International Council for the

C.M.1974/F:3
Demersal Fish (Northern) Committee

REPORT OF THE WORKING GROUP ON FISH STOCKS AT THE FAROES

11-15 February 1974, Charlottenlund, Denmark.

Contents

Page

1. Participants 1
2. Terms of Reference 1
3. Administrative Measures Affecting the Fishery 1
4. State of Stocks in the Faroe Area 1
4.1. Cod 1
4.2. Haddook 1.3
4.3. Catch Predictions for Cod and Haddock 26
4.4. Saithe 29
4.5. Flatfishes 29
4.6. Blue Ling 30
4.7. Redfish 30
4.8. Other species 35
5. Adequacy of Data 35
6. References 35
7. General Tables (The Tables and Figures on each species are placed at the end of the relevant section。) 36

x)

General Secretary, ICES,
Charlottenlund Slot, 2920 Charlottenlund, DENMARK.

1. PARTICIPANTS

Mr No Daan	Netherlands
Mr K. Hoydal (Chairman)	Faroe Islands
Mr BoWo Jones	UoK. (England)
Mr Ro Jones	T.K. (Scotland)
Dr HoHo Reinsch	Fed. Repo of Germany
Mr O. Smedstad	Norway

Mr D. de Ge Griffith, ICHS Statistician, also took part in the Meeting.
2. TERMS OF REFERENCE

At the 61st Statutory Meeting of ICES a Resolution (CoResol973/2:7) was passed recommending the establishment of a Working Group on Fish Stocks at the Faroes, to meet in Charlottenlund to undertake a study of the state of the demersal fish stocks in the Faroes region. The species mainly referred to in this Report are cod, haddock, saithe, blue ling, redfish, lemon sole, halibut and plajce.
3. ADMINISTRATIVE MEASURES AFFECTING THE FISHERY

A threemile limit was in operation until 1959 apart from a readjustment due to a change in the base lines established by agreement with effect from 1 July 1955. From 27 April 1959 non-Faroese vessels were excluded from a six-mile zone and in addition during certain seasons of the year, from three areas between six and twelve miles which were reserved for line fishing only. From 1 March 1964 nonmFaroese vessels rights to fish in any part of the sixmtomtwelvemile zone were withdrawn, and a new twelvemile limit was redrawn from base lines running from headand to headland.

This effectively has meant a ban on trawl fishing inside the twelvem mile limit with the exception that in 1971 and 1973 a licensed trawl fishery by Faroese boats under 60 GRT has been allowed in the summer perojod.

Through the "Arrangement Relating to Fisheries in Waters Surrounding the Faroes", certain areas are to be closed seasonally to trawl fishing. At present little can be said about how this will affect the fishing pattern and the fishing mortality in the stock.

In the early sixties, the minimum trawl mesh size (for single braided manila) was increased to 80 mm . This was increased to 100 mm with effect from 1 January 1967 and this was further increased to 110 mm with effect from 1 January 1970. With effect from 1 January 1974 the mesh size has been increased to 130 mm .

4. STATE OF STOCKS IN THE FAROE AREA

4.1. COD

Introduction

There are two separate stocks of cod at Faroe, the main one on Faroe Plateau and a much smaller stock on Faroe Bank. All the evidence indicates that the two stocks are selfocontained with no mixing between the
stocks or with stocks outside the Faroe area. The Plateau stock is by far the more important and contributes the greater part of the catches from the Faroe area (Table 7.1.2, p.43). For this reason the assessments have been concentrated on the Plateau stock. Data for the Bank stock are less reliable and small errors in the division of catches between the two stocks result in big errors for the Bank stock but negligible errors for the Plateau stock.

Mrends in Catch, Effort and Catch per Unit Effort

Since 1950 total landings from the ICES statistical Division Vb (Table 7.1.a, p.36) have fluctuated between 23000 tons and 39000 tons, with an average value of 30000 tons. In earlier years, landings of up to 45000 tons were recorded.

Fishing effort (Table $7.1 .3, p .44$) tended to increase in the post-war period reaching a maximum in the years $1960-61$ 。 This increase in fishing effort was accompanied by a decline in catch rates which reached a minimum level in 1962. Catch rates subsequently improved as the amount of fishing was reduced.

Estimates of Mortality Rates (Plateau Stock)
Fishing mortality coefficients were estimated from Virtual Population Analysis (V.P.A.) and estimates of coefficients of total mortality were available from age composition data per unit fishing effort from English landings.

Data for the VoP.A. were based on age compositions of landings by English, Scottish and Faroese vessels. The Faroese data were not available for Plateau and Bank separately, and it was assumed that 80% of Faroese landings came from the Plateau. Numbers of fish landed in each age group for England, Scotland and Faroe were summed and then raised to the landings for all countries combined (Table 4.1.1, p.5).

Analyses were made using values for the coefficient of natural mortality (M) of 0.2 and 0.3 . Estimates of fishing mortality coefficients from the analyses are given in Tables 4.1 .2 and 4.1 .3 ($p .6$ and 7), where the assumed values of F in the oldest age group of each year class are also indicated。 The trend in average F for age groups 5 a 8 is what would be expected from the tread in fishing effort over the same period. Maximum values of F were obtained in 1960 and 1961 when fishing effort reached its highest level: Subsequently F values decreased with a smaller increase again in recent years.

The relationship between fishing mortality and fishing effort has been examined in more detail in Figure 1 (poll) o The fishing mortality coefo ficients (for $M=0,2$) have been estimated for each country separately according to the ratios of the numbers of fish in the catches. The resultant values of F were averaged for each year (age groups 4 - 7 England, $3-7$ Scotland and 5 m Faroe) and average F was then plotted against fishing effort for each country separately. The same effort units were used for English and Scottish effort and a geometric mean regression line has been fitted. The coxrelation is significant at the 95% level and the intercept is close to zero. The correlation for the Faroese fishery is not so good, probably due to the difficulty in estimating fishing effort in the line fishery.

A calculation of yield per recruit was made for each country＇s fishery separately for values of F at each age averaged for the period 1968－70 （Tables 4．1．4 and 4．1．5，p．8）．The weight at age data used was derived from the mean length of age groups in the English landings converted to weight in kg using the relationship $W=L 3 \times 10^{-5}$ ．With an overall yield per recruit of 1.45 kg an average recruitment of 23.9 million one－year－olds would be required to provide total average landings of 34584 tons．From the V．P．A．the estimated average year class strength for the appropriate year classes（1962－66）is 21.7 million。

In Table 4.1 .6 （p．9）estimates of the coefficient of total mortality（Z） calculated from annual age compositions per unit effort for the English fishery can be compared with values of $Z(=F+M)$ from the $V . P \cdot A$ ．

Recruitment and Year Class Strength

Estimates of year class strength as the numbers of one－yearmold fish are given in Table 4．1．7（p．9）．Year classes 1960 to 1966 showed little variation in abundance with the exception of the very poor 1963 year class．
）The 1958 and 1959 year classes were of lower abundance．In recent years the data suggest that year classes from 1967 onwards have been of very low abundance．It should be remembered，however，that estimates of year class strength in the most recent years will be in error if incorrect values were assumed for fishing mortality in 1972 in the V．P．A．

Growth

Von Bertalanffy growth parameters were calculated for the Plateau and Bank stocks using mean length at age data from English landings and a least squares fit of the growth curve．The calculated values are given in Table 7．1．5（p．46）．

Yield per Recruit and Age at First Capture
Yield in weight per recruit was calculated using the Beverton and Holt constant parameter model with the growth parameters given in Table 7．1．5（po46）and a natural mortality coefficient of 0.2 ．The results plotted as yield curves are shown in Figure $2(p, 12)$ ．

Results of the V．P．A．estimates of fishing mortality indicate that full exploitation in the fisheries of the Plateau stock may not be reached until about 7 years of age。 Cod are caught first in the Scottish fishery where the full exploitation rate is reached at about 3 years oldo In the English fishery the full rate of exploitation is not reached until about 4 years． The equivalent age for the Faroese fishery is about 7 years．Thus fishing mortality increases with age over the range $1-7$ years．The equivalent mean age at first capture as used in the Beverton and Holt equation would thus be in the range of $3-4$ years．For a mean age at first capture of 3.5 years， the maximum yield per recruit is obtained at $F=0.4$ for the Plateau stock． The mean value of F in the exploited phase as estimated from VoP．A．is about 0.5 and for this level of F the theoretical yield per recruit of 1.62 kg is about 1% below maximum．（This can be compared with the value of 1.45 kg per recruit obtained by the variable F model。）

For the Bank stock，which has a faster growth rate，optimum age at first capture for any given value of F is lower than for the Plateau stock．

Mesh Change Assessment

The effect on catches of the change in trawl cod end mesh size from 110 mm to 130 mm was calculated using a modification of the Gulland method developed by Mr K.P. Andersen. The method checks the assumptions on growth parameters and selection and recruitment curves, and states if they are consistent with the catches observed. Furthermore, it gives the changes in the fishery through the transition period after a change in selectivity, until a new equilibrium has been reached. All the computations were performed by Mr K.P. Andersen. The Working Group is indebted to Mr Andersen for his keen work on the mesh assessment problem, and hopes that a full description of the method and programmes involved will be made available to all those interested. The calculation used the same selection curve for both English and Scottish trawlers. Logistic curves were used to describe the normal selection ogives, and in addition a reverse logistic curve was applied to allow for the oldest fish not being available to the trawlers.

The results of the assessment indicate that the immediate effect would be a loss of about 4% in weight for the trawl fisheries with no change for the Faroese longminers. The longmerm effect would be no change for the trawl fisheries, a 4% gain for the Faroese longmine fishery with an overall net gain of 2%. The results are consistent with what would be expected from earlier assessments (Anono, 1967). Table 4.1. $8,\left(p_{0} 10\right)$ gives some indication of the changes in the transition period until the new stable situation is reached.

Coincident with the introduction of the larger mesh size in 1974 will be the commencement of new regulatory measures for the Faroe fisheries. In addition to limiting catches, certain areas will be closed to trawlers at certain times of year. The system of closed areas will result in a major change in pattern of trawl fishing. Trawlers will be unable to work many of their traditional grounds at the preferred times of year. Such changes in the seasonal distribum tion of the trawl fleets axe bound to have an effect on their catches and catch composition. In these circumstances it is likely to be impossible to distinm guish any mesh change effects from the effects of changes in the pattern of fishing' Over the past history of the fishery a change in the distribution of fishing of comparable magnitude was the introduction of the 12 mile limit in 1964. One of the results of this change was a reduction of fishing mortality on the younger age groups of cod and haddock and this is clearly seen in the results of the V.P.A.

With recruitment at an average level a total allowable catch (T.A.C.) of 30000 tons, as was adopted in the "Arrangement Relating to Fisheries in Waters Surrounding the Faroes", would be consistent with the present level of exploitation. It has been mentioned in an earlier section that the year classes 1967 onwards appear to be well below average abundance. Estimates for these recent years, however, could be subject to error if the values assumed for F in 1972 used in the V oP。A. were incorrect. If in fact there is a series of poor year classes recruiting to the fishery a lower ToA。C. would be advisable.

Table 4.1.10 Faroe Plateau Cod.
Total catch by all countries (thousands of fish) in each age group used for Virtual Population Analysiso

Year Class	1	2	3	4	5	6	7	8	9	10+
1949										6
1950									10	38
1951								50	61	40
1952							207	131	29	5
1953						200	171	78	22	2
1954					1731	876	372	94	30	14
1955				858	513	232	93	48	41	7
11956			4239	2574	1066	481	204	79	63	42
1957		2002	4027	1331	855	284	158	48	33	27
1958	331	4728	2686	1255	662	350	155	104	27	45
1959	859	3093	2500	1280	630	363	197	64	11	3
1960	1223	4424	3958	2300	1416	606	309	105	92	40
1961	815	4110	3021	2564	1339	847	452	203	44	71.
1962	1181	2033	3230	2080	1706	1226	713	300	179	25
1963	122	852	970	860	945	477	244	114	25	
1964	162	1337	2690	2663	1538	752	510	154		
1965	53	1609	3322	3300	1685	1451	596			
1966	127	1529	3106	2172	1 287	1021				
1967	34	878	1163	821	596					
1968	68	402	757	810						
1969	35	328	1176							
1970	78	875								
1971	44									
1972										

Derived from English, Scottish and Faroese catch in numbers. Faroese catch on Plateau estimated as . 8 x total Vb .

Table 4.1.3. Faroe Plateau Cod.

[^0]Table 4.1.4. Faroe Plateau Cod. Estimates of average fishing mortality coefficients for the period 1968 - 70, sub-divided between the main countries.

Age Group	Average Fishing Mortality 1968-70			
	England	Scotland	Faroe	
1	.00	.00	.00	.00
2	.10	.02	.06	.01
3	.26	.05	.13	.05
4	.39	.07	.14	.13
5	.47	.07	.11	.24
6	.54	.06	.09	.32
7	.69	.09	.14	.35
8	.64	.07	.10	.40
9	.81	$(.09)$	$(.13)$	$(.51)$
$10+$	$(.7)$	$(.08)$	$(.11)$	(44)

Table 4.1.5. Faroe Plateau Cod.
Estimates of yield per recruit taken by the main countries.

Age Group	N	$\underset{F}{\text { Total }}$	$F / Z\left(1-e^{-z}\right)$	$\overline{\mathrm{w}}$	Yield in Weight			
					E	S	F	Total
1	1000	. 00						
2	819	. 10	. 086	. 98	13.8	41.4	6.9	69.0
3	607	. 26	. 208	1.93	46.3	121.8	46.3	243.6
4	383	. 39	. 295	3.10	63.1	126.1	115.6	350.3
5	212	. 47	. 343	4.12	44.9	68.9	152.8	297.5
6	109	. 54	. 382	5.18	23.7	36.6	127.1	215.5
7	52	. 69	. 457	6.38	19.7	30.4	77.4	151.8
8	2.1	. 64	. 433	7.66	7.7	11.2	43.9	69.7
9	9	. 81	. 51.0	8.52	4.3	6.3	24.7	39.2
$10+$	3	. 7	. 462	9.27	1.4	2.1	8.2	13.0
Yield per Recruit kg					0.225	0.445	0.603	1.450
Average Landings 1968-70 (tons)					5840	10188	14909	34584

Table 4.1.6. Faroe Plateau Cod. Comparison of estimates of coefficients of total mortality (Z) from English catch per unit effort data and from Virtual Population Analysis.

From Catch per Unit Effort (Average 1967/8-1971/2)		From Virtual Population Analysis Average 1967-71		
Age Group	Z	Age Group	Z	
			$\mathrm{M}=0.2$	$\mathrm{M}=0.3$
		4	0.55	0.57
		5	0.63	0.64
5-6	0.74			
		6	0.75	0.75
6-7	0.72			
7-8		7	0.88	0.87
	1.03			
		8	1.06	1.03

Table 4.1.7. Faroe Plateau Cod. Estimates of year class strength as the numbers of one-yearmold fish from Virtual Population Analysis.

Year Class	Stock Size (Millions)	
	$\mathrm{M}=0.2$	$\mathrm{M}=0.3$
1958	17.7	24.7
1959	15.4	21.0
1960	26.0	36.8
1961	25.6	37.8
1962	26.4	40.6
1963	10.0	15.7
1964	21.3	33.0
1965	28.2	45.3
1966	22.5	36.0
1967	9.7	15.5
1968	8.1	13.0
1969	9.2	14.2
1970	15.2	17.8

Table 4.1.8. Faroe Cod. Effect of a change of trawl cod-end minimum mesh size from 110 mm to 130 mm 。

Years after Change	Percentage Change		
	U.K. Trawlers	Paroese Long-Liners	Total All Gears
1	-4	0	-2
5	-1	+2	0
10	0	+3	+2
15	0	+4	+2

Figure 1. Faroe plateau Cod. Relationship between annual estimates of the fishing mortality
coefficient ($M=0.2$) and fishing effort for England, Scotland and Faroe Lines
fitted by geometric mean regression (England and Scotland) and by eye (Faroe).

Figure 2. Yield per Recruit for different ages at first capture.
Faroe Plateau and Faroe Bank stock.
4000 g
$M=0.2$

$$
M=0.2
$$

FAROE BANK COD

HADDOCK

Introduction

As in the case of cod，there are stocks of haddock on Faroe Bank and Faroe Plateau that are believed to be independent of each other．Most haddock data have been collected from the Plateau stock and for this reason，as well as the fact that the greater part of the catches come from this area， assessments have been made for this stock only．

Total international landings of haddock have tended to increase in the long term over the period 1924m1963．During this period，landings increased from about 10000 tons annually to about 24000 tons annually．Since 1963， landings have decreased and in 1972 they were 16000 tons（Table 7．1．b， p．36）。

With regard to the landings by different countries，landings by Scottish vessels have followed a similar trend to the total landings，increasing to a maximum in 1962 and then declining．English landings increased from about 8000 to 13000 tons from 1924－1938．After the war，landings decreased from 11000 tons to about 2000 tons from 1946－1973．

Recorded Faroese landings were negligible before the war，but increased gradually after the war to a maximum of 12000 tons in 1970．Since then Faroese landings have declined．

Landings per Unit Effort（Table 7．1．3 p．44）．
For haddock there have been annual fluctuations，but no significant trend in the landings per unit effort during the past 20 years．Good year classes in 1961 and 1966 accounted for the increase in landings in 1963 and 1969。

The Virtual Population Analysis

The virtual population analysis has been based on estimates of the numbers of haddock of each age group landed each year by Scottish，English and Faroese vessels fishing at Faroe．

For Scottish vessels，samples for length and age composition have been taken monthly on Aberdeen fish market since 1950．For English vessels samples for length composition have been taken by the Lowestoft Laboratory for the years 1957－1972．Age compositions have been determined for these data using the Scottish age／length keys．For Faroese line vessels，samples for length composition have been supplied by the Fisheries Laboratory，Tórshavn in 1960， 1961 and 1969．These have been combined and converted into a single age composition using Scottish age／length keys and this has been used to derive an age composition for the Faroese landings for each year from 1957－1972．

By combining the numbers landed by Scottish，English and Faroese vessels estimates were made of the total numbers landed at each age by these nations． These are arrayed by year class and age in Table 4．2．1，（p．17）．If required， these can be further raised，so as to be applicable to the landings by all nations，by increasing each number by 7% 。

A V.P.A. was done for each year class separately (Tables 4.2.2 and 4.2.3, p. 18 and 19). These Tables show values of F and stock numbers for each year class, arranged by year of capture.

Mean Values of F

Inspection of the values of F shows that these vary both with time and age. For the two youngest age groups sampled (i.e. the one- and two-year-old fish) values of F tend to be very small due to the fact that these age groups are only partially exploited. For fish more than 6 years of age the values are variable, and in any event unreliable, since these are dependent on the starting values adopted for F. For calculating annual values therefore, only the values for $3-6$ year $-01 d$ fish have been used and mean values for these four age groups are shown in Tables 4.2.2 and 4.2.3. (p.18 and 19).

To investigate the relationship between fishing mortality and fishing effort, the annual values of F were plotted against estimates of annual fishing effort. To make this comparison as meaningful as possible, the values of F were first sub-divided into estimates of F for each country separately. This was done by submividing each value on the basis of the proportions of the total landings attributable to each country in each year. These annual values of F were then plotted against the respective national fishing efforts for each country separately.

Some results are shown in Figure 3 ($p, 23$) based on values of F derived from the V.P.A. assuming $M=0.3$. The relationship between F and effort (f) were found to be highly correlated. The geometric mean regressions were found to be as follows:

Scotland	$F=.0017$	$f=0.024$
England	$F=.0050$	$f=0.025$
Faroe	$F=.0037$	$f=0.112$

Similar plots were tried starting with values of from the V.P.A. based on values of M of $0.2,0.4$ and 0.5 . In each case the results appeared similar to those in Figure 3. There appeared to be no good reason for accepting the results based on any one value of M as being better than the others so that no estimate of M could be obtained by this method. It was reassuring, however, to find such good correlations between the national values of F and their respective fishing efforts.

Mortality Rates of Haddock

Total instantaneous mortality coefficients (Z) have been estimated by various methods and the results are shown in Table 4.2 .4 ($\mathrm{p}, 20$). Values based on the landings per unit effort in successive years using Aberdeen and English trawl data, gave values of Z for fish of $3-7$ years of age of about $0.6-0.8$. Estimates based on V.P.A. were very similar, although they tended to be a little lower for the younger age groups.

Recruitment

Estimates of year class strength for Faroe haddock are given in Table 4.2 .5 (p .21). These include estimates based on research vessel estimates of haddock in their second year of life. There are also estimates based on the landings per 100 hours' fishing by Aberdeen trawlers of haddock in their fourth year of life. For comparison, absolute estimates are given of year class strength based on the V.P.A.

Of particular significance in recent years has been the occurrence of a good year class in 1966，followed by a sequence of average or less than average year classes．This has contributed to the decline in total haddock landings since 1969。

Estimation of Growth Parameters
Bertalanfy parameters have been calculated for Faroe haddook based on mean lengths of fish and each age landed on Aberdeen fish market for the period 1950－1971．Parameters obtained are given in Table 7．l．5（p．46）．These values for the various parameters were used in subsequent Beverton and Holt yield pex recruit assessments．

First Availability and Age at First Capture

Young haddock are widely distributed over the Plateau and the Bank and are thought to become available to trawling at an average age of $1-11 / 2$ years hd a length of about 18.25 cm ．With a mesh size of 130 mm ，the 50% lengths and ages at first capture（i。e．the length，or age，at which 50% of the fish are retained（by the codend））are 44.2 cm and 3.5 years for haddock．For this species，therefore，the age at first capture is mainly influenced by mesh size rather than by availability as in codo

The Effect on Haddock Landings of an Increase in Mesh Size

Assessments of the effect of an increase in mesh size from 110 mm to 130 mm have been made using the same method as that used for cod．The results are given in Table 4．2．6（ $p, 22$ ）．These show that in the first year after the change， Scottish and English trawlers could be expected to lose 32% and 28% of their catches．Faroese longminers should benefit by 2% ．

Values for intermediate years are given in the Table and it is shown that the longmterm effect would be for Scottish and English trawlers to lose 20% and 16% respectively and for Faroese vessels to gain 22% 。
cevious estimates（Anon． 1966 ）took account of the possible effect of discards on the assessments．No recent discard data are available，but it should be noted that if discaxding does occur，the losses experienced by trawlers should not be as great as indicated in Table 4．2．6（p．22）．In the absence of the necessaxy data for calculating this effect，the trawl losses indicated should be regarded as overestimates．

The Effect of Fishing on Haddock

Assessments have been made of the relationship between yield and fishing mortality rate for Faroe haddock．Figure 4（p．24）shows yield per recruit curves calculated using the Beverton and Holt constant parameter formula．For haddock， the maximum yield pex recruit is expected from a fishing mortality rate of $0.3-0.5$ ．The present fishing mortality rate is about 0.5 ．This assessment indicates，therefore，that the yield per recruit is close to its theoretical maximum．Estimates of fishing mortality rate at each age from the VoPoA．show that these are not constant with age．This suggests that a more realistic estimate could be made by using a model in which F is varied with age in the way indicated by the V．P．A．This has been done using the values of F at each age calculated for the period 1970 a 1971 ．The effect on the landings of varying F at each age by various percentages was determined by the method of Jones（1961）， and the results are shown in Figure 5（ $\mathrm{p}, 25$ ）．Curves are drawn for values of
$M=0.2$ and 0.3 and they confirm the conclusion from the constant parameter assessment that at present the yield per recruit is close to its theoretical maximum.

The Effect of the Closure of Certain Areas to Fishing

A large proportion of the haddock stock at Faroe is taken within the 100 fathom depth contour and much of this is within 20 miles of the present base-line. For this reason the closure of areas outside the current l2-mile limit will restrict the activities of trawlers to a smaller proportion of the region within the 100 fathom line. It is not possible to assess the effect of this with any certainty. It is possible, however, that it could lead to the reduction in fishing effort on at least some age groups, and possibly, therefore, to an alteration in the way in which the fishing mortality rate varies with age.

Table 4.2.1. Landings of Faroe Haddock (thousands)。
Faroe, Scotland, England combined.

	Age									
Year Class	$1+$	$2+$	$3+$	$4+$	$5+$	$6+$	7+	$8+$	9+	10+
1947										57.5
1948									93.9	104.5
1949								226.6	125.2	46.9
1950							585.2	293.5	97.8	27.8
1951						893.9	817.3	235.7	85.3	13.1
132					1615.2	1298.8	720.5	243.2	59.2	21.7
1953				8442.0	3 378.1	1843.6	1169.0	236.2	72.3	23.3
1954			7130.2	5679.4	2055.8	1559.0	838.3	270.1	74.7	7.3
1955		4133.3	8020.7	4543.6	2482.4	1305.1	867.5	256.8	49.1	7.7
1956	44.7	6255.3	7662.8	6655.2	1937.3	1406.6	859.7	198.4	42.5	9.2
1957	116.0	3970.6	10659.1	5134.0	2361.2	1539.4	727.7	1345.0	53.5	12.6
1958	524.5	6060.9	7330.3	5232.5	2242.3	1119.8	672.5	179.8	51.8	11.7
1959	853.6	7932.4	13976.7	7403.4	2259.8	1208.5	739.7	197.2	68.1	20.3
1960	941.2	9631.1	8907.4	3898.5	1442.5	1 111.8	630.5	230.2	113.9	10.3
1961	784.2	13551.8	7457.0	5133.1	2710.0	1426.2	922.6	377.9	68.0	102.2
1962	356.2	2284.1	4285.6	4804.3	1784.9	1525.8	1223.9	325.7	146.7	94.8
1963	45.5	1367.8	3303.5	2598.8	1524.3	1484.9	1098.5	222.3	113.1	
1064	39.4	1080.8	2405.1	2812.0	I 564.8	1383.0	863.5	179.6		
1965	89.6	1424.9	4096.8	4567.0	1624.1	1292.2	695.7			
1966	69.6	5881.4	7539.1	6580.8	3267.4	1170.6				
1967	48.8	2383.8	4855.4	4727.0	2706.4					
1968	94.7	1728.2	4392.7	4179.3						
1969	56.7	717.4	3744.1							
1970	55.1	750.0								
1971	42.7									

Age Jear	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	$1972^{\text {r }}$)
1	0.001	0.002	0.013	0.015	0.022	0.015	0.011	0.002	0.002	0.010	0.010	0.010	0.010	0.010	0.010	-
2	0.14	0.20	0.11	0.21	0.19	0.33	0.38	0.09	0.073	0.066	0.068	0.18	0.085	0.064	0.027	0.06
3	0.37	0.44	0.39	0.46	0.42	0.60	0.58	0.37	0.24	0.25	0.20	0.28	0.36	0.25	0.23	0.20
4	0.62	0.58	0.49	0.70	0.43	0.61	0.75	0.54	0.47	0.46	0.32	0.39	0.58	0.61	0.41	0.35
5	0.40	0.55	0.43	0.54	0.44	0.36	0.58	0.54	0.40	0.49	0.31	0.32	0.39	0.42	0.72	0.44
6		0.66	0.66	0.69	0.62	0.68	0.42	0.66	0.63	0.60	0.52	0.48	0.58	0.71	0.69	0.61
7			0.98	1.29	1.05	1.15	1.29	0.36	1.13	1.07	0.85	0.78	0.92	1.21	1.48	1.04
8				1.17	1.04	1.29	1.51	1.37	2.78	1.15	0.98	0.91	0.90	0.67	0.88	0.8
9					1.08	1.16	2.10	1.70	1.45	1.39	1.42	1.22	2.17	0.39	0.74	0.8
$10^{\text {²x }}$	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
$\begin{gathered} \text { Mean } \\ 3 \infty 6 \end{gathered}$ years		0.56	0.49	0.60	$0.4{ }^{\circ}$	0.56	0.58	0.53	0.44	0.15	0.34	0.37	0.48	0.50	0.51	0.40

Faroe Haddock $M=30$
Virtual Population Anal Virtual Populatio

Age Year	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971
1	67.4	77.9	61.4	86.1	64.8	82.2	56.2	41.0	35.4	43.6	69.6	64.7	55.1	49.7	21.2
2	45.3	49.9	57.6	45.0	63.0	47.2	60.3	41.3	30.3	26.2	32.7	52.1	49.2	41.9	39.7
3	30.7	30.0	31.6	39.3	28.2	39.9	26.8	33.1	28.7	21.3	18.5	23.0	33.6	34.4	29.6
4	23.4	16.7	15.4	16.9	20.1	14.6	17.7	12.3	18.2	17.6	13.0	11.6	13.5	18.5	21.3
5	6.4	10.2	7.5	7.6	6.9	10.5	6.4	6.9	5.8	9.1	8.9	7.4	6.2	6.2	8.1
6		3.3	4.7	3.8	3.5	3.5	5.8	2.9	3.2	3.1	4.4	5.1	4.2	3.3	3.2
7			1.4	1.9	1.5	1.5	1.4	3.0	1.2	1.3	1.3	2.1	2.5	1.8	1.3
8				0.4	0.4	0.4	0.4	0.3	1.6	0.3	0.4	0.5	0.8	0.8	0.4
9					0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.3
10															

Table 4.2.3.
Numbers alive (millions) bas

Age ${ }^{\text {Year }}$	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972 ${ }^{\text {²) }}$
1	0.001	0.002	0.010	0.012	0.017	0.011	0.007	0.001	0.001	0.010	0.010	0.010	0.010	0.010	0.010	-
2	0.11	0.16	0.083	0.17	0.16	0.27	0.30	0.066	0.054	0.049	0.052	0.14	0.058	0.049	0.021	0.05
3	0.31	0.37	0.33	0.37	0.35	0.51	0.48	0.30	0.19	0.20	0.16	0.23	0.30	0.18	0.19	0.16
4	0.53	0.49	0.41	0.60	0.35	0.52	0.65	0.45	0.39	0.38	0.26	0.32	0.49	0.52	0.29	0.30
5	0.34	0.48	0.38	0.47	0.39	0.30	0.51	0.47	0.34	0.42	0.26	0.27	0.34	0.36	0.61	0.30
6		0.59	0.60	0.62	0.56	0.62	0.36	0.59	0.57	0.54	0.46	0.42	0.52	0.65	0.62	0.53
7			0.90	1.18	0.97	1.07	1.20	0.33	1.04	0.98	0.77	0.70	0.82	1.12	1.43	0.96
8				1.09	0.97	1.22	1.42	1.28	2.67	1.08	0.91	0.86	0.82	0.61	0.84	1.2
9			-		1.04	1.12	2.04	1.65	1.40	I. 34	1.37	1.18	2.11	0.37	0.71	1.2
10						1.2	1.2	1.2	1.2	1.2	I. 2	1.2	1.2	1.2	1.2	1.2
Mean 3-6 years		0.48	0.43	0.52	0.41	0.49	0.50	0.45	0.37	0.38	0.28	0.31	0.41	0.43	0.43	0.32

Table 4.2.4. Faroe Haddock.
Estimates of total instantaneous mortality coefficient (Z) by different methods。

Age	1		2			
	Aberdeen	English	M			
			0.1	0.2	0.3	Age
$3-4$	0.62	0.48	0.56	0.59	0.62	3
			0.74	0.74	0.75	4
4-5	0.85	0.81				
5	0.74	0.72	0.66	0.68	0.71	5
			0.78	0.80	0.82	6
6-7	0.70	0.64	10	1.08	1.07	7
$7-8$	0.89	0.79	0.0	$0 \cdot 1$	0.92	8
8-9	1.14	0.93	0.90	0.91	0.92	8

1: Comparison of mortality estimates (Z) derived from Aberdeen and English trawler landings per unit effort for the period 1957-1968。

2: Total mortality estimates (Z) from a Virtual Population Analysis due to vessels of all countries during the period 1958-1963.

Table 4.2.5. Faroe Haddock.
Relative year class strengths.

Research Vessel Catches/10 hrs as $1+$ Fish				Year Class	Aberdeen Trawler 4th Year Frequencies/10 hrs	$\begin{aligned} & \text { From VoPoA。 } \\ & \text { (millions) } \end{aligned}$	
Year Class		Year					
	Old Explorer	Class	New Explorer			$\mathrm{M}=0.2$	$\mathrm{M}=0.3$
1922	112	1957	3003	1947	170		
1923	179	1958	1500	1948	360		
$7^{\sim} ? 4$		1959	2300	1949	320		
1925		1960	3800	1950	270		
1926	391	1961	6260	1951	330		
1927		1962	4000	1952	220		
1928	1350	1963	2700	1953	890		
1929		1964	375	1954	430		
1930	435	1965	68	1955	380		
1931		1966	3000	1956	450	47	67
1932	2240	1967	1500	1957	370	52	78
1933		1968	3500	1958	310	44	61
1934	1197	1969	350	1959	600	62	86
1935	4815	1970	2120	1960	380	47	65
1936	35	1971		1961	640	58	82
1937	647	1972	$\begin{aligned} & 3600 \\ & \text { (Scotia) } \end{aligned}$	1962	320	36	56
1938	2221			1963	200	26	41
1939				1964	190	23	35
				1965	340	29	44
1946	253			1966	590	49	70
1947	38			1967	280	39	65
1948	1258			1968	300	37	55
				1969	110		
				1970			

Table 4.2.6. Faroe Haddock.
Effect of increase in mesh size to 130 mm (values show percentage changes).

Years after Change	English	Scottish	Faroese	Total
1	-28		+2	-14
2	-23	-28	+8	-9
3	-20	-24	+12	-4
4	-17	-21	+16	-1
5	-16	-20	+18	+1
Long Term	-16	-20	+22	+3

Fishing Effort England. (Million ton hours). 1958-1971.

Figure 3.
Faroe Haddock. Relationship between annual estimates of the fishing mortality coefficient ($M=0.3$) and fishing effort for Scotland, Faroe and Bngland. Lines represent geometric mean regressions.

Figure 4. Faroe Haddock. Yields per Recruit for different ages at first capture.

$\pi \times 4$

Figure 5. Faroe Haddock. Equilibrium yield curves against effort.

4.3. CATCH PREDIOTIONS FOR VARIOUS ASSUMPTIONS FOR COD AND HADDOCK

The predictions have been made using a programme developed at the Danish Fisheries and Maxine Research Institute. The programme demands estimates of:-
I. Values of F for each age group, as proportions of the maximum F;
2. Weight at age;
3. Numbers caught at each age in the inftial year chosen;
4. Age of recruitment and the natural mortality rate (M).

It is also necessary to make assumptions about the fishing mortality and the numbers of recruits for each year.

In Table 4.3.1 (p.27) the input values for cod and haddock are given.
The values of F at each age have been estimated from the $V . P_{0} A_{0}$ for the years 1968-1970 for cod and for the years 1970-1971 for haddock. Weights at age have been calculated using the Bertalanffy parameters referred to in the sections on cod and haddock. Age at recruitment has been taken as 1 year for haddock and 2 years for cod.

A run has been made for haddock using natural mortality of 0.2. A value of $\mathrm{F}_{\mathrm{max}}$ of 1.0 has been assumed together with an average number of recruits from the VoPoA. of 43 million. The results are shown in Table 4.3.2 (p.28). Three runs have been made for cod. Values of $M=0.2$ and $F_{\text {max }}$ of 0.7 have been assumed on a.ll three occasions, but the number of recruits has been varied - about an average value of 10 million fish, this being the average number of recruits for the period 1968w1971. According to the V.P.A. 20 million fish is about the average for the period before 1968. The results are given in Table 4.3 .2 (p.28).

The predictions show that wis th the present pattern of fishery and rem cruitment there should be a reasonably stable fishery for haddock with average catches of about 16000 tons.

For the cod stock the catohes will also depend on recruitment and there are some indications of low recruitment since 1969. With low recruitment (10 million fish annually) the catches can be expected to decline. With an annual recruitment of 15 million fish, the fishery should remain at the current level. With an annual recruitment of 20 million fish, catches should improve and reach a higher level.

Both predictions suggest that the quotas set in the "Arrangement Relating to Fisheries in Waters Surrounding the Faroes", allowing a total catch of 30000 tons of cod and 22000 tons of haddock are too high for application to 1976.

Table 4.3.1. Input values for prognosis of catches of haddock and cod.

	COD		
Age	Proportions of Maximal F on Age Groups $M=0.2$	Weight at Age in kg	Catches in Numbers in Initial Year 1971
1	0.0	0.551	1223
2	0.14	1.05	3093
3	0.37	1.88	2686
4	0.56	2.897	1331
5	0.67	4.046	1066
6	0.77	5.277	232
7	1.0	6.542	372
8	1.0	7.805	78
9	1.0	9.04 .2	29
HADDOCK			
$M=0.2$			
1	0.01	0.249	55
2	0.046	0.475	717
3	0.24	0.795	4392
4	0.51	1.069	4727
5	0.57	1.403	3267
6	0.7	1.740	1292
7	1.0	2.070	864
8	0.78	2.386	222
9	0.7	2.582	146

Table 4.3.2o Catch predictions.
 Prognosis for the cod and haddock fishery under various assumptions. Initial year 197l.

Predicted catches in tons

COD

Year	lst mun	2nd run	3rd run
1972	17515	17960	18405
1973	14895	16789	18683
1974	14248	18152	22056
1975	14560	20259	25959
1976	15529	22565	29600

lst run recruitment 10000000 fishes
2nd run recruitment 15000000 fishes
3rd run recruitment 20000000 fishes

HADDOCK

Year	Ist mun
1972	16716
1973	13665
1974	13198
1975	16401
1976	18735
lst mun $\mathrm{M}=0.2$	

SAITHE

No new assessments on saithe were made by the present Working Group as the Faroe saithe had been included in the assessments of the Saithe Working Group which met in the previous week. A summary of the results are included here for convenience.

1. Provisional estimates of saithe landings in 1973 indicate that the catches have doubled since 1970-1971, the main increase being in the reported landings by French vessels.
2. From V.P.A. the recent level of fishing mortality on saithe is believed to be within the range $0.2-0.5$, indicating that the stock is moderately exploited.
3. Average age at first capture is consistent with that required to give maximum yield at the estimated present rate of fishing mortality.
4. Under the "Arrangement Relating to Fisheries in Waters Surrounding the Faroes" future catches of saithe will be restricted but, because of the terms of the Arrangement, it is not possible to define the maximum catch which may be taken. However, it is expected that the overall catch in the near future will not increase by more than about 10%. For non Faroese vessels the greater part of the fishery takes place outside the shallower areas of the Continental Shelf where the youngest age groups are generally not available. Thus any increase in fishing mortality due to trawl fishing would be expected to be confined to the older age groups and in these circumstances a moderate increase in fishing mortality would not be expected to be detrimental to the stock.

4.5. FLAATFISH

Halibut

Total catches (Table 7.1.i. (p. 40)) show a declining trend since the late fifties and early sixties when landings were between 2000 and 3000 tons. Faroese catches, however, have remained fairly stable during the whole period. Therefore, the reduced catches are considered to reflect a decrease in fishing effort in line fishery of all countries except those of Faroe, rather than a decrease in abundance. English tagging experiments of small halibut indicate that at first these fish spread over both the Faroe Plateau and the Bank, but at an older age halibut tagged on the Plateau tend to be returned from as far as Iceland, whereas halibut tagged on the Bank disperse mainly to the southwest (Bill Bailey Bank, Lowry Bank and Outer Bill Bailey Bank).

Plaice, Lemon Sole

Total catches of plaice have slightly increased over the period (Table 7.1.h. p. 39). Lemon soles (Table 7.1.g, p. 39) in contrast seem to be less exploited than in the early sixties. Since these species are taken only as a bymeatch of the demersal fishery, biological information is limited and data on length and age composition are available only for some recent years.

Von Bertalanffy growth curves were fitted to Faroese and Scottish length at age data（Table 7．1．5 p．46）。 Faroese data were often inconsistent with the theoretical curve which may perhaps be due to the fishing pattern，because only the younger age groups are present in the catches．The Scottish data presented more realistic estimates of Lminfinity as compared with the length range observed in the catches．Therefore，these have been selected for yield per recruit calculations for different values of fishing mortality and age at first capture（Figures 6 and 7，p． 32 and 33）．

Catch ourves from Scottish data for recent years are plotted in Figures 8 and 9 （page 34 ），indicating the value of total mortality for plaice and lemon sole to be of the order of 0.3 and 0.4 respectively，and indicating low rates of exploitation．According to the catch curve，recruitment to the Scottish fishery is not complete until 6 years of age。 Considering that the Faroese tend to fish the somewhat younger age groups，the mean age at recruitment can be estimated at 4 to 5 years old．The corresponding points on the yield per recruit curves are indicated in the figures．Although exploitation of the stock is very low，apparently not much gain can be expeoted from an increase in fishing effort on these species．

4．6 BLUE LING

This stock is exploited mainly by German trawlers and Norwegian longminers． Catches have been reported by Germany since 1963 and by Norway since 1964． Varying amounts of blue ling have probably been included with common ling in earlier years．According to preliminary figures，the catches have been increasing since the midmsixties．In Table 4．6．1（p．31）total catches，catches per fishing day and estimates of total effort have been tabulated．Catch per unit effort has increased in 1971 and 1.972 to almost twice the mean for the period 1963 ml 1972 （mean CPUE $=1$ ol ton／fishing day）．It is not certain if this reflects a real increase in abundance or if it is the effect of a change in the fishing pattern due to effort being directed more towards blue ling．

The lack of sampling for biostatistical data in the blue ling fishery in the Faroe area has made it impossible for the Working Group to proceed any further in an analysis of the state of this stock．

It is not known if there is an interchange of the blue ling between the Faroe and other areas．

4．7 REDFISH

There is a German trawl fishery for redfish in the deeper waters around the Faroes．Germany is the only country catching any substantial quantities of this species in the area．Preliminary catch figures for 1973 indicate a catch of about 9400 tons，which is about 600 tons less than the maximum catch which was recorded in 1955．Estimates of CPUE and total fishing effort given in Table 4．6．1（ p .31 ）do not show any clear trends，the CPUE ${ }^{\circ}$ s for 1971 and 1972 being about the average for the period $1963-1972$（mean CPUE $=3.3$ tons／ fiishing day）。

No age and length data were available to the Working Group and nothing is known about possible connections between this stock and the redfish stocks in the open sea in the North Atlantic．

Table 4.6.1. Blue Ling and Redfish catches off Faroe Islands 1963-1972, and total effort from German catches per fishing day.

Year	German total oatch in tons		German catch (in tons) per fishing day		Total effort for all countries	
	Blue Ling	Redfish	Blue Ling	Redfish	Blue Ling	Redfish
	478	2493	1.0	4.1	-	608.05
1964	2675	7908	1.5	4.3	1783.33	1839.07
1965	2732	5512	1.2	3.5	2276.67	1574.85
1966	1280	3228	0.7	2.7	1828.57	1195.56
1967	1371	4899	0.8	3.3	1713.75	1484.55
1968	2646	6667	1.0	3.5	2646.00	1904.86
1969	1047	1258	0.4	1.8	2617.50	698.89
1970	2947	2053	0.6	3.7	4911.67	554.86
1971	2032	2503	1.9	3.1	1069.47	807.42
1972	3982	4080	2.2	3.2	1810.00	1275.00

Figure 6.

Tigure 7. Yields per Recruit of Faroe Lemon Sole. (Bertalanffy parameters derived from Scottish data 1972.) $W=0.0107 \mathrm{~L}^{3}$. Dots indicate present level on the yield curve.

Figure 8. Catch curve. Faroe Plaice 1972.

Figure 2. Catch curve' Faroe Lemon Sole 1972.

4.8. OTHER SPECIES

In Table 7.l.m. (p.42) catches for several species are given, including tusk, ling, angler, rays and skates, dogfishes, several species of flatm fishes, catfishes and others. No data other than of catch were available to the Working Group, and thus no attempt was made to analyse the state of these stocks.
5. ADEQUACY OF DATA

Time has not allowed the Working Group to make any detailed study of the adequacy of data and sampling. From the Report it will be seen that for several species catch statistics only are to hand.

F'or redfish and blue ling German effort data are available, but no sampling of age and length composition. For the lemon sole and plaice stocks some Scottish and Faroese data for the most recent years were available for the length and age distribution, allowing estimation of growth parameters and yield/recruit curves. The most complete data were available for cod, haddock and sajthe allowing estimates of mortalities, stock numbers, effects of changes in fishing effort and mesh size and predictions of catches. The agreement between independent estimates of mortality gave confidence in the results. However, it should be noted that the Faroese cod data in the former years have been taken from the spring long-line fishery for spawning cod only and are therefore not representative for the long-line fishery as a whole. Also, Faroese haddock sampling has been very scanty in former years.

To be able to assess the state of stocks other than those of cod, haddock and saithe in more detail and for continuing work on these three species, it will be necessary for all countries to sample their catches in order to estimate the numbers of fish of each size landed each year. In addition, age/length keys will be required for all years.

6. REPERENCES

Anon., 1967
Coop.Res.Rep. B, 1967.
Jones, R., 1961 Marine Research 1961, No.2.

Table 7.1.a. Catches in ICES Division Vb by country and species 1952-1972, metric tons, round fresh.

COD

Year	Faroe Islands	France	Germany	Norway	U.K. England	U.K. Scotland	Others	Total
1952	4550	175	\cdots	-	12365	13283	-	30373
1953	4137	-	-	-	12469	10535	-	27052
1954	5190	600	37	125	16017	14238	-	36164
1955	7902	700	216	\cdots	17223	12380	-	38 121
1956	7938	-	689	-	8337	10610	-	27574
1957	6920	-	1085	-	10067	13413	-	31485
1958	6535	\cdots	1011	-	9828	10523	-	27897
1959	4676	\cdots	697	-	10087	10522	-	25982
1960	8723	-	451	-	13746	16300	-	39220
1961	9521	"	417	168	3891	12954	-	26951
1962	6751	100	301	505	5521	11052	-	24230
1963	7428	720	376	147	4558	10875	-	24104
1964	8888	989	1162	333	5845	7791	-	25008
1965	9948	1538	854	419	5470	7868		26097
1966	7957	1120	669	314	4871	7855	$130{ }^{\text {xx }}$)	22916
1967	7835	871	815	650	7996	8546	-	26603
1.968	13763	2519	1180	686	7096	8524	-	33768
1.969	15718	2557	447	476	6717	12249	-	38164
1970	15245	2616	225	238	3707	9790	-	$\begin{array}{ll}31 & 821\end{array}$
1971	12754	1426	337	881	3485	9102	-	27985
1972 1973	12143	1462	262	266	$\begin{array}{ll}3 & 019 \\ 5 & 167\end{array}$	6483	-	23635
Table 7.1.b.				HADDOCK				
1952	3225	\cdots	-	-	7714	6653	-	17592
1953	2788	-	-	-	5965	6404	-	$\begin{array}{lll}15 & 157\end{array}$
1954	2645	-	1	-	6069	6832	\cdots	15547
1955	3865	-	33	-	5148	7667	\cdots	16713
1956	4221	-	20	-	5937	7512	-	17690
1957	4453	\cdots	38	∞	7105	9602	-	21198
1958	6850	-	19	-	7637	9573	\cdots	24076
1959	5670	-	10	-	5536	9220	-	20436
1960	7772	-	6	-	7298	10943	-	26019
1961	8454	-	22	-	2765	9590	-	20831
1962	7042	166	18	-	3766	16159	-	27149
1963	6336	792	22	\cdots	4655	15766	-	27571
1964	6952	1866	32	111	3442	7087	-	19490
1965	6673	1939	8	119	3385	6355	-	18479
1966	6902	2717	40	-	2867	6240	-	18766
1967	5246	1091	30	-	2347	4656	8	13378
1968	6751	2286	31	-	2445	6339	-	17852
1969	11122	3314	4.5	-	1976	6815	-	23272
1970	1.1791	2006	6	-	1137	6421	\cdots	21361
1971	10488	790	1	∞	2323	5762	-	19393
1972 1973	8314	2666	25 46	-	1371 2464	4109	-	16485

ख) Preliminary estimates.
mar) USSR.

Table 7.1.d.

1952	-	\cdots	-	\cdots	332	1300	-	1632
1953	\cdots	-	\cdots	-	563	1167	-	1730
1954	-	-	\cdots	-	522	716	-	1238
1955	∞	-	1	-	298	581	-	880
1956	-	∞	+	-	213	415	-	628
1957	-	\cdots	+	-	157	554	-	711
1958	-	\cdots	+	-	167	333	∞	500
1959	\cdots	\cdots	$+$	\cdots	249	246	-	495
1960	-	-	∞	\cdots	70	403	-	473
1961	222	1200	-	\cdots	50	257	\cdots	1729
1962	-	\cdots	-	-	26	197	-	223
1963	-	\cdots	+	\cdots	33	285	-	318
1964	-			-	25	117	-	142
1965	-	$1421{ }^{\text {a }}$	$+$	-	29	97	-	1547
1966	\pm	225	-	-	28	1.39		392
1967	-	254	1	\cdots	31	138		427
1968	\cdots	80	1	∞	46	172	-	299
1969	-	16991	$+$	-	46	515	-	17552
1970	-	73	-	-	35	251	-	359
1971	150	195	1	-	26	166	-	542
1972 ${ }^{197}{ }^{\text {\% }}$)	-	194	7	∞	137	139	-	470

𤣩) Preliminary estimates。
अ7파) Denmark.
a) Includes Iceland grounds.

Table 7.1.e.
TUSK

Year	Faroe Islands	France	Germany	Norway	$\begin{aligned} & \text { U.K. } \\ & \text { Eng:land } \end{aligned}$	$\begin{gathered} \text { U.K. } \\ \text { Scotland } \end{gathered}$	Others	Total
1952	187	-	-	1007	92	387	-	1673
1953	593	-	-	711	93	483	-	1880
1954	560	-	7	511	95	401	-	1574
1955	1005	-	40	384	114	4.72	-	2015
1956	818	-	58	484	83	586	-	2029
1957	845	-	99	199	80	694	-	1917
1958	812	-	48	1068	106	1066	-	3100
1959	984	-	87	637	69	1275	-	3052
1960	1306	-	32	734	135	1260	-	3467
1961	1301	-	29	1401	67	1062	-	3860
1962	1 902	-	21	1134	54	14.05	-	4516
1963	2007	-	29	802	28	695	-	3561
1964	2775	-	137	875	30	799	-	4616
1965	1645	-	115	1565	32	924	-	4281
1966	1488	\cdots	87	1221	21	482	-	3299
1967	2070	∞	109	2729	18	432	-	5358
1968	2798	-	91	2906	23	549	-	6367
1969	1454	-	21	1338	16	4.12	-	3241
1970	1028	-	19	1475	11	515	-	3048
1971	1489	-	44.	1872	13	419	-	3837
1972 1973	1918	-	139 134	2421 ca. 2800	16	386	-	4880

Table 7.1.f.
LING AND BLUE LING

Year	$\begin{aligned} & \text { Faroe } \\ & \text { Islands } \end{aligned}$	France	Germany ${ }^{\text {3FIE }}$)		Norway			U.K. England	$\begin{gathered} \text { U.K. } \\ \text { Scotland } \end{gathered}$	Others	Total
1952	56	-	-			679		489	540	-	1764
1953	1.44	-	-			486		476	935	-	2041
1954	122	-	1247			414		474	479	-	2736
1955	235	-	2799			711		751	560	-	5056
1956	277	-	2025			036		533	749	-	4620
1957	259	-	1882			626		579	879	-	4225
1958	616	-	2115			795		589	823	-	4938
1959	394	-	1758			917		379	691	-	4139
1960	520	-	895			400		629	855	-	3299
1961	603	-	11			521		241	829	-	2205
1962	450	387	9	B. Ling		326		247	572	-	1991
1963	365	1512	17	478		496	BoLing	183	396	-	3447
1964	480	2844	48	2493		736	182	322	632	-	7737
1965	416	2618	30	1612		832	1120	184	388	-	7200
1966	416	1827	39	850	2	115	430	276	496	\cdots	6449
1967	736	23	60	1133		203	238	172	364	-	5929
1968	1209	177	68	1858	3	340	788	152	679	∞	8271
1969	486	195	45	249		952	798	225	602	-	4552
1970	699	578	42	335	1	737	2612	164	883	-	7050
1971	752	728	46	1475			557	152	879	-	7487
1972	1572	866	74	2779			1203	146	772	-	11370
$1973^{\text {\#) }}$			157	2929	ca. 3	000	ca. 4000				

玉) Preliminary estimates:
अअ표) 1954-1962 Ling and Blue Ling not separated.

Table 7.1.g.
LEMON SOLE

Year	Faroe Islands	France	U.K。 England	$\begin{array}{\|c} \text { U.K. } \\ \text { Scotland } \end{array}$	Total
1952	-	-	373	753	I 126
1953	\cdots	\cdots	361	462	823
1954	-	-	365	580	945
1955	-	-	307	480	787
1956	\ldots	∞	192	548	740
1957	-	-	343	678	1021
1958	\cdots	-	292	670	962
1959	-	-	358	752	1110
1960	-	\cdots	351	1026	1377
1961	\cdots	-	156	1009	1165
1962	-	-	187	910	1097
1963	-	\cdots	142	706	848
1964	-	27	112	305	444
1965	-	42	110	393	545
1966	-	49	99	297	445
1.967	\cdots	14	104	321	439
1.968	-	20	84	404	508
1969	\cdots	∞	77	362	441
1970	-	-	68	424	492
1971	590	-	76	303	969
1972	300	-	35	244	579
1973	-	\cdots			
Table 7.1.h.		PLAICE			
1952	115	-	79	140	334
1953	13	\cdots	53	11.3	179
1954	27	∞	78	142	247
1955	81	-	57	129	267
1956	19	\cdots	57	145	221
1957	$+$	\cdots	75	189	264
1958	4	-	75	157	236
1959	5	-	83	149	237
1960	64.	-	62	209	335
1961	83	-	38	194	315
1962	26	\cdots	73	164	263
1963	4	226	39	130	399
1964	11	131	64	99	305
1965	6	92	79	143	320
1966	1	108	106	161	376
1967	7	54	120	172	345
1968	102	28	158	170	458
1969	192	31	82	181	486
1970	288	-	59	205	552
1971	14.3	\cdots	45	173	361
1972	130	+	50	111	291
1973					

Table 7.1.i.
HALIBUT

Year	$\begin{aligned} & \text { Faroe } \\ & \text { Islands } \end{aligned}$	France	Germany	Norway	U. K。 England	U.K. Scotland	Total
1952	243	-	-	420	467	720	1850
1953	149	-	-	437	414	663	1663
1954	226	\cdots	13	561	433	735	I 968
1955	335	-	428	560	554	866	2743
1956	390	-	57	187	407	901	1942
1957	374	\cdots	125	366	557	1165	2587
1958	616	-	112	390	580	1165	2863
1959	404	\cdots	125	180	593	1261	2563
1960	218	-	58	439	686	I. 397	2798
1961	222	∞	165	327	287	1237	2238
1962	137	\cdots	11	299	325	1126	1898
1963	161	-	10	128	241	887	1427
1964	174	-	63	110	239	792	1378
1965	276	∞	35	124	292	725	1452
1966	169	-	36	120	248	636	1209
1967	245	-	57	180	178	749	1409
1968	267	-	64	90	130	698	l. 249
1969	205	-	18	151	124	558	1056
1970	296	-	10	182	74	514	1076
1971	234	-	1.4	197	92	371	908
1972 197 $13^{\text {Fi }}$	212	\cdots	35 52	$\begin{array}{r} 155 \\ \text { ca. } 70 \end{array}$	60	256	718
Table 7.1.j.			MEGRIM				
1952	\cdots	-	\cdots	\cdots	5	12	17
1953	-	-	-	-	4	19	23
1954	\cdots	\cdots	-	-	5	11	16
1955	\cdots	-	-	∞	5	21	26
1956	-	\cdots	1	-	2	13	16
1957	-	\pm	3	\cdots	3	12	18
1958	-	-	1	-	4	10	15
1959	\cdots	\cdots	1	\cdots	5	6	12
1960	\cdots	-	∞	-	9	21	30
1961	\cdots	\cdots	-	\cdots	8	17	25
1962	-	\cdots	\cdots	-	6	19	25
1963	-	-	=	-	5	26	31
1964	∞	50	\cdots	-	5	20	75
1965	\cdots	47	\cdots	-	5	17	69
1966	-	237	-	-	5	14	256
1967	\cdots	212	-	\sim	1	6	219
1968	-	250	-	\cdots	3	6	259
1969	-	312	-	\sim	3	8	324
1970	-	99	\cdots	-	1	9	109
1971	∞	37	\cdots	∞	2	9	48
1972	-	38	-	∞	3	10	51

¥) Preliminary estimates.

Table 7.1.k.
REDFISH

Year	$\begin{aligned} & \text { Faroe } \\ & \text { Islands } \end{aligned}$	France	Germany	U.K. England	U.K. Scotland	Total
1952	-	-	∞	20	10	30
1953	-	-	\cdots	139	16	155
1954	-	\cdots	2114	87	2	2203
1955	-	-	10020	151	2	10173
1956	\cdots	-	5018	25	7	5050
1957	\cdots	-	5217	27	7	5251
1.958	∞	\cdots	4451	58	13	4522
1959	-	∞	3440	38	11	3489
1960	-	\cdots	2295	276	60	2631
1961	-	\cdots	3577	50	38	3665
1962	-	-	2237	52	49	2338
1963	1	366	2035	31	60	2493
1964	-	705	7119	4.1	43	7908
1965	1	582	4864	38	27	5512
1966	-	-	3180	8	40	3228
1967	-	-	4. 853	24	22	4899
1968	1	-	6613	43	10	6667
1969	5	-	1225	13	15	1258
1970	-	\cdots	2020	13	20	2053
1971	\cdots	∞	2479	12	12	2503
$\begin{aligned} & 1972 \\ & 1973 \end{aligned}$	∞	-	4027	40	13	4080
Table 7.1.1.			ANGLER (MONK)			
1952	-	-	\cdots	86	376	462
1953	-	-	\cdots	69	320	389
1954	-	∞	\cdots	85	344	429
1955	-	\cdots	3	157	338	498
1956	m	\cdots	3	157	429	589
1957	-	-	3	214	63.1	848
1958	∞	-	$+$	263	580	843
1959	-	\cdots	13	269	629	911
1960	-	\cdots	7	314	811	1132
1961	-	-	11	167	695	873
1962	-	\cdots	4	179	641	824
1963	-	\cdots	∞	160	618	780
1964	\cdots	\cdots	3	218	347	568
1965	\cdots	\cdots	-	212	326	538
1966	-	\cdots	-	164	349	513
1967	-	\cdots	\cdots	118	308	426
1968	-	-	3	159	335	497
1969	1	26	1	175	429	632
1970	∞	10	-	127	542	679
1971	-	-		132	532	664
1972		3	2 6	99	388	490

x) Preliminary estimate.
Table 7．1．m．Other Species．

	浆 $r \text { r-1 } \quad N$
	ज
$\begin{aligned} & v_{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0-1 \\ & 4 \\ & 80 \\ & 0 \\ & 0 \end{aligned}$	かo $r \quad \quad r-1+1$
	ナ！nNommronv
	Simbonde inormmo （vHHHNHMHM
1 $\stackrel{4}{0}$ 0 -1 0 0	
$\begin{aligned} & 0 \\ & \text { H } \\ & \text { w } \\ & \text { ज1 } \end{aligned}$	
	건 KMMNO NN ∞
$\begin{aligned} & \text { g } 0 \\ & 0 \\ & +2 \\ & 0-1 \\ & \hline 3 \end{aligned}$	ナナ＋MNMMH60
$\begin{aligned} & \text { + } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { E- } \end{aligned}$	
－	 HononNOH6HNOLncincoontr
$\begin{aligned} & H \\ & \tilde{W} \\ & \hline \end{aligned}$	

Table 7.1.2. Quantity of Cod, Haddock and Saithe landed ('000 cwt) from the Faroe Plateau and the Faroe Bank by British trawlers landing in Scotland。

Year	COD		HADDOCK		SAITHE	
	Plateau	Bank	Plateau	Bank	Plateau	Bank
1961	187.6	3.3	162.6	3.2	35.3	1.1
1962	162.6	6.4	274.6	7.4	42.3	1.6
1963	159.8	6.3	263.1	12.1	54.0	2.8
1964	106.4	6.2	118.8	4.6	51.8	2.4
1965	110.9	4.0	107.0	3.3	60.1	2.0
1966	115.3	6.3	102.0	6.7	54.2	4.4
1967	122.1	8.2	76.1	4.9	58.8	6.7
1968	115.2	11.8	101.0	8.8	68.4	9.9
1969	180.9	8.3	103.6	6.2	81.9	4.3
1970	132.6	15.1	94.8	16.4	123.1	18.1
1971	120.5	11.4	86.2	12.9	103.7	14.3
1972	82.3	10.8	49.5	18.7	88.0	14.0

Table 7.1.3. Faroe Division Vb. Fishing Effort and Landings per Unit Effort.

	Estimated Total Effort			Landings per Unit Effort		
Year	Cod (1)	Haddock (1)	Saithe (2)	Cod (3)	Haddock (3)	Saithe (4)
1950	54	45	34	666	303	160
195.1	65	54	41	544	272	212
1952	65	59	32	511	298	216
1953	53	53	28	511	286	260
1954	56	55	27	641	283	227
1955	59	56	30	654	299	245
1956	58	49	42	474	363	259
1957	64	58	146	494	367	182
1958	76	79	53	368	304	243
1959	74	82	71	352	248	203
1960	118	141	74	331	199	161
1961	108	106	42	250	196	230
1962	101	92	56	239	295	186
1963	90	80	60	267	343	214
1964	80	78	80	315	250	267
1965	81	75	64	336	246	344
1966	63	70	91	363	268	279
1967	52	61	76	510	218	277
1968	74	71	51	464	252	399
1969	71	87	76	537	269	359
1970	79	85	68	405	252	427
1971	65	61	68	435	316	454
1972	72	79	189	328	209	247

(1) British Units $=$ Million Ton-hours
(2) English Units = Million Ton-hours steam + motor trawl
(3) Tons per Million Ton-hours, British Trawlers
(4) Tons per Million Ton-hours, English Trawlers

Table 7.1.40 TOTAL DEMERSAL. Faroes ${ }^{1)}$. Total Landings. Round fresh weights in ${ }^{\circ} 000$ metric tons.

Year	England	Scotland	Faroes	Others	Total
1924	55.3	13.7	4.9	∞	73.9
1925	45.5	9.5	7.9	0.7	63.7
1926	44.2	16.7	6.4	1.1	68.3
1927	46.9	18.0	8.2	1.0	74.0
1928	40.9	12.7	5.0	3.0	61.6
1929	38.3	9.2	2.2	1.2	51.0
1930	42.3	12.8	2.6	3.2	61.2
1931	58.6	17.3	1.8	1.4	79.1
1932	61.6	17.6	5.3	1.0	85.4
1933	55.6	15.8	2.6	0.8	74.9
1934	53.0	15.0	2.3	0.1	70.4
1935	53.8	15.2	2.0	0.1	71.2
1936	54.1	18.7	1.6	1.0	75.4
1937	39.0	15.2	3.7	1.3	59.3
1938	40.6	1.4 .8	3.5	0.4	59.2
1946	32.8	19.7	=	∞	52.4
1947	31.7	22.7	\cdots	0.1	54.5
1948	15.0	21.5	∞	-	36.5
1949	21.6	26.5	∞	∞	48.1
1950	27.2	32.4	∞	0.4	60.1
1951	32.8	31.3	\pm	1.9	65.9
1952	28.8	25.9	8.4	1.3	64.4
1953	27.6	22.9	7.9	1.6	59.9
1954	30.5	25.7	8.9	5.8	70.9
1955	31.2	25.2	13.5	17.2	87.1
1956	21.2	23.8	13.7	15.2	73.9
1957	23.5	29.5	13.8	31.3	98.1
1958	26.9	27.0	15.8	14.7	84.5
1959	23.9	27.0	13.1	14.9	78.9
1960	31.0	36.6	19.6	8.0	95.3
1961	12.5	31.1	21.3	19.8	84.7
1962	14.7	35.6	19.2	9.1	78.6
1963	13.6	34.5	19.1	14.4	81.6
1964	15.1	21.9	20.8	34.5	92.3
1965	15.6	21.9	20.2	35.9	93.6
1966	12.4	20.6	18.3	36.2	87.5
1967	15.1	20.5	18.5	29.1	83.2
1968	15.8	23.1	27.7	33.9	100.5
1969	14.2	28.1	34.2	47.1	123.6
1970	8.7	28.7	32.1	29.7	99.2
1971	9.9	25.4	32.1	29.2	96.6

1) Plateau and Bank combinedo
Table 7.1.50 Estimates of Bertalanffy Growth Parameters ${ }^{\text {1). }}$

Species	Source	Year	I ∞	${ }_{5}^{2}$	K	s^{2}	to	$s_{\text {to }}^{2}$	Notes
Eaddock ${ }^{\text {xx }}$	Scotiand	$1950-1972$	82.7	13.5	. 149	.00039	-1. 55	S119	$0^{*}+0 \quad I^{+}$excluded
Cod ${ }^{\text {P }}$), Bank stock	England	$1959-1972$	111.7	1.6	- 354	. 00042	0.46	.00114	0×1 1 ${ }^{+}$+ excluded
Cod ${ }^{\text {XX) }}$, Plateau stock	Ergiand	1959-1972	129.9	68.3	.131	. 000043	-1.21	.12	$\sigma^{*}+91^{+}$excluded
Plaice	Faroe	1967	56.5	8.6	.476	.043	0.45	. 422	0^{*}
Plaice	Freroe	1967	69.8	7.9	. 248	. 0020	-0.24	.248	9
Plaice	Scotland	1972	83.4	7.1	.113	.00014	-1.18	. 155	$0^{2+q} 3^{+}$included
Plaice ${ }^{\text {xx }}$	Scotland	1972	84.8	14.1	. 105	.00026	-1. 55	- 485	$0^{+}+93^{+}$excluded
Iemon Scle	Faxoe	1967	36.7	53.6	. 222	. 138	-2.55	84.21	
Lemon Sole ${ }^{\text {xx }}$)	Scotland	1972	44.0	$0{ }_{6} 67$. 175	. 00043	0.05	- 368	$0^{x}+9$ 4 4^{+}excluded
Lemon Sole	Scotland	1972	44.6	0.70	. 159	.00026	-0.54	. 242	$0^{+}+9$ 4 4^{+}included
Lemon Sole	Faroe	1961	36.9		. 223		-2.32		0 (x)
Lemon Sole	Baroe	1965	33.3		. 591		1.20		0^{x} (${ }^{\text {a }}$
Lemon Sole	Farpe	1966	41.9		. 253		$\cdots 0.55$		0^{π} (${ }^{\text {a }}$
Lemon Sole	Faroe	1961	38.7		- 372		-0. 15		¢ x)
Lemon Sole	Faroe	1965	50.9		. 072		-8.67		ㅇ x)
Lemon Sole	Faroe	1966	40.4		.359		00.14		\% x)
x) From mean variance data. xx) Estimates used for yield calculation.									
The estimation is done according to a programe runing at the Danish Institute of Marine Research By an iterative process a least square fit of the growth curve to the observed data is found.									

[^0]: 㗐) Values of F shown for 1972 and for age group $10+$ are assumed values.

