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Collapses of ecological populations have occurred throughout natural history. Such events may oc-

cur due to demographic stochasticity, non-equilibrium population dynamics, or interactions with

other species. However, a major cause of collapses is human activity, such as fishing, hunting, or

habitat alteration. The depleted state of many fisheries forces the managers to deal with recovery

processes of over-exploited and collapsed fish stocks, and thus also the scientists to study the

mechanisms and means for successful recoveries.

Evolutionary changes caused by fisheries are known to affect the genetic and phenotypic structure

of exploited fish stocks (Grift et al. 2003, Olsen et al. 2004, 2005, Barot et al. 2005). These changes

have been most visible in terms of the life-history characteristics influencing age and size at matura-

tion. Most exploitation is selective: it might target for example moose or deer with large or high-

quality antlers (Solberg et al. 2000, Scribner at al. 1989). In fisheries, selection is strongly based on

the size of individuals (Myers & Hoenig 1997, Jennings et al. 2001). In general, increased exploita-

tion of larger (or older) individuals decreases the size and age at maturation. This, in turn, tends to

decrease the reproductive potential of fish populations, as large individuals produce disproportion-

ate more offspring (May 1967, Pinhorn 1984, Kjesbu et al. 1998, Marteinsdottir et al. 2000), which
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may lead to lower yields and to a reduction in the recovery potential after a collapse. Importantly,

also an increased mortality that is uniformly applied to all individuals of a population favours ear-

lier maturation.

Fisheries-induced changes can be caused by different mechanisms: (1) demographic changes: as

larger and older individuals are removed from a stock, the population becomes dominated by small

and young fish, (2) phenotypic plasticity: as population biomass decreases, a resultant increase in

resource availability may allow individuals to grow faster and thus mature earlier, and (3) genetic

changes: size-selective harvesting removes those individuals that would mature late and large with-

out allowing them to reproduce, so that only individuals maturing at earlier ages and smaller sizes

will contribute to the next generation’s gene pool.

The effects of environmental fluctuations on population dynamics have been studied extensively.

Often the impact of such noise is expressed in terms of the probability of extinction of the target

species. In general, environmental fluctuations of increasing strength aggravate the extinction risk

(Roughgarden 1975, May & Oster 1976, Tuljapurkar 1989, Lande 1993). In contrast to such demo-

graphic considerations, the effects of environmental stochasticity on fisheries-induced evolution

have been little studied to date. A notable exception is an earlier claim that increased stochasticity

in recruitment would preclude fisheries-induced evolution (Martinez-Garmendia 1998).

In our study we use an individual-based eco-genetic model with multiple evolving life-history traits

(Dunlop 2005). This modelling framework combines population dynamical and evolutionary proc-

esses. The model was parameterized for a cod-like life history. The maturation schedule of

individuals is modelled through a linear probabilistic maturation reaction norm (PMRN, Heino et

al. 2002) and three parameters of this PMRN (namely its slope, intercept, and width) are allowed to

evolve in the model. Further evolving traits are reproductive investment (quantified in terms of the

gonadosomatic index, GSI) and intrinsic growth rate (which trades off with survival). To identify

the effects of evolutionary change on recovery processes – as compared with more traditional mod-

els that do not account for fisheries-induced life-history changes – we explored a model

population’s response to fishing with and without evolution. To quantify the effects of environ-

mental noise on the probability of collapse, on fisheries-induced evolution, and on recovery

potential, we included fluctuations in growth and recruitment.

Our preliminary results highlight the importance of accounting for the life-history changes caused

by fisheries when trying to understand and predict the recovery of exploited stocks (Figs. 1 and 2).
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Figure 1. Difference between recovery processes in population abundance including and excluding evolu-
tionary effects. Symbols indicate different constant harvest rates. The difference is calculated from the
proportional recovery to the pre-harvesting population size, and positive values indicate better recovery due
to fisheries-induced evolutionary changes.
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Figure 1. Difference between recovery processes in spawning stock biomass (SSB) including and excluding
evolutionary effects. Symbols indicate different constant harvest rates. The difference is calculated from the
proportional recovery to the pre-harvesting SSB, and positive values indicate better recovery due to fisheries-
induced evolutionary changes.



The impact of fisheries induced evolution is dependent on both the harvest rate and also on the tem-
poral scale on which the success of recovery is judged, that is, on the duration of moratorium.
Moreover, we show that, in contrast to earlier suggestions (Garmendia-Martinez 1998), the inclu-
sion of stochastic recruitment variability has only minor effects on the incidence of fisheries-
induced evolution.
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