International Council for the
Explomation of the Sea
C.M. 1974/E:7

Demexsal Fish (Northern) Committee

REPORT OF THE NORTH-TAST ARCYTC FTSHERIES WORKING GROUP

18-22 March 1974, Charlottenlund Slot, Denmark.

CONPENTS
 Page

7.1. Estimates of Immediate Losses (Gulland Method) 3
7.1.2. Estimates Based on the Age Composition Method 4
7.2. Estimates of Future Catches and the Effect of
Changes in Mesh Regulations Based on Age
Composition

7.3. The Effect of Regulations Opon the Size of the
Spawning Stock

[^0]
Report of the Northment Arctic Fisheries Working Group

1. Participation

Mre D.J. Gaxrod	United Kingdom
Mr A. HyIen (Chairman)	Nonway
$M r$ BoW. Jones	United Kingdom
$M r$ S.D. Melnilsor	USSR
Dr V.D. Ponomarenko	USSR

Mr D. de G. Grifith, ICES Statistician, also took paxt in the Meeting.
2. Terms of Reference

At the 1973 Statutory Meeting of ICBS the Sollowing Resolution (CoRes.1973) 2:20) was adopted:
"It was decided that:
the Northemast Arctic Fisheries Working Group meets at Charlottenlund from 18 to 22 March 1974 to:
a) continue assessments of the Arcto-Norwegian cod and haddock stocks;
b) assess the effects on individual countries catches of the proposed increase in mesh size to 145 momanila:
c) examine the proposal for such an increase in relation to other proposed regulatoxy measures, e.g. quotas;
d) examine the effect of the proposal concerning mesh size on the size of the spawning stock and whether it would obtain the optimal level of recmuitment."
3. The Status of the Fisheries
3.1. Cod (Tables 1 -4).

At the 1973 Meeting of the Working Group provisional cateh and effort atatistics were not available for all countries and thexefore the data for 1972 given in this Report differ from the estinates which were given in the last Report.

In 1973 there was a big improvement in catches from Submarea I and Division ITb resulting from the recxuitment of the 1969 and the vexy rich 1970 year classes. Catches in Division ITa declined as expected as a result of the reduced size of the mature part of the stock. The abundant 1963 and 1964 year classes which gave improved catches on the Nowway coast in 1971 and 1972 are now past making theix maximum contribution to the catches. The spawning fishery is now expected to continue to decline until the 2969 and 1970 year classes reach maturity.

The estimates of total fishing effort on cod in English and USSR unjts (Table 3) give conflicting indications of the tread in the amount of fishing. part of this discrepancy is likely to be due to an underestimate of catch-per-unito effort of English trawlers because of rejection at sea of young fish. The general impression, however, is that there was an increase in the amount of fishing in Sub-area I and Division IIb while there was very little change in Division IIa.
3.2. Haddock (Tables 5-7).

Whe estimates for haddock landings in 1972 given in the 1973 Report were much more seriously in exror than were those for cod. 1972 catches in all areas showed big increases compared with 197l following the recruitment of the abundant 1969 year class. Catches increased again in 1973 in Subarea I and Division IIb, but the decline in Division IIa resulted from the redued size of the mature part of the stock as year classes after those of 1963 and 1.964 axe of lower abundance.

Fishing effort on haddock probably reduced slightly in 1973 after an increase in 2972.
4. Rishing Mortality (Tables 8 and 9).

Provisional age composition data were available for catches in 1973 taken by Fogland, Nowway, Federal Republic of Gexnany and the USSR. These data prom vided the basis of estimates of the age composition of the total 1973 catches of cod and haddock which were used to update the Virtual Population Analysis (VPA). Revised data for the 1972 catches were also available.

For cod, estimates of fishing mortality in 1973, used to initiate the VPA, were similar to the values used at the last Meeting of the Gxoup. These estimates were derived from information on probable trends in fishing effort with additional guidance from an analysis of the data by a new method (unpublished) being developed by Mr J. Pope of the Fisheries Laboratory, Lowestoft, Fagland. For haddock, values slightly lower than last year were used since it is believed that the fishing effort on haddock in 1973 was slightly lowex than in 1972. Results of the VPA are given in Tables 8 and 9.
5. Recxuitment (Tables 10 and 11).

For cod, the year classes 1965-1968 have all been very weak (Table 10). The fisheries in Submarea I and Division ITb are now beginning to benefit from the recrustment of more abundant year classes. The 1969 year class now seems to be not so abundant as had appeared from the rather poor provisional data available at the 1973 Meeting. The most recent estimate indicates that it is slightly above average size. The 1970 year class which recruited to the fishery in 1973 is fulfilling earlier expectations and it is well above average abundance, although it is still too early to bave an accurate estimate of its size. Of the subsequent year classes of cod, the indications from 0-group and young fish surveys, are that those of 1971 and 1972 are of about average size and that of 1973 is very abundant.

For haddock (Table 11), the vexy abundant 1969 yeax class has been joined in the fishery by the 1970 year class which is also well above average abundance.
 average size and that of 1973 below average.
6. Effective Mesh Size in Use

Botton trawling experiments with double cod ends were made in Apxil and June 1973 by Norway off the tast rinmark coast. The mesh sizes in both cod ends were 130 mm . The catches were sorted by fishermen into those fish acceptable for landing and those to be discarded, according to current comercial practice. In this maner discarding rates, by number, of between $23-28 \%$ were found. All fish less than 35 cm and most of the fish in the length group $35-39 \mathrm{~cm}$ were discaxded. No fish greater than 49 cm were discarded.

Some of the countries fishing in the Northmest Arctic are known to discard small fish at sea. Presuming this to be reflected in the length composition of landings which show a higher mean length, the discard factors deduced from the experiments were applied to the landings of countries B and C in Pigure 1 .

The adjusted length frequency of these landings then appear to be very similar to the unadjusted landings of country Ao The correction implies discarding of 4% and 37% by numbers by countries B and C in 1973.

The similarity between length compositions of comercial catches, adjusted for discarding, and the length composition of experimental hauls using double cod ends of 130 mm might be taken to indicate that the enforcement of Commission regulations is inadequate.

No doubt this may occur from time to time, but a similar effect might be achieved by the concentration of the fishery in areas where the new year class is rost abundant, so that the selection of cod by trawl cod ends of the Commission size is influenced by the abundance and behavjour of the fish. Whatever its cause, it is apparent that in 1973 at least the effective mesh size of cod ends was lower than 130 mm , and 115 ma has been adopted as a working value for estimating the immediate loss that may be caused by changing to a new mesh size.

7. Assessments

The effects of changes in mesh regulations were calculated in two ways. The Gulland method using length composition data was used to estimate immediate losses. Another method based on age composition of the stock and tishing mortality data was used to estimate the longoterm change and also the catches to be expected in each year 1975 - 1977 if a mesh size of 130 mm or 145 mm were to be introduced in 1975.

7.1. Estimates of Tmmediate Losses (Gulland Method).

If the Gulland method is to be successfully applied the length composition of the population should be relatively stable. At present in the North-Rast Arctic the size compositions of the stock fluctuates from year to year with vaxiations in year class strength. The result of a mesh change in this situation will depend critically on the relative abondance of the recruiting year classes. The calculations were based on the average length compositions of the catches in 1968 and 1969 for cod and 1969 and 1970 for haddock when the relative strengths of the recruiting year classes were similar to those expected in 1975 and 1976. For cod, some allowence has been made for rejection. It has been assumed that there was no rejection by USSR vessels, but the rejection rate for trawlexs of all other countries was estimated on the basis of the relative abundance of the smallest age groups in their landings compared with USSR catches. No allowance was made for rejection of
bedock. The immediate loss was calculated for increases to 130 mm and 145 mm from 115 mm which is the pxesent estimated effective mesh size.

Fox cod, an increase to 130 mm would be expected to result in a 6% immediate loss for USSR catches with very little change for other countries. An increase to 145 mm would result in immediate losses of 16% and 7% for USSR and U. K., and 6% for Norwegian trawlexs. For haddock, the magnitude of the immediate losses would be greater, being 20%, 3% rox USSR and U.K. and 3% for Noxwegian tramlers, for a change to 130 mm . The cormesponding immediate losees for a change to 145 mm would be $36 \%, 12 \%$ and 11%.

7.1.2. Estimates Based on the Age Composition Method.

The Tables belov sumarise the immediate and longoterm effects of possibla adjustments to the mesh regulations, depending upon the efrective mesh size at present in use (see Section 6).

Immediate Effects (\%)

Species	Method	$\begin{gathered} 1973 \\ \text { mefective } \\ \text { Mesh (man) } \end{gathered}$	New Mesh (mm)	USSR	Nowway		O. K .	Gexmany$\left(\mathrm{F}_{\mathrm{o}} \mathrm{R}_{\circ}\right)$	Others	Total
					Trawl	Total				
COD	VRA GuIland	115	130	-6	- 1	-2	$\begin{array}{r} -7 \\ -2 \end{array}$	-1	-7 -1	-8
	vPa. Gulland	115	145	$\begin{aligned} & -17 \\ & -16 \end{aligned}$	$1-6$	- 8	-14	-1	$\begin{array}{r} -13 \\ -2 \end{array}$	-13
		130	145	-7		-6	-		- 6	- 6
HADDOCK	$\begin{aligned} & \text { VPA } \\ & \text { culland } \end{aligned}$	115	130	-16 -20	-3	$+5$	$\begin{array}{r} -4 \\ -3 \\ -3 \end{array}$	- 1	$\begin{array}{r} -27 \\ -2 \end{array}$	-9
	vea Gulland	115	145	$\left\lvert\, \begin{aligned} & -33 \\ & -36 \end{aligned}\right.$	$\mid-11$	-7	$\begin{array}{r} -20 \\ -12 \end{array}$	- 7	$\begin{array}{r} -45 \\ -8 \end{array}$	-25
		130	145	-20		-11	- 7		-25	-17

If a new mesh regulation were introduced in 1975, the traw fishexies which would show the greatest immediate losses would be those of the Barents Sea and the Bear Istand - Spitsbergen area, and there would be a greater loss for haddock than for cod.

Longmexm fefects (\%)

Species	$\begin{gathered} 1973 \\ \text { Erective } \\ \text { Mesh (ma) } \end{gathered}$	New Mesh (ma)	USSR	Noxway A11 Gears	U, Ko	Others	Total
($M=0.3$)	115	130	-3	$+8$	$+1$	$+2$	$+2$
$\operatorname{con}(\mathrm{M}=0.3)$	115	145	- 5	$+13$	$+1$	0	$+3$
$605(\mathrm{MmO} 2)$	115	145	-1	$+15$	$+4$	0	+7
($\mathrm{M}=0.3$)	130	145	-2	+ 5	0	0	+ 1
EADDOCK	215	130	-7	$+27$	$\div 28$	+11	+9
	115	145	-10	$+53$	+56	$+33$	+18
	1.30	145	$\cdots 4$	+21	+22	+20	$+9$

The long-texm change in tbe ood fishery would be small, even allowiag fox some uncertainty in the level of natural moxtaitity that should apply. However, with a total long-texm gain of perbaps 5% there fould be some rediatribation of catoh in favoar of fisheries based on oldex cod. Thexe wowld be a somexhat greater long-term gain in the total cotch of baddock (perheps up to 20\%) but with a greater redistribution of catra betwean axeas and countries.

7.2. Dstimates of Futuxe Catches and the pesect of Changes in Mesh Regulations Besed on Age Composition.

7.2.1. Txends in Catches.

Prospective catches of cod and haddock have been entimated for bwo levels of fishing and three megh sizes as gummaxised in Table 12. Prospective catohes at the present mesh size are abstracted below ior two levels of fishing: (i) if the 1973 level is malncained and (ij) if it in reduced by 25% to approach the level of fishing mortality giving the Marimum Suatainable Field per recruit.

	Cateh (000 tons)					
	Level of Fishing (IP) as in 1973			$F=3 / 4$ of the Level in 1973		
	I + IIb	IIa	Total	I + IIb	IIa	Total
COD	577	109	686			
	736	77	81.3	585	62	64.7
	804	105	909	684	97	781
	828	171	999	726	178	905
EADDOCK	207	17	224			
	182	37	220	1.44	30	1.74
	162	22	184	141	20	161

If cod catches in 1974 do not exceed the tripartite Agreement level of 550000 tons then prospective catches for 1975 - 1977 will be slightly higher. Haddock catches bave also been estimated assuming the 1973 level of fishing is maintained but these may be inaluenced by interaction between the two figheries. For example, if cod and haddock are alvays caught together, then the haddock catch may be limited by the possibilitioc for catching cod.

The estimated catches given above can be compared with separate estimates of 1 110, 1165 and 1240 thougand tons for the years 1974,1975 and 1976 respectively prepared by USSR scientists using a technique based upon the historic pexformance of the fishexy relative to changes in year olass strength (see Appendix). However, the Group noted that in 1968 the cetch of this magritude came from a atock which contained two outstanding year classes (1963 and 1964) as 4 and 5 yearmold fish, and additional stock of older age groups whereas now, in 1974 , the stock contains only one good. fear clasg (1970) as 4 year olds and the stock of older age groupg is particulaxly meak. The Groap therefore coxsidexed the ussh entrinter fore 1974 and 2975 to be optimistic.
7.3. The Effect of Regulations Tpon the Siae of the Spawaing stociso

The Group has previously expressad concern at the declining sime of the spaming stock of cod, and eaxliex reports bave stressed the need to ensure that an adequate quantity of cod from the 1970 year class survive to augment the sparning stock from 1978 onwards. The effecte of regum lation of the fishing mortality and/or mesh size on the size of the spawning stock are summaxised below by comparison of the expected size of the spawning stock at the beginaing of 1978 (before the spaming season) for difierent mesh adjustments.

		$\begin{aligned} & \text { Level of fishing } 1975-1977 \\ & \text { as in } 1973 \end{aligned}$		$\begin{aligned} & \text { Level of Fishing } 1975-1977 \\ &=0.75 \times 1973 \text { Level } \end{aligned}$	
nefective Mesh Size In Porce (mm)	$\int_{(\mathrm{mm})}$	Index of Cod Spaming Stock in 1978	No. of Cod Aged $8+$ in 1978 (Millions)	Index of Cod Spaming Stock in 1978	$\begin{gathered} \text { No. of Cod Agw } \\ 8+i n 1978 \\ \text { (Minlions) } \end{gathered}$
315	Present Drecective	734	99	1020	142
115	130	759	101	1052	145
115	145	806	106	1063	150

Clearly a reduction in fishing mortality will achieve more rapid recovecy of the gpawning stock than mesh regulations the most rapid recovery would be achieved by a combination of measures. It is not certain rhat the best level of spawning stock should be, but the Group noted that in $1970-1972$ the number of mature cod of 8 years and older averaged 136 millon. This might perheps be a first objective, knowing that the recovery can be expected to continue in the years following 1978 and may later come to approach moxe closely the level of 212 million, averaged in the years $195 n$ m 1959.

The cod catches in thousands of tons for the period 1974-1977, associated with the two levels of fishing, are:

	Level of Fishing (F) as in 1973	$F=3 / 4$ of the Level in 1973
1974	686	686
1975	813	647
1976	909	781
1977	999	905

Together, these serve to show that a recovery in the spawning stock at least to the $1970-1972$ level could be achieved by careful regulation of the catches in the coming years. In effect, management can take advantage of the improving stock to reduce fishing moxtality without reducing actual catches. It is, however, easential that a regulation be maintained to prevent unrestricted increase in fishing on the whole stock within the period $1975-1977$, and to prevent too high a proportion of the allowable catch being taken from the mature stock.

Table 7 COD.
Total Nominal Catoh by Fighing Axeas (Metric Tons).

Iesr	Subarea I	Division ITb	Division TIa	Tota1
1960	380962	94599	155116	630677
1961	409694	222451	149222	781267
1962	548621	222611	138396	909628
1963	547469	113707	116924	778100
1964	202566	126029	108803	437398
1965	241489	103407	99855	444751
1966	292244	56568	134664	483476
1967	322791	121050	128729	572560
1968	642449	268908	162472	1073829
1969	670158	266117	254985	191260
1970	551015	85423	240150	976588
1971	311.798	56907	336269	704964
1972	197234	33220	338553	569007
1973^{x}	501903	87499	211211	800613

x) Provisional figures.

Table 2. COD.
Mominal Catoh (In Metrio Tons) by Countries
(Sub-Ares I and Diviaions ITa and IIb Combined).

Teax	Bueland	Gexmany $(\text { 此, } \mathrm{B},)$	Mowmay	USSR	Others	Total
1960	141 175	9472	231. 997	213400	34633	630677
1961	157909	8129	268377	325780	21072	781267
1962	174914	6503	225615	476760	25836	909628
1963	129779	4223	205056	417964	21. 078	778100
1964	94549	3202	149878	180550	9219	437398
1965	89874	3670	197085	152780	1342	444751
1966	103012	4284	203792	169300	3088	483476
1967	87008	3632	218910	262340	670	572560
1968	140054	2073	255611	676758	333	1073829
1969	231066	5434	305241	612215	37287	1191260
1970	179562	9451	377606	276632	33337	876588
1971	78160	9726	407044	144802	65232	704964
1972	56669	3805	394181	96653	18099	569007
1973^{x}	76493	14240	280021	387196	42643	800613

[^1]stimates of Total International rishing effort in Sub-Area I and Divisions IIa and IIb.

7ear	Sub-Area I				Division IIb				Division IIa			
	Mational Priort		Total Interm national mflor°		National Prerort		Total Interm national mirort		National Prfort		Total International Effort	
	U. $\mathbb{X}_{0}{ }^{\text { }}$)	Usse ${ }^{2}$	U.E. Units	USSR Units	U. U. $^{\text {d }}$	USSR	U. \mathbb{Z} 。 Units	USSR Thits	T. S $^{\text {S }}$	Womaj ${ }^{3)}$	U. Z. Units	Norwegian Trits
2960	95	43	512	91	42	11	97	34	39	10	252	26
2961	94	53	518	109	51	22	173	39	30	9	255	20
1962	93	61	590	94	51	16	168	29	34	10	210	21
1963	78	62	635	91	45	9	120	22	29	7	176	19
2964	42	30	351	55	49	17	136	32	36	6	157	17
2965	42	25	367	62	37	11	95	4	33	5	150	16
1966	63	33	387	69	23	16	71	29	46	5	199	15
1967	51	30	395	61	10	12	110	13	50	5	261	22
1968	86	45	584	67	9	24	151	26	52	6	288	15
1969	115	45	593	72	24	29	197	26	73	5	272	18
2970	122	35	573	77	24	15	122	27	55	5	346	16
2971	82	23	576	74	4	27	79	34	48	5	523	14
1972	73	41	418	111	7	11	65	17	35	6	602	14
$2973^{\text {x }}$	97	61	887	96	18	12	160	15	27	7	486	14

1) Hours inshine x everage tomage $x 10^{-6}=$ minlions on tom-hours. Howes rishing (oatch/catch per hour fishing) $\times 10^{-4}$.
Humber of men fishing at Lofoten $x 10^{m 3}$.
Provisionel fiemaam.
$9 \therefore$
M

Table 4. COD.
Catoh Pes Uait Brext (Metric Mons, Round Treah).

Yeax	Subudrea I		Division ITb		Division TIt	
	U.K. ${ }^{\text { }}$)	$\operatorname{TSSR}^{2)}$	T.K.	USSR	Tor.	Norvay ${ }^{3)}$
1960	0.075	0.42	0.105	0.31	0.067	3.0
1961	0.079	0.38	0.129	0.44	0.058	3.7
1962	0.092	0.59	0.133	0.74	0.066	4.0
1963	0.085	0.60	0.098	0.55	0.066	3.1
1964	0.058	0.37	0.092	0.39	0.070	4.8
1965	0.066	0.39	0.109	0.49	0.066	2.9
1966	0.074	0.42	0.078	0.19	10.067	4.0
1967	0.082	0.53	0.106	0.87	0.052	3.5
1968	0.110	1.09	0.173	1.21	0.056	5.1
1969	0.113	1.00	0.135	1.1 .7	0.094	5.9
1970	0.100	0.80	0.100	0.80	0.066	6.4
1971	0.056	0.43	0.071	0.16	0.062	10.6
1972	0.047	0.50	0.051	0.16	0.055	11.5
1973^{x}	0.057	0.60	0.054	0.85	0.043	6.8

1) U.K. data a tons per 100 tonmourg fishing.
2) TSSR data - tous per hour fishing.
3) Nomegian data mons pex gill net boat week at Lofoten.

Pable 5. HADDOCK
Total Nominal Catoh by Mishing Areas (Metric Tons).

Year	SubuArea I	Division ITb	Division ITa	Total
1960	125675	1854	27925	155454
1961	165165	2427	25642	193234
1962	160972	1727	25189	187888
1963	124774	939	21031	146744
1964	79056	1. 109	18735	98900
1965	98505	939	18640	118079
1966	124115	1. 614	34892	160621
1967	108066	440	27980	136486
2968	140970	725	40031	181.726
1969	88960	1341	40208	130509
1970	59493	497	26671	86601
1971	56300	435	21 567	78302
1972	221183	2355	41979	265317
1973^{54}	257147	12112	29533	298792

x) provisional itgures.

Mable 6. maDDOCK .
Hominal Catch (Tn Metric Tons) by Countries (Subbacea I and Divisiong ITa and IIb Combined).

Year	Bagland	Gemmany $\left(r_{0} R_{0}\right)$	3omuy	TSSR.	0thexs	Total
1960	45469	5597	47263	57025	100	155454
1961	39625	6304	60862	85345	1098	193234
1962	37486	2895	54567	93940	1000	187888
1963	19809	2554	59955	63526	900	146744
1964	14653	1. 482	38695	43870	200	98900
1965	14314	1568	60447	41750	-	118079
1966	27723	2098	82090	48710	\cdots	160621
1967	24158	1705	51954	57346	1323	136486
1968	40102	1867	64.076	75654	27	181726
1969	37234	1490	67549	24211	27	130509
1970	20344	2119	36716	26802	620	86601
1971	15605	896	45715	15778	308	78302
1972	16846	1433	46700	196225	4113	265317
$1973^{\text {x }}$	3] 574	B 654	64960	186585	7019	298792

Table 7. HADDOCK.
Catch Pex Tait Frfort and Estimated Total International Effort.

Yeax	$\begin{aligned} & \text { Catch per Triort (0.K.) } \\ & \text { Kilos } / 100 \text { ton-hours } \end{aligned}$			Rstinated Total Internationel Eefort in U.K. Units Sotal catch in Tons $\times 10^{-6}$ tons/ 100 ton-bours GubuArea. I
	Sub-Area	Divisions		
		ITa	ITb	
1960	33	34	2.8	4.7
1.961	29	36	3.3	6.7
1962	23	42	2.5	8.2
1963	13	33	0.9	11.2
1964	18	18	1.6	5.5
1965	18	18	2.0	6.6
1966	17	34	2.8	9.4
1967	18	25	2.4	7.6
1968	19	50	1.0	9.6
1969	13	42	2.0	10.0
1970	7	33	1.0	12.4
1971	8	25	3.0	9.8
1972	14.	18	23.0	19.0
$1973^{\text {x }}$	22	20	21.0	13.6

x) Exovisional ingures.

Table 8. Fishing Mortality $1969=1973$.
Gstimated by Virtual Population Analysis.

	$\operatorname{COD}(\mathrm{M}=0.3)$					HADDOCS ($M=0.2$)				
Age Year	1969	1970	1971	1972	$1973^{\text {x }}$	1969	1970	1971	1972	$1973^{\text {x) }}$
3	0.02	0.03	0.02	0.04	0.80	0.11	0.18	0.02	0.20	0.30
4	0.16	0.13	0.10	0.15	0.20	0.21	0.26	0.30	0.28	0.35
5	0.37	0.28	0.24	0.31	0.35	0.54	0.32	0.21	1.31	0.55
6	0.46	0.42	0.19	0.46	0.45	0.63	0.57	0.26	1.28	0.60
7	0.69	0.53	0.38	0.25	0.60	0.48	0.60	0.50	1.00	0.60
8	0.83	0.75	0.74	0.44	0.65	0.51	0.52	0.49	0.84	0.60
9	1.04	0.85	0.89	0.96	0.65	0.47	0.40	0.44	1.07	0.60
10	0.87	0.89	0.71	1.24	0.65	0.48	0.39	0.38	1.25	0.60
11	0.91	0.60	0.64	1.14	0.65	0.16	0.50	0.35	0.76	0.60
12	0.79	0.32	0.52	0.79	0.65	0.45	0.14	0.96	1.37	0.60
13	0.75	0.53	0.41	1.06	0.65	0.24	1.74	0.21	1.58	0.60
$14^{\text {25 }}$	0.65	0.65	0.65	0.65	0.65	0.60	0.60	0.60	0.60	0.60

x) Assumed values.

Table 2. Stock Size $1969-1973$ (Millions of Tish) from Virtual Population Analysis.

	COD ($M=0.3$)					EADDOCK ($M=0.2$)				
Age Year	1969	1970	1971	1972	1973	1969	1970	1971	1972	1973
3	137	243	507	1178	2000	16	152	126	1393	385
4	188	100	174	368	842	11	11	104	101	934
5	888	118	65	117	234	117	7	7	63	63
6	564	455	66	38	63	4.4	56	4	5	14
7	182	265	222	40	18	10	19	26	3	1
8	54	68	11.5	113	23	13	5	9	13	1
9	24	18	24	42	54	5	7	3	4	5
10	10	6	6	7	12	1	2	4	1.	1
11	4	3	2	2	2			1	2	
12	1	1	1	1	1.				1	1
13				1						

Teble 10. Arctomonvegian Cod.
Year Clags Strength The Mumbex per Hour Hishing fox TSSR Yowng Tish Survey is for 3mearmold Figh.

Tear Class	DSSR Survey, No, per hour Travling			USSE Assessment	Oefroup Survey	Virtual Popaletion No. of 3 Tear 0103 $10^{\text {m }} 6$
	$\begin{gathered} \text { Subodxea } \\ I \end{gathered}$	$\begin{gathered} \text { Division } \\ \text { ITb } \end{gathered}$	Mean			
1956	10	21	14	- Averege		932
1957	12	16	13	- Average		1060
1958	16	24	19	+ Average		1. 253
1.959	18	14	16	\% Average		1. 044
1960	9	19	13	poor		697
1961	2	2	2	Poos		527
1962	7	4	6	Poor		1156
1963	21	120	76	Rich		2263
1964	49	45	46	Rich		1930
1965	<1	<1	4	Very Poor	Vexy Poor	258
1966	2	<1	1	Toxy Poox	Vexy Poox	137
1967	1	<1	1	Very Poor	Poor	24.3
1968	7	1	5	Poos	Texy Poor	507
1969	11	6	9	Poor	Rich	1178
1970	74	86	79	Rich	Vexy Rich	(2000)
1971	(12)	(25)	(18)	Averase	Average	(950)
1972	(15)	(18)	(16)	Average	Average	(950)
1973	(18)	(18)	(18)	Average	Very Rich	(2000)

(): Estimated

Table 11. Axctom Nowtegian Haddock.
Year Class Strongth. The Number per Hour Trawliag for USSR Young Fish Survey in for the 3-Yearm01d Figh.

Year Class	USSR Suxvey. No. pex Rour Trawling。 Sub-Acea I	O-Group Survey	Virtual Population No. of 3 yeen 0ids 10^{-6}
1956	27		325
1957	14		241
1958	5		110
1959	33		240
1960	72		273
1961	34		314
1962	4		97
1963	12		232
1964	15		282
1965	<1	Vexy Poor	14
1966	<1	Vexy Poox	16
1967	8	Average	152
1968	3	Texy Poor	126
1969	120	Vexy Bich	1393
1970	31	Rioh	(385)
1971	(3)	sperage	(131)
1972	(2)	Avexage	(186)
1973	(2)	Poos	(186)

(): Rotimated

Table 12. Detimated Catches of Cod and Haddock for Two Leveln of wishing.

	Efective Mesh sige (mm)	Level of Mishing (F) $2 s$ in 1973				$F=3 / 4$ of the Level in 1973		
		Xear	ItIIb	IIa	Σ	ItIIb	ITa	8.
COD	Present	1974	577	109	686			
		1975	736	77	813	585	62	647
		1976	804	105	909	684	97	781
		1977	828	171	999	726	178	905
	130	1975	674	77	751	530	62	592
		1976	756	105	861	640	98	738
		1977	796	172	968	695	179	874
	145	1975	628	76	704	494	62	556
		1976	729	101	834	61.0	96	707
		1977	762	177	938	618	181	799
MadDOCK	Present	1974	207	17	224			
		1975	182	37	220	144	30	174
		1976	162	22	184	141	20	161
	130	1975	160	41	201	129	32	161
		1976	131	41	172	117	38	155
	145	2975	130	36	166	102	28	130
		1976	126	42	168	117	42	159

Figure 2. Fexcentage Length Compositions of Cod Landed in 1973 by Three Countries. Adjusted Length Corapositions Allowing for mstimated Rejection Rates are also shown fox Countwies B \& G

by
V.P. Ponomarento

PTNRO, Kolskaya 6a, Muxmankk, USSR.
(A Voxlsing Paper presented to the 1974 Meetiac of the Morthe Dast Aretic Beaheries Vorking Gxonp)

At recent levels of intensity, the sighexy is besed on 3 - 7 year-old sish in the iattoning areas and on $7-10$ gear olde on the spaming grounds.

In $1974-1976$, fish of the gegen mentioned above vill belong to those geax classes given below.

Year of Tighery	Age, Year Class								
	3	4	5	6	7	8	9	10	
	1971	1970	1969	1968	1967	1966	1965	1964	
1975	1972	1971	1970	1969	1968	1967	1966	1965	
1976	1973	1972	1971	1970	1969	1968	1967	1966	

The estimates of abundance of these year elasger of cod axe shown in Appendix Table I and for haddock in Appendix Teble IT.

The fish at the age of 4,5 mad 6 years doninated in cod catobes in the fattenuag areas. The cod of the extrememy abundant 1970 year class and tro faixly abundant year clesses vill be at the mentioned ages in 1974/5/6 (the 1968 and 1969 year classes in 1974 , the 1971 and 2969 ones in 1975 and the 1971 and 2972 year olessea in 1976).

Thua, the state of the cod stocks in the iotbeaing axean in 1974, 1975 and 1976. will be at the level of maximum years. The mature cod stoolss in these yeasg will be minimum sor the recont $10 \Rightarrow 15$ Jears observed.

Haddock constitute on the average about 20% of the long-term mean catch of cod. The i sh of the abundant 2969 and 2970 year classes at the $3 g e$ of 4 and 5 Jeare will form the basis of haddock catches in 1974 ot ages 5 and 6 in 1975 , and at 6 and 7 years old in 1976 .

The 3, 4 and 5 year olds axe the most traportant for the haddock fishexy. The commercial beddock stocks, excluding 1974 , will be below the longotexu mean level.

Taking into account the age composition of the catches, pxMo composed methods for comercial forecasts of fish resources for trawl fishery of demersal fishes in the Barents Sea. The fishexy forecasts compiled by these methods are of satisfactoxy xeliability。

The prediction equations used for forecasting the total catches of cod and haddock by all countries in 1974, 1975 and 1976 axe as rollows:

$$
\begin{equation*}
y=4.58 x+388 \quad x=0.70 \tag{1}
\end{equation*}
$$

$x=$ index of cod stock abundance for the whole area, $1974-1989$, $(1975=105,1976=113)$:
$y=$ cod yield (thousands of tons) in the fattening areas by all countries.

$$
\begin{equation*}
y=5.98 x+214 \tag{2}
\end{equation*}
$$

$x=$ index of cod stock abundance in Subarea I, $(1974=92,1975=97,1976=101)$;
$y=\operatorname{cod} y i e l d$ (thousands of tons) in Sub-area I by all countries.

$$
\begin{equation*}
y=1.34 x+14, \quad x=0.95 \tag{3}
\end{equation*}
$$

$x=$ cod yield (thousands of tons) in subwarea I by all countries, $(1974=764,1975=794,1976=818)$;
$y=$ cod yield (thousands of tons) in the fattening axeas by all countries.

$$
\begin{equation*}
y=0.997 x+289 \quad x=0.95 \tag{4}
\end{equation*}
$$

$x=$ cod yield (thousands of tons) in the fattening axeas by all countries, $(1974=920,1975=975,1976=1050) ;$
$y=\operatorname{cod} y i e l d$ (thousands of tons) over the whole fishing axea by all countries.

$$
\begin{equation*}
y=0.0029 x+189 \quad x=0.86 \tag{5}
\end{equation*}
$$

$x=\operatorname{cod} y i e l d$ (thousands of toms) in the fattening areas by all countries,
$(1974=920,1975=975,1976=1050)$:
$y=\operatorname{cod} y i e l d$ (thousands of tons) in Division IIa by all countries.

$$
y=3.38 x+24 \quad x=0.64
$$

$x=$ index of haddock stock abundance,
(1974=31, $1975=7,1976=2)_{;}$
$y=$ haddock yield (thousands of tons) by UssR trawlers.

$$
\begin{equation*}
y=0.889 x+91 \quad x=0.89 \tag{7}
\end{equation*}
$$

$x=$ haddock yield (thousands of tons) by USSR trawlers, $(1974=130,1975=50,1976=30) ;$
$y=h a d o c k$ yield (thousands of tons) over the whole fishing area by vessels of all countries.

Alrost all the equations give a satisfactory coincidence of calculated catches and actual ones. The poorest agreement is obsexved in the calculation of the cod catches in Division IIa. This may be explained by the fact that different cod are fished over this area ("capelin" cod, prempawning and spaming), and also various fishing geaxs axe used thexe (twawls, longmines, nets, purse seines). If the cod catches in Dirision Ita are divided by tishing geens and ixshery types, then the reliability of forecasting oatches in this axea would be considerably improved taking into account their age corposition.

Calculated total catches of cod and haddock from predicted equations are givea in Appendix Rable III. On the basis of the data irom this Table, Appendix Table TV was compiled.

Appendix Table IV shows the calculated catoh of cod and haddock by all countries at the existing level of fishing intensity and also vith a reduction of 20% in the fattening areas and on the spawning grounds, i.e over the whole axea inhabited by the cod stocks.

Appendix Table I. Young Cod Catch at the Third Year of Life (From Data of Autumn - Winter Investigations Undertaken by PTMR). Specimens per Hour Txawling.

Year Class	Southern Barents Sea Sub-area 1	NW Areas Division TIb	Whole Area
1946	5.8	-	5.8
1947	21.0	3.7	17.5
2948	18.1	19.7	19.2
1949	29.4	5.9	23.6
1950	76.1	40.2	74.5
1951	6.5	2.2	6.4
1952	2.8	1.0	2.8
1953	10.6	1.7	8.8
1954	5.6	4.9	5.6
1955	8.7	12.3	9.2
1956	10.3	21.0	13.6
1957	11.8	16.3	13.1
1958	15.7	24.3	18.9
1959	17.6	14.4	16.2
1960	9.3	18.7	13.2
1961	2.3	1.8	2.0
1962	7.0	3.6	5.5
1963	21.3	120.3	75.6
1964.	49.0	45.3	46.3
1965	0.5	0.2	0.4
1966	1.5	0.0	1.0
1967	1.4	0.3	1.0
1968	6.8	1.0	4.6
1969	10.5	6.0	8.9
1970	74.3	85.5	78.8
1971 ${ }^{\text {x }}$	12.1	25.3	18.0
$1972^{\text {x. }}$	15.0	18.3	16.0
$1973^{\text {8xx }}$)	18.0	18.0	18.0

x) Caloulated according to survival coefficient. xx) Preliminary data.

Appendix Pable IT. Young Eaddock Catches at the 2nd and 3rd Years of Iife (Trom the Autumn - Wintex Determination Carried Out by privio), (Specimens pex Hour Trawling).

Year Class	The Southern Barents Sea, Sub-area I	
	2nd Year of Lite	3xd Year of Life
1946	-	1
1947	<1	1
1948	32	26
1949	1	11
1950	247	262
1951	19	12
1952	5	10
1953	40	25
1954	7	3
1955	3	2
1956	18	27
1957	9	14
1958	4	5
1959	14.	33
1960	40	72
1961	50	34
1962	3	4
1963	9	12
2964	12	15
1965	<1	<1
1.966	$\leqslant 1$	<1
1967	13	8
1968	<1	3
1969	69	120
1970	38	31
1971	3	(3)
1972	(2)	(2)
1973	(2)	(2)

Appendix Table ITL Calculated Catches of Cod and Haddock (in Thovasadg of Tons).

No. of Prediction Equation	Year		COD		Haddock Total
		Total	$\begin{aligned} & \text { Sub-Axea I } \\ & \text { Divigion ITb } \end{aligned}$	Division IIa	
(1)	1974		800		
	1975		870		
	1976		900		
(3)	1974		1040		
	1975		1080		
	1976		1110		
Average of (1) $:(3)$	1974		920		
	1975		975		
	1976		1050		
(4)	1974	1100			
	1975	1160			
	1976	1240			
(5)	1974			190	
	1975			190	
	1976			190	
(7)	1974				210
	1975				140
	1976				120

Engonit Table IV. Frodicted Total Catches of Cod and Hadock at the Rxistine

	1974			1975			2976		
	Total	$\begin{gathered} \text { Fattening } \\ \text { Areas } \end{gathered}$	III	Total	$\begin{gathered} \text { Fattening } \\ \text { areas } \end{gathered}$	IIIa	Total	$\begin{gathered} \text { Tattening } \\ \text { Areas } \end{gathered}$	IIa
At the Existing Level of Pishing Intensity COD HADDOCK	$\begin{array}{r} 1110 \\ 210 \end{array}$	920	190	$\begin{array}{r} 1165 \\ 140 \end{array}$	975	190	$\begin{array}{r} 1240 \\ 120 \end{array}$	1050	190
Total	1320			1305			1360		
At the Recommended Ievel of Fishing COD EADDOCK	$\begin{aligned} & 890 \\ & 210 \end{aligned}$	740	150	$\begin{aligned} & 925 \\ & 140 \end{aligned}$	775	150	990 120	840	150
Total	1100			1065			1110		

[^0]: x) The General Seoretary, ICES, Charlottenlund Slot, 2920 Charlottenlund, DENMARK.

[^1]: T) Providyomi pherea.

