This paper not to be cited without prior reference to the Council ${ }^{\text {x }}$)

International Council for the Exploration of the Sea
C.M.1976/H:3

Pelagic Fish (N) Committee Ref. Pel. Fish (S) Cttee

REPORT OF THE MACKEREL WORKING GROUP

8 - 12 March 1976, Charlottenlund, Denmark

1. Introduction

At the Statutory Meeting of ICES in Montreal in October 1975 it was decided to convene the Mackerel Working Group "... to reassess the mackerel stocks in Sub-areas III, IV and VII, and to plan for egg and larval surveys and hydroacoustic survey in the area south of Ireland, including the French continental shelf" (Res. 1975 + II(9)).

The Group met at Charlottenlund, 8-12 March 1976, with the following participating members:

Mr E. Bakken (Chairman) Norway
Dr S.S. Fedorov USSR
Dr J. Guéguen France
Mr M. Liwoch Poland
Dr S.J. Lockwood U.K. (England)
Mr A.S. Malkov
USSR
Mr S. Munch-Petersen Denmark
Mr K. Postuma
Netherlands
Mr A. Saville
U.K. (Scotland)
x) General Secretary

ICES
2920 CHARLOTTENLUND Denmark

The assessments outlined in the previous report of the Group (Anon. 1975) were mainly based on catch reports and estimates relating to the North Sea stock based on Norwegian mackerel taggings. At the meeting reported here, the working Group considered all relevant data now available with the aim of improving reliability by the use of different, independent methods.

Two mackerel stocks were considered: the one overwintering in the North Sea (here termed the North Sea stock), and the one overwintering in the Celtic Sea area (here termed the Western stock). The stocks are mainly found in Sub-areas III, IV and in VI, VII respectively, but taggings have shown that they are not confined to these areas as, e.g. mackerel from Subarea VII migrate to Sub-area IV in summer.

Stock size estimates refer to these two separate stocks, whereas catch summary tables relate to ICES areas, not the separate stocks.
2. The fisheries
2.1. The North Sea

Although the data are provisional estimates, total landings in 1975 were about 314000 tons (Table 2.1.1), which is nearly the same figure as in 1974. The 3% increment can be attributed to the increase in Danish, Faroes and Soviet catches (147\%, 25\% and 227\% respectively).

The catches of the third and fourth quarters (Table 2.1.3, 2.1.4 and 2.1.5) are now of the same order and represent 84% of the annual total. Between 1974 and 1975 summer landings from Division IVa have been reduced by more than one half whilst autumn landings doubled.

The numbers of mackerel at each age in the catches in Division IVa, IVb, IVc and Sub-area II are shown in Table 2.1.2. Norwegian, Dutch and Scottish catch data in numbers at each age, covering about 70% of the total catch by weight from these areas
were available. From these data it is clear that no 0-group mackerel were landed in the years 1972-75, and that the yearclass 1969 is still predominant in the catches of 1975.

2.2 The Western area

The trend pointed out in 1974 is still the same. In 1975 the total landings of 295380 tons (Table 2.2 .1) represented an increase of 19% on those of the previous year and 241% of those of 1971. In this amount the catches of Spain are not included, as they have not yet been reported, neither have those of some non-member countries, which, are thought to be significant, but cannot be estimated.

The increased catches were taken in the Irish Sea, the Celtic Sea and Bristol Channel (Division VIIa and VIIe-k). These Divisions accounted for 81% of the landings attributed to the western fishery. One can note an important drop in Faroese, French and Norwegian catch, as well as an increase in that of nearly all other countries.

Because of the importance of "not specified" in landing statistics (Tables $2.1 .3,2.1 .4$ and 2.1 .5) it is difficult to specify a precise season for the major catches. From what is known of the behaviour of mackerel it can be assumed that the fishery is mainly based on late autumn and winter concentrations. It is important that in future the Working Group receive statistics of landings split on a quarterly basis.

The numbers of mackerel at each age in the catches in Division VIa, VIb and VIIa-k are shown in Table 2.2.2. Data on numbers at each age of the Dutch, English, French and percentage distributions of the Sovjet and Scottish catches were available, covering about 80% of the total catch made in the Divisions mentioned. These data were applied to the total catch in the Western area.

In the previous Mackerel Working Group Reports (Anon. 1974 and 1975), the existence of two mackerel stocks was recognized, the North Sea stock and the Western stock. For assessment purposes the two stocks are considered as being separate management units but there is increasing evidence that the Western stock has at least two components.

3.1.
 Tagging returns

Western stock mackerel were tagged throughout the Celtic Sea area during the l960s by Bolster (1974) and each May since 1970 south of Ireland by Hamre (1975). Returns from these releases show that part of the Western stock migrates north, from the Celtic Sea in spring to the region of Shetland in summer. Here it mixes with the North Sea stock. Bolster's work also shows that part of the Western stock migrates eastward into the English Channel and the central-southern North Sea. Fish tagged in this area during summer by Zijlstra and Postuma (1965) have been recovered from the Celtic sea area. This indicates that Western stock mackerel which overwinter in the Celtic Sea area may contribute both to the Celtic Sea spawning and the North Sea spawning.

3.2. Mean weight-at-age

Mean weight-at-age data were presented for six countries, England, France, Netherland, Norway, Poland and Scotland, although they did not all have data for all areas in all quarters. The weighted mean weight-at-age by areas and quarters are given in Table 3.2.1.

These data show a reasonably consistent age/weight relationship by quarter within Division with the exception of the fourth quarter in Sub-area VII. Postuma (in prep.), analysing the Dutch data, found that the age/weight curve for the fourth
quarter in Sub-area VII was significantly higher than in the earlier quarters. The relationship is closer to that found in Divisions IVa and VIa, while the relationships during the first and third quarters are closer to those in Divisions IVb and IVc. Postuma suggests that this may be related to the migration pattern shown by tagging; there is a faster growing component in the western stock, closer in weight-at-age to the North Sea population at Shetland. The residual component is slower growing and is closer in weight-at-age to those found in Divisions IVb and IVc.
4. Stock sizes and mortalities
4.1. Number per year-class caught from the North sea stock

In Table 4.l.l the number per year-class caught from the North Sea stock in the period 1972-75 are shown. There are no adequate age composition data available to permit this to be estimated for earlier years. The numbers per year-class were estimated by subracting from the numbers caught in Sub-area IV and II, (Table 2.l.2) the part of the Western stock present in Norwegian purse seine catches, in the Shetland area, using the annual ratios per age groups of the Western stock to the North Sea stock in the shetland area as estimated by Hamre (1975). These numbers were used in a VPA.
4.2. Number per year-class caught from the western stock

In Table 4.2 .1 the number per year-class of mackerel caught from the Western stock in the period 1972-75 are shown. These numbers were arrived at by adding to the numbers caught in the Sub-areas VI and VII (Table 2.2.2), the part of the Western stock caught in the Norwegian purse seine fishery in the Shetland area. These numbers were used in a VPA.
4.3. Natural mortality

In the absence of further evidence the assumed natural mortality of 0.2 for both the North Sea stock and the Western stock used in previous reports of the Mackerel Working Group was retained.

```
4.4. Fishing mortalities
4.4.1. Fishing mortality of the North Sea stock
```

Survival rates from the tagging data were calculated from the number of tagged mackerel released and the recaptures over several fishing seasons (Table 4.4.1). It was assumed that mortality due to tagging is constant from year to year. The survival rate (S) was calculated from the equation given by Hamre (1975).

The calculated annual survival rates (S) and the corresponding instantaneous total mortality rate (Z) are given in the two last columns of Table 4.4.1. With the assumed natural mortality rate of 0.2 as given in paragraph 4.3 , the following fishing mortalities (F) are estimated:
Year-class
1969 older

$1969-70$		1.00
$1970-71$	0.31	0.40
$1971-72$	neg.	0.17
$1972-73$	0.14	0.33
$1973-74$	0.15	0.28
$1974-75$	0.15	0.49

In these mortality estimates no allowance is made for a possible emigration of the North Sea stock to the Western area or visa versa.

Using the catch in numbers at each age (Table 4.1.1) and an input $M=0.2$ a VPA was carried out.

It was realised that using the conventional VPA technique with only four years catch data, no accurate measure of fishing mortality rates would be obtained unless there was a reliable estimate of the fishing mortality rate for the last year for which there was catch data. However, if one has a reliable estimate of F in any of the years for which there are catch data, one can try different input $F^{\prime} s$ for the last year until one obtains an F from the VPA for the year for which one has an independent estimate which coincides with that estimate. This

VPA will then give as good estimates of F and stock size for all the years for which there are good catch in numbers data as the reference F used in the calculation.

From the results of the tagging data reported by Hamre (1975) it was decided that the best estimate of F for the North Sea stock in the period 1973-75 was that of 0.15 for 1974 . By an interative procedure an input F for 1975 was estimated which gave the closest approximation to this as an output value from VPA for 1974.

Table 4.4.2 shows fishing mortalities in the period 1972-75 for the different ages, with weighted F for mackerel 73 years. Since 1972 fishing mortality of the adult part of the stock in the North Sea appears to have increased from 0.06 in 1972 to 0.21 in 1975.

4.4.2. Fishing mortality of the Western stock

For the Western stock the procedure described in paragraph 4.4.l could not be followed because it was considered that no sufficiently reliable estimates of F were available from any source for the period 1972-75. However, Hamre (1975) gives what were considered as reliable estimates of the proportions of the 1969 year-class originating from the Western and North Sea stocks in the fishery in the Shetland area in 1974 and 1975. There are also strong indications that the mixing of the two stocks in this area are in proportion to the stock sizes, at least for the older ages. If one has reliable estimates of the abundance of a year-class in one of these stocks in a year one can then estimate from these proportions what the abundance of that year-class in the other stock would be. From the North Sea VPA using the estimated abundance of the 1969 year-class in 1974 and 1975, and Hamre's (1975) estimates of the proportions of this year-class in the Shetland fishery in these years, it was estimated that this year-class in the Western stock would be 1.032×10^{9} in 1974 and 0.546×10^{9} in 1975.

The VPA for the Western stock was then run with various input

F's for 1975 until values close to those for the abundance of the 1969 year-class were obtained. It is aporeciated that this procedure is very dependent on the evidence that the proportions of the 1969 year-class in the Shetland area reflects the proportion of its abundance in the two stocks. However, the VPA procedure suggests this may well be true as it gave very close approximations to the estimated values in both years. In the absence of any other method of estimating the 1975 input F it was decided that this procedure would give the most reliable value obtainable with the data currently available.

In Table 4.4.3 fishing mortalities are shown for the period 1972-75 for the different ages with a weighted F for mackerel >3 years. Since 1972, also in the Western stock, the fishing mortality has increased considerably, e.g. from 0.013 in 1972 to 0.108 in 1974 and 0.18 in 1975 .

4.5. Stock sizes

4.5.1. The North Sea stock size

Mackerel have been tagged in the North sea in late summer every year since 1969. The number of released mackerel has varied from about 3500 to 11000 each year.

The number of recovered tags from the Norwegian fishery is given in Table 4.4 .1 together with the calculated survival rates. The tagging technique, the system of recovering tags in reduction plants, and the methods of calculation are given by Hamre (1975).

As pointed out previously, the catches in later years have been dominated by the 1969 year-class. The annual survival rates of this year-class has been about 0.7 in the last three fishing seasons (1 September - 31 August the following year) as calculated from tag returns. For the year-classes older than the 1969, the survival rates were reduced from 0.6 in the 1972-73 and 1973-74 seasons to 0.5 in the $1974-75$ season.

On the basis of the calculated survival rates, the number of tagged mackerel in the sea within seasons were calculated (Table 4.5.1 and 4.5.2) . The relationship between these numbers and the number of recaptures in the catch which has been effectively screened for tags, provides an estimate of the stock in number taking into account the initial tagging mortality.

The estimates of the stock derived in this way are as follows:

Stock size $\left(x 10^{6}\right)$ at 1 September

	1970	1971	1972	1973	1974	1975
1969 yearclass	1207	1676	2272	1759	1198	999
Older	1173	555	1469	956	315	315
Total	2380	2231	3741	2715	1513	1314

To estimate the size of the stock at the beginning of the year the catches taken by the Norwegian fishery after 1 September and an assumed natural mortality over the last four months of the year, set to 5%, have been subtracted from the values given above. The following stock sizes are estimated:

Stock size $\left(x 10^{6}\right)$ at 1 January

	1971	1972	1973	1974	1975	1976			
1969 year-class and older	1835	2	014	3	416	2	273	1	282

The tagging data give estimates of the number of mackerel from the 1969 year-class and older, but do not provide a sufficient basis for estimates of the younger age groups. These age groups constitute a small portion of the exploited stock, and consequently very few have been available in the catches taken for tagging.

The low number of tagged, younger mackerel in the sea are therefore at present not giving reliable estimates of survival and stock size of these groups.

In Table 4.5 .3 the stock sizes in numbers of fish up to seven year old derived from the VPA for the period 1972-75 are shown.

Since 1972 these adult stock sizes have decreased in number from 4088×10^{6} in 1972 to 2018×10^{6} in 1975 , and in weight from 914×10^{3} tons in 1972 to 729×10^{3} tons in 1975.

The weight of the stock was estimated by applying the mean weight-at-age in the first quarter given by Castello and Hamre (1969) to the number per age group of the stock in the different years. This data on mean weight-at-age was used in preference to those given in Table 3.2 .1 because the greater number of observations available made it appear more reliable. A comparison of the estimated North Sea stock in number ($\mathrm{x} 10^{6}$) from tagging (1969 year-class and older) and from VPA (age $\overline{>} 3$ years is shown below:

Estimated stock size $\left(x 10^{6}\right)$ at 1 January

	1972	1973	1974	1975			
Taggings	2	014	3	416	2	373	1

These estimates are in close agreement, and show that recruitment to this stock in recent years has been poor.

4.5.2. The Western stock size

In Table 4.5 .4 the stock sizes in number at ages up to six years as derived from the VPA for the period 1972-75 are shown. As in the North Sea stock the Western one has decreased from $10572 \times 10^{\prime}$ in 1972 to 3028×10^{6} in 1975. As available data from the Western stock for weight-at-age in the first quarter of the year
do not seem to be representative for the stock as a whole, it was thought better not to estimate the weights of the stock at l Janauary as this might be biased. No strong year-class has been recruited to the Western stock in recent years.

4.5.3. Catch per unit effort

The Working Group considered the available catch per unit effort data which only cover the most recent years. Data are available from the Dutch, English and Scottish fisheries.

The Dutch data refer to a herring-directed fishery and the Scottish data to a white fish fishery in which mackerel is taken as by-catch. This may imply that these catch per unit effort figures for mackerel reflect the density of the stock better than if it had been a specialized mackerel fishery. When comparing the calculated stock size for the North Sea (l September) on the basis of tagging with the Scottish and Dutch catch per unit effort figures for July-September, there seems to be a reasonable corespondence (Fig. 4.5).

The English catch per unit effort data are derived from the mackerel hand-line fishery off south-west England (Division VIIe,f). Such data are available from November 1972.

The catch per unit effort of the total catch and the largecategory (fish over 450 grams) show a seasonal change in abundance with a peak during December and January. Seasonal maximum values, and a simple integrated seasonal mean (September-March) are listed below:

	$1972 / 73$	$1973 / 74$	$1974 / 75$	$1975 / 76$
Maximum	0.50	0.52	0.37	0.40
Integrated mean	0.27	0.23	0.16	0.10
	(tons per	100 hook hours)		

All catch per unit effort data show a marked decline in abundance of both the North Sea and the Western stock.
5. Total allowable catch (TAC)
5.1. North Sea TAC for 1977

In calculating the TAC for the North Sea stock in 1977 the basic input data was the estimate of stock in number per age group at 1 January 1975 given in Table 4.5 .3 and the estimated F value for this stock in 1975 given in Table 4.4.2. From these the stock surviving to 1 January 1976 was calculated and is shown in the text table below. In the North sea stock the mean fishing mortality rate on l-year-old fish in 1972-74 was about 10% of that on the older age groups and this value was used in estimating the stock of 2-year-olds in 1976 from the catch in number of l-year-olds in 1975. For calculation of the stock at 1 January 1977 recruitment of l-year-old fish in 1976 and 1977 was assumed to be as the mean recruitment level of l-yearold fish in the years 1971-1974 from VPA.

In calculating stock size it is also necessary to make some assumption about the exploitation rate on the stock in 1976. In the light of NEAFC and Norwegian national restrictions on the fishing for this stock it was assumed that the F in 1976 would be maintained at the 1975 level. This will produce a catch in 1976 from this stock of 158000 tons. The resulting stock size at l January 1977 is shown in the text table below. For estimating the weight-at-age in the catch the data of Castello and Hamre (1969) for the last quarter of the year were used.

Age	1	2	3	4	5	6	7	>7
Stock in number $\left(x 0^{6}\right)$ at $1 / 1-76$	360	370	59	64	229	121	780	470
Stock in number $\left(x l 0^{6}\right)$ at $1 / 1-77$	360	289	272	39	43	152	81	830
Mean weight-at- age (grams) in catch	139	262	354	430	428	464	527	527

In calculating the TAC for 1977 the fishing mortality rate of 0.2 advocated in the previous report of the Working Group (Anon. 1975) has been maintained. The Fs on l-year-olds and 2-year-olds were taken as 10 and 50% of those of the fully exploited age groups. There would seem to be a need to adopt, a conservative management strategy for this stock in 1977 in the light of the evidence presented above of the decline in the size of the stock up to that date. This fishing mortality rate in 1977 applied to the estimated stock at 1 January 1977 will give a yield of 120000 tons.

5.2.
 Western stock TAC for 1977

As described above for the North Sea stock the basic data used in calculating the TAC for the Western stock in 1977 were the 1975 estimate of stock abundance given in Table 4.5.4, and the estimated F given in Table 4.4 .3 derived from VPA.

From these the stock in number at 1 January 1976 was estimated and is shown in the text table below. For this stock the fishing mortalities (Table 4.4.3) would suggest that the fishing mortality rate of l-year-old fish is about 17% of that for adult fish. The stock of l-year-olds at 1 January 1975 has accordingly been calculated from the catch in numbers of this age group using this percentage of the estimated F for older fish in that year. In setting the recruitment to this stock of l-year-olds in 1976 and 1977, the average level of recruitment (1 244×10^{6}) obtained from VPA was used. As this stock is under no regulation, the assumption had to be made that the catch in Sub-areas VI and VII in 1976 would be at a level of about 300000 tons as in 1975. In addition, there will be a catch from this stock in the Shetland area in July-September 1976. In 1974 and 1975 this has been equivalent to an F of 0.04 on the fish 5 -years-old and older which would entail a catch from this stock in the Shetland area of 60000 tons in 1976. The total F on the Western stock in 1976 would therefore be 0.21. The resulting stock size in 1977 is also shown in the text table below. In this stock there are major differences in mean weight-at-age between the catches taken during the same season in Sub-area VI and in the Shetland area, and those taken in Sub-area VII. Accordingly, the mean weight-
at-age for this stock in the catch were calculated by weighting the mean weights for these $S u b-a r e a s ~ b y ~ t h e ~ c a t c h e s ~ t a k e n ~ i n ~ t h e m, ~$ in 1975. The values used are also shown in the text table below.

Age	1	2	3	4	5	6	>6		
Stock in number $\left(x 10^{6}\right.$) at $1 / 1-76$	1	200	152	1	207	267	773	578	2
Stock in number (xl0 $)$ at $1 / 1-77$	1	200	948	120	801	177	513	2	099
Mean weight-at-age (grams) in catch	153	185	217	299	346	408	478		

As in the North Sea stock the TAC for 1977 has been calculated on the assumption of an F of 0.2 . The $T A C$ recommended is on this basis 265000 tons for 1977 for the Western stock.

5.3. TAC and stock mixing

In the previous report of the working Group it was stressed that, because of mixing of the two stocks in the Shetland area (Division IVa) in summer it was necessary to allocated part of the TAC for the Western stock to the TAC for the North Sea (Sub-area IV).

The catches taken in the Shetland area from the western stock in 1974 and 1975 are estimated as 117000 tons and 77000 tons respectively. These are fish 5-years-old and older. From the numbers of fish of these age groups in the Western stock, given in Table 4.5.4, it has been estimated that the fishery in the Shetland area generated a fishing mortality on the Western stock of 0.04 in both years.

As the fishing mortality rate on the North Sea stock in these years was fairly stable and close to the value used in calculating the TAC for the North Sea stock in 1977 , it would appear justifiable to calculate the catch taken from the Western stock in 1977 from this fishing mortality rate. This would entail a catch from the Western stock in 1977. of 45000 tons. On this basis the TAC for Sub-area IV and Division IIIa in 1977 would be 165000 tons and for Sub-areas VI and VII 220000 tons.
6.1. Current knowledge

The only egg and larval surveys carried out in recent years with the primary objective to assess mackerel spawning were those carried out by Norway, as described by Iversen (1973). A summary distribution chart of this work was presented by Hamre (1975). The surveys were restricted to the northern North Sea, $\mathrm{N} 56^{\circ}-61^{\circ}$, E 10° - W 2°.

During the same period as Iversen's work (June-July) a plankton survey of the southern and central North Sea, $N 52^{\circ}-57^{\circ}$, was carried out by England in 1972 (Johnson and Dawson, l975). This survey was carried out to assess the abundance and distribution of all pelagic fish eggs within the area, but particularly those of sprat and mackerel. In the area where the two surveys overlap there is a close level of agreement, the major mackerel egg concentration was found in the central North Sea from N $54^{\circ}-58^{\circ}$, E $0^{\circ}-7^{\circ}$. These observations are also supported by long-term records obtained from the Continuous Plankton Recorder (Bainbridge et al. 1973).

Plankton surveys made in the English Channel during 1967 and 1968 show that there is a mackerel spawning there too (Wallace and Pleasants, 1972) but it is not of the same order of magnitude.

A preliminary estimate of the North Sea spawning stock size based on these Norwegian and English surveys indicate the stock to be about 1.2×10^{6} tons in 1972 (Johnson, pers.comm.). This is in close agreement with Hamre's (1975) estimates from tagging data for that year:

Surveys carried out in the Western area, Bay of Biscay, Celtic Sea, are not so recent nor were they carried out with quantitative plankton samplers. Arbault and Lacroix (1975) found mackerel commence spawning in southern Biscay in March and the spawning spreads northwards. Corbin (1947) found mackerel eggs throughout the Celtic Sea from March to July by which time it is occuring in the English Channel and the North Sea. A summary of times for commencement, peak production and cessation of spawning are given in Table 6.l.1 and the spawning areas in Fig. 6.l.

From what is known of the geographical and temporal distribution of mackerel it is not considered practical to plan a plankton survey which covers the total spawning. As the North sea stock is adequately estimated by Norwegian tagging experiments greater priority should be given to plankton survey on the Celtic sea spawning grounds. This does not mean that mackerel egg and larval data from other plankton surveys in the North sea should not be utilized.

In the Celtic Sea area a plankton survey is probably the most reliable method of obtaining a stock size estimate independent of catch data.

Even in the Celtic Sea area there is a problem due to the long spawning period and extensive spawning area (Table 6.l.l and Fig. 6.1). To be of practical value a plankton programme would need to cover Biscay and Celtic Sea in April and May, better still mid-March to mid-June. This would require an absolute minimum of two ships for 1 month each or better four ships for 1 month each.

Unless a definite commitment to a joint programme on an adequate scale is forthcoming it is not considered worthwhile commencing an ICES mackerel egg and larval survey.

6.3. Prerecruitment surveys

In the light of the need for early measurements of year-class strength for TAC purposes, concideration should be given to international surveys of 0 - and 1 -group mackerel in both areas.

7. Acoustic surveys for stock assessment

Hydroacoustical methods have been used with good results in assessment work of several species in the ICES area. Special problems arise, however, when this method is applied to mackerel due to the low target strength of this species. This is particularly true when mackerel occur dispersed as in summer or
together with other species as e.g. blue whiting, Maurolicus sp. and euphausiids in winter in the Norwegian Trench (Hamre and Nakken, 1971).

Acoustic surveys are most appropriate when the stock being surveyed is isolated from other species. This is the case with mackerel off Cornwall during the winter months and surveys have been made each winter since 1972 by England. The surveys have been carried out both for stock assessment and acoustic gear development purposes. "Cornish stock" estimates for 1974-75 are about $0.5-1.0 \times 10^{6}$ tons with the higher values during December (unpubl. data Lowestoft). Any acoustic stock estimate is only as good as the target strength estimate for the fish and further work needs to be done here.

The surveys off Cornwall will continue, and may be expanded to include work in the Celtic and Biscay Sea.

Those equipped for such work should be encouraged to continue and valuable support may be given by other research vessels operating within the same area by recording distribution and sampling.

If the F value of 0.18 derived by the VPA for the Western stock is applied to the estimate of the stock of 1.0×10^{6} given above, this gives an estimate of the stock at 1 January 1976 of 0.68×10^{6} tons plus recruitment. The VPA estimate at this date is 2.0×10^{6} tons calculated from the text table in paragraph 5.2. This suggests that the acoustic estimate was based on a survey of only part of the overwintering distribution of this Western stock.
8.1. The catch statistics for the fisheries in 1975 show a maintenance of the 1974 level in the North Sea and an increase of about 50000 tons in the Western area. In view of the evidence from the age composition in both areas, showing rather poor recruitment in recent years, and as catches were dominated by older fish with little gain in weight this in itself suqgests increased fishing mortality rates on both stocks.
8.2. In previous reports estimates of stock sizes and fishing mortality rates have been entirely derived from Norwegian tagging experiments and as a result the Working Group has expressed considerable reservations about the reliability of the estimates for the Western stock. In this report estimates have also been made from VPA, acoustic surveys (for the Western stock) and from catch per unit effort data. Although there are still some reservations about the accuracy of the estimates some degree of agreement in the estimates from these sources has resulted in greater confidence in the final conclusions.
8.3. In both areas the data from all sourced show sharp declines in stock size and an increase in exploitation over the last four years.
8.4. The estimates of stock size in 1976 obtained from a modified VPA, incorporating parameters from tagging experiments are not considered completely reliable, but are the best available. In the light of all the evidence that the stocks are declining sharply it is considered that the lack of precision in the estimates cannot be used as grounds for not taking firm regulatory action if the stocks are not to be placed in serious jeopardy.
8.5. On this basis the TAC recommended for the North Sea stock for 1977 is 120000 tons.
8.6. For the Western stock the TAC recommended for 1977 is 265000 tons. The reduction in the TAC for this stock in 1977 compared with that previously recommended for 1976 is partly due to the deficiencies of the data previously used particularly the weight-at-age data; partly to the continuing low level of recruitment and partly to the fact that no regulatory action has been taken although recommended in the previous report.
8.7. Because the Western stock is also fished in summer in Sub-area IV it is necessary to allocate a proportion of the TAC for that stock to that area. In 1974 and 1975 when the exploitation rates for the North Sea stock were not very different from that at which the TAC has been calculated, the fishing mortality rate on the Western stock in this area was 0.04. On this basis it is estimated that 45000 tons of the Western stock TAC will be taken in Sub-area IV in 1977. As a result the mackerel TACs for 1977 are 165000 tons for Subarea IV and 220000 tons for Sub-areas VI and VII.
8.8. It is recommended that in the light of the extensive area and time period which it would be necessary to cover, priority should be given to mackerel egg and larval surveys for assessment purposes in the Celtic Sea, and even in this area these should only be considered if sufficient countries are prepared to give a firm commitment of involvment.
8.9. It is recommended that serious consideration should be given to organising 0 - and l-group surveys in both areas.
8.10. Further work on acoustic methods and acoustic surveys is required. It would appear that the latter would be most effective in the Western area.
8.11. In Sub-area VII the data on catch composition suggests that the exploitation pattern of the Western stock may not be the most appropriate one. It is recommended that at the next meeting of the Mackerel Working Group selectivity data for mackerel be requested and the whole question of exploitation pattern be dealt with more thoroughly.

9.

References

ANON. 1974. Report of the Mackerel Working Group. Coun. Meet.int. Coun.Explor.Sea, $1974(\mathrm{H}: 2): 1-14,5$ figs. [Mimeo.]

ANON. 1975. Report of the Mackerel Working Group. Coun. Meet.int. Coun.Explor.Sea, $1975(\mathrm{H}: 3): 1-15,5$ tabs., 2 figs. [Mimeo.]

ARBAULT, S. et LACROIX, N. 1975. Variation de l'abondance des ouefs et larves de maquereau dans le Golfe de Gascogne. Coun. Meet.int.Coun.Explor.Sea, 1975 (J:7): 1-10, 26 figs. [Mimec

BAINBRIDGE et al. 1974. Seasonal fluctuations in the abundance of the larvae of mackerel and herring in the North-Eastern Atlantic and North Sea. Pp. 159-169 in BLAXTER, J.H.S., ed. The early life history of fish. Springer Verlag, Berlin.

BOLSTER, G.C. 1974. The mackerel in british waters. Pp. 101-116 in HARDEN-JONES, F.R. ed. Sea fisheries research. London Elek. Science.

CASTELLO, J.P. and HAMRE, J. 1969. Age and growth of mackerel from Skagerak and the northern North Sea. Coun. Meet.int. Coun.Explor.Sea, 1969(H:7): 1-6, 4 tabs. 4 figs. [Mimeo.]

CORBIN, P.G. 1947. The spawning of mackerel, Scomber scombrus, and pilchar, Clupea pilchardus, Walbaum, in the Celtic Sea in 1937-1939. J.M.B.A. 27: 65-122.

HAMRE, J. 1975. The effect of recent changes in the North sea mackerel fishery on stock and yield. The changes in the North Sea fish stocks and their causes. Int. Coun. Explor. Sea, Symp., Aarhus, 1975 (22): 1-38. [Mimeo.]

HAMRE, J. Og NAKKEN, O. 197l. Unders申kelser av fiskeforekomster i Nordsjøen og Skagerrak i September 1970. Fiskets Gang, 4: 64-68.

IVERSEN, S.A. 1973. Utbredelse og mengde av makrellegg (Scomber scombrus) og zooplankton i Skagerrak og nordlige del av Nordsjøen for arene 1968-1972. Thesis, Univ. Bergen. [Unpublished.]

JOHNSON, P.O. and DAWSON, W.A. 1975. The distribution of eggs and larvae of some pelagic fish species in the central and southern North Sea during June 1972. Coun. Meet.int. Coun. Explor.Sea, 1975(H:13): 1-25, 2 tabs., 12 figs. [Mimeo.]

POSTUMA, K.H. 1972. On the abundance of mackerel (Scomber scombrus L.) in the northern and north-eastern North Sea in the period 1959-1969. J.Cons.int.Explor.Mer., 34 (3): 455-465.

WALLACE, P.D. and PLEASANTS, C.A. 1972. The distribution of eggs and larvae of some pelagic fish species in the English Channel and adjacent waters in 1967 and 1968. Coun. Meet. int. Coun.Explor.Sea, 1972 (J:8): 1-19.[Mimeo.]

ZILJSTRA, J.J. and POSTUMA, K. H. 1967. The Mackerel fishery of the Netherlands in 1965 in the North Sea. Ann.biol. Copenh., 22: 170 .
Table 2.l.l. Total catch of mackerel by countries, 1965-1975, in the North Sea, Skagerak and Kattegat (IVa,b,c, IIIa). Metric tons. Table 2.1.1.

	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975^{1}
3ex ${ }^{\text {a }}$ (um	138	67	201	77	139	19	85	129	78	-	38^{21}
Drnmar:	6509	7552	20282	9887	10851	26753	17590	2023	7460	3910	9681
Faroe Islands	-	-	-	-	3080	2134	3603	7551	10014	18625	23314
France	7635	5390	7486	4684	11353	4677	8953	6830	622	2218	2536
Germany, Den.Rep			-	-	-	-	-	-	-	233	142
Germany, Fed. Rop	2221	1501	2132	1353	1161	225	408	374	563	273	434
Iceland		-	105	352	612	1492	649	676	3079	4609	0
Vetherlands	16977	12247	10801	5986	4928	2956	4945	4436	2316	3253	2399
Noxway	156605	484428	866548	779084	683045	278631	200635	160141	337600	255102	2414763
Poland	3695	2294	2261	1629	12	205	130	244	561	4520	2300
Sweden	13364	13754	15246	11783	10820	4407	3157	4748	2960	3579	$\left.4636^{2}\right)$
$\begin{gathered} \text { U. F. (England } \\ + \text { Wales }) \end{gathered}$	76	99	46	55	35	35	23	32	30	61	39
$\text { U.K. (Scotland })$	1019	618	742	583	231	148	616	395	2942	330	500
U.S.S.R.	227	1778	4098	6094	$12 \quad 516$	718	2600	611	11030	8160	26741
Total	208466	529728	929948	821567	738783	322400	243394	188190	$379255!$	305013	314236

2) Preliminary data as reported to ICES
3) Provisional
4) Includes 34653 tons from Norwegian Sea (IIa)
Table 2.1.2 Catch of mackerel in number ($x 10^{6}$) by age.
North Sea area (IVa, IVb, IVc and IIIa).

Year Age	0	1	2	3	4	5	6	>6	Total
1975	-	12. 4	10.4	- 17.4	6.3	48.9	232.5	21.3	349.2
1974	-	3.1	18.8	37.4	57.0	215.8	332.6	175.7	840.4
1973	-	4. 5	12.1	38.2	206. 1	124.6	52.9	235.6	674.0
1972	-	2.6	37.0	235.8	50.9	27.8	32.2	46.3	432.6

Table 2.2.2 Catch of mackerel in number ($\mathrm{x} 10^{6}$) by age.
Western area (VIa, VIb and VII a-k.)

	0	1	2	3	4	5	6	>6	Total
1975	-	5.3	42.1	58.4	169.3	106.0	71.7	345.0	797.8
1974	-	51.0	8.1	98.7	72.9	80.8	93.1	319.1	723.7
1973	-	22. 4	22.1	54.2	106:0	103.2	43.1	189.7	540.7
1972	-	1. 0	0.1	6.7	18.5	16. 5	39.8	204.2	286.8

Table 2.l.3. Catch of mackerel in 1973 by ICES statistical divisions and periods. Metric tons.

Area	Jan-Mar	Apr-Jun	Jul-Sept	Oct-NOV	Not specified	Total
IVa	3477	4263	256542	68440	9591	342313
IVb	110	3066	14219	1305	8468	27168
IVC	1	394	361	193	839	1788
IIIa	26	1358	5503	1074	23	7983
North Sea, etc.	3614	9081	276625	71012	18921	379252
VIa	11	1061	5865	1801	9085	17823
VIb	- -	-	-	-	150	150
VIIa+f	217	4656	143	1198	33188	39402
VIIb+c	-	-	-	-	1823	1823
VIId, e	-	-	-	59	61006	61065
VIIg-k	-	27	-	-	49891	49918
Wester area	228	5744	6008	3053	155143	170181
Total	3842	14.825	282633	74070	174064	549433

Table 2.l.4. Catch of mackerel in 1974 by ICES statistical divisions and periods. Metric tons.

Area	Jan-Mar	Apr-Jun	Jul-Sept	Oct-NOV	Not specified	Total
IVa	1815	5718	202454	$57 \quad 356$	14930	282273
IVb	-	623	151	2018	9360	12152
IVc	-	-	-	-	4373	4373
IIIa	15	1596	3223	1362	-	6196
IIIb, C	-	-	-	-	19	19
North Sea, etc.	1830	7937	205828	60736	28682	305013
VIa	261	2508	10475	42508	8178	63930
VIb	-	-	-	-	210	210
VIIa+f	-	-	-	-	41401	41401
VIIb+c	-	23	-	-	2386	2409
VIId, e	-	96	-	28	65368	65492
VIIg-k	2954	2117	5286	8241	56796	$75 \quad 394$
Vb	-	75	-	-	1	76
Western area	3215	4819	15761	50777	174340	248912
Total	5045	12756	221589	111513	203022	553925

Table 2.1.5. Catch of mackerel in 1975 by ICES statistical divisions and periods. Metric tons.

Area	Jan-Mar	Apr-Jun	Jul-Sept	Oct-Nov	Not specified	Total
IVa	1167	9882	96040	119767	24472	251328
IVb	169	1355	5846	1089	2645	11.104
IVC	49	948	1273	309	736	3315
IIIa	41	3538	4573	1039	4636	13827
IIIb, c	-	-	-	-	-	0
IIa	-	-	34660	-	-	34660
North Sea, etc.	1426	15723	142392	122204	32489	314234
VIa	2045	1663	17043	2868	19474	43093
VIb	-	2	-	-	12	14
VIIa+f	117	216	787	791	64086	65997
VIIb+c	1	-	607	50	7184	7842
VIId, e	7435	803	832	21764	25265	56099
VIIg-k	9 9911	8228	3296	7691	89225	118431
Vb	-	-	-	-	40	40
VIII	-	-	-	-	3864	3864
Western area	19589	10912	22565	33164	209150	295380
Total	21015	26635	164957	155369	241639	609614

Table 2.2.1. Total catch of mackerel by countries, 1965-1975, in the western area

	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975 ${ }^{\text {I }}$)
Belgium	3	5	7	2	11	8	2	-	3	-	17
Faroe Islands	-	-	-	-	-	-	-	-	2063	8659	1748
France	14651	38309	28655	29751	27290	$35 \quad 593$	24538	29904	36501	34186	22774
Germany, Dem.Rep.		-		-	-		-	-	-	2885	$9459{ }^{2}$
Germany, Fed.Rep.	1959	302	333	613	428	783	258	98	559	993	1355
Iceland	-	-	-	-	-	90	86	74	52	-	-
Ireland	1860	1507	2245	2164	1615	1055	3107	4592	8314	8526	85003
Netherlands	1411	2831	3859	2597	4441	3828	3837	6166	7807	7262	13299
Norway	-	-	-	-	-	-	1611	-	-	32598	1907
Poland	212	3	520	1518	2149	6054	10832	13129	10536	22406	21500
U.K. (England	1583	1884	2634	2585	2692	3374	4791	6923	13124	21126	32594
and Wales)											
U.K. (N.Ireland)	111	97	158	151	279	243	315	57	93	75	30
U.K. (Scotland)	426	670	490	537	402	803	805	1412	5168	8466	14500
U.S.S.R.	54	-	-	-	6147	13555	$36 \quad 390$	71247	86000	101730	167697
Total	$22 \quad 270$	45608	38901	39918	45454	65386	86572	133602	170220	248912	295380

1) Provisional
2) Preliminary data as reported to ICES
3) Estimated by Working Group

Table 3.2.1 Mackerel mean weight (grams) at age. The values given are the weighted mean values from data supplied by: France, Netherlands, Norway, Poland, UK (England), UK (Scotland). Age + includes grouped data, older than: 7 years (Norway), 10 years France, Netherlands, Poland, UK.

* Netherlands data only.

Method of capture: Demersal trawl: France
Herring trawl: Netherlands, Poland
Pelagic trawl: Scotland
Purse seine: Norway, Scotland
Handline: England
Table 4.1.1. North Sea stock. Catch of mackerel in number ($\mathrm{x} 10^{6}$) by yearclass.

Year Yearclass	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	Total
1975				83.8	39.4	204.6	31.8	60.0	16.8	7.2	8.7	452.3
1974			70.7	15.8	41.2	244.3	64.5	35.7	18.9	2.0		493.1
1973		72.4	32.0	34.5	77.8	316.7	38.6	9.4	1.9			583.3
1972	21.7	25.3	26.2	22.6	54.8	183.5	11.9	0.1				346.1

Table 4.2.1. Western stock. Catch of mackerel in number ($\mathrm{x} 10^{6}$) by yearclass.

Year Yearclass	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	Total
1975					466.8	99.1	126.6	178.0	59.3	42.1	5.3	974.2
1974				448.1	135.1	193.1	72.9	98.7	8.1	51.0		1007.0
1973			346.7	67.3	164.5	106.0	54.2	22.1	22.4			783.2
1972		266.6	61.6	36.4	18.5	6.7	0.1	1.0				390.9

	$\begin{aligned} & 7 x o u \\ & 7 \mathrm{su} \end{aligned}$		
		앙․․․․․․․	$\stackrel{\circ}{\mathrm{m}} \stackrel{n}{\square}$
－xn7deгәх uns			$\begin{array}{llllll} N & 0 & N & 0 & 0 & \stackrel{i n}{N} \\ \infty & \underset{\sim}{n} & \underset{\sim}{N} & \underset{\sim}{N} & \underset{\sim}{7} \end{array}$
		$\stackrel{\sim}{\sim} \underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{\sim} \underset{\sim}{\underset{\sim}{N}} \underset{\sim}{-1} \underset{\sim}{\sim}$	๑ へ1
	n ω H N		$\sim m \in \cap \infty$
			$\infty \underset{\sim}{M} \underset{\sim}{\sim}$ 욱
	$$		
			$\begin{aligned} & \square 0 \text { N } \\ & 0 \text { O } \\ & 0 \text { H } \end{aligned}$
			$\begin{aligned} & \underset{\sim}{r} \underset{m}{o} \\ & \text { n } \\ & \underset{\sim}{n} \underset{\sim}{m} \end{aligned}$
			$\stackrel{n}{\sim}$ $\underset{\text { N }}{\underset{\sim}{n}}$
			m

1）Not included in calculations

Table 4.4.2. Fishing mortalities from VPA and weighted mean values of F of the North Sea stock.

Age Season				
0	-	1972	-	1974
1	0.0002	0.012	0.023	0.021
2	0.011	0.018	0.162	0.105
3	0.066	0.111	0.089	0.210
4	0.098	0.154	0.276	0.210
5	0.109	0.196	0.171	0.210
6		0.243	0.151	0.210
		0.134	0.166	0.210
age $\geq 3 \mathrm{yr}$				

Table 4.4.3. Fishing mortalities from VPA and weighted mean values of the Western stock.

Table 4.5.1.
Calculated number of surviving tagged mackerel of the 1969-yearclass of
indicates catch in is the estimated stock N season. number ($x 10^{6}$) effectively screened for tags, at 1 September and N_{2} is the stock corrected for tagging mortality (15\%). Survival rates from Table 4.4.1.

	No. re	as	1970-71	1971-72	1972-73	1973-74	1974-75	1975
		S	0.60	(0.84)	0.71	0.70	0.70	0.70
1970	1085		1085	640	538	382	267	187
1971	6900			6900	5796	4115	2881	2017
1972	9447				(9447)	6.707	4695	3287
1973	4642					4642	3249	2274
1974	2740						2740	1918
1975	4.716							4716
Sums			1085	7540	6334	15846	13832	14399
Recaptures			36	161	242	1146	1184	1225
P			47.1	42.1	102.1	149.7	120.6	100.0
N_{1}			1420	1972	$\left(\begin{array}{l}2672\end{array}\right)$	2070	1409	1175
N_{2}			1207	1676	2272	1759	1198	999

Table 4.5.2. Calculated number of surviving tagged mackerel of the North Sea stock older (Table

Table 4.5.3. North Sea stock. Calculated stock sizes in number $\left(x 10^{6}\right)$ by age and year at 1 January. $(M=0.2)$.

Year Age	1972	1973	1974	1975
0				
1	706	173	99	462
2	501	578	140	80
3	3197	406	465	90
4	650	2452	297	348
5	241	483	1721	185
6		177	325	1188
7	$\}$ (1432)	$\}$ (916)	114	229
27			(509)	(486)
Total adult (3-7 yr) stock	$\begin{array}{r} 4088 \\ +(1432) \end{array}$	$\begin{array}{r} 3518 \\ +(916) \end{array}$	$\begin{gathered} 2922 \\ +(509) \end{gathered}$	$\begin{gathered} 2018 \\ +(486) \end{gathered}$
Adult (3-7 yr) stock biomass, x 10^{3} tons	913.8	973.2	923.6	729.0

Table 4.5.4. Western stock. Calculated stock size in number ($\mathrm{x} 10^{6}$) by age and year at 1 January. ($\mathrm{M}=0.2$).

Year	1972	1973	1974	1975
Age				
0				
1	2254	618	1914	192
2	1734	1844	485	1521
3	1675	1420	1490	390
4	2411	1365	1113	1131
5	1233	1957	1023	845
6	5253	976	1453	662
(22769)	(5023)	(4821)	(3117)	
Total adult	10572	5718	5079	3028
$(3-6$ yr) stock	$+(22769)$	$+(5023)$	$+(4821)$	$+(3117)$

Table 6.1.1 Timing estimates for mackerel ege and larval production

Fig. 4.5 Mackerel stock size in the North Sea as derived from tagging compared to measures of catch per unit of effort (C.P.U.E.) from various mackerel fisheries.

1. Stock size (1969-yearclass + older yearclass) at 1 Sept
2. C.p.u.e. Scottish trawl fishery (Orkney-Shetland)
3.
4. "
" " " (Cape Butt)
(Cape Butt)
(North Sea) \quad July-Sept
5. " English hand-line fishery (Div. VII e,f) Sept-March

Fig. 6.1. Mackerel spawning areas
(from egg distribution)

