Contents

Page

1. Introduction 1
2. Biology 1
2.1 Catch composition 1
2.2 Growth 2
2.3 Recruitment 2
2.4 Mortality 2
2.5 Survival of discards 2
3. The Pisheries 3
3.1 Nominal catch and fishing effort 3
3.2 The nature of the fisheries 3
3.3 Market limitations 6
4. Selection 6
5. Conservation Measures 8
5.1 Restriction of grounds 8
5.2 Restriction of vessels and gears 8
5.3 Total allowable catch limitation 8
5.4 Closed seasons 8
5.5 Mesh regulation 8
5.6 Minimum legal landing size 8
5.7 Protection of berried females 9
6. Effects of Regulations on the BymCatch and the Conservation of the Protected Species 9
7. Estimates of Future Catches 10
8. Conclusions 10
9. References 10
Tables 1 - 18 11
Figures 1 and 2 25
APPENDIX: A Preliminary Assessment of the Firth of Fonth Stock of Nephrops, by R Jones 27
Appendix Tables I - 12 33
Annex: Worksheet snowing sample cohort analysis of length composition data (Period 1967-1973) 40

1. Introduction

1. 1 The Working Group on Nephrops Stocks met at Charlottenlund, 21-23 January 1975, with the following terms of reference (C.Res.1974/2:11):
"It was decided, that a Working Group should be set up to meet for three days (21-23 January 1975) in Copenhagen to evaluate the state of the Nephrops stocks and the effects of changes in managementi, particularly in relation to NEAFC Recommendations 2 and 4, on the fisheries for Nephrops and associated by-cetch species. The Group, to be convened by Dr. H J Thomas, will report to the Liaison Committee and to the 1975 Statutory Meeting".
I. 2 The following scientists participated:

Dr O Bagge	Denmark
Dr R Boddeke	Netherlands
M A Charuau	France
M J Dardignac	France
Dr B I Dybern	Sweden
Dr E Edwards	U.K.
Mr H Eiriksson	Iceland
Dr J M de Figueiredo	Portugal
Mr K Gundersen	Norway
Dr J P Hillis	Ireland
Dr R Meixner	Germany, FoR。
Mr S MunchmPetersen	Denmark
Dr H I Thomas (Chairman)	U.K.

Mr David Griffith, ICES Statistician, also attended the meeting。

2. Biology

2.1 Catch composition
2.1.1 Values of the ratio (No, of females/ 100 males) are well under 100 for most of the year, but peak values usually exceed 100, or sometimes 200. Peak values occur in JunemAugust off Scotland and Ireland, but in some northerly areas (north-east England, Skagerak and Iceland) two peaks are found - one in February-April and another in October-December. High female/male ratios are believed to be due to heavy fishing causing a greater increase in adult male mortality than in adult females. These data are modified by the presence of juveniles, among which the sex ratio remains closer to unity.
2.1.2 Off the United Kingdom, Ireland and Portugel the maximum percentage of recently spawned externally borne eggs occurs in August-October, in the Bay of Biscay in June-July, but in Icelandic waters it occurs in May-June. The eggs are borne externally for an incubation period which varies with latitude - six to seven months off Portugal to twelve months in Icelandic waters.
2.1.3 The 50\% maturity size varies from country to country, the highest values having been found in Portuguese and Swedish waters, both at about 32 mm cara pace length. Around Iceland and Ireland this size is rather constant from $23-25 \mathrm{~mm}$ carapace length. The size of the smallest berried females also varies accordingly, ranging from 18 mm to 22 mm carapace length in Irish and Icelandic waters and 26 mm and 27 mm respectively for Portugal and Sweden.

	50% maturity size (carapace length, mm)	Minimum maturity size (carapace length, mm)
Iceland	25	22
Sweden	32	27
Scotland	23	20
Northern Ireland	23	$18-19$
Ireland	24	21
Bay of Biscay	$24-25$	22
Portugal	32	26

2.2 Growth

Aquarium data support those of field studies on modal distribution. Irish Sea data give December carapace-length modal values of $18 \mathrm{~mm}, 23 \mathrm{~mm}, 28 \mathrm{~mm}$, and 33 mm approximately. Around Iceland, tagging data for Nephrops averaging 45 mm carapace length give an average increment of 3 mm over a 7 -month period for 50% of Nephrops moulting from September to April. Data for the Bay of Biscay taken in November, show modes at 15 mm and 24 mm carapace length, and the progression of the lowest mode through 12 months suggests that this is annual growth.

2.3 Recruitment

No data are available on the annual recruitment to catchable stocks. Around the United Kingdom Nephrops first appear in the catch at a carapace length of $16 \mathrm{~mm}-$ 18 mm between June and September. Work in the Irish Sea suggests that these belong to age group I. In the Bay of Biscay recruitment to the catchable stock occurs in November at a carapace length of $14 \mathrm{~mm}=16 \mathrm{~mm}$ 。

2.4 Mortality

Mark-recapture experiments have not provided any reliable mortality data. On the basis of an assessment using the method of Jones (1974), assuming that $\mathbb{M} \leq 1$, that $K_{f e m a l e s}=0.06$ and that $K_{\text {maler }}=0.1$, the total mortality coefficient Z may be given as 0.5 . (An application of Jones' method to the Firth of Forth stock of Nephrops may be found as an Appendix to this Report). Calculations on Irish Sea data, however, based on the numerical strength of assumed age groups ($\log _{e} \mathbb{N}_{t}>1=\log _{e} \mathbb{N}_{t+1>2}=Z$) suggest that Z is close to 1.0 for this range of age groups.

2.5 Survival of discards

Work in the northem Irish sjea has shown that 70% of Nephrops caught survived on deck for 15 minutes and 40% survived for 3 hours. Icelandic work has shown that about 60% survived after $0:-2$ hours on deok with no variation in survival with varying exposure time (up to 2 hours). Recent work by Loew (1974), however, shows that permanent blincmess results from 2 hours exposure to daylight. These factors and the uncertain'ty of surviving Nephrops finding a suitable substrate, will combine to give a generally low survival rate of discards.

3. The Fisheries

3.1 Nominal catch and fishing effort

3.1.1 Tables 1 and 2 give a breakdown of the annual catches of Nephrops for the years 1950, 1955 and 1960-1973. In the period 1960-1973, marked increases (by factors of 2.5 to 15.0) have occurred in ICES fishing areas IVa, IVb, VIa, VIIa and VIII. In fishing areas IIIa, Va, VIIb, c, VIIg-k and IX, catches have fluctuated throughout this period.
3.1.2 In the waters around the United Kingdom and Ireland, the greatest increase
in effort was seen prion to 1960 . Since then, the effort has increased.
further, as it also has in most other areas (Table 3).
3.1.3 The catch per unit of effort since 1960 has fluctuated widely without any obvious trend (Table 4), although around Iceland - where data are available from the commencement of the fishery - catch per unit of effort has shown a downward trend since 1960.
3.1.4 In those areas where data are available, there has been a decrease in the mean carapace length of Nephrops since 1960 (Table 5).
3.1.5 In ICES statistical Divisions IIIa, IVa, IVb, Va, VIa and VIIa, fishing for Nephrops is mainly carried out within $3-12$ miles of the coast. In Division VII g-k and in the Bay of Biscay (Sub-area VIII) fishing takes place more than 12 miles offshore. In Sub-area IX, trawling is forbidden within 6 miles of the coast of Portugal.
3.2 The nature of the fisheries

The following summary of national fisheries describes, for each country, the types of boats and gear in use (all mesh sizes stated refer to stretched mesh), the nature of the fishery (directed or mixed) and the constituant species of the by-catch of Nephrops-directed fisheries.

3.2.1 Belgium

Nephrops constitute a by-catch in fisheries mainly directed at other species, principally the sole. Such vessels are between 200 BHP and 500 BHP .

3.2.2 Denmark

Most of the vessels are of less than 30 GRT , and are the same as those used for other trawl fisheries in Danish waters. The principal part of the Nephrops catch arises from a specialised Nephrops fishery using a Nephrops trawl. A small part of the landings is derived from a shrimp fishery using shrimp gear. Nephrops are also landed by vessels engaged in a Pandalus fishery and in an industrial fishery. The Nephrops-directed fishery is located in the Kattegat, whereas the mixed fisheries are located in the Skagerak-North Sea. In general, cod ends of 35 mm mesh are used in the Nephrops fishery. There is a minimum legal landing size for Nephrops of 130 mm total length ($=40 \mathrm{~mm}$ carapace length) or 72 mm for tails. (The minimum size in the Faroes is 150 mm total length). In the central and southern part of the Kattegat Nephrops is the primary species taken, using 35 mm mesh nets. Tables 6 and 7 present data on the proportion of various fish species in the Nephrops-directed fisheries in these areas. The main protected species caught are cod, plaice and sole and these form a valuable by-catch.

3.2.3 France

There is an important primary fishery undertaken by smaller vessels fishing in the Bay of Biscay, but the Nephrops landings derive in part also from the fishery for whitefish. Vessels are of three classes:

Small "artisan" trawlers of about 28 GRT, 15 m long and of 150-200 BHP fishing in the Bay of Biscay (statistical Sub-area VIII);
Large "artisan" trawlers of about 50-75 GRT, 19 m long and of 300-400 BHP fishing in the Celtic Sea and off southwest Ireland (statistical Divisions VIIe,fgg and j - see small chart below ${ }^{*}$);
"Semi-industrial" trawlers of about 126 GRT, 25 m long and of 440 BHP. These fish in statistical Divisions VIIa, b and g. While Nephrops are an important part of their catches, whitefish are equally as important. Nets used in this fishery have cod ends of 50 mm and below.

The artisan fishery in the northern half of the Bay of Biscay is primarily directed at Nephrops. Nevertheless, other species - mainly young hake - are caught in large quantities and greatly contribute to the value of the catch (Tables 8 and 17). A variable, but very large proportion of hake caught ($40 \%-95 \%$ by number), is undersized and is discarded.
In the Celtic Sea the by-catch of demersal species (hake, whiting) is in general more important.
In the Irish Sea, the fishery by "semi-industrial" trawlers is a mixed one, more directed at demersal species (whiting, cod, hake) than at Nephrops.

There is a minimum legal landing size for Nephrops of 80 mm total lengtn.

* The divisions of statistical Sub-area VII shown here are used only in the domestic fishery statistics of France. The ICES statistical programme continues to use the divisional breakdown indicated in "Bulletin Statistique", namely VIIa, VIIb, c, VIId,e, VIIf, VIIg-k.
3.2.4 Germany (Federal Republic of)

The Nephrops catch constitutes a small by-catch in fisheries mainly directed at other species and the gears employed are dictated by these types of fisheries.
3.2.5 Iceland

The fishery is mainly by side trawlers. The average size of boats has increased in recent years, as has the engine power (51 GRT in 1964 to 80 GRT in 1971). The Nephrops trawl has long wings and a wire foot rope. The average headline length is 41 m . Mean mesh size in the cod end has increased from about 75 mm in 1967 to the regulated 80 mm minimum mesh size in the last few years. The majority of landings derive from a specialised Nephrops fishery, by vessels using a Nephrops trawl. There is also a small fishery off the southwest of Iceland for Pandalus, in which Nephrops is an important by-catch. Table 9 shows the average Icelandic by-catch of the Nephrops fishery during 1960-73. Main species taken are cod, haddock, ling and redfish. In recent years there has been an increase in the catch of ling, redfish and coalfish which can be partly attributed to the Nephrops boats fishing further offshore.
3.2.6 Ireland

The fishery is mainly Nephrops-directed and is undertaken by trawlers of 15 m - 2l m with engines generally between 90 BHP and 250 BHP . The nets have cod end mesh sizes of $40 \mathrm{~mm}-45 \mathrm{~mm}$. A small proportion of landings is by-catch from demersal fisheries. In the Irish Sea Nephrops fishery, whiting forms the most important by-catch and fairly large amounts of small whiting are caught (Table 10).
3.2.7 Netherlands

Nephrops are caught incidentally by cutters fishing for flatfish (sole and plaice). They fish with a motor power of $500-2000 \mathrm{BHP}$ and beam trawls with up to 16 tickler chains. The net opening of each trawl is about 10 m 12 m 。

3.2.8 Norway

The fishery is a mixed fishery, in which Pandalus plays an important part. The gear used is a Pandalus otter trawl of 35 mm mesh size, by boats of up to 21 m with 100 BHP - 400 BHP engines. Sometimes a Danish Nephrops trawl is used, but not of ten due to the loss of Pandalus which results. There is a minimum legal landing size for Nephrops of 130 mm total length ($=40 \mathrm{~mm}$ carapace length).
3.2.9 Portugal

The fishery is mainly a mixed fishery, undertaken in coastal waters by trawlers of $50 \mathrm{GRT}-200 \mathrm{GRT}$ and of $150 \mathrm{BHP}-800 \mathrm{BHP}$. Hake is the main associated species. The nets are of $60 \mathrm{~mm}=70 \mathrm{~mm}$ mesh in accordance with NFAFC Recommendation 1, but they are mainly 65 mm . Nephrops is also taken in a bottom tangle net fishery for other crustacean species by boats of up to 50 GRT and of $40 \mathrm{BHP}-400 \mathrm{BHP}$.
3.2.10 Spain

Nephrops constitutes a by-catch in trawl fisheries for other species.
3.2.11 Sweden

The Nephrops are caught by trawlers of 30 GRT to 60 GRT with engines generally from 100 BHP to 250 BHP . Most boats use fish trawls with a mesh size of 70 mm in the cod end. Some boats are allowed to fish in specified areas inside territorial limits using $60 \mathrm{~mm}-65 \mathrm{~mm}$ meshes. The fishery
may be classed as principally a mixed fishery (main byocatch species: cod, haddock, whiting and plaice) although especially during the months of July-September Nephrops is the most important species on most grounds. A very small part of the landings derives from a Pandalus fishery. There is a minimum legal landing size for Nephrops of 130 mm total length ($=40 \mathrm{~mm}$ carapace length).

3.2.12 United Kingdom

The main fishery is Nephrops-directed, and is undertaken by trawlers of $12 \mathrm{~m}-20 \mathrm{~m}$ with engines generally of $60 \mathrm{BHP}-250 \mathrm{BHP}$, using the Nephrops trawl. In this fishery the legal minimum mesh size for Nephrops trawls is 70 mm except in the Irish Sea where nets of up to 50 mm mesh are per mitted for vessels fishing wholly for Nephrops, and of 60 mm and upwards for certain vessels fishing for whiting in the northwest Irish Sea. There is also a creel fishery for Nephrops on the west coast of Scotland by boats $9 \mathrm{~m}-12 \mathrm{~m}$ with engines of $50 \mathrm{BHP}-80 \mathrm{BHP}$. Table 11 shows the species composition of the by-catch for Nephrops trawlers landing at North Shields (NE England) during the months of 1969. Cod, haddock and whiting, with dogfish to a lesser extent, form the main species. Total weights for the period 1967-73 are shown in Table 12.
The principal by-catch species in the Scottish Nephrops fishery are whiting, long rough dab, hake, dogfish and haddock in that numerical order.
In the Irish Sea various species of fish occur on the same fishing grounds as Nephrops, whiting being the main protected species of fish in the bycatch, followed by cod (Table 13). Large numbers are undersized.

3.3	Market limitations
3.3.1	In France the market limitation for ports in south Brittany is 100 mm total
	length for Nephrops taken north of $48^{\circ} \mathrm{N}$.
$3.3 .2 \quad$	In Ireland and the United Kingdom merchants do not usually accept Nephrops
	under $24 \mathrm{~mm}-25 \mathrm{~mm}$ carapace length.

4. Selection
4.1 A review of the available data on mesh selection carried out by Garrod (unpubl.) showed that:
4.l.1 Selection varies with mesh size through the trawl.
4.1.2 Diurnal and seasonal factors affect selection characteristics.
4.1.3 The length range over which selection occurs is wide and the proportion retained at different lengths is variable. This makes conventional assessment of the effect of a change in mesh size difficult. Even the largest mesh in use will retain some small Nephrops.
4.1.4 One may reasonably establish carapace lengths above which escape is impossible (i.e. 100% selection points) for different mesh sizes. The 100% point for 30 mm carapace length occurs with a uniform 50 mm mesh. Thus a trawl containing any meshes exceeding 50 mm will release some Nephrops of up to 30 mm carapace length.
4.1.5 Previous comparative fishing trials are inadequate to assess differences in fishing power between different gear. This is necessary in order to determine the effect on catch rates of a change in gear.
4.2 In experimentis in the Irish Sea in September 1974, various trawls were compared under commercial fishing conditions. Parallel hauls were made using similar commercial vessels comparing (a) dual purpose trawls with meshes of 70 mm and 40 mm respectively in the cod end and (b) the latter with a prawn trawl of 40 mm mesh throughout. Table 14 gives the results as landed catches and catch per unit of effort for both Nephrops and whiting.
4.3 The results (Table 15) showed that the use of 70 mm meshes as compared with 40 mm in the cod end of a dual purpose trawl gave a 25% reduction in the catch rate of marketable Nephrops on grounds adjacent to the coast. A long-winged prawn trawl of 40 mm mesh throughout increased the catch rate by $6 \%_{0}^{\circ}$ for marketable prawns. All nets retained a high proportion of undersized whiting ($85 \%-99 \%$) under commercial fishing conditions. This was within the average for the season and the area fished.
4.4 Figure 1 shows the selection lines derived by Garrod for 40 mm and 70 mm mesh (lines a and b). If there is no differencedue to selection the line c applies. Taking 27 mm carapace length as the minimum marketable size, the difference between the case of selection and no selection is given by the areas marked d. If there is no selection then an increase in mesh size from 40 mm to 70 mm will result in a decrease in F by 25%, because of decreased fishing power. If selection is taking place then the proportion retained at each age can be calculated and a mesh assessment carried out. The parameters used for such an assessment are shown in Table 16.
4.5 French work (Abbes et Warluzel, 1970) has examined selectivity in the cod end on Nephrops fishing grounds in the Bay of Biscay. The work showed the relative importance of the wings and belly in the selection of Nephrops, and confirms Cole's and Simpson's (1965) results which showed that selection occurred in other parts of the net as well as the cod end. They concluded that previous work based on cod end selectivity alone was inade= quate, and suggested further work using commercial fishing vessels.
4.6 Rather limited work has also been carried out by Iceland. The 50\% rejection length in the 80 mm mesh trawls appears to be about 39 mm carapace length. Fisning experiments with trawls of 42 m headine length compared with those of 50 m length showed 12% - 13% higher catches of the latter.
4.7 Some Swedish data are available on mesh selection and discards (all Nephrops less than 130 mm total length have to be discarded). Figure 2 shows the large proportion of small Nephrops taken in nets of various mesh sizes.
4.8 Various species of whitefish occur on the same fishing grounds as Nephrops and are therefore captured by the small meshed Nephrops trawls. Thomas (1965) showed that whiting (Merlangius merlangus) were among the most common whitefish by-catch off the coast of Scotland, and the catch of undersized whiting was greater in small-meshed Nephrops trawls than in the 70 mm trawls.
4.9 Watson and Parsons (1974) reported that a figure of over 70% of undersized whiting is rejected at sea when cod ends of $40 \mathrm{~mm}-50 \mathrm{~mm}$ are used in the Irish Nephrops fishery. French data, in general, show that there is a similar problem in that large numbers of small hake are also taken mainly in the Smalls area and the Bay of Biscay.
5. 10 Unlike fish, the selection range for Nephrops is wide because of the animal's structure and its behaviour. Nevertheless, available evidence indicates that catch rates of marketable Nephrops are reduced when largermeshed nets are used.
6. Conservation Measures
5.1 Restriction of grounds

The closing of an area can be beneficial if the area is overfished. Such a closure should be associated with measures to prevent the diversion of effort to other areas where an increase in fishing effort might be detrimental to the stocks. Iceland restricted certain grounds for part of the 1973 season, but this no longer applies. Fishing off Iceland is, however, restricted by law to depths of 60 fathoms and more.
5.2 Restriction of vessels and gears

A restriction of vessels or size of gear is only beneficial to a heavily fished stock when it results in a reduction in total effort. Iceland
introduced a size limit of 100 GRT and/or 400 BHP for Nephrops boats in 1974 in order to limit effort. In the Faroe Islands, the number of boats trawling for Nephrops is regulated annually by licence, and only boats of 40 BHP or less are allowed. In 1973, only 3 boats were so licensed.
5.3 Total allowable catch limitation

The imposition of total allowable catches (TACs) are effective in controlling levels of F, and in restricting the diversion of effort. Increased catches per unit of effort may also result. In Iceland, TACs for 1973 and 1974 were set at 3000 tons and 2000 tons respectively, and a fishing log is required to be maintained by each vessel.
5.4 Closed seasons

Closed seasons may be effective in protecting certain classes of the stock and associated species, and in reducing total fishing effort. The Icelandic Nephrops fishery is closed from 15 August to 25 May, and the Faroese fishery from 16 July to 14 June.
5.5 Mesh regulation

This seems to be the most important way of protecting the stock, at least in the fisheries where Nephrops catches are important and where overfishing is likely to occur. The minimum size to be recommended may vary from one fishing ground to another but accurate assessments of the conservation effects of particular mesh sizes in different parts of a trawl are not possible at present. The general opinion of the Working Group, however, was that a minimum mesh size of 70 mm throughout the trawl would be beneficial. Mesh size is specified as 50 mm for boats engaged in the French Nephrops fisheries, and in Iceland there is a minimum legal mesh size of 80 mm . In Sweden, mesh size must not be below 70 mm (same as for white fish): in certain territorial waters (inside the trawling border) a mesh size down to 60 mm is permitted under certain circumstances, and vessels must maintain a fishing log. In United Kingdom waters, except in the Irish Sea, regulations specify a 70 mm minimum mesh size: in the Irish Sea, the relevant NEAFC Recommendations apply.
5.6 Minimum legal landing size

Although the survival of discards seems to be low, at least a few of the discarded animals survive. To this extent, a minimum size can help to maintain the stock. A legal minimum size could, however, be a support for mesh size regulations. The following minimum size regulations are at present in force (total length regulations are based on the length from the tip of the rostrum to the end of the telson with the tail fan extended, excluding the setae):

	$-9-$
Denmark:	130 mm total length, or 72 mm tail length
Faroes:	150 mm total length
France:	80 mm total length
Iceland:	70 mm tail length or 10 g tail weight
Norway:	130 mm total length
Sweden:	130 mm total length.

5.7 Protection of berried females

Although no legislation protecting berried females is presently in force, the protection of berried females is sometimes practised, for example in Iceland. The usefulness of this measure is not known. Various opinions are held on its effectiveness in fisheries for Homarus.
6. Effects of Regulations on the By-Catch and the Conservation of the

Protected Species
6.1 The Group agreed that only a limited amount of data was available on the size composition of the by-catch, particularly the undersized proportion of the protected species. Watson and Parsons (1974) have reported that the increased intensity of Nephrops trawling in the Irish Sea with nets containing meshes under 50 mm has inevitably increased mortality of small whiting. Estimates of rejection at sea of undersized (less than 25 cm length) whiting, based on data collected at sea and from recorded total numbers of trawlers fishing for Nephrops, vary between 9 and 35 million fish in any one year during the period 1968-73 inclusive. The effects of this mortality on the whiting fishery in the Irish Sea may be considerable.
6.2 Similarly all French data available show that the age composition of hake landings from the Bay of Biscay and the southern Celtic Sea is mainly of small fish in the age groups II and III. These stocks are mainly exploited by small "artisan" vessels using small=meshed nets. Observations have shown that in addition to the hake landed, a larger proportion of the hake taken in the trawl ($40-50 \%$ by numbers) are undersized and are discarded at sea (Table 17). In recent years this inshore artisan fleet has expanded considerably and this substantial increase in effort (about 80% between 196173) may have contributed to the decline of the offshore fishery for hake in the Bay of Biscay and the Celtic Sea.
6.3 Thomas (1965) also showed that small mesh nets took large numbers of undersized fish of the protected species, and presented some data on length composition of the by-catch. Results from experimental hauls varied seasonally as did the proportion of undersized protected species in the catches. Data gathered in July 1962 compared the catches of a 70 mm trawl and a small-meshed Nephrops trawl. A summary of the proportion of undersized fish taken is shown below for the main species:

	Whiting		Hake	
	18%		Haddock	
70%		47%		
Nephrops trawl	47%		73%	58%

These results support the view that small meshed nets take a higher proportion of small fish. Similar results are available from Danish research vessel cruises where a high proportion of undersized fish of various species were taken with small meshed (35 mm) nets (Table 18).
7. Estimates of Future Catches
7. 1 The current management objective in the Icelandic fishery is to stabilise the anmal yield at 3600 tons from 1976 onwards. (A total allowable catch is enforced in this fishery at present - see Section 5.3). The Faroese trawl. fishery is regulated by licence (see Section 5.2), and the yield of both the trap fishery and the trawl fishery is expected to increase only slowly from its present level.
7.2 There is considerable difficulty in estimating future catches for most countries. The general opinion of the Working Group was that the Nephrops fisheries cannot expand very much in future, and that further protection of the stocks is, in general, desirable.
8. Conclusions
8. 1 The Nephrops fisheries are now of such importance as to merit conservation in their own right.
8. 2 Further conservation measures, beyond those presently applicable, would be beneficial for the optimum exploitation of the Nephrops stocks.
8.3 The regulation of mesh size appears to be the most practicable means of conservation presently available.
8.4 There may possibly be advantages for the enforcement of mesh regulations in having an associated minimum legal landing size.
8. 5 The introduction of mesh regulations for Nephrops fishing could assist in the conservation of associated species such as whiting and hake.
8.6 The removal of Nephrops from the species listed under Recommendation 2 would result in an increase in the minimum mesh size. Except for Iceland, for which an inappropriately large mesh, at least 120 mm , would apply (special exemption would be required), the increase should have longmterm benefits. The immediate losses of Nephrops and associated species could, however, be considerable in some areas. It was not possible for this meeting of the Working Group to make assessments of the magnitude of the immediate losses involved.
8.7 The inclusion of Nephrops in the species listed under Recommendation 4 should be considered only in the event of it being removed from the species listed under Recommendation 2. The Working Group was of the opinion that the imposition of a minimum legal landing size may be of assistance in enforcing a minimum mesh size. It was nevertheless of the opinion that a general application of a minimum legal landing size was of questionable value.
9. References

Abbes, R, et \mathbb{N}. Warluzel, 1970. Sélectivité des chaluts en polyamide dans la pêche de la langoustine. Rev. Trav. Inst. Pêches marit., 34(1):5-16.

Cole, H_{0} A. and $A . C . S i m p s o n$, 1965. Selection by trawl nets in the Nephrops fishery. Rapp. p. = v.Réun.Cons.int.Explor.Mer, 156:203-205.

Jones, R., 1974. Assessing the long-term effects of changes in fishing effort and mesh size from length composition data. ICES, CM 1974/F:33 (mimeo).
Thomas, $H_{.}$J.g 1965. The whitemfish communities associated with Nephrops norvegicus (I_{0}) and the by-catch of whitemish in the Norway lobster fishery together with notes on Norway lobster predators. Rapp.p.-V.Réun.Cons.int.Explor. Mer, 156:155-160.
Watson, PoS. and J. Parsons, 1974, The by = catch of whiting in the Nrorthern Ireland fishery for Nephrops norvegicus (I_{0}). ICES CM 1974/F:29 (mimeo).

Country	1950	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973
Belgium	311	456	441	374	649	831	970	788	895	668	766	789	536	705	477	456	468	479	378	299	392
Denm	633	521	1014	1470	1638	1678	1530	2236	1452	1666	1752	2243	1744	1152	1495	1737	1176	1244	1233	2096	1339
Faroe Islands		3	,	2	51	91	96	73	35	39	78	54	49	43	36	23	23	-	38	31	43
France	2454	4928	5136	5574	7440	6604	7213	8188	8410	8 244	8706	9644	7783	7325	7703	8 310	11227	10022	9025	9581	12098
Germany Federal Republic of	49	57	75	75	58	94	97	117	110	91	109	145	57	26	65	65	29	6	3	2	3
Icelana	-	-	-	-	-	-	1434	208	1490	2662	5550	3487	3706	36	273	2489	3512	4026	4657	4321	2791
Ire	-	52	209	206	340	599	736	397	715	840	1491	1016	801	1251	878	1493	1372	2019	1775	1823	2150
Wetherlands	+	+	+	+	+	+	+	20	11	4	11	-	-	-	-	-	-	-	-	-	-
Norway	-	19	121	72	189	88	66	69	58	50	15	102	161	36	15	84	74	18	52	29	37
Portugal	94	74	112	53	29	64	97	85	77	68	71	170	214	205	321	246	261	210	120	72	72
Spain	2065	1667	1963	1716	1742	1701	1749	1697	2192	1626	1710	2468	3065	3576	4109	4047	4237	3234	3231	3759	4046
Sweden	616	584	651	722	834	679	654	716	691	511	560	782	550	436	554	613	431	335	373	468	452
Wales England/	79	25	279	220	277	395	326	431	770	325	297	356	396	1064	768	983	859	612	1044	48	814
N. Ireland	-	167	397	534	600	845	750	495	926	49	1329	1282	931	1393	2029	1915	2663	2809	2920	3997	3643
Scotland	-	575	1084	1058	1374	1144	2163	1969	2920	3482	3708	4940	5244	6344	5687	7203	8189	8 179	9029	10780	9780
	6301	9361	11484	12076	15223	15813	17881	19362	20752	21025	26153	27478	25237	27021	27868	29664	34521	33193	33878	38206	37660

	VIIa							VIIb，e			VIİ̇，e			VIIf				VIIg－k					VIII			IX			X	Un－ known	$\begin{gathered} \text { TOTAL } \\ \text { All Areas } \end{gathered}$
	n）						n）										n）														
		$\begin{aligned} & \text { y } \\ & \text { eg } \\ & \text { w } \\ & \text { m } \end{aligned}$				$\begin{array}{r} \text { rd } \\ \text { dy } \\ \text { W } \\ + \\ 0 \\ 0 \\ 0 \\ \text { U2 } \end{array}$	感			$\begin{aligned} & \text { 島 } \\ & \text { E } \\ & \hline \end{aligned}$						$\begin{aligned} & \text { ng } \\ & H \\ & \hline \\ & \ddagger \\ & \hline \end{aligned}$	H 感 －					$\begin{aligned} & \text { 尼 } \\ & \text { 品 } \end{aligned}$		$\begin{aligned} & \text { E } \\ & \text { N } \\ & \tilde{\sigma}_{1} \\ & i_{2} \end{aligned}$	$\begin{aligned} & \text { 른 } \\ & \text { 웅 } \end{aligned}$		$\begin{aligned} & \underset{\sim}{\tilde{\omega}} \\ & \stackrel{\sim}{\omega} \\ & \sigma_{2} \end{aligned}$			$\begin{aligned} & \text { OA } \\ & \text { G } \\ & \text { G } \\ & \text { E } \\ & \text { E } \end{aligned}$	
1950	20	－	－	－	－	－	20	－	－	－	7	9	16		－	－	\cdots	83	976	－	－	1059	1380	28	1408	94	1232	1326		884	
1955	10 178	133	209	204	397	$\overline{1}$	820	－	$\overline{3}$			1 3	1		－	．		37	2426	－	41	2504	2490	180	2670	112	1783	1895	－	884	6301 11484
1960	178	133	392	7	495	1	1199	191	3	$218{ }^{\circ}$		3	3		．．	－	\cdots		4085	－	134	4219	3524	577	4101	84	1120	1204	－ 1	77	19362
1962	3	140	689	67	749	11	1954	151 171	3	154	2	9	11	8	\cdots	1	9	106	4258	13	02	4377	3607	744	4351	73	1448	1521	4	17	20752
1963	1	449	1059	24	1329	1	2863	588	2	590		$\overline{3}$	4	14		1	14	47	4708	188 430	82	5025	3042	768	3810	62	858	920	6	56	21025
1964	29	652	539	34	1282	1	2537	493	80	573		2	2	4 4		－	14	22	3500	430	75	4042	4040	1053	5093	67 166	657	724	4	，	26153
1965	8	489 a）	557	35	931	16	2036	514 g）	80	594	24	1	25	＋		－ 6	6	20	2946	365 163	88	3997	4596	1278 1721	5874	166	1190	1356	4	2	27478
1966	1	$\ldots{ }^{\text {．．．}}$	886	193	1393	3	2476	．．．9）	87	87		－	2	1	$\ldots{ }^{\text {a }}$	，	1	19	$3459{ }^{\text {q }}$	273	42	3793	3857	1721	5162	210	1344	1554	4	－	25 27 27 27
1967	2	1122	731	49	2029	1	3934	441	49	490	－	－	－	－	84	－	84	1	2488	96	20	2605	3245	2574	5819	317	1535	1852	4	－ 2	27868
1968	＋	981	906	72	1915		3875	441	17	458	5	－	5	－	55	－	55	2	2649	559	17	3227	3859	2814	6673	242	1233	1475	4	－	
1969	3	762	941	161	2663	6	4536	609	3	612	26	＋	26	＋	10	－	10	2	4786	422	10	5220	4810	2734	7544	257	1503	1760	4	－	34521
1970	7	547	1258	192	2809	2	4815	256	18	274	64	＋	64	＋	2	－	2	1	3699	743	1	4444	5454	2278	7732	207	956	1163	3	－	34 193
1971	1	305	1415	342	2920	7	4990	500	1	501	20	－	20	－	10	－	10	－	4000	359	－	4359	3990	．．．${ }^{\text {r }}$	3990	120	．．． x ，	120	s		33 33 3 878
1972	－	7	1626	121	3997	16	5767	－	46	46	55	－	55	＋	190	－	190	－	3518	151	－	3669	5525	3166	8691	72	593	665		－	3388 38 106
1973	－	－	1862	368	3643	38	5911	811	35	846	297	＋	297	＋	21	－	21	－	3929	251	－	4180	7040	3560	10600	72	486	558	\cdots s，	－	37660

Table 2a. Alternative breakdown of catches of Nephrops by French fishing vessels in 1973 (metric tons)

Port of landing	Fishing area		Total
	$\begin{aligned} & \text { North } \\ & \text { of } 48^{\circ} \mathrm{N} \end{aligned}$	South of $48^{\circ}{ }_{N}$	
Douarnenez	928	-	928
St. Guénolé	1691	107	1798
Le Guilvinec	292	1125	1417
Lesconil	-	898	898
Lootudy	630	916	1546
Concarneau	228	368	596
Lorient	1084	903	1987
St. Na,zaire	-	755	755
St。Gilles	-	64	64
Les Sables d'Olonne	146	658	804
La Rochelle	24.7	42	289
Other ports	\cdots	94	94
Total	5246	5930	11176

Table 3. Fishing effort, 1960-1973

			England (NE) Hours fishing	Ireland $\left.\begin{array}{c}\text { Hours fishing×BHx } 10^{-2} \\ \text { (Skerries, May-October) }\end{array}\right)$	$\begin{gathered} \text { Total power } \\ \times 10-3 \end{gathered}$	$\begin{aligned} & \text { Lesconil } \\ & \text { Days } \mathrm{fishingxBHP} \times 10^{-2} \end{aligned}$	Denmaric Gilleleje (October) Hours fishing	Faroe Islands Hours fishing	Iceland Hours fishing
1960	-	-						3721	25223
1961	-	-		7380	91.3			2876	-
1962	-	28290	9487	6651	94.9			1633	34756
1963	7268	24685	6465	7326	103.9			2538	63350
1964	7102	41869	7309	6336	108.6		716		53265
1965	9090	-	9994	6120	116.6		291		57816
1966	22027	-	18490	6831	124.6	10941	1341		56342
1967	18155	26031	22380	8145.	119.5	9296	803		65492
1968	14493	29046	22195	8973	121.1	9958	2223		84373
1969	14589	28115	23165	9909	130.6	10912	822		90502
1970	19001	17528	12653		144.4	11259			100125
1971	18199	19470	22522		148.9	12049			96219
1972	22096	18307	18641		159.3	11011			114682
1973	30817	26791	16436		170.9	12774			89169

Table 4. Catch per unit of effort

Ireland - adjusted to standard 100 BHP vessel
England - 1962 figure based on 6 months only

Table 5. Mean carapace lengths, males, 1958 - 1974 (mm)。

Year	Scotland				$\begin{aligned} & \text { Ireland } \\ & \text { Skerries, } \\ & \text { (Median) } \end{aligned}$	Iceland
	FF	MF	NM	FC		
1958	-	-	-	\square	29.9	\cdots
1959	-	-	-	-	30.2	-
1960	47	38	44	37	26.2	51.2
1961	40	-	-	-	29.8	52.4
1962	38	32	40	34	30.4	46.6
1963	36	32	37	30	-	49.2
1964	36	29	36	30	27.6	50.9
1965	39	35	37	35	-	50.4
1966	36	-	-	-	28.7	46.5
1967	34	2.9	39	34	28.8	44.1
1968	33	-	-	-	25.3	44.2
1969	34	-	49	33	26.8	42.5
1970	31	32	43	35	28.3	43.0
1971	35	34	-	39	27.2	44.7
1972	32	31	34	34	25.9	43.0
1973	31	27	33	34	25.3	42.3
1974	30	28	38	31	-	44.8
$\mathrm{FF}=$ Firth of Forth						
MF $=$ Moray Firth						
NM $=$ North Minch						
$\mathrm{FC}=$ Firth of Clyde						

Table 6．Percentege distribution of species by weight per month of catch in Nephrops trawl during

Month	Nephrops	Plaice	Cod	Dab	Whiting	Sole	Saithe	Tarious	Minkoiood
Jan．	18.9	7.1	38.7	1.3	6.4	4.4	1.8	21.4	0
Aug．	53.3	5.4	34.7	0.2	0.2	0	0.1	6.1	0.3
Sep．	38.8	5.1	35.1	0.1	1.0	0.2	0.4	2.4	16.9
Oct．	48.7	8.7	30.8	0.2	1.4	2.8	0.9	2.4	4.3
Nov．	16.7	13.2	35.1	0.4	6.1	8.0	1.7	3.0	16.3

Table 7．Peraentage distribution of spegies by weight per month of catch in Nephrops trawl in

Month	Nephrops	Plaice	Cod	Dab	Whiting	Sole	Haddock	Norway Pout	Blue Whiting	Pandalus
Jan。	15.56	20.87	12.89	0.83	1.03	33.46	0.83	14.43	0.1	\bigcirc
Feb。	29.60	11.05	35.6	2.2	2.95	8.25	1.75	8.05	－	1.4
Mar．	22.13	20.0	39.23	2.77	1.33	11.13	1.0	－	\cdots	1.77
Apr。	17.03	10.87	32.83	22.77	2.13	11.17	1.73	－	－	1.47
May	51.85	4.55	7.8	10.55	－	7.5	0.25	16.5	\cdots	1.0
June	76.83	10.6	10.17	1.93	－	0.13	－	－	－	0.3
July	69.90	7.05	7.95	1.0	－	0.05	\bigcirc	－	14.1	－
Aug．	88.57	4.93	6.47	0.03	－	0.03	－	－	－	\bigcirc
Sep。	79.53	4.9	15.1	0.13	0.33	0.07	－	\cdots	\cdots	\pm
Oct．	36.27	14.4	21.73	0.2	1.5	5.23	\cdots	\cdots	20.1	－
Nov．	100.0	－	－	－	－	－	\bigcirc	－	－	\sim
Dec．	100.0	\cdots	－	\cdots	\bigcirc	－	\pm	－	－	－
Mean：	57.27	9.10	15.03	3.53	0.77	6.42	0.46	3.25	2.86	0.5

Table 8. France. Weight of landed hake for 100 kg landed Nephrops.

Year	Lesconil VIIIa	$\begin{array}{c\|c} \text { Loctudy } \\ \text { VII + VIII } \end{array}$	Lorient		St。Nazaire VIIIa	$\begin{gathered} \text { St. Gilles } \\ \text { VIIIa } \end{gathered}$	$\begin{aligned} & \text { Les Sables } \\ & d^{0} \text { olonne } \\ & \text { VII + VIII } \end{aligned}$	La Rochelle		
			VIIa	VIIIa				VIIa	VIIE	VIIIa
1966	-	75.8	\cdots	\cdots	-	-	-	-	\cdots	-
1967	56.3	83.0	-	-	-	-	-	-	-	-
1968	39.4	73.4	-	-	-	-	-	-	∞	-
1969	59.8	74.6	-	-	-	\ldots	\cdots	-	=	-
1970	123.3	120.4	-	-	-	-	-	-	-	-
1971	63.6	100.1	-	-	-	∞	-	\sim	-	-
1972	48.5	62.0	24.8	45.3	-	-	-	-	-	-
1973	38.2	52.4	-	-	32.7	301.6	123.3	23.5	28.3	115.2
1974	-	-	\cdots	-	30.1	282.8	65.2	-	-	-

Table 9。 Iceland. Catch (kg/hour) of Nephrops and the main by-catch species.

Year	Nephrops	Cod	Haddock	Ling	Coalfish	Redfish	Monk	Others
1960	83	43	35	13	1	19	∞	55
1962	77	21	29	14	1	15	-	29
1963	88	13	24	8	1	19	3	22
1964	66	28	15	10	1	24	4	36
1965	64	21	12	15	1	18	6	35
1966	62	13	16	19	1	17	7	30
1967	42	14	9	33	2	24	9	20
1968	30	25	5	34	3	26	7	13
1969	39	26	4	33	4	29	8	17
1970	40	18	6	27	4	13	5	18
1971	48	16	4	29	5	12	5	18
1972	38	13	5	16	5	11	3	12
1973	31							

Table 10. Ireland。Numbers and weights of marketable Nephrops (carapace length $>24.50 \mathrm{~mm}$), and numbers and weights per standard amount of marketable Nephrops of undersized Nephrops and by-catch species, summer 1973.

Sample	Amount of marketable Nephrops (N)	Amount of other types of fish per standard. amount of marketable Nephrops N per 100				
		$\xrightarrow[\text { Undersized }]{\text { Nephrops }}$	$\begin{aligned} & \text { (1) } \\ & \text { Whiting } \\ & 0 \end{aligned}$	(2) Poor Cod	(3) Noxway Pout	Common Dab
A	169	49	$1 \quad 27$	24	25	16
B	413	69	- 15	25	38	10
C	328	180	16910	5	8	-
D	459	141	25	3	8	1
Mean (unweighted)	-	110	4314	14	20	7
Total N	1369	1605	562165	176	261	74
	Wt. (kg)	Wt. (kg) per 100 kg				
A		0.25	+ 1.75	0.68	0.64	0.70
B	5.68	0.27	- 0.11	0.59	0.75	0.20
C	4.00	0.32	0.630 .74	0.17	0.16	0.02
D	5.98	0.54		0.08	0.21	0.02
$\begin{aligned} & \text { Mean } \\ & \text { (unweighted) } \end{aligned}$	-	0.47	0.160 .73	0.38	0.44	0.23
Total Wt.	25.94	8.47	2.5614 .32	5.69	7.30	2.50

(1) Merlangius merlangus (age groups 0 and I)
(3) Trisopterus esmarkii
(2) Trisopterus minutus
(4) Limanda limanda

Table 11。 U．K．（England）．Monthly landings in 1969 of Nephrops and the by－catch， together with the species composition of the bymatch，for Nephrops trawlers landing at North Shields．$(\infty=$ no landings）．No landings in June，July or August。

	Jan	Feb	Mar	Apr	May	Sep	Oct	Nov	Dec
Nephrops（metric tons）	58.6	7.0	21.3	6.1	0.1	53.5	114.5	94.2	49.7
By－catch（metric tons）	155.4	29.7	52.3	26.3	1.0	105.3	179.6	94.5	153.8
Species composition （ $\mathrm{kg} / 100 \mathrm{~kg}$ Nephrops ）									
Cod	67.7	43.8	34.3	262.0	500.0	18.3	6.8	2.2	44.0
Haddock	64.2	110.2	42.6	24.8	200.0	93.0	64.3	52.2	137.2
Whiting	55.4	100.7	41.0	－	－	29.2	19.0	21.6	52.1
Plaice	26.9	79.6	54.8	28.9	50.0	10.0	7.4	2.0	24.9
Lemon sole	6.6	32.8	28.1	38.8	100.0	1.0	0.9	－	1.0
Skate／ray	14.0	14.6	9.5	18.2	－	0.4	0.8	0.4	2.2
Dogfish	－	－	－	－	－	12.0	30.0	0.2	4.5
Unspecified	30.5	41.6	34.8	55.4	150.0	32.5	27.2	21.8	43.3
Total pelagic	－	－	＝	－	－	0.1	0.4	\cdots	－
Pandalus borealis	－	3.6	\cdots	\cdots	－	\cdots	0.1	－	∞
Total bymotch	265.3	426.9	245.1	428.1	1000．0	196.5	156.9	100.4	309.2

Table 12．U．K．（England \＆Wales）．Nephrops catch and bymeatch of protected（Recommendation 4）species（metric tons）taken by smallweshed nets（Recommendation 2）in VIIa。

Source：Mixed fishery data submitted to Liaison Committee

Year	Nephrops	By＝catch	Kgo by－catch per ton Nephrops
1967	432	329	762
1968	1408	1306	928
1969	1838	1522	828
1970	$\ldots 0$	$\ldots 0$	\ldots
1971	$\ldots 0$	\ldots	\ldots
1972	2956	1042	353
1973	2704	939	347

 based on data from 22 onemday trips on board vessels using＂small mesh＂nets，1971ه1974。 is expressed seasonally and overall

Period	Total hours fishing	Kg．landed per hrofishing							Total By ∞ Catch Fish
		Nephrops ${ }^{\text {3 }}$	Whiting	Cod	Coalfish	Monk	Hake	Others	
JanmMar	50.0	42.7	33.5	39.5	15.0	5.0	1.6	9.9	104.5
Apr－Jun	60.7	32.4	6.8	2.0	1.9	1.4	1.3	2.2	15.7
Julasep	57.7	46.6	7.3	2.9	1.1	1.8	1.0	4.7	18.8
Oct－Dec	56.6	33.5	18.7	8.2	2，1	3.0	0.6	6.1	38.7
Overall	225.0	38.6	15.8	12.1	4.7	2.7	1.1	5.5	42.0

再 Nephrops are normally landed as tails only。 The weights given above refer to whole prawns． （l kg。tails $=4 \mathrm{~kg}$ 。 whole prawns）。 Cod and coalfish are normally landed gutted，the remainder of the fish caught being landed whole．
Table 140 Irish Sea，September 1974．Landed catches and catchopermunitoeffort of Nephrops and whiting from various trawls．

Dates	Number of comparable hauls	Number of comparable hours fishing	Landed Catches		Catchoper－unitoeffort		Gear
			Nephrops ${ }^{\text { }}$	Whiting ${ }^{2}$	Nephrops ${ }^{3}$	Whiting ${ }^{4}$	
9－13 Sep． 1974	12	38.8	1252	641	32.3	16.5	Dualゅpurpose trawl with 70 mm codmend
$9 \mathrm{mol3} \mathrm{Sep}$.	12	38.8	1662	600	42.8	15.5	Dualepurpose trawl with 40 mm codmend
16－20 Sep。1974	13	38.2	1194	236	31.3	6.2	Dual－purpose trawl with 40 mm cod－end
16.20 Sep． 1974	13	35.8	1194	311	33.3	8.7	Prawn trawl of 40 mm throughout

Kg．landed／hour fishing

$\text { to } o_{4}$	＋o a_{1}	 ＋o O_{1}		品
$\begin{aligned} & \text { H } \\ & \stackrel{\sim}{\circ} \\ & 0 \circ \\ & 0 \end{aligned}$	$\begin{aligned} & -10 \\ & 0.0 \\ & \circ 0 \end{aligned}$	$\begin{aligned} & \circ \circ \\ & \hdashline \circ \\ & \hdashline 1 \end{aligned}$	$\begin{aligned} & 5 \\ & \stackrel{H}{A} \\ & \stackrel{\rightharpoonup}{\circ} \\ & 0 \end{aligned}$	－
$\begin{aligned} & \text { ww } \\ & \text { Wo } \\ & 00 \\ & 0 \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & i \end{aligned}$	$\begin{array}{lll} 2 & 1 \\ \vdots & 0 \\ 0 & 0 \end{array}$	N
ω_{0} 仡 $\therefore \circ$	$\begin{aligned} & 0.4 \\ & \text { :० } \\ & 00 \end{aligned}$	$\begin{aligned} & \text { Now } \\ & \text { ion } \end{aligned}$	$\begin{array}{cc} N & N \\ \mathrm{~N} \\ 0 \\ 0 \\ 0 \end{array}$	w
$\begin{aligned} & \text { in } \\ & 0 . \\ & 0 \circ \end{aligned}$	$\begin{aligned} & 505 \\ & \circ: 8 \\ & 0 \circ \end{aligned}$	$\begin{aligned} & w \\ & \text { or } \\ & i \end{aligned}$	$\begin{aligned} & N W \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	－
$\begin{aligned} & 9-3 \\ & \vdots 00 \\ & 00 \end{aligned}$	$\begin{aligned} & \text { "H0 } \\ & 0: 8 \\ & 00 \end{aligned}$	$\stackrel{\infty}{+}$ $\stackrel{\sim}{\sim}$	$\begin{array}{cc} N \\ 0 & W \\ 0 \\ 0 & 0 \end{array}$	u
$\begin{aligned} & \circ \infty \\ & \circ 0_{0}^{\infty} \\ & 0.0 \end{aligned}$	$\begin{aligned} & \text { 븡 } \\ & \text { O: } \end{aligned}$		$\begin{aligned} & w \\ & w_{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	の
$\begin{aligned} & \text { gu } \\ & \circ \circ \\ & \circ 0 \\ & 00 \end{aligned}$			$\begin{aligned} & w \\ & N \\ & \circ \\ & \circ \\ & 0 \end{aligned}$	\sim
$\begin{aligned} & \mathbf{N} \stackrel{0}{0} \\ & 0.8 \\ & 00 \end{aligned}$	$\begin{aligned} & \text { طे } \\ & \text { 응 } \\ & \circ \circ \end{aligned}$	$\begin{aligned} & \infty \stackrel{\leftrightarrow}{\infty} \\ & \stackrel{\circ}{\stackrel{\circ}{\circ}} \stackrel{0}{\circ} \end{aligned}$	$\xrightarrow[A B]{S N}$	∞
$\begin{aligned} & 30 \\ & 0.8 \\ & 0: \end{aligned}$	$\begin{aligned} & \text { ". } \\ & \text { 8 } \\ & \circ \circ \end{aligned}$	$\begin{aligned} & 6 \\ & \circ \\ & \circ \\ & \circ \end{aligned}$	¢－¢	\bullet
$\begin{aligned} & 9 ⿱ 艹 \\ & 08 \\ & 0 \\ & 0.8 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ro } \\ & 8: 8 \\ & 00 \\ & 00 \end{aligned}$		जुG	－

Table 16．Irish Sea Nephrops．Selection by 40 mm and 70 mm mesh．
Tablo 15．Irish Sea。Parallel haul trials

Table 17. Size composition of hake catches of the small trawlers of Lorient working $47^{\circ} 30^{\circ} \mathrm{N} 3030^{\circ} \mathrm{W}$ Jan。 $=A p r$. and June-Aug。1973.

cm	Number per 10 hours fishing						
	January	February	March	April	June	July	August
10			9				
11			10				
12			29	5	5	3	
13			58	65	2	6	
14			60	165	91	5	
15		20	91	431	245	5	
16		10	68	845	371	6	
17		15	75	774	589	5	
18		19	89	593	520	5	
19		35	72	462	425	5	
20		42	72	315	320	20	
21		55	68	170	158	29	
22		71	65	52	130	25	
23		75	40	30	75	31	
24		81	35	28	40	28	
25		70	30	25	38	20	5
26	5	69	25	10	10	17	10
27	11	51	20	12	7	30	20
28	21	42	15	10	10	20	35
29	35	21	10	7	1	15	61
30	59	18	5	6	5	20	122
31	120	5	5	5	5	10	159
32	160	5	5	6	1	7	155
33	155	1	1	2	5		J.48
34	151	1		1	5		130
35	129	1		1	1		75
36	75	1		1			60
37	60			1			40
38	41			1			19
39	22			1			9
40	12			1.			18
41	20			1			5
4.2	5			1			5
43	5			1			5
44	4						

Table 18. Denmark (Southern Kattegat). Catch per 1 hour (brought on board).

Gear: Nephrops trawl
Mesh size: 35 mm
(Data based on trawling with the research vessel "Havfisken" July - November 1971 - 1974)

Species	Weight (kg)	$\%$ According to weight	Number	Number of undersized
Nephrops	11.88	21.12		
Cod	9.98	17.74	44.6	32.38
Whiting	6.4	11.37	58.43	13.83
Haddock	0.4	0.71	3.1	1.18
Hake	0.1	0.20	1.33	1.33
Plaice	1.78	3.16	5.13	0.45
Dab	7.83	13.92	97.23	94.15
Sole	0.88	1.56	2.68	0.15
Lemon sole	0.05	0.08	0.08	0
Turbot	0.08	0.14	0.08	-
Brill	0.03	0.05	0.08	-
Unprotected	16.83	29.92		
species		56.24	99.97	
Total	5			

${ }^{\text {ºn }}$ Mainly Long Rough Dab

Figure 1. Selection lines derived from 40 mm and 70 mm meshes.

Number

A PRELTMINARY ASSESSNENT OF THE FIRTH OF FORTH STOCK OF NEPHROPS

by
R Jones
Marine Laboratory, Aberdeen

Nephrops is a species that cannot be aged and for this reason a stock assessment method not requiring age data has been applied. In this paper an attempt has been made to assess the Firth of Forth stock of Nephrops using length composition data using a method described by Jones (1974). The assessments are of the effects on the yield per recruit of changes in effort and mesh size.

Basic Data

Nephrops landings (in tons) from the Firth of Forth at the ports of Leith, Anstruther and Eyemouth are shown in Table 1. The data are for the period 1954-73. During this period, landings increased from 228 tons in 1954 to a peak of 1903 tons in 1966. During the period 1967-73 landings averaged 1432 tons, and in 1973 the landings were 1697 tons. It appears that after a period of increasing landings, landings levelled off to fluctuate about a more or less constant level.
Because of the nature of the fishery in this region, no effort data are available for making reliable comparisons of changes in fishing effort.

Length compositions of Nephrops taken in the commercial fishery have been made by observers on board commercial vessels. Data are available for 1956 and for each of the years from 1966-73. These data have provided length compositions of males and females caught. They have also provided estimates of the proportions rejected at various lengths from which it has been possible to determine length compositions of the landings.

Table 2 shows the percentages of Nephrops rejected at various lengths based on samples taken on board Anstruther vessels during the period January - August 1966. From these samples it appears that the 50% rejection length occurs at a carapace length of approximately 31 mm .

Numbers landed

Estimates of the numbers landed at various lengths have been made using the length composition data taken on board commercial vessels. As an example a worksheet showing the estimation of the numbers landed in 1973 is given in Table 3.
Culumns A and B show the number of males and females at each length per 100 individuals sampled in the catch. In this particular year, the sex ratio was almost equal. There were 50.20% males and 49.8% females.
By making use of the percentages rejected given in Table 2 it is possible to determine the numbers landed in each length group per 100 individuals actually captured. This information is given in columns C and $D_{\text {e }}$
In order to relate the numbers landed to the weight landed it is necessary to con= vert numbers to weights. This has been done using mean weight at lengith data given by Pope and Thomas (1967). The relationship used is intermediate between the relationships given by these authors for each sex separately, i.e.

$$
W=0.00055 \mathrm{~L}^{3}
$$

where $W=$ total body weight in grams
$L=$ carapace length in mm.

The mean weights are shown in column E_{o}. They have been multiplied by the numbers landed in columns C and D to give estimates of the weights landed in the various length groups per 100 individuals caught. This information is shown in columns F and G. The aggregate total of columns F and G for both sexes is 1337.1 gi.e. for every 100 individuals in the catch it is estimated that 1337.1 g of Nephrops are landed. In 1973 the total weight landed (in units of whole body weight) by Anstruther vessels was 690 tons. This gives a raising factor of

$$
690 / 1.337=516
$$

Using the raising factor of 516 for all data in columns $A \infty D$, columns $H-L$ have been derived. Columns H and J show the numbers landed (in thousands of individuals), columns K and L show the corresponding numbers caught. In 1973, it is estimated that Anstruther boats took 51.6 million individuals of which 25.3 millions were landed. Since the total landings in 1973 by vessels landing at Leith, Anstruther and Eyemouth amounted to 1697 tons the values in Table 3 can be further raised by a factor of

$$
1697 / 690=2.46
$$

to determine total landings for the district. Using this factor it is estimated that total landings amounted to 126.9 million individuals of which 62.2 millions were landed.
In order to estimate the relatively small proportion of individuals caught at very small and very large lengths, actual computations were carried out using more significant figures than thove shown in Table 3 . In this way, estimates similar to those in Table 3 have been obtained for each of the years 1967-73. The mean of these estimates of the numbers (in thousands) of Nephrops caught annually by Anstruther boats for the period 1967-73 is shown in Table 4. During the period 1967-73 Anstruther vessels caught 29.4 million individuals annually and landed 16.1 million individuals annually. If it is assumed that the length composition of Nephrops taken by vessels landing at Leith and Eyemouth is the same as at Anstruther, then estimates of the total numbers landed from the whole Firth of Forth fishery can be determined by a simple proportion. Thus during the period 1967-73 the landings by Anstruther vessels averom aged 498 tons compared with an average annual landing of 1430 tons by Leith, Anstruther and Eyemouth vessels combined. Using a raising factor of

$$
1430 / 498=2.87
$$

gives an estimated annual catch for the entire fishery from the period 1967-73 of 84 million individuals. The corresponding annual landing is 46 million individuals.

Conort Analysis

Conort analyses of the length composition data in Table 4 have been carried out using the method described by Jones (1974). For each analysis, a pair of values of I_{∞} and M / K is required and calculations have been done for various combinations of these parameters. For each combination of the values of Loo and K it is possible to obtain values of the rate of exploitation (F / Z), and the annual recruitment. It is also possible to estimate the effect on the yield per recruit of changes in fishing effort and mesh size. A worksheet is given in the Annex ($\mathrm{p}, 40$) illustrating the application of the cohort analysis to the length composition data for males.

The effect of changes in fishing effort and mesh size

Each cohort analysis provides, along with other estimates, estimates of FDT for each length group. Each of these is an estimate of the instantaneous rate of fishing mortality (F), times $D T$, the time required for a fish to grow from the lower to the upper limit, of the lengtin group in question. Given values of FDP for each length group, it is possible to determine the effect on the yield per recruit of a change in fishing effort or mesh size (Jones, 1974).

Investigations showed that for small values of \mathbb{N} / K ，yield／recruit ougint to increase if fishing effort were decreased or mesh size increased．For large values of M / K the opposite result was obtained．
The first step therefore was to calculate the critical values of M / K at which the transition took place from one kind of result to the other．The results are shown in Table 5．Calculations were done for males and females separately and for values of $L_{\infty}=70 \mathrm{~mm}$ and 100 mm ．
For males，it was found that the yield／recruit should increase if fishing effort was decreased，or mesh size increased，provided M / K did not exceed 2 （if $I_{\infty}=70 \mathrm{~mm}$ ）or 4 （if $\mathrm{I}_{\infty}=100 \mathrm{~mm}$ ）。
For females the critical values of M / K were about 2 （if $I_{\infty}=70 \mathrm{~mm}$ ）or 6 （if $I_{\infty}=1.00 \mathrm{~mm}$ ） Some examples of actual changes in the yield／recruit are given in Tables 6 and 7. Table 6 shows the effect of various changes in fishing effort using the current mesh size．
Table 7 shows the effect of various changes in mesh size using the current level of fishing effort．The current mesh size is 70 mm and calculations were made for in－ creases in mesh size of 20,40 and 60 mm ．According to Pope（personal comm．）the selection factor for Nephrops is about 0.3 and this value was used in the calculations．

These calculations were made using the length composition of the catch．Since many small Nephrops are discarded，increases in mesh size should benefit landings more than is suggested by the values in Table 7 ．

Estimates of the rate of exploitation
Values of the rate of exploitation（ F / Z ）have been determined for both sexes assuming $I_{\infty}=70 \mathrm{~mm}$ and 100 mm ．Various values of M / K have been adopted and some results are shown in Tables 8 and 9．All calculations were done assuming that the rate of exploi－ tation for the largest individuals was 0.7 ．
In general the estimates of the rate of exploitation increased with I_{∞} and decreased with M / K ．

Annual recruitment

Estimates of the numbers（millions）attaining a length of 10 mm each year are given in Table 10，These numbers refer to the numbers of individuals attaining a length of 10 mm each year，itrespective of how many year classes they might come from．To a first approximation，it may be supposed that the number attaining a particular length each year out of all year classes combined，will be equal to the total number in any one year class i．e．to a first approximation，the annual recruitment of individuals of 10 mm length should be equivalent to the annual recruitment of a year class at a mean age corresponding to a length of 10 mm ．
For both sexes，estimates increase with the value of M / K and decrease with the value of $I_{\text {mo }}$ 。

Further assessments

By making one further assumption（i．e．about the value of M）it is possible to estimate the actual size of the stock and also values of Z and DT．An example of the computational procedure is shown in the Annex．
No values of M are available for this species．However values，consistent with the values of M / K adopted can be determined by first making estimates of the likely magni－ tude of K from observations on the growth of Nephrops．

Growth of Nephrops

No information is available on the growth of Nephrops under natural conditions，but aquarium observations have been made．（Thomas，1965）．
For males，the growth increments on moulting tended to be constant for individuals ranging from $20-45 \mathrm{~mm}$ in length．The mean growth increment on moulting averaged 2.7 mm 。

For females there was a well defined trend showing an increase with size in the growth increment on moulting. For Nephrops of 22 mm the average increment was $1 \frac{1}{2} \mathrm{~mm}$. For individuals of 42 mm the average increment was 4.0 mm .
This information alone is not sufficient for constructing growth curves since it is also necessary to know the frequency of moulting. In the aquarium experiments the duration of the inter-moult interval for males was approximately $6 \frac{1}{2}$ month. There was no discernible trend with size of individuals and this value is applicable to individuals of $20-45 \mathrm{~mm}$ in length. To a first approximation the aquarium results suggested that males moult twice per year and that the growth should therefore be about 5.4 mm per year.
For females, the tendency for the growth increment to increase with body size suggests a curved growth curve that would tend to infinity if extrapolated. The results for males seem to suggest a linear growth curve and this also would tend to infinity if extrapolated.
In reality, both of these implications are improbable. Instead, it is more realistic to suppose that the frequency of moulting decreases as the individuals grow, so that size, for both sexes, tends towards an asymptote and growth eventually ceases.

One assumption is that the growth curve is of the von Bertalanffy type. In that case, it is possible to determine a value of K, for any given value of Los provided at least one annual increment is known. For this purpose, it will be assumed that only the smallest individuals moult twice a year, i.e. for males, it will be supposed that an annual increment of 5.4 mm is applicable only to individuals of 20 mm .
Values of K can then be determined by noting that the slope of a Ford/Walford plot is e^{-K} 。
Thus for males, if a 20 mm individual grows to 25 mm in one year, these values provide one point on a Ford/Walford plot. To draw a complete line, only one other point is required, and a value of L_{∞} is sufficient for this purpose.
For example suppose $I_{\infty 0}=70 \mathrm{~mm}$ then the slope becomes:-

$$
(70-25) /(70-20)=0.90
$$

From this it follows that $K=0.11$.
Similarly if $I_{\infty}=100 \mathrm{~mm}, \mathrm{~K}=0.065$.
For females the smallest individuals examined were 22 mm long and these grew $1 \frac{1}{2} \mathrm{~mm}$ on moulting. Since this size of individual is likely to be immature, it is possible that it could moult twice in one year giving an annual increment of 3 mm .
Values of K can then be calculated as for males, giving

$$
\text { if } \begin{aligned}
\mathrm{L}_{\infty} & =70 \mathrm{~mm}, \mathrm{~K}=0.065 \\
\mathrm{~L}_{\infty} & =100 \mathrm{~mm}, \mathrm{~K}=0.039 .
\end{aligned}
$$

Estimates of natural mortality

Given the values of K above, values of M can be obtained corresponding to the various values adopted for M / K. This has been done, and some values are shown
in Table 11 .

Stock size

Given combinations of $I_{\text {co }}, \mathbb{N} / K$, and M, values of the actual size of the stock can be calculated by the method described in the Annex. Some results are given in Table 12.
For males, if $I_{L_{0}}=70 \mathrm{~mm}$ and M / K is less than 2.0 (Table 5) then the upper limit to the population would be 174 million individuals.
If $I_{\infty}=100 \mathrm{~mm}$ and M / K is less than 4.0 (Table 5) then the population should be no greater than 187 million individuals.

For females if M / K is no greater than 2.0 (if $I_{+_{\infty}}=70 \mathrm{~mm}$) or 6.0 (if $I_{\infty}=100 \mathrm{~mm}$) (Table 5), the upper limit to population size should be about 300 mili , m individuals.

Density of the stock

Anstruther boats fish the northern half of the Firth of Forth from Methil to a point about $5 \frac{1}{2}$ miles east of May Island. The total area fished by these boats is approximately 100 square miles. If it is assumed that 80% of this is suitable for Nephrops it means that the individuals taken by Anstruther vessels come from an area of about 80 square miles or 274 million m^{2}.
If the upper limits of the population estimates for males and females are adopted, this would suggest to a first approximation a density of about 0.7 males and 1.1 females per m^{2}. Vessels landing at Leith and Eyemoutin also fish to a certain extent in or near the Firth of Forth. Eyemouth vessels operate mainly off the mouth of the Forth in the vicinity of Eyemouth and scarcely overlap the grounds fished by Anstruther vessels. Leith vessels fish primarily on the south side of the Forth but also fish to some extent on the grounds fished by Anstruther boats. To a first approximation it will be assumed that a quarter of the landings by Leith vessels come from the region fished by Anstruther boats. To allow for this it is necessary to increase the values in Tables 10 and 12 by a factor of about 30%. If this is done, the density of Nephrops in the northern half of the Firth of Forth would be about 0.9 per m^{2} for males and 1.4 per m^{2} for females.
Estimates of the density of Nephrops in the Firth of Forth have been made by Chapman (personal comm。) from UW television photography. He obtained provisional estimates of 0.5 Nephrops burrows $/ \mathrm{m}^{2}$ giving an upper limit to the population density of $0.5 / \mathrm{m}^{2}$.

This is lower than the upper limits to density obtained above by a factor of about 5 . If it is assumed that the density of male and female Nephrops is no greater than $0.25 / \mathrm{m}^{2}$ for each sex, the calculations suggest the upper limits to the values of M / K should be considerably smaller than those shown in Table 5.

It is concluded therefore that it should be possible to increase the yield/recruit of Nephrops by decreasing fishing effort or by increasing mesh size.

Total yields

It should be noted that the conclusions reached in this paper are quite tentative and based on a number of assumptions which have yet to be verified. It is hoped to carry out a more exhaustive study when further data have been collected.

Summary

In this paper the method described by Jones (1974) for assessing the effects of changes in fishing effort and mesh size using length composition data has been applied to Nephrops in the Firth of Forth. For this analysis, values of I_{∞} and M / K are required for each sex. Preliminary analyses of the data were carried out using various combinations of I_{∞} and M / K.
For both sexes, it was found that it should be possible to increase yield/recruit by decreasing fishing effort or increasing mesh size provided values of M / K did not exceed certain oritical values. The critical values obtained are shown for each sex and for two values of I_{∞} (70 mm and 100 mm) in Table 5 .
Further investigations were carried out to determine possible combinations of values of the von Bertalanffy growth parameters I_{∞} and K that were likely to be consistent with growth observations obtained in the aquarium. With the estimates of K that were obtained it was possible to calculate a value of M for each value of M / K (Table 11).
Given this additional information, estimates were also made of stock size and stock density. The estimates of stock density were then compared with a provisional estimate obtained by Chapman (personal comm.) based on the number of Nephrops burrows visible from UW television photography.

In this way, it was possible to determine a different set of upper limits for \mathbb{M} / K, such that the theoretical estimates of density were no greater than the value obtained by Chapman.
Since these estimates are considerably lower than the critical values shown in Table 5, it was concluded that it should be possible to increase the yield/recruit by decreasing effort or increasing mesh size.

It was noted however that a number of assumptions had had to be made in order to reach this conclusion and it is recommended that further investigations should be carried out once more data have been collected. For this purpose, further direct estimates of the densities of male and female Nephrops should prove particularly useful.

References

Jones, R. 1974. Assessing the long-term effects of changes in fishing effort and mesh size from length composition data. ICES, CM 1974/F:33, 13 pp . (mimeo).
Pope, J. A. and H. J. Thomas. 1967. Some biometric observations on Nephrops norvegitcus (L.). J.Cons.int.Explor.Mer, 31(2):265-271.
Thomas, H. J. 1965. The growth of Norway lobsters in aquaria. Rapp.p.--v.Réun. Cons.int.Explor.Mer, 156:209-216.

Table 1. Nephrops: Landings (tonnes) by districts.

	Eyemouth	Leith	Anstruther	Total
1954	59.8	11.8	156.0	227.6
1955	43.9	329.5	430.0	803.5
1956	39.2	306.8	317.3	663.3
1957	54.6	446.7	481.4	982.8
1958	21.5	421.7	241.6	684.8
1959	40.5	405.0	383.8	829.4
1960	43.9	227.5	227.0	498.5
1961	74.6	290.8	223.0	588.4
1962	94.9	232.9	303.2	630.9
1963	41.3	280.2	362.9	684.3
1964	67.7	518.9	318.3	904.8
1965	147.3	419.4	478.9	1045.6
1966	286.9	668.3	947.8	1902.9
1967	216.9	687.6	443.7	1848.2
1968	237.3	510.9	299.4	1047.6
1969	165.4	576.5	348.8	1090.7
1970	252.2	759.3	601.3	1612.8
1971	212.5	680.0	464.1	11356.7
1972	455.5	776.4	637.7	1869.6
1973	296.5	710.6	689.5	1696.6

Table 2. Percentages of Nephrops rejected at various lengths based on Anstruther samples taken January-August 1966.

Length (mm)	\% Rejected
22	100
23	100
24	99
25	99
26	96
27	94
28	88
29	79
30	65
31	51
32	39
33	18
34	8
35	5
36	2
37	1

Table 3. Worksheet showing estimation of numbers landed in 1973.

	A \quad B		C	D	E	F	G	H J		K	L
	Catch (\%)		Landings (\%)			Catch Weight		$\begin{gathered} \text { Landings } \\ \text { (thousand.s) } \end{gathered}$		$\begin{gathered} \text { Catch } \\ \text { (thousands) } \end{gathered}$	
Leng'th (L)	0^{\prime}	앙	σ^{*}	운	Mean Wt g	σ^{7}	¢	σ	아앙	σ^{7}	¢
10-14	-	-	-	-	-	-	-	-	-	-	-
15-19	0.3	0.3	-	-	-	-	-	-	-	155	155
20-84	4.1	5.4	-	-	-	-	-	-	-	2116	2786
25-49	18.7	17.0	1.87	1.70	11.4	21.3	19.4	965	877	9649	8772
30-34	14.9	14.2	10.43	9.94	18.9	197.1	187.9	5382	5129	7688	7327
35-39	7.5	8.8	7.46	8.76	29.0	216.3	254.0	3849	4520	3870	4541
40-44	2.6	3.6	2.6	3.6	42.2	109.7	151.9	1342	1858	1342	1858
45-49	1.2	0.5	1.2	0.5	59.0	70.8	29.5	619	258	619	258
50-54	0.6	-	0.6	-	79.6	47.8	-	310	-	310	-
55-59	0.3	-	0.3	-	104.6	31.4	-	155	-	155	-
60-64	\cdots	-	-	-	-	-	-	-	-	-	-
65-0y	-	-	-	-	-	-	-	-	-	-	-
Total	50.2	$49 \cdot 8$	$\underbrace{24.46}_{48}$	24.50		$\underbrace{694.4}_{1}$	$\underbrace{642 \cdot 7}_{337 \cdot 1}$	$12 \underbrace{622}_{25}$	$\underbrace{12}_{264} \underbrace{642}$	25904	25697

A \& B Numbers at each length per 100 individuals in the catch.
C \& D Numbers landed at each length per 100 individuals caught.
$E \quad$ Mean body weight calculated from $W=0.00055 \mathrm{~L} 3$.
$F \& G$ Weights landed (g) per 100 individuals caught.
H \& J Numbers landed (thousands) for an observed landing of 690 tons.
K \& I Numbers caught (thousands) for an observed landing of 690 tons. (raising factor $690 / 1.337=516$ for columns H - L).

Table 4. Numbers (thousands) of Nephrops caught annually at Anstruther.
Mean for the period 1967-1973.

Table 5. Maximum values of \mathbb{M} / K such that provided these are not exceeded, the yield/recruit should Benefit from a decrease in fishing effort or an increase in mesh size.

$\mathrm{I}_{\infty}(\mathrm{mm})$	Males	Females
70	2	2
100	4	6

Table 6. Nephrops: optimum change in fishing effort with current mesh size.

L_{∞}	Males				
	M/K	\% Change	in Effort	\% Change	in Yield/Recruit
70	(0.4		--70		+65.6
	1.0		-60		+17.0
	2.0		+20		+ 0.6
	(3.0		$+90$		$+23.4$
100	(1.0		-70		+67.8
	2.0		-70		+29.3
	(3.0		-50		+8.6
	(4.0		-20		+ 3.1
	(5.0		$+60$		+ 2.7
70			Females		
	(0.6				
	(1.0		-70		+47.8
	(3.0		$+10$		$+1.5$
	(5.0		+90		$+2.1$
100	(3.0		-70		$+26.3$
	(5.0		-40		+1.6
	(7.0		+90		+ 5.3

Table 7. Nephrops: optimum increases in mesh size with current level of fishing effort.

(1) No greater mesh increases considered.

Table 8. Male Nephrops.
Values of the rate of exploitation (F / Z) using length composition for the period 1967-1973.

Assuming $\mathrm{L}_{\infty}=70 \mathrm{~mm}$

Length	0.6	0.8	1.0	2.0	3.0
$10-15$	0.001	0.001	-	-	-
$15-20$	0.12	0.09	0.06	0.02	0.01
$20-25$	0.54	0.45	0.38	0.16	0.07
$25-30$	0.80	0.74	0.68	0.42	0.22
$30-35$	0.86	0.82	0.77	0.54	0.32
$35-40$	0.87	0.82	0.78	0.56	0.34
$40-45$	0.86	0.82	0.77	0.55	0.33
$45-50$	0.87	0.82	0.78	0.55	0.33
$50-55$	0.86	0.81	0.76	0.53	0.31
$55-60$	0.84	0.79	0.74	0.50	0.29
$60-65$	0.69	0.61	0.54	0.30	0.17

Assuming $\mathrm{L}_{\infty}=100 \mathrm{~mm}$

M / K Length	1.0	2.0	3.0	4.0	5.0
$10-15$	0.001	-	-	-	-
$15-20$	0.12	0.05	0.03	0.02	-
$20-25$	0.54	0.32	0.21	0.14	0.03
$25-30$	0.80	0.64	0.50	0.38	0.14
$30-35$	0.87	0.75	0.64	0.53	0.28
$35-40$	0.89	0.78	0.67	0.57	0.37
$40-45$	0.89	0.79	0.69	0.60	0.47
$45-50$	0.91	0.81	0.73	0.64	0.64
$50-55$	0.91	0.83	0.75	0.67	0.85
$55-60$	0.92	0.85	0.78	0.72	1.31
$60-65$	0.88	0.78	0.70	0.62	0.92

Table 9. Female Nephrops.
Values of the rate of exploitation using length composition for the period 1967-1973.

Assuming $L_{\infty}=70 \mathrm{~mm}$

M / K	0.6	0.8	1.0	2.0	3.0
Length					
$10-15$	-	-	-	-	-
$15-20$	0.14	0.11	0.08	0.03	0.01
$20-25$	0.63	0.54	0.48	0.25	0.14
$25-30$	0.83	0.78	0.73	0.52	0.36
$30-35$	0.89	0.85	0.82	0.66	0.51
$35-40$	0.92	0.89	0.86	0.73	0.61
$40-45$	0.93	0.90	0.88	0.77	0.66
$45-50$	0.93	0.91	0.88	0.78	0.69
$50-55$	0.91	0.88	0.85	0.72	0.61

Assuming $\mathrm{L}_{\infty}=100 \mathrm{~mm}$

M / K	2.0	3.0	5.0	7.0
Length				
$10-15$	-	-	-	-
$20-20$	0.06	0.03	0.01	0.01
$25-35$	0.42	0.29	0.15	0.08
$30-35$	0.69	0.57	0.38	0.25
$35-40$	0.80	0.71	0.55	0.42
$40-45$	0.89	0.79	0.66	0.54
$45-50$	0.90	0.83	0.73	0.64
$50-55$	0.89	0.86	0.77	0.69
		0.84	0.74	0.66

Table 10. Nephrops.
Estimates of numbers (millions) attaining a length of 10 mm each year, for various assumptions about I_{∞} and $\mathrm{M} / \mathrm{K} \infty$ using length composition for the period 1967-1973 Anstruther boats only。

Males							
$\mathrm{I}_{\infty} \mathrm{M} / \mathrm{K}$	0.2	0.6	1.0	2.0	3.0	4.0	5.0
70	18	23	28	54	124	408	2270
100	17	20	22	31	44	64	95
Females							
$\mathrm{L}_{\infty} \mathrm{M} / \mathrm{K}$ 0.2 0.6 1.0 2.0 3.0 5.0 7.0							
70	14	17	21	35	60	200	793
100	14	16	17	23	31	59	115

Table ll. Showing possible values of M for various values of L_{a} and M / K.

Male				Fernale	
I_{ω}	M / K	K	M	K	M
70	0.2	0.11	0.022	0.065	0.013
	0.6		0.066		0.039
	1.0		0.11		0.065
	2.0		0.22		0.13
	3.0		0.33		0.20
	4.0		0.44		0.26
	5.0		0.55		0.32
	7.0		0.77		0.46
	0.2	0.065	0.013	0.039	0.008
	0.6		0.039		0.023
	1.0		0.065		0.039
	2.0		0.13		0.078
	3.0		0.20		0.11
	4.0		0.260		0.16
	5.0		0.32		0.20
	7.0		0.46		0.27

Table 12. Nephrops.
Estimates of numbers (millions) in the sea, for the combinations of $L_{\infty}, M / K$ and M using length composition for the period 1967-1973 Anstruther boats only.

\qquad	0.2	0.6	1.0	2.0	3.0	4.0	5.0
$\begin{array}{r} 70 \\ 100 \end{array}$	$\begin{aligned} & 83 \\ & 80 \end{aligned}$	93 89	111	174 117	327 145	891	4110 246
Females $L_{\infty} / K / K$	0.2	0.6	1.0	2.0	3.0	5.0	7.0
70 100	$\begin{aligned} & 98 \\ & 94 \end{aligned}$	$\begin{aligned} & 110 \\ & 105 \end{aligned}$	123 110	$\begin{aligned} & 169 \\ & 131 \end{aligned}$	$\begin{aligned} & 242 \\ & 159 \end{aligned}$	$\begin{aligned} & 576 \\ & 235 \end{aligned}$	$\begin{array}{r} 1716 \\ 372 \end{array}$

					S04056I＊0
T14 $11^{\circ} 0$	$002 * 0$	$000^{\circ} 0$	$550^{\circ} 0$	$100^{\circ} 0$	
16100	$\sin 0^{\circ} 0$	$600^{\circ} 0$	$170{ }^{\circ} \mathrm{O}$	£8100	$704079 \varepsilon^{\circ} 0$
1120	SLS ${ }^{\circ}$	$610^{\circ} 0$	「2100	$259{ }^{\circ}$	¢04abLE＊O
LEE 0	650 ${ }^{\circ}$	$762^{\circ} 0$	205＊0	$198^{\circ} 0$	
$\cdots \angle Z^{\circ} 0$	$570^{\circ} \mathrm{C}$	25 50	$185^{\circ} 0$	$\angle 06^{\circ} 0$	П04as币 ${ }^{\circ} 0$
Oこき 0	$6 \sum z^{*}$ 2	259＊0	914＊0	$116^{\circ} \mathrm{O}$	704a69 $9^{\circ} 0$
E8E＊0	$966^{\circ} \mathrm{C}$	$591^{\circ} 0$	1780 ${ }^{\circ}$	$606^{\circ} 0$	£040L2 ${ }^{\circ} \mathrm{O}$
$780^{\circ} 0$	こを2＊	1860	$610^{\circ} \mathrm{I}$	$050^{\circ} 0$	cotalot ${ }^{\circ}$
$679^{\circ} 0$	040	を「2＊	ご5＊	$206^{\circ} 0$	504al $299^{\circ} 0$
520°	986°	85 1°	5960	$968^{\circ} 0$	20ヶ08\％ $5^{\circ} 0$
$075{ }^{\circ} \mathrm{T}$	$006^{\circ} 0$	810°	985 ${ }^{\circ}$	8LLO	204actio ${ }^{\circ}$
					visn NT
10	2	（ $ا$ ） 10	（ \downarrow ）$\downarrow \square Z$	2／1	y 3gwnd N V

Computational Procedure

1. Calculate the first value of column (2) from
(Number landed)/(final F / Z)
ie $0.3 / 0.7=4.29$
2. Calculate a value of " K_{L} " for each length group
og for the $60-65 \mathrm{~mm}$ lengtin group
$X_{L}=\left(\frac{L_{\infty}-60}{L_{00}-65}\right)^{\frac{\pi}{2 K}}=\left(\frac{10}{5}\right)^{0.2}=1.15$
3. Calculate successive values of N_{L} (ie column 2) from $N_{L}=\left(N_{L}+\Delta L X_{L}+C_{L}\right) X_{L}$ where C_{L} is the number caught in the leneth group L to $L+\Delta L$
ie for the 60-65 mm length eroup
the number attaining 60 ma is given by:$[4.29(1.15)+10] 1.15=17.17\left(x 10^{3}\right)$
(Note that the values shown in the table were calculated using more significant figures.)
4. Calculate values of F / Z from the relationship
$F / 2=$ (number caught)/(number dying)
eg for the 60-65 mim length group
$F / Z=10 /(17.17-4.29)=0.78$
5. Calculate ZVT from the relationship
$\exp -Z D T=\left(N_{L}+\triangle I\right) / N_{L}$
eff for the $60-65 \mathrm{~mm}$ eroup
$\exp -2 D T=4.29 / 17.17=0.249$
so that $Z D T=1.39$
6. Calculate FDI from

HDT $=2 D^{\prime} T(F / Z)$
ef for the 60.65 mm group
$F D T=1.386(0.778)=1.078$

In order to calculate colums (3), Z and $D T$ a value of M is required. Here a value of 0.2 has been assumed.
7. Calculate Z from
$Z=M /(1-F / Z)$
eg for the $60-65 \mathrm{~mm}$ group
$Z=0.2 /(1-0.778)=0.90$
8. Calculate DT from
$D T=2 D T / Z$
eg for the $60-65 \mathrm{~mm}$ group
$D T=1.386 / 0.90=1.54$
9. Calculate col (3) from
mean number in sea $=\left(N_{L}-N_{L+\Delta L}\right) / Z$
eg for the $60-65 \mathrm{~mm}$ group
$(17.1-4.29) / 0.90$
$=14.23\left(x .10^{3}\right)$

