Intermational Council for the Exploration of the Sea
C.M. 1973/H:27

Pelagic Fish (Northem) Committee
Giofurriancektoratet
GBidfiotuket

[^0]
Contents

1. Introduction 1
2. Terms of Reference 1
3. Participation 2
4. The Development of the Fishery in 1972 2
5. Spawning Potential 2
6. Fishing Mortality from VPA and Catch per Unit Effort Data 3
7. Recent Recruitment Estimates 5
8. Stock/Recruitment Relationship 6
9. Prognosis 6
10. Total Allowable Catch 7
11. Additional Regulatory Measures 9
12. Discussion 10
13. References 11
TABLES 1-14 12
FIGURES 1-4 30

Report of the North Sea Herring Assessment Working Group

1. Introduction

1.1 A description is given of the changes in the state of the North Sea herring stocks since the second World War in terms of total catch, stock size, fishing mortality, spawning potential and recruitment. It is concluded that the high fishing intensity exerted on the stock during the last decade has reduced the spawning potential at a rate of about 20% per year. The decrease in biomass has led to a decline in the total North Sea herring catch which at present is based upon a few young year classes.
1.2 Based on the assumption that future year classes will be of average strength, a prognosis of future catch and biomass is given for different combinations of fishing mortalities for juvenile and adult herring. Total allowable catch levels are deduced from this prognosis.

1. 3 The existence of a stock/recruitment relationship for the total North Sea stock has not yet been demonstrated. The possibility that such a relation could arise by further deterioration by the spawning potential is pointed out. This could lead to a rapid collapse of stocks and fisheries.

2. Terms of Reference

2.1 At its Eleventh Annual Meeting in London, May 1973, NEAFC agreed that an extraordinary meeting of the Commission should be held in December 1973 in order to recommend conservation measures - especially quota regulations - to improve the state of the-herring stocks and fisheries. The Commission also agreed that a NEAFC Working Group of administrators and scientists should meet in London in late October in order to prepare basic material for the extraordinary meeting.

2.2 The terms of reference for the NEAFC Working Group are:-

"To assemble and evaluate for presentation to a Special Meeting of the Commission information on measures for regulating catch with relation to herring stocks in the North and Celtic Seas.

To consider and evaluate scientific data on the state of stocks of North Sea herring, including an assessment of the total allowable catch provided by the Liaison Committee of ICES.
To consider and report to the Special Meeting on what further measures of conservation if any other than regulation of catch may be required for North Sea and Celtic Sea Herring."
2. 3 The North Sea Herring Assessment Working Group consequently met at ICES headquarters, Charlottenlund, Denmark, in the period 3-7 September 1973. It had already met in February 1973 with two objectives: to revise its last report (Anon., 1972) for publication in ICES Cooperative Research Reports series and to report to the Liaison Committee on the preliminary data on the herring stocks and fisheries in 1972. A statement is included in the Liaison Committee's subsequent Report (Coop.Res.Rep., Liaison Cttee, 1973).

3. Participation

3.1 The following members of the Working Group took part in the meeting: -

A C Burd	U.K.
A Corten	Netherlands
J Jakobsson	Iceland
H Lassen	Denmark
A Maucorps	France
K Popp Madsen(Chairman)	Denmark
K Postuma	Netherlands
A Saville	U.K.
A Schumacher	F.R.G.
\emptyset Ulltang	Norway
G Wagner	F.R.G.
O J Østvedt	Norway.

ICES Statistician, Mr D Griffith, also took part in the meeting. The absence of members from Poland, Sweden and U.S.S.R. was noted with regret.
4. The Development of the Fishery in 1972
4.1 A review of the history of the North Sea herring fishery in the period 1947-71 is given in the Report of the North Sea Herring Assessment Working Group (Anon., 1972).
4.2 The final figures for the catch made in 1972 show a total of 491100 tons for the North Sea and 66900 tons for the Skagerrak. The overall total of 558000 tons is thus about the same as in 1971 (Table 2). As in 1971 a large part of the catch (40%) was taken in the northwesterm area. The landings from the young herring fisheries in the central North Sea in= creased from 165200 tons in 1971 to 184900 tons in 1972.
4.3 As in recent years the landings were mainly composed of 0,1 and 2-xinged fish as shown in the table below.

Millions of herring caught per age group (winterrings)

Year/Age	0	1	2	3	4	5 and older	Total
1968	839	2425	1795	1494	621	571	7746
1969	112	2503	1883	296	133	336	5246
1970	890	1196	2003	884	125	143	5249
1971	684	4378	1147	662	208	97	7177
1972	750	3341	1441	344	131	40	6047

4.4 Considering that about half of the catch of the 2 ringed fish is taken before spawning about 80% of the total North Sea catch in 1971-72 consisted of juvenile and first time premspawners.
5. Spawning Potential
5.1 Using the estimates of each age group of the adult stock for the total North Sea derived from the Cohort analysis (Table 11) the spawning potential of the stock was calculated from fecundity data on northern North Sea herring (Figure 1):

| Rings | 2 | 3 | 4 | 5 | >5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of eggs
 $\left(x 10^{-3}\right)$ | 45 | 67 | 87 | 96 | 101 |

Spawning potential
(Number of adult females x Mean number of eggs per age group x 10^{-12})

Year	Sp.pot.	Year	Sp.pot.	Year	Sp.pot.
1947	730	1955	459	1963	431
1948	622	1956	435	1964	481
1949	627	1957	405	1965	453
1950	585	1958	336	1966	338
1951	557	1959	520	1967	266
1952	500	1960	452	1968	197
1953	465	1961	434	1969	131
1954	460	1962	322	1970	146

5.4 The high spawning potential in 1947 is obviously a result of an accumulation during the war period of older fish having high fecundity.
5.5 From 1947 to 1958 the spawning potential declined in the course of 11 years by about 50\%. This deoline is associated with a steady increase in fishing mortality on adults from 0.24 in 1947 to 0.45 in 1958.
5.6 In the following period 1959 to 1965 the spawning potential fluctuated by about 25% around an average of 440×10^{12}. The fishing mortality during this period fluctuated in a similar way between values of 0.3 and 0.48 . Within this range a remarkable increase in spawning potential was observed in 1959 and 1964 as a result of the outstanding year classes 1956 and 1960.
5.7 In the course of the 5 years period after 1965 the spawning potential declined sharply by 70% from the level of the preceding period. This decline is associated with a sharp increase in fishing mortality from the previous level of 0.45 up to a level of 1.0 and even higher.
5. 8 As shown in Figure 1 and mentioned above the two vexy good year classes 1956 and 1960 increased the spawning potential considerably and counter. acted the rapid decline of the spawning potential caused by fishing. The good year class 1963, which was about 40% above the long-term average, did not lead to an increase in spawning potential. This was due to the increasing exploitation of the juvenile component, and leads to the conclusion that at the present high level of exploitation of the juveniles, even a good year class can hardly contribute significantly to the spawning potential.
6. Fishing Mortality from VPA and Catch per Unit Effort Data
6.1 Fishing mortality rates calculated for each age group, in each year, over the period 1947-70, are given in Table 12 for the total North Sea stock.
6.2 For the adult stock the changes in the fishing mortality rates can most easily be followed from the value $F_{w} \geq 2$ This value was about 0.2 prior to 1951; fluctuated between $w \geq 20.31-0.48$, with a mean of 0.4, in the period 1952-64; and thereafter increased very much to a mean of 0.71 in 1965-67 and to 1.13 in 1968-70.
6.3 In the early 1950's when the Bloden fishery started, the calculated fishing mortalities were low, at a value of 0.1 for the l-ringers. From 1954 to 1963 the mortality fluctuated without trend in the range $0.18=0.46$, with a mean value of 0.3 . In the period $1964-69$ the fishing mortality rate was appreciably higher in the range $0.36-0.54$ with a mean of 0.5 .
6.4 The catch data indicate that subsequent to 1970 the fishing mortality in the young herring fishery has increased even further, For several altermative values of F on 2 -ringers in 1972 ,the value of F on l-ringers in 1971 was calculated applying a VPA analy'sis. The results indicate that at present the fishing mortality rate on l-ringers is at the same level or even higher than that of the adults i.e. about 0.7.
6.5 From the ICES Bloden Herring Tagging Fxperiment estimates were made of the fishing mortality of the 1967 and 1968 year classes as l-ringed fish (Anon., 1973). The values derived are in close agreement with those obtained from the Cohort analysis.
6.6 In the table below are given total mortality rates calculated from catch per unit effort and age composition data for the northwestern, central and southern North Sea adult stocks separately. As these are rather variable from year to year they are presented as mean values for 4 -year periods. The values in this table up to 1969 are taken from Table 22 of Anon. (1971); those subsequent to 1969 have been calculated during this meeting.

Period	Northwestern North Sea 1)	Central North Sea 2)	Southern North Sea3)
$1952-57$	0.39	0.44	0.81
$1957-61$	0.58	0.60	1.13
$1961-65$	0.42	0.83	1.55
$1965-69$	0.73	1.01	1.33
$1969-72$	0.67	0.89	1.22

1) Derived from Scottish drift-net catch per unit effort in May-July.
2) Derived from Netherlands trawl catch per unit effort in August-September.
3) Derived from Netherlands trawl catch per unit effort in November-December.
6.7 In the northwestern area the total mortality rates in the period prior to 1965 were in the range $0.4-0.6$ but subsequent to 1965 they increased to about 0.7. In the central North Sea these total mortality rates were at about the same level as in the northwestern area prior to 1961 and then rose more sharply. In the southern North Sea the total mortality rate was quite high at 0.8 even in the earliest period considered here, and increased progressively up to 1965 to a level of 1.5 .
6.8 The mortality rates from catch per unit effort data can only be compared with those derived from the VPA analysis by weightingthese area estimates by the relative stock sizes in each area to get an overall mean. Data on the sizes of the adult stock in the three areas have been taken from Burd (1973). When this is done and 0.1 subtracted to get an F value, the resulting values are given in the following together with the VPA values for comparison.

	Fishing mortalities derived from:	
Period	Catch per unit effort	VPA
$1952-57$	0.41	0.38
$1957-61$	0.49	0.44
1961065	0.44	0.49
196569	0.67	0.89
1969.72	0.64	$?$

6.9 The close agreement up to 1965 gives some confidence in the catch per unit effort estimates for the period 1969-72 when no efficient estimate of F can be obtained from the VPA. The value of 0.64 for this period derived from catch per unit effort is very close to the value of 0.7 used in the prognosis for the input value of the adult stock.
7. Recent Recruitment Estimates
7.1 The magnitude of any regulatory measures to be taken in order to restore the North Sea spawning stocks is partly dependent upon the level of current recruitment to these stocks. The 1969 year class is the last one for which some estimate can be made from the adult North Sea fisheries. In the central North Sea fisheries the abundance was low as it also was in the spawning fishery in the Southern Bight. This year class contributed largely to the fishery in the northwestern North Sea around the Orkneys and Shetlands, and in catches in VIa. The recent year class abundances for both areas from Scottish catches are given below.
7.2 Scottish estimates of recruitment of recent year classes

Year class	IVa W tons/drifter landings as 2mringers	VIa (May-July)
1967	3.06	Stock in 10 0-group
1968	1.68	1.01
1969	1.50	1.53
1970	1.41	2.30

7.3 The table indicates that the 1969 year class was particularly strong in VIa while in IVa it was about the same strength as the 1968 and 1970 year classes in contrast to the situation in other North Sea adult fisheries.
7.4 Estimates of the strength of these year classes were available as juvenile fish. The table below gives the abundances in the English 0 ogroup surveys, the ICES Young Herring Surveys and the Danish industrial fishery.

1) Numbers per hour per station.
2) Numbers per hour per rectangle.
3) Weighted average number per cpue ($\mathrm{Feb}=\mathrm{Mar}$)
7.6 The 1969 year class is dominant in each sexies except in spring 1971 in the Danish fishexy. The 1970 year class was also above average in the ICES Young Ferring Surveys and the Danish fishery. The 1967 year class, which was much stronger in the northwestern North Sea than in VIa, also appears as above average strength in the juvenile estimates. From the few data available the 1971 year class as juvenile fish appears to be about average strength.
7.7 The interpretation of the juvenile abundance estimates in relation to the North Sea spawaing stocks is problematic。 While the 1969 year class appeared abundant from the juvenile assessments it recruited poorly in the North Sea, except in the northwestern area. It was also abundant in VIa, and the possibility exists that a part of that year class of juvenile herring in the North Sea were recruits to the stock in VIa.
7.8 A number of returns from the Bloden Tagging Experiment can be ascribed to fishing position. These are mostly returns from Norwegian and Scottish meal plants. Fjegure 3 shows the retums reported from the July/August fishery in 1970 and 1973. It appeaxs that some fish of the year classes 1967 and 1968 tagged on the Bloden south of $55^{\circ} 30^{\circ}$ migrated to the west of the Shetlands and Orkneys and even into the Minch.
7.9 The abundances of larvae in the North Sea surveys over the period 1946-72 are summarized in Table 13 . This table is a complete revision of that previously reported (Anon., 1972). In recent years in the Downs area there has been some improvement from the very low levels in 1963 m 68. In the central North Sea the major production in recent years is centered on the Yorkshire coast and Longstone spawning grounds, while on the Dogger there has been no appreciable production since 1966. In the Buchan area some larval production occurred in 1971 and 1972 after the low levels in 1967-70. The abundance of larvae in the Orkney/Shetland area seems to be very variable from year to year. If these larvae, or even older larvae from areas further west, are drifted into the North Sea and as juveniles eventually explojted in the young herring fisheries, a component of variability is introduced which causes difficulty in making forecasts of reoruitment from these。
7.10 In the prognosis the recruitment of the incoming 1971, 1972 and subm sequent year class has been put at average.
8. Stock/Recruitment Relationship
8.1 Although no stock/recruitment relationship for the herring stock of the North Sea has so far been established, a continuation of the steady decrease in spawning potential during the past years makes it likely that such a relationship could be effective. In that case the result will be that the protection measures discussed in the present report will be overwoptimistic. If very severe protection measures are not then taken immediately, a complete breakdown of the North Sea herring stock will be evident within a couple of years.
9. Prognosis
9.1 A new prognosis (Table 14) has been made for catches in 1973 and changes in catch and biomass in subsequent years, using final catch figures for 1972.
9.2 The assumptions used for the new pxognosis differ in some respects from those used in the previous Report (Anon., 1972). Both sets are given in the following for comparison:

9.3	Assumptions used in:	This Report	The previous Report
	Year class 1971	Average (7.9×10^{9})	Average ($7.9 \times 1.0{ }^{9}$)
	Year class 1972	Average (7.9×10^{9})	Average (7.9×10^{9})
	Natural mortality	0.1	0.1
	Fishing mortality, 0-group, 1972	0.14	0.05
	Fishing mortality, I-group, 1972	0.70	0.5
	Fishing mortality, adults, 1972	0.70	1.0
	$\mathrm{F}_{0 \times \mathrm{gr}}=0.2 \times \mathrm{F}_{\mathrm{lmgr}}$ 。		

9.4 The age composition as at 1 January 1973 is given below:o

Age	0	1	2	3	4	5	6	7	8	8
Nos $\times 10^{-9}$	7.9	6.2	3.1	1.34	0.32	0.12	0.031	0.005	0	0.77×10^{6}

9.5 The change in fishing mortalities for adult and juvenile herring was based on the catch in numbers for 1972. Assuming year classes 1969 and 1970 to be not far above average strength, the high numbers of these year classes caught as juveniles can only be explained by an increased fishing mortality on juvenile herring. The numbers of adult herring caught were lower than was to be expected at $F=1.0$. Therefore, fishing mortality on adult herring has been reduced to 0.70.
10. Total Allowable Catch
10.1 The objective of introducing a quota regulation is ejther to prevent a reduction of the current stock size, and hence of the catch, or to allow an increase in stock size and future yields from it. With the size and age composition of the stock at their present levels the fishery is very largely dependent on the youngest age group. Any succession of poor year classes, whether naturally induced or due to a stock/recruitment relationship, would effectively eliminate the North Sea herring fisheries vexy quickly. The objective therefore must be to bring about an appreciable increase in stock size over a fairly short time period. Table 14 gives the forecast catches in 1973, and the increases expected by 1976 in catch and stock size, at various levels of fishing mortality on the juvenile and the adult components of the stock.
10.2 This prognosis is based on the catch figures of 1972, assumed Fis on adults and juveniles of 0.7 and average recruitment. The provisional catch figures for 1.973 suggest that the F values in that year are likely to remain at about the same level. The prognosis shows that there is little change in stock biomass at these levels of F and therefore the values in Table 14 for 1973 can be taken as equally valid for 1974. Similarly the values for 1976 are valid for 1977. To illustrate the options which are available two levels of increase in stock size, 100% and 200%, have been selected and the various strategies which will achieve these by 1977, given average recruitment, are shown in the tables below.
10.3 If the objective is to increase the stock biomass by 100%, from the current level of 770000 tons to about 1.5 million tons, this can be achieved by any of seven combinations of the adult and juvenile fishing mortalities according to Table 14. These are shown in the text table (see 10.4) with their effects on total allowable catch in 1974, and with the maintenance of these Fr_{s} in the ensuing years, on the catch in 1977.
100% increase in stock biomass by 1977 (in 1000 tons)

Juvenile F		0.0	0.1	0.2	0.3	0.4	0.6	0.8
Adult F		0.8	0.7	0.6	0.5	0.4	0.3	0.2
lowable	Juveniles	-	30	60	80	110	150	180
catch	Adult	390	350	310	280	230	180	130
	Total	390	380	370	360	340	330	310
Allowable	Juveniles	-	30	60	80	110	150	180
catch in	Adults	820	730	640	560	470	350	240
	Total	820	760	700	640	580	500	420

10. 5 The smaller the juvenile F selected the higher will be the catch which can be taken in 1974; and the catch in 1977 will be very appreciably higher, increasing in the extreme case from 420000 to 820000 tons.
10.6 If the greatest yield is the objective, then this would be achieved by completely stopping the juvenile fishery and retaining the exploitation rate of the adult fish at about the current level. The total allowable catch in 1974 would then be set at 390000 tons. Retention of these levels of F to 1977 would give a total allowable catch in that year of 820000 tons.
10.7 If the aim is to increase the stock size over the period 1974 to 1977 by 200% (to $2-3$ million tons) only four combinations of the adult and juvenile F^{\prime} s listed in Table 14 will obtain the objective. These are shown below.
10.8
200% increase in stock biomass by 1977 (in 1000 tons)

Juvenile F		0.0	0.2	$\left.0.25^{\mathrm{X}}\right)$	0.3	0.6
Adult F		0.4	0.3	0.25	0.2	0.1
Allowable	Juveniles	0	60	70	80	150
catch in	Adult	230	180	160	130	70
I974	Total	230	240	230	210	220
Allowable	Juveniles	0	60	70	80	150
catch in	Adult	700	510	410	380	170
1977	Total	700	570	480	460	320

x) interpolated.

10.9	These give a small range of $210000-240000$ tons of total allowable catch in 1974。 With the retention of these F values the levels of catch taken in 1977 are，however，very different，with a major increase in catch with decreasing F^{\prime} s in the juvenile fishery．
10.10	It must be stressed that if a total allowable catch is set without differentiating between adult and juvenile herring，the 1977 catch will be very much lower than that obtainable by a proportionally greater decrease in the juvendle than in the adult fishery．
10.11	With a stock size increase of 200% by 1977 the meximum sustainable yield would thereafter be taken by not exploiting the stock until the fish are 2－ringers and applying a fishing mortality rate of 0．4。 The annual yield，with stable recruitment would then be about 825000 tons．
10.12	The expected longoterm developments in catches and stock biomass are shown in Figure 4 A and Figure 4 B ，respectively．It should be noted that the MSY for North Sea herring is obtained at a fishing mortality of 0.4 for adults and no fishing for 0 and 1 groups．
11.	Additional Regulatory Measures
11.1	Minimum mesh size
	The effectiveness of mesh size regulations in herring fisheries is very doubtful as fish which have escaped through the meshes may not be viable．
11.2	Minimum size
	The introduction of a size limit in herring fisheries would have its effect through increased recruitment to the adult stock．Because of the difficulties in applying minimum mesh sizes，the direct effect would be to prohibit fishing on grounds where small herring are dominant．The length dividing the imrature from the adult herring lies roughly between 20 m 23 cm 。

11． 3 Area closures
Closing of certain areas can be used for protecting specific components of the stocks e．go by closing spawning grounds and nursery areas．

11．4 Seasonal closures

Because of the increase in weight of the herring from spring to summer and autumn，some increase in yield would be obtained by reducing the fishery in the first half of the year．A closed season from 1 February to 15 June increases the yield jn the juvenile and adult fisheries by about 23% and 5% respectively，compared with the yield generated by the same annual fishing mortalities when there is no seasonal restriotions （Ulitang，1972）．The same quota in weight can thus be obtained with reduced catch in number by seasonal restrictions．

11． 5 Other conservation measures were discussed in the former reports of the Working Group（Anon．， 1971 and 1972）．
12. Discussion
12.1 The data in Tables 1-8 refer solely to herring catches in the Noxth Sea and Skagerrak, while in "Bulletin Statistique" no distinction is made between catches derived from the Skagerak and Kattegat. It is also known that some of the socalled herring catches in "Bulletin Statistique" contain varying quantities of other species. The catch figures in the present report are about $30=40 \%$ less than the official figures in "Bulletin Statistique".
12.2 It is stressed that the total allowable catch levels for North Sea autumn spawners in the present report are based on the catch data presented here, which are the better estimates of North Sea herring catches.
12.3 The final catch figures for 1972 differ little from the preliminary ones given in the Liaison Committee Report (Anon., 1973) and at 558000 tons the total catch is close to that in 1971. The catch composition, however, shows a further increase in the proportion of young fish.
12.4 The preliminary catch figures for the first seven months of 1973 already amount to 264000 tons despite the closure in force from 1 Februaxy to 15 June. This catch represents about half the expected amnual catch if fishing mortalities had remained at the levels of 1972. The major part of the catch was taken after 15 June.
12. 5 Prognoses of future catches have been made on the basis of the 1972 age composition and on certain assumptions including that of average recruite ment levels being maintained after the 1971 year class entered the stock.
12.6 The assumption of average recruitment would be invalid if a stock/recruitment relationship exists. Total North Sea estimates of recruitment have remained high despite a reduction of spawning potential of about 80% since 1947. The actual catches from the juvenile fisheries have remained high and have even increased. There is evidence to suggest that the apparent sustained abundance of juveniles in the North Sea may be supported by an influx of progeny from stocks north and west of Scotland. As these fish may not contribute to the adult North Sea stocks, they could mask an actual decline in North Sea recruits and the existence of a stock/recruitment relationship. Though the criticel level to which spawning potential might be reduced before recruitment is effected is not known, any further reduction from the present level must be regarded with concem.
12.7 With the present mortalities on juveniles and adults little change is expected by 1976 in biomass or catch if recruitment remains constant. However, because of the dependence of the fishery on the recruit brood the occurrence of a single poor year class would result in an immediate drop in total catch and a subsequent decline in spawning potential. For this reason alone it would be beneficial for the fisheries to be based on a stock of higher average age and biomass.
12.8 The stock biomass can only be increased by reduction in fishing mortality. In view of the errors inherent in the catch statistics on herring and on the assumption of future recruitment, it is necessary to aim at an increase of at least 100% over the 1972 biomass in the course of $3-4$ years.

References

ANON., 1971. Report of the North Sea Herring Assessment Working Group. Coop.Res.Rep., Ser.A, No. 26.

ANON., 1972. Report of the North Sea Herring Assessment Working Group Meeting, Charlottenlund Slot, 13-22 June 1972. ICES, Doc. C.M.I972/H:13 (mimeo).

ANON., 1973. Preliminaxy Report of the ICES Working Group on the Bloden Tagging Experiment, Charlottenlund, 27 June m 3 July 1973. ICES, C.M.1973/H:I0 (mimeo).

BAXTERR, I. G., 1959. Fecundities of winter-spring and summermatumn herring spawners. ICES, Journ. du Cons., XXV(1):73m81.

BURD, A. Co, 1973. Recruitment to the North Sea herring stocks. ICES, Doc. C.M. 1973/F:11 (mimeo).

ICES, 1973. Report of the Liaison Committee. Coop.Res.Rep., No. 36.
UTLTANG, Ø., 1972. Yield curves of North Sea herring. ICES, C.M.1972/H:8 (mimeo).

	$\stackrel{\text { on }}{\substack{\text { ¢ } \\ \sim}}$		$\stackrel{\text { N }}{ }$	$\stackrel{\text { ® }}{\text { ¢ }}$	$\stackrel{\square}{8}$
	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathrm{N}} \\ & \underset{\sim}{2} \end{aligned}$		®	$\stackrel{6}{\sim}$	$\stackrel{\circ}{\circ}$
	$\underset{\sim}{\substack{\sim \\ \sim}}$	N	\％	$\stackrel{\infty}{n}$	－
$\dot{8}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\mathrm{o}} \\ & \hline \end{aligned}$		$\underset{\sim}{\infty}$	$\underset{\underset{i}{\sim}}{\underset{\sim}{N}}$	$\begin{aligned} & \circ \\ & \hline \end{aligned}$
\％	$\stackrel{\text { 朵 }}{\substack{-1}}$			$\underset{\underset{H}{M}}{\substack{M}}$	－
od	$\underset{\sim}{\text { H゙N}}$			ু	$\stackrel{\infty}{\infty}$
	慈		$\stackrel{\sim}{\infty}$	盛	芯
	$\underset{\sim}{\text { ®N }}$		）	$\xrightarrow[\substack{\text { m } \\ \sim \\ \hline}]{\text { a }}$	$\stackrel{\infty}{ \pm}$
	$\underset{\sim}{\text { İ }}$		昌	O	\pm
	$\underset{\sim}{\circ}$		$\underset{7}{2}$	－	合
	$\underset{\sim}{\underset{\sim}{9}}$		$\frac{N}{4}$	9	录
	$\stackrel{\infty}{\stackrel{\infty}{\top}}$		¢	${ }_{\infty}^{\circ}$	$\stackrel{+}{8}$
	$\underset{\sim}{\text { G}}$		－	in	$\xrightarrow{-1}$
 	$\text { xea } \frac{\beta_{1} q u n 0 D}{}$		$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 9 \\ 9 \\ \hline \end{array}$		

Table 1b. Herring. Catch in tons 1960-1971.

Country Year	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Belgium	3642	3146	1117	1843	1607	776	391	410	134	468	1200	681	1337
Denmark	119400	138800	126000	117600	141600	158700	105900	135000	163100	180260	133331	185393	213738
England	16354	17849	11994	22821	16533	11494	10716	8215	5128	6666	9702	4113	650
Faroe Is1.	-	-	-	-	973	3111	1491	35993	49995	40640	58405	25635	48444
Trance	11137	23042	12271	18062	23295	16480	10711	11478	12852	15307	11482	11408	12901
$\begin{gathered} \text { Germany } \\ \text { F.R. } \end{gathered}$	148388	100944	89056	93815	86586	77032	54157	32312	21216	12798	7150	3952	3065
Iceland	-	-	-	-	-	1757	1047	5684	44489	19997	22951	36992	31998
Netherlands	125713	129841	87521	126487	116226	80320	56668	37270	22306	29769	49416	32479	24829
Norway	13893	10440	7461	21448	103752	520890	424462	240032	211904	114938	177341	122570	110969
Poland	76304	78082	59331	72462	89691	98130	74071	37816	11954	9221	5057	2031	2235
Scotiand	29006	23038	22416	34571	21125	20569	17557	18138	16477	22053	21885	25073	17227
Sweden	89289	103744	110353	140012	130132	132182	121970	121591	88061	33109	34670	36880	7366
U.S.S.R.	63105	67722	100265	75965	139637	47322	16442	11660	70029	61549	18078	9500	16386
Total N. Sea	696231	696648	627785	725086	871157	1168763	895583	695599	717645	546775	550668	496707	491145
Skacgerak	75820	85291	104246	163228	309804	256742	144655	279744	280036	113279	70527	61411	66962
Eattegat	31000	41200	51600	64200	79300	81400	75300	72000	108900	59300	74300	90200	107519
Gsand Total	803051	823039	783631	952514	1260.261	1506905	1115538	1047343	1106581	719354	695745	648318	665626
Nonmierber Countries	36000	?	?	?	?	67700	30600	27700	?	?	250	?	$?$

Table co.

Table 3.

Year	Denmark	Flaroe Islands	German Fed.R.	Iceland	Netherland.s	Norway	Poland	Sweden	U.S.S.R.	Total
1960	43200	-	42	-	-	2578	-	30000	-	75820
1961	56700	-	7	-	-	4584	-	24000	-	85291
1962	70600	-	3	-	-	5049	594	28000	-	104246
1963	105100	-	828	-	-	10971	329	46000	-	163228
2964	129500	-	6064	-	-	85916	4324	84000	-	309804
1965	95300	-	4248	-	-	83864	5330	68000	-	256742
1966	75200	-	432	-	74	30438	511	38000	-	144655
1967	100400	-	466	2151	-	95039	127	66000	15561	279744
1968	143600	-	2	695	36	71865	42	45000	18796	280036
1969	57965	-	-	-	-	13.957	-	41357	-	113279
1970	30107	-	-	6453	-	7037	-	26930	-	70527
1971	26985	5636	-	3066	-	5961	-	19763	-	61411
1972	34900	4115	-	7317	-	986	-	19644	-	66962

Table 4. Hexring. Total catch in tons.
North Sea, Northeast (Division IVa east of $2^{\circ} \mathrm{E}$)
Horth Sea, Northeast (Division

Year	Belgium	Denmark	England	Faroe Islands	France	German Fed. R.	Iceland	Netherlands	Norway	Poland	Scotland	Sweden	T.S.S.R.	Total
1960	-	41800	-	-	-	29455	-	15442	9005	15749	1598	87825	63105	263979
1961	-	61500	-	-	-	14043	-	6318	7630	11020	3877	102676	67722	274786
1962	-	49600	3	-	-	8913	-	6990	5793	5036	4899	110287	100265	291786
1963	-	58900	4	-	-	10069	-	8448	18255	3335	-	135350	75965	301326
1964	-	53100	-	-	-	9972	-	9313	91006	12949	627	127425	139637	444029
I965	-	49700	-	-	-	23428	1757	6912	323361	16200	-	132182	27227	580767
1966	-	51400	6	-	-	12329	1047	4555	205239	11690	186	121141	16442	424035
1967	-	51600	-	-	-	2558	5684	1709	176628	2986	-	120838	11660	373663
1968	-	57100	-	-	-	2487	9355	1022	66046	1880	-	88061	30799	256750
1969	32	55550	-	12805	278	16	6300	2084	15618	166	9785	26035	19392	148061
1970	50	1800	-	5898	48	10	I 220	281	3331	123	1929	5560	1012	21262
1971	-	6219	-	239	-	-	-	167	10442	-	-	-	-	17067
1972		19711	-	979		9	1943	40	50				-	22732

Table 5. Herring, Total catch in tons.

Year	Belgium	Denmark	Fngland	Faroe Islands	France	German Fed.R.	Iceland	Netherlands	Nowway	Poland	Scotland	Sweden	U.S.S.R.	Total
1960	122	-	163	-	1151	45746	-	19863	3343	7000	22292	1464	-	101144
1961	120	-	8	-	5796	19146	-	8414	2173	7271	16954	1068	-	60950
1962	125	-	11	-	3757	7125	-	4659	837	3807	17191	66	-	37578
1963	343	-	13	-	5121	11377	-	9495	2641	12511	26945	4662	-	73108
1964	155	-	8	973	6405	7319	-	11420	4350	15962	16753	2707	-	66052
1965	227	-	-	3111	7303	4489	-	11515	196488	35878	19239	-	20095	298345
1966	178	-	34	1491	2628	7069	-	3414	219223	27199	16548	829	-	278613
1967	200	-	15	35993	1515	7941	-	3418	41664	8454	17359	753	-	117312
1968	23	-	-	49995	1349	7150	35134	3072	131598	2805	16324	-	39230	286681
1969	68	11360	-	27835	605	448	13697	474	99316	362	10051	6765	42157	213138
1970	750	61423	-	40884	818	177	20587	177	146397	2069	17767	4470	17056	312585
1971	-	44500	-	25142	514	389	36992	5755	112114	1288	24711	4954	9500	265580
1972	-	29711	74	37004	888	100	29721	1967	94825	1620	17227	-	16386	229523

Table 6.

Year	Belsium	Denmark	Faroe Islands	Fngland	Iceland	Prance	German Fed.R.	Nether- lands	Norway	Poland	Scotland	Sweden	Total
1960	115	-	-	9816	-	369	39326	61540	1545	48479	5116	-	166306
1961	121	-	-	8579	-	2535	35402	70336	637	49064	2207	-	168881
1962	124	-	-	6076	-	2886	40772	47255	831	45030	326	-	143300
1963	558	-	-	14465	-	8296	60818	81524	552	54370	7626	-	228209
1964	351	-	-	9235	-	7750	36361	63314	8396	58726	3745	-	187878
1965	47	-	-	8524	-	7037	22520	47551	1041	44815	1330	-	132865
1966	69	-	-	9646	-	6261	21183	42008	-	34085	823	-	114075
1967	5	\cdots	-	6809	-	6540	18917	26769	21740	26370	779	-	107929
1968	13	-	-	4170	-	8196	10439	13285	14260	7241	153	-	57757
1969	-	-	-	5964	-	3362	3528	16542	4	8077	2217	309	40003
1970	-	-	11623	8731	1144	2433	6005	28815	27613	2836	2189	24.640	116029
1971	8	2488	254	4113	179	4734	-	10172	14	743	362	1926	24993
1972	-	2589	10460	271	334	2014	21	11372	-	615	-	4068	30744

Table 7. Herring. Total catch in tons. North Sea, Central (Division IVb).

Year	Young Herring Fisheries					
	Denmark	German Fed. R.	Sweden	Norway	Total	Total young and adult fisheries (Tables 6 and 7)
1960	77600	22322	-	-	99922	266228
1961	77300	16549	-	-	93849	262730
1962	76400	23975	-	-	100375	243675
1963	58700	9017	-	-	67717	295926
1964	88500	28126	-	-	116626	304504
1965	109000	26009	-	-	135009	267874
1966	54500	12737	-	-	67237	181312
1967	83400	1849	0	-	85249	193178
1968	106000	847	0	-	106847	164604
1969	113350	7900	0	-	121250	161253
1970	70108	400	0	-	70508	186537
1971	132161	3055	30000	-	165216	190209
1972	162671	2823	3298	36094	184886	215514

Table 8.

Year	Belgium	Denmark	England	France	German Fed. R	Netheriands	Poland	Total	
1960	3405	-	5375	9617	11539	28868	5076	64880	
1961	2905	-	9262	14711	15804	44773	10727	98182	
1962	868	-	5904	5626	8271	28617	5458	54746	
1963	942	-	8339	4645	2534	27020	2246	45726	
1964	1101	-	7290	9140	4808	32179	2054	56572	
1965	502	-	2970	2140	586	14342	1237	21777	
1966	144	-	1030	1822	839	6691	1097	11623	
1967	205	-	1391	3423	1047	5374		6	11446
1968	98	-	958	3307	293	4927	27	9610	
1969	367	-	702	11062	906	10669	616	24322	
1970	400	-	971	8183	558	16945	29	27086	
1971	673	25	-	6160	126	16385	-	23369	
1972	1337	57	305	9999	112	11450	-	23260	

Explanatory Notes to Tables 1-8

Table le.
Data from Belgium, Denmark, France, Poland and Sweden according to Coop. Res. Rep., Series B, 1965, Annex II, Table 9. Data from England, Netherlands, Norway and Scotland submitted by Working Group Members. Data from Germany according to Statistical News Letters, No. IIB, 1961.

Table 1b.
Data derived as listed below under each country. The Kattegat catches are according to Danish national statisties and information from the Swedish laboratory at Lysekil.

Table 2.

1947-1954. Catches for northwest and northeast are derived from Statistical News Letters IIA and IIB. The national distributions of catch by area in some cases refer to all catches and in others to a large sub-sample of the catches.

Catches for central and south are taken from Cushing and Bridges 1966, Appendix 4. The catches for the south refer to the seasonal winter fishery and not the calendar year.

Gatches for the industrial fishery are derived from Coop. Res. Rep. Sex. B, 1965, Annex II, Table 12.

The catches for the Skagerak for some countries also include Kattegat catches, (Bull. Stat.). Taking the catches asoribed to areas for the North Sea, their total covers an average of 98% of the annual catches given in Table 1 for the period $1947-1954$.

1955-1959. Catches for the northwest, northeast and central are based on data in Cushing and Bridges (1966). The Swedish catch from Division IVa (Bull. Stat.) was regarded as taken in the northeastern area.

Catches for the south and the industrial fisneries are derived from Coop. Res. Rep. Ser. B, 1965, Annex II, Tables 11 and 12.

1960-1968. Data from Coop. Res. Rep. Sex. A, 26.
Industrial Fishexy: These data refer only to the juvenile herring catches in Division IVb by Denmark and Germany, and also Norway and Sweden for 1971 and 1972. A separation into industrial and consumption catches was not possible for any other area.

Skagerak: 1955-1972 data from Danish national statistics and from the Fisheries Laboratory at Lysekil.

Belgium

All data derived from "Bulletin Statistique". Catches from Division IVa for 1960 1968 are ascribed to IVa west of $2^{\circ} \mathrm{E}$.

Denmark

All data used in the Tables are based upon Danish national statistics (Popp Madsen). Catches from Division IVa are ascribed to IVa east of $2^{\circ} \mathrm{E}$ for 1960-1968. Gatches from Division IVb (Young Herring Fishery) have been reduced for content of other species (1960 to spring 1965 by 5%, autumn 1965-1971 by estimates from individual years; Popp Madsen). Catches from the Kattegat for 1972 have been derived by subtracting the catoh figure for the Skagerak (supplied by Popp Madsen) from the total 1972 catch for Area IIIa (Kattegat + Skagerak) given in Bulletin Statistique.

England

All data derived from "Bulletin Statistique". Separation of catches in Division IVa east and west of 2° E according to national statistics.

Faroe Islands

Catches only from Division IVa according to "Bulletin Statistique". Ascribed to IVa west for 1960-1968. From 1969-1971 the distribution of catches to fishing areas are based on landings in Danish ports. Landings for 1972 have been supplied by the Faroese statistics reporting agency.

France

The data given have been supplied by the "Institut des Pêches", Boulogne s/Mer.

German Fed.R.

All data are according to German national statistics (Schumacher). They are compiled by "Bundesforschungsanstalt für Fischerei", Hamburg, according to log books.

Iceland

All data derived from "Bulletin Statistique". Separation of catches in Division IVa east and west of $2^{\circ} \mathrm{E}$ axe according to Icelandic statistics for 1960-1969, 1971 and 1972, and according to landings in Danish ports for 1970.

Netherlands

All data derived from "Bulletin Statistique". Separation of catches in Division IVa east and west of $2^{\circ} \mathrm{E}$ are according to Dutch national statistics.

Norway

The data are according to reports from "Noregs Sildesalslag". Catches in inshore waters are not included.

Poland

All data according to "Bulletin Statistique". Separation of catches in Division IVa east and west of 2° \# up to 1971 is acoording to Polish national statistics. The 1972 catch in Div. IVa has been allocated to IVa west.

Scotland

All data are according to "Bulletin Statistique". Separation of oatches in Division IVa east and west of $2^{\circ} \mathrm{E}$ is according to Scottish national statistics. Catches from the Moray Pirth are not included.

Sweden

Data according to Swedish national statistios (Ackefors). Division IIIa: Data obtained from proportion of Skagerak catohes in Swedish landings in Danish ports applied to total Swedish landings. Separation of catches in Division IVa east and west of 2° E (up to 1971) according to Swedish national statistics, but is supposed to be rather unreliable. A greater part of the landings presumably comes from Division IVa, west of 2° F. Allocation by area for the North Sea catch for 1972 was not possible, and was separated only into industrial and consumption herring landed in Sweden and abroad. Total consumption catch was supplied for the North Sea as a whole, and constituted 9% of the consumption catch from all axeas. This catch was allocated to the Central Div. IVb, and by applying the proportion to the grand total of industrial and consumption herring landed in Sweden and abroad, the industrial and consumption catch from IVb was derived.

U.S.S.R.

All data according to "Bulletin Statistique". Separation of catches in Division IIIa Skagerak, IVa east and IVa west of $2^{\circ} \mathrm{E}$ up to 1971 are accoxding to Soviet national statistics. For 1972, the total IVa catch has been allocated to IVa west.

Table 9. Preliminary Catch for 1973.

Country	Period	Total North Sea	IIIa	North Sea + Skagerak	West 4°
Belgium					
Denmark	$1 / 1-30 / 7$	92056	13077	105133	
Faroe IsI. ${ }^{\text {(}}$	$1 / 1-1 / 8$	16100	4185	20285	
France	$1 / 1-1 / 7$	355	-	355	
Germany					
Iceland	1/5-1/8	13621	389	14010	
Netherlands	$1 / 1-1 / 7$	4456		4456	
$\text { Horway }{ }^{\text {Xx }}$	$1 / 1-31 / 8$	85900		85900	44600
Poland					
Sweden ${ }^{\text {x }}$		2106	6336	8442	
J.K. England	1/7-1/9	1. 000		1000	
U.K. Scotland	1/5-18/8	8686		8686	
U.S.S.R.					
Total		224280	23987	248267	

[^1]Table 10. North Sea Catch in Millions of Fish by Age

Year	Area	Age in Winter Rings										
		0	1	2	3	4	5	6	7	8	>8	Total
1971	IVaW of $2^{\circ} \mathrm{E}$	136.7	818.3	516.9	488.3	154.2	24.1	28.8	25.1	-	9.8	
	IVaE of $2^{\circ} \mathrm{E}$ E	14.0	95.4	54.5	38.5	10.4	2.1	1. 4	1.1	-	0.2	217.6
	IVb		2.1	140.3	54.4	12.6	-	-	-	-	2.1	211.5
	ITBYH	533.0	3440.9	304.3	39.6	-		-	-	-	-	4317.8
	IVc+VIId, e	0.3	21.8	130.8	41.7	31.1	0.7	0.3	0.6	-	0.3	227.6
	Total NS	684.0	4378.5	1146.8	662.5	208.3	26.9	30.5	26.8	-	12.4	7176.7
1972	IVaW of $2^{\circ} \mathrm{E}$	-	338.9	830.1	176.8	88.6	19.3	4.1		0.5	0.4	1458.7
	IVaE of $2^{\circ} \mathrm{E}$	-	75.1	91.0	17.8	5.8	0.7	0.1	-	-	,	190.5
	IVb	750.4	25.2	46.4	98.8	20.5	6.7	0.6	0.2	0.6	-	199.0
	IVbYH	750.4	2896.6	337.9	21.1	6.4	1.2	0.2	-	-	-	4013.8
	IVC+VIId, e	-	4.8	135.1	29.3	9.3	5.0		-	-		183.5
	Total NS	750.4	3340.6	1440.5	343.8	130.6	32.9	5.0	0.2	1.1	0.4	6045.5

(Data for earlier years are presented in C.M.1972/H:I3)

rear Winter rings	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959
0	7.26	4.72	4.10	5.68	6.90	7.69	9.10	8.07	7.70	4.76	21.37	5.64	7.82
1	5.22	6.57	4.27	3.71	5.14	6.24	6.96	8.09	7.10	6.81	4.22	19.07	5.01
2	3.80	4.73	5.99	3.86	3.34	4.22	4.98	5.32	5.93	4.46	4.56	2.41	13.19
3	2.85	3.05	3.96	4.97	3.04	2.53	2.76	3.03	3.37	3.53	2.27	2.57	1.21
4	3.56	2.10	2.07	2.87	3.50	1.99	1.74	1.64	1.66	2.07	2.04	1.36	1.38
5	2.13	2.57	1.55	1.41	2.03	2.06	1.29	1.21	0.96	1.04	1.39	1.24	0.93
6	2.67	1.43	1.78	1.12	1.00	1.30	1.22	0.90	0.85	0.55	0.71	0.93	0.68
7	I. 35	1.69	0.86	1.11	0.81	0.68	0.78	0.74	0.59	0.55	0.31	0.44	0.70
8	1.76	0.81	1.22	0.52	0.77	0.60	0.43	0.52	0.44	0.42	0.40	0.15	0.33
Juvenile, $0+1$	12.48	11.29	8.37	9.39	12.04	13.93	16.06	16.16	14.80	11.57	25.59	24.71	12.83
Adult, 2-8	18.12	16.38	17.43	15.86	14.49	13.38	13.20	13.36	13.80	12.62	11.68	9.10	18.42

Winter rings	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970
0	1.98	16.72	7.33	8.73	10.95	5.76	5.30	7.64	7.83	5.57	7.66
1	7.07	1.63	13.92	6.50	7.48	9.44	5.07	4.44	6.30	6.29	4.93
2	3.01	4.13	1.14	10.56	4.68	3.96	5.50	3.27	2.43	3.40	3.32
3	7.27	1.64	1.95	0.77	6.75	2.58	1.49	2.54	1. 85	0.51	1.30
4	0.63	4.71	1.03	1.01	0.53	3.98	1.09	0.64	1.01	0.27	0.18
5	0.77	0.41	2.88	0.61	0.77	0.33	1.68	0.56	0.23	0.33	0.12
6	0.62	0.54	0.26	1.58	0.48	0.55	0.17	0.68	0.22	0.06	0.12
7	0.38	0.45	0.34	0.11	1.22	0.34	0.35	0.11	0.24	0.12	0.01
8	0.52	0.23	0.35	0.17	0.08	0.86	0.20	0.25	0.04	0.02	0.07
Juvenile, $0+1$	9.05	18.35	21.25	15.23	18.43	15.20	10.37	12.08	14.13	11.86	12.59
Adult, 2-8	13.20	12.11	7.95	14.81	14.51	12.60	10.48	8.05	6.02	4.71	5.12

Table 12. Total North Sea (TNS): Calculated fishing mortality (after Burd 1973)

Year Winter rings	1947	1948	1949	3950	1951	2952	1953	1954	1955	1956	1957	1958	1959
0							0.02	0.03	0.02	0.02	0.01	0.02	
1					0.09	0.13	0.17	0.21	0.37	0.30	0.46	0.27	0.41
2	0.12	0.08	0.08	0.14	0.18	0.32	0.40	0.36	0.42	0.57	0.47	0.59	0.50
3	0.20	0.29	0.22	0.25	0.32	0.27	0.42	0.50	0.39	0.45	0.41	0.52	0.55
4	0.22	0.20	0.28	0.25	0.43	0.33	0.26	0.44	0.36	0.30	0.40	0.29	0.48
5	0.29	0.27	0.23	0.24	0.35	0.43	0.27	0.25	0.46	0.29	0.30	0.49	0.31
6	0.36	0.41	0.37	0.22	0.28	0.41	0.39	0.31	0.33	0.46	0.37	0.18	0.48
7	0.41	0.22	0.40	0.26	0.20	0.35	0.29	0.42	0.24	0.22	0.67	0.19	0.20
8	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.40	0.30
$F_{w} \geq 2$	0.24	0.21	0.20	0.22	0.31	0.34	0.36	0.39	0.39	0.44	0.42	0.45	0.48

Winter Tings	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970
0	0.11	0.08	0.02	0.06	0.05	0.03	0.08	0.09	0.12	0.02	0.13
1	0.43	0.25	0.18	0.23	0.54	0.44	0.34	0.50	0.52	0.54	0.29
2	0.51	0.65	0.29	0.35	0.49	0.88	0.67	0.47	1.45	0.86	0.99
3	0.33	0.37	0.56	0.28	0.43	0.77	0.74	0.82	1.81	0.92	1.23
4	0.32	0.39	0.42	0.18	0.35	0.77	0.57	0.92	1.02	0.71	1.22
5	0.26	0.38	0.49	0.15	0.23	0.59	0.81	0.81	1.21	0.92	0.56
6	0.21	0.37	0.73	0.16	0.23	0.34	0.32	0.93	1.12	1.74	0.76
7	0.42	0.15	0.59	0.23	0.25	0.45	0.21	1.01	1.23	1.11	1.74
8	0.30	0.30	0.30	0.30	0.40	0.70	0.70	0.40	0.50	0.60	1.00
$\mathrm{F}_{\mathrm{W}} \geq 2$	0.36	0.47	0.48	0.30	0.41	0.77	0.67	0.69	1.46	0.88	1.05

Ta,ble 13. Larval Abundance in the North Sea

$$
\begin{aligned}
\text { Number } \times 10^{-9} & (-=\text { no observations }) \\
& \left(+=<0.5 \times 10^{-9}\right)
\end{aligned}
$$

Year	Southern ${ }^{1}$ North Sea	Central North Sea		North-western North Sea ${ }^{4}$		
		Dogger ${ }^{2}$	Total ${ }^{3}$	Buchan	Orkneym Shetland	Total
1946	1193	-	-	-	-	-
1947	1134	-	-	-	-	-
1948		-	-	-	-	-
1949	-	-	-	-	-	-
1950	281	-	-	-	-	-
1951	686	-	-	2205	1029	3234
1952	-	-	-	2180	245	2425
1953	-	-	-	5170	2303	7473
1954	-	-	-	2132	1715	3847
1.955	183	-	-	32	1715	I 747
1956	165	-	-	-	-	-
1957	36	232	-	735	-	-
1958	139	252	-	539	6860	7399
1959	12	97	-	735	2107	2842
1960	147	138	-	1078	1568	2646
1961	187	86	-	931	12103	13034
1962	>30	66	-	980	1 764	2744
1963	- 22	-	-	1078	1.421	2499
1964	9	52	>63	2254	2156	4410
1965	13	275	>490	172	5439	5611
1966	$+$	3	>142	25	1666	1691
1967	26	0	599	$+$	854	854
1968	16	0	137	0	222	222
1969	108	0	14	$+$	493	4.93
1970	126	0	387	2	230	232
1971	7	+	177	143	711	854
1972	67	+	112	25	2803	2828

1. Larval abundance (all size groups) in Downs area in December-January.
2. Abrundance of laxvae <11mm in October on western and southern slopes of Dogger Bank.
3. Abundance of larvae <10mm in September-October in central axea of North Sea.
4. Abundance of larvae $<10 \mathrm{~mm}$ in September in the north-westem North Sea (north of $56^{\circ} \mathrm{N}$).

Table 14. Initial catch levels (1973) and percentage increase in eatch and biomass 1973-1976 at different combinations of mortalities for juvenile and adult North Sea autumn spawing herring.

Juvenile Mortalities (0 - and I-ringers)

F	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.
0.0	0.0	30.6	58.6	84.1	107.4	128.7	148.2	166.1	182.
	100.0	0	0	0	,	0	0	0	0
	496.3	445.5	400.3	359.9	323.9	291.8	263.1	237.5	214.6
0.1	66.5	97.1	125.0	150.6	173.9	195.2	214.7	23	9
	333.3	206.3	144.1	107.1	82.4	64.7	51.4	40.9	32.4
	391.6	348.3	309.6	275.2	244.4	217.0	192.6	170.8	151.3
0.2	126.7	157.3	185.3	210.8	234.1	255.4	274.9	292.8	309.2
	279.4	199.8	150.0	115.9	91.11	72.3	57.6	45.7	36.0
	312.4	275.0	241.6	211.9	185.4	161.8	140.8	122.0	105.2
0.3	181.3	212.0	239.9	265.4	288.7	310.1	329.6	347.4	363.8
	235.9	176.7	135.8	106.0	83.4	65.7	51.5	39.9	30.3
	251.7	219.1	190.1	164.2	141.1	120.6	102.2	85.9	713
0.4	230.8	261. 5	289.4	314.9	338.3	359.6	379	396.	413.3
	200.6	152.9	118.2	92.1	71.6	55.3	42.1	31.1	21.9
	204.7	176.0	150.5	127.7	107.5	89.4	73.3	58.9	46.1
0.5	275.7	306.4	334.3	359.8	383.1	404.5	424.0	441.8	458.2
	171.8	131.5	101.4	78.0	59.5	44.5	32.2	22.0	13.3
	168.0	142.5	119.8	99.6	81.6	65.5	51.2	38.5	27.1
$[0.6]$	316.4	347.1	375.0	400.5	423.9	445.2	464.7	482.	98.9
	148.1	113.1	86.3	65.3	48.4	34.5	23.1	13.5	5.4
	138.9	116.0	95.7	77.6	61.4	47.1	34.3	22.8	12.6
0.7	353.4	384.0	411.	437.5	460.8	482.1	501.6		
	128.5	97.4	73.3	54.0	38.5	25.7	15.0	6.0	-1.6
	115.6	95.0	76.6	60.2	45.6	32.6	21.0	10.7	1.5
0.8	386.8	417.5	445.4	470.9	494.3	515.6	535.1	552.	569.3
	112.1	84.1	62.1	44.4	29.9	18.0	8.0	-0.5	-7.7
	96.8	78.0	61.2	46.3	33.0	21.1	10.5	1.1	-7.3
0.9	417.2	447.8	475.8	501.3	524.6	545.9	565.4	583.3	599.7
	98.5	72.8	52.5	36.1	22.6	11.4	2.0	-6.0	-12.9
	81.5	64.2	48.8	35.0	22.8	11.9	2.2	-6.5	-14.2
1.0	444.8	475.4	503.3	528.9	552.2	573.5	593.0	610.8	627.2
	87.0	63.3	44.3	28.9	16.3	5.7	-3.2	-10.8	-17.3
	68.9	52.8	38.5	25.8	14.5	4.4	-4.6	-12.6	-19.8

Upper figuxe: Catch in 1973 (I 000 tons)
Middle figure: Increase in catch in 1976 as a percentage of that in 1973.
Lower figure: Increase in biomass as at the beginning of 1977 (\% in weight)

Fig. 1. The Spawning potential of the total North Sea herring stock 1947-1970 (full line) compared with the fishing mortality in the preceding year (hatched line).

Fig. 2. The North Sea herring stock in numbers $\left(\times 10^{-9}\right)$. Upper curve: total stock. Middle curve: adults as 2-ringers and older. Lower curve: adults as 4-ringers and older.

Fig. 4. Forecasted longnterm development in catch (A) and total biomass (B) at three combinations of juvenile and adult fishing mortalities (juv./adult). Assumptions: see section 9.

[^0]: x) General Secretary, ICES,
 Charlottenlund Slot, 2920 Charlottenlund, Denmark.

[^1]: ${ }^{x}$ Landed in Danish harbours.
 xx) A national catch quota of about 66000 tons set on herring landed for industrial purposes is expected to be reached early September.

