This report not to be quoted without prior reference to the Council ${ }^{x}$

ICES Headquarters, 13-16 April 1982

This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.
x) General Secretary, ICES, Palmgade 2-4, DK-1261 Copenhagen K, Denmark.
Page
Main Tasks 1
A. WEST GREENLAND FISHERY 2

1. Statistics and Composition of the Fishery 2
2. Origin of Salmon at West Greenland 3
3. Biological Characteristics 4
4. Gill-Net Mesh Selectivity Factors 4
5. Measurement of Mesh Size of Gill-Nets 5
6. Request for ICES Advice by Canadian Government and EEC Commission 6
B. NORWEGIAN SEA LONG LINE FISHERY 9
7. Catch Statistics and Characteristics of the Fishery 9
8. Countries of Origin of Salmon caught in the northern Norwegian Sea and Faroes Area Fisheries 10
9. Biological Characteristics 11
10. Request for ICES Advice from Home Government of Faroe Islands 11
11. Plans for Joint Research in Faroes Area 17
C. HOME WATER FISHERIES 20
List of Working Documents 22
Appendix 1: Instructions for the collection of scale samples 24
Tables 1 - 8 25
Figure 1 33
Annex l: Report of Meeting of Special Study Group of North Atlantic Salmon Working Group, Tbrshavn, 15-16 December 1981 34-51

REPORT OF MEETING OF WORKING GROUP ON NORTH ATLANTIC SALMON

The Working Group on North Atlantic Salmon met at ICES Headquarters from. 13-16 April 1982. The following members participated:

The ICES Statistician, Mr K Hoydal, also attended some of the Working Group's sessions.

Main Tasks

In addition to reviewing the latest information on the interception salmon fisheries and exploited stocks at West Greenland and in the Horwegian Sea, and the fisheries and stocks in homewaters, the Workirg Group considered specific requests for $I C E S$ advice on the following items concerning the management of North Atlantic salmon stocks.

1. A request from the Canadian Government for advice, presented in the form of a graph, on "what quota should apply to the West Greenlanc fishery in 1982 to ensure that the mortality of salmon of Canadian or Community origin does not exceed the mortality resultine fron a quota of 1,190 tonnes taken in accordance with the fishing patterns in 1976/77
for different opening dates falling between 10 August and 10 September and on the assumption that the mesh size will be, (a) the same as during the 1981 fishing season, (b) 140 mm ?"
2. A request from the Faroese Home Government (through the Danish Foreign Ministry) for advice on the following questions:"1(a) Is ICES in a position to advise on a TAC for salmon, which would guarantee a certain survival rate, which would maintain. the home-water stocks and safeguard the spawning in the rivers on some optimal level
(b) What the effect of smolt releases on this would be.

2 Is ICES in the position to calculate the increase in stock weight during the feeding season of the part of the salmon stock that migrates to the waters: around the Faroe Islands."

The Working Group also considered further the proposals for a cooperative programme of research on the salmon fishery and exploited stock. in the Faroes. area which had been prepared by a Study Group established in accordance with ICES Resolution CN. 1981/2:7.

A. WEST GREENLAND FISHERY

1. Statistics and Composition of the Fishery
,The reported nominal catches of salmon at West Greenland in years 1960 to 1981 are given in Table 1. In 1981 the fishery took place in the period 25 fugust to 31 October. and the nominal catch was 1,264 tonnes, which is 6 tonnes below the quota of 1,270 tonnes set by the European Community.
\therefore As in previous years, the total quota was divided into two components; a "free component" for which all licensed fishermen can take part, and a "small boat component" which is allocated to small vessels on a district basis.

The free component was fished during the period 25 August to 13 September and the catches amounted to only 968 tonnes. The remaining part of the quota, the "small boat component", was fished for thereafter from 1.4 September to 1 October, but the catches in that period amounted only to 132 tonnes. In order to fulfil the quota of 1,270 tonnes it was necessary to re-open the fishery for all licensed fishermen, and from 2 October to 31 October 164 tonnes were taken. The distribution of the fishery between NAFO Divisions in 1981 was different from that in the years 1979 and 1980 (Table 2). In 1981 the fishery had a more northerly distribution than in those years, which may be due to the later opening date and the extended duration of the fishing season.

2. Origin of Salmon at West Greenland

- Further information presented to the Working Group on the identification of : orth American and European origin salmon in the West Greenland population from scale characteristics, indicated changes relative to earlier years in the growth patterns of scales from some European salmon belonging to the 1979 ard possibly also the 1980 smolt year-classes. These changes were characterise à by lover numbers of circuli in the first sea growth zone than those observed in the original 1968-1970 scale material used to calculate the discriminant functions by which the relative proportions of North American and European origin salmon at West Greenland were estimated. Although this difference was only investigated in homewater samples the possibility exists that it was also present in salmon at West Greenland in 1980 and 1981, and would result in some of the European salmon in the population being erroneously identified as North American salmon. The Vorking Group accordingly recommends that the possible inaccuracies in the discriminant function classifications resulting from these charges should be investigated further for 1980 and 1981 , and also for the period $1975-79$ for which no validation studies for European salmon have been conducted.

The liorking Group noted that this new information does not affect the assessment of the West Greenland quota in relation to changes in the timing of the fishery ard
the mesh size used, as that was based on the mean continental proportions for the years 1972-1978.

3. Biological Characteristics

The results of earlier investigations by the ICES/ICNAF Joint Working Party on North Atlantic Salmon showed that the exploited salmon population at West Greenland was composed almost entirely ($>90 \%$) of one sea-winter salmon which if surviving and returning to home-waters would do so as two or more sea-winter fish. They also showed that it consisted principally of female salmon, the female: male ratio being about $3: 1$. The results of more recent analyses reported to the Working Group were in conformity with the earlier observations with respect to the sex ratio. However they showed that the proportion of two or more sea-winter salmon in the population, which if surviving would return to home-waters as three or more sea-winter fish had decreased from about 10% in 1969 to a mean of less than 3%
in the period 1979-1981.
4. Gill-net Mesh Selectivity Factors

At its last meeting in April 1981 the Working Group considered estimated . mesh selectivity factors for monofilament nylon gill-nets in the West Greenland salmon fishery. The differences between estimates from three experiments in 1972. 1978. and 1980 suggested uncertainties of $3-4 \%$ in the selectivity factor. This observation.was confirmed by an analysis presented at the present meeting. using a statistical model which calculated 95% confidence intervals of $\pm 3 \%$ for the value obtained from the 1980 experiment.

The Working Group also considered a theoretical analysis of the implications of two types of uncertainty on mesh size recommendations. Uncertainty in the estimated selectivity factor has a direct impact on the achievement of a target catch composition. Calculations carried out in 1981 suggested that a 1% change (or error in estimation of the K factor) in mesh size results in about a 1% change in the proportions of North American and European origin salmon in the catch. If, however; the mesh sizes in use vary about a mean mesh size corresponding exactly to the target mesh size according to a normal probability distribution, the
percentage composition of the catch is not affected, but the effective selectivity curve for the fishery is, broadened, with reduced efficiency at the modal selected size. In the West Greenland fishery this would lead to an increase in the number of fish encountering the gear corresponding to a given catch and would be expected to be associated with higher escapement mortality than would occur if all nets had mesh sizes equal to the target. No estimates were available of the magnitude of the increased escapement mortality.

Based on these analyses, the Working Group reiterates its suggestion in last year's report that a regulated range of acceptable mesh sizes of $\pm 5 \%$ of the 140 mm target value could be established without excessive potential deviation from the goal of equalising the proportions of continent of origin in the catches . n d the exploited population. This means that if several meshes of a net are measured, all should be within 5% of the target mesh size.
5. Measurement of Mesh Size of Gill-nets

A smell group met in Copenhagen in December 1981 to consider calibrating the method of measurement of mesh sizes on winich the Working Group had based its advice in 1981 with methods used by net manufacturers and by fishery officers. The following procedure was proposed for salmon gill net mesh"size measurement:
"A triangular gauge 2 mm ir thickness as used by the Danish Fisheries Inspectorate should be inserted into the mesh lumen parallel to the head rope so that its sides are in contect with the net material. A 0.5 kg weight should ther be suspended from the bottom of the gauge and the gauge allowed to fall as far as possible into the lumer and the measurement taken to the nearest mm."

Comparison between the new method ard the :..ethod used ir: the assessmert shows some differences, and some of these are significart when tested statisticaly.
 mesh size no conversion is necessary. f conversion factor between the rem method and the method for measuring nets in the factory asa inso calculated.

The Working Group reviewed several methods of measuring mesh sizes of salmon gill nets and the relationship between them. Variation in the load elongation properties of gill nets depends not only on the nylon netting yarn used but also on the shape (oval or round) and thickness of the filaments, the construction of the net and the duration of use. For three samples of monofilament nylon nets tested, the mean size of mesh measured with zero load was up to 2.5% larger when wet than when dry; under tension, the difference was up to 6%. .

English experimental results presented at the meeting suggest that the mean tension in a net mesh when a salmon is caught, is probably at least 3.5 kg . The mean mesh sizes of the three monofilament samples when measured wet with a load of 3.5 kg were between 8% and 15% larger than for the same samples measured dry with zero load.

The Working Group considered that in fisheries where a wide variety of types of nets may be used, it might be appropriate for regulatory purposes to measure meshes when wet and with a load of 3.5 kg . However, if, as is expected to be the case in the West Greenland fishery in the future, there is little variation in of net
the type/used, a simpler measurement technique may be applied. -
The Working Group considers on the basis of the data from the English experiments that the target mesh size of 140 mm measured by new methods proposed by the small group of experts, indicated above, is applicable to nets similar to those, used in the mesh selectivity experiments at hest Greenland, which were made of monofilament nylon twine havine a diameter of 0.6 mm .
6. Request for ICES advice by Canadian Government and EbC Commission

The horking Group consiaered the request by tre Caradian Goverment and EE Commission for advice on the fest. Greenland quota ir relation to timing of fishery and mesh size as set out ir. (1) under lian Tasks. In coirg so it interpreted the meaning of the word "mortality" to be the mortality attributed to both fishirg and natural causes such that losses to the home-water stocks nould not differ from trat
attributed to a 1,190 tonnes quota, under conditions of an August 10 opening date and fishing patterns similar to $1976 / 77$. This interpretation is consistent with the underlying conditions applying in the provision of previous advice on this subject.

The Working Group, after considering the request in the context of the advice provided in its 1981 report, and in the light of new information revieved at the present meeting, concluded that no basis existed for altering the parameter values adopted in last year's assessment. Key parameters included the assumption of a "normal" gill-net selectivity curve, an average stock composition of 42.85% North Ameṙcan and 57.15\% European origin salmon, growth curves for both stock components and a monthly natural mortality rate of 1%. Allowable catch (quota) levels for Gering dates spenning the period 10 August to i September were determined by irterpolation of data used to provide estimates of optimal mesh size and allowable cetches for similer opering dates. Allowable catches for dates extending from 1-10 Serterber were estimated by extrapolation of the values calcuiated for opening dates 10 August to 1 Sentember.

Estimation of allowable catches for the mesh size used in 1091 was not possible because of lack of information on the mesh sizes presently in use and their relative quar.tities. It was however moted that the predominant mesh size sold was 67 mm nomiral tay length, or in terms of measured mesn size, 134 mm . Herace, allowable catches for 154 mm mesh size were calculated and are presented below and in Figure 1 for sperine dates extending from 10 August to 10 September. These catches represert a potertial situation should phasing-in of the 134 mis. mesh size at hest Greenlara. be continued. Also presented are the corresponding allovable cetches for rets of 140 mm , the target mesh size recomended by ICES in 120 . Suadratic curves vere used for interpolation and extrapolation.

[^0]| | Estimated Allovable Catch (torines) | |
| :--- | :---: | :---: |
| | 134 ram | 140 mm |
| Openins date | Mesh size | Mesh size |
| 10 August | 1,091 | 1,189 |
| 20 August | 1,114 | 1,235 |
| 25 August | 1,125 | $1,253^{1}$ |
| 1 Eeptember | 1,139 | 1,271 |
| 10 September | 1,154 | 1,285 |

${ }^{1}$ Recalculation anc interpolation of allowable catch data resulted in a 25 August value of 1,253 tonnes rather than 1,256 tonnes as advised by ICES in 1981.

The "optimal" mesh size for a 10 September opening date was estimated to be 141.2 m by extrapolation of the daily increase in previously calculated "optimal" mesh size for cpening dates from 10 August to 1 September. Since the Eiffererce between 140 mm and this value is within the bounds of accuracy of the detailed calculations pertaininc to season opening date ard mesh size, the 140 mm target mesh size previously recommended by the Workire Group for opening dates extendire from 10 fugust to 1 September would also apply to this extended reriod.

The lorking Group noted that its calc:alatiors on this subject were based on parameter values derived through an everaging of data for several years. Sirce these data indicate anrual variations in conditions within the fishery End the exrloited population the asvice of the horking Group must therefore be considered as relating to an Everage situation or year. Relative variation fro: year to year, for example in the composition anc growth rates of the exploitec Eopulation, are of the same order of magnituce ac the calculated ciange in catch for iifferert openine uates.

Recognising the continuing and increased uncertainties in the estimates of selectivity factors and of mesh sizes in use, and also the observed changes in the growth of European origin salmon in 1980 and 1981 and in the composition of the exploited population, the Working Group examined the sensitivity of its estimates of allowable catches to these factors. Calculations carried out in 1981 showed that the calculated equivalents to the reference catch are rather insensitive to the composition of the exploited stock since an increase in the proportion of North Emericar origin salmon in the population from 42.85% to 50% led to a decrease of only $1 \frac{1}{2}$ tonnesin the calculated allowable catch. Errors in estimation of the selectivity factor have a direct impact on the composition of the catch with a 1% error in that factor leading to about a 1% charge in the . 3tch composition.

Growth rates are also important in determining the calculated catch since increased catches for later fishing seasons are due to the rapid growth of salmon at West Greerlanc. F. 1\% change in the growth increment of either component would lead to ajout a $\frac{\hat{2}}{2} \%$ charge in the calculated catch increment for a given opening date.

As a cautiorary note, the Working Group wishes to poirt out that while the selectior curves used in the assessment werebased on limited data. they represent the best estimates available. It considers that further studies of the selectivity of the gear usec or the fishery are needed.

5. NCRIVEGAN SEA LC:GG LIEE EISEERY

1. Catch Statistics anc Characteristics of Fishery

The reported rominal catches taken in the lone line fistery ir the rorthern Corwegian Sea (north of latitude 67 F) in the y ears $1,55-1981$. ar. in the Earoes area in 1968-10き1 are given in Tacles 3 and 4 respectively.

Northern Norwegian Sea

The data ir Table 3 show that in 1981 the reported nominal catch taken in the nortriern Norwegian Sea, at 213 tonnes. was 62 tomnes higher than in 1080 , but
$\because s$ still considerably loner thar durine the reriod 190 - 1976 . Tre Lerish fisinery
 liay in the "international" wisters zone to the nortio of the Faroes, where a part of the Faroese fishery also took mace. fee anci weight cata for fish larded from this fishery in 9981 gave ar estimat'ed sea-age composition of 25% tyo-sea-vinter and 15% three-sea-winter salmon respectively, and an estimated mean weight of 3.84 kg .

Faroes Area

The data in Table 4 show that from a moderate increase in catch in the Faroes area in the mid 1970 , the fishery, prosecuted by Faroese and Danish long-1iners, escalated substantially from 1979 . to reach a yield slightly above 1,000 tonnes in 1981. The increase in trese years was due partly to ar extension of the fiching season and partly to an increase in the number of vessels taking part in the fishery.

The present fishine season in the Faroes aree extends from October to Jure, with the greatest intersity of fishing in February-March. Faroese and Darish vessels taking part in the fishery do so under licence.

Athough the 1981/82 fishine season started in October 1981. the catches in the period October-Iecenter were poor, probably due mainly to squid (Tociar: sagittatus) competine with salmon for bait on the lone lines. . By january igez. the squid had migrated from the area and the catch rate of salmon increased considerably. The Faroese fishery in the $1981 / 82$ seascn has taken place mostly in the rorthern part of the Faroese 200 mile zore aro. as indicated above, has extended to some extent Erto international waters to the north of it. In this regard, the forking Grout roted that the lowesiar. Sea sishery uill presurably in the future be restricted to waters withir the Earoese ezonomic zore in accorance $w^{\text {ith }}$ the provisions of the $x \in w^{\prime}$ Convertion for the Conservation of Selmon in the North litlantic Ocean'.
2. Countries of Orifin of Sazer caupht in the lorther: Borwesiar Sea aza Taroes Area Fisheries

Ls indicatec in pre: ious reports (ICES Iocs. CO. 1050/\%:10. Tacies 3 and 4 and C.: 1981/:ic mable 6) Enformation or the countries of origin of the salmor. porulation exploited in the northerr Norwegian Sea and Faroes area fisherits is
available from the recaptures in these f :sheries of fish tagged as smolts in home waters, and for the Faroes area population on recaptures in home waters of salmon tagged in the vicinity of the Faroes in the years 1969-76. Further data on the recaptures in the Faroese area of salmon tagged as smolts in home waters are given in Table 5 for the years 1975-1982 (up to 16 April).

The Working Group noted that while these data provide a qualitative indication of the countries of origin of the exploited population in the area, they are not sufficient by themselves to estimate reliably the relative proportions of the different country of origin components of the population. In order to estimate these proportions, information is required of the total smolt runs in each country together with information on the smolt tagging (number tagged and s.- timates of tagging mortality, tag loss etc).

3. Biological Characteristics

Further data on the length, weight and age compositions of salmon caught in the Faroese fisnery were obtained by scientific observers aboard commercial vessels during March and December 1981 and in January. February and March 1982. These data indicate that as in previous years the catch comprised salmon which and 3 years earlier, entered the sea as smolts 1 , 2 their estimated contribution to the total catch in 1981 being $2 \%, 71 \%$ and 27% respectively. They also gave an estimate of the discarded catch below the minimum landing size of 5% by number. This represents a substantially higher proportion of 2 and 3 year-class fish in the catch and a lover proportion of $\dot{d i s c a r d s}$ than estimated for the fishery in previous years, and used in the Working Group's preliminary assessment of the effects of the fishery on home-waters stocks at last year's meeting (C.M.1981/N:10, Appendix 1). The mean weight of all fish landed ir. 1981 was estimated to be !. 66 kg . to be 1.3 kg , giving a mean weight of the total catch of approximately 4.6 kg . 4. Request for ICES advice from Fome Government of Faroe Islands

The Working Group considered the request for advice from the Home Government of the Faroe Islands as set out in 2 under Main Tasks.

In considering this part of the request the Working Group took the question to refer to a single TAC for the total salmon population in the North Atlantic, and for the combined home-waters and interception fisheries in that area. The Working Group recognised that whilst the adoption of a single TAC, as a basis for stock management is possible in principle for salmon as for other fish stocks, its determination for the total North Atlantic salmon population, satisfying , the criteria specified in the request presents a number of major problems and difficulties. Of particular importance is the fact that the total population is composed of many separate discrete spawning stocks of widely different sizes and having different biological characteristics, distributions and population dynamics in their freshwater and marine life history phases. Hence, the determination of a TAC for the population as a whole, which safeguards the individual stocks would necessitate the identification of the individual stock components and their population parameters throughout their exploited life history phases, and especially in mixed stock feeding areas remote from their home rivers, in which the main . interception fisheries are centred and which may exploit different size and age compnnents of irdividual stocks.

For the Baltic salmon population, the Baltic Salmon Assessment Working Group adopted a model of the following form for the change in stock size in a given area in a set time period.

Stock in area A at time $t+1=$ Stock in area A at time t

```
+ recruitments
+ growth
+ immigration into area A
- धr.igration from area A
- fishing mortality in area A
- natural mortality
```

While such a model coula form the basis of a North Atlantic salmon assessment model. unlike the situation in the Baltic, the estimation of the various population
parameters for the complex stock situation outlined above presents formidable difficulties. These are considered below.
(i) Recruitment

In a simple system a salmon fishery management policy might aim to control exploitation levels so as to leave only the "optimal spawning escapement". ie the number of spawners required for the maintenance of maximum smolt production. swever, the relationship between the number of returning adult spawners and the production of smolts is poorly understood for the North Atlantic salmon stocks. What data there are suggest that it is probably very variable both within and between river systems. The "optimal spawning escapement level" is relatively easily defined if the stock and recruitment curve is domed. that is to say if, \therefore the number of spawners increases the smolt production rises to a maximum level (the optimal point) and then decreases. However, it seems more likely that for North Atlantic salmon having no cannabalism and no interaction between the spawning and juvenile stocks, the stock and recruitment curve will be asymptotic, approaching a plateau at the maximum parr or smolt carrying capacity of the river. With fluctuations in density independent factors (eg environmental conditions) there may be large annual variations in the maximum carrying capacity. Thus. depending to some extent on the shape of the curve and the relative levels of the equilibrium mosition and the maximum carrying capacity, it is likely that an "optimal" or "requirec" spawning escapement will be very difficult to determine.

These problems are relatively unimportant in the Baltic where 70% of the annual smolt production originates from hatcheries. Consequently a large part of the smolt production can be precisely counted and fairly accurate predictions of smolt runs may be made some time in advance. Such a system is tolerant to . "accidental over-fishing" or periods of poor natural production. This has been demonstrated by the maintenance of fairly steady total smolt production in the Baltic during the 1970 s despite an estimated 50% decline in the spawning escapement obtained from parr surveys. The North Atlantic system, in which the overwhelmingly greater part of the smolt production is from natural spawning, does
not share this tolerance in recruitment characteristics. Some of the component stocks are probably not operating at "optimal levels" in that, given greater spawning escapement, they could support considerably increased smolt production. (ii) Growth

In the North Atlantic salmon population there are significant differences in the growth patterns of salmon from different areas, resulting from differences in the mean age or size of the smolts, variations in the timing. distance and routes of their migrations and other factors. The effect of these differerces has been demonstrated at West Greenland where the different growth patterns of North American and European origin salmon influence the relative exploitation rates of the drift net fishery on these two components. Therefore, in estimating a TAC separate sets of growth data would be required for salmon from different stocks or areas. If continuous growth curves cannot be described, monthly mean weight data may be necessary, particularly during the periods of the interception fisheries remote from home-waters, when small changes in the timing of the fishing seasons may significantly affect the yield (by numbers or weight) or the fishing mortality for a given allocated catch.
(iji) Migration
In contrast to the situation in the Baltic relatively little is known about. the migration patterns of salmon in the North Atlantic. A number of "production areas" may be described whose populations have quite different migratory behaviour (routes and timing), resulting from both their geographic location and the different age distribution of the returning adults.
(iv) Natural mortality

In its assessments of the effects of the West Greenland ard Norwegiar Sea fisheries on home-water stocks the Working Group has used estimates of natural mortality rates occurring during the period between the salmon's occurrence in those fisheries and their return to home-waters, based on the hypothesis that the natural mortality rate varies inversely with weight at age. While this is likely to provide more reliable estimates than the one of a constant M value, it
does not take account of mortality causing factors at different life history stages. The inverse weight model also implies that the total natural mortality is likely to depend to some extent on the size and age of the smolts leaving the rivers, and hence may differ considerably between river stocks.
(v) Sex ratio

In the Baltic assessment model the proportion of females in the total population is determined at recruitment and assumed constant over the whole life span; grilse are not thought to contribute to the reproductive potential of the stock and are therefore excluded from all spawning stock calculations. This approach would not be appropriate for the North Atlantic salmon since in many river stocks grilse form a significant and sometimes the only component of - ihe spawning stock. There is also good evidence in many of the stocks that.a. strong bias exists in favour of males returning as grilse and females as multi-sea-winter fish. Male and female salmon may therefore tend to go to different feeding grounds and be exposed to different exploitation pressures. Thus the sex ratio may vary throughout the sea phase and differ between river stocks.

These considerations indicate that the values of most of the parameters . required to estimate a TAC for the total North Atlantic population are likely to vary considerably between different river stocks. It is currently not possible to identify and measure accurately the proportions and population parameters of each individial spawning stock in each mixed stock fishery. Hence it is unlikely to be possible through a single TAC regulation to ensure that the exploitation of the individual stocks is maintained at optimal levels and that some of them are . not over exploited without sacrificing the potential total yield from the population as a whole.

The Horking Group concluded on the basis of the above factors and considerations that it would not be possible at the present time to estimate and advise on a single TAC for the North Atlantic salmon population as a whole, which wculd satisfy the specified criteria guaranteeing a certain survival rate which would mairtain the home-water stocks and safeguard the spawning in the rivers at some optinal level.

Furthermore a TAC regulation does not seem to be an appropriate method to adequately protect individual stocks which are harvested at least in part in , mixed ștock fisheries.

Item 4 (b) Effect of Smolt Releases
If their survival and growth characteristics are the same as those of natural smolts the release of hatchery reared smolts to the natural system would be equivalent to an increase in natural recruitment and hence in the total biomass of the exploited popilation. However, the results of smolt release programes conducted in a number of countries in the llorth Atlantic have shown that in general the survival of hatchery reared smolts is considerably lower than that of netural smolts entering the same sea water system. So, proportionate increases in biomass may not be achieved, at least under present smolt rearing practices.

While enharcement of North Atlantic salmon is possible by releasing hatchery smolts, exploitation rates in the mixed stock fisheries cannot be increased without increasing the exploitation rate on the wild stock. Hence, catches in a mixed stock fishery can only be increased in proportion to the relative abundance-of the released fish in the total exploited population for that fishery.

Item 2 Increase in Stock Weight during Feeding Season in Waters around Faroe Islands
The Working Group recognised that for the calculation of the increase in the weight of the salmon population present in the waters around the Faroe Islands during the feeding season information is required or
a) the time of ertry and departure (and hence residence time) of the various stock units and age groups of salmon occurring in the area in the course of eack feeding and growing season
b) their average abundance throughout the residence period
c) the change in average weight of the different components during this time. Although some informatior. relating to a) and c) has been obtained during the past two fishing seasons sle.. cormercial catch samplirg ir the area, the intensity and coverage of which is
planned to be increased, reliable measures of b) are not yet available. Consideration is currently being given to the estimation of population abundance in the area through catch/effort analyses and by the development of tagging programmes (see Section B.5), the results of which, together with information on items a) and c) will,it is hoped, permit estimates of the increase in population weight to be made.

5. Flans for Joint Research in Faroes Area

The Working Group considered. the report (attached as Annex.1) of the special Study Group set up at the 1981 Annual Meeting of ICES to draw up plans for a cooperative programme of data collection in the Faroes and northern Norwegian Sea fishery, and research on aspects of the biology of the exploited . stock relevant to assessments. In endorsing the main elements of ,the proposed data collection programme, involving scientific observers making voyages on commercial fishing vessels, the Working Group recognised the need for a supplementary programme of shore-based market sampling to provide length, weight and age data of the landings. It was agreed that the Faroese coordinator of the programme would prepare in the first instance a detailed specification of the scientific observer and market sampling programme to be conducted in the $1982 / 83$ fishing season (although it was recognised that it would probably also be required to be pursued in subsequent years), based on the manpower and/or financial involvement already offered by the participating countries, and would submit it to the participants for their approval as soon as possible. It was also agreed that this would include detailed specifications of the items of information to be collected by the participating scientists and of the standard recording forms to be used.

The following allocation of responsibilities for the compilation and analysis of material collected in the programme was also agreed.

1) Routine length/weight, maturity, sex, discards, etc data (U.K. Léboratories).
2) Age and scale characteristics analysis (Scottish laboratory).
3) Blood samples for maturity at age investigation (Scottish laboratory).
4) Tissue samples for racial investigations (Republic of Ireland laboratory).

The Working Group considered in detail the relative advantages and disadvantages of tagging programmes based on salmon tagged in the Faroe area , and on smolts in home-waters respectively, in relation to the information requirements for assessment purposes. It concluded that whilst there was merit in the former approach, it was very doubtful if an experiment of sufficient size to ensure an adequate number of tag releases could be mounted at reasonable cost. Hence, it endorsed the Study Group's proposal that, at least as a first step, the second approach, involving smolt tagging with internal micro coded wire tags should be followed.

The Working Group accordingly recommends that all of the European salmon producing countries should develop such smolt tagging programmes covering all of their smolt hatcheries and as many of their natural smolt producing river systems as possible, and that arrangements for the detection of tags in the catches taken in the Faroes area fishery form part of the data collection programme referred to above. It is further recommended that all coded wire tags collected in the Faroes fishery should be sent by the Faroes Fishery. Laboratory to the Irish Laboratory for reading. Countries are, also requested to supply information to the Working Group on the numbers of hatchery reared fish released, and of all adipose fin-clipped fish, hatchery reared and natural. The Use of Scale Characteristics

In last year's report (ICES Doc. C.M. 1981/M:10) the Working Group recommended that a study be made of the feasibility of using scale characteristics for identifying the country of origin of the salmon exploited in the northern Norvegian Sea and Faroese area. As a first stage in this study the characteristics of scales from stocks in northern Norway, Ireland and Scotland were examinec. None of the scale material available for this initial examination was collected for the purpose of scale character analysis, and it is not suitable for use as reference standards, but its analysis serves to indicate the potential value of the technique.

Since only the Irish and Scottish samples contained fish which had smoltified after one river year, two separate analyses, one for two or more river year fish from the three countries, and one for one river year fish from Scotland and Ireland were conducted.

The scale characteristics chosen for investigation were:-

1) the number of circuli in the first river year (CR1)
2) the number of circuli in the second river year (CR2)
3) the river age at smolt migration (FA)
4) the number of circuli in the first sea year (Cs1).

For two or more river year fish two discriminant functions were constructed, each using all four characters, but for one-river-year fish a single discriminant function was constructed, using only the numbers of circuli in both the first year (CR1) and the first sea year (CS1). The adequacy of the discriminant functions constructed were tested by re-classifying the individual scales according to their scale characteristics. For two or more river year fish, the percentage of the scales correctly ciassified was 31% and the comparable figure for one river year fish was 92%.

Since the results of this initial analysis were encouraging, the Workine Group recommends that as the next step in the investigation scale samples should be collected for use as reference stardards. These should then be used to investigate the adequacy of this method to classify, according to country of origin, the fish being exploited in the rorthern Norwegian Sea and Faroese area. In addition, these reference standards should be used to update the discriminar.t Functions used to idertify the stocks of salmon exploited at West Greenland.

Samples shouid be collected ennually in the manner described in froendix 1 and samples of scales from 50 fish from selected major river systems within each country should be sent to the Freshwater Eisheries Laboratory, Fitlochry where they will be used as reference standards. In stocks where there are ore and milti sea winter components, the sample should contain 50 sets of scales of each
component. It will be the responsibility of individual countries to satisfy themselves that the selected rivers adequately describe their stocks for the purpose of this investigation. Once discrimination functions have been constructed, it is important that their adequacy in classification be assessed annually.

In relation to assessments, the Working Group Elso recognised the need for further the various components of /stuaies of the source and magritude of non-catch-fishing mortality, incluàing in unreported catches, in both the home-waters ard interception fisheries. It recommends that such studies be urdertaken in each country, and their results and all other available infomation be recorted to the next meeting of the Working Group.

C. HONE WETER FISNERIES

The reported nominal catches for the home water fisheries for Atlantic salmon (excluding Baltic) in the years $1960-81$ are given in Table 6 . These data update, and in some instances are revisions of, the statistics in last year's report (C.M. 1981/M:10). The figixes for 1981 are provisional.

The data indicate that the total provisional reported catch of salmon anc grilse combreed in 1981 at 7,226 tomes was approxinately 720 tomes lower then in 1980. In the Irish fishery, although the catch of multi sea winter salmon was slightly less thai that reportec ir 1980 , the gralse catin decreased jy more than 200 tonnes to its lowest recorded level since 1972 , this resulted in the combined catch for the fishery faliing to its lowest level in the series. In the Icelardic fishery the reported combine $\dot{4}$ catch in 1981 was 86 torres lower than that recorded in 1080 ard the lowest figure reported since 196%. Cther countries whose fisheries reported decreased catches ir. 1901 compared with the previous year were Norvay, Canada, USSR, France and Nortieerr Ireland. In contrast the England and Wales Fishery reported combined catch for 1981 was approxirately 150 tonnes higher than in 1980 , and the highest catch recorded since 1970, and the Scottisn catch was almost 100 tonnes greater than the corresponding figure for 1980.

The $\%$ orking Group roted thet the reported catches in most countries are urderestimates of the quantities of fish caught due either to their not including
the catches taken by one or more components of the total fishery (eg catch taken by anglers) or through incomplete reporting of them. Of the catches reported in Table 6 only those from Canada include at least a partial adjustmont for fong mortality. In view of the importance of catch data in stock assessment the Working Group strongly urges all countries to take steps to improve the accuracy of their salmon catch reporting systems including, where possible, the breakdown of the total catch into grilse and multi sea winter salmon respectively. The Working Group also draws attention to the need for further investigation of the magnitude of non-catch-fishing mortality in home waters, as indicated in Section B5 above.

At its 1081 meeting of the Working Grcur members were urged to provide data \because n the sea-age, length ard weight composition of home waters stocks for use in assessments. The data on the weight of fish returning to home waters was considered to be of particular importance as it was one of the parameters to which the models used in the assessments were most sensitive. Tanles 7 and 8 summarise such infomation which was available on the weight of salmon returning to home waters in 1981. The Working Grcup noted the importance of such data for assessments and recomends that repesertative veight data should be collected for all home-waters salmon fisheries.

Informaticn was presented to the Forking Group on changes in the abundance, composition and other cheracteristics of the Fechova river salmon stock ir the UnSR since the 195C's. It siowed a marked decrease in total abundance, the proportion of z-sea-winter salmon and ege production potential during the pericd $1969-75$ relative to earlier years. This coincided with the growth of the Norwegian Sea long-line Sishery during those years. At the same time, the . occurrences of taggec and kook-camaged fish increased. Thereafter, in the period 1976-1020 stock abundance and egE production potential increased. and the occurrerce of tagred hook-camaged fish decreased, which coincided witi the reduction in the
long-line fishery. In 1981, the spawning stock decreased and the incidence of damaged fish increased again following the regrowth of the long-line fisheries, mainly in the Faroes area.

List of Working Documents

Reddin, D. G. Some general information on discriminant functions and accuracy for identifying North American and European Atlantic salmon caught at West Greenland.

Reddin, D. G. et al. Continental proportion of North Anerican and European Atlantic salmon in samples collected irom the 1981 West Greenland commercial fishery.

Recidin, D. G. and Stansbury, D. E: Biclogical characteristics of Atlantic salmon (Salmo salar) of North American and European origin sampled at West Greenlard in 1981.

Doubleday, W. G. Confidence limits for gillnet selectivity factors estimated by - Holt's method.

Cross, T. F. The possible use of biochemical genetics to distinguish stocks of salmon in the Faroes fishery.

Browre, J. The use of coded wire tags in assessing the Faroes salmon fishery. Ohlier Jensen, J. The saimon fishery at West Greenland 1981. Anon. Report of meeting to calibrate methods of measurement for salmon gill-nets at Ilest Greenland.

Antonova, V. P. ano Chuksina, K. A. The effect of foreign fisheries on the . sbundance of Atlantic salmon commerial stocks from the Fechora river. Atonova, V. P. and Chuksina, I. h. Changes in the structure of the Pechora sslmor stocks, rates of reproductior.

Ansen, I. P. Atlantic salmon taged in Norway and recaptured at the Feroes.
Uarsen, L. P. Size and age distritution at the Faroes and in Norwegian home watare of ftlantic salnion teged as smolts.

Gudjonsson, Th. Data collection on board M / S Hemwafossur 10 February to 3 March 1982.

Shearer, W. M. The length, weight age composition of the salmon catches from the Rivers North Esk and Spey (Scotland) 1981 together with some comrarisons between the 1981 North Esk catch and catches taken auring the Feriod 1963-19:0.

Pratten, D. J. The length and weight of one and two sea-winter salmon in Scottish commercial salmon fisheries $19,1$.

Shearer, W. M. and Fratten, D. J. Fluctuations in the mean lengths attained by North Esk salmon at the end of their first winter in the sea 1963-1981.

Pratten, D. J. The use of scale characteristics and multivariate analysis to distinguish between stocics of fish originating from Southern Irelend, the east coast of Scotlano and Nomey.

Pratten, D. J. Biological characteristics of Atlantic salmon taken from the commercial long liner r:/s Hvitiklettur in the Faroes fishery 1981-1082. Fotter, E.C. E. Assessment of liorth fitlantic salmon stocks. Pcter, E.C. E. The revical properties of gill-nets in relation to mesh regulations.

Fetter, E. C. E. Notes or the Z̈xroes research programme.
Lassen, H. Interpretaticn of sslectivity experiments: two types of uncertainties In Horth thlartic salrch gill-het mesin size recommendations.
 Grou- Torshaven 15-16 Eecericer 1981.
\therefore Acs. North titlentic salrch catch statistics.
Riceout, S. G. Comecticut river salmon retums for ICES.
Sour. T. T. Tag returns to State of kane, I.S.f.
Sho, E. Non-catch fishine :ortality of salmor in fest Greenland.

Appendix 1

Instructions for the collection of scale samrles

1. The preferred site for the removal of a scale sample should be on the lefthand side of the fish $3-6$ rows above the lateral line and on a line extending from the anterior edge of the anal fin to the posterior edge of the dorsal fin. If a site other than that specified is used please state on scale packet, eg right-hand side.
2. Frior to sampling, excess mucus should be removed from the rec̣ommended area using the back of the knife, which should be cleaned before the scale sample is removed.
3. The scale sample should be placed inside the scale envelope and allowed

- to dry slowly before being stored.

4. The following information should be recorded on each scale packet.
5. Cocie number
6. Sex
7. Whole weight
8. Date
9. Gutted weight
10. Position
11. Fork length
12. Remarks é Tag number (if a recapture)
13. Total length

Table 1
Reported Nominal Salmon Catches at West Greenland, 1960-80
(in Tonnes, Round Fresh Weight)

$$
\text { Drift-net } \quad \text { Gill-net and drift-net }
$$

Norway Faroese Sweden Denmark Greenland d) TOTAL

1950	0	0	0	0	EO	60
1961	0	0	0	0	127	12.7
1962	0	0	0	0	244	244
1963	0	0	0	0	466	465
1964	0	0	0	0	1539	1539
1965	a)	36	0	0	825	$8: 1$
1966	32	87	0	0	1251	1370
1967	78	155	0	85	1283	1601
1968	138	134	4	272	579 d)	1127
1960	250	215	30	355	1350(385) ${ }^{\text {d }}$	2210
1970	270	259	8	358	$12^{14} 4$	2146°
1971	340	255	0	645	11.49	2689
1972	158	144	0	401	1410	2113
1973	200	171	0	385	1585	2341
1974	140	110	0	505	118 ?	1917
1975	217	260	0	382	1171	2030
1976	0	0	0	0	1175	1175
1977	0	0	0	0	1420	1420
1978	0	0	0	0	984	984
1970	0	0	0	0	1395	1305
1080	0	0	0	0	1104	1104 b
1081	0	0	0	0	1264	$1254{ }^{\text {² }}$

a) Ficures not aveilable, but catch is frow to be less than the Faroes
b) Provisional
c) Includzas 7 metric tons caught on long-lire by one of two Greemard vessels in the Labrador Sea early in 1970
d) U_{y} to 1968 , gill-net only, after 1968 gill-net ard drift-net. The figures in trackets for the 1069 catch are an estimate of the minimun arift-net catch

Fector uesd for converting larded catch to round frest weight in fishouy by
 vessela = 1. ̂0.

Pable 2
Distribution of Nominal Catches (tomes) taken by Greenland vessels in 1973-1980 by WAFO Divisions

Year	1973	1974	1975	1976	1977	1978	1979	1980	1981 ${ }^{\text {1) }}$
Division									
1 A	182	44	124	166	201	81	120	52	160
13	194	116	168	302	393	349	343	275	347
1 C	145	229	175	262	336	245	524	404	346
T	385	290	204	225	207	186	213	231	202
1E	487	395	315	182	237	113	164	158	153
$1 F$	192	88	185	38	46	10	31	74	31
Not known									20
T-さal	1585	1162	1171	1175	1420	984	1395	1194	1264
- st Greeriland	$+$	+	+	+	6	8	$\stackrel{\square}{+}$	${ }^{+}+$	+
TOTAL	1585	1162	1171	1175	1426	992	1395	1194	1264

1) Frovisional figures

Table 3

Recorted nominal catches in the northern Norwegian Sea long-Iine fishery north of latitude $67^{\circ} \mathrm{N}: 1965-1980$ (tonnes round fresh weight)

Danish catches converted from gutted weight with a factor 1.16

	Denra		Faro		Germa Fed.		Nor	way	Swede		
Year.	No. o vessels	Catch	No. of vessels	Catch	110. of vessels	Catch	No. of vessels	Catch	No. of vesseis	Catch	Total Longline Catch
1965	1-2	$-{ }^{\text {a }}$	0	0	0	0	0	0	0	0	- ${ }^{\text {a }}$
1966	10	- ${ }^{\text {a }}$	0	0	0	0	0	0	-	$-{ }^{\text {a }}$	- ${ }^{\text {a }}$
1967	- 22	77	0	0	0	0	-	$-{ }^{\text {a }}$	6	- ${ }^{\text {a }}$	$77+$
1962	28	177	-	_ ${ }^{\text {b }}$	0	0	-	$100^{\text {c }}$	16	126	403°
1969	40	413	0	0	5	24	-	$450{ }^{\text {c }}$	2	24	$911{ }^{\text {c }}$
1970	60	481	-	- ${ }^{\text {b }}$	4	21	-	420°	1	24	$946{ }^{\circ}$
1971	20	162	0	0	2	9	-	300°	1	17	$488{ }^{\text {c }}$
1972 (2 C	182	0	C	2	4	-	$300^{\text {c }}$	1	20	$506{ }^{\text {c }}$
15?	15	233	0	0	0	0	! -	$250{ }^{\text {c }}$	2	50	$533^{\text {c }}$
1974	10	148	0	0	0	0	-	$200^{\text {c }}$	1	25	$373^{\text {c }}$
1975	15	245	0	0	0	c	-	$200^{\text {c }}$	1	30	$475{ }^{\circ}$
9976	2 C	264	0	0	0	c	0	0	- 1	25	209
. 1977	24	192	0	0	0	0	0	c	c	0	192
1978	13	124	0	0	0	0	10	0	0	0	124
1979	10	118	0	0	0	0	0	0	0	0	118
1980	7.	127	?	28	c	0	c	0	0	0	155
1981	ε	213	-	- ${ }^{\text {b }}$	0	0	0	0	0	c	213

a Catch not known
b See Table 5
c Ëstinateć catcí

Table 4

Reported nominal catches in the Faroese Area long-line fishery 1968-1980 (tonnes round fresh weight)
Converted from gutted weight with a factor 1.11

Year	Denmark		Faroes		
	No. of vessels	Catch	No. of vessels	Catch	Total Longline Catch
1968	0	0	2	$5^{\text {a }}$	5
1969	0	0	4	7	7
1970	0	0	5	$12^{\text {a }}$	12
1971	0	0	0	0	0
1972	0	0	2	9	9
1973	0	0	5	28	28
1974	0	0	5	20	20
1975	0	0	6	28	28
1976	0	0	9	4 C	40
1977	0	0	9	40	40
1978	2	14	8	37	53
1979	2	75	7	119	194
1980	6	150	22	568	718
$1981{ }^{\text {b }}$	6	100	38	$927^{\text {a }}$	1,027

[^1]
Table 5

External tag recoveries in the Faroese fishery reported to the Faroes Laboratory up to 16 April 1982 from fish tagged as smolts in various countries

Year of recapture

Country	1975	1976	1977	1978	1979	1980	1981	1982
Norway	4	0	4	23	4	5	9	36
Sweden	1	0	3	12	6	6	3	4
UK - Scotland	0	0	3	2	0	0	3	3
UK - N. Ireland	1	0	0	0	0	0	0	0
UK - England \& Wales	0	0	0	1	0	0	1	3
France	0	0	0	1	0	0	0	0
Denmark	2	1	0	0	0	0	0	0
Iceland	2	0	0	0	0	0	0	0

Table 6
Nominal catches of salmon in home waters (in tonnes round fresh weight) 1960-1981

$S=$ Salmon (two or more sea winter fish) $\quad G=$ Grilse (one sea winter fish) $T=S+G$
a $=$ Provisional ficpures
$b=$ Catch on River Foylc allocated on basis 50% Ireland and 50% Northern Ireland .
$c=$ Not includine angline, cntch (mainly grilse)
$d=$ Beforc 9966 sea trout and sea char included (5% of total)
$e=$ USSR catch mainly salmon (2 or more sea winter fish)
$f=$ French catch taken as 75 tonnes from 1960-1971, and USA catch as 1 tonne from 1960-1971
$\mathrm{g}=$ Salmon and frilce figures for 1962-19?7 corrected for grilse error

Table?
Mean ungutted weights of salmon returning to home waters in Norway, Republic of Ireland and England and Wales

			2 s		3 s	
-	Wt (k_{E})	No.	Wt (kg)	No.	Wt (kg)	No.
Norway ${ }^{1}$.			
R. Numedalslagen	3.2	60	6.2	33	15.4	1
R. Drammeriselv	2.6	15	4.7	11	6.5	5
R. Glomma	2.7	292	5.7	124	9.0	15
R. Vefsna	2.5	128	5.2	107	8.2	25
R. Surna/Grip	2.5	141	5.5	67	9.5	18
R. Gaula	2.5	38	5.8	22	8.2	5
Republic of Ireland ${ }^{2}$						
April	-	-	4.6	44	-	-
May	-	-	5.1	34	-	-
June	3.0	37	5.2	. 11	-	-
July	3.2	122	-	-	-	-
-						
England and Wales					-	
Drift net fishery ${ }^{3}$	3.1	100	5.8	60	9.5	4
Rod fishery ${ }^{4}$	2.9	-	5.4	-	8.2	-

[^2]Table 8

One-Sea-ilinter Sal. mon

		February		March		April			May		June		July		August		September	
Site	Gear	Wt (k cr)	No.	Wk (kg)	No.	Wt	(kg)	No.	Wt (Kg)	No.	Wt (kg)	Ni						
Tweed	Net \& Coble	-	-	-	-		-	-	-	-	-	-	2.2	208	2.4	302	3.3	3
Tay	Net: \& Cobje	-	-	-	-		-	-	-	-	2.5	56	2.5	225	2.9	285		
North Esk	Net \& Coble	-	-	-	-		-	-	2.2	1	2.3	67	2.5	121	2.8	133		
Macduff	Fixed Engine	- .	-	-	_		-	-	-	-	2.1	12	2.4	160	2.7	325		
Spey	Net \& Coble	-	-	-	-		-	-	-	-	2.6	129	2.7	550	3.0	570		
Kyle of Sutherland	Net \& Cohlo.	-	-	-	-		-	-	-	-	2.6	42	2.7	530	2.8	175		
Strathy	Fixed Encine	-	-	-	-		-	-	-	-	2.5	156	2.7	344	2.8	117		
Achilti.buie	Fixed Engine	-	-	-	-		-	-	-	-	2.6	53	2.7	187	3.0	8		
Eartrjegs	Fixed Engine	\pm	-	-	-		-	-	-	-	-	-	2.5	39	2.6	20	3.1	

Two-Sea-Winter Salmon

Tweed	Net: \& Coble	-	-	-	-	-	-	-	-	-	-	5.5	105	6.2	86	7.1
Tay	Net \& Coble	-	-	-	-	-	-	-	-	5.5	134	6.0	107	6.5	95	-
North Erik	Net \& Coble	3.6	288	3.8	277	4.0	179	4.3	452	4.9	276	5.6	38	6.3	16	-
Macduff	Fixed Engine			-	-	-	-	-	-	5.2	23	5.1	83	5.6	54	-
Spey	Net \& Coble	3.9	20	4.1	21	4.1	49	4.5	126	5.4	230	6.1	158	6.8	134	-
Kyle of Sutherland	Net \& Coble	-	-	-	-	-	-	-	-	5.6	36	5.6	57	5.5	1.0	-
Strathy	Fixed Engine	-	-	-	-	-	$\stackrel{-}{-}$	-	-	4.9	27	5.6	41	5.8	7	-
Eastriggs	Fixed Engine	-	-	-	-	-	-	-	-	-	-	5.6	32	6.1	14	6.3

FIGEP 1 Alownle catè levels for the :hest Greenland salmor: fickery in relétion to sensca (openine date mast $10=$ day lifor mesh sizes of 1-4-mare 140 mm

Sinex 1
Report of Meeting of Special Study Group of North Atlantic Salmon Working Group.

Tórshavn, 15. - 16. December 1981.

A Special Study Group was convened by the Chairman of the Working Group (Mr. B.B. Parrish) and met, under the chairmanship of Mr. H. โ Jákupsstovu at Tórshavn, Faroe Islands, from 15. - 16. December 1981. The following representatives of ICES member countries participated:
D. Reddin
O. Christensen
H. í Jákupsstovu
A. Reinert
O. Justinussen
R. Mouritsen

Th. Gudjónsson
K.W. Jensen
P.O. Larsson
E.C.E. Potter

Canada.
Denmark
Faroe Islands
$-\quad$ -

Iceland
Norway
Sweden
U K

Unfortunately, due to bad weather contitions, Messrs. W.M. Shearer and K.U. Vickers of UK and J. Browne of Ireland were unable to attend the meeting. These delegates were kept informed of the proceedings by telephone.

Terms of reference:
The Special Study Groups remit., as set out in recommendation C. Res 1981/2: 7 passed at the 1981 Annual Meeting of ICES, was to plan the acquisition of data required for the assessment of the effects of the Norwegian Sea and Faroes fisheries on home-water stocks.

The group adopted the following agenda for the meeting.

1. Data necessary to assess the effects of the Norwegian Sea and Faroese Sea fisheries on home-water stocks.
2. Cooperation in the research on the different fisheries.
3. Presentation of programs related to the open sea fisheries.
4. The feasibility of a new marking experiment.
5. Conclusions and recommendations.
6. Data necessary to assess the effects of the Norwegian Sea fisheries on home water stocks.

The Study Group agreed that, in pursuing its remit, it was appropriate to consider the collection of additional data that might be used in more complex assessments of North Atlantic salmon fisheries. The Group discussed the list of parameters prepared by Parrish (1973) in relation to the $W e s t$ Greenland fishery assessment and the parameters used in the preliminary assessment of the Norwegian Sea fisheries in the 1981 Working Group Report (Anon 1981). The following topics were identified and discussed:
a. Total fishery induced mortality (landings, discards and non catch fishing mortalities) for high seas and home water fisheries.
b. The composition of the exploited stocks in the high. seas fisheries by country of origin (and subsequent destination).
c. The age composition of total catches in the high seas fisheries and the proportion of each sea age class returning to home waters in the same and subsequent years.
d. Natural mortality rates for Atlantic salmon during the sea phase of the life cycle.
e. Growth rates for different Atlantic salmon stocks dur-
ing the sea phase of the life cycle.
E. Migration pattern.
q: Exploitation rates within the high seas and home \| water fisheries.
h. The relationships between the size of spawning stocks and the number of smolt migrating to sea.

The Group considered what data could be collected for the investigation of each of these topics. These possibie study areas are shown in table I.

The Study Group strongly urged all countries to pursue programmes of research on the aspects of these topics relating to home waters. In particular it was agreed that all countries should attempt to collect data or the timing of returns of different age classes to home waters and also sample returning stncks on a monthly basis for lenḡh, weight and age data.

The Group then went on to discuss the collection of data in the Northern Norwegian Sea and Faroes fisheries.
2. Cooperation in the research on the different fisheries.

It was recognized by the group that ai presenc it was only practicable to cooperate in research on the open sea fisheries as conducted by Faroes and Denmark. It might, however, be possible at a later stage to pool a similar effort in the study of other nations salmon fisheries in order to get a full picture within a short period.

The data that might be collected in a cooperative research programme on the open sea fisheries were indentified from table I as length-, weight-, scale-, blood and gonad samples-, landings and additional losses and efforts. The data can be grouped into a) data which must be recorded by licencees (obligatory) b) data which will have to be collected.
a) Obligatory ciata.

Both Faroese and non Faroese vessels fishing for salmon within the faroese fishery zone require licences.

Landings from the fishery are recorded in numbers by weightgroups (gutted) and total weight by trip. Given conversion factors on round weight gutted weight, the Faroese catches could be raised to round fresh weight.

In adition to recording the catch for each trip the skippers are enforced by law to fill out daily logbooks giving, by sets, position, number of hooks and the catch in numbers. This information can be used for measures of effort and catch per unit effort by area and time.
b) Data collection.

Data which have to be collected by observers at sea or at fishing plants are length, weight, scale, blood samples and gonads and observations on additional losses and tag recaptures.

Based on similar efforts in the Greenland salmon fishery and on sampling sheets and.sampling envelopes in use at the different laboratories the group proposed to produce a special envelope to use for the scale and length/weight sampling and a sampling sheet to record set details. These together with explanations are appended as appendix 2 and 3 respectively.

The group recommends that a limited number of specimens are sampled every month for blood and gonads. The aim of this would be to establish a maturity key based on visual observations which could be correlated to the hormone levels in blood. . It was sugsested that a sampling level of about 5 per cent of the catch should provide sufficient data for the assessment of the effects of the Norwegian Sea Fisheries on home water stocks. Such samplires levels could probably be achieved by placing observers aboard one or two vessels throughout the period of the fishery. However, the Group roted that there may be

Abstract

vonsicerable váalation in the exploited population betweer different parts of the large fishery area. It was suggested that, to assess the extent of these variations, observers should, at cortain tires, be placed aboard a larger number of vessels fishing in different areas. The Group agreed that the normal sampling work should ie undertaken by a single observer but that two observers would te needed for taggine or when blood and gonad samples are to be taken. The total sampint programme will therefore require an average of about two observers per month.

3. Presentation of programs, related to the open sea fisheries.

Faroese fishery.

Faroes presented to the group their sampling program for the salmon fishery in the fishing season 1981/82 including observers on fishing vessels throughout the season (appendix III).

In addition to this the following countries expressed their intention to send observers to participate in a cooperative research program on the open sea fisheries, and made very tentative suggestion of the manpower they could supply.

4. Tagqing.

The Study Group discussed five marking techniques that could be used in the study of the topics listed under item 1 , internal and external tagging of smolt and adults and dye marking of adults. Dye marking was only suggested as a simple short term marking technique to be used within the fisheries. The group tabulated points for and against the various techniques (table 2) and then discussed the application of these techniques to the study af these topics.

Topic b. The group noted that neither smolt nor adult tagging data could be'used to estimate the composition of stocks in the high sea fisheries by country of origin until reliable estimates of exploitation rates were available.

The group also considered the problems of tagging representative samples of smolts within and between different countries. It was therefore agreed that under this topic, adult tagging could only be considered to validate the discriminate function analysis of scale characteristics.

Topic c. The group discussed the possibility of using adult tagging to estimate the timing of returns from the high seas fishery areas to home waters. It was suggested that tagging may effect the rate of maturation and that tagging mortalities might ocrur over a long time. It was also thought that there could be differential mortalities related both to size and the state of maturation of the fish. The group therefore agreed that, under this topic also, tagging could only be used to validate other techniques (e.g. blood and gonad sampling).

Topic d. The group agreed that smolt tagging would be neces sary to improve our understanding of natural mortality rates in the sea. In view of the lower handling and tag mortalities associated with internal tags, the group recommended this as the best approach.

Topic e. The group discussed earlier tagging experiments and noted ${ }_{6}$ that the growth of adult salmon appeared to be seriously affected by the high seas capture and tagging procedures. In view of the evidence from Icelandic experiments it was recommended that internal taading of smolts should be used to establish growth curves for different stocks.

Topic f. In the investigation of migration patterns, particulary between different feeding areas, easy observation of marks and the occurence of incidental (or unexpected) recaptures were.considered to be important.

The group therefore considered that, although it would only provide qualitative data, this topic would have to be studied by external tagging of adults.

Topic g. Adult tagging was discussed as a method of assessing the exploitation rates within the open seas fisheries. However, it was thought unlikely that reliable estinates could be made.

Tcpic h. The group generally favoured the use of internal taç for iarge scale tagging experiments on smolts.

The group recommended that tagging of salmon smolts (both wild and reared) should be increased. In this they favoured the use of internal microtags. However it was recognized that taqding pronrammes should be coordinated with proprammes for scanning catches in all open seas and home water fisheries The Study Group suggested that Irish and Icelandic tagging programmes should be used as pilot projects and that this should be discussed in detail by the full working Group.

The group concluded that adult tagging was mainly of use for the validation of other sampling and analysis techniques. No adult tagging technique was considered to have particular
advantages on scientific grounds.
It was the opinion of the group that approximately 50 recaptures in each of four areas would be required for a validation nf the disciminant funcrion analysis. To achieve this approximately 5000 fish would have to be tagged in the Faroes fishery area. The group estimated that assuming approx. $1 / 3$ of the fish caught were fit for tagging a maximum of 1500 : fish could be tagged per fishing vessel in the period March to May. At any other time the numbers of fish tagged could be substantially reduced. Two assistants would be required to carry out tagging work.

Cost of a tagging programme has been estimated roughly:

1) Faroese assistants will cost approximately d.kı. 13.000 per month (subsistance included). A 60' - 70' vessel with crew can be hired for approximately d.kr. 150.000 per month and fishing gear (lang-lines) for. approximately d.kr. 20.000 per month. Based on this the cost of tagging 5000 fish would be in the order of danish kr. 2.000.000,00. The sale of fish unsuitable for tagging could, however, substantially reduce the above costs.
2) Alternativily live salmon could be bought and tagged aboard a fishing vesse?. The price will probably be d.: $\mathrm{kr} .50,00$ per kg on average (estimated to d.kr. 200,00 per fish). For 5000 tagged fish these costs will be of the order of d.kr. 1.000.000,00. In addition come expences for the tagging crew (d.kr. 26.000,- per month for two hired Faroese assistants.
5. Conclusions and recommendations.
6. The Study Group concludes that a cooperative research program on the salmon fishery in the Faroe. area is desirable and should commence as soon as possible.
7. In order to facilitate rec. l. countries intending to participate in the program should send to the convener (Mr. B.B. Parrish), before the end of January 1982 information on: a) Amount of manpower they are
able to allocate, b) at what time this could be available and c) to what extent they can assist in working up the data and analyse samples.
8. The research program should cover at least one full fishing season (October - May). Any research done in the beginning of 1982 could be regarded as a pilot project.
9. The cooperative research program should be coordinated by a person appointed by the Faroese Fisheries Institute.
10. Smolt tagging by countries of origin should be continued and expanded. Special emphasis should be given to use of internal tags. The coordination of micro tagging programs and programs for scanning catches for tags in all fisheries should be considered at the next meeting of the full North Atlantic Salmon Working Group.
11. Because of the high costs involved tagging of adult salmon in the Faroe area should be discussed by the Eull North Atlantic Salmon Working Group.

References.

Anon l981: Report of meeting of North Atlantic Salmon Working Group. Copenhagen 1. - 6 . April 1981. ICES C.M. 1981/M: 10.

Parrish, B.B. 1973: International Atlantic Salmon Symposium 1973.

Table I. Data that could be collected for the investigation of topics listed by the Study Group

 from fish sampled at fish plants and aboard commercial fishing boats.

SALMON

Observer	Set	Sp.
No	No	No

. x Boat name/number
x Date of setting/sampled
x Where caught/sampled

FL	TL
WW	GW
SEX	Maturity

Scales area

Remarks

Information to be recorded on scale envelopes

Observer No	From predetermined codes.
Set No.	To be recorded by observers from 01 onwards.
Specimen No.	To be recorded by observers from 001 onwards.
$\therefore \quad 0$	For fish sampled that particular set.
Boat name/number	Name of boat and register number.
Where caught/sampled	If observer, see set details. If commercial samples, then use information from skipper. Location of sample if commercial plant sample.
FL - Fork length	To be measured in cm to the nearest cm below from tip of snout to mid-fork of tail.
TL - Total length	To be measured in cm to the nearest cm below from tip of snout to end of tail.
WW - Whole weight of fish	To be weighed to the nearest $1 / 10$ th of kg below. At sea using a steelyard.
$\begin{gathered} \text { GW - Gutted weiqht } \\ \text { of £ish } \end{gathered}$	To be weighed with head-on and kidneys removed to the nearest $1 / l o$ th of $k a$ below. At sea using a steelyard.
SEX -	M-male or F-male.
Maturity	As a preliminary approach observers should.record an U for fish which are seeniingly unmaturing and an M for fish which are seemingly maturing.
Scales area	Location from which scale sample is removed from if other than standard location (GBA general body area or RS - right side). Standard location is on the left side $3-6$ scale rows above the lateral line on a line extending from the posterior base of the dorsal fin. About 25 scales per fish are required to be removed after first cleaning fish with the edge of.a knife.
Remarks -	To include comments on tag number or other marks such as finclips, eroded dorsal fins or twisted vertebrate. If blood sample/gonad sample was taken it should be noted here.
x	It is not necessary to repeat this information on each envelope.

Appendix II

Observer No Set No

Begin setting End setting Mid-point GMT

Beg:7 hauling End hauling Mid-point
Duration of fishing (Hrs. and tenths)
GMT

Number of hooks	Total number of salmon caught	Catch per 1000 hooks	Salmon tagged

Remarks:

Other species caught (by-catch)
Species

Information to be recorden on the set detailform.
Observer No. From predetermined codes. See appendix I.
Set No. To be recorded by observers from 01 onwards. See appendix I.

Start Position. Record position when setting first buoy. In Ioran C time differences and convert to coordinates.

End Position. Record position when taking in last buoy, in Loran C time differences and convert to coordinates.

Mid-point Position. Calculated from positions recorded above.

Bedin setting. Time when first buoy is set in GMT - Greenwich Mean Time.

End setting. Time when all buoys are out.
Beqin hauling. Time when first buoy is taken on board. End hauling. Time when all buoys are on board. Mid-point and Duration of Fishing. Calculated from midpoint of setting to mid-point of hauling. Not done by the observer.

Light. Standard code attacted. Record at. end of setting. Wind Direction \& Force. Standard codes attarhed. Record at beginning of set and end of haul.

Effort, and Catch per 1000 hooks. Calculated catch per 1000 hooks fished. Not done by the observers.

Non-catch fishing mortalities - category of loss.
Discards (less than 60 cm) : Fish thrown overboard because they are smaller than legal size defined as dead or alive.

Discards (greater than 60 cm) : Fish thrown overboard because they are damaged or in poor condition.

Haulback losses: Fish that fall off hooks during process of hauling back.

Light

Darkness -0	Dull (overcast, fog, rain)	-3	
- Moonlight	-1	Bright; but hazy	-4
Dark-Dawn or Dusk-Dark		Bright sunlight	-5

Wind Force Code

The Beaufort force of the wind is estimated from the appearance of the sea surface, according to the table below. This table is only intended as a guide to show roughly what may be expected on the open sea, remote from land. Factors which must be taken into account are the "\}ag" effect between the wind increasing and the sea getting up; and the influence of "fetch", depth, skell, heavy rain and tide effect on the appearance of the sea. Estimation of the wind force by this method becomes unreliable in shallow water or when close iashore, owing to the tidal effect and the shelter provided by the land.

Code	Appearance of sea if fetch and duration of the blow have been sufficient to develop the sea fully	Description
00	Sea like a mirror Ripples with the appearance of scales are formed, but without foam crests. Small wavelets; crests have a glassy appearance and do not break.	Calm Large wavelets; crests begin to break; foam of glassy
03	Light Air appearance; ferhaps scattered white horses. Light Breeze	
04	Small waves, becoming longer, fairly frequent white horses. Breeze	
05	Moderate waves; many white horses are formed (chance of some spray)	foderate breeze
07	Large waves; white foam crests everywhere (probably some spray) Sea heaps up and white foam from breaking waves begins to be blown in streaks along the direction Breeze of the wind.	Strong Brederately high waves; edges of crests begin to break into the spindrift; foam is blown in well- marked streaks along the direction of the wind.

Appendix III
TENTATIVE PLAN FOR SAMPLING THE FAROESE CATCHES
Landed weights, totals) from landing statistics
Landed weight by weight category) (conditional for getting
Number landed by weight category, a license)

Catches by statistical rectangles)
Effort by statistical rectangles; From logbooks
Additional information on fishery)
conditions

Observer program.

Fiskirannsóknarstovan intends to place observers on board on vessels to sample length, length-weight, securing scale samples, estimate discards and length distribution of discards, securing tags.

The intensity of the scheme is based on the distribution of the fishery in l?.30, which outlined 3 main areas. (fig l)

I The area to the North of the Faroes, fished during the whole season.
II The area appr. between $4^{\circ} \mathrm{W}$ and $4^{\circ} \mathrm{E}$, and $70^{\circ} \mathrm{N}$ to $71^{\circ} 30^{\circ} \mathrm{N}$ (fished in April-May)
III The area appr. between $3^{\circ} \mathrm{W}$ and $2^{\circ} \mathrm{E}$ and $67^{\circ} \mathrm{N}$ and $69^{\circ} \mathrm{N}$ (fished in May)
observers will be placed aboard an vesself to cover the areas as follows:

	I	II	III
November	I		
December	1		
January	1		
February	1		
March	1	1	
April	1	1	1

Fig I. Sampling areas Faroese program for sampling Faroese fishery on Atlantic Salmon

[^0]: Fhe optina? mesh size for a given orening date Eives the proportions of Nerth f.ericar and European salmon in catches equal to their proportions in the exploited population.

[^1]: ${ }^{a}$ A small part oí the catch token more then 200 riles from the Farcese baseline
 ${ }^{\text {b Preliminary data }}$

[^2]: 1 Data from recaptures of selmon tagged as reared smolts in the
 2 period 19€3-1379.
 Dat: from mixed-stock arift net fishery off Donegal in 1981
 3 Lata Erom mixeâ-stock arift net fishery off Yorkshire in 1981
 4 Estimates from 4 rod fisheries in SW England and Wales in 1981

