RHPORT FROIT THP BLUTFIN TUHA WORKING GROUP

Observations on the Size Composition of Biuefin Tma Catches

from 1970
by
H. Aloncle, J. Hamre, J. Rodriguez-Foda and K. Riews

I. Introduction

Reference is made to the previous reporis of the Bluefin Tuna Working Group (Statistical INews Letters, INos. 20, 26 and 38 , and to Cooperative Research Report, Ser.A, No.23). In the meantime, M. Ho Aioncle from France has repiaced Dr. C. Maurin as a member of the Group. The mempers continued their work by correspondance and with other tuna research workers in the region. In the foilowing, the data obtained for the fishing season I970 are preseated.

II. Material

Reports on the catches and the catch composition of biuefin tuna were suiomitted by the following countries: Canada (Tables 1-4), France (Table 5), Itaiy (Tables 6-7), IVorway (Tabies 8-i0), Portugal (Tabie il), Spain (Tabies 12-13) and USA (Tables 14-18

Dr. O. Bagge reports that oniy one tuna veighing 300 kg was caught on 14. October by the Danish fishery at the Svedish west coast urf Windinien. There were no Geman tuna catches in 1970.

Dr. Tibbo and Dr. Beckett of the Pisheries Rescarch Board of Canada reported that the Canadian bluefin landings (Tabie 1) quadrupled in 1970 due to the purse seine fishery for smail bluefin off the mid-Atiantic coost of the United States. The catch of smali biuefin in 1970 amounted to 1 I 60 metric tons. The remainder of the catoh (160 metric tons) consisted of large biuefin taken by trap nets and harpoons in coastal waters, and biucfin of various sizes taken on surface Iong-Iines by svordfish fishermen. The latter catches are incidental to svordicish and are made in offshore areas near to or beyond the edge of the continental sheif from Cape Hatteras to the Grand Bank of Newfoundiand. Anglors ianded approximately 60 inetric tons of giant bluefin in 1970 but these are not included in Table i. Up to 1968 there was no breakdown of tuna Iendings by species and hence the figures for 1962 to 1967 inciusive are total landings of ail tunas on the Atlantic coast. They were chiefly bluefin but occasional landings of other species were made. Some skipjacik, for exampie, were included in the ig63 to 1965 landings, and some yeliowfin and biceye in ail landings since 1962. Hotrever, for 1968 , 1969 and I970 the figures are Canada's best estimates of bIuefin Iandings.

Information on size and data of capture for ail biuefin caught and landed by sport fishermen in Hewfoundiand waters is recorded by the Newfoundiand and Labrador Tourist Development Office. Table 2 sumnarizes the dates and numbers of fish caught from 1956 to 1970 inclusive. The data are grouped in tinree-days periods since variation in catoin is probably due more to weatiner conditions than to changes in the availability of fish. The carliest captures in recent years were taisen on 10-I5 Juiy in the Conception Bay on the southeast coast. However, most of the fish caught were from Hotre Dame Bay about 100 miles (160 km) farther north where they appear somemat later (20-26 July) but stay ionger.

Table 3 gives the weight composition of the bluefin landed in NewfoundIand during the last tiree years (1968-1970). These data have been grouped in 5 kg weight classes and the per milic frequency distribution calculated. The remainder of the fish that were caught were relecsed - often after being tagged.

The sport fishery in the Guif of St. Lawnence was active during 1970, particularly off the south-east coast of Prince Batard IsIand, where more than 100 fish vere taken. Data on these captures are scanty but it would appecr that, on an average, they were Iarger than the fish caught in Newfoundland waters. Severai fish weighing more than 410 kg were recorded. One weighed 484 kg , and this is presumabiy a world record for rod and reel. BIuefin tuna also occurred in the north-western part of the Guif of St. Lawrence in 1970 aithough very fev landings were reported. Herring purse seine fishermen frequentiy made incidentai catches of large biverin but discarded them.

In generai, biuefin tuna appear to havo been abundant farther north than usuel during the past three years, and this may be correlated with an increase in the surface temperature. Mean monthiy temperatures in these years were 0.5 to $\mathbf{I} .5^{\circ} \mathrm{C}$ above average at several stations, particuiariy during the period of summer warmins.

Samples were obtained from each of three landings made from the purse seine fishery for small bluefin off the east coast of the United Statos and the per mille length distributions are given in Taile 4. The Iength composition of the first two samples is similar, as might be expected since they vere from catches made in the same generai area and at approximateiy the same time. The third samie was from catches made later in the year and it differs from the others. IIost of the fish in the first two samples were of age groups 1 and 2 (year ciasses 1969 and 1963), whereas age group 3 (year class I967) predominated in the third sample. There were very few representatives of age group 4 (year class ig6́), despite some older fish. The i966 year class has had a varied history - it was absent from the fishery as age group I but formed a major component as age group 2 (see ICES, C.N.IG69/J:2).

During the year 20 iarge biuefin were tagsed and released; 3 from comercial trap net fisheries in St. Margaret's Bay, Mova Scotia, and 17 by angiers in Hotre Dame Bay, IFowfoundiand. There were no tags returned in 1970 .

In a joint research effort with the Voods Hole Oceanographic Institution, sonic transmitters vere attached to a total of 8 biuefin in St. Nergaret's Bay, and the fisin were then released. 7 of them were tracked for as long as 56 hours and as far as i30 miles (210 km)。 Oniy I stayed inside the bay - the others Ieft immediately and proceeded offsinore. The transmitters telemetered data on fish and water temperatures for studies of themal regulation. Some of the results of these studies aro in press.
D. H. Aloncle reports that the biuefin tuna catches off the French Mediterranean coast amounted to I 200 tons (土 20\%).

Dr. Sara tho has provided the Itaiion information states that oniy fer data could be collected. For the 1970 catch it is cheracteristic that relatively fou but rather lorge fish were caugit. Three fish wore even cioso to 600 kg and a dozen fish wore close to
to 550 kg . In totai, only 4000 biuefin tuna with an average weight of 230 kg were caught, while the avorage annual catch of the madragues stationed at Bonagia, Formica, Fravignana and Scopelio amounts to some 6500 tuna.

According to Mr. J. Hamre, 1970 was one of the poorest years since the bluefin tuna fishery was started in Jorvay. Oniy 812 were caugint. Since he did not get an oppormity to collect corresponding Iength/weight measurements, he used the data coliected in i 1968 to convert the weigit Irequency distribution in a Iengith frequency distribution (Table 9), usine a condition factor (K) of 2.16.

Mr. Hamre has also provided Tainie 10 on roturns of the Norwegian tuna tagging experiments. One speciai conciusion can be dram from the Table, namely that the tuna age groups fished on the Horwegian coast in Ig62 are still visiting Horwegian waters as indicated by the returas obtained in 1970. This supports tine suggestion that the 1952 year ciass may still be found in the Norwegian catches as suggested further beiow.

Dr. H. Vilela reports that in November 3 I40 smail tuna with a total weight of 15509 kg were caught by hook and line on the Portuguese west coast.

Dr. J. Rodriguez-Roda states that the biuefin tuna catches of the madragues at Barbate, Sancti-Petri, Tarifa and La Linea amounted to I 513 tons in 1970 and were thus a Iittie iover than the catches in 1969 (1 634 tons).

Mr. Mrank Mather III points out that the data given in Table 14 include 676 fish caught in Week 26 off southern Hew Jorsey during a sport fishing toumoment. The individuai weight of these fish ves obtained and converted into length by their length/weight formula. The rest of the sample was from catches of tirree locaily-based purse seiners and was measured vith calipers by their personnel and by the personnel of the National Nar. Pisheries Service Laboratory ait Oxford, Faryiand.

In Tabie I5 PIr. Mather III estimated the age composition and the average ase of the catch (based on the data given in Tablo 14), catch and effort as weil as tag retum rates.

According to him it is evident that the stock of young biuefin has to some extent recuperated in the 1969 and 2970 seasons. The recoveries of two French tags which are from very smal numbers of releases suggest that this recuperation nay have been due, at least partly; to the immigration of fish from the eastern Atiantic. Jow that the interaction between the stocks of young biuefin of the vestern and eastern sides of the Morth Atlantic has been conclusively denonstrated, it is hoped that more attention will be devoted to obtaining adequate size composition and catch and effort data for the fisheries in the eastern Atiantic, and that tagging of young bluefin in the easterm Atiantic wili be dono on more than a token besis.

In Tables 16 and 17 lir. Hathor gives the US tagging results for DIuefin tuna. He states that the first two recaptures in the north-westem Atlantic of giant bluefin tagged off the Banamas have been recorded. In the meantime, the 40 tin vest-east transatiantic migration by a sman bluefin has been recorded.

He feels that the fishing pressure on tine nortin-testem Atiantic stock was hish. The return rate from the I970 seasonts reieases was not excessive, while that from the provious (I969) seasong. 24.0%, was by far the highest ever attained in this category. The second season returns are probably a better index of fishing ratio than tinat of the same soason, as the former fish had then had more opportunity to mix thoroughiy vith the stocir.

He finoliy says that there are sume strong indications that the fisherios in the Bey of Biscay and in the northerestern Atientic fiuctuate in response to transatiantic migration. Hovever, in order to prove this more offort data are needed.

In Table 18, the Zengith composition of bluefin tuna samples measured at Fuerto Rico by the Inter-American Tropical Tuna Commission is given. It is for the first time that such data were obtained by the Working Group.
III. Comparison of the catch composition data coliected in the different countries
I. Spanish with Horwegian catones

There was ai siight shift in the mode of the Norwegien lengthfrequency distribution curve to higher lengths, indicating that the fish caugit in 1970 belonged to more or less the same year class as those caught in 1969 . The majority of these fish were probably members of the rich 1952 year ciass.

Fish of the IG58 and IG6I year classes again dominated in the Spanish catches as in 1969 with the only difference that the 1961 year class predominated over the 1958 year class, while the pposite was the case in the preceding year. A third group of fish with a mean length of abouit 170 cm probabiy belonged to the 1968 or the 1967 year class, which was observed already in 1968.

Due to too few data, a comparison between the Itailen bluefin tuna catches and those of Spain and Horway is not possible. The few data available indicate, however, tinat the age composition of the Italian catches was similar to that of the previous years.

2. US, Canadian and Puertorican catches

The US, Ganadion and Puertorican biucitn tuna catcones made by purse seines taily widely in the lower range of the iengih distribution curves. In the I970 catches, fish of year classes 1969, I968 and ig67 vere strongiy represented in the Canodian and US catches. Apart from these year classes the US catches contoined oiso fish of the year classes 1966 and 1965. The similarity of the Conadian and US Bluefin tuna catches hed to be expected, since the fisheries of both countries take place on tine same fishing grounds. It is noteworthy that in IG70 fish of age group I was again present in the catches after having been absent in the three preceding years.

3. Canadian with Italian and Norwegion catches of giant biuefin tuna

For the first time, data on the size composition of giant tuna landed by sport fishermen in Newfoudiand were obtained and are being compared with Horwegian purse seine catches and Itailion madrague catches, ail based on the weight composition. Figure 2 shows that for the years i968 to 1970 the Canadian catches of giant bluefin tuna are distinctly smailer than the Norwegian catches. The fish of the Canadion catches was probabiy II to 13 years old. The fish of the Italian bluefin tuna catches in 1970 was ranging beween the Camadion and Morwegian catches in weight composition. It is not possible to conclude from the weight composition data to which yoar classes the giant tuna caugit off the Conadian coast beionged.

IV. Sumpory

The size compositions of bluefin tuma catches coliected in 1970 show that the East Atiantic fisheries of the various countries under observation have taken place on different year ciasses of fish, while the West Atiantic pursc soino fisherios have fishod on more or less the same age groups.

V. References

HAMRP, J. and TIEWS, K., 1964. Report from the Bluefin Tuna Working Group. On the Size Composition of Itma Catcines from 1956-1962. Stat. News Letters, No.20:I-43. Cons.permoint. Explor.Mer.

HARPI: J., LOZANO, F., RODRIGUEZ-RODA, J. and TIEFS, K., IG66. Second Roport from the Biuefin Tuna Working Group. On the Developnent of the Bluefin Tune Fisheries from I950 to 1964 and furtner Observations on Size Composition of Binefin Thna Catches. Stat. News Letters, No. 26:I-34, Cons.int. Enpior. Mer.

HATRE, J., LOZAITO, F., RODRIGUEZ-RODA, J., and TIETS, E. i963. Third Reporit from the Biuefin Tuna Forking Group. Observations on the Size Composition of Bluefin Tuna Catches from I965-I966. Stat. Neus Letters, No. 38:1-27, Cons.int。Rkpior.Mer.

HAMPR, Je, MAURIN, Go, RODRIGUHZ-RODA, Jo, and TIEIS, K_{0}, I97I. Reporit of the Bluefin Tuna Working Group. Observations on the Size Composition of Bluefin Tuna Catches Irom 1967 to 1969. Cons.int. Explor.Mer, Coop.Res.Rep., Ser.A, IJo.23:1-49.

Tabie I. Canadian landings of bluefin tuna from the Ationtic Ocean 1962-1970\%。
(Hominal catch (Iive weight), thousand metric tons).

Year	Landings
1962	0.2
1963	0.7
1964	1.5
1965	0.7
1966	0.2
1967	0.3
1968	0.1
1969	0.3
1970	1.3

*)
Does not include catcies by sport fishermen. but may include small quentities of other species (yellowfin and bigeye) caubht and landed by long-Iine fishermen.

Tabie 3. Size composition of Canadian biuefin tuna catches by sport fishermen off the east coast of Newfoundiand by smoothed weight frequency (per mille)

Weight Class (kg)	I968	I969	1970
185	1	-	-
190	2	-	-
195	8	3	-
200	17	9	-
205	23	15	6
210	22	17	14
215	25	18	$\underline{5}$
220	40	24	IO
225	55	27	13
230	60	29	26
235	51	30	42
240	49	39	55
245	68	49	65
250	83	46	65
255	72	49	53
260	51	50	46
265	58	52	55
270	72	64	71
275	58	56	73
280	39	39	71
285	31	46	61
290	29	63	48
295	21	64	42
300	14	50	30
305	13	41	26
310	9	30	23
315	5	21	17
320	4	23	17
325	3	I8	15
330	5	9	10
335	8	5	8
340	4	5	6
345	-	4	6
350	-	1	7
355	-	-	4
360	-	1	-
365	-	2	-
370	-	I	-
	I 000	I 000	1000
$\mathrm{n}=$	273	165	I3I

WB. Weight class 190 includes fish from 190 to 194 kg (Iive weight).

Table 4o Length composition of small bivefin tuna taiken off tine US east coast in 1970. Fork lengtins (aliper) by 5 cm classes (smoothed).

Length	JuI. 8 - Aug. 14	Capture Period JuI. 12 - Aug. 24	Sept. 3 - 13	Totor
40^{x})	7	8	\cdots	5
4.5	73	128	1	67
50	150	276	3	143
55	111	201	5	106
60	36	49	3	29
65	68	4.2	I	37
70	168	100	8	92
75	172	90	60	108
80	75	33	110	73
85	31	6	78	39
90	36	15	126	58
95	20	25	274	106
100	4	16	248	89
105	-	5	80	29
IIO	1	I	3	I
115	4	1	-	2
120	12	3	-	5
125	17	I	-	6
130	11	-	-	4
135	3	-	-	I
140	1	-	-	-
	1000	I 000	1000	I 000
$\mathrm{n}=$	900	200	398	I 498

x) Length class 40 incivies fish from 400 to 449 mm .

Tabie 5. Bluefin tuna catcines at Sto Jean-domur (France) in IS70 in kg (data given by Cuoperative Maxitime Itsasokoa).

Date	Tutai Veight	
	Fish below 30 kg	Tish above 30 kg
5 Hoy - III Hoy	3573	-
12 Jun. - 18 Jun.	40865.5	-
19 Jun. - $25 \mathrm{Jun}$.	40227	-
26.Jun. - 2 Jui.	22966.5	-
3 Juie - 9 Juis.	4.8340 .5	-
$10 \mathrm{JuI} .-16 \mathrm{JuI}$.	33692	-
17 Jui. - 23 Jui.	15416.5	-
24 JuI - 30 JuI 。	85063.5	21315
31 Jui. - 6 Aug.	4877	12994
7 Aug. - 12 Aug.	72146	22293
13 Auge - 20 Aug.	87819	78867
21 Aus. - 27 Aug.	24. 162	7342
28 Aug. - 3 Sep .	23956.5	5628
4 Sep. - 10 Scp.	23897	10 IgI
Is Sep. - 24.5 Sep .	24.6	-
25 Sep. - 1 Oct.	3938	-
2 0ct. - 800 ct.	$2 \div 93$	-
9 Oct. - 15 Oct.	640	-
TotaI	573515	758626

Table 6. Voigint distribution in \% (smoothed) of 71 bIuefin twan caught in a Sicilian madrague at Bonagia on May 27. I970. The weight groups refer to ungutted fish (kg).

Weight Group	$\%$
200	3
205	10
210	14
215	14
220	10
225	14
230	21
235	18
240	21
245	21
250	10
255	14
260	25
265	35
270	4.2
275	35
280	32
285	46
290	46
295	35
300	67
305	89
310	64
315	52
320	39
325	33
330	44
335	22
34.0	3
345	10
350	10
355	11
360	IA
365	7
370	-
375	3
380	7
385	3
390	-
395	-
400	3
405	II
410	14
415	II
420	4
425	3
4.30	7
435	3
	1000
$\mathrm{n}=$	71

Tabie 7: Length distribution (forit Iength) in yo (smoothed) of 54 bluesin tuna caught in a Sicilian madrague at Formica in June I970 (by cailiper).

Lengtin Group (cm)	\%
130	5
135	10
140	5
145	5
150	28
155	50
160	50
I 65	65
170	51
175	37
180	51
185	69
190	65
195	51
200	4.6
205	37
210	19
215	14.
220	28
225	33
230	28
235	4.2
240	53
24.5	22
250	14
255	28
260	37
265	23
270	5
275	-
280	-
285	6
290	8
295	5
	I 000
$\mathrm{n}=$	54

- 10 -

Table 8. Size composition of Norvegian tuna catches south of $62^{\circ} \mathrm{N}$ by smoothed weight frequency (per milie) in 1970 (kg)

Group Mean		Week Numbers						Totar
71)	$\mathrm{m}^{2)}$	31	32	33	34.	35	37	
162	208	-	4	-	-	1	-	I
167	215	-	7	-	-	2	-	1
172	221	-	4	-	-	I	-	I
177	228	-	7	-	-	-	-	1
182	234	25	17	2	-	-	-	2
187	24.1	100	14	4	-	-	-	3
I92	24.7	125	IO	6	1	1	5	4
i97	253	75	17	15	5	5	10	9
202	260	50	31	25	14	13	5	17
207	266	50	62	30	23	23	-	26
212	273	50	86	36	25	27	-	31
217	279	50	89	34	32	24	10	33
222	286	75	86	47	42	27	20	40
227	292	100	65	79	44	43	10	50
232	298	100	41	94	4	57	10	55
237	305	75	44	92	50	47	25	54
24.2	311	25	61	83	67	47	20	59
247	318	-	58	74.	87	71	10	71
252	324	25	58	64.	84	78	30	72
257	331	50	65	51	77	75	60	69
262	337	25	48	49	80	82	65	71
267	343		38	51	74	85	75	70
272	350	-	31	49	60	70	95	61
277	356	-	21	44	48	49	85	47
282	363	-	21	29	36	4 I	70	37
287	369	-	14	15	28	33	70	29
292	376	-	4	8	24	20	75	21
257	382	-	-	2	19	19	70	17
302	383	-	-	2	12	22	40	15
307	395	-	-	6	9	18	30	12
312	401	-	-	6	7	13	40	10
317	4.08	-	-	2	4	9	25	6
322	414.	-	-	-	1	3	15	2
327	4.20	-	-	2	1	-	20	2
332	427	-	-	4	2	-	10	2
337	433	-	-	2	1	-	-	I
342	440	-	-	-	-	-	-	-
347	446	-	-	-	-	-	-	-
352	4.53	-	-	-	-	-	-	-
357	459	-	-	-	-	-	-	-
362	465	-	-	-	-	-	-	-
367	472	-	-	-	-	-	-	-
372	478	-	-	-	-	-	-	-
377	485	-	-	-	-	1	-	-
382	491	-	-	-	-	2	-	I
387	498	-	-	-	-	1	-	-
$\mathrm{n}=$		10	73	133	251	285	50	812

Table in. Biuofin tuna cotches from the south coest of Portugai by modrogues in

Montins1970	Mumber of individuals				TotaI	
	Atón 90 kg and more	$\begin{aligned} & \text { Atuontos } \\ & 50-89 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & \text { Albacores } \\ & 30-49 \mathrm{~kg} \end{aligned}$	Cachorretes and Cachorretitas below 30 kg	Mumor of individuais	$\begin{gathered} \text { Woight } \\ \text { wes } \end{gathered}$
May	I	-	-	I	2	383
June	13	I	-	-	$1 i_{r}$	I 988
July	83	5	-	34	122	12605
August	24.	-	-	330	354	4871
Total	221	6	-	364	4.92	29847

Tainle 12. Spanish biuefin tunc catches (by number of fish); (the second figure (+) refers to fish smailer than 50 kg) at Barbate, Sancti-Petri, Tariica and La
Iinea by weeks in 1970. (Podrigues-Roda, I970).
($D=$ pre-spawning fish; $I_{i}=$ Post-sparming fish) 。

Week Thmber	Time	Number	of fisin an	spaming	tion	Totas
		Barbate	Sancti Petri	Tarifa	La Linea	
17	If Apro- 25 Apr.	-	-	30 D	-	30 D
18	26 Apro- 2 Mas	-	-	-	-	-
19	3 May - 9 May	$142+2 \mathrm{D}$	-	21 D	-	$163+2 \mathrm{D}$
20	IO May - 16 Hay	972 D	34 Cl D	147 D	-	I 4600 D
2 I	17 Tay - 23 Hay	$280+2 \mathrm{D}$	83 D	2 D	-	$365+2 \mathrm{D}$
22	24 Hay - 30 Hay	94 D	404+2 D	-	-	$498+2 \mathrm{D}$
23	31. May - 6 Jun .	152 D	$530+\mathrm{I}$	273 D	-	$955+1$ D
24	7 Juna- 13 Juano	277 D	197 D	146 D	-	620 D
25	14 Jun.- 20 Jun.	63 D	I+1 D	6 D	-	$70+1$ D
26	21 Juno- 27 Jun.	-	-	-	-	-
27	26 Juno- 4 Jui.	$50+3 \mathrm{D}$	-	-	-	$50+3 \mathrm{D}$
28	5 Juz - II Jui.	19 I D+R	-	-	35 R	226 D+R
29	$12 \mathrm{JuI}-.18 \mathrm{Jui}$.	447 m	-	-	136 R	585 R
30	I9 Jui.- 25 Juil.	$483+1 \mathrm{~h}$	-	-	37 R	$520+1$ R
31	26 Jun.- I Aug.	I $835+1 \mathrm{R}$	-	-	68 R	I $923+\mathrm{I}$ R
32	2 Aug. - 8 Aug.	312 R	-	-	-	312 R
33	9 Augo - 15 Aug.	73 R	-	-	162 R	$235+\mathrm{I}$ R
34.	16 Avg- 22 Aus.	158 R	-	-	43 R	206 R
35	23 Aug. - 29 Aug.	21 R	-	-	-	21 R
36	30 Aus. - 5 Sep.	-	-	-	15 R	15 R
7	$6 \mathrm{sep} .-\mathrm{i} 2 \mathrm{Sep}$ 。	-	-	-	-	-
38	13 Sep. - 19 Sep.	-	-	-	-	-
39	20 Sep.- 26 Sepe	-	-	-	4 R	4 R
	Total Inumber	$\begin{aligned} & 5550+9 \\ & 5559 \end{aligned}$	$\begin{aligned} & 1556+4 \\ & =i 560 \end{aligned}$	625	$\begin{aligned} & 527+I \\ = & 528 \end{aligned}$	$\begin{aligned} & 8258+14 \\ & =8272 \end{aligned}$
	Toter kgs	1007730	308812	122010	74470	I 513022

Tabie I3. Weekiy size composition in \% (smoothed) of Spanish madrague catcines at Barbate in 1970. (Rodriguez-Roda, i971).

$$
(D=\text { pre-spaming; } R=\text { post-spaming fisis })
$$

Lengit Group	Week Mumber											TotaI
	$\begin{gathered} \text { I9 } \\ D \end{gathered}$	$\begin{array}{r} 20 \\ \mathrm{D} \\ \hline \end{array}$	$\begin{gathered} 2 I \\ D \end{gathered}$	$\begin{array}{r} 22 \\ D \\ \hline \end{array}$	$\begin{array}{r} 23 \\ D \\ \hline \end{array}$	$\begin{array}{r} 24 \\ D \\ \hline \end{array}$	$\begin{array}{r} 27 \\ \mathrm{~K} \\ \hline \end{array}$	$\begin{gathered} 28 \\ \mathrm{R} \end{gathered}$	$\begin{gathered} 29 \\ R \end{gathered}$	31 1	$\begin{array}{r}32 \\ \mathrm{R} \\ \hline\end{array}$	
125-129.9	-	2	-	-	-	-	-	-	-	-	-	0
130-134.9	-	4	-	3	-	-	-	-	-	-	-	0
135-139.9	-	2	-	10	-	-	-	-	-	-	-	I
140-144.9	-	-	-	IO	-	-	-	-	-	-	-	0
14.5-149.9	-	-	2	3	9	-	-	-	-	-	-	I
150-154.9	-	-	3	19	24	-	-	-	-	-	2	2
155-159.9	$-$	-	3	45	28	-	-	-	-	2	5	5
160-164.9	-	-	7	43	47	2	-	-	-	7	7	7
155-169.9	_	-	II	54	66	9	-	3	-	8	16	11
170-174.9	-	-	9	55	67	16	-	10	4	\bigcirc	28	14
175-179.9	-	-	9	29	61	25	-	13	11	14.	25	16
180-184.9	4	2	21	22	66	52	6	37	24	20	32	25
7.85-189.9	9	7	55	45	66	86	12	61	44	32	69	45
$190-194.9$	9	1 I	99	64	66	101	I9	84.	77	67	92	69
195-199.9	$\underline{5}$	9	122	83	75	115	75	129	123	104	101	95
200-204.9	40	19	116	99	85	± 26	162	174	243	112	108	170
205-209.9	66	50	107	96	85	117	169	168	II8	105	94	II5
210-214.9	66	70	90	80	80	95	113	105	89	91	76	87
215-219.9	79	59	63	50	57	61	100	58	70	38.	55	68
220-224.9	97	4.6	53	39	24.	31	I06	42	59	75	32	55
225-229.9	33	59	58	32	19	34	94	21	58	67	20	51
230-234.9	70	9.	63	32	28	50	81	24.	57	63	39	56
235-235.9	88	106	44	26	19	38	50	32	52	57	43	52
240-24.4.9	IIO	IOG	I9	13	10	18	13	13	36	34	32	38
245-24.9.9	96	120	14	10	9	13	-	3	12	12	23	26
250-254.9	61	I06	12	10	10	9	-	5	5	8	25	27
255-259.9	4.4	65	9	6	5	2	-	5	7	II	30	17
260-264.9	35	35	5	6	-	-	-	5	5	6	23	11
265-26\%.9	13	19	4	3	-	-	-	3	4.	5	9	6
270-274.9	4	7	2	-	-	-	-	-	2	2	4	2
275-279.9	9	2	-	-	-	-	-	-	-	-	2	I
30-284.9	4	-	-	-	-	-	-	-	-	-	-	0
$\mathrm{n}=$	57	135	142	78	53	III	40	95	243	260	14I	I 355

TabIe 14. Weekiy size composition of US bluerin tuna purse seine catches in \% (smothed) (fork lengtin by caliper) for 1970.
(Weeis 26 sample which has been taken during a sport
fishing toumament has been converted from Ibs into cm).

Iength cII	Week of Year									Total
	26	28	30	32	33	34	35	36	38	
45	4	-	1	1	-	-	-	-	-	3
50	164	I	11	21	I	-	-	-	-	18
55	202	I	29	45	2	-	I	-	-	29
60	84.	2	28	29	2	-	I	I	-	17
65	35	24	23	9	1	\pm	1	2	-	I2
70	131	118	94	33	4	3	4	2	-	55
75	175	179	208	67	17	18	15	6	5	103
80	79	104	198	65	32	50	34.	18	55	89
85	19	57	96	59	35	63	52	33	118	59
90	31	109	70	122	107	69	71	68		85
95	24	I10	107	185	300	193	194	I66	127	155
100	6	46	93	132	343	285	331	234	238	172
105	I	8	36	43	143	157	234.	153	24.6	9 I
IIO	-	8	5	20	9	21	57	4 I	96	27
II5	1	27	I	33	-	I	2	8	4	9
120	2	57	-	42	-	4.	-	25	-	16
125	I	68	-	40	-	15	-	58	-	20
130	1	43	-	26	-	27	-	68	-	17
135	-	16	-	13	-	26	-	53	-	10
140	-	8	-	6	-	16	-	36	-	6
145	-	7	-	6	1	10	1	19	-	4
I50	-	4.	-	2	2	9	1	6	-	3
I55	-	I	-	1	I	9	1	2	-	2
160	-	-	-	1	-	8	-	I	-	I
165	-	-	-	-	-	6	-	-	-	\pm
170	-	-	-	-	-	5	-	-	-	1
175	-	-	-	-	-	2	-	-	-	1
180	-	-	-	-	-	1	-	-	-	-
185	-	I	-	-	-	$\underline{1}$	=	-	z	Z
155	-	王	-	-	-	-	-	-	-	-
	1000	1000	1000	I 000	1000	I 000	I 000	I 000	I 000	1000
$\mathrm{n}=$	657	I 260	1718	I 353	798	962	I 188	397	193	8 526

Table 15. Age composition, catch and effort, and tag return data for young biuefin twan in coastal vaters between Cape Hatteras, Horth Carolina, and Cape Linn, Massachusetts, by years.

Years	I962	1963	1964	1965	1966	1967	1968	IG69	1970
Ages									
I	1	10	17	17	70	9	2	I	7
II	6	IO	ig	55	25	60	63	40	29
IJI	7	27	27	16	5	15	34	47	55
IV	61.	21	13	1	0	II	1	8	3
V	20	20	15	8	0	5	0	4	5
VI	1	9	9	1	0	0	0	0	I
VII	I	I	1	2	0	0	0	-	-
VIII	\underline{I}	I	0	I	0	0	0	0	-
I	-	-	0	0	0	0	0	0	-
X	-	-	0	0	0	0	0	0	0
>	-	-	0	0	0	0	0	0	0
$\mathrm{n}=$	3044	5586	2318	1079	3734	I 4.66	946	816	6 967
Avage	4.1	3.7	3.2	2.4	I. 4	2.4	2.3	2.7	2.7
FISHERY STATISTICS									
Tions caught	3379	5933	6165	2975	875	2556	670	I 728	5000
Tons/boat doy	I0.0	9.5	6.8	7.3	4.7	13.7	7.9	18.2	17.8
No. Oí boats	7	18	21	13	6	11	5	4	8
Finonths at lorge									
$0-5.9$	0	24.1	20.4	9.0	9.6	14.2	32.4	2.5	10.5
6.0-17.9	I. 3	5.2	6.9	6.7	2.0	14.0	8.1	6.2	24.8
18.0-29.9	6.7	2.0	0	0	0	1. 9	I.I	2.1	2.3
30.0-41.9	0	0	I. 3	0	0	0	0	0.1	1.6
$\begin{gathered} \text { Months at } \\ \text { Iarge } \\ \hline \end{gathered}$									
0-5.9	0	4.0	3.3	3.0	11.0	5.5	40.2	1.5	2.1
6.0-17.9	0.4	0.9	1.1	2.2	2.3	5.4	12.1	3.6	4.9
18.0-29.9	2.2	0.3	0	0	0	0.7	I. 7	1.3	0.5
30.0-42.9	0	0	0.2	0	0	0	0	0.1	0.3

Table i6. Releases and returns for giant bluefin tuna (over 120 kg) tabged off the Bahomas by yoans of release, months at iarge, and arear) of recopture.

Year	Releases	Returns Months at iarge					TOTAL
		0.5 .9	6.0-17.9	18.0-29.9	30.0-41.9	42.0-53.9	
1954	21	0	0	0	0	0	0
1955	14	0	0	0	0	0	0
$\underline{1956}$	41	0	0	0	0	0	0
1957	0	0	0	0	0	0	0
I958	0	0	0	0	0	0	0
1959	25	0	0	0	0	0	0
I960	15	0	0	2π	0	0	2 T
1961	34	2 N	0	0	0	0	2 N
1962	45	I 15	0	0	0	0	I 17
1963	147	0	0	1 B	0	0	1 B
I964,	41	0	0	0	0	0	0
I965	55	0	0	0	0	0	0
1966	105	0	0	0	0	1 A	14
1967	82	IN	0	0	0	-	IH
I968	57	0	0	0	-	-	0
IG69	47	0	0	-	-	-	0
1970	102	1 A	-	-	-	--	1 A

x)

Areas: A - north-eastern Horth Americe
B-Brazil
IT - Homay.

- 17 -

Tabie 17. Releases of young biuefin tuna in coastal waters between Cape Hatteras, North Carolina, and Cape Ann, Massachusetts, and returns in percent of releases, by years, region of recapture, and method of initial capture ($\mathrm{S}=$ sport; $\mathrm{C}=$ purse seine).

Reieases		Returns from Release Area						Returns from Bay of Biscay						Grand totay
Year	ITo.	Years at large						Years at large						
		0	I	2	3	4	Total	I	2	3	4	5	Total	
2954 S	169	0.6	0	0	0	0	0.6	0	0	0	0	1.2	1. 2	2. 0
I955 S	215	0	0	0	0	0	0	0	0	0	0	0	0	0
I956 S	58	0	0	0	0	0	0	0	0	0	0	0	0	0
I957 S	34	0	0	2.9	0	0	2.9	0	0	0	0	0	0	2.9
I958 S	38	0	0	0	0	0	0	0	0	0	0	0	0	0
1959 S	25	0	0	0	0	0	0	0	0	0	0	0	0	0
1960 :	15	0	0	6.7	0	0	6.7	0	0	0	0	0	0	6.7
1961 C	21	0	0	0	0	0	0	0	0	0	0	0	0	0
S	129	0	1.6	2.3	1.6	0	5.4	0	0	0	0	0	0	5.4
1962 C	25	0	0	0	0	0	0	0	0	0	0	0	0	0
S	52	0	7.7	0	0	0	7.7	0	0	0	0	0	0	7.7
1963 S	29	24.1	6.9	0	0	0	31.0	0	0	0	0	0	0	32.0
1964.	455	21.4	6.8	0	0	0	28.2	0	0	0	0	0	0	28.2
s	10	20.0	10.0	0	0	0	30.0	0	0	0	0	0	0	30.0
I965 c	1629	10.0	2.5	1.7	0	0	124.2	0.7	0.1	0.1	0	0	0.8	15.0
S	43	2.3	16.3	7.0	0	0	25.6	4.7	9.3	0	0	0	14.0	39.5
1966 c	3772	13.1	14.0	1.2	0.2	0.1	28.5	0.3	0.1	0	<0.1	-	0.4	29.0
S	187	19.8	21.4	2.1	I. 1	0	4.5	0.5	0	0	0	-	0.5	45.0
I967 C	614	15.6	9.4	2.6	1.3	-	28.6	0.2	0.2	0	-	-	0.3	29.2
S	14	0	7.1	0	14.3	-	21.4.	0	0	0	-	-	0	2I. ${ }^{\text {c }}$
1968 C	219	37.9	6.4	2.7	-	-	47.0	0	0	-	-	-	0	47.0
S	41	12.2	12.2	0	-	-	27.4.	0	0	-	-	-	0	24.4
I969 C	92	7.6	7.6	-	-	-	I5.2	0	-	-	-	-	0	15.2
S	237	2.1	29.2	-	-	-	31.2	0	-	-	-	-	0	31.2
I970 ${ }^{\text {x }}$ C	32	0	-	-	-	-	0	-	-	-	-	-	0	0
S	422	10.4	-	-	-	-	10.4	-	-	-	-	-	-	10.4

x) 1970 rcieases and returns received through Octobor 9.

Tenje 18. Bluefin tuna Iengtin frequency data (smoothed), measurcd by the Inter-American Tropical Thana Commission at Peerto Rico.

Length (cill)	$\%$
50	60
55	180
60	180
65	60
70	-
75	8
80	17
85	18
90	30
95	122
100	197
105	133
10	29

USA	$=\cdots \cdots$		ITALY $=\cdots$
TURKEY $=\cdots$.		FRANCE $=\cdots$	
NORWAY $=\cdots$		CANADA $=\cdots$	
SPA IN	$=\cdots$		PUERTO $=\cdots$
		RICO $=\cdots$	

Figure 1. Size composition of Bluefin Tuna catches made in USA, Turkey, Norway, Spain, Italy, France, Canada and Puerto Rico.

Figure 2. Weight composition of Bluefin Thna caiches made in Canada, Norway and Italy.

