International Council for the Exploration of the Sea
C.M.1970/J:2

Pelagic Fish (Southern) Committee

Report from the Bluefin Tuna Working Group
 Observations on the Size Composition of Bluefin Tuna

Catches from 1969
by
J. Hamre, C. Maurin, J. Rodriguez-Roda and K. Tiews

I. Introduction

Reference is made to the previous reports of the Bluefin Tuna Working Group (Statistical News Letters, Nos. 20, 26 and 38 , as well as to C.M.1968, Doc. J:3 and C.M.1969, Doc. J:2). The members of the Working Group have continued their work by correspondance and with other tuna research workers in the region. In the following the data obtained for the fishing season 1969 are presented.
II. Material

On the occasion of the First Session of the International Commission for the Conservation of Atlantic Tunas FAO has published as contribution Mo. I9 of the Bulletin of Fishery Statistics a volume on the catch statistics of Atlantic tuna fisheries, which includes a table on the catches of bluefin tuna in the Atiantic Ocean and adjacent seas by major fishing areas and by countries and this is given as Table 1 of this report (p.5).

Reports on the catches and catch composition of biuefin tuna were submitted by the following countries: Denmark (Table 2), France (Tables 3-4), Italy (Tables 5-6), Norway (Tables 7-9), Portugal (Table 10), Spain (Tables 11-12) and USA (Table 13).

Dr. 0. Bagge reports that 14 of the 17 tuna landed in Skagen were caught by Danish fishermen, the rest by Swedish fishermen. All fish were caught by mid-water herring trawl.

Mrr. Duclerc from the Laboratoire de Sete, ISTPM, reports that a total of I 500 tons bluefin tuna were caught from JuIy I969 to Januaxy 1970 by the French purse-seine fishery in the Mediterranean. Most of the catches were made during October and November.

The Italian data were kindiy submitted by Dr. F. Li Greci (Table 5) and Dr. R. Sara (Table 6). The data in Table 5 are from trua caught during May to June 1969 in madragues stationed at Pinta Raisi and at San Cusumano (Bonagia), and those in Table 6 refer to tuna catches made in madragues at Scopello, Favignana and Formica.

The Norwegian tuna catches were in 1969 about the same as in 1968 , when they amounted to about 700 tons (live weight). Since no length/weight measurements were taken in 1969, the 1968 condition factor of $K=2.16$ was used to transform the collected weight data into length data. According to Dr. Rodriguez-Roda the Spanish madrague catches were in 1969 I 634 tons which is siightly better than in 1968 (I 138 tons).

Nir. Frank Mather III points out that the catch for I968 was 670 short tons of small bluefin tuna taken between Maryland and the south side of Cape Cod and 150 short tons of giant tuna made north of Cape Cod (Cape Cod Bay). In 1969 purse-seine catches of relatively small bluefin tuna increased again to 1728 short tons. There was no fishing of giant tuna in Cape Cod Bay this year, because the two small seiners which were usually based there had been sold to fishermen in other areas. He also reports that another bluefin tuna tag from the Boy of Biscay was received. This fish was released off New Jersey on 7 JvIy , I967, and recaptured by a French fisherman on 3 July, Ig69. One fish released the day before in the same locality was recaptured in the Bay of Biscay in October 1968. These are the only transatlantic migrations recorded for small bluefin tuna reieased since 1966. Aithough the number of releases has declined since then, it appears that there was a definite high point of transatlantic migrations in the years 1965-66.

III. Bluefin Tuna Catches

As indicated in Table 1 , the total Atlantic bluefin tuna catch has steadily declined since I962. In 1968 it was 25500 tons or half the catch of 1962. While catches in the north-west Atlantic remained more or less unchenged, the most marked decline occurred in the northeast Atlantic, where catches went down from 23900 tons in 1962 to 4400 tons in 1968. The main reduction in catch is observed in the Horwegian, Spanish and Portuguese fisheries.

The bluefin tuna catches in the Mediterranean and the Biack Sea have remained at the same level as in previous years. This is another indication that the Meditermanean has a more or less independent bluefin tuna population.

IV. Comparison of the Catch-Composition Data colleoted in the different Countries

1. Spanish with Norwegian Catches

The size composition of the Noxwegian tuna catches has remained more or less unchanged over the last five years. In the report of the Working Group for 1968 it was assumed that the majority of these fish belonged to the rich year-class 1952. The fact that the size has not markedly increased over the last years was explained with the assumption that the ultimate length of the fish had been reached. It is, however, reasonable to believe that a certain recruitment of younger fish to the Morwegian tuna stock has also token piace during the last yeors. A similar phenomenon has been reported by Tiews (IG64) for the last years of the German tuna fishery in the North Sea which terminated in IG62.

In the Spanish catches, fish of a length corresponding to the year-class 1958 dominated again. A second mode of the length composition curve can presumably be attributed to fish of the year-class 196I wich was detected in the 1967 catches as a distinct mode. Some smaII tuna (below 90 cm) were also caught in the Spanish madragues, this year probably belonging to the year-classes 1968 and 1967.

2. Italion, Spanish and Norwegian Catches

In former years the length composition of Italian catches did not taily with those of the Atlantic catches. In IG69, however, the two largest modes of the Italian curve tally widely with those of the Spanish curves, but the data are too scarce to be conciusive. A larger sampling of the Itailian catches will be needed.

3. US and French Tuna Catches

In the US purse-seine catches fish of age-group I were absent, as in the two previous years. Catches were composed of yearclasses 1967 and 1966, as well as 1965. Mr. Mather states that the average size of fish of age-group II was definitely iarger in recent years then earlier.

The size composition of the French catches from the Meditermanean do not seem to tally with any of the others. The smailest fish may belong to the year-class 1967 or 1966 .

V. Summary

I. There is an alarmingly high rate of decline of Atlantic biuefin tune catches from 1962-68. The decline was largest in the north-east Atlantic, where catches went down from 23900 tons in 1962 to 4400 tons in 1968. Only the Mediterranean catohes remained more or less unchanged, indicating that the Mediterramean bluefin tuna population constitutes a more or less independent stock.
2. The size compositions of bluefin tuna catches collected in 1969 show that the fisheries of the various countries under observation have taken place on different size groups of fish.

References

FAO 1969	"Report of the Working Party on Mediterranean Scombroid resources". FAC/GFCM 10/69/1I. Pp. 10
FAO 1968	"Atlantic tuna fisheries: catch statistics". Bull.Fish.Statistics, 19. pp. 30
$\begin{aligned} & \text { Hamre, J. } 1964 \\ & \text { \& Tiews, K. } \end{aligned}$	"Report from the Bluefin Tuna Working Group. On the SizeComposition of Tuna catches from 1956-62". Stat.News Letters, 20:1-43, Cons. perm.int.Explor. Mer.
```Hamre, J., 1966 Lozano, F., Rodriguez--Roda;J. & Tiews, K.```	"Second report from the Bluefin Tuna Tuna Working Group. On the develop.. ment of the bluefin tuna fisheries from 1950-64 and further observations on the size composition of bluefin tuna catches". Stat. News Letters, 26:1-34. Cons. perm.int.Explor.Mer.
```Hamre, J., 1968 Lozano, F. Rodriguez--Roda, J. & Tiews,K.```	"3rd Report.from the Bluefin Tana Working Group. -- Observations on the Size--Composition of Bluefin Tuna Catches from 1965-66\%. Stat. News Letters, 38:1-27. Cons.int. Explor. Mer.
```Hamre, J.: }196 Mawinn, C., Rodriguez-Roda,J. & Tiews, K.```	"Report from the Bluefin Tuna Working Group. - Observations on the SizeComposition of Bluefin Tuna Catches from 1967". ICES, C.M.1968/J:3, 17 Pp. (mimeo.)
```Hamre, J., 1 9 6 9 Maurin, C., Rodriguez Roda,J. & Tiews, K.```	RReport from the Bluefin Tuna Wonking Group. - Observations on the SizeComposition of Bluefin Tuna Catches from 1968". ICES, C.M.1969/J:2, 16 PP. (mimeo.)
Rodriguez--Roda, J. 1970	"El atún, Thunnus thynnus (L_{0}) del sur de España en la campaña almadrabera del año 1969 y su relación con la temperatura y transparencia del agua del mari: Investigación Pesquera, 34(2).
Tiews, K. 1964	"Der Thunbestand (Thunnus thymus (I.)) in der Nordsee, seine Vanderungen, seine transatlantischen Beziehungen und seina Nutzung durch die deutsche Fischerei". . Arch.Fischwiss., XIV(3):105-148.

TebIe 1. Bluefin tuna catches in the Atlantic Ocean and adjacent seas, by major fishing areas and by countries.
lominal catch (live weight), thousand metric tons.

Fishing Area, Country	1962	1963	1964	1965	1966	1967	I968	1959
GRAID TOTAL	50.6	44.8	42.6	36.7	26.8	29.8	25.5	
Noxth-west Atlantic	3.4	4.7	2.7	2.2	1.4	2.3	4.0	
Canada	0.2	0.7	1.5	0.7	0.2	0.3	3.4	
Japan	-	0.0	0.1	0.3	0.1	0.0	\ldots	
Norway		-	0.1	0.0	-	\ldots	。	
United States	3.2	4.0	1.0	1.2	1.1	2.0	0.6	
North-east Atlantic	23.9	11.5	8.2	9.9	7.9	5.7	4.4	
Denmark	0.2	0.0	0.1	0.0	0.0	0.0	0.0	
France	1.5	1.0	0.8	1. 2	2.2	1.2	0.7	
Germany, Fed.Rep.	0.2	0.0	0.0	0.0	0.0	-	0.0	
Jepan	-	-	0.0	0.0	0.0	0.0	0.	
Horway	8.2	0.2	1.4	2.5	1.0	1.9	0.7	
Portugal	5.8	6.7	1.0	a)...	0.4	0.2	\cdots	
Spain	8.0	3.6	4.9	6.2	4.3	2.4	2.8	
Sweden	0.0	0.0	0.0	0.0	...	
Mediterranean and								
Black Sea	A) 3.4	A) 4.4	5.0	4.1	4.4	8.4	6.4	
Algeria	...	0.0	0.0	0.0	0.1	0.2	0.1	
France	0.2	0.4	1.2	0.5	1.2	1.2	1.2	
Greece	-..	...	0.6	0.7	0.5	0.6	...	
Italy	2.1	2.4	2.5	2.1	1.7	4.0	3.3	
Malta	0.0	0.1	0.1	0.1	0.1	0.1	0.1	
Morocco	0.0	0.0	0.0	-	-	-	-	
Spain	0.3	0.6	0.3	0.5	0.5	0.5	0.6	
Turikey	0.2	0.1	0.0	0.1	0.1	1.5	0.3	
Yugoslavia	0.1	0.3	0.3	0.1	0.2	0.3	0.2	
Hestern Central AtIantic	0.0	0.9	4.5	6.7	2.9	2.8	A) 1.6	
China (Taiwan)	-	-	-	-	-	0.0	0.0	
Cuba b)	-	\cdots	\cdots	0.1	0.5	2.4	I. 2	
Grenada	0.0	0.0	0.0	0.0	0.0	0.0	...	
Japan c)	0.0	0.4	2.6	5.7	2.4	0.4	\cdots	
United States	-	0.5	1.9	0.9	0.0	-	-	
Venezuela d)	\ldots	\ldots	...	\cdots	\ldots	\ldots	\ldots	
Eastern Centrai	13.3	14.3	$\underline{10.8}$	A) 9.2	8.3	9.4	A) 7.5	
Angola	-••	\cdots	\cdots	0.0	\cdots	\cdots	\cdots	
China (Taiwan)	-	-	-	...	0.0	0.0	0.0	
Equatorial Guinea	0.1	\ldots	\cdots	\cdots	\cdots	\because	\because	
Ginana e)		-••	...	-..	0.2	0.5	I.I	
Japan	4.2	1.9	0.4	0.2	0.0	0.1	\cdots	
Morocco	1.6	3.9	4.4	...	3.5	3.5	1.1	
Portugal	2.5	2.0	2.6	a)2.1	2.2	2.0	-..	
Spain	4.9	6.5	3.4	2.9	2.4	3.3	3.2	

a) Quantities caught in north-east Atiantic included with eastern central Atlantic.
b) 1963-64, "Bluefin twna" included with "Yellowfin tuna".
c) 1966-67, includes quantities of "Young tuna".
d) "Bluefin tuna" included with "Yellowfin tuna".
e) 1962-65, included under "Various tuna-like fishes" (Table C-9).

TabIe I (ctd.)

Fishing Area, Country	1962	1963	1964	1965	1966	I967	1968	1969
$\frac{\text { South-west }}{\text { Atlantic }}$	$\underline{2.0}$	6.0	5.9	2.1	0.3	O.I	0.2	
Argentina	-	0.3	0.2	0.1	0.1	0.1	0.0	
	\ldots	...	\cdots	\bigcirc	\cdots	\cdots		
China (Taiwan)	-	-	-	-	\cdots	...	0.0	
Cuba	\because	\cdots	\bigcirc	\cdots	\cdots	0.0	0.2	
Japan	2.0	5.7	5.7	2.0	0.2	0.0	...	
$\frac{\text { Soutin-east }}{\text { AtIantic }}$	4.6	3.0	5.5	2.5	1.6	1.I	1.4	
Angola	2.4	2.6	4.2	2.3	1.6	1.1	I. 3	
China (Taiwan) Japan	0.2	0.0	0.0	--2	0.0	0.0 0.0	0.1	
Spain	2.0	0.4	1.3	-	-	-	-	

f) "Bluefin tuna" included with "Albacore".

Table 2。 Weight distribution in $\%$ (smoothed) of 17 bluefin tuna caught in the Kattegat by Danish fishermen in 1969. The weight groups refer to gutted fish with gills (kg)。

Weight Group kg	\%
255	29
260	59
265	30
270	15
275	30
280	15
285	29
290	74
295	59
300	15
305	0
310	0
315	15
320	73
325	103
330	58
335	29
340	15
345	0
350	15
355	44
360	59
365	59
370	59
375	42
380	15
385	15
390	29
395	15
	1000

Table 3．Bluefin tuna catches at St。Jean－de－Iuz（France）in 1969 in kg （data given by Cooperative Maritime Itsasokoa）．

Date		Total Weight	
		Fish below 30 kg	Fish above 30 kg
22．V．	28．V．	9706	1082
29．V．	5．VI．	4654	－
$6 . \mathrm{VI}$ ．	12．VI．	19478.5	－
I3．VI．	19．VI。	48752	－
20．VI．	26．VI。	11334	－
27．VI．	3．VII．	32466.5	－
4．VIII．	10．VII．	24656	－
II．VII．	I7．VII．	18463	－
18．VII．	24．VII．	16708.5	21762
25．VII．	31．VII．	14 821．5	－
1．VIII．－	7．VIII．	83562	－${ }^{\text {－}}$
8．VIII．－	I2．VIII。	19964.5	21964
13．VIII．－	2I．VIII。	37142	25955
22．VIII．－－	28．VIII．	9861.5	－
29．VIII．－	4．IX．	2150.5	2113
5．IX．	II．IX。	19614	12113
I2．IX．	IB．IX．	15034	－
19．IX．	25．IX．	2892	－${ }^{-}$
26．IX．	2．X．	4121	6405
3． X 。	G． X ．	1782	1732
IO．${ }^{\text {K }}$	16．X．	4962	3227
I7．X	23．X	4056	8469
24． X ．	30．X．	3145.5	9117 812
7．XI。－	6．XI． 13．XI．	4255 387.5	8312 -
Total		413969.5	120138

Table 4．Size－composition in \％（smoothed）（fork length by cailiper） of French bluefin tuna catches from the Mediterranean Ianded at Sète in JuIy，September and October 1969．

Length，cm	\％
65	I
70	2
75	3
80	27
85	I53
90	273
95	196
100	63
105	23
110	19
115	18
120	23
125	36
130	37
135	26
140	15
145	15
150	13
155	7
160	3
165	3
170	5
175	6
180	5
185	5
190	6
195	5
200	3
210	？
215	1
225	1
230	0
240	1
	1000
	$n=903$

Table 5: Length distribution (fork Iength) in \% (smoothed) for Italian bluefin tuna catches at Sicilian madragues in I969 (by caliper).

Iength Interval (IF in cm $)$	Total
105	2
110	4
115	2
120	2
125	4
130	4
135	13
140	36
145	40
150	44
155	33
160	15
165	13
170	27
175	53
180	75
185	75
190	58
195	27
200	9
205	24
210	51
215	67
220	78
225	78
230	67
235	45
240	20
245	9
250	2
255	113
	000
$1=$	

Table 6o Weigth distribution in \% (smoothed) of 528 bluefin tona caugint in Sicilian madragues during May and June 1969. The weight groups refer to ungutted fish (kg).

Group	\%	Group	$\%$
20	0	245	17
25	0	250	18
30	0	255	17
35	1	260	17
40	6	265	19
45	9	270	I9
50	11	275	17
55	14	280	14
60	15	285	18
65	16	290	I9
70	19	295	18
75	16	300	16
80	11	305	19
85	11	310	23
90	12	315	23
95	12	320	17
100	11	325	14
105	15	330	17
110	19	335	18
115	21	340	15
120	24	345	12
125	23	350	13
130	16	355	17
135	11	360	17
140	9	365	11
145	8	370	9
150	7	375	13
155	6	380	17
160	5	385	15
165	4.	390	11
170	4	395	6
175	5	400	3
180	6	405	2
185	5	410	6
190	5	415	8
195	4	420	4
200	3	425	2
205	7	430	3
210	12	435	2
215	10	4.40	I
220	9		
225	14	495	7
230	17	500	2
235	17	505	3
240	16	510	I
			1000

Table 7. Size-composition of Norvegian tuna catches south of $62^{\circ} \mathbb{I}$ by smoothed weight frequency (per milie) in $1969(\mathrm{~kg})$ 。

$\operatorname{Group}_{\left(\mathrm{kg}_{\mathrm{g}}\right)} \text { Mean }$		Week Numbers				Total
W ${ }^{1}$	V	31	32	33	34	
152	196	1	-	-	2	-
157	202	1	1	-	5	1
162	208	2	1	1	2	I
167	215	2	1	2	-	2
172	221	3	4	1	2	2
177	228	6	4	2	7	4
$\underline{182}$	234	8	11	5	11	8
187	241	14	22	1 I	13	16
$\underline{792}$	247	29	27	22	15	24
197	253	45	31	33	20	34
202	260	54	42	39	28	43
207	266	59	45	43	41	48
212	273	62	48	54	54	54
217	279	66	62	67	56	67
222	286	77	75	70	48	72
287	292	74	78	66	47	71
232	298	67	75	68	50	70
237	305	69	73	67	54	69
24.2	311	65	69	57	76	64
247	318	58	60	55	95	60
252	324	53	51	52	80	56
257	331	43	45	55	47	48
262	337	37	39	50	39	42
267	343	28	33	46	43	37
272	350	18	31	37	39	31
217	356	17	28	28	32	25
282	363	13	19	18	24	18
28%	369	7	12	14	13	12
29^{2}	376	7	9	14	15	10
297	382	7	5	8	19	7
302	388	4	1	4	11	4
307	395	2	1	2	5	2
312	401	2	1	I	5	2
317	408	1	1	2	5	1
322	414	I	-	1	2	I
327	420	-	-	-	-	-
332	427	-	-	3	-	-
337	433	-	-	1	-	I
342	440	-	-	I	-	-
n		47.1	697	645	116	1929

Mable 8. Size-composition of Norwegian tuna catches north of $63^{\circ} \mathrm{N}$ by smoothed weight frequency (per mille) in 1969 (kg) 。

$\operatorname{Group}_{(\mathrm{kg})} \text { Mean }$		Weos 210.33
W:	W	
187	241	33
192	247	67
197	253	33
202	260	-
207	266	17
212	273	50
217	279	50
222	286	34
227	292	50
232	298	67
237	305	50
242	311	17
247	318	67
252	324	150
257	331	117
262	337	50
267	343	34
272	350	50
277	356	50
282	363	17
	n	15

Tabie 9. Calculated length data.
Length frequency distribution in per mille for Morwegian tuna catches in 1969 ($K=2.16$).

Iengtin Groups cm	Southern Area	
$210-214$	3	-
$215-219$	6	-
$220-224$	29	45
$225-229$	88	88
$230-234$	151	97
$235-239$	198	131
$240-244$	199	134
$245-249$	157	327
$250-254$	108	144
$255-259$	50	37
$260-264$	14	-
$265-269$	3	-
$270-274$	1	

Taile 10．Bluefin tuna catches from the south coast of Portugai by madragues in 1969，specified by weight groups（ kg ）．

Months	$\begin{aligned} & \text { Atuns } \\ & \$ 90 \mathrm{~kg} \end{aligned}$		$\begin{aligned} & \text { Atuarros } \\ & 50.89 \mathrm{~kg} \end{aligned}$		$\begin{aligned} & \text { Albacoras } \\ & 30-49 \mathrm{~kg} \end{aligned}$		Cachorretas$<30 \mathrm{~kg}$		TotaI	
	IT	kg	NT	kg	NT	kg	N	kg	IT	kg
June	9	1057	I	70	0	0	1	－＊）	II	1127
JuIy	982	181716	11	779	0	0	58	－	I 051	182495
August	732	138277	20	1367	4	112	2057	－	2813	139756
Total	1723	321050	32	2216	4	112	2116	－	3875	323378

＊）The weight of the greatest part of the Cachorretas caught was comprised between 3 and 6 kg 。

Table 1I．Spanish bluefin tuna catches（by number of fish）at Barbate， Sancti－Petri，Tarifa and La Linea by weeks in I969
（ $D=$ pre－spawning；$R=$ post－spawning fish）（Rodrisuez－Roda， 1970）．

Week No．	Time	Number of Fish and Spawning Condition				Totai
		Barbate	Sancti－ Petri	Tarifa	Ia Linea	
18	$27 . I V-3 . V$ ．	217 D	135 D	190 D		542 D
19	4．V．－IO．V．	3 D	39 D	3 D		45 D
20	II．V．－I7．V．	251 D	487 D	2 D		740 D
21	18．Vo－24．V．	295 D	212 D	3 D		510 D
22	25．V．－3I．V。	2256 D	606 D	296 D		3 I 58 D
23	I．VI． $7 . \mathrm{VI}$ 。	208 D	48 D	2 D		258 D
24	8．VI．－I4．VI．	346 D	154 D	88 D		588 D
25	15．VI．－2I．VI．	10 D	89 D	－		99 D
26	22．VI．－28．VI．	66 D	3 D	139 D		208 D
27	29．VI．－5．VII．	8 D	212 D			220 D
28	6．VII．－12．VII．	II R				17 R
29	I3．VII．－I9．VII．	326 R			95 R	421 R
30	20．VII．－26．VII．	773 R			17 R	790 R
31	27．VII．－2．VIII．	560 R			34 R	594 R
32	3．VIII．－9．VIII．	180 R			II R	191 R
33	10．VIII．－16．VIII．	8 R			18 F	26 R
34	I7．VIII．－ 23. VIII．	53 R			12 R	65 R
35	24．VIII．－30．VIII．	14 R				14 R
		5585	1985	723	187	8480

Totai $=840=I 633510 \mathrm{~kg}$ 。

Table 12. Weekiy size-composition in \% (smoothed) of Spanish madrague catches at Barbate in 1969 ($D=$ pre-spaming; $\mathrm{R}=$ post-spawning fish) (Rodriguez-Roda, 1970).

Iengtin Group	Week Ho.									Cotal
	20	21	22	24	26	29	30	31	32	
$45-49.9$							16			2
50-54.9							49			7
$55-59.9$							49			7
60-64.9							16			2
65-69.9							66			10
70-74.9							181			28
$75-79.9$							168			26
80-84.9							59			5
$85-89.9$							7			1
90-94.9							2			0
I35- 339.9					4		-			0
$240-144.9$		6			7		-			1
245-149.9		24		2	4		-			1
250.. $254.0 c_{1}$		55		7	-		-			3
155-159.9		91		II	-		-			4
360-164.9		98		12	-		-			5
265-169.9		73	1	14	8	3	-	5	2	6
170-174.9		67	5	33	23	8	-	11	7	11
175-179.9		67	14	54	60	II	4	16	16	19
130-184.9	I	43	31	63	125	22	10	30	39	32
185-189.9	7	24	56	63	155	44	IO	57	7 I	47
190-192.9	21	30	73	54	136	50	12	80	89	55
195-199.9	19	43	67	40	98	42	16	77	85	51
200-204.9	21	55	54	40	57	53	19	55	66	4.4
205-209.9	36	55	63	65	42	78	25	36	55	49
210-214.9	55	43	69	84	42	108	32	36	51	58
215-219.9	71	30	57	72	57	161	34	66	42	64
220-224.9	89	30	53	70	76	165	32	86	57	71
225-229.9	109	37	72	82	53	106	40	61	74.	74
230-234.9	125	37	88	68	30	58	44	52	78	73
$235-239.9$	126	43	80	47	19	42	29	61	87	68
240-244.9	92	37	72	37	4	28	19	59	80	55
245-249.9	56	12	58	28		14.	18	66	55	40
250-254.9	55		33	26		3	10	66	28	30
255-259.9	55		IS	21			12	43	11	22
260-264.9	41		16	7			15	18	5	15
265-269.9	14		14				6	9	2	8
$\begin{aligned} & 270-274.9 \\ & 275-279.9 \end{aligned}$	5		5					7		$\begin{aligned} & 2 \\ & 0 \end{aligned}$
2	188	41	202	107	66	90	170	120	141	1115

TabIe 13. Weekly size-composition of US bluefin tuna pursemseine catches in \% (smoothed) (fork lengthoy caliper) between New Jersey and Cape Cod for 1969 (total catch $=1728$ short tons).

Lengtin cm	Week of Year					TotaI
	27	28	29	33	35	
50			I	3		I
55			5	10	1	4
60		3	II	12	2	6
65		40	15	6	I	12
70		147	95	39	14	59
75		Ig2	211	99	98	136
80		87	167	93	168	132
85		5	44	31	117	54
90	31	0	1	3	15	17
95	125	30	16	I5	2	14
100	281	133	86	75	33	74
105	344	186	153	167	128	155
110	187	92	119	178	181	150
115	32	23	46	73	107	70
120		28	14	18	15	22
125		23	5	36	18	20
130		9	3	56	24	23
135		2	4	35	17	15
140			4	16	15	10
145			1	19	24	13
150				13	20	10
155				3		3
n	8	143	187	170	302	810

C.M. $1970 / 5.2$

