International Council for the
Exploration of the Sea
C. Mo 1969/M: 5

Anadromous and Catadromous Fish Committee

RFPORT OF THE ICES/ICNAF JOINTT WORKTITG PARTY

ON MORTH ATLAAMTIC SALMION

20-21 May, 1969

Report of the ICSS/ICNEF Joint Working Party on North Atlentic Salmon

20-21 12y 1969

Contents

A. Introduction
B. West Greeniond Fishery

1. Catch and Fishing Efiort
2. Origin of Salmon at West Greenland
2.1 Recaptures of Tagged SaImon
2.2 Biochemical and Parasite Studies
3. Assessment of Effects of West Greenland Fishery on Total and Home Waters Salmon Yielos
C. North Eest AtIantic Fishery
4. Norway
1.1 Catches and Fishing Effort
1.2 Characteristics of the Offshore Normegian Salmon Stock
1.3 Origin and Distribution of the Offshore Norwegian Salmon Stock
5. Taroes
D. Future Research Programes
E. Future Meeting

Fi References
A. InTPEOUCHITON

The Working Party met ct Cherlotteniund Slot, Denmerk, on 20th-21st lay 196% The meeting was attended by the following scientists:-

canoda	F. D. incCracken G. F. in Smith W. Templeman
Demaras	0. Christensen Fo I. Hensen SV. Aa. Horsted. P. Kanneworff E. Smidt
England and Wales	I.R.H. Allen
Ireland	Miss E. Twomey
Scotland	W. R. Hunro B. B. Parrish (Chaimen) K. A. Pyerinch (Rapporteur)
Norwey	E. Rosseland
Streden	B. Carlin
USA	B. Kimsey B. Skud
Federcl Repubic of Germany	F. Thurow
ICES	J. Hiflier Christensen

In the time at its disposal, the Working Farty confined its attention to (a) further considerition of the developments in the fishery for salmon at West Greenland, and of the assessment of its effects on totcl and home-waters stocks anz fishery yields of salmon; (0) moking a preliminary appraisal of the statistioni and biological deta available for the high secs fishery for salmon which has developed in recent years in the North-Ens Atiantic, particularly off the coast of Norway.

The results of these considerations are reported below under the headings West Greeniand and Morth East Atlontic respectively.

B. WEST GREEMLAND

1. Catch and Fishing Eifort

Details of the catches made in the years 1960-1968, both at West Greenlend and in home waters, are given in table 1 and, as far as information is available, the catch per unit effort data are sumarized in Table 2 .

The latest deia show that the eatch in the ofishore drifft-net fishery ait West Greenland increased further from 305 tons in 1967 to 548 tons in 1968 , but there was a decrease in the inshore catch from 1,283 tons to 579 tons, so that the total West Greenlona catch in 1968 was less then in the previous tro years. The available date on the number of fishing vessels operating in the offshore fishery (17 in 1968 compared with 11 in 1967), indicate that the incressic in the catch there in 1968 was due mainly to a further increase in fishing efiort, (The average catch per vessel was also siightly higher than in 1967). On the otbet hand, data from research cotches suggest that the decrease in the inshore fishery was due to a lower catch-per-unit effort, resulting from a decrease in the abundon:s of salmon on the inshore fishing grounds.

For those North fimerican and European countries with substantial home waters salmon fisheries, the totel cetches (salmon plus grilse) were lower in 968 then in 1967 except in Ireland, where the catch increased slightly. The latter, however, appears to have been due to a substantial increase in the grilse catch in 1968, the salmon (i.e. fish which have spent two or more winters in the sea) oatch having deoreased, as in Canada, England and Wales, Norway and Scotland. In England and Wales, and Scotlend the grilse catch was also lower in 1968. It should be noted that the observed decreases in the catches in the different courtris: were well within the range of year to year variation observed in previous years.

2. Origin of Salnon at Test Ereeniena

The Working Party consicered further the information available on the composi. tion and home waters origin of the selmon stock fished ot West Greenland, based on tag recapture date. It also examined the latest progress in the related studiea of their biochemicel characters and parasite fauna.

2.1 Recaptures of Tegged Salmon

The recaptures at West Greenland and in home waters of salmon tagged as are given in smolts and kelts in home waters in the years 1963-1967 LTables 3 and 5, the recaptures, both locally and in home weters, of Iiberations in the Fest Greenland fishery in the jears 1965-1958 in Table 6 and . deta on the jiberations of tagged swills in 1966-1968 in Trble 4. These tables include revisions of data presented in the corresponding tables in the Second Report of the Jorking Party (ICES, Goop. Res. Rep. No. 12).

The aditional data for 1968 were in conformity with those son oaxier jeans in showing thet the salmon stock at West Greenland in 1968 consisted of fish mith if surviving would return to home waters as salnon of two or more sea winters, and that it comprised a mixture of fish originating from North Anerican and European river systems. They also pointed to salnon originating from mivers off the Norwegien west coast as constituting none, or a very small part of the stock exploited at West Greenland. It should be noted, homever, that since very iittle smolt tagging has been conducted in recent yeors in Nowregian rivers flowing into the Skagserek, it is not possible to determine from the tagzing coin Whether salmon from those ivers contribute to the West Greanland stock.

The rates of recapture at West Greenlend in 1968 of salmon tagged as smolts in 1967 was lower for all countries (except Ireland) than those recaptured in 1967 from smolts tagged in 1966. This was due manly to the reduction in the inshore eatch in 1968. When adjustments are made to the total number of tags reported in the two years, to take account of this and to include estimetes of the tags taken in the offshore fishery, the rates of return of tags, per ton of salnon caught at West Greenland were approximately the same in 1968 as in 1967 IC: the countries contributing the largest numbers of tagged fish in the West Greeniand catch in the two years except for the USA, for which the rate decreased sharply from relatively high level in 1967.

The Working Party noted that the recaptures at West Greenland of $\mathfrak{f i k h}$ tagztad as smolts have veried widefy for different river systems in some countries (eogr Canada) and between wild and hatchery reared smolts, especiaily in the $\mathbb{T K}$. In the time available, it mas not possible to assess fully the influence of these factors on estimates of the relative contributions of the saimon stocks in different countries to the west Greenland stock, but in view of the inportance of these factors in the assessments, the Working Party decịded that further consideration should be given to these problensat its next meeting in the light of the results of detriled analysis of the tag recapure data in relation to these fectors, to be made within the countries concerned. tageed.
Only 47 /salmon were liberated in the tagging experiment at west Greenland in 1968, compared win numbers renging from $233 m 729$ in tha previous three years. This was due partily to the relative scarci ty of selmon in the tagging areas compared with the ecrier years (as refleoted in the inshore fishery as a whole)
cond p.rtly to the decision to invostice to, in 1968, nothods of opture likely to salnon in better condition for twging. produce \angle Four of the tagged salmon liberated were recaptured in the fishery off West Greenland, mostly within a few days after liberation, and to date (May 1969) none have so far been recaptured from home waters. As indicated in Section C, a further tagging experiment is planned to take place during the West Greenlamd fishing season in 1969.

2.2 Biochemistry and Parasite Studies

Although the investigations conducted so far on the biochemical characters and parasite founa (as biological tags) in selmon in home waters and at West Greenland have not yet progressed far enough to provide reliable estimates of the home water origins of the salmon exploited at Fest Greenland, and their rotes of mixing there, some promising, preliminary results have been obtained. Aspects of these investigations are sumarized as follows:
a) Biochemicel studies in Canada have shown that four protein systems show promise for stock identification, viz. the alpha-2 globulins, one transfemrin zone in blood serum, liver esterases and the kidney esterases.
b) Investigations in Scotland have shown that Iiver esterases and, to a lesser extent serum proteins, represent the most promising biochemical approaches to identification of salmon of dirferent origin at West Greenland. A prelimjnay analysis of more than 200 salmon has shown up 7 distinct patterns of liver esteris. and their distribution \angle Canada, West Greeniand, Scotland, Englend and Sweden. Other work in Scotland on red cell antigens has produced a preliminary estimate of 20% "Scottish" type fish in a semple caught near Godthacb.
c) Recent biochemicel studies in England have been confined to reassessing previous research on eye-lens proteins and work on these and blood serum proteins (both tissues which can be extracted from fish without affecting their market value) from salmon in UK and Irish rivers and from West Greenlond will be continued in 1969.
d) Canadian research on parasites in salmon indicates that parasites of fresh water origin are unlikely to be of use as biological tags in relation to the West Greenland salmon. However, of the marine parasites, the nematode Anisakis sp po and the cestode Eubothrium crassum show more promise and further studies on their occurrence and cheracteristics are in progress.

The Working Party noted that the applicability of the results of tine biochemical methods as indices of the origin of salmon at West Greenland from different home waters stocks is governed by the maintenance of their genetic independence. Any deliberate mixing of genetically distinct stocks by, for example, the transfer of eggs or other early life history stages from one country to another, would complicete the interpretation of the results of these studies. It also noted that, in view of the large number of possible characters and methods involved in the work, and the widely ranging and expensive nature of these investigations, there is a need for close collaboration between the morkers eng:ged in biocheaical and parasitic studies on salmon in the Morth Atlantic.
3. Assessment of Effects of West Greenland Fishery on Total and Home Waters Salmon Stocks enc Yields
a) Total saimon yields

In its report presented to ICIFP Iast year, the Working Party concluded, on the basis of the available information on the growth of salmon between their occurrence in the exploited stook at West Greenland and their return to home waters, and the information avilable on the proportions of the fish present in this stock which would subsequently be caught in home waters, that the presence of a fishery at West Greenland, at the level of exploitation there during the period 1963-1967 had resulted in an increase in the total (homewatem plus West Greenland) catch of. Salmon from European rivers which visit West Greenland, but that the position with regard to s almon from North merican rivers was less clear.

The new datc availuble to the Working Farty at this meeting provide no grounds for modifying this conclusion. It should be noted, however, that this assessment is based on the relative yields at West Greenlond and in home waters of a given number of fish present in the stocis at West Greenland. It is therefore based on the assumption that any reduction in the numbers of adult salmon returning to home maters is insufficient to reduce smiolt significantly。
production/Although at present little is known of the relationship between adult stock size and smolt production for Atlantic salion, the data available on the catches and catchesper-unit effort of both grilse and salmon in the home water fisheries on both sides of the North Atlantic during the years sinse
the West Greenland fishery started (see Tables 1 and 2), suggest that home-weter stock size has been relatively high compered with earlier years so that subsequent any smolt production is unlikely to have decreased as a direct result of/decrease in spawning stock sise due to the development of the West Greenland fishery.

The situation with regard to the total yield of selion from North American rivers, visiting West Greenland, is still unclear due to uncertainties regardins the magnitude of the natural mortality rate they suffer on their return from West Greenland to home waters, and the rates of exploitation in each of the rive: systems to which they return. However, since losses in total yield would only occur at low rates of natural mortality (i.e. Iess than 20% during the 10-12
and et high rates of exploitation in home watere month period of return to home waterd)/(i.e. more than about 90%), it seems likely
that for salmon returning to North American rivers, taken as a whole, the presence of the West Greenland fishery has cresulted in an increase in total yield. It is possible, however, that for the salmon returning to some individual river systems where the rate of exploitation is knovn to be high (e.g. the Miromichi), it may have resulted in no increase, and possibly a smell loss in total yield.
b) Home-waters Salmon Stocks and Yields

As indicated in previous reports of the Morking Party, precise estimates of the effects of the West Greenland fishery on home-waters salmon stocks and catches (i.e. of fish which have spent 2 or nore winters in the sea) cannot be made due to the lack of accurate information on the natural mortality rates occurring between the time that the salmon leave West Greenland and their arrival in home waters an the rates of exploitation in the various river systens to which they return. Only limiting estinates of the effects can, therefore, be attempted, based on the range of estinates within which the values of these parameters seem likely to lie. In the First Report of the Working Party (ICHS, Coop. Res. Rep. No. 8, 1967), it was estimated thet the natural mortality rote of Canadian salmon between West Greenland and home waters probably lies between 0.02 and 0.1 per month. If these two limits are taken to apply to both North American and European salmon, approxima'ie upper and lower estimates can be obtained of the average annual loss in the weight of salmon reaching the river systems of the North Atlantic as a whole, in the years 1965-1968 (based on a mean cetch of 1,340 tons at West Greenland in 1964-1967 and an average increase in veight of 50% between Hest Greenland and home waters), within which the actual loss probably lies. The upper and lower estimates of the losses to the combined North AtIantic hone-water stocks mould be:-

Upper estimate (in -0.02 per month $)=1,667$ tons appros.
Lower estinate (ii -0.10 per month $)=667$ tons approx.
It is not possible, fron the data currently available to estimate the losses more closely than this, but it should be noted that the value of the average increase in weight of 50% might be overestimated for the salmon returnirs to European rivers. If this is the case, the upper and lower estimates of the losses, given above, mould be overestimated.

Estimates of the loss to the overull home-water catches, cornpered with what they would heve been in the absence of a Nest Greenland fishery will be the loss to the stocks, times the average exploitation rate in the home waters fisheries. As mentioned previously information on the exploitation rates in home waters are avilable for very few of the river systems in the countries supplying saimon to West Greenland so that an overoll average rate cannot be estimated accurately. It seems likely, however, that this rate does not exceed. 0.6. If this value is used, the upper and Iower estimates of the losses to the combined North Atlantic home-water catches would be

> Upper estimate $\left(\begin{array}{l}\text { I }-0.02 \text { per month })=1,000 \text { tons approx. }\end{array}\right.$
> Lower estimate (-0.10 per month $)=400$ tons approx.

In previous assessments, attempts have been made to estimate the losses to the home-mater fisheries in the different countries known to supply salmon to the West Greenland stock, based on the relative proportions of fish in the West Greenland catch, originating from then, as indicated by the recaptures there in the years up to 1966 of salmon taged as smolits. The data reported in the First and Second Reports of the Working Party (Coop. Res. Reps. Fos. 8 and 12) indicated that the country contributing the largest proportion of the stock in the west Greenland area was Caneda and that the losses to its stock and fishery for salmon constituted over three quarters of the total loss to all countries combined, whilo in catch each European country suffered an annual Ioss Lof less then 100 tons. The amayais of the longer series of deta for the years $1964-1968$ point, in fact, to quite lerge पariations from year to year in the rates of recapture of tagged fish at West Greenland, originating from different countries and hence in their apparent contributions of salmon to the exploited stocir there. This is evident from the following tible, giving for the years 1964-1968, the numbers of recaptures at West Greenland per 1,000 smolts tagged in dirferent countries per 1,000 tons of salmon caught at west Greeniond, and the ratios of the recaptures of taged fish at lest

Greenland in the years specified and as salmon in home waters in the following year (figures in brackets).

Year of recapture at W. Greenland	Canada	USA	England	Scotland I	reland	Icelend	Sweden
1964	$0.74(0.3)$	-	$0.62(0.3)$	$0.40(0.06)$	-	-	-
1965	$0.27(0.1)$	-	$0.78(0.1)$	$0.50(0.03)$	-	-	-
1966	$1.67(0.3)$	-	$1.60(0.2)$	$0.61(0.08)$	-	-	$0.0(0.06)$
1967	$0.68(0.3)$	$0.31(0.2)$	$0.36(0.1)$	$0.79(0.2)$	-	0.09(?)	$0.40(0.06)$
1968	0.62	-	0.38	0.95	0.18	-	0.32

While these figures confirm the earlier conclusions that the major part of the West Greenland stock throughout the period has been derived fron rivers in Canada and the UK, it must be recognized that during this period, changes heve taken place in the types of tag and tagging methods used in the different countries (in 1967 and 1968 there has been greater uniformity in the type of tag used), in the distribution of tagging within each country's river systems (this applies particularly to Canada, where the smolt tagging effort has been extended to rivers not covered in the earlier years) and in the proportions of wild and hatchery reared smolts liberated. The results of the Canadian experiments show that the tag-recepture rate at West Greenland is much higher from some river systems then from others (the recaptures at West Greenland from Iiberations made in the Bay of Pundy area have been significontiy lower than from rivers entering the Gulf of St. Lawrence). Also, the West Greeniand recoptures from liberations in England and Scotland have been very much lower for hatchery reared than for wild smolts (this foctor may account at least in part for the small number of recaptures of Irish salmon at West Greenland, all of the smolts tasged in 1966 and 1967 being hatchery reared). These factors, together with possible differences in the efficiency of recovery of different types of tag mey introduce substantial errors in the estimates of the relative proportions of salmon at West Greenland, originating from different countries. The Working Party considers, therefore, that it is not possible, from the data currently availeble to estimate accurately the proportions of the totol losses to home-water catches suffered by the fisheries of different countries. However, it seems clear thet the largest proportion of the total losses have continued to be experienced by the fisheries for silmon in Canada and the UK。

A measure of the losses to the homemeter stocks and cetches of large salmon due to the Nest Green and fishery, relative to what they would have baen in the atgence of that aishery; is given by the fishing mortality rate generated there (on the assumption that the growth and naturel nortelity rates do not change as a direct effect of that fishery). An estimate of the fishing mortality rate generated at West Greenland can be obtained fror recaptures in the West Greenload fishery of salmon tegged during the fishing season there However, acourate estimates can only be obtained Irrom these data if the mortality due to tagging is negligible (or, if considerable, is known) and the efficiency of return of tags is high. Unfortunately, the tagging experinents conducted at Mest Greenland so for d o not meet these requirements especially with regard to the tagging mortality Which has probably been very high (but its actual magmitude is unknown) so that reliable estimates of the effects comot yet be obtained by this method. In th. tagging experiments to be conducted at Vest Greenland in 1969, attempts will be longlines and made to improve the method of capture for tagsing, by further experinents with f observations will be made in captivity of the survival of fish after oupture by gill nets, with and without tagging.

It should be noted that the effects estimated by this method are based on the assumption thot all of the lerge soinon returing to home waters are present Within the exploited area off $\overline{\text { West }}$ Greenland and that the fishing mortality rate generated there applies to the stoci as a whole. If this assumption is not fulfilled, as seems most likely, and an unknown part of the stock which mill returu to the rivers as large salmon is present in other arecs, the effects on the bonem water stocks and catches, estimated in this wey, would provide an uper limit of the losses to them.

It is therefore evident that, at present, the accuricy of the assessment of the magnitude of the effects of the West Greenland fishery on total. and home-water selnon stocks and catches is limited by the lack of infornation on a number of aspects of the distribution and population dynomics of the scinon visiting West Greenland. Of mojor importance anongst these are:
a) the rate of naturel mortality occurring between the time the salmon leave West Greenland and their return to home waters;
b) the rates of exploitation in each countrys homemater fishexies;
c) the rate oi exploitation (fishing mortality rate) generated by the West Greenland fishery;
d) the identification of selmon at West Greenland originating from and, if surviving, returning to the river systems of different countries:
e) the relation between the size of the spawning stock and smolt production in home weters.

More detailed and accurate assessments will only be possible when further information on these itens beoones available. Sone of them are being pursued at the present time, as outlined in a Inter section of this report. In particular, attompts are being made to discover a method of octching fish at West Greenland in a condition suitable for tagging, to provide informetion relating especiolly to items (a)-(c).

C. HORTE-BAST ATLATHTC

In its Second Report the Working Party drew atiention to the recent development of a high seas fishery for salmon, by long-line in the North-east Atlantic off the West Coast of Norwoy and to a much smaller extent in the vicinity of the fraroes. Information on the catches taken in this fishery and on the composition and origin of the exploited stock is sumarised below.

1. Norway

1.1 Catches and Fishing Iffort

Pishing for salmon in Norwegien coastal waters by drift-net has taken place from time to time since the seventeenth century. However, 1958 marked the beginning of a rupid growth in this coastal fishery which started in Finmark but rapidly spread southwards. While this fishing has remained mainly within the coastal waters, in some years it has extenad to distances of $30-35$ natical miles off the coast. In the nost recent years, however, it has taken place within 6-7 miles of the coast.

In 1965, a fishery by long-line was started by Danish fishermen in the sea outside Norwegian fishery limits. Catches in 1965 and 1966 were small but the rishery grew rapidly in 1967 and 1968, with the participstion of Danish, Norwegian, Swedish and Froese vessels. Nost of the long-line fishing takes place from about 30 to 150 nautical miles offshore, and it extends from Finnark southwards.

The available data on the catches taken in the Normegian coastal ariet-net fishery and the offshore long-line fishery, and the number of vessols engaged in the latter, are given in Table 7 (The total saimon catches taken by Norway by ai. methods of fishing are given in Table 1.B). Catch-per-unit-effort estimates fio the long-line fishery for different months in 1968 are given in Toble 8 . Thess data show that the coastal drift-net fishery exceeded 300 tons in each of the years 1965-1967, but decreased to 228 tons in 1968, while the long-Ine fishery increased sharply to over 300 tons in 1968.

1.2 Characteristics of the Offshore Morwegian Salron Stock
 samples of

Details of the length and age compositions of /the catches taken in the longline fishery in 1968 are given in Tables 9 and 10 respectively.

These data, based on sampling in one year only, suggest that the salmon stoc: exploited in the ofrshore fishery, like that at West Greenland, consistameinly of fish which, if surviving, will return to home waters as salmon that have spent two or more winters in the sea (almost 90% of the fish sompled were in this category). Only a small proportion (\bar{F}) belonged to the grilse age-group. This indicates that cny effects of this fishery on homematers stocks is likely to be principaily on their large salmon (with 2 or more sea-winters) component.

One notable charecteristic of the long-Ine catches seems to be the low condition factor, K, of the fish caught. The averege value of K for a somple of the fish caught in 1968 wes 0.85 , whereas the condition factor for fish caught in Nowny in coastal waters lay betreen 1.0 and 1.2 .
1.3 Origin and Distribution of the Ofe shore Norwegian Salmon Stock

Norway has maintained a smolt tagging programe, in which about 20,000 smolts are tagged each year, for many years. In 1967, 8 of these fish (representing 1. $\#$ of the totcI reoaptures) were recaptured in the offshore fishery and, in 1968, 49 recaptures (10.5% of the total) were recorded.

Recaptures have also been made in this fishery, of smolts tagged in countries other then Norway. Out of a totel of 1,200 recaptures of tagged smolts from Sweden, five have been returned from this fishery and wo out of the 4270 hatchery-rearedsmolts, liberated in Denmark in 1966, two have also been taken in the offshore Norwegion fishery, one in 1968 and one in 1969.

In addition to evidence from tag recaptures, the occurrence of hooks in the mouths and stomochs of salmon caught in rivers has also been reported in

1967 and 1968 in Norway (182 reported), the USSR (22 reported) and in Scotiand (4 reported).

In addition to the tagging of smolts, sulnon heve been tagjed from the offshore long-line catches. Of 250 fish tagged up to the end of 1968 , 4 have so far. been recaptured, all on the Nomegion coest to the south of the tagging sitesc Some 700 of the fish caught in the INorregian coastal drift-net fishery have also been taggec and cbout 20% of these have been recaptured the subsequent migrational pattern of these fish closely resembling that of fish tagged in the coastal bag-net fishery.

The information at presel? available suggests that the stock fished by the off-shore long-line fishcry off the Normegion coast (and by the dxift-net fishery ar coastal waters) is composed mainiy of saimon which if surviving will return to Norwegian rivers though, as the tag recaptures and hook observations suggest, fish from other countries rivers are also present.

2. Faroe

In 1968 the Faroese research vessel "Jens Chr. Svabo" carried out an experimental long-lining cruise for salmon in the waters around Faroe. Between 8th and 23 rd April lines were shot on 7 occasions and 182 salmon were caught, of which 7 were subsequently tagged and released. Host of the salmon caught were small ($55-59 \mathrm{~cm}$), but a few were over 100 cm Iong and weighed more than 9 kg . A small sample of scales from the catch made by the "Jens Chr. Svabo" was examined. The results inaicated that the small salmon which predomineted in the catch were onems winter fish, which were just beginning their second year's growth in the sea.

A few Danish and Foroese fishing vessels fished in this area in 1968 but the catch did not exceed 5 tons.

In April 1969, the "Jens Chr. Svabo" orried out a second cruise in the same area as in 1968. Lines were fished on 7 occasions and a total of 426 salmon were eaught, of which 74 were tagged and released. The catch per unit effort was again very high averaging almost $80 \mathrm{salm} \mathrm{n} / 1000$ hooks during the cruise. The length frequency distribution was very similar to that recorded in 1968; most of the figh were between 48 and 60 cm in length, suggesting that one-sea-winter fish again predominated in the catch.

To date, eight soimon tagged in other areas have been recaptured off Faroe, four from Norway, two from Iceland and two from Scotland.

D. FUUURE RESEARCH PROGRAME

The Working Party briefly reviewed the research programe proposed sow 10 . at West Greenlond. This will again be a cooperstive progranae between Canada, Denmark, and the UK and will consist of a further tagging progromme and further work on methods of elucidating stock composition. The tagging programe will consist of (a) a further investigation of the possibilities of pelagic longlining, (b) gill-net fishing, including impoundment of the fish cought (both tagged and untagged), and (c) drift-netting. The last investigation will be two principally carried out by Ganada, the former/by Denmark and the UK. Further investigations will be made in Canida and the JN, of the biochemicul charocteriatu.; ; and parasites of salmon as a guide to stock composition.

Research in comection with the North-East Atlantic fishery will be conducte.: by Denmark, Norway and Sweden. Nach country will collect statistics of catches and will collect datio on the length, weight and age composition of the cotches. In addition, Normay will undertake further togging experinents and collect data from the comercici long-line vessels on the compsition of the exploited stock. So far 675 salmon had been tagged from a comercicl long-liner in 1969, and woris will be stirted fron/econd vessel in the near future.

The programes of smolt tagsing will be continued as in previous vears.

Fi. FUIURE MEETTNE

The Working Party recomends that it should meet for not less than two day: prior to the ICNLF meeting in 1970.

F. REHPETCES

1. ICES. Coop. Res. ReE. Mo. 8. 1967.
2. ICES. Coop. Res. Rep. No. 12. 1969.

Table 1 Catches at imest Greenland and from the home waters of some courtries, 1960-67, in metric tons and round fresh weight. (Revised to May 1969).
A. West Granntand

fishore						Inshore Total (ofeshore \& inshore combins	
	Norwegian	Pcroess	Danish	$\underline{\text { Swecizsh }}$	$\underline{\text { Total }}$		
1960	-	-	-	-	-	?	?
1961	-	-	-	-	-	127	127
1962	-	-	\cdots	-	-	244	24%
1963	-	-	-	-	-	466	465
1964	-	7	-	-	$\overline{-}$	1,539	1,539
1965	a	36	-	-	$36+$	825	861
1966	32	87	-	-	119	1,251	1,370
1967	78	142	85	-	305	1,283	1,588
1968	138	134	272	4	548	579	1,127

a Pigures not aviilible, but catch is known to be less than Feroese。
B. Home Wrters (Salmon and grilse, except where shown separately)

Irelond ${ }^{\text {a) }}$ England and Wiales ${ }^{\text {b) }}$ Sweden $^{\text {c) }}$ Norway ${ }^{\text {a }}$

1960	514	281	$30-50$	1,659
1961	522	231	$30-50$	1,533
1962	1,180	318	$30-50$	1,935
1963	1,130	324	$30-50$	1,786
1964	1,188	305	$30-50$	2,157
1965	1,112	319	$30-50$	2,000
1966	1,090	412	$30-50$	1,863
1967	1,226	275	$30-50$	1,652
1968	1,250	275		

Scotland

	Salmon	Grilse	Total	Canda	USA
1960	945	468	1,413	1,635	Iess than 2
1961	807	370	1,177	1,581	less than 2
1962	999	713	1,712	1,718	less than 2
1963	1,266	406	1,672	1,855	less than 2
1964	1,197	687	1,884	2,116	less than 2
1965	1,048	542	1,590	2,182	less then 2
1966	1,049	546	1,595	2,311	less then 2
1967	1,223	868	2,091	2,916	Iess than 2
1968	948	509	1,457	2,143	less than 2

a) Grilse seem to be about $70-80 \%$ by weight or $80-90 \%$ by numbers in total Irish cetches. Gommercial catches only.
b) Salmon ond grilse. Proportions of grilse in regional catches vary from 10% to 40% and average 22%.
c) Estimated 75% grilse. West coast catch only.
a) Includes not more than 5\% sea-trout. Estimated 15% grilse based on (i) returns from fish merchants and (ii) tagging data.
e) Cominercial catches only; angiing catches (mostly grilse) are about 10% additional. Very fer grilse token in Nove Scotin: cad Now Brunswick but form signifiount prot of Mewtoundend outches.
Estimates of catches per unit effort for sone home water fisheries.
Scotiand
Net and Coble) g

a Miranichi area, salnon only, Average of meen monthly catch/unit effort for both types of gear throughout open seasons for each type. Units of
effort taken as 1 trap net or 200 fathons of drift net, as defined in FRB Teoh. Rept. No. 29.
b Irish Republic and Northern Ireland.
c Salmon and grilse per drift net.
d Pounds salmon and grilise per licence.
e Salmon and grilse per bag net.
f Salmon only, catch/net/month
g Salmon only, oatch/orew/month.
h Not available.
Table 2.
$C^{\text {Canada }}{ }^{a}$
(Drift Nets and Traps)
(1 bs)
169
159
178
193
266
262
249
248.8
1864

Table 3. Number of smolts tagied in the years 19:63-1967 and recovered in Greenland and home waters wp to the end of 1968.

Country	$\frac{\text { Yeir of }}{\text { Tegging }}$	Mo. Targed	Greenland	Pecoveries		
				Home Waters		Total ${ }^{\text {a }}$
				Grilse	Salmon	
Canada	1963	13,182	15	201	48	264
	1964	63,643	18	304	155	477
	1965	65,313	139	549	401	1.089
	1966	87,584	90	358	377	785
	1967	130,352	47	379	-	426
Scotlind	1963	17,748	10	307	188	505
	1964	12,180	6	299	233	538
	1965	13,239	9	160	132	301
	1966	23,406	29	478	118	625 c)
	1967	25,444	15	210		$226^{\text {c }}$
England \&	1963	9,485	9	16	32	57
Woles	1964	17,129	10	33	99	142
	1965	5,974	12	35	59	106
	1966	12,999	5	28	38	71
	1967	22,740	6	22	-	28
Norway	1963	10,975	0	88	94	182
	1964	10,653	0	205	105	310
	1965	11,080	0	113	64	177
	1966	18,174	0	455	184	639
	1967	24,635	0	315	-	315
Iceland	1966	8,449	1	66	-	-
	1967	10,214	\bigcirc	?	-	?
Ireland	1966	15,000	0	0	0	0
	1967	10,000	1	1	-	2
Siveden	1966	11,507	7	$733^{\text {b) }}$	123	863
	1967	4,999	1	364	-	365
USA	1966	82,000	36	24 b)	(160)	(220)
	1967	80,700	2	$10^{\text {b }}$	-	12

a) All recoveries, Greenland and home waters
b) Includes recoptures from all places other than Greenland
c) Includes 1 reospture token N. of Feroes 1968
Numbers of smolts tagged, 1966, 1967 and 1968. Table 4.

$$
\begin{aligned}
& \begin{array}{l}
\quad \text { Country } \\
\text { Canada } \\
\text { Denmark } \\
\text { Ingland and Wales } \\
\text { Icelend } \\
\text { Ireland } \\
\text { Norway } \\
\text { Scotlend } \\
\text { Sweden }
\end{array}
\end{aligned}
$$

Table 5. Recaptures of tagged kelts in Creeniand and home waters up to the end of 1968 .

Country	Year of Tagzing	Number Tagged	Greenland	Recaptures Home Waters	Total
Canada	1963	1,519	0	677	677
	1964	1,995	1	627	628
	1965	4,396	0	1,693	1,693
	1966	5,026	1	1,169	1,170
	1967	3,611	-	809	809
	1968	2,650	-	439	439
England and	1963	185	2	9	11
Wales	1964	184	2	7	9
	1965	181	1	10	11
	1966	109	1	4	5
Ireland	1963	2,207	2	31	33
	1964	2,351	2	70	72
	1965	2,695	2	34	36
	1966	2,972	1	40	41
	1967	3,102	-	64	64
	1968	1,034	-	23	23
Scotland	1963	134	0	2	2
	1964	233	0	5	5
	1965	1,435	3	31	34
	1966	901	3	21	24
USA	1963	166	1	7	$11^{\text {a }}$
	1964	225	0	16	$23^{\text {a }}$
	1965	191	2	8	$18{ }^{\text {a }}$
	1966	647	4	14	$30^{\text {a }}$

a These totals include tags retumed from Canadian waters. b Provisional total.

	Local Recaptures				Distent Recaptures
Te.gged	Number Tagged	Number	Days Absence	Number	Location
1965	233	2	3, 26	1	Canada (1 , S.W. Newioundland)
1966	729	28	$\begin{gathered} 1-8 \text { azys } \\ (10-50 \end{gathered}\binom{24)}{4}$	4	Canada (1, Miramichi Estuary) Scotland (3, River Tweed (2), River Spey)
1967	375	5	1-21 days	4	Canada (1, Indian Head, Labrador) Ireland (2, River Slaney, River Scotland (1, River Tay)
1968	47	4	$\begin{aligned} & 1-3 \text { days }(3) \\ & <1 \text { month }(1) \end{aligned}$	0	

Table 7. Catches by drift-net in the coastal fishery and by long-line in the offshore fishery off the

Year	Offshore Fishery by Longline									Inshore Fishery by Drift-neta)
	Danish		Norwegian	Swedish		Faroese		Total		Norway
	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Ships } \end{aligned}$	Cetoh	$\begin{array}{c}\text { Number } \\ \text { of } \\ \text { Ships }\end{array}$ Catch	Numbex of Ships	$\underline{\text { Catch }}$	Number of Ships	Catch	Number of Ships	Catch	
1965	1-2	Not known	$0 \quad 0$	0	0	0	0	1-2	Not	308
1966	10	Not known	$0 \quad 0$	Not	Not known	0	0	$10+$	Not known	338
1967	22	66.5	$\begin{array}{ll}\text { Not } & \text { Not } \\ \text { known } & \text { known }\end{array}$	6	Not known	0	0	$28+$	66.5+	359
1968	23	153.0	$\underset{\text { known }}{\text { Not }} 100{ }^{\text {b }}$	16	105	2	3.5°	41+	361.5	228
Notes: a Including catches taken by seine b Estimated aatch c Out of the $1,080 \mathrm{fish}$ caught, 721 were taken in the Foroese										
Table 8. Catch per unit effort in Norwegian offshore long-line fishery.										
			Year Month	Country	$\begin{array}{r} \text { No. } 0 \\ \quad \mathrm{Ca} \\ \hline \end{array}$	$\begin{aligned} & \text { f Salmon } \\ & \text { ught } \end{aligned}$	No. 10	aught pe 0 Hooks		
			1968 Apri工	Demark		1104		92		
			1968 May	Denraark	-	4435		100		
			1968 April-Aug	Sweden		751		42		

Table 9. Length composition of catches taken in offshore fishing off Normay in 1968

$\begin{aligned} & \text { Length-Group } \\ & (\mathrm{cm}) \end{aligned}$	April 1968		JuIy 1968	
	Number	Percentage	Number	Percentage
50-59	-	-	3	1.2
60-69	29	11.6	146	58.1
70-79	119	47.6	38	15.3
80-89	94	37.6	55	21.8
90-99	6	2.4	7	2.8
100-109	2	0.8	2	0.8
No. in Sample	250		251	

Table 10. Age composition of catches taken in offshore fishery off Norway in 1968

Sea Minters	Number	\%	Years in River	Number	\%
1	68	7.4	1	-	
2	816	89.0	2	58	6.3
3	34	3.7	3	608	66.4
4	0		4	1.94	21.2
			5	49	5.4
			6	6	0.7

