22547 |
| 1974 | 28749 | 89 | $\downarrow$ | 4 | 28842 |
| 1975 | 19018 | 57 | 611 | 4 | 19690 |
| 1976 | 17870 | 48 | 1002 | 57 | 18977 |
| 1977 | 18116 | 55 | 973 | 41 | 19185 |
| 1978 | 48102 | 58 | 899a) | 32 | 49091 |
| 1979 | 16971 | 63 | 1033 | 16 | 18083 |
| $1980{ }^{\text {x. }}$ ) | 21106 | 57 | $1478{ }^{\text {b }}$ | - | 22641 |

x) Preliminary
a) Swedish fishery statistics
b) Based on fishery logbook reports

Table 7.1 PLAICE landings from the Skagerrak (tonnes).

| Year | Denmark | Sweden | Total |
| :---: | :---: | :---: | :---: |
| 1971 | 3741 | 64 | 3805 |
| 1972 | 5095 | 70 | 5165 |
| 1973 | 3871 | 80 | 3951 |
| 1974 | 3429 | 70 | 3499 |
| 1975 | 4888 | 77 | 4965 |
| 1976 | 9251 | 81 | 9332 |
| 1977 | 12855 | 142 | 12997 |
| 1978 | 13383 | 94 | 13477 |
| 1979 | 11045 | 105 | 11150 |
| 1980 | 9514 | 92 | 9606 |

PLAICE landings from the Kattegat (tonnes)

| Year | Denmark | Sweden | Total |
| :---: | :---: | :---: | :---: |
| 1971 | 15819 | 331 | 16150 |
| 1972 | 15504 | 348 | 15852 |
| 1973 | 10021 | 231 | 10252 |
| 1974 | 11401 | 255 | 11656 |
| 1975 | 10158 | 369 | 10527 |
| 1976 | 9487 | 271 | 9758 |
| 1977 | 11611 | 300 | 11911 |
| 1978 | 12685 | 368 | 13053 |
| 1979 | 9721 | 281 | 10002 |
| 1980 | 5582 | 289 | 5871 |

Table 7.2. Plaice landings in Div. IIIa. The Kattegat and the Skagerrak combined. Data produced by Working Group members.

| Year | Denmark | Sweden | Other Countries | Total |
| :---: | :---: | :---: | :---: | :---: |
| 1971 | 19560 | 395 | 19 | 19974 |
| 1972 | 20599 | 418 | 80 | 21097 |
| 1973 | 13892 | 311 | 55 | 14258 |
| 1974 | 14830 | 325 | 58 | 15213 |
| 1975 | 15046 | 446 | 199 | 15691 |
| 1976 | 18738 | 352 | 756 | 19846 |
| 1977 | 24466 | 442 | 884 | 25792 |
| 1978 | 26068 | 462 | 480 | 27010 |
| 1979 | 20766 | 386 | 810 | 21962 |
| $1980^{\text {x }}$ | 15096 | 381 | 56 | 15533 |

x) Preliminary, No information from Belgium and the Netherlands.

Table 7.3 Danish landings of PLAICE by quarters in the Kattegat and Skagerrak (in tonnes).

## Kattegat 1973-80

|  | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jan-Mar | 2 | 330 | 2 | 950 | 2 | 127 | 2 | 637 | 2 | 526 |

Skagerrak 1973-80

|  | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jan-Mar | 1046 | 840 | 668 | 1732 | 2119 | 1289 | 967 | 1042 |
| Apr-Jun | 902 | 971 | 949 | 2234 | 3617 | 3522 | 5097 | 3325 |
| Jul-Sep | 1028 | 1098 | 1514 | 2944 | 4614 | 4302 | 2963 | 3381 |
| Oct-Dec | 895 | 520 | 1757 | 2341 | 2505 | 4270 | 2018 | I 766 |
| Total | 3871 | 3429 | 4888 | 9251 | 12855 | 13383 | 11045 | 9514 |

Table 7.4 PLAICE in the Kattegat. Mean weights at age (smoothed).

| Age | 1978 | 1979 | 1.980 | Average <br> $1978-80$ |
| :---: | :---: | :---: | :---: | :--- |
| 1 | .200 | .120 | .120 | .147 |
| 2 | .230 | .220 | .263 | .238 |
| 3 | .240 | .258 | .277 | .258 |
| 4 | .260 | .275 | .300 | .278 |
| 5 | .300 | .303 | .310 | .304 |
| 6 | .460 | .344 | .356 | .387 |
| 7 | .720 | .450 | .500 | .557 |
| 8 | .780 | .650 | .600 | .676 |
| 10 | .800 | .920 | .690 | .803 |
| 11 | .820 | 1.005 | .810 | .878 |
| 12 | .830 | 1.030 | .890 | .917 |

## Table 7.5. Plaice in the Kattegat.

Input data



NATURAL MORTALITY AT AGE:
$\left.\begin{array}{llllllllllllllllll}\text { age } & 10.10 & 0.10 & 0.10 & 0.10 & 0.10 & 0.10 & 0.10 & 0.10 & 0.10 & 0.10 & 0.10 & 0.10\end{array}\right)$

Mear fishery mortality caiculated for ages 3 to 12.

Table 7.6. Plaice in the Kattegat.


Table 7.7. Plaice in the Kattegat.

## STOCK IN NUMEERS

| aye | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $68201$ | 48685 | 45764 | 19038 | 58507 | 26342 | 58788 | 98291 | 56148 | 26862 | 13272 |
| 2 | $57799$ | 61785 | 44089 | 41442 | 17231 | 52993 | 22438 | 53147 | 88806 | 50800 | 24297 |
| 3 | 43835 | 48097 | 54783 | 36416 | 36852 | 14527 | 39795 | 17359 | 40608 | $\bigcirc 2131$ | 42801 |
| 4 | 19257 | 20448 | 30725 | 38546 | 25180 | 12788 | 7626 | 15583 | 8771 | 26289 | 46162 |
| 5 | 5318 | 7444 | 8572 | 18552 | 12472 | 6113 | 5654 | 3619 | 6410 | 5945 | 15044 |
| 6 | 5111 | 2655 | 4047 | 4783 | 3481 | 3830 | 2574 | 2638 | 2289 | 2907 | 2844 |
| 7 | 2305 | 387 | 1081 | 2988 | 2557 | 2098 | 1792 | 1364 | 1695 | 1662 | 1778 |
| 8 | 1994 | 1012 | 3221 | 906 | 2371 | 2124 | 1415 | 921 | 836 | 1268 | 1285 |
| 9 | 1165 | -155 | 1174 | 2563 | 646 | 2031 | 1751 | 967 | 502 | 560 | 891 |
| 10 | 1420 | 883 | 1153 | 711 | 2006 | 503 | 1819 | 1470 | 733 | 371 | 308 |
| 11 | 3673 | 1215 | 572 | 816 | 397 | 1739 | 445 | 1570 | 1226 | 593 | 213 |
| 12 | 5280 | 3555 | 1055 | 441 | 662 | 331 | 1545 | 355 | 1373 | 1100 | 441 |


| age | 1979 | 1980 |
| ---: | ---: | ---: |
| 1 | 24158 | 26271 |
| 2 | 12011 | 21824 |
| 3 | 21845 | 10052 |
| 4 | 2959 | 13630 |
| 5 | 15491 | 10377 |
| 6 | 5417 | 6474 |
| 7 | 1491 | 3270 |
| 8 | 1393 | 003 |
| 9 | 1116 | 1161 |
| 10 | 761 | 941 |
| 11 | 247 | 042 |
| 12 | 177 | 180 |

SPAWNING BIOMASS (TONS)

| 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 33440 | 31296 | 33439 | 33671 | 27939 | 17228 | 21931 | 16157 | 20729 | 32994 | 31887 |

Table 8.1. Species composition in Danish Pandalus fishery in Divison IIIa.

|  | Percentage |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Species/Year | 1973 | 1974 | 1975 | 1976 | 1977 |
| Pandalus | 13.02 | 16.09 | 21.41 | 47.93 | 33.27 |
| Fish landed for <br> consumption: <br> Cod |  |  |  |  |  |
| Haddock | 3.12 | 2.63 | 1.03 | 1.98 | 2.79 |
| Whiting <br> Plaice <br> Nephrops | 0.27 | 0.06 | 0.06 | 0.14 | 0.36 |
| Other by-catch | 0.16 | 0.01 | 0.03 | 1.24 | 0.78 |
| Reported landings <br> (tonnes) | 2032 | 0.09 | 1.68 | 0.06 | 0.05 |
| Reported effort <br> (hours) | 28634 | 14047 | 22072 | 2937 | 2898 |

Table 8.2. Species composition in the Swedish Pandalus fishery in Division IIIa.

|  | Percentage |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Species Year | 1976 | 1977 | 1978 | 1979 | 1980 |
| Pandalus | 56.29 | 51.06 | 49.58 | 53.04 | 59.68 |
| By-catch: |  |  |  |  |  |
| Nephrops | 0.60 | 0.33 | 0.25 | 0.10 | 0.55 |
| Cod | 5.71 | 4.89 | 5.29 | 6.75 | 6.47 |
| Haddock | 0.26 | 0.22 | 0.75 | 0.44 | 0.63 |
| Whiting | 0.37 | 0.50 | 0.80 | 0.36 | 0.78 |
| Hake | 0.82 | 0.52 | 0.90 | 0.56 | 0.51 |
| Pollack | 0.79 | 1.27 | 1.21 | 0.82 | 0.45 |
| Ling | 0.85 | 1.00 | 1.06 | 0.79 | 0.55 |
| Saithe | 0.01 | 0.01 | 0.02 | - | 0.002 |
| Plaice | 0.23 | 0.24 | 0.23 | 0.15 | 0.21 |
| Witch | 2.39 | 2.39 | 2.35 | 2.00 | 1.24 |
| Brill | 0.004 | 0.01 | 0.01 | 0.01 | 0.002 |
| Thurbot | 0.01 | 0.002 | 0.01 | - | 0.01 |
| Lemon sole | 0.004 | 0.01 | 0.02 | 0.01 | 0.01 |
| Halibut | 0.09 | 0.03 | 0.04 | 0.07 | 0.03 |
| Dab | 0.001 |  |  |  |  |
| Herring | 0.01 | 0.43 | 0.06 | 0.02 | 0.16 |
| Other species | 31.58 | 37.09 | 37.40 | 34.88 | 28.71 |
| Reported catch | 405 | 368 | 304 | 350 | 366 |
| (tonnes) |  |  |  |  |  |
| Reported effort | 8808 | 8139 | 7395 | 6712 | 6693 |
| (hours) |  |  |  |  |  |

Figure 2.1. Herring in spawning condition. Combinations of means of $\mathrm{O}_{1}$-VS and $\mathrm{O}_{1}-\mathrm{K}_{2}$ of different stocks. Generalized separation between spring and autumn spawned herring indicated in the figure.

Spring-Winter Spawners
$\nabla$ Skagerrak Spring Spawners

- Kattegat Spring Spawners
$\nabla$ Kattegat Coastal Spawners
© Fjordic Spring Spawners
$\Delta$ N.W. Scotland Spring Spawners $\phi$ English Channel Winter Spawners
Ydightisn unannet manlet opawners


## Autumn Spawners

O Autumn Spawners from the North Sea, N.W. Scotland, Orkney-Shetland

- Kattegat Autumn Spawners
\$ S.W. Baltic Autumn Spawners \& Moray Firth Autumn Spawners

Fig. 2.2. One-group herring from the IYFS in February 1980. Combinations of means of $O_{1}-V S$ and $O_{1}-K_{2}$ of spring spawned (O) and autumn spawned ( ) herring after separation by lengths. $0_{1}$ is measured in eye piece units (epu), where 25 epu:s equals 1 mm .


FIGURE 4.1. COD IN THE KATTEGAT. $R_{79}=22$ mill.I-GROUPS


FIGURE 4.2. COD IN THE KATTEGAT. $R_{79}=50$ mill.l-GROUPS





[^0]:    x) General Secretary ICES, Palægade 2-4 DK-1261 Kbh. K. Denmark.

