International Council for the
Bxploration of the Sea

CM 1977/K: 11
Shellfish \& Benthos Committee

Report of the Working Group on Homerus Stocks
Bergen, Norway 3-6 May 1977

Participants:
$V \cdots$ Anthony (UCA) $\quad \because$ E Ennis (Canada)
J Audouin (France) $K P$ Gundersen (Norway) Chairman
D B Berinett (UK) Seeretary H Hallback (Sweden)
K M Bhatragar (Irelana)
J Mascn (UK)
J F Caddy (Canada)
S Tveite (Norway)

Recommendation 2:37 of ICES CM 1976 Shellfish and Benthos Committee: the Working Group on Lobster Stocks should reconvene to consider and report on the significant progress in lobster research and development made since the first meeting in 1975 (ICES CM 1975/K: 38).

CONTENTS

1. Review of Lobster Fisheries
2. Researich and Development 1975-76
3. Recent or imminent changes in management strategy
4. Growth and Mortality Rates
5. Yield Assessment
6.: Management Recommendations
6.1. Yield per recruit
6.2: Recrujtment
6.3. Summary of management recommendations
6. Future Research

1.1. EUROPE

The catches of the european Iobster Homarus gammarus (Table 1) have continued to decline in the traditional fisheries of Sweden, W Norway, E Scotland and Vales. In England and France catches have been maintained at recent levels, which are below average. Catchmper-unit-effort (cpue) is low and falling in many areas. Fishermen are attempting to compensate for falls in cpue by increasing the number of traps fished. Catches and cpue have increased in the

[^0]inner Skagerrak in Norway, Ireland and W Scotland, the latter partly as a result of French, English and Channel Island vessels fishing previously unexploited stocks. Part-time fishermen continue to increase in many areas. In Sweden it is estimated that only 40% of the total catch is landed by full-time fishermen. The value per kg of lobsters has increased considerably in all fisheries.

1.2. NORTH AMERICA

 and the United States have been valued An excess of $\$ 80$ million, making this fishery one of the most valuable in the Northwest Atlantic. The USA currently (1975-76) lands about 13000 tornes annually (Table 2a). About 20% of the catch now comes from the offshore fishery. There has been a slow decline in landings and cpue while the fishing effort (number of traps) has more than doubled. Stocks appear to be fully utilised.

Landings in the Canadian fishery (Table 2 b) over the last decade have fluctuated from year to year with a slight downvard trend, to the present level of 16000 17000 tonnes per annum. Within the overall landing figures, trends have been evident from area to area along the Canadian Atlantic Coast. While Newfoundland and Quebec landings have increased over the last 3 years, there have been declines in Martimes inshore catches. These declines have not been totally offset by an offshore trap fishery from South Nova Scotia to the Gulf of Maine, which began in 1972, and has made an increasing contribution to Maritime landings up to a plateau of 500-600 tonnes over the last few years. Other events in the fishery which have followed-from the high fishing intensity in most areas, have been a limitation on numbers of traps per boat and numbers of licences in the fishenyminthenlate 1960's; mora recently, buy-back schemes are being intro-a duced in some areas, as a first attempt to reduce existing effort levels. Another significant event has been the increasing use of large traps with wider entrance holes to exploit the small proportion of the population growing through the size range that can enter the $4-5$ inch ($10-13 \mathrm{~cm}$) diameter entrance rings of the conventional inshore traps. Taken together with the generally low size limits (below the size at first female maturity in most areas), and the high exploitation rates, this development may have disturbing implications for future recruitment to the stocks.

2.1. EUROPE

England and Wales
Monitoring of population structure and catch and effort trends have continued in all the major fisheries. To estimate growth and mortality rates and migrations a tagging programme commenced in 1976 on the E and NE coasts of England. Biological studies have included work on larval recruitment, juvenile ecology and moult staging.

France
Studies have continued on the size composition and catch rates of lobster stocks resulting from the prohibition of fishing and release of juvenile lobsters into sanctuary areas. Comparisons are being made in the laboratory of the growth rates of H_{0} gammarus and H_{0} americanus and hybrids.

Ireland
Monitoring of size frequencies and catch and effort (boat-trap census) has continued with comparisons of the carapace length/total length ratio on the Atlantic and Irish Sea coasts. Branded lobsters were released in 1974. Only small movements of recaptures were recorded. Exploratory fishing in 40-70 fathoms ($72-126 \mathrm{~m}$) $50 \mathrm{miles}(80 \mathrm{~km}$) offshore proved unsuccessful.

Norway

Catch/effort and size composition data collected over a number of years has been analysed for a yield assessment. Tagged lobsters continue to be returned.

Scotland and Sweden
Monitoring of catch, effort and population structure continued.

2.2. NORTH AMERICA

Canada
Research effort is at present expanding. Size frequency, moult stages and fishing effort are sampled at key ports. Historical data is being prepared for analysis. The need for increased size limits is being considered. Escape gep studies have been completed on crabs (Cancer irroratus) and lobsters. Tagging studies to estimate growth, mortality rates, movements, standing stock, recruitment etc are continuing in a number of areas. First estimates of population parameters suggest that in addition to yield/recruit considerations, present fishing strategy may be adversely affecting recruitment potential.

Tagging studies in Canadian waters have so far shown few movements >10 miles although there appear to be seasonal vertical movements in some areas which may also result in horizontal displacements on a seasonal basis.

United States:
A State-Federal Scientific Committee, consisting of scientists from 11 coastal states (Maine to North Carolina) and the National Marine Fisheries Service (NMFS), has been established to organise and conduct the necessary research to allow the formulation of lobster management plans. Every lobster-producing state has now initiated or intensified its own lobster R \& D. The Lobster Scientific Committee has conducted a preliminary assessment of lobster growth and mortality to determine levels of yield-per-recruit for various levels of minimum sizes and fishing mortality, and to identify research priorities.
3. RECENT OR IMMINENT CHANGES IN MANAGEMENT STRATEXY
3.1. EUROPE

Fighand, Wales and Scotland in 1976 introduced carapace length for the measurement of minimum landing size at 80 mm , equivalent to the previous total length measurement of 9. inches (229 mm) 。 France, Norway and Sweden ctill use total length. Sweden has recently extended the summer closed season in an attempt to reduce the fishing activity of part-time fishermen, and to protect moulting lobsters. Ireland is in the process of introducing a licensing system for lobster boats, sellers and buyers, designed to control fishing effort, particularly of part-time fishermen.

3.2. NORTH AMERICA

Efforts to develop a unified management programme in the United States resulted in the establishment of a Policy Committee, composed of state fishery adminism trators and the Regional Director of NMFS, which provides overall programme guidance and facilitates implementation of decisions through existing legal and institutional channels. It: is intended to increase the present size limits of $31 / 16 \mathrm{in}(78 \mathrm{~mm}), 31 / 8$ in (79 mm) and $33 / 16$ in (81 mm) to a uniform $3 \frac{1}{2}$ in (89 mm) in the United States. Fscape gaps are being introduced in various states.

Canada hopes to increase the size limits in some areas over the next few years. In an attempt to reduce fishing effort a licence buy-back scheme is being introduced. A closed season may be introduced for the offshore fishery. The

4. GROWTH AND MORTALITY RATES

Discontinuous growth (made up of two components, moult increment and moult frequency), the apparent lack of ageing structures, the difficulty of distinguishing the modes of a size frequency distribution which might indicate year-classes or moult-classes, and the need for special tagging techniques which ensure that tags are not lost at ecdysis are the inherent problems associated with the estimation of annual growth rates of large decapod Crustacea, such as Homarus. The von Bertalanffy growth equation has been extensively used to describe the growth of fin-fish. While this equation is not ideally suited to the discontinuous growth pattern of lobsters it is a useful approximation which allows the use of the Beverton and Holt dynamic pool model for yield-perrecruit assessment. This is especially so when lobsters are moulting once each year over the size range considered for an assessment.

Analysis of polymodal size frequency data has provided some estimates of annual growth. The use of tagging data has provided good estimates of moult increments which have been coupled with sparse data on moult frequency. Von Bertalanffy growth equations from a number of Homarus stocks were examined (Table 3, Figure 1). It is readily apparent that there is considerable variation in the growth curves (Figure 1) with the slowest growth from Norway females (Ho gammarus) and the fastest from southern New England, USA (H. americanus). K values ranged from 0.10 for the Norway females to 0.39 for Newfoundland males. There was also a wide range in $I_{\text {w }}$ from 105 mm CL for Newfoundland males to 267 mm CL for Maine, USA lobsters. Much of this variability in growth rates is due to variable moult frequencies - the parameter which is the most difficult to estimate accurately!

Fishing mortality (F) rates from various sources have been calculated from tag return data and/or size composition data. The values obtained (Table 3) range from $F=>0.67$ (last available estimate of 0.67 in 1971) for the American offshore fishery to $F=2.30$ in the Maine fishery. Generally F values exceed 1.0 and are frequently as high as 2.0.

There are no direct estimates of natural mortality (M) and the best available estimates range from $M=0.1$ to 0.25 with a general consensus from the Working Group that such a slow-growing long-lived animal has few predators and that therefore natural mortality can be expected to be low - say $M=<0.1$.

5．YIELD ASSESSMENT

At the present time it is obvious that some of the estimates for the parameter inputs for a yield assessment are not wholly reliable．However，the examin－ ation of the available data for a range of stocks from both Europe and North America does enable a preliminary assessment to be made utilising a range of probable values for growth；fishing and natural mortality rates．The choice of a suitable yield model is not critical at this stage。 For convenience，the Beverton and Holt（1959）dynamic pool model was chosen．This model incorporates the von Bertalanffy growth equation，which as already discussed may not be an ideal description of the discontinuous growth of lobsters．（A yield－per－ recruit analysis using a discontinuous growth curve was briefly examined at the meeting and found to give similar results to those obtained by the Working Group）．Isometric growth is also assumed by the model and although male lobsters show allometric growth of the chelae this model is a suitable approx－ imation．The dynamic pool model also assumes constant mortality rates for various ages：this assumption may not be valid but the available data on mortality rates is not comprehensive enough to reject this assumption．Despite these reservations，the Group felt that useful management advice could be obtained from a yield－per－recruit assessment using this dynamic pool model with the parameter inputs at present available．

Three stocks were chosen for yield－per－recruit assessment incorporating a range of K values from 0.10 to 0.39 （Table 4）。 Two values of M were chosen $M=0.1$ ，thought，to be the more realistic value，and $M=0.3$ to observe the effect of incorporating a higher M value．Fishing mortality（ F ）ranged from 0.1 to 1.5 and age at first capture－assuming knife－edged selection－from 4 to 15 years（Table 4）．

5．1．YIELD．PER－RECRUIT RESULTS

Newfoundland Males
The maximum yield in weight per recruit $\left(Y_{W} / R\right)_{\max }$ of $552 \mathrm{~kg} / 1000$ when $M=0.1$ occurs at a high fishing mortality $\left(F_{\max }=1.5\right)$ and an age（size）at first capture（ $\left.t_{c}\right)_{\max }$ of $7 \mathrm{yr}(96 \mathrm{~mm} \mathrm{CL})\left(T a b l e 5\right.$ ，Figure 2）．If $M=0.3$ the $\left(Y_{W} / R\right)_{\max }$ is reduced to $372 \mathrm{lg} / 1000$ at an $(F)_{\max }$ of 1.5 and a $\left(t_{c}\right)_{\max }$ of 4 yr （Table 5， Figure 2）．Although the $\left(Y_{W} / R\right)_{\max }$ occurs at quite high values of（ $\left.F\right)_{\max }$ the low growth rates produce flat－topped yield－per－recruit curves in which，above fairly low levels of fishing mortality，further increases in F produce only small gains in yieldmper－recruit。 For example，if $M=0.1$ and $t_{c}=7 \mathrm{yr}$ ，the Y_{W} / R at $F=0.5$ is $519 \mathrm{~kg} / 1000$ ，only 6% less than the Y_{W} / R at $(F)_{\max }=1.5$ ，at
$F=0.3$ the X_{W} / R is only 13% less than at $(F)_{\max ^{\circ}}$

Norway Males

If $M=0.1$ the $\left(Y_{W} / R\right)_{\max }$ of $564 \mathrm{~kg} / 1000$ occurs at $(F)_{\max }=1.5$ and $\left(t_{c}\right)_{\max }$ of $9 \mathrm{yr}\left(106 \mathrm{~mm}\right.$ CL）（Table 5，Figure 3）。 The $\left(\mathrm{Y}_{\mathrm{W}} / \mathrm{R}\right)_{\max }$ is reduced to 277 $\mathrm{kg} / 1000$ at $(F)_{\max }=1.5$ and $\left(t_{c}\right)_{\max }=5$ yr if $M=0.3$ ．As with the Newfoundland males，the yield－per－recruit curves are flat－topped．A reduction from（ F ）max $=1.5$ to $F=0.3$ at $t_{c}=9$ and $M=0.1$ results in only a 9% loss in Y_{W} / R_{0} If $M=0.3$ at $t_{c}=5$ the loss is 20% 。

Norwäy Females

Although the growth rate is low（ $K=0.1$ ，Table 4）the W is is higher（ 2.448 kg ） than for the other two assessments．This results in quite high $\left(t_{c}\right)_{\max }$ values when $M=0.1$ ，the $\left(Y_{W} / R\right)_{\max }$ of $371 \mathrm{~kg} / 1000$ occurs at $(F)_{\max }=1.5$ and $\left(t_{c}\right)_{\max }$ $=14 \mathrm{yr}$（Table 5，Figure 4）。 Of course if M is higher $(M=0.3)\left(t_{C}\right)_{\max }$ is reduced to 7 yr ，although $(F)_{\text {max }}$ remains high at 1.50 As with the other assessments a considerable reduction in F has little effect on Y_{W} / R values． For example，if $M=0.1$ and $t_{c}=14$ a reduction from $(F)_{\max }=1.5$ to $F=0.3$ results in only a 19% drop in Y_{W} / R to $300 \mathrm{~kg} / 1000$ 。

6．MANAGEMENT RECOMMENDATIONS

6．1．YIELD－RR－RECRUIT

The three assessments carried out have been used to show general conclusions regarding the relationships between Y_{W} / R and M, F and t_{C} 。 The model is obviously sensitive to M ，the parameter which in most cases is estimated roughly．However，the general consensus is that M is low and probably less than 0．1．It is probably safe，therefore，to consider the assessments utilising $M=0.1$ as closer to reality than those with $M=0.3$ ．Although the（ $F)_{\text {max }}$ values were quite high $\cdots 1 \cdot 5$ ，it is clear that a considerable reduction in F would result in relatively small losses in Y_{W} / R ．This would of course increase the economic efficiency of a fishery as cpue would be expected to increase（see 6.2 also）．The present calculated or estimated values of F（Table 3）generally exceed $F=1.0$ ．These yield－per－recruit assessments clearly show that F values of the order of $0.3-0.5$ would be more suitable．

The present I_{c} values in mosti fisheries are around 80 mm CL ，although in one area in Canada，the southern Guif of St Lawrence，the I_{c} is as low as 64 mm CL． If $M=0.1$ the $\left(I_{c}\right)_{\text {max }}$ values at $(F)_{\text {max }}$ range from 96 to $117 \mathrm{~mm} \mathrm{CL}\left(t_{c}=7\right.$ to $14 \mathrm{yr})$ ．At the suggested level of $\bar{\Psi} \cdots 0.5$ the I_{C} values range from 91 to 108
$\mathrm{mmCL}\left(t_{c}=6\right.$ to 12 yr) - still well above the present size (age) at first capture. An increase in l_{c} would increase the yield-per-recruit from all these fisheries.

The conclusion from these preliminary assessments is clear - the present levels of fishing mortality are too high and the size (age) at first capture too low。

6.2. RECRUITMENT

Little is known about the behaviour and ecology of larval and juvenile lobsters. The source of recruitment to many fisheries is not known and little is known of the stock-recruitment relationshipo Despite these unknowns, it is clear that with the present situation where exploitation rates are high and the size (age) at first capture is often below the size (age) at first maturity, many of the lobster stocks on both sides of the Atlantic are heading for recruitment failure. The proposed reduction in fishing mortality and increases in size (age) ot first capture would alleviate this situation. The reduced catch rates in recent years indicate a reduction in stock abundance. Although the stockrecruitment relationship is unknown, at some low level of spawning stock an increase in stock size (resulting from a reduction in F and increase in I_{c}) will certainly increase recruitment.

6.3. SUMMARY OF MANAGEMENT RTCOMMENDATIONS

To improve yield-per-recruit and to ensure an adequate breeding stock it is essential in most Turopean and North American Homarus stocks to reduce fishing mortality significantly from the present level in excess of $F=1.0$ to an optinum level within the range $F=0.3-0.5$. At the same time the present size (age) at first capture (minimum landing size) is too low and should be raised, at least above the size (age) at first maturity for each stock.

If these management recommendations are not implemented in the near future recruitment failure in several Homarus fisheries can be expected and other stocks will continue to decline。

For obvious reasons, the considerable reductions in fishing mortality proposed and the immediate losses in catches resulting from increases in minimum landing sizes will be difficult to accept in socio-economic terms. The changes proposed will inevitably have to take place in measured steps. It is thus essential that the first steps in the right direction for the future management policy of

Homarus stocks to be taken immediately．Further delay only makes the inevitable proposed action more difficult to implement．

7．FUTURE RESEARCH

Although the preliminary assesements made by the Working Group used data which in many cases should be improved，clear management recommendations have been justifiably produced．Future research must concentrate on improving the para－ meter inputs for a yield assessment together with the additional information on the biology，particularly reproduction and recruitment，necessary to evaluate yield assessments and make valid management conclusions．

The Group felt that a considerable amount of data both published and unpub－ lished existed which should be collated in such a way as to benefit those whose task it is to manage the Homarus stocks．In particular it was felt that a re－ view of the growth data available and a consideration of the modelling of growth in homarids was essential．There is an obvious need to re－examine data and make better estimates of mortality parameters．Data on size and age at maturity together with information on recruitment is necessary，particularly in the light of the likelihood of recruitment failure in a number of stocks． The assessments in this report can only be regarded as preliminary．The Group believes that many of the necessary data are available for more accurate assess－ ments to be made of many stocks other than those considered here．

RIFFERENCES

BERTALANF＇FY，von．I．1938．A quantitative theory of organic growth．Hum．Biol． 10（2）：181－213．

BEVERTON，R．J．H．and S．J．HOLT．1957．On the dynamics of exploited fish populations．Fishery Invest。，Lond。，Ser。2， 19 ： 533 pp．
TABI里 1
EUROPEAN LOBSTER LANDINGS (tonnes) SOURCE: BULIETIN STATISTIQUE - ICES (*Approximate or estimated as available)

		DEMMARK	$\because \& W$	FRance	IRELAND	NORWAY	SCOTLAND	SPAIN	SWEDEN	ALL EUROPEAN COUNTRIES
	1950	216	-352*	304	170	969	784	19	215	3074
	51	157	346	368	. 139	862	643	29	252	2833
	52	186	331	449	164	712	635	32	210	2751
	53	145	403	485	200	848	635	37	216	3006
	- 54	124	450	499	189	648	597	34	188	2765
	- 55	108	506	497	253	632	662	34	167	2889
	56	101	492	537	308	708	688	32	178	3074
	57	74	528	568	270	655	728	53	148.	3059
	58	75	495	625	300	714	704	68	164	3174
	59	72	489	401	347	684	819	57	160	4159
	1960	85	465	497	267	787	890	37	168	3226
	61	76	565	509	180	681	991	26	147	3211
	62	67	469	437	167	551.	898	24	120	2767
	63	71	480	318	153	498	805	5	105	2470
	64	50	477	388	217	353	793	23	. 92	2443
	65	35	398	426	205	350	643	20	86	2194
	66	30	420	446	278	248	586	20	78	2325
	67	30	387	422	279	239	567	161	64	2411
	68	24	371	361	287	276	616	99	66	2358
	69	25	383	340	298	218	568	17	66	1954
	1970	22	491	324	277	202	602	47	71	2108
	71	15	451	310	- 285	133	678	20	50	1952
	72	16	429	373	221	161	585	16	43	1893
\%	73	13 :	457	420	258	150	545	13	42	1898
	74	11	377	$\cdots \cdots$	- 253	139	600	12	38	$1830 *$
	75	14	342	- 400*	. 332	128	503		43	$1762 *$
	76	12	348	$\cdots-400 *$	370	116	531	-	33	$1810 *$
Averages										
	1960-69	- 49	442	414	233	420	736	43	99	2536
	1970-76	15	414	357*	285	147	578	22^{*}	46*	$1893 *$

Table 2a. Lobster landings (tonnes) from the United States inshore and offshore (traps and trawls) fisheries for 1965-75. *Includes scuba diving and fish pots.

Year	Inshore Traps	Offshore Traps	Offshore Trawls	Other*	Total
1965	11218	$\square 0$	2481	20	13719
1966	11609	0	1776	15	13400
1967	10068	0	2048	15	12131
1968	12253	0	2490	25	14768
1969	12165	52	3086	22	15325
1970	11604	666	3199	23	15492
1971	11308	1480	2. 477	16	15281
1972	10626	2890	1093	. 17	14626
1973	10518	1945	671	16	13150
1974	10398	1749	940	-	13087
1975	10476	1939	726	-	13141
1976	11708	1914	598	-	14220

Table $2 b$. Lobster landings (tornes) in Canada。

Year	Maritimes			PoQ。	Nfld	Canada
	Inshore	Offshore (trap)	Total			
1965	15193	-	15193	1494	1695	18382
1966	13584	-	13584	1773	1580	16937
1967	112926	-	12926	1501	1414	15841
1968	13842	-	13842	1274	1808	16924
1969	15406	-	15406	1083	1730	18219
1970	13937	-	13937	1195	1463	16595
1971	14720	100	14820	1108	1381	17309
1972	12471	334	12805	1009	1237	15051
1973	13422	481	13903	981	1263	16147
1974	11496	410	:11906	1005	1326	14237
1975	14.040	547	14587	1204	1697	17488
1976 .	11669	636	12305	12.47	2229	15781

GOUNTRY	SEX	K	$\mathrm{I}_{\mathrm{K}}(\mathrm{mm})$	W. (kg)	t_{0}	F	M	$\begin{aligned} & \text { Present } \\ & I_{c}(\mathrm{~mm}) \end{aligned}$	1st Maturity	$\begin{aligned} & \text { 50\% } \\ & \text { Maturity } \end{aligned}$
H. gammarus										
England	0	0.12	196	6.55		1.17	0.25	80		
	\bigcirc	0.17	160	2.59		1.17	0.25	80	77	85+
IRELAND	O*	0.121	174		0.34	0.8	0.06	83	$76-83$	
NORWAY	$0{ }^{\circ}$	0.20	129	1.65	(0.34)	1.5	<0.1	78		
	\bigcirc	0.10	157	2.45	(0.34)	1.5	<0.1	78		
H. americanus										
Cainada	\bigcirc	0.390	105	0.99	0.796	1.77	0.11	81		
(Newfoundland)	\bigcirc	0.240	112	1.06	0.689	1.77	0.11	81	67	75
USA										
Maine	¢	0.048	267	12.2	-0.772	2.30	0.1-0.2	81	83	
S New England	\bigcirc	0.115	253	11.2	-0.140	>0.67	0.1-0.2	81		

Table 4. Input parameters for the Beverton and Holt (1959) yield-per-recruit equation for the Newfoundland male, and Norway male and female Homarus stocks.

Input	Newfoundland O"	Norway ơ	Norway ${ }^{\text {\% }}$
K	0.39	0.20	0.10
Wge (kg)	0.992	1.654	2.448
($\mathrm{L}_{\mathrm{m}} \mathrm{mm}$ CL)	(105)	(129)	(157)
$t_{0}(y r)$	0.8	0.34	0.34
$t_{\lambda}(y r)$	20	20	20
t_{r} (yr)	4	4	4
R	1000	. 1000	1000
M	0.1/0.3	$0.1 / 0.3$	$0.1 / 0.3$
$F_{\min }$	0.1	0.1	0.1
$\mathrm{F}_{\max }$	1.5	1.5	1.5
$\mathrm{F}_{\text {inc }}$	0.1	0.1	0.1
$t_{c} \min (\mathrm{yr})$	4	4	4
$t_{C \max }(\mathrm{yr})$	15	15	15
$t_{\text {c inc }}(\mathrm{yr})$	1	1	1

Table 5. Calculated age (size) at first capture $\left(t_{c}\right)_{\max }\left({\left(I_{c}\right)}_{\max }\right)$ giving maximum yield $\left(Y_{W} / R\right)_{\max }$ for
selected values of M and F, and fishing mortality $(F)_{\max }$ giving (X_{W} / R) max for selected values of M and $t_{c}\left(I_{c}\right)$ for three Homarus stocks. Tab

COUNTRY	SEX	M	F	$\left.{ }^{(t)}\right)_{\text {max }}$	$\left(I_{c}\right)_{\text {max }}$	$\left(y_{W} / R\right)_{\text {max }}$	t_{c}	I_{c}	$\left.{ }^{(F)}\right)_{\text {max }}$	$\left(Y_{W} / \mathrm{R}\right)_{\text {max }}$
Newfoundland	6	0.1	0.2	5	85	458	4	75	0.4	480
			0.5	6	91	529	5	84	0.6	520
			1.5	7	96	552	6	91	>1.0	545
			0.2	4	75	>240	4	75	>1.4	>372
Newfoundiand	0	0.3	0.5	4	75	>335	5	85	>1.5	>365
			1.5	4	75	>372	6	91	>1.5	>322
Norway	\bigcirc	0.1	0.2	7	93	481	5	78	0.3	469
			0.5	8	101	547	6	87	0.4	505
			1.5	9	106	564	7	93	0.6	533
Norwey	σ	0.3	0.2	4	60	>201	5	78	>1.5	>277
			0.5	4	60	253	6	87	>1.5	>272
			1.5	<5	<78	277	7	93	>1.5	>249
Norway	9	0.1	0.2	10	97	306	7	76	0.3	290
			0.5	12	108.	359	10	97	0.5	346
			1.5	14	117	371	12	108	1.0	366
Norway	\bigcirc	0.3	0.2	5	58	87	7	76	>1.5	>113
			0.5	6	68	106	10	97	>1.5	>88
			1.5	7	76	113	12	108	>1.5	> 65

Figure 1. Lobster growth curves (von Bertalanffy) for various stocks of H. gammarus and H_{0} americanus.

Figure 2. Yield-per-recruit ($\mathrm{kg} / 1000$) isopleths for a range of fishing mortalities (F) and age at first capture (t_{c}) for Newfoundland, Canada, male H. americanus: (top) natural mortality $(M)^{c}=0.3$, (bottom) $M=0.1$.

Figure 3. Yield-per-recruit ($\mathrm{kg} / 1000$) isopleths for a range of fishing mortalities (F) and age at first capture (t) for Norwegian male H. gammarus: (top) natural mortality $(M)=0.3$, (bottom) $M=0.1$.

Figure 4. Yield-per-recruit ($\mathrm{kg} / 1000$) isopleths for a range of fishing mortalities (F) and age at first capture (t_{c}) for Norwegian female H. gammarus: (top) natural mortality $(M)=0.3$, (bottom) $M=0.1$.

FIGURE I.

FIGURE 2.

FIGURE 3.
$\begin{array}{llllllllllllllll} \\ t_{C_{95}} & 12 & 20 & 26 & 30 & 33 & 35 & 37 & 38 & 40 & 41 & 41 & 42 & 43 & 43 & 44 \\ 50\end{array}$
$\begin{array}{lllllllllllllllll}14 & 16 & 27 & 34 & 40 & 43 & 49 & 50 & 52 & 53 & 54 & 55 & 56 & 57 & 57\end{array}$
 $\begin{array}{llllllllllllll}156 & 254 & 317 & 358 & 384 & 402 & 414 & 423 & 429 & 434 & 438 & 440 & 443 & 445 \\ 446\end{array}$
$\begin{array}{lllllllllllllllll}14 & 187 & 296 & 360 & 380 & 423 & 439 & 449 & 457 & 462 & 466 & 469 & 472 & 474 & 476 & 477\end{array}$
$13 \quad 218 \quad 335 \quad 396436 \quad 458 \quad 472 \quad 481 \quad 488 \quad 492-48649 \%-501503 \quad 505506 \quad 500$

$\begin{array}{lllllllllllllllll}7 & 360\end{array} 481\left(\begin{array}{llllllllll}518 & 530 & 533 & 533 & 531 & 529 & 527 & 525 & 523 & 521 \\ & & 520 & 518 & 517 \\ \hline\end{array}\right.$

$\begin{array}{llllllllllllllll}5 & 375 & 458 & 469 & 463 & 452 & 442 & 432 & 424 & 417 & 411 & 406 & 401 & 397 & 393 & 390\end{array}$
$434 \begin{array}{llllllllllllll}426 & 420 & 402 & 384 & 368 & 354 & 343 & 333 & 325 & 318 & 312 & 306 & 301 & 297\end{array}$ $0.10 .20 .30 .4 \quad 0.50 .6 \quad 0.70 .810 .91 .01 .11 .21 .31 .41 .5 \mathrm{~F}$

FIGURE 4.

$\begin{array}{llllllllllllllll} \\ { }^{t} C_{15} & 10 & 17 & 22 & 25 & 28 & 30 & 31 & 32 & 33 & 34 & 34 & 35 & 35 & 36 & 36\end{array}$
$\begin{array}{llllllllllllllll}14 & 14 & 22 & 28 & 32 & 35 & 37 & 39 & 40 & 41 & 42 & 42 & 43 & 43 & 44 & 44\end{array}$
$\begin{array}{llllllllllllll}13 & 18 & 28 & 35 & 40 & 43 & 46 & 47 & 49 & 50 & 51 & 52 & 52 & 53\end{array} 54 \quad 54$
$\begin{array}{llllllllllllllll}12 & 22 & 35 & 43 & 49 & 53 & 55 & 57 & 59 & 60 & 61 & 62 & 63 & 64 & 64 & 65\end{array}$
$\begin{array}{llllllllllllllllllllllll}11 & 28 & 43 & 53 & 59 & 63 & 66 & 68 & 70 & 72 & 73 & 74 & 75 & 75 & 75 & 75 & 75\end{array}$
$\begin{array}{llllllllllllllll}10 & 34 & 52 & 62 & 69 & 74 & 77 & 80 & 82 & 83 & 85 & 86 & 86 & 87 & 88 & 88\end{array}$

$\begin{array}{lllllllllllllllll}8 & 10 & 70 & 82 & 90 & 95 & 28 & 101 & 103 & 104 & 105 & 106 & 107 & 107 & 109 & 108\end{array}$
$7 \begin{array}{lllllllllllllll}78 & 91 & 98 & 103 & 106 & 108 & 109 & 110 & 111 & 112 & 112 & 112 & 113 & 113\end{array}$

$\begin{array}{lllllllllllllllllllll}5 & 63 & 87 & 98 & 102 & 104 & 105 & 105 & 105 & 105 & 105 & 104 & 104 & 103 & 103 & 103\end{array}$

4 | 4 | 65 | 86 | 94 | 96 | 95 | 94 | 93 | 92 | 91 | 90 | 83 | 87 | 87 | 86 | 85 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllllllllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0 & 1.1 & 1.2 & 1.3 & 1.4 & 1.5 & \mathrm{~F}\end{array}$
$\begin{array}{llllllllllllllllll}t_{C_{15}} & 138 & 223 & 275 & \text { p08 } & 329 & 342 & 330 & 356 & 359 & 362 & 363 & 364 & 365 & 366 & 366\end{array}$
$\begin{array}{lllllllllllllllll}14 & 160 & 248 & 300 & 329 & 346 & 355 & 361 & 365 & 367 & 368 & 369 & 370 & 370 & 371 & 371\end{array}$
$\begin{array}{llllllllllllllllll}13 & 180 & 272 & 319 & 343 & 356 & 362 & 366 & 268 & 367 & 370 & 370 & 370 & 370 & 370 & 370\end{array}$
$\begin{array}{llllllllllllllllllll}12 & 198 & 28 & 330 & 35 & 359 & 363 & 365 & 365 & 366 & 366 & 366 & 365 & 365 & 365 & 365\end{array}$

$\begin{array}{lllllllllllllllll}10 & 224 & 306 & 334 & 344 & 346 & 345 & 344 & 342 & 344 & 339 & 338 & 337 & 336 & 335 & 334\end{array}$
$\begin{array}{llllllllllllllllllllll}9 & 231 & 3 & 3 & 5 & 327 & 330 & 329 & 326 & 323 & 320 & 318 & 316 & 314 & 312 & 311 & 300 & 300\end{array}$

$\begin{array}{lllllllllllllll}7 & 234 & 286 & 290 & 284 & 275 & 268 & 262 & 256 & 252 & 248 & 245 & 243 & 240 & 238 \\ 236\end{array}$

$\begin{array}{lllllllllllllll}5 & 221 & 244 & 230 & 213 & 109 & 187 & 178 & 171 & 165 & 161 & 157 & 153 & 150 & 148\end{array} 146$
 $\begin{array}{lllllllllllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0 & 1.1 & 1.2 & 1.3 & 1.4 & 1.5\end{array}$

[^0]: * General Seoretary TCRS: Charlottenlund Slot: 2920° Charlottenlund, Denmark.

