International Council for the Exploration of the Sea
C.M.1977/F:6-APPENDIX

Demersal Fish (Northern) Committee

 sibibhoteke

REVIEW ON THE DISTRIBUTION IN RELATION TO ZONES OF EXTENDED FISHERTES

JURISDICTION OF THE FOLLOWING SPECIES:

COD
HADDOCK
POLAR COD
HALIBUT
HALIBUT
PLAICE
COMMMON DAB
LONG ROUGH DAB
CATFISH
LUMPSUCKER

Sub-Areas I and II
Sub-Areas I and II
Süb-Areai I and Division IIb
Division IIIa and Sub-Areas IV and VI
Sub-Areas I and II
Division IIa

Note: This Report has not yet been approved by the International Council for the Exploration of the Sea; it has therefore at present the status of an internal document and does not represent advice given on behalf of the Council. The proviso that it shall not be cited without the consent of the Council should be strictly observed.

```
x)
General Secretary,
ICES,
Charlottenlund Slot,
2920 Charlottenlund,
DENMARK
```

1. Cod in Sub-areas I and II 1
2. Haddock in Sub-areas I and II 8
3. Polar cod in Sub-area I and Division IIb 12
4. Halibut in Division IIIa and Sub-areas IV and VI 13
5. Halibut in Sub-areas I and II 15
6. Plaice in Sub-areas I and II 17
7. Common dab in Sub-areas I and II 17
8. Long rough dab in Sub-areas I and II 18
9. Catfish in Sub-areas I and II 19
10. Lumpsucker in Division IIa 20
Tables 1 - 31 21-48
Figures l-11 49-58

The species and areas dealt with in this Appendix are:

1. Cod	Sub-area I and II
2. Haddock	Sub-area I and II
3. Polar cod	Sub-area I and Division IIb
4. Halibut	Division IIIa and Sub-area IV and VI
5. Halibut	Sub-area I and II
6. Plaice	Sub-area I and II
7. Common dab	Sub-area I and II
8. Long rough dab	Sub-area I and II
9. Catfish	Sub-area I and II
10. Lumpsucker	Division IIa

1. Cod in Sub-areas I and II

The North-East Arctic cod is the main cod stock in the areas. Smaller cod stocks are inhabiting Norwegian coastal waters (coastal cod) and Soviet coastal waters (Turijanka and White Sea cod). The coastal stocks are to a very high degree related almost exclusively to local coastal waters. They are therefore not described further in this survey.

1.1. Spawning time and area

The North-East Arctic cod aggregate at the spawning arcas along the Norwegian Coast from late January to the midale of Λ pril (Fig. 1). The peak of the spawning is located to the last week of March and the first week of April. Spawning takesplace close inshore, mainly in the Vestfjord. However, some spawning also takes place along the shelf from $62^{\circ} \mathrm{N}$ to about $70^{\circ} \mathrm{N}$.

1.2. Larval and post-larval distribution

Developing pelagic eggs drift with the northgoing stream over the Norwegian shelf (Fig. 2). They arrive as fingerlings in August/September in the

Northern part of the Norwegian zone, in the Svalbard zone and in the USSR zone (Fig. 3). The bulk of the fingerlings are at this time of the year still pelagic. They descend to the bottom during late autumn and early winter. At this time they are about 10 cm and do not make any extensive migration, but spend their first winter in the places of settlement.

1.3. Distribution and migration of juvenile and adult stock components

Two- and three-year olds are able to make active movements. They choose the warmest places in the sea for winter, and summer migrations are aimed to search far food. Differences in the distribution patterns of juveniles are in some years associated with hydrological peculiarities.

The feeding and wintering migrations become more extensive with age. Three- to four-year olds gather in large schools and 4 to 5 year olds make rather long migrations. In summer they are dispersed on shallow banks in the southern Barents Sea and around Bear Island - Spitsbergen for feeding. When the feeding season is over, cod form schools at low depths and migrate to wintering grounds situated in the south Barents Sea (off East Finnmark, West Murman coast) and on slopes of the Bear Island. In warm years the wintering grounds are extended to the Goose Bank in the South Barents Sea and to the southern West Spitsbergen banks. In cool years the wintering and feeding grounds are shifted westwards.

In spring, schools of cod enter the south Barents Sea from the west and north and move eastwards when the water is warm. They feed intensively on the banks in summer. Time and routes of seasonal migrations and the feeding areas change with changing hydrological condition during the year. Schools of adult cod start west migrations to the wintering and spawning grounds with the onset of winter. Schools of immature cod stay in the Barents Sea in winter, and mature cod continue their migrations to the spawning grounds.

Tagging data indicate that there is no actual exchange between immature cod inhabiting the south Barents Sea and the Bear Island - Spitsbergen area.

However, some mature cod which went to the spawning grounds from the Bear Island - Spitsbergen area are observed in the south Barents Sea after spawning and vice versa.

The young cod stay in the feeding areas until maturation which normally begins at an age of 6 years. Year classes are fully recruited to the spawning stock at an age of about 12 years.

After spawning they migrate back to the Barents Sea and to the Svalbard zone. During April - May the bulk of the spent fish are passing along the Norwegian Continental shelf between the Vestfjord and the North Cape. The spent fish arrive in the Bear Island area in May - June. At least some of these pass this region and reach the Vest Spitsbergen area in July - August. Some are also reaching the Hopen Islands area. However, the main part of the spent fish pass through the northern part of the Norwegian zone and in May - July reach the Soviet zone. During the end of the year the mature fish gradually move westward again on the way to the spawning area and they reach the northern part of the Norwegian zonc at the end of the year. In January the main part of the spawning stock migrate south along the coast and the bulk reach the main spawning area in late February and the beginning of March.

1.4. Description of fisheries

The bottom trawl fishery in the south Barents Sea and the Bear Island Spitsbergen is concentrated on immature cod. Heavy catches are taken at the temperature of $-1^{\circ}-+5^{\circ} \mathrm{C}$. The proportion of mature cod in the catches varies from month to month, but their role is always secondary.

Small quantities of cod are caught during summer and winter by long line off Bear Island (Division IIb). Off the East Finnmark coast (Sub-area I) a fishery with long line, gill net, Danish seine and handline operate during the whole year. Fisheries with other gears than trawl are based mostly on immature cod, but mature cod make up some part of the landings, at least in late autumn and early winter.

The Norway Coast fishery (Division IIa) is by gill net, long line, hand line, Danish seine and trawl. Several nations have taken part in the fishery with trawl, but other gears have only been used by Norway. The target species for all gears in the arca south of $71^{\circ} \mathrm{N}$ is cod with by-catches of haddock, saithe and redfish. Other gears than trawl take the bulk of the nominal catches from this part of Division IIa. The importance of trawl catches are higher in the northern and eastern part of Division IIa. While mature cod is the basis for the fishery in the area south of $71^{\circ} \mathrm{N}$, a higher part of the catches are immature fish in the rest of the area.

1.5. History of yield

In the period 1964-1969 the nominal catch of cod in Sub-areas I and II increased from 438000 to 1197000 tons (Tables 1-4). Thereafter the catch declined year by year to 565000 tons in 1972. From 1973 the catch increased again and the nominal catch reached 1028000 tons in 1974. The qouta scheme introduced in 1975 stabilised the total catch to about 850000 tons in the two following years.

The fluctuatuons in the landings are mainly caused by variation in year class strength. As soon as an abundant year class starts to recruit the fishery in the feeding areas (Division $I I b$ and Sub-area I) the yield increases. When they start to mature, they get less vulnerable to the fishery in the feeding areas, and their availability increases in the spawning areas. The peak of the nominal catch in the spawning area (Division IIa) follows 3 years later than the peak in the feeding areas.

The effort data used for the feeding areas are obtained from the UK fishery. This effort is directed partly to cod and partly to haddock, saithe and redfish or all species combined. Catch per unit effort as measure of the cod abundance must therefore be taken with great reservation. Up to 1974 the effort figures show the same variation as the nominal catches from these areas, which indicate that the variation in effort is caused by the variation in stock abundance. The total effort in Division IIa based on Norwegian units has been much more stable than in the feeding areas.

1.6. Stock fluctuations

Extensive fluctuations are observed in the numerical strength of the year classes. Data obtained in the pre-recruit surveys indicate that strong year classes of cod are 100 times as abundant as poor ones. However, catch statistics indicate that strong year classes at an age of 3 years are 20 times as abundant as poor ones. In the period from 1921 to 1976 20 strong year classes (36%), 26 year classes of medium strength (46%) and 10 poor year classes (18%) have been recorded.

The total stock had a high level in the beginning of the 1950 s but it decreased gradually up to 1965. Then it increased in the following years and culminated by 1968. The lowest stock size in the 1970 s was observed in 1971. A new increasing trend has been observed, and this might have culminated by $1975 / 1976$.

The mature part of the stock has showed similar variations as the total. However, the biggest mature stock in a cycle is observed 3 years later than in the total stock. This is caused by year class variation, but intensified activity of man in recent years has become a governing factor for the status of the stock.

1.7. Exploitation pattern

From the early beginning the fishery on North-East Arctic cod was concentrated on the mature cod and to some extent on the adolescent fish. These fisheries were seasonal. The fishery for mature cod took place in January-April, followed by the spring cod fishery up to the end of June. Long lines, gill nets and hand lines were the main gears used. A trawl fishery started in the last part of the l920s both on migrating mature cod in Division IIa and on adolescent cod in Sub-area I and Division IIb.

The relative importance of the Sub-area I and Division IIb fisheries has ircreased with time, at the expense of the Division Ifa fishery. When the fishery started in 1946, after an almost complete stop in thc Sub-area I and Division IIb fishery from 1940-1945 the landings from Division IIa was about 40% of the total landings. This part of the total landings showed a decreasing
trend during the following years, with some increasing years, caused by rich year classes.

Even with the great increase in effort observed for the fishery in the feeding areas the total catch has not increased. This fishery has increased the fishing mortality on the $3-6$ year old fish, and the consequences have been that the fishery in periods has been more dependent on recruiting year classes. As soon as a strong year class has recruited the fishing area, the trawl fleet have concentrated their fishery on this in the 2-3 following years. This gives a variation in spawning stock size, and the probability of achieving a very small spawning stock increase. With a stock recruitment relationship poorer year classes might be produced. On the other hand with a situation like this the estimated TAC for the coming year has a wider confidence interval than if the stock is composed of some year classes of reasonable strength.

The increased exploitation of the 3-6 year old fish has decreased the age at first capture. With the present fishing intensity an increase in age at first capture would give a higher yield per recruit and a higher spawning stock biomass.

1.8. International and national regulations

Mesh size regulations have been the most important regulations in the trawl fishery up to the end of 1974. Legal mesh size has since 1967 been 120 mm for trawls made of polyamide. For all other materials the minimum mesh size has been 130 mm . For Danish seine it has been 110 mm for all materials.

No vessel shall use any device by means of which the mesh size in any part of a fishing net is obstructed or otherwise in effect diminished. However, it shall not be unlawful to attach to the underside of the cod end of a trawl any material for the purpose of preventing or reducing wear or tear. This device shall be fastened to the cod end along the foreward and lateral edges. However, notwithstanding this the attachment of a topside chafer or a cover made of a piece of netting, consisting of the same rnaterial as the cod end and having in all parts a mesh twice the mesh size of the
cod end is legal. The topside chafer should be fastened to the cod end along the foreward, lateral and rear edges of the netting in such a way that each mesh of the netting concides with four meshes of the cod end. This could hardly be fulfilled by this method of fastening. A more detailed fastening method should therefore be described. These requirements have to some extent been met by the Norwegian regulations which in addition require a mesh by mesh fastening of the topside chafer along the two diagonals.

Illegal chafers have several times been exposed by the international inspection at sea. The most common illegal chafer has been a netting of smaller mesh size than described. Some cod endshave even been lined inside with netting of a mesh size of 60 mm or even less.

The present minimum landing size for cod is 34 cm . This is far below the minimum landing size described by the 25% retention length for the legal mesh size. A minimum landing size of 40 cm would be in conformity with the present regulation.

The objective of introducing a minimum landing size is to reduce the temptation to use a smaller mesh size than described for the gears. If the minimum landing size is put too high in relation to the mesh size too high discarding of undersized fish has to be accepted. These fish are exposed to a very high mortality and the consequence is wasting the resources. On the other hand a too low minimum landing size increases the temptation to use a smaller effective mesh size than enforced.

According to national regulations in USSR the fishery for cod is closed when the scientists observe a too high abundance of cod less than 35 cm in an area.

Fisheries with small mesh nets for polar cod, capelin, herring and prawns are authorized in the area. The mesh size in the trawl used in these fisheries has to be between 16 and 50 mm . Conditions for using such meshes is that these gear should not be used for catching other species than given. These fisheries are in some areas mixed fisheries, and catches of protected species are unvoidable. When fishing with a small mesh net, the part of the catch not intended for human consumption may consist of 10% by weight of undersized protected species.

The present fishery seems to be within this limit, but still some investigations are going on in order to find a method to avoid catching fish when using prawn trawl. These investigations are promising and it is the hope that the by-catch of small cod, haddock and redfish would be reduced to a minimum in future.

In anticipation of these saving gears, Norwegian authorities have put a total ban on prawn trawling in coastal areas inside the 12 n . mile limit shallower than 100 m . Special sensitive fjords have been protected by a complete ban. on prawn trawling.

A quota regulation was introduced for Arcto-Norwegian cod in 1975, and the same scheme was prolonged for 1976. A total quota of 810000 tons was allocated between 10 states. Five other states might according to the Recommendation catch 500 tons each. Furthermore there should be added to the quota of Norway 40000 tons representing the estimated average annual catch of coastal cod, which, for the purpose of the agreement is deemed to be a separate stock. For the purpose of this agreement there shall also be added to the USSR quota 40000 tons representing the estimated average annual catch of coastal cod including the White Sea cod.

Where the cod quota is filled before the end of the year the contracting state concerned may nevertheless permit its vessel to continue to fish with gill nets, long lines or hand lines.

In order to keep the exploitation of the aggregated spawning cod in the main spawning area on a resonable level purse seine is forbidden by Norway to be used in the main spawning area, from the end of January to the middle of April. In order to prevent some additional fishing mortality on young cod and haddock Norway has put a total ban on midwater trawl inside the Norwegian 12 n. mile limit.
2. Haddock in Sub-areas I and II

This species forms many stocks in the North Atlantic and West Polar Ocean. However, only one stock of haddock is recognised in Sub-areas I and II.

2.1. Spawning and distribution of eggs and larvae

Spawning occurs in March-April in a diffuse area on the Norwegian continental shelf from $64^{\circ} \mathrm{N}$ to $72^{\circ} \mathrm{N}$, over the depths $350-600 \mathrm{~m}$ (Fig. 4). Eggs and larvae follow the north-easterly current over the Norwegian continental shelf (Fig. 5). They arrive during summer as fingerlings in the northern part of the Norwegian zone and the Soviet zone. Only fringes of each year's production of fingerlings arrive in the Svalbard zone (Fig. 6). The fingerlings adopt the bottom living habitat in late summer and autumn in the whole area of distribution.
2.2. Distribution and migrations of juvenile and adult stock components

Up to the age of two or three years, they inhabit the pelagic layer in summer and move to the off-bottom layer in October-November. The l-group inhabit mostly coastal and western areas, whereas two- and three-year olds stay in coastal and central areas. The eastern boundary of the stock depends on the temperature conditions. For example the east border is in cool years shifted westward. Haddock start regular seasonal migrations at an age of 3 years. The abundance of juveniles is much higher in the southern Barents Sea than in the Bear Island - Spitsbergen area.

The young haddock stay within the feeding areas until maturation which begins at an age of about 4 years and finishes at an age of about 8 years.

After spawning the spent fish migrate northwards over the Norwegian continental shelf into the Soviet zone as far east as to the Kap Kanin Bank and the north edge of the Goose Bank (Fig. 4). Late in the year they return back to the spawning areas.

2.3. Description of the fishery

The main gear is trawl, but haddock is also caught by long line, hand line, and Danish seine off the Norwegian coast. Little direct fishery for haddock is taking place. It is mainly caught as by-catch in the fishery for cod. There is no fishery on spawning concentrations. The fishery for haddock in the southern Barents Sea is based mainly on 3-6 year olds, $40-60 \mathrm{~cm}$ long, whereas the Division IIa fishery is based on 5-11 year olds, 50-80 cm long.

2.4. History of yields

Nominal catches from Sub-areasI and II were about 182000 tons in 1968 (Tables 5-8). They decreased year by year up to 1971 when less than 80000 tons were landed. An increase in catch was observed the two following years and a peak of 320000 tons was reached in 1973. Since then a decreasing trend in nominal catches is observed.

Only a small part of the total catches have been taken in Division IIb. About $2 / 3$ of the total landings have been taken in Sub-area I, while about $1 / 4$ have been caught in Division IIa.
2.5. The state of the stock

Fluctuation in the catches is caused partly by stock size fluctuation and partly by fluctuation in effort. The high yield in 1972-1975 was caused by a high stock size and a diversion of effort from the cod fishery to the haddock fishery in Sub-area I. This diversion of effort was caused by the low level of the cod stock.

The fluctuation in stock size is mainly caused by year class fluctuation. A fluctuation in year class strength is observed for haddock at an age of 3 years from 1:60.

The total stock size, calculated as the fish of 3 years and older, fluctuated around 400000 tons in the period 1950-1968, except for the period l9531956 with a stock size of about 700000 tons. This higher stock level was caused by the very abundant 1950 -year class. A level of 600000 tons was reached in 1972-1973, and this was caused by the rich 1969-year class. During the last three years the stock size has dropped to about 300000 tons, 100000 tons below the level in the early 1950 s and 1960s.

A more pronounced fluctuation has been observed for the spawning stock biomass (6 years and older fish). As for cod the peaks in the spawning stock are usually displaced 2-3 years ahead of the peak of the total stock. A low spawning stock biomass is expected in the immediate future. However, an increase in both total stock and spawning stock biomass is expected
when the 3 most recent year classes 1974-1976, which are of high abundance, recruit the stock of 3 years and older.

2.6. Exploitation pattern

Since the distribution of haddock is similar to that of cod these two species are exploited in conjunction.. Being the smaller of the two resources, the haddock fishery has tended to follow the developments in the cod fishery. In absence of a well defined spawning area there is no intensive fishery for spawning haddock as there is for cod.
2.7. International and national regulations

The trawl gear regulations described for North-East Arctic cod are also applied for the fishery for North-East Arctic haddock. The minimum mesh size for trawl is 120 mm for gear made of polyamide and 130 mm for all other materials.

The present minimum landing size for haddock is 31 cm . However, a minimum landing size of 40 cm would be in conformity with the 25% retention length for a mesh size of $120 / 130 \mathrm{~mm}$.

No quota regulation has so far been introduced tor haddock. However, the contracting states of NEAFC which have exhausted thejr quotas for cod are not permitted to continue a directed trawl fishery for haddock in Sub-areas I and II.

It would be difficult to regulate the haddock fishery independently of the cod fishery. However, if a TAC should be introduced, this could be set at the level that would be expected as a by-catch while fishing for the cod quota.
3. Polar cod in Sub-area I and Division IIb

3.1. Distribution

Polar cod has a circumpolar distribution (Fig. 7). It is very abundant in the eastern Barents Sea, off Novaja Zemlja and near the Kolguev Island. The polar cod is less abundant in the north-western Barents Sea and off Spitsbergen. In summer, schools of Polar cod occur near the ice edge east of Franz Joseph land. The borders of the habitat are shifted to the east and north in warm years and to the west and south in cool years.

3.2. Spawning and distribution of larvae

The major spawning grounds are in the south-east Barents Sea, White Sea and Kara Sea. Some individual spawners are caught on the Bear Island - Spitsbergen shelf. The peak of spawning is in December-January. Polar cod occur in small schools in midwater on the spawning grounds.

The eggs are pelagic. The hatching of the eggs is extended from MarchApril to August-September with a peak in May-June. Eggs and larvae drift with currents to the north and north-east.
3.3. Distribution of juveniles and adult stock components

Each year's production of fingerlings during summer is living in the midwater layer west of Novaja Zemlja and along West Spitsbergen (Fig. 8). They migrate during October-November to the near bottom layer.

Polar cod make winter, pre-spawning and spawning migrations to the south of the habitat in autumn - winter and feeding migration to the north in spring - summer. The majority attain sexual maturity at the age 3-4 years at the length of $16-17 \mathrm{~cm}$.
3.4. Description of the fishery and history of yields

Table 9 gives the catch figures from 1965 to 1975. A regular fishery was established in 1969 on open waters in the Barents Sea. The yearly catch has fluctuated between 330000 tons in 1971 and 50000 tons in 1975. The
fishery covers a vast area in the eastern part of the Barents Sea from 77° to $68^{\circ} \mathrm{N}$ and from 40° to $59^{\circ} \mathrm{E}$. The main gear is bottom, off-bottom and midwater trawls, but purse seine has also been used. The catches consist mainly of $3-5$ years old, $14-26 \mathrm{~cm}$ long polar cod.

3.5. State of the stock and the regulations

The state of the stock is not known. No regulatory measures have been introduced.
4. Halibut in Division IIIa and Sub-areas IV and VI

The Atlantic distribution of halibut is shown in Fig. 9. This species is found along West Greenland north to Disko, Nova Scotia to Virginia, Spitsbergen and Bear Island to the Barents Sea and across to Iccland, and the North Sea southwards to Biscay. Few specimens have been observed in the Baltic.
4.1. Spawning times and areas

The halibut spawns in deep water, outside the boundaries of the three fishing areas considered here. Tåning (1936) found eggs in places where the total water depth exceeded 1000 m (Fig. 10). McIntyre (1959) recorded halibut eggs off south west Iceland in water of a total depth between 659 m and 1573 m (Fig. 10).

Spawning takes place between March and May-June.

4.2. Larval, post-larval and juvenile fish distribution

Most of the post-larvae recorded by Taning (1936) were taken in the surface layers $(<30 \mathrm{~m})$, mainly at stations where the total water depth was greater than 700 m . The same author found that bottom stages of 0 -group fish were only obtained in inshore Icelandic waters (Faxa Bay and near the Vestmann Islands) in depths of less than 50 m (Fig. 10).

4.3. Distribution of young and adult stock components

The halibut of the North Sea and the Faroe region are predominantly immature and adolescent fish, while those at Rockall and the Icelandic grounds consist predominantly of adults.

4.4. Catch and Management

Information on the halibut fisheries in the areasunder discussion is sparse. Devold (1938), drawing attention to the steady decline in North Sea halibut catches from 1920 to 1934 , states that the halibut stock can easily become depleted.

Scottish vessels continued to fish with long lines in the North Sea at least up to the early 1960 s , but the principalgear in use today would appear to be the trawl.

Table 10 gives the annual catch, by countries, in fishing areas IIIa, IV and VI together with the annual catch for the whole ICES statistical area. Throughout the period 1960-1969, the halibut catch in the three fishing areas fluctuated between 800 and 1300 tons (Table l0), but from 1970 onwards, the annual catch fell to around 600 tons. From 1960 to 1963 , the total catch throughout the ICES area dropped from 20000 tons to just over 13000 tons, but in 1964 and 1965 a large increase in the USSR catch (mainly in the Norwegian Sea) boosted the annual total to around 25000 tons.

The Bulletin Statistique figures for total halibut catches in $1964,1967,1968$ and 1969 are not reliable, however, because the USSR statistical returns did not specify halibut as a separate item in these years. Notwithstanding these deficiencies, the high yields of the 1960 s have declined steadily from the 7000 tons in 1970 to 4500 tons in 1975 (total ICES area).

Although no effort data are available, nor estimates of mortality, the relative stability of the catches from the predominantly juvenile fisheries of IIIa, IV and VI suggests that the declining yield from the fishery as a whole is the result of cxcessive fishing mortality on the adult fish.

No regulatory measures have been applied to the halibut, apart from the general restrictions on the mesh size of trawls. In the fishing areas in question, the minimum mesh size is 75 mm .

Such data as are available on the selection of halibut by trawl meshes suggest that the 50% retention length of a $100-110 \mathrm{~mm}$ mesh is around 22-24 cm (Rae 1959). Since halibut do not generally reach maturity until 8-10 years of age regulation by mesh size is clearly inappropriate since these fish will be approximately 100 cm in length.

In the absence of a minimum legal size for halibut, therefore, any increased exploitation of the species in fishing areas IIIa, IV or VI must be viewed with some concern.

References

DEVOLD, F., 1938. The North Atlantic Halibut and Net Fishing. Fisk.Skr. (Ser. HavUnders.) 5:6, 1-68.

McINTYRE, A.D., 1959. Scottish Investigations on Halibut, 1957. Cons. Perm. Int. Explor. Mer, Ann. Biol. 14, 31-32.

RAE, B. B., 1959. Halibut Observations on its Size at First Maturity, Sex Ratio and Length/Weight Relationship. Mar.Res. 4, 1-19.

TANING, $\AA . V$. 1936. On the Eggs and Yound Stages of the Halibut. Medd. Komm. Danm. Fisk-og HavUnders. (Ser.Fisk) 10:4, 1-23.
5. Halibut (Hippoglossus hippoglossus, L.) in Sub-areas I and II

5. 1. Spawning times and areas

This halibut stock spawrs at soft bottom in deep water (300-1 200 m) along the Norwegian coast and in the fjords, mainly in northern Norway. The spawning takesplace from December-April, with a peak in January and February.
5.2. Larval and post-larval distribution

The larvae are hatched in deep water and the larvae rise slowly to the surface where they arrive at the time of first feeding. The halibut larvae
are pelagic up to a length of about 40 mm . Extremely few eggs, larvae and 0 -group fish have been observed in Norwegian waters. In recent years alarge number of 0 -group halibut have been caught in some Icelandic fjords. However, no such places have yet been observed in Norway.

5.3. Distribution and migration of young and adult stock components

I - III-group halibut are often caught in shallow water in Norwegian fjords and on banks along the coast. From age group IV they seem to search for deeper water. Within all types of biotopes the juvenile halibut seem to be a rare species. Recruitment to the spawning stock takes place at an age of about 12 years.

The halibut is a solitary species and littie is known about its migration, The adult stock migrate in the autumn from the continental shelf along the coast of Norway and from the Barents Sea to the spawning places along the Norwegian coast. After spawning the spent fish search for food, often in shallow water. Some return to the feeding area in the Barents Sea and others stay in the shelf. The halibut stock along the coast of Norway might not mix with the population spawning west of the Faroes - Iceland ridge.

5.4. Catch and Management

The annual catch of halibut is given in Tables 11-14. Except for 1966 only small quantities are landed from Sub-area I and Division IIb. Most of the landings are from Division IIa. For all years, except for the first one in the period 1966-1975, nearly the whole of the total catch is taken by Norway.

The only directed fishery for halibut is the Norwegian gill net fishery along the coast and in the fjords. This fishery is concentrated in the northern part of Division ILa in the winter during the migration to the spawning grounds. Norway has put a total ban on gill net fishery during the peak of the spawning season, 20 January to 1 March. A minimum mesh size of 23.49 cm bar length has been introduced for gill net and a minirnum landing size of 60 cm is described. A fish of this size is $4-6$ years old with a weight of 2.5 kg .
6. Plaice in Sub-areas I and II
6.1. Distribution and Biology

The plaice of the North-East Arctic are distributed mainly along the Murman coast between Rybachy peninsular and Kolguev Island, although some are to be found in the vicinity of Bear Island, Novaya Zemlja, off the coast in the central Barents Sea, and along the Norwegian coast. In general the plaice on the Murman coast occur in shallow ($30-80 \mathrm{~m}$) depths but during the early part of the year the adult part of the stock migrates to deeper water to spawn in March - May.

6.2. The Fishery and the State of the Stock

The main fishery for plaice in the post-war period used to be by English vessels. As fishery limits were extended to 12 nautical miles catches became reduced as the coastal fish became inaccessible to foreign vessels (Tables 15-18). In the years 1966-1972 the average annual catch was about 300 tons. In 1973 and 1974 large quantities were landed from this stock, particularly from Sub-area I. The total catches reached 16100 and 18007 in these two years respectively. In 1975 and 1976 the total catches dropped to 3376 and 6531 respectively.

There is no recent assessment on this stock or stocks.

A NEAFC minimum landing size of 29 cm is introduced for the area. Norway has a total ban on plaice fishery during the peak spawning period 1 March to 1 July. The ban is extended to 1 September in a smaller area in the Vestfjord.
7. Common dab (Limanda limanda L.1758) in Sub-areas I and II
7.1. Distribution and biology

The common dab is common in the waters along the European coast from the Barents Sea and the White Sea southwards to the Bay of Biscay, also
off Iceland and in the Baltic. Dab inhabits the shelf (20-200 m depth) in the North-East Arctic where the water temperature is above $0^{\circ} \mathrm{C}$.

In sumer, dab enters shallow inshore waters and migrate offshore in the beginning of the autumn. The common dab reaches sexual maturity at an age of $4-5$ years at a length of approximately $22-24 \mathrm{~cm}$. Dab has no special spawning grounds. Spawning takes place in depth of 20-50 m within a temperature of $2-10^{\circ} \mathrm{C}$ in inlet, bays of the Murman coast in May-August and in the White Sea in June and July.
7.2. The Fishery and the State of the Stock

Only small catches of common dab are recorded in official statistics (Tables 19-22). Common dab is regulary taken as by-catch in the fishery for cod and haddock, but either discarded or reported as unsorted, undentified species. Therefore the catch of common dab actually taken is expected to be considerably greater than reflected in the statistics.
8. Long rough dab in Sub-areas I and II
8.1. Distribution and biology

Long rough dab occurs from the English Channel to the northernmost part of Spitsbergen, and over the entire Barents Sea. Females mature at an age of $9-11$ years and males at 6 years. They spawn in the whole area of distribution, in the open sea and in coastal waters at a depth of 125200 m with temperatures between 1 and $5^{\circ} \mathrm{C}$. Spawning extends from March to July. Spawning schools are not observed. The eggs are pelagic. Larvae hatch at a length of $3-4 \mathrm{~mm}$ and live in the midwater layer until they are 3-4 cm. Then they migrate to the bottom. Fig. 11 shows the distribution of the 0-group fish in August/September 1976.
8.2. The Fishery and the State of the Stock

There are no directed fisheries for long rough dab in the Barents Sea. A few nominal landings are given in Tables 23-26. The actual catch, however, must be much higher since the long rough dab is very common as
by-catch in the fishery with bottom trawl for cod, haddock and redfish. The catch consists mostly of fish between $22-37 \mathrm{~cm}$ at an age of 5-9 years.

The state of the stock is not known, and no regulatory measures have been introduced.

9. Catfish in Sub-areas I and II

9.1. Distribution and biology

Three species of catfish: Anarchias lupus (Linné), An. minor (Olafsen) and An. lotifrons (Steenstrup et.) inhabit Sub-areas I and II. They do not spawn every year. Their eggs are pelagic and large in size.

An. lupus inhabit the 150-200 m layer in winter and move to more shallow waters during summer. They spawn in July-September. Maturity is attained at an age of 5 years or older, when their length is $36-41 \mathrm{~cm}$. Specimens 40-70 cm long of $0.5-4 \mathrm{~kg}$ are abundant in the catches.

An. minor are recorded in concentrations off Spitsbergen, on the slopes around Bear Island, and in the central southern part of the Barents Sea. This species occursmost frequently at depths of l00-200 m. Spawning takes place in June-July. Spawning migrations are likely not to be extensive. Females attain sexual maturity at a length of $80-105 \mathrm{~cm}$. Specimens $90-$ 110 cm long of $7-17 \mathrm{~kg}$ dominate the catches. The largest catches are taken in March-April in the Barents Sea.

An. lotifrons cocurs mostly at $150-400 \mathrm{~m}$ dopth, at a lower depth in winter than in summer. The spawning takes place from April to October along the continental slope. Females attain sexual maturity at a length not less than $80-100 \mathrm{~cm}$. Specimens $70-120 \mathrm{~cm}$ of $10-20 \mathrm{~kg}$ dominate the catches.

9.2. The Fishery and the State of the Stocks

There is no special fishery for catfish, although a directed Norwegian long line fishery occurs sporadically. Substantial by-catches of catfish are sometimes taken during February-July in the USSR cod fishery in the
southern Barents Sea, on the slopes of the Bear Island and on the Central Elevation. About $4 / 5$ of the USSR landings of catfish constitute An. minor.

Tables 27-30 give the nominal landings of the three species combined. The total annual landings in Sub-areas I and II were fairly constant in the period 1966-1972, on the average 14409 tons. In 1973 the catch was nearly doubled, and it reached a peak of 33133 tons in 1974. The high catches in 1973 and 1974 were caused by increased USSR catches in Sub-area I and Division IIb, mostly An. minor.

The state of the stocks is unknown and no regulatory measures have been introduced.
10. Lumpsucker (Cyclopterus lumpus) in Division IIa
10.1. Distribution and biology

Young lumpsuckers are regularly caught in midwater trawls and on salmon long line over great depths in the Norwegian Sea, in the Barents Sea and in the Svalbard zone. They migrate to the Norwegian coast for spawning. The smallest mature females have a length of about 32 cm and the smallest males about 20 cm . The spawning takesplace from March to June in the littoral zone down to -30 m depth, mainly in the outer parts of the coast. After spawning they leave the coastal waters and continue their pelagic life in the open sea. The larval and juvenile fish. live in the littoral zone for 1 year. At a length of $50-60 \mathrm{~mm}$ they start a pelagic life off the coast. Nothing is known about the migration of adolescent lumpsuckers.
10.2. The Fishery and the State of the Stock

It is only the female C. lumpus which is commercially exploited in Division IIa. The fishery is carried out along the coast of Troms. The fishermen use small boats and gill nets with 12.6 cm bar length. The nets are "set" on the spawning grounds down to about 20 m depth. As the females are bigger than the males, very few males are caught. Only the roe is utilized. Yearly catches have fluctuated between 1608 and 4301 tons (Table 31).
Table 1. Nominal catch (metric tons, whole weight) of cod in Sub-area I.

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
Belgium	-	-	-	-	-	-	-	-	171	-	-
Faroe Island	-	-	-	-	-	-	-	-	3582	5010	4931
France	2222	-	-	-	44245	34755	8915	17128	$10 \quad 674$	19482	19040
GDR	2	17	3	1429	3662	437	474	98	2446	2121	262
FRG	7	823	-	-	3257	2452	2166	12847	43581	12106	16031
Netherlands	-	-	-	-	-	-	-	-	-	-	-
Norway	100618	118315	119223	120787	199286	131282	78175	88548	146841	158971	142046
Poland	-	-	-	7856	42	12	668	764	2917	2860	1029
Potugal	-	-	-	-	-	-	-	-	25995	10554	4000
Spain	-	-	-	-	-	-	-	33	8302	4630	4509
UK	50764	48218	94689	130377	119115	46101	33437	55066	73452	85644	58652
USSR	138640	155425	428537	418929	229315	97466	73180	318332	405528	260323	288624
Total	292253	322798	642452	679373	595260	312505	197015	492816	723489	561701	539124

Table 2. Nominal catch (metric tons, whole weight) of cod in Division IIb.

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
Belgium	-	-	-	-	-	-	-	-	-	614	-
Faroe Island	-	-	-	5026	-	-	543	-	635	4705	4706
France	-	-	-	-	-	-	-	-	29150	5672	5600
GDR	85	10	252	3926	8634	275	63	1220	1381	6280	4271
FRG	-	-	-	3607	2828	2958	87	2286	32995	15616	5416
Norway	6822	3534	4462	24333	6931	4. 631	6324	4096	36408	17951	4650
Poland	-	-	-	-	2895	526	67	65	6771	4097	5207
Potugal	-	-	-	-	-	-	-	-	-	-	2000
Spain	-	-	-	-	-	-	-	-	407	2340	2335
UK	19086	10601	16225	32076	25452	3948	4754	11785	9449	6868	17663
USSR	30660	106915	248221	193286	47317	44580	21144	68512	135272	83257	51802
Total	56653	121060	269160	262254	94057	56920	32982	88207	254730	147400	103650

Table 3. Nominal catch (metric tons, whole weight) of cod in Division IIa.

Country	1966	1967	1968	1960	1970	1971	1972	1973	1974	1975	1976
Belgium	-	-	-	-	-	-	-	-	-	-	7
Faroe Island	-	-	-	24348	26265	5877	850	1916	1500	1594	1569
France	745	664	-	--	-	17	-	-	6204	3580	3360
GDR	141	18	112	552	3662	4286	693	3366	1033	1580	4413
FRG	4284	2809	1073	1827	3366	4316	1189	1618	1931	2315	3333
Netherlands	121	6	133	-	--	-	-	-	-	-	218
Norway	96352	97061	131926	160126	171389	271131	309682	192540	104027	100177	187132
Poland	-	-	-	-	2216	974	157	14	210	478	750
Portugal	-	-	-	-	-	-	-	-	-	-	1000
Spain	-	-	-	-	-	213	166	243	1101	1230	1207
UK	33162	28189	29473	68613	36914	30053	20191	11957	7993	9322	11712
USSR	-	-	-	-	-	2756	2329	351	1	-	1678
Total	134805	128747	162584	255599	243812	319623	335257	211762	124215	120276	216379

Table 4. Nominal catch (metric tons, whole weight) of cod in Sub areas I and II.

Country	1966		1967		1968		1969		1970		1971		1972		1973		1974		1975		1976	
Belgium					-	-												171		614		7
Faroe Island		-		-	-	-		374	26	265	5	877	1	393	1	916	5	717	11	309	11	206
France	2	967		664	-	-		-	44	245	34	772	8	915	17	028	46	028	28	734	28	000
GDR		228		45		255	5	907	12	413	4	998	1	300	4	684	4	860	9	981	8	946
FRG	4	284	3	632	1	073	5	343	9	451	9	726	3	405	16	751	78	507	30	037	24	780
Netherlands		121		6				133												-		218
Norway	203	792	218	910	255	611	305	241	377	606	407	044	394	181	285	184	287	276	277	099	333	828
Poland		-		-	-	-	7	856	5	153	1	512		892		843	9	898	7	435	6	986
Portugal																	25	995	10	554	7	000
Spain		-										215		166		276	9	810	8	200	8	051
UK	103	012		008	140	387	231	066	181	481	80	102	58	382	78	808	90	894	101	834	88	027
USSR	169	300	262	340	676	758	612	215	276	632	144	802	96	653	387	196	540	801	343	580	342	104
Total	483	704	572	605	074	084	1197	226	933	246	689	048	565	287	792	686	1102	434	829	377	859	153

Table 5. Nominal catch (inetric tons, whole weight) of haddock in Sub-area I.

Table

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	
Belgium												

Table 7. Nominal catch (metric tons, whole weight) of haddock in Division IIa.

Country	1966	1967	1968	1969	1970	1971		1972		1973		1974		1975		1976	
Belgium																	5
Faroe Island				2	541		81		137		80		221		257		261
France	1072	1208										1	193		781		94
GDR	11	3	204	309	497		16		3		21		376		410		268
FRG	2098	1561	1867	1490	2119		879		953		870	5	306	5	685	2	446
Netherlands	74	23		25			3	2	223								246
Norway	16933	11324	12358	13448	10620	10	522									19	
Poland							43		32		19				148		93
Portugal																	450
Spain													809		676		673
UK	15861	13772	25806	25245	13331	8	957		921		999					9	065
USSR							956		550				77				215
Total	36049	27891	40235	40519	27108		457		982		348	47		44	330	33	044

Table 8: Nominal catch (metric tons, whole weight) of haddock in Sub-areas I and II.

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
Belgium									20	47	5
Faroe Island				2	541	81	137	1212	925	299	304
France	1072	1208						3214	3601	5191	625
G DR	1	14	204	309	656	16	829	22	454	437	348
FRG	2098	1705	1867	1490	2119	896	1433	9583	23409	15930	16328
Netherlands	74	23		25		3	2223				246
Norway	82090	51954	64076	67549	36716	45715	46700	86767	66164	55966	47462
Poland						49	1433	325	3045	1080	986
Portugal											1000
Spain									7325	3116	30.59
UK	27723	24 158	40129	37234	20423	16373	17166	32408	36293	28661	16667
USSR	48710	57346	75654	24211	26802	15778	196225	186534	78548	65015	56554
Total	161778	136408	181930	130820	87257	78911	266146	320065	221138	175742	143584

Table 9. Nominal catch (metric tons, whole weight) of polar cod in Sub-area I.

| Country | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Norway | - | - | - | 17 | 761 | 8 | 947 | 16 | 484 | 388 | 2 | 831 | | 77 | 38 | | |
| USSR | 838 | 3484 | 2195 | 116 | 547 | 234 | 409 | 331 | 576 | 166 | 377 | 79 | 403 | 123 | 511 | 63 | 124 |
| Total | 838 | 3484 | 2195 | 134308 | 243 | 356 | 348 | 060 | 166 | 765 | 82 | 234 | 123 | 688 | 63 | 162 | |

Table 10. Annual catches (metric tons) of halibut (Bulletin Statistique).

Year	Total ICES Area	IIIa, IV, VI	
		total	\%
1960	20334	1293	6.4
1961	17460	1087	6.2
1962	13569	876	6.5
1963	13322	852	6.4
1964	$35833^{\text {a) }}$	967	2.7
1965	27496	1147	4.2
1966	17336	921	5.3
1967	7657	880	11.5
1968	6835	1082	15.8
1969	6357	819	12.9
1970	6957	620	8.9
1971	6346	606	9.5
1972	5177	617	11.9
1973	5176	535	10.3
1974	4662	643	13.8
1975	4578	649	14.2

${ }^{\text {a) }}$ The USSR catch of 26191 tons includes an unknown proportion of Greenland halibut.

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
Belgium									6		
FRG		10					3	1	6	4	
Norway	160	133	207	44	36	62	49	55	27	24	
Poland							1	6			
UK (England \& Wales) UK (Scotland)	195	92	50	40	46	37	34	25	15	9 1	
USSR	991				3						
Total	1346	235	257	84	85	99	87	87	54	38	

Table 12. Nominal catch (metric tons, whole weight) of halibut in Division IIb.

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
Belgium										8	
FRG							1		16	7	
Norway		1				1			+		
Sweden						3					
Poland					4				2	2	
UK (England \& Wales)	26	11	2	2	5		2	6	2	+	
UK (Scotland)					1	1	1	1	+		
USSR	3279				51						
Total	3305	12	2	2	61	5	4	7	20	17	

Table 13. Nominal catch (metric tons, whole weight) of halibut in Division IIa.

Country	1966	1967	1968	1969		1970		1971		1972		1973		1974	1975	1976
Faroe Island								3								
FRG	41	41	16	14		15		8		15		19		39	49	
Netherlands	\varnothing ?															
Norway	1979	1959	1796	1961	1	716	1	446		1295		L 503		1305	1120	
Sweden															+	
Poland										3				4		
$\begin{gathered} \text { UK (England \& } \\ \text { Wales) } \end{gathered}$	214	145	98	128		93		75		42		30		18	15	
UK (Scotland)						1		2		1		+		1	1	
USSR	5498															
Total	7732	2145	1910	2103		825	1	53.4		1356		1552		1367	1185	

Table 14. Nominal catch (metric tons, whole weight) of halibut in Sub-areas I and II.

Country	1966	1967	1968	1969	1970		1971		1972		1973		1974	1975	1976
Belgium													6	8	
Faroe Island							3								
FRG	41	51	16	14	15		8		19		20		61	60	
Netherlands	\varnothing														
Norway	2139	2093	2003	2005	1752	1	509	1	344	1	558	1	332	1144	
Sweden							3								
Poland					4				4		6		6	2	
UK (England ${ }_{\text {Wales }}{ }^{\text {\& }}$	435	248	150	170	144		112		78		61		35	24	
UK (Scotland)					2		3		2		1		1	2	
USSR :	9768				54										
Total	12383	2392	2169	2189	1971	1	638	1	447	1	646	1	441	1240	

- 35 -

[^0]36
Table 16. Nominal catch (metric tons, whole weight) of plaice in Division IIb.

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976**
German, Dem. Rep.	-	-	-	-	-	-	-	12	-	22	-
Germany, Fed. Rep.	-	-	-	-	-	-	-	-	10	2	-
Norway	-	-	-	-	-	-	-	21	-	-	a)
$\begin{aligned} & \text { U.K. } \\ & \text { (Eng. \& Wal.) } \end{aligned}$	-	5	22	19	5	-	13	24	1	42	-
U. K. (Scotland)	-	-	-	-	20	1	11	1	-	-	-
USSR	-	-	-	-	-	-	-	4256	5187	-	829
Total	-	5	22	19	25	1	24	4314	5198	66	

[^1]Table 17. Nominal catch (metric tons, whole weight) of plaice in Division IIa.

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	$1976{ }^{\text {* }}$
France	19	31	-	-	-	-	-	-	-	-	-
German, Dem. R.ep.	-	-	-	-	-	-	-	2	-	-	4
Germany, Fed. Rep.	-	-	-	-	-	-	2	+	12.	1	10
Netherlands	-	1	-	--	-	-	-	-	-	-	-
Norway	1087	755	563	643	603	395	440	555	461	371	$700^{\text {b }}$
Sweden	-	-	-	-	-	-	-	-	-	$+^{\text {a) }}$	-
$\begin{aligned} & \text { U.K. } \\ & \text { (Eng. \& Wal.) } \end{aligned}$	33	62	18	99	44	108	26	11	11	7	-
U. K. (Scotland)	-	-	-	-	+	1	T	-	-	-	-
USSR	-	-	-	-	-	-	-	28	9	-	124
Total	1139	849	581	742	647	504	468	596	493	379	

[^2]Table 18. Nominal catch (metric tons, whole weight) of plaice in Sub-areas I and II.

Country		1966	1967		1968		1969		1970		1971		1972		1973		1974		1975	1976
France		19	31																	
GDR															14				22	4
FRG													2		+		134		29	522
Netherlands			1																	
Norway	1	237	826		673		826		801		512		560		707		492		438	700
Sweden																			+	
U.K. (Eng\& Wal.)	1	725	341	1	244			2	699		415	2	578		020		316		858	
U. K. (Scotland)									20		2		11		1				29	
USSR															358	17	065			5305
Total		981	1199		939		014		520		929		151	16	100	18	007		376	

Country	1966	1967	1968	1969	19701	1971	1972	1973	1974	1975	$1976{ }^{\text {x }}$
FRG	-	-	-	-	-	-	-	39	63	120	
UK (England \& Wales) UK (Scotland)	45 -	14 -	17	7 -	19	21 -	15 -	14 -	36 -	39 7	
Total	45	14	17	7	19	21	15	53	99	166	
$\mathrm{x}_{\text {Preliminary }}$ Table 20.	Nomi	catch	ic to	whole	ght) of	mmon	in Di	n IIb.			
Cowntry	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
GDR	-	-	-	-	-	-	-	-	-	67	
FRG	-	-	-	-	-	-	-	18	72	121	
UK (England \&	-	1	-	1	-	-	2	5	1	-	
UK (Scotland)	-	-	-	-	9	17	23	25	9	-	
Total	-	1	-	1	9	17	25	48	82	188	

Table 2l. Nominal catch (metric tons, whole weight) of common dab in Division IIb.

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
France	. . a)	-	-	-	-	-	-	-	-	-	
FRG	-	-	-	-	-	-	-	4	9	16	
Swe den	-	-	-	-	-	-	-	-	-	+b)	
$\begin{gathered} \text { UK (Engl.\& } \\ \text { Wales) } \end{gathered}$	-	-	1	1	1	2	+	4	4	3	
UK (Scotland)	-	-	-	-	+	+	4	1	\pm	-	
Total	--.	-	1	1	1	2	4	9	13	19	

[^3]Table 22. Nominal catch (metric tons, whole weight) of common dab in Sub-areas I and II.

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
GDR										67	
FRG								61	144	257	
Sweden										+	
U.K. (Eng. © Wal.)	45	15	18	9	20	23	17	23	41	42	
U. K. (Scotland)					9	17	27	26	9	7	
TOTAL	45	15	18	9	29	40	44	110	194	373	
Table 23.	Nominal catch		ric to	whole	ght) \circ	g rou	b in	area			
Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
Poland							1				10
U. K. (EnglandèWales)) 1	2			1	1		10	7		
TOTAL	1	2			1	1	1	10	7		

[^4]42 -
Table 24. Nominal catch (metric tons, whole weight) of long rough dab in Division II b.

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
German Dem. Rep.	-	-	-	-	-	-	-	119	-	377	
Poland	-	-	-	-	-	-	-	-	-	-	186
U. K. (England\&Wales)	-	-	-	-	1	-	-	4	-	-	
TOTAL	-	-	-	-	1	-	-	123	-	377	

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
German Dem. Rep.	-	-	-	-	-	-	-	10	-	-	
Poland	-	-	-	-	-	-	-	-	-	-	14
U. K. (Engl. \&Wal.)	-	-	-	-	-	-	-	1	1	-	
TOTAL	-	-	-	-	-	-	-	11	1	-	

TOTAL
*Preliminary
Table 26. Nominal catch (metric tons, whole weight) of long rough dab in Sub-areas I and II.

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	$1976{ }^{\text {x }}$
GDR								129		377	
Poland							1				210
$\begin{aligned} & \text { UK (Eng.\& } \\ & \text { Wales) } \end{aligned}$	1	2			2	1		15	8		
Total	1	2			2	1	1	144	8	377	

${ }^{\mathrm{x}}$ Preliminary
Table 28. Nominal catch (metric tons, whole weight) of Catfish in Division IIb.

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976*
Belgium	-	-	-	-	-	-	-	-	-	5	
German, Dem. Rep.	-	-	-	-	-	-	-	27	9	189	
Germany, Fed. Rep.	-	-	-	-	-	18	4	15	156	343	
Norway	1	9	10	16	4	-	5	124	200	123	
Poland	-	-	-	-	-	-	-	-	-	19	1
$\begin{aligned} & \text { U. K. } \\ & \text { (Eng. \& Wal.) } \end{aligned}$	332	109	49	70	128	59	154	391	190	135	$\begin{gathered} \text { 学 } \end{gathered}$
U.K. (Scotland)	-	-	1	-	15	13	15	54	25	4	
USSR	969	2875	3667	3534	3410	7261	4431	5416	10729	15203	
Total	1302	2993	3727	3620	3557	7351	4609	6027	11309	16021	

[^5]a) IIa includes smaller quantities taken in other areas than IIa, IV and IIIa, b, c.
Table 30. Nominal catch (metric tons, whole weight) of catfish in Sub-areas I and II.

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976		
Belgium													

Table 31. Nominal catch (metric tons, whole weight) of lumpsucker in Division II a.

Country	1966	1967	1968	1969		1970		1971		1972		1973		974		1975	1976
Norway	-	-	-	-	2	352		675		608		301	3	122		137	
Sweder	-	-	-	-		-		-		-		-		-		+ a)	
Total	-	-	-	-	2	352		675		6.08		301	3	122		137	

a) IIa includes smaller quantities taken in other areas than IIa, IV and IIIa, b, c, d.

Fig. 1. Cod. The general distribution and migration of mature fish.

1) Feeding area,
2) Spawning area,
3) Spawning migration,
4) Migration of spent fish.

Fig. 2. Cod. The general larval drift.

1) Distribution of 0-group,
2) Distribution of eggs,
3) Larval drift.

Fig. 3. Distribution of 0-group cod 1970.

Fig. 4. Haddock. The general distribution and migration of mature fish.

1) Feeding area,
2) Spawning area,
3) Spawning migration,
4) Migration of spent fish.

Fig. 5. Haddock. The general larval drift.

1) Distribution of O-group,
2) Distribution of eggs,
3) Larval drift.

Fig. 6. Distribution of 0 -group haddock 1970.

Fig. 7. Distribution of Polar cod in the Arctic Seas.

Fig. 8. Distribution of 0-group polar cod 1974.

Fig. 9. Atlantic distribution of the halibut (Leim and Scott, 1966).

Fig. 10. Distribution of eggs, pelagic postlarval stages, and bottom stages of the 0 -group of the Halibut. Δ eggs, - postlarval stages 13.5-19 mm., o postlarval stages 20-34 mm., x bottom stages of the 0 -group $47-64 \mathrm{~mm}$. 1000 metres isotherms from SCHOTT 1926. (After Tåning, 1936.)

Fig. 11. Distribution of 0 -group long rough dab. 1976.

[^0]: *Preliminary.
 a) I inciuded with IIa.

[^1]: Preliminary.
 a) IIb included with IIa.

[^2]: * Preliminary.
 a) IIa includes
 a) IIa includes smaller quantities taken in other areas than IIa, IV and III a, b, c.
 b) IIa includes I and IID.

[^3]: a) Included in Lemon sole
 b) IIa includes smaller quantities taken in other areas than IIa, IV, IIIa, b, c, d.

[^4]: Preliminary

[^5]: *Preliminary.

