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Abstract. The completion of maturation in Atlantic salmon (Salmo salar) depends on 

environmental conditions that affect both feeding opportunities and growth, which 

would provide sufficient lipid stores for reproduction. However, if the level of energy 

reserves of a given fish is below a certain genetic threshold at a critical decision time 

further gonadal development is arrested and fully maturation postponed. This individual 

development pattern suggests that the proportion of fish maturing at a given sea age 

could vary from year to year according to the feeding opportunities in the oceanic 

migratory habitat, and the growth rate during freshwater residence that might be 

associated with growth at sea. In this study we show that sea age at maturity of adults 

caught in multiple Norwegian rivers has increased with increasing sea surface 

temperature (SST) experienced by the fish in autumn months during their first year at 

sea. Furthermore, freshwater conditions measured by river discharge during summer 

months one year ahead of seaward migration is positively related with increasing sea 

age at maturity. This result is discussed within the broad changes occurring in the 

North-east Atlantic pelagic food web mostly related with the current ocean warming, 

and river conditions influencing growth rates. 
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Introduction 

Recent climate change is promoting multiple effects at population, community and 

ecosystem levels inducing extensive ecological changes well documented from various 

terrestrial, freshwater and marine systems (Letcher, 2009). The impacts of climate 

variability on aquatic ecosystems are widespread across their multiple components (e.g. 

Drinkwater et al., 2010) and have effects on key life-history processes, including 

reproduction and maturation of fish (Rijnsdorp et al., 2009). Age at reproduction is 

among the most important life history traits, having profound fitness effects and also 

important demographic implications (Stearns, 1992). In fish there is ample evidence that 

age at maturity has a significant additive genetic component, but also that this trait is 

highly plastic in response to changes in the environmental conditions (e.g. McDermid et 

al., 2007). This is also the case for the Atlantic salmon (Salmo salar L.), a highly 

charismatic species with great economic and social value (García de Leániz et al., 

2007). 

The life history of Atlantic salmon is complex (Webb et al., 2007). Spawning 

occurs in freshwater in October–January. Juveniles (parr) stay in freshwater 1–6 years 

before transforming into smolt in spring and leaving their rivers to pursue oceanic 

feeding migrations. Post-smolt Atlantic salmon spend 1–4 years at sea until the 

attainment of sexual maturity, and return in May–October with high precision to their 

natal areas to spawn. Maturation may be reached after a single or multiple sea-winters 

and it is to some extent determined genetically (García de Leániz et al., 2007). 

However, the biochemical processes leading to the completion of maturation are 

complex and depend on environmental conditions. Hence, the reproductive strategy is 

environmentally dependent but determined by the genetic structure, which sets a 

threshold level that prevent or permit an individual to continue further gonadal 
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development at a critical decision time and complete maturation (Thorpe, 1994). 

Several studies have shown that the determination whether to continue maturation 

occurs during autumn, a year ahead of spawning (Metcalfe, 1998), and depends on 

adequate lipid reserves (Thorpe et al., 1998). If the level of energy stores is insufficient 

for reproduction, that is, the genetically specified threshold level is not reached, the 

completion of maturation could be halted (Mangel & Satterthwaite, 2008). This arrest 

implies individual dependence on environmental opportunities, suggesting that the 

proportion of fish maturing at a given sea age would vary from year to year.  

There is ample evidence that demonstrates the link between inheritance and 

maturation (García de Leániz et al., 2007); however, the literature is inconclusive on the 

nature of the environmental effects across life-stages both in the river and in the ocean 

that in turn might affect maturity. During the parr stage, juveniles may be heavily 

affected by river discharge (e.g. Jensen & Johnsen, 1999) and river temperature (e.g. 

Jensen, 2003). Freshwater conditions might then influence pre-smolt growth rates that, 

in turn, might be associated with growth during the first year at sea and hence sea age at 

maturity. If so, age at maturity may partly be determined prior to sea entry, however, the 

shapes of these relationships are not clear. Some studies infer that smolt size and marine 

growth could be positively related (e.g. Salminen, 1997), whereas other authors have 

found an inverse relationship (e.g. Nicieza & Braña, 1993). In addition, increased 

growth rate during the first year at sea leads to postpone maturation (e.g. Jonsson et al., 

2003), while other studies argue the opposite (e.g. Friedland & Haas, 1996).  

In this paper we use the proportion of two-sea-winter relative to one-sea-winter fish 

from the same smolt cohorts of Atlantic salmon to elucidate the plasticity in sexual 

maturation of salmon caught in 59 Norwegian rivers. By means of statistical modelling 

we estimate and determine the type of relationship between the sea age at maturity and 
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(i) the oceanic conditions experienced by post-smolt salmon in their seawater-foraging 

habitat, and (ii) the environmental conditions during the pre-smolt freshwater residence 

previous to the seaward migration. We expect that Atlantic salmon respond quickly to 

variations in either large scale (i.e. in the ocean) or local scale (i.e. in the river) 

environmental conditions by plastically changing their age at first maturation.  

 

Material and methods 

Biological data 

The present study is based on the official statistics of nominal rod catch of adult 

Atlantic salmon for the period 1992 to 2007 over a wide geographical range of 

Norwegian rivers (58º19’–70º37’ N and 5º07’–30º32’ E). The legal fishing season is 

restricted to summer and early autumn, but differs somewhat among rivers. In Norway, 

systematic collection of data on salmonid fisheries began in 1876. Starting in 1979, 

Atlantic salmon were identified at the species level and differentiated into two weight 

categories (< 3 kg and ≥ 3 kg). The smaller group mainly corresponds to one-sea-winter 

(1SW) fish (grilse), and the larger group corresponds to multi-sea-winter (MSW) fish. 

Starting in 1993, the MSW group was categorized into two more weight classes (3–7 

kg, and ≥ 7 kg) corresponding to 2SW and mainly 3SW fish, respectively (Jensen et al., 

1999). For the purpose of this study we used data from the 1SW (i.e. catches from years 

1992 to 2006) and 2SW (i.e. catches from years 1993 to 2007) weight groups compiled 

from 59 Norwegian rivers. We based our analyses on the annual proportion of fish 

attaining maturity as two-sea-winter fish relative to one-sea-winter fish pertaining to the 

same smolt cohort (i.e. 

! 

2SW
t
2SW

t
+1SW

t"1
) that is, smolt cohorts from years 1991 to 

2005. Further detailed description of data handling and discussion on possible bias can 

be found elsewhere (Otero et al., submitted). 
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Physical data 

Sea surface temperature (SST in ºC) changes have broad effects in the North Atlantic 

Ocean (e.g. Beaugrand, 2009), and they have been associated with growth rates (Todd 

et al., 2008) and fluctuations of Atlantic salmon catch (Beaugrand & Reid, 2003). 

Therefore, we used basin scale SST as a surrogate of oceanic conditions. Optimum 

Interpolation sea surface temperature (SSTv2) data available at 1º latitude × 1º 

longitude grid resolution were obtained from the NOAA Earth System Research 

Laboratory  (http://www.esrl.noaa.gov/psd/). Monthly average data from a combination 

of satellite and in situ measurements (Reynolds et al., 2002) were extracted for the 

period May-1991 to April-2006 to match appropriate time lags (see below), and 

delimited to the range of 55º–80º N and 15º W–30º E (note that the Baltic Sea was 

excluded from the analyses). This area covers most of the migratory and foraging 

habitat of Atlantic salmon originated from Norwegian rivers (Holm et al., 2004) and 

included 794 grid boxes. The monthly SST time series were analyzed using Principal 

Component Analysis (PCA). A PCA was performed on the correlation matrix for each 

month (i.e. each of the 12 matrices: 15 years × p boxes, with the p number of boxes 

varying among months depending on the affection by sea ice) to identify long-term 

changes in SST (examination of principal components) and locate the geographical 

patterns (mapping of eigenvectors). These matrices were not of full rank, this means 

that there were fewer number of observations n (i.e. years) than descriptors p (i.e. grid 

boxes). However, when n ≤ p the first few axes, which are the ones of main interest, are 

little influenced (Legendre & Legendre, 1998). 

Water discharge is used as a surrogate of freshwater conditions in terms of feeding 

opportunities and growth rates mediated, for instance, by river temperature (Forseth et 
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al., 2001). River conditions in midsummer would determine whether an individual 

would undergo smolt metamorphosis and ultimately define a sufficient energy status to 

survive emigration from the river the following spring (Mangel & Satterthwaite, 2008). 

Therefore, we considered average runoff in each river during the spring-summer (May–

August) one-year ahead of smolt migration for the period 1990 to 2004 to match an 

appropriate time lag (see below). In doing so, daily discharge (runoff in m3 s–1) for each 

river catchment was estimated using a spatially distributed version of the Hydrologiska 

Byråns Vattenbalansavdelning model (HBV, 

http://www.smhi.se/foretag/m/hbv_demo/html/welcome.html) developed by the water 

balance section of the Swedish Meteorological and Hydrological Institute (see Beldring 

et al., 2003 and references therein). 

 

Statistical analyses 

We first evaluated if there were a linear trend in the proportion of 2SW fish (measured 

in kg) from the same smolt cohorts (i.e. 

! 

2SW
t
2SW

t
+1SW

t"1
) in each river by means of 

ordinary least squares, and compared the individual slopes with latitude and various 

habitat characteristics which appear to be important for explaining the variation in grilse 

proportion (L’Abée-Lund et al., 2004). Second, the proportion of 2SW fish was 

modelled using a restricted maximum likelihood (REML) linear mixed-effects model 

(random grouping factor comprises 59 rivers with 868 observations) following methods 

described in Pinheiro & Bates (2000). Although the response variable is a proportion, a 

linear model is adequate here since the observed proportions are not close to either 0 or 

1. Selection of explanatory variables, random effects and correlation structure on error 

term was all performed using the Bayesian Information Criterion (BIC, Burnham & 

Anderson, 2002). A preliminary analysis indicated that inclusion of a random effect in 
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the intercept might be required to account for river-to-river variability while random 

effects related to the other regression coefficients were of less significance. According 

to these preliminary results we fitted a model of the form:  

! 

P
i,t

= "
0

+ a
i( ) + "

1
SST

t#n + "
2
R

i,t#3 + $
i,t

 

where P is the proportion of 2SW kg for each river i at a time t; SST is the first principal 

component of the SST analyses lagged depending on the considered month, that is, SST 

from May to December was lagged two years (i.e. these months represent temperature 

effects during the smolt year), and months from January to April were lagged one year 

(i.e. these months represent temperature effects during the returning year for 1SW 

individuals); and R is ln-transformed runoff with a three year lag to represent effects 

during pre-smolt growth conditions the year before emigrating from the river. Note that 

R was also centered, by subtracting a river-specific mean. βj are the fixed effects to be 

estimated; a is the random river (i) effect for the intercept assumed to follow a normal 

distribution with mean zero and variance 

! 

"
a

2; and 

! 

"
i,t

 is the within-group error term 

assumed to be first-order autocorrelated (i.e., 

! 

"
i,t

= #"
i,t$1 +%

i,t
, where 

! 

"
i,t
~ N 0,# 2( )). 

Finally, heteroscedasticity was modeled using the following variance function: 

! 

Var "
i,t( ) =# 2

v
i,t

2$  were δ is the power function of the fitted values (vi,t) to be estimated. 

All analyses were performed on R 2.6.2 software (R Development Core Team, 2008) 

and using the “nlme 3.1-86” package (Pinheiro & Bates, 2000). 

 

Results 

The proportion of 2SW Atlantic salmon generally increased across the rivers studied. 

Only 9 out of 59 rivers (~ 15%) showed a negative time trend (Fig. 1). The estimated 

slopes were not related with latitude neither with any habitat characteristics. SST 

changes in the North-east Atlantic in September (the month that gave the optimal fit in 
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the mixed-effects model, though note that April provided an equally likely model in 

terms of BIC criteria) shows a pronounced increase since 1991 with a peak in 2003 

(Fig. 2a). This warming was especially apparent in the central Norwegian Sea and north 

of the Faroe islands (Fig. 2b), which is an area of distribution for Atlantic salmon post-

smolt. By contrast, water flow was relatively stable in every studied river. The most 

remarkable feature occurred in 2000 with an apparent overall increase in runoff (Fig. 3). 

The optimal mixed-effects model shows that warmer ocean temperatures in autumn 

(September) and higher runoff in summer during the parr stage (the year before smolt 

transformation) give relatively more 2SW salmon (Table 1). The data strongly 

supported the model including both the ocean and freshwater effects compared to 

models considering isolated oceanic and riverine conditions (Table 2). Within group 

residuals were normally distributed and did not show any remaining variability. 

Random effects were also reasonable normally distributed. 

 

Discussion 

Here, we show that sea age at maturity in Atlantic salmon is strongly influenced by 

environmental conditions in the ocean during the post-smolt phase as well as in the river 

during the pre-smolt phase. To complete maturation and reproduce in autumn Atlantic 

salmon must initiate physiological changes well in advance. Mangel & Satterthwaite 

(2008) summarized this life history framework describing developmental switches that 

occur in the fish at a given decision time (Fig. 4). That is, in autumn fish compare the 

state of lipids and their rate of change with a genetically determined threshold (switch 

designated as G1). If the state is sufficiently high gonadal development continues; 

otherwise maturation is inhibited. The following spring a similar comparison between 

the state of lipids and their rate of change with a second threshold occurs (switch 
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designated as G2). Therefore, one-sea-winter (1SW) fish has followed a path where G1 

= 1 and G2 = 1, whereas two-sea-winter (2SW) fish has followed a path where either G1 

= 0 or G1 = 1 but G2 = 0. Thorpe et al. (1998) have provided evidence supporting this 

modelling framework. Overall, our results show that the analyzed Norwegian rivers are 

becoming more 2SW rivers over the last 15-year period, meaning that the proportion of 

Atlantic salmon from a given cohort that attains maturity after 2 years at sea is 

increasing. This increase does not vary according to latitude neither depends on any 

river characteristic.   

The control of maturation of Atlantic salmon has been tested in aquaculture 

experiments providing strong evidence that gonadal development is halted by poor 

feeding opportunities and concluding that the amount of lipid stores would probably be 

the critical resource governing the direction of maturity at the critical decision time (see 

Thorpe et al., 1998 and references therein). Low levels of stored lipids would lead to 

postpone maturation. Therefore, it would be expected that the less favourable feeding 

conditions at sea the higher the proportion of Atlantic salmon arresting maturity. The 

current ocean warming has been related to poorer feeding opportunities and decreased 

growth conditions of the returned 1SW salmon (Todd et al., 2008). In turn, this leads to 

poor recruitment (Friendland et al., 2009), and reduces the catches in the eastern North 

Atlantic (Beaugrand & Reid, 2003). In this study, we found that warmer SST is related 

with an increase in sea age at maturity and this relationship is probably related to the 

temperature-induced changes in food web structure and consequently reduced feeding 

conditions. Therefore, we here suggest that our findings are a result of well-described 

changes in the eastern North Atlantic food web, specifically related with the changes on 

zooplankton assemblages occurring as a consequence of ocean warming (Beaugrand, 

2009). That is, growth at sea might be compromised by the quantity and quality of prey 
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items available providing insufficient energy to reach the lipid threshold needed to 

complete maturation. For instance, the increase in temperature has profound effects on 

the food web (plankton) composition and is enhancing a decrease of the size of 

copepods (Beaugrand, 2009) that in turn would have a lower concentration of lipids 

(e.g. Pepin & Head, 2009). Copepods (Calanus spp.) are not a significant prey item of 

the diet of post-smolt salmon (Jacobsen & Hansen, 2001), however, they are the most 

important constituents of the pelagic ecosystem serving as food for organisms at higher 

trophic levels. These organisms include various salmon preys, for instance, amphipods, 

lantern fishes, pearlsides, euphausiids, shrimps or herring (Jacobsen & Hansen, 2001; 

Haugland et al., 2006), which are decisive for energy –lipid– flux (Jensen et al., 2007; 

Petursdottir et al., 2008). The effects of climate variation on biochemical ecology are, 

however, poorly known, although significant variability on the lipid contents are 

expected through changes in the availability of essential fatty acids by changing 

physical oceanography (e.g. Litzow et al., 2006). Therefore, our result is consistent with 

the decision paths described earlier in a sense that conditions in the ocean during 

autumn are correlated with the sea-age proportion of fish caught later in the rivers. That 

is, increasing sea surface temperature in September suggests that more fish are 

following the path G2 = 0 and hence postponing maturation for another year. As a result 

the relative catch of 2SW fish is higher compared to 1SW fish of the same smolt cohort 

(Fig. 4). However, we cannot distinguish if G1 = 0 or G1 = 1, i.e., whether growth 

opportunities before the first developmental switch were not sufficient to exceed the 

threshold associated with G1 or ongoing environmental conditions before G2 were poor. 

Moreover, note that oceanic conditions in April appeared to be equally important in the 

model selection procedure, which would serve as an indication of the importance of the 

secondary switch (G2). 
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Several studies have addressed the effects of temperature on multiple traits of 

Atlantic salmon life history. For instance, it is generally accepted that warmer SST 

during the first weeks of foraging at sea promote high growth-mediated survival for 

1SW fish (e.g. Friedland et al., 2000). However, the literature is strongly contradictory 

when describing relationships across life-stages and the implication of environmental 

factors. Studies within (Jonsson et al., 2003) and among Atlantic salmon populations 

(Hutching & Jones, 1998) have shown that higher growth rate at sea seems linked to an 

increase in sea age at maturity. Sea age at maturity and growth rate is suggested to be 

linked with ocean climate such that fish reaching a certain size threshold postpone 

maturation and become 2SW when the sea is warmer (Jonsson & Jonsson, 2004a). 

Given this framework, relatively more 2SW than 1SW salmon would then be expected 

with favourable growth conditions at sea at higher water temperatures. This is a model 

directly in opposition to the one presented by Mangel & Satterthwaite (2008) and to the 

results found in this study. It is also in opposition to the more general observations 

based on theory and data that life history transitions happen later when growth rate 

decreases (e.g. Day & Rowe, 2002). A number of other studies in Atlantic salmon 

support our conclusions. For instance, Friedland & Haas (1996) found a positive 

relationship between growth during late summer and the fraction of post-smolt attaining 

maturity after one year at sea. Moreover, Salminen (1997) depicted as well a negative 

relationship between marine growth rate and sea age at first maturity. Furthermore, 

Jonsson & Jonsson (2004b) showed that the percentage of adults maturing as 1SW and 

their mean body mass increase from smolts to 1SW fish were positively related to the 

North Atlantic Oscillation (NAO) from February to April and in May, respectively. 

These authors suggested that benign conditions at the time of sea entry would be 

important to define the later size of spawners and would favour less inhibition of 
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maturation increasing the percent maturing. The SST variability associated with the 

winter NAO shows marked spatial structure with cold anomalies in part of the post-

smolt foraging habitat and warm anomalies along the Norwegian coast at high values of 

NAO (Hurrell & Dickson, 2004). Therefore, ocean climate effects on Atlantic salmon 

early and later performance, including the decision to mature, are not unequivocal; 

rather they seem to be complex and presumably differ at various spatio-temporal scales. 

Growth performance of Atlantic salmon during freshwater residence affects smolt 

age and size that in turn might be related to post-smolt growth and presumably with 

ultimate effects on size and age at maturity. However, correlation analyses between 

stage-specific traits are again inconclusive. For instance, on the one hand, it has been 

shown that smolt size and marine growth could be positively (e.g. Salminen, 1997) or 

negatively related (e.g. Nicieza & Braña, 1993). On the other hand, pre-smolt growth in 

freshwater might be negatively linked with growth at sea (e.g. Einum et al., 2002), 

whereas Friedland et al. (2006) provided no evidence for a relationship among growth 

rates between life stages. Furthermore, among-population studies have shown that the 

smaller the fish at seaward migration, the higher the subsequent growth at sea (Jonsson 

& Jonsson, 2007). Notwithstanding, we found an increase of sea age at maturity with 

increasing values of water flow from May to August during the pre-smolt growth and at 

the time of deciding to emigrate the following spring (Thorpe et al., 1998) (Fig. 4). 

Experimental studies have shown lower growth rate and lipid content of parr at higher 

water flow, suggesting that the energetic costs for foraging in response to increased 

discharge and water velocity are high enough to reduce performance of Atlantic salmon 

(Kemp et al., 2006). Moreover, high water flow during summer reflects rainy weather 

with low air and water temperatures resulting in reduced growth of salmon parr (Forseth 

et al., 2001). Therefore, elevated runoff seems to promote poor growth in freshwater. 
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However, the relationship between lower growth rate in the river and delaying maturity 

at sea is not clear. Concurrent with our findings, Nicieza & Braña (1993) and Salminen 

(1997) showed that smaller smolts (slower growth in the river) would mature at older 

(sea) ages. However, it has been reported that salmon growing poorly in freshwater 

grows faster at sea (e.g. Jonsson & Jonsson, 2007). If this would be the case, and to be 

coherent with our previous argument of more 2SW at lower sea growth, we would 

expect more 1SW fish, contrary to what we found. More 2SW would be expected, 

however, if current poor ocean conditions were outweighing the benefits of fast growth 

at sea (and slow growth at freshwater). Finally, the influence of river conditions in 

determining sea age at maturity could be actually of minor importance in determining 

maturity (Table 3).    

Changes in age –and size– at maturity in exploited fish could, however, be an 

evolutionary consequence of continuous fishing. Selective exploitation can cause 

detectable evolutionary changes in multiple life traits, but separating phenotypic 

plasticity from genetically based responses is still complex (Hard et al., 2008). For 

Atlantic salmon, for instance, Kuparinen et al. (2009) have shown a decrease in age at 

maturity in synchrony with changes in growth trajectories suggesting the effect of a 

common factor driving the observed changes at the population level including fisheries 

induced evolution. Furthermore, cessation of high seas fishing activities seemed to be 

responsible of observed changes in size at maturity of other salmon species (e.g. 

Oncorhynchus keta, Fukuwaka & Morita, 2008). In line with this, the Norwegian drift 

net fishery was closed in 1989. Jensen et al. (1999) showed changes in populations from 

Norwegian and Russian rivers, however, evolutionary effects for sea age at maturity are 

less likely due to the fact that this fishery targeted the spawning run, that is, individuals 

that have already made the decision to mature. Therefore, it seems that environmental 
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conditions would be overwhelming evolution, though, we can not rule out completely 

the hypothesis of evolutionary effects of fishing derived from responses to the fishery in 

the foraging area to the north of the Faroe Islands. 

All in all, it seems that growth condition at sea of Atlantic salmon is decreasing 

resulting in a reduction of size at maturity within the returned individuals (Jonsson & 

Jonsson, 2004b; Todd et al., 2008). However, it is not that clear whether a decrease in 

growth rate at sea is related with an increase or decrease in sea age at maturity. Our 

finding that the proportion of 2SW over the last 15-year period has increased concurs 

with similar results of various Pacific salmon species attributing the changes in size and 

age at maturity to a phenotypic response to a reduced growth rate caused by changes in 

the environmental conditions (see Morita & Fukuwaka, 2007 and references therein). It 

is therefore likely that sea age at maturity will increase, contrary with what has been 

recently suggested (Jonsson & Jonsson, 2009), as projected effects of climate change 

predict a continuous rise of SST, and derived bottom-up alterations in the pelagic 

ecosystem of the eastern North Atlantic Ocean and adjacent seas (Ito et al., 2010). 

Moreover, climate models point towards an increase of precipitation and springtime 

flooding events (Benestad & Haugen, 2007) that would potentially affect growth rate in 

freshwater. 

We can conclude that warming in the foraging habitat of post-smolt Atlantic 

salmon since the 1990s promotes poor growth opportunities delaying the completion of 

maturation by not reaching the desired level of stored lipids and therefore increasing the 

sea age at maturity. Furthermore, increased water discharge at the pre-smolt stage 

promotes poor growth during freshwater residence, though the (in)direct effects on 

posterior oceanic growth and later on the sea age at maturity remain unclear. Hence it 

seems that current changes in developmental opportunities (Thorpe, 2007) are playing a 
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fundamental role in determining –delaying– the completion of maturation of Atlantic 

salmon from Norwegian rivers.     
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Table 1 Results from analyses of the influence of SST and runoff on the proportion of 

two-sea-winter relative to one-sea-winter fish (in kg) from the same smolt cohort of 

Atlantic salmon obtained from the optimal mixed-effects model with River as random 

grouping factor (59 levels). SST = sea surface temperature (ºC), R = runoff (m3 s–1), c.i. 

= confidence interval, s.d. = standard deviation, n.a. = not applicable. 

 

Fixed effects Estimate 95% c.i. t-value P-value 

Intercept 0.4008 0.3615; 0.4401 20.0307 9.18e–73 

SSTSeptember 0.0024 0.0019; 0.0029  9.1206 5.83e–19 

R 0.0612 0.0243; 0.0981 3.2582 1.17e–3 

Random effects (s.d.)     

Intercept (

! 

"
a

2) 0.1507 0.1247; 0.1820 n.a. n.a. 

Correlation structure     

! 

"  –0.1248 –0.1974; –0.0508 n.a. n.a. 

Variance function     

δ 0.1877 0.0650; 0.3105 n.a. n.a. 

Residual s.d. (

! 

" 2) 0.1563 0.1368; 0.1785 n.a. n.a. 
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Table 2 Comparison of mixed-effects models fitted to the proportion of 2SW Atlantic 

salmon being produced by 1991–2005 cohorts from 59 Norwegian rivers using different 

fixed effects. Models were fitted using maximum likelihood estimation (ML) for 

meaningful comparisons. Note that SST corresponds to the PC1 of the SST analysis in 

September. SST = sea surface temperature, R = runoff, BIC = Bayesian Information 

Criterion. 

 

Modelled effects Model structure Parameters BIC ΔBIC 

Oceanic + freshwater 

! 

P
i,t

= "
0

+ a
i( ) + "

1
SST

t#n + "
2
R

i,t#3 + $
i,t

 7 –863.59 0 

Oceanic 

! 

P
i,t

= "
0

+ a
i( ) + "

1
SST

t#n + $
i,t

 6 –858.51 5.09 

Freshwater 

! 

P
i,t

= "
0

+ a
i( ) + "

1
R

i,t#3 + $
i,t

 6 –792.97 70.63 
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Fig. 1 Histogram of the time trend (i.e. smolt year slope) of the proportion of 2SW 

Atlantic salmon cohorts in 59 Norwegian rivers during 1991–2005. 
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Fig. 2 Long-term changes in SST in the Norwegian Sea. (a) First principal component 

of SST in September over the period 1991–2005 accounting for 37.8% of the total 

variance. (b) Spatial mapping of the loadings (correlations) of each grid cell on the first 

principal component. The dashed line delimits the approximate area of distribution of 

post-smolt Atlantic salmon according to Holm et al. (2004). Note that the Baltic Sea 

data were excluded from the analysis. Northernmost white areas were affected by sea 

ice. 
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Fig. 3 Mean estimated ln-transformed runoff (m3 s–1) from May to August in the year 

prior to Atlantic salmon smolt transformation during the years 1990–2004. Thin lines 

represent river-specific centered runoff in each of 59 rivers; thick red line shows the 

annual mean.  
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Fig. 4 Schematic representation of the Atlantic salmon life cycle and the relationships 

reported in this study. Fish mature after one-sea-winter (1SW) or two-sea-winters 

(2SW) depending on the route determined by the responses to the developmental 

switches (G1 and G2). Black arrows indicate the (positive) relationships modelled in this 

work, whereas dashed arrows show the hypothetical (negative) effects of sea surface 

temperature (SST) and runoff on post-smolt and pre-smolt growth, respectively. The 

modelling framework by Thorpe et al. (1998) inspired this sketch. See the main text for 

further discussion on the potential nature of the relationships involved. Drawings 

credits: © Atlantic Salmon Federation (www.asf.ca) / J.O. Pennanen. 
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