International Council for the Exploration of the Sea
C.M.1975/D:2

Statistics Committee
Ref.: Demersal Fish (N) and (S) and Pelagic Fish (N) and
(S) and Baltic Fish Cttees
x) General Secretary ICES, Charlottenlund Slot, 2920 Charlottenlund, Denmark.
I. Participants

Mr F Billström	Sweden
Mr H B Becker	Netherlands
Mr A C Burd	U.K. (England)
Mr O A Davidsen	Norway
Mr D de G Griffith	ICES
Mr H Lassen	Denmark
Mr K Iaumann	Denmark
Mr K Popp Madsen	Denmark
Mr J A Pope(Chairman)	U.K. (Scotland)
Mr Ø Ulltang	Norway

The General Secretary also took part in the discussions of the Working Group.
2. Terms of Reference
C.Res. 1974/2:18 stated as follows:
"It was decided, that:
the ADP Working Group should meet again for five days at Charlottenlund as soon as possible after the results of the trial run become available, with the following terms of reference:
(a) to review the output of the trial run on North Sea Herring data taking into account the comments of the members of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$;
(b) to revise and extend the specifications of the software for System c);
(c) to review the input material required for a demersal fish Working Group data file; and
(d) to review progress with the production of the "Bulletin Statistique" by ADP Methods."

3. Results of the Trial Run

3.1 Output from a trial run of a simplified version of parts of the future ICES FISHDAT system" was available at the meeting. Details of this mun and certain tables of data compiled from the full output are given in the Appendix which was prepared by Mr H Lassen and Mr K Laumann. The data available for this run relating to catch and biological data on North Sea herring for the year 1972, together with guidelines for processing the data, are described in the Third Report of the Working Group (Doc. C.M.1974/D:5).
3.2 A single computer file of these data was created, this file consisting of records of catch and biological data for each country on a monthly divisional or rectangle basis. One of the differences between the approach adopted for handing the trial run material and the full ICES FISHDAT system proposed by the Working Group was in the use of a single file rather than separate files for catch and biological material. A considerable amount of programming and data handling experiences was gained which will be valuable in setting up the full system. The organisation of files for the trial run is being used for the production of "Bulletin Statistique" tables (1973) data.
*) In previous Reports called "System c)".
3.3 About 15% of the total North Sea herring catch for 1972 was not specified as to either division or gear. All allocations made during the establishment of the data file were carried out manually. All the biological data (no. $/ \mathrm{kg}$, $\%$ spring spawners, age distributions) were specified by divisions, by herring area, or by statistical rectangle. They were also specified by month and gear, although there were many month/gear/area combinations for which the biological data were incomplete or lacking.
3.4 Where decisions of allocation had to be made, it was necessary to print out the data. Intermediate calculations such as the application of adjacent-month no. $/ \mathrm{kg}$ and the compilation of age distribution tables were in this instance carried out by hand. These calculations could, however, have been handled by the system.
3.5 The computer output consisted of a print-out of all records and a large number of two-way tables giving information on available biological data. At first sight these tables appeared difficult to read because of the amount of coded information given in the table headings, but this is a feature of any general system and is not particular to the OSIRIS system on which the trial run was based. Any system which allows flexibility in the handling of data must contain a large number of options, and a record of all options and filters used preparing a particular item of output is an essential requirement of the system. Thus while some better explanation of the table headings appeared desirable, the members of the Group were of the opinion that one could quickly become familiar with the coded headings and interpret material relatively easily. Some examples of the print-out are given in the Appendix.
3.6 From the computer output, tables were prepared by hand giving catches (in numbers) by ages on a monthly basis. A selection of these are shown in Table 7 of the Appendix. In order to compare the results of the trial run with those obtained by the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (Doc. C.M. 1974/H:4, Table 2.8) catches on an annual basis were compiled. Table 1 gives these catch figures from both sources ($\mathrm{p}, 6$). It will be seen that althougin in general terms the agreement is good, the results for Area IVa W show some differences, particularly with regard to the total numbers caught. There are a number of reasons for these differences, the main one being the use of unsatisfactory ratios of numbers per kg in the case of industrial trawl data.
3.7 The trial run is about 36000 tons short overall compared to the figures of the Herring Assessment Working Group (see Appendix Table 8). This discrepancy is mainly due to the omission of the Faroese catch (48000 tons). The trial run, however, gives about 500 million fish more than the Herring Assessment Working Group. Adding the 36000 tons to the total number of fish in the trial run would give a total surplus of about 800 million fish over the number calculated by the Herring Assessment Working Group.
3.8 It is difficult to explain precisely where this difference arises, but since the biological material used by the Herring Assessment Working Group was more extensive and more detailed, their figure for total catch in numbers must be regarded as being the most reliable. The figures produced by the trial run, therefore, should not be taken as an alternative to - or a replacement for figures of the Herring Assessment Working Group.
3.9 It was felt that the output had shown the trial run system to be a viable and useful tool for stock assessment purposes. The tabulations of age compositions per month per gear were, in particular, considered to be extremely useful. It was noted that the system operates on rules and guidelines drawn up by stock assessment specialists, and that different procedural guidelines would conceivably by needed for different species. The problems encountered during the setting up of the trial run, however, would be very similar to those which would be encountered when designing the full ICES FISHDAT system.
3.10 The Working Group expressed their indebtedness to the Danish Institute for Fisheries and Marine Research for the facilities which had been made available for the trial run, and in particular to Mr H Lassen and Mr K Laumann for the extensive work they had carried out in this connection.
4. Specification of Further Programs to be Included in ICES FISHDAT System
4.1 The Working Group again considered various aspects of the ICES FISHDAT system. The production of the tables for "Bulletin Statistique" by ADP methods is in progress, based on a specific file structure set up for this purpose. Input to these files in computer-readable form submitted by national offices was not considered to be a difficult task. It was noted that the ICES FISHDAT system would need to be compatible as far as possible with the system already in use by other agencies in the Coordinating Working Party on Atlantic Fishery Statistics. The Secretariat was requested to discuss this matter with these agencies and with member countries in order to facilitate the submission and handling of future data, and in particular to avoid member countries having to use different systems when reporting to different agencies.
4.2 The Working Group discussed at some length the flexibility of the OSIRIS system (on which the trial run had mostly been based) in order to see if it is sufficient to meet all the possible needs of assessment working groups. At this stage the trial run system is not expected to fulfill all these needs. It was agreed that further experience was needed, and accordingly the ADP Working Group recommended that another run be made, using 1973 herring data (which were mostly transcribed during the meeting to a form suitable for punching). The cost of this was considered not to exceed D.Kr. l, 200, and the General Secretary confirmed that this sum would be available. The Working Group also felt that the present system would be of use in the assessment of demersal fish stocks such as North Sea plaice and invites the North Sea Flatfish Working Group to provide a specification for the carrying out of a trial run based on the relevant data. The output of the trial run based on 1972 herring data for assessment purposes will be presented to the Herring Assessment Working Group for the Area South of $62^{\circ} \mathbb{N}$ at their meeting in February-March. 1975, for comment
4.3 The ADP Working Group would like to stress as a first priority the importance of adding to the system, as soon as possible, programs for improving the readability of the output.
4.4 The ADP Working Group also recommended that further studies concerning the detailed lay-out of the files and records in the system, and the links between files, should be made by the ADP Working Group during 1975/76. The bases of these studies should include information on the experiences of the other agencies and national offices, and detailed information on the capability of the OSIRIS system. While it is envisaged at present that the ICES FISHDAT system will be established within the OSIRIS system, a switchover to another system would cause no major difficulties in re-arranging the data.
4.5 The ADP Working Group felt that in order to enable the Secretariat to continue work on the preparations for the ICES FISHDAT system, a sum of the order of D. Kr. 10,000 should be made available.

5. "Bulletin Statistique"

5.1 The Statistician informed the Working Group of the progress which had been made towards the production of "Bulletin Statistique" by ADP methods. The 1973 catch data were now on tape and the computer programmes to produce Bulletin Tables 3, 4 and 5 were being tested with this material. The Working

Group examined a proposal to produce Bulletin Tables l-6 and 8-11 by offset reproduction of computer print-outs and to replace Bulletin Table 7 by the entire contents of the STATLANT "Statistical News Letter" (offset reproduction of a typescript). The Working Group supported the suggestion of combining the two publications in this way for 1973 data and for the data of subsequent years.
5.2 The lay-out of the tables in "Bulletin Statistique" was reviewed in the ligit of the suggestions made by the 1973 meeting of the Working Group (Doc. C.M. 1973/D:4), and as discussed by the Statistics Committee at the 1973 Council Meeting. It was noted that the following changes would be implemented in Volume 58 of the Bulletin (1973 data):

Tables 1 and 2:	A complete spread of years from 1962 to 1973 would be given.
Table 6:	Captions to read "Nominal Catch of Selected Species in Principial Fishing Areas 1956-1973"。 Top row of each species tabulations to read: "All Fishing Areas", and principal areas to follow.
Table 8:	Two columns to be added: "Baltic" and "Total ICES". Freshwater fishes should be included as a separate species item.

5.3 The Working Group invited the Statistician to include in his Report to the next Council Meeting a consideration of the usefulness of Table 10 of the "Bulletin Statistique" in its present form.
5.4 The Working Group commended the inclusion of the new summary table for molluscs and crustacea in the Volume 5? of the Bulletin (Table 4), the need for which had arisen as a result of the inclusion of these groups in the revised Table 5 .
6. Data Security
6.1 The Working Group noted that the Consultative Comnittee had requested it to consider further, together with the General Secretary, the question of data security. The General Secretary referred to the paragraph on "internal" security in the Groupis last report (Doc. C.M. 1974/Ds 5) . He said that he felt as a matter of principle that data kept by an intergovernmental organisation in an international data bank should be exchangeable among the organisation's members. He agreed, however, that there were problems of a practical nature winich need to be considered and also that guidelines were needed as to how the data in the bank should be handled.
6.2 There was a thorough discussion and the Group agreed to recommend the following guidelines:
6.2.1 The data bank will be mainly established
(a) for the use of the Secretariat in production of routine publications; and
(b) for the use of the Council's Working Groups and Committees.

The data as delivered by the originators to the system are, in principle, exchangeable among the Council:s members. It will be the responsibility of the General Secretary and the Secretariat to see that if such data had been submitted with certain qualifications ("footnotes"), then these qualifications would be attached to them whenever they were extracted, whether for internal use or for exchange purposes.
6.2.2 It will be necessary for the Secretariat to produce for
Working Groups or Committees "trial runs" and transient
calculations in accordance with requestsfrom them, The
Secretariat may also, on its own initiative, produce such
preparatory documents. In all cases, however, these shall
be used only for the purpose for which they were intended.
They shall not be considered products of their own standing,
and will not be delivered to any person or institution other
than those involved in the work of the Group.
6.3 The Group was confident that if these guidelines are followed by all persons who have access to the data files, it would not be too difficult to handle the practical problems which might arise, and that "misuse" of the files would be avoided.
6.4 The Group found it unnecessary to comment further at this time on what had been said in the previous Report (Doc. C.M.1974/D:5) concerning "external security", but agreed that the matter should be kept under observation as the FISHDAT system is built up.
6.5 The General Secretary said that he was in full agreement with the Group's recommendations and views.

7. Input Material for a Demersal Fish Working Group Data File

The Working Group noted with regret that the participation in this meeting did not include any specialist in the biology of demersal species. The Group felt, therefore, that they were not in a position to deal with this subject (Item (c) in the terms of reference), but in Section 4.2 of this Report the North Sea Flatfish Working Group is invited to provide a specification for a trial run based on suitable data (the North Sea plaice is suggested).
Table l. North Sea catch in millions of fish by age.

Area	Age in winter rings										Total
	0	1	2	3	4	5	6	7	8	>8	
IVa E	-	47.2 75.1	$\begin{aligned} & 67.2 \\ & 91.0 \end{aligned}$	$\begin{aligned} & 71.4 \\ & 17.8 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.7 \end{aligned}$	${ }_{0.1}^{+}$	-			$\begin{aligned} & 187.5 \\ & 190.5 \end{aligned}$
IVa W	-	444.3 338.9	$\begin{aligned} & 899.2 \\ & 830.1 \end{aligned}$	$\begin{aligned} & 211.8 \\ & 176.8 \end{aligned}$	$\begin{array}{r} 132.5 \\ 88.6 \end{array}$	$\begin{aligned} & 43.6 \\ & 19.3 \end{aligned}$	$\begin{array}{r} 12.4 \\ 4.1 \end{array}$	2.1	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1748.0 \\ & 1458.7 \end{aligned}$
IVb	$\begin{aligned} & 907.4 \\ & 750.4 \end{aligned}$	$\begin{aligned} & 2951.6 \\ & 2921.8 \end{aligned}$	$\begin{aligned} & 467.8 \\ & 384.3 \end{aligned}$	$\begin{array}{r} 59.1 \\ 119.9 \end{array}$	$\begin{aligned} & 65.5 \\ & 26.9 \end{aligned}$	$\begin{array}{r} 12.0 \\ 7.9 \end{array}$	$\begin{aligned} & 3.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.6 \end{aligned}$	0.3	$\begin{aligned} & 4468.0 \\ & 4212.8 \end{aligned}$
$\begin{aligned} & \text { IVc }+ \\ & \text { VII } \alpha, e \end{aligned}$	0.2	$\begin{aligned} & 0.7 \\ & 4.8 \end{aligned}$	$\begin{array}{r} 5.4 \\ 135.1 \end{array}$	$\begin{aligned} & 78.4 \\ & 29.3 \end{aligned}$	$\begin{array}{r} 18.3 \\ 9.3 \end{array}$	$\begin{aligned} & 7.7 \\ & 5.0 \end{aligned}$	3.9°	0.1	$+$	0.1	$\begin{aligned} & 114.8 \\ & 183.5 \end{aligned}$
Total	$\begin{aligned} & 907.6 \\ & 750.4 \end{aligned}$	$\begin{aligned} & 3443.8 \\ & 3340.6 \end{aligned}$	$\begin{array}{ll} \text { I } 439.6 \\ \text { I } 440.5 \end{array}$	$\begin{aligned} & 420.7 \\ & 343.8 \end{aligned}$	$\begin{aligned} & 217.5 \\ & 130.6 \end{aligned}$	$\begin{aligned} & 63.8 \\ & 32.9 \end{aligned}$	20.1 5.0	$\begin{aligned} & 2.6 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 6518.3 \\ & 6045.5 \end{aligned}$

$+=$ less than 0.05 .

FINAL REPORT
by
Hans Lassen \&
Keld Laumann

Introduction

The input data were specified by the Working Group on Eventual Establishment of an ICES ADP System for Fishery Statistics at its 1974 meeting. The rules for filling in the forms were evidently not stated precisely enough. The resulting data file is quite complicated to work with, but most of the problems were eventually resolved by laborious checking, by further investigations, and (in some cases) by making certain assumptions.

The work took the following steps:

1. Specification of input data
2. Punching of data
3. Data vetting
4. Establishment of OSIRIS data file
5. Attempts to make a general split programme
6. Processing the data entirely by OSIRIS
7. Writemout of tables and final calculations by hand

Specification of Input Data

This was drawn up by the Working Group on the Eventual Establishment of an ICES ADP System for Fishery Statistics and is described in the Report of the June 1974 meeting of the Working Group (ICES Doc. C.M.1974/D:5).

Punching of Data

The ICES Hydrographic Section carried out this task on 80 column punch cards. The inpat data are listed in the annex.

Data Vetting

Data were checked using the computer facilities at DFH and NEUCC - an IBM 370/165. Two programmes were written:
a) Catchcheck control of catch data
b) Biocheck - oontrol of biological data

Both programmes are listed in the annex.

Establishing an OSIRIS File

Data were converted into numerical codes and arranged in a sequential file. The format of the record is given in the previous report (C.M.1974/D:5, Appendix III) and as an OSIRIS dictionary in the annex to the present paper. The programme used, ESTABDAT, is also listed in the annex together with the data file created. The code list used is given in the next section.
F) The annex consists of 3 kg of computer printout. One copy is with the Chairman of the ADP Working Group, and another is available for inspeotion at the Secretariat.

OSIRIS uses numerical codes which require that all alphanumerical codes must be recoded according to the following list:

Division

IVa	1
IVb	2
IVc	3

Sub-division
E $\quad 1$
W 2

Gear

Trawl I
Purse seine 2 Driftnet 3

Country

Denmark 1
UK (England \& Wales) 2
Netherlands 3
Germany, Federal
Republic of $\ldots . .4$
Norway 5
Sweden 6
Poland 7

USSR 8

Iceland 9
Faroe Islands o..... 10
France 11
Belgium 12
Spain 13
Portugal 14
German Democratic Republic ,....... 15
Ireland 16
UK (Scotland) 17

Utilization

Consumption 1
Industrial 2
Source of sample
Research I
Commercial 2

Rectangles

These were given as a number, giving the latitude, and one letter, giving the longitude, e.g. 18C. The letter is converted into a number according to the list:

A	1	G	7
B	2	H	8
C	3	J	9
D	4	K	10
E	5	L	11
F	6	M	12
		N	13

and the final code is found as

$$
\text { latitude x } 32+\text { letter-code. }
$$

The process is performed by the programme ESTABDAT.

Compilation of Catch Tables

The data were tabulated according to the following split:

1. Month
2. Country
3. Sub-division (IVaE, IVaW, IVb, IVc + VIId,e)
4. Gear (Trawl, Purse seine and Driftnet)
5. Utilisation of catch (for trawl only)
6. Are data given by rectangles or grouped into submavisions?

An example is given in Appendix Table 9.

From this table the catches were compiled into five separate tables:

Appendix Tables l-4 for each of the four gear utilisation groups
a) Month
b) Subodivision

Appendix Table 5 Unallocated catch, HELP.
The unallocated catches were of two types:

1. No monthly breakdown available (82 130 tons from Sweden and 1956 tons from Denmark) 。
2. A monthly breakdown available but without gear and utilisation specification This included data broken down by division and also data broken down by sub-division.

Our cry for HELP was heard, see point 8 in the verbatim filow chart (C.M. 1974/D:5, Appendix II), and the following rules were applied:
a) The Swedish catch was regarded as being non-existent: 7366 tons are separately specifiied as being taken in IVb.
b) Mr Popp-Madsen supplied the monthly breakdown for the Danish consumption catch and allocated it to the trawl fishery.
c) The Icelandic catch allocated to IVa was regarded as being a purse seine catch from IVaW. The catch in IVb was also assumed to have been made by purse seine.
d) Catches by UK (Scotland), France and the Federal Republic of Germany allocated to IVa were regarded as being trawl catches from IVaW for human consumption.
e) The USSR catch allocated to IVaW was regarded as being caught by trawl for human consumption.
f) The UK (England \& Wales) catch allocated to IVc + VIId, e was assumed to be trawl catch for human consumption.

By applying these rules, Appendix Table 6 was produced and the numbers were added to Appendix Tables $1-4$, giving the total catch of herring in the North Sea in 1972 split by month and gear and for trawls split by utilisation.

Compilation of Catch in Numbers for each Age Group

The OSIRIS system was used to produce the following tables (to be found in the annex) each split by:
a) Month
b) Subodivision
c) Gear
d) Jtilisation (for trawl only).

1. Number of fish weighed
2. Weight of above fish
3. Percentage of spring spawners
4. Number of fish aged in each age group.

Some examples are presented here (Appendix Tables 10m13).
The following rules were applied to the catch data as found in Appendix Tables 1-4:

1. If no biological information was available, data from the month closest in time was used (see 2 for exception). If two months were equally distant in time, the mean was taken.
2. If data on percentage of spring spawners were not available, the percentage was taken to be zero.
3. For IVC, no biological information was available on the trawl catch for industrial purpose (57 tons) and for the driftnet catches (26 tons) We applied the following rules:
a) The trawl catch for industrial purposes was assumed to be comparable to the catches from IVb using the same gear.
b) The driftnet catch was assumed to be comparable to the trawl catch for consumption purposes for the same area.

Appendix Table 7 was then produced as the answer to point 16 in the verbatim filow chart (C.M.1974/D:5, Appendix II).

Comparison of Nominal Catches

There are a number of differences between the catches given for the trial run and those used by the Herring Assessment Working Group, and these are shown in Appendix Table 8. The major differences are as follows:
a) No data for Faroes catches were included in the trial run. The Assessment Working Group used 979 tons taken from IVaE, 37004 tons from IVaW and 10460 tons from IVb. The gear in fact was purse seine.
b) The Swedish catch of 82120 tons allocated to Division IV was excluded from the tirial run due to lack of a monthly breakdown. The Herring Assessment Working Group used 7366 tons allocated to trawl for industrial purposes in IVb.
c) The trial run data allocated 9205 tons to IVaw for the Netherlands, while the Herring Assessment Working Group used 1967 tons.
d) For U.K. (Scotland) 3533 tons have been allocated to the trawl fishery for human consumption in IVaW. It may have been more reasonable to assume this catch to be pursemseine catch. This will not amount very substantially to any difference in catch in numbers between the estimates of the trial run and those of the Herring Assessment Working Group.
e) The catch by the Federal Republic of Germany is about 1500 tons higher than the catch given in the Report of the Herring Assessment Working Group. Also, the trial run has allocated this catch to trawl for human consumption, with consequently a lower no/kg, while the Herring Assessment Working Group Report stated that apart from 21 tons the catch was for industrial purposes (with a higher no/kg). The two discrepancies work in opposite directions and more or less balance out.

Conclusions

The aim of the present study was to gather information on how to combine the statistics of several nations. This could be done only by applying some rather arbitrary rules to the original data. This is not very encouraging, especially in the light of the fact that the North Sea herring was chosen because it was considered to be well documented. On the other hand, every assessment Working Group faces identical problems and they do produce results. Our general feeling is that without ADP methods we would have had a very hard time to get a picture of what data were available, what the breakdown was and to what extent they could be easily combined.

We looked into the problem of writing a general split programme, but gave up the idea after some work, as we considered the job to be too big for the trial run and making an ad-hoc programme was not worth the effort.

All processing of the data was done using the OSIRIS system, apart from logical control of input data and creating the OSIRIS file. We recommend extensive use of a standard system for the ICES data bank.

Costs

The job was completed in the 6 months from June 1974 to January 1975, and invoived punching about 1000 cards, writing three programmes and processing the data by the OSIRIS system - about 200 runs using about 30 min of CPU time. We have both worked on the job part-time for approximately 6 man-months, of which about 2 manmonths were spent on the general split programme. The actual calculations by hand took one day.

Appendix Table 1. 1972 Trawl consumption. Catches in metric tons.

Figures given in the second row of each month are allocated catches added to unallocated catches according to Table 6 .

Month	Division			
	IVaE	IVaW	IVb	IVc
Jan	7	50	*	1121
	60	5920	231	1155
Feb	5	6	18	691
	50	2968	216	-
Mar	10	52	146	454
	81	410	458	-
Apr	17	94	6	-
	53	194	142	2
May	26	325	7	1
	33	-	163	3
Jun	4	821	467	1
	1.1	4529	498	18
Jul	3	1037	2348	1
	10	10373	2830	6
Aug	26	833	4558	75
	29	10044	6310	-
Sep	4	5430	3021	32
	16	5637	4796	-
Oct	6	65	1494	487
	9	2220	2151	-
Nov	4	4147	16	6348
	22	5096	94	6407
Dec	11	2871	20	4272
	90	3996	363	--

Appendix Table 2. 1972 Trawl industrial purpose。 Catohes in metric tons.

No unallocated catch added.

Month	Division			
	IVaE	IVaW	IVb	IVo
Jan	880	1446	4675	∞
Feb	6927	5758	11063	∞
Mar	1382	6864	30735	-
Apr	628	600	1188	-
May	-	-	587	∞
Jun	1760	245	2. 645	41
Ju1	2835	3426	18590	16
Aug	2901	3407	34646	-
Sep	914	2.047	23005	-
Oct	732	2605	19163	-
Nov	904	1146	13712	∞
Dec	582	1799	2662	

Appendix Table 3. 1972 Purse seine catches.
Figures given in the second row of each month are allocated catches added to unallocated catches according to Table 6.

Month	Division			
	IVaE	IVaW	IVb	IVc
Jan	-	51 112	1487	-
Feb	1	27 86	-14	-
Mar	-	236 236	2156	-
Apr	\cdots	- 66	-	-
May	-	-4	-	-
Jun	47	45292 47557	$\begin{aligned} & 364 \\ & 636 \end{aligned}$	-
Jul	5	61798 64984	12. 963	\cdots
Aug	-	5543 12829	-	-
Sep	-	859 7615	4	-
Oct	-	2 10 10	-	-
Nov	20	97 4413	53	-
Dec	\cdots	- 751	-	-

Appendix Table 4. Drift net catches.

Month	Division				
	IVaE	IVaW	IVb	IVc	
Jan	-	-	-	1	
Feb	-	-	-	-	
Mar	-	-	-	-	
Apr	-	-	-	1	
May	-	45	-	1	
Jun	-	1028	-	-	
Jul	-	1353	-	-	
Aug	-	-	-	-	
Sep	-	304	-	3	
Oct	-	1	-	17	
Nov	-	18	-	-	
Dec	-	2	-	4	

Appendix Table 5. 1972 Unallocated catches.

Month	Division					
	IV	IVa	IVaE	IVaW	IVb	IVc
Unspecified	82130	-	367	-	1589	-
Jan	-	4956	-	975	-	33
Feb	-	1880	-	1114	1	-
Mar	-	152	-	206	2	-
Apr	-	72	-	2	1	1
May	-	7	\sim		1	1
Jun	-	2265	-	53	272	17
Jul	-	3497	-	2841	604	5
Aug	-	7879	-	3899	1737	-
Sep	-	6050	-	3540	1723	-
0ot	-	7904	-	2154	642	-
Nov	-	4317	-	845	1	23
Dec	-	1074	-	757	11	3
Total	(Disregarded)	40053	367	16386	6584	83
	Tota	$1 \mathrm{IVa}+$	VaW	56439		

Appendix Table 6. HELP.

Split of unallocated catch.
$\mathrm{TrC}=$ Trawl catch for consumption purpose. PS = Purse seine catch.

Month	Division					
	IVaE	IVaW		IVb		IVc
	TrC	Trc ${ }^{3}$	PS ${ }^{\text {1) }}$	TrC ${ }^{4}$	PS	$\left.\mathrm{Trc}^{2}\right)$
Jan	53	5870	61	231	-	33
Feb	45	2935	59	198	-	-
Mar	71	358	-	312	*	-
Apr	31	8	66	136	\sim	1
May	36	56	4	156	-5)	1
Jun	7	53	2265	31	2725	17
Jul	7	3152	3186	582	-	5
Aug	3	4466	7286	1752	\cdots	-
Sep	12	4138	5756	1775	-	∞
oct	3	2155	7903	657	-	-
Nov	18	846	4316	78	-	23
Dec	79	1080	751	343	10	3
Total	365	56770		6533		83

1) Icelandic catch total allocated to IVa.
2) UK (England) allocated to IVc.
3) UK (Scotland), France, Federal Republic of Germany (IVa) and USSR allocated to IVaW。
4) Danish consumption, France and UK (Scotland).
5) Icelandic catoh in IVb.

Appendix Table 7.

The full Appendix Table 7 consists of displays of (a) monthly catch, number in sample, weight of sample, no $/ \mathrm{kg}$, \% spring spawners, and catch in number of autumn spawners; (b) monthly catch per age group, in $\%$ and millions of fish, for the following fishing areas and gear categories:

$I V a E-\operatorname{Tr} C$	$I V a E-\operatorname{Tr} I$	$I V a E-P S$	$I V a W-\operatorname{Dr}$
$I V a W-\operatorname{Tr} C$	$I V a W-\operatorname{Tr} I$	$I V a W-P S$	
$I V b-\operatorname{Tr} C$	$I V b-\operatorname{Tr} I$	$I V b-P S$	
$I V c, V I I d, e-\operatorname{Tr} C$	$I V c, \operatorname{VI} d, e-\operatorname{Tr} I$	$I V c$, VIId,e-PS	

To keep the size of the Report within reasonable limits, a selection of these tables has been made to provide all the information available for Division IVb. The resulting six tabulations are presented here, and the complete Appendix Table 7 is available on request to the Secretariat.

Appendix Table 7. Calculation of catch in numbers for each
Area IVb area and each gear.
All data from commercial catches.

Month	Catch tons	Numbers	Weight	$\mathrm{No} / \mathrm{Kg}$	\% Spring Spawners	Catch in Number Autumn Spawners x 10^{6}
Jan	231			-	-	5.198
Feb	216			-	-	4.860
Mar	458			22.50	-	10.305
Apr	142			-	-	3.195
May	163			-	-	2.410
Jun	498			-	-	3.521
Jul	2830			7.07	10	18.007
Aug	6310			5.97	-	37.671
Sep	4796			6.31	-	30.263
0ct	2151			6.91	-	14.863
Nov	94			-	-	0.650
Dec	363			-	\cdots	2.508
Total	18252			-	-	133.451

Appendix Table 7. Relative age-distribution (\%).
Catch in numbers $\times 10^{6}$ 。
Source of Sample: C Gear: TrC Area: IVb

$\left\lvert\, \begin{gathered} \text { Age } \\ \text { Month } \end{gathered}\right.$. 0	I	II	III	IV	V	VI	VII	VIII	VIII ${ }^{+}$	Total
Jan			3.494	1.653	0.050						5.198
Feb			3.267		0.047						4.860
Mar			$\begin{gathered} 67.22 \\ 6.927 \end{gathered}$	$\begin{gathered} 31.80 \\ 3.277 \end{gathered}$	$\begin{aligned} & 0.97 \\ & 0.100 \end{aligned}$						$\begin{array}{r} 720 \\ 10.305 \end{array}$
Apr			2.148	1.016	0.031						3.195
May			1.083	0.75	0.386	0.109	0.069				2.410
Jun			0.797	1.079	-	0.319	0.203			$0 . \overline{029}$	3.521
Ju1			$\begin{aligned} & 22.63 \\ & 4.075 \end{aligned}$	$\begin{gathered} 30.65 \\ 5.519 \end{gathered}$	$\begin{gathered} 31.06 \\ 5.593 \end{gathered}$	$\begin{aligned} & 9.05 \\ & 1.630 \end{aligned}$	$\begin{aligned} & 5.76 \\ & 1.037 \end{aligned}$			$\begin{aligned} & 0.82 \\ & 0.148 \end{aligned}$	$\begin{array}{r} 486 \\ 18.007 \end{array}$
Aug		$\begin{aligned} & 0.03 \\ & 0.011 \end{aligned}$	$\begin{aligned} & 6.16 \\ & 2.321 \end{aligned}$	$\begin{gathered} 26.27 \\ 9.896 \end{gathered}$	$\begin{aligned} & 49.75 \\ & 18.741 \end{aligned}$	$\begin{aligned} & 13.79 \\ & 5.195 \end{aligned}$	$\begin{aligned} & 3.36 \\ & 1.266 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.026 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.098 \end{aligned}$	$\begin{array}{r} 2645 \\ 37.671 \end{array}$
Sep			$\begin{aligned} & 7.08 \\ & 2.143 \end{aligned}$	$\begin{array}{r} 13.35 \\ 4.040 \end{array}$	$\begin{aligned} & 67.49 \\ & 20.425 \end{aligned}$	$\begin{aligned} & 8.39 \\ & 2.539 \end{aligned}$	$\begin{aligned} & 2.69 \\ & 0.814 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.160 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.061 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.010 \end{aligned}$	$\begin{array}{r} 2.966 \\ 30.263 \end{array}$
0et			$\begin{gathered} 19.28 \\ 2.866 \end{gathered}$	$\begin{aligned} & 15.12 \\ & 2.247 \end{aligned}$	$\begin{array}{\|c} 57.06 \\ 8.481 \end{array}$	$\begin{aligned} & 5.28 \\ & 0.785 \end{aligned}$	$\begin{aligned} & 2.37 \\ & 0.352 \end{aligned}$	$\begin{aligned} & 0.66 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.028 \end{aligned}$		$\begin{array}{r} 1514 \\ 14.863 \end{array}$
Nov			0.0 .125	0.098	0.371	0.034	0.-015	0.004	0.001		0.650
Dec			0.484	0.379	$\stackrel{-}{1.431}$	0.132	0.059	$\overline{0.017}$	0.005		2.508
$\begin{aligned} & \text { Total } \\ & \text { Nos. } \end{aligned}$	-	0.011	29.730	31.503	56.750	10.743	3.815	0.377	0.121	0.345	133.451

Month	Catch tons	Numbers	Weight	No/Kg	\% Spring Spawners	Catch in Number Autumn Spawners x 10
Jan	4675			35.91	-	167.879
Feb	11063			43.07	-	476.483
Mar	30	735			34.28	-
Apr	1188			21.33	-	1053.596
May	587			-	-	25.340
Jun	2645			-	-	12.521
Jul	18	590			14.88	-
Aug	34646			20.26	-	276.358
Sep	23005			29.28	-	701.928
Oct	19163			19.61	-	673.586
Nov	13712			18.84	-	375.786
Dec	2662			29.80	-	258.334
Total	162671			-	-	79.328

Appendix Table 7. Relative age-distribution (\%).
Catch in numbers $\times 10^{6}$.
Source of Sample: C
Gear: TrI
Area: IVb

Month	0	I	II	III	IV	V	VI	VII	VIII	VIII ${ }^{+}$	Total
Jan		$\begin{gathered} 79.75 \\ 133.884 \end{gathered}$	$\begin{aligned} & 20.24 \\ & 33.979 \end{aligned}$								$\begin{gathered} 583 \\ 167.879 \end{gathered}$
Feb		$\begin{gathered} 91.56 \\ 436.268 \end{gathered}$	$\begin{gathered} 8.37 \\ 39.882 \end{gathered}$	$\begin{aligned} & 0.06 \\ & 0.286 \end{aligned}$							$\begin{aligned} & 1636 \\ & 476.483 \end{aligned}$
Mar		$\begin{gathered} 87.56 \\ 922.528 \end{gathered}$	$\left\|\begin{array}{c} 12.22 \\ 128.749 \end{array}\right\|$	$\begin{array}{\|l\|} 0.20 \\ 2.107 \end{array}$							$\begin{array}{ll} 1440 \\ 1 & 053.596 \end{array}$
Apr		$\begin{aligned} & 64.56 \\ & 16.360 \end{aligned}$	14.96 3.791	$\begin{aligned} & 6.29 \\ & 1.594 \end{aligned}$	$\begin{array}{\|c\|} 11.81 \\ 2.993 \end{array}$	$\begin{aligned} & 2.36 \\ & 0.598 \end{aligned}$					$\begin{gathered} 127 \\ 25.340 \end{gathered}$
May		8.083	- 1.873	--788		0.295					12.521
Jun	$\overline{8.911}$	29.703	- 0.740								39.358
Jul	$\begin{aligned} & 22.64 \\ & 62.627 \end{aligned}$	$\begin{gathered} 75.47 \\ 208.765 \end{gathered}$	$\begin{aligned} & 1.88 \\ & 5.200 \end{aligned}$								$\begin{gathered} 318 \\ 276.619 \end{gathered}$
Aug	$\left\|\begin{array}{c} 16.67 \\ 117.011 \end{array}\right\|$	$\begin{gathered} 77.54 \\ 544.275 \end{gathered}$	$\begin{gathered} 5.61 \\ 39.378 \end{gathered}$	$\begin{aligned} & 0.16 \\ & 1.123 \end{aligned}$							$\begin{aligned} & 1853 \\ & 701.928 \end{aligned}$
Sep	$\begin{gathered} 57.02 \\ 384.079 \end{gathered}$	$\begin{gathered} 41.80 \\ 281.559 \end{gathered}$	$\begin{aligned} & 0.92 \\ & 6.197 \end{aligned}$	$\left\lvert\, \begin{array}{l\|l} 0.12 \\ 0.808 \end{array}\right.$	$\begin{aligned} & 0.06 \\ & 0.404 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.404 \end{aligned}$					$\begin{aligned} & 1.629 \\ & 673.586 \end{aligned}$
Oct	$\left\|\begin{array}{c} 41.83 \\ 157.191 \end{array}\right\|$	$\begin{gathered} 55.69 \\ 209.275 \end{gathered}$	$\begin{aligned} & 2.47 \\ & 9.282 \end{aligned}$								$\begin{aligned} & 1255 \\ & 375.786 \end{aligned}$
Nov	$\left\|\begin{array}{c} 42.70 \\ 110.309 \end{array}\right\|$	$\begin{gathered} 56.40 \\ 145.700 \end{gathered}$	$\begin{aligned} & 0.88 \\ & 2.273 \end{aligned}$								$\begin{gathered} 679 \\ 258.334 \end{gathered}$
Dec	$\begin{aligned} & 84.56 \\ & 67.079 \end{aligned}$	$\begin{aligned} & 15.43 \\ & 12.240 \end{aligned}$									$\begin{gathered} 149 \\ 79.328 \\ \hline \end{gathered}$
Total Nos.	907.207	2948.640	271.344	6.706	4.876	1.297	-	-	-	-	4140.758

Appendix Table 7. Calculation of catch in numbers for each area and each gear. All data from commercial catches.

Month	Catch tons	Numbers	Weight	No. $/ \mathrm{Kg}$	\% Spring Spawners	Catch in Number ${ }_{6}$ Autumn Spawners x 10
Jan	I 487			12.50	- -	18.588
Feb	14			-	-	0.165
Mar	2156			11.11	-	23.953
Apr	-			-	-	-
May	-			-	-	-
Jun	636			-	-	7.066
Jul	12963			-	-	144.019
Aug	-			-	-	-
Sep	4			-	-	0.061
0ct	-			-	-	-
Nov	53			5	-	0.806
Dec	-			15.20	-	-
Total	17313			-	-	194.658

Appendix Table 7. Relative age distribution (\%).
Catch in numbers $\times 10^{6}$.
Source of Sample: C
Gear: PS
Area: IVb

Age	0	I	II	III	IV	V	VI	VII	VIII	VIII+	Total
Jan		$\left\|\begin{array}{c} 12.04 \\ 2.238 \end{array}\right\|$	$\begin{aligned} & 87.43 \\ & 16.251 \end{aligned}$		$\begin{aligned} & 0.52 \\ & 0.057 \end{aligned}$						$\begin{gathered} 191 \\ 18.588 \end{gathered}$
Feb		$0_{0.010}^{-}$	$\overline{0.143}$	$\overline{0.010}$	$0 .$						$0_{0}^{-} 165$
Mar			$\begin{aligned} & 85.86 \\ & 20.566 \end{aligned}$	$\begin{gathered} 11.95 \\ 2.862 \end{gathered}$	$\begin{aligned} & 2.17 \\ & 0.520 \end{aligned}$						$\begin{gathered} 92 \\ 23.953 \end{gathered}$
Apr											
Nay											
Jun			6.067	- 0.844	- -153						7.066
Jul			123.655	17.210	3.125						$\overline{-}$
Aug											
Sep	$0 . \overline{010}$	0.050									$\overline{0.061}$
Oct											
Nov	0.138	0.668									0.806
Dec	17.10	82.89									${ }^{76}$
Total Nos.	0.148	2.966	166.682	20.926	3.897	-	-	-	-	-	194.658

Appendix Table 8. Nominal catches (tons) Herring 1972.

Country: Belgium	IVaE	IVaW	IVb	IVc	Total
Trc	-	-	-	1336	1336
TrI	-	-	-	-	-
PS	-	-	-	-	-
Dr	-	-	-	-	-
Trial run total	-	-	-	1336	1336
Herring Assessment WG total	-	-	-	1337	1337
Country: Denmark					
Trc	86	367	1589	-	2042
Tris	19624	29343	162671	57	211695
PS	-	-	-		-
Dr	-	-	-	-	-
Trial run total	19710	29710	164260	57	213737
Herring Assessment WG total	19711	29711	164260	57	213739
Country: Faroe Islands					
TrC	-	-	-	-	\cdots
Tri		-	-	-	-
PS	-	-	\cdots	-	-
Dr	-	-	-	-	-
Trial run total	-	-	-	-	-
Herring Assessment WG total	979	37004	10460	-	48443
Country: France					
Trc	-	236	2576	11522	14334
Tri	-	-	-		-
PS	-	-	-	-	-
Dr	∞	-	-	\cdots	\cdots
Trial run total	-	236	2576	11522	14.334
Herring Assessment WG total	-	888	2. 014	9999	12901
Country: Germany, Federal Republic of					
Trc	1	882	4656	-	5539
Tri		-	-	-	-
PS	-	\sim	-	\cdots	-
Dr	-	-	-	-	-
Trial run total	1	882	4656	-	5539
Herring Assessment WG total		100	2844	112	3065
Country: Iceland					
Tra	-	-	\cdots	\cdots	-
Tri	-	-	-	-	-
PS	-	31635	334	-	31969
Dr	-	-	-	-	-
Trial run total	\cdots	31635	334	-	31969
Herring Assessment WG total	1943	29721	334	-	31998

Appendix Table 8 (Continued). Nominal catches (tons)。 Herring 1972.

Country: Netherlands	IVaE	IVaW	IVb	IVc	Total
TrC	93	9205	12020	12270	33588
TrI	-	-	-	-	-
PS	-	-	-	-	-
Dr	-	-	-	-	-
Trial run total	93	9205	12020	12270	33588
Herring Assessment WG total	40	1967	11372	11450	24829
Country: Norway					
TrC	-	-	-	-	-
TrI		-	-	-	-
PS	53	100173	17041	-	117267
Dr	-	-	-	-	-
Trial run total	53	100173	17041	-	117267
Herring Assessment WG total	50	100408	17043	-	117501
Country: Poland					
Trc	30	1592	614	-	2236
TrI.	-	-	-	-	-
PS	-	-	∞	-	-
Dr	-	-	-	\cdots	-
Trial run total	30	1592	614	-	2236
Herring Assessment WG total	-	1620	615	-	2235
Country: UK (England)					
Trc	-	78	278	229	585
Tri	-	-	-	-	-
PS	-	-	-	-	
Dr	-	21	\sim	85	106
Trial run total	-	99	278	314	691
Herring Assessment WG total	-	74	271	305	650
Country: UK (Scotland)					
Tre		3533	5	-	3538
Tri		-	-	-	-
PS	20	16898	-	-	16918
Dr		3793	-	-	3793
Trial run total	20	24224	5	-	24249
Herring Assessment WG total		17227	-	-	17227
Country: Sweden					
Trc	-	-	-	-	-
Tri	∞	-	-	\cdots	-
PS	-	-	-	\cdots	-
Dr	-	-	-	-	-
Trial run total	-	-	-	-	-
Herring Assessment WG total	-	-	7366	-	7366

Appendix Table 8 (Continued). Nominal catches (tons). Herring 1972.

Country: USSR	IVaE	IVaW	IVb	IVc	Total
TrC	-	16461	-	-	-
Tri	-	-	-	-	-
PS	-	-	-	-	-
Dr	-	-	-	-	-
Trial run total	-	16461	-	-	16461
Herring Assessment WG total		16386	-	-	16386
Country: Total					
$\operatorname{Tr} \mathrm{C}$	210	32354	21738	25357	79659
TrI	19624	29343	162671	57	211695
PS	73	148706	17375		166154
Dr	-	3814	-	85	3899
Trial run total	19907	214217	201784	25499	461407
Herring Assessment WG total	22732	235106	216579	23260	497677

朄
억ㅋN융
院

Gear unspecified
Trawl
Trawl for human
consumption
Trawl for industrial
 Purse seine
Drift net Area not summed over rectangles Area, summed over

8우국 $\underset{\sim}{N}$ 옹 si
TARLE 2.0?
BIVARIATE FREQUENCY DISTRIBUTION
HERRING CATCHES 1972 SPLIT ON MONTH GEAR CCUNTRY AND AREAS

SELECTING CONES
11
HINOW.

WEIGHT VARIABLE NUMBER
CATCH (MFTRIC TONS)
WEIGHT SCALE FACTOR IS
CATCH (METRIC TONS)
WEIGHT SCALE FACTOR IS
1 FROM REPETITION FACTOR
" 700S

$100^{\circ} 20.0$
3060

HERPING 1972
BIVARIATE FRFQUENCY DISTPIRUTION
USINGFILTFR NUMEUPCE-C.
WUMEFR OF FASLE II-GR IS

- gear

1) FROM REPETITION FACTOR
Division codes (column)

30 IVe
Gear codes
$\begin{array}{ll}1 & \text { Purse seine } \\ 2 & \text { Trawl for human consumption } \\ 3 & \text { Trawl for industrial purposes }\end{array}$
Appendix Table 10. Purse seine. - Number of 2 -winter ring herring aged, by month (row) and by Division (colvmn), 1972.
Table l. North Sea catch in millions of fish by age.

Area	Age in winter rings										Total
	0	1	2	3	4	5	6	7	8	>8	
IVa E	-	47.2 75.1	$\begin{aligned} & 67.2 \\ & 91.0 \end{aligned}$	$\begin{aligned} & 71.4 \\ & 17.8 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.7 \end{aligned}$	${ }_{0.1}^{+}$	-			$\begin{aligned} & 187.5 \\ & 190.5 \end{aligned}$
IVa W	-	444.3 338.9	$\begin{aligned} & 899.2 \\ & 830.1 \end{aligned}$	$\begin{aligned} & 211.8 \\ & 176.8 \end{aligned}$	$\begin{array}{r} 132.5 \\ 88.6 \end{array}$	$\begin{aligned} & 43.6 \\ & 19.3 \end{aligned}$	$\begin{array}{r} 12.4 \\ 4.1 \end{array}$	2.1	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1748.0 \\ & 1458.7 \end{aligned}$
IVb	$\begin{aligned} & 907.4 \\ & 750.4 \end{aligned}$	$\begin{aligned} & 2951.6 \\ & 2921.8 \end{aligned}$	$\begin{aligned} & 467.8 \\ & 384.3 \end{aligned}$	$\begin{array}{r} 59.1 \\ 119.9 \end{array}$	$\begin{aligned} & 65.5 \\ & 26.9 \end{aligned}$	$\begin{array}{r} 12.0 \\ 7.9 \end{array}$	$\begin{aligned} & 3.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.6 \end{aligned}$	0.3	$\begin{aligned} & 4468.0 \\ & 4212.8 \end{aligned}$
$\begin{aligned} & \text { IVc }+ \\ & \text { VII } \alpha, e \end{aligned}$	0.2	$\begin{aligned} & 0.7 \\ & 4.8 \end{aligned}$	$\begin{array}{r} 5.4 \\ 135.1 \end{array}$	$\begin{aligned} & 78.4 \\ & 29.3 \end{aligned}$	$\begin{array}{r} 18.3 \\ 9.3 \end{array}$	$\begin{aligned} & 7.7 \\ & 5.0 \end{aligned}$	3.9°	0.1	$+$	0.1	$\begin{aligned} & 114.8 \\ & 183.5 \end{aligned}$
Total	$\begin{aligned} & 907.6 \\ & 750.4 \end{aligned}$	$\begin{aligned} & 3443.8 \\ & 3340.6 \end{aligned}$	$\begin{array}{ll} \text { I } 439.6 \\ \text { I } 440.5 \end{array}$	$\begin{aligned} & 420.7 \\ & 343.8 \end{aligned}$	$\begin{aligned} & 217.5 \\ & 130.6 \end{aligned}$	$\begin{aligned} & 63.8 \\ & 32.9 \end{aligned}$	20.1 5.0	$\begin{aligned} & 2.6 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 6518.3 \\ & 6045.5 \end{aligned}$

$+=$ less than 0.05 .

朄
억ㅋN융
院

Gear unspecified
Trawl
Trawl for human
consumption
Trawl for industrial
 Purse seine
Drift net Area not summed over rectangles Area, summed over

8우국 $\underset{\sim}{N}$ 옹 si
TARLE 2.0?
BIVARIATE FREQUENCY DISTRIBUTION
HERRING CATCHES 1972 SPLIT ON MONTH GEAR CCUNTRY AND AREAS

SELECTING CONES
11
HINOW.

WEIGHT VARIABLE NUMBER
CATCH (MFTRIC TONS)
WEIGHT SCALE FACTOR IS
CATCH (METRIC TONS)
WEIGHT SCALE FACTOR IS
1 FROM REPETITION FACTOR
" 700S

$100^{\circ} 20.0$
3060

HERPING 1972
BIVARIATE FRFQUENCY DISTPIRUTION
USINGFILTFR NUMEUPCE-C.
WUMEFR OF FASLE II-GR IS

- gear

1) FROM REPETITION FACTOR
Division codes (column)

30 IVe
Gear codes
$\begin{array}{ll}1 & \text { Purse seine } \\ 2 & \text { Trawl for human consumption } \\ 3 & \text { Trawl for industrial purposes }\end{array}$
Appendix Table 10. Purse seine. - Number of 2 -winter ring herring aged, by month (row) and by Division (colvmn), 1972.

$\frac{\pi}{4}$
$\frac{0}{4}$
0
0

[^0]herring aged, by month (row) and by Division (column), 1972.

$\frac{\pi}{4}$
$\frac{0}{4}$
0
0

[^1]herring aged, by month (row) and by Division (column), 1972.
PAGF 9.04 .001
 CTLUMN SCALE FACTOR IS 9.99^{1}

- gear

9.04 due to zero weight value
Appendix Table 12. Trawl for industrial purposes. Number of 2-winter ring

[^2]

	12	TOTAL
5	110	110
7	333	333
	120	120
	204	204
TOTALS	757	767

*** B4I CASES ELIMINATEN FFUM TABLE $9.0 S$ DUE TO LERO WEIGHT VALUE
*****NO FNTRIFS FOR TABLF
ICFS TRIAL RUN HERRING 1972
RIVARIATE FREQUENCY DISTRIGUTION
USING FILTER ©SOURCE-C.

$$
\begin{aligned}
& 1 \\
& \begin{array}{r}
8 . \\
89 \\
4 \\
\hline
\end{array} \\
& \begin{array}{l}
\text { wiys } \\
\text { wulp } \\
-11 .
\end{array}
\end{aligned}
$$

[^0]:
 Appendix Table ll. Trawl for human consumption. Number of 2-winter ring

[^1]:
 Appendix Table ll. Trawl for human consumption. Number of 2-winter ring

[^2]: Appendix Table 13. Drift net. Number of 2 -rinter ring herring aged,
 by montin (row) and by Division (column), 1972.
 10 REPFTITIUN 1

