REMARKS ON THE RECOVERY OF TAGS FROM THE NORWEGIAN HERRING FISHERY OFF NORTH AND EAST ICELAND IN 1958.

by
Olav Dragesund

Introduction.
During this summer, the Norwegian fleet started the herring fishery earlier than usual off north and east Iceland, utilising the fish for the purpose of reducing it into oil and meal. This fishery gave an opportunity for the recovery of tags from this area and enabled to make a comparison of recaptures, with those of the Norwegian winter herring fishery.

The materials.

The fleet started the fishing operations in the middle of June and from this time up to the loth of July, the fleet was concentrated in the areas 53 and 54 represented in Figure 1, but during the second half of July, the fishing fleet moved over to area 59 (Figure 1).

All the herring caught in these areas were landed in Norway at 24 oil and meal factories, of which 15 possessed tested magnets for the recovery of the tags. The quantity of herring (p) in hectolitres thus reduced at these plants and the efficiency (e) of the magnets used are shown in Table 1. The number of tags recovered in 1958 from the different experiments carried out during the years 19481958, and their distribution in the various factories are also presented in Table 1.

A total number of 168 tags recovered from the factories during the above mentioned season and 207 tags obtained from the Norwegian herring season, form the material for the present report. The recaptures from the present years tagging experiments and the tags received from those factories which do not possess magnets have not been taken into consideration.

The observations.

The composition of these recaptured herring from the north and east coast herring season this summer is partcularly noteworthy. The striking point is that out of these 168 tags, 8 were released as spring and large herring at the Norwegian coast, 155 as north and east coast herring, while 5 belong to those herring tagged off south west Iceland.

A comparison of these with those tags recovered during the Norwegian winter herring season in 1958 indicates that the relative proportion between the Norwegian and Icelandic tags is different. Out of the 207 tags from the winter herring season, 125 were Norwegian, whereas only 82 were Icelandic tags (Table 2). The o/oo return per million hectolitres of herring from the different experiments during the two seasons are shown in Table 2 (second part).

If we compare the data from the two seasons it will be seen that the Icelandic tags show higher $/ 00$ return per million hectolitres off Iceland than the recovery during the Norwegian winter herring season. The recaptures off Iceland show a very high o/oo return of herring tagged in 1954 and the subsequent years compared with those tagged in 1953 and the previous years.

If the different age groups of the herring population, spawning at the Norwegian coast this winter, have migrated to the feeding grounds off north and east Iceland in the same proportion as to the other feeding grounds in the Norwegian Sea and without mixing up with the other herring tribes off north and east Iceland, we should expect to find the same proportion in Norwegian and Icelandic tags during the two seasons. However, this is not the case. The probable reason for this disproportion may be explained as follows:

If a relatively large number of Icelandic spring spawners were present during the tagging experiments off north Iceland then a fair number of the Icelandic spring spawners must have been tagged together with the Norwegian spring spawners.

According to Fridriksson (1956) the Icelandic spring spawners contributed only 4.2-17.1 per cent of the total catch during the period 1949-53, but the percentage of their contribution in 1954 and 1955 was 39.1 and 39.6 respectively.

This immigration of Icelandic spring spawners to the north coast herring grounds, may explain the relatively high o/oo return per million hectolitres of the taggings carried out in 1954 and the subsequent years and also partly explains the disproportion in the number of Norwegian and Icelandic tags recaptured at the Norwegian coast and off Iceland.

The other reason for this disproportion in number may be that the older age groups of the Norwegian herring population, spawning at the Norwegian coast, segregate to the areas north of Iceland, whereas the younger herring migrate to the feeding grounds farther north and east in the Norwegian Sea. The average age of the Norwegian spring spawners during the period 1948-55 off north Iceland was 14.1 for the northern type and 11.1 for the southern type (Fridriksson 1956). This is fairly higher than the mean age for the herring at the Norwegian coast during the winter herring fishery which was 9.38 for the northern and 6.30 for the southern type during the same period. Then the herring tagged off north Iceland therefore should be composed of relatively older herring. Since this herring return to the areas off Iceland without a contingent of young ones, it may also contribute to the relatively high o/oo return per million hectolitres during the north and east coast herring fishery off Iceland. The Norwegian spring spawners, however, tagged
off north and east Iceland mix with the younger hering in the spawning grounds at the Norwegian coast and the o/oo return per million hectolitres will therefore become lower during the Norwegian winter herring fishery than the north and east coast herring fishery off Iceland.

According to the strong 1950 yearclass, which showed up in the catches during the Norwegian winter herring fishery in 1955, and also partly in 1954, it should be expected that a great decrease in $/ / 00$ return per million hectolitres both of Norwegian and Icelandic tags should take place, since the recruit spawners have not been tagged neither off Iceland nor at the Norwegian coast. This decrease in recaptures can be marked with regards to the Icelandic tags, whereas for the Norwegian tags it is not so significant. This can be studied from Figures 2 and 3 and the Table 3.

It can therefore be concluded that both the immigration of spring spawners to the north off Iceland, the segregation of the older age groups from the AtlantoScandian herring tribe to the feeding areas off north Iceland together with the strong 1950 yearclass, are the reasons for the decrease in $/ 00$ return per million hectolitres of Icelandic tags in the winter herring fishery during the period 19551958. It also partly explains the difference in proportion between Icelandic and Norwegian tags recaptured in the Norwegian herring fishery and the herring fishery off Iceland.

Reference:

Fridriksson, A., 1956. "The Tribes in the North Coast Herring of Iceland with Special Reference to the Period 1948-1955." Rapp. et Proc. -Verb., 143(2) : 36-44. Copenhagen.

Figuxe 1

[^0]Table 2. Number of returns in 1958 from the different experimente.

Figure 2
Norwegian Large Herring.
\%o returns
per mill. hl.

Norwegian Spring_ Herring.
\%o returns
per mill. hl.

North-and Eost Coast Herring:
\%oo returns

Higuta 3
Year of recapture
$1950 \quad 1951 \quad 1952 \quad 1953$

tagcing	Category	tagged	1950	1951	1952	1953	1954	1955	1956	1957	1958
1948	SH	6.018	15 (1.38)	13 (0.80)	24 (0.92)	16 (0.78)	15 (0.43)	8 (0.29)	11 (0.36)	10 (0.44)	1 (0.15)
1948	NH	7.475	9 (0.67)	7 (0.35)	9 (0.28)	9 (0.36)	12 (0.28)	$0(0.00)$	1 (0.03)	2 (0.07)	-
1949	SH	8.261	26 (1.75)	23 (1.03)	25 (0.70)	17 (0.80)	45 (0.94)	16 (0.42)	21 (0.50)	10 (0.32)	1 (0.11)
1950	LH	9.085	14 (0.57)	15 (0.38)	10 (0.32)	17 (0.32)	9 (0.22)	11 (0.24)	4 (0.12)	1 (0.10)
1950	SH	11.215	. \cdot	9 (0.30)	9 (0.18)	8 (0.21)	12 (0.19)	5 (0.10)	4 (0.07)	1 (0.02)	-
1950	NH	1.321		8 (2.23)	14 (2.44)	8 (1.79)	11 (1.44)	5 (0.82)	$5(0.74)$	$2(0.40)$	1 (0.69)
1951	LH	5.998			20 (0.77)	20 (0.98)	29 (0.94)	18 (0.65)	11 (0.35)	$2(0.88)$	$2(0.30)$
1961	SH	9.986			63 (1.45)	61 (1.80)	75 (1.30)	57 (1.24)	38 (0.75)	27 (0.72)	$2(0.18)$
1951.	NH	3.065			28 (2.10)	33 (3.18)	52 (2.94)	18 (1.28)	17 (1.09)	9 (0.78)	1 (0.30)
1952	LH	10.295	-•			18 (0.52)	26 (0.44)	14 (0.30)	13 (0.25)	7 (0.18)	-
1952	SH	10.763				76 (2.08)	112 (1.80)	137 (2.77)	110 (2.00)	82 (2.02)	17 (1.44)
1952	NH	17.308			-••	. 247 (4.21)	327 (3.27)	116 (1.46)	$108(1.22)$	66 (1.01)	3 (0.15)
1953.	LH	10.080	-•••	- • • •	-•••	- • 18 (0.31)	8 (0.17)	10 (0.19)	10 (0.26)	
1953	SH	10.046	- .			-•••	. 43 (0.74)	47 (1.02)	37 (0.72)	36 (0.95)	3 (0.27)
1953	NH	10.181	- • • .				283 (4.8.8)	102 (2.18)	117 (2.25)	49 (1.28)	10 (0.89)
1954	LH	10.042	-•••			-••	,	. 24 (0.52)	18 (0.35)	15 (0.40)	$2(0.18)$
1954	SH	10.291	,					. 86 (1.82)	80 (1.52)	61 (1.57)	15 (1.33)
1954	NH	8.783						122 (3.02)	87 (1.94)	43 (1.30)	10 (1.04)
1955	LH	10.045	. . .	-•••			- • •	- •	$87(1.70)$	55 (1.45)	16 (1.45)
1955	8 H	9.087	-•••	-	-•••	- • •	 28 (0.60)	31 (0.90)	4 (0.40)
1955	NH	11.732	- . .	.			161 (2.69)	$82(1.85)$	15 (1.16)
1956	LH	4.998	-			29 (1.54)	4 (0.73)
1956	NH	8.443	-	- • • •	$\cdots \cdot \cdot$		-•••	89 (2.80)	20 (2.15)
1957	LH	9.500	- • , .	- • • •	- • • •			- .	-••	- • . .	15 (1.44)
1957	SH	8.450	-••••	-••	- . .				-•••	-• •	15 (1.61)
1957	NH	7.899	-••••	- • • . .	- -	- • • • •	\ldots		-•••	-••••	21 (2.63)

[^0]: NH : North and east coast herring SH : Spring herring

 LH: Large herring

