International Council for the
Exploration of the Sea

Pelagic Fish (Northern) Committee

SURVIVAl OF TAGGLD CAPELIT (ELHJOTUS VIILOSUS, MULLER) AND ESTIMATES OF THE 1974 SPARLING POPULATION IN THE BARENTS SEA PRON TAG RETURNS
by
Are Dommasnos ${ }^{x}$)

INTRODUCTION

The Institute of Marine Research has carried out tagging of capelin with internal stainless steel tags since 1970, mostly during the winter fisheries on capelin migrating to the coasts of finnmaxk for spawning.

Most of the capelin caught by Norwegian vessels is processed into oil and fishmeal. The tags are recovered by magnets in the production system, and during cleaning of the machinery.

Estimates of the spawning stocks in 1970-72 from tag recoveries have been published by DRAGILSUND, GJOSIETIER and MONSTAD, 1973.

Tagging during the winter capelin fishery is usually severely
X) Institute of Marine Research

Directorate of Fisheries
P.O. Box 2906-5011 BERGEN
hindered by the weather. The fishing has to be done with purseseine to get fish in good condition. Neither the purseaseining nor the actual tageing procedure can be carried out in rough seas. In addition come the problems with finding capelin. During the spawning migration the capelin goes too deep to be reached by pursemseine most of the time before it reaches the spawning areas. Only occasionally will the schools come up to a depth where they can be fished successfully, and when such schools are discovered, a large part of the commercial fishing fleet is likely to be there as well as the pursemseiner that has been chartered for tageing operations. This results in two serious disadvantages in the tagging of capelin, as compared to ideal conditions: 1) It is possible only to a limitedxtonthoose time and place for the tagging operations, and 2) the ta£ged capelin have to be released fairly close to the commercial fishing fleet. The main consequence of this is that one gets a relatively poor mixing of tagged and une taggod fish. In addition, it becomes difficult to time the tag releases in relation to the fishery in order to obtain the maximum amount of information from the recovered tags.

One has had little knowledge about the survival factor for tagged capelin. DRAGLSUND, GJOSATER and MONSTAD (1973) used 0.80 as an estimate of the survival factor for both females and males. The lack of information about the survival factor has been one of the factors that serjously reduced the reliability of stock estimates based on tag returns. It was therefore decided to carry out during the winter capelin fishery 1974 an experiment to get more knowledge about the survival of tagged capelin.

THE SURVIVAL FACTOR

MATERIAL AND METHODS

The experiments were carried out in Nordvagen, approximately 7 kilometers east of Honningsvåg (Fig. 1), in Fobruary and March 1974.

Two vessels were used for the experiment: the 70 feet research vessel "Asterias" chartered from the University of Tromse, and the 130 foet purse soiner "M. Ytterstad", also chartered。

The capelin to be used in the oxperiments were caught with purse soine approrimately 60 nautical miles off the coast. After capture the fish were transferred to two tanks (each approx. $1.5 \mathrm{~m}^{3}$) on the deck of the vessel. The tanks were continuously supplied with new soawater from a pump. The transport to the site of the experiment took 16 hours.

The tageimg took place at the site of the experiment. After tagging, the tagged fish and the untagged controls were transm ferred to two net enclosures approximately $3.4 \times 3.4 \mathrm{~m}$ at the surm face and approximately 3.4 m deep. The surface of the enclosures was also corered by a net. In each enclosure a 25 W electric lamp was placed to enable the fish to see the net. Experience has shown that if no Jight is provided, the fish may suffer quite extensive skin damage due to collisions with the net (J. HAMPD, personal information). The surface temperature was $3.2^{\circ} \mathrm{C}$ where the fish . wexe caucht. At the experiment site it was $2.2^{\circ} \mathrm{C}$.

The tagrs used were the same as those used during "normal" tagging, standard stainless steel "sprat tags", $14 \times 3 \times 0.3 \mathrm{~mm}$ (Fig. 2) .

The tageing was done according to our normal tageing procedure. No tagging gun, scalpel or other equipment was used. The tags were pressed into the body cavity without any section having been made in advance. Our experience shows that this given the smallest wound. The tag was always pushed in on left side, a little in front of the anus (Fig. 2). After the tag had penetrated the body wall, it was turned so that it pointed straight foreward, and then pushed completely in. Hands and tags were washed in alcohol before tagging. Only fish large enough to be maturing were used.

400 tagged, and 400 untagged fish were released into the first en. closure ("Experimont 1."), in such a way, that each time 50 taged

```
fish had been reloased, 50 untageed fish were also released.
Th the second onclosure ("Experiment 2") 300 tageed and 300 un-
tafsed fish were roloased.
```

Dead fish were picked up with a dip-net twice the first day after tho experiment started, and every morning the other days. Al1. fish that died, were measured, and sex and maturity were noted. For the tafged rish we also noted the position of the tac or whether it had been lost. At the end of the experiments all rem maining fish were picked up, and the same information wos recovexed.

The fishl were not sexed before they were released into the enclosures, as we expected to eet the numbers of each sex as the fish were recovered. It was also considered important to reduce handling of the fish before release to a minimum.

RESULTS AND DISCUSSION

At the end of the experiments we found that some fish were missinc: in experiment 1,29 tagged and 5 untagged fish, and in experiment 2, 79 tagged and 77 untagged fish.

There may be several reasons for these losses:

1) Some fish were taken by kittywakes (Rissa tridactyla) at the release into the enclosures. These were fish that were dying, and lay at the surface, bofore we had put on a covernet. As far as we could see, only a fow fish were lost in this way from each enclom sure.
2) Some fish were probably taken by eicler ducks (Somateria molitism sima). We did not see this for ourselves, but people ashore said they had seen eider ducks take fish from the enclosures. How many they can have taken is not possible to say. On two occasions corners of the covernet were torn loose by the waves and the wind, so that it' may have been possible for the ducks to dive into the enclosures. There were large flocks of eider ducks around the site of the experiments.
3) It is likely that some fish have managed to swim out of the enclosures. In some periods a strong local wind set up small waves, and under such conditions it may have been possible for fish to swim over the float-line when tho covernet was torn looso. At the end of the experiments it was also found on one occasion that one comer of the second enclosure ("Experiment $2 "$), where an anchor rope was fastoned, was pulled down under the surface by the current. At the same time the current had also torn loose the coverinet. This is probably the main reason why so much fish disappeared from experiment 2.

The three first series (50 fish in each series) of tageed fish in experimont 1. had very high mortality the first 20 hours (Table 1). Most of them seemed to die immediately after the release into the enclosure. This was probably due to lack of oxyrgen in the buckets where the fish were kept between tagging and release into the enclosure. For the first three series about 25 fish were put into the bucket before they were transferred to the net enclosure. Later no more than 10 fish were collected in the bucket before transfer. For untagged fish the transfer has probably not created problems, as it was much quicker for them. For all calculations the first three series tageed in experiment 1 (Numbers N 98501. a N 98650) have been disregarded. The remaining tagged fish in exporiment 1 (N 98651-N 98900) , together with the 400 untagged fish in that experiment, will be referred to as Experiment 1 a. Most of the fish recovered were in maturity stafe III, some in maturity stage IV (stages as defined by NAIER, from LALVASTU, 1.965). In Tables 2,3 and 4 are shown the courses of experiments 1, 12 and 2 。

In calculating the size of the population from tagging results the following formula is used:

$$
\begin{equation*}
\hat{V}=\frac{N \cdot C \cdot s}{R} \tag{1}
\end{equation*}
$$

$\hat{V}=$ the estimate of the population at the time of tagging
$N=$ number of fish tagged
$C=$ the size of the catch after tagging, in the same unit as V
$R=$ number of tags recovered
$s=$ the survival factor, which also takes into account the loss of tags.

Loss of tags must be included in the tagering mortality because tacged fish that have lost thoir tags will not be recognizable as such with out recovexy system (collection of the tags by magnets at fish meal factories). In a "free" population fish that loose their tags will go back to the untageed population without any significant change in the proportion between tagged and untaged fish. But in experiments like this the number of fish that loose theix tags is relatively large compared to the number of untagged fish, and those that loose theix tags can not bo added to the untageed ones, but must still be deducted from the tagged specimens.

The survival of tagged fish and untagged fish, respectively, can be expressod as follows:
(3)

$$
\begin{align*}
& S_{1}=N_{1} \cdot e^{-\left(M+T_{1}+T_{2}+L\right)} \cdot t \tag{2}\\
& S_{2}=N_{2} \cdot e^{-\left(M+T_{2}\right)} \cdot t
\end{align*}
$$

$N_{1}=$ number of fish tagged in the experiment
$\mathrm{N}_{2}=$ " " untagged in the experiment
$S_{1}=$ " " tagged fish that survive without loosing the tag $S_{2}="$ " untageed fish that survive without loosing the tag $M=$ instantaneous natural mortality
$T_{1}=$ " mortality caused by the tagging operation

$T{ }_{2}$, as wo get it from these experiments, can not be expected to ropresent the "handling mortality" as it is during "normal" tageing, as the fish normally is not lept in a tank for more than 2 - 3 hours before tageing, and it is not kept in a net enm closure aftor tagcine. Concequently, stress factors other than the actual tageing operation are probably much smaller during "nomal" tageing operations. The survival factor to be calw culated from theso experiments should therefore only take into account the mortality causod by the actual tageing oporation, and the loss of tags. It will then, of course, represent a slight overestimate:

$$
s=e^{-\left(T_{1}+L\right)} \cdot t^{t}=\frac{e^{-\left(T_{1}+1+T_{2}+M\right)}}{e^{-\left(T_{2}+H\right)} \cdot t}=\frac{\frac{S_{1}}{N_{1}}}{\frac{S_{2}}{N_{2}}}=\frac{S_{1} \cdot N_{2}}{S_{2} \cdot N_{1}}
$$

$$
\begin{equation*}
s=\frac{\mathrm{S}_{1} \cdot \mathrm{~N}_{2}}{\mathrm{~S}_{2} \cdot \mathrm{~N}_{1}} \tag{4}
\end{equation*}
$$

The results (Tables 3 and 4) show a very high mortality for both tageed and untaged females, and much higher than for males. It js not possible from these results to calculate any reasonable value of the survival factor for females. The results give roason to suspect that for females the mortaljty from other factors than the tagging operation is so large that is obscures the tageing mortality. It is therefore necessary to calculate the survival factor for males alone.

Survival factor for male capelin

To get an estimate of the numbers of each sex that were released into the net enclosures at the start of the experiment, I have assumed that the sex ratio was the same among the fish that were released as among those that were recovered, and that the mortality was the same among the fish that were lost as among those recoverod in the eroups "tagged" and "untagged", respectively. The corres-
ponding values of S_{1}, S_{2}, N_{1} and N_{2} are given in Table 5, combination A. Using formula (4), the two experiments give the follow wing values for s_{o} :

Experiment 1a: $s_{0^{7}}=\frac{147 \cdot 296}{250 \cdot 192}=0.91$

Experiment $2: s_{\sigma^{4}}=\frac{197 \cdot 244}{217 \cdot 25}=0.87$ $217 \cdot 255$

Using a mean value of the two experiments, we get

$$
s_{0^{71}}=\frac{0.01+0.87}{2}=\frac{0.82}{2}
$$

It is not possible with the present material to use statistical criteria to get an idea of the accuracy of the results, both becuase we have too few experiments and because of the large number of lost fish.

However, onc can use a rough reasoning to find the possible extrome values of the survival factor. Much of the uncertainty is connected with the sex ratio among the fish originally released into tho enclosures, and with what happened to the lost fish. In Table 5a are given some of the possible combinations, and in Table $5 b$ are given the resulting values of $S_{1}, N_{1}, S_{2}, N_{2}$ and S_{0} o

The extreme values of s from Experiment l and assumptions D and E, are 0.92 and 0.85 as the highest and lowest values, respectively. It is reasonable to assume that if all the fish that were released could have been accounted for, the experiments would still have given a value of ${ }^{s}{ }^{\text {f }}$ somewhere between those extremes. It is also probable that small variations in the handling and tagging technique, as are likely to occur if the tagging is done by differont persons, may cause the survival factor to change beyond the extremes found from these considerations.

It must be remembered, further, that s on $\begin{gathered}\text { f } y \text { represents a maximum }\end{gathered}$ value for the survival factor, because it does not take into account mortality due to stress from the catching procedure or the stay in the storage tanks.

Taking thesc qualifications into account, the accuracy obtainod from the experiments should be considered satisfactory, and $s_{o^{\prime}}=0.89$ can be adopted as a maximum value for the survival factor for male capelin.

Surviral factor for female capelin

For most of the capelin tagged during 1974, each series of 50 tags was used either for femalos only or males only. It is thus possible to calculate "tag recovery factors" (F) separately for tags applied to female and male capelin, respectively:

$$
F^{\prime}=\frac{\text { number of tageed fish recovered }}{\text { number of taged fish released }}
$$

If one assumes that fishing mortality is the same for male and femele capelin, different values of the tag recovery factor must be due to different mortality. Natural mortality is probably small for both sexes compared to the tagging mortality so that the difference between tace recovery factors can be assigned to different tageimg mortality alone. The tag recovery factor can then be assumed to be proportional with the tageing survival factor, and the relationship can be expressed as follows;

$$
\begin{aligned}
& \frac{s_{q}}{s_{0}^{A}}=\frac{{ }^{F} q}{F_{\delta}} \\
& s_{q}=s_{\sigma^{\prime}} \cdot \frac{F_{q}}{F_{\sigma}}
\end{aligned}
$$

Using $s_{d}=0.89$ and tageing data from 19.74 , we get:

$$
s_{q}=0.89 \cdot \frac{\frac{644}{350}}{\frac{231}{5650}}=0.51
$$

$\underline{s}_{\mathcal{O}}=0.51$ can thus be adopted as a maximum value for the survival factor for femalc capelin.

TUE SIZE OF TIIE 1974 SPAMNING POPULATION

MATEIRTAL AND METHODS

N1together 13.500 tagged capelin were released during the winter fishery 1974. In Fig. 3 are shown the positions where tagged capelin were released.

For calculation of the results, the releases were divided into throe Eroups according 'to time:

Group 1. The tags $\mathrm{N} 9701 . \mathrm{N} 10000$ and $\mathrm{N} 11101 . \mathrm{N} 11800$, altogether 1000 fish, were released Februar 19 on the North Cape Bank. The sexes were not tagged with different series of tags, and it is therefore not possible to know the sex ratio of the tagged fish that were released nor of those that were recovered.

Group 2. The tags N 11801 ~ N 14000 and N 15001. - N 20800, altogether 8000 fish, were released during the period itarch 11 14, in the outer part of the Varanger fjord and outside Varde. For these tags and those released later each series of 50 tags was used either for males only or for females only. It is thus possible to know whether recovered tags are from male or female fish. 4000 of the tagged fish were males and 4000 were females.

Group 3. The tags N 20801 - N 25300, altogether 4500 tags (1650 male capelin and 2850 females) were released from March 19 to March 25 along the coast of eastorin Finnmark, from the
outer part of the Varanger fjord to Berlevág.

The spawning population (V) at the time of tagging can be estimated from formula (1):

$$
\hat{V}=\frac{N \cdot C \cdot s}{R}
$$

For the tags in Group 1. this formula can be used directly.

For Group 2 and Group 3 we also have information about the numbers of each sex that were tagged. The most direct way to use this additional information is to calculate the populations soparately for females and males, and then add the results to get the total population. llowever, with a survival factor of 0.51 for female capelin, the calculations based on females are likely to be unreliable, The calculations from tags in Group 2 and Group 3 were therefore based on male capelin only, and formula (1) was adapted for the purpose:

$$
V=\frac{N_{0}^{\prime} \cdot\left(\mathrm{C} \cdot \mathrm{k}_{\sigma^{\prime}}\right) \cdot \mathrm{s}_{0^{\prime \prime}}}{\mathrm{R}_{\sigma^{7}} \cdot \mathrm{k}_{\sigma^{\prime \prime}}}
$$

$$
\begin{equation*}
V=\frac{N_{o} \cdot C^{\cdot} \cdot s_{o^{7}}}{R_{o^{\prime \prime}}} \tag{5}
\end{equation*}
$$

$k_{\gamma}=$ the proportion of the catch that is made up of male capelin.

The other symbols are as in (1) with the addition that the index o^{7} signifies that the appropriate values for male capelin should be used.

The total spawning population, P, is estimated from the formula

$$
\begin{equation*}
P=V+C_{0} \tag{6}
\end{equation*}
$$

where C i.s the catch taken before the tags were released.

More interesting than the actual values of \hat{V} obtained from the calculations are the limits of confidence for the results. BATLEY (1951) has given formulas for mean and standard deviations for $\left(\frac{\hat{1}}{V}\right)$. Although \hat{V} is not normally distributed, ($\left.\frac{\hat{\lambda}}{\hat{V}}\right)$ is, and the 95% confidence interval is:

$$
\frac{R-1.26 \cdot R}{N \cdot C \cdot s}<\frac{1}{V}<\frac{R+1.26 R}{N \cdot C \cdot s}
$$

The corresponding "confidence interval" for \widehat{P} is:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{o}}+\frac{\mathrm{N} \cdot \mathrm{C} \cdot \mathrm{~S}}{\mathrm{R}+1.96 \cdot \mathrm{R}}<\mathrm{P}<\mathrm{C}_{\mathrm{o}}+\frac{\mathrm{N} \cdot \mathrm{C} \cdot \mathrm{~S}}{\mathrm{R}-1.96 \mathrm{R}} \tag{7}
\end{equation*}
$$

Formula (7) was used directly for the calculations from Group 1. For Group 2 and Group 3 the formula was, according to (5):
(8)

Number of fish tageed (N)

The numbers of fish tagged were known. Fro Group 1 we knew only the sum of females and males. For Group 2 and Group 3 both the number of females and the number of males were known.

Size of the catch after tagging (C)

The 12 factories that were considered most important were tested for "tag return efficiency". 100 capelin taken from the conveyor belt were tagged in the usual way, but with unnumbered tags. The tageed fish were then put back on the conveyor belt just before it entered the production machinery. The unnumbered test tags were
collected together with the numbered tags from magnets in the production system and during cleaning. In Table 6 the tag return efficiencies (the proportion of the released test tags that were returned), and the numbers of recovered numbered tags per (hectolitre $x .0^{5}$) are given. Only factories with tag return efficiencies >0.50 were used in further calculations.

A1. 1 catches of capelin that are delivered, are sampled by statim stics collectors, and among other information they also record the date the catch was talcen, the size of the catch, the factory that takes delivery, and the length frequencies, based on one or two samples of approximately 100 fish from each catch.

From the above information we obtained the catch fished in any period of time that was delivered to each factory (Tables 7, 8 and 9).
C was then calculated from the formula:

$$
\dot{C}^{\prime}=\mathrm{f}_{\mathrm{f}} \cdot \mathrm{p}_{\mathrm{f}}
$$

f sienifies the factories $A \sim G$, that had tag return efficiencies >0.50
$o_{f}=$ tag return efficiency for factory f
$p_{f}=$ catch of capelin from the date tageing started and out the season, delivered to factory f.

The calculations of C are shown in Tables 7,8 and 9.

Catch taken before the tags were released (C_{o})

Co i.s the total catch fished before the date when the first tag in each group was released, and has been taken from the same statistics as C.

Group $1 C_{o}(f i s h e d$ Febr. 18 and earlier $)=0.6 \cdot 10^{6} \mathrm{~h} 1$ Group 2 $C_{o}($ fishod March 10 and earlier $)=2.5 \cdot 10^{6} \mathrm{hl}$ Group $3 C_{o}(f i s h e d$ March 18 and earlier $)=4.8 \cdot 10^{6} \mathrm{~h} 1$

Tagging survival factors (s)

The maximum values from the experiment were used:
$s_{\varrho}=0.51$ and $s_{\sigma^{7}}=0.89$. For Group 1 it was assumed that half the tagged fish were females and half males, and consequently $s=\frac{1}{2}\left(s_{Q^{2}}+s_{o^{7}}\right)=0.70$.

Numbers of tags recovered (R)

Each tag that was returned was taped to a card with (among other) information about which factory the tag was returned from. Thus, it was easy to count the tags from different series that had been returned from the factories in question. As the correction for tag return efficiency has been incorporated into C, the values for returned tags can be used directly. The results are given in Tables 7, 8 and 9.

IRESULTS AND DISCUSSION

Using the above information, the "95 \% confidence intervals" for P can be calculated separately for the three groups of tags. A factor of 0.097 is used to transfer the results from hectolitres, as used in the catch statistics, to tons (for commercial purposes one reckons 97 kilos in 1 hectoliter of capelin).
$\left(0.6 \cdot 10^{6}+\frac{1,000 \cdot 1.883 .265 \cdot 0.70}{22+1.96 \cdot \sqrt{22}}\right) \cdot 0.097$ tons $<\mathrm{P}<$

$$
\left(0.6 \cdot 10^{6}+\frac{1.000 \cdot 1.883 .265 \cdot 0.70}{22 \cdot 1.96 \cdot \sqrt{22}}\right) \cdot 0.097 \text { tons }
$$

$$
4.2 \cdot 10^{6} \text { tons }<\mathrm{P}<10,0 \cdot 10^{6} \text { tons }
$$

Group 2

$$
\begin{aligned}
&\left.2.5 \cdot 10^{6}+\frac{4.000 \cdot 1.283 .129 \cdot 0.89}{538+1.96 \cdot \sqrt{538}}\right) \cdot 0.097 \text { tons }<\mathrm{P}< \\
&\left(2.5 \cdot 10^{6}+\frac{4.000 \cdot 1.283 .129 \cdot 0.89}{538-1.96 \cdot \sqrt{538}}\right) \cdot 0.097 \text { tons }
\end{aligned}
$$

$$
1.0 \cdot 10^{6} \operatorname{tons}<\mathrm{P}<1.1 \cdot 10^{6} \operatorname{ton} s
$$

Group 3

$$
\begin{aligned}
&\left(4.8 \cdot 10^{6}+\frac{1.650 \cdot 646.999 \cdot 0.89}{65+1.96 \cdot \sqrt{65}}\right) \cdot 0.097 \text { tons }<\mathrm{P}< \\
&\left(4.8 \cdot 10^{6}+\frac{1,650 \cdot 646.999 \cdot 0.89}{65-1.96 \cdot \sqrt{65}}\right) \cdot 0.097 \text { tons }
\end{aligned}
$$

$$
1.6 \cdot 10^{6} \text { tons }<p<2.3 \cdot 10^{6} \text { tons }
$$

As can be seen, the estimates of the spawning population differ widely according to which group of tags has been used. This variation is much larger than what can be accepted if. the popup lation estimate is to be used for regulation of the fishery.

The obviously most important reason for this is that the tagged fish were not randomly distributed in the population. As a result of this, fishing mortality for the tagged fish may have been substantially different from the fishing mortality for the rest of the spawning population.

In the case of Group 1 , there is also reason to believe that natural mortality has been much higher than for the rest of the population: Immediately after the tagging a storm blew up and stopped the fishing almost completely for a week. After the storm the concentration of capelin in which the tagged fish from Group J. had been releasod could not be located. Information from our researcli vessels (ANON. 1974) indicate that a fairly heavy concentration of cod was found in the area where this capelin was lost. In any case, whether this concentration of capelin was decimated by predation or it just avoided the fishing vessels, there can be no doubt that fishing mortality for the capelin from Group 1 was much lower than for the rest of the spamming population. The extraordinarily hich population estimates resulting from the tags in Group 1 should therefore be disrogarded completely.

As for the capelin tagged in Group 2 and Group 3 there are few data to indicate, for the groups as a whole, whether fishing mortality for tagged fish was different from that for the whole population. However, release of the tagged fish ocourred fairly close to the fishing fleet, and fishing mortality was at least likely to be very variable from batch to batch of the tagged fish.

There are also considerable possibilities of bias in the values used for the survival factors, the tag return efficiencies and the way the catch statistics have been used, but a discussion of that would carry too far here.

We are then left with two estimates of the spawning population. The calculations based on the tags in Group 2, with 4,000 tags released and 538 returned, indicate a spawning population of $1.0=$ 1.1 million tons. The calculations based on the tags in Group 3. with 1,650 tags released and 65 returned, indicate a spawning population of $1.6-2.3$ million tons.

Tho larger number of tags released in Group 2. and the fact that the tags were released earlier in the fishing season, might
indicato that the results from Group 2 are less likely to be biam sed. This estimate also agrees well with an acoustic estimate carried out in September m October 1973 (DOMIASNES, NAKKEN, SKTRE and FROTLAND, 1974), that indicated a spawning population of 1.O million tons, with a possibility that the value might be as high as 1.5 miliion tons (NAMKEN and DOMMASNES, 1975).

The widely diffexing estimates of the same stock using three different groups of tags indicate that at present stock estimates for capelin based on tageing experinents should be treated with caution. However, even now the tagging experiments are useful as controls for the acoustic estimates, and efforts should bo made to improve the reliability.

SUMMARY

1. Capelin tagged with internal stainless steel "sprat tags" have been kept in net enclosure for 9×10 days to get the survival factor.

The "maximum survival factor" was found to be 0.89 for males. Additional information from routinc tag recoveries indicated a maximun survival factor of 0.51 for female capelin.
2. The 1974 capelin spawning population in the Barents Sea was calculated separately from three different groups of tags released at different times during the fishery.

The resultingimate the population size was $4.2 a 10.0$ million tons, 1.Omi.1 million tons, and $1.6-2.3$ million tons, respectively. The highest estimate is obviously too high, and the reason is bem lieved to be that the part of the population into which those tags were released had lower fishing mortality than the rest of the population. As for the two remaining estimates, the reason for the difference probably is that the tageed fish was not randomly mixed into the population. The tagging experiments give little basis for choosing one or the other of those two estimates, except that the lowest one is based on the largest number of released tags.

refertences

MNON. 1974. Gyteinnsiget av lodde vinteren 1974. [The spaming migration of capelin the winter of 1974.] Fiskets Gane, 60: 713-718.

BATLEY, N.J.J. 1951. On estimating the size of mobile populations from recapture data. Biometrika, 38: 293-306.

DOMMASNES, Λ_{0}, NAKKEN, 0_{0}, SETRE, R. and FROILAND, Ø. 1974. Loddem of polartorskundersekelser i Barentshavet i september - oltober 1973. [Investigations on capelin and polar cod in the Barents Sea in September - October 1973.] Fislets Gang, 60: $73-77$.

DRAGESUND, O., GJGSRTER, J. and MONSTM, T. 1973. Estimates of stock size and reproduction of the Barents Soa capelin in 1970-1972. FisliDir. Sler. Ser. TYavUnders., 16: $105-139$.

LAEVASTU, T. 1965. Manual of methods inf fisheries biology. FAO Manuals in Fisheries Science No. 1. FTb/M1. Rome 1965.

NAKIEN, O. and DOMASNES, A. 1975. The application of an echo integration system in investigations on the stock strength of the Barents Sea capelin (Mallotus villosus MULLER) 1971 - 1974. Coun. Ireet.int.Coun. Explor. Sea, 1975(B: 25): 1-9, 12 Figs.

Table 1. Numbers of dead rish picked up oach day from tho differont series of tags, plus the numbors of survivals picked up at the ond of the experiments. Also given is tho numbor of iecovored tageed fish in experiments 1 and 2 that had lost their tags. Tho fish veno releasea Into the not onclosures February 20. Fobruary 21 doad fish were takon up in tho mornires and the afternoon, the other days in tho morning. Exporiments 1 and 1 a woro fintshod on Februaxy 28, and Experiment 2 was fintshed on March 1.

Dates Tag number	February									ro	$\begin{aligned} & \text { End of } \\ & \text { Exp. } \end{aligned}$	Total number rocovored
	21		22	23	24	25	26	27	28	1		
TN $98501 \sim 550$	36	1	-	$=$	-	\cdots	-	1	\cdots		-	33
N 98551-600	38	3	1	3	-	-	-	-	-		2	47
N 98601-650	28	3	3	1	1	-	1	-	\cdots		7	44
T N 93651-700	11	2	-	3	1	2	1	1	-		26	47
- \sim - $98701-750$	11	3	2	-	-	-	2	1	2		23	44
+ N N 98751-800	12	3	2	2	-	1	\cdots	-	-		26	46
. ${ }_{\text {H }}^{\text {H }}$ N 98801-850	5	-	1	1	\pm	-	1	-	1.		39	48
¢ ¢ N o ¢ $9851-900$	8	1	2	2	2	-	1	\cdots	2		25	43
	5	-	n	' 1	\cdots	-	-	-	\cdots		8	14
N 98901 - 950	4	-	3	-	1	-	2	2	1	1	25	39
N 98951-000	-	\cdots	1	\cdots	\cdots	1	1	1	-	-	29	33
r N 99001-050	2	3	$=$	1	-	2	3].	-	1	23	36
+ N 99051-100	6	4	3	3	\cdots	-	-	1	-	1	1.7	34
¢N 99101-150	5	-	3	1	\cdots	-	-	-	\cdots	\cdots	28	37
\% N 99151-200	2	2	1	\cdots	1	3	2	2	-	1	23	37
Fish that liavo allost the tiag	1.	\cdots	-	-	-	-	-	-	-	-	4	5

Table 2. Tag retamment in ixperiment 1 (tacs $\because 90501-\therefore 9 E 2, \therefore$)

Surviving fish rocovered at tho end of the experinent	0	0
Survivine fish recovered that had kopt the tags	1	155
Tageretainment factor	1	1.47

* The numbers have beon estimatori on the assumption that the sex
ratio armon the fish released was the same ias amone those recoverct.

Table 3. Results of Experiment la (tags N98651-N98900)

* The numbers have been estimated on the assumption that the sex ratio amone the fish released was the same as among those recovered.
** The numbers have been estimated, using the "TaE retainment factor" calculated for Experiment 1 and Given in Table 2.

Table 5a. Some possible combinations of sex ratio and mortality for the lost fish

A Tho sex ratios among the fish initially reloased into the cnclosures was the same as among those recovered, and the ratio dead/survivals was tiae same among those lost as among those recovered in the groups "tageed" and "untageed", respectively.
B The sex ratios among the fish initially released into the enclosures was the same as amons those recovered, and all lost fish are considered as survivals.

C The sex ratios among the fish initially released into the enclosures was the same as amone those recovered, and all lost fish are considered as dead.

D All lost fish are considered as surviving males.
E All lost fish are considered as dead males.
F All lost fish are considered as females.

Table 5b. Values of $S_{1},{ }^{\prime} \mathrm{N}_{1}, \mathrm{~S}_{2}, \mathrm{~N}_{2}$ and S_{S} for the combinations of sex ratio and mortality given in Table 5a. Loss of tags has been included in S_{1}, using the "Tag retainment factors" Eiven in Tables 2 and 4 .

Experiment la						Experiment ?				
	N_{1}	S_{1}	N_{2}	S_{2}	S^{2}	N_{1}	${ }^{5} 1$	N_{2}	S_{2}	- ${ }^{*}$
A	192	147	296	250	0.91	255	197	244	217	0.87
B	192	149	296	251	0.92	255	210	244	218	0.92
C	192	138	296	247	0.86	255	145	244	161	0.86
D	196	153	297	252	0.92	267	222	258	238	0.90
E	196	138	297	247	0.85	267	145	258	161	0.87
F	180	138	292	247	0.91	188	1.45	181	161.	0.87

Table 6. Tag return efficiencies, and recovered tags per (hectolitre x 10^{5}) corrected for tag return elficiencies

Table 7. Quantities of capelin fished after Febr. 18, delivered to the factories in question and corrected for tag return efficiency, together with the numbers of tags from Group 1 returned from those factories

Factory desination	Tag return efficiency (c)	Quantity received that had been fished after Febr. 18, in hectolitres (p)	Corrected quantity in hl $(\mathrm{e} \cdot \mathrm{p})$	Returned tags N 9701-10000 N11101~11800
A	0.90	171789	154610	0
B	0.81	222941	180582	2
C	0.79	236414	186767	6
D	0.78	987701	770407	3
E	0.74	435498	322269	2
F	0.61	217329	160823	5
G	0.55	196012	107807	4
- Surn of corrected quantities, C			1883265	22
Sum of returned tags, R				

Table 8. Quantities of capolin fished nfter March lo, delivored to the fictories in question and corrected for tag return efficiency together with the numbers of tags from Group ? returned from those factories.

Table 9. Quantities of capelin fished after March 18, delivered to the factories in question and corrected for tag return efficiency together with the numbers of tags from Group 3 returned from those factories.

Fig. 1. The Honningsvåg - Nordvågen area. The experiment site in Nordvågen is indicated by an arrow.

Fig. 2. A capelin. The position where the tag is pushed into the body cavity is indicated by the arrow. A tag is shown in correct relative size.

Fig. 3. Positions wheretaggeci capeliri were released. 1) Tags N 9701-10000 and N 11101-11800 (Group 1), 2) Tags N 11801-14000 and N 15001-20800 (Group 2), 3) Tags N 20801-25300 (Group 3).

