This Report not to be cited without prior reference to the Council ${ }^{\text {x }}$)
International Council for the Exploration of the Sea

C.M.1977/F:6
Demersal Fish (Northern) Committee

Bidriotenes

Charlottenlund, 14-18 March 1977

This Report has not yet been approved by the International Council for the Exploration of the Sea; it has therefore at present the status of an internal document and does not represent advice given on behalf of the Council. The proviso that it shall not be cited without the consent of the Council should be strictly observed.

[^0]
Contents

Page

1. Participants 1
2. Terms of Reference 1
3. Status of the Fisheries].
3.1 Cod 1
3.2 Haddock 2
4. Virtual Population Analysis (VPA) 2
4.1 Ag'e composition 2
4.2 Natural mortality 2
4.3 Fishing mortality 2
4.3.1 Cod 2
4.3.2 Haddock 3
4.4 Stock size 3
5. State of the Stocks 3
5.1 Fishing mortality 3
5.2 Recruitment 3
5.2.1 Cod 4
5.2.2 Haddock 4
5.3 Spawning stock biomass 4
6. Yield Per Recruit 4
7. Estimation of Total Allowable Catches (TACs) 5
7.1 Cod 5
7.2 Haddock 6
7.3 Summary of recommended TACs for 1978 6
8. Midwater Trawl 6
9. Mesh Assessments 7
Tables 1-20 8
Figures 1-4 27

$$
-0-0-0-
$$

Note See also Doc. C.M.1977/F:6-APPENDIX.

l. Participants

S Ehrich
A Hylen (Chairman)
J Janusz
B W Jones
V P Ponomarenko
C J Rørvik
N Schultz
A Schumacher
I G Tsenker
B Vaske

Federal Republic of Germany
Norway
Poland
U.K. (England)
U.S.S.R.

Norway
German Democratic Republic
Federal Republic of Germany U.S.S.R.

German Democratic Republic.

V M Nikolaev (ICES Statistician) also participated in the meeting.
2. Terms of Reference

At the 1976 Statutory Meeting of ICES it was decided (C.Res.1976/2:30) that:
"the North-East Arctic Fisheries Working Group should meet at Charlottenlund from 14-18 March 1977 to:
(a) assess TACs for 1978 for cod and haddock;
(b) examine any new data from midwater trawl fisheries and study the effect on the exploitation of these species;
(c) assess, if possible, the effective mesh size in use, and report on the effects of increases in mesh size"。

In addition, following a NEAFC request from the November Mid-term Meeting, this Working Group was requested by the Chairman of the Liaison Committee of ICES to provide description of life histories, fisheries and distributions of the stocks in relation to zones under national fisheries jurisdiction for North-East Arctic cod and haddock, plaice, halibut, common dab, long rough dab, lumpsucker, Polar cod, and catfishes in Sub-area I and Divisions IIa and IIb。
In an understanding between the Chairmen of the Saithe (Coalfish) Working Group, the North Sea Roundfish Working Group and the Faroe Working Group, blue ling, ling, and tusk for the whole ICES area were included in the additional terms of reference for the Faroe Working Group.
3. Status of the Fisheries
3.1 Cod (Tables 1-4)

The preliminary figure for the total catch in 1975 was about 836000 tons which was close to the final figure of more than 829000 tons. Also the preliminary data on the landings from Sub-area I and Divisions IIa and IIb were in quite good agreement with the final figures.
The 1976 fishery was limited by the same international quota scheme as in 1975. The total landings were limited to 810000 tons of North-East Arctic cod. In addition, Norway and U.S.S.R. each could add 40000 tons to their quota. This covers their catch of Norwegian coastal cod and Murman cod respectively. As was the case last year, the coastal cod is
treated as an independent unit for management purposes. The U.s.s.R. landings of Murman cod were included in the assessment for North-East Arctic cod.

Total landings are given in Table 1 for Sub-area I and Divisions IIa and IIb. Totals for each country are given in Table 2. The preliminary figure for the total landings shows an increase from 1975 to 1976 of about 30000 tons, making up a total of approximately 859000 tons. This figure should be compared with the total allowable catch of 850000 tons. In Sub-area I and Division IIb the landings in 1976 decreased by 4% and 30% respectively. The decrease in Division IIb is caused mainly by low abundance of the most recent year classes in this area (Table l6). In Division IIa the increase in the landings was estimated to be 80%. This was caused by a high contribution to the catches of the 1970 (38% by number) and 1969 (18% by number) year classes which have been estimated to be very strong and of average size respectively. No specific year class dominated the catches in Sub-area I. In Division IIb the 1970 year class contributed substantially to the catches (40% by number).

```
3.2 Haddock (Tables 5-7)
The catches of North-East Arctic haddock were not limited by a quota regulation in 1976. However, vessels from the countries which had exhausted their quotas for cod were not allowed to continue a directed trawl fishery for haddock. The effect of this regulation was small, since normally most of the catches are taken as by-catch when fishing for cod.
As for cod, the preliminary figures for the 1975 landings were close to the final ones. Total landings in 1976 were about 143000 tons, compared with 176000 tons in 1975.
A decrease in landings was observed for Sub-area I and Division IIa. The reduction is estimated as \(18 \%\) and \(25 \%\) respectively. The most abundant year class in the catches was the 1969 year class which contributed \(27 \%\) by number, followed by the 1973 year class with \(22 \%\). In Sub-area I the Jourger year classee of \(1973-75\) made a contribution of \(43 \%\) by number to the catches.
\(\therefore \quad\) Virtual Population Analysis (VPA) (Tables 8-15)
```

4.1 Age domposition

Assessments were made for cod and haddock with catch/age somposition data for 1950-74 as used in earlier assessments, together with updated age compositions for 1975 and preliminary data for 1976 (Tables 8 and 13). The data included U.S.S.R. landings of Murman cod and raddock.
4.2 Natural mortality

For cod the assessments were made using vaiues for the coefficient of natural mortality of $M=0.2$ and 0.3 , and for haddock a value of $M=0.2$ has been used.

4.3 Fishing mortality

The Group experienced some difficulties in deciding the appropriate values of fishing mortality for 1976 which are required to initiate the virtual population analysis.
4.3.1 Cod

In recent years the cod stock declined to a low level following a series of years of poor recruitment. Subsequently the stock size began to increase again with the recruitment of the more abundant year classes of 1970 and later years. As a result the fishery has become more unstable and the more traditional pattern of the fishery has changed. There was evidence that with the recruitment of the very abundant 1970 year class
the fishery concentrated on that year class. As a result there have been changes in the exploitation pattern in recent years as well as changes in the overall level of fishing mortality, and these factors made it difficult to determine appropriate \mathbb{F}-at-age array for the most recent year.
Information which the Group used to determine 1976 F values included effort data and estimates of year classes' strength available from the international 0-group surveys, from U.S.S.R. young fish surveys, and from English commerciall catch per unit effort data for age groups 3 to 5.
In past years the Group had each year modified the exploitation pattern on cod to allow for some concentration on the 1970 year class. However, the Group considered that the 1970 year class has now become less attractive to the fishery in Sub-area I and Division IIb, because its abundance is decreasing and more recent relatively abundant year classes have recruited to the immature stock. In addition, the 1970 year class is becoming less available in Sub-area I and Division IIb. Accordingly the Group came to the opinion that the exploitation pattern on cod in 1976 was more likely to have reverted to a more normal pattern and therefore the Group adopted the exploitation pattern based on the average for 1970-74. In deciding the overall level of fishing mortality, the Group was guided mainly by the year class strength indices from the pre-recruit surveys and the English c.p.u.e. data, and F values were adopted which gave VPA year class strength estimates intermediate between those indicated from the U.S.S.R. pre-recruit surveys and the English c.p.u.e. data. The resultant F values used for 1976 are given in Tables 9 and ll, together with VPA-calculated values for the earlier years. The relative values of F for 1975 and 1976 in the Tables are not entirely consistent with the indications from Table 3 that fishing effort probably increased from 1975 to 1976.

4.3.2 Haddock

For haddock the procedure was similar to that for cod with the exploitation pattern being based on the average for 1970-74, and the level of fishing mortality was decided on the basis of year class strength estimates (Table 14). In recent years there appears to have been a change in the exploitation pattern for haddock. In the past the maximum rates of mortality were experienced by age groups of five and older, but more recently age groups four to six have been subjected to the highest exploitation rates with lower rates in both the younger and older age groups.
4.4 Stock_size

Estimates of stock size from VPA are given in Tables 10 and 12 for cod and in Table 15 for haddock.
5. State of the Stocks
5.1 Fishing mortality

Because of the changing exploitation pattern for cod, it is difficult to make comparisons of changes in fishing mortality in the last few years, but there appears to have been no major overall change in the level of fishing mortality in 1976. For haddock the level of fishing mortality appears to have been relatively stable during the last three years.

5.2 Recruitment

Estimates of abundance of pre-recruit year classes are available from international 0-group surveys and U.S.S.R. young fish surveys (Tables 16 and 17). Revised estimates of absolute year classes' strength from VPA are also given in Tables 18 and 19.
5.2.1 Cod

The 1970 year class is established to be an outstanding one. The 1971 year class has been estimated to be about average and the most recent assessments indicate that the 1972 year class is above average. The most recent assessments indicate that the 1973 year class is above average, and it might even be as large as the 1964 year class which has been recorded as a rich one. The 1974 year class was estimated to be poor in the pre-recruit surveys and this assessment is still valid. In the O-group survey, the 1975 year class was rich, and the first estimate based on data from the U.S.S.R. young fish survey supported this. The 1976 year class has been estimated to be weak both in the 0-group survey and the U.S.S.R. young fish survey. Values for absolute abundance of year class strength for use in catch predictions are given in Table 18.
5.2.2 Had.dock

The 1971 year class is established to be poor and recruit survey data indicate that the 1972 and 1973 year classes ate below average. Both the 0 -group survey and the most recent U.S.S.R. young fish survey indicate that the 1974 year class is rich. The 1975 year class was recorded in the 0 -group survey as the most abundant one since these surveys started, and this has been confirmed by the most recent U.S.S.R. young fish surveys. In the 0-group survey the 1976 year class was abundant, but this has not been confirmed by the data from the U.S.S.R. young fish survey. Estimates of year class strength for use in catch prediction calculations are shown in Table 19.

5.3 Spawning stock biomass

Estimates of spawning stock biomass were prepared using the stock numbers in each year as estimated by VPA and weight-at-age data given in Table 20. The mature stock has been taken as fish of 8 years and older for cod and of 6 years and older for haddock. For cod two estimates were calcilated corresponding to values of natural mortality of $M=0.2$ and 0.3 . Estimates of spawning stock biomass for cod are given in Table 18 and for haddock in Table 19, and the trend with time is illustrated in Figures 1 and 2. No correction has been made for catches of cod taken in the spawning fishery before spawning takes place, and the spawning stock estimates relate to the biomass of the adult stock at the beginning of each year.
For cod the spawning stock size reached a very low level in 1975 and 1976. From 1977 onwards there will be improved recruitment to the adult stock as the more abundant 1.969 and subsequent year classes reach maturity. If catches in 1977 do not exceed the level of 850000 tons recommended by the Liaison Committee, the adult stock size of cod is expected to recover to about 1 million tons by the beginning of 1978.

For haddock the variation in spawning stock biomass has been less marked than for cod. The present relatively high level of the spawning stock is a consequence of the very abundant 1969 year class reaching maturity in 1975. As later year classes are much less abundant it is expected that the spawning stock will decline below the 1976 peak during the next three years, but it will still remain above the long-term average.

6. Yield Per Recruit

As a consequence of the changes in the exploitation pattern for both cod and haddock, yield per recruit curves have been recalculated using the exploitation patterns and weight-at-age data given in Table 20. For cod the yield per recruit curves were calculated for values of $M=0.2$ and 0.3 , and to make comparison easier the transformation to yield has been made by multiplying yield per recruit by average recruitment ($\mathrm{M}=0.2$, $\overline{\mathrm{R}}_{3}=818 ; \mathrm{M}=0.3, \mathrm{R}_{3}=1$ 239. Averages for year classes 1947-73). In Figures 2 and 3 curves of yield (cod) or yield per recruit (haddock)
have been plotted against the values of F on the age groups subject to maximum exploitation．Also included in the Figures are curves showing the dependence of equilibrium spawning stock biomass（or spawning stock biomass per recruit）on fishing mortality。
From the yield curves for cod $\mathrm{F}_{\max }=0.3(M=0.2)$ and $0.6(M=0.3)$ ． The estimated fishing mortality in the fully exploited age groups in 1976 was $F=0.7(M=0.2)$ and $F=0.6(\mathbb{M}=0.3)$ ．For haddock from the yield per recruit curve $F_{\max }=0.3$ compared with the estimated value for 1976 of $F=0.6$ 。

7．Estimation of Total Allowable Catches（TACs）
Data used in calculating predicted catches are given in Table 20. Estimates of stock sizes in 1977 were derived from the estimates of stock size and fishing mortality rates in 1976。 For 1977 it was assumed that catches of both cod and haddock would be at the recommended levels of 850000 tons and 110000 tons respectively．To take these catches from the 1977 stocks would require the fishing mortalities on the age groups subject to maximum exploitation of $F=0.5(M=0.3)$ of $F=0.55$ $(M=0.2)$ for cod and $F=0.49$ for haddock，assuming that the exploitation pattern remained unchanged．The estimated stocks at the beginning of 1978 were then calculated from the 1977 stock sizes and fishing mortality rates．

7．1 Cod

In making its recommendation for a cod TAC for 1978，the Group had to consider the need to maintain the size of the spawning stock as well as the rost appropriate level of fishing mortality to maximise yield．The spawning stock biomass of cod is expected to increase to about l million tons by 1978．The Group recommends that every attempt should be made to maintain the spawning stock at，or above，this level．If the spawning stock size is not to fall below 1 million tons in 1979，the fishing mortality on cod should not exceed $F=0.45$ in 1978 （ $M=0.2$ and $M=0.3$ ）． For $F=0.45$ in 1978 the catch would be expected to be 850000 tons （ $M=0.2$ and $M=0.3$ ）．This assessment is summarised in the text table below：

		$M=0.2$	$M=0.3$
1976	Spawning stock biomass（thousands of tons）	250	291
1977	Catch（thousands of tons）	850	850
	Fishing mortality on fully－exploited age groups	0.55	0.50
	Spawning stock biomass（thousands of tons）	551	630
1978	Catch（thousands of tons）	850	850
	Fishing mortality on fully－exploited age groups	0.45	0.45
	Spawning stock biomass（thousands of tons）	1.047	1122
1979	Spawning stock biomass（thousands of tons）	1100	1100

If the cod TAC were to be maintained at 850000 tons during 1977 and 1978，this would involve a progressive reduction in fishing effort corresponding to a reduction in fishing mortality from $F_{1976}=0.6$ to $F_{1977}=0.5$ ，and $F_{1978}=0.45$ for $M=0.3$ ．（Equivalent values for
$\mathrm{M}=0.2$ are $\mathrm{F}_{1976}=0.7, \quad \mathrm{~F}_{1977}=0.55$ and $\mathrm{F}_{1978}=0.45$) 。 A value of $F=0.45$ in 1978 would be below $F_{\max }(=0.6) \frac{1}{\text { for }} \mathrm{M}=0.3$, but above $F_{\max }(=0.3)$ for $M=0.2$. A catch of 850000 tons in 1978 would allow the spawning stock to be maintained at 1 million tons into 1979. The Working Group therefore recommends that the TAC for 1978 for the North-East Arctic cod should be set at 850000 tons (including U.s.s.R. landings of Murman cod).

```
7.2 Haddock
For haddock, the Group followed the approach adopted in previous years
of estimating haddock TACs on the basis of the expected by-catch in
the fishery regulated for the conservation of the cod stock. The conse-
quences for haddock if the cod TAC were maintained at }850000\mathrm{ tons would
be expected to be as follows:
\begin{tabular}{|c|c|c|}
\hline 1976 & Spawning stock biomass (thousands of tons) & 334 \\
\hline 1977 & Catch (thousands of tons) & 110 \\
\hline & \begin{tabular}{l}
Fishing mortality on age groups subject to maximum exploitation \\
Spawning stock biomass (thousands of tons)
\end{tabular} & 0.49
263 \\
\hline 1978 & Catch (thousands of tons) & 150 \\
\hline & \begin{tabular}{l}
Fishing mortality on age groups subject to maximum \\
Spawning stock biomass (thousands of tons)
\end{tabular} & 0.45
217 \\
\hline 1979 & Spawning stock biomass (thousands of tons) & 209 \\
\hline
\end{tabular}
```

The Group considers that it would be difficult to regulate the haddock fishery independently of the cod fishery. However, a TAC for haddock, based on the expected by-catch in the cod fishery, would have the advantage of preventing effort being diverted to fishing for haddock if cod quotas are taken before the end of the year. The Working Group therefore recommends that a TAC for the North-East Arctic haddock for 1978 should be set at 150000 tons. It is expected that to take this catch would require a fishing mortality of $F=0.45$ in 1978. This may be compared with the value of $F_{\max }=0.3$ for the same exploitation pattern.
7.3 Summary of recommended TACs for 1978

North-East Arctic cod (including Murman cod) 850000 tons
North-East Arctic haddock
150000 tons
The above TACs are the Group's recommendations based on the assessments described above. They are very much dependent on the estimates of fishing mortality in 1976. In Section 4 the Group described the difficulties associated with determining these values of fishing mortality. While this potential source of error remains, there is the possibility that the recommended TACs will be either too high or too low. A TAC which was too high could cause long-term damage to the stock, while a TAC which was too low would result in a loss of catch although some of any such loss could be recovered to some extent in later years. In view of these considerations, the Group recommends that it would be prudent to proceed with some caution in adopting TACs.

8. Midwater Trawl

The effect of midwater trawls on the stocks compared to the effects of bottom trawls will depend on their relative selectivities and also on behaviour and vertical distribution of fish. No new data on selectivity of midwater trawls and no new data on length composition of catches taken
by pelagic gear were available at this meeting。 It was reported to the Working Group that the fisheries of the German Democratic Republic, Poland and the U.S.S.R. were conducted with bottom trawls only. In the United Kingdom fishery, only small quantities of cod were taken by midwater trawls, whereas the Norwegian fishing vessels may use midwater trawls only outside the l2-mile zone, but the catohes taken by this gear could not be quantified at present. Vessels of the Federal Republic of Germany have used midwater trawls since 1974, mainly in Sub-area I and Division IIb. In 1975 the catch by midwater trawls was about 9800 tons of cod and 4400 tons of haddock, representing 33% and 28% respectively of the total catch of these two species taken in the North-East Arctic by vessels of the Federal Republic of Germany. In the absence of length composition data and total catch data from the midwater trawl fishery, the Group is still not in a position to assess the effects of midwater trawling on the stocks of cod and haddock in the North-East Arctic.

9. Mesh Assessments

The Chairman of the Working Group discussed with Mr K P Andersen of the Danish Institute for Fisheries and Marine Research the possibility of using the method he has developed based on the length compositions of catches to assess the effective mesh sizes in use in the trawl fisheries for NorthEast Arctic cod and haddock. Mr Andersen was willing to assist the Group in making the assessment but he advised that the time that would be required would be more than was available during this meeting. Because of the working and computer time required to make an assessment of effective mesh size and the effects of changes in mesh size, the Working Group recommends that the necessary length composition data should be submitted to the Chairman before 1 June 1977, and that provision be made for a small number of Working Group members to meet together and make the assessment with the assistance of Mr K P Andersen. This should be done sufficiently early for the results to be circulated to all Working Group members well in advance of any future full meeting of the Group.

Table 1. Cod.
Total nominal catch by fishing areas (metric tons).

Year	Sub-area I	Division IIb	Division IIa	Total catch
1960	375327	91599	155116	622042
1961	409694	220508	153019	783221
1962	548621	220797	139848	909266
1963	547469	111768	117100	776337
1964	206883	126114	104698	437695
1965	241489	103430	100011	444930
1966	292253	56653	134805	483711
1967	322798	121060	128747	572605
1968	642452	269160	162472	1074084
1969	679373	262254	255599	1197226
1970	603855	85556	243835	933246
1971	312505	56920	319623	689048
1972	197015	32982	335257	565254
1973	492716	88207	211762	792685
1974	723489	254730	124214	1102433
1975	561701	147400	120276	829377
$1,76^{\text {I }}$	539124	103650	216379	859153

[^1]Cod.
(Sub-area I and Divisions IIa and IIb combined) Tabie 2.

Year	Faroe Islands	France	German Dem.Rep.	Germany Fed:Rep.	Norway	Poland	U.K.	U.S.S.R.	Others	Total All countries
1960	3306	22321		9472	231997	20	141175	213400	351	622042
1961	3934	13755	3921	8129	268377	-	158113	325780	1212	783221
1962	3109	20482	1532	6503	225615	-	175020	476760	245	909266
1963	-	18318	129	4223	205056	108	129779	417964	-	775577
1964	-	8634	297	3202	149878	-	94549	180550	585	437695
1965	-	526	91	3670	197085	-	89962	152780	816	444930
1966	-	2967	228	4284	203792	-	103012	169300	121	483704
1967	-	664	45	3632	218910	-	87. 008	262340	6	572605
1968	-	-	255	1073	255611	-	140387	676758	-	1074084
1969	29374	-	5907	5343	305241	7856	231066	612215	133	1197226
1970	26265	44245	12413	9451	377606	5153	181481	276632	-	933246
1971	5877	34772	4. 998	9726	407044	1512	80102	144802	215	689048
1972	I 393	8915	1300	3405	394181	892	58382	96653	166	565287
1973	1916	17028	4684	16751	285184	843	78808	387196	276	792686
1974	5717	46028	4860	78507	287276	9898	90894	540801^{1}	38453	1102434
1975	11309	28734	9981	30037	277099	7435	101834	$343580^{\text {I }}$	19368	829377
1976 ${ }^{\text {T }}$	11206	28000	8946	24780	333828	6986	88027	$342104^{\text {I }}$	15.276	859153

[^2]1) Hours fishing x average tonnage $x 10^{-6}=$ millions on ton-hours
2) Hours fishing (catch/catch per hour fishing) $\times 10^{-4}$
3) Number of men fishing at Lofoten $\times 10^{-3}$
ㅍ
Provisional figures

Year	SUB-AREA I				DIVISION IIb				DIVISION IIa			
	National Effort		Total International Effort		National Effort		Total International Effort		National Effort		Total International Effort	
	U.K. ${ }^{\text {I) }}$	USSR ${ }^{2}$	U.K. units	USSR units	U.K.	USSR	U.K. units	USSR units	J.K.	Norway ${ }^{3)}$	J.K. units	Norwegian units
1960	95	43	512	91	42	11	97	34	39	10	252	26
1961	94	53	518	109	51	22	173	39	30	9	255	20
1962	93	61	590	94	51	16	168	29	34	10	210	21
1963	78	62	635	91	45	9	120	22	29	7	176	19
1964	42	30	351	55	49	17	136	32	36	6	157	17
1965	42	25	367	62	37	11	95	4	33	5	150	16
1966	63	33	387	69	23	16	71	29	46	5	199	15
1967	51	30	395	61	10	12	110	13	50	5	261	22
1968	86	45	584	67	9	24	151	26	52	6	288	15
1969	115	45	593	72	24	19	197	26	73	5	272	18
1970	122	35	573	77	24	15	122	27	55	5	346	16
1971	82	23	576	74	4	27	79	34	48	5	523	14
1972	71	41	418	111	7	11	65	17	35	6	602	14
1973	96	61	860	94	18	12	161	16	27	7	485	14
1974	92	48	906	86	9	18	243	42	29	5	435	16
1975	109	31	731	67	5	19	109	34	28	4.077	366	13
1976 ${ }^{\text {² }}$	97	44	911	82	21	18	128	36	35	4.274	622	18

Table 4: Cod.
Catch per unit effort (metric tons, round fresh) in Sub-area I and Divisions IIa and IIb.

Year	SUB-AREA I		DIVISION IIb		DIVISION IIa	
	U.K. ${ }^{\text {I) }}$	USSR ${ }^{2)}$	U.K.	USSR	U.K.	Norway ${ }^{3}$
1960	0.075	0.42	0.105	0.31	0.067	3.0
1961	0.079	0.38	0.129	0.44	0.058	3.7
1962	0.092	0.59	0.133	0.74	0.066	4.0
1963	0.085	0.60	0.098	0.55	0.066	3.1
1964	0.058	0.37	0.092	0.39	0.070	4.8
1965	0.066	0.39	0.109	0.49	0.066	2.9
1966	0.074	0.42	0.078	0.19	0.067	4.0
1967	0.081	0.53	0.106	0.87	0.052	3.5
1968	0.110	1.09	0.173	1.21	0.056	5.1
1969	0.113	1.00	0.135	1.17	0.094	5.9
1970	0.100	0.80	0.100	0.80	0.066	6.4
1971	0.056	0.43	0.071	0.16	0.062	10.6
1972	0.047	0.34	0.051	0.18	0.055	11.5
1973	0.057	0.56	0.054	0.57	0.043	6.8
1974	0.079	0.90	0.106	0.77	0.028	3.4
1975	0.077	0.85	0.100	0.43	0.033	3.4
$1976^{\text {² }}$	0.059	0.66	0.082	0.30	0.033	3.8

$\left.{ }^{1}\right)_{\text {U.K. data - tons per }} 100$ ton-hours fishing
2) USSR data - tons per hour fishing
3) Norwegian data - tons per gill net boat week at Lofoten

* Provisional figures

Table 5. Haddock.
Total nominal catch by fishing areas (metric tons).

Year	Sub-area I	Division IIb	Division IIa	Total
1960	125675	1854	27925	155454
1961	165165	2427	25642	193234
1962	160972	1727	25189	187888
1963	124774	1939	21031	146744
1964	79056	109	98900	
1965	98505	1839	18640	118079
1966	124115	1614	34892	160621
1967	108066	440	27980	136486
1968	140970	725	40031	181726
1969	88960	1341	40208	130509
1970	59493	497	26611	86601
1971	56300	435	21567	78302
1972	221983	2155	41979	265317
1973	283728	12989	23348	320065
1974	159037	15068	47033	221138
1975	121686	9726	44330	175742
1976	99567	10973	33044	143.584

"Provisional figures
Table 6. Haddock.
Nominal catch (in metric tons) by countries.
\quad (Sub-area I and Divisions IIa and IIb combined).

Year	Faroe Islands	France	German Dem.Rep.	Germany Fed.Rep.	Norway	Poland	U.K.	USSR	Others	Total
1960	172	-	-	5597	47263	-	45469	57025	125	155651
1961	295	220	-	6304	60862	-	39650	85345	558	193234
1962	83	409	-	2895	54567	-	37486	91940	58	187438
1963	17	363	-	2554	59955	-	19809	63526	-	146224
1964	-	208	-	1482	38695	-	14653	43870	250	99158
1965	-	226	-	1568	60447	-	14345	41750	242	118578
1966	-	1072	11	2098	82090	-	27723	48710	74	161778
1967	-	1208	3	1705	51954	-	24158	57346	23	136397
1968	-	-	-	1867	64076	-	40129	75654	-	181726
1969	2	-	309	1490	67549	-	37234	24211	25	130.820
1970	541	-	656	2119	36716	-	20423	26802	-	87257
1971	81	-	16	896	45715	49	16373	15778	3	78911
1972	137	-	829	1433	46700	1433	17166	196224	2223	266145
1973	1212	3214	22	9583	86767	325	32408	186534	-	320065
1974	925	3601	454	23409	66164	3045	36293	$\left.78548^{1}\right)$	8699	221138
1975	299	5191	437	15930	55966	I 080	28661	$65015^{1)}$	5163	175742
1976 ${ }^{\text {표 }}$	304	625	348	16328	47462	986	16667	$56554^{\text {I) }}$	4310	143584

[^3]
Table 7. Haddock.
 Catch per unit effort and estimated total international effort.

Year	Catch per Effort (J.K.) Kilos/100 ton-hours			Estimated Total InternationalEffort in U.K. UnitsTotal Catoh in Tons x $\not 0^{-6}$Tons $/ 100$ Ton-Hours Sub-area I
	$\begin{gathered} \text { Sub-area } \\ \text { I } \end{gathered}$	Divisions		
		IIa	IIb	
1960	33	34	2.8	4.7
1961	29	36	3.3	6.7
1962	23	42	2.5	8.2
1963	13	33	0.9	11.2
1964	18	18	1.6	5.5
1965	18	18	2.0	6.6
1966	17	34	2.8	9.4
1967	18	25	2.4	7.6
1968	19	50	1.0	9.6
1969	13	42	2.0	10.0
1970	7	31	1.0	12.4
1971	8	25	3.0	9.8
1972	14	18	23.0	19.0
1973	22	20	20.0	14.5
1974	20	74	15.0	11.1
1975	15	60	4.0	11.7
1976 ${ }^{\text {F }}$	10	38	3.0	14.4

* Provisional figures.
Table 8. Age composition of the total catches of COD (in 000 's) 1967-1976

Age	1967	1968	1969	1970	1971	1972	1973	1974	1975	$1976{ }^{\text {¹ }}$
3	34467	3709	2307	7164	7754	35536	294262	91855	45282	84896
4	160048	174585	24545	10792	13739	45431	131493	437377	59798	113930
5	69235	267961	238511	25813	11831	26832	51000	203772	226646	82316
6	22061	107051	181239	137829	9527	12089	20569	47006	118567	120674
7	26295	26701	79363	96420	59290	7918	7248	12630	29522	52182
8	25139	16399	26989	31920	52003	34885	8328	4370	9353	14976
9	11323	11597	13463	8933	12093	22315	19130	2523	2617	4341
10	2329	3657	5092	3249	2434	4572	4490	5607	1555	929
11	687	657	1913	1232	762	1215	677	2127	1928	477
12	316	122	414	260	418	353	195	322	575	420
13	225	124	121	106	149	315	81	151	231	114
14	40	70	23	39	42	121	59	83	15	18
15+	14	46	46	35	25	40	55	62	37	43

[^4]| Age | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | $1976^{\text {II }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 0.02 | 0.02 | 0.02 | 0.03 | 0.01 | 0.03 | 0.13 | 0.11 | 0.04 | 0.06 |
| 4 | 0.12 | 0.17 | 0.18 | 0.11 | 0.07 | 0.12 | 0.13 | 0.32 | 0.11 | 0.15 |
| 5 | 0.15 | 0.34 | 0.40 | 0.32 | 0.19 | 0.23 | 0.27 | 0.36 | 0.31 | 0.24 |
| 6 | 0.17 | 0.40 | 0.46 | 0.48 | 0.21 | 0.33 | 0.31 | 0.39 | 0.41 | 0.30 |
| 7 | 0.36 | 0.35 | 0.68 | 0.55 | 0.45 | 0.30 | 0.38 | 0.35 | 0.51 | 0.36 |
| 8 | 0.58 | 0.46 | 0.82 | 0.75 | 0.75 | 0.59 | 0.66 | 0.47 | 0.54 | 0.60 |
| 9 | 0.73 | 0.68 | 1.02 | 0.83 | 0.85 | 1.04 | 0.89 | 0.49 | 0.66 | 0.60 |
| 10 | 0.71 | 0.64 | 0.86 | 0.86 | 0.65 | 1.12 | 0.69 | 0.83 | 0.74 | 0.60 |
| 11 | 0.77 | 0.50 | 0.97 | 0.59 | 0.58 | 0.95 | 0.54 | 1.00 | 0.93 | 0.60 |
| 12 | 0.69 | 0.33 | 0.80 | 0.37 | 0.46 | 0.66 | 0.43 | 0.62 | 0.98 | 0.60 |
| 13 | 0.75 | 0.74 | 0.74 | 0.55 | 0.42 | 0.88 | 0.35 | 0.80 | 1.65 | 0.60 |
| 14 | 0.41 | 0.63 | 0.32 | 0.64 | 0.50 | 0.83 | 0.45 | 0.84 | 0.18 | 0.60 |
| $15+$ F | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.80 | 0.70 | 0.70 | 0.70 | 0.60 |

[^5]| Age | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1823890 | 241359 | 165660 | 306467 | 621774 | 1663380 | 2807510 | 1008010 | I 325550 | 1684870 |
| 4 | 1619630 | 1321630 | 175624 | 120747 | 220897 | 453975 | 1201810 | 1828340 | 668207 | 943202 |
| 5 | 579041 | 1063020 | 830002 | 109150 | 80222 | 151886 | 297475 | 777947 | 982401 | 443883 |
| 6 | 166769 | 369815 | 559677 | 412379 | 58900 | 49332 | 89641 | 168417 | 403130 | 534917 |
| 7 | 98851 | 104706 | 183085 | 260981 | 188713 | 35507 | 26265 | 48904 | 84843 | 198007 |
| 8 | 64792 | 50886 | 54868 | 68711 | 111774 | 89521 | 19564 | 13301 | 25493 | 37854 |
| 9 | 24828 | 26752 | 23795 | 17964 | 24032 | 39030 | 36837 | 7468 | 6150 | 10973 |
| 10 | 5223 | 8857 | 10039 | 6366 | 5802 | 7646 | 10256 | 11238 | 3395 | 2348 |
| 11 | 1451 | 1907 | 3474 | 3162 | 1988 | 2245 | 1849 | 3805 | 3615 | 1206 |
| 12 | 724 | 497 | 856 | 972 | 1301 | 829 | 645 | 797 | 1039 | 1062 |
| 13 | 486 | 270 | 264 | 286 | 499 | 609 | 316 | 312 | 319 | 288 |
| 14 | 137 | 171 | 95 | 94 | 122 | 243 | 187 | 165 | 104 | 45 |
| 15+ | 20 | 67 | 67 | 51 | 37 | 55 | 79 | 89 | 53 | 64 |

Table 11. Fishing mortalities for COD 1967-76 estimated by VPA for M $=0.20$.

| Age | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | $1976^{\text {FI }}$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 0.03 | 0.03 | 0.02 | 0.04 | 0.02 | 0.03 | 0.17 | 0.15 | 0.05 | 0.07 |
| 4 | 0.15 | 0.21 | 0.23 | 0.15 | 0.10 | 0.16 | 0.17 | 0.40 | 0.14 | 0.18 |
| 5 | 0.18 | 0.41 | 0.48 | 0.41 | 0.24 | 0.29 | 0.33 | 0.44 | 0.37 | 0.28 |
| 6 | 0.20 | 0.47 | 0.54 | 0.57 | 0.26 | 0.41 | 0.38 | 0.46 | 0.49 | 0.35 |
| 7 | 0.43 | 0.40 | 0.77 | 0.62 | 0.52 | 0.35 | 0.46 | 0.42 | 0.60 | 0.42 |
| 8 | 0.67 | 0.52 | 0.92 | 0.84 | 0.84 | 0.67 | 0.77 | 0.55 | 0.64 | 0.70 |
| 9 | 0.84 | 0.78 | 1.14 | 0.94 | 0.94 | 1.16 | 0.99 | 0.57 | 0.77 | 0.70 |
| 10 | 0.82 | 0.73 | 0.98 | 0.99 | 0.74 | 1.26 | 0.77 | 0.94 | 0.85 | 0.70 |
| 11 | 0.90 | 0.58 | 1.13 | 0.69 | 0.67 | 1.10 | 0.62 | 1.11 | 1.06 | 0.70 |
| 12 | 0.80 | 0.39 | 0.92 | 0.44 | 0.53 | 0.78 | 0.50 | 0.68 | 1.12 | 0.70 |
| 13 | 0.86 | 0.87 | 0.84 | 0.64 | 0.48 | 1.01 | 0.40 | 0.95 | 1.82 | 0.70 |
| 14 | 0.48 | 0.73 | 0.38 | 0.74 | 0.57 | 0.94 | 0.52 | 0.95 | 0.22 | 0.70 |
| 15 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.90 | 0.80 | 0.80 | 0.80 | 0.70 |

${ }^{\text {n }}$ Assumed values. See text section 4
Table 12. Stock size of COD (in 000^{\prime} s) 1967-76 estimated by VPA for $M=0.20$

Age	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
3	I 293790	163441	108869	201212	423230	1156320	2096780	733721	979162	1383890
4	1244160	1028150	130465	87052	158272	339510	914633	1451620	517949	760802
5	459614	874426	684610	84729	61547	117192	237036	630396	796007	370165
6	132721	313946	475498	346763	46209	39745	71827	139268	333379	448246
7	82682	88801	161080	227040	160567	29263	21693	40342	71884	166713
8	56033	44109	48744	61091	99676	78359	16848	11263	21699	32447
9	21751	23418	21427	15892	21577	35274	32986	6366	5309	9405
10	4529	7719	8829	5605	5056	6908	9096	10004	2954	2013
11	1255	1633	3056	2702	1701	1975	1609	3434	3202	1033
12	627	416	749	805	1112	712	539	712	925	910
13	425	232	231	245	426	536	268	267	295	247
14	115	147	79	81	106	215	159	147	84	39
15+	18	58	58	44	32	49	69	77	46	55

Table 13．Age composition of the total catches of HADDOCK（in 000＇s）1967－1976． Input for the VPA．

$\begin{aligned} & \text { es } \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{-} \end{aligned}$	
$\stackrel{n}{\substack{n \\ \sim \\-}}$	
$\underset{\underset{\sim}{\top}}{\underset{\sim}{\star}}$	
$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{\prime} \end{gathered}$	
$\underset{\underset{\sim}{N}}{\underset{\sim}{N}}$	
$\underset{\underset{\sim}{\lambda}}{\underset{\sim}{\lambda}}$	
$\begin{aligned} & \stackrel{\circ}{\mathrm{O}} \\ & \underset{\sim}{\prime} \end{aligned}$	$\underset{\sim}{\infty} \sim H \underset{\sim}{\sim} \sim H-H$
ô $\stackrel{\circ}{\sim}$	
$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \underset{\sim}{2} \end{aligned}$	
$\stackrel{\text { N}}{\stackrel{\text { ® }}{\sim}}$	
${ }_{4}^{80}$	

[^6]Table 14. Fishing mortalities for HADDOCK $1967-76$ estimated by VPA for $M=0.20$

Age	1967	1968	1969	1970	1971	1972	1973	1974	1975	$1976^{\text {FI }}$
3	0.06	0.04	0.10	0.16	0.02	0.27	0.33	0.22	0.15	0.22
4	0.30	0.39	0.15	0.22	0.26	0.37	0.54	0.34	0.56	0.40
5	0.43	0.54	0.48	0.21	0.17	0.97	0.88	0.35	0.51	0.60
6	0.50	0.47	0.52	0.47	0.15	0.81	0.39	0.55	0.34	0.54
7	0.49	0.65	0.41	0.43	0.37	0.41	0.23	0.43	0.40	0.40
8	0.56	0.62	0.44	0.42	0.29	0.50	0.18	0.33	0.22	0.40
9	0.29	0.46	0.39	0.31	0.31	0.43	0.22	0.43	0.12	0.40
10	0.45	0.42	0.42	0.30	0.27	0.65	0.14	0.46	0.15	0.40
11	0.46	0.51	0.16	0.41	0.25	0.45	0.20	0.40	0.19	0.40
12	1.24	0.75	0.43	0.14	0.66	0.68	0.27	0.73	0.10	0.40
13	0.42	1.22	0.18	1.49	0.21	0.62	0.16	0.72	0.29	0.40
$14^{\text {FI }}$	0.60	0.60	0.40	0.40	0.40	0.60	0.30	0.60	0.30	0.40

${ }^{\text {F Assumed }}$ values. See text section 4 .
Table 15. Stock size of HADDOCK (in 000's) 1967-1976 estimated by VPA for M $=0.20$.

Age	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
3	298061	19885	18373	169762	98461	1086180	271122	54377	77782	150310
4	177201	229667	15688	13671	118265	78826	682228	158909	35804	54639
5	42563	107890	127335	11075	9026	74916	44565	326865	92646	16704
6	71648	22734	51388	64351	7384	6256	23238	15102	188482	45512
7	25034	35604	11668	25095	32971	5218	2274	12858	7148	109664
8	4146	12541	15209	6313	13417	18664	2832	1485	6816	3936
9	948	1947	5536	8036	3398	8237	9246	1938	873	4468
10	530	580	1007	3075	4801	2040	4385	6058	1033	632
11	461	276	312	542	1865	2993	869	3117	3128	728
12	116	238	135	217	295	1195	1565	580	1713	2111
13	86	28	93	72	154	125	498	975	229	1270
14	17	46	7	63	13	102	55	346	390	140

Table 16. ARCTO-NORWEGIAN COD.
The number per hour fishing for
Surveys is for 2 year old fish.

Year class	USSR Survey No. per Hour Trawling			USSR Assessment	$\begin{aligned} & \text { O-Group } \\ & \text { Surveys } \end{aligned}$	Virtual Population No. of 3 -year-olds$\times 10^{-6}$	
	$\begin{gathered} \text { Sub-area } \\ \text { I } \end{gathered}$	$\begin{aligned} & \text { Division } \\ & \text { IIb } \end{aligned}$	Mean				
						$\mathrm{M}=0.2$	$\mathrm{M}=0.3$
1957	12	16	13	-Average		791	1060
1958	16	24	19	+Average		919	I 252
1959	18	14	16	+Average		730	1046
1960	9	19	13	Poor		473	699
1961	2	2	2	Poor		340	530
1962	7	4	6	Poor		778	1160
1963	21	120	76	Rich		1581	2251
1964	49	45	46	Rich		1294	1824
1965	<1	<1	<1	Very poor	6	163	241
1966	2	<1	1	Very poor	<1	109	166
1967	1	<1	1	Very poor	34	201	306
1968	7	1	5	Poor	25	423	622
1969	11	6	9	Poor	93	1156	1663
1970	74	86	76	Rich	606	2097	2808
1971	37	24	32	+Average	157	(734)	(1 008)
1972	53	17	40	+Average	140	(979)	(1326)
1973				+Average	684	(1 384	(1 685)
1974	(11)	(1)	(7)	Poor	51	(525)	(700)
1975 1976	(234)	(1)	(130)	Rich	343 43	(1 000)	(1 200)

$(\quad)=$ estimated.
Table 17. ARCTO-NORWEGIAN HADDOCK.

Year class	USSR Survey No. per Hour Trawling Sub-area I	0-Group Surveys	Virtual Population No. of 3 -year-olds $\times 10^{-6} *$
1957	9		242
1958	4		110
1959	14		241
1960	40		276
1961	50		319
1962	3		100
1963	9		245
1964	12		298
1965	<1	7	20
1966	<1	<1	18
1967	13	42	170
1968	<1	8	98
1969	69	82	1086
1970	38	115	271
1971	3	73	(54)
1972	9	46	(78)
1973	9 (35)	54	(150)
1974	(35)	147	(275)
1975	(168)	170	(900)
1976	(≤ 1)	112	

Table 18．Estimates of the spawning stock and the year class strength for COD．Estimates from VPA．

$\begin{gathered} n \\ 0 \\ 11 \\ \Sigma \end{gathered}$		Mサんた下み゙ サーナr rrrrror
	$\begin{aligned} & \mathscr{H} \\ & \tilde{0} \\ & 0-1 \end{aligned}$	
$\begin{gathered} \sim \\ 0 \\ \vdots \\ \Sigma \end{gathered}$		 H－H HH H N $\stackrel{\rightharpoonup}{-}$
		 $\rightarrow-r+r$ ت゙
	$\begin{aligned} & \text { H } \\ & \text { ๗ } \\ & 0 \end{aligned}$	

Table 19. Estimates of the spawning stock and the year class strength for $H A D D O C K$. Estimated from VPA for $M=0.20$.

Year	Spawning stock biomass tons $x 10^{-3}$	Year class	Year class strength at 3 years old Millions
		1947	67
		1948	552
		1949	63
1950	270	1950	1029
1951	151	1951	127
1952	95	1952	52
1953	66	1953	169
1954	179	1954	53
1955	156	1955	69
1956	474	1956	325
1957	324	1957	241
1958	202	1958	110
1959	160	1959	240
1960	129	1960	276
1961	105	1961	319
1962	147	1962	100
1963	106	1963	245
1964	67	1964	298
1965	76	1965	20
1966	140	1966	18
1967	193	1967	170
1968	166	1968	98
1969	178	1969	1086
1970	225	1970	271
1971	172	1971	(54)
1972	137	1972	(78)
1973	122	1973	(150)
1974	122	1974	(275)
1975	328	1975	(900)
1976	334		
1977	(263)		
1978	(217)		
1979	(209)		

() = provisional figures.
Table 20. Parameters used in the catch prediction.

Age	COD			HADDOCK		
	Stock size beginning of 1978 (millions of fish)*	Proportion of F (adult) 1976-1978	Mean weight per age (kgs)	Stock size beginning of 1977 (millions of fish)	$\begin{aligned} & \text { Proportion of } \\ & \text { F (adult) } \\ & 1976-1978 \end{aligned}$	Mean weight per age (kgs)
3	$\begin{array}{ll} 1 & 200.0 \\ 1 & 000.0 \end{array}$	0.10	0.65	(900.0)	0.37	0.41
4	$\begin{aligned} & 493.3 \\ & 406.8 \end{aligned}$	0.26	1.00	188.3	0.67	0.62
5	$\begin{aligned} & 768.5 \\ & 750.0 \end{aligned}$	0.40	1.55	58.4	1.00	0.97
6	$\begin{aligned} & 364.8 \\ & 341.9 \end{aligned}$	0.50	2.35	15.1	0.90	1.59
7	$\begin{aligned} & 149.2 \\ & 142.4 \end{aligned}$	0.60	3.45	4.0	0.67	2.33
8	$\begin{aligned} & 161.1 \\ & 152.2 \end{aligned}$	1.00	4.70	12.8	0.67	2.72
9	$\begin{aligned} & 46.0 \\ & 42.4 \end{aligned}$	1.00	6.17	35.6	0.67	3.56
10	$\begin{aligned} & 6.9 \\ & 6.2 \end{aligned}$	1.00	7.70	1.3	0.67	4.41
11	$\begin{aligned} & 2.0 \\ & 1.8 \end{aligned}$	1.00	9.25	1.5	0.67	5.40
12	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	1.00	10.85	0.20	0.67	6.70
13	$\begin{aligned} & 0.22 \\ & 0.2 \end{aligned}$	1.00	12.50	0.24	0.67	$7 \cdot 40$
14	$\begin{aligned} & 0.19 \\ & 0.17 \end{aligned}$	1.00	13.90	0.68	0.67	8.00

$$
i_{1}
$$

Figure 3. Nortn-East Arctic Cod.
Curves of yield and spawning stock biomass for the present exploitation pattern assuming average recruitment.

Fishing mortality on age groups subject to maximum exploitation

Figure 4. Haddock.
Curves of yield per recruit and spawning stock biomass per recruit for present exploitation pattern.

[^0]: x) General Secretary ICES
 Charlottenlund Slot, 2920 Charlottenlund, Denmark

[^1]: ${ }^{\text {x }}$ Provisional figures

[^2]: \#rovisional figures

 1) Murman cod included
[^3]: Provisional figures
 рәрntout সooppeq uewxnқ

[^4]: \# Provisional figures.

[^5]: 포Amed values. See text section 4 .

[^6]: Provisional figures．

