This paper not to be cited without prior reference to the Council ${ }^{\text {x }}$)
Intemational Council for the Exploration of the Sea
C.M.1973/H:10
Pelagic Fish (Northern) Committee

PRELININARY REPORT OF THE ICES WORKING GROUP ON THE

BLODIN TAGGING EXPRHRTMENT
Charlottenlund, 27 June - 3 July 1973

[^0]CONPTHNTS
T EXT

1. INITRODUCTION 1
1.1 Terms of reference 2
1.2 Experimental design 2
1.3 Data processing 3
2. THE LIBBRATIONS 4
2.1 Tagging mortality experiments 4
2.2 Effective liberations 5
3. RECAPTURES 8
3.1 Commercial statistics 8
3.2 Distribution of catch and effort 9
3.3 Analysis of returns 10
4. THE MODEL 16
5. DISCUSSION 18
TABLES and FIGUREI

Table 2.1		ween pages 3 and 4
Table 2.2	between pages 4 and 5
Table 2.3		page 5
Table 2.4		between pages 5 and 6
Table 2.5		at the end of the paper
Table 2.6		page 7
Table 2.7		page 7
Tables 3.1	$a-h$	at the end of the paper
Tables 3.2	a,b,c and d	at the end of the paper
Tables 3.3	and 3.4	between pages 8 and 9
$\begin{array}{r} \text { Tables } 3.5, \\ 3.8,3.9, \end{array}$	$\left.\begin{array}{r}3.6,3.7, \\ 3.10,3.11\end{array}\right\}$	at the end of the paper
Table 3.12		between pages 9 and 10
Table 3.13	between pages 10 and 11
Table 3.14	page 12
Table 3.15	page 13
Table 3.16	-.........	page 14
Tables 3.17	and 3.18	between pages 14 and 15
Table 3.19		page 15
Table 3.20	-•••*....	page 16
Table 4.1		page 18
Table 5.1		page 20

Page

FIGURE 1: Location of tagging positions, at the end of the paper.

Preliminary Report of the
ICES Working Group on the
Bløden Tagging Experiment

1. Introduction

The Bldden Herring Tagging Experiment took place during July 1969 to March 1970. The tagged herring were expected to remain in the area of the juvenile herring fishery until early 1971 at least. The Working Group met again in March 1971 (C. M. 1971/H:3) to examine the material so far available and to consider useful methods of analysing the data. At this meeting a contrast between these tagging experiments and those of 1957-58 (Aasen et al. 1961) was apparent in that a higher percentage of tagged fish released was recaptured and were returned over a relatively long period. Because of these features it was thought that the greater number of recaptures might allow a more extensive model of the dispersion of tagged fish from the liberation areas. Such a model could be used to simulate the distribution of tagged fish in the fishing area. A number of requests for the supply of various data were made and it was decided to meet again at ICES Headquarters prior to the Statutory Meeting in September 1971 to further consider the available data and to discuss the type of dispersion model required.

The Marine Laboratory, Aberdeen offered the assistance of a mathematician/programmer and the facilities of a computer of adequate capacity. A time-table was drawn up for transference of the data from computer files in Copenhagen to Aberdeen and for the development of the programme, which was expected to be operational during autumn 1972. It was agreed that the Group should meet again when output from the computer was available.

The participants at the most recent meeting (27 June-3 July 1973) at ICES Headquarters were:

Mr A. C. Burd (Chairman)	UK (England)
Mr H. Becker	Netherlands
Mr A. Maucorps	France
Mr M. D. Nicholson	UK (Scotland)
Mr J. A. Pope	UK (Scotland)
Mr K. Popp Madsen	Denmark
Mr \varnothing. Ulltang	Norway

Apologies were received from Dr A. Ackefors and Mr G. Wagner, who were unable to attend.

1.1 Terms of reference

At the 5th meeting of the North East Atlantic Fisheries Commission ICES was asked to prepare plans for a new Bløden herring tagging experiment.

The purposes of this experiment would be:
"(a) to obtain a minimum estimate of the proportion of the juvenile herring stock in the Bløden area taken by the fishery there. This estimate is required to assess the effect of the Blфden fishery on recruitment to the total adult herring population in the North Sea. Further, provided adequate sampling for racial analysis is conducted, it is hoped also to provide estimates of its effect on recruitment to each of the main spawning stocks separately.
(b) In addition it should provide valuable information on the distribution and migration pattern of the juvenile herring within and away from the Bløden area."

1.2 Experimental design

It was considered necessary that tags should be distributed over the widest possible area during the experiment. Four tagging areas were defined in the eastern North Sea with the boundaries $54^{\circ} \mathrm{N}$ to $57^{\circ} \mathrm{N}$ and west to $1^{\circ} \mathrm{E}$ and from $5^{\circ} \mathrm{E}$ north to the Norwegian coast and into the Skagerak. It was intended that each month tags should be liberated in each area. A Norwegian purse seiner, MV GERDA MARIE, was chartered as catching and tagging vessel. At various times assistance in searching for herring shoals was given by research vessels from

Denmark, France, Germany, Norway, Poland and the Netherlands and those participating in the ICES Young Herring Survey.

Mr G. Sangolt, a member of the staff of the Institute of Marine Research, Bergen, Norway was Supervisor on board the ship and the two tagging teams, whose membership was kept unchanged, consisted of crew members. The herring were either tagged directly from keep nets alongside the ship or transferred to flooded hold tanks aboard the vessel. The tags used were small "sprat" type internal tags. The ultimate aim was to release 100000 tagged fish, however only 57496 fish were released due to scarcity of herring.

Samples of fish from each tagging experiment were measured and preserved for subsequent analysis for age and racial characters. Special arrangements were made for the biological sampling of the commercial catches in Esbjerg during the period when tags were being recaptured.

As the success of the experiment was dependent on the high efficiency of detection of tags, it was stressed that all major plants handling herring catches from the North Sea and the Skagerak should be fitted with magnets and that magnet efficiencies should be regularly tested. The collection of detailed catch and effort statistics by fishing position was not considered adequate in January 1969. At that level the Group doubted that the tagging experiment results could be analysed effectively.

1.3 Data processing

For each recaptured tag, the following information was prepared on an IBM punched card. The first 12 columns provide the actual recapture information and columns 13 to 56 details of the experiment from which the tagged fish was released.

IBM column	Information
	Tag number
$6-7$	Country
$8-9$	Factory
$10-12$	Week number
$13-14$	Experiment number
$15-20$	Time and place of liberation
$21-23$	Size of catch
$24-34$	Weather conditions
$35-56$	Further information of liberations

Table 2.1 Dates and positions of liberations

Experiments	Dates	Tagging positions		Numbers tagged
	1969			
1	25 July	$57^{\circ} 52^{\prime} \mathrm{N}$	$10^{\circ} 30^{\prime} \mathrm{E}$	1996
2	31 July	5502	0536	1800
3	1 Aug	5504	0556	2000
4	4-5 Aug	5441	0530	4000
5	7 Aug	5457	0520	2000
6	20 Aug	5625	0633	2000
7	28 Aug	5734	1138	2000
8	5 Sept	5628	0645	2000
9	8 Sept	5624	0648	2000
10	9 Sept	5559	0717	2000
11	15 Sept	5501	0703	1100
12	19 Sept	5413	0340	1600
13	10 Oct	5935	1039	1000
14	15 Oet	5805	0631	1000
15	23 Oct	5630	0702	2000
16	23 Oct	5605	0715	2000
17	24 Oct	5528	0653	2000
18	26 Nov	5640	0632	3000
19	11 Dec	5506	0434	2000
	1970			
20	7 Jan	5505	0423	2000
21	8 Jan	5432	0427	2000
22	13 Jan	5429	0612	2000
23	13 Jan	5443	0631	600
24	13 Jan	5445	0634	2400
25	11 Feb	5412	0506	2000
26	12 Feb	5401	0454	3000
27	26 Feb	5441	0556	2000
28	27 Feb	5441	0556	2000
29	27 Feb	5441	0556	2000
			Total	57496

The ages of the fish tagged and in the catches was determined from the biological data collected on the tagging vessel and at the ports. When adequate data are available from the 1967 and 1968 year-classes as spawning fish it is the intention to carry out a racial analysis.

Atits meeting in September 1971 the Group was informed that a general computer program of a dispersion model was currently being developed at the Danish Fishery Laboratory by Mr Hans Lassen and it was decided that a modified version of this program, suitable for handling the present material, should be written and applied. This task was undertaken by Mr M. Nicholson (Marine Laboratory, Aberdeen) using the large computer facilities avallable at the Scottish Office Computer Service Centre (Edinburgh) and at the North European University Computer Centre (Denmark) .

The model developed is described in detail in Section 4.

2. The liberations

The execution of the plan for the distribution of tags throughout the North Sea and Skagerak was unsuccessful. Primarily this was due to the scarcity of herring of a suitable size for tagging ($15-23 \mathrm{~cm}$) . Research vessels reported the occurrence of echo traces to GERDA MARIE and also fished with trawls in these locations to determine the size of the fish. Despite considerable searching, the tagging locations were restricted in both time and area. Table 2.1 gives the total numbers of fish tagged and the date and location of the liberations (Figure 1). Of the total of 57496 tagged fish liberated, 6035 tags were recovered. In addition to making the tag liberations, six experiments were performed over 3-5 days to try to determine the mortality caused by tagging.

2.1 Tagging mortality experiments.

The experiments were either conducted in flooded hold tanks on board the ship or in keep nets alongside. A known number of tagged and untagged fish were placed in the experimental environments and after 3 or 5 days the tank or keep nets were emptied and the numbers of survivors tagged by each tagging team were recorded. The results of these

Table 2.2 Mortality experiments - GERDA MARIE

Experiments	Dates	Holding unit	Duration (days)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Location
1	31 July 1969	Ship's tank	5	18	South of Tail-End
2	5 Sept 1969	Ship's tank	5	15	North of Ringkjöbing Ground
3	9 Oct 1969	Ship's tank and keep net	5	12	Oslofjord*
4	10 Oct 1969	Ship's tank and keep net	5	12	Oslofjord
5	29 Nov 1969	Keep net	$3 \frac{1}{2}$	8	Stavanger Fjord \dagger
6	7 Jan 1970	Ship's tank	3	6	South of Tail End

Experiments	Treatment	Total	Alive	Dead	Tag shed	Lost	Effective liberation	\% alive	\% daily mortality
1	Untaggea	108	77	31	(5)		108	71.3	5.74
	Team 2	100	67	33			100	67.0	6.60
2	Untagged	100	78	22			100	78.0	4.40
	Team ?	100	68	32			100	68.0	6.40
$3 \quad\left\{\begin{array}{l} \text { Untagged } \\ \text { Team } 1 \\ \text { Untagged } \\ \text { Team } 2 \end{array}\right.$		200	144	49		7	193	74.6	5.08
		200	112	73		15	185	60.5	7.89
		200	142	50		8	192	74.0	5.21
		200	90	94		16	184	48.9	10.22
4	Untagged	100	77	20		3	97	79.4	4.12
	Team 1	104	88	16	.		104	84.6	3.08
5	Untagged	100	98	1	1	1	99	99.0	0.29
	Team 1	100	98	2			100	98.0	0.57
	Team 2	100	84	12		3	96	'86. 6	3.57
6	Untagged	108	96	12			108	88.9	3.70
	Team 1	100	83	15	2		98	84.7	5.10
	Team 2	100	68	30	2		98	69.4	10.20

[^1]experiments are summarized in Table 2.2. The results are reasonably consistent between experiments.

The mean daily percentage mortalities, excluding experiment 5 , were:

Untagged	4.71%
Team 1	5.36%
Team 1	9.01%.

The experiments have been combined to obtain estimates of survival rates for fish tagged by teams 1 and 2 (Table 2.3).

Table 2.3 Survival of herring

	Untagged	Tagged	
		Team 1	Team 2
Number liberated	798	387	382
\% survival	76.94	73.12	58.90
Range	71.3-88.9	60.5-84.7	48.9-86.6

The range of survival in untagged fish is only 17.6%, while for team 1 the range is 24.2% and 37.7% for team 2. It is quite probable that the survival may have been much lower than the average values used in the following analysis.

2.2 Effective liberations

Assuming there is no further mortality due to tagging beyond the 5 days of the experiments, the total numbers of fish liberated may be adjusted to give an effective number of tags liberated. Table 2.3 gives the numbers of fish tagged by each team and the numbers recaptured.

The mean recapture rate, p, of fish tagged by team 2 relative to team 1 was 0.7313 ± 0.139.

Let $N_{i j}=$ number of fish tagged by team $i(i=1,2)$ in experiment $\mathfrak{j}(\mathrm{j}=1-29)$;
$S_{i}=$ percentage survival after tagging;
$R_{i j}=$ total number of recaptures by team i from experiment j .

Table 2.4 Recaptures and liberations by tagging team

Experiments	Recaptures			Number tagged	
	Team 1	Team 2	Team $1+$ Team 2	Team 1	Team 2
1	95	61	156	996	1000
2	160	114	274	900	900
3	193	159	252	1000	1000
4	282	267	549	2050	1950
5	171	98	269	1050	950
6	59	100	159	1000	1000
7	56	50	106	1000	1000
8	95	57	152	1000	1000
9	151	73	224	1000	1000
10	172	109	281	1000	1000
11	47	17	64	600	500
12	72	42	114	800	800
13	6	2	8	500	500
14	22	7	29	500	500
15	185	130	315	1000	1000
16	200	141	341	1000	1000
17	211	165	376	1000	1000
18	277	205	482	1500	1500
19	105	108	213	1000	1000
20	87	87	174	1000	1000
21	155	134	289	1000	1000
22	65	32	97	1000	1000
23	17	8	25	300	300
24	181	154	335	1200	1200
25	118	93	211	1000	1000
26	134	116	250	1500	1500
27	24	26	50	1000	1000
28	17	10	27	1000	1000
29	30	14	44	1000	1000
Total	3387	2579	5966	28896	28600

Experiments	Percentage recapture			Effective liberation		
	Team 1	Team 2	Ratio: $\frac{\text { Team } 1}{\text { Team } 2}$	Team 1	Team 2	Team $1+$ Tean 2
1	9.54	6.10	0.6394	765	562	1327
2	17.78	12.67	0.7126	691	506	1197
3	19.30	15.90	0.8238	768	562	1330
4	13.76	13.69	0.9949	1575	1096	2671
5	16.29	10.32	0.6335	807	534	1341
6	5.90	10.00	1. 6949	768	562	1330
7	5.60	5.00	0.8929	768	562	1330
8	9.50	5.70	0.6000	768	562	1330
9	15.10	7.30	0.4834	768	562	1330
10	17. 20	10.90	0.6337	768	562	1330
11	7.83	3.40	0.4342	461	281	742
12	9.00	5.25	0.5833	615	449	1064
13	1.20	0.40	0.3333	384	281	665
14	4.40	1. 40	0.3182	384	281	665
15	18.50	13.00	0.7027	768	562	1330
16	20.00	14.10	0.7050	768	562	1330
17	21.10	16.50	0.7820	768	562	1330
18	18.47	13.67	0.7401	1152	843	1995
19	10.50	10.80	1. 0286	768	562	1330
20	8.70	8.70	1.0000	768	562	1330
21	15.50	12.40	0.8645	768	562	1330
22	6.50	3.20	0.4923	768	562	1330
23	5.67	2.67	0.4709	230	168	398
24	15.08	12.83	0.8508	922	674	1596
25	11.80	9.30	0.7881	768	562	1330
26	8.93	7.73	0.8656	1152	843	1995
27	2.40	2.60	1.0833	768	562	1330
28	1.70	1.00	0.5882	768	562	1330
29	3.00	1.40	0.4667	768	562	1330
Total	11.72	9.02		22194	16072	38266

Taking the percentage survival of team 1 fish in the mortality experiments, the effective liberation is

$$
\begin{equation*}
L_{1 j}=N_{1 j} \times S_{1}+N_{2 j} \times S_{1} \times \rho, \tag{1}
\end{equation*}
$$

or in terms of survival of team 2 fish effective liberation is

$$
\begin{equation*}
L_{2 j}=\frac{1}{\rho} \times N_{1 j} \times S_{2}+N_{2 j} \times S_{2} . \tag{2}
\end{equation*}
$$

Numerically

$$
\begin{equation*}
\mathrm{L}_{1 \mathrm{j}}=0.7312 \mathrm{~N}_{1 \mathrm{j}}+0.5347 \mathrm{~N}_{2 \mathrm{j}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{2 j}=0.8054 N_{1 j}+0.5890 N_{2 j} . \tag{4}
\end{equation*}
$$

As there is no reason to suppose that one estimate of S is better than the other, means have been taken of the values in equations 3 and 4. The following relationship was used for calculating the effective number of fish liberated in each experiment and they are given in Table 2.4:

$$
\begin{equation*}
L_{j}=0.7683 N_{1 j}+0.5618 N_{2 j} \tag{5}
\end{equation*}
$$

While tagging a record was kept of the serial numbers of each fish liberated in each hour from commencement of tagging. The recaptures for teams 1 and 2 have been grouped by hour of tagging. These have been summarized and expressed as percentages of the total tag releases in Table 2.5. In experiment 4 tagging was curtailed after 2 hours and resumed 10 hours later.

As can be seen from the table, most liberations were conducted into or beyond the third hour from commencement. Taking all liberations up to and including the third hour, analyses of variance were made within teams to test whether differences in recovery rate were associated with hour of liberation. The results are given in Table 2.6.

Table 2.6 Analysis of variance of recaptures by hour of tagging

Team	Source	Sum of squares	df	Mean square
1	Between liberations	0.2060	22	0.00936
	Between hours	0.0009	2	0.00045
	Residual	0.0149	44	0.00033
	Total	0.2218	68	
2	Between liberations	0.1243	22	0.00565
	Between hours	0.0009	2	0.00045
	Residual	0.0160	44	0.00036
	Total	0.1412	68	

Significant differences for both teams occur between liberations but not between recaptures by hour of liberation.

Considering the position of liberations, data on length and age composition of the herring tagged, some of the liberations have been combined for the purposes of further data analysis (Table 2.7). The mixed liberations tend to an average of $40 \%, 1967$ year-class, and $60 \%, 1968$ year-class.

Table 2.7 Liberations by position and year-class

Location	Liberation	Dates	Effective liberation	Year- class
North of 57°	1	25 July 1969	1327	1967
	7	28 Aug 1969	1330	1967
	13	10 Oct 1969	665	1967
	14	15 Oct 1969	665	1967
South of 57° and north of $55^{\circ} 30^{\prime}$	6	20 Aug 1969	1330	mixed
	8-10	5-9 Sept 1969	3990	1968
	15-17	23 Sept- 4 Oct 1969	3990	1968
	18	26 Nov 1969	1995	1968
South of $55^{\circ} 30^{\prime}$	2-5	$\begin{aligned} & 31 \text { July - } \\ & 7 \text { Aug } 1969 \end{aligned}$	6539	1967
	11	15 Sept 1969	742	1968
	12	19 Sept 1969	1064	mixed
	19	11 Dec 1969	1330	1967
	20-23	7-13 Jan 1970	4388	1967
	24	13 Jan 1970	1596	mixed
	25-26	11 Feb 1970	3325	mixed
	27-29	26 Feb 1970	3990	1968

3. Recaptures

In this report only recaptures up to 30 April 1971 are considered. Since that date a further 1193 tags have been returned, mostly from the fisheries in the north-western North Sea. Because of the time taken for tags to pass through processing plants it was thought that the minimum reportage time which could be considered was by month. The reaaptures up to April 1971 were tabulated by months, country and factory.

Recaptures from Sweden were too few to considex and the Scottish plant was not operative until late in the season. The English plants at Hull and Grimsby are mainly offal processing.

In order to facilitate a comparison of the number of tags returned per liberation, the returns have been raised to a standard liberation of 10000 tags. These values are given in Table 3.1 for Denmark, Norway and Germany. The data are grouped by the year-class of the fish tagged. It is interesting to note that the liberations 1 and 7 in the Skagerak and $2-5,19$ and $20-23$ south of $55^{\circ} 30^{\prime} \mathrm{N}$ consisted of almost only 1967 yearclass. Returns from 1 and 7 were almost entirely from the northern Danish plants at Skagen and Hirtsals. Whereas with the liberations 2-5 early returns came from Esbjerg, but later were returned from the northern Danish plants.

In the case of Norway a considerable quantity of the 1967 year-class recaptures were returned from May 1970 , when a major part of the Norwegian catch was reported as coming from the north-western North Sea (Table 3.5).

3.1 Commercial statistics

Statistics of the quantities of herring caught in the North Sea and landed for industrial purposes were available from Denmark, Norway and Germany. The Danish data, the most detailed statistics provided, ane shown by port in Tables 3.2a-d. In addition to recording the total amount of herring processed, samples were taken at Skagen, Thyboron and Esbjerg for age determination and the estimated number of herring of different year-classes obtained from these samples are also given there. Repeated measurements of magnet efficiencies at the reduction plants

Table 3.3 North Sea herring catch processed in Norway

	Catch in tons		Magnet efficiency
	Total	Effective	
1969			
July	29629	22216	74.98
August	16513	13387	81.07
September	62	41	67.21
October			
November	80	63	79.35
December			
1970			
January	13107	10654	81.29
February	2286	1882	82, 33
March			
April	29	18	63.89
May	1780	1561	87.70
June	55559	42260	76.06
July	70112	52774	75.27
August	8292	6607	79.67
September	4137	3156	76.28
October	82	72	88.71
November	215	165	76.81

Table 3.4 Germany (Federal Republic) - herring landings of cutters fishing for industrial purposes in the North Sea (in tons): (1) on the basis of the Federal Statistical Office, Wiesbaden; (2) landings split into biological samples (made by the Institute of Coastal and Inland Waters Fishery)

	1969		1970		1971	
	1	2	1	2	1	2
January	-	-	1449.3	5113.9	4.4	-
February	-	-	8520.4	7584.4	36.8	3.5
March	-	-	2736.4	2513.5	132.3	72.9
April	-	-	1002.0	1116.0	-	19.7
May	-	-	2186.0	207.7	250.2	21.5
June	1149.1	-	1890.0	33.3	24.1	152.1
July	627.3	31.8	2929.5	1992.7	-	-
August	3979.1	5091.8	8054.7	2159.6	-	-
September	4457.6	4071.8	3289.0	1022.7	-	-
October	3562.7	3903.0	1544.3	1775.7	-	-
November	-	167.2	10.1	966. 2	-	-
December	19.0	-	89.2	-	-	-

were used to convert the total quantity of herring processed into effective quantities (Table 3.2).

Norwegian landings of herring (for industrial and human consumption) split according to area of capture are shown in Table 3.5. Estimates of the North Sea herring age composition for each month were not available. Magnet efficiencies on an annual basis were available from Norwegian factories (Table 3.3).

Landings of herring for industrial purposes by German cutters were presented from two sources for the period June 1969-June 1970 (Table 3.4). The agreement between the two sets of statistics is not good.

From the information on magnet efficiencies tables have been constructed showing the number of tags recaptured per 10000 tags effectively liberated in each experiment (Tables 3.6 and 3.7). In the case of the returns which came from factories at Esbjerg, Skagen and Thyborön, it was possible, by using the available age composition data, to calculate the number of recaptures per 10000 tags released per 10^{6} herring processed. These data are given in Tables 3.8, 3.9, 3.10 and 3.11. The data for Esbjerg show no systematic variation with time, suggesting that no change took place in the ratio between tagged and untagged fish.

3.2 Distribution of catch and effort

The most detailed information on the distribution of herring fisheries from July 1969 to April 1971 concerns the Danish, Norwegian and Scottish catches which, between them, account for by far the greatest part of the recaptured tags. German recaptures are quite significant in some experiments, but no data on the distribution of the German fishery are available.

The Danish catch statistics cover Esbjerg where $68-93 \%$ of the monthly landings are accounted for, and Skagen where 8-68\% coverage was obtained in individual months. There are no data available from Skagen in 1971.

The distribution of the Danish herring catches shows two rather permanent areas of fishing, one around the Skaw at the entrance to the Kattegat and an area in the south-western North Sea - identical with the

Table 3.12 Distribution of recaptured tags per 10000 released by country (not corrected for magnet efficiency)

Tagging location	Experiment	1967 year-class							
		Denmark							
		Eb*	Th	H	Sk	Nw	G	Se	Sw
Skagerak	1	15		580	422	98	52	8	8
	7	60		364	236	84	54	8	
Northern Bl ϕ den 57° to $55^{\circ} 30^{\prime}$									
Southern BIøden	2-5	1063	9	182	54	552	264	64	3
$55^{\circ} 30^{\prime}$ and	19	278		263	105	774	92	68	8
southerly	20-23	264	9	200	75	661	90	39	2

Tagging location	Experiment	1968 year-class							
		Denmark				Nw	G	Sc	Sw
		Eb	Th	H	Sk				
Skagerak									
Northern Bløden	8-10	920	256	70	85	105	248		5
57° to $55^{\circ} 30^{\prime}$	15-17	1562	208	111	88	78	559	2	8
	1.8	1398	315	100	70	40	681	10	10
Southern Bløden	11.	592	40			27	188		
$\begin{aligned} & 55^{\circ} 30^{\prime} \text { and } \\ & \text { southerly } \end{aligned}$	27-29	228	43			5	27		

$$
\begin{aligned}
* \mathrm{~Eb} & =\text { Esbjerg, Denmark } \\
\mathrm{Th} & =\text { Thyborön, Denmark } \\
\mathrm{H} & =\text { Hirtsals, Denmark } \\
\mathrm{Sk} & =\text { Skagen, Denmark }
\end{aligned}
$$

Nw = Norway
$\mathrm{G}=$ Germany
Sc $=$ Scotland
$\mathrm{Sw}=$ Sweden

Bløden ground. Fishing in the north-western North Sea is more patchy and was mainly carried out in January-April 1970 and again from September 1970 to April 1971.

The Norwegian purse-seine catches are mainly concentrated in the Skagerak and the north-eastern North Sea in the period July-December 1969. In January-June 1970 additional fishing was carried out in the central North Sea east of the Danish Bl ϕ den fishery. In the second half of 1970 a Norwegian fishery around the Shetland-Orkneys developed. Only sporadic landings are taken from the North Sea in the early part of 1971.

The Scottish North Sea herring fishery is mainly concentrated around the Shetland-Orkneys and only a few landings are made in the period October 1969-March 1970 and in the early months of 1971. The largest catches are taken in June-August 1970 when the Scottish herring fishery extends towards west into ICES Statistical Area VIa and only minor catches are made east of Shetland.

It is important to note that there is almost no overlap in the area of the fisheries of Norway, Scotland and Denmark. The rate of return of tags from these fisheries is in part a reflection of the emigration from the tagging areas (Table 3.12).

The distribution of I-group herring in the North Sea as described from the ICES Young Herring Surveys in February 1970 and 1971 may be compared with the distribution of the fisheries in the same months, with one exception. There is a good agreement between the locations of the fisheries and the major concentrations of herring. This exception is a major concentration of young herring in the Texel area, which is not covered by the industrial fishery. This fishery seldom extends south of $54^{\circ} \mathrm{N}$ latitude.

3.3 Analysis of returns

To obtain estimates of stock size and mortalities, several methods were tried.

(a) Petersen method

As a first approach the simple Petersen method was used. stock size in numbers was calculated by

Table 3.13 Estimated stock size in miliions (upper figure) and fishing mortality (lower figure)

Tagging location	1967 year-class				1968 year-class		
	Experiments	Esbjerg	Norway Jan/Feb 1970	Skagen	Experiments	Esbjerg	Thyborön
Skagerak	1			653			
	7			765			
Northern Bløden					8-10	$\begin{aligned} & 6887 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 4200 \\ & 0.36 \end{aligned}$
					15-17	$\begin{gathered} 3596 \\ 0.43 \end{gathered}$	$\begin{aligned} & 2.259 \\ & 0.80 \end{aligned}$
					18	$\begin{aligned} & 4020 \\ & 0.38 \end{aligned}$	1133
Southern Bløden	2-5	$\begin{aligned} & 3251 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 2232 \\ & 2.5 \end{aligned}$		11	$\begin{aligned} & 13206 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 8925 \\ & 0.15 \end{aligned}$
	19	$\begin{aligned} & 5519 \\ & 0.47 \end{aligned}$	1686		27-29	$\begin{aligned} & 17860 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 8302 \\ & 0.17 \end{aligned}$
	20-23	$\begin{aligned} & 5812 \\ & 0.45 \end{aligned}$	2033			\cdot	
Catch 1970* (excluding Skagerak)		2002.8				1196.2	
Mean of stock size estimates and corresponding fishing mortality (excluding Skagerak)	.	$\begin{aligned} & 3422 \\ & 0.94 \end{aligned}$				$\begin{aligned} & 7039 \\ & 0.20 \end{aligned}$	

*From Table 9, C. M. 1972/H:13.

$$
\widehat{N}=T \frac{C}{R},
$$

where T is the effective number of tagged fish, R the number of recaptures and C the corresponding catch in numbers corrected for magnet efficiency. By using the number of recaptures and corresponding catch of one year-class, the estimate above should give the size of the yearclass at the time of tagging. Only returns from the factories in Esbjerg, Thyborön and Skagen and from the Norwegian factories were used in these estimates. The estimates from Norwegian recaptures are based on returns in January and February 1970 only. The Norwegian fleet was then fishing in the southern part of the central North Sea, just outside the Bløden area, and it was therefore assumed that the catch composition from Esbjerg in autumn 1969 could be applied to these catches. Estimates from the various experiments are summarized in Table 3.13. Fishing mortalities were estimated by assuming that the stock size estimates refer to 1 January 1970 and then calculating F from

$$
C=N \times \frac{F}{Z}\left(1-e^{-Z}\right),
$$

where C is the total catch of the year-class in 1970. It was further assumed that $M=0.1$. In the cases where estimated stock sizes were lower or about equal to the catch no estimate of F could be made.

A basic assumption in the Petersen method is that the proportion of tagged fish in the catches used to estimate N is the same as in the rest of the population or year-class. The big differences in the estimates of the 1968 year-class from the southern and northern experiments may be explained by different behaviour of the tagged fish in the southern and northern parts of the area. If the tagged fish in the southern area migrated out of the main area fished, these experiments will give over-estimates of the stock size. Similarly, if fish tagged in the northern area migrated into the main area fished and concentrated there, the northern experiments will underestimate the stock size. Such under-or overrepresentation of tagged fish in the catch may result in a serious error in the estimates.

Using the German biological samples to estimate the catch in numbers, the reported recaptures in January-April 1970 from the factory with the highest production gives the following estimates of stock size (Table 3.14).

Table 3.14 Stock size estimates in millions from German data

Tagging location	1967 year-class			1968 year-class		
	Experiments	Returns	Stock	Experiments	Returns	Stock
Skagerak	13	15				
	14	15				
Northern Bl $\varnothing \mathrm{den}$				8-10	148	10300
				15-17	379	4000
				18	521	2900
Southern Bløden	2-5	43	8800	11	148	10300
	19	38	9900	27-29	13	117800
	20-23	19	19900			

The estimates for the 1967 year-class are much higher than those based on Danish and Norwegian recaptures. Those for the 1968 year-class, except that from experiments $27-29$, are in general agreement with the estimates based on Danish recaptures. The return of tags from liberations 13 and 14 in the Skagerak by the German plant can be due to the processing of offal from fish imported to Germany. They highlight one of the uncertainties in the German material. In addition, because of the uncertainties in the German catch figures, one should not consider the stock estimates as equally good as the others.

The Norwegian recaptures in June-August 1970 were also used to estimate stock size. Almost all the catch in this period came from area IVa W (Shetland), and it is assumed that all the reported tags came from this area.

The estimated age composition of the catch for the whole year and all countries in this area was used to estimate catch in numbers by age groups (Anon. C. M. 1972/H:13). Very little of the 1968 year-class were caught and the relative precision of the estimate of numbers caught of
this year-class is too low to make any estimate of stock size. The results for the 1967 year-class are shown in Table 3.15.

Table 3.15 Stock size estimates, in millions, for the 1967 year-class, from Norwegian data

Tagging location		Experiments		Returns
			N	
Southern Bløden	$2 \because 5$	93	23300	
	19	181	12000	
	$20-23$	148	14600	

These estimates give considerably higher values than the others. Possible explanations could be that the tagged fish in the Bløden area have not migrated to Shetland in the same proportion as the rest of the year-class or the Shetland stock of adult herring is not recruited from Bløden alone.

In Table 3.13 the recoveries from experiments 1 and 7 at Skagen should give an estimate of the Skagerak 1967 year-class, as almost all returns from these experiments seem to be recaptured in that area. As the catch of the Skagerak stock is not known no estimate of F could be made.
(b) Maximum likelihood estimates (Paulik 1963)

This method uses only the number of returns (corrected for magnet efficiency) with time and the effective number of tags released to estimate total and fishing mortality. Grouping the recovery period into threemonthly intervals and using all reported tags from Esbjerg, Thyborön, Skagen and Norway, the method gave the estimates shown in Table 3.16.

Table 3.16 Estimates of fishing and total mortality - Paulik method

Yearclass	Experiments	F	Z
1967	1	0.31	1.66
	2-5	1.00	3. 02
	7	0.22	1. 54
	14	0.36	4.50
	19	0.50	2. 36
	20-23	0.46	2. 81
1968	8-10	0.18	0.42
	11	0.17	2. 04
	15-17	0.48	1. 54
	18	0.52	1.75

As every return is not included, the method should underestimate F. The estimate of Z will not be influenced if the proportion of the returns that are reported is constant from interval to interval. However, a basic assumption in this method is that fishing and total mortality are constant and the method may give seriously biased estimates if the mortalities are changing with time. In many of the experiments the number of returns with time indicates that there is a higher fishing mortality on the tagged fish just after tagging than later on. The Paulik method may in such cases seriously overestimate Z.
(c) Number of recaptures per unit effort

The only series of comprehensive effort data is that from the Danish port of Esbjerg. Table 3.17 gives the total number of hours fished per month by industrial vessels engaged in herring fishing. Using these data and the numbers of tags per 10000 liberated per million fish processed of Tables 3.8 and 3.9 the numbers of returns per catch per unit effort have been derived (Table 3.18). Regression of the logarithm of these recaptures per unit effort on time was made for the 1967 and 1968 yearclasses using data from Esbjerg. The time unit used was one month.

For the different experiments the following values for the slope and intercept of the regression equations were obtained (Table 3.19). The slope equals $\mathrm{F}+\mathrm{X}$, where X represents all other apparent mortality not

Table 3.17 Total effort as hours fishing, Esbjerg

	Single	Pair	Total: (2 xpair) + single
1969			
August	9368.0	3993.5	17355.0
September	8608.5	3547.5	15703.5
October	4143.6	2815.0	9773.6
November			
December			
1970			
January	1645.5		1645.5
February	9646.5	48.0	9742.5
March	9212.5		9212.5
April	8562.0	606.0	9774.0
May	4578.0	782.0	6142.0
June			
July	12189.0	3288.5	18266.0
August	13318.5	734.3 .8	28006.1
September	14.804 .5	5077.5	24959.5
October	8939.0	3795.5	16530.0
November	8196.5	103.0	8402.5
December	4567.5	1581.5	7730.5
1971			
January	11069.6	480.0	12029.6
February	18800.8	1291.0	21382.8
March	23531.7	2108.0	27747.7
April	26426.5	2590.0	31606.5

Table 3. 18 Tags returned per catch per unit effort $\times 10^{-6}$, Esbjerg

Recapture month	1967 year-class			1968 year-class				
	Experiments			Experiments				
	2-5	19	20-23	8-10	11.	15-17	18	27-29
1970								
January	1124			547	322	875	1373	
February	730	595	435	211	139	342	277	
March	1217	1552	2759	130	126.	560	444	56
April	194	138	166	293	137	481	344	147
May	356	381	342	339	200	534	467	35
June								
July	225	308	226	154	85	272	244	50
August	20	19	34	61	55	122	91	47
September	23		14	59		72	127	7
October 46 40 46 176 60 245 301 37 November 3 December								
December								
1971								
January 20								
February	277			25	33	56	101	20
March								
April	10		10	8		22	16	3

due to fishing (F) and is an estimate of the monthly total mortality (Z).
Table 3.19 Regression parameters

Year- class	Experiments	Slope	Intercept
1967	$2-5$		
	19		-0.26
	$20-23$	-0.43	6.93
		-0.35	8.65
1968	$8-10$		
	11	-0.24	6.38
	$15-17$	-0.15	5.57
	18	-0.26	7.10
	$27-29$	-0.23	6.84
			5.25

Attempts to estimate the fishing mortality from the intercept,

$$
\ln \frac{F N_{o}}{F+X}\left\{1-e^{-(F+X)}\right\}
$$

gave no reasonable results due to its large sampling variation.
(d) Estimation of catchability coefficient

The catch per unit effort in any time interval is proportional to the abundance at the beginning of that interval. The abundance at any time is a function of the product of the total effort expended up to that time and the catchability coefficient (q). The latter may be estimated from successive values of the catch per unit effort and the cumulative effort. This method of estimating q due to DeLury (see Ricker 1958) was used, using data for Esbjerg given in Tables 3.17 and 3.18 over the period January 1970 to April 1971 inclusive. Months in which there was fishing effort but no tags were returned were omitted from the analysis, but the effort was included in the accumulated sum. The estimates of q and their standard errors, obtained by carrying out an ordinary regression analysis of \ln catch per unit effort on cumulative effort (measured in units of thousand hours fishing), are given in Table 3.20. These estimates of q are very similar, their average (obtained by weighting by their inverse variances) being -0.01378 ± 0.00106.

Table 3.20 Estimates of the catchability coefficient, q, from Esbjerg data
$\left.\begin{array}{lllll}\hline \text { Experiments } & \begin{array}{l}\text { Catchability } \\ \text { coefficient, } q\end{array} & & \begin{array}{l}\text { Standard } \\ \text { error }\end{array} & \end{array} \begin{array}{l}\text { Degrees of } \\ \text { freedom }\end{array}\right]$

4. The model

The numbers of tagged fish recaptured depends on the way they become dispersed over the area in relation to the fishing intensity.

Movement of the tagged fish away from the centre of liberation was assumed to be made up of two components: (a) a symmetrical dispersion outwards from the point of liberation, and (b) a general drift in a given direction. This was simulated by assuming that a fish in a particular square at the end of a time interval had a given probability of remaining in the same square and given probabilities of moving into any one of the eight surrounding squares by the beginning of the next time interval.

It was further assumed that tagged fish could not move outside the Bløden area. This was simulated by assuming that if a fish in a boundary square tried to move outside the boundary, it was reflected back into that square or into the adjacent boundary squares on either side with given probabilities.

These probabilities were derived from a dispersion coefficient (d) and parameters (n, e) representing northerly and easterly components of movement.

During each time interval fish may die or may be recaptured, the number dying depending on the value of the instantaneous natural mortality coefficient (M) and the number being recaptured depending on the fishing intensity and the catchability coefficient according to the formula

$$
\text { number recaptured }=n_{i j} q_{i j}\left\{1-\exp \left(-M-q f_{i j}\right)\right\} /\left(M+q f_{i j}\right),
$$

where $n_{i j}=$ number present at beginning of interval in square (ij),
$\mathrm{q}=$ catchability coefficient (constant),
$\mathbf{f}_{\mathrm{ij}}=$ fishing intensity in square ($\mathbf{i} \mathbf{j}$).
Knowing N , the effective number of tags liberated and assuming a value for M, the problem is to find values of d, n, e and q which will produce values for the numbers of recaptures in each time interval as nearly as possible equal to the observed number of recaptures. Because the positions of recapture of tagged fish are not known, this matching process has to be done on the total recaptures summed over all squares in each time interval.

The process of finding the best set of parameters starts by guessing initial values and thereafter proceeds by iteration to the final, best-fitting values, provided convergence is possible. The criterion chosen for obtaining the best set of parameters was that they should be the ones which minimize the sum of squares of the differences between the observed and the predicted recaptures in each time interval. The time interval chosen throughout was four weeks.

The assumption that none of the tagged fish can leave the Bløden axea was thought to be unrealistic for fish of the 1967 year-class. This was borne out by the fallure of the model to produce estimated recaptures compatible with those observed. In order to handle data from liberations composed of fish from the 1967 year-class changes will have to be made in the model to permit fish to emigrate from the area.

For the 1968 year-class it is reasonable to assume that there will be a smaller emigration as compared to the 1967 year-class and the model should provide a closer approximation to the true behaviour of the fish. A study of data from 12 four-week periods from experiments 15,16 and 17 was therefore made, and although no convergence to a best set of parameter values was achieved, the overall performance of the model was better than for 1967 year-class experiments.

After 10 iterative cycles, the sum of squared differences between obsexved and predicted tag returns reached a minimum, after which the solutions began to diverge, producing successively worse predictions of
tag returns (Table 4.1). For this computer run, only Esbjerg effort data and tags returned through Esbjerg factories have been used. Natural mortality has been set at 0.1 . The numbers liberated and numbers returned have been adjusted for tagging mortality and magnet efficiencies respectively.

Table 4.1 Summary of 9th, 10th and 11th cycles

Period	Observed	Predicted 9	Predicted 10	Predicted 11
1	2.0	11.1	3.6	9.7
2	0.0	4.1	1.0	4.5
3	18.7	79.9	30.9	42.4
4	233.8	457.6	160.6	266.0
5	65.8	209.1	80.7	68.6
6	71.1	214.8	91.1	47.3
7	88.8	103.5	51.6	14.0
8	1.4	0.0	0.0	0.0
9	42.0	104.9	65.5	46.3
10	78.9	125.1	95.8	6.5
11	50.0	39.7	43.2	2.4
12	36.5	19.0	25.2	0.2
Total	688.8	1368.8	649.1	507.7

Parameter values
Catchability coefficient in Cycle $9 \quad$ Cycle 10

Cycle 11

Catch coefficient	0.0042	0.0016	0.0027
Migration east	-0.8362	-0.4280	-0.3707
Migration north	-3.0000	-3.0000	-3.0000
Diffusion rate	1.5000	2.0733	0.5000

Although the performance of the model here is better than for the 1967 year-class, it is still not very good. This may be due to shortcomings in the available data, or perhaps because this type of diffusion model does not correspond to the actual movements of a shoaling species such as herring.

5. Discussion

In planning the present tagging experiment it was natural to regard the young herring taggings in 1957-58 as a pilot experiment (Aasen et al. 1961). The shortcomings of the latter derived from

1. inadequate catch and effort statistics for detailed distribution in time and space;
2. too few fish liberated at too few localities;
3. too few factories with effective installations for recovery of tags;
4. no direct attempt to assess initial tagging mortality;
5. insufficient biological sampling of the tagged population and of the commercial fisheries;
6. too many different tagging teams to ensure a reasonable uniform handling of the tagging operations throughout the period. As a consequence of these deficiencies the analysis of the comparatively low number of tag returns was difficult.

In the present experiments the necessary increase in tagged fish and in tagging positions was achieved by extending the period from one month to eight months and by releasing 30% more fish per station. Even so the number achieved fell far below the intended target of 100000.

The need for experimental work on tagging mortalities was met with and facilitated by the presence of huge tanks on board the hired tagging vessel. More uniform handling of the fish was obtained by the deployment of the same two tagging teams throughout the entire experiment.

While improvements in the work at sea also included sampling each haul, it proved difficult to obtain clear improvements of the equally vital activities ashore. In working up the new data, difficulties were again met in the same categories of the commercial fishery data sampling and magnet efficiencies.

During the course of the tagging experiment fish were tagged probably of only the 1967 and 1968 year-classes. Judging from the biological samples taken at the time of tagging, some experiments were virtually conducted on single year-classes.

The 1967 year-class entered the adult fisheries in early summer 1970. Tags were recovered from liberations of this year-class from July 1969 until spring 1971 in the young herring fisheries. After that they occur with increasing rates in fisheries over deep water and even to the north of Scotland.

In contrast, the 1968 year-class was 0 -group when the taggings began in 1969 and there are indications that this year-class remained in the eastern North Sea throughout 1970. In 1971 this year-class shows the same drop in abundance as did the 1967 year-class one year earlier.

There is a striking difference between the recent experiment and the earlier one in the length of time over which tags were returned. Few tags were recovered beyond eight weeks in 1957 and 1958, while many tags were recovered after eight months in this experiment. The Working Group did not investigate the reason for this difference, but either a change in migration rate of the fish and/or an increase in fishing power and range of the industrial cutters could be explanations.

In view of the differences in the 1967 and 1968 year-classes mentioned above, the recaptures from them must be considered separately, In consequence, the lack of relevant age data has resulted in material being left out of the analysis. In effect, this means that the main analysis is again dependent on the data from Esbjerg.

A number of methods for analysing tagging data were tried, For various reasons explained above, the only reliable estimates were derived from the Petersen method relating number of tags recaptured to fish processed.

Stock and fishing mortality estimates for the 1967 and 1968 yearclasses (Table 5.1) are close to those derived by the North Sea Herring Assessment Working Group from cohort analysis.

Table 5.1 Stocks at 1 January 1970 and fishing mortalities in 1970

	1967 year-class		1968 year-class	
	Tagging	Cohort	Tagging	Cohort
Stock $\times 10^{-9}$	3.42	3.32	7.04	4.93
Fishing mortality	0.94	0.99	0.20	0.29

The I-group (1968 year-class) had about the same fishing mortality in 1970 as had the corresponding age group in the 1957-58 experiments. The year-class strength might, however, be less than half that of the 1956 year-class in January 1958.

The 1957-58 experiments were analysed using a simple diffusion model. With the increased information available from the present experiment and the increased experience in the use of computers for simulation studies, a more sophisticated model was developed. The results so far obtained are not fully satisfactory but indicate that further development should be undertaken. It seems especially necessary to make some more realistic assumptions about emigration and to develop methods for testing the parameters obtained.
Table 2.5 Tag recaptures by team by hour as percentage of total tag releases

Experiments	Number tagged by		Hour									
			1		2		3		4		5	
	Team 1	Team 2										
1	996	1000	0.085	0.077	0.080	0.055	0.100	0.015	0.100	0.070		
2	900	900	0.157	0.143	0.173	0.100	0.197	0.130				
3	1000	1000	0.208	0.168	0.195	0.152	0.135	0.125				
4*	2050	1950	0.124	0.177	0.153	0.106						
5	1050	950	0.160	0.117	0.152	0.082	0.180	0.120				
6	1000	1000	0.075	0.080	0.055	0.145	0.025	0.095	0.020	0.075	0.110	0.090
7	1000	1000	0.042	0.050	0.063	0.057	0.057	0.037				
8	1000	1000	0.098	0.065	0.067	0.037	0.087	0.053				
9	1000	1000	0.125	0.062	0.142	0.072	0.140	0.070				
10	1000	1000	0.180	0.096	0.146	0.106						
11	600	500	0.053	0.043	0.097	0.020						
12	800	800	0.070	0.040	0.080	0.057	0.110	0.060				
13	500	500	0.013	0.007	0.010	0.000	.					
14	500	500	0.053	0.013	0.010	0.015				. .		
15	1000	1000	0.150	0.127	0.178	0.115	0.180	0.107				
16	1000	1000	0.178	0.135	0.202	0.115	0.150	0.160				
17	1000	1000	0.212	0.145	0.167	0.167	0.193	0.143				
18	1500	1500	0.178	0.108	0.172	0.135	0.155	0.100	0.145	0.140	0.210	0.140
19	1000	1000	0.102	0.110	0.113	0.103	0.087	0.097				
20	1000	1000	0.092	0.070	0.070	0.073	0.070	0.107				
21	1000	1000	0.158	0.135	0.167	0.160	0.123	0.100				
22	1000	1000	0.055	0.020	0.057	0.043	0.077	0.037				
23	300	300	0.053	0.027								
24	1200	1200	0.152	0.102	0.163	0.127	0.135	0.125	0.080	0.150		
25	1000	1000	0.112	0.078	0.120	0.080	0.100	0.087				
26	1500	1500	0.122	0.082	0.102	0.122	0.060	0.038	0.047	0.033		
27	1000	1000	0.015	0.030	0.040	0.027	0.010	0.017				
28	1000	1000	0.012	0.005	0.023	0.013	0.013	0.013				
29	1000	1000	0.038	0.008	0.010	0.017	0.040	0.010				
			Hour 12		13		14		15			\cdots
4*			0.102	0.120	0.117	0.110	0.170	0.093	0.140	0.123		

Table 3.1a Denmark - Esbjerg: recaptures per 10000 fish tagged by year-class and country

Recapture month	1967 year-class							1968 year-class					Mixed			
	Liberation							Liberation					Liberation			
	1	2-5	7	13	14	19	20-23	8-10	11	15-17	18	27-29	6	12	14	25-26
1969																
July																
August		549											23			
September		101						10					383	19		
October		50						22	54				75	56		
November		17				8		5	27	5	5		8	47		
December																
1970																
January		6			15			22	13	35	55		8			
February	7	203	15		105	165	121	268	176	434	351		90	179	670	427
March		11	7			15	25	28	27	120	95	12		28	25	66
April		21	8			15	18	85	40	140	100	43	23	19	56	72
May		28	7		15	30	27	105	54	173	146	12	45	38	44	102
June								8	13	5	10					
July		11	8			15	11	98	54	173	155	32	30	28	107	54
August	8	24		30		22	39	120	108	241	180	93	37	66	182	148
September		15	7				9	68		83	146	8	7	9	63	57
October		9	8		15	8	9	38	13	53	65	8			63	24
November		2						10		20	10	2				9
December																3
1971																
January						.		2								
February		8						10	13	22	40	8	8			21
March										5		2				3
April		5			15		5	20		53	40	8		9	31	15
?		3														
Total	15	1063	60	30	165	278	264	920	592	1562	1398	228	737	498	1272	1001

Table 3.1b	Denmark - Thyborön: recapuures per 10000 fish tagged by year-clasi and country													
Recapture month	1967 year-class					1968 year-class					Mixed			
	Libera					Liber	tion				Lib	erat		
	1 2-5	$7 \quad 13$	14		20-23	8-10	11	15-17	18	27-29		12	24	25-26
1969														
July														
August											30			
September	1					30					23			
October						141		50						
November														
December														
1970														
January														
February														
March	2				2									
April														
May														
June														
July														
August	3		15			40	27	88	175	30	7	9	50	21
September					5	25	13	48	95	13	23	19	38	30
October						5		12	25				25	3
November														
December						5		2	5				6	3
1971														
January														
February														
March														
April														
?	3				2	10		8	15				13	6
Total	9		15		9	256	40	208	315	43	83	28	132	63

Table 3.1c Denmark - Hirtsals: recaptures per 10000 fish tagged by year-class and country

Recapture month	1967 year-class							1968 year-class					Mixed			
	Liberation							Liberation					Liberation			
	1	2-5	7	13	14	19	20-23	8-10	11	15-17	18	27-29	6	12	24	25-26
1969																
July	30															
August	158															
September	121		53										22			
October	90	2	60													
November	22		53													
December	22		45		15	15				2	.				:	
1970																
January	15	21				45	41	2			10		8			
February	22	61	8		15	38	34	20		10	15		23	47	38	12
March	8	20	4.5			45	41	3			5		8			
April	15	23	23			38	29	12		5	5		7	10	38	6
May	23	24	30	30	30	44	22	11		33	15			28	69	
June	15	5	8			16	8									
July	15						3									
August	8	2	15	15			2				5					
September		6								3	10					
October		4				8	2								12	
November	8	2	8			7	9			5					6	3
December								2		25	15				6	
1971																
January	8	6	8				2	8		20	5			9	13	6
February		1	8		30		2	12		3	5					3
March		2				7	5			5	10					6
April																
?		3														
Total	580	182	364	45	90	263	200	70		111	100		68	94	182	36

Table 3.1d Denmark - Skagen: recaptures per 10000 fish tagged by year-class and country

Recapture month	1967 year-class							1968 year-class					Mixed			
	Liberation							Liberation					Liberation			
	1	2-5	7	13	14	19	20-23	8-10	11	15-17	18	27-29		12	24	25-26
1969																
July	15															
August	136															
September	30		60													
October	30		15					2								
November	8		15		15											
December	37		53		60					13						
1970																
January		4	8	30	45					2						
February	22	23	8	15		15	18	15		10	20		15	19	13	3
March						8	4	5								
Apris		6	22			7	2									
May	8						2									
June	8		8					3								
July	8									2						
August	8	2				7	5	3								.
September	15		8			8	2			8						
October	15	2				8	9	10		2	5			9		
November	22	3	15			30	7	5		3			8		13	
December		2	8			7	9	20		20			7	19	6	12
1971																
January	30	4	8		30		2	2		5	25					6
February											10					
March	8	3	8			8	5	10		5					13	3
April		3			15	7	5	10		13	10					
?	22	2					5			5						
Total	422	54	236	45	165	105	75	85		88	70		30	47	45	24

Table 3.1e Norway: recaptures per 10000 fish tagged by year-class and country

Recapture month	1967 year-class							1968 year-class					Mixed			
	Liberation							Liberation					Liberation			
	1	2-5	7	13	14	19	20-23	8-10	11	15-17	18	27-29	6	12	24	25-26
1969																
July																
August	15															
September																
October													8			
November								2								
December															:	
1970																
January	8	338	15			466	443			10			60	94	6	
February		104	8			120	43	33	14	38	15		15	10	69	66
March								33								6
April																
May		6			15		16			5		2	15	9	19	15
June	30	41	38			68	62	8		5			15		44	21
July	21	40	15			75	59	10					15	19	12	3
August	8	12				38	27	5			15		7			
September			8				2			10	5					9
October	8	3				7	9	10		8		3				3
November								2								
December																
1971																
January									13							3
February								2								
March		5					5									
April										2	5		8			
?	8	3					5									
Total	98	552	84		15	774	661	105	27	78	40	5	143	132	150	126

Table 3．If Germany， $01+02$ ：recapures per 10000 fish tagged by year－class and country

		$\left.\begin{aligned} & \text { ¢ } \\ & \text { ¢ } \\ & \text { ¢ }\end{aligned} \right\rvert\,$	08 \sim		∞ \sim \sim $\sim \sim$ \sim		me
		¢		\cdots	$\stackrel{\square}{i}$		
		$\underset{\sim}{\infty} \times$			$\stackrel{10}{\sim}$		${ }_{-1}{ }^{10}$
							N -N
$\stackrel{\substack{4 \\ \tilde{\sigma} \\ \hline \\ \hline}}{ }$	哭	$\underset{-1}{\text { H }}$		$\stackrel{\sim}{\square} \times$	$\stackrel{\infty}{-1}$		
$\begin{aligned} & \infty \\ & \stackrel{\circ}{8} \\ & \sim \end{aligned}$	$\begin{aligned} & \text { y } \\ & \text { 胢 } \end{aligned}$	 1 1 ∞			$\stackrel{\sim}{\sim}$	－	\cdots
				\＃n の	N ${ }^{\text {H }}$		
		m		$\stackrel{\square}{\square}$	∞		
		$\underset{H}{\text { H }}$		$\stackrel{0}{0}$			
		$\stackrel{m}{-1}$		！			
¢		－1			∞		
∞ $\stackrel{\infty}{\infty}$ $\stackrel{y}{\circ}$	$\begin{aligned} & \ddot{\oplus} \\ & \stackrel{\oplus}{\Phi} \\ & \stackrel{\rightharpoonup}{H} \\ & \hline \end{aligned}$	$\left.\begin{aligned} & n \\ & n \\ & \infty \\ & n \\ & -1 \end{aligned} \right\rvert\,$	込品品		0	ง	N

Recapture month
1969
July
August
September
October
November
December
1970
January
February
March
April
May
June
July
August
September
October
November
December
1971
January
February
March
April
$?$
Total

Table 3.1 g Germany, 04: Recaptures per 10000 fish tagged by year-class and country

Recapture month	1967 year-class							1968 year-class					Mixed			
	Liberation							Liberation					Liberation			
	1	2-5	7	13	14	19	20-23	8-10	11	15-17	18	27-29	6	12	24	25-26
1969																
July																
August		4														
September		4														
October		11	15											28		
November																
December																:
1970																
January		2														
February		2					2	2	13	25	5			9		
March	7	3					2	2			5				6	3
April		2					2	2		3					6	6
May								3		5					12	6
June											5					
July		2									5					
August	8									3			8		7	
September		6					2			2					6	6
October		4										2			6	
November		2	8				7	3	14				7	10		
December		4	7				5	3						9	7	6
1971																
January		8				8	5				10					
February								13		12	10					
March	7	4					7	10		25	5					6
April							2	5							6	6
?																
Total	22	58	30			8	34	43	27	75	45	2	15	56	56	39

Table 3.1h Germany, 07: recaptures per 10000 fish tagged by year-class and country

Recapture month	1967 year-class							1968 year-class					Mixed			
	Liberation							Liberation					Liberation			
	1	2-5	7	13	14	19	20-23	8-10	11	15-17	18	27-29	6	12	24	25-26
1969																
July August September October November December																
1970																
January	7	3								2	5					
February		6					2	2		18	35			9		
March		6				15	7	5		5	10		8	10	6	3
April	8	3	8			15	5				5		7		6	3
May																
June							5									3
July																
August							2									
September							2							9		
October								3						10		3
November							2	2								
December		4					2									
1971																
$\begin{array}{llll}\text { January } & 2 & 8 & 8 \\ \text { February } & & \end{array}$																
March																
April																
?																
Total	15	24	8			30	27	12		33	55		15	38	12	15

Table 3.2a Total catch of herring processed in Skagen, Denmark. Effective tonnage is based on magnet efficiency and this quantity in numbers is given by age

	Catch in tons		Millions of herring by year-class				
	Total	Effective	1966	1967	1968	1969	Total
1969							
August	7402	1831	0.43	9.48	68.28	-	78.19
September	4779	1067	0.56	4.11	29.39	-	34.06
October	2934	551	0.04	1.21	16.32	-	17.57
November	1860	347	0	0.49	13.31	-	13.80
December	1127	265	0	0.17	13.02	-	13.19
1970							
January	1232	260	-	0.29	10.51	0	10.80
February	1162	219	-	0.55	7.20	0	7.75
March	2331	490	-	0.42	15.64	0	16.06
April	2162	327	-	0.37	12.27	0	12.64
May	1787	368	-	0.41	10.59	0	11.00
June	2971	713	-	1.85	10.37	0	12.22
July	3681	644	-	3.06	6.21	0	9.27
August	5755	1178	-	0	0.54	90.10	90.64
September	4948	1001	-	0.13	1.44	34.33	35.90
October	4673	822	-	0	1.18	21.71	22.89
November	2278	482	-	0	0.19	16.52	16.71
December	2046	333	-	0	0.19	10.67	10.86

Table 3.2b Total catch of herring processed in Hirtsals, Denmark, and by factory 03. Magnet efficiency data insufficient. No fish sampling for age

	Catch in tons	
	Total	Total factory 03
1969		
August	9272	3847.125
September	8877	217.633
October	4982	1266.100
November	2496	609.631
December	3603	966.087
1970		
January	1809	564.723
February	3952	1030.942
March	3617	1296.134
April	4169	909.502
May	2389	711.109
June	2042	694.104
July	5899	1058.130
August	6319	2391.205
September	7898	2406.875
October	6848	1519.331
November	3141	1042.859
December	2802	705.917
1971		
January	3920	1200.830
February	3945	1152.635
March	2658	
April	4601	

Table 3.2c Total catch of herring processed at Thyborön, Denmark. Effective tonnage is based on magnet efficiency and this quantity in numbers is given by age. (Corrected for sprat)

	Catch in tons		Millions of herring by year-class					
	Total	Effective	1965	1966	1967	1968	1969	Total
1969								
August	8333.6	4106.0	0	16.34	34.69	0.38	-	51.41
September	798.1	469.3	0	0.85	4.22	1.20	-	6.27
October	749.9	588.8	0	0.80	4.66	5.67	-	11.13
November	-	-	-	-	-	-	-	-
December	-	-	-	-	-	-	-	-

1970

January	-	-	-	-	-	-	-	-
February	432.9	155.3	-	0.08	0.68	3.10	0	3.86
March	93.2	10.4	-	0	0.01	0.35	0	0.36
April	72.5	11.4	-	0.00	0.06	0.17	0	0.23
May	-	-	-	-	-	-	-	-
June	-	-	-	-	-	-	-	-
July	2031.5	1300.5	-	-	0.88	11.51	16.62	29.01
August	4183.8	2191.0	-	-	7.74	13.24	44.04	65.02
September	1361.8	639.2	-	-	1.94	3.53	3.58	9.05
October	939.8	474.5	-	-	1.84	2.06	4.01	7.91
November	69.1	46.0	-	-	0.04	0.19	1.10	1.33
December	458.4	237.4	-	-	0.11	1.12	4.04	5.27

1971

January	501.8	180.4	-	-	0.07	0.52	4.32	4.91
February	1628.6	659.6	-	-	0.10	1.33	21.27	22.70
March	1731.8	677.7	-	-	0.03	1.22	19.44	20.69
April	387.1	139.1	-	-	0.19	0.98	2.17	3.34.

Table 3.2d Total catch of herring processed at Esbjerg, Denmark. Effective tonnage is based on magnet efficiency and this quantity in numbers is given by age. (Corrected for sprat)

	Catch in tons		Millions of herring by year-class					
	Total	Effective	1965	1966	1.967	1968	1969	Total
1969								
August	20273	6518	0	25.95	55.07	0.61	-	81.63
September	14698	10656	0	19.36	95.92	27.33	-	142.61
October	5903	4811	0	6.52	38.06	46.37	-	90.95
November	-	-	-	-	-	-	-	-
December	-	-	-	-	-	-	-	-

1970

January	1538	1158	-	0.08	3.24	24.39	0	27.71
February	9048	6533	-	3.32	28.52	130.03	0	161.87
March	914	690	-	0	0.98	23.24	0	24.22
April	2526	2011	-	0.08	11.14	29.77	0	40.99
May	4359	3232	-	0.30	12.83	54.34	0	67.47
June	-	-	-	-	-	-	-	-
July	5165	3939	-	-	2.67	34.86	50.34	87.87
August	15074	11705	-	-	41.39	70.74	235.36	347.49
September	11557	8361	-	-	25.39	46.23	46.88	118.51
October	4177	3019	-	-	11.71	13.08	25.51	50.30
November	260	208	-	-	0.16	0.88	4.96	6.00
December	1294	882	-	-	0.41	4.16	14.99	19.56

1971

January	4615	2895	-	-	1.18	8.39	69.26	78.83
February	11439	9117	-	-	1.35	18.43	293.86	313.64
March	16809	12943	-	-	0.64	23.49	371.42	395.55
April	13623	11013	-	-	15.09	77.91	171.88	264.88

Table 3.5 Landings of herring in Norway (in tons) from north-west Scotland northerm Ireland, North Sca and Skagerak, 1969, 1970 and 1971

Table 3.6 1968 year-class recaptures corrected for magnet efficiency for Danish and Norwegian plants (per 10000 fish liberated)

Recapture month	Experiments 8-10					Experiment 11					Experiments 15-17				
	Source					Source					Source				
	Eb*	Th	Sk	Nw	Total	Els	Th	Sk	Nw	Total	Eb	Th	Sk	Nw	Total
1969															
August															
September	14	50			64										
October	33	178	11		222	99				99					
November				3	3						6	63			69
December													55		55
1970															
January	29				29	17				17	46		9	12	67
February	371		80	40	491	244			17	261	601		53	46	700
March	37		24		61	36				36	159				159
April	107				107	50				50	176				176
May	152				152	90				90	240				240
June			13	11	24									7	7
July	128			13	141	71				71	227		11		238
August	154	76	15	6	251	139	32			191	310	169			479
September	94	54			148		28			28	115	104	40	13	272
October	53	10	57	11	131	18				18	73	24	11	9	117
November	12		23	3	38						$2: 5$		14		39
December		10	123		133							4	123		127
1971															
January	3				3										
February	12				12	16				16	25				28
March											6				6
April	25				25						66				66

Recapture month	Experiment 18					Experiments $27-29$					* E ¢	= Esbjerg. Denmark
	Source					Source					Sk	Skagen. Demmark
	Eb	Th	Sk	Nw	Total	Eb	Th		Nw	Total		
1969												
August September												
October												
November												
December												
1970												
January	73				73							
February	486		106	18	610							
March	126				126	16				16		
April	126				126	34				54		
May	210				210	16				16		
June												
July	203				203	42				42		
August	232	337		19	588	120	.3s			178		
September	202	207		7	416	11	23			: 3		
October	90	5)	28		168	11			:	14		
November	12				12	2				3		
December		10			10							
1971												
Junary												
Felruam:	810				50	10				111		
March						:				:		
April	19				49	11				11		

Table 3.71967 year-class recaptures corrected for magnet efficiency for Danish and Norwegian plants (per 10000 fish liberated)

Recapture month	Experiment 1					Experiments 2-5					Experiment 7					Experiment 13				
	Souroe					Source					Source					Source				
	Eb^{*}	Th	Sk	Nw	Total	Eb	Th	Sk	Nw	Total	Eb	Th	Sk	Nw	Total	Eb	Th	Sk	Nw	Total
1969																				
August			551	19	570	1708				1708										
September			135		135	130				139			269		269					
October			160		160	82				82			80		80					
November			43		43								80		80					
December			157		157								226		226					
1970																				
January				10	10	8		19	416	443			38	18	56			142		142
February	10		117		127	281		122	126	529	21		43	10	74			80		80
March						15				15	θ				9					
April						26		40		66	10		146		156					
May			39		39	38			7	45	9				9					
June.			33	30	72				54	54			33	50	83					
July	. 10		46	28	84	14			53	67	10			20	30					
August			39	10	49	31		10	15	56						39				39
September			74		74	21				21	10		40	10	60					
October			85	9	94	12		11	3	26	11				11					
November			102		102	2		14		16			70		70	.				
December								12		12			49		49					
1871																				
January																				
February						10				10					.					
March																				
April						6				6										
Recapture month	Experiment 14					Experiment 19					Experiments 20-23					$\begin{aligned} * \mathrm{~Eb} & =\text { Esbjerg, Denmark } \\ \mathrm{Th} & =\text { Thyborbn, Denmark } \\ \text { Sk } & =\text { Skagen, Denmark } \\ \text { Nw } & =\text { Norway } \end{aligned}$				
	Source					Source					Source									
	Eb	Th	Sk	Nw	Total	Eb	Th	Sk	Nw	Total	Eb	Th	Sk	Nw	Total					
1969																				
August																				.
September									,											
October																				,
November			80		80															
December			255		255	10				10					-					
1970																				
January	20		213		233				573	573				544	544					
February	145				145	228		80	146	454	168		96	104	368					
March						20		38		58	33		19		52					
April						19		46		65	23		13		36			.		
May	20			17	87	40				40	36		20	18	74					
June									89	89				82	82					
July			.			20			100	129	14			78	92					
Al.gust						28		34	48	110	50		24	34	108					
September								40		40	12		10	3	25					
October	21.				21	11		45	8	64	12		51	10	73					
November								139		139			32		32					
December								43		43			65		50,					
1971																				
January																				
February																				
March																				
Apzill	18				18						6				6		.			

Table 3.8 Number of recaptures per 10000 tags released per 10^{6} herring processed, Esbjerg, 1968 year-class

Recapture month	Experiments					1968 year-class numbers caught $\times 10^{-6}$
	8-10	11	15-17	18	27-29	
1969						
September	0.37					27.33
October	0.58	1.75				46.37
November			0.11	0.11		
December						

1970

January	0.90	0.53	1.44	2.26		24.39
February	2.06	1.35	3.34	2.70		130.03
March	1.20	1.16	5.16	4.09	0.52	23.24
April	2.86	1.34	4.70	3.36	1.44	29.77
May	2.08	1.23	3.28	2.87	0.22	54.34
June						
July	2.81	1.55	4.96	4.45	0.92	34.86
August	1.70	1.53	3.41	2.54	1.31	70.74
September	1.47		1.80	3.16	0.17	46.23
October	2.91	0.99	4.05	4.97	0.61	13.08
November	11.36		22.73	11.36	2.27	0.88
December						4.16

1971

| January | 0.24 | | | | | 8.39 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| February | 0.54 | 0.71 | 1.19 | 2.17 | 0.43 | 18.43 |
| March | | | | | | |

Table 3.9 Number of recaptures per 10000 tags released per 10^{6} herring processed, Esbjerg, 1967 year-class

Recapture month	Experiments			1967 year-class; numbers caught $\times 10^{-6}$
	2-5	19	20-23	
1969				
August	9.96			55.07
September	1.05			95.92
October	(1.75)			38.06
November				
December				

1970

January	1.85			3.24
February	7.12	5.80	4.24	28.52
March	11.22	15.31	25.51	0.98
April	1.90	1.35	1.62	11.14
May	2.19	2.34	2.10	12.83
June				
July	4.12	5.62	4.12	2.67
August	0.58	0.53	0.94	41.39
September	0.59		0.35	25.39
October	0.76	0.69	0.76	11.71
November	12.50			0.16
December				0.41

1971

January			1.18
February	5.93		1.35
March			0.64
April	0.33	0.33	15.09

Total no. $\begin{array}{llll}\text { processed } & 345.75 & 153.45 & 153.45\end{array}$
$\times 10^{-6}$
$\begin{array}{llll}\text { Recaptures } & 1063 & 278 & 264\end{array}$

Table 3.10 Number of recaptures per 10000 tags released per 10^{6} herring processed, Thyborơn, 1968 year-class

Recapture month	Experiments					1968 year-class; numbers caught $\times 10^{-6}$	
	8-10	11	15-17	18	27-29		
1969							
August						0.38	
September	25.00					1.20	
October	24.87		8.82			5.67	
November December							
1970							
January							
February						3.10	
March						0.35	
April						0.17	
May							
June							
July						11.51	
August	3.02	2.04	6.65	13.22	2.27	13.24	
September	7.08	3.68	13.60	26.91	3.68	3.53	
October	2.43		5.83	12.14		2.06	
November						0.19	
December	4.55		1.79	4.46		1.12	
1971							
January						0.52	
February						1.33	
March						1.22	
April						0.98	
Total no. processed $\times 10^{-6}$	35.70	35.70	35.70	35.70	35.70		
Recaptures	85	40	158	315	43		

Table 3.11 Number of recaptures per 10000 tags released per 10^{6} herring processed, Skagen, 1967 year-class

Recapture month	Experiments		1967 year-class; numbers caught $\times 10^{-6}$
	1	7	
1969			
August	14.35		9.48
September	7.30	14.60	9.11
October	24.79	12,40	1.21
November	16.33	30.61	0.49
December	217.65	311.76	0.17
1970			
January		27.59	0.29
February	40.00	14.55	0.55
March			0.42
April		59.46	0.37
May	19.51		0.41
June	4.32	4.32	1.85
July	5.23		3.06
August			
September	115.38	61.54	0.13
October			
November			
December			
1971			
January			
February			
March			
April			
Total no. processed $\times 10^{-6}$	27.54	18.06	
Recaptures	422	236	

[^0]: x) General Secretary ICES, Charlottenlund Slot, DK-2920 Charlottenlund Denmark.

[^1]: * Fish bought from purse seiner in Oslofjord.
 \dagger This experiment was performed on fish caught on the Monkey Bank and transported to Stavanger Fjord (27-hour steam).

