Fol. 41 K

# Fisheridizektoratet

This paper not to be cited without prior reference to the author.

International Council for the Exploration of the Sea. C.M. 1981/K: 21 Shellfish Committee

RESULTS OF A STRATIFIED BOTTOM TRAWL SURVEY FOR SHRIMPS (<u>PANDALUS</u> <u>BOREALIS</u>) IN THE BARENTS SEA IN MAY - JUNE 1981.

by

Gunnar Teigsmark Institute of Fishery Biology University of Bergen - Norway

and

Per Øynes Institute of Marine Research Bergen - Norway

## 1 ABSTRACT

A bottom trawl survey of the shrimp grounds in the Barents Sea between N71<sup>O</sup>30' and N74<sup>O</sup>40', and between  $E16^O30'$  and  $E35^O30'$ based on stratified random sampling made in May-June 1981. On the basis of the data from 98 trawl stations the biomass of the shrimp, <u>Pandalus borealis</u>, in the area surveyed was estimated by the swept area method to be approximately 185 000 tonnes. In addition 7 trawl hauls were taken in Spitsbergen waters. The by-catches of fish in the hauls are also discussed. En Mai-Juin 1981 on a fait dans la mer de Barents une recherche sur des crevettes, <u>Pandalus borealis</u>, en usant la méthode d'é chantillonage stratifiéeau hasard avec un chalutier de recherche. La zone parcourue est comprise entre les  $71^{\circ}30' - 74^{\circ}40'$  latitude Nord et  $16^{\circ}30' - 35^{\circ}30'$  longitude Est. A partir des résultats de 98 stations de chalut de fond et usant la méthode de l'aire balayée, on a estimé en 185 mille tones la biomasse de crevettes dans cette zone.

A. Ash

#### 2 INTRODUCTION

A stratified random sampling scheme was carried out during a bottom trawl survey with R/V "Michael Sars" from 12 May to 14 June 1981 in the Barents Sea (Sub-area I). A few hauls were also taken off Spitsbergen (Division 2b).

The objectives of the cruise were to study the structure of the shrimp stock, the by-catches of fish and to estimate the abundance of shrimps.

## 3 MATERIALS AND METHODS

The cruise in 1980 covered the most important areas where commercial fishing for shrimps has been carried out in the Barents Sea. The boundaries of the strata covering these areas were changed this year to fit more closely the fishery statistical areas. As the cruise this year was extended by 9 days, larger areas could be investigated (Fig. 1).

The main commercial fishing areas in the spring of 1981 were on the "Nordkappleira" (strata 1-4) and the "Thor-Iversen" field (stratum 12).

In the northern fishing grounds the investigations were severely hampered by ice. The "Hopen" area and the shrimp fields along the western slope of "Sentralbanken" (strata 16-18) could not

- 2 -

be visited due to ice conditions. Ice was also present in strata 14, 15, 19 and 20. In the Spitsbergen waters, the ice conditions were so difficult that it was impossible to make out a stratified program at all. Shrimp trawling could only be done in the western part of the "Storfjorden" (station nos. 96-100) and in the "Kveithola" area (station nos. 101 and 102).

Each stratum was sub-divided into rectangles of 5 x 5 nautical miles. Each rectangle is assumed to have been a homogeneous sampling unit. Within each stratum, rectangles were given consecutive numbers starting from 1. After fixing the total number of trawl stations, the number of stations were roughly allocated to individual strata in proportion to the size of the stratum and the expected shrimp concentrations. Within each stratum the trawl stations were randomly allocated to rectangles. In the most important shrimp trawl fields (strata 3, 4, 6, 7, 12 and 15) 9% of the rectangles were trawled, and in most other stratum are marked in Fig. 2 and 3, with station number.

The distance trawled in most hauls was 3.0 nautical miles, but on some stations (station nos. 3, 40, 41 and 62) trawling had to be made much shorter due to the rough bottom. On station 100, the distance trawled was 9.0 nautical miles. In some cases where the bottom was too rough to be trawled over, the first nearby rectangle was chosen.

By-catches of fish were counted and length measurements were taken of all important species. The catch of shrimps (in kg) and by-catch of fish (in numbers) are listed in Table 1.

Fishing gear and techniques were the same as in 1980, and are described by TAVARES &  $\emptyset$ YNES (1980).

A random sample of 350-400 shrimps was taken from each haul, and the shrimps were length measured, sexed and their reproductive stage determined.

- 3 -

The statistical treatment of the results in each separate stratum follows TAVARES &  $\emptyset$ YNES (1980), and the width covered by the trawl is assumed to be 15 m (0.0081 nm.).

If  $A_k$  is the area in stratum <u>k</u> (square nautical miles) and  $\overline{c}_k$  is the mean catch (in kg) pr. nm. in stratum <u>k</u>, the total stock (in tonnes) in all strata summarized is given by:

$$\sum_{k} \frac{A_{k}}{8.1} \bar{c}_{k}$$

The 95% confidence interval for this total stock is then

$$\sum_{k} \frac{A_{k}}{8.1} \overline{c}_{k} \stackrel{\pm 1.96}{\longrightarrow} \sqrt{\sum_{k} (\frac{A_{k}}{8.1})^{2} \frac{Sk^{2}}{n_{k}}}$$

where  $s_k^2/n_k$  is the variance of  $\bar{c}_k$  in stratum <u>k</u>.

For each haul the total catch of shrimps and the length distribution of the shrimps are known. Having a length weight relationship, the total number of shrimps caught in each haul can be calculated. It is then possible to estimate the stock in numbers for each stratum and for all strata summarized. The length-weight relationship w=0.0004313  $\cdot 1^{3.15}$  (TEIGSMARK 1980) was used in these calculations. Here, w is the weight in grams and l is the carapace length.

In the Barents Sea, the Norwegian commercial shrimp trawlers use a trawl with a mesh size of 35 mm. A constructed selection curve for a 35 mm trawl is given in TEIGSMARK (1980). Using this selection curve together with information about catch and length distribution of the shrimps for each haul, estimates of biomass and numbers can also be given for the commercial stock, i.e. that part of the stock available to the 35 mm trawl.

## 4 RESULTS AND DISCUSSION

#### 4.1 Shrimps

The results given concerning the treatment of the shrimp material are preliminary, and a more complete report will be given later.

- 4 -

## 4.1.1 Stock\_size\_estimates

The estimated biomass of the stock in each stratum is given in Table 2, with the precision of the estimate. As the strata were changed this year compared to 1980, changes in stock size in different areas can be most easily seen from changes in the catch pr. nautical mile. Table 3 gives the weighted mean values of catch pr. nm. for the different areas in 1980 and 1981. For the southern areas (strata 3, 4 and 6), a slight decrease in catch pr. nm. was observed. In strata 7 and 10-12 the catch pr. nm. was much higher this year, indicating a major increase in stock size in these areas. Totally, this gives an increase of 20-25% in stock size from 1980 to 1981 for the strata investigated both years.

As can be seen from Table 2, a large part of the total stock was found in areas outside the commercial shrimp fields. It is therefore clear that surveys covering only the commercial fields underestimate the total stock in the Barents Sea to a large extent.

The total stock in all strata summarized is estimated to be 185 000  $\pm$  15 000 tonnes. This is to be regarded as a minimum estimate, and some arguments in favour of this is given in TAVARES & ØYNES (1980).

Estimates of the stock size in numbers in each stratum are given in Table 4. The total stock is estimated to be  $(42.7\pm3.9) \cdot 10^9$  individuals.

The commercial stock in all strata summarized is estimated to be 155 000  $\pm$  12 500 tonnes (Table 5), corresponding to  $(31.2\pm2.7)\cdot10^9$  individuals (Table 6).

ULLTANG (1978) has developed a method that has been used to calculate the TAC. The basic criterion here is the reduction in the reproductive potential caused by fishing. This reduction

- 5 -

can be calculated for different values of the fishing mortality F given estimates of  $M_1$  (natural mortality of females after first hatching of the eggs) and t (the time between age at recruitment to the fishery and the age at first hatching of the eggs). If a maximum of 50% reduction in the reproductive potential is allowed due to fishing, the F value giving this reduction can be found for combinations of  $M_1$  and t. The TAC is then calculated as  $F \cdot \overline{P}_W$ , where  $\overline{P}_W$  is the equilibrium mean annual commercial stock. This model has been further developed (TEIGSMARK 1980), taking into consideration the length-fecundity relationship and the growth of the shrimps and the spawning pattern, i.e. if the females spawn each year or each second year.

The most probable values of  $M_1$  (0.60, 0.40 and 0.30) and t (2.80 years, 3.20 years and 3.65 years), were used in these calculations for the three populations found in the Barents Sea (see 4.1.2.). The fishing mortality values giving a 50% reduction in the reproductive potential varied between 0.125 and 0.156 for the three populations, with a mean of approximately 0.14. If the biomass of the commercial stock is assumed to correspond to the mean annual commercial stock, the TAC for the stratified areas investigated should be approximately 22 000 tonnes. The t-values used in these calculations are accurate, but the values of  $M_1$  are much more uncertain. If the real values of  $M_1$ are higher than the values used, the TAC will be higher too. An increase in the  $M_1$  values of 0.10 will roughly correspond to an increase in the maximum allowed F value of 0.01.

# 4.1.2 Biological characteristics

Three populations of <u>P</u>. <u>borealis</u> are to be found in the central part of the Barents Sea (strata 1-15), (TEIGSMARK 1980). In the southern part of this area, the shrimps change sex 4 years old, and the females spawn each year. In the two other populations the females spawn each second year, and in these populations the shrimps change sex 5 and 6 years old respectively. Besides having these differences in reproductive characteristics, the populations have different growth, different levels of mortality

- 6 -

and are linked to water masses of different temperature.

From the cruise in 1981, the population spawning each year seems at present, to be found in strata 1-5 and in the southern part of stratum 6. This corresponds with results found during winter 1980-81. Station 106 outside the strata was also taken from this population. The borderline between the two other populations has not yet been established.

Hatching of eggs was nearly completed in all areas, and this indicates that hatching had started earlier this year compared to 1978 and 1979 (TEIGSMARK 1980).

As was expected, some females in the northern areas had started spawning. The shrimps in these areas therefore have an overlapping reproductive cycle, and females with eyed eggs and females with newly-spawned eggs were found at the same time.

## 4.1.3 Future treatment of the shrimp material

One factor of importance concerning the absolute magnitude of the stock estimates, is the width covered by the trawl. In the previous calculations this has, as in TAVARES & ØYNES (1980), been assumed to be 15 m. On this cruise the distance between the trawl doors was calculated for most hauls. The results showed that this distance was variable, probably due to different bottom conditions, differences in current speed and direction in relation to towing direction etc. Knowing the distance between the trawl doors and the size of the trawl and the length of the sweeps, it is possible to calculate more accurately the area swept by the trawl. This will be done for every haul. Instead of using a constant width for all hauls; adjustments can then be made for each haul for variation in the area swept.

The length distribution of the shrimps in each haul is known. This will be split into normally distributed components corresponding to year-classes, making it possible to estimate the

- 7 -

biomass/numbers of each separate year-class. This will then be the basis for mortality estimates.

As the reproductive stage of each shrimp was determined, an estimate of the reproductive active stock of females will also be given, and using a length-fecundity relationship, the production of larvae can be calculated.

It is also intended to analyse more closely the relationship between the amount of shrimps, temperature and depth.

#### 4.2 By-catches

Table 1 lists by numbers the most important by-catches of the most economically important fish species for each trawl haul. Table 7 gives the by-catches (in numbers) in each stratum investigated. The numbers of fish are listed as mean number per trawl haul i.e. per hour trawled.

As in 1980, there were few individuals of the commercially important fish species such as cod, haddock and Greenland halibut. This result is in contrast to the quantities of these species taken as by-catches in shrimp trawling in the same areas in the spring of 1970 (RASMUSSEN & ØYNES 1970). The abundance of these three fish species had declined in the last five years. Cod were found in some reasonable numbers only in the strata nearest the Norwegian coast and in the Svalbard region. Greenland halibut were present in the deepest strata investigated, but in few numbers and most were less than the minimum length (55 cm) generally accepted for consumption in Norway. The increase in the abundance of shrimps mentioned earlier is possibly caused by the decrease in the stock of the predators such as cod, haddock and Greenland halibut. As a rule, redfish were the most numerous in the by-catches, up to 877 as a mean number in the hauls near Spitsbergen. All of the redfish were very small, 10-20 cm. The stock of redfish must also have declined, as RASMUSSEN & ØYNES (1974) describe trawl hauls of 3 hours duratation containing up to 69 000 redfish in these areas.

Capelin and polar cod can make problems for the shrimp trawlers, especially in the eastern and northern parts of the Barents Sea. Capelin were present in all the strata investigated, most numerous in strata 10 and 11 (near the Thor Iversen bank). There were very high numbers of polar cod in strata 7, 11, 12 and 15 (Fig. 1 and Table 7). In stratum 7 (Tiddly) there were nearly 5 000 individuals pr hour's trawling. This makes shrimp trawling impossible for the commercial shrimp trawlers. A common by-catch on all shrimp fields in northern waters are long rough dab. On the survey in 1981 these were most numerous in the areas around Bjørnøya, with numbers from 500 to 750 pr trawl hour. This species is not yet used commercially in Norwegian fisheries.

#### 5 REFERENCES

- RASMUSSEN, B. & ØYNES, P., 1970. Forsøksfiske etter reker. Barentshavet i mars-april 1970. <u>Fiskets Gang</u>, 56:587-593.
- RASMUSSEN, B. & ØYNES, P., 1974. Forsøk med reketrål som sorterer bort fisk og fiskeyngel. Fiskeridirektoratet. Fiskerinæringens Forsøksfond, Rapp., (4):3-15.
- TAVARES, A.M. & ØYNES, P., 1980. Results of a stratified trawl survey for shrimps (<u>Pandalus borealis</u>) in the Barents Sea and the Spitsbergen area in May-June 1980. <u>Coun.</u> <u>Meet. int. Coun. Explor. Sea, 1980</u> (K:22):1-6, 3 tabs, 1 fig. [Mimeo.]
- TEIGSMARK, G., 1980. Populasjoner av dypvannsreke (<u>Pandalus</u> <u>borealis</u> Krøyer) i Barentshavet. Identifisering og karakterisering. (Populations of the deep sea shrimp (<u>Pandalus borealis</u> Krøyer) in the Barents Sea. Identification and characterization). 166 pp. Cand. real. thesis. [Mimeo].
- ULLTANG, Ø., 1978. A method for determining the total allowable catch of deep sea shrimp, <u>Pandalus</u> <u>borealis</u>, off West Greenland. <u>ICNAF</u> Sel. Papers, No. 4:35-42.

· - 9 --

Table 1. Catches of shrimp and by-catch per haul by R/V <u>Michael</u> <u>Sars</u> in May and June 1981 by stratum, time of hauling, distance trawled, position, direction and depth.

| st.      |              | Stra-    | Square                                  | Time of hauling        | Dis-        | Position                                       |                                                | Dir.                                 |                    | Shrimp        |     |            | By-catches (numbers) |         |               |               |             |
|----------|--------------|----------|-----------------------------------------|------------------------|-------------|------------------------------------------------|------------------------------------------------|--------------------------------------|--------------------|---------------|-----|------------|----------------------|---------|---------------|---------------|-------------|
| no.      | Date         | tum      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | (hour)                 |             | N.lat.                                         | E.long.                                        |                                      | Depth (m)          | -             |     | <u>ц-2</u> |                      |         |               |               | Cod 0-1     |
| -        |              |          |                                         |                        | n.m.        |                                                | 2                                              | tow.                                 |                    | catch<br>(kg) | Cod |            | Red-<br>fish         | Gr.Hal. | Capelin       | Polar         | cod Othe    |
| 10       | 16/5         | 1        | 14                                      | 0555-0653              | n.m.<br>3.0 | 71 <sup>0</sup> 24,0'                          | 28 <sup>0</sup> 30.0'                          | 135 <sup>0</sup>                     | 400-402            | (kg)<br>165   | 5   | 1<br>1     | 115n<br>117          | 6       |               |               | 32          |
| 11       | 16/5         | 1        | 25                                      | 1035-1134              | 3.0         | 71 <sup>°</sup> 26,8'                          | 29 <sup>0</sup> 18.0'                          | 30 <sup>0</sup>                      | 343-336            | 125           | 6   | 13         | 309                  | 1       |               |               | 38          |
| 16       | 17/5         | 1        | 43                                      | 0706-0803              | 3.0         | 71 <sup>0</sup> 02.5'                          | 30 <sup>0</sup> 17.8'                          | 25 <sup>0</sup>                      | 319-323            | 110           | 8   | 7          | 117                  |         | 10            |               | 111         |
| 15       | 16/5         | 2        | 2                                       | 2028-2125              | 3.0         | 71 <sup>0</sup> 23.8'                          | 30 <sup>0</sup> 37.0'                          | 130 <sup>0</sup>                     | 272-273            | 20            | 56  | 32         | 196                  |         |               |               | 81          |
| 17       | 17/5         | 2        | 16                                      | 1836-1933              | 3.0         | 71 <sup>0</sup> 10.8'                          | 31 <sup>0</sup> 05.0'                          | 40 <sup>0</sup>                      | 278-270            | 165           | 141 | 46         | 117                  |         | 50            |               | 251         |
| 18       | 18/5         | 2        | 43                                      | 0700-0756              | 3.0         | 71 <sup>0</sup> 00.5'                          | 32 <sup>0</sup> 28.9'                          | 360 <sup>0</sup>                     | 242-235            | 35            | 47  | 1          | 330                  |         | 100           |               | 246         |
| 19       | 18/5         | 2        | 49                                      | 1020-1117              | 3.0         | 71 <sup>0</sup> 26.0'                          | 32 <sup>0</sup> 46.0'                          | 25 <sup>0</sup>                      | 284-288            | 90            | 2   |            | 176                  | 1       | 500           | 20            | 309         |
| 1        | 14/5         | 3        | 6                                       | 1533-1631              | 3.0         | 71 <sup>0</sup> 32.5'                          | 25 <sup>0</sup> 57.0'                          | 325 <sup>0</sup>                     | 286-288            | 24            | 17  | 14         | 130                  |         |               |               | 109         |
| 2        | 14/5         | 3        | 15                                      | 1845-1941              | 3.0         | 71 <sup>0</sup> 46.8'                          | 26 <sup>0</sup> 18.8'                          | 37 <sup>0</sup>                      | 330-322            | 130           | 13  | 1          | 252                  |         |               |               | 143         |
| 3        | 15/5         | 3        | 25                                      | 0723-0753              | 1.5         | 71 <sup>0</sup> 58.5'                          | 26 <sup>0</sup> 54.0'                          | 27 <sup>0</sup>                      | 275-267            | 10            | 3   | 1          | 112                  |         | 400           |               | 77          |
|          | 15/5         | 3        | 51                                      | 1557-1652              | 3.0         | 71 <sup>0</sup> 48.8'                          | 28 <sup>0</sup> 04.0'                          | 225 <sup>0</sup>                     | 305-320            | 264           | 9   | 27         | 426                  |         | 122           |               | 76          |
| 8        | 15/5         | 3        | 52                                      | 1745-1843              | 3.0         | 71 <sup>°</sup> 43.9'                          | 27 <sup>0</sup> 59.0'                          | 225 <sup>0</sup>                     | 345-354            | 230           | 5   |            | 452                  | 2       |               |               | 140         |
| 6        | 15/5         | 3        | 62                                      | 1348-1445              | 3.0         | 71 <sup>0</sup> 54.2'                          | 28 <sup>0</sup> 25.0'                          | 135 <sup>0</sup>                     | 268-276            | 18            | 36  | 13         | 117                  |         | 110           |               | 99          |
| 9        | 15/5         | 3        | 65                                      | 2006-2103              | 3.0         | 71 <sup>0</sup> 38.0'<br>71 <sup>0</sup> 30.6' | 28 <sup>0</sup> 28.8'<br>29 <sup>0</sup> 21.0' | 135 <sup>0</sup><br>330 <sup>0</sup> | 357-350            | 132           | 21  | 1          | 436                  |         |               |               | 50          |
| 12       | 16/5         | 4        | 6                                       | 1224-1322              | 3.0         | 71 30.6'<br>71 <sup>°</sup> 45.7'              |                                                | 330<br>30 <sup>0</sup>               | 336-333            | 118           | 10  |            |                      | 2       |               |               | 49          |
| 13       | 16/5         | 4        | 10                                      | 1500-1558              | 3.0         | /1 45./'<br>71 <sup>0</sup> 34.9'              | 30 <sup>°</sup> 32.0'                          | 30<br>116 <sup>0</sup>               | 325-321            | 225           | 7   | e          | 73                   | 2       |               |               | 104         |
| 14<br>23 | 16/5<br>19/5 | 4<br>4   | 31<br>36                                | 1806-1905<br>0706-0803 | 3.0<br>3.0  | 71 34.9'<br>71 <sup>°</sup> 55.6'              | 30 32.0'<br>30 <sup>°</sup> 33.8'              | 40 <sup>0</sup>                      | 306-300<br>345-340 | 160<br>110    | 4   | 5          | 145<br>65            | 2<br>11 |               |               | 88          |
| 23<br>20 | 19/5         | 4        | 36<br>57                                | 1343-1443              | 3.0         | 71 55.6'<br>71 <sup>0</sup> 40.6'              | 30 33.8'<br>31 <sup>0</sup> 49.0'              | 40<br>310 <sup>0</sup>               | 345-340<br>310-313 | 125           |     |            | 205                  | 11      | 250           | 1             | 215         |
| 20       | 18/5         | 4        | 62                                      | 1602-1702              | 3.0         | 71 <sup>°</sup> 51.0'                          | 31 <sup>°</sup> 53.0'                          | 24 <sup>0</sup>                      | 320-308            | 185           | 2   |            | 94                   | 5       | 400           | 1             | 386         |
|          | 15/5         | 5        | 31                                      | 0905-1003              | 3.0         | 72 <sup>0</sup> 03.6'                          | 27 <sup>0</sup> 05.8'                          | 80 <sup>0</sup>                      | 260-269            | 20            | 21  | 9          | 102                  | 0       | 100,          |               | 229         |
|          | 15/5         | 5        | 43                                      | 1115-1213              | 3.0         | 72 <sup>0</sup> 02.0'                          | 27 <sup>0</sup> 37.0'                          | 110 <sup>0</sup>                     | 278-277            | 45            | 17  |            | 261                  |         |               |               | 142         |
| 66       | 28/5         | 5        | 70                                      | 1647-1745              | 3.0         | 72 <sup>0</sup> 19.5'                          | 28 <sup>0</sup> 38.0'                          | 125 <sup>0</sup>                     | 284-280            | 15            | 29  | 1          | 87                   |         | 200           |               | 101         |
| 39       | 22/5         | 6        | 2                                       | 0706-0804              | 3.0         | 72 <sup>0</sup> 51.6'                          | 30 <sup>0</sup> 05.5'                          | 40 <sup>0</sup>                      | 288-278            | 70            | 2   | 1          | •                    |         | 25 kg         | 114           | 173         |
| 25       | 19/5         | 6        | 10                                      | 1140-1236              | 3.0         | 72 <sup>0</sup> 10.9'                          | 30 <sup>0</sup> 04.8'                          | 75 <sup>0</sup>                      | 305-313            | 80            | 1   |            | 13                   |         | 40            | 15            | 328         |
| 40       | 22/5         | 6        | 24                                      | 0853-0926              | 1.8         | 72 <sup>0</sup> 55.9'                          | 30 <sup>0</sup> 21.6'                          | 45 <sup>0</sup>                      | 261-260            | 16            | 15  |            | 55                   |         |               | 112           | 157         |
| 27       | 19/5         | 6        | 29                                      | 1647-1747              | 3.0         | 72 <sup>0</sup> 36.0'                          | 30 <sup>0</sup> 39.0'                          | 20 <sup>0</sup>                      | 282-280            | 160           | 1.  |            | 112                  |         |               | 114           | 302         |
| 26       | 19/5         | 6        | 31                                      | 1430-1528              | 3.0         | 72 <sup>0</sup> 26.0'                          | 30 <sup>0</sup> 35.0'                          | 22 <sup>0</sup>                      | 286-287            | 120           | 4   | l          | 95                   | 1       | 75            |               | 486         |
| 24       | 19/5         | 6        | 36                                      | 0857-0955              | 3.0         | 72 <sup>0</sup> 01.7'                          | 30 <sup>0</sup> 45.0'                          | 310 <sup>0</sup>                     | 332-333            | 150           | 1   | 1          | 45                   | 7       | 50            |               | 315         |
| 22       | 18/5         | 6        | 61                                      | 1836-1933              | 3.0         | 72 <sup>0</sup> 01.0'                          | 31 <sup>0</sup> 32.5'                          | 315 <sup>0</sup>                     | 318-318            | 150           | 1   |            | 63                   |         |               |               | 352         |
| 38       | 21/5         | 6        | 74                                      | 1949-2044              | 3.0         | 72 <sup>0</sup> 51.0'                          | 31 <sup>0</sup> 56.3'                          | 315 <sup>0</sup>                     | 262-254            | 170           |     |            | 25                   |         | 52 kg         | 753           | 359         |
| 35       | 21/5         | 6        | 88                                      | 1035-1133              | 3.0         | 72 <sup>0</sup> 15.7'                          | 32 <sup>0</sup> 06.8'                          | 320 <sup>0</sup>                     | 285-300            | 140           |     | 1          | 74                   |         | 18 kg         | 110           | 285         |
| 36       | 21/5         | 6        | 102                                     | 1326-1427              | 3.0         | 72 <sup>°</sup> 30.6'                          | 32 <sup>0</sup> 20.0'                          | 360 <sup>0</sup>                     | 275-272            | 135           |     |            | 315                  |         | 6 kg          | 337           | 319         |
| 37       | 21/5         | 7        | 10                                      | 1617-1717              | 3.0         | 72 <sup>°</sup> 35.6'                          | 32 <sup>0</sup> 53.0'                          | 360 <sup>0</sup>                     | 286-292            | . 160         |     | -          |                      |         | 26 kg         | 300           | 405         |
| 34       | 21/5         | 7        | 14                                      | 0740-0838              | 3.0         | 72 <sup>0</sup> 17.6'<br>72 <sup>0</sup> 23.8' | 32 <sup>0</sup> 54.2'<br>33 <sup>0</sup> 30.8' | 312 <sup>0</sup><br>220 <sup>0</sup> | 290-293            | 110           |     |            | 50                   |         | 26.1          | 684           | 288         |
| 33       | 20/5         | 7        | 29                                      | 1845-1943              | 3.0         | 72 <sup>°</sup> 31.0'                          | 33 30.8'<br>33 <sup>0</sup> 50.0'              | 300 <sup>0</sup>                     | 282-283<br>270-283 | 180           |     |            |                      |         | 36 kg         | 5544          | 748         |
| 32       | 20/5         | 7<br>7   | 36                                      | 1625-1724              | 3.0         | 72 <sup>°</sup> 25.7'                          | 33 50.0'<br>34 <sup>0</sup> 34.0'              | 300<br>340 <sup>0</sup>              | 270-283            | 320<br>70     |     |            |                      |         | 360<br>63     | 12096<br>9694 | 1200<br>801 |
| 31<br>30 | 20/5<br>20/5 | 7        | 54<br>57                                | 1358-1458<br>1150-1246 |             | 72 <sup>°</sup> 17.5'                          | 34 <sup>°</sup> 42.8'                          | 90 <sup>0</sup>                      | 270-283            | 70            |     |            |                      |         | 120           | 157           | 452         |
| 30<br>29 | 20/5         | 7        | 73                                      | 0704-0801              |             | 72 <sup>°</sup> 38.6'                          | 35 <sup>0</sup> 21.8'                          | 100 <sup>0</sup>                     | 247-233            | 4             |     |            |                      |         | 120           | 5632          | 452         |
| 81       | 4/6          | 8        | 1                                       | 0925-1022              |             | 72 <sup>°</sup> 56.0'                          | 25 <sup>°</sup> 38.0'                          | 340 <sup>0</sup>                     | 402-423            | 135           | 1.  |            | 431                  | 12      | 3             | 47            | 153         |
| 80       | 4/6          | 8        | 3                                       | 0700-0800              |             | 72 <sup>°</sup> 49.0'                          | 25 <sup>°</sup> 32.0'                          | 100 <sup>0</sup>                     | 350-330            | 100           | 3   |            | 601                  |         |               | 65            | 190         |
| 65       | 28/5         | 8        | 43                                      | 1333-1431              |             | 72 <sup>°</sup> 34.0'                          | 27 <sup>°</sup> 44.0'                          | 225 <sup>0</sup>                     | 305-311            | 60            | 7   |            | 99                   | 3       | 4 kg          | -             | 163         |
| 64       | 28/5         | 8        | 82                                      | 0920-1017              |             | 72 <sup>0</sup> 47.0'                          | 29 <sup>0</sup> 17.6'                          | 126 <sup>0</sup>                     | 296-295 .          | 130           | 1   |            | 30                   | 4       | 10 kg         | 233           | 354         |
| 63       | 28/5         | 8        | 86                                      | 0704-0802              |             | 72 <sup>0</sup> 54.0'                          | 29 <sup>0</sup> 41.7'                          | 270 <sup>0</sup>                     | 400-403            | 70            | 5   |            | 138                  |         | -             | 270           | 290         |
| 28       | 19/5         | 8        | 92                                      | 1940-2037              | 3.0         | 72 <sup>0</sup> 39.0'                          | 29 <sup>0</sup> 54.5'                          | 230 <sup>0</sup>                     | 301-316            | 50 ·          | 4   | 1          | 30                   | 3       | l kg          |               | 282         |
| 62       | 27/5         | 9        | 21                                      | 1754-1815              |             | 73 <sup>0</sup> 12.0'                          | 28 <sup>0</sup> 15.5'                          | 270 <sup>0</sup>                     | 357-363            | 62            | 2   |            | 75                   | 10      | 50            |               | 91          |
| 54       | 26/5         | 9        | 25                                      | 0656-0754              |             | 73 <sup>0</sup> 28.9'                          | 28 <sup>0</sup> 28.5'                          | 190 <sup>0</sup>                     | 383-373            | 155           |     |            | 171                  | 50      | 20            |               | 259         |
| 61       | 27/5         | 9        | 40                                      | 1515-1630              |             | 73 <sup>0</sup> 12.8'                          | 29 <sup>0</sup> 07.0'                          | 270 <sup>0</sup>                     | 327-360            | 145           | 3   |            | 70                   | 7       | 87            |               | 213         |
| 60       | 27/5         | 9        | 46                                      | 1236-1335              |             | 73 <sup>0</sup> 17.2'                          | 29 <sup>0</sup> 17.0'                          | 3200                                 | 345-361            | 140           | 5   |            | 264                  | 24      | 105           |               | 298         |
| 52       | 25/5         | 10       | 3                                       | 1650-1747              |             | 73 <sup>0</sup> 48.5'                          | 30 <sup>0</sup> 07.0'                          | 165 <sup>0</sup>                     | 366-384 .          | 185           |     |            | 140                  | 10      | 25            | 15            | 260         |
| 41       | 22/5         | 10       | 14                                      | 1137-1200              |             | 73 <sup>0</sup> 07.4'                          | 30 <sup>°</sup> 24.0'                          | 850                                  | 307-320            | 55            |     |            | 90                   |         | l kg          |               | 68          |
|          | 22/5         | 10       | 20                                      | 1359-1459              |             | 73 <sup>0</sup> 39.9'                          | 30 <sup>0</sup> 32.6'                          | 230 <sup>0</sup>                     | 387-390            | 275           |     |            | 60                   | 35      | 30            | 11            | 397         |
|          | 22/5         | 10       | 41                                      | 1411-1511              |             | 73 <sup>0</sup> 20.2'                          | 30 <sup>0</sup> 53.0'                          | 40 <sup>0</sup>                      | 350-354            | 150           | 2   | •          | 186                  | 66      | 48 kg         |               | 271         |
|          | 24/5         | 11       | 7                                       | 0854-0950              |             | 73 <sup>°</sup> 33.8'                          | 32 <sup>0</sup> 07.3'                          | 100 <sup>0</sup>                     | 295-297            | 135           | 36  | 12         | 780                  | 6       | 240           | 30            | 908         |
| 43       | 22/5         | 11       | 27                                      | 1836-1933              |             | 73 <sup>0</sup> 14.0'                          | 32 <sup>0</sup> 39.7'                          | 95 <sup>0</sup>                      | 270-263            | 205           | 1   |            | 297                  | 11      | 12 kg         | 44            | 522         |
|          | 24/5         | 11       | 44                                      | 1754-1852              |             | 73 <sup>0</sup> 47.6'                          | 34 <sup>0</sup> 26.0'                          | 90 <sup>0</sup>                      | 298-288            | 220           | ~   |            | 54                   | -       | 7 kg          | 1962          | 784         |
|          | 24/5         | 12       | 13                                      | 0700-0758              |             | 73 <sup>0</sup> 33.4'                          | 31 <sup>0</sup> 52.4'                          | 100 <sup>0</sup><br>135 <sup>0</sup> | 297-294            | 110           | 3   |            | 264                  | 6       | 0.0           | 0.10          | 785         |
|          | 25/5         | 12       | 17                                      | 1028-1123              |             | 73 <sup>0</sup> 53.0'<br>73 <sup>0</sup> 51.9' | 31 <sup>°</sup> 53.5'<br>32 <sup>°</sup> 53.0' | 135 <sup>-</sup><br>300 <sup>0</sup> | 341-347            | 260           |     |            | 384                  |         | 90<br>66      | 840           | 420         |
|          | 25/5         | 12       | 29<br>40                                | 0654-0752              |             | 73 <sup>-</sup> 51.9'<br>73 <sup>0</sup> 44.0' | 32 <sup>-</sup> 53.0'<br>33 <sup>0</sup> 22.0' | 300 °                                | 302-302            | 385           |     |            | 220                  |         | 66<br>6 ka    | 1152          | 504<br>202  |
| 46       | 24/5<br>24/5 | 12<br>12 | 40<br>53                                | 1348-1447<br>1619-1717 |             |                                                | 33 22.0'<br>34 <sup>0</sup> 11.0'              |                                      | 322-322<br>316-296 | 300<br>145    |     |            | 248<br>35            |         | 6 kg<br>16 kg | 2067<br>1281  | 393<br>1000 |

-

- 10 -

- 11 -Table 1. Catches of shrimp and by-catch per haul by R/V <u>Michael Sars</u> in May and June 1981 by stratum, time of hauling, distance trawled, position, direction and depth.

| St     |            |        | ra- Squa | are Time of haul | ing Di | s- P                              | osition                                       | D                       | ir.          |      | rimp |      |          | By-cat  | ches (n | imbore)    |       |
|--------|------------|--------|----------|------------------|--------|-----------------------------------|-----------------------------------------------|-------------------------|--------------|------|------|------|----------|---------|---------|------------|-------|
| nc     | Date       | tun    | 1        | (hour)           | ta     | nce N.lat.                        | E.long.                                       | • t                     | Depth<br>ow. |      | tch  | Cod  | Had- Red |         |         | elin Polar | Cod C |
|        |            |        |          |                  | n.     | m                                 |                                               |                         |              |      | kg)  |      | dock fis |         |         |            |       |
| 8      | 26/5       | 13     | 2        | 2000-2056        | 3.0    | 73 <sup>0</sup> 51.5'             | 25 <sup>0</sup> 25.6'                         | 105 <sup>0</sup>        | 444-447      | 120  |      |      | 36       | 18      | 90      |            | 374   |
| 7      | 26/5       | 13     | 35       | 1615-1720        | 3.0    | 73 <sup>0</sup> 47.0'             | 26 <sup>0</sup> 36.0'                         | 130 <sup>0</sup>        | 438-430      | 120  |      |      | 49       | 21      | 45      | 10         | 146   |
| 9      | 27/5       | 13     | 41       | 0654-0751        | 3.0    | 73 <sup>0</sup> 20.7'             | 26 <sup>0</sup> 51.8'                         | 11 <sup>0</sup>         | 427-421      | 180  |      |      | 54       | 10      | 46      |            | 121   |
| 6      | 26/5       | 13     | 58       | 1226-1326        | 3.0    | 73 <sup>0</sup> 46.0'             | 27035.0'                                      | 300 <sup>0</sup>        | 400-412      | 175  |      |      |          | 20      | 25      | 20         | 234   |
| 5      | 26/5       | 13     | 76 .     | 0953-1050        | 3.0    | 73 <sup>0</sup> 42.0'             | 28 <sup>0</sup> 27.3'                         | 340 <sup>0</sup>        | 395-393      | 110  | -    |      | 104      | 44      | l kg    | 20         | 183   |
| 3      | 25/5       | 13     | 92       | 1943-2040        | 3.0    | 73 <sup>0</sup> 38.3'             | 29 <sup>0</sup> 20.0'                         | 243 <sup>0</sup>        | 375-381      | 135  |      |      | 288      | 22      | 32      | 4          | 189   |
| 6      | 3/6        | 14     | 9        | 0830-0928        | 3.0    | 74 <sup>0</sup> 03.0'             | 26 <sup>0</sup> 01.0'                         | 220 <sup>0</sup>        | 440-452      | 140  |      |      | 43       | 11      | 47      | 495        | 242   |
| 1      | 1/6        | 14     | 28       | 1744-1845        | 3.0    | 74 <sup>0</sup> 16.0'             | 27 <sup>0</sup> 39.0'                         | 315 <sup>0</sup>        | 415-412      | 120  |      |      | 116      | 12      |         | 40         | 324   |
| 0      | 1/6        | 14     | 50       | 1445-1545        | 3.0    | 74 <sup>0</sup> 06.0'             | 28 <sup>0</sup> 34.0'                         | 315 <sup>0</sup>        | 389-392      | 150  |      |      | 186      | 24      | 40      | •          | 203   |
| 9      | 1/6        | 15     | 10       | 1252-1450        | 3.0    | 74 <sup>°</sup> 04.9'             | 28 <sup>0</sup> 51.0'                         | 230 <sup>0</sup>        | 375-390      | 180  |      |      | 172      | .30     | 70      | 77         | 233   |
| 5      | 2/6        | 15     | 18       | 1529-1629        | 3.0    | 74 <sup>°</sup> 37.6'             |                                               | 130 <sup>0</sup>        | 383-381      | 160  |      |      | 119      | 20      | 176     | 663        | 209   |
| 4      | 2/6        | 15     | 25       | 1220-1318        | 3.0    | 74 <sup>0</sup> 29.0'             | 29 <sup>0</sup> 31.0'                         | 220 <sup>0</sup>        | 382-380      | 115  |      |      | 115      | 13      | 65      | 103        | 259   |
| 3      | 2/6        | 15     | 44       | 0945-1045        | 3.0    | 74 <sup>°</sup> 34.0'             | 30 <sup>°</sup> 10.0'                         | 220 <sup>0</sup>        | 355-362      | 210  |      |      | 158      | 18      | 158     | 235        | 239   |
| 8      | 1/6        | 15     | 47       | 0930-1028        | 3.0    | 74 <sup>°</sup> 19.0'             | 30 <sup>°</sup> 10.0'                         | 220 <sup>0</sup>        | 341-350      | 265  |      |      | 498      | 15      | 110     | 2000       | 292   |
| 7      | 1/6        | 15     | 74       | 0700-0800        | 3.0    | 74 <sup>0</sup> 19.5'             | 30 <sup>°</sup> 57.0'                         | 220 <sup>0</sup>        | 300-314      | 280  |      |      | 157      | 15      | 194     | 4777       | 290   |
| ,<br>2 | 2/6        | 15     | 78       | 0700-0800        | 3.0    | 74 <sup>°</sup> 38.7'             | 31 <sup>°</sup> 02.0'                         | 210 <sup>°</sup>        | 300-305      | 170  |      |      | 78       |         | 174     | 880        | 216   |
| 2<br>3 | 2/0<br>9/6 | 19     | 14       | 1455-1555        | 3.0    | 74 <sup>0</sup> 09.0'             | 17 <sup>0</sup> 20.0'                         | 135 <sup>0</sup>        | 206-211      | 5    | 97   |      | 70       |         |         | 000        | 704   |
| 3      | 6/6        | 19     | 34       | 1441-1540        | 3.0    | 73 <sup>°</sup> 41.0'             |                                               | 110 <sup>°</sup>        | 310-316      | 105  | 84   |      | 66       |         |         | 624        | 717   |
| 5      |            | 19     | 53       | 2000-2100        | 3.0    | 73 <sup>°</sup> 45.5'             | 20 <sup>0</sup> 21.0'                         | 60 <sup>0</sup>         | 450-450      | 50   | 04   |      | 00       | 7       | 15      | 195        | 428   |
|        | 6/6        | 20     | 3        |                  | 3.0    | 73 <sup>°</sup> 46.0'             | 20 <sup>°</sup> 21.0 <sup>°</sup> 33.0'       | 80 <sup>0</sup>         | 503-504      | 170  |      |      | 53       | 45      | 23      | 303        |       |
| 4      | 10/6       |        |          | 0700-0800        |        | 73 <sup>°</sup> 04.0'             | 21 33.0 <sup>4</sup><br>23 <sup>0</sup> 14.0' | 230 <sup>0</sup>        |              | 175  | 1    |      | 53<br>45 | 45<br>6 | 23      | 303        | 1024  |
| 8      | 3/6        | 20     | 18       | 1535-1635        | 3.0    | 73 <sup>0</sup> 53.0'             |                                               | 230<br>195 <sup>0</sup> | 437-445      |      | T    | -    |          |         | 57      |            | 570   |
| 5      | 10/6       | 20     | 35       | 1215-1315        | 3.0    | 73 53.0'<br>74 <sup>0</sup> 10.5' | 23 59.0'<br>25 <sup>0</sup> 08.0'             | 195<br>315 <sup>0</sup> | 463-460      | 170  |      | 1    | 96<br>26 | 12      | 57      | 560        | 527   |
| 7      | 3/6        | 20     | 56       | 1125-1223        | 3.0    | 73 <sup>0</sup> 06.0'             | 16 <sup>°</sup> 37.0'                         | 45 <sup>0</sup>         | 445-437      | 215  | 2    |      | 26       | 23      | 10      | 68         | 468   |
| 2      | 6/6        | 21     | 11       | 0555-0655        | 3.0    | 73 06.0'<br>73 <sup>0</sup> 20.0' | 16 37.0'<br>17 <sup>0</sup> 12.0'             | 45<br>30 <sup>0</sup>   | 465-475      | 25   | 3    |      | 66       | 3       | 2       | 51         | 169   |
| 1      | 6/6        | 21     | 32       | 0845-0945        | 3.0    |                                   |                                               |                         | 482-475      | 95   | 4    |      | 46       | 2       |         | 14         | 473   |
| 2      | 6/6        | 21     | 34       | 1105-1203        | 3.0    | 73 <sup>0</sup> 31.0'             |                                               | 340 <sup>0</sup>        | 432-422      | 30   | 13   |      | 66       | 7       | 14      | 41         | 81    |
| Э      | 5/6        | 21     | 55       | 1905-2005        | 3.0    | 73 <sup>°</sup> 02.0'             | 18 <sup>°</sup> 32.0'                         | 240 <sup>0</sup>        | 418-419      | 20   |      | tone | and mud  |         |         |            |       |
| 4      | 6/6        | 21     | 88       | 1720-1820        | 3.0    | 73 <sup>0</sup> 38.0'             |                                               | 110 <sup>0</sup>        | 394-425      | 45   | 10   |      | 37       | 2       | 40      | 700        | 242   |
| 3      | 5/6        | 21     | 96       | 1531-1631        | 3.0    | 73 <sup>0</sup> 03.0'             |                                               | 270 <sup>0</sup>        | 432-429      | 60   |      | •    | 193      | 11      |         | 7          | 470   |
| 7      | 5/6        | 21     | 115      | 1250-1350        | 3.0    | 73 <sup>0</sup> 04.0'             |                                               | 225 <sup>0</sup>        | 460-455      | 60   | 2    |      | 37       | 12      | 4       | 21         | 302   |
| 5      | 5/6        | 22     | 6        | 1000-1058        | 3.0    | 73 <sup>0</sup> 19.0'             |                                               | 220 <sup>0</sup>        | 473-480      | 110  |      |      | 198      | 2       | 20      | 314        | 261   |
| 5      | 5/6        | 22     | 34       | 0655-0755        | 3.0    | 73 <sup>°</sup> 31.0'             |                                               | 290 <sup>0</sup>        | 457-460      | • 90 |      |      | 58       | 18      |         | 472        | 327   |
| 1      | 4/6        | 22     | 59       | 1820-1918        | 3.0    | 73 <sup>0</sup> 21.0'             | 23 <sup>0</sup> 08.0'                         | 315 <sup>0</sup>        | 430-430      | 165  | 1    | 1    | 234      | 11      |         | 28         | 184   |
| 3      | 4/6        | 22     | 66       | 1553-1650        | 3.0    | 73 <sup>0</sup> 11.4'             |                                               | 300 <sup>0</sup>        | 306-386      | 80   | ľ34  |      | 136      |         | 8       | 20         | 232   |
| 2      | 4/6        | 22     | 99       | 1300-1400        | 3.0    | 73 <sup>0</sup> 01.7'             |                                               | 300 <sup>0</sup>        | 405-386      | 130  | 2    |      | 312      | 9       | 3       | 3          | 340   |
| )      | 3/6        | 22     | 108      | 1925-2028        | 3.0    | 73 <sup>0</sup> 44.5'             |                                               | 116 <sup>0</sup>        | 450-449      | 116  | l    |      | 30       | 37      | 14      | 44         | 164   |
| 5      | 7/6        |        |          | 1115-1215        | 3.0    | 75 <sup>0</sup> 21.0'             |                                               | 350 <sup>0</sup>        | 370-387      | 120  | 25   |      | 1000     | 7       | 10      |            | 439   |
| ,      | 7/6 SI     | pitsbe | rgen     | 1322-1422        | 3.0    | 75 <sup>0</sup> 31.0'             |                                               | 350 <sup>0</sup>        | 394-393      | 200  | 32   |      | 856      | 4       | 4       |            | 415   |
| }      | 7/6 (5     | Storfj | orden)   | 1722-1820        | 3.0    | 76 <sup>0</sup> 01.0'             |                                               | 360 <sup>0</sup>        | 327-357      | 40   | 11   |      | 774      | 7       | 2       |            | 395   |
| 9      | 7/6        |        |          | 1940-2038        | 3.0    | 76 <sup>0</sup> 12.0'             |                                               | 340 <sup>0</sup>        | 350-362      | 50   | St   | tone | and mud. |         |         |            |       |
| )      | 8/6        |        |          | 1755-2055        | 9.0    | 75 <sup>0</sup> 34.0'             | 14 <sup>0</sup> 47.0'                         | 130 <sup>0</sup>        | 396-401      | 450  | 20   |      | Other fi | sh not  | counted | 1.         |       |
| -      | 9/6        |        |          | 0655-0755        | 3.0    | 74 <sup>0</sup> 46.5'             |                                               | 45 <sup>0</sup>         | 345-330      | 125  | 10   |      | 450      | 24      | 21      | 77         | 926   |
| 2      | 9/6        |        |          | 1020-1115        | 3.0    | 74048.01                          | 17°40.0'                                      | 90 <sup>0</sup>         | 300-265      | 225  | 2    |      | 268      | 8       | 20      | 396        | 1416  |

.

.

Table 2. Estimated mean catch pr n.m.  $(\overline{c}_k)$  and biomass in each stratum and estimated biomass in all strata summarized with the precision of the estimates.

| Stra-<br>tum | Area<br>(nm <sup>2</sup> ) | Numbe<br>of<br>hauls | K<br>(lear /mm | s <sub>k</sub> <sup>2</sup><br>) | v (ē <sub>k</sub> ) | Coeff.<br>of var <u>.</u><br>(s.e./c <sub>k</sub> | Biomass | s.e. of<br>biomass |         |
|--------------|----------------------------|----------------------|----------------|----------------------------------|---------------------|---------------------------------------------------|---------|--------------------|---------|
| 1            | 1200                       | 3                    | 44.44          | 89.81                            | 29.94               | 0.123                                             | 6584    | 810.61             | <u></u> |
| 2            | 1650                       | 4                    | 25.83          | 478.70                           | 119.68              | 0.424                                             | 5262    | 2228.45            |         |
| 3            | 1950                       | 7                    | 38.95          | 1159.83                          | 165.69              | 0.330                                             | 9377    | 3098.83            |         |
| 4            | 1800                       | 6                    | 51.28          | 224.69                           | 37.45               | 0.119                                             | 11395   | 1359.88            |         |
| 5            | 2400                       | 3                    | 8.89           | 28.70                            | 9.57                | 0.348                                             | 2634    | 916,50             |         |
| 6            | 2700                       | 10                   | 40.06          | 238.71                           | 23.87               | 0.122                                             | 13352   | 1628.61            |         |
| 7            | 1850                       | 7                    | 40.52          | 1370.51                          | 195.79              | 0.345                                             | 9255    | 3195.80            |         |
| 8            | 2400                       | 6                    | 30.00          | 145.56                           | 24.26               | 0.164                                             | 8889    | 1459.37            |         |
| 9            | 1500                       | 4                    | 52,17          | 47.30                            | 11.82               | 0.066                                             | 9660    | 636.78             |         |
| 10           | 1500                       | 4                    | 61.41          | 470.21                           | 117.55              | 0.177                                             | 11372   | 2007.80            |         |
| 11           | 1325                       | 3                    | 62.22          | 228,70                           | 76.23               | 0.140                                             | 10178   | 1428.26            |         |
| 12           | 1375                       | 5                    | 80,00          | 1415.28                          | 283.06              | 0.210                                             | 13580   | 2855.97            |         |
| 13           | 2700                       | 6                    | 46.67          | 101.11                           | 16.85               | 0.088                                             | 15556   | 1368.37            |         |
| 14           | 1275                       | 3                    | 45.56          | 25.93                            | 8.64                | 0.065                                             | 7171    | 462.73             |         |
| 15           | 2025                       | 7                    | 65.71          | 385.05                           | 55.01               | 0.113                                             | 16421   | 1854.18            |         |
| 19           | 1325                       | 3                    | 17.78          | 278.70                           | 92.90               | 0.542                                             | 2908    | 1576.67            |         |
| 20           | 1525                       | 4                    | 60.83          | 52,78                            | 13.19               | 0.060                                             | 11453   | 683.88             |         |
| 21           | 3300                       | 7                    | 15.95          | 76.72                            | 10,96               | 0.208                                             | 6499    | 1348.75            |         |
| 22           | 3125                       | 6                    | 36.67          | 118.89                           | 19.81               | 0.121                                             | 14146   | 1717.35            |         |
|              |                            |                      |                |                                  | All strat           | a                                                 | 185700  | 7796,76            |         |

Table 3. Mean catch pr n.m. in different corresponding areas in 1980 and 1981.

| 19       | 981                   | 19     | 980                   |
|----------|-----------------------|--------|-----------------------|
| Strata   | Mean catch<br>(kg/nm) | Strata | Mean catch<br>(kg/nm) |
| 3+4      | 44.87                 | 5+6+7  | 47.26                 |
| 6        | 40.06                 | 4      | 48.60                 |
| 7        | 40.52                 | 3      | 13.84                 |
| 10+11+12 | 67.75                 | 1+2    | 45.10                 |

| tra- | Area<br>(nm <sup>2</sup> ) | Number<br>of<br>hauls | ē <sub>k</sub> .10 <sup>-3</sup> | $s_k^2 \cdot 10^{-6}$ | v(c <sub>k</sub> )·10 <sup>-6</sup> | Coeff.<br>of var. | Stock.10 <sup>-6</sup> | s.e. of<br>stock·10 <sup>-6</sup> |  |
|------|----------------------------|-----------------------|----------------------------------|-----------------------|-------------------------------------|-------------------|------------------------|-----------------------------------|--|
| 1    | 1200                       | 3                     | 9.251                            | 3.945                 | 1.315                               | 0.124             | 1370.535               | 169.893                           |  |
| 2    | 1650                       | 4                     | 7.152                            | 49.504                | 12.376                              | 0.492             | 1456.787               | 716.619                           |  |
| 3    | 1950                       | 7                     | 9.473                            | 80.119                | 11.446                              | 0.357             | 2280.480               | 814.459                           |  |
| 4    | 1800                       | 6                     | 12.465                           | 15.332                | 2.555                               | 0.128             | 2769.926               | 355.231                           |  |
| 5    | 2400                       | 3                     | 2.165                            | 2.732                 | 0.911                               | 0.441             | 641.613                | 282.738                           |  |
| 6    | 2700                       | 10                    | 8.659                            | 12.324                | 1.232                               | 0.128             | 2886.411               | 370.038                           |  |
| 7    | 1850                       | 7                     | 10.688                           | 110.744               | 15.821                              | 0.372             | 2441.141               | 908.443                           |  |
| 8    | 2400                       | 6                     | 6.202                            | 7.480                 | 1.247                               | 0.180             | 1837.597               | 330.829                           |  |
| 9    | 1500                       | 4                     | 11.970                           | 2.401                 | 0.600                               | 0.065             | 2216.651               | 143.460                           |  |
| 10   | 1500                       | 4                     | 14.637                           | 32.248                | 8.062                               | 0.194             | 2710.539               | 525.812                           |  |
| 11   | 1325                       | 3                     | 17.690                           | 11.251                | 3.750                               | 0.109             | 2893.753               | 316.791                           |  |
| 12   | 1375                       | 5                     | 20.402                           | 71.009                | 14.202                              | 0.185             | 3463.257               | 639.718                           |  |
| 13   | 2700                       | 6                     | 10.346                           | 3.868                 | 0.645                               | 0.078             | 3448.741               | 267.632                           |  |
| 14   | 1275                       | 3                     | 10.409                           | 1.547                 | 0.516                               | 0.069             | 1638.384               | 113.032                           |  |
| 15   | 2025                       | 7                     | 13.594                           | 18.553                | 2.650                               | 0.120             | 3398.381               | 407.007                           |  |
| 19   | 1325                       | 3                     | 3.807                            | 18.210                | 6.070                               | 0.647             | 622.695                | 403.014                           |  |
| 20   | 1525                       | 4                     | 12.950                           | 4.129                 | 1.032                               | 0.078             | 2438.180               | 191.273                           |  |
| 21   | 3300                       | 7                     | 2.995                            | 3.048                 | 0.435                               | 0.220             | 1220.088               | 268.853                           |  |
| 22   | 3125                       | 6                     | 7.591                            | 6.841                 | 1.140                               | 0.141             | 2928.519               | 411.965                           |  |
|      |                            |                       |                                  |                       | All strat                           | ta                | 42663.678              | 1995.291                          |  |

Table 4. Estimated mean number of shrimps pr n.m.  $(\bar{c}_k)$  and the total number of shrimps in each stratum and in all strata summarized with the precision of the estimates.

13

Table 5. Estimated commercial mean catch pr n.m.  $(\bar{c}_k)$  and commercial biomass in each stratum and in all strata summarized with the precision of the estimates.

| Stra-<br>tum | Area<br>(nm <sup>2</sup> ) | Number<br>of<br>hauls | c c <sub>k</sub><br>(kg/nm) | $s_k^2$ | K (            | Coeff.<br>of var.<br>(s.e./c <sub>k</sub> | Biomass<br>(t) | s.e. of<br>biomass |  |
|--------------|----------------------------|-----------------------|-----------------------------|---------|----------------|-------------------------------------------|----------------|--------------------|--|
| 1            | 1200                       | 3                     | 38.48                       | 73.17   | 24.39          | 0.128                                     | . 5701         | ,731.66            |  |
| 2            | 1650                       | 4                     | 19.91                       | 250.63  | 62.66          | 0.398                                     | 4055           | 1612.46            |  |
| 3            | 1950                       | 7                     | 31.78                       | 723.97  | 103.43         | 0.320                                     | 7652           | 2448.28            |  |
| 4            | 1800                       | б                     | 41.95                       | 137.32  | 22.89          | 0.114                                     | 9322           | 1063.11            |  |
| 5            | 2400                       | 3                     | 7.28                        | 15.81   | 5.27           | 0.315                                     | 2157           | 680.21             |  |
| 6            | 2700                       | 10                    | 34.03                       | 169.57  | 1 <b>6.</b> 96 | 0.121                                     | 11342          | 1372,65            |  |
| 7            | 1850                       | 7                     | 32.11                       | 813.23  | 116.18         | 0.336                                     | 7333           | 2461.75            |  |
| 8            | 2400                       | 6                     | 25.84                       | 101.89  | 16.98          | 0.159                                     | 7656           | 1221.03            |  |
| 9            | 1500                       | 4                     | 43.22                       | 40.67   | 10.17          | 0.074                                     | 8022           | 590.47             |  |
| 10           | 1500                       | 4                     | 50.52                       | 296,07  | 74.02          | 0.170                                     | 9355           | 1593.21            |  |
| 11           | 1325                       | 3                     | 48.54                       | 198.88  | 66.29          | 0.168                                     | 7940           | 1331.87            |  |
| 12           | 1375                       | 5                     | 64.58                       | 979.76  | 195.95         | 0.217                                     | 10962          | 2376.25            |  |
| 13           | 2700                       | 6                     | 39.29                       | 84,40   | 14.07          | 0.095                                     | 13097          | 1250.21            |  |
| 14           | 1275                       | 3                     | 38.12                       | 16.07   | 5.36           | 0.061                                     | 6001           | 364.34             |  |
| 15           | 2025                       | 7                     | 56.55                       | 285,74  | 40.82          | 0.113                                     | 14139          | 1597.25            |  |
| 19           | 1325                       | 3                     | 15.17                       | 182.03  | 60.68          | 0.513                                     | 2482           | 1274.23            |  |
| 20           | 1525                       | 4                     | 52.10                       | 37.56   | 9.39           | 0.059                                     | 9808           | 576.90             |  |
| 21           | 3300                       | 7                     | 14.17                       | 58.56   | 8.37           | 0.204                                     | 5774           | 1178.38            |  |
| 22           | 3125                       | б                     | 31,58                       | 80.86   | 13.48          | 0.116                                     | 12183          | 1416.28            |  |
|              |                            |                       |                             |         | All strat      | a                                         | 154981         | 6329,73            |  |

| 1 1200 3 7.166 2.499 0.833 0.127 1061.630 135.214   2 1650 4 4.712 18.543 4.636 0.457 959.852 438.589   33 1950 7 6.920 40.085 5.726 0.346 1665.892 576.091   4 1800 6 8.679 8.163 1.360 0.134 1928.741 259.196   5 2400 3 1.554 1.081 0.360 0.386 460.477 177.856   6 2700 10 6.626 6.657 0.666 0.123 2208.789 271.978   7 1850 7 7.063 42.726 6.104 0.350 1613.187 564.266   8 2400 6 4.991 4.683 0.781 0.177 1478.848 261.766   9 1500 4 9.007 1.293 0.323 0.063 1668.009 105.299   10 1500 4 10.299 13.733 3.433 0.180 1907.241 343.128 <th>tra-<br/>um</th> <th>Area<br/>(nm<sup>2</sup>)</th> <th>Number<br/>of<br/>hauls</th> <th>ē<sub>k</sub>.10<sup>-3</sup></th> <th>s<sup>2</sup>.10<sup>-6</sup></th> <th>v(ē<sub>k</sub>)·10<sup>-6</sup></th> <th>Coeff.<br/>of var.</th> <th>Stock.10<sup>-6</sup></th> <th>s.e. of<br/>stock•10<sup>-6</sup></th> <th></th> <th></th> | tra-<br>um | Area<br>(nm <sup>2</sup> ) | Number<br>of<br>hauls | ē <sub>k</sub> .10 <sup>-3</sup> | s <sup>2</sup> .10 <sup>-6</sup> | v(ē <sub>k</sub> )·10 <sup>-6</sup> | Coeff.<br>of var. | Stock.10 <sup>-6</sup> | s.e. of<br>stock•10 <sup>-6</sup> |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|-----------------------|----------------------------------|----------------------------------|-------------------------------------|-------------------|------------------------|-----------------------------------|--|--|
| 1950 7 6.920 40.085 5.726 0.346 1665.892 576.091   4 1800 6 8.679 8.163 1.360 0.134 1928.741 259.196   5 2400 3 1.554 1.081 0.360 0.386 460.477 177.856   6 2700 10 6.626 6.657 0.666 0.123 2208.789 271.978   7 1850 7 7.063 42.726 6.104 0.350 1613.187 564.266   8 2400 6 4.991 4.683 0.781 0.177 1478.848 261.766   9 1500 4 9.007 1.293 0.323 0.063 1668.009 105.299   10 1500 4 10.299 13.733 3.433 0.180 1907.241 343.128   11 1325 3 10.865 8.082 2.694 0.151 177.372 268.492   12 1375 5 13.711 40.804 8.161 0.208 2327.462 484.935                                                                                                                                                                                                                                                                                                                                           | 1          | 1200                       | 3                     | 7.166                            | 2.499                            | 0.833                               | 0.127             | 1061.630               | 135.214                           |  |  |
| 4 1800 6 8.679 8.163 1.360 0.134 1928.741 259.196   5 2400 3 1.554 1.081 0.360 0.386 460.477 177.856   6 2700 10 6.626 6.657 0.666 0.123 2208.789 271.978   7 1850 7 7.063 42.726 6.104 0.350 1613.187 564.266   8 2400 6 4.991 4.683 0.781 0.177 1478.848 261.766   9 1500 4 9.007 1.293 0.323 0.063 1668.009 105.299   10 1500 4 10.299 13.733 3.433 0.180 1907.241 343.128   11 1325 3 10.865 8.082 2.694 0.151 1777.372 268.492   12 1375 5 13.711 40.804 8.161 0.208 2327.462 484.935   13 2700 6 7.928 2.659 0.443 0.084 2642.519 21.89t<                                                                                                                                                                                                                                                                                                                                        | 2          | 1650                       | 4                     | 4.712                            | 18.543                           | 4.636                               | 0.457             | 959.852                | 438.589                           |  |  |
| 5 2400 3 1.554 1.081 0.360 0.386 460.477 177.856   6 2700 10 6.626 6.657 0.666 0.123 2208.789 271.978   7 1850 7 7.063 42.726 6.104 0.350 1613.187 564.266   8 2400 6 4.991 4.683 0.781 0.177 1478.848 261.766   9 1500 4 9.007 1.293 0.323 0.063 1668.009 105.299   10 1500 4 10.299 13.733 3.433 0.180 1907.241 343.128   11 1325 3 10.865 8.082 2.694 0.151 1777.372 268.492   12 1375 5 13.711 40.804 8.161 0.208 2327.462 484.935   13 2700 6 7.928 <b>2.659</b> 0.443 0.082 1167.211 95.949   14 1275 3 7.415 1.115 0.372 0.082 1167.211 95.94                                                                                                                                                                                                                                                                                                                                   | 33         | 1950                       | 7                     | 6.920                            | 40.085                           | 5.726                               | 0.346             | 1665.892               | 576.091                           |  |  |
| 6 2700 10 6.626 6.657 0.666 0.123 2208.789 271.978   7 1850 7 7.063 42.726 6.104 0.350 1613.187 564.266   8 2400 6 4.991 4.683 0.781 0.177 1478.848 261.766   9 1500 4 9.007 1.293 0.323 0.063 1668.009 105.299   10 1500 4 10.299 13.733 3.433 0.180 1907.241 343.128   11 1325 3 10.865 8.082 2.694 0.151 1777.372 268.492   12 1375 5 13.711 40.804 8.161 0.208 2327.462 484.935   13 2700 6 7.928 <b>2.659</b> 0.443 0.084 2642.519 221.891   14 1275 3 7.415 1.115 0.372 0.082 1167.211 95.949   15 2025 7 10.434 11.172 1.596 0.121 2608.476 3                                                                                                                                                                                                                                                                                                                                   | 4          | 1800                       | 6                     | 8.679                            | 8.163                            | 1.360                               | 0.134             | 1928.741               | 259.196                           |  |  |
| 7185077.06342.7266.1040.3501613.187564.2668240064.9914.6830.7810.1771478.848261.7669150049.0071.2930.3230.0631668.009105.299101500410.29913.7333.4330.1801907.241343.128111325310.8658.0822.6940.1511777.372268.492121375513.71140.8048.1610.2082327.462484.93513270067.928 <b>2.6590.4430.0842642.519221.891</b> 14127537.4151.1150.3720.0821167.21195.949152025710.43411.1721.5960.1212608.476315.83519132532.8738.7392.9130.594469.966279.19520152549.9621.5700.3920.0631875.577117.95021330072.5372.1170.3020.2171033.457224.04122312566.1364.1920.6990.1362367.177322.460                                                                                                                                                                                                                                                                                                         | 5          | 2400                       | 3                     | 1.554                            | 1.081                            | 0.360                               | 0.386             | 460.477                | 177.856                           |  |  |
| 8 2400 6 4.991 4.683 0.781 0.177 1478.848 261.766   9 1500 4 9.007 1.293 0.323 0.063 1668.009 105.299   10 1500 4 10.299 13.733 3.433 0.180 1907.241 343.128   11 1325 3 10.865 8.082 2.694 0.151 1777.372 268.492   12 1375 5 13.711 40.804 8.161 0.208 2327.462 484.935   13 2700 6 7.928 <b>2.659 0.443 0.084 2642.519 221.891</b> 14 1275 3 7.415 1.115 0.372 0.082 1167.211 95.949   15 2025 7 10.434 11.172 1.596 0.121 2608.476 315.835   19 1325 3 2.873 8.739 2.913 0.594 469.966 279.195   20 1525 4 9.962 1.570 0.392 0.663 1875.577                                                                                                                                                                                                                                                                                                                                        | 6          | 2700                       | 10                    | 6.626                            | 6.657                            | 0.666                               | 0.123             | 2208.789               | 271.978                           |  |  |
| 9 1500 4 9.007 1.293 0.323 0.063 1668.009 105.299   10 1500 4 10.299 13.733 3.433 0.180 1907.241 343.128   11 1325 3 10.865 8.082 2.694 0.151 1777.372 268.492   12 1375 5 13.711 40.804 8.161 0.208 2327.462 484.935   13 2700 6 7.928 <b>2.659 0.443 0.084 2642.519 221.891</b> 14 1275 3 7.415 1.115 0.372 0.082 1167.211 95.949   15 2025 7 10.434 11.172 1.596 0.121 2608.476 315.835   19 1325 3 2.873 8.739 2.913 0.594 469.966 279.195   20 1525 4 9.962 1.570 0.392 0.063 1875.577 117.950   21 3300 7 2.537 2.117 0.302 0.217 1033.457                                                                                                                                                                                                                                                                                                                                       | 7          | 1850                       | 7                     | 7.063                            | 42.726                           | 6.104                               | 0.350             | 1613.187               | 564.266                           |  |  |
| 101500410.29913.7333.4330.1801907.241343.128111325310.8658.0822.6940.1511777.372268.492121375513.71140.8048.1610.2082327.462484.93513270067.928 <b>2.6590.4430.0842642.519221.891</b> 14127537.4151.1150.3720.0821167.21195.949152025710.43411.1721.5960.1212608.476315.83519132532.8738.7392.9130.594469.966279.19520152549.9621.5700.3920.0631875.577117.95021330072.5372.1170.3020.2171033.457224.04122312566.1364.1920.6990.1362367.177322.460                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8          | 2400                       | 6                     | 4.991                            | 4.683                            | 0.781                               | 0.177             | 1478.848               | 261.766                           |  |  |
| 111325310.8658.0822.6940.1511777.372268.492121375513.71140.8048.1610.2082327.462484.93513270067.928 <b>2.6590.4430.0842642.519221.89t</b> 14127537.4151.1150.3720.0821167.21195.949152025710.43411.1721.5960.1212608.476315.83519132532.8738.7392.9130.594469.966279.19520152549.9621.5700.3920.0631875.577117.95021330072.5372.1170.3020.2171033.457224.04122312566.1364.1920.6990.1362367.177322.460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9          | 1500                       | 4                     | 9.007                            | 1.293                            | 0.323                               | 0.063             | 1668.009               | 105.299                           |  |  |
| 12 1375 5 13.711 40.804 8.161 0.208 2327.462 484.935   13 2700 6 7.928 <b>2.659 0.443 0.084 2642.519 221.891</b> 14 1275 3 7.415 1.115 0.372 0.082 1167.211 95.949   15 2025 7 10.434 11.172 1.596 0.121 2608.476 315.835   19 1325 3 2.873 8.739 2.913 0.594 469.966 279.195   20 1525 4 9.962 1.570 0.392 0.063 1875.577 117.950   21 3300 7 2.537 2.117 0.302 0.217 1033.457 224.041   22 3125 6 6.136 4.192 0.699 0.136 2367.177 322.460                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10         | 1500                       | 4                     | 10.299                           | 13.733                           | 3.433                               | 0.180             | 1907.241               | 343.128                           |  |  |
| 13270067.9282.6590.4430.0842642.519221.89t14127537.4151.1150.3720.0821167.21195.949152025710.43411.1721.5960.1212608.476315.83519132532.8738.7392.9130.594469.966279.19520152549.9621.5700.3920.0631875.577117.95021330072.5372.1170.3020.2171033.457224.04122312566.1364.1920.6990.1362367.177322.460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11         | 1325                       | 3                     | 10.865                           | 8.082                            | 2.694                               | 0.151             | 1777.372               | 268.492                           |  |  |
| 13 14 1275 3 7.415 1.115 0.372 0.082 1167.211 95.949   15 2025 7 10.434 11.172 1.596 0.121 2608.476 315.835   19 1325 3 2.873 8.739 2.913 0.594 469.966 279.195   20 1525 4 9.962 1.570 0.392 0.063 1875.577 117.950   21 3300 7 2.537 2.117 0.302 0.217 1033.457 224.041   22 3125 6 6.136 4.192 0.699 0.136 2367.177 322.460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12         | 1375                       | 5                     | 13.711_                          | 40.804                           | 8.161                               | 0.208             | 2327.462               | 484.935                           |  |  |
| 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 <td< td=""><td>13</td><td>2700</td><td>6</td><td>7.928</td><td>2.65<b>9</b></td><td>0.443</td><td>0.084</td><td>2642.519</td><td>221.89t</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                  | 13         | 2700                       | 6                     | 7.928                            | 2.65 <b>9</b>                    | 0.443                               | 0.084             | 2642.519               | 221.89t                           |  |  |
| 19 1325 3 2.873 8.739 2.913 0.594 469.966 279.195   20 1525 4 9.962 1.570 0.392 0.063 1875.577 117.950   21 3300 7 2.537 2.117 0.302 0.217 1033.457 224.041   22 3125 6 6.136 4.192 0.699 0.136 2367.177 322.460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14         | 1275                       | 3                     | 7.415                            | 1.115                            | 0.372                               | 0.082             | 1167.211               | 95.949                            |  |  |
| 15 1525 6 9.962 1.570 0.392 0.063 1875.577 117.950   21 3300 7 2.537 2.117 0.302 0.217 1033.457 224.041   22 3125 6 6.136 4.192 0.699 0.136 2367.177 322.460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15         | 2025                       | 7                     | 10.434                           | 11.172                           | 1.596                               | 0.121             | 2608.476               | 315.835                           |  |  |
| 21 3300 7 2.537 2.117 0.302 0.217 1033.457 224.041   22 3125 6 6.136 4.192 0.699 0.136 2367.177 322.460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19         | 1325                       | 3                     | 2.873                            | 8.739                            | 2.913                               | 0.594             | 469.966                | 279.195                           |  |  |
| 22 3125 6 6.136 4.192 0.699 0.136 2367.177 322.460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20         | 1525                       | 4                     | 9.962                            | 1.570                            | 0.392                               | 0.063             | 1875.577               | 117.950                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21         | 3300                       | 7                     | 2.537                            | 2.117                            | 0.302                               | 0.217             | 1033.457               | 224.041                           |  |  |
| All strata 31221.883 1393.741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22         | 3125                       | 6                     | 6.136                            | 4.192                            | 0.699                               | 0.136             | 2367.177               | 322.460                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                            |                       |                                  |                                  | All strat                           | ta                | 31221.883              | 1393.741                          |  |  |

Table 6. Estimated commercial mean number of shrimps pr n.m.  $(\tilde{e}_k)$  and the commercial number of shrimps in each stratum and for all strata summarized with the precision of the estimates.

15 -

|                   |                    |                              |     |                       | £ 5:-1 ; |    | 2   |      | <br>           | · · · · |    |
|-------------------|--------------------|------------------------------|-----|-----------------------|----------|----|-----|------|----------------|---------|----|
| Stratum<br>number | Number<br>of hauls | Shrimps<br>pr 3 n.m.<br>(kg) | Cod | By-catch o<br>Haddock |          |    |     |      | Long rough dab | Others  |    |
| 1                 | 3                  | 133                          | 6   | 7                     | 147      | 2  | 3   |      | 52             | 8       |    |
| 2                 | 4                  | 78                           | 62  | 20                    | 205      |    | 163 | 5    | 262            | 96      |    |
| 3                 | 7                  | 117                          | 15  | 8                     | 295      |    | 90  |      | 99             | 9       |    |
| 4                 | 6                  | 154                          | 4   |                       | 121      | 4  | 108 |      | 142            | 9       |    |
| 5                 | 3                  | 27                           | 22  | 3                     | 116      | 0  | 67  |      | 134            | 23      |    |
| 6                 | 10                 | 120                          | 3   |                       | 89       | 1  | 300 | 160  | 286            | 28      |    |
| 7                 | 7                  | 122                          |     |                       | 7        | 0  | 136 | 4872 | 363            | 224     |    |
| 8                 | 6                  | 90                           | 5   |                       | 222      | 5  | 125 | 103  | 216            | 23      |    |
| -9                | 4                  | 157                          | 4   |                       | 183      |    | 91  |      | 177            | 39      | I  |
| 10                | 4                  | 184                          |     |                       | 127      | 28 | 640 | 7    | 184            | 68      | 16 |
| 11                | 3                  | 187                          | 12  | 4                     | 377      | 6  | 410 | 678  | 545            | 193     | I  |
| 12                | 5                  | 240                          |     |                       | 230      | 1  | 250 | 1068 | 349            | 272     |    |
| 13                | 6                  | 140                          |     |                       | 101      | 23 | 48  | 7    | 168            | 39      |    |
| 14                | 3                  | 137                          |     |                       | 115      | 16 | 29  | 178  | 188            | 69      |    |
| 15                | 7                  | 197                          |     |                       | 185      | 14 | 110 | 1248 | 124            | 125     |    |
| 19                | 3                  | 53                           | 60  |                       | 22       | 2  | 5   | 273  | 516            | 39      |    |
| 20                | 4                  | 183                          |     |                       | 55       | 22 | 23  | 312  | 513            | 137     |    |
| 21                | 7                  | 48                           | 58  |                       | 74       | 6  | 10  | 139  | 246            | 25      |    |
| 22                | 6                  | 110                          | 23  |                       | 161      | 13 | 8   | 147  | 210            | 45      |    |
|                   | 5                  | 123                          | 13  |                       | 877      | 6  | 5   | 416  | 288            | 100     |    |
|                   | 2                  | 175                          | 6   |                       | 356      | 16 | 21  | 237  | 745            | 146     |    |
| 4                 |                    |                              |     |                       |          |    |     |      |                |         |    |

Table 7. Shrimps and by-catch composition taken in different strata in the Barents Sea from 14 May to 10 June 1981

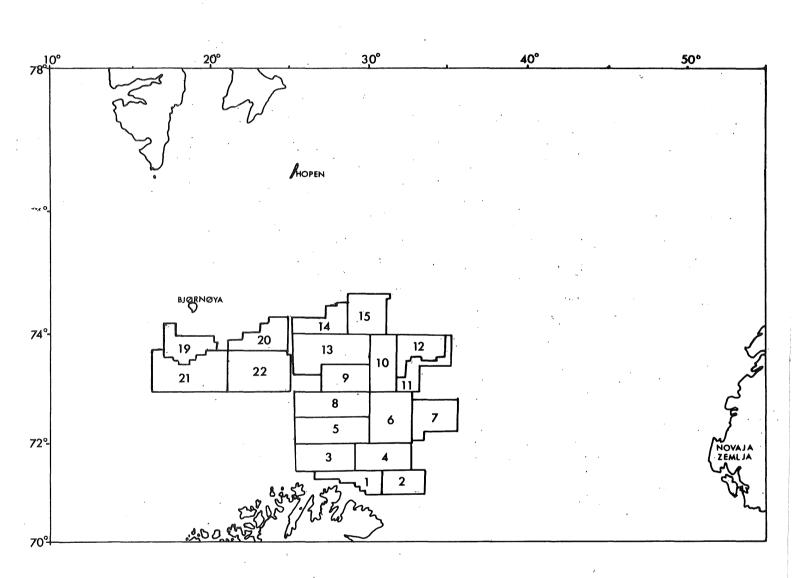



Fig. 1. Sampling strata used in May and June 1981 in the Barents Sea for the shrimp survey with R/V "Michael Sars".

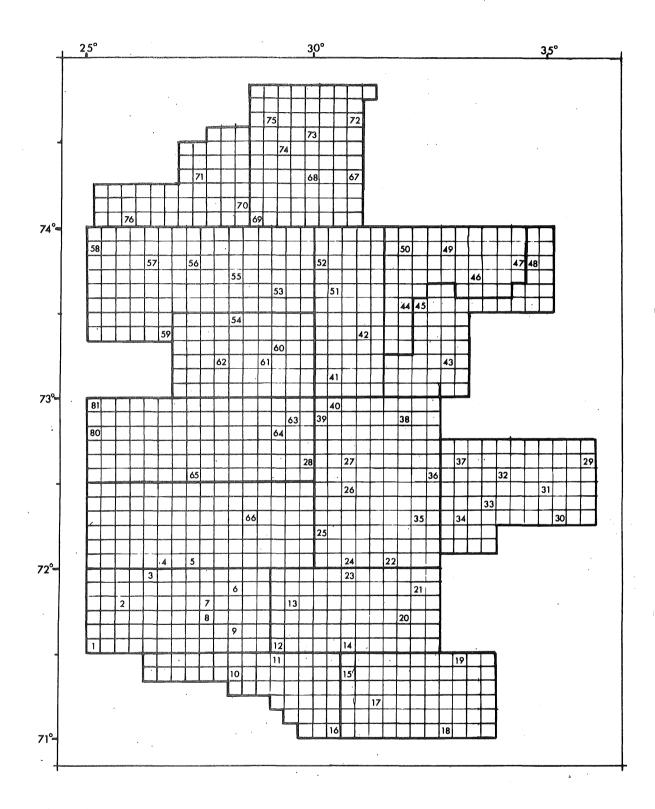



Fig. 2. Strata 1-15 subdivided into rectangles of 5x5 n.m. The rectangles trawled are indicated by station number.

- 18 -

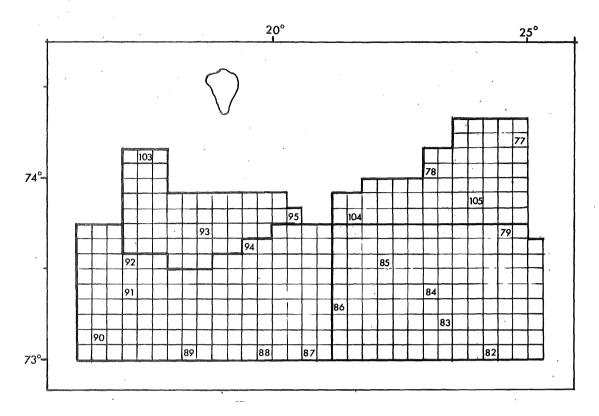



Fig. 3. Strata 19-22 subdivided into rectangles of 5x5 n.m. The rectangles trawled are indicated by station number.

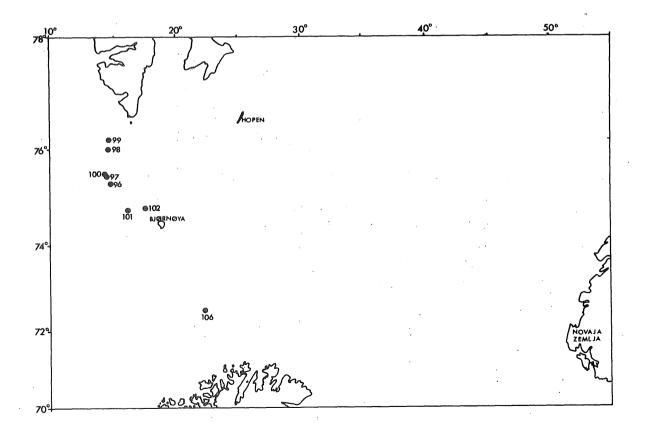



Fig. 4. Trawl stations taken outside the stratified areas. Number refers to station number.

- 19 -

