ICES WGNSSK REPORT 2009

Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak - Combined Spring and Autumn (WGNSSK)

$$
6-12 \text { May } 2009
$$

ICES Headquarters, Copenhagen
By Correspondence - September 2009

ICES

International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

H. C. Andersens Boulevard 44-46
DK-1553 Copenhagen V
Denmark
Telephone (+45) 33386700
Telefax (+45) 33934215
www.ices.dk
info@ices.dk

Recommended format for purposes of citation:
ICES. 2009. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak - Combined Spring and Autumn (WGNSSK), 6-12 May 2009, ICES Headquarters, Copenhagen.. 1028 pp.

For permission to reproduce material from this publication, please apply to the General Secretary.

The document is a report of an Expert Group under the auspices of the International Council for the Exploration of theSea and does not necessarily represent the views of the Council.

Contents

0 Executive Summary 1
1 General. 2
1.1 Terms of reference 2
1.2 InterCatch. 3
2 Overview 4
3 Nephrops (Norway lobster) in Division IIIa and Subarea IV5
3.1 General comments relating to all Nephrops stocks 5
3.1.1 Introduction 5
3.1.2 WKNEPH.5
3.2 Nephrops in Division IIIa 6
3.2.1 General 7
3.2.2 The Skagerrak (FU3) 10
3.2.3 The Kattegat (FU4) 11
3.2.4 Combined assessment (FU3 \& 4) 12
3.3 Nephrops IN Subarea IV 12
3.3.1 Botney Gut/Silver Pit (FU 5) 13
Landings 13
Discards 13
Length compositions 13
Natural mortality, maturity at age and other biological parameters 14
Commercial catch-effort data and research vessel surveys 14
3.3.2 Farn Deeps (FU6). 15
3.3.3 Fladen Ground (FU7) 19
3.3.4 Firth of Forth (FU 8). 25
3.3.5 Moray Firth (FU 9) 30
3.3.6 Noup (FU 10). 35
3.3.7 Norw egian Deep (FU 32) 36
3.3.8 Off Horn Reef. 39
3.3.9 Other Rectangles in Subarea IV 40
4 Sandeel in IV (WGNSSK Sep. 2009) 133
4.1 General 133
4.1.1 Ecosystem aspects 133
4.1.2 Fisheries 133
4.1.3 ICES Advice. 133
4.1.4 Management 134
4.2 Data available 134
4.2.1 Catch 134
4.2.2 Age compositions. 135
4.2.3 Weight at age. 135
4.2.4 Maturity and natural mortality 135
4.2.5 Catch, effort and research vessel data 136
4.3 Data analyses 137
4.3.1 Exploratory catch-at-age-based analy ses 137
4.3.2 Final assessment 138
4.4 Historic Stock Trends 139
4.5 Recruitment estimates 139
4.6 Short-term forecasts 139
4.6.1 Harvest control rule 142
4.6.2 Stochastic short-term forecast 143
4.7 Medium-term forecasts 143
4.8 Biological reference points 143
4.9 Quality of the assessment 143
4.10 Status of the Stock 143
4.11 Management Considerations 143
5 Norway Pout in ICES Subarea IV and Division IIIa 195
5.1 General 195
5.1.1 Ecosystem aspects 195
5.1.2 Fisheries 196
5.1.3 ICES advice. 197
5.1.4 Management up to 2009. 198
5.2 Data available 198
5.2.1 Landings 198
5.2.2 Age compositions in Landings 198
5.2.3 Weight at age 199
5.2.4 Maturity and natural mortality 199
5.2.5 Catch, Effort and Research Vessel Data 201
5.3 Catch at Age Data Analyses 202
5.3.1 Review of last year's assessment 202
5.3.2 Final Assessment 203
5.3.3 Comparison with 2008 assessment 203
5.4 Historical stock trends 203
5.5 Recruitment Estimates 203
5.6 Short-term prognoses 204
5.7 Medium-term projections 205
5.8 Biological reference points 205
5.9 Quality of the assessment 205
5.10 Status of the stock 205
5.11 Management considerations 206
5.11.1 Long term management strategies 207
5.12 Other issues 207
6 Plaice in Division VIId 237
6.1 General 237
6.1.1 Ecosystem aspects 237
6.1.2 Fisheries 237
6.1.3 ICES advice. 238
6.1.4 Management 238
6.2 Data available 239
6.2.1 Catch 239
6.2.2 Age compositions. 239
6.2.3 Weight at age. 239
6.2.4 Maturity and natural mortality 240
6.2.5 Catch, effort and research vessel data 240
6.3 Data analyses 240
6.3.1 Reviews of last years assessment 240
6.3.2 Exploratory catch-at-age-based analyses 241
6.3.3 Exploratory survey-based analyses 242
6.3.4 Conclusions drawn from exploratory analyses 242
6.3.5 Final assessment 244
6.4 Historic Stock Trends 244
6.5 Recruitment estimates 245
6.6 Short-term forecasts 245
6.7 Medium-term forecasts 245
6.8 Biological reference points 246
6.9 Quality of the assessment 246
6.10 Status of the stock 246
6.11 Management considerations 246
7 Plaice in IIIa 297
7.1 Ecosystem aspects 297
7.1.1 Fisheries 297
7.1.2 ICES Advice 298
7.1.3 Management 298
7.2 Data available 299
7.2.1 Catch 299
7.2.2 Weight at age. 300
7.2.3 Maturity and natural mortality 300
7.2.4 Catch, effort and research vessel data 300
7.3 Data analyses 301
7.3.1 Reviews of last year's assessment 301
7.3.2 Exploratory survey-based analyses 301
7.3.3 Exploratory catch-at-age-based analy ses 301
7.3.4 Conclusions drawn from exploratory analyses 302
7.3.5 Final assessment 302
7.4 Historic Stock Trends 302
7.5 Recruitment estimates 302
7.6 Short-term forecasts 302
7.7 Medium-term forecasts - none. 302
7.8 Biological reference points 302
7.9 Quality of the assessment 302
7.10 Status of the Stock 303
7.11 Management Considerations 303
7.12 References 303
8 Plaice in Subarea IV 330
8.1 General. 330
8.1.1 Ecosystem aspects 330
No new information on ecosystem aspects was presented at the working group in 2009. All available information on ecosystem aspects can be found in the Stock Annex 330
8.1.2 Fisheries. 330
8.1.3 ICES Advice 330
8.1.4 Management. 331
8.2 Data available 332
8.2.1 Catch 332
8.2.2 Age compositions. 333
8.2.3 Weight at age. 333
8.2.4 Maturity and natural mortality 334
8.2.5 Catch, effort and research vessel data 334
8.3 Data analyses 335
8.3.1 Reviews of last year's assessment. 335
8.3.2 Exploratory catch-at-age-based analy ses 336
8.3.3 Conclusions drawn from exploratory analyses 337
8.3.4 Final assessment 338
8.4 Historic Stock Trends. 338
8.5 Recruitment estimates 339
8.6 Short-term forecasts 340
8.7 Medium-term forecasts 340
8.8 Biological reference points. 340
8.9 Quality of the assessment 341
8.10 Status of the Stock 342
8.11 Management Considerations 342
9 Sole in Subarea VIId 406
9.1 General.406
9.1.1 Ecosystem aspects 406
9.1.2 Fisheries. 406
9.1.3 ICES advice. 406
9.1.4 Management 407
9.2 Data available 408
9.2.1 Catch 408
9.2.2 Age compositions. 408
9.2.3 Weight at age. 409
9.2.4 Maturity and natural mortality 409
9.2.5 Catch, effort and research vessel data 409
9.3 Data analyses 410
9.3.1 Reviews of last year's assessment. 410
9.3.2 Exploratory catch at age analysis 410
9.3.3 Exploratory survey-based analyses 411
9.3.4 Conclusion drawn from exploratory analyses 411
9.3.5 Final assessment 412
9.4 Historical Stock Trends 412
9.5 Recruitment estimates 413
9.6 Short term forecasts 413
9.7 Medium-term forecasts and Yield per recruit analyses 414
9.8 Biological reference points 414
9.9 Quality of the assessment 414
9.10 Status of the Stock 415
9.11 Management Considerations 415
10 Sole in Subarea IV 459
10.1 General. 459
10.1.1 Ecosystem aspects 459
10.1.2 Fisheries 459
10.1.3 ICES Advice. 460
10.1.4 Management 461
10.2 Data available 465
10.2.1 Catch 465
10.2.2 Age compositions. 465
10.2.3 Weight at age 465
10.2.4 Maturity and natural mortality 466
10.2.5 Catch, effort and research vessel data 466
10.3 Data analyses 466
10.3.1 Exploratory catch-at-age-based analysis 467
10.3.2 Exploratory survey-based analyses 467
10.3.3 Conclusions drawn from exploratory analyses 467
Final assessment 468
10.4 Historic Stock Trends 468
10.5 Recruitment estimates 469
10.6 Short-term forecasts 469
10.7 Medium-term forecasts 470
10.8 Biological reference points 470
10.9 Quality of the assessment 470
10.10 Status of the Stock 471
10.11 Management Considerations 471
11 Saithe in Subareas IV, VI and Division IIIa 508
11.1 Ecosystem aspects 508
11.1.1 Fisheries. 508
11.1.2 Management 510
11.1.3 Evaluation of the Management plan. 510
11.2 Data available 510
11.2.1 Catch 510
11.2.2 Age compositions. 510
11.2.3 Weight at age. 511
11.2.4 Maturity and natural mortality 511
11.2.5 Catch, effort and research vessel data 511
11.3 Data analyses 511
11.3.1 Reviews of last year's assessment. 512
11.3.2 Exploratory survey-based analyses 512
11.3.3 Exploratory catch-at-age-based analy ses 513
11.3.4 Conclusions drawn from exploratory analyses 513
11.3.5 Final assessment 514
11.4 Historic Stock Trends 514
11.5 Recruitment estimates 515
11.6 Short-term forecasts 515
11.7 Medium-term forecasts 515
11.8 Biological reference points 515
11.9 Quality of the assessment 516
11.10 Status of the Stock. 516
11.11 Management Considerations 516
12 Whiting in Subarea IV and Divisions VIId and IIIa 545
12.1 General 545
12.1.1 Stock Definition 545
12.1.2 Ecosystem aspect 545
12.1.3 Fisheries. 545
12.1.4 ICES Advice 547
12.1.5 Management 547
12.2 Data available 548
12.2.1 Catch data issues for 2008 548
12.2.2 Catch 549
12.2.3 Age compositions. 549
12.2.4 Weight at age 550
12.2.5 Maturity and natural mortality 551
12.2.6 Catch, effort and research vessel data 551
12.3 Data analyses 552
12.3.1 Summary of 2009 benchmark workshop 552
12.3.2 Reviews of last year's assessment - what were the comments? 552
12.3.3 Exploratory survey-based analyses 553
12.3.4 Exploratory catch-at-age-based analy ses 553
12.3.5 Conclusions drawn from exploratory analyses 553
12.3.6 Final assessment 554
12.4 Historic Stock Trends 554
12.5 Recruitment estimates 555
12.6 Short-term forecasts 555
12.7 Medium-term forecasts 556
12.8 Biological reference points 556
12.9 Quality of the assessment 556
12.10 Status of the Stock. 557
12.11 Management Considerations 557
12.12 Whiting in Division IIIa 558
13 Haddock in Subarea IV and Division IIIa (N) 610
13.1 General 610
13.1.1 Ecosystem aspects 610
13.1.2 Fisheries 610
13.1.3 ICES advice. 611
13.1.4 Management 611
13.2 Data available 612
13.2.1 Catch 614
13.2.2 Age compositions 614
13.2.3 Weight at age 614
13.2.4 Maturity and natural mortality 615
13.2.5 Catch, effort and research vessel data 615
13.3 Data analyses 616
13.3.1 Reviews of last year's assessment 616
13.3.2 Exploratory catch-at-age-based analyses 616
13.3.3 Exploratory survey-based analyses 617
13.3.4 Conclusions drawn from exploratory analyses 617
13.3.5 Final assessment 618
13.4 Historical Stock Trends 618
13.5 Recruitment estimates 618
13.6 Short-term forecasts 619
13.7 Medium-term forecasts and yield-per-recruit analyses 621
13.8 Biological reference points 621
13.9 Quality of the assessment 621
13.10 Status of the Stock 622
13.11 Management Considerations 622
14 Cod 684
14.1 General 684
14.1.1 Stock definition 684
14.1.2 Ecosystem aspects 684
14.1.3 Fisheries 684
14.1.4 Management 690
14.2 Data available 692
14.2.1 Catch 692
14.2.2 Weight at age. 694
14.2.3 Maturity and natural mortality 694
14.2.4 Catch, effort and research vessel data 695
14.3 Data analyses 696
14.3.1 Reviews of last year's assessment 696
14.3.2 Exploratory survey-based analyses 696
14.3.3 Exploratory catch-at-age-based analy ses 697
14.3.4 Final assessment 699
14.4 Historic Stock Trends 699
14.5 Recruitment estimates 700
14.6 Short-term forecasts 700
14.7 Medium-term forecasts 700
14.8 Biological reference points 701
14.9 Quality of the assessment 702
14.10 Status of the Stock 703
14.11 Management Considerations 704
15 Cod management plan evaluations. 764
15.1 Background 764
15.2 Review of the North Sea Cod Management Evaluation 768
15.3 Conclusions from WGNSSK 2009 for ACOM Advice. 770
15.4 References: 770
16 Mixed fisheries 773
Annex 1 - List of Participants 775
Annex 2 - Update forecasts and assessments 778
Annex 3 - Stock Annexes 813
Stock Annex- Cod in Subarea IV, Division VIId and Division IIIa West (Skagerrak). 813
Stock annex: Haddock in Subarea IV and Division IIIa(N) 836
Stock Annex: WGNSSK - Norway pout 845
Stock Annex: Plaice IIIA 889
Stock Annex: Plaice in area IV 895
Stock Annex: Plaice in Division VIId 906
Stock Annex: Sole in Division VIId. 917
Stock Annex: Whiting in Subarea IV and Division VIId 926
Stock Annex: FU6, Farn Deeps 945
Stock Annex: FU7, Fladen Ground 953
Stock Annex: FU8, Firth of Forth 961
Stock Annex: FU9, Moray Firth 969
Stock Annexes - Sandeel in IV. 979
Annex 4: Assessment Methods and Software. 994
Annex 5 -Technical Minutes of the North Sea ecosystem Review Group. 1005
Cod in Subarea IV (North Sea), Division VIId (Eastern Channel), and IIIa West (Skagerrak) cod_347d. 1006
Haddock in Subarea IV (North Sea) and Division IIIa (Skagerrak - Kattegat) had-34 1007
Nephrops in Division IVb (Farn Deeps, FU6) nep-6. 1008
Nephrops in Division IVa (Fladen Ground, FU7) nep-7 1010
Nephrops in Division IVb (Firth of Forth, FU8) nep-8. 1011
Nephrops in Division IVa (Moray Firth, FU9) nep-9 1012
Norway Pout in ICES sub area IV and division IIIa nop-34..... 1013
Plaice in Division VIId (Eastern Channel) ple-eche 1014
Plaice in Division IIIa (Skagerrak - Kattegat) ple-kask 1015
Plaice Sub-area IV (North Sea) ple-nsea 1016
Saithe in Sub-areas IV (North Sea), VI West of Scotland), and Division IIIa (Skagerrak) sai- 3a46. 1017
Sandeel in Subarea IV (North Sea excluding Shetland) san-nsea. 1018
Sole in Division VIId (Eastern Channel) sol- eche 1019
Sole in Sub-area IV (North Sea) sol-nsea. 1020
Whiting Sub-area IV (North Sea) \& Division VIId (Eastern Channel) whg-47d 1021
Whiting in Division IIIa (Skagerrak - Kattegat) whg-kask. 1022
Nephrops in Division IVa (Noup, (FU 10) nep-10 1023
Nephrops in Division IVa (Norwegian Deeps, (FU 32) nep-32 1024
Nephrops in Division IVb (Off Hom Reef, FU 33) nep-33 1025
Nephrops in Division IVbc (Botney Gut - Silver Pit, (FU 5) nep-5 1026
Nephrops in Division IIIa (Skagerak Kattegat, (FU 3,4) nep-iiia 1027
Sandeel in Subarea IVa (Shetland area) san-shet 1028

The ICES Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK) met at ICES Headquarters in Copenhagen, Denmark, during 6-12 May 2009. The Working Group made stock assessments for demersal and industrial stocks in the North Sea, Skagerrak and Eastern Channel. These assessments included estimates of misreporting and discard and provided catch forecasts. Furthermore, stock recovery and management plans were evaluated and the Group commented on the outcome of existing management measures. Descriptions of fisheries were updated the report includes information on national sampling levels and data availability. The group also met by correspondence in September of 2009 to carry out assessments of the sandeel in the North Sea and the second of the biennial assessments of the Norway pout; and by correspondence in October of 2008 to provide update forecasts for stocks with survey information collected after the May meeting.
No update of the executive summary was provided for 2009. For information, please contact the Chair of the meeting.

1.1 Terms of reference

The Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak [WGNSSK] (Chair: Chris Darby, UK) will meet at ICES HQ, 6-12 May 2009 to:
a) address generic ToRs for Fish Stock Assessment Working Groups (see tablebelow). The Sandeel and Norway pout assessment shall be developed by correspondence;
The assessments will be carried out on the basis of the stock annex in National Laboratories, prior to the meeting. This will be coordinated as indicated in the table below.
WGNSSK will report by 18 May and 18 September 2009 (Sandeel/Norway pout) for the attention of ACOM.

Fish Stock	Stock Name	Stock Coor- dinator	Assessment Coord. 1	Asses sment Coord. 2	Advice
cod- 347 d	 Division III (Skagerrak)	UK(England)	UK(England)	Denmark	Advice
had-34	Haddock in Subarea IV (North Sea) and Division IIIa	UK(Scotland)	UK(Scotland)	UK(England)	Advice
nep-5	Nephrops in Division IVbc (Botney Gut -Silver Pit, FU5)	UK(Scotland)	UK(Scotland)	Denmark	No ad- vice
nep-6	Nephrops in Division IVb (Farn Deeps, FU 6)	UK(Scotland)	UK(Scotland)	Denmark	Advice
nep-7	Nephrops in Division IV a (Fladen Ground, FU 7)	UK(Scotland)	UK(Scotland)	Denmark	Advice
nep-8	Nephrops in Division IVb (Firth of Forth, FU8)	UK(Scotland)	UK(Scotland)	Denmark	Advice
nep-9	Nephrops in Division IV a (Moray Firth, FU9)	UK(Scotland)	UK(Scotland)	Denmark	Advice
nep-10	Nephrops in Division IV a (Noup, FU 10)	UK(Scotland)	UK(Scotland)	Denmark	No ad- vice
nep-32	Nephrops in Division IV a (Norwegian Deeps, FU32)	UK(Scotland)	UK(Scotland)	Denmark	No ad- vice
nep-33	Nephrops in Division IVb (Off Horn Reef, FU33)	UK(Scotland)	UK(Scotland)	Denmark	No ad- vice
nep- iiia	Nephrops in Division IIIa (Skagerak Kattegat, FU3,4)	Denmark	Sweden	UK(Scotland)	No ad- vice
nop-34	Norway Pout in Subarea IV and Divi- sion IIIa	Denmark	Denmark	Norway	Advice
ple- eche	Plaice in Division V IId (Eastern Chan- nel)	France	France	Belgium	Advice

ple- kask	Plaice in Division IIIa (Skagerrak - Kattegat)	Denmark	Denmark	Sweden	Advice
plensea	Plaice Subarea IV (North Sea)	Netherlands	Netherlands	Belgium	Advice
$\begin{array}{\|l\|l\|} \hline \text { sai- } \\ 3 \mathrm{a} 46 \end{array}$	Saithe in Subarea IV (North Sea) Division IIIa West (Skagerrak) and Subarea VI(WestofScotland and Rockall)	Norway	Norway	Germany	Advice
sannsea	Sandeel in Subarea IV excluding the Shetland area	Denmark	Denmark	Norway	Advice
san- shet	Sandeel in Division IV a North of $59^{\circ} \mathrm{N}$ and Westof0 ${ }^{\circ} \mathrm{E}$ - (Shetland area)	UK/ Denmark			No advice
sol- eche	Sole in Division VIId (Eastern Channel)	Belgium	Belgium	France	Advice
solnsea	Sole in Subarea IV (North Sea)	Netherlands	Netherlands	Belgium	Advice
whg- 47d	Whiting Subarea IV (North Sea) \& Division V IId (Eastern Channel)	UK(Scotland)	UK(Sco tland)	UK(England)	Advice
whgkask	Whiting in Division IIIa (Skagerrak Kattegat)	Sweden	Sweden	Denmark	Same advice as last year

1.2 InterCatch

InterCatch is not used for the data collation of cod, haddock and whiting. The reason is that InterCatch cannot currently be used to generate discard estimates for countries for which no discard sampling data are available. This is a necessary part of the collation process for the three stocks mentioned above. As an interim measure, collation has been carried out for the last three years using a spreadsheet-based approach.

No further update of the 2008 general introduction was provided. For information, please contact the Chair of the meeting.

Overview

No update of the 2008 overview was provided, for the most recent overview see Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK) 2008 CM2008 \ACOM:09, section 2.

3 Nephrops (Norway lobster) in Division IIla and Subarea IV

3.1 General comments relating to all Nephrops stocks

3.1.1 Introduction

Nephrops stocks have previously been identified by WGNEPH on the basis of population distribution and characteristics, and established as separate Functional Units. The Functional Units (FU) are defined by the groupings of ICES statistical rectangles given in Table 3.1.1 and illustrated in Figure 3.1.1. The statistical rectangles making up each FU encompass the distribution of mud sediment on which Nephrops live. There are two FUs in Division IIIa and eight FUs in Subarea IV. It is important to note that additional catches of Nephrops are also taken from smaller, isolated pockets of mud distributed throughout the ICES divisions. In recent years some of these areas have contributed significant landings despite their small size (eg Devils Hole). Management of Nephrops currently operates at the ICES Subarea/Division level.

Functional Units were previously aggregated by WGNEPH into a series of nominal Management Areas (MA) intended to provide a pragmatic solution for more localised management. The Working Group agreed that this process had served no useful purpose and should be discontinued.

At the WG this year, advice was requested for FUs for which UWTV surveys are available (Farn Deeps, Fladen, Firth of Forth and Moray Firth) whilst the other FUs were given 'No advice' status. For those FUs requiring no advice, the report therefore consists solely of an update to available data and text describing the fishery, and no assessment or data analyses have been carried out.

The presentation of data and text relating to the Division IIIa FUs can be found as follows: Skagerrak (FU3) in Section 3.2.2; Kattegat (FU4) in Section 3.2.3; Divison IIIa overall in Section 3.2.3. The presentation of data and assessments for the Division IV FUs can be found as follows: Botney Gut - Silver Pit (FU 5) in Section 3.3.1; Farn Deeps (FU 6) in Section 3.3.2; Fladen (FU 7) in Section 3.3.3; Firth of Forth (FU 8) in Section 3.3.4; Moray Firth (FU 9) in Section 3.3.5; Noup (FU 10) in Section 3.3.6; Norwegian Deeps (FU 32) in Section 3.3.7; Off Horn Reef (FU 33) in Section 3.3.8; Other areas of Subarea IV in Section 3.3.9.

Overall landings for Divisions IIIa and IV reported to the WG are summarised by Functional Unit in Table 3.1.2 and Figure3.1.2.

3.1.2 WKNEPH

General comments relating to Nephrops stocks with TV surveys, developments in assessments and the approaches employed are set out in the following section

A benchmark meeting for Nephrops stocks with TV surveys was held in March 2009. This meeting was called in order to harmonise the approach taken between the different assessment working groups (WGCSE, WGNSSK). The principle task of the benchmark group was to decide how the TV indices should be used (i.e. as relative trends in abundance or absolute abundance estimates). There are several issues regarding the use of the indices as absolute abundance indices including edge effects, detection rate, confusion with other species and burrow occupancy. In the face of these potential biases it is perhaps desirable to use the indices simply as relative trends in abundance however this approach encounters even more serious problems
in providing catch advice. It was not clear how proportional changes in a relative abundance index should be translated into proportional changes in TAC advice (is 1:1 correspondence suitable). Given the short time series of landings data which are considered reliable (2006 onwards) it was also not possible to determine if the relative harvest rates observed in this time period were likely to be sustainable or not. It was therefore decided that the TV indices should be used as absolute measures of abundance and that the potential biases should be estimated.

For each functional unit, bias estimates for edge effects, detection rate and confusion with other species were quantified using a combination of modelling, re-analyses and expert judgement resulting in a bias correction factor to be applied to the raw TV abundance indices. The area which resulted in the largest change to procedure was a re-evaluation of the size selectivity of the TV surveys. Previously there had been an implicit assumption that the TV surveys had the same size selectivity as the fishery, however after extensive debate the Group considered that the TV surveys were detecting burrows of individuals considerably smaller than the fishery can take. The proportion of the total abundance index which is available to the fishery is now considered to be a fraction of what it was and hence the harvest ratios equivalent to fishing at $\mathrm{F}_{0.1}$ (or any other proxy for sustainability) also require downward revision. Failure to do this will result in fishing at a rate greater than the target.

New proxies for sustainable fishing (F0.1 and $\mathrm{F}_{\text {max }}$) were calculated for each FU and are given in the stock annexes. Two modelling approaches were used to derive harvest ratios equating to the candidate reference points under the new assumption of survey selectivity. Both approaches used the same growth, maturity and fishery selectivity data and were cross checked for consistency in the determination of the candidate reference points. The different assumptions in the models governing the length distributions at the time of the survey resulted in different harvest ratios for the given values of $\mathrm{F}_{0} 1$ and $\mathrm{F}_{\max }$. Both modelling approaches appear to be reasonable simplifications of a complex system and as such there is no a priori reason to believe that either model is more correct than the other. The benchmark group therefore decided that, for each candidate F-reference point, the mean harvest ratio between the two approaches should be taken for the point estimate for that FU. There is therefore no direct relationship between the harvest ratio presented and a particular F value (and additionally the fishing mortalities of male and female Nephrops are different). Reference fishing mortality values are therefore not given in this report.

3.2 Nephrops in Division IIla

Official landings supplied to ICES for Division IIIa are shown in Table 3.2.1.1.
Division IIIa includes FU3 and 4, which are assessed together. This year's assessment is an update of last year's indicator assessment. Total Nephrops landings by FU and country are shown in Table 3.2.1.2 and Table 3.2.1.3.

FU 3 and FU 4 have for many years, mainly on basis on historical differences in the local fisheries, been maintained as separate stock units. The minor differences observed between the two areas in for instance size distributions may well have been due to area based differences in selectivity of fishing gear. How ever, for many years the trends both in fisheries data (LPUE) and size data havebeen very similar and do not indicate any significant differences between the two areas. Consequently, in the assessments and advice the two FUs have always been merged.

Therefore, the WG suggests and recommends that both assessment data and assessments for these two FUs formally are merged into a single FU, comprising both Skagerrak and Kattegat (ICES Division. IIIa).

3.2.1 General

3.2.1.1 Ecosystem aspects

Nephrops lives in burrows in suitable muddy sediments and is characterised by being omnivorous and emerge out of the burrows to feed. It can, however, also sustain itself as a suspension feeder (in the burrows) (Loo et al., 1993). This ability may contribute to maintaining a high production of this species in IIIa, due to increased organic production.

Severe depletion in oxygen content in the water can force the animals out of their burrows, thus temporarily increasing the trawl catchability of this species during such environmental changes (Bagge et al. 1979). A specially severe case was observed in the end of the 1980s in the southern part of IIIa in late summer, where initially unusually high catch rates of Nephrops were observed. Eventually the increasing amount of dead specimens in the catches lead to the conclusion of severe oxygen deficiency in especially the southern part of IIIa (Kattegat) in late 1988 (Bagge et al., 1990).
No information is available on the extent to which larval mixing occurs between Nephrops stocks, but the similarity in stock indicator trends between FU 3 and 4 for both Denmark and Sweden indicates that recruitment has been similar in both areas. These observations suggest they may be related to environmental influences.

3.2.1.2 Functional units and their fisheries.

Denmark

The restrictions in the fisheries for especially cod seem to have resulted in some significant changes in the Danish fisheries for Nephrops. Traditionally, Nephrops have mainly been caught in trawls using $70-89 \mathrm{~mm}$ mesh sizes. In the last five years an increasing proportion of total landings of Nephrops have been caught by vessels using gears with mesh sizes $>89 \mathrm{~mm}$ (which previously have been used in the fishery for cod, plaice and other demersal fish species). In Skagerrak and Kattegat it is since 2005 not allowed to use mesh sizes between $70-89 \mathrm{~mm}$ unless the codend and the extension piece is constructed of square meshed netting with a sorting grid (Council Regulation 27/2005). According to Council Regulation 51/2006 there is unlimited days when using this species selective trawl.
Those changes in fishing patterns may be seen in the light of the declines in most important demersal fish stocks in the North Sea, Skagerrak and Kattegat. Economically, Nephrops is one of the most important human consumption species in the Danish fishery in IIIa.

A new national management system was introduced in Denmark from the 1st of January 2007. In this new, rather complex, fishing rights system (FKA, 'vessel quota share') each fisher is allocated an annual share of the national quota, which he can dispose of in a much more flexible way than previously. He may now tradehis share, exchange it or pool it with other fishers share within the frames of the other regulations, e.g. total effort (fishing days) and national quotas and/or closed seasons.

The sharp increase in LPUE observed for the Danish vessels both in IIIa and in the North Sea, mainly in the Norw egian Deep, may to some extent be explained as a consequence of the regulation system.

- One would expect that the shares targeting Nephrops gradually will be concentrated among the more skilled Nephrops fishers.
- The fishers targeting Nephrops will optimise (minimise) their use of effort in catching their share of the FKA.

One consequence of this system is a more efficient use of the effort by the skilled fishers, which again renders the use of logbook recorded effort data even more problematic when using the data for tuning assessment models or for instance LPUEs directly as indicators of stock fluctuations for Nephrops stocks,

Sweden

The specialised Swedish Nephrops trawler (catching $>3 t / y r$) shows a decrease in number during 2000 to 2004 (123 to 83 trawler) and an increase the last four years. The increase is mainly due to an increase of trawlers catching $>10 \mathrm{t} / \mathrm{yr}$ (from 18 in 2004 to 45 in 2008) (see Figure 3.2.1.1). In 2008, mean length was 15 m (ranging from 8 to 34 m) and GRT of 46 (3 to 263).

Since 2004, new technical regulations were introduced for Swedish national waters in both FU 3 and FU 4. As Sweden has bilateral agreements with Denmark and Norway to fish inside the 12 NM limit, the regulations cover only waters exclusively fished by Swedish vessels (inside 3 NM in Kattegat and 4 NM in Skagerrak). The new regulations imply that it is mandatory to use a 35 mm species selective grid and 8 meter of 70 mm full square mesh codend and extension piece when trawling for Nephrops on Swedish national waters. The Swedish Nephrops landings from MA IIIa by gear during 1989 to 2008 are shown in Figure 32.1.2. Twin trawls were introduced in 1990 and the grid and square mesh trawls were legislated in Sweden during 2004 and show an increasing use since then. 65% of the Nephrops trawlers operating in IIIa used the grid at some time of the year during 2008.
A new coding of fishing gears in the Swedish log books has taken place since 2007 where the twin trawl code is phased out and the number of trawls of the new trawl codes should be registered. This mean that twin trawls in 2007 likely is included in other trawl categories that earlier was considered as single trawls. Since 2007, it is possible to distinguish between single and twin trawls in the new category with grid and square mesh targeting Nephrops. In recent three years, around 40% of the Nephrops trawl landings in IIIa was caught with this new trawl. In the first quarter of 2008 a new effort regulation was introduced in the Kattegat, meaning that a "day at sea" without the grid equipped trawl was counted as 2.5 This has further increased the incentives to use the sorting grid to the point were 80% of all Kattegat Nephrops landings in the first quarter of 2008 were caught with sorting grids (compared to around 20% previous years).

The landings from the Swedish creel fishery show an increasing trend in recent years and comprise $26-29 \%$ of the Swedish Skagerrak landings in recent four years. The trends in effort and LPUE ($\mathrm{g} /$ creel) are shown in Figure 3.2.1.3 and show an increasing trend in effort during the last ten years while LPUE fluctuate without trend.

Norway

In Skagerrak Nephrops is fished all year round. The largest part of the catches is taken with trawl (Nephrops and shrimp trawls (as bycatch)). In 2001 a creel fishery started developing with landings constituting about 12% of total annual landings.
Nephrops recordings in Norwegian log books from Skagerrak are incomplete. In 20042006 logbook recorded catches constituted only 1% of the landings, but increased to 28% in 2008. Furthermore, records on the use of Nephrops trawl are lacking in the logbooks for 2006-2008. Norw egian trawlers fish in the whole Skagerrak. Catches from along the Norwegian coast are landed in Norway. Some catches are also landed in Sweden.

The following regulations apply: Fishing with mesh sizes down to 70 mm is legal, but requires square meshes in the cod end, and that the bycatch of other species should not exceed 70% of the total weight. The minimum legal size is 40 mm CL , but landings can none the less contain up to 10% animals (in weight) below the legal size. In Skagerrak in 2000-2005, 97% of Nephrops landings were taken by small-meshed trawls (<90 mm).

ICES Advice

In 2008 ICES concluded that:
'Due to uncertainty in the available data ICES is not able to reliably forecast catch. There are no signs of decline in the stocks and therefore current levels of exploitation and effort appear to be sustainable.'

No specific catch levels w ere recommended, but ICES gave the following comments:
The fishing effort on Nephrops has decreased since 2002 and is currently at a low level. In recent years, lpue has shown an increasing trend but this is not necessarily an indication of increase in stock abundance. There are no signs of overexploitation in Division IIIa.

ICES currently advises no catches for cod in Division IIIa, which is a significant bycatch species in the Nephrops fisheries. The current effort regulation (limiting days at sea for gears not using selective sorting grids) may increase the incentives to use sorting grids. This may reduce bycatch of cod.'

Management for FU 3 and FU 4

The 2008 and 2009 TAC for Nephrops in ICES area IIIa was set to 5170 tonnes, i.e. unchanged from 2006 and 2007. The minimum landings size for Nephrops in area IIIa is still 40 mm carapace length. This high MLS for IIIa is maintained following advice from the industry. However, this leads to a high discard rate and at present 71% of the catch (N) in IIIa consists of undersized individuals (Figure 3.2.1.4). It is expected that ongoing experimental work on improved selectivity of the gear eventually will reduce the amounts of discards.

Days at sea limits restrict Nephrops trawlers to 19 days per month when using 90 mm mesh with no square mesh panel, and 22 days with a square mesh panel. New gear regulations imply that it is mandatory to use a 35 mm species selective grid and 8 m of 70 mm full square mesh codend and extension piece when trawling for Nephrops in Swedish national waters. As Sweden has bilateral agreements with Denmark and Norway to fish inside the 12 nm limit, the regulations cover only waters exclusively fished by Swedish vessels (inside 3 nm in Kattegat and 4 nm in Skagerrak). Since

2006, days at sea is unlimited for this species selective trawl (Council Regulation 51/2006). The changes in the national Danish regulation system from 2007 are described earlier in this section.

3.2.2 The Skagerrak (FU3)

3.2.2.1 Data available

Landings

Denmark, Sweden and Norway exploit this FU. Denmark and Sweden dominate this fishery, with 61% and 33% by weight of the landings in 2008. Landings by the Swedish creel fishery represent $13-18 \%$ of the total Swedish Nephrops landings from the Skagerrak in the period 1991 to 2002 and has increased to 29% in 2008 (Table 3.2.2.1)

In the early 1980s, total Nephrops landings from the Skagerrak increased from around 1000 t to just over 2670 t . Since then they have been fluctuating around a mean of 2500 t (Figure 3.2.2.1)).

Length compositions

For the Skagerrak, size distributions of both the landings and discards are available from both Denmark and Sweden for 1991-2008. Of these, the Swedish data series can be considered as being the most complete, since sampling took place regularly throughout the time period and usually covered the whole year. In earlier years the Swedish discard samples were obtained by agreement with selected fishermen, and this might tempt fishermen to bias the samples. How ever, the reliability of the catch samplings is cross-checked by special discard sampling projects in both the Skagerrak and the Kattegat. In recent years the Swedish Nephrops sampling is carried out by onboard observers in both Skagerrak and Kattegat. Geographically, the samples from the Swedish fishery mainly cover the north-eastern part of the Skagerrak.

In 1991, a biological sampling programme of the Danish Nephrops fishery was started on board the fishing vessels, in order to also cover the discards in this fishery. Due to its high cost and the lack of manpower, Danish sampling intensity in the early years was in general not satisfactory, and seasonal variations were not often adequately covered. Due to increasing lack of resources the Danish at sea sampling in Skagerrak was at unsatisfactory low level in 2007 and 2008, and for these years the length composition data for Skagerrak are based on Swedish samples only. The Norwegian Nephrops fishery is small and has not been sampled. Trends in mean size in catch and landings are shown in Figure 3.2.2.1 and Table 3.2.2.2. Mean sizes in landings, in both sexes are fluctuating without trend while there is a slightly decreasing trend for discards.

Maturity and natural mortality

Data on size at maturity for males and females were presented at the ICES W orkshop on Nephrops Stocks in January 2006 (ICES WKNEPH, 2006) but since no estimates of SSB has been made, these data were not used in this year's analysis of these stocks.

Catch, effort and research vessel data

Effort data for the Swedish fleet are available from logbooks for 1978-2008 (Figure 3.2.2.1 and Table 3.2.2.3). In recent years the twin trawlers have shifted to target both fish and Nephrops, and this shift has resulted in a decreasing trend in LPUE from 1998 to 2005 for this gear (Table 3.2.2.3). In the most recent years LPUEs have increased for both gear types. The long term trend in LPUEs (an increase from 1992 to 1998, a de-
crease from 1999 to 2001 and a subsequent increase in the last 6 years) is similar in the Swedish and Danish fisheries. Total Swedish trawl effort shows a decreasing trend since 1992. From 2004 onwards total Swedish trawl effort has been estimated from LPUEs from the grid single trawl (targeting only Nephrops) and total trawl landings.
Danish effort figures for the Skagerrak (Table 3.2.2.4 and Figure 3.2.2.1) were estimated from logbook data. For the whole period, it is assumed that effort is exerted mainly by vessels using twin trawls. The overall trend in effort for the Danish fleet is similar to that in the Swedish fishery. After having been at a relatively low level in 1994-97, effort did increase again in the next five years followed by a decrease in recent six years. Also the trend in LPUE is similar to that in the Swedish single trawl fishery, however with a much more marked increase in the Danish LPUE for 2007 and 2008. This high LPUE level may be partly a consequence of the new national (Danish) management system introduced in 2007 (see Sect. Fisheries) (Figure 3.2.2.2).

It has not been possible to incorporate 'technological creeping' in a further evaluation of the Danish effort data. How ever, use of twin trawls has been widespread for many years. In 2008 the Danish logbook data was analysed in various ways to elucidate the effect of some factors likely to influence the effort/LPUE (Figure 3.2.2.3):

- Incorporation of $\mathrm{kW}(\mathrm{HP})$ in the effort measure
- Vessel size (GLM to standardise LPUE regarding vessel size)
- Degree of targeting Nephrops (measured as value of Nephrops in landing).

Note, that the trends in the resulting LPUE (relative indices) are very similar. However, this may merely reflect that vessels catching Nephrops in this area are very similar with respect to e.g. size and HP.

Norw egian logbook records of Nephrops trawl are lacking for the last five years. Additionally, LPUE data for all trawl gears have covered 9% on the average of the Norwegian landings in the last 8 years. Norwegian data are therefore not included in the analysis.

3.2.3 The Kattegat (FU4)

3.2.3.1 Data available

Catch

Both Denmark and Sweden have Nephrops directed fisheries in the Kattegat. In 2008, Denmark accounted for about 71 \% of total landings, while Sweden took remaining 28 \% (Table 3.2.3.1). Minor landings are taken by Germany.

After the low that was observed in 1994, total Nephrops landings from the Kattegat increased again until 1998. Since then, they have fluctuated around 1500 t . However, landings increased markedly in 2008 to more than 2000 t , the highest observed landings since 1984 (Figure 3.2.3.1).

Length compositions

For the Kattegat, size distributions of both the landings and discards are available from Sweden for 1990-1992 and 2004-2008, and from Denmark for 1992-2008. The at-sea-sampling intensity has generally increased since 1999, but the Danish sampling decreased in 2007 and 2008. Information on mean size is given in Table 3.2.3.2. Trends in mean size are shown in Figure 3.2.3.1 and after some years of small mean sizes 1993 to 1996 all categories are fluctuating without trend the last 12 years.

Maturity and natural mortality

Data on size at maturity for males and females were presented at the ICES W orkshop on Nephrops Stocks in January 2006 (ICES WKNEPH, 2006) but since no estimates of SSB has been made, these data were not used in this year's analysis of this stock.

Catch, effort and research vessel data

Swedish total effort, converted to single trawl effort, has been relatively stable over the period 1978-90. An increase is noted in 1993 and 1994, followed by a decrease to 1996, and a stabilisation at intermediate levels in recent years (Figure 3.2.3.1 and Table 3.2.3.3)). Figures for total Danish effort are based on logbook records since 1987. Danish effort increased during 1995 to 2001, but since then it has been showing a decreasing trend until 2007. In 2008 the effort increased slightly (Figure 3.2.3.1 and Table3.2.3.4).
It has not been possible to incorporate 'technological creeping' in a further evaluation of the Danish effort data. How ever, use of twin trawls has been widespread for many years. In 2008 the Danish logbook data were analysed in various ways to elucidate the effect of some factors likely to influence the effort/LPUE (Figure3.2.3.2):

- Incorporation of $\mathrm{kW}(\mathrm{HP})$ in the effort measure
- Vessel size (GLM to standardise LPUE regarding vessel size)
- Degree of targeting Nephrops (measured as value of Nephrops in landing).

Note, that the trends in the resulting LPUE (relative indices) are very similar. However, this may merely reflect that vessels catching Nephrops in this area are very similar with respect to e.g. size and HP.
The Swedish single trawl LPUE and Danish annual LPUEs have shown similar trends since 1990. Both series show a marked increase in the last 2 years (Tables 3.2.3.3 \& 3.2.3.4; Figure 3.2.3.3).

3.2.4 Combined assessment (FU $3 \& 4$)

No advice was requested in 2009, so no assessment was carried out this year.

3.2.4.1 Status of the Stock

The 2008 assessment lead to the conclusion for the two FUs in Division IIIa that, given the apparent stability of the stocks, the current levels of exploitation appeared to be sustainable. The most recent assessment data compiled in 2009 do not indicate any changes in the state of the stock

3.3 Nephrops IN Subarea IV

Division IV contains eight FUs $5,6,7,8,9,10,32$, and 33 . Management is applied at the scale of ICES Division through the use of a TAC and an effort regime.

Management at ICES Subarea Level

The 2008 EC TAC for Nephrops in ICES Subarea IIa and IV was 26144 tonnes in EC waters (plus 1300 tonnes in Norwegian waters). For 2009, this has been reduced to 24837 tonnes in EC w aters and 1210 tonnes in Norwegian waters.

The minimum landings size (MLS) for Nephrops in Subarea IV (EC) is 25 mm carapace length. Denmark, Sweden and Norway apply a national MLS of 40 mm .

Days at sea limits apply to Nephrops trawlers when using mesh sizes $70-99 \mathrm{~mm}$ and in 2009, under the Scottish Conservation Credits Scheme (CCS), the number of days available to Scottish vessels is the same as 2008 and 2007. EU catch composition regulations apply to Nephrops trawlers.
UK legislation (SI 2001/649, SSI 2000/227) requires at least a 90 mm square mesh panel in trawls from 80 to 119 mm , where the rear of the panel should be not more than 15 m from the cod-line. The length of the panel must be 3 m if the engine power of the vessel exceeds 112 kW , otherwise a 2 m panel may be used. Under UK legislation, when fishing for Nephrops, the cod-end, extension and any square mesh panel must be constructed of single twine, of a thickness not exceeding 4 mm for mesh sizes 7099 mm , while EU legislation restricts twine thickness to a maximum of 8 mm single or 6 mm double.

Under EU legislation, a maximum of 120 meshes round the cod-end circumference is permissible for all mesh sizes less than 90 mm . For this mesh size range, an additional panel must also be inserted at the rear of the headline of the trawl. UK legislation also prohibits twin or multiple rig trawling with a diamond cod end mesh smaller that 100 mm in the North Sea south of 57030 N.

Official catch statistics for Subarea IV are presented in Table 3.3.1. The preliminary officially reported landings in 2008 are just over 22,000 tonnes which is around 2,500 tonnes lower than in 2007. Minor updates have been made to landings in previous years.

Table 3.1.2 shows landings by FU as reported to the WG. It also shows that a small but significant proportion of the landings from Subarea IV come from outside the defined Nephrops FUs.

The trends observed in the 2008 North Sea Commission Fisheries Partnership (NSCFP) stock survey for Nephrops are discussed in the Quality of Assessment sections.

3.3.1 Botney Gut/Silver Pit (FU 5)

3.3.1.1 Data Available

Landings.

Table 3.3.1.1 shows the landings from this FU. For many years total landings have been at a level of 1000 t . Up to 1995, the Belgian fleet took more than 75% of the international Nephrops landings from this FU/stock, but since then, the Belgian landings have declined drastically, and since 2006 therehas been no directed Belgian Nephrops fishery. Danish landings have been at low levels in recent years. In the most recent years UK, Netherlands and Germany have accounted for most of the landings from this FU.

Discards.

Discard data were available for the Belgian Nephrops fleet for the period 2002-2005. Since 2006, because of no directed fisheries, there has been no data collection from the Belgian Nephrops landings. No discard data are available from the other fisheries.

Length compositions

Danish sampling of landed Nephrops has taken place 2005-2007, mainly as a compensation for inadequate at-sea-sampling.

Data on mean sizes of male and female Nephrops in the Belgian landings (1991-2005) are shown in Table 3.3.1.2 and Figure 3.3.1.1. The mean sizes of males show evidence of an overall downward trend, while mean sizes of females seem to be stable. There is little evidence in these of a notable change in sizes and the maximum sizes have remained quite constant during this period.

Natural mortality, maturity at age and other biological parameters

In previous analytical assessments (see e.g. WGNEPH, 2003), natural mortality was assumed to be 0.3 for males of all ages and in all years. Natural mortality was assumed to be 0.3 for immature females, and 0.2 for mature females. Discard survival was assumed to be 0.25 for both males and females (after Gueguen \& Charuau, 1975, and Redant \& Polet, 1994).

- Growth parameters are as follows:
- Males: $\quad \mathrm{L} \infty=62 \mathrm{~mm}$ CL, $\mathrm{k}=0.165$.
- Immature females: $\mathrm{L} \infty=62 \mathrm{~mm}$ CL, $\mathrm{k}=0.165$.
- Mature females: $\mathrm{L} \infty=60 \mathrm{~mm}$ CL, $\mathrm{k}=0.080$, Size at 50% maturity $=27 \mathrm{~mm}$ CL.
- Growth parameters have been assumed to be similar to those of Scottish Nephrops stocks with similar overall size distributions of the landings (see e.g. WGNEPH, 2003). Female size at 50% maturity was taken from Redant (1994).

Commercial catch-effort data and research vessel surveys

Effort and LPUE figures are available for Belgian Nephrops specialist trawlers (19852005), the Dutch fleet (all vessels catching Nephrops for the period 2000-2005) and the Danish bottom trawlers with mesh size > 70 mm (1996-2008), Table 3.3.1.3 and Figure 3.3.1.1.

The effort of the Belgian Nephrops fleet has shown an almost continuous decrease since the all times high in the early 1990s. In 2005, effort was at the lowest level in the time series No data are available for the 2006-2007
The effort of the Dutch (Nephrops) fleet was relatively stable, between 7900 and 9800 days at sea annually. Danish Nephrops effort in the Botney Gut was always low but has decreased drastically in recent years. The very high LPUE in 2008 may reflect both technological creep and increasing efficiency due to the FKA agreement for fishing industry described in Section 3.2.1.2.

There are no fishery-independent survey data for FU 5 .

3.3.1.2 Status of stock

The shortage of information on this stock in the recent 2 years makes an evaluation of stock condition difficult. The high value of the Danish LPUE in 2008 may reflect technological creep, and since the Danish fishery is very small, the LPUE should be viewed with caution. There is no other evidence of significant downward movements trends in LPUE or in mean size, but the lack of more substantial data for the 3 recent years gives rise for concern about the status of this and the stock.

3.3.2 Farn Deeps (FU6)

3.3.2.1 Fishery in 2007 \& 2008

Since the beginning of the time-series, the UK fleet has accounted for virtually all landings from the Farn Deeps (Table 3.3.2.1). In 2008 total landings were 1,213 tonnes, significantly down from both $2,966 \mathrm{t}$ in 2007 and the historical maximum observed in 2006 of $4,858 \mathrm{t}$ (Figure 3.3.2.1). The introduction of the buyers and sellers legislation in 2006 predudes direct comparison with previous years because the resulting improvement in reporting levels has created a discontinuity in the data. Effort also decreased sharply in 2008 and has been generally declining since the early 1990s although again the change in legislation in 2006 complicates the inter pretation of any trends. Effort trends in terms of KW hours are further complicated by moves towards multi-rig fishing gears which generally have a higher fishing power. The proportion of landings by multi-rig gears (mainly twin riggers) has risen steadily through time and reached just under 40% in 2008 (Figure 3.3.2.2). Historically the fishery is prosecuted by a combination of local English boats (smaller vessels undertaking day-trips) and larger vessels from Scotland with occasional influxes of effort by Northern Irish vessels. The number of vessels in the fishery from Scotland and Northern Ireland decreased in 2008.

The Farn Deeps fishery is essentially a winter fishery commencing in September and running through to March, hence the 2008 fishery comprises the end of the 2007-2008 fishery and the start of the 2008-2009 fishery. Effort in the first and fourth quarters of 2008 was considerably lower than previous years whilst effort in the second and third quarters remained relatively stable (Figure 3.3.2.3).

3.3.2.2 ICES ADVICE in 2006

The last assessment of Nephrops in FU6 was in 2008.
State of the stock. (from ACOM advice sheet)
"The TV survey and lpue data indicate a decline in abundance from the highest estimate in the time-series in 2006 to levels comparable to 1997 and 2002. Mean length in the catches has increased which could indicate that recruitment in 2007 is low, or it could indicate a reduction in fishing mortality. However, there is no apparent trend over the available time-series of relative abundance and mean length and the stock appears to be stable ."
It would appear that there was an error in the final composition of this advice because this is contradictory to both the WGNSSK report for 2008 and the "management considerations" section states of the ACOM advice sheet which states:
"All available indices point to the stock in 2007 having been reduced to a low level following the high abundances in 2005-2006. Latest recruitment signals are low. This is consistent with the industry's perception of the stock."
"ICES recommends that the Nephrops fisheries should not be allowed to increase relative to 2007. This corresponds to landings of no more than 3000 tfor the Farn Deeps stock. "

3.3.2.3 Management

Management is at the ICES Subarea level as described at the beginning of Section 3.3.

3.3.2.4 Assessment

Review of the 2008 assessment.

May 2008:
"FU6: the RG agrees with views of EG which are well explained as in terms of assessment as advice. Recent UWTV indices are suggesting a dedine in abundance.

For this FU and with the same concerns mentioned before about the general procedure followed for these stocks, the EG are conscious on delicate of situation and the proposal achieved seems to be more prudent (2,800 tin 2009). It is not recommended to use the average of recent landings, since 2006 landings dropped from 4,858 to 2,966 in 2007. The RG agrees with EG that this stock is in a transition phase and it should be re-assessed in 2009.."

Data available

Catch, effort and research vessel data

Three types of sampling occur on this stock, landings sampling, catch sampling and discard sampling providing information on size distribution and sex ratio. The sampling intensity is considered to be generally good (see section 2.????).
Two different procedures have been used to estimate discards with a change in method in 2002. These are described in detail in the Stock Annex.

LPUE had remained relatively stable between 1993-2000, at a relatively high level around $26 \mathrm{~kg}_{\mathrm{kg}}^{\mathrm{h}} \mathrm{hor}^{-1}$ (Table 3.3.2.2 \& Figure 3.3.2.1). Since 2000 annual LPUE has sharply increased to its highest value in the series in 2006 (38 kg. hour ${ }^{-1}$). Since 2006, effort has decreased by 53%, landings by 75% and LPUEby 49%.. The introduction of the buyers and sellers legislation in 2006 precludes comparison with previous years.
Males generally predominate in the landings, averaging about 70% (range $64 \%-79 \%$) by biomass in the period 1992-2005. The fishery in 2008 continued this trend and there was no repeat of the anomaly in sex ratio (high proportion of females) observed during the 06/07 winter fishery (Figure 3.3.2.3).
Effort is generally highest in the $1^{\text {t }}$ and $4^{\text {th }}$ quarter of the year in this fishery (Figure 3.3.2.3) with landings correspondingly highest in these quarters. In 2008 effort was down on recent levels with the exception of quarter 2 . The reduced number of larger vessels in 2008 may have a disproportional negative impact on CPUE measures in that the larger vessels are likely to have a higher efficiency. Quarterly LPUE values were more variable than the annual trends, but overall the same pattern is apparent. LPUEs of males are typically highest in the 1st and 4th quarters. LPUE for males was slightly reduced from 2007 levels in all quarters. The seasonal pattern of LPUE for females is much more variable ranging from very strong seasonality (1998) to almost none (2002). The extremely high LPUE for Females in quarter 4 in 2006 appears to be genuine and not an artefact of sampling. LPUE on Females was considerably reduced on 2007 levels for the first three quarters but increased for the $4^{\text {th }}$ quarter.

Trends in the mean lengths for the $<35 \mathrm{~mm}$ categories (Figure 3.3.2.1) are used to infer possible changes to recruitment. Changes to the raising procedure in 2000 and 2002 confound comparison with years prior to 2002, but clear upward trends can be seen for both sexes between 2002 and 2007 implying a trend towards lower recruitments. There was a reduction in mean length in 2005 which corresponded with the high abundance index in 2006. The mean length for the $<35 \mathrm{~mm}$ categories in 2008 are the
same or lower than 2007 implying improved recruitment for 2008. Length distributions of landed and estimated discarded portions of the catch are shown in Figure 3.3.2.4. Catches of smaller size males are very similar to 2007, however there were considerably more small females.
Analysis of individual vessel records indicates an increase in directed Nephrops fishing since around 2000. Restrictions on both quota and effort for directed finfish fishing over the last seven years will have restricted the more casual effort on Nephrops. Further research is needed to better define directed fishing effort and thereby improve on this series.
Underwater TV surveys of the Farn Deeps grounds have been conducted at least once in each year from 1996 onwards. The most consistent series, and the one used in the assessment is the autumn survey which coincides with the start of the winter fishery. A time series of indices is given in figure 3.3.2.5 and table 3.3.2.4. Figure 3.3.2.6 shows the distribution of stations and relative density in the most recent 8 TV surveys.

Discard survival is set to zero for this FU in contrast to the 25% used in many other FUs. This is due to the practice of catch sorting and tailing whilst steaming back to port when the vessel passes over ground not suitable for Nephrops habitation.

Natural mortality, maturity at age and other biological parameters

Biological parameter values are included in the Stock Annex.

Exploratory analyses of RV data

A comprehensive review of the use of underwater TV surveys for Nephrops stock assessment was undertaken by WKNeph (ICES 2009). This covered the range of potential biases resulting from factors including edge effects, species mis-identification, burrow occupancy. Cumulative bias factors were estimated for each FU and for FU6 the bias correction factor is 1.2 meaning that the TV estimate is likely to overestimate absolute abundance of Nephrops by 20%. Estimates of mean burrow density and the resulting bias-corrected abundance estimates (with confidence estimates) are given in table 3.3.2.4. The confidence estimates presented are a product of the within-strata variance which only partially takes into account the spatial structure of the data. Analyses which take spatial structuring of the counts into account (such as geostatistical methods) have been carried out for other FUs and indicate that uncertainty in the estimates of abundance from these underwater TV surveys is considerably overestimated.

Final Assessment.

Mean size of Nephrops $<35 \mathrm{~mm}$ carapace length (CL) in the catch has been generally increasing for both sexes since 2002, peaking in 2007 with similar or lower values in 2008. Mean size above 35 mm has been comparatively static from 2002-2007. The implication of the increase in mean size for the smaller size classes is that there has been either a significant improvement in survivorship of the older classes or a progressive reduction in recruitment. Given the reduced TV abundances and poor fishing in both 2007 and 2008, a reduction in recruitment would seem the more likely scenario. The TV index for 2008 is at a similar low level to that of the absolute minimum observed in 2007 reflecting the low level of the fishery in these years.

3.3.2.5 Historic stock trends.

The time series of TV surveys is short compared to the IBTS (8 consecutive years) but estimates that the stock has fluctuated between 900 and 1700 million individuals with the most recent two estimates being at the bottom of this range.

Estimates of historic harvest ratio (the proportion of the stock which is removed) range from 7.4% to 24.6% (Table 3.3.2.5). The harvest ratio jumped from around 12% in 2004-2005 to 24.6% in 2006 when the new reporting legislation came in.

3.3.2.6 Short ter m for eca sts.

Catch and landing predictions for 2010 are given in the text table below. This assumes that the bias corrected survey index made in October 2008 is relevant to the stock status for 2010. The harvest ratio estimated to be equivalent to fishing at F0.1 was calculated by WKNeph (2009) to be 8.2%. This is significantly lower than the value used in previous advice due to a revision of the assumptions regarding the sizes of Nephrops observed by the TV survey.

Discard rate $=29.5 \%$, mean weight in retained portion (2006-2008) $=23.4 \mathrm{~g}$

	Harvest ratio	Bias \propto rrected survey index	Retained number	Landings
	0\%	965	0	0
	2\%		14	318
	4\%		27	637
	6\%		41	955
F2008	7.6\%		52	1210
	8\%		54	1274
F0. 1	8.2\%		56	1305
	10\%		68	1592
	12\%		82	1910
	13\%		90	2117
	14\%		95	2229
	16\%		109	2547
Fmax	18\%		122	2866
	20\%		136	3184

3.3.2.7 BRPs

Nobiological reference points have been determined for Nephrops in FU6.

3.3.2.8 Quality of assessment

Changes to the legislation regarding the reporting of catches in 2006 means that the levels of reported landings from this point forward are considered to better reflect the true landings and hence effort input into this fishery. This does mean that comparison of LPUE with previous years is inadvisable and the independence of the final assessment from these data is likely to continue for some time.

The length and sex compositions arising from the land-based catch sampling programme are considered to be representative of the fishery. Estimates of discarded and retained length frequencies arising from the discard sampling programme are also considered robust since 2002.

The TV survey in this area has a high density of survey stations compared to other TV surveys and the abundance estimates are considered robust.

The most recent North Sea Stock Survey was carried out in mid 2008. 70% of the 13 respondents thought that abundance of Nephrops in Area 4 (Farn Deeps is the only FU in this area) was less or much less than previously which agrees with the recent decline in TV survey abundance. The time series for Area 4 indicates an increasing trend until 2007 followed by a decline in 2008.
Fishing effort in 2008 declined considerably due to fewer vessels visiting from Scotland and Northern Ireland. This brought the Harvest Rate in 2008 down to below the level considered to be equivalent to fishing at F0.1. Without suitable controls on the movement of effort between Functional Units there is nothing to prevent the effort in 2010 returning to levels observed prior to 2008 all of which have been above the F0.1 level and some of which have been considerably above the level of Fmax. Prior to the introduction of "Buyers and Sellers" legislation in 2006 reporting rates are considered to have been low and hence the estimated Harvest Ratios prior to 2006 are also likely to have been underestimated.

3.3.2.9 Status of stock

The TV survey, fishery data and length frequency data all point to the stock at the start of the 2008 fishing season continuing to be in a depleted state. Recruitment signals for Nephrops are inferred rather than estimated but recruitment in 2008 would appear to below.

3.3.2.10Management considerations

The WG, ACFM and STECF have repeatedly advised that management should be at a smaller scale than the ICES Division level and management at the Functional Unit level could provide the controls to ensure that catch opportunities and effort were compatible and in line with the scale of the resource.
Increases in abundance in other FUs (i.e. Firth of Forth and the Fladen grounds) are likely to translate to increases in TAC, increasing the risk of higher effort being deployed in this FU. The high cost of fuel combined with the relative coastal proximity of this ground may result in it attracting additional fishing effort which would be inadvisable given the current low level of the stock.

3.3.3 Fladen Ground (FU7)

3.3.3.1 Ecosystem aspects

Information on ecosystem aspects can now be found in the Stock Annex.

3.3.3.2 The Fishery in 2007 and 2008

The Nephrops fishery at Fladen is the largest in the North Sea and is mainly prosecuted by UK (Scotland) vessels, with Denmark the only other nation taking a significant amount of landings (Table 3.3.3.1).

No major changes have been reported in the Scottish fishery in 2008. Over 100 vessels continue to participate in the fishery which takes a mixed catch consisting of haddock, whiting, cod, anglerfish and megrim as well as Nephrops. Changes to more selective gear which are required to qualify for the Scottish Conservation Credits Scheme (CCS; see Section 13.1.4) are likely to reduce by catch (and therefore) discards of whitefish. The majority of these vessels (80%) fish out of Fraserburgh. Six new Nephrops vessels in the $20-25 \mathrm{~m}$ size category have joined the fleet in 2008 and a further 5 new vessels are on order. However, a number of vessels have also left the Scot-
tish fleet and are now registered in England to avoid the ban on multiplerig (>2) trawling. Other developments that may have mitigated effort increases (due to new vessels) to some extent, are the number of larger boats taking up oil guard vessel duties in 2007 and the high oil prices during the latter part of 2007 and into 2008 which curtailed some activity. The seasonal squid fishery ($2^{\text {nd }}$ half of the year) was good in 2007 and 2008 and some vessels transferred effort during these periods.
Further general information on the fishery can be found in the Stock Annex.

3.3.3.3 ICES advice in 2008

The ICES conclusions in 2008 in relation to State of the Stock were as follows:

'TV survey estimates of abundance for Nephrops on the Fladen Ground indicate that the stock has fluctuated without trend since 1992. Stock abundance rose in 2006 and 2007 to reach the highest estimated in the time-series. Indicators of stock status based on size composition show a stable situation and the size range has not decreased through time. The mean size of Nephrops $>35 \mathrm{~mm}$ carapace length (CL) has fluctuated slightly without trend over the timeseries. For Nephrops $<35 \mathrm{~mm}$ CL a slight decline in mean size has been observed over the last couple of years, which is probably associated with increased recruitment leading to increased abundance.'

The ICES advice for 2008 (Single-stock exploitation boundaries) was as follows:

Exploitation boundaries in relation to precautionary considerations

'The current fishery appears sustainable. Therefore, ICES recommends that Nephrops fisheries should not be allowed to increase relative to the past two years (2006-2007). This corresponds to landings of no more than 11300 tonnes for the Fladen stock.'

3.3.3.4 Management

Management is at the ICES Subarea level as described at the beginning of Section 3.3.

3.3.3.5 Assessment

Review of the 2008 assessment

' $R G$ agrees with $W G$ on perception of the stock trends but less in terms off adtoice. It is noticeable that for this FU the EG is more prudent and raises better some concerns. The RG insists in a more conservative, progressive and adaptive management proposals for this FU.'

Approach in 2009

The assessment and provision of advice through the use of the UWTV survey data and other commercial fishery data follows the process defined by the benchmark WG and described in Section 3.1.

Data available

Commercial catch and effort data

Landings from this fishery are predominantly reported from Scotland, with small contributions from Denmark and others, and are presented in Table 3.3.3.1, together with a breakdown by gear type (See also Table 3.3.3.2). Total international landings (as reported to the WG) in 2008 were 12240 tonnes (approximately 300 tonnes greater than the 2007 total), consisting of 12099 tonnes landed by Scotland and 133 tonnes landed by Denmark.

Reported effort by all Scottish Nephrops trawlers showed an increasing trend up to 2002, but dropped sharply in 2003 apparently as a result of reduced twin trawl effort (Table 3.3.3.2 and Figure 3.3.3.1). However, these reported effort data (in terms of hours fished) from the Scottish trawl fleets are thought to be rather unreliable due to changes in the practices of effort recording and non-mandatory recording of hours fished in recent years. Further details can be found in the report of the 2000 WGNSSK (ICES, 2001). Together with the likely underreporting of landings prior to 2006, this means that the associated LPUE series are therefore unlikely to be representative of actual trends in LPUE for the Scottish fleets.
Danish LPUE data are presented in Figure 3.3.3.1 and Table 3.3.3.3. These show an increase in the mid-2000s, with values remaining high in 2008.
Males consistently make the largest contribution to the landings, although the sex ratio does seem to vary. This is likely to be due to the varying seasonal pattern in the fishery and associated relative catchability (due to different burrow emergence behaviour) of male and female Nephrops (Figure 3.3.3.2).

Discarding of undersized and unwanted Nephrops occurs in this fishery, and quarterly discard sampling has been conducted on the Scottish Nephrops trawler fleet since 2000. Discarding rates average around 15% by number in this FU. In 2008, discard rates were estimated to be lower than average at just under 10% by number. The discard rate estimated at the benchmark workshop was 13.8% (3 year average) and this value is used in the provision of landings options for 2010.

It is likely that some Nephrops survive the discarding process, an estimate of 25% survival is assumed for this FU in order to calculate removals (landings + dead discards) from the population.

Length compositions

Length compositions of landings and discards are obtained during monthly market sampling and quarterly on-board observer sampling respectively. Levels of sampling have increased since 2000 and are shown in Section 2.2.4.. Although assessments based on detailed catch analysis are not presently possible, examination of length compositions can provide a preliminary indication of exploitation effects.
Figure 3.3.3.3 shows a series of annual length frequency distributions for the period 2000 to 2008. Catch (removals) length compositions are shown for each sex with the mean catch and landings lengths shown in relation to MLS and 35 mm . In both sexes the mean sizes have been fairly stable over time and examination of the tails of the distributions above 35 mm shows no evidence of reductions in relative numbers of larger animals.
The observation of relatively stable length compositions is further confirmed in the series of mean sizes of larger Nephrops ($>35 \mathrm{~mm}$) in the landings shown in Figure 3.3.3.1 and Table 3.3.3.4. This parameter might be expected to reduce in size if overexploitation were taking place but there is no evidence of this. The mean size of smaller animals ($<35 \mathrm{~mm}$) in the catch (and landings) is also quite stable through time although there has been a decrease in recent years which may be associated with increased recruitment (that has led to increased densities observed on the UWTV survey in this area (see below)).

Mean weight in the landings is shown in Figure 3.3.3.4 and Table 3.3.3.5 and this also shows no systematic changes over the time series.

Natural mortality, maturity at age and other biological parameters

Biological parameter values are included in the Stock Annex.

Research vessel data

TV surveys using a stratified random design are available for FU 7 since 1992 (missing survey in 1996). Underwater television surveys of Nephrops burrow number and distribution, reduce the problems associated with traditional trawl surveys that arise from variability in burrow emergence of Nephrops.

The numbers of valid stations used in the final analysis in each year are shown in Table 3.3.3.6. On average, about 60 stations have been considered valid each year with over 70 stations in the last two years. Data are raised to a stock area of $28153 \mathrm{~km}^{2}$ based on the stratification (by sediment type). General analysis methods for underwater TV survey data are similar for each of the Scottish surveys, and are described in more detail in the Stock Annex.

Data analyses

Explorat ory analy ses of survey data

The UWTV survey work-up method employed on the Scottish surveys assumes that the width of the viewed transect is the entire lower edge of the TV screen on which the burrows are counted. This can be calculated from the TV camera parameters and the position of the camera in relation to the seabed. Although the camera has been changed a number of times since the start of the survey, the manufacturer has remained the same and efforts have been made to ensure that the camera parameters (lens properties) remained constant. How ever, in 2008, it came to light that a number of changes had been made to the housing of the glass front of the camera which meant that the field of view of the camera had actually changed (a number of times) with the actual field of view being less than that calculated from the assumed camera parameters.

A re-working of the UWTV survey abundances for Division VIa were presented to the Nephrops benchmark workshop (WKNEPH) in 2009 (ICES, 2009) and further details of the technical changes to the camera can be found in the report of that workshop. The revised abundance estimates for FU 7 from 2003 onwards are presented here for the first time and are slightly higher than the previous values due to the field of view being smaller than previously calculated. (Due to inconsistent file formats, pre-2003 survey data could not be reworked ahead of this WG).

Table 3.3.3.7 shows the basic analy sis for the three most recent TV surveys conducted in FU 7. The table includes estimates of abundance and variability in each of the strata adopted in the stratified random approach. The ground has a range of mud types from soft silty clays to coarser sandy muds, the latter predominate. Most of the variance in the survey is associated with this coarse sediment which surrounds the main centres of abundance.

Figure 3.3.3.5 shows the distribution of stations in recent TV surveys (2003-2008), with the size of the symbol reflecting the Nephrops burrow density. Abundance is generally higher in the soft and intermediate sediments located to the centre and south east of the ground but in 2007, high densities were also widely recorded in the coarser sediment of the ground. Table 3.3.3.6 and Figure 3.3.3.6 show the time series
estimated abundance for the TV surveys, with 95% confidence intervals on annual estimates.

The review of the use of the UWTV surveys for Nephrops in the provision of advice was extensively reviewed by WKNEPH (ICES, 2009). A number of potential biases were highlighted including those due to edge effects, species burrow misidentification and burrow occupancy. The cumulative bias correction factor estimated for FU7 was 1.35 meaning that the TV survey is likely to overestimate Nephrops abundance by 35%.

Final assessment

The underwater TV survey is again presented as the best available information on the Fladen Ground Nephrops stock. This survey provides a fishery independent estimate of Nephrops abundance. At present it is not possible to extract any length or age structure information from the survey, and it therefore only provides information on abundance over the area of the survey.

The 2008 TV survey data presented at this meeting shows that the abundance remains at a high level.

Mean size in the catch of individuals $<35 \mathrm{~mm}$ has decreased for both males and females in recent years which may be interpreted as an increase in recruitment which would be in agreement with the increased number of burrows estimated from recent TV surveys.

3.3.3.6 Historic Stock trends

The TV survey estimates of abundance for Nephrops in the Fladen suggests that historically the population fluctuated without trend. The recently observed increase has taken the stock to its highest estimated abundance in the time series. The bias adjusted abundance estimates from 2003-2008 (the period over which the survey estimates have been revised) is shown in Table 3.3.3.8. The stock is estimated to be at a high point of over 7000 million individuals.

Table 3.3.3.8 also shows the estimated harvest ratios over this period. These range from $4-10 \%$ over this period. (It is unlikely that prior to 2006, the estimated harvest ratios are representative of actual harvest ratios due to under-reporting of landings).

3.3.3.7 Recruitment estimates

Recruitment estimates from surveys are not available for this FU. However the drop in mean size of small animals $<35 \mathrm{~mm}$ in the catches may be indicative of good recruitment (Figure 3.3.3.1).

3.3.3.8 Short-termforecasts

A landings prediction for 2010 was made for the Fladen Ground (FU7) using the approach agreed at the Benchmark Workshop and outlined in the introductory section to this chapter (Section 3.1). The table below shows landings predictions at various harvest ratios, including those equivalent to fishing at $\mathrm{F}_{0.1}, \mathrm{~F}_{\max }$ and the harvest ratio in 2008. The harvest ratios equivalent to F_{0}.and $F_{\text {max }}$ are significantly lower than those previously presented due to a revision of the assumptions regarding the size range of Nephrops inhabiting the burrows observed in the TV survey.
The inputs to the landings forecast were as follows:

Mean weight in landings $(06-08)=28.05 \mathrm{~g}$
Discard rate (by number) $=13.8 \%$
Survey bias $=1.35$.

			Implied fishery	
	Harvest rate	Survey Index (adjusted)	Retained number	Landings (tonnes)
		7302	0	0
F2008	0.0%	7302	315	8827
F0.1	5.0%	7302	504	14124
	8.0%	7302	585	16419
Fmax	9.3%	7302	629	17655
	10.0%	7302	944	26482
	15.0%	7302	994	27895
	15.8%	7302	1259	35310

3.3.3.9 Biological Reference points

Biological reference points have not been defined for this stock.

3.3.3.10 Quality of assessment

The length and sex composition of the landings data is considered to be well sampled. Discard sampling has been conducted on a quarterly basis for Scottish Nephrops trawlers in this fishery since 2000, and is considered to represent the fishery adequately.

The quality of landings (and catch) data has improved in the last two years but because of concerns over the accuracy of earlier years, the final assessment adopted is independent of official statistics.

Underwater TV surveys have been conducted for this stock since 1992, with a continual annual series available since 1997. The number of valid stations in the survey have remained relatively stable throughout the time period, with more stations in the last couple of years. Confidence intervals are relatively small.

The landings forecast for 2010 (equivalent to fishing at F0.1) is almost 16,500 tonnes. This is an increase of almost 4,000 tonnes on the reported landings in 2008.

NSCFP stock survey suggests that moderate amounts of recruits are apparent in Areas 1 and 3 (which Fladen FU lies within) compared to 2007. The time series of perceived abundance in Areas 1 and 3 increases to 2007, but in 2008 either declined or remained constant. Status of the stock

TV observations indicate that the stock is fluctuating without obvious trend with estimates for the last 2 years increasing to the highest abundance in the series. Considering the TV result alongside the indications of stable or slightly increasing mean sizes in the length compositions of catches (of individuals $>35 \mathrm{~mm}$ CL) suggests that the stock is being exploited sustainably. The decline in mean length of smaller individuals in the catch may be indicative of recent good recruitment.

3.3.3.1 1 Management considerations

The WG, ACFM and STECF have repeatedly advised that management should be at a smaller scale than the ICES Division level and management at the Functional Unit
level could provide the controls to ensure that catch opportunities and effort were compatible and in line with the scale of the resource.

Nephrops fisheries have a bycatch of cod. In 2005, high abundance of 0 group cod was recorded in Scottish surveys near to this ground. This year class of cod has subsequently contributed to slightly improved cod stock biomass and efforts are being made to avoid the capture of cod so that the stock can build further. The Scottish industry is operating under a voluntary Conservation Credits scheme (uptake $>90 \%$) and has implemented improved selectivity measures in gears which target Nephrops and real time closures with a view to reducing unwanted bycatch of cod and other species.

3.3.4 Firth of Forth (FU 8)

3.3.4.1 Ecosystem aspects

Information on ecosystem aspects can now be found in the Stock Annex.
The Nephrops fishery in the Firth of Forth is dominated by UK (Scotland) vessels with low landings reported by other UK nations (Table 3.3.4.1). In recent years the number of Scottish vessels regularly fishing this FU has been around 40 although this varies seasonally as vessels move around the UK with fluctuating catch rates. The fishery continues to be characterised by catches of small Nephrops which often leads to high discard rates. The whitefish by-catch is reported to have been particularly low in this fishery in 2008. There is also a small amount of landings by creel vessels in this area, although typically the main target species of these vessels are crabs and lobsters.

Further general information on the fishery can be found in the Stock Annex.

3.3.4.2 Advice in 2008

The ICES conclusions in 2008 in relation to State of the Stock were as follows:
'The UWTV survey indicates that the stock abundance has been at a high level since about 2002. The size composition of the commercial landings are stable and do not show a decrease over time.'

The ICES advice for 2008 (Single-stock exploitation boundaries) was as follows:

Exploitation boundaries in relation to precautionary considerations

'The current fishery appears sustainable. Therefore, ICES recommends that Nephrops fisheries should not be allowed to increase relative to the past two years (2006-2007). This corresponds to landings of no more than 2500 tonnes for the Firth of Forth stock.'

3.3.4.3 Management

Management is at the ICES Subarea level as described at the beginning of Section 3.3.

3.3.4.4 Assessment

Review of the 2008 assessment

'The RG agrees with views of EG which are well explained as in terms off assessment as advice. From UWTV abundance trends (and from commercial information with caution) there are indications that the exploitation of stock is being sustainable and
now is at a relatively high level. Considering the high discard rates it should recommended exploring an improvement in selection pattern.'
Approach in 2009
The assessment and provision of advice through the use of the UWTV survey data and other commercial fishery data follows the process defined by the benchmark WG and described in Section 3.1.

Data available

Commercial catch and effort data

Landings from this fishery are predominantly reported from Scotland, with very small contributions from England, and are presented in Table 3.3.4.1, together with a breakdown by gear type (See also Table 3.3.4.2). Total landings (as reported to the WG) in 2008 were 2450 tonnes. Following 5 years of rapidly increasing reported landings (which may have been due to increased reporting as well as increased actual landings), the value for 2008 represents a decline of approximately 200 tonnes on the value for 2007.
Reported effort by Scottish Nephrops trawlers dipped in 2003, but has otherwise remained relatively stable since 1995 (Table 3.3.4.2 and Figure 3.3.4.1). Scottish Nephrops trawler LPUE was relatively stable in the late 1980's and early 1990's, but has apparently fluctuated since then and in the last couple of years has increased markedly. There are concerns over the quality of these fishery data (discussed in Section 3.3.3.2.1) and the apparent sudden increase in LPUE (Figures 3.3.4.1 and 3.3.4.2) may well be an artefact of improved landings reporting combined with reduced effort (hours fished) recording.

Males consistently make the largest contribution to the landings (Figure 3.3.4.2), although the sex ratio does vary. The proportion of females in the landings in 2008 is somewhat higher than in 2007. This may be due to the change in seasonal effort distribution with greatest effort in the $3^{\text {rd }}$ quarter in 2008 when females are likely to be more available to the fishery (compared with a more evenly distributed seasonal effort pattern in 2007).

Discarding of undersize and unwanted Nephrops occurs in this fishery, and quarterly discard sampling has been conducted on the Scottish Nephrops trawler fleet since 1990. Discarding rates in this FU over the last 5 years have varied between 25 and 50 $\%$ of the catch by number (31% in 2008). Discard rates are higher in this stock than the more northerly North Sea FUs for which Scottish discard estimates are also available. This could arise from the fact that the use of larger meshed nets is not so prevalent in this fishery (80 mm is more common). The discard rate estimated at the benchmark workshop was 34.6 \% (3 year average) and this value is used in the provision of catch options.
It is likely that some Nephrops survive the discarding process, an estimate of 25% survival is assumed in order to calculate removals (landings + dead discards) from the population.

Length compositions

Length compositions of landings and discards are obtained during monthly market sampling and quarterly on-board observer sampling respectively. Levels of sampling are shown in Table 2.2.XX. Although assessments based on detailed catch analysis are
not presently possible, examination of length compositions may provide an indication of exploitation effects.
Figure 3.3.4.3 shows a series of annual length frequency distributions for the period 2000 to 2008. Catch (removals) are shown for each sex with the mean catch and landings lengths shown in relation to MLS and 35 mm . There is little evidence of change in the mean size of either sex over time and examination of the tails of the distributions above 35 mm shows no evidence of reductions in relative numbers of larger animals.
The observation of relatively stable length compositions is further confirmed in the series of mean sizes of larger Nephrops ($>35 \mathrm{~mm}$) in the landings shown in Figure 3.3.4.1 and Table 3.3.4.3. This parameter might be expected to reduce in size if overexploitation were taking place but over the last 15 years has in fact been quite stable and increased very slightly in more recent years. The mean size in the landings in the $<35 \mathrm{~mm}$ category (Figure 3.3.4.1) shows a reduction in recent years although the mean size in the catch has fluctuated without trend. Such signals could be associated with a changing discard or selection pattern.

Mean weight in the landings is shown in Figure 3.3.3.3 and Table 3.3.3.5 and this also shows no systematic changes over the time series.

Natural mortality, maturity at age and other biological parameters

Biological parameter values are included in the Stock Annex.

Research vessel data

TV surveys using a stratified random design are available for FU 8 since 1993 (missing surveys in 1995 and 1997). Underwater television surveys of Nephrops burrow number and distribution, reduce the problems associated with traditional trawl surveys that arise from variability in burrow emergence of Nephrops.

The numbers of valid stations used in the final analysis in each year are shown in Table 3.3.4.4. On average, about 40 stations have been considered valid each year. In 2008, only 38 stations were considered valid - approximately 5 stations could not be used to provide a density estimate because of poor visibility due to seabed disturbance. Abundance data are raised to a stock area of $915 \mathrm{~km}^{2}$. General analysis methods for underwater TV survey data are similar for each of the Scottish surveys, and are described in the Stock Annex.

Data analyses

Exploratory analyses of survey data

As discussed in Section 3.3.3.2., the most recent 6 years of TV survey data have been revised ahead of this WG.

Table 3.3.4.5 shows the basic analysis for the three most recent TV surveys conducted in FU 8. The table includes estimates of abundance and variability in each of the strata adopted in the stratified random approach. The ground is predominantly of coarser muddy sand. Depending on the year, high variance in the survey is associated with different strata and there is no clear distributional or sedimentary pattern in this area.

Figure 3.3.4.4 shows the distribution of stations in TV surveys, with the size of the symbol reflecting the Nephrops burrow density. Abundance is generally higher to-
wards the central part of the ground and around the Isle of May. In recent years higher densities have been recorded over quite wide areas. Table 3.3.4.5 and Figure 3.3.4.5 show the time series of estimated abundance for the TV surveys, with 95% confidence intervals on annual estimates. The confidence intervals around the 2008 estimate are particularly poor due to the exceptionally high variance associated with the mud/sandy mud stratum. Further stations were carried out in this stratum but could not be used due to extremely poor visibility.
The use of the UWTV surveys for Nephrops in the provision of advice was extensively reviewed by WKNEPH (ICES, 2009). A number of potential biases were highlighted including those due to edge effects, species burrow mis-identification and burrow occupancy. The cumulative bias correction factor estimated for FU 8 was 1.18 meaning that the TV survey is likely to overestimate Nephrops abundance by 18%.

Final assessment

The underwater TV survey is again presented as the best available information on the Firth of Forth Nephrops stock. This survey provides a fishery independent estimate of Nephrops abundance. At present it is not possible to extract any length or age structure information from the survey, and it therefore only provides information on abundance over the area of the survey.

The 2008 TV survey data presented at this meeting shows that abundance remains at a similar level to that estimated for 2007.

The mean size of individuals $>35 \mathrm{~mm}$ in the landings show slight increases in recent years.

3.3.4.5 Historic Stock trends

The TV survey estimate of abundance for Nephrops in the Firth of Forth suggests that the population decreased betw een 1993 and 1998 and then began a steady increase up to 2003. Abundance is estimated to have fluctuated without trend in the years since then. The bias adjusted abundance estimates form 2003-2008 (the period over which the survey estimates have been revised) is shown in Table 3.3.4.6. The stock is currently estimated to consist of 881 million individuals.

Table 3.3.4.6 also shows the estimated harvest ratios over this period. These range from $15-30 \%$ over this period. (Estimated harvest ratios prior to 2006 may not be representative of actual harvest ratios due to under-reporting of landings before the introduction of 'Buyers and Sellers' legislation).

The harvest rate equivalent to F0.1 is 8.0% and gives landings of 915 tonnes, which is only around 50% of the long term average (1981-2008) from this FU (1881 tonnes) and less than 40% of landings in 2008. Estimated harvest rates for recent years (based on removed num-bers) have ranged from 15-30 \%. Although these persistently high estimated harvest rates do not appear to have adversely affected the stock, they are estimated to be equivalent to fishing at a rate greater than Fmax and therefore it would be unwise to allow effort to increase in this FU.

3.3.4.6 Recruitment estimates

Survey recruitment estimates are not available for this stock.

3.3.4.7 Short-termforecasts

A landings prediction for 2010 was made for the Firth of Forth (FU8) using the approach agreed at the Benchmark Workshop and outlined in the introductory section to this chapter (Section 3.1). The table below shows landings predictions at various harvest ratios, including those equivalent to fishing at $\mathrm{F}_{0.1}, \mathrm{~F}_{\max }$ and the harvest ratio in 2008. The harvest ratios equivalent to F_{0}.and $\mathrm{F}_{\max }$ are significantly lower than those previously presented due to a revision of the assumptions regarding the size range of Nephrops inhabiting the burrows observed in the TV survey.

The inputs to the landings forecast were as follows:
Mean weight in landings $(06-08)=19.84 \mathrm{~g}$
Discard rate (by number) $=34.6 \%$
Survey bias $=1.18$

	Harvest rate	Survey Index (adjusted)	Implied fishery	
			Retained number	Landings (tonnes)
F0.1	0.0%	881	0	0
	5.0%	881	29	572
	8.0%	881	46	915
	10.0%	881	58	1144
F2008	15.0%	881	86	1715
	13.7%	881	79	1567
	20.0%	881	115	2287
	24.5%	881	141	2802

3.3.4.8 Biological Reference points

Biological reference points have not been defined for this stock.

3.3.4.9 Quality of assessment

The length and sex composition of the landings data is considered to be well sampled. Discard sampling has been conducted on a quarterly basis for Scottish Nephrops trawlers in this fishery since 1990, and is considered to represent the fishery adequately.

There are concerns over the accuracy of historical landings (pre2006) and uncertainty in effort data (due to non-mandatory recording of hours fished) and because of this the final assessment adopted is independent of officially reported data.

UWTV surveys have been conducted for this stock since 1993, with a continual annual series available since 1998. The confidence intervals around the abundance estimate in 2008 are very wide due to the lack of usable stations in one particular stratum due to poor visibility.

The NSCFP survey does not include specific information for the Firth of Forth. The NSCFP survey area containing the Firth of Forth had only 6 respondents of which 60 $\%$ perceived the abundance to be less than previously although it was also suggested moderate recruitment had taken place. The time series of perceived abundance for this area show an increase up to 2007 and then a decline. However, given that there
is more than 1 FU within this NSCFP area, it is not clear as to whether the replies were actually related to the Firth of Forth Nephrops.

3.3.4.1 OStatus of the stock

The evidence from the TV survey suggests that the population has been at a relatively high level since 2003. The TV survey information, taken together with information showing stable mean sizes, suggest that the stock does not show signs of overexploitation.

3.3.4.1 1 Management considerations

The WG, ACFM and STECF have repeatedly advised that management should be at a smaller scale than the ICES Division level. Management at the Functional Unit level could provide the controls to ensure that catch opportunties and effort were compatible and in line with the scale of the resource.

Nephrops discard rates in this Functional Unit are high and there is a need to reduce these and to improve the exploitation pattern. An additional reason for suggesting improved selectivity in this area relates to bycatch. It is important that efforts are made to ensure that other fish are not taken as unwanted bycatch in this fishery which uses 80 mm mesh. Larger square mesh panels implemented as part of the Scottish Conservation Credits scheme should help to im-prove the exploitation pattern for some species such as haddock and whiting and small cod.

3.3.5 Moray Firth (FU 9)

3.3.5.1 Ecosystem aspects

Information on ecosystem aspects can now be found in the Stock Annex.

3.3.5.2 The Fishery in 2007 and 2008

The Moray Firth Nephrops fishery is essentially a Scottish fishery with only occasional landings made by vessels from elsewhere in the UK (Table 3.3.5.1). The general situation in 2007 and 2008 is similar to previous years with the vessels targeting this fishery typically conducting day trips from the nearby ports along the Moray Firth coast. Occasionally larger vessels fish the outer Moray Firth grounds on their way to/from the Fladen or in times of poor weather. In 2007 and 2008, a good squid fishery appeared in the summer and a number of vessels switched effort to this fishery during the second half of the year, although this was on a sporadic basis in 2007.
Further general information on the fishery can be found in the Stock Annex.

3.3.5.3 Advice in 2008

The ICES conclusions in 2008 in relation to State of the Stock were as follows:
'The TV survey estimate of abundance for Nephrops in the Moray Firth suggests that the population decreased by around 55% in 2006, but rose again slightly to above the long-term average in 2007. Based on the surveys the stock has been relatively stable since 2002, while length compositions in the catch have been relatively stable for 10 years.'

The ICES advice for 2008 (Single-stock exploitation boundaries) was as follows:

Exploitation boundaries in relation to precautionary considerations

'The current fishery appears sustainable. Therefore, ICES recommends that Nephrops fisheries should not be allowed to increase relative to the past two years (2006-2007). This corresponds to landings of no more than 1800 tonnes for the Moray Firth stock.'

3.3.5.4 Management

Management is at the ICES Subarea level as described at the beginning of Section 3.3.

3.3.5.5 Assessment

The assessment and provision of advice through the use of the UWTV survey data and other commercial fishery data follows the process defined by the benchmark WG and is described in Section 3.1.

Data available

Commercial catch and effort data

Landings from this fishery are predominantly reported from Scotland, with very small contributions from England, and are presented in Table 3.3.5.1, together with a breakdown by gear type (See also Table 3.3.5.2). Total landings (as reported to the WG) in 2008 were 1514 tonnes. Following a number of years of increasing reported landings (which may have been due to increased reporting as well as increased actual landings), the value for 2008 represents a decline of approximately 300 tonnes (~ 15 \%) on the value for 2007. The long term landings trends are shown in Figure3.3.5.1.

Reported effort by Scottish Nephrops trawlers in terms of hours fished are available since 1981 and are shown in Table3.3.5.2 and Figure3.3.5.1. However, given the concerns over the quality of these fishery data (discussed in Section 3.3.3.2) it is unlikely the associated LPUE data are representative of trends in actual LPUE.

Males consistently make the largest contribution to the landings (Figure 3.3.5.2), although the sex ratio does vary. This is likely to be due to the varying seasonal pattern in the fishery and associated relative catchability (due to different burrow emergence behaviour) of male and female Nephrops.

Discarding of undersize and unwanted Nephrops occurs in this fishery, and quarterly discard sampling has been conducted on the Scottish Nephrops trawler fleet since 1990. Discarding rates in this FU appear to behighly variable with rates of between 5 and 40% of the catch by number over the last 5 year (5% in 2008). The discard rate estimated at the benchmark workshop was 7.4% (3 year average) and this value is used in the calculation of catch options.

It is likely that some Nephrops survive the discarding process, an estimate of 25% survival is assumed in order to calculate removals (landings + dead discards) from the population.

Length compositions

Length compositions of landings and discards are obtained during monthly market sampling and quarterly on-board observer sampling respectively. Levels of sampling are shown in Table 2.2.XX. Although assessments based on detailed catch analysis are
not presently possible, examination of length compositions may provide an indication of exploitation effects.
Figure 3.3.5.3 shows a series of annual length frequency distributions for the period 2000 to 2008. Catch (removals) are shown for each sex with the mean catch and landings lengths shown in relation to MLS and 35 mm . There is little evidence of change in the mean size of either sex over time and examination of the tails of the distributions above 35 mm shows no evidence of reductions in relative numbers of larger animals. Occasional large year classes can be observed in these length frequency data (2002).
The observation of relatively stable length compositions is further confirmed in the series of mean sizes of larger Nephrops ($>35 \mathrm{~mm}$) in the landings shown in Figure 3.3.5.1 and Table 3.3.5.3. This parameter might be expected to reduce in size if overexploitation were taking place but over the last 15 years has in fact been quite stable and increased very slightly in more recent years.

Mean weight in the landings is shown in Figure 3.3.3.3 and Table 3.3.3.5 and this also shows no systematic changes over the time series.

Natural mortality, maturity at age and other biological parameters

Biological parameter values are included in the Stock Annex.

Research vessel data

TV surveys using a stratified random design are available for FU 9 since 1993 (missing survey in 1995). Underwater television surveys of Nephrops burrow number and distribution, reduce the problems associated with traditional trawl surveys that arise from variability in burrow emergence of Nephrops.

The numbers of valid stations used in the final analysis in each year are shown in Table3.3.5.5. On average, 38 stations have been considered valid each year. Abundance data are raised to a stock area of $2195 \mathrm{~km}^{2}$. General analysis methods for underwater TV survey data are similar for each of the Scottish surveys, and are described in the Stock Annex.

Data analyses

Exploratory analyses of survey data

As discussed in Section 3.3.3.2.2, the most recent 6 years of TV survey data have been revised ahead of this WG.

Table 3.3.5.4 shows the basic analysis for the three most recent TV surveys conducted in FU 9. The table includes estimates of abundance and variability in each of the strata adopted in the stratified random approach. The ground is predominantly of coarser muddy sand and typically, most off the variance in the survey is associated with a patchy area of this sediment to the west of the FU.
Figure 3.3.5.4 shows the distribution of stations in TV surveys, with the size of the symbol reflecting the Nephrops burrow density. The abundance appears to behighest at the western and eastern ends of the FU, with lower densities in the more central area. Table 3.3.5.5 and Figure 3.3.5.5 show the time series of estimated abundance for the TV surveys, with 95% confidence intervals on annual estimates. With the exception of 2003, the confidence intervals have been fairly stable in this survey.

The use of the UWTV surveys for Nephrops in the provision of advice was extensively reviewed by WKNEPH (ICES, 2009). A number of potential biases were highlighted including those due to edge effects, species burrow mis-identification and burrow occupancy. The cumulative bias correction factor estimated for FU 9 was 1.21 meaning that the TV survey is likely to overestimate Nephrops abundance by 21%.

Final assessment

The underwater TV survey is again presented as the best available information on the Moray Firth Nephrops stock. This survey provides a fishery independent estimate of Nephrops abundance. At present it is not possible to extract any length or age structure information from the survey, and it therefore only provides information on abundance over the area of the survey.

The 2008 TV survey data presented at this meeting shows that abundance remains at a similar level to that estimated for 2007.

The mean size of individuals $>35 \mathrm{~mm}$ (males and females) remains relatively stable.

3.3.5.6 Historic Stock trends

The TV survey estimate of abundance for Nephrops in the Moray Firth suggests that the population increased between 1997 and 2003 but has fallen to a fairly stable lower level since 2006. The bias adjusted abundance estimates from 2003-2008 (the period over which the survey estimates have been revised) are shown in Table 3.3.5.6. The stock is currently estimated to consist of 478 million individuals.
Table 3.3.5.6 also shows the estimated harvest ratios over this period. These range from 7-18 \% over this period. (Estimated harvest ratios prior to 2006 may not be representative of actual harvest ratios due to under-reporting of landings before the introduction of 'Buyers and Sellers' legislation).

3.3.5.7 Recruitment estimates

Survey recruitment estimates are not available for this stock.

3.3.5.8 Short-ter mforecasts

A landings prediction for 2010 was made for the Moray Firth (FU9) using the approach agreed at the Benchmark Workshop and outlined in the introductory section to this chapter (Section 3.1). The table below shows landings predictions at various harvest ratios, including those equivalent to fishing at $\mathrm{F}_{0.1}, \mathrm{~F}_{\max }$ and the harvest ratio in 2008. The harvest ratios equivalent to F_{0}.and $F_{m a x}$ are significantly lower than those previously presented due to a revision of the assumptions regarding the size range of Nephrops inhabiting the burrows observed in the TV survey.

The inputs to the landings forecast were as follows:
Mean weight in landings $(06-08)=23.48 \mathrm{~g}$
Discard rate $($ by number $)=7.4 \%$
Survey bias $=1.21$.

	Harvest rate	Survey Index (adjusted)	Implied fishery	
		Retained number	Landings (tonnes)	
F0.1 2008	0.0%	478	0	0
	5.0%	478	22	520
	8.9%	478	39	926
	10.0%	478	44	1040
	13.2%	478	58	1372
	15.0%	478	66	1560
	16.6%	478	74	1727
	20.0%	478	89	2080

3.3.5.9 Biological Reference points

Biological reference points have not been defined for this stock.

3.3.5.10Quality of assessment

The length and sex composition of the landings data is considered to be well sampled. Discard sampling has been conducted on a quarterly basis for Scottish Nephrops trawlers in this fishery since 1990, and is considered to represent the fishery adequately.

There are concerns over the accuracy of landings and effort data and because of this the final assessment adopted is independent of official statistics.

UWTV surveys have been conducted for this stock since 1993, with a continual annual series available since 1998. Confidence intervals around the abundance estimates are greater during years when abundance estimates have been slightly higher.

The NSCFP survey does not include specific information for the Moray Firth. The NSCFP survey area containing the Moray Firth had only 6 respondents of which 60 \% perceived the abundance to be less than previously although it was also suggested moderate recruitment had taken place. The time series of perceived abundance or this area increased up to 2007 and then declined slightly in 2008. However, given that there is more than 1 FU within this NSCFP area, it is not clear as to whether the replies were actually related to the Moray Firth Nephrops.

3.3.5.1 1 Status of the stock

The evidence from the TV survey suggests that the population is stable, but at a lower level than that evident from 2003-2005. There is no evidence from the mean size information to suggest overexploitation of the FU.

The harvest rate equivalent to $\mathrm{F}_{0.1}$ is 8.9% and gives landings of 926 tonnes, which is below the long term average (1981-2008) from this FU (1549 tonnes) and is around 60 $\%$ of landings in 2008. Estimated harvest rates for recent years (based on removed numbers) have ranged from 7-18 \%. The estimated harvest ratio in 2008 is equivalent to fishing at a level between F0.1 and Fmax and therefore effort should not be allowed to increase further in this FU.

3.3.5.1 2 Management considerations

The WG, ACFM and STECF have repeatedly advised that management should be at a smaller scale than the ICES Division level. Management at the Functional Unit level could provide the controls to ensure that catch opportunties and effort were compatible and in line with the scale of the resource.

There is a bycatch of other species in the Moray Firth area. It is important that efforts are made to ensure that unwanted bycatch is kept to a minimum in this fishery. Current efforts to reduce discards and unwanted bycatches of cod under the Scottish Conservation credits scheme, include the implementation of larger meshed square mesh panels and real time closures to avoid cod.

3.3.6 Noup (FU 10)

3.3.6.1 Ecosystem aspects

Information on ecosystem aspects can now be found in the Stock Annex.

3.3.6.2 The Fishery in 2007 and 2008

The Noup supports a relatively small fishery with only 3-4 boats fishing regularly. The landings data as reported to the WG are shown in Table 3.3.6.1. No new information is available for 2007 and 2008.

Further general information on the fishery can be found in the Stock Annex.

3.3.6.3 Advice in 2008

The ICES conclusions in 2008 in relation to State of the Stock were as follows:
'The lpue indicator is increasing and mean length in the catches is stable. Current levels of exploitation appear to be sustainable.'

The ICES advice for 2008 (Single-stock exploitation boundaries) was as follows:

Exploitation boundaries in relation to precautionary considerations

'Given the apparent stability of the stock, current levels of exploitation and effort appear to be sustainable. ICES maintains the previous advice (based on the average landings 2003-2005) for the Noup fishery, i.e. less than 240 t . This amount is almost identical to the long-term average for the time-series.'

3.3.6.4 Management

Management is at the ICES Subarea level as described at the beginning of Section 3.3.

3.3.6.5 Assessment

There is no assessment of this FU.

Data available

Commercial catch and effort data

Landings from this fishery are reported only from Scotland and are presented in Table3.3.6.1 and Figure 3.3.6.1, together with a breakdown by gear ty pe (See also Table 3.3.6.2). Total landings (as reported to the WG) in 2008 were 173 tonnes, a small increase since 2007 (20 tonnes).

Reported effort by Scottish Nephrops trawlers in terms of hours fished are available since 1981 and are shown in Table 3.3.6.2 and Figure3.3.6.1. How ever, given the concerns over the quality of these fishery data (discussed in Section 3.3.3.2.1) it is unlikely the associated LPUE data are representative of trends in actual LPUE.

Length compositions

Levels of market sampling are low (not available for recent years) and discard sampling is not available. Mean sizes in the landings in previous years are shown in Figure 3.3.6.1.

Natural mortality, maturity at age and other biological parameters

No data available.

Research vessel data

An underwater TV survey of this FU has been conducted sporadically (1994, 1999, 2006 and 2007). A density distribution map of these surveys is shown in Figure 3.3.6.2 and results shown in Table 3.3.6.3.

Data analyses

No assessment has been presented in 2009 and a discussion of management considerations can be found in the report of WGNSSK 2008.

3.3.7 Norwegian Deep (FU 32)

3.3.7.1 Fisheries

Traditionally, Danish and Norwegian fisheries have exploited this stock, while exploitation by UK vessels has been insignificant. Since 2000, Sweden has landed small amounts. Denmark still accounts for the majority of landings from this functional unit, although the contribution from this fishery in 2008 declined to around 75% of total landings, from around 90% in previous years (Table 3.3.7.1).

Denmark

A description of the Danish Nephrops fisheries in Subareas IIIa and IV (including the one in the Norwegian Deep) was given in the 1999 WGNEPH report (ICES, WGNEPH 1999a). Due to changes in the management regime (mesh size regulations regarding target species) in the Norwegian zone of the northern North Sea in 2002, there was a switch to increasing Danish effort targeting Nephrops in the mixed fisheries in the Norwegian Deep. However, a distinction between the fishing effort directed at Nephrops, roundfish or anglerfish is not always clear. The mesh size in the trawls catching Nephrops is $>100 \mathrm{~mm}$.

Norway

The Norwegian Nephrops fishery north of $60{ }^{\circ} \mathrm{N}$ (with $15-30 \%$ of the Norwegian FU 32 landings (2001-2008)) is mainly a creel fishery, with some landings also from Nephrops trawls, while the fishery south of $60^{\circ} \mathrm{N}$ is mainly a trawl fishery (Nephrops trawls and bycatch from shrimp trawls).

Nephrops recordings in Norwegian log books from the Norwegian Deep are incomplete, with \log book catches constituting $9-40 \%$ of the landings in 2001-2008. Furthermore, records on the use of Nephrops trawls are lacking in the logbooks from 2006-2008. In 2007 the highest effort (hrs trawled) was allocated to the statistical location just west of Egersund on the Norwegian west coast, but it is impossible to know whether this is representative of the total catches. Catches are landed in Norway and Denmark.

The minimum legal size is 40 mm CL. Trawls with mesh sizes down to 70 mm is legal, but requires square meshes in the cod end. There has been a change in the most commonly used mesh size. In 1999, 90% of the vessels used $70-80 \mathrm{~mm}$ trawls according to the logbooks. In 2000-2005 small-meshed trawls ($70-80 \mathrm{~mm}$) taking 17% of the Nephrops landings performed 22% of the trawling hours.

3.3.7.2 Advice in 2008

In 2008 ICES observed for this stock that:
'landings per unit effort (lpue) have been relatively stable over the last 14 years and suggest that current levels of exploitation are sustainable. A slight increase in mean size in the catches in 2007 could indicate a reduced exploitation pressure.'

It was noticed that in previous years TACs based on historical landings had been suggested for this stock. However, in 2008 the advice focused on effort:
'The current fishery appears sustainable. Therefore, ICES recommends that effort should not be allowed to increase.'

3.3.7.3 Management

The EU fisheries in FU 32 take place mainly in the Norwegian zone of the North Sea. The EU fisheries are managed by a separate TAC for this area. For 2009 the agreed TAC for EU vessels was set to1205 t.

3.3.7.4 Assessment

Data available

Catch

Norwegian landings increased from 2007 to 2008 by around 50%. Norway land Nephrops from both Divs. IVa and IVb. The negligible IVb landings have always been reported together with the IVa landings, but from 2008 onwards they are reported separately. International landings from the Norwegian Deep increased from less than 20 t in the mid 1980s to 1,190 t in 2001, the highest figure so far (Table 3.3.7.1, Figure 3.3.7.1). Since then landings have declined and total landings in 2008 amounted to 675 t , due to a reduction of Danish landings. In 2008 Danish vessels accounted for 75% of total landings.

Length composition

Length data for this FU are only available up to 2007. The average size of Nephrops as recorded from Danish landings (using a 100 mm Nephrops trawl) show a decreasing trend for both males and females in the period 2000-2006, but has increased again in 2007 (Figure 3.3.7.1). Average sizes in catches (for both sexes) also increased in 2007. The size distributions in the Danish catches (100 mm mesh size) from 2002 to 2007 do not
show any conspicuous changes (Figure3.3.7.2). In previous years the Norwegian shrimp survey in this area provided Norwegian data on size distribution of the Nephrops. Size data from Norwegian coast guard inspections of Danish and Norwegian trawlers are available for 2006-2007 (Figure 3.3.7.3). The Danish and Norwegian length distributions for 2007 are very similar (Figure 3.3.7.4). Figure 3.3.7.4 shows a time series of length compositions for this stock. There is little evidence of notable change in sizes, and maximum sizes have remained quite constant.

From 2003-2007 the Danish at-sea-sampling programme has provided data for discard estimates. However, the samples have not covered all quarters.

Natural mortality, maturity at age and other biological parameters

No data available.

Catch, effort and research vessel data

Effort and LPUE figures for the period 1989-2008 are available from Danish logbooks (Table 3.3.7.2, Figure 3.3.7.1). Catches recorded in Norwegian logbooks constitute only a small proportion of the landings ($15-40 \%$) in 2001-2008. Furthermore, logbook data from Nephrops trawls are lacking for 2006-2008. Thus, the WG considers the Norwegian data unsuitable for any LPUE analysis. In the beginning of the 1990s vessel size increased in the Danish fleet fishing in the Norwegian Deep. This increase and more directed fisheries for Nephrops in areas with hitherto low exploitation levels are probably partly responsible for the observed increase in the Danish LPUEs in those years (Table 3.3.7.2). A similar development has been occurring in the Norwegian fleet. Since 1994 the Danish LPUEs have fluctuated around 200 kg day- 1 . Some of the fluctuations may be caused by fishing vessels locally switching between roundfish and Nephrops due to changes in management regulations in the Norwegian zone. The Danish effort increased from 2004 to 2006, but shows a strong decline in 2007 and a further decline in 2008.

It has not been possible to incorporate 'technological creeping' in the evaluation of the effort data. However, use of twin trawls has been widespread for many years. Figure 3.3.7.5 shows the logbook based effort data analysed in various ways to elucidate the effect of some factors likely to influence the effort/LPUE:

- Incorporation of HP (kw) in the effort measure
- Vessel size (GLM to standardise LPUE regarding vessel size)

Note that the trends in the resulting LPUE values (relative indices) are very similar. However, this may merely reflect that vessels catching Nephrops in this area are very similar with respect to e.g. size and HP.

Data analysis

Review of last year's assessment

The review group noted:
'It is clear that for this stock there is a lack of basis information. Danish vessels caught recently around 90% of total landings with doubts about its quality, so first it should be necessary to carry out a better segmentation and later a proper standardisation for these
fleets. There is a lack of information from Norwegian vessels. From this point of view is quite difficult to know the representation of commercial figures in relation to this stock.

Based on Danish LPUE data the perception of the stock does not indicate any clear decline in abundance but even so the RG is uncomfortable with this EG views. It is evident that under these circumstances (the data) is inadequate to provide any sound advice.'

3.3.7.5 Historic stock trends

The slight increase in mean size in the catches and landings from 2006 to 2007 in females and from 2005 to 2007 in males could indicate a lower exploitation pressure in recent years and coincides well with the decreasing landings in the same time period. The Danish LPUE decreased from 2005 to 2006, and then increased again in 2007. The overall picture is that of a stable LPUE fluctuating around a mean of $200 \mathrm{~kg} / \mathrm{day}$. Thus the stock seems to be stable and shows no sign of overexploitation.

3.3.7.6 Biological reference points

No reference points are defined for this stock.

3.3.7.7 Status of stock

There are no changes since the 2008 evaluation/assessment. Perceptions of this stock (FU 32) are based on Danish LPUE data and therefore highly uncertain. However, the effect of technological creep on the effective effort of the fishery is not known. It is noted, that the EU-Norway agreement of 1000 t in 2005 for EU vessels in this area may have had a restrictive effect for the fleets exploiting this stock. For 2009 the agreed catch for EU vessels was 1205 t .

3.3.8 Off Horn Reef

3.3.8.1 Assessment

There is no assessment of this FU.

3.3.8.2 Data Available

Catch

The landings from FU 33 w ere marginal for many years. How ever, from 1993 to 2004, Danish landings increased considerably, from 159 to $1,097 \mathrm{t}$. In this period Denmark dominated this fishery. The other countries reporting landings from the area are Belgium, Netherlands and the UK. In recent years total landings increased to above1400 t. Since 2004 Danish landings have gradually decreased, and in 2008 fell to less than 400 t . During the same period landings from Netherlands increased. In fact in 2008, the Netherlands took 734 t , approximately half of the total landings from this FU. Minor landings are reported from Belgium, Germany and the U.K. (Table 3.3.8.1).

Length compositions

Size distributions of the Danish catches 2001 to 2007 are shown in Figure 3.3.8.2. Note the shift in 2005 and again in 2007 compared to the previous years. Figure 3.3.8.1 gives the development of the mean size of the catches and landings by sex. These
data could indicate either a general decrease in the amount of large individuals in the population indicating some overexploiting or increase in smaller individuals (large recruitment). The mean size of landings is fairly constant while the catch declined noticeably (as mentioned above) - the increased numbers around 30 mm may indicate increase recruitment.
In the period 2001-2005 the Danish at-sea-sampling programme provided data for discard estimates. How ever, the samples did not cover all quarters.

Natural mortality, maturity at age and other biological parameters

No data available

Catch, effort and research vessel data

Table 3.3.8.2 and Figure 3.3.8.1 show the development in Danish effort and LPUE. Notice, that the 10 -fold increase in fishing effort from 1996 to 2004 seems to correspond to the increase in landings during the same period. It appears from that LPUEs have been rather stable from 1998 to 2004, fluctuating around $200{\mathrm{~kg} . \text { day }^{-1} \text {. However, }}_{\text {. }}$ in 2008 LPUE increased to more than $400 \mathrm{~kg}^{*}$ day ${ }^{-1}$. This increase in LPUE could reflect increase in gear efficiency (technological creep).

Data analysis

No advice was requested this year and therefore no analysis is presented.

3.3.9 Other Rectangles in Subarea IV

3.3.9.1 Landings

A small but increasing proportion of the landings from Subarea IV are taken from statistical rectangles outside the defined Nephrops FUs. In 2008, these amounted to 1673 tonnes, a small increase on the 2007 value.

3.3.9.2 Fisheries

The Scottish fishery at the Devil's hole is a mixed fishery which a few boats normally fishing the Fladen grounds prosecute for a few months at the end of the year. Around 10 boats in the $14-24 \mathrm{~m}$ size are involved landing into Fraserburgh, Peterhead, Aberdeen, and Arbroath. All the boats that fish the Devils hole are twin-rig and they fish with either 80 mm or 100 mm mesh. The main types of fish caught at the Devil's hole are flat fish with lemon sole being the most important. The area is notorious for gear damage, which is one of the reasons more boats do not fish this area.

3.3.9.3 Data Available

Landings and discard sampling are not carried out for this fishery.
Occasional Scottish TV surveys have been conducted in the Devil's hole area, but a timeseries is not yet available.

Table 3.1.1 Neph rops Functional Units and descriptions by statistical rectangle.

Functional Unit	Stock	ICES Rectangles	Division
3	Skagerrak	47G0-G1;46F9-G1; 45F8-G1; 44F7- G0; 43F8-F9	IIa
4	Kattegat	$44 \mathrm{G1}-\mathrm{G} 2 ; 42-43 \mathrm{G} 0-\mathrm{G} 2 ; 41 \mathrm{G1}-\mathrm{G} 2$	IIIa
5	Botney Gut	$36-37$ F1-F4;35F2-F3	IV
6	Farn Deep	3840 E8-E9;37E9	IV
7	Fladen	$44-49$ E9-F1; 45-46E8	IV
8	Firth of Forth	$40-41 \mathrm{E} 7 ; 41 \mathrm{E} 6$	IV
9	Moray Firth	$44-45$ E6-E7;44E8	IV
10	Noup	47 E 6	IV
32	Norwegian Deep	$44-52$ F2-F6;43F5-F7	IV
33	Off Horn Reef	$39-41$ F4;39-41F5	IV

Table 3.1.2 Summary of Nephrops landings from the ICES area, by Functional Unit, 1991-2008.

Year	FU 3	FU 4	FU 5	FU 6	FU 7	FU 8	FU 9	FU 10	FU 32	FU 33	Other	Total
1981				1073	373	1006	1416	36			76	3980
1982				2524	422	1195	1120	19			157	5437
1983				2078	693	1724	940	15			101	5551
1984				1479	646	2134	1170	111			88	5628
1985				2027	1148	1969	2081	22			139	7386
1986				2015	1543	2263	2143	68			204	8236
1987				2191	1696	1674	1991	44			195	7791
1988				2495	1573	2528	1959	76			364	8995
1989				3098	2299	1886	2576	84			233	10176
1990				2498	2537	1930	2038	217			222	9442
1991	4228	1304	862	2063	4220	1404	1519	196			560	16356
1992	2905	1012	612	1473	3338	1757	1591	188			401	13277
1993	3212	924	721	3030	3521	2369	1808	376	339	160	434	16895
1994	2874	893	503	3683	4566	1850	1538	495	755	137	703	17997
1995	3427	998	869	2569	6442	1763	1297	280	489	164	844	19142
1996	3980	1285	679	2482	5220	1688	1451	344	952	77	808	18966
1997	4206	1594	1149	2189	6171	2194	1446	316	760	276	662	20963
1998	5056	1808	1111	2177	5138	2145	1032	254	836	350	694	20600
1999	4949	1755	1244	2391	6505	2205	1008	279	1119	724	988	23167
2000	4710	1816	1121	2178	5580	1785	1541	275	1084	597	900	21586
2001	4056	1774	1443	2574	5545	1528	1403	177	1190	791	1268	21749
2002	4448	1471	1231	1953	7234	1340	1118	401	1170	861	1383	22610
2003	3767	1641	1144	2245	6305	1126	1079	337	1089	929	1390	21052
2004	3965	1653	1070	2152	8733	1658	1335	228	922	1268	1224	24208
2005	4034	1488	1058	3094	10685	1990	1605	165	1089	1050	1120	27377
2006	3672	1280	986	4858	10789	2458	1803	133	1028	1288	1249	29543
2007	4512	1741	1311	2966	11910	2652	1842	155	755	1467	1637	30948
2008^{*}	4860	2025	695	1213	12240	2450	1514	173	675	1444	1673	28962

* Provisional

Table 3.2.1.1 Nominal landings (tonnes) of Neph rops in Division IIIa, 1986 - 2008, as officially reported to ICES.

Table 3.2.1.2. - Division IIIa: Total Nephrops landings (tonnes) by Functional Unit, 1991-2008.

Year	FU 3	FU 4	Total
1991	2924	1304	4228
1992	1893	1012	2905
1993	2288	924	3212
1994	1981	893	2874
1995	2429	998	3427
1996	2695	1285	3980
1997	2612	1594	4206
1998	3248	1808	5056
1999	3194	1755	4949
2000	2894	1816	4710
2001	2282	1774	4056
2002	2977	1471	4448
2003	2126	1641	3767
2004	2312	1653	3965
2005	2546	1488	4034
2006	2392	1280	3672
2007	2771	1741	4512
2008	2851	2025	4876

Table 3.2.1.3. - Division IIIa: Total Nephrops landings (tonnes) by country, 1991-2008.

Year	Denmark	Norway	Sweden	Germany	Total
1991	2824	185	1219		4228
1992	2052	104	749		2905
1993	2250	103	859		3212
1994	2049	62	763		2874
1995	2419	90	918		3427
1996	2844	102	1034		3980
1997	2959	117	1130		4206
1998	3541	184	1319	12	5056
1999	3486	214	1243	6	4949
2000	3325	181	1197	7	4710
2001	2880	138	1037	1	4056
2002	3293	116	1032	7	4448
2003	2757	99	898	13	3767
2004	2955	95	903	12	3965
2005	2901	83	1048	2	4034
2006	2432	91	1143	6	3672
2007	2887	145	1467	13	4512
2008	3174	158	1509	19	4860

Table 3.2.2.1. Nephrops in Skagerrak (FU 3): Landings (tonnes) by country, 1991-2008.

Year	Denmark	Norway			Sweden			Total
		Trawl	Creel	Sub-total	Trawl	Creel	Sub-total	
1991	1639	185	0	185	949	151	1100	2924
1992	1151	104	0	104	524	114	638	1893
1993	1485	101	2	103	577	123	700	2288
1994	1298	62	0	62	531	90	621	1981
1995	1569	90	0	90	659	111	770	2429
1996	1772	102	0	102	708	113	821	2695
1997	1687	117	0	117	690	118	808	2612
1998	2055	184	0	184	864	145	1009	3248
1999	2070	214	0	214	793	117	910	3194
2000	1877	181	0	181	689	147	836	2894
2001	1416	125	13	138	594	134	728	2282
2002	2053	99	17	116	658	150	808	2977
2003	1421	90	9	99	471	135	606	2126
2004	1595	85	10	95	449	173	622	2312
2005	1727	71	12	83	538	198	736	2546
2006	1516	80	11	91	583	201	784	2391
2007	1664	127	18	145	709	253	962	2771
2008	1745	127	31	158	675	273	948	2851

Table 3.2.2.2. - Skagerrak (FU3): Mean sizes (mm CL) of male and female Nephrops in catches of Danish and Swedish combined, 1991-2008.

Year	Catches						
	Undersized		Full sized		All		
	Males	Females	Males	Females	Males	Females	
1991	30,2	30,9	41,2	42,7	30,9	29,8	
1992	33,3	32,3	43,3	44,7	33,3	32,2	
1993	33,0	31,5	42,0	43,6	33,0	31,5	
1994	31,7	29,6	41,7	43,6	31,7	29,6	
1995	30,0	28,5	41,6	41,3	32,9	29,8	
1996	33,2	31,9	42,9	44,0	37,6	37,0	
1997	35,8	34,5	44,6	44,1	39,8	39,1	
1998	34,8	34,4	46,1	43,9	40,7	37,3	
1999	34,6	33,9	44,9	43,8	39,3	36,1	
2000	30,6	30,5	45,6	45,0	32,5	34,1	
2001	33,6	33,6	45,5	43,6	37,3	36,4	
2002	33,9	33,7	44,0	42,5	37,2	37,3	
2003	33,5	32,6	43,2	43,4	38,0	36,7	
2004	34,3	33,4	44,6	45,2	38,7	36,6	
2005	33,5	32,4	43,7	43,0	36,4	35,3	
2006	33,2	32,9	44,7	42,7	37,1	36,1	
2007	32,6	31,9	44,4	42,4	34,9	33,5	
2008	33,6	32,3	44,0	42,7	36,5	34,5	

Table 3.2.2.3. Nephrops Skagerrak (FU 3): Catches and landings (tonnes), effort ('000 hours trawling), CPUE and LP UE (kg/hour trawling) of Swedish Nephrops trawlers, 1991-2008. (*Include only Nephrops trawls with grid and square mesh codend).

Single trawl						
Year	Catches	Landings	Effort	CPUE	LPUE	
1991	676	401	71,4	9,5	5,6	
1992	360	231	73,7	4,9	3,1	
1993	614	279	72,6	8,4	3,8	
1994	441	246	60,1	7,3	4,1	
1995	501	336	60,8	7,8	5,2	
1996	754	488	51,1	14,8	9,6	
1997	643	437	44,4	14,4	9,8	
1998	794	557	49,7	16,0	11,2	
1999	605	386	34,5	17,5	9,3	
2000	486	329	32,7	14,9	10,9	
2001	446	236	26,2	17,0	10,4	
2002	503	301	29,4	17,1	8,8	
2003	310	254	21,5	13,9	11,4	
2004^{*}	474	257	20,1	23,6	13,4	
2005^{*}	760	339	29,7	25,6	12,7	
2006*	839	401	37,5	22,4	12,2	
2007^{*}	894	314	24,1	37,0	13,0	
2008*	605	264	20,0	30,3	13,2	

Twin trawl						
Year	Catches	Landings	Effort	CPUE	LPUE	
1991	740	439	39,5	18,7	11,1	
1992	370	238	34,1	10,9	7,0	
1993	568	258	35,9	15,8	7,2	
1994	444	248	34,1	13,1	7,3	
1995	403	270	32,9	12,2	8,2	
1996	187	121	13,0	14,4	9,3	
1997	219	149	17,5	12,5	8,5	
1998	254	178	16,7	15,2	10,6	
1999	382	244	27,6	13,8	8,8	
2000	349	237	31,3	11,1	10,1	
2001	470	249	33,7	14,0	7,4	
2002	392	244	33,3	11,8	7,1	
2003	168	138	22,5	7,5	6,1	
2004	217	118	21,7	10,0	5,4	
2005	263	117	22,1	11,9	5,3	
2006	253	121	19,6	12,9	6,2	
2007^{*}	248	87	5,4	45,6	16,0	
2008^{*}	139	61	3,4	41,3	18,0	

Table 3.2.2.4. Nephrops Skagerrak (FU 3): Logbook recorded effort (days fishing) and LP UE ($\mathrm{kg} /$ day) for bottom trawlers catching Nephrops with codend mesh sizes of 70 mm or above, and estimated total effort by Danish trawlers, 1991-2008.

Year	Logbook data		Estimated
	Effort	LPUE	total effort
1991	17136	73	22158
1992	12183	70	16239
1993	11073	105	14068
1994	10655	110	11958
1995	10494	132	11935
1996	11885	138	12793
1997	11791	140	12075
1998	12501	155	13038
1999	13686	139	14787
2000	14802	120	15663
2001	14244	100	13976
2002	16386	123	16750
2003	10645	121	11802
2004	11987	122	12996
2005	10682	144	12003
2006	9638	141	10737
2007	7598	212	7877
2008	7785	216	8058

Table 3.2.3.1. Nephrops Kattegat (FU4): Landings (tonnes) by country, 1991-2008.

Year	Denmark	Sweden		Sub-total	Germany	Total
		Trawl	Creel			
1991	1185	119	0	119	0	1304
1992	901	111	0	111	0	1012
1993	765	159	0	159	0	924
1994	751	142	0	142	0	893
1995	850	148	0	148	0	998
1996	1072	213	0	213	0	1285
1997	1272	319	3	322	0	1594
1998	1486	306	4	310	12	1808
1999	1416	329	4	333	6	1755
2000	1448	357	4	361	7	1816
2001	1464	304	6	309	1	1774
2002	1240	219	5	224	7	1471
2003	1336	287	5	292	13	1641
2004	1360	270	11	281	12	1653
2005	1175	303	8	311	2	1488
2006	916	347	11	358	6	1280
2007	1223	491	15	505	13	1741
2008	1429	561	16	577	19	2025

Table 3.2.3.2. Nephrops Kattegat (FU 4): Mean sizes (mm CL) of male and female Nephrops in discards, landings and catches, 1991-2008. Since 2005 based on combined Danish and Swedish data.

Year	Catches						
	Discards		Landings		All		
	Males	Females	Males	Females	Males	Females	
1991	30,7	31,1	42,4	42,5	32,5	32,9	
1992	33,0	30,3	44,4	43,2	36,7	34,9	
1993	30,5	29,3	42,3	43,1	31,3	30,1	
1994	29,7	28,3	40,8	40,2	31,2	28,9	
1995	30,8	30,5	42,4	42,0	33,7	33,2	
1996	32,7	31,3	42,0	44,0	36,7	37,3	
1997	33,6	33,2	45,0	44,5	37,1	35,0	
1998	34,2	33,2	45,6	44,1	41,3	36,8	
1999	32,9	33,8	45,3	40,9	37,8	34,9	
2000	35,1	35,2	45,7	42,1	40,4	36,9	
2001	32,2	33,0	44,1	41,9	35,9	36,5	
2002	34,4	33,3	44,4	43,8	37,2	36,2	
2003	33,0	33,2	43,5	42,2	37,1	36,0	
2004	34,7	34,2	45,1	43,2	39,9	37,5	
2005	33,5	33,9	45,8	43,1	38,7	38,7	
2006	33,2	33,6	45,1	42,8	37,9	37,4	
2007	33,9	33,2	44,8	43,5	37,2	35,5	
2008	32,6	32,4	44,0	43,9	37,5	35,9	

Table 3.2.3.3. Nephrops, Kattegat (FU 4): Catches and landings (tonnes), effort ('000 hours trawling), CP UE and LP UE (kg/hour trawling) of Swedish Nephrops trawlers, 1991-2008 (*Include only Nephrops trawls with grid and square mesh codend).

Single trawl						
Year	Catches	Landings	Effort	CPUE	LPUE	
1991	66	39	10,3	6,4	3,7	
1992	44	28	11,6	3,8	2,4	
1993	128	58	14,9	8,6	3,9	
1994	95	53	16,2	5,7	3,2	
1995	79	53	9,6	7,8	5,5	
1996	207	134	13,7	15,1	9,8	
1997	269	183	18,0	15,0	10,2	
1998	181	127	13,1	13,8	9,7	
1999	146	93	8,1	17,9	11,4	
2000	114	77	8,5	13,4	9,1	
2001	117	62	7,6	15,4	8,2	
2002	42	25	3,7	11,2	6,7	
2003	49	40	4,6	10,7	8,7	
2004	70	44	4,3	16,2	10,1	
2005	147	100	12,3	11,9	8,1	
2006	234	154	15,1	15,5	10,2	
2007^{*}	107	51	4,1	25,7	12,3	
2008^{*}	121	57	4,4	27,6	13,0	

Twin trawl						
Year	Catches	Landings	Effort	CPUE	LPUE	
1991	93	55	8,8	10,6	6,2	
1992	101	65	14,2	7,1	4,6	
1993	187	85	17,8	10,6	4,8	
1994	138	77	14,2	9,7	5,4	
1995	125	84	11,0	12,2	7,7	
1996	97	63	7,5	13,0	8,4	
1997	183	124	12,7	14,3	9,7	
1998	215	151	15,0	14,4	10,1	
1999	306	195	20,1	15,2	9,7	
2000	330	224	24,5	13,5	9,1	
2001	353	187	25,1	14,1	7,4	
2002	256	153	23,2	11,0	6,6	
2003	222	181	24,8	9	7,3	
2004	253	158	16,5	15,4	9,6	
2005	198	135	15,3	12,9	8,8	
2006	183	121	12,7	14,4	9,5	
2007^{*}	112	54	3,6	30,9	14,8	
2008^{*}	164	78	4,8	34,1	16,1	

Table 3.2.3.4. Nephrops Kattegat (FU 4): Logbook recorded effort (days fishing) and LPUE (kg/day) for bottom trawlers catching Nephrops with codend mesh sizes of 70 mm or above, and estimated total effort by Danish trawlers, 1991-2008.

Year	Logbook data		Estimated
	Effort	LPUE	
1991	13494	69	17175
1992	12126	65	13627
1993	8815	75	10195
1994	9403	77	9802
1995	9039	91	9357
1996	9872	96	11209
1997	10028	112	11348
1998	10388	122	12144
1999	11434	109	13019
2000	12845	100	14448
2001	13017	93	15870
2002	11571	88	13772
2003	11768	103	13015
2004	11122	115	11669
2005	9286	127	9286
2006	8080	113	7998
2007	7165	162	7588
2008	7911	170	8428

Table 3.3.1. Nominal landings (tonnes) of Nephrops in Sub-area IV, 1987-2008, as officially reported to ICES.

	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996
Belgium	638	679	344	437	500	574	610	427	384	418	304	410	185
Denmark	7	50	323	479	409	508	743	880	581	691	1128	1182	1315
Faeroe Islands	-	-	-	0	0	0	0	0	0	1	3	12	0
France	-	-	-	7	0	0	0	0	0	0	0	0	0
Germany	-	-	-	0	0	0	0	2	2	16	24	16	69
Germany (Fed. Rep.)	5	4	5	1	2	1	2	0	0	0	0	0	0
Ireland	-	-	-	0	0	0	0	0	0	0	0	0	0
Netherlands	-	-	-	0	0	0	9	3	134	131	159	254	423
Norway	1	1	1	2	17	17	46	117	125	107	171	74	83
Sweden	-	1	-	0	0	0	0	4	0	1	1	1	0
UK (Eng + Wales + NI)	-	-	-	0	0	2938	2332	1955	1451	2983	3613	2530	2462
UK (Eng + Wales)	1477	2052	2002	2173	2397	0	0	0	0	0	0	0	-
UK (Scotland)	4158	5369	6190	5304	6527	7065	6871	7501	6898	8250	8850	10018	8981
UK	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	6286	8156	8865	8403	9852	11103	10613	10889	9575	12598	14253	14497	13518

	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008^{*}
Belgium	311	238	350	252	283	284	229	213	180	214	205	200
Denmark	1309	1440	1963	1747	1935	2154	2128	2244	2339	2024	1408	1104
Faeroe Islands	1	1	1	0	-	-	-	-	-	-	-	-
France	0	0	0	0	-	-	-	-	-	-	-	+
Germany	64	58	104	79	140	125	50	50	109	288	602	265
Germany (Fed. Rep.)	0	0	0	0	-	-	-	-	-	-	-	-
Ireland	0	0	0	0	-	-	1	2	-	-	-	-
Netherlands	627	695	662	572	851	966	940	918	1019	982	1147	737
Norway	64	93	144	147	115	130	100	93	132	96	99	144
Sweden	1	3	4	37	26	14	1	1	3	1	5	26
UK (Eng + Wales + NI)	2206	2094	2431	2210	2691	1964	2295	2241	3236	4924	3295	\ldots
UK (Eng + Wales)	-	-	-	-	-	-	-	-	-	-	-	\ldots
UK (Scotland)	10466	8980	10715	9834	9681	11045	10094	12912	10565	16165	17930	\ldots
UK	-	-	-	-	-	-	-	-		-	-	19614
Total	15049	13602	16374	14878	15722	16682	15838	18674	17583	24694	24691	22091

* Landings data for 2008 are preliminary.

Table 3.3.1.1. Nephrops, B otney Gut (FU 5) Landings (tonnes) by country, 1981-2008.

	Belgium	Denmark	Netherl.	Germany	UK	Total **
1991	682	176	na		4	862
1992	571	22	na		19	612
1993	694	20	na		7	721
1994	494	0	na		9	503
1995	641	77	148		3	869
1996	266	41	317		55	679
1997	486	67	540		56	1149
1998	372	88	584	39	28	1111
1999	436	53	538	59	158	1244
2000	366	83	402	52	218	1121
2001	353	145	553	114	278	1443
2002	281	94	617	88	151	1231
2003	265	36	661	24	158	1144
2004	171	39	646	16	198	1070
2005	109	87	654	51	157	1058
2006	77	24	444	99	342	986
2007	75	3	464	201	568	1311
2008*	49	29	268	108	509	962
* provisional na $=$ not available ** Totals for 1991-94 exclusive of landings by the Netherlands						

Table 3.3.1.2. Nephrops, Botney Gut (FU 5) Mean sizes (CL mm) of males and females (> 35 mm) in Belgian landings.

	Landings	
	Males	Females
1991	40.8	41.3
1992	40.9	40.9
1993	41.0	40.9
1994	40.3	40.6
1995	40.7	39.8
1996	41.3	39.4
1997	41.2	39.0
1998	41.0	39.2
1999	40.9	39.5
2000	40.8	39.9
2001	40.3	39.7
2002	39.7	39.3
2003	40.5	39.3
2004	40.1	39.9
2005	40.2	39.5
2006	no directed fishery	
2007	no directed fishery	
2008	no directed fishery	
${ }^{2}$ provisional na = not available		

Table 3.3.1.3. Neph rops, Botney Gut (FU 5) Landings, effort and LP UEs of Belgian Nephrops trawlers and Dutch and Danish trawlers, 1991-2008.

	Belgium (1)			Netherlands (2)			Denmark (3)		
	Landings	Effort	LPUE	Landings	Effort	LPUE	Landings	Effort	LPUE
	tons	'000 hrs	kg/hour	tons	days at sea	kg/day	tons	days at sea	kg/day
1991	566	74.0	7.7						
1992	525	74.5	7.0						
1993	672	58.3	11.5						
1994	453	35.5	12.7						
1995	559	32.5	17.2						
1996	245	30.1	8.1				34	132	261.0
1997	399	31.8	12.5				24	59	412.0
1998	309	28.6	10.8				78	174	447.0
1999	322	31.8	10.1				44	107	408.0
2000	174	21.8	8.0	402	7936	50.7	76	247	306.0
2001	195	21.5	9.1	553	9797	56.5	78	283	275.0
2002	144	15.8	9.1	617	8999	68.6	47	200	237.0
2003	118	6.2	19.3	661	9043	73.1	33	132	247.3
2004	106	5.7	18.8	646	8676	74.5	36	149	241.9
2005	69	2.9	23.9	654	7912	82.7	87	297	290.9
2006	no data	24	66	365.6					
2007	no data	3	13	253.6					
2008*	no data	29	41	777.0					

* provisional na = not available
(1) Vessels directed towards Nephrops at least 10 months per year
(2) All vessels operating in FU 5, reg ardless of directedness towards Nephrops
(3) Logbook records from vessels operating in FU5, with mesh size $>=70 \mathrm{~mm}$ with Nephrops in catches

Table 3.3.2.1. Neph rops, Farn Deeps (FU 6) Landings (tonnes) by country, 1981-2008.

Year	UK Eng land	UK Scotland	Sub total	Other countries**	Total
1981	1006	67	1073	0	1073
1982	2443	81	2524	0	2524
1983	2073	5	2078	0	2078
1984	1471	8	1479	0	1479
1985	2009	18	2027	0	2027
1986	1987	28	2015	0	2015
1987	2158	33	2191	0	2191
1988	2390	105	2495	0	2495
1989	2930	168	3098	0	3098
1990	2306	192	2498	0	2498
1991	1884	179	2063	0	2063
1992	1403	60	1463	10	1473
1993	2941	89	3030	0	3030
1994	3530	153	3683	0	3683
1995	2478	90	2568	1	2569
1996	2386	96	2482	1	2482
1997	2109	80	2189	0	2189
1998	2029	147	2176	1	2177
1999	2197	194	2391	0	2391
2000	1947	231	2178	0	2178
2001	2319	255	2574	0	2574
2002	1739	215	1953	0	1953
2003	2031	214	2245	0	2245
2004	1952	201	2152	0	2152
2005	2936	158	3093	0	3094
2006	4385	434	4819	39	4858
2007	2525	437	2962	4	2966
2008*	969	244	1213	0	1213
* provisional na $=$ not available ** Other countries includes Ne , Be and Dk					

Table 3.3.2.2. Nephrops, Farn Deeps (FU 6). Catches and landings (tonnes), effort ('000 hrs fished), CP UE \& LP UE from UK (England) trawlers.

Year	Catches	Landings	Effort	CPUE	LPUE
1985	2546	1906	70.8	35.9	26.9
1986	2541	1902	72.1	35.2	26.4
1987	2773	2075	80.1	34.6	25.9
1988	3187	2385	98.8	32.2	24.1
1989	3754	2809	122.4	30.7	23.0
1990	2980	2230	103.5	28.8	21.5
1991	2384	1784	107.2	22.2	16.7
1992	1729	1294	58.2	29.7	22.2
1993	3756	2811	106.7	35.2	26.3
1994	4612	3451	152.5	30.2	22.6
1995	3192	2388	96.8	33.0	24.7
1996	3031	2268	87.3	34.7	26.0
1997	2508	1877	75.7	33.2	24.8
1998	2531	1894	62.7	40.4	30.2
1999	2888	2161	86.2	33.5	25.1
2000	3409	1863	74.2	46.0	25.1
2001	4024	2096	88.8	45.3	23.6
2002	2222	1605	65.8	33.7	24.4
2003	2576	1975	79.6	32.4	24.8
2004	2239	1824	65.5	34.2	27.8
2005	3059	2498	78.7	38.9	31.8
2006	4307	3547	93.7	46.0	37.9
2007	2205	1914	78.3	28.2	24.5
2008*	979	838	44.9	21.8	18.6
* provisional na= not available					

Table 3.3.2.3. Nephrops, Farn Deeps (FU 6). Mean sizes (CL mm) of males and females in the catch and landings.

Year	Catches		Landings	
	Males	Females	Males	Females
1985	30.1	28.5	35.4	33.8
1986	31.7	30.2	35.3	33.7
1987	28.6	27.0	35.3	33.3
1988	28.7	27.3	35.0	33.9
1989	29.0	28.2	32.4	31.9
1990	27.1	27.4	31.8	31.3
1991	28.9	27.1	33.5	33.1
1992	30.8	29.0	33.0	31.9
1993	32.1	28.7	33.4	30.1
1994	30.5	27.7	33.8	30.5
1995	28.4	27.4	33.8	31.6
1996	29.8	28.2	34.5	32.1
1997	29.9	29.6	33.5	32.1
1998	30.0	28.9	34.9	33.7
1999	29.6	27.5	35.1	33.6
2000	27.3	26.8	31.1	31.3
2001	26.3	26.4	30.6	31.3
2002	28.4	26.8	31.2	29.8
2003	29.2	27.2	31.9	30.6
2004	30.4	28.0	32.5	30.9
2005	29.9	29.4	32.2	32.2
2006	29.0	30.3	31.4	32.4
2007	31.2	30.5	33.3	32.5
2008	30.8	30.2	32.8	32.7
* provisional na = not available				

Table 3.3.2.4. Nephrops, Farn Deeps (FU6). Results from the TV surveys (1996-2008) giving estimates of abundance (bias-corrected).

Year	Stations	Season	Mean density	Biascorrected Abundance	95\% confidence interval
			burrows/m²	millions	millions
1996	71	Spring Autumn	No survey		100
1997	105	Spring Autumn	$\begin{aligned} & 0.53 \\ & 0.55 \end{aligned}$	1494	139
	87			1500	125
1998	78	Spring Autumn	$\begin{aligned} & 0.25 \\ & 0.39 \end{aligned}$	662	48
	91			1090	89
1999	95	Spring	0.29	829	78
	-	Autumn	No survey		
2000	98	Spring	0.33	927	67
	-	Autumn	No survey		
2001	-	Spring	No survey		
	180	Autumn	0.67	1685	67
2002	180	Spring Autumn	$\begin{aligned} & 0.54 \\ & 0.39 \end{aligned}$	1390	93
	37			1048	112
2003	-	Spring	No survey		
	958	Autumn	0.39	1085	90
2004		Spring	No survey0.51		
	76	Autumn		1377	101
2005	-	Spring	No survey0.59		
	105	Autumn		1657	148
2006	-	Spring	No survey 0.44		
	105	Autumn*		1244	114
2007	-	Spring	No survey 0.34		
	105	Autumn*		958	114
2008	-	Spring	No survey		
	95	Autumn*	0.34	965	112

Table 3.3.2.5. Nephrops, Farn Deeps (FU 6). Estimated harvest rates over 2001-2008.
Year

	Bias corrected TV abundance index	Landings (t)	Discard rate	Mean We ight (g)	N removed	Observed Harvest Rate
2001	1685	2574	66.4%	20.9	366	21.7%
2002	1048	1953	45.0%	20.8	171	16.3%
2003	1085	2245	41.3%	21.1	181	16.7%
2004	1377	2152	33.9%	22.1	147	10.7%
2005	1657	3094	33.9%	23.2	202	12.2%
2006	1244	4858	31.4%	23.1	306	24.6%
2007	968	2966	26.1%	23.5	171	17.6%
2008	965	1213	28.0%	23.6	71	7.4%

Table 3.3.3.1 Nephrops, Fladen (FU 7), Nominal Landings of Nephrops, 1981-2008, as reported to the WG.

		UK Scotland				Other
Year	Denmark	Other countries	Total			
		Nephrops trawl	Other trawl	Sub-total		
1981	0	304	69	373	0	373
1982	0	382	40	422	0	422
1983	0	548	145	693	0	693
1984	0	549	97	646	0	646
1985	7	1016	125	1141	0	1148
1986	50	1398	95	1493	0	1543
1987	323	1024	349	1373	0	1696
1988	81	1306	186	1492	0	1573
1989	165	1719	415	2134	0	2299
1990	236	1703	598	2301	0	2537
1991	424	3024	769	3793	3	4220
1992	359	1794	1179	2973	6	3338
1993	224	2033	1233	3266	31	3521
1994	390	1817	2356	4173	3	4566
1995	439	3569	2428	5997	6	6442
1996	286	2338	2592	4930	4	5220
1997	235	2713	3221	5934	2	6171
1998	173	2291	2672	4963	2	5138
1999	96	2860	3549	6409	0	6505
2000	103	2915	2546	5461	16	5580
2001	64	3539	1936	5475	6	5545
2002	173	4513	2546	7059	2	7234
2003	82	4175	2033	6208	15	6305
2004	136	7274	1319	8593	4	8733
2005	321	8849	1514	10363	1	10685
2006	283	9396	1101	10497	9	10789
2007	119	11055	733	11788	3	11910
2008	133	11432	667	12099	8	12240

Table 3.3.3.2 Neph rops, Fladen (FU 7): Landings (tonnes), effort ('000 hours trawling) and LPUE (kg/hour trawling) of Scottish Neph rops trawlers, 1981-2008 (data for all Neph rops gears combined, and for single and multirigs separately).

Year	All Neph rops gears combined							Single rig							Multirig	
	Landings	Effort	LPUE	Landings	Effort	LPUE	Landings	Effort	LPUE							
1981	304	8.6	35.3	304	8.6	35.3	na	na	na							
1982	382	12.2	31.3	382	12.2	31.3	na	na	na							
1983	548	15.4	35.6	548	15.4	35.6	na	na	na							
1984	549	11.4	48.2	549	11.4	48.2	na	na	na							
1985	1016	26.6	38.2	1016	26.6	38.2	na	na	na							
1986	1398	37.8	37.0	1398	37.8	37.0	na	na	na							
1987	1024	41.6	24.6	1024	41.6	24.6	na	na	na							
1988	1306	41.7	31.3	1306	41.7	31.3	na	na	na							
1989	1719	47.2	36.4	1719	47.2	36.4	na	na	na							
1990	1703	43.4	39.2	1703	43.4	39.2	na	na	na							
1991	3024	78.5	38.5	410	11.4	36.0	2614	67.1	39.0							
1992	1794	38.8	46.2	340	9.4	36.2	1454	29.4	49.5							
1993	2033	49.9	40.7	388	9.6	40.4	1645	40.3	40.8							
1994	1817	48.8	37.2	301	8.4	35.8	1516	40.4	37.5							
1995	3569	75.3	47.4	2457	52.3	47.0	1022	23.0	44.4							
1996	2338	57.2	40.9	2089	51.4	40.6	249	5.8	42.9							
1997	2713	76.5	35.5	2013	54.7	36.8	700	21.8	32.1							
1998	2291	60.0	38.2	1594	39.6	40.3	697	20.5	34.0							
1999	2860	76.8	37.2	1980	50.3	39.4	880	26.5	33.2							
2000	2915	92.1	31.7	2002	62.9	31.8	913	29.2	31.3							
2001	3539	108.2	32.7	2162	65.8	32.9	1377	42.4	32.5							
2002	4513	109.6	41.2	2833	58.9	48.1	1680	50.7	33.1							
2003	4175	53.7	77.7	3388	42.8	79.2	787	10.9	72.2							
2004	7274	56.1	129.7	6177	47.5	130.2	1097	8.6	127.6							
2005	8849	61.3	144.4	6834	43.4	157.5	2015	17.9	112.7							
2006	9396	65.7	143.0	7149	50.2	142.4	2320	15.5	149.7							
2007	11055	69.6	158.8	8232	52.2	157.7	2822	17.4	162.2							
2008	11432	80.3	142.4	8247	58.8	140.3	3185	21.5	148.1							

Table 3.3.3.3 Neph rops, Fladen (FU 7): Logbook recorded effort (days fishing) and LP UE (kg/day) for bottom trawlers catching Nephrops with codend mesh sizes of 70 mm or above, and estimated total effort by Danish trawlers, 1991-2008.

Year	Logbook data	
	Effort	LPUE
1991	3115	116
1992	2289	130
1993	820	130
1994	1209	251
1995	841	343
1996	568	254
1997	395	349
1998	268	165
1999	197	251
2000	292	170
2001	213	181
2002	335	368
2003	194	308
2004	290	461
2005	607	482
2006	576	450
2007	274	426
2008^{*}	241	512
* provisional na = not		
available		

Table 3.3.3.4 Nephrops, Fladen (FU 7): Mean sizes (CL mm) above and below 35 mm of male and female Neph rops in Scottish catches and landings, 1993-2008.

	Catche		Landin			
Year	<35 mm		< 35 m		> 35 mm	
	Males	Females	Males	Females	Males	Females
1993	na	na	30.4	29.6	38.7	38.2
1994	na	na	30.0	28.9	39.2	37.8
1995	na	na	30.6	29.8	39.9	38.1
1996	na	na	30.4	29.1	40.6	38.8
1997	na	na	30.2	29.1	40.9	38.8
1998	na	na	30.8	29.4	40.7	38.4
1999	na	na	30.9	29.6	40.5	38.5
2000	30.8	30.1	31.2	30.5	41.3	38.7
2001	30.1	29.4	30.7	29.7	39.6	38.0
2002	30.6	30.1	31.3	30.7	39.5	38.3
2003	30.9	29.8	31.3	30.1	40.0	38.1
2004	30.8	29.6	31.1	29.8	39.9	38.8
2005	30.9	30.0	31.2	30.1	40.1	38.2
2006	30.1	29.5	30.8	30.0	40.7	38.3
2007	29.6	29.0	30.4	29.5	40.8	38.8
2008	29.6	28.5	29.8	28.7	41.8	39.1
* provisional, na= not available						

Table 3.3.3.5. Nephrops, FUs 7-9. Mean weight (g) in the landings.

Year	Fladen	Firth of Forth	Moray Firth
1990	31.66	20.24	19.96
1991	26.57	19.98	18.41
1992	29.69	20.90	23.40
1993	25.45	24.26	23.35
1994	23.76	19.47	22.19
1995	27.58	19.51	20.53
1996	29.88	20.76	21.31
1997	32.12	18.82	20.35
1998	31.43	18.18	20.38
1999	30.59	20.01	21.72
2000	36.42	21.78	25.37
2001	25.14	21.17	24.11
2002	28.00	19.58	27.65
2003	30.22	22.24	23.25
2004	31.06	22.41	27.52
2005	29.10	22.30	23.76
2006	29.29	21.41	22.26
2007	26.65	20.94	22.97
2008	28.20	17.20	25.22
Mean (06-08)	28.05	19.85	23.48

Table 3.3.3.6. Nephrops, Fhaden (FU 7): Results of the 1992-2008 TV surveys.

Year	Stations	Mean density	Abundance	95% confidence interval
		burrows/m ${ }^{2}$	millions	millions
1992	69	0.17	4942	508
1993	74	0.21	6007	768
1994	59	0.30	8329	1099
1995	61	0.24	6733	1209
1996	No survey			
1997	56	0.13	3736	689
1998	60	0.18	5181	968
1999	62	0.20	5597	876
2000	68	0.17	4898	663
2001	50	0.23	6725	1310
2002	54	0.29	8217	1022
2003	55	0.27	7488	1452
2004	52	0.27	7729	1391
2005	72	0.21	5839	894
2006	69	0.23	6564	836
2007	82	0.34	9473	986
2008	74	0.35	9857	1377

Table 3.3.3.7. Nephrops, Fladen Ground (FU 7):Summary of TV results for most recent 3 years (2006-2008) showing strata surveyed, numbers of stations in each strata, mean density and observed variance, overall abundance and variance raised to stratum area. Proportion indicates relative amounts of overall raised variance attributable to each stratum.

	毕	$\begin{aligned} & \text { U } \\ & \text { " } \\ & \text { 0. } \\ & \text { B } \\ & \text { Z } \\ & \text { Z } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { D } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			
2006 TV survey							
>80	3248	11	0.34	0.00	1095	3397	0.019
$55<80$	4967	17	0.33	0.02	1633	26025	0.149
40<55	4304	13	0.25	0.02	1066	25457	0.146
<40	15634	28	0.18	0.01	2769	119745	0.686
Total	28153	69			6564	174624	1
2007 TV survey							
>80	3248	12	0.52	0.00	1686	2517	0.010
$55<80$	4967	17	0.43	0.02	2136	21856	0.090
40<55	4304	17	0.36	0.02	1534	24566	0.101
<40	15634	36	0.26	0.03	4117	194102	0.799
Total	28153	82			9473	243040	1
2008 TV survey							
>80	3248	12	0.68	0.00	2209	4028	0.008
$55<80$	4967	18	0.32	0.04	1589	50866	0.107
$40<55$	4304	17	0.60	0.04	2562	38458	0.081
<40	15634	27	0.22	0.04	3497	380988	0.803
Total	28153	74			9857	474340	1

Table 3.3.3.8 Neph rops, Fladen (FU 7): Adjusted TV survey abundance, landings, discard rate (proportion by number) and estimated harvest ratio 2003-2008.

	Adjusted survey (millions)	Landings (tonnes)	Discard rate	Harvest ratio
2003	5547	6305	0.10	0.04
2004	5725	8733	0.11	0.06
2005	4325	10685	0.11	0.10
2006	4862	10789	0.22	0.09
2007	7017	11910	0.19	0.08
2008	7302	12240	0.09	0.08

Table 3.3.4.1 Nephrops, Firth of Forth (FU 8), Nominal Landings of Nephrops, 1981-2008, as reported to the WG.

Year	UK Scotland				UK England	Total **
	Nephrops trawl	Other trawl	Creel	Sub-total		
1981	945	61	0	1006	0	1006
1982	1138	57	0	1195	0	1195
1983	1681	43	0	1724	0	1724
1984	2078	56	0	2134	0	2134
1985	1908	61	0	1969	0	1969
1986	2204	59	0	2263	0	2263
1987	1582	92	0	1674	0	1674
1988	2455	73	0	2528	0	2528
1989	1833	52	0	1885	1	1886
1990	1901	28	0	1929	1	1930
1991	1359	45	0	1404	0	1404
1992	1714	43	0	1757	0	1757
1993	2349	18	0	2367	2	2369
1994	1827	17	0	1844	6	1850
1995	1708	53	0	1761	2	1763
1996	1621	66	1	1688	0	1688
1997	2137	55	0	2192	2	2194
1998	2105	38	0	2143	2	2145
1999	2192	9	1	2202	3	2205
2000	1775	9	0	1784	1	1785
2001	1484	35	0	1519	9	1528
2002	1302	31	1	1334	6	1340
2003	1115	8	0	1123	3	1126
2004	1651	4	0	1655	3	1658
2005	1973	0	6	1979	11	1990
2006	2437	4	12	2453	5	2458
2007	2628	9	8	2645	7	2652
2008*	2435	3	7	2445	5	2450
* provisional na $=$ not available ** There are no landings by othercountries from this FU						

Table 3.3.4.2 Neph rops, Firth of Forth (FU 8): Landings (tonnes), effort ('000 hours trawling) and LPUE (kg/hour trawling) of Scottish Neph rops trawlers, 1981-2008 (data for all Nephrops gears combined, and for single and multirigs separately).

Year	All Neph rops gears combined								Single rig							Multirig	
	Landings	Effort	LPUE	Landings	Effort	LPUE	Landings	Effort	LPUE								
1981	945	42.6	22.2	945	42.6	22.2	na	na	na								
1982	1138	51.7	22.0	1138	51.7	22.0	na	na	na								
1983	1681	60.7	27.7	1681	60.7	27.7	na	na	na								
1984	2078	84.7	24.5	2078	84.7	24.5	na	na	na								
1985	1908	73.9	25.8	1908	73.9	25.8	na	na	na								
1986	2204	74.7	29.5	2204	74.7	29.5	na	na	na								
1987	1582	62.1	25.5	1582	62.1	25.5	na	na	na								
1988	2455	94.8	25.9	2455	94.8	25.9	na	na	na								
1989	1833	78.7	23.3	1833	78.7	23.3	na	na	na								
1990	1901	81.8	23.2	1901	81.8	23.2	na	na	na								
1991	1359	69.4	19.6	1231	63.9	19.3	128	5.5	23.3								
1992	1714	73.1	23.4	1480	63.3	23.4	198	8.5	23.3								
1993	2349	100.3	23.4	2340	100.1	23.4	9	0.2	45.0								
1994	1827	87.6	20.9	1827	87.6	20.9	0	0.0	0.0								
1995	1708	78.9	21.6	1708	78.9	21.6	0	0.0	0.0								
1996	1621	69.7	23.3	1621	69.7	23.3	0	0.0	0.0								
1997	2137	71.6	29.8	2137	71.6	29.8	0	0.0	0.0								
1998	2105	70.7	29.8	2105	70.7	29.8	0	0.0	0.0								
1999	2192	67.7	32.4	2192	67.7	32.4	0	0.0	0.0								
2000	1775	75.3	23.6	1761	75.0	23.5	14	0.3	46.7								
2001	1484	68.8	21.6	1464	68.3	21.4	20	0.5	40.0								
2002	1302	63.6	20.5	1286	63.3	20.3	16	0.3	53.3								
2003	1115	53.0	21.0	1082	52.4	20.6	33	0.6	55.0								
2004	1651	63.2	26.1	1633	62.9	26.0	18	0.4	49.7								
2005	1973	66.6	29.6	1970	66.5	29.6	3	0.1	58.8								
2006	2437	61.4	39.7	2432	61.0	39.9	5	0.4	14.2								
2007	2628	57.6	45.6	2607	57.1	45.7	21	0.5	43.2								
2008	2435	52.2	46.6	2405	51.7	46.5	30	0.5	60.0								

Table 3.3.4.3 Nephrops, Firth of Forth (FU 8): Mean sizes (CL mm) above and below 35 mm of male and female Neph rops in Scottish catches and landings, 1991-2008.

Year	Catches		Landings			
	$<35 \mathrm{~mm} \mathrm{CL}$		< 35 mm CL		> 35 mm CL	
	Males	Females	Males	Females	Males	Females
1981	na	na	31.5	31.0	39.7	38.7
1982	na	na	30.4	30.1	40.0	39.1
1983	na	na	31.1	30.8	40.2	38.7
1984	na	na	30.3	29.7	39.4	38.4
1985	na	na	30.6	29.9	39.5	38.2
1986	na	na	29.7	29.2	39.1	38.5
1987	na	na	29.9	29.6	39.1	38.2
1988	na	na	28.5	28.5	39.2	39.0
1989	na	na	29.2	28.9	38.7	38.9
1990	28.5	27.5	29.8	28.6	38.3	38.8
1991	28.7	27.5	29.8	28.7	38.3	38.7
1992	29.5	28.0	30.2	28.7	38.1	38.7
1993	28.7	28.0	30.3	29.5	39.0	38.6
1994	25.7	25.1	29.1	28.5	38.8	37.8
1995	27.9	27.1	29.4	28.9	38.7	37.9
1996	28.0	27.4	29.8	28.8	38.6	38.6
1997	27.3	27.0	29.2	28.7	38.8	38.2
1998	27.7	26.4	29.0	27.9	38.6	38.4
1999	27.2	26.5	29.6	28.8	38.0	37.9
2000	28.5	27.2	30.7	29.8	38.2	38.3
2001	28.1	26.7	30.6	29.2	38.0	37.9
2002	27.1	26.3	29.8	29.3	38.3	37.9
2003	27.2	25.5	30.2	29.1	38.1	38.0
2004	28.7	27.8	30.7	29.9	38.4	37.7
2005	27.6	26.9	30.3	30.0	38.8	38.2
2006	27.4	27.1	29.8	29.9	38.7	37.8
2007	29.1	28.2	29.8	28.6	39.1	38.6
2008*	27.6	27.0	28.1	26.9	39.4	37.9
* provisional na = not available						

Table 3.3.4.4. Neph rops, Firth of Forth (FU 8): Results of the 1993-2008 TV surveys.

Year	Stations	Mean density	Abundance	95% confidence interval
		burrows/m²	millions	millions
	37	0.72	655	167
1994	30	0.58	529	92
1995	no survey			
1996	27	0.48	443	104
1997	no survey			
1998	32	0.38	345	95
1999	49	0.60	546	92
2000	53	0.57	523	83
2001	46	0.54	494	93
2002	41	0.66	600	140
2003	36	0.99	905	163
2004	37	0.81	743	166
2005	54	0.92	838	169
2006	43	1.07	976	148
2007	49	0.90	816	156
2008	38	1.14	1040	350

Table 3.3.4.5. Nephrops, Firth of Forth (FU 8):Summary of TV results for most recent 3 years (20062008) showing strata surveyed, numbers of stations in each strata, mean density and observed variance, overall abundance and variance raised to stratum area. Proportion indicates relative amounts of overall raised variance attributable to each stratum.

E ت゙ 世							
2006 TV survey							
M \& SM	171	8	0.54	0.39	92	1410	0.257
MS(west)	139	9	0.76	0.53	105	1134	0.207
MS(mid)	211	9	1.87	0.15	394	743	0.135
MS(east)	395	17	0.97	0.24	385	2200	0.401
Total	915	43			976	5486	1
2007 TV survey							
M \& SM	171	10	0.99	0.69	168	1998	0.329
MS(west)	139	8	0.58	0.24	81	577	0.095
MS(mid)	211	12	1.18	0.45	248	1676	0.276
MS(east)	395	19	0.81	0.22	319	1817	0.299
Total	915	49			816	6069	1
2008 TV survey							
M \& SM	171	3	0.92	1.67	156	24333	0.793
MS(west)	139	9	1.04	0.82	144	1757	0.057
MS(mid)	211	11	1.69	0.47	355	1898	0.062
MS(east)	395	15	0.97	0.26	384	2685	0.088
Total	915	38			1040	30673	1

Table 3.3.4.6 Nephrops, Firth of Forth (FU 8): Adjusted TV survey abundance, landings, discard rate (proportion by number) and estimated harvest ratio 2003-2008.

	Adjusted survey (millions)	Landings (tonnes)	Discard rate	Harvest ratio
2003	767	1126	0.54	0.15
2004	630	1658	0.35	0.19
2005	710	1990	0.42	0.23
2006	827	2458	0.53	0.30
2007	692	2652	0.25	0.25
2008	881	2450	0.31	0.25

Table 3.3.5.1 Neph rops, Moray Firth (FU 9), Nominal Landings of Neph rops, 1981-2008, as reported to the WG.

Year	UK Scotland				UK England	Total **
	Nephrops trawl	Other trawl	Creel	Sub-total		
1981	1298	118	0	1416	0	1416
1982	1034	86	0	1120	0	1120
1983	850	90	0	940	0	940
1984	960	210	0	1170	0	1170
1985	1908	173	0	2081	0	2081
1986	1933	210	0	2143	0	2143
1987	1723	268	0	1991	0	1991
1988	1638	321	0	1959	0	1959
1989	2101	475	0	2576	0	2576
1990	1698	340	0	2038	0	2038
1991	1285	234	0	1519	0	1519
1992	1285	306	0	1591	0	1591
1993	1505	303	0	1808	0	1808
1994	1178	360	0	1538	0	1538
1995	967	330	0	1297	0	1297
1996	1084	364	1	1449	2	1451
1997	1102	343	0	1445	1	1446
1998	739	289	4	1032	0	1032
1999	813	193	2	1008	0	1008
2000	1344	194	3	1541	0	1541
2001	1188	213	2	1403	0	1403
2002	884	232	2	1118	0	1118
2003	874	194	11	1079	0	1079
2004	1223	103	9	1335	0	1335
2005	1526	64	12	1602	3	1605
2006	1718	73	11	1802	1	1803
2007	1816	17	7	1840	2	1842
2008	1443	67	4	1514	0	1514

Table 3.3.5.2 Neph rops, Moray Firth (FU 9): Landings (tonnes), effort ('000 hours trawling) and LPUE (kg/hour trawling) of Scottish Nephrops trawlers, 1981-2008 (data for all Nephrops gears combined, and for single and multirigs separately).

Year	All Nephrops gears combined								Single rig							Multirig	
	Landings	Effort	LPUE	Landings	Effort	LPUE	Landings	Effort	LPUE								
1981	1298	36.7	35.4	1298	36.7	35.4	na	na	na								
1982	1034	28.2	36.7	1034	28.2	36.7	na	na	na								
1983	850	21.4	39.7	850	21.4	39.7	na	na	na								
1984	960	23.2	41.4	960	23.2	41.4	na	na	na								
1985	1908	49.2	38.8	1908	49.2	38.8	na	na	na								
1986	1933	51.6	37.5	1933	51.6	37.5	na	na	na								
1987	1723	70.6	24.4	1723	70.6	24.4	na	na	na								
1988	1638	60.9	26.9	1638	60.9	26.9	na	na	na								
1989	2102	69.6	30.2	2102	69.6	30.2	na	na	na								
1990	1700	58.4	29.1	1700	58.4	29.1	na	na	na								
1991	1284	47.1	27.3	571	25.1	22.7	713	22.0	32.4								
1992	1282	40.9	31.3	624	24.8	25.2	658	16.1	40.9								
1993	1505	48.6	31.0	783	28.1	27.9	722	20.6	35.0								
1994	1178	47.5	24.8	1023	42.0	24.4	155	5.5	28.2								
1995	967	30.6	31.6	857	27.0	31.7	110	3.6	30.6								
1996	1084	38.2	28.4	1057	37.4	28.3	27	0.8	33.8								
1997	1102	47.7	23.1	960	42.5	22.6	142	5.1	27.8								
1998	739	34.4	21.5	576	28.1	20.5	163	6.3	25.9								
1999	813	35.5	22.9	699	31.5	22.2	114	4.0	28.5								
2000	1343	49.5	27.1	1068	39.8	26.8	275	9.7	28.4								
2001	1188	47.6	25.0	913	37.0	24.7	275	10.6	25.9								
2002	1526	35.5	43.0	649	27.2	23.9	234	7.9	29.6								
2003	1718	41.1	41.8	737	25.3	29.1	135	3.6	37.5								
2004	1818	36.9	49.3	1100	29.2	37.7	123	2.5	49.2								
2005	1526	37.6	40.6	1309	34.0	38.5	217	3.6	60.3								
2006	1718	41.1	41.8	1477	37.4	39.5	241	3.7	65.1								
2007	1816	36.9	49.2	1502	32.4	46.4	314	4.5	69.8								
2008	1443	30.1	47.9	1125	25.3	44.5	318	4.8	66.3								

Table 3.3.5.3 Nephrops, Moray Firth (FU 9): Mean sizes (CL mm) above and below 35 mm of male and female Neph rops in Scottish catches and landings, 1991-2008.

Year	Catches		Landings			
	< 35 mm CL		$<35 \mathrm{~mm} \mathrm{CL}$		=> 35 mm CL	
	Males	Females	Males	Females	Males	Females
1981	na	na	30.5	28.2	39.1	37.7
1982	na	na	30.2	29.0	40.0	37.9
1983	na	na	29.9	29.1	40.6	38.3
1984	na	na	29.7	29.3	39.4	38.1
1985	na	na	28.9	28.7	38.7	37.8
1986	na	na	28.7	27.8	39.1	38.4
1987	na	na	29.0	28.3	39.5	38.6
1988	na	na	29.1	28.7	38.9	38.4
1989	na	na	29.8	28.8	40.1	39.4
1990	28.8	28.1	30.4	29.1	38.4	38.7
1991	28.4	27.4	30.1	28.7	38.2	38.2
1992	29.4	28.6	31.0	30.5	38.3	38.0
1993	29.8	29.9	31.3	30.9	38.6	37.7
1994	28.9	30.1	30.8	31.0	39.5	37.5
1995	25.8	25.0	29.9	29.3	39.1	38.0
1996	29.3	28.4	30.6	29.7	38.5	38.0
1997	28.5	27.9	29.5	28.9	38.8	38.2
1998	28.7	28.2	30.1	29.3	38.8	38.2
1999	29.5	28.8	30.4	29.7	38.9	37.6
2000	29.8	29.1	31.5	30.6	39.2	38.3
2001	30.0	29.2	30.9	30.2	39.6	37.9
2002	27.2	27.0	31.2	30.9	41.0	38.7
2003	29.3	29.2	30.3	30.1	39.8	38.0
2004	29.3	28.3	31.1	30.3	39.0	39.1
2005	30.0	28.6	31.0	29.6	39.2	38.5
2006	30.2	29.3	30.6	29.6	39.3	38.6
2007	30.0	28.8	30.3	29.0	39.4	38.6
2008*	29.9	27.9	30.3	28.2	39.8	40.2
* provisional na = not available						

Table 3.3.5.4 Neph rops, Moray Firth (FU 8):Summary of TV results for most recent 3 years (20062008) showing strata surveyed, numbers of stations in each strata, mean density and observed variance, overall abundance and variance raised to stratum area. Proportion indicates relative amounts of overall raised variance attributable to each stratum.

$\begin{aligned} & \text { E } \\ & \text { T } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$							
2006 TV survey							
M \& SM	169	6	0.46	0.03	77	127	0.022
MS(west)	682	18	0.19	0.06	129	1634	0.290
MS(mid)	698	13	0.19	0.04	133	1646	0.292
MS(east)	646	13	0.31	0.07	201	2231	0.396
Total	2195	50			539	5638	1
2007 TV survey							
M \& SM	169	3	0.45	0.11	76	1006	0.112
MS(west)	682	13	0.29	0.12	195	4263	0.475
MS(mid)	698	11	0.24	0.01	166	460	0.051
MS(east)	646	13	0.32	0.10	205	3248	0.362
Total	2195	40			642	8977	1
2008 TV survey							
M \& SM	169	2	0.35	0.08	58	1200	0.144
MS(west)	682	16	0.35	0.17	239	5023	0.603
MS(mid)	698	13	0.20	0.01	141	413	0.050
MS(east)	646	14	0.22	0.06	141	1699	0.204
Total	2195	45			579	8335	1

Table 3.3.5.5 Nephrops, Moray Firth (FU 9): Results of the 1993-2008 TV surveys.

Year	Stations	Mean density	Abundance	95% confidence interval
		burrows $/ \mathrm{m}^{2}$	millions	millions
	31	0.19	418	94
1994	29	0.39	850	213
1995	no survey			
1996	27	0.26	563	109
1997	34	0.14	317	66
1998	31	0.18	391	115
1999	52	0.22	484	105
2000	44	0.21	467	118
2001	45	0.19	417	135
2002	31	0.29	0.40	830
2004	32	0.35	753	380
2005	42	0.48	1052	225
2006	42	0.25	539	239
2007	50	0.29	642	150
2008	40	0.26	579	189

Table 3.3.5.6 Neph rops, Moray Firth (FU 8): Adjusted TV survey abundance, landings, discard rate (proportion by number) and estimated harvest ratio 2003-2008.

	Adjusted survey (millions)	Landings (tonnes)	Discard rate	Harvest ratio
2003	729	1079	0.14	0.07
2004	626	1335	0.33	0.11
2005	869	1605	0.15	0.09
2006	446	1803	0.05	0.18
2007	530	1842	0.08	0.16
2008	478	1514	0.05	0.13

Table 3.3.6.1 Nephrops, Noup (FU 10), Nominal Landings of Nephrops, 1981-2008, as reported to the WG.

Year	UK Scotland				Total **
	Nephrops trawl	Other trawl	Creel	Sub- to tal	
1981	13	23	0	36	36
1982	12	7	0	19	19
1983	9	6	0	15	15
1984	75	36	0	111	111
1985	2	20	0	22	22
1986	46	22	0	68	68
1987	12	32	0	44	44
1988	23	53	0	76	76
1989	24	61	0	84	84
1990	101	116	0	217	217
1991	110	86	0	196	196
1992	56	130	0	188	188
1993	200	176	0	376	376
1994	308	187	0	495	495
1995	162	118	0	280	280
1996	180	164	0	344	344
1997	185	130	1	316	316
1998	183	71	0	254	254
1999	211	68	0	279	279
2000	196	79	0	275	275
2001	89	88	0	177	177
2002	244	157	0	401	401
2003	258	79	0	337	337
2004	175	53	0	228	228
2005	81	84	0	165	165
2006	44	89	0	133	133
2007	47	108	0	155	155
2008*	75	98	0	173	173
* provisional na $=$ not available ** There are no landings by other countries from this FU					

Table 3.3.6.2 Neph rops, Noup (FU 10): Landings (tonnes), effort ('000 hours trawling) and LPUE (kg/hour trawling) of Scottish Neph rops trawlers, 1981-2008 (data for all Neph rops gears combined, and for single and multirigs separately).

Year	All Neph rops gears combined								Single rig		Multirig	
	Landings	Effort	LPUE	Landings	Effort	LPUE	Landings	Effort	LPUE			
1981	13	0.4	34.3	13	0.4	34.3	na	na	na			
1982	12	0.5	24.7	12	0.5	24.7	na	na	na			
1983	9	0.3	30.7	9	0.3	30.7	na	na	na			
1984	75	2.0	36.9	75	2.0	36.9	na	na	na			
1985	2	0.1	25.0	2	0.1	25.0	na	na	na			
1986	46	0.7	62.6	46	0.7	62.6	na	na	na			
1987	12	0.7	18.1	12	0.7	18.1	na	na	na			
1988	23	1.0	34.3	23	1.0	34.3	na	na	na			
1989	24	0.9	25.8	24	0.9	25.8	na	na	na			
1990	101	2.9	34.6	101	2.9	34.6	na	na	na			
1991	110	4.8	22.9	23	0.9	25.6	87	3.9	22.3			
1992	56	1.8	31.1	33	1.4	23.6	23	0.4	57.5			
1993	200	4.8	41.7	152	3.6	42.0	48	1.2	39.0			
1994	308	8.4	36.7	273	7.6	36.0	35	0.8	42.1			
1995	162	3.9	41.5	139	3.5	39.9	23	0.4	63.2			
1996	180	4.4	40.9	174	4.2	41.4	6	0.2	30.0			
1997	185	5.3	34.9	172	4.9	35.1	13	0.4	32.5			
1998	183	3.2	57.2	171	3.0	57.0	12	0.2	60.0			
1999	211	4.1	51.8	196	3.8	53.0	15	0.3	54.9			
2000	196	2.0	98.0	161	1.8	89.4	35	0.2	175.0			
2001	89	1.7	52.4	82	1.4	58.6	7	0.3	23.3			
2002	244	3.3	73.9	185	2.1	88.1	59	1.2	49.2			
2003	258	2.7	95.6	217	2.3	94.3	41	0.4	102.5			
2004	175	2.2	79.5	144	2.2	65.2	31	0.0	-			
2005	81	0.6	135.0	58	0.6	98.3	23	0.0	-			
2006	44	0.3	146.7	42	0.4	94.6	2	0.0	-			
2007	47	0.3	78.3	43	0.3	71.3	4	0.0	-			
2008	75	0.8	93.4	55	0.6	91.2	20	0.2	100.0			

Table 3.3.6.3 Nephrops, Noup (FU 10): Results of the 1994, 1999, 2006 \& 2007 TV surveys.

Year	Stations	Mean density	Abundance	95\% confidence interval
		burrows/m²	millions	millions
1994	10	0.63	250	90
$\begin{aligned} & 1995 \\ & 1996 \\ & 1997 \\ & 1998 \end{aligned}$	no survey no survey no survey no survey			
1999	10	0.30	120	42
$\begin{aligned} & 2000 \\ & 2001 \\ & 2002 \\ & 2003 \\ & 2004 \end{aligned}$	no survey no survey no survey no survey no survey			
2005	2	poor visibility, limited survey - see text		
2006	7	0.18	73.7	47.1
2007	9	0.15	60	25

Table 3.3.7.1. Nephrops, Norwegian Deep (FU 32) Landings (tonnes) by country, 1981-2008.

Year	Denmark	Norway			Sweden	UK	Total
		Trawl	Creel	Sub-total			
1993	220	102	1	103		16	339
1994	584	161	0	161		10	755
1995	418	68	1	69		2	489
1996	868	73	1	74		10	952
1997	689	56	8	64		7	760
1998	743	88	1	89		4	836
1999	972	119	15	134		13	1119
2000	871	143	0	143	37	33	1084
2001	1026	72	13	85	26	53	1190
2002	1043	42	21	63	13	52	1170
2003	996	68	11	79	1	14	1089
2004	835	72	8	80	1	6	922
2005	979	89	13	102	2	6	1089
2006	939	62	19	81	1	6	1028
2007	652	77	20	97	5	1	755
2008*	505	116	26	142	24	4	675
* provisional na $=$ not available							

Table 3.3.7.2. Nephrops, Norwegian Deep (FU 32) Danish effort (days) and LP UE, 1993-2008.

Year	Effort	LPUE
1993	1317	121
1994	2126	208
1995	1792	198
1996	3139	235
1997	3189	218
1998	2707	214
1999	3710	226
2000	3986	192
2001	5372	166
2002	4968	188
2003	5273	177
2004	3488	216
2005	3919	234
2006	4796	196
2007	2878	226
2008	2301	220

Table 3.3.8.1. Neph rops, Off Horn Reef (FU 33) Landings (tonnes) by country, 1993-2008.

	Belgium	Denmark	Germany	Netherl.	UK	Total **
1993	0	159		na	1	160
1994	0	137		na	0	137
1995	3	158		3	1	164
1996	1	74		2	0	77
1997	0	274		2	0	276
1998	4	333	8	12	1	350
1999	22	683	14	12	6	724
2000	13	537	12	39	9	597
2001	52	667	11	61	+	791
2002	21	772	13	51	4	861
2003	15	842	4	67	1	929
2004	37	1097	24	109	1	1268
2005	16	803	31	191	9	1050
2006	97	710	151	314	15	1288
2007	118	610	201	496	42	1467
2008*	130	362	160	386	58	1096
* provisional na= not available						
** Totals for 1993-94 exclusive of landings by the Netherlands						

Table 3.3.8.2. - Off Horns Reef (FU 33): Logbook recorded effort (days fishing) and LP UE (kg/day) for bottom trawlers catching Neph rops with codend mesh sizes of 70 mm or above, and estimated total effort by Danish trawlers, 1993-2008.

	Logbook data		Estimated total effort		
	Effort	LPUE	971		
1993	975	170	830		
1994	739	165	816		
1995	724	194	471		
1996	370	157	1702		
1997	925	161	1601		
1998	1442	208	2710		
1999	2323	252	2569		
2000	2286	209	3489		
2001	2818	191	3734		
2002	3214	207	3973		
2003	3640	212	4694		
2004	4306	234	2776		
2005	2524	285	2288		
2006	2062	308	337		
2007	1609	755	448		2008
:---					
provisional na not available					

Figure 3.1.1 Neph rops Functional Units in the North Sea and Skagerrak/Kattegat region.

Figure 3.1.2. Nephrops, international landings by Functional Unit, 1991-2008. Vertical lines shows introduction of buyers and sellers legislation.

Figure 3.2.1.1. Neph rops Division IIIa (Skagerrak, FU 3 \& Kattegat, FU 4). Number of Swe dish Neph rops trawlers with respect to yearly landings, 2000-2008.

Figure 3.2.1.2 Neph rops Divis ion IIIa (Skagerrak, FU3 \& Kattegat, FU4). Swedish Neph rops landings from IIIa by gear 1989-2008. Other trawls are mainly finf ish and Pandalus trawls.

Figure 3.2.1.3. Nephrops Division IIIIa (Skagerrak, FU 3 \& Kattegat, FU 4). Long term trend in effort and LPUE from the Swedish creel fishery.

Illa catches, 2008.
By landings and discards

Figure 3.2.1.4 Nephrops Division IIIa (Skagerrak (FU 3) and Kattegat (FU 4)). Length frequency distributions of Nephrops catches, split by catch fraction (landings and discards) and sex. Data for Denmark and Sweden combined, 2008 catches.

Figure 3.2.2.1 Neph rops Skagerrak (FU 3): Long-term trends in landings, effort, LP UEs, and mean sizes of Neph rops.

Figure 3.2.2.2. Neph rops Skagerrak (FU 3):Trends in Danish and Swedish LP UE.

Figure 3.2.2.3. Neph rops Skagerrak (FU 3): Danish LP UEs

Figure 3.2.3.1. Neph rops Kattegat (FU 4): Long-term trends in landings, effort, LP UEs, and mean sizes of Neph rops.

Figure 3.2.3.2. Neph rops Kattegat (FU 4): Danish LP UEs

Figure 3.2.3.3. Neph rops Kattegat (FU 4): Trends of Danish and Swedish LP UE.

Figure 3.3.1.1 Botney Gut - Silver Pit (FU 5): Long-term trends in landings, effort, CPUEs and/or LPUEs, and mean sizes of Nephrops.

Figure 3.3.2.1 Neph rops, Farn Deeps (FU 6), Long term landings, effort, LP UE and mean sizes.

Percentage of landings by multi-rigged vessels

Figure 3.3.2.2. Nephrops, Farn Deeps (FU 6). Percentage of landings by multi-rigged vessels.

Figure 3.3.2.3 Neph rops, Farn Deeps (FU 6), Landings, effort and LP UEs by quarter and sex.

Length frequencies for eatch (dotted) and landed(solid): Nephrops in fu6

Figure 3.3.2.4 Neph rops Farn Deeps (FU 6). Length composition of catch of males (right) and females left from 2000 (bottom) to 2008 (top). Mean sizes of catch and landings are displa yed vertically.

Figure 3.3.2.5 Neph rops, Farn Deeps (FU 6), Time series of TV survey abundance estimates (not bias adjusted), with 95\% confidence intervals, 1997-2008.

2007

Figure 3.3.2.6. Nephrops Farn Deeps (FU6) - Station distribution and relative burrow density, from Autumn surve ys 1998 - 2008.

Figure 3.3.3.1 Neph rops, Fladen (FU 7), Long term landings, effort, LP UE and mean sizes.

Landings

LPUE - Males

Effort

LPUE - Females

Figure 3.3.3.2 Neph rops, Fladen (FU 7), Landings, effort and LP UEs by quarter and sex from Scottish Neph rops trawlers.

Length frequencies for cateh (dotted) and Ianded(solid): Nephrops in FU 7

Mean length of landings and catci verticaly MLS (24mmit and 35mm levels displayed

Figure 3.3.3.3. Neph rops Fladen Ground (FU 7)Length composition of catch of males (right) and females left from 2000 (bottom) to 2008 (top). Mean sizes of catch and landings are displayed vertically.

Figure 3.3.3.4 Nephrops, (FUs 7-9), individual mean weight in the landings from 1990-2008 (from Scottish market sampling data).

Figure 3.3.3.5 Nephrops, Fladen (FU 7). TV survey distribution and relative density (2003-2008). Green and brown areas represent areas of suitable sediment for Nephrops. Density proportional to circle radius. Red crosses represent zero observations.

Figure 3.3.3.6 Nephrops, Fladen (FU 7), Time series of TV survey abundance estimates (not bias adjusted), with 95% confidence intervals, 1992-2008.

Landings - International

LPUE - Scottish Nephrops trawlers

Effort - Scottish Nephrops trawlers

Mean sizes - Scottish Nephrops trawlers

Figure 3.3.4.1 Neph rops, Firth of Forth (FU 8), Long term landings, effort, LP UE and mean sizes.

Figure 3.3.4.2 Neph rops, Firth of Forth (FU 8), Landings, effort and LP UEs by quarter and sex from Scottish Neph rops trawlers.

Figure 3.3.4.3 Neph rops Firth of Forth (FU 8)Length composition of catch of males (right) and females left from 2000 (bottom) to 2008 (top). Mean sizes of catch and landings are displa yed vertically.

Figure 3.3.4.4 Neph rops, Firth of Forth (FU 8). TV survey distribution and relative densit y (20032008). Green and brown areas represent areas of suitable sediment for Neph rops. Density proportional to circle radius. Red crosses represent zero observations.

Figure 3.3.4.5 Neph rops, Firth of Forth (FU 8), Time series of TV survey abundance estimates, with 95\% confidence intervals, 1995-2008.

Landings - International

LPUE - Scottish Nephrops trawlers

Effort - Scottish Nephrops trawlers

Mean sizes - Scottish Nephrops trawlers

Figure 3.3.5.1 Neph rops, Moray Firth (FU 9), Long term landings, effort, LP UE and mean sizes.

Figure 3.3.5.2 Neph rops, Moray Firth (FU 9), Landings, effort and LP UEs by quarter and sex from Scottish Neph rops trawlers.

Length frequencies for eateh (dotted) and landed(solid): Nephrops in FU 9

Hean length of landings and catch vertically MLS (24mm) and 35mm levels displayed

Figure 3.3.5.3 Nephrops Moray Firth (FU 9) Length composition of catch of males (right) and females left from 2000 (bottom) to 2008 (top). Mean sizes of catch and landings are displa yed vertically.

Figure 3.3.5.4 Neph rops, Moray Firth (FU 9). TV survey distribution and relative density (20032008). Green and brown areas represent areas of suitable sediment for Neph rops. Density proportional to circle radius. Red crosses represent zero observations.

Figure 3.3.5.5 Neph rops, Moray Firth (FU 9), Time series of TV survey abundance estimates, with 95\% confidence intervals, 1995-2008.

Figure 3.3.6.1 Neph rops, Noup (FU 10), Long term landings, effort, LP UE and mean sizes.

Figure 3.3.6.2 Neph rops, Noup (FU 10). TV survey distribution and relative density (1994, 1999, 2006, 2007). Green and brown areas represent areas of suitable sediment for Nephrops. Density proportional to circle radius. Red crosses represent zero observations.

Figure 3.3.7.1 Nephrops Norwegian Deep (FU 32): Long-term trends in landings, effort, CPUEs and/or LP UEs, and mean sizes of Neph rops.

Figure 3.3.7.2. Neph rops Norwegian Deep (FU 32): LFDs from Danish Nephrops/finfish trawlers in FU 32.

Figure 3.3.7.3. Neph rops Norwegian Deep (FU 32): LFDs from Norwegian Nephrops/finfish trawlers in FU 32 (using 100 mm mesh trawls).

Length frequencies for catch (dotted) and landed(solid):
 Nephrops in FU32

Mean length of landings and catch vertically MLS (40mm) indicated

Figure 3.3.7.4 Neph rops Norwegian Deep (FU32) Length composition of catch (dotted) and landed (solid) of males (right) and females left from 2002 (bottom) to 2007 (top). Mean sizes of catch and landings (using same line types) is shown in relation to MLS.

Figure 3.3.7.5. Nephrops Norwegian Deep (FU 32) Relative LPUE of Danish trawlers calculated in various ways

LPUE - Danish Mephrops trawlers

Effort - Danish Mephrops trawlers

Mean sizes in Danish landings/catches.

Figure 3.3.8.1 Neph rops Off Horn Reef (FU 33): Long-term trends in landings, effort, CP UEs and/or LP UEs, and mean sizes of Neph rops.

Figure 3.3.8.2. Neph rops Off Horn Reef Size distributions of Danish catches, 2001-2007 (no data for 2006).

For assessment purposes, the European continental shelf has since 1995 been divided into four regions: Division IIIa (Skagerrak), Division IV (the North Sea excl Shetland Islands), Division Vb2 (Shetland Islands), and Division VIa (west of Scotland). Only the stock in Division IV is assessed in this report. This assessment is classified as an update assessment.

4.1 General

4.1.1 Ecosystem aspects

Sandeels in the North Sea can be divided into a number of reproductively isolated sub-populations (see the Stock Quality Handbook). A decline in the sandeel population in recent years, with SSB being below Blim from 2001 to 2007 concurrent with a marked change in distribution has increased the concern about local depletion, of which there has been some evidence (ICES WGNSSK 2006b, ICES AGSAN 2008b).

Local depletion of sandeel aggregations at a distance less than 100 km from seabird colonies may affect some species of birds, especially black-legged kittiwake and sandwich tern, whereas the more mobile marine mammals and fish may be less vulnerable to local sandeel depletion. In the light of studies linking low sandeel availability to poor breeding success of kittiwake, all commercial fishing in the Firth of Forth area has been prohibited since 2000, except for a short-term fishery in May and June of each year for stock monitoring purposes
The stock annex contains a broader description of ecosystem aspects.

4.1.2 Fisheries

General information about the sandeel fishery can be found in the Stock Quality Handbook.

There has been a substantial decrease in the Danish fishing fleet due to decommissioning in recent years. The Norwegian fleet also declined in the number of vessels fishing sandeels around 2005, but has increased again in recent years (section 4.2.5). How changes in the fleet structure have affected the catching efficiency and thereby the CPUE trends is unknown.

The sandeel fishery in 2009 was opened $1^{\text {st }}$ of April.. As in the most recent years then main fishery took place in the in the Dogger Bank area and grounds north east of Dogger Bank.
Except in 2007 when the fishery was closed in May, the TAC has never been restrictive on the sandeel fishery. Therefore TAC regulation of the fishery does not explain the reduced level of landings observed from 2003 to 2006 (section 4.2.1), except in the Norwegian EEZ where there was only a limited monitoring fishery permitted in 2006.

4.1.3 ICES Advice

ICES recommended that the catches in 2009 should not exceed 400 000t. The recommendation was based on the harvest control rule agreed by EU and Norway (section 4.6.10) taking into account catch rates and average weight of 1 year old sandeel obtained from the real time monitoring.

Results from the harvest control rule indicated that catches in 2009 should not exceed 435000 t . How ever the recommendation was set at 400.000 tons as this is the maximum catches giving a 95\% probability that the stock will rebuild to \mathbf{B}_{pa} by 2010.

ICES noted that the management of sandeel fisheries should try to prevent depletion of local aggregations, particularly in areas where predators congregate.

ICES also advised that, the fishery in 2009 should be allowed only if analysis of monitoring indicated that the stock could be rebuilt to $\mathbf{B}_{\text {pa }}$ by 2010.

ICES recommended that future management should take into account the spatial structure of sandeels.

4.1.4 Management

TAC

The TAC and quotas regarding sandeels in 2009 was given by the Commission regulation No. 571/2009 of 17 June 2009. The total TAC in the EU share of the North Sea was set at 360000 tons.

Closed periods

Since 2004 the fishery in the Norwegian EEZ has been opened April 1 and closed again June 23. Since 2005 Danish vessels have not been allowed to fish sandeels before 31st of March. In 2009 sandeel fishery in the EU zone was opened on the $1^{\text {st }}$ of April and closed from the 1^{t} of August.

Closed areas

The Norw egian EEZ was closed to fishery in 2009.

4.2 Data available

4.2.1 Catch

Landing and trends in landings

Landings statistics of sandeels are given in Tables 4.2.1.1 to 4.2.1.5. Official landings were only available up to and including 2006. Figure 4.1.2.1 shows the areas for which catches are tabulated in Tables 4.2.1.1 to 4.2.1.5. The catch history is shown in Figure 4.2.1.1.

The sandeel fishery developed during the 1970s, and landings peaked in 1097 and 1998 at more than 1 million tons. There was a steep drop in total landings from 2002 to 2003, after which they have remained been low (Figure 4.2.1.1 and Table 4.2.1.2). The average landings in the last 20 years are on 632000 t and total landings in 2009 were 348000 t .

The distribution of landings

There are large differences in the regional patterns of the landings (Figure 4.2.1.2). In the north-eastern North Sea landings have declined since 2006 due to national regulation of the fishery in the Norwegian EEZ (see section 4.1.4). In the same period there was a marked increase in landings in the southern North Sea

Figure 4.2.1.3 shows the distribution of catches for 2009 by quarter and ICES statistical rectangle. Yearly landings for the period 1995-2009 distributed by ICES rectangle are shown in Figure 4.2.1.4.
The distribution of landings in the southern North Sea in 2003 to 2005 (i.e. from the first year when landings were at a low level in both the northern and southern North Sea) seemed more dispersed than the typical long-term pattern in the same area. Hence, grounds usually less exploited became more important for the total fishery during this period.
In 2006 there was only a limited monitoring fishery in the Norwegian EEZ and in the southern North Sea the fishery was concentrated at the fishing grounds in the Dogger Bank area in both 2006 and 2007.

In 2008 and 2009 the Dogger Bank area remained the main fishing area. How ever, the number of fishing grounds fished in the Dogger Bank area has increased and the fishery has expanded into the central North Sea north east of the Dogger Bank area.

4.2.2 Age compositions

Catch numbers at age by half-y ear is given in Table 4.2.2.1.
In 2009 the proportion of 1-group in the catch was 93% in the northern and 53% in the southern North Sea.

4.2.3 Weight at age

The methods applied to compile agelength-w eight keys and mean weights at age in the catches and in the stock are described in the Stock Quality Handbookno. Q4.

The mean weights-at-age in the catch for the northern and southern North Sea in the time period 2001 to 2008 are given by country in Tables 4.2.3.1 and 4.2.3.2.

The weighted average mean weights in the catch used in the assessment are given in Table 4.2.3.3 by half year.
Mean weight in the stock from 1983 to 2009 is given in Table 4.2.3.4 by half year.
The time series of mean weight in the catch and in the stock is shown in Figure 4.2.3.1 and 4.2.3.2. From 2004 there is an increasing trend in mean weights in first half year in both the northern and southern North Sea.

Additional information about the variation in catch weight at age can be found in the Stock Quality Handbook (Q4).

4.2.4 Maturity and natural mortality

The maturity and natural mortality used in this year's sandeel assessment are assumed to be constant at age as described in the Stock Quality Handbook no. Q4. Natural mortality values are presented below. The proportion mature is assumed constant over the whole period with 100% mature from age 2 and 0% of age 0 and 1 .

Text table: Values for natural mortality by age and half year used in the assessments.

Age	First half year	Second half year
0	-	0.8
1	1.0	0.2
2	0.4	0.2
3	0.4	0.2
$4+$	0.4	0.2

4.2.5 Catch, effort and research vessel data

Catch data

Catch data used in the assessment is given in Table 4.2.2.1.

Recent changes in the fleet composition

The size distribution of the Danish fleet has changed through time, with a clear tendency towards fewer and larger vessels (ICES WGNSSK 2006b). In 2009 only 84 Danish vessels participated in the North Sea sandeel fishery, compared to more than 200 vessels in 2004 (Table 4.2.5.1).

The same tendency was seen for the Norwegian vessels fishing sandeels until 2005 (Table 4.2.5.1). In 2006 only 6 Norwegian vessels were allowed to participate in an experimental sandeel fishery in the Norwegian EEZ compared to 53 in 2002. However, the number of Norwegian fishing vessels participating in the sandeel fishery has increased to 42 in 2008. From 2002 to 2008 also the average GRT per trip in the Norwegian fleet increased from 269 to 507 t .

The rapid changes of the structure of the fleet that have occurred in recent years may introduce more uncertainty in the assessment, as the fishing pattern and efficiency of the "new" fleet may differ from the previous fleet.

Trends in overall effort and CPUE

Tables 4.2.5.2 and 4.2.5.3 and Figure 4.2.5.1 show the trends in the international effort over years measured as number of fishing days standardised to a 200 GRT vessel. Total international standardized effort peaked in 1989 (26000 days), and was at a relative stable level from 1989 to 2001 (in average 18.000 days). Total international effort decreased again from 2001 and has remained at a historical low level around 6.000 days since 2005

As indicated in Figure 4.2.5.1 the CPUE had an by increasing trend from 1989 to 2002 followed by a steep decrease from 63 tons/day in 2002 to 21 tons/day in 2003. Since 2004 the CPUE have been increasing and was in 2009 almost at the same level as in 2002.

A discussion about the possible problems of using commercial CPUE as an index of sandeel population size was included in ICES WGNSSK (2006a) and ICES AGSAN (2007a).

The tuning series used in the assessments

The following commercial tuning series were made available for the assessment (Table 4.2.5.4):

Fleet 1: Northern North Sea 1983-1998 first half year
Fleet 2: Northern North Sea 1999-2009 first half year
Fleet 3: Southern North Sea 1982-1998 first half year
Fleet 4: Southern North Sea 1999-2009 first half year
Fleet 5: Northern North Sea 1983-2009 second half year
Fleet 6: Southern North Sea 1983-2009 second half year

Standardisation of effort data

Due to the change in size distribution of the vessels fishing sandeels in the North Sea (see e.g. ICES WGNSSK 2006b or STECF 2004 and 2005a and b) and the relationship between vessel size and fishing power, effort standardisation is required when establishing the commercial tuning series used in the sandeel assessment. The standardisation procedure is described in the Stock Quality Handbook.

Fisheries independent tuning

A time series of fishery independent surveys are being conducted for this stock (see ICES AGSAN 2008b). Currently, the time series are too short or do not cover the entire distribution area of sandeels in IV, preventing evaluation as tuning time series for stock assessment.

4.3 Data analyses

The Seasonal XSA (SXSA) developed by Skagen (1993) was used to estimate fishing mortalities and stock numbers at age by half year, using data from 1983 to 2009.

In addition to the analysis using the same settings and input data as last year (the SPALY run) three exploratory analyses were made to investigate the sensitivity of the results to different assumptions regarding weighting of the tuning fleets.

4.3.1 Exploratory catch-at-age-based analyses

All the exploratory assessments used the same SXSA settings as the SPALY assessment (listed in Table 4.3.2.7) except assessment 4 that applied log weightings of S-hat (estimate of survivors) from the inverse variance of catchabilities from the individual tuning fleets, instead of the default manual weighting (listed in Table 4.3.2.1).

Exploratory assessment 1: The SPALY run used the same settings and tuning fleets as the 2008 final assessment. The residuals of log stock number for the SPALY analysis are given in Figure 4.3.2.1. They appear to be noisy but without strong trends.

The retrospective analysis (Figure 4.3.2.2) shows that the assessment has a strong tendency to underestimate F and overestimate stock size. The retrospective bias is about the same level as that of last year's assessment.
For comparison with the suggested Final assessment the output from the SPALY assessment analysis is presented in Tables 4.3.2.8 (fishing mortality at age by half year),
4.3.2.9 (fishing mortality at age by year), 4.3.2.10 (stock numbers at age), 4.3.2.11 (catchabilities for the tuning fleets). The stock summary is presented in Table 4.3.2.12.

Exploratory assessment 2: If all tuning data from the Northern North Sea in recent years (i.e. after 1998) was excluded from the calibration a less biased retrospective pattern was obtained as shown in Figure 4.3.2.3.

Exploratory assessment 3: Excluding only the most recent tuning data from the northern North Sea, i.e. the 2009 data from Fleet 2 , also improved the retrospective pattern significantly as shown in Figure 4.3.2.4.
Exploratory assessment 4: The default setting of SXSA that is used in SPALY assessment, gives equal and fixed weight to the CPUE indices from the northern and southern areas. In exploratory assessment 4 this setting was changed allowing the SXSA to weight the tuning indices individually (Option 2 with log weighting of Shat). As indicated in Figure 4.3.2.5 this exploratory assessment also provided a less biased retrospective pattern than obtained by the SPALY run. The residuals of log stock number for this assessment are given in Figure 4.3.2.6.

4.3.2 Final assessment

The exploratory analyses indicated that the perception of the stock and the retrospective bias were sensitive to the tuning fleets from the northern North Sea in particular.

The settings of SXAS as used in the SPALY run gives equal and fixed weighting to the CPUE indices from the northern and southern areas. This seems unreasonable as the overall effort and catch proportions in the two areas have changed over the years. In recent years the fishing effort in the northern North Sea have declined both in absolute terms and relative to the effort applied in southern North Sea (Table 4.2.5.2 and 4.2.5.3). For example the average total standardised effort in the period 1983 2002 estimated at 5620 days declined to an average at 1620 days in the period 2003 2009. In 2009 the effort in this area was estimated at 840 days only. Furthermore in 2006 and 2009 the Norwegian EEZ was closed to fishery. In these years the fishery from the northern North Sea was restricted to very few squares in sampling area 3 as indicated in Figure 4.2.1.3 and 4.2.1.4.

All the exploratory assessments that down weighted the influence of the northern CPUE indices provided significantly less biased retrospective patterns than the SPALY assessment. In addition the residuals are decreased when the northern tuning fleets are down weighted in the assessment. In particular residuals from Fleet 6 (which contribute most to the catches) in the exploratory run 4 (Figure 4.3.2.6) were smaller than in the SPALY assessment.

As it was not possible to find an objective way to exclude parts of the northern CPUE indices from the assessment it was decided to adopt exploratory assessment 4 as the final run. In this run model and data determine the weighting of the individual tuning fleets. The same approach is also used in the Norway Pout assessment also using the SXSA model.

The output from the Final assessment analysis is presented in Tables 4.3.2.2 (fishing mortality at age by half year), 4.3.2.3 (fishing mortality at age by year), 4.3.2.4 (stock numbers at age), 4.3.2.5 (catchabilities for the tuning fleets). The stock summary is presented in Table 4.3.2.6.

4.4 Historic Stock Trends

The stock summary is given in Figure 4.3.2.7. The final assessment estimates SSB to have been below Blim from 2004 to 2006 and above $B_{p a}$ in 2008 and 2009. $F_{(1-2)}$ is estimated to have been below the long time aver age since 2006.

4.5 Recruitment estimates

DTU AQUA has measured sandeel larvae abundance in the North Sea from 2004 to 2009. In addition to the larvae survey, DTU AQUA has been implementing a dredge survey from 2003 to 2008. Both surveys are exploratory with limited coverage of the sandeel distribution area and do not provide sufficient information to be included in the assessment yet. The Institute of Marine research (IMR) is also implementing surveys to measure the abundance 1-group and older sandeels. However, no information was available from the Norwegian survey for the present assessment.

As no recruitment estimates from surveys are available, recruitment estimated in the assessments are based exclusively on commercial catch-at-age data. This year the recruitment is estimated at 3000 billions (number at age 0 in 2009) which is a factor 10 higher than in most recent years. However the tuning diagnostics (Figure 4.3.2.6) indicate that the 0 -group CPUE within the assessment year is a poor predictor of recruitment and therefore, this estimate is not used in the forecast.

Recruitment estimates used for short term forecasting

For the short term forecast (section 4.6) the 25th percentile, of the long-term recruitment estimated in the Final SXSA assessment (329×10^{9} age 0 sandeels) was used as the recruitment in 2009 and 2010. This long term estimate is close to the average recruitment over the last 3 years estimated at 325×10^{9}.

For comparison the 25 th percentile, of the long-term recruitment estimated in the SPALY assessment was 292×10^{9} age 0 sandeels (Table 4.6.2).

4.6 Short-term forecasts

The high natural mortality of sandeel and the few year classes contributing to the fishery make the stock size and catch opportunities largely dependent on the size of the incoming year classes. Commercial CPUE is a poor predictor of 0 -group recruitment and reliable indices from surveys are not yet available, therefore prediction of 1 group abundance in the year following an assessment has a high degree of uncertainty

Prognos is for 2009 and 2010

The prediction was made using half year timesteps as in the assessment. Stock numbers at 1st of January 2009 were calculated from the final SXSA assessment. Values for natural mortalities and proportion mature are the same as those used in the assessment.

F-at-age in the assessment year (2009) was used as a estimates of F in the forecast year.

Stock and catch weights of 2009 were those used in the SXSA assessment (Table 4.2.3.4). Average w eights of the time period 1995 to 2009 were used in 2010 and 2011. Stock and catch weight prior to 1995 were not used, due to a change in the procedure used for age determination from 1995 (see Stock Annex).

The input data used in the forecast based on the suggested Final assessment is given in Table 4.6.1.

The input data used in the forecast based on the SPALY assessment is given in Table 4.6.2.

Text Table: Forecast based on suggested Final assessment
$\operatorname{SSB}(2010)=1030000 \mathrm{t}$; landings $(2009)=331000 \mathrm{t}$. Input data in Table 4.6.1.

F multiplier	F(2010)	Landings(2010) 000 t	SSB(2011) ${ }^{\text {000t }}$
0	0	0	1196
0.1	0.033	41	1160
0.2	0.066	81	1124
0.3	0.1	119	1090
0.4	0.133	156	1058
0.5	0.166	191	1027
0.6	0.2	226	996
0.7	0.233	259	968
0.8	0.266	291	940
0.9	0.299	321	913
1	0.332	351	887
1.1	0.366	380	863
1.2	0.399	408	839
1.3	0.432	434	816
1.4	0.466	460	794
1.5	0.499	485	772
1.6	0.532	510	752
1.7	0.565	533	732
1.8	0.598	556	713
1.9	0.632	578	695
2	0.665	599	677
2.1	0.698	620	660
2.2	0.732	640	643
2.3	0.765	659	627
2.4	0.798	678	612
2.5	0.831	696	597
2.6	0.864	714	583
2.7	0.898	731	569
2.8	0.931	748	556
2.9	0.964	764	543
3	0.998	780	530
3.1	1.031	795	518
3.2	1.064	810	506
3.3	1.097	824	495
3.4	1.131	838	484

Shaded scenarios are not considered consistent with the precautionary approach.

Text Table: Forecast based on SPALY assessment.
SSB(2010) $=456$ 000t; Landings $(2009)=327$ 000t. Input data in Table 4.6.2

F multiplier	F(2010)	Landings (2010) '000t	SSB(2010) '000t
0	0	0	734
0.1	0.064	42	696
0.2	0.128	81	661
0.3	0.192	118	629
0.4	0.256	153	599
0.5	0.32	186	570
0.6	0.384	217	544
0.7	0.448	246	519
0.8	0.512	274	495
0.9	0.576	300	473
1	0.641	325	452
1.1	0.705	348	433
1.2	0.769	370	414
1.3	0.833	391	397
1.4	0.897	412	381
1.5	0.961	431	365
1.6	1.025	449	350
1.7	1.089	467	337
1.8	1.153	483	323
1.9	1.217	499	311
2	1.281	515	299
2.1	1.345	530	288
2.2	1.409	544	277
2.3	1.473	557	267
2.4	1.537	570	257
2.5	1.601	583	248
2.6	1.665	595	239
2.7	1.729	606	230
2.8	1.793	617	222
2.9	1.857	628	215
3	1.922	639	207
3.1	1.986	649	200
3.2	2.05	658	193
3.3	2.114	668	187
3.4	2.178	677	181

Shaded scenarios are not considered consistent with the precautionary approach.

4.6.1 Harvest control rule

In its advice on harvest control rules and long term management strategies for sandeels (ICES Advice, 2007, 2008a) ICES suggest a management strategy for setting a TAC for sandeel in the North Sea based on real time monitoring of the fishery in the beginning of the season.

The harvest control rule is based on results from a high number of short term forecasts estimating the relationship betw een recruitment in a given year (the assessment year) and the maximum catch level of the subsequent year (forecast year) that will lead to a SSB at Bpa $(600000 \mathrm{t})$ at the beginning of the year after.
Short term forecasts indicate that the relationship between the recruitment in 2009 and the TAC in 2010 (i.e. the maximum catch in 2010 that will meet the objective of SSB to be above Bpa in 2011) can be approximated by the relationship:
TAC2010 $=142+$ R $_{0,2009}{ }^{*} 1.693$
where $R_{0,2009}$ is recruitment at age-0 in 2009 and TAC2010 is the catch in 2010 that will result in SSB=Bpa in 2011. The relationship is indicated in Figure4.6.1a.

The relationship (1) can be translated into a relationship between the stock size of 1group sandeels in 2010 and the TAC in 2010, that will lead to SSB being 600000 t in 2011, by projecting age-0 sandeels in second half year of 2009 to age -1 sandeels $1^{\text {st }}$ of January 2010 applying natural mortality of age-0 sandeels for second half year of 2009. This relationship is indicated in Figure 4.6.1b and can be expressed by:
$\mathrm{TAC}_{2010}=142+\mathrm{R}_{1,2010} * 3.768$
where $R_{1,2010}$ is the stock size of age- 1 sandeels in 2010.
In order to compensate for the changes in mean weights at age between the years in 2007 and 2008 the relationship (2) was adjusted by a factor expressing the ratio between the observed mean weight of age 1 sandeels during the real time monitoring period and the mean weight for age- 1 sandeels during the RTM in former years. Applying this weighting procedure to estimate the TAC in 2010 (2) can be expressed by:

$$
\begin{equation*}
T A C_{2010}=142+\left(R_{1,2010} \cdot 3.768 \cdot \frac{W_{o b s}}{W_{m}}\right) \tag{3}
\end{equation*}
$$

where $W_{\text {obs }}$ is mean weight of age- 1 sandeels observed during 2010 RTM and W_{m} is the mean weight of age-1 sandeels observed in RTM in 2004 to 2009 (see text table below).

Text table: Mean w eight of age-1 sandeels in week 17, as measured in RTM from 2004 to 2009 .

Year	Mean weight age-1 g
2004	3.7
2005	3.5
2006	3.5
2007	4.6
2008	3.7
2009	5.9
Average	4.2

4.6.2 Stochastic short-term forecast.

Stochastic short term forecast not made for sandeels.

4.7 Medium-term forecasts

Medium term prognoses can not be made for sandeels.

4.8 Biological reference points

Blim is set at $430,000 t$, the lowest observed SSB in the period 1976-1998. The Bpa is estimated to $600,000 \mathrm{t}$. Further information about biological reference points for sandeels in IV can be found in the Stock Quality Handbook no. Q4.

4.9 Quality of the assessment

Although the present assessment gave better statistics and improved the retrospective pattern it is still considered uncertain.

The assessment does not take into consideration the spatial stock structure of sandeels, fishery independent data is not available yet, and the potential changes in catchabilities of the larger vessels are not taken into account

The exploratory assessments indicated that the retrospective bias is related to changes in the distribution of fishing effort (section 4.3). Therefore the exploratory assessment 4 was selected as the final run. In this run the model and data determine the weighting of the individual tuning fleets which improved the retrospective pattern as well as the statistics.

The forecast assumption is based on the relationship between effort and F. However this relationship is poor. The relationship between the effort and landings indicated in the forecast table is therefore uncertain.

Suggestions for modifications of the assessment

The assessment should take account of the spatial stock structure of sandeels. It is accordingly important to define the population units to be assessed. A framework for implementing area based population analysed was presented in ICES (ICES AGSAN 2007a and ICES 2008a).

Preliminary results of the area based analysis can be found at http://www.nielsensweb.org/sandeel/

It is a prerequisite for the improvement of the assessment that a fisheries independent time series of sandeel abundance is established. Development of such time series should preferably be the result of coor dinated effort between European institutes.

4.10 Status of the Stock

Recruitment has been below average from 2002 to 2007. In 2008 the recruitment estimate was above the long term average. SSB is estimated to have been below Bpa from 2000 to 2007, and above Bpa in 2008 and 2009. SSB is forecast to be above $B_{p a}$ in 2010. $\mathrm{F}_{(1-2)}$ is estimated to have been below the long term average since 2006.

4.11 Management Considerations

No fishing mortality (F) reference points are given for sandeels in the North Sea because there is no clear relationship between the size of the spawning stock biomass
and the recruitment. The recruitment of sandeels seems more linked to environmental factors than to the size of the spawning stock biomass (see the Stock Quality Handbook no. Q4).

The present knowledge on defining subpopulations is too limited to recommend specific management measures for 2010, which can fully take the population structure into account, but work is proceeding on defining local sub-populations so that the scale of "local depletion" can be quantified and be made operational for a North Seawide implementation.

Suggestion for management of the sandeel fishery in 2010

The aim of management in 2010 should be to maintain SSB above Blim with a high probability, and to prevent local depletion.
The short-term forecast (section 4.6) indicates that a TAC less than 612000 tons would maintain the SSB above $B_{p a}$. However, as the assessment is considered uncertain it is suggested that the TAC in 2010 should not exceed 400000 t in order to maintain 95% probability that SSB remains above Blim. Simulations (WGNSSK 2006) showed that upper catch limit 400 000t makes the HCR robust, defined as a 95% probability of SSB>Blim, to assessment bias.

If a fixed TAC at $400000 t$ is maintained, the Real Time Monitoring of the fishery is considered redundant given the improved stock conditions. As indicated in Figure 4.6.1a only a very low recruitment (less than 75 billion) would give a TAC less than $400.000 t$. The lowest estimate of recruitment was 80 billion in 2002 and the preliminary (and uncertain) estimate of the 2009 recruitment does not indicate such a recruitment failure.

The fishery shall be closed 1 August 2010 or earlier to prevent fishery of the 0 group.
Due to the different and likely smaller stock in the Northern North Sea special management should be considered for this area in 2010 to prevent depletion at grounds with known local low stock size.

Changes in the fleet composition

There was a 50% decline in the number of Danish vessels (from 200 to 98 vessels) fishing sandeels from 2004 to 2005, and a 53% reduction in total kilowatt days. In 2006 and 2007 the Danish fleet increased to 124 and 116 vessels participating in the sandeel fishery. The introduction of ITQ accelerated the change towards fewer and larger vessels, and only 83 and 84 Danish vessels were fishing sandeels in 2008 and 2009 respectively.

Also for the Norwegian fleet a drastic decline in number of vessels fishing sandeels has was observed from 2002 to 2006. However the number increased again in 2007 and 2008 when the vessels were given individual quotas.

References:

Frederiksen M., Jensen. H., D aunt F., Mavor R.A., and Wanless S 2008. Differential effects of a local industrial sand lance fishery on seabird breeding performance. Ecological Applications 18(3): 701-710.

ICES 1995. Report of the ICES workshop on sandeel otolith analysis. ICES C.M. 1995/G:4.

ICES 2006. ICES Answer to special request on sandeel. The European Community and Norway have requested ICES for "advice on management meas ures for the sandeel and Norway pout fisheries in the North Sea and Skagerrak in 2007".

ICES Advice 2007. 6.4.24, Sandeel in Subarea IV.
ICES Advice 2008. 6.3.3.6, EC and Norway request on in-year management advice for sandeel in the North Sea.

ICES AGSAN 2007a. Report of the Ad Hoc Group on Sandeel. ICES CM 2007/ACFM:38
ICES AGSAN 2007b. ICES Ad Hoc Group on Sandeel 2007. Final report from the real-time monitoring of the Danish and Norwegian sandeel fishery in 2007. ICES CM 2007/ACFM:38 Addendum.

ICES. AGSAN 2008a. Report of the Ad hoc Group on Sandeel (AGSAN). Estimate of the abundance of the 2007 year-class of North Sea sandeel, Copenhagen, Denmark.

ICES AGSAN 2008b. Report of the ad hoc Group on Sandeel (AGSAN), 25-30 August 2008, ICES HQ. ICES CM 2008/ACOM:59

ICES AGSANNOP 2007. Report of the ad hoc Group on Sandeel and Norway Pout (AGSANNOP), 6-8 November 2007, ICES HQ. ICES CM 2007/ACFM:40.

ICES WGNSSK 2004. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. ICES C.M. 2004/ACFM:7.

ICES WGNSSK 2006a. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. ICES CM 2006/ACFM:09

ICES WGNSSK 2006b. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. ICES CM 2006/ACFM:35

ICES WGNSSK 2007. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. ICES CM 2007/ACFM:**
Skagen, D. W. 1993. A seasonal extended survivors analysis (SXSA) with optional estimation of unknown catches at age. Report of the Working Group on the Assessment of Norway Pout and Sandeel. ICES CM 1994/Assess:7, Appendix I.

STECF 2004. Report of the Scientific, Technical and Economic Committee For Fisheries. Evaluation of the report of the Ad Hoc Working Group on Sandeel Fisheries "Estimate of the Abundance of the 2003 Year-class of North SeaSandeel".
STECF 2005a. Report of the Scientific, Technical and Economic Committee For Fisheries. Evaluation of the re port of the Ad Hoc Working Group on Sandeel Fisheries "Estimate of the Abundance of the 2004 Year-class of North Sea Sandeel".

STECF 2005b. REPORT of the STECF Ad-Hoc Working Group on Sandeel Fisheries. November 7th-9th 2005, Charlottenlund. Denmark.
STECF 2006. Report of the Scientific, Technical and Economic Committee For Fisheries. Evaluation of the report of the Ad Hoc Working Group on Sandeel Fisheries "Estimate of the Abundance of the 2005 Year-class of North SeaSandeel".

Table 4.2.1.1. SANDEEL in IV.
Official landings reported to ICES

SANDEELS IVa	2000	2001	2002	2003	2004	2005	2006	2007
Country	4,742	1,058	111	399	147	-	-	1,873
Denmark	-	-	-	-	15	-	-	
Faroe Islands	11,522	4,121	185	280	64	-	-	2008
Norway	55	-	-	73	-	-	-	21
Sweden	-	-	-	-	-	-	-	
UK (E/W/NI)	4,781	970	543	186	-	-	-	
UK (Scotland)	21,100	6,149	839	938	226	0	0	1,894
Total								21,290
Preliminary.								

SANDEELS IVb

Country	2000	2001	2002	2003	2004	2005	2006	2007
Denmark	533,905	638,657	627,097	245,096	273492	129776	241,257	142,309
Faroe Islands				16,167	5,168	3461	-	-
Germany	-	-	-	534	2658	-	3,391	2,385
Ireland	-	-	-	-	-	-	-	1,989
Norway	107,493	183,329	175,799	29,336	48464	17341	5,814	51,134
Sweden	27,867	47,080	36,842	21,444	34477	8327	32,709	6,721
UK (E/W/NI)	-	-	-	-	-	-	-	12,405
UK (Scotland)	5,978	-	2,442	115	29	-	688	1,657
France						6,259		
Total	675,243	869,066	858,347	301,693	362,552	155,444	283,772	206,203

*Preliminary.

SANDEELS IVc	2000	2001	2002	2003	2004	2005	2006	2007
Country	11,993	7,177	4,996	28,646	14,104	22,985	10,595	804
Denmark	-	-	-	-	-	-	3001	
Germany	1	-	-	-	+	-	2	
France	-	-	+	-	-	-	-	
Netherlands	-	-	-	-	139	-	-	
Norway	-	-	-	160	-	-	-	
Sweden	+	-	-	+	-	-	-	
UK (E/W/NI)	11,994	7,177	4,996	28,806	14,243	22,985	10,898	804
Total								1,440
${ }^{*}$ (

*Preliminary.
Summary table official landings

Summary table official landings	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total IV tonnes	708,337	882,392	864,182	331,437	377,021	178,429	294,670	208,901	347,697
TAC	$1,020,000$	$1,020,000$	$1,020,000$	918,000	826,200	660,960	300,000	173,000	400,000

By-catch and other landings

	2000	2001	2002	2003	2004	2005	2006	2007	2008
Area IV tonnes: official-WG	9,188	20,781	53,482	5,817	15,521	6,329	6,770	2,601	12,497

Summary table - landing data provided by Working Group members

	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total IV - tonnes	699,149	861,611	810,700	325,620	361,500	172,100	287,900	206,300	335,200

Table 4.2.1.2. SANDEEL in IV. Landings ('000 t), 1952-2009 (Data provided by Working Group members)

Year	Denmark	Germany F	Faroes	Ireland	Netherlands	Norway	Sweden	UK	Lithuania	Total
1952	1.6	-	-	-	-	-	-	-		1.6
1953	4.5	+	-	-	-	-	-	-		4.5
1954	10.8	+	-	-	-	-	-	-		10.8
1955	37.6	+	-	-	-	-	-	-	-	37.6
1956	81.9	5.3	-	-	+	1.5	-	-	-	88.7
1957	73.3	25.5	-	-	3.7	3.2	-	-	-	105.7
1958	74.4	20.2	-	-	1.5	4.8	-	-	-	100.9
1959	77.1	17.4	-	-	5.1	8.0	-	-	-	107.6
1960	100.8	7.7	-	-	+	12.1	-	-	-	120.6
1961	73.6	4.5	-	-	+	5.1	-	-	-	83.2
1962	97.4	1.4	-	-	-	10.5	-	-	-	109.3
1963	134.4	16.4	-	-	-	11.5	-	-	-	162.3
1964	104.7	12.9	-	-	-	10.4	-	-	-	128.0
1965	123.6	2.1	-	-	-	4.9	-	-	-	130.6
1966	138.5	4.4	-	-	-	0.2	-	-	-	143.1
1967	187.4	0.3	-	-	-	1.0	-	-	-	188.7
1968	193.6	+	-	-	-	0.1	-	-	-	193.7
1969	112.8	+	-	-	-	-	-	0.5	-	113.3
1970	187.8	+	-	-	-	+	-	3.6	-	191.4
1971	371.6	0.1	-	-	-	2.1	-	8.3	-	382.1
1972	329.0	+	-	-	-	18.6	8.8	2.1	-	358.5
1973	273.0	-	1.4	-	-	17.2	1.1	4.2	-	296.9
1974	424.1	-	6.4	-	-	78.6	0.2	15.5	-	524.8
1975	355.6	-	4.9	-	-	54.0	0.1	13.6	-	428.2
1976	424.7	-	-	-	-	44.2	-	18.7	-	487.6
1977	664.3	-	11.4	-	-	78.7	5.7	25.5	-	785.6
1978	647.5	-	12.1	-	-	93.5	1.2	32.5	-	786.8
1979	449.8	-	13.2	-	-	101.4	-	13.4	-	577.8
1980	542.2	-	7.2	-	-	144.8	-	34.3	-	728.5
1981	464.4	-	4.9	-	-	52.6	-	46.7	-	568.6
1982	506.9	-	4.9	-	-	46.5	0.4	52.2	-	610.9
1983	485.1	-	2.0	-	-	12.2	0.2	37.0	-	536.5
1984	596.3	-	11.3	-	-	28.3	-	32.6	-	668.5
1985	587.6	-	3.9	-	-	13.1	-	17.2	-	621.8
1986	752.5	-	1.2	-	-	82.1	-	12.0	-	847.8
1987	605.4	-	18.6	-	-	193.4	-	7.2	-	824.6
1988	686.4	-	15.5	-	-	185.1	-	5.8	-	892.8
1989	824.4	-	16.6	-	-	186.8	-	11.5	-	1039.1
1990	496.0	-	2.2	-	0.3	88.9	-	3.9	-	591.3
1991	701.4	-	11.2	-	-	128.8	-	1.2	-	842.6
1992	751.1	-	9.1	-	-	89.3	0.5	4.9	-	854.9
1993	482.2	-	-	-	-	95.5	-	1.5	-	579.2
1994	603.5	-	10.3	-	-	165.8	-	5.9	-	785.5
1995	647.8	-	-	-	-	263.4	-	6.7	-	917.9
1996	601.6	-	5.0	-	-	160.7	-	9.7	-	776.9
1997	751.9	-	11.2	-	-	350.1	-	24.6	-	1137.8
1998	617.8	-	11.0	-	+	343.3	8.5	23.8	-	1004.4
1999	500.1	-	13.2	0.4	+	187.6	22.4	11.5	-	735.1
2000	541.0	-	-	-	+	119.0	28.4	10.8	-	699.1
2001	630.8	-	-	-	-	183.0	46.5	1.3	-	861.6
2002	629.7	-	-	-	-	176.0	0.1	4.9	-	810.7
2003	274.0	-	-	-	-	29.6	21.5	0.5	-	325.6
2004	277.1	2.7	-	-	-	48.5	33.2	+	-	361.5
2005	154.8	-	-	-	-	17.3	-	-	-	172.1
2006	250.6	3.2	-	-	-	5.6	27.8	-	-	287.9
2007	144.6	1.0	2.0	-	-	51.1	6.6	1.0	-	206.3
2008	234.4	4.4	2.4	-	-	81.6	12.4	-	-	335.2
2009	285.7	12.2	2.5		1.8	27.4	12.4	3.6	2.0	347.7
* Preliminary										
+ = less than half unit. - = no information or no catch.										

Table 4.2.1.3. SANDEEL in IV. Monthly landings (ton) by area as indicated in Fig 4.1.2.1.

	1A	1B	1C	2A	2B	2C	3	4	5			Total
Mar 2002												
	3077	0	0	3911	2715	0	928	322	0	0	0	10953
Apr	104033	1745	0	66992	51007	0	15466	904	59	475	109	240790
May	176437	3341	0	78497	37385	0	37058	915	151	3272	12	337068
Jun	118879	125	0	27386	19380	10	10561	8673	2531	12498	0	200043
Jul	1128	0	0	90	48	0	193	2744	204	9869	0	14276
Aug	0	0	0	109	261	0	397	0	0	5146	422	6335
Sept	0	0	0	0	74	0	290	0	0	0	0	364
Oct	0	0	0	1	0	0	0	,	0	2	0	3
Dec	0	0	0	0	0	0	0	0	2	0	0	2
Total	403554	5211	0	176986	110870	10	64893	13558	2947	31262	543	809834
2003												
Mar	1947	52	0	97	380	7	225	325	0	0		3033
Apr	28806	5026	0	8341	6072	0	1900	81	0	662	49	50937
May	59890	1812	24	8884	9357	0	4532	10995	1020	9991	16	106521
Jun	11737	49	0	11906	398	10	2140	20891	13318	21639		82088
Jul	3604	0	0	9857	2013	0	3272	2738	1697	5790		28971
Aug	960	6	0	4381	4687	0	11293	16	175	687	121	22326
Sept	0	255	73	35	1551	0	2955	0	0	1094		5963
Oct	0	0	0	114	0	0	1589	0	0	127		1830
Nov	0	0	0	0	0	0	2070	0	0	0		2070
Dec	0	0	0	0	0	0	45	0	0	0		45
Total	106944	7200	97	43615	24458	17	30021	35046	16210	39990	186	303784
2004												
Feb	0	0	0	0	0	0	0	0	0	7		7
Mar	326	0	0	1001		0	37		260	2		1626
Apr	15893	627	0	15824	4847	0	10732	471	322	834		49550
May	46631	1044	0	21607	5495	0	22629	20484	233	8578		126701
Jun	21841	146	0	5077	1800	0	13821	13680	4789	35909		97063
Jul	1146	116		813	2272		6019	7430	1184	12923		31903
Aug	325			3963	5449		2589			3357		15683
Sept					3006		116			2		3124
Oct												
Total	86162	1933	0	48285	22869	0	55943	42065	6788	61612	0	325657
2005												
Apr	4017			71	1476		462	144		88		6258
May	34506	57		9536	7512		6507	13333	32	2410		73893
Jun	19216	21		8952	2545		8107	8224	19370	21959		88394
Jul				1668			987	922				3577
Aug				3			2					5
Sep												0
Okt										1		1
Total	57739	78	0	20230	11533	0	16065	22623	19402	24457	0	172128
2006												
Apr	10141			8733	1387		188	111		82		20642
May	96349			25020	3096		3830	201		6455		134951
Jun	59827	34		3184	47		4815	12035	5236	9506		94684
Jul	1122			94			3309	2600	1171	11745		20041
Aug				2			94			283		379
Sep				5			2			2		9
Oct					5		257					262
Nov		30										30
Total	167439	64	0	37038	4530	0	12495	14947	6407	28073	0	270998
2007 (280												
Apr	23545			6378	19966		7098	646		406		58039
May	65238	308	4	4990	31062		22979	3024	244	1470		129319
Jun	501	69		50	4512		4032	25	559	2966		12714
Total	89284	377	4	11418	55540	0	34109	3695	803	4842	0	200072
2008												
April	20072	41		8148	10313		3884			460		42917
May	114280	9972		26263	29615		15986	1291		4700		204518
June	62816			3452	1599		10738	5152	384	3574		87715
July	1926			465			613	368	577	2823		6771
August				0			2			1		4
September				16			2			2		19
Total	199094	10013	0	38344	41527	0	31225	6810	961	11560	0	341945
2009												
April	42072			12774			1528			168		56542
May	126157	51		26225	976		5077	1364		3694		163544
June	17273			50825	1083		23876	4377	187	4126		101747
July	680			15492	0		9398			267		25836
Total	186182	51	0	105316	2059	0	39880	5742	187	8254	0	347670
\%	54\%	0\%	0\%	30\%	1\%	0\%	11\%	2\%	0\%	2\%	0\%	100\%

| Avera 02-09 | 162050 | 3116 | 13 | 60154 | 34173 | | 3 | 35579 | 18061 | 6713 | 26256 | 91 | 346209 |
| :--- |

Table 4.2.1.4. SANDEEL in IV. Total annual landings (' 000 t) by area (data provided by Working Group members)

	Area										Sampling area		
Year	1A	1B	1C	2A	2B	2C	3	4	5	6	Shetland	Northern	Southern
1972	98.8	28.1	3.9	24.5	85.1	0.0	13.5	58.3	6.7	28.0	0	130.6	216.3
1973	59.3	37.1	1.2	16.4	60.6	0.0	8.7	37.4	9.6	59.7	0	107.6	182.4
1974	50.4	178.0	1.7	2.2	177.9	0.0	29.0	27.4	11.7	25.4	7.4	386.6	117.1
1975	70.0	38.2	17.8	12.2	154.7	4.8	38.2	42.8	12.3	19.2	12.9	253.7	156.5
1976	154.0	3.5	39.7	71.8	38.5	3.1	50.2	59.2	8.9	36.7	20.2	135.0	330.6
1977	171.9	34.0	62.0	154.1	179.7	1.3	71.4	28.0	13.0	25.3	21.5	348.4	392.3
1978	159.7	--50	--	346.5	--70		42.5	37.4	6.4	27.2	28.1	163.0	577.2
1979	194.5	0.9	61.0	32.3	27.0	72.3	34.1	79.4	5.4	44.3	13.4	195.3	355.9
1980	215.1	3.3	119.3	89.5	52.4	27.0	90.0	30.8	8.7	57.1	25.4	292	401.2
1981	105.2	0.1	42.8	151.9	11.7	23.9	59.6	63.4	13.3	45.1	46.7	138.1	378.9
1982	189.8	5.4	4.4	132.1	24.9	2.3	37.4	75.7	6.9	74.7	52.0	74.4	479.2
1983	197.4	-	2.8	59.4	17.7	-	57.7	87.6	8.0	66.0	37.0	78.2	419.0
1984	337.8	4.1	5.9	74.9	30.4	0.1	51.3	56.0	3.9	60.2	32.6	91.8	532.8
1985	281.4	46.9	2.8	82.3	7.1	0.1	29.9	46.6	18.7	84.5	17.2	79.7	513.5
1986	295.2	35.7	8.5	55.3	244.1	2.0	84.8	22.5	4.0	80.3	14.0	375.1	457.4
1987	275.1	63.6	1.1	53.5	325.2	0.4	5.6	21.4	7.7	45.1	7.2	395.9	402.8
1988	291.1	58.4	2.0	47.0	256.5	0.3	37.6	35.3	12.0	102.2	4.7	384.8	487.6
1989	228.3	31.0	0.5	167.9	334.1	1.5	125.3	30.5	4.5	95.1	3.5	492.4	526.3
1990	141.4	1.4	0.1	80.4	156.4	0.6	61.0	45.5	13.8	85.5	2.3	219.5	366.7
1991	228.2	7.1	0.7	114.0	252.8	1.8	110.5	22.6	1.0	93.1	+	372.9	458.9
1992	422.4	3.9	4.2	168.9	67.1	0.3	101.2	20.1	2.8	54.4	0	176.7	668.6
1993	196.5	21.9	0.1	26.2	164.9	0.3	88.0	26.6	3.9	48.7	0	276.0	301.9
1994	157.0	108.6	-	61.7	203.4	2.7	175.0	16.0	2.8	42.0	0	489.7	279.5
1995	322.4	43.9	147.4	86.7	169.5	1.0	59.4	26.6	5.3	55.8	1.3	421.2	496.8
1996	310.5	18.6	31.2	40.8	153.0	4.5	134.1	12.7	3.0	52.5	1	341.2	419.5
1997	352.0	53.3	8.9	92.8	390.5	1.2	112.9	18.1	4.7	88.6	2.4	566.8	535.8
1998	282.2	58.3	2.0	90.3	395.3	1.0	40.6	34.5	4.2	63.4	5.2	497.2	480.7
1999	266.7	32.6	0.1	132.8	167.9	0.0	48.0	16.9	2.7	27.2	4.2	248.7	446.4
2000	226.1	29.2	0.0	87.2	139.9	0.3	111.7	20.4	8.3	43.3	4.3	281.0	385.4
2001	239.9	13.0	1.6	263.0	177.9	0.1	49.6	12.4	7.3	49.0	1.3	242.2	571.6
2002	403.6	5.2	0.0	177.0	110.9	0.0	64.9	13.6	3.0	31.3	0.5	181.0	628.4
2003	106.9	7.2	0.1	43.6	24.5	0.0	30.0	35.0	16.2	40.0	0.5	61.8	241.7
2004	86.2	1.9	0.0	48.3	22.9	0.0	55.9	42.1	6.8	61.6	0.0	80.7	245.0
2005	57.7	0.1	0.0	20.2	11.5	0.0	16.1	22.6	19.4	24.5	0.0	27.7	144.4
2006	184.4	0.1	0.0	37.0	4.5	0.0	12.5	14.9	6.4	28.1	0.0	17.1	270.8
2007	93.6	0.4	0.0	11.4	55.5	0.0	34.1	3.7	0.8	4.8	0.0	92.0	114.3
2008	201.5	10.0	0.0	38.3	41.5	0.0	31.2	6.8	1.0	11.6	0.0	82.8	259.2
2009	186.2	0.1	0.0	105.3	2.1	0.0	39.9	5.7	0.2	8.3	0.0	42.0	305.7

Sampling areas:Northern - Areas 1B, 1C, 2B, 2C, 3.
Southern - Areas 1A, 2A, 4, 5, 6.

Table 4.2.1.5. SANDEEL in IV. Monthly landings (t) by country. (Data provided by Working Group Members).

Year	Month	Denmark	Norway	Faroe	Germany	Others	Scotland	Sweden	Total
2002	March	10.236	0.717				0.000		10.953
	April	177.597	63.083				0.109	0.037	240.826
	May	247.494	86.942				2.632		337.069
	June	174.467	24.568				1.008		200.043
	July	14.228	0.048				0.000		14.276
	August	5.652	0.261				0.422		6.335
	September	0.000	0.364				0.000		0.364
	October	0.003	0.000				0.000		0.003
	December	0.002	0.000				0.000		0.002
Total		629.679	175.982	0.000	0.000	0.000	4.171	0.037	809.869
2003	March	2.802	0.231						3.033
	April	42.885	8.003				0.366		51.254
	May	96.105	10.401					21.517	128.023
	June	80.271	1.817						82.088
	July	27.784	1.186						28.970
	August	15.782	6.422				0.121		22.326
	September	4.407	1.555						5.963
	October	1.831	0.000						1.831
	November	2.070	0.000						2.070
	December	0.045	0.000						0.045
Total		273.981	29.615	0.000	0.000	0.000	0.487	21.517	325.600
2004	February	0.007	0.000						0.007
	March	1.444	0.183						1.627
	April	42.664	6.886						49.550
	May	100.715	25.986		2.658	0.000	0.029	33.246	162.634
	June	89.369	7.695						97.064
	July	30.485	1.419						31.904
	August	12.191	3.492						15.683
	September	0.254	2.869						3.123
	October	0.000	0.000						0.000
Total		277.129	48.530	0.000	2.658	0.000	0.029	33.246	361.592
2005	April	4.397	1.876						6.273
	May	63.063	12.556						75.619
	June	87.336	2.900						90.236
Total		154.796	17.332	0.000	0.000	0.000	0.000	0.000	172.128
2006	April	19.258	1.385						20.643
	May	115.949	4.200		1.246			13.556	134.951
	June	94.683	0.000		1.981		0.678	14.271	111.613
	July	20.042	0.000						20.042
	August	0.379	0.000						0.379
	September	0.009	0.000						0.009
	October	0.266	0.000						0.266
	November	0.030	0.000						0.030
Total		250.616	5.585	0.000	3.227	0.000	0.678	27.827	287.933
2007	April	46.817	11.222						58.039
	May	89.057	35.976	2.000	1.000		1.000	3.286	132.319
	June	8.775	3.938					3.286	15.999
	October	0.006	0.000						0.006
Total		144.654	51.136	2.000	1.000	0.000	1.000	6.572	206.362
2008	April	33.541	9.377						42.917
	May	120.635	68.744	2.410	4.383			8.345	204.518
	June	80.224	3.432					4.060	87.715
	July	6.771	0.000						6.771
	August	0.004	0.000						0.004
	September	0.019	0.000						0.019
Total		241.194	81.553	2.410	4.383	0.000	0.000	12.405	341.945
2009	April	53.185	3.357						56.542
	May	119.000	22.409		12.234	9.900			163.544
	June	87.691	1.651					12.405	101.747
	July	25.836	0.000						25.836
Total		285.713	27.418	0.000	12.234	9.900	0.000	12.405	347.670

OTH: Others: sum of preliminary data for Lithuania, Faroes, UK, Netherlands

Table 4.2.2.1. SANDEEL in IV.Catch numbers at age (millions) by half year. Fishery in the NORTHERN North Sea

Table 4.2.3.1. SANDEEL in IV. Northern North Sea. Mean weight (g) in the catch by country and combined. Age group 4++ is the 4 -plus group used in assessment

Table 4.2.3.2. SANDEEL in IV. Southern North Sea. Mean weight (g) in the catch by (Denmark).
Age group 4++ is the 4-plus group used in assessment

Year		Half-year	
	Age	1	2
2004	0		2.60
	1	3.86	7.35
	2	10.87	13.31
	3	12.28	13.37
	4	10.27	12.97
	5		
	6		
	7		
	4++	10.27	12.97
2005	0	2.46	-
	1	5.54	-
	2	9.17	-
	3	10.73	-
	4	11.93	-
	5	13.63	-
	6	14.35	-
	7	12.67	-
	4++	12.18	-
2006	0	1.81	-
	1	6.19	8.97
	2	10.66	9.69
	3	12.83	13.30
	4	14.09	16.30
	5	15.35	-
	6	16.06	-
	7		-
	4++	15.15	16.30
2007	0	1.40	-
	1	5.91	-
	2	10.60	-
	3	14.90	-
	4	16.08	-
	5	16.73	-
	6	16.37	-
	7		-
	4++	16.18	-
2008	0	1.31	-
	1	6.62	-
	2	12.07	-
	3	13.60	-
	4	15.28	-
	5	17.35	-
	6	19.13	-
	7		-
	4++	15.89	-
2009	0	2.30	2.40
	1	5.55	4.33
	2	11.52	14.19
	3	15.61	18.61
	4	17.81	15.00
	5	17.74	16.00
	6		
	7		
	4++	19.28	15.50

Table 4.2.3.3. SANDEEL in IV. Mean weight (g) in the catch by half year.

Northern North Sea, first half-year year	age-1	age-2	age-3	age-4+
1983	5.64	13.05	27.30	43.97
1984	5.64	13.05	27.30	42.20
1985	5.64	13.05	27.30	43.34
1986	5.64	13.05	27.30	
1987	5.64	13.05	27.30	43.84
1988	5.64	13.05	27.30	42.20
1989	6.20	14.00	16.30	
1990	5.64	13.05	27.30	44.32
1991	7.43	14.23	22.40	30.87
1992	5.45	10.86	18.49	29.92
1993	5.97	20.62	24.92	22.14
1994	6.43	13.70	15.08	19.29
1995	6.95	19.75	24.90	24.70
1996	7.80	14.98	25.93	37.49
1997	4.94	7.95	11.76	24.64
1998	4.24	8.73	14.21	33.61
1999	6.53	8.08	13.20	25.68
2000	6.78	7.90	11.86	19.66
2001	6.29	11.78	15.82	11.58
2002	6.17	11.77	18.40	31.98
2003	5.30	14.70	17.81	18.69
2004	6.27	10.64	13.40	28.39
2005	7.43	14.42	16.06	23.90
2006	7.92	14.44	25.47	30.61
2007	8.60	16.68	26.48	41.62
2008	7.77	16.81	24.01	32.56
2009	10.29	20.50	36.51	37.82

Northern North Sea, second half-year year age-0 age-1 age-2					
1983	3.03	13.23	27.84	36.20	
1984	3.03	13.23	27.84	36.20	
1985	3.03	13.23	27.84	36.20	51.91
1986	3.03	13.23	27.84	36.20	
1987	3.03	13.23	27.84	36.20	
1988	3.03	13.23	27.84	36.20	44.00
1989	5.00	8.90	16.00		
1990	3.03	13.23	27.84	36.20	44.00
1991	3.42	9.57	14.99	16.20	44.00
1992	5.48	18.03	25.40	21.56	
1993	2.71	10.37	19.22	20.28	21.37
1994	6.58	22.75	30.20	58.07	72.15
1995	5.08	13.46	14.20	21.00	19.00
1996	2.94	10.85	14.92	15.59	23.58
1997	1.71	8.11	10.15	23.96	17.19
1998	2.48	3.91	11.13	20.15	13.39
1999	3.07	7.78	10.43	24.15	
2000		14.92	17.95	19.18	22.67
2001	3.10	9.61	17.50	9.07	
2002		7.33	17.52		
2003	3.37	13.00	17.90		
2004	3.56	13.13	21.42	18.50	
2005					
2006		11.99	17.62	27.45	30.94
2007					
2008					
2009		11.30	28.30	42.30	42.30

Southern North Sea, first half-year year				
1983	age-1	age-2	age-3	age-4+
1984	5.51	9.96	13.74	16.90
1985	5.51	9.96	13.74	16.95
1986	5.51	9.96	13.74	16.51
1987	5.80	11.00	13.74	16.60
1988	4.00	12.50	15.50	18.04
1989	4.00	12.50	15.50	18.01
1990	4.00	12.50	15.50	19.28
1991	8.20	16.40	16.90	17.20
1992	7.43	13.83	17.51	22.60
1993	6.08	11.54	15.09	20.31
1994	6.07	11.01	13.46	16.94
1995	7.30	13.20	16.60	20.48
1996	5.57	8.31	13.16	16.89
1997	6.52	10.92	11.81	16.27
1998	5.54	8.38	10.64	13.21
1999	5.52	9.27	13.50	18.33
2000	6.16	9.56	14.42	15.93
2001	4.22	7.93	12.57	16.76
2002	6.14	8.10	12.49	16.73
2003	5.25	7.86	9.33	12.47
2004	5.49	10.49	11.34	10.27
2005	5.54	9.17	10.73	12.18
2006	6.19	10.66	12.83	15.15
2007	5.91	10.60	14.90	16.18
2008	6.62	12.07	13.6	15.89
2009	5.71	11.59	15.95	19.28

Southern North Sea, second half-year year age-0					
1983	2.42	7.50	10.75	14.12	17.71
1984	2.42	7.50	10.75	14.12	17.71
1985	2.42	7.50	10.75	14.12	18.66
1986	2.42	7.50	10.75	14.12	18.76
1987	1.30	8.90	10.80	21.40	19.85
1988	1.00	10.50	14.00	17.00	19.11
1989	1.00	10.50	14.00	17.00	19.01
1990	1.00	10.50	14.00	17.00	20.05
1991	2.60	7.50	13.60	12.00	
1992	3.40	9.43	16.61	20.04	22.58
1993	3.08	10.13	15.66	17.04	21.96
1994		8.56	17.16	19.50	23.74
1995		6.60	13.60	17.70	21.22
1996	2.34	9.90	16.66	21.77	33.39
1997	4.72	7.99	13.54	14.73	18.88
1998	2.79	3.01	12.65	11.57	17.14
1999	5.42	10.02	11.05	16.85	15.68
2000	1.66	6.61	13.68	15.74	18.34
2001	2.40	9.51	17.00		
2002		8.40	12.53		
2003	2.65	7.47	15.72	17.30	13.80
2004	2.60	7.35	13.31	13.37	12.97
2005					
2006		8.97	9.69	13.30	16.30
2007					
2008					
2009	2.40	4.33	14.19	18.61	15.50

Table 4.2.3.4. SANDEEL in IV. Mean weight (g) in the stock by half year.
First half-year

Year	age-1	age-2	age-3	age-4+
1983	5.03	12.89	16.92	24.76
1984	4.10	13.81	16.28	21.01
1985	4.19	12.79	18.75	22.08
1986	4.18	13.10	16.32	27.79
1987	4.70	12.82	16.00	21.23
1988	4.40	14.84	15.81	19.17
1989	4.40	13.49	19.58	18.28
1990	4.26	13.31	17.59	19.26
1991	4.29	13.22	16.95	20.65
1992	4.08	13.07	17.18	21.15
1993	4.50	12.70	16.38	21.34
1994	6.26	12.99	14.58	18.71
1995	7.13	15.41	20.02	20.93
1996	6.75	9.99	14.52	21.10
1997	5.63	9.44	11.77	21.61
1998	5.01	8.54	12.03	16.34
1999	5.59	8.85	13.42	22.15
2000	6.40	8.57	13.30	17.03
2001	4.41	8.51	13.51	15.19
2002	6.14	8.96	14.11	23.85
2003	5.26	8.39	10.29	14.62
2004	5.62	10.54	11.51	18.25
2005	5.81	9.55	12.00	13.37
2006	6.26	10.82	13.03	15.30
2007	7.19	11.44	18.01	22.25
2008	6.74	13.59	15.95	20.78
2009	6.34	11.70	16.54	19.36

Second half-year

Year	age-0	age-1	age-2	age-3	age-4+
1983	1.11	11.83	14.73	19.14	24.35
1984	1.19	10.58	16.58	19.54	21.90
1985	1.19	10.69	14.65	22.49	24.95
1986	1.72	10.64	14.75	17.96	30.44
1987	1.43	11.18	14.29	17.26	20.91
1988	1.44	10.81	18.07	17.19	20.61
1989	1.28	10.76	15.80	17.05	19.39
1990	1.36	10.72	15.51	19.37	19.95
1991	1.10	10.67	15.49	18.02	19.39
1992	1.54	10.57	14.85	18.67	20.44
1993	1.44	10.91	14.25	17.61	20.49
1994	6.58	10.95	27.46	45.24	31.15
1995	5.08	10.14	13.66	17.96	21.19
1996	2.90	10.33	16.13	20.52	32.88
1997	1.94	8.04	11.70	15.27	18.86
1998	2.49	3.84	12.03	13.92	17.11
1999	3.15	8.29	10.49	17.14	15.68
2000	1.66	7.56	14.29	1.96	18.87
2001	2.67	9.56	17.42	9.07	17.22
2002	2.49	8.29	12.60	14.06	17.22
2003	3.07	8.10	16.30	17.30	13.80
2004	3.13	9.00	13.46	13.51	12.97
2005 no data					
2006	3.11	9.31	13.61	17.59	28.91
2007 no data					
2008 no data					
2009	2.40	5.93	15.59	28.34	36.51

Table 4.2.5.1. SANDEEL in IV. Effort of Danish vessels and number of Danish and Norwegian vessels participating in the sandeel fishery by year. In 2006 only experimental fishing was allowed for 6 Norwegian vessels. In 2007 the fishery was stopped in May due to RTM.

	Denmark Kilo watt days (thou- sands)	Number of vessels	Norway
Year	7,867	207	53
2002	7,306	171	35
2003	7,334	200	40
2004	3,390	98	22
2005	3,946	122	6
2006	3,316	83	42
2007	4,126	84	42
2009			

Table 4.2.5.2. SANDEEL in IV. Fishing effort in the Northern North Sea (days fishing times scaling factors for each vessel category to represent days fishing for a vessel of 200 GT), based on Danish and Norwegian data.

Table 4.2.5.3. SANDEEL in IV. Fishing effort in the southern North Sea (days fishing times scaling factors for each vessel category to represent days fishing for a vessel of 200 GT), based on Danish and Norwegian data.

Year	First half year			Second half year		
	$\begin{aligned} & \text { CPUE } \\ & \text { (t/day) } \end{aligned}$	$\begin{aligned} & \text { Total Int'l catch } \\ & (' 000 \mathrm{t}) \end{aligned}$	$\begin{aligned} & \text { Total int'l effort } \\ & \text { ('000 days) } \\ & \hline \end{aligned}$	CPUE (t/day)	$\begin{aligned} & \hline \text { Total Int'I catch } \\ & (\text { '000 t) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Total int'l effort } \\ & \text { ('000 days) } \\ & \hline \end{aligned}$
1982	48.2	427	8.85	35.7	53	1.47
1983	42.8	360	8.41	33.9	59	1.75
1984	50.5	461	9.13	32.9	71	2.16
1985	41.9	417	9.95	33.6	111	3.29
1986	53.7	386	7.20	44.1	76	1.71
1987	57.4	298	5.19	37.1	105	2.83
1988	46.7	462	9.89	30.2	33	1.11
1989	43.8	506	11.54	29.5	19	0.63
1990	31.0	342	11.03	35.6	24	0.67
1991	47.0	327	6.95	46.6	132	2.84
1992	54.9	621	11.31	36.2	73	2.02
1993	38.6	268	6.94	32.0	34	1.07
1994	53.4	226	4.24	48.9	48	0.97
1995	56.8	429	7.56	52.0	68	1.30
1996	41.6	294	7.05	50.1	139	2.77
1997	64.2	421	6.55	41.1	138	3.36
1998	46.6	448	9.61	26.2	43	1.64
1999	40.9	432	10.56	31.9	36	1.13
2000	43.1	360	8.36	33.4	53	1.59
2001	38.7	433	11.20	46.4	185	3.98
2002	62.2	609	9.79	22.4	19	0.86
2003	22.6	211	9.33	20.5	31	1.53
2004	25.2	250	9.91	23.5	31	1.32
2005	27.9	145	5.18	*	*	*
2006	39.0	254	6.50	30.3	17	0.56
2007	45.1	114	2.53	-	-	-
2008	51.1	253	4.95	28.7	6.8	0.24
2009	52.3	289	5.53	65.6	16.4	0.25

Table 4.2.5.4. SANDEEL in IV. Tuning fleets used in the SXSA assessment. Total international standardised effort and catch at age in numbers (millions)

Year	Season	Fleet	Effort	a-0	a-1	a-2	a-3	a-4+
1976	1	1	5.90	237	5697	1130	445	155
1977	1	1	11.30	3686	24307	2351	516	144
1978	,	1	4.30	0	6127	2338	573	144
1979	1	1	2.30	0	2335	1328	242	12
1980	1	1	5.40	17	13394	8865	1050	827
1981	1	1	3.90	17	5505	4109	904	174
1982	1	1	2.40	2	3518	2132	556	85
1983	1	1	2.00	0	5684	1215	89	12
1984	1	1	1.80	0	11692	1647	153	5
1985	1	1	1.60	1	2688	3292	1002	480
1986	1	1	4.40	7	23934	2600	200	0
1987	1	1	6.80	0	26236	10855	350	155
1988	1	1	8.43	2453	9855	25922	1319	26
1989	1	1	12.43	6124	56661	2219	3385	0
1990	1	1	5.95	0	13101	3907	578	175
1991	1	1	7.26	0	41855	2342	908	318
1992	1	1	4.07	137	9871	4056	486	305
1993	1	1	5.04	1112	15768	2635	1023	646
1994	1	1	7.69	398	28490	7225	5954	2156
1995	1	1	6.43	0	36140	3360	1091	145
1996	1	1	5.06	0	11524	5385	761	301
1997	1	1	7.18	2434	67038	3640	5254	1206
1998	1	1	5.44	2278	6667	33216	2039	410
1999	1	2	4.02	265	2118	3491	5086	1023
2000	1	2	6.40	0	22887	8810	1420	1470
2001	1	2	1.77	87	6434	2408	472	1035
2002	1	2	1.90	12	21719	2649	402	219
2003	1	2	3.09	599	2315	1305	456	635
2004	1	2	2.39	179	6819	542	375	213
2005	1	2	0.96	5	2550	412	97	49
2006	1	2	0.37	0	1408	122	17	2
2007	1	2	1.52	459.5	8309.8	761.1	130.9	39.5
2008	1	2	1.73	237.4	3091.5	2077.4	377.9	70.4
2009	1	2	0.84	171.1	2618.8	170.5	44.2	1.9
1982	1	3	8.90	242	56545	6224	3277	1939
1983	1	3	8.40	955	2232	35029	934	387
1984	1	3	9.10	20	62517	2257	13272	442
1985	1	3	10.00	6573	7790	39301	2490	265
1986	1	3	7.20	0	43629	7333	1604	30
1987	1	3	5.19	0	4351	22771	1158	165
1988	1	3	9.89	1420	2349	10074	17914	2769
1989	1	3	11.54	29	44444	4525	957	3368
1990	1	3	11.03	0	20179	16670	2467	745
1991	1	3	6.95	0	20058	9224	1320	454
1992	1	3	11.31	2	60337	10021	1002	621
1993	1	3	6.96	0	3581	14659	3707	1012
1994	1	3	4.25	0	24697	2594	2654	715
1995	1	3	7.56	0	39060	6503	1531	1226
1996	1	3	7.05	0	10194	16015	6403	1169
1997	1	3	6.56	0	52359	3648	2405	683
1998	1	3	9.62	57	9546	39553	3188	2260
1999	1	4	10.57	0	31951	6499	13150	947
2000	,	4	8.36	1126	35613	5973	1825	3528
2001	1	4	11.20	579	64084	13531	1158	2389
2002	1	4	9.79	420	84858	8667	1060	250
2003	1	4	9.33	6148	4982	15588	3593	1204
2004	1	4	9.91	0	33909	1113	4302	270
2005	1	4	5.18	74	15842	5204	312	439
2006	1	4	6.50	869	33256	2801	1035	240
2007	1	4	2.53	145	9301	4871	365	129
2008	1	4	4.95	351.5	27073.1	4375	1301.8	169.6
2009	1	4	5.53	4077.1	15158.9	12342.2	1371.3	388.2

Table 4.2.5.4. Continued.

Year	Season	Fleet	Effort	a-0	a-1	a-2	a-3	a-4+
1976	2	5	2.40	6126	648	84	368	37
1977	2	5	4.20	3067	2856	913	142	141
1978	2	5	1.90	7820	1001	307	39	2
1979	2	5	4.80	44203	1310	433	66	10
1980	2	5	2.40	8349	1173	214	19	8
1981	2	5	2.30	9128	346	94	14	6
1982	2	5	0.40	6530	65	0	0	0
1983	2	5	0.60	7911	303	316	19	0
1984	2	5	0.60	0	1207	121	43	0
1985	2	5	0.40	349	109	239	89	11
1986	2	5	2.70	7105	7077	473	0	0
1987	2	5	1.83	455	5768	198	0	0
1988	2	5	2.43	13196	1283	340	119	17
1989	2	5	2.35	3380	4038	274	0	0
1990	2	5	2.26	12107	1670	342	51	15
1991	2	5	2.47	13616	866	28	8	3
1992	2	5	0.71	6797	48	3	0	0
1993	2	5	2.95	26960	1004	112	34	22
1994	2	5	1.73	457	829	1211	396	25
1995	2	5	1.49	4046	3374	338	26	2
1996	2	5	3.27	31817	1706	1772	136	55
1997	2	5	2.19	2431	11346	633	25	2
1998	2	5	3.34	35220	10005	1837	79	1
1999	2	5	3.05	33653	694	551	58	0
2000	2	5	0.30	0	467	84	24	46
2001	2	5	2.11	46385	771	73	134	0
2002	2	5	0.29	0	157	6	0	0
2003	2	5	1.34	7510	118	164	0	0
2004	2	5	1.04	2961	656	9	11	0
2005	2	5	0.00	0	0	0	0	0
2006	2	5	0.12	0	230	37	9	2
2007	2	5	0.00	0	0	0	0	0
2008	2	5	0	0	0	0	0	0
2009	2	5	0.16	0	675.3	31.4	14.5	0.8
1982	2	6	1.50	5039	4718	490	344	40
1983	2	6	1.80	9298	240	2806	513	2
1984	2	6	2.20	0	9423	92	577	44
1985	2	6	3.30	11940	1896	3229	2234	298
1986	2	6	1.70	112	5350	293	241	18
1987	2	6	2.83	298	3095	6664	196	51
1988	2	6	1.11	0	0	234	2084	68
1989	2	6	0.63	1	1619	165	35	123
1990	2	6	0.67	597	1438	477	71	21
1991	2	6	2.84	12115	11411	344	111	0
1992	2	6	2.02	134	3903	382	157	34
1993	2	6	1.07	838	1037	953	266	87
1994	2	6	0.97	0	4093	322	198	137
1995	2	6	1.30	0	3166	2789	307	157
1996	2	6	2.77	2088	2031	4080	536	1023
1997	2	6	3.36	198	15238	536	406	136
1998	2	6	1.64	1142	738	2673	209	65
1999	2	6	1.13	1322	203	58	1392	166
2000	2	6	1.59	6659	3601	496	339	330
2001	2	6	3.98	73443	819	15	0	0
2002	2	6	0.86	0	1370	472	0	0
2003	2	6	1.53	5320	922	452	163	28
2004	2	6	1.32	2383	1637	473	405	68
2005	2	6	0.00	0	0	0	0	0
2006	2	6	0.56	0	1827	38	20	0
2007	2	6	0.00	0	0	0	0	0
2008	2	6	0	0	0	0	0	0
2009	2	6	0.25	906.1	2280.4	284.4	20.8	0.2

Table 4.3.2.1. SANDEEL in IV. Options for SXSA applied in 'suggested Final assessment'

Dankert Skagens SXSA program
last updated 5/9-1995
============================
Name of the stock:
Sandeel in the North Sea
The following values were used:
1: First VPA year 1983
2: Last VPA year 2009
3: Youngest age
4: Oldest true age
5: Number of seasons
6: Recruiting season
7: Last season in last year
7. Last season in last year 2

8: Spawning season

The following input files were used
1: Catch in numbers: CANUM4.hyr
2: Weight in catch: WECA4.hyr
3: Weight in stock: WEST4.hyr
4: Natural mortalities: natmor.hyr
5: Maturity ogive: matprop.hyr
6: Tuning data (CPUE): Tuning4.hyr
7: *Weighting for rhats: tweq.new
8: *Weighting for shats: twred.xsa
The following fleets were used:
Fleet: 1: Northern First Half 76-98
Fleet: 2: Northern First Half 99-09
Fleet: 3: Southern First Half 82-98
Fleet: 4: Southern First Half 99-09
Fleet: 5: Northern Secon Half 76-09
Fleet: 6: Southern Secon Half 82-09
The following options were used:
1: Inv. Catchability (1: Linear; 2: Log; 3: Cos. filter):
2: Indiv. shats: (1: Direct; 2: Using z)
3: Comb. shats (1: Linear; 2: Log.)
4: *Fit catches: (0: No fit; 1: No SOP corr; 2: SOP corr.)
5: *Est. unknown catches (0: No; 1: No SOP corr; 2: SOP corr.; 3: Sep. F)
6: *Weighting of r (0 : Manual; (1: not available at present).)
7: *Weighting of shats (0: Manual; 1: Linear; 2: Log.)
8: Handling of the plus group (1: Dynamic; 2: Extra age group)
You need a factor for weighting the inverse catchabilities at the oldest age vs. the second oldest age
It must be between 0.0 and 1.0. Factor 1.0 means that the catchabilities for the oldest are used as they are
Present value $0.0000000 \mathrm{E}+00$
You have to specify a minimum value for the survivor number.
This is used instead of the estimate if the estimate becomes very low
Present value: 1.000000

Weighting factors for computing catchability Year: Season	$1983-2008$		2009	
Sge	1	2	1	2
0	1	1	0.5	
1	1	1	0.5	0.1
2	1	1	0.5	0.1
3	1	1	0.5	0.1
				0.1

Table 4.3.2.2 SANDEEL in IV. SXSA fishing mortality at age, Suggested Final Assessment

Table 4.3.2.3. SANDEEL in IV. SXSA annual fishing mortality at age. Suggested Final assessment.

Year	Age 0	Age 1	Age 2	Age 3	Age 4+	$F(1-2)$
1983	0.026	0.127	0.638	0.384	3.311	0.383
1984	0.000	0.405	0.186	0.830	0.317	0.295
1985	0.013	0.214	1.184	0.734	0.181	0.699
1986	0.017	0.257	0.731	0.233	0.009	0.494
1987	0.005	0.278	0.492	0.385	0.052	0.385
1988	0.027	0.264	1.296	0.902	0.654	0.780
1989	0.015	0.792	0.535	1.045	0.462	0.663
1990	0.030	0.538	1.158	0.790	0.241	0.848
1991	0.048	0.609	0.963	0.649	0.263	0.786
1992	0.029	0.443	0.625	0.557	0.410	0.534
1993	0.061	0.270	0.461	0.768	1.389	0.366
1994	0.001	0.409	0.558	0.725	0.000	0.483
1995	0.017	0.460	0.370	0.443	0.400	0.415
1996	0.025	0.314	0.738	0.649	0.811	0.526
1997	0.011	0.336	0.396	0.885	0.438	0.366
1998	0.137	0.347	0.796	0.805	0.758	0.571
1999	0.110	0.443	0.595	0.827	0.832	0.519
2000	0.019	0.723	0.978	0.685	0.878	0.851
2001	0.212	0.704	1.317	0.459	1.602	1.011
2002	0.000	0.745	0.641	0.759	0.251	0.693
2003	0.062	0.481	0.715	0.835	0.000	0.598
2004	0.045	0.740	0.575	0.791	0.391	0.658
2005	0.000	0.502	0.537	0.322	0.187	0.519
2006	0.000	0.454	0.339	0.286	0.137	0.397
2007	0.000	0.321	0.274	0.130	0.064	0.297
2008	0.000	0.311	0.443	0.185	0.074	0.377
2009	0.000	0.153	0.554	0.278	0.070	0.354

Table 4.3.2.4. SANDEEL in IV. SXSA stock numbers at age (millions) at start of season. Suggested Final assessment.

Year		1983		1984		1985		1986		1987		1988	
Season		1	2	1	2	1	2	1	2	1	2	1	2
AGE													
	0 *		969057 *		243741 *		1344375 *		624205 *		218018 *		707768
	1	120110	39385	423890	110930	109520	33935	595829	178214	275636	82849	97457	28450
	2	105870	41293	31754	18089	81204	19560	25969	9275	134665	62738	59811	10622
	3	6399	3452	30983	9778	14618	6940	12877	7155	6901	3391	45157	14523
	4+	508	12	2353	1212	8396	5018	7409	4942	9669	6219	7645	2836
SSN		112778		65090		104218		46255		151235		112613	
SSB		1485526		992366		1498079		756237		2042089		1748073	
TSN		232888	1053199	488980	383750	213738	1409828	642084	823791	426871	373215	210070	764199
TSB		2089681	2216192	2730314	1981203	1956967	2530413	3246801	3385563	3337577	2323117	2176884	1826763
Year		1989		1990		1991		1992		1993		1994	
Season		1	2	1	2	1	2	1	2	1	2	1	2
AGE	0 *		323167 *		618275 *		793767 *		346699 *		678052 *		817314
	1	309175	52416	142942	32400	269293	61515	339415	82280	151136	43864	286035	72967
	2	22132	9314	37796	8488	23715	6427	39256	14789	63790	28601	34066	14796
	3	8177	1926	7229	2352	6209	2338	4925	2083	11760	4010	22453	8003
	4+	12141	5381	5840	3161	4371	2298	3685	1712	2934	609	3412	0
SSN		42450		50864		34294		47866		78484		59931	
SSB		680609		742684		509007		675623		1065377		833716	
TSN		351626	392205	193806	664677	303587	866345	387280	447563	229620	755136	345965	913079
TSB		2040980	1261993	1351617	1428468	1664274	1715747	2060434	1697116	1745489	1945619	2624293	6945252
Year		1995		1996		1997		1998		1999		2000	
Season		1	2	1	2	1	2	1	2	1	2	1	2
AGE	0 *		358402 *		1967229 *		357070 *		408642 *		484912 *		511718
	1	366936	88999	158328	45073	861205	244402	158680	48541	159241	37918	194441	36049
	2	55287	28900	66949	27356	33522	16504	176045	58429	30022	11946	30234	8163
	3	10726	5024	20832	8098	17103	5194	12454	4069	43757	14401	9229	3530
	4+	6015	2909	6050	2852	7381	3401	6522	2185	4800	1605	11642	3712
SSN		72028		93830		58006		195022		78579		51105	
SSB		1192598		1098940		677254		1759824		959240		580110	
TSN		438964	484234	252158	2050609	919211	626570	353701	521867	237820	550782	245545	563171
TSB		3808855	3269776	2167655	6871774	5525840	2994252	2554809	2000851	1849395	2239125	1824530	1365007
Year		2001		2002		2003		2004		2005		2006	
AGE		1	2	1	2	1	2	1	2	1	2	1	2
	0 *		897614 *		80355 *		310530 *		174979 *		366644 *		235036
	1	225466	40173	323001	54183	36106	8857	130930	23464	75041	16451	164744	39582
	2	25833	4267	31452	11818	42979	14979	6310	2876	17135	6888	13469	6635
	3	6159	2794	3414	1092	9243	2881	11707	4018	1919	951	5640	2920
	4+	5261	723	2758	1464	2093	0	2211	1086	3740	2108	2505	1481
SSN		37253		37624		54315		20228		22794		21613	
SSB		382957		395758		486309		241605		236671		257540	
TSN		262719	945571	360625	148913	90421	337247	151158	206423	97835	393043	186357	285654
TSB		1377261	2880361	2378983	598089	676226	1319066	977433	865934	672661	1428565	1288837	552972
Year		2007		2008		2009							
Season		1	2	1	2	1	2						
AGE	0 *		414551 *		582543 *		2901534						
	1	105609	28170	186270	50229	261753	84795						
	2	30546	15865	23064	10177	41124	16535						
	3	5365	3190	12989	7331	8332	4339						
	4+	3574	2258	4461	2793	8289	5212						
SSN		39485		40513		57746							
SSB		525598		613297		779450							
TSN		145094	464034	226783	653074	319499	3012415						
TSB		1284924		1868756		2438967	8037563						

Table 4.3.2.5. SANDEEL in IV. SXSA catchability, Suggested Final Assessment
Log inverse q

	age			
Fleet	0	1	2	3
Fleet 1: Northern North Sea 83-98	$*$	3.728	3.661	3.661
Fleet 2: Northern North Sea 99-08	$*$	3.362	3.189	3.189
Fleet 3: Southern North Sea 83-98	$*$	4.266	3.252	3.252
Fleet 4: Southern North Sea 99-08	$*$	3.069	2.951	2.951
Fleet 5: Northern North Sea 83-07	4.611	4.146	4.68	4.68
Fleet 6: Southern North Sea 83-07	6.312	3.562	3.696	3.696

q

	age			
Fleet	0			
Fleet 1: Northern North Sea 83-98	$*$	0.0240	0.0257	
Fleet 2: Northern North Sea 99-08	$*$	0.0347	0.0412	
Fleet 3: Southern North Sea 83-98	$*$	0.0140	0.0257	
Fleet 4: Southern North Sea 99-08	$*$	0.0387	0.0412	
Fleet 5: Northern North Sea 83-07	0.0099	0.0158	0.0523	
Fleet 6: Southern North Sea 83-07	0.0018	0.0284	0.0093	

Table 4.3.2.6. SANDEEL in IV. Assessment summary for SXSA. Suggested Final Assessment

Year	Recruitment Age 0 millions	$\begin{aligned} & \hline \text { TSB } \\ & \text { tons } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SSB } \\ & \text { tons } \\ & \hline \end{aligned}$	Landings tons	Yield/SSB	Mean F age 1-2
1983	969057	2089681	1485526	530641	0.357	0.383
1984	243741	2730314	992366	750040	0.756	0.295
1985	1344375	1956967	1498079	707105	0.472	0.699
1986	624205	3246801	756237	685949	0.907	0.494
1987	218018	3337577	2042089	791050	0.387	0.385
1988	707768	2176884	1748073	1007303	0.576	0.780
1989	323167	2040980	680609	826836	1.215	0.663
1990	618275	1351617	742684	584912	0.788	0.848
1991	793767	1664274	509007	898959	1.766	0.786
1992	346699	2060434	675623	820140	1.214	0.534
1993	678052	1745489	1065377	576932	0.542	0.366
1994	817314	2624293	833716	770746	0.924	0.483
1995	358402	3808855	1192598	915042	0.767	0.415
1996	1967229	2167655	1098940	776126	0.706	0.526
1997	357070	5525840	677254	1114044	1.645	0.366
1998	408642	2554809	1759824	1000376	0.568	0.571
1999	484912	1849395	959240	718667	0.749	0.519
2000	511718	1824530	580110	692499	1.194	0.851
2001	897614	1377261	382957	858619	2.242	1.011
2002	80355	2378983	395758	806921	2.039	0.693
2003	310530	676226	486309	309724	0.637	0.598
2004	174979	977433	241605	359362	1.487	0.658
2005	366644	672661	236671	171790	0.726	0.519
2006	235036	1288837	257540	286751	1.113	0.397
2007	414551	1284924	525598	203392	0.387	0.297
2008	582543	1868756	613297	322738	0.526	0.377
2009		2438967	779450	336897	0.432	0.354
2010			1030000			
Average	570564		865948	660132	0.931	0.551

Forecast

Table 4.3.2.7. SANDEEL in IV. Options for SXSA applied in 'SPALY assessment'

Table 4.3.2.8 SANDEEL in IV. SXSA fishing mortality at age, 'SPAL YAssessment'

Table 4.3.2.9. SANDEEL in IV. SXSA annual fishing mortality at age. SPALY assessment

Year	Age 0	Age 1	Age 2	Age 3	Age 4+	$F(1-2)$
1983	0.029	0.148	0.794	0.792	4.175	0.471
1984	0.000	0.457	0.222	1.391	1.257	0.340
1985	0.015	0.233	1.616	0.998	0.661	0.925
1986	0.017	0.292	0.840	0.552	0.022	0.566
1987	0.006	0.279	0.601	0.501	0.149	0.440
1988	0.027	0.293	1.305	1.430	0.000	0.799
1989	0.015	0.779	0.629	1.072	0.000	0.704
1990	0.030	0.536	1.105	1.100	1.623	0.820
1991	0.048	0.591	0.955	0.574	1.648	0.773
1992	0.032	0.439	0.589	0.547	0.766	0.514
1993	0.067	0.301	0.454	0.685	0.000	0.377
1994	0.001	0.460	0.660	0.707	0.000	0.560
1995	0.017	0.430	0.448	0.596	0.383	0.439
1996	0.026	0.317	0.649	0.908	1.147	0.483
1997	0.012	0.352	0.402	0.681	0.899	0.377
1998	0.147	0.395	0.866	0.826	0.716	0.630
1999	0.109	0.484	0.750	1.011	0.826	0.617
2000	0.020	0.715	1.185	1.128	1.494	0.950
2001	0.225	0.758	1.275	0.739	0.000	1.016
2002	0.000	0.814	0.757	0.683	0.753	0.785
2003	0.070	0.530	0.891	1.213	0.000	0.710
2004	0.055	0.888	0.692	1.380	0.997	0.790
2005	0.000	0.638	0.826	0.439	0.686	0.732
2006	0.000	0.608	0.517	0.608	0.436	0.563
2007	0.000	0.407	0.445	0.228	0.196	0.426
2008	0.000	0.452	0.641	0.356	0.174	0.547
2009	0.000	0.306	1.069	0.497	0.159	0.687

Table 4.3.2.10. SANDEEL in IV. SXSA stock numbers at age (millions) at start of season. SPALY assessment.

Year		1983		1984		1985		1986		1987		1988	
Season		1	2	1	2	1	2	1	2	1	2	1	2
AGE	0 *		878848 *		225599 *		1199288 *		622401 *		198475 *		716146
	1	104184	33526	383356	96019	101368	30936	530637	154232	274825	82550	88676	25220
	2	90146	30752	26957	14874	68995	11377	23514	7629	115030	49576	59567	10458
	3	3690	1636	22353	3993	11986	5175	6176	2663	5553	2488	34380	7299
	4+	498	6	861	211	2841	1295	2915	1930	3526	2101	3534	80
SSN		94334		50171		83822		32606		124109		97481	
SSB		1236745		754271		1169916		489853		1638389		1495275	
TSN		198518	944767	433527	340695	185190	1248071	563243	788854	398934	335191	186157	759203
TSB		1760792	1856561	2326031	1613593	1594648	2073218	2707916	2930658	2930066	2002058	1885447	1619985
Year		1989		1990		1991		1992		1993		1994	
Season		1	2	1	2	1	2	1	2	1	2	1	2
AGE	0 *		324068 *		632191 *		799404 *		316352 *		618012 *		865131
	1	312940	53801	143347	32549	275546	63816	341948	83212	137500	38848	259057	63042
	2	19487	7541	38930	9248	23837	6509	41139	16051	64553	29112	29959	12043
	3	8043	1836	5777	1379	6831	2755	4992	2128	12793	4703	22871	8284
	4+	3982	0	1472	233	1177	157	2274	766	2197	115	3579	49
SSN		31513		46178		31845		48405		79543		56409	
SSB		493162		648117		455214		671540		1076253		789593	
TSN		344452	387246	189525	675601	307391	872641	390352	418509	217043	690789	315466	948548
TSB		1870096	1144164	1258773	1383519	1637307	1713764	2066686	1660480	1695003	1813788	2411290	7089828
Year		1995		1996		1997		1998		1999		2000	
Season		1	2	1	2	1	2	1	2	1	2	1	2
AGE	0 *		355327 *		1893077 *		321517 *		382990 *		488704 *		484686
	1	388422	96904	156946	44565	827887	232145	142705	42664	147714	33677	196144	36675
	2	47161	23453	73420	31694	33106	16225	166010	51702	25210	8720	26762	5836
	3	8472	3513	16372	5109	20654	7574	12226	3916	38250	10709	6589	1760
	4+	6245	3063	4939	2107	4324	1352	6793	2367	4824	1621	8633	1695
SSN		61878		94731		58084		185030		68284		41983	
SSB		1027068		1075400		649068		1675811		843271		463992	
TSN		450300	482259	251678	1976552	885971	578813	327734	483640	215998	543432	238128	530652
TSB		3796517	3236029	2134789	6635630	5310070	2821175	2390761	1834467	1668994	2119055	1719316	1225306
Year		2001		2002		2003		2004		2005		2006	
Season		1	2	1	2	1	2	1	2	1	2	1	2
	0 *		851253 *		74343 *		274977 *		145349 *		289127 *		191141
	1	213320	35705	302170	46520	33405	7863	114956	17587	61728	11553	129913	26768
	2	26347	4611	27793	9366	36705	10774	5497	2330	12324	3663	9459	3947
	3	4253	1517	3696	1281	7235	1535	8263	1709	1472	652	2999	1150
	4+	2160	0	1120	367	1349	0	1109	348	1246	436	891	399
SSN		32760		32610		45289		14869		15042		13349	
SSB		314486		327895		402129		173288		152014		155050	
TSN		246080	893086	334779	131877	78694	295149	129825	167323	76769	305431	143262	223404
TSB		1255226	2708269	2183216	503661	577837	1110034	819338	672195	510651	1072714	968308	334683
Year		2007		2008		2009							
Season		1	2	1	2	1	2						
AGE	0 *		299138 *		310412 *		2720185						
	1	85885	20914	134412	31151	139477	39812						
	2	20055	8832	17123	6195	25505	6065						
	3	3164	1715	7231	3472	5072	2154						
	4+	1239	693	1971	1125	3764	2179						
SSN		24459		26326		34341							
SSB		313998		389009		455164							
TSN		110344	331293	160737	352356	173818	2770394						
TSB		931511		1294943		1339450	6999661						

Table 4.3.2.11. SANDEEL in IV. SXSA catchability, SPALY Assessment

Log inverse q

	age			
Fleet	0	1	2	3
Fleet 1: Northern North Sea 83-98	$*$	3.675	3.581	3.581
Fleet 2: Northern North Sea 99-08	$*$	3.178	2.916	2.916
Fleet 3: Southern North Sea 83-98	$*$	4.214	3.172	3.172
Fleet 4: Southern North Sea 99-08	$*$	2.885	2.678	2.678
Fleet 5: Northern North Sea 83-07	6.247	3.464	4.512	4.512
Fleet 6: Southern North Sea 83-07	6.247	3.464	3.52	3.52

q

	age			
Fleet	0	1	2	3
Fleet 1: Northern North Sea 83-98	$*$	0.0253	0.0278	0.0278
Fleet 2: Northern North Sea 99-08	$*$	0.0417	0.0541	0.0541
Fleet 3: Southern North Sea 83-98	$*$	0.0148	0.0419	0.0419
Fleet 4: Southern North Sea 99-08	$*$	0.0559	0.0687	0.0687
Fleet 5: Northern North Sea 83-07	0.0019	0.0313	0.0110	0.0110
Fleet 6: Southern North Sea 83-07	0.0019	0.0313	0.0296	0.0296

Table 4.3.2.12. SANDEEL in IV. Assessment summary for SXSA. SPALY assessment

Year	Recruitment Age 0 millions	$\begin{aligned} & \hline \text { TSB } \\ & \text { tons } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SSB } \\ & \text { tons } \\ & \hline \end{aligned}$	Landings tons	Yield/SSB	Mean F age 1-2
1983	878848	1760792	1236745	530641	0.429	0.471
1984	225599	2326031	754271	750040	0.994	0.340
1985	1199288	1594648	1169916	707105	0.604	0.925
1986	622401	2707916	489853	685949	1.400	0.566
1987	198475	2930066	1638389	791050	0.483	0.440
1988	716146	1885447	1495275	1007303	0.674	0.799
1989	324068	1870096	493162	826836	1.677	0.704
1990	632191	1258773	648117	584912	0.902	0.820
1991	799404	1637307	455214	898959	1.975	0.773
1992	316352	2066686	671540	820140	1.221	0.514
1993	618012	1695003	1076253	576932	0.536	0.377
1994	865131	2411290	789593	770746	0.976	0.560
1995	355327	3796517	1027068	915042	0.891	0.439
1996	1893077	2134789	1075400	776126	0.722	0.483
1997	321517	5310070	649068	1114044	1.716	0.377
1998	382990	2390761	1675811	1000376	0.597	0.630
1999	488704	1668994	843271	718667	0.852	0.617
2000	484686	1719316	463992	692499	1.492	0.950
2001	851253	1255226	314486	858619	2.730	1.016
2002	74343	2183216	327895	806921	2.461	0.785
2003	274977	577837	402129	309724	0.770	0.710
2004	145349	819338	173288	359362	2.074	0.790
2005	289127	510651	152014	171790	1.130	0.732
2006	191141	968308	155050	286751	1.849	0.563
2007	299138	931511	313998	203392	0.648	0.426
2008	310412	1294943	389009	322738	0.830	0.547
2009		1339450	455164	336897	0.740	0.687
2010			456000			
Average	529152		706856	660132	1.162	0.631
Forecast						

Table 4.6.1. SANDEEL in IV. Data used for short term forecast, Suggested Final Assessment

Input in the assessment year (2009)

Season	age	N	F	WEST	WECA	M	Propmat
1	0	0	0	0	0	0	0
1	1	261753	0.12	0.00634	0.00634	1	0
1	2	41124	0.485	0.0117	0.0117	0.4	1
1	3	8332	0.246	0.01654	0.01654	0.4	1
1	4	8289	0.063	0.01936	0.01936	0.4	1
2	0	329050	0	0.0024	0.0024	0.8	0
2	1	0	0.039	0.00593	0.00593	0.2	0
2	2	0	0.021	0.01559	0.01559	0.2	1
2	3	0	0.009	0.02834	0.02834	0.2	1
2	4	0	0	0.03651	0.03651	0.2	1

Input in the forcast year (2010) and forward

Season	age	N	F	WEST	WECA	M	ProbMat
1	0	0	0	0	0	0	0
1	1	147851.7	0.12	0.006	0.006	1	0
1	2	67248.944	0.485	0.0103	0.0103	0.4	1
1	3	13607.102	0.246	0.014	0.014	0.4	1
1	4	7814.807	0.063	0.0188	0.0188	0.4	1
2	0	329050	0	0.0029	0.0029	0.8	0
2	1	0	0.039	0.0084	0.0084	0.2	0
2	2	0	0.021	0.0139	0.0139	0.2	1
2	3	0	0.009	0.0166	0.0166	0.2	1
2	4	0	0	0.0215	0.0215	0.2	1

Table 4.6.2. SANDEEL in IV. Data used for short term forecast, SPALY Assessment

Input in the assessment year (2009)

Season	age	N	F	WEST	WECA	M	Propmat
1	0	0	0	0	0	0	0
1	1	139477	0.234	0.00634	0.00634	1	0
1	2	25505	0.903	0.0117	0.0117	0.4	1
1	3	5072	0.436	0.01654	0.01654	0.4	1
1	4	3764	0.145	0.01936	0.01936	0.4	1
2	0	292000	0	0.0024	0.0024	0.8	0
2	1	0	0.085	0.00593	0.00593	0.2	0
2	2	0	0.059	0.01559	0.01559	0.2	1
2	3	0	0.018	0.02834	0.02834	0.2	1
2	4	0	0	0.03651	0.03651	0.2	1

Input in the forcast year (2010) and forward

Season	age	N	F	WEST	WECA	M	ProbMat
1	0	0	0	0	0	0	0
1	1	131204	0.234	0.006	0.006	1	0
1	2	30536	0.903	0.0103	0.0103	0.4	1
1	3	5349	0.436	0.014	0.014	0.4	1
1	4	3555	0.145	0.0188	0.0188	0.4	1
2	0	292000	0	0.0029	0.0029	0.8	0
2	1	0	0.085	0.0084	0.0084	0.2	0
2	2	0	0.059	0.0139	0.0139	0.2	1
2	3	0	0.018	0.0166	0.0166	0.2	1
2	4	0	0	0.0215	0.0215	0.2	1

Figure 4.1.2.1. SANDEEL in IV.
Sandeel in IV. Danish sandeel sampling areas.

Figure 4.2.1.1 SANDEEL in IV. Total international landings

Figure 4.2.1.2 SANDEEL in IV. Total international landings in three areas (see Figure 4.1.2.1)

```
North 5 ea sandeel landings in 2DDg quarter 2
```

Total landingg 287294 ton
Max Iandingg per reatangle 42092 ton

Figure 4.2.1.3 SANDEEL in IV. Quarterly Catches of sandeels in 2009 by ICES rectangle

Figure 4.2.1.4 SANDEEL in IV. Landings by ICES rectangles 1995-2009

Figure 4.2.3.1 SANDEEL in IV. Mean weight at age in the catch by area and half year.

Figure 4.2.3.2. SANDEEL in IV. Mean weight at age in the stock by half year.

Figure 4.2.5.1. SANDEEL in IV.Total international effort and CP UE

Figure 4.2.5.2. SANDEEL in IV. CPUE (ton/day) by area, half year and year.

Figure 4.2.5.3 SANDEEL in IV. CP UE (million/day) by area, age group and year

Figure 4.3.2.1. SANDEEL in IV. Log residuals by fleet. Exploratory assessment 1: SPALY run

Figure 4.3.2.2 SANDEEL in IV. Retrospective analysis of SSB, recruitment, and Fbar from the Exploratory Assessment 1: SPALY run

Figure 4.3.2.3 SANDEEL in IV. Retrospective analysis of SSB, recruitment, and Fbar from the Exploratory Assessment 2 excluding all tuning data from northern North Sea after 1999.

Figure 4.3.2.4 SANDEEL in IV. Retrospective analysis of SSB, recruitment, and Fbar from the Exploratory Assessment 3 excluding Fleet 2 (i.e. first half year, northern North Sea) in 2009.

Figure 4.3.2.5 SANDEEL in IV. Retrospective analysis of SSB, recruitment, and Fbar from the Exploratory Assessment 4 (Suggested Final run) applying log weighting of Shat.

Figure 4.3.2.6. SANDEEL in IV. Log residuals by fleet. Exploratory assessment 4: Suggested Final run

Figure 4.3.2.7 Stock Summary, Suggested Final Assessment

Figure 4.3.2.8 Stock Summary, SPALY assessment

Figure 4.6.1. Suggested Final Assessment: Regression of recruitment against the TAC that will lead to SSB at Bpa.
(left figure) Recruitment at age 0 in 2009 against TAC in 2010.
(right figure) Recruitment at age 1 in 2010 against TAC in 2010

TAC $=-333+$ recruit $^{*} 1.659$

TAC=-333+recruit**3.692

Recruitment age 1

Figure 4.6.2. SPALY Assessment: Regression of recruitment against the TAC that will lead to SSB at Bpa.
(left figure) Recruitment at age 0 in 2009 against TAC in 2010.
(right figure) Recruitment at age 1 in 2010 against TAC in 2010

5 Norway Pout in ICES Subarea IV and Division IIIa

Introduction: Update assessment

The May 2009 assessment of Norway pout in the North Sea and Skagerrak is an update assessment from the May and September 2008 assessments all of which are essentially up-date assessments of the 2004 benchmark assessment using the same tuning fleets and parameter settings. The assessment is a "real time" monitoring (and management) run up to $1^{\text {s }}$ April 2009 and includes information from $1^{\text {st }}$ quarter 2009.

A short term prognosis (Forecast) up to 1^{\star} January 2010 is given for the stock based on the up-date assessment.

5.1 General

5.1.1 Ecosystem aspects

Stock definition: Norway pout is a small, short-lived gadoid species, which rarely gets older than 5 years (Lambert, Nielsen, Larsen and Sparholt, 2009). It is distributed from the west of Ireland to Kattegat, and from the North Sea to the Barents Sea. The distribution for this stock is in the northern North Sea ($>57^{\circ} \mathrm{N}$) and in Skagerrak at depths between 50 and 250 m (Raitt 1968; Sparholt, Larsen and Nielsen 2002b). Spawning in the North Sea takes place mainly in the northern part in the area between Shetland and Norway (Lambert, Nielsen, Larsen and Sparholt, 2009).

So far it has been evaluated that around 10% of the Norway pout reach maturity already at age 1 , and that most individuals reach maturity at age 2 on which the maturity ogive in the assessment has been based. Results in a recent paper (Lambert, Nielsen, Larsen and Sparholt (2009) indicate that the maturity rate for the 1-group is close to 20% in average (varying between years and sex) with an increasing tendency over the last 20 years. Furthermore, the average maturity rate for the 2 and 3 groups in $1^{\text {st }}$ quarter of the year was observed to be only around 90% and 95%, respectively, as compared to 100% used in the assessment. Preliminary results from an analysis of regionalized survey data on Norway pout maturity, presented in Larsen, Lassen, Sparholt and Nielsen (2001), gave no evidence for a stock separation in the whole northern area, and this conclusion is supported by the results in Lambert, Nielsen, Larsen and Sparholt (2009).

The population dynamics of Norway pout in the North Sea and Skagerrak are very dependent on changes caused by high recruitment variation and variation in predation mortality (or other natural mortality causes) due to the short life span of the species (Sparholt, Larsen and Nielsen 2002a,b; Lambert, Nielsen, Larsen and Sparholt 2009). With present fishing mortality levels in recent years the status of the stock is more determined by natural processes and less by the fishery, and in general the fishing mortality on 0-group Norway pout is low (ICES WGNSSK Reports). However, there is a need to ensure that the stock remains high enough to provide food for a variety of predator species. This stock is important as a food source for other species (e.g. saithe, haddock, cod and mackerel) (ICES-SGMSNS 2006). Natural mortality levels by age and season used in the stock assessment do include the predation mortality levels estimated for this stock from the most recent multi-species stock assessment performed by ICES (ICES-SGMSNS 2006).

Natural mortality varies between age groups, and natural mortality at age varies over different time periods. Even though different sources of information (surveys, MSVPA) give slightly different perception of natural mortality at age (see below), the natural mortalities obtained from the most recent run with the North Sea MSVPA model (presented and used in the ICES SGMSNS (2006)) indicate high predation mortality on Norway pout. Especially the more recent high abundance of saithe predators and the more constant high stock level of western mackerel as likely predators on smaller Norway pout are likely to significantly affect the Norway pout population dynamics. However, inter-specific density dependent patterns in Norway pout growth and maturity were not found in relation to stock abundance of those predators but rather in relation to North Sea cod and whiting stock abundance (Lambert, Nielsen, Larsen and Sparholt, 2009).

In order to protect other species (cod, haddock, saithe and herring as well as mackerel, squids, flatfish, gurnards, Nephrops) there is a row of technical management measures in force for the small meshed fishery in the North Sea such as the closed Norway pout box, by-catch regulations, minimum mesh size, and minimum landing size (Annex 3).

5.1.2 Fisheries

The fishery is mainly performed by Danish and Norwegian vessels using small mesh trawls in the north-western North Sea especially at the Fladen Ground and along the edge of the Norwegian Trench in the north-eastern part of the North Sea. The main fishing seasons are the $3^{\text {rd }}$ and $4^{\text {th }}$ quarters of the year; with high catches in $1^{\text {st }}$ quarter of the year especially prior to 1999. The average quarterly spatial distribution of the Norway pout catches during a ten year period from 1994-2003 is shown in figures in the Stock Annex A5. The Norway pout fishery is a mixed commercial, small meshed fishery conducted mainly by Denmark and Norway directed towards Norway pout as one of the target species together with Blue Whiting.
Landings have been low since 2001, and the 2003-2004 landings were the lowest on record. Effort in 2003 and 2004 has been historically low and well below the average of the 5 previous years (Table 5.2.9). The effort in the Norway pout fishery was in 2002 at the same level as in the previous eight years before 2001. The targeted Norway pout fishery was closed for 2005, in the first half year of 2006, as well as in all of 2007, but Norway pout were in the periods of closure taken as a by-catch in the Norwegian mixed blue whiting and Norway pout fishery, as well as in a small experimental fishery in 2007. The fishery was open for the second half year of 2006 and in all of 2008 based on the 2005 and 2007 year classes, respectively, both being on the long term average level. How ever, the Norwegian part of the Norway pout fishery was only open from May to August in 2008. Despite opening of the fishery by 1^{\star} January 2008 (with an preliminary EU quota of 36500 t and a Norwegian quota of 4750 t as well as a final EU quota of 110000 t set late in 2008) only 30.4 kt was taken by Denmark, and the Norwegian catches were 5.7 kt, i.e. $36.1 \mathrm{kt} \mathrm{in} \mathrm{total}$. information from the fishery associations this is due mainly to high fuel prices and only to a minor extent late setting of the final quota affecting the trade of individual Danish vessel quotas, and less due to the by-catch percentages of other species in the fishery. Trends in yield are shown in Table 5.2.2 and Figures 5.3.2-3.

By-catch of herring, saithe, cod, haddock, whiting, and monkfish at various levels in the small meshed fishery in the North Sea and Skagerrak directed towards Norway pout has been documented (Degel et al., 2006, ICES CM 2007/ACFM:35, (WD 22 and section 16.52.2)), and recent by-catch numbers are given in section 2 of this report. In
general, the by-catch levels of these gadoids have decreased in the Norway pout fishery over the years. Review of scientific documentation reveals that by-catch reduction gear selective devices can be used in the Norway pout fishery, significantly reducing by-catches of juvenile gadoids, larger gadoids, and other non-target species (Nielsen and Madsen, 2006, WD 23 and section 16.5.2.2 of ICES CM 2007/ACFM:35). By-catches of other species should also be taken into account in management of the fishery. Existing technical measures such as the closed Norway pout box, minimum mesh size in the fishery, and by-catch regulations to protect other species have been maintained. A detailed description of the regulations and their background can be found in the Stock Annex.

5.1.3 ICES advice

In September 2008 the advice on North Sea Norway pout was updated with the addition of the $3^{\text {rd }}$ quarter 2008 English and Scottish groundfish surveys. This up-date changed the estimate of the size of the 2007 year class slightly resulting in a slight downward revision of SSB at the beginning of 2008. Based on the estimates of SSB in September 2008, ICES classified the stock at increased risk of suffering reduced reproductive capacity with SSB just below Bpa at the start of 2008.
The targeted fishery for Norway pout was closed in 2005, the first half year 2006, and all of 2007. For these periods ICES advised a closure of the fishery (i.e. a TAC=0 t) in the EC zone a TAC of 5000 t in the Norwegian zone - the latter to allow for bycatches of Norway pout in the directed Norw egian blue whiting fishery.
Recruitment reached historical minima in 2003-2004 and was low in 2006 (39 billions), but was about the long term average (at 80 billions, arithmetic mean) in 2005 (75 billions), 2007 (69 billions), and 2008 (81 billions). Based on the real time management and confirmation of recruitment estimates through consecutive surveys, the fishery was opened for second half of 2006 with a TAC of 95000 t and on $1^{\text {t }}$ January 2008 with a preliminary TAC of 41000 t and a final TAC of 115000 t . On the basis of the average 2008 recruitment ICES advised in October 2008 that catches in 2009 up to 35 000 t corresponding to a fishing mortality of 0.15 could maintain the stock above Bpa in 2010. This advice and the real time management has led to an initial EU TAC of 26 000 t and a Norwegian quota of 1000 t for 2009 following the escapement strategy management plan (see below).
ICES provides advice according to 3 management strategies for the stock (see below). The final 2008 ICES advice for 2009 has, under the escapement strategy (real time management), been a TAC of 35000 t , under the long term fixed TAC strategy a TAC of 50000 t (corresponding to long term $\mathrm{F}=0.17$), and under the long-term fixed fishing mortality or fishing effort strategy (TAE) a TAC on $76000 t$ corresponding to a fixed $\mathrm{F}=0.35$.

ICES advise is that there is a need to ensure that the stock remains high enough to provide food for a variety of predator species. It is advised that by-catches of other species should also be taken into account in management of the fishery. Also it is advised that existing measures to protect other species should be maintained.

Biological reference points for the stock havebeen set by ICES at $\operatorname{Blim}=90000 \mathrm{t}$ as the lowest historical observed biomass (SSB) before $2000(1986,1989)$ and $\mathrm{B}_{\mathrm{pa}}=150000 \mathrm{t}$. However, in 2005 the SSB was as low as 55000 t from which the stock has recovered. No F-based reference points are advised for this stock.

5.1.4 Management up to 2009

There is no specific management objective set for this stock. With present fishing mortality levels the status of the stock is more determined by natural processes and less by the fishery. The European Community has decided to apply the precautionary approach in taking measures to protect and conserve living aquatic resources, to provide for their sustainable exploitation and to minimise the impact of fishing on marine ecosystems.
ICES advised in 2005 real time management of this stock. In previous years the advice was produced in relation to a precautionary TAC, which was set to 198000 t in the EC zone and 50000 t in the Norw egian zone. On basis of the advice for 2005 from ICES, EU and Norway agreed to close the directed Norway pout fishery in 2005 and in the first part of 2006, and in all of 2007. In 2005 and 2007, the TAC was 0 in the EC zone and 5000 t in the Norwegian zone - the latter to allow for by-catches of Norway pout in the directed Norwegian blue whiting fishery. On basis of the real time management advice provided by ICES in spring 2006 EU set a quota on 95.000 t for 2006 (intended for the whole year in the EC zone), while the advice in autumn 2006 taking the low recruitment in 2006 into consideration led to a closure of the fishery again by $1^{\text {st }}$ of January 2007. This advice was reiterated by ICES in May 2007, and resulted in a management where the directed Norway pout fishery continued to be closed for all of 2007. Following the September 2007 real time management advice the fishery was opened again $1^{\text {s }}$ of January 2008 with a preliminary TAC of 41250 t and a final TAC of 115 kt . On basis of the average 2008 recruitment ICES advised in October 2008 a TAC up to 35000 t in 2009 which has led to setting an initial TAC on 26000 t in the EC zone and a Norw egian quota on 1000 t .

In managing this fishery by-catches of other species have been taken into account. Existing technical measures such as the closed Norway pout box, minimum mesh size in the fishery, and by-catch regulations to protect other species have been maintained.

Long term management strategies have been evaluated for this stock. (See section 5.11). An overview of recent relevant management measures and regulations for the Norway pout fishery and the stock can be found in the Stock Annex.

5.2 Data available

5.2.1 Landings

Data for annual nominal landings of Norway pout as officially reported to ICES are shown in Table 5.2.1. Historical data for annual landings as provided by Working Group members are presented in Table 5.2.2, and data for national landings by quarter of year and by geographical area are given in Table 5.2.3.
Both the Danish and Norwegian landings of Norway pout were low in 2008 and the TAC was not reached. The most recent catches have been included in the up-date assessment. However, only limited biological sampling has been performed from this small fishery (see below).

5.2.2 Age compositions in Landings

Age compositions were available from Norway and Denmark (except for Norway 2008). Catch at age by quarter of year is shown in Table 5.2.4. Very few biological
samples were taken from the low Norway pout catches in 2005, first half year 2006 and in 2007.

Landings for the $1^{\text {st }}$ quarter 2009 are very low (below 500 t). At present there is no biological information for this catch, and consequently catches of 0.1 million individuals per age (for age group 1-3) have been assumed for the first quarter in 2009 in the SXSA. Weight at age in the catch for $1^{\text {st }}$ quarter 2009 have been assumed equal to those used for the $1^{\text {st }}$ quarter of 2008.

5.2.3 Weight at age

Mean weight at age in the catch is estimated as a weighted average of Danish and Norw egian data. Mean weight at age in the catch is shown in Table 5.2.5 and thehistorical levels, trends and seasonal variation in this is shown in Figure 5.2.1. In general, the mean w eights at age in the catches are variable between seasons of the year. Mean weight at age in the stock is given in Table 5.2.6. The same mean weight at age in the stock is used for all years. The reason that mean weight at age in catch is not used as an estimate of weight in the stock is mainly because of the smallest 0-group fish are not fully recruited to the fishery in $3^{\text {rd }}$ quarter of the year because of likely strong effects of selectivity in the fishery. The estimation of mean weights at age in the catches and the used mean weights in the stock in the assessment is described in the Stock Annex.

Mean landings weight at age from Danish and Norwegian fishery from 2005-2007 are uncertain because of the few observations. Missing values have been filled in using a combination of sources (values from 2004, from adjacent quarters and areas, and from other countries within the same year). The assumptions of no changes in weight at age in catch in these recent years do not affect assessment output significantly because the catches in the same period were low. Also, mean weights at age values for 2008 are uncertain given low landings and few observations. Among other, Danish data have been applied for the Norwegian catch as there has been no individual sampling in Norway for 2008.

5.2.4 Maturity and natural mortality

Maturity and natural mortality used in the assessment is described in the Stock Annex. Proportion mature and natural mortality by age and quarter used in the assessment is given in Table 5.2.6.

5.2.4.1

The same proportion mature and natural mortality are used for all years in the assessment. The proportion mature used is 0% for the 0 -group, 10% of the 1 -group and 100% of the $2+$-group independent of sex. Preliminary results from an analysis of regionalized survey data on Norway pout maturity, presented in Larsen, Lassen, Nielsen and Sparholt (2001), indicated variation in maturity at age between years and sexes, especially for the 1-group.

The natural mortality is set to 0.4 for all age groups in all seasons that result in an annual natural mortality of 1.6 for all age groups.

In response to the wish from ACFM RG 2006 on a separate description of natural mortality aspects for Norway pout in the North Sea a summary of the September 2006 benchmark assessment on this issue is given here (ICES CM 2006/ACFM:35). Investigations on population dynamics (natural mortality, distribution, and spawn-
ing and maturity as well as growth patterns) of Norway pout in the North Sea are ongoing, and extensive description of that is given in the Stock Annex. Studies presented to the working group in 2001 and published in 2002 indicate that natural mortality may be significantly different between age groups compared to constant as currently assumed in the assessment model Sparholt, Larsen and Nielsen (2002a,b).
Exploratory runs of the SXSA model were presented in the 2001 and 2002 assessment reports as well as in the 2004 and 2006 Norway pout benchmark assessments with revised input data for natural mortality by age based on the results from two papers presented to the working group in 2001, (later published in Sparholt, Larsen and Nielsen, 2002a,b) as well as natural mortality estimates from the North Sea MSVPA model in the 2006 assessment. The resulting SSB, TSB ($3^{\text {rd }}$ quarter of year), TSB ($1^{\text { }}$ quarter of year) and F were compared to those for the accepted run with standard settings. It appeared that the implications of these revised input data are very significant. The results of the exploratory runs have been consistent throughout all years in which comparisons were repeated.

The working group recommended in 2005 that there was a limited benchmark assessment for Norway pout in the 2006 assessment with specific reference to evaluation of effects of using revised natural mortalities, and that the WG on this basis should decide on which natural mortalities to use in the assessment. The benchmarking evaluated three independent sources and data time series for natural mortality and made exploratory SMS assessment model runs for those:

1. Constant natural mortalities by age, quarter and year as used in previous years standard assessment
2. Revised natural mortalities obtained from and based on the results from Sparholt et al (2002a,b)
3. Revised natural mortalities obtained from most recent run with the North Sea MSVPA model (presented and used in the ICES-SGMSNS 2006).

The survey based mortality estimates all indicate age specific differences in Z and M . These mortality estimates show high within-survey variability and, periodically, contradictory patterns between the surveys. Sparholt, Larsen and Nielsen (2002a,b) discussed their results in context of changed catchability in the surveys, migration out of the area, or age specific distribution patterns of Norway pout and concluded that the mortality patterns were not caused by this.
In contrast, the MSVPA estimates indicate rather constant Mbetween age groups and years, and do not provide the most recent estimates of M.
In conclusion, the exploratory runs gave very much similar results and showed no differences in the perception of the stock status and dynamics. However, with respect to the exploratory runs using different natural mortalities no conclusions could be reached as the mortality between age groups was contradictive and inconclusive between periods (variable) from the different sources showing different trends with no obvious biological explanation. On that basis it was in the 2006 benchmark assessment decided that the final assessment continues using the baseline assessment constant values for natural mortality at age and quarter by year as in previous year's assessment. This has been adopted in this year's up-date assessment.

Evaluation of total mortality Z in recent years, where fishing mortality has been very low and where total mortality accordingly approximately equals natural mortality, has been performed and is shown in the September 2007 report (ICES CM

2007/ACFM:18 and 30, Table 5.2.12). The evaluation has been based on catch curve analysis on the most recent survey estimates for Norway pout. The results indicate somewhat different levels of Z between different survey time series mirroring the results from the 2006 benchmark assessment. The overall Z estimates for the period 2003-2007 indicates present levels of Z at age between 1.2-1.9. Also the results confirm the results from the 2006 benchmark assessment on different natural mortality at age. The assessment uses constant values of M at age of 0.4 per quarter (totally 1.6 per year).

5.2.5 Catch, Effort and Research Vessel Data

Description of catch, effort and research vessel data used in the assessment are given in the Stock Annex. Data used in the present assessment are given in Tables 5.2.75.2.11 as described below. No commercial fishery tuning fleets are included for 20052009 except for second half year 2006. Recent catch information for 2008-09 is included in this assessment. Catches in all of 2005 as well as in $1^{\text {st }}$ quarter 2009 were nearly 0 and only very limited information exists about this catch. Consequently, there has been assumed and used low catches of 0.1 million individuals per age (for age groups 1-3) per quarter in the SXSA for 2005 and $1^{\text {st }}$ quarter 2009.

Effort standardization:

The method for effort standardization of the commercial Norway pout fishery tuning fleet is described in the Stock Annex, which has also been used with up-dated data in the May 2009 assessment. Information from $2^{\text {nd }}$ half year 2006 has been included. The results of the standardization are also presented in the Stock Annex

Up-dated effort data from the commercial fishery is given in Tables 5.2.7-5.2.9, and the CPUE trends in the commercial fishery are shown in Table 5.2.10 and Figure 5.2.2.

5.2.5.1 Danish effort data

Table 5.2.7 shows CPUE data by vessel size category and year for the Danish commercial fishery in ICES area IVa. The basis for these data is described in the Stock Annex. However, no Danish effort data exist for the commercial fishery tuning fleet in 2005, the first part of 2006, and in 2007 due to closure of the fishery. Data for 2008 has been included.

5.2.5.1.1 Norwegian effort data

Observed average GRT and effort for the Norwegian commercial fleets are given in Table 5.2.8, however, no Norwegian effort data exist for the commercial fishery tuning fleet in 2005, the first part of 2006, and in 2007. Norwegian effort data for the directed Norway pout fishery in 2008 has not been prepared because the fishery has been on low level.

5.2.5.1.2 Standardized effort data

The resulting combined and standardized Danish and Norwegian effort for the commercial fishery used in the assessment is presented in Table 5.2.9. How ever, no standardized effort data for the commercial fishery tuning fleet is included for 20052008 except for $2^{\text {nd }}$ half year 2006. Standardized effort data for 2008 for the Danish part of the fleet is presented in the table.

5.2.5.1.3 Commercial fishery standardized CPUE data

Combined CPUE indices by age and quarter for the commercial fishery tuning fleet are shown in Table 5.2.10. Trends in CPUE (normalized) by quarterly commercial tuning fleet and survey tuning fleet for each age group and all age groups together are shown in Figure 5.2.2. How ever, no combined CPUE indices by age and quarter for the commercial fishery tuning fleet are used for 2005, first half year 2006 and for 2007 and 2008.

5.2.5.1.4 Research vessel data

Survey indices series of abundance of Norway pout by age and quarter are for the assessment period available from the IBTS (International Bottom Trawl Survey $1^{\text {s }}$ and $3^{\text {rd }}$ quarter) and the EGFS (English Ground Fish Survey, $3^{\text {rd }}$ quarter) and SGFS (Scottish Ground Fish Survey, $3^{\text {rd }}$ quarter), Table 5.2.11. The new survey data from the $1^{\text {st }}$ quarter 2009 IBTS and the $3^{\text {rd }}$ quarter 2008 IBTS research surveys have been included in this assessment (as well as the $3^{\text {rd }}$ quarter 2008 EGFS and SGFS research survey information which also were included in the September 2008 assessment). The survey data time series including the new information is presented in Table5.2.11, as well as trends in survey indices in Figure 5.2.2. Surveys covering the Norway pout stock are described in the Stock Annex. Survey data time series used in tuning of the Norway pout stock assessment are described below.

Revision of assessment tuning fleets

The revision of the tuning fleets used in the benchmark 2004 assessment as used also in the 2005-2006-2007 and May 2008 up-date assessments is summarised in Table 5.3.1. Details of the revision are described in the Stock Annex.

Apart from the up-dated catch data and research survey indices, all other data and data standardization methods used in this assessment are identical to those used and described in the May and September 2008 assessments (see also Table 5.3.1).

5.3 Catch at Age Data Analyses

5.3.1 Review of last year's as sessment

The short term forecast table should highlight the three accepted management strategies and their associated effects on landings, SSB and recruitment.

As noted by the WG, further work is needed on the commercial tuning fleet data. The WG is encouraged to collaborate with SGGEM (Study Group on Gear and Effort Metrics) to investigate possible metrics that could provide more precise estimators of effort. This could also help address the concerns of technological creep associated with the effort control strategy.

The RG recommends an exploration of an alternative stock assessment model that removes commercial lpue data, because there seem to be problems with lpue when the fishery has been closed. The WG should explore the use of survey data only in the assessment.

The WG note that there is an apparent link between effort and F, this relationship should be presented and explored as part of any future benchmark assessments. This could be part of a wider w ork item on issues relating to commercial tuning fleets.

5.3.2 Final Assessment

The SXSA (Seasonal Extended Survivors Analysis) was used to estimate quarterly stock numbers (and fishing mortalities) for Norway pout in the North Sea and Skagerrak in May 2009. A general description of and reference to documentation for the SXSA model is given in the Stock Annex. Stock indices and assessment settings used in the assessment is presented in Tables 5.3.1-2. The SXSA uses the geometric mean for the stock-recruitment relationship (see Table 5.3.6).

In contrast to the September 2008 assessment, no back-shifting of the third quarter survey indices was undertaken, and the recruitment season to the fishery in the assessment is accordingly set to quarter 3 . All other aspects and settings in the assessment are an up-date of the May 2008 and September 2008 assessments.
Results of the SXSA analysis are presented in Table 5.3.1-2 (assessment model parameters, settings, and options), Table 5.3.3 (population numbers at age (recruitment), SSB and TSB), Table 5.3 .4 (fishing mortalities by year), Table 5.3.5 (diagnostics), and Table 5.3.6 (stock summary). The summary of the results of the assessment are shown in Table 5.3.6 and Figures 5.3.1-5.

Fishing mortality has generally been lower than natural mortality and has decreased in the recent decade below the long term average (0.6). Fishing mortality for the $1^{\text {st }}$ and $2^{\text {nd }}$ quarter has decreased to insignificant levels in recent years (F less than 0.05), while fishing mortality for $4^{\text {th }}$ quarter, that historically constitutes the main part of the annual F , had not decreased prior to 2006. Fishing mortality in 2005, the first part of 2006, and in 2007 was close to zero due to the closure of the Norway pout fishery in these periods. Fishing mortality has been low in 2008, and the TAC has not been fished up.

Spawning stock biomass (SSB) decreased continuously from 2001 until 2005 but has in recent years increased again due to the average 2005, 2007 and 2008 year classes and the lowered fishing mortality. The stock biomass fell to a level well below Blim in 2005 which is the lowest level ever recorded. By $1^{\text {s }}$ January 2007 the stock was just above $B_{\text {pa, }}$ and just below by 1 st January 2008 (i.e. at increased risk of suffering reduced reproductive capacity), while the stock by $1^{\text {t }}$ January 2009 is well above Bpa (i.e. show full reproductive capacity).

5.3.3 Comparison with 2008 asses sment

The final, accepted May 2009 SXSA assessment run was compared to the September 2008 SXSA assessment. The results of the comparative run between the May 2009 and the September 2008 assessments are shown in Figure 5.3.5. The resulting outputs of these assessments are almost identical giving similar perceptions of stock status and dynamics. The difference in recruitment is because of use of different recruitment seasons in the two assessments (as described above).

5.4 Historical stock trends

The assessment and historical stock performance is consistent with previous years assessments.

5.5 Recruitment Estimates

The long-term average recruitment (age $0,3^{\text {rd }}$ quarter) is 80 millions (arithmetic mean) and 67 millions (geometric mean) for the period 1983-2009 (Table 5.3.6). Recruitment is highly variable and influences SSB and TSB rapidly due to the short life span of the species. The recruitment in 2005, 2007 and 2008 (age 0, $3^{\text {rd }}$ quarter) has
been around the long term average of 81 billions, while the 2006 year class was weak (38 billions).

5.6 Short-term prognoses

Deterministic short-term prognoses were performed for the Norway pout stock. The forecast was calculated as a stock projection up to $1^{\text {\& }}$ of January 2010 using full assessment information for 2008 and $1^{\text {\& }}$ quarter 2009, i.e. it is based on the SXSA assessment estimate of stock numbers at age at the start of 2009.
The purpose of the forecast is to calculate the catch of Norway pout in 2009 which would result in SSB at or above Bpa $1^{\text {s }}$ of January $2010\left(B_{p a}=150000 t\right)$. The forecast is based on an escapement management strategy but also provides output for the long term fixed E or F management strategy and a long term fixed TAC strategy for Norway pout (see ICES WGNSSK Report ICES CM 2007/ACFM:30 section 5.3, and ICES AGNOP Report ICES CM 2007/ACFM:39, and the ICES AGSANNOP Report ICES CM 2007/ACFM:40 as well as section 5.11 below).

Input to the forecast is given in Table 5.6.1. Observed fishing mortalities for all quarters of 2008 have been used (assessment year). The forecast assumes a 2009 (the forecast year) fishing pattern scaled to long term seasonal exploitation pattern for 19912004 (standardized with yearly Fbar to $F(1,2)=1$) which has been used in the 2007 and 2008 ICES WGNSSK Reports (ICES CM 2007/ACFM:30; ICES CM 2008/ACOM:09) and in the ICES AGNOP Report as well (ICES CM 2007/ACFM:39). Recruitment in the forecast year is assumed to be the $25^{\text {th }}$ percentile $=47878$ millions of the SXSA recruitment estimates ($\mathrm{GM}=66865$ millions) in the $3^{\text {rd }}$ quarter of the year.

A sensitivity analysis of the forecast was run using a fishing pattern scaled to the seasonal exploitation pattern in 2008 (standardized with the 2008 Fbar to $F(1,2)=1$). The input to this alternative forecast is given in Table 5.6.1b. The background for this sensitivity analysis forecast is that 2004 was the last year where the directed Norway pout fishery was open in all seasons of the year, except for 2008 where the fishery was open all of the year in the EU Zone (but only May-August in the Norwegian zone). The catches in 2008 have been relatively low and the exploitation pattern between seasons (and ages) is very different from the average previous long term (19912004) exploitation pattern. The targeting in the small meshed trawl fishery has changed recently wheretargeting of Norway pout has decreased mainly due to high fuel prices.

The weight at age in the catch per quarter is based on estimated mean weight at age in catches during 2003-2006 and 2008. The constant weight at age in stock by year and quarter of year used in the SXSA assessment has also been used in the forecast for 2009.

The results of the forecasts are presented in Table 5.6.2. It can be seen that if the objective is to maintain the spawning stock biomass above B_{pa} by $1^{\text {st }}$ of January 2010 then a catch around 157000 t can be taken in 2009 according to the escapement strategy. Under a fixed F-management-strategy with F around 0.35 a catch around 100000 t can be taken in 2009. Under a fixed TAC strategy a TAC of 50000 t can be taken in 2009 (corresponding to an F around 0.16) according to the long term management strategies.

The results of the sensitivity analysis forecast are presented in Table 5.6.2b; under this alternative scenario a catch around 220000 t can be taken in 2009 according to the escapement strategy.

5.7 Medium-term projections

No medium-term projections are performed for this stock. The stock contains only a few age groups and is highly influenced by recruitment.

5.8 Biological reference points

ICES considers that:	ICES proposes that:
$B_{\lim }$ is 90000 t	B_{pa} be established at 150000 t . Below this value the probability of below average recruitment increases.
Note:	

Technical basis:

$\mathrm{B}_{\lim }=\mathrm{B}_{\text {loss }}=90000 \mathrm{t}$.	$\mathrm{B}_{\mathrm{pa}}=\mathrm{B}_{\mathrm{pa}}=\mathrm{B}_{\lim } \mathrm{e}^{0.30 .441 .65}$ (SD): 150000 t.
Flim $_{\text {lim }}$ None advised.	F_{pa} None advised.

Biomass based reference points have been unchanged since 1997.
Blim is defined as Bloss and is based on the observations of stock developments in SSB (especially in 1989 and 2005) been set to 90000 t . Bpa has been calculated from
$\mathrm{B}_{\mathrm{pa}}=\mathrm{B}_{\lim } \mathrm{e}^{0.30 .4^{*} 1.65}(\mathrm{SD})$.
A SD estimate around $0.3-0.4$ is considered to reflect the real uncertainty in the assessment. This SD-level also corresponds to the level for SD around 0.2-0.3 recommended to use in the manual for the Lowestoft PA Software (CEFAS, 1999). The relationship betw een the Blim and Bpa (90 000 and 150000 t) is 0.6.

5.9 Quality of the assessment

The estimates of the SSB, recruitment and the average fishing mortality of the 1- and 2-group are consistent with the estimates of previous years assessment. This appears from the results of the assessment as well as from Figures 5.3.4 and 5.3.5 with among other the comparisons of the 2008 assessment.
The assessment is considered appropriate to indicate trends in the stock and immediate changes in the stock because of the seasonal assessment taking into account the seasonality in fishery, use seasonal based fishery independent information, and using most recent information about recruitment. The assessment provides stock status and year class strengths of all year classes in the stock up to the first quarter of the assessment year. The real time assessment method with up-date every half year also gives a good indication of the stock status the $1^{\text {s }}$ January the following year based on projection of existing recruitment information in $3^{\text {rd }}$ quarter of the assessment year.

5.10 Status of the stock

Based on the estimates of SSB in September 2008, ICES classified the stock at increased risk of suffering reduced reproductive capacity with SSB just below Bpa at the start of 2008. The most recent estimates of SSB (Q1 2009, 189000 t) indicate full reproductive capacity of the stock again with SSB higher than B_{pa}.

The targeted fishery for Norway pout was closed in 2005, first half year 2006, and in all of 2007 and fishing mortality and effort accordingly reached historical minima in these periods (Table 5.3.6). The fishery was reopened on the $1^{\text {st }}$ of January 2008 but
did not catch the TAC set for 2008. Fishing mortality has generally been lower than the natural mortality for this stock and has decreased in recent years. The estimate for 2008 is 0.12 well below the long term average $F(0.6)$.
Recruitment reached historical minima in 2003-2004 and was low in 2006 (39 billions), but was near to the long term average (at 80 billions, arithmetic mean) in 2005 (75 billions) and 2007 (69 billions) and just above in 2008 (81 billions) (Tables 5.3.3 and Table 5.3.6).

5.11 Management considerations

There are no management objectives for this stock.
From the results of the forecast presented here it can be seen that if the objective is to maintain the spawning stock biomass above $B_{p a}$ by $1^{\text {s }}$ of January 2010 then a catch around 157000 t can be taken in 2009 according to the escapement strategy. Under a fixed F-management-strategy with F around 0.35 a catch around 100000 t can be taken in 2009. Under a fixed TAC strategy a TAC of 50000 t can be taken in 2009 (corresponding to a F around 0.16) according to the long term management strategies (see section 5.11 .1 below).

On basis of the average 2008 recruitment ICES advised in October 2008 a TAC up to 35000 t in 2009 which has resulted in management with an initial TAC set for 2009 on 26000 t in the EC zone and a TAC of 1000 t in the Norwegian zone. Up to May 2009 only a very small catch has been taken in the Danish and Norwegian commercial fisheries.

There is consistent bi-annual information available to perform real time monitoring and management of the stock. This can be carried out both with fishery independent and fishery dependent information as well as a combination of those. Real time advice (forecast) and management options for 2010 will be provided for the stock in autumn 2009.

Norway pout is a short lived species. The population dynamics of Norway pout in the North Sea and Skagerrak are very dependent on changes caused by recruitment variation and variation in predation (or other natural) mortality, and less by the fishery. Recruitment is highly variable and influences SSB and TSB rapidly due to the short life span of the species.

There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. Natural mortality levels by age and season used in the stock assessment reflect the predation mortality levels estimated for this stock from the most recent multi-species stock assessment performed by ICES (ICES-SGMSNS 2006).

An overview of recent relevant management measures and regulations for the Norway pout fishery and the stock can be found in the Stock Annex.

Historically, the fishery includes bycatches especially of haddock, whiting, saithe, and herring. Existing technical measures to protect these bycatch species should be maintained or improved. Bycatches of these species have been low in the recent decade. Sorting grids in combination with square mesh panels have been shown to reduce bycatches of whiting and haddock by 57% and 37%, respectively (Eigaard and Holst, 2004; ICES CM 2006/ACFM:35); ICES suggests that these devices (or modified forms of those) should be brought into use in the fishery. The introduction of these technical measures should be followed up by adequate control measures of landings
or catches at sea to ensure effective implementation of the existing bycatch measures. An overview of recent relevant management measures and regulations for the Norway pout fishery and the stock can be found in the Stock Annex.

5.11.1 Long term management strategies

ICES has evaluated and commented on three management strategies, following requests from managers - fixed fishing mortality ($\mathrm{F}=0.35$), Fixed TAC (50000 t), and a variable TAC escapement strategy. The evaluation shows that all three management strategies are capable of generating stock trends that stay away from Blim with a high probability in the long term and are, therefore, considered to be in accordance with the precautionary approach. ICES does not recommend any particular one of the strategies.
The choice between different strategies depends on the requirements that fisheries managers and stakeholders have regarding stability in catches or the overall level of the catches. The escapement strategy has higher long term yield compared to the fixed fishing mortality strategy, but at the cost of a substantially higher probability of having closures in the fishery. If the continuity of the fishery is an important property, the fixed F (equivalent to fixed effort) strategy will perform better.
A detailed description of the long term management strategies and management plan evaluations can be found in the Stock Annex and in the ICES AGNOP 2007 (ICES CM 2007/ACFM:39), ICES WGNSSK 2007 (ICES CM 2007/ACFM:30) and the ICES AGSANNOP (ICES CM 2007/ACFM:40) reports.

5.12 Other issues

Recommendations for future assessments:
Coming benchmark assessment should consider new biological information (new estimates of spawning maturity, estimates of growth and growth parameters as well as of natural mortality published recently in ICES J. Mar. Sci. should be evaluated in context of the assessment). This includes recent developments in research survey based natural mortality estimates and new research results on natural mortality for the stock as well as up-dated natural mortality from the MSVPA model. Also variation in maturity at age as well as growth variation in the stock should be considered in relation to the assessment based on new research results. It is suggested that variable M be examined to determine the amount of biomass removed via predation.
Furthermore, consideration of revision of the tuning fleets with special focus on the commercial tuning fleets should be done in a coming benchmark assessment (see also the May 2007 assessment ICES CM 2007/ACFM:18 and 30, as well as the Stock Annex). This includes evaluation of the quality of the assessment with respect to inclusion of historical time series for fisheries data. The fluctuations in the fisheries effort over times and betw een seasons should be evaluated.

Evaluation of survey based assessment and/or more simple assessment methods: Assessment of stock status based exclusively on survey indices should be considered and robustness of survey indices should be considered.
Recent developments in relation to implementation of seasonal stochastic assessment models not dependent on constant exploitation patterns (F-patterns between years and ages) should be considered for the assessment of the stock.

New research findings on developments in by-catch reducing gear devices should be reported and evaluated under ecosystem aspects and fisheries aspects in relation to future benchmark assessment.

Trends and dynamics in landings and other available relevant information of Norway pout in Vla should be evaluated and brought forward to ACOM.

Table 5.2.1 NORWAY POUT IV and IIIa. Nominal landings (tonnes) from the North Sea and Skagerrak / Kattegat, ICES areas IV and IIIa in the period 1998-2008, as officially reported to ICES and EU.

By-catches of Norway pout in other (small meshed) fishery included.

Country	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Denmark	39,319	133,149	44,818	68,858	12,223	10,762	941***	38,676	2,032 *****	32,158
Faroe Islands	2,534		49	3,367	2,199	-	-	-	-	-
Netherlands	-	-	-	-	-	-	-	-	-	-
Germany	-	-	-	-	-	27	-	15	-	-
Norway	44,841	48,061	17,158	23,657	11,357	4,958	311	13,618	4,712	6,650
Sweden	-	-	-	-	-	-	-	-	-	10
Total	86,694	181,210	62,025	95,882	25,779	15,747	1,092	52,309	6,744	38,818

*Preliminary.

Country	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Denmark	5,299	158	632	556	191	473	-	1248	0	244
Germany	-	2	-	-	-	26	-	19	-	3
Netherlands	-	3	-	-	-	-	-	-	-	-
Norway	-	34	-	-	-	-	-	2	0	0
Sweden	-	-	-	-	-	2	-	-	-	-
UK (E/W/NI)	-	+	-	+	-	-	-	-	-	-
UK (Scotland)	-	-	-	-	-	-	-	-	-	-
Total	5,299	197	632	556	191	501	0	1,269	0	247

Country	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Denmark	514	182	304						-	
Netherlands	+	-	-						-	-
UK (E/W/NI)	-	-	+						-	-
Total	0	0	0	0		0			0	0

${ }^{*}$ Preliminary.

Country	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Denmark	51,812	147,852	59,069	73,194	16,649	11,345	941***	39,942	2,056	32,558
Faroe Islands	2,534	0	49	3,367	2,249	0	0	0	0	0
Norway	44,841	48,095	17,158	23,753	11,387	4,999	311	13,622	4,746	6,684
Sweden	0	133	780	0	0	2	0	0	0	10
Netherlands	0	3	0	0	0	0	0	0	0	0
Germany	0	2	0	0	0	107	0	34	0	3
UK	0	0	0	0	0	0	0	0	0	0
Total nominal landings	99,187	196,085	77,056	100,314	30,285	16,453	1,252	53,598	6,802	39,255
By-catch of other species and other	-7,187	-11,685	-11,456	-23,614	-5,385	-2,953	-	-6,972	-	-3,117
WG estimate of total landings (IV+IIIaN)	92000	184400	65600	76700	24900	13500	-	46626	-	36138
Agreed TAC	220000	220000	211200	198000	198000	198000	0****	95000	0****	114616

* provisional
** provisional
*** 781 ton from trial fishery (directed fishery); 160 ton from by-catches in other fisheries
**** A by-catch qouta of 5000 t has been set.
***** 681 t taken in trial fishery; 1300 t in by-catches in other (small meshed) fisheries
+ Landings less than 1
n /a not available

Table 5.2.2 NORWAY POUT IV and IIIa. Annual landings ('000 t) in the North Sea and Skagerrak (not incl. Kattegat, IIIaS) by country, for 1961-2008 (Data provided by Working Group members). (Norwegian landing data include landings of by-catch of other species). Includes bycatch of Norway pout in other (small meshed) fisheries).

* 781 t taken in a trial fishery; 160 t in by-catches in other (small meshed) fisheries.
** 681 t taken in trial fishery; 1300 t in by-catches in other (small meshed) fisheries.

Table 5.2.3 NORWAY POUT IV and IIIa. National landings (\mathbf{t}) by quarter of year 19932008. (Data provided by Working Group members. Norwegian landing data include landings of by-catch of other species). (By-catch of Norway pout in other (small meshed) fisheries included).

Year Quarter Area		Denmark									Norway		Total
		IllaN	IIIaS	Div. Illa	IVaE	IVaW	IVb	IVc	Div. IV	Div. IV + Illan	IVaE	Div. IV	Div. IV + IllaN
1994	1	568	75	643	18,660	3,588	533	-	22,781	23,350			
	2	4	0	4	511	170	-	-	681	685			
	3	2,137	74	2,211	5,674	12,604	493	-	18,772	20,908			
	4	3,623	116	3,739	5,597	49,935	91	-	55,622	59,246			
	Total	6,332	265	6,598	30,442	66,298	1,117	-	97,857	104,189			
1995	1	576	9	585	19,421	1,336	7	-	20,764	21,339	15521	15521	36,860
	2	10,495	290	10,793	2,841	30	3,670	-	6,540	17,035	10639	10639	27,674
	3	20,563	976	21,540	13,316	17,681	11,445	-	42,442	63,004	5790	5790	68,794
	4	14,748	2,681	17,430	10,812	56,159	1,426	-	68,396	83,145	11131	11131	94,276
	Total	46,382	3,956	50,347	46,390	75,205	16,547	-	138,142	184,524	43,081	43081	227,605
1996	1	1,231	164	1,395	6,133	3,149	658	2	9,943	11,174	10604	10604	21,778
	2	7,323	970	8,293	1,018	452	1,476	-	2,946	10,269	4281	4281	14,550
	3	20,176	836	21,012	7,119	17,553	1,517	-	26,188	46,364	27466	27466	73,830
	4	5,028	500	5,528	9,640	25,498	42	-	35,180	40,208	5466	5466	45,674
	Total	33,758	2,470	36,228	23,910	46,652	3,692	2	74,257	108,015	47,817	47817	155,832
1997	1	2,707	460	3,167	6,203	2,219	7	-	8,429	11,137	4183	4183	15,320
	2	5,656	200	5,857	141	-	45		185	5,842	8466	8466	14,308
	3	16,432	649	17,081	19,054	21,024	740	-	40,818	57,250	21546	21546	78,796
	4	4,464	1,042	5,505	6,555	38,202	7		44,765	49,228	4884	4884	54,112
	Total	29,259	2,351	31,610	31,953	61,445	799	-	94,197	123,456	39,079	39079	162,535
1998	1	1,117	317	1,434	7,111	2,292	-	-	9,403	10,520	8913	8913	19,433
	2	3,881	103	3,984	131	5	124	-	259	4,140	7885	7885	12,025
	3	6,011	406	6,417	7,161	1,763	2,372	-	11,297	17,308	3559	3559	20,867
	4	2,161	677	2,838	1,051	17,752	77	-	18,880	21,041	1778	1778	22,819
	Total	13,171	1,503	14,673	15,454	21,811	2,573	-	39,838	53,009	22,135	22135	75,144
1999	1	4	12	15	2,769	1,246	1	-	4,016	4,020	3021	3021	7,041
	2	1,568	36	1,605	953	361	418	-	1,731	3,300	10321	10321	13,621
	3	3,094	109	3,203	7,500	3,710	2,584	-	13,794	16,887	24449	24449	41,336
	4	2,156	517	2,673	3,577	16,921	928	1	21,426	23,583	6385	6385	29,968
	Total	6,822	674	7,496	14,799	22,237	3,931	1	40,968	47,790	44,176	44176	91,966
2000	1	0	11	12	3,726	1,038	-	-	4,764	4,765	5440	5440	10,205
	2	929	15	944	684	22	227	-	933	1,862	9779	9779	11,641
	3	7,380	139	7,519	1,708	5,613	515	-	7,836	15,216	28428	28428	43,644
	4	947	209	1,157	1,656	111,732	76	-	113,464	114,411	4334	4334	118,745
	Total	9,257	375	9,631	7,774	118,406	818	-	126,998	136,255	47,981	47981	184,236
2001	1			302	7,341	9,734	103	72	17,250	17,250	3838	3838	21,088
	2			2,174	31	30	269	-	330	330	9268	9268	9,598
	3			2,006	15	154	191	-	360	360	2263	2263	2,623
	4			3,059	2,553	19,826	329	-	22,708	22,708	1426	1426	24,134
	Total			7,541	9,940	29,744	892	72	40,648	40,648	16,795	16795	57,443
2002	1	-	1	1	4,869	1,660	114	-	6,643	6,643	1896	1896	8,539
	2	883	161	1,045	56	9	22	-	87	970	5563	5563	6,533
	3	1,567	213	1,778	2,234	14,739	104	-	17,077	18,644	14147	14147	32,791
	4	393	100	492	1,787	24,273	335	-	26,395	26,788	2033	2033	28,821
	Total	2,843	475	3,316	8,946	40,681	575	-	50,202	53,045	23,639	23639	76,684
2003	1	-	1	1	615	581	22	-	1,218	1,218	1977	1977	3,195
	2	246	160	406	76		22	-	98	344	2773	2773	3,117
	3	2,984	1,005	3,989	172	1,613	89	-	1,874	4,858	5989	5989	10,847
	4	188	547	735	0	6270	457	-	6,727	6,915	644	644	7,559
	Total	3,418	1,713	5,131	863	8,464	590	-	9,917	13,335	11,383	11,383	24,718
2004		316	-	316	87	650	-	-		1,053	989	989	
	2	.	-	-	-	-	7	-	7	7	660	660	667
	3	14	-	14	289	1,195	9	-	1,493	1,507	2484	2484	3,991
	4	13	-	13	93	5,683	107	-	5,883	5,896	865	865	6,761
	Total	343	-	343	469	7,528	123	-	8,120	8,463	4,998	4,998	13,461
2005		-	-	-		-	-	-	9	9	12	12	21
	2	-	-	-	151	-	-	-	151	151	352	352	503
	3	-	-	-	781	-	-	-	781	781	387	387	1,168
	4	-	-	-	941	-	-	-	941	941	211	211	, 211
	Total	-	-	-	941	-	-	-	941	941	962	962	1,903
2006	1	-	-	-	75	83	-	-	158	158	2,205	2205	2,363
	2	-	-	-	-	-	15	-	15	15	2,846	2846	2,861
	3	114	-	114	-	649	20	-	669	783	5,749	5749	6,532
	4	3	-	3	-	34,262	-	-	34,262	34,265	605	605	34,870
	Total	117	-	117	75	34,994	35	-	35,104	35,221		11,405	46,626
2007	1	-	-	-	561	789	-	-	1,350	1,350	74	74	1,424
	2	-	-	-	4	-	-	-	4	4	1,097	1097	1,101
	3	1	2	3	-	-	-	-	-	1	2,429	2429	2,430
	4	-	-	-	-	682	-	-	682	682	155	155	837
	Total	1	2	3	565	1,471	-	-	2,036	2,037		3,755	5,792
2008	1	125	-	125	19	86	123	-	228	353	7	7	360
	2	-	-	-	-	-	30	-	30	30	1,803	1803	1,833
	3	-	-	-	-	6,102	-	-	6,102	6,102	3,582	3582	9,684
	4	-	-	-	-	22,686	1,239	-	23,925	23,925	336	336	24,261
	Total	125	-	125	19	28,874	1,392	-	30,285	30,410		5,728	36,138

Table 5.2.4 NORWAY POUT in IV and IIIaN (Skagerrak). Catch in numbers at age by quarter (millions). SOP is given in tonnes. Data for 1990 were estimated within the SXSA program used in the 1996 assessment.

Age	Year	1983				1984				1985			
	Quarter	1	2	3	4	1	2	3	4	1	2	3	4
0		0	0	446	2671	0	0	1	2231	0	0	6	678
1		4,207	1826	5825	4296	2,759	2252	5290	3492	2,264	857	1400	2991
2		1,297	1234	1574	379	1,375	1165	1683	734	1,364	145	793	174
3		15	10	17	7	143	269	8	0	192	13	19	0
4+		0	2	0	0	0	0	0	0	1	0	0	0
SOP		58587	69964	216106	131207	56790	56532	152291	110942	57464	15509	62489	92017
Age	Year	1986				1987				1988			
	Quarter	1	2	3	4	1	2	3	4	1	2	3	4
0		0	0	0	5572	0	0	8	227	0	0	741	3146
1		396	260	1186	1791	2687	1075	1627	2151	249	95	183	632
2		1069	87	245	39	401	60	171	233	700	74	250	405
3		72	3	6	0	12	0	0	5	20	0	0	0
4+		3	0	0	0	1	0	0	0	0	0	0	0
SOP		37889	7657	45085	89993	33894	15435	38729	60847	22181	3559	21793	61762
Age	Year	1989				1990				1991			
	Quarter	1	2	3	4	1	2	3	4	1	2	3	4
0		0	0	159	4854	0	0	20	993	0	0	734	3486
1		1736	678	1672	1741	1840	1780	971	1181	1501	636	1519	1048
2		48	133	266	93	584	572	185	116	1336	404	215	187
3		6	6	5	13	20	19	6	4	93	19	22	18
4+		0	0	0	0	10	0	0	0	6	0	0	0
SOP		15379	13234	55066	82880	28287	39713	26156	45242	42776	20786	62518	64380
Age	Year	1992				1993				1994			
	Quarter	1	2	3	4	1	2	3	4	1	2	3	4
0		0	0	879	954	0	0	96	1175	0	0	647	4238
1		3556	1522	3457	2784	1942	813	1147	1050	1975	372	1029	1148
2		1086	293	389	267	699	473	912	445	591	285	421	134
3		118	20	1	2	15	58	19	2	56	29	71	0
4+		3	0	0	0	0	0	0	0	0	0	0	0
SOP		64224	27973	114122	96177	36206	29291	62290	53470	34575	15373	53799	79838
Age	Year	1995				1996				1997			
	Quarter	1	2	3	4	1	2	3	4	1	2	3	4
0		0	0	700	1692	0	0	724	2517	0	0	109	343
1		3992	1905	2545	3348	535	560	1043	650	672	99	3090	1922
2		240	256	47	59	772	201	1002	333	325	131	372	207
3		6	32	3	3	14	38	37	0	79	119	105	35
4+		0	0	0	0	0	0	0	0	0	0	0	0
SOP		36942	28019	69763	97048	21888	13366	74631	46194	15320	8708	78809	54100
Age	Year	1998				1999				2000			
	Quarter	1	2	3	4	1	2	3	4	1	2	3	4
0		0	0	94	339	0	0	41	1127	0	0	73	302
1		261	210	411	531	202	318	1298	576	653	280	1368	4616
2		690	310	332	215	128	220	338	160	185	207	266	245
3		47	18	2	13	73	93	35	23	3	48	20	6
4+		8	24	0	0	1	0	0	0	0	0	0	0
SOP		19562	12026	20866	22830	7833	12535	41445	30497	10207	11589	44173	119001
Age	Year	2001				2002				2003			
	Quarter	1	2	3	4	1	2	3	4	1	2	3	4
0		0	0	32	368	0	0	340	290	0	0	7	1
1		220	133	122	267	485	351	621	473	59	64	191	54
2		845	246	27	439	148	24	284	347	76	49	121	161
3		35	100	1	1	17	5	24	26	22	25	16	32
4+		0	0	0	0	0	0	0	0	0	0	0	1
SOP		21400	11778	4630	26565	8553	6686	32922	28947	3190	3106	10842	7549
Age	Year	2004				2005				2006			
	Quarter	1	2	3	4	1	2	3	4	1	2	3	4
0		0	0	14	57	*	*	*	*			10	368
1		13	4	51	100	*	*	*	*	30	56	130	1086
2		55	16	51	78	*	*	*	*	52	45	65	50
3		9	6	7	2	*	*	*	*	9	24	7	1
4+		0	0	0	0	*	*	*	*	0	0	0	0
SOP		2040	667	4018	6762	8	8	13	13	2205	2848	6551	34949
Age	Year Quarter	2007 1	2	3	4	2008 1	2	3	4				
0		0	0	0	0	0	0	0	1179				
1		20	41	32	10	5	54	166	438				
2		43	26	16	6	7	41	115	31				
3		0	0	2	1	0	0	0	0				
${ }_{\text {4+ }}^{+}$		0	0	0	0	0	0	0	0				
		1428	1100	2430	838	271	1840	8532	24111				

Table 5.2.5 NORWAYPOUT in IV and IIIaN (Skagerrak). Mean weights (grams) at age in catch, by quarter 1983-2007, from Danish and Norwegian catches combined. Data for 1974 to 1982 are assumed to be the same as in 1983. See footnote concerning data from 2005-2008.

Year Quarter of year	1983				1984				1985			
Age 0			4.00	6.00			6.54	6.54			8.37	6.23
	7.00	15.00	25.00	23.00	6.55	8.97	17.83	20.22	7.86	12.56	23.10	26.97
	22.00	34.00	43.00	42.00	24.04	22.66	34.28	35.07	22.7	28.81	36.52	40.90
	40.00	50.00	60.00	58.00	39.54	37.00	34.10	46.23	45.26	43.38	58.99	
									41.80			
Year Quarter of year	1986				1987				1988			
	1	2	3	4	1	2	3	4	1	2	3	4
Age				7.20			5.80	7.40			9.42	7.91
	6.69	14.49	28.81	26.90	8.13	12.59	20.16	23.36	9.23	11.61	26.54	30.60
	29.74	42.92	43.39	44.00	28.26	31.51	34.53	37.32	27.31	33.26	39.82	43.31
	44.08	55.39	47.60		52.93			46.60	38.38			
	82.51				63.09				69.48			
Year Quarter of year	1989				1990				1991			
	1	2	3	4	1	2	3	4	1	2	3	4
Age			7.48	6.69			6.40	6.67			6.06	6.64
	7.98	13.49	26.58	26.76	6.51	13.75	20.29	28.70	7.85	12.95	30.95	30.65
	26.74	28.70	35.44	34.70	25.47	25.30	32.92	38.90	20.54	28.75	44.28	43.10
	39.95	44.39		46.50	37.72	40.35	39.40	52.94	35.43	49.87	67.25	59.37
					68.00				44.30			
Year	1992				1993				1994			
Quarter of year	1	2	3	4	1	2	3	4	1	2	3	4
Age		8.00	6.70	8.14			4.40	8.14			5.40	8.81
	8.78	11.71	26.52	27.49	9.32	14.76	25.03	26.24	8.56	15.22	29.26	31.23
	25.73	31.25	42.42	44.14	24.94	30.58	35.19	36.44	25.91	29.27	38.91	49.59
	41.80	49.49	50.00	50.30	46.50	48.73	55.40	70.80	42.09	46.88	53.95	
	43.90											
Year Quarter of year	1995				1996				1997			
	1	2	3	4	1	2	3	4	1	2	3	4
Age 0			5.01	7.19			3.88	5.95			3.61	10.18
	7.70	10.99	25.37	24.6	8.95	12.06	27.81	28.09	7.01	11.69	20.14	22.11
	24.69	22.95	33.40	39.57	21.47	25.72	40.90	38.81	23.11	26.40	31.13	32.69
	50.78	37.69	45.56	57.00	37.58	37.94	50.44	56.00	39.11	34.47	44.03	38.62
Year Quarter of year	1998				1999				2000			
	1	2	3	4	1	2	3	4	1	2	3	4
Age 0			4.82	8.32			2.84	7.56			7.21	13.86
	8.76	12.55	23.82	24.33	8.98	12.40	22.16	25.60	10.05	15.65	23.76	22.98
	22.16	25.27	31.73	30.93	25.84	24.15	32.66	37.74	19.21	25.14	38.90	34.48
	34.84	32.18	44.92	33.24	36.66	35.24	43.98	51.63	32.10	41.30	39.61	50.04
	42.40	40.00			46.57	46.57						
Year Quarter of year	2001				2002				2003			
	1	2	3	4	1	2	3	4	1	2	3	4
Age 0			6.34	7.90			7.28	7.20			9.12	9.79
	8.34	16.79	27.00	30.01	8.59	16.40	27.13	27.47	11.58	13.13	28.33	15.98
	21.50	23.57	39.54	35.51	25.98	30.39	43.37	36.87	22.85	26.19	38.01	31.87
	39.84	37.63	54.20	55.70	32.30	40.10	54.11	41.28	34.96	39.89	46.24	45.79
											70.00	70.00
Year Quarter of year	2004				2005				2006			
	1	2	3	4	1	2	3	4	1	2	3	4
Age 0 1 2 3 4			9.80	7.89			9.8	7.89			8.90	8.90
	11.54	14.63	31.02	31.75	11.97	14.65	31.02	31.75	14.80	14.70	27.42	26.92
	27.41	26.22	38.44	39.31	27.90	26.24	38.44	39.31	27.20	26.24	39.16	47.80
	41.52	34.80	49.50	49.80	41.36	34.80	49.50	49.80	40.60	34.80	49.80	48.50
Year Quarter of year	2007				2008							
	1	2	3	4	1	2	3	4				
Age 0 1 2 3 4			8.9	8.9				9.9				
	7.8	7.8	45.00	45.00	11.0	11.0	26.8	24.40				
	29.86	29.86	57.07	57.07	29.8	29.8	35.6	56.0				
	41.52	34.80	56.22	56.22	56.0	56.0						

Table 5.2.6 NORWAY POUT IV and IIIaN (Skagerrak). Mean weight at age in the stock, proportion mature and natural mortality used in the assessment (as well as revised natural mortality used in previous exploratory assessment runs).

Age	Weight (g)				Proportion mature	M (quarterly)	Revised M vers.1 (quarterly) (Exploratory run)
	Q1	Q2	Q3	Q4			0.25
0	-	-	4	6	0	0.4	0.25
1	7	15	25	23	0.1	0.4	0.55
2	22	34	43	42	1	0.4	0.75
3	40	50	60	58	1	0.4	

Table 5.2.7 NORWAY POUT IV and IIIaN (Skagerrak). Danish CPUE data (tonnes / fishing day) and fishing activities by vessel category for 1988-2008. Non-standardized CP UE-data for the Danish part of the commercial tuning fleet. (Logbook information).

Vessel GRT	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
$51-100$	20.27	14.58	10.03	12.56	31.75	31	24.8	29.53	-	20
$101-150$	18.83	19.59	17.38	24.14	26.42	23.72	26.76	38.96	20.48	22.68
$151-200$	22.71	23.17	25.6	28.22	34.2	27.36	31.52	34.73	22.05	27.45
$201-250$	30.44	26.1	24.87	29.74	36	27.76	40.59	39.34	24.96	30.59
$251-300$	23.29	26.14	21.3	28.15	31.9	32.05	36.98	38.84	31.43	32.55
$301-$	38.81	28.58	24.96	36.48	42.6	34.89	44.91	57.9	39.14	43.01
1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
16.85	12.43	29.13	-	20.45	-	-	-	-	-	-
19.68	26.69	48.55	25.35	17.09	12.94	8.88	n / a^{*}	-	n / a^{*}	-
17.48	23.98	45.92	20.02	21.73	10.8	5.50	n / a^{*}	41.11	n / a^{*}	-
32.32	31	64.33	52.95	46.36	30.86	37.14	n / a^{*}	60.39	n / a^{*}	79.13

[^0]Table 5.2.8 NORWAY POUT IV and IIIaN (Skagerrak). Effort in days fishing and a verage GRT of Norwegian vessels fishing for Norway pout by quarter, 1983-2008.

	Quarter 1		Quarter 2		Quarter 3		Quarter 4	
Year	Effort	Aver. GRT						
1983	293	167.6	1168	168.4	2039	159.9	552	171.7
1984	509	178.5	1442	141.6	1576	161.2	315	212.4
1985	363	166.9	417	169.1	230	202.8	250	221.4
1986	429	184.3	598	148.2	195	197.4	222	226.0
1987	412	199.3	555	170.5	208	158.4	334	196.3
1988	296	216.4	152	146.5	73	191.1	590	202.9
1989	132	228.5	586	113.5	1054	192.1	1687	178.7
1990	369	211.0	2022	171.7	1102	193.9	1143	187.6
1991	774	196.1	820	180.0	1013	179.4	836	187.7
1992	847	206.3	352	181.3	1030	202.2	1133	199.8
1993	475	227.5	1045	206.6	1129	217.8	501	219.8
1994	436	226.5	450	223.5	1302	212.0	686	211.4
1995	545	223.6	237	233.8	155	221.7	297	218.1
1996	456	213.6	136	219.9	547	208.3	132	207.2
1997	132	202.4	193	218.9	601	194.8	218	182.3
1998	497	192.6	272	213.6	263	176.8	203	193.8
1999	267	173.0	735	180.1	1165	187.4	229	166.9
2000	294	197.1	348	180.7	929	205.3	196	219.3
2001	252	203.4	297	192.9	130	165.0	65	219.4
2002	90	208.6	246	189.1	1022	211.7	205	182.2
2003	162	219.1	320	215.3	550	252.8	75	208.4
2004	94	214.6	85	196.7	210	220.9	99	197.9
2005*	0	0.0	0	0.0	0	0.0	0	0.0
2006*	0	0.0	0	0.0	169	267.1	132	279.0
2007*	0	0.0	0	0.0	0	0.0	0	0.0
2008**	**	**	**	**	**	**	**	**

* 0 -values in all of 2005 and 2007 as well as in first half year 2006 are due to closure of the fishery (no directed fishery for Norway pout)
** No effort data provided from Norway due to small directed Norway pout fishery.

Table 5.2.9 NORWAYP OUT IV and IIIaN (Skagerak). Combined Danish and Norwegian fishing effort (standardised) to be used in the assessment.

Year	Quarter 1			Quarter 2			Quarter 3			Quarter 4			Year total		
	Norway	Denmark	Total												
1987	441	1125	1566	547	31	578	197	1192	1388	355	1634	1989	1540	3981	5522
1988	315	881	1196	144	13	156	75	416	491	617	1891	2507	1150	3201	4351
1989	146	776	922	485	195	680	1093	1746	2839	1701	2280	3981	3424	4999	8423
1990	406	990	1395	2002	87	2089	1162	462	1624	1185	1650	2835	4754	3189	7943
1991	824	1316	2140	833	33	866	1027	484	1511	869	1721	2590	3553	3554	7107
1992	866	2089	2955	354	17	371	1051	1527	2578	1154	1240	2393	3424	4873	8298
1993	483	1232	1715	1056	37	1094	1145	1557	2702	508	1668	2176	3193	4494	7687
1994	463	1263	1726	477	74	551	1363	616	1978	717	1224	1942	3020	3177	6197
1995	577	808	1385	254	99	352	164	851	1015	313	1483	1796	1308	3241	4548
1996	478	577	1055	144	184	328	570	758	1328	137	1237	1374	1329	2756	4085
1997	137	393	530	203	17	220	617	1241	1857	220	1118	1338	1177	2768	3945
1998	509	445	954	285	34	319	264	560	824	208	455	663	1265	1494	2760
1999	266	304	571	740	56	796	1184	386	1570	226	731	957	2417	1477	3894
2000	303	302	605	351	75	425	965	220	1185	207	1898	2104	1825	2494	4319
2001	261	440	701	304	15	319	128	48	176	69	540	608	762	1042	1804
2002	94	387	480	251	21	271	1069	674	1744	207	550	757	1621	1632	3252
2003	171	211	382	336	15	351	599	79	678	78	101	179	1184	406	1590
2004	99	151	246	87	35	122	222	65	287	102	95	197	510	346	856
2005*	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2006*	0	0	0	0	0	0	186	32		147	641	787	333	673	1005
2007*	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2008**	n / a	6	6	n/a	0	0	n / a	161	161	n/a	244	244	n/a	411	411

Table 5.2.10 NORWAY POUT IV and IIIaN (Skagerrak). CPUE indices ('000s per fishing day) by age and quarter from Danish and Norwegian commercial fishery (CF) in the North Sea (Area IV, commercial tuning fleet).

Year	CF, 1st quarter				CF, 3rd quarter				CF, 4th quarter			
	0-group	1-group	2-group	3-group	0-group	1-group	2-group	3-group	0-group	1-group	2-group	3-group
1982		2144.5	169.0	87.9		1320.2	86.5	12.4	368.4	1050.5	16.0	0.0
1983	.	1524.2	470.0	5.4	.	969.6	262.0	2.8	604.9	972.9	85.9	1.7
1984	.	1137.9	566.8	59.1		990.2	314.9	1.5	462.0	723.1	152.1	0.0
1985	.	877.1	528.2	74.3		599.0	339.0	8.3	183.6	809.5	47.2	0.0
1986	.	108.5	292.9	19.8	.	531.1	109.7	2.7	892.9	277.1	5.9	0.0
1987	.	1701.8	254.2	7.7	.	1141.9	118.9	0.0	111.1	1074.9	115.6	2.5
1988	.	205.5	584.0	16.4	.	373.1	510.0	0.0	1175.5	252.0	161.5	0.0
1989	.	1862.8	52.1	7.6	.	386.3	69.7	0.0	1185.8	488.6	22.7	3.2
1990	.	1065.1	451.5	25.7	.	571.3	126.7	7.2	444.6	394.9	39.7	2.3
1991	.	693.9	623.8	43.4		668.6	44.0	1.0	1006.5	397.7	71.6	6.6
1992	.	1130.2	361.0	39.7	.	1011.6	144.2	0.4	190.5	1104.5	106.1	1.0
1993	.	1122.3	403.7	7.9	.	384.9	328.9	6.9	427.1	474.8	203.2	0.8
1994	.	1102.1	341.3	32.6	.	520.1	203.4	35.7	1953.6	591.0	69.0	0.0
1995	.	2850.1	171.3	4.0	.	1864.2	38.6	3.0	198.7	1705.6	33.0	1.7
1996	.	365.7	732.0	13.2	.	346.7	715.5	27.5	1066.5	473.4	242.5	0.2
1997	.	990.6	480.2	146.8	.	1256.7	154.4	56.5	75.2	1347.0	152.9	25.9
1998	.	150.0	723.5	49.3	.	319.5	350.1	1.1	233.1	775.7	322.9	20.0
1999	.	351.0	224.6	128.0	.	726.4	213.8	22.0	1086.8	516.2	166.9	24.1
2000	.	1079.3	305.3	4.5	.	895.6	207.0	17.2	122.2	2180.3	114.9	2.8
2001	.	300.7	1198.6	50.1		369.2	142.7	6.3	559.2	322.6	720.8	1.5
2002	.	1010.9	308.4	34.8	.	321.3	157.9	13.5	383.2	602.0	454.9	34.9
2003	.	153.6	200.1	57.2	.	174.7	156.1	23.3	3.9	276.4	893.3	178.2
2004	.	26.9	189.7	35.1		176.1	177.6	24.0	289.1	505.5	394.6	8.6
2005	.											
2006	.		.			588.6	294.2	32.6	467.1	1379.8	64.0	0.9
2007	-		
2008	

Table 5.2.11 NORWAY POUT IV and IIIA (Skagerrak). Research vessel indices (CPUE in catch in number per trawl hour) of abundance for Norway pout.

Year	IBTS/IYFS ${ }^{1}$ February ($1^{\text {st }} \mathrm{Q}$)			EGFS ${ }^{2,3}$ August				SGFS ${ }^{4}$ August				IBTS 3 ${ }^{\text {rd }}$ Quarter ${ }^{1}$			
	1-group	2-group	3-group	0-group	1-group	2-group	3-group	0-group	1-group	2-group	3-group	0-group	1-group	2-group	3-group
1970	35	6	-	-	-		-	-	-	-	-	-	-		-
1971	1,556	22	-	-	-	-	-	-	-	-	-	-	-	-	-
1972	2,578	872	3	-	-	-	-	-	-	-	-	-	-	-	-
1973	4,207	438	-	-	-	-	-	-	-	-	-	-	-	-	-
1974	25,557	391	24	-	-	-	-	-	-	-	-	-	-	-	-
1975	4,573	1,880	4	-	-	-	-	-	-	-	-	-	-	-	-
1976	4,411	371	2	-	-	-	-	-	-	-	-	-	-	-	-
1977	6,093	273	42	-	-	-	-	-	-	-	-	-	-	-	-
1978	1,479	575	47	-	-	-	-	-	-	-	-	-	-	-	-
1979	2,738	316	75	-	-	-	-	-	-	-	-	-	-	-	-
1980	3,277	550	29	-	-	-	-	-	1,928	346	12	-	-	-	-
1981	1,092	377	15	-	-	-	-	-	185	127	9	-	-	-	-
1982	4,537	262	59	6,594	2,609	39	77	8	991	44	22	-	-	-	-
1983	2,258	592	7	6,067	1,558	114	0.4	13	490	91	1	-	-	-	-
1984	4,994	982	75	457	3,605	359	14	2	615	69	8	-	-	-	-
1985	2,342	1,429	73	362	1,201	307	0	5	636	173	5	-	-	-	-
1986	2,070	383	20	285	717	150	80	38	389	54	9	-	-	-	-
1987	3,171	481	61	8	552	122	0.9	7	338	23	1	-	-	-	-
1988	124	722	15	165	102	134	20	14	38	209	4	-	-	-	-
1989	2,013	255	172	1,531	1,274	621	20	2	382	21	14	-	-	-	-
1990	1,295	748	39	2,692	917	158	23	58	206	51	2	-	-	-	-
1991	2,450	712	130	1,509	683	399	6	10	732	42	6	7,301	1,039	189	2
1992	5,071	885	32	2,885	6,193	1,069	157	12	1,715	221	24	2,559	4,318	633	48
1993	2,682	2,644	258	5,698	3,278	1,715	0	2	580	329	20	4,104	1,831	608	53
1994	1,839	374	66	7,764	1,305	112	7	136	387	106	6	3,196	704	102	14
1995	5,940	785	77	7,546	6,174	387	14	37	2,438	234	21	2,860	4,440	597	69
1996	923	2,631	228	3,456	1,332	319	3	127	412	321	8	4,554	762	362	12
1997	9,752	1,474	670	1,045	6,262	376	30	1	2,154	130	32	490	3,447	236	46
1998	1,010	5,336	265	2,573	404	260	0	2,628	938	127	5	2,931	801	748	12
1999	3,527	597	667	6,358	1,930	88	26	3,603	1,784	179	37	7,844	2,367	201	94
2000	8,095	1,535	65	2,005	6,261	141	2	2,094	6,656	207	23	1,643	7,868	282	11
2001	1,305	2,861	235	3,948	1,013	693	5	759	727	710	26	2,088	1,274	862	27
2002	1,795	809	880	9,678	1,784	61	21	2,559	1,192	151	123	1,974	766	64	48
2003	1,239	575	94	379	681	85	5	1,767	779	126	1	1,812	1,063	146	7
2004	895	376	34	564	542	90	7	731	719	175	19	773	647	153	12
2005	691	131	37	6,912	803	67	11	3,073	343	132	18	2,614	439	125	17
2006	3,340	146	27	1,680	2,147	151	18	1,127	1,285	69	9	1,349	1,869	150	15
2007	1,286	778	23	3,329		332	1	5,003	1,023	395	8	4,143	1,191	447	11
2008	2,345	506	186	1,435	1,084	253	35	3,455	1,263	263	57	3,034	1,646	262	66
2009	5,496	1,566	120	-	1,371-	-	-	-	-	-	-	-	-	-	-

${ }^{1}$ International Bottom Trawl Survey, arithmetic mean catch in no./h in standard area. ${ }^{2}$ English groundfish survey, arithmetic mean catch in no./h, 22 selected rectangles within Roundfish areas 1, 2, and 3. ${ }^{3} 1982-91$ EGFS numbers adjus ted from Granton trawl to GOV trawl by multiplying by 3.5 . Minor GOV sweep changes in 2006 EGFS. ${ }^{4}$ Scottish groundfish surveys, arithmetic mean catch no./h. Survey design changed in 1998 and 2000. ${ }^{5}$ English groundfish survey: Data for 1996, 2001, 2002 , and 2003 have been revised compared to the 2003 assessment. In 2007 numbers for 1997 and 1998 as well as 2002 has been adjusted based on new automatic calculation and processing process has been introduced.

Table 5.3.1 Norway pout IV and IIIaN (Skagerak). Stock indices and tuning fleets used in final 2004 benchmark assessment as well as in the 2005-2009 assessments compared to the 2003 assessment.

		2003 ASSESSMENT	2004, 2005, April 200	Sept. 2006 ASSESSMENT	2007-09 ASSESSMENTS
Recruiting season		3rd quarter	2nd quarter (SXSA)	3rd quarter (SMS); 2nd quarter (SXSA)	3rd quarter (SXSA)
Last season in last year		3rd quarter	2nd quarter (SXSA)	3rd quarter (SMS); 2nd quarter (SXSA)	1st quarter (SXSA)
Plus-group		4+	4+ (SXSA)	None(SMS); 4+ (SXSA)	4+ (SXSA)
FLT01: comm Q1					
	Year range	1982-2003	1982-2004	1982-2004	1982-2004, 2006
	Quarter	1	1	1	1
	Ages	1-3	1-3	1-3	1-3
FLT01: comm Q2			NOT USED	NOT USED	NOT USED
	Year range	1982-2003			
	Quarter	2			
	Ages	1-3			
FLT01: comm Q3					
	Year range	1982-2003	1982-2004	1982-2004	1982-2004, 2006
	Quarter	3	3	3	3
	Ages	0-3	1-3	1-3	1-3
FLT01: comm Q4					
	Year range	1982-2003	1982-2004	1982-2004	1982-2004, 2006
	Quarter	4	4	4	4
	Ages	0-3	0-3	0-2 (SMS); 0-3 (SXSA)	0-3 (SXSA)
FLT02: ibtsq1					
	Year range	1982-2003	1982-2006	1982-2006	1982-2009
	Quarter	1	1	1	1
	Ages	1-3	1-3	1-3	1-3
FLT03: egfs					
	Year range	1982-2003	1992-2005	1992-2005	1992-2008
	Quarter	3	Q3 -> Q2	Q3 -> Q2	Q3
	Ages	0-3	0-1	0-1	0-1
FLT04: sgfs					
	Year range	1982-2003	1998-2006	1998-2006	1998-2008
	Quarter	3	Q3 -> Q2	Q3 -> Q2	Q3
	Ages	0-3	0-1	0-1	0-1
FLT05: ibtsq3		NOT USED			
	Year range		1991-2005	1991-2005	1991-2008
	Quarter		3	3	Q3
	Ages		2-3	2-3	2-3

Table 5.3.2 Norway pout IV and IIIaN (Skagerrak). Baseline run with SXSA

seasonal extended survivor analysis): Parameters, settings and the options of the SXSA as well as the input data used in the SXSA.
SURVIVORS ANALYSIS OF: Norway pout stock in May 2009
Run: Baseline May 2009 (Summary from NP509_1)
The following parameters were used:
1983 - 2009
Seasons per year:
4
The last season in the last year is season: 1
Youngest age:
0
Oldest age:
3
Plus age:
Recruitment in season: 3
Spawning in season:

The following fleets were included:
Fleet 1: commercial q134 (Q1: Age 1-3; Q2: None; Q3: Age 1-3; Q4:
0-3)
Fleet 2: ibtsq1 (Age 1-3)
Fleet 3: egfsq3 (Age 0-1)
Fleet 4: sgfsq3 (Age 0-1)
Fleet 5: ibtsq3 (Age 2-3)

The following options were used:

1: Inv. catchability: 2
(1: Linear; 2: Log; 3: Cos. filter)
2: Indiv. shats:
(1: Direct; 2: Using z)
3: Comb. shats
2
(1: Linear; 2: Log.)

```
, (a)
```

 (0: No fit; 1: No SOP corr; 2: SOP corr.)
 5: Est. unknown catches:
(0: No; 1: No SOP corr; 2: SOP corr; 3: Sep. F)
6: Weighting of rhats:
(0: Manual)
7: Weighting of shats:2
(0: Manual; 1: Linear; 2: Log.)
8: Handling of the plus group:
1
(1: Dynamic; 2: Extra age group)

Data were input from the following files:
Catch in numbers:
Weight in catch:
Weight in stock:
Natural mortalities: weca.qrt

Maturity ogive:
Tuning data (CPUE) :
Weighting for rhats:

Table 5.3.3 Norway pout IV and IIIaN (Skagerrak).

Seasonal extended survivor analysis (SXSA).

Stock numbers, SSB and TSB at start of season.

Year	1983				1984				1985			
Season	1	2	3	4	1	2	3	4	1	2	3	4
AGE												
0	*	*	148005.	98845.	*	*	79964.	53601.	*	*	57240.	38364.
1	108896.	69551.	45126.	25480.	64071.	40689.	25431.	12715.	34103.	21006.	13379.	7822.
2	13108.	7724.	4167.	1505.	13562.	7966.	4386.	1562.	5665.	2681.	1678.	476.
3	115.	65.	36.	10.	698.	350.	15.	3.	446.	142.	84.	41.
4+	6.	3.	0.	0.	1.	0.	0.	0.	2.	1.	1.	0.
SSN	24119.				20668.				9523.			
SSB	369559.				371168.				166474.			
TSN	122125.	77342.	197334.	125840.	78332.	49005.	109796.	67882.	40216.	23830.	72383.	46703.
TSB	1055603.	1309273.	1901489.	1242880.	774816.	898707.	1145117.	679873.	381322.	413389.	640668.	432441.
Year	1986				1987				1988			
Season	1	2	3	4	1	2	3	4	1	2	3	4
AGE												
0	*	*	106163.	71163.	*	*	31029.	20793.	*	*	85564.	56749.
1	25161.	16541.	10875.	6319.	43140.	26718.	17029.	10083.	13752.	9015.	5965.	3849.
2	2795.	998.	598.	200.	2770.	1528.	975.	514.	4998.	2777.	1801.	1003.
3	176.	59.	37.	20.	102.	59.	39.	26.	154.	87.	58.	39.
4+	28.	16.	11.	7.	18.	11.	8.	5.	17.	11.	8.	5.
SSN	5515.				7204.				6544.			
SSB	87691.				96240.				126673.			
TSN	28159.	17614.	117683.	77709.	46030.	28316.	49080.	31421.	18921.	11890.	93396.	61644.
TSB	246204.	285891.	724457.	581871.	368024.	456284.	594120.	379763.	213313.	234610.	572316.	473381.
Year	1989				1990				1991			
Season	1	2	3	4	1	2	3	4	1	2	3	4
AGE												
0	*	*	91146.	60967.	*	*	85606.	57367.	*	*	162888.	108586.
1	35464.	22351.	14427.	8302.	36894.	23224.	14110.	8663.	37641.	24003.	15569.	9192.
2	2062.	1343.	791.	312.	4140.	2297.	1071.	567.	4840.	2151.	1111.	569.
3	341.	223.	145.	93.	133.	73.	33.	17.	285.	115.	61.	23.
4+	29.	20.	13.	9.	58.	31.	20.	14.	18.	7.	5.	3.
SSN	5979.				8020.				8907.			
SSB	85470.				125472.				145219.			
TSN	37897.	23937.	106523.	69684.	41225.	25625.	100842.	66629.	42784.	26276.	179634.	118373.
TSB	308896.	393206.	767979.	575277.	357903.	431817.	743251.	568274.	382360.	439310.	1092257.	888148.
Year	1992				1993				1994			
Season	1	2	3	4	1	2	3	4	1	2	3	4
AGE												
0	*	*	69526.	45885.	*	*	48705.	32569.	*	*	206710.	138032.
1	69934.	43966.	28225.	16090.	29977.	18504.	11738.	6929.	20870.	12372.	7989.	4512.
2	5304.	2666.	1547.	719.	8506.	5130.	3051.	1298.	3785.	2053.	1143.	422.
3	228.	57.	22.	14.	263.	164.	63.	26.	506.	294.	173.	58.
4+	3.	0 .	0.	0 .	8.	5.	3.	2.	18.	12.	8.	5.
SSN	12528.				11774.				6396.			
SSB	174919.				219056.				119107.			
TSN	75468.	46689.	99320.	62707.	38753.	23803.	63559.	40825.	25178.	14731.	216022.	143030.
TSB	615500.	752965.	1051550.	676338.	407909.	460458.	623228.	410846.	250585.	270727.	1086075.	953043.
Year	1995				1996				1997			
Season	1	2	3	4	1	2	3	4	1	2	3	4
AGE												
0	*	*	65215.	43142.	*	*	158260.	105492.	*	*	45059.	30115.
1	89056.	56428.	36265.	22226.	27534.	18019.	11620.	6935.	68652.	45469.	30397.	17846.
2	2085.	1201.	595.	361.	12157.	7517.	4874.	2447.	4116.	2493.	1564.	744.
3	173.	111.	49.	30.	193.	118.	48.	2.	1368.	852.	474.	232.
4+	42.	28.	19.	13.	26.	18.	12.	8.	7.	4.	3.	2.
SSN	11206.				15130.				12355.			
SSB	117492.				295932.				193685.			
TSN	91356.	57769.	102143.	65771.	39910.	25671.	174813.	114884.	74142.	48818.	77497.	48939.
TSB	678544.	894410.	1195995.	786942.	469395.	532748.	1136004.	895366.	626194.	809631.	1035843.	635840.
Year	1998				1999				2000			
Season	1	2	3	4	1	2	3	4	1	2	3	
AGE												
0	*	*	62988.	42145.	*	*	154278.	103382.	*	*	53603.	35872.
1	19906.	13130.	8629.	5447.	27974.	18586.	12198.	7114.	68377.	45299.	30136.	19081.
2	10389.	6399.	4036.	2433.	3217.	2051.	1195.	524.	4296.	2729.	1659.	895.
3	329.	182.	107.	70.	1455.	915.	537.	332.	221.	146.	58.	22.
4+	128.	79.	33.	22.	51.	34.	23.	15.	214.	143.	96.	64.
SSN	12837.				7520.				11569.			
SSB	262835.				151420.				163187.			
TSN	30753.	19790.	75793.	50119.	32697.	21586.	168231.	111367.	73108.	48317.	85553.	55934.
TSB	388245 .	428056.	647633.	484440 .	327655.	396203.	1005703.	825188.	593961.	787573.	1042645.	692954.

Table 5.3.3 (Cont'd.). Norway pout IV and IIIaN (Skagerrak).

Year	2001				2002				2003			
Season	1	2	3	4	1	2	3	4	1	2	3	4
0	*	*	47602.	31883.	*	*	32874.	21758.	*	*	14504.	9717.
1	23799.	15773.	10464.	6915.	21070.	13726.	8914.	5466.	14347.	9569.	6362.	4108.
2	9010.	5348.	3384.	2246.	4417.	2839.	1883.	1030.	3277.	2134.	1391.	833.
3	399.	239.	78.	52.	1146.	754.	502.	317.	407.	255.	150.	88.
4+	53.	36.	24.	16.	45.	30.	20.	13.	200.	134.	90.	60.
SSN	11843.				7714.				5318.			
SSB	233846.				160244.				109596.			
TSN	33262.	21396.	61552.	41111.	26677.	17350.	44193.	28585.	18231.	12092.	22497.	14805.
TSB	383778.	432373.	602217.	447650.	292985.	341825.	465427.	317918.	199985.	236336.	285889.	192870.
Year	2004				2005				2006			
Season	1	2	3	4	1	2	3	4	1	2	3	4
E												
0	*	*	18941.	12685.	*	*	74807.	50144.	*	*	38574.	25849.
1	6512.	4355.	2916.	1913.	8456.	5668.	3800.	2547.	33613.	22507.	15041.	9976.
2	2709.	1771.	1174.	745.	1201.	805.	539.	361.	1707.	1102.	701.	417.
3	427.	279.	182.	117.	436.	292.	196.	131.	242.	155.	85.	51.
$4+$	72.	48.	32.	22.	91.	61.	41.	27.	106.	71.	48.	32.
SSN	3859.				2573.				5417.			
SSB	85262.				54872.				76720.			
TSN	9720.	6452.	23245.	15481.	10184.	6826.	79382.	53211.	35668.	23835.	54448.	36324.
TSB	126290.	142163.	210077.	158162.	108147.	130411.	429145.	382225.	288480.	386814.	565547.	404993.
Year	2007				2008				2009			
Season	1	2	3	4	1	2	3	4	1			
0	*	*	69004.	46255.	*	*	80956.	54267.	*			
1	17026.	11397.	7605.	5072.	31005.	20779.	13885.	9172.	35411.			
2	5798.	3852.	2561.	1704.	3391.	2267.	1486.	902.	5789.			
3	238.	159.	107.	70.	1137.	762.	511.	342.	579.			
4+	55.	37.	25.	17.	58.	39.	26.	17.	241.			
SSN	7794.				7687.				10150.			
SSB	152075.				145030.				188815.			
TSN	23117.	15445.	79302.	53117.	35591.	23848.	96864.	64700.	42020.			
TSB	259338.	311945.	582670.	469811.	340364.	429059.	765486.	594287.	411903.			

Table 5.3.4 Norway pout IV and IIIaN (Skagerrak).
Seasonal extended survivor analysis (SXSA).
Fishing mortalities by quarter of year.

Year	1983				1984				1985			
Season	1	2	3	4	1	2	3	4	1	2	3	4
0	*	*	0.004	0.033	*	*	0.000	0.052	*	*	0.000	0.022
1	0.048	0.032	0.169	0.225	0.054	0.069	0.285	0.392	0.084	0.051	0.135	0.587
2	0.127	0.213	0.578	0.355	0.130	0.193	0.590	0.769	0.337	0.068	0.774	0.557
3	0.169	0.195	0.784	1.529	0.281	1.609	0.938	0.000	0.683	0.119	0.319	0.000
4+	0.000	1.807	*	*	0.000	0.000	0.000	0.000	0.436	0.000	0.000	0.000
F (1- 2)	0.087	0.122	0.374	0.290	0.092	0.131	0.437	0.581	0.210	0.059	0.454	0.572
Year	1986				1987				1988			
Season	1	2	3	4	1	2	3	4	1	2	3	4
0	*	*	0.000	0.099	*	*	0.000	0.013	*	*	0.011	0.069
1	0.019	0.019	0.141	0.407	0.078	0.050	0.122	0.293	0.022	0.013	0.038	0.219
2	0.588	0.111	0.642	0.264	0.191	0.049	0.235	0.733	0.184	0.033	0.182	0.630
3	0.641	0.061	0.215	0.000	0.154	0.000	0.010	0.260	0.171	0.000	0.000	0.000
$4+$	0.141	0.000	0.000	0.000	0.069	0.000	0.000	0.000	0.000	0.000	0.000	0.000
F (1- 2)	0.304	0.065	0.391	0.336	0.135	0.049	0.179	0.513	0.103	0.023	0.110	0.424
Year	1989				1990				1991			
Season	1	2	3	4	1	2	3	4	1	2	3	4
0	*	*	0.002	0.101	*	*	0.000	0.021	*	*	0.005	0.040
1	0.061	0.037	0.150	0.288	0.062	0.097	0.087	0.179	0.049	0.033	0.125	0.148
2	0.029	0.127	0.501	0.432	0.186	0.350	0.231	0.280	0.395	0.254	0.263	0.486
3	0.022	0.033	0.039	0.183	0.198	0.369	0.242	0.318	0.483	0.221	0.553	1.672
4+	0.000	0.000	0.000	0.000	0.232	0.000	0.000	0.000	0.508	0.000	0.000	0.000
F (1-2)	0.045	0.082	0.326	0.360	0.124	0.224	0.159	0.229	0.222	0.143	0.194	0.317
Year	1992				1993				1994			
Season	1	2	3	4	1	2	3	4	1	2	3	4
0	*	*	0.015	0.026	*	*	0.002	0.045	*	*	0.004	0.038
1	0.063	0.043	0.159	0.232	0.082	0.055	0.125	0.201	0.121	0.037	0.168	0.359
2	0.280	0.142	0.354	0.567	0.104	0.118	0.434	0.512	0.207	0.182	0.560	0.467
3	0.873	0.532	0.058	0.193	0.070	0.531	0.442	0.096	0.143	0.127	0.643	0.000
4+	*	*	*	*	0.028	0.000	0.000	0.000	0.000	0.000	0.000	0.000
F (1-2)	0.172	0.092	0.257	0.399	0.093	0.086	0.280	0.356	0.164	0.110	0.364	0.413
Year	1995				1996				1997			
Season	1	2	3	4	1	2	3	4	1	2	3	4
0	*	*	0.013	0.049	*	*	0.006	0.029	*	*	0.003	0.014
1	0.056	0.042	0.089	0.199	0.024	0.038	0.115	0.120	0.012	0.003	0.131	0.139
2	0.149	0.293	0.099	0.219	0.080	0.033	0.281	0.179	0.100	0.066	0.332	0.400
3	0.039	0.411	0.077	0.128	0.091	0.473	1.574	0.161	0.072	0.183	0.306	0.198
$4+$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
F (1-2)	0.102	0.168	0.094	0.209	0.052	0.036	0.198	0.149	0.056	0.034	0.231	0.269
Year	1998				1999				2000			
Season	1	2	3	4	1	2	3	4	1	2	3	4
0	*	*	0.002	0.010	*	*	0.000	0.013	*	*	0.002	0.010
1	0.016	0.020	0.059	0.125	0.009	0.021	0.137	0.103	0.012	0.008	0.056	0.339
2	0.084	0.060	0.105	0.113	0.049	0.138	0.406	0.444	0.054	0.096	0.213	0.391
3	0.189	0.129	0.018	0.256	0.063	0.131	0.081	0.088	0.015	0.493	0.526	0.379
4+	0.078	0.446	0.000	0.000	0.013	0.006	0.000	0.000	0.000	0.000	0.000	0.000
F (1-2)	0.050	0.040	0.082	0.119	0.029	0.080	0.272	0.273	0.033	0.052	0.135	0.365
Year	2001				2002				2003			
Season	1	2	3	4	1	2	3	4	1	2	3	4
0	*	*	0.001	0.014	*	*	0.013	0.016	*	*	0.001	0.000
1	0.011	0.010	0.014	0.048	0.028	0.031	0.088	0.110	0.005	0.008	0.037	0.016
2	0.120	0.057	0.010	0.266	0.041	0.010	0.199	0.501	0.029	0.028	0.111	0.262
3	0.112	0.658	0.017	0.021	0.018	0.008	0.059	0.106	0.067	0.125	0.135	0.550
4+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.026
F (1-2)	0.066	0.034	0.012	0.157	0.035	0.021	0.144	0.306	0.017	0.018	0.074	0.139

Table 5.3.4 (Cont'd.). Norway pout IV and IIIaN (Skagerrak).

Year	2004				2005				2006			
Season	1	2	3	4	1	2	3	4	1	2	3	4
0	*	*	0.001	0.005	*	*	0.000	0.000	*	*	0.000	0.017
1	0.002	0.001	0.021	0.065	0.000	0.000	0.000	0.000	0.001	0.003	0.011	0.140
2	0.025	0.011	0.054	0.135	0.000	0.000	0.000	0.000	0.038	0.051	0.119	0.157
3	0.026	0.025	0.047	0.018	0.000	0.000	0.001	0.001	0.043	0.204	0.107	0.017
$4+$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
F (1-2)	0.014	0.006	0.038	0.100	0.000	0.000	0.000	0.000	0.019	0.027	0.065	0.149
Year	2007				2008				2009			
Season	1	2	3	4	1	2	3	4	1			
0	*	*	0.000	0.000	*	*	0.000	0.027	*			
1	0.001	0.004	0.005	0.002	0.000	0.003	0.015	0.060	0.000			
2	0.009	0.008	0.007	0.004	0.003	0.022	0.098	0.043	0.000			
3	0.001	0.001	0.018	0.010	0.000	0.001	0.000	0.000	0.000			
4+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
F (1-2)	0.005	0.006	0.006	0.003	0.001	0.013	0.056	0.051	0.000			

Table 5.3.5 Norway pout IV and IIIaN (Skagerrak).
SXSA (Seasonal extended survivor analysis).
Diagnostics of the SXSA.

Table 5.3.5 (Cont'd.). Norway pout IV and IIIaN (Skagerrak).

```
Weighting factors for computing survivors:
Fleet no:
1 (commercial q134)
Year 1983-2009 (all quarters of year); (The same for all years; esti-
mated and held constant by year as option in SXSA)
\begin{tabular}{lrrrrr}
\begin{tabular}{l} 
Seas on \\
AGE
\end{tabular} & 1 & 2 & 3 & 4 \\
& 0 & \(*\) & \(*\) & \(*\) & 1.076 \\
& 1 & 1.340 & \(*\) & 3.170 & 2.068 \\
& 2 & 2.153 & \(*\) & 1.696 & 1.245 \\
& 3 & 1.258 & \(*\) & 0.831 & 0.766
\end{tabular}
```

```
Weighting factors for computing survivors:
```

Weighting factors for computing survivors:
Fleet no: 2 (ibtsq1)
Year 1983-2009 (all quarters of year); (The same for all years; esti-
mated and held constant by year as option in SXSA)
Seas on

0		$*$	$*$	$*$
1	1.629	$*$	$*$	$*$
2	1.781	$*$	$*$	$*$
3	1.040	$*$	$*$	$*$

```

\section*{Weighting factors for computing survivors: \\ Fleet no: 3 (egfsq3)}
```

Year 1992-2008 (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)

Season	1	2	3	4	
AGE		$*$	$*$	1.329	$*$
	0	$*$	$*$	2.226	$*$
1	$*$	$*$	$*$	$*$	
2	$*$	$*$	$*$	$*$	

```
```

Weighting factors for computing survivors:
Fleet no: 4 (sgfsq3)

```
Year 1998-2008 (all quarters of year); (The same for all years; esti-
mated and held constant by year as option in SXSA)
\(\begin{array}{lllll}\text { Seas on } & 1 & 2 & 3\end{array}\)
\(\begin{array}{lllrl}\text { Geason } & 1 & 2 & 3 & 4 \\ 0 & * & * & 1.681 & * \\ 1 & * & * & 2.404 & * \\ 2 & * & * & * & * \\ 3 & * & * & * & *\end{array}\)
```

Weighting factors for computing survivors:
Fleet no: 5 (ibtsq3)
Year 1991-2008 (all quarters of year); (The same for all years; esti-
mated and held constant by year as option in SXSA)

```
\begin{tabular}{llllll}
\multicolumn{2}{l}{ Season } & 1 & 2 & 3 & 4 \\
AGE & 0 & \(*\) & \(*\) & \(*\) & \(*\) \\
& \({ }^{*}\) & \(*\) & \(*\) & \(*\) & \(*\) \\
& \({ }^{*}\) & \(*\) & \(*\) & 1.418 & \(*\) \\
& 3 & \(*\) & \(*\) & 0.856 & \(*\)
\end{tabular}

Table 5.3.6 Norway pout IV and IIIaN (Skagerrak). Stock summary table. (SXSA Baseline May 2009).
(Recruits in millions. SSB and TSB in \(t\), and Yield in ' 000 t ).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Recruits (age 0 3rd qrt) & SSB (Q1) & TSB (Q3) & Landings ('000 t) & Fbar(1-2) \\
\hline 1983 & 148005 & 369559 & 1901489 & 457.6 & 0.873 \\
\hline 1984 & 79964 & 371168 & 1145117 & 393.01 & 1.241 \\
\hline 1985 & 57240 & 166474 & 640668 & 205.1 & 1.295 \\
\hline 1986 & 106163 & 87691 & 724457 & 174.3 & 1.096 \\
\hline 1987 & 31029 & 96240 & 594120 & 149.3 & 0.876 \\
\hline 1988 & 85564 & 126673 & 572316 & 109.3 & 0.660 \\
\hline 1989 & 91146 & 85470 & 767979 & 166.4 & 0.813 \\
\hline 1990 & 85606 & 125472 & 743251 & 163.3 & 0.736 \\
\hline 1991 & 162888 & 145219 & 1092257 & 186.6 & 0.876 \\
\hline 1992 & 69526 & 174919 & 1051550 & 296.8 & 0.920 \\
\hline 1993 & 48705 & 219056 & 623228 & 183.1 & 0.815 \\
\hline 1994 & 206710 & 119107 & 1086075 & 182.0 & 1.051 \\
\hline 1995 & 65215 & 117492 & 1195995 & 236.8 & 0.573 \\
\hline 1996 & 158260 & 295932 & 1136004 & 163.8 & 0.435 \\
\hline 1997 & 45059 & 193685 & 1035843 & 169.7 & 0.590 \\
\hline 1998 & 62988 & 262835 & 647633 & 57.7 & 0.291 \\
\hline 1999 & 154278 & 151420 & 1005703 & 94.5 & 0.654 \\
\hline 2000 & 53603 & 163187 & 1042645 & 184.4 & 0.585 \\
\hline 2001 & 47602 & 233846 & 602217 & 65.6 & 0.269 \\
\hline 2002 & 32874 & 160244 & 465427 & 80.0 & 0.506 \\
\hline 2003 & 14504 & 109596 & 285889 & 27.1 & 0.248 \\
\hline 2004 & 18941 & 85262 & 210077 & 13.5 & 0.158 \\
\hline 2005 & 74807 & 54872 & 429145 & 1.9 & 0.000 \\
\hline 2006 & 38574 & 76720 & 565547 & 46.6 & 0.260 \\
\hline 2007 & 69004 & 152075 & 582670 & 5.7 & 0.020 \\
\hline 2008 & 80956 & 145030 & 765486 & 36.1 & 0.121 \\
\hline 2009 & & 188815 & & & \\
\hline Arit mean & 80,354 & 165,854 & 804,338 & & 0.614 \\
\hline Geomean & 66,865 & & & & \\
\hline
\end{tabular}

Table 5.6.1 NORWAY POUT IV and IIIaN (Skagerrak). Input data to forecast May 2009.
Basis: HCR with 2008 observed exploitation pattern and 2009 (forecast year) fishing pattern scaled to long term seasonal exploitation pattern for 1991-2004 (standardized with yearly Fbar to \(F(1,2)=1\) ). Recruitment in forecast year is assumed to the \(25 \%\) percentile \(=47878\) millions of recruitment during the period 1983-2008 in the \(3^{\text {rd }}\) quarter of the year (long term geometric mean is 66865 millions).
\begin{tabular}{|rrrrrrrrr|}
\hline Year & Season & Age & \(N\) & \(F\) & WEST & WECA & M PROPMAT \\
2008 & 1 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.4 & 0 \\
2008 & 1 & 1 & 31005 & 0.000 & 0.007 & 0.011 & 0.4 & 0.1 \\
2008 & 1 & 2 & 3391 & 0.003 & 0.022 & 0.030 & 0.4 & 1 \\
2008 & 1 & 3 & 1195 & 0.000 & 0.040 & 0.056 & 0.4 & 1 \\
2008 & 2 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.4 & 0 \\
2008 & 2 & 1 & 20779 & 0.003 & 0.015 & 0.011 & 0.4 & 0 \\
2008 & 2 & 2 & 2267 & 0.022 & 0.034 & 0.030 & 0.4 & 0 \\
2008 & 2 & 3 & 801 & 0.001 & 0.050 & 0.056 & 0.4 & 0 \\
2008 & 3 & 0 & 80956 & 0.000 & 0.004 & 0.000 & 0.4 & 0 \\
2008 & 3 & 1 & 13885 & 0.015 & 0.025 & 0.027 & 0.4 & 0 \\
2008 & 3 & 2 & 1486 & 0.098 & 0.043 & 0.036 & 0.4 & 0 \\
2008 & 3 & 3 & 537 & 0.000 & 0.060 & 0.000 & 0.4 & 0 \\
2008 & 4 & 0 & 54267 & 0.027 & 0.006 & 0.010 & 0.4 & 0 \\
2008 & 4 & 1 & 9172 & 0.060 & 0.023 & 0.024 & 0.4 & 0 \\
2008 & 4 & 2 & 902 & 0.043 & 0.042 & 0.056 & 0.4 & 0 \\
2008 & 4 & 3 & 359 & 0.000 & 0.058 & 0.000 & 0.4 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|rrrrrrrrr|}
\hline Year & Season & Age & \(N\) & \(F\) & WEST & WECA & M PROPMAT \\
2009 & 1 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.4 & 0 \\
2009 & 1 & 1 & 35411 & 0.052 & 0.007 & 0.012 & 0.4 & 0.1 \\
2009 & 1 & 2 & 5789 & 0.211 & 0.022 & 0.028 & 0.4 & 1 \\
2009 & 1 & 3 & 820 & 0.269 & 0.040 & 0.045 & 0.4 & 1 \\
2009 & 2 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.4 & 0 \\
2009 & 2 & 1 & 0 & 0.043 & 0.015 & 0.014 & 0.4 & 0 \\
2009 & 2 & 2 & 0 & 0.176 & 0.034 & 0.027 & 0.4 & 0 \\
2009 & 2 & 3 & 0 & 0.615 & 0.050 & 0.040 & 0.4 & 0 \\
2009 & 3 & 0 & 47878 & 0.009 & 0.004 & 0.010 & 0.4 & 0 \\
2009 & 3 & 1 & 0 & 0.163 & 0.025 & 0.029 & 0.4 & 0 \\
2009 & 3 & 2 & 0 & 0.407 & 0.043 & 0.038 & 0.4 & 0 \\
2009 & 3 & 3 & 0 & 0.597 & 0.060 & 0.049 & 0.4 & 0 \\
2009 & 4 & 0 & 0 & 0.038 & 0.006 & 0.009 & 0.4 & 0 \\
2009 & 4 & 1 & 0 & 0.277 & 0.023 & 0.029 & 0.4 & 0 \\
2009 & 4 & 2 & 0 & 0.668 & 0.042 & 0.046 & 0.4 & 0 \\
2009 & 4 & 3 & 0 & 0.507 & 0.058 & 0.048 & 0.4 & 0 \\
\hline
\end{tabular}

Table 5.6.1b NORWAY POUT IV and IIIaN (Skagerrak). Input data to forecast May 2009.
Basis: HCR with 2008 observed exploitation pattern and 2009 (forecast year) fishing pattern scaled to 2008 seasonal exploitation pattern (standardized with 2008 Fbar to \(\mathrm{F}(1,2)=1\) ). Recruitment in forecast year is assumed to the \(25 \%\) percentile \(=47878\) millions of recruitment during the period 1983-2008 in the \(3^{\text {rd }}\) quarter of the year (long term geometric mean is 66865 millions).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & Season & Age & N & F & WEST & WECA & \multicolumn{2}{|l|}{MPROPMAT} \\
\hline 2008 & 1 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.4 & 0 \\
\hline 2008 & 1 & 1 & 31005 & 0.000 & 0.007 & 0.011 & 0.4 & 0.1 \\
\hline 2008 & 1 & 2 & 3391 & 0.003 & 0.022 & 0.030 & 0.4 & 1 \\
\hline 2008 & 1 & 3 & 1195 & 0.000 & 0.040 & 0.056 & 0.4 & 1 \\
\hline 2008 & 2 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.4 & 0 \\
\hline 2008 & 2 & 1 & 20779 & 0.003 & 0.015 & 0.011 & 0.4 & 0 \\
\hline 2008 & 2 & 2 & 2267 & 0.022 & 0.034 & 0.030 & 0.4 & 0 \\
\hline 2008 & 2 & 3 & 801 & 0.001 & 0.050 & 0.056 & 0.4 & 0 \\
\hline 2008 & 3 & 0 & 80956 & 0.000 & 0.004 & 0.000 & 0.4 & 0 \\
\hline 2008 & 3 & 1 & 13885 & 0.015 & 0.025 & 0.027 & 0.4 & 0 \\
\hline 2008 & 3 & 2 & 1486 & 0.098 & 0.043 & 0.036 & 0.4 & 0 \\
\hline 2008 & 3 & 3 & 537 & 0.000 & 0.060 & 0.000 & 0.4 & 0 \\
\hline 2008 & 4 & 0 & 54267 & 0.027 & 0.006 & 0.010 & 0.4 & 0 \\
\hline 2008 & 4 & 1 & 9172 & 0.060 & 0.023 & 0.024 & 0.4 & 0 \\
\hline 2008 & 4 & 2 & 902 & 0.043 & 0.042 & 0.056 & 0.4 & 0 \\
\hline 2008 & 4 & 3 & 359 & 0.000 & 0.058 & 0.000 & 0.4 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|rrrrrrrrr|}
\hline Year & Season & Age & \(N\) & \(F\) & WEST & WECA & MPROPMAT \\
2009 & 1 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.4 & 0 \\
2009 & 1 & 1 & 35411 & 0.025 & 0.007 & 0.012 & 0.4 & 0.1 \\
2009 & 1 & 2 & 5789 & 0.000 & 0.022 & 0.028 & 0.4 & 1 \\
2009 & 1 & 3 & 820 & 0.000 & 0.040 & 0.045 & 0.4 & 1 \\
2009 & 2 & 0 & 0 & 0.025 & 0.000 & 0.000 & 0.4 & 0 \\
2009 & 2 & 1 & 0 & 0.182 & 0.015 & 0.014 & 0.4 & 0 \\
2009 & 2 & 2 & 0 & 0.008 & 0.034 & 0.027 & 0.4 & 0 \\
2009 & 2 & 3 & 0 & 0.000 & 0.050 & 0.040 & 0.4 & 0 \\
2009 & 3 & 0 & 47878 & 0.124 & 0.004 & 0.010 & 0.4 & 0 \\
2009 & 3 & 1 & 0 & 0.810 & 0.025 & 0.029 & 0.4 & 0 \\
2009 & 3 & 2 & 0 & 0.000 & 0.043 & 0.038 & 0.4 & 0 \\
2009 & 3 & 3 & 0 & 0.000 & 0.060 & 0.049 & 0.4 & 0 \\
2009 & 4 & 0 & 0 & 0.496 & 0.006 & 0.009 & 0.4 & 0 \\
2009 & 4 & 1 & 0 & 0.355 & 0.023 & 0.029 & 0.4 & 0 \\
2009 & 4 & 2 & 0 & 0.000 & 0.042 & 0.046 & 0.4 & 0 \\
2009 & 4 & 3 & 0 & 0.000 & 0.058 & 0.048 & 0.4 & 0 \\
\hline
\end{tabular}

Table 5.6.2 NORWAY POUT IV and IIIaN (Skagerrak). Results of the short term forecast (May 2009) with different levels of fishing mortality. Shaded scenarios are not considered consistent with the precautionary approach.

Basis: HCR with 2008 observed exploitation pattern and 2009 (forecast year) fishing pattern scaled to long term seasonal exploitation pattern for 1991-2004 (standardized with yearly Fbar to \(F(1,2)=1\) ). Recruitment in forecast year is assumed to the \(25 \%\) percentile \(=47878\) millions of recruitment during the period 1983-2008 in the \(3^{\text {rd }}\) quarter of the year (long term geometric mean is 66865 millions).


Table 5.6.2b NORWAY POUT IV and IIIaN (Skagerrak). Results of the short term forecast (May 2009) with different levels of fishing mortality. Shaded scenarios are not considered consistent with the precautionary approach.

Basis: HCR with 2008 observed exploitation pattern and 2009 (forecast year) fishing pattern scaled to 2008 seasonal exploitation pattern (standardized with 2008 Fbar to \(F(1,2)=1\) ). Recruitment in forecast year is assumed to the \(25 \%\) percentile \(=47878\) millions of recruitment during the period 1983-2008 in the \(3^{\text {rd }}\) quarter of the year (long term geometric mean is 66865 millions).



Figure 5.2.1. NORWAYP OUT IV and IIIaN (Skagerrak). Weighted mean weights at age in catch of the Danish and Norwegian commercial fishery for Norway pout by quarter of year during the period 1982-2008.


Figure 5.2.2
NORWAY P OUT IV and IIIaN (Skagerrak). Trends in CPUE (normalized to unit mean) by quarterly commercial tuning fleet and surve \(y\) tuning fleet used in the Norway pout SXSA assessment for each age group and all age groups together.




Figure 5.3.1 Norway pout IV and IIIaN (Skagerrak). Log residual stock numbers (log ( \(\mathrm{Nhat} / \mathrm{N}\) )) per age group. SXSA divided by fleet and season.


Figure 5.3.2 Norway Pout IV and IIIaN (Skagerrak). Stock Summary Plots. SXSA baseline run May 2009.


Figure 5.3.3 Norway pout IV and IIIaN (Skagerrak). Trends in yield, SSB and TSB during the period 1983-2009.


Figure 5.3.4 Norway pout IV and IIIaN (Skagerrak). Retrospective plots of final SXSA assessment May 2009, with terminal assessment year ranging from 2002-2009.




Figure 5.3.5 Norway pout IV and IIIaN (Skagerrak). Comparison of May 2009 SXSA baseline assessment with SXSA September 2008 baseline assessment. (OBS: In Sept 2008 recruitment were calculated for 2nd quarter and in May 2009 for 3rd quarter)

\section*{6 Plaice in Division VIId}

This assessment of plaice in Division VIId is an update. All the relevant biological and methodological information can be found in the Stock Annex dealing with this stock. This stock is scheduled for benchmark in March 2010.

\subsection*{6.1 General}

\subsection*{6.1.1 Ecosystem aspects}

See section 9.1.1.

\subsection*{6.1.2 Fisheries}

Plaice is mainly caught in beam trawl fisheries for sole or in mixed demersal fisheries using otter trawls. There is also a directed fishery during parts of the year by inshore trawlers and netters on the English and French coasts, where the main fleet segments are the English and Belgian beam trawlers. The Belgian beam trawlers fish mainly in the 1st (targeting spawning concentrations in the central Eastern Channel) and 4th quarter and their area of activity covers almost the whole of VIId south of the 6 miles contour off the English coast. There is only light activity by this fleet between April and September. The second offshore fleet consists mainly of French large otter trawlers from Boulogne, Dieppe. The target species of these vessels are cod, whiting, plaice, mackerel, gurnards and cuttlefish and the fleet operates throughout VIId. The inshore trawlers and netters are mainly vessels \(<10 \mathrm{~m}\) operating on a daily basis within 12 miles of the coast. There are a large number of these vessels (in excess of 400) operating from small ports along the French and English coast. These vessels target sole, plaice, cod and cuttlefish. The latter two groups are active when plaice is spread over the whole area and IVc.

Due to the minimum mesh size ( 80 mm ) in the mixed beam trawl fishery, a large number of undersized plaice are discarded. The \(80-\mathrm{mm}\) mesh size is not matched to the minimum landing size of plaice ( 27 cm ). Management measures directed at sole fisheries will also impact the plaice fisheries.

The first quarter is usually the most important for the fisheries but the share of the landings for this quarter has been decreasing from the early 1990s to a value around 30 \(38 \%\) of the total recently. In 2008, the beginning of the year catches are predominant with the first semester corresponding to \(52 \%\) of the total landings (see text table below).
\begin{tabular}{llll}
\hline Quarter & Landings & \multicolumn{2}{c}{ Cum. \% } \\
& \multicolumn{3}{c}{ Cum. Landings } \\
\hline I & 1116.8 & 1116.8 & 33 \\
II & 668.8 & 1785.6 & 52 \\
III & 687.5 & 2473.1 & 72 \\
IV & 955.8 & 3428.9 & 100 \\
\hline
\end{tabular}

The age distribution in the exploitation pattern may be quite different between quarters, as shown for 2008 in Figure 6.1.2.1, with older fish being caught in quarter 1 and recruits at age 1 starting to be caught after summer. This is in line with what is known of the
biology of this species, which operates spawning migration in the centre of the Eastern channel during winter.

Belgium beam trawlers are increasingly being equipped with 3D mapping sonar which opens up new areas to fishing (close to wrecks) and a few French vessels have shifted from otter trawl to Danish seine recently (WGFTFB, 2007). These changes are not likely to have modified the fisheries behaviour or affected the data entering into the assessment model.

\subsection*{6.1.3 ICES advice}

2007 advice: State of the stock: In the absence of a reliable assessment, the state of the stock cannot be evaluated in relation to the precautionary approach. An exploratory assessment suggests that the spawning-stock biomass has declined through the last 15 years. The current level of SSB is low.

Exploitation boundaries in relation to precautionary limits: In the absence of short-term forecasts, ICES recommends that landings in 2008 do not increase above the average of landings from the last three years (2004-2006), corresponding to 3500 t .

2008 advice: The new landings, cpue, and survey data available for this stock do not change the perception of the stock and do not give reason to change the advice from 2007. The advice for the fishery in 2009 is therefore the same as the advice given in 2007 for the 2008 fishery: "In the absence of short-term forecasts, ICES recommends that landings [...] do not increase above the average of landings from the last three years (2004-2006), corresponding to 3500 t ."

\subsection*{6.1.4 Management}

There are no explicit management objectives for this stock.
The TACs have been set to 5050t for 2008 and 4646t for 2009 for the combined ICES Divisions VIId \& VIIe.

The minimum landing size for plaice is 27 cm , which is not in accordance with the minimum mesh size of 80 mm , permitted for catching plaice by beam and otter trawling. Fixed nets are required to use \(100-\mathrm{mm}\) mesh since 2002 although an exemption to permit 90 mm has been in force since that time.

For 2008, Council Regulation (EC) \(\mathrm{N}^{\circ} 40 / 2008\) allocates different days at sea depending on gear, mesh size and catch composition (see section 1.2 .1 for complete list). The days at sea limitations for the major fleets operating in Subarea VIId could be summarised as follows: Trawls or Danish seines can fish between 86 and an unlimited number of days. Beam trawlers have an unlimited number of days permit. Maximum days at sea for Gillnets vary between 117 and 140 days per year. Trammel nets are allowed a maximum of 205 days for member states whose quotas are less than \(5 \%\) of the Community share of the TACs of both place and sole; otherwise the limit is 180 days.

For 2009, Council Regulation (EC) N43/2009 allocates different amounts of Kw*days by Member State and area to different groups of vessels depending on gear and mesh size (see section 1.2.1 for complete list). The areas are Kattegat, part of IIIa not covered by Skaggerak and Kattegat, ICES zone IV, EC waters of ICES zone IIa, ICES zone VIId, ICES zone VIIa, ICES zone VIa and EC waters of ICES zone Vb. The grouping of fishing gear
concerned are: Bottom trawls, Danish seines and similar gear, excluding beam trawls of mesh size: TR1 ( 400 mm ) - TR2 ( \(\leq 70\) and \(\leq 100 \mathrm{~mm}\) )- TR3 ( \(\leq 16\) and \(\leq 32 \mathrm{~mm}\) ); Beam trawl
 GN1; Trammel nets: GT1 and Longlines: LL1.

\subsection*{6.2 Data available}

\subsection*{6.2.1 Catch}

Landings data as reported to ICES together with the total landings estimated by the Working Group are shown in Table 6.2.1.1. From 1992 to 2002, the landings have remained relatively stable between 5100 t and 6300 t . The 2008 landings in VIId of 3491 t are close to those observed since 2005. As usual, France contributed the largest share \((47 \%)\) of the total VIId landings in 2008 followed by Belgium ( \(40 \%\) ) and UK ( \(13 \%\) ) which is nearly unchanged from 2007.

Routine discard monitoring has recently begun following the introduction of the EU data collection regulations. Discards data for 2008 are available from France and UK (Tables 6.2.1.2 and Figure 6.2.1.1a-c) though sampling levels are not high. Discards from the Belgian beam trawler fleet could not be processed in time for the working group due to logistic problems.
The percentage discarded per period, metier and country (Table 6.2.1.3a-b) and figures 6.2.1.1a-c) is highly variable per metier and from year to year. In every case, this percentage is substantial. Gillnetters had no discards in 2006 which was considered doubtful. In 2007, \(26 \%\) of the catch were discarded by this metier but again the sampling level is very low ( 4 trips) to consider this rate to be representative. In \(2008,15 \%\) of the catch were discarded by gillnetters but again, only 3 trips were sampled. French trawlers had a discard rate of \(33 \%\) this year ( \(74 \%\) in 2007). The discard rate for beam trawlers is \(63 \%\) ( \(45 \%\) in 2007).

The time series of discards is currently not long enough to be used in analytical assessment. Discards at young ages influence the recruitment level, forecast and predictions, but do not influence estimates of F and SSB.

An average total fish mortality Z of 0.85 is estimated from catch curves slopes (figure 6.2.1.2a-b). Z which was at 0.92 in 1980 dropped to 0.52 in 1989-90 before increasing to 1.2 in 1994. Z has then slowly decreased to 0.70 in 2003. In 2005, Z was estimated at 1.03.

UK has provided data this year under the ICES InterCatch format. France and Belgium are working to provide data using this format for the next w orking group.

\subsection*{6.2.2 Age compositions}

Age compositions of the landings are presented in Table 6.2.2.1.

\subsection*{6.2.3 Weight at age}

Weight at age in the catch is presented in Table 6.2.3.1 and weight at age in the stock in Table 6.2.3.2, both are presented Figure 6.2.3.1. The procedure for calculating mean weights is described in the Stock Annex.

\subsection*{6.2.4 Maturity and natural mortality}

Information about maturity per age class is given with the table included in this section. At an age of three years more than 50 percent and at age four years 96 percent of the plaice are mature. The natural mortality is assumed at a fixed value of 0.1 through all ages.
\begin{tabular}{l|llllllllll} 
Age & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline Proportion of mature & 0 & 0.15 & 0.53 & 0.96 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}

\subsection*{6.2.5 Catch, effort and research vessel data}

Effort and CPUE data are available from four commercial fleets (Figure 6.2.5.1). These are:

UK Inshore Trawlers
Belgian Beam Trawlers
French otter trawlers
UK Beam Trawlers
The survey series consist of:
UK Beam Trawlers

\section*{French Ground Fish Survey}

International Young fish survey.
All survey and commercial data available for calibration of the assessment are presented in Tables 6.2.5.1, Figures 6.2.5.1 and 6.2.5.2 and fully described in the Stock Annex. Effort from the French trawlers has been relatively stable since 2002. Effort of the UK inshore fleet dropped sharply in 1998 and has remained relatively stable in recent years. The Belgian beam trawler fleet has been increasing since 1998 due to the absence of restrictions on fishing effort. However, LPUE has been decreasing for Belgium to one with its lowest level in 2006. LPUE tends to increase for the UK fleet. Those opposite trends for Belgium and UK may be linked to regional difference. LPUE for the French fleet is at some of its lowest values of the time series.

\subsection*{6.3 Data analyses}

An update assessment has been carried out this year. As in 2008, a series of exploratory analysis have been carried out to examine the effect of different F shrinking and the respective performance of individual tuning fleets. In the following sections, the catch at age matrix and the tuning fleets are examined, plus an analysis of a survey-based assessment with SURBA which avoids the use of commercial CPUE.

\subsection*{6.3.1 Reviews of last years assessment}

In 2008, RGNSSK stated that :
- There is a stock definition problems, which is tricky to solve. Mixing stocks during feeding period (North Sea and Channel stocks). Rate of mixing is not known for assessment.
- New discarding information available, however time series considered too short to be taken into account in assessment. Discarding figures in the report are good, showing where Achilles heel is.
- Survey data somewhat noisy, but reduction of noise in revised French data observed. The UK inshore trawlers excluded from the assessment. Does not reflect stock development.
- Last year it was RGs wish to have a catch curve analyses just for consistency.
- The sampling seems to be adequate, but it seems that discarding estimates and stock identity are major problems for assessment. Discarding in 1-3 quarters high and dependent on gear in use. By omitting young fish discards, is influencing short term predictions, by boosting SSB somewhat upwards, but perhaps not Fs.
- The assessment has a tendency to overestimate SSB and underestimate F, especially from 2000 when surveys and commercial fleets information began to diverge.
- There are no new elements in the assessment. A conclusion is that the assessment is indicative for trends only

The working group is aware of the comments of the review group. The different points will be addressed during the next benchmark analysis of this stock. Catch curves have been added to the 2009 report.
For this meeting, discards were not included in the assessment as the group considered the time series not long enough. The French survey indices are currently revised each year.

\subsection*{6.3.2 Exploratory catch-at-age-based analyses}

The investigation on the level of shrinking has confirmed the result found the last two years, i.e. visible but no drastic effect on retrospective performance (Figure 6.3.2.1). The tendency to underestimate F and overestimate SSB and recruitment from year to year is slightly constrained by a strong shrinkage but never disappears The similarities between results obtained with F shrinkage values of 1.0,1.5 and 2.0 may be explained by the large reduction of influence on the estimates of survivors at age when shifting from 0.5 to 1.0 , as shown in the text table below. Higher F shrinkage values (1.5-2.0) have almost no influence on the estimates.

Table : F shrinkage influence (scaled weights) on the final estimates of survivors at age.
\begin{tabular}{l|llll}
\hline Age / F shrinkage & 0.5 & 1 & 1.5 & 2 \\
\hline 1 & 0.55 & 0.24 & 0.14 & 0.10 \\
2 & 0.19 & 0.05 & 0.03 & 0.02 \\
3 & 0.15 & 0.04 & 0.02 & 0.01 \\
4 & 0.17 & 0.05 & 0.02 & 0.01 \\
5 & 0.16 & 0.04 & 0.02 & 0.01 \\
6 & 0.17 & 0.05 & 0.02 & 0.01 \\
7 & 0.19 & 0.05 & 0.02 & 0.01 \\
8 & 0.27 & 0.07 & 0.03 & 0.02 \\
9 & 0.24 & 0.05 & 0.02 & 0.01 \\
\hline
\end{tabular}

The log catch ratio residuals of the separableVPA (Figure6.3.2.2) show no special pattern nor large values for the recent years of data, which suggests a relative consistency of the catch-at-age matrix.
The log catchability residuals from single fleet runs (with settings as in XSA and F shrinkage \(=1.0\) ) are shown in Figure 6.3.2.3 for all the fleets including the new UK Beam trawler fleet. Together with the two surveys covering the entire geographical area of the stock (UK BTS and French GFS), the UK Inshore Trawl residuals are increasing from the mid 1990s, indicating a progressive divergence with the landings at age. There is a jump in the residuals of the UK BTS in 2000, correlated to the decrease of the SSB that same year and the discrepancy between the surveys and the commercial fleets originates from that period. A similar pattern occurs also in the log catchability residuals of this survey for sole VIId. The French Otter trawlers series show a step shift in 1997, although no known reason was found for this. The group recommended to separate this series into two parts, one ending in 1996 and the other beginning in 1997. The log catchability residuals from a XSA run combining all fleets are shown in Figure 6.3.2.4.

In 2007 the rationale to include a new commercial tuning series was set out. The UK Inshore Trawl effort had strongly decreased in recent years and were therefore considered not representative of the dynamic of the stock due to sample noise. The UK Beam Trawl was thought to be more consistent in terms of its effort series and LPUE and was included in the assessment and the UK Inshore Trawl removed.

\subsection*{6.3.3 Exploratory survey-based analyses}

The survey-based analysis was carried out with SURBA software, the results being shown in Figures 6.3.3.1. The parameters used for this exercise are a smoothing coefficient lambda set to 1.0 and a reference age set to 4 , the age range being \(0-10+\), the range of F values for calculating the mean being 3 to 6 like the XSA analysis. The SURBA analysis has been proven to be insensitive to the choice of the initial parameters in the neighbourhood of those chosen here (ICES WGNSSK 2005). Figures 6.3.3.1 shows a good performance of the UKbeam trawl survey for tracking year classes through time. This is different from the French GFS, which exhibits rather erratic patterns and has a low internal consistency. The French GFS indices havebeen revised since the 2007 report and standardized index per survey shows year class strength estimated by the FR GFS are now similar to those estimated by UK BTS. Considering the relative consistency of FR GFS at younger ages, the group recommended in 2007 to truncate the age range of this survey to ages 1 to 3 in the assessment.

The retrospective analysis (Figure 6.3.3.2) does not show tendencies to under or over estimate SSB as does the XSA but the estimates of mean \(Z\) are given with confidence bounds that question on the quality of this information. Some extreme values prevent from drawing a contrasted picture of the recruitment estimates by SURBA.

\subsection*{6.3.4 Conclusions drawn from exploratory analyses}

In 2007, the group agreed that the new parametrisation of the model should exclude UK inshore trawl, include the new UK Beam trawl fleet, split the FR otter trawlers fleet in two, truncate FR GFS to ages 1 to 3 and use a level of F shrinkage of 1.0. A summary table of these settings can be found section 6.3.5.

There is a decreasing trend in the contribution of the first quarter to the whole landings, where a fishery on the spawners takes place, yielding an age distribution which differs from the rest of the year. It is unknown whether there is major inter-annual variability in the immigration from the North Sea to these spawning grounds, which could distort any catch-based analysis. Any migration events taking place in the first quarter cannot be represented in the surveys in the second semester.

Discarding is shown to take place and is substantial, but is constrained to younger ages. The year range of the data series is too short to make use of it in the analysis.

Both landings-at-age and tuning fleets information are highly dependent on the accuracy of the spatial declaration of the fishing activity as an important component of the fisheries operates on the borderline to ICES subdivision IVc.
Comparison of historical dynamics perceived through XSA and SURBA models and from current and previous year's analysis is shown Figure 6.3.4.1 on SSB, F and Recruitment estimates. The values shown in this figure are all respectful of the settings used since 2007. The F signals coming from SURBA and XSA are hardly comparable, but the discrepancies are not considered problematic given the uncertainty surrounding F estimates from SURBA. The recruitment estimates are much more volatile in SURBA than in XSA but the high and low values are found concurrently. The mean standardized values of SSB obtained from XSA and SURBA diverged in 2000 and 2001, and followed a strict parallel behaviour since then. Looking solely on the recent years trends, the two models agree that the SSB followed a stepped decline (taking into account the overestimation tendency of the two last years) since the end of the 1990s. This tendency was confirmed by a survey carried out in 2006 to assess French fisher's perception of the Eastern Channel ecosystem (Prigent et al., 2007). 76\% of the interviewees expressed their worry and found the fisheries resources depleted, especially flatfish and gadoids.

Figure 6.3.4.2 compares the single fleet performances to the final assessment. The two main surveys keep diverging from the commercial fleets. A map of UK BTS indices per tow locations from 1996 to 2006 (Figure 6.3.4.3) shows that the catches of plaice by the survey occur mainly inshore, whereas the commercial fisheries spread all over the Channel as plaice is mainly taken as a by-catch. It is important to notice that the three surveys occur in the second half of the year, whereas the period when the most plaice is landed is the first semester. A part of the annual dynamic of the stock seems to be missing in the survey indices.

\subsection*{6.3.5 Final assessment}

The settings in the XSA assessment for last year are (parameters were unchanged in 2009):
\begin{tabular}{|c|c|c|}
\hline Year of assessment: & 2008 & 2009 \\
\hline Assessment model: & XSA & XSA \\
\hline Assessment software & FLR library & FLR library \\
\hline \multicolumn{3}{|l|}{Fleets:} \\
\hline UK Inshore Trawlers Age range & Excluded & Excluded \\
\hline UK Beam Trawl Age range & 2-10 & 2-10 \\
\hline BE Beam Trawlers Age range & 2-10 & 2-10 \\
\hline FR Otter Trawlers Age range & 2-10 & 2-10 \\
\hline Year range & 2-10 & 2-10 \\
\hline UK Beam Trawl Survey Age range & 1-6 & 1-6 \\
\hline FR Ground Fish Survey Age range & 1-3 & 1-3 \\
\hline Intern'l Young Fish Survey Age range & 1 & 1 \\
\hline \multicolumn{3}{|l|}{Catch/Landings} \\
\hline Age range: & 1-10+ & 1-10+ \\
\hline Landing s data: & 1980-2007 & 1980-2008 \\
\hline Discards data & None & None \\
\hline \multicolumn{3}{|l|}{Model settings} \\
\hline Fbar: & 3-6 & 3-6 \\
\hline Time series weights: & None & None \\
\hline Power model for ages: & No & No \\
\hline Catchability plateau: & Age 7 & Age 7 \\
\hline Survivorest. shrunk towards the mean F: & 5 years / 3 ages & 5 years / 3 ages \\
\hline S.e. of mean (F-shrinkage): & 1.0 & 1.0 \\
\hline Min. s.e.of population estimates: & 0.3 & 0.3 \\
\hline Prior weighting: & No & no \\
\hline
\end{tabular}

The final XSA output is given in Table 6.3.5.1 (diagnostics), table 6.3.5.2 (fishing mortalities) and Table 6.3.5.3 (stock numbers). A summary of the XSA results is given in Table 6.5.3.4 and trends in yield, fishing mortality, recruitment and spawning stock and Total Stock biomass are shown in Figure 6.3.5.4.

\subsection*{6.4 Historic Stock Trends}

Fishing mortality has remained stable over the last 4 years.
The 1985 year class dominates the history of this stock. A second peak occurred with the 1996 year class, although estimated to be at \(65 \%\) of the 1985 year class. The ephemeral peek of SSB in 1999 has been followed by years of stepped decline. SSB is stable at its lowest level, a situation confirmed by the fishermen's perception as assessed by a survey in France in 2006.

Recruitment in 2008 ( 24 millions) is close to the level of 2007, higher than the value of GM ( 15 millions) for the period 2000 - 2006. This strong recruitment has been confirmed by two surveys used for the assessment. GM 1980-1999 is around 23 millions fish at age 1.

\subsection*{6.5 Recruitment estimates}

Recruitment estimation was carried out according to the specifications in the stock annex. The model used was RCT3. Input to the RCT3 model is presented in Table 6.5.1. Results are presented in Table 6.5.2 and 6.5.3. For the estimation of year classes 2007 and 2008, the new information brought in by the RCT3 analysis was not considered to be reliable enough to be taken into the forecast. For the 2008 year class (age 1 in 2009), the contribution from survey information was close to 0 as a result of high standard errors. For the 2007 year class (age 2 in 2009), the RCT3 estimate was close to the XSA estimates and well below the survey estimates.
The 2007 year class was estimated to be around 27 millions fish at age 1 in 2007 (24 millions fish at age 2 in 2008) from the XSA estimate.

The 2008 and 2009 year classes were estimated using the average recruitment calculated over the period 2000-2006. The truncation was meant to take into account the relative stability of the recruitment in the recent years at a lower level than at the beginning of the series. The geometric mean was about 16 millions 1 -year-old-fish. Year class strength estimates used for short term prognosis are summarized in the text table below.
\begin{tabular}{llllll}
\hline \begin{tabular}{l} 
Year \\
Class
\end{tabular} & \begin{tabular}{l} 
Age in \\
2008
\end{tabular} & \begin{tabular}{l} 
XSA \\
(Thousands)
\end{tabular} & \begin{tabular}{l} 
RCT3 \\
(Thousands)
\end{tabular} & \begin{tabular}{l} 
GM (1998-2005) \\
(Thousands)
\end{tabular} & \begin{tabular}{l} 
Survey estimates \\
(Thousands)
\end{tabular} \\
\hline 2007 & 2 & \(\underline{\mathbf{2 0 9 3 5}}\) & 19584 & - & YFS0: 42192 \\
GFS1: 16814
\end{tabular}

\subsection*{6.6 Short-term forecasts}

The short term prognosis was carried out with FLR package. The average F for the last three years was used for the forecast. Although the 2006 exploitation pattern shows a noisy signal (Figure 6.6.1), it expresses a trend of F decreasing in the younger ages and increasing in the older ages in the recent years (Figure 6.6.2). The exploitation pattern used was the mean F-at-age over the period 2006-2008 scaled to the last year. The weights used for prediction were the average over the last three years.
Input to the short term predictions are presented in Table 6.6.1 and results in Table 6.6.2.
Assuming status quo F implies a landing in 2009 in VIId of 5310t (the agreed TAC is 4646t for both VIId and VIIe) and a landing of 5370t in 2010. Assuming status quo F will result in a SSB in 2010 and 2011 of 6890t and 6660t, respectively.

\subsection*{6.7 Medium-term forecasts}

No medium-term forecast is available for this stock.

\subsection*{6.8 Biological reference points}
\begin{tabular}{|l|l|}
\hline ICES considers that: & ICES proposes that: \\
\hline \(\mathrm{B}_{\text {lim }}=5600 \mathrm{t}\) & \(\mathrm{B}_{\mathrm{pa}}=8000 \mathrm{t}\) \\
\hline \(\mathrm{F}_{\text {lim }}=0.54\) & \(\mathrm{~F}_{\mathrm{pa}}=0.45\). \\
\hline Technic al basis & \\
\hline \(\mathrm{B}_{\text {lim }} \sim \mathrm{B}_{\text {loss }}(=5584 \mathrm{t})\) & \(\mathrm{B}_{\mathrm{pa}}=1.4 \mathrm{~B}_{\text {lim }}\) \\
\hline \(\mathrm{F}_{\text {lim }}=\mathrm{F}_{\text {loss }}\) & \begin{tabular}{l}
\(\mathrm{F}_{\mathrm{pa}}=5^{\text {th }}\) percentile of Floss ; long-term SSB \(>\mathrm{B}_{\mathrm{pa}}\) and P \\
\(\left(\mathrm{SSBBT}_{\mathrm{MT}}<\mathrm{B}_{\mathrm{pa}}\right)<10 \%\)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{6.9 Quality of the assessment}
- The sampling for plaice in VIId are considered to be at a reasonable level
- Discarding of plaice is significant and variable depending on the gear used. The omission of young fish discards has influence on the forecast and the predictions, but is not considered to severely affect the estimates of F and SSB.
- The assessment has a tendency to overestimate SSB and underestimate F, especially from 2000 when surveys and commercial fleets information began to diverge.
- Trends from surveys and commercial fleets are similar before and after 2000. The rescaling of surveys estimates operated in 2000 is consistent with the shift in \(\log \mathrm{q}\) residuals seen for FR GFS and UK BTS, both for plaice and sole in VIId.

\subsection*{6.10 Status of the stock}

Fishing mortality is estimated in 2008 at 0.63 . F has been stable for the last four years and is above Flim.

The spawning stock biomass has followed a stepped decline in the last 10 years, following a peak generated by the strong 1996 year class. The current level of SSB is stable at a low level below Blim, and this confirms the fisher's impression assessed by a survey in France in 2006. Year classes 2006 and 2007 suggest a substantially stronger recruitment than in recent years. Based on a status quo fishing value in 2009 and 2010, the short-term projections suggest a stock between Blim and Bpa by 2011.

\subsection*{6.11 Management considerations}

SSB in 2008 was close to its lowest level and below Blim. Projections based on the recruitment for year class 2007 and F value in 2008 indicate a stock between Blim and Bpa by 2011 .
The stock identity of plaice in the Channel is unclear and may raise some issues :
- The TAC is combined for Divisions VIId and VIIe. Plaice in VIIe is considered at risk of being harvested unsustainably and estimated from trends in the assessment to be at a very low level.
- The plaice stock in VIId is mostly harvested in a mixed fishery with sole in VIId. There exists a directed fishery on plaice occurring in a limited period at
the beginning of the year on the spawning grounds. Plaice is mainly taken as by-catch by the demersal fisheries, especially targeting sole.

Due to the minimum mesh size \((80 \mathrm{~mm})\) in the mixed beam and otter trawl fisheries, a large number of undersized plaice are discarded. The 80 mm mesh size is not matched to the minimum landing size of plaice ( 27 cm ). Measures taken specifically to control sole fisheries will impact the plaice fisheries.

Council Regulation (EC) N³3/2009 allocates different amounts of Kw*days by Member State and area to different groups of vessels depending on gear and mesh size. The new regime has not reduced effort for beam trawls in this area.

Table 6.2.1.1-P laice in VIId. Nominal landings (tonnes) as officially reported to ICES , 1976-2008.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & Belgium & Denmark & France & UK(E+W) & Others & Total reported & Unallocated & Total as used by WG & \begin{tabular}{l}
Agreed \\
TAC (5)
\end{tabular} \\
\hline & 1976 & 147 & 1(1) & 1439 & 376 & - & 1963 & & 1963 & \\
\hline & 1977 & 149 & 81(2) & 1714 & 302 & - & 2246 & & 2246 & \\
\hline & 1978 & 161 & 156(2) & 1810 & 349 & - & 2476 & - & 2476 & \\
\hline & 1979 & 217 & 28(2) & 2094 & 278 & - & 2617 & - & 2617 & \\
\hline & 1980 & 435 & 112(2) & 2905 & 304 & - & 3756 & -1106 & 2650 & \\
\hline & 1981 & 815 & - & 3431 & 489 & - & 4735 & 34 & 4769 & \\
\hline & 1982 & 738 & & 3504 & 541 & 22 & 4805 & 60 & 4865 & \\
\hline & 1983 & 1013 & - & 3119 & 548 & - & 4680 & 363 & 5043 & \\
\hline & 1984 & 947 & - & 2844 & 640 & - & 4431 & 730 & 5161 & \\
\hline & 1985 & 1148 & - & 3943 & 866 & - & 5957 & 65 & 6022 & \\
\hline & 1986 & 1158 & - & 3288 & 828 & 488 (2) & 5762 & 1072 & 6834 & \\
\hline & 1987 & 1807 & - & 4768 & 1292 & - & 7867 & 499 & 8366 & 8300 \\
\hline & 1988 & 2165 & - & 5688 (2) & 1250 & - & 9103 & 1317 & 10420 & 9960 \\
\hline & 1989 & 2019 & + & 3265 (1) & 1383 & - & 6667 & 2091 & 8758 & 11700 \\
\hline & 1990 & 2149 & - & 4170 (1) & 1479 & - & 7798 & 1249 & 9047 & 10700 \\
\hline & 1991 & 2265 & - & 3606 (1) & 1566 & - & 7437 & 376 & 7813 & 10700 \\
\hline & 1992 & 1560 & 1 & 3099 & 1553 & 19 & 6232 & 105 & 6337 & 9600 \\
\hline & 1993 & 877 & +(2) & 2792 & 1075 & 27 & 4771 & 560 & 5331 & 8500 \\
\hline & 1994 & 1418 & + & 3199 & 993 & 23 & 5633 & 488 & 6121 & 9100 \\
\hline & 1995 & 1157 & - & 2598 (2) & 796 & 18 & 4569 & 561 & 5130 & 8000 \\
\hline & 1996 & 1112 & - & 2630 (2) & 856 & + & 4598 & 795 & 5393 & 7530 \\
\hline & 1997 & 1161 & - & 3077 & 1078 & + & 5316 & 991 & 6307 & 7090 \\
\hline & 1998 & 854 & - & 3276 (23) & 700 & + & 4830 & 932 & 5762 & 5700 \\
\hline & 1999 & 1306 & - & 3388 (23) & 743 & + & 5437 & 889 & 6326 & 7400 \\
\hline & 2000 & 1298 & - & 3183 & 752 & + & 5233 & 781 & 6014 & 6500 \\
\hline & 2001 & 1346 & - & 2962 & 655 & + & 4963 & 303 & 5266 & 6000 \\
\hline & 2002 & 1204 & & 3454 & 841 & & 5499 & 278 & 5777 & 6700 \\
\hline & 2003 & 995 & & 2783 (3) & 756 & & 4536 & - & 4536 & 6000 \\
\hline & 2004 & 987 & & 2439 (4) & 580 & & 4007 & - & 4007 & 6060 \\
\hline & 2005 & 830 & & 1756 & 411 & 20 & 3018 & 428 & 3446 & 5150 \\
\hline & 2006 & 1031 & & 1713 & 545 & 16 & 3305 & - & 3305 & 5080 \\
\hline & 2007 & 1356 & & 1858 & 460 & & 3674 & - & 3674 & 5050 \\
\hline & 2008 & 1388 & & 1642 & 461 & & 3491 & - & 3491 & 5050 \\
\hline \multicolumn{11}{|c|}{\begin{tabular}{l}
1 Estimated by the working group from combined Division VIId+e \\
2 Includes Division VIIe \\
3 Provisional \\
4 Data provided to the WG but not officially provided to ICES \\
5 TAC's for Divisions VII d, e.
\end{tabular}} \\
\hline
\end{tabular}

Table 6.2.1.2. P aice in VIId. Discards


Table 6.2.1.3a. Plaice in VIId. Landings (L), discards (D) and percentage discards (\%D) per period, métier and country in 2008.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Period} & \multirow[t]{2}{*}{Métier} & \multirow[b]{2}{*}{Country} & \multicolumn{4}{|c|}{Numbers} & \multirow[t]{2}{*}{\%D} \\
\hline & & & Trips sampled & Hauls sampled & Landed & Discarded & \\
\hline Quarter 2 & Trawl & France & 4 & 27 & 628 & 357 & 36\% \\
\hline Quarter 2 & Beam Trawl & UK & 2 & 2 & 52 & 14 & 21\% \\
\hline Quarter 3 & Trawl & France & 1 & 3 & 12 & 0 & 0\% \\
\hline Quarter 4 & Trawl & France & 5 & 16 & 98 & 1 & 1\% \\
\hline Quarter 4 & Gillnet & France & 1 & 3 & 28 & 5 & 15\% \\
\hline Quarter 4 & Beam Trawl & UK & 6 & 43 & 1378 & 2382 & 63\% \\
\hline 2008 & Gillnet & France & 1 & 3 & 28 & 5 & 15\% \\
\hline 2008 & Trawl & France & 10 & 46 & 738 & 358 & 33\% \\
\hline 2008 & Beam Trawl & UK & 8 & 45 & 1430 & 2396 & 63\% \\
\hline
\end{tabular}

Table 6.2.1.3b. Plaice in VIId. Landings (L), discards (D) and percentage discards (\%D) per period, métier and country in 2007.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Period & Métier & Country & Trips sampled & Numbers Hauls sampled & Landed & Discarded & \%D \\
\hline Quarter 1 & Gillnet & France & 2 & 6 & 13 & 15 & 54\% \\
\hline Quarter 1 & Beam Trawl & UK & 4 & 12 & 59 & 45 & 43\% \\
\hline Quarter 2 & Trawl & France & 5 & 14 & 115 & 424 & 79\% \\
\hline Quarter 2 & Beam Trawl & UK & 10 & 37 & 1087 & 1025 & 49\% \\
\hline Quarter 3 & Trawl & France & 14 & 23 & 65 & 121 & 65\% \\
\hline Quarter 3 & Beam Trawl & UK & 5 & 27 & 65 & 75 & 54\% \\
\hline Quarter 4 & Trawl & France & 8 & 47 & 17 & 4 & 19\% \\
\hline Quarter 4 & Gillnet & France & 2 & 14 & 30 & 0 & 0\% \\
\hline Quarter 4 & Beam Trawl & UK & 1 & 16 & 164 & 0 & 0\% \\
\hline 2007 & Gillnet & France & 4 & 20 & 43 & 15 & 26\% \\
\hline 2007 & Trawl & France & 27 & 84 & 197 & 549 & 74\% \\
\hline 2007 & Beam Trawl & UK & 20 & 92 & 1375 & 1145 & 45\% \\
\hline
\end{tabular}

Table 6.2.2.1. P aice in VIId. Landings in numbers (thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10+ \\
\hline 1980 & 53 & 2644 & 1451 & 540 & 490 & 75 & 45 & 44 & 4 & 103 \\
\hline 1981 & 16 & 2446 & 6795 & 2398 & 290 & 159 & 51 & 42 & 56 & 200 \\
\hline 1982 & 265 & 1393 & 6909 & 3302 & 762 & 206 & 96 & 62 & 21 & 88 \\
\hline 1983 & 92 & 3030 & 3199 & 5908 & 931 & 226 & 92 & 122 & 4 & 101 \\
\hline 1984 & 350 & 1871 & 7310 & 2814 & 1874 & 533 & 236 & 101 & 34 & 100 \\
\hline 1985 & 142 & 5714 & 6195 & 4883 & 413 & 612 & 164 & 99 & 139 & 50 \\
\hline 1986 & 679 & 4884 & 7034 & 3663 & 1458 & 562 & 254 & 69 & 19 & 34 \\
\hline 1987 & 25 & 8499 & 7508 & 3472 & 1257 & 430 & 442 & 154 & 105 & 77 \\
\hline 1988 & 16 & 5011 & 18813 & 4900 & 1118 & 541 & 439 & 127 & 105 & 174 \\
\hline 1989 & 826 & 3638 & 7227 & 9453 & 2672 & 588 & 288 & 179 & 81 & 197 \\
\hline 1990 & 1632 & 2627 & 8746 & 5983 & 3603 & 801 & 243 & 203 & 178 & 231 \\
\hline 1991 & 1542 & 5860 & 5445 & 4524 & 2437 & 1681 & 286 & 120 & 113 & 125 \\
\hline 1992 & 1665 & 6193 & 4450 & 1725 & 1187 & 1044 & 698 & 200 & 116 & 118 \\
\hline 1993 & 740 & 7606 & 3817 & 1259 & 542 & 468 & 334 & 287 & 102 & 152 \\
\hline 1994 & 1242 & 3633 & 6968 & 3111 & 850 & 419 & 312 & 267 & 275 & 312 \\
\hline 1995 & 2592 & 4340 & 2933 & 2928 & 922 & 228 & 277 & 225 & 122 & 258 \\
\hline 1996 & 1119 & 4847 & 3606 & 1547 & 1436 & 488 & 179 & 176 & 165 & 347 \\
\hline 1997 & 550 & 4246 & 7189 & 3434 & 1080 & 752 & 464 & 199 & 114 & 306 \\
\hline 1998 & 464 & 4400 & 8629 & 3419 & 537 & 143 & 136 & 81 & 52 & 188 \\
\hline 1999 & 741 & 1758 & 12104 & 6460 & 1043 & 171 & 86 & 81 & 38 & 111 \\
\hline 2000 & 1383 & 6214 & 4284 & 7241 & 1652 & 307 & 82 & 27 & 42 & 98 \\
\hline 2001 & 2682 & 4159 & 4380 & 2141 & 1985 & 310 & 87 & 22 & 13 & 78 \\
\hline 2002 & 902 & 7204 & 5191 & 1907 & 1565 & 888 & 234 & 62 & 25 & 92 \\
\hline 2003 & 646 & 4874 & 5668 & 1864 & 424 & 373 & 333 & 75 & 50 & 62 \\
\hline 2004 & 967 & 4964 & 5471 & 894 & 389 & 152 & 133 & 133 & 38 & 48 \\
\hline 2005 & 324 & 3080 & 3876 & 2282 & 461 & 195 & 107 & 88 & 68 & 48 \\
\hline 2006 & 509 & 3027 & 3128 & 1610 & 878 & 204 & 84 & 92 & 61 & 72 \\
\hline 2007 & 790 & 2910 & 2811 & 1763 & 866 & 555 & 148 & 44 & 17 & 66 \\
\hline 2008 & 357 & 3867 & 2542 & 1521 & 626 & 284 & 264 & 28 & 16 & 30 \\
\hline
\end{tabular}

Table 6.2.3.1. P laice in VIId. Weights in the landings
\begin{tabular}{|r|rrrrrrrrrr|}
\hline & Age 1 & Age 2 & Age 3 & Age 4 & \multicolumn{1}{c}{ Age 5 } & Age 6 & Age 7 & Age 8 & Age 9 & Age 10+ \\
\hline \(\mathbf{1 9 8 0}\) & 0.309 & 0.312 & 0.499 & 0.627 & 0.787 & 1.139 & 1.179 & 1.293 & 1.475 & 1.557 \\
\(\mathbf{1 9 8 1}\) & 0.239 & 0.299 & 0.373 & 0.464 & 0.712 & 0.87 & 0.863 & 0.897 & 0.992 & 1.174 \\
\(\mathbf{1 9 8 2}\) & 0.245 & 0.271 & 0.353 & 0.431 & 0.64 & 0.795 & 1.153 & 1.067 & 1.504 & 1.355 \\
\(\mathbf{1 9 8 3}\) & 0.266 & 0.296 & 0.349 & 0.42 & 0.542 & 0.822 & 0.953 & 1.144 & 0.943 & 1.591 \\
\(\mathbf{1 9 8 4}\) & 0.233 & 0.295 & 0.336 & 0.402 & 0.508 & 0.689 & 0.703 & 0.945 & 1.028 & 1.427 \\
\(\mathbf{1 9 8 5}\) & 0.254 & 0.278 & 0.301 & 0.427 & 0.502 & 0.57 & 0.557 & 1.081 & 0.849 & 1.421 \\
\(\mathbf{1 9 8 6}\) & 0.226 & 0.306 & 0.331 & 0.406 & 0.546 & 0.486 & 0.629 & 0.871 & 1.446 & 1.579 \\
\(\mathbf{1 9 8 7}\) & 0.251 & 0.282 & 0.36 & 0.477 & 0.577 & 0.783 & 0.735 & 1.142 & 1.268 & 1.515 \\
\(\mathbf{1 9 8 8}\) & 0.292 & 0.268 & 0.321 & 0.432 & 0.56 & 0.657 & 0.77 & 0.908 & 1.218 & 1.328 \\
\(\mathbf{1 9 8 9}\) & 0.201 & 0.268 & 0.321 & 0.37 & 0.473 & 0.648 & 0.837 & 0.907 & 1.204 & 1.519 \\
\(\mathbf{1 9 9 0}\) & 0.201 & 0.256 & 0.326 & 0.378 & 0.483 & 0.61 & 0.781 & 0.963 & 1.159 & 1.31 \\
\(\mathbf{1 9 9 1}\) & 0.225 & 0.277 & 0.311 & 0.39 & 0.454 & 0.556 & 0.745 & 1.087 & 0.924 & 1.602 \\
\(\mathbf{1 9 9 2}\) & 0.182 & 0.277 & 0.352 & 0.429 & 0.509 & 0.585 & 0.701 & 0.837 & 0.85 & 1.195 \\
\(\mathbf{1 9 9 3}\) & 0.22 & 0.272 & 0.336 & 0.432 & 0.507 & 0.591 & 0.741 & 0.82 & 0.934 & 1.156 \\
\(\mathbf{1 9 9 4}\) & 0.243 & 0.27 & 0.288 & 0.356 & 0.466 & 0.576 & 0.686 & 0.928 & 0.969 & 1.287 \\
\(\mathbf{1 9 9 5}\) & 0.218 & 0.271 & 0.313 & 0.39 & 0.485 & 0.688 & 0.612 & 0.806 & 1.15 & 1.298 \\
\(\mathbf{1 9 9 6}\) & 0.221 & 0.3 & 0.29 & 0.396 & 0.475 & 0.643 & 0.764 & 0.934 & 1.057 & 1.312 \\
\(\mathbf{1 9 9 7}\) & 0.199 & 0.252 & 0.298 & 0.332 & 0.442 & 0.577 & 0.801 & 0.894 & 1.055 & 1.395 \\
\(\mathbf{1 9 9 8}\) & 0.159 & 0.244 & 0.267 & 0.381 & 0.502 & 0.762 & 0.839 & 0.981 & 0.986 & 1.379 \\
\(\mathbf{1 9 9 9}\) & 0.197 & 0.245 & 0.235 & 0.306 & 0.461 & 0.751 & 0.768 & 0.868 & 0.885 & 1.508 \\
\(\mathbf{2 0 0 0}\) & 0.207 & 0.245 & 0.261 & 0.283 & 0.375 & 0.576 & 0.687 & 0.875 & 0.926 & 1.067 \\
\(\mathbf{2 0 0 1}\) & 0.215 & 0.252 & 0.303 & 0.37 & 0.447 & 0.642 & 0.876 & 1.008 & 1.144 & 1.223 \\
\(\mathbf{2 0 0 2}\) & 0.254 & 0.256 & 0.309 & 0.376 & 0.438 & 0.562 & 0.627 & 0.88 & 0.909 & 1.33 \\
\(\mathbf{2 0 0 3}\) & 0.254 & 0.268 & 0.271 & 0.363 & 0.556 & 0.643 & 0.624 & 0.85 & 0.583 & 1.205 \\
\(\mathbf{2 0 0 4}\) & 0.217 & 0.243 & 0.295 & 0.421 & 0.493 & 0.61 & 0.636 & 0.933 & 1.093 & 1.348 \\
\(\mathbf{2 0 0 5}\) & 0.21 & 0.263 & 0.293 & 0.36 & 0.527 & 0.536 & 0.753 & 0.778 & 0.82 & 1.014 \\
\(\mathbf{2 0 0 6}\) & 0.209 & 0.263 & 0.318 & 0.374 & 0.463 & 0.611 & 0.711 & 0.732 & 0.858 & 1.071 \\
\(\mathbf{2 0 0 7}\) & 0.246 & 0.293 & 0.322 & 0.382 & 0.473 & 0.541 & 0.685 & 0.793 & 0.983 & 1.193 \\
\(\mathbf{2 0 0 8}\) & 0.244 & 0.286 & 0.334 & 0.404 & 0.509 & 0.596 & 0.727 & 1.316 & 0.921 & 1.254 \\
& & & & & & & & & &
\end{tabular}

Table 6.2.3.2. P baice in VIId. Weights in the stock.
\begin{tabular}{|r|rrrrrrrrrr|}
\hline & Age 1 & Age 2 & Age 3 & Age 4 & Age 5 & Age 6 & Age 7 & Age 8 & Age 9 & Age 10+ \\
\hline \(\mathbf{1 9 8 0}\) & 0.171 & 0.332 & 0.482 & 0.622 & 0.751 & 0.87 & 0.977 & 1.074 & 1.161 & 1.339 \\
\(\mathbf{1 9 8 1}\) & 0.11 & 0.216 & 0.317 & 0.414 & 0.506 & 0.594 & 0.677 & 0.756 & 0.83 & 1.042 \\
\(\mathbf{1 9 8 2}\) & 0.105 & 0.208 & 0.308 & 0.406 & 0.502 & 0.596 & 0.687 & 0.776 & 0.862 & 1.118 \\
\(\mathbf{1 9 8 3}\) & 0.097 & 0.192 & 0.286 & 0.379 & 0.47 & 0.56 & 0.648 & 0.735 & 0.821 & 1.169 \\
\(\mathbf{1 9 8 4}\) & 0.082 & 0.164 & 0.248 & 0.333 & 0.42 & 0.507 & 0.596 & 0.686 & 0.777 & 1.086 \\
\(\mathbf{1 9 8 5}\) & 0.084 & 0.171 & 0.259 & 0.348 & 0.44 & 0.533 & 0.628 & 0.725 & 0.824 & 1.206 \\
\(\mathbf{1 9 8 6}\) & 0.101 & 0.205 & 0.311 & 0.42 & 0.532 & 0.646 & 0.763 & 0.882 & 1.004 & 1.313 \\
\(\mathbf{1 9 8 7}\) & 0.122 & 0.242 & 0.361 & 0.479 & 0.596 & 0.712 & 0.826 & 0.939 & 1.051 & 1.306 \\
\(\mathbf{1 9 8 8}\) & 0.084 & 0.168 & 0.254 & 0.34 & 0.427 & 0.514 & 0.603 & 0.692 & 0.783 & 0.952 \\
\(\mathbf{1 9 8 9}\) & 0.079 & 0.162 & 0.25 & 0.342 & 0.439 & 0.541 & 0.648 & 0.759 & 0.874 & 1.211 \\
\(\mathbf{1 9 9 0}\) & 0.085 & 0.23 & 0.322 & 0.346 & 0.465 & 0.549 & 0.748 & 0.899 & 0.979 & 1.766 \\
\(\mathbf{1 9 9 1}\) & 0.143 & 0.219 & 0.275 & 0.335 & 0.375 & 0.472 & 0.633 & 1.057 & 1.022 & 1.502 \\
\(\mathbf{1 9 9 2}\) & 0.088 & 0.241 & 0.336 & 0.421 & 0.477 & 0.521 & 0.634 & 0.713 & 0.741 & 1.229 \\
\(\mathbf{1 9 9 3}\) & 0.108 & 0.258 & 0.296 & 0.379 & 0.493 & 0.539 & 0.573 & 0.699 & 0.787 & 1.056 \\
\(\mathbf{1 9 9 4}\) & 0.165 & 0.198 & 0.276 & 0.331 & 0.383 & 0.493 & 0.603 & 0.903 & 0.781 & 1.15 \\
\(\mathbf{1 9 9 5}\) & 0.124 & 0.257 & 0.286 & 0.354 & 0.442 & 0.707 & 0.531 & 0.703 & 1.092 & 1.194 \\
\(\mathbf{1 9 9 6}\) & 0.178 & 0.229 & 0.263 & 0.347 & 0.354 & 0.474 & 0.536 & 0.907 & 0.958 & 1.126 \\
\(\mathbf{1 9 9 7}\) & 0.059 & 0.202 & 0.256 & 0.266 & 0.417 & 0.53 & 0.665 & 0.686 & 0.972 & 1.364 \\
\(\mathbf{1 9 9 8}\) & 0.072 & 0.203 & 0.273 & 0.361 & 0.53 & 0.67 & 0.629 & 0.656 & 0.915 & 1.107 \\
\(\mathbf{1 9 9 9}\) & 0.072 & 0.172 & 0.213 & 0.351 & 0.429 & 0.644 & 0.76 & 0.782 & 0.593 & 1.166 \\
\(\mathbf{2 0 0 0}\) & 0.068 & 0.184 & 0.204 & 0.246 & 0.355 & 0.554 & 0.693 & 0.817 & 0.89 & 1.131 \\
\(\mathbf{2 0 0 1}\) & 0.093 & 0.206 & 0.274 & 0.338 & 0.404 & 0.624 & 0.844 & 0.989 & 1.153 & 1.405 \\
\(\mathbf{2 0 0 2}\) & 0.102 & 0.206 & 0.281 & 0.379 & 0.467 & 0.558 & 0.61 & 0.759 & 1.053 & 1.25 \\
\(\mathbf{2 0 0 3}\) & 0.103 & 0.191 & 0.249 & 0.33 & 0.496 & 0.492 & 0.548 & 0.748 & 0.522 & 0.982 \\
\(\mathbf{2 0 0 4}\) & 0.172 & 0.183 & 0.268 & 0.408 & 0.471 & 0.521 & 0.616 & 0.892 & 1.102 & 1.287 \\
\(\mathbf{2 0 0 5}\) & 0.096 & 0.201 & 0.269 & 0.308 & 0.47 & 0.492 & 0.707 & 0.629 & 0.814 & 0.89 \\
\(\mathbf{2 0 0 6}\) & 0.106 & 0.209 & 0.275 & 0.336 & 0.397 & 0.525 & 0.636 & 0.704 & 0.842 & 1.09 \\
\(\mathbf{2 0 0 7}\) & 0.125 & 0.224 & 0.265 & 0.323 & 0.431 & 0.463 & 0.62 & 0.831 & 1.04 & 1.222 \\
\(\mathbf{2 0 0 8}\) & 0.155 & 0.253 & 0.285 & 0.343 & 0.41 & 0.447 & 0.615 & 0.755 & 0.912 & 1.266 \\
& & & & & & & & & & \\
\hline
\end{tabular}

Table 6.2.5.1. P hice in VIId. Tuning fleets


\section*{Table 6.2.5.1.(cont.) Plaice in VIId. Tuning fleets}


Table 6.2.5.1. (cont.) P laice in VIId. Tuning fleets
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Frenc & ch GFS & ption & 2] tr & age & [rev: & \multicolumn{2}{|l|}{01/09/03-JV]} & (Catch: \\
\hline \multicolumn{10}{|l|}{Unknown) (Effort: Unknow} \\
\hline 1988 & 2008 & & & & & & & & \\
\hline 1 & 1 & 0.75 & 1 & & & & & & \\
\hline 0 & 5 & & & & & & & & \\
\hline 1 & 1.9 & 8 & 17.6 & 9.9 & 1.7 & 0.6 & & & \\
\hline 1 & 1.6 & 3.5 & 7.4 & 2.7 & 1.1 & 0.1 & & & \\
\hline 1 & 0.1 & 3.9 & 1.2 & 2.7 & 1.9 & 1.6 & & & \\
\hline 1 & 0.1 & 2.5 & 2.1 & 0.8 & 0.6 & 0.4 & & & \\
\hline 1 & 0.9 & 34.4 & 3.6 & 1.9 & 0.3 & 0.2 & & & \\
\hline 1 & 4.4 & 18.7 & 8.8 & 4.2 & 1.2 & 0.5 & & & \\
\hline 1 & 3.8 & 5 & 2.2 & 0.8 & 0.2 & 0.1 & & & \\
\hline 1 & 1.4 & 4.9 & 3 & 1.1 & 0.7 & 0.2 & & & \\
\hline 1 & 21.3 & 4.5 & 2.6 & 0.3 & 0.1 & 0.1 & & & \\
\hline 1 & 8.5 & 34.5 & 8.3 & 4.3 & 0.3 & 0.1 & & & \\
\hline 1 & 7.8 & 12.4 & 14 & 3.1 & 0.5 & 0 & & & \\
\hline 1 & 0.9 & 7.1 & 4.2 & 7.7 & 1.3 & 0.2 & & & \\
\hline 1 & 16.6 & 9.8 & 13.7 & 3.4 & 2.4 & 0.5 & & & \\
\hline 1 & 4.6 & 7.4 & 3.5 & 1.2 & 0.8 & 0.3 & & & \\
\hline 1 & 0.2 & 12.8 & 6.5 & 3.4 & 1 & 0.5 & & & \\
\hline 1 & 9.7 & 5.8 & 9.4 & 1.3 & 0.3 & 0.2 & & & \\
\hline 1 & 2.1 & 9.8 & 9.3 & 4.5 & 0.9 & 0.1 & & & \\
\hline 1 & 1.2 & 5.7 & 12.4 & 6.8 & 2.1 & 0.6 & & & \\
\hline 1 & 128 & 12.9 & 9.9 & 3.8 & 1.3 & 0.5 & & & \\
\hline 1 & 1 & 11.3 & 8.6 & 3.6 & 1.4 & 0.4 & & & \\
\hline 1 & 1.6 & 8.1 & 19.2 & 2.5 & 0.6 & 0.2 & & & \\
\hline FLT0 6: & \multicolumn{2}{|l|}{Intl YFS} & \multicolumn{3}{|l|}{[rev: 01/09/03-JV]} & \multirow[t]{2}{*}{( Catch:} & Un known) & \multicolumn{2}{|l|}{(Effort: Unknown)} \\
\hline 1987 & 2006 & & & & & & & & \\
\hline 1 & 1 & 0.5 & 0.75 & & & & & & \\
\hline 0 & 1 & & & & & & & & \\
\hline 1 & 11.68 & 1.44 & & & & & & & \\
\hline 1 & 5.56 & 1.3 & & & & & & & \\
\hline 1 & 3.97 & 0.6 & & & & & & & \\
\hline 1 & 3.42 & 0.7 & & & & & & & \\
\hline 1 & 4.36 & 0.6 & & & & & & & \\
\hline 1 & 4.04 & 1.8 & & & & & & & \\
\hline 1 & 3.7 & 0.8 & & & & & & & \\
\hline 1 & 8.69 & 0.8 & & & & & & & \\
\hline 1 & 6.87 & 1.7 & & & & & & & \\
\hline 1 & 4.07 & 0.7 & & & & & & & \\
\hline 1 & 2.23 & 0.8 & & & & & & & \\
\hline 1 & 5.3 & 0.8 & & & & & & & \\
\hline 1 & 3.81 & 0.8 & & & & & & & \\
\hline 1 & 5.14 & 0.48 & & & & & & & \\
\hline 1 & 3.74 & 0.83 & & & & & & & \\
\hline 1 & 0.67 & 0.92 & & & & & & & \\
\hline 1 & 4.86 & 0.2 & & & & & & & \\
\hline 1 & 4.83 & 0.78 & & & & & & & \\
\hline 1 & 2.19 & 0.17 & & & & & & & \\
\hline 1 & 7.62 & 0.3 & & & & & & & \\
\hline
\end{tabular}

Table 6.2.5.1. (cont.) Plaice in VIId. Tuning fleets
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{FLT07: UK BEAM TRAWL FLEET >=10 METRES WHERE PLAICE CATCH IS >=20\%} \\
\hline 1991 & \multicolumn{9}{|l|}{2008} \\
\hline 1 & 1 & 0 & 1 & & & & & & \\
\hline 2 & \multicolumn{9}{|l|}{10} \\
\hline 9794 & 518.2 & 495.5 & 359.4 & 165.2 & 140 & 23.1 & 9.2 & 4.5 & 2.8 \\
\hline 10270 & 524 & 396.5 & 246.9 & 136.8 & 97.2 & 77.7 & 25.7 & 5.1 & 4.2 \\
\hline 8993 & 476.8 & 279.8 & 102.7 & 62.5 & 46.4 & 33.2 & 38.6 & 13.1 & 5.8 \\
\hline 7398 & 238.6 & 325.6 & 135.1 & 51.2 & 28.4 & 23.1 & 12 & 24.3 & 4.7 \\
\hline 6293 & 346 & 197.2 & 152.2 & 65.5 & 23.7 & 13.9 & 15.2 & 10.7 & 18.9 \\
\hline 8124 & 785.2 & 182.5 & 48.4 & 54.8 & 28.5 & 7.2 & 8.8 & 7.1 & 7.2 \\
\hline 9258 & 781.9 & 552 & 50.4 & 19 & 25 & 19.8 & 12.1 & 7 & 9.9 \\
\hline 5954 & 342 & 254.8 & 90.6 & 12.1 & 5.7 & 12.9 & 4.5 & 3.9 & 0.9 \\
\hline 5181 & 151.8 & 632.1 & 76.8 & 24.7 & 3.3 & 1.2 & 4 & 1.4 & 1.1 \\
\hline 4640 & 258.7 & 158.9 & 280.7 & 47.6 & 15.4 & 3.8 & 1.6 & 3.5 & 1.4 \\
\hline 5762 & 211.3 & 153.2 & 99 & 126 & 23.4 & 6.6 & 4 & 1.4 & 1.6 \\
\hline 7634 & 430.3 & 276.2 & 61.7 & 30.5 & 52.6 & 7.9 & 5.2 & 1.1 & 0.7 \\
\hline 6441 & 684.2 & 146.5 & 78.6 & 16 & 13 & 21.8 & 16.1 & 1 & 1.1 \\
\hline 3726 & 206.2 & 310.8 & 33 & 13.1 & 5.6 & 4.6 & 9.3 & 4.1 & 1.2 \\
\hline 2944 & 188.5 & 83 & 69.9 & 8.8 & 6.4 & 1.8 & 1.6 & 4 & 0.8 \\
\hline 2789 & 198.5 & 129.6 & 41.4 & 29.3 & 4.2 & 3.6 & 2 & 1.2 & 2.5 \\
\hline 2664 & 124.5 & 96.4 & 49.2 & 14.7 & 11.3 & 2.3 & 1.7 & 0.6 & 0.8 \\
\hline 3492 & 283.4 & 70.3 & 23.9 & 13.8 & 3.6 & 4.6 & 0.3 & 0.4 & 0.3 \\
\hline FLT08: & French & YFS & USED & THE AS & SMMEN & & & & \\
\hline 1987 & 2008 & & & & & & & & \\
\hline 1 & 1 & 0.5 & 0.75 & & & & & & \\
\hline 0 & 1 & & & & & & & & \\
\hline 1 & 9.8 & 1.8 & & & & & & & \\
\hline 1 & 2.5 & 1.7 & & & & & & & \\
\hline 1 & 5.4 & 0.5 & & & & & & & \\
\hline 1 & 2.3 & 0.9 & & & & & & & \\
\hline 1 & 6.8 & 0.8 & & & & & & & \\
\hline 1 & 5 & 2.4 & & & & & & & \\
\hline 1 & 2 & 1 & & & & & & & \\
\hline 1 & 5.5 & 1 & & & & & & & \\
\hline 1 & 6.4 & 1 & & & & & & & \\
\hline 1 & 6.4 & 0.6 & & & & & & & \\
\hline 1 & 3.1 & 1.3 & & & & & & & \\
\hline 1 & 5.4 & 1.2 & & & & & & & \\
\hline 1 & 3 & 1.3 & & & & & & & \\
\hline 1 & 9.1 & 0.3 & & & & & & & \\
\hline 1 & 4.7 & 1.5 & & & & & & & \\
\hline 1 & 0.9 & 0.4 & & & & & & & \\
\hline 1 & 2.1 & 0.2 & & & & & & & \\
\hline 1 & 1.1 & 0.2 & & & & & & & \\
\hline 1 & 1.5 & 0.1 & & & & & & & \\
\hline 1 & 11.7 & 0.3 & & & & & & & \\
\hline 1 & 1.3 & 0.2 & & & & & & & \\
\hline 1 & 5.4 & 0.3 & & & & & & & \\
\hline
\end{tabular}

\section*{Table 6.3.5.1. P bice in VIId. XSA diagnostics}


Time series weights :
Tapered time weighting not applied
Catchability analysis :
Catchability independent of size for ages \(>1\)

Catchability independent of age for ages > 7
Terminal population estimation :
Survivor estimates shrunk towards the mean \(F\) of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk \(=1\)

Minimum standard error for population
estimates derived from each fleet \(=0.3\)
prior weighting not applied
Regression weights
year
age 1999200020012002200320042005200620072008
\(\begin{array}{lllllllllll}\text { all } & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\)

Fishing mortalities year
age \(19992000 \quad 2001 \quad 2002 \quad 2003 \quad 2004 \quad 2005 \quad 2006 \quad 2007 \quad 2008\)
\(10.0450 .090 \quad 0.1420 .048 \quad 0.0430 .079 \quad 0.030 \quad 0.046 \quad 0.0310 .016\)
\(20.1530 .5530 .3750 .6060 .3470 .471 \quad 0.3430 .370 \quad 0.3570 .189\)
\(30.6630 .588 \quad 0.8560 .990 \quad 1.289 \quad 0.722 \quad 0.731 \quad 0.6130 .6150 .535\)
\(\begin{array}{llllllllllll}4 & 1.164 & 0.974 & 0.583 & 1.053 & 1.111 & 0.613 & 0.670 & 0.682 & 0.750 & 0.710\end{array}\)
\(\begin{array}{lllllllllll}5 & 0.952 & 0.974 & 0.692 & 1.021 & 0.613 & 0.635 & 0.659 & 0.520 & 0.870 & 0.576\end{array}\)
\(\begin{array}{llllllllllll}6 & 0.669 & 0.728 & 0.419 & 0.680 & 0.630 & 0.409 & 0.677 & 0.609 & 0.648 & 0.699\end{array}\)
\(7 \quad 0.6850 .7030 .4090 .5690 .5170 .4250 .4990 .6171 .1160 .652\)
\(\begin{array}{lllllllllllll}8 & 0.402 & 0.418 & 0.360 & 0.507 & 0.316 & 0.356 & 0.489 & 0.954 & 0.682 & 0.560\end{array}\)
\(\begin{array}{llllllllllll}9 & 0.476 & 0.334 & 0.323 & 0.786 & 0.888 & 0.234 & 0.276 & 0.661 & 0.395 & 0.499\end{array}\)
\(\begin{array}{llllllllllll}10 & 0.476 & 0.334 & 0.323 & 0.786 & 0.888 & 0.234 & 0.276 & 0.661 & 0.395 & 0.499\end{array}\)

\section*{Table 6.3.5.1. (cont.) Phice in VIId. XSA diagnostics}

XSA population number ( thousands ) age
\begin{tabular}{rrrrrrrrrrr} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1999 & 17779 & 13047 & 26239 & 9874 & 1786 & 368 & 182 & 257 & 105 & 307 \\
2000 & 16894 & 15382 & 10133 & 12228 & 2790 & 624 & 171 & 83 & 156 & 362 \\
2001 & 21234 & 13971 & 8007 & 5093 & 4177 & 953 & 273 & 76 & 50 & 296 \\
2002 & 20269 & 16662 & 8685 & 3079 & 2572 & 1891 & 567 & 164 & 48 & 176 \\
2003 & 16045 & 17482 & 8224 & 2921 & 972 & 839 & 867 & 291 & 89 & 110 \\
2004 & 13355 & 13903 & 11182 & 2050 & 870 & 476 & 404 & 467 & 192 & 242 \\
2005 & 11713 & 11164 & 7858 & 4914 & 1004 & 417 & 286 & 239 & 296 & 209 \\
2006 & 11797 & 10290 & 7172 & 3424 & 2276 & 470 & 192 & 157 & 133 & 156 \\
2007 & 26934 & 10190 & 6432 & 3514 & 1566 & 1224 & 231 & 94 & 55 & 212 \\
2008 & 23513 & 23619 & 6452 & 3146 & 1503 & 594 & 579 & 69 & 43 & 80
\end{tabular}

Estimated population abundance at 1st Jan 2009 age
\begin{tabular}{lllllllllll} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{tabular}

200902093617694342014007642672743524

Fleet: UK B TRAWL
Log catchability residuals.
```

 year
    ```

```

 2 0.036-0.187 -0.432-0.181 0.087 0.274 -0.182 -0.821 -0.545 0.119 -0.285 0.073 0.542 0.175 0.482 0.682 0.265 -0.103
 3 0.293 0.195 -0.384 -0.231 0. 0.132 -0.513 0.148 -0.646 0..155 -0.197 -0.099 0. 184 -0.106 0.654 -0.075 0.465 0. 0.325 -0.300
 4 0.350 0.507 -0.128 -0.066 0.100 -0.658-0.772 -0.088 -0.636 0.480
 5 0.034 0.271 -0.048 0.129 0.257-0.270 -0.558 -0.317 -0.039 0.291 0.525 -0.552 -0.227 0.242 -0.054 0.323 0.205 -0.214
 6 0.118 0.234-0.094-0.136 0.135 -0.187 -0.213 -0.155 -0.559 0.590 0.231 0.191 -0.246 -0.074 0.548 0.031 0.127 -0.542
 7-0.246 0.157 -0.057-0.068 -0.090 -0.822 0.258
 8 -0.264 0.334 0.064 -0.378 0.196 -0.197 0.213 0.0.219
 9-0.376 -0.242 0.324 0.259 0. 0.182-0.170 0.175 0.0.238
 Mean log catchability and standard error of ages with catchability
 independent of year class strength and constant w.r.t. time
    ```
                    \(\begin{array}{lllllll}2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}\)
            9
            Mean_Logq -12.3377-12.0766-12.2073-12.3151-12.3487-12.4071-12.4071
            -12. 4071
            \(\begin{array}{llllllll}\text { S.E_Logq } & 0.3868 & 0.3436 & 0.4083 & 0.3083 & 0.3112 & 0.4508 & 0.4941\end{array}\)
            0.2763
            Fleet: BE BEAM TRAWL
            Log catchability residuals.
\(\begin{array}{lllllllllllllllllllllll}\text { age } & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000\end{array}\)
    \begin{tabular}{rrrrrrrrrrrrrrrrrrrr} 
\\
2 & -0.022 & -0.198 & 0.449 & -1.279 & 0.454 & 0.983 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 \\
\hline
\end{tabular}


    \(\begin{array}{rrrrrrrrrrrrrrrrrrrr}5 & -0.566 & 0.015 & -0.310 & 0.041 & -1.263 & -0.399 & -0.523 & -0.793 & 0.254 & -0.212 & 0.509 & -0.326 & -0.242 & 0.093 & 0.238 & 0.356 & 1.185 & 0.414 & 0.794\end{array}-0.389\)


    \(\begin{array}{lllllllllllllllllllllllllllllllll}9 & 0.059 & 0.167 & 0.154 & -0.287 & -0.936 & -0.411 & 0.274 & -0.091 & -0.189 & -0.956 & 0.946 & 1.091 & -1.073 & 0.037 & -0.585 & 0.087 & 0.053 & 0.371 & 0.394 & -0.650\end{array}\)

\section*{Table 6.3.5.1. (cont.) P hice in VIId. XSA diagnostics}
\begin{tabular}{rrrrrrrrr}
\multicolumn{10}{l}{ year } \\
age & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 \\
2 & 0.486 & 0.368 & 0.217 & 0.277 & 0.261 & 0.561 & 0.982 & 0.137 \\
3 & 0.879 & 0.575 & 0.646 & 0.236 & -0.115 & -0.153 & -0.145 & 0.052 \\
4 & 0.192 & 0.346 & 0.352 & -0.097 & -0.251 & -0.073 & -0.249 & 0.173 \\
5 & 0.102 & 0.504 & -0.058 & 0.157 & 0.343 & -0.184 & 0.320 & -0.062 \\
6 & -0.063 & -0.504 & 0.557 & -0.241 & 0.305 & -0.043 & 0.450 & 0.312 \\
7 & -0.324 & -0.145 & 0.171 & 0.265 & -0.015 & 0.039 & 1.036 & 0.636 \\
8 & -0.122 & -0.808 & -0.484 & -0.195 & 0.040 & 0.567 & 0.186 & 0.020 \\
9 & 0.094 & -0.115 & 0.631 & -0.715 & -0.777 & 0.591 & -0.661 & -1.319
\end{tabular}

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrrrrrr} 
& 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
Mean_Logq & -7.4502 & -5.6483 & -5.1096 & -5.2047 & -5.4594 & -5.4575 & -5.4575 & -5.4575 \\
S.E_Logq & 0.8756 & 0.4927 & 0.3724 & 0.4984 & 0.4616 & 0.4262 & 0.4109 & 0.6104
\end{tabular}

Fleet: FR TRAWL-1
Log catchability residuals.
\begin{tabular}{lrrrrrrrr}
\multicolumn{11}{c}{ year } \\
age & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 \\
2 & -0.139 & -0.300 & 0.509 & 0.266 & 0.176 & 0.167 & 0.016 & -0.696 \\
3 & -0.136 & 0.071 & 0.221 & 0.355 & -0.201 & 0.276 & -0.372 & -0.215 \\
4 & 0.270 & 0.300 & 0.618 & -0.137 & -0.320 & -0.191 & -0.267 & -0.274 \\
5 & 0.795 & 0.428 & 0.068 & 0.163 & -1.047 & 0.251 & -0.805 & 0.147 \\
6 & 0.379 & 0.614 & 0.103 & 0.546 & -0.291 & -0.130 & -1.172 & -0.049 \\
7 & 0.264 & 0.508 & -0.132 & 0.374 & -0.175 & -0.065 & -0.802 & 0.028 \\
8 & 0.661 & 0.662 & -0.075 & -0.255 & -0.615 & 0.281 & -0.260 & 0.183 \\
9 & 1.199 & 1.503 & 0.137 & 0.225 & -0.089 & -0.199 & -0.156 & 0.463
\end{tabular}

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time


Fleet: FR TRAWL-2

Log catchability residuals.
\begin{tabular}{rrrrrrrrrrrrr}
\multicolumn{9}{c}{ year } \\
age \\
2 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 \\
2 & -0.627 & -0.915 & -0.108 & 0.537 & 0.478 & 0.629 & 0.072 & 0.894 & -0.004 & 0.007 & -0.350 & -0.612 \\
3 & 0.496 & -0.034 & 0.284 & -0.299 & 0.299 & -0.317 & 0.794 & 0.180 & 0.009 & -0.358 & -0.520 & -0.534 \\
4 & 0.774 & 0.645 & 0.690 & 0.376 & -0.269 & -0.415 & 0.460 & -0.209 & -0.277 & -0.550 & -0.519 & -0.706 \\
5 & 0.111 & 0.683 & 0.419 & 0.845 & 0.318 & -0.253 & 0.034 & 0.083 & -0.659 & -0.709 & -0.370 & -0.503 \\
6 & 0.578 & -0.141 & 0.150 & 0.677 & -0.168 & -0.079 & -0.033 & 0.019 & -0.077 & -0.037 & -0.964 & 0.076 \\
7 & 0.853 & -0.503 & 0.774 & 0.431 & 0.042 & -0.259 & 0.075 & -0.330 & 0.004 & 0.055 & -0.213 & -0.928 \\
8 & 0.749 & 0.184 & 0.250 & -0.222 & -1.446 & -0.397 & -0.364 & -0.418 & -0.215 & 0.410 & -0.173 & 0.015 \\
9 & 0.439 & -0.601 & -0.501 & -0.139 & -1.182 & -0.238 & 0.980 & -1.003 & -0.881 & -0.623 & -0.514 & 0.413
\end{tabular}

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrrrrrr} 
& 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
Mean_Logq & -11.4778 & -10.7322 & -10.7865 & -11.1588 & -11.3841 & -11.6729 & -11.6729 & -11.6729 \\
S.E_Logq & 0.5605 & 0.4215 & 0.5461 & 0.5105 & 0.4060 & 0.5099 & 0.5464 & 0.6473
\end{tabular}

\section*{Table 6.3.5.1. (cont.) P haice in VIId. XSA diagnostics}
```

 Fleet: UK BTS
 Log catchability residuals.
 year

```

```

 0.336-1.470 -0.816 -0.190 -0.130 -0.950-0.301 -0.350-0.438 0.209 0.116 -0.056 0.166 0.262 0.389 -0.523 1.339 0.297 0.739 0.783 0.585
    ```



```

 Mean log catchability and standard error of ages with catchability
 independent of year class strength and constant w.r.t. time
 2 3 4 4 5
 Mean_Logq -6.7948-6.7639 -6.635 -6.4401 -6.4806
 S.E Logq 0.5727 0.6533 0.616 0.5876 0.6257
 Regression statistics
 Ages with q dependent on year class strength
 slope intercept
 Age 1 0.9708769 7.285884
 Fleet: FR GFS
 Log catchability residuals.
 year
    ```


```

 3 0.054-0.762 -0.399 -0.930 0.097 0.387 -1.361 -0.387-2.026 0.432 -0.443 0.245 0.313 -0.259 0.818
 Mean log catchability and standard error of ages with catchability
 independent of year class strength and constant w.r.t. time
 Mean Logq - 7.5202 - 2 7.7126
 S.E_\overline{Logq 0.7444 0.8059}
 Regression statistics
 Ages with q dependent on year class strength
 slope intercept
 Age 1 2.709575 3.763583
 Fleet: Intl YFS
 Log catchability residuals.
 year
 age 1981987 1988

```

```

 Regression statistics
 Ages with q dependent on year class strength
 slope intercept
 Age 1 0.8701796 10.09091
    ```

Table 6.3.5.1. (cont.) P haice in VIId. XSA diagnostics
```

 Terminal year survivor and F summaries:
 Age 1 Year class = 2007
 source
survivors N scaledWts
UK BTS 38254 1 0.602
FR GFS 14628 1 0.085
fshk 7219 1 0.312
Age 2 Year class = 2006
source
UK B TRAWL Survivors N scaledWts
BE BEAM TRAWL 20288 1 0.068
FR TRAWL-2 9590 1 0.159
UK BTS 26961 2 0.256
FR GFS 33190 2 0.108
fshk 7995 1 0.066
Age 3 Year class = 2005
source
UK B TRAWL Survivors N scaledWts
BE BEAM TRAWL 4265 2 0.128
FR TRAWL-2 2112 2 0.192
UK BTS 6303 3 0.149
FR GFS 6703 3 0.075
Intl YFS 2656 1 0.081
fshk 1980 1 0.045
Age 4 Year class = 2004
source
survivors N scaledWts
UK B TRAWL 1451 3 0.313
BE BEAM TRAWL 1579 3 0.242
FR TRAWL-2 833 3 0.177
UK BTS 2044 4 0.141
FR GFS 3157 3 0.039
Intl YFS 662 1 0.037
fshk 1250 1 0.051
Age 5 Year class = 2003
source

| | survivors | N scaledWts | |
| :--- | ---: | ---: | ---: |
| UK B TRAWL | 792 | 4 | 0.398 |
| BE BEAM TRAWL | 666 | 4 | 0.211 |
| FR TRAWL-2 | 492 | 4 | 0.172 |
| UK BTS | 1302 | 5 | 0.135 |
| FR GFS | 1937 | 3 | 0.018 |
| Int YFS | 1226 | 1 | 0.021 |
| fshk | 634 | 1 | 0.045 |

```

Table 6.3.5.1. (cont.) P haice in VIId. XSA diagnostics


Table 6.3.5.2. P laice in VIId. Fishing mortality (F) at age
\begin{tabular}{l|llllllllll} 
age & 1980 & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 \\
\hline 1 & 0.002 & 0.001 & 0.011 & 0.005 & 0.015 & 0.005 & 0.012 & 0.001 & 0.001 & 0.055 \\
2 & 0.169 & 0.119 & 0.134 & 0.153 & 0.117 & 0.315 & 0.213 & 0.181 & 0.205 & 0.174 \\
3 & 0.278 & 0.743 & 0.501 & 0.453 & 0.581 & 0.603 & 0.699 & 0.517 & 0.662 & 0.451 \\
4 & 0.387 & 0.878 & 0.898 & 0.953 & 0.816 & 0.873 & 0.778 & 0.802 & 0.671 & 0.738 \\
5 & 0.631 & 0.329 & 0.680 & 0.603 & 0.818 & 0.229 & 0.616 & 0.591 & 0.576 & 0.858 \\
6 & 0.409 & 0.379 & 0.365 & 0.385 & 0.742 & 0.610 & 0.489 & 0.325 & 0.483 & 0.603 \\
7 & 0.378 & 0.478 & 0.368 & 0.245 & 0.780 & 0.469 & 0.487 & 0.793 & 0.568 & 0.455 \\
8 & 0.235 & 0.643 & 1.736 & 0.980 & 0.411 & 0.793 & 0.326 & 0.546 & 0.485 & 0.423 \\
9 & 0.342 & 0.467 & 0.690 & 0.406 & 0.718 & 1.483 & 0.296 & 1.046 & 0.792 & 0.580 \\
10 & 0.342 & 0.467 & 0.690 & 0.406 & 0.718 & 1.483 & 0.296 & 1.046 & 0.792 & 0.580 \\
& & & & & & & & & & \\
age & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 \\
\hline 1 & 0.095 & 0.078 & 0.064 & 0.061 & 0.078 & 0.115 & 0.039 & 0.015 & 0.033 & 0.045 \\
2 & 0.220 & 0.505 & 0.443 & 0.410 & 0.414 & 0.379 & 0.290 & 0.184 & 0.148 & 0.153 \\
3 & 0.705 & 0.827 & 0.803 & 0.478 & 0.720 & 0.611 & 0.549 & 0.801 & 0.605 & 0.663 \\
4 & 0.737 & 0.880 & 0.598 & 0.486 & 0.802 & 0.672 & 0.676 & 1.473 & 1.037 & 1.164 \\
5 & 0.615 & 0.674 & 0.526 & 0.334 & 0.630 & 0.516 & 0.733 & 1.366 & 0.870 & 0.952 \\
6 & 0.597 & 0.577 & 0.608 & 0.359 & 0.415 & 0.301 & 0.503 & 0.984 & 0.558 & 0.669 \\
7 & 0.475 & 0.389 & 0.443 & 0.350 & 0.383 & 0.471 & 0.364 & 1.159 & 0.408 & 0.685 \\
8 & 0.596 & 0.403 & 0.458 & 0.292 & 0.463 & 0.466 & 0.548 & 0.776 & 0.548 & 0.402 \\
9 & 0.864 & 0.695 & 0.755 & 0.397 & 0.445 & 0.353 & 0.655 & 0.739 & 0.414 & 0.476 \\
10 & 0.864 & 0.695 & 0.755 & 0.397 & 0.445 & 0.353 & 0.655 & 0.739 & 0.414 & 0.476 \\
& & & & & & & & & & \\
age & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & \\
\hline 1 & 0.090 & 0.142 & 0.048 & 0.043 & 0.079 & 0.030 & 0.046 & 0.031 & 0.016 & \\
2 & 0.553 & 0.375 & 0.606 & 0.347 & 0.471 & 0.343 & 0.370 & 0.357 & 0.189 & \\
3 & 0.588 & 0.856 & 0.990 & 1.289 & 0.722 & 0.731 & 0.613 & 0.615 & 0.535 & \\
4 & 0.974 & 0.583 & 1.053 & 1.111 & 0.613 & 0.670 & 0.682 & 0.750 & 0.710 & \\
5 & 0.974 & 0.692 & 1.021 & 0.613 & 0.635 & 0.659 & 0.520 & 0.870 & 0.576 & \\
6 & 0.728 & 0.419 & 0.680 & 0.630 & 0.409 & 0.677 & 0.609 & 0.648 & 0.699 & \\
7 & 0.703 & 0.409 & 0.569 & 0.517 & 0.425 & 0.499 & 0.617 & 1.116 & 0.652 & \\
8 & 0.418 & 0.360 & 0.507 & 0.316 & 0.356 & 0.489 & 0.954 & 0.682 & 0.560 & \\
\hline 10 & 0.334 & 0.323 & 0.786 & 0.888 & 0.234 & 0.276 & 0.661 & 0.395 & 0.499 & \\
\hline & 0.323 & 0.786 & 0.888 & 0.234 & 0.276 & 0.661 & 0.395 & 0.499 & \\
\hline
\end{tabular}

Table 6.3.5.3. P bice in VIId. Stock number at age
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline age & 1980 & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 \\
\hline 1 & 25414 & 12904 & 25086 & 19841 & 24970 & 29696 & 60458 & 31414 & 26443 & 16350 \\
\hline 2 & 17830 & 22945 & 11661 & 22447 & 17866 & 22261 & 26735 & 54058 & 28401 & 23912 \\
\hline 3 & 6294 & 13618 & 18435 & 9226 & 17428 & 14386 & 14707 & 19545 & 40830 & 20931 \\
\hline 4 & 1770 & 4315 & 5859 & 10109 & 5305 & 8816 & 7124 & 6616 & 10543 & 19049 \\
\hline 5 & 1100 & 1088 & 1623 & 2160 & 3527 & 2124 & 3333 & 2962 & 2684 & 4879 \\
\hline 6 & 235 & 530 & 708 & 744 & 1069 & 1409 & 1529 & 1628 & 1484 & 1365 \\
\hline 7 & 150 & 141 & 328 & 445 & 458 & 460 & 692 & 849 & 1064 & 828 \\
\hline 8 & 221 & 93 & 79 & 205 & 315 & 190 & 261 & 385 & 347 & 546 \\
\hline 9 & 15 & 158 & 44 & 13 & 70 & 189 & 78 & 170 & 202 & 193 \\
\hline 10 & 373 & 561 & 185 & 317 & 204 & 67 & 139 & 124 & 332 & 468 \\
\hline age & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 \\
\hline 1 & 18876 & 21719 & 28023 & 13234 & 17301 & 25104 & 30518 & 37739 & 14906 & 17779 \\
\hline 2 & 14008 & 15527 & 18185 & 23773 & 11271 & 14473 & 20249 & 26550 & 33624 & 13047 \\
\hline 3 & 18176 & 10176 & 8476 & 10564 & 14275 & 6742 & 8967 & 13711 & 19984 & 26239 \\
\hline 4 & 12065 & 8127 & 4028 & 3436 & 5928 & 6289 & 3311 & 4684 & 5568 & 9874 \\
\hline 5 & 8244 & 5226 & 3050 & 2004 & 1911 & 2404 & 2905 & 1524 & 972 & 1786 \\
\hline 6 & 1873 & 4032 & 2410 & 1631 & 1298 & 921 & 1299 & 1263 & 352 & 368 \\
\hline 7 & 676 & 933 & 2049 & 1188 & 1030 & 776 & 617 & 711 & 427 & 182 \\
\hline 8 & 476 & 380 & 572 & 1190 & 757 & 635 & 439 & 388 & 202 & 257 \\
\hline 9 & 323 & 237 & 230 & 327 & 804 & 431 & 361 & 229 & 161 & 105 \\
\hline 10 & 417 & 261 & 233 & 486 & 909 & 908 & 755 & 612 & 581 & 307 \\
\hline age & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 \\
\hline 1 & 16894 & 21234 & 20269 & 16045 & 13355 & 11713 & 11797 & 26934 & 23513 & 15503** \\
\hline 2 & 15382 & 13971 & 16662 & 17482 & 13903 & 11164 & 10290 & 10190 & 23619 & 20935 \\
\hline 3 & 10133 & 8007 & 8685 & 8224 & 11182 & 7858 & 7172 & 6432 & 6452 & 17693 \\
\hline 4 & 12228 & 5093 & 3079 & 2921 & 2050 & 4914 & 3424 & 3514 & 3146 & 3420 \\
\hline 5 & 2790 & 4177 & 2572 & 972 & 870 & 1004 & 2276 & 1566 & 1503 & 1400 \\
\hline 6 & 624 & 953 & 1891 & 839 & 476 & 417 & 470 & 1224 & 594 & 764 \\
\hline 7 & 171 & 273 & 567 & 867 & 404 & 286 & 192 & 231 & 579 & 267 \\
\hline 8 & 83 & 76 & 164 & 291 & 467 & 239 & 157 & 94 & 69 & 273 \\
\hline 9 & 156 & 50 & 48 & 89 & 192 & 296 & 133 & 55 & 43 & 35 \\
\hline 10 & 362 & 296 & 176 & 110 & 242 & 209 & 156 & 212 & 80 & 67 \\
\hline & & & & & & & & & \multicolumn{2}{|l|}{\[
{ }^{* *} \text { GM: 2000-2006 }
\]} \\
\hline
\end{tabular}

Table 6.3.5.4. P bice in VIId. Summary table
\begin{tabular}{lrrrrrr} 
& recruitment & ssb & catch & landings & fbar3-6 & Y/ssb \\
1980 & 25414 & 5483 & 2650 & 2650 & 0.43 & 0.48 \\
1981 & 12904 & 6493 & 4769 & 4769 & 0.58 & 0.73 \\
1982 & 25086 & 7425 & 4865 & 4865 & 0.61 & 0.66 \\
1983 & 19841 & 7975 & 5043 & 5043 & 0.6 & 0.63 \\
1984 & 24970 & 7214 & 5161 & 5161 & 0.74 & 0.72 \\
1985 & 29696 & 7840 & 6022 & 6022 & 0.58 & 0.77 \\
1986 & 60458 & 9898 & 6834 & 6834 & 0.65 & 0.69 \\
1987 & 31414 & 13072 & 8366 & 8366 & 0.56 & 0.64 \\
1988 & 26443 & 12919 & 10420 & 10420 & 0.6 & 0.81 \\
1989 & 16350 & 14176 & 8758 & 8758 & 0.66 & 0.62 \\
1990 & 18876 & 14439 & 9047 & 9047 & 0.66 & 0.63 \\
1991 & 21719 & 10096 & 7813 & 7813 & 0.74 & 0.77 \\
1992 & 28023 & 8669 & 6337 & 6337 & 0.63 & 0.73 \\
1993 & 13234 & 7977 & 5331 & 5331 & 0.41 & 0.67 \\
1994 & 17301 & 8656 & 6121 & 6121 & 0.64 & 0.71 \\
1995 & 25104 & 7845 & 5130 & 5130 & 0.53 & 0.65 \\
1996 & 30518 & 6616 & 5393 & 5393 & 0.62 & 0.82 \\
1997 & 37739 & 6961 & 6307 & 6307 & 1.16 & 0.91 \\
1998 & 14906 & 7788 & 5762 & 5762 & 0.77 & 0.74 \\
1999 & 17779 & 8389 & 6326 & 6326 & 0.86 & 0.75 \\
2000 & 16894 & 6478 & 6015 & 6015 & 0.82 & 0.93 \\
2001 & 21234 & 6308 & 5266 & 5266 & 0.64 & 0.83 \\
2002 & 20269 & 5927 & 5777 & 5777 & 0.94 & 0.97 \\
2003 & 16045 & 4253 & 4536 & 4536 & 0.91 & 1.07 \\
2004 & 13355 & 4618 & 4007 & 4007 & 0.59 & 0.87 \\
2005 & 11713 & 4367 & 3446 & 3446 & 0.68 & 0.79 \\
2006 & 11797 & 4136 & 3305 & 3305 & 0.61 & 0.8 \\
2007 & 26934 & 4114 & 3674 & 3674 & 0.72 & 0.89 \\
2008 & 23513 & 4336 & 3491 & 3491 & 0.63 & 0.81 \\
\hline & & & & & \\
\hline
\end{tabular}

Table 6.5.1. P aice in VIId. RCT3 input

\begin{tabular}{lllllll}
\hline \begin{tabular}{l} 
7D PLAICE \\
(2 YEARS \\
OLD)
\end{tabular} & & & & & \\
\hline 5 & 23 & 2 & & & \\
\hline 1986 & 28401 & -11 & 144 & -11 & -11 & -11 \\
\hline 1987 & 23912 & 1168 & 132 & 2647 & -11 & 80 \\
\hline 1988 & 14008 & 556 & 58 & 231 & 19 & 35 \\
\hline 1989 & 15527 & 397 & 71 & 516 & 16 & 39 \\
\hline 1990 & 18185 & 342 & 62 & 1175 & 1 & 25 \\
\hline 1991 & 23773 & 436 & 178 & 1653 & 1 & 344 \\
\hline 1992 & 11271 & 404 & 84 & 322 & 9 & 187 \\
\hline 1993 & 14473 & 370 & 79 & 833 & 44 & 50 \\
\hline 1994 & 20249 & 869 & 168 & 1132 & 38 & 49 \\
\hline 1995 & 26550 & 687 & 66 & 1320 & 14 & 45 \\
\hline 1996 & 33624 & 407 & 82 & 3310 & 213 & 345 \\
\hline 1997 & 13047 & 223 & 80 & 1140 & 85 & 124 \\
\hline 1998 & 15382 & 530 & 76 & 1130 & 78 & 71 \\
\hline 1999 & 13971 & 381 & 48 & 1319 & 9 & 98 \\
\hline 2000 & 16662 & 514 & 83 & 1791 & 166 & 74 \\
\hline 2001 & 17482 & 374 & 92 & 2066 & 46 & 128 \\
\hline 2002 & 13903 & 67 & 20 & 618 & 2 & 58 \\
\hline 2003 & 11164 & 486 & 78 & 3618 & 97 & 98 \\
\hline 2004 & 10290 & 483 & 17 & 1084 & 21 & 57 \\
\hline 2005 & -11 & 219 & 30 & 1721 & 12 & 129 \\
\hline 2006 & -11 & 762 & -11 & 4261 & 1280 & 113 \\
\hline 2007 & -11 & -11 & -11 & 3028 & 10 & 81 \\
\hline 2008 & -11 & -11 & -11 & -11 & 16 & -11 \\
\hline y fs0 & & & & & & \\
\hline yfs1 & & & & & & \\
\hline bts1 & & & & & & \\
\hline gfs0 & & & & & & \\
\hline gfs1 & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 6.5.2. P laice in VIId. RCT3 results (Age 1)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Yearclass \(=2008\)} \\
\hline & \multicolumn{9}{|l|}{} \\
\hline \begin{tabular}{l}
Survey/ \\
Series
\end{tabular} & Slope & \[
\begin{aligned}
& \text { Inter- } \\
& \text { cept }
\end{aligned}
\] & \[
\begin{gathered}
\text { Std } \\
\text { Error }
\end{gathered}
\] & Rsquare & \begin{tabular}{l}
No. \\
Pts
\end{tabular} & \begin{tabular}{l}
Index \(P\) \\
Value
\end{tabular} & Predicted Value & Std Error & \begin{tabular}{l}
WAP \\
Weights
\end{tabular} \\
\hline \multicolumn{10}{|l|}{yfs0} \\
\hline \multicolumn{10}{|l|}{yf ¢ 1} \\
\hline \multicolumn{10}{|l|}{bts1} \\
\hline gfs0 & 3.27 & -. 44 & 4.73 & . 005 & 18 & 2.83 & 8.83 & 5.160 & . 004 \\
\hline \multicolumn{10}{|l|}{gfs1} \\
\hline & & & & & \multicolumn{2}{|l|}{VPA Mean \(=\)} & 9.87 & . 337 & . 996 \\
\hline \multirow[t]{3}{*}{Year Class} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Weighted Average Prediction}} & \multirow[t]{3}{*}{Log WAP} & Int & Ext & \multirow[t]{3}{*}{\begin{tabular}{l}
Var \\
Ratio
\end{tabular}} & \multirow[t]{3}{*}{VPA} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Log \\
VPA
\end{tabular}}} \\
\hline & & & & Std & Std & & & & \\
\hline & & & & Error & Error & & & & \\
\hline 2006 & 2579 & & 10.16 & . 30 & . 39 & 1.77 & & & \\
\hline 2007 & 2172 & & 9.99 & . 31 & . 22 & . 50 & & & \\
\hline 2008 & 1934 & & 9.87 & . 34 & . 07 & . 04 & & & \\
\hline
\end{tabular}

\section*{Table 6.5.3. P haice in VIId. RCT3 results (Age 2)}


\section*{Yearclass \(=2007\)}

\begin{tabular}{lrrrrrrrrrr}
\begin{tabular}{l} 
Survey/ \\
Series
\end{tabular} & Slope & \begin{tabular}{c} 
Inter- \\
cept
\end{tabular} & \begin{tabular}{c} 
Std \\
Error
\end{tabular} & & & & \begin{tabular}{c} 
No. \\
Pts
\end{tabular} & \begin{tabular}{c} 
Index \\
Value
\end{tabular} & \begin{tabular}{c} 
Predicted \\
Value
\end{tabular} & \begin{tabular}{c} 
Std \\
Error
\end{tabular}
\end{tabular} \begin{tabular}{c} 
WAP \\
Weights
\end{tabular}


Table 6.6.1. P haice in VIId. Input to catch forecast
\begin{tabular}{l|llll} 
Age & Stock & Mat & M & F \\
\hline 1 & 15503 & 0 & 0.1 & 0.03 \\
2 & 20935 & 0.15 & 0.1 & 0.29 \\
3 & 17693 & 0.53 & 0.1 & 0.57 \\
4 & 3420 & 0.96 & 0.1 & 0.69 \\
5 & 1400 & 1 & 0.1 & 0.63 \\
6 & 764 & 1 & 0.1 & 0.63 \\
7 & 267 & 1 & 0.1 & 0.77 \\
8 & 273 & 1 & 0.1 & 0.71 \\
9 & 35 & 1 & 0.1 & 0.5 \\
10 & 67 & 1 & 0.1 & 0.5
\end{tabular}

Table 6.6.2. P aice in VIId. Management option table
\begin{tabular}{llllll}
\begin{tabular}{lllll}
2009 \\
fmult
\end{tabular} & f3-6 & landings & catch & ssb & \\
\hline 1 & 0.630 & 5309 & 5309 & 5825 & \\
& & & & & \\
2010 & & & & & \\
fmult & f3-6 & landings & catch & ssb 2010 & ssb 2011 \\
\hline 0 & 0.000 & 0 & 0 & 6891 & 11350 \\
0.1 & 0.063 & 679 & 679 & 6891 & 10746 \\
0.2 & 0.126 & 1322 & 1322 & 6891 & 10177 \\
0.3 & 0.189 & 1929 & 1929 & 6891 & 9641 \\
0.4 & 0.252 & 2504 & 2504 & 6891 & 9136 \\
0.5 & 0.315 & 3048 & 3048 & 6891 & 8661 \\
0.6 & 0.378 & 3563 & 3563 & 6891 & 8213 \\
0.7 & 0.441 & 4051 & 4051 & 6891 & 7791 \\
0.8 & 0.504 & 4513 & 4513 & 6891 & 7393 \\
0.9 & 0.567 & 4951 & 4951 & 6891 & 7018 \\
1 & 0.630 & 5366 & 5366 & 6891 & 6664 \\
1.1 & 0.693 & 5759 & 5759 & 6891 & 6331 \\
1.2 & 0.756 & 6132 & 6132 & 6891 & 6016 \\
1.3 & 0.819 & 6486 & 6486 & 6891 & 5720 \\
1.4 & 0.882 & 6821 & 6821 & 6891 & 5440 \\
1.5 & 0.945 & 7140 & 7140 & 6891 & 5176 \\
1.6 & 1.008 & 7443 & 7443 & 6891 & 4927 \\
1.7 & 1.071 & 7730 & 7730 & 6891 & 4692 \\
1.8 & 1.134 & 8003 & 8003 & 6891 & 4470 \\
1.9 & 1.197 & 8263 & 8263 & 6891 & 4260 \\
2 & 1.260 & 8509 & 8509 & 6891 & 4062 \\
\hline & & & & & \\
\hline
\end{tabular}


Figure 6.1.2.1.P laice in VIId. Age distribution in the landings per quarter.


Figure 6.2.1.1a - Plaice VIId - Length structure of discards and landings collected by observations on board


Figure 6.2.1.1a (cont.) - Plaice VIId - Length structure of discards and landings collected by observations on board


Figure 6.2.1.1b - P laice VIId - Length structure of discards and landings collected by observations on board


Figure 6.2.1.1b (cont.) - Plaice VIId - Length structure of discards and landings collected by observations on board

France, Trawl Quarter 2, Year 2008
4 trips, 27 hauls / total

France, Trawl Quarter 1, Year 2007
No sample


France, Trawl Quarter 2, Year 2007 5 trips, 14 hauls / 31 total


Figure 6.2.1.1c - P laice VIId - Length structure of discards and landings collected by observations on board


Figure 6.2.1.1c (cont.) - Plaice VIId - Length structure of discards and landings collected by observations on board


Figure 6.2.1.2a. P laice in VIId. Catch curves by year class.


Figure 6.2.1.2b. P laice in VIId. Evolution of fish mortality.


Figure 6.2.3.1. P laice in VIId. Stock and Catch weight



Figure 6.2.5.1 - P haice in VIId. LP UE and effort

1)

Figure 6.2.5.2. Plaice in VIId. Between survey consistency. Mean standardised indices by surveys for each age

2 )

Retrospective analysis for plaice in the Eastern Channel


Figure 6.3.2.1.P laice in VIId. Retrospective analysis for different values of F shrinkage



Figure 6.3.2.2 - Phice in VIId. Separable VPA


Figure 6.3.2.3. Phice in VIId. Log \(q\) residuals for the single fleet runs (XSA settings and F shrinkage \(=1.0\) )


Figure 6.3.2.3 (cont.). Plaice in VIId. Log q residuals for the single fleet runs (XSA settings and F shrinkage \(=1.0\) )


Figure 6.3.2.4. Plaice in VIId. Log q residuals. All fleets combined. Settings as proposed section 6.3.5.


Inti YFS


Figure 6.3.2.4 (cont.). Phice in VIId. Log q residuals. All fleets combined. Settings as proposed section 6.3.5.


Figure 6.3.3.1. Plaice in VIId. Within survey consistency. Mean standardised indices by year class for each of the surveys.


Figure 6.3.3.2. Plaice in VIId. Summary plots of the retrospective analysis from SURBA


Figure 6.3.4.1. Phice in VIId. Comparison between 2006 and 2007 assessment and between SURB A and XSA results.


Figure 6.3.4.2.P laice in VIId. Individual fleet historical performance.


Figure 6.3.4.3. Plaice in VIId. Locations of tows and relative indices of the UK BTS survey from 1996 to 2006.


Figure 6.3.4.3. Phice in VIId. Locations of tows and relative indices of the UK BTS survey from 1996 to 2006.


Figure 6.3.5.4.P laice in VIId. Summary of assessment results


Figure 6.6.1 Plaice in VIId. Trends in F (Age 2 to 6)

\section*{Exploitation patterns}


Figure 6.6.2 P haice in VIId. Exploitation patterns over the last 6 years

\section*{7 \\ Plaice in Illa}

This year, exploratory analyses were conducted for plaice in IIIa, but no final assessment was produced. The last analytical assessment accepted by the WG was in 2004. A large number of issues were investigated during WG sessions in 2006 and 2007, but no analysis were performed in 2008.

The assessment of this stock suffers from a number of issues, mainly dealing with (i) catch at age information and (ii) survey spatial coverage. Catch at age issues relate both to the fisheries mainly taking place in the South-Western entrance of Skagerrak where some mixing may occur with North Sea plaice, and to large intrinsic variability in growth within the distributional area, which may not be sufficiently covered by the sampling. Survey issues arise from the survey stations sampling exclusively the Eastern side of the stock distribution where only limited fishing occurs.

These issues cannot be easily addressed through a standard benchmarking procedure and would require large-scale improvement in both commercial and survey sampling design. The WG considers that analytical assessment is not appropriate until these issues are solved.

Standard trial runs performed by this year's WG showed the same issues as during previous years. There seemed, though, to be stabilisation of the large fluctuations in F and SSB observed in previous years assessments, as well as a decrease of the large retrospective patterns in F .

In addition, focus was thus given to recent improvements in knowledge about this stock, in particular updated information from older tagging studies and recent improvements in age-reading.

A stock annex was made available to the WG this year (Annex 3)

\subsection*{7.1 Ecosystem aspects}

A general description of the ecosystem is given in the Stock Annex.

\subsection*{7.1.1 Fisheries}

A general description of the fishery is given in the Stock Annex.

\section*{Technical Conservation Measures}

Minimum Landing Size is 27 cm .
Closed areas were implemented by Denmark and Sweden in the SouthEast Kattegat and North of Øresund from the fourth quarter of 2008, with the aim of protecting spawning cod. Two smaller areas are to be closed on a permanent basis while one large area is to be closed during the first quarter only.

\section*{Changes in fleet dynamics}

The implementation of a number of changes in the regulatory systems in the Kattegat and Skagerrak between 2007 and 2008 (see also 7.1 .4 and 7.2.4) may have significantly changed the fishing patterns of the Danish and Swedish fleets, thereby affecting their consistency as tuning fleets. Two of these fleets were still used as tuning indices in the exploratory assessment runs, but this should be further investigated in future assessment.

\section*{Fisheries Science Partnerships}

No Fisheries Science Partnerships are applicable for this stock

\section*{Additional information provided by the fishing industry}

\subsection*{7.1.2 ICES Advice}

\section*{ICES ACFM advice for 2007}

In 2007, ICES noted that there were indications that the biomass and recruitment had increased in the recent years. There were no indications that the current catch level was detrimental to the stock and therefore the advice for 2008 was not to increase the catches above the most recent catch of 9400 t (2006).

\section*{ICES ACFM advice for 2008}

The analysis available for this stock in 2008 did not give a reason to change the advice from 2007. The advice on this stock for the fishery in 2009 was therefore the same as the advice given in 2007 for the 2008 fishery: "Landings should not exceed the level recorded in 2006 of 9400 t ."

\subsection*{7.1.3 Management}

There are no explicit management objectives for this stock.
TAC in 2008 was 11688 t , a 10\% increase compared to the TAC of 10625 t in 2007. The TAC was split between Skagerrak and Kattegat, with 9350 t and 2338 t, respectively. In 2008, the TAC was taken at \(80 \%\) in Skagerrak, and only at \(43 \%\) in the Kattegat (Table 7.1.4). In most years the combined TAC for the area has been largely higher than the actual landings estimates. (Figure 7.1.1)

TAC in 2009 is kept unchanged at 11688 t .
Effort in plaice IIIa fisheries has been regulated through the implementation of a days-at-sea regulation for the cod recovery plan and fishing effort limitation of the long term management plan (EC Council Regulation No. 2056/2001; EC Council Regulation No 676/2007; EC Council Regulation 40/2008).

For 2008 Council Regulation \(\mathrm{N}^{\circ} 40 / 2008\), annex \(\Pi^{\mathrm{a}}\) allocated different days at sea depending on gear, mesh size and catch composition. (see section 2.1.2 for a complete list).

For 2009 the system has been changed from allocation of days at sea by individual vessel to pools of KWdays. Council Regulation (EC) N43/2009 allocates different amounts of \(\mathrm{Kw}^{*}\) days by Member State and area to different effort groups of vessels depending on gear and mesh size. (see section 1.2.1 for complete list). The areas are Kattegat, part of IIIa not covered by Skagerrak and Kattegat, ICES zone IV, EC waters of ICES zone IIa, ICES zone VIId, ICES zone VIIa, ICES zone Via and EC waters of ICES zone Vb . The grouping of fishing gear concerned are: Bottom trawls, Danish seines and similar gear, excluding beam trawls of mesh size: TR1 ( \(\leq 100 \mathrm{~mm}\) ) - TR2 ( \(\leq\) 70 and \(<100 \mathrm{~mm}\) ) - TR3 ( \(\leq 16\) and \(<32 \mathrm{~mm}\) ); Beam trawl of mesh size: BT1 ( \(\leq 120 \mathrm{~mm}\) ) - BT2 ( \(\leq 80\) and \(<120 \mathrm{~mm}\) ); Gill nets excluding trammel nets: GN1; Trammel nets: GT1 and Longlines: LL1.

In addition to these common European rules, additional national management actions have been implemented, with the specific aim of protecting spawning cod in the

Kattegat. In 2008, a new effort restriction system was implemented both in Denmark and Sweden according to which one day present in the Kattegat during the period 1 February 2008 to 30 April counted as 2.5 days. This regulation ceased January 1, 2009 with the introduction of new regulations (KW days and closed areas). The WGBFAS noted that due to these effort restrictions, the usage of Nephrops trawls equipped with species sorting grid (which allows most cod to escape from the trawl) increased considerably in the Swedish fishery, as this type of trawl is not effort regulated. This change in fishing pattern is believed to have resulted in less cod discards in 2008 (WGBFAS 2008).
Finally, in 2007, a new rights-based regulation system was introduced in Denmark for the allocation of national quotas. Before that year the quotas were split into \(14-\) days rations which were continuously adjusted to the amount of quota left. In 2007 this system was changed to a complex system were individual rights are attached to the vessel and not to the owner (FKA - Vessel Quota Share), with specific provisions for coastal and recreational fisheries.. 2007 was considered a transition year to the new system. It is acknowledged that this complex system may have dramatically affected the stucture of Danish fisheries, but no quantitative analyses were made available.

\subsection*{7.2 Data available}

\subsection*{7.2.1 Catch}

The official landings reported to ICES are given in Table 7.1.1. The annual landings used by the Working Group, available since 1972, are given by country for Kattegat and Skagerrak separately in Tables 7.1.2 and 7.1.3. At the start of this period, landings were mostly taken in the Kattegat but from the mid-1970s, the major proportion of the landings has been taken in Skagerrak. This proportion increased even more in 2008 (up to \(88 \%\) ), and this may be due to the restrictive management measures implemented in the Kattegat to protect spawning cod.
According to official national statistics, total landings in 2008 were estimated at 8617 t , slightly lower than in 2007. Landings from Denmark have increased, both in absolute weight and relative weight (up to \(90 \%\) in 2008) due to the decrease of Dutch landings.

Previously, misreporting had been considered to potentially occur in the area be tween the North Sea and the Skagerrak. Fish taken in ICES rectangle 43F8 for example can be reported as coming from either of the two areas. In recent years a substantial part of the landings from that rectangle has been reported as being caught in Skagerrak. But information from the fishery suggests that the fishery really takes place in the Skagerrak part of the rectangle, and that there is currently no incentive for mis-reporting either from Div. IV to IIIa or visa versa. However, this particular rectangle represents a very large part of the landings for this stock (Figure 7.2.1), and small relative errors in catch allocation to one or another stock following administrative boundaries may potentially lead to dramatic variations in the catch information. Additional checks should be performed using VMS data in a future benchmark assessment.

Danish and Swedish sampling levels for IIIaN and IIIaS are available in Section 1.2, and landings at age are presented on Figure 7.2.2.

Discards time series from Denmark and Sweden over 2002-2008 were made available to the WG (second semester 2004 data missing for Sweden). Total amount was esti-
mated betw een 1600 to 2600 tonnes by year, corresponding to \(15-25 \%\) of the catch in weight (Table7.2.3).

Significant effort has been expended by Denmark and Sweden since 2004 into increasing the quality of age reading for plaice in IIIa, through a series of w orkshops and otolith exchanges between age readers. Significant improvement in the consistency have been reached, although some uncertainties remain, particularly for Kattegat plaice and for fish older than 6.
It is thus considered that the variability of growth is a more important source of uncertainty in the catch matrix than the age reading process in itself. A thorough analysis of the extent and stratification of the national sampling programs (for Denmark in particular) should be conducted in order to reduce the confidence interval of length distribution at age.
Landings and discards at age were raised using ICES InterCatch database.

\subsection*{7.2.2 Weight at age}

Weight at age in landings is presented in Table 7.2.2 and Figure 7.2.3. The procedure for calculating mean weights was revised in 2006 and is described in the Stock Annex. Weight at age in discards is presented in Table 7.2.5 and Figure 7.2.4.

\subsection*{7.2.3 Maturity and natural mortality}

Natural mortality is assumed constant for all years and is set at 0.1 for all ages.
The maturity ogive was revised during the 2006 WG , and uses a fixed value per age based on 1994-2005 average of IBTS \(1^{\text {s }}\) quarter data. (Table 7.2.7)

\subsection*{7.2.4 Catch, effort and research vessel data}

The description of tuning fleets is given in the Stock Annex.
There is no evidence of major issues with regards to misreporting in this stock. However, a number of issues remain for the reliability of the two commercial tuning fleets. First, as noted for the catch at age data, most fisheries take place in the rectangle 43F8 at the border between Skagerrak and the North Sea, and the catches may include an unknown level of individuals belonging to the North Sea stock. Increased concentration of effort on the Skagerrak side of the border may also have occurred based on regulatory opportunities, such as higher TAC and reduced number of days at sea allowed, creating incentives for selecting fishing grounds closer to the homeport. Second, Danish fisheries have been through dramatic changes since 2007, with the introduction of FKA (Vessel Quota Share) and more recently, the implementation of closed areas and KWdays from 2009 on. This may have affected the efficiency of the plaice fishery. No further investigations have been made so far, but LPUE in 2008 have been higher than during the recent period (Figure 7.2.7 and 7.2.8).

In 2007 the WG discussed the limited spatial coverage by the four surveys with regards to main fishing grounds. IBTS sampling in Skagerrak is mostly limited to the Eastern part around Skagen in Northern Denmark, (Figures 7.2.5 and 7.2.6) while most of the fisheries take place in the North Western area close to the North Sea border. This has not been addressed further yet.

In addition, some intersessional w ork on the reconstruction of Swedish surveys since 1901 (Cardinale et al., in prep.) have evidenced a decrease in the stock abundance on the Eastern side of the stock distribution over the \(X X\) th century, but no sign of im-
paired recruitment across the time series. Largest recruitment indices were indeed mostly observed over the latest time period.

\subsection*{7.3 Data analyses}

\subsection*{7.3.1 Reviews of last year's asses sment}

No assessment was performed in 2008. The issues listed during previous assessments dealt primarily with data issues. They have been addressed whenever possible, but the most important ones would though require a more in-depth intersessional work to be resolved properly, in particular with regards to sampling procedure and investigation of the stock origin of catches in the western Skagerrak / Northeastern North Sea. The WG still highlights these as necessary prerequisite in order to improve the quality of the plaice IIIa assessment.

\subsection*{7.3.2 Exploratory survey-based analyses}

No survey-based analyses were performed, but the average CPUE by survey were estimated using indices at age and stock weight at age (Figure 7.3.1). The four indices show a global CPUE increase in the period 2000-2006 compared to the nineties. 2006 is the highest level for all surveys, while 2007 was lower. 2008 indices are slightly inconsistent across surveys, since both spring surveys show a strong decrease to levels close to 1999 while the winter surveys show a relative increase compared to 2007. There is thus a larger uncertainty about the relative status in the Eastern component of the stock in 2008 compared to the last decade.

\subsection*{7.3.3 Exploratory catch-at-age-based analyses}

\section*{Catch-at-age matrix}

The Landings-at-age matrix is shown on the figure 7.2.2., as absolute and relative proportions. The matrix shows a limited ability to track down the cohorts over time, although some improvements were observed in the most recent years. Year classes 2001 and 2003 were tracked as relatively large

\section*{Catch curve cohort trends}

Log Catch curves by cohort (figure 7.3.2) show an increasing steepness over the period 2000-2005, when the proportion of fish older than 6 years decreased in the catches. This pattern seems to be less pronounced over the last three years.

\section*{Assessment model fits}

In 2006, an assessment was presented using survey-based assessment only, while in 2007 it was run using commercial LPUE series only. This year, the WG decided not to present a final assessment, but to run an exploratory assessment using all tuning series and following the settings described in the Stock Annex. The commercial tuning series show the same limited internal consistency as the catch at age matrix, with limited tracking of the cohorts (Figure 7.3.4). The surveys are more internally consistent (Figures 7.3.5. and 7.3.6), but show conflicting signals with the catch at age matrix as seen from the residuals plot (Figure7.3.7).

A retrospective plot of the assessment is shown on figure 7.3.8. It shows that the dramtic variability in Fbar as well as the large retrospective patterns observed around the years 1998-2005 have decreased over the most recent period 2006-2008. But the
retrospective pattern on the recruitment estimates remains high, and the actual level of the year classes for the decade is unknown.

\subsection*{7.3.4 Conclusions drawn from exploratory analyses}

The major data issues have not been fully resolved yet. However, the exploratory analyses show some signs of improvement in the internal consistency over the most recent years. The surveys show some relative decline of the Eastern part of the stock compared to their highest levels in 2006.

\subsection*{7.3.5 Final assessment}

As for previous years, the WG decided not to include a final assessment

\subsection*{7.4 Historic Stock Trends}

No historical stock trends are available from the final assessment.

\subsection*{7.5 Recruitment estimates}

Not available

\subsection*{7.6 Short-term forecasts}

Not performed

\subsection*{7.7 Medium-term forecasts - none}

\subsection*{7.8 Biological reference points}
\begin{tabular}{|l|l|l|}
\hline & ICES considers that: & ICES proposed that: \\
\hline \begin{tabular}{l} 
Precautionary Approach \\
reference points
\end{tabular} & \begin{tabular}{l} 
Blim cannot be accurately \\
defined.
\end{tabular} & \(\mathrm{B}_{\mathrm{pa}}=24000 \mathrm{t}\). \\
\hline & \begin{tabular}{l} 
Flim cannot be accurately \\
defined.
\end{tabular} & \(\mathrm{F}_{\mathrm{pa}}=0.73\). \\
\hline Target reference points & & \(\mathrm{F}_{\mathrm{y}}\) undefined. \\
\hline
\end{tabular}

Technical basis
\begin{tabular}{|l|l|}
\hline & \(\mathbf{B}_{\mathrm{pa}}=\) smoo thed \(\mathbf{B}_{\mathrm{loss}}\) (no sign of impairment). \\
\hline & \(\mathbf{F}_{\mathrm{pa}}=\mathbf{F}_{\mathrm{med}}\). \\
\hline
\end{tabular}

\subsection*{7.9 Quality of the ass essment}

The issues repeatedly acknowledged during the previous WGs have been addressed but not fully resolved, since they relate to major intrinsic issues in the stock identification and sampling program. In consequence, exploratory analyses provided similar results as in previous years. However, the exploratory analyses show some signs of improvement in the internal consistency over the most recent years, with a decrease of the interannual variability of F and of F and SSB retrospective patterns. This may reflect the recent improvements brought to the age-reading quality, as well as increased focus on the consistency of national sampling programs through the European \(D C R\) frame.

\subsection*{7.10 Status of the Stock}

It is not possible to provide a reliable status of the stock based on analytical assessment. However, a number of indicators tend to sustain the hypothesis that the stock is not exploited unsustainably. Landings have been stable over a long time period, and always lower than the TAC. The effort of commercial fleets has decreased, and LPUEs have been largely above average in 2008. There has never been sign of impaired recruitment. However, the Eastern component of the stock covered by the surveys may have declined compared to its highest level of 2006.

\subsection*{7.11 Management Considerations}

In 2007, ICES identified key issues that would need to be resolved before reaching further improvements in the assessment. The various surveys give a reasonably consistent result for the eastern part of the area. The status of the western part is more uncertain, due to potential mixing with North Sea plaice and limited survey coverage. The landings-at-age matrix does not show proper tracking of the cohorts, probably due to i) mixing of the IIIa stock with the North Sea plaice stock on the main fishing ground in southwestern Skagerrak, and ii) age misspecification due to low samplinglevels.
In 2009, The WG still considered these issues as outstanding, although uncertainty due to age reading is likely to have decreased in the recent years. The Working group recommends therefore that scientific effort is conducted towards improvement of the biological knowledge on plaice in the South-Western area / Eastern North Sea. In particular, the harbour sampling program should be screened for reducing the uncertainty in growth variability, and methods should be developed to investigate the stock provenance of plaice catches in this area. Furthermore, survey coverage in that region should be strengthened.
Additional considerations are given for this stock.
Plaice is taken both in a directed fishery and as an important by-catch in a mixed cod-Nephrops- plaice fishery. North Sea cod, which is estimated to be below Blim, has a stock area that includes the Skagerrak (Division IIIaN). Kattegat cod is also well be low Biim (Division IIIa South). Management of plaice in IIIa must therefore take account for state of the cod stocks.
There has been suspicion that restrictive by-catch rules on cod in Kattegat create a major incentive to misreport catches in the Western Baltic, although no evidence is available from the industry (ICES_WGBFAS 2008, 2009). The consequences for potential misreporting of plaice have not been investigated, but it is not considered as a major issue. The TAC for plaice is not restrictive, either in the Kattegat or in the Western Baltic, and the amount of landings are small in both areas compared to Skagerrak.

\subsection*{7.12 References}

ICES 2008. Report of the Baltic Fisheries Assessment Working Group (WGBFAS), 8-17 April 2008, ICES Headquarters, Copenhagen. ICES CM 2008 \ACOM:06. 692 pp.

ICES 2009. Report of the Baltic Fisheries Assessment Working Group (WGBFAS), 22-28 April 2009, ICES Headquarters, Copenhagen. ICES CM 2008 \(\backslash \mathrm{ACOM}\) : (not available yet).

Table 7.1.1 Plaice in Illa. Official landings in tonnes as reported to ICES and WG estimates, 1972-2008
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{2}{|c|}{Denmark} & \multicolumn{2}{|c|}{Sweden} & \multicolumn{2}{|c|}{Germany} & \multicolumn{2}{|c|}{Belgium} & \multicolumn{2}{|c|}{Norway} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Netherlands
Officher}} & \multicolumn{4}{|c|}{Total} \\
\hline & Official & WG est. & & & Official & Unalloc. & WG est. & TAC \\
\hline 1972 & & 20,599 & & 418 & & 77 & & & & 3 & & & & & 21,097 & \\
\hline 1973 & & 13,892 & & 311 & & 48 & & & & 6 & & & & & 14,257 & \\
\hline 1974 & & 14,830 & & 325 & & 52 & & & & 5 & & & & & 15,212 & \\
\hline 1975 & & 15,046 & & 373 & & 39 & & & & 6 & & & & & 15,464 & \\
\hline 1976 & & 18,738 & & 228 & & 32 & & 717 & & 6 & & & & & 19,721 & \\
\hline 1977 & & 24,466 & & 442 & & 32 & & 846 & & 6 & & & & & 25,792 & \\
\hline 1978 & & 26,068 & & 405 & & 100 & & 371 & & 9 & & & & & 26,953 & \\
\hline 1979 & & 20,766 & & 400 & & 38 & & 763 & & 9 & & & & & 21,976 & \\
\hline 1980 & & 15,096 & & 384 & & 40 & & 914 & & 11 & & & & & 16,445 & \\
\hline 1981 & & 11,918 & & 366 & & 42 & & 263 & & 13 & & & & & 12,602 & \\
\hline 1982 & & 10,506 & & 384 & & 19 & & 127 & & 11 & & & & & 11,047 & \\
\hline 1983 & & 10,108 & & 489 & & 36 & & 133 & & 14 & & & & & 10,780 & \\
\hline 1984 & & 10,812 & & 699 & & 31 & & 27 & & 22 & & & & & 11,591 & \\
\hline 1985 & & 12,625 & & 699 & & 4 & & 136 & & 18 & & & & & 13,482 & \\
\hline 1986 & & 13,115 & & 404 & & 2 & & 505 & & 26 & & & & & 14,052 & \\
\hline 1987 & & 14,173 & & 548 & & 3 & & 907 & & 27 & & & & & 15,658 & 19,250 \\
\hline 1988 & & 11,602 & & 491 & & 0 & & 716 & & 41 & & & & & 12,850 & 19,750 \\
\hline 1989 & & 7,023 & & 455 & & 0 & & 230 & & 33 & & & & & 7,741 & 19,000 \\
\hline 1990 & & 10,559 & & 981 & & 2 & & 471 & & 69 & & & & & 12,082 & 13,000 \\
\hline 1991 & & 7,546 & & 737 & & 34 & & 315 & & 68 & & & & & 8,700 & 11,300 \\
\hline 1992 & & 10,582 & & 589 & & 117 & & 537 & & 106 & & & & & 11,931 & 14,000 \\
\hline 1993 & & 10,419 & & 462 & & 37 & & 326 & & 79 & & & & & 11,323 & 14,000 \\
\hline 1994 & & 10,330 & & 542 & & 37 & & 325 & & 91 & & & & & 11,325 & 14,000 \\
\hline 1995 & 9,722 & 9,722 & 470 & 470 & 48 & 48 & 302 & 302 & 224 & 224 & & & 10,766 & 0 & 10,766 & 14,000 \\
\hline 1996 & 9,593 & 9,641 & 465 & 465 & 31 & 11 & & & 428 & 428 & & & 10,517 & 28 & 10,545 & 14,000 \\
\hline 1997 & 9,505 & 9,504 & 499 & 499 & 39 & 39 & & & 249 & 249 & & & 10,292 & -1 & 10,291 & 14,000 \\
\hline 1998 & 7,918 & 7,918 & 393 & 393 & 22 & 21 & & & 181 & 181 & & & 8,514 & -1 & 8,513 & 14,000 \\
\hline 1999 & 7,983 & 7,983 & 373 & 394 & 27 & 27 & & & 336 & 336 & & & 8,719 & 21 & 8,740 & 14,000 \\
\hline 2000 & 8,324 & 8,324 & 401 & 414 & 15 & 15 & & & 163 & 163 & & & 8,789 & 127 & 8,916 & 14,000 \\
\hline 2001 & 11,114 & 11,114 & 385 & 385 & 1 & 0 & & & 61 & 61 & & & 11,561 & -1 & 11,560 & 11,750 \\
\hline 2002 & 8,275 & 8,276 & 322 & 338 & 29 & 29 & & & 58 & 58 & & & 8,684 & 17 & 8,701 & 12,800 \\
\hline 2003 & 6,884 & 6884 & 377 & 396 & 14 & 14 & & & 341 & 341 & 1494 & 1584 & 9,110 & 109 & 9,219 & 16,600 \\
\hline 2004 & 7,135 & 7,135 & 317 & 244 & 77 & 77 & & & 106 & 106 & 1455 & 1511 & 9,090 & -17 & 9,073 & 11,173 \\
\hline 2005 & 5,605 & 5,619 & 244 & 244 & 21 & 47 & & & 116 & 116 & 808 & 915 & 6,794 & 147 & 6,941 & 9,500 \\
\hline 2006 & 7,690 & 7,689 & 349 & 350 & 34 & 34 & & & 142 & 142 & 1,167 & 1,190 & 9,382 & 23 & 9,405 & 9,600 \\
\hline 2007 & 6,665 & 6,664 & 333 & 331 & 31 & 31 & & & 99 & 100 & & 1,659 & 7,128 & & 8,785 & 10,625 \\
\hline 2008 & 7,768 & 7,767 & 356 & 356 & 23 & 11 & & & 79 & 79 & 433 & 403 & 8,659 & -43 & 8,616 & 11,688 \\
\hline
\end{tabular}

Table 7.1.2 Plaice in Kattegat. Landings in tonnes Working Group estimates, 1972-2008
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Denmark & Sweden & Germany & Belgium Norway & Total \\
\hline 1972 & 15,504 & 348 & 77 & & 15,929 \\
\hline 1973 & 10,021 & 231 & 48 & & 10,300 \\
\hline 1974 & 11,401 & 255 & 52 & & 11,708 \\
\hline 1975 & 10,158 & 296 & 39 & & 10,493 \\
\hline 1976 & 9,487 & 177 & 32 & & 9,696 \\
\hline 1977 & 11,611 & 300 & 32 & & 11,943 \\
\hline 1978 & 12,685 & 312 & 100 & & 13,097 \\
\hline 1979 & 9,721 & 333 & 38 & & 10,092 \\
\hline 1980 & 5,582 & 313 & 40 & & 5,935 \\
\hline 1981 & 3,803 & 256 & 42 & & 4,101 \\
\hline 1982 & 2,717 & 238 & 19 & & 2,974 \\
\hline 1983 & 3,280 & 334 & 36 & & 3,650 \\
\hline 1984 & 3,252 & 388 & 31 & & 3,671 \\
\hline 1985 & 2,979 & 403 & 4 & & 3,386 \\
\hline 1986 & 2,470 & 202 & 2 & & 2,674 \\
\hline 1987 & 2,846 & 307 & 3 & & 3,156 \\
\hline 1988 & 1,820 & 210 & 0 & & 2,030 \\
\hline 1989 & 1,609 & 135 & 0 & & 1,744 \\
\hline 1990 & 1,830 & 202 & 2 & & 2,034 \\
\hline 1991 & 1,737 & 265 & 19 & & 2,021 \\
\hline 1992 & 2,068 & 208 & 101 & & 2,377 \\
\hline 1993 & 1,294 & 175 & 0 & & 1,469 \\
\hline 1994 & 1,547 & 227 & 0 & & 1,774 \\
\hline 1995 & 1,254 & 133 & 0 & & 1,387 \\
\hline 1996 & 2,337 & 205 & 0 & & 2,542 \\
\hline 1997 & 2,198 & 255 & 25 & & 2,478 \\
\hline 1998 & 1,786 & 185 & 10 & & 1,981 \\
\hline 1999 & 1,510 & 161 & 20 & & 1,691 \\
\hline 2000 & 1,644 & 184 & 10 & & 1,838 \\
\hline 2001 & 2,069 & 260 & & & 2,329 \\
\hline 2002 & 1,806 & 198 & 26 & & 2,030 \\
\hline 2003 & 2,037 & 253 & 6 & & 2,296 \\
\hline 2004 & 1,395 & 137 & 77 & & 1,609 \\
\hline 2005 & 1,104 & 100 & 47 & & 1,251 \\
\hline 2006 & 1,355 & 175 & 20 & & 1,550 \\
\hline 2007 & 1,198 & 172 & 10 & & 1,380 \\
\hline 2008 & 866 & 137 & 6 & & 1,009 \\
\hline
\end{tabular}
* years 1972-1990 landings refers to IIIA

Table 7.1.3. Plaice in Skagerrak. Landings in tonnes. WG estimates, 1972-2008
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & Denmark & Sweden & Germany & Belgium & Norway & Netherlands & Total \\
\hline 1972 & 5,095 & 70 & & & 3 & & 5,168 \\
\hline 1973 & 3,871 & 80 & & & 6 & & 3,957 \\
\hline 1974 & 3,429 & 70 & & & 5 & & 3,504 \\
\hline 1975 & 4,888 & 77 & & & 6 & & 4,971 \\
\hline 1976 & 9,251 & 51 & & 717 & 6 & & 10,025 \\
\hline 1977 & 12,855 & 142 & & 846 & 6 & & 13,849 \\
\hline 1978 & 13,383 & 94 & & 371 & 9 & & 13,857 \\
\hline 1979 & 11,045 & 67 & & 763 & 9 & & 11,884 \\
\hline 1980 & 9,514 & 71 & & 914 & 11 & & 10,510 \\
\hline 1981 & 8,115 & 110 & & 263 & 13 & & 8,501 \\
\hline 1982 & 7,789 & 146 & & 127 & 11 & & 8,073 \\
\hline 1983 & 6,828 & 155 & & 133 & 14 & & 7,130 \\
\hline 1984 & 7,560 & 311 & & 27 & 22 & & 7,920 \\
\hline 1985 & 9,646 & 296 & & 136 & 18 & & 10,096 \\
\hline 1986 & 10,645 & 202 & & 505 & 26 & & 11,378 \\
\hline 1987 & 11,327 & 241 & & 907 & 27 & & 12,502 \\
\hline 1988 & 9,782 & 281 & & 716 & 41 & & 10,820 \\
\hline 1989 & 5,414 & 320 & & 230 & 33 & & 5,997 \\
\hline 1990 & 8,729 & 779 & & 471 & 69 & & 10,048 \\
\hline 1991 & 5,809 & 472 & 15 & 315 & 68 & & 6,679 \\
\hline 1992 & 8,514 & 381 & 16 & 537 & 106 & & 9,554 \\
\hline 1993 & 9,125 & 287 & 37 & 326 & 79 & & 9,854 \\
\hline 1994 & 8,783 & 315 & 37 & 325 & 91 & & 9,551 \\
\hline 1995 & 8,468 & 337 & 48 & 302 & 224 & & 9,379 \\
\hline 1996 & 7,304 & 260 & 11 & & 428 & & 8,003 \\
\hline 1997 & 7,306 & 244 & 14 & & 249 & & 7,813 \\
\hline 1998 & 6,132 & 208 & 11 & & 98 & & 6,449 \\
\hline 1999 & 6,473 & 233 & 7 & & 336 & & 7,049 \\
\hline 2000 & 6,680 & 230 & 5 & & 67 & & 6,982 \\
\hline 2001 & 9,045 & 125 & & & 61 & & 9,231 \\
\hline 2002 & 6,470 & 140 & 3 & & 58 & & 6,671 \\
\hline 2003 & 4,847 & 143 & 8 & & 74 & 1,584 & 6,656 \\
\hline 2004 & 5,717 & 179 & & & 106 & 1,511 & 7,513 \\
\hline 2005 & 4,515 & 144 & & & 116 & 915 & 5,690 \\
\hline 2006 & 6,334 & 175 & 14 & & 142 & 1,190 & 7,855 \\
\hline 2007 & 5,467 & 159 & 21 & & 100 & 1,659 & 7,406 \\
\hline 2008 & 6,901 & 219 & 5 & & 79 & 403 & 7,607 \\
\hline
\end{tabular}

Table 7.1.4 Plaice IIla. Initial and final quota and quota uptake by country.
(source - EU Commision database FIDES - on Danish Fiskeridirektoratet http://www.fd.dk)


Table 7.2.1. P laice IIIa 2008 WGNSSK, ANON, COMBSEX, PLUSGROUP. landings.n
\begin{tabular}{llllllllll} 
& age & & & & & & & \\
year & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 10 \\
1978 & 489 & 15692 & 39531 & 24919 & 8011 & 620 & 63 & 63 & 108 \\
1979 & 1105 & 9789 & 29655 & 20807 & 7646 & 2514 & 170 & 75 & 105 \\
1980 & 362 & 4772 & 16353 & 12575 & 6033 & 2393 & 949 & 203 & 104 \\
1981 & 190 & 4048 & 13098 & 10970 & 4306 & 1427 & 546 & 213 & 216 \\
1982 & 526 & 2067 & 9204 & 10602 & 5554 & 1851 & 758 & 301 & 161 \\
1983 & 1481 & 9715 & 8630 & 8026 & 2673 & 925 & 531 & 257 & 202 \\
1984 & 2154 & 12620 & 11140 & 4463 & 2183 & 985 & 904 & 695 & 457 \\
1985 & 1400 & 8641 & 21798 & 6232 & 1715 & 698 & 260 & 197 & 324 \\
1986 & 375 & 4366 & 14749 & 19193 & 4477 & 633 & 274 & 154 & 239 \\
1987 & 623 & 4227 & 12400 & 17710 & 10205 & 2089 & 373 & 242 & 315 \\
1988 & 101 & 3052 & 12037 & 13783 & 6860 & 2745 & 946 & 322 & 292 \\
1989 & 1012 & 3844 & 7102 & 6255 & 2708 & 1171 & 549 & 254 & 372 \\
1990 & 3147 & 8748 & 8623 & 9718 & 3222 & 981 & 481 & 349 & 428 \\
1991 & 2309 & 8611 & 9583 & 4663 & 2893 & 892 & 306 & 156 & 224 \\
1992 & 904 & 3858 & 11759 & 17427 & 4297 & 1033 & 296 & 115 & 142 \\
1993 & 1038 & 3505 & 10088 & 13233 & 6891 & 1657 & 376 & 104 & 116 \\
1994 & 1411 & 6919 & 8016 & 9859 & 8002 & 2780 & 448 & 111 & 93 \\
1995 & 446 & 2277 & 6606 & 11530 & 6622 & 4929 & 853 & 137 & 116 \\
1996 & 4527 & 5353 & 7971 & 5283 & 4751 & 1812 & 1355 & 151 & 68 \\
1997 & 529 & 4733 & 6379 & 9465 & 5104 & 3072 & 1369 & 849 & 150 \\
1998 & 563 & 6710 & 8219 & 6856 & 2971 & 791 & 385 & 234 & 234 \\
1999 & 687 & 2704 & 8432 & 8520 & 7419 & 1301 & 380 & 77 & 149 \\
2000 & 1223 & 3937 & 8302 & 11212 & 3599 & 888 & 139 & 17 & 36 \\
2001 & 3981 & 9172 & 9399 & 11001 & 4744 & 410 & 102 & 19 & 47 \\
2002 & 364 & 5008 & 8861 & 7528 & 4843 & 1766 & 448 & 51 & 29 \\
2003 & 3481 & 4686 & 9098 & 9279 & 4330 & 969 & 138 & 19 & 16 \\
2004 & 1724 & 17816 & 4271 & 4056 & 1994 & 265 & 97 & 11 & 18 \\
2005 & 3775 & 4853 & 9688 & 3389 & 1754 & 768 & 169 & 63 & 19 \\
2006 & 1288 & 13064 & 9241 & 7045 & 1293 & 673 & 216 & 38 & 28 \\
2007 & 4788 & 8085 & 8282 & 4398 & 3407 & 512 & 140 & 61 & 31 \\
2008 & 1627 & 7164 & 8859 & 5735 & 2499 & 1516 & 90 & 98 & 94 \\
& & & & & & & & &
\end{tabular}

Table 7.2.2. P laice IIIa 2008 WGNSSK, ANON, COMBSEX, PLUSGROUP . landings.wt

Table 7.2.3. P laice IIIa, Discards in weight 2007-05-05 09:22:09 units = tonnes

\section*{Country}
\begin{tabular}{rrr} 
year & Denmark & Sweden \\
2002 & 2002 & 486 \\
2003 & 2089 & 584 \\
2004 & 1628 & 273 \\
2005 & 1363 & 302 \\
2006 & 1282 & 347 \\
2007 & 1401 & 484 \\
\(\ldots 2008\) & 1201 & 330
\end{tabular}

Table 7.2.4. P laice IIIa, Discards number units = thousands
\begin{tabular}{llllllllllll} 
year & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2002 & 4 & 2592 & 7175 & 5886 & 3001 & 944 & 226 & 64 & 7 & 3 & 2 \\
2003 & 4 & 2600 & 10159 & 5452 & 2506 & 954 & 251 & 65 & 6 & 2 & 2 \\
2004 & 4 & 1664 & 4839 & 5506 & 2058 & 793 & 225 & 40 & 4 & 1 & 1 \\
2005 & 4 & 814 & 4733 & 4579 & 2018 & 745 & 213 & 55 & 11 & 1 & 1 \\
2006 & 6 & 739 & 3650 & 5247 & 1812 & 723 & 179 & 40 & 3 & 0 & 0 \\
2007 & 5 & 1046 & 5131 & 4403 & 2151 & 797 & 229 & 57 & 26 & 10 & 3 \\
2008 & 5 & 741 & 5049 & 4187 & 1913 & 660 & 206 & 48 & 11 & 6 & 3
\end{tabular}

Table 7.2.5. P laice IIIa, Discards mean weight 2007-05-05 09:22:10 units \(=\mathrm{kg}\)
\begin{tabular}{llllllllllll} 
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2002 & 0.033 & 0.065 & 0.117 & 0.136 & 0.147 & 0.167 & 0.258 & 0.272 & 0.32 & 0.316 & 0.3 \\
2003 & 0.03 & 0.061 & 0.116 & 0.135 & 0.147 & 0.157 & 0.234 & 0.268 & 0.3 & 0.3 & 0.3 \\
2004 & 0.03 & 0.076 & 0.111 & 0.135 & 0.151 & 0.16 & 0.18 & 0.284 & 0.3 & 0.3 & 0.3 \\
2005 & 0.03 & 0.078 & 0.11 & 0.132 & 0.151 & 0.159 & 0.177 & 0.213 & 0.164 & 0.3 & 0.44 \\
2006 & 0.03 & 0.081 & 0.115 & 0.135 & 0.153 & 0.164 & 0.206 & 0.25 & 0.271 & 0.3 & 0.3 \\
2007 & 0.03 & 0.085 & 0.121 & 0.143 & 0.16 & 0.174 & 0.177 & 0.198 & 0.227 & 0.239 & 0.205 \\
2008 & 0.03 & 0.07 & 0.093 & 0.13 & 0.155 & 0.177 & 0.173 & 0.28 & 0.21 & 0.146 & 0.154
\end{tabular}

Table 7.2.6. Phice IIIa 2008 WGNSSK, ANON, COMBSEX,PLUSGROUP . stock.wt
\begin{tabular}{llllllllll} 
& age & & & & & & & & \\
year & 2 & 3 & 4 & 5 & 6 & 9 & 10 \\
1978 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1979 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1980 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1981 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1982 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1983 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1984 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1985 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1986 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1987 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1988 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1989 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1990 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1991 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1992 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1993 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1994 & 0.091 & 0.159 & 0.253 & 0.295 & 0.341 & 0.399 & 0.426 & 0.509 & 0.635 \\
1995 & 0.081 & 0.192 & 0.306 & 0.26 & 0.334 & 0.385 & 0.403 & 0.567 & 0.695 \\
1996 & 0.099 & 0.17 & 0.287 & 0.327 & 0.312 & 0.317 & 0.311 & 0.424 & 0.443 \\
1997 & 0.123 & 0.165 & 0.243 & 0.299 & 0.353 & 0.495 & 0.572 & 0.544 & 0.689 \\
1998 & 0.063 & 0.133 & 0.223 & 0.297 & 0.386 & 0.451 & 0.43 & 0.392 & 0.501 \\
1999 & 0.09 & 0.133 & 0.208 & 0.294 & 0.319 & 0.346 & 0.414 & 0.618 & 0.849 \\
2000 & 0.064 & 0.133 & 0.196 & 0.295 & 0.318 & 0.316 & 0.845 & 0.8 & 0.926 \\
2001 & 0.085 & 0.145 & 0.234 & 0.299 & 0.288 & 0.382 & 0.655 & 0.781 & 0.699 \\
2002 & 0.064 & 0.122 & 0.162 & 0.304 & 0.328 & 0.372 & 0.389 & 0.769 & 0.932 \\
2003 & 0.092 & 0.133 & 0.179 & 0.287 & 0.294 & 0.348 & 0.415 & 0.557 & 0.782 \\
2004 & 0.065 & 0.12 & 0.169 & 0.34 & 0.368 & 0.473 & 0.68 & 0.809 & 0.969 \\
2005 & 0.083 & 0.129 & 0.214 & 0.301 & 0.326 & 0.349 & 0.455 & 0.537 & 0.73 \\
2006 & 0.075 & 0.132 & 0.215 & 0.333 & 0.315 & 0.415 & 0.515 & 0.56 & 0.826 \\
2007 & 0.066 & 0.129 & 0.212 & 0.309 & 0.357 & 0.44 & 0.504 & 0.45 & 0.909 \\
2008 & 0.056 & 0.125 & 0.197 & 0.318 & 0.374 & 0.462 & 0.597 & 0.732 & 1.022 \\
& & & & & & & & & \\
\hline 102
\end{tabular}

Table 7.2.7. P haice IIIa 2006 WGNSSK, ANON, COMBSEX,PLUSGROUP . maturity
```

2007-05-05 00:43:50 units= NA
age
year

```


\section*{Table 7.2.8. P laice IIIa 2006 WGNSSK, ANON, COMBSEX, PLUSGROUP . tuning}
\begin{tabular}{lllllllll} 
[1] "Final Tuning File" & & & & & & & & \\
106 & & & & & & & & \\
DK Gillnetters & & & & & & & & \\
1995 & 2008 & & & & & & & \\
1 & 1 & 10 & & & & & & \\
\hline
\end{tabular}

Table 7.2.8 (Cont'd)
\begin{tabular}{lllllll} 
KASU_Q4 & & & & & & \\
1994 & 2008 & & & & & \\
1 & 1 & 0.83 & 1 & & & \\
1 & 6 & & & & & \\
1 & 0.88 & 10.52 & 5.88 & 0.37 & 0.99 & 0.03 \\
1 & 1.68 & 10.33 & 3.77 & 0.19 & 1.1 & 0.06 \\
1 & 2.41 & 38.57 & 12.67 & 0.42 & 0.47 & 0.1 \\
1 & 11.09 & 11.47 & 4.35 & 1.26 & 0.65 & 0.36 \\
1 & 17.87 & 14.8 & 5.2 & 3.5 & 0 & 0.11 \\
1 & 101.15 & 38.86 & 7.22 & 0.92 & 0.56 & 0.63 \\
1 & 102.98 & 129.85 & 16.63 & 0 & 0.49 & 0.49 \\
1 & 52.93 & 99.92 & 29.79 & 1.71 & 0.49 & 0.85 \\
1 & 46.14 & 18.37 & 25.15 & 12.39 & 1.24 & 0.15 \\
1 & 42.17 & 61.79 & 14.91 & 6.26 & 3.38 & 0.35 \\
1 & 15.03 & 70.85 & 80.23 & 12.3 & 12.6 & 11.7 \\
1 & 108.73 & 42.47 & 8.28 & 1.38 & 0.09 & 0.07 \\
1 & 56.28 & 77.13 & 60.47 & 11.28 & 6.31 & 2.4 \\
1 & 42.76 & 45.99 & 11.39 & 2.74 & 0.48 & 0 \\
1 & 33.77 & 107.56 & 50.54 & 12.86 & 1.66 & 0.12 \\
KASU_Q1 & & & & & & \\
1996 & 2008 & & & & & \\
1 & 1 & 0.25 & 0.33 & & & \\
1 & 6 & & & & & \\
1 & 2.27 & 23.62 & 26.53 & 6.46 & 2.06 & 0.81 \\
1 & 0.05 & 11.49 & 19.45 & 4.39 & 1.75 & 0.68 \\
1 & -9 & -9 & -9 & -9 & -9 & -9 \\
1 & 4.68 & 25.95 & 22.42 & 2.94 & 1.27 & 0.15 \\
1 & 33.05 & 196.25 & 47.5 & 9.06 & 1.87 & 1.65 \\
1 & 11.47 & 127.73 & 73.92 & 6.67 & 1.7 & 1.33 \\
1 & 20.89 & 45.71 & 78.3 & 31.99 & 2.26 & 0.44 \\
1 & 9.67 & 143.32 & 38.2 & 33.56 & 6.16 & 0.17 \\
1 & 7.28 & 81.75 & 74.97 & 25.99 & 13.14 & 4.26 \\
1 & 13.49 & 163.55 & 100.77 & 19.07 & 4.36 & 1.75 \\
1 & 16.17 & 152.56 & 217.54 & 37.31 & 6 & 0.4 \\
1 & 7.65 & 107.93 & 116.95 & 36.77 & 6.6 & 1.15 \\
1 & 40.83 & 46.5 & 16.83 & 3.75 & 0.63 \\
1 & & & & & & \\
1 & 10.3
\end{tabular}

\section*{Table 7.2.8 (Cont'd)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1990 & 2008 & & & & & \\
\hline 1 & 1 & 0.99 & 1 & & & \\
\hline 1 & 6 & & & & & \\
\hline 1 & 9.55 & 21.09 & 11.19 & 3.71 & 0.29 & 0.09 \\
\hline 1 & 9.21 & 18.69 & 12.32 & 2.86 & 0.38 & 0.11 \\
\hline 1 & 14.58 & 13.39 & 13.41 & 12.1 & 4.63 & 0.54 \\
\hline 1 & 19.29 & 13.75 & 3.9 & 2.33 & 2.54 & 0.57 \\
\hline 1 & 10.12 & 21.41 & 8.92 & 2.43 & 1.74 & 0.79 \\
\hline 1 & 47.74 & 30.49 & 9.76 & 3.34 & 0.74 & 0.35 \\
\hline 1 & 20.89 & 46.75 & 9.57 & 3.34 & 0.18 & 0.07 \\
\hline 1 & 15.73 & 17.19 & 9.5 & 3.28 & 0.77 & 0.23 \\
\hline 1 & 44.6 & 19.46 & 5.92 & 5.68 & 0.31 & 0.19 \\
\hline 1 & 131.44 & 72.73 & 14.98 & 5.36 & 3.37 & 0.31 \\
\hline 1 & 55.16 & 91.76 & 20.41 & 3.22 & 2.09 & 0.79 \\
\hline 1 & 15.57 & 66.06 & 44.18 & 10.8 & 1.93 & 1.62 \\
\hline 1 & 95.55 & 50.85 & 46.2 & 33.62 & 6.34 & 1.05 \\
\hline 1 & 40.79 & 116.25 & 33.62 & 27.51 & 25.39 & 1.61 \\
\hline 1 & 117.05 & 85.37 & 51.22 & 21.28 & 31.61 & 9.21 \\
\hline 1 & 37.98 & 97.57 & 22.76 & 13.04 & 4.18 & 13.95 \\
\hline 1 & 52.12 & 83.73 & 83.43 & 27.32 & 15.66 & 6.02 \\
\hline 1 & 49.43 & 45.97 & 20.66 & 7.63 & 5.71 & 2.53 \\
\hline 1 & 17.03 & 29.41 & 7.75 & 3.15 & 1.36 & 0.68 \\
\hline \multicolumn{7}{|l|}{IBTS_Q3} \\
\hline 1997 & 2008 & & & & & \\
\hline 1 & 1 & 0.83 & 1 & & & \\
\hline 1 & 6 & & & & & \\
\hline 1 & 16.39 & 17.39 & 8.42 & 2.23 & 0.79 & 0.45 \\
\hline 1 & 27.92 & 19.97 & 5.26 & 3.66 & 0.43 & 0 \\
\hline 1 & 77.47 & 59.45 & 14.35 & 1.53 & 1.7 & 0.31 \\
\hline 1 & -9 & -9 & -9 & -9 & -9 & -9 \\
\hline 1 & 19.31 & 109.31 & 63.62 & 9.13 & 3.77 & 1.03 \\
\hline 1 & 66.31 & 54.15 & 33.27 & 24.38 & 4.12 & 0.45 \\
\hline 1 & 14.98 & 40.93 & 6.95 & 9.84 & 9.28 & 1.11 \\
\hline 1 & 51.95 & 39.99 & 41.41 & 3.77 & 5.49 & 3.96 \\
\hline 1 & 17.76 & 60.04 & 13.52 & 15.78 & 3.69 & 3.7 \\
\hline 1 & 24.39 & 59.55 & 72.11 & 18.14 & 13.09 & 6.99 \\
\hline 1 & 31.21 & 53.03 & 26.68 & 14.69 & 5.56 & 3.32 \\
\hline 1 & 5.11 & 98.32 & 33.39 & 21.08 & 6.32 & 1.48 \\
\hline
\end{tabular}

year


Figure 7.2.1. Annual distribution of Danish plaice landings (from WGNSSK 2007).


Figure 7.2.2. P baice IIIa. Relative landings at age.


Figure 7.2.3. Landings weight at age


Figure 7.2.4. Stock weight at age

KASU-1


Figure 7.2.5. Phice IIIa. Distribution and abundance of KASU Q1 catches.

IBTS quarter 1


Figure 7.2.6. Phaice IIIa. Distribution and abundance from IBTS Q1


Figure 7.2.7. P haice IIIa. Effort, landing and LP UE for the Danish commercial tuning fleets.

Yield versus effort for ple3a commercial fleets


Figure 7.2.8. P haice IIIa. Yield vs. effort for the commercial tuning fleets.

\section*{Survey CPUE age 2-6 for plaice Illa}


Figure 7.3.1. P aice IIIa. Combined CP UE index by survey using stock weight at age data.

\section*{Log catch curves for plai}


Figure 7.3.2. P aice IIIa. Log catch curves by cohort in the landings at age


Figure 7.3.3. P aice IIIa. Standardised Abundance index from tuning series.


Figure 7.3.4. P haice IIIa. Internal consistency for the commercial tuning fleets: matrix scatterplots and Log cohort abundance. Up : DK_Gillnetters. Bottom: DK_Seiners.

IBTS_Q1_backshifted


IBTS_Q3

log index

Figure 7.3.5. Phice IIIa. Internal consistency for the IBTS survey: matrix scatterplots and Log cohort abundance. Top: IBTS Q1 backshifted. Bottom: IBTS Q3.


Figure 7.3.6 Internal consistency for the KASU survey: matrix scatterplots and Log cohort abundance. Top: KASU Q1. Bottom: KASU Q4.


\begin{tabular}{ll}
\multicolumn{2}{c}{ Scale } \\
5.00 & \\
3.75 & \\
2.50 & \\
1.25 & \(\bullet\) \\
0.00 & \(\bullet\) \\
-1.25 & 0 \\
-2.50 & \(\bigcirc\) \\
-3.75 & \(\bigcirc\) \\
-5.00 &
\end{tabular}

Figure 7.3.7. Phice IIIa. Log catchability residuals for combined XSA
ple3a Retrospective Summary Plot


Figure 7.3.8. Phice IIIa. SPALY run. Log q residuals and retrospective pattern.

\section*{8 Plaice in Subarea IV}

A Stock Annex is available for North Sea plaice. Therefore only deviations from the stock annex are presented within this Section of the report.

\subsection*{8.1 General}

\subsection*{8.1.1 Ecosystem aspects}

No new information on ecosystem aspects was presented at the working group in 2009. All available information on ecosystem aspects can be found in the Stock Annex.

\subsection*{8.1.2 Fisheries}

No new information on fisheries aspects was presented at the w orking group in 2009. All available information can be found in the Stock Annex

\subsection*{8.1.3 ICES Advice}

The information in this section is taken from the ACOM summary sheet 2008, section 6.4.7.

\section*{Single-stock exploitation boundaries}

\section*{Exploitation boundaries in relation to existing management plans}

ACOM summary sheet in section 6.4.7: "According to the management plan adopted by the EC in 2007, the fishing mortality in 2009 should be reduced by \(10 \%\) compared to the fishing mortality estimated for the preceding year \((F 2007=F 2008=0.39)\) with the constraint that the change in TAC should not be more than \(15 \%\). A \(10 \%\) reduction in fishing mortality corresponds to an F of 0.35 and landings of 55500 t in 2009, which is within the \(15 \%\) TAC change (TAC \(2008=49000 t)^{\prime \prime}\).

Exploitation boundaries in relation to high long-term yield, low risk of depletion of production potential and considering ecosystem effects

ACOM summary sheet in section 6.4 .7 states: "The current total fishing mortality (including discards) is estimated to be 0.39 , which is above the rate expected to lead to high longterm yields and low risk of stock depletion. "

\section*{Exploitation boundaries in relation to precautionary limits}

The exploitation boundaries in relation to precautionary limits imply human consumption landings of less than 86000 t in 2009, which is expected to maintain SSB above Bpa in 2010, while maintaining F below Fpa.

\section*{Advice for mixed fisheries management}

The information in this section is taken from the North Sea Advice overview section 6.3

Fisheries in Division IIIa (Skagerrak-Kattegat), in Subarea IV (North Sea), and in Division VIId (Eastern Channel) should in 2009 be managed according to the following rules, which should be applied simultaneously:

\section*{Demersal fisheries}
- should minimize bycatch or discards of cod;
- should implement TACs or other restrictions that will curtail fishing mortality for those stocks mentioned above for which reduction in fishing pressure is advised;
- should be exploited within the precautionary exploitation limits or where appropriate on the basis of management plan results for all other stocks (see text table above);
- where stocks extend beyond this area, e.g. into Division VI (saithe and anglerfish) or are widely migratory (Northern hake), should take into account the exploitation of the stocks in these areas so that the overall exploitation remains within precautionary limits;
- should have no landings of angel shark and minimum bycatch of spurdog, porbeagle, and common skate and undulate ray.
Mixed fisheries management options should be based on the expected catch in specific combinations of effort in the various fisheries, taking into consideration the advice given above. The distributions of effort across fisheries should be responsive to objectives set by managers, which is also the basis for the scientific advice presented above.

\section*{Key points highlighted in the ACFM summary sheet}

Based on the most recent estimate of SSB (in 2008) and fishing mortality (in 2007), ICES classifies the stock as having full reproductive capacity and as being harvested sustainably. SSB is now estimated to have increased above the \(B_{p a}\). Fishing mortality is estimated to have decreased to below \(\mathrm{F}_{\text {pa. }}\). Recruitment has been below the longterm average since 2004; however, recruitment in 2007 is of average strength.
Due to a range of factors such as effort limitations, increases in fuel prices, and disproportionate changes in the TACs for the two main target species plaice and sole, the fishing effort of the major fleets has concentrated in the southern part of the North Sea. This is the area where many juvenile fish are found. In addition, juvenile plaice has shown a more offshore distribution in recent years. The combination of a change in fishing pattern and the spatial distribution of juvenile plaice has lead to an increase in discarding of plaice.

Different trends in catch are observed in different areas of the North Sea. Commercial cpue series and a survey in the central part of the North Sea appear to indicate an increase in the plaice stock, whereas a survey in the southern North Sea indicates that the stock has remained at a low level, and a survey in the coastal region indicates a decrease in the plaice stock. This discrepancy adds to noise in the assessment.

\subsection*{8.1.4 Management}

A long term management plan proposed by the Commission of the European Community was adopted by the Council of the European Union in June 2007 and first implemented in 2008 (EC Council Regulation No 676/2007). The plan consists of two stages. The aim of the first phase is to ensure the return of the stocks of plaice and sole to within safe biological limits. This should be reached through a reduction of fishing mortality by \(10 \%\) in relation to the fishing mortality estimated for the preceding year until an F of circa 0.3 is reached. ICES inter prets the F for the preceding year as the estimate of F for the year in which the assessment is carried out. The basis for
this F estimate will be constant over the years. The plan sets a maximum change of \(15 \%\) of the TAC between consecutive years.

ICES has evaluated the agreed long-term management plan (Council Regulation (EC) No. 676/2007) for plaice and sole. For plaice, the management plan evaluation is not yet conclusive with regards to consistency with the precautionary approach. The Review of an evaluation of the management plan for fisheries exploiting the stocks of plaice and sole in the North Sea (Council Regulation (EC) No 676/272) can be found in annex

The implementation of the management plan resulted in an agreed TAC of 49.000 in 2008 and 55.500 tonnes in 2009.

For 2009 Council Regulation (EC) N43/2009 allocates different amounts of Kw*days by Member State and area to different effort groups of vessels depending on gear and mesh size. (see section 12.1 for complete list). The area's are Kattegat, part of IIIa not covered by Skagerrak and Kattegat, ICES zone IV, EC waters of ICES zone IIa, ICES zone VIId, ICES zone VIIa, ICES zone Via and EC waters of ICES zone Vb. The grouping of fishing gear concerned are: Bottom trawls, Danish seines and similar gear, excluding beam trawls of mesh size: TR1 ( \(\leq 100 \mathrm{~mm}\) )TR2 ( \(\leq 70\) and \(<100 \mathrm{~mm}\) ) - TR3 ( \(\leq 16\) and \(<32 \mathrm{~mm}\) ); Beam trawl of mesh size: BT1 ( \(\leq 120 \mathrm{~mm}\) )- BT2 ( \(\leq 80\) and \(<\) 120 mm ); Gill nets excluding trammel nets: GN1; Trammel nets: GT1 and Longlines: LL1.

\subsection*{8.2 Data available}

\subsection*{8.2.1 Catch}

Total landings of North Sea plaice in 2008 (Table 8.2.1) were estimated by the WG at 48875 t , which is 869 t less than the 2007 landings. The TAC of \(49,000 \mathrm{t}, 125 \mathrm{t}\) more than the WG estimated landings, was thus almost taken in 2008. The discards time series used in the assessment was derived from Dutch, Danish, German and UK discards observations for 2000-2008.

A considerable proportion of the total landings of Plaice in Subarea IV are attributed to the UK. However, the discards from UK beam trawl and Dutch \(>100 \mathrm{~mm}\) fishery is very poorly sampled. For example in 2005, 2007 and 2008 no UK beam trawl vessels were surveyed, and the discard estimates are only based on the Otter trawl fishery.
There is indeed considerable variability in the observed UK discards between the years and those estimates are inconsistent with the existing knowledge on the spatial and temporal patterns in fishing effort and discards (Figure 8.2.2). In the absence of additional information, the WKFLAT 2009 recommended to assume a constant ratio between the UK and Dutch discard numbers at age:
\[
\hat{D}_{a, y}^{U K}=\frac{\sum_{y=2002}^{2007} D_{a, y}^{U K}}{\sum_{y=2002}^{2007} D_{a, y}^{N L}} \times D_{a, y}^{N L}
\]
where \(D_{a, y}^{U K}, \hat{D}_{a, y}^{U K}\), and \(D_{a, y}^{N L}\) are the observed and estimated UK, and observed Dutch discard numbers of year \(y\) and age \(a\), respectively. This new procedure is implemented in this years assessment.

Figure 8.2.1 presents a time series of landings, catches and discards from these different sources.

To reconstruct the number of plaice discards at age before 2000, catch numbers at age are calculated from fishing mortality at age corrected for discard fractions, using a reconstructed population and selection and distribution ogives (ICES CM 2005/ACFM:07 Appendix 1).

The WGNSK2008 review in the Technical minutes argues that 'The estimation and reconstructing the historical discarding values before 1999 is not very clear and should have a high priority in the next benchmark assessment round'. This issue has indeed been addressed in WKFLAT2009.

The conceptual complexity of the current reconstruction of the historic (<2000) discards ((ICES 2005); (van Keeken et al. 2004a)), has lead to development of a new statistical catch at age model, which explicitly incorporates the discard reconstruction into the assessment (Aarts and Poos 2009). The new aspect of the proposed method by (Aarts and Poos 2009) is that it does not assume constant fishing and selectivity in time, but explicitly models the fishing and discard selectivity as a flexible function of time using spline smoothers. The proposed statistical catch at age model includes data on landings and discards separately, and therefore explicitly allows for observation errors on those, and other data sources.

WKFLAT recommends to run the Statistical Catch at Age model (SCA model) in parallel to XSA, and evaluate the stock summaries. Once the Statistical Catch at Age model has been tested for a number of years, it should be adopted as the assessment method on which the management advice is based.

\subsection*{8.2.2 Age compositions}

The landing numbers at age are presented in Table 8.2.2.
The discard numbers at age were calculated using the discards raising procedures described above. The discard numbers at age are presented in Table 8.2.3. Catch numbers-at-age are presented as the sum of landings numbers at age and discards numbers at age in Table 8.2.4. Figure 8.2.3 presents the landings-at-age, and discards-at-age. Figure 8.2.4 presents the resulting catch-at-age.

\subsection*{8.2.3 Weight at age}

Stock weights at age are presented in Table 8.2.5. Stock weight at age has varied considerably over time, especially for the older ages. There has been a long-term decline in the observed stock weight at age (Figure 8.2.5). This may be due to nonrepresentative sampling of the different sexes in the population, mainly in the Dutch sampling programme. The stock weights of the older ages are based on the market samples in the first quarter. In these market samples, the sex ratio for the older ages is skewed towards the lighter males. Particularly in 2007 the stock weight estimates for several of the older ages were below the weights of the same cohort in the previous year. In 2008 the stock weight at age of most ages were above the 2007 estimates, but in-line with the last 4 years average. Discard, landing, and catch weights at age are
presented in Table 8.2.6, 8.2.7 and 8.2.8 respectively. Figure 8.2.5 presents the stock, discards, landings and catch weights at age.

\subsection*{8.2.4 Maturity and natural mortality}

Natural mortality is assumed to be 0.1 for all age groups and constant over time. A fixed maturity ogive (Table 8.2.9) is used for the estimation of SSB in North Sea plaice.

\subsection*{8.2.5 Catch, effort and research vessel data}

Three different survey indices can been used as tuning fleets are (Table 8.2.10 and Figure 8.2.6.):
- Beam Trawl Survey RV Isis (BTS-Isis)
- Beam Trawl Survey RV Tridens (BTS-Tridens)
- Sole Net Survey in September-October (SNS)

Additional Survey indices that can be used for recruitment estimates are (Table 8.2.11):
- Demersal Fish Survey (DFS)

Traditionally, for the Sole Net Survey (SNS \& SNSQ2) Ages 1 to 3 were used for tuning the North Sea plaice assessment; the 0-group index is used in the RCT3. The internal consistency of the survey indices used for tuning appears relatively high for the entire age-range of each individual survey (Figures 8.2.7-8.2.9).

For last year (2008) the observed BTS-Tridens index was very high compared to previous years. An investigation of the raw length distribution corrected for effort (Figure 8.2.10) extracted from the ICES database indeed indicated that large number of individuals were observed onboard the Tridens. Also the 2008 index data point within each internal consistency plot (Figure 8.2.7) didn't show up as an outlier, suggesting that the large number of individuals resulted from high survival of the year class in question.
Commercial LPUE series (consisting of an effort series and landings-at-age series) that can be used as tuning fleets are (Table 8.2.12 and Figure 8.2.11):
- The Dutch beam trawl fleet
- The UKbeam trawl fleet excluding all flag vessels

Effort has decreased in the Dutch beam trawl fleet since the early/mid 1990s. Up until 2002, the age-classes available in both the Dutch and the UK fleets generally show equal trends in LPUE through time.

The commercial LPUE data of the Dutch beam trawl-fleet, which dominated the fishery, will most likely be biased due to (individual) quota restrictions and increased fuel prices, which caused fishermen to leave productive fishing grounds in the more northern region.. A method that corrects for such spatial changes in effort has been developed (Quirijns and Poos 2008 WD 1). Under the assumption that discarding is negligible for the older ages, the LPUE represents CPUE, and this time series could be used to tune age structured assessment methods. Also, age-aggregated LPUE series, corrected for directed fishing under a TAC-constraint (see Quirijns and Poos 2008, WD1), by area and fleet component, can be used as indication of stock development (Figure 8.2.12 and Figure 8.2.13)

Effort of the Dutch beam trawl fleet and of the English beam trawl vessels landing in the Netherlands, by area and fleet component, are in Figure 8.2.14 and Figure 8.2.15 shows the spatial distribution of effort.
The age composition of the combined LPUE used in the exploratory analysis is shown in Figure 8.2.16

Plaice LPUE, corrected for directed fishing under a TAC constraint, of the Dutch fleet shows a substantial decrease in the years 1990-1997, after which overall LPUE remains more or less at the same level. In 2004 the Dutch LPUE in the more northern and central North Sea has increased substantially. In 2008 an increase in the more southern North Sea also becomes evident The LPUE pattern of the Dutch fleet appears to correspond well with the stock dynamics of the XSA assessment. On average the LPUE first decreased to about \(58 \%\) of the level it had in 1990, but has been increasing the last four years from about 1 ton/day up to 1.4 ton/day.

In the benchmark assessment, first attempts were made to include the LPUE into the stock assessment. This resulted in lower SSBs and higher F estimates, which was thought to be caused by reduction in fishing speed due to increased fuel prices and unrecorded discarding of marketable plaice. Consequently the WKFLAT recommended to include the LPUE index in to the assessment process, but to exclude LPUE series the final assessment run upon which management advice is based.

\subsection*{8.3 Data analyses}

The assessment of North Sea plaice by XSA was carried out using the FLR version of XSA (1.99.) in R version 2.8.1. All analyses were done in FLR.

\subsection*{8.3.1 Reviews of last year's asses sment}

Some relevant general and technical comments"One of the main problems seem to be changes in distribution pattern of this stock components and changes in fishery and discarding practice" and "Survey data showing very different profiles for the younger age groups " Changes in the distribution of the stock and fishery will most likely have a major effect on the assessment of the stock, particularly when the different tuning indices cover different areas of the North Sea. This issue has been noted by the Benchmark assessment and the WGBEAM. A combined index based on BTS-Isis and Tridens survey that captures spatial changes in the distribution of the stock has been put forward as a first solution. It is expected that such a combined index will be made available by WGBEAM for the 2010 WGNSSK
- "...commercial fleet data usable for the older age groups" The commercial LPUE has been included in the exploratory runs of the assessment.
- "Discards data have been developed further, which is good. However there is no full time series of discard observations available for the period before 1999. The estimation and reconstructing the historical discarding values before 1999 is not very clear and should have a high priority in the next benchmark assessment round." A new statistical catch-at-age model (see Aarts \& Poos 2009) assuming flexible fishing and discard selectivity functions has been developed and results are included into the exploratory runs.
- "The weight at age data is also of concern, long term decline of older ages, cohort effect on landing wages and so on. For example the decreasing stock weights at age
should be explored, just because they have a strong influence on TSB and SSB calculations." This point has not been addressed by the WKFLAT. Although a long-term decline in weight at age is evident, the most recent data indicated a increase relative to the 2007 observations
- "Likewise maturity ogive is influenced by decreasing growth rate and it is very unlikely, that maturation process is constant year after year. This needs a more in depth study. It usually change the estimates of SSB and the perception of the stock dynamics". This issue has not been addressed by the WKFLAT

\subsection*{8.3.2 Exploratory catch-at-age-based analyses}

The following exploratory analy sis have been carried out:
1. explore sensitivity to different structural model assumption in XSA
2. explore sensitivity to different combinations of tuning series in XSA
3. explore internal consistency for the age-structured corrected LPUE series and investigating the correlation betw een LPUE and stock size at age and the effect of including the corrected LPUE on the assessment
4. stock assessment using the statistical catch-at-age model as described in Aarts \& Poos (2009).

\section*{Structural model assumptions}

The effect of setting the plus-group at different ages was studied by running XSA with either a plus group at age 10 or at 15 . The setting of the plus group has an effect on both the SSB and F estimates coming from the XSA assessment (Fig 8.3.2). In the beginning of the resulting time series, the SSB is higher with the plus group set at age 15 compared to age 10. In the more recent part of the assessment, the SSB estimates are lower when using a plus group at age 15 compared to age 10 . For the estimates of fishing mortality the opposite effect can be found.

\section*{Different combinations of tuning series}

A series of XSA runs was carried out with all possible permutations of the available survey tuning fleets. The settings of the XSA model were the same as in WGNSSK 2008. The results (Figure 8.3.3) also this year indicate that the selection of tuning fleets does strongly affect the perception of SSB and F in the most recent part of the assessment; The variance in the SSB estimates for the terminal year as a result of the permutations is high. The inclusion of only the BTS -Tridens would lead to a much higher perception of the final year SSB, combined with a much lower F estimate. Inclusion of only the BTS index, or a combination of the indices result in estimates between these two extremes.

\section*{Corrected age-structured LPUE data}

Internal consistency plots were generated to explore the within year class correlation. The results (Figure 8.3.4) suggest weak correlation with for ages below 4. This is most likely a reflection of the low selectivity for these ages and the fact that most juveniles are not landed. However, ages 4 and older, show strong internal consistency. The explore the benefits for including the LPUE in future XSA analysis, correlations between current estimated stock size (excluding the LPUE) and LPUE is investigated. Age-structured pair-wise plots (Figure 8.3.5) show strong correlation between LPUE and stock size for the ages 4 and older, but the estimated correlations will be strongly influenced by the strong 1996 and 2001 year classes. Inclusion of the corrected LPUE
into the assessment leads to a estimated SSB (Figure 8.3.6) which is 244 instead of the 344 observed in the current assessment. The estimates of \(F\) increase from 0.25 (current assessment) up to 0.30 .

\section*{Statistical catch at age-model}

The statistical catch at age (SCA) model that can be used to assess the North Sea plaice stock is described in Aarts and Poos (2009). This model uses the same tuning survey indices as the XSA used in the final run. Rather than using the reconstructed discards, the model estimates the discards based on the total mortality that can be estimated from the tuning series, while the fishing mortality can be estimated from the landings, and the background natural mortality is assumed to be constant for all ages and years. The starting values for the optimizer are taken from the Aarts and Poos article, except of course for the recruitment and F estimates in 2008. The SCA model estimates similar stock trends compared to the XSA in the final run. However, the median SSB in 2008 is estimated to be 312000 tonnes, with \(95 \%\) confidence bounds between 270000 and 358000 t (Figure 8.3 .7 top left). The \(95 \%\) confidence bounds for F range between 0.15 and 0.22 (Figure 8.3.7 top right). Like in the XSA assessment, the BTS- Tridens is characterised by positive residuals for all ages in the final year. Figure 8.3.7 (bottom) shows that the discards are underestimated by the model since 2005. This is mainly caused by an underestimation of age 2 (Figure 8.3.8), which is the age where most discarding (in weight) takes place. This underestimation of age 2 discarding is likely the result of a low number of degrees of freedom that are used to describe the discarding selectivity pattern. In the future, the selectivity pattern for the discards could be described by more degrees of freedom (used in the basic spline). Also, a penalty could be introduced on deviation from the observed total discards in weight.

\subsection*{8.3.3 Conclusions drawn from exploratory analyses}

Like in previous years, the plus group was set to 10, which has a minor effect on the assessment of F and SSB in the terminal year. The different survey tuning series available give different perceptions of the development of the stock in the most recent part of the assessment. This difference in the signals from different areas in the North Sea corresponds to the observations from the landings per unit effort from the Dutch beam trawl fleet. Because the working group has not been able to model these differences, all the available survey tuning indices are used to average across the signals. Inclusion of the corrected LPUE leads to large decrease of the perceived size of the stock. The LPUE may be an underestimation in the true LPUE because of unrecorded discards of marketable plaice and reduction in fishing speed due to increases in fuel prices.

\subsection*{8.3.4 Final assessment}

The settings for the final assessment that is used for the catch option table, compared to the settings in earlier years is given below:
\begin{tabular}{|l|l|}
\hline Year & 2009 \\
\hline Catch at age & \begin{tabular}{l} 
Landings \\
(reconstructed) discards \\
based on NL, DK + UK + \\
GE fleets
\end{tabular} \\
\hline Fleets & \begin{tabular}{l} 
BTS-Isis 1985-2007 1-8 \\
BTS-Tridens 1996-2007 \\
\(1-9\) \\
SNS 1982-2007 1-3
\end{tabular} \\
\hline Plus group & 10 \\
\hline First tuning year & 1982 \\
\hline Last data year & 2008 \\
\hline Time series weights & No taper \\
\hline \begin{tabular}{l} 
Catchability \\
dependent on stock \\
size for age <
\end{tabular} & 1 \\
\hline \begin{tabular}{l} 
Catchability \\
independent of ages \\
for ages >=
\end{tabular} & 6 \\
\hline \begin{tabular}{l} 
Survivor estimates \\
shrunk towards the \\
mean F
\end{tabular} & 5 years / 5 years \\
\hline \begin{tabular}{l} 
s.e. of the mean for \\
shrinkage
\end{tabular} & 2.0 \\
\hline \begin{tabular}{l} 
Minimum standard \\
error for population \\
estimates
\end{tabular} & 0.3 \\
\hline Prior weighting & Not applied \\
\hline
\end{tabular}

The full diagnostics are presented in Table 8.3.1. The log catchability residuals for the tuning fleets in the final run are dominated by negative values for the SNS tuning index in the most recent period, and positive values for the BTS-Tridens in the younger ages (Figure 8.3.9). The high BTS-Tridens tuning index for 1 year old individuals leads to a high residual in the XSA assessment for this survey, year and age. Fishing mortality and stock numbers are shown in Tables 8.3 .2 and 8.3.3. respectively. The SSB in 2008 was estimated at 345 kt . Mean \(\mathrm{F}(2-6)\) was estimated at 0.25 . Recruitment of the 2007 year class, in 2008 at the age of 1 , was estimated at 891 million in the XSA. Retrospective analysis of the XSA presented in Figure 8.3.11 indicate that historic estimates for SSB during the last three years were much lower compared to the current estimate. Accordingly, the fishing mortality since 2005 estimated in this year are lower than the estimates in the previous assessments. This is likely the result of the increase of younger individuals in the more northern region (surveyed by the Tridens), that have aged and therefore only recently have a high impact on the estimation of the stock size..

\subsection*{8.4 Historic Stock Trends}

Table 8.4.1. and Figure 8.4.1. present the trends in landings, mean \(\mathrm{F}(2-6)\), F (human consumption, 2-6), SSB, TSB and recruitment since 1957. Reported landings gradu-
ally increased up to the late 1980s and then rapidly declined until 1995, in line with the decrease in TAC. The landings show a decline from 1987 onwards. Discards were particularly high in 1997 and 1998 (reconstructed), and in 2001 and2003 (observed), resulting from strong year classes. Fishing mortality increased until the late 1990s and reached its highest observed level in 1997. Since then, the estimates of fishing mortality have been fluctuating strongly. How ever, overall F has been lower since 2004, rapidly decreasing down to 0.25 in 2008, The peaks during 1997-1998 and 2001 have been mainly caused by peaks in F (discards). The F(human consumption) is estimated to decline since 1997, with little inter-annual variability. This year (2008), the F (human consumption) is the lowest estimate historically. Current fishing mortality is estimated at 0.25 (Fhc, \(2-6=0.13\) ). The SSB increased to a peak in 1967 when the strong 1963 year class became mature. Since then, SSB declined to a level of around 260 kt in the early 1980s. Due to the recruitment of the strong year-classes 1981 and 1985, SSB again increased to a peak in 1987 of around 442 kt followed by a rapid decline (up to 1996). SSB has fluctuated around 220 kt in the last 10 years. The last four year SSB has rapidly increasing and is currently estimated at 345 kt . In plaice the in-ter-annual variability in recruitment is relatively small, except for a limited number of strong year classes. Previously only year classes 1963, 1981, 1985 and 1996 were considered to be strong. Including discard data in the assessment alters the recruitment estimates and indicates that 1984, 1986, 1987 were also relatively strong year classes and that the 1985 year class was by far the strongest year class on record. Recruitment shows a periodic change with relatively poor recruitment in the 1960s and relatively strong recruitment in the 1980s. The recruitment level in the 1990s appears to be somewhat lower than in the 1980s. The 1996 and 2001 year classes are estimated to be relatively strong, while the year classes since 2002 appear weak to average. The 2007 year class is below average, estimated at 891 kt .
The North Sea Fishers' Survey for 2008 resulted in a total of 303 responses, most of which are from areas \(6 \mathrm{~b}, 7\) and 8 . The respondents were divided into 3 three groups; the large vessel group was dominated by respondents fishing with beam trawls ( \(70 \%\) ), stating that the plaice abundance is "more" and "much more". This is a similar response as recorded in the 2007 survey. In terms of the size range of the plaice caught, patterns of responses are broadly similar to those expressed in the 2007 survey and strong modes at "all sizes" are present for each area. There has however been a decrease in the percentages reporting "mostly small" plaice in most areas. In terms of discarding, the model response was that there was "no change" in discarding. These patterns are generally similar to those recorded in the 2007 survey. Of those expressing an opinion, by vessel size, the modal response in each group was that recruitment had been "high". The comments received for plaice from the respondents indicate that abundances were increasing, that there had been "enormous" increases and that abundances are the "highest for 25 years", and that quota for plaice is too low.

\subsection*{8.5 Recruitment estimates}

Input to the RCT3 analysis is presented in Table 8.5.1. Estimates from the RCT3 analysis of age 1 are presented in Table 8.5.2, and of age 2 in Table 8.5.3. For year class 2008 (age 1 in 2009) the values predicted by the two surveys (SNS and DFS) in RCT3 differ considerably and have high prediction standard errors (Table 8.5.2.), and therefore the geometric mean was accepted for the short-term forecasts (which is quite similar to the RCT3 estimate). Also for year class 2007 (age 2 in 2009), the estimates from SNS 0-group and DFS 0-group differ considerably and have high predic-
tion standard errors, and so do the SNS 1-group and BTS 1-group (also used for the XSA) estimates, but less so. The WG decides to use the XSA estimate for the 2007 year class. In practice the estimates (XSA survivors, RCT3 or geometric mean) are quit similar

The recruitment estimates from the different sources are summarized in the text table below.
\begin{tabular}{|l|l|l|l|l|l|}
\hline Year class & At age in 2009 & \begin{tabular}{l} 
XSA \\
Survivors
\end{tabular} & RCT3 & GM 1957-2006 & Accepted estimate \\
\hline 2007 & \(\mathbf{2}\) & \(\mathbf{6 7 6 6 5 6}\) & 645091 & 673614.4 & RCT3 estimate \\
\hline 2008 & 1 & & 1041086 & \(\mathbf{9 1 2 9 0 7 . 1}\) & GM 1957-2006 \\
\hline 2009 & 0 & & & \(\mathbf{9 1 2 9 0 7 . 1}\) & GM 1957-2006 \\
\hline
\end{tabular}

\subsection*{8.6 Short-term forecasts}

Short-term prognoses havebeen carried out in FLR using FLSTF (1.99). Weight-at-age in the stock and weight-at-age in the catch are taken to be the average over the last 3 years. The exploitation pattern was taken to be the mean value of the last three years, scaled to F in 2008. The proportion of landings at age was taken to be the mean of the last three years, this proportion was used for the calculation of the discard and human consumption partial fishing mortality. Population numbers at ages 2 and older are XSA survivor estimates. Numbers at age 1 and recruitment of the 2009 year-class are taken from the long-term geometric mean (1957-2006). Input to the short term forecast is presented in table 8.6.1. The management options are given in Table 8.6.2A-C. The management options are given for three different assumptions on the \(F\) values for 2009; A) F2008 is assumed to be equal to the estimate for F in 2008, B) \(\mathrm{F}_{209}\) is 0.9 times \(\mathrm{F}_{2208}\), and C) Froo9 is set such that the landings in 2009 equal the TAC of that same year. The table below shows the predicted F values in the intermediate year, SSB for 2010 and the corresponding landings for 2009, given the different assumptions about F in the intermediate year in the different scenarios.
\begin{tabular}{|l|l|l|l|l|}
\hline Scenario & Assumption & \(\mathrm{F}_{2009}\) & SSB \(_{2010}\) & Landing S2009 \\
\hline A & \(\mathrm{F}_{2009}=\mathrm{F}_{2008}\) & 0.25 & 442260 & 59461 \\
\hline B & \(\mathrm{F}_{20089}=\) 0.9F \(_{2008}\) & 0.22 & 451772 & 54080 \\
\hline C & TAC \(2009=\) Landing s2009 & 0.23 & 449258 & 55501 \\
\hline
\end{tabular}

The detailed table for a forecast based on Fsq is given in Table 8.6.3A-C. ICES interprets the F for the preceding year as the estimate of F for the year in which the assessment is carried out. The basis for this F estimate in the preceding year will be a constant application of the procedure used by ICES in 2008 (see section 8.1.4). Using this ICES rule of application the will presents scenario A as the basis for its forecast.

Yield and SSB, per recruit, under the condition of the current exploitation pattern are given in Figure 8.6.1 and Table 8.6.4. Fmax is estimated at 0.17.

\subsection*{8.7 Medium-term forecasts}

No medium term projections were done for this stock because of time constraints.

\subsection*{8.8 Biological reference points}

The current reference points were established by the WGNSSK in 2004, when the discard estimates were included in the assessment for the first time. The stock-
recruitment relationship for North Sea plaice did not show a clear breakpoint where recruitment is impaired at lower spawning stocks. Therefore, ICES considered that \(B_{\text {lim }}\) can be set at 160000 t and that \(\mathbf{B}_{\mathrm{pa}}\) can then be set at 230000 t using the default multiplier of 1.4 (although the WG acknowledges that, since the noisy discards estimates have been included, the uncertainty of the estimates of stock status is much greater than that, see Dickey-Collas et al. 2008. Fiim was set at \(\mathbf{F}_{\text {Isss }}(0.74)\). \(\mathbf{F}_{\mathrm{pa}}\) was proposed to be set at 0.6 which is the \(5^{\text {th }}\) percentile of \(\mathbf{F}_{\text {Iss }}\) and gave a \(50 \%\) probability that SSB is around \(\mathbf{B}_{\text {pa }}\) in the medium term. Equilibrium analysis suggests that F of 0.6 is consistent with an SSB of around 230000 t .
\begin{tabular}{|l|l|l|}
\hline & ICES considered that: & ICES proposed that: \\
\hline \begin{tabular}{l} 
Precautionary Approach \\
Reference point
\end{tabular} & \(\mathbf{B}_{\text {lim }}\) is 160000 t & \(\mathbf{B}_{\mathrm{pa}}\) be set at 230000 t \\
\hline & Flim is 0.74 \begin{tabular}{l} 
Target reference points
\end{tabular} & F \(_{\mathrm{pa}}\) be set at 0.60 \\
\hline
\end{tabular}

\subsection*{8.9 Quality of the assessment}

Large differences are found in the trends in tuning series over the last seven years. The more northern BTS-Tridens index indicates much higher stock abundances than the two other tuning indices, BTS-Isis and particularly the SNS. The assessment which only includes the BTS-Tridens suggest an estimate of SSB which is about 300 kt higher relative to the SSB estimate tuned using the BTS-Isis and SNS index. This suggests a large spatial heterogeneity of the stock which is either explained by increased northwards migration or a higher survival in the more northern region due to an overall decrease in fishery induced mortality. The spatial difference of the stock trends is corroborated by the area disaggregated LPUE estimates from the Dutch beam trawl fleet. However, the historic development of the stock abundance as estimated by XSA shows good correspondence with the development of the average commercial LPUE of the Dutch beam trawl fleet.

A strong retrospective analysis of the assessment shows considerable recurring bias (Figure 8.3.7.). The current estimates of the biomass over the last three years considerably higher than the previous assessments. This retrospective pattern is the result of the high 2006-2008 tuning indices in general, and the fact that the cohorts being estimated stronger by BTS Tridens than the other surveys now reach the age where the index receives a higher weighting in the assessment.

The assessment presented by the WG incorporates discards. WGNSSK noted in 2002 (ICES 2003) that not considering discard catches in stock assessments could introduce bias and affect estimates of F and stock biomass, particularly when discard patterns vary over time. Currently fleet level discard estimates are available for the past eight years. How ever, total sampling effort of the discards is low, and data is sparse. Also, samples may not always be available from relevant fleets and fisheries within a country. Particularly the UK and Dutch \(>100 \mathrm{~mm}\) fishery, comprising \(>20 \%\) of the landings is poorly sampled. The assessment is considered to be uncertain because discards form a substantial part of the total catch but cannot be well estimated from the sparse sampling trips.

\subsection*{8.10 Status of the Stock}

SSB in 2009 is estimated around 388 thousand tonnes which is above Bpa ( 230000 t ). Fishing mortality is estimated to have decrease from 0.31 in 2007 to 0.25 in 2008 (both below Fpa \(=0.60\) ), and is currently below the target F of 0.30 . At the same time, Fishing mortality of the human consumption part of the catch is estimated to 0.13 . Projected landings for 2010 at Fsqare 65 kt , which is slightly higher than to the projected landings for 2009 at Fsq ( 59 kt ) which are much higher than the estimated landings of 2008 ( 49 kt ). Projected discards for 2010 are approximately equal to the projected discards for 2008 at Fsq, but this is mainly based on the estimates of the abundance of year classes 2007 and 2008 coming in. Therefore, development of discarding in the next couple of years will depend on the true size of these year classes.

\subsection*{8.11 Management Considerations}

Plaice is mainly taken by beam trawlers in a mixed fishery with sole in the southern and central part of the North Sea.

Fishing effort has been substantially reduced since 1995. The reduction in fishing effort appears to be reflected in recent estimates of fishing mortality. There are indications that technical efficiency has increased in this fishery, but these may have been counteracted by decreases in fishing efficiency resulting from reduced fishing speed in an attempt to reduce fuel consumption.
Technical measures applicable to the mixed flatfish fishery will affect both sole and plaice. The minimum mesh size of 80 mm in the beam trawl fishery selects sole at the minimum landing size. However, this mesh size generates high discards of plaice which are selected from 17 cm with a minimum landing size of 27 cm . Recent discards estimates indicate fluctuations around \(50 \%\) discards in weight. Mesh enlargement would reduce the catch of undersized plaice, but would also result in loss of marketable sole.

The combination of days-at-sea regulations, high oil prices, and the decreasing TAC for plaice and the relatively stable TAC for sole, have induced a more coastal fishing pattern in the southern North Sea. This concentration of fishing effort results in increased discarding of juvenile plaice that are mainly distributed in those areas. This process could be aggravated by movement of juvenile plaice to deeper waters in recent years where they become more susceptible to the fishery. Also the LPUE data show a slower recovery of stock size in the southern regions that may be caused by higher fishing effort in the more coastal regions.

An STECF evaluation of the plaice box has indicated that: "From trends observed it was inferred that the Plaice Box has likely had a positive effect on the recruitment of plaice but that its overall effect has decreased since it was established. There are two reasons to assume that the Plaice Box has a positive effect on the recruitment of plaice: 1) At present, the Plaice Box still protects the majority of undersized plaice. Approximately \(70 \%\) of the undersized plaice are found in the Plaice Box and Wa dden Sea. Despite the changed distribution, densities of juvenile plaice inside the Box are still higher than outside; 2) In the 80 mm fishery, discard percentages in the Box are higher than outside. Because more than \(90 \%\) of the plaice caught in the 80 mm fishery in the Box are discarded, any reduction in this fishery would reduce discard mortality." (Grift et al. 2004).

The stock dynamics are dependent on the occurrence of strong year classes, but increased stock size in the more northern region of the North sea is most likely the direct consequence of reduced fishing mortality
The mean age in the landings is currently just around age 4 , but used to be around age 5 in the beginning of the time series. This change may be caused by the high exploitation levels, but also by the shift in the spatial distribution of fishing effort towards inshore waters and by the shift in the spatial distribution of the fish. A lower exploitation level is expected to improve the survival of plaice, which could enhance the stability in the catches.

A shift in the age and size at maturation of plaice has been observed (Grift et al. 2003): plaice become mature at younger ages and at smaller sizes in recent years than in the past. There is a risk that this is caused by a genetic fisheries-induced change: Those fish that are genetically programmed to mature late at large sizes are likely to have been removed from the population before they have had a chance to reproduce and pass on their genes. This results in a population that consists ever more of fish that are genetically programmed to mature early at small sizes. Reversal of such a genetic shift may be difficult. This shift in maturation also leads to mature fish being of a smaller size at age, because growth rate diminishes after maturation.

A long term management plan proposed by the Commission of the European Community was adopted by the Council of the European Union in June 2007 and first implemented in 2008 (EC Council Regulation No 676/2007). The plan consists of two stages. The aim of the first phase is to ensure the return of the stocks of plaice and sole in the North sea to within safe biological limits. This should be reached through an annual reduction of fishing mortality (F) by \(10 \%\) in relation to the fishing mortality estimated for the preceding year. ICES interprets the F for the preceding year as the estimate of \(F\) for the year in which the assessment is carried out. The basis for this \(F\) estimate in the preceding year will be a constant application of the procedure used by ICES in 2007. The plan sets a maximum change of \(15 \%\) of the TAC betw een consecutive years
ICES has evaluated the agreed long-term management plan (Council Regulation (EC) No. 676/2007) for plaice and sole. For plaice, the management plan evaluation is not yet conclusive with regards to consistency with the precautionary approach. The assessment is considered to be highly uncertain most importantly because the different survey tuning series in different areas of the North Sea indicate different trends in the most recent development of the stock. This uncertainty is compounded by a relatively strong retrospective pattern, where this years' assessment result estimates higher SSBs and lower fishing mortalities for the most recent years.

Table 8.2.1. North Sea P laice. Nominal landings
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & Belgium & Denmark & France & Germany & Ne therlands & Norway & Swe den & UK & Others & Total & Unallocated & WG estimate & TAC \\
\hline 1980 & 7005 & 27057 & 711 & 4319 & 39782 & 15 & 7 & 23032 & & 101928 & 38023 & 139951 & \\
\hline 1981 & 6346 & 22026 & 586 & 3449 & 40049 & 18 & 3 & 21519 & & 93996 & 45701 & 139697 & 105000 \\
\hline 1982 & 6755 & 24532 & 1046 & 3626 & 41208 & 17 & 6 & 20740 & & 97930 & 56616 & 154546 & 140000 \\
\hline 1983 & 9716 & 18749 & 1185 & 2397 & 51328 & 15 & 22 & 17400 & & 100812 & 43218 & 144030 & 164000 \\
\hline 1984 & 11393 & 22154 & 604 & 2485 & 61478 & 16 & 13 & 16853 & & 114996 & 41153 & 156149 & 182000 \\
\hline 1985 & 9965 & 28236 & 1010 & 2197 & 90950 & 23 & 18 & 15912 & & 148311 & 11527 & 159838 & 200000 \\
\hline 1986 & 7232 & 26332 & 751 & 1809 & 74447 & 21 & 16 & 17294 & & 127902 & 37445 & 165347 & 180000 \\
\hline 1987 & 8554 & 21597 & 1580 & 1794 & 76612 & 12 & 7 & 20638 & & 130794 & 22876 & 153670 & 150000 \\
\hline 1988 & 11527 & 20259 & 1773 & 2566 & 77724 & 21 & 2 & 24497 & 43 & 138412 & 16063 & 154475 & 175000 \\
\hline 1989 & 10939 & 23481 & 2037 & 5341 & 84173 & 321 & 12 & 26104 & & 152408 & 17410 & 169818 & 185000 \\
\hline 1990 & 13940 & 26474 & 1339 & 8747 & 78204 & 1756 & 169 & 25632 & & 156261 & -21 & 156240 & 180000 \\
\hline 1991 & 14328 & 24356 & 508 & 7926 & 67945 & 560 & 103 & 27839 & & 143565 & 4438 & 148003 & 175000 \\
\hline 1992 & 12006 & 20891 & 537 & 6818 & 51064 & 836 & 53 & 31277 & & 123482 & 1708 & 125190 & 175000 \\
\hline 1993 & 10814 & 16452 & 603 & 6895 & 48552 & 827 & 7 & 31128 & & 115278 & 1835 & 117113 & 175000 \\
\hline 1994 & 7951 & 17056 & 407 & 5697 & 50289 & 524 & 6 & 27749 & & 109679 & 713 & 110392 & 165000 \\
\hline 1995 & 7093 & 13358 & 442 & 6329 & 44263 & 527 & 3 & 24395 & & 96410 & 1946 & 98356 & 115000 \\
\hline 1996 & 5765 & 11776 & 379 & 4780 & 35419 & 917 & 5 & 20992 & & 80033 & 1640 & 81673 & 81000 \\
\hline 1997 & 5223 & 13940 & 254 & 4159 & 34143 & 1620 & 10 & 22134 & & 81483 & 1565 & 83048 & 91000 \\
\hline 1998 & 5592 & 10087 & 489 & 2773 & 30541 & 965 & 2 & 19915 & 1 & 70365 & 1169 & 71534 & 87000 \\
\hline 1999 & 6160 & 13468 & 624 & 3144 & 37513 & 643 & 4 & 17061 & & 78617 & 2045 & 80662 & 102000 \\
\hline 2000 & 7260 & 13408 & 547 & 4310 & 35030 & 883 & 3 & 20710 & & 82151 & -1001 & 81150 & 97000 \\
\hline 2001 & 6369 & 13797 & 429 & 4739 & 33290 & 1926 & 3 & 19147 & & 79700 & 2147 & 81847 & 78000 \\
\hline 2002 & 4859 & 12552 & 548 & 3927 & 29081 & 1996 & 2 & 16740 & & 69705 & 512 & 70217 & 77000 \\
\hline 2003 & 4570 & 13742 & 343 & 3800 & 27353 & 1967 & 2 & 13892 & & 65669 & 820 & 66489 & 73250 \\
\hline 2004 & 4314 & 12123 & 231* & 3649 & 23662 & 1744 & 1 & 15284 & & 61008 & 428 & 61436 & 61000 \\
\hline 2005 & 3396 & 11385 & 112 & 3379 & 22271 & 1660 & 0 & 12705 & & 54908 & 792 & 55700 & 59000 \\
\hline 2006 & 3487 & 11907 & 132 & 3599 & 22764 & 1614 & 0 & 12429 & & 55933 & 2010 & 57943 & 57441 \\
\hline 2007 & 3866 & 8128 & 144 & 2643 & 21465 & 1224 & 4 & 11557 & & 49031 & 713 & 49744 & 50261 \\
\hline 2008 & 3396 & 8229 & 125 & 3138 & 20312 & 1051 & 20 & 11411 & & 47682 & 1193 & 48875 & 49000 \\
\hline 2009 & & & & & & & & & & & & & 55500 \\
\hline
\end{tabular}

Table 8.2.2. North Sea plaice. Landing numbers-at-age
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
2009
\] & \begin{tabular}{l}
\[
05-07
\] \\
age
\end{tabular} & & 1 un & \[
=
\] & & & & & & \\
\hline year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1957 & 0 & 4315 & 59818 & 44718 & 31771 & 8885 & 11029 & 9028 & 4973 & 10859 \\
\hline 1958 & 0 & 7129 & 22205 & 62047 & 34112 & 19594 & 8178 & 8000 & 6110 & 13148 \\
\hline 1959 & 0 & 16556 & 30427 & 25489 & 41099 & 22936 & 13873 & 6408 & 6596 & 16180 \\
\hline 1960 & 0 & 5959 & 61876 & 51022 & 21321 & 27329 & 14186 & 9013 & 5087 & 15153 \\
\hline 1961 & 0 & 2264 & 33392 & 67906 & 32699 & 12759 & 14680 & 9748 & 5996 & 14660 \\
\hline 1962 & 0 & 2147 & 35876 & 66779 & 50060 & 20628 & 9060 & 9035 & 5257 & 12801 \\
\hline 1963 & 0 & 4340 & 21471 & 76926 & 54364 & 31799 & 12848 & 6833 & 7047 & 16592 \\
\hline 1964 & 0 & 14708 & 40486 & 64735 & 57408 & 37091 & 15819 & 6595 & 3980 & 16886 \\
\hline 1965 & 0 & 9858 & 42202 & 53188 & 43674 & 30151 & 18361 & 8554 & 4213 & 17587 \\
\hline 1966 & 0 & 4144 & 65009 & 51488 & 36667 & 27370 & 16500 & 10784 & 6467 & 14928 \\
\hline 1967 & 0 & 5982 & 30304 & 112917 & 41383 & 22053 & 16175 & 8004 & 6728 & 11175 \\
\hline 1968 & 0 & 9474 & 40698 & 38140 & 123619 & 17139 & 10341 & 10102 & 3925 & 13365 \\
\hline 1969 & 3 & 15017 & 45187 & 36084 & 35585 & 102014 & 10410 & 6086 & 8192 & 16092 \\
\hline 1970 & 76 & 17294 & 51174 & 56153 & 40686 & 35074 & 78886 & 6311 & 4185 & 14840 \\
\hline 1971 & 19 & 29591 & 48282 & 33475 & 26059 & 22903 & 16913 & 29730 & 6414 & 16910 \\
\hline 1972 & 2233 & 36528 & 62199 & 52906 & 23043 & 16998 & 14380 & 10903 & 18585 & 15651 \\
\hline 1973 & 1268 & 31733 & 59099 & 73065 & 42255 & 13817 & 8885 & 9848 & 6084 & 23978 \\
\hline 1974 & 2223 & 23120 & 55548 & 42125 & 41075 & 19666 & 8005 & 6321 & 5568 & 21980 \\
\hline 1975 & 981 & 28124 & 61623 & 31262 & 25419 & 21188 & 11873 & 5923 & 4106 & 19695 \\
\hline 1976 & 2820 & 33643 & 77649 & 96398 & 13779 & 9904 & 9120 & 6391 & 2947 & 12552 \\
\hline 1977 & 3220 & 56969 & 43289 & 66013 & 83705 & 9142 & 5912 & 5022 & 4061 & 9191 \\
\hline 1978 & 1143 & 60578 & 62343 & 54341 & 50102 & 35510 & 5940 & 52 & 419 & 68 \\
\hline 1979 & 1318 & 58031 & 118863 & 48962 & 47886 & 39932 & 24228 & 4161 & 2807 & 9288 \\
\hline 1980 & 979 & 64904 & 133741 & 77523 & 24974 & 17982 & 13761 & 8458 & 1864 & 5377 \\
\hline 1981 & 253 & 100927 & 122296 & 57604 & 35745 & 12414 & 9564 & 8092 & 4874 & 5903 \\
\hline 1982 & 3334 & 47776 & 209007 & 69544 & 28655 & 16726 & 7589 & 5470 & 4482 & 8653 \\
\hline 1983 & 1214 & 119695 & 115034 & 99076 & 29359 & 12906 & 8216 & 4193 & 3013 & 8287 \\
\hline 1984 & 108 & 63252 & 274209 & 53549 & 37468 & 13661 & 6465 & 5544 & 2720 & 6565 \\
\hline 1985 & 121 & 73552 & 144316 & 185203 & 32520 & 15544 & 6871 & 3650 & 2698 & 5798 \\
\hline 1986 & 1674 & 67125 & 163717 & 93801 & 84479 & 24049 & 9299 & 4490 & 2733 & 6950 \\
\hline 1987 & 0 & 85123 & 115951 & 111239 & 64758 & 34728 & 11452 & 4341 & 2154 & 5478 \\
\hline 1988 & 0 & 15146 & 250675 & 74335 & 47380 & 25091 & 16774 & 5381 & 3162 & 6233 \\
\hline 1989 & 1261 & 46757 & 105929 & 231414 & 52909 & 19247 & 10567 & 7561 & 2120 & 5580 \\
\hline 1990 & 1550 & 32533 & 97766 & 110997 & 159814 & 26757 & 8129 & 4216 & 3451 & 3808 \\
\hline 1991 & 1461 & 43266 & 83603 & 116155 & 72961 & 77557 & 14910 & 5233 & 3141 & 5591 \\
\hline 1992 & 3410 & 43954 & 85120 & 72494 & 72703 & 33406 & 29547 & 6970 & 3200 & 6928 \\
\hline 1993 & 3461 & 53949 & 98375 & 72286 & 51405 & 29001 & 13472 & 11272 & 3645 & 5883 \\
\hline 1994 & 1394 & 45148 & 101617 & 80236 & 38542 & 20388 & 15323 & 6399 & 5368 & 5433 \\
\hline 1995 & 7751 & 36575 & 81398 & 78370 & 36499 & 17953 & 9772 & 4366 & 2336 & 3753 \\
\hline 1996 & 1104 & 42496 & 64382 & 46359 & 32130 & 14460 & 10605 & 4528 & 2624 & 4892 \\
\hline 1997 & 892 & 42855 & 86948 & 43669 & 22541 & 13518 & 6362 & 3632 & 2179 & 4181 \\
\hline 1998 & 196 & 30401 & 68920 & 56329 & 16713 & 6432 & 4986 & 2506 & 1761 & 3119 \\
\hline 1999 & 549 & 8689 & 155971 & 39857 & 24112 & 6829 & 2783 & 2246 & 1521 & 3093 \\
\hline 2000 & 2634 & 15819 & 39550 & 164330 & 14993 & 9343 & 2130 & 1030 & 940 & 2097 \\
\hline 2001 & 4509 & 35886 & 52480 & 48238 & 89949 & 6836 & 4418 & 1127 & 637 & 2309 \\
\hline 2002 & 1233 & 15596 & 58262 & 48361 & 36551 & 37877 & 4644 & 1788 & 742 & 1586 \\
\hline 2003 & 694 & 42594 & 47802 & 48894 & 27126 & 15999 & 17069 & 1608 & 650 & 859 \\
\hline 2004 & 543 & 10317 & 102332 & 35165 & 20527 & 11293 & 4787 & 4555 & 412 & 540 \\
\hline 2005 & 2937 & 16685 & 26069 & 82278 & 17039 & 9533 & 5332 & 2614 & 2223 & 613 \\
\hline 2006 & 355 & 18987 & 67465 & 25254 & 42525 & 6555 & 4967 & 2053 & 1235 & 1319 \\
\hline 2007 & 1286 & 19205 & 37309 & 47053 & 14971 & 17142 & 2459 & 1856 & 543 & 1259 \\
\hline 2008 & 380 & 10970 & 42865 & 37970 & 29476 & 5700 & 6752 & 912 & 673 & 896 \\
\hline
\end{tabular}

Table 8.2.3. North Sea Plaice. Discards numbers-at-age
2009-05-07 15:11:35 units= thousands
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1957 & 32356 & 45596 & 9220 & 909 & 961 & 25 & 0 & 0 & 0 & 0 \\
\hline 1958 & 66199 & 73552 & 23655 & 2572 & 2137 & 65 & 0 & 0 & 0 & 0 \\
\hline 1959 & 116086 & 127771 & 46402 & 11407 & 4737 & 106 & 0 & 0 & 0 & 0 \\
\hline 1960 & 73939 & 167893 & 44948 & 997 & 1067 & 519 & 0 & 0 & 0 & 0 \\
\hline 1961 & 75578 & 144609 & 89014 & 538 & 1612 & 130 & 0 & 0 & 0 & 0 \\
\hline 1962 & 51265 & 181321 & 87599 & 21716 & 799 & 186 & 0 & 0 & 0 & 0 \\
\hline 1963 & 90913 & 136183 & 129778 & 9964 & 2112 & 188 & 0 & 0 & 0 & 0 \\
\hline 1964 & 66035 & 153274 & 64156 & 33825 & 3011 & 323 & 0 & 0 & 0 & 0 \\
\hline 1965 & 43708 & 426021 & 59262 & 3404 & 923 & 267 & 0 & 0 & 0 & 0 \\
\hline 1966 & 38496 & 163125 & 349358 & 14399 & 1402 & 125 & 0 & 0 & 0 & 0 \\
\hline 1967 & 20199 & 133545 & 87532 & 152496 & 623 & 260 & 0 & 0 & 0 & 0 \\
\hline 1968 & 73971 & 72192 & 46339 & 26530 & 22436 & 58 & 0 & 0 & 0 & 0 \\
\hline 1969 & 85192 & 67378 & 16747 & 19334 & 773 & 2024 & 0 & 0 & 0 & 0 \\
\hline 1970 & 123569 & 152480 & 27747 & 1287 & 5061 & 161 & 0 & 0 & 0 & 0 \\
\hline 1971 & 69337 & 96968 & 42354 & 2675 & 426 & 81 & 0 & 0 & 0 & 0 \\
\hline 1972 & 70002 & 55470 & 33899 & 5714 & 567 & 73 & 0 & 0 & 0 & 0 \\
\hline 1973 & 132352 & 49815 & 4008 & 673 & 1289 & 67 & 0 & 0 & 0 & 0 \\
\hline 1974 & 211139 & 308411 & 3652 & 285 & 611 & 109 & 0 & 0 & 0 & 0 \\
\hline 1975 & 244969 & 280130 & 190536 & 4807 & 253 & 123 & 0 & 0 & 0 & 0 \\
\hline 1976 & 183879 & 140921 & 71054 & 18013 & 174 & 41 & 0 & 0 & 0 & 0 \\
\hline 1977 & 256628 & 103696 & 79317 & 33552 & 9317 & 129 & 0 & 0 & 0 & 0 \\
\hline 1978 & 226872 & 154113 & 27257 & 10775 & 1244 & 570 & 0 & 0 & 0 & 0 \\
\hline 1979 & 293166 & 215084 & 57578 & 18382 & 589 & 310 & 0 & 0 & 0 & 0 \\
\hline 1980 & 226371 & 122561 & 932 & 687 & 193 & 86 & 0 & 0 & 0 & 0 \\
\hline 1981 & 134142 & 193241 & 1850 & 373 & 431 & 55 & 0 & 0 & 0 & 0 \\
\hline 1982 & 411307 & 204572 & 4624 & 1109 & 216 & 98 & 0 & 0 & 0 & 0 \\
\hline 1983 & 261400 & 436331 & 30716 & 2235 & 804 & 72 & 0 & 0 & 0 & 0 \\
\hline 1984 & 310675 & 313490 & 52651 & 24529 & 1492 & 69 & 0 & 0 & 0 & 0 \\
\hline 1985 & 405385 & 229208 & 35566 & 2221 & 200 & 78 & 0 & 0 & 0 & 0 \\
\hline 1986 & 1117345 & 490965 & 48510 & 26470 & 1451 & 146 & 0 & 0 & 0 & 0 \\
\hline 1987 & 361519 & 1374202 & 180969 & 1427 & 1348 & 248 & 0 & 0 & 0 & 0 \\
\hline 1988 & 348597 & 608109 & 459385 & 61167 & 882 & 177 & 0 & 0 & 0 & 0 \\
\hline 1989 & 213291 & 485845 & 193176 & 85758 & 7224 & 115 & 0 & 0 & 0 & 0 \\
\hline 1990 & 145314 & 279298 & 168674 & 28102 & 5011 & 177 & 0 & 0 & 0 & 0 \\
\hline 1991 & 183126 & 301575 & 141567 & 40739 & 5528 & 939 & 0 & 0 & 0 & 0 \\
\hline 1992 & 138755 & 219619 & 94581 & 34348 & 4307 & 880 & 0 & 0 & 0 & 0 \\
\hline 1993 & 96371 & 154083 & 48088 & 11966 & 1635 & 216 & 0 & 0 & 0 & 0 \\
\hline 1994 & 62122 & 95703 & 35703 & 1038 & 822 & 144 & 0 & 0 & 0 & 0 \\
\hline 1995 & 118863 & 82676 & 15753 & 860 & 663 & 120 & 0 & 0 & 0 & 0 \\
\hline 1996 & 111250 & 331065 & 27606 & 3930 & 451 & 116 & 0 & 0 & 0 & 0 \\
\hline 1997 & 128653 & 510918 & 193828 & 588 & 271 & 108 & 0 & 0 & 0 & 0 \\
\hline 1998 & 104538 & 646250 & 191631 & 53354 & 297 & 33 & 0 & 0 & 0 & 0 \\
\hline 1999 & 127321 & 208401 & 231769 & 54869 & 278 & 58 & 0 & 0 & 0 & 0 \\
\hline 2000 & 103422 & 171828 & 52354 & 65871 & 1632 & 312 & 269 & 168 & 0 & 0 \\
\hline 2001 & 30295 & 352922 & 187964 & 75433 & 54602 & 212 & 46 & 1 & 0 & 0 \\
\hline 2002 & 309770 & 178382 & 78012 & 13378 & 2130 & 761 & 119 & 1 & 0 & 0 \\
\hline 2003 & 67615 & 518194 & 53760 & 19942 & 4213 & 455 & 5752 & 1 & 0 & 0 \\
\hline 2004 & 232854 & 180824 & 119011 & 8073 & 1674 & 357 & 43 & 1 & 0 & 0 \\
\hline 2005 & 93541 & 325997 & 46007 & 20842 & 4707 & 6077 & 157 & 1 & 0 & 0 \\
\hline 2006 & 220473 & 225077 & 110215 & 10656 & 3000 & 410 & 754 & 194 & 0 & 0 \\
\hline 2007 & 77312 & 205140 & 69312 & 10735 & 1437 & 7151 & 204 & 1649 & 0 & 0 \\
\hline 2008 & 135406 & 252629 & 37393 & 6237 & 2282 & 517 & 8882 & 891 & & 0 \\
\hline
\end{tabular}

Table 8.2.4. North Sea plaice. Catch numbers-at-age
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{2009-} & -05-07 1 & 15:12:29 & 9 & ts= thour & ds & th & & & & \\
\hline & \multicolumn{10}{|l|}{age} \\
\hline year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1957 & 32356 & 49911 & 69038 & 45627 & 32732 & 8910 & 11029 & 9028 & 4973 & 10859 \\
\hline 1958 & 66199 & 80681 & 45860 & 64619 & 36249 & 19659 & 8178 & 8000 & 6110 & 13148 \\
\hline 1959 & 116086 & 144327 & 76829 & 36896 & 45836 & 23042 & 13873 & 6408 & 6596 & 16180 \\
\hline 1960 & 73939 & 173852 & 106824 & 52019 & 22388 & 27848 & 14186 & 9013 & 5087 & 15153 \\
\hline 1961 & 75578 & 146873 & 122406 & 68444 & 34311 & 12889 & 14680 & 9748 & 5996 & 14660 \\
\hline 1962 & 51265 & 183468 & 123475 & 88495 & 50859 & 20814 & 9060 & 9035 & 5257 & 12801 \\
\hline 1963 & 90913 & 140523 & 151249 & 86890 & 56476 & 31987 & 12848 & 6833 & 7047 & 16592 \\
\hline 1964 & 66035 & 167982 & 104642 & 98560 & 60419 & 37414 & 15819 & 6595 & 3980 & 16886 \\
\hline 1965 & 43708 & 435879 & 101464 & 56592 & 44597 & 30418 & 18361 & 8554 & 4213 & 17587 \\
\hline 1966 & 38496 & 167269 & 414367 & 65887 & 38069 & 27495 & 16500 & 10784 & 6467 & 14928 \\
\hline 1967 & 20199 & 139527 & 117836 & 265413 & 42006 & 22313 & 16175 & 8004 & 6728 & 11175 \\
\hline 1968 & 73971 & 81666 & 87037 & 64670 & 146055 & 17197 & 10341 & 10102 & 3925 & 13365 \\
\hline 1969 & 85195 & 82395 & 61934 & 55418 & 36358 & 104038 & 10410 & 6086 & 8192 & 16092 \\
\hline 1970 & 123645 & 1697 & 78921 & 57440 & 45747 & 35235 & 78886 & 6311 & 4185 & 0 \\
\hline 1971 & 69356 & 12655 & 90636 & 36150 & 26485 & 22984 & 16913 & 29730 & 6414 & 0 \\
\hline 1972 & 72235 & 91998 & 96098 & 58620 & 23610 & 17071 & 14380 & 10903 & 18585 & 15651 \\
\hline 1973 & 133620 & 81548 & 63107 & 73738 & 43544 & 13884 & 8885 & 9848 & 6084 & 23978 \\
\hline 1974 & 213362 & 331531 & 59200 & 42410 & 41686 & 19775 & 8005 & 6321 & 5568 & 21980 \\
\hline 1975 & 245950 & 308254 & 252159 & 36069 & 25672 & 21 & 11873 & 5923 & 4106 & 19695 \\
\hline 1976 & 186699 & 174564 & 148703 & 114411 & 13953 & 9945 & 9120 & 6391 & 2947 & 12552 \\
\hline 1977 & 259848 & 16066 & 122606 & 99565 & 93022 & 92 & 5912 & 5022 & 4061 & 91 \\
\hline 1978 & 228015 & 2 & 89600 & 65116 & 51346 & 36 & 5940 & 3352 & 9 & 8 \\
\hline 1979 & 294484 & 273115 & 176441 & 67344 & 48475 & 40242 & 24228 & 4161 & 2807 & 9288 \\
\hline 1980 & 227350 & 187465 & 134673 & 78210 & 25167 & 18068 & 13761 & 8458 & 1864 & 5377 \\
\hline 1981 & 134395 & 294168 & 124146 & 57977 & 36176 & 12469 & 9564 & 8092 & 4874 & 5903 \\
\hline 1982 & 414641 & 252348 & 213631 & 70653 & 28871 & 16824 & 7589 & 5470 & 4482 & 8653 \\
\hline 1983 & 262614 & 556026 & 145750 & 101311 & 30163 & 12978 & 8216 & 4193 & 3013 & 8287 \\
\hline 1984 & 310783 & 376742 & 326860 & 78078 & 38960 & 13730 & 6465 & 5544 & 2720 & 6565 \\
\hline 1985 & 405506 & 302760 & 179882 & 187424 & 32720 & 15622 & 6871 & 3650 & 2698 & 5798 \\
\hline 1986 & 1119019 & 558090 & 212227 & 120271 & 85930 & 24195 & 9299 & 4490 & 2733 & 6950 \\
\hline 1987 & 361519 & 1459325 & 296920 & 112666 & 66106 & 34976 & 11452 & 4341 & 2154 & 5478 \\
\hline 1988 & 348597 & 623255 & 710060 & 135502 & 48262 & 25268 & 16774 & 5381 & 3162 & 6233 \\
\hline 1989 & 214552 & 532602 & 299105 & 317172 & 60133 & 19362 & 10567 & 7561 & 2120 & 5580 \\
\hline 1990 & 146864 & 311831 & 266440 & 139099 & 164825 & 26934 & 8129 & 4216 & 3451 & 3808 \\
\hline 1991 & 184587 & 344841 & 225170 & 156894 & 78489 & 78496 & 14910 & 5233 & 3141 & 5591 \\
\hline 1992 & 142165 & 263573 & 179701 & 106842 & 77010 & 34286 & 29547 & 6970 & 3200 & 6928 \\
\hline 1993 & 99832 & 208032 & 146463 & 84252 & 53040 & 29217 & 13472 & 11272 & 3645 & 5883 \\
\hline 1994 & 63516 & 140851 & 137320 & 81274 & 39364 & 20532 & 15323 & 6399 & 5368 & 5433 \\
\hline 1995 & 126614 & 119251 & 97151 & 79230 & 37162 & 18073 & 9772 & 4366 & 2336 & 3753 \\
\hline 1996 & 112354 & 373561 & 91988 & 50289 & 32581 & 14576 & 10605 & 4528 & 2624 & 4892 \\
\hline 1997 & 129545 & 553773 & 280776 & 44257 & 22812 & 13626 & 6362 & 3632 & 2179 & 4181 \\
\hline 1998 & 104734 & 676651 & 260551 & 109683 & 17010 & 6465 & 4986 & 2506 & 1761 & 3119 \\
\hline 1999 & 127870 & 217090 & 387740 & 94726 & 24390 & 6887 & 2783 & 2246 & 1521 & 3093 \\
\hline 2000 & 106056 & 187647 & 91904 & 230201 & 16625 & 9655 & 2399 & 1198 & 940 & 2097 \\
\hline 2001 & 34804 & 388808 & 240444 & 123671 & 144551 & 7048 & 4464 & 1128 & 637 & 2309 \\
\hline 2002 & 311003 & 193978 & 136274 & 61739 & 38681 & 38638 & 4763 & 1789 & 742 & 1586 \\
\hline 2003 & 68309 & 560788 & 101562 & 68836 & 31339 & 16454 & 22821 & 1609 & 650 & 859 \\
\hline 2004 & 233397 & 191141 & 221343 & 43238 & 22201 & 11650 & 4830 & 4556 & 412 & 540 \\
\hline 2005 & 96478 & 342682 & 72076 & 103120 & 21746 & 15610 & 5489 & 2615 & 2223 & 613 \\
\hline 2006 & 220828 & 244064 & 177680 & 35910 & 45525 & 6965 & 5721 & 2247 & 1235 & 1319 \\
\hline 2007 & 78598 & 224345 & 106621 & 57788 & 16408 & 24293 & 2663 & 3505 & 543 & 1259 \\
\hline 2008 & 135786 & 263599 & 80258 & 44207 & 31758 & 6217 & 15634 & 1803 & 673 & 896 \\
\hline
\end{tabular}

\title{
Table 8.2.5. North Sea plaice.Stock weight-at-age
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \\
\hline 1957 & 0.039 & 0.099 & 0.160 & 0.248 & 0.325 & 0.485 & 0.719 & 0.682 & 4 & 3 \\
\hline 1958 & 0.042 & 0.091 & 0.183 & 0.279 & 0.303 & 0.442 & 0.577 & 0.778 & 0.793 & 2 \\
\hline 1959 & 0.046 & 0.103 & 0.177 & 0.271 & 0.329 & 0.470 & 0.650 & 0.686 & 0.908 & 42 \\
\hline 1960 & 0.039 & 0.108 & 85 & 0.279 & 0.364 & 0.469 & 0.633 & 0.726 & 5 & 0 \\
\hline 1961 & 0.038 & 0.095 & 0.188 & 0.313 & 0.337 & 0.483 & 0.579 & 0.691 & 0.779 & 67 \\
\hline 1962 & 0.036 & 0.093 & 0.176 & 0.308 & 0.424 & 0.573 & 0.684 & 0.806 & 0.873 & 3 \\
\hline 1963 & 0.042 & 0.100 & 0.180 & 0.280 & 0.378 & 0.540 & 0.663 & 0.788 & 882 & 52 \\
\hline 1964 & 0.025 & 0.110 & 0.187 & 0.304 & 0.373 & 0.477 & 0.645 & 0.673 & 0.845 & 232 \\
\hline 1965 & 0.032 & 0.066 & 0.202 & 0.302 & 0.333 & 0.430 & 0.516 & 0.601 & 22 & 9 \\
\hline 1966 & 0.032 & 0.097 & 0.129 & 0.313 & 0.403 & 0.455 & 0.503 & 0.565 & 0.581 & 0.984 \\
\hline 1967 & 0.030 & 0.101 & 0.182 & 0.210 & 0.442 & 0.528 & 0.585 & 0.650 & . 03 & 5 \\
\hline 1968 & 0.056 & 0.091 & 0.178 & 0.294 & 44 & 0.532 & 0.592 & 62 & 67 & 7 \\
\hline 1969 & 0.048 & 0.153 & 0.192 & 0.273 & 0.344 & 0.390 & 0.565 & 0.621 & 0.679 & 0.857 \\
\hline 1970 & 0.044 & 0.110 & 0.243 & 0.281 & 0.369 & 0.410 & 0.468 & 0.636 & 0.732 & 0.896 \\
\hline 19 & 0.052 & 0.106 & 0.259 & 0.354 & 0 & 0.489 & 0.512 & 3 & 6 & 7 \\
\hline 1972 & 0.057 & 0.154 & 0.225 & 0.418 & 0.473 & 0.534 & 0.579 & 0.606 & 0.655 & . 929 \\
\hline 1973 & 0.037 & 0.129 & 0.243 & 0.320 & 0.468 & 0.521 & 0.566 & 0.583 & 617 & 4 \\
\hline 1974 & 0.050 & 0.102 & 0.224 & 0.427 & 0.437 & 0.524 & 0.570 & 0.629 & 0.652 & 2 \\
\hline 1975 & 0.065 & 0.138 & 0.193 & 0.399 & 0.483 & 0.544 & 0.610 & 0.668 & 0.704 & 0.943 \\
\hline 1976 & 0.083 & 0.165 & 0.233 & 0.316 & 0.484 & 0.550 & 0.593 & 0.658 & 0.694 & 31 \\
\hline 197 & 0.066 & 0 & 0 & 0.319 & 0.405 & 0 & 7 & 0 & 6 & 8 \\
\hline 1978 & 0.066 & 0.148 & 0.329 & 0.383 & 0.411 & 0.467 & 0.547 & 0.630 & 0.704 & 0.943 \\
\hline 1979 & 0.063 & 0.174 & 0.266 & 0.375 & 0 & 0.459 & 0.543 & 0.667 & 54 & 4 \\
\hline 1980 & 0.050 & 0.159 & 0.299 & 0.440 & 0.444 & 0.524 & 0.582 & 0.651 & 0.778 & 58 \\
\hline 1981 & 0.042 & 0.136 & 0.246 & 0.433 & 0.473 & 0.536 & 0.570 & 0.624 & 0.707 & 033 \\
\hline 1982 & 0.049 & 0.125 & 0.258 & 0.361 & 0.490 & 0.589 & 0.631 & 0.679 & 0.726 & 1 \\
\hline 1983 & 0.046 & 0.124 & 0.250 & 0.392 & 0.494 & 0.559 & 0.624 & 0.712 & 54 & 7 \\
\hline 1984 & 0.049 & 0.126 & 0.223 & 0.425 & 0.464 & 0.571 & 0.649 & 0.692 & 0.787 & . 029 \\
\hline 1985 & 0.050 & 0.144 & 0.238 & 0.326 & 0.452 & 0.536 & 0.635 & 0.656 & 64 & 1.011 \\
\hline 1986 & 0.044 & 0.124 & 0.252 & 0.317 & 0.440 & 0.533 & 0.692 & 0.779 & 0.888 & 1.092 \\
\hline 1987 & 0.037 & 0.103 & 0.204 & 0.383 & 0.401 & 0.503 & 0.573 & 0.711 & 0.747 & 984 \\
\hline 1988 & 0.037 & 0.096 & 0.176 & 0.269 & 0.426 & 0.467 & 0.547 & 0.644 & 0.706 & 3 \\
\hline 1989 & 0.040 & 0.099 & 0.193 & 0.245 & 0.362 & 0.484 & 0.553 & 0.616 & 0.759 & 0.884 \\
\hline 1990 & 0.045 & 0.109 & 0.184 & 0.270 & 0.343 & 0.422 & 0.555 & 0.647 & 0.701 & 0.972 \\
\hline 1991 & 0.050 & 0.131 & 0.191 & 0.269 & 0.342 & 0.401 & 0.463 & 0.633 & 0.652 & . 826 \\
\hline 1992 & 0.047 & 0.123 & 0.204 & 0.275 & 0.318 & 0.403 & 0.500 & 0.573 & 0.683 & 0.834 \\
\hline 1993 & 0.052 & 0.117 & 0.214 & 0.327 & 0.330 & 0.391 & 0.490 & 0.587 & 0.633 & 0.811 \\
\hline 1994 & 0.054 & 0.143 & 0.220 & 0.297 & 0.360 & 0.404 & 0.462 & 0.533 & 0.653 & 0.798 \\
\hline 1995 & 0.051 & 0.140 & 0.260 & 0.342 & 0.399 & 0.448 & 0.509 & 0.584 & 0.678 & 0.804 \\
\hline 1996 & 0.044 & 0.116 & 0.234 & 0.375 & 0.390 & 0.462 & 0.488 & 0.554 & 0.660 & 0.815 \\
\hline 1997 & 0.032 & 0.116 & 0.186 & 0.375 & 0.439 & 0.492 & 0.521 & 0.543 & 0.627 & 0.852 \\
\hline 1998 & 0.039 & 0.080 & 0.208 & 0.339 & 0.474 & 0.577 & 0.581 & 0.648 & 0.656 & 0.812 \\
\hline 1999 & 0.045 & 0.090 & 0.153 & 0.320 & 0.437 & 0.524 & 0.586 & 0.644 & 0.664 & 0.780 \\
\hline 2000 & 0.052 & 0.105 & 0.169 & 0.224 & 0.408 & 0.467 & 0.649 & 0.695 & 0.656 & 0.787 \\
\hline 2001 & 0.062 & 0.121 & 0.207 & 0.237 & 0.331 & 0.452 & 0.560 & 0.641 & 0.798 & 0.830 \\
\hline 2002 & 0.049 & 0.117 & 0.218 & 0.306 & 0.319 & 0.403 & 0.446 & 0.612 & 0.685 & 0.873 \\
\hline 2003 & 0.061 & 0.112 & 0.228 & 0.270 & 0.344 & 0.391 & 0.464 & 0.600 & 0.714 & 0.787 \\
\hline 2004 & 0.048 & 0.116 & 0.206 & 0.313 & 0.384 & 0.430 & 0.489 & 0.495 & 0.780 & 0.875 \\
\hline 2005 & 0.054 & 0.105 & 0.219 & 0.241 & 0.378 & 0.422 & 0.434 & 0.527 & 0.621 & 1.010 \\
\hline 2006 & 0.053 & 0.129 & 0.195 & 0.321 & 0.354 & 0.424 & 0.439 & 0.506 & 0.583 & 0.731 \\
\hline 2007 & 0.048 & 0.093 & 0.239 & 0.241 & 0.337 & 0.394 & 0.458 & 0.412 & 0.526 & 0.548 \\
\hline 2008 & 0.050 & 0.114 & 0.200 & 0.278 & 0.355 & 0.429 & 0.484 & 0.627 & 0.598 & 0.731 \\
\hline
\end{tabular}

\section*{Table 8.2.6. North Sea plaice. Lan dings weight-at-age}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline year & 1 & 2 & 3 & 4 & 5 & 5 & 7 & 8 & 9 & 10 \\
\hline 1957 & 0.000 & 0.183 & 0.223 & 0.287 & 0.392 & 0.506 & 0.592 & 0.654 & 0.440 & 8 \\
\hline 1958 & 0.000 & 0.211 & 0.235 & 0.275 & 0.358 & 0.482 & 0.546 & 0.654 & 0.707 & 1.055 \\
\hline 1959 & 0.000 & 0.223 & 0.251 & 0.299 & 0.370 & 0.483 & 0.605 & 0.637 & 0.766 & 21 \\
\hline 1960 & 0.000 & 0.201 & 0.238 & 0.291 & 0.389 & 0.488 & 0.605 & 88 & 9 & 1 \\
\hline 1961 & 0.000 & 0.194 & 0.237 & 0.307 & 0.418 & 0.517 & 0.613 & 0.681 & 0.825 & 088 \\
\hline 1962 & 0.000 & 0.204 & 0.240 & 0.290 & 0.387 & 0.523 & 0.551 & 0.669 & 51 & 90 \\
\hline 1963 & 0.000 & 0.258 & 0.292 & 0.325 & 0.407 & 0.543 & 0.636 & 680 & 29 & 048 \\
\hline 1964 & 0.000 & 0.252 & 0.275 & 0.314 & 0.391 & 0.491 & 0.633 & 0.705 & 0.743 & 012 \\
\hline 1965 & 0.000 & 0.243 & 0.284 & 0.323 & 0.387 & 0.474 & 0.542 & 0.667 & 30 & 92 \\
\hline 1966 & 0.000 & 0.236 & 0.275 & 0.354 & 0.444 & 0.493 & 0.569 & 0.635 & 0.703 & 0.950 \\
\hline 1967 & 0.000 & 0.237 & 0.285 & 0.328 & 0.433 & 0.558 & 0.609 & 0.675 & 0.753 & 98 \\
\hline 1968 & 0.000 & 0.275 & 0.307 & 41 & 77 & 32 & 0.607 & 613 & 6 & 37 \\
\hline 1969 & 0.230 & 0.311 & 0.328 & 0.352 & 0.380 & 0.436 & 0.606 & 0.693 & 0.696 & 0.945 \\
\hline 1970 & 0.307 & 0.279 & 0.310 & 0.347 & 0.408 & 0.432 & 0.486 & 0.655 & 0.725 & 0.869 \\
\hline 19 & 0.264 & 0.329 & 0 & 0.416 & 0 & 0 & 0.560 & 7 & 2 & 0 \\
\hline 1972 & 0.253 & 0.304 & 0.362 & 0.440 & 0.507 & 0.556 & 0.625 & 0.664 & 0.693 & 0.965 \\
\hline 1973 & 0.286 & 0.332 & 0.361 & 0.426 & 0.511 & 0.566 & 0.636 & 0.659 & 1 & 84 \\
\hline 1974 & 0.296 & 0.322 & 0.367 & 0.420 & 0.494 & 0.574 & 0.631 & 9 & 0.733 & 60 \\
\hline 1975 & 0.265 & 0.319 & 0.351 & 0.446 & 0.526 & 0.624 & 0.676 & 0.747 & 0.832 & 1.082 \\
\hline 1976 & 0.272 & 0.302 & 0.347 & 0.385 & 0.526 & 0.609 & 0.657 & 0.723 & 0.760 & 005 \\
\hline 1977 & 0.254 & 0.324 & 0.35 & 0 & 0.419 & 0.557 & 8 & 2 & 6 & 0 \\
\hline 1978 & 0.235 & 0.304 & 0.356 & 0.383 & 0.422 & 0.473 & 0.587 & 0.662 & 0.748 & 0.916 \\
\hline 1979 & 0.235 & 0.310 & 0.34 & 0.387 & 0 & 0.473 & 0.549 & 4 & 9 & 9 \\
\hline 1980 & 0.241 & 0.290 & 0.349 & 0.406 & 0.479 & 0.552 & 0.596 & 0.671 & 0.782 & 1.027 \\
\hline 1981 & 0.241 & 0.279 & 0.335 & 0.423 & 0.514 & 0.568 & 0.615 & 0.653 & 0.738 & 1.025 \\
\hline 1982 & 0.281 & 0.264 & 0.313 & 0.427 & 0.517 & 0.612 & 0.668 & 0.716 & 0.743 & 990 \\
\hline 1983 & 0.199 & 0.248 & 0.298 & 0.381 & 0.512 & 0.600 & 0.673 & 0.766 & 0.810 & 8 \\
\hline 1984 & 0.229 & 0.259 & 0.279 & 0.369 & 0.483 & 0.603 & 0.673 & 0.714 & 0.824 & 1.019 \\
\hline 1985 & 0.242 & 0.259 & 0.284 & 0.330 & 0.453 & 0.565 & 0.664 & 4 & 788 & 1 \\
\hline 1986 & 0.218 & 0.266 & 0.300 & 0.343 & 0.420 & 0.482 & 0.667 & 0.742 & 0.843 & 1.001 \\
\hline 1987 & 0.218 & 0.246 & 0.296 & 0.347 & 0.397 & 0.498 & 0.576 & 0.719 & 0.819 & 0.978 \\
\hline 1988 & 0.218 & 0.250 & 0.274 & 0.347 & 0.446 & 0.504 & 0.599 & 0.688 & 0.801 & 0.999 \\
\hline 1989 & 0.233 & 0.276 & 0.305 & 0.327 & 0.386 & 0.525 & 0.594 & 0.660 & 0.780 & 0.929 \\
\hline 1990 & 0.267 & 0.281 & 0.293 & 0.312 & 0.360 & 0.440 & 0.588 & 0.681 & 0.749 & 0.989 \\
\hline 1991 & 0.219 & 0.276 & 0.283 & 0.295 & 0.352 & 0.438 & 0.509 & 0.646 & 0.720 & 0.887 \\
\hline 1992 & 0.246 & 0.258 & 0.285 & 0.312 & 0.335 & 0.417 & 0.521 & 0.594 & 0.702 & 0.875 \\
\hline 1993 & 0.243 & 0.267 & 0.282 & 0.318 & 0.348 & 0.413 & 0.506 & 0.616 & 0.704 & 0.836 \\
\hline 1994 & 0.223 & 0.256 & 0.278 & 0.330 & 0.387 & 0.437 & 0.489 & 0.595 & 0.713 & 0.883 \\
\hline 1995 & 0.270 & 0.275 & 0.299 & 0.336 & 0.399 & 0.451 & 0.525 & 0.607 & 0.729 & 0.902 \\
\hline 1996 & 0.236 & 0.276 & 0.302 & 0.350 & 0.414 & 0.479 & 0.491 & 0.580 & 0.709 & 0.844 \\
\hline 1997 & 0.206 & 0.269 & 0.310 & 0.361 & 0.453 & 0.520 & 0.598 & 0.611 & 0.678 & 0.917 \\
\hline 1998 & 0.150 & 0.256 & 0.305 & 0.388 & 0.489 & 0.597 & 0.623 & 0.684 & 0.689 & 0.900 \\
\hline 1999 & 0.242 & 0.249 & 0.276 & 0.350 & 0.449 & 0.539 & 0.621 & 0.672 & 0.742 & 0.802 \\
\hline 2000 & 0.221 & 0.259 & 0.276 & 0.305 & 0.420 & 0.486 & 0.664 & 0.690 & 0.729 & 0.862 \\
\hline 2001 & 0.236 & 0.264 & 0.289 & 0.306 & 0.361 & 0.477 & 0.586 & 0.701 & 0.787 & 0.793 \\
\hline 2002 & 0.232 & 0.259 & 0.283 & 0.309 & 0.341 & 0.436 & 0.500 & 0.678 & 0.745 & 0.881 \\
\hline 2003 & 0.227 & 0.248 & 0.281 & 0.319 & 0.363 & 0.406 & 0.477 & 0.641 & 0.750 & 0.837 \\
\hline 2004 & 0.212 & 0.245 & 0.280 & 0.325 & 0.394 & 0.433 & 0.505 & 0.552 & 0.789 & 0.861 \\
\hline 2005 & 0.267 & 0.262 & 0.277 & 0.327 & 0.385 & 0.427 & 0.463 & 0.545 & 0.603 & 0.888 \\
\hline 2006 & 0.257 & 0.272 & 0.289 & 0.338 & 0.399 & 0.409 & 0.475 & 0.489 & 0.533 & 0.755 \\
\hline 2007 & 0.262 & 0.267 & 0.303 & 0.345 & 0.378 & 0.452 & 0.539 & 0.481 & 0.590 & 0.619 \\
\hline 2008 & 0.248 & 0.265 & 0.306 & 0.343 & 0.404 & 0.453 & 0.539 & 0.727 & 0.641 & 0.563 \\
\hline
\end{tabular}

\title{
Table 8.2.7. North Sea plaice. Discards weigh t-at-age
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
2009-05-0 \\
age
\end{tabular}}} \\
\hline & & & & & & & & & & \\
\hline year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1957 & 0.046 & 0.102 & 0.147 & 0.180 & 0.204 & 0.231 & 0.244 & 0.231 & 0 & 0 \\
\hline 1958 & 0.049 & 0.095 & 0.158 & 0.186 & 0.198 & 0.244 & 0.244 & 0.000 & 0 & 0 \\
\hline 1959 & 0.053 & 0.106 & 0.155 & 0.185 & 0.193 & 0.231 & 0.000 & 0 & 0 & 0 \\
\hline 1960 & 0.047 & 0.110 & 0.159 & 0.186 & 0.199 & 0.210 & 0.231 & 0.000 & 0 & 0 \\
\hline 1961 & 0.046 & 0.098 & 0.160 & 0.192 & 0.202 & 0.212 & 0.211 & 0.244 & 0 & 0 \\
\hline 1962 & 0.044 & 0.097 & 0.155 & 0.192 & 0.211 & 0.219 & 0.220 & 0.220 & 0 & 0 \\
\hline 1963 & 0.049 & 0.103 & 0.156 & 0.186 & 0.203 & 0.231 & 0.220 & 0.231 & 0 & 0 \\
\hline 1964 & 0.034 & 0.112 & 0.160 & 0.191 & 0.202 & 0.220 & 0.231 & 0.231 & 0 & 0 \\
\hline 1965 & 0.040 & 0.071 & 0.165 & 0.191 & 0.210 & 0.220 & 0.220 & 0.000 & 0 & 0 \\
\hline 1966 & 0.040 & 0.100 & 0.126 & 0.192 & 0.203 & 0.231 & 0.220 & 0.231 & 0 & 0 \\
\hline 1967 & 0.038 & 0.104 & 0.157 & 0.169 & 0.211 & 0.219 & 0.231 & 44 & 0 & 0 \\
\hline 1968 & 0.062 & 0.095 & 0.156 & 0.190 & 0.189 & 0.244 & 0.212 & 0.000 & 0 & 0 \\
\hline 1969 & 0.055 & 0.144 & 0.161 & 0.185 & 0.205 & 0.210 & 0.244 & 0.231 & 0 & 0 \\
\hline 1970 & 0.051 & 0.113 & 0.178 & 0.187 & 0.192 & 0.000 & 0.212 & 31 & 0 & 0 \\
\hline 1971 & 0.059 & 0.109 & 0.182 & 0.198 & 0.211 & 0.000 & 0.000 & 0.231 & 0 & 0 \\
\hline 1972 & 0.063 & 0.145 & 0.173 & 0.210 & 0.205 & 0.244 & 0.000 & 0.000 & 0 & 0 \\
\hline 1973 & 0.045 & 0.128 & 0.178 & 0.193 & 0.204 & 0.231 & 0.244 & . 000 & 0 & 0 \\
\hline 1974 & 0.057 & 0.105 & 0.173 & 0.210 & 0.212 & 0.231 & 0.244 & 0.000 & 0 & 0 \\
\hline 1975 & 0.070 & 0.134 & 0.162 & 0.204 & 0.220 & 0.244 & 0.244 & . 000 & 0 & 0 \\
\hline 1976 & 0.088 & 0.151 & 0.175 & 0.193 & 0.219 & 0.244 & 0.244 & 0 & 0 & 0 \\
\hline 1977 & 0.071 & 0.157 & 0.185 & 0.193 & 0.196 & 0.211 & 0.000 & 0.000 & 0 & 0 \\
\hline 1978 & 0.071 & 0.141 & 0.196 & 0.203 & 0.205 & 0.211 & 0.220 & 0.000 & 0 & 0 \\
\hline 1979 & 0.069 & 0.155 & 0.184 & 0.202 & 0.219 & 0.231 & 0.220 & 0.244 & 0 & 0 \\
\hline 1980 & 0.057 & 0.147 & 0.190 & 0.211 & 0.220 & 0.000 & 0.244 & 0.000 & 0 & 0 \\
\hline 1981 & 0.050 & 0.133 & 0.178 & 0.210 & 0.219 & 0.244 & 0.000 & . 000 & 0 & 0 \\
\hline 1982 & 0.056 & 0.125 & 0.182 & 0.199 & 0.231 & 0.231 & 0.244 & 0.000 & 0 & 0 \\
\hline 1983 & 0.054 & 0.124 & 0.180 & 0.203 & 0.205 & 0.244 & 0.244 & 0.000 & 0 & 0 \\
\hline 1984 & 0.055 & 0.125 & 0.172 & 0.210 & 0.203 & 0.000 & 0.244 & 0.000 & 0 & 0 \\
\hline 1985 & 0.056 & 0.138 & 0.176 & 0.195 & 0.231 & 0.244 & 0.000 & 0.000 & 0 & 0 \\
\hline 1986 & 0.051 & 0.123 & 0.180 & 0.192 & 0.211 & 0.244 & 0.231 & 0.000 & 0 & 0 \\
\hline 1987 & 0.044 & 0.104 & 0.165 & 0.203 & 0.211 & 0.231 & 0.000 & 0.000 & 0 & 0 \\
\hline 1988 & 0.044 & 0.098 & 0.154 & 0.184 & 0.211 & 0.231 & 0.000 & 0.000 & 0 & 0 \\
\hline 1989 & 0.047 & 0.102 & 0.163 & 0.180 & 0.192 & 0.244 & 0.000 & 0.000 & 0 & 0 \\
\hline 1990 & 0.054 & 0.113 & 0.159 & 0.185 & 0.205 & 0.231 & 0.000 & 0.000 & 0 & 0 \\
\hline 1991 & 0.058 & 0.130 & 0.162 & 0.185 & 0.199 & 0.220 & 0.220 & 0.231 & 0 & 0 \\
\hline 1992 & 0.055 & 0.124 & 0.167 & 0.186 & 0.200 & 0.210 & 0.220 & 0.244 & 0 & 0 \\
\hline 1993 & 0.059 & 0.120 & 0.171 & 0.196 & 0.205 & 0.231 & 0.231 & 0.000 & 0 & 0 \\
\hline 1994 & 0.062 & 0.141 & 0.175 & 0.192 & 0.211 & 0.231 & 0.244 & 0.220 & 0 & 0 \\
\hline 1995 & 0.060 & 0.140 & 0.185 & 0.199 & 0.212 & 0.231 & 0.231 & 0.244 & 0 & 0 \\
\hline 1996 & 0.053 & 0.122 & 0.178 & 0.203 & 0.220 & 0.231 & 0.000 & 0.244 & 0 & 0 \\
\hline 1997 & 0.042 & 0.118 & 0.160 & 0.202 & 0.220 & 0.244 & 0.000 & 0.000 & 0 & 0 \\
\hline 1998 & 0.049 & 0.086 & 0.168 & 0.197 & 0.212 & 0.000 & 0.244 & 0.000 & 0 & 0 \\
\hline 1999 & 0.055 & 0.096 & 0.144 & 0.193 & 0.211 & 0.244 & 0.000 & 0.000 & 0 & 0 \\
\hline 2000 & 0.061 & 0.110 & 0.152 & 0.173 & 0.231 & 0.000 & 0.198 & 0.000 & 0 & 0 \\
\hline 2001 & 0.070 & 0.122 & 0.167 & 0.177 & 0.195 & 0.231 & 0.000 & 0.231 & 0 & 0 \\
\hline 2002 & 0.058 & 0.119 & 0.171 & 0.191 & 0.196 & 0.211 & 0.000 & 0.000 & 0 & 0 \\
\hline 2003 & 0.068 & 0.114 & 0.174 & 0.184 & 0.198 & 0.204 & 0.220 & 0.000 & 0 & 0 \\
\hline 2004 & 0.057 & 0.117 & 0.167 & 0.192 & 0.196 & 0.211 & 0.199 & 0.000 & 0 & 0 \\
\hline 2005 & 0.063 & 0.109 & 0.172 & 0.178 & 0.220 & 0.204 & 0.219 & 0.231 & 0 & 0 \\
\hline 2006 & 0.062 & 0.128 & 0.162 & 0.193 & 0.197 & 0.199 & 0.210 & 0.211 & 0 & 0 \\
\hline 2007 & 0.057 & 0.097 & 0.177 & 0.178 & 0.192 & 0.197 & 0.220 & 0.197 & 0 & 0 \\
\hline 2008 & 58 & 6 & & 0. & 88 & 31 & 0 & & & \\
\hline
\end{tabular}

\section*{Table 8.2.8. North Sea plaice.Catch weight-at-age}


Table 8.2.9. North Sea plaice. Natural mortality at age and maturity ate age vector used in assessments


\section*{Table 8.2.10 North Sea plaice. Survey tuning in dices.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{2009-05-07 15:49:23} \\
\hline \multicolumn{9}{|l|}{BTS-Isis (Ages 1 - 8 used in the assessment)} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 1985 & 1116 & 179.9 & 38.81 & 11.84 & 1.371 & 1.048 & 0.362 & 0.167 \\
\hline 1986 & 1667 & 131.8 & 51.00 & 8.89 & 3.285 & 0.428 & 0.338 & 0.129 \\
\hline 1987 & 1226 & 764.3 & 33.06 & 4.77 & 2.039 & 1.017 & 0.352 & 0.087 \\
\hline 1988 & 1680 & 147.0 & 182.31 & 9.99 & 2.810 & 0.814 & 0.458 & 0.036 \\
\hline 1989 & 1468 & 319.3 & 38.66 & 47.30 & 5.850 & 0.833 & 0.311 & 0.661 \\
\hline 1990 & 1115 & 102.6 & 55.67 & 22.78 & 5.572 & 0.801 & 0.205 & 0.374 \\
\hline 1991 & 1185 & 122.1 & 28.55 & 11.86 & 4.264 & 5.710 & 0.257 & 0.219 \\
\hline 1992 & 1177 & 125.9 & 27.31 & 5.62 & 3.184 & 2.662 & 1.136 & 0.259 \\
\hline 1993 & 1125 & 179.1 & 38.40 & 6.12 & 0.931 & 0.812 & 0.629 & 0.465 \\
\hline 1994 & 1145 & 64.2 & 35.24 & 10.88 & 2.857 & 0.638 & 0.861 & 0.957 \\
\hline 1995 & 1252 & 43.5 & 14.22 & 8.11 & 1.195 & 0.868 & 0.356 & 1.131 \\
\hline 1996 & 1218 & 212.3 & 23.02 & 4.83 & 3.404 & 0.917 & 0.047 & 0.173 \\
\hline 1997 & 1 NA & NA & 19.91 & 2.79 & 0.219 & 0.390 & 0.171 & 0.121 \\
\hline 1998 & 1343 & 431.9 & 47.40 & 8.91 & 1.440 & 0.755 & 0.145 & 0.078 \\
\hline 1999 & 1306 & 130.0 & 182.52 & 3.65 & 2.107 & 0.137 & 0.140 & 0.029 \\
\hline 2000 & 1278 & 74.4 & 31.38 & 24.00 & 0.613 & 0.175 & 0.540 & 0.029 \\
\hline 2001 & 1223 & 78.4 & 19.39 & 9.97 & 9.474 & 0.294 & 0.143 & 0.041 \\
\hline 2002 & 1541 & 47.7 & 16.05 & 5.38 & 2.734 & 1.422 & 0.091 & 0.138 \\
\hline 2003 & 1126 & 170.1 & 10.78 & 5.94 & 1.525 & 1.214 & 0.684 & 0.112 \\
\hline 2004 & 1226 & 41.8 & 66.60 & 6.62 & 2.650 & 1.603 & 1.021 & 3.054 \\
\hline 2005 & 1158 & 69.6 & 7.23 & 13.74 & 1.167 & 1.254 & 0.313 & 0.164 \\
\hline 2006 & 1135 & 39.0 & 19.50 & 3.21 & 6.343 & 0.934 & 0.815 & 0.043 \\
\hline 2007 & 1329 & 72.3 & 21.22 & 15.53 & 3.168 & 6.553 & 0.737 & 0.895 \\
\hline 2008 & 1235 & 130.6 & 32.62 & 9.83 & 7.805 & 0.670 & 1.858 & 0.316 \\
\hline
\end{tabular}

BTS-Tridens
\begin{tabular}{lrrrrrrrrrrrr} 
& & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
19961 & 1.593 & 5.59 & 4.40 & 3.31 & 2.37 & 1.84 & 0.830 & 0.529 & 0.177 \\
1997 & 1 & NA & NA & 10.41 & 3.95 & 2.84 & 1.93 & 0.471 & 1.102 & 0.424 \\
1998 & 1 & 0.557 & 30.14 & 9.93 & 5.57 & 2.67 & 1.35 & 0.911 & 0.789 & 0.308 \\
1999 & 1 & 2.387 & 8.29 & 36.93 & 6.47 & 2.65 & 2.13 & 0.600 & 0.771 & 0.326 \\
2000 & 1 & 4.639 & 9.45 & 12.74 & 17.23 & 2.94 & 1.89 & 1.076 & 0.954 & 0.247 \\
2001 & 1 & 0.672 & 6.93 & 9.05 & 7.23 & 7.67 & 1.21 & 0.691 & 0.480 & 0.603 \\
2002 & 1 & 18.480 & 13.54 & 11.27 & 6.87 & 4.23 & 4.43 & 0.741 & 0.723 & 0.340 \\
2003 & 1 & 4.108 & 34.84 & 11.91 & 8.57 & 4.75 & 2.72 & 3.973 & 0.699 & 0.703 \\
2004 & 1 & 5.689 & 10.63 & 29.05 & 7.92 & 4.19 & 2.23 & 1.131 & 2.460 & 0.396 \\
2005 & 1 & 7.340 & 23.70 & 11.30 & 16.20 & 2.57 & 5.42 & 1.552 & 0.536 & 3.335 \\
2006 & 1 & 7.024 & 17.45 & 25.06 & 9.91 & 11.39 & 1.93 & 3.874 & 0.835 & 0.716 \\
2007 & 1 & 29.707 & 21.89 & 17.26 & 20.79 & 4.55 & 9.70 & 1.829 & 3.545 & 0.314
\end{tabular}

Table 8.2.10 North Sea plaice. Survey tuning indices. (Cont'd)


Table 8.2.11. North Sea plaice. DFS index catches (numbers per hour), used only for RCT3.
```

DFS
Effort age 0 age 1
1981 1 605.96 169.78
1982 1 433.67 299.36
1983 1 431.72 163.53
1984 1 261.80 124.19
1985 1 716.29 103.27
1986 1 200.11 288.27
1987 1 516.84 195.87
1988 1 318.36 116.45
1989 1 435.70 125.72
1990 1 465.47 130.13
1991 1 498.49 152.35
1992 1 351.59 137.08
19931262.26 75.16
1994 1 445.66 30.60
1995 1 184.51 37.74
1996 1 572.80 116.89
1997 1 149.19 209.92
1 9 9 8 1 ~ N A ~ N A
1999 1 NA NA
2000 1 183.83 11.31
2001 1 500.43 5.90
2002 1 210.70 17.79
2003 1 359.59 11.31
2004 1 243.15 14.97
2005 1 129.25 NA
2006 1 232.28 NA
2007 1 175.65 NA
2008 1 186.87 NA

```

\section*{Table 8.2.12 North Sea plaice. Commercial tuning fleets (not used in the fin al assessment)}
```

2009-05-07 15:50:09

```

NL Beam Trawl
\begin{tabular}{lrrrrrrrrrrr} 
\\
1989 & 72.5 & 557.8 & 1016 & 1820 & 318.1 & 132.9 & 72.3 & 37.45 & 13.06 \\
1990 & 71.1 & 308.8 & 844 & 701 & 1076.2 & 171.4 & 51.8 & 25.18 & 16.33 \\
1991 & 68.5 & 401.5 & 619 & 776 & 448.1 & 497.7 & 100.4 & 28.53 & 16.60 \\
1992 & 71.1 & 341.4 & 623 & 448 & 382.1 & 171.9 & 133.4 & 34.66 & 13.97 \\
1993 & 76.9 & 358.3 & 605 & 407 & 256.2 & 142.8 & 78.5 & 46.96 & 13.33 \\
1994 & 81.4 & 370.9 & 591 & 441 & 188.8 & 97.5 & 75.8 & 35.21 & 23.70 \\
1995 & 81.2 & 277.3 & 536 & 417 & 178.0 & 81.0 & 42.1 & 19.08 & 11.47 \\
1996 & 72.1 & 368.9 & 383 & 290 & 193.9 & 73.7 & 50.5 & 18.95 & 13.09 \\
1997 & 72.0 & 320.8 & 634 & 252 & 95.6 & 60.2 & 28.0 & 13.54 & 6.39 \\
1998 & 70.2 & 217.8 & 463 & 381 & 91.0 & 32.6 & 19.4 & 9.53 & 4.47 \\
1999 & 67.3 & 64.5 & 1134 & 271 & 164.3 & 44.6 & 14.8 & 12.38 & 7.52 \\
2000 & 64.6 & 138.9 & 263 & 1118 & 89.6 & 60.1 & 11.4 & 5.20 & 3.31 \\
2001 & 61.4 & 264.3 & 367 & 321 & 664.6 & 44.7 & 28.6 & 6.35 & 3.19 \\
2002 & 56.7 & 177.0 & 575 & 383 & 250.8 & 292.2 & 18.5 & 9.96 & 2.75 \\
2003 & 51.6 & 372.8 & 387 & 406 & 186.4 & 103.8 & 129.1 & 6.03 & 5.02 \\
2004 & 48.1 & 102.5 & 925 & 228 & 150.5 & 73.8 & 30.6 & 44.51 & 1.95 \\
2005 & 49.1 & 154.2 & 222 & 727 & 96.2 & 59.2 & 34.1 & 14.81 & 23.54 \\
2006 & 44.1 & 245.7 & 593 & 190 & 452.9 & 45.9 & 50.7 & 16.30 & 28.55 \\
2007 & 42.9 & 201.6 & 416 & 464 & 109.7 & 208.1 & 23.1 & 26.62 & 7.53 \\
1908 & 30.2 & 186.9 & 624 & 420 & 337.4 & 44.6 & 80.9 & 11.69 & 5.86 \\
192
\end{tabular}

English Beam trawl excl Flag-vessels
\begin{tabular}{lrrrrrrrrrrr} 
& & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1990 & 102.3 & 27.0 & 92.7 & 17.46 & 11.08 & 7.06 & 8.23 & 2.45 & 1.662 & 0.958 \\
1991 & 123.6 & 21.9 & 28.6 & 53.39 & 10.72 & 6.77 & 3.45 & 4.94 & 1.828 & 1.481 \\
1992 & 151.5 & 19.2 & 29.3 & 18.40 & 24.25 & 6.39 & 3.68 & 3.20 & 3.281 & 1.096 \\
1993 & 146.6 & 23.4 & 20.9 & 17.26 & 6.30 & 12.80 & 4.33 & 2.73 & 2.435 & 1.739 \\
1994 & 131.4 & 23.1 & 22.0 & 13.49 & 9.53 & 4.51 & 6.47 & 3.28 & 1.438 & 1.218 \\
1995 & 105.0 & 34.0 & 15.8 & 14.05 & 9.71 & 5.90 & 3.16 & 3.60 & 2.733 & 1.362 \\
1996 & 82.9 & 13.3 & 19.0 & 10.74 & 10.08 & 6.55 & 4.68 & 2.50 & 3.305 & 1.966 \\
1997 & 76.3 & 16.4 & 11.1 & 13.97 & 7.85 & 8.99 & 6.62 & 2.77 & 1.940 & 3.001 \\
1998 & 68.8 & 23.6 & 13.0 & 8.97 & 8.69 & 5.04 & 6.03 & 4.61 & 1.948 & 1.599 \\
1999 & 68.6 & 14.7 & 15.2 & 6.66 & 4.77 & 5.35 & 3.76 & 3.27 & 2.813 & 1.429 \\
2000 & 57.8 & 63.2 & 15.0 & 9.95 & 4.41 & 2.44 & 3.48 & 1.87 & 1.782 & 2.526 \\
2001 & 54.1 & 14.7 & 45.0 & 8.89 & 6.21 & 2.48 & 1.72 & 2.07 & 0.906 & 1.682 \\
2002 & 30.6 & 23.4 & 20.8 & 29.61 & 5.13 & 4.12 & 1.41 & 1.73 & 1.503 & 1.340
\end{tabular}

\section*{Table 8.3.1. North Sea plaice. XSA diagnostics from final run}
```

FLR XSA Diagnostics 2009-05-10 14:43:25
CPUE data from xsa.indices
Catch data for 52 years. 1957 to 2008. Ages 1 to 10.
fleet first age last age first year last year alpha beta

| 1 | BTS-Isis | 1 | 8 | 1985 | 2008 | 0.66 | 0.75 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | BTS-Tridens | 1 | 9 | 1996 | 2008 | 0.66 | 0.75 |
| 3 | SNS | 1 | 3 | 1982 | 2008 | 0.66 | 0.75 |

 Time series weights : Tapered time weighting not applied
 Catchability analysis :
Catchability independent of size for all ages
Catchability independent of age for ages >= 6
Terminal population estimation :
Survivor estimates shrunk towards the mean F
of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk = 2
Minimum standard error for population
estimates derived from each fleet = 0.3
prior weighting not applied
Regression weights
year
age 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
mll 1 1 1 1 1
Fishing mortalities
year
age 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
10.173 0.120 0.070 0.212 0.141 0.216 0.138 0.281 0.083 0.175

```


```

 4 1.179 0. 595 0.899 0.650 0. 509 0.533 0.393 0.385 0.236 0.268
    ```

```

 6 0.512 0.520}0.451 0.483 0. 649 0.568 0.275 0.259 0.200 0.139
 70.322}0.2970.428 0. 555 0. 519 0.352 0.507 0.137 0.133 0.172
 80.470 0.199 0.198 0.270 0.325 0.163 0.291 0.355 0.105 0.113
    ```

```

 10 0.495 0.325 0.139 0.174 0.133 0.115 0.100 0.194 0.121 0.024
    ```

Table 8.3.1. North Sea plaice. XSA diagnostics from final run (Cont'd)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{age} & number & ( thous & nds ) & & & & & & \\
\hline year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1999 & 844549 & 602709 & 1003918 & 143812 & 53307 & 18076 & 10637 & 6299 & 4093 & 8285 \\
\hline 2000 & 983135 & 642546 & 338852 & 539553 & 40021 & 25034 & 9805 & 6977 & 3563 & 7924 \\
\hline 2001 & 540793 & 788694 & 402904 & 219184 & 269234 & 20398 & 13467 & 6590 & 5174 & 18724 \\
\hline 2002 & 1712546 & 456223 & 343794 & 135845 & 80686 & 106112 & 11753 & 7939 & 4889 & 10432 \\
\hline 2003 & 546025 & 1253741 & 228290 & 181450 & 64190 & 36213 & 59260 & 6104 & 5482 & 7234 \\
\hline 2004 & 1261256 & 429086 & 600993 & 109956 & 98704 & 28271 & 17116 & 31913 & 3992 & 5225 \\
\hline 2005 & 789082 & 919217 & 206434 & 333253 & 58363 & 68193 & 14499 & 10893 & 24542 & 6759 \\
\hline 2006 & 947769 & 622218 & 505773 & 118228 & 203449 & 32124 & 46855 & 7898 & 7368 & 7854 \\
\hline 2007 & 1031601 & 647519 & 330845 & 288628 & 72819 & 140784 & 22442 & 36954 & 5009 & 11597 \\
\hline 2008 & 890569 & 858667 & 372496 & 197940 & 206192 & 50281 & 104278 & 17773 & 30103 & 40053 \\
\hline
\end{tabular}

Estimated population abundance at 1st Jan 2009

\section*{age}
\begin{tabular}{lllllllllll} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{tabular}

2009067666652622326071313706015636639588794891436926614

Fleet: BTS-Isis
Log catchability residuals.
year
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline age & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 \\
\hline 1 & \(-1.225\) & -0.401 & -0.642 & 0.569 & 0.579 & -0.721 & -0.065 & 0.033 & 0.068 & 0.362 & -0.081 \\
\hline 2 & 0.346 & -0.291 & 0.567 & -0.276 & 0.586 & -0.248 & 0.106 & 0.304 & 0.746 & 0.106 & -0.175 \\
\hline 3 & 0.001 & 0.395 & -0.291 & 0.514 & -0.280 & 0.137 & -0.201 & -0.030 & 0.430 & 0.417 & -0.082 \\
\hline 4 & -0.247 & -0.198 & -0.591 & -0.129 & 0.482 & 0.441 & -0.068 & -0.481 & -0.197 & 0.531 & 0.349 \\
\hline 5 & -0.529 & -0.166 & -0.279 & 0.252 & 0.642 & -0.333 & 0.022 & 0.036 & -0.907 & 0.333 & -0.284 \\
\hline 6 & 0.324 & -0.677 & -0.302 & -0.103 & 0.062 & -0.363 & 0.794 & 0.491 & -0.219 & -0.246 & 0.125 \\
\hline 7 & 0.073 & -0.109 & -0.009 & -0.352 & -0.317 & -0.690 & -0.735 & -0.062 & -0.425 & 0.808 & -0.096 \\
\hline 8 & -0.132 & -0.205 & -0.762 & \(-1.278\) & 0.735 & 0.495 & 0.095 & 0.090 & \(-0.355\) & 0.400 & 1. 924 \\
\hline \multicolumn{12}{|c|}{year} \\
\hline age & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 \\
\hline 1 & -0.348 & NA & 0.651 & 0.468 & 0.182 & 0.524 & 0.359 & -0.005 & \(-0.205\) & -0.147 & -0.389 \\
\hline 2 & 0.464 & NA & 0.467 & 0.358 & -0.341 & -0.237 & -0.283 & 0.007 & -0.328 & -0.673 & -0.838 \\
\hline 3 & 0.531 & -0.364 & 0.673 & 0.841 & 0.036 & -0.160 & -0.506 & -0.429 & 0.324 & -0.851 & -0.752 \\
\hline 4 & 0.222 & -0.171 & 0.549 & -0.085 & 0.065 & 0.302 & -0.014 & -0.302 & 0.324 & -0.153 & -0.576 \\
\hline 5 & 0.887 & -1.459 & 0.490 & 0.540 & -0.466 & 0.547 & 0.418 & 0.076 & -0.119 & -0.253 & 0.030 \\
\hline 6 & 0.515 & -0.177 & 0.700 & -0.942 & -1.017 & -0.342 & -0.392 & 0.642 & 1.110 & -0.222 & 0.224 \\
\hline 7 & -1.972 & -0.435 & -0.457 & -0.524 & 0.891 & -0.663 & -0.890 & -0.516 & 1.009 & 0.102 & -0.375 \\
\hline 8 & -0.108 & -0.295 & -0.616 & \(-1.470\) & -1.763 & -1.360 & -0.282 & -0.189 & 1.348 & -0.411 & \(-1.383\) \\
\hline
\end{tabular}

\section*{Table 8.3.1. North Sea plaice. XSA diagnostics from final run (Cont'd)}
\begin{tabular}{rrr}
\multicolumn{2}{c}{ year } \\
age & 2007 & 2008 \\
1 & 0.279 & 0.154 \\
2 & -0.316 & -0.052 \\
3 & -0.276 & -0.075 \\
4 & 0.002 & -0.056 \\
5 & 0.364 & 0.159 \\
6 & 0.654 & -0.640 \\
7 & 0.258 & -0.327 \\
8 & -0.067 & -0.370
\end{tabular}

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrrrrrr} 
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
Mean_Logq & -8.1987 & -8.3941 & -9.0162 & -9.5955 & -10.1459 & -10.4172 & -10.4172 & -10.4172 \\
S.E_Logq & 0.4725 & 0.4205 & 0.4437 & 0.3368 & 0.5263 & 0.5655 & 0.6217 & 0.8682
\end{tabular}

Fleet: BTS-Tridens
Log catchability residuals.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline age & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 \\
\hline 1 & -1.431 & NA & -1.934 & -0.548 & -0.073 & -1.443 & 0.818 & 0.408 & -0.051 & 0.618 & 0.491 \\
\hline 2 & -1.216 & NA & -0.238 & -0.437 & -0.446 & -0.706 & 0.414 & 0.379 & 0.262 & 0.207 & 0.315 \\
\hline 3 & -0.439 & -0.328 & -0.205 & -0.071 & -0.180 & -0.236 & -0.174 & 0.355 & 0.180 & 0.281 & 0.184 \\
\hline 4 & -0.355 & -0.020 & -0.118 & 0.290 & -0.464 & -0.217 & 0.034 & -0.133 & 0.305 & -0.186 & 0.353 \\
\hline 5 & -0.269 & 0.310 & 0.316 & -0.022 & 0.308 & -0.457 & 0.062 & 0.420 & -0.454 & -0.255 & -0.178 \\
\hline 6 & -0.067 & 0.144 & 0.002 & 0.525 & 0.085 & -0.206 & -0.534 & 0.171 & 0.164 & -0.036 & -0.329 \\
\hline 7 & -0.379 & -0.701 & 0.102 & -0.347 & 0.301 & -0.367 & -0.071 & -0.036 & -0.168 & 0.424 & -0.095 \\
\hline 8 & -0.269 & 0.636 & 0.419 & 0.532 & 0.452 & -0.179 & 0.095 & 0.363 & -0.147 & -0.506 & 0.305 \\
\hline 9 & -0.220 & 0.192 & 0.009 & 0.120 & -0.139 & 0.249 & -0.242 & 0.341 & 0.071 & 0.376 & 0.106 \\
\hline \multicolumn{12}{|c|}{year} \\
\hline age & 2007 & 72008 & & & & & & & & & \\
\hline 1 & 1.710 & 1.435 & & & & & & & & & \\
\hline 2 & 0.446 & 61.021 & & & & & & & & & \\
\hline 3 & 0.202 & 20.431 & & & & & & & & & \\
\hline 4 & 0.097 & 70.415 & & & & & & & & & \\
\hline \multicolumn{12}{|c|}{\(5-0.0660 .284\)} \\
\hline \multicolumn{12}{|c|}{\(6-0.2330 .316\)} \\
\hline \multicolumn{12}{|c|}{7 -0.112 0.341} \\
\hline \multicolumn{12}{|c|}{80.0310 .493} \\
\hline \multicolumn{12}{|c|}{\(9-0.383 \quad 0.824\)} \\
\hline
\end{tabular}

Table 8.3.1. North Sea plaice. XSA diagnostics from final run (Cont'd)
```

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
1 [lllllllll
Mean_Logq -12.0354-10.3515 -9.7014 -9.3980-9.3530-9.1383-9.1383-9.1383-9.1383
S.E_Logq 1.1528 0.6172 0.2835 0.2797
Fleet: SNS
Log catchability residuals.
year

```

```

 1 0.379 0.094 0.456-0.424 -0.151 -0.338-0.139 0.180 -0.033 0.974 0.917 0.552
 2 0. 523 0. 212 0.382 0.712 -0.216 0.355 0.333 0.630}00.066 0.652 1.026 0.759
 3 0.200 -1.282 0.235 0.207 0.000 -0.189 1.281 0.936
 year
 age 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
1 0.553-0.187-0.383 NA 0.546 0.454 -0.101 -0.224 -0.292 NA -0.510 -0.684
2 0.479 0.010 0.365 NA 0.738 0.750 -0.806 -0.605 -1.120 NA -0.829 -1.388
30.095-0.306 0.960 0. .37 1.823 1.654-0.130-0.723-1.213 NA -0.401 -1.385
year
age 2006 2007 2008
1-0.582-0.652-0.404
2 -1.120-0.909 -1.000
3-1.284 -1.901 -0.932

```
    Mean log catchability and standard error of ages with catchability
    independent of year class strength and constant w.r.t. time
\begin{tabular}{rrrr} 
& 1 & 2 & 3 \\
Mean_Logq & -3.5056 & -4.4166 & -5.5043 \\
S.E_Logq & 0.4837 & 0.7401 & 0.9610
\end{tabular}
    Terminal year survivor and \(F\) summaries:
    Age 1 Year class \(=2007\)
source
            survivors N scaledWts
\(\begin{array}{llll}\text { BTS-Isis } & 7892101 & 0.457\end{array}\)
BTS-Tridens 284240610.074
SNS 451584110.437
fshk 68749210.032

Table 8.3.1. North Sea plaice. XSA diagnostics from final run (Cont'd)
\begin{tabular}{lrl} 
Age 2 Year class \(=2006\) \\
source \\
survivors & \\
NTS-Isis scaledWts \\
BTS-Tridens & 574220 & 2
\end{tabular}
source
\begin{tabular}{lrrr} 
& survivors & N scaledWts \\
BTS-Isis & 209739 & 3 & 0.373 \\
BTS-Tridens & 402633 & 3 & 0.467 \\
SNS & 122110 & 3 & 0.148 \\
fshk & 120060 & 1 & 0.012
\end{tabular}

Age 4 Year class \(=2004\)
source
\begin{tabular}{lrrr} 
& survivors & N scaledWts \\
BTS-Isis & 110089 & 4 & 0.402 \\
BTS-Tridens & 191170 & 4 & 0.517 \\
SNS & 45843 & 3 & 0.073 \\
fshk & 82325 & 1 & 0.009
\end{tabular}

Age 5 Year class \(=2003\)
source
survivors N scaledWts
BTS-Isis 13204350.358
BTS-Tridens \(189347 \quad 0.586\)
SNS 6152430.048
fshk \(602591 \quad 0.007\)

Age 6 Year class \(=2002\)
source
survivors \(N\) scaledWts
BTS-Isis 2679260.310

BTS-Tridens 4926260.668
SNS 1288420.015
fshk \(123431 \quad 0.007\)

Table 8.3.1. North Sea plaice. XSA diagnostics from final run (Cont'd)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{source} \\
\hline & survivors & N & scaledWts \\
\hline BTS-Isis & 85986 & & 0.283 \\
\hline BTS-Tridens & 78121 & & 0.694 \\
\hline SNS & 56987 & & 0.016 \\
\hline fshk & 37946 & & 0.007 \\
\hline \multicolumn{4}{|l|}{Age 8 Year class \(=2000\)} \\
\hline \multicolumn{4}{|l|}{source} \\
\hline \multicolumn{4}{|r|}{survivors N scaledWts} \\
\hline BTS-Isis & 15234 & & 0.250 \\
\hline BTS-Tridens & 14303 & & 0.733 \\
\hline SNS & 8663 & & 0.010 \\
\hline fshk & 6087 & & 0.007 \\
\hline \multicolumn{4}{|l|}{Age 9 Year class = 1999} \\
\hline \multicolumn{4}{|l|}{source} \\
\hline \multicolumn{4}{|r|}{survivors N scaledWts} \\
\hline BTS-Isis & 20825 & 8 & 0.211 \\
\hline BTS-Tridens & 29134 & 9 & 0.771 \\
\hline SNS & 15561 & & 0.012 \\
\hline fshk & 3372 & & 0.005 \\
\hline
\end{tabular}

Table 8.3.2. North Sea plaice. Fishing mortalit y estimates in final XSA run 2009-05-07 15:58:10 units \(=f\)
\begin{tabular}{lllllllllll} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{tabular} \(\begin{array}{llllllllllllll}1957 & 0.077 & 0.229 & 0.255 & 0.304 & 0.347 & 0.208 & 0.274 & 0.314 & 0.290 & 0.290\end{array}\) \(\begin{array}{lllllllllllllllllllll}1958 & 0.105 & 0.250 & 0.302 & 0.358 & 0.374 & 0.321 & 0.268 & 0.291 & 0.323 & 0.323\end{array}\) \(19590.1520 .310 \quad 0.3550 .3760 .4120 .3830 .350 \quad 0.3090 .3670 .367\) \(\begin{array}{llllllllllllllll}1960 & 0.108 & 0.318 & 0.353 & 0.384 & 0.366 & 0.419 & 0.383 & 0.359 & 0.383 & 0.383\end{array}\) \(\begin{array}{lllllllllllllllllll}1961 & 0.097 & 0.289 & 0.344 & 0.357 & 0.417 & 0.330 & 0.361 & 0.437 & 0.381 & 0.381\end{array}\) \(\begin{array}{llllllllllll}1962 & 0.096 & 0.319 & 0.373 & 0.398 & 0.434 & 0.426 & 0.362 & 0.350 & 0.395 & 0.395\end{array}\) \(\begin{array}{lllllllllllll}1963 & 0.149 & 0.364 & 0.418 & 0.434 & 0.423 & 0.474 & 0.450 & 0.452 & 0.448 & 0.448\end{array}\) \(\begin{array}{llllllllllll}1964 & 0.032 & 0.399 & 0.448 & 0.469 & 0.540 & 0.488 & 0.403 & 0.390 & 0.459 & 0.459\end{array}\) \(\begin{array}{lllllllllllll}1965 & 0.068 & 0.267 & 0.397 & 0.412 & 0.355 & 0.508 & 0.417 & 0.352 & 0.410 & 0.410\end{array}\) \(\begin{array}{lllllllllllllll}1966 & 0.071 & 0.356 & 0.388 & 0.430 & 0.477 & 0.343 & 0.506 & 0.409 & 0.435 & 0.435\end{array}\) \(\begin{array}{llllllllllll}1967 & 0.054 & 0.352 & 0.405 & 0.408 & 0.476 & 0.504 & 0.310 & 0.435 & 0.428 & 0.428\end{array}\) \(\begin{array}{llllllllllllllllll}1968 & 0.197 & 0.287 & 0.344 & 0.361 & 0.366 & 0.323 & 0.410 & 0.289 & 0.351 & 0.351\end{array}\) \(19690.1490 .3130 .3270 .3410 .3150 .428 \quad 0.2950 .399 \quad 0.3560 .356\) \(\begin{array}{llllllllllll}1970 & 0.223 & 0.435 & 0.492 & 0.505 & 0.462 & 0.504 & 0.594 & 0.261 & 0.467 & 0.467\end{array}\) \(\begin{array}{lllllllllllllll}1971 & 0.196 & 0.332 & 0.388 & 0.388 & 0.407 & 0.395 & 0.428 & 0.412 & 0.407 & 0.407\end{array}\) \(19720.2320 .3810 .4010 .4130 .419 \quad 0.4430 .4080 .478 \quad 0.4340 .434\) \(\begin{array}{llllllllllll}1973 & 0.113 & 0.394 & 0.433 & 0.542 & 0.545 & 0.413 & 0.387 & 0.480 & 0.475 & 0.475\end{array}\) \(19740.2210 .399 \quad 0.491 \quad 0.5150 .5970 .4520 .3940 .4650 .4860 .486\) \(\begin{array}{lllllllllllll}1975 & 0.355 & 0.501 & 0.531 & 0.557 & 0.600 & 0.618 & 0.477 & 0.503 & 0.553 & 0.553\end{array}\) \(\begin{array}{llllllllllll}1976 & 0.333 & 0.407 & 0.426 & 0.432 & 0.383 & 0.434 & 0.518 & 0.452 & 0.445 & 0.445\end{array}\) 19770.3230 .4720 .4950 .5000 .6660 .4200 .4410 .5330 .5140 .514 \(\begin{array}{llllllllllll}1978 & 0.305 & 0.429 & 0.465 & 0.471 & 0.461 & 0.520 & 0.462 & 0.427 & 0.470 & 0.470\end{array}\) \(19790.4270 .6390 .6660 .6760 .6840 .708 \quad 0.7050 .6060 .6790 .679\) \(1980 \quad 0.2390 .470 \quad 0.668 \quad 0.6230 .509 \quad 0.519 \quad 0.4940 .5030 .5310 .531\) \(\begin{array}{llllllllllll}1981 & 0.178 & 0.487 & 0.579 & 0.601 & 0.584 & 0.452 & 0.507 & 0.536 & 0.538 & 0.538\end{array}\) 19820.2420 .5180 .7010 .6790 .6050 .5240 .4840 .5400 .5690 .569 \(\begin{array}{llllllllllll}1983 & 0.237 & 0.520 & 0.569 & 0.759 & 0.614 & 0.533 & 0.465 & 0.479 & 0.572 & 0.572\end{array}\) \(\begin{array}{llllllllllll}1984 & 0.301 & 0.553 & 0.584 & 0.604 & 0.660 & 0.557 & 0.490 & 0.582 & 0.581 & 0.581\end{array}\) \(\begin{array}{llllllllllll}1985 & 0.263 & 0.474 & 0.494 & 0.699 & 0.485 & 0.535 & 0.531 & 0.501 & 0.552 & 0.552\end{array}\) \(\begin{array}{llllllllllll}1986 & 0.285 & 0.610 & 0.634 & 0.639 & 0.720 & 0.713 & 0.626 & 0.705 & 0.773 & 0.773\end{array}\) \(\begin{array}{llllllllllll}1987 & 0.217 & 0.643 & 0.681 & 0.733 & 0.783 & 0.642 & 0.784 & 0.595 & 0.782 & 0.782\end{array}\) \(1988 \quad 0.2320 .6180 .664 \quad 0.6780 .718 \quad 0.6970 .6490 .9641 .0641 .064\) \(\begin{array}{llllllllllll}1989 & 0.211 & 0.581 & 0.605 & 0.626 & 0.646 & 0.627 & 0.628 & 0.608 & 1.225 & 1.225\end{array}\) \(1990 \quad 0.1610 .4730 .5730 .5570 .6930 .5970 .5180 .4860 .548 \quad 0.548\) \(\begin{array}{lllllllllllll}1991 & 0.239 & 0.606 & 0.658 & 0.700 & 0.626 & 0.747 & 0.693 & 0.660 & 0.724 & 0.724\end{array}\) \(\begin{array}{llllllllllll}1992 & 0.214 & 0.554 & 0.653 & 0.670 & 0.797 & 0.545 & 0.621 & 0.727 & 1.001 & 1.001\end{array}\) \(19930.220 \quad 0.487 \quad 0.6070 .6490 .7420 .7160 .3770 .450 \quad 0.9630 .963\) \(\begin{array}{llllllllllll}1994 & 0.163 & 0.485 & 0.611 & 0.716 & 0.637 & 0.637 & 0.933 & 0.275 & 0.356 & 0.356\end{array}\) \(\begin{array}{llllllllllllllll}1995 & 0.122 & 0.460 & 0.645 & 0.770 & 0.753 & 0.602 & 0.632 & 0.664 & 0.137 & 0.137\end{array}\) \(19960.0960 .5470 .688 \quad 0.7300 .7490 .668 \quad 0.768 \quad 0.6000 .9840 .984\) \(\begin{array}{llllllllllll}1997 & 0.065 & 0.796 & 0.929 & 0.748 & 0.775 & 0.724 & 0.613 & 0.575 & 0.575 & 0.575\end{array}\) \(\begin{array}{lllllllllllllllll}1998 & 0.153 & 0.495 & 1.002 & 1.084 & 0.639 & 0.456 & 0.561 & 0.459 & 0.538 & 0.538\end{array}\) \(\begin{array}{llllllllllll}1999 & 0.173 & 0.476 & 0.521 & 1.179 & 0.656 & 0.512 & 0.322 & 0.470 & 0.495 & 0.495\end{array}\) \(\begin{array}{llllllllllll} & 2000 & 0.120 & 0.367 & 0.336 & 0.595 & 0.574 & 0.520 & 0.297 & 0.199 & 0.325 & 0.325\end{array}\) \(\begin{array}{lllllllllllllll}2001 & 0.070 & 0.730 & 0.987 & 0.899 & 0.831 & 0.451 & 0.428 & 0.198 & 0.139 & 0.139\end{array}\) \(\begin{array}{llllllllllll} & 2002 & 0.212 & 0.592 & 0.539 & 0.650 & 0.701 & 0.483 & 0.555 & 0.270 & 0.174 & 0.174\end{array}\) \(20030.1410 .6350 .6310 .509 \quad 0.720 \quad 0.649 \quad 0.519 \quad 0.3250 .1330 .133\) \(\begin{array}{llllllllllll}2004 & 0.216 & 0.632 & 0.490 & 0.533 & 0.270 & 0.568 & 0.352 & 0.163 & 0.115 & 0.115\end{array}\) \(\begin{array}{lllllllllllllllll}2005 & 0.138 & 0.497 & 0.457 & 0.393 & 0.497 & 0.275 & 0.507 & 0.291 & 0.100 & 0.100\end{array}\) \(20060.2810 .5320 .4610 .3850 .268 \quad 0.259 \quad 0.1370 .3550 .1940 .194\) \(\begin{array}{llllllllllll}2007 & 0.083 & 0.453 & 0.414 & 0.236 & 0.270 & 0.200 & 0.133 & 0.105 & 0.121 & 0.121\end{array}\) \(20080.1750 .390 \quad 0.257 \quad 0.268 \quad 0.177 \quad 0.139 \quad 0.172 \quad 0.1130 .024 \quad 0.024\)

Table 8.3.3. North Sea plaice. Stock number estimates in the final XSA runs 2009-05-07 15:58:59 units= thousands age


\section*{Table 8.4.1. North Sea plaice. Stock summary table.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & recruits & ssb & catch & landings & discards & fbar2-6 & fbar hc2-6 & fbar dis2-3 & Y/ ssb \\
\hline 1957 & 457973 & 274205 & 78423 & 70563 & 7860 & 0.27 & 0.22 & 0.12 & 0.26 \\
\hline 1958 & 698110 & 288540 & 88240 & 73354 & 14886 & 0.32 & 0.24 & 0.19 & 0.25 \\
\hline 1959 & 863386 & 296825 & 109238 & 79300 & 29938 & 0.37 & 0.24 & 0.24 & 0.27 \\
\hline 1960 & 757298 & 308164 & 117138 & 87541 & 29597 & 0.37 & 0.27 & 0.23 & 0.28 \\
\hline 1961 & 860575 & 321353 & 118331 & 85984 & 32347 & 0.35 & 0.24 & 0.27 & 0.27 \\
\hline 1962 & 589153 & 372863 & 125272 & 87472 & 37800 & 0.39 & 0.25 & 0.29 & 0.23 \\
\hline 1963 & 688365 & 370372 & 148170 & 107118 & 41052 & 0.42 & 0.27 & 0.36 & 0.29 \\
\hline 1964 & 2231496 & 363076 & 147357 & 110540 & 36817 & 0.47 & 0.30 & 0.32 & 0.30 \\
\hline 1965 & 694571 & 344012 & 139820 & 97143 & 42677 & 0.39 & 0.28 & 0.25 & 0.28 \\
\hline 1966 & 586775 & 361547 & 166784 & 101834 & 64950 & 0.40 & 0.24 & 0.34 & 0.28 \\
\hline 1967 & 401292 & 416560 & 163178 & 108819 & 54359 & 0.43 & 0.25 & 0.32 & 0.26 \\
\hline 1968 & 434274 & 402516 & 139503 & 111534 & 27969 & 0.34 & 0.21 & 0.22 & 0.28 \\
\hline 1969 & 648862 & 377425 & 142896 & 121651 & 21245 & 0.34 & 0.25 & 0.17 & 0.32 \\
\hline 1970 & 650568 & 333925 & 160026 & 130342 & 29684 & 0.48 & 0.35 & 0.28 & 0.39 \\
\hline 1971 & 410258 & 316330 & 136932 & 113944 & 22988 & 0.38 & 0.29 & 0.22 & 0.36 \\
\hline 1972 & 366600 & 319043 & 142495 & 122843 & 19652 & 0.41 & 0.33 & 0.19 & 0.39 \\
\hline 1973 & 1311938 & 268690 & 143883 & 130429 & 13454 & 0.47 & 0.41 & 0.13 & 0.49 \\
\hline 1974 & 1132612 & 278608 & 157804 & 112540 & 45264 & 0.49 & 0.41 & 0.20 & 0.40 \\
\hline 1975 & 864628 & 293068 & 195154 & 108536 & 86618 & 0.56 & 0.37 & 0.43 & 0.37 \\
\hline 1976 & 692495 & 310834 & 167089 & 113670 & 53419 & 0.42 & 0.30 & 0.27 & 0.37 \\
\hline 1977 & 988392 & 316735 & 176691 & 119188 & 57503 & 0.51 & 0.34 & 0.31 & 0.38 \\
\hline 1978 & 911977 & 303134 & 159727 & 113984 & 45743 & 0.47 & 0.36 & 0.22 & 0.38 \\
\hline 1979 & 890115 & 296622 & 213422 & 145347 & 68075 & 0.67 & 0.49 & 0.36 & 0.49 \\
\hline 1980 & 1125334 & 271634 & 171235 & 139951 & 31284 & 0.56 & 0.49 & 0.16 & 0.52 \\
\hline 1981 & 866020 & 260703 & 172671 & 139747 & 32924 & 0.54 & 0.47 & 0.16 & 0.54 \\
\hline 1982 & 2030236 & 262013 & 204286 & 154547 & 49739 & 0.61 & 0.51 & 0.22 & 0.59 \\
\hline 1983 & 1306336 & 311165 & 218424 & 144038 & 74386 & 0.60 & 0.49 & 0.26 & 0.46 \\
\hline 1984 & 1258598 & 322582 & 226930 & 156147 & 70783 & 0.59 & 0.44 & 0.28 & 0.48 \\
\hline 1985 & 1846346 & 344928 & 220928 & 159838 & 61090 & 0.54 & 0.44 & 0.23 & 0.46 \\
\hline 1986 & 4750659 & 369768 & 296876 & 165347 & 131529 & 0.66 & 0.50 & 0.34 & 0.45 \\
\hline 1987 & 1950224 & 442035 & 342985 & 153670 & 189315 & 0.70 & 0.49 & 0.51 & 0.35 \\
\hline 1988 & 1769839 & 387569 & 311635 & 154475 & 157160 & 0.68 & 0.40 & 0.52 & 0.40 \\
\hline 1989 & 1187325 & 408029 & 277738 & 169818 & 107920 & 0.62 & 0.38 & 0.46 & 0.42 \\
\hline 1990 & 1036310 & 378736 & 228734 & 156240 & 72494 & 0.58 & 0.39 & 0.39 & 0.41 \\
\hline 1991 & 913820 & 346093 & 229607 & 148004 & 81603 & 0.67 & 0.43 & 0.47 & 0.43 \\
\hline 1992 & 776857 & 279778 & 183284 & 125190 & 58094 & 0.64 & 0.43 & 0.40 & 0.45 \\
\hline 1993 & 531067 & 241954 & 152242 & 117113 & 35129 & 0.64 & 0.50 & 0.28 & 0.48 \\
\hline 1994 & 442720 & 216682 & 134392 & 110392 & 24000 & 0.62 & 0.51 & 0.24 & 0.51 \\
\hline 1995 & 1162817 & 207539 & 120316 & 98356 & 21960 & 0.65 & 0.56 & 0.21 & 0.47 \\
\hline 1996 & 1290188 & 180465 & 133797 & 81673 & 52124 & 0.68 & 0.52 & 0.35 & 0.45 \\
\hline 1997 & 2148532 & 197379 & 179957 & 83048 & 96909 & 0.79 & 0.51 & 0.69 & 0.42 \\
\hline 1998 & 776201 & 226574 & 175002 & 71534 & 103468 & 0.74 & 0.39 & 0.60 & 0.32 \\
\hline 1999 & 844549 & 202179 & 151708 & 80662 & 71046 & 0.67 & 0.38 & 0.38 & 0.40 \\
\hline 2000 & 983135 & 231029 & 126142 & 81148 & 44994 & 0.48 & 0.32 & 0.26 & 0.35 \\
\hline 2001 & 540793 & 271129 & 182578 & 81963 & 100615 & 0.78 & 0.32 & 0.72 & 0.30 \\
\hline 2002 & 1712546 & 196790 & 125884 & 70217 & 55667 & 0.59 & 0.38 & 0.43 & 0.36 \\
\hline 2003 & 546025 & 222231 & 145390 & 66502 & 78888 & 0.63 & 0.39 & 0.46 & 0.30 \\
\hline 2004 & 1261256 & 203118 & 117702 & 61436 & 56266 & 0.50 & 0.30 & 0.43 & 0.30 \\
\hline 2005 & 789082 & 236119 & 111060 & 55700 & 55360 & 0.42 & 0.21 & 0.38 & 0.24 \\
\hline 2006 & 947769 & 247639 & 121205 & 57943 & 63262 & 0.38 & 0.20 & 0.39 & 0.23 \\
\hline 2007 & 1031601 & 253712 & 90283 & 49744 & 40539 & 0.31 & 0.15 & 0.34 & 0.20 \\
\hline 2008 & 890569 & 344871 & 96040 & 48874 & 47166 & 0.25 & 0.13 & 0.25 & 0.14 \\
\hline
\end{tabular}

Table 8.5.1. North Sea plaice. Input table for RCT3 analysis.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline year & Age1 & Age2 & SNS 0 & SNS 1 & SNS 2 & BTS1 & BTS2 & DFSO \\
\hline 1968 & 648862 & 506075 & -11 & -11 & 9732 & -11 & -11 & -11 \\
\hline 1969 & 650568 & 471044 & -11 & 9311 & 28164 & -11 & -11 & -11 \\
\hline 1970 & 410258 & 305244 & 1200 & 13538 & 10785 & -11 & -11 & -11 \\
\hline 1971 & 366600 & 263001 & 4456 & 13207 & 5046 & -11 & -11 & -11 \\
\hline 1972 & 1311938 & 1059987 & 7757 & 65639 & 16509 & -11 & -11 & -11 \\
\hline 1973 & 1132612 & 821873 & 7183 & 15366 & 8168 & -11 & -11 & -11 \\
\hline 1974 & 864628 & 548393 & 2568 & 11628 & 2403 & -11 & -11 & -11 \\
\hline 1975 & 692495 & 449002 & 1314 & 8537 & 3424 & -11 & -11 & -11 \\
\hline 1976 & 988392 & 647159 & 11166 & 18537 & 12678 & -11 & -11 & -11 \\
\hline 1977 & 911977 & 608296 & 4373 & 14012 & 9829 & -11 & -11 & -11 \\
\hline 1978 & 890115 & 525288 & 3267 & 21495 & 12882 & -11 & -11 & -11 \\
\hline 1979 & 1125334 & 801983 & 29058 & 59174 & 18785 & -11 & -11 & -11 \\
\hline 1980 & 866020 & 655766 & 4210 & 24756 & 8642 & -11 & -11 & -11 \\
\hline 1981 & 2030236 & 1442615 & 35506 & 69993 & 13909 & -11 & -11 & 605.96 \\
\hline 1982 & 1306336 & 932216 & 24402 & 33974 & 10413 & -11 & -11 & 433.67 \\
\hline 1983 & 1258598 & 843201 & 32942 & 44965 & 13848 & -11 & 179.9 & 431.72 \\
\hline 1984 & 1846346 & 1284914 & 7918 & 28101 & 7580 & 115.58 & 131.77 & 261.8 \\
\hline 1985 & 4750659 & 3234130 & 47256 & 93552 & 32991 & 667.44 & 764.29 & 716.29 \\
\hline 1986 & 1950224 & 1420748 & 8820 & 33402 & 14421 & 225.82 & 146.99 & 200.11 \\
\hline 1987 & 1769839 & 1269821 & 21335 & 36609 & 17810 & 680.17 & 319.27 & 516.84 \\
\hline 1988 & 1187325 & 870248 & 15670 & 34276 & 7496 & 467.88 & 102.64 & 318.36 \\
\hline 1989 & 1036310 & 797991 & 24585 & 25037 & 11247 & 115.31 & 122.05 & 435.7 \\
\hline 1990 & 913820 & 651274 & 9368 & 57221 & 13842 & 185.45 & 125.93 & 465.47 \\
\hline 1991 & 776857 & 567698 & 17257 & 46798 & 9686 & 176.97 & 179.1 & 498.49 \\
\hline 1992 & 531067 & 385566 & 6473 & 22098 & 4977 & 124.76 & 64.22 & 351.59 \\
\hline 1993 & 442720 & 340171 & 9234 & 19188 & 2796 & 145.21 & 43.55 & 262.26 \\
\hline 1994 & 1162817 & 931772 & 26781 & 24767 & 10268 & 252.16 & 212.32 & 445.66 \\
\hline 1995 & 1290188 & 1060536 & 12541 & 23015 & -11 & 218.28 & -11 & 184.51 \\
\hline 1996 & 2148532 & 1820845 & 84042 & -11 & 30242 & -11 & 431.9 & 572.8 \\
\hline 1997 & 776201 & 602709 & 14328 & 33666 & 10272 & 342.51 & 130 & 149.19 \\
\hline 1998 & 844549 & 642546 & 25522 & 32951 & 2493 & 305.9 & 74.4 & -11 \\
\hline 1999 & 983135 & 788694 & 39262 & 22855 & 2898 & 277.61 & 78.44 & -11 \\
\hline 2000 & 540793 & 456223 & 24214 & 11511 & 1103 & 222.71 & 47.74 & 183.83 \\
\hline 2001 & 1712546 & 1253741 & 99628 & 30813 & -11 & 541.25 & 170.08 & 500.43 \\
\hline 2002 & 546025 & 429086 & 31350 & -11 & 1350 & 126.11 & 41.75 & 210.7 \\
\hline 2003 & 1261256 & 919217 & -11 & 18202 & 1819 & 226.2 & 69.6 & 359.59 \\
\hline 2004 & 789082 & 622218 & 13537 & 10118 & 1571 & 158.45 & 38.99 & 243.15 \\
\hline 2005 & -11 & -11 & 27391 & 12164 & 2134 & 135.11 & 72.29 & 129.25 \\
\hline 2006 & -11 & -11 & 51124 & 14175 & 2700 & 329.34 & 130.6 & 232.28 \\
\hline 2007 & -11 & -11 & 40581 & 14706 & -11 & 235.37 & -11 & 175.65 \\
\hline 2008 & -11 & -11 & 50179 & -11 & -11 & -11 & -11 & 186.87 \\
\hline
\end{tabular}

\section*{Table 8.5.2. North Sea plaice. RCT3 results for age 1.}
```

Analysis by RCT3 ver3.1 of data from file :
ple_iv1.txt
North Sea Plaice Age 1
Data for 6 surveys over 40 years : 1969-2008
Regression type = C
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as .00
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass = 2008

Survey/	Slope	Inter-	Std	Rsquare	No.	Index P	Predicted	Std	WAP
Series		cept	Error		Pts	Value	Value	Error	Weights
SNSO	. 96	4.72	. 89	. 271	34	10.82	15.14	. 948	. 193
DFS0	2.36	. 13	. 90	. 292	22	5.24	12.51	1.012	. 170
					VPA	Mean $=$	13.83	. 523	. 637
Year	Weighted		Log	Int	Ext	Var	VPA	Log	
Class	Average		WAP	Std	Std	Ratio		VPA	
	Prediction			Error	Error				
2008	1041086		. 86	. 42	. 56	1.81			

```

Table 8.5.3. North Sea plaice. RCT3 results for age 2.
```

Analysis by RCT3 ver3.1 of data from file :
ple_iv2.txt
North Sea Plaice Age 2
Data for 6 surveys over 40 years : 1969 - 2008
Regression type = C
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as .00
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass = 2007

Survey/	Slope	Inter-	- Std	Rsquare	No.	Index	Predicted	Std	WAP
Series		cept	Error		Pts	Value	Value	Error	Weights
SNS0	. 85	5.48	. 74	. 346	34	10.61	14.49	. 787	. 155
SNS1	1.25	. 82	. 58	. 435	34	9.60	12.83	. 618	. 252
BTS1	1.59	4.86	. 73	. 357	20	5.47	13.57	. 792	. 154
DFSO	2.41	-. 41	. 94	. 260	22	5.17	12.04	1.063	. 085
					VPA	Mean =	13.51	. 522	. 353
Year	Weighted		Log	Int	Ext	Var	VPA	Log	
Class	Average		WAP	Std	Std	Ratio		VPA	
	Prediction			Error	Error				
2007	64509		3.38	. 31	. 33	1.1			

```

Table 8.6.1. North Sea plaice. Input to the short term forecast (f values presented are for Fsq)


Table 8.6.2A. North Sea plaice. Results from the short term forecast assuming \(F_{2009}=F_{2008}\)


Table 8.6.2B. North Sea plaice. Results from the short term forecast assuming \(\mathrm{F}_{2009}=0.9\) * \(\mathrm{F}_{2008}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 2009 & 0.9 & 0.221 & 0.23 & 0.22 & 54080 & 39922 & \[
93941
\] & \[
388131
\] & \\
\hline & year & fmult & f2-6 & f_dis2-3 & f_hc2-6 & landings & discards & catch & ssb & ssb2011 \\
\hline 2 & 2010 & 0.2 & 0.049 & 0.05 & 0.05 & 14493 & 9867 & 24363 & 451772 & 584656 \\
\hline 5 & 2010 & 0.3 & 0.074 & 0.08 & 0.07 & 21513 & 14590 & 36106 & 451772 & 572651 \\
\hline 8 & 2010 & 0.4 & 0.098 & 0.10 & 0.10 & 28385 & 19177 & 47566 & 451772 & 560933 \\
\hline 11 & 2010 & 0.5 & 0.123 & 0.13 & 0.12 & 35114 & 23634 & 58753 & 451772 & 549496 \\
\hline 14 & 2010 & 0.6 & 0.148 & 0.15 & 0.15 & 41703 & 27965 & 69673 & 451772 & 538331 \\
\hline 17 & 2010 & 0.7 & 0.172 & 0.18 & 0.17 & 48155 & 32172 & 80332 & 451772 & 527432 \\
\hline 20 & 2010 & 0.8 & 0.197 & 0.20 & 0.20 & 54473 & 36261 & 90740 & 451772 & 516791 \\
\hline 23 & 2010 & 0.9 & 0.221 & 0.23 & 0.22 & 60661 & 40235 & 100901 & 451772 & 506402 \\
\hline 26 & 2010 & 1.0 & 0.246 & 0.25 & 0.25 & 66721 & 44096 & 110823 & 451772 & 496257 \\
\hline 29 & 2010 & 1.1 & 0.271 & 0.28 & 0.27 & 72657 & 47850 & 120512 & 451772 & 486350 \\
\hline 32 & 2010 & 1.2 & 0.295 & 0.30 & 0.30 & 78471 & 51499 & 129975 & 451772 & 476676 \\
\hline 35 & 2010 & 1.3 & 0.320 & 0.33 & 0.32 & 84167 & 55045 & 139217 & 451772 & 467228 \\
\hline 38 & 2010 & 1.4 & 0.344 & 0.35 & 0.34 & 89746 & 58494 & 148244 & 451772 & 457999 \\
\hline 41 & 2010 & 1.5 & 0.369 & 0.38 & 0.37 & 95212 & 61846 & 157061 & 451772 & 448985 \\
\hline 44 & 2010 & 1.6 & 0.394 & 0.40 & 0.39 & 100568 & 65106 & 165676 & 451772 & 440180 \\
\hline 47 & 2010 & 1.7 & 0.418 & 0.43 & 0.42 & 105815 & 68276 & 174092 & 451772 & 431578 \\
\hline 50 & 2010 & 1.8 & 0.443 & 0.46 & 0.44 & 110956 & 71359 & 182315 & 451772 & 423173 \\
\hline 53 & 2010 & 1.9 & 0.467 & 0.48 & 0.47 & 115994 & 74357 & 190350 & 451772 & 414962 \\
\hline 56 & 2010 & 2.0 & 0.492 & 0.51 & 0.49 & 120931 & 77274 & 198202 & 451772 & 406938 \\
\hline
\end{tabular}

Table 8.6.2C. North Sea plaice. Results from the short term forecast assuming a F for 2009 such that the landings in 2009 equal the TAC for 2009


\title{
Table 8.6.3A. North Sea plaice. Detailed STF table, assuming \(\mathrm{F}_{2009}=\mathrm{F}_{2008}\)
}


\begin{tabular}{rrrrrrrrrrrrrrrrrrrrr} 
Year & 2011 \\
1 & 0.141 & 0.14 & 0.00 & 912907 & 0.06 & 0.26 & 0.06 & 0.05 & 0.0 & 0.1 & 114285 & 6902 & 791 & 202 & 113494 & 6696 & 0 & 45950 \\
2 & 0.359 & 0.33 & 0.02 & 717494 & 0.12 & 0.27 & 0.11 & 0.11 & 0.5 & 0.1 & 206592 & 25681 & 14118 & 3783 & 192474 & 21878 & 40180 & 80359 \\
3 & 0.296 & 0.17 & 0.12 & 453366 & 0.22 & 0.30 & 0.17 & 0.21 & 0.5 & 0.1 & 110693 & 24788 & 46628 & 13963 & 64065 & 10763 & 47906 & 95811 \\
4 & 0.232 & 0.05 & 0.18 & 287857 & 0.31 & 0.34 & 0.19 & 0.28 & 1.0 & 0.1 & 56865 & 17632 & 45045 & 15410 & 11820 & 2199 & 80600 & 80600 \\
5 & 0.187 & 0.01 & 0.17 & 254143 & 0.38 & 0.39 & 0.19 & 0.35 & 1.0 & 0.1 & 41285 & 15624 & 38184 & 15024 & 3101 & 596 & 88611 & 88611 \\
6 & 0.156 & 0.02 & 0.13 & 140381 & 0.40 & 0.44 & 0.21 & 0.42 & 1.0 & 0.1 & 19352 & 7795 & 16537 & 7245 & 2815 & 588 & 58352 & 58352 \\
7 & 0.116 & 0.03 & 0.09 & 79617 & 0.44 & 0.52 & 0.22 & 0.46 & 1.0 & 0.1 & 8274 & 3619 & 6132 & 3174 & 2142 & 464 & 36651 & 36651 \\
8 & 0.150 & 0.05 & 0.10 & 97551 & 0.42 & 0.57 & 0.20 & 0.52 & 1.0 & 0.1 & 12928 & 5489 & 8399 & 4750 & 4529 & 903 & 50239 & 50239 \\
9 & 0.088 & 0.00 & 0.09 & 24856 & 0.59 & 0.59 & 0.00 & 0.57 & 1.0 & 0.1 & 2004 & 1179 & 2004 & 1179 & 0 & 0 & 14143 & 14143 \\
10 & 0.088 & 0.00 & 0.09 & 103656 & 0.65 & 0.65 & 0.00 & 0.67 & 1.0 & 0.1 & 8358 & 5395 & 8358 & 5395 & 0 & 0 & 69444 & 69444
\end{tabular}

Table 8.6.3B. North Sea plaice. Detailed STF table, assuming \(\mathrm{F}_{2009}=0.9{ }^{*} \mathbf{F}_{2008}\)


Table 8.6.3C. North Sea plaice. Detailed STF table, forecast assuming a F for 2009 such that the landings in 2009 equal the TAC for 2009

\begin{tabular}{crrrrrrrrrrrrrrrrrrrrr} 
Year 2010 \\
1 & 0.141 & 0.14 & 0.00 & 912907 & 0.06 & 0.26 & 0.06 & 0.05 & 0.0 & 0.1 & 114285 & 6902 & 791 & 202 & 113494 & 6696 & 0 & 45950 \\
2 & 0.359 & 0.33 & 0.02 & 724992 & 0.12 & 0.27 & 0.11 & 0.11 & 0.5 & 0.1 & 208751 & 25949 & 14266 & 3823 & 194485 & 22106 & 40600 & 81199 \\
3 & 0.296 & 0.17 & 0.12 & 439043 & 0.22 & 0.30 & 0.17 & 0.21 & 0.5 & 0.1 & 107196 & 24005 & 45155 & 13522 & 62041 & 10423 & 46392 & 92784 \\
4 & 0.232 & 0.05 & 0.18 & 362087 & 0.31 & 0.34 & 0.19 & 0.28 & 1.0 & 0.1 & 71529 & 22179 & 56661 & 19384 & 14868 & 2766 & 101384 & 101384 \\
5 & 0.187 & 0.01 & 0.17 & 190253 & 0.38 & 0.39 & 0.19 & 0.35 & 1.0 & 0.1 & 30906 & 11696 & 28585 & 11247 & 2321 & 446 & 66335 & 66335 \\
6 & 0.156 & 0.02 & 0.13 & 104302 & 0.40 & 0.44 & 0.21 & 0.42 & 1.0 & 0.1 & 14378 & 5791 & 12287 & 5383 & 2092 & 437 & 43355 & 43355 \\
7 & 0.116 & 0.03 & 0.09 & 122416 & 0.44 & 0.52 & 0.22 & 0.46 & 1.0 & 0.1 & 12722 & 5564 & 9429 & 4880 & 3293 & 713 & 56352 & 56352 \\
8 & 0.150 & 0.05 & 0.10 & 32182 & 0.42 & 0.57 & 0.20 & 0.52 & 1.0 & 0.1 & 4265 & 1811 & 2771 & 1567 & 1494 & 298 & 16574 & 16574 \\
9 & 0.088 & 0.00 & 0.09 & 62604 & 0.59 & 0.59 & 0.00 & 0.57 & 1.0 & 0.1 & 5048 & 2969 & 5048 & 2969 & 0 & 0 & 35622 & 35622 \\
10 & 0.088 & 0.00 & 0.09 & 63653 & 0.65 & 0.65 & 0.00 & 0.67 & 1.0 & 0.1 & 5133 & 3313 & 5133 & 3313 & & 0 & 0 & 42644 & 42644
\end{tabular}
```

Year 2011

```
    \(\begin{array}{lllllllllllllllllllllllllllll}1 & 0.141 & 0.14 & 0.00 & 912907 & 0.06 & 0.26 & 0.06 & 0.05 & 0.0 & 0.1 & 114285 & 6902 & 791 & 202 & 113494 & 6696 & 45950\end{array}\)
\(20.3590 .330 .027174940 .120 .270 .11 \quad 0.11 \quad 0.50 .12065922568114118 \quad 3783192474218784018080359\)
\(\begin{array}{lllllllllllllllllllllllllll}3 & 0.296 & 0.17 & 0.12 & 458104 & 0.22 & 0.30 & 0.17 & 0.21 & 0.5 & 0.1 & 111850 & 2504747115 & 14109 & 64735 & 10875 & 48406 & 96813\end{array}\)
    \(\begin{array}{lllllllllllllllllllllllll}4 & 0.232 & 0.05 & 0.18 & 295587 & 0.31 & 0.34 & 0.19 & 0.28 & 1.0 & 0.1 & 58392 & 18106 & 46255 & 15824 & 12138 & 2258 & 82764 & 82764\end{array}\)
    \(\begin{array}{llllllllllllllllllllllllll}5 & 0.187 & 0.01 & 0.17 & 259749 & 0.38 & 0.39 & 0.19 & 0.35 & 1.0 & 0.1 & 42196 & 15969 & 39027 & 15356 & 3169 & 610 & 90566 & 90566\end{array}\)
    \(\begin{array}{llllllllllllllllllllllllll}6 & 0.156 & 0.02 & 0.13 & 142807 & 0.40 & 0.44 & 0.21 & 0.42 & 1.0 & 0.1 & 19686 & 7929 & 16823 & 7370 & 2864 & 598 & 59360 & 59360\end{array}\)
    \(\begin{array}{lllllllllllllllllllllllll}7 & 0.116 & 0.03 & 0.09 & 80723 & 0.44 & 0.52 & 0.22 & 0.46 & 1.0 & 0.1 & 8389 & 3669 & 6218 & 3218 & 2171 & 470 & 37160\end{array}\)
    \(\begin{array}{llllllllllllllllllllll}8 & 0.150 & 0.05 & 0.10 & 98682 & 0.42 & 0.57 & 0.20 & 0.52 & 1.0 & 0.1 & 13078 & 5553 & 8497 & 4805 & 4582 & 913 & 50821 & 50821\end{array}\)
    \(\begin{array}{llllllllllllllllllllll}9 & 0.088 & 0.00 & 0.09 & 25069 & 0.59 & 0.59 & 0.00 & 0.57 & 1.0 & 0.1 & 2021 & 1189 & 2021 & 1189 & 0 & 0 & 14264 & 14264\end{array}\)
\(\begin{array}{lllllllllllllllllllllllll}10 & 0.088 & 0.00 & 0.09 & 104569 & 0.65 & 0.65 & 0.00 & 0.67 & 1.0 & 0.1 & 8432 & 5443 & 8432 & 5443 & 0 & 0 & 70055 & 70055\end{array}\)

Table 8.6.4. North Sea plaice. Yield and spawning biomass per recruit reference points
\begin{tabular}{llll}
\hline & \begin{tabular}{l} 
Fish Mort \\
Ages 2-6
\end{tabular} & Yield/R & SSB/R \\
\hline Average last 3 & 0.31 & 0.09 & 0.55 \\
years & 0.17 & 0.10 & 1.25 \\
Fmax & 0.12 & 0.10 & 1.74 \\
F0.1 & 0.42 & 0.07 & 0.32 \\
Fmed & & \\
\hline
\end{tabular}

\section*{catch, landings and d}



Figure 8.2.2 North Sea plaice. Model predictions of plaice discard percentages and distribution of the PVis data plotted on top. Predictions are made for the beginning of June 2008 (one month before the most recent data point) for a vessel with 9 tickler chains from the ground rope (and no chain mat) and the absolute discard levels only apply to those conditions. Source: Aarts \& van Helmond, IMA RES report in prep.


Figure 8.2.3 North Sea plaice. Landing numbers-at-age (left) and discards numbers-at-age (right).

\section*{Catch numbers-at-age}


Figure 8.2.4 North Sea plaice. Catch numbers-at-age.
stock weight at age

0.5



Figure 8.2.6 North Sea plaice. Standardized survey tuning indices used for tuning XSA: BTS-Isis (red), BTS-Tridens (black) and SNS (blue).

\section*{BTS-Tridens}


Figure 8.2.7 North Sea plaice. Internal consistency plot for the BTS-Tridens survey.

\section*{BTS-Isis}

log index

Figure 8.2.8. North Sea plaice. Internal consistency plot for the BTS-Isis survey.

\section*{SNS}


Figure 8.2.9. North Sea plaice. Internal consistency plot for the SNS survey.


Figure 8.2.10 North Sea plaice. Length distribution per haul for the BTS-Tridens survey extracted from the ICES database.


Figure 8.2.11 North Sea plaice. Standardized commercial tuning indices available for tuning: Dutch beam trawl fleet (red) and UK beam trawl fleet excluding all flag vessels (black).


Figure 8.2.12. North Sea plaice. LP UE of the Dutch (left) and UK large trawler fleet (right), in areas north, central and south and the combined North Sea. Source: VIRIS Taken from Quirijns and Poos 2009,Working paper 1



Figure 8.2.13 Danish CPUE. Left: average plaice CPUE (bold line), and split up by gear: trawl, gillnet and seines. Right: plaice CP UE in the northern North Sea by trawlers. Source: Danish logbook data. Taken from Quirijns and Poos 2009,Working paper 1



Figure 8.2.14. North Sea plaice. Effort (days at sea per 1471 kW vessel) for the Dutch fleet (left) and UK large trawler fleet (right), in areas north, central and south and the combined North Sea. Source: VIRIS. Taken from Quirijns and Poos 2009, Working paper 1.


Figure 8.2.15. North Sea plaice. Annual fishing effort by the North Sea trawling fleet: Dutch vessels (left); UK flag vessels (middle); and Da nish vessels (right). Expressed in da ys at sea, averaged over the period 2006-2008 (except for Danish data which cover the period 20052007). Source: EC logbook data.



Figure 8.2.16. North Sea plaice. Age composition of Dutch Plaice LP UE and Catch composition.


Figure 8.3.1. North Sea plaice. Log catch ratios (left panel) and catch curves (right panel).


Figure 8.3.2. North Sea plaice. XSA results with respect to SSB (left) and F (right) estimate for different plus group settings used in the assessment. Red line indicates plus group at age 15, black line indicates plus group at age 10.


Figure 8.3.3 North Sea plaice XSA results with respect to SSB (left) and F (right) estimates for different permutations of the available surve \(y\) tuning indices. XSA run with only SNS survey tuning index is omitted because no reliable SSB or F estimates are available owing to the limited age range (only ages 1-3). Labels indicate used tuning indices.

LPUE

log index

Figure 8.3.4. North Sea plaice. Internal consistency plot for the corrected age structured LP UE

Figure 8.3.5. North Sea plaice. Stock size as a function of the corrected LP UE (working document) for ages 1-9.


Figure 8.3.6 North Sea plaice. XSA output. A comparison of SSB (left) and Fbar (right) estimates obtained by running XSA with the BTS and SNS survey tuning indices only (blue line: without lpue) and with the LPUE in addition to the BTS and SNS tuning indices (grey and red lines: with lpue). The LPUE was used as a tuning index for ages 1-9 inclusive (red line: ages 1-9), and for ages 2-9,3-9, etc. (grey lines: with lpue: ages \(>1-9\) ).


Figure 8.3.7 North Sea plaice. SCA output. A comparison of the median estimate of SSB (top left), Fbar (top right) and Discard (bottom) estimates obtained by running the Statistical catch at age model. Vertical bars represent the \(95 \%\) confidence interval of the estimation. The dashed line in the SCA discard estimates shows the observed discards and the dotted line the reconstructed discards using the current method used in the XSA (see Aarts \& Poos 2009)


Figure 8.3.8 North Sea plaice. SCA output. Model log residuals of the landings and discard data (see Aarts \& Poos 2009).

Figure 8.3.9. North Sea plaice. SCA output. Log catchability residuals for the final XSA run from the three tuning series.


Figure 8.3.10. North Sea plaice. Log catchability residuals for the final XSA run from the three tuning series.


Figure 8.3.11. North Sea plaice. Retrospective pattern of the final XSA run with respect to SSB, recruitment and \(F\).

\(\stackrel{\circ}{-}\)
--



Figure 8.4.2. North Sea plaice. Stock summary figure. Time series on human consumption (left) fishing mortality and total stock biomass (right)


Figure 8.6.1 North Sea plaice. Yield per recruit analysis.

\section*{9 Sole in Subarea VIId}

The assessment of sole in subarea VIId is presented here as an update assessment following the WKFLAT 2009 benchmark of this stock.

All the relevant biological and methodological information can be found in the Stock Annex dealing with this stock. Here, only the basic input and output from the assessment model will be presented.

\subsection*{9.1 General}

\subsection*{9.1.1 Ecosystem aspects}

No new information on ecosystem aspects was presented at the working group in 2009.

All available information on ecological aspects can be found in the Stock Annex.

\subsection*{9.1.2 Fisheries}

A detailed description of the fishery can be found in the Stock Annex.
It is likely that the high oil prices havehad someimpact on the fishing behavior of the Belgian and UK beam trawl fleets. For the French and UK inshore fleets how ever this will probably not be the case since they are constrained to the inshore areas.

For the twelfth consecutive year, neither France, Belgium nor UK was able to take up their quota (see section 9.2.1).

\subsection*{9.1.3 ICES advice}

In the advice for 2008 ICES considered the stock as having full reproductive capacity and being harvested sustainably. In the advice for 2009 ICES considered the stock as having full reproductive capacity and at risk of being harvested unsustainably.

Single-stock exploitation boundaries
Exploitation boundaries in relation to high long-term yield, low risk of depletion of production potential and considering ecosystem effects

The current fishing mortality is estimated at 0.41 , just above the range that would lead to high long-term yields and low risk of stock depletion.

Exploitation boundaries in relation to precautionary limits
The fishing mortality in 2009 should be below Fpa corresponding to landings less than \(4380 t\) in 2009, which is expected to keep SSB above Bpa in 2010.

Demersal fisheries in the area are mixed fisheries, with many stocks exploited together in various combinations in the various fisheries. In these cases, management advice must consider both the state of individual stocks and their simultaneous exploitation in demersal fisheries. Stocks in the poorest condition, particularly those which suffer from reduced reproductive capacity, become the overriding concern for the management of mixed fisheries, where these stocks are exploited either as a targeted species or as a bycatch.

Fisheries in Division IIIa (Skagerrak-Kattegat), in Subarea IV (North Sea), and in Division VIId (Eastern Channel) should in 2009 be managed according to the following rules, which should be applied simultaneously:

Demersal fisheries
- should minimize bycatch or discards of cod;
- should implement TACs or other restrictions that will curtail fishing mortality for those stocks mentioned above for which reduction in fishing pressure is advised;
- should be exploited within the precautionary exploitation limits or where appropriate on the basis of management plan results for all other stocks (see text table above);
- where stocks extend beyond this area, e.g. into Division VI (saithe and anglerfish) or are widely migratory (Northern hake), should take into account the exploitation of the stocks in these areas so that the overall exploitation remains within precautionary limits;
- should have no landings of angel shark and minimum bycatch of spurdog, porbeagle, and common skateand undulate ray.

\subsection*{9.1.4 Management}

No explicit management objectives are set for this stock.
Management of sole in VIId is by TAC and technical measures. The agreed TACs in 2008 and 2009 are 6593t and 5274t respectively. Technical measures in force for this stock are minimum mesh sizes, minimum landing size. The minimum landing size for sole is 24 cm . Demersal gears permitted to catch sole are 80 mm for beam trawling and 80 mm for otter trawlers. Fixed nets are required to use 100 mm mesh since 2002 although an exemption to permit 90 mm has been in force since that time.

For 2008 Council Regulation (EC) \({ }^{\circ} 40 / 2008\) allocates different days at sea depending on gear, mesh size and catch composition. (see section 1.2.1 for complete list). The days at sea limitations for the major fleets operating in subarea VIId could be summarised as follows: Days at sea limitations for Trawls or Danish seines varies between 86 and unlimited days per year. Beam trawlers have an unlimited number of days permit. Maximum days at sea for Gillnets vary between 117 and 140 days per year. Trammel nets are allowed a maximum of 205 days for Member States whose quotas are less than \(5 \%\) of the Community share of the TACs of both plaice and sole; otherwise the limit is 180 days. Long-lines have a maximum of 173 days per year.

For 2009 Council Regulation (EC) N43/2009 allocates different amounts of Kw*days by Member State and area to different effort groups of vessels depending on gear and mesh size. (see section 1.2.1 for complete list). The area's are Kattegat, part of IIIa not covered by Skagerrak and Kattegat, ICES zone IV, EC waters of ICES zone IIa, ICES zone VIId, ICES zone VIIa, ICES zone Via and EC waters of ICES zone Vb. The grouping of fishing gear concerned are: Bottom trawls, Danish seines and similar gear, excluding beam trawls of mesh size: TR1 ( \(\leq 100 \mathrm{~mm})\) TR2 ( \(\leq 70\) and \(<100 \mathrm{~mm}\) ) - TR3 ( \(\leq 16\) and \(<32 \mathrm{~mm}\) ); Beam trawl of mesh size: BT1 ( \(\leq 120 \mathrm{~mm}\) ) - BT2 ( \(\leq 80\) and \(<\) 120 mm ); Gill nets excluding trammel nets: GN1; Trammel nets: GT1 and Longlines: LL1.

\subsection*{9.2 Data available}

\subsection*{9.2.1 Catch}

French landings submitted to the Working Group for 2007 were revised upward by \(20 \%\) to 2867 t and UK landings by \(1 \%\) to 759 t. The 2007 values for the numbers at age were therefore also updated. Total landings now amount to 5166t instead of 4686t.
The 2008 landings used by the Working Group were 4510t (Table 9.2.1) which is \(32 \%\) below the agreed TAC of 6593 t and \(8 \%\) below the predicted landings at a status quo fishing mortality in 2008 (4898t). The contribution of France, Belgium and the UK to the landings in 2007 is \(55 \%, 30 \%\) and \(15 \%\) respectively.
Landing data reported to ICES are shown in Table 9.2.1 together with the total landings estimated by the Working Group. As in last year's assessment, misreporting by UK beam trawlers from Division VIIe into VIId have been taken into account and corrected accordingly (see also section 9.11). It should be noted that historically there is also thought to be a considerable under-reporting by small vessels, which take up a substantial part of the landings in the eastern Channel. In the UK buyers and sellers registration is considered to have reduced this significantly since 2005. Substantial progress has been made in recent years by including all return rates of the small vessels.

Discard estimates since 2005 are available for the UK and French static gear and the French Otter trawl ( Figure 9.2.1a-c). Numbers are raised to the sampled trips. It should be noted that the number of sampled trips is low. Discard from the Belgian beam trawler fleet could not been processed in time for the w orking group due to the shift of the working group to an earlier time in the year. The data will be available later in the year when time and manpower permits to compile the data.

The available information suggests that discards are not a substantial part of the catch for this high valued species. Although French otter trawl discards information suggest that occasionally discarding of predominantly 1-year old fish occur in the first and second quarter these otter trawls only comprise \(13 \%\) of the sole landings in VIId. Observer information from one single UK beam trawl trip in the \(4^{\text {th }}\) quarter indicates high discard rates of sole. However it should be noted that markets at that time of the year were heavily affecting discards of flatfish, including sole. The information from that single trip is therefore not representative for the UK beam trawl fleet at any time in the year. The Working Group decided not to include discards in the assessment at this stage due to the scarcity of the data but will monitor the situation in the future.
Sampling levels for those countries providing age compositions will be provided in the September report.

\subsection*{9.2.2 Age compositions}

Quarterly data for 2008 were available for landing numbers and weight at age, for the French, Belgian, and UK fleets. These comprise \(100 \%\) of the international landings. Age compositions of the landings are presented in Table 9.2.2.

\subsection*{9.2.3 Weight at age}

Weight at age in the catch is presented in Table 9.2.3 and weight at age in the stock in Table 9.2.4. The procedure for calculating mean weights is described in the Stock Annex.

\subsection*{9.2.4 Maturity and natural mortality}

As in previous assessments, a knife-edged maturity-ogive was used at age 3.
Natural mortality are assumed at fixed values (0.1) for all ages in time.

\subsection*{9.2.5 Catch, effort and research vessel data}

Available estimates of effort and LPUE are presented in Tables 9.2.5a,b and Figures 9.2.2a-c. Revisions have been made to the French effort and LPUE series for 2002 up to 2007 and for the UK effort and LPUE series for 2007. There were no revisions to the Belgium data series. Effort for the Belgian beam trawl fleet increased to the highest level in 2007 with a slight decrease in 2008 . This is mainly due to the unrestrictive "days at sea" EU regulation in ICES subdivision VIId from 2005 until 2007, as well as the good fishing opportunities for sole in that area. The mobile Belgian fleet are predominantly fishing in the most favourable area which is subdivision VIId at the moment. The UK (E\&W) beam trawl fleet effort has increased from the late 80's, reaching its peak in 1997. Since then, effort has decreased and fluctuated around \(60 \%\) of its peak level. Information has been provided on effort and LPUE from the recent period of the French fleets in the Eastern Channel. This short data series will be extended historically and for recent years and therefore will provide information on the trends in the main French fisheries.

The Belgian LPUE has been fluctuated around the mean with no strong trend until recently when catch rates have been increasing consistent with the UK beam trawl fleet up to 2005. Both fleets show a decrease in 2006 and 2007 with a slight increase in the last year. The recent time series of the French beam trawl LPUE has been decreasing until 2006 with a slight increase in the last two years. The French OTB and GTR show also a slight increase in the last few years.

Survey and commercial data used for calibration of the assessment are presented in Table 9.2.6.

The data for 2007 for the UK beam trawl series was revised. The UK survey component of the Young fish survey (YFS) was last conducted in 2006. In the absence of any update of the UK component, it was decided at the Benchmark working group (WKFLAT - February 2009) that the UK component should still be used in the assessment independently from the French component of the YFS index. It was also noted that the lack of information from the UK YFS will affect the quality of the recruitment estimates and therefore the forecast. (see also section 9.3.2).

Investigations at the WKFLAT of a possible horse power correction for the Belgian beam trawl fleet indicate that a more realistic approach could be implemented. Due to lack of time and manpower, the recalculation could not be conducted for this assessment. However the Working Group considered it as a priority for implementation at the next update assessment.

\subsection*{9.3 Data analyses}

\subsection*{9.3.1 Reviews of last year's assessment}

The RG noted that similar pattern of trends in residuals for sole and plaice in this area were observed and requested that the WG should look into this feature in VIId at the benchmark assessment. Unfortunately this was not addressed at the WKFLAT. Due to work pressure at this year's meeting, the W orking Group was also unable to fully evaluate this feature. However, the Working Group agreed fully to address this issue as soon as possible.

\subsection*{9.3.2 Exploratory catch at age analysis}

Catch at age analysis was carried out according to the specifications in the Stock Annex. The model used was XSA. The results of exploratory XSA runs, which are not included in this report, are available in ICES files.

A preliminary inspection of the quality of international catch-at-age data was carried out using separable VPA with a reference age of 4 , terminal \(\mathrm{F}=0.5\) and terminal \(\mathrm{S}=0.8\). As last year, the log-catch ratios for the fully recruited ages (3-10) did not show any patterns or large residuals (in ICES files).

The tuning data were examined for trends in catchability by carrying out XSA tuning runs (lightly shrunk ( \(\mathrm{se}=2.0\) ), mean q model for all ages, full time series and untapered), using data for each of the four fleets individually (in ICES files). Apart from the first few year's in the Belgian series (1982-1985, which were excluded from the analyses, as in previous assessments), there were no strong trends for any of the fleets. The Belgian beam trawl fleet had a somewhat noisier log catchability residual pattern, especially for age 2 and age 11. Year effects were noted for the UK(E\&W) beam trawl fleet (UK-BT) in 2000. The UK(E\&W) beam trawl survey (UK-BTS) showed year effects for 3 consecutive year (1999, 2000 and 2001). It was also noted that the log catchability residual of the separate Young Fish Survey components (YFSUK and YFS-FR) were noisier than the combined Young Fish Survey index, used in previous assessments.
The time series of the standardized indices for ages 1 to 6 from the five tuning fleets (BEL-BT commercial, UK-BT commercial, UK-BTS survey, YFS-UK survey and the YFS-FR survey) are plotted in Figure 9.2.3. All tuning fleets appear to track the year classes reasonably well for ages 2 to 6 . For age 1, the two Young Fish Survey components from UK and France are not always consistent in estimating the year class strength. Investigations of the standardised indices from both the separate components of the Young Fish Survey and the combined index for age 1 (ICES files), show that the combined index and the UK component estimate year class strength more similar then the French component. Internal consistency plots for the 2 commercial fleets and the UKbeam trawl survey are presented in Figure 9.2.4-6. The internal consistency of the Belgian beam trawl fleet appears relatively high for the older ages. The UK commercial fleet and the UK beam trawl survey show high consistencies for the entire age-range.

The catchability residuals for the proposed final XSA are shown in Figure 9.3.1a-b and the XSA tuning diagnostics are given in Table 9.3.1.

In general, estimates between fleets are consistent for ages 2 and above (Figure9.3.3), apart from the estimates from the YFS-FR for ages 3,4 and 8 . In this year's assessment the estimates for the recruiting year class 2007 were estimated by the UKbeam trawl
survey (UK-BTS) and the French component of the Young Fish Survey (YFS-FR) which have both an equal weighting of about \(45 \%\) to the final survivor estimates. Fshrinkage giving \(9 \%\) of the weighting.

At age 2, the weak 2006 year-class is estimated somewhat stronger by the UK beam trawl fleet than the other tuning fleets. Most of the weighting is given by the commercial UK BT fleet (42\%) and the UK BTS survey (38\%). Apart from age 1 (9\%), F shrinkage gets low weights for all ages (<3\%). The weighting of the 3 surveys decreases for the older ages as the commercial fleets are given more weight (Figure 9.3.2).

\subsection*{9.3.3 Exploratory survey-based analyses}

In 2005, exploratory SURBA-runs (v3.0) were carried out on the UK(E\&W) Beamtrawl Survey (UK-BTS) (1988-2004) and the International Young Fish Survey (19882004) to investigate whether the surveys-only analysis suggests different trends in Recruitment, SSB and fishing mortality. From the diagnostics on Mean Z, it was concluded that the surveys could not estimate any trend in fishing mortality. Given also that the SSB and recruitment trends from both XSA and SURBA runs showed similar patterns, the Working Group decided to accept the XSA as the final assessment.

In this update assessment Surba runs were not executed.

\subsection*{9.3.4 Conclusion drawn from exploratory analyses}

The XSA analyses was taken as the final assessment, giving mostly consistent survivor estimates between fleets for all ages. The estimates of recruiting age 1 (year class 2007) are far below average values in the time series. (Table 9.3.4).

\subsection*{9.3.5 Final assessment}

The final settings used in this year's assessment are specified as in the stock annex and are detailed below:
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{2009 assessment} \\
\hline & Year & Age & \\
\hline Fleets & s & s & \(\alpha-\beta\) \\
\hline BEL-BT commercial & 86-08 & 2-10 & 0-1 \\
\hline UK-BT commercial & 86-08 & 2-10 & 0-1 \\
\hline UK-BTS survey & 88-08 & 1-6 & 0.5-0.75 \\
\hline \multicolumn{4}{|l|}{YFS - survey (combined index UK-FR)} \\
\hline YFS-UK -survey & 87-06 & 1-1 & 0.5-0.75 \\
\hline YFS-FR - survey & 87-08 & 1-1 & 0.5-0.75 \\
\hline -First data year & 1982 & & \\
\hline -Last data year & 2008 & & \\
\hline -First age & 1 & & \\
\hline -Last age & 11+ & & \\
\hline Time series weights & \begin{tabular}{l}
Non \\
e
\end{tabular} & & \\
\hline -Model & No Pow & wer mo & \\
\hline -Q plateau set at age & 7 & & \\
\hline -Survivo rs estimates shrunk towards mean F & \multicolumn{3}{|l|}{5 years / 5 ages} \\
\hline -s.e. of the means & \multicolumn{3}{|l|}{2.0} \\
\hline -Min s.e. for pop. Estimates & \multicolumn{3}{|l|}{0.3} \\
\hline -Prior weighting & \multicolumn{3}{|l|}{\begin{tabular}{l}
Non \\
e
\end{tabular}} \\
\hline
\end{tabular}

The final XSA output is given in Table9.3.2 (fishing mortalities) and Table 9.3 .3 (stock numbers). A summary of the XSA results is given in Table 9.3.4 and trends in yield, fishing mortality, recruitment and spawning stock biomass are shown in Figure 9.3.3.

Retrospective patterns for the final run are shown in Figure 9.3.4. There is good consistency between estimates in successive years. How ever, separating the Young Fish Survey into two survey indices in this year's assessment, together with the 2007 landings revisions', revised fishing mortality, SSB and recruitment for 2007 by \(17 \%, 14 x \%\) and \(65 \%\) respectively.

\subsection*{9.4 Historical Stock Trends}

Trends in landings, \(\mathrm{SSB}, \mathrm{F}(3-8)\) and recruitment are presented Table 9.3.4 and Figure 9.3.3.

For most of the time series, fishing mortality has been fluctuating between Fpa (0.4) and Flim (0.57). In the early 90's it dropped below Fpa. Since 1999 it decreased steadily from 0.55 to around 0.4 in 2001 after which it remained stable until 2005. In the last 3 years fishing mortality has increased again above the Fpa value.

Recruitment has fluctuated around 25 million recruits with occasional strong year classes. Three of the highest values in the time series have been recorded in the last 7 years. The two last recruitments were estimated far below average.

The spawning stock biomass has been stable for most of the time series. Since 2001 SSB has increased due to average and above average year classes to well above Bpa (8000t).

\subsection*{9.5 Recruitment estimates}

The 2006 year class in 2007 was confirmed by XSA to be below average with 15 million fish at age 1 which is the fourth lowest in the time series. \(98 \%\) of the weight estimate comes from the tuning fleets, giving rather similar results. The XSA survivor estimates for this year class were used for further prediction.

The 2007 year class in 2008 was estimated by XSA to be 9 million one year olds which is the lowest in the time series. F shrinkage gets \(9 \%\) of the weight; the other \(92 \%\) is coming from surveys. The XSA survivor estimates for this year class were used for further prediction.

The long term GM recruitment (24 million, 1982-2006) was assumed for the 2008 and subsequent year classes.

For comparison, RCT3 runs were carried out. Input to the RCT3 model is given in Table 9.5.1 and results are presented in Table 9.5.2a-b. How ever RCT3 estimates were not taken forward into predictions since they performed poorly in recent assessments. Although the RCT3 results are not used for prediction, it should be noted that the French Young fish survey (YFS-FR) at age 0 (not included in the XSA) confirms a weak 2007 year class. Hence there is still a marked difference between the RCT3 and the XSA estimates for that year class. The 2008 year class is predicted to be above average by the YFS-FR at age 0 .

The working group estimates of year class strength used for prediction can be summarised as follows:
\begin{tabular}{llllll} 
Year class & At age in 2009 & XSA & GM 82-06 & RCT3 & Accepted Estimate \\
\hline \(\mathbf{2 0 0 6}\) & 3 & \(\underline{9377}\) & 15297 & - & XSA \\
\(\mathbf{2 0 0 7}\) & 2 & \(\underline{8005}\) & 20553 & 15956 & XSA \\
\(\mathbf{2 0 0 8}\) & 1 & - & \(\underline{23623}\) & 28036 & GM 1982-06 \\
\(\mathbf{2 0 0 9}\) \& 2010 & recruits & - & \(\underline{\mathbf{2 3 6 2 3}}\) & - & GM 1982-06 \\
\hline
\end{tabular}

\subsection*{9.6 Short term forecasts}

The short term prognosis was carried out according to the specifications in the stock annex. As fishing mortality has fluctuated in the last three years, the selection pattern for prediction has been taken as a 3 year unscaled average. Weights at age in the catch and in the stock are averages for the years 2006-2008.
Input to the short term predictions and the sensitivity analysis are presented in Table 9.6.1. Results are presented in Table 9.6 .2 (management options) and Table 9.6.3 (detailed output).

Assuming status quo F, implies a catch in 2009 of \(4200 t\) (the agreed TAC is 5274 t ) and a catch of 3650 t in 2010. Assuming status quo F will result in a SSB in 2010 and 2011 of \(7910 t\) and \(7860 t\) respectively.
Assuming status quo F , the proportional contributions of recent year classes to the landings in 2010 and SSB in 2011 are given in Table 9.6.4. The assumed GM recruitment accounts for \(22 \%\) of the landings in 2010 and \(36 \%\) of the 2011 SSB.

Results of a sensitivity analysis are presented in Figure 9.6.1 (probability profiles). The approximate \(90 \%\) confidence intervals of the expected status quo yield in 2010 are 2800 t and 4500 t. There is about \(55 \%\) probability that at current fishing mortality SSB will fall below the \(\mathrm{B}_{\mathrm{pa}}\) of 8000 t in 2011.

\subsection*{9.7 Medium-term forecasts and Yield per recruit analyses}

This year, no Medium-term forecasts were carried out for this stock.
Yield-per-recruit results, long-term yield and SSB, conditional on the present exploitation pattern and assuming status quo F in 2009, are given in Table 9.7.1 and Figure 9.7.1. \(\mathrm{F}_{\max }\) is calculated by this year's assessment to be 0.27 ( \(0.47=\mathrm{F}_{\mathrm{sq}}\) ).

\subsection*{9.8 Biological reference points}
\begin{tabular}{|l|l|l|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & & Basis \\
\hline Flim & 0.55 & \begin{tabular}{l} 
Fishing mortality at or above which the stock has shown continued \\
decline.
\end{tabular} \\
\hline Fpa & 0.40 & F is considered to provide approximately 95\% probability of avoiding Flim \\
\hline Blim & - & Not defined \\
\hline Bpa & 8000 & \begin{tabular}{l} 
Lowestobserved biomass at which there is no indicationof impaired \\
recruitment.
\end{tabular} \\
\hline Fmax & 0.27 & \\
\hline F2008 & 0.45 & \\
\hline Fsq & 0.47 & \\
\hline
\end{tabular}

\subsection*{9.9 Quality of the assessment}
- Revisions in 2007 landings for France and UK (E\&W) together with the change in tuning fleet indices (see section 9.2.5) resulted in an upward revision of fishing mortality in 2007 by \(26 \%\) and a downward revision of SSB by \(14 \%\). Recruitment in 2007 was revised upward by \(78 \%\).
- Sampling for sole landings in division VIId are considered to be at a reasonable level.
- Information available on discards for 2008 suggest, as in previous years that discards are not substantial and therefore discards are not incorporated in the assessment. Discard information from French otter trawls suggest however that some discarding of 1 year old sole is taking place in the first 2 quarters of the year. Although the observed discarding at age 1 will not affect the assessment substantially, they will have an impact on forecasts, but the low level of discards are not considered a significant factor in catch forecasts.
- The trends and estimates of fishing mortality, SSB and recruitment were consistent with last year's assessment apart from the upward revision of the 2006 year class by \(78 \%\).
- Except year class 2002 and 2003, all year classes from 1998 to 2005 are estimated to be at or above long term average which explains the increase in SSB since 1998. Although the 2006 year class is revised upward by this year's assessment by \(78 \%\), it is still predicted to be the fourth weakest in the time series by two survey indices and two commercial indices. Year class 2007 is predicted by two surveys to be the lowest in the time series. Last year this year class was assumed to be GM in the forecast, resulting in status quo landings of 4380 t in 2009. The opposite revisions of year classes 2006 and 2007 by this year's assessment result in a predicted landings in 2009 of 4200 t .
- The UK component of the YFS index is not available for 2007 and 2008, resulting in the unavailability of the combined YFS-index. This combined index has been estimating the incoming year class strength very consistently, hereby providing reliable estimates to the forecasts. Although results of using the YFS indices separately (YFS-FR for 1987-present and YFS-UK for 1987-2006), did not show apparent changes in retrospective patterns, it was noted that the lack of information from the UKYFS will affect the quality of the recruitment estimates and therefore the forecast.
- The use of a more realistic effort correction for Belgian beam trawl fleet is likely to improve the tuning results for that fleet. These effort corrections should be implemented at the next update assessment.
- There is no apparent stock/recruitment relationship for this stock and no evidence of reduced recruitment at low levels of SSB (Figure 9.9.1).
- The historical performance of this assessment is rather noisy (Figure 9.9.2) but has been more constant in recent years.
- There is misreporting from adjacent areas. The Working group has addressed this by modifying landings data accordingly. Since 2002 the UK(E\&W) beam trawl landings from two rectangles 28E8 and 29E8 (in VIId) were re-allocated to VIIe on a quarterly basis, (based on information provided to the Working Group by the fishing industry) and the age compositions raised accordingly. This was done back to 1986. For VIId sole, UK(E\&W) beam trawl and otter trawl data are processed together (as trawl), so the landings from these two rectangles were removed from the trawl data on a quarterly basis, and the age compositions adjusted to take that into account.

\subsection*{9.10 Status of the Stock}

Fishing mortality has been stable between 2000 and 2005 around Fpa. In the last 3 years fishing mortality has increased to values between Fpa (0.4) and Flim (0.57).
The spawning stock biomass has been stable for most of the time series and SSB is presently well above Bpa. The strong 2004 and 2005 year class increased SSB to around record high level of the time series in 2008. The two following weak year classes 2006 and 2007 are predicted to decrease SSB to around Bpa levels in 2010 and 2011 assuming a status quo fishing mortality

\subsection*{9.11 Management Considerations}
- There is misreporting from adjacent areas. The Working group has addressed this by modifying landings data accordingly. Since 2002 the UK(E\&W) beam trawl landings from two rectangles 28E8 and 29E8 (in VIId) were re-allocated to VIIe on
a quarterly basis, (based on information provided to the W orking Group by the fishing industry) and the age compositions raised accordingly.
- There is a greater than \(50 \%\) probability that SSB will decrease to \(\mathrm{B}_{\mathrm{pa}}\) in the short term due to the weak year classes 2006 and 2007.
- EU Council Regulation (EC) N*43/2009 allocates different amounts of Kw*days by Member State and area to different effort groups of vessels depending on gear and mesh size. The new regime has not reduced effort directed at sole for beam trawls in this area in 2009.
- Due to the minimum mesh size ( 80 mm ) in the mixed beam trawl fishery, a large number of (undersized) plaice are discarded. The \(80-\mathrm{mm}\) mesh size is not matched to the minimum landing size of plaice. Measures to reduce discarding of plaice in the sole fishery would greatly benefit the plaice stock and future yields. Mesh enlargement would reduce the catch of undersized plaice, but would also result in short-term loss of marketable sole. An increase in the minimum landing size of sole could provide an incentive to fish with larger mesh sizes and therefore mean a reduction in the discarding of plaice.

Table 9.2.1 Sole VIId. Nominal landings (tonnes) as officially reported to ICES and used by the Working Group
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Belgium & France & & UK(E+W) & others & reported & Unallocated* & Total used by WG & TAC \\
\hline 1974 & 159 & 383 & & 309 & 3 & 854 & 30 & 884 & \\
\hline 1975 & 132 & 464 & & 244 & 1 & 841 & 41 & 882 & \\
\hline 1976 & 203 & 599 & & 404 & . & 1206 & 99 & 1305 & \\
\hline 1977 & 225 & 737 & & 315 & . & 1277 & 58 & 1335 & \\
\hline 1978 & 241 & 782 & & 366 & . & 1389 & 200 & 1589 & \\
\hline 1979 & 311 & 1129 & & 402 & . & 1842 & 373 & 2215 & \\
\hline 1980 & 302 & 1075 & & 159 & . & 1536 & 387 & 1923 & \\
\hline 1981 & 464 & 1513 & & 160 & & 2137 & 340 & 2477 & \\
\hline 1982 & 525 & 1828 & & 317 & 4 & 2674 & 516 & 3190 & \\
\hline 1983 & 502 & 1120 & & 419 & . & 2041 & 1417 & 3458 & \\
\hline 1984 & 592 & 1309 & & 505 & . & 2406 & 1169 & 3575 & \\
\hline 1985 & 568 & 2545 & & 520 & & 3633 & 204 & 3837 & \\
\hline 1986 & 858 & 1528 & & 551 & . & 2937 & 995 & 3932 & \\
\hline 1987 & 1100 & 2086 & & 655 & & 3841 & 950 & 4791 & 3850 \\
\hline 1988 & 667 & 2057 & & 578 & & 3302 & 551 & 3853 & 3850 \\
\hline 1989 & 646 & 1610 & & 689 & & 2945 & 860 & 3805 & 3850 \\
\hline 1990 & 996 & 1255 & & 785 & . & 3036 & 611 & 3647 & 3850 \\
\hline 1991 & 904 & 2054 & & 826 & & 3784 & 567 & 4351 & 3850 \\
\hline 1992 & 891 & 2187 & & 706 & 10 & 3794 & 278 & 4072 & 3500 \\
\hline 1993 & 917 & 2322 & & 610 & 13 & 3862 & 437 & 4299 & 3200 \\
\hline 1994 & 940 & 2382 & & 701 & 14 & 4037 & 346 & 4383 & 3800 \\
\hline 1995 & 817 & 2248 & & 669 & 9 & 3743 & 677 & 4420 & 3800 \\
\hline 1996 & 899 & 2322 & & 877 & . & 4098 & 699 & 4797 & 3500 \\
\hline 1997 & 1306 & 1702 & & 933 & . & 3941 & 823 & 4764 & 5230 \\
\hline 1998 & 541 & 1703 & & 803 & . & 3047 & 316 & 3363 & 5230 \\
\hline 1999 & 880 & 2251 & & 769 & . & 3900 & 235 & 4135 & 4700 \\
\hline 2000 & 1021 & 2190 & & 621 & . & 3832 & -356 & 3476 & 4100 \\
\hline 2001 & 1313 & 2482 & & 822 & . & 4617 & -592 & 4025 & 4600 \\
\hline 2002 & 1643 & 2780 & & 976 & & 5399 & -666 & 4733 & 5200 \\
\hline 2003 & 1657 & 3475 & & 1114 & 1 & 6247 & -1209 & 5038 & 5400 \\
\hline 2004 & 1485 & 3070 & & 1112 & . & 5667 & -841 & 4826 & 5900 \\
\hline 2005 & 1221 & 2832 & & 567 & . & 4620 & -236 & 4384 & 5700 \\
\hline 2006 & 1547 & 2627 & & 678 & & 4852 & -18 & 4834 & 5720 \\
\hline 2007 & 1530 & 2968 & & 801 & 1 & 5300 & -134 & 5166 & 6220 \\
\hline 2008 & 1367 & 2284 & ** & 715 & . & 4366 & 144 & 4510 & 6593 \\
\hline
\end{tabular}

\footnotetext{
* Unallocated mainly due misreporting
** Preliminary
}

Table 9.2.2 - Sole VIId - Landing numbers at age (kg)

Run title : Sole in VIId - 2009WG - Sol7d.txt
At 8/05/2009 13:10
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{Table 1 Catch numbers at age} & \multicolumn{7}{|l|}{Numbers*10**-3} \\
\hline & YEAR & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & & & \\
\hline \multicolumn{12}{|c|}{AGE} \\
\hline & 1 & 155 & 0 & 24 & 49 & 49 & 9 & 95 & & & \\
\hline & 2 & 2625 & 852 & 1977 & 3693 & 1251 & 3117 & 2162 & & & \\
\hline & 3 & 5256 & 3452 & 3157 & 5211 & 5296 & 3730 & 7174 & & & \\
\hline & 4 & 1727 & 3930 & 2610 & 1646 & 3195 & 3271 & 1602 & & & \\
\hline & 5 & 570 & 897 & 1900 & 1027 & 904 & 2053 & 1159 & & & \\
\hline & 6 & 653 & 735 & 742 & 1860 & 768 & 1042 & 856 & & & \\
\hline & 7 & 549 & 627 & 457 & 144 & 1056 & 1090 & 388 & & & \\
\hline & 8 & 240 & 333 & 317 & 158 & 155 & 784 & 255 & & & \\
\hline & 9 & 122 & 108 & 136 & 156 & 190 & 111 & 256 & & & \\
\hline & 10 & 83 & 89 & 99 & 69 & 212 & 163 & 83 & & & \\
\hline & +gp & 202 & 193 & 238 & 128 & 372 & 459 & 275 & & & \\
\hline \multirow[t]{5}{*}{0} & TOTALNUM & 12182 & 11216 & 11657 & 14141 & 13448 & 15829 & 14305 & & & \\
\hline & TONSLAND & 3190 & 3458 & 3575 & 3837 & 3932 & 4791 & 3853 & & & \\
\hline & SOPCOF \% & 97 & 99 & 99 & 100 & 100 & 100 & 100 & & & \\
\hline & Table 1 Catc & \multicolumn{3}{|l|}{Catch numbers at age} & \multicolumn{7}{|l|}{Numbers*10**-3} \\
\hline & YEAR & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 \\
\hline \multicolumn{12}{|c|}{AGE} \\
\hline & 1 & 163 & 1245 & 383 & 105 & 85 & 31 & 838 & 9 & 24 & 33 \\
\hline & 2 & 3484 & 2851 & 7166 & 4046 & 5028 & 694 & 2977 & 1825 & 1489 & 1376 \\
\hline & 3 & 3220 & 5580 & 4105 & 8789 & 6442 & 6203 & 4375 & 7764 & 6068 & 5609 \\
\hline & 4 & 4399 & 1151 & 4160 & 1888 & 5444 & 5902 & 4765 & 3035 & 5008 & 2704 \\
\hline & 5 & 1434 & 1496 & 604 & 1993 & 1008 & 3404 & 2968 & 3206 & 2082 & 1636 \\
\hline & 6 & 840 & 301 & 996 & 288 & 563 & 584 & 1980 & 1823 & 1670 & 609 \\
\hline & 7 & 571 & 390 & 257 & 368 & 162 & 567 & 375 & 1283 & 916 & 558 \\
\hline & 8 & 201 & 260 & 247 & 135 & 188 & 109 & 278 & 271 & 775 & 441 \\
\hline & 9 & 166 & 129 & 258 & 171 & 116 & 147 & 88 & 319 & 239 & 354 \\
\hline & 10 & 224 & 126 & 92 & 95 & 62 & 93 & 106 & 112 & 169 & 239 \\
\hline & +gp & 282 & 489 & 382 & 231 & 129 & 258 & 241 & 344 & 267 & 301 \\
\hline \multirow[t]{3}{*}{0} & TOTALNUM & 14984 & 14018 & 18650 & 18109 & 19227 & 17992 & 18991 & 19991 & 18707 & 13860 \\
\hline & TONSLAND & 3805 & 3647 & 4351 & 4072 & 4299 & 4383 & 4420 & 4797 & 4764 & 3363 \\
\hline & SOPCOF \% & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline \multicolumn{5}{|c|}{Table 1 Catch numbers at age} & \multicolumn{7}{|l|}{Numbers*10**-3} \\
\hline & YEAR & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 \\
\hline \multicolumn{12}{|c|}{AGE} \\
\hline & 1 & 168 & 138 & 168 & 707 & 379 & 1030 & 206 & 608 & 175 & 149 \\
\hline & 2 & 3268 & 3586 & 6042 & 7011 & 10957 & 4254 & 3468 & 7370 & 6511 & 2699 \\
\hline & 3 & 8506 & 4852 & 6194 & 7513 & 5086 & 8623 & 4034 & 3753 & 7316 & 8502 \\
\hline & 4 & 3307 & 4395 & 1595 & 3767 & 3178 & 2545 & 5458 & 2821 & 2990 & 4140 \\
\hline & 5 & 1311 & 1076 & 2491 & 1414 & 1805 & 2272 & 1543 & 3433 & 1500 & 1266 \\
\hline & 6 & 869 & 505 & 728 & 655 & 671 & 1108 & 1143 & 1103 & 2038 & 848 \\
\hline & 7 & 350 & 319 & 290 & 298 & 588 & 371 & 633 & 796 & 751 & 749 \\
\hline & 8 & 672 & 148 & 128 & 129 & 198 & 448 & 218 & 403 & 467 & 356 \\
\hline & 9 & 351 & 328 & 56 & 97 & 70 & 94 & 283 & 191 & 257 & 164 \\
\hline & 10 & 192 & 150 & 81 & 57 & 88 & 88 & 127 & 208 & 162 & 133 \\
\hline & +gp & 359 & 248 & 265 & 197 & 245 & 233 & 271 & 307 & 230 & 247 \\
\hline \multirow[t]{3}{*}{0} & TOTALNUM & 19353 & 15745 & 18038 & 21845 & 23265 & 21066 & 17384 & 20993 & 22397 & 19253 \\
\hline & TONSLAND & 4135 & 3476 & 4025 & 4733 & 5038 & 4826 & 4383 & 4833 & 5166 & 4510 \\
\hline & SOPCOF \% & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline
\end{tabular}

Table 9.2.3 - Sole VIId - Catch weights at age (kg)

Run title : Sole in VIId - 2009WG - Sol7d.txt
At 8/05/2009 13:10
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Table 2 Catch weights at age (kg)} \\
\hline & YEAR & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & & & \\
\hline \multicolumn{12}{|c|}{AGE} \\
\hline & 1 & 0.102 & 0.000 & 0.100 & 0.090 & 0.135 & 0.095 & 0.102 & & & \\
\hline & 2 & 0.171 & 0.173 & 0.178 & 0.182 & 0.180 & 0.175 & 0.152 & & & \\
\hline & 3 & 0.225 & 0.230 & 0.234 & 0.230 & 0.212 & 0.236 & 0.226 & & & \\
\hline & 4 & 0.312 & 0.302 & 0.314 & 0.281 & 0.306 & 0.295 & 0.278 & & & \\
\hline & 5 & 0.386 & 0.404 & 0.380 & 0.368 & 0.363 & 0.353 & 0.36 & & & \\
\hline & 6 & 0.428 & 0.436 & 0.436 & 0.394 & 0.387 & 0.407 & 0.409 & & & \\
\hline & 7 & 0.439 & 0.435 & 0.417 & 0.516 & 0.437 & 0.411 & 0.459 & & & \\
\hline & 8 & 0.509 & 0.524 & 0.538 & 0.543 & 0.520 & 0.482 & 0.514 & & & \\
\hline & 9 & 0.502 & 0.537 & 0.529 & 0.594 & 0.502 & 0.465 & 0.553 & & & \\
\hline & 10 & 0.463 & 0.583 & 0.565 & 0.595 & 0.523 & 0.538 & 0.563 & & & \\
\hline & +gp & 0.6729 & 0.6283 & 0.7135 & 0.8005 & 0.6015 & 0.6176 & 0.6647 & & & \\
\hline 0 & SOPCOFAC & 0.9713 & 0.991 & 0.9884 & 0.998 & 1.0006 & 1.0004 & 1.0001 & & & \\
\hline \multicolumn{12}{|c|}{Table 2 Catch weights at age (kg)} \\
\hline & YEAR & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 \\
\hline \multicolumn{12}{|c|}{AGE} \\
\hline & 1 & 0.106 & 0.120 & 0.114 & 0.103 & 0.085 & 0.099 & 0.129 & 0.142 & 0.139 & 0.132 \\
\hline & 2 & 0.154 & 0.178 & 0.161 & 0.153 & 0.147 & 0.150 & 0.176 & 0.165 & 0.153 & 0.159 \\
\hline & 3 & 0.192 & 0.238 & 0.208 & 0.203 & 0.197 & 0.186 & 0.179 & 0.178 & 0.188 & 0.172 \\
\hline & 4 & 0.271 & 0.289 & 0.266 & 0.267 & 0.247 & 0.235 & 0.230 & 0.229 & 0.233 & 0.235 \\
\hline & 5 & 0.293 & 0.349 & 0.354 & 0.290 & 0.335 & 0.288 & 0.255 & 0.269 & 0.292 & 0.286 \\
\hline & 6 & 0.358 & 0.339 & 0.394 & 0.403 & 0.384 & 0.355 & 0.333 & 0.324 & 0.343 & 0.343 \\
\hline & 7 & 0.388 & 0.470 & 0.421 & 0.391 & 0.537 & 0.381 & 0.357 & 0.361 & 0.390 & 0.383 \\
\hline & 8 & 0.472 & 0.465 & 0.430 & 0.462 & 0.553 & 0.505 & 0.385 & 0.405 & 0.404 & 0.417 \\
\hline & 9 & 0.515 & 0.487 & 0.434 & 0.459 & 0.515 & 0.484 & 0.490 & 0.435 & 0.503 & 0.484 \\
\hline & 10 & 0.547 & 0.518 & 0.478 & 0.463 & 0.766 & 0.496 & 0.494 & 0.465 & 0.474 & 0.435 \\
\hline & +gp & 0.7014 & 0.5621 & 0.5656 & 0.5661 & 0.6666 & 0.6156 & 0.6536 & 0.5854 & 0.6509 & 0.6162 \\
\hline 0 & SOPCOFAC & 0.9994 & 0.9995 & 1.0001 & 1.0001 & 1.0002 & 1.0001 & 0.9997 & 0.9999 & 1 & 1.0013 \\
\hline
\end{tabular}


\section*{Table 9.2.4 - Sole VIId - Stock weights at age (kg)}

Run title : Sole in VIId - 2009WG - Sol7d.txt
At 8/05/2009 13:10
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Table 3 Stock weights at age (kg)} \\
\hline YEAR & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & & & \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 1 & 0.059 & 0.070 & 0.067 & 0.065 & 0.070 & 0.072 & 0.05 & & & \\
\hline 2 & 0.114 & 0.135 & 0.131 & 0.129 & 0.136 & 0.139 & 0.145 & & & \\
\hline 3 & 0.167 & 0.197 & 0.192 & 0.192 & 0.198 & 0.203 & 0.223 & & & \\
\hline 4 & 0.217 & 0.255 & 0.249 & 0.254 & 0.256 & 0.262 & 0.268 & & & \\
\hline 5 & 0.263 & 0.309 & 0.304 & 0.315 & 0.309 & 0.318 & 0.365 & & & \\
\hline 6 & 0.306 & 0.359 & 0.355 & 0.376 & 0.358 & 0.370 & 0.425 & & & \\
\hline 7 & 0.347 & 0.406 & 0.403 & 0.436 & 0.403 & 0.417 & 0.477 & & & \\
\hline 8 & 0.384 & 0.448 & 0.448 & 0.495 & 0.443 & 0.461 & 0.498 & & & \\
\hline 9 & 0.418 & 0.487 & 0.490 & 0.554 & 0.480 & 0.500 & 0.572 & & & \\
\hline 10 & 0.4500 & 0.5220 & 0.5290 & 0.6110 & 0.5120 & 0.5360 & 0.636 & & & \\
\hline +gp & 0.53 & 0.6008 & 0.6265 & 0.7798 & 0.5761 & 0.6156 & 0.7498 & & & \\
\hline \multicolumn{11}{|l|}{Table 3 Stock weights at age (kg)} \\
\hline YEAR & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 1 & 0.050 & 0.050 & 0.050 & 0.050 & 0.050 & 0.050 & 0.050 & 0.050 & 0.050 & 0.050 \\
\hline 2 & 0.113 & 0.138 & 0.138 & 0.144 & 0.130 & 0.116 & 0.126 & 0.155 & 0.139 & 0.140 \\
\hline 3 & 0.182 & 0.232 & 0.225 & 0.199 & 0.189 & 0.161 & 0.129 & 0.176 & 0.165 & 0.158 \\
\hline 4 & 0.269 & 0.305 & 0.279 & 0.277 & 0.246 & 0.215 & 0.220 & 0.258 & 0.220 & 0.233 \\
\hline 5 & 0.323 & 0.400 & 0.380 & 0.305 & 0.366 & 0.273 & 0.234 & 0.286 & 0.264 & 0.299 \\
\hline 6 & 0.335 & 0.361 & 0.384 & 0.454 & 0.377 & 0.316 & 0.333 & 0.308 & 0.317 & 0.374 \\
\hline 7 & 0.480 & 0.476 & 0.410 & 0.405 & 0.545 & 0.368 & 0.357 & 0.366 & 0.376 & 0.363 \\
\hline 8 & 0.504 & 0.535 & 0.449 & 0.459 & 0.560 & 0.530 & 0.330 & 0.391 & 0.404 & 0.357 \\
\hline 9 & 0.586 & 0.571 & 0.474 & 0.430 & 0.559 & 0.461 & 0.614 & 0.438 & 0.563 & 0.450 \\
\hline 10 & 0.536 & 0.507 & 0.451 & 0.528 & 0.813 & 0.470 & 0.382 & 0.466 & 0.494 & 0.372 \\
\hline +gp & 0.7135 & 0.5765 & 0.6203 & 0.5269 & 0.5664 & 0.6122 & 0.6292 & 0.6304 & 0.6536 & 0.5768 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Table 3 Stock weights at age (kg)} \\
\hline YEAR & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 1 & 0.050 & 0.050 & 0.050 & 0.050 & 0.050 & 0.050 & 0.050 & 0.050 & 0.050 & 0.050 \\
\hline 2 & 0.128 & 0.122 & 0.127 & 0.136 & 0.151 & 0.137 & 0.157 & 0.161 & 0.163 & 0.158 \\
\hline 3 & 0.180 & 0.148 & 0.157 & 0.179 & 0.207 & 0.185 & 0.203 & 0.185 & 0.195 & 0.191 \\
\hline 4 & 0.205 & 0.208 & 0.216 & 0.209 & 0.249 & 0.236 & 0.241 & 0.246 & 0.239 & 0.250 \\
\hline 5 & 0.253 & 0.402 & 0.226 & 0.258 & 0.314 & 0.265 & 0.267 & 0.272 & 0.286 & 0.295 \\
\hline 6 & 0.277 & 0.440 & 0.223 & 0.254 & 0.376 & 0.267 & 0.309 & 0.326 & 0.297 & 0.368 \\
\hline 7 & 0.298 & 0.395 & 0.231 & 0.301 & 0.399 & 0.273 & 0.349 & 0.339 & 0.340 & 0.401 \\
\hline 8 & 0.324 & 0.554 & 0.253 & 0.234 & 0.418 & 0.331 & 0.401 & 0.394 & 0.400 & 0.476 \\
\hline 9 & 0.336 & 0.443 & 0.256 & 0.326 & 0.446 & 0.504 & 0.608 & 0.416 & 0.433 & 0.463 \\
\hline 10 & 0.323 & 0.420 & 0.301 & 0.404 & 0.444 & 0.409 & 0.425 & 0.461 & 0.446 & 0.403 \\
\hline +gp & 0.5118 & 0.6822 & 0.4204 & 0.4170 & 0.5032 & 0.4501 & 0.5602 & 0.5553 & 0.5182 & 0.5668 \\
\hline
\end{tabular}

Table 9.2.5a Sole in vild. Indices of effort
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & France Beam trawl \({ }^{1}\) & France GTR_Demersal_fish \({ }^{4}\) & \begin{tabular}{l}
France \\
OTB_Demersal_fish \({ }^{4}\)
\end{tabular} & \begin{tabular}{l}
France \\
TBB_Demersal_fish \({ }^{4}\)
\end{tabular} & England \& Wales Beam trawl \({ }^{2}\) & \begin{tabular}{l}
Belgium \\
Beam trawl \({ }^{3}\)
\end{tabular} \\
\hline 1971 & & & & & & \\
\hline 1972 & & & & & & \\
\hline 1973 & & & & & & \\
\hline 1974 & & & & & & \\
\hline 1975 & & & & & & 5.02 \\
\hline 1976 & & & & & & 6.56 \\
\hline 1977 & & & & & & 6.87 \\
\hline 1978 & & & & & & 8.22 \\
\hline 1979 & & & & & & 7.30 \\
\hline 1980 & & & & & & 12.81 \\
\hline 1981 & & & & & & 19.00 \\
\hline 1982 & & & & & & 23.94 \\
\hline 1983 & & & & & & 23.64 \\
\hline 1984 & & & & & & 28.00 \\
\hline 1985 & & & & & & 25.29 \\
\hline 1986 & & & & & 2.79 & 23.54 \\
\hline 1987 & & & & & 5.64 & 27.11 \\
\hline 1988 & & & & & 5.09 & 38.52 \\
\hline 1989 & & & & & 5.65 & 35.67 \\
\hline 1990 & & & & & 7.27 & 30.33 \\
\hline 1991 & 10.69 & & & & 7.67 & 24.29 \\
\hline 1992 & 10.52 & & & & 8.78 & 21.99 \\
\hline 1993 & 10.22 & & & & 6.40 & 20.02 \\
\hline 1994 & 10.61 & & & & 5.43 & 25.17 \\
\hline 1995 & 12.38 & & & & 6.89 & 24.17 \\
\hline 1996 & 14.09 & & & & 10.31 & 25.00 \\
\hline 1997 & 10.92 & & & & 10.25 & 30.89 \\
\hline 1998 & 11.71 & & & & 7.31 & 18.12 \\
\hline 1999 & 10.63 & & & & 5.86 & 21.39 \\
\hline 2000 & 13.78 & & & & 5.65 & 30.54 \\
\hline 2001 & 11.38 & & & & 7.64 & 32.39 \\
\hline 2002 & & 14.91 & 23.88 & 4.06 & 7.90 & 33.68 \\
\hline 2003 & & 15.35 & 23.18 & 4.16 & 6.69 & 47.50 \\
\hline 2004 & & 15.07 & 21.16 & 4.00 & 4.87 & 41.60 \\
\hline 2005 & & 16.60 & 17.57 & 3.16 & 6.00 & 35.80 \\
\hline 2006 & & 16.87 & 20.74 & 3.68 & 5.94 & 48.80 \\
\hline 2007 & & 17.18 & 20.72 & 3.39 & 5.00 & 57.90 \\
\hline 2008 & & 13.16 & 16.43 & 3.44 & 6.02 & 48.50 \\
\hline
\end{tabular}
\({ }^{1}\) in Kg/1000 h*KW-04
\({ }^{1}\) Beam trawl >= 10 m in millions hp hrs >10\% sole
\({ }^{3}\) Fishing hours ( \(\mathrm{x} 10^{\wedge} 3\) ) corrected for fishing power using \(\mathrm{P}=0.000204\) BHP^1.23
\({ }^{4}\) Days at sea ( \(\times 10^{\wedge} 3\) )

Table 9.2.5b Sole in VIId. LPUE indices
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & \begin{tabular}{l}
France \({ }^{1}\) \\
Beam trawl
\end{tabular} & \begin{tabular}{l}
France \\
GTR_Demersal_fish \({ }^{4}\)
\end{tabular} & \begin{tabular}{l}
France \\
OTB_Demersal_fish \({ }^{4}\)
\end{tabular} & France
TBB_Demersal_fish & England \& Wales \({ }^{2}\) Beam trawl & \begin{tabular}{l}
Belgium \({ }^{3}\) \\
Beam trawl
\end{tabular} \\
\hline 1971 & & & & & & \\
\hline 1972 & & & & & & \\
\hline 1973 & & & & & & \\
\hline 1974 & & & & & & \\
\hline 1975 & & & & & & 24.09 \\
\hline 1976 & & & & & & 27.28 \\
\hline 1977 & & & & & & 29.99 \\
\hline 1978 & & & & & & 26.27 \\
\hline 1979 & & & & & & 37.42 \\
\hline 1980 & & & & & & 23.26 \\
\hline 1981 & & & & & & 24.52 \\
\hline 1982 & & & & & & 23.65 \\
\hline 1983 & & & & & & 22.37 \\
\hline 1984 & & & & & & 21.61 \\
\hline 1985 & & & & & & 22.90 \\
\hline 1986 & & & & & 39.48 & 33.48 \\
\hline 1987 & & & & & 32.82 & 36.56 \\
\hline 1988 & & & & & 27.67 & 15.89 \\
\hline 1989 & & & & & 26.59 & 16.82 \\
\hline 1990 & & & & & 26.88 & 25.94 \\
\hline 1991 & 18.52 & & & & 22.09 & 22.56 \\
\hline 1992 & 18.12 & & & & 25.29 & 29.11 \\
\hline 1993 & 21.60 & & & & 23.75 & 34.77 \\
\hline 1994 & 17.78 & & & & 31.83 & 27.89 \\
\hline 1995 & 18.46 & & & & 28.39 & 24.70 \\
\hline 1996 & 19.79 & & & & 25.79 & 29.80 \\
\hline 1997 & 14.41 & & & & 25.40 & 32.57 \\
\hline 1998 & 17.33 & & & & 25.71 & 23.51 \\
\hline 1999 & 30.40 & & & & 27.29 & 26.41 \\
\hline 2000 & 19.10 & & & & 27.46 & 24.49 \\
\hline 2001 & 46.10 & & & & 26.58 & 24.58 \\
\hline 2002 & & 101.29 & 30.39 & 152.67 & 31.63 & 27.33 \\
\hline 2003 & & 111.29 & 31.43 & 142.72 & 32.81 & 33.13 \\
\hline 2004 & & 102.13 & 26.96 & 132.65 & 38.80 & 30.86 \\
\hline 2005 & & 101.53 & 27.47 & 124.39 & 40.51 & 31.97 \\
\hline 2006 & & 90.48 & 30.39 & 90.06 & 39.01 & 27.47 \\
\hline 2007 & & 99.68 & 32.31 & 110.72 & 35.58 & 23.43 \\
\hline 2008 & & 107.17 & 34.39 & 116.23 & 37.61 & 24.58 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) in \({ }^{*}\) *KW-04
\({ }^{2}\) in Kg/1000 HP*HRS \(>10 \%\) sole
\({ }^{3}\) in \(\mathrm{Kg} / \mathrm{hr}\) corrected for fishing power using \(\mathrm{P}=0.000204 \mathrm{BHP}\) ^1.23
\({ }^{4}\) in Kilos/days at sea
}

Table 9.2.6 - Sole VIId - tuning files
Bolded numbers \(=\) used in XSA

SOLE 7d,TUNING - Tun7d.txt - 2009WG
\(\begin{array}{r}105 \\ \hline\end{array}\)
\begin{tabular}{rrrrr}
105 & 1 & & & \\
BEL BT & & & & \\
1980 & 2008 & & & \\
1 & 1 & 0 & & \\
2 & 15 & & 298.7 & 189 \\
12.8 & 69.3 & 46.1 & 82.1 & 3 \\
19.0 & 640.7 & 161.4 & 128.0 & \\
23.9 & 148.7 & 980.9 & 19.9 \\
23.6 & 190.4 & 373.0 & 818.9 & \\
28.0 & 603.8 & 347.2 & 311.2 & 4 \\
25.3 & 382.9 & 612.1 & 213.0 & 209 \\
23.4 & 215.0 & 1522.3 & 675.0 & 2 \\
27.1 & 843.6 & 451.0 & 739.3 & 7 \\
38.5 & 131.6 & 990.4 & 243.3 & 3 \\
35.7 & 47.5 & 512.6 & 543.6 & 7 \\
30.3 & 1011.4 & 1375.2 & 218.1 & 3 \\
24.3 & 320.2 & 1358.6 & 710.1 & 1 \\
22.0 & 499.3 & 1613.7 & 523.3 & 4 \\
20.0 & 1654.5 & 1520.4 & 889.5 & 21 \\
22.2 & 196.9 & 1183.2 & 1598.5 & 9 \\
24.2 & 206.2 & 542.7 & 671.3 & 5 \\
25.0 & 284.1 & 975.5 & 628.7 & 5 \\
30.9 & 196.0 & 1282.3 & 966.1 & 500 \\
18.1 & 254.1 & 450.3 & 375.4 & 175 \\
21.4 & 367.7 & 1043.6 & 640.2 & 308 \\
30.5 & 569.1 & 1170.7 & 1225.1 & 239 \\
32.4 & 1055.5 & 1385.4 & 375.0 & 617 \\
33.7 & 1267.7 & 1612.6 & 804.3 & 286 \\
47.5 & 2157.2 & 1848.1 & 1368.5 & 737 \\
41.6 & 959.7 & 1846.2 & 778.1 & 10 \\
35.8 & 1150.8 & 1156.5 & 1259.7 & 309 \\
48.8 & 1341.0 & 1050.9 & 1009.4 & 885 \\
57.9 & 1736.5 & 1888.6 & 808.5 & 415 \\
48.5 & 249.7 & 1383.2 & 1435 & 4 \\
UT & & & & \\
1986 & 2008 & & &
\end{tabular}

UK BT
\(\begin{array}{rrr}1986 & 2008 & \\ 1 & 1 & 0\end{array}\)
\begin{tabular}{rrrrrrrrrrr}
2 & 15 & & & & & & \\
2.8 & 30.0 & 144.8 & 100.5 & 28.0 & 28.8 & 39.4 & 1.2 & 2.4 & 5.2 \\
5.6 & 251.8 & 106.0 & 143.5 & 99.2 & 18.6 & 14.6 & 37.6 & 1.4 & 0.4 \\
5.1 & 112.3 & 281.3 & 56.4 & 62.9 & 39.6 & 9.0 & 11.5 & 16.2 & 2.0 \\
5.7 & 162.3 & 78.1 & 144.2 & 18.2 & 31.7 & 23.1 & 5.1 & 4.2 & 16.3 \\
7.3 & 112.6 & 327.4 & 47.7 & 66.1 & 14.1 & 15.1 & 15.1 & 4.1 & 7.4 & 2 \\
7.7 & 349.0 & 139.2 & 195.2 & 8.4 & 30.7 & 5.1 & 7.4 & 10.9 & 2.7 \\
8.8 & 240.1 & 516.6 & 81.3 & 167.5 & 11.1 & 20.3 & 6.4 & 14.6 & 4.9 \\
6.4 & 174.9 & 222.5 & 218.9 & 34.6 & 52.7 & 5.2 & 10.7 & 4.5 & 3.0 \\
5.4 & 33.6 & 260.9 & 144.1 & 113.3 & 27.5 & 45.5 & 4.4 & 10.5 & 3.2 \\
6.9 & 181.1 & 106.9 & 220.4 & 107.6 & 94.6 & 18.3 & 37.5 & 5.4 & 9.4 \\
10.3 & 295.8 & 251.3 & 79.5 & 169.0 & 84.6 & 67.4 & 17.5 & 33.2 & 4.1 \\
10.3 & 268.5 & 331.1 & 158.5 & 42.4 & 125.2 & 50.8 & 48.7 & 11.6 & 23.0 \\
7.3 & 252.6 & 169.4 & 97.5 & 65.2 & 22.1 & 51.7 & 28.8 & 22.4 & 5.8 \\
5.9 & 170.0 & 300.0 & 105.6 & 43.6 & 31.8 & 12.3 & 26.3 & 12.9 & 7.3 \\
5.7 & 152.1 & 178.8 & 171.4 & 54.7 & 25.8 & 18.2 & 6.9 & 21.6 & 9.7 \\
7.6 & 284.3 & 268.0 & 101.0 & 111.9 & 44.0 & 19.0 & 19.6 & 5.8 & 14.7 \\
7.9 & 314.6 & 449.0 & 222.2 & 71.7 & 54.9 & 22.9 & 18.6 & 6.0 & 3.1 \\
6.7 & 386.0 & 220.8 & 149.5 & 64.8 & 27.2 & 32.0 & 15.0 & 5.6 & 5.8 \\
4.9 & 111.9 & 440.4 & 103.2 & 62.2 & 32.6 & 9.6 & 18.2 & 4.3 & 3.2 \\
6.0 & 170.7 & 178.3 & 376.4 & 69.4 & 72.3 & 35.4 & 17.4 & 15.6 & 11.2 \\
5.9 & 395.2 & 350.5 & 113.5 & 189.0 & 31.7 & 28.1 & 13.6 & 9.0 & 5.4 \\
5.0 & 167.8 & 303.7 & 114.9 & 34.6 & 102.8 & 24.0 & 23.6 & 9.4 & 1.3 \\
6.0 & 148.1 & 595.2 & 179.4 & 39.5 & 24.0 & 33.3 & 12.2 & 4.3 & 6.2
\end{tabular}



Table 9.2.6 - Sole VIId - tuning files - continued
Bolded numbers = used in XSA
\begin{tabular}{|c|c|c|c|c|c|}
\hline &  &  &  &  & 行 \({ }_{\text {c }}^{\text {c }}\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
 \\

\end{tabular}}} & \begin{tabular}{l}
 \\

\end{tabular} & \[
\begin{array}{r}
\text { N } \\
\\
\sim
\end{array}
\] & \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline & & \begin{tabular}{l}
 \\

\end{tabular} & or & \begin{tabular}{l}
 \\

\end{tabular} & ir \\
\hline & \multirow[t]{4}{*}{-} & & \multirow[t]{4}{*}{-} &  N N N N No j \(\ddagger\) & - \\
\hline & & & & \begin{tabular}{l}
A \(\rightarrow \omega \rightarrow N \omega \rightarrow A N \rightarrow \rightarrow O N \omega V O N O \rightarrow O\) \\

\end{tabular} & \\
\hline & & & &  & \\
\hline & & & & \(0 \rightarrow 0 \overrightarrow{-} 00000 \rightarrow 000 \rightarrow 0 \rightarrow 00000\) 우 㐫 & \\
\hline
\end{tabular}

Table 9.3.1 - Sole VIId - XSA diagnostics
Lowestoft VPA Version 3.1
8/05/2009 13:09
Extended Survivors Analysis
Sole in VIId - 2009WG - Sol7d.txt
Catch data for 27 years. 1982 to 2008 . Ages 1 to 11 .
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet & First year & Last year & First age & & & Alpha & Beta \\
\hline BEL BT & 1986 & 2008 & & 2 & 10 & 0 & 1 \\
\hline UK BT & 1986 & 2008 & & 2 & 10 & 0 & 1 \\
\hline UK BTS & 1988 & 2008 & & 1 & 6 & 0.5 & 0.75 \\
\hline YFS-UK & 1987 & 2008 & & 1 & 1 & 0.5 & 0.75 \\
\hline YFS-FR & 1987 & 2008 & & 1 & 1 & 0.5 & 0.75 \\
\hline
\end{tabular}

Time series weights :
Tapered time weighting not applied

Catchability analysis :
Catchability independent of stock size for all ages
Catchability independent of age for ages \(>=7\)

Terminal population estimation :
Survivor estimates shrunk towards the mean F
of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk \(=2.000\)

Minimum standard error for population
estimates derived from each fleet \(=.300\)
Prior weighting not applied

Tuning converged after 72 iterations

Regression weights
\begin{tabular}{crrrrrrrrrr}
\begin{tabular}{c} 
Fishing mortalities \\
Age
\end{tabular} & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 \\
& & & & & & & & & & \\
& 1 & 0.007 & 0.005 & 0.007 & 0.016 & 0.02 & 0.059 & 0.006 & 0.017 & 0.013 \\
& 2 & 0.238 & 0.174 & 0.258 & 0.377 & 0.323 & 0.286 & 0.255 & 0.252 & 0.232 \\
& 3 & 0.541 & 0.58 & 0.451 & 0.519 & 0.457 & 0.404 & 0.426 & 0.428 & 0.377 \\
& 4 & 0.636 & 0.527 & 0.336 & 0.483 & 0.383 & 0.386 & 0.427 & 0.528 & 0.634 \\
& 5 & 0.561 & 0.385 & 0.571 & 0.497 & 0.398 & 0.46 & 0.38 & 0.463 & 0.525 \\
& 6 & 0.58 & 0.386 & 0.433 & 0.253 & 0.412 & 0.403 & 0.392 & 0.454 & 0.489 \\
& 7 & 0.529 & 0.384 & 0.355 & 0.281 & 0.336 & 0.374 & 0.377 & 0.462 & 0.567 \\
& 8 & 0.444 & 0.394 & 0.232 & 0.235 & 0.273 & 0.411 & 0.348 & 0.388 & 0.479 \\
\hline 9 & 0.381 & 0.359 & 0.226 & 0.247 & 0.173 & 0.18 & 0.438 & 0.517 & 0.407 & 0.271 \\
10 & 0.302 & 0.247 & 0.125 & 0.336 & 0.33 & 0.305 & 0.348 & 0.591 & 1.005 & 0.339
\end{tabular}

XSA population numbers (Thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{AGE} \\
\hline YEAR & \(1.00 \mathrm{E}+00\) & \(2.00 \mathrm{E}+00\) & \(3.00 \mathrm{E}+00\) & \(4.00 \mathrm{E}+00\) & \(5.00 \mathrm{E}+00\) & \(6.00 \mathrm{E}+00\) & \(7.00 \mathrm{E}+00\) & \(8.00 \mathrm{E}+00\) & \(9.00 \mathrm{E}+00\) & \(1.00 \mathrm{E}+01\) \\
\hline 1999 & \(2.63 \mathrm{E}+04\) & \(1.62 \mathrm{E}+04\) & \(2.14 \mathrm{E}+04\) & \(7.39 \mathrm{E}+03\) & \(3.21 \mathrm{E}+03\) & \(2.08 \mathrm{E}+03\) & 8.96E+02 & \(1.97 \mathrm{E}+03\) & \(1.17 \mathrm{E}+03\) & \(7.74 \mathrm{E}+02\) \\
\hline 2000 & \(3.10 \mathrm{E}+04\) & \(2.36 \mathrm{E}+04\) & 1.16E+04 & \(1.13 \mathrm{E}+04\) & \(3.54 \mathrm{E}+03\) & \(1.66 \mathrm{E}+03\) & \(1.05 \mathrm{E}+03\) & \(4.77 \mathrm{E}+02\) & \(1.14 \mathrm{E}+03\) & 7.21E+02 \\
\hline 2001 & \(2.61 \mathrm{E}+04\) & \(2.79 \mathrm{E}+04\) & \(1.79 \mathrm{E}+04\) & \(5.87 \mathrm{E}+03\) & \(6.02 \mathrm{E}+03\) & \(2.18 \mathrm{E}+03\) & \(1.02 \mathrm{E}+03\) & \(6.49 \mathrm{E}+02\) & \(2.91 \mathrm{E}+02\) & \(7.23 \mathrm{E}+02\) \\
\hline 2002 & \(4.68 \mathrm{E}+04\) & \(2.35 \mathrm{E}+04\) & \(1.95 \mathrm{E}+04\) & \(1.03 \mathrm{E}+04\) & \(3.79 \mathrm{E}+03\) & \(3.08 \mathrm{E}+03\) & \(1.28 \mathrm{E}+03\) & \(6.47 \mathrm{E}+02\) & \(4.65 \mathrm{E}+02\) & \(2.10 \mathrm{E}+02\) \\
\hline 2003 & 2.03E+04 & 4.17E+04 & \(1.46 \mathrm{E}+04\) & \(1.05 \mathrm{E}+04\) & 5.77E+03 & \(2.09 \mathrm{E}+03\) & \(2.16 \mathrm{E}+03\) & \(8.73 \mathrm{E}+02\) & \(4.63 \mathrm{E}+02\) & \(3.29 \mathrm{E}+02\) \\
\hline 2004 & 1.90E+04 & \(1.80 \mathrm{E}+04\) & 2.73E+04 & \(8.35 \mathrm{E}+03\) & \(6.48 \mathrm{E}+03\) & \(3.51 \mathrm{E}+03\) & \(1.25 \mathrm{E}+03\) & \(1.40 \mathrm{E}+03\) & \(6.01 \mathrm{E}+02\) & \(3.52 \mathrm{E}+02\) \\
\hline 2005 & 3.87E+04 & \(1.62 \mathrm{E}+04\) & 1.22E+04 & \(1.65 \mathrm{E}+04\) & 5.13E+03 & \(3.70 \mathrm{E}+03\) & 2.12E+03 & \(7.79 \mathrm{E}+02\) & \(8.39 \mathrm{E}+02\) & \(4.55 \mathrm{E}+02\) \\
\hline 2006 & 37200 & 34800 & 11300 & 7230 & 9730 & 3180 & 2260 & 1320 & 498 & 490 \\
\hline 2007 & 14800 & 33100 & 24500 & 6690 & 3860 & 5540 & 1820 & 1290 & 808 & 269 \\
\hline 2008 & 9000 & 13200 & 23700 & 15200 & 3210 & 2070 & 3080 & 936 & 724 & 487 \\
\hline \multicolumn{11}{|l|}{Estimated population abundance at 1st Jan 2009} \\
\hline & 0 & 8000 & 9380 & 13400 & 9820 & 1700 & 1060 & 2070 & 508 & 499 \\
\hline \multicolumn{11}{|l|}{Taper weighted geometric mean of the VPA populations:} \\
\hline & 22400 & 20600 & 15800 & 8640 & 4600 & 2700 & 1620 & 956 & 603 & 374 \\
\hline \multicolumn{11}{|l|}{Standard error of the weighted Log(VPA populations) :} \\
\hline & 0.4221 & 0.3833 & 0.3614 & 0.4252 & 0.4384 & 0.4636 & 0.4889 & 0.4779 & 0.4746 & 0.5166 \\
\hline
\end{tabular}

Table 9.3.1 - Sole VIId - XSA diagnostics - continued
Log catchability residuals.

Fleet: BEL BT
Age
\begin{tabular}{rrrr} 
& \begin{tabular}{r}
1986 \\
\\
1t at this age
\end{tabular} & 1987 & 1988 \\
2 & 0.02 & 0.57 & -0.74 \\
3 & 0.71 & -0.22 & -0.45 \\
4 & 0.17 & 0.34 & -0.75 \\
5 & -0.11 & 0.57 & -0.24 \\
6 & -0.12 & 0.91 & -0.22 \\
7 & -0.19 & 0.6 & 0.06 \\
8 & 0.02 & & -0.08 \\
9 & 0.8 & 0.27 & -0.77 \\
10 & 0.1 & 2.33 & 1.3
\end{tabular}

Age
\begin{tabular}{rrrrrrrrrrr} 
& 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 \\
1t at this age & & & & & & & & & \\
2 & -2.58 & 1.1 & -0.78 & -0.05 & 1.3 & -0.31 & -0.77 & -0.13 & -0.75 & -0.35 \\
3 & -0.01 & 0.08 & 0.82 & 0.09 & 0.24 & -0.04 & -0.3 & -0.06 & 0.37 & -0.23 \\
4 & -0.42 & -0.16 & 0.05 & 0.38 & -0.06 & 0.54 & -0.36 & 0.25 & 0.33 & 0.25 \\
5 & 0.99 & -0.1 & -0.06 & 0.23 & -0.05 & 0.25 & -0.08 & -0.14 & 0.45 & -0.17 \\
6 & 0.29 & -0.18 & 0.64 & -0.48 & -0.84 & 0.41 & 0.08 & 0.13 & 0.15 & -0.25 \\
7 & 0.35 & 0.58 & 0.08 & -0.21 & 0.03 & 0.05 & -0.02 & 0.27 & 0.24 & -0.21 \\
8 & -0.06 & -0.23 & 0 & -0.15 & -0.23 & 0.32 & -1.08 & -0.02 & -0.17 & 0.09 \\
9 & -0.36 & 0.35 & -0.63 & 0 & 0.7 & -0.17 & 0.21 & -0.11 & 0.07 & -0.01 \\
10 & -2.07 & -0.14 & 0.56 & -0.61 & -0.52 & 1.4 & -0.74 & 1.16 & -0.92 & -0.08
\end{tabular}

Age
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 \\
\hline \multicolumn{11}{|c|}{No data for this fleet at this age} \\
\hline 2 & 0.37 & 0.05 & 0.48 & 0.85 & 0.44 & 0.59 & 1.01 & 0.08 & 0.21 & -0.63 \\
\hline 3 & 0.02 & 0.42 & 0.03 & 0.09 & 0.14 & -0.38 & 0.12 & -0.21 & -0.59 & -0.65 \\
\hline 4 & 0.5 & 0.32 & -0.36 & -0.13 & -0.01 & -0.21 & -0.24 & 0.1 & -0.17 & -0.37 \\
\hline 5 & 0.45 & -0.34 & 0.1 & -0.28 & -0.14 & 0.26 & -0.61 & -0.47 & -0.45 & -0.05 \\
\hline 6 & -0.08 & 0.09 & 0.7 & -0.82 & 0.47 & -0.1 & -0.5 & 0.14 & -0.34 & -0.07 \\
\hline 7 & 0.02 & -0.22 & 0.17 & -0.23 & -0.38 & -0.53 & -0.26 & 0.27 & -0.22 & -0.24 \\
\hline 8 & -0.19 & 0.55 & -0.64 & -0.32 & -0.17 & -0.49 & -0.02 & -0.15 & 0.3 & 0.18 \\
\hline 9 & 0.03 & -0.23 & -0.58 & -0.58 & -1.46 & -0.87 & -0.72 & 0.26 & -0.05 & -0.26 \\
\hline 10 & -0.49 & -0.3 & -1.33 & 0.39 & 0.12 & 0.24 & -0.99 & 0.27 & 0.41 & 0.02 \\
\hline
\end{tabular}

Mean \(\log\) catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrrrrrrr} 
& & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
Age & -7.0581 & -5.8047 & -5.6597 & -5.5424 & -5.7492 & -5.6959 & -5.6959 & -5.6959 & -5.6959 \\
Mean Log q & 0.8391 & 0.3662 & 0.3362 & 0.3731 & 0.4497 & 0.292 & 0.3882 & 0.554 & 0.9687
\end{tabular}

Regression statistics

Ages with q independent of year class strength and constant w.r.t. time.
Age
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Slope & t-value & Intercept & RSquare & No Pts & Reg s.e & Mean Q \\
\hline 2 & 0.85 & 0.374 & 7.49 & 0.23 & 23 & 0.73 & -7.06 \\
\hline 3 & 1.47 & -1.556 & 3.98 & 0.34 & 23 & 0.52 & -5.8 \\
\hline 4 & 0.95 & 0.301 & 5.83 & 0.64 & 23 & 0.33 & -5.66 \\
\hline 5 & 1.12 & -0.551 & 5.21 & 0.52 & 23 & 0.42 & -5.54 \\
\hline 6 & 1.07 & -0.319 & 5.59 & 0.47 & 23 & 0.49 & -5.75 \\
\hline 7 & 0.99 & 0.09 & 5.72 & 0.74 & 23 & 0.3 & -5.7 \\
\hline 8 & 1.25 & -1.305 & 5.58 & 0.57 & 23 & 0.44 & -5.84 \\
\hline 9 & 1.36 & -1.154 & 5.68 & 0.33 & 23 & 0.71 & -5.87 \\
\hline 10 & -2.84 & -5.529 & 6.74 & 0.09 & 23 & 1.8 & -5.69 \\
\hline
\end{tabular}

Fleet: UK BT
Age
\begin{tabular}{rrrr} 
& 1986 & 1987 & 1988 \\
& \begin{tabular}{r}
1 \\
1t at this age
\end{tabular} & & \\
2 & -0.38 & 0.37 & 0.57 \\
3 & 0.47 & -0.12 & 0.3 \\
4 & 0.52 & 0.4 & -0.05 \\
5 & 0.28 & 0.53 & 0.41 \\
6 & 0.36 & -0.3 & 0.25 \\
7 & 0.64 & -0.31 & -0.15 \\
8 & -0.78 & 0.38 & 0.25 \\
9 & 0.12 & -0.77 & 0.07 \\
10 & 0 & -1.19 & 0.46
\end{tabular}

Age
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 \\
\hline 1 & \multicolumn{10}{|l|}{No data for this fleet at this age} \\
\hline 2 & -0.06 & -0.22 & -0.09 & -0.41 & -0.37 & -1.22 & -0.2 & 0.24 & 0.12 & -0.01 \\
\hline 3 & -0.07 & 0.05 & -0.32 & -0.15 & -0.56 & -0.16 & -0.69 & -0.55 & 0.11 & -0.32 \\
\hline 4 & 0.23 & -0.13 & 0.04 & -0.44 & -0.19 & -0.32 & -0.09 & -0.8 & -0.24 & -0.06 \\
\hline 5 & -0.49 & 0 & -1.22 & 0.48 & -0.36 & -0.04 & -0.15 & -0.07 & -0.53 & 0.13 \\
\hline 6 & 0.1 & -0.41 & -0.29 & -0.63 & 0.04 & -0.03 & 0.01 & -0.28 & 0.18 & -0.12 \\
\hline 7 & 0.21 & -0.28 & -0.96 & -0.21 & -0.56 & 0.49 & -0.18 & -0.11 & -0.15 & 0.18 \\
\hline 8 & -0.27 & 0.01 & -0.59 & -0.42 & -0.14 & -0.17 & 0.39 & -0.21 & 0.13 & 0.08 \\
\hline 9 & -0.38 & -0.18 & 0.15 & 0.43 & 0 & 0.36 & 0.21 & 0.21 & -0.12 & 0.21 \\
\hline 10 & 0.31 & 0.47 & 0.01 & -0.23 & -0.42 & 0.43 & 0.4 & 0.22 & 0.23 & 0.36 \\
\hline
\end{tabular}

Table 9.3.1 - Sole VIId - XSA diagnostics - continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 \\
\hline \multicolumn{12}{|c|}{1 t at this age} \\
\hline & 2 & 0.34 & -0.14 & 0.06 & 0.35 & 0.12 & 0.03 & 0.33 & 0.41 & -0.23 & 0.38 \\
\hline & 3 & 0.06 & 0.21 & -0.19 & 0.24 & -0.04 & 0.32 & 0.02 & 0.78 & 0.02 & 0.58 \\
\hline & 4 & 0.12 & 0.17 & -0.1 & 0.16 & -0.13 & 0.05 & 0.47 & 0.15 & 0.46 & -0.23 \\
\hline & 5 & 0.17 & 0.26 & 0.22 & 0.17 & -0.23 & -0.04 & 0.06 & 0.47 & -0.1 & 0.03 \\
\hline & 6 & 0.26 & 0.23 & 0.21 & -0.03 & -0.11 & -0.13 & 0.4 & -0.24 & 0.57 & -0.05 \\
\hline & 7 & 0.23 & 0.43 & 0.19 & 0.08 & 0.08 & -0.24 & 0.33 & 0.08 & 0.36 & -0.14 \\
\hline & 8 & 0.16 & 0.25 & 0.61 & 0.53 & 0.2 & 0.3 & 0.61 & -0.14 & 0.65 & 0.14 \\
\hline & 9 & -0.06 & 0.5 & 0.19 & -0.26 & -0.2 & -0.4 & 0.46 & 0.49 & 0.16 & -0.76 \\
\hline & 10 & -0.25 & 0.11 & 0.17 & -0.09 & 0.25 & -0.1 & 0.71 & 0.02 & -0.43 & 0.03 \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrrrrrr} 
Age & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
Mean Log q & -6.5028 & -5.7878 & -5.7904 & -5.9263 & -5.8886 & -5.9843 & -5.9843 & -5.9843 \\
S.E(Log q) & 0.3894 & 0.3614 & 0.3128 & 0.3946 & 0.2856 & 0.3601 & 0.3928 & 0.3625 \\
\hline
\end{tabular}

Regression statistics:

Ages with \(q\) independent of year class strength and constant w.r.t. time.
Age
Slope t-value Intercept RSquare No Pts Regs.e Mean Q
\begin{tabular}{rrrrrrrr}
2 & 1.09 & -0.391 & 6.18 & 0.46 & 23 & 0.43 & -6.5 \\
3 & 0.99 & 0.054 & 5.83 & 0.52 & 23 & 0.37 & -5.79 \\
4 & 0.97 & 0.218 & 5.9 & 0.66 & 23 & 0.31 & -5.79 \\
5 & 0.72 & 2.127 & 6.63 & 0.73 & 23 & 0.26 & -5.93 \\
6 & 0.78 & 2.346 & 6.34 & 0.84 & 23 & 0.2 & -5.89 \\
7 & 0.77 & 2.014 & 6.32 & 0.78 & 23 & 0.26 & -5.98 \\
8 & 0.8 & 1.596 & 6.1 & 0.75 & 23 & 0.3 & -5.9 \\
9 & 0.82 & 1.37 & 6.04 & 0.74 & 23 & 0.29 & -5.96 \\
10 & 0.9 & 0.739 & 5.93 & 0.71 & 23 & 0.36 & -5.92 \\
1 & & & & & & &
\end{tabular}

Fleet : UK BTS
Age
\begin{tabular}{rrrr} 
& 1986 & 1987 & 1988 \\
1 & 99.99 & 99.99 & 0.27 \\
2 & 99.99 & 99.99 & 1.01 \\
3 & 99.99 & 99.99 & 0.65 \\
4 & 99.99 & 99.99 & -0.29 \\
5 & 99.99 & 99.99 & 0.48 \\
6 & 99.99 & 99.99 & 0.11 \\
7 t tat this age & \\
8 t at this age \\
9 & No data for this fleet at this age \\
10 & No data for this fleet at this age
\end{tabular}

Age
\begin{tabular}{rrrr} 
& 1989 & 1990 & 1991 \\
1 & -0.44 & 0.14 & 0.06 \\
2 & 0.18 & -0.78 & 0.09 \\
3 & 0.62 & -0.49 & -0.38 \\
4 & -0.05 & 0.03 & 0.04 \\
5 & 0.21 & -0.1 & -0.19 \\
6 & -0.79 & -0.27 & 0.08 \\
7 t at this age & & \\
8 t at this age & & \\
9 t at this age & & \\
10 t at this age & &
\end{tabular}

Age
\begin{tabular}{lr} 
& 1999 \\
1 & 1.49 \\
2 & 0.09 \\
3 & 0.76 \\
4 & 0.57 \\
5 & 1.05 \\
6 & 1.29 \\
7 t at this age \\
8 t at this age \\
9 t at this age
\end{tabular}
\begin{tabular}{rr}
2000 & 2001 \\
0.34 & 0.36 \\
0.53 & 0.36 \\
0.24 & 0.43 \\
0.61 & -0.12 \\
0.34 & 0.54 \\
0.59 & 0.27
\end{tabular}
2002

Table 9.3.1 - Sole VIId - XSA diagnostics - continued
Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrrrr} 
Age & 1 & 2 & 3 & 4 & 5 & 6 \\
Mean Log q & -8.2606 & -7.333 & -7.7558 & -8.1033 & -8.181 & -8.2442 \\
S.E(Log q) & 0.8665 & 0.463 & 0.4329 & 0.3781 & 0.5542 & 0.5609 \\
& & & & & & \\
\\
Regression statistics : & & & & & &
\end{tabular}

Ages with q independent of year class strength and constant w.r.t. time.


Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{lll} 
Age & \multicolumn{1}{c}{1} \\
Mean Log q & -9.5596 \\
S.E(Log q) & 0.5817 \\
& \\
Regression statistics :
\end{tabular}

Ages with q independent of year class strength and constant w.r.t. time.
\begin{tabular}{lrrrrrrrrr} 
Age & & Slope & t-value & Intercept & RSquare & No Pts & Reg s.e & Mean Q \\
& 1 & 1.22 & -0.498 & 9.43 & 0.22 & 20 & 0.72 & -9.56
\end{tabular}

Table 9.3.1 - Sole VIId - XSA diagnostics - continued
Fleet : YFS-FR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & \[
\begin{array}{r}
1986 \\
1 \quad 99.99 \\
2: \text { at this age } \\
3: \text { at this age } \\
4: \text { at this age } \\
\mathbf{5} \text { : at this age } \\
6: \text { at this age } \\
7: \text { at this age } \\
8: \text { at this age } \\
9: \text { at this age } \\
10: \text { at this age }
\end{array}
\] & \[
\begin{array}{r}
1987 \\
-0.3
\end{array}
\] & \[
\begin{array}{r}
1988 \\
-0.26
\end{array}
\] & & & & & & & \\
\hline Age & \begin{tabular}{l}
\(\begin{array}{rr} & 1989 \\ 1 & -0.03\end{array}\) \\
2 : at this age 3 : at this age 4 : at this age 5: at this age 6 : at this age 7 : at this age 8: at this age 9: at this age 10 : at this age
\end{tabular} & \[
\begin{array}{r}
1990 \\
0.37
\end{array}
\] & \[
\begin{array}{r}
1991 \\
0.24
\end{array}
\] & \[
\begin{gathered}
1992 \\
-0.27
\end{gathered}
\] & \[
\begin{array}{r}
1993 \\
-1.57
\end{array}
\] & \[
\begin{array}{r}
1994 \\
1.12
\end{array}
\] & \[
\begin{array}{r}
1995 \\
0.55
\end{array}
\] & \[
\begin{array}{r}
1996 \\
-0.08
\end{array}
\] & \[
\begin{aligned}
& 1997 \\
& -2.07
\end{aligned}
\] & \[
\begin{array}{r}
1998 \\
-0.44
\end{array}
\] \\
\hline Age & \begin{tabular}{l}
\(\begin{array}{lr} & 1999 \\ 1 & 0.44\end{array}\) \\
2: at this age 3 : at this age 4 : at this age 5 : at this age 6: at this age 7: at this age 8: at this age 9: at this age 10 : at this age
\end{tabular} & \[
\begin{array}{r}
2000 \\
0.15
\end{array}
\] & \[
\begin{array}{r}
2001 \\
1.69
\end{array}
\] & \[
\begin{array}{r}
2002 \\
-1.29
\end{array}
\] & \[
\begin{array}{r}
2003 \\
0.62
\end{array}
\] & \[
\begin{array}{r}
2004 \\
-0.05
\end{array}
\] & \[
\begin{array}{r}
2005 \\
0.9
\end{array}
\] & \[
\begin{array}{r}
2006 \\
0.96
\end{array}
\] & \[
\begin{aligned}
& 2007 \\
& -0.45
\end{aligned}
\] & \[
\begin{gathered}
2008 \\
-0.24
\end{gathered}
\] \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{lr} 
Age & 1 \\
Mean Log q & -11.6011 \\
S.E(Log q) & 0.8746
\end{tabular}

Regression statistics

Ages with q independent of year class strength and constant w.r.t. time.
\begin{tabular}{lrrrrrrrrr} 
Age & & Slope & t-value & Intercept & RSquare & No Pts & Reg s.e & Mean Q \\
& 1 & 0.73 & 0.82 & 11.19 & 0.32 & 22 & 0.65 & -11.6
\end{tabular}

Terminal year survivor and F summaries :
Age 1 Catchability constant w.r.t. time and dependent on age
Year class \(=2007\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Fleet & Estimated Survivors & \[
\begin{aligned}
& \text { Int } \\
& \text { s.e }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext } \\
& \text { s.e }
\end{aligned}
\] & & \begin{tabular}{l}
Var \\
Ratio
\end{tabular} & N & & Scaled Weights & Estimated F \\
\hline BEL BT & 1 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline UK BT & 1 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline UK BTS & 10735 & 0.887 & & 0 & 0 & & 1 & 0.458 & 0.013 \\
\hline YFS-UK & 1 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline YFS-FR & 6270 & 0.894 & & 0 & 0 & & 1 & 0.45 & 0.022 \\
\hline F shrinkage mean & 6136 & 2 & & & & & & 0.092 & 0.023 \\
\hline \multicolumn{10}{|l|}{Weighted prediction :} \\
\hline Survivors & Int & Ext & N & & Var & F & & & \\
\hline at end of year & s.e & s.e & & & Ratio & & & & \\
\hline 8005 & 0.6 & 0.19 & & 3 & 0.319 & & & & \\
\hline
\end{tabular}

Table 9.3.1 - Sole VIId - XSA diagnostics - continued
Age 2 Catchability constant w.r.t. time and dependent on age
Year class \(=2006\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet & Estimated Survivors & \[
\begin{aligned}
& \text { Int } \\
& \text { s.e }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext } \\
& \text { s.e }
\end{aligned}
\] & Var Ratio & N & \begin{tabular}{l}
Scaled \\
Weights
\end{tabular} & Estimated F \\
\hline BEL BT & 5019 & 0.857 & 0 & 0 & 1 & 0.091 & 0.413 \\
\hline UK BT & 13764 & 0.398 & 0 & 0 & 1 & 0.423 & 0.171 \\
\hline UK BTS & 7907 & 0.418 & 0.19 & 0.45 & 2 & 0.382 & 0.281 \\
\hline YFS-UK & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline YFS-FR & 5950 & 0.894 & 0 & 0 & 1 & 0.083 & 0.359 \\
\hline F shrinkage mean & 8274 & 2 & & & & 0.021 & 0.27 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Survivors & Int & Ext & N & & Var & F \\
\hline at end of year & s.e & s.e & & & Ratio & \\
\hline 9377 & 0.26 & 0.17 & & 6 & 0.646 & 0.242 \\
\hline
\end{tabular}

Age 3 Catchability constant w.r.t. time and dependent on age
Year class \(=2005\)


Weighted prediction :


Age 4 Catchability constant w.r.t. time and dependent on age
Year class \(=2004\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Fleet & Estimated & Int & Ext & Var & N & & Scaled & Estimated \\
\hline & Survivors & s.e & s.e & Ratio & & & Weights & F \\
\hline BEL BT & 6431 & 0.248 & 0.11 & 0.44 & & 3 & 0.294 & 0.478 \\
\hline UK BT & 9392 & 0.213 & 0.172 & 0.81 & & 3 & 0.379 & 0.35 \\
\hline UK BTS & 15049 & 0.247 & 0.089 & 0.36 & & 4 & 0.275 & 0.232 \\
\hline YFS-UK & 15647 & 0.596 & 0 & 0 & & 1 & 0.031 & 0.224 \\
\hline YFS-FR & 24280 & 0.894 & 0 & 0 & & 1 & 0.014 & 0.15 \\
\hline F shrinkage mean & 6504 & 2 & & & & & 0.007 & 0.473 \\
\hline
\end{tabular}

Weighted prediction :


Age 5 Catchability constant w.r.t. time and dependent on age
Year class \(=2003\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Fleet & Estimated Survivors & \[
\begin{aligned}
& \text { Int } \\
& \text { s.e }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext } \\
& \text { s.e }
\end{aligned}
\] & \begin{tabular}{l}
Var \\
Ratio
\end{tabular} & N & & Scaled Weights & Estimated F \\
\hline BEL BT & 1555 & 0.225 & 0.11 & 0.49 & & 4 & 0.345 & 0.574 \\
\hline UK BT & 2367 & 0.205 & 0.157 & 0.76 & & 4 & 0.378 & 0.411 \\
\hline UK BTS & 1079 & 0.247 & 0.238 & 0.97 & & 5 & 0.241 & 0.75 \\
\hline YFS-UK & 3821 & 0.596 & 0 & 0 & & 1 & 0.017 & 0.274 \\
\hline YFS-FR & 1623 & 0.894 & 0 & 0 & & 1 & 0.008 & 0.555 \\
\hline F shrinkage mean & 2138 & 2 & & & & & 0.01 & 0.447 \\
\hline \multicolumn{9}{|l|}{Weighted prediction :} \\
\hline Survivors & Int & Ext & N & Var & F & & & \\
\hline at end of year & s.e & s.e & & Ratio & & & & \\
\hline 1702 & 0.13 & 0.12 & 16 & 0.91 & & & & \\
\hline
\end{tabular}

Table 9.3.1 - Sole VIId - XSA diagnostics - continued
Age 6 Catchability constant w.r.t. time and dependent on age
Year class \(=2002\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Fleet & Estimated Survivors & \[
\begin{aligned}
& \text { Int } \\
& \text { s.e }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext } \\
& \text { s.e }
\end{aligned}
\] & Var Ratio & N & & Scaled Weights & \begin{tabular}{l}
Estimated \\
F
\end{tabular} \\
\hline BEL BT & 949 & 0.215 & 0.122 & 0.57 & & 5 & 0.303 & 0.615 \\
\hline UK BT & 1045 & 0.185 & 0.041 & 0.22 & & 5 & 0.465 & 0.572 \\
\hline UK BTS & 1254 & 0.248 & 0.095 & 0.38 & & 6 & 0.207 & 0.497 \\
\hline YFS-UK & 1153 & 0.596 & 0 & 0 & & 1 & 0.01 & 0.531 \\
\hline YFS-FR & 1973 & 0.894 & 0 & 0 & & 1 & 0.005 & 0.343 \\
\hline F shrinkage me & 1494 & 2 & & & & & 0.01 & 0.432 \\
\hline
\end{tabular}

Weighted prediction :


Age 7 Catchability constant w.r.t. time and dependent on age
Year class \(=2001\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Fleet & Estimated Survivors & \[
\begin{aligned}
& \text { Int } \\
& \text { s.e }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext } \\
& \text { s.e }
\end{aligned}
\] & Var Ratio & N & & Scaled Weights & \begin{tabular}{l}
Estimated \\
F
\end{tabular} \\
\hline BEL BT & 1550 & 0.19 & 0.047 & 0.25 & & 6 & 0.417 & 0.378 \\
\hline UK BT & 2701 & 0.174 & 0.141 & 0.81 & & 6 & 0.435 & 0.234 \\
\hline UK BTS & 2239 & 0.239 & 0.088 & 0.37 & & 6 & 0.13 & 0.276 \\
\hline YFS-UK & 2799 & 0.596 & 0 & 0 & & 1 & 0.007 & 0.227 \\
\hline YFS-FR & 571 & 0.894 & 0 & 0 & & 1 & 0.003 & 0.81 \\
\hline F shrinkage mean & 1347 & 2 & & & & & 0.007 & 0.424 \\
\hline \multicolumn{9}{|l|}{Weighted prediction :} \\
\hline Survivors & Int & Ext & N & Var & F & & & \\
\hline at end of year & s.e & s.e & & Ratio & & & & \\
\hline 2071 & 0.11 & 0.08 & 21 & 0.693 & & & & \\
\hline
\end{tabular}

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class \(=2000\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet & Estimated Survivors & \[
\begin{aligned}
& \text { Int } \\
& \text { s.e }
\end{aligned}
\] & Ext & Var Ratio & N & \begin{tabular}{l}
Scaled \\
Weights
\end{tabular} & Estimated \\
\hline BEL BT & 478 & 0.183 & 0.108 & 0.59 & 7 & 0.439 & 0.535 \\
\hline UK BT & 557 & 0.175 & 0.084 & 0.48 & 7 & 0.45 & 0.475 \\
\hline UK BTS & 436 & 0.235 & 0.174 & 0.74 & 6 & 0.094 & 0.575 \\
\hline YFS-UK & 112 & 0.596 & 0 & 0 & 1 & 0.005 & 1.392 \\
\hline YFS-FR & 2749 & 0.894 & 0 & 0 & 1 & 0.002 & 0.116 \\
\hline F shrinkage mean & 731 & 2 & & & & 0.01 & 0.381 \\
\hline \multicolumn{8}{|l|}{Weighted prediction} \\
\hline Survivors at end of year & \[
\begin{aligned}
& \text { Int } \\
& \text { s.e }
\end{aligned}
\] & Ext & N & Var Ratio & F & & \\
\hline 508 & 0.12 & 0.06 & 23 & 0.549 & 0.511 & & \\
\hline
\end{tabular}

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class \(=1999\)


Weighted prediction :
Survivors
Survivors
\[
\begin{array}{rlllll}
\text { Int } & \text { Ext } & \text { N } & & \begin{array}{l}
\text { Var } \\
\text { s.e }
\end{array} & \text { s.e } \\
0.12 & 0.09 & & 25 & \text { Ratio } & 0.778
\end{array}
\]

Age 10 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class \(=1998\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet & Estimated & Int & Ext & Var & N & Scaled & Estimated \\
\hline & Survivors & s.e & s.e & Ratio & & Weights & \\
\hline BEL BT & 274 & 0.182 & 0.033 & 0.18 & 9 & 0.351 & 0.38 \\
\hline UK BT & 327 & 0.167 & 0.056 & 0.34 & 9 & 0.574 & 0.327 \\
\hline UK BTS & 484 & 0.237 & 0.084 & 0.35 & 6 & 0.061 & 0.232 \\
\hline YFS-UK & 266 & 0.596 & 0 & 0 & 1 & 0.004 & 0.389 \\
\hline YFS-FR & 488 & 0.894 & 0 & 0 & 1 & 0.002 & 0.23 \\
\hline F shrinkage mean & 231 & 2 & & & & 0.01 & 0.437 \\
\hline \multicolumn{8}{|l|}{Weighted prediction} \\
\hline Survivors & Int & Ext & \(N\) & Var & F & & \\
\hline at end of year & s.e & s.e & & Ratio & & & \\
\hline 314 & 0.12 & 0.04 & 27 & 0.333 & 0.339 & & \\
\hline
\end{tabular}

Table 9.3.2 - Sole VIId - Fishing mortality (F) at age
Run title : Sole in VIId - 2009WG - Sol7d.txt

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{Fishing mortality (F) at age} \\
\hline YEAR & & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & FBAR 06-08 \\
\hline \multicolumn{13}{|l|}{AGE} \\
\hline & 1 & 0.0067 & 0.0047 & 0.0068 & 0.0160 & 0.0198 & 0.0588 & 0.0056 & 0.0173 & 0.0125 & 0.0176 & 0.0158 \\
\hline & 2 & 0.2376 & 0.1741 & 0.2582 & 0.3769 & 0.3234 & 0.2858 & 0.2553 & 0.2517 & 0.2319 & 0.2420 & 0.2419 \\
\hline & 3 & 0.5409 & 0.5801 & 0.4509 & 0.5190 & 0.4572 & 0.4036 & 0.4257 & 0.4275 & 0.3768 & 0.4727 & 0.4257 \\
\hline & 4 & 0.6362 & 0.5272 & 0.3364 & 0.4827 & 0.3829 & 0.3865 & 0.4275 & 0.5278 & 0.6343 & 0.3371 & 0.4997 \\
\hline & 5 & 0.5609 & 0.3853 & 0.5706 & 0.4972 & 0.3984 & 0.4597 & 0.3800 & 0.4633 & 0.5252 & 0.5352 & 0.5079 \\
\hline & 6 & 0.5797 & 0.3860 & 0.4331 & 0.2531 & 0.4122 & 0.4035 & 0.3923 & 0.4544 & 0.4887 & 0.5650 & 0.5027 \\
\hline & 7 & 0.5291 & 0.3837 & 0.3552 & 0.2813 & 0.3364 & 0.3736 & 0.3766 & 0.4616 & 0.5672 & 0.2957 & 0.4415 \\
\hline & 8 & 0.4439 & 0.3944 & 0.2324 & 0.2353 & 0.2725 & 0.4107 & 0.3483 & 0.3883 & 0.4787 & 0.5106 & 0.4592 \\
\hline & 9 & 0.3807 & 0.3587 & 0.2258 & 0.2474 & 0.1732 & 0.1795 & 0.4378 & 0.5166 & 0.4071 & 0.2722 & 0.3986 \\
\hline & 10 & 0.3022 & 0.2470 & 0.1253 & 0.3355 & 0.3304 & 0.3049 & 0.3477 & 0.5908 & 1.0051 & 0.3388 & 0.6449 \\
\hline +gp & & 0.3022 & 0.2470 & 0.1253 & 0.3355 & 0.3304 & 0.3049 & 0.3477 & 0.5908 & 1.0051 & 0.3388 & \\
\hline 0 FBAR 3-8 & & 0.5484 & 0.4428 & 0.3964 & 0.3781 & 0.3766 & 0.4063 & 0.3917 & 0.4538 & 0.5118 & 0.4527 & \\
\hline
\end{tabular}

Table 9.3.3 - Sole VIId - Stock numbers at age

Run title : Sole in VIId - 2009WG - Sol7d.txt
At 8/05/2009 13:10

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Table 10 & \multicolumn{4}{|l|}{Stock number at age (start of year)} & \multicolumn{9}{|l|}{Numbers*10**-3} \\
\hline & YEAR & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & GMST 8 & -06 AMST 82-06 \\
\hline & \multicolumn{14}{|l|}{AGE} \\
\hline & 1 & 26257 & 30990 & 26119 & 46812 & 20282 & 18965 & 38702 & 37184 & 14773 & 9003 & 0* & 23623 & 25330 \\
\hline & 2 & 16243 & 23598 & 27909 & 23474 & 41685 & 17991 & 16180 & 34823 & 33067 & 13201 & 8005 & 20552 & 21992 \\
\hline & 3 & 21404 & 11588 & 17942 & 19506 & 14571 & 27295 & 12232 & 11342 & 24499 & 23727 & 9377 & 15297 & 16225 \\
\hline & 4 & 7386 & 11276 & 5870 & 10342 & 10503 & 8347 & 16495 & 7231 & 6693 & 15208 & 13382 & 8532 & 9276 \\
\hline & 5 & 3211 & 3538 & 6022 & 3794 & 5775 & 6481 & 5131 & 9734 & 3860 & 3211 & 9823 & 4699 & 5177 \\
\hline & 6 & 2077 & 1658 & 2177 & 3080 & 2088 & 3508 & 3703 & 3175 & 5542 & 2065 & 1702 & 2657 & 2936 \\
\hline & 7 & 896 & 1052 & 1020 & 1278 & 2164 & 1251 & 2120 & 2263 & 1824 & 3076 & 1062 & 1576 & 1767 \\
\hline & 8 & 1971 & 477 & 649 & 647 & 873 & 1398 & 779 & 1317 & 1291 & 936 & 2071 & 946 & 1067 \\
\hline & 9 & 1165 & 1144 & 291 & 465 & 463 & 601 & 839 & 498 & 808 & 724 & 508 & 591 & 665 \\
\hline & 10 & 774 & 721 & 723 & 210 & 329 & 352 & 455 & 490 & 269 & 487 & 499 & 375 & 431 \\
\hline & & 1443 & 1188 & 2362 & 724 & 912 & 929 & 967 & 720 & 378 & 901 & 895 & & \\
\hline 0 & TOTAL & 82825 & 87231 & 91086 & 110333 & 99644 & 87119 & 97605 & 108776 & 93002 & 72538 & 47323 & & \\
\hline
\end{tabular}

Table 9.3.4 - Sole VIId - Summary

Run title : Sole in VIId - 2009WG - Sol7d.txt
At 8/05/2009 13:10
Table 16 Summary (without SOP correction)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & RECRUITS Age 1 & TOTALBIO & TOTSPBIO & LANDINGS & YIELD/SSB & FBAR 3-8 \\
\hline 1982 & 12725 & 10417 & 7812 & 3190 & 0.4083 & 0.3553 \\
\hline 1983 & 21324 & 12604 & 9577 & 3458 & 0.3611 & 0.4072 \\
\hline 1984 & 21514 & 12952 & 8983 & 3575 & 0.3980 & 0.4322 \\
\hline 1985 & 12913 & 13327 & 9980 & 3837 & 0.3845 & 0.3367 \\
\hline 1986 & 25731 & 13968 & 10584 & 3932 & 0.3715 & 0.3919 \\
\hline 1987 & 10975 & 13007 & 8987 & 4791 & 0.5331 & 0.5896 \\
\hline 1988 & 25798 & 12868 & 10139 & 3853 & 0.3800 & 0.4294 \\
\hline 1989 & 16807 & 11903 & 8435 & 3805 & 0.4511 & 0.5655 \\
\hline 1990 & 44246 & 13913 & 9623 & 3647 & 0.3790 & 0.3801 \\
\hline 1991 & 34847 & 15878 & 8774 & 4351 & 0.4959 & 0.4525 \\
\hline 1992 & 33639 & 17363 & 11193 & 4072 & 0.3638 & 0.3706 \\
\hline 1993 & 16773 & 17938 & 13156 & 4299 & 0.3268 & 0.3013 \\
\hline 1994 & 26557 & 15637 & 12558 & 4383 & 0.3490 & 0.3543 \\
\hline 1995 & 19420 & 15104 & 11109 & 4420 & 0.3979 & 0.3654 \\
\hline 1996 & 18912 & 15694 & 12149 & 4797 & 0.3949 & 0.4737 \\
\hline 1997 & 27767 & 14317 & 10551 & 4764 & 0.4515 & 0.5915 \\
\hline 1998 & 17985 & 12527 & 8114 & 3363 & 0.4145 & 0.4560 \\
\hline 1999 & 26257 & 12432 & 9040 & 4135 & 0.4574 & 0.5484 \\
\hline 2000 & 30990 & 12941 & 8513 & 3476 & 0.4083 & 0.4428 \\
\hline 2001 & 26119 & 12467 & 7616 & 4025 & 0.5285 & 0.3964 \\
\hline 2002 & 46812 & 14022 & 8489 & 4733 & 0.5576 & 0.3781 \\
\hline 2003 & 20282 & 17578 & 10270 & 5038 & 0.4906 & 0.3766 \\
\hline 2004 & 18965 & 14756 & 11343 & 4826 & 0.4254 & 0.4063 \\
\hline 2005 & 38702 & 15746 & 11270 & 4383 & 0.3889 & 0.3917 \\
\hline 2006 & 37184 & 17144 & 9678 & 4833 & 0.4994 & 0.4538 \\
\hline 2007 & 14773 & 17057 & 10928 & 5166 & 0.4727 & 0.5118 \\
\hline 2008 & 9003 & 15298 & 12762 & 4510 & 0.3534 & 0.4527 \\
\hline 2009 & \(23623{ }^{1}\) & \(13074{ }^{2}\) & \(10607^{2}\) & & & 0.4728 \\
\hline \multicolumn{7}{|l|}{Arith.} \\
\hline Mean & 24498 & 14568 & 10196 & 4210 & 0.4186 & 0.4234 \\
\hline 0 Units & (Thousands) & (Tonnes) & (Tonnes) & (Tonnes) & & \\
\hline \multicolumn{7}{|l|}{\({ }^{1}\) Geometric mean 1982-2006} \\
\hline \multicolumn{7}{|l|}{\({ }^{2}\) From forecast} \\
\hline \multicolumn{7}{|l|}{\({ }^{3} \mathrm{~F}_{(06-08)}\) NOT rescaled to \(\mathrm{F}_{2008}\)} \\
\hline
\end{tabular}

\section*{Table 9.5.1 - Sole VIId - RCT3 input}
\begin{tabular}{rrrrrrr} 
Yearclass & XSA (Age 1) & XSA (Age 2) & YF-FR0 & YF-FR1 & bts1 & bts2 \\
1981 & 12725 & 11367 & 3.33 & 0.07 & -11 & -11 \\
1982 & 21324 & 19295 & 1.04 & 0.02 & -11 & -11 \\
1983 & 21514 & 19444 & 0.79 & -11 & -11 & -11 \\
1984 & 12913 & 11638 & -11 & -11 & -11 & -11 \\
1985 & 25731 & 23236 & -11 & -11 & -11 & -11 \\
1986 & 10975 & 9922 & -11 & 0.07 & -11 & 14.20 \\
1987 & 25798 & 23253 & 0.75 & 0.17 & 8.20 & 15.40 \\
1988 & 16807 & 15052 & 0.04 & 0.14 & 2.60 & 3.70 \\
1989 & 44246 & 38851 & 17.43 & 0.54 & 12.10 & 22.80 \\
1990 & 34847 & 31166 & 0.57 & 0.38 & 8.90 & 12.00 \\
1991 & 33639 & 30338 & 1.04 & 0.22 & 1.40 & 17.50 \\
1992 & 16773 & 15096 & 0.48 & 0.03 & 0.50 & 3.20 \\
1993 & 26557 & 24000 & 0.27 & 0.70 & 4.80 & 10.60 \\
1994 & 19420 & 16774 & 4.04 & 0.28 & 3.50 & 7.30 \\
1995 & 18912 & 17104 & 3.50 & 0.15 & 3.50 & 7.30 \\
1996 & 27767 & 25102 & 0.28 & 0.03 & 19.00 & 21.20 \\
1997 & 17985 & 16243 & 0.07 & 0.10 & 2.00 & 9.44 \\
1998 & 26257 & 23598 & 10.52 & 0.35 & 28.14 & 22.03 \\
1999 & 30990 & 27909 & 2.84 & 0.31 & 10.49 & 21.01 \\
2000 & 26119 & 23474 & 2.41 & 1.21 & 9.09 & 11.42 \\
2001 & 46812 & 41685 & 4.32 & 0.11 & 31.76 & 28.48 \\
2002 & 20282 & 17991 & 0.94 & 0.32 & 6.47 & 8.49 \\
2003 & 18965 & 16180 & 0.21 & 0.15 & 7.35 & 5.04 \\
2004 & 38702 & 34823 & 7.29 & 0.82 & 25.00 & 29.20 \\
2005 & -11 & -11 & 0.05 & 0.83 & 6.30 & 21.86 \\
2006 & -11 & -11 & 1.04 & 0.08 & 2.14 & 6.50 \\
2007 & -11 & -11 & 0.03 & 0.06 & 2.90 & -11 \\
2008 & -11 & -11 & 6.58 & -11 & -11 & -11
\end{tabular}

Table 9.5.2a - Sole VIId - RCT3 output (1 year olds)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multicolumn{2}{|l|}{VPA Mean =} & \multicolumn{2}{|l|}{0.05 (23156)} & . 381 \\
\hline \multicolumn{9}{|l|}{. 815} \\
\hline Year & Weighted & Log & Int & Ext & Var & VPA & Log & \\
\hline Class & Average & WAP & Std & Std & Ratio & & VPA & \\
\hline & Prediction & & Error & Error & & & & \\
\hline 2006 & 17446 & 9.77 & . 22 & . 11 & . 24 & & & \\
\hline 2007 & 17844 & 9.79 & . 25 & . 17 & . 45 & & & \\
\hline 2008 & 28036 & 10.24 & . 34 & . 40 & 1.35 & & & \\
\hline
\end{tabular}

Table 9.5.2b - Sole VIId - RCT3 output ( 2 year olds)


Table 9.6.1 - Sole in VIId
Input for catch forecast and linear sensitivity analysis
\begin{tabular}{lrr} 
Label & Value & CV \\
\multicolumn{2}{l}{} \\
Number at age & \\
N1 & 23623 & 0.39 \\
N2 & 8005 & 0.60 \\
N3 & 9377 & 0.26 \\
N4 & 13382 & 0.17 \\
N5 & 9823 & 0.13 \\
N6 & 1702 & 0.13 \\
N7 & 1062 & 0.12 \\
N8 & 2071 & 0.12 \\
N9 & 508 & 0.12 \\
N10 & 499 & 0.12 \\
N11 & 895 & 0.12
\end{tabular}
\begin{tabular}{lrr}
\multicolumn{3}{l}{ H.cons selectivity } \\
sH 1 & 0.0158 & 0.24 \\
sH 2 & 0.2419 & 0.1 \\
sH 3 & 0.4257 & 0.17 \\
sH 4 & 0.4997 & 0.25 \\
sH 5 & 0.5079 & 0.09 \\
sH 6 & 0.5027 & 0.15 \\
sH 7 & 0.4415 & 0.26 \\
sH 8 & 0.4592 & 0.14 \\
sH 9 & 0.3986 & 0.32 \\
sH 10 & 0.6449 & 0.45 \\
sH 11 & 0.6449 & 0.45
\end{tabular}

Natural mortality
\begin{tabular}{lll} 
M1 & 0.1 & 0.1 \\
M2 & 0.1 & 0.1 \\
M3 & 0.1 & 0.1 \\
M4 & 0.1 & 0.1 \\
M5 & 0.1 & 0.1 \\
M6 & 0.1 & 0.1 \\
M7 & 0.1 & 0.1 \\
M8 & 0.1 & 0.1 \\
M9 & 0.1 & 0.1 \\
M10 & 0.1 & 0.1 \\
M11 & 0.1 & 0.1
\end{tabular}
\begin{tabular}{lll}
\begin{tabular}{l} 
Relative effort \\
in HC fihery
\end{tabular} & & \\
HF08 & 1 & 0.08 \\
HF09 & 1 & 0.08 \\
HF10 & 1 & 0.08
\end{tabular}
\begin{tabular}{lrr} 
Label & Value & CV \\
\multicolumn{2}{c}{} \\
Weight in the stock \\
WS1 & 0.050 & 0.00 \\
WS2 & 0.161 & 0.02 \\
WS3 & 0.190 & 0.03 \\
WS4 & 0.245 & 0.02 \\
WS5 & 0.284 & 0.04 \\
WS6 & 0.330 & 0.11 \\
WS7 & 0.360 & 0.10 \\
WS8 & 0.423 & 0.11 \\
WS9 & 0.437 & 0.05 \\
WS10 & 0.437 & 0.07 \\
WS11 & 0.547 & 0.05
\end{tabular}
\begin{tabular}{lcl}
\multicolumn{3}{l}{ Weight in the HC catch } \\
WH1 & 0.150 & 0.08 \\
WH2 & 0.172 & 0.09 \\
WH3 & 0.198 & 0.03 \\
WH4 & 0.240 & 0.05 \\
WH5 & 0.274 & 0.04 \\
WH6 & 0.314 & 0.06 \\
WH7 & 0.368 & 0.17 \\
WH8 & 0.397 & 0.04 \\
WH9 & 0.425 & 0.10 \\
WH10 & 0.462 & 0.07 \\
WH11 & 0.530 & 0.04
\end{tabular}

Proportion mature
\begin{tabular}{lrr} 
MT1 & 0 & 0 \\
MT2 & 0 & 0.1 \\
MT3 & 1 & 0.1 \\
MT4 & 1 & 0 \\
MT5 & 1 & 0 \\
MT6 & 1 & 0 \\
MT7 & 1 & 0 \\
MT8 & 1 & 0 \\
MT9 & 1 & 0 \\
MT10 & 1 & 0 \\
MT11 & 1 & 0
\end{tabular}

Year effect for natural mortality
\begin{tabular}{lll} 
K08 & 1 & 0.1 \\
K09 & 1 & 0.1 \\
K10 & 1 & 0.1
\end{tabular}

Recruitment in 2007 and 2008
\begin{tabular}{lll} 
R09 & 23623 & 0.39 \\
R10 & 23623 & 0.39
\end{tabular}

\section*{Table 9.6.2 Sole in VIId - Management option table}

MFDP version 1a
Run: Sole7D_Fin_SQ
Sole in VIId
Time and date: 15:51 08/05/2009
Fbar age range: 3-8
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
2009 \\
\text { Biomass }
\end{gathered}
\] & SSB & FMult & FBar & Landings & & \\
\hline 13074 & 10607 & 1.0000 & 0.4728 & 4194 & & \\
\hline 2010 & & & & & 2011 & \\
\hline Biomass & SSB & FMult & FBar & Landings & Biomass & SSB \\
\hline 12469 & 7907 & 0.0000 & 0.0000 & 0 & 16413 & 11798 \\
\hline . & 7907 & 0.1000 & 0.0473 & 440 & 15930 & 11320 \\
\hline . & 7907 & 0.2000 & 0.0946 & 861 & 15468 & 10864 \\
\hline . & 7907 & 0.3000 & 0.1418 & 1265 & 15026 & 10427 \\
\hline . & 7907 & 0.4000 & 0.1891 & 1651 & 14604 & 10010 \\
\hline . & 7907 & 0.5000 & 0.2364 & 2021 & 14199 & 9611 \\
\hline . & 7907 & 0.6000 & 0.2837 & 2376 & 13812 & 9229 \\
\hline . & 7907 & 0.7000 & 0.3309 & 2716 & 13441 & 8863 \\
\hline . & 7907 & 0.8000 & 0.3782 & 3042 & 13086 & 8514 \\
\hline . & 7907 & 0.9000 & 0.4255 & 3354 & 12746 & 8179 \\
\hline . & 7907 & 1.0000 & 0.4728 & 3653 & 12421 & 7859 \\
\hline . & 7907 & 1.1000 & 0.5201 & 3940 & 12109 & 7553 \\
\hline . & 7907 & 1.2000 & 0.5673 & 4216 & 11810 & 7259 \\
\hline . & 7907 & 1.3000 & 0.6146 & 4480 & 11524 & 6978 \\
\hline . & 7907 & 1.4000 & 0.6619 & 4733 & 11250 & 6709 \\
\hline . & 7907 & 1.5000 & 0.7092 & 4976 & 10987 & 6452 \\
\hline . & 7907 & 1.6000 & 0.7565 & 5210 & 10735 & 6205 \\
\hline . & 7907 & 1.7000 & 0.8037 & 5434 & 10493 & 5969 \\
\hline . & 7907 & 1.8000 & 0.8510 & 5649 & 10262 & 5742 \\
\hline . & 7907 & 1.9000 & 0.8983 & 5855 & 10039 & 5525 \\
\hline . & 7907 & 2.0000 & 0.9456 & 6054 & 9826 & 5318 \\
\hline
\end{tabular}

Input units are thousands and kg - output in tonnes

Fmult corresponding to Fpa \(=0.90\)
\(\begin{array}{llllll}7907 & 0.85 & 0.4019 & 3199 & 12914 & 8345\end{array}\)
\(\mathrm{Bpa}=8000 \mathrm{t}\)

Table 9.6.3 Sole in VIId. Detailed results
MFDP version 1a
Run: Sole7D_Fin_SQ
Time and date: \(\overline{15: 51} 08 / 05 / 2009\)
Fbar age range: 3-8
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year: Age & 2009 F & F multiplier: 1 CatchNos & Yield & \begin{tabular}{l}
Fbar: \\
StockNos
\end{tabular} & \begin{tabular}{l}
\[
0.4728
\] \\
Biomass
\end{tabular} & SSNos(Jan) & SSB(Jan) & SSNos(ST) & SSB(ST) \\
\hline 1 & 0.0158 & 352 & 53 & 23623 & 1181 & 0 & 0 & 0 & 0 \\
\hline 2 & 0.2419 & 1640 & 282 & 8005 & 1286 & 0 & 0 & 0 & 0 \\
\hline 3 & 0.4257 & 3104 & 615 & 9377 & 1785 & 9377 & 1785 & 9377 & 1785 \\
\hline 4 & 0.4997 & 5029 & 1207 & 13382 & 3279 & 13382 & 3279 & 13382 & 3279 \\
\hline 5 & 0.5079 & 3738 & 1024 & 9823 & 2793 & 9823 & 2793 & 9823 & 2793 \\
\hline 6 & 0.5027 & 643 & 202 & 1702 & 562 & 1702 & 562 & 1702 & 562 \\
\hline 7 & 0.4415 & 362 & 133 & 1062 & 382 & 1062 & 382 & 1062 & 382 \\
\hline 8 & 0.4592 & 728 & 289 & 2071 & 877 & 2071 & 877 & 2071 & 877 \\
\hline 9 & 0.3986 & 159 & 68 & 508 & 222 & 508 & 222 & 508 & 222 \\
\hline 10 & 0.6449 & 227 & 105 & 499 & 218 & 499 & 218 & 499 & 218 \\
\hline 11 & 0.6449 & 407 & 216 & 895 & 489 & 895 & 489 & 895 & 489 \\
\hline Total & & 16391 & 4194 & 70947 & 13074 & 39319 & 10607 & 39319 & 10607 \\
\hline Year: Age & 2010 F & F multiplier: 1 CatchNos & Yield & \begin{tabular}{l}
Fbar: \\
StockNos
\end{tabular} & \[
\begin{aligned}
& 0.4728 \\
& \text { Biomass } \\
& \hline
\end{aligned}
\] & SSNos(Jan) & SSB(Jan) & SSNos(ST) & SSB(ST) \\
\hline 1 & 0.0158 & 352 & 53 & 23623 & 1181 & 0 & 0 & 0 & 0 \\
\hline 2 & 0.2419 & 4310 & 741 & 21040 & 3380 & 0 & 0 & 0 & 0 \\
\hline 3 & 0.4257 & 1883 & 373 & 5687 & 1082 & 5687 & 1082 & 5687 & 1082 \\
\hline 4 & 0.4997 & 2083 & 500 & 5543 & 1358 & 5543 & 1358 & 5543 & 1358 \\
\hline 5 & 0.5079 & 2796 & 766 & 7346 & 2089 & 7346 & 2089 & 7346 & 2089 \\
\hline 6 & 0.5027 & 2019 & 635 & 5349 & 1767 & 5349 & 1767 & 5349 & 1767 \\
\hline 7 & 0.4415 & 318 & 117 & 932 & 335 & 932 & 335 & 932 & 335 \\
\hline 8 & 0.4592 & 217 & 86 & 618 & 262 & 618 & 262 & 618 & 262 \\
\hline 9 & 0.3986 & 372 & 158 & 1184 & 518 & 1184 & 518 & 1184 & 518 \\
\hline 10 & 0.6449 & 140 & 65 & 309 & 135 & 309 & 135 & 309 & 135 \\
\hline 11 & 0.6449 & 301 & 160 & 662 & 362 & 662 & 362 & 662 & 362 \\
\hline Total & & 14792 & 3653 & 72292 & 12469 & 27629 & 7907 & 27629 & 7907 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year: Age & 1 F & F multiplier: CatchNos & Yield & \begin{tabular}{l}
Fbar: \\
StockNos
\end{tabular} & \begin{tabular}{l}
\[
0.4728
\] \\
Biomass
\end{tabular} & SSNos(Jan) & SSB(Jan) & SSNos(ST) & SSB(ST) \\
\hline 1 & 0.0158 & 352 & 53 & 23623 & 1181 & 0 & 0 & 0 & 0 \\
\hline 2 & 0.2419 & 4310 & 741 & 21040 & 3380 & 0 & 0 & 0 & 0 \\
\hline 3 & 0.4257 & 4949 & 980 & 14948 & 2845 & 14948 & 2845 & 14948 & 2845 \\
\hline 4 & 0.4997 & 1264 & 303 & 3362 & 824 & 3362 & 824 & 3362 & 824 \\
\hline 5 & 0.5079 & 1158 & 317 & 3043 & 865 & 3043 & 865 & 3043 & 865 \\
\hline 6 & 0.5027 & 1510 & 475 & 4000 & 1321 & 4000 & 1321 & 4000 & 1321 \\
\hline 7 & 0.4415 & 998 & 367 & 2927 & 1054 & 2927 & 1054 & 2927 & 1054 \\
\hline 8 & 0.4592 & 191 & 76 & 542 & 229 & 542 & 229 & 542 & 229 \\
\hline 9 & 0.3986 & 111 & 47 & 353 & 154 & 353 & 154 & 353 & 154 \\
\hline 10 & 0.6449 & 327 & 151 & 719 & 314 & 719 & 314 & 719 & 314 \\
\hline 11 & 0.6449 & 209 & 111 & 461 & 252 & 461 & 252 & 461 & 252 \\
\hline Total & & 15379 & 3621 & 75018 & 12421 & 30355 & 7859 & 30355 & 7859 \\
\hline
\end{tabular}

\footnotetext{
Input units are thousands and kg - output in tonnes
}


Table 9.7.1 - Sole in VIId Yield per recruit summary table

MFYPR version 2a
Run: Sole7D_Fin_Yield
Time and date: \(1 \overline{5}: 53\) 08/05/2009
Yield per results
\begin{tabular}{cccccccccc} 
FMult & Fbar & CatchNos & Yield & StockNos & Biomass & SpwnNosJan & SSBJan & SpwnNosSpwn & SSBSpwn \\
\hline 0.0000 & 0.0000 & 0.0000 & 0.0000 & 10.5083 & 3.8192 & 8.6035 & 3.6238 & 8.6035 & 3.6238 \\
0.1000 & 0.0473 & 0.2969 & 0.1097 & 7.5432 & 2.3214 & 5.6398 & 2.1262 & 5.6398 & 2.1262 \\
0.2000 & 0.0946 & 0.4351 & 0.1457 & 6.1643 & 1.6698 & 4.2623 & 1.4748 & 4.2623 & 1.4748 \\
0.3000 & 0.1418 & 0.5174 & 0.1596 & 5.3448 & 1.3072 & 3.4442 & 1.1125 & 3.4442 & 1.1125 \\
0.4000 & 0.1891 & 0.5729 & 0.1652 & 4.7931 & 1.0778 & 2.8939 & 0.8833 & 2.8939 & 0.8833 \\
0.5000 & 0.2364 & 0.6132 & 0.1671 & 4.3930 & 0.9205 & 2.4952 & 0.7263 & 2.4952 & 0.7263 \\
0.6000 & 0.2837 & 0.6439 & 0.1674 & 4.0881 & 0.8067 & 2.1918 & 0.6127 & 2.1918 & 0.6127 \\
0.7000 & 0.3309 & 0.6683 & 0.1669 & 3.8476 & 0.7209 & 1.9527 & 0.5271 & 1.9527 & 0.5271 \\
0.8000 & 0.3782 & 0.6880 & 0.1661 & 3.6526 & 0.6542 & 1.7591 & 0.4607 & 1.7591 & 0.4607 \\
0.9000 & 0.4255 & 0.7044 & 0.1651 & 3.4912 & 0.6012 & 1.5991 & 0.4078 & 1.5991 & 0.4078 \\
1.0000 & 0.4728 & 0.7183 & 0.1642 & 3.3553 & 0.5580 & 1.4647 & 0.3649 & 1.4647 & 0.3649 \\
1.1000 & 0.5201 & 0.7301 & 0.1632 & 3.2393 & 0.5223 & 1.3500 & 0.3295 & 1.3500 & 0.3295 \\
1.2000 & 0.5673 & 0.7404 & 0.1623 & 3.1389 & 0.4924 & 1.2511 & 0.2997 & 1.2511 & 0.2997 \\
1.3000 & 0.6146 & 0.7494 & 0.1615 & 3.0512 & 0.4669 & 1.1647 & 0.2745 & 1.1647 & 0.2745 \\
1.4000 & 0.6619 & 0.7574 & 0.1607 & 2.9738 & 0.4450 & 1.0888 & 0.2528 & 1.0888 & 0.2528 \\
1.5000 & 0.7092 & 0.7645 & 0.1600 & 2.9050 & 0.4260 & 1.0213 & 0.2340 & 1.0213 & 0.2340 \\
1.6000 & 0.7565 & 0.7709 & 0.1594 & 2.8433 & 0.4093 & 0.9610 & 0.2176 & 0.9610 & 0.2176 \\
1.7000 & 0.8037 & 0.7767 & 0.1588 & 2.7877 & 0.3946 & 0.9068 & 0.2030 & 0.9068 & 0.2030 \\
1.8000 & 0.8510 & 0.7819 & 0.1582 & 2.7372 & 0.3814 & 0.8577 & 0.1901 & 0.8577 & 0.1901 \\
1.9000 & 0.8983 & 0.7867 & 0.1577 & 2.6911 & 0.3697 & 0.8130 & 0.1786 & 0.8130 & 0.1786 \\
2.0000 & 0.9456 & 0.7912 & 0.1572 & 2.6489 & 0.3591 & 0.7722 & 0.1682 & 0.7722 & 0.1682 \\
\hline
\end{tabular}
\begin{tabular}{lcc}
\multicolumn{1}{r}{ Reference point } & F multiplier & Absolute F \\
\hline Fbar(3-8) & 1.0000 & 0.4728 \\
FMax & 0.5753 & 0.272 \\
F0.1 & 0.2077 & 0.0982 \\
F35\%SPR & 0.2507 & 0.1185
\end{tabular}

Figure 9.2.1a - Sole VIId - UK Length distributions of discarded and retained fish from discard sampling studies for static gear (2005-2006-2007-2008) and one beam trawl trip in 2008

Q1










*One single trip (beam traw) at the end of the year when markets were affre
This data is not representative for UK beam traw fleet operating in VIId.

Figure 9.2.1b - Sole VIId - French Length distributions of discarded and retained fish from discard sampling studies for Otter trawl (2005-2006-2007-2008)


Figure 9.2.1c - Sole VIId - French Length distributions of discarded and retained fish from discard sampling studies fo Gillnets (2005-2007-2008)
Q1


2006
Discards - Landings

2007


2008


Figure 9.2.2a
Sole VIId - Effort series


Figure 9.2.2b
Sole VIId - Relative Effort series


Figure 9.2.2c
Sole VIId - Relative LPUE series



Figure 9.2.3 Sole in VIId. Standardized tuning indices used for tuning XSA: BEL-BT (blue), UK-BT (pink), UK-BTS (green) YFS-UK (red) and YFS-FR (orange).

\section*{BEL BT}


Figure 9.2.4 Sole in VIId. Internal consistency plot for the Belgian commercial fleet (BEL-BT).

\section*{UK BT}

log index

Figure 9.2.5 Sole in VIId. Internal concistency plot for the UK commercial fleet (UK-BT).

\section*{UK BTS}

log index

Figure 9.2.6 Sole in VIId. Internal concistency plot for the UK beam trawl survey (UK-BTS).

Figure 9.3.1a - VIId SOLE LOG CATCHABILITY RESIDUAL PLOTS - Final XSA

Fleet : Belgian Beam trawl - (BEL BT)


Fleet : Belgian Beam trawl - (BEL BT)


Fleet : UK Beam trawl - (UK-BT)


Fleet : UK Beam trawl - (UK-BT)


Fleet : UK Beam trawl survey - (UK-BTS)


Fleet : UK Beam trawl survey - (UK-BTS)


Figure 9.3.1b - VIId SOLE LOG CATCHABILITY RESIDUAL PLOTS - Final XSA



Figure 9.3.2 Sole in VIId. Estimates of survivors from different fleets and shrinkage, as well as their different weighting in the final XSA-run



Figure 9.3.3 Sole in VIId. Summary plots




Spawning Stock Biomass


Total Stock Biomass


Figure 9.3.4 - Sole VIId retrospective XSA analysys (shinkage SE=2.0)




Figre 9.6.1 - Sole VIId - Probabiliny profiles for shoort term forecast.


Figure 9.7.1 - Sole in VIId Yield per recruit and short term forecast plots


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MFYPR version 2a} \\
\hline \multicolumn{3}{|l|}{Run: Sole7D_Fin_Yield} \\
\hline Time and date: \(1 \overline{5}: 53\) & /05/2009 & \\
\hline Reference point & F multiplier & Absolute F \\
\hline Fbar(3-8) & 1.0000 & 0.4728 \\
\hline FMax & 0.5753 & 0.2720 \\
\hline F0.1 & 0.2077 & 0.0982 \\
\hline F35\%SPR & 0.2507 & 0.1185 \\
\hline
\end{tabular}

\footnotetext{
MFDP version 1a
Run: Sole7D_Fin_SQ
Sole in VIId
Time and date: 15:51 08/05/2009
Fbar age range: 3-8
Input units are thousands and kg - output in tonnes
}

\section*{Eastern English Sole: Stock and Recruitment}


Figure 9.9.1 - Sole VIId Stock/recruitment plot

Figure 9.9.2 Sole in VIId. Historical Performance of assessment of successive WG assessment and forecast



\section*{10 Sole in Subarea IV}

The assessment of sole in Subarea IV is presented as an update assessment with minor analysis requested by the review group. The most recent benchmark assessment was carried out in 2003. A benchmark for this stock is scheduled for 2010.

\subsection*{10.1 General}

\subsection*{10.1.1 Ecosystem aspects}

Sole growth rates in relation to changes in environmental factors were analysed by Rijnsdorp et al. (2004). Based on market sampling data it was concluded that both length at age and condition factors of sole increased since the mid 1960s to a high point in the mid 1970s. Since the mid 1980s, length at age and conditions have been intermediate between the troughs (1960) and peaks (mid 1970s). Growth rates of the juvenile age groups were negatively affected by intra-specific competition. Length of 0 -group fish in autumn showed a positive relationship with sea temperature in the 2nd and 3rd quarters, but for the older fish no temperature effect was detected. The overall pattern of the increase in growth and the later decline correlated with temporal patterns in eutrophication; in particular the discharge of dissolved phosphates from the Rhine. Trends in the stock indicators e.g. SSB and recruitment, did not coincide, how ever, with observed patterns in eutrophication.
In recent years no changes in the spatial distribution of juvenile and adult soles have been observed (Grift et al. 2004, Verver et al, 2001). The proportion of undersized sole \((<24 \mathrm{~cm})\) inside the Plaice Box did not change after its closure to large beamers and remained stable at a level of \(60-70 \%\) (Grift et al., 2004). The different length groups showed different patterns in abundance. Sole of around 5 cm showed a decrease in abundance from 2000 onwards, while groups of 10 and 15 cm were stable. The largest groups showed a declining trend in abundance, which had already set in years before the closure.
Mollet et al (2007) used the reaction norm approach to investigate the change in maturation in North Sea sole and showed that age and size at first maturity significantly shifted to younger ages and smaller sizes. These changes occurred from 1980 onwards. Size at \(50 \%\) probability of maturation at age 3 decreased from 29 to 25 cm .

\subsection*{10.1.2 Fisheries}

Sole is mainly caught by beam trawlers. A large proportion of the fishing effort on sole is exerted by the Dutch beam trawl fleet targeting sole and plaice with 80 mm mesh size. Fishing effort by the Dutch fleet peaked in the mid 1990s and has decreased thereafter and is now at a level comparable to the 1980s. In addition to the Dutch Beam trawl fleet sole is also caught by Belgian and German beam trawlers, by UK otter trawlers, and by a Danish fleet fishing with fixed nets, catch sole.
The days at sea regulations, high oil prices, and different patterns in the history of changes in the TACs between plaice and sole have led to a transfer of effort from the southern to the northern North Sea. Here, sole and juvenile plaice tend to be more abundant leading to an increase in discarding of small plaice.

A change in efficiency of the commercial Dutch beam trawl fleet has been described by Rijnsdorp et al (2006) and was analyzed by the 2006 working group. Although the
efficiency change improved XSA estimates, it was not included in the final assessment for data consistency reasons.

\subsection*{10.1.3 ICES Advice}

Based on the most recent estimate of SSB (in 2008) and fishing mortality (in 2007), ICES classifies the stock as having reduced reproductive capacity and as being at risk of being harvested unsustainably. SSB has fluctuated around the precautionary reference points for the last decade. Fishing mortality has declined since 1995 and is currently estimated to be above \(F_{p a}\). The year classes of 2003 and 2004 are weak, year class 2005 is strong, and the assessment indicates that the year class 2006 is below average.

\section*{Single-stock exploitation boundaries}

Exploitation boundaries in relation to the agreed management plan

According to the management plan adopted by the EC in 2007, fishing mortality in 2009 should be reduced by \(10 \%\) compared to the fishing mortality estimated for the preceding year \((F s q=\) mean \(F(05-07)=F 2008=0.47)\) with the constraint that the change in TAC should not be more than \(15 \%\). The \(10 \%\) reduction in fishing mortality corresponds to a fishing mortality of 0.42 and landings of \(14000 t\) in 2009, which is an approximate \(9 \%\) TAC change (TAC \(2007=12800 t\) ). The expected SSB in 2010 would be around \(28900 t\), which is below Bpa.

Exploitation boundaries in relation to high long-term yield, low risk of depletion of production potential and considering ecosystem effects

The current fishing mortality is above the range that is expected to lead to high long-term yields and low risk of stock depletion.

Exploitation boundaries in relation to precautionary limits
To rebuild the stock to above Bpi in 2010 requires a fishing mortality of 0.21 , which implies landings of less than 7500 t in 2009.

Condusion on exploitation boundaries
According to the evaluation the agreed management plan can be provisionally accepted as precautionary for sole and could be used as a basis for the management of the stock in the short term. ICES therefore advises according to this plan and advises landings of 14000 t in 2009.
Mixed fishery advice:
The information in this section is taken from the North Sea Advice overview section 6.3

Fisheries in Division IIIa (Skagerrak-Kattegat), in Subarea IV (North Sea), and in Division VIId (Eastern Channel) should in 2009 be managed according to the following rules, which should be applied simultaneously:
Demersal fisheries
- should minimize bycatch or discards of cod;
- should implement TACs or other restrictions that will curtail fishing mortality for those stocks mentioned above for which reduction in fishing pressure is advised;
- should be exploited within the precautionary exploitation limits or where appropriate on the basis of management plan results for all other stocks (see text table above);
- where stocks extend beyond this area, e.g. into Division VI (saithe and anglerfish) or are widely migratory (Northern hake), should take into account the exploitation of the stocks in these areas so that the overall exploitation remains within precautionary limits;
- should have no landings of angel shark and minimum bycatch of spurdog, porbeagle, and common skate and undulate ray.
Mixed fisheries management options should be based on the expected catch in specific combinations of effort in the various fisheries, taking into consideration the advice given above. The distributions of effort across fisheries should be responsive to objectives set by managers, which is also the basis for the scientific advice presented above.

\subsection*{10.1.4 Management}

The TAC for 2009 was set at 14000 tonnes (TAC = 12800 tonnes in 2008), which is 1 200 tonnes higher than the agreed TAC of 2008 (Table 10.2.1).

A long term management plan proposed by the Commission of the European Community was adopted by the Council of the European Union in June 2007 and first implemented in 2008 (EC Council Regulation No 676/2007). The plan consists of two stages. The first phase aims to ensure the return of the stocks of plaice and sole to within safe biological limits. This should be reached through a reduction of fishing mortality by \(10 \%\) in relation to the fishing mortality estimated for the preceding year until an F of circa 0.2 is reached. ICES interprets the F for the preceding year as the estimate of F for the year in which the assessment is carried out. The basis for this F estimate will be constant over the years. The plan sets a maximum change of \(15 \%\) in TAC between consecutive years.

Articles 1 to 9 of Council Regulation (EC) No 676/2007 of 11 June 2007 establishing a multiannual plan for fisheries exploiting stocks of plaice and sole in the North Sea. Official Journal L 157 , 19/06/2007 P. 0001-0006

\section*{CHAPTER I}

SUBJECT-MATTER AND OBJECTIVE

\section*{Article 1}

Subject-matter
This Regulation establishes a multiannual plan for the fisheries exploiting the stocks of plaice and sole that inhabit the North Sea.
For the purposes of this Regulation, "North Sea" means the area of the sea delineated by the International Council for the Exploration of the Sea as Subarea IV.

\section*{Article 2}

\section*{Safe biological limits}

1 ) For the purposes of this Regulation, the stocks of plaice and sole shall be deemed to be within safe biological limits in those years in which, according to the opinion of the Scientific, Technical, and Economic Committee for Fisheries (STECF), all of the following conditions are fulfilled:
the spawning biomass of the stock of plaice exceeds 230000 tonnes;
the average fishing mortality rate on ages two to six years experienced by the stock of plaice is less than 0,6 per year,
the spawning biomass of the stock of sole exceeds 35000 tonnes;
the average fishing mortality rate on ages two to six years experienced by the stock of sole is less than 0,4 per year.
If the STECF advises that other levels of biomass and fishing mortality should be used to define safe biological limits, the Commission shall propose to amend paragraph 1.

\section*{Article 3}

Objectives of the multiannual plan in the first stage
2 ) The multiannual plan shall, in its first stage, ensure the return of the stocks of plaice and of sole to with in safe biological limits.
3) The objective specified in paragraph 1 shall be attained by reducing the fishing mortality rate on plaice and sole by \(10 \%\) each year, with a maximum TAC variation of \(15 \%\) per year until safe biological limits are reached for both stocks.

\section*{Article 4}

Objectives of the multiannual plan in the second stage
4) The multiannual plan shall, in its second stage, ensure the exploitation of the stocks of plaice and sole on the basis of maximum sustainable yield.
5) The objective specified in paragraph 1 shall be attained while maintaining the fishing mortality on plaice at a rate equal to or no lower than 0,3 on ages two to six years.
6) The objective specified in paragraph 1 shall be attained while maintaining the fishing mortality on sole at a rate equal to or no lower than 0,2 on ages two to six years.

\section*{Article 5}

\section*{Transitional arrangements}
7) When the stocks of plaice and sole have been found for two years in succession to have returned to within safe biological limits the Council shall decide on the basis of a proposal from the Commission on the amendment of Articles 4(2) and 4(3) and the amendment of Articles 7,8 and 9 that will, in the light of the latest scientific advice from the STECF, permit the exploitation of the stocks at a fishing mortality rate compatible with maximum sustainable yield.
8) The Commission's proposal for review shall be accompanied by a full impact assessment and shall take into account the opinion of the North Sea Regional Advisory Council.

\section*{CHAPTER II}

\section*{TOTAL ALLOWABLE CATCHES}

Article 6
Setting of total allowable catches (TACs)
Each year, the Council shall decide, by qualified majority on the basis of a proposal from the Commission, on the TACs for the following year for the plaice and sole stocks in the North Sea in accordance with Articles 7 and 8 of this Regulation.

\section*{Article 7}

Procedure for setting the TAC for plaice
9) The Council shall adopt the TAC for plaice at that level of catches which, acoording to a scientific evaluation carried out by STECF is the higher of:
a) that TAC the application of which will result in a 10o reduction in the fishing mortality rate in its year of application compared to the fishing mortality rate estimated for the preceding year,
\(b\) ) that TAC the application of which will result in the level of fishing mortality rate of 0,3 on ages two to six years in its year of application.
Where application of paragraph 1 would result in a TAC which exceeds the TAC of the preceding year by more than \(15 \%\), the Council shall adopt a TAC which is \(15 \%\) greater than the TAC of that year.
Where application of paragraph 1 would result in a TAC which is more than \(15 \%\) less than the TAC of the preceding year, the Council shall adopt a TAC which is \(15 \%\) less than the TAC of that year.

\section*{Article 8}

Procedure for setting the TAC for sole
10 )The Council shall adopt a TAC for sole at that level of catches which, according to a scientific evaluation carried out by STECF is the higher of:
c) that TAC the application of which will result in the level of fishing mortality rate of 0,2 on ages two to six years in its year of application;
d) that TAC the application of which will result in a \(10 \%\) reduction in the fishing mortality rate in its year of application compared to the fishing mortality rate estimated for the preceding year.
Where the application of paragraph 1 would result in a TAC which exceeds the TAC of the preceding year by more than \(15 \%\), the Council shall adopt a TAC which is \(15 \%\) greater than the TAC of that year.

Where the application of paragraph 1 would result in a TAC which is more than \(15 \%\) less than the TAC of the preceding year, the Council shall adopt a TAC which is \(15 \%\) less than the TAC of that year.

\section*{CHAPTER III}

FISHING EFFORT LIMITATION
Article 9
Fishing effort limitation
11 )The TACs referred to in Chapter II shall be complemented by a system of fishing effort limitation established in Community legislation.
12 )Each year, the Council shall decide by a qualified majority, on the basis of a proposal from the Commission, on an adjustment to the maximum level of fishing effort available for fleets where either or both plaice and sole comprise an important part of the landings or where substantial discards are made and subject to the system of fishing effort limitation referred to in pa ragraph 1.
13 )The Commission shall request from STECF a forecast of the maximum level of fishing effort necessary to take catches of plaice and sole equal to the European Community's share of the TACs established according to Article 6. This request
shall be formulated taking account of other relevant Community legislation governing the conditions under which quotas may be fished.
14 )The annual adjustment of the maximum level of fishing effort referred to in paragraph 2 shall be made with regard to the opinion of STECF provided according to paragraph 3.
15 )The Commission shall each year request the STECF to report on the annual level of fishing effort deployed by vessels catching plaice and sole, and to report on the types of fishing gear used in such fisheries.
16 )Notwithstanding paragraph 4, fishing effort shall not increase above the level allocated in 2006.
17 )Member States whose quotas are less than 5\% of the European Community's share of the TACs of both plaice and sole shall be exempted from the effort management regime.
18 )A Member State concerned by the provisions of paragraph 7 and engaging in any quota exchange of sole or plaice on the basis of Article 20(5) of Regulation (EC) No 2371/2002 that would result in the sum of the quota allocated to that Member State and the quantity of sole or plaice transferred being in excess offosof the European Community's share of the TAC shall be subject to the effort management regime.
19 )The fishing effort deployed by vessels in which plaice or sole are an important part of the catch and which fly the flag of a Member State concerned by the provisions of paragraph 7 shall not increase above the level authorised in 2006.

ICES evaluated the management plan for North Sea plaice and sole at the end of May 2008. It was accepted for sole and ICES concluded that it was in accordance with the precautionary approach (unpublished review of an evaluation of the management plan for fisheries exploiting the stocks of plaice and sole in the North Sea (EC 676/2007) by ICES in 2008, see also Machiels et al. ICES WGNSSK, 2008, WD2).

The minimum landing size of North Sea sole is 24 cm . A closed area has been in operation since 1989 (the plaice box) and since 1995 this area has been closed in all quarters. The closed area applies to vessels using towed gears, but vessels smaller than 300 HP are exempted from the regulation. An additional technical measure concerning the fishing gear is the restriction of the aggregated beam length of beam trawlers to 24 m . In the 12 nautical mile zone and in the plaice box the maximum aggregated beam-length is 9 m .

Effort has been restricted because of implementation of a days-at-sea regulation for the cod recovery plan and fishing effort limitation of the long term management plan (EC Council Regulation No. 2056/2001; EC Council Regulation No 676/2007; EC Council Regulation 40/2008).

For 2008 Council Regulation \({ }^{\circ} 40 / 2008\), annex \(I I^{a}\) allocates different days at sea depending on gear, mesh size and catch composition. (see section 2.1.2 for a complete list). The days at sea limitations for the major fleets operating in ICES sub-area IV can be summarised as follows: Beam trawlers can fish between 119-143 days per year. Trawls or Danish seines can fish between 103 and 280 days per year. Gillnets are allowed to fish between 140 and 162 days per year and Trammel nets between 140 and 205 days.

For 2009 Council Regulation (EC) N³4/2009 allocates different amounts of Kw*days by Member State and area to different effort groups of vessels depending on gear and mesh size. (see section 1.2.1 for complete list). The area's are Kattegat, part of IIIa not
covered by Skagerak and Kattegat, ICES zone IV, EC waters of ICES zone IIa, ICES zone VIId, ICES zone VIIa, ICES zone Via and EC waters of ICES zone Vb. The grouping of fishing gear concerned are: Bottom trawls, Danish seines and similar gear, excluding beam trawls of mesh size: TR1 ( \(\leq 100 \mathrm{~mm}\) ) TR2 ( \(\leq 70\) and \(<100 \mathrm{~mm}\) ) - TR3 ( \(\leq 16\) and \(<32 \mathrm{~mm}\) ); Beam trawl of mesh size: BT1 \(\leq 120 \mathrm{~mm}\) )- BT2 ( \(\leq 80\) and \(<\) 120 mm ); Gill nets excluding trammel nets: GN1; Trammel nets: GT1 and Longlines: LL1.

Technical measures applicable to the flat fish beam trawl fishery before 2000 were an exemption to use 80 mm mesh cod-end when fishing south of \(55^{\circ} \mathrm{North}\). From January 2000 , the exemption area extends from \(55^{\circ}\) North to \(56^{\circ}\) North, east of \(5^{\circ}\) East latitude. Fishing with 80 mm mesh cod-end is permitted within that area provided that the landings comprise at least \(70 \%\) of a mix of species, which are defined in the technical measures of the European Community (EC Council Regulation 1543/2000). In January 2002 the cod recovery plan was instigated, which allowed a maximum cod by-catch of \(20 \%\) of the total catch. In the area extending from \(55^{\circ}\) North to \(56^{\circ}\) North, east of \(5^{\circ}\) East latitude, a maximum cod by-catch of \(5 \%\) is allowed. Minimum cod-end mesh in this area is 100 mm , while above \(56^{\circ}\) North the minimum cod-end mesh is 120 mm (EC Council Regulation 2056/2001).

\subsection*{10.2 Data available}

\subsection*{10.2.1 Catch}

Landings data by country and TACs are presented in Table 10.2.1 and total landings are presented in Figure 10.2.1a. In 2008 approximately \(110 \%\) of the TAC was taken. The discards percentages observed in the Dutch discard sampling programme sampling beam trawl vessels fishing for sole with 80 mm mesh size were much lower for sole (for 2002-2008, between \(10-17 \%\) by weight, see Table 10.2.2) than for plaice. No significant trends in discard percentages were observed. Inclusion of a stable time series of discards in the assessment will have minor effect on the relative trends in stock indicators (Kraak et al 2002; Van Keeken et al 2003). The main reason for not including discards in the assessment is that the discarding is relatively low in all periods for which observations are available. In addition, gaps in the discard sampling programs result in incomplete time series.

\subsection*{10.2.2 Age compositions}

The age composition of the landings is presented in Table 10.2.3. Age compositions and mean weight at age in the landings were available on a quarterly basis from Denmark, France, Germany (sexes combined) and The Netherlands (by sex). Age compositions on an annual basis were available from Belgium (by sex). Overall, the samples are thought to be representative of around \(85 \%\) of the total landings in 2008. The age compositions were combined separately by sex on a quarterly basis and then raised to the annual international total (see also section 1.2.4). Recently the sole population (Figure 10.2.1) has been dominated by the strong 2005 year class which were age 3 in 2008 ( \(\sim 35\) million). Log catch ratios and catch curves for sole ages 2 to 9 are summarised in Figures 10.2.2 a and b (1957 to 2008).

\subsection*{10.2.3 Weight at age}

Weights at age in the landings (Table 10.2.4) are measured weights from the various national market sampling programs. Weights at age in the stock (Table 10.2.5) are the 2nd quarter landings weights. Over the entire time series, weights were higher dur-
ing the 1980s compared to time periods before and after (see Figure 10.2.1 c \& d). Estimates of weights for older ages fluctuate more because of smaller samples sizes due to decreasing numbers of older fish in the stock and landings.

\subsection*{10.2.4 Maturity and natural mortality}

As in previous North Sea sole assessments, a knife-edged maturity-ogive was used, assuming full maturation at age 3. The maturity-ogive is based on market samples of females from observations in the sixties and seventies. Mollet et. al. (2007) described the shift of the age at maturity towards younger ages and the results should be considered in the next benchmark assessment. Natural mortality in the period 19572008 has been assumed constant over all ages at 0.1, except for 1963 where a value of 0.9 was used to take into account the effect of the severe winter (1962-1963) (ICESFWG 1979).

\subsection*{10.2.5 Catch, effort and research vessel data}

One commercial and two survey series were used to tune the assessment. Effort for the Dutch commercial beam trawl fleet is expressed as total HP effort days. Effort nearly doubled between 1978 and 1994 and has declined since 1996. Effort during 2008 was \(<40 \%\) of the maximum (1994) in the series (Table 10.2.6 and 10.2.7 cont.). A decline of circa \(25 \%\) was recorded in 2008 following the decommissioning that took place during 2008.

Trends in commercial LPUE of the Dutch beam trawl fleet by area are shown in Figure 10.2.3. The data are based on various sources (Quirijns and Poos, 2008, WD1). There is a clear separation in LPUE between areas, with the southern area producing a substantially higher LPUE than the northern area. Average LPUE of a standardized NL beam trawler ( 1471 kW ) over the period 1999 to 2007 was \(266 \mathrm{~kg} \mathrm{day}^{-1}\), and the data have a significant \((\mathrm{P}<0.01)\) temporal trend of \(-6.1 \mathrm{~kg} \mathrm{day}^{-1}\) year \({ }^{-1}\). The LPUE estimated for 2008 ( \(313 \mathrm{~kg}^{2}\) day \(^{-1}\) ) was above the mean ( \(266 \mathrm{~kg} \mathrm{day}^{-1}\) )..

The BTS (Beam Trawl Survey) is carried out in the southern and south-eastern North Sea in August and September using an 8 m beam trawl. The SNS (Sole Net Survey) is a coastal survey with a 6 m beam trawl carried out in the 3rd quarter. In 2003 the SNS survey was carried out during the 2nd quarter and data from this year were omitted (Table 10.2.7 and Figure 10.2.4). The research vessel survey time series have been revised by WGBEAM (ICES-WGBEAM, 2007), because of small corrections in data bases and new solutions for missing lengths in the age-length-keys.

\subsection*{10.3 Data analyses}

The assessment of North Sea sole was carried out using the FLR version of XSA (2.8.1) in R version 2.8.1.

Reviews of last year's assessment
Comments made in 2008 by the RGNSSK (Technical Minutes), which accepted last year's assessment, are summarised below in quotes, and it is explained how this WG addressed the comments.
"Assessment made as an update assessment. Revision of Fs upwards and SSB downwards. The historic performance of the assessment show rather noisy history. There's a considerable difference between the signals of stock development, when various combinations of information are used in XSA. Tuning with only the survey fleets gives considerably higher recent Fs than tuning with only LPUE. The present assessment is of course in-between".
"A strong year class 2005 will increase the SSB in 2009". This has been confirmed out by this year's assessment .
"A new benchmark assessment might be appropriate in 2009. The following issues could be put on the shopping list: Explore the change of plus group from age 15 to age 10 and impact on the perception of the stock development. Change in mean weight at age and the use of knifeedge maturity on stock dynamics and forecast. How inclusion of discarding affect \(R\) indices and SSB (maybe minor?). If the assessment are run in the future with only survey data, obvious output is very high Fs and the development is not so rosy for future." A benchmark assessment has not yet been done but will take place in 2010. At that time a Stock Annex for sole will be constructed.

\subsection*{10.3.1 Exploratory catch-at-age-based analys is}

3 tuning indices were included in the assessment. Exploratory analyses were carried out to explore the sensitivity of an assessment with and without the commercial NL BT LpUE series. Depending on the inclusion of the commercial NL BT series the perception of last years fishing mortalities estimates differ. The standardized log catchability residual plots of the 3 tuning series included as single fleets in the assessments is shown in figure 10.3.1 and the log catchability residual plot for the combined fleets of the 3 tuning series is shown in figure 10.3.3. Figure 10.3.2 shows the XSA retrospective analysis of fishing mortality for different combinations of indices. Figure 10.3.4 presents the retrospective analysis of F, SSB and recruitment when the 3 fleets of the tuning series were combined. The plot shows that mean F was slightly overestimated in 2007 but underestimated before that.

\subsection*{10.3.2 Exploratory survey-based analyses}

No survey-based analysis was carried out in this year's WG.

\subsection*{10.3.3 Conclusions drawn from exploratory analyses}

The WG concluded that the 2008 update assessment would be done by including NL beam trawl LPUE as commercial tuning series.

\section*{Final as sessment}

Catch at age analy sis was carried out with XSA using the settings given below.
\begin{tabular}{llll}
\hline \multicolumn{1}{c}{ YEAR } & \multicolumn{1}{c}{ 2007 } & \multicolumn{1}{c}{ 2008 } & \multicolumn{1}{c}{2009} \\
\hline Catch at age & Landings & Landings & Landings \\
\hline Fleets & \begin{tabular}{l} 
BTS-Isis 1985-2006 \\
SNS 1982-2006 \\
Nl-BT 1990-2006
\end{tabular} & \begin{tabular}{l} 
BTS-Isis 1985-2007 \\
SNS 1982-2007 \\
Nl-BT 1990-2007
\end{tabular} & \begin{tabular}{l} 
BTS-Isis 1985-2008 \\
SNS 1982-2008
\end{tabular} \\
\hline Plus group & 10 & 10 & Nl-BT 1990-2008
\end{tabular}

The full diagnostics are presented in Table 10.3.1. A summary of the input data is given in Figure 10.2.1. Figure 10.3.2 shows the log catchability residuals for the tuning fleets in the final run. Fishing mortality and stock numbers per age group are shown in Tables 10.3 .2 and 10.3.3 respectively. The SSB in 2007 was estimated at around 19 000 t (Table 10.4.1) which has increased to around 40000 t in 2008. Mean \(\mathrm{F}(2-6)\) was estimated at 0.34 which is the lowest since the 1960 s. Recruitment of the 2007 year class, in 2008 (age 1), was estimated at 91 million. Retrospective analysis is presented in Figure 10.3.4. Underestimation of mean \(F\) from 2000 to 2006 w ere observed and an overestimation in 2007. In the same period overestimation biases of the SSB estimates were found. Recruit estimates were relatively unbiased.

\subsection*{10.4 Historic Stock Trends}

Table 10.4.1. and Figure 10.4.1 present the trends in landings, mean \(F(2-6)\), recruitment and SSB since 1957.

Reported landings increased to the end of the 1960s, showed a period of lower landings until the end of the 1980s and a period of higher landings ( 30000 t ) again during the early 1990s. In 2008 landings were estimated to be around 14100 t .

Recruitment was high in 1959 and 1964 and SSB increased from the end of the 1950s to a peak in early 1960s, followed by a period of declining SSB until the 1990s. Recruitment was high in 1988 and 1992. Between 1990-1995 a period of higher SSB was observed. The SSB in 2007 decreased by about 6000 t compared to 2006. The SSB in 2008 is estimated at around 40000 t . The year-classes 2003 and 2004 show a low re-
cruitment level for 2 consecutive years. Recruitment in 2008 of the 2007 year class at the age of 1 was estimated at 91 million, slightly lower than the long term geometric mean of 93.8 million.

The mean fishery mortality on age 2-6 increased with large variation from circa \(0.4-\) 0.5 per year around 1970 to 0.5 to 0.6 per year up to 2000. In recent years fishing mortality has decreased gradually. Fishing mortality decreased from 0.41 per year in 2007 to 0.34 per year in 2008 (Table 10.4.1).

\subsection*{10.5 Recruitment estimates}

Recruitment estimation was carried out using RCT3. Input to the RCT3 model is presented in Table 10.5.1. Results are presented in Table 10.5 .2 for age-1 and Table 10.5.3 for age-2. Average recruitment of 1-year-old-fish in the period 1957-2006 was around 93.8 million (geometric mean). For year class 2008 (age 1 in 2009) the value predicted by the RCT3 ( 67300 ) was approximately \(30 \%\) lower than the geometric mean (Table 10.5.2.). The estimate was based on the estimate of the DFS0 survey ( 27 million) and showed a large standard error (1), and therefore the geometric mean was accepted for the short-term forecasts.

For year class 2007 (age 2 in 2009), the data are also noisy (high s.e. of the predicted value, Table 10.5.3.). Apart from DFS0 data the RCT3 estimate is based on the same data as the XSA; the WG finds it undesirable to use the same data twice and therefore accepts the XSA estimate. The year class strength estimates from the different sources are summarized in the table below and the estimates used for the short-term forecast are bold-underlined.
\begin{tabular}{lllll}
\hline YEAR CLASS & AGE IN 2009 & \begin{tabular}{c} 
XSA \\
THOUSANDS
\end{tabular} & \begin{tabular}{c} 
RCT 3 \\
THOUSANDS
\end{tabular} & \begin{tabular}{c} 
GM(1957 - 2006) \\
THOUSANDS
\end{tabular} \\
\hline 2007 & 2 & \(\underline{80500}\) & \(\underline{74500}\) & 83800 \\
\hline 2008 & 1 & & 67300 & \(\underline{93800}\) \\
\hline 2009 & Recruit & & & \(\underline{93800}\) \\
\hline
\end{tabular}

\subsection*{10.6 Short-term forecasts}

The short-term forecasts were carried out with FLR using FLSTF (1.9.9). Weight-atage in the stock and weight-at-age in the catch are taken to be the average over the last 3 years. The exploitation pattern was taken to be the mean value of the last three years. Weight-at-age in the stock and weight-at-age in the catch were taken to be the mean of the last three years. Population numbers at ages 2 and older are XSA survivor estimates. Numbers at age 1 and recruitment of the 2007 year-class are taken from the long-term geometric mean (1957-2006:93.8 million).
Input to the short term forecast is presented in Table 10.6.1. The management options are given in Table 10.6.2 (A-C). The management options are given for three different assumptions on the F values for 2009; A) F2009 is assumed to be equal to Fsq, the average estimate for F from 2006 to 2008 scaled to 2008; B) F2009 is 0.9 times Fsq; and C) F2009 is set such that the landings in 2009 equal the TAC of that same year. The table below shows the predicted F values in the intermediate year, SSB for 2010 and the corresponding landings for 2009, given the different assumptions about F in the intermediate year in the different scenarios.
\begin{tabular}{|c|c|c|c|c|}
\hline Scenario & Assumption & \(\mathrm{F}_{2010}\) & SSB2011 & Landing \({ }^{2010}\) \\
\hline A & \(\mathrm{F}_{2009}=\mathrm{F}_{\text {sq }}\) & 0.34 & 38300 & 15500 \\
\hline B & \(\mathrm{F}_{2009}=0.9 \mathrm{~F}_{\text {sq }}\) & 0.304 & 39200 & 15900 \\
\hline C & F~Landing \(\mathrm{S} 2009^{\text {a }}\) TAC2009 & 0.31 & 39100 & 15800 \\
\hline
\end{tabular}

The detailed tables for a forecast based on these 3 scenarios are given in Table 10.6.3A-C. At status quo fishing mortality in 2009 and 2010, SSB is expected to remain stable at 37700 t in 2010. The 2011 SSB is predicted to be 38300 t . The landings at Fsq are expected to be around 15100 t in 2009 which is above the 2009 TAC ( 14000 ) and equal to last year's status quo forecast (15 200 t ). The landings in 2010 are predicted to be around 15500 t at Fsq.

Figure 10.6.1 shows the projected contribution of different sources of information to estimates of the landings in 2009 and of the SSB in 2010, when fishing at Fsq in 2009. The landings in 2009 will consist for a large part of uncertain year classes (20052008), and for almost \(20 \%\) of year classes for which the geometric mean was taken (2008-2009). Other stock number estimates originate from XSA. The contribution of year classes 2008 and 2009 to SSB forecast in 2011 is approximately \(35 \%\). These forecasts are subject to revision by ACFM in October 2009 when new survey information becomes available.

Yield and SSB, per recruit, under the condition of the current exploitation pattern and assuming Fsq as exploitation rate in 2009 are given in Figure 10.62 (see also Table 10.6.4). Fmax is poorly defined at 0.6 .

\subsection*{10.7 Medium-term forecasts}

No medium term projections were done this year.

\subsection*{10.8 Biological reference points}

The current reference points are \(\mathbf{B}_{\text {lim }}=\mathbf{B}_{\text {loss }}=25000 \mathrm{t}\) and \(\mathbf{B}_{\mathrm{pa}}\) is set at 35000 t using the default multiplier of 1.4 . \(\mathrm{F}_{\text {pa }}\) was proposed to be set at 0.4 which is the \(5^{\text {th }}\) percentile of Floss and gave a \(50 \%\) probability that SSB is around \(\mathbf{B}_{\mathbf{p a}}\) in the medium term. Equilibrium analysis suggests that F of 0.4 is consistent with an SSB of around 35000 t .
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{6}{*}{Precautionary Approach} & Type & V alue & Technical basis \\
\hline & Blim & 25000 & Bloss \\
\hline & Bpa & 35000 & Bpa 1.4*Blim \\
\hline & Flim & Not de & \\
\hline & Fpa & 0.4 & Fpa=0.4 implies Bpa+
\[
\mathrm{P}\left(\mathrm{SSB}_{\text {мі }}>\mathrm{Bpa}\right)<10 \%
\] \\
\hline & Fy & 0.2 & EU management plan \\
\hline Targets & & & \\
\hline
\end{tabular}

\subsection*{10.9 Quality of the assessment}

This year's assessment of North Sea sole was carried out as an update assessment. Retrospective patterns from previous years suggested that F was over-erestimated
last year but underestimated in previous years, while SSB was overestimated. The historic performance of the assessment is summarized in Figure 10.3.4.

The XSA assessment showed an increase in SSB in 2008 (40 000t) compared to 2007 ( 20000 t ) caused by the maturity of the strong 2005 year class and the enhanced survival due to the reduction in fishing effort.
During the next benchmark assessment for this stock, attention should be paid to the following issues:
- In 2003 the plus-group was set from age 15 to age 10. The choice to reduce the plusgroup to age 10 needs further attention, although the current WG thinks that the very small number of older fish currently present in the stock will lead to a limited impact...
- Follow changes in technical efficiency in the commercial fleets and look for external evidence.
- Trends in mean weights and maturity and how that could affect the assessment and forecasts. In particular it would be interesting to examine the impact of sex ratios and the faster growth and larger ultimate size of females.
- Explore the effects of including discards.
- Investigate the considerable differences in retrospective patterns of XSA results when run survey or commercial LPUE series separately.
- Study the effects of using an un-scaled F in the forecast procedure.

\subsection*{10.10Status of the Stock}

Fishing mortality was estimated at 0.34 in 2008 which is below \(\mathrm{Fpa}(=0.4)\). The SSB in 2008 was estimated at about 40000 t which is above both Blim ( 25 000t) and Bpa ( 35 000 t ). Two weak year classes in 2003 and 2004 were followed by a strong year class in 2005 the impact of which is now being seen in the SSB estimations. Projected landings for 2010 at Fsq are \(15500 t\), slightly lower than projected landings for 2009 (15 100)

\subsection*{10.11 Management Considerations}

Sole is mainly taken by beam trawlers in a mixed fishery with plaice in the southern and central part of the North Sea. Fishing effort (kWdays) has been substantially reduced since 1995 and this fall continued between 2007 and 2008 due to an extensive decommissioning scheme.. Technical measures applicable to the mixed flatish fishery will affect both sole and plaice. The minimum mesh size of 80 mm in the beam trawl fishery selects sole at the minimum landing size. How ever, this mesh size generates high discards of plaice. Mesh enlargement would reduce the catch of undersized plaice, but would also result in loss of marketable sole. The combination of days-at-sea regulations, higher oil prices, and decreasing TAC for plaice and relatively stable TAC for sole, appear to have induced a shift in fishing effort towards the southern North Sea. This concentration of fishing effort result in higher plaice discards because juv eniles are mainly distributed in this area.
The sole stock dynamics is heavily dependent on the occasional occurrence of strong year classes.
The mean age in the landings is currently just above age 3 , but used to be around age 6 in the beginning of the time series. A lower exploitation level is expected to im-
prove the survival of sole to the spawning population, which could enhance the stability in the catches.

The peaks in the historical time-series of SSB of North Sea sole correspond with the occasional occurrence of strong year classes. Due to high fishing mortality, SSB declined during the nineties. The fishery opportunities and SSB are now dependent on incoming year classes and can therefore fluctuate considerably between years. The SSB and landings in recent years have been dominated by the 2001 and 2005 year classes. The predicted SSB in 2011 is largely dependent on the above-average recruitment of the 2005 year class.

For sole there will be new recruitment information from the 3rd quarter surveys. ICES will only issue an updated advice if these surveys provide a very different perspective on the short-term developments.

Table 10.2.1 Sole in Sub-Area IV: Nominal landings and landings as estimated by the Working Group (tonnes).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{YearBelgium Denmark France Germany Netherlands UK} & Other & Total & Unalloca & WG TAC \\
\hline & & & & & \multicolumn{4}{|l|}{(E/W/NI) countries reported landings} & Total \\
\hline 19821900 & 524 & 686 & 266 & 17686 & 403 & 2 & 21467 & 112 & 2157921000 \\
\hline 19831740 & 730 & 332 & 619 & 16101 & 435 & & 19957 & 4970 & 2492720000 \\
\hline 19841771 & 818 & 400 & 1034 & 14330 & 586 & 1 & 18940 & 7899 & 2683920000 \\
\hline 19852390 & 692 & 875 & 303 & 14897 & 774 & 3 & 19934 & 4314 & 2424822000 \\
\hline 19861833 & 443 & 296 & 155 & 9558 & 647 & 2 & 12934 & 5266 & 1820020000 \\
\hline 19871644 & 342 & 318 & 210 & 10635 & 676 & 4 & 13829 & 3539 & 1736814000 \\
\hline 19881199 & 616 & 487 & 452 & 9841 & 740 & 28 & 13363 & 8227 & 2159014000 \\
\hline 19891596 & 1020 & 312 & 864 & 9620 & 1033 & 50 & 14495 & 7311 & 2180614000 \\
\hline 19902389 & 1427 & 352 & 2296 & 18202 & 1614 & 263 & 26543 & 8577 & 3512025000 \\
\hline 19912977 & 1307 & 465 & 2107 & 18758 & 1723 & 271 & 27608 & 5905 & 3351327000 \\
\hline 19922058 & 1359 & 548 & 1880 & 18601 & 1281 & 277 & 26004 & 3337 & 2934125000 \\
\hline 19932783 & 1661 & 490 & 1379 & 22015 & 1149 & 298 & 29775 & 1716 & 3149132000 \\
\hline 19942935 & 1804 & 499 & 1744 & 22874 & 1137 & 298 & 31291 & 1711 & 3300232000 \\
\hline 19952624 & 1673 & 640 & 1564 & 20927 & 1040 & 312 & 28780 & 1687 & 3046728000 \\
\hline 19962555 & 1018 & 535 & 670 & 15344 & 848 & 229 & 21199 & 1452 & 2265123000 \\
\hline 19971519 & 689 & 99 & 510 & 10241 & 479 & 204 & 13741 & 1160 & 1490118000 \\
\hline 19981844 & 520 & 510 & 782 & 15198 & 549 & 339 & 19742 & 1126 & 2086819100 \\
\hline 19991919 & 828 & & 1458 & 16283 & 645 & 501 & 21634 & 1841 & 2347522000 \\
\hline 20001806 & 1069 & 362 & 1280 & 15273 & 600 & 539 & 20929 & 1603 & 2253222000 \\
\hline 20011874 & 772 & 411 & 958 & 13345 & 597 & 394 & 18351 & 1593 & 1994419000 \\
\hline 20021437 & 644 & 266 & 759 & 12120 & 451 & 292 & 15969 & 976 & 1694516000 \\
\hline 20031605 & 703 & 728 & 749 & 12469 & 521 & 363 & 17138 & 782 & 1792015850 \\
\hline 20041477 & 808 & 655 & 949 & 12860 & 535 & 544 & 17828 & -681 & 1714717000 \\
\hline 20051374 & 831 & 676 & 756 & 10917 & 667 & 357 & 15579 & 776 & 1635518600 \\
\hline 2006980 & 585 & 648 & 475 & 8299 & 910 & & 11933 & 667 & 1260017670 \\
\hline 2007955 & 413 & 401 & 458 & 10365 & 1203 & 5 & 13800 & 835 & 1463515000 \\
\hline 20081379 & 507 & 714 & 513 & 9456 & 851 & 15 & 13435 & 710 & 1414512800 \\
\hline
\end{tabular}

TAC 2009: 14000

Table 10.2.2 Sole in sub-area IV: Overview of landings and discards numbers and weights (kg) per hour and there percentages in the Dutch discards
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Period} & & \multicolumn{3}{|l|}{Numbers} & \multicolumn{3}{|l|}{We ight} \\
\hline & trips & Landings & Discards & \%D & Landings & Discards & \%D \\
\hline & n & \(\mathrm{n} \cdot \mathrm{h}^{-1}\) & \(n \cdot h^{-1}\) & & \(\mathrm{kg} \cdot \mathrm{h}^{-1}\) & \(\mathrm{kg} \cdot \mathrm{h}{ }^{-1}\) & \\
\hline 1976-1979 & 21 & 116 & 8 & 6\% & 38 & 1 & 3\% \\
\hline 1980-1983 & 22 & 84 & 23 & 21\% & 27 & 3 & 9\% \\
\hline 1989-1990 & 6 & 286 & 83 & 22\% & 72 & 11 & 13\% \\
\hline 1999-2001 & 20 & 92 & 21 & 19\% & 22 & 2 & 8\% \\
\hline 2002 & 6 & 124 & 37 & 24\% & 18 & 3 & 13\% \\
\hline 2003 & 9 & 95 & 32 & 25\% & 20 & 3 & 14\% \\
\hline 2004 & 8 & 174 & 58 & 25\% & 28 & 5 & 17\% \\
\hline 2005 & 9 & 99 & 29 & 23\% & 20 & 2 & 11\% \\
\hline 2006 & 9 & 64 & 26 & 29\% & 16 & 2 & 13\% \\
\hline 2007 & 10 & 94 & 27 & 23\% & 22 & 2 & 10\% \\
\hline
\end{tabular}

Table 10.2.3 Sole in sub-area IV: Landings numbers at age (thousands)


Table 10.2.4 Sole in sub-area IV: Landing weights at age (kg)
2009-05-10 11:49:05 units= kg
age
\(\begin{array}{llllllllllll}\text { year } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\) \(19570.0000 .1540 .1770 .2040 .248 \quad 0.279 \quad 0.2900 .3350 .4360 .408\) \(\begin{array}{lllllllllllllllll}1958 & 0.000 & 0.145 & 0.178 & 0.220 & 0.254 & 0.273 & 0.314 & 0.323 & 0.388 & 0.413\end{array}\) \(19590.000 \quad 0.1620 .188 \quad 0.228 \quad 0.261 \quad 0.301 \quad 0.328 \quad 0.321 \quad 0.3730 .426\) 19600.0000 .1530 .1850 .2350 .2540 .2770 .3010 .3090 .3810 .418 \(\begin{array}{lllllllllllllllll}1961 & 0.000 & 0.146 & 0.174 & 0.211 & 0.255 & 0.288 & 0.319 & 0.304 & 0.346 & 0.419\end{array}\) \(\begin{array}{lllllllllllll}1962 & 0.000 & 0.155 & 0.165 & 0.208 & 0.241 & 0.295 & 0.320 & 0.321 & 0.334 & 0.412\end{array}\) \(\begin{array}{llllllllllllllll}1963 & 0.000 & 0.163 & 0.171 & 0.219 & 0.258 & 0.309 & 0.323 & 0.387 & 0.376 & 0.485\end{array}\) \(19640.1530 .1750 .2130 .2520 .2740 .3090 .3270 .3460 .388 \quad 0.480\) 19650.0000 .1690 .2090 .2460 .2860 .2820 .3450 .3780 .4040 .480 \(19660.000 \quad 0.177 \quad 0.190 \quad 0.180 \quad 0.301 \quad 0.332 \quad 0.429 \quad 0.399 \quad 0.449 \quad 0.501\) \(\begin{array}{lllllllllllll}1967 & 0.000 & 0.192 & 0.201 & 0.252 & 0.277 & 0.389 & 0.419 & 0.339 & 0.424 & 0.491\end{array}\) 19680.1570 .1890 .2070 .2670 .3270 .3420 .3540 .4550 .4650 .508 \(\begin{array}{llllllllllllllll}1969 & 0.152 & 0.191 & 0.196 & 0.255 & 0.311 & 0.373 & 0.553 & 0.398 & 0.468 & 0.523\end{array}\) \(\begin{array}{lllllllllllll}1970 & 0.154 & 0.212 & 0.218 & 0.285 & 0.350 & 0.404 & 0.441 & 0.463 & 0.443 & 0.533\end{array}\) \(\begin{array}{llllllllllllll}1971 & 0.145 & 0.193 & 0.237 & 0.322 & 0.358 & 0.425 & 0.420 & 0.490 & 0.534 & 0.547\end{array}\) 19720.1690 .2040 .2520 .3340 .4340 .4250 .5320 .4850 .5580 .629 19730.1460 .2080 .2380 .3460 .4040 .4480 .5520 .5670 .5090 .586 \(19740.1640 .1920 .2330 .338 \quad 0.418 \quad 0.448 \quad 0.520 \quad 0.559 \quad 0.6090 .653\) 19750.1290 .1820 .2250 .3200 .4060 .4560 .5290 .5950 .6290 .669 19760.1430 .1900 .2220 .3060 .3890 .4410 .5120 .5620 .6670 .665 \(\begin{array}{lllllllllll}1977 & 0.147 & 0.188 & 0.236 & 0.307 & 0.369 & 0.424 & 0.430 & 0.520 & 0.562 & 0.619\end{array}\) \(\begin{array}{lllllllllllllll}1978 & 0.152 & 0.196 & 0.231 & 0.314 & 0.370 & 0.426 & 0.466 & 0.417 & 0.572 & 0.666\end{array}\) \(19790.1370 .208 \quad 0.2460 .3230 .3910 .448 \quad 0.5340 .5440 .6090 .763\) 19800.1410 .1990 .2440 .3310 .3710 .4180 .4990 .5500 .5980 .684 \(\begin{array}{llllllllllllll}1981 & 0.143 & 0.187 & 0.226 & 0.324 & 0.378 & 0.424 & 0.442 & 0.516 & 0.542 & 0.630\end{array}\) \(\begin{array}{lllllllllllllllllll}1982 & 0.141 & 0.188 & 0.216 & 0.307 & 0.371 & 0.409 & 0.437 & 0.491 & 0.580 & 0.656\end{array}\) \(\begin{array}{lllllllllllllllllll}1983 & 0.134 & 0.182 & 0.217 & 0.301 & 0.389 & 0.416 & 0.467 & 0.489 & 0.505 & 0.642\end{array}\) \(19840.1530 .1710 .2210 .286 \quad 0.3610 .3860 .4650 .5550 .5750 .634\) \(\begin{array}{lllllllllllllll}1985 & 0.122 & 0.187 & 0.216 & 0.288 & 0.357 & 0.427 & 0.447 & 0.544 & 0.612 & 0.645\end{array}\) \(\begin{array}{llllllllllllllll}1986 & 0.135 & 0.179 & 0.213 & 0.299 & 0.357 & 0.407 & 0.485 & 0.543 & 0.568 & 0.610\end{array}\) \(\begin{array}{lllllllllllllllllll}1987 & 0.139 & 0.185 & 0.205 & 0.277 & 0.356 & 0.378 & 0.428 & 0.481 & 0.393 & 0.657\end{array}\) \(\begin{array}{llllllllllllllllllll}1988 & 0.127 & 0.175 & 0.217 & 0.270 & 0.354 & 0.428 & 0.484 & 0.521 & 0.559 & 0.712\end{array}\) \(19890.1180 .1730 .2160 .288 \quad 0.336 \quad 0.3750 .4560 .492 \quad 0.470 \quad 0.611\) \(\begin{array}{llllllllllllllll}1990 & 0.124 & 0.183 & 0.227 & 0.292 & 0.371 & 0.413 & 0.415 & 0.514 & 0.476 & 0.620\end{array}\) \(19910.1270 .1860 .210 \quad 0.2630 .3150 .4360 .4430 .4670 .5070 .558\) \(19920.1460 .1780 .2130 .258 \quad 0.298 \quad 0.380 \quad 0.409 \quad 0.460 \quad 0.4870 .556\) \(\begin{array}{lllllllllllllll}1993 & 0.097 & 0.167 & 0.196 & 0.239 & 0.264 & 0.300 & 0.338 & 0.441 & 0.496 & 0.603\end{array}\) \(\begin{array}{llllllllllllll}1994 & 0.143 & 0.180 & 0.202 & 0.228 & 0.257 & 0.300 & 0.317 & 0.432 & 0.409 & 0.510\end{array}\) \(\begin{array}{llllllllllllllllll}1995 & 0.151 & 0.186 & 0.196 & 0.247 & 0.265 & 0.319 & 0.344 & 0.356 & 0.444 & 0.591\end{array}\) \(\begin{array}{lllllllllllllllll}1996 & 0.163 & 0.177 & 0.202 & 0.234 & 0.274 & 0.285 & 0.318 & 0.370 & 0.390 & 0.594\end{array}\) \(19970.1510 .180 \quad 0.2060 .2360 .2670 .2960 .3230 .3060 .3840 .440\) \(\begin{array}{lllllllllllllllll}1998 & 0.128 & 0.182 & 0.189 & 0.252 & 0.262 & 0.289 & 0.336 & 0.292 & 0.335 & 0.504\end{array}\) \(19990.1630 .1790 .2120 .229 \quad 0.287 \quad 0.3240 .3540 .3720 .3720 .453\) \(20000.1450 .1700 .2000 .2480 .290 \quad 0.2990 .3230 .3680 .4020 .427\) \(\begin{array}{lllllllllllll}2001 & 0.143 & 0.185 & 0.202 & 0.270 & 0.275 & 0.333 & 0.391 & 0.414 & 0.433 & 0.493\end{array}\) \(\begin{array}{lllllllllllllllllll}2002 & 0.140 & 0.183 & 0.211 & 0.243 & 0.281 & 0.312 & 0.366 & 0.319 & 0.571 & 0.536\end{array}\) 20030.1360 .1820 .2140 .2560 .2730 .3170 .3400 .3440 .5030 .431 \(20040.127 \quad 0.180 \quad 0.209 \quad 0.252 \quad 0.263 \quad 0.284 \quad 0.378 \quad 0.367 \quad 0.3270 .425\) \(20050.1720 .1850 .2070 .2430 .241 \quad 0.282 \quad 0.2650 .3770 .3180 .401\) \(\begin{array}{lllllllllllllllllll} & 0 & 0 & 0.156 & 0.190 & 0.220 & 0.263 & 0.291 & 0.322 & 0.293 & 0.358 & 0.397 & 0.397\end{array}\) \(20070.1540 .180 \quad 0.2050 .237 \quad 0.2530 .2730 .2950 .2990 .2810 .326\) \(\begin{array}{lllllllllllllllll}2008 & 0.150 & 0.182 & 0.225 & 0.245 & 0.260 & 0.311 & 0.314 & 0.283 & 0.280 & 0.386\end{array}\)

\title{
Table 10.2.5 Sole in sub-area IV: Stock weights at age (kg)
}

2009-05-07 08:59:01 units=kg
age
\(\begin{array}{lllllllllll}\text { year } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\)
\(19570.0250 .070 \quad 0.1470 .187 \quad 0.208 \quad 0.2530 .262 \quad 0.3550 .390 \quad 0.365\) \(19580.0250 .070 \quad 0.164 \quad 0.2050 .226 \quad 0.228 \quad 0.297 \quad 0.318 \quad 0.3930 .422\) \(19590.0250 .070 \quad 0.159 \quad 0.198 \quad 0.239 \quad 0.271 \quad 0.292 \quad 0.276 \quad 0.3030 .426\) \(\begin{array}{lllllllllll}1960 & 0.025 & 0.070 & 0.163 & 0.207 & 0.234 & 0.240 & 0.268 & 0.242 & 0.360 & 0.431\end{array}\) \(\begin{array}{lllllllllllll}1961 & 0.025 & 0.070 & 0.148 & 0.206 & 0.235 & 0.232 & 0.259 & 0.274 & 0.281 & 0.396\end{array}\) \(19620.0250 .070 \quad 0.148 \quad 0.192 \quad 0.240 \quad 0.301 \quad 0.293 \quad 0.282 \quad 0.2730 .441\) \(\begin{array}{llllllllllll}1963 & 0.025 & 0.070 & 0.148 & 0.193 & 0.243 & 0.275 & 0.311 & 0.363 & 0.329 & 0.465\end{array}\) \(\begin{array}{llllllllllll}1964 & 0.025 & 0.070 & 0.159 & 0.214 & 0.240 & 0.291 & 0.305 & 0.306 & 0.365 & 0.474\end{array}\) \(\begin{array}{llllllllllll}1965 & 0.025 & 0.140 & 0.198 & 0.223 & 0.251 & 0.297 & 0.337 & 0.358 & 0.526 & 0.460\end{array}\) \(\begin{array}{llllllllllll}1966 & 0.025 & 0.070 & 0.160 & 0.149 & 0.389 & 0.310 & 0.406 & 0.377 & 0.385 & 0.505\end{array}\) \(19670.0250 .177 \quad 0.1640 .2350 .242 \quad 0.399 \quad 0.362 \quad 0.2830 .3810 .459\) \(\begin{array}{llllllllllll}1968 & 0.025 & 0.122 & 0.171 & 0.248 & 0.312 & 0.280 & 0.629 & 0.416 & 0.410 & 0.486\end{array}\) \(\begin{array}{lllllllllll}1969 & 0.025 & 0.137 & 0.174 & 0.252 & 0.324 & 0.364 & 0.579 & 0.415 & 0.469 & 0.521\end{array}\) \(\begin{array}{lllllllllll}1970 & 0.025 & 0.137 & 0.201 & 0.275 & 0.341 & 0.367 & 0.423 & 0.458 & 0.390 & 0.554\end{array}\) \(\begin{array}{lllllllllll}1971 & 0.034 & 0.148 & 0.213 & 0.313 & 0.361 & 0.410 & 0.432 & 0.474 & 0.483 & 0.533\end{array}\) \(19720.0380 .1550 .218 \quad 0.3130 .419 \quad 0.4430 .4430 .4430 .508 \quad 0.602\) \(\begin{array}{llllllllllll}1973 & 0.039 & 0.149 & 0.226 & 0.322 & 0.371 & 0.433 & 0.452 & 0.472 & 0.446 & 0.536\end{array}\) \(19740.0350 .1460 .218 \quad 0.329 \quad 0.408 \quad 0.429 \quad 0.499 \quad 0.5650 .5420 .618\) \(\begin{array}{llllllllllll}1975 & 0.035 & 0.148 & 0.206 & 0.311 & 0.403 & 0.446 & 0.508 & 0.582 & 0.580 & 0.650\end{array}\) \(\begin{array}{lllllllllllll}1976 & 0.035 & 0.142 & 0.201 & 0.301 & 0.379 & 0.458 & 0.508 & 0.517 & 0.644 & 0.665\end{array}\) \(\begin{array}{llllllllllll}1977 & 0.035 & 0.147 & 0.202 & 0.291 & 0.365 & 0.409 & 0.478 & 0.487 & 0.531 & 0.644\end{array}\) \(\begin{array}{llllllllllll}1978 & 0.035 & 0.139 & 0.211 & 0.290 & 0.365 & 0.429 & 0.427 & 0.385 & 0.542 & 0.644\end{array}\) \(\begin{array}{llllllllllll}1979 & 0.045 & 0.148 & 0.211 & 0.300 & 0.352 & 0.429 & 0.521 & 0.562 & 0.567 & 0.743\end{array}\) \(\begin{array}{llllllllllll}1980 & 0.039 & 0.157 & 0.200 & 0.304 & 0.345 & 0.394 & 0.489 & 0.537 & 0.579 & 0.645\end{array}\) \(\begin{array}{llllllllllll}1981 & 0.050 & 0.137 & 0.200 & 0.305 & 0.364 & 0.402 & 0.454 & 0.522 & 0.561 & 0.622\end{array}\) \(19820.050 \quad 0.130 \quad 0.1930 .270 \quad 0.359 \quad 0.411 \quad 0.429 \quad 0.476 \quad 0.5830 .642\) \(\begin{array}{llllllllllll}1983 & 0.050 & 0.140 & 0.200 & 0.285 & 0.329 & 0.435 & 0.464 & 0.483 & 0.510 & 0.636\end{array}\) \(\begin{array}{llllllllllll}1984 & 0.050 & 0.133 & 0.203 & 0.268 & 0.348 & 0.386 & 0.488 & 0.591 & 0.567 & 0.664\end{array}\) \(\begin{array}{lllllllllll}1985 & 0.050 & 0.127 & 0.185 & 0.267 & 0.324 & 0.381 & 0.380 & 0.626 & 0.554 & 0.642\end{array}\) \(\begin{array}{lllllllllll}1986 & 0.050 & 0.133 & 0.191 & 0.278 & 0.345 & 0.423 & 0.495 & 0.487 & 0.587 & 0.686\end{array}\) \(\begin{array}{lllllllllllllll}1987 & 0.050 & 0.154 & 0.191 & 0.262 & 0.357 & 0.381 & 0.406 & 0.454 & 0.332 & 0.620\end{array}\) \(\begin{array}{llllllllllll}1988 & 0.050 & 0.133 & 0.193 & 0.260 & 0.335 & 0.409 & 0.417 & 0.474 & 0.486 & 0.654\end{array}\) \(19890.0500 .1330 .1950 .290 \quad 0.350 \quad 0.340 \quad 0.4110 .4750 .4190 .595\) \(19900.050 \quad 0.148 \quad 0.2030 .294 \quad 0.357 \quad 0.4470 .399 \quad 0.494 \quad 0.4810 .653\) \(\begin{array}{llllllllllll}1991 & 0.050 & 0.139 & 0.184 & 0.254 & 0.301 & 0.413 & 0.447 & 0.522 & 0.548 & 0.573\end{array}\) \(\begin{array}{llllllllllll}1992 & 0.050 & 0.156 & 0.194 & 0.257 & 0.307 & 0.398 & 0.406 & 0.472 & 0.500 & 0.540\end{array}\) \(\begin{array}{llllllllll}1993 & 0.050 & 0.128 & 0.184 & 0.229 & 0.265 & 0.293 & 0.344 & 0.482 & 0.437\end{array} 0.583\) \(19940.050 \quad 0.1430 .1740 .209 \quad 0.257 \quad 0.3260 .349 \quad 0.402 \quad 0.494 \quad 0.459\) \(\begin{array}{llllllllllll}1995 & 0.050 & 0.151 & 0.179 & 0.240 & 0.253 & 0.321 & 0.365 & 0.357 & 0.545 & 0.545\end{array}\) \(\begin{array}{lllllllllll}1996 & 0.050 & 0.147 & 0.178 & 0.208 & 0.274 & 0.268 & 0.321 & 0.375 & 0.402 & 0.546\end{array}\) \(19970.050 \quad 0.150 \quad 0.190 \quad 0.225 \quad 0.252 \quad 0.3030 .319 \quad 0.325 \quad 0.360 \quad 0.424\) \(19980.050 \quad 0.140 \quad 0.1730 .234 \quad 0.267 \quad 0.281 \quad 0.328 \quad 0.2730 .3360 .455\) \(\begin{array}{llllllllllll}1999 & 0.050 & 0.131 & 0.187 & 0.216 & 0.259 & 0.296 & 0.340 & 0.322 & 0.369 & 0.464\end{array}\) \(20000.050 \quad 0.139 \quad 0.185 \quad 0.226 \quad 0.264 \quad 0.2750 .287 \quad 0.3370 .3910 .376\) \(20010.050 \quad 0.144 \quad 0.185 \quad 0.223 \quad 0.263 \quad 0.319 \quad 0.327 \quad 0.421 \quad 0.410 \quad 0.530\) \(20020.050 \quad 0.1450 .197 \quad 0.245 \quad 0.267 \quad 0.267 \quad 0.299 \quad 0.308 \quad 0.4350 .435\) \(20030.050 \quad 0.146 \quad 0.194 \quad 0.240 \quad 0.256 \quad 0.288 \quad 0.330 \quad 0.312 \quad 0.509 \quad 0.470\) \(20040.050 \quad 0.137 \quad 0.1950 .240 \quad 0.245 \quad 0.3050 .316 \quad 0.448 \quad 0.3560 .601\) \(20050.050 \quad 0.150 \quad 0.189 \quad 0.234 \quad 0.237 \quad 0.258 \quad 0.276 \quad 0.396 \quad 0.369 \quad 0.428\) \(20060.050 \quad 0.148 \quad 0.197 \quad 0.250 \quad 0.270 \quad 0.319 \quad 0.286 \quad 0.341 \quad 0.409 \quad 0.456\) \(20070.050 \quad 0.152 \quad 0.179 \quad 0.216 \quad 0.242 \quad 0.2450 .275 \quad 0.252 \quad 0.2570 .364\) \(\begin{array}{lllllllllll}2008 & 0.050 & 0.154 & 0.200 & 0.217 & 0.239 & 0.289 & 0.283 & 0.243 & 0.262 & 0.356\end{array}\)

Table 10.2.6 Sole in subarea IV: Effort and CpUE series

NL beam
\begin{tabular}{lll} 
year & Effort & LpUE \\
& HP days (•109) & \begin{tabular}{l}
\(\mathrm{kg} \cdot 1000 \mathrm{HP} \mathrm{day}^{-1}\) \\
1990
\end{tabular} \\
191.1 & 423.0 \\
191 & 68.5 & 386.0 \\
1992 & 71.1 & 339.8 \\
1993 & 76.9 & 338.3 \\
1994 & 81.4 & 331.2 \\
1995 & 81.2 & 298.3 \\
1996 & 72.1 & 244.6 \\
1997 & 72.0 & 165.2 \\
1998 & 70.2 & 250.8 \\
1999 & 67.3 & 283.6 \\
2000 & 64.6 & 259.3 \\
2001 & 61.4 & 263.8 \\
2002 & 56.7 & 243.2 \\
2003 & 51.6 & 279.9 \\
2004 & 48.1 & 309.0 \\
2005 & 49.1 & 260.2 \\
2006 & 44.1 & 190.4 \\
2007 & 42.9 & 258.4 \\
2008 & 30.2 & 313.1
\end{tabular}

Table 10.2.7 Sole in subarea IV: Tuning data. BTS and SNS surveys and commercial series from NL beam trawl

\begin{tabular}{rrrrrr} 
& & 1 & 2 & 3 & 4 \\
1970 & 1 & 5410 & 734 & 238 & 35 \\
1971 & 1 & 893 & 1844 & 110 & 3 \\
1972 & 1 & 1455 & 272 & 149 & 0 \\
1973 & 1 & 5587 & 935 & 84 & 37 \\
1974 & 1 & 2348 & 361 & 65 & 0 \\
1975 & 1 & 529 & 848 & 166 & 47 \\
1976 & 1 & 1399 & 74 & 229 & 27 \\
1977 & 1 & 3743 & 776 & 104 & 43 \\
1978 & 1 & 1548 & 1355 & 294 & 28 \\
1979 & 1 & 94 & 408 & 301 & 77 \\
1980 & 1 & 4313 & 89 & 109 & 61 \\
1981 & 1 & 3737 & 1413 & 50 & 20 \\
1982 & 1 & 5856 & 1146 & 228 & 7 \\
1983 & 1 & 2621 & 1123 & 121 & 40 \\
1984 & 1 & 2493 & 1100 & 318 & 74 \\
1985 & 1 & 3619 & 716 & 167 & 49 \\
1986 & 1 & 3705 & 458 & 69 & 31 \\
1987 & 1 & 1948 & 944 & 65 & 21 \\
1988 & 1 & 11227 & 594 & 282 & 82 \\
1989 & 1 & 2831 & 5005 & 208 & 53 \\
1990 & 1 & 2856 & 1120 & 914 & 100 \\
1991 & 1 & 1254 & 2529 & 514 & 624 \\
1992 & 1 & 11114 & 144 & 360 & 195 \\
1993 & 1 & 1291 & 3420 & 154 & 213 \\
1994 & 1 & 652 & 498 & 934 & 10 \\
1995 & 1 & 1362 & 224 & 143 & 411 \\
1996 & 1 & 218 & 349 & 30 & 36 \\
1997 & 1 & 10279 & 154 & 190 & 26 \\
1998 & 1 & 4095 & 3126 & 142 & 99 \\
1999 & 1 & 1649 & 972 & 456 & 10 \\
2000 & 1 & 1639 & 126 & 166 & 118 \\
2001 & 1 & 970 & 655 & 107 & 35 \\
2002 & 1 & 7542 & 379 & 195 & 0 \\
2003 & 1 & NA & NA & NA & NA \\
2004 & 1 & 1367 & 623 & 396 & 69 \\
2005 & 1 & 568 & 163 & 124 & 0 \\
2006 & 1 & 4167 & 382 & 80 & 105 \\
2007 & 1 & 848 & 911 & 33 & 40 \\
2008 & 1 & 1259 & 258 & 325 & 0 \\
& & & &
\end{tabular}

Table 10.2.7 cont.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{2009-05-} & 11 & :50 & NL B & eam Tr & un & \(s=\) NA & & \\
\hline & E & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 1990 & 71.1 & 127.6 & 1190 & 101.9 & 992.6 & 23.5 & 8.93 & 11.52 & 5.288 \\
\hline 1991 & 68.5 & 107.1 & 251 & 872.3 & 367.7 & 31.2 & 9.97 & 4.55 & 5.723 \\
\hline 1992 & 71.1 & 71.0 & 477 & 156.6 & 6419.6 & 20.5 & 29.27 & 6.27 & 3.080 \\
\hline 1993 & 76.9 & 510.9 & 142 & 313.8 & 8125.2 & 242.2 & 11.53 & 10.56 & 3.069 \\
\hline 1994 & 81.4 & 66.2 & 858 & 91.1 & 1159.8 & 38.1 & 109.74 & 2.33 & 6.437 \\
\hline 1995 & 81.2 & 120.4 & 140 & 658.7 & 735.0 & 63.2 & 11.05 & 57.66 & 1.810 \\
\hline 1996 & 72.1 & 219.7 & 126 & 154.9 & 9294.2 & 21.8 & 44.01 & 6.55 & 38.474 \\
\hline 1997 & 72.0 & 62.6 & 256 & 62.6 & 646.2 & 135.7 & 6.90 & 25.00 & 1.319 \\
\hline 1998 & 70.2 & 720.4 & 129 & 158.4 & 426.0 & 16.3 & 48.36 & 3.01 & 4.801 \\
\hline 1999 & 67.3 & 175.6 & 820 & 61.7 & 766.3 & 10.8 & 4.99 & 22.69 & 1.976 \\
\hline 2000 & 64.6 & 190.5 & 458 & 336.6 & 6 31.7 & 24.5 & 7.04 & 4.98 & 9.923 \\
\hline 2001 & 61.4 & 305.0 & 222 & 243.8 & 8213.0 & 11.7 & 8.24 & 2.21 & 1.515 \\
\hline 2002 & 56.7 & 158.8 & 437 & 140.0 & 106.4 & 89.6 & 7.48 & 6.77 & 0.952 \\
\hline 2003 & 51.6 & 502.8 & 224 & 241.1 & 165.8 & 54.7 & 38.02 & 4.36 & 1.202 \\
\hline 2004 & 48.1 & 232.6 & 774 & 117.1 & 105.2 & 24.7 & 13.31 & 11.27 & 2.807 \\
\hline 2005 & 49.1 & 103.1 & 333 & 428.3 & 77.3 & 40.8 & 18.76 & 5.89 & 12.607 \\
\hline 2006 & 44.1 & 154.0 & 177 & 152.1 & 186.5 & 21.6 & 21.43 & 11.84 & 6.100 \\
\hline 2007 & 42.9 & 775.6 & 178 & 104.5 & 58.3 & 86.2 & 7.81 & 7.60 & 2.960 \\
\hline 2008 & 30.2 & 156.2 & 952 & 107.8 & 861.7 & 42.0 & 47.52 & 6.56 & 5.861 \\
\hline
\end{tabular}

Commercial series from NL beam trawl (spatially-weighted). Not used in the final run assessment.
```

2009-05-07 12:16 NL Beam Trawl Spatially weighted units= NA

```
\begin{tabular}{rcrrrrrrrr} 
& E & 2 & 3 & 4 & \multicolumn{1}{c}{5} & 6 & \multicolumn{1}{c}{7} & 8 & 9 \\
1997 & 72.0 & 18.1 & 84.2 & 23.4 & 18.9 & 60.3 & 3.3 & 11.5 & 0.8 \\
1998 & 70.2 & 152.0 & 31.9 & 51.8 & 9.4 & 6.2 & 22.0 & 1.3 & 2.6 \\
1999 & 67.3 & 39.0 & 230.2 & 20.5 & 25.7 & 4.9 & 2.7 & 12.0 & 1.0 \\
2000 & 64.6 & 36.6 & 96.0 & 162.9 & 12.2 & 11.4 & 3.7 & 2.3 & 6.1 \\
2001 & 61.4 & 65.8 & 54.3 & 72.0 & 70.3 & 4.8 & 3.9 & 1.0 & 0.8 \\
2002 & 56.7 & 33.0 & 114.2 & 43.0 & 35.6 & 33.8 & 3.3 & 2.8 & 0.7 \\
2003 & 51.6 & 95.1 & 50.4 & 63.9 & 18.2 & 17.0 & 13.5 & 1.6 & 0.8 \\
2004 & 48.1 & 42.9 & 165.8 & 30.0 & 28.9 & 7.3 & 5.2 & 4.5 & 1.0 \\
2005 & 49.1 & 20.4 & 69.9 & 104.4 & 13.7 & 12.7 & 4.0 & 2.7 & 3.6 \\
2006 & 44.1 & 30.9 & 40.6 & 39.8 & 54.4 & 6.8 & 7.0 & 4.0 & 2.1 \\
2007 & 42.9 & 135.7 & 38.6 & 26.4 & 24.1 & 26.1 & 2.8 & 2.8 & 1.0 \\
2008 & 30.2 & 32.8 & 249.0 & 32.5 & 20.0 & 16.3 & 18.7 & 2.4 & 2.5
\end{tabular}

\section*{Table 10.3.1. Sole in sub area IV: XSA diagnostics}

CPUE data from xsa.indices
Catch data for 52 years. 1957 to 2008. Ages 1 to 10
\begin{tabular}{rrrrrrrr} 
& fleet first age last age first & year & last year alpha beta \\
1 & BTS-ISIS & 1 & 9 & 1985 & 2008 & 0.66 & 0.75 \\
2 & SNS & 1 & 4 & 1970 & 2008 & 0.66 & 0.75 \\
3 NL Beam Trawl & 2 & 9 & 1990 & 2008 & 0 & 1
\end{tabular}

Time series weights :
Tapered time weighting not applied
Catchability analysis :

Catchability independent of size for ages \(>1\)
Catchability independent of age for ages \(>=7\)
Terminal population estimation :
Survivor estimates shrunk towards the mean F
of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk \(=2\)

Minimum standard error for population
estimates derived from each fleet \(=0.3\)
prior weighting not applied
Regression weights

> year
age 1999200020012002200320042005200620072008

Fishing mortalities

\section*{year}
age \(\quad 1999 \quad 2000 \quad 2001 \quad 2002 \quad 2003 \quad 2004 \quad 2005 \quad 2006 \quad 2007 \quad 2008\) \(\begin{array}{lllllllllll}0.004 & 0.020 & 0.015 & 0.006 & 0.013 & 0.012 & 0.025 & 0.033 & 0.006 & 0.022\end{array}\) \(20.1750 .2390 .2840 .2300 .2250 .230 \quad 0.2070 .2630 .2430 .126\) \(\begin{array}{llllllllllll}3 & 0.608 & 0.579 & 0.559 & 0.620 & 0.601 & 0.533 & 0.584 & 0.425 & 0.467 & 0.316\end{array}\) \(4 \quad 0.710 \quad 0.790 \quad 0.748 \quad 0.637 \quad 0.625 \quad 0.685 \quad 0.6510 .436 \quad 0.4670 .382\) \(\begin{array}{lllllllllll}5 & 0.785 & 0.614 & 0.734 & 0.710 & 0.627 & 0.588 & 0.667 & 0.455 & 0.465 & 0.482\end{array}\) \(\begin{array}{lllllllllll}6 & 0.575 & 0.763 & 0.522 & 0.618 & 0.783 & 0.444 & 0.632 & 0.489 & 0.400 & 0.382\end{array}\) \(7 \quad 0.5240 .8440 .5550 .4410 .4410 .3610 .5700 .4750 .4550 .280\) \(8 \quad 0.485 \quad 0.691 \quad 0.6910 .886 \quad 0.453 \quad 0.277 \quad 0.398 \quad 0.498 \quad 0.3850 .586\) \(\begin{array}{lllllllllllll}9 & 1.234 & 0.391 & 0.554 & 0.443 & 0.412 & 0.958 & 0.340 & 0.384 & 0.709 & 0.732\end{array}\) \(\begin{array}{lllllllllllll}10 & 1.234 & 0.391 & 0.554 & 0.443 & 0.412 & 0.958 & 0.340 & 0.384 & 0.709 & 0.732\end{array}\)

XSA population number ( thousands ) age
\begin{tabular}{crrrrrrrrrr} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1999 & 82581 & 103065 & 167236 & 16936 & 11815 & 2913 & 1711 & 5431 & 491 & 1192 \\
2000 & 123824 & 74450 & 78264 & 82386 & 7536 & 4878 & 1483 & 916 & 3027 & 2313 \\
2001 & 63480 & 109804 & 53027 & 39674 & 33830 & 3691 & 2057 & 577 & 415 & 1781 \\
2002 & 187821 & 56599 & 74769 & 27439 & 16992 & 14697 & 1983 & 1068 & 262 & 1066 \\
2003 & 85663 & 168944 & 40699 & 36404 & 13137 & 7561 & 7165 & 1154 & 399 & 1399 \\
2004 & 46679 & 76515 & 122114 & 20181 & 17635 & 6351 & 3126 & 4171 & 664 & 658 \\
2005 & 49955 & 41746 & 55012 & 64863 & 9201 & 8863 & 3687 & 1971 & 2860 & 1456 \\
2006 & 221770 & 44101 & 30718 & 27765 & 30607 & 4271 & 4264 & 1887 & 1198 & 1769 \\
2007 & 60383 & 194184 & 30687 & 18179 & 16238 & 17573 & 2369 & 2400 & 1037 & 1119 \\
2008 & 90949 & 54335 & 137762 & 17411 & 10317 & 9232 & 10657 & 1360 & 1478 & 1344
\end{tabular}

Estimated population abundance at 1st Jan 2009
\begin{tabular}{lcllllllllll} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{tabular}

2009080469433459088010752576357017287685643

\section*{Fleet: BTS-ISIS}

Log catchability residuals.
    Mean log catchability and standard error of ages with catchability
    independent of year class strength and constant w.r.t. time
Mean_Logq -8.9000 \begin{tabular}{rrrrrrrr} 
& 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{tabular}
\(\begin{array}{llllllllll}\text { S.E_Logq } & 0.4708 & 0.5666 & 0.5972 & 0.7076 & 0.7017 & 0.6300 & 0.9034 & 0.9389\end{array}\)

Regression statistics
Ages with \(q\) dependent on year class strength
slope intercept

Age 10.67998139 .854946

Fleet: SNS
Log catchability residuals.
```

 year
 age 1970 1971 1972 1973 1974 19 1975 1976 19 1977 1978 1979 1980
1 0.268 0.164 -0.012 0.486 -0.021 -0.097 -0.321 0.056 0.374 -0.118
2 0.762 0.815 0.018
3 0.503 0.159 -0.281 0.256 -0.704 -0.124
40.083-2.578 NA -0.421 NA 0.244 -0.787-0.200 0.131
year
age 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
1 0.239 -0.150 0.336 0.440 -0.048 0. 184 -0.219 0.091 -0.267 -0.034 -0.039 -0.006
2 0.179 0.207 0.228
3-0.011 -0.724 0.400-0.193-0.434-0.873 0.105 0.497-0.057 0.827 -0.061 0.033
4-0.013 -0.406 0.067-0.085 -0.545-0.378 0.661 -0.260 0.924 0.689 0.941 0.564
year
age 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
1-0.228 -0.197 -0.721 0.115 0.253 -0.001 -0.296
2 0.047-0.429-0.488-0.778 0.621 0.243-1.430-0.139-0.061 NA 0.134 -0.617
3 0.324 0.011 -1.002 0.249 0.476 0.063 -0.208 -0.273 0.027 NA 0. 183 -0.144
4-1.499 0.811 0.082 0.182 0.953 -0.866 0.077-0.438 NA NA 0.873 NA
year
age 2006 2007 2008
1 -0.215 -0.130-0.211
2 0.219-0.408-0.478
3-0.112-0.967-0.288
4 0.799 0.278 NA

```
    Mean log catchability and standard error of ages with catchability
    independent of year class strength and constant w.r.t. time
Mean Logq \(-4.7123-5.4686-5.9980\)
\[
\begin{array}{llll}
\text { S.E_Logq } & 0.5633 & 0.4437 & 0.7432
\end{array}
\]

Regression statistics
Ages with \(q\) dependent on year class strength
slope intercept

Age \(10.7362234 \quad 5.812331\)

Fleet: NL Beam Trawl
Log catchability residuals.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & year & & & & & & & & & & \\
\hline age & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 \\
\hline 2 & -0.509 & -1.198 & -0.673 & -0.283 & -0.717 & 0.166 & 0.273 & -0.428 & 0.375 & -0.222 & 0.215 \\
\hline 3 & -0.263 & -0.366 & -0.258 & -0.520 & -0.250 & -0.494 & -0.111 & 0.033 & -0.147 & 0.128 & 0.291 \\
\hline 4 & -0.215 & -0.136 & -0.420 & -0.213 & -0.476 & 0.063 & 0.260 & -0.142 & 0.197 & -0.251 & -0.102 \\
\hline 5 & -0.193 & 0.078 & -0.284 & 0.050 & -0.211 & -0.739 & 0.062 & 0.026 & -0.225 & 0.182 & -0.181 \\
\hline 6 & -0.301 & -0.477 & -0.122 & -0.017 & 0.004 & -0. 235 & -0.210 & 0.300 & 0.052 & -0.126 & 0.254 \\
\hline 7 & -0.242 & -0.325 & 0.183 & 0.220 & -0.075 & -0.204 & 0.208 & -0.429 & 0.144 & -0.302 & 0.324 \\
\hline 8 & 0.045 & -0.253 & -0.049 & -0.135 & -0.516 & -0.116 & 0.240 & 0.502 & -0.416 & 0.039 & 0.395 \\
\hline 9 & 0.065 & 0.102 & 0.188 & 0.037 & 0.149 & 0.106 & 0.073 & -0.254 & -0.162 & 0.318 & -0.246 \\
\hline \multicolumn{12}{|c|}{year} \\
\hline age & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & & & \\
\hline 2 & 0.318 & 0.302 & 0.359 & 0.383 & 0.163 & 0.537 & 0.662 & 0.277 & & & \\
\hline 3 & -0.050 & 0.309 & 0.239 & 0.351 & 0.329 & 0.207 & 0.234 & 0.339 & & & \\
\hline 4 & 0.288 & 0.053 & 0.309 & 0.203 & 0.318 & 0.035 & 0.097 & 0.133 & & & \\
\hline 5 & 0.276 & 0.260 & 0.000 & 0.157 & 0.535 & 0.119 & -0.025 & 0.113 & & & \\
\hline 6 & -0.307 & 0.386 & 0.629 & -0.140 & 0.110 & 0.143 & 0.070 & -0.013 & & & \\
\hline 7 & 0.029 & -0.083 & 0.259 & 0.002 & 0.275 & 0.219 & -0.211 & 0.010 & & & \\
\hline 8 & 0.046 & 0.631 & -0.075 & -0.492 & -0.336 & 0.452 & -0.284 & 0.228 & & & \\
\hline 9 & -0.065 & -0.117 & -0.320 & 0.256 & 0.027 & 0.191 & -0.243 & 0.096 & & & \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\(\begin{array}{lrrrrrrrr} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \text { Mean_Logq } & -6.0179 & -5.1125 & -4.9857 & -4.9552 & -5.1483 & -5.2391 & -5.2391 & -5.2391\end{array}\)
\(\begin{array}{lllllllll}S . E & \text { Logq } & 0.5031 & 0.2965 & 0.2437 & 0.2709 & 0.2690 & 0.2334 & 0.3419\end{array} 0.1875\)

Terminal year survivor and \(F\) summaries:
Age 1 Year class \(=2007\)
source
\begin{tabular}{lrr} 
& Survivors & scaleds \\
BTS-ISIS & 1129411 & 0.396 \\
SNS & 603951 & 0.493 \\
fshk & 1031861 & 0.015 \\
nshk & 834331 & 0.096
\end{tabular}

Age 2 Year class \(=2006\)
source
\begin{tabular}{lrrr} 
& survivors \(N\) & scaledWts \\
BTS-ISIS & 524192 & 0.416 \\
SNS & 334642 & 0.430 \\
NL Beam Trawl & 571651 & 0.143 \\
fshk & 22081 & 1 & 0.011
\end{tabular}

Age 3 Year class \(=2005\)
source
\begin{tabular}{lrrr} 
& survivors \(N\) & scaledWts \\
BTS-ISIS & 82279 & 3 & 0.293 \\
SNS & 66613 & 3 & 0.349 \\
NL Beam Trawl & 136670 & 2 & 0.350 \\
fshk & 49059 & 1 & 0.009
\end{tabular}

Age 4 Year class = 2004
source
\begin{tabular}{lrrr} 
& survivors \(N\) & scaledWts \\
BTS-ISIS & 106124 & 0.253 \\
SNS & 69093 & 0.221 \\
NL Beam Trawl & 131983 & 0.516 \\
fshk & 64351 & 0.010 \\
& & \\
Age 5 Year class \(=2003\) &
\end{tabular}
\begin{tabular}{lrrr} 
source & survivors & N & scaledWts \\
& 3742 & 5 & 0.213 \\
BTS-ISIS & 6335 & 4 & 0.176 \\
SNS & 6554 & 4 & 0.601 \\
NL Beam Trawl & 4730 & 1 & 0.010
\end{tabular}

Age 6 Year class \(=2002\)
source
survivors N scaledWts
BTS-ISIS 478460.195
SNS 697730.067
NL Beam Trawl 5904500.727
\begin{tabular}{lll} 
fshk & 36021 & 0.010
\end{tabular}

Age 7 Year class = 2001
source
\begin{tabular}{lrrr} 
& survivors & N & scaledWts \\
BTS-ISIS & 4796 & 7 & 0.185 \\
SNS & 9335 & 2 & 0.041 \\
NL Beam Trawl & 80136 & 0.765 \\
fshk & 4013 & 1 & 0.009 \\
Age 8 Year class \(=2000\) &
\end{tabular}
source survivors N scaledWts
\begin{tabular}{lrrr} 
& survivors \(N\) & scaledWts \\
BTS-ISIS & 3698 & 0.159 \\
SNS & 7963 & 0.023 \\
NL Beam Trawl & 7647 & 0.803 \\
fshk & 10981 & 0.015 \\
& & \\
Age 9 Year class \(=1999\) &
\end{tabular}
\begin{tabular}{lrrr} 
source & & \\
& survivors \(N\) & scaledWts \\
BTS-ISIS & 427 & 9 & 0.130 \\
SNS & 5273 & 0.015 \\
NL Beam Trawl & 678 & 8 & 0.839 \\
fshk & 1315 & 1 & 0.016
\end{tabular}

Table 10.3.2. Sole in sub area IV: fishing mortality at age


Table 10.3.3 Sole in sub area IV: stock numbers at age

\author{
2009-05-07 10:58:50 units=thousands
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & \\
\hline year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1957 & 128909 & 72454 & 89307 & 59106 & 17318 & 15057 & 27046 & 11836 & 2500 & 30811 \\
\hline 1958 & 128643 & 116642 & 64213 & 71155 & 41456 & 12092 & 10843 & 18272 & 9062 & 26295 \\
\hline 1959 & 488757 & 116401 & 103779 & 50074 & 50906 & 28474 & 7627 & 6950 & 12311 & 26788 \\
\hline 1960 & 61714 & 442245 & 101843 & 82464 & 35415 & 37524 & 20278 & 5754 & 4362 & 32546 \\
\hline 1961 & 99488 & 55 & 388705 & 78708 & 58638 & 23191 & 25995 & 13738 & 1 & 31943 \\
\hline 1962 & 22895 & 90020 & 49615 & 304357 & 53011 & 41259 & 16518 & 19769 & 8361 & 29933 \\
\hline 1963 & 20420 & 20717 & 79938 & 38986 & 219090 & 33369 & 27306 & 10356 & 13976 & 32249 \\
\hline 1964 & 539075 & 8302 & 7992 & 27183 & 10396 & 59616 & 8153 & 6856 & 2665 & 9788 \\
\hline 1965 & 121959 & 487723 & 7365 & 5221 & 19163 & 5783 & 37451 & 4404 & 4482 & 9390 \\
\hline 1966 & 39901 & 110353 & 396507 & 5628 & 3203 & 12581 & 2872 & 21997 & 2504 & 9 \\
\hline 1967 & 75135 & 36104 & 88172 & 231674 & 4151 & 1775 & 7875 & 1891 & 13888 & 7981 \\
\hline 1968 & 99262 & 67985 & 29162 & 55351 & 128652 & 1897 & 1096 & 5300 & 988 & 19813 \\
\hline 1969 & 50787 & 88830 & 45204 & 13169 & 26329 & 70207 & 1277 & 759 & 3232 & 14254 \\
\hline 1970 & 137795 & 45577 & 57621 & 20497 & 6849 & 12039 & 39613 & 841 & 455 & 16935 \\
\hline 1971 & 42148 & 123446 & 35399 & 27412 & 10713 & 4501 & 7820 & 24467 & 527 & 12543 \\
\hline 1972 & 76525 & 37737 & 79957 & 18309 & 12669 & 5428 & 2701 & 4863 & 15276 & 9059 \\
\hline 1973 & 104859 & 68902 & 26923 & 37382 & 9837 & 6740 & 3422 & 1946 & 3228 & 15274 \\
\hline 1974 & 109939 & 94211 & 50714 & 12201 & 18427 & 5072 & 3888 & 2151 & 1033 & 12346 \\
\hline 1975 & 40816 & 9938 & 70616 & 25398 & 5821 & 9957 & 2761 & 2011 & 1321 & 13 \\
\hline 1976 & 113311 & 36681 & 68089 & 36753 & 11836 & 3280 & 5366 & 1747 & 957 & 5960 \\
\hline 1977 & 140375 & 101538 & 29821 & 35007 & 19926 & 6125 & 2049 & 3039 & 1057 & 8711 \\
\hline 1978 & 47256 & 125355 & 70637 & 15499 & 17116 & 10952 & 3850 & 1551 & 1692 & 4178 \\
\hline 1979 & 11723 & 42733 & 89615 & 36051 & 8194 & 9172 & 5867 & 1831 & 822 & 5191 \\
\hline 1980 & 151694 & 10599 & 30887 & 41925 & 17344 & 4564 & 5235 & 3647 & 880 & 2870 \\
\hline 1981 & 149346 & 136652 & 8440 & 16047 & 21022 & 8752 & 2750 & 2647 & 1960 & 2312 \\
\hline 1982 & 152751 & 134731 & 95856 & 4537 & 7988 & 11199 & 4437 & 1587 & 1552 & 3263 \\
\hline 1983 & 142179 & 135684 & 96764 & 43219 & 2352 & 3866 & 5578 & 2418 & 851 & 2578 \\
\hline 1984 & 70791 & 128279 & 90042 & 48188 & 18951 & 1535 & 2187 & 3192 & 1258 & 2135 \\
\hline 1985 & 80833 & 63873 & 86837 & 39685 & 22149 & 8785 & 684 & 1166 & 1896 & 2891 \\
\hline 1986 & 159654 & 72984 & 41987 & 37468 & 16612 & 11096 & 4566 & 420 & 695 & 4110 \\
\hline 1987 & 72553 & 144105 & 57132 & 20396 & 17063 & 7662 & 4794 & 1973 & 275 & 2352 \\
\hline 1988 & 454627 & 65559 & 102756 & 30724 & 9991 & 9245 & 3966 & 2848 & 926 & 56 \\
\hline 1989 & 108296 & 411354 & 46746 & 48096 & 13311 & 4872 & 4673 & 2113 & 1729 & 1761 \\
\hline 1990 & 177757 & 97879 & 328084 & 24925 & 21970 & 7646 & 2836 & 2861 & 1297 & 1967 \\
\hline 1991 & 70476 & 160020 & 77208 & 197503 & 13263 & 11134 & 3733 & 1574 & 1449 & 2150 \\
\hline 1992 & 354171 & 63655 & 132271 & 45680 & 104595 & 5604 & 6579 & 1726 & 741 & 2174 \\
\hline 1993 & 69289 & 319535 & 51099 & 77470 & 25920 & 58191 & 2715 & 3060 & 857 & 1554 \\
\hline 1994 & 57057 & 62644 & 241137 & 30286 & 40221 & 10260 & 29791 & 1040 & 1642 & 1616 \\
\hline 1995 & 96104 & 50944 & 49259 & 135050 & 14515 & 18568 & 3852 & 16197 & 500 & 1122 \\
\hline 1996 & 49508 & 82392 & 33952 & 28570 & 56971 & 7133 & 9850 & 1587 & 8934 & 2659 \\
\hline 1997 & 271749 & 44633 & 56645 & 15321 & 9714 & 25622 & 2785 & 4366 & 539 & 2709 \\
\hline 1998 & 114161 & 244377 & 34634 & 28757 & 6895 & 3931 & 11015 & 1377 & 1738 & 1414 \\
\hline 1999 & 82581 & 103065 & 167236 & 16936 & 11815 & 2913 & 1711 & 5431 & 491 & 1192 \\
\hline 2000 & 123824 & 74450 & 78264 & 82386 & 7536 & 4878 & 1483 & 916 & 3027 & 2313 \\
\hline 2001 & 63480 & 109804 & 53027 & 39674 & 33830 & 3691 & 2057 & 577 & 415 & 1781 \\
\hline 2002 & 187821 & 56599 & 74769 & 27439 & 16992 & 14697 & 1983 & 1068 & 262 & 1066 \\
\hline 2003 & 85663 & 168944 & 40699 & 36404 & 13137 & 7561 & 7165 & 1154 & 399 & 1399 \\
\hline 2004 & 46679 & 76515 & 122114 & 20181 & 17635 & 6351 & 3126 & 4171 & 664 & 658 \\
\hline 2005 & 49955 & 41746 & 55012 & 64863 & 9201 & 8863 & 3687 & 1971 & 2860 & 1456 \\
\hline 2006 & 221770 & 44101 & 30718 & 27765 & 30607 & 4271 & 4264 & 1887 & 1198 & 1769 \\
\hline 2007 & 60383 & 194184 & 30687 & 18179 & 16238 & 17573 & 2369 & 2400 & 1037 & 1119 \\
\hline 2008 & 90949 & 54335 & 137762 & 17411 & 10317 & 9232 & 10657 & 1360 & 1478 & 1344 \\
\hline 2009 & NA & 80468 & 43345 & 90880 & 10752 & 5763 & 5701 & 7286 & 685 & 1228 \\
\hline
\end{tabular}

Table 10.4.1. Sole in sub area IV: XSA summary
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline year & recruitmen & t ssb & catch & landings & tsb & fbar2-6 & Y/ssb \\
\hline 1957 & 128909 & 55107 & 11601 & 12067 & 63402 & 0.178 & 0.22 \\
\hline 1958 & 128643 & 60919 & 14216 & 14287 & 72300 & 0.207 & 0.23 \\
\hline 1959 & 488757 & 65580 & 13702 & 13832 & 85947 & 0.171 & 0.21 \\
\hline 1960 & 61714 & 73398 & 18740 & 18620 & 105898 & 0.204 & 0.25 \\
\hline 1961 & 99488 & 117099 & 23246 & 23566 & 123495 & 0.190 & 0.20 \\
\hline 1962 & 22895 & 116830 & 27039 & 26877 & 123703 & 0.213 & 0.23 \\
\hline 1963 & 20420 & 113628 & 26380 & 26164 & 115588 & 0.313 & 0.23 \\
\hline 1964 & 539075 & 37127 & 11740 & 11342 & 51185 & 0.289 & 0.31 \\
\hline 1965 & 121959 & 30029 & 17767 & 17043 & 101359 & 0.317 & 0.57 \\
\hline 1966 & 39901 & 84243 & 33705 & 33340 & 92965 & 0.325 & 0.40 \\
\hline 1967 & 75135 & 82958 & 32704 & 33439 & 91227 & 0.406 & 0.40 \\
\hline 1968 & 99262 & 72306 & 33285 & 33179 & 83081 & 0.490 & 0.46 \\
\hline 1969 & 50787 & 55267 & 27014 & 27559 & 68707 & 0.546 & 0.50 \\
\hline 1970 & 137795 & 50680 & 19683 & 19685 & 60369 & 0.399 & 0.39 \\
\hline 1971 & 42148 & 43742 & 23374 & 23652 & 63445 & 0.511 & 0.54 \\
\hline 1972 & 76525 & 47437 & 21320 & 21086 & 56194 & 0.462 & 0.44 \\
\hline 1973 & 104859 & 36775 & 18950 & 19309 & 51131 & 0.504 & 0.53 \\
\hline 1974 & 109939 & 36110 & 18237 & 17989 & 53712 & 0.489 & 0.50 \\
\hline 1975 & 40816 & 38365 & 20559 & 20773 & 54502 & 0.497 & 0.54 \\
\hline 1976 & 113311 & 38944 & 16959 & 17326 & 48118 & 0.423 & 0.44 \\
\hline 1977 & 140375 & 34623 & 17672 & 18003 & 54463 & 0.459 & 0.52 \\
\hline 1978 & 47256 & 36195 & 20370 & 20280 & 55274 & 0.479 & 0.56 \\
\hline 1979 & 11723 & 44954 & 22321 & 22598 & 51806 & 0.492 & 0.50 \\
\hline 1980 & 151694 & 33584 & 15496 & 15807 & 41164 & 0.453 & 0.47 \\
\hline 1981 & 149346 & 22921 & 15009 & 15403 & 49109 & 0.496 & 0.67 \\
\hline 1982 & 152751 & 32855 & 21286 & 21579 & 58007 & 0.541 & 0.66 \\
\hline 1983 & 142179 & 39956 & 24828 & 24927 & 66061 & 0.486 & 0.62 \\
\hline 1984 & 70791 & 43464 & 26747 & 26839 & 64065 & 0.613 & 0.62 \\
\hline 1985 & 80833 & 41082 & 24497 & 24248 & 53235 & 0.595 & 0.59 \\
\hline 1986 & 159654 & 34554 & 18316 & 18201 & 52243 & 0.573 & 0.53 \\
\hline 1987 & 72553 & 29658 & 17462 & 17368 & 55478 & 0.489 & 0.59 \\
\hline 1988 & 454627 & 38765 & 21612 & 21590 & 70216 & 0.567 & 0.56 \\
\hline 1989 & 108296 & 34075 & 22156 & 21805 & 94200 & 0.447 & 0.64 \\
\hline 1990 & 177757 & 89643 & 35485 & 35120 & 113017 & 0.454 & 0.39 \\
\hline 1991 & 70476 & 77479 & 34096 & 33513 & 103246 & 0.448 & 0.43 \\
\hline 1992 & 354171 & 76772 & 29787 & 29341 & 104411 & 0.427 & 0.38 \\
\hline 1993 & 69289 & 54752 & 31858 & 31491 & 99117 & 0.511 & 0.58 \\
\hline 1994 & 57057 & 74337 & 33405 & 33002 & 86148 & 0.562 & 0.44 \\
\hline 1995 & 96104 & 58934 & 30690 & 30467 & 71432 & 0.532 & 0.52 \\
\hline 1996 & 49508 & 38310 & 22913 & 22651 & 52897 & 0.698 & 0.59 \\
\hline 1997 & 271749 & 28071 & 15050 & 14901 & 48354 & 0.596 & 0.53 \\
\hline 1998 & 114161 & 20882 & 21049 & 20868 & 60803 & 0.636 & 1.00 \\
\hline 1999 & 82581 & 41918 & 23717 & 23475 & 59548 & 0.571 & 0.56 \\
\hline 2000 & 123824 & 39217 & 22859 & 22641 & 55756 & 0.597 & 0.58 \\
\hline 2001 & 63480 & 30762 & 20582 & 19944 & 49748 & 0.569 & 0.65 \\
\hline 2002 & 187821 & 31412 & 17092 & 16945 & 49010 & 0.563 & 0.54 \\
\hline 2003 & 85663 & 25758 & 17940 & 17920 & 54707 & 0.572 & 0.70 \\
\hline 2004 & 46679 & 38402 & 18744 & 18757 & 51218 & 0.496 & 0.49 \\
\hline 2005 & 49955 & 33520 & 16722 & 16355 & 42280 & 0.548 & 0.49 \\
\hline 2006 & 221770 & 25778 & 12246 & 12594 & 43393 & 0.414 & 0.49 \\
\hline 2007 & 60383 & 19585 & 14725 & 14635 & 52120 & 0.408 & 0.75 \\
\hline 2008 & 90949 & 40676 & 13924 & 14144 & 53592 & 0.338 & 0.35 \\
\hline
\end{tabular}

Table 10.5.1. Sole in sub area IV: RCT3 input table
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Year} \\
\hline Class & N AGE 1 & N Age 2 & DFS 0 & SNS 1 & SNS 2 & BTS 1 \\
\hline 1969 & 137795 & 123446 & -11.00 & 5410 & 1844 & -11.00 \\
\hline 1970 & 42148 & 37737 & -11.00 & 893 & 272 & -11.00 \\
\hline 1971 & 76525 & 68902 & -11.00 & 1455 & 935 & -11.00 \\
\hline 1972 & 104859 & 94211 & -11.00 & 5587 & 361 & -11.00 \\
\hline 1973 & 109939 & 99381 & -11.00 & 2348 & 848 & -11.00 \\
\hline 1974 & 40816 & 36681 & -11.00 & 529 & 74 & -11.00 \\
\hline 1975 & 113311 & 101538 & 168.84 & 1399 & 776 & -11.00 \\
\hline 1976 & 140375 & 125355 & 82.28 & 3743 & 1355 & -11.00 \\
\hline 1977 & 47256 & 42733 & 33.80 & 1548 & 408 & -11.00 \\
\hline 1978 & 11723 & 10599 & 96.87 & 94 & 89 & -11.00 \\
\hline 1979 & 151694 & 136652 & 392.08 & 4313 & 1413 & -11.00 \\
\hline 1980 & 149346 & 134731 & 404.00 & 3737 & 1146 & -11.00 \\
\hline 1981 & 152751 & 135684 & 293.93 & 5856 & 1123 & -11.00 \\
\hline 1982 & 142179 & 128279 & 328.52 & 2621 & 1100 & -11.00 \\
\hline 1983 & 70791 & 63873 & 104.38 & 2493 & 716 & -11.00 \\
\hline 1984 & 80833 & 72984 & 186.53 & 3619 & 458 & 2.65 \\
\hline 1985 & 159654 & 144105 & 315.03 & 3705 & 944 & 7.88 \\
\hline 1986 & 72553 & 65559 & 73.22 & 1948 & 594 & 6.97 \\
\hline 1987 & 454627 & 411354 & 523.86 & 11227 & 5005 & 83.11 \\
\hline 1988 & 108296 & 97879 & 50.07 & 2831 & 1120 & 9.02 \\
\hline 1989 & 177757 & 160020 & 77.80 & 2856 & 2529 & 22.60 \\
\hline 1990 & 70476 & 63655 & 21.09 & 1254 & 144 & 3.71 \\
\hline 1991 & 354171 & 319535 & 391.93 & 11114 & 3420 & 74.44 \\
\hline 1992 & 69289 & 62644 & 25.30 & 1291 & 498 & 4.99 \\
\hline 1993 & 57057 & 50944 & 25.13 & 652 & 224 & 5.88 \\
\hline 1994 & 96104 & 82392 & 69.11 & 1362 & 349 & 27.86 \\
\hline 1995 & 49508 & 44633 & 19.07 & 218 & 154 & 3.51 \\
\hline 1996 & 271749 & 244377 & 59.62 & 10279 & 3126 & 173.94 \\
\hline 1997 & 114161 & 103065 & 44.08 & 4095 & 972 & 14.12 \\
\hline 1998 & 82581 & 74450 & -11.00 & 1649 & 126 & 11.41 \\
\hline 1999 & 123824 & 109804 & -11.00 & 1639 & 655 & 14.46 \\
\hline 2000 & 63480 & 56599 & 15.51 & 970 & 379 & 8.17 \\
\hline 2001 & 187821 & 168944 & 85.31 & 7542 & -11 & 21.90 \\
\hline 2002 & 85663 & 76515 & 64.97 & -11 & 624 & 10.76 \\
\hline 2003 & 46679 & 41746 & 16.82 & 1369 & 163 & 3.65 \\
\hline 2004 & 49955 & 44101 & 40.10 & 568 & 382 & 3.14 \\
\hline 2005 & -11 & -11 & 46.81 & 4167 & 911 & 16.82 \\
\hline 2006 & -11 & -11 & 14.69 & 849 & 259 & 5.81 \\
\hline 2007 & -11 & -11 & 23.51 & 1259 & -11 & 15.04 \\
\hline 2008 & -11 & -11 & 26.74 & -11 & -11 & -11 \\
\hline
\end{tabular}

Table 10.5.2. Sole in sub area IV: RCT3 analysis - age 1
```

Analysis by RCT3 ver3.1 of data from file : altin_1.txt
Sole North Sea Age 1 Data for 1 surveys over 40 years : 1969 - 2008
Regression type = C, Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as .00
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass = 2008

```


Table 10.5.3. Sole in sub area IV: Output RCT3-age 2
```

Analysis by RCT3 ver3.1 of data from file :
altin_2.txt
Sole North Sea-Age 2
Data for 4 surveys over 40 years : 1969-2008
Regression type = C
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as .00
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass = 2007
I-----------Regression-----------I I------------Prediction------------I
Series Slope Inter- Std Rsquare No. Index Predicted Std WAP
cept Error Pts Value Value Error Weights

DFS0	1.16	6.24	1.02	.348	28	3.20	9.95	1.102	.048
SNS1	.73	5.79	.34	.809	35	7.14	11.00	.357	.454
BTS1	.70	9.66	.36	.770	21	2.78	11.60	.393	.374

 VPA Mean = 11.36 . 680 . }12
 | Year | Weighted | Log | Int | Ext | Var |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Class | Average | WAP | Std | Std | Ratio |
| | Prediction | | Error | Error | |
| 2007 | 74556 | 11.22 | .24 | .23 | .90 |

```

Table 10.6.1. Sole in sub area IV: STF Input table (F values presented are for Fsq)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline age & year & f & ck.n & tock.wt la & ds. & & t M \\
\hline 1 & 2009 & 0.018 & 93786 & 0.05 & 0.16 & 0 & 0.1 \\
\hline 2 & 2009 & 0.184 & 80468 & 0.15 & 0.19 & 0 & 0.1 \\
\hline 3 & 2009 & 0.352 & 43345 & 0.19 & 0.22 & 1 & 0.1 \\
\hline 4 & 2009 & 0.374 & 90880 & 0.23 & 0.25 & 1 & 0.1 \\
\hline 5 & 2009 & 0.408 & 10752 & 0.25 & 0.27 & 1 & 0.1 \\
\hline 6 & 2009 & 0.370 & 5763 & 0.28 & 0.31 & 1 & 0.1 \\
\hline 7 & 2009 & 0.352 & 5701 & 0.28 & 0.30 & 1 & 0.1 \\
\hline 8 & 2009 & 0.428 & 7286 & 0.28 & 0.32 & 1 & 0.1 \\
\hline 9 & 2009 & 0.531 & 685 & 0.31 & 0.32 & 1 & 0.1 \\
\hline 10 & 2009 & 0.531 & 1228 & 0.39 & 0.37 & 1 & 0.1 \\
\hline 1 & 2010 & 0.018 & 93786 & 0.05 & 0.16 & 0 & 0.1 \\
\hline 2 & 2010 & 0.184 & 83372 & 0.15 & 0.19 & 0 & 0.1 \\
\hline 3 & 2010 & 0.352 & 60573 & 0.19 & 0.22 & 1 & 0.1 \\
\hline 4 & 2010 & 0.374 & 27595 & 0.23 & 0.25 & 1 & 0.1 \\
\hline 5 & 2010 & 0.408 & 56564 & 0.25 & 0.27 & 1 & 0.1 \\
\hline 6 & 2010 & 0.370 & 6468 & 0.28 & 0.31 & 1 & 0.1 \\
\hline 7 & 2010 & 0.352 & 3601 & 0.28 & 0.30 & 1 & 0.1 \\
\hline 8 & 2010 & 0.428 & 3627 & 0.28 & 0.32 & 1 & 0.1 \\
\hline 9 & 2010 & 0.531 & 4298 & 0.31 & 0.32 & 1 & 0.1 \\
\hline 10 & 2010 & 0.531 & 1018 & 0.39 & 0.37 & 1 & 0.1 \\
\hline 1 & 2011 & 0.018 & 93786 & 0.05 & 0.16 & 0 & 0.1 \\
\hline 2 & 2011 & 0.184 & 83372 & 0.15 & 0.19 & 0 & 0.1 \\
\hline 3 & 2011 & 0.352 & 62759 & 0.19 & 0.22 & 1 & 0.1 \\
\hline 4 & 2011 & 0.374 & 38562 & 0.23 & 0.25 & 1 & 0.1 \\
\hline 5 & 2011 & 0.408 & 17175 & 0.25 & 0.27 & 1 & 0.1 \\
\hline 6 & 2011 & 0.370 & 34027 & 0.28 & 0.31 & 1 & 0.1 \\
\hline 7 & 2011 & 0.352 & 4042 & 0.28 & 0.30 & 1 & 0.1 \\
\hline 8 & 2011 & 0.428 & 2291 & 0.28 & 0.32 & 1 & 0.1 \\
\hline 9 & 2011 & 0.531 & 2140 & 0.31 & 0.32 & 1 & 0.1 \\
\hline 10 & 2011 & 0.531 & 2828 & 0.39 & 0.37 & 1 & 0.1 \\
\hline
\end{tabular}

Table 10.6.2. (A) Sole in sub area IV: STF option table, assuming \(\mathrm{F}(2009)=\mathrm{F}(\mathrm{sq})\)


Table 10.6.2. (B) Sole in sub area IV: STF option table, assuming \(\mathrm{F}(2009)=0 . \mathbf{9}^{*} \mathrm{~F}(\mathrm{sq})\)
```

fmult year ssb f2-6 recruit landings
0.9 2009 37670 0.304 93786.1 13841

```
\begin{tabular}{lrrrrr} 
year & fmult & \(f 2-6\) & landings & ssb & ssb2011 \\
2010 & 0.0 & 0.000 & 0 & 38875 & 54481 \\
2010 & 0.1 & 0.034 & 1847 & 38875 & 52695 \\
2010 & 0.2 & 0.068 & 3630 & 38875 & 50971 \\
2010 & 0.3 & 0.101 & 5352 & 38875 & 49309 \\
2010 & 0.4 & 0.135 & 7015 & 38875 & 47706 \\
2010 & 0.5 & 0.169 & 8622 & 38875 & 46159 \\
2010 & 0.6 & 0.203 & 10174 & 38875 & 44666 \\
2010 & 0.7 & 0.236 & 11674 & 38875 & 43226 \\
2010 & 0.8 & 0.270 & 13122 & 38875 & 41837 \\
2010 & 0.9 & 0.304 & 14522 & 38875 & 40496 \\
2010 & 1.0 & 0.338 & 15875 & 38875 & 39202 \\
2010 & 1.1 & 0.371 & 17183 & 38875 & 37953 \\
2010 & 1.2 & 0.405 & 18447 & 38875 & 36747 \\
2010 & 1.3 & 0.439 & 19669 & 38875 & 35584 \\
2010 & 1.4 & 0.473 & 20850 & 38875 & 34460 \\
2010 & 1.5 & 0.506 & 21993 & 38875 & 33376 \\
2010 & 1.6 & 0.540 & 23097 & 38875 & 32328 \\
2010 & 1.7 & 0.574 & 24166 & 38875 & 31317 \\
2010 & 1.8 & 0.608 & 25199 & 38875 & 30341 \\
2010 & 1.9 & 0.642 & 26199 & 38875 & 29397 \\
2010 & 2.0 & 0.675 & 27166 & 38875 & 28486
\end{tabular}

Table 10.6.2. (C) Sole in sub area IV: STF option table, assuming F(2009)~Landings for 2009=TAC for 2009
\begin{tabular}{ccccc} 
fmult year ssb f2-6 recruit & landings \\
0.7972009 & 37670 & 0.308 & 93786.1 & 14000
\end{tabular}
\begin{tabular}{lrrrrr} 
& & & & \\
year & fmult & f2-6 & landings & ssb & ssb2010 \\
2010 & 0.0 & 0.000 & 0 & 38726 & 54326 \\
2010 & 0.1 & 0.034 & 1841 & 38726 & 52546 \\
2010 & 0.2 & 0.068 & 3618 & 38726 & 50828 \\
2010 & 0.3 & 0.101 & 5335 & 38726 & 49171 \\
2010 & 0.4 & 0.135 & 6992 & 38726 & 47573 \\
2010 & 0.5 & 0.169 & 8594 & 38726 & 46031 \\
2010 & 0.6 & 0.203 & 10141 & 38726 & 44544 \\
2010 & 0.7 & 0.236 & 11636 & 38726 & 43109 \\
2010 & 0.8 & 0.270 & 13080 & 38726 & 41724 \\
2010 & 0.9 & 0.304 & 14475 & 38726 & 40387 \\
2010 & 1.0 & 0.338 & 15824 & 38726 & 39097 \\
2010 & 1.1 & 0.371 & 17128 & 38726 & 37852 \\
2010 & 1.2 & 0.405 & 18388 & 38726 & 36650 \\
2010 & 1.3 & 0.439 & 19606 & 38726 & 35490 \\
2010 & 1.4 & 0.473 & 20784 & 38726 & 34371 \\
2010 & 1.5 & 0.506 & 21922 & 38726 & 33289 \\
2010 & 1.6 & 0.540 & 23024 & 38726 & 32245 \\
2010 & 1.7 & 0.574 & 24089 & 38726 & 31237 \\
2010 & 1.8 & 0.608 & 25119 & 38726 & 30264 \\
2010 & 1.9 & 0.642 & 26115 & 38726 & 29324 \\
2010 & 2.0 & 0.675 & 27079 & 38726 & 28415
\end{tabular}

Table 10.6.3. (A) Sole in sub area IV: STF detailed, assuming \(F(2009)=F(s q)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline age year & f & stock.n & stock.wt & lands & & mat M & lands.n & lands & SSB & TSB \\
\hline 12009 & 0.018 & 93786 & 0.05 & 0.16 & 0 & 0.1 & 1566 & 243 & 0 & 4689 \\
\hline 22009 & 0.184 & 80468 & 0.15 & 0.19 & 0 & 0.1 & 12890 & 2403 & 0 & 12178 \\
\hline 32009 & 0.352 & 43345 & 0.19 & 0.22 & 1 & 0.1 & 12263 & 2692 & 8322 & 8322 \\
\hline 42009 & 0.374 & 90880 & 0.23 & 0.25 & 1 & 0.1 & 27079 & 6814 & 20690 & 20690 \\
\hline 52009 & 0.408 & 10752 & 0.25 & 0.27 & 1 & 0.1 & 3441 & 935 & 2692 & 2692 \\
\hline 62009 & 0.370 & 5763 & 0.28 & 0.31 & 1 & 0.1 & 1702 & 521 & 1639 & 1639 \\
\hline 72009 & 0.352 & 5701 & 0.28 & 0.30 & 1 & 0.1 & 1616 & 492 & 1604 & 1604 \\
\hline 82009 & 0.428 & 7286 & 0.28 & 0.32 & 1 & 0.1 & 2422 & 769 & 2030 & 2030 \\
\hline 92009 & 0.531 & 685 & 0.31 & 0.32 & 1 & 0.1 & 270 & 87 & 212 & 212 \\
\hline 102009 & 0.531 & 1228 & 0.39 & 0.37 & 1 & 0.1 & 484 & 181 & 481 & 481 \\
\hline 12010 & 0.018 & 93786 & 0.05 & 0.16 & 0 & 0.1 & 1566 & 243 & 0 & 4689 \\
\hline 22010 & 0.184 & 83372 & 0.15 & 0.19 & 0 & 0.1 & 13355 & 2489 & 0 & 12617 \\
\hline 32010 & 0.352 & 60573 & 0.19 & 0.22 & 1 & 0.1 & 17137 & 3762 & 11630 & 11630 \\
\hline 42010 & 0.374 & 27595 & 0.23 & 0.25 & 1 & 0.1 & 8222 & 2069 & 6282 & 6282 \\
\hline 52010 & 0.408 & 56564 & 0.25 & 0.27 & 1 & 0.1 & 18103 & 4917 & 14160 & 14160 \\
\hline 62010 & 0.370 & 6468 & 0.28 & 0.31 & 1 & 0.1 & 1910 & 585 & 1839 & 1839 \\
\hline 72010 & 0.352 & 3601 & 0.28 & 0.30 & 1 & 0.1 & 1021 & 311 & 1013 & 1013 \\
\hline 82010 & 0.428 & 3627 & 0.28 & 0.32 & 1 & 0.1 & 1206 & 383 & 1011 & 1011 \\
\hline 92010 & 0.531 & 4298 & 0.31 & 0.32 & 1 & 0.1 & 1693 & 549 & 1330 & 1330 \\
\hline 102010 & 0.531 & 1018 & 0.39 & 0.37 & 1 & 0.1 & 401 & 150 & 399 & 399 \\
\hline 12011 & 0.018 & 93786 & 0.05 & 0.16 & 0 & 0.1 & 1566 & 243 & 0 & 4689 \\
\hline 22011 & 0.184 & 83372 & 0.15 & 0.19 & 0 & 0.1 & 13355 & 2489 & 0 & 12617 \\
\hline 32011 & 0.352 & 62759 & 0.19 & 0.22 & 1 & 0.1 & 17755 & 3898 & 12050 & 12050 \\
\hline 42011 & 0.374 & 38562 & 0.23 & 0.25 & 1 & 0.1 & 11490 & 2891 & 8779 & 8779 \\
\hline 52011 & 0.408 & 17175 & 0.25 & 0.27 & 1 & 0.1 & 5497 & 1493 & 4299 & 4299 \\
\hline 62011 & 0.370 & 34027 & 0.28 & 0.31 & 1 & 0.1 & 10050 & 3077 & 9675 & 9675 \\
\hline 72011 & 0.352 & 4042 & 0.28 & 0.30 & 1 & 0.1 & 1145 & 349 & 1137 & 1137 \\
\hline 82011 & 0.428 & 2291 & 0.28 & 0.32 & 1 & 0.1 & 761 & 242 & 638 & 638 \\
\hline 92011 & 0.531 & 2140 & 0.31 & 0.32 & 1 & 0.1 & 843 & 273 & 662 & 662 \\
\hline 102011 & 0.531 & 2828 & 0.39 & 0.37 & 1 & 0.1 & 1114 & 417 & 1108 & 1108 \\
\hline
\end{tabular}

Table 10.6.3. (B) Sole in sub area IV: STF detailed, assuming \(\mathrm{F}(2009)=0.9^{*} \mathrm{~F}(\mathrm{sq})\)


Table 10.6.3. (C) Sole in sub area IV: STF detailed, assuming F(2009) =TAC
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline age & year & f & stock.n & stock.wt & lands & .wt mat M & lands.n & lands & SSB & TSB \\
\hline 1 & 2009 & 0.016 & 93786 & 0.05 & 0.16 & 00.1 & 1430 & 222 & 0 & 4689 \\
\hline 2 & 2009 & 0.168 & 80468 & 0.15 & 0.19 & 00.1 & 11848 & 2208 & 0 & 12178 \\
\hline 3 & 2009 & 0.321 & 43345 & 0.19 & 0.22 & 10.1 & 11346 & 2491 & 8322 & 8322 \\
\hline 4 & 2009 & 0.341 & 90880 & 0.23 & 0.25 & 10.1 & 25077 & 6310 & 20690 & 20690 \\
\hline 5 & 2009 & 0.372 & 10752 & 0.25 & 0.27 & 10.1 & 3191 & 867 & 2692 & 2692 \\
\hline 6 & 2009 & 0.338 & 5763 & 0.28 & 0.31 & 10.1 & 1576 & 482 & 1639 & 1639 \\
\hline 7 & 2009 & 0.321 & 5701 & 0.28 & 0.30 & 10.1 & 1495 & 455 & 1604 & 1604 \\
\hline 8 & 2009 & 0.390 & 7286 & 0.28 & 0.32 & 10.1 & 2247 & 714 & 2030 & 2030 \\
\hline 9 & 2009 & 0.485 & 685 & 0.31 & 0.32 & 10.1 & 251 & 81 & 212 & 212 \\
\hline 10 & 2009 & 0.485 & 1228 & 0.39 & 0.37 & 10.1 & 451 & 169 & 481 & 481 \\
\hline 1 & 2010 & 0.018 & 93786 & 0.05 & 0.16 & 00.1 & 1566 & 243 & 0 & 4689 \\
\hline 2 & 2010 & 0.184 & 83502 & 0.15 & 0.19 & 00.1 & 13376 & 2493 & 0 & 12637 \\
\hline 3 & 2010 & 0.352 & 61561 & 0.19 & 0.22 & 10.1 & 17416 & 3823 & 11820 & 11820 \\
\hline 4 & 2010 & 0.374 & 28461 & 0.23 & 0.25 & 10.1 & 8480 & 2134 & 6480 & 6480 \\
\hline 5 & 2010 & 0.408 & 58455 & 0.25 & 0.27 & 10.1 & 18708 & 5081 & 14633 & 14633 \\
\hline 6 & 2010 & 0.370 & 6705 & 0.28 & 0.31 & 10.1 & 1980 & 606 & 1906 & 1906 \\
\hline 7 & 2010 & 0.352 & 3720 & 0.28 & 0.30 & 10.1 & 1054 & 321 & 1047 & 1047 \\
\hline 8 & 2010 & 0.428 & 3741 & 0.28 & 0.32 & 10.1 & 1243 & 395 & 1042 & 1042 \\
\hline 9 & 2010 & 0.531 & 4463 & 0.31 & 0.32 & 10.1 & 1758 & 570 & 1381 & 1381 \\
\hline 10 & 2010 & 0.531 & 1066 & 0.39 & 0.37 & 10.1 & 420 & 157 & 418 & 418 \\
\hline 1 & 2011 & 0.018 & 93786 & 0.05 & 0.16 & \(0 \quad 0.1\) & 1566 & 243 & 0 & 4689 \\
\hline 2 & 2011 & 0.184 & 83372 & 0.15 & 0.19 & 00.1 & 13355 & 2489 & 0 & 12617 \\
\hline 3 & 2011 & 0.352 & 62857 & 0.19 & 0.22 & 10.1 & 17783 & 3904 & 12068 & 12068 \\
\hline 4 & 2011 & 0.374 & 39191 & 0.23 & 0.25 & 10.1 & 11677 & 2938 & 8923 & 8923 \\
\hline 5 & 2011 & 0.408 & 17714 & 0.25 & 0.27 & 10.1 & 5669 & 1540 & 4434 & 4434 \\
\hline 6 & 2011 & 0.370 & 35165 & 0.28 & 0.31 & 10.1 & 10386 & 3180 & 9998 & 9998 \\
\hline 7 & 2011 & 0.352 & 4189 & 0.28 & 0.30 & 10.1 & 1187 & 362 & 1179 & 1179 \\
\hline 8 & 2011 & 0.428 & 2367 & 0.28 & 0.32 & 10.1 & 787 & 250 & 659 & 659 \\
\hline 9 & 2011 & 0.531 & 2207 & 0.31 & 0.32 & 10.1 & 869 & 282 & 683 & 683 \\
\hline 10 & 2011 & 0.531 & 2941 & 0.39 & 0.37 & 10.1 & 1159 & 434 & 1153 & 1153 \\
\hline
\end{tabular}

Table 10.6.4 Yield and spawning biomass per Recruit F-reference points (2009):
\begin{tabular}{llll}
\hline & \begin{tabular}{l} 
Fish Mort \\
Ages 2-6
\end{tabular} & Yield/R & SSB/R \\
\hline Average last 3 years & 0.39 & 0.17 & 0.36 \\
\(\mathrm{~F}_{\text {max }}\) * & 0.59 & 0.17 & 0.24 \\
\(\mathrm{~F}_{0.1}\) & 0.11 & 0.14 & 1.02 \\
\(\mathrm{~F}_{\text {med }}\) & 0.32 & 0.17 & 0.43 \\
\hline
\end{tabular}
*Poorly defined


B: Landings (wt)


\section*{C: Stock weights}


D: Landing weights


Figure 10.2.1. Sole in Sub-Area IV. A: bubble plot of landings ( \(\mathbf{n}\) ) by age and year; B: time series of landings (total tonnages) 1957-2008; C: time-series of stock-weights by age 1957-2008; D: timeseries of landing-weights by age 1957-2008.

Log catch ratios for sole i


Log catch curves for sole


Figure 10.2.2. Sole in Sub-Area IV: Log catch ratios (left) and catch curves (right) from 1957 to 2008.


Figure 10.2.3. Sole in Sub-Area IV: LpUE series in North Central and Southern North Sea 19902008. LpUE trends in the Dutch beam trawl fleet (only large vessels, 2000 HP ,) based on landings and effort records in the Dutch logbook database from vessels landings into the Netherlands. Three (North Sea) areas are considered: a) (north, open circles), b) (central, red squares) and c) (south, diamond blue). Black line indicates the overall trend in LpUE)


Figure 10.2.4 Sole in sub-area IV. Time series of the standardized indices age 1 to 6 from the three tuning fleets used in the final XSA assessment (BTS-ISIS, SNS and NL beam trawl).



Figure 10.3.1 Sole in sub-area IV. log catchability residuals for the tuning fleets, BTS, SNS and NL beam trawl, in the single fleet runs. Closed and dark- circles indicate positive residuals, Open circles indicate negative residuals


Figure 10.3.2 Sole in sub-area IV. XSA retrospective analysis of assessment estimates of fishing mortality using different combinations of indices. Grey lines: using survey indices only. Black lines: using commercial indices only.


Figure 10.3.3 Sole in sub-area IV. \(\log\) catchability residuals for the tuning fleets, BTS, SNS and NL beam trawl, in the final run. Closed and dark- circles indicate positive residuals, Open circles indicate negative residuals


Figure 10.3.4 Sole in sub-area IV. Retrospective analysis of F, SSB and recruitment for 1990-2008

\section*{}

Figure 10.4.1 Sole in sub-area IV 1957-2008. XSA summary plots. Time series of SSB (top left), TSB (top right), mean fishing mortality (bottom left) and recruitment (bottom right).

2011 SSB


2011 landings


Figure 10.6.1 Sole in sub-area IV. Relative year class contribution to 2011 predicted SSB (left) and 2011 landings (right). Stock numbers of 1 year olds: (2004/XSA) 46 700, (2005/XSA) 50 000, (2006/XSA) 221770 (2007/XSA) 60 400, (2008/XSA) 90900 \& (2009/GM) 91800.


Equilibrium Yield v F
Equilibrium Yield v S


\begin{tabular}{lll} 
Reference point & F multiplier & Absolute F \\
\hline Fbar(2 - 6) & 1.0 & 0.43 \\
FMax & 1.4 & 0.60 \\
F0.1 & 0.34 & 0.15
\end{tabular}

Figure 10.6.2 Sole in sub-area IV. YP R results.

\section*{11 Saithe in Subareas IV, VI and Division Illa}

The 2009 assessment of saithe in Subareas IV and VI and Division IIIa is formally classified as an update assessment, using the same settings and tuning series as last year. The assessment of the 2008 w orking group meeting was accepted by the ACOM review group in June 2008.

\subsection*{11.1 Ecosystem aspects}

The geographical distributions of juvenile (< age3) and adult saithe differ. Typical for all saithe stocks are the inshore nursery grounds. Juvenile saithe in the North Sea are therefore mainly distributed along the west and south coast of Norway, the coast of Shetland and the coast of Scotland. At around age 3 the individuals gradually migrate from the coastal areas to the northern part of the North Sea \(\left(57^{\circ} \mathrm{N}-62^{\circ} \mathrm{N}\right)\).

The age at first maturity is between 4 and 6 years, and spawning takes place in Janu-ary-March at about 200 m depth along the Northern Shelf edge and the western edge of the Norw egian Trench. Larvae and post-larvae are widely distributed in Atlantic water masses across the northern part of the North Sea, and around May the 0-group appears along the coasts (of Norway, Shetland and Scotland). The mechanisms behind the 0 -group's migration from oceanic to coastal areas remain unknown, but it seems like they are actively swimming towards the coasts. The west coast of Norway is probably the most important nursery ground for saithe in the North Sea.

When saithe exceeds \(60-70 \mathrm{~cm}\) in length the diet changes from plankton (krill, copepods) to fish (mainly Norway pout, blue whiting, haddock and herring). Large saithe \((>70 \mathrm{~cm})\) has a highly migratory behaviour and the feeding migrations extend from far into the Norwegian Sea to the Norw egian coast.
Tagging experiments by various countries have shown that exchange takes place between all saithe stock components in the northeast Atlantic. In particular, exchange between the saithe stock north of \(62^{\circ} \mathrm{N}\) (Northeast Arctic saithe) and saithe in the North Sea has been observed.

A sharp decline in the mean weight at age was observed from the mid-1990s, but now seems to be halted. There is insufficient information to establish whether this decline is linked to changes in the environment. The reduced growth rates have an effect on stock productivity and the consequences need to be further explored. However, there are no indications that the observed decline in weight at age is density dependent (Evaluation of the EU-Norway saithe management plan).

The impact of a large saithe stock on prey species such as Norway pout and herring is unknown. Poor spatial and temporal sampling of stomach data of saithe make the estimation of the saithe diet uncertain (ICES CM 2006/RMC:02).

\subsection*{11.1.1 Fisheries}

Saithe in the North Sea are mainly taken in a direct trawl fishery in deep water along the Northern Shelf edge and the Norw egian Trench. Norwegian, French, and German trawlers take the majority of the catches. In the first quarter of the year the fisheries are directed towards mature fish in spawning aggregations, while concentrations of immature fish (age 3-4) often are targeted during the rest of the year. In recent years the French fishery has deployed less effort along the Norwegian Trench, while the German and Norwegian fisheries have maintained their effort there.

The main fishery developed in the beginning of the 1970s. The fishery in Area VI consists largely of a directed French, German, and Norwegian deep-water fishery operating on the shelf edge, and a Scottish fishery operating inshore. In both areas most of the saithe do not enter the main fishery before age 3 , because the younger ages are staying in inshore waters. A small proportion of the total catch is taken in a limited purse seine fishery along the west coast of Norway targeting juveniles (age 2-4). In the Norwegian coastal purse seine fishery inside the 4 nm limit (south of \(62^{\circ} \mathrm{N}\) ), the minimum landing size is 32 cm . For other gears in the Norwegian zone (south of \(62^{\circ} \mathrm{N}\) ) the current minimum landing size is 40 cm , while in the EU zone it is 35 cm .
Since the fish are distributed inshore until they are about 3 years old, discarding of young fish is assumed to be a small problem in this fishery. Problems with by-catches in other fisheries when saithe quotas are exceeded may cause discarding. French and German trawlers are targeting saithe and they have larger quotas, so the problem may be less in these fleets. The Norwegian trawlers move out of the area when the boat quotas are reached, and in addition the fishery is closed if the seasonal quota is reached.

In 2008 the landings were estimated to be around 112000 t in Sub-area IV and Division IIIa, and 7000 t in Sub-Area VI, which both are well below the TACs for these areas ( 135900 and 14100 t respectively). Significant discards are observed only in Scottish trawlers. However, as Scottish discarding rates are not considered representative of the majority of the saithe fisheries, these have not been used in the assessment. Ages 1 and 2 are mainly distributed close to the shores and are very scarce in the main fishing areas for saithe. Therefore, these age groups are not relevant for discarding practices in the North Sea.

\section*{ICES advice for 2010}

ICES considered the stock as having full reproductive capacity and as being harvested sustainably.

\section*{Exploitation boundaries in relation to existing management plans}

At the present SSB level, F should be no more than 0.3 to be in accordance with the management plan. This corresponds to landings of 139000 t in 2010.

Exploitation boundaries in relation to high long-term yield, low risk of depletion of production potential and considering ecosystem effects

The current fishing mortality (2005-2007 average) is estimated at 0.27 , which is close to the management plan target rate expected to lead to high long-term yields ( \(\mathrm{F}=0.3\) ).

\section*{Exploitation boundaries in relation to precautionary limits}

The exploitation boundaries in relation to precautionary limits imply landings of less than 175000 t in 2009, and the SSB is expected to remain above \(\mathrm{B}_{\mathrm{pa}}(200000 \mathrm{t}\) ) in 2009.

\section*{ICES conclusion on exploitation boundaries}

ICES has evaluated the agreed management plan to be in accordance to the precautionary approach, and the target fishing mortality in the management plan is expected to give high long-term yield in the present situation with a stock that is above \(B_{\text {pa. }}\) ICES therefore recommends to limit landings in 2009 to 139000 t .

\subsection*{11.1.2 Management}

Management of saithe is by TAC and technical measures. The fishery is not regulated by days at sea for vessels that have less bycatch than \(5 \%\) of each cod, plaice and sole. The agreed TAC for saithe in Sub-area IV and Division IIIa for 2008 was 135900 t . In Division Vb and Subareas VI, XII, and XIV the TAC for 2008 was 14100 t . For 2009 the TACs are 125934 t and 13066 t , respectively. Current technical measures are described in Section 2.

In 2004 EU and Norway "agreed to implement a long-term plan for the saithe stock in the Skagerrak, the North Sea and west of Scotland, which is consistent with a precautionary approach and designed to provide for sustainable fisheries and high yields. The plan shall consist of the following elements:
1. Every effort shall be made to maintain a minimum level of Spawning biomass (SSB) greater than 106000 tonnes ( \(B_{\text {lin }}\) ).
2. Where the SSB is estimated to be above 200000 tonnes the Parties a greed to restrict their fishing on the basis of TAC consistent with a fishing mortality rate ofno more than 0.30 for appropriate age groups.
3. Where the SSB is estimated to be below 200000 tonnes but above 106000 tonnes The TAC shall not exceed a level which, on the basis of a scientific evaluation by ICES, will result in a fishing mortality rate equal to 0.30-0.20*(200 000-SSB)/94 000.
4. Where the SSB is estimated by the ICES to be below the minimum level of SSB of 106 000 tonnes the TAC shall be set at a level corresponding to a fishing mortality rate of no more than 0.1.
5. Where the rules in paragraphs 2 and 3 would lead to a TAC which deviates by more than \(15 \%\) from the TAC the preceding year the Parties shall fix a TAC that is no more tha \(15 \%\) greater or \(15 \%\) less than the TAC of the preceding year.
6. Notwithstanding paragraph 5 the Parties may where considered appropriate reduce the TAC by more than \(15 \%\) compared to the TAC of the preceding year.
7. A review of this arrangement shall take place no later than 31 December 2007.

This arrangement enters into force on 1 January 2005."

\subsection*{11.1.3 Evaluation of the Management plan}

This assessment is run in terms with the management plan which is consistent with the precautionary approach in the short term conditional on the absence of major changes in the productivity and the absence of measurement and implementation error (ICES Advice 2008, Book 6, Paragraph 6.3.3.3.).

\subsection*{11.2 Data available}

\subsection*{11.2.1 Catch}

Landings data by country and TACs are presented in Table 11.2.1. Minor revisions were applied to the 2007 landings. In the data provided, landings from the industrial fleet are only specified when saithe is delivered separately, and therefore bycatch of saithe that has not been separated from the bulk catch, will not be reported as saithe.

\subsection*{11.2.2 Age compositions}

Age compositions of the landings are presented in Table 11.2.2. Landings-at-age data by fleet are supplied by Denmark, Germany, France, Norway, UK (England), and UK (Scotland) for Area IV and only UK (Scotland) for Area VI. The differences between
the sum-of-products (SOP) and the working group estimate is about \(7 \%\) in 2008. The reason for the discrepancy is not clear and it is not known if weights or numbers should be corrected. Hence, no correction is made. Figure 11.2 .1 shows that the proportions of older saithe (age>5) in the catches have increased in recent years, which partly reflects the reduction in the purse seine fishery since the early 1990 s.

\subsection*{11.2.3 Weight at age}

Weights at age in the catch are presented in Table 11.2.3 and Figure 11.2.2. These are also used as stock weights. There has been a decreasing trend in mean weights from the mid-1990s for ages 4 and older, but the decline now seems to be halted.

\subsection*{11.2.4 Maturity and natural mortality}

A natural mortality rate of 0.2 is used for all ages and years, and the following maturity ogive is used for all years:
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Age & 1 & 2 & 3 & 4 & 5 & 6 & \(7+\) \\
\hline Proportion mature & 0.0 & 0.0 & 0.0 & 0.15 & 0.7 & 0.9 & 1.0 \\
\hline
\end{tabular}

\subsection*{11.2.5 Catch, effort and research vessel data}

Fleet data used for calibration of the assessment are presented in Table 11.2.4. Three commercial series of effort and catch at age and two series of survey indices were available:

Commercial fleets:
- French fresh fish trawl, age range:3-9, year range 1990-2008 ("FRATRB")
- German bottom trawl, age range: 3-9, year range 1995-2008 ("GEROTB")
- Norw egian bottom trawl, age range:3-9, year range 1980-2008 ("NORTRL") (Part 1 : 1980-1992, part 2 : 1993-2008)

Surveys:
- Norwegian acoustic survey, age range 3-6, year range 1995-2008 ("NORACU")
- IBTS quarter 3, age range: 3-5, year range 1991-2008 ("IBTSq3")

There was a \(7 \%\) downwards revision to the 2007 German commercial indices.
Trends in relative LPUE and effort for the commercial fleets are shown in Figure 11.2.3. The LPUE shows an increasing trend for all fleets over more than a decade, while the effort is decreasing in the same period.

\subsection*{11.3 Data analyses}

This year's assessment is classified as an update assessment, the consistency in the input data is analysed using catch curves, correlation plots and standardised tuning indices.

\subsection*{11.3.1 Reviews of last year's assessment}

\section*{The Review Group in ACOM had the following technical comments:}

One of the problems in assessment and forecast is the poor reliability of the recruitment at age 3 .

The quality of 2008 assessment is affected very much by the uncertainty about the size of the 2004 year class. A new acoustic survey has been carried out in May 2006, 2007 and 2008 and results are available in autumn 2008. This may modify assessment and short term forecast. Should be revisited in autumn!!

Changes in weight at age, and a substantial decrease in length at age over time should be explored. These changes have an effect on maturity rates and fixed maturity ogive in use is perhaps not the best solution.

\section*{Condusions}

The assessment is accepted as reliable and consistent.
The responses of the Working Group:
The 2004 year class problem was revisited in the autumn, but due to conflicting evidence, no change was made to the assessment. There are obvious problems with the estimation of the youngest age groups in the assessment. The cause of this is unclear and needs further investigation.
The HCR evaluation estimated the weight at age as the average of the last three years and did not include a density dependent mean weight as they did not find evidence of a direct relationship between density and weight at age.
The reduction in weight at age may have shifted the maturity ogive. This is an obvious task for as benchmark assessment, which also should consider the possibility of estimating annual maturity ogives.

\subsection*{11.3.2 Exploratory survey-based analyses}

Log-abundance indices by cohort for the tuning series are shown in Figure 11.3.1. The pattern is similar to the pattern in the catch data curves (Figure 11.3.9), with partial recruitment of age 3 for recent cohorts. The curves for the most recent cohorts of the NORTRL time series show a pattern that differs markedly from earlier cohorts in the NORTRL series and from the curves of the other tuning series (Figure 11.3.1). This indicates considerable changes in the exploitation pattern or data problems in the Norwegian trawler fleet and led to the exclusion of the series from tuning. However, the reintroduction of the fleet in the tuning should be considered at a future benchmark assessment.

Within-survey correlations for the available tuning series are shown in Figures 11.3.2 - 11.3.6. For the FRATRB the relationship between cohort values from one age to the next is significant, except for the ages 3 to 4 (Figure 11.3.6). The poor relationship be tween the two youngest ages can be explained by variation in the recruitment to the fishery. For the other tuning series, there is a better relationship between the ages 3 and 4, but not as strong as between the older ages (Figures 11.3.2-11.3.5). For the NORACU series there is also a poor relationship between age 5 and 6 , which may be explained by the movement of older fish out of the survey area (Fig. 11.3.3).

The two survey time series are relatively consistent (Fig. 11.3.7). They are, however, not entirely independent since the age-disaggregation of both indices is based on the same age and length samples. The relative CPUEs in the commercial tuning series are compared in Figure 11.3.8. For age 3 and 9 the consistency between the series is poor, but better for the age groups in-between.

In last year's assessment, the time series of the GEROTB and FRATRL and the surveys indicated a very strong 2004 cohort, while in the NORTRL series it appeared medium strong at best (Figure. 11.3.8), which gave rise to some uncertainty. This year, only in the German commercial index this cohort appears as strong; in the landings it is not extraor dinary.

\subsection*{11.3.3 Exploratory catch-at-age-based analyses}

Catch curves (log catch-numbers-at-age linked by cohort) for the total catch-at-age matrix are shown in Figure 11.3.9. The plot shows that age 3 is partly recruited to the fishery for recent cohorts, but fully recruited for some of the earlier cohorts. Moreover the catch curves are less steep in recent years compared to earlier. The negative slopes in the catch curves, which give an indication of total mortality inferred from the catch data, are shown in Figure 11.3.10. The trend in the gradients is in agreement with the trend in estimated fishing mortality.
A separable VPA was run to check the consistency in the catch data, and the resulting log catch residuals did not indicate problems with the data in terms of large year effects etc.

Single fleet XSAs were run with each of the available 3 commercial tuning fleets using the same settings as in the final assessment last year. There is a change in the residual pattern for the NORTRL from large values for the younger age-classes in the beginning of the time series to smaller residuals in more recent years. For the FRATRB, the older ages have large negative residuals caused by the targeting of small- to mediumsized saithe in the French trawler fleet. No clear signals emerge for the German trawler fleet. The survey time series has a too narrow age range for single fleet runs, where the lack of tuning information for too many ages leads to unreliable results.

\subsection*{11.3.4 Conclusions drawn from exploratory analyses}

The catch curves of the total landings data indicate changes in the relative exploitation of age 3 with time. A likely explanation of this apparent change in exploitation pattern is that the proportion of catches taken by purse seine decreased significantly in the early 1990s, and purse seiners mainly target young saithe. Therefore, it may now be more appropriate to use a reference F that does not include age 3 . Such a change of the reference \(F\) will affect the biological reference points and is outside the scope of this update assessment.

The explorations of the within and between consistencies in the available tuning series indicate that the abundance indices of age 3 are uncertain, and that age 4 indices seem to give more reliable information about year class strength.

\subsection*{11.3.5 Final assessment}

The settings in final XSA assessment in 2009 are the same as in 2008. Settings from the 2007 assessment are also presented.
\begin{tabular}{|l|l|l|l|}
\hline Year of assessment: & 2007 & 2008 & 2009 \\
\hline Assessment model: & XSA & no change & no change \\
\hline Fleets: & \begin{tabular}{l} 
FRAtrb (age range: 3-9, \\
1990 onwards)
\end{tabular} & no change & no change \\
\hline & \begin{tabular}{l} 
GERotb (age range: 3-9, \\
1995 onwards)
\end{tabular} & no change & no change \\
\hline & \begin{tabular}{l} 
NORacu (age range: 3- \\
6,1996 onwards)
\end{tabular} & no change & no change \\
\hline & \begin{tabular}{l} 
IBTSq3 (age range: 3-5, \\
1992 onwards)
\end{tabular} & no change & no change \\
\hline Age range: & \(3-10+\) & no change & no change \\
\hline Catch data: & \(1967-2006\) & \(1967-2007\) & \(1967-2008\) \\
\hline Fbar: & \(3-6\) & no change & no change \\
\hline Time series weights: & Tricubic over 20 years & no change & no change \\
\hline Power model for ages: & No & no change & no change \\
\hline Catchability plateau: & Age 7 & no change & no change \\
\hline \begin{tabular}{l} 
Survivorest. shrunk \\
towards the mean F:
\end{tabular} & 5 years / 3 ages & no change & no change \\
\hline \begin{tabular}{l} 
S.e. of mean (F- \\
shrinkage):
\end{tabular} & 1.0 & no change & no change \\
\hline \begin{tabular}{l} 
Min. s.e. of population \\
estimates:
\end{tabular} & 0.3 & no change & no change \\
\hline Prior weighting: & No & no change & no change \\
\hline \begin{tabular}{l} 
Number of iterations \\
before convergence:
\end{tabular} & 51 & 47 & 47 \\
\hline
\end{tabular}

Outputs from the final run are given in Table 11.3 .1 (diagnostics), Table 11.3 .2 (fishing mortality at age), Table 11.3.3 (population numbers at age), and Table 11.3.4 (stock summary).

The log catchability residuals from the final XSA-run are shown in Figure 11.3.11, the relative weights of F-shrinkage by tuning fleets are in Figure 11.3.12, a retrospective analysis in Figure 11.3.13 and the historical performance of the assessment in Figure 11.3.14.

\subsection*{11.4 Historic Stock Trends}

The historic stock and fishery trends are presented in Figure 11.4.1 (and Table 11.3.4). The reported landings increased from 1967 to the highest observed landing levels in the mid-1970s. After 1976 the landings decreased rapidly to a stable level between 1979-1981 and increased again from 1981 to 1985. From 1985 the reported landings decreased and levelled off in 1989 to a fairly stable level where they have stayed since. During the last 7 years (2002-2008), TAC levels have been higher than the reported landings.

The fishing mortality shows the same trends as landings in the period 1967-1985, while it has decreased nearly continuously since 1985 until present, dropping below Flim in 1993 and below \(\mathrm{F}_{\mathrm{pa}}\) in 1997. Estimated SSB increased from 1967 reaching the highest observed level in 1974 after which it decreased to below Blim in 1990. After

1991 SSB increased to above \(B_{p a}\) in 2001. Since then the increase has continued, and the SSB in 2009 is about \(1.3^{*} \mathrm{~B}\) ра.

Both the level and the variation in estimated recruitment (at age 3) are higher before about 1985 than after, e.g., the six strongest year classes observed all occurred in the earliest period. The 2004 year class is not as strong as suggested last year and emerges at about \(40 \%\) above the geometrical long-term mean (1988-2006). The 2005 year class appears to be very poor.

\subsection*{11.5 Recruitment estimates}

Since there are no indications of the 2005 year class to be strong, the provision taken last year to apply RCT3 against using an overestimated age 4 number was not continued. (This precaution was based on the observation in retrospection that strong recruitments tend to be overestimated in VPA.) Instead, as was usual in former years, the VPA number was accepted for age 4 at the start of the forecast period.
Reliable abundance information does not exist for the 2006 and 2007 year classes. It was therefore decided to use the geometric mean of recruits (age 3 from the final assessment) from the period 1988-2006 as the estimated recruitment for these year classes. The reason for excluding data before 1988 is that the recruitment dynamics (level and variation) seems quite different before and after 1988.

\subsection*{11.6 Short-term forecasts}

The short-term prognosis was performed using the same settings as last year. Inputs are presented in Table 11.6.1. Average weight at age over the last three years was used in the forecast. Fishing mortalities at age were estimated as an arithmetic average over the last three years. Number at age 3 (recruitment) is taken as the geometric mean of age 3 from the period 1988-2006.

Population numbers at the beginning of the forecast period are the XSA survivor estimates from the final assessment.

The management options are given in Table 11.6.2. Status quo fishing mortality ( \(\mathrm{F}_{\mathrm{sq}}\) ) in 2009 and 2010 is expected to lead to landings of about 100000 tonnes in 2010 and a drop to 235000 t in the expected spawning stock biomass in 2010. A fishing mortality in 2010 according to the EU-Norway management plan is expected to lead to landings of \(106000 t\) and an SSB of 223000 t in 2011. How ever, due to the TAC constraint, landings according to the management plan in 2010 are 118000 t and the SSB in 2011 is 212000 t .

\subsection*{11.7 Medium-term forecasts}

No medium-term forecasts were carried out.

\subsection*{11.8 Biological reference points}

The biological reference points were derived in 2006 and are:
\begin{tabular}{llll}
\(\mathbf{F}_{0.1}\) & 0.10 & \(\mathbf{F}_{\text {lim }}\) & 0.60 \\
\(\mathbf{F}_{\text {max }}\) & 0.22 & \(\mathbf{F}_{\text {pa }}\) & 0.40 \\
\(\mathbf{F}_{\text {med }}\) & 0.35 & \(\mathbf{B}_{\text {lim }}\) & 106000 t \\
\(\mathbf{F}_{\text {high }}\) & \(>0.49\) & \(\mathbf{B}_{\text {pa }}\) & 200000 t
\end{tabular}

These reference points refer to an Fbar from ages 3 to 6 . The proportion of catches taken by purse seine decreased significantly in the early 1990s. This caused a change in the exploitation pattern as the purse seiners mainly targeted young saithe. Therefore, it may be more appropriate to use a reference F that does not include age 3 .
The influence on the maturity ogive from the observed decrease in the weight at age is unknown, but it is reasonable to believe that the spawning capacity of the stock will be affected.

The change of the reference F and the possible change in maturity may affect the biological reference points but revising reference points is outside the scope of this update assessment.

\subsection*{11.9 Quality of the assessment}

The retrospective features for F and SSB (Figure 11.3.14) seem fairly good for the most recent years, except for the recruitment.

The poor reliability of the recruitment (age 3) estimate is a major problem for the saithe assessment. To improve the reliability of the information about year class strength before age 4, IMR in Norway has since 2006 carried out an acoustic recruitment survey for saithe (ages 2-4) along the Norwegian west coast. The usefulness of this survey has not yet been evaluated and at least another couple of years are needed before it can be fully evaluated.

Another problem with the assessment is the necessity to use commercial CPUE for tuning, as the survey series that are used only contain usable information for ages 3-6. There are many reasons for why commercial CPUE may fail to track changes in abundance. A serious one would be hyperstability; that is commercial catch rates remain high while population abundance drops, which may occur when vessels are able to locate high fish concentrations independently of population size. Hyperstability may be demonstrated if the degree of the fleet's spatial concentration is monitored. Norway and Germany have now permitted the use of data from their satellitebased vessel monitoring systems for research purposes, which makes it possible to perform such monitoring of the German and Norwegian tuning fleets.

\subsection*{11.10Status of the Stock}

The general perception of the status of the saithe stock remains unchanged from last year's assessment. Fishing mortality is estimated to be well below \(\mathrm{F}_{\mathrm{pa}}\) and the spawning stock biomass is estimated to be well above \(B_{p a}\).

\subsection*{11.11Management Considerations}

The ICES advice applies to the combined areas IIIa, IV, and VI.
The total landings in 2008 in areas IIIa and IV are considerably lower than the TAC, as was also the case in the 6 previous years. Information from fishermen indicates that low prices for saithe combined with high fuel prices may be causing this, but there are also claims that the abundance of saithe has been reduced in the most recent years.
By-catch of other demersal fish species occurs in the trawl fishery for saithe. Saithe is also taken as unintentional by-catch in other fisheries, and discards may occur if the vessels do not have a saithe quota.

The spawning stock of saithe in the North Sea is expected to remain above \(B_{p a}\) if the TAC for 2010 is set accor ding to the agreed management plan.

Since recruitment at age 3 tends to be poorly estimated in the XSA, the size of the 2005 year class is uncertain, but since the year class is estimated to be rather poor, only very large relative errors will make a large impact on the forecast. Since the Norw egian acoustic survey will not be conducted in 2009, significant new information on this year class is not expected this year.
In 2008 ICES carried out an evaluation of the management plans agreed between Norway and the European Community (ICES Advice, 2008. Book 6.), and the response is described below:
Recent reductions in recruitment levels and growth rates indicate that the productivity of the saithe stock in the North Sea, Skagerrak, and West of Scotland has declined. Assuming continuation of the current selection pattern and growth rates, annual yields are expected to be relatively stable at about 100000 t for fishing mortalities between 0.1 and 0.4. A target \(F\) below 0.3, or an increase in the upper SSB threshold (i.e., above the current \(B_{p a}=200000 \mathrm{t}\) ), are likely to give similar yields with lower risks in the medium term.

The 15\% TAC change constraint is likely to be invoked in \(\sim 50 \%\) of the years in which the harvest control rule is applied. TAC constraints less than \(15 \%\) would require a lower target fishing mortality in order to balance the increased risk to the stock. The equilibrium yield from the saithe stock is fairly insensitive to the TAC constraint. Given the relatively low productivity of saithe (low mean recruitment and low weight -at-age) in recent times, the limited treatment of measurement errors in the assessment, and implementation errors in the fishery, the harvest control rule should be reviewed again within 4 years after the evaluation.

Table 11.2.1 Nominal landings (in tonnes) of Saithe in Subarea IV and Division IIIa and SubareaVI, 1999-2008, as officially reported to ICES, and WG estimates

SAITHE IV and IIIa
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Country & 1999 & 2000 & 2001 & 2002 & 2003 & 2004* & 2005* & 2006 & 2007* & 2008* \\
\hline Belgium & 200 & 122 & 24 & 107 & 45 & 22 & 28 & 16 & 18 & 7 \\
\hline Denmark & 4494 & 3529 & 3575 & 5668 & 6954 & 7991 & 7498 & 7471 & 5458 & 8069 \\
\hline Faroe Islands & 1101 & - & 289 & 872 & 495 & 558 & 184 & 62 & 15 & 108 \\
\hline France & 243051* & 19200 & 20472 & 25441 & 18001 & 13628 & 10768 & 15739 & 13043 & 15302 \\
\hline Germany & 10481 & 9273 & 9479 & 10999 & 8956 & 9589 & 12401 & 14390 & 12790 & 14141 \\
\hline Greenland & - & 6012* & 15262* & 62 & 1616 & 403 & - & - & - & - \\
\hline Ireland & - & 1 & - & - & - & 1 & - & 0 & - & 81 \\
\hline Ne the rlands & 7 & 11 & 20 & 6 & \(1^{*}\) & 3 & 40 & 28 & 5 & 3 \\
\hline Norway & 56150 & 43665 & 44397 & 60013 & 61735 & 62783 & 67365 & 61268 & 45395 & 62055 \\
\hline Poland & 862 & 747 & 727 & 752 & \(734 *\) & 0 & 1100 & - & - & 1407 \\
\hline Russia & - & 67 & - & - & - & - & 35 & 2 & 5 & 5 \\
\hline Swe den & 1929 & 1468 & 1627 & 1863 & 1876 & 2249 & 2114 & 1695 & 1380 & 1639 \\
\hline UK (E/W/NI) & 2874 & 1227 & 1186 & 2521 & 1215 & 457 & 1190 & 9129** & 9628** & 11701** \\
\hline UK (Scotland) & 5420 & 5484 & 5219 & 6596 & 5829 & 5924 & 7703 & & & \\
\hline Total re ported & 107823 & 85395 & 88541 & 114900 & 107467 & 103608 & 110575 & 109800 & 87377 & 114517 \\
\hline Unallocated & -509 & 2281 & 1030 & 1291 & -5809 & -3646 & 968 & 7312 & 6241 & -2263 \\
\hline W.G. Estimate & 107314 & 87676 & 89571 & 116191 & 101658 & 99962 & 111543 & 117112 & 93618 & 112254 \\
\hline TAC & 110000 & 85000 & 87000 & 135000 & 165000 & 190000 & 145000 & 123250 & 123250 & 135900 \\
\hline
\end{tabular}
*Preliminary, 1reportedby TACarea, Па(EC), III-d(EC) and IV, 2Preliminary data reported in IV a
**Scotland+E/W/NI combined
Table 11.2. 1 continued
SAITHE VI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Country & 1999 & 2000 & 2001 & 2002 & 2003 & 2004* & 2005 * & 2006 & 2007* & 2008* \\
\hline Faroe Islands & 2 & - & - & - & 2 & 34 & 21 & 76 & 32 & 23 \\
\hline France & 34671* & 3310 & 5157 & 3062 & 3499 & 3053 & 3452 & 5782 & 3956 & 2617 \\
\hline Germany & 250 & 305 & 466 & 467 & 54 & 4 & 373 & 532 & 580 & 147 \\
\hline Ireland & 320 & 410 & 399 & 91 & 170 & 95 & 168 & 243 & 322 & 208 \\
\hline Ne the rlands & - & - & - & - & - & - & - & - & - & 1 \\
\hline Norway & 126 & 58 & 31 & 12 & 28 & 16 & 20 & 28 & 377 & 78 \\
\hline Russia & 3 & 25 & 1 & 1 & 6 & 6 & 25 & 7 & 2 & 50 \\
\hline Spain & 23 & 3 & 15 & 4 & 6 & 2 & 3 & - & - & - \\
\hline UK (E/W/NI) & 503 & 276 & 273 & 307 & 263 & 37 & 203 & 2748** & 1419** & 2887** \\
\hline UK (Scotland) & 2084 & 2463 & 2246 & 1567 & 1189 & 1563 & 4433 & & & \\
\hline Total re ported & 6778 & 6850 & 8588 & 5513 & 5215 & 4810 & 8699 & 9416 & 6688 & 6011 \\
\hline Unallocated & 564 & -960 & -1770 & -327 & 35 & -296 & -2960 & 848 & 98 & 1040 \\
\hline W.G.Estimate & 7342 & 5890 & 6818 & 5186 & 5250 & 4514 & 5739 & 8568 & 6786 & 7051 \\
\hline TAC & 7500 & 7000 & 9000 & 14000 & 17119 & 20000 & 15044 & 12787 & 12787 & 14100 \\
\hline
\end{tabular}
*Preliminary, 1reporte d by T AC a rea, Па(EC), III-d(EC) and IV
**Scotland+E/W/NI combined

SAITHE IV, IIIa and VI
\begin{tabular}{lllllllllll}
\hline & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 \\
\hline WGestimate & 114656 & 93566 & 96389 & 121377 & 106908 & 104476 & 117282 & 125680 & 100404 & 119305 \\
\hline TAC & 117500 & 92000 & 96000 & 149000 & 182119 & 210000 & 160044 & 136037 & 136037 & 150000 \\
\hline
\end{tabular}

Table 11.2.2 Saithe in Sub-Areas IV, VI and Division IIIa. Landed numbers (in thousands) at age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline year & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \\
\hline 1967 & 17330 & 16220 & 15531 & 2303 & 1594 & 292 & 98 & 183 \\
\hline 1968 & 23223 & 21231 & 13184 & 6023 & 429 & 242 & 23 & \\
\hline 1969 & 30235 & 17681 & 11057 & 7609 & 5738 & 791 & 26 & \\
\hline 1970 & 37249 & 76661 & 15000 & 12128 & 3894 & 1792 & 318 & \\
\hline 1971 & 69808 & 57792 & 32737 & 4736 & 4248 & 2843 & 1874 & \\
\hline 1972 & 48075 & 66095 & 25317 & 21207 & 3672 & 2944 & 1641 & 1607 \\
\hline 1973 & 54332 & 37698 & 26849 & 16061 & 8428 & 2000 & 1357 & 2381 \\
\hline 1974 & 66938 & 33740 & 14123 & 20688 & 14666 & 5199 & 1477 & \\
\hline 1975 & 56987 & 25864 & 10319 & 7566 & 13657 & 9357 & 3501 & 87 \\
\hline 1976 & 207823 & 53060 & 11696 & 6253 & 3976 & 5362 & 3586 & 3490 \\
\hline 1977 & 27461 & 54967 & 14755 & 5490 & 3777 & 3447 & 3812 & \\
\hline 1978 & 35059 & 27269 & 18062 & 3312 & 1138 & 1033 & 768 & 3484 \\
\hline 1979 & 16332 & 14216 & 11182 & 8699 & 2805 & 733 & 540 & 9 \\
\hline 1980 & 17494 & 12341 & 9015 & 6718 & 5658 & 1150 & 509 & 2302 \\
\hline 1981 & 26178 & 8339 & 6739 & 3675 & 3335 & 3396 & 657 & 2536 \\
\hline 1982 & 31895 & 40587 & 9174 & 5978 & 2145 & 1454 & 982 & 1254 \\
\hline 1983 & 28242 & 20604 & 26013 & 5678 & 4893 & 1494 & 1036 & 1327 \\
\hline 1984 & 80933 & 32172 & 12957 & 13011 & 1657 & 1252 & 335 & 646 \\
\hline 1985 & 134024 & 55605 & 13281 & 4765 & 3005 & 682 & 399 & 2 \\
\hline 1986 & 55434 & 91223 & 15186 & 5381 & 2603 & 1456 & 445 & 00 \\
\hline 1987 & 31220 & 97470 & 13990 & 3158 & 1811 & 1240 & 910 & 700 \\
\hline 1988 & 32578 & 26408 & 35323 & 3828 & 1908 & 1104 & 776 & 80 \\
\hline 1989 & 22128 & 30752 & 13187 & 10951 & 1557 & 739 & 419 & 48 \\
\hline 1990 & 40808 & 19583 & 11322 & 4714 & 2776 & 745 & 281 & \\
\hline 1991 & 46117 & 29871 & 7467 & 3583 & 1716 & 953 & 367 & \\
\hline 1992 & 18404 & 33614 & 1275 & 3193 & 1524 & 696 & 518 & 422 \\
\hline 1993 & 37823 & 20828 & 11845 & 3125 & 1568 & 1511 & 814 & 102 \\
\hline 1994 & 19958 & 40194 & 13034 & 4297 & 947 & 346 & 427 & \\
\hline 1995 & 26664 & 26034 & 1479 & 3774 & 3494 & 674 & 552 & \\
\hline 1996 & 11066 & 38861 & 11786 & 7731 & 3163 & 808 & 210 & \\
\hline 1997 & 15036 & 19299 & 30177 & 3676 & 2640 & 1012 & 291 & 288 \\
\hline 1998 & 10363 & 31017 & 16367 & 16077 & 2231 & 1206 & 567 & 77 \\
\hline 1999 & 9429 & 13872 & 26684 & 8389 & 10070 & 2346 & 891 & 657 \\
\hline 2000 & 7064 & 17295 & 8940 & 12339 & 3159 & 3226 & 641 & \\
\hline 2001 & 16052 & 17646 & 22421 & 3349 & 3586 & 1772 & 1614 & 245 \\
\hline 2002 & 19914 & 42331 & 8871 & 8899 & 2437 & 2976 & 1865 & 1623 \\
\hline 2003 & 11661 & 20209 & 25759 & 6269 & 7061 & 1512 & 1979 & 103 \\
\hline 2004 & 5315 & 14987 & 17696 & 13412 & 3820 & 4104 & 1118 & 806 \\
\hline 2005 & 13933 & 12508 & 16861 & 17796 & 11585 & 2838 & 2248 & 460 \\
\hline 2006 & 9871 & 28211 & 12355 & 9364 & 11375 & 5958 & 1545 & 1432 \\
\hline 2007 & 17486 & 7982 & 21443 & 7367 & 5639 & 5230 & 1800 & 975 \\
\hline 2008 & 9692 & 24765 & 8119 & 17113 & 4561 & 3418 & 2407 & 173 \\
\hline
\end{tabular}

\section*{Table 11.2.3 Saithe in Sub-Areas IV, VI and Division IIIa. Landings weights at age (kg).}
```

2009-05-11 22:28:31 units= kg
age

year	3	4	5	6	7	8	9	10

 1967 0.930 1.362 2.104 3.186 3.754 5.316 5.891 7.719
 1968 1.278 1.652 1.989 3.009 4.040 4.428 6.136 7.406
 1969 0.966 1.557 2.261 2.713 3.559 4.406 5.220 6.767
 1970 0.941 1.441 2.059 2.718 3.599 4.463 5.687 6.845
 1971 0.840 1.348 2.178 2.936 3.766 4.634 5.172 6.163
 1972 0.808 1.196 1.961 2.369 3.794 4.228 4.630 6.326
 1973 0.821 1.406 1.641 2.571 3.357 4.684 4.814 6.445
 1974 0.861 1.561 2.383 2.753 3.429 4.498 5.713 7.857
 1975 0.893 1.498 2.490 3.300 3.765 4.296 5.540 7.562
 1976 0.702 1.309 2.260 3.071 4.035 4.383 5.112 7.147
 1977 0.760 1.256 1.935 3.111 4.162 4.605 4.859 6.542
 1978 0.821 1.327 2.155 3.340 4.522 4.900 5.449 7.400
 1979 1.107 1.623 2.238 3.095 4.050 5.274 6.308 7.955
 1980 0.955 1.821 2.391 3.030 4.090 5.126 5.939 8.148
 1981 0.961 1.821 2.717 3.587 4.536 5.478 6.980 8.724
 1982 1.086 1.575 2.529 3.220 4. 207 5.125 5.905 8.823
 1983 1.028 1.718 2.149 3.138 3.691 4.632 5.505 8.453
 1984 0.795 1.614 2.297 2.690 3.896 4.665 6.183 8.474
 1985 0.663 1.265 1.950 2.772 3.407 4.950 5.865 8.854
 1986 0.694 1.035 1.794 2.432 3.572 4.209 5.651 8.218
 1987 0.674 0.876 1.824 3.075 4.210 5.330 6.128 8.603
 1988 0.779 0.981 1.386 2.791 4.024 5.254 6.322 8.649
 1989 0.895 1.036 1.420 1.998 3.914 5.017 6.430 8.431
 1990 0.844 1.196 1.583 2.247 3.242 4.858 6.315 8.416
 1991 0.791 1.158 1.752 2..365 3.165 4.222 6.066 8.191
 1992 0.964 1.189 1.607 2.242 3.668 4.330 5.412 7.045
 1993 0.899 1.260 1.754 2.636 3.185 3.980 5.080 6.891
 1994 0.944 1.119 1.601 2.434 3.617 4.787 6.548 8.326
 1995 1.002 1.294 1.816 2.562 3.555 4.767 5.267 7.891
 1996 0.967 1.187 1.807 2.368 2.952 4.705 6.092 8.382
 1997 0.905 1.145 1.452 2.587 3.556 4.525 6.158 8.866
 1998 0.892 0.966 1.393 1.744 2.949 3.883 4.996 7. 227
 1999 0.881 1.061 1.211 1.754 2.337 3.493 4.844 6.745
 2000 1.027 1. 127 1.539 1.684 2.594 3.084 4.773 7.461
 2001 0.802 1.072 1.313 2.095 2.546 3.485 4.141 6.141
 2002 0.806 0.859 1.324 1.752 2.289 3.109 3.921 3.747
 2003 0.718 0.954 1.083 1.661 2..248 3.348 3.773 4.294
 2004 0.877 1.015 1.257 1.582 2.475 3.103 4.286 5.556
 2005 0.666 1.073 1.301 1.601 1.998 3.009 3.796 4.885
 2006 0.893 0.999 1.348 1.738 2.077 2.578 3.784 5.349
 2007 0.744 1.098 1.158 1.628 2.004 2.670 3.267 4.987
 2008 0.889 1.098 1.431 1.653 2..295 2.827 3.362 4.295
    ```

Table 11.2.4 Saithe in Sub-Areas IV,VI and Division IIIa. Tuning data, effort and index values. Data in bold are used in the final assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{FRATRB_IV}} & units= & & & & & & \\
\hline & & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 1990 & 21758 & 0.1553 & 0.1136 & 0.0646 & 0.01397 & 0.013342 & 0.001504 & 0.000681 \\
\hline 1991 & 15248 & 0.0906 & 0.1665 & 0.0480 & 0.02441 & 0.008578 & 0.004438 & 0.000782 \\
\hline 1992 & 7902 & 0.0908 & 0.1874 & 0.0631 & 0.00931 & 0.003088 & 0.000903 & 0.000727 \\
\hline 1993 & 13527 & 0.2896 & 0.1666 & 0.0859 & 0.00766 & 0.000614 & 0.000639 & 0.000457 \\
\hline 1994 & 14417 & 0.1228 & 0.2534 & 0.0958 & 0.03011 & 0.002698 & 0.000369 & 0.000188 \\
\hline 1995 & 14632 & 0.2154 & 0.1150 & 0.0630 & 0.01542 & 0.004811 & 0.001646 & 0.000910 \\
\hline 1996 & 16241 & 0.0551 & 0.2639 & 0.0648 & 0.03300 & 0.006627 & 0.001517 & 0.000933 \\
\hline 1997 & 12903 & 0.0843 & 0.1484 & 0.2461 & 0.01473 & 0.006503 & 0.001281 & 0.001065 \\
\hline 1998 & 13559 & 0.0590 & 0.1872 & 0.1379 & 0.10922 & 0.003854 & 0.001698 & 0.000766 \\
\hline 1999 & 14588 & 0.0584 & 0.0846 & 0.1828 & 0.04251 & 0.027397 & 0.001660 & 0.000938 \\
\hline 2000 & 8695 & 0.1023 & 0.2292 & 0.1195 & 0.13745 & 0.024701 & 0.020761 & 0.003652 \\
\hline 2001 & 6366 & 0.1137 & 0.2104 & 0.3727 & 0.04241 & 0.022762 & 0.004014 & 0.004599 \\
\hline 2002 & 11022 & 0.2972 & 0.6874 & 0.1107 & 0.11269 & 0.015905 & 0.013739 & 0.003714 \\
\hline 2003 & 10536 & 0.1440 & 0.3071 & 0.2235 & 0.02509 & 0.030857 & 0.007642 & 0.010714 \\
\hline 2004 & 5234 & 0.0854 & 0.1868 & 0.1951 & 0.09450 & 0.017689 & 0.006807 & 0.003778 \\
\hline 2005 & 3015 & 0.1350 & 0.2191 & 0.2133 & 0.14209 & 0.069557 & 0.005202 & 0.004730 \\
\hline 2006 & 5710 & 0.2945 & 0.5503 & 0.0966 & 0.02531 & 0.034901 & 0.006945 & 0.002319 \\
\hline 2007 & 8255 & 0.5089 & 0.1261 & 0.3401 & 0.02917 & 0.012090 & 0.000372 & NA \\
\hline 2008 & 7016 & 0.1252 & 0.2170 & 0.0350 & 0.13538 & 0.023503 & 0.004887 & 0.004749 \\
\hline
\end{tabular}

NORTRL_IV1 units= NA
\(\begin{array}{lllllll}3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\)
1980183170.010150 .07040 .03590 .053500 .043510 .014250 .003276
1981282290.003120 .02990 .04760 .017430 .023730 .024760 .004216
1982474120.139710 .25340 .05770 .044550 .007190 .004940 .000401
1983430990.102110 .11520 .18970 .045240 .054920 .011160 .008283 1984478030.430430 .15330 .04620 .070250 .009060 .009290 .002217 1985666070.406680 .32130 .07970 .023560 .009560 .000840 .000691 \(\begin{array}{lllllllllll}198657468 & 0.09217 & 0.5153 & 0.0625 & 0.01423 & 0.00684 & 0.00212 & 0.000435\end{array}\) 1987300080.088140 .61500 .07390 .009660 .007830 .006700 .006598 1988184020.170200 .11100 .12030 .007660 .008530 .004020 .007282 1989177810.036500 .11960 .04700 .039030 .017380 .008660 .003656 1990102490.078450 .07620 .09020 .050640 .019810 .006150 .001171 1991287680.498750 .17270 .04150 .018010 .007060 .001770 .001947 1992356210.096770 .26760 .11320 .030520 .013050 .004630 .003060 NORTRL_IV2 units= NA
\(\begin{array}{lllllll}3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\)
1993245720.31070 .16390 .11710 .04140 .02140 .014850 .010256 1994306280.12860 .52560 .13960 .03020 .00820 .002350 .006628 1995324890.13380 .28830 .16660 .02560 .05060 .008400 .006248 1996404000.09380 .35720 .10930 .06840 .02830 .004680 .000396 1997360260.08030 .14620 .27310 .03940 .02480 .008300 .001999 \(1998245100.05610 .3378 \quad 0.22250 .23100 .03990 .019950 .009914\) 1999215130.03780 .12060 .31930 .11010 .16740 .054290 .016083 2000155200.01830 .10490 .13230 .27450 .06870 .077510 .014240 2001231060.20810 .22630 .28190 .04050 .05340 .022030 .016879 \(2002381140.10530 .31650 .09110 .0990 \quad 0.0257 \quad 0.042820 .027549\) \(2003416450.0391 \quad 0.13090 .25100 .08650 .10640 .019020 .024109\) 2004327260.02030 .08180 .17440 .20100 .06890 .080670 .020045 \(2005349640.03440 .0881 \quad 0.1481 \quad 0.26320 .19890 .049420 .041014\) \(200630190 \quad 0.0264 \quad 0.13630 .12730 .15270 .24210 .131630 .026863\) 2007263540.05930 .05470 .17770 .13300 .10070 .118430 .033657 2008325500.07090 .31810 .11260 .25670 .06620 .049740 .037911
```

GER_OTB_IV units= NA

| | | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1995 | 21167 | 0.0547 | 0.1114 | 0.0638 | 0.0278 | 0.00718 | 0.00142 | 0.000756 |
| 1996 | 19064 | 0.0268 | 0.1661 | 0.0567 | 0.0271 | 0.01348 | 0.00776 | 0.002151 |
| 1997 | 21707 | 0.0376 | 0.1140 | 0.1675 | 0.0135 | 0.00751 | 0.00322 | 0.001106 |
| 1998 | 20153 | 0.0293 | 0.1362 | 0.0692 | 0.0881 | 0.01181 | 0.00496 | 0.001935 |
| 1999 | 18596 | 0.0153 | 0.0573 | 0.1217 | 0.0507 | 0.05458 | 0.00414 | 0.001936 |
| 2000 | 12223 | 0.0443 | 0.1788 | 0.0673 | 0.0995 | 0.01980 | 0.02659 | 0.003109 |
| 2001 | 11008 | 0.0810 | 0.1207 | 0.2105 | 0.0338 | 0.04833 | 0.02262 | 0.014081 |
| 2002 | 12789 | 0.0508 | 0.2860 | 0.0962 | 0.0860 | 0.00774 | 0.01095 | 0.005395 |
| 2003 | 14560 | 0.0343 | 0.0961 | 0.1806 | 0.0301 | 0.02692 | 0.00398 | 0.004945 |
| 2004 | 13708 | 0.0244 | 0.1488 | 0.1406 | 0.0787 | 0.01459 | 0.01714 | 0.003429 |
| 2005 | 11700 | 0.0371 | 0.0436 | 0.1387 | 0.1319 | 0.06726 | 0.01752 | 0.010171 |
| 2006 | 10815 | 0.0346 | 0.1456 | 0.0638 | 0.0618 | 0.06334 | 0.03236 | 0.013592 |
| 2007 | 12606 | 0.0743 | 0.0566 | 0.2231 | 0.0482 | 0.03213 | 0.03308 | 0.013882 |
| 2008 | 12871 | 0.0371 | 0.2448 | 0.0487 | 0.1291 | 0.02750 | 0.01709 | 0.017326 |

```

NORACU units= NA
\begin{tabular}{rrrrrr} 
& & 3 & 4 & 5 & 6 \\
1995 & 1 & 56244 & 4756 & 1214 & 174 \\
1996 & 1 & 21480 & 29698 & 6125 & 4593 \\
1997 & 1 & 22585 & 16188 & 24939 & 3002 \\
1998 & 1 & 15180 & 48295 & 13540 & 11194 \\
1999 & 1 & 16933 & 21109 & 27036 & 4399 \\
2000 & 1 & 34551 & 82338 & 14213 & 13842 \\
2001 & 1 & 72108 & 28764 & 17405 & 3870 \\
2002 & 1 & 82501 & 163524 & 17479 & 4475 \\
2003 & 1 & 67774 & 107730 & 41675 & 4581 \\
2004 & 1 & 34153 & 43811 & 31636 & 6413 \\
2005 & 1 & 48446 & 36560 & 27859 & 10174 \\
2006 & 1 & 18909 & 58132 & 11378 & 7922 \\
2007 & 1 & 77958 & 12070 & 32445 & 2384 \\
2008 & 1 & 7122 & 18989 & 4180 & 10262
\end{tabular}
\begin{tabular}{rrrrr}
\multicolumn{3}{c}{ IBTSq3 } & \multicolumn{1}{c}{ units= NA } \\
& & 3 & 4 & 5 \\
1991 & 1 & 1.95 & 0.402 & 0.064 \\
1992 & 1 & 1.08 & 2.760 & 0.516 \\
1993 & 1 & 7.96 & 2.781 & 1.129 \\
1994 & 1 & 1.12 & 1.615 & 0.893 \\
1995 & 1 & 13.96 & 2.501 & 1.559 \\
1996 & 1 & 3.83 & 6.533 & 1.112 \\
1997 & 1 & 3.76 & 3.351 & 7.461 \\
1998 & 1 & 1.03 & 3.921 & 1.333 \\
1999 & 1 & 2.10 & 2.019 & 2.949 \\
2000 & 1 & 3.48 & 8.836 & 1.081 \\
2001 & 1 & 21.50 & 6.173 & 3.937 \\
2002 & 1 & 10.75 & 18.974 & 1.327 \\
2003 & 1 & 19.27 & 23.802 & 13.402 \\
2004 & 1 & 4.98 & 6.896 & 3.158 \\
2005 & 1 & 8.89 & 6.870 & 4.994 \\
2006 & 1 & 10.64 & 29.820 & 2.934 \\
2007 & 1 & 34.02 & 5.594 & 11.763 \\
2008 & 1 & 3.47 & 5.860 & 1.122
\end{tabular}

Table 11.3.1 Saithe in Sub-Areas IV, VI and Division IIIa. XSA diagnostics.

FLR XSA Diagnostics 2009-05-11 22:41:02

CPUE data from xsa.indices
Catch data for 42 years. 1967 to 2008. Ages 3 to 10 .
\begin{tabular}{lrrrrrrrr} 
& fleet first age last age first year last year alpha beta \\
1 & FRATRB_IV & 3 & 9 & 1990 & 2008 & 0 & 1 \\
2 & GER_OTB_IV & 3 & 9 & 1995 & 2008 & 0 & 1 \\
3 & NORACU & 3 & 6 & 1996 & 2008 & 0.5 & 0.75 \\
4 & IBTSq3 & 3 & 5 & 1992 & 2008 & 0.5 & 0.75
\end{tabular}

Time series weights :

Tapered time weighting applied
Power \(=3\) over 20 years

Catchability analysis :

Catchability independent of size for all ages
Catchability independent of age for ages \(>7\)
Terminal population estimation :

Survivor estimates shrunk towards the mean \(F\)
of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk \(=1\)

Minimum standard error for population
estimates derived from each fleet \(=0.3\)
prior weighting not applied
```

Regression weights
year
age 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
all 0.751 0.82 0.877 0.921 0.954 0.976 0.99 0.997 1 1

```
Fishing mortalities
    year
age \(1999 \quad 2000 \quad 2001 \quad 2002 \quad 2003 \quad 2004 \quad 2005 \quad 2006 \quad 2007 \quad 2008\)
    \(30.0780 .0870 .0840 .1260 .110 \quad 0.070 \quad 0.076 \quad 0.2130 .118 \quad 0.160\)
    \(\begin{array}{llllllllllll}4 & 0.376 & 0.200 & 0.323 & 0.330 & 0.181 & 0.202 & 0.235 & 0.216 & 0.266 & 0.244\end{array}\)
    \(\begin{array}{llllllllllll}5 & 0.548 & 0.445 & 0.431 & 0.266 & 0.343 & 0.239 & 0.367 & 0.385 & 0.254 & 0.477\end{array}\)
    \(6 \quad 0.470 \quad 0.531 \quad 0.297 \quad 0.303 \quad 0.306 \quad 0.301 \quad 0.403 \quad 0.358 \quad 0.418 \quad 0.331\)
    \(7 \quad 0.530 \quad 0.323 \quad 0.2860 .3670 .419 \quad 0.310 \quad 0.4630 .4890 .3810 .498\)
    \(80.7960 .3200 .3030 .408 \quad 0.4090 .4620 .400 \quad 0.4630 .438 \quad 0.420\)
    \(9 \quad 0.9430 .521 \quad 0.2620 .6070 .527 \quad 0.610 \quad 0.499 \quad 0.3950 .2450 .369\)
    \(100.9430 .521 \quad 0.2620 .607 \quad 0.527 \quad 0.610 \quad 0.499 \quad 0.395 \quad 0.2450 .369\)
XSA population number ( NA )
            age
\(\begin{array}{llllllllll}\text { year } & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\)
    \(1999139349489026993824712 \quad 27046 \quad 472316131170\)
    \(2000 \quad 94158105558 \quad 2748633116126421303217441189\)
    \(2001221180 \quad 70698 \quad 707741441415948749277501172\)
    \(20021865901665624191637658 \quad 8771 \quad 981345313896\)
    \(\begin{array}{lllllllllll}2003 & 123594 & 134749 & 98067 & 26291 & 22780 & 4976 & 5342 & 2774\end{array}\)
    \(20048654490639 \quad 92037569821585212262 \quad 27051929\)
    \(2005211248 \quad 66048 \quad 60648 \quad 59342 \quad 34517 \quad 9523 \quad 63261282\)
    \(\begin{array}{llllllllll}2006 & 56975 & 160348 & 42758 & 34398 & 32483 & 17778 & 5228 & 4808\end{array}\)
    20071739903771610575623828196901630291644932
    \(2008 \quad 72416126629 \quad 23657 \quad 671831284211018 \quad 86146166\)
```

Estimated population abundance at 1st Jan 2009
age
year 3 % 4 % 5 % 6 % 7
2009 0 50520 81267 12022 39521 6388
Fleet: FRATRB_IV
Log catchability residuals.

| year | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| age | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
| 3 | 0.292 | -0.397 | -0.091 | 0.614 | 0.111 | -0.159 | -0.823 | -0.793 | -0.290 |
| 4 | 0.243 | 0.320 | 0.263 | 0.230 | 0.318 | -0.206 | -0.379 | -0.270 | -0.424 |
| 5 | 0.073 | 0.085 | 0.240 | 0.215 | 0.290 | -0.389 | -0.162 | -0.035 | 0.085 |
| 6 | -0.276 | 0.341 | -0.304 | -0.415 | 0.372 | -0.343 | 0.238 | -0.538 | 0.226 |
| 7 | 0.651 | 0.369 | -0.687 | -1.804 | -0.333 | -0.178 | -0.049 | -0.157 | -0.933 |
| 8 | -0.459 | 0.301 | -1.283 | -1.473 | -1.616 | -0.167 | -0.320 | -0.860 | -0.767 |
| 9 | -0.115 | -0.427 | -0.843 | -1.211 | -1.740 | 0.112 | -0.092 | 0.067 | -0.602 |
| year | | | | | | | | | |
| age | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| 3 | -1.018 | -0.062 | -0.811 | 0.340 | 0.020 | -0.165 | -0.597 | 1.558 | 0.944 |
| 4 | -0.306 | -0.160 | 0.212 | 0.542 | -0.120 | -0.211 | 0.280 | 0.306 | 0.303 |
| 5 | 0.030 | 0.493 | 0.679 | -0.086 | -0.199 | -0.319 | 0.246 | -0.189 | 0.105 |
| 6 | 0.021 | 0.929 | 0.479 | 0.499 | -0.642 | -0.092 | 0.322 | -0.879 | -0.342 |
| 7 | -0.083 | 0.481 | 0.150 | 0.426 | 0.158 | -0.085 | 0.575 | -0.042 | -0.650 |
| 8 | -1.028 | 0.275 | -0.822 | 0.186 | 0.279 | -0.715 | -0.759 | -1.066 | -3.917 |
| 9 | -0.463 | 0.639 | -0.739 | -0.261 | 0.599 | 0.273 | -0.401 | -0.969 | NA |
| year | | | | | | | | | |
| age 2008 | | | | | | | | | |
| 30.438 | | | | | | | | | |
| 4-0.376 | | | | | | | | | |
| $5-0.571$ | | | | | | | | | |
| 60.117 | | | | | | | | | |
| $7 \quad 0.494$ | | | | | | | | | |
| $8-0.958$ | | | | | | | | | |
| $9-0.763$ | | | | | | | | | |

```

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrrrrr} 
& 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
Mean_Logq & -13.5314 & -12.6872 & -12.5340 & -12.9777 & -13.3766 & -13.3766 & -13.3766 \\
S.E_Logq & 0.6549 & 0.3100 & 0.3032 & 0.4640 & 0.6078 & 0.9569 & 0.6168
\end{tabular}

Fleet: GER_OTB_IV
Log catchability residuals.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{year} \\
\hline age & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 \\
\hline 3 & -0.240 & -0.257 & -0.311 & 0.300 & -1.070 & 0.392 & 0.139 & -0.137 & -0.125 & -0.130 \\
\hline 4 & 0.422 & -0.182 & 0.125 & -0.083 & -0.037 & 0.251 & 0.316 & 0.325 & -0.623 & 0.221 \\
\hline 5 & -0.047 & 0.033 & -0.090 & -0.275 & -0.047 & 0.250 & 0.437 & 0.103 & -0.082 & -0.316 \\
\hline 6 & 0.193 & -0.012 & -0.683 & -0.042 & 0.144 & 0.552 & 0.199 & 0.175 & -0.515 & -0.328 \\
\hline 7 & -0.087 & 0.352 & -0.322 & -0.123 & 0.297 & -0.050 & 0.593 & -0.603 & -0.288 & -0.587 \\
\hline 8 & -0.627 & 1.003 & -0.247 & -0.004 & -0.423 & 0.213 & 0.598 & -0.350 & -0.682 & -0.101 \\
\hline 9 & -0.383 & 0.434 & -0.205 & 0.016 & -0.048 & 0.169 & 0.071 & -0.197 & -0.484 & -0.134 \\
\hline \multicolumn{11}{|c|}{year} \\
\hline age & 2005 & 2006 & 2007 & 2008 & & & & & & \\
\hline 3 & -0.600 & 0.705 & 0.309 & 0.510 & & & & & & \\
\hline 4 & -0.675 & -0.364 & 0.160 & 0.404 & & & & & & \\
\hline 5 & 0.146 & -0.273 & 0.013 & 0.090 & & & & & & \\
\hline 6 & 0.193 & -0.040 & 0.105 & 0.015 & & & & & & \\
\hline 7 & 0.232 & 0.244 & 0.017 & 0.342 & & & & & & \\
\hline 8 & 0.146 & 0.164 & 0.261 & -0.015 & & & & & & \\
\hline 9 & 0.056 & 0.490 & -0.119 & 0.222 & & & & & & \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{rrrrrrrrr} 
& 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
Mean_Logq & -14.8205 & -13.3466 & -12.8640 & -12.9239 & -13.0671 & -13.0671 & -13.0671
\end{tabular}
```

S.E_Logq 0.4701 0.3629 0.2083 0.3190 0.3632 0.4603 0.2787
Fle\overline{et: NORACU}
Log catchability residuals.

| year | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| age | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005

```

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
```

Mean_Logq -1.0970

```

```

 Fleet: IBTSq3
    ```
    Log catchability residuals.
    year
\(\begin{array}{llllllllllllll}\text { age } & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001\end{array}\)
    \(\begin{array}{lllllllllll}3 & -1.492 & 0.066 & -1.556 & 0.122 & -0.478 & -0.892 & -1.319 & -1.336 & -0.434 & 0.531\end{array}\)
    \(\begin{array}{llllllllllllll}4 & -0.427 & -0.380 & -1.219 & -0.536 & -0.625 & -0.610 & -0.834 & -0.578 & 0.019 & 0.137\end{array}\)
    \(5-0.548-0.162-0.423-0.141-0.285 \quad 0.388-0.628-0.156-0.289 \quad 0.048\)
        year
age 2002 2003 \(2004 \quad 2005 \quad 2006 \quad 2007 \quad 2008\)
    \(\begin{array}{llllllll}3 & 0.034 & 1.021 & -0.001 & -0.310 & 1.264 & 1.252 & -0.129\end{array}\)
    \(4 \quad 0.408 \quad 0.754-0.076 \quad 0.258 \quad 0.827 \quad 0.632 \quad-0.547\)
    \(5-0.618 \quad 0.892-0.554 \quad 0.401 \quad 0.229 \quad 0.631-0.083\)

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\[
\begin{array}{lrrr} 
& 3 & 4 & 5 \\
\text { Mean_Logq } & -9.5931 & -9.1573 & -9.4518 \\
\text { S.E_Logq } & 0.9090 & 0.5938 & 0.4519
\end{array}
\]
\[
\text { Terminal year survivor and } F \text { summaries: }
\]
\[
\text { Age } 3 \text { Year class }=2005
\]
source
\begin{tabular}{lrlr} 
& survivors & N & scaledWts \\
FRATRB_IV & 78294 & 1 & 0.152 \\
GER_OTB_IV & 84105 & 1 & 0.361 \\
NORACU & 18630 & 1 & 0.273 \\
IBTSq3 & 44403 & 1 & 0.107 \\
fshk & 70227 & 1 & 0.108
\end{tabular}

Age 4 Year class \(=2004\)
source
\begin{tabular}{lrrr} 
& survivors & N & scaledWts \\
FRATRB_IV & 67414 & 2 & 0.336 \\
GER_OTB_IV & 117648 & 2 & 0.321 \\
NORACU & 59715 & 2 & 0.181 \\
IBTSq3 & 78255 & 2 & 0.120 \\
fshk & 90534 & 1 & 0.042
\end{tabular}
```

Age 5 Year class = 2003

```
\begin{tabular}{|c|c|c|c|}
\hline & survivors & N & scaledWts \\
\hline FRATRB_IV & 11365 & 3 & 0.280 \\
\hline GER_OTB _IV & 14538 & 3 & 0.329 \\
\hline NORACU & 8156 & 3 & 0.243 \\
\hline IBTSq3 & 15919 & 3 & 0.119 \\
\hline fshk & 19527 & 1 & 0.029 \\
\hline \multicolumn{4}{|l|}{Age 6 Year class \(=2002\)} \\
\hline \multicolumn{4}{|l|}{source} \\
\hline & survivors & N & scaledWts \\
\hline FRATRB_IV & 45205 & 4 & 0.257 \\
\hline GER_OTB_IV & 35607 & 4 & 0.386 \\
\hline NORACU & 33570 & & 0.250 \\
\hline IBTSq3 & 70084 & 3 & 0.085 \\
\hline fshk & 35800 & 1 & 0.022 \\
\hline
\end{tabular}
source
\begin{tabular}{lrrr} 
& survivors & N & scaledWts \\
FRATRB_IV & 6973 & 5 & 0.273 \\
GER_OTB_IV & 6338 & 5 & 0.436 \\
NORACU & 5157 & 4 & 0.194 \\
IBTSq3 & 7875 & 3 & 0.063 \\
fshk & 8015 & 1 & 0.034
\end{tabular}
Age 8 Year class \(=2000\)
source
\begin{tabular}{lrrr} 
& Survivors & scaledw \\
FRATRB_IV & 4210 & 6 & 0.244 \\
GER_OTB_IV & 6107 & 6 & 0.496 \\
NORACU & 8121 & 4 & 0.167 \\
IBTSq3 & 8228 & 3 & 0.055 \\
fshk & 5637 & 1 & 0.037
\end{tabular}

Age 9 Year class \(=1999\)
source
\begin{tabular}{lrrr} 
& survivors & N & scaledWts \\
FRATRB_IV & 3321 & 7 & 0.209 \\
GER_OTB_IV & 5543 & 7 & 0.610 \\
NORACU & 5367 & 4 & 0.107 \\
IBTSq3 & 4519 & 3 & 0.036 \\
fshk & 4183 & 1 & 0.038
\end{tabular}

Table 11.3.2 Saithe in Sub-Areas IV, VI and Division IIIa. Fishing mortality (F) at age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline year & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \\
\hline 1967 & 0.163 & 0.263 & 0.378 & 0.484 & 0.416 & 0.260 & 0.389 & \\
\hline 1968 & 0.255 & 0.307 & 0.355 & 0.245 & 0.152 & 0.100 & 0.167 & 0.167 \\
\hline 1969 & 0.118 & 0.314 & 0.260 & 0.357 & 0.391 & 0.464 & 0.407 & 0.407 \\
\hline 1970 & 0.152 & 0.490 & 0.483 & 0.507 & 0.313 & 0.202 & 0.343 & 0.343 \\
\hline 1971 & 0.268 & 0.373 & 0.400 & 0.274 & 0.332 & 0.397 & 0.336 & 0.336 \\
\hline 1972 & 0.371 & 0.440 & 0.277 & 0.492 & 0.354 & 0.405 & 0.420 & 0.420 \\
\hline 1973 & 0.499 & 0.563 & 0.320 & 0.284 & 0.369 & 0.332 & 0.330 & 0.330 \\
\hline 1974 & 0.688 & 0.675 & 0.424 & 0.439 & 0.456 & 0.411 & 0.438 & 0.438 \\
\hline 1975 & 0.427 & 0.629 & 0.446 & 0.424 & 0.587 & 0.597 & 0.541 & 0.541 \\
\hline 1976 & 0.911 & 0.931 & 0.661 & 0.538 & 0.414 & 0.483 & 0.482 & 0.482 \\
\hline 1977 & 0.297 & 0.655 & 0.737 & 0.771 & 0.747 & 0.784 & 0.775 & 0.775 \\
\hline 1978 & 0.543 & 0.545 & 0.464 & 0.355 & 0.348 & 0.463 & 0.392 & 0.392 \\
\hline 1979 & 0.265 & 0.442 & 0.450 & 0.426 & 0.582 & 0.398 & 0.472 & 0.472 \\
\hline 1980 & 0.340 & 0.328 & 0.563 & 0.540 & 0.549 & 0.503 & 0.535 & 0.535 \\
\hline 1981 & 0.183 & 0.269 & 0.299 & 0.473 & 0.570 & 0.769 & 0.609 & 0.609 \\
\hline 1982 & 0.387 & 0.479 & 0.534 & 0.475 & 0.563 & 0.526 & 0.526 & 0.526 \\
\hline 1983 & 0.307 & 0.466 & 0.657 & 0.763 & 0.937 & 1.031 & 0.920 & 0.920 \\
\hline 1984 & 0.573 & 0.692 & 0.609 & 0.838 & 0.524 & 0.664 & 0.682 & 0.682 \\
\hline 1985 & 0.645 & 1.046 & 0.699 & 0.473 & 0.462 & 0.425 & 0.457 & 0.457 \\
\hline 1986 & 0.239 & 1.399 & 0.956 & 0.694 & 0.516 & 0.427 & 0.550 & 0.550 \\
\hline 1987 & 0.364 & 0.869 & 0.847 & 0.523 & 0.531 & 0.499 & 0.522 & 0.522 \\
\hline 1988 & 0.375 & 0.606 & 0.950 & 0.589 & 0.706 & 0.737 & 0.684 & 0.684 \\
\hline 1989 & 0.379 & 0.745 & 0.709 & 0.918 & 0.509 & 0.665 & 0.704 & 0.704 \\
\hline 1990 & 0.472 & 0.688 & 0.688 & 0.598 & 0.626 & 0.490 & 0.578 & 0.578 \\
\hline 1991 & 0.459 & 0.774 & 0.618 & 0.482 & 0.453 & 0.454 & 0.479 & 0.479 \\
\hline 1992 & 0.247 & 0.731 & 0.941 & 0.591 & 0.388 & 0.334 & 0.481 & 0.481 \\
\hline 1993 & 0.323 & 0.491 & 0.623 & 0.630 & 0.661 & 0.854 & 0.836 & 0.836 \\
\hline 1994 & 0.243 & 0.682 & 0.663 & 0.483 & 0.393 & 0.291 & 0.626 & 0.626 \\
\hline 1995 & 0.141 & 0.576 & 0.580 & 0.405 & 0.960 & 0.543 & 1.072 & 1.072 \\
\hline 1996 & 0.118 & 0.314 & 0.563 & 0.696 & 0.714 & 0.607 & 0.320 & 0.320 \\
\hline 1997 & 0.108 & 0.309 & 0.430 & 0.339 & 0.544 & 0.524 & 0.458 & 0.458 \\
\hline 1998 & 0.175 & 0.337 & 0.470 & 0.430 & 0.356 & 0.517 & 0.637 & 0.637 \\
\hline 1999 & 0.078 & 0.376 & 0.548 & 0.470 & 0.530 & 0.796 & 0.943 & 0.943 \\
\hline 2000 & 0.087 & 0.200 & 0.445 & 0.531 & 0.323 & 0.320 & 0.521 & 0.521 \\
\hline 2001 & 0.084 & 0.323 & 0.431 & 0.297 & 0.286 & 0.303 & 0.262 & 0.262 \\
\hline 2002 & 0.126 & 0.330 & 0.266 & 0.303 & 0.367 & 0.408 & 0.607 & 0.607 \\
\hline 2003 & 0.110 & 0.181 & 0.343 & 0.306 & 0.419 & 0.409 & 0.527 & 0.527 \\
\hline 2004 & 0.070 & 0.202 & 0.239 & 0.301 & 0.310 & 0.462 & 0.610 & 0.610 \\
\hline 2005 & 0.076 & 0.235 & 0.367 & 0.403 & 0.463 & 0.400 & 0.499 & 0.499 \\
\hline 2006 & 0.213 & 0.216 & 0.385 & 0.358 & 0.489 & 0.463 & 0.395 & 0.395 \\
\hline 2007 & 0.118 & 0.266 & 0.254 & 0.418 & 0.381 & 0.438 & 0.245 & 0.245 \\
\hline 2008 & 0.160 & 0.244 & 0.477 & 0.331 & 0.498 & 0.420 & 0.369 & 0.36 \\
\hline
\end{tabular}

Table 11.3.3 Saithe in Sub-Areas IV, VI and Division IIIa. Stock numbers at age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 \\
\hline 1967 & 127456 & 77470 & 54512 & 6638 & 5177 & 1407 & 680 & 621 \\
\hline 1968 & 114114 & 88671 & 48750 & 30578 & 3351 & 2796 & 888 & 1041 \\
\hline 1969 & 300688 & 72416 & 53388 & 27984 & 19585 & 2356 & 2070 & 490 \\
\hline 1970 & 291835 & 218825 & 43291 & 33705 & 16026 & 10843 & 1213 & 1008 \\
\hline 1971 & 327931 & 205231 & 109793 & 21871 & 16622 & 9597 & 7256 & 2974 \\
\hline 1972 & 171372 & 205322 & 115736 & 60268 & 13622 & 9765 & 5286 & 5132 \\
\hline 1973 & 152852 & 96808 & 108298 & 71849 & 30155 & 7829 & 5330 & 9288 \\
\hline 1974 & 148740 & 75983 & 45149 & 64373 & 44292 & 17063 & 4601 & 6037 \\
\hline 1975 & 181239 & 61210 & 31681 & 24186 & 33985 & 22993 & 9266 & 7036 \\
\hline 1976 & 384110 & 96821 & 26711 & 16601 & 12956 & 15467 & 10359 & 9984 \\
\hline 1977 & 118014 & 126437 & 31260 & 11286 & 7934 & 7009 & 7811 & 9495 \\
\hline 1978 & 92451 & 71774 & 53781 & 12243 & 4273 & 3078 & 2620 & 11785 \\
\hline 1979 & 77643 & 43970 & 34089 & 27689 & 7027 & 2469 & 1586 & 6075 \\
\hline 1980 & 67133 & 48791 & 23136 & 17791 & 14799 & 3215 & 1358 & 6076 \\
\hline 1981 & 172784 & 39135 & 28780 & 10786 & 8488 & 6997 & 1592 & 6075 \\
\hline 1982 & 109900 & 117777 & 24496 & 17465 & 5505 & 3931 & 2656 & 3357 \\
\hline 1983 & 118183 & 61119 & 59703 & 11754 & 8890 & 2567 & 1903 & 2398 \\
\hline 1984 & 205166 & 71206 & 31397 & 25343 & 4486 & 2851 & 750 & 1426 \\
\hline 1985 & 311635 & 94744 & 29188 & 13981 & 8977 & 2174 & 1202 & 2215 \\
\hline 1986 & 287798 & 133875 & 27257 & 11880 & 7135 & 4631 & 1163 & 2324 \\
\hline 1987 & 112969 & 185470 & 27066 & 8575 & 4858 & 3486 & 2474 & 1882 \\
\hline 1988 & 115054 & 64243 & 63655 & 9500 & 4163 & 2339 & 1732 & 1497 \\
\hline 1989 & 77604 & 64721 & 28703 & 20155 & 4315 & 1682 & 916 & 1053 \\
\hline 1990 & 119906 & 43514 & 25163 & 11568 & 6592 & 2124 & 708 & 907 \\
\hline 1991 & 138452 & 61246 & 17907 & 10357 & 5206 & 2886 & 1065 & 1318 \\
\hline 1992 & 92781 & 71626 & 23115 & 7905 & 5237 & 2710 & 1500 & 1210 \\
\hline 1993 & 151493 & 59310 & 28228 & 7385 & 3583 & 2909 & 1589 & 1971 \\
\hline 1994 & 102360 & 89809 & 29713 & 12393 & 3219 & 1515 & 1014 & 1863 \\
\hline 1995 & 224246 & 65747 & 37161 & 12534 & 6259 & 1778 & 927 & 1319 \\
\hline 1996 & 110295 & 159470 & 30272 & 17036 & 6847 & 1963 & 846 & 1966 \\
\hline 1997 & 162820 & 80288 & 95401 & 14120 & 6952 & 2744 & 876 & 860 \\
\hline 1998 & 71182 & 119701 & 48272 & 50802 & 8234 & 3303 & 1331 & 642 \\
\hline 1999 & 139349 & 48902 & 69938 & 24712 & 27046 & 4723 & 1613 & 1170 \\
\hline 2000 & 94158 & 105558 & 27486 & 33116 & 12642 & 13032 & 1744 & 1189 \\
\hline 2001 & 221180 & 70698 & 70774 & 14414 & 15948 & 7492 & 7750 & 1172 \\
\hline 2002 & 186590 & 166562 & 41916 & 37658 & 8771 & 9813 & 4531 & 3896 \\
\hline 2003 & 123594 & 134749 & 98067 & 26291 & 22780 & 4976 & 5342 & 2774 \\
\hline 2004 & 86544 & 90639 & 92037 & 56982 & 15852 & 12262 & 2705 & 1929 \\
\hline 2005 & 211248 & 66048 & 60648 & 59342 & 34517 & 9523 & 6326 & 1282 \\
\hline 2006 & 56975 & 160348 & 42758 & 34398 & 32483 & 17778 & 5228 & 4808 \\
\hline 2007 & 173990 & 37716 & 105756 & 23828 & 19690 & 16302 & 9164 & 4932 \\
\hline 2008 & 72416 & 126629 & 23657 & 67183 & 12842 & 11018 & 8614 & 6166 \\
\hline
\end{tabular}

Table 11.3.4 Saithe in Sub-Areas IV, VI and Division IIIa. Stock summary.
\begin{tabular}{lrrrrrrr} 
& recruitment & ssb & catch & landings & tsb & fbar3-6 & Y/ssb \\
1967 & 127456 & 150838 & 88339 & 88326 & 395635 & 0.322 & 0.59 \\
1968 & 114114 & 211723 & 113742 & 113751 & 520415 & 0.291 & 0.54 \\
1969 & 300688 & 263959 & 130579 & 130588 & 694142 & 0.262 & 0.49 \\
1970 & 291835 & 312007 & 235006 & 234962 & 890607 & 0.408 & 0.75 \\
1971 & 327931 & 429569 & 265359 & 265381 & 1018304 & 0.329 & 0.62 \\
1972 & 171372 & 474093 & 261917 & 261877 & 903657 & 0.395 & 0.55 \\
1973 & 152852 & 534485 & 242509 & 242499 & 847490 & 0.416 & 0.45 \\
1974 & 148740 & 554906 & 298347 & 298351 & 833739 & 0.556 & 0.54 \\
1975 & 181239 & 472066 & 271607 & 271584 & 743441 & 0.482 & 0.58 \\
1976 & 384110 & 351532 & 343889 & 343967 & 752269 & 0.760 & 0.98 \\
1977 & 118014 & 263121 & 216394 & 216395 & 509431 & 0.615 & 0.82 \\
1978 & 92451 & 268089 & 155123 & 155141 & 463823 & 0.477 & 0.58 \\
1979 & 77643 & 241049 & 128352 & 128360 & 419124 & 0.396 & 0.53 \\
1980 & 67133 & 235143 & 131896 & 131908 & 396742 & 0.443 & 0.56 \\
1981 & 172784 & 241188 & 132271 & 132278 & 495100 & 0.306 & 0.55 \\
1982 & 109900 & 210413 & 174338 & 174351 & 511582 & 0.469 & 0.83 \\
1983 & 118183 & 214208 & 180041 & 180044 & 467080 & 0.548 & 0.84 \\
1984 & 205166 & 176557 & 200845 & 200834 & 465759 & 0.678 & 1.14 \\
1985 & 311635 & 160711 & 220865 & 220869 & 490237 & 0.716 & 1.37 \\
1986 & 287798 & 151680 & 198609 & 198596 & 486882 & 0.822 & 1.31 \\
1987 & 112969 & 153043 & 167503 & 167514 & 384766 & 0.651 & 1.09 \\
1988 & 115054 & 148010 & 135176 & 135172 & 320289 & 0.630 & 0.91 \\
1989 & 77604 & 114932 & 108894 & 108877 & 257677 & 0.687 & 0.95 \\
1990 & 119906 & 102875 & 103830 & 103800 & 262861 & 0.611 & 1.01 \\
1991 & 138452 & 100562 & 108071 & 108048 & 282262 & 0.583 & 1.07 \\
1992 & 92781 & 102305 & 99745 & 99742 & 277076 & 0.628 & 0.97 \\
1993 & 151493 & 108043 & 111498 & 111491 & 324630 & 0.517 & 1.03 \\
1994 & 102360 & 116568 & 109621 & 109622 & 315878 & 0.518 & 0.94 \\
1995 & 224246 & 134909 & 121795 & 121810 & 455397 & 0.425 & 0.90 \\
1996 & 110295 & 154066 & 114971 & 114997 & 442087 & 0.423 & 0.75 \\
1997 & 162820 & 193789 & 107348 & 107327 & 464434 & 0.296 & 0.55 \\
1998 & 71182 & 192533 & 106128 & 106123 & 383320 & 0.353 & 0.55 \\
1999 & 139349 & 201499 & 110530 & 110716 & 398069 & 0.368 & 0.55 \\
2000 & 94158 & 187822 & 85781 & 91322 & 403910 & 0.316 & 0.49 \\
2001 & 221180 & 209592 & 91740 & 95042 & 482348 & 0.284 & 0.45 \\
2002 & 186590 & 202663 & 107984 & 115395 & 497909 & 0.256 & 0.57 \\
2003 & 123594 & 232871 & 98830 & 105569 & 467133 & 0.235 & 0.45 \\
2004 & 86544 & 275550 & 94807 & 104237 & 473384 & 0.203 & 0.38 \\
2005 & 211248 & 279259 & 115603 & 124532 & 513490 & 0.270 & 0.45 \\
2006 & 56975 & 276982 & 122417 & 125680 & 487251 & 0.293 & 0.45 \\
2007 & 173990 & 264365 & 94609 & 101202 & 469664 & 0.264 & 0.38 \\
2008 & 72416 & 260586 & 111412 & 119305 & 464461 & 0.303 & 0.46 \\
& & & & & & &
\end{tabular}

Table 11.6.1 Saithe in Sub-Areas IV, VI and Division IIIa. Input data for short term forecast.
\begin{tabular}{rrrrrrrr} 
age year & f stock. n & stock.wt landings.wt & mat & M \\
3 & 2009 & 0.163 & 121834 & 0.84 & 0.84 & 0.00 & 0.2 \\
4 & 2009 & 0.242 & 50520 & 1.07 & 1.07 & 0.15 & 0.2 \\
5 & 2009 & 0.372 & 81267 & 1.31 & 1.31 & 0.70 & 0.2 \\
6 & 2009 & 0.369 & 12022 & 1.67 & 1.67 & 0.90 & 0.2 \\
7 & 2009 & 0.456 & 39520 & 2.13 & 2.13 & 1.00 & 0.2 \\
8 & 2009 & 0.440 & 6387 & 2.69 & 2.69 & 1.00 & 0.2 \\
9 & 2009 & 0.337 & 5928 & 3.47 & 3.47 & 1.00 & 0.2 \\
10 & 2009 & 0.337 & 8363 & 4.88 & 4.88 & 1.00 & 0.2
\end{tabular}

Table 11.6.2 Saithe in Sub-Areas IV, VI and Division IIIa. Ma nagement option table.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline year & fmult & f3-6 & & landings & ssb & \\
\hline 2009 & 1 & 0.287 & & 110110 & 263377 & \\
\hline year & & fmult & f3-6 & landings & ssb & ssb2011 \\
\hline 2010 & & 0.0000000 & 0.000 & 0 & 234548 & 319588 \\
\hline 2010 & & 0.7000000 & 0.201 & 74592 & 234548 & 251222 \\
\hline 2010 & & 0.8000000 & 0.229 & 83952 & 234548 & 242792 \\
\hline 2010 & & 0.9000000 & 0.258 & 93021 & 234548 & 234660 \\
\hline 2010 & & 1.1000000 & 0.315 & 110325 & 234548 & 219248 \\
\hline 2010 & & 1.2000000 & 0.344 & 118579 & 234548 & 211946 \\
\hline 2010 & & 1.3000000 & 0.373 & 126580 & 234548 & 204902 \\
\hline 2010 & & 1.4000000 & 0.401 & 134336 & 234548 & 198104 \\
\hline 2010 & & 1.0000000 & 0.287 & 101809 & 234548 & 226816 \\
\hline 2010 & & 0.3489926 & 0.100 & 39279 & 234548 & 283339 \\
\hline 2010 & & 0.5234889 & 0.150 & 57328 & 234548 & 266863 \\
\hline 2010 & & 1.0469778 & 0.300 & 105843 & 234548 & 223227 \\
\hline 2010 & & 1.1516755 & 0.330 & 114623 & 234548 & 215442 \\
\hline 2010 & & 0.6979852 & 0.200 & 74400 & 234548 & 251395 \\
\hline 2010 & & 1.3959703 & 0.400 & 134028 & 234548 & 198373 \\
\hline 2010 & & 1.1952996 & 0.3425 & 118197 & 234548 & 212284 \\
\hline
\end{tabular}

Table 11.6.3 Saithe in Sub-Areas IV, VI and Division IIIa. Stock numbers of recruits and their source for recent year classes used in predictions, and relative (\%) contributions to landings and SSB (by weight) of these year classes.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year-class & 2003 & 2004 & 2005 & 2006 & 2007 \\
\hline Stock no. (thousands) & 56975 & 173990 & 72416 & 121834 & 121834 \\
\hline of 3 years old & & & & & \\
\hline Source & XSA & XSA & XSA & GM88-06 & GM88-06 \\
\hline \multicolumn{6}{|l|}{Status Quo F:} \\
\hline \% in 2009 landings & 5.08 & 27.11 & 9.45 & 12.62 & - \\
\hline \% in 2010 landings & 4.39 & 19.61 & 10.96 & 16.03 & 12.77 \\
\hline \% in 2009 SSB & 6.87 & 28.34 & 3.06 & 0 & - \\
\hline \% in 2010 SSB & 6.17 & 29.45 & 12.72 & 5.77 & 0.00 \\
\hline \% in 2011 SSB & 4.19 & 24.34 & 12.17 & 22.05 & 5.97 \\
\hline
\end{tabular}

Standardized proportion in catch numbers at a!


Figure 11.2.1. Saithe in Subarea IV, VI and Division IIIa. Standardised proportion of catch at age (scaled to zero mean for each age). Grey circles are positive numbers and black are negative.


Figure 11.2.2. Saithe in Sub-Area IV, VI and Division IIIa. Trends in mean weights at age in landings.


Figure 11.2.3. Saithe in Subarea IV, VI and Division IIIa. Relative trends in total landings per unit effort and effort for the commercial tuning fleets.


Figure 11.3.1 Saithe in Sub-Area IV, VI and Division IIIa. Log-abundance in dices by cohort for each of the available tuning series.


Figure 11.3.2. Saithe in Sub-Area IV, VI and Division IIIa. Within-survey correlations for IBTSq3 for the period 1991-2007. Correlations in the catch-at-age matrix comparing estimates at different ages for the same year-classes (cohorts). The straight line is a normal linear model fit: a thick line represents a significant ( \(\mathrm{p}<0.05\) ) regression, while a thin line is not significant. Approximate \(\mathbf{9 5 \%}\) confidence intervals for each fit are also shown.

NORACU


Figure 11.3.3. Saithe in Sub-Area IV, VI and Division IIIa. Within-survey correlations for NO RACU for the period 1994-2007. Correlations in the catch-at-age matrix comparing estimates at different ages for the same year-classes (cohorts). The straight line is a normal linear model fit: a thick line represents a significant ( \(\mathbf{p}<0.05\) ) regression, while a thin line is not significant. Approximate \(95 \%\) confidence intervals for each fit are also shown.


Figure 11.3.4. Saithe in Sub-Area IV, VI and Division IIIa. Within-survey correlations for GEROTB. Correlations in the catch-at-age matrix comparing estimates at different ages for the same year-classes (cohorts). The straight line is a normal linear model fit: a thick line represents a significant ( \(\mathbf{p}<0.05\) ) regression, while a thin line is not significant. Approximate \(95 \%\) confidence intervals for each fit are also shown.

\section*{NORTRL_IV2}


Figure 11.3.5. Saithe in Sub-Area IV, VI and Division IIIa. Within--survey correlations for NO RTRL (1993-2007). Correlations in the catch-at-age matrix comparing estimates at different ages for the same year-classes (cohorts). The straight line is a normal linear model fit: a thick line represents a significant ( \(\mathrm{p}<0.05\) ) regression, while a thin line is not significant. Approximate \(\mathbf{9 5 \%}\) confidence intervals for each fit are also shown.

\section*{FRATRB_IV}

log index

Figure 11.3.6. Saithe in Sub-Area IV, VI and Division IIIa. Within--survey correlations for FRATRL. Correlations in the catch-at-age matrix comparing estimates at different ages for the same year-classes (cohorts). The straight line is a normal linear model fit: a thick line represents a significant ( \(\mathrm{p}<0.05\) ) regression, while a thin line is not significant. Approximate \(95 \%\) confidence intervals for each fit are also shown.


Figure 11.3.7. Saithe in Sub-Area IV, VI and Division IIIa. Standardised indices from the two survey time series.
sp


Figure 11.3.8. Saithe in Sub-Area IV, VI and Division IIIa. Standardised indices from the commercial tuning series.


Figure 11.3.9. Saithe in Sub-Area IV, VI and Division IIIa. Log number by cohort for total catches.


Figure 11.3.10. Saithe in Sub-Area IV, VI and Division IIIa. Negative gradients of log-numbers per cohort in the catches for the age-range 4-7.


Figure 11.3.11. Saithe in Sub-Area IV, VI and Division IIIa. Log catchability residuals from the final XSA run, (SPALY). Note that the residual age 3 in year 2007(-3.8) is removed in the plot to make the signal in the other residuals clearer.


Figure 11.3.12. Saithe in Sub-Area IV, VI and Division IIIa. Relative weights of F-shrinkage and tuning fleets in the final XSA run.


Figure 11.3.13. Saithe in Sub-Area IV, VI and Division IIIa. Retrospective analysis of the final XSA run.


Figure 11.3.14. Saithe in Sub-Area IV, VI and Division IIIa. Assessments generated in successive working groups. Red circles represent fore casts for the assessment year.


Figure 11.4.1. Stock summary for saithe in Sub-Area IV, VI and Division IIIa. The red dots in the yield graph are TACs.

\section*{12 Whiting in Subarea IV and Divisions VIId and IIIa}

This assessment relates to whiting in the North Sea (ICES Subarea IV) and eastern Channel (ICES Division VIId). The current assessment is formally classified as an update assessment. A benchmark was held for this stock in January 2009. The conclusions from the benchmark were that the assessment was consistent since 1995 and offers a reliable basis for determining stock status, including estimation of current stock size and fishing mortality.

\subsection*{12.1 General}

\subsection*{12.1.1 Stock Definition}

No new information was presented at the working group. A summary of available information on stock-definition can be found in the Stock Annex prepared at WKROUND (2009)

\subsection*{12.1.2 Ecosystem aspect}

No new information was presented at the working group. A summary of available information on ecosystem aspects is presented in the Stock Annex prepared at WKROUND (2009).

\subsection*{12.1.3 Fisheries}

Information on the fishery is contained in the Stock Annex prepared at WKROUND (2009). Here follows detailed information on recent issues concerning the fishery.

The recent low TACs combined with local aggregations of whiting on the East English Coast and East of Shetland has resulted in a rapid uptake of the whiting quota this year. In the first five months of \(200834 \%\) of the UK North Sea quota was taken. In 2009, in the first five months \(52 \%\) of the UK North Sea quota was taken. Furthermore, several fleets have taken their annual allocation within this period.

\subsection*{12.1.3.1 Changes in fleet dynamics}

The following is taken from the WGFTFB (2008):
In Belgium the use of bigger meshes in the top panel of beam trawler gear is expected to reduce the by-catch of roundfish species, especially haddock and whiting.

In Scotland there has been a shift for Scottish vessels from using \(100 \mathrm{~mm}-110 \mathrm{~mm}\) for whitefish on the west coast ground (Area VI) to 80 mm prawn codends in the North Sea (area IV). Fuel costs are a major driver, in this and all fisheries. The implications are that there will be increased effort in the North Sea with more effort by less selective gears; this implies increased by catches and discards.

There was a new 2008 Scottish Conservation Credits scheme, with a number of implications:

In early 2008, a one-net rule was introduced in Scotland as part of the new Conservation credits scheme. This is likely to improve the accuracy of reporting of landings to the correct mesh size range. Another element of the package is the standardisation of the mesh size rules for twin rig vessels so that 80 mm mesh can be used in both Areas IV and VI (north of \(56^{\circ} \mathrm{N}\) ) by twin rig vessels - previously the minimum mesh size for twin rig in area VI was 100 mm . As a result there may be some migration of twin rig-
gers from area IV to area VI, thus switching effort from IV to VI. Implications: Whitefish selection may improve because from July 2008, all nets in the 80 mm range will have to have a 110 mm square mesh panel installed.
Scottish seiners have been granted a derogation from the 2 net rule until the end of January 2009 to continue to carry 2 nets (e.g. \(100-119 \mathrm{~mm}\) as well as 120 mm ). They are required to record landings from each net on a separate log-sheet and to carry observers when requested. Implications: Potential for misreporting by mesh category
From February 2008 there has been a concerted effort not to target cod. Real time closures and gear measures are designed to reduce cod mortality. Implication: that there may have been greater effort exerted on haddock, whiting, monk, flats and Nephrops.
There were further additions to the Scottish Conservation Credits scheme for 2009:
Changes in gear that are required to qualify for the Scottish Conservation Credits Scheme (CCS; see Section 13.1.4) are likely to reduce by catch (and therefore) discards of whiting in the Nephrops fishery in particular. In 2008 Scottish vessels were included in the CCS unless they opted out of it, and as only one or two vessels have chose to do so, compliance was been close to \(100 \%\). In 2009, the CCS is the only option available to Scottish skippers

\section*{Technical Conservation Measures}

The option of 18 extra days if a 120 mm SMP at \(4-9 \mathrm{~m}\) was used with a \(95 \mathrm{~mm} \times 5 \mathrm{~mm}\) double codend was not taken up by the Scottish prawn fleet in 2007. The main reasons were that prawns would be lost due to twisting and too many marketable haddock and whiting lost which the extra days would not make up for. In 2008 this option attracted 39 extra days but was in competition with the Scottish Conservation Credits option whereby 21 extra days are available when a 110 mm SMP is used with an 80 mm codend. Implications: Possibly a \(30 \%\) increase in L50 of haddock, whiting, saithe due to use of 110 mm SMP.

A large number of 110 mm SMPs were bought in the first months of 2008 by the prawn fleet so that they qualify for the basic Conservation Credits scheme. Probably affects most ( \(\sim 80 \%\) ) of the fleet

Information for previous years is available in the stock annex.

\subsection*{12.1.3.2 Industry Contributed Reports}

The Fisheries Science Partnership's North East Cod survey has been running since 2003, and covers a small but commercially important area of the North Sea on the north east coast of England. The survey does not only measure cod, but also give an index of whiting abundance for ages 0 to 7+. The final report (De oliviera et al., 2009) documents the spatial distribution and abundance of whiting from 2003 to 2008. This publication shows that the local abundance of whiting has increased in this area, particularly over the years 2005 to 2008; this is also noted in the North Sea Stock survey (Laurensen 2008). The survey also notes a particularly large amount of age 1 whiting in the study area in 2008.

Several letters were received highlighting the effect of the reduced TAC for whiting in specific areas of the North Sea over the last five years. This problem is specifically evident where whiting abundance has been increasing in contrast the wider North Sea stock abundance. Whiting has been attracting high market value in the last three years and the value of whiting quota has increased substantially. This has resulted in higher discarding in some areas simply through the unavailability of affordable
quota. These letters ask that managers provide means for whiting quota reaching these areas.

\subsection*{12.1.4 ICES Advice}

\subsection*{12.1.4.1 ICES advice for 2008:}

The present assessment is indicative of recent trends. There has been a declining trend of SSB to the lowest level observed since 1995. The recruitment has been very low since the 2002 year class. Despite lower catches and fishing mortality from 2002 2005, this low recruitment has resulted in a declining SSB.

\section*{ICES advice for 2009:}

In the absence of defined reference points, the state of the stock cannot be evaluated. An analytical assessment estimates SSB in 2008 a being at the lowest level since the beginning of the time-series in 1990. Fishing mortality has decreased through the time-series, but increased in recent years to twice \(\mathrm{F}_{\text {max }}\). Recruitment has been very low since 2001.

\subsection*{12.1.5 Management}

Management of whiting is by TAC and technical measures. The agreed TACs for whiting in Subarea IV and Division IIa (EU waters) was 17850 t in 2008 and 15170 t in 2009 and where EC vessels may take no more than 9250 t from the Norwegian waters of Subarea IV. There is no separate TAC for Division VIId, landings from this Division are counted against the TAC for Divisions VIlb-k combined (19940 tin 2008 and 16940 t in 2009).

TACs for this stock are split between two areas: (i) Subarea IV and Division IIa (EU waters) and, (ii) Divisions VIlb-k. Since 1996 when the North Sea and eastern Channel whiting assessments were first combined into one. The human consumption landings in Divisions IV and VIId are calculated as \(78 \%\) and \(22 \%\) of the combined area totals. The figures used as the basis for the division of the TAC are the average proportion of the official landings for the past three years.

EU technical regulations in force in 2004 and 2005 are contained in Council Regulation (EC) \(850 / 98\) and its amendments. For the North Sea, the basic minimum mesh size for towed gears for roundfish was 120 mm from the start of 2002, although under a transitional arrangement until 31 December 2002 vessels were allowed to fish with a 110 mm codend provided that the trawl was fitted with a 90 mm square mesh panel and the catch composition of cod retained on board was not greater than \(30 \%\) by weight of the total catch. From 1 January 2003, the minimum mesh size for towed roundfish gears has been 120 mm . Restrictions on fishing effort were introduced in 2003 and details of its implementation in 2004 can be found in Annex V of Council Regulation (EC) no. 2287/2003; for 2005 in Annex IVa of Council Regulation (EC) no 27/2005 and for 2006 in Annex IIa of Council Regulation (EC) 51/2006. Currently, vessels fishing with towed gears for roundfish in Subareas IV and VIId and Division IIa (EU waters) are restricted to 103 days at sea per year, excluding derogations. The minimum landing size for whiting in the North Sea is 27 cm . The minimum mesh size for whiting in Division VIId is 80 mm , with a 27 cm minimum landing size.

Whiting are a by-catch in some Nephrops fisheries that use a smaller mesh size, although landings are restricted through by-catch regulations. They are also caught in flatfish fisheries that use a smaller mesh size. Industrial fishing with small-meshed
gear is permitted, subject to by-catch limits of protected species including whiting. Regulations also apply to the area of the Norway pout box, preventing industrial fishing with small meshes in an area where the by-catch limits are likely to be exceeded.

In 2008 the following European Council regulation applied (EU40/2008, annex III, part A section 9):
Reduction of whiting discards in the North Sea
In the North Sea, Member States shall undertake in 2008 trials and experiments as necessary on technical adaptations of the trawls, Danish seines or similar gears with a mesh size equal to or greater than 80 mm and less than 90 mm in order to reduce the discards of whiting by at least \(30 \%\).

Member States shall make the results of the trials and experiments laid down in point 1 available to the Commission no later than 31 August 2008.
The Council shall, on the basis of a proposal from the Commission, decide on appropriate technical adaptations to reduce discards of whiting in conformity with the objective laid down in point 1.
Conservation credit scheme
During 2008, 15 real-time closures (RTCs) were implemented under the Scottish Conservation Credits Scheme (CCS). By May 2009, 46 further RTCs had been implemented (with a target of 150 for the year), and the CCS been adopted by 439 Scottish and around 30 English and Welsh vessels. It has two central themes aimed at reducing the capture of cod through (i) avoiding areas with elevated abundances of cod through the use of compulsory Real Time Closures (RTCs) and voluntary 'amber zones' and (ii) the use of more species selective gears. Within the scheme, efforts are also being made to reduce discards generally. Although the scheme is intended to reduce mortality on cod, it will undoubtedly have an effect on the mortality of associated species such as haddock. Whether this effect is positive or negative remains to be seen; however, early indications suggest that improved gear selectivity is likely to contribute to reductions in fishing mortality and discard levels, particularly of haddock and whiting, and there is evidence that the exploitation patterns for haddock and whiting across all participating vessels have improved since the introduction of the CCS scheme.

In early 2008, a one-net rule was introduced in Scotland as part of the CCS. This is likely to have improved the accuracy of reporting of landings to the correct mesh size range. However, Scottish seiners were granted a derogation from the one-net rule until the end of January 2009, and were allowed to carry two nets (e.g. \(100-119 \mathrm{~mm}\) as well as \(120+\mathrm{mm}\) ). They were required to record landings from each net on a separate logsheet and to carry observers when requested (ICES-WGFTFB 2008).

\subsection*{12.2 Data available}

\subsection*{12.2.1 Catch data issues for 2008}

The approach to the raising of discards for whiting was essentially the same as for 2007. The notable difference was that numbers at age and mean weights at age were provided for discards of whiting for VIId and IV by UK(E\&W).
England and Wales discards

UK(E\&W) provide their discards data for cod for IV and VIId combined as one fishing area, and this is dealt with accordingly in the aggregation files for cod. At the request of the stock coordinator, UK(E\&W) provided discards data for these fishing areas separately for whiting for the years 2002 to 2008, in order to help specifically with the issue of un-estimated discards in Division VIId. The UK(E\&W) discards data for VIId werehowever not used for raising for this Division as there was not enough time to apply this procedure for all the data supplied. This will be done for net years assessment. For Subarea IV, Scottish, French, German, Danish and UK(E\&W) discards were used for the discards raising process.
French whiting discards
France provided discards data including numbers at age and mean weights at age for fishing years 2003 to 2007 for ICES Subarea IV and Division VIId separately. These data would be very useful for a benchmark assessment of whiting. Since age and weight distributions of discarded whiting were provided for 2008 by UK(E\&W) these data have been used to estimate French discards of whiting in VIId.

\subsection*{12.2.2 Catch}

Total nominal landings are given in Table 12.2.1 for the North Sea (Subarea IV) and Eastern Channel (Division VIId). Industrial bycatch is almost entirely due to the Danish sandeel, sprat and Norway pout fisheries.

In the 2009 roundfish benchmark workshop (WKROUND, 2009) it was decided to truncate the catch data from 1990. This is due to unresolved discrepancies between survey and catch data in prior to 1990.

Working group estimates of weights and numbers of the catch components for the North Sea and Eastern Channel are given in Tables 12.2.2 and 12.2.3, both tables cover the period 1990 to 2008. Total catch is similar to that of last year: decreases in human consumption landings from the North Sea have been offset by increased landings from the Eastern Channel and increased discards. The reported tonnages of the catch components remain among the lowest in the series due to a restrictive TAC, and whiting industrial by-catch remains low following the reopening of the fishery for Norway pout in 2008. For the Eastern Channel, the total catch (landings) in 2008 is an increase on the last two years and is close to the mean of the series.

Discard data apply to the North Sea only. However, discard data has been supplied by France and England back to 2002 and this will be incorporated in next years' assessment.

Figure 12.2.1 plots the trends in the commercial catch for each component, note that estimates of discards from VIId are not included. Each component shows a general decline. Industrial by-catch can be seen to be removing proportionately less through time. Human consumption landings have fluctuated around \(45 \%\) of the total catch during the period 1990-2004, rising to \(60 \%\) in the recent years. The proportion of discards has increased over the last ten years, but has been decreasing in the most recent period.

\subsection*{12.2.3 Age compositions}

Age compositions in the landings are supplied by Scotland, England, The Netherlands and Germany. Age compositions in the discards are supplied by Scotland, England, Germany and Denmark. And for industrial bycatch, age compositions were supplied by Denmark.

Limited sampling of the industrial bycatch component has resulted in the 2006 data appearing as an outlier and the 2007 and 2008 data was deemed unreliable. This applies to both the age compositions and the estimates of mean weights at age. Thus the data for 2006 to 2008 have been replaced with an estimate \(\hat{n}_{a, y}\) given by:
\[
\hat{n}_{a, y}=\hat{N}_{y} \hat{p}_{a, y}
\]
where \(\hat{p}_{a, y}\) is the mean proportion at age over the years 1990 to 2005 , and \(\hat{N}_{y}\) is estimated to give a sums of products correction (SOP) factor of 1 by
\(\hat{N}_{y}=\frac{\sum_{a} \hat{p}_{a, y} \hat{w}_{a, y}}{W_{y}}\),
where \(W_{y}\) is the reported weight of industrial bycatch. Here \(\hat{W}_{a, y}\) have been estimated by taking the mean weights at age in the industrial bycatch over the period 1995 to 2005 (zero weights are taken as missing values).

Proportion in number at ages 1 to \(8+\) in the catch, human consumption landings, discards and industrial by-catch as provided to the working group are plotted in Figure 12.2.2. Landings of whiting during 1990-2002 have generally consisted of around \(80 \%\) in number of 1 to 4 year olds. Since 2002 the proportion has declined to approximately \(60 \%\) in 2006 after the introduction of the 120 mm mesh. How ever, in 2007, due to an increased number of 2 and 3 year olds this proportion has risen to historical levels. The proportion of age 1 in the landings of the last four years are around the highest in the series. Discards at age 1 have been increasing over the last three years.
Total international catch numbers at age (IV and VIId combined) are presented in Table 12.2.4. Total catch comprises human consumption landings, discards and industrial by-catch for reduction purposes. Discards are for the North Sea (area IV) only. Total international human consumption landings (North Sea and Eastern Channel combined) are given in Table 12.2.5. Discard numbers at age for the North Sea are presented in Table 12.2.6. Industrial by-catch numbers at age for the North Sea are presented in Table 12.2.7.

\subsection*{12.2.4 Weight at age}

Mean weights at age (Subarea IV and Division VIId combined) in the catch are presented in Table 12.2.8. These are also used as stock weights. Mean weights at age (both areas combined) in human consumption landings are presented in Table 12.2.9, and for the discards and industrial by-catch in the North Sea in Tables 12.2.10 and 12.2.11. These are shown graphically in Figure 12.2.3, which indicates a recent increase in mean weight at age in the landings and catch for all ages, and a reasonably constant mean weights for all other ages in the other catch components. From 1992 ages 6 and above in the catch and landings have shown a periodic increase and decrease in mean weight.

Unrepresentative sampling of industrial by catch in 2006 to 2008 resulted in poor estimates of the mean weights at age and these have been replaced by the mean weight at age for the period 1995 to 2005 (zero weights are taken as missing values).

Mean weight at age in the catch by cohort is plotted in figure 12.2.4. This figure shows declining mean weights in early cohorts at older ages, slow growth for the 1999 to 2002 cohorts, and steeper growth for the most recent cohorts.

\subsection*{12.2.5 Maturity and natural mortality}

Values for maturity remain unchanged from those used in recent assessments and are:
\begin{tabular}{c|cccccccc} 
Age & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(8+\) \\
\hline \begin{tabular}{c} 
Maturity \\
Ogive
\end{tabular} & 0.11 & 0.92 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}

Their derivation is given in the Stock Annex.
Values of Natural mortality are taken from WGSAM (2008), and are smoothed estimates of annual natural mortality estimated from the key SMS for the North Sea and are given in table 12.2.12.

\subsection*{12.2.6 Catch, effort and research vessel data}

Since this is an update assessment, this section will concentrate mainly on those data that are used in the assessment.

Two survey series are used within this assessment:
Quarter 1 international bottom trawl survey (IBTS Q1): ages 1-5, covering the period 1990-2008. This multi-vessel survey covers the whole of the North Sea using fixed stations of at least two tows per rectangle with the GOV trawl.

Quarter 3: international bottom trawl survey (IBTS Q3) ages 1-5, covering the period 1991-2008. This multi-vessel survey covers the whole of the North Sea using fixed stations of at least two tows per rectangle with the GOV trawl.

Survey tuning indices used in the assessment are presented in Table 12.2.13. The report of the 2001 meeting of this WG (ICES WGNSSK 2002), and the ICES advice for 2002 (ICES ACFM 2001) provides arguments for the exclusion of commercial CPUE tuning series from calibration of the catch-at-age analysis see also section 14.2.4. Such arguments remain valid and only survey data have been considered for tuning purposes. All available tuning series are summarised in Table 12.2.13 and are presented in the Stock Annex prepared at the WKROUND (2009).

Density maps for the IBTS Q1 survey are shown in Figure 12.2.5. These plots show low recruitment in recent years (2005 to 2007), but also show an apparent shift in where the recruiting year class is found. In 2007, perhaps the low est densities of age 1 whiting were seen, but in 2008 this year class was found particularly in the southern North Sea at moderate densities (similar to that of the 2001 year class, a year class from a period of much higher recruitment). Recruitment in 2008 is much improved from 2005 to 2007 and this year class persisted to moderate numbers of age 2 . Recruitment in 2009 also appears to be good. Numbers of ages three and older have been variable and patchy.

Density maps for the IBTS Q3 survey are shown in Figure 12.2.6. These plots also show a decline in the numbers of age three plus whiting since 2004. Young whiting in quarter three seem to be restricted to the eastern coast of the UK with sparse observations north east of the Dogger Bank. The IBTS Q3 survey detects a moderate recruitment in 2008 that was apparently missed at age 1 by the IBTS Q1 survey.

\subsection*{12.3 Data analyses}

\subsection*{12.3.1 Sum mary of 2009 benchmark workshop}

The benchmark workshop focused on trying to resolve the historical discrepancy between catch and surveys (see Figure 12.3.1). There are three potential sources of this discrepancy: changes in bias in the estimate of catch magnitude; changes in survey catchability; or changes in natural mortality due to predation and or regime shift. To address these issues the group decided to:
- use estimates of natural mortality from WGSAM (2008), the multispecies assessment working group;
- investigate the historical perception of the catch data, in particular the industrial by-catch data, from previous North Sea working group reports;
- investigate the potential for changes in catchability in the IBTS surveys.

The group also looked at changes in the distribution of commercial landings (Figure 12.3.2) with respect to survey abundance, and whiting spawning areas (as estimated by the distribution of whiting eggs, Figure 12.3.3).

Given the length of the workshop it was not possible to answer all questions rigorously; however future work was suggested (investigation of survey catchability and historical perception of catch data quality) and is currently underway. In the event that the discrepancy between surveys and catch is resolved biomass and fishing mortality precautionary reference points may be reinstated, in the mean time, it was suggested that yield per recruit fishing mortality reference points be investigated. Specifically, a time series of Fmax and F0.1 should be made available to the assessment working group. This work will appear in section 12.8 of this report.

The final conclusions of the benchmark working group were that the current assessment methodology was appropriate for assessing stock trends and for short term forecast purposes. These details are contained in the stock annex prepared at WKROUND (2009).

\subsection*{12.3.2 Reviews of last year's assessment - what were the comments?}

Several comments were made by the RGNSSK regarding last years' assessment. These are summarised below. Review group comments are italicized and WG responses, where appropriate, follow in plain text.

Extrapolation of discard data mainly sampled in the northern area is a source of uncertainty because the fishery in the southern area is mostly carried out with different gears and smaller mesh sizes. No discard information was available for Division VIId.

The WG agrees, and adds that discard information for VIId from France and UK (England and Wales) has been made newly available to the WG. This information should be in a usable form for next years' assessment w orking group.

The RG commented that issues on stock structure have not been resolved, and suggested that there may be a need to take this into account in advice and management.

The WG agrees that the issue of stock structure is unclear, however, what is clear is that the stock is exploited mainly in three distinct areas of the North Sea and Eastern Channel. These areas show as aggregations in the IBTS surveys, and that wider North Sea density is much reduced since 1990.

The \(R G\) recommends considering methods to include the most recent survey information in the assessment.

The current assessment method is XSA which does not use survey data in the most recent year. The WG was not in a position to change the assessment method so the only possibility is to treat the IBTS quarter 1 survey as if it was in quarter 4 of the previous year with all ages reduced as necessary. With the current assessment set up this would mean using ages 2-5 as ages 1-4, and so w ould lose a time series of indices at age 1 . Since recruitment estimation is important for this fishery this approach was not considered further.

\subsection*{12.3.3 Exploratory survey-based analyses}

Catch curve analyses are shown in Figures 12.3.4 to 12.3.5. These show consistent tracking of year classes (since catch curves are mostly smooth) with the exception being the IBTS Q1 index of age 1 for the 2006 year class. The IBTS Q1 and Q3 surveys give an indication of declining mortality until the 2003 year-class. Also evident are the low 2002 - 2006 year classes. It appears from these figures that there is improved recruitment with the 2007 year-class.

The 2006 year-class appeared as a very low index at age 1 and a moderately high index at age 2 by the IBTS Q1 survey. This is unusual for the time series and is expected to result in large residuals and will likely induce retrospective patterns in recruitment. In the IBTS Q3 indices this year class did not look substantially different from the 2002-2005 year classes.

The consistency within surveys is assessed using correlation plots. Only survey indices used in the final assessment are presented as this is an update assessment. The IBTS Q1 and Q3 surveys both show good internal consistency across all ages (Figure 12.3.6 and 12.3.7).

\subsection*{12.3.4 Exploratory catch-at-age-based analyses}

Catch curves for the catch data are plotted in Figure 12.3.8 and shows numbers-at-age on the \(\log\) scale linked by cohort. This shows partial recruitment to the fishery up to age 2. Also evident is the persistence of the 1999 to 2001 year classes in the catch and the recent low catches of the 2002-2006 year classes.

Within cohort correlations between ages are presented in Figure 12.3.9. In general catch numbers correlate well between cohorts with the relationship breaking down as you compare cohorts across increasing years.

Single fleet XSA runs were conducted to compare trends in the catch data with trends in the survey data. These used the same procedure as this years' final assessment. Summary plots of these runs are presented in Figure 12.3.10. The population trends from each survey are consistent; however, the absolute levels of the F and SSB estimates differ. The IBTS Q1 gives a higher F, lower SSB and low er recruitment than the IBTS Q3. Residual patterns (Figure 12.3.11) show the noisy 2006 year class.

\subsection*{12.3.5 Conclusions drawn from exploratory analyses}

Catch curve analysis and correlation plots show that both surveys and catch data track cohorts well and are internally consistent, with the possible exception of the 2006 year class. This will have implications for the estimation of recruitment at age 1 in 2007.

\subsection*{12.3.6 Final assessment}

The final assessment was an XSA fitted to the combined landings, discard and industrial by-catch data for the period 1990-2008. This is the same procedure as last year and that agreed at WKROUND (2009). The settings are contained in the table below. Those from previous years are also presented.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & year range used & 2006 & 2007 & 2008 & This year(2009) \\
\hline Catch at age data & & \[
\begin{gathered}
\hline 1980-2005 \\
\text { Ages } 1 \text { to } 8+ \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
1980-2006 \\
Ages 1 to 8+
\end{tabular} & \[
\begin{gathered}
1980-2007 \\
\text { Ages } 1 \text { to } 8+ \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 1990-2008 \\
\text { Ages } 1 \text { to } 8+ \\
\hline
\end{gathered}
\] \\
\hline Calibration period & & 1990-2005 & 1990-2006 & 1990-2007 & 1990-2008 \\
\hline ENGGFS Q3 GRT (1990-1991 & - & Ages 1 to 6 & - & - & - \\
\hline ENGGFS Q3 (GOV) & - & Ages 1 to 6 & Ages 1 to 6 & Ages 1 to 6 & - \\
\hline SCOGFS Q3 (Scotia II) & - & Ages 1 to 6 & - & - & - \\
\hline SCOGFS Q3 (Scotia III) & - & Ages 1 to 6 & Ages 1 to 6 & Ages 1 to 6 & - \\
\hline IBTS Q1 & 1990-2008 & Ages 1 to 5 \\
\hline IBTS Q3 & 1991-2008 & - & - & - & Ages 1 to 5 \\
\hline Catchability independent of stock size & & Age 1 & Age 1 & Age 1 & Age 1 \\
\hline Catchability plateau & & Age 4 & Age 4 & Age 4 & Age 4 \\
\hline Weighting & & Tricubic over 16 years & Tricubic over 17 years & Tricubic over 18 years & No taper weighting \\
\hline Shrinkage & & Last 3 years and
4 ages & Last 3 years and
4 ages & Last 3 years and
4 ages & Last 3 years and 4 ages \\
\hline Shrinkage SE & & 2.0 & 2.0 & 2.0 & 2.0 \\
\hline Minimum SE for fleet survivors estimates & & 0.3 & 0.3 & 0.3 & 0.3 \\
\hline
\end{tabular}

Full diagnostics for the final XSA run are given in Table 12.3.1. Residual plots are presented in Figure 12.3.12. These show contrasting trends between the IBTS Q1 and Q3 surveys in the recent years: IBTS Q1 has negative residuals for 2005 and 2006, while the IBTS Q3 survey has all positive residuals from ages 3 to 5 from 2005 to 2008. The IBTS Q3 survey also has positive residuals for all ages in the final year.

Fishing mortality estimates are presented in Table 12.3.2, the stock numbers in Table 12.3.3 and the assessment summary in Table 12.3.4 and Figure 12.3.13. Fishing mortality at age is plotted in Figure 12.3.14. Fishing mortality can be seen to be increasing sharply on ages \(2-5\), with a slower increase on ages 6 and 7 . Fishing mortality on age 7 is very noisy in the beginning of the series.

A retrospective analysis is shown in Figure 12.3.15. This shows a consistent bias in recruitment over the last five years. The large bias in last years retrospective was expected as it is known that the IBTS Q1 survey index for age 1 was too low for the size of the cohort. For the last three years mean F seems to have been overestimated, while spawning stock biomass was underestimated (as was total stock biomass).

\subsection*{12.4 Historic Stock Trends}

A plot of estimated F-at-age over the years 1991 to 2008 is presented in Figure 12.4.1. This figure shows the recent decline in F at older ages and an increase in F at ages 2 to 4, highlighting an apparent change in selection pattern in this fishery. In order to see this change in selection more clearly, trends in \(F(2-6), F(2-4)\) and \(F(5-7)\) are presented in Figure 12.4.2.

Contribution of age classes to TSB and SSB is shown in Figure 12.4.3 and as proportions in Figure 12.4.4. This shows the important contribution of ages 1 and 2 to the TSB. This figure also shows an increase in the contribution of ages 6 and over to stock biomass from 2002, coming from the period of increased recruitment in 1999 to 2002. The contribution of this period of recruitment looks to have reduce in the most recent year.
Historic trends for F, SSB and recruitment are presented in Figure 12.2.10.

\subsection*{12.5 Recruitment estimates}

The RCT3 estimate of recruitment in 2009 was 1297 million. The geometric mean of the last 5 years is 1002 million. RCT input tables are presented in Table 12.5.1, and RCT3 output is presented in Table 12.5.2.
It was agreed to use the RCT3 estimates for recruitment in 2009, and the geometric mean (2004 to 2008) for recruitment in 2010 and 2011.

The following table summarises recruitment assumptions for the short term forecast together with XSA estimated recruitment from the previous two years - values used for recruitment are in bold.
\begin{tabular}{c|ccc} 
year class & XSA (millions) & \begin{tabular}{c} 
RCT3 \\
(millions)
\end{tabular} & \begin{tabular}{c} 
Geometric \\
mean
\end{tabular} \\
\hline 2006 & 605 & - & - \\
2007 & 1553 & 1608 & - \\
2008 & - & 1297 & - \\
2009 & - & & 1002 \\
2010 & - & & 1002
\end{tabular}

\subsection*{12.6 Short-term forecasts}

A short-term forecast was carried out based on the final XSA assessment. XSA survivors in 2008 were used as input population numbers for ages 2 and older. Recruitment assumptions are detailed in section 12.5.

The exploitation pattern was chosen as the mean exploitation pattern over the years 2006-2008. Given the recent increases in \(\mathrm{F}(2-6)\) this exploitation pattern was scaled to the mean \(F(2-6)\) in 2008 for forecasts.

Partial F at age for each catch component was estimated by splitting the forecast F at age using the mean proportion in the catch of each catch component over the years 2006-2008.

Mean weights at age are generally consistent over the recent period but there are trends at some ages (Figure 12.2.3). The mean over the last three years was used for the purposes of forecasting.
The input to the forecast is shown in Table 12.6.1. Results are presented in Table 12.6.2.

No TAC constraint was applied in the intermediate year since it is not considered that fishing will stop when the TAC is reached. It is thought that any predicted landings over the TAC are likely to appear as discards in 2009. This means that estimated landings in 2009 will be overestimated, however the estimate of total catch will not be.

The TAC for 2009 for area IV and VIId was 15560 t . This is calculated as \(78 \%\) of the TAC for Subarea IV and Division II ( 15170 t ) and \(22 \%\) of the TAC for Divisions VIlb-k combined (16950t). Assuming \(\mathrm{F}_{2009}=\mathrm{F}_{2008}\) and unconstrained landings results in human consumption landings in 2009 of 18680 t from a total catch of 31390 t resulting in an SSB in 2010 of 87400 t , a reduction from 91670 t as estimated for 2009. For the same fishing mortality in 2010, human consumption landings are predicted to be 18040 t resulting in an SSB in 2011 of 78340 t . Under the assumptions of the prediction, SSB in 2011 will increase by \(16 \%\) (as compared to that estimated for 2010) in the absence of fishing in 2010.

The intermediate year forecast predicts that at status quo fishing mortality, human consumption landings will exceed the TAC for 2009 by 3500 t .

As a measure of the consistency of the forecast: the catch estimated by last years forecast using an F of 0.47 ( = F2008), was 24300 t , comprising human consumption landings of 14100 t . This compares to estimated catch in 2008 based on sampling in 2008 of 26880 t comprising human consumption landings of 16900 t .

\subsection*{12.7 Medium-term forecasts}

No medium-term forecasts were carried out on this stock.

\subsection*{12.8 Biological reference points}

The precautionary fishing mortality and biomass reference points agreed by the EU and Norway, (unchanged since 1999), are as follows:
\(B_{\lim }=225,000 \mathrm{t} ; \mathrm{B}_{\mathrm{pa}}=315,000 \mathrm{t} ; \mathrm{F}_{\lim }=0.90 ; \mathrm{F}_{\mathrm{pa}}=0.65\).
The WG considers that these reference points are not applicable to the current assessment (see discussion in 12.9)

F0.1 and Fmax was estimated based on the F at age from the final XSA assessment in each year back to 1993. The time series of F0.1 and Fmax is presented in Figure 12.8.1. To give an idea of the precision of these estimates, a statistical catch at age model (TSA) was fitted to the data and the estimates of the variance-covariance matrix of F at age in each year was used to simulate the distribution of F0.1 and Fmax. These values differ in the final year due to differences in the model formulation and should not be concerning as the TSA model settings were not investigated so is not to be considered as an assessment.

F0.1 can be seen to have been stable historically at around 0.4 , but recently has increase to around 0.7. Due to the shape of the yield per recruit curve, a maximum is often not reached, thus Fmax is not defined for several years. It is not clear whether yield per recruit F reference points are applicable to this stock since Fmax is undefined in most years, and the estimate of F0.1 is very variable in recent years (see Figure 12.8.2).

Further work is being conducted on the interpretation of F0.1 for this stock.

\subsection*{12.9 Quality of the assessment}

Previous meetings of this WG and the benchmark workshop (WKROUND, 2009) have concluded that the survey data and commercial catch data contain different signals concerning the stock. Analyses by working group members and by the SGSIMUW in 2005 indicate that data since the early- to mid- 1990s are sufficiently consistent to undertake a catch-at-age analysis calibrated against survey data from 1990. This has been taken forward into prediction for catch option purposes. However, due to the lack of concordance in the data pre-dating the early 1990s, the working group considers that it is not possible categorically to classify the current state of the stock with reference to precautionary reference points as the biomass reference points are derived from a consideration of the stock dynamics at a time when the commercial catch-at-age data and the survey data conflict.

Due to the likely population structuring in the North Sea and Eastern Channel, it is probable that the overall stock estimates may not reflect trends in more localised areas.

Despite the minimum mesh-size increase in 2002 in the towed demersal roundfish gears and the decline in industrial by-catch activity in the Norway pout and sandeel fisheries have declined, the estimates of F on ages 2 to 4 appears to be increasing disproportionately to that on older ages.
Given the spatial structure of the whiting stock and of the fleets exploiting it, it is important to have data that covers all fleets. Considering that age 1 and age 2 whiting make up a large proportion of the total stock biomass, good information of the discarding practices of the major fleets is important. Discard information was supplied by France for 2003 - 2007 but was not included due issues with historical databases. This information may affect our perception of the numbers and exploitation of the younger age classes. This is most likely to affect the reliability of the forecast and estimates of recruitment.

Survey information for VIId was not available in a form that could be used by the working group. Due to the recent changes in distribution of the stock, tuning information from this area would be extremely useful, and could improve the estimate of recruitment in the most recent year.

Age distributions and mean weights at age have been estimated for the industrial bycatch since 2006. This is due to low sampling levels of the Danish industrial bycatch fisheries. Although the fishery only comprises around \(0.03 \%\) by weight of the total catch, the bycatch of whiting is entirely young fish. This means that no cohort information is coming from the industrial component of the catch and this is likely to have reduced our ability to estimate the recruitment of the last three year classes.

The historic performance of the assessment is summarised in Figure 12.9.1.

\subsection*{12.10Status of the Stock}

The working group considers the status of the stock unknown with respect to biological reference points, for the reasons given in section 12.9. Nevertheless all indications are that the stock, at the level of the entire North Sea and Eastern Channel, is at a historical low level relative to the period since 1990. Fishing mortality, previously estimated to be low relative to the period since 1990, now appears to have increased, particularly at younger ages.
The recent estimates of older whiting (ages 6 and above) is unprecedented in the assessment period. These fish have come from a period of moderate recruitment (1999 to 2002) implying that further moderate recruitments may be sufficient to allow an improvement in the stock.

\subsection*{12.11 Management Considerations}

Mean F has decreased from historical levels, but has been increasing over the past three years. Despite lower catches and fishing mortality from 2002 to 2005, a series of low recruitments is determining the stock dynamics and has resulted in SSB declining to its lowest level. Recent recruitment has been impaired; contributing factors may be low stock size and environmental factors.

Catches of whiting have been declining since 1980 (from 224000 t in 1980 to 27000 t in 2007, including discards and industrial bycatch). Distribution maps of survey IBTS indices show a change in distribution of the stock which is now located mainly in the north-western North Sea. Catch rates from localized fleets may not represent trends in the overall North Sea and English Channel population (Figure 6.4.5.4). The localized distribution of the population is known to be resulting in substantial differences
in the quota uptake rate. This is likely to result in localized discarding problems that should be monitored carefully.

Whiting are caught in mixed demersal roundfish fisheries, fisheries targeting flatfish, the Nephrops fisheries, and the Norway pout fishery. The current minimum mesh-size in the targeted demersal roundfish fishery in the northern North Sea has resulted in reduced discards from that sector compared with the historical discard rates. Mortality has increased on younger ages due to increased discarding in the recent year as a result of recent changes in fleet dynamics of Nephrops fleets and small mesh fisheries in the southern North Sea. The bycatch of whiting in the Norway pout and sandeel fisheries is dependent on activity in that fishery, which has recently declined after strong reductions in the fisheries.

Catches of whiting in the North Sea are also likely to be affected by the effort reduction seen in the targeted demersal roundfish and flatfish fisheries, although this will in part be offset by increases in the number of vessels switching to small mesh fisheries.

Recent measures to improve survival of young cod, such as the Scottish Credit Conservation Scheme, and increased uptake of more selective gear in the North Sea and Skagerrak, should be encouraged for whiting.

ICES has developed a generic approach to evaluate whether new survey information that becomes available in September forms a basis to update the advice. ICES will publish new advice in November 2009 if this is the case.

\subsection*{12.12Whiting in Division Illa}

The new data available for this stock are too sparse to revise the advice from last year and therefore no assessment of this stock was undertaken.

Total landings are shown in Table 12.12.1.

Table 12.2.1 Whiting in Subarea IV and Division VIId. Nominal landings (in tonnes) as officially reported to ICES, and agreed TAC.

Subarea IV
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Country & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 \\
\hline Belgium & 268 & 529 & 536 & 454 & 270 & 248 & 144 & 105 & 92 & 45 & 107 \\
\hline Denmark & 46 & 58 & 105 & 105 & 96 & 89 & 62 & 57 & 251 & 78 & 42 \\
\hline Faroe Islands & 1 & 1 & 0 & 0 & 17 & 5 & 0 & 0 & 0 & 0 & 0 \\
\hline France & 1908 & 0 & 2527 & 3455 & 3314 & 2675 & 1721 & 1059 & 2445 & 2876 & 1788 \\
\hline Germany & 103 & 176 & 424 & 402 & 354 & 334 & 296 & 149 & 252 & 75 & 76 \\
\hline Netherlands & 1941 & 1795 & 1884 & 2478 & 2425 & 1442 & 977 & 802 & 702 & 618 & 656 \\
\hline Norway & 65 & 68 & 33 & 44 & 47 & 38 & 23 & 16 & 18 & 11 & 92 \\
\hline Sweden & 0 & 9 & 4 & 6 & 7 & 10 & 2 & 1 & 2 & 1 & 2 \\
\hline UK (E.\&W) & 2909 & 2268 & 1782 & 1301 & 1322 & 680 & 1209 & 2653 & & & \\
\hline UK (Scotland) & 16696 & 17206 & 17158 & 10589 & 7756 & 5734 & 5057 & 5361 & & & \\
\hline UK (Total) & & & & & & & & & 11481 & 12101 & 10386 \\
\hline Total & 23938 & 22110 & 24453 & 18834 & 15608 & 11256 & 9491 & 10202 & 15242 & 15805 & 13149 \\
\hline Unallocated landings & -78 & 3870 & 57 & 586 & 312 & -596 & -261 & 308 & -95 & 381 & 250 \\
\hline WG estimate of H.Cons. landings & 23860 & 25980 & 24510 & 19420 & 15920 & 10660 & 9230 & 10510 & 15147 & 16186 & 13399 \\
\hline WG estimate of discards & 12710 & 23580 & 23210 & 16490 & 17510 & 24090 & 14260 & 10610 & 9540 & 6400 & 7990 \\
\hline WG estimate of Ind. Bycatch & 3140 & 5180 & 8890 & 7360 & 7330 & 2740 & 1220 & 880 & 2190 & 1230 & 1020 \\
\hline WG estimate of total catch & 39710 & 54740 & 56610 & 43270 & 40760 & 37490 & 24710 & 22000 & 26877 & 23816 & 22409 \\
\hline
\end{tabular}

Division VIId
\begin{tabular}{lrrrrrrrrrrr}
\hline Country & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 \\
\hline Belgium & 53 & 48 & 65 & 75 & 58 & 66 & 45 & 45 & 71 & 75 & 68 \\
France & 4495 & - & 5875 & 6338 & 5172 & 6478 & - & 3819 & 3019 & 2648 & 3510 \\
Netherlands & 32 & 6 & 14 & 67 & 19 & 175 & 132 & 125 & 117 & 118 & 162 \\
UK & 185 & 135 & 118 & 134 & 112 & 109 & 80 & 86 & 71 & 59 & \\
(E.\&W) & & & & - & - & - & - & - & - & - & \\
UK (Scot- & + & & - & & & & & & & & \\
land) & & & & & & & & & & & 87 \\
UK (Total) & & & & & & & & \\
\hline Total & \(\mathbf{4 7 6 5}\) & \(\mathbf{1 8 9}\) & \(\mathbf{6 0 7 2}\) & \(\mathbf{6 6 1 4}\) & \(\mathbf{5 3 6 1}\) & \(\mathbf{6 8 2 8}\) & \(\mathbf{2 7 4}\) & \(\mathbf{4 0 7 4}\) & \(\mathbf{3 2 7 9}\) & \(\mathbf{2 8 9 9}\) & \(\mathbf{3 8 2 7}\) \\
\hline Unallocated & -165 & 4241 & -1772 & -814 & 439 & -1118 & 4076 & 716 & 164 & 355 & 644 \\
\hline \begin{tabular}{l} 
W.G. esti- \\
mate
\end{tabular} & \(\mathbf{4 6 0 0}\) & \(\mathbf{4 4 3 0}\) & \(\mathbf{4 3 0 0}\) & \(\mathbf{5 8 0 0}\) & \(\mathbf{5 8 0 0}\) & \(\mathbf{5 7 1 0}\) & \(\mathbf{4 3 5 0}\) & \(\mathbf{4 7 9 0}\) & \(\mathbf{3 4 4 3}\) & \(\mathbf{3 2 5 4}\) & \(\mathbf{4 4 7 1}\) \\
\hline
\end{tabular}

Table 12.2.1 (Cont'd) Whiting in Subarea IV and Division VIId. Nominal landings (in tonnes) as officially reported to ICES, and agreed TAC.

Subarea IV and Division VIId
\begin{tabular}{lrrrrrrrrrrr}
\hline & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 \\
\hline \begin{tabular}{l} 
W.G. \\
estimate
\end{tabular} & 44370 & 59108 & 60857 & 49011 & 46271 & 43208 & 29060 & 26793 & 32320 & 27562 & 26877 \\
\hline
\end{tabular}

Annual TAC for Subarea IV and Division IIa
\begin{tabular}{ccccccccccccc}
\hline & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 \\
\hline TAC & 60,000 & 44,000 & 30,000 & 29,700 & 41,000 & 16,000 & 16,000 & 28,500 & 23,800 & 23,800 & 17,850 & 15,173 \\
\hline
\end{tabular}

Annual TAC for Divisions VIIb-k combined
\begin{tabular}{cccccccccccc}
\hline & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 \\
\hline TAC & 27,000 & 25,000 & 22,000 & 21,000 & 31,700 & 31,700 & 27,000 & 21,600 & 19,940 & 19,940 & 19,940 \\
\hline
\end{tabular}

Table 12.2.2 Whiting in IV and VIId. WG estimates of catch components by weight (' 000 s tonnes).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Sub Area IV (North Sea)} & VIId (Eastern Channel) & Total & VIId as a proportion of total HC \\
\hline year & H.cons. & Disc. & Ind. BC & Tot.Catch & H.Cons & & \\
\hline 1990 & 43.42 & 55.84 & 50.72 & 149.98 & 3.48 & 153.46 & 7.4\% \\
\hline 1991 & 47.30 & 33.64 & 38.31 & 119.25 & 5.72 & 124.97 & 10.8\% \\
\hline 1992 & 46.45 & 30.61 & 26.90 & 103.96 & 5.74 & 109.70 & 11.0\% \\
\hline 1993 & 47.99 & 42.87 & 20.10 & 110.96 & 5.21 & 116.17 & 9.8\% \\
\hline 1994 & 42.62 & 33.01 & 10.35 & 85.98 & 6.62 & 92.60 & 13.4\% \\
\hline 1995 & 41.05 & 30.26 & 26.56 & 97.87 & 5.39 & 103.26 & 11.6\% \\
\hline 1996 & 36.12 & 28.18 & 4.70 & 69.00 & 4.95 & 73.95 & 12.1\% \\
\hline 1997 & 31.30 & 17.22 & 5.96 & 54.48 & 4.62 & 59.10 & 12.9\% \\
\hline 1998 & 23.86 & 12.71 & 3.14 & 39.71 & 4.60 & 44.31 & 16.2\% \\
\hline 1999 & 25.98 & 23.58 & 5.18 & 54.74 & 4.43 & 59.17 & 14.6\% \\
\hline 2000 & 24.51 & 23.21 & 8.89 & 56.61 & 4.30 & 60.91 & 14.9\% \\
\hline 2001 & 19.42 & 16.49 & 7.36 & 43.27 & 5.80 & 49.07 & 23.0\% \\
\hline 2002 & 15.92 & 17.51 & 7.33 & 40.76 & 5.80 & 46.56 & 26.7\% \\
\hline 2003 & 10.66 & 24.09 & 2.74 & 37.49 & 5.71 & 43.20 & 34.9\% \\
\hline 2004 & 9.23 & 14.26 & 1.22 & 24.71 & 4.35 & 29.06 & 32.0\% \\
\hline 2005 & 10.51 & 10.61 & 0.88 & 22.00 & 4.79 & 26.79 & 31.3\% \\
\hline 2006 & 15.15 & 9.54 & 2.19 & 26.88 & 3.44 & 30.32 & 18.5\% \\
\hline 2007 & 16.19 & 6.40 & 1.23 & 23.82 & 3.25 & 27.07 & 16.7\% \\
\hline 2008 & 13.40 & 7.99 & 1.02 & 22.41 & 4.47 & 26.88 & 25.0\% \\
\hline min. & 9.23 & 6.40 & 0.88 & 22.00 & 3.25 & 26.79 & 7.4\% \\
\hline mean & 27.42 & 23.05 & 11.83 & 62.31 & 4.88 & 67.19 & 18.0\% \\
\hline max. & 47.99 & 55.84 & 50.72 & 149.98 & 6.62 & 153.46 & 34.9\% \\
\hline
\end{tabular}

Table 12.2.3 Whiting in IV and VIId. WG estimates of catch components by number (millions).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Sub Area IV (North Sea)} & VIId (Eastern Channel) & Total & VIId as a proportion \\
\hline year & H.cons. & Disc. & Ind.BC & Tot.Catch & H.cons. & & \\
\hline 1990 & 163.6 & 393.7 & 438.5 & 995.8 & 13.6 & 1009.4 & 7.7\% \\
\hline 1991 & 181.2 & 235.2 & 142.0 & 558.4 & 17.9 & 576.3 & 9.0\% \\
\hline 1992 & 162.8 & 208.7 & 219.0 & 590.5 & 19.4 & 609.9 & 10.6\% \\
\hline 1993 & 155.1 & 295.0 & 140.4 & 590.5 & 17.8 & 608.3 & 10.3\% \\
\hline 1994 & 138.1 & 227.1 & 95.9 & 461.1 & 24.0 & 485.1 & 14.8\% \\
\hline 1995 & 128.6 & 180.7 & 121.2 & 430.5 & 18.5 & 449.0 & 12.6\% \\
\hline 1996 & 119.5 & 174.7 & 38.4 & 332.6 & 22.4 & 355.0 & 15.8\% \\
\hline 1997 & 107.8 & 90.8 & 54.8 & 253.4 & 22.6 & 276.0 & 17.3\% \\
\hline 1998 & 85.4 & 80.3 & 32.6 & 198.3 & 23.0 & 221.3 & 21.2\% \\
\hline 1999 & 98.3 & 163.8 & 97.1 & 359.2 & 18.9 & 378.1 & 16.1\% \\
\hline 2000 & 91.6 & 140.6 & 54.9 & 287.1 & 22.1 & 309.2 & 19.4\% \\
\hline 2001 & 73.5 & 97.5 & 67.7 & 238.7 & 28.6 & 267.3 & 28.0\% \\
\hline 2002 & 56.8 & 95.1 & 68.7 & 220.6 & 19.7 & 240.3 & 25.8\% \\
\hline 2003 & 34.4 & 205.9 & 26.8 & 267.1 & 22.8 & 289.9 & 39.9\% \\
\hline 2004 & 30.6 & 54.2 & 18.6 & 103.4 & 16.4 & 119.8 & 34.9\% \\
\hline 2005 & 36.7 & 58.2 & 12.3 & 107.2 & 19.6 & 126.8 & 34.8\% \\
\hline 2006 & 52.3 & 57.4 & 21.7 & 131.4 & 11.7 & 143.1 & 18.3\% \\
\hline 2007 & 53.7 & 48.3 & 12.1 & 114.1 & 12.7 & 126.8 & 19.1\% \\
\hline 2008 & 42.6 & 59.7 & 10.0 & 112.3 & 16.2 & 128.5 & 27.6\% \\
\hline min. & 30.6 & 48.3 & 10.0 & 103.4 & 11.7 & 119.8 & 7.7\% \\
\hline mean & 95.4 & 150.9 & 88.0 & 334.3 & 19.4 & 353.7 & 20.2\% \\
\hline max. & 181.2 & 393.7 & 438.5 & 995.8 & 28.6 & 1009.4 & 39.9\% \\
\hline
\end{tabular}

Table 12.2.4 Whiting in IV and VIId. Total catch numbers at age (thousands).
\begin{tabular}{r|rrrrrrrr} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(8+\) \\
\hline 1990 & 253745 & 505010 & 129126 & 86324 & 32270 & 2002 & 735 & 112 \\
1991 & 128507 & 191193 & 187195 & 36830 & 26209 & 5519 & 542 & 273 \\
1992 & 239792 & 165354 & 89563 & 93636 & 11967 & 6878 & 2609 & 117 \\
1993 & 217539 & 167577 & 124287 & 46543 & 46136 & 3946 & 1519 & 771 \\
1994 & 163609 & 147177 & 90611 & 47533 & 17384 & 17264 & 998 & 460 \\
1995 & 137481 & 139010 & 111489 & 35728 & 15161 & 5159 & 4515 & 474 \\
1996 & 72645 & 113956 & 98476 & 48575 & 14235 & 4695 & 1294 & 1113 \\
1997 & 53408 & 74200 & 82944 & 42154 & 18492 & 3358 & 1020 & 460 \\
1998 & 71430 & 44697 & 42771 & 36459 & 17756 & 6392 & 1426 & 407 \\
1999 & 178079 & 91355 & 45627 & 34175 & 18528 & 7547 & 2049 & 676 \\
2000 & 66789 & 124365 & 63526 & 23888 & 16232 & 8791 & 4322 & 1265 \\
2001 & 84121 & 86178 & 58908 & 20559 & 9177 & 4814 & 2232 & 1268 \\
2002 & 49857 & 61239 & 82940 & 34006 & 8007 & 2043 & 1457 & 754 \\
2003 & 72709 & 104040 & 53560 & 42048 & 14306 & 2372 & 474 & 397 \\
2004 & 25440 & 16412 & 24354 & 25738 & 19126 & 7284 & 1193 & 298 \\
2005 & 34555 & 33605 & 12420 & 18407 & 15058 & 9102 & 3056 & 653 \\
2006 & 39635 & 38534 & 22803 & 8530 & 15180 & 12060 & 4761 & 1528 \\
2007 & 38900 & 33535 & 24506 & 9966 & 3990 & 7632 & 5172 & 3057 \\
2008 & 52684 & 26399 & 22769 & 13630 & 4360 & 1856 & 3884 & 2920
\end{tabular}

Table 12.2.5 Whiting in IV and VIId. Human consumption landings numbers at age (thousands).
\begin{tabular}{l|rrrrrrrr} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(8+\) \\
\hline 1990 & 6949 & 54361 & 45423 & 50603 & 17747 & 1407 & 622 & 110 \\
1991 & 11610 & 43110 & 91129 & 26170 & 21697 & 4687 & 405 & 273 \\
1992 & 9603 & 45154 & 48838 & 60806 & 9956 & 6223 & 1496 & 110 \\
1993 & 5980 & 29305 & 64353 & 33514 & 34651 & 2990 & 1361 & 771 \\
1994 & 17126 & 31660 & 46217 & 36814 & 14169 & 14706 & 928 & 446 \\
1995 & 8832 & 28132 & 58538 & 28014 & 13767 & 4954 & 4402 & 467 \\
1996 & 12516 & 26768 & 47594 & 36288 & 12022 & 4453 & 1116 & 1113 \\
1997 & 6522 & 23543 & 48238 & 31904 & 15824 & 2957 & 1017 & 443 \\
1998 & 17081 & 19894 & 25016 & 24713 & 14717 & 5446 & 1213 & 301 \\
1999 & 16689 & 26966 & 25863 & 23792 & 14708 & 6660 & 1882 & 591 \\
2000 & 15406 & 31989 & 28500 & 14327 & 11841 & 6657 & 3774 & 1159 \\
2001 & 12257 & 28499 & 27332 & 17518 & 8640 & 4506 & 2092 & 1250 \\
2002 & 2606 & 10343 & 30858 & 22328 & 6703 & 1710 & 1328 & 638 \\
2003 & 403 & 11610 & 13991 & 18981 & 9514 & 1862 & 444 & 396 \\
2004 & 3972 & 2813 & 9633 & 13312 & 11860 & 4411 & 747 & 274 \\
2005 & 11001 & 10355 & 5588 & 10774 & 10080 & 5810 & 2315 & 425 \\
2006 & 11104 & 11078 & 8544 & 5394 & 12329 & 10217 & 4144 & 1199 \\
2007 & 10390 & 14783 & 16555 & 7701 & 3325 & 6709 & 4244 & 2648 \\
2008 & 13255 & 12358 & 14159 & 9133 & 3574 & 1523 & 2511 & 2241
\end{tabular}

Table 12.2.6 Whiting in IV and VIId. Discard numbers at age (thousands), representing North Sea discards only.
\begin{tabular}{r|rrrrrrrr} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(8+\) \\
\hline 1990 & 79488 & 245128 & 33194 & 23488 & 12012 & 253 & 87 & 0 \\
1991 & 76938 & 77383 & 74005 & 4900 & 1828 & 89 & 60 & 0 \\
1992 & 98967 & 57629 & 26527 & 22976 & 1199 & 350 & 1064 & 2 \\
1993 & 124426 & 101119 & 49064 & 8992 & 10709 & 519 & 131 & 0 \\
1994 & 77783 & 97847 & 36762 & 9528 & 2856 & 2337 & 6 & 0 \\
1995 & 46209 & 77320 & 48600 & 6943 & 1318 & 205 & 113 & 6 \\
1996 & 30480 & 82020 & 48240 & 11319 & 2192 & 240 & 179 & 0 \\
1997 & 19347 & 28836 & 30616 & 9175 & 2392 & 399 & 2 & 17 \\
1998 & 29979 & 18755 & 16361 & 10992 & 2976 & 934 & 213 & 106 \\
1999 & 84613 & 51740 & 14422 & 8844 & 3077 & 857 & 166 & 85 \\
2000 & 33848 & 75869 & 23590 & 2898 & 2257 & 1548 & 474 & 107 \\
2001 & 27570 & 44645 & 21930 & 2528 & 385 & 268 & 140 & 19 \\
2002 & 8670 & 31959 & 43444 & 9491 & 1098 & 211 & 128 & 116 \\
2003 & 54781 & 87376 & 36989 & 21853 & 4400 & 461 & 31 & 1 \\
2004 & 8603 & 9086 & 13669 & 12279 & 7267 & 2862 & 446 & 24 \\
2005 & 12622 & 22530 & 6342 & 7604 & 4944 & 3236 & 730 & 219 \\
2006 & 15107 & 22137 & 12323 & 2411 & 2659 & 1791 & 611 & 328 \\
2007 & 21006 & 15779 & 6868 & 1861 & 557 & 894 & 924 & 408 \\
2008 & 33212 & 11579 & 7713 & 4161 & 697 & 308 & 1370 & 678
\end{tabular}

Table 12.2.7 Whiting in IV and VIId. Industrial bycatch numbers at age (thousands). Representing the industrial fishery in the North Sea.
\begin{tabular}{r|rrrrrrrr} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(8+\) \\
\hline 1990 & 167308 & 205520 & 50508 & 12233 & 2511 & 342 & 26 & 2 \\
1991 & 39959 & 70701 & 22062 & 5761 & 2684 & 743 & 78 & 0 \\
1992 & 131221 & 62571 & 14198 & 9854 & 812 & 305 & 49 & 6 \\
1993 & 87133 & 37153 & 10870 & 4037 & 776 & 437 & 27 & 0 \\
1994 & 68701 & 17670 & 7632 & 1192 & 359 & 222 & 64 & 14 \\
1995 & 82439 & 33558 & 4351 & 772 & 76 & 0 & 0 & 0 \\
1996 & 29648 & 5168 & 2643 & 968 & 21 & 2 & 0 & 0 \\
1997 & 27539 & 21820 & 4091 & 1075 & 276 & 2 & 0 & 0 \\
1998 & 24370 & 6047 & 1395 & 754 & 63 & 12 & 0 & 0 \\
1999 & 76776 & 12648 & 5342 & 1539 & 743 & 30 & 0 & 0 \\
2000 & 17535 & 16508 & 11436 & 6663 & 2134 & 586 & 74 & 0 \\
2001 & 44294 & 13034 & 9646 & 513 & 152 & 40 & 0 & 0 \\
2002 & 38580 & 18937 & 8638 & 2186 & 205 & 122 & 0 & 0 \\
2003 & 17525 & 5054 & 2580 & 1214 & 390 & 49 & 0 & 0 \\
2004 & 12865 & 4514 & 1052 & 148 & 0 & 11 & 0 & 0 \\
2005 & 10932 & 719 & 490 & 29 & 34 & 56 & 10 & 8 \\
2006 & 13423 & 5318 & 1936 & 725 & 192 & 52 & 6 & 1 \\
2007 & 7503 & 2973 & 1082 & 405 & 107 & 29 & 4 & 1 \\
2008 & 6217 & 2463 & 897 & 336 & 89 & 24 & 3 & 1
\end{tabular}

Table 12.2.8 Whiting in IV and VIId. Total catch mean weights at age (kg).
\begin{tabular}{l|rrrrrrrr} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(8+\) \\
\hline 1990 & 0.083 & 0.137 & 0.209 & 0.250 & 0.279 & 0.408 & 0.489 & 0.600 \\
1991 & 0.103 & 0.169 & 0.218 & 0.290 & 0.306 & 0.338 & 0.365 & 0.400 \\
1992 & 0.082 & 0.185 & 0.256 & 0.278 & 0.331 & 0.346 & 0.314 & 0.502 \\
1993 & 0.073 & 0.175 & 0.252 & 0.319 & 0.329 & 0.350 & 0.403 & 0.381 \\
1994 & 0.080 & 0.170 & 0.254 & 0.323 & 0.371 & 0.367 & 0.414 & 0.416 \\
1995 & 0.087 & 0.181 & 0.257 & 0.341 & 0.385 & 0.429 & 0.434 & 0.420 \\
1996 & 0.093 & 0.167 & 0.236 & 0.302 & 0.388 & 0.405 & 0.428 & 0.430 \\
1997 & 0.091 & 0.178 & 0.243 & 0.295 & 0.333 & 0.381 & 0.382 & 0.418 \\
1998 & 0.091 & 0.180 & 0.236 & 0.281 & 0.314 & 0.339 & 0.330 & 0.367 \\
1999 & 0.076 & 0.175 & 0.232 & 0.256 & 0.289 & 0.303 & 0.308 & 0.287 \\
2000 & 0.113 & 0.182 & 0.238 & 0.288 & 0.287 & 0.277 & 0.277 & 0.273 \\
2001 & 0.072 & 0.191 & 0.227 & 0.284 & 0.269 & 0.300 & 0.287 & 0.294 \\
2002 & 0.067 & 0.156 & 0.222 & 0.281 & 0.313 & 0.361 & 0.357 & 0.345 \\
2003 & 0.053 & 0.114 & 0.195 & 0.260 & 0.298 & 0.352 & 0.383 & 0.365 \\
2004 & 0.109 & 0.190 & 0.240 & 0.265 & 0.304 & 0.298 & 0.304 & 0.358 \\
2005 & 0.120 & 0.196 & 0.238 & 0.246 & 0.282 & 0.302 & 0.303 & 0.321 \\
2006 & 0.113 & 0.183 & 0.229 & 0.281 & 0.290 & 0.359 & 0.343 & 0.313 \\
2007 & 0.091 & 0.205 & 0.256 & 0.324 & 0.344 & 0.310 & 0.313 & 0.323 \\
2008 & 0.107 & 0.215 & 0.281 & 0.316 & 0.403 & 0.408 & 0.319 & 0.355
\end{tabular}

Table 12.2.9 Whiting in IV and VIId. Human consumption landings mean weights at age (kg).
\begin{tabular}{l|rrrrrrrr} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(8+\) \\
\hline 1990 & 0.201 & 0.220 & 0.260 & 0.292 & 0.335 & 0.449 & 0.522 & 0.601 \\
1991 & 0.204 & 0.250 & 0.252 & 0.309 & 0.318 & 0.349 & 0.388 & 0.400 \\
1992 & 0.195 & 0.248 & 0.290 & 0.307 & 0.342 & 0.358 & 0.383 & 0.502 \\
1993 & 0.195 & 0.251 & 0.287 & 0.348 & 0.359 & 0.388 & 0.422 & 0.381 \\
1994 & 0.184 & 0.250 & 0.297 & 0.345 & 0.393 & 0.382 & 0.413 & 0.412 \\
1995 & 0.172 & 0.255 & 0.298 & 0.367 & 0.398 & 0.437 & 0.437 & 0.422 \\
1996 & 0.170 & 0.222 & 0.274 & 0.328 & 0.407 & 0.413 & 0.448 & 0.430 \\
1997 & 0.171 & 0.207 & 0.261 & 0.314 & 0.348 & 0.398 & 0.381 & 0.421 \\
1998 & 0.164 & 0.209 & 0.259 & 0.304 & 0.330 & 0.360 & 0.344 & 0.424 \\
1999 & 0.184 & 0.237 & 0.270 & 0.280 & 0.302 & 0.314 & 0.317 & 0.295 \\
2000 & 0.166 & 0.226 & 0.271 & 0.300 & 0.292 & 0.315 & 0.278 & 0.274 \\
2001 & 0.160 & 0.217 & 0.268 & 0.286 & 0.269 & 0.303 & 0.291 & 0.295 \\
2002 & 0.199 & 0.223 & 0.269 & 0.304 & 0.325 & 0.376 & 0.365 & 0.344 \\
2003 & 0.209 & 0.239 & 0.263 & 0.309 & 0.310 & 0.373 & 0.389 & 0.366 \\
2004 & 0.210 & 0.221 & 0.250 & 0.295 & 0.333 & 0.335 & 0.339 & 0.368 \\
2005 & 0.208 & 0.247 & 0.275 & 0.267 & 0.311 & 0.338 & 0.320 & 0.366 \\
2006 & 0.217 & 0.254 & 0.285 & 0.295 & 0.298 & 0.377 & 0.353 & 0.331 \\
2007 & 0.199 & 0.264 & 0.280 & 0.351 & 0.361 & 0.319 & 0.332 & 0.338 \\
2008 & 0.223 & 0.265 & 0.324 & 0.356 & 0.431 & 0.424 & 0.359 & 0.374
\end{tabular}

Table 12.2.10 Whiting in IV and VIId. Discard mean weights at age (kg), representing North Sea discards only.
\begin{tabular}{l|rrrrrrrr} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(8+\) \\
\hline 1990 & 0.095 & 0.130 & 0.183 & 0.186 & 0.196 & 0.249 & 0.302 & 0.000 \\
1991 & 0.089 & 0.154 & 0.177 & 0.213 & 0.230 & 0.253 & 0.268 & 0.000 \\
1992 & 0.093 & 0.173 & 0.210 & 0.215 & 0.241 & 0.245 & 0.220 & 1.183 \\
1993 & 0.087 & 0.160 & 0.205 & 0.237 & 0.235 & 0.225 & 0.213 & 0.000 \\
1994 & 0.090 & 0.151 & 0.203 & 0.230 & 0.244 & 0.254 & 0.332 & 0.000 \\
1995 & 0.102 & 0.163 & 0.204 & 0.233 & 0.247 & 0.247 & 0.332 & 0.290 \\
1996 & 0.094 & 0.151 & 0.198 & 0.225 & 0.281 & 0.265 & 0.304 & 0.000 \\
1997 & 0.125 & 0.181 & 0.213 & 0.225 & 0.233 & 0.256 & 0.617 & 0.352 \\
1998 & 0.086 & 0.173 & 0.204 & 0.228 & 0.234 & 0.224 & 0.247 & 0.206 \\
1999 & 0.100 & 0.166 & 0.197 & 0.201 & 0.225 & 0.231 & 0.212 & 0.227 \\
2000 & 0.127 & 0.167 & 0.195 & 0.226 & 0.209 & 0.219 & 0.222 & 0.264 \\
2001 & 0.084 & 0.183 & 0.217 & 0.259 & 0.248 & 0.240 & 0.225 & 0.243 \\
2002 & 0.130 & 0.167 & 0.196 & 0.224 & 0.224 & 0.225 & 0.272 & 0.352 \\
2003 & 0.057 & 0.098 & 0.169 & 0.215 & 0.262 & 0.257 & 0.293 & 0.051 \\
2004 & 0.178 & 0.233 & 0.240 & 0.232 & 0.257 & 0.241 & 0.246 & 0.245 \\
2005 & 0.110 & 0.175 & 0.208 & 0.217 & 0.223 & 0.235 & 0.246 & 0.225 \\
2006 & 0.099 & 0.162 & 0.196 & 0.251 & 0.247 & 0.253 & 0.273 & 0.246 \\
2007 & 0.055 & 0.166 & 0.207 & 0.222 & 0.241 & 0.238 & 0.222 & 0.223 \\
2008 & 0.072 & 0.181 & 0.213 & 0.230 & 0.265 & 0.328 & 0.244 & 0.293
\end{tabular}

Table 12.2.11 Whiting in IV and VIId. Industrial bycatch mean weights at age (kg).
\begin{tabular}{l|rrrrrrrr} 
& & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
year & & \(8+\) \\
\hline 1990 & 0.073 & 0.123 & 0.181 & 0.199 & 0.280 & 0.355 & 0.335 & 0.473 \\
1991 & 0.101 & 0.136 & 0.213 & 0.269 & 0.265 & 0.279 & 0.322 & 0.000 \\
1992 & 0.066 & 0.150 & 0.228 & 0.242 & 0.335 & 0.219 & 0.255 & 0.282 \\
1993 & 0.044 & 0.155 & 0.259 & 0.264 & 0.308 & 0.235 & 0.392 & 0.000 \\
1994 & 0.042 & 0.132 & 0.242 & 0.374 & 0.521 & 0.555 & 0.440 & 0.555 \\
1995 & 0.069 & 0.159 & 0.310 & 0.373 & 0.511 & 0.000 & 0.000 & 0.000 \\
1996 & 0.059 & 0.143 & 0.235 & 0.233 & 0.347 & 0.250 & 0.000 & 0.000 \\
1997 & 0.048 & 0.144 & 0.250 & 0.321 & 0.348 & 0.588 & 0.000 & 0.000 \\
1998 & 0.045 & 0.105 & 0.200 & 0.304 & 0.286 & 0.000 & 0.000 & 0.000 \\
1999 & 0.027 & 0.077 & 0.146 & 0.196 & 0.286 & 0.000 & 0.000 & 0.000 \\
2000 & 0.041 & 0.164 & 0.242 & 0.289 & 0.339 & 0.000 & 0.588 & 0.000 \\
2001 & 0.040 & 0.164 & 0.132 & 0.320 & 0.351 & 0.386 & 0.000 & 0.000 \\
2002 & 0.044 & 0.101 & 0.184 & 0.293 & 0.415 & 0.380 & 0.000 & 0.000 \\
2003 & 0.035 & 0.101 & 0.189 & 0.302 & 0.418 & 0.462 & 0.000 & 0.000 \\
2004 & 0.032 & 0.083 & 0.143 & 0.264 & 0.362 & 0.380 & 0.000 & 0.000 \\
2005 & 0.043 & 0.133 & 0.196 & 0.205 & 0.366 & 0.438 & 0.541 & 0.530 \\
2006 & 0.043 & 0.121 & 0.196 & 0.277 & 0.362 & 0.401 & 0.564 & 0.530 \\
2007 & 0.043 & 0.121 & 0.196 & 0.277 & 0.362 & 0.401 & 0.564 & 0.530 \\
2008 & 0.043 & 0.121 & 0.196 & 0.277 & 0.362 & 0.401 & 0.564 & 0.530
\end{tabular}

Table 12.2.12 Whiting in IV and VIId. Natural mortality at age. These data come from the key run of the multispecies working group (WGSAM, 2008), data is available up to 2007. Natural mortality for 2008 is assumed equal to that in 2007.
\begin{tabular}{r|rrrrrrrr} 
year & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8 +}\) \\
\hline \(\mathbf{1 9 9 0}\) & 1.312 & 0.495 & 0.381 & 0.373 & 0.362 & 0.345 & 0.334 & 0.306 \\
\(\mathbf{1 9 9 1}\) & 1.321 & 0.485 & 0.374 & 0.367 & 0.358 & 0.341 & 0.332 & 0.308 \\
\(\mathbf{1 9 9 2}\) & 1.332 & 0.479 & 0.368 & 0.361 & 0.354 & 0.339 & 0.330 & 0.310 \\
\(\mathbf{1 9 9 3}\) & 1.347 & 0.475 & 0.363 & 0.357 & 0.352 & 0.336 & 0.329 & 0.312 \\
\(\mathbf{1 9 9 4}\) & 1.364 & 0.473 & 0.359 & 0.353 & 0.350 & 0.335 & 0.328 & 0.314 \\
\(\mathbf{1 9 9 5}\) & 1.383 & 0.472 & 0.356 & 0.350 & 0.348 & 0.333 & 0.328 & 0.315 \\
\(\mathbf{1 9 9 6}\) & 1.405 & 0.471 & 0.354 & 0.347 & 0.347 & 0.332 & 0.328 & 0.316 \\
\(\mathbf{1 9 9 7}\) & 1.429 & 0.470 & 0.351 & 0.344 & 0.345 & 0.331 & 0.328 & 0.317 \\
\(\mathbf{1 9 9 8}\) & 1.455 & 0.470 & 0.349 & 0.341 & 0.343 & 0.330 & 0.328 & 0.317 \\
\(\mathbf{1 9 9 9}\) & 1.483 & 0.471 & 0.346 & 0.337 & 0.342 & 0.330 & 0.328 & 0.317 \\
\(\mathbf{2 0 0 0}\) & 1.514 & 0.474 & 0.344 & 0.334 & 0.340 & 0.331 & 0.329 & 0.317 \\
\(\mathbf{2 0 0 1}\) & 1.548 & 0.480 & 0.344 & 0.331 & 0.340 & 0.333 & 0.332 & 0.318 \\
\(\mathbf{2 0 0 2}\) & 1.584 & 0.490 & 0.344 & 0.329 & 0.341 & 0.336 & 0.336 & 0.321 \\
\(\mathbf{2 0 0 3}\) & 1.619 & 0.502 & 0.345 & 0.329 & 0.342 & 0.340 & 0.340 & 0.324 \\
\(\mathbf{2 0 0 4}\) & 1.651 & 0.516 & 0.348 & 0.329 & 0.344 & 0.345 & 0.345 & 0.327 \\
\(\mathbf{2 0 0 5}\) & 1.679 & 0.531 & 0.350 & 0.329 & 0.347 & 0.350 & 0.350 & 0.331 \\
\(\mathbf{2 0 0 6}\) & 1.705 & 0.546 & 0.353 & 0.329 & 0.350 & 0.355 & 0.356 & 0.335 \\
\(\mathbf{2 0 0 7}\) & 1.731 & 0.562 & 0.356 & 0.330 & 0.353 & 0.360 & 0.361 & 0.339 \\
\(\mathbf{2 0 0 8}\) & 1.731 & 0.562 & 0.356 & 0.330 & 0.353 & 0.360 & 0.361 & 0.339
\end{tabular}

Table 12.2.13 Whiting in IV and VIId. Tuning series used in the assessment and forecast. Data used in the assessment is in bold.

International bottom trawl survey (IBTS) quarter 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline year & effort & 1 & 2 & 3 & 4 & 5 & 6+ \\
\hline 1990 & 100 & 519 & 862 & 198 & 92 & 17 & 4 \\
\hline 1991 & 100 & 1008 & 686 & 480 & 71 & 38 & 8 \\
\hline 1992 & 100 & 907 & 666 & 240 & 151 & 13 & 14 \\
\hline 1993 & 100 & 1076 & 523 & 245 & 65 & 59 & 11 \\
\hline 1994 & 100 & 722 & 627 & 181 & 68 & 12 & 9 \\
\hline 1995 & 100 & 679 & 448 & 239 & 58 & 12 & 6 \\
\hline 1996 & 100 & 502 & 486 & 245 & 70 & 23 & 10 \\
\hline 1997 & 100 & 288 & 342 & 163 & 60 & 18 & 9 \\
\hline 1998 & 100 & 543 & 161 & 125 & 54 & 15 & 9 \\
\hline 1999 & 100 & 676 & 305 & 95 & 57 & 26 & 11 \\
\hline 2000 & 100 & 757 & 538 & 182 & 53 & 20 & 15 \\
\hline 2001 & 100 & 649 & 598 & 299 & 98 & 26 & 26 \\
\hline 2002 & 100 & 671 & 417 & 275 & 67 & 22 & 10 \\
\hline 2003 & 100 & 132 & 299 & 237 & 133 & 48 & 13 \\
\hline 2004 & 100 & 185 & 90 & 173 & 100 & 49 & 22 \\
\hline 2005 & 100 & 168 & 56 & 31 & 56 & 38 & 29 \\
\hline 2006 & 100 & 223 & 92 & 33 & 17 & 28 & 27 \\
\hline 2007 & 100 & 42 & 166 & 71 & 19 & 9 & 25 \\
\hline 2008 & 100 & 268 & 206 & 66 & 22 & 8 & 15 \\
\hline 2009 & 100 & 259 & 192 & 57 & 26 & 10 & 12 \\
\hline
\end{tabular}

International bottom trawl survey (IBTS) quarter 3
\begin{tabular}{c|crrrrrrr} 
year & effort & 0 & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(6+\) \\
\hline 1991 & 100 & 537 & 703 & 159 & 79 & 15 & 5 & 1 \\
1992 & 100 & 1379 & 601 & 296 & 72 & 57 & 10 & 6 \\
1993 & 100 & 919 & 639 & 177 & 66 & 15 & 16 & 3 \\
1994 & 100 & 611 & 678 & 220 & 75 & 20 & 5 & 3 \\
1995 & 100 & 729 & 620 & 291 & 107 & 22 & 6 & 3 \\
1996 & 100 & 317 & 546 & 278 & 129 & 34 & 7 & 4 \\
1997 & 100 & 2063 & 333 & 181 & 109 & 28 & 11 & 4 \\
1998 & 100 & 2632 & 331 & 150 & 53 & 31 & 11 & 5 \\
1999 & 100 & 2499 & 1204 & 191 & 54 & 24 & 10 & 4 \\
2000 & 100 & 1968 & 942 & 327 & 64 & 14 & 7 & 5 \\
2001 & 100 & 3031 & 645 & 282 & 95 & 19 & 4 & 8 \\
2002 & 100 & 264 & 732 & 237 & 125 & 34 & 5 & 3 \\
2003 & 100 & 363 & 246 & 302 & 135 & 66 & 16 & 5 \\
2004 & 100 & 711 & 162 & 48 & 64 & 45 & 31 & 12 \\
2005 & 100 & 163 & 180 & 71 & 28 & 45 & 29 & 34 \\
2006 & 100 & 203 & 173 & 85 & 32 & 13 & 23 & 25 \\
2007 & 100 & 819 & 99 & 66 & 34 & 12 & 6 & 23 \\
2008 & 100 & 770 & 389 & 39 & 30 & 14 & 4 & 15
\end{tabular}

Table 12.2.14 Whiting in IV and VIId. Summary of available tuning series.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Country & Fleet & Name / Code & Time of year & Year range & \begin{tabular}{l}
Age \\
Range
\end{tabular} \\
\hline England & Groundfish survey & \begin{tabular}{l}
ENGGFS GRT \\
ENGGFS GOV
\end{tabular} & \[
\begin{aligned}
& \text { Q3 } \\
& \text { Q3 }
\end{aligned}
\] & \[
\begin{aligned}
& 1977-1991 \\
& 1992-2008
\end{aligned}
\] & \[
\begin{aligned}
& 0-10 \\
& 0-10
\end{aligned}
\] \\
\hline France & Groundfish survey Trawlers \({ }^{6}\) & \begin{tabular}{l}
FRAGFS 7d \\
FRATRO IV \\
FRATRB IV \\
FRATRO 7d
\end{tabular} & Q3 & \[
\begin{aligned}
& 1988-2007^{1} \\
& 1986-2006^{1} \\
& 1978-2001 \\
& 1986-2006
\end{aligned}
\] & \[
\begin{aligned}
& 0-3 \\
& 0-8 \\
& 1-9 \\
& 1-7
\end{aligned}
\] \\
\hline International & \begin{tabular}{l}
Groundfish survey \({ }^{2}\) \\
Q II survey \({ }^{4}\) \\
Q IV survey \({ }^{5}\)
\end{tabular} & \begin{tabular}{l}
IBTS_QI \\
IBTS_Q3 \\
IBTS_Q2_SCO \\
IBTS_Q4_ENG
\end{tabular} & \[
\begin{aligned}
& \text { Q1 } \\
& \text { Q3 } \\
& \text { Q2 } \\
& \text { Q4 }
\end{aligned}
\] & \[
\begin{aligned}
& 1983-2009 \\
& 1991-2008 \\
& 1991-1997 \\
& 1991-1996
\end{aligned}
\] & \[
\begin{gathered}
1-6^{3} \\
1-6^{3} \\
1-6 \\
0-7
\end{gathered}
\] \\
\hline Scotland & \begin{tabular}{l}
Groundfish survey Seiners \({ }^{6}\) \\
Light trawlers \({ }^{6}\)
\end{tabular} & SCOGFS Scotia II SCOGFS Scotia III SCOSEI IV SCOLTR IV & \[
\begin{aligned}
& \text { Q3 } \\
& \text { Q3 }
\end{aligned}
\] & \[
\begin{aligned}
& 1982-1997 \\
& 1998-2008 \\
& 1978-2008 \\
& 1978-2008
\end{aligned}
\] & \[
\begin{aligned}
& 0-8 \\
& 0-8 \\
& 1-9 \\
& 1-9
\end{aligned}
\] \\
\hline
\end{tabular}
\({ }^{1}\) Excluding 2002.
\({ }^{2}\) Formerly IYFS
\({ }^{3}\) Age 6 is a plus group
\({ }^{4}\) Scottish sub-set of IBTS data - discontinued in 1997.
\({ }^{5}\) Eng lish sub-set of IBTS data - discontinued in 1996.
\({ }^{6}\) Commercial tuning indices are tabled in the stock
annex.

Table 12.3.1 Whiting in IV and VIId. XSA tuning diagnostics.
```

FLR XSA Diagnostics 2009-05-10 14:38:09

```

CPUE data from index.xsa
Catch data for 19 years. 1990 to 2008. Ages 1 to 8.
\begin{tabular}{rrrrrrr} 
& fleet first age last age first year last year alpha beta \\
1 & IBTS_Q1 & 1 & 5 & 1990 & 2008 & 0 \\
2 & IBTS_Q3 & 1 & 5 & 1991 & 2008 & 0.25 \\
\hline
\end{tabular}

Time series weights :
Tapered time weighting not applied
Catchability analysis :
Catchability independent of size for all ages
Catchability independent of age for ages \(>4\)

Terminal population estimation :
Survivor estimates shrunk towards the mean \(F\)
of the final 3 years or the 4 oldest ages.
S.E. of the mean to which the estimates are shrunk \(=2\)

Minimum standard error for population
estimates derived from each fleet \(=0.3\)
prior weighting not applied


XSA population number (Thousand)
age
\begin{tabular}{llllllllll} 
year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{tabular} \(\begin{array}{llllllllll}1999 & 2883491 & 393070 & 140607 & 88564 & 45040 & 17809 & 4473 & 1439\end{array}\) \(\begin{array}{llllllllll}2000 & 3238855 & 569609 & 173294 & 61068 & 34340 & 16385 & 6406 & 1792\end{array}\) \(20012617140681585 \quad 256530 \quad 69320 \quad 23522 \quad 10743 \quad 4322 \quad 2383\) \(\begin{array}{lllllllll}2002 & 2295109 & 518015 & 353964 & 132324 & 32360 & 9002 & 3627 & 1835\end{array}\) \(\begin{array}{lllllllllll}2003 & 782531 & 448491 & 269546 & 181099 & 66344 & 16268 & 4708 & 3906\end{array}\) \(\begin{array}{lllllllllll}2004 & 900710 & 122691 & 190570 & 145754 & 94694 & 35067 & 9580 & 2374\end{array}\) \(\begin{array}{lllllllllll}2005 & 1123767 & 161694 & 60558 & 114153 & 83101 & 51010 & 18714 & 3955\end{array}\) \(20061063475194703 \quad 69314 \quad 322436654946080 \quad 28319 \quad 8983\) \(2007 \quad 605401176386 \quad 83430 \quad 29581 \quad 15960 \quad 34158 \quad 2221612933\) \(\begin{array}{llllllllllllll}2008 & 1553445 & 90861 & 75258 & 37920 & 12814 & 7869 & 17451 & 12925\end{array}\)

Estimated population abundance at 1st Jan 2009
\begin{tabular}{llrrrrrrr} 
year age & & & & & & \\
2 & 1 & 2 & 3 & 5 & 6 & 7 & 8
\end{tabular}

\section*{Table 12.3.1 (cont.) \\ Whiting in IV and VIId. XSA tuning diagnostics.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Fleet: IBTS_Q1} \\
\hline \multicolumn{11}{|l|}{Log catchability residuals.} \\
\hline \multicolumn{11}{|c|}{year} \\
\hline age & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 \\
\hline 1 & -0.265 & 0.439 & 0.385 & 0.448 & 0.121 & 0.188 & 0.263 & -0.023 & 0.259 & 0.035 \\
\hline 2 & -0.380 & 0.281 & 0.209 & 0.122 & 0.164 & -0.111 & 0.107 & 0.125 & -0.349 & -0.025 \\
\hline 3 & -0.063 & 0.034 & 0.185 & 0.096 & 0.005 & 0.031 & 0.108 & -0.188 & -0.118 & -0.154 \\
\hline 4 & -0.155 & 0.284 & -0.066 & 0.015 & 0.102 & 0.048 & -0.055 & -0.203 & -0.243 & 0.014 \\
\hline 5 & -0.695 & 0.255 & -0.342 & -0.026 & -0.538 & -0.433 & 0.157 & -0.368 & -0.645 & -0.102 \\
\hline \multicolumn{11}{|c|}{year} \\
\hline age & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & \\
\hline 1 & 0.024 & 0.090 & 0.256 & -0.271 & -0.089 & -0.403 & -0.057 & -1.147 & -0.251 & \\
\hline 2 & 0.167 & 0.077 & -0.010 & -0.174 & -0.100 & -0.830 & -0.515 & 0.171 & 1.071 & \\
\hline 3 & 0.302 & 0.374 & -0.030 & 0.086 & 0.106 & -0.437 & -0.512 & 0.076 & 0.101 & \\
\hline 4 & 0.307 & 0.774 & -0.271 & 0.105 & 0.024 & -0.308 & -0.250 & -0.021 & -0.101 & \\
\hline 5 & -0.067 & 0.538 & 0.034 & 0.093 & -0.253 & -0.383 & -0.444 & -0.156 & -0.095 & \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrrr} 
& 1 & 2 & 3 & 4 & 5 \\
Mean_Logq & -12.8018 & -11.6394 & -11.6519 & -11.8435 & -11.8435 \\
S.E_Logq & 0.3726 & 0.3855 & 0.2178 & 0.2551 & 0.3197
\end{tabular}

Fleet: IBTS_Q3
Log catchability residuals.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{year} \\
\hline age & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 \\
\hline 1 & -0.079 & -0.132 & -0.189 & -0.064 & -0.018 & 0.228 & 0.016 & -0.334 & 0.556 & 0.155 \\
\hline 2 & -0.503 & 0.031 & -0.289 & -0.278 & 0.066 & 0.147 & 0.073 & 0.139 & 0.121 & 0.276 \\
\hline 3 & -0.935 & -0.150 & -0.265 & 0.020 & 0.108 & 0.325 & 0.247 & -0.231 & 0.108 & 0.123 \\
\hline 4 & -0.322 & -0.129 & -0.486 & -0.121 & -0.009 & 0.169 & -0.089 & 0.058 & 0.059 & -0.150 \\
\hline 5 & -0.597 & 0.404 & -0.320 & -0.369 & -0.046 & -0.067 & 0.090 & -0.069 & -0.167 & -0.180 \\
\hline \multicolumn{11}{|c|}{year} \\
\hline age & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & & \\
\hline 1 & 0.028 & 0.294 & 0.415 & -0.230 & -0.324 & -0.280 & -0.207 & 0.165 & & \\
\hline 2 & -0.138 & -0.039 & 0.472 & -0.168 & 0.032 & 0.035 & -0.115 & 0.138 & & \\
\hline 3 & -0.035 & -0.075 & 0.237 & -0.218 & 0.154 & 0.304 & 0.154 & 0.127 & & \\
\hline 4 & -0.048 & -0.173 & 0.152 & -0.063 & 0.171 & 0.304 & 0.361 & 0.315 & & \\
\hline 5 & -0.341 & -0.629 & -0.240 & 0.027 & 0.079 & 0.106 & 0.225 & 0.102 & & \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrrr} 
& 1 & 2 & 3 & 4 & 5 \\
Mean_Logq & -11.9358 & -11.8475 & -12.0599 & -12.2694 & -12.2694 \\
S.E_Logq & 0.2574 & 0.2253 & 0.2962 & 0.2234 & 0.2728
\end{tabular}

\section*{Table 12.3.1 (cont.) Whiting in IV and VIId. XSA tuning diagnostics.}
```

Terminal year survivor and F summaries
Age 1 Year class =2007
source

	scaledWts	survivors	yrcls
IBTS_Q1	0.375	196826	2007
IBTS_Q3	0.610	298345	2007
fshk	0.015	165747	2007

Age 2 Year class =2006
source
scaledWts survivors yrcls

IBTS_Q1	0.357	93019	2006
IBTS_Q3	0.620	36596	2006

fshk $0.023 \quad 549372006$
Age 3 Year class =2005
source
scaledWts survivors yrcls
IBTS_Q1 0.498 37214 2005
IBTS_Q3 0.484 38197 2005
fshk 0.018 37667 2005
Age 4 Year class =2004
source

	scaledWts	survivors	yrcls
IBTS_Q1	0.490	14199	2004
IBTS_Q3	0.490	21522	2004
fshk	0.019	25966	2004

Age 5 Year class =2003
source

	scaledWts	survivors	yrcls
IBTS_Q1	0.381	4863	2003
IBTS_Q3	0.596	5924	2003
fshk	0.023	10118	2003

Age 6 Year class =2002
source
scaledWts survivors yrcls
fshk 1 4230 2002
Age 7 Year class =2001
source
scaledWts survivors yrcls

```

Table 12.3.2 Whiting in IV and VIId. Final XSA fishing mortality.
\begin{tabular}{r|rrrrrrrrr} 
year & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8 +}\) & Fbar(2-6) \\
\hline \(\mathbf{1 9 9 0}\) & 0.182 & 0.511 & 0.813 & 0.911 & 1.146 & 0.878 & 0.956 & 0.956 & 0.852 \\
\(\mathbf{1 9 9 1}\) & 0.093 & 0.461 & 0.480 & 0.735 & 1.052 & 0.738 & 0.765 & 0.765 & 0.693 \\
\(\mathbf{1 9 9 2}\) & 0.190 & 0.369 & 0.544 & 0.589 & 0.704 & 1.180 & 1.281 & 1.281 & 0.677 \\
\(\mathbf{1 9 9 3}\) & 0.154 & 0.449 & 0.716 & 0.776 & 0.832 & 0.647 & 1.189 & 1.189 & 0.684 \\
\(\mathbf{1 9 9 4}\) & 0.124 & 0.328 & 0.625 & 0.850 & 0.977 & 1.152 & 0.387 & 0.387 & 0.786 \\
\(\mathbf{1 9 9 5}\) & 0.119 & 0.329 & 0.589 & 0.669 & 0.932 & 1.176 & 1.554 & 1.554 & 0.739 \\
\(\mathbf{1 9 9 6}\) & 0.091 & 0.307 & 0.540 & 0.686 & 0.772 & 1.110 & 1.529 & 1.529 & 0.683 \\
\(\mathbf{1 9 9 7}\) & 0.089 & 0.287 & 0.503 & 0.570 & 0.756 & 0.486 & 0.953 & 0.953 & 0.520 \\
\(\mathbf{1 9 9 8}\) & 0.084 & 0.224 & 0.340 & 0.520 & 0.610 & 0.794 & 0.461 & 0.461 & 0.498 \\
\(\mathbf{1 9 9 9}\) & 0.139 & 0.348 & 0.488 & 0.610 & 0.669 & 0.693 & 0.776 & 0.776 & 0.562 \\
\(\mathbf{2 0 0 0}\) & 0.045 & 0.324 & 0.572 & 0.620 & 0.822 & 1.002 & 1.587 & 1.587 & 0.668 \\
\(\mathbf{2 0 0 1}\) & 0.072 & 0.175 & 0.318 & 0.431 & 0.621 & 0.753 & 0.941 & 0.941 & 0.460 \\
\(\mathbf{2 0 0 2}\) & 0.049 & 0.164 & 0.326 & 0.361 & 0.347 & 0.313 & 0.644 & 0.644 & 0.302 \\
\(\mathbf{2 0 0 3}\) & 0.234 & 0.354 & 0.269 & 0.320 & 0.296 & 0.190 & 0.127 & 0.127 & 0.286 \\
\(\mathbf{2 0 0 4}\) & 0.067 & 0.190 & 0.165 & 0.233 & 0.274 & 0.283 & 0.160 & 0.160 & 0.229 \\
\(\mathbf{2 0 0 5}\) & 0.074 & 0.316 & 0.280 & 0.211 & 0.243 & 0.239 & 0.216 & 0.216 & 0.258 \\
\(\mathbf{2 0 0 6}\) & 0.091 & 0.301 & 0.498 & 0.374 & 0.317 & 0.375 & 0.224 & 0.224 & 0.3 \\
\(\mathbf{2 0 0 7}\) & 0.166 & 0.290 & 0.432 & 0.506 & 0.354 & 0.311 & 0.327 & 0.327 & 0.310 \\
\(\mathbf{2 0 0 8}\) & 0.084 & 0.486 & 0.449 & 0.552 & 0.521 & 0.332 & 0.310 & 0.3 & 0.379 \\
\hline
\end{tabular}

Table 12.3.3 Whiting in IV and VIId. Final XSA stock numbers.
\begin{tabular}{r|rrrrrrrr} 
year & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8 +}\) \\
\hline \(\mathbf{1 9 9 0}\) & 2941840 & 1617786 & 280601 & 173991 & 56693 & 4070 & 1412 & \(\mathbf{2 0 9}\) \\
\(\mathbf{1 9 9 1}\) & 2798122 & 660357 & 591674 & 85006 & 48166 & 12541 & 1198 & 389 \\
\(\mathbf{1 9 9 2}\) & 2694253 & 680411 & 256473 & 251931 & 28256 & 11759 & 4261 & 400 \\
\(\mathbf{1 9 9 3}\) & 2990761 & 587793 & 291413 & 103060 & 97421 & 9800 & 2575 & 851 \\
\(\mathbf{1 9 9 4}\) & 2777957 & 666998 & 233414 & 99068 & 33209 & 29834 & 3666 & 564 \\
\(\mathbf{1 9 9 5}\) & 2448666 & 627547 & 299478 & 87252 & 29758 & 8811 & 6745 & 1794 \\
\(\mathbf{1 9 9 6}\) & 1680329 & 545083 & 281714 & 116394 & 31489 & 8267 & 1947 & 1028 \\
\(\mathbf{1 9 9 7}\) & 1284012 & 376240 & 250309 & 115238 & 41412 & 10290 & 1955 & 304 \\
\(\mathbf{1 9 9 8}\) & 1831742 & 281472 & 176455 & 106564 & 46190 & 13762 & 4545 & 543 \\
\(\mathbf{1 9 9 9}\) & 2883491 & 393070 & 140607 & 88564 & 45040 & 17809 & 4473 & 2065 \\
\(\mathbf{2 0 0 0}\) & 3238855 & 569609 & 173294 & 61068 & 34340 & 16385 & 6406 & 1483 \\
\(\mathbf{2 0 0 1}\) & 2617140 & 681585 & 256530 & 69320 & 23522 & 10743 & 4322 & 942 \\
\(\mathbf{2 0 0 2}\) & 2295109 & 518015 & 353964 & 132324 & 32360 & 9002 & 3627 & 1211 \\
\(\mathbf{2 0 0 3}\) & 782531 & 448491 & 269546 & 181099 & 66344 & 16268 & 4708 & 1361 \\
\(\mathbf{2 0 0 4}\) & 900710 & 122691 & 190570 & 145754 & 94694 & 35067 & 9580 & 2951 \\
\(\mathbf{2 0 0 5}\) & 1123767 & 161694 & 60558 & 114153 & 83101 & 51010 & 18714 & 5781 \\
\(\mathbf{2 0 0 6}\) & 1063475 & 194703 & 69314 & 32243 & 66549 & 46080 & 28319 & 10622 \\
\(\mathbf{2 0 0 7}\) & 605401 & 176386 & 83430 & 29581 & 15960 & 34158 & 22216 & 15860 \\
\(\mathbf{2 0 0 8}\) & 1553445 & 90861 & 75258 & 37920 & 12814 & 7869 & 17451 & 11165 \\
\(\mathbf{2 0 0 9}\) & 0 & 252984 & 31877 & 33651 & 15703 & 5349 & 3939 & 8920
\end{tabular}

Note that stock numbers in 2009 are estimates of survivors from 2008.

Table 12.3.4 Whiting in IV and VIId. Final XSA summary table.
\begin{tabular}{r|rrrrrrrrr} 
recruitment \\
(age 1)
\end{tabular}

Table 12.5.1 Whiting in IV and VIId. RCT3 input table
Whi4\&7d (age 1)
\begin{tabular}{rrrrrr}
4 & 19 & 2 & & & \\
1990 & 2942 & 1007.62 & 665.71 & -11 & 703.37 \\
1991 & 2798 & 907.30 & 522.81 & 536.99 & 600.87 \\
1992 & 2694 & 1075.62 & 627.41 & 1379.46 & 638.72 \\
1993 & 2991 & 721.71 & 448.48 & 919.19 & 677.65 \\
1994 & 2778 & 678.59 & 485.97 & 610.74 & 619.79 \\
1995 & 2449 & 502.36 & 342.21 & 729.25 & 545.71 \\
1996 & 1680 & 287.73 & 160.70 & 316.50 & 332.97 \\
1997 & 1284 & 543.12 & 305.45 & 2062.67 & 330.60 \\
1998 & 1832 & 676.27 & 537.86 & 2631.69 & 1203.50 \\
1999 & 2883 & 756.87 & 598.39 & 2498.55 & 941.66 \\
2000 & 3239 & 648.65 & 416.82 & 1968.07 & 645.00 \\
2001 & 2617 & 670.59 & 298.87 & 3031.44 & 732.14 \\
2002 & 2295 & 131.60 & 89.73 & 264.06 & 246.16 \\
2003 & 783 & 184.61 & 55.97 & 363.41 & 161.56 \\
2004 & 901 & 167.63 & 92.38 & 711.28 & 179.50 \\
2005 & 1124 & 223.01 & 166.13 & 162.59 & 172.79 \\
2006 & 1063 & 42.19 & 205.56 & 202.83 & 99.48 \\
2007 & 605 & 267.75 & 192.19 & 819.06 & 389.38 \\
2008 & -11 & 259.37 & -11 & 769.57 & -11 \\
\hline 293e1 & & & & &
\end{tabular}

Table 12.5.2 Whiting in IV and VIId. RCT3 output table.


Table 12.6.1 Whiting in IV and VIId. Short term forecast input

MFDP version 1a
Run: whiog
Time and date: 15:18 10/05/200
Fbar age range (Total) : \(2-6\)
Fbar age range Fleet 1 \(1: 2-6\)
Fbar age range Fleet 2: \(2-6\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline  &  &  &  &  &  \\
\hline  & \begin{tabular}{l}
00000000 \\

\end{tabular} &  & \begin{tabular}{l}
\(\bigcirc \circ \circ \circ \circ \circ \circ \circ\) \\

\end{tabular} & \begin{tabular}{l}
00000000 \\

\end{tabular} & ouc \\
\hline \multirow[t]{5}{*}{} & \begin{tabular}{l}
00000000 \\
Wo
\end{tabular} &  & \begin{tabular}{l}
00000000 \\

\end{tabular} & 00000000 Co & \begin{tabular}{l}
0000000. \\
\(\omega_{A} \omega_{\omega}^{\omega} \omega_{\circlearrowleft}^{\omega}\)
\end{tabular} \\
\hline & \begin{tabular}{l}
\(\bigcirc 00000000\) \\

\end{tabular} & \[
\rightarrow-\Delta-\Delta \stackrel{\circ}{\stackrel{\circ}{N}} \stackrel{\circ}{ \pm} \underset{\sim}{2}
\] & & \begin{tabular}{l}
\(\bigcirc 0000000\) \\

\end{tabular} &  \\
\hline & \begin{tabular}{l}
-Oㅇㅇㅇㅇ음 \\

\end{tabular} & 00000000 T & & \begin{tabular}{l}
-00000000 \\

\end{tabular} & 00000000 T \\
\hline & & \(00000000 \frac{\square}{3}\) & & & 000000003 \\
\hline & & \begin{tabular}{l}
00000000 \\

\end{tabular} & & & \begin{tabular}{l}
00000000 \\

\end{tabular} \\
\hline  &  & \[
\infty \vee の G+\omega N \rightharpoonup \stackrel{\rightharpoonup}{\square} \stackrel{N}{\square}
\] & & & \\
\hline  & \begin{tabular}{l}
00000000 \\

\end{tabular} & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{0} \\
& \stackrel{0}{\circ} \\
& \text { in }
\end{aligned}
\] & & & \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
00000000 \\
엉 오 t
\end{tabular}} & \begin{tabular}{l}
00000000 \\

\end{tabular} &  & & & \\
\hline & \begin{tabular}{l}
ㅇㅇㅇㅇㅇㅇㅇㅇㅇ응 \\

\end{tabular} & \[
\rightarrow \mu \Delta-\Delta \stackrel{\circ}{\dot{N}} \stackrel{\circ}{ \pm} \underset{\sim}{2}
\] & & & \\
\hline & \begin{tabular}{l}
으NNN으N으응 \\

\end{tabular} & 00000000 T & & & \\
\hline & & 000000003 & & & \\
\hline & &  & & & \\
\hline
\end{tabular}

Table 12.6.2 Whiting in IV and VIId. Short term forecast output.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2009}} & \multirow[b]{2}{*}{Catch} & & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Landings}} & & & & \multirow[b]{2}{*}{Industrialbycatch} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Landings}} \\
\hline & & & Catch & & & & Discards & & & & \\
\hline Biomass & SSB & FMult & Fbar & Yeild & FBar & Yield & FBar & Yield & FMult & FBar & \\
\hline 215775 & 91656 & 1 & 0.467 & 31391 & 0.3088 & 18680 & 0.14 & 10832 & 1.0 & 0.02 & 1879 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2010
Biomass & SSB & Catch FMult & Catch Fbar & Yeild & Landings FBar & Yield & Discards FBar & Yield & Industrialbycatch FMult & Landings FBar & Yield & \multicolumn{2}{|l|}{Biomass SSB} \\
\hline 183373 & 87400 & 0.00 & 0.02 & 1948 & 0.00 & 0 & 0.00 & 0 & 1 & 0.02 & 1948 & 197222 & 101702 \\
\hline & 87400 & 0.10 & 0.07 & 5187 & 0.03 & 2094 & 0.01 & 1174 & 1 & 0.02 & 1919 & 194425 & 98935 \\
\hline & 87400 & 0.20 & 0.11 & 8319 & 0.06 & 4117 & 0.03 & 2310 & 1 & 0.02 & 1892 & 191736 & 96275 \\
\hline & 87400 & 0.30 & 0.16 & 11346 & 0.09 & 6071 & 0.04 & 3411 & 1 & 0.02 & 1864 & 189150 & 93718 \\
\hline & 87400 & 0.40 & 0.20 & 14275 & 0.12 & 7959 & 0.05 & 4478 & 1 & 0.02 & 1838 & 186662 & 91259 \\
\hline & 87400 & 0.50 & 0.24 & 17107 & 0.15 & 9783 & 0.07 & 5512 & 1 & 0.02 & 1812 & 184269 & 88894 \\
\hline stable SSB & 87400 & 0.57 & 0.27 & 18899 & 0.17 & 10936 & 0.08 & 6167 & 1 & 0.02 & 1796 & 182763 & 87405 \\
\hline & 87400 & 0.60 & 0.29 & 19848 & 0.19 & 11546 & 0.08 & 6515 & 1 & 0.02 & 1787 & 181967 & 86619 \\
\hline 25\% reduction in TAC & 87400 & 0.61 & 0.29 & 20037 & 0.19 & 11668 & 0.08 & 6584 & 1 & 0.02 & 1785 & 181809 & 86463 \\
\hline & 87400 & 0.70 & 0.33 & 22502 & 0.22 & 13252 & 0.10 & 7487 & 1 & 0.02 & 1763 & 179751 & 84431 \\
\hline & 87400 & 0.80 & 0.38 & 25070 & 0.25 & 14901 & 0.11 & 8430 & 1 & 0.02 & 1739 & 177618 & 82326 \\
\hline & 87400 & 0.90 & 0.42 & 27557 & 0.28 & 16497 & 0.12 & 9345 & 1 & 0.02 & 1715 & 175565 & 80300 \\
\hline F status quo & 87400 & 1.00 & 0.47 & 29968 & 0.31 & 18041 & 0.14 & 10234 & 1 & 0.02 & 1693 & 173588 & 78349 \\
\hline & 87400 & 1.10 & 0.51 & 32303 & 0.34 & 19536 & 0.15 & 11096 & 1 & 0.02 & 1671 & 171683 & 76472 \\
\hline & 87400 & 1.20 & 0.56 & 34565 & 0.37 & 20983 & 0.16 & 11933 & 1 & 0.02 & 1649 & 169849 & 74664 \\
\hline & 87400 & 1.30 & 0.60 & 36760 & 0.40 & 22385 & 0.18 & 12747 & 1 & 0.02 & 1628 & 168082 & 72922 \\
\hline F0.1 & 87400 & 1.40 & 0.65 & 38887 & 0.43 & 23743 & 0.19 & 13537 & 1 & 0.02 & 1607 & 166379 & 71245 \\
\hline & 87400 & 1.50 & 0.69 & 40952 & 0.46 & 25060 & 0.21 & 14305 & 1 & 0.02 & 1587 & 164738 & 69629 \\
\hline & 87400 & 1.60 & 0.73 & 42954 & 0.49 & 26336 & 0.22 & 15051 & 1 & 0.02 & 1567 & 163155 & 68072 \\
\hline 15\% reduction in TAC & 87400 & 1.70 & 0.78 & 44898 & 0.53 & 27573 & 0.23 & 15777 & 1 & 0.02 & 1548 & 161629 & 66571 \\
\hline & 87400 & 1.80 & 0.82 & 46786 & 0.56 & 28773 & 0.25 & 16484 & 1 & 0.02 & 1529 & 160158 & 65124 \\
\hline & 87400 & 1.90 & 0.87 & 48619 & 0.59 & 29937 & 0.26 & 17171 & 1 & 0.02 & 1511 & 158738 & 63729 \\
\hline & 87400 & 2.00 & 0.91 & 50399 & 0.62 & 31067 & 0.27 & 17839 & 1 & 0.02 & 1493 & 157369 & 62384 \\
\hline
\end{tabular}

Input units are thousands and kg - output in tonnes

Table 12.6.3 Whiting in IV and VIId. Yield per recruit input.
MFDP version 1a
Time and date: \(15: 18\) 10/05/200
Fbar age range (Total) : 2 -
Fbar age range (Total) : \(2-6\)
Fbar age range Fleet \(1: 2-6\)
Fbar age range Fleet \(1:\) :2-6
Fbar age range Fleet 2 : 2-6
\begin{tabular}{|c|c|c|c|c|c|}
\hline  & \[
\infty v \sigma G A \omega N \rightarrow \stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\circ}{5}}
\] &  &  &  &  \\
\hline \(\bigcirc 0000000\) ㅇㅇㅇㅇN & \begin{tabular}{l}
00000000 \\

\end{tabular} &  & \begin{tabular}{l}
00000000 \\

\end{tabular} & \begin{tabular}{l}
00000000 \\

\end{tabular} & \[
\mathscr{N O}_{0}^{\omega} \text { © }
\] \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
웅ㅇㅇㅇㅇㅇN옹ㅇ \\

\end{tabular}} & \begin{tabular}{l}
00000000 \\

\end{tabular} & \begin{tabular}{l}
0000000 - \\

\end{tabular} & 00000000 엉 오 t & \begin{tabular}{l}
00000000 \\

\end{tabular} &  \\
\hline & \(\bigcirc \circ \circ \circ 000 \circ \circ\) \& &  & & \begin{tabular}{l}
\(\bigcirc\) ㅇㅇㅇㅇㅇㅇㅇ \\

\end{tabular} & \[
\rightarrow \Delta \Delta-\Delta-\stackrel{\circ}{N} \stackrel{\circ}{ \pm} \underset{\sim}{2}
\] \\
\hline & \begin{tabular}{l}
\(\bigcirc\) 웅ㅇㅇㅇㅇㅡ \\

\end{tabular} & 00000000 T & & \begin{tabular}{l}
 \\

\end{tabular} & 000000007 \\
\hline & & \(00000000^{\frac{1}{3}}\) & & & \(00000000 \frac{10}{3}\) \\
\hline & & \begin{tabular}{l}
00000000 \\

\end{tabular} & & & \begin{tabular}{l}
00000000 \\

\end{tabular} \\
\hline  &  & \[
\infty \vee の G+\omega N \rightharpoonup \stackrel{\rightharpoonup}{8} \stackrel{N}{\square}
\] & & & \\
\hline \begin{tabular}{l}
00000000 \\

\end{tabular} & \begin{tabular}{l}
00000000 \\

\end{tabular} & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{0} \\
& \stackrel{0}{\circ} \mathrm{O}
\end{aligned}
\] & & & \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
00000000 \\

\end{tabular}} & \begin{tabular}{l}
00000000 \\

\end{tabular} & \begin{tabular}{l}
0000000 - \\

\end{tabular} & & & \\
\hline & \begin{tabular}{l}
- Oㅇㅇㅇㅇㅇㅇㅇㅁ \\

\end{tabular} & \[
\rightarrow-\Delta-\Delta-\stackrel{\circ}{0} \stackrel{O}{\square} \underset{\sim}{3}
\] & & & \\
\hline & \begin{tabular}{l}
- OO으N은음 \\

\end{tabular} & 00000000 ㄲ & & & \\
\hline & & \(00000003^{\frac{1}{3}}\) & & & \\
\hline & & \begin{tabular}{l}
00000000 \\

\end{tabular} & & & \\
\hline
\end{tabular}

Table 12.6.4 Whiting in IV and VIId. Yield per recruit output.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Catch FMult & Landings Fbar & CatchNos & Yield & \begin{tabular}{|l|l} 
Discards \\
Fbar
\end{tabular} & CatchNos & Yield & |Industrialbycatch FMult & Landings Fbar & CatchNos & Yield & StockNos & Biomass & SpwnNosJan & SSBJan & SpwnNosSpwn & SSBSpwn \\
\hline 0.0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0.022 & 0.023 & 0.002 & 1.481 & 0.233 & 0.577 & 0.138 & 0.577 & 0.138 \\
\hline 0.1 & 0.031 & 0.011 & 0.003 & 0.014 & 0.009 & 0.001 & 1 & 0.022 & 0.022 & 0.002 & 1.437 & 0.219 & 0.533 & 0.124 & 0.533 & 0.124 \\
\hline 0.2 & 0.062 & 0.019 & 0.006 & 0.027 & 0.017 & 0.002 & - & 0.022 & 0.022 & 0.002 & 1.401 & 0.208 & 0.498 & 0.113 & 0.498 & 0.113 \\
\hline 0.3 & 0.093 & 0.026 & 0.008 & 0.041 & 0.024 & 0.003 & 1 & 0.022 & 0.021 & 0.002 & 1.372 & 0.199 & 0.469 & 0.104 & 0.469 & 0.104 \\
\hline 0.4 & 0.124 & 0.032 & 0.009 & 0.055 & 0.031 & 0.004 & 1 & 0.022 & 0.021 & 0.002 & 1.347 & 0.191 & 0.444 & 0.096 & 0.444 & 0.096 \\
\hline 0.5 & 0.154 & 0.037 & 0.011 & 0.069 & 0.037 & 0.005 & 1 & 0.022 & 0.020 & 0.002 & 1.327 & 0.185 & 0.424 & 0.090 & 0.424 & 0.090 \\
\hline 0.6 & 0.185 & 0.042 & 0.012 & 0.082 & 0.043 & 0.006 & 1 & 0.022 & 0.020 & 0.002 & 1.309 & 0.179 & 0.406 & 0.084 & 0.406 & 0.084 \\
\hline 0.7 & 0.216 & 0.045 & 0.013 & 0.096 & 0.048 & 0.007 & - & 0.022 & 0.020 & 0.002 & 1.293 & 0.175 & 0.390 & 0.080 & 0.390 & 0.080 \\
\hline 0.8 & 0.247 & 0.049 & 0.013 & 0.110 & 0.054 & 0.007 & 1 & 0.022 & 0.019 & 0.002 & 1.279 & 0.171 & 0.377 & 0.076 & 0.377 & 0.076 \\
\hline 0.9 & 0.278 & 0.052 & 0.014 & 0.123 & 0.059 & 0.008 & 1 & 0.022 & 0.019 & 0.002 & 1.267 & 0.167 & 0.365 & 0.072 & 0.365 & 0.072 \\
\hline 1.0 & 0.309 & 0.054 & 0.015 & 0.137 & 0.064 & 0.008 & 1 & 0.022 & 0.019 & 0.001 & 1.256 & 0.164 & 0.354 & 0.069 & 0.354 & 0.069 \\
\hline 1.1 & 0.340 & 0.057 & 0.015 & 0.151 & 0.068 & 0.009 & 1 & 0.022 & 0.018 & 0.001 & 1.247 & 0.161 & 0.344 & 0.066 & 0.344 & 0.066 \\
\hline 1.2 & 0.371 & 0.059 & 0.016 & 0.164 & 0.073 & 0.009 & - 1 & 0.022 & 0.018 & 0.001 & 1.238 & 0.159 & 0.336 & 0.064 & 0.336 & 0.064 \\
\hline 1.3 & 0.401 & 0.061 & 0.016 & 0.178 & 0.077 & 0.010 & 1 & 0.022 & 0.018 & 0.001 & 1.230 & 0.156 & 0.328 & 0.061 & 0.328 & 0.061 \\
\hline 1.4 & 0.432 & 0.063 & 0.016 & 0.192 & 0.081 & 0.010 & 1 & 0.022 & 0.018 & 0.001 & 1.222 & 0.154 & 0.320 & 0.059 & 0.320 & 0.059 \\
\hline 1.5 & 0.463 & 0.065 & 0.017 & 0.206 & 0.085 & 0.010 & - 1 & 0.022 & 0.017 & 0.001 & 1.215 & 0.153 & 0.314 & 0.058 & 0.314 & 0.058 \\
\hline 1.6 & 0.494 & 0.066 & 0.017 & 0.219 & 0.089 & 0.011 & 1 & 0.022 & 0.017 & 0.001 & 1.209 & 0.151 & 0.308 & 0.056 & 0.308 & 0.056 \\
\hline 1.7 & 0.525 & 0.068 & 0.017 & 0.233 & 0.093 & 0.011 & - 1 & 0.022 & 0.017 & 0.001 & 1.203 & 0.149 & 0.302 & 0.054 & 0.302 & 0.054 \\
\hline 1.8 & 0.556 & 0.070 & 0.018 & 0.247 & 0.096 & 0.012 & 1 & 0.022 & 0.017 & 0.001 & 1.198 & 0.148 & 0.297 & 0.053 & 0.297 & 0.053 \\
\hline 1.9 & 0.587 & 0.071 & 0.018 & 0.260 & 0.100 & 0.012 & 1 & 0.022 & 0.017 & 0.001 & 1.193 & 0.146 & 0.292 & 0.052 & 0.292 & 0.052 \\
\hline 2.0 & 0.618 & 0.073 & 0.018 & 0.274 & 0.103 & 0.012 & 1 & 0.022 & 0.016 & 0.001 & 1.188 & 0.145 & 0.287 & 0.050 & 0.287 & 0.050 \\
\hline
\end{tabular}
\begin{tabular}{l|rr} 
Reference point & F multiplier & Absolute F \\
\hline FMax & \(>=1000000\) & \\
F0.1 & 1.395 & 0.65 \\
F35\%SPR & 2.190 & 1.12
\end{tabular}

Table 12.12.1 Nominal landings ( \(\mathbf{t}\) ) of Whiting from Division IIIa as supplied by the Study Group on Division IIIa Demersal Stocks (ICES 1992b) and updated by the Working Group.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & Denmark (1) & & & Norway & Swe den & Othe rs & Total \\
\hline 1975 & 19,018 & & & 57 & 611 & 4 & 19,690 \\
\hline 1976 & 17,870 & & & 48 & 1,002 & 48 & 18,968 \\
\hline 1977 & 18,116 & & & 46 & 975 & 41 & 19,178 \\
\hline 1978 & 48,102 & & & 58 & 899 & 32 & 49,091 \\
\hline 1979 & 16,971 & & & 63 & 1,033 & 16 & 18,083 \\
\hline \multirow[t]{2}{*}{1980} & 21,070 & & & 65 & 1,516 & 3 & 22,654 \\
\hline & Total consumption & Total industrial & Total & & & & \\
\hline 1981 & 1,027 & 23,915 & 24,942 & 70 & 1,054 & 7 & 26,073 \\
\hline 1982 & 1,183 & 39,758 & 40,941 & 40 & 670 & 13 & 41,664 \\
\hline 1983 & 1,311 & 23,505 & 24,816 & 48 & 1,061 & 8 & 25,933 \\
\hline 1984 & 1,036 & 12,102 & 13,138 & 51 & 1,168 & 60 & 14,417 \\
\hline 1985 & 557 & 11,967 & 12,524 & 45 & 654 & 2 & 13,225 \\
\hline 1986 & 484 & 11,979 & 12,463 & 64 & 477 & 1 & 13,005 \\
\hline 1987 & 443 & 15,880 & 16,323 & 29 & 262 & 43 & 16,657 \\
\hline 1988 & 391 & 10,872 & 11,263 & 42 & 435 & 24 & 11,764 \\
\hline 1989 & 917 & 11,662 & 12,579 & 29 & 675 & - & 13,283 \\
\hline 1990 & 1,016 & 17,829 & 18,845 & 49 & 456 & 73 & 19,423 \\
\hline 1991 & 871 & 12,463 & 13,334 & 56 & 527 & 97 & 14,041 \\
\hline 1992 & 555 & 3,340 & 3,895 & 66 & 959 & 1 & 4,921 \\
\hline 1993 & 261 & 1,987 & 2,248 & 42 & 756 & 1 & 3,047 \\
\hline 1994 & 174 & 1,900 & 2,074 & 21 & 440 & 1 & 2,536 \\
\hline 1995 & 85 & 2,549 & 2,634 & 24 & 431 & 1 & 3,090 \\
\hline 1996 & 55 & 1,235 & 1,290 & 21 & 182 & - & 1,493 \\
\hline 1997 & 38 & 264 & 302 & 18 & 94 & - & 414 \\
\hline 1998 & 35 & 354 & 389 & 16 & 81 & - & 486 \\
\hline 1999 & 37 & 695 & 732 & 15 & 111 & - & 858 \\
\hline 2000 & 59 & 777 & 836 & 17 & 138 & 1 & 992 \\
\hline 2001 & 61 & \(970{ }^{1}\) & 1,031 \({ }^{1}\) & 27 & 126 & + & 1,184 \({ }^{1}\) \\
\hline 2002 & 101 & \(975{ }^{1}\) & 1,076 \({ }^{1}\) & 23 & 127 & 1 & \(1,227^{1}\) \\
\hline 2003 & 93 & \(654{ }^{1}\) & \(747^{1}\) & 20 & 71 & 2 & \(840^{1}\) \\
\hline 2004 & 93 & 1,120 \({ }^{1}\) & 1,213 \({ }^{1}\) & 17 & 74 & 1 & 1,305 \({ }^{1}\) \\
\hline 2005 & 49 & \(907^{1}\) & \(956{ }^{1}\) & 13 & 73 & 0 & 1,042 \({ }^{1}\) \\
\hline 2006 & \(59^{1}\) & \(290{ }^{1}\) & \(349{ }^{1}\) & n/a & n/a & n/a & \(349{ }^{1}\) \\
\hline 2007 & & & 54 & 14 & 82 & 1 & 151 \\
\hline 2008 & & & 53 & 14 & 52 & n/a & 119 \\
\hline
\end{tabular}
\({ }^{1}\) Values from 1992 update d by WGNSSK (2007)


Stacked catch components in ' 000 tonnes


Stacked catch components as proportions


Figure 12.2.1 Whiting in IV and VIId. The contribution of each catch component to the total catch. Human consumption landings (black line) is always at the bottom, followed by discards (dashed line) and lastly industrial bycatch (grey line).


Figure 12.2.2 Whiting in IV and VIId. Proportion at age by number for each catch component. The colour for each age is given on the right.


Figure 12.2.3 Whiting in IV and VIId. Mean weights at age (kg) by catch component. Catch mean weights are also used as stock mean weights.


Figure 12.2.4 Whiting in IV and VIId. Mean weights at age (ages \(1-8+\) ) in the catch by cohort.


Figure 12.2.5 Whiting in IV and VIId. Distribution plot of the IBTS quarter 1 Survey.



Figure 12.3.1 Whiting in IV and VIId. Analysis conducted in WGNSSK (2007) showing catch based estimates of spawning stock biomass (black line) along side survey based estimates of spawning stock biomass (blue, and dashed lines), the blue line showing an estimate based on all the surveys. These are scaled so that the mean of each line over the years 1996-2006 is one.


Figure 12.3.2 Whiting in Subarea IV and Division VIId. Commercial landings (human consumption and industrial fisheries in tonnes) by ICES statistical rectangle over the years 1984 to 2007. The same scaling is used in each map. In the top left plot a ' + ' indicates where landings are reported / available in every year ( 1984 - 2007), '-" indicates that for some years no landings were reported / available for that square. Danish industrial bycatch was available from 1988. French human consumption landings were available from 1999.


Figure 12.3.3 Whiting in Subarea IV and Division VIId. Density of whiting eggs from the 2004 ICES icthyoplankton survey.


Figure 12.3.4 Whiting in IV and VIId. Top panel: Log indices by cohort for the IBTS Quarter 1 survey (ages 1 to 5). The year specifies the year-class. A reference a line with constant intercept and gradient representing a \(Z\) of 0.8 has been drawn in grey. Bottom panel: a raw estimate of annual mean \(Z\) averaged over ages 2 to \(4, Z\) at age was estimated as \(\log\) inde \(x(y, a)-\log\) index \((y+1\), \(a+1\) ).


Figure 12.3.5 Whiting in IV and VIId. Top panel: Log indices by cohort for the IBTS Quarter 3 survey (ages 1 to 5 ). The year specifies the year-class. A reference a line with constant intercept and gradient representing a \(Z\) of 0.8 has been drawn in grey. Bottom panel: a raw estimate of annual mean \(Z\) averaged over ages 2 to \(4, Z\) at age was estimated as \(\log\) index \((y, a)-\log\) index \((y+1\), \(a+1)\).


Figure 12.3.6 Whiting in IV and VIId. Within survey correlations for the IBTS quarter 1 survey (1990-2006). Individual points are given by cohort, the line is a normal linear model fit. Thick lines represent a significant ( \(\mathrm{p}<0.05\) ) regression and the curved lines are approximate \(95 \%\) confidence intervals.


Figure 12.3.7 Whiting in IV and VIId. Within survey correlations for the IBTS quarter 3 survey (1990-2006). Individual points are given by cohort, the line is a normal linear model fit. Thick lines represent a significant ( \(\mathrm{p}<0.05\) ) regression and the curved lines are approximate \(\mathbf{9 5 \%}\) confidence intervals.

\section*{Commercial Catch}


Figure 12.3.8 Whiting in IV and VIId. Top panel: Log catch number by cohort (ages 1 to 7). The year specifies the year-class. A reference a line with constant intercept and gradient representing a \(Z\) of 0.8 has been drawn in grey. Bottom panel: a raw estimate of annual mean \(Z\) a veraged over ages 2 to \(6, Z\) at age was estimated as \(\log\) catch \((y, a)-\log\) catch \((y+1, a+1)\).


Figure 12.3.9 Whiting in IV and VIId. Correlations in the catch at age matrix ( \(\log\) numbers). Individual points are given by cohort, the line is a normal linear model fit. Thick lines represent a significant ( \(p<0.05\) ) regression.


Figure 12.3.10 Whiting in IV and VIId. Comparison of spawning stock biomass, total stock biomass, mean \(\mathrm{F}(2-6)\) and recruitment for individual tuning fleet XSA runs (with the settings used in the final assessment).


Figure 12.3.11 Whiting in IV and VIId. Residuals from single fleet XSA runs. Black signifies a negative residual and white signifies a positive residual.


Figure 12.3.12 Whiting in IV and VIId. XSA final run: log catchabilit y residuals. Black signifies a negative residual and white signifies a positive residual.


Figure 12.3.13 Whiting in IV and VIId. XSA final run: Summary plots.


Figure 12.3.14 Whiting in IV and VIId. XSA fishing mortality at age.


Figure 12.3.15 Whiting in IV and VIId. XSA spaly run: retrospective patterns. The y axis represents the percentage difference from the most recent assessment.


Figure 12.4.1 Whiting in IV and VIId. Changes in estimated exploitation pattern. The height of the plot denotes F at age, year is from 1990 to 2008, and ages 1 to 8+.


Figure 12.4.2 Whiting in IV and VIId Whiting in IV and VIId. Changes in exploitation pattern. Solid line : \(F(2-6)\), dashed line : \(F(2-4)\), dotted line : \(F(5: 7)\). Historically, \(F\) has increased with age, since 2004 exploitation is greater on younger ages than older.


Figure 12.4.3 Whiting in IV and VIId. Age contributions to the SSB and TSB. Biomass not contributing to SSB is overlaid with hatched lines: immature age 1 lies over immature age 2 , and the immature biomass lies over mature age 1 , mature age 2 etc.

Total Stock Biomass age contributions


Figure 12.4.4 Whiting in IV and VIId. Age contributions to the SSB and TSB shown as proportions of the total stock biomass. Biomass not contributing to SSB is overlaid with hatched lines: immature age 1 lies over immature age 2 , and the immature biomass lies over mature age 1 , mature age 2 etc.


F0.1 retrospective pattern


Figure 12.8.2 Whiting in IV and VIId. Retrospective pattern of F0.1 as estimated from rerospective runs of XSA.



Figure 12.9.1 Whiting in IV and VIId. Historical performance of the assessment.

\section*{13 Haddock in Subarea IV and Division Illa (N)}

The assessment of haddock presented in this section is an update assessment. No changes have been made to the run settings and model configurations used in last year's assessment. Recommendations for issues to be considered at the forthcoming benchmark meetings are given in Section 13.9.

\subsection*{13.1 General}

\subsection*{13.1.1 Ecosystem aspects}

Ecosystem aspects are summarised in the Stock Annex.

\subsection*{13.1.2 Fisheries}

A general description of the fishery (along with its historical development) is presented in the Stock Annex. Most of the information presented below and in the Stock Annex pertains to the Scottish fleet, which takes the largest proportion of the haddock stock. This fleet is not just confined to the North Sea, as vessels will sometimes operate in Divisions VIa (off the west coast of Scotland) and VIb (Rockall).

\section*{Changes in fleet dynamics}

There have been no decommissioning schemes affecting haddock fisheries since the major rounds in 2002 and 2004. Scottish vessels have been taking up opportunities for oil support work during 2006-2009 with a view to saving quota and days at sea.

With the reduced cod quota in recent years, many vessels have tended to concentrate more on the haddock fishery, with others taking the opportunity to move between the Nephrops and demersal fisheries (particularly during 2006 and 2007 - there may have been fewer boats changing focus in this way in 2008 and 2009). Accompanying the change in emphasis towards the haddock fishery, there has also been a tendency to target smaller fish in response to market demand. Some trawlers operating in the east of the North Sea are using 130 mm mesh (to ensure they meet regulations), and this is likely to improve selectivity for haddock. Fish from the moderate 2005 yearclass now form the bulk of haddock catches, and discarding rates for these fish declined during 2008 as they grew beyond the minimum landings size.
A more complete history of the North Sea haddock fishery is given in the Stock Annex. It is difficult to conclude what will be the likely effect of the recent fishery changes on haddock mortality. Changes in gear that are required to qualify for the Scottish Conservation Credits Scheme (CCS; see Section 13.1.4) are likely to reduce bycatch (and therefore) discards of haddock in the Nephrops fishery in particular. In 2008, Scottish vessels were included in the CCS unless they opt outed of it, and as only one or two vessels chose to do so, compliance was close to \(100 \%\). Cod avoidance under the real-time closures scheme (which is a component of the CCS) could also have moved vessels away from haddock concentrations, but the extent of this depends on how closely cod and haddock distributions are linked, and on how successful the avoidance strategies have been. On the other hand, vessels catching fewer cod may increase their exploitation of haddock in order to maintain economic viability. In 2009, the CCS is the only option available to Scottish skippers.

\section*{Additional information provided by the fishing industry}

Haddock are still the mainstay of the Scottish whitefish fleet. Quota uptake for 2008 was around \(61 \%\), in line with recent years (range \(53 \%\) to \(76 \%\) since 1999). However, the projected UK quota uptake for 2009 is thought to be higher, partly because whiting quota are likely to be exhausted rapidly. UK uptake (as of 6 th May) was \(21.2 \%\) in 2008, and \(27.4 \%\) in 2009.

\subsection*{13.1.3 ICES advice}

\section*{ICES advice for 2008}

In June 2007, ICES concluded the following:
Based on the most recent estimate of SSB and fishing mortality, ICES classifies the stock as having full reproductive capacity and being harvested sustainably. SSB in 2006 is estimated at \(238000 t\). SSB is above the Bpa. The stock is still dominated by the strong 1999 year class and the 2005 year class is also estimated to be above average. Fishing mortality in 2006 is estimated at 0.49 , which is below \(F_{p a}\).

The Q3 North Sea surveys for haddock (EngGFS and ScoGFS) did not change the perception of recruitment significantly compared to the estimates available in June. Therefore, ICES did not change its advice in October 2007.

\section*{ICES advice for 2009}

In June 2008, ICES concluded the following:
Based on the most recent estimate of SSB (in 2008) and fishing mortality (in 2007), ICES classifies the stock as having full reproductive capacity and being harvested sustainably. SSB in 2008 is estimated to be above Bpa. Fishing mortality in 2007 is estimated to be below \(F_{p a}\), but above the target \(F_{\text {HCR }}(0.3)\) specified in the EU-Norway management plan. The influence of the strong 1999 year class on the stock is diminishing. The 2005 year class is estimated to be above average.
As in 2007, the 2008 Q3 North Sea surveys for haddock (EngGFS and ScoGFS) did not change the perception of recruitment significantly compared to the estimates available in June. Therefore, ICES did not change its advice in October 2008.

\subsection*{13.1.4 Management}

North Sea haddock are jointly managed by the EU and Norway under an agreed management plan, the details of which are given in the Stock Annex. The plan was modified during 2008 to allow for limited interannual quota flexibility, following the meeting in June of the Norway-EC Working Group on Interannual Quota Flexibility and subsequent simulation analysis (Needle 2008a). The review and potential revision planned for 2009 has been postponed until 2010.

Annual management of the fishery operates through TACs for two discrete areas. The first is Subarea IV and Division IIIa (EC waters), which are considered jointly. The 2008 and 2009 TACs for haddock in this area were 46444 t and 42110 t respectively. At most 24863 t of the 2009 TAC was to betaken in Norwegian waters of Subarea IV by EC vessels. The second area is Divisions IIIa-d, for which the TACs for 2008 and 2009 were 2856 t and 2590 t respectively.

During 2008, 15 real-time closures (RTCs) were implemented under the Scottish Conservation Credits Scheme (CCS). At the time of writing in 2009, 46 further RTCs have
been implemented (with a target of 150 for the year), and the CCS been adopted by 439 Scottish and around 30 English and Welsh vessels. It has two central themes aimed at reducing the capture of cod through:

1 ) avoiding areas with elevated abundances of cod through the use of compulsory Real Time Closures (RTCs) and voluntary "amber zones"; and
2 ) the use of more species selective gears. Within the scheme, efforts are also being made to reduce discards generally.

Although the scheme is intended to reduce mortality on cod, it will undoubtedly have an effect on the mortality of associated species such as haddock. Whether this effect is positive (e.g. moving vessels away for areas inhabited by both cod and haddock) or negative (e.g. increasing targeting on haddock to compensate for forgone cod catches) remains to be seen (see also Section 13.1.2). However, early indications suggest that improved gear selectivity is likely to contribute to reductions in fishing mortality and discard levels, particularly of haddock and whiting, and there is evidence that the exploitation patterns for haddock and whiting across all participating vessels have improved since the introduction of the CCS scheme (see, for example, Section 13.4 below).

In early 2008, a one-net rule was introduced in Scotland as part of the CCS. This is likely to have improved the accuracy of reporting of landings to the correct mesh size range. However, Scottish seiners were granted a derogation from the one-net rule until the end of January 2009, and were allowed to carry two nets (e.g. 100-119 mm as well as \(120+\mathrm{mm}\) ). They were required to record landings from each net on a separate logsheet and to carry observers when requested (ICES-WGFTFB 2008).
The remaining technical conservation measures in place for the haddock fisheries are summarised in the Stock Annex. New EU effort regulations for 2009 are listed in Section 14.1.3.

\subsection*{13.2 Data available}

\section*{Collation issues for catch data}

Due to problems in InterCatch with the raising of discard estimates from unsampled fleets (see Section 1.XXX), the international catch data for haddock have been aggregated using a spreadsheet approach (as has been the case for the previous two years). Some brief notes are provided here which are intended to clarify issues that have arisen with this process. Further information on the data collation method used can be found in the Stock Annex.

\section*{Dis card data from UK (England and Wales)}

Discards data (total tonnes discarded for the years 2002-2008, numbers at age and mean weights at age) were provided by UK (E\&W). These data had not been available at the time of data collation for previous WGs.

Previously, UK(E\&W) have provided their discard data for Subarea IV and Division VIId aggregated as a single area. Since there are very few haddock caught in Division VIId this means that the E\&W discards for haddock were effectively for Subarea IV. In order to improve the situation for whiting in Division VIId, the data submitter was asked whether discard data could be provided separately for ICES Subarea IV and Division VIId. These data were available for cod, haddock and whiting. The received UK (E\&W) discards data were for 2002 onwards.

The earlier data could be incorporated as part of a benchmark assessment workshop for North Sea haddock. The 2007 spreadsheet for aggregation of international catch data was updated with the E\&W discards data, and these data were also used in the 2008 data collation for raising purposes.

Revisions to catch data for 2007

\section*{UK (England \& Wales)}

There was a small reduction (2.089 tonnes) in the UK (E\&W) landings of haddock from Subarea IV.

\section*{Norway}

Norwegian data revisions for 2007 landings were received for human consumption only. No industrial bycatch data revisions were received. Norwegian data revisions were provided for Division IIIa (including both IIIaN and IIIaS). The 2007 spreadsheet has been updated with these most recent data revisions from Norway.

\section*{Sweden}

Contrary to what was reported to the 2008 WG, there was no industrial bycatch (i.e. a zero observation) of haddock by Sweden in 2007.

Catch data for 2008
The approach to the raising of discards was essentially the same as for 2007, since the data that were provided by respective nations were broadly of the same format in terms of the fishing areas for which age distributions were available. Some minor changes to the data available were noted for 2008 , as follows.

\section*{Denmark}

Age distributions for industrial bycatch in Subarea IV and Division IIIa(N) (numbers at age and mean weights at age) were provided by Denmark. Concerns were raised about these data, as the mean weights-at-age seemed implausible for Subarea IV. The available age distribution for industrial by catch in Division IIIa(N) also seemed incongruous when compared with those for the human consumption and discarded components of the catch. No other age distributions are available for the industrial catch. Danish discard age compositions were used as a proxy for the missing industrial bycatch age compositions.

\section*{Norway}

Norwegian landings were provided covering the fishery for human consumption only. In addition, it appears that the Norwegian data for Division IIIa may include both IIIa(N) and IIIa(S). The data were requested for just Division IIIa(N) but a clear resolution to this had not been reached by the time of the WG meeting.

Due to these data issues, it has not been possible to estimate industrial bycatch for Division IIIa and these data are missing from the current assessment.

\section*{Faroes}

Preliminary Faroese landings of haddock for Subarea IV were provided. These data are not yet available from the official statistics.

\section*{Germany}

The sum of products of landings numbers at age and mean weights at age gave an SOP check of 0.67 for German landings data. Although the data for discards were incor porated into the spreadsheet, German discards and landings data were not used for raising because of this SOP discrepancy.

\section*{Sweden}

Swedish discards sampling is carried out in the fisheries that discard the most. The data submitted for Sweden noted that the shrimp fishery is not well covered by sampling and that this may present a problem. The Swedish haddock discards data Division IIIa(N) have been included in the collation, but not used for raising purposes this follows the same procedure as last year.

\subsection*{13.2.1 Catch}

Official landings data for each country participating in the fishery are presented in Table 13.2.1.1, together with the corresponding WG estimates and Total Allowable Catch (TAC). The full time series of landings, discards and industrial by-catch (IBC) is presented in Table 13.2.1.2. These data are illustrated further in Figure 13.2.1.1. The total landed yield of the international fishery changed little between 2007 and 2008. The WG estimates (Table 13.2.1.2) suggest that discarding decreased substantially during 2008, which may be due in part to the growth beyond the minimum landing size of the moderate 2005 year-class. Subarea IV discard estimates are derived from data submitted by several countries. As Scotland is the principal haddock fishery in that area, Scottish discard practices dominate the overall estimates. Industrial bycatch (IBC) has declined considerably from the high levels observed until the late 1990s.

\subsection*{13.2.2 Age compositions}

Total catch-at-age data are given in Table 13.2.2.1, while catch-at-age data for each catch component are given in Tables 13.2.2-4. The fishery in 2008 (landings for human consumption) was strongly reliant on the moderate 2005 year-class, although the strong 1999 year-class is still present in the plus-group. It is interesting to note that the plus-group in 2007 and 2008 is larger than at any time since the mid-1970s: this is the result of the combination of the large 1999 year-class and low fishing mortality in recent years. Discards predominantly consist of medium-sized fish aged 2 and 3 (from the 2006 and 2005 year-classes respectively). Vessels seldom exhaust their quota in this fishery, and discarding behaviour is thought to be driven by a complicated mix of economic and other market-driven factors.

\subsection*{13.2.3 Weight at age}

Weight-at-age for the total catch in the North Sea is given in Table 13.2.3.1. Weight-atage in the total catch is a number-w eighted average of weight-at-age in the human consumption landings, discards and industrial bycatch components. Weight-at-age in the stock is assumed to be the same as weight-at-age in the total catch. The mean weights-at-age for the separate catch components are given in Tables 13.2.3.2-4 and are illustrated in Figure 13.2.3.1: this shows the declining trend in weights-at-age for older ages, as well as evidence for reduced growth rates for large year classes.

\subsection*{13.2.4 Maturity and natural mortality}

Maturity and natural mortality are assumed to be fixed over time and are given below. The basis for these estimates is described in the Stock Annex.
\begin{tabular}{lrrrrrrrr}
\hline \multicolumn{1}{c}{ Age } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \(7+\) \\
\hline \begin{tabular}{l} 
Natural \\
mortality
\end{tabular} & 2.05 & 1.65 & 0.40 & 0.25 & 0.25 & 0.20 & 0.20 & 0.20 \\
\hline \begin{tabular}{l} 
Proportion \\
mature
\end{tabular} & 0.00 & 0.01 & 0.32 & 0.71 & 0.87 & 0.95 & 1.00 & 1.00 \\
\hline
\end{tabular}

\subsection*{13.2.5 Catch, effort and research vessel data}

Survey distribution and annual density at age for recent years is given in Figure 13.2.5.1 for the IBTS Q1 survey. Figure 13.2.5.2 gives the equivalent survey distribution for the ScoGFS Q3 survey alone. All plots show a north to north-w esterly distribution of haddock. The strong 1999 year class and (to a lesser extent) the moderate 2000 and 2005 year classes can also be identified and tracked through time.

Data available for calibration of the assessment are presented in Table 13.2.5.1, including commercial data from Scottish fleets which are not currently used in the assessment (see below). The IBTS Q1 data are shown as collated, including the plusgroup (ages 6 and older) which cannot be used in standard XSA tuning. XSA also cannot use data from the current year (2009). For this reason, the IBTS Q1 data are backshifted before being used in XSA - that is, all ages and years are reduced by one, and the survey is considered to have taken place at the very end of the previous year.

Trends in survey indices are shown in Figure 13.2.5.3. These indicate reasonably good consistency in stock signals from different surveys. Commercial data on landings per unit effort (LPUE) from two Scottish fleets are summarised in Figure 13.2.5.4, from which the influence of the strong 1999 year-class is again apparent. Figure 13.2.5.5 shows recorded (nominal) effort for these fleets. However, it must be remembered that effort recording is not mandatory in the EU, and these data must be viewed with caution (see also ICES-WGNSSK, 2000).
The data available are summarised in the following table: data used in the final assessment arehighlighted in bold.
\begin{tabular}{llllllll}
\hline & & & & \begin{tabular}{l} 
Age \\
range \\
ran \\
available
\end{tabular} & \begin{tabular}{l} 
Age \\
range \\
used
\end{tabular} \\
Country & Fleet & Quarter & Code & range
\end{tabular}

\subsection*{13.3 Data analyses}

The intention for this year was to perform an update assessment; that is, to carry out the same procedure as last year. This has been done using FLXSA (the FLR implementation of XSA) as the main assessment method. Separable VPA results are presented along with catch curves and intra-series correlations to check for data consistency and validity. The results of a SURBA analysis are also shown, to corroborate the update assessment.

\subsection*{13.3.1 Reviews of last year's assessment}

At its meeting in May 2008, RGNSSK raised a number of issues. These are listed below, along with the WG response and actions taken (if applicable).

3 ) It seems that a reduction of effort has been produced in recent years. If an effective reduction of effort occurred, this could be help in order to obtain some external information to elucidate the differences obtained in recent trends of Fs estimates from different models applied
- A full analysis of effort trends in the relevant fisheries has not yet been undertaken by the WG.
4 ) One of the main concerns of the \(R G\) is still the mean weight at age as it was pointed out by the RG in 2007. This in combination with plus group problems (mainly for large year-classes) and doubts on goodness of fit affecting to SSB estimates can be producing certain instability to the system in terms of perception of the stock and forecasts. The EG is conscious about this problems and propose alternatives, as it was done last year (in coherence with update status), to reduce the possible impact in terms of assessment and advice. However, it seems that is accepted by the EG the influence of dependent effects of large year-classes on growth and maturity (e.g. 1999 YCs) when in fact is just a plausible possibility. It also happens the same for the moderate 2000 YC. This is not so clear for the highest 1967 and high 1974 YCs. It should be preferable first to check if this growth pattern is more a sampling effect than a population effect. It should be desirable to screen the length and/or weight distributions at age in \(A L(W) K\) and/or \(A L(W) D s\) mainly for years effects observed in older ages for 1999 and 2007 (and adjacent years) considering weight at age as a quality control tool about: reading problems, weights' parameters used, sampling coverage, raising procedures etc.
- The WG welcomes these comments and suggestions, and is similarly keen to improve growth modelling for haddock and other stocks. One of several initiatives in this area is a PhD studentship at the University of Aberdeen in Scotland, co-supervised by the WG member responsible for the haddock assessment. However, suitable methods are not yet available to allow the WG to build such growth modeling into forecast considerations.

The points which have not been addressed here need to be considered during the forthcoming benchmark meeting for North Sea haddock, a date for which has not yet been set (see Section 13.9).

\subsection*{13.3.2 Exploratory catch-at-age-based analyses}

The catch-at-age data, in the form of log-catch curves linked by cohort (Figure 13.3.2.1), indicates partial recruitment to the fishery up to age 2. Gradients between consecutive values within a cohort from ages 2 to 7 have reduced for recent cohorts,
reflecting a reduction in fishing mortality. Recent catch curves have also lost much of the regularity of more historical catch curves, which may reflect the lower sample size available from reduced landings. Figure 13.3.2.2 plots the negative gradient of straight lines fitted to each cohort over the age range 2-4, which can be viewed as a rough proxy for average total mortality for ages \(2-4\) in the cohort. These negative gradients are also lower in recent cohorts except for an apparent rise in the 2004 cohort.

Cohort correlations in the catch-at-age matrix (plotted as log-numbers) are shown in Figure 13.3.2.3. These correlations show good consistency within cohorts up to the plus-group, verifying the ability of the catch-at-age data to track relative cohort strengths (although data for ages 0 and 1 are slightly more variable).

Residuals from a separable VPA carried out on the catch data (Figure 13.3.2.4) show very few outliers, and none greater than \(\pm 3\). This supports the conclusion that catch data are reasonably consistent.

Single-fleet XSAs for the final assessment were produced to investigate the sensitivity of XSA to the effects of tuning by individual fleets. Results are shown in Figure 13.3.2.5 for the latter halves of the EngGFS Q3 and ScoGFS Q3 series, as well as for the IBTS Q1 series, with corresponding log-catchability residual plots shown in Figure 13.3.2.6. Overall trends are similar for the three tuning fleets, but absolute levels differ towards the end of the time series with the ScoGFS series producing higher estimates of F and lower estimates of SSB.

\subsection*{13.3.3 Exploratory survey-based analyses}

A SURBA run was carried out using the same combination of tuning indices as in the update XSA assessments, except that the IBTS Q1 survey was not backshifted. The summary plot from this run is given is Figure 13.3.3.1. The stock trends are in broad agreement with those from the XSA assessment. The main exceptions are total mortality, which is estimated to have risen much more quickly during 2003-2006 before falling in 2007 (the rise in the very last year is an artefact of the model); and SSB which appears to have recovered considerably in 2007 and 2008 with the growth of the moderate 2005 year-class. The SURBA estimates of recruitment confirm that yearclasses since 2005 have been poor. The IBTS Q1 indices from 2009 are available, but cannot be used directly to indicate recruitment for the 2009 year-class as the survey takes place too early for thesejuveniles to be caught.
Log catch curves for the survey indices are given in Figure 13.3.3.2. Overall, these show good tracking of cohort strength, although there is a tendency for reduced survey catchability on younger ages (shown by the "hooks" at the start of many of the curves). Cohort correlations in the index-at-age matrices (plotted as log-numbers) are shown in Figure 13.3.3.3. These correlations show good consistency for nearly all of the cohorts and ages used in the final assessment (with a few minor exceptions).

\subsection*{13.3.4 Conclusions drawn from exploratory analyses}

Exploratory analyses using survey and catch data do not indicate any serious problems with these data for North Sea haddock. One main methodological issue remains which has not yet been addressed. The update assessment sets the maximum iterations for the FLXSA algorithm to a high value (200), so that the iteration process continues until the algorithm has converged. However, doing this also increases the final-year SSB considerably (see, for example, Figure 13.3.3.4). FLXSA (and XSA) has no goodness-of-fit criteria, and it is not clear what the correct approach should be in
this situation. In this year's assessment the previous method has been retained, but the WG has concerns about its validity which need to be addressed in any subsequent benchmark (Section 13.9).

\subsection*{13.3.5 Final assessment}

The final XSA assessment uses the following settings, which are the same as those used last year (except for the addition of another year of data). XSA settings from a number of recent years are compared in the Stock Annex.
\begin{tabular}{lll}
\hline \multicolumn{2}{c}{ Ass essment year } & \multicolumn{1}{c}{2009} \\
\hline \multirow{2}{*}{ q plateau } & & 6 \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Tuning fleet \\
year ranges
\end{tabular}} & EngGFS Q3 & \(77-91 ; 92-08\) \\
\cline { 2 - 3 } & ScoGFS Q3 & \(82-97 ; 98-08\) \\
\cline { 2 - 3 } & IBTS Q1* & \(82-08\) \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Tuning fleet \\
age ranges
\end{tabular}} & EngGFS Q3 & \(0-7\) \\
\cline { 2 - 3 } & ScoGFS Q3 & \(0-7\) \\
\cline { 2 - 3 } & IBTS Q1* & \(0-4\) \\
\hline
\end{tabular}
*Backshifted
The final XSA assessment tuning diagnostics are presented in Table 13.3.5.1, with logcatchability residuals given in Figure 13.3.5.1, and a comparison of fleet-based contributions to survivors in Figure 13.3.5.2. Fishing mortality estimates for the final XSA assessment are presented in Table 13.3.5.2, the stock numbers in Table 13.3.5.3, and the assessment summary in Table 13.3.5.4 and Figure 13.3.5.3. A retrospective analysis, shown in Figure 13.3.5.4, indicates little retrospective bias in the assessment.

\subsection*{13.4 Historical Stock Trends}

Thehistorical stock and fishery trends are presented in Figure 13.3.5.3.
Landings yield has stabilised since 2000, partly due (in the most recent years) to the limitation of inter-annual TAC variation to \(\pm 15 \%\) in the EU-Norway management plan. Discards have fluctuated considerably in the same period due to the appearance and subsequent growth of the 1999 and 2005 year-classes, while industrial bycatch (IBC) is now at a very low level for haddock (see also Figure 13.2.1.1).

The estimated fishing mortality for 2008 has continued the reduction seen in 2007, and is now estimated to be below the management plan target of 0.3 . Fluctuations around the target F rate of the management plan are an expected consequence of the lag between data collection and management action, and should not be taken to indicate that the plan is not w orking. The 2006-2008 year-classes have been weak, and the fishery is likely to be sustained (over the short term at least) by the 2005 year-class. The final XSA assessment indicates a reduction in the rate of decline of SSB as the 2005 year-class starts to make an impact on spawning biomass.

\subsection*{13.5 Recruitment estimates}

There are no indications of incoming year-class strength available to the WG. The ScoGFS and EngGFS Q3 survey indices are not yet available. The IBTS Q1 indices are available, but do not include age-0 recruiting fish as these are too small to be caught (or are not yet hatched) when the survey takes place. For this reason, recruitment estimates of the 2009 year-class are based on a mean of previous recruitment.

In the past, a strong year-class has generally been followed by a sequence of low recruitments (Figure 13.5.1.1). In order to take this feature into account, the geometric mean of the five lowest recruitment values over the period 1994-2006 (4067 million) has been assumed for recruitment in 2009-2011. Recruitment estimates for 2007 and 2008 are not included in this calculation, because the two most recent XSA estimates of recruitment are thought to be relatively uncertain. The following table summarises the recruitment, age 1 and age 2 assumptions for the short term forecast.
\begin{tabular}{llll}
\hline & & Age in 2009 & \begin{tabular}{c} 
XSA estimate \\
(millions)
\end{tabular}
\end{tabular} \begin{tabular}{c}
\begin{tabular}{c} 
Geom etric mean of 5 \\
lowest recruitments \\
\(1994-2006\)
\end{tabular} \\
\hline 2007 \\
Year class \\
\hline 2008
\end{tabular}

\subsection*{13.6 Short-term forecasts}

\section*{Weights-at-age}

The perceived slow growth of the above-average 1999 and 2000 year-classes continues to pose a problem for the short-term forecast. Mean stock weights for these year classes were calculated using proportional increments. That is: growth from age \(a\) to \(a+1\) for these year-classes was estimated using the mean proportional increment \((a+1) / a\) calculated over all other year classes for which this information is available. This method was approved by RGNSSK in 2006 as being appropriate to project weights at age, although alternatives are being explored and the issue needs to be considered at a forthcoming benchmark. Mean stock weights for other ages (except the plus-group) in the forecast where taken as a 5-year average (2004-2008), omitting the 1999 and 2000 year classes from the calculation where appropriate. For the plusgroup weights, an alternative XSA assessment was run using a plus-group at age 13 . The abundances and fishing mortality estimates from this were then used as the basis for a simple deterministic 3-year forecast to give abundances from ages 0-13+ for 2009-2011. These were then used in turn in weighted-average calculations to generate the required forecast mean weights for the plus-group at age 8 . The outcome is summarized in Figure 13.6.1.

The human consumption mean weights at age were derived in the same manner as for the stock weights-at-age (see Figure 13.6.2). How ever, mean weights at age for the 1999 and 2000 year classes did not show unusual growth in the discard and industrial bycatch components, so future mean weights-at-age were set to the average for the years 2004-2008 for these components.

\section*{Fis hing mortality}

The 2007 and 2008 WG reports contained extensive analyses and discussion on the exploitation pattern to be used in the forecasts, exploring the hypothesis that mod-erate-to-large cohorts would experience a different pattern to small cohorts. In both reports, the WG concluded that there was only weak evidence for using anything other than the exploitation pattern from the final historical year in the assessment. In the spirit of the update process, the 2008 fishing mortality-at-age pattern is used for all years in the forecast in the current report. However, this conclusion may not hold
for future cohorts, and the WG recommends that a forthcoming benchmark process explores this issue further. Status quo \(F\) is assumed to be the mean \(F(2-4)\) for 2008 only.

Given the choice of fishing-mortality rates discussed above, partial fishing mortality values were obtained for each catch component (human consumption, discards and bycatch) by using the relative contribution (averaged over 2006-2008) of each component to the total catch.

\section*{Forecast results}

The inputs to the short-term forecast are presented in Table 13.6.1. Results for the short-term forecasts are presented in Table 13.6.2. The forecast has been run subject to a TAC constraint in 2009 (so that landings yield is restricted to the agreed quota of 44700 t ). Running the forecast assuming status quo F in the intermediate year leads to landings in 2009 that are greater than the quota. Recent experience (see Table 13.2.1.1), and reports from the fishing industry, indicate that full uptake of the quota in 2009 is unlikely. While it is difficult to predict the extent of the undershoot, it would certainly be an error to forecast an overshoot, so a TAC-constrained forecast is a compromise.

Assuming a TAC constraint in 2009 and status quo F in 2010, SSB is expected to fall to 171 kt in 2010, and again in 2011 to 167 kt . In this case, human consumption yield will be around 27 kt in 2010, with associated discards of 6 kt . The continued decline in SSB, which will occur despite a fall in 2008 in both \(F\) and discard rates, is the result of low recruitment in recent years - the 2005 year-class is the only reasonably strong cohort out of the last eight.

Two alternative options have been highlighted in Table 13.6.2: a forecast allowing for a \(15 \%\) decrease in the 2009 TAC (which is the maximum decrease allowed under the management plan when \(\mathrm{SSB}>\mathrm{B}_{\mathrm{pa}}\) ), and a forecast with total fishing mortality fixed to the level specified in the EU-Norway management plan ( \(\mathrm{F}=0.3\) ). Under the first of these options, 2010 landings yield of 38 kt and discards of 9 kt lead to SSB in 2011 of 154 kt . Under the second, 2010 landings yield of around 32 kt and discards of 7 kt lead to SSB in 2011 of 161 kt . All of these SSB forecasts for 2011 are above \(\mathrm{Bpa}_{\mathrm{pa}}(140 \mathrm{kt})\), but the trend in SSB is downwards and this will continue unless a strong year-class appears.

The following table compares the intermediate-year (2008) forecast from the 2008 WG with the 2008 observations and assessment results from the 2009 WG:
\begin{tabular}{llllll}
\hline \multicolumn{1}{c}{ WG } & \multicolumn{1}{c}{\begin{tabular}{c} 
Landings \\
2008
\end{tabular}} & \begin{tabular}{c} 
F(landings) \\
2008
\end{tabular} & \begin{tabular}{c} 
Discards \\
2008
\end{tabular} & \begin{tabular}{c} 
F(discards) \\
2008
\end{tabular} & SSB 2009 \\
\hline 2008 forecast & 49300 & 0.20 & 17173 & 0.10 & 211522 \\
\hline \begin{tabular}{l} 
2009 \\
assessment
\end{tabular} & 30248 & 0.16 & 13194 & 0.09 & 194861 \\
\hline
\end{tabular}

All these values have been assessed to be less than previously predicted. SSB in 2009 could be less because a) the mean weight-at-age of fish in the forecast was greater than subsequently observed, or b) the numbers of fish in the forecast were overestimated. Figure 13.6 .1 shows that forecast weights were actually less than subsequently observed weights. Therefore the forecast numbers must have been too high. While the difference is relatively small, the reason for it is presently unclear, and will need to be addressed at a forthcoming benchmark.

\subsection*{13.7 Medium-term forecasts and yield-per-recruit analyses}

No medium-term forecasts have been carried out for this stock. However, management simulations over the medium-term period have been performed for haddock (most recently by Needle 2008a,b), as discussed briefly in Section 13.1.4 above.
The results of a yield-per-recruit analysis (run using MFYPR) are shown in Figure 13.7.1 and Table 13.7.1. There is no maximum in the yield-per-recruit curve over the specified range of mean \(\mathrm{F}_{24}\), so \(\mathrm{F}_{\text {max }}\) is undefined. An equilibrium analysis such an yield-per-recruit can be difficult to interpret for a stock like haddock with sporadic large recruitments.

\subsection*{13.8 Biological reference points}

Biological reference points for this stock are given in the Stock Annex.

\subsection*{13.9 Quality of the assessment}

Survey data are consistent both within and between surveys, and the catch data are internally consistent. Trends in mortality from catch data and survey indices are quite similar, although surveys do indicate higher mortality in recent years. Only minor changes were made to the data collation or assessment methodology from last year's assessment. There is very little retrospective bias. The stock estimates from the current and previous assessments are compared in Figure 13.9.1.
Several issues remain of some concern with the assessment, and will need to be addressed during the forthcoming benchmark process:-
1) Haddock growth appears to vary by cohort, with large cohorts in particular growing more slowly than small cohorts. The pragmatic solution of applying proportional increments as a basis for predicting the weight at age for the 1999 and 2000 year classes incorporates the history of growth in the stock, while recognising the slow growth rate of these cohorts. However, intersessional work (not presented here) has suggested that alternative growth models may be more appropriate, and these need to be explored further.
2 ) In a similar vein, the proportion of mature individuals in each age-class is likely to vary by year and cohort. The effect of using year specific maturity data obtained from surveys should be considered, as well as methods by which this can be modeled in forecasts. The same consideration applies to estimates of natural mortality (M); biannually-updated values of \(M\) are now used in the assessment for North Sea cod, for example (see Section 14).

3 ) Exploitation rates also vary by cohort. The implications of this for forecasting should be addressed.
4 ) It is likely that haddock will continue to experience sporadic large yearclasses. The problem of how to accommodate these year-classes in the plus-group structure of the assessment will therefore not go away, and a robust approach is needed that will remove the requirement to change the plus-group whenever a large year-class enters it.
5 ) The SSB estimates generated by the XSA/FLXSA model is strongly dependent (for haddock) on the number of algorithm iterations permitted. Interim results suggest that changes of \(\pm 40 \%\) or more are possible. There is no
goodness-of-fit statistic in XSA which would help in the determination of the most suitable number of iterations, so the choice becomes essentially ad hoc. This is not a satisfactory situation and will have to be remedied. Alternative models should be explored.
6 ) Survey indices from the IBTS Q1 series have traditionally been supplied by ICES using a \(6+\) age group. Information on large year-classes at ages older than 5 is therefore lost from the tuning process. The WG recommends that ICES supply these data for a greater true age range, and that the implications of this be explored in the benchmark assessment.
7 ) The haddock assessment uses separate Scottish and English Q3 groundfish survey series, rather than the combined IBTS Q3 series. The former are longer, but the latter has more sample points and should there be less variable. This choice should be considered in detail.
8 ) The relationship between forecasts produced by the WG in one year and assessments generated in the next year needs to be checked. The brief analysis carried out above suggests that there may be a degree of inconsistency, and this issue needs to be explored.
9) A longer timeseries of discard data from UK(E\&W) was made available this year (see Section 13.2). Its inclusion in the overall discard estimation procedure is a question that should be resolved.

\subsection*{13.10Status of the Stock}

The historical perception of the haddock stock remains unchanged from last year's assessment. Fishing mortality is now estimated to have fallen further (from 0.41 in 2007 to 0.25 in 2008) and is now close to the historical minimum. This is well below \(\mathrm{F}_{\mathrm{pa}}(0.7)\), and is also lower than the mortality rate recommended in the management plan (0.3). Discards have also decreased in 2008, possibly due to the growth past the MLS of fish of the 2005 year-class. Spawning stock biomass ( 203 kt in 2008) is predicted to have continued in its decline from its peak in 2002-3, but remains above \(\mathrm{B}_{\mathrm{pa}}\) ( 140 kt ). SSB is forecast to fall further to 195 kt in 2009 despite low F and reduced discards: this is due to the appearance of only one moderate year-class in the last eight years. At current levels of fishing mortality, SSB is likely to continue to decline from 2010 onwards unless a moderate-to-strong year-class appears. The 2006-2008 yearclasses are estimated to be weak, and there is no information yet on the 2009 yearclass.

Figure 13.10.1 gives the results of the North Sea stock survey from 2008. The industry perception of haddock abundance in the main haddock fishing areas ( 1 and 2 ) is of stabilization, which concurs with the indications from the assessment of a temporary slowing of the rate of decline in SSB with the growth of the 2005 year-class.

\subsection*{13.11 Management Considerations}

In 2006 the EU and Norway agreed a revised management plan for this stock, which states that every effort will be made to maintain a minimum level of SSB greater than 100000 t (Bim). Furthermore, fishing will be restricted on the basis of a TAC consistent with a fishing mortality rate of no more than 0.30 for appropriate age groups, along with a limitation on interannual TAC variability of \(\pm 15 \%\). Following a minor revision in 2008, interannual quota flexibility ("banking and borrowing") of up to \(\pm 10 \%\) is permitted (although this facility has not yet been used).

The stipulations of the management plan have been adhered to by the EU and Norway since its implementation in 2001. Fishing mortality fell while the 1999 year-class dominated the fishery, and this year-class was allowed to contribute to the fishery and the stock for much longer than if the plan had not been in place. SSB has declined as the 1999 year-class has passed out of the stock, although the rate of the decline has been slowed by low fishing mortality rates and the appearance of the moderate 2005 year-class. F now appears to fluctuating around the target level (0.3) as predicted by management evaluations. Adherence to the EU-Norway management plan has contributed to increased yield and greatly improved stability of yield, along with a much lower average fishing mortality level.
The decline in SSB has been slowed temporarily by the growth of the moderatelysized 2005 year class, but this year-class is smaller than the 1999 year-class and is unlikely to contribute very strongly to SSB for many years to come. Short-term forecasts indicate a continued decline in SSB in the future until the next significant recruitment event.

Keeping fishing mortality close to the target level would be preferable to encourage the sustainable exploitation of the 2005 year-class. As this year-class entered the fishery, discards were fairly substantial in 2006 and 2007, although they were considerably lower in 2008. Further improvements to gear selectivity measures, allowing for the release of small fish, would be highly beneficial not only for the haddock stock, but also for the survival of juveniles of other species that occur in mixed fisheries along with haddock. Similar considerations also apply to spatial management approaches (such as real-time closures), and other measures intended to reduce unwanted by catch and discarding of various species (such as the Scottish Conservation Credits scheme).
Short-term forecasts indicate a continued decline in SSB in the future until the next significant recruitment event. However, SSB is predicted to remain above Bpa until 2011 at fishing mortality levels below \(\mathrm{F}_{\mathrm{pa}}\), and for even longer under the agreed management plan.
Haddock is a specific target for some fleets, but is also caught as part of a mixed fishery catching cod, whiting and Nephrops. It is important to consider both the speciesspecific assessments of these species for effective management, as well as the latest developments in the mixed fisheries approach. This is not straightforward when stocks are managed via a series of single-species management plans that do not incorporate mixed-stocks considerations. However, a reduction in effort on one stock may lead to a reduction or an increase in effort on another, and the implications of any change need to be considered carefully.

Estimates of the catch of haddock as a bycatch in the industrial fisheries have been included in the short-term forecast option table. They indicate that industrial bycatch will be negligible. These estimates are more unreliable than would have been the case in the past and it is likely that they underestimate the likely level in 2009 and \(20 \mathrm{q0}\). This is because they are based on average exploitation over the previous three years. During this period industrial fisheries with by catches of haddock have been either closed or operating at a much reduced level, and this may no longer be the case.

\section*{References}

ICES-WGFTFB, 2006. Report of the ICES-FAO Working Group on Fishing Technology and Fish Behaviour. ICES CM 2006/FTC:06.

ICES-WGFTFB, 2007. Report of the ICES-FAO Working Group on Fishing Technology and Fish Behaviour. ICES CM 2007/FTC:06.

ICES-WGFTFB, 2008. Report of the ICES-FAO Working Group on Fishing Technology and Fish Behaviour. ICES CM 2008/FTC:02.

ICES-WGNSSK, 2000. Report of the ICES Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak. ICES CM 2000/ACFM:XXXX.

Needle, C. L., 2008a. Evaluation of interannual quota flexibility for North Sea haddock: Final report. Working paper for the ICES Advisory Committee (ACOM), September 2008.
Needle, C. L., 2008b. Management strategy evaluation for North Sea haddock. Fisheries Research, 94(2): 141-150.

Table 13.2.1.1. Haddock in Subarea IV and Division IIIa. Nominal landings ( 000 t ) during 2001-2008, as officially reported to, and estimated by, ICES, along with WG estimates of catch components, and TACs. Landings estimates for 2008 are preliminary.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Sum of Landings} & \multicolumn{9}{|l|}{Year} \\
\hline ICES area & Country & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 \\
\hline \multirow[t]{10}{*}{Division Illa} & Belgium & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline & Denmark & 1590 & 3791 & 1741 & 1116 & 615 & 1001 & 1054 & 1053 & \\
\hline & Faeroe Islands & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline & Germany & 128 & 239 & 113 & 69 & 69 & 186 & 206 & 87 & \\
\hline & Netherlands & 0 & 0 & 6 & 1 & 0 & 0 & 0 & & \\
\hline & Norway & 149 & 149 & 211 & 154 & 93 & 113 & 152 & 170 & \\
\hline & Portugal & 0 & 0 & 0 & 0 & 0 & 30 & 37 & & \\
\hline & Sweden & 283 & 393 & 165 & 158 & 180 & 246 & 278 & 274 & \\
\hline & UK - Eng+Wales+N.Irl. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline & UK - Scotland & 7 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline \multicolumn{2}{|l|}{Division Illa Total} & 2157 & 4572 & 2236 & 1498 & 957 & 1576 & 1727 & 1584 & \\
\hline \multirow[t]{4}{*}{WG Division IIIa} & WG estimates of discards & 0 & 0 & 195 & 112 & 217 & 970 & 816 & 646 & \\
\hline & WG estimates of IBC & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline & WG estimates of landings & 1903 & 4137 & 1808 & 1443 & 764 & 1537 & 1515 & 1374 & \\
\hline & WG estimates of total catch & 1903 & 4137 & 2003 & 1555 & 981 & 2507 & 2332 & 2020 & \\
\hline \multicolumn{2}{|l|}{WG Division IIIa Total} & 3806 & 8273 & 4007 & 3110 & 1963 & 5014 & 4663 & 4041 & \\
\hline \multirow[t]{15}{*}{Subarea IV} & Belgium & 606 & 559 & 374 & 373 & 190 & 105 & 179 & 112 & \\
\hline & Denmark & 2407 & 5123 & 3035 & 2075 & 1274 & 759 & 645 & 501 & \\
\hline & Faeroe Islands & 1 & 25 & 12 & 22 & 22 & 4 & 0 & 3 & \\
\hline & France & 485 & 914 & 1108 & 552 & 439 & 444 & 498 & 302 & \\
\hline & Germany & 681 & 852 & 1562 & 1241 & 733 & 725 & 727 & 393 & \\
\hline & Greenland & 0 & 0 & 149 & 686 & 18 & 5 & 0 & & \\
\hline & Ireland & 0 & 0 & 1 & 0 & 0 & 0 & 0 & & \\
\hline & Netherlands & 274 & 359 & 187 & 104 & 64 & 33 & 55 & 29 & \\
\hline & Norway & 1902 & 2404 & 2196 & 2258 & 2089 & 1798 & 1706 & 1478 & \\
\hline & Poland & 12 & 17 & 16 & 0 & 0 & 8 & 8 & 16 & \\
\hline & Portugal & 0 & 0 & 0 & 0 & 0 & 76 & 0 & & \\
\hline & Sweden & 804 & 572 & 477 & 188 & 135 & 100 & 130 & 85 & \\
\hline & UK - Eng+Wales+N.Irl. & 3334 & 3647 & 1561 & 1159 & 651 & 477 & 1799 & & \\
\hline & UK - Scotland & 29263 & 39624 & 31527 & 39339 & 25319 & 31905 & 24919 & & \\
\hline & UK - all & & & & & & & & 27341 & \\
\hline \multicolumn{2}{|l|}{Subarea IV Total} & 39769 & 54096 & 42205 & 47997 & 30934 & 36439 & 30666 & 30260 & \\
\hline \multirow[t]{4}{*}{WG Subarea IV} & WG estimates of discards & 118320 & 45892 & 23499 & 15439 & 8416 & 16943 & 27805 & 12532 & \\
\hline & WG estimates of IBC & 7879 & 3717 & 1150 & 554 & 168 & 535 & 48 & 199 & \\
\hline & WG estimates of landings & 38958 & 54171 & 40140 & 47253 & 47616 & 36074 & 29418 & 28893 & \\
\hline & WG estimates of total catch & 167060 & 107917 & 66792 & 64800 & 57181 & 56058 & 59603 & 43644 & \\
\hline \multicolumn{2}{|l|}{WG Subarea IV Total} & 332217 & 211697 & 131580 & 128046 & 113380 & 109610 & 116874 & 85268 & \\
\hline \multirow[t]{2}{*}{TAC} & TAC Illa & 4000 & 6300 & 3150 & 4940 & 4018 & 3189 & 3360 & 2856 & 2590 \\
\hline & TAC IV & 61000 & 104000 & 51735 & 77000 & 66000 & 51850 & 54640 & 46444 & 42110 \\
\hline \multicolumn{2}{|l|}{TAC Total} & 65000 & 110300 & 54885 & 81940 & 70018 & 55039 & 58000 & 49300 & 44700 \\
\hline
\end{tabular}

Table 13.2.1.2. Haddock in Subarea IV and Division IIIa. Working Group estimates of catch components by weight ( 000 tonnes).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{4}{|c|}{Subarea IV} & \multicolumn{5}{|c|}{Division Illa( N )} & \multicolumn{4}{|c|}{Combined} \\
\hline & Landings & Discards & IBC & Total & Landings & Discards & IBC & & Total & Landings & Discards & IBC & Total \\
\hline 1963 & 68.4 & 189.3 & 13.7 & 271.4 & 0.4 & - & & - & 0.4 & 68.8 & 189.3 & 13.7 & 271.8 \\
\hline 1964 & 130.6 & 160.3 & 88.6 & 379.5 & 0.4 & - & & - & 0.4 & 131.0 & 160.3 & 88.6 & 379.9 \\
\hline 1965 & 161.7 & 62.3 & 74.6 & 298.6 & 0.7 & - & & - & 0.7 & 162.4 & 62.3 & 74.6 & 299.3 \\
\hline 1966 & 225.6 & 73.5 & 46.7 & 345.8 & 0.6 & - & & - & 0.6 & 226.2 & 73.5 & 46.7 & 346.3 \\
\hline 1967 & 147.4 & 78.2 & 20.7 & 246.3 & 0.4 & - & & - & 0.4 & 147.7 & 78.2 & 20.7 & 246.7 \\
\hline 1968 & 105.4 & 161.8 & 34.2 & 301.4 & 0.4 & - & & - & 0.4 & 105.8 & 161.8 & 34.2 & 301.8 \\
\hline 1969 & 331.1 & 260.1 & 338.4 & 929.5 & 0.5 & - & & - & 0.5 & 331.6 & 260.1 & 338.4 & 930.0 \\
\hline 1970 & 524.1 & 101.3 & 179.7 & 805.1 & 0.7 & - & & - & 0.7 & 524.8 & 101.3 & 179.7 & 805.8 \\
\hline 1971 & 235.5 & 177.8 & 31.5 & 444.8 & 2.0 & - & & - & 2.0 & 237.5 & 177.8 & 31.5 & 446.8 \\
\hline 1972 & 193.0 & 128.0 & 29.6 & 350.5 & 2.6 & - & & - & 2.6 & 195.5 & 128.0 & 29.6 & 353.1 \\
\hline 1973 & 178.7 & 114.7 & 11.3 & 304.7 & 2.9 & - & & - & 2.9 & 181.6 & 114.7 & 11.3 & 307.6 \\
\hline 1974 & 149.6 & 166.4 & 47.5 & 363.5 & 3.5 & - & & - & 3.5 & 153.1 & 166.4 & 47.5 & 367.0 \\
\hline 1975 & 146.6 & 260.4 & 41.5 & 448.4 & 4.8 & - & & - & 4.8 & 151.3 & 260.4 & 41.5 & 453.2 \\
\hline 1976 & 165.7 & 154.5 & 48.2 & 368.3 & 7.0 & - & & - & 7.0 & 172.7 & 154.5 & 48.2 & 375.3 \\
\hline 1977 & 137.3 & 44.4 & 35.0 & 216.7 & 7.8 & - & & - & 7.8 & 145.1 & 44.4 & 35.0 & 224.5 \\
\hline 1978 & 85.8 & 76.8 & 10.9 & 173.5 & 5.9 & - & & - & 5.9 & 91.7 & 76.8 & 10.9 & 179.4 \\
\hline 1979 & 83.1 & 41.7 & 16.2 & 141.0 & 4.0 & - & & - & 4.0 & 87.1 & 41.7 & 16.2 & 145.0 \\
\hline 1980 & 98.6 & 94.6 & 22.5 & 215.7 & 6.4 & - & & - & 6.4 & 105.0 & 94.6 & 22.5 & 222.1 \\
\hline 1981 & 129.6 & 60.1 & 17.0 & 206.7 & 6.6 & - & & - & 6.6 & 136.1 & 60.1 & 17.0 & 213.2 \\
\hline 1982 & 165.8 & 40.6 & 19.4 & 225.8 & 7.5 & - & & - & 7.5 & 173.3 & 40.6 & 19.4 & 233.3 \\
\hline 1983 & 159.3 & 66.0 & 12.9 & 238.2 & 6.0 & - & & - & 6.0 & 165.3 & 66.0 & 12.9 & 244.2 \\
\hline 1984 & 128.2 & 75.3 & 10.1 & 213.6 & 5.4 & - & & - & 5.4 & 133.6 & 75.3 & 10.1 & 218.9 \\
\hline 1985 & 158.6 & 85.2 & 6.0 & 249.8 & 5.6 & - & & - & 5.6 & 164.1 & 85.2 & 6.0 & 255.4 \\
\hline 1986 & 165.6 & 52.2 & 2.6 & 220.4 & 2.7 & - & & - & 2.7 & 168.2 & 52.2 & 2.6 & 223.1 \\
\hline 1987 & 108.0 & 59.1 & 4.4 & 171.6 & 2.3 & - & & - & 2.3 & 110.3 & 59.1 & 4.4 & 173.9 \\
\hline 1988 & 105.1 & 62.1 & 4.0 & 171.2 & 1.9 & - & & - & 1.9 & 107.0 & 62.1 & 4.0 & 173.1 \\
\hline 1989 & 76.2 & 25.7 & 2.4 & 104.2 & 2.3 & - & & - & 2.3 & 78.4 & 25.7 & 2.4 & 106.5 \\
\hline 1990 & 51.5 & 32.6 & 2.6 & 86.6 & 2.3 & - & & - & 2.3 & 53.8 & 32.6 & 2.6 & 88.9 \\
\hline 1991 & 44.7 & 40.2 & 5.4 & 90.2 & 3.1 & - & & - & 3.1 & 47.7 & 40.2 & 5.4 & 93.3 \\
\hline 1992 & 70.2 & 47.9 & 10.9 & 129.1 & 2.6 & - & & - & 2.6 & 72.8 & 47.9 & 10.9 & 131.7 \\
\hline 1993 & 79.6 & 79.6 & 10.8 & 169.9 & 2.6 & - & & - & 2.6 & 82.2 & 79.6 & 10.8 & 172.5 \\
\hline 1994 & 80.9 & 65.4 & 3.6 & 149.8 & 1.2 & - & & - & 1.2 & 82.1 & 65.4 & 3.6 & 151.0 \\
\hline 1995 & 75.3 & 57.4 & 7.7 & 140.4 & 2.2 & - & & - & 2.2 & 77.5 & 57.4 & 7.7 & 142.6 \\
\hline 1996 & 76.0 & 72.5 & 5.0 & 153.5 & 3.1 & - & & - & 3.1 & 79.2 & 72.5 & 5.0 & 156.6 \\
\hline 1997 & 79.1 & 52.1 & 6.7 & 137.9 & 3.4 & - & & - & 3.4 & 82.5 & 52.1 & 6.7 & 141.3 \\
\hline 1998 & 77.3 & 45.2 & 5.1 & 127.6 & 3.8 & - & & - & 3.8 & 81.1 & 45.2 & 5.1 & 131.3 \\
\hline 1999 & 64.2 & 42.6 & 3.8 & 110.7 & 1.4 & - & & - & 1.4 & 65.6 & 42.6 & 3.8 & 112.0 \\
\hline 2000 & 46.1 & 48.8 & 8.1 & 103.0 & 1.5 & - & & - & 1.5 & 47.6 & 48.8 & 8.1 & 104.5 \\
\hline 2001 & 39.0 & 118.3 & 7.9 & 165.2 & 1.9 & - & & - & 1.9 & 40.9 & 118.3 & 7.9 & 167.1 \\
\hline 2002 & 54.2 & 45.9 & 3.7 & 103.8 & 4.1 & - & & - & 4.1 & 58.3 & 45.9 & 3.7 & 107.9 \\
\hline 2003 & 40.1 & 23.5 & 1.1 & 64.8 & 1.8 & 0.2 & & - & 2.0 & 41.9 & 23.7 & 1.1 & 66.8 \\
\hline 2004 & 47.3 & 15.4 & 0.6 & 63.2 & 1.4 & 0.1 & & - & 1.6 & 48.7 & 15.6 & 0.6 & 64.8 \\
\hline 2005 & 47.6 & 8.4 & 0.2 & 56.2 & 0.8 & 0.2 & & - & 1.0 & 48.4 & 8.6 & 0.2 & 57.2 \\
\hline 2006 & 36.1 & 16.9 & 0.5 & 53.6 & 1.5 & 1.0 & & - & 2.5 & 37.6 & 17.9 & 0.5 & 56.1 \\
\hline 2007 & 29.4 & 27.8 & 0.0 & 57.3 & 1.5 & 0.8 & & - & 2.3 & 30.9 & 28.6 & 0.0 & 59.6 \\
\hline 2008 & 28.9 & 12.5 & 0.2 & 41.6 & 1.4 & 0.6 & & - & 2.0 & 30.3 & 13.2 & 0.2 & 43.6 \\
\hline Min & 28.9 & 8.4 & 0.0 & 41.6 & 0.4 & 0.1 & & - & 0.4 & 30.3 & 8.6 & 0.0 & 43.6 \\
\hline Mean & 118.1 & 81.0 & 27.3 & 226.3 & 2.9 & 0.5 & & - & 2.9 & 121.0 & 81.1 & 27.3 & 229.3 \\
\hline Max & 524.1 & 260.4 & 338.4 & 929.5 & 7.8 & 1.0 & & - & 7.8 & 524.8 & 260.4 & 338.4 & 930.0 \\
\hline
\end{tabular}

Table 13.2.2.1. Haddock in Subarea IV and Division IIIa. Numbers at age data (thousands) for total catch. Data used in the assessment are highlighted in bold.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 8+ \\
\hline 1963 & 1359 & 1305780 & 334952 & 20958 & 13026 & 5780 & 502 & 653 & 566 & 59 & 18 & 0 & 0 & 0 & 0 & 0 & 643 \\
\hline 1964 & 139777 & 7425 & 1295363 & 135110 & 9066 & 5348 & 2405 & 287 & 236 & 231 & 25 & 0 & 0 & 0 & 0 & 0 & 492 \\
\hline 1965 & 649768 & 367500 & 15151 & 649052 & 29485 & 4659 & 1972 & 452 & 107 & 90 & 41 & 0 & 0 & & 0 & 0 & 238 \\
\hline 1966 & 1666973 & 1005922 & 25658 & 6423 & 412510 & 9978 & 1045 & 601 & 165 & 90 & 23 & 2 & 0 & 0 & 0 & 0 & 280 \\
\hline 1967 & 305249 & 837155 & 89068 & 4863 & 3585 & 177851 & 2443 & 215 & 216 & 57 & 34 & 0 & 0 & 0 & 0 & 0 & 307 \\
\hline 1968 & 11105 & 1097030 & 439209 & 19592 & 1947 & 2528 & 45971 & 325 & 40 & 13 & 5 & 0 & 0 & 0 & 0 & 0 & 58 \\
\hline 1969 & 72559 & 20469 & 3575922 & 303333 & 7594 & 2410 & 2515 & 19128 & 200 & 24 & 7 & 0 & 0 & 0 & 0 & 0 & 231 \\
\hline 1970 & 924601 & 266151 & 218362 & 1988087 & 57430 & 1178 & 1196 & 256 & 5954 & 67 & 11 & 19 & 0 & 0 & 0 & 0 & 6051 \\
\hline 1971 & 330673 & 1810248 & 70951 & 47518 & 400415 & 10371 & 462 & 195 & 147 & 1592 & 160 & 3 & 5 & 0 & 0 & 0 & 1907 \\
\hline 1972 & 240896 & 676001 & 586824 & 40591 & 21211 & 157994 & 3563 & 190 & 34 & 27 & 408 & 11 & 0 & 0 & 0 & 0 & 480 \\
\hline 1973 & 59872 & 364918 & 570428 & 240603 & 6192 & 4467 & 39459 & 1257 & 108 & 29 & 109 & 49 & 5 & 0 & 0 & 0 & 300 \\
\hline 1974 & 60142 & 1214416 & 175587 & 331870 & 54206 & 1873 & 1348 & 10917 & 242 & 23 & 32 & 4 & 5 & 0 & 0 & 0 & 306 \\
\hline 1975 & 44946 & 2097588 & 639003 & 58837 & 108892 & 15808 & 983 & 620 & 2714 & 266 & 63 & 11 & 0 & 8 & 0 & 0 & 3062 \\
\hline 1976 & 167173 & 167693 & 1055191 & 210308 & 9950 & 31186 & 4995 & 206 & 76 & 759 & 60 & 3 & 0 & 0 & 0 & 0 & 898 \\
\hline 1977 & 114954 & 250593 & 106012 & 390344 & 40051 & 4304 & 6261 & 1300 & 135 & 29 & 200 & 3 & 0 & 1 & 0 & 0 & 368 \\
\hline 1978 & 285842 & 454920 & 146179 & 30321 & 113601 & 8704 & 1264 & 2075 & 402 & 116 & 15 & 64 & 13 & 2 & 0 & 0 & 612 \\
\hline 1979 & 841439 & 345398 & 203196 & 41225 & 7402 & 28006 & 2235 & 262 & 483 & 152 & 54 & 12 & 11 & 1 & 0 & 0 & 713 \\
\hline 1980 & 374959 & 660144 & 331838 & 72505 & 10392 & 1897 & 8061 & 598 & 121 & 162 & 75 & 31 & 9 & 3 & 1 & 0 & 402 \\
\hline 1981 & 646419 & 134440 & 421348 & 142948 & 15205 & 2034 & 457 & 2498 & 125 & 64 & 23 & 30 & 4 & 1 & 3 & 0 & 250 \\
\hline 1982 & 278705 & 275385 & 85474 & 299211 & 41382 & 3377 & 713 & 279 & 784 & 30 & 15 & 7 & 2 & 2 & 0 & 0 & 840 \\
\hline 1983 & 639814 & 156256 & 251703 & 73666 & 127173 & 16480 & 1708 & 297 & 61 & 190 & 53 & 6 & 4 & 4 & 0 & 0 & 318 \\
\hline 1984 & 95502 & 432178 & 167411 & 122784 & 22067 & 32649 & 3788 & 596 & 84 & 41 & 112 & 16 & 5 & 1 & 1 & 0 & 260 \\
\hline 1985 & 139579 & 178878 & 533698 & 78633 & 37430 & 5303 & 7354 & 965 & 212 & 52 & 21 & 88 & 4 & , & 0 & 0 & 377 \\
\hline 1986 & 56503 & 160359 & 178798 & 323638 & 27682 & 9690 & 1237 & 1810 & 237 & 117 & 49 & 32 & 36 & 13 & 4 & 1 & 489 \\
\hline 1987 & 9419 & 277705 & 250003 & 47378 & 67865 & 4760 & 2877 & 545 & 778 & 135 & 36 & 50 & 27 & 29 & 5 & 8 & 1068 \\
\hline 1988 & 10808 & 29420 & 484481 & 89071 & 13432 & 18579 & 1602 & 639 & 166 & 141 & 50 & 18 & 11 & 10 & 15 & 1 & 412 \\
\hline 1989 & 10704 & 47271 & 35097 & 182331 & 18037 & 2631 & 4044 & 508 & 199 & 83 & 30 & 13 & 6 & 2 & 2 & 1 & 337 \\
\hline 1990 & 55473 & 81336 & 101513 & 18674 & 56696 & 3731 & 878 & 1320 & 206 & 78 & 41 & 11 & 11 & 1 & 4 & 2 & 354 \\
\hline 1991 & 123910 & 224136 & 78092 & 23167 & 3882 & 12525 & 976 & 401 & 614 & 148 & 54 & 6 & 5 & 1 & 2 & 1 & 831 \\
\hline 1992 & 270758 & 194249 & 252884 & 32482 & 6550 & 1250 & 4861 & 454 & 300 & 293 & 124 & 22 & 6 & 2 & 0 & 0 & 747 \\
\hline 1993 & 141209 & 345275 & 261834 & 108395 & 7105 & 1697 & 450 & 1138 & 146 & 103 & 144 & 59 & 3 & 2 & 0 & 0 & 457 \\
\hline 1994 & 85966 & 96850 & 296528 & 100465 & 29608 & 1919 & 573 & 191 & 509 & 115 & 32 & 27 & 25 & 5 & 0 & 0 & 713 \\
\hline 1995 & 201260 & 296237 & 85826 & 167801 & 25875 & 7644 & 511 & 127 & 45 & 62 & 19 & 8 & 6 & , & 1 & 0 & 143 \\
\hline 1996 & 148437 & 46689 & 357942 & 56894 & 55147 & 7503 & 3052 & 756 & 52 & 31 & 25 & 5 & 8 & & 1 & 0 & 125 \\
\hline 1997 & 28855 & 132262 & 85854 & 213293 & 15273 & 15407 & 1892 & 679 & 62 & 15 & 12 & 4 & & 4 & 2 & 0 & 103 \\
\hline 1998 & 22115 & 82770 & 166732 & 49550 & 107995 & 5741 & 3561 & 472 & 140 & 14 & 6 & 5 & 2 & 2 & 1 & 1 & 171 \\
\hline 1999 & 84408 & 80970 & 121249 & 87242 & 24740 & 39860 & 2338 & 1595 & 342 & 41 & 6 & 2 & , & 1 & 0 & 0 & 393 \\
\hline 2000 & 6632 & 349063 & 88623 & 43352 & 26357 & 6026 & 8788 & 560 & 234 & 32 & 12 & 2 & 1 & 1 & 0 & 0 & 282 \\
\hline 2001 & 2531 & 85436 & 632880 & 32344 & 8886 & 4123 & 1561 & 1305 & 195 & 64 & 17 & & 1 & 0 & 0 & 0 & 280 \\
\hline 2002 & 50754 & 18400 & 66343 & 242196 & 6547 & 2039 & 1066 & 549 & 458 & 265 & 15 & 8 & 5 & 0 & 0 & 0 & 751 \\
\hline 2003 & 9072 & 19548 & 14261 & 44747 & 109063 & 1969 & 602 & 271 & 109 & 89 & 38 & 5 & , & 0 & 0 & 0 & 243 \\
\hline 2004 & 1030 & 10538 & 18122 & 6573 & 34945 & 91121 & 724 & 147 & 56 & 35 & 35 & 10 & 1 & 0 & 0 & 0 & 137 \\
\hline 2005 & 4814 & 10505 & 18394 & 11385 & 3329 & 25077 & 58753 & 314 & 89 & 34 & 10 & 7 & & 1 & 0 & 0 & 145 \\
\hline 2006 & 2412 & 106506 & 26164 & 16813 & 7482 & 2970 & 13685 & 30229 & 123 & 29 & 16 & 6 & 3 & 0 & 0 & 0 & 177 \\
\hline 2007 & 1788 & 18788 & 155749 & 13899 & \({ }_{4169}\) & 2353 & \({ }^{1426}\) & 5973 & \({ }_{6}^{6776}\) & \({ }^{69}\) & 7 & 14 & 3 & 1 & 0 & \({ }_{0}\) & 6870 \\
\hline 2008 & 1940 & 12595 & 29534 & 70919 & 4169 & 1440 & 648 & 311 & 1247 & 2448 & 5 & 8 & 1 & 1 & 0 & 0 & 3710 \\
\hline
\end{tabular}

Table 13.2.2.2. Haddock in Subarea IV and Division IIIa. Numbers at age data (thousands) for landings. Data used in the assessment are highlight ed in bold.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \(8+\) \\
\hline 1963 & 0 & 27353 & 118185 & 16692 & 12212 & 5644 & 498 & 653 & 566 & 59 & 18 & 0 & 0 & 0 & 0 & 0 & 643 \\
\hline 1964 & 0 & 48 & 250523 & 86368 & 8166 & 4689 & 2283 & 286 & 236 & 231 & 25 & 0 & 0 & 0 & 0 & 0 & 492 \\
\hline 1965 & 0 & 2636 & 3445 & 335396 & 23479 & 4063 & 1852 & 446 & 107 & 90 & 41 & 0 & 0 & 0 & 0 & 0 & 238 \\
\hline 1966 & 0 & 12976 & 6724 & 4250 & 372535 & 9188 & 1018 & 599 & 165 & 90 & 23 & 2 & 0 & 0 & 0 & 0 & 280 \\
\hline 1967 & 0 & 54953 & 33894 & 3845 & 3345 & 174011 & 2421 & 215 & 216 & 57 & 34 & 0 & 0 & 0 & 0 & 0 & 307 \\
\hline 1968 & 0 & 18443 & 139035 & 14557 & 1806 & 2495 & 45047 & 324 & 40 & 13 & 5 & 0 & 0 & 0 & 0 & 0 & 58 \\
\hline 1969 & 0 & 139 & 713860 & 166997 & 6542 & 2014 & 2381 & 18876 & 200 & 24 & 7 & 0 & 0 & 0 & 0 & 0 & 231 \\
\hline 1970 & 0 & 2259 & 51861 & 1133133 & 50823 & 1012 & 1131 & 254 & 5954 & 67 & 11 & 19 & 0 & 0 & 0 & 0 & 6051 \\
\hline 1971 & 0 & 34019 & 25862 & 35168 & 36944 & 10006 & 455 & 195 & 147 & 1592 & 160 & 3 & 5 & 0 & 0 & 0 & 1907 \\
\hline 1972 & 0 & 12778 & 207267 & 33215 & 19853 & 156344 & 3550 & 190 & 34 & 27 & 408 & 11 & 0 & 0 & 0 & 0 & 480 \\
\hline 1973 & 0 & 6024 & 205717 & 193852 & 5829 & 4238 & 39336 & 1257 & 108 & 29 & 109 & 49 & 5 & 0 & 0 & 0 & 300 \\
\hline 1974 & 0 & 23993 & 52416 & 227998 & 46793 & 1785 & 1232 & 10693 & 242 & 23 & 32 & 4 & 5 & 0 & 0 & 0 & 306 \\
\hline 1975 & 0 & 24144 & 200961 & 38295 & 90302 & 15524 & 978 & 620 & 2709 & 266 & 63 & 11 & 0 & 8 & 0 & 0 & 3057 \\
\hline 1976 & 0 & 2301 & 223465 & 142803 & 9721 & 28103 & 4978 & 206 & 76 & 759 & 60 & 3 & 0 & 0 & 0 & 0 & 898 \\
\hline 1977 & 0 & 8484 & 31741 & 249285 & 37092 & 4057 & 6021 & 1300 & 135 & 29 & 200 & 3 & 0 & 1 & 0 & 0 & 368 \\
\hline 1978 & 0 & 12883 & 54630 & 25305 & 100036 & 8568 & 1152 & 2070 & 402 & 116 & 15 & 64 & 13 & 2 & 0 & 0 & 612 \\
\hline 1979 & 0 & 14009 & 110008 & 36486 & 7284 & 27543 & 2219 & 262 & 483 & 152 & 54 & 12 & 11 & 1 & 0 & 0 & 713 \\
\hline 1980 & 0 & 8982 & 141895 & 61901 & 9063 & 1843 & 7975 & 591 & 121 & 161 & 75 & 31 & 9 & 3 & 1 & 0 & 401 \\
\hline 1981 & 0 & 1759 & 153466 & 112407 & 14679 & 2025 & 455 & 2498 & 125 & 64 & 23 & 30 & 4 & 1 & 3 & 0 & 250 \\
\hline 1982 & 0 & 7373 & 38819 & 236209 & 37728 & 2913 & 713 & 279 & 784 & 30 & 15 & 7 & 2 & 2 & 0 & 0 & 840 \\
\hline 1983 & 0 & 7101 & 109201 & 52566 & 117819 & 15760 & 1603 & 297 & 61 & 190 & 53 & 6 & 4 & 4 & 0 & 0 & 318 \\
\hline 1984 & 0 & 19501 & 75963 & 104651 & 21372 & 31874 & 3788 & 596 & 84 & 41 & 112 & 16 & 5 & 1 & 1 & 0 & 260 \\
\hline 1985 & 0 & 2120 & 248125 & 70806 & 36734 & 5076 & 7329 & 965 & 212 & 52 & 21 & 88 & 4 & 0 & 0 & 0 & 377 \\
\hline 1986 & 0 & 12132 & 62362 & 261225 & 27548 & 9671 & 1237 & 1810 & 237 & 117 & 49 & 32 & 36 & 13 & 4 & 1 & 489 \\
\hline 1987 & 0 & 6896 & 113196 & 37763 & 66221 & 4760 & 2877 & 545 & 778 & 135 & 36 & 50 & 27 & 29 & 5 & 8 & 1068 \\
\hline 1988 & 0 & 1524 & 146403 & 76925 & 12024 & 18310 & 1602 & 639 & 166 & 141 & 50 & 18 & 11 & 10 & 15 & 1 & 412 \\
\hline 1989 & 0 & 4519 & 16387 & 128051 & 16762 & 2574 & 3916 & 498 & 199 & 83 & 30 & 13 & 6 & 2 & 2 & 1 & 336 \\
\hline 1990 & 0 & 5493 & 43168 & 14338 & 45015 & 3269 & 775 & 1242 & 202 & 78 & 41 & 11 & 11 & 1 & 4 & 2 & 350 \\
\hline 1991 & 0 & 19482 & 46902 & 21841 & 3812 & 12337 & 976 & 401 & 614 & 148 & 54 & 6 & 5 & 1 & 2 & 1 & 831 \\
\hline 1992 & 0 & 2853 & 117953 & 28828 & 6485 & 1247 & 4779 & 454 & 300 & 293 & 124 & 22 & 6 & 2 & 0 & 0 & 747 \\
\hline 1993 & 0 & 2488 & 77820 & 86806 & 6976 & 1686 & 450 & 1119 & 146 & 103 & 144 & 59 & 3 & 2 & 0 & 0 & 457 \\
\hline 1994 & 0 & 467 & 69457 & 70354 & 27587 & 1860 & 524 & 191 & 509 & 115 & 32 & 27 & 25 & 5 & 0 & 0 & 713 \\
\hline 1995 & 0 & 1870 & 29177 & 101663 & 24715 & 7565 & 511 & 127 & 45 & 62 & 19 & 8 & 6 & 2 & 1 & 0 & 143 \\
\hline 1996 & 0 & 742 & 74892 & 36685 & 47168 & 7501 & 3052 & 756 & 52 & 31 & 25 & 5 & 8 & 3 & 1 & 0 & 125 \\
\hline 1997 & 0 & 1409 & 23943 & 123178 & 14028 & 15208 & 1892 & 679 & 62 & 15 & 12 & 4 & 4 & 4 & 2 & 0 & 103 \\
\hline 1998 & 0 & 822 & 38321 & 36736 & 92738 & 5607 & 3543 & 472 & 140 & 14 & 6 & 5 & 2 & 2 & 1 & 1 & 171 \\
\hline 1999 & 0 & 994 & 25856 & 53192 & 23301 & 37630 & 2155 & 1595 & 342 & 41 & 6 & 2 & 1 & 1 & 0 & 0 & 393 \\
\hline 2000 & 0 & 4750 & 30316 & 28653 & 23407 & 5873 & 8644 & 560 & 234 & 32 & 12 & 2 & 1 & 1 & 0 & 0 & 282 \\
\hline 2001 & 0 & 611 & 67196 & 16117 & 7406 & 3929 & 1561 & 1295 & 191 & 64 & 17 & 3 & 1 & 0 & & 0 & 276 \\
\hline 2002 & 0 & 639 & 13666 & \({ }^{111346}\) & 5640 & 2004 & 1066 & 419 & 458 & 265 & 15 & 8 & 5 & 0 & 0 & \({ }_{0}\) & 751 \\
\hline 2003 & 0 & 32 & 1091 & 13925 & 73059 & 1920 & 571 & 270 & 109 & 89 & 38 & 5 & 1 & 0 & & \({ }^{0}\) & 242 \\
\hline 2004 & 0 & 481 & 2897 & 4101 & 22159 & 73191 & 710 & 139 & 56 & 35 & 35 & 10 & 1 & 0 & 0 & \({ }_{0}\) & 137 \\
\hline 2005 & 0 & 782 & 5490 & 8086 & 2926 & 21703 & 54742 & 313 & 89 & 34 & 10 & 7 & 4 & 1 & 0 & 0 & 145 \\
\hline 2006 & 0 & 2062 & 9849 & 10267 & 6302 & 2705 & 12486 & 28158 & 116 & 28 & 15 & 6 & 3 & 0 & 0 & 0 & 168 \\
\hline 2007 & 0 & 1111 & 28030 & 10083 & 5932 & 2290 & 1422 & 5918 & 6705 & 69 & 7 & 14 & 3 & 1 & 0 & 0 & 6799 \\
\hline 2008 & 0 & 278 & 6176 & 48247 & 3915 & 1401 & 625 & 309 & 1241 & 2444 & 5 & 8 & 1 & 1 & & 0 & 3700 \\
\hline
\end{tabular}

Table 13.2.2.3. Haddock in Subarea IV and Division IIIa. Numbers-at-age data (thousands) for discards. Data used in the assessment are highlighted in bold.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \({ }^{8+}\) \\
\hline 1963 & 42 & 1047925 & 193718 & 3476 & 708 & 51 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1964 & 2395 & 4182 & 623111 & 13597 & 262 & 21 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1965 & 5307 & 110628 & 4020 & 130369 & 3641 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 \\
\hline 1966 & 7880 & 444111 & 12388 & 1166 & 24114 & 35 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1967 & 6250 & 389691 & 49635 & 863 & 216 & 1576 & 9 & , & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1968 & 39 & 615649 & 219022 & 3006 & 94 & 15 & 186 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1969 & 1732 & 5152 & 1158445 & 37686 & 420 & 16 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1970 & 51717 & 92978 & 77992 & 289679 & 2640 & 13 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1971 & 7586 & 1205838 & 35117 & 8960 & 24590 & 66 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1972 & 4231 & 424657 & 322547 & 6353 & 1212 & 1212 & 13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1973 & 18540 & 241423 & 352310 & 46740 & 352 & 33 & 123 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1974 & 24758 & 915157 & 90904 & 57011 & 2814 & 6 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1975 & 630 & 1478590 & 353422 & 15781 & 13388 & 143 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1976 & 2191 & 98420 & 648662 & 38317 & 183 & 137 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1977 & 11812 & 95090 & 44918 & 73431 & 605 & 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1978 & 5250 & 316339 & 80219 & 4207 & 12085 & 72 & 106 & 0 & 0 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1979 & 1824 & 205555 & 75517 & 3232 & 34 & 84 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1980 & 644 & 369727 & 168124 & 2346 & 39 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1981 & 1509 & 33434 & 237524 & 25928 & 86 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1982 & 3703 & 93865 & 31915 & 49462 & 1845 & , & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1983 & 151108 & 85338 & 128171 & 15966 & 7112 & 717 & 105 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1984 & 2915 & 314421 & 80803 & 13430 & 327 & 240 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1985 & 17501 & 165086 & 267747 & 6088 & 149 & 4 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline 1986 & 23807 & 108204 & 114606 & 61612 & 31 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1987 & 1166 & 188582 & 133010 & 9320 & 1506 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline 1988 & 1528 & 24588 & 325259 & 9684 & 788 & 67 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1989 & 1790 & 40211 & 16959 & 51491 & 814 & 20 & 42 & 0 & 0 & 0 & - & 0 & 0 & 0 & 0 & 0 & \\
\hline 1990 & 52477 & 68625 & 56359 & 3977 & 10190 & 235 & 77 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1991 & 7001 & 182162 & 27942 & 725 & 27 & 145 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1992 & 29056 & 110995 & 123961 & 3298 & 38 & 0 & 65 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1993 & 16715 & 235123 & 170794 & 18375 & 48 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1994 & 16059 & 82033 & 217538 & 29100 & 1862 & 53 & 48 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1995 & 3228 & 191807 & 54448 & 65250 & 1095 & 79 & 0 & 0 & 0 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1996 & 3968 & 35340 & 275597 & 16870 & 7872 & 2 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline 1997 & 7162 & 85588 & 50976 & 85664 & 1061 & 182 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1998 & 3132 & 72793 & 112075 & 10165 & 13766 & 71 & 18 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1999 & 14588 & 69196 & 90861 & 31119 & 1094 & 2064 & 180 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2000 & 2474 & 272894 & 36568 & 12614 & 2764 & 148 & 64 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2001 & 545 & 61878 & 529908 & 6100 & 1446 & 186 & 0 & 10 & 4 & & 0 & 0 & 0 & & 0 & 0 & 4 \\
\hline 2002 & 946 & 3872 & 48189 & 127212 & 403 & 8 & 0 & 130 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2003 & 4927 & 13533 & 11069 & \({ }^{29537}\) & 34480 & 37
17177 & 31 & 1 & 0 & 0 & 0 & \({ }_{0}\) & \({ }_{0}\) & 0 & 0 & \({ }_{0}^{0}\) & 1 \\
\hline 2004 & 1030 & 9467 & 14960 & 2388 & 12528 & 17177 & 5 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2005 & 4814 & 9546 & 12807 & 3273 & 394 & 3369 & 3810 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2006 & 2412 & 102672 & 15599 & 6304 & 1133 & 219 & 1125 & 1963 & 6 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 8 \\
\hline 2007 & 1788 & 17650 & 127501 & 3810 & 530 & \({ }^{63}\) & 4 & 55 & 71 & 0 & & 0 & 0 & 0 & 0 & \({ }_{0}\) & 71
10 \\
\hline 2008 & 1928 & 12235 & 23078 & 22492 & 202 & 22 & 18 & 1 & 6 & 4 & 0 & 0 & 0 & 0 & & & 10 \\
\hline
\end{tabular}

Table 13.2.2.4. Haddock in Subarea IV and Division IIIa. Numbers-at-age data (thousands) for IBC. Data used in the assessment are highlighted in bold.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \({ }^{8+}\) \\
\hline 1963 & 1317 & 230502 & 23050 & 791 & 105 & 85 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1964 & 137382 & 3195 & 421729 & 35144 & 638 & 638 & 112 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1965 & 644461 & 254237 & 7686 & 183288 & 2365 & 592 & 118 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1966 & 1659093 & 548835 & 6546 & 1007 & 15861 & 755 & 25 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1967 & 298999 & 392510 & 5539 & 155 & 24 & 2264 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1968 & 11066 & 462938 & 81153 & 2029 & 46 & 19 & 738 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1969 & 70826 & 15178 & 1703617 & 98650 & 632 & 380 & 126 & 252 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1970 & 872884 & 170914 & 88509 & 485274 & 3967 & 153 & 61 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1971 & 323088 & 570391 & 9972 & 3390 & 6381 & 299 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1972 & 236664 & 238566 & 57010 & 1023 & 146 & 439 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1973 & 41332 & 117470 & 12402 & 11 & 11 & 196 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1974 & 576654 & 275266 & 32266 & 46862 & 4600 & 82 & 112 & 224 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1975 & 44317 & 594854 & 84620 & 4761 & 5203 & 141 & 5 & 0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\
\hline 1976 & 164982 & 66973 & 183064 & 29188 & 46 & 2946 & 17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1977 & 103142 & 147019 & 29352 & 67628 & 2355 & 238 & 240 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1978 & 280592 & 125698 & 11330 & 809 & 1480 & 64 & , & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1979 & 839615 & 125834 & 17671 & 1507 & 84 & 379 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1980 & 374315 & 281436 & 21820 & 8258 & 1291 & 54 & 86 & 7 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 1981 & 644910 & 99247 & 30358 & 4613 & 440 & 6 & 2 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 \\
\hline 1982 & 275002 & 174147 & 14740 & 13540 & 1810 & 464 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1983 & 488707 & 63818 & 14331 & 5134 & 2242 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1984 & 92587 & 98257 & 10644 & 4702 & 368 & 535 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1985 & 122078 & 11672 & 17826 & 1739 & 547 & 223 & 17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1986 & 32696 & 40023 & 1831 & 802 & 103 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1987 & 8253 & 82226 & 3797 & 295 & 138 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline 1988 & 9280 & 3309 & 12819 & 2462 & 620 & 202 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1989 & 8914 & 2541 & 1751 & 2789 & 460 & 37 & 86 & 10 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & \\
\hline 1990 & 2996 & 7218 & 1986 & 359 & 1491 & 227 & 25 & 78 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \\
\hline 1991 & 116909 & 22493 & 3248 & 601 & 43 & 43 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & \\
\hline 1992 & 241702 & 80402 & 10971 & 356 & 27 & 3 & 17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1993 & 124495 & 107664 & 13220 & 3214 & 82 & 9 & 0 & 18 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline 1994 & 69907 & 14349 & 9534 & 1011 & 160 & 7 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1995 & 198032 & 102560 & 2201 & 888 & 65 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1996 & 144469 & 10608 & 7453 & 3338 & 107 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1997 & 21694 & 45264 & 10935 & 4451 & 184 & 17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1998 & 18983 & 9155 & 16337 & 2649 & 1490 & 63 & - & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1999 & 69820 & 10780 & 4531 & 2932 & 344 & 166 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2000 & 4158 & 71419 & 21740 & 2085 & 186 & 5 & , & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \({ }^{0}\) & 0 \\
\hline 2001 & 1987 & 22946 & 35776 & 10127 & 35 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2002 & 49807 & 13889 & 4489 & 3638 & 504 & 27 & & 0 & 0 & 0 & , & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2003 & 4145 & 5983 & 2101 & 1285 & 1524 & 12 & 0 & \({ }^{0}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \({ }^{0}\) & 0 \\
\hline 2004 & 0 & 590 & 265 & 84 & 258 & 753 & 8 & 4 & 0 & & & 0 & 0 & 0 & 0 & , & 0 \\
\hline 2005 & 0 & 176
1772 & 97
716 & 26
241 & 9
47 & 5
46 & 201
74 & 1
108 & 1 & 0 & 0 & 0 & \({ }_{0}^{0}\) & 0 & 0 & 0 & 0 \\
\hline 2006
2007 & 0
1 & 1772
27 & 716
218 & 241
6 & 47
1 & 46
0 & 74
0 & 108
0 & 1
0 & 0
0 & 0 & 0 & 0 & \({ }_{0}^{0}\) & 0
0 & 0 & 0 \\
\hline 2008 & 12 & 82 & 280 & 180 & 52 & 18 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 13.2.3.1. Haddock in Subarea IV and Division IIIa. Mean weight at age data (kg) for total catch. Data used in the assessment are highlighted in bold.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \({ }^{8+}\) \\
\hline 1963 & 0.012 & 0.123 & 0.253 & 0.473 & 0.695 & 0.807 & 1.004 & 1.131 & 1.173 & 1.576 & 1.825 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.228 \\
\hline 1964 & 0.011 & 0.118 & 0.239 & 0.403 & 0.664 & 0.814 & 0.909 & 1.382 & 1.148 & 1.470 & 1.781 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.331 \\
\hline 1965 & 0.010 & 0.069 & 0.226 & 0.366 & 0.648 & 0.845 & 1.193 & 1.173 & 1.482 & 1.707 & 2.239 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.697 \\
\hline 1966 & 0.010 & 0.088 & 0.247 & 0.367 & 0.533 & 0.949 & 1.266 & 1.525 & 1.938 & 1.727 & 2.963 & 2.040 & 0.000 & 0.000 & 0.000 & 0.000 & 1.955 \\
\hline 1967 & 0.011 & 0.115 & 0.281 & 0.461 & 0.594 & 0.639 & 1.057 & 1.501 & 1.922 & 2.069 & 2.348 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.996 \\
\hline 1968 & 0.010 & 0.126 & 0.253 & 0.510 & 0.731 & 0.857 & 0.837 & 1.606 & 2.260 & 2.702 & 2.073 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 2.343 \\
\hline 1969 & 0.011 & 0.063 & 0.216 & 0.406 & 0.799 & 0.891 & 1.031 & 1.094 & 2.040 & 3.034 & 3.264 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 2.180 \\
\hline 1970 & 0.013 & 0.073 & 0.222 & 0.352 & 0.735 & 0.874 & 1.191 & 1.362 & 1.437 & 2.571 & 3.950 & 3.869 & 0.000 & 0.000 & 0.000 & 0.000 & 1.462 \\
\hline 1971 & 0.011 & 0.107 & 0.247 & 0.362 & 0.506 & 0.887 & 1.267 & 1.534 & 1.337 & 1.275 & 1.969 & 4.306 & 3.543 & 0.000 & 0.000 & 0.000 & 1.349 \\
\hline 1972 & 0.024 & 0.116 & 0.243 & 0.388 & 0.506 & 0.606 & 1.000 & 1.366 & 2.241 & 2.006 & 1.651 & 2.899 & 0.000 & 0.000 & 0.000 & 0.000 & 1.741 \\
\hline 1973 & 0.044 & 0.112 & 0.241 & 0.373 & 0.586 & 0.649 & 0.725 & 1.044 & 1.302 & 2.796 & 1.726 & 2.020 & 2.158 & 0.000 & 0.000 & 0.000 & 1.732 \\
\hline 1974 & 0.024 & 0.128 & 0.227 & 0.344 & 0.549 & 0.892 & 0.896 & 0.952 & 1.513 & 2.315 & 2.508 & 4.152 & 2.264 & 0.000 & 0.000 & 0.000 & 1.724 \\
\hline 1975 & 0.020 & 0.101 & 0.242 & 0.357 & 0.450 & 0.680 & 1.245 & 1.124 & 1.093 & 1.720 & 2.217 & 2.854 & 0.000 & 3.426 & 0.000 & 0.000 & 1.183 \\
\hline 1976 & 0.013 & 0.125 & 0.225 & 0.402 & 0.512 & 0.589 & 0.922 & 1.933 & 1.784 & 1.306 & 2.425 & 2.528 & 0.000 & 0.000 & 0.000 & 0.000 & 1.425 \\
\hline 1977 & 0.019 & 0.109 & 0.243 & 0.347 & 0.602 & 0.614 & 0.803 & 1.181 & 1.943 & 2.322 & 1.780 & 3.189 & 0.000 & 4.119 & 0.000 & 0.000 & 1.900 \\
\hline 1978 & 0.011 & 0.144 & 0.256 & 0.420 & 0.443 & 0.719 & 0.745 & 0.955 & 1.398 & 2.124 & 2.868 & 1.849 & 2.454 & 4.782 & 0.000 & 0.000 & 1.652 \\
\hline 1979 & 0.009 & 0.096 & 0.292 & 0.444 & 0.637 & 0.664 & 0.934 & 1.187 & 1.187 & 1.468 & 2.679 & 1.624 & 1.760 & 1.643 & 0.000 & 0.000 & 1.377 \\
\hline 1980 & 0.012 & 0.104 & 0.286 & 0.488 & 0.733 & 1.046 & 0.936 & 1.394 & 1.599 & 1.593 & 1.726 & 3.328 & 1.119 & 3.071 & 3.111 & 0.000 & 1.758 \\
\hline 1981 & 0.009 & 0.074 & 0.265 & 0.477 & 0.745 & 1.148 & 1.480 & 1.180 & 1.634 & 1.764 & 1.554 & 1.492 & 3.389 & 4.273 & 1.981 & 0.000 & 1.686 \\
\hline 1982 & 0.011 & 0.100 & 0.293 & 0.462 & 0.785 & 1.170 & 1.441 & 1.672 & 1.456 & 2.634 & 2.164 & 1.924 & 1.886 & 3.179 & 0.000 & 0.000 & 1.520 \\
\hline 1983 & 0.022 & 0.136 & 0.298 & 0.449 & 0.651 & 0.916 & 1.215 & 1.162 & 1.920 & 1.376 & 1.395 & 1.907 & 2.853 & 4.689 & 0.000 & 0.000 & 1.554 \\
\hline 1984 & 0.010 & 0.141 & 0.302 & 0.489 & 0.671 & 0.805 & 1.097 & 1.100 & 1.868 & 2.425 & 1.972 & 2.247 & 2.422 & 2.822 & 4.995 & 0.000 & 2.050 \\
\hline 1985 & 0.013 & 0.149 & 0.280 & 0.481 & 0.668 & 0.858 & 1.049 & 1.459 & 1.833 & 2.124 & 2.145 & 2.003 & 2.387 & 0.000 & 0.000 & 0.000 & 1.936 \\
\hline 1986 & 0.025 & 0.124 & 0.242 & 0.397 & 0.613 & 0.863 & 1.257 & 1.195 & 1.715 & 1.525 & 2.484 & 2.653 & 2.538 & 3.075 & 2.778 & 2.894 & 1.916 \\
\hline 1987 & 0.008 & 0.126 & 0.267 & 0.406 & 0.615 & 1.029 & 1.276 & 1.433 & 1.529 & 1.877 & 2.054 & 1.940 & 2.471 & 2.411 & 2.996 & 2.638 & 1.673 \\
\hline 1988 & 0.024 & 0.166 & 0.217 & 0.418 & 0.590 & 0.748 & 1.284 & 1.424 & 1.551 & 1.627 & 1.680 & 3.068 & 2.468 & 2.885 & 3.337 & 2.863 & 1.784 \\
\hline 1989 & 0.027 & 0.198 & 0.304 & 0.372 & 0.606 & 0.811 & 0.982 & 1.364 & 1.655 & 1.684 & 2.248 & 2.166 & 2.364 & 2.389 & 2.307 & 1.146 & 1.755 \\
\hline 1990 & 0.044 & 0.195 & 0.293 & 0.434 & 0.474 & 0.772 & 0.971 & 1.168 & 1.530 & 2.037 & 2.653 & 2.530 & 2.392 & 3.444 & 1.852 & 4.731 & 1.857 \\
\hline 1991 & 0.029 & 0.179 & 0.322 & 0.473 & 0.640 & 0.651 & 1.042 & 1.232 & 1.481 & 1.776 & 1.996 & 2.253 & 2.404 & 1.070 & 3.509 & 2.936 & 1.584 \\
\hline 1992 & 0.018 & 0.108 & 0.307 & 0.486 & 0.748 & 1.016 & 0.896 & 1.395 & 1.537 & 1.912 & 1.997 & 2.067 & 2.441 & 1.781 & 0.000 & 0.000 & 1.784 \\
\hline 1993 & 0.010 & 0.116 & 0.282 & 0.447 & 0.680 & 0.894 & 1.173 & 1.102 & 1.592 & 1.737 & 1.920 & 1.718 & 2.274 & 2.516 & 0.000 & 0.000 & 1.753 \\
\hline 1994 & 0.017 & 0.116 & 0.251 & 0.420 & 0.597 & 0.943 & 1.208 & 1.570 & 1.469 & 1.620 & 2.418 & 2.108 & 2.849 & 2.403 & 0.000 & 0.000 & 1.615 \\
\hline 1995 & 0.013 & 0.102 & 0.301 & 0.366 & 0.597 & 0.768 & 1.118 & 1.444 & 1.761 & 1.873 & 1.881 & 2.508 & 1.674 & 1.699 & 2.243 & 0.000 & 1.866 \\
\hline 1996 & 0.019 & 0.128 & 0.248 & 0.399 & 0.490 & 0.795 & 0.879 & 0.85 & 1.833 & 2.018 & 1.623 & 2.393 & 2.369 & 2.598 & 3.439 & 0.000 & 1.925 \\
\hline 1997 & 0.021 & 0.134 & 0.286 & 0.362 & 0.591 & 0.621 & 0.921 & 0.974 & 1.647 & 2.209 & 2.146 & 2.032 & 2.757 & 2.262 & 2.867 & 0.000 & 1.893 \\
\hline 1998 & 0.023 & 0.154 & 0.258 & 0.405 & 0.442 & 0.660 & 0.769 & 1.113 & 1.200 & 1.834 & 2.340 & 2.150 & 1.115 & 2.423 & 2.085 & 2.509 & 1.346 \\
\hline 1999 & 0.023 & 0.168 & 0.244 & 0.365 & 0.480 & 0.499 & 0.691 & 0.785 & 0.758 & 1.258 & 1.559 & 1.913 & 2.232 & 2.392 & 0.000 & 0.000 & 0.836 \\
\hline 2000 & 0.048 & 0.120 & 0.256 & 0.370 & 0.501 & 0.619 & 0.653 & 1.104 & 1.100 & 1.757 & 1.963 & 2.323 & 2.385 & 2.315 & 0.000 & 0.000 & 1.229 \\
\hline 2001 & 0.021 & 0.110 & 0.217 & 0.315 & 0.472 & 0.706 & 0.762 & 0.975 & 1.893 & 1.216 & 2.144 & 2.891 & 3.237 & 0.000 & 0.000 & 0.000 & 1.769 \\
\hline 2002 & 0.016 & 0.100 & 0.271 & 0.328 & 0.541 & 0.744 & 0.931 & 0.848 & 1.426 & 1.942 & 2.346 & 1.840 & 2.349 & 0.000 & 0.000 & 0.000 & 1.637 \\
\hline 2003 & 0.030 & 0.097 & 0.214 & 0.330 & 0.406 & 0.682 & 0.791 & 1.158 & 1.384 & 1.658 & 2.181 & 2.209 & 2.506 & 0.000 & 0.000 & 0.000 & 1.631 \\
\hline 2004 & 0.053 & 0.177 & 0.256 & 0.410 & 0.404 & 0.445 & 0.744 & 1.071 & 1.372 & 1.741 & 1.777 & 2.355 & 2.172 & 0.000 & 0.000 & 0.000 & 1.647 \\
\hline 2005 & 0.055 & 0.200 & 0.295 & 0.387 & 0.522 & 0.484 & 0.521 & 0.882 & 1.119 & 1.360 & 1.835 & 2.682 & 2.553 & 2.319 & 0.000 & 0.000 & 1.348 \\
\hline 2006 & 0.048 & 0.122 & 0.289 & 0.358 & 0.470 & 0.545 & 0.546 & 0.549 & 0.996 & 1.584 & 2.129 & 2.513 & 1.823 & 0.000 & 0.000 & 0.000 & 1.263 \\
\hline 2007 & 0.039 & 0.163 & 0.228 & 0.423 & 0.499 & 0.624 & 0.717 & 0.716 & 0.749 & 0.909 & 2.278 & 0.954 & 1.712 & 2.348 & 0.000 & 0.000 & 0.753 \\
\hline 2008 & 0.038 & 0.181 & 0.257 & 0.365 & 0.607 & 0.700 & 0.842 & 1.109 & 0.947 & 0.877 & 1.680 & 1.969 & 0.914 & 0.224 & 0.000 & 0.000 & 0.903 \\
\hline
\end{tabular}

Table 13.2.3.2. Haddock in Subarea IV and Division IIIa. Mean weight at age data (kg) for landings. Data used in the assessment are highlighted in bold.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 位 & 10 & 11 & 12 & 13 & 14 & 15 & \({ }^{8+}\) \\
\hline 1963 & 0.000 & 0.233 & 0.326 & 0.512 & 0.715 & 0.817 & 1.009 & 1.131 & 1.173 & 1.576 & 1.825 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.228 \\
\hline 1964 & 0.000 & 0.221 & 0.313 & 0.459 & 0.695 & 0.870 & 0.934 & 1.386 & 1.148 & 1.470 & 1.781 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.331 \\
\hline 1965 & 0.000 & 0.310 & 0.357 & 0.410 & 0.679 & 0.907 & 1.242 & 1.182 & 1.482 & 1.707 & 2.239 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.697 \\
\hline 1966 & 0.000 & 0.301 & 0.384 & 0.416 & 0.553 & 0.995 & 1.288 & 1.529 & 1.938 & 1.727 & 2.963 & 2.040 & 0.000 & 0.000 & 0.000 & 0.000 & 1.955 \\
\hline 1967 & 0.000 & 0.260 & 0.404 & 0.510 & 0.614 & 0.645 & 1.063 & 1.501 & 1.922 & 2.069 & 2.348 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.996 \\
\hline 1968 & 0.000 & 0.256 & 0.361 & 0.591 & 0.761 & 0.863 & 0.846 & 1.610 & 2.260 & 2.702 & 2.073 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 2.343 \\
\hline 1969 & 0.000 & 0.178 & 0.302 & 0.506 & 0.870 & 0.984 & 1.065 & 1.102 & 2.040 & 3.034 & 3.264 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 2.180 \\
\hline 1970 & 0.000 & 0.242 & 0.310 & 0.403 & 0.786 & 0.949 & 1.235 & 1.370 & 1.437 & 2.571 & 3.950 & 3.869 & 0.000 & 0.000 & 0.000 & 0.000 & 1.462 \\
\hline 1971 & 0.000 & 0.256 & 0.335 & 0.399 & 0.524 & 0.905 & 1.281 & 1.534 & 1.337 & 1.275 & 1.969 & 4.306 & 3.543 & 0.000 & 0.000 & 0.000 & 1.349 \\
\hline 1972 & 0.000 & 0.244 & 0.329 & 0.421 & 0.523 & 0.609 & 1.003 & 1.366 & 2.241 & 2.006 & 1.651 & 2.899 & 0.000 & 0.000 & 0.000 & 0.000 & 1.741 \\
\hline 1973 & 0.000 & 0.225 & 0.315 & 0.406 & 0.606 & 0.663 & 0.726 & 1.044 & 1.302 & 2.796 & 1.726 & 2.020 & 2.158 & 0.000 & 0.000 & 0.000 & 1.732 \\
\hline 1974 & 0.000 & 0.275 & 0.320 & 0.389 & 0.585 & 0.908 & 0.954 & 0.963 & 1.513 & 2.315 & 2.508 & 4.152 & 2.264 & 0.000 & 0.000 & 0.000 & 1.724 \\
\hline 1975 & 0.000 & 0.258 & 0.345 & 0.408 & 0.487 & 0.686 & 1.248 & 1.124 & 1.094 & 1.720 & 2.217 & 2.854 & 0.000 & 3.426 & 0.000 & 0.000 & 1.184 \\
\hline 1976 & 0.000 & 0.250 & 0.344 & 0.467 & 0.516 & 0.614 & 0.923 & 1.933 & 1.784 & 1.306 & 2.425 & 2.528 & 0.000 & 0.000 & 0.000 & 0.000 & 1.425 \\
\hline 1977 & 0.000 & 0.286 & 0.362 & 0.396 & 0.614 & 0.630 & 0.817 & 1.181 & 1.943 & 2.322 & 1.780 & 3.189 & 0.000 & 4.119 & 0.000 & 0.000 & 1.900 \\
\hline 1978 & 0.000 & 0.275 & 0.356 & 0.457 & 0.470 & 0.725 & 0.789 & 0.956 & 1.398 & 2.124 & 2.868 & 1.849 & 2.454 & 4.782 & 0.000 & 0.000 & 1.652 \\
\hline 1979 & 0.000 & 0.274 & 0.361 & 0.468 & 0.642 & 0.668 & 0.935 & 1.187 & 1.187 & 1.468 & 2.679 & 1.624 & 1.760 & 1.643 & 0.000 & 0.000 & 1.377 \\
\hline 1980 & 0.000 & 0.299 & 0.367 & 0.526 & 0.750 & 1.056 & 0.934 & 1.392 & 1.599 & 1.592 & 1.726 & 3.328 & 1.119 & 3.071 & 3.111 & 0.000 & 1.758 \\
\hline 1981 & 0.000 & 0.339 & 0.385 & 0.525 & 0.754 & 1.149 & 1.481 & 1.180 & 1.634 & 1.764 & 1.554 & 1.492 & 3.389 & 4.273 & 1.981 & 0.000 & 1.686 \\
\hline 1982 & 0.000 & 0.300 & 0.364 & 0.507 & 0.818 & 1.237 & 1.441 & 1.672 & 1.456 & 2.634 & 2.164 & 1.924 & 1.886 & 3.179 & 0.000 & 0.000 & 1.520 \\
\hline 1983 & 0.000 & 0.312 & 0.387 & 0.482 & 0.663 & 0.925 & 1.243 & 1.162 & 1.920 & 1.376 & 1.395 & 1.907 & 2.853 & 4.689 & 0.000 & 0.000 & 1.554 \\
\hline 1984 & 0.000 & 0.281 & 0.376 & 0.515 & 0.677 & 0.810 & 1.097 & 1.100 & 1.868 & 2.425 & 1.972 & 2.247 & 2.422 & 2.822 & 4.995 & 0.000 & 2.050 \\
\hline 1985 & 0.000 & 0.277 & 0.359 & 0.502 & 0.671 & 0.871 & 1.051 & 1.459 & 1.833 & 2.124 & 2.145 & 2.003 & 2.387 & 2.471 & 2.721 & 3.970 & 1.936 \\
\hline 1986 & 0.000 & 0.276 & 0.351 & 0.433 & 0.613 & 0.863 & 1.257 & 1.195 & 1.715 & 1.525 & 2.484 & 2.653 & 2.538 & 3.075 & 2.778 & 2.894 & 1.916 \\
\hline 1987 & 0.000 & 0.274 & 0.345 & 0.451 & 0.622 & 1.029 & 1.276 & 1.433 & 1.529 & 1.877 & 2.054 & 1.940 & 2.471 & 2.411 & 2.996 & 2.638 & 1.673 \\
\hline 1988 & 0.000 & 0.258 & 0.324 & 0.445 & 0.619 & 0.752 & 1.284 & 1.424 & 1.551 & 1.627 & 1.680 & 3.068 & 2.468 & 2.885 & 3.337 & 2.863 & 1.784 \\
\hline 1989 & 0.000 & 0.310 & 0.388 & 0.415 & 0.617 & 0.810 & 0.982 & 1.361 & 1.653 & 1.684 & 2.236 & 2.166 & 2.364 & 2.389 & 2.307 & 1.146 & 1.752 \\
\hline 1990 & 0.000 & 0.308 & 0.379 & 0.484 & 0.516 & 0.802 & 1.039 & 1.191 & 1.543 & 2.037 & 2.653 & 2.530 & 2.392 & 3.444 & 1.852 & 4.731 & 1.868 \\
\hline 1991 & 0.000 & 0.319 & 0.377 & 0.480 & 0.643 & 0.653 & 1.042 & 1.232 & 1.481 & 1.776 & 1.996 & 2.253 & 2.404 & 1.070 & 3.509 & 2.936 & 1.584 \\
\hline 1992 & 0.000 & 0.336 & 0.379 & 0.510 & 0.751 & 1.017 & 0.904 & 1.395 & 1.538 & 1.912 & 1.997 & 2.067 & 2.441 & 1.781 & 0.000 & 0.000 & 1.784 \\
\hline 1993 & 0.000 & 0.326 & 0.393 & 0.483 & 0.684 & 0.896 & 1.173 & 1.111 & 1.592 & 1.737 & 1.920 & 1.718 & 2.274 & 2.516 & 0.000 & 0.000 & 1.753 \\
\hline 1994 & 0.000 & 0.288 & 0.390 & 0.482 & 0.617 & 0.962 & 1.296 & 1.570 & 1.469 & 1.620 & 2.418 & 2.108 & 2.849 & 2.403 & 2.580 & 0.000 & 1.615 \\
\hline 1995 & 0.000 & 0.323 & 0.403 & 0.425 & 0.608 & 0.772 & 1.118 & 1.444 & 1.761 & 1.873 & 1.881 & 2.508 & 1.674 & 1.699 & 2.243 & 0.000 & 1.866 \\
\hline 1996 & 0.000 & 0.351 & 0.364 & 0.475 & 0.523 & 0.795 & 0.879 & 0.85 & 1.833 & 2.018 & 1.623 & 2.393 & 2.369 & 2.598 & 3.439 & 0.000 & 1.925 \\
\hline 1997 & 0.000 & 0.388 & 0.416 & 0.417 & 0.614 & 0.624 & 0.921 & 0.974 & 1.647 & 2.209 & 2.146 & 2.032 & 2.757 & 2.262 & 2.867 & 2.782 & 1.893 \\
\hline 1998 & 0.000 & 0.280 & 0.377 & 0.444 & 0.462 & 0.666 & 0.771 & 1.113 & 1.200 & 1.834 & 2.340 & 2.150 & 1.115 & 2.423 & 2.085 & 2.509 & 1.346 \\
\hline 1999 & 0.000 & 0.291 & 0.349 & 0.423 & 0.489 & 0.511 & 0.729 & 0.785 & 0.758 & 1.258 & 1.559 & 1.913 & 2.232 & 2.392 & 2.912 & 2.225 & 0.836 \\
\hline 2000 & 0.000 & 0.345 & 0.370 & 0.423 & 0.524 & 0.626 & 0.656 & 1.104 & 1.100 & 1.757 & 1.963 & 2.323 & 2.385 & 2.315 & 3.595 & 1.843 & 1.229 \\
\hline 2001 & 0.000 & 0.433 & 0.355 & 0.447 & 0.505 & 0.723 & 0.762 & 0.980 & 1.922 & 1.216 & 2.144 & 2.891 & 3.237 & 2.534 & 1.239 & 3.425 & 1.787 \\
\hline 2002 & 0.000 & 0.475 & 0.458 & 0.399 & 0.570 & 0.750 & 0.931 & 1.000
1 & 1.426 & 1.942 & 2.346 & 1.840 & 2.349 & 2.762 & \({ }^{0.000}\) & 0.000 & 1.637 \\
\hline 2003 & 0.000 & 0.311 & 0.438 & 0.476 & 0.443 & 0.687 & 0.798 & 1.159 & 1.386 & 1.659 & 2.181 & 2.209 & 2.506 & 2.606 & 1.981 & 3.092 & 1.633 \\
\hline 2004 & 0.000 & 0.369 & 0.388 & 0.489 & 0.460 & 0.469 & 0.747 & 1.086 & 1.372 & 1.741 & 1.777 & 2.355 & 2.172 & 0.000 & 0.000 & 0.000 & 1.647 \\
\hline 2005 & 0.000 & 0.400 & 0.401 & 0.429 & 0.551 & 0.512 & 0.533 & 0.883 & 1.119 & 1.360 & 1.835 & 2.682 & 2.553 & 2.319 & 3.431 & 0.000 & 1.348 \\
\hline 2006 & 0.000 & 0.396 & 0.389 & 0.422 & 0.514 & 0.581 & 0.582 & 0.580 & 1.051 & 1.663 & 2.236 & 2.641 & 1.926 & 3.022 & 2.901 & 2.709 & 1.331 \\
\hline 2007 & 0.000 & 0.383 & 0.386 & 0.473 & 0.515 & 0.631 & 0.718 & 0.719 & 0.753 & 0.909 & 2.278 & 0.954 & 1.712 & 2.348 & 4.244 & 0.000 & 0.757 \\
\hline 2008 & 0.000 & 0.364 & 0.409 & 0.414 & 0.621 & 0.705 & 0.859 & 1.113 & 0.949 & 0.877 & 1.695 & 1.969 & 0.914 & 0.224 & 3.792 & 3.024 & 0.904 \\
\hline
\end{tabular}

Table 13.2.3.3. Haddock in Subarea IV and Division IIIa. Mean weight at age data (kg) for discards. Data used in the assessment are highlighted in bold.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \({ }^{8+}\) \\
\hline 1963 & 0.064 & 0.139 & 0.218 & 0.327 & 0.397 & 0.321 & 0.321 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1964 & 0.065 & 0.177 & 0.249 & 0.306 & 0.337 & 0.321 & 0.321 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1965 & 0.064 & 0.131 & 0.200 & 0.341 & 0.613 & 0.321 & 0.321 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1966 & 0.063 & 0.141 & 0.208 & 0.244 & 0.310 & 0.321 & 0.321 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1967 & 0.064 & 0.171 & 0.209 & 0.274 & 0.306 & 0.321 & 0.321 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1968 & 0.063 & 0.186 & 0.212 & 0.256 & 0.318 & 0.321 & 0.321 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1969 & 0.064 & 0.129 & 0.216 & 0.237 & 0.301 & 0.321 & 0.321 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1970 & 0.063 & 0.129 & 0.210 & 0.238 & 0.263 & 0.321 & 0.321 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1971 & 0.063 & 0.134 & 0.201 & 0.242 & 0.263 & 0.321 & 0.321 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1972 & 0.063 & 0.139 & 0.206 & 0.237 & 0.261 & 0.321 & 0.321 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1973 & 0.063 & 0.131 & 0.201 & 0.235 & 0.263 & 0.321 & 0.321 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1974 & 0.062 & 0.145 & 0.200 & 0.233 & 0.259 & 0.321 & 0.321 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1975 & 0.050 & 0.123 & 0.200 & 0.257 & 0.275 & 0.348 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1976 & 0.079 & 0.176 & 0.197 & 0.237 & 0.292 & 0.337 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1977 & 0.071 & 0.196 & 0.197 & 0.216 & 0.309 & 0.347 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1978 & 0.037 & 0.180 & 0.199 & 0.222 & 0.224 & 0.265 & 0.284 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1979 & 0.053 & 0.118 & 0.219 & 0.242 & 0.259 & 0.340 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1980 & 0.051 & 0.149 & 0.231 & 0.274 & 0.324 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1981 & 0.073 & 0.160 & 0.198 & 0.290 & 0.650 & 0.727 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1982 & 0.072 & 0.197 & 0.248 & 0.271 & 0.264 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1983 & 0.067 & 0.187 & 0.237 & 0.347 & 0.476 & 0.711 & 0.792 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1984 & 0.046 & 0.162 & 0.245 & 0.317 & 0.300 & 0.314 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1985 & 0.040 & 0.155 & 0.214 & 0.264 & 0.336 & 0.423 & 0.421 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1986 & 0.045 & 0.138 & 0.184 & 0.245 & 0.408 & 0.329 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1987 & 0.023 & 0.159 & 0.200 & 0.225 & 0.287 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1988 & 0.063 & 0.172 & 0.170 & 0.238 & 0.254 & 0.360 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1989 & 0.085 & 0.187 & 0.229 & 0.268 & 0.335 & 0.708 & 0.844 & 0.000 & 2.572 & 0.000 & 3.048 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 2.810 \\
\hline 1990 & 0.046 & 0.196 & 0.229 & 0.249 & 0.266 & 0.290 & 0.333 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1991 & 0.065 & 0.179 & 0.243 & 0.344 & 0.464 & 0.493 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1992 & 0.043 & 0.137 & 0.246 & 0.286 & 0.347 & 0.000 & 0.415 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1993 & 0.027 & 0.142 & 0.237 & 0.287 & 0.344 & 0.369 & 0.000 & 0.369 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1994 & 0.044 & 0.126 & 0.211 & 0.269 & 0.306 & 0.304 & 0.270 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1995 & 0.064 & 0.131 & 0.251 & 0.275 & 0.363 & 0.384 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1996 & 0.046 & 0.138 & 0.219 & 0.279 & 0.297 & 0.358 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1997 & 0.063 & 0.161 & 0.254 & 0.286 & 0.321 & 0.385 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1998 & 0.041 & 0.162 & 0.231 & 0.293 & 0.315 & 0.391 & 0.428 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1999 & 0.049 & 0.183 & 0.217 & 0.273 & 0.307 & 0.304 & 0.250 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 2000 & 0.030 & 0.129 & 0.246 & 0.281 & 0.319 & 0.355 & 0.287 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 2001 & 0.045 & 0.116 & 0.205 & 0.307 & 0.308 & 0.364 & 0.000 & 0.411 & 0.416 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.416 \\
\hline 2002 & 0.042 & 0.166 & 0.226 & 0.268 & 0.352 & 0.378 & 0.000 & 0.357 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 2003 & 0.046 & 0.125 & 0.222 & 0.265 & 0.332 & 0.536 & 0.654 & 0.951 & 0.946 & 1.154 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.015 \\
\hline 2004 & 0.053 & 0.171 & 0.232 & 0.280 & 0.308 & 0.342 & 0.639 & 0.716 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 2005 & 0.055 & 0.185 & 0.251 & 0.283 & 0.313 & 0.305 & 0.345 & 0.621 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 2006 & 0.048 & 0.116 & 0.228 & 0.257 & 0.233 & 0.152 & 0.162 & 0.115 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 2007 & 0.039 & 0.149 & 0.193 & 0.292 & 0.315 & 0.370 & 0.427 & 0.342 & 0.368 & 0.400 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.368 \\
\hline 2008 & 0.038 & 0.177 & 0.216 & 0.261 & 0.374 & 0.531 & 0.353 & 0.449 & 0.463 & 0.596 & 0.321 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.520 \\
\hline
\end{tabular}

Table 13.2.3.4. Haddock in Subarea IV and Division IIII. Mean weight at age data (kg) for IBC. Data used in the assessment are highlighted in bold.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 8+ \\
\hline 1963 & 0.010 & 0.040 & 0.180 & 0.302 & 0.400 & 0.420 & 0.440 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1964 & 0.010 & 0.040 & 0.180 & 0.302 & 0.400 & 0.420 & 0.440 & 0.500 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1965 & 0.010 & 0.040 & 0.180 & 0.302 & 0.400 & 0.420 & 0.440 & 0.500 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1966 & 0.010 & 0.040 & 0.180 & 0.302 & 0.400 & 0.420 & 0.440 & 0.500 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1967 & 0.010 & 0.040 & 0.180 & 0.302 & 0.400 & 0.420 & 0.440 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1968 & 0.010 & 0.040 & 0.180 & 0.302 & 0.400 & 0.420 & 0.440 & 0.500 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1969 & 0.010 & 0.040 & 0.180 & 0.302 & 0.400 & 0.420 & 0.440 & 0.500 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1970 & 0.010 & 0.040 & 0.180 & 0.302 & 0.400 & 0.420 & 0.440 & 0.500 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1971 & 0.010 & 0.040 & 0.180 & 0.302 & 0.400 & 0.420 & 0.440 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1972 & 0.023 & 0.067 & 0.136 & 0.255 & 0.288 & 0.231 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1973 & 0.035 & 0.068 & 0.141 & 0.246 & 0.327 & 0.396 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1974 & 0.022 & 0.058 & 0.150 & 0.260 & 0.359 & 0.579 & 0.277 & 0.447 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1975 & 0.020 & 0.039 & 0.173 & 0.275 & 0.267 & 0.413 & 0.585 & 0.000 & 0.585 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.585 \\
\hline 1976 & 0.012 & 0.046 & 0.181 & 0.304 & 0.473 & 0.360 & 0.725 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1977 & 0.013 & 0.042 & 0.184 & 0.307 & 0.490 & 0.352 & 0.442 & 1.234 & 1.315 & 1.319 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.317 \\
\hline 1978 & 0.011 & 0.040 & 0.174 & 0.286 & 0.372 & 0.473 & 0.411 & 0.456 & 1.315 & 0.000 & 1.400 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.345 \\
\hline 1979 & 0.009 & 0.039 & 0.177 & 0.285 & 0.384 & 0.461 & 0.735 & 1.234 & 1.315 & 0.000 & 1.400 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.333 \\
\hline 1980 & 0.012 & 0.039 & 0.176 & 0.268 & 0.623 & 0.722 & 1.102 & 1.591 & 0.000 & 1.796 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.796 \\
\hline 1981 & 0.009 & 0.040 & 0.176 & 0.371 & 0.467 & 0.858 & 1.200 & 1.234 & 1.315 & 1.319 & 1.400 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.346 \\
\hline 1982 & 0.010 & 0.040 & 0.206 & 0.379 & 0.636 & 0.751 & 1.225 & 1.233 & 1.315 & 1.319 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.316 \\
\hline 1983 & 0.008 & 0.047 & 0.173 & 0.428 & 0.584 & 1.006 & 1.225 & 1.234 & 1.315 & 1.319 & 0.000 & \({ }^{0.000}\) & 0.000 & 0.000 & 0.000 & \({ }^{0.000}\) & 1.318 \\
\hline 1984 & 0.009 & 0.045 & 0.211 & 0.414 & 0.626 & 0.751 & 1.225 & 1.234 & 1.315 & 1.319 & 1.400 & 1.400 & 0.000 & 0.000 & 0.000 & 0.000 & 1.356 \\
\hline 1985 & 0.009 & 0.043 & 0.186 & 0.371 & 0.550 & 0.563 & 0.565 & 1.234 & 1.315 & 1.319 & 1.400 & 0.000 & 0.000 & 0.000 & 0.000 & \({ }^{0.000}\) & 1.319 \\
\hline 1986 & 0.010 & 0.040 & 0.186 & 0.375 & 0.626 & 1.259 & 1.225 & 1.234 & 1.315 & 1.319 & 1.400 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.328 \\
\hline 1987 & 0.006 & 0.038 & 0.258 & 0.442 & 0.908 & 1.171 & 1.225 & 1.234 & 1.315 & 1.319 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.316 \\
\hline 1988 & 0.018 & 0.077 & 0.196 & 0.274 & 0.455 & 0.549 & 1.225 & 1.234 & 1.315 & 1.319 & 1.400 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.330 \\
\hline 1989 & 0.015 & 0.165 & 0.251 & 0.347 & 0.670 & 0.923 & 1.065 & 1.492 & 1.315 & 0.000 & 1.400 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.329 \\
\hline 1990 & 0.005 & 0.104 & 0.229 & 0.506 & 0.609 & 0.842 & 0.829 & 0.796 & 0.956 & 1.319 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.956 \\
\hline 1991 & 0.027 & 0.058 & 0.206 & 0.357 & 0.472 & 0.477 & 1.225 & 1.234 & 1.315 & 1.319 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.316 \\
\hline 1992 & 0.015 & 0.059 & 0.217 & 0.422 & 0.552 & 0.615 & 0.548 & 1.234 & 0.621 & 0.820 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.659 \\
\hline 1993 & 0.008 & 0.053 & 0.206 & 0.399 & 0.521 & 0.578 & 1.225 & 0.582 & 1.315 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.315 \\
\hline 1994 & 0.011 & 0.055 & 0.155 & 0.435 & 0.595 & 0.698 & 0.490 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1995 & 0.012 & 0.045 & 0.193 & 0.285 & 0.387 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1996 & \({ }_{0}^{0.018}\) & 0.077 & 0.136 & 0.162 & 0.264 & 0.000 & 0.000 & 0.000 & 0.000 & \({ }^{0.000}\) & \({ }^{0.000}\) & \({ }^{0.000}\) & 0.000 & 0.000 & \({ }^{0.000}\) & \({ }^{0.000}\) & 0.000 \\
\hline 1997 & 0.007 & 0.076 & 0.149 & 0.309 & 0.419 & 0.601 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 1998 & 0.020 & 0.075 & 0.166 & 0.291 & 0.351 & 0.453 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & \({ }^{0.000}\) & 0.000 \\
\hline 1999 & 0.018 & 0.064 & 0.177 & 0.304 & 0.416 & 0.309 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 2000 & 0.058 & 0.070 & 0.113 & 0.176 & 0.370 & 0.203 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 2001 & 0.014 & 0.086 & 0.133 & 0.110 & 0.353 & 0.431 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 2002 & 0.016 & 0.064 & 0.178 & 0.283 & 0.374 & 0.431 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 2003 & 0.012 & 0.031 & 0.056 & 0.231 & 0.326 & 0.339 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 2004 & 0.000 & 0.116 & 0.183 & 0.255 & 0.276 & 0.446 & 0.539 & 0.840 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 2005 & 0.000 & 0.107 & 0.187 & 0.239 & 0.268 & 0.287 & 0.598 & 0.619 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 2006 & 0.000 & 0.127 & 0.232 & 0.273 & 0.273 & 0.280 & 0.283 & 0.286 & 0.287 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.287 \\
\hline 2007 & 0.035 & 0.141 & 0.192 & 0.290 & 0.315 & \[
0.370
\] & \[
0.427
\] & \[
0.342
\] & 0.368 & \[
0.400
\] & 0.000 & 0.000 & 0.000 & \[
0.000
\] & 0.000 & \({ }_{0}^{0.000}\) & 0.368 \\
\hline 2008 & 0.042 & 0.146 & 0.291 & 0.388 & 0.454 & 0.526 & 0.414 & 0.406 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}

Table 13.2.5.1. Haddock in Subarea IV and Division IIIa. Data available for calibration of the assessment. Data used in the final assessment are highlighted in bold.
EngGFS Q3 GRT. Period: 0.5-0.75
\begin{tabular}{lrrrrrrrrr} 
\\
& Effort & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1977 & 100 & \(\mathbf{5 3 . 4 8}\) & \(\mathbf{6 . 6 8 1}\) & \(\mathbf{3 . 2 0 6}\) & \(\mathbf{6 . 1 6 3}\) & \(\mathbf{0 . 9 2 5}\) & \(\mathbf{0 . 0 7 3}\) & \(\mathbf{0 . 0 9 1}\) & 0.013 \\
1978 & 100 & \(\mathbf{3 5 . 8 2 7}\) & \(\mathbf{1 3 . 6 8 8}\) & \(\mathbf{2 . 6 1 8}\) & \(\mathbf{0 . 2 3 9}\) & \(\mathbf{2 . 2 2}\) & \(\mathbf{0 . 2 1 4}\) & \(\mathbf{0 . 0 0 5}\) & 0.074 \\
1979 & 100 & \(\mathbf{8 7 . 5 5 1}\) & \(\mathbf{2 9 . 5 5 5}\) & \(\mathbf{5 . 4 6 1}\) & \(\mathbf{0 . 8 7 2}\) & \(\mathbf{0 . 1 0 8}\) & \(\mathbf{0 . 4 3 8}\) & \(\mathbf{0 . 0 3 5}\) & 0.005 \\
1980 & 100 & \(\mathbf{3 7 . 4 0 3}\) & \(\mathbf{6 2 . 3 3 1}\) & \(\mathbf{1 6 . 7 3 2}\) & \(\mathbf{2 . 5 7}\) & \(\mathbf{0 . 2 7 3}\) & \(\mathbf{0 . 0 4 2}\) & \(\mathbf{0 . 1 4 2}\) & 0.022 \\
1981 & 100 & \(\mathbf{1 5 3 . 7 4 6}\) & \(\mathbf{1 7 . 3 1 8}\) & \(\mathbf{4 3 . 9 1}\) & \(\mathbf{7 . 5 5 7}\) & \(\mathbf{0 . 7 4 2}\) & \(\mathbf{0 . 0 6 4}\) & \(\mathbf{0 . 0 0 3}\) & 0.061 \\
1982 & 100 & \(\mathbf{2 8 . 1 3 4}\) & \(\mathbf{3 1 . 5 4 6}\) & \(\mathbf{7 . 9 8}\) & \(\mathbf{1 1 . 8}\) & \(\mathbf{1 . 0 2 5}\) & \(\mathbf{0 . 2 3 7}\) & \(\mathbf{0 . 0 9 8}\) & 0.015 \\
1983 & 100 & \(\mathbf{8 3 . 1 9 3}\) & \(\mathbf{2 1 . 8 2}\) & \(\mathbf{1 0 . 9 5 2}\) & \(\mathbf{2 . 1 4 3}\) & \(\mathbf{2 . 1 7 4}\) & \(\mathbf{0 . 2 6 5}\) & \(\mathbf{0 . 0 4}\) & 0.013 \\
1984 & 100 & \(\mathbf{2 2 . 8 4 7}\) & \(\mathbf{5 9 . 9 3 3}\) & \(\mathbf{6 . 1 5 9}\) & \(\mathbf{3 . 0 7 8}\) & \(\mathbf{0 . 4 1 8}\) & \(\mathbf{0 . 4 7 8}\) & \(\mathbf{0 . 1 0 3}\) & 0.013 \\
1985 & 100 & \(\mathbf{2 4 . 5 8 7}\) & \(\mathbf{1 8 . 6 5 6}\) & \(\mathbf{2 3 . 8 1 9}\) & \(\mathbf{2 . 1 1 1}\) & \(\mathbf{0 . 6 9 8}\) & \(\mathbf{0 . 1 9 6}\) & \(\mathbf{0 . 1 2 8}\) & 0.041 \\
1986 & 100 & \(\mathbf{2 6 . 6}\) & \(\mathbf{1 4 . 9 7 4}\) & \(\mathbf{4 . 4 7 2}\) & \(\mathbf{3 . 3 8 2}\) & \(\mathbf{0 . 2 7 7}\) & \(\mathbf{0 . 1 7 5}\) & \(\mathbf{0 . 0 3 8}\) & 0.036 \\
1987 & 100 & \(\mathbf{2 . 2 4 1}\) & \(\mathbf{2 8 . 1 9 4}\) & \(\mathbf{4 . 3 1}\) & \(\mathbf{0 . 5 3 2}\) & \(\mathbf{0 . 6 8 6}\) & \(\mathbf{0 . 0 4 8}\) & \(\mathbf{0 . 0 3 3}\) & 0.003 \\
1988 & 100 & \(\mathbf{6 . 0 7 3}\) & \(\mathbf{2 . 8 5 6}\) & \(\mathbf{1 8 . 3 5 2}\) & \(\mathbf{1 . 5 4 9}\) & \(\mathbf{0 . 1 6}\) & \(\mathbf{0 . 2 7 9}\) & \(\mathbf{0 . 0 4 1}\) & 0.012 \\
1989 & 100 & \(\mathbf{9 . 4 2 8}\) & \(\mathbf{8 . 1 6 8}\) & \(\mathbf{1 . 4 4 7}\) & \(\mathbf{3 . 9 6 8}\) & \(\mathbf{0 . 2 5 3}\) & \(\mathbf{0 . 0 3 1}\) & \(\mathbf{0 . 0 6 1}\) & 0.014 \\
1990 & 100 & \(\mathbf{2 8 . 1 8 8}\) & \(\mathbf{6 . 6 4 5}\) & \(\mathbf{1 . 9 8 3}\) & \(\mathbf{0 . 2 8 7}\) & \(\mathbf{0 . 8 7 8}\) & \(\mathbf{0 . 0 4 8}\) & \(\mathbf{0 . 0 2 6}\) & 0.012 \\
1991 & 100 & \(\mathbf{2 6 . 3 3 3}\) & \(\mathbf{1 1 . 5 0 5}\) & \(\mathbf{0 . 9 6 1}\) & \(\mathbf{0 . 2 3 1}\) & \(\mathbf{0 . 0 4 8}\) & \(\mathbf{0 . 2 1 9}\) & \(\mathbf{0 . 0 0 5}\) & 0.007
\end{tabular}

EngGFS Q3 GOV. Period: 0.5-0.75.
\begin{tabular}{ll}
\multicolumn{2}{c}{ Effort } \\
1992 & 10 \\
1993 & 10 \\
1994 & 10 \\
1995 & 10 \\
1996 & 10 \\
1997 & 10 \\
1998 & 10 \\
1999 & 10 \\
2000 & 10 \\
2001 & 10 \\
2002 & 10 \\
2003 & 10 \\
2004 & 10 \\
2005 & 10 \\
2006 & 10 \\
2007 & 10 \\
2008 & 10
\end{tabular}

Table 13.2.5.1. Haddock in Subarea IV and Division IIIa. Data available for calibration of the assessment. Data used in the final assessment are highlighted in bold.

ScoGFS Aberdeen Q3. Period: 0.5-0.75.
\begin{tabular}{lrrrrrr}
\multicolumn{2}{c}{ Effort } & & 0 & 1 & 2 & 3 \\
1982 & 100 & \(\mathbf{1 2 3 5}\) & \(\mathbf{2 4 8 8}\) & \(\mathbf{9 9 6}\) & \(\mathbf{1 3 3 6}\) & \(\mathbf{1 1 5}\) \\
1983 & 100 & \(\mathbf{2 2 0 3}\) & \(\mathbf{1 8 1 3}\) & \(\mathbf{1 6 1 1}\) & \(\mathbf{3 7 2}\) & \(\mathbf{4 5 5}\) \\
1984 & 100 & \(\mathbf{8 7 3}\) & \(\mathbf{4 3 6 7}\) & \(\mathbf{7 8 8}\) & \(\mathbf{3 3 6}\) & \(\mathbf{5 5}\) \\
1985 & 100 & \(\mathbf{8 1 8}\) & \(\mathbf{1 9 7 6}\) & \(\mathbf{2 9 8 1}\) & \(\mathbf{2 3 2}\) & \(\mathbf{1 0 3}\) \\
1986 & 100 & \(\mathbf{1 7 4 7}\) & \(\mathbf{2 3 2 9}\) & \(\mathbf{5 7 4}\) & \(\mathbf{5 9 8}\) & \(\mathbf{3 6}\) \\
1987 & 100 & \(\mathbf{2 7 7}\) & \(\mathbf{2 3 9 3}\) & \(\mathbf{7 0 4}\) & \(\mathbf{1 0 6}\) & \(\mathbf{1 2 8}\) \\
1988 & 100 & \(\mathbf{4 0 6}\) & \(\mathbf{4 6 7}\) & \(\mathbf{1 9 8 2}\) & \(\mathbf{1 7 0}\) & \(\mathbf{2 7}\) \\
1989 & 100 & \(\mathbf{4 3 2}\) & \(\mathbf{8 8 6}\) & \(\mathbf{2 1 4}\) & \(\mathbf{5 7 4}\) & \(\mathbf{3 1}\) \\
1990 & 100 & \(\mathbf{3 1 6 3}\) & \(\mathbf{1 0 0 2}\) & \(\mathbf{2 4 0}\) & \(\mathbf{3 2}\) & \(\mathbf{1 0 3}\) \\
1991 & 100 & \(\mathbf{3 4 7 1}\) & \(\mathbf{1 7 0 5}\) & \(\mathbf{1 7 8}\) & \(\mathbf{2 1}\) & \(\mathbf{5}\) \\
1992 & 100 & \(\mathbf{8 2 7 0}\) & \(\mathbf{3 8 3 2}\) & \(\mathbf{9 6 3}\) & \(\mathbf{4 8}\) & \(\mathbf{8}\) \\
1993 & 100 & \(\mathbf{8 5 9}\) & \(\mathbf{5 8 3 6}\) & \(\mathbf{1 3 8 0}\) & \(\mathbf{2 6 9}\) & \(\mathbf{6}\) \\
1994 & 100 & \(\mathbf{1 3 7 6 2}\) & \(\mathbf{1 2 6 5}\) & \(\mathbf{2 0 8 0}\) & \(\mathbf{2 1 0}\) & \(\mathbf{5 3}\) \\
1995 & 100 & \(\mathbf{1 5 6 6}\) & \(\mathbf{8 1 5 3}\) & \(\mathbf{7 3 4}\) & \(\mathbf{9 2 6}\) & \(\mathbf{7 4}\) \\
1996 & 100 & \(\mathbf{1 9 8 0}\) & \(\mathbf{2 2 3 1}\) & \(\mathbf{4 7 0 5}\) & \(\mathbf{2 3 1}\) & \(\mathbf{2 0 6}\) \\
1997 & 100 & \(\mathbf{9 7 2}\) & \(\mathbf{2 7 7 9}\) & \(\mathbf{8 4 9}\) & \(\mathbf{1 3 9 7}\) & \(\mathbf{6 6}\)
\end{tabular}
\begin{tabular}{rrr}
5 & 6 & 7 \\
\(\mathbf{7}\) & \(\mathbf{2}\) & 1 \\
\(\mathbf{5 3}\) & \(\mathbf{1 2}\) & 1 \\
\(\mathbf{6 5}\) & \(\mathbf{9}\) & 5 \\
\(\mathbf{1 4}\) & \(\mathbf{2 2}\) & 4 \\
\(\mathbf{2 7}\) & \(\mathbf{4}\) & 3 \\
\(\mathbf{8}\) & \(\mathbf{5}\) & 1 \\
\(\mathbf{2 3}\) & \(\mathbf{2}\) & 1 \\
\(\mathbf{4}\) & \(\mathbf{7}\) & 1 \\
\(\mathbf{7}\) & \(\mathbf{1}\) & 3 \\
\(\mathbf{1 6}\) & \(\mathbf{2}\) & 0 \\
\(\mathbf{3}\) & \(\mathbf{8}\) & 0 \\
\(\mathbf{4}\) & \(\mathbf{1}\) & 3 \\
\(\mathbf{2}\) & \(\mathbf{0}\) & 0 \\
\(\mathbf{2 8}\) & \(\mathbf{2}\) & 0 \\
\(\mathbf{2 2}\) & \(\mathbf{6}\) & 0 \\
\(\mathbf{5 6}\) & \(\mathbf{6}\) & 0
\end{tabular}

ScoGFS Q3 GOV. Period: 0.5-0.75
\begin{tabular}{lrrr} 
Effort & & 0 & 1 \\
1998 & 100 & \(\mathbf{3 2 8 0}\) & \(\mathbf{6 3 4 9}\) \\
1999 & 100 & \(\mathbf{6 6 0 6 7}\) & \(\mathbf{1 9 0 7}\) \\
2000 & 100 & \(\mathbf{1 1 9 0 2}\) & \(\mathbf{3 0 6 1 1}\) \\
2001 & 100 & \(\mathbf{7 9}\) & \(\mathbf{3 7 9 0}\) \\
2002 & 100 & \(\mathbf{2 1 4 9}\) & \(\mathbf{6 7 5}\) \\
2003 & 100 & \(\mathbf{2 1 5 9}\) & \(\mathbf{1 1 7 2}\) \\
2004 & 100 & \(\mathbf{1 7 2 9}\) & \(\mathbf{1 1 9 8}\) \\
2005 & 100 & \(\mathbf{1 9 7 0 8}\) & \(\mathbf{7 6 1}\) \\
2006 & 100 & \(\mathbf{2 2 8 0}\) & \(\mathbf{7 2 7 5}\) \\
2007 & 100 & \(\mathbf{1 1 9}\) & \(\mathbf{1 8 1 0}\) \\
2008 & 100 & \(\mathbf{1 8 8 5}\) & \(\mathbf{7 3 3}\)
\end{tabular}
\begin{tabular}{rr}
2 & 3 \\
1924 & 490 \\
1141 & \(\mathbf{6 8 8}\) \\
\(\mathbf{4 6 0}\) & \(\mathbf{2 2 1}\) \\
11352 & \(\mathbf{1 7 9}\) \\
2632 & \(\mathbf{6 9 3 1}\) \\
\(\mathbf{3 0 7}\) & \(\mathbf{2 0 9 2}\) \\
\(\mathbf{5 4 7}\) & \(\mathbf{1 0 1}\) \\
657 & \(\mathbf{1 5 3}\) \\
272 & \(\mathbf{1 5 8}\) \\
\(\mathbf{5 5 2 7}\) & \(\mathbf{1 1 7}\) \\
\(\mathbf{1 0 0 2}\) & 2424
\end{tabular}
\begin{tabular}{rr}
4 & 5 \\
511 & 24 \\
197 & \(\mathbf{1 6 4}\) \\
130 & 73 \\
65 & 40 \\
70 & 37 \\
4344 & 22 \\
819 & \(\mathbf{1 4 2 0}\) \\
112 & 347 \\
33 & 14 \\
57 & 11 \\
28 & 24
\end{tabular}
\begin{tabular}{rrr}
6 & 7 & 8 \\
\(\mathbf{1 8}\) & 2 & 1 \\
\(\mathbf{6}\) & 7 & 1 \\
\(\mathbf{2 7}\) & 4 & 3 \\
\(\mathbf{1 8}\) & 14 & 1 \\
\(\mathbf{1 8}\) & 3 & 3 \\
\(\mathbf{1 7}\) & 8 & 2 \\
\(\mathbf{9}\) & 1 & 1 \\
\(\mathbf{4 8 3}\) & 4 & 3 \\
\(\mathbf{7 3}\) & 227 & 2 \\
\(\mathbf{5}\) & 38 & 36 \\
\(\mathbf{6}\) & 2 & 8
\end{tabular}

IBTS Q1. Period 0.0-0.25
\begin{tabular}{lrrrrrrr}
\multicolumn{1}{c}{ Effort } & & 1 & 2 & 3 & 4 & 5 & 6 \\
1983 & 100 & \(\mathbf{3 0 2 . 2 7 8}\) & \(\mathbf{4 0 3 . 0 7 9}\) & \(\mathbf{8 9 . 4 6 3}\) & \(\mathbf{1 1 6 . 4 4 7}\) & \(\mathbf{1 3 . 1 8 2}\) & 2.046 \\
1984 & 100 & \(\mathbf{1 0 7 2 . 2 8 5}\) & \(\mathbf{2 2 1 . 2 7 5}\) & \(\mathbf{1 2 7 . 7 7}\) & \(\mathbf{2 0 . 4 1}\) & \(\mathbf{2 0 . 9}\) & 4.608 \\
1985 & 100 & \(\mathbf{2 3 0 . 9 6 8}\) & \(\mathbf{8 3 3 . 2 5 7}\) & \(\mathbf{1 0 7 . 5 9 8}\) & \(\mathbf{3 2 . 3 1 7}\) & \(\mathbf{3 . 5 7 5}\) & 6.567 \\
1986 & 100 & \(\mathbf{5 7 3 . 0 2 3}\) & \(\mathbf{2 6 6 . 9 1 2}\) & \(\mathbf{3 0 3 . 5 4 6}\) & \(\mathbf{1 7 . 8 8 8}\) & \(\mathbf{6 . 4 9}\) & 2.15 \\
1987 & 100 & \(\mathbf{9 1 2 . 5 5 9}\) & \(\mathbf{3 2 8 . 0 6 2}\) & \(\mathbf{4 5 . 2 0 1}\) & \(\mathbf{5 8 . 2 6 2}\) & \(\mathbf{4 . 3 4 5}\) & 2.434 \\
1988 & 100 & \(\mathbf{1 0 1 . 6 9 1}\) & \(\mathbf{6 7 7 . 6 4 1}\) & \(\mathbf{9 7 . 1 4 9}\) & \(\mathbf{1 2 . 6 8 4}\) & \(\mathbf{1 3 . 9 6 5}\) & 2.072 \\
1989 & 100 & \(\mathbf{2 1 9 . 7 0 5}\) & \(\mathbf{9 8 . 0 9 1}\) & \(\mathbf{2 7 4 . 7 8 8}\) & \(\mathbf{1 6 . 6 5 3}\) & \(\mathbf{2 . 1 1 3}\) & 4.697 \\
1990 & 100 & \(\mathbf{2 1 7 . 4 4 8}\) & \(\mathbf{1 3 9 . 1 1 4}\) & \(\mathbf{3 2 . 9 9 7}\) & \(\mathbf{5 0 . 3 6 7}\) & \(\mathbf{3 . 1 6 3}\) & 1.801 \\
1991 & 100 & \(\mathbf{6 8 0 . 2 3 1}\) & \(\mathbf{1 3 4 . 0 7 6}\) & \(\mathbf{2 5 . 0 3 2}\) & \(\mathbf{4 . 2 6}\) & \(\mathbf{8 . 4 7 6}\) & 2.43 \\
1992 & 100 & \(\mathbf{1 1 4 1 . 3 9 6}\) & \(\mathbf{3 3 1 . 0 4 4}\) & \(\mathbf{1 7 . 0 3 5}\) & \(\mathbf{3 . 0 2 6}\) & \(\mathbf{0 . 6 6 4}\) & 2.202 \\
1993 & 100 & \(\mathbf{1 2 4 2 . 1 2 1}\) & \(\mathbf{5 1 9 . 5 2 1}\) & \(\mathbf{1 5 2 . 3 8 4}\) & \(\mathbf{8 . 8 4 8}\) & \(\mathbf{1 . 0 7 6}\) & 0.953 \\
1994 & 100 & \(\mathbf{2 2 7 . 9 1 9}\) & \(\mathbf{4 9 1 . 0 5 1}\) & \(\mathbf{9 7 . 6 5 6}\) & \(\mathbf{2 3 . 3 0 8}\) & \(\mathbf{1 . 5 6 6}\) & 0.788 \\
1995 & 100 & \(\mathbf{1 3 5 5 . 4 8 5}\) & \(\mathbf{2 0 1 . 0 6 9}\) & \(\mathbf{1 7 6 . 1 6 5}\) & \(\mathbf{2 4 . 3 5 4}\) & \(\mathbf{5 . 2 8 6}\) & 0.816 \\
1996 & 100 & \(\mathbf{2 6 7 . 4 1 1}\) & \(\mathbf{8 1 3 . 2 6 8}\) & \(\mathbf{6 5 . 8 6 9}\) & \(\mathbf{4 6 . 6 9 1}\) & \(\mathbf{7 . 7 3 4}\) & 3.061 \\
1997 & 100 & \(\mathbf{8 4 9 . 9 4 3}\) & \(\mathbf{3 5 3 . 8 8 2}\) & \(\mathbf{4 6 6 . 7 3 1}\) & \(\mathbf{2 4 . 9 8 7}\) & \(\mathbf{1 5 . 2 3 8}\) & 3.429 \\
1998 & 100 & \(\mathbf{3 5 7 . 5 9 7}\) & \(\mathbf{4 2 0 . 9 2 6}\) & \(\mathbf{1 0 3 . 5 3 1}\) & \(\mathbf{1 1 2 . 6 3 2}\) & \(\mathbf{8 . 7 5 8}\) & 5.412 \\
1999 & 100 & \(\mathbf{2 1 1 . 1 3 9}\) & \(\mathbf{2 2 2 . 9 0 7}\) & \(\mathbf{1 2 7 . 0 6 4}\) & \(\mathbf{4 8 . 2 1 7}\) & \(\mathbf{3 6 . 6 5}\) & 4.35 \\
2000 & 100 & \(\mathbf{3 7 3 4 . 1 8 5}\) & \(\mathbf{1 0 7 . 0 6}\) & \(\mathbf{4 8 . 6 3 8}\) & \(\mathbf{2 4 . 5 4 9}\) & \(\mathbf{1 5 . 5 8 9}\) & 10.052 \\
2001 & 100 & \(\mathbf{8 9 4 . 6 5 1}\) & \(\mathbf{2 2 5 5 . 2 1 3}\) & \(\mathbf{4 7 . 8 9 9}\) & \(\mathbf{1 0 . 9 6 2}\) & \(\mathbf{7 . 2 1 8}\) & 5.76 \\
2002 & 100 & \(\mathbf{5 8 . 2 1 1}\) & \(\mathbf{4 9 2 . 2 9 9}\) & \(\mathbf{1 3 8 7 . 8 7 7}\) & \(\mathbf{1 0 . 0 1}\) & \(\mathbf{7 . 4 5 7}\) & 4.344 \\
2003 & 100 & \(\mathbf{8 9 . 9 5 8}\) & \(\mathbf{3 8 . 5 8 5}\) & \(\mathbf{2 5 1 . 2 7 1}\) & \(\mathbf{5 2 4 . 1 4 4}\) & \(\mathbf{4 . 2 7 5}\) & 2.364 \\
2004 & 100 & \(\mathbf{7 1 . 8 7 5}\) & \(\mathbf{7 9 . 6 2 2}\) & \(\mathbf{3 5 . 4 7 3}\) & \(\mathbf{1 7 3 . 5 8 9}\) & \(\mathbf{3 3 0 . 0 1 1}\) & 1.065 \\
2005 & 100 & \(\mathbf{6 9 . 9 7 6}\) & \(\mathbf{6 0 . 9 9 3}\) & \(\mathbf{3 2 . 6 2 5}\) & \(\mathbf{1 0 . 9 9 7}\) & \(\mathbf{6 1 . 2 8 7}\) & 95.689 \\
2006 & 100 & \(\mathbf{1 2 1 2 . 1 6 3}\) & \(\mathbf{4 7 . 7 8 4}\) & \(\mathbf{2 8 . 5 7 6}\) & \(\mathbf{8 . 9 7 7}\) & \(\mathbf{4 . 4 0 4}\) & 53.175 \\
2007 & 100 & \(\mathbf{1 0 9 . 0 9 6}\) & \(\mathbf{9 6 3 . 3 2 5}\) & \(\mathbf{3 6 . 6 0 9}\) & \(\mathbf{1 5 . 4 8 3}\) & \(\mathbf{3 . 3 7 4}\) & 21.385 \\
2008 & 100 & \(\mathbf{6 0 . 1 1 5}\) & \(\mathbf{1 0 6 . 4 8 9}\) & \(\mathbf{2 3 9 . 3 1 5}\) & \(\mathbf{1 4 . 7 8 3}\) & \(\mathbf{1 . 5 5 4}\) & 6.332 \\
2009 & 100 & \(\mathbf{7 4 . 7 5}\) & \(\mathbf{1 3 9 . 8 7 1}\) & \(\mathbf{1 0 2 . 9 6 8}\) & \(\mathbf{1 3 5 . 7 4 8}\) & \(\mathbf{2 . 5 2 3}\) & 2.26
\end{tabular}

Table 13.2.5.1. Haddock in Subarea IV and Division IIIa. Data available for calibration of the assessment. Data used in the final assessment are highlighted in bold. ScoLTR_IV. Period: 0-1
\begin{tabular}{lrrrrrrr}
\multicolumn{2}{c}{ Effort } & 1 & 2 & 3 & 4 & 5 & 6 \\
1978 & 236929 & 45733 & 11471 & 2914 & 12279 & 774 & 110 \\
1979 & 287494 & 44562 & 23135 & 4109 & 714 & 3644 & 203 \\
1980 & 333197 & 92519 & 46282 & 8062 & 755 & 197 & 1015 \\
1981 & 251504 & 7979 & 58146 & 13653 & 1518 & 161 & 20 \\
1982 & 250870 & 24575 & 10170 & 33463 & 3937 & 133 & 67 \\
1983 & 244349 & 19635 & 48680 & 6955 & 11807 & 1258 & 124 \\
1984 & 240725 & 56769 & 22191 & 13375 & 2074 & 3392 & 402 \\
1985 & 268136 & 38850 & 57422 & 4913 & 2787 & 414 & 872 \\
1986 & 279767 & 26322 & 26549 & 32339 & 2797 & 1014 & 124 \\
1987 & 351128 & 26220 & 33648 & 6464 & 7197 & 496 & 377 \\
1988 & 391988 & 2931 & 57589 & 14075 & 2367 & 2924 & 167 \\
1989 & 405883 & 10415 & 2919 & 24895 & 2754 & 541 & 627 \\
1990 & 441084 & 11886 & 19205 & 2665 & 10237 & 669 & 168 \\
1991 & 408056 & 44141 & 12394 & 3356 & 564 & 2213 & 226 \\
1992 & 473955 & 20443 & 31073 & 3889 & 757 & 144 & 766 \\
1993 & 447064 & 39863 & 39176 & 20213 & 1527 & 362 & 84 \\
1994 & 480400 & 8267 & 49047 & 23557 & 6304 & 474 & 128 \\
1995 & 442010 & 22874 & 13762 & 32063 & 5821 & 1658 & 97 \\
1996 & 445995 & 14281 & 72692 & 9860 & 13959 & 2041 & 955 \\
1997 & 479449 & 15907 & 13451 & 49548 & 3537 & 4511 & 553 \\
1998 & 427868 & 27498 & 33166 & 9597 & 29614 & 1666 & 1228 \\
1999 & 329750 & 24475 & 36849 & 24426 & 5531 & 11752 & 841 \\
2000 & 280938 & 64710 & 15038 & 11707 & 7061 & 1300 & 2593 \\
2001 & 245489 & 15567 & 173376 & 6323 & 2897 & 1253 & 365 \\
2002 & 184096 & 982 & 11514 & 53313 & 1738 & 664 & 395 \\
2003 & 98723 & 2804 & 3186 & 10931 & 30249 & 601 & 235 \\
2004 & 63953 & 1114 & 3797 & 1602 & 6436 & 18851 & 243 \\
2005 & 54905 & 1571 & 4512 & 2971 & 760 & 5634 & 11540 \\
2006 & 51816 & 154 & 1583 & 2445 & 1042 & 492 & 2412 \\
2007 & 50035 & 13 & 4240 & 1359 & 1104 & 385 & 225 \\
2008 & 56311 & 7 & 537 & 8424 & 764 & 289 & 121
\end{tabular}
\begin{tabular}{rr}
7 & 8 \\
167 & 24 \\
20 & 57 \\
61 & 18 \\
320 & 12 \\
7 & 58 \\
27 & 4 \\
98 & 15 \\
128 & 27 \\
307 & 43 \\
72 & 119 \\
84 & 28 \\
109 & 30 \\
264 & 45 \\
80 & 146 \\
98 & 52 \\
274 & 29 \\
42 & 64 \\
15 & 13 \\
304 & 10 \\
163 & 13 \\
173 & 46 \\
579 & 94 \\
174 & 83 \\
444 & 62 \\
165 & 218 \\
123 & 56 \\
68 & 26 \\
42 & 30 \\
5486 & 32 \\
697 & 1062 \\
59 & 206
\end{tabular}
\begin{tabular}{rrrrr}
9 & 10 & 11 & 12 & \(13+\) \\
4 & 0 & 5 & 1 & 0 \\
20 & 0 & 0 & 1 & 0 \\
8 & 5 & 0 & 0 & 0 \\
6 & 7 & 6 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
25 & 7 & 0 & 0 & 2 \\
7 & 14 & 1 & 0 & 0 \\
2 & 0 & 18 & 0 & 0 \\
37 & 2 & 2 & 2 & 3 \\
27 & 2 & 4 & 3 & 4 \\
21 & 6 & 0 & 0 & 0 \\
21 & 7 & 4 & 1 & 1 \\
14 & 5 & 2 & 1 & 0 \\
38 & 16 & 2 & 1 & 0 \\
58 & 17 & 3 & 1 & 0 \\
27 & 26 & 8 & 2 & 1 \\
13 & 7 & 7 & 2 & 2 \\
17 & 3 & 2 & 1 & 1 \\
14 & 7 & 1 & 2 & 1 \\
2 & 2 & 1 & 1 & 1 \\
4 & 1 & 1 & 0 & 1 \\
9 & 2 & 0 & 0 & 0 \\
8 & 2 & 1 & 0 & 0 \\
17 & 9 & 0 & 0 & 0 \\
94 & 5 & 4 & 2 & 0 \\
35 & 15 & 2 & 1 & 0 \\
17 & 11 & 3 & 0 & 0 \\
11 & 2 & 2 & 1 & 0 \\
10 & 7 & 2 & 3 & 0 \\
3 & 1 & 0 & 0 & 0 \\
341 & 3 & 1 & 0 & 0
\end{tabular}

Table 13.2.5.1. Haddock in Subarea IV and Division IIIa. Data available for calibration of the assessment. Data used in the final assessment are highlighted in bold. ScoSEI_IV. Period: 0-1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Effort} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13+ \\
\hline 1978 & 325246 & 160843 & 69033 & 14340 & 44152 & 2366 & 482 & 673 & 86 & 29 & 3 & 16 & 6 & 0 \\
\hline 1979 & 316419 & 83631 & 78815 & 17215 & 3040 & 8073 & 648 & 70 & 113 & 24 & 4 & 1 & 1 & 0 \\
\hline 1980 & 297227 & 131314 & 128306 & 26205 & 3393 & 501 & 2415 & 123 & 20 & 56 & 23 & 13 & 1 & 1 \\
\hline 1981 & 289672 & 10367 & 134260 & 55726 & 5181 & 702 & 102 & 579 & 15 & 22 & 1 & 10 & 2 & 0 \\
\hline 1982 & 297730 & 31143 & 30969 & 118898 & 14297 & 682 & 145 & 39 & 230 & 1 & 9 & 1 & 0 & 0 \\
\hline 1983 & 333168 & 29021 & 77289 & 30414 & 50115 & 6394 & 583 & 119 & 15 & 69 & 26 & 1 & 2 & 0 \\
\hline 1984 & 388085 & 120868 & 63391 & 49286 & 9426 & 14977 & 1594 & 254 & 18 & 8 & 38 & 3 & 2 & 0 \\
\hline 1985 & 382910 & 29239 & 164839 & 33203 & 15993 & 2293 & 2846 & 308 & 47 & 19 & 9 & 28 & 2 & 0 \\
\hline 1986 & 425017 & 33999 & 72604 & 155836 & 12895 & 4169 & 490 & 620 & 58 & 11 & 20 & 15 & 11 & 3 \\
\hline 1987 & 418734 & 43646 & 97731 & 19731 & 28883 & 1989 & 1174 & 199 & 285 & 31 & 16 & 15 & 12 & 7 \\
\hline 1988 & 377132 & 11576 & 201533 & 37421 & 4736 & 7415 & 718 & 290 & 80 & 70 & 27 & 6 & 6 & 7 \\
\hline 1989 & 355735 & 19004 & 19274 & 91070 & 8389 & 1091 & 1611 & 223 & 89 & 40 & 13 & 6 & 4 & 1 \\
\hline 1990 & 300076 & 35844 & 46489 & 9055 & 26705 & 1434 & 302 & 408 & 67 & 29 & 5 & 3 & 0 & 0 \\
\hline 1991 & 336675 & 66144 & 30755 & 9531 & 1485 & 5028 & 308 & 122 & 183 & 42 & 11 & 1 & 1 & 0 \\
\hline 1992 & 300217 & 30384 & 64733 & 8588 & 1512 & 290 & 1180 & 79 & 57 & 53 & 18 & 4 & 0 & 1 \\
\hline 1993 & 268413 & 74523 & 88375 & 34997 & 2349 & 446 & 100 & 314 & 29 & 15 & 14 & 3 & 0 & 1 \\
\hline 1994 & 264738 & 26626 & 125357 & 34127 & 10522 & 415 & 138 & 42 & 95 & 9 & 7 & 7 & 2 & 1 \\
\hline 1995 & 204545 & 67772 & 32301 & 70290 & 8734 & 2181 & 117 & 39 & 13 & 9 & 4 & 2 & 3 & 1 \\
\hline 1996 & 177092 & 9192 & 123829 & 18532 & 17077 & 2161 & 707 & 84 & 12 & 8 & 11 & 3 & 2 & 1 \\
\hline 1997 & 166817 & 30046 & 19165 & 59309 & 3918 & 4083 & 495 & 195 & 10 & 7 & 2 & 0 & 0 & 2 \\
\hline 1998 & 150361 & 12692 & 36813 & 12003 & 26564 & 1659 & 856 & 69 & 22 & 4 & 2 & 2 & 0 & 0 \\
\hline 1999 & 93796 & 23253 & 35102 & 21991 & 6628 & 11164 & 690 & 456 & 56 & 12 & 0 & 1 & 0 & 0 \\
\hline 2000 & 69505 & 46422 & 13650 & 8497 & 5610 & 1761 & 2357 & 110 & 41 & 4 & 1 & 0 & 0 & 0 \\
\hline 2001 & 36135 & 3973 & 91165 & 4469 & 1720 & 799 & 273 & 263 & 27 & 18 & 1 & 1 & 0 & 0 \\
\hline 2002 & 21817 & 708 & 10089 & 45219 & 1177 & 400 & 169 & 61 & 45 & 15 & 1 & 1 & 0 & 0 \\
\hline 2003 & 15374 & 395 & 1312 & 8571 & 23778 & 346 & 80 & 32 & 11 & 4 & 5 & 2 & 0 & 0 \\
\hline 2004 & 15674 & 3711 & 6459 & 868 & 9719 & 24783 & 125 & 19 & 4 & 4 & 3 & 1 & 0 & 0 \\
\hline 2005 & 16149 & 1841 & 3189 & 3210 & 491 & 5839 & 14660 & 26 & 2 & 6 & 1 & 1 & 0 & 0 \\
\hline 2006 & 13539 & 206 & 1348 & 2163 & 1119 & 433 & 2336 & 6209 & 20 & 1 & 0 & 0 & 0 & 0 \\
\hline 2007 & 20241 & 45 & 4796 & 1765 & 1281 & 468 & 136 & 878 & 977 & 9 & 1 & 1 & 0 & 0 \\
\hline 2008 & 11838 & 7 & 1051 & 10501 & 561 & 210 & 69 & 19 & 182 & 201 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 13.3.5.1. Haddock in Subarea IV and Division IIIa. XSA final assessment: Tuning diagnostics.

FLR XSA Diagnostics 2009-05-03 23:11:25
CPUE data from x.idx
Catch data for 46 years. 1963 to 2008. Ages 0 to 8.
\begin{tabular}{lrrrrrrr} 
& fleet & first age last age first year last year alpha beta \\
1 & EngGFS Q3 GRT & 0 & 6 & 1977 & 1991 & 0.50 .75 \\
2 & EngGFS Q3 GOV & 0 & 6 & 1992 & 2008 & 0.50 .75 \\
3 & ScoGFS Aberdeen Q3 & 0 & 6 & 1982 & 1997 & 0.50 .75 \\
4 & ScoGFS Q3 GOV & 0 & 6 & 1998 & 2008 & 0.5 & 0.75 \\
5 & IBTS Q1 & (backshifted) & 0 & 4 & 1982 & 2008 & 0.99
\end{tabular}

Time series weights :

Tapered time weighting not applied
Catchability analysis :
Catchability independent of size for ages \(>0\)

Catchability independent of age for ages > 6

Terminal population estimation :
Survivor estimates shrunk towards the mean \(F\) of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk \(=2\)

Minimum standard error for population
estimates derived from each fleet \(=0.3\)
prior weighting not applied
Regression weights
year
age 1999200020012002200320042005200620072008
\begin{tabular}{lllllllllll} 
all & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}

Fishing mortalities year
age \(19992000 \quad 2001 \quad 2002 \quad 2003 \quad 2004 \quad 2005 \quad 2006 \quad 20072008\)
\(00.0020 .0010 .0020 .038 \quad 0.0070 .001 \quad 0.000 \quad 0.0010 .0010 .001\)
\(10.1560 .0470 .059 \quad 0.123 \quad 0.101 \quad 0.050 \quad 0.051 \quad 0.050 \quad 0.0470 .050\)
\(\begin{array}{llllllllllll}2 & 0.757 & 0.727 & 0.277 & 0.141 & 0.331 & 0.321 & 0.284 & 0.454 & 0.235 & 0.239\end{array}\)
\(\begin{array}{llllllllllll}3 & 0.838 & 0.822 & 0.776 & 0.185 & 0.152 & 0.288 & 0.399 & 0.536 & 0.549 & 0.183\end{array}\)
\(40.511 \quad 0.712 \quad 0.409 \quad 0.364 \quad 0.125 \quad 0.180 \quad 0.244 \quad 0.533 \quad 0.431 \quad 0.331\)
\(\begin{array}{lllllllllll}5 & 0.677 & 0.227 & 0.227 & 0.157 & 0.181 & 0.151 & 0.195 & 0.370 & 0.325 & 0.163\end{array}\)
\(60.4040 .2990 .084 \quad 0.084 \quad 0.0630 .093 \quad 0.137 \quad 0.1550 .3050 .138\)
\(\begin{array}{llllllllllll}7 & 0.145 & 0.157 & 0.066 & 0.038 & 0.028 & 0.020 & 0.053 & 0.097 & 0.093 & 0.100\end{array}\)
\(8 \quad 0.1450 .157 \quad 0.0660 .038 \quad 0.028 \quad 0.020 \quad 0.053 \quad 0.0970 .0930 .100\)

XSA population number ( thousands )
\begin{tabular}{rrrrrrrrrr} 
\\
year & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1999 & 135516779 & 1275645 & 278849 & 174157 & 70082 & 89520 & 7780 & 13046 & 3201 \\
2000 & 26511570 & 17415454 & 209504 & 87648 & 58643 & 32747 & 37226 & 4255 & 2133 \\
2001 & 2835366 & 3410585 & 3191665 & 67876 & 30003 & 22411 & 21358 & 22599 & 4831 \\
2002 & 3750722 & 364102 & 617562 & 1621278 & 24319 & 15524 & 14618 & 16074 & 21957 \\
2003 & 3891493 & 464639 & 61862 & 359647 & 1048915 & 13161 & 10865 & 11004 & 9837 \\
2004 & 3731671 & 497716 & 80667 & 29791 & 240604 & 720648 & 8994 & 8351 & 7789 \\
2005 & 38595613 & 480027 & 90968 & 39236 & 17401 & 156544 & 507568 & 6709 & 3088 \\
2006 & 7205011 & 4966875 & 87585 & 45918 & 20510 & 10614 & 105477 & 362399 & 2118 \\
2007 & 4572803 & 926671 & 907213 & 37289 & 20924 & 9370 & 6003 & 73975 & 84811 \\
2008 & 3735922 & 588038 & 169734 & 480606 & 16775 & 10592 & 5542 & 3624 & 43117
\end{tabular}

Table 13.3.5.1. cont.
Haddock in Subarea IV and Division IIIa. XSA final assessment: Tuning diagnostics.
```

Estimated population abundance at 1st Jan 2009
age
year rrrrrrrrrrr
2009 8906480257 107415 89598 311723 9386 7370 3952 2686
Fleet: EngGFS Q3 GRT
Log catchability residuals.

age	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
0	0.379	-0.271	-0.123	0.575	0.989	0.130	-0.093	0.117	-0.112	-0.676	-0.379
1	-0.502	-0.242	-0.007	0.157	0.434	0.295	0.360	0.159	0.392	-0.207	-0.319
2	0.225	-0.305	-0.109	0.312	0.544	0.381	0.104	-0.036	0.060	0.076	-0.444
3	-0.243	-0.813	0.124	0.561	0.818	0.364	0.304	0.169	0.231	-0.408	-0.510
4	0.363	0.177	-0.136	0.378	0.490	0.034	0.002	0.030	0.089	-0.211	-0.468
5	0.227	0.186	-0.084	0.284	0.036	0.168	-0.082	-0.178	0.466	0.047	-0.480
6	0.257	-0.659	-0.420	0.206	-1.014	1.528	-0.722	0.254	-0.225	-0.074	-0.199

age 1988 1989 1990 1991
0 -0.244 0.053-0.163-0.183
1 -0.120 0.214 0.024 -0.637
2 0.176 0.054 -0.076 -0.961
3 0.173 0.031 -0.124 -0.678
4-0.151 0.009 -0.046 -0.560
5 0.129 -0.377 -0.192 -0.147
6

```

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrrrr} 
& 1 & 2 & 3 & 4 & 5 & 6 \\
Mean_Logq & -15.5122 & -15.0316 & -15.2082 & -15.3519 & -15.5353 & -15.9771 \\
S.E_Logq & 0.3307 & 0.3661 & 0.4596 & 0.2899 & 0.2547 & 0.7385
\end{tabular}

Regression statistics
Ages with \(q\) dependent on year class strength

> slope intercept

Age \(0 \quad 0.8580509 \quad 16.9644\)

Fleet: EngGFS Q3 GOV
Log catchability residuals.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & ear & & & & & & & & & \\
\hline age & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 \\
\hline 0 & 0.121 & 0.153 & -0.013 & 0.204 & 0.006 & 0.166 & -0.039 & -0.250 & 0.027 & -0.275 \\
\hline 1 & 0.242 & 0.059 & 0.106 & 0.157 & 0.079 & 0.224 & 0.193 & -0.005 & 0.028 & -0.501 \\
\hline 2 & 0.468 & 0.017 & -0.092 & 0.314 & -0.062 & 0.043 & 0.082 & 0.010 & -0.342 & -0.285 \\
\hline 3 & 0.391 & 0.077 & -0.503 & 0.216 & 0.210 & 0.181 & -0.150 & -0.213 & -0.344 & 0.504 \\
\hline 4 & -0.231 & -0.349 & -0.115 & -0.114 & -0.101 & -0.130 & -0.152 & -0.257 & -0.484 & 0.110 \\
\hline 5 & 0.072 & 0.325 & -0.057 & 0.118 & -0.075 & 0.121 & -0.090 & -0.048 & -0.596 & -0.176 \\
\hline 6 & 1.296 & NA & -0.505 & 0.242 & 0.453 & 0.139 & -0.338 & -0.547 & -0.008 & -0.539 \\
\hline \multicolumn{11}{|c|}{year} \\
\hline age & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & & & \\
\hline 0 & -0.095 & -0.063 & -0.016 & -0.096 & 0.083 & 0.205 & -0.116 & & & \\
\hline 1 & -0.204 & -0.041 & -0.049 & 0.378 & -0.240 & -0.195 & -0.231 & & & \\
\hline 2 & -0.181 & -0.657 & 0.202 & 0.498 & 0.022 & 0.148 & -0.186 & & & \\
\hline 3 & -0.044 & -0.026 & -0.891 & 0.655 & -0.238 & 0.188 & -0.014 & & & \\
\hline 4 & -0.132 & 0.377 & -0.003 & 0.964 & -0.097 & 0.201 & 0.513 & & & \\
\hline 5 & -1.136 & 1.048 & 0.213 & 0.800 & -0.200 & -0.579 & 0.259 & & & \\
\hline 6 & -0.035 & -1.524 & 0.806 & -0.376 & -0.240 & 0.319 & 0.858 & & & \\
\hline
\end{tabular}

Table 13.3.5.1. cont.
Haddock in Subarea IV and Division IIIa. XSA final assessment: Tuning diagnostics.

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrrrr} 
& 1 & 2 & 3 & 4 & 5 & 6 \\
Mean_Logq & -14.7323 & -14.3047 & -14.4841 & -14.8024 & -15.2301 & -15.8602 \\
S.E_Logq & 0.2208 & 0.2902 & 0.3786 & 0.3504 & 0.5036 & 0.6797
\end{tabular}

Regression statistics
Ages with \(q\) dependent on year class strength
slope intercept

Age 00.615540816 .40579

Fleet: ScoGFS Aberdeen Q3

Log catchability residuals.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & ar & & & & & & & & & \\
\hline age & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 \\
\hline 0 & -0.135 & -0.732 & -0.252 & -0.586 & -0.646 & 0.113 & -0.205 & -0.186 & 0.270 & 0.370 \\
\hline 1 & -0.216 & -0.099 & -0.432 & 0.175 & -0.039 & -0.757 & 0.098 & 0.021 & 0.161 & -0.518 \\
\hline 2 & 0.291 & 0.179 & -0.100 & -0.027 & 0.014 & -0.265 & -0.059 & 0.134 & -0.197 & -0.656 \\
\hline 3 & 0.237 & 0.605 & 0.006 & 0.075 & -0.088 & -0.071 & 0.016 & 0.150 & -0.265 & -1.023 \\
\hline 4 & 0.029 & 0.620 & 0.185 & 0.358 & -0.069 & 0.036 & 0.252 & 0.092 & -0.006 & -0.639 \\
\hline 5 & -1.088 & 0.575 & 0.093 & 0.093 & 0.444 & -0.005 & -0.100 & -0.158 & 0.149 & -0.497 \\
\hline 6 & -0.276 & 0.162 & -0.095 & 0.102 & -0.237 & 0.002 & 0.032 & 0.066 & -0.208 & 0.173 \\
\hline \multicolumn{11}{|c|}{year} \\
\hline age & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & & & & \\
\hline 0 & 0.654 & -0.027 & 0.776 & 0.344 & 0.166 & 0.076 & & & & \\
\hline 1 & 0.321 & 0.339 & -0.028 & 0.330 & 0.404 & 0.240 & & & & \\
\hline 2 & -0.223 & 0.199 & 0.063 & 0.141 & 0.442 & 0.063 & & & & \\
\hline 3 & -0.425 & -0.059 & -0.208 & 0.515 & 0.239 & 0.298 & & & & \\
\hline 4 & -0.403 & -0.995 & -0.209 & 0.205 & 0.332 & 0.214 & & & & \\
\hline 5 & 0.131 & 0.412 & -0.852 & 0.405 & 0.255 & 0.142 & & & & \\
\hline 6 & 0.055 & 0.224 & NA & 0.096 & -0.028 & -0.068 & & & & \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrrrr} 
& 1 & 2 & 3 & 4 & 5 & 6 \\
Mean_Logq & -10.6331 & -10.1152 & -10.3524 & -10.6267 & -10.8942 & -11.1578 \\
S.E_Logq & 0.3366 & 0.2584 & 0.3847 & 0.4025 & 0.4616 & 0.1521
\end{tabular}

Regression statistics
Ages with \(q\) dependent on year class strength
slope intercept

Age 00.863455313 .39096

Fleet: ScoGFS Q3 GOV

Log catchability residuals.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{year} \\
\hline age & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 \\
\hline 0 & -0.029 & -0.159 & 0.030 & -1.488 & 0.501 & 0.461 & 0.344 & 0.059 & -0.008 & -0.112 \\
\hline 1 & 0.782 & -0.147 & -0.053 & -0.504 & 0.047 & 0.341 & 0.263 & -0.154 & -0.233 & 0.053 \\
\hline 2 & 0.033 & 0.130 & -0.512 & -0.308 & -0.212 & 0.058 & 0.364 & 0.404 & -0.334 & 0.204 \\
\hline 3 & -0.081 & 0.303 & -0.156 & -0.140 & -0.024 & 0.263 & -0.192 & 0.017 & -0.02 & -0.107 \\
\hline 4 & -0.034 & 0.100 & -0.013 & -0.224 & 0.032 & 0.248 & 0.086 & 0.763 & -0.444 & 0.019 \\
\hline 5 & -0.039 & 0.254 & 0.171 & -0.051 & 0.194 & -0.146 & 0.000 & 0.145 & -0.265 & -0.409 \\
\hline 6 & -0.009 & -0.056 & -0.182 & -0.166 & 0.213 & 0.440 & 0.011 & -0.012 & -0.319 & -0.040 \\
\hline \multicolumn{11}{|c|}{year} \\
\hline \multicolumn{11}{|l|}{age 2008} \\
\hline \multicolumn{11}{|c|}{\(0 \quad 0.401\)} \\
\hline \multicolumn{11}{|c|}{\(1-0.395\)} \\
\hline \multicolumn{11}{|c|}{20.174} \\
\hline \multicolumn{11}{|c|}{30.140} \\
\hline \multicolumn{11}{|c|}{\(4-0.533\)} \\
\hline \multicolumn{11}{|c|}{50.147} \\
\hline 6 & 0.118 & & & & & & & & & \\
\hline
\end{tabular}

Table 13.3.5.1. cont.
Haddock in Subarea IV and Division IIIa. XSA final assessment: Tuning diagnostics.

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrrrr} 
& 1 & 2 & 3 & 4 & 5 & 6 \\
Mean_Logq & -9.8428 & -9.5136 & -9.7646 & -10.1054 & -10.6156 & -11.3407 \\
S.E_Logq & 0.3627 & 0.3004 & 0.1676 & 0.3456 & 0.2092 & 0.2050
\end{tabular}

Regression statistics
Ages with \(q\) dependent on year class strength
slope intercept

Age 00.81664312 .18883

Fleet: IBTS Q1 (backshifted)
Log catchability residuals.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline age & year
1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 \\
\hline 0 & -0.351 & -0.380 & -0.435 & 0.028 & -0.250 & 0.169 & 0.176 & 0.139 & 0.007 & 0.478 & 0.166 \\
\hline 1 & -0.154 & -0.328 & -0.224 & 0.069 & -0.134 & -0.162 & 0.405 & 0.027 & 0.036 & -0.283 & 0.190 \\
\hline 2 & -0.046 & -0.195 & 0.075 & -0.165 & -0.225 & 0.012 & 0.176 & 0.426 & -0.123 & -0.795 & 0.121 \\
\hline 3 & 0.015 & -0.012 & -0.045 & -0.199 & -0.026 & 0.136 & 0.110 & 0.008 & 0.073 & -0.647 & 0.235 \\
\hline 4 & 0.127 & -0.098 & -0.210 & -0.045 & 0.293 & 0.201 & 0.138 & 0.242 & -0.125 & -0.367 & -0.031 \\
\hline \multicolumn{12}{|c|}{year} \\
\hline age & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 02001 & 12002 & \\
\hline 0 & -0.189 & -0.040 & -0.132 & 0.461 & 0.194 & -0.019 & 0.003 & 0.296 & 60.046 & 60.18 & \\
\hline 1 & -0.258 & 0.004 & -0.121 & 0.402 & 0.214 & 0.087 & -0.361 & -0.036 & 60.084 & 4-0.162 & \\
\hline 2 & -0.237 & -0.287 & -0.172 & 0.209 & 0.022 & 0.050 & -0.224 & 0.016 & \(6 \quad 0.212\) & 20.00 & \\
\hline 3 & -0.205 & -0.055 & -0.238 & 0.258 & -0.076 & 0.296 & -0.203 & -0.339 & -0.219 & 9-0.022 & \\
\hline 4 & -0.029 & -0.194 & 0.250 & -0.005 & 0.400 & 0.099 & 0.251 & -0.141 & 10.261 & -0.130 & \\
\hline \multicolumn{12}{|c|}{year} \\
\hline age & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & & & & & \\
\hline 0 & -0.063 & -0.052 & 0.207 & -0.282 & -0.367 & 0.003 & & & & & \\
\hline 1 & 0.298 & -0.089 & -0.295 & 0.371 & -0.155 & 0.575 & & & & & \\
\hline 2 & 0.541 & 0.182 & -0.107 & 0.348 & -0.330 & 0.506 & & & & & \\
\hline 3 & 0.345 & 0.212 & -0.156 & 0.369 & 0.543 & -0.160 & & & & & \\
\hline 4 & 0.214 & 0.057 & 0.115 & -0.028 & -0.926 & -0.319 & & & & & \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrr} 
& 1 & 2 & 3 & 4 \\
Mean_Logq & -11.8323 & -11.8835 & -12.1866 & -12.5100 \\
S.E_Logq & 0.2519 & 0.2864 & 0.2529 & 0.2694
\end{tabular}

Regression statistics
Ages with \(q\) dependent on year class strength
slope intercept
Age \(00.9182171 \quad 13.52970\)

Terminal year survivor and \(F\) summaries:
Age 0 Year class \(=2008\)
source
\begin{tabular}{lrrr} 
& \begin{tabular}{rl} 
survivors & N
\end{tabular} & scaledWts \\
EngGFS Q3 GOV & 397672 & 1 & 0.444 \\
ScoGFS Q3 GOV & 785124 & 1 & 0.073 \\
IBTS Q1 (backshifted) & 481796 & 1 & 0.444 \\
fshk & 303687 & 1 & 0.010 \\
nshk & 2753479 & 1 & 0.029
\end{tabular}

Table 13.3.5.1. cont. Haddock in Subarea IV and Division IIIa. XSA final assessment: Tuning diagnostics.
```

Age 1 Year class = 2007
source

	survivors	N	scaledWts
EngGFS Q3 GOV	112959	2	0.416
ScoGFS Q3 GOV	76284	2	0.164
IBTS Q1 (backshifted)	117299	2	0.416
fshk	79477	1	0.005

Age 2 Year class = 2006

```
source
\begin{tabular}{lrlr} 
& survivors & N & scaledWts \\
EngGFS Q3 GOV & 82366 & 3 & 0.387 \\
ScoGFS Q3 GOV & 100363 & 3 & 0.222 \\
IBTS Q1 (backshifted) & 91650 & 3 & 0.387 \\
fshk & 61909 & 1 & 0.004
\end{tabular}
Age 3 Year class \(=2005\)
source
\begin{tabular}{lrrr} 
& survivors & N & scaledWts \\
EngGFS Q3 GOV & 291938 & 4 & 0.339 \\
ScoGFS Q3 GOV & 337788 & 4 & 0.271 \\
IBTS Q1 (backshifted) & 314324 & 4 & 0.387 \\
fshk & 132022 & 1 & 0.003
\end{tabular}
Age 4 Year class \(=2004\)
source
\begin{tabular}{lrlrr} 
& survivors & N & scaledWts \\
EngGFS Q3 GOV & 12197 & 5 & 0.316 \\
ScoGFS Q3 GOV & 6997 & 5 & 0.283 \\
IBTS Q1 (backshifted) & 9382 & 5 & 0.397 \\
fshk & 10315 & 1 & 0.005
\end{tabular}
Age 5 Year class \(=2003\)
source
\begin{tabular}{lrrr} 
& survivors & N & scaledWts \\
EngGFS Q3 GOV & 8328 & 6 & 0.305 \\
ScoGFS Q3 GOV & 8475 & 6 & 0.382 \\
IBTS Q1 (backshifted) & 5527 & 5 & 0.308 \\
fshk & 4684 & 1 & 0.004
\end{tabular}
Age 6 Year class \(=2002\)
\begin{tabular}{|c|c|c|c|}
\hline & survivors & N & scaledWts \\
\hline EngGFS Q3 GOV & 4248 & 7 & 0.270 \\
\hline ScoGFS Q3 GOV & 3696 & 7 & 0.488 \\
\hline IBTS Q1 (backshifted) & 4184 & 5 & 0.237 \\
\hline fshk & 3593 & 1 & 0.005 \\
\hline \multicolumn{4}{|l|}{Age 7 Year class \(=2001\)} \\
\hline \multicolumn{4}{|l|}{source} \\
\hline & survivors & N & scaledWts \\
\hline EngGFS Q3 GOV & 2408 & 7 & 0.280 \\
\hline ScoGFS Q3 GOV & 2642 & 7 & 0.447 \\
\hline IBTS Q1 (backshifted) & 3146 & 5 & 0.268 \\
\hline fshk & 1193 & 1 & 0.005 \\
\hline
\end{tabular}

Table 13.3.5.2. Haddock in Subarea IV and Division IIII. Estimates of fishing mortalit y at age from the final XSA assessment. Estimates refer to the full year (January - December) except for age 0 , for which the mortality rate given refers to the second half-year only (July - December).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multicolumn{9}{|c|}{Age} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8+ \\
\hline 1963 & 0.002 & 0.125 & 0.805 & 0.668 & 0.762 & 0.902 & 0.648 & 0.778 & 0.778 \\
\hline 1964 & 0.043 & 0.059 & 0.457 & 1.174 & 0.751 & 0.886 & 1.365 & 1.012 & 1.012 \\
\hline 1965 & 0.071 & 1.359 & 0.421 & 0.513 & 0.984 & 1.275 & 1.026 & 1.108 & 1.108 \\
\hline 1966 & 0.070 & 1.304 & 0.828 & 0.367 & 0.792 & 1.237 & 1.225 & 1.098 & 1.098 \\
\hline 1967 & 0.002 & 0.262 & 1.085 & 0.412 & 0.382 & 1.057 & 1.313 & 0.927 & 0.927 \\
\hline 1968 & 0.002 & 0.051 & 0.578 & 0.908 & 0.304 & 0.528 & 0.900 & 0.582 & 0.582 \\
\hline 1969 & 0.017 & 0.021 & 0.654 & 1.377 & 1.333 & 0.801 & 1.871 & 1.352 & 1.352 \\
\hline 1970 & 0.030 & 0.503 & 1.036 & 1.145 & 1.274 & 0.781 & 1.364 & 1.153 & 1.153 \\
\hline 1971 & 0.012 & 0.474 & 0.665 & 0.793 & 0.860 & 0.873 & 0.838 & 0.866 & 0.866 \\
\hline 1972 & 0.032 & 0.168 & 0.793 & 1.380 & 1.183 & 1.121 & 0.880 & 1.074 & 1.074 \\
\hline 1973 & 0.002 & 0.373 & 0.565 & 1.161 & 0.873 & 0.910 & 0.995 & 0.936 & 0.936 \\
\hline 1974 & 0.013 & 0.351 & 0.934 & 0.945 & 1.006 & 0.751 & 0.791 & 0.859 & 0.859 \\
\hline 1975 & 0.011 & 0.333 & 0.957 & 1.261 & 1.086 & 1.005 & 1.264 & 1.132 & 1.132 \\
\hline 1976 & 0.029 & 0.306 & 0.809 & 1.310 & 0.797 & 1.215 & 1.104 & 1.051 & 1.051 \\
\hline 1977 & 0.012 & 0.327 & 0.995 & 1.014 & 1.085 & 1.081 & 0.871 & 1.024 & 1.024 \\
\hline 1978 & 0.020 & 0.373 & 0.990 & 1.123 & 1.068 & 0.761 & 1.199 & 0.827 & 0.827 \\
\hline 1979 & 0.033 & 0.171 & 0.827 & 1.078 & 1.050 & 0.891 & 0.443 & 0.882 & 0.882 \\
\hline 1980 & 0.068 & 0.182 & 0.689 & 1.010 & 0.988 & 0.908 & 0.705 & 0.201 & 0.201 \\
\hline 1981 & 0.057 & 0.176 & 0.439 & 0.896 & 0.635 & 0.533 & 0.571 & 0.490 & 0.490 \\
\hline 1982 & 0.039 & 0.172 & 0.417 & 0.779 & 0.773 & 0.283 & 0.358 & 0.853 & 0.853 \\
\hline 1983 & 0.027 & 0.151 & 0.653 & 0.961 & 1.032 & 0.872 & 0.226 & 0.248 & 0.248 \\
\hline 1984 & 0.016 & 0.125 & 0.670 & 0.973 & 0.970 & 0.870 & 0.496 & 0.114 & 0.114 \\
\hline 1985 & 0.016 & 0.208 & 0.613 & 0.967 & 1.032 & 0.680 & 0.481 & 0.223 & 0.223 \\
\hline 1986 & 0.003 & 0.129 & 1.029 & 1.239 & 1.335 & 0.882 & 0.325 & 0.205 & 0.205 \\
\hline 1987 & 0.006 & 0.106 & 0.909 & 1.078 & 1.081 & 0.925 & 0.719 & 0.231 & 0.231 \\
\hline 1988 & 0.004 & 0.135 & 0.787 & 1.311 & 1.222 & 1.101 & 0.981 & 0.337 & 0.337 \\
\hline 1989 & \[
0.003
\] & \[
0.106
\] & 0.655 & 0.975 & 1.218 & 0.884 & 0.764 & 1.040 & 1.040 \\
\hline 1990 & 0.005 & 0.184 & 1.112 & 1.143 & 1.077 & 0.960 & 0.865 & 0.610 & 0.610 \\
\hline 1991 & 0.013 & 0.152 & 0.778 & 1.035 & 0.844 & 0.767 & 0.723 & 1.460 & 1.460 \\
\hline 1992 & 0.018 & 0.136 & 0.725 & 1.133 & 1.077 & 0.765 & 0.790 & 0.923 & 0.923 \\
\hline 1993 & 0.030 & 0.161 & 0.790 & 0.999 & 0.894 & 0.988 & 0.704 & 0.422 & 0.422 \\
\hline 1994 & 0.004 & 0.144 & 0.541 & 1.018 & 0.921 & 0.670 & 1.189 & 0.754 & 0.754 \\
\hline 1995 & 0.040 & 0.099 & 0.484 & 0.825 & 0.878 & 0.671 & 0.372 & 0.963 & 0.963 \\
\hline 1996 & 0.019 & 0.061 & 0.429 & 0.847 & 0.779 & 0.715 & 0.627 & 1.680 & 1.680 \\
\hline 1997 & 0.006 & 0.118 & 0.393 & 0.584 & 0.615 & 0.532 & 0.388 & 0.271 & 0.271 \\
\hline 1998 & \[
0.006
\] & \[
0.122
\] & \[
0.579
\] & 0.485 & 0.725 & 0.511 & 0.221 & 0.156 & \[
0.156
\] \\
\hline 1999 & \[
0.002
\] & \[
0.156
\] & 0.757 & \[
0.838
\] & \[
0.511
\] & 0.677 & 0.404 & 0.145 & \[
0.145
\] \\
\hline 2000 & \[
0.001
\] & \[
0.047
\] & 0.727 & 0.822 & 0.712 & 0.227 & 0.299 & 0.157 & 0.157 \\
\hline 2001 & 0.002 & 0.059 & 0.277 & 0.776 & 0.409 & 0.227 & 0.084 & 0.066 & 0.066 \\
\hline 2002 & 0.038 & 0.123 & 0.141 & 0.185 & 0.364 & 0.157 & 0.084 & 0.038 & 0.038 \\
\hline 2003 & 0.007 & 0.101 & 0.331 & 0.152 & 0.125 & 0.181 & 0.063 & 0.028 & 0.028 \\
\hline 2004 & 0.001 & 0.050 & 0.321 & 0.288 & 0.180 & 0.151 & 0.093 & 0.020 & 0.020 \\
\hline 2005 & 0.000 & 0.051 & 0.284 & 0.399 & 0.244 & 0.195 & 0.137 & 0.053 & 0.053 \\
\hline 2006 & 0.001 & 0.050 & 0.454 & 0.536 & 0.533 & 0.370 & 0.155 & 0.097 & 0.097 \\
\hline 2007 & 0.001 & 0.047 & 0.235 & 0.549 & 0.431 & 0.325 & 0.305 & 0.093 & 0.093 \\
\hline 2008 & 0.001 & 0.050 & 0.239 & 0.183 & 0.331 & 0.163 & 0.138 & 0.100 & 0.100 \\
\hline
\end{tabular}

Table 13.3.5.3. Haddock in Subarea IV and Division IIIa. Estimates of stock numbers at age from the final XSA assessment. Estimates refer to January \(1^{\text {st }}\), except for age 0 for estimates refer to July \(1^{\text {st }}\). *Estimated survivors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multicolumn{9}{|c|}{AGE} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(8+\) \\
\hline 1963 & 2315029 & 25450196 & 739728 & 48724 & 27677 & 10747 & 1164 & 1334 & 1295 \\
\hline 1964 & 9155436 & 297538 & 4315469 & 221619 & 19450 & 10060 & 3569 & 499 & 839 \\
\hline 1965 & 26286793 & 1128473 & 53888 & 1832192 & 53363 & 7147 & 3397 & 746 & 385 \\
\hline 1966 & 68923260 & 3150893 & 55672 & 23718 & 854126 & 15539 & 1635 & 997 & 455 \\
\hline 1967 & \(3.88 \mathrm{E}+08\) & 8274725 & 164299 & 16311 & 12803 & 301155 & 3694 & 393 & 552 \\
\hline 1968 & 17114876 & 49884880 & 1222290 & 37210 & 8411 & 6807 & 85639 & 814 & 144 \\
\hline 1969 & 12133821 & 2199297 & 9099630 & 459731 & 11689 & 4833 & 3285 & 28519 & 336 \\
\hline 1970 & 87606750 & 1536012 & 413405 & 3171947 & 90348 & 2402 & 1776 & 414 & 9575 \\
\hline 1971 & 78211007 & 10946303 & 178355 & 98334 & 786434 & 19681 & 901 & 372 & 3580 \\
\hline 1972 & 21426954 & 9949842 & 1308923 & 61465 & 34648 & 259111 & 6729 & 319 & 791 \\
\hline 1973 & 72953038 & 2671964 & 1614619 & 396946 & 12048 & 8265 & 69183 & 2285 & 536 \\
\hline 1974 & \(1.33 \mathrm{E}+08\) & 9370120 & 353231 & 615284 & 96810 & 3918 & 2725 & 20938 & 578 \\
\hline 1975 & 11407700 & 16889101 & 1267331 & 93019 & 186309 & 27559 & 1513 & 1011 & 4895 \\
\hline 1976 & 16402039 & 1452443 & 2324314 & 326346 & 20520 & 49001 & 8259 & 350 & 1498 \\
\hline 1977 & 26219907 & 2051534 & 205452 & 694117 & 68562 & 7200 & 11900 & 2242 & 623 \\
\hline 1978 & 39832982 & 3334172 & 284178 & 50924 & 196102 & 18051 & 2001 & 4078 & 1184 \\
\hline 1979 & 72661935 & 5025336 & 440965 & 70809 & 12901 & 52472 & 6904 & 494 & 1323 \\
\hline 1980 & 15806947 & 9052222 & 813750 & 129225 & 18765 & 3516 & 17619 & 3630 & 2430 \\
\hline 1981 & 32617680 & 1900372 & 1449180 & 273786 & 36655 & 5443 & 1162 & 7131 & 707 \\
\hline 1982 & 20491370 & 3967101 & 306050 & 626444 & 87074 & 15129 & 2616 & 537 & 1592 \\
\hline 1983 & 66956253 & 2537956 & 641198 & 135171 & 223823 & 31293 & 9331 & 1497 & 1594 \\
\hline 1984 & 17181331 & 8390044 & 418937 & 223731 & 40262 & 62083 & 10709 & 6094 & 2649 \\
\hline 1985 & 23920805 & 2177571 & 1421911 & 143758 & 65886 & 11882 & 21288 & 5340 & 2075 \\
\hline 1986 & 49030758 & 3029362 & 339812 & 516181 & 42565 & 18280 & 4929 & 10774 & 2896 \\
\hline 1987 & 4156240 & 6291697 & 511514 & 81395 & 116392 & 8720 & 6198 & 2917 & 5684 \\
\hline 1988 & 8339335 & 531674 & 1086620 & 138193 & 21579 & 30756 & 2832 & 2471 & 1582 \\
\hline 1989 & 8606296 & 1069686 & 89215 & 331724 & 29020 & 4953 & 8370 & 869 & 565 \\
\hline 1990 & 28351635 & 1104090 & 184717 & 31068 & 97440 & 6683 & 1675 & 3193 & 847 \\
\hline 1991 & 27479298 & 3629942 & 176396 & 40708 & 7716 & 25852 & 2096 & 577 & 1167 \\
\hline 1992 & 41947282 & 3493086 & 598906 & 54306 & 11259 & 2584 & 9833 & 833 & 1348 \\
\hline 1993 & 13157783 & 5302932 & 585720 & 194414 & 13628 & 2988 & 984 & 3652 & 1454 \\
\hline 1994 & 56144741 & 1643201 & 867116 & 178248 & 55752 & 4343 & 910 & 399 & 1467 \\
\hline 1995 & 14447705 & 7196943 & 273134 & 338469 & 50160 & 17290 & 1819 & 227 & 251 \\
\hline 1996 & 21503804 & 1787712 & 1252351 & 112818 & 115516 & 16230 & 7239 & 1027 & 165 \\
\hline 1997 & 12826240 & 2715032 & 322869 & 546418 & 37654 & 41296 & 6499 & 3166 & 477 \\
\hline 1998 & 9970725 & 1640832 & 463460 & 146134 & 237320 & 15847 & 19870 & 3609 & 1302 \\
\hline 1999 & \(1.36 \mathrm{E}+08\) & 1275645 & 278849 & 174157 & 70082 & 89520 & 7780 & 13046 & 3201 \\
\hline 2000 & 26511570 & 17415454 & 209504 & 87648 & 58643 & 32747 & 37226 & 4255 & 2133 \\
\hline 2001 & 2835366 & 3410585 & 3191665 & 67876 & 30003 & 22411 & 21358 & 22599 & 4831 \\
\hline 2002 & 3750722 & 364102 & 617562 & 1621278 & 24319 & 15524 & 14618 & 16074 & 21957 \\
\hline 2003 & 3891493 & 464639 & 61862 & 359647 & 1048915 & 13161 & 10865 & 11004 & 9837 \\
\hline 2004 & 3731671 & 497716 & 80667 & 29791 & 240604 & 720648 & 8994 & 8351 & 7789 \\
\hline 2005 & 38595613 & 480027 & 90968 & 39236 & 17401 & 156544 & 507568 & 6709 & 3088 \\
\hline 2006 & 7205011 & 4966875 & 87585 & 45918 & 20510 & 10614 & 105477 & 362399 & 2118 \\
\hline 2007 & 4572803 & 926671 & 907213 & 37289 & 20924 & 9370 & 6003 & 73975 & 84811 \\
\hline 2008 & 3735922 & 588038 & 169734 & 480606 & 16775 & 10592 & 5542 & 3624 & 43117 \\
\hline 2009* & & 480257 & 107415 & 89598 & 311723 & 9386 & 7370 & 3952 & 2686 \\
\hline
\end{tabular}

Table 13.3.5.4. Haddock in Subarea IV and Division IIIa. Stock summary table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Recruitment & TSB & SS B & Catch & LANDINGS & DIS CARDS & IBC & YieLd/SSB & Mean F(2-4) \\
\hline 1963 & 2315029 & 3412701 & 137055 & 271851 & 68821 & 189329 & 13700 & 0.502 & 0.745 \\
\hline 1964 & 9155436 & 1281826 & 417718 & 379915 & 131006 & 160309 & 88600 & 0.314 & 0.794 \\
\hline 1965 & 26286793 & 1081002 & 521742 & 299344 & 162418 & 62326 & 74600 & 0.311 & 0.639 \\
\hline 1966 & 68923260 & 1480501 & 427843 & 346349 & 226184 & 73465 & 46700 & 0.529 & 0.662 \\
\hline 1967 & 388351571 & 5527477 & 224795 & 246664 & 147742 & 78222 & 20700 & 0.657 & 0.626 \\
\hline 1968 & 17114876 & 6852043 & 259402 & 301821 & 105811 & 161810 & 34200 & 0.408 & 0.597 \\
\hline 1969 & 12133821 & 2477692 & 810551 & 930043 & 331625 & 260065 & 338353 & 0.409 & 1.121 \\
\hline 1970 & 87606750 & 2541782 & 900223 & 805776 & 524773 & 101274 & 179729 & 0.583 & 1.152 \\
\hline 1971 & 78211007 & 2546502 & 420405 & 446824 & 237502 & 177776 & 31546 & 0.565 & 0.773 \\
\hline 1972 & 21426954 & 2182328 & 302982 & 353084 & 195545 & 127954 & 29585 & 0.645 & 1.119 \\
\hline 1973 & 72953038 & 4088546 & 297169 & 307595 & 181592 & 114736 & 11267 & 0.611 & 0.866 \\
\hline 1974 & 132869060 & 4711585 & 260797 & 366992 & 153057 & 166429 & 47505 & 0.587 & 0.962 \\
\hline 1975 & 11407700 & 2385624 & 238364 & 453205 & 151349 & 260369 & 41487 & 0.635 & 1.101 \\
\hline 1976 & 16402039 & 1097845 & 309660 & 375305 & 172680 & 154462 & 48163 & 0.558 & 0.972 \\
\hline 1977 & 26219907 & 1069750 & 242563 & 224516 & 145118 & 44376 & 35022 & 0.598 & 1.031 \\
\hline 1978 & 39832982 & 1138494 & 138416 & 179376 & 91683 & 76789 & 10903 & 0.662 & 1.06 \\
\hline 1979 & 72661935 & 1353240 & 117454 & 145020 & 87069 & 41710 & 16240 & 0.741 & 0.985 \\
\hline 1980 & 15806947 & 1472212 & 169873 & 222126 & 105041 & 94614 & 22472 & 0.618 & 0.896 \\
\hline 1981 & 32617680 & 997530 & 257894 & 213240 & 136132 & 60067 & 17041 & 0.528 & 0.656 \\
\hline 1982 & 20491370 & 1092906 & 321698 & 233283 & 173335 & 40564 & 19383 & 0.539 & 0.657 \\
\hline 1983 & 66956253 & 2254533 & 277335 & 244212 & 165337 & 65977 & 12898 & 0.596 & 0.882 \\
\hline 1984 & 17181331 & 1692122 & 224959 & 218946 & 133568 & 75298 & 10080 & 0.594 & 0.871 \\
\hline 1985 & 23920805 & 1189276 & 262039 & 255366 & 164119 & 85249 & 5998 & 0.626 & 0.871 \\
\hline 1986 & 49030758 & 1942695 & 237914 & 223081 & 168236 & 52202 & 2643 & 0.707 & 1.201 \\
\hline 1987 & 4156240 & 1098211 & 167460 & 173852 & 110299 & 59143 & 4410 & 0.659 & 1.022 \\
\hline 1988 & 8339335 & 630796 & 160326 & 173123 & 106973 & 62148 & 4002 & 0.667 & 1.106 \\
\hline 1989 & 8606296 & 623884 & 128027 & 106529 & 78439 & 25680 & 2410 & 0.613 & 0.949 \\
\hline 1990 & 28351635 & 1582939 & 81017 & 88934 & 53780 & 32565 & 2589 & 0.664 & 1.111 \\
\hline 1991 & 27479298 & 1553319 & 63345 & 93286 & 47715 & 40185 & 5386 & 0.753 & 0.886 \\
\hline 1992 & 41947282 & 1364802 & 103501 & 131650 & 72790 & 47934 & 10927 & 0.703 & 0.978 \\
\hline 1993 & 13157783 & 1019411 & 139012 & 172550 & 82176 & 79608 & 10766 & 0.591 & 0.894 \\
\hline 1994 & 56144741 & 1488820 & 161684 & 151020 & 82074 & 65370 & 3576 & 0.508 & 0.826 \\
\hline 1995 & 14447705 & 1174840 & 163135 & 142524 & 77458 & 57372 & 7695 & 0.475 & 0.729 \\
\hline 1996 & 21503804 & 1063289 & 202515 & 156609 & 79148 & 72461 & 5000 & 0.391 & 0.685 \\
\hline 1997 & 12826240 & 980803 & 227379 & 141347 & 82574 & 52089 & 6684 & 0.363 & 0.531 \\
\hline 1998 & 9970725 & 796184 & 205012 & 131316 & 81054 & 45160 & 5101 & 0.395 & 0.596 \\
\hline 1999 & 135516779 & 3608494 & 159117 & 112021 & 65588 & 42598 & 3835 & 0.412 & 0.702 \\
\hline 2000 & 26511570 & 3515647 & 137513 & 104457 & 47553 & 48770 & 8134 & 0.346 & 0.754 \\
\hline 2001 & 2835366 & 1224874 & 314654 & 166960 & 40856 & 118225 & 7879 & 0.13 & 0.488 \\
\hline 2002 & 3750722 & 885642 & 517532 & 107922 & 58348 & 45857 & 3717 & 0.113 & 0.23 \\
\hline 2003 & 3891493 & 767729 & 505527 & 66806 & 41964 & 23692 & 1150 & 0.083 & 0.203 \\
\hline 2004 & 3731671 & 765036 & 433795 & 64839 & 48734 & 15551 & 554 & 0.112 & 0.263 \\
\hline 2005 & 38595613 & 2620075 & 374772 & 57162 & 48357 & 8637 & 168 & 0.129 & 0.309 \\
\hline 2006 & 7205011 & 1266096 & 298800 & 56056 & 37613 & 17908 & 535 & 0.126 & 0.508 \\
\hline 2007 & 4572803 & 688998 & 214574 & 59643 & 30939 & 28657 & 48 & 0.144 & 0.405 \\
\hline 2008 & 3735922 & 532933 & 203254 & 43640 & 30248 & 13194 & 199 & 0.149 & 0.251 \\
\hline Units & Thousands & Tonnes & Tonnes & Tonnes & Tonnes & Tonnes & Tonnes & & \\
\hline
\end{tabular}

Table 13.6.1. Haddock in Subarea IV and Division IIII. Short-term forecast input.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline MFD & sio & 1a & & & & & & \\
\hline Run: & & & & & & & & \\
\hline Time & da & te: 13:14 1 & 0/05/20 & & & & & \\
\hline Fbar & ran & ge (Total) & : 2-4 & & & & & \\
\hline Fbar & ran & ge Fleet 1 & : 2-4 & & & & & \\
\hline Fbar & ran & ge Fleet 2 & : 2-4 & & & & & \\
\hline & & & & & & & & \\
\hline Age & & N & M & Mat & PF & & PM & SWt \\
\hline & 0 & 4067014 & 2.05 & 0.00 & & 0 & 0 & 0.047 \\
\hline & 1 & 480257 & 1.65 & 0.01 & & 0 & 0 & 0.168 \\
\hline & 2 & 107415 & 0.40 & 0.32 & & 0 & 0 & 0.265 \\
\hline & 3 & 89598 & 0.25 & 0.71 & & 0 & 0 & 0.389 \\
\hline & 4 & 311723 & 0.25 & 0.87 & & 0 & 0 & 0.524 \\
\hline & 5 & 9386 & 0.20 & 0.95 & & 0 & 0 & 0.617 \\
\hline & 6 & 7370 & 0.20 & 1.00 & & 0 & 0 & 0.768 \\
\hline & 7 & 3952 & 0.20 & 1.00 & & 0 & 0 & 1.020 \\
\hline & 8 & 2686 & 0.20 & 1.00 & & 0 & 0 & 1.079 \\
\hline
\end{tabular}
Catch
Age Sel CWt DSel DCWt
    \(\begin{array}{llllll}0 & 0.000 & 0.000 & 0.001 & 0.047\end{array}\)
            \(0.0010 .382 \quad 0.048 \quad 0.160\)
                \(\begin{array}{lllll}0.050 & 0.394 & 0.188 & 0.224\end{array}\)
                \(\begin{array}{lllll}0.124 & 0.446 & 0.059 & 0.274\end{array}\)
                \(\begin{array}{llll}0.124 & 0.446 & 0.059 & 0.274 \\ 0.295 & 0.550 & 0.034 & 0.309\end{array}\)
                \(\begin{array}{llll}0.154 & 0.633 & 0.007 & 0.340\end{array}\)
                \(\begin{array}{lllll}0.127 & 0.775 & 0.010 & 0.385\end{array}\)
                \(\begin{array}{llll}0.094 & 1.027 & 0.006 & 0.449\end{array}\)
                \(\begin{array}{lllll}0.099 & 1.080 & 0.001 & 0.444\end{array}\)
IBC
Age Sel \(\quad \mathrm{CWt}\)
            \(0.001 \quad 0.127\)
            \(\begin{array}{ll}0.001 & 0.217\end{array}\)
            \(0.001 \quad 0.289\)
            \(0.002 \quad 0.317\)
            0.0020 .382
            \(0.001 \quad 0.452\)
            \(\begin{array}{ll}0.000 & 0.499\end{array}\)
            \(0.000 \quad 0.328\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{10}{*}{Age} & & N & M & Mat & PF & & M & SWt \\
\hline & 0 & 4067014 & 2.05 & 0.00 & & 0 & 0 & 0.047 \\
\hline & 1 & & 1.65 & 0.01 & & 0 & 0 & 0.168 \\
\hline & 2 & & 0.40 & 0.32 & & 0 & 0 & 0.265 \\
\hline & 3 & & 0.25 & 0.71 & & 0 & 0 & 0.389 \\
\hline & 4 & & 0.25 & 0.87 & & 0 & 0 & 0.524 \\
\hline & 5 & & 0.20 & 0.95 & & 0 & 0 & 0.617 \\
\hline & 6 & & 0.20 & 1.00 & & 0 & 0 & 0.768 \\
\hline & 7 & & 0.20 & 1.00 & & 0 & 0 & 1.020 \\
\hline & 8 & & 0.20 & 1.00 & & 0 & 0 & 1.265 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Age & N & M & Mat & PF & & & SWt \\
\hline & 04067014 & 2.05 & 0.00 & & 0 & 0 & 0.047 \\
\hline & 1 & 1.65 & 0.01 & & 0 & 0 & 0.168 \\
\hline & 2 & 0.40 & 0.32 & & 0 & 0 & 0.265 \\
\hline & 3 & 0.25 & 0.71 & & 0 & 0 & 0.389 \\
\hline & 4 & 0.25 & 0.87 & & 0 & 0 & 0.524 \\
\hline & 5 & 0.20 & 0.95 & & 0 & 0 & 0.617 \\
\hline & 6 & 0.20 & 1.00 & & 0 & 0 & 0.768 \\
\hline & 7 & 0.20 & 1.00 & & 0 & 0 & 1.020 \\
\hline & 8 & 0.20 & 1.00 & & 0 & 0 & 1.375 \\
\hline
\end{tabular}
\begin{tabular}{llllll} 
Catch & & & & & \\
Age & \multicolumn{2}{l}{ Sel } & & CWt & DSel \\
DCWt \\
& 0 & 0.000 & 0.000 & 0.001 & 0.047 \\
& 1 & 0.001 & 0.382 & 0.048 & 0.160 \\
& 2 & 0.050 & 0.394 & 0.188 & 0.224 \\
& 3 & 0.124 & 0.446 & 0.059 & 0.274 \\
& 4 & 0.295 & 0.550 & 0.034 & 0.309 \\
& 5 & 0.154 & 0.633 & 0.007 & 0.340 \\
& 6 & 0.127 & 0.775 & 0.010 & 0.385 \\
& 7 & 0.094 & 1.027 & 0.006 & 0.449 \\
& 8 & 0.099 & 1.269 & 0.001 & 0.444
\end{tabular}

\footnotetext{
Catch
}

Age Sel
CWt DSel DCWt \(\begin{array}{llll}0.000 & 0.000 & 0.001 & 0.047\end{array}\) \(\begin{array}{llll}0.001 & 0.382 & 0.048 & 0.160\end{array}\) \(\begin{array}{llll}0.050 & 0.394 & 0.188 & 0.224\end{array}\) \(\begin{array}{lllll}0.124 & 0.446 & 0.059 & 0.274\end{array}\) \(\begin{array}{llll}0.295 & 0.550 & 0.034 & 0.309\end{array}\) \(\begin{array}{llll}0.154 & 0.633 & 0.007 & 0.340\end{array}\) \(\begin{array}{llll}0.127 & 0.775 & 0.010 & 0.385\end{array}\) \(\begin{array}{llll}0.094 & 1.027 & 0.006 & 0.449\end{array}\) \(\begin{array}{llll}0.099 & 1.380 & 0.001 & 0.444\end{array}\)

IBC
Age
\begin{tabular}{lcc} 
& \multicolumn{2}{c}{ Sel } \\
& \multicolumn{1}{c}{CWt} \\
0.000 & 0.015 \\
& 0.001 & 0.127 \\
& 0.001 & 0.217 \\
& 0.001 & 0.289 \\
& 0.002 & 0.317 \\
5 & 0.002 & 0.382 \\
& 0.001 & 0.452 \\
7 & 0.000 & 0.499 \\
8 & 0.000 & 0.328
\end{tabular}

Input units are thousands and kg - output in tonnes
\begin{tabular}{lll} 
IBC & & \multicolumn{2}{c}{} \\
Age & \multicolumn{1}{c}{ Sel } & \multicolumn{1}{c}{CWt} \\
0 & 0.000 & 0.015 \\
1 & 0.001 & 0.127 \\
2 & 0.001 & 0.217 \\
3 & 0.001 & 0.289 \\
4 & 0.002 & 0.317 \\
5 & 0.002 & 0.382 \\
6 & 0.001 & 0.452 \\
7 & 0.000 & 0.499 \\
8 & 0.000 & 0.328
\end{tabular}

Table 13.6.2. Haddock in Subarea IV and Division IIIa. Short-term forecast output. The MP target F, a 15\% TAC decrease, and the status quo F forecast are highlighted.

MFDP version 1a
Run: had01
Time and date: 13:14 10/05/2009
Fbar age range (Total) : 2-4
Fbar age range Fleet \(1: 2-4\)
Fbar age range Fleet 2 : 2-4


Input units are thousands and kg - output in tonnes

Table 13.7.1.
Haddock in Subarea IV and Division IIIa. Summary of yield-per-recruit analysis.

MFYPR version 2 a
Run: had01
Time and date: 14:34 10/05/2009
Yield per results
\begin{tabular}{rrrrrrrrr} 
FMult & Fbar & CatchNos & Yield & StockNos & Biomass & SpwnNosJan & SSBJan pwnNosSpwn & SSBSpwn \\
\hline 0 & 0.0000 & 0.0000 & 0.0000 & 1.2384 & 0.1258 & 0.0871 & 0.0570 & 0.0871 \\
0.1 & 0.0251 & 0.0017 & 0.0008 & 1.2310 & 0.1201 & 0.0800 & 0.0514 & 0.0800 \\
0.2 & 0.0502 & 0.0033 & 0.0014 & 1.2244 & 0.1151 & 0.0737 & 0.0465 & 0.0737 \\
0.3 & 0.0753 & 0.0047 & 0.0020 & 1.2185 & 0.1106 & 0.0681 & 0.0421 & 0.0681 \\
0.4 & 0.1004 & 0.0060 & 0.0025 & 1.2132 & 0.1066 & 0.0631 & 0.0383 & 0.0631 \\
0.5 & 0.1255 & 0.0072 & 0.0029 & 1.2085 & 0.1031 & 0.0586 & 0.0349 & 0.0586 \\
0.6 & 0.1506 & 0.0083 & 0.0033 & 1.2042 & 0.1000 & 0.0546 & 0.0318 & 0.0546 \\
0.7 & 0.1757 & 0.0093 & 0.0036 & 1.2004 & 0.0972 & 0.0510 & 0.0291 & 0.0510 \\
0.8 & 0.2008 & 0.0103 & 0.0039 & 1.1969 & 0.0947 & 0.0478 & 0.0267 & 0.0478 \\
0.9 & 0.2259 & 0.0111 & 0.0041 & 1.1938 & 0.0925 & 0.0449 & 0.0246 & 0.0449 \\
1 & 0.2510 & 0.0119 & 0.0043 & 1.1909 & 0.0905 & 0.0422 & 0.0227 & 0.0422 \\
1.1 & 0.2761 & 0.0127 & 0.0045 & 1.1883 & 0.0887 & 0.0399 & 0.0210 & 0.0399 \\
1.2 & 0.3012 & 0.0134 & 0.0047 & 1.1860 & 0.0870 & 0.0377 & 0.0194 & 0.0377 \\
1.3 & 0.3263 & 0.0140 & 0.0049 & 1.1838 & 0.0856 & 0.0357 & 0.0180 & 0.0357 \\
1.4 & 0.3514 & 0.0146 & 0.0050 & 1.1818 & 0.0843 & 0.0340 & 0.0168 & 0.0227 \\
1.5 & 0.3765 & 0.0152 & 0.0051 & 1.1800 & 0.0831 & 0.0323 & 0.0157 & 0.0340 \\
1.6 & 0.4016 & 0.0157 & 0.0052 & 1.1783 & 0.0820 & 0.0308 & 0.0147 & 0.0323 \\
1.7 & 0.4267 & 0.0163 & 0.0053 & 1.1768 & 0.0810 & 0.0295 & 0.0138 & 0.0180 \\
1.8 & 0.4518 & 0.0168 & 0.0054 & 1.1754 & 0.0801 & 0.0282 & 0.0129 & 0.0295 \\
1.9 & 0.4769 & 0.0172 & 0.0054 & 1.1740 & 0.0793 & 0.0271 & 0.0122 & 0.0282 \\
2 & 0.5020 & 0.0177 & 0.0055 & 1.1728 & 0.0785 & 0.0260 & 0.0115 & 0.0271 \\
0.0260 & 0.0147 \\
0
\end{tabular}

Reference point \(F\) multiplier Absolute \(F\)
\begin{tabular}{lrr} 
Fbar(2-4) & \multicolumn{1}{c}{1} & 0.251 \\
FMax & \(>=1000000\) & \\
F0.1 & 1.7387 & 0.436 \\
F35\%SPR & 1.1646 & 0.292
\end{tabular}

Weights in kilograms


Figure 13.2.1.1. Haddock in Subarea IV and Division IIIa. Yield by catch component.


Figure 13.2.3.1. Haddock in Subarea IV and Division IIIa. Me an weights-at-age (kg) by catch component. Catch mean weights are also used as stock mean weights. Red dotted line give loess smoothers through each time-series of mean weights-at-age.


Figure 13.2.5.1. Haddock in Subarea IV and Division IIIa. Spatial distribution from the IBTS Q1 survey. Contour scale (given in the bar to the right) is the square root of survey CP UE, rescaled to lie between 0 and 1.

Haddock, North Sea Groundfish Survey Q3


Numbers per 30 min

Figure 13.2.5.2. Haddock in Subarea IV and Division IIIa. Spatial distribution from the ScoGFS Q3 survey.


Figure 13.2.5.2. Haddock in Subarea IV and Division IIIa. Spatial distribution from the ScoGFS Q3 survey. (cont.)


Figure 13.2.5.3. Haddock in Subarea IV and Division IIIa. Survey \(\log\) CP UE (catch per unit effort) at age.


Figure 13.2.5.4. Haddock in Subarea IV and Division IIIa. Commercial log LPUE (landings per unit effort) at age. Red lines: Scottish light trawl. Green lines: Scottish seine.

\section*{Nominal hours fished by availa}


Figure 13.2.5.5. Haddock in Subarea IV and Division IIIa. Nominal hours fished by Scottish fleets, as provided to the WG. Recording of hours fished is not mandatory in European logbooks and is not considered to be a reliable indicator of deployed fishing effort.

\section*{Commercial Catch Data}


Figure 13.3.2.1. Haddock in Subarea IV and Division IIIa. Log catch curves by cohort for total catches.


Figure 13.3.2.2. Haddock in Subarea IV and Division IIIa. Negative gradients of log catches per cohort, averaged over ages 2-4. The \(x\)-axis represents spawning year of cohort.


Figure 13.3.2.3. Haddock in Subarea IV and Division IIIa. Correlations in the catch-at-age matrix (including the plus-group for ages 8 and older), comparing estimates at different ages for the same year-classes (cohorts). In each plot, the straight line is a normal linear model fit: a thick line represents a significant ( \(\mathrm{p}<0.05\) ) regression, while a thin line is not significant. Approximate \(95 \%\) confidence intervals for each fit are also shown.


Figure 13.3.2.4. Haddock in Subarea IV and Division IIIa. Residuals from separable VPA analysis. The \(x\)-axis labels give the first year only of the actual year ratio used (so "1970" denotes 1970/1971). The \(y\)-axis labels for the lower plot give the first age only of the actual age ratio used (so " 1 " denotes \(1 / 2\) ). The area of the bubbles in the lower plot is proportional to the size of the residual.


Figure 13.3.2.5. Haddock in Subarea IV and Division IIIa. Stock summary plots for singlefleet XSA runs. Only the more recent segments of the EngGFS and ScoGFS surveys have been used here. Final year (2008) values of SSB and mean F(2-4) are plotted against each other in the upper right plot.


Figure 13.3.2.6. Haddock in Subarea IV and Division IIIa. Log catchability residuals from single-fleet XSA runs. Only the more recent segments of the EngGFS and ScoGFS surveys have been used here.


Figure 13.3.3.1. Haddock in Subarea IV and Division IIIa. Summary plots from an exploratory SURB A assessment, using all available surveys (EngGFS Q3, ScoGFS Q3, IBTS Q1). Solid lines give median estimates, dotted lines give approximate \(95 \%\) confidence bounds for mean \(Z\) and recruitment.

EngGFS Q3 GRT: log cohort abundance


EngGFS Q3 GOV: log cohort abundance


Figure 13.3.3.2. Haddock in Subarea IV and Division IIIa. Log abundance indices by cohort for each of the five survey indices.


Figure 13.3.3.2. Haddock in Subarea IV and Division IIIa. Log abundance indices by cohort for each of the five survey indices (cont.)

IBTS Q1: \(\log\) cohort abundance


Figure 13.3.3.2. Haddock in Subarea IV and Division IIIa. Log abundance indices by cohort for each of the five survey indices (cont.).


EngGFS Q3 GRT

Figure 13.3.3.3. Haddock in Subarea IV and Division IIIa. Within-survey correlations for the EngGFS (GRT) survey series, comparing index values at different ages for the same year-classes (cohorts). In each plot, the straight line is a normal linear model fit: a thick line represents a significant ( \(\mathrm{p}<0.05\) ) regression, while a thin line is not significant. Approximate \(95 \%\) confidence intervals for each fit are also shown.


Figure 13.3.3.3. cont.
Haddock in Subarea IV and Division III.. Within-survey correlations for the EngGFS (GOV) survey series, comparing index values at different ages for the same yearclasses (cohorts). In each plot, the straight line is a normal linear model fit: a thick line represents a significant ( \(\mathrm{p}<0.05\) ) regression, while a thin line is not significant. Approximate \(95 \%\) confidence intervals foreach fit are also shown.


ScoGFS Aberdeen Q3

Figure 13.3.3.3. cont. Haddock in Subarea IV and Division IIIa. Within-survey correlations for the ScoGFS (Aberdeen) survey series, comparing index values at different ages for the same year-classes (cohorts). In each plot, the straight line is a normal linear model fit: a thick line represents a significant ( \(\mathrm{p}<0.05\) ) regression, while a thin line is not significant. Approximate \(95 \%\) confidence intervals for each fit are also shown.


Figure 13.3.3.3. cont. Haddock in Subarea IV and Division IIIa. Within-survey correlations for the ScoGFS (GOV) survey series, comparing index values at different ages for the same yearclasses (cohorts). In each plot, the straight line is a normal linear model fit: a thick line represents a significant ( \(\mathrm{p}<0.05\) ) regression, while a thin line is not significant. Approximate \(95 \%\) confidence intervals foreach fit are also shown.


Figure 13.3.3.3. cont. Haddock in Subarea IV and Division IIIa. Within-survey correlations for the IBTS Q1 survey series, comparing index values at different ages for the same year-classes (cohorts). In each plot, the straight line is a normal linear model fit: a thick line represents a significant ( \(\mathbf{~}<0.05\) ) regression, while a thin line is not significant. Approximate \(95 \%\) confidence intervals for each fit are also shown.


Figure 13.3.3.4. Haddock in Subarea IV and Division IIIa. The effect of the number of XSA iterations carried out on final year population estimates (left-hand plots). The solid lines show results from FLXSA, while the red dots give results from a series of comparative XSA runs. The point of convergence is shown by blue dashed lines, while the red dashed lines show 30 iterations (which for many years was the standard stopping point for this assessment). The legends give equivalent estimates from SURB A, Laurec-Shepherd and separable VPA models. The righthand contour plots show differences over the full assessment time-series in biomass ( dB ), fishing mortality ( dF ) and recruitment ( dR ) between subsequent iterations. For this example, all the differences occur towards the end of the time-series. Note that this analysis has been carried out using the assessment from the 2008 WG report.


Figure 13.3.5.1 Haddock in Subarea IV and Division IIIa. Log catchability residuals for final XSA assessment. Both EngGFS and ScoGFS are split when used as tuning indices, and this split is shown by vertical lines on the relevant plots.


Figure 13.3.5.2. Haddock in Subarea IV and Division IIII. Contribution to survivors' estimates in final XSA assessment.


Figure 13.3.5.3. Haddock in Subarea IV and Division IIIa. Summary plots for final XSA assessment. Dotted horizontal lines indicate \(\mathrm{F}_{\mathrm{pa}}\) (top right plot) and \(\mathrm{B}_{\mathrm{pa}}\) (bottom left plot), while solid horizontal lines indicate \(\mathrm{F}_{\mathrm{lim}}\) and \(\mathrm{B}_{\mathrm{lim}}\) in the same plots.


Figure 13.3.5.4. Haddock in Subarea IV and Division IIIa. Eight-year retrospective plots for final XSA assessment.


Figure 13.5.1.1. Haddock in Subarea IV and Division IIIa. Estimated recruitment from the final XSA assessment for 1994-2008 (black line), with 5 lowest values (pink dots) and geometric mean of these (red line).


Figure 13.6.1. Haddock in Subarea IV and Division IIIa. Results of growth modelling for total catch weights (also used as stock weights) using proportional increments. Black line: arithmetic mean weight-at-age of 1953-2008 cohorts (error bars give \(\pm 2\) standard deviations). Red and purple lines: weights-at-age for the 1999 and 2000 cohorts respectively (solid = observed, dotted = forecast). Large red symbols indicate forecast weight for the \(8+\) group in 2009 (diamond), 2010 (triangle) and 2011 (circle).


Figure 13.6.2. Haddock in Subarea IV and Division IIIa. Results of growth modelling for human consumption landings using proportional increments. Black line: arithmetic mean weight-at-age of 1953-2008 cohorts (error bars give \(\pm 2\) standard deviations). Red and purple lines: weights-at-age for the 1999 and 2000 cohorts respectively (solid = observed, dotted = forecast). Large red symbols indicate forecast weight for the 8+ group in 2009 (diamond), 2010 (triangle) and 2011 (circle).


Figure 13.6.1. Haddock in Subarea IV and Division IIIa. Comparison of weights-at-age for 2008-10 from the 2008 WG, with the weights-at-age for 2008-10 from the 2009 WG.


Figure 13.7.1. Haddock in Subarea IV and Division IIIa. Summary of yield-per-recruit analysis.


Figure 13.9.1. Haddock in Subarea IV and Division IIIa. Historical assessment quality plot.


Figure 13.10.1. Haddock in Subarea IV and Division IIIa. Results of 2008 North Sea Stock Survey.

This assessment relates to the cod stock in the North Sea (Subarea IV), the Skagerrak (the northern section of Division IIIa) and the eastern Channel (Division VIId). This assessment is presented as an update assessment based on the revised assessment protocol specified by the 2009 meeting of WKROUND (ICES-WKROUND 2009).

A stock annex (within Annex 3 to this report)records more detail and references historic information on the stock definition, ecosystem aspects and the fisheries. This report section records only recent developments and new information presented to WGNSSK.

\subsection*{14.1 General}

\subsection*{14.1.1 Stock definition}

No new information was presented at the EG. A summary of available information on stock definition can be found in the Stock Annex.

\subsection*{14.1.2 Ecosystem aspects}

No new information was presented at the EG. A summary of available information on ecosystem aspects is presented in the Stock Annex.

\subsection*{14.1.3 Fisheries}

Cod are caught by virtually all the demersal gears in Sub-area IV and Divisions IIIa (Skagerrak) and VIId, including beam trawls, otter trawls, seine nets, gill nets and lines. Most of these gears take a mixture of species. In some of them, cod are considered to be a by-catch (for example in beam trawls targeting flatfish), and in others the fisheries are directed mainly towards cod (for example, some of the fixed gear fisheries). A summary of historic information on the directed and by-catch cod fisheries and past and current technical measures used for the management of cod is presented in the Stock Annex.

\section*{Technical Conservation Measures}

In 2009 a new system of effort management, by setting effort ceilings (kilowatt-days), has been introduced in accordance with the new cod management plan (EC \(1342 / 2008)\). The number of kw-days utilized was estimated for the different metiers of the national fleets during a reference period selected by each nation (2004-2006 or 2005-2007). From these reference values, the effort in the primary metiers catching cod (with discard and bycatch taken into account) will be reduced in direct proportion to reductions in fishing mortality until the new cod management plan target fishing mortality of 0.4 is achieved. EC 1342/2008 specifies that for 2009 a \(25 \%\) reduction in effort shall be applied to metiers using Otter Trawls, Danish Seines or similar gears with mesh size 80 mm and larger and Gill Nets. However, if certain national fleet segments can provide proof that they use highly selective gears and/or that their catches per fishing trip comprise less than \(5 \%\) cod, the \(25 \%\) reductions will not pertain. National fleet segments with less than \(1.5 \%\) cod catches can apply to be excluded from the effort management regime completely.

\section*{Changes in national fleet dynamics}

The ICES WGFTFB meeting, which provides information on developments of fleets and gear impacting on the North Sea fisheries, was scheduled to meet after the WGNSSK 2009; a summary of information on fleet dynamics for all countries will be available in the ICES WGFTFB 2009 report.

\section*{Scotland}

During 2008, 15 real-time closures (RTCs) were implemented under the Scottish Conservation Credits Scheme (CCS), and Scottish vessels were included in the CCS unless they opted out of it: as only one or two vessels opted out, compliance was close to \(100 \%\). In 2009, the CCS has been adopted by 439 Scottish and around 30 English and Welsh vessels: indeed, the CCS is now the only option available to Scottish skippers. At the time of writing (May 2009), 46 further RTCs have been implemented (with a target of 150 for the year). The CCS has two central themes aimed at reducing the capture of cod, namely through:
1) avoiding areas with elevated abundances of cod through the use of compulsory Real Time Closures (RTCs) and voluntary "amber zones"; and
2 ) the use of more species selective gears. Within the scheme, efforts are also being made to reduce discards generally.
In early 2008, a one-net rule was also introduced in Scotland as part of the CCS. This is likely to have improved the accuracy of reporting of landings to the correct mesh size range. However, Scottish seiners were granted a derogation from the onenet rule until the end of January 2009, and were allowed to carry two nets (e.g. 100-119 mm as well as \(120+\mathrm{mm}\) ). They were required to record landings from each net on a separate logsheet and to carry observers when requested (ICES-WGFTFB 2008).
Cod avoidance under the real-time closures scheme is a key component of the CCS, but it is not yet clear how successful the avoidance strategies have been. Therefore, it is difficult to conclude what will be the likely effect of the recent fishery changes on cod mortality. Although the scheme is intended to reduce mortality on cod, it will undoubtedly have an effect on the mortality of associated species such as haddock. Its success depends on the reaction of skippers to closures. If they move away to areas with few cod, then mortality should be reduced by the scheme. On the other hand, if they move to cod-rich areas and fish there until these areas are in turn closed, the impact on mortality may not be as significant as hoped. Changes in gear that are required to qualify for the Scottish Conservation Credits Scheme (CCS) are also likely to reduce by catch (and therefore) discards of cod in the Nephrops fishery in particular.

\section*{Fisheries Science Partnerships}

A series of new and ongoing collaborative studies were presented to WGNSSK providing information on a number of species; details are listed below. The WG welcomes FSP studies of this format, particularly on a regional basis as they enhance the ability of the group to interpret information and analyses, and enhance the quality of management advice that the group can provide.

\section*{UK - North East Coast Cod Survey}

The NE Coast cod survey (De Oliveira et al.,WD 1) is a designated time-series survey conducted since 2003 as part of the UK Fisheries Science Partnership (FSP). The objective of the survey series is to provide year-on-year comparative information on dis-
tribution, relative abundance and size/age composition of cod and whiting off the NE coast of England. The surveys also provide data on catches of other species important to the NE coast fishery, including haddock. In 2008 the population of cod in the survey area primarily comprised 1 - and 2 -year-olds, with some 3 - and 4 -year-olds. Older fish have generally been scarce throughout the time series. The relative strength of recent year classes of cod, as indicated by the time-series of FSP catch rates of 1-yearolds, has been similar to the trends given by the most recent ICES assessments (ICESWGNSSK 2008). The FSP survey index appeared to follow the overall ICES assessment result more closely than the 1-group indices for the whole North Sea from the ICES International Bottom Trawl Survey (IBTS) programme (ICES-WGNSSK 2008). The FSP series indicated that the 2006 year class is about half as abundant as the relatively strong 2005 year class and that the 2006 and 2007 year classes are about the same magnitude.

\section*{UK - Codwatch}

A second UK FSP project initiated in 2007 (the "North Sea Codwatch" project, Large et al., WD ??) has been mapping the distribution of young cod of the 2005 and 2006 year classes in the North Sea using a fisher self-sampling scheme (www.cefas.co.uk/fsp). The project involves 12 Eastern England Fish Producer Organisation (EEFPO) vessels, representing a wide range of fishing gears and target species, and operating throughout the North Sea. These vessels observed and recorded the incidence, fine-scale distribution and abundance of the 2005-2008 year classes of cod, and of cod in general in the North Sea from commercial catches made between April 2007 and March 2009.

Based on fishers' perception of current year class strength relative to previous year classes (participants have an average of 30 years fishing experience), the 2007 North Sea Codwatch results suggested that the 2005 year class was widely distributed throughout the North Sea (appearing in most sampled areas), with the highest levels of abundance occurring in the western-central North Sea in Q3, and in the western central and southern North Sea in Q4. Of all rectangles sampled (153 in total), only \(19 \%\) recorded perceptions of "high" or "very high" abundance of the 2005 year class relative to historical abundance (the remainder recording perceptions of "zero", "low" or "moderate" abundance), but the proportion of rectangles recording "high" or "very high" increased with time (from \(10 \%\) in Q2 to \(26 \%\) in Q4).

In contrast, the 2006 year class was present in relatively few of the sampled rectangles, with \(80 \%\) of sampled rectangles recording perceptions of "zero" or "low", but skippers noted that this may be a consequence of the low selectivity for young fish by the gear used. This year class was indicated to be more abundant at age 2 in the first two quarters of 2008, particularly in the southern North Sea in Q1 and in the central and southern North Sea (western part) in Q2. This trend is likely be largely driven by higher selectivity as the fish grow and recruit to the fishery. Data for Q3 2008 are at present incomplete and are unlikely to reliably indicate spatial patterns in and levels of relative abundance.

Spatial distribution maps of the modal index of relative abundance of the 2007 year class in catches sampled in each ICES rectangle for the first 3 quarters in 2008 suggest that this year class was again present in relatively few of the rectangles sampled. Comparison of the Q2 abundance data for the 2006 and 2007 year classes as 1-yearolds in 2007 and 2008 respectively suggest that these year classes may be of broadly similar strengths. These perceptions are consistent with WG estimates of these two year classes, both relative to each other and in the historical context.

Industry contributors commented that, in their opinion, the low estimates of relative abundance for all cod year classes observed during this project could be attributed to the use of larger mesh codends than used five years ago, and the transfer of effort to areas with few cod in order to eke out quotas and to minimise discards. In their opinion, low absolute abundance should not be interpreted solely as poor recruitment. Fishers independently have also reported greater abundance of cod in areas where historical abundance was low, despite this feature not showing clearly in the results of Codwatch thus far.

\section*{Denmark - REX}

A collaborative biologist-fishermen project on North Sea cod (REX) was initiated by DTU-Aqua (Institute for Aquatic Resources at the Technical University of Denmark) and the Danish Fishermen Association in summer 2006 (Wieland et al., WD ?? revised). Three commercial vessels representing different fishing methods participated in the study. These were a trawler, a flyshooter and a gillnetter. The original survey area consisted of 7 ICES statistical rectangles in the north-eastern central North Sea.

During the first two surveys in June and August 2006 the fishermen were free to select the fishing positions that tended to be mainly located on rough bottom, which is usually not covered by scientific bottom trawl surveys. In order to allow the investigation of a potential effect of bottom type, the fishermen were subsequently requested to select paired stations within \(10 \times 10 \mathrm{nmi}^{2}\) with one station on sand bottom and the other on different bottom types (gravel and stone bottom, as well as ship wrecks in the case of the gillnetter) during the next two surveys in January/February and June 2007. In order to obtain a better impression of the spatial distribution, a higher degree of randomisation in the survey design was used in surveys conducted in August 2007, in February and August/September 2008, and in January/February 2009 (survey area divided into \(5 \times 5 \mathrm{nmi}^{2}\); randomly selected fishing position with the square chosen by the fishermen; at least \(25 \%\) of the stations on sand bottom; number of squares covered in an ICES rectangles differed between the vessels).

The first three surveys resulted in sampling of a few clusters of stations in favourite spots of fishermen, yielding considerable catch rates of cod. In the later surveys a much wider extension of areas with high densities of cod were recorded (e.g. catch rates of more than 1 ton of cod per nmi2 were found in \(25 \%\) of the stations in the Au gust 2007 survey). In general, catch rates were lower in spring than in summer, and catches were considerably higher on rough bottom than on sand in the summer surveys. For the most recent surveys, the results suggest an increase in cod biomass density from the 3rd quarter 2007 to the 3 rd quarter 2008 and from the 1st quarter 2008 to the 1st quarter 2009. The length frequencies ranged from 20 to 129 cm with a peak between 30and 40 cm for the trawler and flyshooter (105 and 100 mm meshsize in the codends). The length frequencies for the gillnetter started at larger sizes due to meshsize selection whereas the maximum length of the cod observed did not differ much between the three fishing methods.

Cod between 60 and 80 cm was well represented in the length frequencies for all vessels, and larger ( \(>100 \mathrm{~cm}\) ) cod was caught regularly. CPUE in numbers at age 2 from the trawler indicates that the 2007 year class is about two times stronger than the 2006 year class and that also the abundance of the older age have increased in the study area. A comparison with the IBTS indices suggests a moderate decline of the efficiency of the IBTS for cod older than age 2 in the 3rd quarter and a decrease in the catchability from age 2 to 3 followed by an increase in catchabilibity beyond age 4 in the 1st quarter 2008.

UK - SiSP
As part of the SiSP collaborative research intiative in May 2008, Scotland ran comparative trials of the GOV gear (as used in IBTS) and a standard commercial gear (Reid et al. 2009). These were conducted using 66 twin-trawl hauls on the commercial vessel MFV Russa Taign, at a number of locations between Aberdeen and Shetland. In general, the results of the trials show that the catch rates for most key species is quite similar in both nets. The catch rate for cod in the GOV was slightly, but significantly, greater than for the commercial net. There was no length dependency in relative catch rates for cod (see Figure 14.17). These results need to be treated with a degree of caution, as neither gear was used in exactly the same way as the would be in survey or commercial operations, but the study does provide evidence against the common assumption that the GOV is a "bad cod net".
France - Fisher self sampling
In 2008 France initiated a collaborative Industry Science partnership with the help of a European financial income (EFF) to extend the DCR sampling scheme and to give more information about the situation of the French cod fishery in the Eastern channel and the Southern North Sea. The study, called "cod study in 7d/4c", was established with the industry and study was planned for 7 months, from mid October 2008 to mid May 2009 (Léonardi et al. 2008 WD ??).

Based on the Ifremer fishing activity census (conducted each year to provide information on the different metier for all boats each month) and also logbook information, a monthly scheme was developed to sample \(3 \%\) of the fishing activity targeting demersal species and having cod as by catch in 7 d and 4 . The principle is to sample normal fishing practice as usual in observation at sea.

These data are preliminary but show clearly that all of the catch was above the minimum landing size ( 35 cm ) with the discarded component corresponding mainly to Boulogne vessels (cod quota entirely closed) and the retained sizes to Port-en-Bessin. The difference in the length structure is certainly linked to different fishing areas for these two fleets. High rates of discards were recorded for lengths between 37 and 48 cm (ages 2 and 3) confirming the information provided by French fisherman and the WGNSSK in 2007 (ICES WGNSSK 2008) of recent improved recruitment in the southern North Sea and VIId.

\section*{The North Sea Stock Survey}

The North Sea Stock Survey (Laurenson 2008, WD ??) w as submitted to WGNSSK in order for the fishers perception of the state of the stock to be considered as part of the assessment process.

\section*{Abundance}

The spatial distribution of the change in the abundance since 2003 is recorded by survey area in Figure 14.18. The perceptions of cod abundance remain positive with the majority of respondents ( \(67-91 \%\) per area) reporting "more" or "much more" cod. No respondents perceived there to be "much less" cod. The modal response from respondents in each of the vessel size groups was that cod were "more" abundant. Compared to 2007, a similar percentage of the respondents from vessels \(<15 \mathrm{~m}(82 \%)\) believe there are "more" or "much more" cod and in the \(15-24 \mathrm{~m}\) and \(>24 \mathrm{~m}\) groups \(84 \%\) and \(92 \%\) respectively, indicated that there were "more" or "much more" cod, higher percentages than recorded in 2007. By fishing gear type the vast majority of
respondents gave a positive view of cod abundance, the modal response being "more" for each gear type.
Size Range
As in previous surveys the modal response in all areas was for "all sizes" of cod being caught. Strong modal responses of "all sizes" were also observed by vessel size and gear type. In each area, the percentages of respondents reporting "mostly small" cod were lower than in 2007. As in 2007, the highest percentage of respondents reporting "mostly small" cod referred to area 6 b, but the percentage of responses in this category had decreased from \(33 \%\) to \(17 \%\). Except in area 3, where the number of responses for cod size only numbered seven, "mostly large" cod were reported for all areas with the highest percentage response occurring for area 7 (26\%). As in 2007, the gear type in which the highest proportion of "mostly small" cod was reported was the beam trawl ( \(13 \%\) of respondents); while less than \(10 \%\) of respondents in each of the other groups reported "mostly small" cod. The highest percentage of "mostly large" responses was received from the gill net group ( \(22 \%\) ).

\section*{Discards}

In this survey between 50 and \(77 \%\) of responses for areas \(1-5\) and 9 indicated that there were "more" or "much more" discarding. Except for area 4, these percentages were higher than recorded in 2007. As in 2007, the modal response for areas \(6 \mathrm{a}, 6 \mathrm{~b}, 7\) and 8 was that "no change" in discarding had occurred. Only the \(<15 \mathrm{~m}\) group showed a strong modal response for "no change" in cod discards. Opinions of the respondents from the larger vessel size groups were mainly split between "no change"; "more" or "much more". By gear type the pattern of responses is more complex and although the distributions of responses are generally different to those of 2007, there has been a decrease in the percentages of respondents indicating "much less" or "less" discards. Beam trawl, Nephrops trawl and gill net respondents gave modal responses of "same" while respondents using trawl or seine were more evenly split between "same", "more" and "much more".

\section*{Recruits}

As in 2007, up to \(46 \%\) of respondents for each area reported "don't know" for recruitment. As in 2007, excluding the "don't know" responses, the modal responses from five of the ten areas was "high". By vessel size, of those who expressed an opinion, the modal response of respondents in each size group was for "high" recruitment. This is more positive than in 2007, where the modal responses for both the 15 24 m and \(>24 \mathrm{~m}\) groups were "moderate".

Comparison between the fishers survey and the IBTS survey data has been shown in previous years the time series are broadly in agreement in recording a stable overall stock abundance in until 2003-2005 followed by an increase more recently, especially in the north-western North Sea. The IBTS survey (Figure 14.3a,b) has more variability, due to the inherent spatial variation, but exhibits similar trends in the same areas as the fishers survey, with significant increases in the north and west.

\subsection*{14.1.4 Management}

Management of cod is by TAC and technical measures. The agreed TACs for Cod in Division IIIa (Skagerrak), VIId and Sub-area IV were as follows:
\begin{tabular}{llllll}
\hline TAC(000T) & \(\mathbf{2 0 0 5}\) & \(\mathbf{2 0 0 6}\) & \(\mathbf{2 0 0 7}\) & \(\mathbf{2 0 0 8}\) & \(\mathbf{2 0 0 9}\) \\
\hline III (Skagerrak) & 3.9 & 3.3 & 2.9 & 3.2 & 4.1 \\
\hline Па + IV & 27.3 & 23.2 & 20.0 & 22.2 & 28.8 \\
\hline VIId & & & & & 1.7 \\
\hline
\end{tabular}

There was no TAC for cod set for Division VIId alone until 2009. Landings from Division VIId w ere counted against the overall TAC agreed for ICES Divisions VIIb-k.

\section*{EU Cod Recovery plans}

A Cod Recovery Plan which detailed the process of setting TACs for the North Sea cod was in place until 2008. Details of it are given in EC 423/2004 and previous working group reports. ICES considered the recovery plan as not consistent with the precautionary approach because it did not result in a closure of the fisheries for cod at a time of very low stock abundance and until an initial recovery of the cod SSB had been proven.

In April 2008, the European Commission adopted a proposal to amend the cod recovery plan, based on input from stakeholders, and on scientific advice from both ICES and STECF that current measures have been inadequate to reduce fishing pressure on cod to enable stock recovery. The main changes proposed were replacing targets in terms of biomass levels with new targets expressed as optimum fishing rates intended to provide high sustainable yield, and introducing a new system of effort management by setting effort ceilings (kilowatt-days) for groups of vessels or fleet segments to be managed at a national level by Member States. The new system is intended to be simpler, more flexible and more efficient than the previous one, allowing effort reductions to be proportionate to targeted reductions in fishing mortality for the segments that contribute the most to cod mortality, while for other segments effort will be frozen at the average level for 2005-2007.

In December 2008 the European Commission and Norway agreed on a new cod management plan implementing the new system of effort management and a target fishing mortality of 0.4 . The recovery plan is evaluated against the precautionary approach reference points in Section 15 of this report. Details of it are given in EC 1342/2008. The HCR for setting TAC for the North Sea cod stock are as follows:

Article 7: Procedure for setting TACs for cod stocks in the Kattegat the west of Scotland and the Irish Sea
1. Each year, the Council shall decide on the TAC for the following year for each of the cod stocks in the Kattegat, the west of Scotland and the Irish Sea. The TAC shall be calculated by deducting the following quantities from the total removals of cod that are forecast by STECF as corresponding to the fishing mortality rates referred to in paragraphs 2 and 3:
(a) a quantity of fish equivalent to the expected discards of cod from the stock concerned;
(b) as appropriate a quantity corresponding to other sources of cod mortality caused by fishing to be fixed on the basis of a proposal from the Commission.

Article 8: Procedure for setting TACs for the cod stock in the North Sea, the Skagerrak and the eastern Channel
1. Each year, the Council shall decide on the TACsfor the cod stock in the North Sea, the Skagerrak and the eastern Channel. The TACs shall be calculated by applying the reduction rules set out in Article 7 paragraph 1 (a) and (b).
2. The TACs shall initially be calculated in accordance with paragraphs 3 and 5. From the year where the TACs resulting from the application of paragraphs 3 and 5 would be lower than the TACs resulting from the application of paragraphs 4 and 5 , the TACs shall be calculated according to the paragraphs 4 and 5.
3. Initially, the TACs shall not exceed a level corresponding to a fishing mortality which is a fraction of the estimate of fishing mortality on appropriate age groups in 2008 as follows: 75 \% for the TACs in 2009, 65 \% for the TACs in 2010, and applying successive decrements of \(10 \%\) for the following years.
4. Subsequently, if the size of the stock on 1 January of the year prior to the year of application of the TACs is:
(a) above the precautionary spawning biomass level, the TACs shall correspond to a fishing mortality rate of 0,4 on appropriate age groups;
(b) between the minimum spawning biomass level and the precautionary spawning biomass level, the TACs shall not exceed a level corresponding to a fishing mortality rate on appropriate age groups equal to the following formula: \(0,4-(0,2 *\) (Precautionary spawning biomass level - spawning biomass) / (Precautionary spawning biomass level - minimum spawning biomass level))
(c) at or below the limit spawning biomass level, the TACs shall not exceed a level corresponding to a fishing mortality rate of 0,2 on appropriate age groups.
5. Notwithstanding paragraphs 3 and 4, the Council shall not set the TACsfor 2010 and subsequent years at a level that is more than \(20 \%\) below or above the TACs established in the previous year.
6. Where the cod stock referred to in paragraph 1 has been exploited at a fishing mortality rate close to 0,4 during three successive years, the Commission shall evaluate the application of this Article and, where appropriate, propose relevant measures to amend it in order to ensure exploitation at maximum sustainable yield.

Article 9: Procedure for setting TACs in poor data conditions
Where, due to lack of sufficiently accurate and representative information, STECF is not able to give advice allowing the Council to set the TACs in accordance with Articles 7 or 8, the Council shall decide as follows:
(a) where STECF advises that the catches of cod should be reduced to the lowest possible level, the TACs shall be set according to a \(25 \%\) reduction compared to the TAC in the previous year;
(b) in all other cases the TACs shall be set according to a \(15 \%\) reduction compared to the TAC in the previous year, unless STECF advises that this is not appropriate.

\section*{Article 10: Adaptation of measures}
1. When the target fishing mortality rate in Article 5(2) has been reached or in the event that STECF advises that this target, or the minimum and precautionary spawning biomass levels in Article 6 or the levels of fishing mortality rates given in Article 7(2) are no longer appropriate in order to maintain a low risk of stock depletion and a maximum sustainable yield, the Council shall decide on new values for these levels.
2. In the event that STECF advises that any of the cod stocks is failing to recover properly, the Council shall take a decision which:
(a) sets the TAC for the relevant stock at a level lower than that provided for in Articles 7, 8 and 9;
(b) sets the maximum allowable fishing effort at a level lower than that provided for in Ar ticle 12;
(c) establishes associated conditions as appropriate.

\subsection*{14.2 Data available}

\subsection*{14.2.1 Catch}

Landings data from human consumption fisheries for recent years as officially reported to ICES together with those estimated by the WG are given for each area separately and combined in Table 14.1. The WG estimate for landings from the three areas (IV, IIIa-Skagerrak and VIId) in 2006-2008 were based on annual data, as opposed to quarterly data in the past, because of ongoing difficulties with international data aggregation procedures, particularly with regard to discard raising.
The Netherlands, France, Belgium and Sweden, who respectively landed \(8 \%, 7 \%, 4 \%\) and \(2 \%\) of all cod for combined area IV and VIId in 2008, do not provide discard estimates for this combined area. Similarly, Germany, the Netherlands and Belgium, who respectively landed \(2 \%, 1 \%\) and \(1 \%\) of all cod in area IIIa, do not provide discard estimates for this area. Norwegian discarding is illegal, so although this nation landed in \(200818 \%\) and \(9 \%\) of all cod in combined area IV and VIId, and area IIIa respectively, it does not provide discard estimates.

The landings estimate for 2008 is 27.2 thousand tonnes, split as follows for the separate areas (thousand tonnes):
\begin{tabular}{|l|l|l|l|}
\hline & Landings & TAC & Discards \\
\hline IIIa-Skagerrak & 3.3 & 3.2 & 2.2 \\
\hline IV & 22.2 & 22.2 & \multirow{2}{*}{19.6} \\
\hline VIId & 1.4 & Comb VIIb-k* & \\
\hline Total & 26.8 & & 21.8 \\
\hline
\end{tabular}
*Division VIId is included in the TAC rele vant to Divisions VIIb-k
WG estimates of discards are also shown in the above table.
Discard numbers-at-age were estimated for areas IV and VIId by applying the Scottish discard ogives to the international landings-at-age. For 2006, Denmark was excluded from this calculation as they provided their own discard estimates. For 2007 and 2008, Scottish, Danish, German and England \& Wales discard estimates were combined (sum of discards divided by sum of landings) and used to raise landings-at-age from the remaining nations in sub-area IV to account for missing discards. Dis-
card numbers-at-age for IIIa-Skagerrak were based on observer sampling estimates. For 2006 to 2008, Danish and Swedish discard estimates were combined (sum of discards divided by sum of landings) and used to raise landings-at-age from the remaining nations in Division IIIa-Skagerrak to account for missing discards. Although in some cases other nations' discard proportions are available for a range of years, these have not been transmitted to the relevant WG data coordinator in an appropriate form for inclusion in the international dataset. Because of the data co-ordination difficulties in 2006, which have continued to 2008, it was not possible to consistently apply Danish (and now also England and Wales) discard age compositions to other years, even though these are now available. Figure 14.1a plots reported landings and estimated discards used in the assessment.

For cod in IV, IIIa-Skagerrak and VIId, ICES first raised concerns about the misreporting and non-reporting of landings in the early 1990s, particularly when TACs became intentionally restrictive for management purposes. Some WG members have since provided estimates of under-reporting of landings to the WG, but by their very nature these are difficult to quantify. In terms of events since the mid-1990s, the WG believes that under-reporting of landings may have been significant in 1998 because of the abundance in the population of the relatively strong 1996 year-class as 2-yearolds. The landed weight and input numbers at age data for 1998 were adjusted to include an estimated 3000 t of under-reported catch. The 1998 catch estimates remain unchanged in the present assessment.

For 1999 and 2000, the WG has no a priori reason to believe that there was significant under-reporting of landings. However, the substantial reduction in fishing effort implied by the 2001, 2002 and 2003 TACs is likely to have resulted in an increase in unreported catch in those years. Anecdotal information from the fisheries in some countries indicated that this may indeed have been the case, but the extent of the alleged under-reporting of catch varies considerably. Since the WG has no basis to judge the overall extent of under-reported catch, it has no alternative than to use its best estimates of landings, which in general are in line with the officially reported landings. An attempt is made to incorporate a statistical correction to the sum of reported landings and discards data in the assessment of this stock, but the figures shown in Table 14.1 and Figure 14.1a nevertheless comprise the input values to the assessment. Buyers and Sellers legislation introduced in the UK towards the end of 2005 is expected to have improved the accuracy of reported cod landings for the UK. This has brought the UK in line with existing EU legislation.

The by-catch of cod from the Danish and Norwegian industrial fisheries that was sent for reduction to fishmeal and oil in 2008 was ??? tonnes (Table 2.1.3\#\#).

\section*{Age compositions}

Age compositions were provided by Denmark, England, Germany, the Netherlands, Scotland and Sweden (see Section 1.2.4\#\#).
Landings in numbers at age for age groups 1-11+ and 1963-2008 are given in Table 14.2. SOP values are shown. These data form the basis for the catch at age analysis but do not include industrial fishery by-catches landed for reduction purposes. Bycatch estimates are available for the total Danish and Norwegian small-meshed fishery in Sub-area IV (Tables 2.1.3 to 2.1.5\#\#) and separately for the Skagerrak (Table 14.1). During the last five years an average of \(82 \%\) ( \(80 \%\) in 2008) of the international landings in number were accounted for by juvenile cod aged 1-3. In 2008, age 1 cod
comprised \(25 \%\) of the total catch by number, age \(2,35 \%\) and age 3 (the 2005 year class), \(33 \%\).

Discard numbers-at-age are shown in Table 14.3. The proportions of the estimated total numbers discarded are plotted in Figure 14.1b and the proportion of the estimated discards for ages 1-3, in Figure 14.1c. Estimated total numbers discarded have varied between 35 and \(55 \%\) since 1995, but have shown an increase to above \(70 \%\) since 2006, due to the stronger 2005 year class entering the fishery (estimated to be almost the size of the 1999 year class), and a mismatch between the TAC and effort. Historically, the proportion of numbers discarded at age 1 have fluctuated around \(80 \%\) with no decline apparent after the introduction of the 120 mm mesh in 2002. During the last six years, it is estimated to be at around \(90 \%\). At ages 2 to 4 discard proportions have been increasing steadily and are currently estimated to be \(73 \%\) at age 2 , \(64 \%\) of age 3 (the 2005 year class) and \(12 \%\) of 4 year old cod in 2008 . Note that these observations refer to numbers discar ded, not weight.

\subsection*{14.2.2 Weight at age}

Mean weight at age data for landings, discards and catch, are given in Tables 14.4-6. Total catch mean weight values were also used as stock mean weights. Long-term trends in mean catch weight at age for ages 1-9 are plotted in Figure 14.2, which indicates that there have been short-term trends in mean weight at age and that the decline noted during the 90's at ages 3-5 now seems to have been reversed, most likely as a result of high-grading. Ages 1 and 2 show little absolute variation over the longterm.

\subsection*{14.2.3 Maturity and natural mortality}

In the historic assessments natural mortality for cod is assumed to be constant in time. How ever, calculations with the SMS key run (Stochastic Multi Species Model; Lewy and Vinther, 2004), carried out by the Working Group on Multi Species Assessment Methods (ICES WGSAM 2008), indicate that predation mortalities (M2) declined substantially over the last 30 years for age 1 and age 2 cod. In addition, calculations with the latest 4 M key run (Vinther et al., 2002), carried out during the EU project BECAUSE (contract number SSP8 CT 2003 502482) in 2007, indicate a systematic increasing trend for older ages (3-6) of cod due to seal predation. A review of the WGSAM estimates was carried out at the 2009 WKROUND benchmark assessment of the North Sea cod (ICES-WKROUND 2009), and the variable time series of M, which include the major sources of predation on North Sea cod, was considered appropriate for use in future assessments. Table 14.7 b shows estimates of M, based on multi species considerations adopted for the revised assessment. For 2008 the same natural mortalities were applied as for 2007 since no new estimates are available. WKROUND also concluded that as new stomach data (e.g. on seal predation) become available, a revision of more recent M2 values to reflect the current status of the food web, should be considered.
Values for maturity are given in Table 14.7a, they are applied to all years and are unchanged from those used in recent assessments. ICES-WKROUND (2009) also examined systematic changes in age at maturation which has increased in a number of cod stocks. In recent years, North Sea cod has shown changes in maturity with fish maturing at a younger age and smaller size. The variable maturity data leads to a substantial deterioration in model fit, and therefore does not help explain the relationship between SSB and recruitment. ICES-WKROUND (2009) concluded that until further investigations are carried on issues linked to earlier maturity, for exam-
ple relating the quality of reproductive output of young first time spawners to recruitment success, the constant maturity ogive should be used for future assessments.

\subsection*{14.2.4 Catch, effort and research vessel data}

Reliable, individual, disaggregated trip data were not available for the analysis of CPUE. Since the mid-to-late 1990s, changes to the method of recording data means that individual trip data are now more accessible than before; however, the recording of fishing effort as hours fished has become less reliable as it is not a mandatory field in the logbook data. Consequently, the effort data, as hours fished, are not considered to be representative of the fishing effort actually deployed. The WG has previously argued that, although they are in general agreement with the survey information, commercial CPUE tuning series should not be used for the calibration of assessment models due to potential problems with effort recording and hyper-stability (ICESWGNSSK 2001), and also changes in gear design and usage, as discussed by ICESWGFTFB \((2006,2007)\). Therefore, although the commercial fleet series are available, only survey and commercial landings and discard information are analysed within the assessment presented.

Two survey series are used within this assessment:
- Quarter 1 international bottom-trawl survey (IBTSQ1): ages \(1-6+\), covering the period 1976-2009. This multi-vessel survey covers the whole of the North Sea using fixed stations of at least two tows per rectangle with the GOV trawl.
- Quarter 3 international bottom-trawl survey (IBTSQ3): ages \(0-6+\), covering the period 1991-2008. This multi-vessel survey covers the whole of the North Sea using fixed stations of at least two tows per rectangle with the GOV trawl. The Scottish and English third quarter surveys described above contribute to this index.

The data used for calibrating the catch-at-age analysis are shown in Table 14.9.
Maps showing the IBTS distribution of cod are presented in Figures 14.3a-b (ages 1\(3+\) ). The recent dominant effect of the size and distribution of the 1996 and, to a lesser extent, the 1999 and 2005 year-classes are clearly apparent from these charts. Fish of older ages continued to decline until 2006 due to the very weak 2000, 2002 and 2004 year classes, but have subsequently begun to increase, especially in the north and west. The abundance of \(3+\) fish is still at a low level compared to historic levels but is increasing.

An analysis of IBTSQ1 data by Rindorf and Vinther (WD 4 in ICES-WGNSSK, 2007) illustrated the increased importance of recruitment from the Skagerrak. The survey indices from IBTSQ1 and Q3 used in the stock assessment only include catch rates from the three most easterly rectangles of Skagerrak. WKROUND (2009) compared the standard and an extended area IBTS index for IBTS Q1 and Q3. The indices show minor changes for the ages used in the assessment (1-5 for IBTSQ1 and 1-4 for IBTSQ3) when the index is extended. The largest changes occur at the younger ages, particularly for age 0 in IBTSQ3, which is not used in the assessment. Residuals for BAdapt runs including the standard and extended indices indicate a slight improvement in fit for the extended indices run compared to the standard indices run. Given the improved fit for the extended indices and other benefits of using these indices (such as better coverage of the stock distribution area), WKROUND concluded that it
would be beneficial for the North Sea cod assessment to use the extended indices in future analyses.

Correspondence between WGNSSK and the IBTSWG during spring 2009 discussed the addition of the suggested areas to the calculation of the extended index. Some of the rectangles were not covered by surveys each year and a modified list was agreed. Unfortunately, after calculation of the extended area and standard indices using the IBTS Q1 2009 values, large differences between the indices were noted at the older ages, that did not occur in previous years. There was insufficient time before the WGNSSK meeting to investigate the reason for the differences and therefore a decision was made to continue with the standard indices for a further year before the transition to the extended area surveys was undertaken.

\subsection*{14.3 Data analyses}

\subsection*{14.3.1 Reviews of last year's assessment}

In 2008 the ACFM review group raised the following issues (given in italics in quotes), and the WG responds as follows (given in normal text):

The WG are encouraged to contrast the two methods using the 2007 data and if differences are noted, to consider methods to correct the time series with the 'new' approach. This was partially addressed during the 2008 EG in which it was observed that the data raising procedure resulted in no major change to the assessment results. The problems will be addressed in more detail when new data raising procedure is available which avoids the complexity of the spreadsheets currently used.

The WG should note that in other fisheries, discarding of cod across all age groups is evident (West of Scotland and Celtic Sea), largely as a consequence of the buyers and sellers regulations. Therefore, in time, any biases may affect the estimate of SSB, this may become important in the short term given the strength of the 2005 year class. Agreed the EG has noted this development for a number of years and has noted the high discard 2008 rate for the 2005 year class and increasing discards of 4 year old fish.

Lack of discard data from Belgium, Sweden and France with unreliable (low sample size) data from the Netherlands is concerning, given that the WG note that concentrations of small cod are typically found in the southern North Sea, it is therefore unfortunate that discard data is not available form the 'small' meshed fisheries that occur in VIc and VIb. The application of a discard correction factor from other (more northern, larger mesh fisheries) may significantly underestimate discards in this area. The lack of catch numbers at age from France are of concern given the importance of the French fishery in VIId / IVc and the fact that the industry themselves have raised the issue of elevated discarding in certain areas. The WG are encouraged to make every effort to rectify this. Data from the French Industry/Science partnership have highlighted the high rate of discards in VIId and the southern North Sea. The industry paper has noted that the increased effort put into sampling of the French fisheries is aimed at providing information for the WGNSSK.

\subsection*{14.3.2 Exploratory survey-based analyses}

Survey abundance indices are plotted in log-mean standardised form by year and cohort in Figure 14.4a for the IBTSQ1 survey, together with log-abundance curves and associated negative gradients for the age range \(2-4\). Similar plots are shown for the IBTSQ3 survey in Figure 14.4b. The log-mean standardised curves indicate no
obvious year effects (top-left plots), and tracks cohort signals well (top right) The log abundance curves for each survey series indicate consistent gradients (bottom left), with less steep gradients in recent years (bottom right).

Figures 14.5 a and b show within-survey consistency (in cohort strength) for the IBTSQ1 and Q3 surveys, while Figure 14.5c shows between-survey consistency (for each age) for the two surveys. These show generally good consistency, justifying their use for survey tuning. Correlations deteriorate for age 5 for the IBTSQ3 survey, and this age is not used for tuning.
The SURBA survey analysis model was fitted to the survey data for the IBTSQ1 and IBTSQ3. The summary plots are presented in Figures 14.6a-b.
Biomass - Both time series estimated in SURBA indicate that spawning stock biomass reached the lowest level in the time series in 2005-6 caused by a series of poor recruitments coupled with high fishing mortality and discard rates at the youngest ages, but that it is now increasing again because the stronger 2005 year class is starting to mature. This increase can also be seen in the time series for total stock biomass.

Total mortality - In all SURBA model fits, there is a high level of uncertainty in the model estimates, and trends in mean \(Z\) cannot be determined with any confidence.

Recruitment - SURBA estimates of recruitment appear to have very wide confidence intervals for the IBTSQ3 survey, the reason for which is not immediately clear. The IBTSQ1 survey indicates that the recruiting years classes since 1996 have been relatively weak, but that the 2005 year class is one of the highest of the recent low values. The variation recorded in year class strength at age 1 is substantially higher than that recorded subsequently at ages 2 and 3, indicating that the high rates of discarding ( \(90 \%\) ) and high mortality rates at this age are resulting in reduced contributions from one year old fish to the stock and catches. The 2009 data from IBTSQ1 indicate that the 2008 year class may be one of the lowest recorded in the survey series.

\subsection*{14.3.3 Exploratory catch-at-age-based analyses}

\section*{Catch-at-age matrix and Separable VPA}

The total catch-at-age matrix (combination of landings and discards shown in Tables 14.2 and 14.3) is expressed as proportions-at-age, standardised over time in Figure 14.7. It shows clearly the contribution of the 1996 and 1999 year classes to catches in recent years, with the larger 1996 year class disappearing more rapidly from the catches compared to the 1999 year class. It also shows the greater proportion of older fish in the catches at the start of the time series relative to recent years. The 2005 year class is starting to feature strongly in the catch.

As in previous years, a separable VPA model was used to examine the structure of the catch numbers at age data before its use in a catch at age analysis. The fitted model indicates that the age structure of the recorded landings may have changed in the last two years, positive residuals at the youngest ages in the most recent year and negative at the oldest. This may be an effect of the high grading, discarding noted earlier. The catch data are not subject to large random or process errors that would lead to concerns as to the way in which the recor ded catch has been processed.

\section*{Catch curve cohort trends}

The top panel of Figure 14.8 presents the log catch curve plot for the catch at age data. Through time there is an increase in the slope of the cohort plots indicating faster re-
moval rates or high total mortality. In the most recent years there has been a gradual decrease in the slope at the youngest ages - a sign of decreased mortality rates. The bottom panel plots the negative slope of a regression fitted to the ages \(2-4\), the age range used as the reference for mortality trends. The decrease in the negative slope indicates that total mortality rates at the ages comprising the dominant ages within the fishery are declining.

\section*{State-Space Model}

Nielsen (ICES WGNSSK 2008 WD) presented state-space model (SAM) estimates applied to the North Sea cod data. The model was evaluated for the cod assessment at WKROUND (2009) at which it was agreed that B-Adapt continue to be used as the main assessment model for North Sea cod until an appropriate formulation of the SAMmodel can be found that deals with the issues of retrospective bias and trends in \(F\) that appear to diverge across ages in recent years.

The WG therefore fitted the SAM model in parallel to the B-ADAPT assessment in order to continue the comparative series alternative model analyses. SAM showed the same pattern in SSB (Figure 14.9) and recruitment as B-ADAPT. The overall development in Fbar is also the same in the estimates from SSASS and B-ADAPT, but the decrease in the SAM Fbar estimates in the most recent years are less steep and the overestimation retrospective pattern noted before is still present. The B-ADAPT estimates are more fluctuating, which is a consequence of B-ADAPT assuming reported catches and age compositions known without error (Figure 14.10). The estimated catch multiplier (Figure 14.11) is similar to that estimated by B-ADAPT.

\section*{B-ADAPT}

The following table presents a selection of the runs considered, comprising single fleet B-ADAPT runs fitted to the IBTSQ1 and IBTSQ3 groundfish surveys respectively, and the update assessment (using the same settings as last year).
\begin{tabular}{|l|l|}
\hline Description & \begin{tabular}{l} 
Period for catch \\
multiplier
\end{tabular} \\
\hline Single Fleet Runs & \\
1. IBTSQ1 & \(1998-2008\) \\
2. IBTSQ3 & \(1998-2008\) \\
Candidate Assessments & \(1993-2008\) \\
\hline 3. Update assessment & \\
\hline
\end{tabular}

Single fleet runs of the B-ADAPT model were fitted to the IBTSQ1 (run 1) and IBTSQ3 (run 2) groundfish surveys in order to examine the time series of estimates derived from independent survey data sets. Because B-ADAPT requires a reasonable period of overlap (at least 5 years) between the survey data and the period for which a catch multiplier is not estimated, and because the base run estimated catch multipliers close to 1 for 1997, the IBTSQ3 run only estimated the catch multiplier for the period 1998-2007, with the values used for the period 1993-1997 taken from the updated assessment (run 3). To ensure consistency between the single fleet runs, the same procedure was used for IBTSQ1 (setting multipliers for 1993-1997 equal to base run values, and estimating those from 1998 on), despite enough data being available for estimating catch multpliers from 1993.

Figure 14.12 plots trajectories of SSB, recruitment (age 1), mean \(F(2-4)\) and the catch multiplier for the two single fleet runs, together with the update assessment, which combines the two surveys. The single fleet runs indicate that the estimated removals
since 1998 are higher than indicated by the catch data, but that they are still lower than the values from the update assessment in the most recent two years, reasons for which are not entirely understood at this stage (further investigation is needed, but this is beyond the terms of reference for this WG). Furthermore, SSB is now no longer in decline having attained the lowest level in the time series in 2006, and that fishing mortality is generally on the decline (but note the final year increase for the IBTSQ1 run and update assessment).
Residual plots are shown in Figure 14.13 for the update assessment, indicating no obvious model misspecification, apart from the most recent years showing generally negative residuals for IBTSQ1, and positive ones for IBTSQ3. Retrospective plots for the base run are shown in Figure 14.14. These show a slight under-estimation of fishing mortality prior to 2007, but a relatively large change in 2007 for \(\mathrm{F}(2-4)\) and the catch multiplier.

\subsection*{14.3.4 Final assessment}

This being an update assessment, run 3 was accepted as the final assessment. BADAPT was fitted to landings data for the years 1963-2008 and ages 1-7+, adjusted for discarding as described in Section 14.2. Survey data used for tuning are the International Bottom Trawl Survey Q1 (1983-2009, ages 1-5) and Q3 (1991-2008, ages 1-4). Surviving population numbers at ages 1-5 were estimated in 2009 with fishing mortality at age 6 in all years calculated as the average of ages 3-5. Bias parameters (catch multipliers) were estimated in the years 1993-2008. A smoothing weight of 0.5 was applied to between-year residuals of the log-total catch in tonnes. No time series weighting was applied and survey residuals were given equal weight in the analysis. Survey catchability was assumed to be constant in time and independent of age for ages 1-5 for the IBTSQ1 survey, and 1-3 for the IBTSQ3 survey. These run settings are the same as for last year's assessment.

This being an update assessment, the WG considered the smoothed B-ADAPT to be an appropriate model for estimating the dynamics of the fishery and stock.

The diagnostics and stock estimates of the fitted model expected values are presented in Tables 14.9-14.12. Median values from the bootstrapped estimates for fishing mortality are presented in Table 14.10, stock numbers in Table 14.11, and the median of the assessment summary time series in Table 14.12a, while Table 14.12b summarises landings, discards and bootstrap median estimates of total removals. Figure 14.13 presents the time series of \(\log\) catchability residuals from the fitted smoothed BADAPT model. Figure 14.15 presents the time series of B-ADAPT derived assessment estimates of the stock, recruitment, exploitation trends, catch, and the catch multipliers, together with estimates of precision represented by bootstrap percentiles. Figure 14.16 presents the mean \(\mathrm{F}(2-4)\) shown in Figure 14.15 , but split into landings and discards components using reported catch data.

Retrospective estimates of median fishing mortality, SSB, recruitment and the catch multiplier from the B-ADAPT bootstrap model are presented in Figure 14.14.

\subsection*{14.4 Historic Stock Trends}

The historic stock and fishery trends are presented in Figures 14.15 and Table 14.12a.
Recruitment has fluctuated at a relatively low level since 1998. The 1996 year class was the last large year class that contributed to the fishery, and subsequent year classes have been the lowest in the time series apart from the 1999 and 2005 year
classes. The addition of discards to the assessment has raised the overall level of recruitment abundance but not the trend in recent year class strengths. The 2006 and 2007 year classes are estimated to be weak.
Fishing mortality increased until the early 1980's remained high until 2000 after which it has decreased. Median fishing mortality (human consumption and discard mortality) at ages 2-4 in 2008 is estimated to be 0.79, up from 0.62 in 2007.

SSB declined steadily during the 1970's and 80's. There was a small increase in SSB following the recruitment of the 1995 and 1996 year classes, but with low recruitment abundance since 1998 and continued high mortality rates, SSB continued to decline. SSB is estimated to have increased from the lowest level in the time series of 34000 t in 2006 to 42000 t in 2007 and 57000 t in 2008. TSB estimates have been increasing for longer than SSB because of the 2005 year class, but this year class is now starting to mature and contribute to SSB.

The North Sea Fishers' Survey indicates that perceptions of cod abundance in recent years has been of a general increase throughout the North Sea, which is consistent with the stronger 2005 year class entering the fishery.

\subsection*{14.5 Recruitment estimates}

Estimates of recruitment were sampled from the 1997-2007 year classes, reflecting recent low levels of recruitment, but including the stronger 1999 and 2005 year classes. These are only used for B-ADAPT medium term forecasts in order to evaluate future stock dynamics.

\subsection*{14.6 Short-term forecasts}

Due to the uncertainty in the final year estimates of fishing mortality the WG agreed that a standard (deterministic) short-term forecast was not appropriate for this stock.

\subsection*{14.7 Medium-term forecasts}

Stochastic projections were carried out using each of 1000 non-parametric bootstrap iterations. Starting populations were taken from each bootstrap iteration, fishing mortalities were taken as a three year average scaled to the final year. Mean weights and mortalities were taken from the average of the final three years of assessment data. Recruitment was re-sampled from the 1997-2007 year-classes, eight years with low recruitment and two with the slightly higher levels (1999 and 2005 year classes). This is a conservative estimate to account for the possibility that the low levels estimated in the last few years may continue.

For the purposes of the forecast, the WG assumes that future removals due to fishing comprise only landings and discards. Landings and discards in the forecasts were estimated by applying the landings- and discard-at-age ratios for 2008 to total fishing mortility-at-age for the projection period.

All the scenarios assume a \(25 \%\) reduction in fishing mortality in 2009 relative to 2008 to account for a \(25 \%\) reduction in effort for the main cod gears, as stipulated in EC \(1342 / 2008\). The scenarios explored were:
1. a reduction in fishing mortality by \(25 \%\) in 2009 , followed by constant fishing mortality at the 2009 level for 2010 onwards;
2. a reduction in1 fishing mortality by \(25 \%\) in 2009 , followed by further reductions in 2010 (relative to 2009) of:
a. \(10 \%\),
b. \(15 \%\),
c. \(20 \%\),
d. \(25 \%\),
e. \(30 \%\);
in each of these scenarios, fishing mortality is held constant at the 2010 level for 2011 onwards;
3. a reduction in fishing mortality by \(25 \%\) in 2009 , followed by a further reduction to the target fishing mortality of 0.4 for 2010 onwards;
4. a reduction in fishing mortality by \(25 \%\) in 2008 , followed by a closure of the fishery from 2010 onwards;
5. a reduction in fishing mortality by \(25 \%\) in 2009 , followed by a further reduction in F of \(35 \%\) in \(2010,45 \%\) in \(2011,55 \%\) in 2012, etc relative to the 2008 level (a combination of Options 5 and 6 mimic the European Commission's cod management plan given in EC 1342/2008, at least until SSB \(>\) Blim);
6. reduction in fishing mortality by \(25 \%\) in 2009 , followed by a further reduction to the target fishing mortality of 0.2 for 2010 onwards (a combination of Options 5 and 6 mimic the European Commission's cod management plan given in EC 1342/2008, at least until SSB \(>\) Blim).

Tables 14.13-14.18 present the results of the stochastic projections, while Table 14.19 summarises outcomes for all options in a single table for ease of comparison. For each scenario, the associated figures present fishing mortality, catch, SSB and recruitment. The 5th, 25th, median, 75th and 95th percentiles from the bootstrap distributions are plotted. Percentiles of fishing mortality, SSB and catch in 2008, 2009, 2010 and 2011 are tabulated with the probability that SSB in a year exceeds the SSB estimated for 2008 and the ratio of median SSB at the start of the year to the end of the year in order to quantify stock rebuilding.
In each of the stock projections SSB starts to increase following a historic low in 2006, due to a combination of lower fishing mortality and the 2005 year class starting to mature. Subsequent increases in SSB rely on the scale of the reduction in fishing mortality.

All options considered result in return of SSB to levels above Blim (70 000t) from 2011 onwards, assuming discard practices are similar to those in 2008.

\subsection*{14.8 Biological reference points}

The Precautionary Approach reference points for cod in IV, IIIa (Skagerrak) and VIId have been unchanged since 1998. They are:
\begin{tabular}{|c|c|c|c|}
\hline & Type & V alue & Technical basis \\
\hline \multirow{4}{*}{Precautionary approach} & Blim & 70000 t & Bloss (~1995) \\
\hline & \(B_{p a}\) & 150000 t & \(\mathrm{Bpa}_{\mathrm{pa}}=\) Previous MBAL and signs of impaired recruitment below 150000 t . \\
\hline & Flim & 0.86 & Flim = Floss ( 1995) \\
\hline & \(\mathrm{F}_{\mathrm{pa}}\) & 0.65 & \(\mathrm{Fpa}_{\mathrm{p}}=\) Approx. \(5_{\text {th }}\) percentile of Floss, implying an equilibrium biomass \(>\mathrm{Bpa}\). \\
\hline Targets & \(\mathrm{F}_{\mathrm{y}}\) & 0.4 & EU/Norway agreement December 2009 \\
\hline
\end{tabular}

Unchanged since 1998

Yield and spawning biomass per Recruit F-reference points:
\begin{tabular}{llll}
\hline & \begin{tabular}{l} 
Fish Mort \\
Ages 2-4
\end{tabular} & Yield/R & SSB/R \\
\hline \(\mathrm{F}_{\text {max }}\) & 0.25 & 0.69 & 2.1 \\
\(\mathrm{~F}_{0.1}\) & 0.16 & 0.69 & 3.2 \\
\(\mathrm{~F}_{\text {med }}\) & 0.81 & 0.51 & 0.3 \\
\hline
\end{tabular}

Estimated by ICES in 2009assuming constant maturity and variable M, with Mand stock weights a veraged over the period 2000-2007. Se lectivity is a ve rage d over 2005-2007, and scaled to 2007.

\subsection*{14.9 Quality of the assessment}

The quality of the commercial landings and catch-at-age data for this stock deteriorated in the 1990s following reductions in the TAC without associated control of fishing effort. The WG considers the international landings figures from 1993 onwards to have inaccuracies that lead to retrospective underestimation of fishing mortality and over estimation of spawning stock biomass and other problems with an analytical assessment. The mismatch between reported and actual landings is now estimated to be decreasing.

Prior to 2006 estimates of discards for areas IV and VIId are taken from the Scottish discard sampling program and the average proportions across gears applied to raise the landings data from other areas. If the gear and fishery characteristics differ this could introduce bias. This bias is likely to introduce sensitivity to the estimates of the youngest age classes (1 and 2) and will not affect estimates of SSB. For 2006, Scottish discard sampling was used to raise all landings data apart from Danish landings, because Danish discard data were provided. For 2007 and 2008, a combination of Scottish, Danish, German and England and Wales discard estimates was used to raise landings from countries that did not provide discard estimates. Although discard estimates were provided by Denmark for years prior to 2006, and by Germany and England and Wales for years prior to 2007, these have not been used as it was not possible to re-w ork earlier discard estimates.
The North Sea surveys have good consistency within and between the indices. The indication that SSB in 2006 was at or around a historical low, and is now increasing, is supported by SURBA analyses and single survey assessment model fits. The low level of recent recruitments is consistent between model fits and within and between survey indices, which also confirm a higher 2005 year class compared to recent years. This year, comparative single survey assessments have resulted in substantial differences in the estimates for the recent time series of SSB and fishing mortality. The underlying causes are unknown, but the difference is not caused by the model applied, and due to the update assessment status could not be evaluated at the meeting. They will be explored in detail during the year.

The survey indices from IBTSQ1 and Q3 used in the stock assessment only include catch rates from the three most easterly rectangles of Skagerrak. A series of investigations at WKNSSK and WKROUND have established that more of the Skagerrak area should be considered for inclusion in the IBTS standard areas for abundance indices. The data sets were prepared for the meeting but significant differences in the values calculated for the standard area and the extended area were recorded for 2009. Until this is examined in detail the new indices coud not be applied.
The B-ADAPT model was developed to correct for retrospective bias by estimating the quantity of additional "unallocated removals" that would be required to be
added or removed from the catch-at-age data in order to remove any persistent trends in survey catchability. The unallocated removals figures given by B-ADAPT could potentially include components due to increased natural mortality and discarding as well as misreported landings.
The estimates of bias can also be influenced by any trends in survey catchability or outlying values, particularly where the calibration period surveys are noisy at the oldest and youngest ages. For this reason, the bootstrap percentiles are used to provide stock and exploitation trends and the estimated values should not be overinterpreted.

Until this year, retrospective plots (Figure 14.14) had shown a slight under-estimation of fishing mortality. How ever, a strong retrospective difference has occurred between the estimates of fishing mortality and catch multiplier for the last two years. The perception of a decrease in mortality rates for the stock is robust to the period over which the model is fitted.

Values for natural mortality have been updated this year; they are smoothed annual model estimates from a multi-species VPA fitted by the Multi-species WG in 2007. The maturity at age values are constant by year and were estimated using the International Bottom trawl Survey series 1981-1985. These values were derived for the North Sea.

The historical performance of the assessment is summarised in Figure 14.19. The plot illustrates the rescaling of SSB, recruitment and fishing mortality following the change to the natural mortality values used in the assessment; but no change to the trends.

\subsection*{14.10 Status of the Stock}

The perception of an increase in the cod abundance remains unchanged, although the 2008 estimate of SSB is showing a slower rate of increase than forecast previously due to an increase in the rate of discarding.

Survey indices and results from models fitted to the commercial catch at age data indicate that in 2008 the spawning stock biomass was at about \(30-40 \%\) of the level it was in the early 1980's and that it is likely to continue increasing in 2009 at the relatively lower fishing mortality levels observed recently and as the more abundant 2005 year class (relative to recent year classes) matures.

The assessment models indicate that, since 2000, the fishing mortality rate has begun to decline towards the lower levels required to allow the stock to rebuild, but the most recent values are uncertain. In 2008 total mortality increased due to higher rates of discar ding both observed and reported by the industry. In 2008, discard mortality now exceeded human consumption mortality.
The proportion of older individuals in the estimated stock remains very low. In recent years, around \(1.5 \%\) of individuals at age 1 survive to age 5 ; this contrasts with over \(2.5 \%\) of individuals surviving to age 5 at the beginning of the time series (mid1960s).

Recruitment of 1 year old cod has varied considerably since the 1960s, but since 1998, average recruitment has been lower than any other time. The 2005 year class is of higher abundance than the recent low levels, especially in the central and northern north sea (Figures 14.3a and b); how ever the subsequent year classes have also been
low. The 2009 data from IBTSQ1 indicate that the 2008 year class may be one of the lowest recorded in the survey series.

Although the UK-FSP surveys (NE coast cod, and North Sea Codwatch), the IBTS surveys and the assessment all indicate a poorer 2006 year class relative to the one in 2005 in the northern North Sea, there have been indications of relatively large numbers of the 2006 year class in the southern North Sea and eastern Channel. These indications initially came from observations of substantial amounts of this year class as 0group fish in the English Channel beam trawl survey (ICES WGNSSK 2008), reinforced by the Belgian beam trawl survey fishing in the same area, and in both the English Thames herring and bass surveys (ICES WGNSSK 2008). Subsequent indications have come from French Channel groundfish survey (ICES WGNSSK 2008), where the 2006 year class has been observed as large numbers of age 1 fish, and from French fishers, who have encountered large numbers of this year class in 2008 and again in 2009.

High rates of discarding in 2006-2008 have reduced the contribution that the 2005 year class has made to the catches and the stock in recent years. The last substantial year class to enter the fishery was the 1996 year class. This year class was a prominent feature in all surveys, was heavily exploited and discarded by the fishery at ages 1-5, and disappeared relatively quickly from the fishery (Figure 14.7).

\subsection*{14.11 Management Considerations}

Although the current SSB and fishing mortality are uncertain, it is clear that the stock has begun to recover from the low level to which it was reduced in early 2000, at which recruitment has been impaired and the biological dynamics of the stock are difficult to predict.

Emergency measures have been taken and a recovery plan has been implemented with the aim of reversing the declining trend in SSB and increasing the spawning stock above Blim. These measures have contributed to a reduction in fishing mortality and a rebuilding of SSB.
There is a need to reduce fishing induced mortality on North Sea cod further, particularly for younger ages, in order to allow more fish to reach maturity and increase the probability of good recruitment. This could be achieved by reducing discarding which in 2008 was estimated to be at the same level as or exceeding landings mortality. In the last three years high-grading of cod has increased substantially. In 2008, \(94 \%\) of 1 year old, \(73 \%\) of 2 year old, \(64 \%\) of 3 year old (the abundant 2005 year class) and \(12 \%\) of 4 year old cod were discarded.

Because the fishery is at present so dependent on incoming year classes, fishing mortalities on these year classes are high. At the same time, the unbalanced age structure of the stock reduces its reproductive capacity even if a sufficient SSB were reached, as first-time spawners reproduce less successfully than older fish. Both factors are believed to have contributed to the reduction in recruitment of cod.

The recruitment of the relatively more abundant 2005 year class to the fishery may have no beneficial effect on the stock if it is caught and heavily discarded. In 2006, the 2005 year class comprised \(62 \%\) of the total catch by number, in 2007 it comprised \(55 \%\), and in 2008 it comprised \(33 \%\). The last substantial year class to enter the fishery was the 1996 year class. This year class was a prominent feature in all surveys, was heavily exploited and discarded by the fishery at ages 1-5, and disappeared relatively quickly from the fishery.

French fishers have been reporting substantial discards of undersize cod in the eastern Channel (VIId) in 2007 and early 2008. Relatively large numbers of the 2006 year class were first observed as 0 -group fish in several surveys in the eastern Channel and southern North Sea. This year class has been observed again in large numbers as age 2 fish in the French groundfish survey in eastern Channel, and by French fishers targeting cuttlefish in this area. This appears to be a localised phenomenon, since this 2006 year class is estimated to be poor, based on the North Sea IBTS Q1 and Q3 surveys.
Several nations who make substantial landings of cod do not supply the WG with estimates of discards, despite the requirement to do so according to EU data collection regulations. In order to improve the quality of the assessment, and hence management advice, these nations should be encouraged to do so.
Recent measures to improve survival of young cod, such as the Scottish Credit Conservation Scheme, and increased uptake of more selective gear such as the Eliminator Trawl, should be encouraged.

The reported landings in 2008 were 26800 t and the estimated discards in 2008 were 21800 t , giving a total of 48600 t . Surveys indicate that the year classes are depleting faster than one would expect from these catches and point to unaccounted removals. There is no documented information on the source of these unaccounted removals; while it is assumed that these removals originate mostly from fishing activities, changes in natural mortality may also have an influence. Their magnitude is difficult to predict in the future. Plausible fishery-based contributions to these unaccounted removals are discards that do not count against quota, and the mis- and underreporting of catches. The recent recorded landings (2005-2008) have fluctuated between \(30 \%\) and \(55 \%\) of the total removals. This indicates that the management system does not control the catches effectively.

Cod are taken by towed gears in mixed demersal fisheries, which include haddock, whiting, Nephrops, plaice, and sole. They are also taken in directed fisheries using fixed gears.
Cod catch in Division VIId is managed by a TAC for Divisions VIIb-k,VIII, IX, X , and CECAF 34.1.1, (i.e. the TAC covers a small proportion of the North Sea cod stock together with cod in Divisions VIIe-k). Division VIId was allocated a separate TAC for 2009 which was adjusted inline with the revision to the North Sea TAC.
It is considered that conclusions drawn from the trends in the historic stock dynamics are robust to the uncertainty in the level of recent recorded catches.

\section*{References for this section}

ICES-WGFTFB. 2006. Report of the ICES-FAO Working Group on Fishing Technology and Fish Behaviour (WGFTFB), 3-7 April 2006, Izmir, Turkey. ICES CM 2006/FTC:06, Ref. ACFM. 180 pp.

ICES-WGFTFB. 2007. Report of the ICES-FAO Working Group on Fish Technology and Fish Behaviour (WGFTFB), 23-27 April 2007, Dublin, Ireland. ICES CM 2007/FTC:06. 197 pp.

ICES-WGFTFB. 2008. Report of the ICESFAO Working Group on Fish Techno logy and Fish Behaviour (WGFTFB), 21-25 April 2008, Tórshavn, Faroe Islands. ICES CM 2008/FTC:02. 265 pp.

ICES-WGNSSK 2001. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, 19-28 June 2001, Hamburg, Germany. ICES CM 2002/ACFM:01.

ICES-WGNSSK 2007. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak - Combine d Spring and A utumn (WGNSSK), 1-8 May 2007, ICES Headquarters and September 2007 by correspondence. ICES CM 2007/ACFM:18\&30: 960.

ICES-WGNSSK. 2008. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak - Spring and A utumn (WGNSSK), 7-13 May, ICES Copenhagen, and September 2008, by correspondence. ICES CM 2008 \ACOM:09: 912pp.

ICES-WGSAM. 2008. Report of the Working Group on Multi Species Assessment Methods (WGS AM). ICES. CM. 2008/ RMC:06.
ICES-WKROUND. 2009. Report of the Benchmark and Data Compilation Workshop for Roundfish (WKROUND), January 16-23 2009, Copenhagen, Denmark. ICES CM 2009/ACOM:32: 259pp.

Lewy., P and Vinther, M., 2004. A stochastic age-leng th-s tructured multis pecies model applie d to North Sea stocks. ICES CM 2004/ FF:20.

Reid, D. G., Kynoch, R. J. Penny, I. Summerbell, K. and Eldridge, A. 2009. Evaluation of the catching ability of a GOV trawl against that of a commercial type trawl. SiSP Project No. 001/07. Marine Laboratory, Aberdeen.

Vinther, M., P. Lewy and L. Thomsen, 2002: Specification and documentation of the 4 M package containing multi-species, multi-fleet and multi-area models. The Danish Institute for Fisheries and Marine Research, Report. 62 pp.

Table 14.1 Nominal landings (in tons) of COD in IIIa (Skagerrak), IV and VIId, 1989-2008 as officially reported to ICES, and as used by the Working Group.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sub-area IV & & & & & & & & & & \\
\hline Country & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 \\
\hline Belgium & 3,398 & 2,934 & 2,331 & 3,356 & 3,374 & 2,648 & 4,827 & 3,458 & 4,642 & 5,799 \\
\hline Denmark & 25,782 & 21,601 & 18,997 & 18,479 & 19,547 & 19,243 & 24,067 & 23,573 & 21,870 & 23,002 \\
\hline Faroe Islands & 35 & 96 & 23 & 109 & 46 & 80 & 219 & 44 & 40 & 102 \\
\hline France & 2,578 & 1,641 & 975 & 2,146 & 1,868 & 1,868 & 3,040 & 1,934 & 3,451 & 2,934 \\
\hline Germany & 11,430 & 11,725 & 7,278 & 8,446 & 6,800 & 5,974 & 9,457 & 8,344 & 5,179 & 8,045 \\
\hline Greenland & - & - & - & - & - & - & - & - & - & - \\
\hline Netherlands & 12,028 & 8,441 & 6,831 & 11,133 & 10,220 & 6,512 & 11,199 & 9,271 & 11,807 & 14,676 \\
\hline Norway & 4,813 & 5,168 & 6,022 & 10,476 & 8,742 & 7,707 & 7,111 & 5,869 & 5,814 & 5,823 \\
\hline Poland & 24 & 53 & 15 & - & - & - & - & 18 & 31 & 25 \\
\hline Sweden & 501 & 620 & 784 & 823 & 646 & 630 & 709 & 617 & 832 & 540 \\
\hline UK (E/W/NI) & 18,035 & 15,593 & 14,249 & 14,462 & 14,940 & 13,941 & 14,991 & 15,930 & 13,413 & 17,745 \\
\hline UK (Scotland) & 31,828 & 31,187 & 29,060 & 28,677 & 28,197 & 28,854 & 35,848 & 35,349 & 32,344 & 35,633 \\
\hline Total Nominal Catch & 110,452 & 99,059 & 86,565 & 98,107 & 94,380 & 87,457 & 111,468 & 104,407 & 99,423 & 114,324 \\
\hline Unallocated landings & 5,248 & 5,692 & 1,968 & -758 & 10,200 & 7,066 & 8,555 & 2,161 & 2,746 & 7,779 \\
\hline \multicolumn{11}{|l|}{WG estimate of total} \\
\hline landings & 115,700 & 104,751 & 88,533 & 97,349 & 104,580 & 94,523 & 120,023 & 106,568 & 102,169 & 122,103 \\
\hline Agreed TAC & 124,000 & 105,000 & 100,000 & 100,000 & 101,000 & 102,000 & 120,000 & 130,000 & 115,000 & 140,000 \\
\hline \multicolumn{11}{|l|}{Division VIId} \\
\hline Country & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 \\
\hline Belgium & 173 & 237 & 182 & 187 & 157 & 228 & 377 & 321 & 310 & 239 \\
\hline Denmark & <0.5 & - & - & 1 & - & 9 & - & - & - & - \\
\hline France & & . & & 2,079 & 1,771 & 2,338 & 3,261 & 2,808 & 6,387 & 7,788 \\
\hline Netherlands & 1 & - & - & 2 & - & - & - & - & - & 19 \\
\hline UK (E/W/NI) & 563 & 422 & 341 & 443 & 530 & 312 & 336 & 414 & 478 & 618 \\
\hline UK (Scotland) & - & 7 & 2 & 22 & 2 & <0.5 & <0.5 & 4 & 3 & 1 \\
\hline Total Nominal Catch & 737 & 666 & 525 & 2,734 & 2,460 & 2,887 & 3,974 & 3,547 & 7,178 & 8,665 \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{lllllllllllll} 
Unallocated landings & 4,801 & 2,097 & 1,361 & -65 & -28 & -37 & -10 & -44 & -135 & -85 \\
WG estimate of total & & & & & & &
\end{tabular}}} \\
\hline & & & & & & & & & & \\
\hline landings & 5,538 & 2,763 & 1,886 & 2,669 & 2,432 & 2,850 & 3,964 & 3,503 & 7,043 & 8,580 \\
\hline \multicolumn{11}{|l|}{Division Illa (Skagerrak)**} \\
\hline Country & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 \\
\hline Denmark & 16,634 & 15,819 & 10,294 & 11,187 & 11,994 & 11,921 & 15,888 & 14,573 & 12,159 & 12,339 \\
\hline Germany & - & 58 & 3 & - & 530 & 399 & 285 & 259 & 81 & 54 \\
\hline Norway & 1,003 & 1,061 & 924 & 1,208 & 1,043 & 850 & 1,039 & 1,046 & 1,323 & 1,293 \\
\hline Sweden & 1,805 & 1,136 & 3,846 & 2,523 & 2,575 & 1,834 & 2,483 & 1,986 & 2,173 & 1,900 \\
\hline Others & 34 & 76 & 38 & 102 & 88 & 71 & 134 & - & - & - \\
\hline Norwegian coast * & 888 & 846 & 854 & 923 & 909 & 760 & 846 & 748 & 911 & 976 \\
\hline Danish industrial by-catch * & 428 & 687 & 953 & 1,360 & 511 & 666 & 749 & 676 & 205 & 97 \\
\hline Total Nominal Catch & 19,476 & 18,150 & 15,105 & 15,020 & 16,230 & 15,075 & 19,829 & 17,864 & 15,736 & 15,586 \\
\hline Unallocated landings & -779 & -350 & -3,046 & -1,018 & -1,493 & -1,814 & -7,720 & -1,615 & -790 & -255 \\
\hline \multicolumn{11}{|l|}{WG estimate of total} \\
\hline landings & 18,697 & 17,800 & 12,059 & 14,002 & 14,737 & 13,261 & 12,109 & 16,249 & 14,946 & 15,331 \\
\hline Agreed TAC & 20,500 & 21,000 & 15,000 & 15,000 & 15,000 & 15,500 & 20,000 & 23,000 & 16,100 & 20,000 \\
\hline \multicolumn{11}{|l|}{Sub-area IV, Divisions VIId and Illa (Skagerrak) combined} \\
\hline & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 \\
\hline Total Nominal Catch & 130,665 & 117,875 & 102,195 & 115,861 & 113,070 & 105,419 & 135,271 & 125,818 & 122,337 & 138,575 \\
\hline Unallocated landings & 9,271 & 7,439 & 283 & -1,841 & 8,679 & 5,215 & 825 & 502 & 1,821 & 7,439 \\
\hline WG estimate of total & & & & & & & & & & \\
\hline landings & 139,936 & 125,314 & 102,478 & 114,020 & 121,749 & 110,634 & 136,096 & 126,320 & 124,158 & 146,014 \\
\hline ** Skaggerak/Kattegat split & from nat & al statistics & & & & & & & & \\
\hline * The Danish industrial by-ca & nd the Nor & gian coast & ches are & included in & (WG est & te of) total & dings of Divis & ion IIIa & & \\
\hline . Magnitude not available & litude known & to be nil & 5 Magnitu & ess than h & the unit us & in the table & n /a Not ap & able & & \\
\hline Division Illa (Skagerrak) Ian & not included & in the asse & nent & & & & & & & \\
\hline Country & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 \\
\hline Norwegian coast * & 888 & 846 & 854 & 923 & 909 & 760 & 846 & 748 & 911 & 976 \\
\hline Danish industrial by-catch * & 428 & 687 & 953 & 1,360 & 511 & 666 & 749 & 676 & 205 & 97 \\
\hline Total & 1,316 & 1,533 & 1,807 & 2,283 & 1,420 & 1,426 & 1,595 & 1,424 & 1,116 & 1,073 \\
\hline
\end{tabular}

Table 14.1 cont. Nominal landings (in tons) of COD in IIIa (Skagerrak), IV and VIId, 1988-2008 as officially reported to ICES, and as used by the Working Group.


Table 14.2 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Landings numbers at age (Thousands).


Table 14.3 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Discard numbers at age (Thousands).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Discards numbers at age (thousands)} \\
\hline AGE/YEAR & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970 & 1971 & 1972 & 1973 \\
\hline 1 & 16231 & 8089 & 98414 & 108921 & 50467 & 31272 & 2515 & 53225 & 260226 & 38442 & 86349 \\
\hline 2 & 20003 & 6199 & 6632 & 22236 & 24861 & 23073 & 10331 & 8700 & 37412 & 59641 & 17475 \\
\hline 3 & 33 & 116 & 90 & 71 & 160 & 198 & 113 & 153 & 47 & 178 & 247 \\
\hline 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline +gp & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline TOTALNUM & 36267 & 14404 & 105136 & 131229 & 75489 & 54542 & 12959 & 62078 & 297686 & 98261 & 104071 \\
\hline TONSDISC & 12247 & 4731 & 29251 & 38109 & 23438 & 17575 & 4816 & 17928 & 84392 & 33848 & 30190 \\
\hline SOPCOF \% & 100 & 101 & 100 & 100 & 100 & 100 & 101 & 101 & 100 & 100 & 100 \\
\hline AGE/YEAR & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 & 1983 & 1984 \\
\hline 1 & 124777 & 137341 & 227925 & 474377 & 29043 & 584603 & 1189692 & 156878 & 183476 & 55478 & 540795 \\
\hline 2 & 15958 & 16296 & 83630 & 48189 & 78477 & 5302 & 17751 & 34559 & 8448 & 11237 & 12594 \\
\hline 3 & 71 & 0 & 193 & 466 & 0 & 0 & 0 & 80 & 99 & 25 & 5 \\
\hline 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline +gp & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline TOTALNUM & 140807 & 153637 & 311747 & 523032 & 107520 & 589904 & 1207444 & 191516 & 192022 & 66740 & 553394 \\
\hline TONSDISC & 39807 & 37060 & 72840 & 139820 & 32583 & 163279 & 295449 & 57897 & 54501 & 22101 & 151923 \\
\hline SOPCOF \% & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 101 & 100 & 102 & 100 \\
\hline AGE/YEAR & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 \\
\hline 1 & 63659 & 565753 & 24732 & 15461 & 178265 & 34194 & 48110 & 104321 & 34112 & 324703 & 45425 \\
\hline 2 & 36780 & 5784 & 62194 & 17179 & 8751 & 48699 & 8495 & 10065 & 29119 & 17012 & 44083 \\
\hline 3 & 115 & 305 & 0 & 218 & 492 & 79 & 454 & 2 & 12 & 162 & 30 \\
\hline 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline +gp & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline TOTALNUM & 100555 & 571842 & 86927 & 32858 & 187508 & 82972 & 57059 & 114388 & 63242 & 341877 & 89539 \\
\hline TONSDISC & 31503 & 139081 & 27839 & 10714 & 62119 & 27022 & 18552 & 36920 & 21860 & 99578 & 32188 \\
\hline SOPCOF \% & 100 & 100 & 100 & 101 & 100 & 100 & 101 & 100 & 100 & 100 & 100 \\
\hline AGE/YEAR & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 \\
\hline 1 & 14451 & 87308 & 15608 & 31550 & 37981 & 5600 & 13373 & 8511 & 11865 & 11290 & 26690 \\
\hline 2 & 23376 & 13892 & 91140 & 5737 & 5650 & 33946 & 2622 & 9976 & 4661 & 5673 & 5563 \\
\hline 3 & 774 & 41 & 1514 & 8437 & 0 & 773 & 1972 & 1118 & 1158 & 108 & 804 \\
\hline 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 69 & 0 & 19 & 53 \\
\hline 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 11 & 0 & 4 & 12 \\
\hline 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 3 & 2 \\
\hline 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline +gp & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline TOTALNUM & 38601 & 101241 & 108262 & 45725 & 43631 & 40319 & 17967 & 19688 & 17684 & 17097 & 33126 \\
\hline TONSDISC & 14255 & 33616 & 40480 & 14180 & 13713 & 13871 & 5706 & 6372 & 5849 & 6272 & 8050 \\
\hline SOPCOF \% & 100 & 100 & 100 & 102 & 100 & 100 & 100 & 101 & 102 & 103 & 102 \\
\hline AGE/YEAR & 2007 & 2008 & & & & & & & & & \\
\hline 1 & 14622 & 8384 & & & & & & & & & \\
\hline 2 & 20183 & 9165 & & & & & & & & & \\
\hline 3 & 1506 & 7474 & & & & & & & & & \\
\hline 4 & 371 & 149 & & & & & & & & & \\
\hline 5 & 49 & 21 & & & & & & & & & \\
\hline 6 & 25 & 13 & & & & & & & & & \\
\hline 7 & 0 & 0 & & & & & & & & & \\
\hline 8 & 2 & 3 & & & & & & & & & \\
\hline 9 & 0 & 0 & & & & & & & & & \\
\hline 10 & 0 & 0 & & & & & & & & & \\
\hline +gp & 0 & 0 & & & & & & & & & \\
\hline TOTALNUM & 36757 & 25209 & & & & & & & & & \\
\hline TONSDISC & 23636 & 21814 & & & & & & & & & \\
\hline SOPCOF \% & 100 & 100 & & & & & & & & & \\
\hline
\end{tabular}

Table 14.4 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Landings weights at age (kg).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Landings weights at age (kg)} \\
\hline AGE/YEAR & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970 & 1971 & 1972 & 1973 \\
\hline 1 & 0.538 & 0.496 & 0.581 & 0.579 & 0.590 & 0.640 & 0.544 & 0.626 & 0.579 & 0.616 & 0.559 \\
\hline 2 & 1.004 & 0.863 & 0.965 & 0.994 & 1.035 & 0.973 & 0.921 & 0.961 & 0.941 & 0.836 & 0.869 \\
\hline 3 & 2.657 & 2.377 & 2.304 & 2.442 & 2.404 & 2.223 & 2.133 & 2.041 & 2.193 & 2.086 & 1.919 \\
\hline 4 & 4.491 & 4.528 & 4.512 & 4.169 & 3.153 & 4.094 & 3.852 & 4.001 & 4.258 & 3.968 & 3.776 \\
\hline 5 & 6.794 & 6.447 & 7.274 & 7.027 & 6.803 & 5.341 & 5.715 & 6.131 & 6.528 & 6.011 & 5.488 \\
\hline 6 & 9.409 & 8.520 & 9.498 & 9.599 & 9.610 & 8.020 & 6.722 & 7.945 & 8.646 & 8.246 & 7.453 \\
\hline 7 & 11.562 & 10.606 & 11.898 & 11.766 & 12.033 & 8.581 & 9.262 & 9.953 & 10.356 & 9.766 & 9.019 \\
\hline 8 & 11.942 & 10.758 & 12.041 & 11.968 & 12.481 & 10.162 & 9.749 & 10.131 & 11.219 & 10.228 & 9.810 \\
\hline 9 & 13.383 & 12.340 & 13.053 & 14.060 & 13.589 & 10.720 & 10.384 & 11.919 & 12.881 & 11.875 & 11.077 \\
\hline 10 & 13.756 & 12.540 & 14.441 & 14.746 & 14.271 & 12.497 & 12.743 & 12.554 & 13.147 & 12.530 & 12.359 \\
\hline +gp & 0.000 & 18.000 & 15.667 & 15.672 & 19.016 & 11.595 & 11.175 & 14.367 & 15.544 & 14.350 & 12.886 \\
\hline AGE/YEAR & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 & 1983 & 1984 \\
\hline & 0.594 & 0.619 & 0.568 & 0.541 & 0.573 & 0.550 & 0.550 & 0.723 & 0.589 & 0.632 & 0.594 \\
\hline 2 & 1.039 & 0.899 & 1.029 & 0.948 & 0.937 & 0.936 & 1.003 & 0.837 & 0.962 & 0.919 & 1.007 \\
\hline 3 & 2.217 & 2.348 & 2.470 & 2.160 & 2.001 & 2.411 & 1.948 & 2.190 & 1.858 & 1.835 & 2.156 \\
\hline 4 & 4.156 & 4.226 & 4.577 & 4.606 & 4.146 & 4.423 & 4.401 & 4.615 & 4.130 & 3.880 & 3.972 \\
\hline 5 & 6.174 & 6.404 & 6.494 & 6.714 & 6.530 & 6.579 & 6.109 & 7.045 & 6.785 & 6.491 & 6.190 \\
\hline 6 & 8.333 & 8.691 & 8.620 & 8.828 & 8.667 & 8.474 & 9.120 & 8.884 & 8.903 & 8.423 & 8.362 \\
\hline 7 & 9.889 & 10.107 & 10.132 & 10.071 & 9.685 & 10.637 & 9.550 & 9.933 & 10.398 & 9.848 & 10.317 \\
\hline 8 & 10.791 & 10.910 & 11.340 & 11.052 & 11.099 & 11.550 & 11.867 & 11.519 & 12.500 & 11.837 & 11.352 \\
\hline 9 & 12.175 & 12.339 & 12.888 & 11.824 & 12.427 & 13.057 & 12.782 & 13.338 & 13.469 & 12.797 & 13.505 \\
\hline 10 & 12.425 & 12.976 & 14.139 & 13.134 & 12.778 & 14.148 & 14.081 & 14.897 & 12.890 & 12.562 & 13.408 \\
\hline +gp & 13.731 & 14.431 & 14.760 & 14.362 & 13.981 & 15.478 & 15.392 & 18.784 & 14.608 & 14.426 & 13.472 \\
\hline AGE/YEAR & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 \\
\hline & 0.590 & 0.583 & 0.635 & 0.585 & 0.673 & 0.737 & 0.670 & 0.699 & 0.699 & 0.677 & 0.721 \\
\hline 2 & 0.932 & 0.856 & 0.976 & 0.881 & 1.052 & 0.976 & 1.078 & 1.146 & 1.065 & 1.075 & 1.021 \\
\hline 3 & 2.141 & 1.834 & 1.955 & 1.982 & 1.846 & 2.176 & 2.038 & 2.546 & 2.479 & 2.201 & 2.210 \\
\hline 4 & 4.164 & 3.504 & 3.650 & 3.187 & 3.585 & 3.791 & 3.971 & 4.223 & 4.551 & 4.471 & 4.293 \\
\hline 5 & 6.324 & 6.230 & 6.052 & 5.992 & 5.273 & 5.931 & 6.082 & 6.247 & 6.540 & 7.167 & 7.220 \\
\hline 6 & 8.430 & 8.140 & 8.307 & 7.914 & 7.921 & 7.890 & 8.033 & 8.483 & 8.094 & 8.436 & 8.980 \\
\hline 7 & 10.362 & 9.896 & 10.243 & 9.764 & 9.724 & 10.235 & 9.545 & 10.101 & 9.641 & 9.537 & 10.282 \\
\hline 8 & 12.074 & 11.940 & 11.461 & 12.127 & 11.212 & 10.923 & 10.948 & 10.482 & 10.734 & 10.323 & 11.743 \\
\hline 9 & 13.072 & 12.951 & 12.447 & 14.242 & 12.586 & 12.803 & 13.481 & 11.849 & 12.329 & 12.223 & 13.107 \\
\hline 10 & 14.443 & 13.859 & 18.691 & 17.787 & 15.557 & 15.525 & 13.171 & 13.904 & 13.443 & 14.247 & 12.052 \\
\hline +gp & 16.588 & 14.707 & 16.604 & 16.477 & 14.695 & 23.234 & 14.989 & 15.794 & 13.961 & 12.523 & 13.954 \\
\hline AGE/YEAR & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 \\
\hline 1 & 0.699 & 0.656 & 0.542 & 0.640 & 0.611 & 0.725 & 0.758 & 0.608 & 0.700 & 0.828 & 0.750 \\
\hline 2 & 1.117 & 0.960 & 0.922 & 0.935 & 1.021 & 1.004 & 1.082 & 1.174 & 0.997 & 1.190 & 1.161 \\
\hline 3 & 2.147 & 2.120 & 1.724 & 1.663 & 1.747 & 2.303 & 1.916 & 1.849 & 2.014 & 1.978 & 2.192 \\
\hline 4 & 4.034 & 3.821 & 3.495 & 3.305 & 3.216 & 3.663 & 3.857 & 3.256 & 3.096 & 3.690 & 3.731 \\
\hline 5 & 6.637 & 6.228 & 5.387 & 5.726 & 4.903 & 5.871 & 5.372 & 5.186 & 5.172 & 5.060 & 5.660 \\
\hline 6 & 8.494 & 8.394 & 7.563 & 7.403 & 7.488 & 7.333 & 7.991 & 7.395 & 7.426 & 7.551 & 6.882 \\
\hline 7 & 9.729 & 9.979 & 9.628 & 8.582 & 9.636 & 9.264 & 9.627 & 8.703 & 8.675 & 9.607 & 8.896 \\
\hline 8 & 11.080 & 11.424 & 10.643 & 10.365 & 10.671 & 10.081 & 10.403 & 12.178 & 9.797 & 11.229 & 10.639 \\
\hline 9 & 12.264 & 12.300 & 11.499 & 11.600 & 10.894 & 12.062 & 10.963 & 12.846 & 11.684 & 11.501 & 12.216 \\
\hline 10 & 12.756 & 12.761 & 13.085 & 12.330 & 11.414 & 12.009 & 12.816 & 10.771 & 13.058 & 13.333 & 9.212 \\
\hline +gp & 11.304 & 13.416 & 14.921 & 11.926 & 15.078 & 10.196 & 11.842 & 17.494 & 14.140 & 15.340 & 10.773 \\
\hline AGE/YEAR & 2007 & 2008 & & & & & & & & & \\
\hline 1 & 0.805 & 0.801 & & & & & & & & & \\
\hline 2 & 1.161 & 1.503 & & & & & & & & & \\
\hline 3 & 2.376 & 2.511 & & & & & & & & & \\
\hline 4 & 4.046 & 4.026 & & & & & & & & & \\
\hline 5 & 5.523 & 5.777 & & & & & & & & & \\
\hline 6 & 8.197 & 7.164 & & & & & & & & & \\
\hline 7 & 8.986 & 9.358 & & & & & & & & & \\
\hline 8 & 9.777 & 10.909 & & & & & & & & & \\
\hline 9 & 12.358 & 11.596 & & & & & & & & & \\
\hline 10 & 13.725 & 15.278 & & & & & & & & & \\
\hline +gp & 9.482 & 13.653 & & & & & & & & & \\
\hline
\end{tabular}

Table 14.5 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Discard weights at age (kg).
\begin{tabular}{rrrrllllllll} 
Discards weights at age (kg) & & & & & & & & & & & \\
AGE/YEAF & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970 & 1971 & 1972 & 1973 \\
1 & 0.270 & 0.270 & 0.269 & 0.269 & 0.269 & 0.269 & 0.268 & 0.268 & 0.268 & 0.268 & 0.268 \\
2 & 0.393 & 0.393 & 0.392 & 0.392 & 0.392 & 0.392 & 0.392 & 0.392 & 0.392 & 0.392 & 0.392 \\
3 & 0.505 & 0.508 & 0.506 & 0.509 & 0.506 & 0.505 & 0.504 & 0.505 & 0.508 & 0.507 & 0.507 \\
4 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
5 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
6 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
7 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
8 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
9 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
10 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
+gp & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
& & & & & & & & & & & \\
\hline
\end{tabular}

Table 14.6 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Catch and stock weights at age (kg).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Catch weig & age & & & & & & & & & & \\
\hline AGE/YEAF & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970 & 1971 & 1972 & 1973 \\
\hline 1 & 0.314 & 0.357 & 0.313 & 0.314 & 0.326 & 0.328 & 0.416 & 0.449 & 0.313 & 0.300 & 0.335 \\
\hline 2 & 0.808 & 0.762 & 0.900 & 0.836 & 0.868 & 0.847 & 0.755 & 0.845 & 0.834 & 0.729 & 0.700 \\
\hline 3 & 2.647 & 2.367 & 2.295 & 2.437 & 2.395 & 2.215 & 2.127 & 2.028 & 2.188 & 2.080 & 1.912 \\
\hline 4 & 4.491 & 4.528 & 4.512 & 4.169 & 3.153 & 4.094 & 3.852 & 4.001 & 4.258 & 3.968 & 3.776 \\
\hline 5 & 6.794 & 6.447 & 7.274 & 7.027 & 6.803 & 5.341 & 5.715 & 6.131 & 6.528 & 6.011 & 5.488 \\
\hline 6 & 9.409 & 8.520 & 9.498 & 9.599 & 9.610 & 8.020 & 6.722 & 7.945 & 8.646 & 8.246 & 7.453 \\
\hline 7 & 11.562 & 10.606 & 11.898 & 11.766 & 12.033 & 8.581 & 9.262 & 9.953 & 10.356 & 9.766 & 9.019 \\
\hline 8 & 11.942 & 10.758 & 12.041 & 11.968 & 12.481 & 10.162 & 9.749 & 10.131 & 11.219 & 10.228 & 9.810 \\
\hline 9 & 13.383 & 12.340 & 13.053 & 14.060 & 13.589 & 10.720 & 10.384 & 11.919 & 12.881 & 11.875 & 11.077 \\
\hline 10 & 13.756 & 12.540 & 14.441 & 14.746 & 14.271 & 12.497 & 12.743 & 12.554 & 13.147 & 12.530 & 12.359 \\
\hline +gp & 0.000 & 18.000 & 15.667 & 15.672 & 19.016 & 11.595 & 11.175 & 14.367 & 15.544 & 14.350 & 12.886 \\
\hline AGE/YEAF & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 & 1983 & 1984 \\
\hline & 0.304 & 0.304 & 0.199 & 0.295 & 0.432 & 0.291 & 0.258 & 0.329 & 0.358 & 0.403 & 0.304 \\
\hline 2 & 0.901 & 0.760 & 0.722 & 0.673 & 0.743 & 0.905 & 0.917 & 0.769 & 0.908 & 0.882 & 0.921 \\
\hline 3 & 2.206 & 2.348 & 2.449 & 2.128 & 2.001 & 2.411 & 1.948 & 2.186 & 1.856 & 1.833 & 2.156 \\
\hline 4 & 4.156 & 4.226 & 4.577 & 4.606 & 4.146 & 4.423 & 4.401 & 4.615 & 4.130 & 3.880 & 3.972 \\
\hline 5 & 6.174 & 6.404 & 6.494 & 6.714 & 6.530 & 6.579 & 6.109 & 7.045 & 6.785 & 6.491 & 6.190 \\
\hline 6 & 8.333 & 8.691 & 8.620 & 8.828 & 8.667 & 8.474 & 9.120 & 8.884 & 8.903 & 8.423 & 8.362 \\
\hline 7 & 9.889 & 10.107 & 10.132 & 10.071 & 9.685 & 10.637 & 9.550 & 9.933 & 10.398 & 9.848 & 10.317 \\
\hline 8 & 10.791 & 10.910 & 11.340 & 11.052 & 11.099 & 11.550 & 11.867 & 11.519 & 12.500 & 11.837 & 11.352 \\
\hline 9 & 12.175 & 12.339 & 12.888 & 11.824 & 12.427 & 13.057 & 12.782 & 13.338 & 13.469 & 12.797 & 13.505 \\
\hline 10 & 12.425 & 12.976 & 14.139 & 13.134 & 12.778 & 14.148 & 14.081 & 14.897 & 12.890 & 12.562 & 13.408 \\
\hline +gp & 13.731 & 14.431 & 14.760 & 14.362 & 13.981 & 15.478 & 15.392 & 18.784 & 14.608 & 14.426 & 13.472 \\
\hline AGE/YEAF & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 \\
\hline 1 & 0.314 & 0.293 & 0.437 & 0.466 & 0.364 & 0.382 & 0.392 & 0.395 & 0.327 & 0.305 & 0.420 \\
\hline 2 & 0.800 & 0.782 & 0.773 & 0.753 & 0.931 & 0.690 & 0.889 & 0.970 & 0.845 & 0.788 & 0.768 \\
\hline 3 & 2.132 & 1.822 & 1.955 & 1.974 & 1.810 & 2.165 & 1.994 & 2.545 & 2.478 & 2.188 & 2.207 \\
\hline 4 & 4.164 & 3.504 & 3.650 & 3.187 & 3.585 & 3.791 & 3.971 & 4.223 & 4.551 & 4.471 & 4.293 \\
\hline 5 & 6.324 & 6.230 & 6.052 & 5.992 & 5.273 & 5.931 & 6.082 & 6.247 & 6.540 & 7.167 & 7.220 \\
\hline 6 & 8.430 & 8.140 & 8.307 & 7.914 & 7.921 & 7.890 & 8.033 & 8.483 & 8.094 & 8.436 & 8.980 \\
\hline 7 & 10.362 & 9.896 & 10.243 & 9.764 & 9.724 & 10.235 & 9.545 & 10.101 & 9.641 & 9.537 & 10.282 \\
\hline 8 & 12.074 & 11.940 & 11.461 & 12.127 & 11.212 & 10.923 & 10.948 & 10.482 & 10.734 & 10.323 & 11.743 \\
\hline 9 & 13.072 & 12.951 & 12.447 & 14.242 & 12.586 & 12.803 & 13.481 & 11.849 & 12.329 & 12.223 & 13.107 \\
\hline 10 & 14.443 & 13.859 & 18.691 & 17.787 & 15.557 & 15.525 & 13.171 & 13.904 & 13.443 & 14.247 & 12.052 \\
\hline +gp & 16.588 & 14.707 & 16.604 & 16.477 & 14.695 & 23.234 & 14.989 & 15.794 & 13.961 & 12.523 & 13.954 \\
\hline AGE/YEAF & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 \\
\hline 1 & 0.433 & 0.386 & 0.372 & 0.317 & 0.354 & 0.372 & 0.456 & 0.275 & 0.341 & 0.348 & 0.217 \\
\hline 2 & 0.831 & 0.797 & 0.633 & 0.732 & 0.903 & 0.605 & 0.916 & 0.752 & 0.671 & 0.895 & 0.771 \\
\hline 3 & 2.095 & 2.117 & 1.622 & 1.405 & 1.747 & 2.093 & 1.712 & 1.533 & 1.713 & 1.945 & 1.972 \\
\hline 4 & 4.034 & 3.821 & 3.495 & 3.305 & 3.216 & 3.663 & 3.857 & 3.191 & 3.096 & 3.695 & 3.610 \\
\hline 5 & 6.637 & 6.228 & 5.387 & 5.726 & 4.903 & 5.871 & 5.372 & 5.113 & 5.172 & 5.055 & 5.590 \\
\hline 6 & 8.494 & 8.394 & 7.563 & 7.403 & 7.488 & 7.333 & 7.991 & 7.270 & 7.426 & 7.555 & 6.848 \\
\hline 7 & 9.729 & 9.979 & 9.628 & 8.582 & 9.636 & 9.264 & 9.627 & 8.630 & 8.675 & 9.607 & 8.911 \\
\hline 8 & 11.080 & 11.424 & 10.643 & 10.365 & 10.671 & 10.081 & 10.403 & 12.056 & 9.797 & 11.229 & 10.639 \\
\hline 9 & 12.264 & 12.300 & 11.499 & 11.600 & 10.894 & 12.062 & 10.963 & 12.846 & 11.684 & 11.501 & 12.216 \\
\hline 10 & 12.756 & 12.761 & 13.085 & 12.330 & 11.414 & 12.009 & 12.816 & 10.771 & 13.058 & 13.333 & 9.212 \\
\hline +gp & 11.304 & 13.416 & 14.921 & 11.926 & 15.078 & 10.196 & 11.842 & 17.351 & 14.140 & 15.340 & 10.773 \\
\hline AGE/YEAF & 2007 & 2008 & & & & & & & & & \\
\hline 1 & 0.276 & 0.33 & & & & & & & & & \\
\hline 2 & 0.863 & 0.904 & & & & & & & & & \\
\hline 3 & 2.187 & 1.971 & & & & & & & & & \\
\hline 4 & 4.064 & 3.834 & & & & & & & & & \\
\hline 5 & 5.607 & 5.692 & & & & & & & & & \\
\hline 6 & 8.467 & 7.228 & & & & & & & & & \\
\hline 7 & 8.917 & 9.321 & & & & & & & & & \\
\hline 8 & 9.902 & 9.879 & & & & & & & & & \\
\hline 9 & 12.358 & 11.596 & & & & & & & & & \\
\hline 10 & 13.725 & 15.278 & & & & & & & & & \\
\hline +gp & 8.154 & 13.295 & & & & & & & & & \\
\hline
\end{tabular}

Table 14.7a Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Proportion mature by age-group.
\begin{tabular}{|c|c|}
\hline Age group & \begin{tabular}{c} 
Proportion ma- \\
ture
\end{tabular} \\
\hline 1 & 0.01 \\
\hline 2 & 0.05 \\
\hline 3 & 0.23 \\
\hline 4 & 0.62 \\
\hline 5 & 0.86 \\
\hline 6 & 1.0 \\
\hline \(7+\) & 1.0 \\
\hline
\end{tabular}

Table 14.7b Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Natural mortality by agegroup.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{7}{|c|}{Age} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7+ \\
\hline 1963 & 0.78 & 0.42 & 0.33 & 0.22 & 0.21 & 0.22 & 0.2 \\
\hline 1964 & 0.82 & 0.43 & 0.34 & 0.22 & 0.21 & 0.22 & 0.2 \\
\hline 1965 & 0.85 & 0.44 & 0.35 & 0.22 & 0.21 & 0.22 & 0.2 \\
\hline 1966 & 0.87 & 0.45 & 0.36 & 0.22 & 0.21 & 0.22 & 0.2 \\
\hline 1967 & 0.89 & 0.46 & 0.37 & 0.22 & 0.21 & 0.22 & 0.2 \\
\hline 1968 & 0.91 & 0.46 & 0.37 & 0.22 & 0.21 & 0.22 & 0.2 \\
\hline 1969 & 0.92 & 0.47 & 0.38 & 0.22 & 0.21 & 0.22 & 0.2 \\
\hline 1970 & 0.92 & 0.47 & 0.38 & 0.22 & 0.21 & 0.22 & 0.2 \\
\hline 1971 & 0.92 & 0.47 & 0.38 & 0.22 & 0.21 & 0.23 & 0.2 \\
\hline 1972 & 0.93 & 0.47 & 0.38 & 0.22 & 0.21 & 0.23 & 0.2 \\
\hline 1973 & 0.92 & 0.46 & 0.38 & 0.22 & 0.21 & 0.23 & 0.2 \\
\hline 1974 & 0.92 & 0.46 & 0.37 & 0.22 & 0.21 & 0.23 & 0.2 \\
\hline 1975 & 0.92 & 0.45 & 0.37 & 0.22 & 0.21 & 0.23 & 0.2 \\
\hline 1976 & 0.92 & 0.45 & 0.37 & 0.22 & 0.21 & 0.23 & 0.2 \\
\hline 1977 & 0.92 & 0.44 & 0.36 & 0.22 & 0.22 & 0.23 & 0.2 \\
\hline 1978 & 0.92 & 0.43 & 0.36 & 0.23 & 0.22 & 0.23 & 0.2 \\
\hline 1979 & 0.92 & 0.43 & 0.36 & 0.23 & 0.22 & 0.24 & 0.2 \\
\hline 1980 & 0.91 & 0.42 & 0.36 & 0.23 & 0.22 & 0.24 & 0.2 \\
\hline 1981 & 0.9 & 0.41 & 0.36 & 0.23 & 0.22 & 0.24 & 0.2 \\
\hline 1982 & 0.89 & 0.41 & 0.36 & 0.23 & 0.22 & 0.24 & 0.2 \\
\hline 1983 & 0.87 & 0.4 & 0.36 & 0.23 & 0.22 & 0.25 & 0.2 \\
\hline 1984 & 0.85 & 0.39 & 0.36 & 0.23 & 0.22 & 0.25 & 0.2 \\
\hline 1985 & 0.83 & 0.38 & 0.36 & 0.23 & 0.23 & 0.25 & 0.2 \\
\hline 1986 & 0.81 & 0.38 & 0.36 & 0.23 & 0.23 & 0.26 & 0.2 \\
\hline 1987 & 0.79 & 0.37 & 0.36 & 0.24 & 0.23 & 0.26 & 0.2 \\
\hline 1988 & 0.77 & 0.36 & 0.37 & 0.24 & 0.23 & 0.27 & 0.2 \\
\hline 1989 & 0.75 & 0.35 & 0.37 & 0.24 & 0.24 & 0.28 & 0.2 \\
\hline 1990 & 0.73 & 0.35 & 0.38 & 0.24 & 0.24 & 0.28 & 0.2 \\
\hline 1991 & 0.72 & 0.34 & 0.39 & 0.25 & 0.24 & 0.29 & 0.2 \\
\hline 1992 & 0.7 & 0.34 & 0.4 & 0.25 & 0.25 & 0.3 & 0.2 \\
\hline 1993 & 0.7 & 0.34 & 0.41 & 0.26 & 0.25 & 0.31 & 0.2 \\
\hline 1994 & 0.69 & 0.33 & 0.42 & 0.26 & 0.25 & 0.31 & 0.2 \\
\hline 1995 & 0.68 & 0.33 & 0.43 & 0.26 & 0.26 & 0.32 & 0.2 \\
\hline 1996 & 0.67 & 0.32 & 0.44 & 0.27 & 0.26 & 0.33 & 0.2 \\
\hline 1997 & 0.65 & 0.31 & 0.44 & 0.27 & 0.26 & 0.34 & 0.2 \\
\hline 1998 & 0.63 & 0.31 & 0.45 & 0.27 & 0.27 & 0.34 & 0.2 \\
\hline 1999 & 0.61 & 0.3 & 0.45 & 0.27 & 0.27 & 0.34 & 0.2 \\
\hline 2000 & 0.58 & 0.29 & 0.44 & 0.27 & 0.27 & 0.35 & 0.2 \\
\hline 2001 & 0.56 & 0.29 & 0.44 & 0.27 & 0.27 & 0.35 & 0.2 \\
\hline 2002 & 0.53 & 0.28 & 0.43 & 0.27 & 0.27 & 0.35 & 0.2 \\
\hline 2003 & 0.51 & 0.28 & 0.42 & 0.27 & 0.27 & 0.34 & 0.2 \\
\hline 2004 & 0.5 & 0.27 & 0.41 & 0.27 & 0.27 & 0.34 & 0.2 \\
\hline 2005 & 0.49 & 0.27 & 0.4 & 0.26 & 0.26 & 0.34 & 0.2 \\
\hline 2006 & 0.47 & 0.27 & 0.39 & 0.26 & 0.26 & 0.33 & 0.2 \\
\hline 2007 & 0.46 & 0.26 & 0.38 & 0.26 & 0.26 & 0.33 & 0.2 \\
\hline 2008 & 0.46 & 0.26 & 0.38 & 0.26 & 0.26 & 0.33 & 0.2 \\
\hline
\end{tabular}

Table 14.8 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Survey tuning CP UE. Data used in the assessment are highlighted in bold text

North Sea/Skagerrak/Eastern Channel Cod, Tuning data for standard survey. Updated 29 Apr 09 102
IBTS_Q1, 6 is a plusgroup
19832009
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & 1 & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{0.25} & & & \\
\hline 1 & 5 & & & & & \\
\hline 1 & 4.734 & 16.699 & 2.749 & 1.932 & 0.798 & 1.357 \\
\hline 1 & 15.856 & 8.958 & 4.059 & 0.905 & 0.976 & 0.875 \\
\hline 1 & 0.928 & 18.782 & 3.217 & 1.744 & 0.476 & 0.930 \\
\hline 1 & 16.785 & 3.627 & 7.079 & 2.242 & 1.280 & 0.967 \\
\hline 1 & 9.425 & 28.833 & 1.515 & 1.789 & 0.636 & 0.819 \\
\hline 1 & 5.638 & 6.334 & 6.204 & 0.658 & 0.860 & 1.127 \\
\hline 1 & 15.117 & 6.328 & 5.044 & 2.345 & 0.394 & 0.992 \\
\hline 1 & 3.953 & 15.665 & 1.885 & 1.034 & 0.967 & 0.619 \\
\hline 1 & 2.481 & 4.714 & 4.254 & 0.861 & 0.420 & 0.771 \\
\hline 1 & 13.129 & 4.346 & 1.183 & 0.996 & 0.288 & 0.483 \\
\hline 1 & 13.088 & 19.521 & 2.025 & 0.688 & 0.565 & 0.377 \\
\hline 1 & 14.660 & 4.387 & 2.876 & 0.815 & 0.483 & 0.521 \\
\hline 1 & 9.832 & 22.062 & 2.731 & 1.105 & 0.276 & 0.335 \\
\hline 1 & 3.441 & 7.970 & 5.922 & 0.679 & 0.639 & 0.384 \\
\hline 1 & 39.951 & 6.897 & 2.247 & 1.069 & 0.458 & 0.417 \\
\hline 1 & 2.672 & 26.368 & 2.003 & 0.884 & 0.505 & 0.392 \\
\hline 1 & 2.112 & 1.583 & 8.078 & 0.764 & 0.439 & 0.495 \\
\hline 1 & 6.563 & 3.767 & 0.738 & 2.050 & 0.387 & 0.504 \\
\hline 1 & 2.786 & 8.647 & 1.659 & 0.231 & 0.394 & 0.262 \\
\hline 1 & 7.755 & 3.380 & 4.278 & 0.496 & 0.119 & 0.218 \\
\hline 1 & 0.584 & 2.860 & 1.144 & 1.361 & 0.514 & 0.192 \\
\hline 1 & 6.740 & 1.985 & 1.288 & 0.347 & 0.432 & 0.224 \\
\hline 1 & 2.272 & 2.197 & 0.629 & 0.551 & 0.227 & 0.424 \\
\hline 1 & 6.642 & 1.644 & 0.994 & 0.293 & 0.152 & 0.270 \\
\hline 1 & 3.091 & 5.830 & 1.222 & 0.423 & 0.261 & 0.286 \\
\hline 1 & 2.694 & 1.261 & 2.498 & 0.579 & 0.400 & 0.164 \\
\hline 1 & 1.230 & 2.772 & 0.928 & 0.925 & 0.301 & 0.254 \\
\hline
\end{tabular}

IBTS_Q3, 6 is a plusgroup 19912008
\begin{tabular}{rrr}
1 & 0.5 & 0.75 \\
4 & & \\
29.207 & \(\mathbf{8 . 1 7 0}\) & 2.438 \\
19.591 & \(\mathbf{4 3 . 4 8 7}\) & 3.596 \\
16.288 & \(\mathbf{1 0 . 4 7 3}\) & 7.903 \\
16.112 & \(\mathbf{4 2 . 7 3 7}\) & \(\mathbf{6 . 1 5 5}\) \\
10.864 & \(\mathbf{2 2 . 2 8 2}\) & \(\mathbf{1 7 . 4 1 9}\) \\
68.916 & \(\mathbf{1 0 . 2 8 3}\) & 5.327 \\
0.130 & \(\mathbf{6 0 . 5 1 8}\) & 5.471 \\
91.708 & 2.397 & \(\mathbf{2 0 . 0 5 7}\) \\
9.543 & \(\mathbf{1 1 . 9 5 2}\) & \(\mathbf{0 . 9 6 1}\) \\
1.845 & \(\mathbf{1 0 . 6 8 9}\) & \(\mathbf{2 . 2 9 4}\) \\
4.669 & 4.723 & 5.533 \\
0.767 & \(\mathbf{1 1 . 3 3 4}\) & \(\mathbf{2 . 1 1 7}\) \\
12.854 & 1.735 & \(\mathbf{2 . 4 7 5}\) \\
2.287 & \(\mathbf{1 2 . 1 7 8}\) & \(\mathbf{1 . 7 0 3}\) \\
13.755 & 4.745 & \(\mathbf{2 . 0 6 2}\) \\
7.329 & \(\mathbf{1 5 . 2 1 5}\) & \(\mathbf{1 . 8 9 0}\) \\
8.135 & 9.079 & \(\mathbf{6 . 1 5 4}\) \\
1.384 & 9.989 & \(\mathbf{2 . 5 1 8}\)
\end{tabular}
\begin{tabular}{llll}
\(\mathbf{1 . 1 6 4}\) & \(\mathbf{0 . 1 6 4}\) & 0.066 & 0.069 \\
\(\mathbf{0 . 7 3 7}\) & \(\mathbf{0 . 4 5 7}\) & 0.153 & 0.136 \\
\(\mathbf{0 . 8 6 1}\) & \(\mathbf{0 . 1 8 3}\) & 0.136 & 0.061 \\
\(\mathbf{2 . 3 8 9}\) & \(\mathbf{0 . 2 1 3}\) & 0.082 & 0.073 \\
\(\mathbf{1 . 4 6 8}\) & \(\mathbf{0 . 7 6 2}\) & 0.068 & 0.070 \\
\(\mathbf{1 . 8 3 3}\) & \(\mathbf{0 . 3 9 0}\) & 0.183 & 0.036 \\
\(\mathbf{1 . 6 5 9}\) & \(\mathbf{0 . 6 3 6}\) & 0.130 & 0.125 \\
\(\mathbf{1 . 2 9 4}\) & \(\mathbf{0 . 3 8 6}\) & 0.235 & 0.117 \\
\(\mathbf{3 . 8 6 3}\) & \(\mathbf{0 . 2 9 1}\) & 0.089 & 0.037 \\
\(\mathbf{0 . 2 0 5}\) & \(\mathbf{0 . 5 2 3}\) & 0.075 & 0.090 \\
\(\mathbf{0 . 7 9 2}\) & \(\mathbf{0 . 1 5 0}\) & 0.153 & 0.145 \\
\(\mathbf{1 . 5 5 7}\) & \(\mathbf{0 . 4 3 9}\) & 0.100 & 0.046 \\
\(\mathbf{0 . 5 1 6}\) & \(\mathbf{0 . 4 8 3}\) & 0.401 & 0.504 \\
\(\mathbf{1 . 0 8 8}\) & \(\mathbf{0 . 2 0 2}\) & 0.143 & 0.046 \\
\(\mathbf{0 . 6 2 2}\) & \(\mathbf{0 . 2 1 8}\) & 0.049 & 0.124 \\
\(\mathbf{1 . 2 5 2}\) & \(\mathbf{0 . 2 1 9}\) & 0.044 & 0.059 \\
\(\mathbf{0 . 9 7 5}\) & \(\mathbf{0 . 3 4 4}\) & 0.137 & 0.122 \\
\(\mathbf{3 . 0 0 0}\) & \(\mathbf{0 . 5 1 6}\) & 0.249 & 0.116
\end{tabular}

Table 14.9a Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT base run tuning model specification

Lowestoft VPA Program
30/04/2009 10:26
Adapt Analysis
North Sea/Skagerrak Tuning data. INCLUDES DISCARDS
CPUE data from file Cod347_2009_std.tun
Catch data for 46 years : 1963 to 2008. Ages 1 to \(7+\)
\begin{tabular}{lrrrrrr} 
Fleet & First & Last & First & Last & Alpha & Beta \\
& year & year & age & age & & \\
IBTS_Q1_std & 1983 & 2009 & 1 & 5 & 0 & 0.25 \\
IBTS_Q3_std & 1991 & 2008 & 1 & 4 & 0.5 & 0.75
\end{tabular}

Time series weights :

Tapered time weighting not applied
Catchability analysis:
\begin{tabular}{lrr} 
Fleet & \begin{tabular}{r} 
PowerQ \\
ages \(<x\)
\end{tabular} & \begin{tabular}{r} 
QPlateau \\
ages \(>x\)
\end{tabular} \\
IBTS_Q1_std & 1 & 5 \\
IBTS_Q3_std & 1 & 3
\end{tabular}

Catchability independent of stock size for all ages

Bias estimation: Bias estimated for the final 16 years.
Oldest age \(F\) estimates in 1963 to 2009 calculated as 1.000 * the mean \(F\) of ages \(3-5\) Total catch penalty: lambda \(=0.500\)

Individual fleet weighting not applied
\begin{tabular}{lrrl} 
INITIAL SSQ \(=\) & 42.12556 & SSQ \(=\) & 27.53499 \\
PARAMETERS \(=\) & 21 & QSSQ \(=\) & 26.71884 \\
OBSERVATIONS \(=\) & 223 & CSSQ \(=\) & 0.81615
\end{tabular}

Table 14.9b Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT base run IBTSQ1 tuning diagnostics

Fleet : IBTS_Q1_std
Log index residuals
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{Age} & & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & & & \\
\hline & 1 & -0.69 & -0.57 & -1.76 & -0.64 & 0.24 & 0.15 & 0.20 & & & \\
\hline & 2 & 0.12 & 0.03 & 0.16 & -0.19 & 0.39 & -0.22 & 0.21 & & & \\
\hline & 3 & 0.00 & -0.11 & 0.12 & 0.39 & -0.01 & 0.07 & 0.68 & & & \\
\hline & 4 & -0.14 & 0.05 & 0.05 & 0.75 & 0.08 & 0.09 & 0.26 & & & \\
\hline & 5 & -0.11 & -0.13 & 0.01 & 0.29 & 0.20 & 0.03 & 0.26 & & & \\
\hline \multirow[t]{6}{*}{Age} & & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 \\
\hline & 1 & -0.02 & -0.75 & 0.17 & 0.92 & -0.24 & 0.14 & -0.33 & 0.93 & 0.28 & -0.52 \\
\hline & 2 & 0.48 & 0.17 & -0.17 & 0.59 & -0.29 & 0.38 & -0.13 & 0.13 & 0.34 & -0.41 \\
\hline & 3 & 0.03 & 0.45 & -0.30 & 0.02 & -0.23 & 0.05 & 0.26 & -0.29 & -0.29 & 0.38 \\
\hline & 4 & 0.17 & 0.21 & -0.05 & 0.00 & 0.16 & -0.30 & -0.24 & -0.23 & -0.21 & 0.00 \\
\hline & 5 & 0.08 & -0.11 & -0.31 & 0.00 & 0.41 & -0.43 & -0.18 & 0.08 & -0.32 & -0.01 \\
\hline \multirow[t]{6}{*}{Age} & & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 \\
\hline & 1 & 0.08 & 0.41 & 0.83 & -0.94 & 1.11 & 0.21 & 0.36 & 0.36 & 0.05 & 99.99 \\
\hline & 2 & 0.00 & 0.13 & 0.20 & -0.41 & 0.12 & -0.34 & -0.37 & -0.13 & -0.79 & -0.31 \\
\hline & 3 & -0.25 & 0.13 & 0.27 & -0.29 & -0.02 & -0.35 & -0.35 & -0.04 & -0.33 & -0.08 \\
\hline & 4 & 0.58 & -0.15 & -0.23 & 0.19 & -0.37 & 0.09 & -0.27 & -0.41 & -0.11 & -0.30 \\
\hline & 5 & 0.39 & -0.02 & -0.22 & 0.66 & -0.19 & -0.09 & -0.43 & 0.03 & 0.14 & -0.27 \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{crrrrr} 
Age & 1 & 2 & 3 & 4 & 5 \\
Mean Log & -10.6751 & -9.5681 & -9.3245 & -9.0576 & -8.6149 \\
S.E(Log q. & 0.6489 & 0.3242 & 0.2803 & 0.273 & 0.2618
\end{tabular}

Regression statistics :
Ages with \(q\) independent of year class strength and constant w.r.t. time.
\begin{tabular}{rrrrrrrrr} 
Age & \multicolumn{2}{l}{ Slope } & \multicolumn{1}{l}{ t-value } & Intercept & RSquare & No Pts & Reg s.e & \multicolumn{1}{l}{ Mean Q } \\
& & & & & & & & \\
1 & 1.18 & -1.02 & 10.35 & 0.58 & 26 & 0.76421 & -10.68 \\
2 & 0.79 & 3.617 & 9.99 & 0.92 & 26 & 0.20917 & -9.57 \\
& 0.82 & 2.379 & 9.51 & 0.88 & 26 & 0.21015 & -9.32 \\
& 4 & 0.88 & 1.33 & 9.06 & 0.83 & 26 & 0.23548 & -9.06 \\
& 5 & 1.05 & -0.427 & 8.65 & 0.78 & 26 & 0.27867 & -8.61
\end{tabular}

Table 14.9c Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT base run IBTSQ3 tuning diagnostics

Fleet : IBTS_Q3_std
Log index residuals
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 \\
\hline & 1 & 99.99 & -0.41 & 0.51 & -0.22 & 0.07 & 0.05 & -0.22 & 0.37 & -0.78 & 0.31 \\
\hline & 2 & 99.99 & -0.20 & -0.07 & 0.08 & 0.26 & 0.56 & -0.14 & 0.10 & 0.48 & -0.65 \\
\hline & 3 & 99.99 & -0.26 & -0.27 & -0.19 & 0.13 & 0.08 & -0.18 & 0.00 & -0.01 & 0.54 \\
\hline & 4 & 99.99 & -0.71 & -0.08 & -0.48 & -0.49 & 0.10 & 0.02 & 0.01 & -0.15 & 0.01 \\
\hline \multicolumn{12}{|c|}{5 No data for this fleet at this age} \\
\hline \multirow[t]{6}{*}{Age} & & 2000 & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 \\
\hline & 1 & -0.41 & -0.13 & 0.19 & -0.78 & 0.66 & -0.04 & 0.15 & 0.43 & 0.29 & 99.99 \\
\hline & 2 & -0.18 & -0.08 & -0.18 & -0.12 & 0.12 & -0.18 & -0.09 & 0.04 & 0.26 & 99.99 \\
\hline & 3 & -0.77 & -0.11 & -0.12 & -0.42 & 0.38 & 0.17 & 0.37 & 0.17 & 0.50 & 99.99 \\
\hline & 4 & 0.22 & 0.15 & 0.51 & 0.00 & -0.11 & 0.01 & 0.10 & 0.09 & 0.45 & 99.99 \\
\hline & \multicolumn{11}{|l|}{5 No data for this fleet at this age} \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{crrrr} 
Age & 1 & 2 & 3 & 4 \\
Mean Log & -9.2619 & -9.2752 & -9.2814 & -9.2814 \\
S.E(Log q. & 0.416 & 0.2794 & 0.3355 & 0.3043
\end{tabular}

Regression statistics:
Ages with \(q\) independent of year class strength and constant w.r.t. time.
\begin{tabular}{rrrrrrrrr} 
Age & \multicolumn{2}{l}{ Slope } & \multicolumn{1}{l}{ t-value } & Intercept & RSquare & No Pts & Reg s.e & Mean Q \\
& & & & & & & & \\
1 & 0.88 & 1.038 & 9.61 & 0.83 & 18 & 0.36552 & -9.26 \\
2 & 0.81 & 2.864 & 9.67 & 0.93 & 18 & 0.18894 & -9.28 \\
3 & 0.85 & 1.205 & 9.42 & 0.8 & 18 & 0.28165 & -9.28 \\
& 4 & 1.04 & -0.21 & 9.32 & 0.67 & 18 & 0.32395 & -9.3
\end{tabular}

Table 14.9d Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT base run parameter estimates
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Parameters} & \multicolumn{20}{|l|}{Variance covariance matrix} \\
\hline Age & \multicolumn{2}{|l|}{Survivors s.e log est} & 0.06 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 1 & 60978 & 0.24 & 0.00 & 0.08 & 0.01 & 0.01 & 0.04 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 \\
\hline 2 & 12739 & 0.28 & 0.00 & 0.01 & 0.08 & 0.01 & 0.05 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 3 & 11602 & 0.28 & 0.00 & 0.01 & 0.01 & 0.06 & 0.02 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 4 & 2519 & 0.25 & 0.00 & 0.04 & 0.05 & 0.02 & 0.85 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & -0.04 \\
\hline 5 & 489 & 0.92 & 0.01 & 0.01 & 0.01 & 0.01 & 0.00 & 0.04 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 \\
\hline & & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.06 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Year & \multicolumn{2}{|l|}{Multiplier s.e log est} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.05 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 1993 & 1.21 & 0.21 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & -0.01 & 0.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 1994 & 0.96 & 0.24 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & 0.05 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 1995 & 1.40 & 0.21 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & -0.01 & 0.04 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 1996 & 1.44 & 0.20 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.04 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 1997 & 0.99 & 0.23 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 1998 & 1.08 & 0.20 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.06 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 1999 & 1.24 & 0.20 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.05 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2000 & 1.15 & 0.20 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.04 & -0.01 & 0.00 & 0.00 & 0.00 \\
\hline 2001 & 1.06 & 0.24 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.06 & -0.01 & 0.00 & 0.00 \\
\hline 2002 & 1.42 & 0.22 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.05 & -0.01 & 0.00 \\
\hline 2003 & 2.33 & 0.19 & 0.00 & 0.01 & 0.00 & 0.00 & -0.01 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.06 & 0.00 \\
\hline 2004 & 1.30 & 0.24 & 0.00 & 0.00 & 0.00 & 0.00 & -0.04 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.06 \\
\hline 2005 & 1.72 & 0.21 & 0.00 & -0.01 & -0.02 & -0.01 & -0.11 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 2006 & 1.42 & 0.24 & & & & & & & & & & & & & & & & & & & & \\
\hline 2007 & 1.49 & 0.25 & & & & & & & & & & & & & & & & & & & & \\
\hline 2008 & 2.13 & 0.25 & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 14.10 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT base run median fishing mortality at age.

30/04/2009 10:26
Table 8 Fishing mortality (F) at age
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline AGEIYEAR & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970 & 1971 & 1972 \\
\hline 1 & 0.1180 & 0.0423 & 0.2771 & 0.2534 & 0.1305 & 0.1851 & 0.0286 & 0.1536 & 0.3147 & 0.2157 \\
\hline 2 & 0.6451 & 0.4183 & 0.4529 & 0.6199 & 0.5633 & 0.6578 & 0.4593 & 0.6087 & 0.9088 & 0.9396 \\
\hline 3 & 0.3690 & 0.5654 & 0.6420 & 0.5759 & 0.7007 & 0.7197 & 0.5520 & 0.6996 & 0.7367 & 0.8541 \\
\hline 4 & 0.4839 & 0.4459 & 0.6163 & 0.5487 & 0.5045 & 0.7347 & 0.6164 & 0.5504 & 0.6972 & 0.6751 \\
\hline 5 & 0.4063 & 0.5417 & 0.4880 & 0.4941 & 0.6517 & 0.5774 & 0.6857 & 0.6641 & 0.6613 & 0.7030 \\
\hline 6 & 0.4197 & 0.5177 & 0.5821 & 0.5396 & 0.6189 & 0.6772 & 0.6180 & 0.6380 & 0.6984 & 0.7441 \\
\hline +gp & 0.4197 & 0.5177 & 0.5821 & 0.5396 & 0.6189 & 0.6772 & 0.6180 & 0.6380 & 0.6984 & 0.7441 \\
\hline FBAR 2-4 & 0.4993 & 0.4765 & 0.5704 & 0.5815 & 0.5895 & 0.7041 & 0.5426 & 0.6196 & 0.7809 & 0.8229 \\
\hline AGEIYEAR & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 \\
\hline 1 & 0.3538 & 0.4723 & 0.2849 & 0.5882 & 0.5534 & 0.1499 & 0.8930 & 1.0001 & 0.5506 & 0.4646 \\
\hline 2 & 0.8401 & 0.8581 & 0.8182 & 1.2282 & 1.1762 & 1.1723 & 0.7565 & 0.8993 & 1.0053 & 0.9407 \\
\hline 3 & 0.7763 & 0.6385 & 0.7488 & 0.8409 & 0.7481 & 0.8960 & 0.8941 & 0.9352 & 0.9583 & 1.1707 \\
\hline 4 & 0.7752 & 0.6199 & 0.6792 & 0.7749 & 0.5862 & 0.7909 & 0.6225 & 0.7836 & 0.7838 & 0.9166 \\
\hline 5 & 0.6252 & 0.6509 & 0.7101 & 0.5996 & 0.6874 & 1.0254 & 0.7840 & 0.7461 & 0.6916 & 0.8533 \\
\hline 6 & 0.7256 & 0.6364 & 0.7127 & 0.7385 & 0.6739 & 0.9041 & 0.7669 & 0.8216 & 0.8112 & 0.9802 \\
\hline +gp & 0.7256 & 0.6364 & 0.7127 & 0.7385 & 0.6739 & 0.9041 & 0.7669 & 0.8216 & 0.8112 & 0.9802 \\
\hline FBAR 2-4 & 0.7972 & 0.7055 & 0.7487 & 0.9480 & 0.8368 & 0.9531 & 0.7577 & 0.8727 & 0.9158 & 1.0094 \\
\hline AGEIYEAR & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 \\
\hline 1 & 0.2916 & 0.8466 & 0.4774 & 0.8044 & 0.2170 & 0.2472 & 0.5731 & 0.3814 & 0.3923 & 0.3975 \\
\hline 2 & 1.0524 & 0.9879 & 1.0817 & 0.9318 & 1.0910 & 1.0005 & 0.9283 & 1.2110 & 0.8233 & 0.8386 \\
\hline 3 & 1.1244 & 0.9420 & 0.9075 & 0.9954 & 0.8528 & 1.0903 & 1.0145 & 0.8787 & 0.8536 & 0.6971 \\
\hline 4 & 0.9148 & 0.8212 & 0.7644 & 0.9450 & 0.8969 & 0.8852 & 0.9391 & 0.8290 & 0.7780 & 0.7928 \\
\hline 5 & 0.8154 & 0.7825 & 0.7304 & 0.8034 & 0.7430 & 0.7768 & 0.8644 & 0.6885 & 0.7479 & 0.6640 \\
\hline 6 & 0.9515 & 0.8486 & 0.8008 & 0.9146 & 0.8309 & 0.9174 & 0.9393 & 0.7988 & 0.7932 & 0.7180 \\
\hline +gp & 0.9515 & 0.8486 & 0.8008 & 0.9146 & 0.8309 & 0.9174 & 0.9393 & 0.7988 & 0.7932 & 0.7180 \\
\hline FBAR 2-4 & 1.0305 & 0.9171 & 0.9179 & 0.9574 & 0.9469 & 0.9920 & 0.9606 & 0.9729 & 0.8183 & 0.7761 \\
\hline AGEIYEAR & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline 1 & 0.2917 & 0.6339 & 0.3066 & 0.1739 & 0.2531 & 0.2546 & 0.4294 & 0.2568 & 0.1513 & 0.2577 \\
\hline 2 & 1.0291 & 0.6957 & 1.0559 & 1.0037 & 0.7753 & 1.0128 & 0.8174 & 0.8768 & 0.8497 & 0.4751 \\
\hline 3 & 0.9601 & 0.7597 & 0.9301 & 1.0741 & 0.9309 & 0.9951 & 1.4477 & 1.1115 & 0.7297 & 0.8977 \\
\hline 4 & 0.9857 & 0.6966 & 0.7970 & 0.8826 & 0.8949 & 0.9771 & 1.2378 & 1.2347 & 0.8251 & 1.0000 \\
\hline 5 & 0.8942 & 0.6520 & 0.6232 & 0.9126 & 0.8301 & 0.9502 & 1.1580 & 1.2941 & 0.8071 & 0.9318 \\
\hline 6 & 0.9464 & 0.7025 & 0.7833 & 0.9562 & 0.8850 & 0.9738 & 1.2814 & 1.2136 & 0.7874 & 0.9422 \\
\hline +gp & 0.9464 & 0.7025 & 0.7833 & 0.9562 & 0.8850 & 0.9738 & 1.2814 & 1.2136 & 0.7874 & 0.9422 \\
\hline FBAR 2-4 & 0.9920 & 0.7177 & 0.9274 & 0.9861 & 0.8667 & 0.9951 & 1.1674 & 1.0740 & 0.8014 & 0.7902 \\
\hline AGEIYEAR & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & & & & \\
\hline 1 & 0.3813 & 0.2894 & 0.3151 & 0.2981 & 0.3417 & 0.1859 & & & & \\
\hline 2 & 1.0465 & 0.7327 & 0.6599 & 0.6516 & 0.5753 & 0.9052 & & & & \\
\hline 3 & 0.8672 & 0.9536 & 0.6541 & 0.7380 & 0.5747 & 0.8895 & & & & \\
\hline 4 & 0.8771 & 1.0208 & 0.8633 & 0.6912 & 0.7169 & 0.5568 & & & & \\
\hline 5 & 1.0159 & 0.7177 & 0.7638 & 0.8199 & 0.5009 & 1.0513 & & & & \\
\hline 6 & 0.9196 & 0.8979 & 0.7600 & 0.7501 & 0.5970 & 0.8372 & & & & \\
\hline +gp & 0.9196 & 0.8979 & 0.7600 & 0.7501 & 0.5970 & 0.8372 & & & & \\
\hline FBAR 2-4 & 0.9299 & 0.9026 & 0.7247 & 0.6944 & 0.6189 & 0.7882 & & & & \\
\hline
\end{tabular}

Table 14.11 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT base run median population numbers at age.

30/04/2009 10:26
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline AGEIYEAR & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970 & 1971 & 1972 \\
\hline 1 & 249718 & 462750 & 687286 & 835166 & 748976 & 329855 & 295479 & 1143743 & 1687701 & 329293 \\
\hline 2 & 157713 & 101732 & 195367 & 222662 & 271562 & 269935 & 110340 & 114432 & 390898 & 490970 \\
\hline 3 & 26607 & 54365 & 43557 & 79995 & 76384 & 97605 & 88266 & 43564 & 38910 & 98457 \\
\hline 4 & 10179 & 13227 & 21985 & 16153 & 31378 & 26182 & 32826 & 34758 & 14799 & 12738 \\
\hline 5 & 9194 & 5035 & 6796 & 9526 & 7489 & 15205 & 10079 & 14222 & 16087 & 5914 \\
\hline 6 & 3912 & 4964 & 2374 & 3381 & 4711 & 3164 & 6919 & 4115 & 5934 & 6731 \\
\hline +gp & 1892 & 2236 & 2700 & 2916 & 3403 & 3250 & 3035 & 3459 & 3796 & 5839 \\
\hline TOTAL & 459217 & 644308 & 960065 & 1169799 & 1143902 & 745195 & 546944 & 1358293 & 2158126 & 949942 \\
\hline AGEIYEAR & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 \\
\hline 1 & 561402 & 550554 & 1030925 & 769399 & 1898803 & 638410 & 1502822 & 2807522 & 609627 & 983478 \\
\hline 2 & 104719 & 157056 & 136821 & 308981 & 170280 & 435083 & 218995 & 245208 & 415711 & 142910 \\
\hline 3 & 119921 & 28535 & 42037 & 38492 & 57688 & 33825 & 87639 & 66859 & 65553 & 100962 \\
\hline 4 & 28661 & 37733 & 10409 & 13732 & 11468 & 19047 & 9633 & 25006 & 18309 & 17541 \\
\hline 5 & 5204 & 10595 & 16292 & 4235 & 5078 & 5121 & 6862 & 4107 & 9075 & 6643 \\
\hline 6 & 2373 & 2258 & 4480 & 6492 & 1885 & 2049 & 1474 & 2514 & 1563 & 3647 \\
\hline +gp & 3907 & 3326 & 2209 & 2563 & 4231 & 1914 & 1535 & 1646 & 1686 & 1364 \\
\hline TOTAL & 826187 & 790057 & 1243172 & 1143896 & 2149432 & 1135451 & 1828960 & 3152863 & 1121523 & 1256545 \\
\hline AGEIYEAR & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 \\
\hline 1 & 470856 & 1485856 & 272216 & 1668788 & 363026 & 238092 & 630938 & 199511 & 260092 & 546894 \\
\hline 2 & 253796 & 147368 & 272357 & 73644 & 332123 & 132620 & 86093 & 168028 & 65660 & 85515 \\
\hline 3 & 37021 & 59388 & 37151 & 63141 & 19836 & 77051 & 34021 & 23978 & 35274 & 20515 \\
\hline 4 & 21846 & 8391 & 16152 & 10459 & 16281 & 5898 & 17889 & 8521 & 6810 & 10171 \\
\hline 5 & 5573 & 6953 & 2933 & 5975 & 3230 & 5223 & 1915 & 5502 & 2926 & 2436 \\
\hline 6 & 2271 & 1979 & 2552 & 1122 & 2126 & 1221 & 1909 & 635 & 2174 & 1089 \\
\hline +gp & 1622 & 1530 & 1326 & 1565 & 1090 & 842 & 819 & 882 & 807 & 952 \\
\hline TOTAL & 792985 & 1711465 & 604686 & 1824696 & 737712 & 460948 & 773583 & 407055 & 373742 & 667573 \\
\hline AGEIYEAR & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline 1 & 254721 & 939238 & 413639 & 233277 & 734266 & 96659 & 177838 & 299673 & 86372 & 155474 \\
\hline 2 & 182494 & 94232 & 247940 & 153497 & 100368 & 296961 & 40074 & 62528 & 129470 & 42355 \\
\hline 3 & 26313 & 46279 & 33525 & 61951 & 40666 & 33852 & 79805 & 12951 & 19400 & 41400 \\
\hline 4 & 6849 & 6663 & 14181 & 8578 & 13563 & 10310 & 8037 & 11867 & 2730 & 6014 \\
\hline 5 & 3585 & 1965 & 2555 & 4906 & 2698 & 4223 & 2987 & 1766 & 2618 & 912 \\
\hline 6 & 977 & 1138 & 794 & 1050 & 1512 & 906 & 1257 & 709 & 367 & 891 \\
\hline +gp & 758 & 532 & 595 & 761 & 490 & 520 & 647 & 354 & 317 & 244 \\
\hline TOTAL & 475696 & 1090048 & 713228 & 464020 & 893562 & 443431 & 310645 & 389848 & 241273 & 247289 \\
\hline AGEIYEAR & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & & & & \\
\hline 1 & 73605 & 106661 & 88393 & 218422 & 98279 & 120160 & & & & \\
\hline 2 & 70763 & 30073 & 48317 & 39294 & 101674 & 43852 & & & & \\
\hline 3 & 19867 & 18606 & 11029 & 18881 & 15605 & 43863 & & & & \\
\hline 4 & 10921 & 5448 & 4755 & 3813 & 6120 & 5968 & & & & \\
\hline 5 & 1685 & 3446 & 1498 & 1533 & 1478 & 2275 & & & & \\
\hline 6 & 273 & 462 & 1282 & 533 & 520 & 679 & & & & \\
\hline +gp & 279 & 224 & 201 & 475 & 302 & 462 & & & & \\
\hline TOTAL & 177393 & 164919 & 155474 & 282951 & 223977 & 217259 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline AGEIYEAR & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970 & 1971 & 1972 \\
\hline 1 & 249718 & 462750 & 687286 & 835166 & 748976 & 329855 & 295479 & 1143743 & 1687701 & 329293 \\
\hline 2 & 157713 & 101732 & 195367 & 222662 & 271562 & 269935 & 110340 & 114432 & 390898 & 490970 \\
\hline 3 & 26607 & 54365 & 43557 & 79995 & 76384 & 97605 & 88266 & 43564 & 38910 & 98457 \\
\hline 4 & 10179 & 13227 & 21985 & 16153 & 31378 & 26182 & 32826 & 34758 & 14799 & 12738 \\
\hline 5 & 9194 & 5035 & 6796 & 9526 & 7489 & 15205 & 10079 & 14222 & 16087 & 5914 \\
\hline 6 & 3912 & 4964 & 2374 & 3381 & 4711 & 3164 & 6919 & 4115 & 5934 & 6731 \\
\hline +gp & 1892 & 2236 & 2700 & 2916 & 3403 & 3250 & 3035 & 3459 & 3796 & 5839 \\
\hline TOTAL & 459217 & 644308 & 960065 & 1169799 & 1143902 & 745195 & 546944 & 1358293 & 2158126 & 949942 \\
\hline AGEIYEAR & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 \\
\hline 1 & 561402 & 550554 & 1030925 & 769399 & 1898803 & 638410 & 1502822 & 2807522 & 609627 & 983478 \\
\hline 2 & 104719 & 157056 & 136821 & 308981 & 170280 & 435083 & 218995 & 245208 & 415711 & 142910 \\
\hline 3 & 119921 & 28535 & 42037 & 38492 & 57688 & 33825 & 87639 & 66859 & 65553 & 100962 \\
\hline 4 & 28661 & 37733 & 10409 & 13732 & 11468 & 19047 & 9633 & 25006 & 18309 & 17541 \\
\hline 5 & 5204 & 10595 & 16292 & 4235 & 5078 & 5121 & 6862 & 4107 & 9075 & 6643 \\
\hline 6 & 2373 & 2258 & 4480 & 6492 & 1885 & 2049 & 1474 & 2514 & 1563 & 3647 \\
\hline +gp & 3907 & 3326 & 2209 & 2563 & 4231 & 1914 & 1535 & 1646 & 1686 & 1364 \\
\hline TOTAL & 826187 & 790057 & 1243172 & 1143896 & 2149432 & 1135451 & 1828960 & 3152863 & 1121523 & 1256545 \\
\hline AGEIYEAR & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 \\
\hline 1 & 470856 & 1485856 & 272216 & 1668788 & 363026 & 238092 & 630938 & 199511 & 260092 & 546894 \\
\hline 2 & 253796 & 147368 & 272357 & 73644 & 332123 & 132620 & 86093 & 168028 & 65660 & 85515 \\
\hline 3 & 37021 & 59388 & 37151 & 63141 & 19836 & 77051 & 34021 & 23978 & 35274 & 20515 \\
\hline 4 & 21846 & 8391 & 16152 & 10459 & 16281 & 5898 & 17889 & 8521 & 6810 & 10171 \\
\hline 5 & 5573 & 6953 & 2933 & 5975 & 3230 & 5223 & 1915 & 5502 & 2926 & 2436 \\
\hline 6 & 2271 & 1979 & 2552 & 1122 & 2126 & 1221 & 1909 & 635 & 2174 & 1089 \\
\hline +gp & 1622 & 1530 & 1326 & 1565 & 1090 & 842 & 819 & 882 & 807 & 952 \\
\hline TOTAL & 792985 & 1711465 & 604686 & 1824696 & 737712 & 460948 & 773583 & 407055 & 373742 & 667573 \\
\hline AGEIYEAR & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline 1 & 254721 & 939238 & 413639 & 233277 & 734266 & 96659 & 177838 & 299673 & 86372 & 155474 \\
\hline 2 & 182494 & 94232 & 247940 & 153497 & 100368 & 296961 & 40074 & 62528 & 129470 & 42355 \\
\hline 3 & 26313 & 46279 & 33525 & 61951 & 40666 & 33852 & 79805 & 12951 & 19400 & 41400 \\
\hline 4 & 6849 & 6663 & 14181 & 8578 & 13563 & 10310 & 8037 & 11867 & 2730 & 6014 \\
\hline 5 & 3585 & 1965 & 2555 & 4906 & 2698 & 4223 & 2987 & 1766 & 2618 & 912 \\
\hline 6 & 977 & 1138 & 794 & 1050 & 1512 & 906 & 1257 & 709 & 367 & 891 \\
\hline +gp & 758 & 532 & 595 & 761 & 490 & 520 & 647 & 354 & 317 & 244 \\
\hline TOTAL & 475696 & 1090048 & 713228 & 464020 & 893562 & 443431 & 310645 & 389848 & 241273 & 247289 \\
\hline AGEIYEAR & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & & & & \\
\hline 1 & 73605 & 106661 & 88393 & 218422 & 98279 & 120160 & & & & \\
\hline 2 & 70763 & 30073 & 48317 & 39294 & 101674 & 43852 & & & & \\
\hline 3 & 19867 & 18606 & 11029 & 18881 & 15605 & 43863 & & & & \\
\hline 4 & 10921 & 5448 & 4755 & 3813 & 6120 & 5968 & & & & \\
\hline 5 & 1685 & 3446 & 1498 & 1533 & 1478 & 2275 & & & & \\
\hline 6 & 273 & 462 & 1282 & 533 & 520 & 679 & & & & \\
\hline +gp & 279 & 224 & 201 & 475 & 302 & 462 & & & & \\
\hline TOTAL & 177393 & 164919 & 155474 & 282951 & 223977 & 217259 & & & & \\
\hline
\end{tabular}

Table 10 Stock number at age (start of year)



TOTAL

1973
561402 119921 28

Numbers*10**-3

Table 14.12a Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT median stock and management metrics.

Run title: North Sea/Skagerrak/Eastern Channel Cod Tuning data. INCLUDES DISCARDS 30/04/2009 10:26

B-ADAPT median values
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & RECRUITS Age 1 ('000) & \[
\begin{aligned}
& \text { TSB } \\
& \text { (tons) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SSB } \\
& \text { (tons) }
\end{aligned}
\] & CATCH (tons) & YIELD/SSB & FBAR 2-4 \\
\hline 1963 & 249718 & 443856 & 164821 & 128686 & 0.781 & 0.499 \\
\hline 1964 & 462750 & 530389 & 166809 & 130740 & 0.784 & 0.477 \\
\hline 1965 & 687286 & 695016 & 193421 & 210237 & 1.087 & 0.570 \\
\hline 1966 & 835166 & 846628 & 225100 & 259416 & 1.152 & 0.581 \\
\hline 1967 & 748976 & 900304 & 249059 & 276387 & 1.110 & 0.589 \\
\hline 1968 & 329855 & 797607 & 254722 & 305911 & 1.201 & 0.704 \\
\hline 1969 & 295479 & 654250 & 252744 & 205510 & 0.813 & 0.543 \\
\hline 1970 & 1143743 & 993899 & 260553 & 243867 & 0.936 & 0.620 \\
\hline 1971 & 1687701 & 1201678 & 264800 & 412264 & 1.557 & 0.781 \\
\hline 1972 & 329293 & 863226 & 243532 & 387737 & 1.592 & 0.823 \\
\hline 1973 & 561402 & 683266 & 205762 & 269139 & 1.308 & 0.797 \\
\hline 1974 & 550554 & 650496 & 233150 & 253989 & 1.089 & 0.705 \\
\hline 1975 & 1030925 & 728266 & 211890 & 242349 & 1.144 & 0.749 \\
\hline 1976 & 769399 & 644409 & 180579 & 307102 & 1.701 & 0.948 \\
\hline 1977 & 1898803 & 946599 & 163815 & 349038 & 2.131 & 0.837 \\
\hline 1978 & 638410 & 817810 & 150864 & 328585 & 2.178 & 0.953 \\
\hline 1979 & 1502822 & 964889 & 158450 & 430688 & 2.718 & 0.758 \\
\hline 1980 & 2807522 & 1255362 & 179034 & 590678 & 3.299 & 0.873 \\
\hline 1981 & 609627 & 844173 & 190515 & 393451 & 2.065 & 0.916 \\
\hline 1982 & 983478 & 834918 & 184954 & 359372 & 1.943 & 1.009 \\
\hline 1983 & 470856 & 638926 & 148887 & 281696 & 1.892 & 1.031 \\
\hline 1984 & 1485856 & 825394 & 131990 & 379974 & 2.879 & 0.917 \\
\hline 1985 & 272216 & 505132 & 124377 & 247031 & 1.986 & 0.918 \\
\hline 1986 & 1668788 & 761628 & 115131 & 341047 & 2.962 & 0.957 \\
\hline 1987 & 363026 & 563625 & 107496 & 244809 & 2.277 & 0.947 \\
\hline 1988 & 238092 & 432243 & 98890 & 194798 & 1.970 & 0.992 \\
\hline 1989 & 630938 & 469625 & 92913 & 202639 & 2.181 & 0.961 \\
\hline 1990 & 199511 & 323769 & 81361 & 153021 & 1.881 & 0.973 \\
\hline 1991 & 260092 & 301415 & 78090 & 121204 & 1.552 & 0.818 \\
\hline 1992 & 546894 & 428548 & 77338 & 151755 & 1.962 & 0.776 \\
\hline 1993 & 254721 & 372630 & 78810 & 173978 & 2.208 & 0.992 \\
\hline 1994 & 939238 & 520934 & 75503 & 203158 & 2.691 & 0.718 \\
\hline 1995 & 413639 & 531888 & 95546 & 223243 & 2.336 & 0.927 \\
\hline 1996 & 233277 & 443080 & 103589 & 199412 & 1.925 & 0.986 \\
\hline 1997 & 734266 & 537068 & 91120 & 173408 & 1.903 & 0.867 \\
\hline 1998 & 96659 & 349928 & 76426 & 179324 & 2.346 & 0.995 \\
\hline 1999 & 177838 & 256969 & 74317 & 138457 & 1.863 & 1.167 \\
\hline 2000 & 299673 & 241222 & 49052 & 96179 & 1.961 & 1.074 \\
\hline 2001 & 86372 & 182425 & 38830 & 75895 & 1.955 & 0.801 \\
\hline 2002 & 155474 & 217959 & 47150 & 81559 & 1.730 & 0.790 \\
\hline 2003 & 73605 & 152148 & 43644 & 76695 & 1.757 & 0.930 \\
\hline 2004 & 106661 & 128590 & 40050 & 53925 & 1.346 & 0.903 \\
\hline 2005 & 88393 & 132469 & 36564 & 51858 & 1.418 & 0.725 \\
\hline 2006 & 218422 & 145291 & 34475 & 53268 & 1.545 & 0.694 \\
\hline 2007 & 98279 & 189117 & 42313 & 70102 & 1.657 & 0.619 \\
\hline 2008 & 120160 & 212026 & 57282 & 90687 & 1.583 & 0.788 \\
\hline 2009 & & & 60139 & & & \\
\hline
\end{tabular}

Table 14.12b Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Landings, discards and estimated total removals, based on the B-Adapt base run.
\begin{tabular}{|c|c|c|c|c|}
\hline & Landings & Discards & Catch (L+D) & Total estimated removals \\
\hline 1985 & 214.6 & 31.5 & 246.1 & 247.0 \\
\hline 1986 & 204.1 & 139.1 & 343.1 & 341.0 \\
\hline 1987 & 216.2 & 27.8 & 244.1 & 244.8 \\
\hline 1988 & 184.2 & 10.7 & 195.0 & 194.8 \\
\hline 1989 & 139.9 & 62.1 & 202.1 & 202.6 \\
\hline 1990 & 125.3 & 27.0 & 152.3 & 153.0 \\
\hline 1991 & 102.5 & 18.6 & 121.0 & 121.2 \\
\hline 1992 & 114.0 & 36.9 & 150.9 & 151.8 \\
\hline 1993 & 121.7 & 21.9 & 143.6 & 174.0 \\
\hline 1994 & 110.6 & 99.6 & 210.2 & 203.2 \\
\hline 1995 & 136.1 & 32.2 & 168.3 & 223.2 \\
\hline 1996 & 126.3 & 14.3 & 140.6 & 199.4 \\
\hline 1997 & 124.2 & 33.6 & 157.8 & 173.4 \\
\hline 1998 & 146.0 & 40.5 & 186.5 & 179.3 \\
\hline 1999 & 96.2 & 14.2 & 110.4 & 138.5 \\
\hline 2000 & 71.4 & 13.7 & 85.1 & 96.2 \\
\hline 2001 & 49.7 & 13.9 & 63.6 & 75.9 \\
\hline 2002 & 54.9 & 5.7 & 60.6 & 81.6 \\
\hline 2003 & 30.9 & 6.4 & 37.2 & 76.7 \\
\hline 2004 & 28.2 & 5.8 & 34.0 & 53.9 \\
\hline 2005 & 28.7 & 6.3 & 35.0 & 51.9 \\
\hline 2006 & 26.6 & 8.1 & 34.6 & 53.3 \\
\hline 2007 & 24.4 & 23.6 & 48.1 & 70.1 \\
\hline 2008 & 26.8 & 21.8 & 48.7 & 90.7 \\
\hline
\end{tabular}

Table 14.13 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT median term forecast Option 1: reduction in fishing mortality by 25\% in 2009, followed by constant fishing mortality at the 2009 level for 2010 onwards.
\begin{tabular}{|c|c|c|c|c|}
\hline & 2008 & 2009 & 2010 & 2011 \\
\hline F2008 mult & 1.000 & 0.750 & 0.750 & 0.750 \\
\hline \multicolumn{5}{|l|}{\(\operatorname{Fbar}(2-4) \square\) Year} \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 0.55 & 0.41 & 0.41 & 0.41 \\
\hline 0.25 & 0.69 & 0.51 & 0.51 & 0.51 \\
\hline 0.5 & 0.79 & 0.59 & 0.59 & 0.59 \\
\hline 0.75 & 0.88 & 0.66 & 0.66 & 0.66 \\
\hline 0.95 & 1.03 & 0.77 & 0.77 & 0.77 \\
\hline \multicolumn{5}{|l|}{SSB Year} \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 48379 & 47381 & 46642 & 44378 \\
\hline 0.25 & 53641 & 54778 & 57815 & 60238 \\
\hline 0.5 & 57282 & 60139 & 65950 & 73667 \\
\hline 0.75 & 61654 & 66376 & 76485 & 88363 \\
\hline 0.95 & 67418 & 77475 & 94615 & 118660 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\multirow{4}{*}{ Landings } & \multicolumn{4}{c|}{ Year } \\
\cline { 2 - 5 } & Percentile & 2008 & 2009 & 2010 \\
\hline 0.05 & 33996 & 33045 & 36108 & 36757 \\
\hline 0.25 & 42931 & 38274 & 40941 & 42012 \\
0.5 & 50430 & 41915 & 45008 & 47419 \\
0.75 & 58251 & 45579 & 49805 & 54257 \\
0.95 & 69507 & 50777 & 60179 & 66118 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\multicolumn{5}{c|}{ Discards } \\
\cline { 2 - 5 } \multicolumn{1}{c|}{} & \multicolumn{4}{c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 27138 & 17016 & 19396 & 20237 \\
0.25 & 34271 & 21205 & 24690 & 24691 \\
0.5 & 40257 & 24771 & 29254 & 30340 \\
0.75 & 46500 & 28339 & 35683 & 37899 \\
0.95 & 55485 & 33932 & 47145 & 50351 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ P(SSBYear > SSB 2008) } & \\
\hline 2009 & 2010 & 2011 & 2012 & 2013 \\
\hline 0.62 & 0.74 & 0.78 & 0.82 & 0.83 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline In year SSB change & \\
\hline & 2008 & 2009 & 2010 \\
\hline Median & 1.05 & 1.10 & 1.12 \\
\hline P25/P75 & 0.89 & 0.87 & 0.79 \\
\hline
\end{tabular}

Table 14.14a Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT median term forecast Option 2a: reduction in fishing mortality by \(\mathbf{2 5 \%}\) in 2009, followed by a further reduction of \(10 \%\) in 2010 (relative to 2009), then held constant for at the 2010 level for 2011 onwards.
\begin{tabular}{|c|c|c|c|c|}
\hline & 2008 & 2009 & 2010 & 2011 \\
\hline F2008 mult & 1.000 & 0.750 & 0.675 & 0.675 \\
\hline \(\mathrm{Fbar}(2-4)\) & & Year & & \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 0.55 & 0.41 & 0.37 & 0.37 \\
\hline 0.25 & 0.69 & 0.51 & 0.46 & 0.46 \\
\hline 0.5 & 0.79 & 0.59 & 0.53 & 0.53 \\
\hline 0.75 & 0.88 & 0.66 & 0.60 & 0.60 \\
\hline 0.95 & 1.03 & 0.77 & 0.69 & 0.69 \\
\hline SSB & & Year & & \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 48379 & 47381 & 46642 & 48329 \\
\hline 0.25 & 53641 & 54778 & 57815 & 64371 \\
\hline 0.5 & 57282 & 60139 & 65950 & 78064 \\
\hline 0.75 & 61654 & 66376 & 76485 & 93363 \\
\hline 0.95 & 67418 & 77475 & 94615 & 123546 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\multicolumn{5}{c|}{ Landings } \\
\cline { 2 - 5 } & \multicolumn{4}{c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 33996 & 33045 & 33378 & 35995 \\
0.25 & 42931 & 38274 & 37859 & 41057 \\
0.5 & 50430 & 41915 & 41551 & 46200 \\
0.75 & 58251 & 45579 & 46112 & 52755 \\
0.95 & 69507 & 50777 & 55716 & 64316 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline P(SSBYear > SSB 2008) & & \\
\hline 2009 & 2010 & 2011 & 2012 & 2013 \\
\hline 0.62 & 0.74 & 0.84 & 0.89 & 0.91 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline In year SSB change & \\
\hline & 2008 & 2009 & 2010 \\
\hline Median & 1.05 & 1.10 & 1.18 \\
\hline P25/P75 & 0.89 & 0.87 & 0.84 \\
\hline
\end{tabular}

Table 14.14b Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT median term forecast Option 2b: reduction in fishing mortality by \(\mathbf{2 5 \%}\) in 2009, followed by a further reduction of \(15 \%\) in 2010 (relative to 2009), then held constant for at the 2010 level for 2011 onwards.
\begin{tabular}{|c|c|c|c|c|}
\hline & 2008 & 2009 & 2010 & 2011 \\
\hline F2008 mult & 1.000 & 0.750 & 0.637 & 0.637 \\
\hline Fbar(2-4) & \multicolumn{4}{|c|}{Year} \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 0.55 & 0.41 & 0.35 & 0.35 \\
\hline 0.25 & 0.69 & 0.51 & 0.44 & 0.44 \\
\hline 0.5 & 0.79 & 0.59 & 0.50 & 0.50 \\
\hline 0.75 & 0.88 & 0.66 & 0.56 & 0.56 \\
\hline 0.95 & 1.03 & 0.77 & 0.65 & 0.65 \\
\hline SSB & \multicolumn{4}{|c|}{Year} \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 48379 & 47381 & 46642 & 50217 \\
\hline 0.25 & 53641 & 54778 & 57815 & 66540 \\
\hline 0.5 & 57282 & 60139 & 65950 & 80474 \\
\hline 0.75 & 61654 & 66376 & 76485 & 95896 \\
\hline 0.95 & 67418 & 77475 & 94615 & 126002 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\multicolumn{5}{c|}{ Landings } \\
& 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 33996 & 33045 & 31858 & 35264 \\
0.25 & 42931 & 38274 & 36265 & 40380 \\
0.5 & 50430 & 41915 & 39699 & 45359 \\
0.75 & 58251 & 45579 & 44216 & 51724 \\
0.95 & 69507 & 50777 & 53416 & 63290 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\multicolumn{1}{c|}{ Discards } & \multicolumn{4}{c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 27138 & 17016 & 17014 & 18534 \\
0.25 & 34271 & 21205 & 21727 & 22844 \\
0.5 & 40257 & 24771 & 25717 & 28122 \\
0.75 & 46500 & 28339 & 31450 & 35417 \\
0.95 & 55485 & 33932 & 41678 & 47183 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline P(SSBYear > SSB 2008) & & \\
\hline 2009 & 2010 & 2011 & 2012 & 2013 \\
\hline 0.62 & 0.74 & 0.86 & 0.92 & 0.94 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline In year SSB change & \\
\hline & 2008 & 2009 & 2010 \\
\hline Median & 1.05 & 1.10 & 1.22 \\
\hline P25/P75 & 0.89 & 0.87 & 0.87 \\
\hline
\end{tabular}

Table 14.14c Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT median term forecast Option 2c: reduction in fishing mortality by \(\mathbf{2 5 \%}\) in 2009, followed by a further reduction of \(20 \%\) in 2010 (relative to 2009), then held constant for at the 2010 level for 2011 onwards.
\begin{tabular}{|c|c|c|c|c|}
\hline & 2008 & 2009 & 2010 & 2011 \\
\hline F2008 mult & 1.000 & 0.750 & 0.600 & 0.600 \\
\hline Fbar(2-4) & \multicolumn{4}{|c|}{Year} \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 0.55 & 0.41 & 0.33 & 0.33 \\
\hline 0.25 & 0.69 & 0.51 & 0.41 & 0.41 \\
\hline 0.5 & 0.79 & 0.59 & 0.47 & 0.47 \\
\hline 0.75 & 0.88 & 0.66 & 0.53 & 0.53 \\
\hline 0.95 & 1.03 & 0.77 & 0.62 & 0.62 \\
\hline SSB & \multicolumn{4}{|c|}{Year} \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 48379 & 47381 & 46642 & 52140 \\
\hline 0.25 & 53641 & 54778 & 57815 & 68880 \\
\hline 0.5 & 57282 & 60139 & 65950 & 82854 \\
\hline 0.75 & 61654 & 66376 & 76485 & 98602 \\
\hline 0.95 & 67418 & 77475 & 94615 & 128533 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\multicolumn{5}{c|}{ Landings } \\
\cline { 2 - 5 } & \multicolumn{4}{c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 33996 & 33045 & 30350 & 34556 \\
0.25 & 42931 & 38274 & 34606 & 39510 \\
0.5 & 50430 & 41915 & 37907 & 44364 \\
0.75 & 58251 & 45579 & 42177 & 50612 \\
0.95 & 69507 & 50777 & 50955 & 61782 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{ Discards } & \multicolumn{4}{c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 27138 & 17016 & 16146 & 17882 \\
0.25 & 34271 & 21205 & 20702 & 22030 \\
0.5 & 40257 & 24771 & 24490 & 27159 \\
0.75 & 46500 & 28339 & 29997 & 34430 \\
0.95 & 55485 & 33932 & 39849 & 45935 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ P(SSBYear > SSB 2008) } & \\
\hline 2009 & 2010 & 2011 & 2012 & 2013 \\
\hline 0.62 & 0.74 & 0.89 & 0.94 & 0.96 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline In year SSB change & \\
\hline & 2008 & 2009 & 2010 \\
\hline Median & 1.05 & 1.10 & 1.26 \\
\hline P25/P75 & 0.89 & 0.87 & 0.90 \\
\hline
\end{tabular}

Table 14.14d Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT median term forecast Option 2d: reduction in fishing mortality by \(\mathbf{2 5 \%}\) in 2009, followed by a further reduction of \(25 \%\) in 2010 (relative to 2009), then held constant for at the 2010 level for 2011 onwards.
\begin{tabular}{|c|c|c|c|c|}
\hline & 2008 & 2009 & 2010 & 2011 \\
\hline F2008 mult & 1.000 & 0.750 & 0.562 & 0.562 \\
\hline Fbar(2-4) & \multicolumn{4}{|c|}{Year} \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 0.55 & 0.41 & 0.31 & 0.31 \\
\hline 0.25 & 0.69 & 0.51 & 0.39 & 0.39 \\
\hline 0.5 & 0.79 & 0.59 & 0.44 & 0.44 \\
\hline 0.75 & 0.88 & 0.66 & 0.50 & 0.50 \\
\hline 0.95 & 1.03 & 0.77 & 0.58 & 0.58 \\
\hline SSB & \multicolumn{4}{|c|}{Year} \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 48379 & 47381 & 46642 & 54057 \\
\hline 0.25 & 53641 & 54778 & 57815 & 70924 \\
\hline 0.5 & 57282 & 60139 & 65950 & 85359 \\
\hline 0.75 & 61654 & 66376 & 76485 & 101519 \\
\hline 0.95 & 67418 & 77475 & 94615 & 131413 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\multicolumn{5}{c|}{ Landings } \\
\cline { 2 - 5 } & \multicolumn{4}{c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 33996 & 33045 & 28769 & 33559 \\
0.25 & 42931 & 38274 & 32829 & 38537 \\
0.5 & 50430 & 41915 & 36086 & 43190 \\
0.75 & 58251 & 45579 & 40105 & 49290 \\
0.95 & 69507 & 50777 & 48347 & 60431 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{ Discards } & \multicolumn{4}{c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 27138 & 17016 & 15296 & 17161 \\
0.25 & 34271 & 21205 & 19611 & 21335 \\
0.5 & 40257 & 24771 & 23274 & 26243 \\
0.75 & 46500 & 28339 & 28456 & 33340 \\
0.95 & 55485 & 33932 & 37843 & 44552 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ P(SSBYear > SSB 2008) } & \\
\hline 2009 & 2010 & 2011 & 2012 & 2013 \\
\hline 0.62 & 0.74 & 0.91 & 0.95 & 0.97 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline In year SSB change & \\
\hline & 2008 & 2009 & 2010 \\
\hline Median & 1.05 & 1.10 & 1.29 \\
\hline P25/P75 & 0.89 & 0.87 & 0.93 \\
\hline
\end{tabular}

Table 14.14e Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT median term forecast Option 2e: reduction in fishing mortality by \(\mathbf{2 5 \%}\) in 2009, followed by a further reduction of \(30 \%\) in 2010 (relative to 2009), then held constant for at the 2010 level for 2011 onwards.
\begin{tabular}{|c|c|c|c|c|}
\hline & 2008 & 2009 & 2010 & 2011 \\
\hline F2008 mult & 1.000 & 0.750 & 0.525 & 0.525 \\
\hline Fbar(2-4) & \multicolumn{4}{|c|}{Year} \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 0.55 & 0.41 & 0.29 & 0.29 \\
\hline 0.25 & 0.69 & 0.51 & 0.36 & 0.36 \\
\hline 0.5 & 0.79 & 0.59 & 0.41 & 0.41 \\
\hline 0.75 & 0.88 & 0.66 & 0.46 & 0.46 \\
\hline 0.95 & 1.03 & 0.77 & 0.54 & 0.54 \\
\hline SSB & \multicolumn{4}{|c|}{Year} \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 48379 & 47381 & 46642 & 56300 \\
\hline 0.25 & 53641 & 54778 & 57815 & 73248 \\
\hline 0.5 & 57282 & 60139 & 65950 & 87931 \\
\hline 0.75 & 61654 & 66376 & 76485 & 104321 \\
\hline 0.95 & 67418 & 77475 & 94615 & 134758 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\multicolumn{5}{c|}{ Landings } \\
\cline { 2 - 5 } & \multicolumn{4}{c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 33996 & 33045 & 27151 & 32562 \\
0.25 & 42931 & 38274 & 31027 & 37319 \\
0.5 & 50430 & 41915 & 34136 & 42088 \\
0.75 & 58251 & 45579 & 37942 & 47963 \\
0.95 & 69507 & 50777 & 45856 & 58636 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{ Discards } & \multicolumn{4}{c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 27138 & 17016 & 14432 & 16461 \\
0.25 & 34271 & 21205 & 18526 & 20446 \\
0.5 & 40257 & 24771 & 21983 & 25302 \\
0.75 & 46500 & 28339 & 26916 & 32106 \\
0.95 & 55485 & 33932 & 35717 & 43246 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline P(SSBYear > SSB 2008) & & \\
\hline 2009 & 2010 & 2011 & 2012 & 2013 \\
\hline 0.62 & 0.74 & 0.93 & 0.96 & 0.99 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline In year SSB change & \\
\hline & 2008 & 2009 & 2010 \\
\hline Median & 1.05 & 1.10 & 1.33 \\
\hline P25/P75 & 0.89 & 0.87 & 0.96 \\
\hline
\end{tabular}

Table 14.15 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT median term forecast Option 3: reduction in fishing mortality by 25\% in 2009, followed by a further reduction to the target fishing mortality of 0.4 for 2010 onwards.
\begin{tabular}{c|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{} & 2008 & 2009 & 2010 & 2011 \\
\hline F2008 mult & 1.000 & 0.750 & 0.508 & 0.508 \\
\hline
\end{tabular} \begin{tabular}{|c|c|c|c|} 
\\
Fbar(2-4) & \multicolumn{4}{|c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 \\
\hline 0.05 & 0.55 & 0.41 & 0.28 \\
0.25 & 0.69 & 0.51 & 0.35 \\
0.28 \\
0.5 & 0.79 & 0.59 & 0.40 \\
0.35 \\
0.75 & 0.88 & 0.66 & 0.45 \\
0.95 & 1.03 & 0.77 & 0.52 \\
\hline \multicolumn{5}{|c|}{0.55} \\
\cline { 2 - 5 } & SSB & 2008 & 2009 \\
\hline Percentile & 2010 & 2011 \\
\hline 0.05 & 48379 & 47381 & 46642 \\
0.25 & 53641 & 54778 & 57815 \\
0.5 & 57282 & 60139 & 65950 \\
0.75 & 61654 & 66376 & 76485 \\
0.95 & 67418 & 77475 & 99188 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{ Landings } & \multicolumn{4}{c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 33996 & 33045 & 26389 & 32060 \\
0.25 & 42931 & 38274 & 30170 & 36722 \\
0.5 & 50430 & 41915 & 33213 & 41398 \\
0.75 & 58251 & 45579 & 36913 & 47274 \\
0.95 & 69507 & 50777 & 44620 & 57695 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\multicolumn{1}{c|}{ Discards } & \multicolumn{4}{c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 27138 & 17016 & 14017 & 16116 \\
0.25 & 34271 & 21205 & 17998 & 20074 \\
0.5 & 40257 & 24771 & 21367 & 24750 \\
0.75 & 46500 & 28339 & 26157 & 31499 \\
0.95 & 55485 & 33932 & 34733 & 42478 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ P(SSBYear > SSB 2008) } & & \\
\hline 2009 & 2010 & 2011 & 2012 & 2013 \\
\hline 0.62 & 0.74 & 0.93 & 0.97 & 0.99 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline In year SSB change & \\
\hline & 2008 & 2009 & 2010 \\
\hline Median & 1.05 & 1.10 & 1.35 \\
\hline P25/P75 & 0.89 & 0.87 & 0.97 \\
\hline
\end{tabular}

Table 14.16 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT median term forecast Option 4: reduction in fishing mortality by 25\% in 2009, follo wed by a closure of the fishery from 2010 onwards.
\begin{tabular}{|c|c|c|c|c|}
\hline & 2008 & 2009 & 2010 & 2011 \\
\hline F2008 mult & 1.000 & 0.750 & 0.000 & 0.000 \\
\hline Fbar(2-4) & \multicolumn{4}{|c|}{Year} \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 0.55 & 0.41 & 0.00 & 0.00 \\
\hline 0.25 & 0.69 & 0.51 & 0.00 & 0.00 \\
\hline 0.5 & 0.79 & 0.59 & 0.00 & 0.00 \\
\hline 0.75 & 0.88 & 0.66 & 0.00 & 0.00 \\
\hline 0.95 & 1.03 & 0.77 & 0.00 & 0.00 \\
\hline SSB & & Year & & \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 48379 & 47381 & 46642 & 96942 \\
\hline 0.25 & 53641 & 54778 & 57815 & 116264 \\
\hline 0.5 & 57282 & 60139 & 65950 & 134045 \\
\hline 0.75 & 61654 & 66376 & 76485 & 151987 \\
\hline 0.95 & 67418 & 77475 & 94615 & 187910 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{ Landings } & \multicolumn{4}{c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 33996 & 33045 & 0 & 0 \\
0.25 & 42931 & 38274 & 0 & 0 \\
0.5 & 50430 & 41915 & 0 & 0 \\
0.75 & 58251 & 45579 & 0 & 0 \\
0.95 & 69507 & 50777 & 0 & 0 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ P(SSBYear > SSB 2008) } & \\
\hline 2009 & 2010 & 2011 & 2012 & 2013 \\
\hline 0.62 & 0.74 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline In year SSB change & \\
\hline & 200 & 2009 & 2010 \\
\hline Median & 1.05 & 1.10 & 2.03 \\
\hline P25/P75 & 0.89 & 0.87 & 1.52 \\
\hline
\end{tabular}

Table 14.17 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT median term forecast Option 5: reduction in fishing mortality by 25\% in 2009, followed by a further reduction in \(F\) of \(35 \%\) in \(2010,45 \%\) in \(2011,55 \%\) in 2012 , etc relative to the 2008 level (a combination of Options 5 and 6 mimic the European Commission's cod management plan given in EC 1342/2008, at least until SSB>Blim).
\begin{tabular}{|c|c|c|c|c|}
\hline & 2008 & 2009 & 2010 & 2011 \\
\hline F2008 mult & 1.000 & 0.750 & 0.650 & 0.550 \\
\hline Fbar(2-4) & & Year & & \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 0.55 & 0.41 & 0.36 & 0.30 \\
\hline 0.25 & 0.69 & 0.51 & 0.45 & 0.38 \\
\hline 0.5 & 0.79 & 0.59 & 0.51 & 0.43 \\
\hline 0.75 & 0.88 & 0.66 & 0.57 & 0.49 \\
\hline 0.95 & 1.03 & 0.77 & 0.67 & 0.56 \\
\hline SSB & & Year & & \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 48379 & 47381 & 46642 & 49579 \\
\hline 0.25 & 53641 & 54778 & 57815 & 65826 \\
\hline 0.5 & 57282 & 60139 & 65950 & 79644 \\
\hline 0.75 & 61654 & 66376 & 76485 & 95070 \\
\hline 0.95 & 67418 & 77475 & 94615 & 125061 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\multirow{4}{*}{ Landings } & \multicolumn{4}{c|}{ Year } \\
\cline { 2 - 5 } & Percentile & 2008 & 2009 & 2010 \\
\hline 0.05 & 33996 & 33045 & 32375 & 31054 \\
\hline 0.25 & 42931 & 38274 & 36824 & 35596 \\
0.5 & 50430 & 41915 & 40335 & 39972 \\
0.75 & 58251 & 45579 & 44898 & 45614 \\
0.95 & 69507 & 50777 & 54175 & 55736 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\multicolumn{5}{c|}{ Discards } \\
\cline { 2 - 5 } \multicolumn{1}{c|}{} & \multicolumn{4}{c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 27138 & 17016 & 17299 & 16280 \\
0.25 & 34271 & 21205 & 22065 & 20055 \\
0.5 & 40257 & 24771 & 26129 & 24710 \\
0.75 & 46500 & 28339 & 31937 & 31321 \\
0.95 & 55485 & 33932 & 42282 & 41663 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ P(SSBYear > SSB 2008) } & \multicolumn{2}{l}{} \\
\hline 2009 & 2010 & 2011 & 2012 & 2013 \\
\hline 0.62 & 0.74 & 0.85 & 0.94 & 0.98 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline In year SSB change & \\
\hline & 2008 & 2009 & 2010 \\
\hline Median & 1.05 & 1.10 & 1.21 \\
\hline P25/P75 & 0.89 & 0.87 & 0.86 \\
\hline
\end{tabular}

Table 14.18 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT median term forecast Option 6: reduction in fishing mortality by 25\% in 2009, followed by a further reduction to the target fishing mortality of 0.2 for 2010 onwards (a combination of Options 5 and 6 mimic the European Commission's cod management plan given in EC 1342/2008, at least until SSB>Blim).

\begin{tabular}{|c|c|c|c|c|}
\multicolumn{5}{c|}{} \\
\cline { 2 - 5 } \multicolumn{1}{c|}{ Fbar(2-4) } & \multicolumn{4}{c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 0.55 & 0.41 & 0.14 & 0.14 \\
0.25 & 0.69 & 0.51 & 0.17 & 0.17 \\
0.5 & 0.79 & 0.59 & 0.20 & 0.20 \\
0.75 & 0.88 & 0.66 & 0.22 & 0.22 \\
0.95 & 1.03 & 0.77 & 0.26 & 0.26 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{ SSB } & \multicolumn{4}{c|}{ Year } \\
\hline Percentile & 2008 & 2009 & 2010 & 2011 \\
\hline 0.05 & 48379 & 47381 & 46642 & 75587 \\
0.25 & 53641 & 54778 & 57815 & 92829 \\
0.5 & 57282 & 60139 & 65950 & 109243 \\
0.75 & 61654 & 66376 & 76485 & 126163 \\
0.95 & 67418 & 77475 & 94615 & 160670 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\multirow{3}{*}{ Landings } & \multicolumn{4}{c|}{ Year } \\
\cline { 2 - 5 } & Percentile & 2008 & 2009 & 2010 \\
\hline 0.05 & 33996 & 33045 & 14294 & 20196 \\
\hline 0.25 & 42931 & 38274 & 16537 & 24179 \\
0.5 & 50430 & 41915 & 18375 & 27274 \\
0.75 & 58251 & 45579 & 20441 & 31327 \\
0.95 & 69507 & 50777 & 24808 & 38446 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\multirow{5}{c|}{ Discards } & \multicolumn{4}{c|}{ Year } \\
\cline { 2 - 5 } & Percentile & 2008 & 2009 & 2010 \\
\hline 0.05 & 27138 & 17016 & 7558 & 9011 \\
0.25 & 34271 & 21205 & 9786 & 12382 \\
0.5 & 40257 & 24771 & 11673 & 15419 \\
0.75 & 46500 & 28339 & 14188 & 19754 \\
0.95 & 55485 & 33932 & 18937 & 27068 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ P(SSBYear > SSB 2008) } & \\
\hline 2009 & 2010 & 2011 & 2012 & 2013 \\
\hline 0.62 & 0.74 & 0.99 & 1.00 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{3}{|c|}{ In year SSB change } & \\
\begin{tabular}{|l|c|c|}
\hline Median & 2008 & 2009 \\
\hline & 1.05 & 1.10 \\
\hline
\end{tabular} \\
\hline P25/P75 & 0.89 & 0.86 \\
\hline
\end{tabular}

Table 14.19 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. B-ADAPT median term forecast summary of options 1-6, ordered by size of F-multiplier assumed for 2010-11 for options 1-4, with options 5 and 6 given in the final columns.



Figure 14.1a Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Stacked area plot of reported landings and estimated discards (in tons).


Figure 14.1b Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Proportion of total numbers caught that are discarded.


Figure 14.1c Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Proportion of total numbers caught at age that are discarded.


Figure 14.2 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Mean weight at age in the catch for ages 1-9.


Figure 14.3(a) Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Distribution charts of cod ages 1-3+ caught in the IBTS Q1 survey 1995-2009 in the North Sea.


Figure 14.3(a) contd. Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Distribution charts of cod ages 1-3+ caught in the IBTS Q1 survey 1995-2009 in the North Sea.


Figure 14.3(a) contd. Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Distribution charts of cod ages 1-3+ caught in the IBTS Q1 survey 1995-2009 in the North Sea.


Figure 14.3(b). Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Distribution charts of cod ages 1-3+ caught in the IBTS Q3 survey 1994-2008 in the North Sea.


Figure 14.3(b) contd. Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Distribution charts of cod ages 1-3+ caught in the IBTS Q3 survey 1994-2008 in the North Sea.


Figure 14.3(b) contd. Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Distribution charts of cod ages 1-3+ caught in the IBTS Q3 survey 1994-2008 in the North Sea.


Figure 14.4a Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Log mean standardised indices plotted by year (top left) and cohort (top right), log abundance curves (bottom left) and associated negative gradients for each cohort across the reference fishing mortality of age 2-4 (bottom right), for the IBTSQ1 standard area groundfish surve \(y\).


Figure 14.4b Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Log mean standardised indices plotted by year (top left) and cohort (top right), log abundance curves (bottom left) and associated negative gradients for each cohort across the reference fishing mortality of age 2-4 (bottom right), for the IBTSQ3 standard area groundfish surve \(y\).


Figure 14.5a Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Within-survey correlations for IBTSQ1 for the period 1983-2009. Individual points are given by cohort (year-class), the solid line is a standard linear regression line, the broken line nearest to it a robust linear regression line, and "cor" denotes the correlation coefficient. The pair of broken lines on either side of the solid line indicate prediction intervals. The most recent data point appears in square brackets.



Log-numbers at age 4


Figure 14.5c Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Between-survey correlations for IBTSQ1 and Q3 surveys for the period 1991-2008. Individual points are given by cohort (year-class), the solid line is a standard linear regression line, and the broken line nearest to it a robust linear regression line. The pair of broken lines on either side of the solid line indicate prediction intervals. The most recent data appear in square brackets.


Figure 14.6a Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Surba summary plots for estimates of total mortality, spawning stock biomass, total biomass and recruitment for the IBTSQ1 survey. The smoothing parameter \(\lambda\) is set to 2 , and reference age at 3 . Broken lines are \(95 \%\) confidence bounds.


Figure 14.6b Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Surba summary plots for estimates of total mortality, spawning stock biomass, total biomass and recruitment for the IBTSQ3 survey. The smoothing parameter \(\lambda\) is set to 2 , and reference age at 3 . Broken lines are \(95 \%\) confidence bounds.


Figure 14.7 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Total catch-at-age matrix expressed as proportions-at-age which have been standardised over time (for each age, this is achieved by subtracting the mean proportion-at-age over the time series, and dividing by the corresponding variance). Grey bubbles indicate proportions above the mean over the time series at each age.


Figure 14.8 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Log-catch cohort curves (top panel) and the associated negative gradients for each cohort across the reference fishing mortality of age 2-4.


Figure 14.9 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Estimated SSB from the SAM model. Solid black and hatched lines are results from a model with year specific scaling. Red line is B-ADAPT result.


Figure 14.10a Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Estimated F(2-4) from the SAM model. Solid black and hatched lines are results from a model with year specific scaling. Red line is B-ADAPT result.


Figure 14.10b Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Estimated yearly average fishing motality (solid line), and corresponding \(95 \%\) confidence intervals retrospective estimates from the SAM model where catch scaling was estimated.


Figure 14.11 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Estimated yearly catch multiplier (solid line), and corresponding \(95 \%\) confidence intervals from the SAM model where catch scaling was estimated.


Figure 14.12 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Me dian of bootstrap estimates of spawning stock biomass (SSB), recruitment ( R (age 1)), average fishing mortality ( F (2-4)) and the catch multiplier for B-ADAPT single fleet runs for the IBTSQ1 and Q3 groundfish surveys. The error bars in the catch multiplier plot indicate \(5^{\text {th }}\) and \(95^{\text {th }}\) percentiles. The base run (see Figure 14.16), which combines both surveys, is also shown as a broken red line.


Figure 14.13 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Residual plots for the BAdapt base run. In the top row grey bubbles indicate positive values, and white ones negative. The partially displayed dotted bubble indicates an absolute residual of size 3 . The bottom row provides an alternative display of the residuals.


Figure 14.14 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. 5-year retrospective plots of median bootstrap values for SSB, Recruitment (age 1), F(2-4) and the catch multiplier for BAdapt base run.


Figure 14.15 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Clockwise from top left, percentiles \((5,25,50,75,95)\) of the estimated spawning stock biomass (SSB), total stock biomass (TSB), recruitment (R(age 1)), the catch multiplier, catch and mean fishing mortality for ages 2-4 ( \(F(2-4)\) ), from the B-ADAPT base run. The heavy lines represent the bootstrap median, the light broken lines the \(25^{\text {th }}\) and \(75^{\text {th }}\) percentiles and the heavy broken lines the \(5^{\text {th }}\) and \(95^{\text {th }}\) percentiles. The solid diamonds represent point estimates, and the open diamonds given in the catch plot the recorded total catch. The horizontal broken lines in the SSB plot indicate Blim=70 000t and B pa= \(\mathbf{1 5 0} 000 \mathrm{t}\), and those in the \(\mathrm{F}(2-4)\) plot \(\mathrm{Fpa=}=0.65\) and \(\mathrm{Flim}=0.86\). The horizontal solid line in the catch multiplier plot indicates a multiplier of 1 . Catch, SSB and TSB are in tons, and R in thousands.



Figure 14.16 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. The mean fishing mortality for ages 2-4 (F(2-4)) shown in Figure 14.15, but split into landings and discards components by using ratios calculated from the landings and discards numbers at age from the reported catch data. The top panel shows bootstrap medians (heavy lines) with \(25^{\text {th }}\) and \(75^{\text {th }}\) percentiles (light broken lines), and \(5^{\text {th }}\) and \(95^{\text {th }}\) percentiles (heavy broken lines), while the bottom panel shows a stacked-area plot of the bootstrap medians.


Figure 14.17. Pooled cod length frequencies from twin-trawl hauls in May 2008, using a commercial ("Comm") net and a GOV net. Source: Reid et al (2009)


Figure 14.18 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. The North Sea Stock Survey fishers perception of the change abundance of North Sea cod since 2003 (Laurenson 2008).

\section*{15 Cod management plan evaluations}

\subsection*{15.1 Background}

EC (DG MARE) requested ICES in 2008 to evaluate an EC proposal for cod recovery plans (EC 2008a). The main feature of the proposed management plans was the intended harvest of all stocks covered by the plan (North Sea cod, Kattegat, West of Scotland, Irish Sea, Celtic Sea Cod) at a fishing mortality of 0.4 in the long-term. Therefore, HCRs were suggested to achieve a stepwise reduction in fishing mortalities towards 0.4. The request was extended to include a proposed management plan by the Norwegian authorities for North Sea cod. The main differences between the two management plans can be summarized as follows:
\begin{tabular}{|c|c|c|}
\hline & Norwegian proposal & EC proposal \\
\hline 15\% TACconstraint & When the stock is above Bpa & When the stock is above Blim \\
\hline Recovery phase & Target fishing mortality is the only constraint. & Only one phase \\
\hline Long-term phase & \begin{tabular}{l}
This phase starts when the TAC following from the recovery phase is lower than the TAC following the long-term criteria. \\
Once the long-term phase is applied, it continues to apply.
\end{tabular} & Starts immediately \\
\hline F targets when the Plan is initiated & \begin{tabular}{l}
Pre-specified targets, defined as \% reductions from the 2008 assessment outcomes. \\
F 2008 is multiplied by following series of factors for setting \(F\) in 2009 and subsequent years: \(0.75,0.75 \times 0.85,0.75 \times 0.85^{2}\), \(0.75 \times 0.85{ }^{3}\),
\end{tabular} & Specifies reductions relative to the most recent assessment. There is a reduction of \(25 \%\) when \(\mathrm{B}<\mathrm{Blim}\), of \(15 \%\) when Blim \(<B<B\) pa and \(10 \%\) when \(\mathrm{B}>\) Bpa \((25 / 15 / 10)\) until \(\mathrm{F}=0.4\) is reached \\
\hline F targets if stock size declines while in the long-term phase & If stock size is below Bpa, the plan specifies reductions in F below 0.4. There is a proportional linear reduction of F towards 0.2 if the stock declines towards Blim. & F is maintained at or above 0.4 during the long-term phase. If the stock falls below Blim it is considered in need of recovery again, but reductions in \(F\) below 0.4 are not specified. \\
\hline
\end{tabular}

An ICES Adhoc Working Group (AGCREMP) was formed to evaluate objectives foreseen in the long-term management plans and to analyse if a target fishing mortality rate of 0.4 will appear well defined for all cod stocks covered by such a plan (ICES-AGCREMP 2008). The group was asked to analyse both the Commission proposal and the Norw egian law ful Authorities proposal in the light of objectives set out for such a long-term plan with the purpose to appreciate if they will be suitable for matching targets that will be suggested in terms of fishing mortality rates.

In particular, the group had to evaluate the consequences of the plans in terms of:
- biological risks, in particular in relation to the ICES interpretation of the precautionary approach;
- yields, especially in the longer term;
- stability of catches.

For practical reasons, AGCREMP could only respond to these issues for the North Sea cod stock.

Management Strategy Evaluation (MSE) was done by AGCREMP using the simulation tool FLR (Fisheries Library for R, http://www.flr-project.org, Kell et al., 2007). The model included a dynamic feedback between the operating model, the observationerror model and the management procedure. The assessment process was dynamically included in the management procedure. Several sources of uncertainty have been included in the modelling (e.g. bias in natural mortality or catch, different recruitment regimes). Therefore, conclusions on the MSE could be given for different assumptions on the operating model and observation-error model. Several different scenarios were considered to address sources of uncertainty in assessments. In addition, the performance of the plans was evaluated for a "standard" recruitment model that reflects the long-term relationship between spawning stock size and recruitment, and for a "low" recruitment model that reduces recruitment by \(50 \%\).

The simulation results for the AGCREMP scenarios that correspond to the way the stock is currently assessed, and for the two recruitment models, were summarized as follows:
\begin{tabular}{lllllll}
\hline \begin{tabular}{lllll} 
Recruitment \\
Model
\end{tabular} & \multicolumn{2}{l}{\begin{tabular}{l} 
Prob(SSB \(>\) Blim) \\
In 2015
\end{tabular}} & & \multicolumn{2}{l}{\begin{tabular}{l} 
Prob(SSB>Bpa) \\
in 2015
\end{tabular}} & \multicolumn{2}{l}{ Avg. Yield (tonnes) } \\
& EC & Norway & EC & Norway & EC & Norway \\
\hline Standard & 0.84 & 0.96 & 0.77 & 0.90 & 96.4 & 128.5 \\
\hline Low & 0.61 & 0.81 & 0.54 & 0.66 & 76.1 & 88.9 \\
\hline
\end{tabular}

The probabilities of recovery varied in both directions (i.e. both higher and lower) for the other scenarios representing different sources of uncertainty and recruitment regimes. For the worst case scenarios, the probabilities of recovery above Blim by 2015 were 0.42 and 0.56 for the EC and Norwegian Plans, respectively. ICES also considered the performance of alternative versions of the EC and Norwegian Plans where constraints on the annual change in TAC were eliminated. The probabilities of recovery were almost unaffected, but the average yields in 2015 were much higher. The potential for growth of the North Sea cod stock at low fishing mortality rates is greater than \(15 \%\). The \(15 \%\) constraint on TAC change during stock recovery therefore results in a strong reduction in fishing mortality to very low levels as rebuilding outstrips the increase in quota. In addition, a TAC constraint could also promote a collapse of the stock towards Blim if the decline in the stock is faster than \(15 \%\) per year.

The final ICES advice (ICES ACOM 2008) on the two management plan proposals based on the AGCREMP simulations includes that:
- both the EC and the Norwegian proposed Recovery/Management Plans are likely to recover the North Sea cod stock.
- ICES does not advise on the suitability of the Plans in relation to the precautionary approach because generally agreed criteria are lacking for Recovery Plans. ICES recommends that future plans state their objective in terms of the
target date for recovery and the acceptable level of risk that recovery does not occur by that date.
A subgroup of the WGNSSK reviewed and modified the AGCREMP code and ran simulations required to respond to an additional request from France during the 3-7 November 2008. France has requested ICES to evaluate a further set of scenarios for the EC proposal. The proposal of the European Commission considered a reduction of \(25 \%\) when \(\mathrm{B}<\) Blim, of \(15 \%\) when Blim \(<\) B \(<\) Bpa and \(10 \%\) when B \(>\) Bpa \((25 / 15 / 10)\) until the target fishing mortality of 0.4 has been reached. The request asked for an evaluation of \(25 / 10 / 5\) and \(15 / 10 / 5\). The alternative sets of fishing mortality reductions and runs with the modified code did not alter the main conclusion about the EC proposal (i.e., that recovery is likely), although the probabilities of recovery changed to a small extent.

In December 2008 the European Commission and Norway agreed on a new cod management plan implementing a new system of effort management and a target fishing mortality of 0.4 . Details of it are given in EC 1342/2008. The HCR for setting TACs for North Sea cod are as follows:

Article 7: Procedure for setting TACs for cod stocks in the Kattegat the west of Scotland and the Irish Sea
1. Each year, the Council shall decide on the TAC for the following year for each of the cod stocks in the Kattegat, the west of Scotland and the Irish Sea. The TAC shall be calculated by deducting the following quantities from the total removals of cod that are forecast by STECF as corresponding to the fishing mortality rates referred to in paragraphs 2 and 3:
(a) a quantity of fish equivalent to the expected discards of cod from the stodk con cerned;
(b) as appropriate a quantity corresponding to other sources of cod mortality caused by fishing to be fixed on the basis of a proposal from the Commission.

Article 8: Procedure for setting TACs for the cod stock in the North Sea, the Skagerrak and the eastern Channel
1. Each year, the Council shall decide on the TACs for the cod stock in the North Sea, the Skagerrak and the eastern Channel. The TACs shall be calculated by applying the reduction rules set out in Article 7 paragraph 1(a) and (b).
2. The TACs shall initially be calculated in accordance with paragraphs 3 and 5. From the year where the TACs resulting from the application of paragraphs 3 and 5 would be lower than the TACs resulting from the application of paragraphs 4 and 5 , the TACs shall be calculated according to the paragraphs 4 and 5 .
3. Initially, the TACs shall not exceed a level corresponding to a fishing mortality which is a fraction of the estimate of fishing mortality on appropriate age groups in 2008 as follows: 75 \(\%\) for the TACs in 2009, 65 \% for the TACs in 2010, and applying successive decrements of \(10 \%\) for the following years.
4. Subsequently, if the size of the stock on 1 January of the year prior to the year of application of the TACs is:
(a) above the precautionary spawning biomass level, the TACs shall correspond to a fishing mortality rate of 0,4 on appropriate age groups;
(b) between the minimum spawning biomass level and the precautionary spawning biomass level, the TACs shall not exceed a level corresponding to a fishing mortality rate on appropriate age groups equal to the following formula: 0,4-(0,2 * (Precautionary spawning biomass level - spawning biomass) / (Precautionary spawning biomass level - minimum spawning biomass level))
(c) at or below the limit spawning biomass level, the TACs shall not exceed a level corresponding to a fishing mortality rate of 0,2 on appropriate age groups.
5. Notwithstanding paragraphs 3 and 4, the Council shall not set the TACsfor 2010 and subsequent years at a level that is more than 20 \% below or above the TACs established in the previous year.
6. Where the cod stock referred to in paragraph 1 has been exploited at a fishing mortality rate close to 0,4 during three successive years, the Commission shall evaluate the application of this Article and, where appropriate, propose relevant measures to amend it in order to ensure exploitation at maximum sustainable yield.

Article 9: Procedure for setting TACs in poor data conditions
Where, due to lack of sufficiently accurate and representative information, STECF is not able to give advice allowing the Council to set the TACs in accordance with Articles 7 or 8, the Council shall decide as follows:
(a) where STECF advises that the catches of cod should be reduced to the lowest possible level, the TACs shall be set according to a \(25 \%\) reduction compared to the TAC in the previous year,
(b) in all other cases the TACs shall be set according to a \(15 \%\) reduction compared to the TAC in the previous year, unless STECF advises that this is not appropriate.

\section*{Article 10: Adaptation of measures}
1. When the target fishing mortality rate in Article 5(2) has been reached or in the event that STECF advises that this target, or the minimum and precautionary spawning biomass levels in Article 6 or the levels of fishing mortality rates given in Article 7(2) are no longer appropriate in order to maintain a low risk of stock depletion and a maximum sustainable yield, the Council shall decide on new values for these levels.
2. In the event that STECF advises that any of the cod stocks is failing to recover properly, the Council shall take a decision which:
(a) sets the TAC for the relevant stock at a level lower than that provided for in Articles 7, 8 and 9;
(b) sets the maximum allowable fishing effort at a level lower than that provided for in Article 12;
(c) establishes associated conditions as appropriate.

Therefore, the procedure of setting TACs in the agreed plan was based on the Norwegian proposal, however, with some modifications. Especially the TAC constrained was increased to \(+/-20 \%\) and is now applied in all circumstances (i.e., also during the recovery phase) despite in 2009. Also the reductions in fishing mortalities during the
recovery phase were slightly altered. The differences between the HCRs of both management plans can be summarized as follows:
\begin{tabular}{|c|l|l|}
\hline & [Norway Rule, AGCREMP 2008] & [Council Regulation (EC) 1342/2008 plan] \\
\hline 1 & TAC constraint \(= \pm 15 \%\) & TAC constraint \(= \pm 20 \%\) \\
\hline 2 & \begin{tabular}{l} 
TAC constraint not applied in Recovery \\
Phase, and not applied when SSB \(\leq B_{\text {pa }}\)
\end{tabular} & \begin{tabular}{l} 
TAC constraint applied in all circumstances, \\
but not in 2009
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Recovery Phase F2007 \(=0.64\), and F2008 \(=0.9\) \\
F2007
\end{tabular} & \begin{tabular}{l} 
Transition Phase F2007 \(=0.64\), and F2008 = \\
F2007
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
F 2008 multiplied by following series of \\
factors for setting F in 2009 and subsequent \\
years: \\
\(0.75,0.75 \times 0.85,0.75 \times 0.85^{2}, 0.75 \times 0.853, \ldots\)
\end{tabular} & \begin{tabular}{l} 
F2008 multiplied by following series of factors \\
for setting F in 2009 and subsequent years \\
relative to F2008: \\
\(0.75,0.65,0.55,0.45, \ldots\)
\end{tabular} \\
\hline
\end{tabular}

The final agreed cod management plan (EC 2008b) was evaluated for North Sea cod with the same methods as applied for the proposals (WDxxx). In addition, sensitivity analyses were carried out with the operating model conditioned on the basis of different assessments (WGNSSK 2008 assessment vs. Benchmark assessment 2009 (most recent assessment at the time simulations were carried out)) and with alternative interpretations of the Transition Phase value for F2007. Following conclusions were drawn from the simulations by the authors:
- For the scenarios that correspond to bias due to unreported catch, and to the way the North Sea cod stock is currently assessed (bias due to unreported catch is taken into account in the assessment process) recovery of SSB to above Blim by 2015 is achieved with more than \(95 \%\) probability for both the "standard" and "low" recruitment models.
- The imposition of TAC constraints of \(\pm 20 \%\) leads to values of F by 2012 that are much lower than ever seen before. This occurs because TAC constraints prevent TAC increases from keeping pace with the rapid recovery that occurs as a result of the relatively low target \(\mathrm{F}(0.4)\) of the management plan.
- When TAC constraints are removed, probability of recovery remains high, much larger yields are obtained, and F values are closer to 0.4 from 2012 than when TAC constraints are kept. However, the target \(F\) is not reached by 2015 because the short-term forecast recruitment assumption (average of last 10 years of recruitment) causes a bias when there is a rapid recovery in recruitment.
- As expected, probability of recovery by 2015 and yield is lower for the "low" recruitment model than for the "standard" recruitment model.
- Generally, there is a trade-off between recovery probabilities and yield, such that when comparing scenarios with a common operating model (OM and SR), scenarios that have higher recovery probabilities tend to have lower yields, and vice versa.

\subsection*{15.2 Review of the North Sea Cod Management Evaluation}

WGNSSK 2009 was kindly asked to review the latest evaluations of the final agreed management plan and to evaluate whether the management plan can be considered to be precautionary or not. Based on the reviews of the ACOM Review Group on Cod Management Plans that were made available to WGNSSK (WD xxx) following conclusions were made:
- The approach used to evaluate the final agreed cod management plan is based on state-of-the-art and is widely applied to the evaluation of management plans, although technical details vary between applications. However, the approach cannot explicitly predict changes in thebiology of the stock (e.g., changes in future predation mortalities if the stock recovers to levels not observed in the past) or changes in fleet dynamics caused by technical conservation measures introduced with the new management plan. Therefore, conclusions from the simulations are only valid under the assumption that historically observed dynamics in stock biology and fleet behaviour will not change substantially in future years.
- Strict application of the HCR reduces fishing mortality (landings and discards) to very low levels (0.1-0.2) by 2012 at which they remain until, at least, 2015 in scenarios that correspond to bias due to unreported catch, and to the way the North Sea cod stock is currently assessed (bias due to unreported catch is taken into account in the assessment process). Such low levels of fishing mortality have not been recorded previously and would almost certainly imply a by-catch only fishery during the rebuilding of the stock. The low level of fishing mortality results from the constraint on the change in TAC. As the stock recovers following the reduction in mortality to very low levels the increase in the stock biomass is considerably greater than that of the TAC and therefore the proportional removals remain very low. Constraints on inter-annual TAC changes could result in unintended increases in uncertainty associated with the monitoring of the fishery.
- Constraints stabilise TAC variation from year to year but also ensure that the change in TAC does not match the change in stock abundance. The potential for growth of the cod stock at low fishing mortality rates is greater than the \(20 \%\) constraint on the TAC. Consequently strong reductions in fishing mortality result as rebuilding rapidly outstrips the increases in quota. The simulation approach assumes that discard mortality is a constant fraction of the stock caught and that as fishing mortality rates are reduced the discard mortality is also proportionately reduced. In recent years as tighter restrictions have been imposed, discarding rates have been increasing. At the low fishing mortality rates generated by the simulations, the relationship between discard and fishing mortalities is likely to breakdown because the scale of the required cod avoidance and effort restrictions is almost certainly impractical. An inverse relationship between discard and fishing mortality rates is likely to arise unless severe restrictions on effort are imposed. Therefore, the validity of the model at such low fishing mortality rates is a concern
- The management plan is suitable to recover North Sea cod above Blim with a high probability until 2015 according to the scenarios that correspond to bias due to unreported catch, and to the way the North Sea cod stock is currently assessed (bias due to unreported catch is taken into account in the assessment process). The probabilities are equal or above \(90 \%\) for all tested combinations representing different recruitment regimes, conditionings of the operational model on the basis of different assessments (WGNSSK 2008 assessment vs. Benchmark assessment 2009 (most recent assessment at the time simulations were carried out) and alternative interpretations of the Transition Phase value for F2007. However, the constraints on inter-annual TAC changes could induce unintended
consequences as already discussed above. Instead of stabilizing TACs, they could induce long-term fluctuations because the change in TAC does not match the change in stock abundance. The resulting low fishing mortality rates may lead to substantial forgone yield for the fishing industry and could result in increased rates of discards unless effort is strongly reduced or cod avoidance measures are enforced. In addition, the TAC constraint could also promote a collapse of the stock if the decline in the stock is more than \(20 \%\) per year. Without TAC constraints the fluctuations in the cod SSB and fishing mortality rates are still induced by the management system, but to a lesser extent. Removing the constraint on TAC change would reduce the level of discards and lead to more appropriate management and fishing practices but would also result in longer times required for recovery.

\subsection*{15.3 Conclusions from WGNSSK 2009 for ACOM Advice}
- The conclusion whether the plan can be considered to be precautionary or not was based on the ICES criteria that management plans must lead to stocks above Blim with more than 95\% probability in 2015 (Table1). This criteria is fulfilled for all scenarios that correspond to bias due to unreported catch, and to the way the North Sea cod stock is currently assessed (bias due to unreported catch is taken into account in the assessment process) despite for one. Under the assumption of a low recruitment scenario and an increase of future natural mortalities due to increasing cannibalism if the stock recovers (WD xxx, Table 1, Scenario 7b), the probability to be above Blim was estimated to be \(90 \%\).
- In addition, probabilities are below \(95 \%\) in various scenarios representing errors in the perception of stock status during the assessment process, i.e. if unallocated removals are assumed to be caused by natural mortality in the operational model but are assumed to stem from unallocated catches in the assessment process (WD xxx, Table 1, Scenarios 4a, 4b, 10a, 10b).
- The application of the \(20 \%\) TAC Constraint results in levels of fishing mortality that are so low that it is impractical for effort to be reduced to the levels required, possibly even for by-catch fisheries. At such low levels of fishing behaviour of the fishery is considered highly uncertain and the model assumptions will break down, especially with respect to discard practices.
- Therefore, the plan cannot be considered to be precautionary under all circumstances based on the simulations carried out. In general, a certain statement on the precautionary nature of management plans based on MSE simulations alone is hardly possible, since in no way all potential uncertainties can be fully reflected in MSE simulations.

\subsection*{15.4 References:}

EC 2008a. Proposal for a Council Regulation amending Regulation (EC) No 423/2004 as regards the recovery of cod stocks and amending Regulation (EEC) No 2847/93. \{SEC. 2008. 386, SEC(2008) 389 \} Brussels, 2.4.2008, COM(2008) 162 final, 2008/0063 (CNS).

EC 2008b. Council Regulation establishing a long-term plan for cod stocks and the fisheries exploiting those stocks and repealing Regulation (EC) No. 423/2004. (EC) No. 1342/08.

ICES-AGCREMP 2008. Report of the Ad hoc Group on Cod Recovery Management Plan (AGCREMP). ICES CM 2008/ACOM: 61.

ICES_WKOMSE 2009. Report of the ICES-STECF Workshop on Fishery Management Plan Development and Evaluation (WKOMSE). ICES CM 2009/ACOM: 27.

ICES ACOM 2008 Section 6.3.3.7 Request on Cod Recovery Management Plans
Kell, L.T., Mosqueira, I., Grosjean, P., Fromentin, J-M., Garcia, D., Hillary, R., Jardim, E., Mardle, S., Pastoors, M.A., Poos, J.J., Scott, F. and R.D. Scott. 2007. FLR: an open-source framework for the evaluation and development of management strategies. ICES Journal of Marine Science 64: 640-646.

Table 15.1 Criteria agreed during WKOMSE to be applied in the evaluation of Harvest Control Rules - Management Plans, HCR (MP) in relation to precautionary reference points (Taken from ICES WKOMSE 2009).
\begin{tabular}{|c|c|c|}
\hline Element & Criterion & Notes \\
\hline Time frame & \begin{tabular}{l}
2015: \\
The performance of the HCR (MP) will be evaluated using as time horizon the year 2015 (in agreement with the Johannesburg Declaration)
\end{tabular} & The simulations will use as starting year the population parameter estimates from the most recent assessment (e.g. from WG or benchmark). \\
\hline Biological Reference Points & Limit reference points: Evaluate the HCR (MP) based on Blim and Flim & \begin{tabular}{l}
If new limit reference points have been accepted (ACOM) these should be used in the evaluation; \\
In the absence of defined limit reference points such as Blim, use proxies (e.g. xlim derived from \(\%\) SPR, or 0.5 Bmsy , or \(20 \% \mathrm{Bo}, \ldots .\).
\end{tabular} \\
\hline Risk & \begin{tabular}{l}
5\%: \\
The HCR (MP) is considered to be precautionary if the probability of \(\mathrm{SSB}<\mathrm{Blim}\) (or \(\mathrm{x}<\mathrm{x} \lim\) ) is less than \(5 \%\)
\end{tabular} & \begin{tabular}{l}
Criteria for management plan of stocks within safe biological limits to be precautionary: no more than \(5 \%\) of 10 year simulation runs having one or more years outside of safe biological limits. \\
Criteria for recovery plan qualifying as precautionary: at least \(95 \%\) of simulation runs recovering by 2015 (the year WSSD committed for rebuilding fish stocks). \\
The \(5 \%\) will be used unless managers specify another percentage.
\end{tabular} \\
\hline
\end{tabular}

In 2006, the WG dedicated significant amount of time dealing with mixed-fisheries issues in the North Sea. This has not been repeated since 2007, due to changes in the WG period and duration, as well as changes in the general ICES structure. Mixedfisheries issues have been dealt with independently from the assessment Working Groups, through two initiatives, the ICES SGMixMan and the EU FP6 research project AFRAME. The latest outcomes were presented to WGNSSK but no further work was conducted.

ICES SGMixMan (Study Group on Mixed-Fisheries Management Models) has met three times, first in January 2006 as a w orkshop (WKMixMan) then in January 2007 and 2008. In 2006, this Study Group reviewed potential alternatives to mixedfisheries models and identified the Fcube model (Fleet and Fisheries Forecast, Ulrich et al., 2006, 2008) as an appropriate framework in relation to fleet and fishery-based management advice. This approach was further tested in the 2007 meeting, and was finally used as for real advice situation in 2008. The outcomes were also presented every year to Working Groups Chairs meetings.

EU FP6 AFRAME is a two years research project aiming at further developing the Fcube approach through its application to three contrasting case studies, the North Sea demersal fisheries, the Western Waters demersal fisheries and the Greek demersal fisheries. This project terminated by \(1^{\text {s }}\) april 2009, and final results were being processed at the time of the WGNSSK.

Both initiatives gathered a number of common participants, and worked as complementary forces. Most of the methodological development and testing was done within the research project, while ICES SGMixMan acted as a milestone ensuring that the w ork was being made fully operational for the purpose of mixed-fisheries advice.
On the basis of the work achieved in AFRAME and ICES SGMixMan, the w ork on mixed-fisheries issues will be moved from a Study Group to an Advisory W orkshop.
The Workshop on Mixed Fisheries Advice for the North Sea [WKMIXFISH] (Chair. Clara Ulrich Rescan*, Denmark) will meet at ICES Headquarters 26-28 August 2009 to:
a Compile and review available fleet and fisheries data for North Sea fisheries
b) Carry out mixed fisheries forecast taking into account the draft advice that is produced by WGNSSK 2009 and the management measures currently in place for 2009
c ) Develop a draft overview section for the advisory report 2009 that includes a dissemination of the fleet and fisheries data and forecast

The outcomes of this workshop will be reported to WGNSSK in 2010.

\section*{References:}

Ulrich, C., Reeves, S.A., and Kraak, S.B.M., 2008. Mixed Fisheries and the Ecosystem Approach. ICES Insight 45:36-39

Ulrich,C., Andersen B.S., Hovgård H., Sparre P., Murta A., Garcia D., Castro J..2006. Fleetbased short-term advice in mixe d-fisheries - the \(F^{3}\) approach. ICES Symposium on Fisheries Management Strategies, June 2006, Galway. http://www.ices06sfms.com/presentations/index.shtml

ICES, 2006. Report of the Working Group on Workshop on Simple Mixed Fisheries Management Models. ICES CM 2006/ACFM:14

ICES, 2007. Report Of The Study Group On Mixed Fisheries Management. ICES CM 2007/ACFM:02.

ICES, 2008. Report Of The Study Group On Mixed Fisheries Management. ICES CM 2008/ACOM:23. 65 pp.

\section*{Annex 1 - List of Participants}

\section*{Working Group on the Assessment of Demersal Stocks in the} North Sea and Skagerrak

> 6-12 May 2009**
\begin{tabular}{|c|c|c|c|}
\hline Name & Address & Phone/Fax & Email \\
\hline Chris Darby (Chair) & Centre for Environment, Fisheries \& Aquaculture Science Lowestoft Laboratory Pakefield Road NR33 0HT Lowestoft Suffolk United Kingdom & \[
\begin{aligned}
& \text { Phone }+441502 \\
& 524329 /+447909 \\
& 885157 \\
& \text { Fax }+441502 \\
& 513865
\end{aligned}
\] & chris.darby@ce fas.co.uk \\
\hline Geert Aarts & Wageningen IMARES P.O. Box 68 NL-1970 AB IJmuiden Ne the rlands & \[
\begin{aligned}
& \text { Phone }+31317 \\
& 487156 \\
& \text { Fax }+31317 \\
& 480900
\end{aligned}
\] & ert.aarts@wur.nl \\
\hline Andrea Belgrano & \begin{tabular}{l}
Swe dish Board of Fishe ries \\
Institute of Marine \\
Research, Lysekil
\[
\text { P.O. Box } 4
\] \\
SE-453 21 Lyse kil \\
Swe den
\end{tabular} & \[
\begin{aligned}
& \text { Phone }+46523 \\
& 18722 \\
& \text { Fax }+46523 \\
& 13977
\end{aligned}
\] & andrea. belgra no@fiske rive rke tse \\
\hline Ewen Bell & \begin{tabular}{l}
Centre for Environment, \\
Fisheries \& Aquaculture \\
Science \\
Lowestoft Laboratory \\
Pakefield Road \\
NR33 0HT Lowestoft \\
Suffolk \\
United Kingdom
\end{tabular} & \[
\begin{aligned}
& \text { Phone }+441502 \\
& 524238 \\
& \text { Fax }+441502 \\
& 513865
\end{aligned}
\] & wen.bell@ce fas.co.uk \\
\hline Ulrich Damm & \begin{tabular}{l}
Johann He inrich von \\
Thünen-Institute, Institute for Sea Fishe ries \\
Palmaille 9 \\
D-22767 Hamburg \\
Germany
\end{tabular} & \[
\begin{aligned}
& \text { Phone }+4940 \\
& 38905268 \\
& \text { Fax }+494038905 \\
& 263
\end{aligned}
\] & ulrich.damm@vti.bund.de \\
\hline Helen Dobby & Marine Scotland - Scie nce Marine Laboratory P.O. Box 101 AB11 9DB Aberdeen Torry United Kingdom & \[
\begin{aligned}
& \text { Phone +44 } 1224 \\
& 295411 \\
& \text { Fax }+441224 \\
& 295511
\end{aligned}
\] & obbyh@marlab.ac.uk \\
\hline Irene Huse & \begin{tabular}{l}
Institute of Marine Research P.O. Box 1870 \\
N-5817 Bergen \\
Norway
\end{tabular} & \[
\begin{aligned}
& \text { Phone }+475523 \\
& 6822 \\
& \text { Fax }+47552353 \\
& 93
\end{aligned}
\] & irene.huse@imr.no \\
\hline Tore Jackobsen & \begin{tabular}{l}
Institute of Marine Research P.O. Box 1870 \\
N-5817 Bergen \\
Norway
\end{tabular} & \[
\begin{aligned}
& \text { Phone }+4755 \\
& 238577 \\
& \text { Fax }+4755 \\
& 238531
\end{aligned}
\] & @imr.no \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Address & Phone/Fax & Email \\
\hline Alexa nder Kempf & \begin{tabular}{l}
Institute for Sea Fisheries, \\
Palmaille 9 \\
D-22767 Hamburg \\
Germany
\end{tabular} & Phone +49 40 38905194 & alexander.kempf@uti.bund.d e \\
\hline Colin Millar & \begin{tabular}{l}
Marine Scotland - Scie nce \\
Marine Labora tory \\
P.O. Box 101 \\
AB11 9DB Aberdeen Torry \\
United Kingdom
\end{tabular} & \[
\begin{aligned}
& \text { Phone }+441224 \\
& 295575 \\
& \text { Fax }+441224 \\
& 295511
\end{aligned}
\] & millaremmarlab.ac.uk \\
\hline Guldborg Søevik & \begin{tabular}{l}
Institute of Marine Research P.O. Box 1870 \\
N-5817 Bergen \\
Norway
\end{tabular} & \[
\begin{aligned}
& \text { Phone }+4755 \\
& 235348 \\
& \text { Fax }+4755 \\
& 238555
\end{aligned}
\] & guldborg.soevik@imr.no \\
\hline \begin{tabular}{l}
Mats \\
Ulmestrand
\end{tabular} & Swe dish Board of Fisheries Institute of Marine Research Box 4 SE-453 21 Lysekil, Sweden & \[
\begin{aligned}
& \text { Phone }+46523 \\
& 18700 \\
& \text { Fax }+46523139 \\
& 77
\end{aligned}
\] & Mats.ulmestrand@fiskeriver ket.se \\
\hline Sten MunchPetersen & The National Institute of Aquatic Resources Section for Manag mentSystems Charlottenlund Slot, Jægersborg Alle 1 DK-2920 Charlottenlund Denmark & \begin{tabular}{l}
Phone 45
\[
33963390
\] \\
Fax 45339633
\[
33
\]
\end{tabular} & smp@aqua.dtu.dk \\
\hline Coby Needle & \begin{tabular}{l}
Marine Scotland - Science \\
Marine Laboratory \\
P.O. Box 101 \\
AB11 9DB Aberdeen Torry \\
United King dom
\end{tabular} & \[
\begin{aligned}
& \text { Phone }+441224 \\
& 295456 \\
& \text { Fax }+441224 \\
& 295511
\end{aligned}
\] & needlec@marlab.ac.uk \\
\hline Rasmus Nielsen & The National Institute of Aquatic Resources Section for Manag mentSystems Charlottenlund Slot, Jægersborg Alle 1 DK-2920 Charlottenlund Denmark & \[
\begin{aligned}
& \text { Phone }+4533 \\
& 963381 \\
& \text { Fax +45 } 3396 \\
& 3333
\end{aligned}
\] & rn@aqua.dtu.dk \\
\hline Jose de Oliveira & \begin{tabular}{l}
JCentre for Environment, \\
Fisheries \& Aquaculture \\
Science Lowestoft Laboratory \\
Pakefield Road \\
NR33 0HT LowestoftSuffolk \\
United King dom
\end{tabular} & \[
\begin{aligned}
& \text { Phone +44 } 1502 \\
& 527727 \\
& \text { Fax }+441502 \\
& 524511
\end{aligned}
\] & jose.deoliveira@cefas.co.uk \\
\hline Lionel Pawlowski & IFREMER LorientStation 8 rue Franço is Toullec F-56100 Lorient France & \[
\begin{aligned}
& \text { Phone }+33297 \\
& 873846 \\
& \text { Fax }+33297 \\
& 873836
\end{aligned}
\] & lionel.pawlowski@ifremer.fr \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Address Phone & \multicolumn{2}{|l|}{Phone/Fax Email} \\
\hline Jan Jaap Poos & \begin{tabular}{l}
Wageningen IMARES P.O. Box68 \\
NL-1970 AB IJmuiden \\
Netherlands
\end{tabular} & \[
\begin{aligned}
& \text { Phone }+31317 \\
& 487189 \\
& \text { Fax IMARES } \\
& \text { general }+31317 \\
& 480900
\end{aligned}
\] & Janjaap.Poos@wur.nl \\
\hline Doug Beare & Wageningen IMARES P.O. Box68 NL-1970 AB IJmuiden Netherlands & \[
\begin{aligned}
& \text { Phone }+31317 \\
& 487233 \\
& \text { Fax IMARES } \\
& \text { general +31 } 317 \\
& 480900
\end{aligned}
\] & Douglas.beare@wur.nl \\
\hline Clara Ulrich Rescan & The National Institute of Aquatic Resources Section for Fisheries Advice Charlottenlund Slot, Jægersborg Alle 1 DK-2920 Charlottenlund Denmark & \[
\begin{aligned}
& \text { Phone }+453396 \\
& 3395 \\
& \text { Fax }+4533963333
\end{aligned}
\] & clu@aqua.dtu. dk \\
\hline Willy V anhee & \begin{tabular}{l}
Institute for Ag ricultural and Fisheries Research \\
Ankerstraat 1 \\
B-8400 Oostende \\
Belgium
\end{tabular} & \[
\begin{aligned}
& \text { Phone }+325956 \\
& 9829 \\
& \text { Fax }+325933 \\
& 0629
\end{aligned}
\] & Willy.vanhee@ilvo.vlaan deren.be \\
\hline
\end{tabular}
**Waming may contain nuts

\section*{Annex 2 - Update forecasts and assessments}

\subsection*{2.1 Summary}

The Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak [WGNSSK] (Chair: Chris Darby*, UK) met by correspondence at the beginning of October 2009 to evaluate new information from the fisheries independent surveys carried out during 2009 subsequent to the meeting of the group in May.

The WGNSSK followed the protocol defined by the Ad hoc Group on Criteria for Reopening Fisheries Advice (AGCREFA; ICES CM 2008/ACOM:60) in its evaluation of the survey information - fitting the RCT3 regression model to data that included the 2009 survey information to estimate the 2009 recruitment abundance and then comparing the prediction and its associated uncertainty with the estimate from previous surveys used as the basis for the ACOM spring advice.

The comparisons indicated that there was potential for re-opening of the advice for sole a \(3 \%\) decrease in the TAC would result. The estimates of recruitment for cod, whiting and saithe are unchanged from the values used in the spring; the new information is either too uncertain to provide a change to the advice (saithe) or indicates that the estimate from the new information does not differ from the assumptions used in the spring forecast (cod, whiting). For haddock and plaice there are indications of improved recruitment in 2009 which will increase future catches and SSB, however in both cases, the constraint which restricts changes in the TAC to \(+/-15 \%\) is applicable for both stocks, as it was in May and the advice is unchanged.

\subsection*{2.2 Cod in Sub-Area IV, VIID and IIIa}

\subsection*{2.2.1 New survey information}

Research surveys were conducted as part of the IBTS \(3^{\text {rd }}\) quarter survey of 2009. This survey, in conjunction with the IBTS quarter 1 survey, provides information on yearclass strength for the incoming year-class (2008 year-class) that could potentially be used in a TAC forecast. However, these surveys are not considered to provide reliable enough information on the incoming year-class to be used in the TAC forecast, and the approach for North Sea cod has been to replace estimates of the incoming 2008 year-class, and subsequent year-classes, with re-sampled values from the 19972007 year-classes. Nevertheless, an RCT3 analysis was conducted to see if the information on the 2008 year-class provided by these surveys is significantly different to the median implied by the forecast re-sampling.

\subsection*{2.2.2 RCT3 Analys is}

RCT3 was run using the new information from the surveys to predict recruitment at age 1 in 2009. The input data are presented in Table 2.2.1 and the output in Table 2.2.2.

\subsection*{2.2.3 Update protocol calculations}

The recruitment value for 2008 used in the forecast was 110222. This was based on values sampled from the 1997-2007 year-classes, and was a median from the 1000 BAdapt bootstraps. According to the protocol (AGCREFA), this is compared with the output from RCT3 as follows:
\[
\log \mathrm{WAP}=11.53, \text { internal s.e. }=0.4, \mathrm{D}=-0.2
\]

\subsection*{2.2.4 Forecast}

The absolute value of \(D\) is less than 1, so it is not appropriate to consider re-opening the advice for North Sea cod. It should be noted, however, that this would have been the case, regardless of the value of \(D\), because the most recent survey estimate of age 1 receives no weight in the assessment, and does not feature in the TAC forecast.

\subsection*{2.2.5 Conclusions}

Based on considering only the most recent estimate of age 1 in the surveys as a criteria for re-opening advice, it is not appropriate to re-open advice for North Sea cod because the absolute value of D is less than 1 , and because the most recent survey estimates of age 1 do not feature in either the assessment or the TAC forecast.

Table 2.2.1 The RCT3 input data file updated with the North Sea cod CP UE from the third quarter IBTS surveys.

Cod NS \& Skag. Age 1
\begin{tabular}{llll}
2 & 26 & 2 & \\
'Year' & 'Badapt' & 'Q1_1' & 'Q3_1' \\
1982 & 470856 & 4.734 & -11 \\
1983 & 1485856 & 15.856 & -11 \\
1984 & 272216 & 0.928 & -11 \\
1985 & 1668788 & 16.785 & -11 \\
1986 & 363026 & 9.425 & -11 \\
1987 & 238092 & 5.638 & -11 \\
1988 & 630938 & 15.117 & -11 \\
1989 & 199511 & 3.953 & -11 \\
1990 & 260092 & 2.481 & 8.17 \\
1991 & 546894 & 13.129 & 43.487 \\
1992 & 254721 & 13.088 & 10.473 \\
1993 & 939238 & 14.66 & 42.737 \\
1994 & 413639 & 9.832 & 22.282 \\
1995 & 233277 & 3.441 & 10.283 \\
1996 & 734266 & 39.951 & 60.518 \\
1997 & 96659 & 2.672 & 2.397 \\
1998 & 177838 & 2.112 & 11.952 \\
1999 & 299673 & 6.563 & 10.689 \\
2000 & 86372 & 2.786 & 4.723 \\
2001 & 155474 & 7.755 & 11.334 \\
2002 & 73605 & 0.584 & 1.735 \\
2003 & 106661 & 6.74 & 12.178 \\
2004 & 88393 & 2.272 & 4.745 \\
2005 & 218422 & 6.642 & 15.215 \\
2006 & 98279 & 3.091 & 9.079 \\
2007 & 120160 & 2.694 & 9.989 \\
2008 & -11 & 1.23 & 6.926 \\
& & &
\end{tabular}

Table 2.2.2 The RCT3 output file for North Sea cod.
```

Analysis by RCT3 ver3.1 of data from file :
nscod2.txt
Cod NS \& Skag. Age 1
Data for 2 surveys over 27 years : 1982 - 2008
Regression type = C
Tapered time weighting not applied
Survey weighting not applied
Final estimates not shrunk towards mean
Estimates with S.E.'S greater than that of mean
+
Minimum S.E. for any survey taken as .00
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass = 2008

Survey/	Slope	Inter-	Std	Rsquare	No.	Index	Predicted	Std	WAP
Series		cept	Error		Pts	Value	Value	Error	Weights
Q1_1	1.49	9.63	. 76	. 577	26	. 80	10.82	. 842	. 229
Q3 1	1.05	9.56	. 42	. 783	18	2.07	11.75	. 459	. 771

```


\subsection*{2.3 Haddock in Sub-Area IV and Division Illa}

\subsection*{2.3.1 New survey information}

The new data available for a potential autumn forecast are the third-quarter groundfish surveys carried out by Scotland (ScoGFS) and England (EngGFS), and the international third-quarter IBTS survey (IBTS Q3). The latter is not used in the haddock assessment or forecast, and is not considered further here. The full available dataset for the ScoGFS and EngGFS series is given in Table 2.3.1. Note that the following analy sis compares the effect of the new survey data with the revised forecast carried out in September (Darby, Millar and Needle 2009), not the forecast provided by the Working Group (ICES-WGNSSK 2009): the latter was found to be incorrect due to software problems.

\subsection*{2.3.2 RCT3 analys is}

Following the protocol stipulated by AGCREFA (ICES 2008), an RCT3 analysis was run to provide an estimate of the abundance of the incoming (2009) year-class at age 0 . The RCT3 input and output files are given in Tables 2.32 and 2.3.3.

\section*{Update protocol calculations}

The outcome of the application of the protocol was as follows:
\begin{tabular}{lr}
\hline Calculations for 2009 year-class & \\
\hline Log WAP from RCT3 & 9.50 \\
\hline Log of recruitment assumed in spring & 8.31 \\
\hline Int SE of log WAP & 0.21 \\
\hline Distance D & 5.66 \\
\hline
\end{tabular}

\subsection*{2.3.3 Conclusions from protocol}

As the distance \(\mathrm{D}>1.0\), the protocol concludes that the advisory process for North Sea haddock should be reopened.

\subsection*{2.3.4 Updated forecast}

The RCT3 analysis indicates that the recruitment of the 2009 year class at age 0 in 2009 should be \(\exp (9.50)=13359.727\) millions. This value was included in the MFDP input file given in Table 2.3.4. The remaining forecast assumptions (regarding growth, exploitation and so on) were unchanged from the revised September forecast (ICES-WGNSSK 2009; Darby, Millar and Needle 2009).
The results of the MFDP run are given in Table 2.3.5. The following text table summarises the differences in forecast landings yield in 2010 at key \(F\)-multipliers:
\begin{tabular}{llll}
\hline & \(15 \%\) TAC decrease & Plan target & Status quo \\
\hline September & 35619 & 35343 & 30112 \\
\hline October & 35619 & 35605 & 30331 \\
\hline Difference & \(0.000 \%\) & \(+0.741 \%\) & \(+0.727 \%\) \\
\hline
\end{tabular}

The following summarises the differences in forecast SSB in 2011:
\begin{tabular}{llll}
\hline & 15\% TAC decrease & Plan target & Status quo \\
\hline September & 187665 & 187994 & 194224 \\
\hline October & 208323 & 208340 & 214748 \\
\hline Difference & \(+11.008 \%\) & \(+10.823 \%\) & \(+10.567 \%\) \\
\hline
\end{tabular}

The autumn survey indices result in a significant increase ( \(>10 \%\) ) in the forecast SSB in 2011. However, the difference between the September and October forecast landings under the target or status quo \(F\) values is less than \(1.0 \%\), and when the TAC constraint is applied there is no difference between the forecasts. On this basis, the advisory process should not be taken further for North Sea haddock.

Table 2.3.1. Haddock in Sub-Area IV and Division IIIa. Indices from the third-quarter English (EngGFS) and Scottish (ScoGFS) groundfish survey series. New data from autumn 2009 are highlighted in bold.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Survey data} \\
\hline \multicolumn{8}{|l|}{EngGFS Q3 GOV} \\
\hline 1992 & 2009 & & & & & & \\
\hline 1 & 1 & 0.5 & 0.75 & & & & \\
\hline 0 & 6 & & & & & & \\
\hline 100 & 246.021 & 58.746 & 29.133 & 1.742 & 0.146 & 0.037 & 0.251 \\
\hline 100 & 40.336 & 73.145 & 17.435 & 4.951 & 0.176 & 0.048 & 0 \\
\hline 100 & 279.344 & 23.99 & 26.992 & 2.511 & 0.894 & 0.058 & 0.003 \\
\hline 100 & 53.435 & 113.775 & 13.223 & 11.032 & 0.827 & 0.275 & 0.021 \\
\hline 100 & 61.301 & 26.747 & 43.044 & 3.603 & 2.052 & 0.207 & 0.088 \\
\hline 100 & 40.653 & 45.346 & 12.608 & 19.968 & 0.719 & 0.718 & 0.067 \\
\hline 100 & 15.747 & 26.497 & 16.778 & 4.079 & 4.141 & 0.226 & 0.141 \\
\hline 100 & 626.1 & 16.551 & 8.404 & 3.663 & 1.258 & 1.201 & 0.04 \\
\hline 100 & 92.139 & 249.813 & 4.528 & 1.634 & 0.74 & 0.336 & 0.35 \\
\hline 100 & 1.097 & 28.622 & 96.498 & 3.039 & 0.828 & 0.35 & 0.135 \\
\hline 100 & 2.721 & 3.954 & 22.559 & 60.583 & 0.542 & 0.097 & 0.153 \\
\hline 100 & 3.199 & 6.015 & 1.247 & 13.967 & 45.079 & 0.719 & 0.026 \\
\hline 100 & 3.398 & 6.599 & 3.864 & 0.448 & 6.836 & 17.406 & 0.217 \\
\hline 100 & 122.383 & 9.74 & 5.992 & 2.584 & 1.249 & 6.617 & 3.654 \\
\hline 100 & 11.825 & 54.816 & 3.27 & 1.14 & 0.433 & 0.15 & 0.859 \\
\hline 100 & 8.463 & 10.628 & 43.401 & 1.402 & 0.624 & 0.092 & 0.078 \\
\hline 100 & 2.613 & 6.494 & 5.801 & 18.534 & 0.727 & 0.266 & 0.137 \\
\hline 100 & 28.978 & 5.532 & 6.781 & 4.636 & 7.147 & 0.108 & 0.099 \\
\hline \multicolumn{8}{|l|}{ScoGFS Q3 GOV} \\
\hline 1998 & 2009 & & & & & & \\
\hline 1 & 1 & 0.5 & 0.75 & & & & \\
\hline 0 & 6 & & & & & & \\
\hline 100 & 3280 & 6349 & 1924 & 490 & 511 & 24 & 18 \\
\hline 100 & 66067 & 1907 & 1141 & 688 & 197 & 164 & 6 \\
\hline 100 & 11902 & 30611 & 460 & 221 & 130 & 73 & 27 \\
\hline 100 & 79 & 3790 & 11352 & 179 & 65 & 40 & 18 \\
\hline 100 & 2149 & 675 & 2632 & 6931 & 70 & 37 & 18 \\
\hline 100 & 2159 & 1172 & 307 & 2092 & 4344 & 22 & 17 \\
\hline 100 & 1729 & 1198 & 547 & 101 & 819 & 1420 & 9 \\
\hline 100 & 19708 & 761 & 657 & 153 & 112 & 347 & 483 \\
\hline 100 & 2280 & 7275 & 272 & 158 & 33 & 14 & 73 \\
\hline 100 & 1119 & 1810 & 5527 & 117 & 57 & 11 & 5 \\
\hline 100 & 1885 & 733 & 1002 & 2424 & 28 & 24 & 6 \\
\hline 100 & 9015 & 877 & 547 & 469 & 1185 & 37 & 8 \\
\hline
\end{tabular}

Table 2.3.2. Haddock in Sub-Area IV and Division IIIa. RCT3 input file. Data from surveys in autumn 2009 are highlighted in bold.

HADDOCK IN IV, RCT3 INPUT VALUES
\begin{tabular}{llllllllll}
\hline 8 & 29 & 2 & & & & & & \\
\hline 'YEARCLASS' & 'VPA' & 'IBTS1' & 'IBTS2' & 'EGFS0' & 'EGFS1' & 'EGFS2' & 'SGFS0' & 'SGFS1' & 'SGFS2' \\
\hline 1981 & 32617680 & -1 & 403.079 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1982 & 20491370 & 302.278 & 221.275 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1983 & 66956253 & 1072.285 & 833.257 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1984 & 17181331 & 230.968 & 266.912 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1985 & 23920805 & 573.023 & 328.062 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1986 & 49030758 & 912.559 & 677.641 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1987 & 4156240 & 101.691 & 98.091 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1988 & 8339335 & 219.705 & 139.114 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1989 & 8606296 & 217.448 & 134.076 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline 1990 & 28351635 & 680.231 & 331.044 & -1 & -1 & 29.133 & -1 & -1 & -1 \\
\hline 1991 & 27479298 & 1141.396 & 519.521 & -1 & 58.746 & 17.435 & -1 & -1 & -1 \\
\hline 1992 & 41947282 & 1242.121 & 491.051 & 246.021 & 73.145 & 26.992 & -1 & -1 & -1 \\
\hline 1993 & 13157783 & 227.919 & 201.069 & 40.336 & 23.990 & 13.223 & -1 & -1 & -1 \\
\hline 1994 & 56144741 & 1355.485 & 813.268 & 279.344 & 113.775 & 43.044 & -1 & -1 & -1 \\
\hline 1995 & 14447705 & 267.411 & 353.882 & 53.435 & 26.747 & 12.608 & -1 & -1 & -1 \\
\hline 1996 & 21503804 & 849.943 & 420.926 & 61.301 & 45.346 & 16.778 & -1 & -1 & 1924 \\
\hline 1997 & 12826240 & 357.597 & 222.907 & 40.653 & 26.497 & 8.404 & -1 & 6349 & 1141 \\
\hline 1998 & 9970725 & 211.139 & 107.06 & 15.747 & 16.551 & 4.528 & 3280 & 1907 & 460 \\
\hline 1999 & 135516779 & 3734.185 & 2255.213 & 626.100 & 249.813 & 96.498 & 66067 & 30611 & 11352 \\
\hline 2000 & 26511570 & 894.651 & 492.299 & 92.139 & 28.622 & 22.559 & 11902 & 3790 & 2632 \\
\hline 2001 & 2835366 & 58.211 & 38.585 & 1.097 & 3.954 & 1.247 & 79 & 675 & 307 \\
\hline 2002 & 3750722 & 89.958 & 79.622 & 2.721 & 6.015 & 3.864 & 2149 & 1172 & 547 \\
\hline 2003 & 3891493 & 71.875 & 60.993 & 3.199 & 6.599 & 5.992 & 2159 & 1198 & 657 \\
\hline 2004 & 3731671 & 69.976 & 47.784 & 3.398 & 9.740 & 3.270 & 1729 & 761 & 272 \\
\hline 2005 & 38595613 & 1212.163 & 963.325 & 122.383 & 54.816 & 43.401 & 19708 & 7275 & 5527 \\
\hline 2006 & 7205011 & 109.096 & 106.489 & 11.825 & 10.628 & 5.801 & 2280 & 1810 & 1002 \\
\hline 2007 & 4572803 & 60.115 & 139.871 & 8.463 & 6.494 & 6.781 & 1119 & 733 & 547 \\
\hline 2008 & 3735922 & 74.75 & -1 & 2.613 & 5.532 & -1 & 1885 & 877 & -1 \\
\hline 2009 & -1 & -1 & -1 & 28.978 & -1 & -1 & 9015 & -1 & -1 \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

Table 2.3.3. Haddock in Sub-Area IV and Division IIIa. RCT3 output file.
```

Analysis by RCT3 ver3.1 of data from file :
hadivrct.in
HADDOCK IN IV, RCT3 INPUT VALUES
Data for 8 surveys over 29 years : 1981-2009
Regression type = C
Tapered time weighting not applied
Survey weighting not applied
Final estimates not shrunk towards mean
Estimates with S.E.'S greater than that of mean included
Minimum S.E. for any survey taken as .00
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass = 2009
I------------Regression----------I I------------Prediction-----------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP
Series cept Error Pts Value Value Error Weights
IBTS1
IBTS2
EGFS0 .66 7.22 .19 .974 17 3.40 9.47 . 213 . 938
EGFS1
EGFS2

```

```

SGFS1
SGFS2

| | | | | VPA Mean $=$ | 9.61 | 1.040 | .000 |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Year | Weighted | Log | Int | Ext | Var | VPA | Log |
| Class | Average | WAP | Std | Std | Ratio | VPA | |
| | Prediction | | Error | Error | | | |

$2009 \quad 13403.50 \quad .21 \quad .13 \quad .38$

```

Table 2.3.4. Haddock in Sub-Area IV and Division IIIa. MFDP output table (October revision). Options are highlighted for the management plan target F ( 0.3 ), a \(15 \%\) TAC decrease, and the status quo F forecast.
```

MFDP version 1a
Run: }10
Time and date: 16:23 08/10/2009
Time and date. 16.23 08/10/200
Fbar age range(Total): 2-4
Fbar age range Fleet 2:2-4

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2009 & \multicolumn{2}{|r|}{Catch} & \multicolumn{2}{|r|}{Landings} & \multicolumn{2}{|r|}{Discards} & \multicolumn{2}{|r|}{IBC} & Landings & \multirow[b]{2}{*}{Yield} & & \\
\hline Biomass & SSB & FMult & Fbar & FBar & Yield & FBar & Yield & FMult & FBar & & & \\
\hline 988097 & 229325 & 0.9014 & 0.2266 & 0.1409 & 44700 & 0.0844 & 8286 & 1 & 0.0013 & 229 & & \\
\hline \multirow[t]{2}{*}{2010} & & & & & & & & & & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{2011}} & \\
\hline & & Catch & & Landings & & Discards & & IBC & Landings & & & \\
\hline Biomass & SSB & FMult & Fbar & FBar & Yield & FBar & Yield & FMult & FBar & Yield & Biomass & SSB \\
\hline \multirow[t]{23}{*}{1151663} & 205949 & 0.00 & 0.001 & 0.000 & 0 & 0.000 & 0 & 1 & 0.001 & 298 & 1236227 & 251712 \\
\hline & 205949 & 0.10 & 0.026 & 0.016 & 3299 & 0.009 & 1154 & 1 & 0.001 & 296 & 1231621 & 247683 \\
\hline & 205949 & 0.20 & 0.051 & 0.031 & 6536 & 0.019 & 2294 & 1 & 0.001 & 294 & 1227101 & 243733 \\
\hline & 205949 & 0.30 & 0.076 & 0.047 & 9711 & 0.028 & 3423 & 1 & 0.001 & 292 & 1222665 & 239859 \\
\hline & 205949 & 0.40 & 0.101 & 0.063 & 12826 & 0.038 & 4539 & 1 & 0.001 & 290 & 1218311 & 236060 \\
\hline & 205949 & 0.50 & 0.126 & 0.078 & 15883 & 0.047 & 5643 & 1 & 0.001 & 288 & 1214038 & 232335 \\
\hline & 205949 & 0.60 & 0.151 & 0.094 & 18882 & 0.056 & 6735 & & 0.001 & 286 & 1209843 & 228680 \\
\hline & 205949 & 0.70 & 0.176 & 0.109 & 21825 & 0.066 & 7816 & 1 & 0.001 & 285 & 1205724 & 225096 \\
\hline & 205949 & 0.80 & 0.201 & 0.125 & 24714 & 0.075 & 8886 & 1 & 0.001 & 283 & 1201681 & 221580 \\
\hline & 205949 & 0.90 & 0.226 & 0.141 & 27549 & 0.084 & 9944 & 1 & 0.001 & 281 & 1197712 & 218131 \\
\hline & 205949 & 1.00 & 0.251 & 0.156 & 30331 & 0.094 & 10992 & 1 & 0.001 & 279 & 1193814 & 214748 status quo \\
\hline & 205949 & 1.10 & 0.276 & 0.172 & 33063 & 0.103 & 12028 & 1 & 0.001 & 277 & 1189986 & 211428 \\
\hline & 205949 & 1.19 & 0.300 & 0.187 & 35605 & 0.112 & 13002 & 1 & 0.001 & 276 & 1186422 & 208340 target F \\
\hline & 205949 & 1.20 & 0.300 & 0.187 & 35619 & 0.112 & 13007 & 1 & 0.001 & 276 & 1186402 & 208323 15\% TAC decrease \\
\hline & 205949 & 1.20 & 0.301 & 0.188 & 35744 & 0.112 & 13055 & 1 & 0.001 & 276 & 1186227 & 208171 \\
\hline & 205949 & 1.30 & 0.326 & 0.203 & 38376 & 0.122 & 14071 & 1 & 0.001 & 274 & 1182536 & 204975 \\
\hline & 205949 & 1.40 & 0.351 & 0.219 & 40960 & 0.131 & 15077 & 1 & 0.001 & 272 & 1178910 & 201839 \\
\hline & 205949 & 1.50 & 0.376 & 0.235 & 43497 & 0.141 & 16073 & 1 & 0.001 & 271 & 1175349 & 198762 \\
\hline & 205949 & 1.60 & 0.401 & 0.250 & 45988 & 0.150 & 17060 & 1 & 0.001 & 269 & 1171850 & 195742 \\
\hline & 205949 & 1.70 & 0.426 & 0.266 & 48434 & 0.159 & 18036 & 1 & 0.001 & 267 & 1168413 & 192778 \\
\hline & 205949 & 1.80 & 0.451 & 0.281 & 50837 & 0.169 & 19004 & 1 & 0.001 & 266 & 1165037 & 189869 \\
\hline & 205949 & 1.90 & 0.476 & 0.297 & 53196 & 0.178 & 19962 & 1 & 0.001 & 264 & 1161719 & 187013 \\
\hline & 205949 & 2.00 & 0.501 & 0.313 & 55513 & 0.187 & 20912 & 1 & 0.001 & 263 & 1158459 & 184210 \\
\hline
\end{tabular}

\subsection*{2.4 Saithe in Subarea IV, VI and Division IIIa}

\subsection*{2.4.1 New survey information}

Several research vessel surveys were conducted in the third quarter of 2009 to produce the 2009 Q3 IBTS indices. Additionally, 2008 indices for the Q3 IBTS index had small revisions compared to the values used in May. The new information that is utilized is the age 3 in the IBTS Q3 index for 2009, and revisions to the IBTS Q3 age 3 for 2008. The full survey series are given in Table 2.4.1.

\subsection*{2.4.2 RCT3 analys is}

Following the protocol stipulated by AGCREFA (ICES 2008), an RCT3 analysis was run to provide an estimate of the abundance of the incoming (2006) year class at age 3. The RCT3 input and output files are given in Tables 2.4.2 and 2.4.3.

The outcome of the application of the protocol was as follows:
\begin{tabular}{lr}
\hline Calculations for 2006 year-class & \\
\hline Log WAP from RCT3 & 10.76 \\
\hline Log of recruitment assumed in spring & 11.71 \\
\hline Int SE of log WAP & 0.81 \\
\hline Distance D & \(\mathbf{- 1 . 1 7}\) \\
\hline
\end{tabular}

\subsection*{2.4.3 Update protocol calculations}

The value of \(D\) is less than -1 , so the most recent information is sufficiently different from that available in May, 2009. However, the protocol emphasises that a reopening of the advice depends on new reliable survey information. The IBTSq3 estimates of age 3 are very noisy with poor correlation with the VPA population estimates (0.3) and consequently high prediction coefficients of variation ( \(\sim 80 \%\) and progressively worse).
Previous saithe forecasts have used the geometric mean recruitment and as seen in Table 2.4.3 this has a lower standard error than the prediction estimates. Consequently the new information for saithe is too noisy to use and the advisory process for saithe should not be reopened.

Table 2.4.1. Saithe in Sub-Area IV, VI and Division IIIa. Indices from the \(1^{\text {st }}\) and \(3^{\text {rd }}\) quarter IBTS survey series. New data for autumn 2009 are highlighted in bold.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{IBTSq3} \\
\hline \multicolumn{2}{|l|}{19912009} & & \\
\hline 1 & 10.5 & 0.75 & \\
\hline 3 & 5 & & \\
\hline 1 & 1.946 & 0.402 & 0.064 \\
\hline 1 & 1.077 & 2.76 & 0.516 \\
\hline 1 & 7.965 & 2.781 & 1.129 \\
\hline 1 & 1.117 & 1.615 & 0.893 \\
\hline 1 & 13.959 & 2.501 & 1.559 \\
\hline 1 & 3.825 & 6.533 & 1.112 \\
\hline 1 & 3.756 & 3.351 & 7.461 \\
\hline \multirow[t]{2}{*}{1
1} & 1.027 & 3.921 & 1.333 \\
\hline & 2.12 .019 & 2.949 & \\
\hline 1 & 3.479 & 8.836 & 1.081 \\
\hline \multirow[t]{2}{*}{1
1} & 21.496 & 6.173 & 3.937 \\
\hline & 10.748 & 18.974 & 1.327 \\
\hline \multirow[t]{2}{*}{1
1} & 19.272 & 23.802 & 13.402 \\
\hline & 4.979 & 6.896 & 3.158 \\
\hline 1 & 8.893 & 6.87 & 4.994 \\
\hline 1 & 10.636 & 29.82 & 2.934 \\
\hline 1 & 34.018 & 5.594 & 11.763 \\
\hline 1 & 3.467 & 5.86 & 1.122 \\
\hline 1 & 1.346 & 1.703 & 0.568 \\
\hline
\end{tabular}

Table 2.4.2. Saithe in Sub-area IV, VI and Division IIIa RCT3 input file NORTH SEA SAITHE AS 3 YEAR OLD
```

1 192 (No. Surveys, No.Yearclasses, VPA Column)
'YEAR' 'VPA' 'IBTSQ3'
1991138452 1.946
1992 92781 1.077
1993151493 7.965
1994102360 1.117
1995224246 13.959
1996110295 3.825
1997162820 3.756
1998 71182 1.027
1999 139349 2.1
2000 94158 3.479
2001221180 21.496
2002186590 10.748
200312359419.272
2004 86544 4.979
2005211248 8.893
2006 56975 10.636
2007173990 34.018
200872416 3.467
2009 -11 1.346

```

Table 2.4.3. Whiting in Sub-Area IV and Division VIId. RCT3 output file.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Analysis by RCT3 ver3.1 of data from file : c: \ices\ina3fin.txt} \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
NORTH SEA SAITHE AS 3 YEAR OLD \\
Data for 1 surveys over 19 years : 1991-2009
\end{tabular}}} \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|l|}{Regression type \(=\) C} \\
\hline \multicolumn{10}{|l|}{Tapered time weighting not applied} \\
\hline \multicolumn{10}{|l|}{Survey weighting not applied} \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Final estimates not shrunk towards mean}} \\
\hline & & & & & & & & & Estimates with S.E.'s greater than that of mean \\
\hline + & & & & & & & included & & \\
\hline \multicolumn{10}{|l|}{Minimum S.E. for any survey taken as . 00} \\
\hline \multicolumn{10}{|l|}{Minimum of 3 points used for regression} \\
\hline \multicolumn{10}{|l|}{Forecast/Hindcast variance correction used.} \\
\hline & & -R & Regress & & & & Pr & ctio & \\
\hline Survey/ Series & Slope & Intercept & Std Error & Rsquare & No. Pts & Index Value & Predicted value & Std Error & WAP weights \\
\hline IBTSQ3 & . 63 & 10.68 & . 38 & . 494 & 15 & 2.45 & 12.23 & . 434 & 1.000 \\
\hline & & & & & VPA & Mean = & 11.80 & . 364 & . 000 \\
\hline \multicolumn{10}{|l|}{Year class \(=2007\)} \\
\hline & & -Re & Regressi & & I & & -Pred & ction & \\
\hline Survey/ & Stope & Inter- & Std & Rsquare & No. & Index & Predicted & Std & WAP \\
\hline Series & & cept & Error & & Pts & value & Value & Error & Weights \\
\hline IBTSQ3 & 1.05 & 9.83 & . 77 & . 231 & 16 & 3.56 & 13.57 & . 969 & 1.000 \\
\hline & & & & & VPA & Mean & 11.74 & . 410 & . 000 \\
\hline \multicolumn{10}{|l|}{Yearclass \(=2008\)} \\
\hline & & -----Re & gress & & -I & I- & -Pre & ction & \\
\hline Survey/ & slope & Inter- & Std & Rsquare & No. & Index & Predicted & Std & WAP \\
\hline Series & & cept & Error & & Pts & value & Value & Error & Weights \\
\hline IBTSQ3 & . 90 & 10.04 & . 71 & . 257 & 17 & 1.50 & 11.38 & . 784 & 1.000 \\
\hline & & & & & VPA & Mean = & 11.76 & . 405 & . 000 \\
\hline \multicolumn{10}{|l|}{Yearclass \(=2009\)} \\
\hline & & Re & Regres & & -I & & -Pr & ction & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Survey/ \\
Series \\
IBTSQ3
\end{tabular}} & Slope & Inter- & Std & Rsquare & No. & Index & Predicted & Std & WAP \\
\hline & & cept & Error & & Pts & value & value & Error & Weights \\
\hline & . 93 & 9.97 & . 72 & . 264 & 18 & . 85 & 10.76 & . 810 & 1.000 \\
\hline \multirow{4}{*}{Year Class} & & & & & VPA & Mean = & 11.73 & . 415 & . 000 \\
\hline & Weight & & Log & Int & Ext & Var & VPA & Log & \\
\hline & Avera & ge & WAP & Std & Std & Rati & & VPA & \\
\hline & Predic & tion & & Error & Error & & & & \\
\hline 2006 & 20395 & & 12.23 & . 43 & . 00 & . 0 & 0056975 & 10.95 & \\
\hline \multirow[t]{2}{*}{2007} & 78528 & & 13.57 & . 97 & . 00 & & O0 173991 & 12.07 & \\
\hline & 8798 & & 11.38 & . 78 & . 00 & . 0 & 00 72416 & 11.19 & \\
\hline 2009 & 4723 & & 10.76 & . 81 & . 00 & . 0 & 0 & & \\
\hline
\end{tabular}

\subsection*{2.5 Whiting in Sub-Area IV and VIID}

\subsection*{2.5.1 Whiting in Sub-Area IV and Division IIla}

\section*{New survey information}

Several research vessel surveys were conducted in the third quarter of 2009 combining to produce the 2009 Quarter 3 IBTS indices. Additionally, 2009 indices for the Quarter 1 IBTS index had small revisions compared to values used in May. The new information that is utilized is the age 1 IBTS Q3 index for 2009, and revisions to the IBTS Q1 age 1 and 2 for 2009. The full survey series are given in Table 2.5.1. Note that the following analysis considers the reopening of the revised forecast carried out in September (Darby, Millar and Needle 2009), not the forecast provided by the Working Group (ICES-WGNSSK 2009): the latter was found to be incorrect due to software problems.

\section*{RCT3 analys is}

Following the protocol stipulated by AGCREFA (ICES 2008), an RCT3 analysis was run to provide an estimate of the abundance of the incoming (2008) year-class at age 1. The RCT3 input and output files are given in Tables 2.5.2 and 2.5.3.

\section*{Update protocol calculations}

The outcome of the application of the protocol was as follows:
\begin{tabular}{ll}
\hline Calculations for 2009 year-class & \\
\hline Log WAP from RCT3 & 17.44 \\
\hline Log of recruitment assumed in spring & 17.17 \\
\hline Int SE of log WAP & 0.42 \\
\hline Distance D & \(\mathbf{0 . 6 4}\) \\
\hline
\end{tabular}

\section*{Conclusions from protocol}

The value of D is not less than -1 and not greater than 1 , so the most recent information is not sufficiently different from that available in May, 2009. Therefore the forecast from September still stands and the advice will not be reopened.

Table 2.5.1. Whiting in Sub-Area IV and Division VIId. Indices from the \(1^{\text {st }}\) and 3rd-quarter IBTS survey series. New data for autumn 2009 are highlighted in bold.
\(\qquad\)
\begin{tabular}{ccccccc}
\hline \multicolumn{2}{c}{ IBTS Q1 } & & & & \\
\hline & 1 & 2 & 4 & 5 & 6 \\
\hline 1990 & 518.94 & 862.35 & 198.16 & 91.61 & 16.94 & 3.67 \\
\hline 1991 & 1007.62 & 686.45 & 479.62 & 70.95 & 37.64 & 7.59 \\
\hline 1992 & 907.30 & 665.71 & 240.16 & 150.83 & 12.67 & 13.93 \\
\hline 1993 & 1075.62 & 522.81 & 244.59 & 65.49 & 59.02 & 11.44 \\
\hline 1994 & 721.71 & 627.41 & 181.02 & 68.08 & 11.86 & 9.11 \\
\hline 1995 & 678.59 & 448.48 & 239.45 & 58.07 & 11.87 & 5.58 \\
\hline 1996 & 502.36 & 485.97 & 244.70 & 69.74 & 23.09 & 9.85 \\
\hline 1997 & 287.73 & 342.21 & 162.52 & 60.43 & 18.01 & 9.18 \\
\hline 1998 & 543.12 & 160.70 & 125.38 & 54.05 & 15.50 & 9.26 \\
\hline 1999 & 676.27 & 305.45 & 94.68 & 57.45 & 25.83 & 11.08 \\
\hline 2000 & 756.87 & 537.86 & 182.22 & 53.07 & 20.02 & 14.74 \\
\hline 2001 & 648.65 & 598.39 & 299.18 & 98.32 & 25.72 & 26.16 \\
\hline 2002 & 670.59 & 416.82 & 275.25 & 66.63 & 22.11 & 10.41 \\
\hline 2003 & 131.60 & 298.87 & 237.01 & 133.36 & 48.37 & 12.63 \\
\hline 2004 & 184.61 & 89.73 & 173.00 & 100.03 & 48.97 & 22.17 \\
\hline 2005 & 167.63 & 55.97 & 31.48 & 56.39 & 37.85 & 29.36 \\
\hline 2006 & 223.01 & 92.38 & 32.56 & 16.54 & 28.25 & 27.14 \\
\hline 2007 & 42.19 & 166.13 & 71.07 & 18.78 & 8.99 & 25.26 \\
\hline 2008 & 267.75 & 205.56 & 65.61 & 22.11 & 7.52 & 15.23 \\
\hline 2009 & 210.05 & 226.60 & 74.46 & 24.85 & 10.47 & 11.22 \\
\hline & IBTS Q3 & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{cccccccc}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1991 & 536.99 & 703.37 & 158.59 & 79.02 & 14.57 & 5.18 & 1.02 \\
\hline 1992 & 1379.46 & 600.87 & 296.10 & 72.45 & 57.50 & 10.27 & 6.21 \\
\hline 1993 & 919.19 & 638.72 & 177.38 & 66.12 & 14.71 & 15.90 & 3.04 \\
\hline 1994 & 610.74 & 677.65 & 219.54 & 74.71 & 19.51 & 4.72 & 3.16 \\
\hline 1995 & 729.25 & 619.79 & 291.18 & 107.20 & 21.51 & 6.01 & 3.46 \\
\hline 1996 & 316.50 & 545.71 & 278.22 & 129.36 & 34.00 & 6.89 & 4.10 \\
\hline 1997 & 2062.67 & 332.97 & 180.68 & 108.99 & 28.01 & 10.71 & 4.25 \\
\hline 1998 & 2631.69 & 330.60 & 150.21 & 52.77 & 31.01 & 11.18 & 4.70 \\
\hline 1999 & 2498.55 & 1203.50 & 190.65 & 53.93 & 24.45 & 9.53 & 4.18 \\
\hline 2000 & 1968.07 & 941.66 & 326.94 & 64.11 & 13.63 & 6.53 & 4.87 \\
\hline 2001 & 3031.44 & 645.00 & 282.32 & 94.85 & 19.28 & 4.32 & 7.51 \\
\hline 2002 & 264.06 & 732.14 & 237.37 & 125.15 & 33.96 & 5.28 & 2.76 \\
\hline 2003 & 363.41 & 246.16 & 302.05 & 134.82 & 66.06 & 16.45 & 4.66 \\
\hline 2004 & 711.28 & 161.56 & 47.78 & 64.42 & 45.24 & 31.04 & 11.94 \\
\hline 2005 & 162.59 & 179.50 & 70.53 & 27.61 & 45.39 & 29.21 & 33.93 \\
\hline 2006 & 202.83 & 172.79 & 85.14 & 31.97 & 13.24 & 22.92 & 25.46 \\
\hline 2007 & 819.06 & 99.48 & 66.18 & 34.47 & 11.83 & 6.04 & 23.22 \\
\hline 2008 & 769.57 & 389.38 & 38.90 & 29.94 & 14.09 & 3.87 & 14.60 \\
\hline 2009 & 595.99 & 580.50 & 380.56 & 37.20 & 11.21 & 7.74 & 6.49 \\
\hline
\end{tabular}

Table 2.5.2. Whiting in Sub-Area IV and Division VIId. RCT3 input file. New or revised values are highlighted in bold.
\begin{tabular}{rrrrrr} 
Whi4\&7d (age 1) & & & & & \\
4 & 19 & 2 & & & \\
1990 & 2942 & 1007.62 & 665.71 & -11 & 703.37 \\
1991 & 2798 & 907.3 & 522.81 & 536.99 & 600.87 \\
1992 & 2694 & 1075.62 & 627.41 & 1379.46 & 638.72 \\
1993 & 2991 & 721.71 & 448.48 & 919.19 & 677.65 \\
1994 & 2778 & 678.59 & 485.97 & 610.74 & 619.79 \\
1995 & 2469 & 502.36 & 342.21 & 729.25 & 545.71 \\
1996 & 1680 & 287.73 & 160.7 & 316.5 & 332.97 \\
1997 & 1284 & 543.12 & 305.45 & 2062.67 & 330.6 \\
1998 & 1832 & 676.27 & 537.86 & 2631.69 & 1203.5 \\
1999 & 2883 & 756.87 & 598.39 & 2498.55 & 941.66 \\
2000 & 3239 & 648.65 & 416.82 & 1968.07 & 645 \\
2001 & 2617 & 670.59 & 298.87 & 3031.44 & 732.14 \\
2002 & 295 & 131.6 & 89.73 & 264.06 & 246.16 \\
2003 & 783 & 184.61 & 55.97 & 363.41 & 161.56 \\
2004 & 901 & 167.63 & 92.38 & 711.28 & 179.5 \\
2005 & 1124 & 223.01 & 166.13 & 162.59 & 172.79 \\
2006 & 1063 & 42.19 & 205.56 & 202.83 & 99.48 \\
2007 & 605 & 267.75 & 226.6 & 819.06 & 389.38 \\
2008 & -11 & 210.05 & -11 & 769.57 & \(\mathbf{5 8 0 . 5 0 3}\) \\
ibtsq1age1 & & & & & \\
ibstaqage2 & & & & & \\
ibssq3age0 & & & & & \\
ibtsq3age1 & & & & &
\end{tabular}

Table 2.5.3. Whiting in Sub-Area IV and Division VIId. RCT3 output file.
```

Analysis by RCT3 ver3.1 of data from file :
rct3-oct.csv
Whi4\&7d (age 1),,,,
Data for 4 surveys over 19 years : 1990 - 2008
Regression type = C
Tapered time weighting not applied
Survey weighting not applied
Final estimates not shrunk towards mean
Estimates with S.E.'S greater than that of mean
+
Minimum S.E. for any survey taken as .00
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass = 2008
I-----------Regression-----------I I----------------------------
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP
Series cept Error Pts Value Value Error Weights

ibtsq1	.91 2.05	. 59	. 469	18	5.35	6.91	. 650	. 408
ibtsq1								
ibtsq3	$1.45-2.16$	1.28	.160	17	6.65	7.46	1.397	. 088
ibtsq3	1.081 .00	. 53	. 517	18	6.37	7.85	. 585	. 504
				VPA Mean =		7.51	. 535	.000
Year	Weighted	Log	Int	Ext	Var	VPA	Log	
Class	Average	WAP	Std	Std	Ratio		VPA	
	Prediction		Error	Error				
2008	1697	7.44	. 42	. 32	. 58			

```

\subsection*{2.6 North Sea plaice}

\subsection*{2.6.1 New survey information}

The new survey information that is available comes from the Beam Trawl Survey RV Isis (BTS-Isis) that was initiated in 1985 and was set up to obtain indices of the younger age groups of plaice and sole, covering the south-eastern part of the North Sea (RV Isis). It uses an 8-m beam trawl with 40 mm stretched mesh codend.

\subsection*{2.6.2 RCT3 Analys is}

The RCT3 analysis on the BTS ISIS survey indices for ages 1 and 2 was conducted as specified in the Report of the Ad hoc Group on Criteria for Reopening Fisheries Advice (AGCREFA; ICES CM 2008/ACOM:60). Hence, the specifications for the RCT3 were:
\begin{tabular}{|l|c|}
\hline Regression type? & C \\
\hline Tapered time weighting required? & N \\
\hline Shrink estimates toward mean? & N \\
\hline Exclude surveys with SE's greater than that of mean: & N \\
\hline Enter minimum log S.E. for any survey: & 0.0 \\
\hline Min. no. of years for regression (3 is the default) & 3 \\
\hline Apply prior weights to the surveys? & N \\
\hline
\end{tabular}

The input data including the assessment estimates for the two ages are presented in Table 2.6.1. In 2009, the new data comprises age 1 of year class 2008 and age 2 of year class 2007. The last 4 years from the assessment estimates were removed from the time series.

\subsection*{2.6.3 Update protocol calculations}

The outcomes from the RCT3 analyses for the two ages are presented in table 2.6.2. For age 1 , the D value for this age indicates a positive revision to the estimate and following the protocol the forecast should be recalculated. For age 2 the D value indicates a positive index. The full RCT3 analysis table is given in Table 2.6.3 and the revised recruitment estimates in Table 2.6.4.

The input to the North Sea plaice forecast is provided in Tables 2.6.5, the detailed output in Table 2.6.6 and the short term management summary table in Table 2.6.7.

\subsection*{2.6.4 Conclusions from protocol}

If the TAC is advised according to the management plan, then the new option table results in a TAC advice that is equal to the advice of June 2009 ( 63825 t ). The rationale behind this is that The TAC is bound by the upper \(15 \%\) TAC change constraint, at 63825 t.

Following the AGCREFA protocol, the new available survey indices for North Sea plaice ages 1 and 2 do indicate an increase in abundance but the revised level of catch is constrained by the limitation on TAC change and there is no requirement to reopen the advice.

Table 2.6.1 North Sea plaice RCT3 input data
\begin{tabular}{|c|c|c|}
\hline North & Sea Plaice Age & 1 \\
\hline 1 & 25 2 & \\
\hline 1984 & 1846346 & 115.58 \\
\hline 1985 & 4750659 & 667.44 \\
\hline 1986 & 1950224 & 225.82 \\
\hline 1987 & 1769839 & 680.17 \\
\hline 1988 & 1187325 & 467.88 \\
\hline 1989 & 1036310 & 115.31 \\
\hline 1990 & 913820185.45 & \\
\hline 1991 & 776857176.97 & \\
\hline 1992 & 531067124.76 & \\
\hline 1993 & 442720145.21 & \\
\hline 1994 & 1162817 & 252.16 \\
\hline 1995 & 1290188 & 218.28 \\
\hline 1996 & 2148532 & -11 \\
\hline 1997 & 776201342.51 & \\
\hline 1998 & 844549305.9 & \\
\hline 1999 & 983135277.61 & \\
\hline 2000 & 540793222.71 & \\
\hline 2001 & 1712546 & 41.25 \\
\hline 2002 & 546025126.11 & \\
\hline 2003 & 1261256 & 226.2 \\
\hline 2004 & 789082158.45 & \\
\hline 2005 & -11 & 135.11 \\
\hline 2006 & -11 & 329.34 \\
\hline 2007 & -11 & 235.37 \\
\hline 2008 & -11 & 408.99 \\
\hline \multicolumn{3}{|l|}{BTS1} \\
\hline North & Sea Plaice Age & 2 \\
\hline 1 & 252 & \\
\hline 1983 & 843201179.9 & \\
\hline 1984 & 1284914 & 131.77 \\
\hline 1985 & 3234130 & 764.29 \\
\hline 1986 & 1420748 & 146.99 \\
\hline 1987 & 1269821 & 319.27 \\
\hline 1988 & 870248102.64 & \\
\hline 1989 & 797991122.05 & \\
\hline 1990 & 651274125.93 & \\
\hline 1991 & 567698179.1 & \\
\hline 1992 & 38556664.22 & \\
\hline 1993 & 34017143.55 & \\
\hline 1994 & 931722212.32 & \\
\hline 1995 & 1060536 & -11 \\
\hline 1996 & 1820845 & 431.9 \\
\hline 1997 & 602709130 & \\
\hline 1998 & 64254674.4 & \\
\hline 1999 & 78869478.44 & \\
\hline 2000 & 45622347.74 & \\
\hline 2001 & 1253741 & 170.08 \\
\hline 2002 & 42908641.75 & \\
\hline 2003 & 91921769.6 & \\
\hline 2004 & 62221838.99 & \\
\hline 2005 & -11 & 72.29 \\
\hline 2006 & -11 & 130.6 \\
\hline 2007 & -11 & 105.22 \\
\hline \multicolumn{3}{|l|}{BTS2} \\
\hline
\end{tabular}

Table 2.6.2 North Sea plaice RCT3 output for age 1 and D calculation

\section*{D calculation North Sea plaice age 1}

RCT3 ver3.1 file: ple_iv 1.txt, NS Plaice Age 1, 1 survey over 1984-2008
Regression type \(=C\), Tapered time weighting not applied, Survey weighting not applied Final estimates not shrunk towards mean

Estimates with S.E.'S greater than that of mean
+ included
Minimum S.E. for any survey taken as .03 , Minimum of 3 points used for regression Forecast/Hindcast variance correction used.

2008 I------------Regression------------I I------------Prediction-----------I

Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP
Series cept Error Pts Value Value Error Weights
\(\begin{array}{llllllllll}\text { BTS1 } & 1.71 & 4.52 & .79 & .348 & 20 & 6.02 & 14.79 & .874 & 1.000\end{array}\)
VPA Mean \(=13.90 \quad .569 \quad .000\)
Year Weighted Log Int Ext Var
Class Average WAP Std Std Ratio
Prediction Error Error
\(\begin{array}{llllll}2008 & 2659228 & 14.79 & .87 & .00 & .00\end{array}\)
Plaice age \(1 \mathrm{D}=(\mathbf{1 4 . 7 9}-\log (912907)) / \mathbf{0 . 8 7}=\mathbf{1 . 2 2}\)
D calculation North Sea plaice age 2
RCT3 ver3.1 file : ple_iv2.txt, NS Plaice Age 1, 1 survey over 1983-2007
Regression type \(=\) C, Tapered time weighting not applied, No Survey weighting
Final estimates not shrunk towards mean
Estimates with S.E.'S greater than that of mean
+ included
Minimum S.E. for any survey taken as .03 , Minimum of 3 points used for regression Forecast/Hindcast variance correction used.

2007 I------------Regression-----------I I------------Prediction-----------I

Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP
Series cept Error Pts Value Value Error Weights
\(\begin{array}{llllllllll}\text { BTS2 } & .84 & 9.59 & .36 & .703 & 21 & 4.67 & 13.51 & .392 & 1.000\end{array}\)
VPA Mean \(=13.63 \quad .535 \quad .000\)
Year Weighted Log Int Ext Var VPA Log
Class Average WAP Std Std Ratio VPA
Prediction Error Error
\(2007 \quad 735532 \quad 13.51 \quad .39 \quad .00 \quad .00\)
Plaice age \(2 \mathrm{D}=(\mathbf{1 3 . 5 1}-\log (\mathbf{6 7 6 6 5 6})) / \mathbf{0 . 3 9}=\mathbf{0 . 2 1 8}\)

Table 2.6.3 Full RCT3 calculation North Sea plaice age 1 all survey data
```

RCT3 ver3.1 file : ple iv1.txt, NS Plaice Age 1, 6 surveys over1969 -
2008
Regression type = C, Tapered time weighting not applied, No survey
weighting
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as .00
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.

Survey/	Slope	Inter-	Std	Rsquare	No.	Index	Predicted	Std	WAP
Series		cept	Error		Pts	Value	Value	Error	Weights
SNSO	. 96	4.72	. 89	. 271	34	10.82	15.14	. 948	. 158
BTS1	1.71	4.52	. 79	. 348	20	6.02	14.79	. 874	. 186
DFSO	2.36	. 13	. 90	. 292	22	5.24	12.51	1.012	. 138

Year	Weighted	Log	Int	Ext	Var
Class	Average	WAP	Std	Std	Ratio
	Prediction		Error	Error	
2008	1239014	14.03	.38	.46	1.52

```

Table 2.6.4 Updated North Sea P laice recruitment table

Recruitment table
\begin{tabular}{llllll}
\begin{tabular}{l} 
Year \\
class
\end{tabular} & At age in 2009 & \begin{tabular}{l} 
XSA \\
Survivors
\end{tabular} & RCT3 & GM 1957-2006 & Accepted estimate \\
2007 & \(\mathbf{2}\) & \(\mathbf{6 7 6} \mathbf{6 5 6}\) & 645091 & 673614.4 & XSA survivors \\
2008 & 1 & & \(\mathbf{1 2 3 9 0 1 4}\) & 912907 & RCT3 estimates \\
2009 & 0 & & & \(\mathbf{9 1 2 ~ 9 0 7}\) & GM 1957-2006
\end{tabular}

\section*{Table 2.6.5 Updated North Sea plaice STF results: Input}


\section*{Table 2.6.6 Updated North Sea plaice STF results: Detailed output}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & year & F & Fdisc & land & stock
n & catch wt & \[
\begin{gathered}
\text { land } \\
\text { wt }
\end{gathered}
\] & \[
\begin{array}{r}
\text { disc } \\
\text { wt }
\end{array}
\] & stock
wt & & M & catch n & & \begin{tabular}{l}
land \\
n
\end{tabular} & land & disc & disc & SSB & TSB \\
\hline 1 & 2009 & 0.141 & 0.14 & 0.00 & 1239014 & 0.06 & 0.26 & 0.06 & 0.05 & 0.0 & 0.1 & 155109 & 9368 & 1074 & 274 & 154036 & 9088 & 0 & 62364 \\
\hline 2 & 2009 & 0.359 & 0.33 & 0.02 & 676656 & 0.12 & 0.27 & 0.11 & 0.11 & 0.5 & 0.1 & 194833 & 24218 & 13315 & 3566 & 181519 & 20633 & 37893 & 75786 \\
\hline 3 & 2009 & 0.296 & 0.17 & 0.12 & 526211 & 0.22 & 0.30 & 0.17 & 0.21 & 0.5 & 0.1 & 128479 & 28761 & 54120 & 16199 & 74359 & 12492 & 55603 & 111206 \\
\hline 4 & 2009 & 0.232 & 0.05 & 0.18 & 260705 & 0.31 & 0.34 & 0.19 & 0.28 & 1.0 & 0.1 & 51501 & 15962 & 40796 & 13950 & 10705 & 1991 & 72997 & 72997 \\
\hline 5 & 2009 & 0.187 & 0.01 & 0.17 & 137053 & 0.38 & 0.39 & 0.19 & 0.35 & 1.0 & 0.1 & 22264 & 8422 & 20592 & 8098 & 1672 & 322 & 47786 & 47786 \\
\hline 6 & 2009 & 0.156 & 0.02 & 0.13 & 156361 & 0.40 & 0.44 & 0.21 & 0.42 & 1.0 & 0.1 & 21555 & 8678 & 18419 & 8066 & 3135 & 655 & 64994 & 64994 \\
\hline 7 & 2009 & 0.116 & 0.03 & 0.09 & 39583 & 0.44 & 0.52 & 0.22 & 0.46 & 1.0 & 0.1 & 4114 & 1799 & 3049 & 1577 & 1065 & 231 & 18221 & 18221 \\
\hline 8 & 2009 & 0.150 & 0.05 & 0.10 & 79483 & 0.42 & 0.57 & 0.20 & 0.52 & 1.0 & 0.1 & 10534 & 4471 & 6844 & 3868 & 3690 & 736 & 40934 & 40934 \\
\hline 9 & 2009 & 0.088 & 0.00 & 0.09 & 14367 & 0.59 & 0.59 & 0.00 & 0.57 & 1.0 & 0.1 & 1158 & 681 & 1158 & 681 & 0 & 0 & 8175 & 8175 \\
\hline 10 & 2009 & 0.088 & 0.00 & 0.09 & 61988 & 0.67 & 0.67 & 0.00 & 0.67 & 1.0 & 0.1 & 4999 & 3350 & 4999 & 3350 & 0 & 0 & 41529 & 41529 \\
\hline 1 & 2010 & 0.141 & 0.14 & 0.00 & 912907 & 0.06 & 0.26 & 0.06 & 0.05 & 0.0 & 0.1 & 114285 & 6902 & 791 & 202 & 113494 & 6696 & 0 & 45950 \\
\hline 2 & 2010 & 0.359 & 0.33 & 0.02 & 973796 & 0.12 & 0.27 & 0.11 & 0.11 & 0.5 & 0.1 & 280390 & 34853 & 19162 & 5132 & 261229 & 29693 & 54533 & 109065 \\
\hline 3 & 2010 & 0.296 & 0.17 & 0.12 & 427562 & 0.22 & 0.30 & 0.17 & 0.21 & 0.5 & 0.1 & 104393 & 23369 & 43974 & 13163 & 60419 & 10150 & 45179 & 90358 \\
\hline 4 & 2010 & 0.232 & 0.05 & 0.18 & 354273 & 0.31 & 0.34 & 0.19 & 0.28 & 1.0 & 0.1 & 69985 & 21691 & 55438 & 18957 & 14547 & 2706 & 99196 & 99196 \\
\hline 5 & 2010 & 0.187 & 0.01 & 0.17 & 187021 & 0.38 & 0.39 & 0.19 & 0.35 & 1.0 & 0.1 & 30381 & 11492 & 28099 & 11051 & 2282 & 439 & 65208 & 65208 \\
\hline 6 & 2010 & 0.156 & 0.02 & 0.13 & 102874 & 0.40 & 0.44 & 0.21 & 0.42 & 1.0 & 0.1 & 14181 & 5709 & 12119 & 5307 & 2063 & 431 & 42761 & 42761 \\
\hline 7 & 2010 & 0.116 & 0.03 & 0.09 & 121013 & 0.44 & 0.52 & 0.22 & 0.46 & 1.0 & 0. & 12576 & 5499 & 9321 & 4822 & 3255 & 05 & 55706 & 55706 \\
\hline 8 & 2010 & 0.150 & 0.05 & 0.10 & 31908 & 0.42 & 0.57 & 0.20 & 0.52 & 1.0 & 0.1 & 4229 & 1795 & 2747 & 1553 & 1481 & 295 & 16433 & 16433 \\
\hline 9 & 2010 & 0.088 & 0.00 & 0.09 & 61916 & 0.59 & 0.59 & 0.00 & 0.57 & 1.0 & 0.1 & 4993 & 2935 & 4993 & 2935 & 0 & 0 & 35230 & 35230 \\
\hline 10 & 2010 & 0.088 & 0.00 & 0.09 & 63239 & 0.67 & 0.67 & 0.00 & 0.67 & 1.0 & 0.1 & 5099 & 3417 & 5099 & 3417 & 0 & 0 & 42366 & 42366 \\
\hline 1 & 2011 & 0.141 & 0.14 & 0.00 & 912907 & 0.06 & 0.26 & 0.06 & 0.05 & 0.0 & 0.1 & 114285 & 6902 & 791 & 202 & 113494 & 6696 & 0 & 45950 \\
\hline 2 & 2011 & 0.359 & 0.33 & 0.02 & 717494 & 0.12 & 0.27 & 0.11 & 0.11 & 0.5 & 0.1 & 206592 & 25680 & 14118 & 3781 & 192474 & 21878 & 40180 & 80359 \\
\hline 3 & 2011 & 0.296 & 0.17 & 0.12 & 615316 & 0.22 & 0.30 & 0.17 & 0.21 & 0.5 & 0.1 & 150235 & 33631 & 63285 & 18943 & 86950 & 14608 & 65018 & 130037 \\
\hline 4 & 2011 & 0.232 & 0.05 & 0.18 & 287857 & 0.31 & 0.34 & 0.19 & 0.28 & 1.0 & 0.1 & 56865 & 17625 & 45045 & 15403 & 11820 & 2199 & 80600 & 80600 \\
\hline 5 & 2011 & 0.187 & 0.01 & 0.17 & 254143 & 0.38 & 0.39 & 0.19 & 0.35 & 1.0 & 0.1 & 41285 & 15617 & 38184 & 15017 & 3101 & 596 & 88611 & 88611 \\
\hline 6 & 2011 & 0.156 & 0.02 & 0.13 & 140381 & 0.40 & 0.44 & 0.21 & 0.42 & 1.0 & 0.1 & 19352 & 7791 & 16537 & 7241 & 2815 & 588 & 58352 & 58352 \\
\hline 7 & 2011 & 0.116 & 0.03 & 0.09 & 79617 & 0.44 & 0.52 & 0.22 & 0.46 & 1.0 & 0.1 & 8274 & 3618 & 6132 & 3172 & 2142 & 464 & 36651 & 36651 \\
\hline 8 & 2011 & 0.150 & 0.05 & 0.10 & 97551 & 0.42 & 0.57 & 0.20 & 0.52 & 1.0 & 0.1 & 12928 & 5487 & 8399 & 4747 & 4529 & 903 & 50239 & 50239 \\
\hline 9 & 2011 & 0.088 & 0.00 & 0.09 & 24856 & 0.59 & 0.59 & 0.00 & 0.57 & 1.0 & 0.1 & 2004 & 1178 & 2004 & 1178 & 0 & 0 & 14143 & 14143 \\
\hline 10 & 2011 & 0.088 & 0.00 & 0.09 & 103656 & 0.67 & 0.67 & 0.00 & 0.67 & 1.0 & 0.1 & 8358 & 5602 & 8358 & 5602 & 0 & 0 & 69444 & 69444 \\
\hline
\end{tabular}

Table 2.6.7 Updated North Sea plaice STF results: Ma nagement summary table
\begin{tabular}{lrrrrrrrrr} 
year fmult & f2-6 & f_dis2-3 & f_hc2-6 & landings & discards & catch & ssb2009 \\
2009 & 1 & 0.246 & 0.25 & 0.25 & 59629 & 46147 & 105710 & 388131
\end{tabular}

\subsection*{2.7 North Sea sole}

\subsection*{2.7.1 New survey information}

The new survey information that is available comes from the Beam Trawl Survey RV Isis (BTS-Isis) that was initiated in 1985 and was set up to obtain indices of the younger age groups of plaice and sole, covering the south-eastern part of the North Sea (RV Isis). It uses an \(8-\mathrm{m}\) beam trawl with 40 mm stretched mesh codend.

\subsection*{2.7.2 RCT3 Analys is}

The RCT3 analysis on the BTS ISIS survey indices for ages 1 and 2 was conducted as specified in the Report of the Ad hoc Group on Criteria for Reopening Fisheries Advice (AGCREFA; ICES CM 2008/ACOM:60). Hence, the specifications for the RCT3 were:
\begin{tabular}{|l|c|}
\hline Regression type? & C \\
\hline Tapered time weighting required? & N \\
\hline Shrink estimates toward mean? & N \\
\hline Exclude surveys with SE's greater than that of mean: & N \\
\hline Enter minimum log S.E. for any survey: & 0.0 \\
\hline Min. no. of years for regression (3 is the default) & 3 \\
\hline Apply prior weights to the surveys? & N \\
\hline
\end{tabular}

The input data including the assessment estimates for the two ages are presented in Table 2.7.1. In 2009, the new data comprises age 1 of year class 2008 and age 2 of year class 2007. The last 4 years from the assessment estimates were removed from the time series.

\subsection*{2.7.3 Update protocol calculations}

The outcomes from the RCT3 analyses for the two ages are presented in table 2.7.2. For age 1 , the D value for this age indicates a positive signal and following the protocol the forecast would not be recalculated. For age 2 the D value indicates a large negative index. The full RCT3 analysis table is given in Table 2.7.3 and the revised recruitment estimates in Table 2.7.4.
The input to the North Sea plaice forecast is provided in Tables 2.7.5, the detailed output in Table 2.7.6 and the short term management summary table in Table 2.7.7.

\subsection*{2.7.4 Conclusions from protocol}

Following the AGCREFA protocol, the new available survey indices for North Sea sole age 2 indicate a decrease in estimated abundance using the new information and the forecast should be recalculated.
If the TAC is advised according to the management plan, then the new option table results in a decrease in the TAC advice of 14100-13645= 455 tonnes, compared to the advice of June 2009. This is a decrease in TAC of \(3.2 \%\). This is within the \(15 \%\) TAC change boundaries, which are 11900-16 100 t .

Table 2.7.1 North Sea sole RCT3 input data
\begin{tabular}{llll}
\multicolumn{4}{l}{ Sole } \\
1 & North Sea age 1 & \\
1984 & 25 & \\
1984 & 80833 & & 2.65 \\
1985 & 159654 & 7.88 & \\
1986 & 72553 & & 6.97 \\
1987 & 454627 & 83.11 & \\
1988 & 108296 & 9.02 & \\
1989 & 177757 & 22.60 & \\
1990 & 70476 & & 3.71 \\
1991 & 354171 & 74.44 & \\
1992 & 69289 & & 4.99 \\
1993 & 57057 & & 5.88 \\
1994 & 96104 & & 27.86 \\
1995 & 49508 & 3.51 \\
1996 & 271749 & 173.94 & \\
1997 & 114161 & 14.12 & \\
1998 & 82581 & & 11.41 \\
1999 & 123824 & 14.46 & \\
2000 & 63480 & & 8.17 \\
2001 & 187821 & 21.90 & \\
2002 & 85663 & & 10.76 \\
2003 & 46679 & & 3.65 \\
2004 & 49955 & & 3.14 \\
2005 & -11 & & 16.82 \\
2006 & -11 & & 5.81 \\
2007 & -11 & & 15.04 \\
2008 & -11 & & 15.95 \\
BTS1 & & &
\end{tabular}

Sole North Sea age 2
\begin{tabular}{llll}
1 & 25 & 2 & \\
1983 & 63873 & & 7.89 \\
1984 & 72984 & & 4.49 \\
1985 & 144105 & 12.55 & \\
1986 & 65559 & & 12.51 \\
1987 & 411354 & 68.08 & \\
1988 & 97879 & & 22.36 \\
1989 & 160020 & 23.19 & \\
1990 & 63655 & & 23.2 \\
1991 & 319535 & 27.36 & \\
1992 & 62644 & & 4.99 \\
1993 & 50944 & & 8.46 \\
1994 & 82392 & & 6.17 \\
1995 & 44633 & & 5.37 \\
1996 & 244377 & 29.21 & \\
1997 & 103065 & 19.26 & \\
1998 & 74450 & & 6.53 \\
1999 & 109804 & 10.71 & \\
2000 & 56599 & & 4.17 \\
2001 & 168944 & 10.55 & \\
2002 & 76515 & & 4.4 \\
2003 & 41746 & & 3.3 \\
2004 & 44101 & & 2.44 \\
2005 & -11 & & 19.97 \\
2006 & -11 & & 8.87 \\
2007 & -11 & & 5.00
\end{tabular}

BTS2

Table 2.7.2 North Sea sole RCT3 output for age 1
D calculation North Sea sole age 1
```

Analysis by RCT3 ver3.1 of data from file: altin_1.txt, NS Sole Age 1, 1 sur-
veys over 1984 - 2008
Regression type = C, Tapered time weighting not applied, No survey weighting
Final estimates not shrunk towards mean
Estimates with S.E.'S greater than that of mean

+ included
Minimum S.E. for any survey taken as .03
Minimum of 3 points used for regression

```
Forecast/Hindcast variance correction used.


\section*{D calculation North Sea sole age 2}


Table 2.7.3 North Sea sole RCT3 output for age 1
Full RCT3 calculation North Sea sole age 2 all survey data
Analysis by RCT3 ver3.1 of data from file : altin_2.txt, North Sea Sole-Age 2, 5 surveys over 1969 2008
Regression type \(=\mathrm{C}\), Tapered time weighting not applied, Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 00
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass \(=2007\)

Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Series & cept & Error & & Pts & Value & Value & Error & Weights \\
\hline DFS0 & \(1.16 \quad 6.24\) & 1.02 & . 348 & 28 & 3.20 & 9.95 & 1.102 & . 039 \\
\hline SNS1 & \(.73 \quad 5.79\) & . 34 & . 809 & 35 & 7.14 & 11.00 & . 357 & . 371 \\
\hline BT S1 & . \(70 \quad 9.66\) & . 36 & . 770 & 21 & 2.78 & 11.60 & . 393 & . 306 \\
\hline \multirow[t]{2}{*}{BT S2} & 1.028 .95 & . 47 & . 663 & 22 & 1.79 & 10.78 & . 510 & . 182 \\
\hline & & & \multicolumn{4}{|r|}{VPA Mean \(=11.36\)} & . 680 & . 102 \\
\hline Year & Weighted & Log & Int & Ext & \multicolumn{2}{|r|}{Var} & & \\
\hline Class & Average & WAP & Std & Std & \multicolumn{3}{|l|}{Ratio} & \\
\hline & Prediction & & Error & Error & & & & \\
\hline 2007 & 6889711 & . 14 & . 22 & . 20 & . 82 & & & \\
\hline
\end{tabular}

Table 2.7.4 Updated North Sea sole recruitment table
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Recruitment table} \\
\hline Year & AGE IN 2009 & XSA & RCT3 & GM(1957-2006) \\
\hline Class & & thousands & thousands & THOUSANDS \\
\hline 2007 & 2 & 80500 & \(\underline{68900}\) & 83800 \\
\hline 2008 & 1 & & 67300 & \(\underline{93800}\) \\
\hline 2009 & Recruit & & & \(\underline{93800}\) \\
\hline
\end{tabular}

\section*{Table 2.7.5 North Sea sole STF Input table}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline age & year & f & stock.n & stock & land & mat & M \\
\hline & & & & wt & wt & & \\
\hline 1 & 2009 & 0.018 & 93786 & 0.05 & 0.16 & 0 & 0.1 \\
\hline 2 & 2009 & 0.184 & 68900 & 0.15 & 0.19 & 0 & 0.1 \\
\hline 3 & 2009 & 0.352 & 43345 & 0.19 & 0.22 & 1 & 0.1 \\
\hline 4 & 2009 & 0.374 & 90880 & 0.23 & 0.25 & 1 & 0.1 \\
\hline 5 & 2009 & 0.408 & 10752 & 0.25 & 0.27 & 1 & 0.1 \\
\hline 6 & 2009 & 0.370 & 5763 & 0.28 & 0.31 & 1 & 0.1 \\
\hline 7 & 2009 & 0.352 & 5701 & 0.28 & 0.30 & 1 & 0.1 \\
\hline 8 & 2009 & 0.428 & 7286 & 0.28 & 0.32 & 1 & 0.1 \\
\hline 9 & 2009 & 0.531 & 685 & 0.31 & 0.32 & 1 & 0.1 \\
\hline 10 & 2009 & 0.531 & 1228 & 0.39 & 0.37 & 1 & 0.1 \\
\hline 1 & 2010 & 0.018 & 93786 & 0.05 & 0.16 & 0 & 0.1 \\
\hline 2 & 2010 & 0.184 & & 0.15 & 0.19 & 0 & 0.1 \\
\hline 3 & 2010 & 0.352 & & 0.19 & 0.22 & 1 & 0.1 \\
\hline 4 & 2010 & 0.374 & & 0.23 & 0.25 & 1 & 0.1 \\
\hline 5 & 2010 & 0.408 & & 0.25 & 0.27 & 1 & 0.1 \\
\hline 6 & 2010 & 0.370 & & 0.28 & 0.31 & 1 & 0.1 \\
\hline 7 & 2010 & 0.352 & & 0.28 & 0.30 & 1 & 0.1 \\
\hline 8 & 2010 & 0.428 & & 0.28 & 0.32 & 1 & 0.1 \\
\hline 9 & 2010 & 0.531 & & 0.31 & 0.32 & 1 & 0.1 \\
\hline 10 & 2010 & 0.531 & & 0.39 & 0.37 & 1 & 0.1 \\
\hline 1 & 2011 & 0.018 & 93786 & 0.05 & 0.16 & 0 & 0.1 \\
\hline 2 & 2011 & 0.184 & & 0.15 & 0.19 & 0 & 0.1 \\
\hline 3 & 2011 & 0.352 & & 0.19 & 0.22 & 1 & 0.1 \\
\hline 4 & 2011 & 0.374 & & 0.23 & 0.25 & 1 & 0.1 \\
\hline 5 & 2011 & 0.408 & & 0.25 & 0.27 & 1 & 0.1 \\
\hline 6 & 2011 & 0.370 & & 0.28 & 0.31 & 1 & 0.1 \\
\hline 7 & 2011 & 0.352 & & 0.28 & 0.30 & 1 & 0.1 \\
\hline 8 & 2011 & 0.428 & & 0.28 & 0.32 & 1 & 0.1 \\
\hline 9 & 2011 & 0.531 & & 0.31 & 0.32 & 1 & 0.1 \\
\hline 10 & 2011 & 0.531 & & 0.39 & 0.37 & 1 & 0.1 \\
\hline
\end{tabular}

Table 2.7.6 North Sea sole Detailed S TF table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline age & year & f & st.n & st.wt & land.wt & mat & M & land.n & land & SSB & TSB \\
\hline 1 & 2009 & 0.018 & 93786 & 0.05 & 0.16 & 0 & 0.1 & 1566 & 243 & 0 & 4689 \\
\hline 2 & 2009 & 0.184 & 68900 & 0.15 & 0.19 & 0 & 0.1 & 11037 & 2057 & 0 & 10427 \\
\hline 3 & 2009 & 0.352 & 43345 & 0.19 & 0.22 & 1 & 0.1 & 12263 & 2692 & 8322 & 8322 \\
\hline 4 & 2009 & 0.374 & 90880 & 0.23 & 0.25 & 1 & 0.1 & 27079 & 6814 & 20690 & 20690 \\
\hline 5 & 2009 & 0.408 & 10752 & 0.25 & 0.27 & 1 & 0.1 & 3441 & 935 & 2692 & 2692 \\
\hline 6 & 2009 & 0.370 & 5763 & 0.28 & 0.31 & 1 & 0.1 & 1702 & 521 & 1639 & 1639 \\
\hline 7 & 2009 & 0.352 & 5701 & 0.28 & 0.30 & 1 & 0.1 & 1616 & 492 & 1604 & 1604 \\
\hline 8 & 2009 & 0.428 & 7286 & 0.28 & 0.32 & 1 & 0.1 & 2422 & 769 & 2030 & 2030 \\
\hline 9 & 2009 & 0.531 & 685 & 0.31 & 0.32 & 1 & 0.1 & 270 & 87 & 212 & 212 \\
\hline 10 & 2009 & 0.531 & 1228 & 0.39 & 0.37 & 1 & 0.1 & 484 & 181 & 481 & 481 \\
\hline 1 & 2010 & 0.018 & 93786 & 0.05 & 0.16 & 0 & 0.1 & 1566 & 243 & 0 & 4689 \\
\hline 2 & 2010 & 0.184 & 83372 & 0.15 & 0.19 & 0 & 0.1 & 13355 & 2489 & 0 & 12617 \\
\hline 3 & 2010 & 0.352 & 51865 & 0.19 & 0.22 & 1 & 0.1 & 14673 & 3221 & 9958 & 9958 \\
\hline 4 & 2010 & 0.374 & 27595 & 0.23 & 0.25 & 1 & 0.1 & 8222 & 2069 & 6282 & 6282 \\
\hline 5 & 2010 & 0.408 & 56564 & 0.25 & 0.27 & 1 & 0.1 & 18103 & 4917 & 14160 & 14160 \\
\hline 6 & 2010 & 0.370 & 6468 & 0.28 & 0.31 & 1 & 0.1 & 1910 & 585 & 1839 & 1839 \\
\hline 7 & 2010 & 0.352 & 3601 & 0.28 & 0.30 & 1 & 0.1 & 1021 & 311 & 1013 & 1013 \\
\hline 8 & 2010 & 0.428 & 3627 & 0.28 & 0.32 & 1 & 0.1 & 1206 & 383 & 1011 & 1011 \\
\hline 9 & 2010 & 0.531 & 4298 & 0.31 & 0.32 & 1 & 0.1 & 1693 & 549 & 1330 & 1330 \\
\hline 10 & 2010 & 0.531 & 1018 & 0.39 & 0.37 & 1 & 0.1 & 401 & 150 & 399 & 399 \\
\hline 1 & 2011 & 0.018 & 93786 & 0.05 & 0.16 & 0 & 0.1 & 1566 & 243 & 0 & 4689 \\
\hline 2 & 2011 & 0.184 & 83372 & 0.15 & 0.19 & 0 & 0.1 & 13355 & 2489 & 0 & 12617 \\
\hline 3 & 2011 & 0.352 & 62759 & 0.19 & 0.22 & 1 & 0.1 & 17755 & 3898 & 12050 & 12050 \\
\hline 4 & 2011 & 0.374 & 33018 & 0.23 & 0.25 & 1 & 0.1 & 9838 & 2476 & 7517 & 7517 \\
\hline 5 & 2011 & 0.408 & 17175 & 0.25 & 0.27 & 1 & 0.1 & 5497 & 1493 & 4299 & 4299 \\
\hline 6 & 2011 & 0.370 & 34027 & 0.28 & 0.31 & 1 & 0.1 & 10050 & 3077 & 9675 & 9675 \\
\hline 7 & 2011 & 0.352 & 4042 & 0.28 & 0.30 & 1 & 0.1 & 1145 & 349 & 1137 & 1137 \\
\hline 8 & 2011 & 0.428 & 2291 & 0.28 & 0.32 & 1 & 0.1 & 761 & 242 & 638 & 638 \\
\hline 9 & 2011 & 0.531 & 2140 & 0.31 & 0.32 & 1 & 0.1 & 843 & 273 & 662 & 662 \\
\hline 10 & 2011 & 0.531 & 2828 & 0.39 & 0.37 & 1 & 0.1 & 1114 & 417 & 1108 & 1108 \\
\hline
\end{tabular}

Table 2.7.7 North Sea sole STF results: Ma nagement summary table
\begin{tabular}{crrrrrr} 
fmult & year & ssb & f2-6 & recruit & landings \\
1 & 2009 & 37670 & 0.338 & 93786 & 14792 \\
& & & & & \\
year & fmult & f2-6 & landings & ssb & ssb2011 \\
2010 & 0.0 & 0.000 & 0 & 35992 & 51426 \\
2010 & 0.2 & 0.068 & 3409 & 35992 & 48133 \\
2010 & 0.4 & 0.135 & 6590 & 35992 & 45069 \\
2010 & 0.5 & 0.169 & 8099 & 35992 & 43617 \\
2010 & 0.6 & 0.203 & 9558 & 35992 & 42216 \\
2010 & 0.7 & 0.236 & 10967 & 35992 & 40865 \\
2010 & 0.8 & 0.270 & 12329 & 35992 & 39560 \\
2010 & 0.9 & 0.304 & 13645 & 35992 & 38302 \\
2010 & 1.0 & 0.338 & 14917 & 35992 & 37087 \\
2010 & 1.1 & 0.371 & 16147 & 35992 & 35914 \\
2010 & 1.2 & 0.405 & 17335 & 35992 & 34782 \\
2010 & 1.4 & 0.473 & 19596 & 35992 & 32634 \\
2010 & 1.6 & 0.540 & 21710 & 35992 & 30631 \\
2010 & 1.8 & 0.608 & 23689 & 35992 & 28763 \\
2010 & 2.0 & 0.675 & 25540 & 35992 & 27020
\end{tabular}

\subsection*{2.8 References}

Darby, C. D., Millar, C. and Needle, C. L. (2009) Errors in the WGNSSK May 2009 North Sea whiting and haddock forecasts. Working Paper to ACOM, September 2009.
ICES-WGNSSK (2009). Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak. ICES CM 2009/ACOM:10.

ICES-IBTSWG (2009) Report of the international Bottom Trawl Survey Working group (IBTSWG). ICES CM 2009/RMC:04

ICES (2008). Report of the Ad hoc Group on Criteria for Reopening Fisheries Advice (AGCREFA). ICES CM 2008/ ACOM:60

\section*{Annex 3 - Stock Annexes}

\section*{Stock Annex- Cod in Subarea IV, Division VIId and Division IIla West (Skagerrak)}

Stock specific documentation of standard assessment procedures used by ICES.
\begin{tabular}{ll} 
Stock: & \begin{tabular}{l} 
Cod in Subarea IV, Divison VIId \& Division IIIa \\
\\
West (Skagerrak)
\end{tabular} \\
Working Group: & Working Group North Sea, Skagerrak and Kattegat \\
Date: & January 2009 \\
By: & José De Oliveira
\end{tabular}

\section*{A. General}

\section*{A.1. Stock definition}

Cod are widely distributed throughout the North Sea. Scientific survey data indicate that historically, young fish (ages 1 and 2) have been found in large numbers in the southern part of the North Sea. Adult fish have in the past been located in concentrations of distribution in the Southern Bight, the north east coast of England, in the German Bight, the east coast of Scotland and in the north-eastern North Sea. As stock abundance fluctuates, these groupings appear to be relatively discrete but the area occupied has contracted. During recent years, the highest densities of 3+ cod have been observed in the deeper waters of the central to northern North Sea.

North Sea cod is really a meta-population of sub-populations with differential rates of mixing among them (Horwood et al. 2006, Metcalfe 2006, Heath et al. 2008). A genetic survey of cod in European continental shelf waters using micro-satellite DNA detected significant fine scale differentiation suggesting the existence of at least 4 genetically divergent cod populations, resident in the northern North Sea off Bergen Bank, within the Moray Firth, off Flamborough Head and within the Southern Bight (Hutchinson et al. 2001). The differentiation was weak (typical of marine fishes with large population sizes and high dispersal potentials), but significant, with the degree of genetic isolation weakly correlated with geographical separation distance. This recent genetic evidence is largely consistent with the limited movements suggested by earlier tagging studies (ICES-NSRWG 1971, Metcalfe 2006, Righton et al. 2007). Furthermore, Holmes et al. (2008) found significant differences in SSB trends between spawning areas in the North Sea, consistent with asynchronous population dynamics across spawning areas and providing support for the concept of meta-population structure.

Available information indicates that the majority of spawning takes place from the beginning of January through to April offshore in waters of salinity 34-35\% (Brander 1994, Riley and Parnell 1984). Around the British Isles there is a tendency towards later timing with increasing latitude (ICES 2005). Cod spawn throughout much of the North Sea but spawning adult and egg survey data and fishermen's observations indicate a number of spawning aggregations. Results from the first ichthyoplankton survey to cover the whole of the North Sea, conducted in 2004 to map spawning grounds of North Sea cod, are reported in Fox et al. (2008). This study compared the
results from the plankton survey with estimates of egg production inferred from the distribution of mature cod in contemporaneous trawl surveys. The comparison found general agreement of hot spots of egg production around the southern and eastern edge of the Dogger Bank, in the German Bights, the Moray Firth and to the east of the Shetlands, which mapped broadly into known spawning areas from the period 19401970, but was unable to detect any significant spawning activity off Flamborough (a historic spawning ground off the northeast coast of England). The study showed that most of the major cod spawning grounds in the North Sea are still active, but that the depletion of some localised populations may have made the detection of spawning activity in the corresponding areas difficult (Fox et al. 2008).

At the North Sea scale, there has been a northerly shift in the mean latitudinal distribution of the stock (Hedger et al. 2004, Perry et al. 2005). However the evidence for this being a migratory response is slight or non-existent. More likely, cod in the North Sea are composed of a complex of more or less isolated sub-stocks (as indicated above) and the southern units havebeen subjected to disproportionately high rates of fishing mortality (STECF-SGRST-07-01). Blanchard et al. (2005) demonstrated that the contraction in range of juvenile North Sea cod stock could be linked to reduced abundance as well as increased temperature, and further noted that the combined negative effects of increased temperature on recruitment rates and the reduced availability of optimal habitat may have increased the vulnerability of the cod population to fishing mortality. Rindorf and Lewy (2006) linked the northward shift in distribution to the effect of a series of warm, windy winters on larvae and the resultant distribution of recently settled cod, followed by a northwards shift in the distribution of older age groups (because of the tendency for northerly distributed juveniles to remain northerly throughout their life). They noted further that this effect is intensified by the low abundance of older age cod due to heavy fishing pressure. In contrast, Neat and Righton (2007) analysed the temperature experienced by 129 individual adult cod throughout the North Sea, and found that the majority experienced a warmer fraction of the sea than was potentially available to them (even though they had the capacity to find cooler water), with individuals in the south in summer experiencing temperatures considered superoptimal for growth. This suggests that the thermal regime of the North Sea is not yet causing adult cod to move to cooler waters.

Several tagging studies have been conducted on cod in the North Sea since the mid 1950s in order to investigate the migratory movements and geographical range of cod populations (Bedford 1966, ICES-NSRWG 1971, Daan 1978, Righton et al. 2007). These studies support the existence of regional populations of cod that separate during the spawning season and, in some cases, intermix during the feeding season (Metcalfe 2006). Righton et al. (2007) re-analysed some of thehistorical datasets of conventional tags and used recent data from electronic tags to investigate movement and distribution of cod in the southern North Sea and English Channel. Their re-analysis of conventional tags showed that, although most cod remained within their release areas, a larger proportion of cod were recaptured outside their release area in the feeding season than the spawning season, and a larger proportion of adults were recaptured outside their release area than juveniles, with the displacement (release to recapture) occurring mostly to the southern North Sea for fish released in the English Channel, and to areas further north for fish released in the southern North Sea (see Table 5 in Righton et al. 2007). This suggests a limited net influx of cod from the English Channel to the southern North Sea, but no significant movement in the other direction (Metcalfe 2006).

The lack of obvious physical barriers to mixing betw een different sub-populations in the North Sea suggests that behavioural and/or environmental factors are responsible for maintaining the relative discreteness of these populations (Metcalfe 2006). For example, Righton et al. (2007) conclude that behavioural differences between cod in the southern North Sea and English Channels (such as tidal stream transport being used by fish tagged and released in the southern North Sea to migrate, but rarely being used by those tagged and released in the English Channel) may limit mixing of cod from these two areas during feeding and spawning season. Robichaud and Rose (2004) describe four behavioural categories for cod populations: "sedentary residents" exhibiting year-round site fidelity, "accurate homers" that return to spawn in specific locations, "inaccurate homers" that return to spawn in a broader area around the original site, and "dispersers" that move and spawn in a haphazard fashion within a large geographical area. These categories are not necessarily mutually exclusive and behaviours in different regions may be best described by differing degrees of each category (Heath et al. 2008).

Evidence from electronic tags suggest that cod populations have a strong tendency for site attachment (even in migratory individuals), rapid and long-distance migrations, the use of deeper channels as migratory "highways" and, in some cases, clearly defined feeding and spawning "hot spots" (Righton et al. 2008). Andrews et al. (2006) used a spatially and physiologically explicit model describing the demography and distribution of cod on the European shelf in order to explore a variety of hy potheses about the movements of settled cod. They fitted the model to spatial data derived from International Bottom Trawl Surveys, and found that structural variants of the model that did not recognise an active seasonal migration by adults to a set of spatially stable spawning sites, followed by a dispersal phase, could not explain both the abundance and distribution of the spawning stock. Heath et al. (2008) investigated different hypotheses about natal fidelity, and their consequence for regional dynamics and population structuring, by developing a model representing multiple demes, with the spawning locations of fish in each deme governed by a variety of rules concerning oceanographic dispersal, migration behaviour and straying. They used an age-based discrete time methodology, with a spatial representation of physical oceanographic patterns, fish behaviour patterns, recruitment, growth and mortality (both natural and fishing). They found that active homing is not necessary to explain some of the population structures of cod (with separation possible through distance and oceanographic processes affecting the dispersal of eggs and larvae, such is in the Southern Bight), but that homing behaviour may be necessary to explain the structure of other sub-populations.

\section*{A.2. Fishery}

Cod are caught by virtually all the demersal gears in Sub-area IV and Divisions IIIa (Skagerrak) and VIId, including beam trawls, otter trawls, seine nets, gill nets and lines. Most of these gears take a mixture of species. In some of them cod are considered to be a by-catch (for example in beam trawls targeting flatfish), and in others the fisheries are directed mainly towards cod (for example, some of the fixed gear fisheries).

An analysis of landings and estimated discards of cod by gear category (excluding Norwegian data) highlighted the following fleets as the most important in terms of cod for 2003-5 (accounting for close to \(88 \%\) of the EU landings), listed with the main use of each gear (STECF SGRST-07-01):
- Otter trawl, \(\geq 120 \mathrm{~mm}\), a directed roundfish fishery by UK, Danish and Geman vessels.
- Otter trawl, \(70-89 \mathrm{~mm}\), comprising a \(70-79 \mathrm{~mm}\) French whiting trawl fishery centered in the Eastern Channel, but extending into the North Sea, and an 8089 mm UK Nephrops fishery (with smaller landings of roundfish and anglerfish) occurring entirely in the North Sea.
- Otter trawl, \(90-99 \mathrm{~mm}\), a Danish and Swedish mixed demersal fishery centered in the Skagerrak, but extending into the Eastern North Sea.
- Beam trawl, 80-89mm, a directed Dutch and Belgian flat fish fishery.
- Gillnets, \(110-219 \mathrm{~mm}\), a targeted cod and plaice fishery.

For Norway in 2007, trawls (mainly bycatch in the saithe fishery) and gillnets account for around \(60 \%\) (by weight) of cod catches, with the remainder taken by other gears mainly in the fjords and on the coast, whereas in the Skagerrak, trawls and gillnets account for up to \(90 \%\) of cod catches.

With regard to trends in effort for these major cod fisheries since 2000, the largest changes to have happened in North Sea fisheries have involved an overall reduction in trawl effort and changes in the mesh sizes in use, due to a combination of decommissioning and days-at-sea regulations. In particular \(100-119 \mathrm{~mm}\) meshes have now virtually disappeared, and instead vessels are using either \(120 \mathrm{~mm}+\) (in the directed whitefish fishery) or \(80-99 \mathrm{~mm}\) (primarily in the Nephrops fisheries and in a variety of mixed fisheries). The use of other mesh sizes largely occurs in the adjacent areas, with the \(70-79 \mathrm{~mm}\) gear being used in the Eastern Channel/Southern North Sea Whiting fishery, and the majority of the landings by \(90-99 \mathrm{~mm}\) trawlers coming from the Skagerrak. Higher discards are associated with these smaller mesh trawl fisheries, but even when these are taken into account, the directed roundfish fishery (trawls with \(\geq\) 120 mm mesh) still has the largest impact of any single fleet on the cod stock, followed by the mixed demersal fishery ( \(90-99 \mathrm{~mm}\) trawls) in the Skagerrak.

\section*{1. Technical Conservation Measures}

The present technical regulations for EU waters came into force on 1 January 2000 (EC 850/98 and its amendments). The regulations prescribe the minimum target species' composition for different mesh size ranges. Additional measures were introduced in Community waters from 1 January 2002 (EC 2056/2001).

In 2001, the European Commission implemented an emergency closure of a large area of the North Sea from 14 February to 30 April (EC 259/2001). An EU-Norway expert group in 2003 concluded that the emergency closure had an insignificant effect upon the spawning potential for cod in 2001. There were several reasons for the lack of impact. The redistribution of the fishery, especially along the edges of the box, coupled to the increases in proportional landings from January and February appear to have been able to negate the potential benefits of the box. The conclusion from this study was that the box would have to be extended in both space and time to be more effective. This emergency measure has not been adopted after 2001. A cod protection area was implemented in 2004 (EC 2287/2003 and its amendments), which defined conditions under which certain stocks, including haddock, could be caught in Community waters, but this was only in force in 2004.
Apart from the technical measures set by the Commission, additional unilateral measures are in force in the UK, Denmark and Belgium. The EU minimum landing size (mls) is 35 cm , but Belgium operate a 40 cm mls, while Denmark operate a 35 cm
mls in the North Sea and 30 cm in the Skagerrak. Additional measures in the UK relate to the use of square mesh panels and multiple rigs, restrictions on twine size in both whitefish and Nephrops gears, limits on extension length for whitefish gear, and a ban on lifting bags. In 2001, vessels fishing in the Norwegian sector of the North Sea had to comply with Norwegian regulations setting the minimum mesh size at 120 mm . Since 2003, the basic minimum mesh size for towed gears targeting cod is 120 mm .

Effort regulations in days at sea per vessel and gear category are summarised in the following table, which only shows changes in 2008 compared to 2007 (2006 is included for comparison). The changes (2007-2008) were intended to generate a cut in effort of \(10 \%\) for the main gears catching cod.

Maximum number of days a vessel can be present in the North Sea, Skagerrak and Eastern Channel, by gear category and special condition (see EC 40/2008 for more details). The table only shows changes in 2008 compared to 2007, but 2006 is also included for comparison.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Descriptionof gear and special condition (if applicable)} & \multicolumn{3}{|c|}{Area} & \multicolumn{3}{|r|}{Max days at sea} \\
\hline & IV,II & Skag & VIId & 2006 & 2007 & 2008** \\
\hline Trawls or Danish seines with mesh size \(\$ 20 \mathrm{~mm}\) & x & x & x & 103 & 96 & 86 \\
\hline Trawls or Danish seines with mesh size \(\quad 100 \mathrm{~mm}\) and \(<120 \mathrm{~mm}\) & x & x & x & 103 & 95 & 86 \\
\hline Trawls or Danish seines with mesh size \(\geq 90 \mathrm{~mm}\) and \(<100 \mathrm{~mm}\) & x & & x & 227 & 209 & 188 \\
\hline Trawls or Danish seines with mesh size \(\quad 90 \mathrm{~mm}\) and \(<100 \mathrm{~mm}\) & & x & & 103 & 95 & 86 \\
\hline Trawls or Danish seines with mesh size \(\quad Z 0 \mathrm{~mm}\) and \(<90 \mathrm{~mm}\) & x & & & 227 & 204 & 184 \\
\hline Trawls or Danish seines with mesh size \(\quad Z 0 \mathrm{~mm}\) and \(<90 \mathrm{~mm}\) & & & x & 227 & 221 & 199 \\
\hline Beam trawls with mesh size \(\geq 120 \mathrm{~mm}\) & x & x & & 143 & 143 & 129 \\
\hline Beam trawls with mesh size \(\geq 100 \mathrm{~mm}\) and \(<120 \mathrm{~mm}\) & x & x & & 143 & 143 & 129 \\
\hline Beam trawls with mesh size \(\geq 30 \mathrm{~mm}\) and \(<90 \mathrm{~mm}\) & x & x & & 143 & 132 & 119 \\
\hline Gillnets and entangling nets with mesh sizes \(\geq 150 \mathrm{~mm}\) and \(<220 \mathrm{~mm}\) & x & x & x & 140 & 130 & 117 \\
\hline Gillnets and entang ling nets with mesh sizes \(\geq 110 \mathrm{~mm}\) and \(<150 \mathrm{~mm}\) & x & x & x & 140 & 140 & 126 \\
\hline Trammel nets with mesh size \(<110 \mathrm{~mm}\). The vessel shall be absent from port no more than 24 h . & x & & x & 205 & 205 & 185* \\
\hline
\end{tabular}
* For memberstates whose quotas less than \(5 \%\) of the Community share of the TACs of both plaice and sole, the number of days at sea shall be 205
** If member states opt foran ove rall kilowatt-days regime, then the maximum number of days at sea per ve ssel could be different to that se t out for 2008 (see text be low and EC 40/2008 for de tails).

Additional provisions were introduced for 2008 (points 8.5-7, Annex IIa, EC 40/2008) to provide Member States greater flexibility in managing their fleets, in order to encourage a more efficient use of fishing opportunities and stimulate fishing practices that lead to reduced discards and lower fishing mortality of both juvenile and adult fish. This measure allowed a Member State that fulfilled the requirements laid out in EC 40/2008 to manage a fleet (i.e. group of vessels with a specific combination of geographical area, grouping of fishing gear and special condition) to an overall kilowattdays limit for that fleet, instead of managing each individual vessel in the fleet to its own days-at-sea limit. The overall kilowatt-days limit for a fleet is initially calculated as the sum of all individual fishing efforts for vessels in that fleet, where an individ-
ual fishing effort is the product of the number of days-at-sea and engine power for the vessel concerned. This provision allowed Member States to draw up fishing plans in collaboration with the Fishing Industry, which could, for example, specify a target to reduce cod discards to below \(10 \%\) of the cod catch, allow real-time closures for juveniles and spawners, implement cod avoidance measures, trial new selective devices, etc.

Incentives of up to 12 additional days at sea per vessel were in place for 2008 to encourage vessels to sign up to a Discard Reduction Plan (points 12.9-10, Annex IIa, EC \(40 / 2008\) ). The plan focused on discarding of cod or other species with discard problems for which a management/recovery plan is adopted, and was to include measures to avoid juvenile and spawning fish, to trial and implement technical measures for improving selectivity, to increase observer coverage, and to provide data for monitoring outcomes. For vessels participating in a Cod Avoidance Reference Fleet Programme in 2008 (points 12.11-14, Annex IIa, EC 40/2008), a further 10-12 additional days at sea was possible (over and above that for the Discard Reduction Plan). Vessels participating in this program were to meet a specific target to reduce cod discards to below \(10 \%\) of cod catches, and be subject to observer coverage of at least \(10 \%\).

Under the provisions laid down in point 8.5 of Annex II (EC 40/2008), Scotland implemented a national kilowatt-days scheme known as the 'Conservation Credits Scheme'. The principle of this two-part scheme involved credits (in terms of additional time at sea) in return for the adoption of and adherence to measures that reduce mortality on cod and lead to a reduction in discard numbers. The initial, basic scheme was implemented from the beginning of February 2008 and essentially granted vessels their 2007 allocation of days (operated as hours at sea) in return for: observance of Real Time Closures (RTC), observance of a one net rule, adoption of more selective gears ( 110 mm square meshed panels in 80 mm gears or 90 mm square meshed panels in 95 mm gear), agreeing to participate in additional gear trials, and participation in an enhanced observer scheme.

For the first part of 2008, the RTC system was designed to protect aggregations of larger, spawning cod \((>50 \mathrm{~cm}\) length). Commercial catch rates of cod observed on board vessels was used to inform trigger levels leading to closures. Ten closures occurred to the beginning of May and protection agency monitoring suggested good observance. The scheme was extended for the remainder of the year to protect aggregations of all sizes of cod. A joint industry/ science partnership (SISP) had a number of gear trials programmed for 2008 examining methods to improve selectivity and reduce discards, and an enhanced observer scheme was announced by the Scottish Government.

Observance of the above conditions also gave eligibility for vessels to participate in the second, enhanced, part of the Conservation Credits scheme.

\section*{2. Changes in fleet dynamics}

The introduction of the one-net rule as part of the Scottish Conservation Credit Scheme and new Scottish legislation implemented in January 2008 were both likely to improve the accuracy of reporting of Scottish landings to the correct mesh size range, although some sectors of the Scottish industry have been granted derogations to continue carrying two nets (seiners until the end of January 2009, and others until the end of April 2008). The concerted effort to reduce cod mortality, through implementation of the Conservation Credit Scheme from February 2008, could have lead to greater effort being exerted on haddock, whiting, monk, flatfish and Nephrops.

Shifts in the UK fleet in 2007/8 included: (a) a move of Scottish vessels using 100110 mm for whitefish on west coast ground (sub-area VI) to the North Sea using 80 mm prawn codends (motivated by fuel costs, and could increase effort on North Sea stocks; the simultaneous requirement to use 110 square mesh panels may mitigate unwanted selectivity implications - see below); (b) a move away from the Farne Deeps Nephrops fishery into other fisheries for whitefish because of poor Nephrops catch rates (implying increased effort in whitefish fisheries); and (c) a move of Scottish vessels from twin trawls to single rig, and increased use of pair trawls, seines and double bag trawls (motivated by fuel costs). For 2008 in the Scottish fleet, all twin-rig gear in the \(80-99 \mathrm{~mm}\) category have to use a 110 mm square mesh panel, but this also applied to single-rig gears from July 2008 onwards, which was likely to have improved whitefish selection. A large number of 110 mm square mesh panels have been bought by Scottish fishers at the beginning of 2008 in order to qualify for the Conservation Credit Scheme, which dramatically improved the uptake of selective gear. The ban on the use of multi-rigs in Scotland, implemented in January 2008, may have limited the potential for an uncontrolled increase in effective effort.

The Dutch fleet was reduced, through decommissioning, by 23 vessels from the beginning of 2008, while 5 Belgian beam trawlers (approximately 5\% of the Belgian fleet) left the fishery in 2007, both changes implying reductions in effort in the beam trawl sector. The introduction of an ITQ regulation system in Denmark in 2007 might have influenced the effort distribution over the year, but this should not have affected the total Danish effort deployed or the size distribution of catches.
Dutch beam trawlers have gradually shifted to other techniques such as twin trawling, outrigging and fly-shooting, as well as opting for smaller, multi-purpose vessels, implying a shift in effort away from flatfish to other sectors. These changes were likely caused by TAC limitations on plaice and sole, and rising fuel costs. Belgian and UK vessels have also experimented with outrigger trawls as an alternative to beam trawling, motivated by more fuel efficient and environmentally friendly fishing methods.

The increased effort costs in the Kattegat (2.5 days at sea per effort day deployed) in 2008 has led to a shift in effort by Swedish vessels to the Skagerrak and Baltic Sea. There has also been an increase in the number of Swedish Nephrops vessels in recent years, attributed to the input of new capital transferred from pelagic fleets following the introduction of an ITQ-system for pelagic species, and leading to further increases in effort. The Swedish trawler fleet operating in IIIa has had a steady increase in the uptake of the Nephrops grid since the introduction of legislation in 2004 (use of the grid is mandatory in coastal waters), and given the strong incentives to use the grid (unlimited days at sea). Uptake of the Nephrops grid should have resulted in improved selection.

A squid fishery in the Moray Firth has continued to develop using very unselective 40 mm mesh when squid species are available on the grounds. Although the uptake was poor in 2007 due to the lack of squid, the potential for high bycatches of young gadoids in future, including those of cod and haddock, remains. This fishery may provide an alternative outlet for the Scottish Nephrops fleet seasonally, and hence reduce effort in the Nephrops sector.

\section*{A.3. Ecosystem aspects}

Cod are predated upon by a variety of species through their life history. The Working Group on Multi-species Assessment Methods (ICES-WGSAM 2008) estimated
predation mortalities using SMS (Stochastic Multi Species Model) with diet information largely derived from the Years of the Stomach databases (stomachs sampled in the years 1981-1991). Long-term trends have been observed in several partial predation mortalities with significant increases for grey gurnard preying on 0group cod. In contrast, predation mortalities on age 1 and age 2 cod decreased over the last 30 years due to lower cannibalism. Predation on older cod (age 3-6) increased due to increasing numbers of grey seals in the North Sea. .
SMS identified grey gurnard as a significant predator of 0 -group cod. The abundance of grey gurnard (as monitored by IBTS) is estimated to have increased in recent years resulting in a rise in estimated predation mortality from 1.08 to 1.76 between 1991 and 2003. A degree of caution is required with these estimates as they assume that the spatial overlap and stomach contents of the species has remained unchanged since 1991. Given the change in abundance of both species this assumption is unlikely to hold and new diet information is required before 0 -group predation mortalities can berelied upon.

Several other predators contribute to predation mortality upon 0-group cod, whiting and seabirds being the next largest components.
The consumption of cod in the North Sea in 2002 by grey seals (Halichoerus grypus) has recently been estimated (Hammond and Grellier 2006). For the North Sea it was estimated that in 1985 grey seals consumed 4150 tonnes of cod ( \(95 \%\) confidence intervals: 2484-5760 tonnes), and in 2002 the population tripled in size (21-68 000) and consumed 8344 tonnes ( \(95 \%\) confidence intervals: 5028-14941 tonnes). These consumption estimates were compared to the Total Stock Biomass (TSB) for cod of 475000 tonnes and 225000 tonnes for 1985 and 2002 respectively. The mean length of cod in the seal diet was estimated as 37.1 cm and 35.4 cm in 1985 and 2002 respectively. It should be noted, how ever, that seal diet analysis must be treated with a degree of caution because of the uncertainties related to modelling complex processes (e.g. using scat analysis to estimate diet composition involves complex parameters, and can overestimate species with more robust hard parts), and the uncertainties related to estimating seal population size from pup production estimates (involving assumptions about the form of density-dependent dynamics). The analysis may also be subject to bias because scat data from haul-out sites may reflect the composition of prey close to the sites rather than further offshore.
The effect of seal predation on cod mortality rates has been estimated for the North Sea within a multi-species assessment model (MSVPA), which was last run in 2007 during the EU project BECAUSE (contract number SSP8-CT-2003-502482) using revised estimates of seal consumption rates . The grey seal population size was obtained from WGMME (ICES-W GMME 2005) and was assumed to be 68,000 in 2002 and 2003 respectively. Estimates of cod consumption were 9657 tonnes in 2002 and 5124 tonnes in 2003, which is similar to the values estimated by Hammond and Grellier (2006). Sensitivity analysis of the North Sea cod stock assessment estimates to the inclusion of the revised multi-species mortality rates were carried out at the 2009 meeting of the WKROUND. Inclusion of the multi-species mortality rates for older ages of cod had a relatively minor effect on the high levels of estimated fishing mortality rates and low levels of spawning stock biomass abundance. This suggests that the estimates of seal predation will not alter the current perception of North Sea cod stock dynamics (also stated by STECF-SGRST-07-01).

A recent meeting (2007) of the STECF reviewed the broad scale environmental changes in the north-eastern Atlantic that has influenced all areas under the cod recovery plan (STECF-SGRST-07-01), and concluded that:
- Warming has occurred in all areas of the NW European shelf seas, and is predicted to continue.
- A regime shift in the North Sea ecosystem occurred in the mid-1980s.
- These ecological changes have, in addition to the decline in spawning stock size, negatively affected cod recruitment in all areas.
- Biological parameters and reference points are dependent on the time-period over which they are estimated. For example, for North Sea cod FMSY, MSY and BMSY are lower when calculated for the recent warm period (after 1988) compared to values derived for the earlier cooler period.
- The decline in FMSY, MSY and BMSY can be expected to continue due to the predicted warming, and possible future change should be accounted for in stock assessment and management regimes.
- Modelling shows that under a changing climate, reference points based on fishing mortality are more robust to uncertainty than those based on biomass.
- Despite poor recruitment, modelling suggests that cod recovery is possible, but ecological change may affect the rate of recovery, and the magnitude of achievable stock sizes.
- Recovery of cod populations may have implications to their prey species, including Nephrops.
With the exception of the general effects noted above, the overall conclusion from the STECF meeting (STECF-SGRST-07-01) for the North Sea was that there is no specific significant environmental or ecosystem change in the Skagerrak, North Sea and eastern Channel (e.g. the effects of gravel extraction, etc.) affecting potential cod recovery. The conclusions from the STECF meeting merit further discussion within ICES, which is ongoing (e.g. ICES-WKREF 2007).

\section*{B. Data}

\section*{B. 1. Commercial catch}

The WG estimate for landings from the three areas (IV, IIIa-Skagerrak and VIId) in 2006 and 2007 were based on annual data, as opposed to quarterly data prior to 2006, because of ongoing difficulties with international data aggregation procedures, particularly with regard to discard raising.
France, Belgium and Sweden, who respectively landed \(9 \%, 5 \%\) and \(2 \%\) of all cod for combined area IV and VIId, do not provide discard estimates for this combined area. Similarly, Belgium and Germany, who each land \(2 \%\) of all cod in area IIIa, do not provide discard estimates for this area. Norw egian discarding is illegal, so although this nation landed \(14 \%\) and \(6 \%\) of all cod in combined area IV and VIId, and area IIIa respectively, it does not provide discard estimates. Although the Netherlands (7\% of all cod landed in IV and VIId, \(1 \%\) in IIIa) does provide discard data for area IV, these are based on very low sample sizes for cod, and are therefore not reliable enough to be raised to fleet level. All percentages quoted in this paragraph refer to landings in 2007.

Discard numbers-at-age were estimated for areas IV and VIId by applying the Scottish discard ogives to the international landings-at-age for years prior to 2006. For 2006, Denmark was excluded from this calculation as they provided their own discard estimates. For 2007, Scottish, Danish, German and England \& Wales discard estimates were combined (sum of discards divided by sum of landings) and used to raise landings-at-age from the remaining nations in sub-area IV to account for missing discards. Discard numbers-at-age for IIIa-Skagerrak were based on observer sampling estimates. For 2006 and 2007, Danish and Swedish discard estimates were combined (sum of discards divided by sum of landings) and used to raise landings-at-age from the remaining nations in Division IIIa-Skagerrak to account for missing discards. Although in some cases other nations' discard proportions were available for a range of years, these have not been transmitted to the relevant WG data coordinator in an appropriate form for inclusion in the international dataset.

For cod in IV, IIIa-Skagerrak and VIId, ICES first raised concerns about the misreporting and non-reporting of landings in the early 1990s, particularly when TACs became intentionally restrictive for management purposes. Some WG members have since provided estimates of under-reporting of landings to the WG, but by their very nature these are difficult to quantify. In terms of events since the mid-1990s, the WG believes that under-reporting of landings may have been significant in 1998 because of the abundance in the population of the relatively strong 1996 year-class as 2 -yearolds. The landed weight and input numbers at age data for 1998 were adjusted to include an estimated 3000t of under-reported catch. The 1998 catch estimates remain unchanged in the present assessment.
For 1999 and 2000, the WG has no a priori reason to believe that there was significant under-reporting of landings. However, the substantial reduction in fishing effort implied by the 2001, 2002 and 2003 TACs is likely to have resulted in an increase in unreported catch in those years. Anecdotal information from the fisheries in some countries indicated that this may indeed have been the case, but the extent of the alleged under-reporting of catch varies considerably. Since the WG has no basis to judge the overall extent of under-reported catch, it has no alternative than to use its best estimates of landings, which in general are in line with the officially reported landings. An attempt is made to incorporate a statistical correction to the sum of reported landings and discards data in the assessment of this stock. Buyers and Sellers legislation introduced in the UK towards the end of 2005 is expected to have improved the accuracy of reported cod landings for the UK. This has brought the UK in line with existing EU legislation.

\section*{1 Age compositions}

Age compositions are currently provided by Denmark, England, Germany, the Netherlands, Scotland and Sweden.

Landings in numbers at age for age groups 1-11+ and 1963-present form the basis for the catch at age analysis but do not include industrial fishery by-catches landed for reduction purposes. By-catch estimates are available for the total Danish and Norwegian small-meshed fishery in Sub-area IV and separately for the Skagerrak.
During the five years 2003-2007, an average of \(82 \%\) ( \(84 \%\) in 2007) of the international landings in number were accounted for by juvenile cod aged 1-3. In 2007, age 1 cod comprised \(32 \%\) of the total catch by number, and age 2 (the 2005 year class), \(55 \%\).
Estimated total numbers discarded have varied between 35 and \(55 \%\) of the total catch numbers since 1995, but have shown an increase to above \(70 \%\) in 2006 and 2007, due
to the stronger 2005 year class entering the fishery (estimated to be almost the size of the 1999 year class), and a mismatch between the TAC and effort. Historically, the proportion of numbers discarded at age 1 have fluctuated around \(80 \%\) with no decline apparent after the introduction of the 120 mm mesh in 2002. For 2004-2007, it is estimated to be at around \(90 \%\). At ages 2 and 3 discard proportions have been increasing steadily and are currently estimated to be \(75 \%\) and \(38 \%\) respectively in 2007. Note that these observations refer to numbers discarded, not weight.

\section*{2 Data exploration}

Data exploration for commercial catch data for North Sea cod currently involves:
(a) expressing the total catch-at-age matrix as proportions-at-age, normalised over time, so that year classes making above-average contributions to the catches are shown as large positive residuals (and vice-versa for below-average contributions);
(b) applying a separable VPA model in order to examine the structure of the catch numbers-at-age before they are used in catch-at-age analyses, in particular whether there are large and irregular residuals patterns that would lead to concerns about the way the recorded catch has been processed;
(c) performing log-catch-curve analyses to examine data consistency, fishery selectivity and mortality trends over time - the negative slope of a regression fitted to ages down a cohort (e.g. ages 2-4) can be used as a proxy for total mortality.

\section*{B.2. Biological Information}

\section*{1 Weight at age}

Mean catch weight-at-age is a catch-number weighted average of individual catch weight-at-age, available by country, area and type (i.e. landings and discards). For ages 1-9 there have been short-term trends in mean weight at age throughout the time series with a decline over the recent decade at ages \(3-5\) that recently seems to have been reversed. The data also indicate a slight downward trend in mean weight for ages 3-6 during the 1980s and 1990s. Ages 1 and 2 show little absolute variation over the long-term.

Using weight-at-age from annual ICES assessments and International Bottom Trawl Surveys, Cook et al. (1999) developed a model that explained weight-at-age in terms of a von Bertalanffy growth curve and a year-class effect. They found that the yearclass effect was correlated with total and spawning stock biomass, indicating densitydependent growth, possibly through competition. Further evidence for densitydependent growth had previously been found by others (Houghton and Flatman 1981, Macer 1983 and Alphen and Heessen 1984), although they pointed to different mechanisms (Rijnsdorp et al. 1991, ICES 2005). Results from Macer (1983) imply that juvenile cod compete strongly with adults, while the data from Alphen and Heessen (1984) suggest strong within-year-class competition during the first three years of life.

Growth rate can be linked to temperature and prey availability (Hughes and Grand 2000, Blanchard et al. 2005). Growth parameters of North Sea cod given in ICES (1994) demonstrate that cod in the southern North Sea grow faster than those in the north, but reach a smaller maximum length (Oosthuizen and Daan 1974, ICES 2005). Furthermore, older and larger cod have lower optimal temperatures for growth (Björnsson and Steinarsson 2002), and distributions of cod are known to depend on
the local depth and temperature (Ottersen et al. 1998, Swain 1999, Blanchard et al. 2005)

Differences in mean length by age and sex can also be found for mature vs. immature cod (ICES 2005). For example, Hislop (1984) found that within an age group, mature cod of each sex are, on average, larger than immature cod.

\section*{2 Maturity and natural mortality}

Values for natural mortality are assumed to be variable in time. The natural mortality values are model estimates from multi-species models (SMS and 4 M ) fitted by the Working Group on Multi Species Assessment Methods (ICES-WGSAM 2008, see Table XXX.1).

The maturity values are applied to all years and are left unchanged from year to year. They were estimated using the International Bottom trawl Survey series for 19811985. These values were derived for the North Sea.
\begin{tabular}{|l|l|}
\hline Age group & Proportion mature \\
\hline 1 & 0.01 \\
\hline 2 & 0.05 \\
\hline 3 & 0.23 \\
\hline 4 & 0.62 \\
\hline 5 & 0.86 \\
\hline 6 & 1.0 \\
\hline \(7+\) & 1.0 \\
\hline
\end{tabular}

Relative fecundity appears to have changed over time, with values in the late 1980s being approximately \(20 \%\) higher than those in the early 1970s, an increase that coincided with a 4 -fold decline in spawning stock biomass (Rijnsdorp et al.1991, ICES 2005).

In an analysis of International Bottom Trawl Survey maturity data, Cook et al. (1999) found that proportion of fish mature at age is a function of both weight and age. They used a descriptive model based on both age and weight to reconstruct the historical series of maturity ogives where no observations existed, and calculated new spawning stock sizes that could be compared to those estimated by the conventional assessment. They found that, although accounting for changes in growth and maturity for North Sea cod altered the scale of SSB values, it did not make substantial changes to trajectories over time, and did not substantially alter the estimates of sustainable exploitation rates for the stock.

\section*{3 Recruitment}

Recruitment has been linked not only to SSB, but also to temperature (Dickson and Brander 1993, Myers et al. 1995, Planque and Fredou 1999, O'Brien et al. 2000) plankton production timing and mean prey size (Beaugrand et al. 2003), and the NAO (Brander and Mohn 2004, ICES 2005).

\section*{B.3. Surveys}

Four survey series are available for this assessment:
- English third-quarter groundfish survey (EngGFS), ages 0-7, which covers the whole of the North Sea in August-September each year to about 200m depth using a fixed station design of 75 standard tows. The survey was conducted
using the Granton trawl from 1977-1991 and with the GOV trawl from 1992present. Only ages 1-6 should be used for calibration, as catch rates for older ages are very low.
- Scottish third-quarter groundfish survey (ScoGFS): ages \(1-8\). This survey covers the period 1982-present. This survey is undertaken during August each year using a fixed station design and the GOV trawl. Coverage was restricted to the northern part of the North Sea until 1998, corresponding to only the northernmost distribution of cod in the North Sea. Since 1999, it has been extended into the central North Sea and made use of a new vessel and gear. Only ages 1-6 should be used for calibration, as catch rates for older ages are very low.
- Quarter 1 international bottom-trawl survey (IBTSQ1): ages \(1-6+\), covering the period 1976-present (usually data are available up to the year of the assessment for this survey, whereas it is only available up to the year prior to the assessment year for the other surveys). This multi-vessel survey covers the whole of the North Sea using fixed stations of at least two tows per rectangle with the GOV trawl.
- Quarter 3 international bottom-trawl survey (IBTSQ3): ages \(0-6+\), covering the period 1991-present. This multi-vessel survey covers the whole of the North Sea using fixed stations of at least two tows per rectangle with the GOV trawl. The Scottish and English third quarter surveys described above contribute to this index.

The recent dominant effect of the size and distribution of the 1996 and, to a lesser extent, the 1999 and 2005 year classes are clearly apparent from maps of the IBTS distribution of cod (ages 1-3+). However, fish of older ages have continued to decline due to the very weak 2000, 2002 and 2004 year-classes. The abundance of \(3+\) fish is at a low level in recent years.

An analysis of the third quarter Scottish and English survey data by ParkerHumphries and Darby (WD 24 in ICES-WGNSSK 2006) showed that the extremely high catch rates estimated for ages 2-4 in a single station in the third quarter Scottish survey in 2004 resulted in the estimation of a strong reduction in mortality in 2004 followed by high mortality in 2005. When the station with high catch rates was removed, total mortality was then consistent with values obtained in previous years. The WG agreed that it would be ad hoc and statistically inappropriate to remove the station from the calculation of the Scottish index. After reviewing the information available on survey catch rates and spatial distribution, the WG decided to discontinue the use of the English and Scottish surveys on their own in the cod assessment because of the current low catch rates recorded by these surveys and the potential for noise at the oldest ages due to low sampling levels. Instead, the WG decided to use the IBTSQ3 survey, which incorporates both the Scottish and English surveys, together with the IBTSQ1 survey.

An analysis of IBTSQ1 data by Rindorf and Vinther (WD 4 in ICES-WGNSSK 2007) illustrated the increased importance of recruitment from the Skagerrak. Up until 2008 (ICES-WGNSSK 2008) the survey indices from IBTSQ1 and Q3 used in the stock assessment only include catch rates from the three most easterly rectangles of Skagerrak. More of the Skagerrak area should be considered for inclusion in the IBTS standard areas for abundance indices, in order to produce an unbiased abundance index for the management unit (IV, IIIa-Skagerrak and VIId) of cod. Furthermore, the Skagerrak is almost entirely covered by a single vessel in both the BTSQ1 and Q3
surveys. This is not advantageous as it does not allow for a comparison of cod catchability between vessels, which is essential for comparison of catch rates between roundfish areas. In the North Sea, each rectangle is covered by at least 2 nations to reduce bias in indices.

WKROUND (2009) compared the standard and extended IBTS index for ages 1-5 for IBTSQ1 and 1-4 for IBTSQ3 with an extended are index. The largest changes in abundance were observed at the younger ages, particularly for age 0 in IBTSQ3 (not used in the assessment). Residual plots indicated a slight improvement in fit for the extended indices run compared to the standard indices run. Given the improved fit for the extended indices and other benefits of using these indices (such as better coverage of the stock distribution area) the group recommended that it would be beneficial for North Sea cod to use the extended indices in future assessments.

\section*{1 Data exploration}

Data exploration for survey data for North Sea cod currently involves:
(a) expressing the survey abundance indices (IBTSQ1 and IBTSQ3) in log-mean standardised form, both by year and cohort, to investigate whether there are any year effects, and the extent to which the surveys are able to track cohort signals;
(b) performing log-catch-curve analyses on the abundance indices to examine data consistency and mortality trends over time - the negative slope of a regression fitted to ages down a cohort (e.g. ages 2-4) can be used as a proxy for total mortality;
(c) performing within-survey consistency plots (correlation plots of a cohort at a given age against the same cohort one or more years later) to investigate selfconsistency of a survey;
(d) performing between-survey consistency plots (correlation plots of a given age for IBTSQ1 against the same age for IBTSQ3) to investigate the consistency between surveys;
(e) applying a SURBA analysis to the survey data for comparison with models that include fishery-dependent data.

\section*{B.4. Commercial CPUE}

Reliable, individual, disaggregated trip data were not available for the analysis of CPUE. Since the mid-to-late 1990s, changes to the method of recording data means that individual trip data are now more accessible than before; how ever, the recording of fishing effort as hours fished has become less reliable because it is not a mandatory field in the logbook data. Consequently, the effort data, as hours fished, are not considered to be representative of the fishing effort actually deployed.
The WG has previously argued that, although they are in general agreement with the survey information, commercial CPUE tuning series should not be used for the calibration of assessment models due to potential problems with effort recording and hyper-stability (ICES-WGNSSK 2001), and also changes in gear design and usage, as discussed by ICES-WGFTFB \((2006,2007)\). Therefore, although the commercial fleet series are available, only survey and commercial landings and discard information are analysed within the assessment presented.

\section*{B.5. Other relevant data}

The annual North Sea Fishers' Survey presents fishers' perceptions of the state of several species including cod; the survey covers the years 2003-2008, (Laurenson, 2008). In addition, a number of collaborative research projects are reported to the WGNSSK each year. To date the studies providing time series of quantitative information have been relatively local, whereas those with wider coverage have been qualitative. The studies have therefore been used to corroborate assessment results and highlight differences in perception. The studies have proven useful in examining the dynamics of sub-stocks within the North Sea, for instance local recruitment, and thereby in the provision of advice to managers.

\section*{C. Historical Stock Development}

\section*{1 Available stock assessment models}

There are currently two models that could be used to provide an assessment of North Sea cod, namely B-Adapt and SAM. Both models estimate an annual catch multiplier, which appears to be necessary for any assessment of this stock (ICES-WGNSSK 2008). B-Adapt is currently used as a basis for ICES advice for North Sea cod (ICESWGNSSK 2008). Further details about B-ADAPT can be found in Darby (WD15 in ICES-WGNSSK 2004), and about SAM in ICES-WKROUND (2009) Annex 5, which discusses general aspects and in Nielsen (WD14 in ICES-W KROUND 2009). A comparison of these two methods appears in ICES-WGNSSK (2008).

\section*{2 Model used as a basis for advice}

The North Sea cod assessment is based on B-ADAPT (Darby, WD15 in ICESWGNSSK2004), a variation of ADAPT-VPA (Gavaris 1988), developed specifically to handle the problem of mis-reported catch (ICES-WGNSSK 2008). B-ADAPT corrects for retrospective bias by estimating the quantity of additional "unallocated removals" that would be required to be added or removed from the catch-at-age data in order to remove any persistent trends in survey catchability. The model therefore uses survey information to estimate additional mortality not represented by recorded landings, estimated discards and the assumed levels of natural mortality.

Model used: B-ADAPT
Software used: ADAPT_16_04_07.exe
Model Options chosen:
Settings used at the 2008 WGNSSK meeting (ICES-WGNSSK 2008):
[Note " \(\rightarrow\) " on a new numbered line with no text indicates pressing the return button with NO input (i.e. accepting the default). Thus in the second line below, " \(\rightarrow \rightarrow \rightarrow\) " implies accepting the default three consecutive times. Furthermore an asterisk "*" next to an input indicates that that input will change from year to year, accounting for an additional year of data, or an appropriate assumption about the intermediateyear F-multiplier.]
```

1. Please input [path]name of stock index file }->\mathrm{ cod347.idx
2. }->->
3. Please give last age: <default=15> > 7
4. }
5. Your choice? <default=1> }->
6. }->
```

```

8. }
```

\section*{[Central Menu appears]}
```

9. Please select one of the options }->\mathrm{ \
10. }
11. Enter report name
(LPT1 for line printer) }->\mathrm{ codrep.csv
12. }
13. Do you wish to use the survey data for the year after the final catch at
age year? Y/<N> -> Y
14. F multiplier <1.0> > 0.9*
15. Exact VPA (V) or Cohort analysis <C> }->\textrm{V
16. Fleet 1
First age of constant catchability (Fleet range: 1-4) <Default: 3> }->\mathrm{ (
Age for the catchability plateau (Fleet range: 1-4) <Default: 4> }->\mathrm{ (5
17. Fleet 2
First age of constant catchability (Fleet range: 0-3) <Default: 3> }->
Age for the catchability plateau (Fleet range: 0-3) <Default: 4> -> 3
18. }
19. Estimate missing year catch multipliers? <N>/Y }->\mathrm{ Y
20. Enter the number of years for catch multiplier
Maximum: 45 <Default 1> }->\mathrm{ 15*
21. }->->->
22. Use inverse variance weighting? <Y>/N -> N
23. }
24. Constrain Catch? Y/<N> -> Y
25. }->
```
[Program will run and Central Menu will re-appear. If bootstraps required, continue to 26, else go to next comment after 66.]
```

26. Please select one of the options: }\boldsymbol{->
27. Please give [path]name of fleet effort and catch data file }
cod347_2008.tun*
28. }
29-41. {Repeat 13-25}
29. Do you run predictions? Y/<N> -> Y
30. First year with SSB: <default = 1964> \ }199
31. Last year <default = 2004> > 2007*
32. Model type:
Shepherd
Bever
Ricker
```
```

 Geometric mean
 Bootstrap - P }->\textrm{P
 46. }
4 7 .
```

```

 F option range - R }->\textrm{M
 48. F multiplier }->\mathrm{ 0.9*
49-66. {Repeat 47-48 nine times}
```
[If requested, program runs bootstraps. Central Menu re-appears. Save output files.]
67. Please select one of the options: \(\rightarrow 9\)
68. Please select required tables \(\rightarrow 16\)
69. Enter report filename
(LPT1 for line printer) \(\rightarrow\) codout.csv

\section*{[End program]}
70. Please select one of the options: \(\rightarrow 0\)

Input data types and characteristics:
\begin{tabular}{|l|l|l|l|l|}
\hline Type & Name & Year range & Age range & \begin{tabular}{l} 
Variable from \\
year to year \\
Yes/No
\end{tabular} \\
\hline Caton & Catch in tonnes & 1963-present & - & Y \\
\hline Canum & Catch at age in numbers & 1963 -present & \(1-7+\) & Y \\
\hline Weca & \begin{tabular}{l} 
Weight at age in the \\
commercial catch
\end{tabular} & 1963 -present & \(1-7+\) & Y \\
\hline West & \begin{tabular}{l} 
Weight at age of the \\
spawning stock at spawning \\
time.
\end{tabular} & \begin{tabular}{l} 
Weca used \\
for West
\end{tabular} & \begin{tabular}{l} 
Weca used \\
for West
\end{tabular} & \begin{tabular}{l} 
Weca used for \\
West
\end{tabular} \\
\hline Mprop & \begin{tabular}{l} 
Proportion of natural \\
mortality before spawning
\end{tabular} & 1963 -present & \(1-7+\) & N \\
\hline Fprop & \begin{tabular}{l} 
Proportionof fishing \\
mortality before spawning
\end{tabular} & 1963 -present & \(1-7+-\) & N \\
\hline Matprop & Proportion mature at age & 1963-present & \(1-7+\) & N \\
\hline Natmor & Natural mortality & \(1963-2007^{*}\) & \(1-7+\) & Y \\
\hline
\end{tabular}
*Updated values for natural mortality will only be provided every 2 years

Tuning data:
\begin{tabular}{|l|l|l|l|}
\hline Type & Name & Year range & Age range \\
\hline Tuning fleet1 & IBTS-Q1 & \begin{tabular}{l} 
1983-final year ofcatch \\
data +1
\end{tabular} & \(1-5\) \\
\hline Tuning fleet2 & IBTS-Q3 & \begin{tabular}{l} 
1991-final year ofcatch \\
data
\end{tabular} & \(1-4\) \\
\hline
\end{tabular}

\section*{Recruitment estimation;}

Estimation of recruitment relies on the age-structure in the catch and survey data, but stock-recruit parameters are not estimated internally in the B-Adapt assessment model. Furthermore, when performing short-term projections in order to evaluate future stock dynamics, estimates of recruitment are not based on a stock-recruit function, but instead are sampled from the year-classes 1997-most recently estimated year-class, reflecting recent low levels of recruitment, but including the stronger 1999 and 2005 year classes.

\section*{D. Short-Term Projection}

Due to the uncertainty in the final year estimates of fishing mortality, the WG agrees that a standard (deterministic) short-term forecast is not appropriate for this stock. Therefore, stochastic projections are performed, from which short-term projections are extracted. The stochastic projections are carried out using each of 1000 nonparametric bootstrap iterations. These projections are an extension of the program that provides the final B-Adapt assessment, and therefore the assessment and stochastic projections are self-consistent.

Model used: B-ADAPT
Software used: ADAPT_16_04_07.exe
Initial stock size:
Starting populations taken from each bootstrap iteration.
Maturity:
Average of final three years of assessment data (constant for North Sea cod).
Natural mortality:
Average of final three years of assessment data.
\(F\) and \(M\) before spawning:
Both taken as zero.
Weight at age in the catch:
Average of final three years of assessment data.
Weight at age in the stock:
Same as weight at age in the catch.
Exploitation pattern:
Fishing mortalities taken as a three year aver age scaled to the final year.
Intermediate year assumptions:
Multiplier reflecting intended changes in effort (and therefore F) relative to the final year of the assessment

Stock recruitment model used:
Recruitment is re-sampled from the year classes 1997-most recently estimated yearclass; for ICES-WGNSSK (2008), these comprised eight years with low recruitment and two with the slightly higher levels (1999 and 2005 year classes). This is a conser-
vative estimate to account for the possibility that the low levels estimated in the last few years may continue.

Procedures used for splitting projected catches:
For the purposes of the forecast, the WG assumes that future removals due to fishing comprise only landings and discards. Landings and discards in the forecasts were estimated by applying the landings- and discard-at-age ratios for 2007 to total fishing mortality-at-age for the projection period.

\section*{E. Medium-Term Projections}

Medium-term projections are not carried out for this stock.

\section*{F. Long-Term Projections}

Long-term projections are not carried out for this stock.

\section*{G. Biological Reference Points}

The Precautionary Approach reference points for cod in IV, IIIa (Skagerrak) and VIId have been unchanged since 1998. They are:
\begin{tabular}{|c|c|c|c|}
\hline & Type & V alue & Technical basis \\
\hline \multirow{4}{*}{Precautionary approach} & Blim & 70000 t & Bloss (~1995) \\
\hline & \(\mathrm{B}_{\mathrm{pa}}\) & 150000 t & \(\mathrm{B}_{\mathrm{pa}}=\) Previo us MBAL and signs of impaired recruitment below 150000 t . \\
\hline & Flim & 0.86 & Flim \(=\) Floss ( 1995) \\
\hline & \(\mathrm{F}_{\mathrm{p} a}\) & 0.65 & \(\mathrm{Fpa}_{\mathrm{p}}=\) Approx. 5 th percentile of Floss, implying an equilibrium bio mass \(>\mathrm{Bpa}\). \\
\hline Targets & Fy & 0.4 & EU/Norway agreement December 2009 \\
\hline
\end{tabular}

Unchanged since 1998

Yield and spazning biomass per Recruit F-reference points:
\begin{tabular}{llll}
\hline & \begin{tabular}{l} 
Fish Mort \\
Ages 2-4
\end{tabular} & Yield/R & SSB/R \\
\hline \(\mathrm{F}_{\max }\) & 0.25 & 0.69 & 2.1 \\
\(\mathrm{~F}_{0.1}\) & 0.16 & 0.69 & 3.2 \\
\(\mathrm{~F}_{\text {med }}\) & 0.81 & 0.51 & 0.3 \\
\hline
\end{tabular}

Estimate by ICES in 2009, assuming constant maturity and variable M , with M and stock weights averaged over the period 2000-2007. Se lectivity is a ve raged over 2005-2007, and scaled to 2007.

\section*{H. Other Issues}

No other issues.

\section*{I. References}

Alphen, J. v., and Heessen, H. J. L. 1984. Variation in length at age of North Sea cod. ICES CM 1984/G:36.

Andrews, J.M., Gurney, W.S.C., Heath, M.R., Gallego, A., O'Brien, C.M., Darby, C., and Tyldesley, G. 2006. Modelling the spatial de mography of Atlantic cod (Gadus morhua) on the European continental shelf. Can. J. Fish. Aquat. Sci. 63: 1027-1048.

Beaugrand, G., Brander, K.M., Lindley, J.A., Souissi, S., and Reid, P.C. 2003. Plank ton effect on cod recruitment in the North Sea. Nature, 426: 661-664.
Bedford, B.C., 1966. English cod tagging experiments in the North Sea. International Council for the Exploration of the Sea (CM Papers and Reports), CM 1966/G:9, 28 pp.

Björnsson, B., and Steinarsson, A. 2002. The food-unlimited growth rate of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 59: 494-502.

Blanchard, J.L., Mills, C., Jennings, S., Fox, C.J., Rackham, B.D., Eastwood, P.D., and O’Brien, C.M. 2005. Distribution-abundance relationships for North Sea Atlantic cod (Gadus morhua): observation versus theory. Canadian Journal of Fisheries and Aquatic Sciences, 62: 2001-2009.

Brander, K. M. 1994. The location and timing of cod spawning around the British Isles. ICES Journal of Marine Science, 51:71-89.

Cook, R.M., Kunzlik, P.A., Hislop, J.R.G. and Poulding, D. 1999. Models of Growth and Maturity for North Sea cod. J. Northw. Atl. Fish. Sci. 25: 91-99.

Daan, N. 1978. Changes in cod stocks and cod fisheries in North Sea. Rapports et Procèsverbaux des Réunions du Conseil International pour l'Exploration de la Mer, 172, 39-57.
Dickson, R.R., and Brander, K.M. 1993. Effects of a changing windfield on cod stocks of the North Atlantic. Fisheries Oceanography 2: 124-153.

Fox, C.J., Taylor, M., Dickey-Collas, M., Fossum, P., Kraus, G., Rohlf, N., Munk, P., van Damme, C.J.G., Bolle, L.J., Maxwell, D.L., and Wright, P.J. 2008. Mapping the spawning grounds of North Sea cod (Gadus morhua) by direct and indirect means. Proc. R. Soc. B. 275: 1543-1548.

Fryer RJ, 2002. TSA: is it the way? Appendix D in report of Working Group on Methods on Fish Stock Assessment. ICES CM 2002/D:01.

Gudmundsson, G. (1987). Time series models of fishing mortality rates. ICES C.M. d:6.
Gudmundsson, G. (1994). Time series analysis of catch-at-age observations. Appl. \(\sim\) Statist. 43 117-126.
Hammond, P.S. and Grellier, K. 2006. Grey seal diet composition and prey consumption in the North Sea. Final report to Scottish Executive Environment and Rural Affairs Department and Scottish Natural Heritage; 2006.

Heath, M.R., Kunzlik, P.A., Gallego, A., Holmes, S.J., and Wright, P.J. 2008. A model of metapopulation dynamics for North Sea and West of Scotland cod - the dynamic consequences of natal fidelity. Fisheries Research 93: 92-116.
Hedger, R., Mckenzie, E., Heath, M., Wright, P., Scott, E., Gallego, A., and Andrews, J. 2004. Analysis of the spatial distributions of mature cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) abundance in the North Sea (1980e1999) using generalised additive models. Fisheries Research, 70:17-25.

Hislop, J.R.G. 1984. A comparison of the reproductive tactics and strategies of cod, haddock, whiting and Norway pout in the North Sea. In: Fish reproduction-strategies and tactics, pp. 311-330. Ed. by Potts and Wootton. Academic Press, London: 424 pp.

Holmes, S.J., Wright, P.J., and Fryer, R.J. 2008. Evidence from survey data for regional variability in cod dynamics in the North Sea and West of Scotland. ICES Journal of Marine Science 65: 206-215.

Houghton, R.G., and Flatman, S. 1981. The exploitation pattern, density-dependent catchability and growth of cod (Gadus morhua) in the west-central North Sea. Journal du Conseil International Pour l'Exploration de la Mer, 39: 271-287.

Horwood, J., O’Brien, C., and Darby, C. 2006. North Sea cod recovery? ICES J. Mar. Sci. 63: 961968.

Hughes, N.R. and Grand, T.C. 2000. Physiological ecology meets the ideal-free distribution: predicting the distribution of size-structured fish populations across temperature gradients. Environ. Biol. Fishes 59: 285-298.

Hutchinson, W.F., Carvalho, G.R., \& Rogers, S.I. 2001. Marked genetic structuring in localised spawning populations of cod Gadus morhua in the North Sea and adjoining waters, as revealed by microsatellites. Marine Ecology Progress Series. 223: 251-260.

ICES. 1994. Spawning and life history information for North A tlantic cod stocks. ICES Cooperative Research Report 205: 150 pp.
ICES 2005. Spawning and life history information for North Atlantic cod stocks. ICES Cooperative Research Report 274: 152pp.

ICES-NSRWG 1971. Report by the North Sea Roundfish Working Group on North Sea Cod. ICES/Demersal Fish Comm F:5: 1-35.
ICES-WGFTFB 2006. Report of the Working Group on Fish Technology and Fish Behaviour. ICES CM 2006/FTC:06.
ICES-WGFTFB 2007. ICES - FAO Working Group on Fishing Technology \& Fish Behaviour [A pril 2007 report not yet available].
ICES-WGMME 2005. Report of the Working Group on Marine Mammal Ecology (WGMME). ICES CM2005/ACE:05.
ICES-WGNSSK 2001. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, 19-28 June 2001, Hamburg, Germany. ICES CM 2002/ACFM:01.

ICES-WGNSSK 2003. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak (WGNSSK), 9-18 September 2003, Boulogne-sur-Mer, France. ICES CM 2004/ACFM:07.
ICES-WGNSSK 2004. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak (WGNSSK), 7-16 September 2004, Bergen, Norway. ICES CM 2005/ACFM:07.
ICES-WGNSSK 2006. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK), 5-14 September 2006, ICES Headquarters. ACFM:35: 1160pp.
ICES-WGNSSK 2007. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak - Combine d Spring and A utumn (WGNSSK), 1-8 May 2007, ICES Headquarters and September 2007 by correspondence. ICES CM 2007/ACFM:18\&30: 960.

ICES-WGNSSK 2008. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK), 7-13 May 2008, ICES Headquarters.
ICES-WKREF 2007. Workshop on limit and target reference points [2007 report not yet available].
ICES-WGSAM 2008. Report of the Working Group on Multi Species Assessment Methods (WGSAM). ICES CM 2008/RMC:06

Lewy, P., and Nielsen, A. 2003. Modeling stochastic fish stock dynamics using Markov Chain Monte Carlo. ICES Journal of Marine Science 60:743-752.

Macer, C.T. 1983. Changes in growth of North Sea cod and their effect on yield assessments. ICES CM 1983/G:8.

Metcalfe, J.D. 2006. Fish population structuring in the North Sea: understanding processes and mechanis ms from studies of the movements of adults. Journal of Fish Biology 69 (Supplement C): 48-65.

Myers, R.A., Mertz, G., and Barrowman, N.J. 1995. Spatial scales of variability on cod recruitment in the North A tlantic. Canadian Journal of Fisheries and Aquatic Sciences, 52(9): 1849-1862.

Neat, F., and Righton, D. 2007. Warm water occupancy by North Sea cod. Proc. R. Soc. B. 274: 789-798.

O'Brien, C.M., Fox, C.J., Planque, B., and Casey, J. 2000. Climate variability and North Sea cod. Nature, 404: 142.

Oosthuizen, E., and Daan, N. 1974. Egg fecundity and maturity of North Sea cod, Gadus morhua. Netherlands Journal of Sea Research 8:378-397.

Ottersen, G., Michalsen, K., and Nakken, O. 1998. Ambient temperature and distribution of northeast cod. ICES J. Mar. Sci. 55: 67-85.

Perry, A.L., Low, P.J., Ellis, J.R., and Reynolds, J.D. 2005. Climate Change and Distribution Shifts in Marine Fishes. Science, 308 (5730), 1912-1915.

Planque, B., and Fredou, T. 1999. Temperature and the recruitment of Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences 56: 2069-2077.

Righton, D., Quayle, V.A., Hetherington, S. and Burt, G. 2007. Movements and distribution of cod (Gadus morhua) in the southern North Sea and English Channel: results from conventional and electronic tagging experiments. J. Mar. Biol. Ass. U.K. 87: 599-613.

Righton, D., Quayle, V.[A.], Neat, F., Pedersen, M.[W.], Wright, P.[J.], Armstrong, M.[J.], Svedang, H., Hobson, V.J. and Metcalfe, J.D. 2008. Spatial dynamics of Atlantic cod (Gadus morhua) in the North Sea: results from a large-scale electronic tagging programme. ICES CM 2008/P:04: 32pp.

Rijns dorp, A.D., Daan, N., van Beek, F.A. and Heessen, H.J. 1991. Reproductive variability in North Sea plaice, sole and cod. Journal du Conseil International Pour l'Exploration de la Mer. 47: 352-375.

Riley, J. D., and Parnell, W. G. 1984. The distribution of young cod. Flødevigen Rapportserie, 1: 563-580.

Rindorf, A. and Lewy, P. 2006 Warm, windy winters drive cod north and homing of spawners keeps them there. Journal of Applied Ecology, 43, 445-453.
STECF-SGRST-07-01. 2007. Evaluation of the report of the STECF-SGRST (07-01) Working Group on evaluation of the cod recovery plan, Hamburg 26-30 March, 2007.

Swain, D.P. 1999. Changes in the distribution of Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence: effects of environmental change or change in environmental preferences? Fish. Oceanogr. 8:1-17.

Wieland, K., E.M. Fenger Pedersen, H.J. Olesen \& J.E. Beyer (2009): Effect of bottom type on catch rates of North Sea cod (Gadus morhua) in surveys with commercial fishing vessels. Fish. Res. \#\#: \#\#\#-\#\#\#.

Table XXX. 1 Variable natural mortality (M) values for North Sea cod, based on multi-species considerations. The seal diet data were originally collated from information sampled over a period of years (ICES 1997). Data were then transformed to diet by age using age-length keys. Finally this set of data was allocated to one year (1985). Due to the stock structure of cod in this particular year, with a relatively low abundance of age 6 , the M 2 for this age becomes higher than for both younger and older cod. It is considered that, for assessment purposes, the M2 values for age 6 should be replaced by the M2 values for age 5, as reflected here.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7+ \\
\hline 1963 & 0.78 & 0.42 & 0.33 & 0.22 & 0.21 & 0.21 & 0.20 \\
\hline 1964 & 0.82 & 0.43 & 0.34 & 0.22 & 0.21 & 0.21 & 0.20 \\
\hline 1965 & 0.85 & 0.44 & 0.35 & 0.22 & 0.21 & 0.21 & 0.20 \\
\hline 1966 & 0.87 & 0.45 & 0.36 & 0.22 & 0.21 & 0.21 & 0.20 \\
\hline 1967 & 0.89 & 0.46 & 0.37 & 0.22 & 0.21 & 0.21 & 0.20 \\
\hline 1968 & 0.91 & 0.46 & 0.37 & 0.22 & 0.21 & 0.21 & 0.20 \\
\hline 1969 & 0.92 & 0.47 & 0.38 & 0.22 & 0.21 & 0.21 & 0.20 \\
\hline 1970 & 0.92 & 0.47 & 0.38 & 0.22 & 0.21 & 0.21 & 0.20 \\
\hline 1971 & 0.92 & 0.47 & 0.38 & 0.22 & 0.21 & 0.21 & 0.20 \\
\hline 1972 & 0.93 & 0.47 & 0.38 & 0.22 & 0.21 & 0.21 & 0.20 \\
\hline 1973 & 0.92 & 0.46 & 0.38 & 0.22 & 0.21 & 0.21 & 0.20 \\
\hline 1974 & 0.92 & 0.46 & 0.37 & 0.22 & 0.21 & 0.21 & 0.20 \\
\hline 1975 & 0.92 & 0.45 & 0.37 & 0.22 & 0.21 & 0.21 & 0.20 \\
\hline 1976 & 0.92 & 0.45 & 0.37 & 0.22 & 0.21 & 0.21 & 0.20 \\
\hline 1977 & 0.92 & 0.44 & 0.36 & 0.22 & 0.22 & 0.22 & 0.20 \\
\hline 1978 & 0.92 & 0.43 & 0.36 & 0.23 & 0.22 & 0.22 & 0.20 \\
\hline 1979 & 0.92 & 0.43 & 0.36 & 0.23 & 0.22 & 0.22 & 0.20 \\
\hline 1980 & 0.91 & 0.42 & 0.36 & 0.23 & 0.22 & 0.22 & 0.20 \\
\hline 1981 & 0.90 & 0.41 & 0.36 & 0.23 & 0.22 & 0.22 & 0.20 \\
\hline 1982 & 0.89 & 0.41 & 0.36 & 0.23 & 0.22 & 0.22 & 0.20 \\
\hline 1983 & 0.87 & 0.40 & 0.36 & 0.23 & 0.22 & 0.22 & 0.20 \\
\hline 1984 & 0.85 & 0.39 & 0.36 & 0.23 & 0.22 & 0.22 & 0.20 \\
\hline 1985 & 0.83 & 0.38 & 0.36 & 0.23 & 0.23 & 0.23 & 0.20 \\
\hline 1986 & 0.81 & 0.38 & 0.36 & 0.23 & 0.23 & 0.23 & 0.20 \\
\hline 1987 & 0.79 & 0.37 & 0.36 & 0.24 & 0.23 & 0.23 & 0.20 \\
\hline 1988 & 0.77 & 0.36 & 0.37 & 0.24 & 0.23 & 0.23 & 0.20 \\
\hline 1989 & 0.75 & 0.35 & 0.37 & 0.24 & 0.24 & 0.24 & 0.20 \\
\hline 1990 & 0.73 & 0.35 & 0.38 & 0.24 & 0.24 & 0.24 & 0.20 \\
\hline 1991 & 0.72 & 0.34 & 0.39 & 0.25 & 0.24 & 0.24 & 0.20 \\
\hline 1992 & 0.70 & 0.34 & 0.40 & 0.25 & 0.25 & 0.25 & 0.20 \\
\hline 1993 & 0.70 & 0.34 & 0.41 & 0.26 & 0.25 & 0.25 & 0.20 \\
\hline 1994 & 0.69 & 0.33 & 0.42 & 0.26 & 0.25 & 0.25 & 0.20 \\
\hline 1995 & 0.68 & 0.33 & 0.43 & 0.26 & 0.26 & 0.26 & 0.20 \\
\hline 1996 & 0.67 & 0.32 & 0.44 & 0.27 & 0.26 & 0.26 & 0.20 \\
\hline 1997 & 0.65 & 0.31 & 0.44 & 0.27 & 0.26 & 0.26 & 0.20 \\
\hline 1998 & 0.63 & 0.31 & 0.45 & 0.27 & 0.27 & 0.27 & 0.20 \\
\hline 1999 & 0.61 & 0.30 & 0.45 & 0.27 & 0.27 & 0.27 & 0.20 \\
\hline 2000 & 0.58 & 0.29 & 0.44 & 0.27 & 0.27 & 0.27 & 0.20 \\
\hline 2001 & 0.56 & 0.29 & 0.44 & 0.27 & 0.27 & 0.27 & 0.20 \\
\hline 2002 & 0.53 & 0.28 & 0.43 & 0.27 & 0.27 & 0.27 & 0.20 \\
\hline 2003 & 0.51 & 0.28 & 0.42 & 0.27 & 0.27 & 0.27 & 0.20 \\
\hline 2004 & 0.50 & 0.27 & 0.41 & 0.27 & 0.27 & 0.27 & 0.20 \\
\hline 2005 & 0.49 & 0.27 & 0.40 & 0.26 & 0.26 & 0.26 & 0.20 \\
\hline 2006 & 0.47 & 0.27 & 0.39 & 0.26 & 0.26 & 0.26 & 0.20 \\
\hline 2007 & 0.46 & 0.26 & 0.38 & 0.26 & 0.26 & 0.26 & 0.20 \\
\hline
\end{tabular}

\section*{Stock annex: Haddock in Subarea IV and Division IIla(N)}

Stock specific documentation of the standard assessment procedures used by ICES.
\begin{tabular}{ll} 
Stock: & \begin{tabular}{l} 
Haddock in Subarea IV and Division IIIa(N) \\
(Skagerrak)
\end{tabular} \\
Working Group: & \begin{tabular}{l} 
ICES W orking Group on the Assessment of Demer \\
sal Stocks in the North Sea and Skagerrak \\
(WGNSSK)
\end{tabular} \\
Date: & May 2009 \\
Author: & Coby Needle
\end{tabular}

\section*{A. General}

\section*{A.1. Stock definition}

Haddock in Subarea IV and Division IIIa (N) occupy the northern and central North Sea and Skagerrak and are possibly linked to the Division VIa stock on the West of Scotland. Haddock are seldom found below 300 m , and prefer depths between 50 m and 200 m . They are found as juvenile fish in coastal areas in particular in the Moray Firth, around Orkney and Shetland, along the continental shelf at around 200 m and continuing round to the Skagerrak. Adult fish are predominantly found around Shetland and in the northern North Sea near the continental shelf edge.

\section*{A.2. Fishery}

Most of the information presented below pertains to the Scottish demersal whitefish fleet, which takes the largest proportion of the haddock stock. This fleet is not just confined to the North Sea, as vessels will sometimes operate in Divisions VIa (off the west coast of Scotland) and VIb (Rockall): it is also a multi-species fishery that lands a number of species other than haddock.

\section*{A.2.1. Management plans}

In 1999 the EU and Norway "agreed to implement a long-term management plan for the haddock stock, which is consistent with the precautionary approach and is intended to constrain harvesting within safe biological limits and designed to provide for sustainable fisheries and greater potential yield." This plan was implemented in January 2005, updated in December 2006, and implemented in revised form in January 2007. It consists of the following elements:

1 ) Every effort shall be made to maintain a minimum level of Spawning Stock Biomass greater than 100,000 tonnes (Blim).
2 ) For 2007 and subsequent years the Parties agreed to restrict their fishing on the basis of a TAC consistent with a fishing mortality rate of no more than 0.3 for appropriate age-groups, when the SSB in the end of the year in which the TAC is applied is estimated above 140,000 tonnes (Bpa).
3 ) Where the rule in paragraph 2 would lead to a TAC which deviates by more than \(15 \%\) from the TAC of the preceding year the Parties shall establish a TAC that is no more than \(15 \%\) greater or \(15 \%\) less than the TAC of the preceding year.
4) Where the SSB referred to in paragraph 2 is estimated to be below Bpa but above Blim the TAC shall not exceed a level which will result in a fishing mortality rate equal to 0.3-0.2*(Bpa-SSB)/(Bpa-Blim). This consideration overrides paragraph 3 .
5) Where the SSB referred to in paragraph 2 is estimated to be below Blim the TAC shall be set at a level corresponding to a total fishing mortality rate of no more than 0.1. This consideration overrides paragraph 3.
6 ) In order to reduce discarding and to increase the spawning stock biomass and the yield of haddock, the Parties agreed that the exploitation pattern shall, while recalling that other demersal species are harvested in these fisheries, be improved in the light of new scientific advice from inter alia ICES.
7) In the event that ICES advices that changes are required to the precautionary reference points Bpa (140 000 t\()\) or Blim (100 000 t ) the parties shall meet to review paragraphs 1-5.
8) No later than 31 December 2009, the parties shall review the arrangements in paragraphs 1 to 7 in order to ensure that they are consistent with the objective of the plan. This review shall be conducted after obtaining inter alia advice from ICES concerning the performance of the plan in relation to its objective.
In October 2007, ICES evaluated this plan and concluded that it could "provisionally be accepted as precautionary and be used as the basis for advice." The methods used to reach this conclusion (along with illustrative results) are given in Needle (2008). ICES considers that the agreed Precautionary Approach reference points in the management plan are consistent with the precautionary approach, provided they are used as lower boundaries on SSB, and not as targets.

The plan was modified during 2008 to allow for limited interannual quota flexibility, following the meeting in June of the Norway-EC Working Group on Interannual Quota Flexibility and subsequent simulation analysis (Needle 2008).

\section*{Further technical conservation measures}

EU technical regulations in force are contained in Council Regulation (EC) 850/98 and its amendments. This regulation prescribes the minimum target species composition for different mesh size ranges. In 2001, haddock in the whole of NEAFC region 2 were a legitimate target species for tow ed gears with a minimum codend mesh size of 100 mm . As part of the cod recovery measures, the EU and Norway introduced additional technical measures from 1 January 2002 (EC 2056/2001). The basic minimum mesh size for towed gears for cod from 2002 was 120 mm , although in a transitional arrangement running until 31 December 2002 vessels were allowed to exploit cod with \(110-\mathrm{mm}\) codends provided that the trawl was fitted with a \(90-\mathrm{mm}\) square mesh panel and the catch composition of cod retained on board was not greater than \(30 \%\) by weight of the total catch. From 1 January 2003, the basic minimum mesh size for towed gears for cod was 120 mm . The minimum mesh size for vessels targeting haddock in Norw egian waters is also 120 mm .
At the December Council 2006 (EC 41/2006), additional derogations were introduced to allow additional days fishing in the smaller mesh \((90 \mathrm{~mm})\) trawl fishery where vessels fitted a square mesh window close to the cod end to allow for improved selectivity of these gears (and hence the possibility of lower haddock discards). The change in mesh size was expected to shift exploitation patterns to older ages and increase the weight-at-age for retained fish from younger age classes. Improvements in the exploitation pattern were not immediately observed, however, and it was not possible to determine if this was due to confounding effects from other fleet segments.

Effort restrictions in the EC were introduced in 2003 (EC 2341/2002, Annex XVII, amended in EC 671/2003). Effort restriction measures were revised for 2005 (EC 27/2005, Annex IV). Effort regulations for 2008 in days at sea per vessel and gear category are summarised in the following table, which only shows changes in 2008 compared to 2007 (2006 is included for comparison). The changes (2007-2008) are intended to lead to a cut in effort of \(10 \%\) for the main gears catching cod.

Maximum number of days a vessel can be present in the North Sea, Skagerrak and Eastern Channel, by gear category and special condition (see EC 40/2008 for more details). The table only shows changes in 2008 compared to 2007 , but 2006 is also included for comparison.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DESCRIPTION OF GEAR AND SPECIAL CONDITION (IF
APPLICABLE)} & \multicolumn{3}{|c|}{Area} & \multicolumn{3}{|l|}{MAX DAYS AT SEA} \\
\hline & IV,II & Skag & V IId & 2006 & 2007 & 2008 \\
\hline Trawls or Danish seines with mesh size \(\exists 20 \mathrm{~mm}\) & x & x & x & 103 & 96 & 86 \\
\hline Trawls or Danish seines with mesh size \(\quad ¥ 00 \mathrm{~mm}\) and \(<120 \mathrm{~mm}\) & x & x & x & 103 & 95 & 86 \\
\hline Trawls or Danish seines with mesh size \(\quad 90 \mathrm{~mm}\) and \(<100 \mathrm{~mm}\) & x & & x & 227 & 209 & 188 \\
\hline Trawls or Danish seines with mesh size \(\quad 90 \mathrm{~mm}\) and \(<100 \mathrm{~mm}\) & & x & & 103 & 95 & 86 \\
\hline Trawls or Danish seines with mesh size \(\quad 80 \mathrm{~mm}\) and \(<90 \mathrm{~mm}\) & x & & & 227 & 204 & 184 \\
\hline Trawls or Danish seines with mesh size \(\quad 80 \mathrm{~mm}\) and \(<90 \mathrm{~mm}\) & & & x & 227 & 221 & 199 \\
\hline Beam trawls with mesh size \(\geq 120 \mathrm{~mm}\) & x & x & & 143 & 143 & 129 \\
\hline Beam trawls with mesh size \(\geq 100 \mathrm{~mm}\) and \(<120 \mathrm{~mm}\) & x & x & & 143 & 143 & 129 \\
\hline Beam trawls with mesh size \(\geq 80 \mathrm{~mm}\) and \(<90 \mathrm{~mm}\) & x & x & & 143 & 132 & 119 \\
\hline Gillnets and entang ling nets with mesh sizes \(\geq 150 \mathrm{~mm}\) and \(<220 \mathrm{~mm}\) & x & x & x & 140 & 130 & 117 \\
\hline Gillnets and entangling nets with mesh sizes \(\geq 110 \mathrm{~mm}\) and \(<150 \mathrm{~mm}\) & x & x & x & 140 & 140 & 126 \\
\hline Trammel nets with mesh size \(<110 \mathrm{~mm}\). The vessel shall be absent from port no more than 24 h . & x & & x & 205 & 205 & 185* \\
\hline
\end{tabular}
* For member states whose quotas less than \(5 \%\) of the Community share of the TACs of both plaice and sole, the number of days at sea shall be 205

In early 2008, a onenet rule was introduced in Scotland as part of the new conservation credits scheme (Section 13.1.4). This is likely to have improved the accuracy of reporting of landings to the correct mesh size range. However, Scottish seiners were granted a derogation from the one net rule until the end of January 2009, and were allowed to carry two nets (e.g. \(100-119 \mathrm{~mm}\) as well as \(120+\mathrm{mm}\) ). They were required to record landings from each net on a separate logsheet and to carry observers when requested (ICES-WGFTFB 2008).

Under the provisions laid down in point 8.5 of Annex IIa to the 2008 year's EU TAC and Quota Regulation, Scotland implemented in 2008 a national KWdays scheme known as the Conservation Credits Scheme (CCS). The principle of this two-part scheme involves credits (in terms of additional time at sea) in return for the adoption of and adherence to measures which reduce mortality on cod and lead to a reduction in discard numbers. The initial scheme was implemented from the beginning of February 2008 and granted vessels their 2007 allocation of days (operated as hours at sea) in return for observance of Real Time Closures (RTC) and a onenet rule, adoption of
more selective gears ( 110 mm square meshed panels in 80 mm gears or 90 mm SMP in 95 mm gear), agreeing to participate in additional gear trials and participation in an enhanced observer scheme.

For the first part of 2008 the RTC system was designed to protect aggregations of larger, spawning cod ( \(>50 \mathrm{~cm}\) length). Trigger levels leading to closures were informed by commercial catch rates of cod observed by FRS on board vessels. During 2008, there were 15 such closures. Protection agency monitoring suggested good observance.
A joint industry/science partnership (SISP) undertook a number of gear trials in 2008 examining methods to improve selectivity and reduce discards and an enhanced observer scheme has been announced by the Scottish Government. Results and citation? Conservation credits and EU regs 2009.

\section*{Fleet changes and development}

The number of Scottish-based vessels (over 10 m ) in the demersal sector was reduced by approximately one third ( 98 vessels) during 2002 , the bulk of this being due to vessels accepting decommissioning. Although the decommissioning scheme encompassed all vessel types and sizes, the vessels eventually decommissioned included a significant number of older boats and those with track record of catching cod. Amongst the remaining vessels there has been a reduction in the segment operating seine net or pair seine. The observed shift towards pair trawling from single-vessel seine and trawls in the early 2000's may have implied an increase in catchability, but the decommissioning rounds in 2002 and 2003 included a slightly higher proportion of pair trawlers, resulting in no real overall change in fleet composition.
The number of Scottish based vessels (over 10 m ) in the demersal sector was reduced by 67 in a further decommissioning round in 2004. More recently, increased fuel prices have resulted in a shift from twin trawl to single trawl and pair seine/trawl by many boats in the Scottish demersal mixed fishery sector (ICES-WGFTFB 2006). The observed shift towards pair trawling from single seine may be explained by a standardization of reporting and recording of gear types. Vessels previously participating in the seine net class may have included vessels operating pair seine whereas this classification is now recorded as pair trawl.
In 2005, there was an expansion in the squid fishery in the Moray Firth area resulting from increased effort from smaller ( \(<10 \mathrm{~m}\) ) vessels, and from a number of larger vessels that had switched from demersal fisheries for haddock and cod, to squid fisheries, in order to avoid days-at-sea restrictions (ICES-WGFTFB 2006). The mesh regulation for squid fishing is 40 mm codend, which could lead to by catch/discard of young haddock and cod. In 2006 and 2007, the squid fishery declined: vessels that shifted away from squid targeted Nephrops instead. However, the potential remains for high by catches of young gadoids in the future, given the small mesh size used.
During 2008, a number of Scottish vessels switched focus to the Rockall area to take advantage of the increased quota there. The economic benefit of being able to land more haddock outweighed the costs involved in steaming to Rockall in a climate of increased fuel prices. This fishery is very dependent on good weather, how ever, and is not a consistent feature. At the same time, several vessels switched from whitefish fishing in Division Vla to Nephrops exploitation in Subarea IV using \(80-\mathrm{mm}\) gear (ICES-WGFTFB 2008). This may have implications for haddock bycatch in the Nephrops fishery, although (under the stipulations of the Scottish conservations credits scheme; see above), nets in the 80 mm range will had to have a 110 mm square mesh
panel installed from July 2008. Compliance was close to \(100 \%\) during 2008. Trials suggested that this square-mesh panel increased the \(50 \%\) selection length (L50) for haddock by around \(30 \%\), which implied increased escapement of young haddock from the Nephrops fishery.
Also during 2008, a number of Scottish vessels moved from twin to single trawls, and there was also an increase in the use of pair trawl/seine. Some high-powered whitefish vessels switched to Nephrops and were targeting North Sea grounds with double bag trawls. This was very much driven by fuel costs, and may have had implications for reduced LPUE and increases in discarding.
Analysis of fishing effort trends in the major fleets exploiting North Sea cod indicates that fishing effort in those fleets has been decreasing since the mid-1990s due to a combination of decommissioning and days-at-sea regulations (STECF-SGRST-05-01 \& 04,2005 ). The decrease in effort is most pronounced in the years 2002 and beyond.
Information presented to ICES in 2008 noted that the UK large mesh demersal trawl fleet category ( \(>100 \mathrm{~mm}, 4 \mathrm{~A}\) ) has been reduced by decommissioning and days-at-sea regulations to \(40 \%\) of the levels recorded in the EU reference year of 2001. There was a movement into the \(70-90 \mathrm{~mm}\) sector to increase days at sea in 2002 and 2003, but the level of effort stabilised in 2004. The effort of the combined trawl gears has shown a continued decrease of \(36 \%\) overall, from the EU reference year of 2001 (STECF-SGRST-05-01 \& 04, 2005).

\section*{A.3. Ecosystem aspects}

The North Sea haddock stock is characterised by sporadically high recruitment leading to dominant year-classes in the fishery. These large year-classes may grow more slowly than less abundant year-classes, possibly due to density dependent effects. Haddock primarily prey on benthic and epibenthic invertebrates, sandeels and demersal herring egg deposits. They are an important prey species, mainly for saithe and other gadoids

\section*{B. Data}

\section*{B.1. Commercial catch}

\section*{Age compositions}

To be written.

\section*{Data exploration}

To be written.

\section*{B.2. Biological Information}

\section*{Weight at age}

To be written.
Maturity and natural mortality
To be written.

\section*{Recruitment}

To be written.

\section*{B.3. Surveys}

To be written.

\section*{Data exploration}

To be written.

\section*{B.4. Commercial CPUE}

\section*{B.5. Other relevant data}

\section*{C. Historical stock development}

Model used as a basis for advice
The advice is based on assessments carried out using the XSA model (Shepherd, Darby and Flatman) implemented as the FLXSA module of the FLR library (FLR) of the R statistical package.

\section*{Model Options chosen}

XSA model settings used in the WGs from 2004 to 2007 were as follows:
\begin{tabular}{lllllll}
\hline \multicolumn{2}{c}{ Assessment year } & \multicolumn{2}{c}{2004} & \multicolumn{2}{c}{2005} & 2006 \\
\hline q plateau & & 2 & 3 & 3 & 6 \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Tuning fleet \\
year ranges
\end{tabular}} & EngGFS Q3 & \(92-03\) & \(77-91 ; 92-04\) & \(77-91 ; 92-05\) & \(77-91 ; 92-06\) \\
\cline { 2 - 7 } & ScoGFS Q3 & \(82-03\) & \(82-97 ; 98-04\) & \(82-97 ; 98-05\) & \(82-97 ; 98-06\) \\
\cline { 2 - 7 } & IBTS Q1* & \(82-03\) & \(82-04\) & \(82-05\) & \(82-06\) \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Tuning fleet \\
age ranges
\end{tabular}} & EngGFS Q3 & \(0-5\) & \(0-5\) & \(0-5\) & \(0-7\) \\
\cline { 2 - 7 } & ScoGFS Q3 & \(0-5\) & \(0-5\) & \(0-5\) & \(0-7\) \\
\cline { 2 - 7 } & IBTS Q1* & \(0-4\) & \(0-4\) & \(0-4\) & \(0-4\) \\
\hline
\end{tabular}
*Backshifted
The default update setting is that used in the 2007 WG, with the addition of extra years as required.

\section*{Input data types and characteristics:}

Tuning data:
See table above.
Recruitmentestimation
Recruits at age 0 are generated by FLXSA.

\section*{D. Short-term projection}

Initial stock size
Deterministic starting populations taken from VPA survivors.

\section*{Maturity}

Average of final three years of assessment data (constant for North Sea haddock).
Natural mortality

Average of final three years of assessment data (constant for North Sea haddock).
\(F\) and \(M\) before spawning
Both taken as zero.

\section*{We ight-at-age in the catch}

The perceived slow growth of the above-average 1999 and 2000 year-classes pose a problem for the short-term forecast. Mean stock weights for these year classes were calculated using proportional increments. That is: growth from age \(a\) to \(a+1\) for these year-classes was estimated using the mean proportional increment \((a+1) / a\) calculated over all other year classes for which this information is available. This method was approved by RGNSSK in 2006 as being appropriate to project weights at age, although alternatives are being explored and the issue needs to be considered at a forthcoming benchmark. Mean stock weights for other ages (except the plus-group) in the forecast where taken as a 5-year average, omitting the 1999 and 2000 year classes from the calculation where appropriate. For the plus-group weights, an alternative XSA assessment was run using a plus-group at age 13. The abundances and fishing mortality estimates from this were then used as the basis for a simple deterministic 3 -year forecast to give abundances from ages \(0-13+\) for the forecast years. These were then used in turn in weighted-average calculations to generate the required forecast mean weights for the plus-group at age 8.

The human consumption mean weights at age were derived in the same manner as for the stock weights-at-age. However, mean weights at age for the 1999 and 2000 year classes did not show unusual growth in the discard and industrial bycatch components, so future mean weights-at-age were set to the average of the last five assessment years.

\section*{We ight-at-age in the stock}

Same as weight-at-age in the catch.

\section*{Exploitation pattern}

Fishing mortalities in the forecast are taken to be the same as in the final assessment year.

\section*{Intermediate year assumptions}

Running the haddock forecast assuming status quo \(F\) in the intermediate year can lead to landings that are greater than the available quota. In recent years, a combination of low F, TAC constraints limiting the decline of quota, and market forces has meant that full uptake of the quota is unlikely. While it is difficult to predict the extent of the undershoot, it would certainly be an error to forecast an overshoot, and a TAC-constrained forecast is a compromise. If the status quo forecast indicates an undershoot of quota, then no TAC constraint is used.

\section*{Stock recruitment model used}

North Sea haddock shows no detectable influence of stock size on subsequent recruitment. In addition, there are no observed indications of incoming year-class strength available to the WG. The ScoGFS and EngGFS Q3 survey indices are not yet available. The IBTS Q1 indices are available, but do not include age-0 recruiting fish as these are too small to be caught (or are not yet hatched) when the survey takes place. For this reason, recruitment estimates of the incoming year-class are based on a mean of previous recruitment.

In the past, a strong haddock year-class has generally been followed by a sequence of low recruitments. In order to take this feature into account, the geometric mean of the five lowest recruitment values over the period from 1994 to \(y-3\) (where \(y\) is the year of the assessment \(W G\) ) has been assumed for recruitment in the years \(y, y+1\) and \(y+2\). Recruitment estimates for years \(y-2\) and \(y-1\) are not included in this calculation, because the most recent two XSA estimates of recruitment are thought to be relatively uncertain.

\section*{Procedures used for splitting projected catches}

Three-year average of catch component ratios.

\section*{E. Medium-term projections}

Medium-term projections, in the sense of biological simulations assuming fixed mortality, are no longer carried out for this stock on an annual basis. How ever, management simulations are regularly performed to evaluate management plan proposals, and these are similar in some ways to medium-term projections (see Section A.2.1 above).

\section*{F. Long-term projections}

Yield and spawning-stock-biomass per recruit analyses are carried out for this stock as part of the annual assessment process. The MFYPR software is used for this purpose.

\section*{G. Biological reference points}

The Precautionary Approach reference points for cod in IV, IIIa (Skagerrak) and VIId have been unchanged since 2007. They are:
\begin{tabular}{llll}
\hline & \multicolumn{1}{c}{ Type } & \multicolumn{1}{c}{ Value } & \multicolumn{1}{c}{ Technical basis } \\
\hline \begin{tabular}{l} 
Precautionary \\
approach
\end{tabular} & \(\mathrm{B}(\mathrm{lim})\) & 100000 tonnes & \(\mathrm{SmoothedB(loss)}\) \\
\cline { 2 - 4 } \(\mathrm{~B}(\mathrm{pa})\) & 140000 tonnes & \(\mathrm{B}(\mathrm{pa})=1.4{ }^{*} \mathrm{~B}(\mathrm{lim})\left({ }^{*}\right)\) \\
\cline { 2 - 4 } \(\mathrm{F}(\mathrm{lim})\) & 1.0 & \(\mathrm{~F}(\mathrm{lim})=1.4^{*} \mathrm{~F}(\mathrm{pa})\left({ }^{*}\right)\) \\
\cline { 2 - 4 } \(\mathrm{F}(\mathrm{pa})\) & 0.7 & \begin{tabular}{l}
\(10 \%\) probability that \\
\(\mathrm{SSB}(\mathrm{MT})<\mathrm{B}(\mathrm{pa})\)
\end{tabular} \\
\hline Targets & \(\mathrm{F}(\mathrm{HCR})\) & \begin{tabular}{l} 
Based on HCR \\
simulations and \\
agreed in the \\
management plan
\end{tabular} \\
\hline
\end{tabular}
*T he multiplier of 1.4 is derived from \(\exp \left(\sigma^{2}\right)\), where \(\sigma^{2} \sim 0.34\) is intended to reflect the variability of the time-series concerned (B or F).

Yield and spawning biomass per recruit reference points
Include summaries from recent MSY work.

\section*{H. Other issues}

No other issues.
I. References

To be completed.

\section*{Stock Annex: WGNSSK - Norway pout}

Stock specific documentation of standard assessment procedures used by ICES.

\author{
Stock: Norway pout in the North Sea and Skagerrak (ICES Area IV and IIIa) \\ Working Group: WG on the Assessment of Demersal Stocks in the North Sea and Skagerrak \\ Date: \\ 12.5.09
}

\section*{A. General}

\section*{A.1. Stock definition}

Norway pout is a small, short-lived gadoid species, which rarely gets older than 5 years (Lambert, Nielsen, Larsen and Sparholt, 2009).

It is distributed from the west of Ireland to Kattegat, and from the North Sea to the Barents Sea. The distribution for this stock is in the northern North Sea ( \(\left(57^{\circ} \mathrm{N}\right)\) and in Skagerrak at depths between 50 and 250 m (Raitt 1968; Sparholt, Larsen and Nielsen 2002b; (Lambert, Nielsen, Larsen and Sparholt, 2009). Spawning in the North Sea takes place mainly in the northern part in the area between Shetland and Norway (Lambert, Nielsen, Larsen and Sparholt, 2009). Figures 1 and 2 show geographical distribution of the stock obtained from the ICES IBTS surveys. The IBTS Surveys only cover areas within the 200 m depth zone. However, very few Norway pout are caught at depths greater than 200 m in the North Sea and Skagerrak on shrimp trawl survey (Sparholt et al. 2002b). For the Norwegian Trench, Albert (1994) found Norway pout at depths greater than 200 m , but very few deeper than 300 m .
At present, there is no evidence for separating the North Sea component into smaller stock units (Lambert, Nielsen, Larsen and Sparholt (2009). Norway pout in the eastern Skagerrak is only to a very small degree a self-contained stock. The main bulk drifts as larvae from more western areas to which they return mainly during the latter part of their second year of life before becoming mature (Poulsen 1968). ICES ACFM (October 2001) asked the ICES WGNSSK to verify the justification of treating ICES Division VIa as a management area for Norway pout (and sandeel) separately from ICES areas IV and IIIa. Preliminary results from an analysis of regionalized survey data on Norway pout maturity, presented in a Working Document to the 2000 meeting of the ICES WGNSSK Working Group (Larsen, Lassen, Nielsen and Sparholt,2001 in ICES C.M.2001/ACFM:07), gave no evidence for a stock separation in the whole northern area. This conclusion is supported by the results in Lambert, Nielsen, Larsen and Sparholt (2009).

Spawning distribution: So far it has been evaluated that around \(10 \%\) of the Norway pout reach maturity already at age 1 , and that most individuals reach maturity at age 2 on which the maturity ogive in the assessment has been based. Results in a recent paper (Lambert, Nielsen, Larsen and Sparholt (2009) indicate that the maturity rate for the 1 -group is close to \(20 \%\) on average (varying between years and sex) with an increasing tendency over the last 20 years. Furthermore, the average maturity rate for

2 and 3 groups in \(1^{\text {st }}\) quarter of the year was observed to be only around \(90 \%\) and \(95 \%\), respectively, as compared to \(100 \%\) used in the assessment. Preliminary results from an analysis of regionalized survey data on Norway pout maturity, presented in Larsen, Lassen, Sparholt and Nielsen (2001), gave no evidence for a stock separation in the whole northern area. Spawning in the North Sea takes place mainly in the northern part in the area between Shetland and Norway in coastal waters (along the 120 m iso-cline) (Lambert, Nielsen, Larsen and Sparholt (2009).
Larvae and juvenile distribution: The species is not generally considered to have specific nursery grounds, but pelagic 0-group fish remain widely dispersed in the northern North Sea close to spawning grounds (Lambert, Nielsen, Larsen and Sparholt (2009). The main bulk drifts as larvae from more western areas to which they return mainly during the latter part of their second year of life before becoming mature (Poulsen 1968). The IBTS CPUE map (Figure 2) shows, however, a relative high CPUE in the Skagerrak area in the third quarter, where the 0 -group dominates the catches.

Adult migration: There is an adult spawning migration out of Skagerrak and Kattegat as no spawning occurs in this area. Otherwise there is no indication of adult migration. Based on IBTS data, the main aggregations of settled fish are distributed around the 150 m contour, with a slight preference for deeper water for the older fish.


Figure 1 Positions fished at the International B ottom Trawl Survey (IBTS) first quarter and mean CP UE (numbers) of Norway pout by rectangle, 1981-1999. The standard area used to calculate abundance indices and the 200 m depth contour is also shown [from Sparholt et al., 2002b].

\section*{A.2. Fishery}

The fishery is mainly carried out by Danish and Norwegian (large) vessels using small-mesh trawls in the north-western North Sea especially at the Fladen Ground
and along the edge of the Norwegian Trench in the north-eastern part of the North Sea. Main fishing seasons are \(3^{\text {rd }}\) and \(4^{\text {th }}\) quarters of the year with also high catches in \(1^{\text {st }}\) quarter of the year especially previous to 1999 . Norway pout is caught in small meshed trawls ( \(16-31 \mathrm{~mm}\) ) in a mixed fishery with blue whiting, i.e. in addition to the directed Norway pout fishery, the species is also taken as by-catch in the blue whiting fishery. The fishery in more recent times is mainly carried out by Denmark ( \(\sim 70-80 \%\) ) and Norway ( \(\sim 20-30 \%\) ) at fishing grounds in the northern North Sea especially at Fladen Ground and along the edge of the Norwegian Trench. Norway pout is landed for reduction purposes (fish meal and fish oil). In recent years Denmark has performed the main Norway pout landings compared to Norway, while the long term average show more equal catches between the countries. There is a tendency towards the more recent Danish landings mainly originates from the Fladen Ground area compared to the Norwegian Trench area.


Figure 2. Landings of Norway pout by year and ICES rectangles for the period 1995-2003. Landings include Danish and Norwegian landing for the whole period. The area of the circles represents landings by rectangle. All rectangle landings are scaled to the largest rectangle landings shown at the 1995 map. The "Norway pout box" and the boundary between the EU and the Norwegian EEZ are shown on the map.


Figure 3. Average Danish and Norwegian landings of Norway pout by quarter of the year and ICES rectangles for the period 1994-2003. The area of the circles represents landings by rectangle. All rectangle landings are scaled to the largest rectangle landings shown at the quarter 1 map

Landings have been low since 2001, and the 2003-2004 landings were the lowest on record. Effort in 2003 and 2004 has been historically low and well below the average of the 5 previous years. The effort in the Norway pout fishery was in 2002 at the same level as in the previous eight years before 2001. The targeted Norway pout fishery was closed for 2005, in the first half year of 2006, as well as in all of 2007, but Norway pout were in the periods of closure taken as a by-catch in the Norwegian mixed blue whiting and Norway pout fishery, as well as in a small experimental fishery in 2007. The fishery was open for the second half year of 2006 and in all of 2008 based on the 2005 and 2007 year classes, respectively, both being on the long term average level. However, the Norw egian part of the Norway pout fishery was only open from May to August in 2008. Despite opening of the fishery by \(1^{\text {t }}\) January 2008 (with an preliminary EU quota of 36500 t and a Norwegian quota of 4750 t as well as a final EU quota of 110000 t set late in 2008) only 30.4 kt was taken by Denmark, and the Nor-
wegian catches were 5.7 kt , i.e. 36.1 kt in total. According to information from the fishery associations this is due mainly to high fuel prices and only to a minor extent late setting of the final quota affecting the trade of individual Danish vessel quotas, and less due to the by-catch percentages of other species in the fishery.
By-catch of herring, saithe, cod, haddock, whiting, and monkfish at various levels in the small meshed fishery in the North Sea and Skagerrak directed towards Norway pout has been documented (Degel et al., 2006, ICES CM 2007/ACFM:35, (WD 22 and section 16.5.2.2)), and recent by-catch numbers are given in section 2 of this report. In general, the by-catch levels of these gadoids have decreased in the Norway pout fishery over the years. Review of scientific documentation reveals that by-catch reduction gear selective devices can be used in the Norway pout fishery, significantly reducing by-catches of juvenile gadoids, larger gadoids, and other non-target species (Nielsen and Madsen, 2006, ICES CM 2007/ACFM:35, WD 23 and section 16.52.2). By-catches of other species should also be taken into account in management of the fishery. Existing technical measures such as the closed Norway pout box, minimum mesh size in the fishery, and by-catch regulations to protect other species have been maintained. A detailed description of the regulations and their background can be found further below in this Stock Annex.

With present fishing mortality levels the status of the stock is more determined by natural processes and less by the fishery. The Norway pout fishery is regulated by technical measures such as minimum mesh size in the trawls, fishing area closure in the Norway pout box in the North-Western part of the North Sea, and by-catch regulations to protect other species. An overview of relevant technical regulations for the Norway pout fishery and stock is given below in section \(f\). By-catch in the fishery is described in detail in Annex 1.

\section*{A.3. Ecosystem aspects}

The population dynamics of Norway pout in the North Sea and Skagerrak are very dependent on changes caused by high recruitment variation and variation in predation mortality (or other natural mortality causes) due to the short life span of the species (Sparholt, Larsen and Nielsen 2002a,b; Lambert, Nielsen, Larsen and Sparholt (2009). With present fishing mortality levels in recent years the status of the stock is more determined by natural processes and less by the fishery, and in general the fishing mortality on 0-group Norway pout is low (ICES WGNSSK Reports). However, there is a need to ensure that the stock remains high enough to provide food for a variety of predator species. This stock is among other important as food source for other species (e.g. saithe, haddock, cod and mackerel) (ICES-SGMSNS 2006). Natural mortality levels by age and season used in the stock assessment do include the predation mortality levels estimated for this stock from the most recent multi-species stock assessment performed by ICES (ICES-SGMSNS 2006).

Natural mortality varies between age groups, and natural mortality at age varies over different time periods. Even though different sources of information (surveys, MSVPA) give slightly different perception of natural mortality at age (see below), the natural mortalities obtained from the most recent run with the North Sea MSVPA model (presented and used in the ICES SGMSNS (2006)) indicate high predation mortality on Norway pout. Especially the more recent high abundance of saithe predators and the more constant high stock level of western mackerel as likely predators on smaller Norway pout are likely to significantly affect the Norway pout population dynamics. However, interspecific density dependent patterns in Norway pout
growth and maturity were not found in relation to stock abundance of those predators but rather in relation to North Sea cod and whiting stock abundance (Lambert, Nielsen, Larsen and Sparholt, 2009).
The Review Group (2007) asked the WG to provide guidance on how to deal with the objective of keeping a certain amount of biomass for predators. If a minimum biomass is found to be required, then natural mortality could not be kept constant in the prediction (if it does during the assessment period). It was suggested that variable \(M\) be examined to determine the amount of biomass removed via predation, to serve as a baseline biomass requirement for predators.
There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. Natural mortality levels by age and season used in the stock assessment do reflect the predation mortality levels estimated for this stock from the most recent multi-species stock assessment performed by ICES (ICES-SGMSNS 2006). Growth and mean weight-at-age for the above mentioned predators seems independent of the stock size of Norway pout.

In order to protect other species (cod, haddock, saithe and herring as well as mackerel, squids, flatfish, gurnards, Nephrops) there is a row of technical management measures in force for the small meshed fishery in the North Sea such as the closed Norway pout box, by-catch regulations, minimum mesh size, and minimum landing size.

\section*{B. Data}

\section*{B.1. Commercial catch and effort data}

The assessment uses the combined catch and effort data from the commercial Danish and Norw egian small meshed trawler fleets fishing mainly in the northern North Sea.

For the Danish and Norwegian commercial landings sampling procedures of the commercial landings, which vary between the countries, were described in detail in the report of the WGNSSK meeting in September 2004 (ICES WGNSSK (2005) ICES C.M. 2005/ACFM: \(x x\) ).

From 2002 onwards, an EU regulation (1639/2001) was endorsed which affects the market sampling procedures. First, each country is obliged to sample all fleet segments, including foreign vessels landing in their country. Second, a minimum number of market samples per tonnes of landing are required. The national market sampling programmes have been adjusted accordingly. In general there is set a level of minimum 2 samples pr. tonnes landed for Norway pout in the North Sea and Skagerak

\section*{Method of effort standardization of the commercial fishery tuning fleet}

Results and parameter estimates by period from the yearly regression analysis on CPUE versus GRT for the different Danish vessel size categories are used in the effort standardization of both the Norwegian and Danish commercial fishery vessels included in the assessment tuning fleet.

Background descriptions of the commercial fishery tuning series used and methods of effort standardization of the commercial fishery between different vessel size categories and national commercial fleets are given in the 2004 working group report (ICES WGNSSK (2005) ICES CM 2005/ACFM: xx) and the 1996 w orking group report (ICES CM 1997/Assess:6). Previous to the 2001 assessment the effort has been stan-
dardized by vessel category (to a standard 175 GRT vessel) only using the catch rate proportions between vessel size categories within the actual year. In 2002, a new regression standardization method was introduced (see methodological description below ), and the assessment was run both with and without the new standardization method (regression). The differences in results of output SSB, TSB and F between the two assessment runs were small.

With respect to further exploration of the effect of using effort standardization and using a combined Danish and Norwegian commercial fishery tuning fleet in the Norway pout assessment different analyses have been made in relation to this in the benchmark assessment in 2004. This was done to investigate alternative standardization methods and alternative division of the commercial fishery assessment tuning fleet used in the assessment. The results of these analyses were presented to and discussed by the working group in 2004 and presented in the 2004 report of this working group in section 12 (ICES CM 2005/ACFM: xx).

Since 2002, the assessments have used output of the regression analyses using time series from 1987(1994)-most recent assessment year, where the regressions have been applied to the Danish and Norwegian commercial fishery. Effort standardization of both the Danish and the Norwegian part of the commercial fishery tuning series is performed by applying standardization factors to reported catch and effort data for the different vessel size categories. The standardization factors are obtained from regression of CPUE indices by vessel size category over years of the Danish commercial fishery tuning fleet. The number of small vessels in the Danish Norway pout fishing fleet has decreased significantly and the relative number of large vessels has increased in the more recent years. Furthermore, there were found no trends in CPUE between vessel categories over time. For these reasons the CPUE indices used in the regression has been obtained from pooled catch and effort data over the years 1994present assessment year by vessel category in order to obtain and include estimates for all vessel categories also for the latest years where no observations exists for the smallest vessels groups.

The conclusion of the discussion in the working group of these analysis results was that further analysis and exploration of data is necessary before suggesting an alternative standardization method and alternative division of commercial fishery tuning fleets to be used in the assessment. This should be done in a coming benchmark assessment of the stock. Among other it should be further investigated whether it is possible to split the Danish and Norwegian commercial tuning fleet, and also effects of excluding the commercial tuning fleets from the assessment should be further exploited.

Parameter estimates from regressions of \(\ln (C P U E)\) versus \(\ln\) (average GRT) by period together with estimates of standardized CPUE to the group of Danish 175 GRT industrial fishery trawlers is shown for the period 1994-2006 in this quality control handbook below.

The regression model used in effort standardisation is the following:
Regression models: \(\mathrm{CPUE}=\mathrm{b}^{*} \mathrm{GRT} \mathrm{T}^{a} \Rightarrow \ln (\mathrm{CPUE})=\ln (\mathrm{b})+\mathrm{a}^{*} \ln ((\mathrm{GRT}-50))\)
estimates from regressions of \(\ln (C P U E)\) versus \(\ln\) (average GRT) by period together with estimates of standardized CPUE to the group of Danish 175 GRT industrial fishery trawlers is used to standardize effort in the commercial fishery tuning fleet used in the Norway pout assessment. Parameter estimates for the period 1994-2004 is the following:
\begin{tabular}{lllll}
\hline Year & Slope & Intercept & R-Square & CPUE(175 tonnes) \\
\hline \(1994-2006\) & 0.18 & 14.05 & 0.77 & 32.76 \\
\hline
\end{tabular}

\section*{Norwegian effort data}

In 1997, Norwegian effort data were revised as described in sections 13.1.3.1 and 1.3.2 of the 1997 w orking group report (ICES CM1998/Assess:7). Furthermore, in the 2000 assessment Norwegian average GRT and Effort data for 1998-99 were corrected because data from ICES area IIa were included for these years in the 1998-99 assessments. Observed average GRT and effort for the Norwegian commercial fleets are given in the input data to the yearly performed assessment. This information has been put together in the report of the ICES WGNSSK meeting in 2004 (ICES WGNSSK (2005), ICES CM2005/ACFMxx).

\section*{Danish effort data}

In each yearly assessment the input data as CPUE data by vessel size category and year for the Danish commercial fishery in area IVa is given. This is based on fishing trips where total catch included at least 70 \% Norway pout and blue whiting per trip, and where Norway pout was reported as main species in catch in the logbook per fishing day and fishing trip. There has been a relative reduction in the number and effort of small vessels and an increase for the larger vessels in the fleet in the latest years. Furthermore, it appears clearly that there is big difference in CPUE (as an indicator of fishing power) between different vessel size categories (BRT). Accordingly, standardization of effort is necessary when using a combined commercial fishery tuning fleet in the assessment including several vessel categories. Minor revisions (updating) of the Danish effort and catch data used in the effort standardization and as input to the tuning fleets have been made for the 2001 assessment.

\section*{Exploration of \(m\) ethods for effort standardization}

With respect to further exploration of the effect of using effort standardization and using a combined Danish and Norwegian commercial fishery tuning fleet in the Norway pout assessment different analyses have been made in relation to the benchmark assessment in 2004. This was done to investigate alternative standardization methods and alternative division of the commercial fishery assessment tuning fleet used in the assessment. The results of these analyses were presented to the working group and were discussed here in 2004 (ICES CM 2005/ACFM:xx).

Analysis of variance (GLM-analyses) of catch, effort and log transformed CPUE data on trip basis for the Danish commercial fishery for Norway pout during the period 1986 to 2004 showed statistical significant differences in catch rates betw een different GT-groups, years, quarters of years (seasons), and fishing areas, as well as statistical significant first order interaction effects between all of these variables. The detailed patterns in this variation are not clear and straight forward to conclude on.

It has not yet been possible to obtain disaggregated effort and catch data by area and vessel size (GT-group) from the Norwegian Norway pout fishery to perform similar analyses for the Norwegian fishery.

Also it is not possible to regenerate the historical time series (before 1996) of catch numbers at age in the commercial fishery tuning fleet by nation which is only available for the combined Danish and Norwegian commercial tuning fleet. The reason for this is partly that there is no documentation of historical allocation of biological samples (mean weight at age data) to catch data (catch in weight) in the tuning fleet in
order to calculate catch number at age for the period previous to 1996 for both nations, and partly because it seems impossible to obtain historical biological data for Norway pout (previous to 1996) from Norway. Alternative division of the commercial fishery tuning fleet would, thus, need new allocation of biological data to catch data for both the Danish and Norwegian fleet, and result in a significantly shorter Norwegian commercial fishery tuning fleet time series, and a historically revised Danish commercial fishery tuning fleet with new allocation of biological data to catch data. Revision of the tuning fleet would, furthermore, need analyses of possible variation in biological mean weight at age data to be applied to different fleets, as well as of the background for and effect of this possible variation.

\section*{Standardized effort data}

The resulting combined and standardized Danish and Norwegian effort for the commercial fishery used in the assessment is presented in the input data to the yearly performed assessment, as well as the combined CPUE indices by age and quarter for the commercial fishery tuning fleet.

The seasonal variation in effort data is one reason for performing a seasonal VPA.

\section*{B.2. Biological data}

Age reading
There are no reports of age reading problems of Norway pout otoliths, and no indications of low quality of the age length keys used in the assessment of this stock.

\section*{Weight at age}

Mean weight at age in the catch is estimated as a weighted average of Danish and Norwegian data. Historical levels and variation in mean weight at age in catch by quarter of year is shown in Figure 12.2.1 in the 2004 benchmark assessment in the 2004 ICES WGNSSK Report (ICES WGNSSK (2005), ICES CM 2005/ACFM:xx). In general, the mean weights at age in the catches are variable betw een seasons of year. The same mean weight at age in the stock is used for all years. Mean weight in catch is not used as estimator of weight in the stock partly because the smallest 0-group fish are not fully recruited to the fishery in \(3^{\text {rd }}\) quarter of the year.

\section*{Maturity and natural mortality}

Spawning in the North Sea takes place mainly in the northern part in the area between Shetland and Norway. Around 10 \% (varying between years and sex - see below) of the Norway pout reach maturity already at age 1, how ever, most individuals reach maturity at age 2 . Preliminary results from an analysis of regionalized survey data on Norway pout maturity, presented in Larsen et al. (2001), indicated variation in maturity between years and sexes, especially for the 1-group.

The same proportion mature and natural mortality are used for all years in the assessment. The natural mortality is set to 0.4 for all age groups in all seasons that result in an annual natural mortality of 1.6 for all age groups. The proportion mature used is \(0 \%\) for the 0 -group, \(10 \%\) of the 1 -group and \(100 \%\) of the \(2+\)-group independent of sex.

In the 2001 and 2002 assessment exploratory runs were made with revised input data for natural mortality based on the results from two papers presented to the working group in 2001, (both papers published in ICES J. Mar. Sci. in 2002, Sparholt, Larsen and Nielsen \(2002 a, b\) ). This was not explored further in the 2003 up-date assessment but the

2004 benchmark assessment of the stock includes an exploratory run with revised natural mortalities. These revised natural mortalities are given in Table 12.2.3 in the 2004 ICES WGNSSK Report (ICES WGNSSK (2005); ICES CM2005/ACFM:xx).
The resulting SSB, TSB (3rd quarter of year), TSB (1st quarter of year) and F for the final exploratory run was compared to those for the accepted run with standard settings. It appears that the implications of these revised input data are very significant. The working group in 2002 suggested that an assessment with partly the traditional settings (constant M ) and a new assessment with the revised values for M were made for at least a 3 year period in order to compare the output and the per formance of the assessments before the working group decided on final adoption of the revised values for M to be used in the assessment. This attitude was adopted by the Working Group again in the 2004 benchmark assessment where an exploratory run with revised values for M was performed as well. The results of the exploratory runs have been consistent throughout the 3 years of exploratory runs.

\section*{Research results on population dynamics parameters (e.g. natural mortality and maturity)}

Investigations on population dynamics (natural mortality, distribution, and spawning and maturity as well as growth patterns) of Norway pout in the North Sea are ongoing.

Studies presented to the working group in 2001 and published in 2002 indicate that natural mortality may be significantly different between age groups compared to constant as currently assumed in the assessment model Sparholt, Larsen and Nielsen (2002a,b).

Exploratory runs of the SXSA model was presented in the 2001 and 2002 assessment reports as well as in the 2004 and 2006 assessments (Norway pout benchmark assessments) with revised input data for natural mortality by age based on the results from two papers presented to the working group in 2001, (later published in Sparholt, Larsen and Nielsen, 2002a,b) as well as natural mortality estimates from the North Sea MSVPA model in the 2006 assessment (ICES CM 2006/ACFM:35).

The resulting SSB, TSB ( \(3^{\text {rd }}\) quarter of year), TSB ( \(1^{\text {t }}\) quarter of year) and F for the final exploratory run was compared to those for the accepted run with standard settings. It appeared that the implications of these revised input data are very significant. The working group in 2002 suggested that an assessment with partly the traditional settings (constant \(M\) ) and a new assessment with the revised values for \(M\) were made for at least a 3 year period in order to compare the output and the performance of the assessments before the working group decided on final adoption of the revised values for M to be used in the assessment. This attitude was adopted by the working group again in the 2004 benchmark assessment where an exploratory run with revised values for M was performed as well. The results of the exploratory runs have been consistent throughout all years of exploratory runs.

The working group recommended in 2005 that there was made a limited benchmark assessment for Norway pout in the 2006 assessment (ICES CM 2006/ACFM:35) with specific reference to evaluation of effects of using revised natural mortalities, and that the WG on this basis decides on which natural mortalities to use in the assessment. Here three data time series for natural mortality was considered and compared through exploratory assessment runs:
1. Constant natural mortalities by age, quarter and year as used in previous years standard (baseline) assessment
2. Revised natural mortalities obtained from and based on the results from Sparholt et al (2002a,b)
3. Revised natural mortalities obtained from the most recent run with the North Sea MSVPA model (presented and used in the ICES SGMSNS (2006).

The estimates of natural mortality by Sparholt et al (2002a,b) indicate age and periodical tendencies and differences in natural mortality with higher \(M\) for age 2 and 3 compared to age 1 (and 0 ). The proportion of the natural mortality due to predation was found highest at age 1. Non-predation mortality on Norway pout increases with age and is very high for age 2 and older fish resulting in relatively higher overall M values for age 2 and 3 compared to age 1 . The estimates are based on analysis of IBTS quarter 1 survey time series in two periods from 1977-1981 and 1987-1991. The results also revealed high variation in total mortality \((Z)\) by age and period using different survey time series (IBTS Q1 1977-81, 1987-1991, 1979-1999, SGFS Q3 1987-1991, 19801997, and EGFS Q3 1982-1992) as well as other source time series (commercial catch data time series 1977-1981, 1987-1991, and numbers consumed by year class 19771981, 1987-1991). Even though the results using different sources and surveys confirmed overall age specific tendencies in Z there were high variability and some inconsistency in the estimates from different sources in different periods.

The estimated \(M\) and \(Z\) values by age based on the 1987-1991 IBTS Q1 data from this study are shown in ICES CM 2006/ACFM:35, Figures 5.2.3-4 as well as in Table 5.2.6. The M values from 1987-1991 were extrapolated and used as constant values by age and quarter for all years for the period 1983-2006 in exploratory SMS assessment runs comparing use of baseline M and M from Sparholt et al (2002a,b) (Figure 5.2.3-4). The results showed different levels of SSB, F, recruitment and TSB but the same perception of stock dynamics in accordance with previous years results (Figure 5.3.10).

Estimates of total mortality based on the SURBA assessment model estimates (2005 SURBA run for Norway pout, ICES C.M. 2006/ACFM:35) using all survey time series included in the baseline assessment (as given in Table 5.3.2 of ICES CM 2007/ACFM:18 and 30) covering the period 1983-2005 was also presented in Figure 5.2.3. It appeared that for the period up to 1990-1995 Z estimated from SURBA and Sparholt, Larsen and Nielsen (2002a,b) is on the same level for both the 1-2 group and 2-3 group, and there also seems to be age specific differences in Z . In the period from 1995 and onwards the Z-estimates from SURBA are lower compared to the constant \(M\) values obtained from Sparholt, Larsen and Nielsen (2002a,b). In recent years from 2002-03 SURBA estimates of \(Z\) increases again compared to the period 1995-2001.

In conclusion, the survey based mortality estimates indicate age specific differences in Z and M . However, different survey time series indicate high variability in the mortality with somewhat contradicting tendencies between periods. Sparholt, Larsen and Nielsen \((2002 \mathrm{a}, \mathrm{b})\) discussed their results in context of changed catchability in the surveys, migration out of the area, or age specific distribution patterns of Norway pout and concluded that the mortality patterns were not caused by this.

The MSVPA estimates of \(Z\) in the period 1983-2003 also shown in Figure 5.2.3-4 of ICES CM 2007/ACFM: 18 and 30 and obtained from ICES SGMSNS (2006) are higher than the survey based estimates from Sparholt, Larsen and Nielsen (2002a,b) and from SURBA for the 1-2 age groups, but on the same level for the 2-3 age groups indicating relatively high difference for the 1-group. Higher natural mortality (M) values for the 1-group from MSVPA compared to those from Sparholt, Larsen and Nielsen
(2002a,b) are evident from Figure 5.2.4. The MSVPA indicate that M by quarter of year is on the same level for all three age groups (1-3) by year during the whole assessment period.

MSVPA M increase in 2002 and 2003 for both age 1, 2 and 3 (as was also observed in SURBA estimated Z). Whether this tendency of change in level of MSVPA M for in recent years has continued is unknown because MSVPA M estimates in 2004 and 2005 are not available (ICES-SGMSNS 2006). The SURBA estimates for 2003-2005 might indicate that the increasing tendency in \(Z\) (and accordingly \(M\) as \(F\) is 0 ) is not continuing from 2003 to 2004-05 (Figure 5.2.3). Accordingly, when using the MSVPA natural mortalities it is necessary to make assumptions about natural mortality for the years 2004 and 2005. The rather constant level of natural mortality for all age groups in the MSVPA in previous years might be changing (increasing) in recent years from 2002 and onwards as indicated on Figure 5.2.3-4, but this cannot be finally documented. When up-date estimates of MSVPA M-values are available it should again be considered whether to use MSVPA estimates of M in the assessment. In the exploratory runs with SMS using MSVPA values, the M for 2004 and 2005 was assumed to be equal to the 2003 values. The results of this exploratory run revealed that there was no difference in perception of the stock compared to the baseline assessment with constant M (Figure 5.3.11). This should be seen in context of the constant M by age and quarter chosen in the baseline assessment at 0.4 by quarter and age is based on the rather constant level of M estimates from MSVPA in the period 1983-2001.

Consequently, the MSVPA estimates indicate rather constant M between age groups (and years), and do not provide the most recent estimates of M .

Overall, the independent sources of information on mortality are contradicting between age groups and inconclusive between periods (variable). Consequently, it has been chosen to continue using the baseline assessment constant values for M at age and quarter as in previous years assessment.

\section*{Condusions of the explorative comparison runs:}

The exploratory runs give very much similar results and showed no differences in the perception of the stock status and dynamics. With respect to the exploratory runs using different natural mortalities no conclusions could be reached as the different sources showed different trends with no obvious biological explanation. On that basis it was decided that the final assessment in the September 2006 benchmark assessment continues to use the standard constant natural mortality values by age, year and season. The exploratory comparisons between assessment using the traditional SXSA assessment model and the SMS model give comparable results and the same perception of the Norway pout stock dynamics.

Preliminary results from an analysis of regionalized survey data on Norway pout maturity is presented in a Working Document to the 2000 meeting of the Working Group (Larsen, Lassen, Nielsen and Sparholt,2001 in ICES C.M.2001/ACFM:07).

\section*{B.3. Assessment tuning fleet data and indices (general)}

Revision of assessment tuning fleets (survey CPUE data and commercial fishery CPUE data) in the 2004 benchmark assessment:

Revision of the Norway pout assessment tuning fleets was performed during the 2004 benchmark assessment. The background for this, the results, and the conclusions from the analyses in relation to this are described here in the stock quality handbook as well as in the benchmark assessment in the working group report from 2004.

Revision of the Norway pout assessment tuning fleets during benchmark assessment have been based partly on cohorte analyses and analyses of correlations within and between the different tuning fleet indices by age group, as well as on the results from a row of exploratory assessment runs described under section 12.3 of the 2004 benchmark assessment (ICES WGNSSK (2005)) which analyses the performance of the different tuning fleets in the assessment. The exploratory assessment runs also give indications of possible catchability patterns and trends in the fishery over time within the assessment period. The analyses of the tuning fleet indices are presented in the benchmark assessment 2004 (ICES WGNSSK (2005)) Figures 12.2.3-12.2.8 and Tables 12.2.9-12.2.12.
An overview over the resulting tuning data and fleets used in the assessment during different time periods are shown in the table over tuning data in section Cbelow.

\section*{B.4. Survey data}

Survey index series of abundance of Norway pout by age and quarter are for the assessment period available from the IBTS (Q1 and Q3) and the EGFS (Q3) and the SGFS (Q3). The SGFS data from 1998 onwards should be used with caution due to new survey design (new vessel from 1998 and new gear and extended survey area from 1999). The 0 -group indices from this survey have accordingly not been used in the assessment tuning fleet for this survey previous to the 2004 benchmark assessment. The index for the 0 -group from SGFS changed with an order of magnitude in the years after the change in survey design compared to previous years (Table 12.2.8, ICES WGNSSK (2005)). The EGFS data from previous to 1992 should be used with caution as the survey design shifted in 1992. This change in survey design has until 2004 been accounted for by simply multiplying all indices with a factor 3.5 for all age groups in the years previous to 1992 in order to standardize it to the later indices. The EGFS survey indices for Norway pout has been revised in the 2004 assessment compared to the previous years assessment for the 1996, 2001, 2002, and 2003 indices. In previous years assessments (before 2004) the full EGFS survey time series for all age groups have been included as an assessment tuning fleet. Time series for IBTS Q3 are only available from 1991 and onwards. The \(3^{\text {rd }}\) quarter IBTS and the EFGS and SGFS are not independent of each other as the two latter is a part of the first. Accordingly, the following changes have been made for the survey tuning index series in the 2004 benchmark assessment (also shown in the tuning series overview table in section C):
1) The IBTS Q3 for the period 1991-2003 has been included in the assessment. This survey has a broader coverage of the Norway pout distribution area compared to the EGFS and SGFS isolated. However, as this survey index is not available for the most recent year to be used in the seasonal assessment it has been chosen to exclude the 0 - and 1 -group indices from the IBTS Q3 in order to allow inclusion of the 0 - and 1 -group indices from the SGFS and EGFS which are available for the most recent year in the assessment. (Not rele vant in relation to spring assessments) Accordingly, the IBTS Q3 tuning fleet for age 2 and age 3 has been included in the assessment as a new tuning fleet. The SXSA demands at least two age groups in order to run which is the reason for including both age 0 and age 1 under the EGFS and SGFS tuning fleets and not including age 1 in the IBTS Q3 tuning fleet.
2 ) The SGFS for age group 0 and 1 for the period 1998 and onwards has been used as tuning fleet in the assessment. The short time series is due to the change in survey design for SGFS as explained above. The quarter 30 group survey index for SGFS is back-shifted to the final season of the as-
sessment in the terminal year, i.e. to quarter 2 of the assessment year in order to include the most recent 0 -group estimate in the assessment.

3 ) The EGFS for age group 0 and 1 for the period 1992 and onwards has been used as tuning fleet in the assessment. The shorter time series is due to the change in survey design for EGFS as explained above. Furthermore, there is a good argument for excluding the age 2-3 of the EGFS as the within survey correlation between the age groups 1-2 and 2-3 is very poor while the within correlation between age groups \(0-1\) is good. The quarter 30 group survey index for EGFS is back-shifted to the final season of the assessment in the terminal year, i.e. to quarter 2 of the assessment year in order to include the most recent 0 -group estimate in the assessment.
4 ) The IBTS Q1 tuning fleet has remained unchanged compared to previous years assessment.

IBTS Quarter 1
IBTS Quarter 3



Figure 4 IBTS mean CP UE (numbers per hour) by quarter during the period 1991-2004. The area of the circles is proportional to CP UE. The IBTS surveys do only cover areas within the 200 m depth zone. The "Norway pout box" and the boundary between the EU and the Norwegian EEZ are shown on the map. The maps are scaled individually.

\section*{B.5. Commercial CPUE data}

Combined CPUE indices by age and quarter for the Danish and Norwegian commercial fishery tuning fleet is calculated from effort data obtained from the method of effort standardization of the commercial fishery tuning fleet described under section B. 1 and vessel category specific catches by area. CPUE is estimated on a quarterly basis for the Danish and Norwegian commercial fleets.

The resulting combined, commercial fishery CPUE data by age and quarter is presented in the input data to the yearly performed assessment. The commercial fleet data are used in tuning of the assessment based on the combined and standardized Danish and Norwegian effort data and on the catch data for the commercial fishery

Commercial fishery tuning fleets:
In addition to the analyses of the commercial fishery assessment tuning fleet as described above (effort standardization) the quarterly CPUE indices of the commercial fishery tuning fleet were analyzed during the 2004 benchmark assessment:

1 ) The indices for the 0 -group in 3 rd quarter of the year have been excluded from the commercial fishery tuning fleet. The main argumentation for doing that is that this age group indicate clear patterns in trends in catchability over the assessment period as shown in the single fleet/quarter assessment runs in section 12.3 (Figure 12.3.7), ICES WGNSSK (2005). Secondly, there is no correlation between the commercial fishery \(3^{\text {rd }}\) quarter 0 -group index and the commercial fishery \(4^{\text {th }}\) quarter 0 -group index, and no correlation between the \(3^{\text {rd }}\) quarter commercial fishery 0 -group index in a given year with the 1 -group index of the \(3^{\text {rd }}\) quarter commercial fishery the following year.
2 ) The \(2^{\text {nd }}\) quarter indices for all age groups have been excluded from the commercial fishery tuning fleet. This is mainly because of indications of strong trends in catchability over time in the assessment period for this part of the tuning fleet for all age groups as indicated by single fleet tuning runs in the section 12.3 (Figure 12.3.7), ICES WGNSSK (2005). Also, the within quarter and between quarter correlation indices are in general relatively poor. The cohorte analyses of the \(2^{\text {nd }}\) quarter commercial fishery indices indicate as well relative changes over time.

\section*{C. Historical Stock Development}

The SXSA (Seasonal Extended Survivors Analysis: Skagen (1993)) has been used to estimate quarterly stock numbers and fishing mortalities for Norway pout in the North Sea and Skagerrak as the standard assessment method. The catch at age analysis was carried out according to the specifications given in the present stock quality handbook.

The assessment is analytical using catch-at-age analysis based on quarterly catch and CPUE data. The assessment is considered appropriate to indicate trends in the stock and immediate changes in the stock because of the seasonal assessment taking into account the seasonality in fishery. The seasonal model makes it possible to include and use the most recent information from the fishery and from the surveys at the assessment in , and provides a gives at the assessment time an The seasonal variation in effort data is one reason for performing a seasonal VPA.

In the options chosen in the SXSA for the Norway pout assessment the catchability, \(r\), per age and quarter and fleet is assumed to be constant within the period 1983-2005 where the estimated catchability, rhat, is a geometric mean over years by age, quarter and tuning fleet. In the 2004 benchmark assessment exploration of trends in tuning fleet catchabilities was investigated by single fleet runs with the SXSA. The accepted assessment with revised tuning fleets in the 2004 benchmark assessment assume constant catchability.

Tuning is performed over the period 1983 to present producing log residual \((\log (N h a t / N))\) stock numbers and survivor estimates by year, quarter, age and tuning fleet. The contributions from the various age groups to the survivor estimates by year and quarter and fleet are in the SXSA combined to an overall survivors estimate, shat,
estimated as the geometric mean over years of \(\log\) (shat) weighted by the exponential of the inverse cumulated fishing mortality as described in Skagen (1993).

In exploratory and comparison runs especially the SMS model has been used during the period 2005-2007:

SMS (Stochastic Multi Species model; Lewy and Vinther, 2004) is an age-structured multi-species assessment model which includes biological interactions. How ever, the model can be used with one species only. In "single species mode" the model can be fitted to observations of catch-at-age and survey CPUE. SMS uses maximum likelihood to w eight the various data sources assuming a log-normal error distribution for both data sources. The likelihood for the catch observation is then as defined below:
\[
L_{C}=\prod_{a, y, q} \frac{1}{\sigma_{\text {catch }}(a a) \sqrt{2 \pi}} \exp \left(-(\ln (C(a, y, q))-\ln (\hat{C}(a, y, q)))^{2} /\left(2 \sigma_{\text {catch }}^{2}(a a)\right)\right)
\]
where \(C\) is the observed catch-at-age number, \(\hat{C}\) is expected catch-at-age number, \(y\) is year, \(q\) is quarter, \(a\) is age group, and \(a a\) is one or more age groups.

SMS is a "traditional" forward running assessment model where the expected catch is calculated from the catch equation and \(F\)-at-age, which is assumed to be separable into an age selection, a year effect and a season (year, half-year, quarter) effect.

As an example, the \(F\) model configuration is shown below for a species where the assessment includes ages 0-3+ and quarterly catch data and quarterly time step are used:
\[
F=F\left(a_{a}\right) \times F\left(y_{v}\right) \times F\left(q_{q}\right)
\]
with \(F\)-components defined as follows:
\(F(a):\)
\begin{tabular}{|l|l|}
\hline Age 0 & Fa \(_{0}\) \\
\hline Age 1 & Fa \(_{1}\) \\
\hline Age 2 & Fa \(_{2}\) \\
\hline Age 3 & Fa \(_{3}\) \\
\hline
\end{tabular}
\(F(q):\)
\begin{tabular}{|l|l|l|l|l|}
\hline & \(\mathrm{q}^{1}\) & q 2 & q 3 & q 4 \\
\hline Age 0 & 0.0 & 0.0 & Fq & 0.25 \\
\hline Age 1 & \(\mathrm{Fq}_{1,1}\) & \(\mathrm{Fq}_{1,2}\) & \(\mathrm{Fq}_{1,3}\) & 0.25 \\
\hline Age 2 & \(\mathrm{Fq}_{2,1}\) & \(\mathrm{Fq}_{2,2}\) & \(\mathrm{Fq}_{1,3}\) & 0.25 \\
\hline Age 3 & \(\mathrm{Fq}_{3,1}\) & \(\mathrm{Fq}_{3,2}\) & \(\mathrm{Fq}_{3,3}\) & 0.25 \\
\hline
\end{tabular}
\(F(y)\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Y1 & Y2 & Y3 & Y4 & Y5 & Y6 & Y7 & Y8 & Y9 & \(\ldots\) \\
\hline 1 & Fy 2 & Fу \({ }^{\text {}}\) & Fy 4 & Fy 5 & Fy \({ }_{6}\) & \(\mathrm{Fy}_{7}\) & Fy 8 & Fy9 & ... \\
\hline
\end{tabular}

The parameters \(F\left(a_{a}\right), F\left(y_{y}\right)\) and \(F\left(q_{q}\right)\) are estimated in the model. \(F\left(q_{q}\right)\) in the last quarter and \(F\left(y_{y}\right)\) Fy in the first year are set to constants to obtain a unique solution. For annual data, the \(F\left(q_{q}\right)\) is set to a constant 1and the model uses annual time steps.

One \(F(a)\) vector can be estimated for the whole assessment period, or alternatively, individual \(F(a)\) vectors can be estimated for subsets of the assessment periods. A separate \(F(q)\) matrix is estimated for each \(F(a)\) vector.
For the CPUE time series the expected CPUE numbers are calculated as the product of an assumed age (or age group) dependent catchability and the mean stock number in the survey period.
The likelihood for CPUE observations, \(L s\), is similar to \(L c\), as both are assumed lognormal distributed. The total likelihood is the product of the likelihood of the catch and the likelihood for CPUE ( \(L=L c^{*} L\) cpue, \()\). Parameters are estimated from a minimisation of \(-\log (L)\).
The estimated model parameters include stock numbers the first year, recruitment in the remaining years, age selection pattern, and the year and season effect for the separable F model, and catchability at age for CPUEtime series.
SMS is implemented using ADmodel builder (Otter Research Ltd.), which is a software package to develop non-linear statistical models. The SMS model is still under development, but has extensively been tested in the last year on both simulated and real data.

SMS can estimate the variance of parameters and derived values like average \(F\) or SSB from the Hessian matrix. Alternatively, variance can be estimated by using the built-in functionality of the AD-Model builder package to carry out Markov Chain Monte Carlo simulations (Gilks et al. 1996), MCMC, to estimate the posterior distributions of the parameters. For the historical assessment, period uniform priors are used. For prediction, an additional stock/recruitment relation including CV can be used.

\section*{Comparison of SXSA and SMS model output and assessment model evaluation:}

The September 2006 limited benchmarking considered the most appropriate assessment model to be used and considered in order to describe the dynamics of the stock.

Previously, the SXSA (Seasonal Extended Survivors Analysis) model has been used in the assessment of Norway pout. The method is described in the quality control handbook.

The SMS is like the SXSA a seasonal based model being able to deal with assessment of a short lived species (where there are only few age groups in the VPA) and seasonality in fishing patterns.

The SMS (Stochastic Multi Species model; see section 1.3.3 and the stock quality handbook) objective functions (in "single species mode") for catch at age numbers and survey indices at age time series are minimized assuming a log-normal error distribution for both data sources. The expected catch is calculated from the catch equation and \(F\) at age, which is assumed to be separable into a year effect, an age selection, and an age-season selection. The SMS assumes constant seasonal and age-dependent Fpattern. SMS uses maximum likelihood to weight the various data sources. For years with no fishery (here 2005 and 2006 in this assessment) SMS simply set F to zero and exclude catch observations from the objective function. In such case only the survey indices are used in the model. The SXSA needs catch input for all quarters, all years, and in years with no catch infinitive small catch values have to be put into the model as an approximation. SXSA handles catch at age observation as exact, i.e. the SXSA does not rely on the assumption of constant exploitation pattern in catch at age data as for example the SMS does. As a stochastic model, SMS uses catch observations as
observed with noise, but assumes a separable F. Both assumptions are violated to a certain degree.

SMS being a stochastic model can estimate the variance of parameters and derived values like average F and SSB. The SXSA is a deterministic model.

The Norway pout assessment includes normally catches from the first and second quarter of the assessment year. SMS uses survey indices from the third quarter of the assessment year under the assumption that the survey is conducted the very beginning of the third quarter. SXSA model has not that option and data from the third quarter of the assessment year can only be used by "back-shifting" the survey one quarter back in time.

The SMS model has so far assumed recruitment in 3 rd quarter of the year and not in the start of the \(2^{\text {nd }}\) quarter of the year which the SXSA use. Actual recruitment is in the \(2^{\text {nd }}\) quarter of the year. Consequently, the assumed natural mortality of 0.4 for the 0 -group in first and second quarter of the year is not included in the SMS compared to use of this in \(2^{\text {nd }}\) quarter of the year for the SXSA for the 0 -group.

The diagnostics and results of the exploratory runs for comparison between SXSA and SMS assessment are shown in the WGNSSK September 2006 report (ICES WGNSSK, 2007). The models give comparable results and the same perception of the Norway pout stock dynamics, which have been documented in the 2004 benchmark assessment, the September 2005 and April 2006 update assessments (see above), as well as in the September 2006 exploratory runs. However, as SMS is a stochastic model it also provides uncertainties of the results. Accordingly, SMS was in September 2006 chosen as the new standard assessment model for Norway pout. However, it was decided that near future assessments should also include a comparative, exploratory SXSA assessment.

Comparison of output from a seasonal based assessment model (the SXSA model) and a annual based (the XSA model):

In the 2004 benchmark assessment of the Norway pout stock a comparison of the output, performance and weighting of tuning tuning fleets of the seasonal based SXSA model and the annual based XSA model was performed. The results are in detail presented in the 2004 ICES WGNSSK Report (ICES WGNSSK (2005)). The differences in results of output SSB, TSB and F between the two assessment runs were small. Both model runs gave in general similar weighting to the different tuning fleets used. This was based on comparison of runs of the accepted assessment (by the WG and ACFM) in 2003.

\section*{Summary of condusions from the exploratory catch at age analyses in the 2004 benchmark assessments:}

A number of exploratory runs were carried out as part of the benchmark assessment in 2004 in order to evaluate performance of stock indices as tuning fleets and also to compare performance of the seasonal XSA (SXSA) to the 'conventional' XSA. The exploratory runs are described in the 2004 working group report. The conclusions of the explorative runs in the 2004 benchmark assessment were the following:
1. Catch and CPUE data for the assessment of Norway pout are very noisy, but internally consistent. The assessment, using SMS, gave very similar results irrespective of the CPUE time series used. Four of the seven CPUE series are data from the commercial fishery and these data are already included in the catch data. Therefore, these
commercial fleets will not give a signal very different from the catch data. None of the scientific surveys had a dear signal different form the signal in the catch data.
2. A comparison of the revised 2004 assessment with new tuning fleets compared to the previous 2003 assessment showed that the estimates of the SSB, recruitment and the average fishing mortality of the 1- and 2-group for the revised, accepted assessment were in general consistent with the estimates of previous years assessment. Only historical F seemed to slightly deviate from the previous years assessment.
3. The overall performance and output for the XSA model was similar to the SXSA model, so the working group in 2004 decided to continue using SXSA. Both methods did overall not show insensible to the tuning fleet indices used in the assessment.
In the up-date assessment in 2005 output of the SXSA model was compared to output from the SMS and SURBA model to evaluate the use of the SXSA model in a situation with having zero catches in the terminal year of the assessment. The results showed similar output of the different models and the same perception of the stock. The results are in detail presented in the 2005 ICES WGNSSK Report (ICES WGNSSK (2006)).

Analysis of output from SXSA and SMS and to evaluate the effect on the assessment of no catches in 2005 and 2006:

Due to closure of the Norway pout fishery and no catches in 2005 and in the first part of 2006 there has been made exploratory and comparative assessment runs using different assessment models (SXSA, SMS) to evaluate the effect on the assessment of this situation during the April 2006 assessment. This has been considered necessary to evaluate the effect of the absolute value of the artificial catch numbers on the on the SXSA output and to use a modified version of SMS that allows for no fishing in the end of the assessment period, where the SMS assessment uses identical input data as the SXSA assessment. Also the aim has been to evaluate how the SMS reacts to a situation with several years of no catches.

In the April 2006 assessments exploratory runs of SXSA was made where the artificial catch numbers in 2005 and 2006 was 4 -doubled (but still low, from 400 t per quarter of year to \(1600 t\) per quarter) compared to the very low catch levels used in the accepted assessment. The results of these comparative runs are not shown, however, the resulting output of the assessments were identical giving the same perception of the stock status and dynamics. Furthermore, in the September 2005 up-date assessment a SXSA assessment was performed with the change of using catch numbers in the first and second quarter of 2005 corresponding to \(50 \%\) of the 2004 quarter 1 and 2 catch numbers (instead of \(10 \%\) of the catches in the accepted assessment). The results of these comparative runs are shown in Figure 5.3.8 of the September 2005 report (ICES-WGNSSK 2006). The resulting outputs of these assessments were identical giving the same perception of the stock status and dynamics. From these SXSA runs it can be concluded that the absolute values of the artificial (small) catches does not practically affect the assessment output.
In April 2006 a SMS run was made with an assumption of no catches in 2005-2006. SMS was modified to exclude the likelihood of catch observation for 2005-2006 (and 2007) from the objective function. CPUE observations for 2005 and 2006 were, however, used in the model and objective function. By letting the model include 2007 as terminal year it is possible to forecast stock status under the assumption of no fishery in 2006-2007, and recruitments that follows the SMS recruitment function (geometric mean).

It appeared that the diagnostics of the SMS looked very similar to the one produced for the 2005 assessment As it was also shown in the 2004 benchmark assessment, the SMS model results in a rather similar weighting of the catch at age data as well as the tuning fleets as the SXSA model does. As seen in the previous years assessments, the SMS model tends to estimate lower SSB and higher F compared to results of the SXSA model, however, the perception of the stock status and dynamics are very much similar from the results of both model runs. Recruitment estimates of the two models cannot be directly compared as the SMS gives recruitment in third quarter of the year while the SXSA gives recruitment in the second quarter of the year.

\section*{Software used:}

SXSA program available from ICES. Used for the final assessment as standard software.
SMS program available from Morten Vinther, DIFRES, Copenhagen (Exploratory run, 2004 and 2005, April 2006 and September 2006).
(SURBA program available from Coby Needle, MARLAB, Aberdeen; Exploratory run, 2005)
The XSA and SURBA cannot perform quarterly based assessment.
Model Options chosen:
The parameter settings and options of the SXSA and SMS have been the same in all recent years assessments, except that recruitment season to the fishery has been backshifted from \(3^{\text {rd }}\) quarter of the year to \(2^{\text {nd }}\) quarter of the year when running SXSA in the autumn in order to gain benefit from the most recent 0 -group indices from the 3 rd quarter surveys (SGFS and EGFS as explained above) in the assessment. This has not been necessary in the SMS assessment. In the May 2007 assessment with SXSA this backshifting has not been performed.
No time taper or shrinkage is used in the catch at age analysis. The three surveys and the seasonally (by quarter) divided commercial fleets are all used in the tuning.

\section*{The following parameters were used:}
```

Year range:
1983 - 2007
Seasons per year: 4
The last season in the last year is season: 3
Youngest age:
Oldest true age:
3
Plus group: No
plus group in SMS (4+-group in SXSA)
Recruitment in season:
3
Spawning in season:
1
Single species mode:
Yes,
Single species mode:

```

\section*{The following fleets were included:}
```

Fleet 1: (Q1: Age 1-3; Q2: None; Q3: Age 1-3; Q4: Age 0-2) commercial
q134
Fleet 2: ibtsq1
(Age 1-3)
Fleet 3: egfsq2
(Age 0-1)
Fleet 4: sgfsq2
(Age 0-1)
Fleet 5:
ibtsq3
(Age 2-3)

```

\section*{Data were input from the following files:}
```

Catch in numbers: canum.qrt
Weight in catch: weca.qre
Weight in stock:
Natural mortalities:
Maturity ogive:
Tuning data (CPUE)
Weighting for rhats:

```
canum. qrt
weca.qrt
west.qrt
natmor.qrt
propmat.qrt
tun2007.xsa
rweigh.xsa

\section*{In the SXSA the following options were used:}
```

The following options were used:
1: Inv. catchability: 2
(1: Linear; 2: Log; 3: Cos. filter)
2: Indiv. shats:2
(1: Direct; 2: Using z)
3: Comb. shats:2
(1: Linear; 2: Log.)
4: Fit catches:0
(0: No fit; 1: No SOP corr; 2: SOP corr.)
5: Est. unknown catches:0
(0: No; 1: No SOP corr; 2: SOP corr; 3: Sep. F)
6: Weighting of rhats:0
(0: Manual)
7: Weighting of shats:
2
(0: Manual; 1: Linear; 2: Log.)
8: Handling of the plus group:1
(1: Dynamic; 2: Extra age group)
Factor (between 0 and 1) for weighting the inverse catchabilities
at the oldest age versus the second oldest age (factor 1 means that
the catchabilities for the oldest age are used as they are):0
Specification of minimum value for the survivor number (this is
Used instead of the estimate if the estimate becomes very low):
Iteration until convergence (setting 0):

The following tuning fleet options were used in the SMS model (summary from fleet_info.dat):

```
Minimum CV of CPUE observations: 0.2
Fleet specific options:
1-2, First year last year,
3-4. Alpha and beta - the start and end of the fishing period for the fleet
given as
            fractions of the season (or year if annual data are used)
5-6 First and last age,
7. last age with age dependent catchability,
8. last age for stock size dependent catchability (power model), -1 indicated
no
    ages uses power model
9. season for survey,
10. number of variance groups for estimated catchability
    by species and fleet
1 commercial q1: 1983 2004 0 1 1 3 3 -1 1 3
1 commercial q3: 
1 commercial q4: 1983 2004 0 1 0 2 2 -1 4 3
2 IBTS q1: 1983 2006 0 1 1 1 3 3 -1 1 3
3 EGFS q 3: 1 1992 2005 0 1 1 0 1 1 1 -1 3
4 SGFS q3: 1998 2006 0 0 0 1 1 1 -1 3 2
5 ibts_q3: 1991 2005 0 1 1 2 3 3 -1 3 2
Variance groups:
Fleet: 1 season 1: 1 2 3
Fleet: 1 season 3: 1 1 2 3
Fleet: 1 season 4: 0 1 2
Fleet: 2:
Fleet: 3: 0}
Fleet: 4: 0 1
Fleet: 5: 2 3
```


The following SMS model settings were used in the SMS model (summary from SMS.dat) :

```
SSB/R relationship:
    Geometric mean
Object function weighting:
First=catch observations 1.0
Second=CPUE observations 1.0
Third=SSB/R relations
Minimum CV of commercial catch at age
observations option min.catch.CV): 0.20
Minimum CV of S/R relation (option min.SR.CV): 0.20
No. of separate catch sigma groups by species: 4 (one variance
group by age)
Exploitation pattern by age and season: Age 0 (3 rd - 4 th quarter)
Age 1 (1 st },\mp@subsup{3}{}{\mathrm{ rd }},\mp@subsup{4}{}{\mathrm{ th }}\mathrm{ quarter)
Ages 2-3 (1 1st, 3 rd , 4 th quarter)
If tuning survey index has the value 0 then 5% of the
average of the rest of the observations are used
because the logarithm to zero can not be taken:
Minimum "observed" catch, negative value gives
percentage (-10 ~ 10%) of average catch in age-group
if option>0 and catch=0 then catch=option
if option<0 then catch=average(catch at age)*(-option)/100 -5
Assuming fixed exploitation pattern by age and season
Number of years with zero catch:
2 (2005, 2006)
```

Input data types and characteristics:

Type	Name	Year range	Age range	Variable from year to year Yes/No
Caton	Catch in tonnes	1983-present	$0-3+$	Yes
Canum	Catch at age in numbers	1983 -present\|	$0-3+$	Yes
Weca	Weight at age in the commercial catch	1983 -present\|	$0-3+$	Yes
West	Weight at age of the spawning stock at spawning time.	1983 -present\|	$0-3+$	No
Mprop	Proportion of natural mortality before spawning	Not relevant in SXSA ।	1983-present\|	$0-1$
Fprop	Proportion of fishing mortality before spawning	Yes		
Matprop	Proportion mature at age	1983-present\|	$1-3+$	No, 10\%age 1, $100 \% ~ 2+$
Natmor	Natural mortality	1983-present\|	$0-3+$	No, 0.4 per quarter per age group

Tuning data
Norway pout IV \& IllaN (Skagerak). Stock indices and tuning fleets used in final 2004 benchmark assessment as well as in the 2005-2009 assessments compared to the 2003 assessment.

		2003 ASSESSMENT	2004, 2005, April 20	Sept. 2006 ASSESSMENT	2007-09 ASSESSMENTS
Recruiting season		3 3rd quarter	2nd quarter (SXSA)	3rd quarter (SMS); 2nd quarter (SXSA)	3rd quarter (SXSA)
Last season in last year		3 3rd quarter	2nd quarter (SXSA)	3rd quarter (SMS); 2nd quarter (SXSA)	1st quarter (SXSA)
Plusgroup		4+	$4+$ (SXSA)	None(SMS); 4+(SXSA)	$4+$ (SXSA)
FLT01: comm Q1					
	Year range	1982-2003	1982-2004	1982-2004	1982-2004, 2006
	Quarter	1	1	1	1
	Ages	1-3	1-3	1-3	1-3
FLT01: comm Q2			NOT USED	NOT USED	NOT USED
	Year range	1982-2003			
	Quarter	2			
	Ages	1-3			
FLT01: comm Q3					
	Year range	1982-2003	1982-2004	1982-2004	1982-2004, 2006
	Quarter	3	3	3	3
	Ages	0-3	1-3	1-3	1-3
FLT01: comm Q4					
	Year range	1982-2003	1982-2004	1982-2004	1982-2004, 2006
	Quarter	4	4	4	4
	Ages	0-3	0-3	0-2 (SMS); 0-3 (SXSA)	0-3 (SXSA)
FLTO2: ibtsq1					
	Year range	1982-2003	1982-2006	1982-2006	1982-2009
	Quarter	1	1	1	1
	Ages	1-3	1-3	1-3	1-3
FLT03: egfs					
	Year range	1982-2003	1992-2005	1992-2005	1992-2008
	Quarter	3	Q3 -> Q2	Q3 -> Q2	Q3
	Ages	0-3	0-1	0-1	0-1
FLT04: sgfs					
	Year range	1982-2003	1998-2006	1998-2006	1998-2008
	Quarter	3	Q3 -> Q2	Q3-> Q2	Q3
	Ages	0-3	0-1	0-1	0-1
FLT05: ibtsq3		NOT USED			
	Year range		1991-2005	1991-2005	1991-2008
	Quater		3	3	Q3
			2-3	2-3	2-3

D. Short-Term Projection

A deterministic short-term forecast is given for the stock. This was done for the Norway pout stock for the first time in 2004. From April 2006 deterministic short-term prognoses were performed for the Norway pout stock.

The forecast w as calculated as a stock projection up to $1^{\text {st }}$ of January of the forecast year using full assessment information for the assessment year.

The projection up to $1^{\text {st }}$ of January of the forecast year is based on the SXSA assessment estimate of stock numbers at age at the start of the assessment year. The forecast is using a geometric mean for the stock-recruitment relationship

The forecast uses relevant exploitation pattern.
Ten percent of age 1 is mature and is included in SSB. Therefore, the recruitment in the year after the assessment year does influence the SSB in the following year.

Usually the recruitment in the year after the assessment year is assumed to be at 25% level (25 percentile) of the long term geometric mean. This level has been chosen to take into account that the frequency of strong year classes seems to have decreased in the recent $10-15$ year period compared to previously.

A management table is presented from the forecast. The objective set in relation to this is to set the fishing mortality and catch on a level that maintain spawning stock biomass above B_{pa} by $1^{\text { }}$ of January one - two years after the assessment year with a high probability (95% level).

Catch predictions for 0 - and 1-groups are important as the fishery traditionally target the 0 -group already in $3^{\text {rd }}$ and (especially in) $4^{\text {th }}$ quarter of the year as well as the 1group in the $1^{\text {st }}$ quarter of the following year. In the 2004 benchmark assessment it was shown that survey indices in the 3 rd quarter seems to predict strong 0 -group year classes relatively well when comparing with 0 -group indices from commercial fishery ($4^{\text {th }}$ quarter) and to 1-group survey indices the following spring.

The deterministic forecast is off course affected by that: (a) the potential catches are largely dependent on the size of a few year classes, (b) the large dependence on the strength of the recruiting 0 -group year classes, and (c) added uncertainty (in assessment and potential forecast) arising from variations in natural mortality. However, the forecast is not dependent on any assumption about the strength of the new year class.

The forecast has so far assumed a forecast year fishing pattern scaled to long term seasonal exploitation pattern for 1991-2004 (standardized with yearly Fbar to $F(1,2)=1$) which has been used in e.g. the 2007 and 2008 ICES WGNSSK Reports (ICES CM 2007/ACFM:30; ICES CM 2008/ACOM:09) and in the ICES AGNOP Report as well (ICES CM 2007/ACFM:39). Recruitment in the forecast year is assumed to the $25^{\text {th }}$ percentile of the SXSA recruitment estimates. In May 2009 an alternative forecast was run using a fishing pattern scaled to the seasonal exploitation pattern in 2008 (standardized with the 2008 Fbar to $\mathrm{F}(1,2)=1$). The background for this alternative forecast is that 2004 was the last year where the directed Norway pout fishery was open in all seasons of the year, except for 2008 where the fishery was open all of the year in the EU Zone (but only May-August in the Norwegian zone). The catches in 2008 have been relatively low and the exploitation pattern between seasons (and ages) is very different from the average previous long term (1991-2004) exploitation
pattern. The targeting in the small meshed trawl fishery has changed recently where targeting of Norway pout has decreased mainly due to high fuel prices.

E. Biological Reference Points

Precautionary Approach reference points:

ICES considers that:	ICES proposes that:
$B_{\lim }$ is 90000 t	$\mathrm{B}_{\text {pa }}$ be established at 150000 t. Below this value the probability of below average recruitment increases.
Note:	

Technical basis:

$\mathrm{B}_{\text {lim }}=\mathrm{B}_{\text {los }}=90000 \mathrm{t}$.	$\mathrm{B}_{\mathrm{pa}}=\mathrm{B}_{\text {lim }} \mathrm{e}^{0.3-0.44^{41.65}}$ (SD).
Flim None advised.	F_{pa} None advised.

Biomass based reference points have been unchanged since 1997.
$B_{\lim }$ is defined as Bloss and is based on the observations of stock developments in SSB (especially in 1989 and 2005) been set to 90000 t . Bpa has been calculated from
$\mathrm{B}_{\mathrm{pa}}=\mathrm{B}_{\lim } \mathrm{e}^{0.30 .4^{*} 1.65}(\mathrm{SD})$.
A SD estimate around $0.3-0.4$ is considered to reflect the real uncertainty in the assessment. This SD-level also corresponds to the level for SD around 0.2-0.3 recommended to use in the manual for the Lowestoft PA Software (CEFAS 1999). The relationship between the $B_{\lim }$ and $B_{p a}(90000$ and 150000 t) is 0.6.
$B \lim$ is $90000 t$, the lowest observed biomass
Flim None advised.
F_{pa} None advised.

Management:

There is no specific management objective set for this stock. With present fishing mortality levels the status of the stock is more determined by natural processes and less by the fishery. The European Community has decided to apply the precautionary approach in taking measures to protect and conserve living aquatic resources, to provide for their sustainable exploitation and to minimise the impact of fishing on marine ecosystems.

The population dynamics of Norway pout in the North Sea and Skagerrak are very dependent on changes caused by recruitment variation and variation in predation (or other natural) mortality, and less by the fishery. Recruitment is highly variable and influences SSB and TSB rapidly due to the short life span of the species.

There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. Natural mortality levels by age and season used in the stock assessment reflects the predation mortality levels estimated for this stock from the most recent multi-species stock assessment performed by ICES (ICES-SGMSNS 2006).

Based on the estimates of SSB in September 2008, ICES classified the stock at increased risk of suffering reduced reproductive capacity with SSB just below Bpa at the
start of 2008. The most recent estimates of SSB (Q1 2009) show full reproductive capacity of the stock again ($\mathrm{SSB}>\mathrm{B}_{\mathrm{pa}}$).

Fishing mortality has generally been lower than the natural mortality for this stock and has decreased in recent years well below the long term average F (0.6). Targeted fishery for Norway pout was closed in 2005, first half year 2006, and in all of 2007 and fishing mortality and effort has accordingly reached historical minima in these periods (Table 5.3.6). Fishery was opened again $1^{\text {s }}$ of January 2008 with a preliminary TAC of 41 250 t and a final TAC of 115 kt . For the EU zone the fishery was open all year 2008, while the Norwegian part of the directed Norway pout fishery was restricted to MayAugust 2008. The fishery did not catch the TAC set in 2008.

Recruitment reached historical minima in 2003-2004 and was low in 2006 (39 billions), but was near to the long term average (at 80 billions, arithmetic mean) in 2005 (75 billions) and 2007 (69 billions) and just above in 2008 (81 billions) (Tables 5.3.3 and Table 5.3.6).

On basis of the average 2008 recruitment ICES advised in October 2008 a TAC up to 35000 t in 2009 which has resulted in management with an initial TAC set for 2009 on $26000 t$ in the EC zone and a TAC of $1000 t$ in the Norwegian zone. This advice is to be up-dated in light of the real time management advice in May 2009.

From the results of the forecast presented here it can be seen that if the objective is to maintain the spawning stock biomass above $B_{p a}$ by $1^{\text {st }}$ of January 2010 then a catch around 157000 t can be taken in 2009 according to the escapement strategy. Under a fixed F-management-strategy with F around 0.35 a catch around 100000 t can be taken in 2009. Under a fixed TAC strategy a TAC of 50000 t can be taken in 2009 (corresponding to a F around 0.16) according to the long term management strategies (see section 5.11 .1 below).

The population dynamics of Norway pout in the North Sea and Skagerrak are very dependent on changes caused by recruitment variation and variation in predation (or other natural) mortality, and less by the fishery. Recruitment is highly variable and influences SSB and TSB rapidly due to the short life span of the species.

There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. Natural mortality levels by age and season used in the stock assessment reflect the predation mortality levels estimated for this stock from the most recent multi-species stock assessment performed by ICES (ICES-SGMSNS 2006).

There is consistent bi-annual information available to perform real time monitoring and management of the stock. This can be carried out both with fishery independent and fishery dependent information as well as a combination of those. Real time advice (forecast) and management should also be provided for the stock in autumn 2009.

Long term management strategies have been evaluated for this stock by ICES (see below).
An overview of recent relevant management measures and regulations for the Norway pout fishery and the stock can be found in the Stock Annex.
In autumn 2006 the management plans and harvest control rules for Norway pout were evaluated by ICES based on an EU request with respect to by-catches in the fishery and evaluation of recent initiatives to introduce more selective fishing methods in the Norway pout fishery (ICES CM 2006/ACFM:35). Recently developed gear
technological by-catch devices can reduce by-catches of among other juvenile gadoids significantly). The working group concludes that these devices (or modified forms of those) should bebrought into use in the fishery. Introduction of those should be followed up upon by adequate landings or at sea catch control measures to assure effective implementation of the existing by-catch measures.
In managing this fishery by-catches of other species have been taken into account. Existing technical measures such as the closed Norway pout box, minimum mesh size in the fishery, and by-catch regulations to protect other species have been maintained.

In autumn 2006 the management plans and harvest control rules for Norway pout were evaluated by ICES based on an EU request with respect to by-catches in the fishery and evaluation of recent initiatives to introduce more selective fishing methods in the Norway pout fishery.

The fishery is targeting Norway pout and blue whiting. In managing this fishery, bycatches of cod, haddock, whiting, saithe, herring, and blue whiting should be taken into account, and existing technical measures to protect these by-catch species should be maintained. Furthermore, as commercial, exploratory fishery and provision of recent by-catch information has shown by-catch-ratios to be significant and recent scientific research based on at sea trials in the commercial fishery has shown that use of gear technological by-catch devices can reduce by-catches of juvenile gadoids significantly, the working group concludes that these gear technological by-catch reduction devices (or modified forms of those) should be brought into use in the fishery. Introduction of those should be followed up upon by adequate landings or at sea catch control measures to assure effective implementation of the existing by-catch measures.

Long term management strategies

Summary of management plan evaluations

ICES has evaluated and commented on three management strategies, following requests from managers - fixed fishing mortality ($\mathrm{F}=0.35$), Fixed TAC (50000 t), and a variable TAC escapement strategy. The evaluation shows that all three management strategies are capable of generating stock trends that stay away from Blim with a high probability in the long term and are, therefore, considered to be in accordance with the precautionary approach. ICES does not recommend any particular one of the strategies.

The choice between different strategies depends on the requirements that fisheries managers and stakeholders have regarding stability in catches or the overall level of the catches. The escapement strategy has higher long term yield compared to the fixed fishing mortality strategy, but at the cost of a substantially higher probability of having closures in the fishery. If the continuity of the fishery is an important property, the fixed F (equivalent to fixed effort) strategy will perform better.

A detailed description of the long term management strategies and management plan evaluations can be found below and in the ICES AGNOP 2007 (ICES CM 2007/ACFM:39), ICES WGNSSK 2007 (ICES CM 2007/ACFM:30) and the ICES AGSANNOP (ICES CM 2007/ACFM:40) reports.

Background

On basis of an joint EU and Norwegian Requests in autumn 2006 with respect to Norway pout management strategies and by-catches in the Norway pout fishery as
well as on basis of the w ork by ICES WGNSSK in autumn 2006 and spring 2007 during the ICES AGNOP 2007 (ICES CM 2007/ACFM:39) ACFM has already by May 2007 evaluated detailed output from management plans and harvest control rules evaluations considering two different management strategies for Norway pout, i.e. the real time escapement management strategy and the long term fixed F or E management strategy. This has been based on use of advanced stochastic simulation models and results from here supplied by DTU-Aqua. The fixed TAC long term management strategy was not evaluated in depth by the ICES AGNOP as it was not considered realistic at that time because of substantial loss in yield, but have later in autumn 2007 associated to the ICES WGNSSK in autumn 2007 (ICES CM 2007/ACFM:30) been evaluated and presented with the two other management strategies. Furthermore, in addition to the ICES response on the EC and Norway joint request on management measures for Norway pout, Denmark has, in autumn 2007, requested ICES to provide a full evaluation of the fixed TAC strategy for Norway pout including an estimation of the long term TAC which would be sustainable with a low probability (5%) of the stock falling below Blim. An ICES ACFM subgroup considered the documentation during the autumn 2007 ACFM meeting and found that some further studies would be required in order to provide a well documented answer. All this was provided through the ICES AGSANNOP Report (ICES CM 2007/ACFM:40).

Long Term Harvest Control Rules for Norway pout in the North Sea and Skagerak

ICES and DTU-Aqua have now provided comprehensive evaluation for 3 types of long term management strategies for the stock which all have been accepted by ICES:

- Escapement strategy
- Long term fixed fishing mortality or fishing effort strategy, and
- Long term fixed TAC strategy,

The conclusions from the evaluation methods used for the three strategies are the following:

Escapement strategy

ICES evaluated an escapement strategy defined as follows: 1) an initial TAC that would be set for the first half of the TAC year, based on a recruitment index, and 2) a TAC for the second half of the year which would be based on a survey assessment conducted in the first half of the TAC year and the setting TAC for the second half of the year based on an SSB escapement rule. This escapement strategy shall generally assure an SSB above $B_{p a}$, i.e. with a target of obtaining an SSB that is truly above $\mathrm{Blim}_{\mathrm{lim}}$ with a high probability (95%). In practice this Harvest Control Rule (HCR) is an escapement strategy with an additional maximum effort. The conclusion is that the equilibrium median yield is around 110 kt , and there is a 50% risk for a closure of the fishery in the first half-year and a $20-25 \%$ risk of a closure in the second half-year. The distribution of F shows that the fishery will mostly alternate betw een a low and a high effort situation. When the fishery has been closed in the second half-year, there is around 20% probability for another closure in the following year.

The robustness of the HCR to uncertainties in stock size indicates that annual assessment might not be necessary for this stock; an annual survey index could be sufficient.

Caveats to the evaluation of the escapement strategy:

- The sensitivity of the parameters in the HCR used for TAC in the first halfyear has not been fully evaluated;
- Non-random distribution of residuals in the surveys may give biased perceptions and need to be included in the evaluation.

Effort control strategy

The effort control scenario with a fixed F indicates that an F of around 0.35 is expected to give a low (5%) probability of the stock going below Blim. The scenario appears robust to implementation uncertainties, and a target F below 0.35 and an implementation noise CV around 25% is expected to give a long-term yield around 90 kt and no closures of the fishery would be needed. This management strategy is not dependent on an yearly assessment because it assumes a direct link between fishing effort and fishing mortality which is also apparent from the historical assessment of this stock.

Caveats to the evaluation of the effort control strategy:

- A regime shift towards a lower recruitment level will not be detected by this approach and there is a risk of over-fishing in such a situation with a fixed effort approach;
- Implementation of a fixed standardized effort (which is not measurable) can be difficult;
- Effort management in by-catch fisheries (e.g. by-catch of Norway pout in blue whiting fishery) is difficult to regulate;
- Effort - F relationships are known to suffer from technological creep and this aspect needs to be tested in the evaluation.

Fixed TAC strategy

The scenario with fixed TAC indicates that a long term TAC on around 50 kt will be sustainable with a low (5%) probability of the stock going below Blim. ICES concludes that a fixed TAC rule for Norway pout would be in accordance with the precautionary approach provided the fixed TAC is not greater than 50 kt and F does not exceed the value of 0.5 , and provided measures are in place to reduce TAC in the exceptional case of a low recruitment in a number of consecutive years. The evaluations indicate that if a target TAC below 50 kt is implemented no closures of the fishery would be needed.

Caveats to the evaluation of the fixed TAC strategy:

- A regime shift towards a lower recruitment level will not be detected by this approach and there is a risk of overfishing in such a situation with a fixed TAC approach;
- For a short-lived species with highly variable recruitment such as Norway pout, a catch-stabilizing strategy (fixed TAC) is likely to imply a substantial loss in long-term yield compared to other strategies if the risk of SSB falling below Blim is to remain reasonably low. This strategy is also sensible in relation to potential risks of regime shifts in the stock-recruitment-relationship.

Conclusions from management strategy evaluations

Not any particular of the management strategies presented above is recommended. All strategies that have a low risk of depleting the stock below Blim are considered to be in accordance with the precautionary approach and being sustainable. The choice
between different strategies depends on the requirements that fisheries managers and stakeholders have regarding stability in catches or the overall level of the catches. It should be noted that this is a long term management strategy evaluation and it is accordingly not possible to switch between strategies from year to year. Often switching between different long term strategies will be in conflict with the basic assumptions behind the evaluations of them.

The evaluation shows that all three types of management strategies (escapement, fixed effort, fixed TAC) are capable of generating stock trends that stay away from Blim with a high probability.

The escapement strategy has a higher long-term yield (110 kt) compared to the fixed effort strategy (90 kt) and the fixed TAC strategy (50 kt) but at the cost of having closures in the fishery with a substantially higher probability. If the continuity of the fishery is an important property, then the fixed effort strategy per forms better.

The simulations deal with observation error and implementation error of the management strategies but do not take into account process error in relation to natural mortality, maturity-at-age, or mean weight-at-age in the stock, which could have a significant impact.

The fixed effort strategy does not rely critically on the results of stock assessment models in any particular year. On the other hand, that strategy is very dependent on the possibility of actually implementing an effort scheme, including an account of the by-catch fisheries (e.g. for blue whiting) and ways to deal with effort creep.

The fixed effort strategy and the fixed TAC strategy are likely to imply a substantial loss in long-term yield compared to the escapement strategy if the risk of SSB falling below Blim is to remain reasonably low. These strategies are also sensible in relation to potential risks of regime shifts in the stock-recruitment-relationship.

F. Other Issues

Suggestions for future Benchmark assessment

Recommendations for future assessments:
Coming benchmark assessment should consider new biological information (new estimates of spawning maturity, estimates of growth and growth parameters as well as of natural mortality published recently in ICES J. Mar. Sci. should be evaluated in context of the assessment). This includes recent developments in research survey based natural mortality estimates and new research results on natural mortality for the stock as well as up-dated natural mortality from the MSVPA model. Also variation in maturity at age as well as growth variation in the stock should be considered in relation to the assessment based on new research results. It is suggested that variable Mbe examined to determine the amount of biomass removed via predation.

Furthermore, consideration of revision of the tuning fleets with special focus on the commercial tuning fleets should be done in a coming benchmark assessment (see also the May 2007 assessment ICES CM 2007/ACFM:18 and 30, as well as the Stock Annex. This includes evaluation of the quality of the assessment with respect to inclusion of historical time series for fisheries data. The fluctuations in the fisheries effort over times and betw een seasons should be evaluated.

Evaluation of survey based assessment and/or more simple assessment methods: Assessment of stock status based exclusively on survey indices should be considered and robustness of survey indices should be considered.
Recent developments in relation to implementation of seasonal stochastic assessment models not dependent on constant exploitation patterns (F-patterns between years and ages) should be considered for the assessment of the stock.
New research findings on developments in by-catch reducing gear devices should be reported and evaluated under ecosystem aspects and fisheries aspects in relation to future benchmark assessment.

Trends and dynamics in landings and other available relevant information of Norway pout in Vla should be evaluated and brought forward to ACOM.

Overview of some recent management measures and regulations relevant for the Norway pout fishery and stock (from STCEF, 2005):

Existing by-catch regulations:
In the agreed EU Council and EU-Norway Bilateral Regulation of Fisheries by-catch regulations in the Norway pout fishery have been established (e.g. EU Regulation No 850/98 (EU, 1998)). The by-catch regulations in force at present for small meshed fishery ($16-31 \mathrm{~mm}$ in mesh size) in the North Sea is that catch retained on board must consist of i) at least 90% of any mixture of two or more target species, or ii) at least 60% of any one of the target species, and no more than 5% of any mixture of cod, haddock, saithe, and no more than 15% of any mixture of certain other by-catch species. Provisions regarding limitations on catches of herring which may be retained on board when taken with nets of 16 to 31 mm mesh size are stipulated in EU Community legislation fixing, for certain fish stocks and groups of fish stocks, total allowable catches and certain conditions under which they may be fished. (EU, 1998) At current 40% herring is allowed in the Norway pout fishery.

1. Technical measures by EU:

Mesh size regulations in the North Sea and adjacent areas

Use of towed nets of any size mesh is permitted, however according to the mesh size in use there is an obligation to retain only particular species of fish. These tables are a simplified synopsis of measures in Council Regulation 850/98 and Commission Regulation 2056/2001.

	Conditions for use of towed gear (North Sea and West Scotland)	
Mesh size	Main target species in North Sea	Synops is of required catch percentages

b.) 16 to		
31 mm	Norway pout, sprat	Minimum 60% of one species of Norway pout, sardine, sandeel, anchovy, eels, smelt and some non-human consumption species (with no more than 5\%ofcod, haddock or saithe, and some upper limits on the percentages ofother species such as mackerel, squids, flatfish, gurnards, Nephrops), or at least 90% of any two or more of those species.

Areas closed to some fishing activities

During the 1960s a significant small meshed fishery developed for Norway pout in the northern North Sea. This fishery was characterized by relatively large by-catches, especially of haddock and whiting. In order to reduce by-catches of juvenile roundfish, the "Norway pout box" was introduced where fisheries with small meshed trawls were banned. The "Norway pout box" has been closed for industrial fishery for Norway pout since 1977 onwards (EC Regulation No 3094/86). The box includes roughly the area north of $56^{\circ} \mathrm{N}$ and west of $1^{\circ} \mathrm{W}$ (see Figure6.2).
(It is not possible to fully quantify the effect of the closure of the fishery inside the Norway pout box. Before closure, the Danish and Faeroes fisheries mainly took place in the northwestern North Sea and the Norwegian fishery in the Norw egian Trench (ICES 1977). Based on IBTS samples for the period 1991-2004 (Figure 6.2), 30.0\% and 27.5% of Norway pout numbers were estimated to be inside the Norway pout box for the first and third quarter, respectively. It should be noted that the IBTS survey does not cover depths >200 m along the Norwegian Trench, and that no fishery inside the Norway pout box may contribute to overestimation of the abundance relative to area outside).

Area	Characteristics, Location and Seasonality	Purpose	Defined in Regulation (EC):
North-West of Scotland	Annual, closed to all fishing except static gear and pelagic fishing	Reduction of fishing mortality on V Ia cod	Annex III 27/2004 (annual measure in place since 2004).

Norway pout box	Prohibited to retain more than 5% of the catch as Norway pout if they are caught within an area boounded by $56^{\circ} \mathrm{N}$ and the UK coast, $58^{\circ} \mathrm{N} 2^{\circ} \mathrm{E}$, $58^{\circ} \mathrm{N} 030^{\prime} \mathrm{W}$, $5^{\circ} 15^{\prime} \mathrm{N} 0^{\circ} 30^{\prime} \mathrm{W}$, $59^{\circ} 15^{\prime} \mathrm{N} 1^{\circ} \mathrm{E}$, $60^{\circ} \mathrm{N} 1^{\circ} \mathrm{E}$, $60^{\circ} \mathrm{N} 0^{\circ}$, $60^{\circ} 30^{\prime} \mathrm{N} 0^{\circ}$, $60^{\circ} 30^{\prime} \mathrm{N}$ and the coast of the Shetland Islands, $60^{\circ} \mathrm{N}$ and the coast of the Shetland Islands, $60^{\circ} \mathrm{N} 3^{\circ} \mathrm{W}$, $58^{\circ} 30^{\prime} \mathrm{N} 3^{\circ} \mathrm{W}$ $58^{\circ} 30^{\prime} \mathrm{N}$ and the coast of the mainland UK.	Protection of juvenile gadoids (cod, haddock) caught in mixtures with Norway pout)	Article 26 of Regulation 850/98

Minimum landing sizes

These sizes are defined in Annex XII to Regulation 850/1998, though some changes are in effect for 2005 by means of the TAC and quota regulation (Regulation 27/2005). Here sizes for some of the main commercial species only are stated.

Species	Minimum Landing Size in 2005, as North Sea/IIIa	Regulation
Norway pout	None	$850 / 1998$

Quotas relevant to the European Community

Quotas have been established by the Community as follows for the relevant species.
These figures refer to Total Allowable Catches in Community waters and to quotas for the Community in Norwegian waters.

Year	Sandeel, IIa+IIIa+IV EC zone	Sandeel, IVa, Norway zone	Norway Pout IIa+IIIa+IV, EC zone	Norway pout, Norway zone	Angler-fish, IIa+IVa, EC zone	Angler-fish, IVa Norway Zone
2000	1020000	150000	220000	50000^{1}	17660	in 'others'
2001	1020000	150000	211200	50000^{1}	14130	in 'others'
2002	918000	150000	198000	50000^{1}	10500	in 'others'
2003	918000	131000	198000	50000^{1}	7000	in 'others'
2004	826200	131000	198000	50000^{1}	7000	in 'others'
2005	660960	10000	0	5000^{2}	10314	1800

${ }^{1}$ Including mixed horse mackerel.
${ }^{2}$ Including mixed horse mackerel, and only as by-catches.

Year	Anglerfish Vb, VI, XII, XIV (EC)	Horse mackerel, IIa (EC), IV(EC)	Horse mackerel, Vb (EC waters), VI, VII, VIIIa,b,d,e, XII, XIV	Industrial fish, IV (Norwegian waters)	Other species, IIa, IV, VIG N of 5630, allocation to NO, FAR, no restriction for EC.	Other species, Norwegian waters of IV
2000	8000	51000	240000	800^{1}	5400	11000
2001	6400	51000	240000	800^{1}	5400	11000
2002	4770	58000	150000	800^{1}	5400	11000
2003	3180	50267	130000	800^{1}	5400	11000
2004	3180	50267	137000	800^{1}	5400	11000
2005	4686	42727	137000	800^{1}	5120	7000

${ }^{1}$ Of which maximum 400 tonnes of horse mackerel.

Effort limits

Days-at-Sea

Since 2003, the Community has limited the number of days that a fishing vessel can be out of port and fishing in the North Sea and adjacent areas. This is implemented through annexes to the TAC and Quota Regulations (2341/2002, 2287/2003, 27/2005). Days at sea may be transferred between vessels with an adjustment for differences in engine power between the vessels. Additional days have been allocated to some member states in respect of decommissioning taking place since 2001.

The baseline days-at-sea allocations (i.e. before additions to take account of decommissioning) were as follows:

Gear type	Otter trawl, $\mathbf{1 0 0 m m}$ $\mathbf{(9 0 m m}$ in IIIa) or over	Beam trawls, $\mathbf{8 0 m m}$ or over	Static demersal nets	Demersal longlines	Otter trawls 70-99mm (70- $\mathbf{8 9 m m ~ i n ~}$ Skagerrak)	Trawl fishery 16- 31mm
Typical target species	Cod, haddock, whiting	Plaice and sole	Cod, turbot	Cod	Nephrops	Norway pout, sandeel
2003	9	15	16	19	25	23
2004	10	14	14	17	22	20
2005	10^{*}	13	13	16	21	19

$\left.{ }^{*}\right)$ - including one additional day allowable where administrative sanctions are in place.

2. Technical measures by Norway

TACs and effort limits

Norway has no national quotas on anglerfish, sandeel, Norway pout or horse mackerel, for Norwegian vessels in the Norwegian economic zone. These fisheries are regulated by technical measures and effort regulations.

Technical Measures

The Norwegian technical regulations are generally designed to avoid catches of nontargeted species and/or fish below the minimum size. The discard ban on commercially important species is considered a cornerstone of this policy. Other important elements are the surveillance, monitoring and inspections at sea by the Coastguard, the obligation to change fishing grounds, prohibition against fishing for particular species during specific periods or in specific areas, and the development of, and the requirement to use selective fishing gear. The philosophy behind the Norwegian technical regulations is to enable the fishermen to meet their obligation to avoid illegal catches.

The technical regulations are summarised in "Regulations relating to sea-water fisheries" of 22 December 2004.This stipulates the discard ban, the percentage composition of the catch that may be legally caught according to area and type of fishing gear being used, the characteristics of fishing gear that may be used in the fishery on certain species or in different areas, the minimum catching sizes and specific measures to limit catches of fish under the minimum catching size, regulations of mesh design, mesh sizes, selectivity devices etc.

When fishing demersal species for human consumption in the North Sea with trawl or Danish seine, it is prohibited to use gear where the mesh size of any part of the gear is less than 120 mm . In the Norw egian saithe fishery in the EU zone 110 mm may be used in accordance to the EU regulation in the EU zone.

In the North Sea gill net fisheries for cod, haddock, saithe, plaice, ling, pollack and hake it is prohibited to use gill nets where the full mesh size is less than 148 mm . In the fishery for angler fish the minimum mesh size is 360 mm and in the halibut fishery the minimum mesh size is 470 mm .

Only the most relevant regulations with regard to anglerfish, sandeel, Norway pout and horse mackerel will behighlighted below.

Sandeel and Norway pout

Summary of the Norw egian regulations for sandeel and Norway pout:

- The sandeel fishery is closed from 25 June to 31 March
- Norway pout may only be fished as bycatch in the mixed industrial fishery in all areas under Norw egian fisheries jurisdiction
- Two areas (the Patch bank and the Egersund bank) in the Norwegian economic zone are closed to fishing for Norway pout, sandeel, and blue whiting
- Licensing scheme for vessels fishing with small mesh trawl
- Reduction capacity scheme for vessels fishing with small mesh trawl.

ACFM recommended that effort in 2005 should not exceed 40% of the effort in 2004. Based upon this advice, the sandeel season in the Norwegian economic zone was further shortened in 2005. The sandeel season, defined as the period when smaller mesh size than 16 mm can be used, was 8 months (March - October) in 2003 and earlier. This season was reduced to April - September in 2003 and to the period 1 April to 23 June in 2005.
Furthermore, as a consequence of the advice on effort reduction Norway and the EU agreed to reduce the exchange of sandeel quotas dramatically compared with previous years. Due to the same reason, Norway did not allocate a traditional quota of sandeel to the Faeroes in 2005.
As a result of the recommendation from ACFM, Norway and the EU have agreed that Norway pout only may be fished as by catch in 2005. Consequently, Norway pout was excluded from the exchange of quotas between Norway and the Faroes in 2005.

Areas closed to fishing for Norway pout, sandeel and blue whiting

Two areas in the Norwegian economic zone have been closed for fishing on Norway pout, sandeel and blue whiting. The approach has been to close areas were the probability of illegal by-catches of juveniles and not-targeted species, such as cod, saithe, haddock, are considered unacceptable high. This measure could therefore also be mentioned as a measure to protect juveniles of other species than Norway pout and sandeel. As of 1 January 2002 the Patch bank was permanently closed. Before the closure of the Patch bank an annual average of approximately 2.000 tonnes of Norway pout were fished in this area by Norwegian vessels. As from 1 May 2005 a seasonal closure of the Egersund bank in the period 1 December to 31 May was determined (map below). Other areas are under evaluation for permanent or seasonal closure.

Capacity reduction scheme for vessels fishing for sandeel and Norway pout

A small mesh trawl license is required to use a smaller mesh size than 16 mm in the directed fishery for sandeel in the season 15 April - 23 June. The same licence is required in order to participate in the mixed industrial fishery for blue whiting and Norway pout.

The number of vessels holding such a license has been reduced substantially the latter years as a result of the capacity reduction scheme put in place in 2002. The potential number of participating vessel was about 75 vessels in 2001. By May 2005 the number of potential participants has been reduced to about 50. In 200438 vessels participated in the sandeel fishery. The number of participating vessels so far in 2005 was 22 as of 24 May 2005.
Additional Danish regulations of the industrial fisheries (see section 5, sandeel, STCEF 2005)..

G. References

Albert, O. T. 1994. Biology and ecology of Norway pout [Trisopterus esmarki, Nilsson, 1885] in the Norweigian Deep, ICES Journal of Marine Science, 51: 45-61
Degel, H., Nedreaas, K., and Nielsen, J.R. 2006. Summary of the results from the DanishNorwegian fishing trials autumn 2005 exploring by-catch-levels in the small meshed industrial trawl fishery in the North Sea targeting Norway pout. Working Document No. 22 to the 2006 meeting of the WGNSSK, 13 pp. ICES C.M.2006/ACFM:35

ICES 1977. Review of the Norway pout and sandeel within the NEAFC convention area. Appendix to ICES report C.M. 1977/F:7.
ICES 1996. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. ICES C.M. 1996/Assess:6.

ICES 1998. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1997. ICES CM 1998/Assess :7

ICES 1999. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1998. ICES CM 1999/ACFM :8

Lambert, G*., Nielsen, J.R..**, Larsen, L., and H. Sparholt. 2009. Maturity and Growth population dynamics of Norway pout (Trisopterus esmarkii) in the North Sea, Skagerrak and Kattegat. ICES J. Mar. Sci. 66: xxx-xxx). (*Aut horship equal; ${ }^{1}$ Corres ponding aut hor)

Larsen, L.I., Lassen, H., Nielsen, J.R., and Sparholt, H. 2001. Working Document to the 2000 meeting of the WGNSSK. ICES C.M.2001/ACFM:07).
Nielsen, J.R., and Madsen, N. 2006. Gear technological approaches to reduce un-wanted bycatch in commercial Norway pout fishery in the North Sea. Working Document No. 23 to the 2006 meeting of the WGNSSK, 11 pp. ICES C.M.2006/ACFM:35

Poulsen, E.M. 1968. Norway pout: Stock movement in the Skagerrak and in the north-eastern North Sea. Rapports et Proces-Verbaux des Reunions du Conseil International pour l'Exploration de la Mer, 158: 80-85.

Raitt, D.F.S. 1968. The population dynamics of Norway Pout in the North Sea. Marine Research $5: 1-23$.

Skagen, D. 1993. Revision and extension of the Seasonal Extended Survivors Analysis (SXSA). Working document for Norway pout and Sandeel Working Group. Unpublished

Sparholt, H., Larsen, L.I., Nielsen, J.R. 2002a. Verification of multispiesces interactions in the North Sea by trawl survey data on Norway Pout (Trisopterus esmarkii). ICES Journal of Marine Science 59:1270-1275.

Sparholt, H., Larsen, L.I., Nielsen, J.R. 2002b. Non-pre dation natural mortality of Norway pout (Trisopterus esmarkii) in the North Sea. ICES Journal of Marine Science 59:1276-1284.

STCEF, 2005. Report of the ad hoc scientific working group on management measures for sandeel, Norway pout, anglerfish and horse mackerel in the North Sea and Skagerrak. Charlottenlund, Denmark, 23 to 27 May 2005. STCEF Working Group Report, EU Commission.

Appendix 1. By-catch in Norway pout fisheries and possible reduction of by-catch

By-catches in Norway pout fisheries

Demersal fisheries in the North Sea are mixed fisheries, with many stocks exploited together in various combinations in different fisheries. Small-mesh industrial fisheries for Norway pout takes place in the northern and north-eastern North Sea and has bycatches of haddock, whiting, herring and blue whiting. Some cod is also taken as a by-catch, predominantly at ages 0 and 1 (ICES, 2006). With respect to un-intended bycatch in the commercial, small-meshed Norway pout trawl fishery in the North Sea and Skagerrak conducted by Denmark and Norway for reduction purposes ICES ACFM writes that management advice must consider both the state of individual stocks and their simultaneous exploitation. Stocks at reduced reproductive capacity should be the overriding concern for the management of mixed fisheries where these stocks are exploited either as a targeted species or as a by-catch (e.g. ICES, 2006).

Existing by-catch regulations:

In the agreed EU Council and EU-Norway Bilateral Regulation of Fisheries by-catch regulations in the Norway pout fishery have been established (e.g. EU Regulation No 850/98 (EU, 1998)). The by-catch regulations in force at present for small meshed fishery ($16-31 \mathrm{~mm}$ in mesh size) in the North Sea is that catch retained on board must consist of i) at least 90% of any mixture of two or more target species, or ii) at least 60% of any one of the target species, and no more than 5% of any mixture of cod, haddock, saithe, and no more than 15% of any mixture of certain other by-catch species. Provisions regarding limitations on catches of herring which may be retained on board when taken with nets of 16 to 31 mm mesh size are stipulated in EU Community legislation fixing, for certain fish stocks and groups of fish stocks, total allowable catches and certain conditions under which they may be fished. (EU, 1998) At current 40% herring is allowed in the Norway pout fishery.

Important by-catch species:

By-catch of the following species in the commercial, small meshed Norway pout fishery has been un-wanted and a concern for fisheries management: Cod, Haddock, Saithe, Whiting, Monkfish, Herring, and Blue Whiting, where especially by-catch of juvenilehaddock and cod as well as larger saithe has been in focus.

By-catch levels from landings statistics:
In Tables A1 and A2 below are presented recent (2002-2005) by-catch levels by species in Danish and Norwegian small meshed industrial trawl fishery in the North Sea and Skagerrak areas targeting Norway pout. For Norway the landings used for consume purposes in the small meshed fishery can only be allocated to industrial fishery for the last two years. IMR does not have access to logbooks from industrial vessels. The Norw egian data are evaluated rather un-certain.

By-catch levels and factors affecting them from commercial fishing trials 2005:
Danish-Norwegian fishing trials and pilot investigations were performed in autumn 2005 in order to explore by-catch- levels in the small meshed industrial trawl fishery in the North Sea targeting Norway pout. The results are given in Working Document No. 22 to the WGNSSK (2006) by Degel, Nedreaas and Nielsen (2006). The trial fishery was performed by two Norwegian commercial trawlers and a Danish commercial
trawler traditionally involved in the small meshed industrial trawl fishery in the North Sea and Skagerrak targeting Norway pout. The investigation was in cooperation between the fisheries research institutes DIFRES and IMR. The South Norwegian Trawl Association (SNTA) and the Danish Fishermen's Association (DF) provided the contact to the fishing vessels used.
The fishery was carried out in autumn 2005 within periods and areas of conducting traditional fishery for Norway pout. The Norwegian vessels conducted each a survey to the area vest of Egersund on the edge of the Norwegian Trench. The Danish vessel conducted two surveys at Fladen Ground in and around the closed box for Norway pout fishery in the North Sea. Comparison fishery between one of the Norwegian vessels and the Danish vessel was performed on a spatio-temporally overlapping scale at the Patch Bank, a closed box for Norway pout fishery in an area between the Egersund Bank and Fladen Ground. The Norwegian vessels conducted both day and night fishery while the Danish vessel only fished during day time.

The results (except for the figure and table showing the diurnal variation in the fishery) comprise only hauls from day time fishery conducted with standard trawl gears used in the commercial small meshed industrial fishery targeting Norway pout. The skipper at the Danish vessel decided the positions and fishing design on a smaller fraction of the conducted hauls based on his evaluation of optimizing the fishery economically, while the rest of the hauls were allocated and pre-distributed in two selected ICES statistical squares.

In general the ratio between the Norway pout target species and the sum of by-catch of certain selected species indicate that the by-catch ratio is high in the commercial Norway pout fishery. However, statistical analyses reveal that the fishermen can significantly minimize the by-catch ratio by targeting in the fishery (spatio-temporal targeting, way of fishing, etc.), i.e. when they determine the fishing stations and the fishery performed. The pilot investigations show no general significant spatiotemporal patterns in the by-catch ratio. However, there are from the results obvious geographical and diurnal differences in the species composition of the by-catch between areas and between day and night fishery. The length distributions of the catch rates by species indicate spatial pattens between some of the species caught. These fishing trials and pilot investigations are based on only very few observations, and data are obviously rather uncertain, variable and noisy. In general, it can be concluded that relatively high by-catches can be reduced by specific targeting in the fishery, both with respect to allocation of the fishery in time and space but also in relation to fishermen knowledge about the fishery and resource availability. This demands though that the skippers/fishermen act accordingly when fishing, and a proper at-sea control. The conclusions above relate to using the Turbotrawl and the Expo1300. The few experiments with Jordfraeser and Kolmuletrål 1100 indicate a different species composition, with unchanged or higher by-catch rates of most species and general significant lover catch rates of Norway pout.

With regard to diurnal differences in the catch rates of Norway pout and by-catches of other species, the few results at present indicate significant lower by-catch of Blue whiting during night hauls. The rest of the by-catch species show no diurnal differences

With regard to possible depth differences in the catch rates of Norway pout and bycatches of other species, this matter relates primarily to the areas close to the Norwegian Deep, and more investigations are about to be carried out to document this better.

Technical measures to reduce by-catches.

Regulation of spatio-temporal effort allocation (closed seasons and areas):
The above investigations indicate spatio-temporal differences in catch levels by species in the commercial small meshed fishery for Norway pout as well as an effect of targeting and use of fishing method on the by-catches. However, these patterns are only based on results from pilot investigations. Knowledge about spatio-temporal patterns in catch rates of target species and by-catch species in the fishery are at present not adequate to implement management measures with respect to regulations on spatio-temporal allocation of fishing effort to reduce by-catches.

During the 1960s a significant small meshed fishery developed for Norway pout in the northern North Sea. This fishery was characterized by relatively large by-catches, especially of haddock and whiting. In order to reduce by-catches of juvenile roundfish, the "Norway pout box" was introduced where fisheries with small meshed trawls were banned. The "Norway pout box" has been closed for industrial fishery for Norway pout since 1977 onwards (EC Regulation No 3094/86). The box includes roughly the area north of $56^{\circ} \mathrm{N}$ and west of $1^{\circ} \mathrm{W}$. In the Norw egian economic zone, the Patch bank has been closed since 2002. It is not possible to fully quantify the effect of the closure of the fishery inside the Norway pout box both with respect to catch rates of target and by-catch species as well as effects on the stocks (EU, 1985; 1987a; 1987b; ICES, 1979). There has not been performed fully covering evaluation of the effect of closed areas in relation to interacting effects of technological development in the fishery including changed selectivity and fishing behaviour over time in relation to bycatch rates. These effects can not readily be distinguished.

Gear technological by-catch reduction devices:
Investigations of gear specific selective devices and gear modifications to reduce unwanted by-catch in the small meshed Norway pout fishery in the North Sea and Skagerrak have been performed in a number of studies. It was recently investigated based on sea trials in year 2000 and reported through an EU Financed Project (EU, 2002), and the results from here have been followed up upon in a scientific paper from DIFRES and CONSTAT, DK (Eigaard and Holst, 2004). Previous investigations of size selective gear devices in the Norway pout trawl fishery in the North Sea was performed by IMR Norway during sea trials in 1997-1999 also published in a scientific paper (Kvalsvik et al., 2006), as well as in a number of other earlier studies on the issue. Main results of previous investigations havebeen review ed and summarized in W orking Document No. 23 to the WGNSSK (2006) by Nielsen and Madsen (2006).
Early Scottish and Danish attempts to divide haddock, whiting and herring from Norway pout by using separator panels, square mesh windows, and grids were all relatively unsuccessful. More recent Faeroese experiments with grid devices have been more successful. A 74% reduction of haddock was estimated (Zachariassen and Hjalti, 1997) and 80% overall reduction of the by-catch (Anon., 1998).

Eigaard and Holst (2004) and EU (2002) found that when testing a trawl gears with a sorting grid with a 24 mm bar distance in combination with a 108 mm (nominal) square mesh window through experimental, commercial fishery the results showed improved selectivity of the commercial trawl with catch weight reductions of haddock and whiting of 37 and 57%, but also a 7% loss of Norway pout. The study showed that application of these reduction percents to the historical level of industrial by-catch in the North Sea lowered on average the yearly haddock by-catch from 4.3 to 2.7% of the equivalent spawning stock biomass. For whiting the theoretical re-
duction was from 4.8 to 2.1%. The purpose of the sorting grid was to remedy the bycatch ofjuvenile gadoids in the industrial fishery for Norway pout, while the purpose of square mesh window was to retain larger marketable consume fish species otherwise sorted out by the grid. By-catches in this study was mainly evaluated for haddock, whiting and cod, i.e. not for all above mentioned by-catch species of concern in the Norway pout fishery. How ever, the experiments have shown that the by-catch of important human consumption species in the industrial fishery for Norway pout can be reduced substantially by inserting a grid system in front of the cod-end. The study also demonstrated that it is possible to retain a major part of the larger marketable fish species like whiting and haddock and at the same time maintain substantial reductions of juvenile fish of the same species. The study also gave clear indications that further improvement of the selectivity is possible. This can be obtained by adjusting the bar distance in the grid and the mesh size in the selective window, but further research w ould be necessary in order to establish the optimal selective design.

The results reported in Kvalsvik et al. (2006) include results for more species of concern in the Norway pout fishery. They carried out experimental fishing with commercial vessels first testing a prototype of a grid system with different mountings of guiding panel in front of the grid and with different spacing (25,22 and 19 mm) between bars, and then, secondly, testing if the mesh size in the grid section and the thickness of the bars influenced the selectivity of the grid system. Two different mesh sizes and three different thicknesses of bars were tested. Based on the first experiments, only a bar space of 22 mm were used in the later experiments. These showed respectively that a total of 94.6% (w eight) of the by-catch species was sorted out with a 32.8% loss of the industrial target species, where the loss of Norway pout was around 10%, and respectively that 62.4% of the by-catch species were sorted out and the loss of target species was 22%, where the loss of Norway pout was around 6%. When testing selectivity parameters for haddock, the main by-catch species, the parameters indicated a sharp size selection in the grid system.

In conclusion, the older experiments indicate that there is no potential in using separator devices and square mesh panels. Recent and comprehensive experiments with grid devices indicate a loss of of Norway pout at around 10% or less when using a grid with a $22-24 \mathrm{~mm}$ bar distance. It is also indicated that there is a considerable loss of other industrial species being blue whiting, Argentine and horse mackerel. A substantial by-catch reduction of saithe, whiting, cod, ling, hake, mackerel, herring, haddock and tusk have been observed. The reduction in haddock by-catch is, however, lowered by the presence of smaller individuals. The Danish experiment indicates that it is possible to retain larger valuable consume fish species by using a square mesh panel in combination with the grid. Selectivity parameters have been estimated for haddock, whiting and Norway pout. These can be used for simulation scenarios including estimates of the effect of changing the bar distance in the grid. Selectivity parameters for more by-catch species would be relevant. However, the grid devices have shown to work for main by-catch species.

A general problem by implementing sorting grids in industrial fisheries is the very large catches handled. Durability and strength of the grid devices used under fully commercial conditions are consequently very important and needs further attention. Furthermore, handling of heavy grid devices can be problematic from some vessels. Grid devices are, nevertheless, used in most shrimp fisheries, where catches often are large.

Conclusions from section

In conclusion, the commercial, exploratory fishery and provision of recent by-catch information has shown by-catch-ratios to be significant in the fishery, however, spatio-temporal differences in catch levels by species has been observed and bycatches can be reduced through targeting and fishing method. Recent scientific research based on at sea trials in the commercial fishery has shown that use of gear technological by-catch devices can reduce by-catches of among other juvenile gadoids significantly. Accordingly, it is recommended that these gear technological by-catch reduction devices (or modified forms of those) are brought into use in the fishery. Introduction of those should be followed up upon by adequate landings or at sea catch control measures to assure effective implementation of the existing by-catch measures.

References

Anon 1998. Report of the study group on grid (grate) sorting systems in trawls, beam trawls and seine nets. ICES CM 1998/B: 2.

Degel, H., Nedreaas, K., and Nielsen, J.R. 2006. Summary of the results from the DanishNorwegian fishing trials autumn 2005 exploring by-catch-levels in the small meshed industrial trawl fishery in the North Sea targeting Norway pout. Working Document No. 22 to the 2006 meeting of the WGNSSK, 13 pp. ICES C.M.2006/ACFM:35
Eigaard, O.R., and Holst, R. 2004. The effective selectivity of a composite gear for industrial fishing: a grid in combination with a square mesh window. Fish. Res. 68: 99-112.

EU, 1985. Report of the Working Group on the by-catches in the Norway pout fishery. Submitte d to EU STECF, September 1985, DISK. STCF 9 (N. Pout).

EU, 1987a. Bioeconomic evaluation of the Norway pout box. EU Commission. Internal Information on Fisheries: 16.

EU, 1987b. The consequences of increased North Sea herring, haddock and whiting abundances for the fishery for Norway pout in the North Sea. EU Commission Report, Contract No 1946, 12.06.87 between Marine Resources Assessment Group, London, and Danish Institute for Fisheries and Marine Research, Charlottenlund.
EU, 1998. EU Council Regulation (EC) No. 850/98. Official Journal of the European Communities L 125 of 30 March 1998, Vol. 41 of 27 th April 1998: 36 pp. ISSN 0378-6988.
EU, 2002. Development and testing of a grid system to reduce by-catches in Norway pout trawls. Final Consolidate d Report, EU Study Project No. 98/002: 32pp +75 pp. EU Commission DG Fisheries, Bruxelles.

ICES 1977. Review of the Norway pout and sandeel within the NEAFC convention area. Appendix to ICES report C.M. 1977/F:7.

ICES, 1979. Report of an hoc working group on the Norway pout box problem. ICES C.M. 1979/G:2.

ICES, 2006. ICES ACFM Advice May 2006. Norway pout in the North Sea. International Council for Exploration of the Sea (ICES), Copenhagen, Denmark. Available from http://www.ices.dk/committe/acfm/comwork/report/as p/advice.asp
Kvalsvik, K., Huse, I., Misund, O.A., and Gamst, K. 2006. Grid selection in the North Sea industrial trawl fishery for Norway pout: Efficient size selection reduces by-catch. Fish. Res. 77: 248-263.

Nielsen, J.R., and Madsen, N. 2006. Gear technological approaches to reduce un-wanted bycatch in commercial Norway pout fishery in the North Sea. Working Document No. 23 to the 2006 meeting of the WGNSSK, 11 pp. ICES C.M.2006/ACFM:35.

Zachariassen, K., Jákupsstovu, S.H., 1997. Experiments with grid sorting in an industrial fishery at the Faeroes. Working Paper. FTFB Working Group, ICES. Available from the Fisheries Laboratory of the Faroes, Thorshavn, April 1997.

Table A1. Landings (tons) per species in the Danish small meshed Norway pout fishery in the North Sea by year and quarter. Landings are divided into the part used for reduction purposes and the part used for human consumption purposes. The latter landings are included in catch in numbers of human consumtion landings

Year Species	Purpose	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Blank	Total	\% of total catch
2005 Norway pout	Reduction						0	0
2004	Reduction	504		1474	5877		7855	87.5
2003	Reduction		45	1556	6322		7923	87.8
2002	Reduction	2,546		5,603	25,567	9,508	43224	78.6
2005 Blue whiting	Reduction						0	0
2004	Reduction	66					66	0.73
2003	Reduction		19	23	8		50	0.55
2002	Reduction	1966		589	950	1171	4676	8.50
2005 Herring							0	0
2004		11		422	304		737	8.21
2003			1	113	222		336	3.73
2002				217	2337	639	3193	5.81
2005 Cod	Reduction						0	0
	Hum. Con.						0	0
2004	Reduction				1		1.3	0.01
	Hum. Con.	0.3		0.2	0.3		0.8	0.01
2003	Reduction				3		3	0.03
	Hum. Con.			0.5	0.8		1.3	0.01
2002	Reduction				3		3	0.01
	Hum. Con.	2		15.4	22.7		40.1	0.07
2005 Haddock	Reduction						0	0
	Hum. Con.						0	0
2004	Reduction	5		49	3		57	0.63
	Hum. Con.	0.2		0.2	0.5		0.9	0.01
2003	Reduction				16		16	0.18
	Hum. Con.			0.1	1.8		1.9	0.02
2002	Reduction			408	1137		1545	2.81
	Hum. Con.	0.7		4.3	9.8		14.8	0.03
2005 Whiting	Reduction						0	0
	Hum. Con.						0	0
2004	Reduction	32		59	141		232	2.58
	Hum. Con.	0.4		0.3	0.2		0.9	0.01
2003	Reduction			51	214		265	2.94
	Hum. Con.			0.3	2		2.3	0.03
2002	Reduction			239	1436		1675	3.05
	Hum. Con.			5.4	5.5		10.9	0.02
2005 Saithe	Reduction						0	0
	Hum. Con.						0	0
2004	Reduction						0	0
	Hum. Con.	0.7		5.8	4.2		10.7	0.12
2003	Reduction		0.4	4	22.8		27.2	0.30
	Hum. Con.						0	0
2002	Reduction			45	201		246	0.45
	Hum. Con.	30		84.3	66.3		180.6	0.33
2005 Other human	Hum. Con.						0	0
2004 Cons. Species	Hum. Con.	0.9		2.7	2.5		6.1	0.07
2003	Hum. Con.		0.6	2.2	6.2		9	0.10
2002	Hum. Con.						0	0
2005 All species	All						0	0
2004	All	626		2023	6331		8980	100
2003	All		66	2025	6929		9020	100
2002	All	4511		6815	31887	11767	54980	100

Stock Annex: Plaice IIIA

Stock specific documentation of standard assessment procedures used by the ICES WGNSSK.

Working group:
Updated:
By:

North Sea Demersal W orking Group
14/05/2009
Clara Ulrich, DTU Aqua and Andrea Bel grano, IMR Sweden

A. General

A. 1 Stock definition

The stock boundaries have been extensively investigated in the recent years. They were previously often considered as arbitrary and more for management purposes than based on a biological recognised stock separation. Electrophoresis and meristic character indicated that the plaice in IIIa is a mixed population of the Kattegat and the Skagerrak component, which is dominating and a Belt Sea component (Simonsen et al., 1988).

In 2006 and 2007, a compilation of comprehensive older Danish tagging data (Boje and Nielsen, WGNSSK 2007, WD) where around 40000 plaice were marked and released between 1903 and 1964 across all Danish waters, provided some clear patterns about main plaice migration. Most areas showed some westwards direction, but the degree of residency within main management areas was in general very high. There is presence of little average mixing across management areas, may be an possible indication that IIIa could be considered a consistent unit for the stock definition. Although within IIIa, there are some important migration from eastern Skagerrak and North Kattegat, implying that both sub-areas are linked. How ever, some clear border effects with local mixing were observed, both in the south (between Belt North and South Kattegat) and in the North (between Horns Reef and Western Skagerrak).
Further work combining tag experiments, otolith structure analysis (microstructure and otolith chemistry) and genetic markers should be implemented to depict important recruitment sources for the Kattegat-Skagerrak plaice, nursery areas and migration routes.

The influence of the North Sea stock component, especially via the transport of eggs or larvae could also contribute to the IIIa plaice stock abundance (see Ecosystem aspects).

A. 2 Fishery

The fishery is dominated by Denmark, with Danish landings usually accounting for 80 to 90% of the total. Landings are taken year round with a predominance of the period from spring to autumn, by Danish seiners, flatish gillnetters and beam trawlers. Plaice is also caught within a mixed cod-plaice fishery by otter trawlers, and is a bycatch of other gillnet fisheries. Plaice is also caught as by-catch in the directed Nephrops fishery. Most landings come from Skagerrak, along the Danish Northwestern coast close to the North Sea border. Since 1978, landings have declined from 27000 to 9000 tonnes in the late nineties. However, landings in 2001 were the highest since 1992. The fishery traditionally exploited mostly mature individuals (ages 4 to 6), but
the landings proportion of fishes aged 2 and 3 has been increasing since 2000. The TAC is usually not restrictive.

The use of beam trawl in the Kattegat is prohibited, but allowed in the Skagerrak. Minimum mesh size is 90 mm for towed gears, and 100 mm for fixed gears. The minimum landing size is 27 cm . Danish fleets are prohibited to land females in area IIIa from january 15th to april 30th.

A. 3 Ecosystem as pects

The large scale circulation pattern in the Northern Kattegat depends mainly on interaction between Baltic runoffs and local variation due to wind stress. Nielsen et al., (1998) demonstrated that the abundance of settled 0-group plaice along the Danish coast of the Kattegat depends on transport from the Skagerrak. The 0-group abundance measured in July-August was significantly higher in years when wind conditions during the larval development period (March-April) were moderate to strong. This might imply that larval plaice are food-limited in years when calm conditions prevail during the larval drift period (Nielsen et al., 1998).

Stock dynamics should account for the several reproductively isolated spawning components of a stock (Ruzzante et al. 1999: Hilborn et al. 2003) in an explicit spatial context, therefore information on the spatial distribution of spawning grounds is crucial for studies and inference on stock structures, and therefore for fisheries management of exploited fish populations.

Further management consideration from an ecosystem perspective have been recently reporter by the Working Group on Multispecies Assessment Methods (WGSAM 2008).

B. Data

B. 1 Commercial catch

ICES official landings are available from Belgium, Norway and Germany, and national statistics are available from Denmark, Sweden and the Netherlands. The agedisaggregated indices were derived by merging logbook statistics supplying catch weight per market category with the age distribution within these categories available from the market sampling. Catch-at-age and mean weight-at-age in the catch information were traditionally provided by Denmark only. For 2003 data were also provided by Sweden, initially for both areas and since 2007 for Kattegat only. The sampling scheme is broken down by quarter, landing harbours, and fishing area. The total international catches-at-age have been estimated for Kattegat and Skagerrak separately since 1984. Raising procedures were historically performed manually, but ICES InterCatch database has been used for 2008 data.

B. 2 Biological

Weight at age in the stock had previously been assumed equal to weight at age in the catch due to unavailable data on stock weights. In 2006, data were made available from IBTS $1^{\text {st }}$ quarter (from 1991) and KASU $1^{\text {st }}$ quarter (from 1997) in IIIa, and the 2006 WG provided revised estimates of stock weight at age. Only $1^{\text {st }}$ quarter surveys and commercial data are used to calculate mean weights in order to generate the stock at the beginning of the year. Only age groups 1-4 are used from surveys as ages 5 and 6 are contradictory and considered too noisy. For older age groups weight at
age in $1^{\text {st }}$ quarter are computed from landings sampling from 1995. Before 1995 no information on weights per quarters was available. In summary compilation of stock at age are as follows:

- For age 1-4 (1997+) an average between the mean weight in the KASU and IBTS survey was used.
- Age 1-4 (1991-1996) mean weight from the IBTS survey was applied.
- Age 1-4 (1978-1991) an average from 1991-1995 (IBTS) was used as fixed value.
- Age 5-11 (1995+) mean w eight from the commercial fleet first quarter.
- Age 5-11 (1978-1996) an average from (1995-1998) was used as fixed value.

Although the 2006 review group expressed some concerns about the quality of stock weight estimates, the procedure has not been revised since.

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

A fixed natural mortality of 0.1 per year was assumed for all years and ages.
The maturity ogive was also revised during the 2006 WG. Previously, maturity was assumed knife-edge distributed: age group 2 was considered immature whereas age 3 and older plaice were considered fully mature. In 2006, a maturity-at-age was established based on IBTS $1^{\text {st }}$ quarter data since 1994. Given large inter-annual variability especially at age group 2, a fixed 1994-2005 average value per age was applied to the entire time series.

B. 3 Surveys

Data from four surveys are available. IBTS survey data for Kattegat and Skagerrak for the first and third quarter are provided by Sweden as numbers-per-age and hour on a haul-by-haul basis for the period< starting in 1991and 1995 respectively (no survey was performed in third quarter 2000). Two Danish bottom trawl surveys ('KASU') are conducted by the vessel 'Havfisken' in Kattegat, Belt Sea, and Western Baltic in the first and fourth quarter of each year. The indices time series available from these surveys started in 1996 for the first quarter survey (except 1998), and in 1994 for the fourth quarter survey. Until 2006 both the survey indices of the IBTS and KASU surveys first quarter were shifted from February to the preceding December to allow for full use of the available data. Since 2007, the WG has taken place earlier, in May, and only IBTS data are available for backshifting.
Very few plaice aged 7-9 are caught during the surveys and these ages are removed from the analysis.

B. 4 Commercial CPUE

Three Danish fleets, i.e., trawlers, gillnetters, and Danish seiners, were traditionally available for tuning.
In 2006 effort was made to improve the quality of the commercial tuning fleets used in the assessment, both in terms of data checking, fisheries definition and effort standardisation. Two tuning fleets were retained, the Danish seiners and the Danish gillnetters targeting flat fish with 120 to 220 mm nets (vessels larger than 10 m), with effort measured as kW^{*} fishing days. The age-disaggregated indices were derived by
merging logbook statistics supplying catch weight per market category with the age distribution within these categories available from the market sampling.

The fishing effort appears to have been fairly stable over the last decade. There has been a decrease in the fishing effort of towed-geared fleets since 1990, but this trend has been reversing since 1998. The fishing effort of gillnetters has steeply increased over 1990-1994, and steadily decreased since then. All commercial fleets show increase in both the yield and the CPUE in 2001. Highest values and increases are observed for the Danish seiners.

B. 5 Other relevant data

None.

C. Historical Stock Development

Analytical assessments were performed every year except in 2008, but they have not been accepted since 2005 .

Deterministic modelling
Model used: XSA
Software used: IFAP / Lowestoft VPA suite until 2005, FLXSA since 2006.
Model Options chosen:
Tapered time weighting applied, power $=3$ over 20 years
Catchability independent of stock size for all ages
Catchability independent of age for ages $>=8$
Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages
S.E. of the mean to which the estimate are shrunk $=0.500$

Minimum standard error for population estimates derived from each fleet $=0.300$
Prior weighting not applied
Discards at age data have been available since 2002, but area not included in the assessment.

Input data types and characteristics:

Type	Name	Year range	Age range	Variable from year to year Yes/No
Caton	Catch in tonnes (=landings)	$1978-$ last data year	$2-10+$	Yes
Canum	Catch at age in numbers (=landings at age)	$1978-$ last data year	$2-10+$	Yes
Weca	Weight at age in the commercial catch (=weight at age in the landings)	$1978-$ last data year	$2-10+$	Yes
West	Weight at age of the spawning stock at spawning time.	$1978-$ last data year	$2-10+$	Yes
Mprop	Proportion of natural mortality before spawning	$1978-$ last data year	$2-10+$	No - set to 0 for all ages in all years
Natmor	Proportion of fishing mortality before spawning	$1978-$ last data year	$2-10+$	No - set to 0 for all ages in all years
Matprop	Proportion mature at age	Nages in all for year		
years				

Tuning data:

Type	Name	Year range	Age range
Tuning fleet 1	Danish Gillnetters	1987 - last data year	$2-10+$
Tuning fleet 2	Danish seiners	1987 - last data year	$2-10+$
Tuning fleet3	IBTS Q1 backshifted	1991 - last data year	$1-6$
Tuning fleet4	KASUQ4	1994 - last data year	$1-6$
Tuning fleet5	KASUQ1	1995 - last data year	$1-5$
Tuning fleet6	IBTS Q3	1995 - last data year	$1-6$

C. 1 Uncertainty analys is

C. 2 Retros pective analys is

Performed with FLR packages

D. Short-Term Projection

not run since 2005
Settings previously used :
Software used: WGFRANSW
Initial stock size. Stock sizes for age 3 and older are taken from the estimated number of survivors from the XSA. The age 2 recruitments are taken as the geometric average over the entire period.

Natural mortality:Set to 0.1 for all ages in all years
Maturity: The same ogive as in the assessment is used for all years
F and Mbefore spawning: Set to 0 for all ages in all years
Weight at age in the stock: Assumed to be the same as weight at age in the catch
Weight at age in the catch: Average weight of the three last years
Exploitation pattern: Average of the three last years, scaled by the Fbar (3-6) to the level of the last year
Intermediate year assumptions: TAC constraint
Stock recruitment model used: None, the long term geometric mean recruitment at age 2 is used

Procedures used for splitting projected catches: Not relevant

E. References

Hilborn, R., Quinn, T. P., Schindler, D. E, and Rogers, D. E. 2003. Biocomplexity and fisheries sustainability. Proceedings of the National Academy of Sciences USA, 100: 6564-6568

Ruzzante, D. E. Taggart, C. T., and Cook, D. 1999. A review of the evidence for genetic structure of cod (Gadus morhua) populations in the Northwest Atlantic and populations affinities of larval cod off Newfoundland and the Gulf of St Lawrence. Fish. Res., 43: 79-97

ICES 2008. Report of the Working Group on Multis pecies Assessment Methods (WGSAM), 6-10 October 2008, ICES Headquarters, Copenhagen, ICES CM 2008/RMC:06. 113 pp .

Stock Annex: Plaice in area IV

Stock specific documentation of standard assessment procedures used by ICES.

Stock:	North Sea plaice
Working Group:	WGNSSK
Date:	7 February 2009
By:	Jan Jaap Poos

A. General

A. 1 Stock definition

The North Sea plaice is defined to be a single stock in ICES are IV. However, data from data storage tag experiments reveal that about one third of plaice released in the Southern Bight of the North Sea visit the eastern English Channel in December and January. In contrast, analysis of the movements of mark-recapture experiments with plaice of a similar size and released at similar times indicates that only 13% of plaice released in the Southern Bight visit the eastern English Channel at this time (Hunter et al., 2004). This difference between DST and mark-recapture experiments is not observed in the central North Sea and German Bight, where the movements of plaice derived from the two approaches are relatively similar (Bolle et al., 2005). The differences may possibly be due to the fact that these fish migrate to their spawning grounds by selective tidal stream transport. Studies (Kell et al., 2004) have shown that the migration between North Sea and the adjacent areas is more problematic for the smaller adjacent areas than it is for management in IV.

Genetic analysis of plaice population structure in northern Europe using microsatellites and mitochondrial DNA data (Hoarau et al., 2004) reveals relatively strong differentiation between "shelf" plaice and those from Iceland and Faeroe, suggesting that deep water may serve as a barrier to movement between these populations. However, within the area of the European continental shelf, only weak differentiation could be detected between North Sea-Irish Sea and other areas (Norway, the Baltic and the Bay of Biscay, Hoarau et al., 2004). Although the spatial location of sampling within the North Sea was not sufficient to reveal any sub-structure. The lack of any genetic differentiation between Irish Sea and North Sea plaice populations (Hoarau et al., 2004) despite the evidence from mark-recapture studies that indicate extremely low transfer of individuals between these sea areas (0.36% over 17 years, calculated from (Dunn and Pawson, 2002)) shows how differently genetic and tagging studies provide an understanding fish population structure. Nonetheless, it seems unlikely that Irish Sea and North Sea plaice are a single "stock", at least in a fisheries management sense.

A. 2 Fishery

North Sea plaice is taken mainly in a mixed flatfish fishery by beam trawlers in the southern and south -eastern North Sea. Directed fisheries are also carried out with seines, gill nets, and twin trawls, and by beam trawlers in the central North Sea. Due to the minimum mesh size enforced (80 mm in the mixed beam trawl fishery), large numbers of (undersized) plaice are discarded. Fleets exploiting North Sea plaice have
generally decreased in number of vessels in the last 10 years. However, in some instances, reflagging vessels to other countries has partly compensated these reductions. For example, approximately 85% of plaice landings from the UK (England and Scotland) is landed into the Netherlands by Dutch vessels fishing on the UK register. Vessels fishing under foreign registry are referred to as flag vessels. As described by the ICES WGNSSK in 2001(ICES CM 2002/ACFM:01), the fishing pattern of flag vessels can be very different from that of other fleet segments. Besides having reduced in number of vessels, the fleets have also shifted towards two categories of vessels: 2000 HP (the maximum engine power allowed) and 300 HP (the maximum engine power for vessels that are allowed to fish within the 12 mile coastal zone and the plaice box). Also, the decrease in fleet size may partially have been compensated by slight increases in the technical efficiency of vessels. In the Dutch beam trawl fleet indications of an increase of technical efficiency of around 1.65% by year was found over the period 1990-2004 (Rijnsdorp et al., 2006). Because the commercial tuning series are not currently used in the assessment, these estimates do not affect the current assessment.

The Dutch beam trawl fleet, one of the major operators in the mixed flatfish fishery in the North Sea, has seen a shift towards more inshore fishing grounds, changing the catchability of the fleet. This shift may be caused by a number of factors, such as the implementation of fishing effort restrictions, the increase in fuel prices and changes in the TAC for the target species (Quirijns, 2008). How ever, the contribution of each of these factors is yet unknown. Other factors affecting the catchability of the fleet include the changes in the fishing speed of the vessels, and discarding marketable fish in certain seasons and areas, as a result of the TAC management (Rijnsdorp, 1991)

Conservation schemes and technical conservation measures

Fishing effort has been restricted for demersal fleets in a number of EC regulations (EC Council Regulation No. 2056/2001; EC Council Regulation No 51/2006; e.g $\mathrm{N}^{\circ} 40 / 2008$, annex IIa). For example, for 2007, Council Regulation (EC) No 41/2007 allocated different days at sea depending on gear, mesh size, and catch composition: Beam Trawls could fish between 123 and 143 days per year. Trawls or Danish seines could fish between 103 and 280 days per year. Gillnets could allowed to fish between 140 and 162 days per year. Trammel nets could fish between 140 and 205 days per year.
Several technical measures are applicable to the plaice fishery in the North Sea: mesh size regulations, minimum landing size, gear restrictions and a closed area (the plaice box).

Mesh size regulations for towed trawl gears require that vessels fishing North of 55 N (or $56^{\circ} \mathrm{N}$ east of $5^{\circ} \mathrm{E}$, since January 2000) should have a minimum mesh size of 100 mm , while to the south of this limit, where the majority the plaice fishery takes place, an 80 mm mesh is allowed. In the fishery with fixed gears a minimum mesh size of 100 mm is required. In addition to this, since 2002 a small part of North Sea plaice fishery is affected by the additional cod recovery plan (EU regulation 2056/2001) that prohibits trawl fisheries with a mesh size $<120 \mathrm{~mm}$ in the area to the north of $56^{\circ} \mathrm{N}$.
The minimum landing size of North Sea plaice is 27 cm . The maximum aggregated beam length of beam trawlers is 24 m . In the 12 nautical mile zone and in the plaice box the maximum aggregated beam -length is 9 m . A closed area has been in operation since 1989 (the plaice box). Since 1995 this area was closed in all quarters. The closed area applies to vessels using towed gears, but vessels smaller than 300 HP are ex-empted from the regulation. An evaluation of the plaice box has indicated that:

From trends observed it was inferred that the Plaice Box has likely had a positive effect on the recruitment of Plaice but that its overall effect has decreased since it was established. There are two reasons to assume that the Plaice Box has a positive effect on the recruitment of Plaice: 1) at present, the Plaice Box still protects the majority of undersized Plaice. Approximately 70% of the undersized Plaice are found in the Plaice Box and Wadden Sea, and despite the changed distribution, densities of juvenile Plaice inside the Box are still higher than outside; 2) In the 80 mm fishery, discard percentages in the Box are higher than outside. Because more than 90% of the Plaice caught in the 80 mm fishery in the Box are discarded, any reduction in this fishery would reduce discard mortality. There is, however, no proof of a direct relationship between total discard mortality and recruitment.

A. 3 Ecosystem aspects

Adult North Sea plaice have an annual migration cycle between spawning and feeding grounds. The spawning grounds are located in the central and southern North Sea, overlapping with the distribution area of Sole. The feeding grounds are located more northerly than the sole distribution areas. Juvenile stages are concentrated in shallow inshore waters and move gradually off -shore as they become larger. Then nu sery areas on the eastern side of the North Sea contribute most of the total recruitment. Sub -popuations have strong homing behaviour to specified spawning grounds and rather low mixing rate with other sub -populations during the feeding seas(dre Veen, 1978, Rijnsdorp and Pastoors, 1995). Genetically, North Sea and Irish Sea plaice are weakly distinguishable from Norway, Baltic and Bay of Biscay stocks using mitochondrial DNA (Hoarau et al., 2004).
Juvenile plaice were distributed more offshore in recent years. Surveys in the Wadden Sea have shown that 1 -group plaice is almost absent from the area where it was very abundant in earlier years (van Keeken et al., 2007). The Wadden Sea Quality Status Report 2004 (Vorberg et al., 2005) notes that increased temperature, lower levels of eutrophication, and de -cline in turbidity have been suggested as causal factrs, but that no conclusive evidence is available; taking into account the temperature tolerance of the species there is ground for the hypothesis that a temperature rise contributes to the shift in distribution.

A shift in the age and size at maturation of plaice has been observed (Grift et al., 2007, Grift et al., 2003): plaice become mature at younger ages and at smaller sizes in recent years than in the past. This shift is thought to be a genetic fisheries -induced change: Those fish that are genetically programmed to mature late at large sizes are likely to have been removed from the population before they have had a chance to reproduce and pass on their genes. This results in a population that consists ever more of fish that are genetically programmed to mature early at small sizes. Reversal of such a genetic shift may be difficult. This shift in maturation also leads to mature fish being of a smaller size at age, because growth rate is reduced after maturation.

B. Data

B. 1 Commercial catch

Discard sampling programmes started in the late 1990s to obtain discard estimates from several fleets fishing for flatfish. These sampling programmes give information on discard rates from 1999 but not for the historical time series. Observations indicate that the proportions of plaice catches discarded are high (80% in numbers and 50% in
weight: (van Keeken et al., 2004)) and have increased since the 1970s (51% in numbers and 27% in weight: (van Beek, 1998)) The discards time series are derived from Dutch, Danish, German and UK discards observations for 2000 - 2007. For the period prior to that, a reconstructed discard time series for 1957 - 1999 exists, based on a reconstructed population and selection and distribution ogives (ICES CM 2005/ACFM:07 Section 9.2.3).

The discard data from the sampling programmes in the individual countries are raised totals, based on samples from onboard observers. These observers generally take length structured samples that are
The UK discards estimates have strong interannual variation, caused by the low sample sizes, and sampling different strata in the UK fleet. For example, the UK discard samples for 2007 were taken mainly from the UK Nephrops and otter trawl fishery. These fisheries represent only a small fraction of the total UK plaice landings, and raising the UK discards using only samples from this fleet w ould potentially lead to incorrect estimates. Since the UK landings represents 24% of the total nominal landings, obtaining accurate discard estimates is crucial. In order to gain better estimates of discards, the proportionality of the English discards to the Dutch discards is calculated in the observations since 2000. The UK estimates are recalculated assuming a constant ratio between the UK and Dutch discard numbers at age:
$\hat{D}_{a, y}^{U K}=\frac{\sum_{y=2002}^{2007} D_{a, y}^{U K}}{\sum_{y=2002}^{2007} D_{a, y}^{N L}} \times D_{a, y}^{N L}$
where $D_{a, y}^{U K}, \hat{D}_{a, y}^{U K}$, and $D_{a, y}^{N L}$ are the observed and estimated UK, and observed Dutch discard numbers of year y and age a, respectively

After raising to the fleet total and estimation of discards -at age using age length keys from the Dutch BTS surveys, discard observations at age are thus available from the Dutch, Danish, German and the UK discard sampling programmes. The sampling effort in the Dutch and UK programmes is given in The quality of the estimation of total discards numbers at age depends on the quality of the available discards data, which are derived from low sampling level discards observations within the four countries that have provided discard estimates.

Discards at age were raised from the Dutch and UK sampling programmes by effort ratio (based on hp days at sea for the Dutch fleets, and on trips for the UK fleets). Discards at age from the Danish and German sampling programs were raised by landings. Discards at age for the other fleets for which no estimates were available, were calculated as a weighted average of the Dutch, Danish, German and UK discards at age and raised to the proportion in landings (tonnes). This is the same method as used in the final assessment by WGNSSK 2005 (method B).

A self sampling programme for discards was started by the Dutch beam trawl fishery in 2004, and is still running. This sampling program has a high number of samples, taken on board by the fishermen, estimating the percentage of discards by volume. The program indicates a strong spatial pattern in the discarding of the fleet. The percentage discards estimated in the self sampling program is significantly lower than that in the Dutch sampling programme in the same years (Aarts and van Helmond, 2007).

To reconstruct the number of plaice discards at age before 2000 that are required for an XSA assessment, catch numbers at age are calculated from fishing mortality at age corrected for discard fractions, using a reconstructed population and selection and distribution o-gives (ICES CM 2005/ACFM:07 Appendix 1). Alternatively, the discards previous to 2000 can be estimated using the statistical catch-at-age approach as described in (Aarts and Poos, 2009).

Landings

The landings by country are collected by different countries, segregated by sex for the Netherlands and Belgium (accounting for approximately 50% of the landings). Age structure is available for the Netherlands, France, Germany, Denmark and Belgium (accounting for approximately 75% of the landings). The total age structured landings are estimated using a weighed procedure for the age structure by country, based on the proportionality of the weight of the total landings.

B. 2 Biological

Weight at age
The stock weights of age groups $1-4$ are calculated using modeled mean lengths from survey and back -calculation data (see ICES CM 2005/ACFM:07 Appendix 1) and cnverted to mean weight using a fixed length -weight relationship. Stock weights of the older ages are based on the market samples in the first quarter. Stock weight at age has varied considerably over time, especially for the older ages. Discard weights at age are calculated the same way as the stock weights of age groups $1 \quad-4$, after which gear selection and discarding ogives are applied. Landing weights at age are derived from market sampling programmes. Catch weights at age are calculated as the weighted average of the discard and landing weights at age. There appear to be cohort effects on landings weight at age, which are also reflected in the stock weights at age. In addition to the cohort effects, there is a long term decline in weight at age for the older ages. The stock weights of the older ages are based on the market samples in the first quarter. In these market samples, the sex ratio for the older ages may be skewed towards one of the sexes. The WG suggests a more in depth study into the causes and consequences of the perceived decreases in stock weights for the next benchmark assessment.

Natural mortality

Natural mortality is assumed to be 0.1 for all age groups and constant over time. These values are probably derived from war-time estimates (Beverton and Holt, 1957).

Maturity

A fixed maturity ogive is used for the estimation of SSB from the assessment in North Sea plaice, assuming maturity-at-age 1 is 0 , maturity-at-age 1 and 2 is 0.5 , and older ages are fully mature. How ever maturity at-age is not likely to be constant over time (Grift et al. 2003, Grift et al. 2007) (Grift et al., 2007, Grift et al., 2003). The effects of assuming a constant maturity-at-age on the management advice was discussed in a study by (Kell and Bromley, 2004). However, a study of the effect of the fluctuations of natural mortality on the SSB by the WG in 2004 showed that incor porating the historic fluctuations had little effect on SSB estimates in the period 1999 -2003.

B. 3 Surveys

Three different survey indices can been used as tuning fleets are:

- Beam Trawl Survey RV Isis (BTS -Isis)
- Beam Trawl Survey RV Tridens (BTS -Tridens)
- Sole Net Survey in September -October (SNS)

Additional Survey indices that can be used for recruitment estimates are (Table 8.2.12):

- Demersal Fish Survey (DFS)

The Beam Trawl Survey RV Isis (BTS -Isis) was initiated in 1985 and was set up tdoe tain indices of the younger age groups of plaice and sole, covering the south -eastern part of the North Sea (RV Isis). Since 1996 the BTS -Tridens covers the central part of the North Sea, extending the survey area of the surveys. Both vessels use an $8-\mathrm{m}$ beam trawl with 40 mm stretched mesh codend, but the Tridens beam trawl is rigged with a modified net. Owing to the spatial distribution of both BTS surveys, consid-er-able numbers of older plaice and sole are caught. Previously age groups 1 to 4 were used for tuning the North Sea plaice assessment, but the age range has been extended to 1 to 9 in the revision done by ACFM in October 2001.

The Sole Net Survey (SNS \& SNSQ2) was carried out with RV Tridens until 1995 and then continued with the RV Isis. Until 1990 this survey was carried out in both spring and autumn, but after that only in autumn. The gear used is a 6 m beam trawl with 40 mm stretched mesh cod -ends. The stations fished $æ$ on transects along or perpendicular to the coast. This survey is directed to juvenile plaice and sole. Ages 1 to 3 are used for tuning the North Sea plaice assessment; the 0 -group index is used in the RCT3. In an attempt to solve the problem of not having the survey indices in time for the WG, the SNS was moved to spring in 2003. However, because of the gap in the spring series these data could not be used in the plaice assessment or in RCT3. In 2004, the SNS was moved back to autumn as before, based on the recommendation of the WGNSSK in 2004.

The 1997 survey results for the 1995 and 1996 year classes (at ages 1 and 2) in the BTS and SNS surveys cannot be used in the assessment, owing to age reading problems in that year. Also, the research vessel survey time series have been revised in May 2006 by WGBEAM (ICES 2006), because of small corrections in data bases and new solutions for missing lengths in the age -length-keys.

When WGBEAM will provide these combined series, those should be used instead in the assessment.

The Demersal Fish Survey (DFS) is the more coastal of the surveys, conducted by several countries. This survey is not used in the assessment, but rather used to estimate the recruitment of juvenile fish in the RCT3 analysis. The survey estimates abundances for North Sea plaice age 0 and age 1 . How ever, the age 1 has not been used for recruitment estimation since a number of years, and the time series for this age was stopped in 2005. The UK contribution to the DFS survey was revised in 2008, affecting the estimates between 2001 and 2006.

B. 4 Commercial LPUE

Commercial age structured LPUE series (consisting of an effort series and land-ings-at-age series) that can be used as tuning fleets are:

- The Dutch beam trawl fleet (since 1989)
- The Dutch beam trawl fleet corrected for spatial effort allocation (since 1997)
- The UKbeam trawl fleet excluding all flag vessels (between 1990 and 2002)

Effort has decreased in the Dutch beam trawl fleet since the early/mid 1990s. Up until 2002, the age-classes available in both the Dutch and the UK fleets generally show equal trends in LPUE through time.

The WG used both survey data and commercial LPUE data for tuning until the mid 1990s. The commercial LPUE was calculated as the ratio of the annual landings over the total number of fishing days of the fleet. At that time, however, it was realised that the commercial LPUE data of the Dutch beam trawl -fleet, which dominated the fishery, were likely to be biased due to quota restrictions. Vessels were reported to adjust their fishing patterns in accordance to the individual quota available for that year. Fishers reported to leave productive fishing grounds because they lacked the fishing rights and moved to areas with lower catch rates of the restricted species with a bycatch of non -quota, or less restricted species.

A method that corrects for the spatial effort allocation is to calculate LPUEs at a smaller spatial scale, e.g. ICES rectangles, and then calculate the average of these ICES rectangle-specific LPUEs. Age-information is available at this spatial level since 1997, and LPUE series could be used for tuning an age structured assessment method (alternatively, age -aggregated tuning series could be used in other analytical assesment methods than XSA). Only under the assumption that discarding is negligible for the older ages, the LPUE represents CPUE, and this time-series could be used to tune age structured assessment methods.

Also, ageaggregated LPUE series, corrected for directed fishing under a TAC-constraint (see Quirijns and Poos 2007), by area and fleet component, can be used as indication of stock development. Available are

- The Dutch beam trawl fleet (only large cutters with engine powers above 221 kW)
- The UKbeam trawl flag vessels landing in the Netherlands (only large cutters with engine powers above 221 kW)
- Several Danish fleets (trawl, gillnet and seines) mainly operating in the Northern area
- Effort of the Dutch beam trawl fleet and of the English beam trawl vessels landing in the Netherlands, by area and fleet component.

B. 5 Other relevant data

To be done

C. Historical Stock Development

There are currently two methods that could be used to provide an assessment of North Sea plaice, being XSA, and a model developed by (Aarts and Poos, 2009). The XSA uses the reconstructed discard set described in the catch section. The Aarts and Poos methods estimates the discards from the mortality signals in the surveys, the landings-at-age and the discards-at-age in the most recent period. WKFLAT 2009 suggest to run both models concurrently, in order to estimate the stability of the Aarts and Poos method.

Model used as a basis for advice

The North Sea plaice is based on the XSA stock assessment. Settings for the final assessment are given below:

Setting/Data	Values/source
Catch at age	Landings (since 1957, ages 1- 10) + (reconstructed) discards based on NL, DK + UK + GE fleets. Discards reconstruction between 1957-1999), observations since 2000
Tuning indices	BTS -Isis 1985-2007 1-8 BTS -Tridens 1996-2007 1-9 SNS 1982 -2007 1-3
Plus group	10
First tuning year	1982
Time series weights	No taper
Catchability dependent on stock size for age <	1
Catchability independent of ages for ages >=	6
Survivor estimates shrunk to- wards the mean F	5 years / 5 years
s.e. of the mean for shrinkage	2.0
Minimum standard error for population estimates	0.3
Prior weighting	Not applied

The Aarts and Poos model

Setting/Data	Values/soure
Catch at age	Landings (since 1980, ages 1:9) + discards based on observa- tions since 2000 NL, DK + UK + GE fleets (ages 1:8). No recon- struction
Tuning indices	BTS -Isis 1985-2007 1-8 BTS -Tridens 1996-2007 1-9 SNS 1980-2007 1-3
Plus group	No plus group
First tuning survey year	1980
Catchability independent of ages for ages $>=$	8 (for catches)
Minimum standard error for like- lihood function	0.05
Prior weighting	Not applied

D. Short-term Projection

Because the assessment on which the advice is based is currently a fully deterministic XSA, the short term projection can be done in FLR using FLSTF (1.4.3). Weight -at-age in the stock and weight -at-age irthe catch are taken to be the average over the last 3 years. The exploitation pattern was taken to be the mean value of the last three years, scaled to F in 2007. The proportion of landings at age was taken to be the mean of the last three years, this proportion was used for the calculation of the discard and hu-
man consumption partial fishing mortality. Population numbers at ages 3 and older are XSA survivor estimates.

Numbers at age 2 are based on RCT3 estimates if the estimates from RCT3 show sufficient consistency.

Numbers at age 1 and recruitment of the incoming year-class are taken from the long-term geometric mean of age 1 assessment estimates, where the most recent 4 years are removed from the time-series. The management options are given for three different assumptions on the F values in the intermediate year;
a) F is assumed to be equal to the estimate for F in the final year of the assessment,
b) F is 0.9 times F in the final year of the assessment, and
c) F is set such that the landings in the intermediate year are equal to the TAC of that year.

E. Medium-Term Projections

Generally, no medium term projections are done for this stock.

F. Long-Term Projections

Generally, no medium term projections are done for this stock.

G. Biological Reference Points

The current reference points were established by the WGNSSK in 2004, when the discard estimates were included in the assessment for the first time. The stock/recruitment relationship for North Sea plaice did not show a clear breakpoint where recruitment is impaired at lower spawning stocks. Therefore, ICES considered that Bim be set at 160000 t and that \mathbf{B}_{pa} then be set at 230000 t using the default multiplier of 1.4. Flim was set at $\mathbf{F}_{\text {loss }}(0.74)$. $\mathbf{F}_{\text {pa }}$ was proposed to be set at 0.6 which is the $5_{\text {th }}$ percentile of Floss and gave a 50% probability that SSB is around $\mathbf{B}_{\mathbf{p a}}$ in the medium term. Equilibrium analysis suggests that F of 0.6 is consistent with an SSB of around 230000 t . In 2008, a target F was added to the reference points, based on the F stated in the long term management plan for plaice an sole. This target F is supposedly based on an estimates of $\mathrm{F}_{\text {msy }}$.

	Type	Value	Technical basis
Precautionary approach	Blim	160000 t	Bloss $=160000 \mathrm{t}$, the lowestobserved biomass in 1997 as assessed in 2004.
	Bpa	230000 t	Approximately 1.4 Blim.
	Flim	0.74	Floss for ages 2-6.
	Fpa	0.60	5th percentile of Floss (0.6) and implies that Beq $>$ Bpal) and a 50\% probability that SSBmT \sim Bpa.
	$\mathrm{F}_{\mathrm{mgt}}$	0.3	EU management plan

(unchanged since 2004, target added in 2008)
The $\mathrm{F}_{\mathrm{msy}}, \mathrm{F}_{\mathrm{max}}$ and $\mathrm{F}_{0.1}$ should be estimated given the 10 most recent years of the stock assessment.

H. Other Issues

None identified

I. References

AARTS, G. and POOS, J. J. 2009. Comprehensive discard and abundance estimation of North Sea plaice. ICES Journal of Marine Science, 66.

AARTS, G. and VAN HELMOND, A. T. M. 2007. Discard sampling of Plaice (Pleuronectes platessa) and Cod (Gadus morhua) in the North Sea by the Dutch demersal fleet from 2004 to 2006. ICES Document Report number C120/07. 42 pp.

BEVERTON, R. J. H. and HOLT, S. J. 1957. On the dynamics of exploited fish populations, Her Majesty's Stationery Office, London (UK).

BOLLE, L. J., HUNTER, E., RIJNSDORP, A. D., PASTOORS, M. A., METCALFE, J. D. and REYNOLDS, J. D. 2005. Do tagging experiments tell the truth? Using electronic tags to evaluate conventional tagging data. ICES Journal of Marine Science, 62: 236-246.

DE VEEN, J. F. 1978. On selective tidal transport in the migration of North Sea plaice (Pleuronec tes platessa L.) and other flatfish species. Netherlands Journal of Sea Research, 12: 115-147.

DUNN, M. R. and PAWSON, M. G. 2002. The stock structure and migrations of plaice populations on the west coast of England and Wales. Journal of Fish Biology, 61: 360-393.
GRIFT, R. E., HEINO, M., RIJNSDORP, A. D., KRAAK, S., B. M. and DIECKMANN, U. 2007. Three-dimensional maturation reaction norms for North Sea plaice. Marine Ecology Progress Series, 334: 213-224.

GRIFT, R. E., RIJNSDORP, A. D., BAROT, S., HEINO, M. and DIECKMANN, U. 2003. Fisheries-induced trends in reaction norms for maturation in North Sea plaice. Marine Ecology Progress Series, 257: 247-257.

HOARAU, G., PIQUET, A. M.-T., VAN DER VEER, H. W., RIJNSDORP, A. D., STAM, W. T. and OLSEN, J. L. 2004. Population structure of plaice (Pleuronectes platessa L.) in northern Europe: a comparison of resolving power between microsatellites and mito chondrial DNA data. Journal of Sea Research, 51:183-190.

KELL, L. T. and BROMLEY, P. J. 2004. Implications for current management advice for North Sea plaice (Pleuronectes platessa L.): Part II. Increased biological realism in recruitment, growth, density-dependent sexual maturation and the impact of sexual dimorphism and fishery discards. Journal of Sea Research, 51:301-312.

KELL, L. T., SCOTT, R. and HUNTER, E. 2004. Implications for current management advice for North Sea plaice: Part I. Migration between the North Sea and English Channel. Journal of Sea Research, 51: 287-299.

RIJNSDORP, A. D. 1991. Selection differentials of male and female North Sea plaice Pleuronectes platessa L. and changes in maturation and fecundity. In The exploitation of evolving populations. Ed. by R. LAW, T. K. A. STOKES and J. M. MCGLADE. Springer Verlag.

RIJNSDORP, A. D., DAAN, N. and DEKKER, W. 2006. Partial fishing mortality per fishing trip: a useful indicator of effective fishing effort in mixed demersal fisheries. ICES Journal of Marine Science, 63: 556-566.

RIJNSDORP, A. D. and PASTOORS, M. A. 1995. Modelling the spatial dynamics and fisheries of North Sea plaice (Pleuronec tes platessa L.) based on tagging data. ICES Journal of Marine Science, 52: 963-980.

VAN BEEK, F. A. 1998. Discarding in the Dutch beam trawl fishery. ICES CM 1998/ BB:5: 1-15.

VAN KEEKEN, O. A., QUIRIJNS, F. J. and PASTOORS, M. A. 2004. Analysis of discarding in the Dutch beamtrawl fleet. 96 p. pp.
VAN KEEKEN, O. A., VAN HOPPE, M., GRIFT, R. E. and RIJNSDORP, A. D. 2007. Changes in the spatial distribution of North Sea plaice (Pleuronectes platessa) and implications for fisheries management. Journal of Sea Research, 57: 187-197.
VORBERG, R., BOLLE, L. J., JAGER, Z. and NEUDECKER, T. 2005. Chapter 8.6 Fish. In Wadden Sea Quality Status Re port 2004.

Stock Annex: Plaice in Division VIId

Working Group: ICES Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK)

A. General

A. 2 Stock Definition

There is mixing of plaice between the North Sea and VIId both as adults and juveniles. Analysis of tagging data shows that around 40% of the juvenile plaice in VIId come from nursery grounds in the North Sea. The eastern Channel supplies very few recruits to the North Sea. There is also an adult migration between the North Sea and Channel with $20-30 \%$ of the plaice caught in the winter in VIId were from migratory North Sea fish. Separation between VIId and the western Channel (VIIe) is much clearer. VIId does not receive significant numbers of juvenile plaice from VIIe but contributes around 20% of the recruits to VIIe. Similarly, around 20% of the adult plaice spawning in VIId may have spent part of the year in VIIe but few plaice tagged in VIIe during the spawning period are recaptured in VIId. It can be concluded that there is considerable interchange of plaice from the North Sea into VIId but a much smaller interchange between VIId and VIIe. Since the exploitation patterns between the three areas are very different, it has been concluded that separate assessments should be carried out.

The management area for channel plaice is a combined one between VIId and VIIe. TACs are obtained by combining the agreed TAC from each area.

A. 3 Fishery

Plaice is mainly caught in beam trawl fisheries for sole or in mixed demersal fisheries using otter trawls. There is also a directed fishery during parts of the year by inshore trawlers and netters on the English and French coasts. The main fleet segments are the English and Belgian beam trawlers. The Belgian beam trawlers fish mainly in the 1st and 4th quarters and their area of activity covers almost the whole of VIId south of the 6 mile contour from the English coast. There is only light activity by this fleet between April and September. The second offshore fleet is mainly large otter trawlers from Boulogne, Dieppe and Fecamp. The target species of these vessels are cod, whiting, plaice mackerel, gurnards and cuttlefish and the fleet operates throughout VIId. The inshore trawlers and netters are mainly vessels $<10 \mathrm{~m}$ operating on a daily basis within 6 miles of the coast. There are a large number of these vessels (in excess of 400) operating from small ports along the French and English coast. These vessels target sole, plaice, cod and cuttlefish.

The minimum landing size for plaice is 27 cm . Demersal gears permitted to catch plaice are 80 mm for beam trawling and 100 mm for otter trawlers. Fixed nets are required to use 100 mm mesh since 2002 although an exemption to permit 90 mm has been in force since that time.

There is widespread discarding of plaice, especially from beam trawlers. The 25 and 50% retention lengths for plaice in an 80 mm beam trawl are 16.4 cm and 17.6 cm respectively which are substantially below the MLS. Routine data on discarding is not
available but comparison with the North Sea suggests that discarding levels in excess of 40% by weight are likely. Discard survival from small otter trawlers can be in excess of 50% (Millner et al., 1993). In comparison discard mortality from large beam trawlers has been found to be between less than 20% after a 2 h haul and up to 40% for a one-hour tow (van Beek et al 1989).

A. 3 Ecosystem Aspects

Figure 1 Eastern English Channel physical and hydrological features: Bathymetric depth and simplified sediment types representation. Surve y bottom temperature and bottom salinity (averaged for 1997 to 2003) obtained by kriging. (in Vaz et al. 2004)

Biology : Adult plaice feed essentially on annelid polychaetes, bivalve molluscs, coelenterates, crustaceans, echinoderms, and small fish. In the English Channel, spawning occurs from December to March between 20 and 40 m . depth. At the beginning, pelagic eggs float at the surface and then progressively sink into deeper waters during development. Hatching occurs $20\left(5-6^{\circ} \mathrm{C}\right)$ to $30\left(2-2.5^{\circ} \mathrm{C}\right)$ days after fertilization. Larvae spend about 40 days in the plankton before migrating to the bottom and moving to coastal waters when metamorphosing ($10-17 \mathrm{~mm}$). The fry undergo relatively fast growth during the first year (Carpentier et al., 2005).

Environment: This bentho-demersal species prefers living on sand but also gravel or mud bottoms, from the coast to 200 m depth. The sepcies is found from marine to brackish waters in temperate climate (Carpentier et al., 2005)..
Geographical distribution : Northeast Atlantic, from northern Norway and Greenland to Morocco, including the White Sea; Mediterranean and Black Seas (Carpentier et al., 2005)..

Vaz et al. (2007) used a multivariate and spatial analyses to identify and locate fish, cephalopod, and macrocrustacean species assemblages in the eastern English Channel from 1988 to 2004. Four sub-communities with varying diversity levels were identified in relation to depth, salinity, temperature, seabed shear stress, sediment type, and benthic community nature. One Group (class 4 in Fig. 2 below) was a coastal heterogeneous community represented by pouting, poor cod, and sole and was classified as preferential for many flatfish and gadoids. It displayed the greatest diversity
and was characterized by heterogeneous sediment type (from muds to coarse sands) and various associated benthic community types, as well as by coastal hy drology and bathymetry. It was mostly near the coast, close to large river estuaries, and in areas subject to big salinity and temperature variations. Possibly resulting from this potentially heterogeneous environment (both in space and in time), this sub-community ty pe was the most diverse.

Figure 2 : Spatial distribution of Fish Subcommunities in the Eastern Channel from 1988 to 2003. Observed assemblage type at each station, These illustrate the gradation from open sea community to coastal and estuarine communities. (In Vaz et al., 2004)

Community evolution over time : (From Vaz et al., 2007). The community relationship with its environment was remarkably stable over the 17 y of observation. However, community structure changed significantly over time without any detectable trend, as did temperature and salinity. The community is so strongly structured by its environment that it may reflect interannual climate variations, although no patterns could be distinguished over the study period. The absence of any trend in the structure of the eastern English Channel fish community suggests that fishing pressure and selectivity have not altered greatly over the study period at least. However, the period considered here (1988-2004) may be insufficient to detect such a trend.

B. Data

B. 2 Commercial Catch

The landings are taken by three countries France (47% of combined TAC), England (13%) and Belgium (40%). Quarterly catch numbers and weights were available for a range of years depending on country; the availability is presented in the text table below. Levels of sampling prior to 1985 were poor and these data are considered to be less reliable. In 2001 international landings covered by market sampling schemes represented the majority of the total landings.

Belgium

Belgian commercial landings and effort information by quarter, area and gear are derived from log-books (CHECK).

Sampling for age and length occurs for the beam trawl fleet (main fleet operating in Belgium).
Quarterly sampling of landings takes place at the auctions of Zeebrugge and Oostende (main fishing ports in Belgium). Length is measured to the cm below. Samples are raised per market category to the catches of both harbours.
Quarterly otolith samples are taken throughout the length range of the landings (sexes separated). These are aged and combined to the quarterly level. The ALK is used to obtain the quarterly age distribution from the length distribution.
In 2003 a pilot study started on on-board sampling with respect to discarded and retained catch.

France

French commercial landings in tonnes by quarter, area and gear are derived from logbooks for boats over 10 m and from sales declaration forms for vessels under 10 m . These self declared production are then linked to the auction sales in order to have a complete and precise trip description.
The collection of discard data has begun in 2003 within the EU Regulation 1639/2001. This first year of collection will be incomplete in term of time coverage, therefore the use of these data should be investigated only from 2005.
The length measurements are done by market commercial categories and by quarter into the principal auctions of Grandcamp, Port-en-Bessin, Dieppe and Boulogne. Samplings from Grandcamp and Port-en-Bessin are used for raising catches from Cherbourg to Fecamp and samplings from Dieppe and Boulogne are used to raise the catches from Dieppe to Dunkerque

Otoliths samples are taken by quarter throughout the length range of the landed catch for quarters 1 to 3 and from the October GFS survey in quarter 4. These are aged and combined to the quarterly level and the age-length key thus obtained is used to transform the quarterly length compositions. The length not sampled during one quarter are derived from the same year close quarter.

Weight, sex and maturity at length and at age are obtained from the fish sampled for the age-length keys.

England

English commercial landings in tonnes by quarter, area and gear are derived from the sales notes statistics for vessels under 12m who do not complete logbooks. For those over 12 m (or $>10 \mathrm{~m}$ fishing away for more than 24 h), data is taken from the EC logbooks. Effort and gear information for the vessels $<10 \mathrm{~m}$ is not routinely collected and is obtained by interview and by census. . No information is collected on discarding from vessels $<10 \mathrm{~m}$. Discarding from vessels $>10 \mathrm{~m}$ has been obtained since 2002 under the EU Data Collection Regulation.

The gear group used for length measurements are beam trawl, otter trawl and net.
Separate-sex length measurements are taken from each of the gear groupings by trip. Trip length samples are combined and raised to monthly totals by port and gear group. Months and ports are then combined to give quarterly total length compositions by gear group; unsampled port landings are added in at this stage. Quarterly length compositions are added to give annual totals by gear. These are for reference
only, as ALK conversion takes place at the quarterly level. Otoliths samples are taken by 2 cm length groups separately for each sex throughout the length range of the landed catch. These are aged and combined to the quarterly level, and include all ports, gears and months. The quarterly sex-separate age-length-keys are used to transform quarterly length compositions by gear group to quarterly age compositions.

A minimum of 24 length samples are collected per gear category per quarter. Age samples are collected by sexes separately and the target is 300 otoliths per sex per quarter. If this is not reached, the 1st and 2nd or 3rd and 4th quarters are combined.
The text table below shows which country supplies which kind of data:

Country	Numbers	We ights-at-age
Belgium	1981-present	1986-present
France	1989- present	1989- present
UK	$1980-$ present	1989- present

Data are supplied as FISHBASE files containing quarterly numbers at age, weight at age, length at age and total landings. The files are aggregated by the stock coordinator to derive the input VPA files in the Lowestoft format. No SOP corrections are applied to the data because individual country SOPs are usually better than 95%. The quarterly data files by country can be found with the stock co-ordinator

The resulting files (FAD data) can be found at ICES and with the stock co-ordinator, either in the IFAP system as SAS datasets or as ASCII files on the Lowestoft format, either under $\quad \mathrm{w}: \backslash \mathrm{acfm} \backslash \mathrm{nsskw} g \backslash 2002 \backslash$ data \backslash ple_eche or $\mathrm{w}: \backslash$ ifapdata \backslash eximport $\backslash \mathrm{nsskw} g \backslash$ ple_eche.

B. 2 Biological

Natural mortality

Natural mortality was assumed constant over ages and years at 0.1 as in the North Sea.

Maturity

The maturity ogive used assumes that 15% of age $2,53 \%$ of age 3 and 96% of age 4 are mature and 100% for ages 5 and older.

Weight at age

Prior to 2001, stock weights were calculated from a smoothed curve of the catch weights interpolated to the 1st January. From 2001, second quarter catch weights were used as stock weights in order to be consistent with North Sea sole. The database was revised back to 1990 .

Proportion mortality before spawning

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

B. 3 Surveys

A dedicated 4 m beam trawl survey for plaice and sole has been carried out by England using the RV Corystes since 1988. The survey covers the whole of VIId and is a
depth stratified survey with most samples allocated to the shallower inshore stations where the abundance of sole is highest. In addition, inshore small boat surveys using 2 m beam trawls are undertaken along the English coast and in a restricted area of the Baie de Somme on the French coast. In 2002, The English and French Young Fish Surveys were combined into an International Young Fish Survey. The dataset was revised for the period back to 1987. The two surveys operate with the same gear (beam trawl) during the same period (September) in two different nursery areas. Previous analysis (Riou et al, 2001) has shown that asynchronous spawning occurs for flatfish in Division VIId. Therefore both surveys were combined based on weighting of the individual index with the area nursery surface sampled (Cf. Annex 1). Taking into account the low, medium, and high potential area of recruitment, the French YFS got a weight index of 55\% and the English YFS of 45%.

A third survey consists of the French otter trawl groundfish survey (FR GFS) in October (Annex 2). Prior to 2002, the abundance indices were calculated by splitting the survey area into five zones, calculating a separate index for each zone each zone, and then averaging to obtain the final GFS index. This procedure was not thought to be entirely satisfactory, as the level of sampling was inconsistent across geographical strata. A new procedure was developed based on raising abundance indices to the level of ICES rectangles, and then by averaging those to calculate the final abundance index. Although there are only minor differences between the two indices, the revised method was used in 2002 and subsequently.

B. 4 Commercial CPUE

Three commercial fleets have been used in tuning. UK inshore trawlers, Belgian beam trawl fleet and French otter trawlers as well as three survey fleets.

The effort of the French otter trawlers is obtained by the log-books information on the duration of the fishing time weighted by the engine power (in KW) of the vessel. Only trips where sole and/or plaice have been caught is accounted for.

B. 5 Other Relevant Data

None.

C. Historical Stock Development

Deterministic Modelling

Model used: XSA
Software used: IFAP / Low estoft VPA suite
Model Options chosen:
Tapered time weighting not applied
Catchability independent of stock size for all ages
Catchability independent of age for ages $>=7$
Survivor estimates shrunk towards the mean F of the final 5 years or the 3 oldest ages
S.E. of the mean to which the estimate are shrunk $=1.000$

Minimum standard error for population estimates derived from each fleet $=0.300$
Prior weighting not applied

Input data types and characteristics:
Catch data available for 1982-present year. However, there was no French age compositions before 1986 and large catchability residuals were observed in the commercial data before 1986. In the final analyses only data from 1986-present were used in tuning.

TYPE	Name	Year range	AGE	Variable from year to year yes/no
			RANGE	
Caton	Catch in tonnes	$1980 \text { - last }$ data year	2-10+	Yes
Canum	Catch at age in numbers	$1980 \text { - last }$ data year	2-10+	Yes
Weca	Weight at age in the commercial catch	$\begin{aligned} & 1980 \text { - last } \\ & \text { data year } \end{aligned}$	2-10+	Yes
West	Weight at age of the spawning stock at spawning time.	$\begin{aligned} & 1980 \text { - last } \\ & \text { data year } \end{aligned}$	2-10+	Yes-assumed to be the weight at age in the Q1 catch
Mprop	Proportion of natural mortality before spawning	$1980 \text { - last }$ data year	2-10+	No - set to 0 for all ages in all years
Fprop	Proportion of fishing mortality before spawning	$1980 \text { - last }$ data year	2-10+	No - set to 0 for all ages in all years
Matpro p	Proportion mature at age	$1980 \text { - last }$ data year	2-10+	No - the same ogive for all years
Natmo r	Natural mortality	$1980 \text { - last }$ data year	2-10+	No - set to 0.2 for all ages in all years

Tuning data:

TYPE	NAME	Year Range	AGE RANGE
Tuning fleet 1	English commercial Inshore trawl	1985 - last data year	2-10
Tuning fleet2	Belgian commercial Beam trawl	1981 - last data year	2-10
Tuning fleet3	French trawlers	1989 - last data year	2-10
Tuning fleet4	English BT survey	1988 - last data year	1-6
Tuning fleet5	French GFS	1988 - last data year	1-5
Tuning fleet6	International YFS	1987 - last data year	1-1

C. 1 Uncertainty Analysis

C. 2 Retrospective Analysis

D. Short-Term Projection

Model used: Age structured
Software used: IFAP prediction with management option table and yield per recruit routines

Initial stock size: Taken from XSA for age 3 and older. The number at age 2 in the last data year is estimated using RCT3. The recruitment at age 1 in the last data year is estimated using the geometric mean over a long period (1980 - last data year)

Natural mortality: Set to 0.1 for all ages in all years
Maturity: The same ogive as in the assessment is used for all years
F and Mbefore spawning: Set to 0 for all ages in all years
Weight at age in the stock: Average weight of the three last years
Weight at age in the catch: Average weight of the three last years
Exploitation pattern: Average of the three last years, scaled by the Fbar (2-6) to the level of the last year

Intermediate year assumptions:
Stock recruitment model used: None, the long term geometric mean recruitment at age 1 is used

Procedures used for splitting projected catches: Not relevant

E. Medium-Term Projections

The segmented stock/recruitment relationship is considered not significant (ICES, 2003a). There is therefore no consistent basis to build a medium term projection.

F. Long-term projections, yield per recruit

G. Biological Reference Points

$$
\begin{aligned}
& \text { Blim }=5400 \mathrm{t} \\
& \text { Bpa }=8000 \mathrm{t} \\
& \text { Flim }=0.54 \\
& \text { Fpa }=0.45
\end{aligned}
$$

H. Other Issues

None.

I. References

Beek, F.A. van, Leeuwen, P.I. van and Rijns dorp, A.D. 1989. On the survivalof plaice and sole discards in the otter trawl and beam trawl fisheries in the North Sea. ICES C.M. 1989/G:46, 17pp

Carpentier, A., Vaz, S., Martin, C. S., Coppin, F., Dauvin, J.- C., Desroy, N., Dewarumez, J.- M., Eastwood, P. D., Ernande, B., Harrop, S., Kemp, Z., Koubbi, P., Leader-Williams, N., Lefèbvre, A., Lemoine, M., Loots, C., Meaden, G. J., Ryan, N., Walkey, M., 2005. Eastern Channel Habitat Atlas for Marine Resource Management (CHARM), Atlas des Habitats des Ressources Marines de la Manche Orientale, INTERREG IIIA, 225 pp.

ICES 2003a. Report of the W orking Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 2002. ICES CM 2003/ACFM:02

ICES 2003b. Report of the Study Group on Precautionary Reference Points For Advice on Fishery Management ICES CM 2003/ACFM:15

Millner, R.S., Whiting, C.L and Howlett, G.J. 1993. Estimation of discard mortality of plaice from small otter trawlers using tagging and cage survival studies. ICES C.M. 1993/G:24, 6 pp

Riou et al. 2001. Relative contributions of different sole and plaice nurseries to the adult population in the Eas tern Channel : application of a combined method using generalized linear models and a geographic information system. Aquatic Living Resources. 14 (2001) 125135Appendix 1 - Nursery reception potentiality for flatfish used as a basis for the combination of FR and UK YFS

Appe ndix 2 - FR GFS. Sampling tows location grid

Potentiality surface $\left(\mathrm{Km}^{2}\right)$	South England	Bay ofSomme
High	756	575.1
Medium	484.7	0
Low	30.5	953.1
Very low	993.3	21.3
Total	2264.5	1549.5
Total (Low- Medium - High)	1271.2	1528.2

Stock Annex: Sole in Division VIId

Stock specific documentation of standard assessment procedures used by ICES.

Stock	Sole in Division VIId (Easter Channel)
Working Group:	ICES W orking Group for the Assessment of Demer sal Stocks in the North Sea and Skagerrak (WGNSSK)
Date:	February 2009 Revised by

A. General

A. 1 Stock definition

The sole in the eastern English Channel (VIId) are considered to be a separate stock from the larger North Sea stock to the east and the smaller geographically separate stock to the west in VIe. There is some movement of juvenile sole from the North Sea into VIId (ICES CM 1989/G:21) and from VIId into the western Channel (VIIe) and into the North Sea. Adult sole appear to be largely isolated from other regions except during winter, when sole from the southern North Sea may enter the Channel temporarily (Pawson, 1995). The assessment does not take account of these stock movements.

A. 2 Fishery

There is a directed fishery for sole by small inshore vessels using trammelnets and trawls, which fish mainly along the English and French coasts and possibly exploit different coastal populations. Sole represents the most important species for these vessels in terms of the annual value to the fishery. The fishery for soleby these boats occurs throughout the year with small peaks in landings in spring and autumn. There is also a directed fishery by English and Belgian beam trawlers who are able to direct effort to different ICES divisions. These vessels are able to fish for sole in winter before the fish move inshore and become accessible to the local fleets. In cold winters, sole are particularly vulnerable to the offshore beamers when they aggregate in localized areas of deeper water. Effort from the beam trawl fleet can change considerably depending on whether the fleet moves to other areas or directs effort at other species such as scallops and cuttlefish. In France, there are some few small beam trawlers operating inshore in a few local areas, and offshore trawlers fishing for mixed demersal species taking sole as a bycatch.

The minimum landing size for sole is 24 cm . Demersal gears permitted to catch sole are 80 mm for beam trawling and 90 mm for otter trawlers. Fixed nets are required to use 100 mm mesh since 2002 although an exemption to permit 90 mm has been in force since that time.

A. 3 Ecosystem aspects

Figure 1. Eastern English Channel physical and hydrological features: Bathymetric depth and simplified sediment types representation. Surve y bottom temperature and bottom salinity (averaged for 1997 to 2003) obtained by Kriging. (in Vaz et al., 2004).

Biology: Adult sole feeds on worms, small molluscs and crustaceans. In the English Channel, reproduction occurs between February and April, mainly in the coastal areas of the Dover Strait and in large bays (Somme, Seine, Solent, Mont-Saint-Michel, Start and Lyme Bay). Pelagic eggs hatch after 5 to 11 days leading to larvae that are also pelagic and that will metamorphose into benthic fry after 1 or 2 weeks. Juveniles spend the first 2 or 3 years in coastal nurseries (bays and estuaries) where fast growth occurs (11 cm at 1 year old) before moving to deeper waters.

The spatial distribution of life stages of common sole demonstrates a particular pattern: larval distribution (on spawning grounds) and juvenile distribution (in nursery grounds) overlap. If larvae are found everywhere during spring, the potential habitat for stage 2 larvae is along the Flanders coast and near the Pays de Caux, to the central zone of the English Channel. Older larvae have a more coastal habitat preference, which can be explained by a retention phenomenon linked to estuaries.

Environment: A benthic species that lives on fine sand and muddy seabeds between 0 and 150 meters depth. It ranges from marine to brackish waters in temperatures between 8 and $24^{\circ} \mathrm{C}$.

Geographical distribution: Eastern Atlantic, from southern Norway to Senegal, Mediterranean Sea including Sea of Marmara and Black Sea.

Vaz et al., 2007 used multivariate and spatial analyses to identify and locate fish, cephalopod, and macrocrustacean species assemblages in the eastern English Channel from 1988 to 2004 . Four sub-communities with varying diversity levels were identi fied in relation to depth, salinity, temperature, seabed shear stress, sediment type, and benthic community nature. One Group (class 4 in Figure 2 below) was a coastal heterogeneous community represented by pouting, poor cod, and sole and was classified as preferential for many flatfish and gadoids. It displayed the greatest
diversity and was characterized by heterogeneous sediment type (from muds to coarse sands) and various associated benthic community types, as well as by coastal hydrology and bathymetry. It was mostly near the coast, close to large river estuaries, and in areas subject to big salinity and temperature variations. Possibly resulting from this potentially heterogeneous environment (both in space and in time), this sub-community ty pe was the most diverse.

Figure 2. Spatial distribution of Fish Subcommunities in the Eastern Channel from 1988 to 2003. Observed assemblage type at each station, These illustrate the gradation from open sea community to coastal and estuarine communities (In Vaz et al., 2004).

Community evolution over time: (From Vaz et al., 2007). The community relationship with its environment was remarkably stable over the 17 y of observation. However, community structure changed significantly over time without any detectable trend, as did temperature and salinity. The community is so strongly structured by its environment that it may reflect interannual climate variations, although no patterns could be distinguished over the study period. The absence of any trend in the structure of the eastern English Channel fish community suggests that fishing pressure and selectivity have not altered greatly over the study period at least. However, the period considered here (1988-2004) may be insufficient to detect such a trend.

B. Data

B. 1 Commercial catch

The landings are taken by three countries: France (50\%), Belgium (30\%) and England (20\%). Age sampling for the period before 1980 was poor, but betw een 1981 and 1984 quarterly samples were provided by both Belgium and England. Since 1985, quarterly catch and weight-at-age compositions were available from Belgium, France, and England.

An initiative for undertaking combined sampling of VIId sole between France, Belgium and the UK has been agreed from January 2008. The result was a framework for the collection of age data in relation to an international ALK. The division VIId has been stratified in three geographical areas and the data collected in line with them for 2008.

These data will be used to provide the assessment advice in 2009. A limited otolith exchange was arranged between the laboratories involved, specifically looking at VIId sole, in order to assess the likely quality of the ALK provided. The reason for restricting the exchange to those involved in the reading of VIId sole was so that any stock-specific issues could be addressed. The agreement achieved between institutes was 91% across all ages.

Belgium

Belgian commercial landings and effort information by quarter, area and gear are derived from logbooks.

Sampling for age and length occurs for the beam trawl fleet (main fleet operating in Belgium).

Quarterly sampling of landings takes place at the auctions of Zeebrügge and Oostende (main fishing ports in Belgium). Length is measured to the cm below. Samples are raised per market category to the catches of both harbours.

Quarterly otolith samples are taken throughout the length range of the landings (sexes separated). These are aged and combined to the quarterly level.
In 2003 a pilot study started on on-board sampling with respect to discarded and retained catch. Since 2004 it is part of the DCR.

France
French commercial landings in tonnes by quarter, area and gear are derived from logbooks for boats over 10 m and from sales declaration forms for vessels under 10 m . These self declared productions are then linked to the auction sales in order to have a complete and precise trip description.
The collection of discard data has begun in 2003 within the EU Regulation 1639/2001. The first years of collection were incomplete in term of time and métier coverage. It is expected an increase of sampling effort from 2009 designed for the use of the information for assessment purpose, as required by ICES/ACOM.

The length measurements are done by market commercial categories and by quarter into the principal auctions of Grandcamp, Port-en-Bessin, Dieppe and Boulogne. Samplings from Grandcamp and Port-en-Bessin are used for raising catches from Cherbourg to Fecamp and samplings from Dieppe and Boulogne are used to raise the catches from Dieppe to Dunkerque.
Otoliths samples are taken by quarter throughout the length range of the landed catch for quarters 1 to 3 and from the October GFS survey in quarter 4 . These are aged and combined to the quarterly level and the age-length key thus obtained is used to transform the quarterly length compositions. The lengths not sampled during one quarter are derived from the same year close quarter.
Weight, sex and maturity-at-length and -at-age are obtained from the fish sampled for the age-length keys.

England

English commercial landings in tonnes by quarter, area and gear are derived from the sales notes statistics for vessels under 12 m which do not complete logbooks. For those over 12 m (or > 10 m fishing away for more than 24 h), data are taken from the EC logbooks. Effort and gear information for the vessels $<10 \mathrm{~m}$ is not routinely col-
lected and is obtained by interview and by census. .No information is collected on discarding from vessels $<10 \mathrm{~m}$ but it is known to be low. Discarding from vessels >10 m has been obtained since 2002 under the EU Data Collection Regulation and is also relatively low.
Length samples are combined and raised to monthly totals by port and gear group for each stock. Months and ports are then combined to give quarterly total length compositions by gear group; unsampled port landings are added in at this stage. Quarterly length compositions are added to give annual totals by gear. These are for reference only, as ALK conversion takes place at the international level. Age structure from otolith samples are combined to the quarterly level, and generally include all ports, gears and months. For sole the sex ratio from the randomly collected otolith samples are used to split the unsexed length composition into sex-separate length compositions. The quarterly separate age-length-keys are used to transform quarterly length compositions by gear group to quarterly age compositions. At this stage the age compositions by gear group are combined to give total quarterly age compositions.

A minimum of 24 length samples are collected per gear category per quarter. Age samples are collected by sexes separately and the target is 300 otoliths per sex per quarter. If this is not reached, the 1st and 2nd or 3rd and 4th quarters are combined.

Weight-at-age is derived from the length samples using the length/weight relationship $W=a L^{\wedge} b$, where a and b are reference condition factors for the stock.

The text table below shows which countries supply which kind of data:

KIND OF DATA SUPPLIED QUARTERLY					
Country	Caton (catch-inweight)	Canum (catch-atage in numbers)	Weca (weight-atage in the catch)	Matprop (proportion mature-by-age)	Leng th composition-in-catch
Belgium	X	X	X		X
England	X	X	X		X
France	x	x	x		x

Data are supplied as FISHBASE files containing quarterly numbers-at-age, weight-atage, length-at-age and total landings. The files are aggregated by the stock coordinator to derive the input VPA files in the Low estoft format. No SOP corrections are applied to the data because individual country SOPs are usually better than 95%. The quarterly data files by country can be found with the stock co-ordinator.

The resulting files (FAD data) can be found at ICES and with the stock co-ordinator, either in the IFAP system as SAS datasets or as ASCII files on the Lowestoft format, either under $\quad \mathrm{w}: \backslash \mathrm{acfm} \backslash \mathrm{nsskw} \mathrm{g} \backslash 2002 \backslash$ data \backslash sol_eche or $\mathrm{w}: \backslash$ ifapdata \backslash eximport $\backslash \mathrm{nsskw} \mathrm{g} \backslash$ sol_eche.

B. 2 Biological

Natural mortality

Natural mortality is assumed constant over ages and years at 0.1.

Maturity

The maturity ogive used is knife-edged with sole regarded as fully mature at age 3 and older as in the North Sea.

Weight-at-age

Prior to 2001 WG, stock weights were calculated from a smoothed curve of the catch weights interpolated to the 1st January. Since the 2002 WG, second quarter catch weights were used as stock weights in order to be consistent with North Sea sole.

Proportion mortality before spawning

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

B. 3 Surveys

A dedicated 4 m beam trawl survey for plaice and sole has been carried out by England using the RV Corystes since 1988. The survey covers the whole of VIId and is a depth stratified survey with most samples allocated to the shallower inshore stations where the abundance of sole is highest.

In addition, inshore small boat surveys using 2 m beam trawls are undertaken along the English coast and in a restricted area of the Baie de Somme on the French coast. In 2002, the English and French Young Fish Surveys were combined into an International Young Fish Survey. The dataset was revised for the full period back to 1981. The two surveys operate with the same gear (beam trawl) during the same period (September) in two different nursery areas. Previous analysis (Riou et al., 2001) has demonstrated that asynchronous spawning occurs for flatfish in Division VIId. Therefore both surveys were combined based on weighting of the individual index with the area nursery surface sampled. Taking into account the low, medium, and high potential area of recruitment, the French YFS got a weight index of 55\% and the English YFS of 45% (See table and figure below).

Nursery reception potential used for the combination of FR and UK YFS

Potentiality surface $\left(\mathrm{Km}^{2}\right)$	South England	Bay ofSomme
High	756	575.1
Medium	484.7	0
Low	30.5	953.1
Very low	993.3	21.3
Total	2264.5	1549.5
Total (Low-Med-High)	1271.2	1528.2

How ever, the UK component of the YFS was last conducted in 2006. In the absence of any update of the UK component of the YFS index the available time-series of the UK component should still be used in the assessment next to the French component of the YFS index. The lack of information from the UK YFS may impede the recruitment estimates and therefore the forecast.

B. 4 Commercial cpue

Three commercial fleets have been used in tuning. The Belgian beam trawl fleet (BEL BT), the UK Beam Trawl fleet (UK BT) and a French otter trawl fleet (FR OT). The two beam trawl fleets carry out fishing directed towards sole but can switch effort between ICES areas. The UK BT cpue data are derived from trips where landings of sole from VIId exceeded 10% of the total demersal catch-by-w eight on a trip basis.
The effort of the Belgian beam trawl fleet is corrected for horse power, based on a study carried out by IMARES and CEFAS in the mid 1990s (no reference available). The study calculated an effort correction for HP applicable to sole and plaice effort in the beam trawls fisheries. The corresponding equations for sole is $\mathrm{P}=0.000204$ BHP ${ }^{\wedge} 1.23$.

This horsepower correction for the commercial Belgian beam trawl fleet should still be applied. However, if a new corrected effort series is available (based on Section 4.2.4.1 in ICES 2009) it should be used under condition that this is review ed and approved by ICES.

No French commercial tuning data are available for the otter trawl and fixed nets. A first attempt to create an effort series for the French trammelnets has been presented but is not deemed sufficient. If a new effort series is produced this too should be used under condition that they are review ed and approved by ICES.

B. 5 Other relevant data

None.

C. Historical stock development

Model used: XSA
Software used: IFAP/Lowestoft VPA suite
Model Options chosen:
Tapered time weighting not applied
Catchability independent of stock size for all ages
Catchability independent of age for ages $>=7$
Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages
S.E. of the mean to which the estimate are shrunk $=0.500$

Since 2004-S.E. of the mean to which the estimate are shrunk $=2.000$
Minimum standard error for population estimates derived from each fleet $=0.300$
Prior weighting not applied
Input data types and characteristics:
Catch data available for 1982-present year. However, there were no French age compositions before 1986 and large catchability residuals were observed in the commercial data before 1986. In the final analyses only data from 1986-present are used in tuning.

TYPE	NAME	Year rance	AGE RANGE	Variable from year to year Yes/No
Caton	Catch in tonnes	1982-last data year	2-11+	Yes
Canum	Catch-at-age in numbers	1982-last data year	2-11+	Yes
Weca	We ight-at-age in the commercial catch	1982-last data year	2-11+	Yes
West	We ight-at-age of the spawning stock at spawning time.	19682-last data year	2-11+	Yes-assumed to be the same as weight-at-age in the Q2 catch
Mprop	Proportion of natural mortality before spawning	1982-last data year	2-11+	No-set to 0 for all ages in all years
Fprop	Proportion of fishing mortality before spawning	1982-last data year	2-11+	No-set to 0 for all ages in all years
Matprop	Proportion mature-at-age	1982-last data year	2-11+	No-the same ogive for all years
Natmor	Natural mortality	1982-last data year	2-11+	No-set to 0.2 for all ages in all years

Tuning data:

TYPE	NAME	Year rance	AGE RANGE
Tuning fleet1	Belgian commercial BT	1986-last data year	2-10
Tuning fleet2	English commercial BT	1986-last data year	$2-10$
Tuning fleet3	English BT survey	1988 -last data year	$1-6$
Tuning fleet4	UK YFS	$1987-2006$	$1-1$
Tuning fleet5	French YFS	1987-last data year	$1-1$

D. Short-term projection

Model used: Age structured
Software used: MFDP
Initial stock size is taken from the XSA for age 3 and older and from RCT3 for age 2. The long-term geometric mean recruitment is used for age 1 in all projection years.

Since 2004 initial stock size for age 2 was taken from XSA.
Natural mortality:Set to 0.1 for all ages in all years
Maturity: The same ogive as in the assessment is used for all years
F and Mbefore spawning: Set to 0 for all ages in all years
Weight-at-age in the stock: Average weight over the last three years
Weight-at-age in the catch: Average weight over the three last years
Exploitation pattern: Average of the three last years, scaled to the level of Fbar (3-8) in the last year

Intermediate year assumptions: Fstatus quo
Stock recruitment model used: None, the long-term geometric mean recruitment-atage 1 is used
Procedures used for splitting projected catches:Not relevant

E. Medium-term projections

Not performed for this stock.
In the past an age structured model was used (WGMTERMc software). Medium-term projections were carried out with settings as in short-term projection except for the weights in the catch and in the stock which are averaged over the last 10 years. Since 2005 medium-term projections have not been done for this stock.

F. Long-term projections, yield-per-recruit

Not performed for this stock.
In the past an age structured model was used (WGMTERMc software). Medium-term projections were carried out with settings as in short-term projection except for the weights in the catch and in the stock which are averaged over the last 10 years. Since 2005 medium-term projections have not been done for this stock.

G. Biological reference points

	TYPE	VALUE	TECHNICAL BASIS
	Blim	Not defined	
	Bpa	8000 t	Lowest observed bio mass at which there is no indic ation of impaired recruitment. Smoothed Bloss
Precautionary approach	Flim	0.55	Floss, but poorly defined; analogy to North Sea and setting of 1.4 Fpa $=0.55$. This is a fishing mortality at or above which the stock has displayed continued dec line.
	Fpa	0.40	Between Fmed and 5th percentile of Floss; SSB $>$ Bpa and probability (SSBmt<Bpa), $10 \%: 0.4$.
Targets	Fy	Not defined	

(unchanged since 1998)

H. Other issues

None.

I. References

CEFAS 1999. PA software users guide. The Centre for Environment, Fisheries and Aquaculture Science, CEFAS, Lowestoft, United King dom, 22 April 1999.

Riou et al., 2001. Relative contributions of different sole and plaice nurseries to the adult population in the Eastern Channel: application of a combined method using generalized linear models and a geographic information system. Aquatic Living Resources. 14 (2001) 125135.

Vas et al., 2007, Modelling Fish Habitat Suitability in the Eastern English Channel. Application to community habitat level. ICES CM 2004/ P:26

Stock Annex: Whiting in Subarea IV and Division VIId

Stock specific documentation of standard assessment procedures used by ICES.

Stock	Whiting in Subarea IV and Division VIId
Date:	$24^{\text {th }}$ February 2009
Revised by	Colin Millar

A. General

A.1. Stock definition

Whiting is known to occur exclusively in some localised areas, but for the most part it is caught as part of a mixed fishery operating throughout the entire year. Adult whiting are widespread in the North Sea, while high numbers of immature fish occur off the Scottish coast, in the German Bight and along the coast of the Netherlands.

Tagging experiments, and the use of a number of fish parasites as markers, have shown that the whiting found to the north and south of the Dogger Bank form two virtually separate populations (Hislop \& MacKenzie, 1976). It is also possible that the whiting in the northern North Sea may contain 'inshore' and 'offshore' populations. The report of the SGSIMUW (ICES - WGNSSK 2005) documents the work per formed on whiting stock identity issues.

A.2. Fishery

For whiting, there are three distinct areas of major catch: a northern zone, an area off the eastern English coast; and a southern area extending into the English Channel.

Northern area

In the northern area, roundfish are caught in otter trawl and seine fisheries, currently with a 120 mm minimum mesh size. Some vessels operating to the east of this area are using 130 mm mesh. These are mixed demersal fisheries with more specific targeting of individual species in some areas and/or seasons. Cod, haddock and whiting form the predominant roundfish catch in the mixed fisheries, although there can be important bycatches of other species, notably saithe and anglerfish in the northern and eastern North Sea and of Nephrops in the more offshore Nephrops grounds. Minimum mesh size in Nephrops trawls is 80 mm but a range of larger mesh sizes are also used when targeting Nephrops. Whiting is becoming a more important species for the Scottish fleet, with many vessels actively targeting whiting during a fishing trip and Scottish single seiners have been working closer to shore to target smaller haddock and whiting. Technological developments have included a shift towards pair trawling and the development of double bag trawls which reduce costs compared to twin trawling. The derogation in the EU effort management scheme allowing for extra days fishing by vessels using 90 mm mesh gears with a 120 mm square mesh panel close to the codend (a configuration which releases cod) has so far, been taken up by few vessels.

Recent fuel price increases and a lack of quota for deep-water species has resulted in some vessels formerly fishing in deep-water and along the shelf edge to move into the northern North Sea with the shift in fishing grounds likely to result in a change in the species composition of their catches from monkfish to roundfish species including whiting. Following the major decommissioning schemes a few years ago by the UK, there have not been further reductions, although a number of boats have taken advantage of oil support work and effort has probably been reduced.

Eastern English coast

Whiting are an important component in the mixed fishery occurring along the English east coast. Industry reports suggest better catch rates here than are implied by the overall North Sea assessment. Darby $(2006,2007$ WD7) analysed the catch per unit of effort (CPUE) of the English fishery. In recent years vessels have been reporting unusually high catch rates of large whiting. Catch rates appear to have peaked and have recently begun to decline but are still well above historic levels. There is evidence from the CPUE data of the English fishery that relative catch rates of age 5 and age 6 fish have increased recently (since 2004) to a considerably greater extent than relative abundance seen in the International Bottom Trawl Survey (IBTS) or ICES assessment for these ages (WGNSSK 08 Figures 12.1.1 and 12.1.2).

General

There has been a displacement of some French vessels steaming from Boulogne-surMer from their traditional grounds in the southern North Sea and English Channel where they have reported very low catch rates during the past two years.
Whiting are a by-catch in some Nephrops fisheries that use a smaller mesh size, although landings are restricted through by-catch regulations. They are also caught in flatfish fisheries that use a smaller mesh size. Industrial fishing with small-meshed gear is permitted, subject to by-catch limits of protected species including whiting. Regulations also apply to the area of the Norway pout box, preventing industrial fishing with small meshes in an area where the by-catch limits are likely to be exceeded.

Historically, by-catch of whiting by industrial fisheries for reduction purposes was an important part of the catch, but due to the recent reduced fishery for sandeel and Norway pout the impact of this fishery on the whiting stock is considered much reduced.

Recent changes in fleet dynamics

WGFTFB(2008) reported use of bigger meshes in the top panel of beam trawler gear by Belgium vessels with an expected reduction in by-catch of roundfish species, especially haddock and whiting. Fluctuations in fuel costs can cause changes in fishing practices. WGFTFB(2008) reported a shift for Scottish vessels from using 100mm110 mm for whitefish on the west coast ground (Area VI) to 80 mm prawn codends in the North Sea (area IV), with increased fuel costs considered the major driver.

Conservation schemes and technical conservation measures

The present technical regulations for EU waters came into force on 1 January 2000 (EC 850/98 and its amendments). The regulations prescribe the minimum target species' composition for different mesh size ranges. Additional measures were introduced in Community waters from 1 January 2002 (EC 2056/2001).

Effort regulations in days at sea per vessel and gear category were in place from 2003 to 2008 and the limits for individual categories can be seen in the following references;

Year of application	Regulation
2003	(EC) No 2341/2002 - Annex XV II
2004	(EC) No 2287/2003 - Annex V
2005	(EC) No 27/2005 - Annex IV a
2006	(EC) No 51/2006 - Annex II
2007	(EC) No 41/2007 - Annex Ia
2008	(EC) No 40/2008 - Annex Па

In 2008 additional provisions were introduced (points 8.5-7, Annex IIa, EC 40/2008) to provide Member States greater flexibility in managing their fleets, in order to encourage a more efficient use of fishing opportunities and stimulate fishing practices that lead to reduced discards and lower fishing mortality of both juvenile and adult fish. This measure allowed a Member State that fulfilled the requirements laid out in EC $40 / 2008$ to manage a fleet (i.e. group of vessels with a specific combination of geographical area, grouping of fishing gear and special condition) to an overall kilowattdays limit for that fleet, instead of managing each individual vessel in the fleet to its own days-at-sea limit. The overall kilowatt-days limit for a fleet is initially calculated as the sum of all individual fishing efforts for vessels in that fleet, where an individual fishing effort is the product of the number of days-at-sea and engine power for the vessel concerned. From 2009 (EC 43/2009) the kilowatt-days limit by fleet became the default effort control measure and revised gear groupings were introduced.
In 2008 Scotland adopted the provisions under points 8.5-7, Annex IIa, EC 40/2008 and the scheme was dubbed the 'Conservation Credits Scheme'. Vessels signing to this scheme were granted an additional 21 days at sea. The scheme included various measures including technical measures

- A one net rule (derogation for Scottish seiners until the end January 2009). This is likely to improve the accuracy of reporting of landings to the correct mesh size range.
- Requirement to use a 110 mm SMP with an 80 mm codend. Implications: Possibly a 30% increase in L50 of haddock, whiting, saithe due to use of 110 mm SMP. Smaller increase in L50 of perhaps 10% for cod.
- From February 2008 there has been a concerted effort not to target cod by use of real time closures of areas recor ding high cod catch rates. Implication: that there will be greater effort exerted on haddock, whiting, monk, flats and Nephrops.

There was almost universal participation in the Conservation Credits Scheme from all Scottish fleet sectors. An alternative option to install a 120 mm SMP at $4-9 \mathrm{~m}$ used with a $95 \mathrm{~mm} \times 5 \mathrm{~mm}$ double codend w as not taken up by the Scottish prawn fleet despite offering 39 extra days at sea (concerns over loss of prawns due to twisting and too great a loss of marketable haddock and whiting).

A.3. Ecosystem aspects

Results from key runs of the North Sea MSVPA in 2002 and 2003 indicate three major sources of mortality. For ages two and above, the primary source of mortality is the fishery, followed by predation by seals, which increases with fish age. For ages 0-1, though more notable on 0-group, there is evidence for cannibalism. This is corrobo-
rated by Bromley et al. (1997), who postulate that multiple spawning over a protracted period may provide continued resources for earlier spawned 0-group whiting.
Results from key runs of the North Sea Multispeces assessment in 2008 indicate that, as a predator, whiting tend to feed on (in order of importance): whiting, sprat, Norway pout, sandeel and haddock. A notable predator on 0 -group whiting is grey gurnards.

Distribution maps of survey (IBTS) indices show a change in distribution of the stock. They show low recruitment in recent years (2003 to 2008), but also an apparent shift in where the recruiting year-class is found. Therefore catch rates from localised fleets may not represent trends in the overall North Sea and English Channel population. The spatial distribution of IBTS whiting catch rates during recent years (Figures 1 and 2) also indicate that ages $3+$ whiting are located primarily around the north east coast of England and the east coast of Scotland with very low catch rates in the southern North Sea. The results support the idea of a spatial contraction of the stock as its total abundance declines following recent poor recruitment. Further supporting evidence is the displacement of some French vessels steaming from Boulogne-sur-Mer from their traditional grounds in the southern North Sea and English Channel where they have reported very low catch rates during the past two years.

B. Data

B.1. Commercial catch

For North Sea catches, human consumption landings data and age compositions are provided by Scotland, England, France, the Netherlands, Belgium, Norway and Germany. Discard data are provided by Scotland, England, the Netherlands and Germany and used to estimate total international discards. Other discard estimates do exist (Section 1.11.4, 2002 WG), but have not been made available to Working Group data collators. Since 1991 the age composition of the Danish industrial by-catch has been directly sampled, whereas it was calculated from research vessel survey data during the period 1985-1990. Norway provides age composition data for its industrial by-catch. Whiting industrial by-catch has been low since 1996 due to the limited fishery for Norway pout and a reduced sandeel fishery in 2005, 2006 and 2007.

In 2006 the samples used to raise Danish industrial bycatches (accounting for 98% of the industrial bycatch that year) were taken from Norwegian vessels whose catches have a different age structure. The data for 2006 have been replaced with an estimate $\hat{n}_{a, y}$ given by

$$
\hat{n}_{a, y}=\hat{N}_{y} \hat{p}_{\mathrm{a}},
$$

where \hat{p}_{a} is the mean proportion at age over the years 1980 to 2005 , and \hat{N}_{y} is estimated to give a sums of products correction (SOP) factor of 1 by

$$
\hat{N}_{y}=\frac{W_{y}}{\sum_{a} \hat{p}_{a} \hat{W}_{a}}
$$

where W_{y} is the reported weight of industrial by catch. Here \hat{W}_{a} have been estimated by taking the mean weights at age in the industrial bycatch over the period 1995 to 2005 (zero w eights are taken as missing values).

For eastern Channel catches, age composition data are supplied by England and France. England supplies discard estimates however France does not. Since France now lands approximately 30% of the total North Sea and eastern Channel landings, this lack of data is considered an important issue. There is a small industrial fishery in this area.

In 2002, the w orking group decided to truncate the catch data to start from 1980. This was due to the very large change in estimated recruitment levels around 1980 that was present in the assessment. The working group could not determine whether this was due to a shift in the recruitment regime or because discard data for years prior to 1978 were not measured but estimated according to a discard ogive. This may not have been representative of discarding during the earlier period. Biological reference points for this stock had originally been established on the basis of the truncated series, so this represented no change with respect to them.

B.2. Biological

Weight at age

Weight at age in the stock is assumed to be the same as weight at age in the catch. Unrepresentative sampling of industrial bycatch in 2006 and 2007 resulted in poor estimates of the mean weights at age and these have been replaced by the mean weight at age for the period 1995 to 2005 (zero weights are taken as missing values).

Natural mortality

Natural mortality values used in assessments up to 2008 are rounded averages of estimates produced by previous key runs of the North Sea MSVPA (see Section 1.3.1.3 of the 1999 WG report: ICES CM 2000/ACFM:7) and considered constant with time. However the Working Group on Multi Species Assessment Methods in 2008 (ICES 2008) showed substantial changes in predation mortalities on whiting over time. Revised time series of natural mortality values are available every two years and WKBENCH2 (ICES 2009) concluded the time series values should be used and updated when new values are available. The current values used in both the assessment and the forecast are presented in Table1.

Maturity

The maturity ogive is based on North Sea IBTS quarter 1 data, averaged over the period 1981-1985. The maturity ogive used in both the assessment and forecast is:

Age	1	2	3	4	5	6	7	$8+$
Maturity Ogive	0.11	0.92	1.00	1.00	1.00	1.00	1.00	1.00

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to zero.

B.3. Surveys

The first quarter International Bottom Trawl Survey (IBTS Q1) is undertaken in February and March of each year, and covers depths of roughly 35 m to 200 m in the whole of the North Sea basin. The IBTS indices combine haul data from multiple vessels belonging to national institutes. As such it uses a higher density of survey stations than the constituent national surveys, with several hauls per statistical rectangle.

In previous assessments the Scottish third quarter Groundfish Survey (SCOGFSQ3) and English third quarter Groundfish Survey (ENGGFSQ3) were used as independent surveys. The SCOGFSQ3 is carried out in August each year, and covers depths of roughly 35 m to 200 m in the North Sea to the north of the Dogger Bank. It samples at most one survey station per statistical rectangle. In 1998 the coverage of this survey was extended into the central North Sea, but the index available to the Working Group has been modified so as to cover a consistent area throughout the time-series. The English third quarter Groundfish Survey (ENGGFSQ3) is carried out in August each year, and samples at most one station per rectangle. It covers depths of roughly 35 m to 200 m in the whole of the North Sea basin. In 1991 the ENGGFSQ3 changed fishing gear from the Granton trawl to the GOV trawl. For this reason the English groundfish survey is treated as two independent series.
The time-series of the survey indices of whiting supplied by the French Channel Groundfish Survey (FRAGFS) was revised in 2002. In 2001, the Eastern Channel was split into five zones. Abundance indices were first calculated for each zone, and then averaged to obtain the final FRAGFS index. This procedure was not thought to be entirely satisfactory, as the level of sampling was inconsistent across geographical strata. In 2002, it was thought more appropriate first to raise abundance indices to the level of ICES rectangles, and then to average those to calculate the final abundance index. Previous to the 2002 WG, only the hauls in which whiting were caught were used to derive abundance indices. This procedure biased estimates, and therefore, the indices supplied from 2002 are calculated on the basis of all hauls. However lack of internal consistency of this series means it has not been used in the assessment to date.

There is an unresolved problem in that the surveys available provide a different indication of stock trends before 1990 compared to an assessment based on catch data (Figure 3). The IBTS indices combine haul data from multiple vessels belonging to national institutes and periodically these vessels are replaced. In 1998 FRS (Aberdeen) introduced a new survey vessel; it was considered at the time that no evidence existed to say the new vessel had different catchabilities to the old vessel (Zuur et al. 1999). This is now generally considered not to be the case. WKROUND investigated the possibility that changes in survey catchability over the period from the mid 1980s to the mid 1990s accounts for this mismatch. The required change in catchability was estimated to be approximately a factor of two. Details of the investigations can be found in the benchmark report. Evidence for a change in catchability was not found (although the meeting recommended further work) but the following was concluded with respect to survey data.

- Only IBTS Q1 and IBTS Q3 indices should be used. The SCOGFS and ENGGFS are incorporated into the IBTS Q3 survey which is involves several other fleets and is likely to better represent the North Sea as a whole.
- The IBTS Q1 survey should only be used from 1984 because the gear employed was not standardised before this date.
The IBTS Q1 and IBTS QB data can be downloaded from the DATRAS website at
http://datras.ices.dk/Data products/Download/Download Data public.aspx

B.4. Commercial CPUE

Effort data are available for two Scottish commercial fleets: seiners (SCOSEI) and light trawlers (SCOLTR), both for the years 1978-2006. Non-mandatory reporting of
fishing effort for these fleets means that they cannot be view ed as reliable for use for catch-at-age tuning.

Effort data are available for two French commercial fleets: otter trawl (FRATRO) 1986-2006 and beam trawl (FRATRB) 1978-2001. The same comment on nonmandatory reporting of fishing effort applies to these fleets.

Available commercial CPUE data is presented in Table 2.

B.5. Other relevant data

The North Sea Fishers' Survey presents fishers' perceptions of the state of several species including whiting. The survey covers the years 2003-2008, (Laurenson, 2008).

C. Historical Stock Development

The following outlines the method currently used for North Sea whiting. Due to unresolved issues with data, this method cannot be considered as benchmarked. WKROUND considered that recent trends in the North Sea and eastern Channel whiting stock are appropriately estimated by the current assessment and are suitable for providing management advice. The assessment uses survey data and catch data from 1990 ignoring any issues prior to 1990. The outstanding issues and proposed directed research are detailed in ICES (2009).

Model used: Extended Survivor Analysis (XSA)
Software used: FLXSA run under
FLCORE 2.0
FLR 2.0
R 2.8.0
Model Options chosen:
Tolerance (tol): 1e-09
Maximum allowed iterations (maxit): 1000
Minimum standard error for surveys (min.nse): 0.3
Time series weighting in years (tsrange): 100
Time series weighting power (tspower): 0
Years of catch data to use (window): 100
Max age of power relationship in selection (rage): 0
First age of full selection (qage): 5
F shrinkage tolerance (Fse): 2.0
No. at age shrinkage; last \# years (shk.yrs): 3
No. at age shrinkage; oldest \# ages (shk.ages): 4

Mean F is taken over ages 2-6.

Mean weights at age in the catch is assumed equal to mean weights at age in the stock.

Input data types and characteristics:

Type	Name	Year range	Age range	Variable from year to year Yes/No
Caton	Catch in tonnes	$1980-$	NA	Yes
Canum	Catch at age in numbers	$1980-$	$1-8+$	Yes
Weca	Weight at age in the commercial catch	$1980-$	$1-8+$	Yes
West	Weight at age of the spawning stock at spawning time.	$1980-$	$1-8+$	Yes
Mprop	Proportion of natural mortality before spawning	$1980-$	$1-8+$	No
Fprop	Proportion of fishing mortality before spawning	$1980-$	$1-8+$	No
Matprop	Proportion mature at age	$1980-$	$1-8+$	No
Natmor	Natural mortality	$1980-$	$1-8+$	No

Tuning data:

Type	Name	Year range	Age range
Tuning fleet1	IBTS Q1	$1991-$	$1-6+$
Tuning fleet2	IBTS Q3	$1991-$	$1-6+$
Tuning fleet3	NA		
\ldots			

D. Short-Term Projection

The following outlines the method currently used for North Sea whiting. Due to unresolved issues with data, this method cannot be considered as benchmarked. The outstanding issues and proposed directed research are detailed in ICES (2009).

Model used: MFYDP

Software used: MFYDP
Initial stock size: RCT3 estimate of recruitment at age 1. XSA survivors at start of intermediate year for ages 2 and above.

Maturity: As used for historic stock development.
F and Mbefore spawning: Zero
Weight at age in the stock: Mean over the last three years. Mean weights at age have generally been consistent over the recent period but there are trends at some ages.

Weight at age in the catch: Set equal to mean weights at age in the stock.

Exploitation pattern: Mean F-at-age pattern over the final 5 years scaled to $\mathrm{F}(2-6)$ in the terminal year. Scaling justified by recent stability of $F(2-6)$ values.

Intermediate year assumptions: F status quo.
Stock recruitment model used: Geometric mean over the most recent 4 years.
Procedures used for splitting projected catches: Application of partial Fs. Partial Fs derived by considering proportions of the catch at age in the terminal year.

E. Medium-Term Projections

Not done for this stock.

F. Long-Term Projections

Not done for this stock

G. Biological Reference Points

The previously defined precautionary reference points (based on data from 1980 onwards) are no longer considered appropriate because of discrepancies between survey data and the catch data in the period before 1990. The assessment is now based on the period where catch and survey data are consistent (from 1990 onwards).

Yield and spawning biomass per Recruit F-reference points (2007):

	Fish. Mort. Ages 2-6	Yield/R	SSB/R
Average last 3 years	0.39	0.0527	0.26
$\mathrm{~F}_{\max }$	0.19	0.0137	0.12
$\mathrm{~F}_{0.1}$	0.10	0.0128	0.17

Candidates reference points consistent with high long-term yields and a low risk of depleting the productive potential of the stock are in the range of $\mathrm{F}_{0.1}-\mathrm{F}_{\text {max }}$.

H. Other Issues

None identified.

I. References

Bromley, P. J., Watson, T., and Hislop, J. R. G. (1997). Diel feeding patterns and the development of food webs in pelagic 0-group cod (Gadus morhua L.), haddock (Melanogrammus aeglefinus L.), whiting (Merlangius merlangus L.), saithe (Pollachius virens L.), and Norway pout (Trisopterus esmarkii Nilsson) in the northern North Sea. Ices Journal of Marine Science 54: 846-853.

Hislop, J. R. G \& MacKenzie, K. (1976). Population studies of the whiting (Merlangius merlangus L.) of the northern North Sea. Journal du Conseil International pour l'Exploration de laMer. 37: 98-111.

ICES (2005). Report of the Study Group on Stock Identity and Management Units of Whiting (SGSIMUW), 15-17 March 2005, Aberdeen, UK. ICES CM 2005/G:03. 50 pp.

ICES. (2008). Report of the Working Group on Multi Species Assessment Methods (WGSAM). ICES. CM. 2008/ RMC:06

ICES (2009). Report of the Workshop on the Benchmark Assessments of Roundfish (WKROUND). ICES CM 2009/ ACOM XX

Laurenson, C. H. (2008). North SeaStock Survey 2008. NAFC Marine Centre, Shetland, UK. 112 pp.

Table 1: Whiting in IV and VIId. Smoothed values for natural mortality extracted from the SMS keyrun 2008.

Year	Age 0	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8
1980	1.34	1.40	0.71	0.47	0.45	0.42	0.40	0.37	0.31
1981	1.35	1.39	0.69	0.47	0.44	0.42	0.40	0.37	0.31
1982	1.35	1.37	0.67	0.46	0.44	0.41	0.39	0.37	0.31
1983	1.35	1.35	0.65	0.45	0.43	0.41	0.39	0.37	0.31
1984	1.35	1.33	0.62	0.44	0.42	0.40	0.38	0.36	0.31
1985	1.36	1.32	0.60	0.43	0.42	0.39	0.37	0.36	0.31
1986	1.36	1.31	0.57	0.42	0.41	0.38	0.37	0.35	0.31
1987	1.37	1.30	0.55	0.41	0.40	0.38	0.36	0.34	0.30
1988	1.39	1.30	0.53	0.40	0.39	0.37	0.35	0.34	0.30
1989	1.41	1.31	0.51	0.39	0.38	0.37	0.35	0.34	0.31
1990	1.44	1.31	0.50	0.38	0.37	0.36	0.34	0.33	0.31
1991	1.47	1.32	0.49	0.37	0.37	0.36	0.34	0.33	0.31
1992	1.52	1.33	0.48	0.37	0.36	0.35	0.34	0.33	0.31
1993	1.57	1.35	0.47	0.36	0.36	0.35	0.34	0.33	0.31
1994	1.63	1.36	0.47	0.36	0.35	0.35	0.33	0.33	0.31
1995	1.70	1.38	0.47	0.36	0.35	0.35	0.33	0.33	0.32
1996	1.77	1.41	0.47	0.35	0.35	0.35	0.33	0.33	0.32
1997	1.83	1.43	0.47	0.35	0.34	0.35	0.33	0.33	0.32
1998	1.90	1.45	0.47	0.35	0.34	0.34	0.33	0.33	0.32
1999	1.95	1.48	0.47	0.35	0.34	0.34	0.33	0.33	0.32
2000	2.00	1.51	0.47	0.34	0.33	0.34	0.33	0.33	0.32
2001	2.03	1.55	0.48	0.34	0.33	0.34	0.33	0.33	0.32
2002	2.05	1.58	0.49	0.34	0.33	0.34	0.34	0.34	0.32
2003	2.06	1.62	0.50	0.35	0.33	0.34	0.34	0.34	0.32
2004	2.05	1.65	0.52	0.35	0.33	0.34	0.34	0.34	0.33
2005	2.03	1.68	0.53	0.35	0.33	0.35	0.35	0.35	0.33
2006	2.01	1.71	0.55	0.35	0.33	0.35	0.35	0.36	0.34
2007	1.99	1.73	0.56	0.36	0.33	0.35	0.36	0.36	0.34

Table 2 Whiting in IV and VIId. Complete available tuning series.

SCOSEI_IV units = individuals

year	effort	1	2	3	4	5	6	7	8	9
1978	325246	14994	29308	43711	15390	1058	1409	201	36	0
1979	316419	90750	41092	28124	14745	6084	677	156	3	0
1980	297227	27032	73704	37658	11915	9368	2556	260	229	27
1981	289672	8727	22244	25048	10552	2402	2084	374	41	4
1982	297730	3721	7032	26194	13117	2713	539	277	81	5
1983	333168	11565	14957	21690	34199	9831	2155	407	158	16
1984	388035	4923	24016	20670	14986	21269	4715	960	87	50
1985	381647	20068	20263	19696	8956	4796	8013	1363	334	18
1986	425017	139498	48705	34509	11341	2624	1098	1771	216	7
1987	418536	13793	52715	38939	18440	3638	1097	298	348	16
1988	377132	2502	28446	44869	12631	4072	679	64	21	17
1989	355735	6879	15704	41407	23710	4769	1323	112	43	11
1990	252732	14230	124636	27694	29921	14768	721	207	23	0
1991	336675	11952	44964	63414	10436	8730	1743	195	94	0
1992	300217	16614	19452	21217	27962	2805	1958	565	32	3
1993	268413	9564	31623	26013	12458	14446	899	332	153	8
1994	264738	9236	21452	22571	11778	5531	5612	204	116	15
1995	204545	8288	22153	30007	9019	3875	1373	1270	86	15
1996	177092	5732	26021	21430	10506	3483	1031	296	289	28
1997	166817	6628	8974	16231	9922	4445	575	110	62	37
1998	150361	3711	4695	6806	6840	3670	1417	244	13	2
1999	93796	13384	13750	7009	6068	3462	1684	409	77	3
2000	69505	5176	11208	6458	2112	1972	836	298	90	7
2001	36135	607	6352	5592	1715	486	353	146	66	11
2002	21830	1017	3349	7716	2182	363	140	79	23	6
2003	15371	388	1089	2514	2980	1046	256	30	17	5
2004	15663	282	689	1912	2003	1711	456	108	16	4
2005	16149	1131	1889	994	1638	1852	1035	362	41	1
2006	13539	25	435	874	695	966	960	433	99	18

$\begin{aligned} & \text { SCOLTR_IV } \\ & \text { year } \end{aligned}$	units $=$ in effort	iduals 1	2	3	4	5	6	7	8	9
1978	236944	8785	19910	30722	14473	956	1612	635	72	6
1979	287494	171147	42910	23155	17996	4058	377	286	57	5
1980	333197	20806	58382	38436	9525	9430	1864	144	145	3
1981	251504	6576	19069	21550	9706	1777	1455	310	9	1
1982	250870	5214	8197	26681	12945	3334	647	339	74	16
1983	244349	37496	17926	12535	19234	6124	1217	183	141	26
1984	240775	38267	16048	10784	6307	9019	2371	479	13	30
1985	267393	28761	9368	7617	3086	1333	2901	443	173	14
1986	279727	8138	8572	9578	4109	767	425	609	52	2
1987	351131	18761	25933	16161	5954	1183	388	116	129	4
1988	391988	2398	15779	22526	5128	1641	207	31	15	6
1989	405883	20319	10052	21390	10837	2394	448	33	54	2
1990	371493	3677	35322	7665	8960	3423	160	40	5	0
1991	408056	8727	11908	22146	3192	2906	629	50	41	0
1992	473955	17581	14551	11823	15418	1500	1160	304	13	0
1993	447064	16439	20513	14386	6591	10105	574	204	97	24
1994	480400	4133	15771	13005	6454	2710	2997	172	84	14
1995	442010	9248	15887	19322	6262	2983	1092	1132	89	3
1996	445995	6662	12461	13523	9223	3012	861	282	243	9
1997	479449	2557	6768	15603	9464	4535	628	181	52	31
1998	427868	5096	5350	8058	9507	4312	1729	276	58	12
1999	329750	26519	20672	9295	6706	4080	2051	487	41	7
2000	280938	8385	16220	9287	3788	2621	1470	602	79	7
2001	245489	1303	11409	10419	3287	745	431	247	66	27
2002	184099	980	4653	11067	3686	818	221	180	60	13
2003	98721	871	1639	3986	5136	2080	286	73	59	7
2004	63953	224	1088	2225	2463	2168	669	123	18	15
2005	54905	954	2414	1236	1448	1901	831	251	26	2
2006	51456	66	495	1487	990	1055	1067	604	105	6

Table 2 (cont'd) Whiting in IV and VIId. Complete available tuning series.

FRATRO_IV units = individuals

year	effort	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{1 9 8 6}$	56099	19	1542	1892	7146	3783	600	158	39	$\mathbf{2}$
$\mathbf{1 9 8 7}$	71765	12	2508	4985	1271	5713	413	258	92	70
$\mathbf{1 9 8 8}$	84052	0	2537	8982	3223	704	1321	123	55	1
$\mathbf{1 9 8 9}$	88397	27	2958	3740	5629	1654	209	280	47	11
$\mathbf{1 9 9 0}$	71750	38	3210	6170	3781	2456	365	29	44	2
$\mathbf{1 9 9 1}$	67836	323	4465	6084	2864	1412	777	85	6	3
$\mathbf{1 9 9 2}$	51340	355	3427	6498	1940	635	358	96	5	0
$\mathbf{1 9 9 3}$	62553	938	3950	4586	4307	877	290	68	40	6
$\mathbf{1 9 9 4}$	51241	87	7006	3298	1191	612	108	11	8	1
$\mathbf{1 9 9 5}$	57823	263	6331	6125	2674	544	99	19	0	2
$\mathbf{1 9 9 6}$	50163	577	5523	4743	3214	890	156	8	12	0
$\mathbf{1 9 9 7}$	48904	267	1961	4677	3929	1020	221	18	3	0
$\mathbf{1 9 9 8}$	38103	567	4893	1959	533	161	68	36	0	2
$\mathbf{1 9 9 9}$	-9	51	7652	2886	1453	960	500	133	46	31
$\mathbf{2 0 0 0}$	30082	129	7367	8191	2453	1056	737	455	345	95
$\mathbf{2 0 0 1}$	50846	3357	10767	15476	6923	3227	1701	638	345	128
$\mathbf{2 0 0 2}$	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9
$\mathbf{2 0 0 3}$	52609	625	9277	16880	7857	5528	1701	188	19	23
$\mathbf{2 0 0 4}$	21074	0	938	367	919	946	743	256	36	4
$\mathbf{2 0 0 5}$	23683	0	1037	1665	386	178	149	103	52	14
$\mathbf{2 0 0 6}$	19100	4.918	4402.199	2229.464	373.059	37.178	183.608	226.409	0.27	-9

FRATRB_IV units = individuals

year	effort	1	2	3	4	5	6	7	8	9
1978	69739	1153	10312	14789	8544	807	1091	227	34	4
1979	89974	698	12272	14379	10884	3789	394	315	45	14
1980	63577	90	5388	11298	4605	4051	1004	78	71	10
1981	76517	144	6591	13139	8196	2090	1644	314	16	10
1982	78523	173	1643	16561	11241	3948	1035	539	119	14
1983	69720	500	4407	8188	16698	5541	1061	228	126	19
1984	76149	317	4281	7465	4576	5999	1596	308	32	26
1985	25915	315	3653	2942	1225	566	599	117	12	4
1986	28611	891	3830	3991	1202	369	94	160	22	1
1987	28692	431	4823	3667	2152	497	166	48	46	3
1988	25208	150	2718	4815	1125	530	100	31	3	4
1989	25184	448	2064	4351	1877	314	106	10	4	1
1990	21758	164	3794	2124	2010	620	55	13	1	0
1991	19840	292	2224	3829	819	657	138	15	3	0
1992	15656	365	1598	1686	2204	248	195	44	3	0
1993	19076	173	1225	2633	1141	1233	97	37	14	4
1994	17315	108	1806	1721	1466	413	430	29	8	1
1995	17794	114	1023	3304	1537	1163	240	212	14	7
1996	18883	21	655	1594	1438	482	199	38	30	10
1997	15574	40	357	1407	1139	606	86	16	10	2
1998	14949	32	126	317	326	192	63	8	2	1
1999	-9	96	490	489	684	452	239	59	14	1
2000	11747	47	1148	2968	1205	320	298	124	54	5
2001	6771	298	649	528	150	36	36	14	6	2

FRATRO_7D units = individuals

year	effort	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1 9 8 6}$	257794	2587	2250	7741	4463	804	198	19
$\mathbf{1 9 8 7}$	188236	1955	5050	907	4606	331	218	54
$\mathbf{1 9 8 8}$	215422	2233	7957	2552	537	1193	127	61
$\mathbf{1 9 8 9}$	320383	2578	3916	6006	1490	216	343	50
$\mathbf{1 9 9 0}$	257120	2492	5240	3363	2168	251	30	51
$\mathbf{1 9 9 1}$	294594	4009	8177	3985	2625	1474	155	11
$\mathbf{1 9 9 2}$	285718	5733	10924	3241	882	587	171	3
$\mathbf{1 9 9 3}$	283999	3158	6543	8607	1677	442	124	79
$\mathbf{1 9 9 4}$	286019	13932	7980	3269	1776	444	40	21
$\mathbf{1 9 9 5}$	268151	6301	8450	5261	1217	264	63	8
$\mathbf{1 9 9 6}$	274495	6140	6466	5465	1623	324	47	14
$\mathbf{1 9 9 7}$	282216	3320	8144	6608	1974	451	59	8
$\mathbf{1 9 9 8}$	291360	9921	6863	2385	781	265	105	15
$\mathbf{1 9 9 9}$	-9	-9	-9	-9	-9	-9	-9	-9
$\mathbf{2 0 0 0}$	215553	7096	7026	1734	1724	1375	877	675
$\mathbf{2 0 0 1}$	163848	89	6101	10124	3976	2563	2303	1040
$\mathbf{2 0 0 2}$	192589	985	1922	6247	6476	2270	461	463
$\mathbf{2 0 0 3}$	296717	155	6896	5489	5551	2397	312	65
$\mathbf{2 0 0 4}$	89127	1831	706	2312	2945	2611	902	109
$\mathbf{2 0 0 5}$	108369	5813	3730	793	813	720	510	262
$\mathbf{2 0 0 6}$	78600	2864	1912	457	133	800	1013	0

Figure 1 Whiting in IV and VIId. Distribution plot of the IBTS quarter 1 Survey.

Figure 1 (cont.) Whiting in IV and VIId. Distribution plot of the IBTS quarter 1 Survey

Figure 1 (cont.) Whiting in IV and VIId. Distribution plot of the IBTS quarter 1 Survey.

Figure 2 Whiting in IV and VIId. Distribution plot of the IBTS quarter 3 Survey.

Figure 2 (cont.) Whiting in IV and VIId. Distribution plot of the IBTS quarter 3 Survey.

Figure 2 (cont.) Whiting in IV and VIId. Distribution plot of the IBTS quarter 3 Survey.

Figure 3 Catch based estimated of spawning stock biomass (black line) shown along side surve y based estimates of spawning stock biomass (blue, and dashed lines), the blue line showing an estimate based on all the surveys. These are scaled so that the mean of each line over the years 1996-2006 is one.

Stock Annex: FU6, Farn Deeps

Stock specific documentation of standard assessment procedures used by ICES.

Stock Farn Deeps Nephrops (FU06
Date: 06/03/2009 (WKNEPH2009)
Revised by Ewen Bell/Jon Elson

A. General

A.1. Stock definition

Throughout its distribution, Nephrops is limited to muddy habitat, and requires sediment with a silt \& clay content of betw een $10-100 \%$ to excavate its burrows, and this means that the distribution of suitable sediment defines the species distribution. Adult Nephrops only undertake very small-scale movements (a few 100 m) but larval transfer may occur between separate mud patches in some areas. In the Farn Deeps area the Nephrops stock inhabits a large continuous area of muddy sediment extending North from $54^{\circ} 45^{\prime}-54^{\circ} 35 \mathrm{~N}$ and $0^{\circ} 40^{\prime}-1^{\circ} 30^{\prime} \mathrm{N}$ with smaller patches to the east and west.

A.2. Fis hery

In 2001 the cod recovery plan was introduced and the number of vessels recorded in this fishery and landing into England increased from around 160 in 2000 to and fluctuated around 200 between 2001 and 2003. In 2004 the number returned to around 160 vessels but stepped up to 230 vessels in 2006. Although a small increase was apparent in the number of the local fleet turning to Nephrops the increase in the number of visiting Scots, Northern Irish and other English vessels was greater. Visiting Scottish vessels consistently make up about 30 to 40% of the fleet during the season and account for between 20 and 30% of the landings by weight. Since 2000 there has been an increase in the effort of vessels targeting Nephrops using multi rig trawls. In 2004 they accounted for about 10% of the landings by weight and 20% by 2006 . Over 25% of the entire fleet uses multi rigs mainly through an influx of up to 19 Northern Irish and 30 Scottish multi riggers visiting the area - coming into the fishery for the frst time over the last two years. Both single and multi trawl fleets were affected by Technical Conservation Measures and Cod recovery plans. The single trawl fleet in general switched from a 70 mm to an 80 mm cod end mesh in 2002. Multi rigged vessels targeting prawns use 95 mm cod end mesh. The average vessel size of the visitors has remained relatively stable but average horse power has increased. With decommissioning the average size and power of the local fleet has declined slightly. Currently the average size of the local fleet is 11 m with an average engine power of around 140 kW.

The fishery is exploited throughout the year, with the highest landings made between October and March. Fishing is usually limited to a trip duration of one day with 2 hauls of 3-4 hours being carried out. The main landing ports are North Shields, Blyth, Amble and Hartlepool where, respectively, on average 45,32, 10 and 7% of the landings from this fishery are made.

The minimum landing size for Nephrops in the Farn Deeps is 25 mm CL. Discarding generally takes place at sea, but can continue alongside the quay. Landings are usually made by category for whole animals, often large and medium and a single category for tails. However, landings to merchants of one category of unsorted whole and occasionally one of tails is becoming more common. Depending on the number of small, the category of tails is often roughly sorted as whole and left on deck for tailing later. This category is only landed once tailed. The local enforcement agency is discouraging the practice of tailing after tying up alongside.

Regulations

UK legislation (SI 2001/649, SSI 2000/227) requires at least a 90 mm square mesh panel in trawls from 80 to 119 mm , where the rear of the panel should be not more than 15 m from the cod-line. The length of the panel must be 3 m if the engine power of the vessel exceeds 112 kW , otherwise a 2 m panel may be used. Under UK legislation, when fishing for Nephrops, the cod-end, extension and any square mesh panel must be constructed of single twine, of a thickness not exceeding 4 mm for mesh sizes $70-99 \mathrm{~mm}$, while EU legislation restricts twine thickness to a maximum of 8 mm single or 6 mm double.
Under EU legislation, a maximum of 120 meshes round the cod-end circumference is permissible for all mesh sizes less than 90 mm . For this mesh size range, an additional panel must also be inserted at the rear of the headline of the trawl. UK legislation also prohibits twin or multiple rig trawling with a diamond cod end mesh smaller that 100 mm in the north Sea south of $57030^{\prime} \mathrm{N}$.
Legislation on catch composition for fishing N or S of 55° along with other cod recovery measures may have affected where and when effort is targeted which in turn could affect catch length distributions. This latitude bisects the Farn Deeps Nephrops fishery.

A.3. Ecosystem aspects

No information on the ecosystem aspects of this stock has been collated by the Working Group.

B. Data

B.1. Commercial catch

Three types of sampling occur on this stock, landings sampling, catch sampling and discard sampling providing information on size distribution and sex ratio. Landing and catch sampling occurs at North Shields, Blyth, Amble and Hartlepool.
Historically, estimates of discarding were made using the difference between the catch samples and the landings samples. For the period prior to 2002, catch length samples and landings length samples are considered to be representative of the fishery. An estimate of retained numbers at length was obtained for this period from the catch sample using a discard ogive estimated from data from the 1990s, a raising factor was then determined such that the retained numbers at length matched the landings numbers at length. This raising factor was then applied to the estimate of discard numbers at length.
More recently, there has been concern that the landings sampling may be missing portions of the landings landed as tails (as opposed to whole individuals) thus lead-
ing to an artificial inflation of the estimated discards. On-board discard sampling has been of sufficient frequency since 2002 to enable the estimation of discards from these data. There are two modes of operation for "tailing" in the FU6 Nephrops fishery, some vessels tail at sea, others tail at the quayside. Discard estimates from the latter category only sample those animals discarded at sea, the undersize individuals discarded at the quayside are not sampled, consequently the proportion of discards at sizes below MLS for this tailing practice are very low (Figure B.1.1). Discard trips, which saw discarding of less than 50% of individuals below MLS, were ignored. Annual discard ogives showed no systematic change, therefore a single ogive was constructed from the pooled data from 2002-2007 (Figure B.1.2). This was then applied to the catch data to produce estimates of landings at length.

Figure B.1.1. Farn Deeps (FU 6): Histogram of proportion individuals $<26 \mathrm{~mm}$ discarded.

Figure B.1.2. Farn Deeps (FU 6): Discard ogive selected for FU6 Nephrops, trip level data pooled to year.

B.2. Biological

Mean weights-at-age for this stock are estimated from fixed weight-length relationships derived from samples collected from this fishery (Macer unpublished data)
A natural mortality rate of 0.3 was assumed for all age classes and years for males and immature females, with a value of 0.2 for mature females based on Morizur, 1982. The lower value for mature females reflects the reduced burrow emergence while ovigerous and hence an assumed reduction in predation.

The size at maturity for females was recalculated at ICES-WKNEPH 2006 to be 24.8 mm CL 24 mm CL was used in assessments prior to 2009. A sigmoid maturity function is now used: $\mathrm{L} 25=24.5 \mathrm{~mm}, \mathrm{~L} 50=25 \mathrm{~mm}$

Growth parameters are estimated from observations from this fishery (Macer, unpublished data) and comparison with adjacent stocks.

The time-invariant values used for proportion mature at age are: males age $1+$: 100%; females age $1: 0 \%$; age $2+: 100 \%$. The source of the value for females is based on observations on 50% berried CL.

Discard survival (previously set at 25 \%) was set to zero from 1991.

Summary:

Growth :

Males; $\mathrm{L}_{\infty}=66 \mathrm{~mm}, \mathrm{k}=0.16$
Immature Females; $\mathrm{L}_{\infty}=66 \mathrm{~mm}, k=0.16$
Mature Females; $\mathrm{L}_{\infty}=58 \mathrm{~mm}, \mathrm{k}=0.06$,
Size at maturity $\mathrm{L} 25=24.5 \mathrm{~mm}, \mathrm{~L} 50=25 \mathrm{~mm}$.

Weight length parameters:

Males $\mathbf{a}=0.00038, \mathrm{~b}=3.17$
Females $a=0.00091, b=2.895$

Discards

Discard survival rate: 0\%.
Discard proportion: 29.5\%

B.3. Surveys

Abundance indices are available from the following research-vessel surveys:
Underwater TV survey: years 1996 - present. Surveys have been conducted in Spring and/or Autumn each year but only consistently in Autumn from 2001. In 2008 there was an historical revision of burrow density estimates from the TV survey. Previous estimates of burrow density had assumed that station density was independent of burrow density based analysis that showed there was no evidence of differences in trends in burrow density betw een the different strata in the fishery (ICES WGNEPH, 2000). The assumption led to an unstratified mean density being used and multiplied by the total area to arrive at overall abundance. Analysis of burrow density by rectangle has since shown that the distribution of stations is positively correlated with burrow density and therefore the unstratified mean density will overestimate burrow
density. In order to compensate for the bias in sampling density, burrow abundance estimates are made for each rectangle and then summed to give the new total.

A number of factors are suspected to contribute bias to the surveys. In order to use the survey abundance estimate as an absolute it is necessary to correct for these potential biases. Thehistory of bias estimates are as follows.

B.4. Commercial CPUE

Catch-per-unit-effort time-series are available from the following fleets:

- UK Nephrops trawl gears. CPUE is estimated using officially recorded effort (hours fished) although the recording of effort is not mandatory. Combined effort for English and Scottish Nephrops trawlers (single trawl and multiple trawl) is raised to the total landings reported by the four gear goups - Nephrops single trawl, multiple Nephrops trawl, Light trawl and multiple demersal trawl. There is no account taken of any technological creep in the fleet.

The registered buyers and sellers legislation brought in by the UK in 2006 changed the reporting procedure, which effectively breaks the continuity in the series at that point. The accuracy of the reported landings has significantly improved since then but there is currently little that can be done to determine and correct for any differences in the two series.

B.5. Other relevant data

C. Historical Stock Development

1. Survey indices are w orked up annually resulting in the TV index.
2. Adjust index for bias (see section B3). The combined effect of these biases is to be applied to the new survey index.
3. Generate mean weight in landings. Check the time series of mean landing weights for evidence of a trend in the most recent period. If there is no firm evidence of a recent trend in mean weight use the average of the three most recent years. If, however, there is strong evidence of a recent trend then apply most recent value (don't attempt to extrapolate the trend further in the future).

D. Short-Term Projection

1. The catch option table will include the harvest ratios associated with fishing at $\mathrm{F}_{0.1}$ and Fmax. These values have been estimated by the Benchmark W orkshop (see section 9.2) and are to be revisited by subsequent benchmark groups. The values are FU specific and have been put in the Stock Annexes.
2. Create catch option table on the basis of a range of harvest ratios ranging from 0 to the maximum observed ratio or the ratio equating to $F_{m a x}$, whichever is the larger. Insert the harvest ratios from step 4 and also the current harvest ratio.
3. Multiply the survey index by the harvest ratios to give the number of total removals.
4. Create a landings number by applying a discard factor. This conversion factor has been estimated by the Benchmark Workshop and is to be revisited at subsequent benchmark groups. The value is FU specific and has been put in the Stock Annex.
5. Produce landings biomass by applying mean weight.

The suggested catch option table format is as follows.

			Implied fishery	
	Harvest rate	Survey Index	Retained number	Landing s (tonnes)
	0%	12345	0	0.00
	2%	$"$	247	123.45
	4%	$"$	494	246.90
	6%	$"$	741	370.35
	8%	$"$	988	493.80
F0.1	8.60%	$"$	1062	530.84
	10%	$"$	1235	617.25
	12%	$"$	1481	740.70
Fmax	13.50%	$"$	1667	833.29
	14%	$"$	1728	864.15
	16%	$"$	22275	1111.05
	18%	$"$	2469	1234.50
	20%	$"$	2716	1357.95
	22%		2654	1327.09
Fcurrent	21.5%			

E. Medium-Term Projections

None

F. Long-Term Projections

None

G. Biological Reference Points

None specified.
Harvest ratios equating to fishing at F0.1 and Fmax were calculated in WKNeph (2009). These calculations assume that the TV survey has a knifeedge selectivity at 17 mm and that the supplied length frequencies represented the population in equilibrium.

F-reference point	Harvest ratio
$\mathrm{F}_{0.1}$	8.2%
$\mathrm{~F}_{\text {max }}$	13.3%

H. Other Issues

I. References

Stock Annex: FU7, Fladen Ground

Stock specific documentation of standard assessment procedures used by ICES.

Stock Fladen Ground Nephrops (FU 7)
Date: 09 March 2009 (WKNEPH2009)
Revised by Sarah Clarke/Carlos Mesquita

A. General

A.1. Stock definition

Throughout its distribution, Nephrops is limited to muddy habitat, and requires sediment with a silt \& clay content of between $10-100 \%$ to excavate its burrows. This means that the distribution of suitable sediment defines the species distribution. Adult Nephrops only undertake very small scale movements (a few 100 m) but larval transfer may occur between separate mud patches in some areas. The Fladen Ground is located towards the centre of the northern part of Division IV. Its eastern boundary is adjacent to the Norwegian Deeps area, while its western boundary borders the Moray Firth functional unit (FU9). There is some evidence for overlap of habitat at the boundary of these areas. The ground represents one of the largest areas of soft muddy sediments in the North Sea and there are wide variations in sediment composition across the ground. Nephrops is distributed throughout the area and is associated with various benthic communities reflecting the variations in physical environment.

A.2. Fis hery

The Fladen fishery (FU7), the largest Scottish Nephrops fishery, takes a mixed catch with haddock, whiting, cod, monkfish and flatfish such as megrim, also making an important contribution to vessel earnings. The Fladen Nephrops fleet comprises vessels from 12 m up to 35 m fishing mainly with 80 mm twin-rig. The fleet has a diverse range of boats, and includes some of the largest most modern purpose built boats in the Scottish fleet and vessels which have recently converted to Nephrops fishing.

The area supports well over 100 vessels and the majority of the fleet (80%) fish out of Fraserburgh, with the other important ports being Peterhead, Buckie, Macduff, and Aberdeen. Boats fish vary ing lengths of trip between 3 days (small boats) and 8-9 day trips (larger vessels). During 2006 and 2007 around 20 vessels joined the fleet and 5 ongoing new boat builds have the capability to fish at Fladen. Some whitefish vessels have converted to Nephrops twin-rigging.
The Fladen fishery generally follows a similar pattern every year, with different areas of the Fladen grounds producing good fishing at different times of the year (boats fish the north of the ground in winter, then move east towards the sector line in the summer). During 2004-5 this seasonal pattern was less apparent with fishing being good throughout the year on a range of grounds. There was also no lull in catch rates which traditionally happens in April-May. In 2006 however, there was a return to a more usual pattern of fishing with catches poor for most of the spring and slowly getting better throughout the summer. Some participating vessels explored slightly dif-
ferent areas to fish in 2006, particularly on the eastern edge of the ground. Bad weather at the start of 2006 and part of 2007 also contributed to the slower start to the fishery in these years. In some years, high squid abundance in the Moray Firth attracts Fladen vessels but in the last two years this was not so evident compared to 2005.

Other developments include the capability of freezing at sea and in one case, processing at sea. A recent tendency towards shorter trip lengths and improved handling practice is associated with market demand for high quality Nephrops which appears to have increased dramatically. The implementation of buyers and sellers legislation in 2006 has reduced the problem of underreporting and prices have risen, while weighing at sea has improved the accuracy of reported landings.

A.3. Ecosystem aspects

No information on the ecosystem aspects of this stock has been collated by the W orking Group.

B. Data

B. 1. Commercial catch

Length compositions of Scottish landings and discards are obtained during monthly market sampling and quarterly on-board observer sampling respectively. Levels of sampling have increased since 2000 and are considered adequate for providing representative length structure of removals at the Fladen Ground. Although assessments based on detailed catch analysis are not presently possible, examination of length compositions can provide a preliminary indication of exploitation effects.

LPUE and CPUE data were available for Scottish Nephrops trawls. Table B1-1 shows the data for single trawls, multiple trawls and combined. Examination of the long term commercial LPUE data (Figure B1-1) suggests a rapid increase since 2003. It is likely, however, that improved reporting of landings data) in recent years particularly arising from 'buyers and sellers legislation has contributed to the increase. The high levels have been maintained since 2003. In addition, effort recording in terms of hours fished is non-mandatory and therefore it is unclear whether these trends and those that are discussed below are actually indicative of trends in LPUE.

Males consistently make the largest contribution to the landings (Figure B1-2), although the sex ratio does vary. In earlier years effort was generally highest in the latter part of the year in this fishery, but the pattern varies between years, and the seasonal pattern does not appear as strong in recent years. LPUE of both sexes remained relatively constant up to 2002, and in common with the overall figure has shown a marked increase since then. This suggests that exploitation (or other external factors) are not disproportionately affecting one sex or the other. LPUE is fairly similar through the year for males but for females there is no consistent pattern in these data.

LPUE data for each sex, above and below 35 mm CL, are shown in Figure B1-3. This size was chosen for all the Scottish stocks examined as the size above which the effects of discarding practices were not expected to occur and the size below which recruitment events might be observed in the length composition. The data show a rise in LPUE in all categories since 2001. There is, however, no apparent lag between the
increased LPUEs of $<35 \mathrm{~mm}$ animals and $>35 \mathrm{~mm}$ animals which one might expect if the reason was increasing abundance.

B.2. Biological

Dynamics for this stock are poorly understood and studies to estimate growth have not been carried out. Parameters applied in a preliminary length-based assessment and age (with length) based simulation to inform the catch forecast process were as follows: natural mortality was assumed to be 0.3 for males of all ages and in all years. Natural mortality was assumed to be 0.3 for immature females, and 0.2 for mature females.

Summary

Von Bertalanffy growth parameters are as follows:

Males; $\mathrm{L}_{\infty}=66 \mathrm{~mm}, \mathrm{k}=0.16$
Immature Females; $L_{\infty}=66 \mathrm{~mm}, k=0.16$
Mature Females; $L_{\infty}=56 \mathrm{~mm}, \mathrm{k}=0.10$,
Size at maturity $=25 \mathrm{~mm}$

Weight length parameters:

Males $\mathrm{a}=0.0003, \mathrm{~b}=3.25$
Females $a=0.00074, b=2.91$

Discards

Discard survival rate: 25\%.
Discard proportion: 13.8\%

B.3. Surveys

TV surveys using a stratified random design are available for FU 7 since 1992 (missing survey in 1996). Underwater television surveys of Nephrops burrow number and distribution, reduce the problems associated with traditional trawl surveys that arise from variability in burrow emergence of Nephrops.

On average, about 60 stations have been considered valid each year with over 70 stations in the last three years. Data are raised to a stock area of $28153 \mathrm{~km}^{2}$ based on the stratification. General analysis methods for underwater TV survey data are similar for each of the Scottish surveys. The ground has a range of mud types from soft silty clays to coarser sandy muds, the latter predominate (Figure B3-1). Most of the variance in the survey is associated with this variable sediment which surrounds the main centres of abundance. Abundance is generally higher in the soft and intermediate sediments located to the centre and south east of the ground but in 2007, higher densities were also recorded in the more northerly parts of the ground. In general the confidence intervals have been fairly stable in this survey.

A number of factors are suspected to contribute bias to the surveys. In order to use the survey abundance estimate as an absolute it is necessary to correct for these potential biases. The history of bias estimates are given in the following table and are
based on simulation models, preliminary experimentation and expert opinion, the biases associated with the estimates of Nephrops abundance in the Fladen are:

	species				
	Time period	Edge effect detection rate			
tification	occupancy	Cumulative bias			
FU 7: Fladen $<=2009$	1.45	0.9	1	1	

B.4. Commercial CPUE

Scottish Nephrops trawl gears: Landings, discards and effort data for Scottish Nephrops trawl gears are used to generate a CPUE index. CPUE is estimated using officially recorded effort (hours fished) although the recording of effort is not mandatory. Combined effort for Nephrops single trawl and multiple Nephrops trawl is raised to landings reported by the four gears listed above. Discard sampling commenced in 1990 for this fishery, and for years prior to this, an average of the 1990 and 1991 values is applied. There is no account taken of any technological creep in the fleet.
For more information see section B. 1

B.5. Other relevant data

C. Historical Stock Development

1. Survey indices are worked up annually resulting in the TV index.
2. Adjust index for bias (see section B3). The combined effect of these biases is to be applied to the new survey index.
3. Generate mean weight in landings. Check the time series of mean landing weights for evidence of a trend in the most recent period. If there is no firm evidence of a recent trend in mean weight use the average of the three most recent years. If, however, there is strong evidence of a recent trend then apply most recent value (don't attempt to extrapolate the trend further in the future).

D. Short-Term Projection

1. The catch option table will include the harvest ratios associated with fishing at $\mathrm{F}_{0.1}$ and Fmax. These values have been estimated by the Benchmark W orkshop (see section 9.2) and are to be revisited by subsequent benchmark groups. The values are FU specific and have been put in the Stock Annexes.
2. Create catch option table on the basis of a range of harvest ratios ranging from 0 to the maximum observed ratio or the ratio equating to $\mathrm{F}_{\text {max }}$, whichever is the larger. Insert the harvest ratios from step 4 and also the current harvest ratio.
3. Multiply the survey index by the harvest ratios to give the number of total removals.
4. Create a landings number by applying a discard factor. This conversion factor has been estimated by the Benchmark Workshop and is to be revisited at subsequent benchmark groups. The value is FU specific and has been put in the Stock Annex.
5. Produce landings biomass by applying mean weight.

The suggested catch option table format is as follows.

			Implied fishery	
	Harvest rate	Survey Index	Retained number	Landings (tonnes)
	0%	12345	0	0.00
	2%	$"$	247	123.45
	4%	$"$	494	246.90
	6%	$"$	741	370.35
	8%	$"$	988	493.80
F0.1	8.60%	$"$	1062	530.84
	10%	$"$	1235	617.25
	12%	$"$	1481	740.70
Fmax	13.50%	$"$	1667	833.29
	14%	$"$	1728	864.15
	16%	$"$	1975	987.60
	18%	$"$	2222	1111.05
	20%	$"$	2469	1234.50
	22%	$"$	2716	1357.95
Fcurrent	21.5%	$"$	2654	1327.09

E. Medium-Term Projections

None presented

F. Long-Term Projections

None presented

G. Biological Reference Points

Harvest ratios equivalent to fishing at F0.1 and Fmax were calculated in WKNeph (2009). These calculations assume that the TV survey has a knife-edge selectivity at 17 mm .

F-reference point	Harvest ratio
F0.1	9.3%
Fmax	15.8%

H. Other Issues

I. References

Table B1-1. Nephrops, Fladen (FU 7): Landings (tonnes), effort ('000 hours trawling) and LPUE (kg/hour trawling) of Scottish Nephrops trawlers, 1981-2007 (data for all Nephrops gears combined, and for single and multirigs separately).

| Year | All Nephrops gears combined | | Single rig | | | Multirig | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Landings | Effort | LPUE | Landings | Effort | LPUE | Landings | Effort | LPUE |
| 1981 | 304 | 8.6 | 35.3 | 304 | 8.6 | 35.3 | na | na | na |
| 1982 | 382 | 12.2 | 31.3 | 382 | 12.2 | 31.3 | na | na | na |
| 1983 | 548 | 15.4 | 35.6 | 548 | 15.4 | 35.6 | na | na | na |
| 1984 | 549 | 11.4 | 48.2 | 549 | 11.4 | 48.2 | na | na | na |
| 1985 | 1016 | 26.6 | 38.2 | 1016 | 26.6 | 38.2 | na | na | na |
| 1986 | 1398 | 37.8 | 37.0 | 1398 | 37.8 | 37.0 | na | na | na |
| 1987 | 1024 | 41.6 | 24.6 | 1024 | 41.6 | 24.6 | na | na | na |
| 1988 | 1306 | 41.7 | 31.3 | 1306 | 41.7 | 31.3 | na | na | na |
| 1989 | 1719 | 47.2 | 36.4 | 1719 | 47.2 | 36.4 | na | na | na |
| 1990 | 1703 | 43.4 | 39.2 | 1703 | 43.4 | 39.2 | $n a$ | na | na |
| 1991 | 3024 | 78.5 | 38.5 | 410 | 11.4 | 36.0 | 2614 | 67.1 | 39.0 |
| 1992 | 1794 | 38.8 | 46.2 | 340 | 9.4 | 36.2 | 1454 | 29.4 | 49.5 |
| 1993 | 2033 | 49.9 | 40.7 | 388 | 9.6 | 40.4 | 1645 | 40.3 | 40.8 |
| 1994 | 1817 | 48.8 | 37.2 | 301 | 8.4 | 35.8 | 1516 | 40.4 | 37.5 |
| 1995 | 3569 | 75.3 | 47.4 | 2457 | 52.3 | 47.0 | 1022 | 23.0 | 44.4 |
| 1996 | 2338 | 57.2 | 40.9 | 2089 | 51.4 | 40.6 | 249 | 5.8 | 42.9 |
| 1997 | 2713 | 76.5 | 35.5 | 2013 | 54.7 | 36.8 | 700 | 21.8 | 32.1 |
| 1998 | 2291 | 60.0 | 38.2 | 1594 | 39.6 | 40.3 | 697 | 20.5 | 34.0 |
| 1999 | 2860 | 76.8 | 37.2 | 1980 | 50.3 | 39.4 | 880 | 26.5 | 33.2 |
| 2000 | 2915 | 92.1 | 31.7 | 2002 | 62.9 | 31.8 | 913 | 29.2 | 31.3 |
| 2001 | 3539 | 108.2 | 32.7 | 2162 | 65.8 | 32.9 | 1377 | 42.4 | 32.5 |
| 2002 | 4513 | 109.6 | 41.2 | 2833 | 58.9 | 48.1 | 1680 | 50.7 | 33.1 |
| 2003 | 4175 | 53.7 | 77.7 | 3388 | 42.8 | 79.2 | 787 | 10.9 | 72.2 |
| 2004 | 7274 | 56.1 | 129.8 | 6177 | 47.5 | 130.2 | 1097 | 8.6 | 127.6 |
| 2005 | 8849 | 61.3 | 144.4 | 6834 | 43.4 | 157.5 | 2015 | 17.9 | 112.7 |
| 2006 | 9469 | 65.7 | 144.1 | 7149 | 50.2 | 142.4 | 2320 | 15.5 | 149.7 |
| 2007 | 11054 | 69.6 | 158.8 | 8232 | 52.2 | 157.7 | 2822 | 17.4 | 162.2 |

Figure B1-1. Neph rops, Fladen (FU 7), Long term landings, effort, LPUE and mean sizes.

Figure B1-2. Neph rops, Fladen (FU 7), Landings, effort and LP UEs by quarter and sex from Scottish Nephrops trawlers.

Figure B1-3. Neph rops, Fladen (FU 7), CP UEs by sex and quarter for selected size groups, Scottish Neph rops trawlers.

Figure B3-4. Distribution of Neph rops sediments in the Fladen Ground (FU 7). Thick dashed lines represent the boundary of the functional unit. Sediments are: Dark grey - Mud; Grey - Sandy Mud, Light Grey - Muddy.

Stock Annex: FU8, Firth of Forth

Stock specific documentation of standard assessment procedures used by ICES.

Stock Firth of Forth Nephrops (FU 8)
Date: 09 March 2009 (WKNEPH2009)
Revised by Sarah Clarke/Carlos Mesquita

A. General

A.1. Stock definition

Throughout its distribution, Nephrops is limited to muddy habitat, and requires sediment with a silt \& clay content of between $10-100 \%$ to excavate its burrows. This means that the distribution of suitable sediment defines the species distribution. Adult Nephrops only undertake very small scale movements (a few 100 m) but larval transfer may occur between separate mud patches in some areas. The Firth of Forth is located close inshore to the Scottish coast, towards the west of the central part of Division IV. The mud substrate in the Firth of Forth area is mainly muddy sand and sandy mud, and there is only a small amount of the softest mud. The population of Nephrops in this area is composed of smaller animals. Earlier research suggested that residual currents moving southward from this area transport some larvae to the Farn Deeps - recent larval surveys have not been undertaken, however, and it is unclear how significant this effect is. Outside the functional unit, a Nephrops population is found on a smaller patch of mud bey ond the northern boundary, off Arbroath.

A.2. Fis hery

The Nephrops fishery is located throughout the Firth but is particularly focussed on grounds to the east and south east of the Isle of May. Grounds located further up the Firth occur in areas closer to industrial activity and shipping.

Most of the vessels are resident in ports around the Firth of Forth, particularly at Pittenweem, Port Seton and Dunbar. Some vessels, normally active in the Farn Deeps, occasionally come north from Eyemouth and South Shields. During 2006 and 2007 the number of vessels regularly fishing in the Firth of Forth was been around 40 (23 under 10 m and 19 over 10 m vessels). This number varies seasonally with vessels from other parts of the UK increasing the size of the fleet. Local boats sometimes move to other grounds when catch rates drop during the late spring Nephrops moulting period. Traditionally, Firth of Forth boats move south to fish the Farn Deeps grounds. Single trawl fishing with 80 mm mesh size is the most prevalent method. Some vessels utilise a 90 mm codend. A couple of vessels have the capability for twin rigging. Night fishing for Nephrops is commonest in the summer. Day fishing is the norm in winter. A very small amount of creeling for Nephrops takes place, this is mostly by crab and lobster boats.

Nephrops is the main target species with diversification by some boats to squid, and also surf clams. Only very small amounts of whitefish are landed. The area is characterised by catches of smaller Nephrops and discarding is sometimes high. The latest
information for 2007 suggests that large catches of small Nephrops were taken. In the past, small prawns generally led to high tail:whole prawn ratios in this fishery but in recent years a small whole prawn 'paella' market developed.
In 2006, buyers and sellers regulations led to increased traceability and improved reporting of catches. This continued and improved further in 2007 and the reporting of landings is now considered to be much more reliable.

A.3. Ecosystem aspects

No information on the ecosystem aspects of this stock has been collated by the W orking Group.

B. Data

B.1. Commercial catch

Length compositions of landings and discards are obtained during monthly market sampling and quarterly on-board observer sampling respectively. Levels of sampling are considered adequate for providing representative length structure of removals in the Firth of Forth. Although assessments based on detailed catch analysis are not presently possible, examination of length compositions can provide a preliminary indication of exploitation effects.
LPUE and CPUE data were available for Scottish Nephrops trawls. Table B1-1 shows the data for single trawls, multiple trawls and combined. Examination of the long term commercial LPUE data (Figure B1-1) suggests that the stock is currently very abundant but the recent improvements in reporting of landings (due to 'buyers and sellers' legislation) may mean this is an artefact generated by more complete landings data. In addition, effort recording in terms of hours fished is non-mandatory which will also affect the trends in LPUE.

Males consistently make the largest contribution to the landings (Figure B1-2), although the sex ratio does vary. Effort is generally highest in the $3^{\text {rd }}$ quarter of the year in this fishery, but although the pattern was fairly stable in the early years, the pattern does not appear as strong in recent years and is 2007 was fairly evenly spread throughout the year. LPUE of both sexes has fluctuated through the time series and is currently at a high level. The comments about the quality of landings data are relevant here too. LPUE is generally higher for males in the $1^{\text {t }}$ and $4^{\text {th }}$ quarters, and for females in the $3^{\text {rd }}$ quarter - the period when they are not incubating eggs.

CPUE data for each sex, above and below 35 mm CL, are shown in Figure B1-3. This size was chosen for all the Scottish stocks examined as the size above which the affects of discarding practices were not expected to occur and the size below which recruitment events might be observed in the length composition. The data show a slight peak in CPUE for smaller individuals (both sexes) in 1999, with a decline after this, followed by a steady increase in both sexes from 2002 onwards. The CPUE for larger individuals showed a similar pattern with higher values in the most recent years.

B.2. Biological

Dynamics for this stock are poorly understood and studies to estimate growth have not been carried out. Assumed biological parameters are as follows: natural mortality was assumed to be 0.3 for males of all ages and in all years. Natural mortality was assumed to be 0.3 for immature females, and 0.2 for mature females.

Summary
 Growth parameters

Males; $\mathrm{L}_{\infty}=66 \mathrm{~mm}, \mathrm{k}=0.163$
Immature Females; $\mathrm{L}_{\infty}=66 \mathrm{~mm}, k=0.163$
Mature Females; $L_{\infty}=58 \mathrm{~mm}, k=0.065$,

$$
\text { Size at maturity }=26 \mathrm{~mm}
$$

Weight length parameters:
Males $\mathrm{a}=0.00028, \mathrm{~b}=3.24$
Females $a=0.00085, b=2.91$
Discards
Discard survival rate: 25\%.
Discard rate: 34.6\%

B.3. Surveys

TV surveys using a stratified random design are available for FU 8 since 1993 (missing surveys in 1995 and 1997). Underwater television surveys of Nephrops burrow number and distribution, reduce the problems associated with traditional trawl surveys that arise from variability in burrow emergence of Nephrops. On average, about 40 stations have been considered valid each year with more stations sampled in the last three years. The survey in 2006 was conducted in December so that densities may not be strictly compatible with the remainder of the series. Abundance data are raised to a stock area of $915 \mathrm{~km}^{2}$. General analysis methods for underwater TV survey data are similar for each of the Scottish surveys. The ground is predominantly of coarser muddy sand (Figure B3-1). Depending on the year, high variance in the survey is associated with different strata and there is no clear distributional or sedimentary pattern in this area. Abundance is generally higher towards the central part of the ground and around the Isle of May. In recent years higher densities have been recorded over quite wide areas. Confidence intervals have been fairly stable in this survey.
A number of factors are suspected to contribute bias to the surveys. In order to use the survey abundance estimate as an absolute it is necessary to correct for these potential biases. The history of bias estimates are given in the following table and are based on simulation models, preliminary experimentation and expert opinion, the biases associated with the estimates of Nephrops abundance in the Firth of Forth are:

B.4. Commercial CPUE

Scottish Nephrops trawl gears: Landings, discards and effort data for Scottish Nephrops trawl gears are used to generate a CPUE index. CPUE is estimated using officially recorded effort (hours fished) although the recording of effort is not mandatory. Combined effort for Nephrops single trawl and multiple Nephrops trawl is raised to landings reported by the four gears listed above. Discard sampling commenced in 1990 for this fishery, and for years prior to this, an average of the 1990 and 1991 values is applied. There is no account taken of any technological creep in the fleet.

For more information see section B. 1

B.5. Other relevant data

C. Historical Stock Development

1. Survey indices are w orked up annually resulting in the TV index.
2. Adjust index for bias (see section B3). The combined effect of these biases is to be applied to the new survey index.
3. Generate mean weight in landings. Check the time series of mean landing weights for evidence of a trend in the most recent period. If there is no firm evidence of a recent trend in mean weight use the average of the three most recent years. If, however, there is strong evidence of a recent trend then apply most recent value (don't attempt to extrapolate the trend further in the future).

D. Short-Term Projection

1. The catch option table will include the harvest ratios associated with fishing at $\mathrm{F}_{0.1}$ and Fmax. These values have been estimated by the Benchmark W orkshop (see section 9.2) and are to be revisited by subsequent benchmark groups. The values are FU specific and have been put in the Stock Annexes.
2. Create catch option table on the basis of a range of harvest ratios ranging from 0 to the maximum observed ratio or the ratio equating to $\mathrm{F}_{\text {max }}$, whichever is the larger. Insert the harvest ratios from step 4 and also the current harvest ratio.
3. Multiply the survey index by the harvest ratios to give the number of total removals.
4. Create a landings number by applying a discard factor. This conversion factor has been estimated by the Benchmark Workshop and is to be revisited at subsequent benchmark groups. The value is FU specific and has been put in the Stock Annex.
5. Produce landings biomass by applying mean w eight.

The suggested catch option table format is as follows.

			Implied fishery	
	Harvest rate	Survey Index	Retained number	Landings (tonnes)
	0%	12345	0	0.00
	2%	$"$	247	123.45
	4%	$"$	494	246.90
	6%	$"$	741	370.35
	8%	$"$	988	493.80
F0.1	8.60%	$"$	1062	530.84
	10%	$"$	1235	617.25
	12%	$"$	1481	740.70
Fmax	13.50%	$"$	1667	833.29
	14%	$"$	1728	864.15
	16%	$"$	1975	987.60
	18%	$"$	2222	1111.05
	20%	$"$	2469	1234.50
	22%	$"$	2716	1357.95
Fcurrent	21.5%	$"$	2654	1327.09

E. Medium-Term Projections

None presented

F. Long-Term Projections

None presented

G. Biological Reference Points

Harvest ratios equivalent to fishing at F0.1 and Fmax were calculated in WKNeph (2009). These calculations assume that the TV survey has a knifeedge selectivity at 17 mm .

| F-reference
 point | Harvest ra-
 tio |
| :--- | :--- | :--- |
| F0.1 | 8.0% |
| Fmax | 13.7% |

H. Other Issues

I. References

Table B1-1. Nephrops, Firth of Forth (FU 8): Landings (tonnes), effort (‘000 hours trawling) and LPUE (kg/hour trawling) of Scottish Nephrops trawlers, 1981-2007 (data for all Nephrops gears combined, and for single and multirigs separately).

Year	All Nephrops gears combined			Single rig			Multirig		
	Landings	Effort	LPUE	Landings	Effort	LPUE	Landings	Effort	LPUE
1981	945	42.6	22.2	945	42.6	22.2	na	na	na
1982	1138	51.7	22.0	1138	51.7	22.0	na	na	na
1983	1681	60.7	27.7	1681	60.7	27.7	na	na	na
1984	2078	84.7	24.5	2078	84.7	24.5	na	na	na
1985	1908	73.9	25.8	1908	73.9	25.8	na	na	na
1986	2204	74.7	29.5	2204	74.7	29.5	na	na	na
1987	1582	62.1	25.5	1582	62.1	25.5	na	na	na
1988	2455	94.8	25.9	2455	94.8	25.9	na	na	na
1989	1833	78.7	23.3	1833	78.7	23.3	na	na	na
1990	1901	81.8	23.2	1901	81.8	23.2	na	na	na
1991	1359	69.4	19.6	1231	63.9	19.3	128	5.5	23.3
1992	1714	73.1	23.4	1480	63.3	23.4	198	8.5	23.3
1993	2349	100.3	23.4	2340	100.1	23.4	9	0.2	45.0
1994	1827	87.6	20.9	1827	87.6	20.9	0	0.0	0.0
1995	1708	78.9	21.6	1708	78.9	21.6	0	0.0	0.0
1996	1621	69.7	23.3	1621	69.7	23.3	0	0.0	0.0
1997	2137	71.6	29.8	2137	71.6	29.8	0	0.0	0.0
1998	2105	70.7	29.8	2105	70.7	29.8	0	0.0	0.0
1999	2192	67.7	32.4	2192	67.7	32.4	0	0.0	0.0
2000	1775	75.3	23.6	1761	75.0	23.5	14	0.3	46.7
2001	1484	68.8	21.6	1464	68.3	21.4	20	0.5	40.0
2002	1302	63.6	20.5	1286	63.3	20.3	16	0.3	53.3
2003	1115	53.0	21.0	1082	52.4	20.6	33	0.6	55.0
2004	1651	63.2	26.1	1633	62.9	26.0	18	0.4	49.7
2005	1973	66.6	29.6	1970	66.5	29.6	3	0.1	58.8
2006	2437	61.4	39.7	2432	61.0	39.9	5	0.4	14.2
2007	2622	57.6	45.5	2601	57.1	45.6	21	0.5	43.2

Figure B1-1. Neph rops, Firth of Forth (FU 8), Long term landings, effort, LPUE and mean sizes.

Figure B1-2. Neph rops, Firth of Forth (FU 8), Landings, effort and LP UEs by quarter and sex from Scottish Neph rops trawlers.

Figure B1-3. Neph rops, Firth of Forth (FU 8), CP UEs by sex and quarter for selected size groups, Scottish Neph rops trawlers.

Stock Annex: FU9, Moray Firth

Stock specific documentation of standard assessment procedures used by ICES.

Stock Moray Firth Nephrops (FU 9)
Date: 09 March 2009 (WKNEPH2009)
Revised by Sarah Clarke/Carlos Mesquita

A. General

A.1. Stock definition

Throughout its distribution, Nephrops is limited to muddy habitat, and requires sediment with a silt \& clay content of between $10-100 \%$ to excavate its burrows. This means that the distribution of suitable sediment defines the species distribution. Adult Nephrops only undertake very small scale movements (a few 100 m) but larval transfer may occur between separate mud patches in some areas. The Moray Firth is located to the north west of Division IV. In common with other Nephrops fisheries the bounds of the Functional Unit are defined by the limits of muddy substrate. The major Nephrops fisheries within this management area fall within 30 miles of the UK coast. The Moray Firth (FU9) is a relatively sheltered inshore area, that supports populations of juvenile pelagic fish and relatively high densities of squid at certain times. The Moray Firth borders the Fladen funtional unit (FU7) and there is some evidence of Nephrops populations lying across this boundary.

A.2. Fishery

The Moray Firth area is fished by a number of the smaller class of Nephrops boat (1216 m) regularly fishing short trips from Buckie, Helmsdale, Macduff and Burghead. Most boats still fish out of Burghead, and are about 15 in number; leaving and returning to port within 24 hours (day boats). Many of the smaller boats are now only manned by one or two people. Several of the larger Nephrops trawlers fish the outer Moray Firth grounds on their way to or from the Fladen grounds (especially when they are fishing the Skate Hole area). Also in times of bad weather many of the larger Nephrops trawlers which would normally be fishing the Fladen grounds fish the Moray Firth grounds. In recent years a squid fishery has been seasonally important in the Moray Firth. Squid appear to the east of the Firth and gradually move west during the Summer, increasing in size as they shift. During the autumn the movement is reversed. A large fishery took place in 2004 that attracted a number of Nephrops vessels and in 2005, additional vessels joined in the seasonal fishery, but catches were noticeably down in 2006. In 2007 however the fishery for squid improved again and a number of boats switched effort until around October, with some boats fishing squid until December.

A.3. Ecosystem aspects

No information on the ecosystem aspects of this stock has been collated by the W orking Group.

B. Data

B.1. Commercial catch

Length compositions of landings and discards are obtained during monthly market sampling and quarterly on-board observer sampling respectively. Levels of sampling are considered adequate for providing representative length structure of removals in the Moray Firth. Although assessments based on detailed catch analysis are not presently possible, examination of length compositions can provide a preliminary indication of exploitation effects.

LPUE data were available for Scottish Nephrops trawls. Table B1-1 shows the data for single trawls, multiple trawls and combined. Examination of the long term commercial LPUE data (Figure B1-1) suggests that the stock increased in the early- 1980s, declined to a stable level over the next 12 years or so and has recently increased to its highest level in 2007. It is thought that gear efficiency changes have occurred over time, particularly in relation to multiple trawl gears but this has not been quantified. Additionally, improved reporting of landings data in recent years arising from 'buyers and sellers' legislation is likely to also to have contributed to the increase in LPUE. Furthermore, effort recording is non-mandatory in terms of hours fish and therefore it is unclear whether these trends and those that are discussed below are actually indicative of trends in LPUE.

Males generally make the largest contribution to the landings (Figure B1-2), although the sex ratio does vary, and females landings exceeded males in 1994. Effort is generally highest in the $3^{\text {rd }}$ quarter of the year in this fishery, but the pattern varies between years, and the seasonal pattern does not appear as strong in recent years. LPUE of both sexes remained relatively constant up to 2002, but has shown an increase since then. LPUE is generally higher for males in the $1^{\text {st }}$ and $4^{\text {th }}$ quarters, and for females in the $3^{\text {rd }}$ quarter - the period when they are not incubating eggs.

CPUE data for each sex, above and below 35 mm CL, are shown in Figure B1-3. This size was chosen for all the Scottish stocks examined as the general size limit for discarded animals. The data show a slight peak in CPUE for smaller individuals (both sexes) in 1995, with a slight decline after this and relatively stable values from 2001 onwards. There is a peak in catches of small males in 2006 quarter 4 but taken annually the pattern is relatively stable. The CPUE for larger males shows relatively stable levels during the late 1990's, and slightly higher levels in the most recent years, particularly from 2003 onwards. CPUE for large females declined in 2005 but have risen again over the past two years, and showed a significant large value in 2007 quarter 3.

B.2. Biological

Dynamics for this stock are poorly understood and studies to estimate growth have not been carried out. Assumed biological parameters are as follows: natural mortality was assumed to be 0.3 for males of all ages and in all years. Natural mortality was assumed to be 0.3 for immature females, and 0.2 for mature females.

Summary

Growth parameters:

Males; $\mathrm{L}_{\infty}=62 \mathrm{~mm}, \mathrm{k}=0.165$
Immature Females; $\mathrm{L}_{\infty}=62 \mathrm{~mm}, \mathrm{k}=0.165$
Mature Females; $\mathrm{L}_{\infty}=56 \mathrm{~mm}, \mathrm{k}=0.06$,

$$
\text { Size at maturity }=25 \mathrm{~mm}
$$

Weightlength parameters:

Males $\mathbf{a}=0.00028, b=3.24$
Females $a=0.00074, b=2.91$

Discards

Discard survival rate: 25\%
Discard rate: 7.4\%

B.3. Surveys

TV surveys are available for FU 9 since 1993 (missing survey in 1995). Underwater television surveys of Nephrops burrow number and distribution, reduce the problems associated with traditional trawl surveys that arise from variability in burrow emergence of Nephrops.
On average, about 36 stations have been considered valid each year, and are raised to a stock area of $2195 \mathrm{~km}^{2}$. General analysis methods for underwater TV survey data are similar for each of the Scottish surveys. The ground is predominantly of coarser muddy sand (Figure B3-1) and most of the variance in the survey is associated with a patchy area of this sediment to the west of the ground. Abundance has generally been higher towards the west of the ground but in recent years higher densities have been recorded throughout, and are quite evenly distributed at the east and west ends in 2006 and 2007. With the exception of 2003, the confidence intervals have been fairly stable in this survey.

A number of factors are suspected to contribute bias to the surveys. In order to use the survey abundance estimate as an absolute it is necessary to correct for these potential biases. The history of bias estimates are given in the following table and are based on simulation models, preliminary experimentation and expert opinion, the biases associated with the estimates of Nephrops abundance in the Moray Firth are:

B.4. Commercial CPUE

Scottish Nephrops trawl gears: Landings at age and effort data for Scottish Nephrops trawl gears are used to generate a CPUE index. CPUE is estimated using officially recorded effort (hours fished) although the recording of effort is not mandatory.

Combined effort for Nephrops single trawl and multiple Nephrops trawl is raised to landings reported by the four gears listed above. Discard sampling commenced in 1990 for this fishery, and for years prior to this, an average of the 1990 and 1991 values is applied. There is no account taken of any technological creep in the fleet.
For more information see section B. 1

B.5. Other relevant data

C. Historical Stock Development

1. Survey indices are worked up annually resulting in the TV index.
2. Adjust index for bias (see section B3). The combined effect of these biases is to be applied to the new survey index.
3. Generate mean weight in landings. Check the time series of mean landing weights for evidence of a trend in the most recent period. If there is no firm evidence of a recent trend in mean weight use the average of the three most recent years. If, however, there is strong evidence of a recent trend then apply most recent value (don't attempt to extrapolate the trend further in the future).

D. Short-Term Projection

1. The catch option table will include the harvest ratios associated with fishing at F0.1 and Fmax. These values havebeen estimated by the Benchmark Workshop (see section 9.2) and are to be revisited by subsequent benchmark groups. The values are FU specific and have been put in the Stock Annexes.
2. Create catch option table on the basis of a range of harvest ratios ranging from 0 to the maximum observed ratio or the ratio equating to $\mathrm{F}_{\text {max }}$, whichever is the larger. Insert the harvest ratios from step 4 and also the current harvest ratio.
3. Multiply the survey index by the harvest ratios to give the number of total removals.
4. Create a landings number by applying a discard factor. This conversion factor has been estimated by the Benchmark Workshop and is to be revisited at subsequent benchmark groups. The value is FU specific and has been put in the Stock Annex.
5. Produce landings biomass by applying mean weight.

The suggested catch option table format is as follows.

			Implied fishery	
	Harvest rate	Survey Index	Retained number	Landings (tonnes)
	0%	12345	0	0.00
	2%	$"$	247	123.45
	4%	$"$	494	246.90
	6%	$"$	741	370.35
	8%	$"$	988	493.80
F0.1	8.60%	$"$	1062	530.84
	10%	$"$	1235	617.25
	12%	$"$	1481	740.70
Fmax	13.50%	$"$	1667	833.29
	14%	$"$	864.15	
	16%	$"$	987.60	
	18%	$"$	1975	1231.05
	20%	$"$	2469	1357.95
	22%		2716	1327.09
Fcurrent	21.5%			

E. Medium-Term Projections

None presented

F. Long-Term Projections

None presented

G. Biological Reference Points

Harvest ratios equating to fishing at F0.1 and Fmax were calculated in WKNeph (2009). These calculations assume that the TV survey has a knife-edge selectivity at 17 mm and that the supplied length frequencies represented the population in equilibrium.

F-reference point	Harvest ra- tio
F0.1	8.9%
Fmax	16.6%

H. Other Issues

I. References

Table B1-1. Nephrops, Moray Firth (FU 9): Landings (tonnes), effort ('000 hours trawling) and LPUE (kg/hour trawling) of Scottish Nephrops trawlers, 1981-2007 (data for all Nephrops gears combined, and for single and multirigs separately).

Year	All Nephrops gears combined			Single rig			Multirig		
	Landings	Effort	LPUE	Landings	Effort	LPUE	Landings	Effort	LPUE
1981	1298	36.7	35.4	1298	36.7	35.4	na	na	na
1982	1034	28.2	36.7	1034	28.2	36.7	na	na	na
1983	850	21.4	39.7	850	21.4	39.7	na	na	na
1984	960	23.2	41.4	960	23.2	41.4	na	na	na
1985	1908	49.2	38.8	1908	49.2	38.8	na	na	na
1986	1933	51.6	37.5	1933	51.6	37.5	na	na	na
1987	1723	70.6	24.4	1723	70.6	24.4	na	na	na
1988	1638	60.9	26.9	1638	60.9	26.9	na	na	na
1989	2102	69.6	30.2	2102	69.6	30.2	na	na	na
1990	1700	58.4	29.1	1700	58.4	29.1	na	na	na
1991	1284	47.1	27.3	571	25.1	22.7	713	22.0	32.4
1992	1282	40.9	31.3	624	24.8	25.2	658	16.1	40.9
1993	1505	48.6	31.0	783	28.1	27.9	722	20.6	35.0
1994	1178	47.5	24.8	1023	42.0	24.4	155	5.5	28.2
1995	967	30.6	31.6	857	27.0	31.7	110	3.6	30.6
1996	1084	38.2	28.4	1057	37.4	28.3	27	0.8	33.8
1997	1102	47.7	23.1	960	42.5	22.6	142	5.1	27.8
1998	739	34.4	21.5	576	28.1	20.5	163	6.3	25.9
1999	813	35.5	22.9	699	31.5	22.2	114	4.0	28.5
2000	1343	49.5	27.1	1068	39.8	26.8	275	9.7	28.4
2001	1188	47.6	25.0	913	37.0	24.7	275	10.6	25.9
2002	1526	35.5	43.0	649	27.2	23.9	234	7.9	29.6
2003	1718	41.1	41.8	737	25.3	29.1	135	3.6	37.5
2004	1818	36.9	49.3	1100	29.2	37.7	123	2.5	49.2
2005	1526	37.6	40.6	1309	34.0	38.5	217	3.6	60.3
2006	1718	41.1	41.8	1477	37.4	39.5	241	3.7	65.1
2007	1818	36.9	49.3	1503	32.4	46.4	315	4.5	70.0

Figure B1-1. Nephrops, Moray Firth (FU 9), Long term landings, effort, LP UE and mean sizes.

Figure B1-2. Nephrops, Moray Firth (FU 9), Landings, effort and unstandardised LPUEs by quarter and sex from Scottish Nephrops trawlers.

CPUE - Males < 35 mm CL

CPUE - Males > $\mathbf{3 5} \mathbf{~ m m ~ C L}$

CPUE - Females < 35 mm CL

CPUE - Females > $\mathbf{3 5}$ mm CL

Figure B1-3. Nephrops, Moray Firth (FU 9), CP UEs by sex and quarter for selected size groups, Scottish Neph rops trawlers.

Quality Handbook

ANNEX:__SAN-NSEA
Stock specific documentation of standard assessment procedures used by ICES.

Working group: North Sea Demersal W orking Group
Updated:
21/09/2009 Steen Christensen

Sandeel in IV

General

Stock definition

For assessment purposes, the European continental shelf was divided into four regions for sandeel assessment purposes up to 1995: Division IIIa (Skagerrak), northern North Sea, southern North Sea, and Shetland Islands and Division VIa. These divisions were based on regional differences in growth rate and evidence for a limited movement of adults between divisions (e.g. ICES CM 1977/F:7, ICES CM 1991/Assess:14.). The two North Sea divisions were revised in 1995, and it was decided to amalgamate the two stocks into a single stock unit with two fleets, one fleet in the northern North Sea and one in the southern North Sea. The Shetland sandeel stock is assessed separately. ICES assessments have used these stock definitions since 1995.

Sandeels are largely stationary after settlement and the North Sea sandeel fishery must be considered as exploiting a complex of local populations (Proctor et al. 1998, Wright et al. 1998). Recruitment to local areas may not only be related to the local stock, as some interchange betw een areas situated close to each other seems to take place during the early phases of life before settlement.
Based on the distribution and simulated dispersal of larval stages, Wright et al. (1998) suggest that the North Sea stock could be split into six areas, including the Shetland as a separate population. Assessments have tentatively been made for some of these areas (Pedersen et al. 1999) and there was high correlation between the results from the study and the assessment made by the WG for the whole North Sea. Presently there are insufficient information about sandeel biology, especially about the intermixing of the early life stages between spawning aggregations, to allow for and alternative separation of the North Sea into separate population units to be assessed.

Recent studies indicate a low interchange of pre-settled sandeels between the spawning grounds identified (Christensen et al. Accepted, Christensen et al. Submitted). These results also indicate that the population structure suggested by Wright et al. (1998) need to be revised. W ork is currently conducted to do this.

Fis hery

Technical measures for the sandeel fishery include a minimum percentage of the target species at 95% for meshes < 16 mm , or a minimum of 90% target species and maximum 5% of the mixture of cod, haddock, and saithe for 16 to 31 mm meshes.

Most of the sandeel catch consists of the lesser sandeel Ammodytes marinus, although small quantities of other Ammodytoidei spp. are caught as well. There is little bycatch of protected species (ICES WGNSSK 2004).
The fishery is seasonal. The geographical distribution of the sandeel fishery varies seasonally and annually, taking place mostly in the spring and summer. In the third quarter of the year the distribution of catches generally changes from a dominance of the west Dogger Bank area back to the more easterly fishing grounds.
The sandeel fishery developed during the 1970s, and landings peaked in 1997 and 1998 at more than 1 million tons. There was a steep drop in total landings from 2002 to 2003, after which they have remained been low (Figure 4.2.1.1 and Table 4.2.1.2). The average landings in the last 20 years are on 632000 t and total landings in 2009 were 348000 t .
The spatial distribution of sandeel landings is considered as a good representation of stock distribution, except for areas where severe restrictions on fishing effort is applied (i.e. the Firth of Forth, Shetland areas, and Norwegian EEZ in 2006 and 2009). Up to 2002 and particularly prior to 1998, most landings of sandeels in March were taken from the eastern North Sea banks whilst sandeel landings in April-June were mainly from the west Dogger Bank. In some years a relatively large part of the sandeel landings are taken from the central and eastern North Sea along the Danish west coast. From 1991, grounds off the Scottish east coast have been targeted particularly in June. How ever, since 2000 the banks in the Firth of Forth area have been closed to fishing.

Large variations in the fishing pattern occurred concurrent with the decline in the total fishery and CPUE in 2003. The distribution of landings in the southern North Sea in 2003 to 2005 seemed more extensive than the typical long-term pattern in the same area. Further, grounds usually less exploited became more important for the total fishery during the same period. In 2006 there was another large change in the fishing pattern, when the fishery showed a strong concentration at the fishing grounds in the Dogger Bank area. Although this overall large variation in fishing pattern there is a general high importance for most years of the Dogger Bank area.
In the Northern North Sea, mainly NEEZ, the change in the spatial pattern was significantly different from southern part. The highest landings from a single statistical square were taken in 1995 on the Vikingbank, the most northerly fishing ground for sandeel in the North Sea. How ever, in 1996 landings from the Vikingbank dropped substantially, and since 1997 have been close to null. The marked reduction in landings around 2000 in NEEZ was accompanied by a marked contraction of the fishery to a small area in the southern part of NEEZ, the Vestbank area. In this area landings remained high in 2001 and 2002 due to the strong 2001 year-class. How ever, the 2001 year-class was only abundant in the Vestbank area, which resulted in a highly concentrated fishery and the decimation of the year-class before it reached maturity in 2003. This may have led to the collapse of the sandeel fishery in NEEZ. In the EU EEZ any contraction of the fishery has been less apparent.

The sandeel fishing season was unusual short in both 2005 and 2006, starting later and ending earlier than in previous years. The late start of the fishery was partly because the Danish fishery first opened the 1st April, in accordance with a national regulation introduced in 2005. Further, weekly data on the oil content of sandeels in the commercial landings, provided by Danish fish meal factories, indicated a late onset of sandeels feeding season in both 2005 and 2006 and that sandeels therefore became available to the fishery later than usual. Landings in the second half year of
both 2005 and 2006 were on a low level compared to previous years. Only 14.000 tones were recorded in 2005 and 17.000 tones in 2006.

Regulation of the fishery is no explanation to the small fishery observed from 2003 and on-wards. The TAC in force has never been restrictive in the sandeel fishery, and in 2005 (the only year when additional regulation was introduced) the fishery was first regulated in July after the main fishing season.
There was a 50% decline in the number of Danish vessels (from 200 to 98 vessels) fishing sandeels from 2004 to 2005.
The Danish industrial vessels were, in 2007, given individual tradable quotas (ITQ) on sandeels. The introduction of ITQ accelerated the change towards fewer and larger vessels, and in 2009 only Danish 84 were fishing sandeels.
In 2007 the regulation of the fishery was a strong limitation on the effort used. In 2008, when the TAC was not reached, high fuel prices and low prices of fish meal were claimed by the industry to limit the fishery. The reduction of fleet capacity in combination with the introduction of ITQ is now considered to be a strong limitation of effort.

Also for the Norwegian fleet a drastic decline in number of vessels fishing sandeels has been observed in recent years. Of the 41 Norwegian vessels that fished sandeel in 2007, 9 participated for the first time. Since 199825 of the 41 vessels entered the fishery during this 10 yr period, 9 vessels were rebuilt (either extended or had larger engines installed) whereas only 7 vessels remained unaltered. In addition, there is likely to be a continuous increase in efficiency due to improvement in fishing gear, instruments etc.

Ecosystem as pects

Due to the stationary habit of post-settled sandeels (DIFRES unpublished information, Gauld 1990), a patchy distribution of the sandeel habitat (Jensen et al. 2001, Jensen and Rolev 2004), and a limited interchange of the planktonic stages betw een the spawning areas (Christensen et al. Accpeted, Christensen et al. Submitted, Gauld et al. 1998) the sandeel stock in IV consist of a number of sub-populations (Wright et al. 1998).

The catches of sandeels in area IV consist mainly of the lesser sandeel Ammodytes marinus. However, other species of sandeels is also caught. At some of the grounds in the Dogger Bank area the smooth sandeel Gymnammodytes semisquamatus can be important, and in the catches from more coastal grounds the other Ammodytes species Ammodytes tobianus can be impor-tant. The greater sandeel Hy peroplus lanceolatus appears in the catches from all grounds, but usually in insignificant numbers compared to A. marinus. The population dynamics of A. tobi-anus, G. semisquamatus, and H . lanceolatus are largely unknown, and so are the possible ef-fects on these species of commercial fisheries.

The stock dynamics of sandeels is driven by a highly variable recruitment and a high natural mortality in addition to fishing. The recruitment seems more linked to environmental factors than to the size of the spawning stock biomass. This was confirmed by analyses carried out by the ICES Study Group on Recruitment Variability in North Sea Planktivorous Fish (ICES-SGRECVAP 2006). SGRECVAP considered there was a common trend in recruitment for herring, Norway pout and sandeel with significant shift in recruitment in 2001. However, it could not be assumed that the same mechanism was common for all three species. It was clear that the poor sandeel recruitment
from 2002 occurred at low spawning-stock biomass. Further, although the decline in recruitment in sandeels could be linked to both the NAO index and to annual average abundance of Calannus finmarchicus in the central North Sea, it was not possible to determine the mechanisms driving recruitment in sandeels or the link between changes in the environment and sandeel population dynamics.
ACFM consider that there is a need to ensure that the sandeel stock remains high enough to provide food for a variety of predator species.
The decline in the sandeel population concurrent with a markedly change in distribution (ICES WGNSSK 2007) has increased the possibility of local depletion, of which there now is some evidence (ICES WGNSSK 2007). This may be of consequence for marine predators that are dependent on sandeels as a food source.

Sandeels are important prey species for many marine predators, but the effects of variation in the size of this stock on predators are poorly known. Although the direct effects of sandeel fishing that have been identified on other species fished for human consumption, e.g. haddock and whiting are relatively small in comparison to the effects of directed fisheries for human consumption species there is still relatively scant information on the indirect effects of the sandeel fishery.

In 1999 the U.K called for a moratorium on sandeel fishing adjacent to seabird colonies along the U.K. coast and in response the EU requested advice from ICES. An ICES Study Group, was convened in 1999 to assess whether removal of sandeel by fisheries has a measurable effect on sandeel, whether establishment of closed areas and seasons for sandeel fisheries could ameliorate any effects, and to identify possible spatial and/or temporal restrictions of the fishery as specifically as possible. The ICES Advisory committees (ACFM and ACE) accepted the advice from the study group. STECF (1999) agreed with this ICES advice and the EU advised to close the fishery whilst maintaining a commercial monitoring. A 3-year closure, from 2000 to 2002, was decided. All commercial fishing was excluded, except for a maximum of 10 boat days in each of May and June for stock monitoring purposes. The closure was maintained for three years (see e.g. Wright et al. 2002) and has been extended until 2007, with a small increase in the effort of the monitoring fishery. There is presently no decision on weather a full commercial sandeel fishery will be reopened in the Firth of Forth area.

In general, fishing on sandeel aggregations at a distance less than 100 km from seabird colonies has been found to affect some surface feeding bird species, especially black-legged kittiwake and sandwich tern (Frederiksen et al. 2004, 2005). Recent research of effects on seabird predators due to changes in sandeel availability showed that black-legged kittiwake Rissa tridactyla in the Firth of Forth area off the Scottish east coast was related to abundance of both $1+$ group, the age class targeted by the fishery, and 0 group sandeels. The same relationship was not found for six other sandeel dependent seabird species. Controlling for environmental variation (sea surface temperature, abundance of larval sandeels and size of adult sandeels), Frederiksen et al. (submitted) found that breeding productivity in the seabird colony on the Isle of May was significantly depressed by the fishery during periods of unregulated fishery for one surface-feeding seabird species (black-legged kittiwake), but not for four diving species. The mechanism by which the fishery affects the seabird how ever remains unclear as the fishery is not always in direct competition with the birds. The strong impact on these surface-feeding species, while no effects are documented found for diving species, could result from its inherently high sensitivity to reduced prey avail-
ability, from changes in the vertical distribution of sand lance at lower densities, or from sand lance showing avoidance behaviour to fishery vessels.
The ecosystem effects of industrial fisheries are discussed in the Report of the ICES Advisory Committee on Ecosystems, June 2003, Section 11 (ICES Cooperative Research Report No. 262).
Other ecosystem effects of the sandeel fishery are discussed in section 16.5 and in the ICES Report of the Advisory Committee on Ecosystems, June 2003, Section 11.

Data

Commercial catch

In the last 20 years the landings of sandeels in IV have been taken mainly by Denmark and Norway with UK/Scotland, Sweden and Faroes Isl. contributing a much smaller part of total landings.
Age, length and weight at age data are available for Denmark and Norway. This data is used to estimate numbers by age in the landings. Prior to 1996, the Norwegian age composition data were based on Danish ALK's. Catch numbers and weight at age for the southern North Sea are based only on Danish age compositions.

Denmark More details to be included in this section

Industrial species are not sorted by species before processing and it is assumed that the landings consist of one species only in the calculation of the official landings. The WG estimate of landings is based on samples for species composition taken by the Fishery Inspectors controling of the by-catch regulation. At least one sample (10-15 kg) per 1000 tons landings is taken and these samples are used to estimate average species composition by area (ICES rectangles) and month. This species/area/period key, logbook data (spatial distribution) and landings slip data (quantity) are used to derive the Danish WG estimates of landings of sandeel and by-catch of other species (further information can be found in ICES, 1994/Assess:7; Dalskov, 2002).

Norway Text to be inserted by Norway

For Norway and Sweden, the official landings and the WG estimated landings are the same.

UK/Scotland Text to be inserted by UK/Scotland

Sweden Text to be inserted by Sweden

The text table below shows which country supplies which kind of data:

	Data				Caton(catch in weight)
Country	Canum (catch at age in numbers)	Weca (weight at age in the catch)	Matprop (proportion mature by age)	Length composition in catch	
Denmark Norway	x	x	x		x
UK/Scotland Sweeden	x	x	x		x
Farao Islands	x				

All input files are Excel spreadsheet files.
The national data sets have been imported in a database aggregated to international data by DIFRES.

The combined Danish and Norwegian age composition data and weight at age data are applied on the landings of UK, Sweeden and Farao Isl., assuming catches from these countries have the same age composition and weight at age as the Danish and Norwegian landings.

Biological

Historically, assessments were done separately for the Northern and Southern North Sea. In recent years, the assessment has been done for the whole North Sea, but data are still compiled separately for the two areas. The catch numbers and weight at age data for the Northern North Sea are constructed by combining Danish and Norwegian data by half-year.
The catch numbers and weight-at-age data for the northern North Sea were constructed by combining Danish and Norwegian data by half-year. Prior to 1996, the Norwegian age composition data were based on Danish ALK's. Catch numbers and weight-at-age for the southern North Sea are based on Danish age compositions. The mean weight at age in the catch used in the assessment is the mean weights at age in the catch for the Southern and Northern North Sea weighted by catch numbers. The mean weight at age in the stock is copied from the mean weight in the catch first halfyear, and an arbitrary chosen weight at 1 gram was used for the 0 -group.

Mean weight at age shows large fluctuations over time, especially the large changes in mean weight from 1994 to 1996, which, partly, may be explained by a change in the methodology used for age determination (ICES 1995) that was applied from 1995 and 1996.

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

Values for natural mortalities are the same as used since 1989 (ICES CM 1989/Asssess:13). During the WGNSSK 2005 meeting an exploratory assessment was carried out, using the natural mortality for sandeels estimated by ICES-SGMSNS (2005). The time series of natural mortality only include up to 2003, so 2003 estimates were copied to 2004 and 2005. In contras to the fixed values of natural mortality used in previous sandeel assessments, the natural mortalities estimated by ICES-SGMSNS (2005) show large variability over years. The most significant differences between the natural mortalities of sandeels used in previous sandeel assessments and those estimated by ICES-SGMSNS (2005) are those for age-0 sandeels. The natural mortalities of age-0 sandeels estimated by ICES-SGMSNS (2005) are about twice as high than those used in previous sandeel assessments.
The proportion mature is assumed constant over the whole period with 100% mature from age 2 and 0% of age 0 and 1 . Recent research indicates however, that there are large regional variations in age at maturity of Ammodytes marinus in the North Sea (Boulcott et al. 2006). Whilst sandeels in some areas seem to spawn at age 2 or older, sandeels in other regions seem to mature and spawn at age 1 . As the decision to spawn at age 1 or 2 is an annual event, it is likely that there are large regional and annual variations in the fraction of the populations of the sandeels that contribute to the spawning. The age at maturity keys used in the assessment might thus considerably underestimate the spawning biomass of sandeels in the North Sea.

The fishing fleet catches sandeels in different parts of the North Sea during the year, and the fishing pattern changes from year to year. Because sandeels, Ammodytes marinus, in the North Sea consist of a number of sub populations (section 1.1.1) the industrial fishery target different part of the sandeel populations during the year and between years. There seem to be significant spatial and temporal variations in emergence behaviour (e.g. Rindorf et al. 2000) and growth (e.g. Boulcott et al. 2006, Pedersen et al. 1999; Wright et al. 1998) of sandeels in the North Sea. Further, there are age/length dependent variations in the burrowing behaviour of sandeels (Kvist et al. 2001). The information about age compositions in the catches and the age and weight relationships thus represent average values over time and space and reflect the variability in emergence behaviour and growth. For example, weight at age of sandeels seems to vary both betw een years and between Danish and Norwegian catches.

Surveys

There is no survey time-series available for this stock. As no recruitment estimates (abundance of age 0 sandeels second half year) from surveys are available, recruitment estimated in the assessments are based exclusively on commercial catch-at-age data. The tuning diagnostics indicate that the 0 -group CPUE is a poor predictor of recruitment.

The need for fishery independent information on sandeel distribution and abundance has been highlighted by ICES-WGNSSK (2006 and 2007). The demand for such information has increased due to the recent years decline in the North Sea sandeel stock concurrent with large changes in distribution and in the fishing pattern.

Different survey approaches are presently investigated by European research institutes, to establish a time series of fishery independent abundance estimates for sandeels in the North Sea. This is not a trivial job, because of the unpredictable emergence behaviour of sandeels, i.e. any sampling approach must take account of that part of the population can be in the water column as well as in the sea bed (Greenstreet et al. 2006). Further, more in total 238 individual sandeel fishing grounds are identified (Jensen and Rolev 2004). The total area of the sandeel fishing constitutes 15831 km 2.

Descriptions of the survey methods that are presently explored and preliminary information from these surveys are given by ICES WGNSSK (2006 and 2006) and ICES_AGSAN (2007).

Commercial CPUE

As in previous assessments effort data from the commercial fishery in the northern and southern North Sea are treated as two independent tuning fleets, separated into first and second half year.
Because of the trends in the residuals for 1-group sandeels in the first half year, the two tuning fleets in the first half year were in the final assessment from 2005 split into two time periods, i.e. before and after 1999. This change in the tuning series removed the trends in the residuals of log stock numbers, and the tendency to underestimate F and overestimate SSB was reduced. Information about the size of the trawls used by Danish vessels fishing sandeels show an increase in trawl size from 1988 to 1994 and a larger increase from 1997 to 1998. This is a clear indication of an increase in catchability of the Danish vessels fishing sandeels, due to gear technology. However based only on this information it is not possible to quantify the likely change in catchability over the years.

The following tuning series were are available for the assessment:
Fleet 1: Northern North Sea 1983-1998 first half year
Fleet 2: Northern North Sea 1999 - present first half year
Fleet 3: Southern North Sea 1983-1998 first half year
Fleet 4: Southern North Sea 1999 - present first half year
Fleet 5: Northern North Sea 1983 - present second half year
Fleet 6: Southern North Sea 1983 - present second half year
The effort data for the southern North Sea prior to 1999 are only available for Danish vessels, but since 1999 Norwegian vessels have also provided effort data. The effect of this on the assessment is analysed in this year's assessment. The reason for including the Norwegian effort data for first half year for the southern North Sea into the tuning fleet is that in recent years Norwegian catches in the southern North Sea in first half year constitute a significant part of Norwegian landings in the North Sea. The tuning fleet used for the northern North Sea is a mixture of Danish and Norwegian vessels. A separation of the Danish and Norwegian fleets is presently not possible, due to the lack of Norwegian age-length keys for the period before 1996. Separate national fleets would have been preferable because this would have made procedure for the generation of the tuning series more transparent. This issue should be addressed at the next benchmark assessment.

The size distribution of the fleet has changed through time. Therefore effort standardisation is required. The assumption underlying the standardisation procedure is that CPUE is a function of sandeel abundance and vessel size. Standardised effort is calculated from standardised CPUE and total catch. CPUE is standardized to a vessel size of 200 Gross Tonnes (GR) using the relationship:

CPUE $=a^{*} \mathrm{GR}^{b}$

where a and b are constants and GR is vessel size in GR
The constants a and b were prior to 2003 estimated for each year by performing the regression analysis:
$\operatorname{Ln}(\mathrm{C} / \mathrm{e})=\ln (a)+b^{*} \ln (\mathrm{GR})$ (2)
where $\mathrm{C}=$ catch in ton, $\mathrm{e}=$ effort in days spend fishing, and the rest of the parameters are as in (1).

Since 2003 the parameters in (2) have estimated using catch and effort data on single trip level, instead of average values of catch and effort for each vessel size category (see ICES 2004). The data used for the regression is logbook data for the Danish industrial fleet for the years 1984 to 2003 and first half year of 2004. General linear models were used to estimate the parameters in:
$\ln (\mathrm{CPUE})=\mathrm{d}_{y}+\mathrm{f}_{y}{ }^{*} \ln (\mathrm{GR})$
where $y=$ year, $G R=$ vessel size in GR as defined in Table 1, and the remaining factors are constants. Log transformation was required to stabilise the variance in CPUE to fit the model although it does result in a more skewed distribution of GT leading to the smaller vessels receiving a higher weight in the subsequent regression. The GLM was carried out by half year (first and second half year) and area (northern and southern North Sea) to generate estimates of effort for the fleets presently used in the assessment of sandeels in IV. Type III analysis was used to test for significance of parame-
ters. All analyses were weighted by the number of days spend fishing, as the variation on the average catch per day fishing decreases with the number of days fished. The results of the analysis and the parameter estimates are given in Table 13.1.3.2.
The parameters estimated in (3) were used to estimate CPUE for a vessel size of 200 GR from:

CPUE=edy ${ }^{*} 200{ }^{f y}$ (4)
Mean CPUE of Danish and Norwegian fleets, after the Norwegian CPUE had been standardised to a vessel size of 200 GR , was estimated as a weighted mean weighted by the catches sampled used to estimate CPUE. Total standardised effort was afterwards estimated from the combined Danish and Norwegian CPUE and total international catches.

As no recruitment estimates from surveys are available, recruitment estimates are based exclusively on commercial catch-at-age data. The tuning diagnostics indicate that the 0 -group CPUE is a poor predictor of recruitment.
There is a relatively poor correlation between the tuning indices and the stock, which may be due to the fact that several sub-stocks are assessed as a single unit.

Other relevant data
None.

Estimation of Historical Stock Development

The Seasonal XSA (SXSA) developed by Skagen (1993) was up to 2001 used for stock assessment of sandeel in IV. Annual XSA was tried in 2002 WG where it was concluded that the two approaches gave similar results. For a standardization of methodology, it was decided to shift to XSA in 2003. In 2004 SXSA was used again for the final assessment, the reason being that data were available for the first half year of 2004 for the assessment. SXSA has been used os the final assessment since 2004. The XSA are used for comparison using the following settings:

Time series weights	none
Power model	no
Catchability independent of age	$>=2$
F-shrinkage S.E.	1.5 (5 years and 2 ages)
Min. standard error for pop. estimate	0.3
Prior weighting	none
Number of iterations	20
Convergence	Yes

In the SXSA weighting of estimated catchabilities (rhat) is set manually, where last years data is down weighted compared to previous years. Estimated survivors are weighted from manually entered data, where estimates of survivors are given a lower weighting in the second half of the year. This setting was chosen because the fishery inflicts the majority of the fishing mortality in the 1st half of the year and thus the signal from the fishery is considered less reliable in the second half.
During the benchmark assessment in 2004 (ICES-WGNSSK 2005) the effect of changing some of the default settings was explored. The assumption in the assessment of constant catchability for the tuning fleets over years, was analysed. Further, the effect of weighting the survivors with the inverse variance of the estimated \log catchability, instead of the manual weighting, was explored. At last, the effect of down weighting last half years data in the estimation of the inverse catchability was analysed. There were no major effects on the assessment results of changing these settings, i.e. the same trends were seen in SSB, R and F. It was therefore decided to keep the default settings.

During the 2005 WG meeting the SMS model was used as a comparison to the SXSA. The SXSA and SMS explorative runs gave quite similar results for the time trend of SSB, but the absolute levels differ between model configurations. The main difference in the explorative runs is in the estimate of fishing mortality. Fs for the most recent years were estimated higher and more variable by the SMS model. All SXSA runs showed a decrease in F since 2001, while SMS estimated a step decrease in F in 2003 followed by a seep increase in 2003 and subsequently decreases in 2004 and 2005. Both SXSA and SMS assume constant catchability in the CPUE time series. In addition, SMS assumes constant catchability (or more correctly, constant exploitation pattern) for the F-model and catch data. CPUE time series are however, subset of the total international catch data and changes in the exploitation pattern will violate the assumption of constant catchability for the CPUE time series. Said in another way; if exploitation pattern changes, the assumptions for both models are violated. It is difficult to judge whether the SXSA assumption that catch data are exact, or the SMS assumption that exploitation pattern are constant, violates the assumptions most. The F values from SXSA shows a very variable exploitation pattern from year to year, and extreme F values for age 4 . This indicates that there might be a considerable sampling uncertainty in the international catch at age data, which SMS might be better to handle. However, SXSA was chosen for the final assessment, because the model is the default model for this stock and SXSA does not rely on the assumption of constant exploitation pattern in catch at age data.

During the WGNSSK 2005 meeting an exploratory assessment was carried out, using the natural mortality for sandeels estimated by ICES-SGMSNS (2005, see section
1.1.2). The assessment using the natural mortalities estimated by ICES-SGMSNS (2005) showed similar trends in SSB as the assessment using the fixed natural mortalities, whereas the estimates of recruitment and F, were generally higher in assessment using the natural mortalities estimated by ICES-SGMSNS (2005). This difference was mainly due to the larger natural mortality for the 0 -group sandeels used in the assessment using the natural mortalities estimated by ICES-SGMSNS (2005). There was no difference in the performance of the two assessments, and as such, no basis for an objective choice between configurations. Because the SGMSNS group express some reservation about the quality of the estimate of natural mortality for the most recent years these natural mortalities have not been used in the final assessment for sandeels in IV.

The low number of age groups makes the assessment highly sensitive to estimated terminal fishing mortalities for the oldest age (age 3). This in combination with an assumed constant and poorly determined proportion mature makes the SSB estimate highly uncertain.
In the 2009 assessment the exploratory analyses indicated that the perception of the stock and the retrospective bias were sensitive to the tuning fleets from the northern North Sea in particular.

The settings of SXAS as used in the SPALY run gives equal and fixed weighting to the CPUE indices from the northern and southern areas. This seems unreasonable as the overall effort and catch proportions in the two areas have changed over the years. In recent years the fishing effort in the northern North Sea have declined both in absolute terms and relative to the effort applied in southern North Sea. For example the average total standardised effort in the period 1983-2002 estimated at 5620 days declined to an average at 1620 days in the period 2003 - 2009. In 2009 the effort in this area was estimated at 840 days only. Furthermore in 2006 and 2009 the Norwegian EEZ w as closed to fishery. In these years the fishery from the northern North Sea was restricted to very few squares in sampling area 3 .
All the exploratory assessments that down weighted the influence of the northern CPUE indices provided significantly less biased retrospective patterns than the SPALY assessment. In addition the residuals are decreased when the northern tuning fleets are down weighted in the assessment.
As it was not possible to find an objective way to exclude parts of the northern CPUE indices from the assessment it was decided to adopt exploratory assessment 4 as the final run. In this run model and data determine the weighting of the individual tuning fleets. The same approach is also used in the Norway Pout assessment also using the SXSA model.

Short-Term Projection

The high natural mortality of sandeel and the few year classes in the fishery make the stock size and catch opportunities largely dependent on the size of the incoming year classes. Quantitative estimates of recruits (age 0) in the year of the assessment are not available at the time of the WG. Traditional deterministic forecasts are therefore not considered appropriate.

The high natural mortality of sandeel and the few year classes in the fishery make the stock size and catch opportunities largely dependent on the size of the incoming year classes.

0-group CPUE is a poor predictor of recruitment (ICES-WGNSSK 2003) why traditional deterministic forecasts are not considered appropriate. However, because of the low sandeel stock WGNSSK provided indicative short term prognoses during the meetings from 2004 and on, using a range of scenarios for the recruitment and exploitation pattern.
The short term forecasts from 2004 and 2005 overestimated the SSB in 2005 and 2006 by a factor 2-3 when compared to the SSB estimated by the SXSA in 2006. This overestimation bias was addressed during the 2006 WG meeting, carrying out a short term forecast, where the start population and the F-s-at-age in the first half year of 2006 was corrected according to the bias identified in the assessment. In order to estimate potential bias in the terminal population sizes and F's, an analysis was made from the retrospective SXSA runs. A bias factor was determined for each year by dividing the terminal estimate of each retrospective run with the "true" value as estimated by this year's final assessment. The bias factor taken forwards to the short term forecast was the mean ratio over the period 2000-2005. As retrospective corrections continue to be made for several years, the bias correction factors for the most recent 1-2 years may be underestimates. Additional analyses were made to investigate the change in bias correction when comparing terminal values with "converged" values taken from retrospective runs 1 or 2 years later. This demonstrated that the bulk of the correction is made in the first year with much smaller corrections in the second year.

Medium-Term Projections

Not done

Long-Term Projections

Not done

Biological Reference Points

There is no management objective set for this stock. There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. Management of fisheries should try to prevent local depletion of sandeel aggregations, particularly in areas where predators congregate.
In 1998 ACFM proposed that $\mathbf{B}_{\lim }$ be set at $430,000 t$, the lowest observed SSB. The $\mathbf{B}_{\text {pa }}$ was estimated at $600,000 \mathrm{t}$, approximately $\mathbf{B}_{\lim }{ }^{*} 1.4$. This corresponds to that if SSB is estimated to be at $\mathbf{B}_{\text {pa }}$ then the probability that the true SSB is less than $\mathbf{B}_{\lim }$ will be less than 5% (assuming that estimated SSB is log normal distributed with a CV of 0.2). No fishing mortality reference points are given. These reference points are based on an assessment using another tuning method than used from 2002 (see section 1.2.4).

Other Issues

Recent investigations (Greenstreet et al. 2006) showed the biomass of age 1+ sandeels increased sharply in the Firth of Forth area in the first year of the closure and remained higher in all four of the closure years analysed, than in any of the preceding three years, when the fishery was operating. Further, the biomass of 0-group sandeels in three of the four closure years exceeded the biomass present in the three years of commercial fishing. The closure appears to have coincided with a period of enhanced recruit production.

References

Boulcott P., Wright P.J., Gibb F., Jensen H. and Gibb I. 2006. Regional variation in the maturation of sandeels in the North Sea. ICES Journal of Marine Science. 64: 369-376.

Christensen A., Hochbaum U., Jensen H, Mosegaard H, St. John M., and Schrum C. Hydrodynamic backtracking of fish larvae by individual-based modelling. Accpeted by MEPS.
Christensen A., Jensen H., Mosegaard H., St. John M., and Schrum C. Sandeel larval transport patterns in North Sea from an individual-based hydrodynamic egg and larval model. Submitted.

Daunt F., Wanless S, Greenstreet S.P.R., Jensen H., Hamer K.C. Hamer and Harris P.H. The impact of fishery closure on seabird food consumption, distribution and productivity in the northwestern North Sea. Submitted.
Frederiksen, M., Wanless, S., Rothery, P. \& Wilson, L. J. 2004. The role of industrial fisheries and oceanographic change in the decline of North Sea black-legged kittiwakes. Journal of Applied Ecology, 41, 1129-1139.

Frederiksen M, Wright PJ, Heubeck M, Harris MP, Mavor RA, Wanless S (2005) Regional patterns of kittiwake Rissa tridactyla breeding success are related to variability in sandeel recruitment. Mar Ecol Prog Ser 300: 201-211.
Frederiksen M., Jensen. H., Daunt F., Mavor R.A., and Wanless S. Differential effects of a local industrial sand lance fishery on seabird breeding performance. Submitted.

Gauld A. 1990. Movements of lesser sandeels (Ammodytes marinus Raitt) tagged in the northwestern North Sea. J. Cons. int. Explor. Mer. 46: 229-231.

Greenstreet S., Armstrong E., Moseg aard H., Jensen H., Gibb I., Fraser H., Scott B., Holland G. and Sharples J. 2006. Variation in the abundance of sandeels Ammodyes marinus off southeast Scotland: an evaluation of area-closure fisheries management and stock abundance assessment methods. Submitted to ICES Journal of Marine Science, 63: 1530-1550.

ICES 1986. Report of the Industrial Fisheries Working Group. ICES C.M. 1986/Assess:15.
ICES 1987. Report of the Industrial Fisheries Working Group. ICES C.M. 1987/Assess:17.
ICES 1988. Report of the Industrial Fisheries Working Group. ICES C.M. 1988/Assess:15.
ICES 1989. Report of the Industrial Fisheries Working Group. ICES C.M. 1989/Assess:13.
ICES 1990. Report of the Indus trial Fisheries Working Group. ICES C.M. 1990/Assess:13.
ICES 1991. Report of the Industrial Fisheries Working Group. ICES C.M. 1991/Assess:14.
ICES 1992. Report of the Indus trial Fisheries Working Group. ICES C.M. 1992/Assess:9.
ICES 1994. Report of the Working Group on the Assessment of Norway Pout and Sandeel. ICES C.M. 1994/Assess:7.

ICES 1995. Report of the Working Group on the Assessment of Norway Pout and Sandeel. ICES C.M. 1995/Assess:5.
ICES 1999. Report of the Study group on effects of sandeel fishing. ICES 1999/ACFM:19.
ICES-ACFM 2005. Report of the ICES Advisory Committee on Fishery Management, A dvi-sory Committee on the Marine Environment and Advisory Commit tee on Ecosystems, 2005. ICES ADVICE 2005 AVIS DU CIEM Volumes IV.

ICES-AGSAN 2007. Report of the Ad Hoc Group on Sandeel. ICES CM 2007/ACFM:38
ICES WGECO 2004. Report of the Working Group on the Ecosystem Effects of Fishing Activities. ICES C.M. 2004/ACE:0*, Ref. D,E,G.

ICES WGNSSK 1996. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 1996/Assess:6.

ICES WGNSSK 1997. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 and 3. ICES C.M. 1997/Assess:6.

ICES WGNSSK 1998. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 and 3. ICES C.M. 1998/Assess:7.
ICES WGNSSK 1999. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 1999/ACFM:8.
ICES WGNSSK 2000. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 2000/ACFM:7.
ICES WGNSSK 2001. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 2. ICES C.M. 2001/ACFM:7.
ICES-WGNSSK 2003. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 2003/ACFM:2.

ICES-WGNSSK 2005. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. ICES CM 2005/ACFM:07.
ICES-WGNSSK 2006. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. ICES CM 2006/ACFM:09

ICES WGNSSK 2007. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak.ICES CM 2007/ACFM:35
ICES-SGMSNS 2005. Report of the Study Group on Multispecies Assessments in the North Sea (SGMSNS). ICES CM 2005/D:06.
ICES-SGRECVAP 2006. Report of the Study Group on Recruitment Variability in North Sea Planktivorous Fish (SGRECV AP). ICES CM 2006/LRC:03.

Jensen H.; Rindorf A.; Horsten M.B.; Mosegaard H.; Brogaard P.; Lewy P.; Wright P.J.; Kennedy F.M.; Gibb I.M.; Ruxton G.; Arnott S.A. and Leth J.O. 2001. Modelling the population dynamics of sandeel (Ammodytes marinus) populations in the North Sea on a spatial resolved level. DG XIV no. 98/025.

Jensen H., Mosegaard H., Rindorf A., Dalskov J. and Brogaard P. 2002. Indsamling af detaljerede oply sninger om tobisfiskeriet i Nordsøen. DFU rapport no. 97-02.
Jensen and Vinther. 2003. Estimation of fishing effort for the Danish sandeel fishery in the North Sea based on catch per unit effort data. Working document for the 2003 ICES WGNSSK meeting in Bolougne.

Jensen H. and Rolev A.M. 2004. The Sandeel fishing grounds in the North Sea. Information about the foraging areas of the lesser sandeel Ammodytes marinus in the North Sea. Working document prepared for the BECAUSE project, November 2004.
Lewy, P. and M. Vinther, 2004. A stochastic age-leng th-structured multispecies model applie d to North Sea stocks. ICES CM 2004/FF:20.

Pedersen, S.A., Lewy, P. and Wright, P., 1999. Assessment of the lesser sandeel (Ammodytes marinus) in the North Sea based on revised stock divisions. Fisheries Research, 41: 221241.

Proctor, R., Wright, P.J. and Everitt, A. (1998). Modelling the trans port of larval sandeels on the north west Euro pean shelf. Fisheries Oceanography.7, 347-354.

Pope, J. G. 1980. Some consequences for fisheries management of as pects of the behaviour of pelagic fish. Rapp. P.-v. Reun. Cons. Explor. Mer 177, 466-476.

Rindorf, A, Wanless, S and Harris, MP (2000) Effects of changes in sandeel availability on the reproductive output of seabirds. Marine Ecology Progress Series 202:241-252.

STECF 2004. Report of the Scientific, Technical and Economic Committee For Fisheries. Evaluation of the report of the Ad Hoc Working Group on Sandeel Fisheries "Estimate of the Abundance of the 2003 Year-class of North SeaSandeel".

STECF 2005a. Report of the Scientific, Technical and Economic Committee For Fisheries. Evaluation of the report of the Ad Hoc Working Group on Sandeel Fisheries "Estimate of the Abundance of the 2004 Year-class of North Sea Sandeel".

STECF 2005b. REPORT of the STECF Ad-Hoc Working Group on Sandeel Fisheries. November 7th-9th 2005, Charlottenlund. Denmark.

STECF 2006. Report of the Scientific, Technical and Economic Committee For Fisheries. Evaluation of the report of the Ad Hoc Working Group on Sandeel Fisheries "Estimate of the Abundance of the 2005 Year-class of North SeaSandeel".

Ulltang, \varnothing. 1980. Factors affecting the reaction of pelagic fish stocks to exploitation and requiring a new approach Rapp. P.-v. Reun. Cons. Explor. Mer 177, 489-504.

Wright P., Verspoor E., Andersen C., Donald L., Kennedy F., Mitchell A., Munk P., Pedersen S.A., Jensen H., Gislason H. and Lewy P. 1998. Population structure in the lesser sandeel (Ammodytes marinus) and its implications for fishery-predator interactions. DG XIV no. 94/071.

Wright P.J., Jensen H., Mosegaard H., Dalskov J. and Wanless S., 2002. European Commission's annual report on the impact of the Northeast sandeel fishery closure and status report on the monitoring fishery in 2000 and 2001.

Annex 4: Assessment Methods and Software

Assessment methods

XSA and SXSA

Extended Survivors' Analysis (XSA; Darby and Flatman 1994) has been used for catch-at-age analysis for most stocks, although it has not been selected as the final assessment in all cases. Three implementations were used. Some older analysts used version 3.1 of the Lowestoft VPA DOS based package. For an increasing number of stocks, younger members of the group used the version (FLXSA) incorporated in the FLR package (FLR Team 2006) following validation against the DOS based version and further development which have resulted in the ability to produce tuning diagnostics output. Seasonal XSA (Skagen 1993, 1994) was used for analyses of Norway pout and sandeel to allow for seasonal data.
For XSA assessments, a full tuning window was used, either with or without a 20year tricubic timetaper depending on the stock. The general exploratory approach was as follows (Darby and Flatman 1994):

- A separable analysis was carried out to explore the internal consistency of the catch-at-age data, and also to judge whether the plus group was appropriately chosen.
- For appropriate tuning series, single fleet runs were carried out using Laurec-Shepherd ad hoc tuning. These runs were used to explore the consistency of research-vessel survey indices or commercial CPUE indices with the catch-at-age data.
- An XSA run was performed with all selected tuning series, no power model (no dependence of catchability on stock size for any age), light shrinkage (s.e. = 2.0), and the oldest available age for the catchability plateau. Tuning diagnostics from this run were examined to determine what the plateau age should be, and whether a power catchability model would be appropriate on any of the younger ages.

If an update assessment was being run the first two steps in this process were generally omitted. Shrinkage was kept light if possible (so that s.e. $=2.0$). If there were trends in recent fishing mortality estimates, then heavy shrinkage was not used as this would lead to retrospective bias. Stronger shrinkage (s.e. $=0.5$) was only considered for those cases in which recent F fluctuated without trend, where survey indices were noisy, and where the use of strong shrinkage improved retrospective patterns. In some cases the level of shrinkage had a minimal effect on overall conclusions, and so was left unchanged from previous years.

Following these exploratory steps, a final run was performed. Residuals and the results of retrospective analyses were scrutinised to evaluate the quality of the assessment (or at least, whether survey and commercial data were in agreement about stock trends).

Seasonal XSA (SXSA) was used in the sandeel and Norway pout assessments (Sections 4 and 5) to estimate fishing mortalities and stock numbers at age by half-year, using data up to and including the first half year of 2006. SXSA weights the estimated survivors from manually entered data or according to the variance of the estimated \log catchability. The WG used the standard setting with user-defined weighting fac-
tors, where estimates of survivors are given a lower weighting in the second half of the year. This setting is used because the fishery inflicts the majority of fishing mortality in the $1^{ \pm}$half of the year (when oil content of the fish is higher) and thus the signal from the fishery is considered less reliable in the second half. The residuals used to evaluate the quality of the assessment are equivalent to the log catchability residuals obtained from the standard XSA, and are calculated as:

$$
\text { residuals }=\log \left(\frac{\hat{N}}{N}\right)
$$

where N is the stock number-at-age derived from the VPA and \hat{N} is the stock num-ber-at-age derived from the CPUE index for each tuning fleet.

B-ADAPT

The following text is adapted from Appendix 4 to the 2004 WGNSSK report (ICESWGNSSK 2004), where further details on the background of the model and simulation testing can be found. The model was extended further in 2006 with the addition of bootstrap uncertainty estimation; this is described in Section 14 of this report and in the 2006 report of the Methods WG (ICES-WGMG 2006).
In recent years indices of North Sea cod population abundance N and fishing mortality F calculated from survey catch per unit effort (CPUE) have indicated higher levels of abundance and mortality rates than those estimated by catch at age analysis. Within the model diagnostics generated from fits of catch at age models to the North Sea cod assessment data, the inconsistencies between the population abundance estimated from the two data sources have been apparent in the residuals about the mean of \log survey catchability $(q=C P U E / N)$. The residuals have been positive in recent years at the majority of ages, a pattern that is consistent across surveys. This indicates a mismatch between the levels of reported landings and actual removals. The latter may be due to a number of causes (misreporting, nonreporting, unaccounted discards, natural mortality, changes in catchability of fleet or surveys), and while these cannot be distinguished, an alternative model can be used to estimate a more realistic level of removals than indicated by the reported landings.

It is straightforward to show that if bias is present in the data on removals, the magnitude and sign of the log catchability residuals is proportional to the degree of bias. If $C_{a, y}$ represents catch at age a in year $y, N_{a, y}$ population numbers at age by year, $F_{a, y}$ fishing mortality at age by year, $Z_{a y}$ total mortality (fishing + natural mortality M) and B_{y} the bias in year y; in the years without bias

$$
N_{a, y}=C_{a, y} Z_{a, y}\left(1-\exp \left(-Z_{a, y, y}\right)\right) / F_{a, y}
$$

and for the years with bias

$$
N_{a, y}^{\prime}=B_{y} C_{a, y} Z_{a, y}\left(1-\exp \left(-Z_{a, y)}\right)\right) / F_{a, y}
$$

Survey catch per unit effort ($u_{h, y, f}$, where f denotes fleet or survey) is related to population abundance by a constant of proportionality or catchability $q_{a, f}$ which is assumed, in this study, to be constant in time and independent of population abundance

$$
N_{a, y}=u_{a, y, f} / q_{y, f}
$$

If the unbiased survey catchability can be calculated, an estimate of bias can be obtained from

$$
B_{y}=N_{a, y}^{\prime} /\left(u_{a, y, f} / q_{y f}\right)
$$

Gavaris and Van Eeckhaute (1998) examined the potential for using a relatively simple ADAPT model structure to estimate the removals bias of Georges Bank haddock. Their model fitted a year effect for the bias in each year of the assessment time series under the assumption that bias does not distort the age composition of landings, only the overall total numbers. The authors determined that the model was overparameterised and that it was necessary to introduce a constraint, that one year-class abundance was known exactly, in order to estimate the remaining catchability, bias and population abundance parameters. They concluded that, for the data sets to which they applied the model, the indices of abundance from trawl surveys were so highly variable that this resulted in estimates of bias with wide confidence intervals and therefore the model could only be used as a diagnostic tool.

A modification to the Gavaris and Van Eeckhaute (1998) ADAPT model (referred to here as B-ADAPT) can be made by assuming that the time series of landings can be divided into two periods; a historic time series in which landings were relatively unbiased and a recent period during which landings at age were biased by a common factor across all ages. The fit of the model to the early period of unbiased data provides estimates of appropriately scaled population abundance and survey catchability, thereby removing the indeterminacy noted by Gavaris and Van Eeckhaute (1998).

Note that it is assumed that during both periods, landings numbers at age have relatively low random sampling variability (relative to survey variance) so that the population numbers at age can be determined using the virtual population analysis (VPA) equations. This assumption has been found to hold for the North Sea cod by the EMAS project (EMAS 2001) which examined the errors associated with current sampling programs.

Within B-ADAPT, population numbers are estimated from the VPA equations

$$
\begin{gathered}
N_{a, y}=B_{y} C_{a, y} Z_{a, y}\left(1-\exp \left(-Z_{a, y)}\right)\right) / F_{a, y} \\
N_{a, y}=N_{a+1, y+1} \exp \left(Z_{a, y}\right)
\end{gathered}
$$

where B_{y} is estimated for years in which bias was considered to have occurred and defined as 1.0 for years without bias. Selection is assumed to be flat topped with fishing mortality at the oldest age defined as the scaled (s) arithmetic mean of the estimates from n younger ages, where n and s are user defined. That is for the oldest age o :

$$
F_{o}=s\left[F_{o-1}+F_{o-2}+\ldots+F_{o-n}\right] / n
$$

The parameters estimated to fit the population model to the CPUE calibration data are the surviving population numbers $N_{a, f y}$ at the end of the final assessment year $f y$ (estimated for all ages except the oldest) and the bias B_{y} in each year of the user selected year range. Under the assumption of log normally distributed errors, the least squares objective function for the estimated CPUE indices is

$$
\mathrm{SSQ}_{\mathrm{vpa}}=\sum_{a, y, f}\left\{\ln \psi_{a, y, f-}-\left[\ln q_{a f}+\ln N_{a, y}\right]\right\}^{2}
$$

The year range of the summation extends across all years in the assessment for which catch at age data is available and also (if required) the year after the last catch at age data year. This allows for the inclusion of survey information collected in the year of the assessment WG meeting.

Testing with simulated data (ICES-WGNSSK 2004, Appendix 4) established that increasing the uncertainty in the survey indices results in estimates of bias and the derived fishing mortality that are more variable from year to year. One solution to this problem is to introduce smoothing to the model estimates.
A constraint used frequently in stock assessment models is that of restricting the amount that fishing mortality can vary from year to year. This reflects limitations on the ability of fleets to rapidly increase capacity and the lack of historic effort regulation reducing catching opportunities. However, given the current over-capacity in the fleets prosecuting the North Sea cod fishery this form of smoothing constraint was not considered appropriate.
Anecdotal information supplied by the commercial industry has indicated that the recent severe changes in the TAC have not been adhered to. Therefore it was considered more appropriate to apply smoothing to the total catches, across the years in which the bias was estimated. Smoothing of catches was introduced by an addition to the objective function sum of squares:

$$
\operatorname{SSQ}_{\text {catches }}=\lambda \Sigma\left\{\ln \left(B_{y} \Sigma_{a}\left[C_{a, y} \mathrm{CW}_{a, y]}\right)-\ln \left(B_{y+1} \Sigma_{a}\left[C_{a, y+1} \mathrm{CW}_{a, y+1}\right]\right)\right\}^{2}\right.
$$

Here $\mathrm{CW}_{a, y}$ are the catch weights at age a in year y and natural logarithms were used to provide residuals of equivalent magnitude to those of \log catchability within $S S Q_{\text {vpa. }} \lambda$ is a user defined weight that allowed the effect of the smoothing constraint to be examined. The year range for the summation of the catch smoothing objective function was from the last year of the unbiased catches to the last year of the assessment.

The total objective function used to estimate the model parameters was therefore

$$
S S Q=S S Q_{\text {vpa }}+S S Q_{\text {atches }}
$$

The least squares objective function was mimimised using the NAG Gauss-Newton algorithm with uncertainty estimated using two methods, calculation of the variance covariance matrix and bootstrap re-sampling of the \log catchability residuals to provide new CPUE indices.

SMS
SMS (Stochastic Multi Species model; Lewy and Vinther, 2004) is an age-structured multi-species assessment model which includes biological interactions. However, the model can be used with one species only. In "single species mode" the model can be fitted to observations of catch-at-age and survey CPUE. SMS uses maximum likelihood to weight the various data sources assuming a log-normal error distribution for both data sources. The likelihood for the catch observation is then as defined below:

$$
L_{c}=\prod_{a, y, q} \frac{1}{\sigma_{\text {cuctich}}(a a) \sqrt{2 \pi}} \exp \left(-(\ln (C(a, y, q))-\ln (\hat{C}(a, y, q)))^{2} /\left(2 \sigma_{\text {catch }}^{2}(a a)\right)\right)
$$

where C is the observed catch-at-age number, \hat{C} is expected catch-at-age number, y is year, q is quarter, a is age group, and $a a$ is one or more age groups.

SMS is a "traditional" forward running assessment model where the expected catch is calculated from the catch equation and F-at-age, which is assumed to be separable into an age selection, a year effect and a season (year, half-year, quarter) effect.

As an example, the F model configuration is shown below for a species where the assessment includes ages 0-3+ and quarterly catch data and quarterly time step are used:
$F=F\left(a_{a}\right) \times F\left(y_{y}\right) \times F\left(q_{q}\right)$,
with F-components defined as follows:
$F(a):$

Age 0	Fa_{0}
Age 1	Fa_{1}
Age 2	Fa_{2}
Age 3	Fa_{3}

$F(q):$

	q 1	q 2	q 3	q 4
Age 0	0.0	0.0	Fq	0.25
Age 1	$\mathrm{Fq}_{1,1}$	$\mathrm{Fq}_{1,2}$	$\mathrm{Fq}_{1,3}$	0.25
Age 2	$\mathrm{Fq}_{2,1}$	$\mathrm{Fq}_{2,2}$	$\mathrm{Fq}_{1,3}$	0.25
Age 3	$\mathrm{Fq}_{3,1}$	$\mathrm{Fq}_{3,2}$	$\mathrm{Fq}^{3,3}$	0.25

$F(y):$

Y 1	Y 2	Y 3	Y_{4}	Y_{5}	Y_{6}	Y^{2}	Y 8	Y 9	\ldots
1	Fy_{2}	Fу $_{3}$	Fy_{4}	Fy_{5}	Fy_{6}	Fy_{7}	Fy_{8}	Fy_{9}	\ldots

The parameters $F\left(a_{a}\right), F\left(y_{y}\right)$ and $F\left(q_{q}\right)$ are estimated in the model. $F\left(q_{q}\right)$ in the last quarter and $F\left(y_{y}\right)$ in the first year are set to constants to obtain a unique solution. For annual data, the $F\left(q_{q}\right)$ is set to a constant land the model uses annual time steps.

One $F(a)$ vector can be estimated for the whole assessment period, or alternatively, individual $F(a)$ vectors can be estimated for subsets of the assessment periods. A separate $F(q)$ matrix is estimated for each $F(a)$ vector.

For the CPUE time series the expected CPUE numbers are calculated as the product of an assumed age (or age group) dependent catchability and the mean stock number in the survey period.

The likelihood for CPUE observations, $L s$, is similar to $L c$, as both are assumed lognormal distributed. The total likelihood is the product of the likelihood of the catch and the likelihood for CPUE ($L=L c^{*} L$ cpue, $)$. Parameters are estimated from a minimisation of $-\log (L)$.

The estimated model parameters include stock numbers the first year, recruitment in the remaining years, age selection pattern, and the year and season effect for the separable F model, and catchability at age for CPUEtime series.

SMS is implemented using ADModelBuilder (Otter Research Ltd.), which is a software package to develop non-linear statistical models. The SMS model is still under development, but has extensively been tested over the last two years on both simulated and real data.

SMS can estimate the variance of parameters and derived values like average F or SSB from the Hessian matrix. Alternatively, variance can be estimated by using the built-in functionality of the AD-Model builder package to carry out Markov Chain Monte Carlo simulations (MCMS; Gilks et al. 1996) to estimate the posterior distribu-
tions of the parameters. For the historical assessment, period uniform priors are used. For prediction, an additional stock/recruitment relation including CV can be used.

SAM

SAM is a statistical state-space model in which all observations (catches, indices, and possibly more) have measurement error, and population processes are stochastic. The amount of variability in observation and process errors is estimated in SAM. Model parameters are estimated using maximum likelihood methods based on the marginal likelihood function. This likelihood function is integrated over process errors, and is considered to provide better estimates of model parameters compared to other approximate approaches (de Valpine and Hilborn, 2005). Estimation of uncertainties for all quantities of interest (F, SSB, and stock sizes) is an integral feature of the model. It assumes stochastic survival from one year to the next and models fishing mortality as a random walk, thus enabling selectivity to drift over time throughout the modelling period. It also handles missing observations in both catch and surveys. It should be noted that this approach does not have the convergence properties typical of backwards VPAs such as XSA and ADAPT. SAM incorporates new software (the random effects module for AD Model Builder http://www.admb/project.org), which uses a combination of automatic differentiation and the Laplace approximation (MacKay, 2003) to solve high dimensional non-linear models with unobserved random variables efficiently. It is based on all the standard assessment equations (such as the catch equation, the stock equation, and standard stock-recruitment relationships). Observations are time series of catches in numbers and survey indices. WKROUND WD14 (ICES WKROUND 2008) contains a mathematical description of the model and outlines the key model features in more detail

SURBA

SURBA (version 3.0) is based on a simple survey-based separable model of mortality. The implementation used at this year's WG includes a Windows user inter face which facilitates plotting of results and summary diagnostics. It was used to perform exploratory analyses for most stocks.
The model was first applied to European research-vessel survey data by Cook (1997, 2004), but it has a long history in catch-based fisheries stock assessment (Pope and Shepherd 1982, Deriso et al 1985, Gudmundsson 1986, Johnson and Quinn II 1987, Patterson and Melvin 1996; see Quinn II and Deriso 1999 for a summary). The separable model used in SURBA assumes that total mortality $Z_{a, y}$ for ages a and y can expressed as $Z_{a, y}=s_{a} \times f_{y}$, where s_{a} and f_{y} are respectively the age and year effects of mortality. Note that this differs from the usual assumption in that total mortality Z is the quantity of interest, rather than fishing mortality F. Then, given $Z_{a, y}$, abundance $N_{a, y}$ can be derived as

$$
N_{a, y}=r_{y_{0}} \exp \left(-\sum_{m=a_{0}=y_{0}}^{a-1} \sum_{m, n}^{y-1} Z_{n}\right)
$$

where a_{0} and $y_{0}=y-a-a_{0}$ are respectively the age and year in which the fish measured as $N_{a, y}$ first recruit to the observed population. Thus the abundance at each age and year of a cohort is given by the recruiting abundance $r_{y_{0}}$ of the relevant cohort modified by the cumulative effect of mortality during its lifetime. Parameters are estimated by minimizing the sum-of-squares of observed and estimated abundance indices.

ASPIC

ASPIC is a package which fits a general biomass non-equilibrium surplus-production model of the Schaefer type that does not require age-structured data (Prager 1994; Prager et al 1996). In this year's WG meeting, it was used in exploratory analyses for plaice in Division IIIa (see Section 7.3.4). Details and downloads are available at http://www.sefsc.noaa.gov/mprager/aspic.html.

Methods

Development of indicators for quality and performance of catch at age analysis

At present, assessments are evaluated largely through qualitative visual inspection of results such as catchability residuals. It could be argued that this is not sufficient, and should be supplemented by a more quantitative approach. One way of potentially improving assessment methodology is summarised below.

Marchal et al. (2003) proposed three criteria to evaluate the relative performance of different assessments.

The first criterion is the precision of the estimates of log-catchability for each tuning fleet. This criterion is investigated by examining the coefficient of variation (CV)relative to the log-catchability estimates:

$$
\begin{equation*}
\operatorname{CV}(\mathrm{f}, \mathrm{a})=\frac{\sigma(\mathrm{f}, \mathrm{a})}{\ln [q(\mathrm{f}, \mathrm{a})]} \tag{1.1}
\end{equation*}
$$

where $\ln [q(f, a)]$ is the estimated value of log-catchability for the fleet f at age a and $\sigma(\mathrm{f}, \mathrm{a})$ the standard deviation associated to the log-catchability residuals. Low CV should correspond to a "good" assessment.

The second is the measure of the trends in the annual trajectories of log-catchability residuals for each tuning fleet. This is investigated by examining the first order autocorrelation ACR of the Log-catchability residuals $\varepsilon(f, y, a)$:

$$
\begin{equation*}
\operatorname{ACR}(\mathrm{f}, \mathrm{a})=\frac{\operatorname{COV}(\varepsilon(\mathrm{f}, \mathrm{y}-1, \mathrm{a}), \varepsilon(\mathrm{f}, \mathrm{y}, \mathrm{a}))}{\operatorname{VAR}(\varepsilon(\mathrm{f}, \mathrm{y}, \mathrm{a}))} \tag{1.2}
\end{equation*}
$$

where COV refers to the covariance function and VAR to the variance function. Values of ACR close to - 1 characterise oscillations around a stable mean; values between -1 and 0 are associated to low trends; 0 value identify a pure random process; 0 to 1 values mean that there is a persistence phenomena within the time series (if one year show positive residual it is likely that the next year residual will be positive too) and value around 1 characterise trends in the residuals time series. One way to interpret this criterion is to compare its value with a confidence interval $\left[-2 N^{-1 / 2}, 2 N^{1 / 2}\right]$ were N is the number of observations (i.e. the number of years). If the criterion belongs to the confidence interval, it can't be interpreted as significantly different from zero. Otherwise the criterion is interpreted as mentioned above.

Those two criteria characterize the fleet performances in an assessment. They are both investigated based on single fleet XSA, and then can be directly compared between runs.

The third criterion is based on the retrospective pattern as the visual way of assessing the quality of the analysis. It evaluates the consistency of the retrospective patterns by measuring the distance between the annual trajectories relative to fishing mortality, SSB and recruitment. Yearly indices are calculated according to the equation below, measuring the variation between the "most recent truth" (the final assessment) and the values estimated by earlier assessments. The accuracy of an assessment is defined by the ability of earlier assessments to predict the truth (Darby and Flatman, 1994), i.e. the narrower is a retrospective pattern, and the more reliable the assessment is :

$$
\begin{equation*}
\operatorname{RI1}(\mathrm{y})=\frac{\sum_{i=\max \left(\mathrm{y}, \mathrm{~T}_{\mathrm{A}}\right)}^{T-1}\left(\frac{\mathrm{X}(\mathrm{y}, \mathrm{i})-\mathrm{X}(\mathrm{y}, \mathrm{~T})}{\mathrm{X}(\mathrm{y}, \mathrm{~T})}\right)^{2}}{\mathrm{~T}-\max (\mathrm{y}, \mathrm{TA})-1} \tag{1.3}
\end{equation*}
$$

Where X is successively Fbar, SSB and R, in year y (between T_{0} and T), assessed in year i (comprised between max ($\mathrm{y}, \mathrm{T}_{\mathrm{A}}$) and $\mathrm{T}-1$). Tois the first year of the data period, T_{A} the year of the first assessment and T the year of the last assessment. . Dividing the sum of square by the number of years used to calculate it, allows the comparison between all the years indices. These yearly indices are then summed (in equation (4)) over the data period to obtained a synthetic index per variable per assessment.

$$
\begin{equation*}
\mathrm{RI} 2=\sum_{\mathrm{y}=\mathrm{T}_{0}}^{\mathrm{T}}[\operatorname{IX} 1(\mathrm{y})] \tag{1.4}
\end{equation*}
$$

Marchal et al. (2003) only calculated the index with the double summation (equations 1.3 and 1.4) combined without dividing the index IX1 by the number of years). However, watching the time evolution of the dispersion gives information about the number of years before the convergence occurs. For both $\operatorname{IX1}(\mathrm{y})$ and IX2 the closer to 0 is the value, the better the assessment is.
A last index is also calculated for each variable of interest from the retrospective analysis. The yearly retro deviation index IX3 measures the distance between the value estimated for each terminal year (i) by retro-assessments and the value estimated for the same year by the assessment made one year later (i+1) (see equation (5)).

$$
\begin{equation*}
\operatorname{RI} 3(i)=\frac{X(i, i)-X(i, i+1)}{X(i, i+1)} \tag{1.5}
\end{equation*}
$$

These indices measure the bias that might be induce year after year, and allows trends investigation, or recurrent bias detection. Marchal et al (2003) concluded that the combination of all those criteria is a useful way to interprete the change in the assessment's outputs in order to choose among the options to be set for the final assessment.

The WG disagreed with this conclusion. Indices of retrospective bias are reasonable indicators of assessment quality, as long as they are used to promote close investigation of the underlying data rather than quick fixes such as heavy shrinkage. The remaining indicators proposed by Marchal et al (2003) show merely whether surveys are different from catch data: they do not show whether the assessment is good or not. Modifying an assessment to reduce log-catchability residuals, for example, may
serve simply to produce a result driven largely by catch data - and this may in itself be problematic. The indicators may be objective, but there is also a danger that they could be misleading.

FLR

The complexity of fisheries systems and their management require flexible modelling solutions for evaluations. The FLR system is an attempt to implement a framew ork for modelling integral fisheries systems including population dynamics, fleet behaviour, stock assessment and management objectives (www.flr-project.org; FLR Team 2006). FLR consists of a number of packages for the open source statistical computer program R, centred around conventions on the representation of stocks, fleets, surveys etc. A broad range of models can be set up, encompassing population dynamics, fleet dynamics and stock assessment models. Moreover, previously developed methods and models developed in standard programming languages can be incorporated in FLR, using interfaces for which documentation is being written.

The stock assessment tools in FLR can also be used on their own in the WG context. The combination of the statistical and graphical tools in R with the stock assessment facilitates the exploration of input data and results. Currently, an effort is being made to incorporate stock assessment models that are used in some of the ICES w orking groups. Methods for reading in VPA suite files and setting plus-groups in data age structured data are also being developed. Currently XSA, SURBA, ICA, B-ADAPT, and a number of others have been incorporated in the package, and development is continuing.

One of the potential applications of the FLR tool within a WG context is running analyses of the sensitivity of model fits to user-defined parameter settings (ICESWGMG 2006). An example of this is given in the stock section for saithe (Section 11), and was used during exploratory analyses for several other stocks. This approach cannot yet be used to generate probabilistic assessments, although research is continuing.

FLR has also been used extensively in this report as a framework for management plan evaluations for North Sea haddock and cod. These are described in full in Section 16.1 and 16.2.

Recruitment estimation

For several stocks, recruitment estimates are made using RCT3 (Shepherd 1997). This was the case when recruitment indices from 2006 surveys are available, or when F shrinkage in XSA had relatively high weighting on the estimation of recruiting survivors. This creates some inconsistencies in the approaches used. The survey indices may end up being used twice for recruitment estimation - once in the survivors' analysis (and thus in the VPA recruitment) and again with the same survey indices in RCT3. For plaice, haddock, whiting and cod, large discrepancies have been observed in recent Working Groups in the recruitment predicted by RCT3 and the observed recruitment in XSA. In most cases RCT3 seems to overestimate recruitment and WGNSSK considers this may partly explain the overestimation of landings in the short term forecasts for these species.

A problem with the use of the power model for recruiting age groups in XSA, is that it cannot be restricted to those tuning fleets for which the use of this model is appropriate. In the present implementation of XSA the use of the power model may solve problems in some fleets while creating problems in other fleets. The fact that the F-
shrinkage cannot be turned off for recruiting age groups has in some cases been seen to have an undesirably strong influence on recruitment estimates derived from XSA.

Short-term prognoses and sensitivity analyses

Short-term prognoses (forecasts) are made for all stocks for which a final assessment is presented. Half-year forecasts are produced for the industrial stocks in order to give ACFM further information on which to base advice in the current situation of low biomass. These are based on survivors' estimates at the end of the second quarter in the year of the meeting (final assessment year +1) from Seasonal XSA or SMS, rolled forwards to the start of the first quarter in the next using assumed mortality and weights-at-age.
Forecasts in all other cases were based on initial stock sizes as estimated by XSA or BADAPT (in a number of cases supplemented with separate recruitment estimates as described above), natural mortalities and maturity ogives as used in the age based assessment model, and mean weights at age averaged over recent years (normally 3). For haddock, the mean weight-at-age of the large 1999 and moderate 2000 yearclasses in the forecast has been modelled using a fitted growth curve. Fishing mor-talities-at-age in forecasts are taken to be either the final year values, or a scaled or unscaled mean F-pattern over the most recent 3 years (depending on whether or not mean F show ed a recent trend).

Forecasts and corresponding sensitivity analyses were undertaken using either the Aberdeen suite of forecast programs, the MFDP/MFYPR software, or more recent implementations in the FLR suite. Where the latter have been used, they have been cross-checked with the equivalent standard software.

Short-term forecasts have been given on a stock basis, which in some cases includes more than one management area. For management purposes the catch forecast has been split by Sub-area and Division on the basis of the distribution of recent landings.

Stock-recruit modelling and medium-term projections

To bedone

Estimation of biological reference points

Yield and spawning stock biomass per recruit are undertaken using either the Aberdeen suite of forecast programs, the MFDP/MFYPR software, or more recent implementations in the FLR suite. Where the latter have been used, they have been crosschecked with the equivalent standard software.

Precautionary approach reference points

Precautionary approach reference points are intended to remain unchanged from year to year, unless substantial changes occur in the data used (e.g. if discards are included for the first time) or the method employed. When reviewed the change point models developed by Obrien and Maxwell (2003) and PASOFT (Smith et al.) are used to provide values.

Software versions

The following table lists the versions of each item of software that was used by the WG.

SOFFWARE	PURPoSE	VERSION
ASPIC	Surplus-production modelling.	Unknown (most recent available version is 5.15).
B-ADAPT	Catch-at-age analysis with estimated misreporting	Compiled 13/09/2006.
FLR	Fisheries toolbox in R: assessments, forecasts, management-plan evaluations.	Core versions 1.3.1 and 2.0 plus ad hoc additions.
INSENS	Generationof input files for Aberdeen Suite programmes.	Compiled 20/05/2002.
MFDP	Short-term forecast.	Unknown.
MFYPR	Yield-per-recruit analy sis.	Unknown.
RCT3	Recruitment estimation.	Compiled 26/08/1996.
REFPOINT	Calculation of reference points and yield-per-recruit.	Compiled: 12/06/1997.
RETVPA00	Retrospective analy sis forXSA.	Compiled 12/06/2002.
SMS	Catch-at-age analysis with a stochastic multi-species model	September 2006.
SAM	State-space Assessment model	UNknown
SURBA	Survey-based analysis.	3.0 (compiled 02/09/2005).
SXSA (Seasonal XSA)	Catch-at-age analysis for seasonal fisheries.	Compiled 01/09/2004.
VPA95 (Lowestoft VPA suite)	Catch-at-age analysis (separable VPA, XSA).	Compec-Shepherd tuning, 08/06/1998.

Annex 5 -Technical Minutes of the North Sea ecosystem Review Group

Review of ICES	WGNSSK Report 2009
Reviewers:	Gary Melvin (Canada, chair)
	Outi Heikinheimo (Finland)
	Norman Graham (Ireland)
Chair WG:	Chris Darby
Secretariat:	Barbara Schoute

General

The WNSSK was one of 3 working groups reviewed by the North Sea Review Group (RG). The RG acknowledges the intense effort expended by the working group to produce the report and the work required to complete their documentation in a timely manner..

The Review Group considered the following stocks:

cod-347d	Cod in Subarea IV (North Sea), Divison VIId (Eastern Channel) and IIIa West (Skagerrak)
had-34	Haddock in Subarea IV (North Sea) and Division III (Skagerrak - Katteg at)
nep-6	Nephrops inDivision IVb (Farn Deeps, FU 6)
nep-7	Nephrops in Division IV a (Fladen Ground, FU 7)
nep-8	Nephrops in Division IV a (Firth of Forth, FU 8)
nep-9	Nephrops in Division IV a (Moray Firth, FU 9)
nop-34	Norway Pout in Subarea IV (North Sea) and IIIa (Skagerrak - Kattegat)
ple-eche	Plaice in Division V IId (Eastern Channel)
ple-kask	Plaice in Division III (Skagerrak - Katteg at)
ple-nsea	Plaice Sub-area IV (NorthSea)
sai-3a46	Saithe inSubarea IV (North Sea) Division IIIa West (Skagerrak) and Subarea VI (Westof Scotland and Rockall)
san-nsea	Sandeel inSubarea IV excluding the Shetland area
sol-eche	Sole inDivision V IId (Eastern Channel)
sol-nsea	Sole inSub-area IV (North Sea)
whg-47d	Whiting Sub-area IV (NorthSea) \& DivisionV IId (Eastern Channel)
whg-kask	Whiting in Division IIIa (Skagerrak - Katteg at)

Stocks which may need a benchmark in future are:

- Haddock in Subarea IV (North Sea) and Division IIIa (Skagerrak - Kattegat) scheduled 2010
- Plaice in Division VIId (Eastern Channel), scheduled for 2010

Cod in Subarea IV (North Sea), Division VIId (Eastern Channel), and IIIa West (Skagerrak) cod_347d

1) Assessment type: update (Not formally signed off by EG)
2) Assessment: analytical
3) Forecast: medium term forecast presented, with no short term forecast due to uncertainties in final year F estimates
4) Assessment model: B-Adapt and contrasted with SAM
5) Consistency: This stock was subject to a benchmark assessment in 2009, which concluded that B-Adapt continue as the preferred assessment method.
6) Stock status: $\mathrm{B}<\mathrm{Blim}, \mathrm{Flim}<\mathrm{F}<\mathrm{Fpa}, \mathrm{R}$ in 2008 may be one of the lowest recorded in the survey series. Final year estimates of F are considered uncertain.
7) Man. Plan.: Agreed 2008: reduce fishing mortality to 0.4. The main elements in the plan are annual adjustments to F via effort control. Adjustments dependant on SSB relative to reference points.

General comments

Downward trends in F from the high values in 2000 are observed and SSB is estimated to have increased for the second consecutive year, albeit from very low levels. The increase in SSB is largely derived from the relatively strong 2005 year class maturing. While these trends can be taken as 'green shoots' it is premature to state that 'the stock has began to recover' particularly given the historically low recruitment based on the Q1 IBTS 2009 survey and the very high levels of discarding being observed in the fishery. Even with a continued decline in F, the stock is well below Blim and if recruitment continues to be impaired, the prognosis is still poor (relative to Bpa).

The high levels of discarding are particularly worrying and clearly demonstrate that TAC's are not constraining F sufficiently. The assessment output shows that F from discarding is now equal to or greater than F apportioned to landings. It appears that restrictive TAC's and available effort are mismatched and recovery is being constrained by discarding.

There are a number of initiatives to reduce discards described, but based on the discard information presented; thus far these have been inadequate. A review of available mitigation options and their potential would be informative from a management perspective.

Technical comments

The methodology is well explained and there are no specific comments.

Conclusions

The assessment has been performed correctly and estimates of stock status are consistent with other methods e.g. SURBA, SAM

Haddock in Subarea IV (North Sea) and Division IIla (Skagerrak Kattegat) had-34

1) Assessment type: Update
2) Assessment: Analytical
3) Forecast: Short-term forecast presented
4) Assessment model: XSA tuned with 3 survey fleets, EngGFS, ScoGFS, and IBTS Q1.
5) Consistency: The assessment and input parameters have remained essentially unchanged for the past 3 years. Retrospective analysis indicates no large deviations between annual assessments.
6) Stock status: $B(203,000 t)>\operatorname{Bpa}(140,000 t)$ and $>\operatorname{Blim}(100,000 t)$ for 2008, $\mathrm{F}(0.25)<\mathrm{Fpa}(0.70)<\mathrm{Flim}(1.0)$. F decreased from 0.41 in 2007. The 2005 moderate year-class is now entering the fishery; however recruitment in 2007 and 2008 was below average. The SSB is expected to continue to decline unless a good year-class appears.
7) Man. Plan.: F below a restricted TAC when FHсR $>=0.3$ specified in the EUNorway management plan. Management Plan adhered to since 1999. SSB likely to remain above Bpa fishing at Fpa until 2011and longer under agreed management plan (HCR).

General comments

The WG has identified a number of concerns associated with the assessment that are to be addressed at the upcoming benchmark assessment. The RG supports these issues being reviewed. Exploratory analysis (catch at age and single fleet) show similar trends and the small residuals support consistent catch data.

There have been some very significant changes in the weights at age in 2008 for ages $4-7$. This will have an impact on biomass estimates.

No large retrospective pattern for SSB or F.
Many factors have changed in this fishery with the Conservation Credit Scheme (CCS). Real-time closures for cod, one-net rules, etc have likely changed exploitation patterns.

Haddock is both a targeted and mixed fishery with cod, whiting and Nephrops and should be considered as such in management.

Age structure could be expanded given they are actually be aged (Table 12.2.2.1). Also noted that plus group is larger than any since mid-1970's.

Technical comments:

As this is an update with nothing has really changed, except another year's data, since the last assessment the concerns and recommendations of previous reviews still apply.

Conclusions

RG agrees with the WG on the conclusions for this stock.

Nephrops in Division IVb (Farn Deeps, FU6) nep-6

1) Assessment type: update
2) Assessment: analytical/trends
3) Forecast: presented
4) Assessment model: Underwater TV absolute abundance using fishery data

5) Consistency: New approach used for the 2009 assessment
6) Stock status: All available data suggest that the stock continues to be at a low level or depleted state. Recruitment signals infer 2008 to be low.
7) Man. Plan.: There is no agreed management plan for this stock. Precautionary reference points have not been defined. .

General comments

The following comments are generic to all Nephrops stocks for which advice is presented.

For the Nephrops stocks assessed using UWTV surveys, a new method has been developed (WKNEPH, 2009) and used for the 2009 advice. This provides absolute abundance estimates and permits a catch options table based on a range of harvest ratios. There are a number of underlying assumptions with this approach and these assumptions should be explored to assess how sensitive catch forecasts are to them. These are associated with quantification of survey bias, mean weights of Nephrops in the landings and discard rates. The RG consider that the variance of the estimates used should be determined and a sensitivity analysis, particularly with respect to catch forecasts, be conducted using a range of input values.

From the stock annex, there appears to be considerable differences in mean weights and discard rates between FU's e.g discard rates FU $6=29.5 \%$ FU 97.4%, mean weights FU $7=28.05 \mathrm{~g}$ and $\mathrm{FU} 8=19.84 \mathrm{~g}$. While there may be fishery specific reasons for these differences, and that they may be correlated, these are not adequately described and no information is presented on the variance of these estimates. The EG should be conscious that pooling data e.g. discard ogives, can result in a biased estimate due to over influence of trips with high catches. Discard rates across years (from the figure of length distributions) suggest that the discard rates vary considerably, e.g. Fig 3.3.5.3, the discard rates in 2002 look very different to the length profile in 2001. A more detailed breakdown of discard rates, tabulated and presented with variance estimates between years would be useful.

The approach assumes that the entire distribution of the stock (or at least the fishery) is surveyed. It is not clear from the stock annex if this assumption is true, the basis of the survey design should be described including VMS data from the fishery and habitat mapping. The EG should be conscious that VMS data is only available from vessels over 15 m and may therefore not provide sufficient data alone to describe the spatial extent of the fishery.

General Comments Specific to FU6

The RG agrees with the view of the EG in that this stock is showing serious declines in the recent past. Signals from the TV survey and fishery dependant data suggest a downward trend, although the TV survey from 2008 suggests that this has stabilized but LPUE and catch data continues to show a downward trend. Although trends in
fishery dependant data (LPUE) as an indicator of stock trends are not used in the final assessment, the EG are encouraged to incorporate the estimates of twin trawl usage into the effort estimates. Sangster and Breen (1998) ${ }^{1}$ observed an increase in Nephrops catches of 420% when using twin-rigged gear in comparison to a single net.
${ }^{1}$ Sangster, G.I. and Breen, M., 1998. Gear performance and catch comparison trials between a single trawl anda twin rigged gear. Fishe ries Research, 36, pp15-26.

Technical comments

Trends in abundance for several FU's are presented as having been 'reworked' e.g. Fig 3.3.4.5. These have revised earlier estimates significantly. There is no evidence of 'rew orking' the time series for FU6. It is not clear whether this is considered an issue for this FU.

Conclusions

The assessment has been performed correctly.
The RG agrees with the EG view of the stock status and notes the valid concerns regarding the inherent problems of managing this stock as part of a wider North Sea TAC.

Nephrops in Division IVa (Fladen Ground, FU7) nep-7

1) Assessment type: update
2) Assessment: analytical/trends
3) Forecast: presented
4) Assessment model: Underwater TV absolute abundance using fishery data

5) Consistency: New approach has been used for the 2009 assessment
6) Stock status: All available data suggest that the stock has increased. UWTV data indicates abundance to be at the highest level in the time series

7) Man. Plan.: There is no agreed management plan for this stock. Precautionary reference points have not been defined. .

General comments

The abundance of this FU is estimated using the same methodology as FU6 and therefore the general comments on sensitivity to input parameters are also valid for FU7

Technical comments

The EG note that the UWTV survey does not fully encompass the distribution of the stock/fishery and that this may result in an underestimation of abundance. The EG are encouraged to investigate methods to correct for this. This may be important if the stock contracts and TAC's become restrictive due to under estimation of the abundance.

Given the concerns about Scottish effort and landings statistics, the EG should remove figures and tables associated with trends in LPUE as these are considered 'unrepresentative of actual trends in LPUE'.

Given that effort in terms of hours fished are not mandatory in Scotland, the EG are encouraged to re-express effort in terms of days or kw.days. This applies for all FU's.

Harvest ratio's for F0.1 and Fmax are significant lower for 2008 than previous years due to revision on size of Nephrops inhabiting the borrows.

There are no agreed precautionary exploitation boundaries for this stock. The EG should not specifically identify one catch option in the 'quality of the assessment section'

Conclusions

The assessment has been performed correctly.
The RG agrees with the EG view of the stock status and notes the valid concerns regarding the inherent problems of managing this stock as part of a wider North Sea TAC.

Nephrops in Division IVb (Firth of Forth, FU8) nep-8

1) Assessment type: update
2) Assessment: analytical/trends
3) Forecast: presented
4) Assessment model: Underwater TV absolute abundance using fishery data

5) Consistency: New approach has been used for the 2009 assessment
6) Stock status: All available data suggest that the stock has increased. UWTV data indicates abundance to be slightly higher than estimated in 2007. Stock has been at a relatively high level since 2003.

7) Man. Plan.: There is no agreed management plan for this stock. Precautionary reference points have not been defined.

General comments

The abundance of this FU is estimated using the same methodology as FU6 and therefore the general comments on sensitivity to input parameters are also valid for FU8

Technical comments

Given the concerns about Scottish effort and landings statistics, the EG should remove figures and tables associated with trends in LPUE as these are considered 'unrepresentative of actual trends in LPUE'.

There are no agreed precautionary exploitation boundaries for this stock. The EG should not identify one specific catch option.

The RG note from figure 3.3.4.4 that an area has been identified outside the boundaries of the FU that are considered to be suitable habitat for Nephrops. It is not clear whether any landings are associated with this area. Can the EG please comment.

Conclusions

The assessment has been performed correctly.
The RG agrees with the EG view of the stock status and notes the valid concerns regarding the inherent problems of managing this stock as part of a wider North Sea TAC.

Nephrops in Division IVa (Moray Firth, FU9) nep-9

1) Assessment type: update
2) Assessment: analytical/trends
3) Forecast: presented
4) Assessment model: Underwater TV absolute abundance using fishery data

5) Consistency: New approach has been used for the 2009 assessment
6) Stock status: All available data suggest that the stock has reduced in the past few years but appears stable and above the long term mean. In contrast to the views of the EG, the RG consider that there is some evidence that recruitment may have reduced recently (due to shift in size distribution and little discarding).
7) Man. Plan.: There is no agreed management plan for this stock. Precautionary reference points have not been defined. . Estimated harvest ratio for 2008 between F0.1 and Fmax and should not be allowed to increase further

General comments

The abundance of this FU is estimated using the same methodology as FU6 and therefore the general comments on sensitivity to input parameters are also valid for FU9

Technical comments

Given the concerns about Scottish effort and landings statistics, the EG should remove figures and tables associated with trends in LPUE as these are considered 'unrepresentative of actual trends in LPUE'.

There are no agreed precautionary exploitation boundaries for this stock. The EG should not identify one specific catch option.

The catch length data presented in fig 3.3.5.3 suggests that discarding has reduced in recent years. The RG does not fully agree with the EG view that the there is no evidence from the size distribution to suggest over exploitation. Discarding in recent years tends towards zero, which is in sharp contrast to the patterns presented for the first half of the time series. This may indicate reduced recruitment.

Conclusions

The assessment has been performed correctly.
The RG agrees with the EG view of the stock status and notes the valid concerns regarding the inherent problems of managing this stock as part of a wider North Sea TAC.

Norway Pout in ICES sub area IV and division IIla nop-34

1) Assessment type: update
2) Assessment: analytical
3) Forecast: presented
4) Assessment model: SXSA (seasonal extended survivors analysis)
5) Consistency: Not fully consistent with last year assessment as $3^{\text {rd }}$ quarter survey indices were not back-shifted
6) Stock status: $B>B p a$, no F reference points but F is estimated to be below natural mortality at $0.12, \mathrm{R}$ is just above the long term mean

7) Man. Plan.: There is no agreed management plan for this stock although ICES provides advice on three management strategies for the stock

General comments

The only major difference from last year assessment is that no back shifting of the Q4 survey was undertaken. The EG presented a contrast with last years assessment and no discernable differences in either SSB or F is noted. The EG are encouraged to further explore the impact of the fishery in the context of the EAF, with particular reference to maintaining a sufficient biomass as a primary food source for other species and the extent of by-catch associated with the fishery due to the small minimum mesh size which does not afford protection for human consumption species.

Danish and Norwegian vessels using small mesh trawls in the north-western North Sea.

Last year's review recommended further work is needed on the commercial tuning fleet data, exploration of an alternative stock assessment model that removes commercial lpue data and link between effort and F should be explored. This years RG agrees.

Conclusions

The assessment has been performed correctly and the RG agrees with the conclusions

Plaice in Division VIId (Eastern Channel) ple-eche

1) Assessment type: Update
2) Assessment: Analytical
3) Forecast: Short-term using FLR with average F for last 3 years
4) Assessment model: XSA, with 3 commercial fleets and 3 survey fleets.
5) Consistency: The assessment and input parameters have remained essentially unchanged since last year's assessment.
6) Stock status: SSB (4336t) < Blim (5600t) < Bpa (8000t), and F(0.63) $>$ Flim $(0.54>$ Fpa (0.45) in 2008. The SSB for the stock is estimated to be near its lowest level and below Blim. F also exceeds the biological reference points. Projections based on better than average year-classes in 2006 and 2007 suggest the stock will increase slightly to above Blim. Recruitment in 2008 (24 million) is close to 2007 , and higher than the GM (15 millions) for the period 2000-2006.
7) Man. Plan.: The eastern channel plaice stock is currently at a very low level and the TAC is at risk of harvesting unsustainably.

General comments

The 2008 the review group identified a number comments/issues regarding this stock and the assessment which will hopefully be addressed at the upcoming benchmark assessment. They also concluded that the assessment is indicative of trends only.

The assessment has been generally considered unreliable for the past several years.

Since 2000 there has been a tendency for the assessment to overestimate SSB and recruitment and to underestimate F .

Landings at age and the commercial activities are somewhat dependent upon the fishing area declaration, which may vary from year to year. It is also evident from the information presented that there is a fair amount of discarding of small fish or high grading for older/larger fish.

The stock structure of the species in unknown.

Technical comments

There is a divergence in the commercial and survey indices that began about 2003 that may reflect a change in catchability of the commercial fleet. The surveys occur after most of the plaice are landed. The indices are also noisy. Recruitment estimate estimates for 2007 and 2008 are unreliable. 2008-2009 year-classes estimated from average 2000-2006 for projections.

Conclusions

The RG agrees with the WG on the conclusions for this stock.

Plaice in Division IIla (Skagerrak - Kattegat) ple-kask

1) Assessment type: Exploratory
2) Assessment: not presented
3) Forecast: not performed
4) Assessment model: XSA 2 commercial tuning fleets Danish gillnetters and seiners, 4 surveys.
5) Consistency: Retrospective analysis large shows deviations between annual assessments
6) Stock status: Bpa $=24000$ t and Fpa $=0.73$. Neither Blim or Flim are defined. No reliable estimate of stock status. Indicators suggest that exploitation may be sustainable. No sign of impaired recruitment.
7) Man. Plan.: Status of western part uncertain due to mixing with the North Sea. Surveys show a relative decline in eastern portion since peak in 2006. TAC has not been prohibitive.

General comments

Shift in source of landing from east to west. Almost 88\% now come from Skagerrak. Most fisheries occur on border between Skagerrak and the North Sea , thus source of catch may be uncertain. Stock origin is also unknown

No final assessment, last accepted analytical assessment was in 2004.

Working group considers that an analytical assessment is not appropriate until the issues of catch-age and survey spatial coverage are resolved.

Exploratory assessment plagued by large fluctuations in SSB and F with strong retrospective patterns.

Technical comments

CAA shows limited ability to track cohorts. Similar problems were observed with the commercial tuning fleets.

Conclusions

RG agrees with the WG on the conclusions.

Plaice Sub-area IV (North Sea) ple-nsea

1) Assessment type: Update
2) Assessment: Analytical
3) Forecast: Short-term forecast presented
4) Assessment model: XSA, recommended shift to SCA some time in the future. 3 surveys used to tune model
5) Consistency: The assessment and input parameters have remained essentially unchanged since last year's assessment. Retrospective analysis indicates overestimate of SSB, under estimate of F.
6) Stock status: SSB $(345000)>\operatorname{Bpa}(230000 t)>\operatorname{Blim}(160000 t)$, and $F(0.25)<$ Fpa (0.60) < Flim ($0.74>$ in 2008. The estimate of SSB for 2009 is $388000 t$ and has been increasing over the last 4 years, especially in 2008. F reduced to 0.25 . Recruitment roughly constant or just below long term average. Strong retrospective pattern for SSB and F with overestimated of SSB and under for F in the last 3 years.
7) Man. Plan.: Long term management Plan implemented in 2008 to ensure stocks of sole and plaice return to within safe biological limits. The management under the EU plan is for $\mathrm{F}=0.3$. Fishing effort has been substantially reduced.

General comments

Discards are a major problem in this fishery and can affect estimates of stock status. Landing and discards have been about equal since 2001.

Sole mesh size for beam trawl generates high discards of plaice.
May be a shift in fishing pattern toward coastal areas in the southern North Sea.
Short term forecast indicates SSB will remain well above Bpa.
Under "Quality of the Assessment" Second paragraph - Table 8.3.7 should be Figure 8.3.11

Technical comments

Large differences observed in the tuning indices trends. One index indicates higher stock abundance than the other two. Also general decline recently for commercial indices, yet general increase from trawl surveys. Residual patterns with indices for final XSA.

LPUE index used in process, but excluded from the final assessment run for management advice reduced biomass and increased F.

Maturity ogive seems a bit flat in the middle, i.e. 2 and 3 at 0.5

Conclusions

RG agrees with the WG on the conclusions.

Saithe in Sub-areas IV (North Sea), VI West of Scotland), and Division IIla (Skagerrak) sai - 3a46

1) Assessment type: Update

2) Assessment: Analytical
3) Forecast: Short-term forecast presented

4) Assessment model: XSA, 3 commercial and 1 survey fleet for tuning.
5) Consistency: The assessment and input parameters have remained essentially unchanged since last year's assessment. No major concerns about retrospective patterns for SSB and F
6) Stock status: SSB (260586t) > Bpa (200000t), > Blim (106 000t), and $\mathrm{F}(0.27)<\mathrm{Fpa}(0.40)<\mathrm{Flim}(0.60)$ in 2008. SSB is expected to remain above Bpa and Fbelow Fpa beyond 2011 at current harvest levels
7) Man. Plan.: There is an EU and Norway agreement which includes a 15% rule. F should be no more than 0.3. The current estimate is below the target F. EU Norway management Plan in place. There are differences in minimum landing size between EU and Norway.

General comments

Estimates of recruitment are uncertain in recent years. The 2005 year-class was thought to be strong in last year's assessment, this year there are no indication it has developed.

TAC lower than landings.
Quality of the assessment is considered good, lacks a good index of recruitment.

Technical comments

No reliable recruitment index for age 3 .

Conclusions

RG agrees with the WG on the conclusions.

Sandeel in Subarea IV (North Sea excluding Shetland) san-nsea

1) Assessment type: N/A

2) Assessment:
3) Forecast: N/A
4) Assessment model:
5) Consistency:
6) Stock status: N/A
7) Man. Plan.:
General comments
Technical comments
Update scheduled for September 2009.
Conclusions

Sole in Division VIId (Eastern Channel) sol- eche

1) Assessment type: Update
2) Assessment: Analytical
3) Forecast: Short-term forecast presented
4) Assessment model: XSA, 2 commercial fleets and 3 survey fleets for tuning
5) Consistency: The assessment and input parameters have remained essentially unchanged since last year's assessment. Retrospective patterns show good consistency between estimates in successive years for SSB and F , but not recruitment.
6) Stock status: SSB (12762t) > Bpa (8000t), > Blim (N/A), and Fpa (0.40) < $F(0.45)<\operatorname{Flim}(0.55)$ in 2008. SSB is expected to remain near Bpa and F greater Fpa beyond 2011 at current harvest levels.
7) Man. Plan.: EU Council Regulations have not reduced effort directed at sole in this area.

General comments

In 2008 stock was considered as having full reproductive capacity and is at the risk of being harvested unsustainably.

Large discard of plaice from this area due to smaller mesh size for sole

Last tw o years (2006/2007) recruitment estimated to be well below average.

Lack of UK YFS data for 2007 and 2008 will affect the quality of recruitment estimates and thus forecasts.

Likely that SSB will decrease to Bpa or slightly below in short term (by 2011) due to weak year classes 2006 and 2007.

Technical comments

RG last year noted a similar residual pattern for sole and plaice, but this was not addressed at the WKFLAT.

Maturity ogive knife-edged at age 3 .

Conclusions

RG agrees with the WG on the conclusions.

Sole in Sub-area IV (North Sea) sol-nsea

1) Assessment type: update
2) Assessment: analytical
3) Forecast: short-term forecast presented
4) Assessment model: XSA
5) Consistency: Retrospective analysis: Underestimation of F (exception 2007), overestimation of SSB, recruitment unbiased.

6) Stock status: F below Fpa, SSB above Bpa, strong year class $2005 \mathrm{~F}=0.34$ in 2008 which is below Fpa (0.4). The SSB 40000 t in 2008 above both Blim (25 000t) and Bpa (35000 t).
7) Man. Plan.: Biol. reference points, EU management plan: Target F 0.2. Evaluated by ICES 2008.

General comments

Fishing effort and fishing mortality have been substantially reduced since 1995. Mixed fisheries for sole and plaice complicates the management, current minimum mesh size is suitable for sole but generates high discards of plaice. Sole stock dynamics is heavily dependent on occasional strong year classes. Evolutionary effects of fishing: age and size at first maturity shifted to younger ages from 1980 onwards. This will be one of the issues in the next benchmark assessment.

Technical comments

The scenarios in the short-term forecasts are almost similar and therefore there is no big difference in the results - uncertainty in the results is certainly larger than the differences.

Figures 10.3.2 and 10.3.4.: It seems that in the retrospective analysis the commercial indices were used in the analysis for mean F (black lines in Fig. 10.3.2.) but survey indices for recruitment and SSB (grey lines)? Check which series was used in actual calculations.

Fig. 10.4.1.: The bottom right panel is landings, not recruitment. Caption needs to be changed.

Fig. 10.6.2.: The equilibrium curves presented here do not fit the with the data points. Recruitment seems not to be dependent of the SSB, and the yield not dependent on F. Are there environmental effects that determine the recruitment? Could such factors be incorporated in the analysis? The number of recruits and SSB have been fluctuating within a steady range since the latter half of the 1990s even if F has been decreasing.

Conclusions

The assessment has been performed correctly but the reference points may be uncertain. The stock seems to fluctuate almost irrespective of the fishing effort.

Whiting Sub-area IV (North Sea) \& Division VIId (Eastern Channel) whg-47d

1) Assessment type: Update
2) Assessment: analytical
3) Forecast: short-term forecast presented
4) Assessment model: XSA

5) Consistency: According to retrospective analysis large deviations between annual assessments
6) Stock status: Low SSB, recent recruitment impaired, F low from 2002 to 2005, after that F increased particularly at younger ages. $\mathrm{Blim}_{\mathrm{im}}=225,000 \mathrm{t} ; \mathrm{Bpa}_{\mathrm{pa}}$ $=315,000 \mathrm{t} ; \mathrm{Flim}^{=}=0.90 ; \mathrm{F}_{\mathrm{pa}}=0.65$. SSB in 2008 the lowest level since the beginning of the time-series in 1990. Fishing mortality increased in recent years to twice $\mathrm{F}_{\text {max. }}$. Recruitment has been very low since 2001.
7) Man. Plan.: Reference points agreed by the EU and Norway, unchanged since 1999, WG considers not applicable.

General comments

The WG states that due to the likely population structuring in the North Sea and Eastern Channel, it is probable that the overall stock estimates may not reflect trends in more localised areas.

There has been a likely increase in discarding in some areas due to unaffor dable quota. Value of whiting has increased in recent years.

Retrospective pattern all over the place. Fig 12.3.15
The working group considers the status of the stock unknown with respect to biological reference points. Nevertheless all indications are that the stock is at a historical low level relative to the period since 1990. Recent measures to improve survival of young cod and increased uptake of more selective gear in the North Sea and Skagerrak, should be encouraged for whiting.

The survey data and commercial catch data contain different signals concerning the stock

Technical comments

Status of the stock unknown with respect to biological reference points

Conclusions

RG agrees with the WG on the conclusions.

Whiting in Division IIla (Skagerrak - Kattegat) whg-kask

1) Assessment type: SALY
2) Assessment: not presented
3) Forecast: not presented
4) Assessment model:
5) Consistency:
6) Stock status:
7) Man. Plan

General comments

TheWG states that the new data available for this stock are too sparse to revise the advice from last year and therefore no assessment of this stock was undertaken.

Technical comments
Conclusions

Nephrops in Division IVa (Noup, (FU 10) nep-1 0

1) Assessment type:
2) Assessment: N/A
3) Forecast:
4) Assessment model: Underwater TV absolute abundance
5) Consistency: Surveys are sporadic with last occurring in 2007
6) Stock status: Unknown
7) Man. Plan.: There is no agreed management plan for this stock. Precautionary reference points have not been defined. .

General comments

No new information for 2007 or 2008 for this small fishery.

Technical comments

Given the concerns about Scottish effort and landings statistics, the EG should remove figures and tables associated with trends in LPUE as these are considered 'unrepresentative of actual trends in LPUE'.

Conclusions

No advice requested and no assessment undertaken

Nephrops in Division IVa (Norwegian Deeps, (FU 32) nep-32

1) Assessment type: Trends
2) Assessment: N/A
3) Forecast: N/A
4) Assessment model:
5) Consistency:
6) Stock status: No change since 2008 evaluation. Current fishery appears sustainable

7) Man. Plan.: There is no agreed management plan for this stock. Precautionary reference points have not been defined. .

General comments

Based on Danish LPUE, thus highly uncertain. There may be some technology creep.
Technical comments
Conclusions
No advice requested and no assessment undertaken

Nephrops in Division IVb (Off Horn Reef, FU 33) nep-33

1) Assessment type: Nil
2) Assessment: N/A
3) Forecast: N/A
4) Assessment model: N/A
5) Consistency:
6) Stock status: Unknown
7) Man. Plan.: There is no agreed management plan for this stock. Precautionary reference points have not been defined. .

General comments

Only on Danish LPUE, thus highly uncertain. There may be some technology creep. Large ($\sim 50 \%$) catch by Netherlands in 2008

Technical comments
Conclusions
No advice requested and no analysis presented

Nephrops in Division IVbc (Botney Gut - Silver Pit, (FU 5) nep-5

1) Assessment type:
2) Assessment: Not conducted
3) Forecast: N/A
4) Assessment model: N/A
5) Consistency
6) Stock status: Evaluation of stock difficult.
7) Man. Plan.:

General comments

There has been a real lack of information from this area in the past few years (since 2005). This is combined with a significant increase in the LPUE for Denmark which may reflect a technology creep. However, there is no indication of a downward trend.

Technical comments

Conclusions
No advice requested and no assessment undertaken

Nephrops in Division IIla (Skagerak Kattegat, (FU 3,4) nep-iiia

1) Assessment type:
2) Assessment: Not conducted
3) Forecast: N/A
4) Assessment model: N/A
5) Consistency
6) Stock status: Current levels of exploitation appear to be sustainable. No estimate of SSB.

7) Man. Plan:

General comments

WG recommends both FU 3 and 4 be merged into a single FU.
There was been limited sampling of the Skagerak area in 2007 and 2008, but ok in Kattegat.

Technical comments

Last year there were a number of issues associated with the TV indices. The WG decided that the TV indices should be considered a measure of absolute abundance. They also pointed out that the camera detects burrows smaller than the fishery takes. Only a portion is available to the fishery and the harvest ratios need to be revised downward.

Conclusions

No advice requested and no assessment undertaken

Sandeel in Subarea IVa (Shetland area) san-shet

1) Assessment type: N/A
2) Assessment:
3) Forecast: N/A
4) Assessment model:
5) Consistency
6) Stock status: N/A
7) Man. Plan.:
General comments
Technical comments
Update scheduled for September 2009, perhaps.

Conclusions

[^0]: * Non-available data from 2005 and 2007 is due to closure of the Norway pout fishery the whole year

 Data for 2006 and 2008 does only cover 2nd half year as the directed fishery was closed 1st half year 2006 and very low 1st half year 2008.
 Data for 2008 only covers Danish directed fishery for Norway pout

