ICES Advisory Committee on Fishery Management ICES CM 2005/ACFM:07

## Report on the Assessment of Demersal Stocks in the North Sea and Skagerrak

## 7 - 16 September 2004

Bergen, Norway

This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

[^0]
## PART 1

0 EXECUTIVE SUMMARY ..... 1
0.1 Working procedures .....  1
0.2 State of the stocks .....  2
0.3 Mixed-fisheries modelling .....  3
0.4 The Integrated Approach ..... 3
1 GENERAL .....  4
1.1 Participants .....  4
1.2 Terms of reference .....  4
1.3 Data sources and sampling levels .....  6
1.3.1 Roundfish and flatfish stocks .....  6
1.3.2 Data sources for Norway pout and sandeel .....  8
1.3.3 Sampling levels and sampling procedures .....  9
1.4 Methods and software .....  9
1.4.1 Update and benchmark assessments .....  9
1.4.2 Quality Control Handbook ..... 11
1.4.3 Assessment methods ..... 11
1.4.4 Recruit estimation ..... 13
1.4.5 Short-term prognoses and sensitivity analyses ..... 14
1.4.6 Stock-recruitment modelling and medium-term projections ..... 14
1.4.7 Estimation of biological reference points ..... 14
1.4.8 Mixed fisheries modelling. ..... 14
1.4.9 Software versions ..... 14
1.5 Biological reference points ..... 15
1.6 Working papers and background documents ..... 15
1.7 Data for other Working Groups ..... 20
1.7.1 WGECO ..... 20
1.7.2 WGMSVPA ..... 20
1.8 Recommendations ..... 20
1.8.1 Proposed Study Group on Stock Identity and Management Units of Whiting ..... 21
2 OVERVIEW ..... 29
2.1 Stocks in the North Sea (Sub-Area IV) ..... 29
2.1.1 Description of the fisheries ..... 29
2.1.2 Technical measures ..... 30
2.1.3 Human consumption fisheries ..... 32
2.1.4 Industrial fisheries ..... 33
2.2 Overview of the stocks in the Skagerrak and Kattegat (Division IIIa) ..... 34
2.3 Overview of stocks in the Eastern Channel (Division VIId) ..... 37
2.3.1 Description of the fisheries ..... 37
2.3.2 Data ..... 37
2.3.3 State of the stocks ..... 38
2.4 Overview of industrial fisheries in Division VIa. ..... 38
3 COD IN SUB-AREA IV, DIVISIONS IIIA (SKAGERRAK) AND VIID. ..... 53
3.1 Stock definition and the fishery. ..... 53
3.1.1 ACFM advice applicable to 2003 and 2004 ..... 54
3.1.2 Management applicable in 2003 and 2004 ..... 55
3.1.3 The fishery in 2003 ..... 56
3.2 Natural Mortality, Maturity, Age Compositions, and Mean Weight at Age ..... 56
3.3 Catch, Effort, and Research Vessel Data ..... 57
3.4 Exploratory analyses ..... 58
3.4.1 A Separable VPA of the North Sea cod catch-at-age data. ..... 58
3.4.2 The assessment age range ..... 58
3.4.3 Survey and commercial catch per unit effort concurrence ..... 58
3.4.4 Survey-based analyses ..... 59
3.4.5 A Laurec-Shepherd based analysis of the North Sea cod tuning data ..... 59
3.4.6 Time Series Analysis (TSA) ..... 60
3.4.7 ADAPT Analysis ..... 60
3.4.8 An assessment of the North Sea cod: ADAPT including discards ..... 61
3.4.9 Conclusions drawn from the exploratory analysis ..... 62
3.4.10 Final Assessment ..... 62
3.5 Historic Stock Trends ..... 63
3.6 The North Sea Stock Survey 2004 ..... 63
3.7 Recruitment estimates ..... 63
3.8 Short term Forecast ..... 63
3.9 Medium-Term Projections ..... 64
3.10 Biological Reference Points ..... 64
3.11 State of the stock ..... 65
3.12 Management considerations ..... 65
4 HADDOCK IN IV AND IIIA ..... 168
4.1 The Fishery. ..... 168
4.1.1 ICES advice applicable to 2003 and 2004 ..... 168
4.1.2 Management applicable to 2003 and 2004 ..... 169
4.2 Data available ..... 169
4.2.1 Landings ..... 169
4.2.2 Age compositions ..... 169
4.2.3 Weight at age ..... 169
4.2.4 Maturity and natural mortality ..... 169
4.2.5 Catch, effort and research vessel data ..... 169
4.3 Catch-at-age analysis ..... 170
4.4 Recruitment estimates ..... 170
4.5 Short term prognosis ..... 170
4.6 Biological reference points ..... 172
4.7 Comments ..... 172
5 WHITING IN SUB-AREA IV AND DIVISIONS VIID AND IIIA ..... 204
5.1 Whiting in Sub-area IV and Divisions VIId ..... 204
5.1.1 The Fishery ..... 204
5.1.1.1 ICES advice applicable to 2003 and 2004 ..... 204
5.1.1.2 Management applicable in 2003 and 2004 ..... 205
5.1.1.3 The fishery in 2003 ..... 205
5.1.2 Data available ..... 205
5.1.2.1 Landings and Discards ..... 205
5.1.2.2 Age compositions ..... 205
5.1.2.3 Weight at age ..... 206
5.1.2.4 Maturity and natural mortality ..... 206
5.1.2.5 Catch, effort and research vessel data ..... 206
5.1.3 Exploration of Survey data. ..... 206
5.1.3.1 Mean-standardised indices and log CPUE curves ..... 206
5.1.3.2 Empirical SSB and $Z$ estimates ..... 206
5.1.4 Exploration of catch data ..... 207
5.1.4.1 Mean-standardised index ..... 207
5.1.4.2 Discards ..... 207
5.1.5 Catch-at-age analysis ..... 207
5.1.5.1 Separable VPA ..... 207
5.1.5.2 Single-fleet Laurec-Shepherd ..... 207
5.1.5.3 Extended Survivors Analysis (XSA) ..... 208
5.1.5.4 Time series Analysis (TSA) ..... 208
5.1.5.5 Comparison of analyses ..... 209
5.1.6 Indications of stock sub-structure ..... 209
5.1.7 Conclusion ..... 210
5.1.8 Final Assessment ..... 210
5.1.9 Recruitment estimates ..... 210
5.1.10 Short term forecasts ..... 210
5.1.11 Comments ..... 210
5.2 Whiting in Division IIIa ..... 211
6 SAITHE IN SUB-AREA IV, VI AND DIVISION IIIA ..... 284
6.1 The Fishery ..... 284
6.1.1 ICES advice applicable to 2003 and 2004 ..... 284
6.1.2 Management applicable in 2003 and 2004 ..... 284
6.1.3 The fishery in 2003 ..... 284
6.2 Data available ..... 285
6.2.1 Landings ..... 285
6.2.2 Age compositions ..... 285
6.2.3 Weight at age ..... 285
6.2.4 Maturity and natural mortality ..... 285
6.2.5 Catch, effort and research vessel data ..... 285
6.3 Catch-at-age analysis ..... 285
6.4 Recruitment estimates ..... 285
6.5 Short term prognosis ..... 285
6.6 Comments ..... 286

## PART 2

7 SOLE IN SUB-AREA IV ..... 310
7.1 The fishery ..... 310
7.2 ICES advice applicable to 2003 and 2004 ..... 310
7.3 Data available ..... 310
7.3.1 Landings ..... 310
7.3.2 Age compositions. ..... 310
7.3.3 Weight at age ..... 310
7.3.4 Maturity and natural mortality ..... 310
7.3.5 Catch, effort and research vessel data ..... 311
7.4 Catch at age analysis ..... 311
7.5 Recruitment estimates ..... 311
7.6 Short-term prognosis ..... 311
7.7 Biological reference points ..... 311
7.8 Comments ..... 311
8 SOLE IN DIVISION VIID ..... 341
8.1 The fishery ..... 341
8.1.1 ICES advice applicable to 2003 and 2004 ..... 341
8.1.2 Management applicable in 2003 and 2004 ..... 341
8.1.3 The fishery in 2003 ..... 341
8.2 Data available ..... 342
8.2.1 Landings ..... 342
8.2.2 Age compositions ..... 342
8.2.3 Weight at age ..... 342
8.2.4 Maturity and natural mortality ..... 342
8.2.5 Catch, effort and research vessel data ..... 342
8.3 Catch at age analysis ..... 342
8.4 Recruitment estimates ..... 342
Year class ..... 343
At age in 2004 ..... 343
Accepted Estimate ..... 343
8.5 Short-term prognosis ..... 343
8.6 Comments ..... 343
9 NORTH SEA PLAICE ..... 378
9.1 The fishery ..... 378
9.1.1 ICES advice applicable to 2003 and 2004 ..... 379
9.1.2 Management applicable to 2003 and 2004 ..... 379
9.1.3 The fishery in 2003 and 2004 ..... 380
9.2 Natural mortality, maturity, age compositions and mean weight at age ..... 380
9.2.1 Natural mortality and maturity-at-age ..... 380
9.2.2 Catch numbers and weights-at-age in the landings ..... 380
9.2.3 Catch numbers and weights-at-age in the discards ..... 380
9.2.4 Stock weights-at-age ..... 381
9.3 Catch, effort and survey data ..... 381
9.3.1 Commercial CPUE data ..... 381
9.3.2 Survey data. ..... 382
9.4 Catch at age analyses ..... 383
9.4.1 Data explorations - catch at age \& tuning fleet data ..... 383
Separable models ..... 383
9.4.2 Data explorations - additional data sources. ..... 384
9.4.3 Model explorations ..... 384
9.4.4 Final assessment ..... 385
9.5 Recruitment estimates ..... 386
9.6 Historical stock trends ..... 386
9.7 Short-term prognosis ..... 387
9.8 Medium term prognoses ..... 387
9.9 Long term prognoses ..... 388
9.10 Reference points ..... 388
9.10.1 Biological reference points ..... 388
9.10.2 PA reference points ..... 388
9.11 Quality of the assessment ..... 389
9.11.1 Incorporation of discards into the assessment ..... 389
9.11.2 Contrasting the assessment with external information ..... 390
9.11.3 PA reference points ..... 390
9.12 Management considerations ..... 390
10 PLAICE IN DIVISION IIIA ..... 456
10.1 The Fishery ..... 456
10.1.1 ICES advice applicable to 2003 and 2004 ..... 456
10.1.2 Management applicable in 2003 and 2004 ..... 456
10.1.3 The fishery in 2003 ..... 456
10.2 Data available ..... 457
10.2.1 Catches ..... 457
10.2.2 Age compositions ..... 457
10.2.3 Weight at age ..... 457
10.2.4 Maturity and natural mortality ..... 457
10.2.5 Catch, effort and research vessel data ..... 457
10.3 Catch at age analysis ..... 457
10.4 Recruitment estimates ..... 457
10.5 Short-term prognosis ..... 458
10.6 Issues to be addressed in a forthcoming benchmark assessment ..... 458
11 PLAICE IN DIVISION VIID ..... 490
11.1 The fishery ..... 490
11.1.1 ICES advice applicable to 2003 and 2004 ..... 490
11.1.2 Management applicable in 2003 and 2004 ..... 490
11.1.3 The fishery in 2003 ..... 490
11.2 Data available ..... 490
11.2.1 Landings ..... 490
11.2.2 Age compositions. ..... 491
11.2.3 Weight at age ..... 491
11.2.4 Maturity and natural mortality ..... 491
11.2.5 Catch, effort and research vessel data ..... 491
11.3 Catch at age analysis ..... 491
11.4 Recruitment estimates ..... 491
11.5 Short-term prognosis ..... 491
11.6 Comments ..... 491
12 NORWAY POUT IN ICES SUB-AREA IV AND DIVISION IIIA ..... 522
12.1 The fishery ..... 522
12.1.1 ACFM advice applicable to 2003 and 2004 ..... 522
12.1.2 Management applicable to 2003 and 2004 ..... 522
12.1.3 The Fishery in 2003 and 2004 ..... 523
12.2 Data available ..... 523
12.2.1 Landings ..... 523
12.2.2 Age compositions in Landings ..... 523
12.2.3 Weight at age ..... 523
12.2.4 Maturity and natural mortality ..... 523
12.2.5 Catch, Effort and Research Vessel Data ..... 523
12.3 Catch at Age Analyses ..... 526
12.4 Recruitment Estimates ..... 528
12.5 Short-term prognoses ..... 528
12.6 Management considerations ..... 528
12.7 Comments on the assessment and needs for future studies ..... 529
12.8 Norway Pout in Division VIa ..... 529
12.8.1 Catch trends and assessment ..... 529
12.8.2 Stock identity ..... 530
PART 3
13 SANDEEL ..... 582
13.1 Sandeel in sub-area IV ..... 582
13.1.1 The Fishery ..... 582
13.1.1.1 ICES advice applicable to 2003 and 2004 ..... 582
13.1.1.2 Management applicable in 2003 and 2004 ..... 582
13.1.1.3 The fishery in 2003 and 2004 ..... 583
13.1.2 Natural Mortality, Maturity, Age Composition and mean Weight at Age ..... 584
13.1.3 Catch, Effort and Research Vessel data ..... 584
13.1.4 Catch at age analyses ..... 585
13.1.4.1 Exploration of data ..... 585
13.1.4.2 Final Assessment ..... 588
13.1.5 Recruitment estimates ..... 589
13.1.6 Short term prognoses. ..... 589
13.1.7 Medium term prognoses ..... 590
13.1.8 Biological reference points ..... 590
13.1.9 Quality of the assessment ..... 590
13.1.10 Management considerations ..... 590
13.1.11 Real time management of sandeels in the North Sea in 2004 ..... 592
13.1.12 Norwegian request for advice on the effects of technical management measures ..... 594
14 MIXED FISHERIES INVESTIGATIONS ..... 664
14.1 State of the art ..... 664
14.1.1 WGNSSK03 conclusions ..... 664
14.1.2 ACFM03 conclusions ..... 664
14.1.3 STECF03 investigations ..... 665
14.1.4 SGDFF04 conclusions ..... 665
14.2 WGNSSK04 contribution to mixed-fisheries forecasts ..... 666
14.2.1 Database and data available ..... 666
14.2.2 Data treatments ..... 668
14.2.2.1 Results ..... 668
14.2.3 Conclusions and recommendations ..... 668
15 THE INTEGRATED APPROACH ..... 670
APPENDIX 1 ..... 671
APPENDIX 2 ..... 675
APPENDIX 3 ..... 692
APPENDIX 4 ..... 693
QUALITY HANDBOOKS ..... 714

The ICES Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK) met in Bergen, Norway, during 7-16 September 2004. There were 25 participants from 9 countries. The main terms of reference for the Working group were: to carry out stock assessments and to provide catch forecasts for demersal and industrial stocks in the North Sea, Skagerrak and Eastern Channel; to collate data for mixed fisheries evaluations; and to evaluate stock recovery plans.

### 0.1 Working procedures

The Working Group (WG) continued and developed the the approach of categorising stocks as being subject to benchmark or update assessments, according to a rolling schedule agreed by ACFM in October 2002. This year, the WG carried out benchmark assessments for cod in Sub-Area IV and Divisions IIIa and VIId, whiting in Sub-Area IV and Division VIId, plaice in Sub-Area IV, Norway pout, and sandeel. For these stocks detailed analyses of data and assessment methods were performed. All other assessments were carried out as updates, which meant that the assessment process was retained unchanged from last year unless there was compelling evidence to do otherwise. The Quality Control Handbook was updated with drafts of stock annexes for all stocks assessed by the WG.

## $0.2 \quad$ State of the stocks

In the North Sea all stocks of roundfish and flatfish species have been exposed to high levels of fishing mortality for a long period. For most of these stocks their lowest observed spawning stock size has been seen in recent years. This may be an indication of excessive fishing effort, possibly combined with an effect of a climatic phase which is unfavourable to recruitment.

For a number of years, ICES has recommended significant and sustained reductions in fishing mortality on some of the stocks. In order to achieve this, significant reductions in fishing effort are required. The trends in landings, spawning-stock biomass (SSB), mean fishing mortality $(F)$ and recruitment from the assessments are presented in Figures 2.1.3-2.1.6. Note that the WG were unable to propose a final assessment for North Sea whiting this year (see Section 5).

WG estimates of total catches (reported landings + discards + estimated under-reported landings) for cod in 2003 ( $78,000 \mathrm{t}$ ) are the second-lowest in the historical record. The inclusion of estimated under-reported catch and discards in the assessment this year increased the estimates of SSB during 1993-1997, but not in more recent years in which SSB is still very low and well below the current $\boldsymbol{B}_{\text {lim }}$ ( 70,000 tonnes). Fishing mortality has increased slightly after falling for several years, although the absolute level of $F$ in 2003 is uncertain. Recruitment has remained at a low level after the strong 1996 year-class.

The strong 1999 year-class again dominated the catches of haddock in $2003(69,000 \mathrm{t})$. However, the contribution of this year-class to the fishery appears to be drawing to a close. Recruitment following the 1999 yearclass has been low, and SSB is likely to decline in the short-term. All sources of information agree that fishing mortality has declined rapidly in this fishery to an historical minimum.

Catches of whiting in the North Sea and eastern Channel (43,000 t) have continued to decline in 2003 to the lowest observed level. However, two of the three available survey indices covering the North Sea area indicate that stock abundance is at or near a historic maximum. There are also considerable within-series discrepancies in apparent stock trends between different sub-units of the assessed area. These conflicting signals on population trends have prevented the WG from being able to propose a final assessment. The problem requires a fundemental review of all available data for which the WG had neither the time nor the resources, but which the WG proposes be taken up by a dedicated Study Group (see Section 1.8).

Landings of whiting in Division IIIa (for human consumption) were 186 tonnes in 2002. Most of the landings are taken in Skagerrak. No analytical assessment of whiting in IIIa was possible.

While still above $\boldsymbol{B}_{p a}$ and apparently increasing, the estimated SSB for saithe has been revised downwards from last year's assessment. Fishing mortality is at or near the historic low, and recruitment remains near the long-term mean. Considerable annual revisions of the saithe assessment are a direct consequence of the lack of survey or fishery information for younger age-groups. Reported landings for $2003(107,000 \mathrm{t})$ were near to the recent mean.

Landings of North Sea sole in 2003 ( 18,000 t) were at a similar level as seen for 2001 and 2002. SSB has fluctuated around a moderate level for several years and for 2003 was estimated to be just below $\boldsymbol{B}_{p a} . F$ is still estimated to be above $\boldsymbol{F}_{p a}$, but has declined fairly steadily since the historical maximum in 1996. After the strong 2001 year-class, recruitment has fallen back down to near the mean of the full time-series.

Sole in the Eastern Channel is considered to be within safe biological limits. The fishing mortality is estimated to be below $\boldsymbol{F}_{p a}$ The SSB is above $\boldsymbol{B}_{p a}$ (8000t) following improved recruitment in recent years particularly of the year
classes 1998 to 2000. There is a tendency to underestimate $F$ and overestimate SSB. Reported landings in 2003 (5,000 t) were the highest recorded.

Landings of sole in Division IIIa are mostly taken in Kattegat and this stock is assessed by the Baltic Fisheries Assessment Working Group. Landings in 2003 amounted 300 tonnes, and $75 \%$ was taken in the Kattegat. Further information may be found in the report of this Working Group.

The assessment for North Sea plaice included discards for the first time this year. Although reported landings for 2003 are at the lowest observed level ( $66,000 \mathrm{t}$ ), estimated total catches $(141,000 \mathrm{t})$ are the highest since 1998. SSB is estimated to be stable, but very low and well below $\boldsymbol{B}_{p a}$. Fishing mortality is fluctuating around a very high level. The 2001 year-class is estimated to have been the strongest seen since the mid-1980s, but subsequent year-classes are thought to be weak.

The stock of plaice in the Eastern Channel follows the pattern of a general decline in plaice stocks observed in other areas up to 1997. Since then SSB appears to have oscillated between $\boldsymbol{B}_{\text {lim }}$ and $\boldsymbol{B}_{p a}$. F has decreased since 1998, and it is currently between $\boldsymbol{F}_{l i m}$ and $\boldsymbol{F}_{p a}$. Recruitment is close to mean levels after the confirmed strong 2000 year-class. The state of the plaice stock in VIId is highly dependent on the quality of the recruitment. Reported landings in 2003 (4,500 $t$ ) were the second lowest on record.

Landings of plaice in Division IIIa amounted to $9,000 \mathrm{t}$ in 2003, which is close to the 2002 landings. Historically, TAC has not been restrictive for this stock. About 75\% of the landings were taken in Skagerrak. SSB is estimated to have increased steadily since a low point in 2000, although $F$ remains high and subject to large fluctuations. Recruitment in 2003 was around the long-term mean.

Sandeel landings in 2003 ( $326,000 \mathrm{t}$ ) were very low, and current indications of the total landings in 2004 are at about the same low level. SSB is estimated to be at the historic minimum, well below $\boldsymbol{B}_{\text {lim }}$, while $F$ has declined from a peak in 2001. The present assessment estimates the 2003 year-class to be below the average recruitment.

Norway pout landings in 2001 and 2002 were around $66,000 \mathrm{t}$ and $77,000 \mathrm{t}$, respectively. These were the lowest landings recorded since 1967 and well below average for the previous five years. The 2003 landings decreased further: in this year only about $25,000 \mathrm{t}$ were landed. SSB decreased to $164,000 \mathrm{t}$ in 2002 and decreased further to $120,000 \mathrm{t}$ in 2003, and estimated to be about $90,000 \mathrm{t}$ (near $\boldsymbol{B}_{\text {lim }}$ ) in the 1st quarter of 2004. Fishing mortality has generally been lower than the natural mortality for this stock and has generally decreased in recent years well below the long term average $F(0.7)$. Fishing mortality was historically low in 2003 and in the two first quarters of the year in 2004. Recent year-classes are estimated to have been very weak, and there are no indications of a strong year-class in 2004.

### 0.3 Mixed-fisheries modelling

The approach taken by ICES to the issue of mixed-fisheries modelling and forecasting changed between the formulation of the ToRs for the WG meeting, and the meeting itself. At the first meeting of the Study Group on Long Term Advice (SGLTA; ICES 2004b) it was decided that the request to the WG to develop the existing mixed-fisheries forecast model and provide fisheries-based catch options (ToR c) was no longer appropriate for two main reasons. Firstly, any evaluation or development of the existing models would have required fisheries definitions and catch data from the Study Group on the Development of Fisheries-Based Forecasts (SGDFF; ICES 2004a) which were not forthcoming. Secondly, the provision of catch options requires decisions to be made on the relative importance of specific fisheries, which the WG were unable to do. Therefore, SGLTA proposed that assessment WGs should provide fisheries definitions, collate fisheries-based catch data in the appropriate format, and provide these data to ACFM. This has been done as requested.

### 0.4 The Integrated Approach

ICES' proposals for a new integrated approach were considered. These proposals involve a much closer integration of advice from ACFM, ACME and ACE. The view of the WG was that the integrated approach was a valid idea to promote, but that the ability of assessment WGs to address these issues was limited by their current membership. WG practice would have to change considerably for the integrated approach to become a reality, and there are considerable problems to be faced. However, there is also a clear requirement for assessment WGs to evolve to fit the new focus. One possible model is that of the NAFO scientific meeting, at which environmental scientists present information to stock assessors to help them in their deliberations. Such integration would necessarily require a reduction in the time available for the type of population analysis done currently. There would have to be a tradeoff between integration, the ability to carry out in-depth analyses of stocks, and the time available.

### 1.1 Participants

The ICES Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK) met in Bergen, Norway, during 7-16 September 2004, with the following participants:

| Ewen Bell | England |
| :--- | :--- |
| Jesper Boje | Denmark |
| Loes Bolle | Netherlands |
| Max Cardinale (part-time) | Sweden |
| Liz Clarke | Scotland |
| Uli Damm | Germany |
| Chris Darby | England |
| Maria Hansson (part-time) | Sweden |
| Steven Holmes | Scotland |
| Henrik Jensen | Denmark |
| Espen Johnsen | Norway |
| Knut Korsbrekke | Norway |
| Phil Kunzlik | Scotland |
| Paul Marchal | France |
| Coby Needle (chair) | Scotland |
| Rasmus Nielsen | Denmark |
| Martin Pastoors | Netherlands |
| Hajo Rätz | Germany |
| Are Salthaug | Norway |
| Clara Ulrich-Rescan | Denmark |
| Olvin van Keeken | Netherlands |
| Willy Vanhee | Belgium |
| Sieto Verver | Netherlands |
| Joël Vigneau | France |
| Morten Vinther | Denmark |

### 1.2 Terms of reference

The Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak [WGNSSK] (Chair: C. L. Needle, UK) met in Bergen, Norway, from 7-16 September 2004 to:
a) assess the status of the following stocks: 1) cod in Subarea IV and Division IIIaN (Skagerrak), and Division VIId, 2) haddock in Subarea IV and Division IIIa, 3) whiting and 4) plaice, both in Subarea IV, Division IIIa, and Division VIId, 5) saithe in Subarea IV, Subarea Via, and Division IIIa, and 6) sole in Subarea IV and Division VIId;
b) assess the status of and provide catch forecasts for 2005 for Norway pout and sandeel stocks in Subarea IV and Divisions IIIa and VIa, and identify any needs for management measures (including TACs) required to safeguard the stocks;
c) consider and implement the proposed methodology for projection of yield by fisheries made by the Study Group on the Development of Fishery-based Forecasts based on the data compiled through this Study Group. The Group should present a limited set of fisheries-based catch options;
d) provide specific information on possible deficiencies in the 2004 assessments including, at least, any major inadequacies in the data on catches, effort or discards, any major inadequacies in research vessel surveys data, and any major difficulties in model formulation, including inadequacies in available software. The consequences of these deficiencies for the assessment of the status of the stocks and for the projection should be clarified;
e) comment on this meeting's assessments compared to the last assessment of the same stock, for stocks for which a full or update assessment is presented;
f) document fully the methods to be applied in subsequent update assessments and list factors that would warrant reconsideration of doing an update, and consider doing a benchmark ahead of schedule, for stocks for which benchmark assessments are done;
g) evaluate the effects of the existing EU-Norway recovery plan for North Sea cod if such a plan will be implemented for 2004;
h) quantify the species and size composition of bycatches taken in the fisheries for Norway pout and sandeel in the North Sea and adjacent waters, and make this information available to the Working Group on Ecosystem Effects of Fishing Activities;
i) provide the data required to carry out multispecies assessments (quarterly catches and mean weights-at-age in the catch and stock for 2003 for all species in the multispecies model that are assessed by this Working Group).

WGNSSK will report by 20 September 2004 for the attention of ACFM.
The terms of reference (ToRs) are addressed in the following sections of the report:

## Term of reference

a) Assess status of cod, haddock, whiting, saithe, plaice, sole
b) Assess status of Norway pout and sandeel
c) Generate fisheries-based forecasts based on data and models from SGDFF
d) Provide information on assessment deficiences
e) Compare methods and results of this year's assessments with last year's.
f) Specify procedures for future update assessments
g) Evaluate the North Sea cod recovery plan
h) Quantify bycatches in Norway pout and sandeel fisheries
i) Provide quarterly data for the multispecies WG

## Section(s)

3-11

12-13
14 (see Note 1 below)

3-13

4-8, 10-13, Quality Control Handbook

3 (see Note 2 below)
1.8.1
1.8.2

## Notes:

1. The approach taken by ICES to the issue of mixed-fisheries modelling and forecasting changed between the formulation of the these ToRs, and the WG meeting. At the first meeting of the Study Group on Long Term Advice (SGLTA; ICES 2004b) it was decided that ToR c) for WGNSSK was no longer appropriate for two main reasons. Firstly, any evaluation or development of the existing models would have required fisheries definitions and catch data from the Study Group on the Development of Fisheries-Based Forecasts (SGDFF; ICES 2004a) that were not forthcoming. Secondly, the provision of catch options requires decisions to be made on the relative importance of specific fisheries, which the WG would be unable to do. Therefore, SGLTA proposed that assessment WGs should provide fisheries definitions, collate fisheries-based catch data in the appropriate format, and provide these data to ACFM. This task is addressed in Section 14 of this report.
2. Prior to the meeting, ICES requested (through the chair) that the cod recovery plan (and any other proposed recovery plans) were not to be evaluated as such. Rather, the issue was to be addressed by including multipliers on the values of fishing mortality proposed in catch options tables. This has be done in this report in Sections 3 (North Sea cod) and 9 (North Sea plaice).

In addition to its agreed ToRs, the WG received two special requests for fast-track advice. The first was a request from the Government of Norway for advice on management measures for sandeel. This is addressed in Section 13. The second request came from the Dutch ICES delegate, and asked for an evaluation of reference points for North Sea plaice along with advice on appropriate levels of fishing mortality. This request is addressed in Section 9.

### 1.3 Data sources and sampling levels

### 1.3.1 Roundfish and flatfish stocks

The data used in assessments for stocks of roundfish (cod, haddock, whiting, saithe) and flatfish (plaice, sole) are based on:

- total reported landings by market size categories;
- sampling programmes for weight, length, age, and sometimes maturity, by market size categories;
- observer sampling programmes for discards;
- effort data from logbooks, and catch-per-unit effort (CPUE) or landings-per-unit effort (LPUE) data from associated fleet landings;
- research-vessel survey indices by age; and
- data on natural mortality from multispecies analyses.


### 1.3.1.1 Data on landings, age compositions, weights-at-age, and maturity

In a number of cases, management areas do not correspond exactly with the areas for which the assessments are carried out. If the management areas are larger, landings cannot always be obtained for the assessment areas separately. In these cases landings have to be estimated by the WG from external information.

For most stocks, the WG estimates of total landings deviate from official figures. The discrepancies are shown in the landings tables in the relevant stock section, under the heading unallocated landings. These unallocated landings will in most cases include discrepancies that are due to differences in calculation procedures. For instance, in some cases national conversion factors from gutted to live weights have been changed in the official statistics, but not in the Working Group database. The differences introduced by conversion factors, and the difference between sums-ofproducts (SOP) and nominal catches, are minor in most cases. SOP corrections are usually not applied in the flatfish stocks, but it is a standard procedure for all roundfish stocks: however, these corrections are relatively small.

In a number of cases, uncertainties in the landing data can seriously affect the quality of the assessments and catch forecasts. In some cases, the Working Group estimates of the landings include specifi corrections for misreported or unreported landings. These are discussed in the relevant stock annex sections of the Quality Control Handbook. There are signals that misreported or unreported landings occur in other stocks, especially in the stocks of valuable species, but these could not be verified or quantified. Strong reservations were expressed in last year's WG report on the quality of North Sea cod landings data in particular. These have been addressed in this year's report (Section 3) by the use of an alternative assessment method which allows for recent catch data to be downweighted in the overall abundance estimation.

Historical time-series (aggregated at the fleet level) of age compositions, weights-at-age, and length-at-age are archived, maintained and collated in databases at national institutes. Roundfish data (cod, haddock, whiting, and saithe) are collated in Aberdeen (FRS). North Sea plaice and sole are maintained in IJmuiden (RIVO), VIId sole in Lowestoft (CEFAS), VIId plaice in Port-en-Bessin (IFREMER) and IIIa plaice in Charlottenlund (DIFRES). Any revisions that have been made in these data are indicated in the relevant stock sections.

The countries that are responsible for the major proportions of the total landings for each stock generally provide the age composition data for those stocks. For the years up to and including 2001, each country was obliged to sample only national vessels. This meant that foreign vessels landing abroad were never sampled. The sampling procedure was changed to address this problem, and from 2002 onwards each country has been required to sample (where possible) the landings of all fleet components landing in their country (EU regulation 1639/2001).

Mean weights-at-age are either derived from observations of catch weights-at-age (for flatfish and industrial species), or from fixed weight-length relationships applied to observations of length distributions from catches (for roundfish). In most stocks the annual mean weights-at-age in the stock are set equal to the mean weights-at-age in the catch. Exceptions are the North Sea and eastern English Channel plaice and sole stocks for which the weight-at-age in the stock is set equal to the weight-at-age in the first quarter (plaice) or second quarter (sole). For all stocks, the mean weights-at-age in the catch of the youngest age groups may not accurately represent the stock due to fisheries selecting for larger fish.

Estimates of the proportion mature-at-age (maturity ogives) are based on historical biological information and are kept constant over the whole time period of the assessment. For a number of stocks a knife-edged maturity ogive has been assumed. Observations on maturity-at-age (from resarch-vessel surveys, for example) indicates that the age of maturation can change over time. The assumption of constant maturity ogives may introduce bias in estimated spawning-stock biomass (SSB), especially when exceptionally large or small year classes enter the spawning stock. The WG did not feel that it was in a position to evaluate the consequences of adjusting the maturity ogive during the meeting and recommended that this is examined before revised maturity ogives are implemented. The analyses of maturity ogives are discussed in more detail in Section 1.3.2.1.

### 1.3.1.2 Discard data used in the assessment

Estimates of discards are used in the assessments for North Sea haddock, North Sea whiting and North Sea plaice. All the discard data available for other species has been presented in the report (see the relevant stock sections), and has been used in exploratory analyses for North Sea cod. For the remaining species, the existing discard time-series are too short to permit their inclusion yet. The use of discard estimates in assessments is thought to reduce bias, give more realistic estimates of fishing mortality, and lead to more representative inputs for mixed fisheries analyses. However, discard estimates can be noisy and increase the variability of the assessment. Furthermore, for many of the stocks it is unclear whether the available discard estimates form a representative sample of discarding practice in the fisheries.

For cod, haddock and whiting, total annual international discard estimates by age group were derived by extrapolation from the Scottish discard sampling programme. Discard estimates for plaice in the North Sea were obtained by a combination of observations from the Dutch fishery for recent years, and reconstructions based on observed growth for earlier years (see Section 9).

## Availability of discards data in WGNSSK

Compilation of discards data for North Sea plaice (as for other species) was attemped by SGDBI in 2002 (ICES 2002). The data were mainly from towed-gear fisheries for cod, haddock, whiting, saithe, sole and plaice in Division IIIa and Sub-Area IV as collected by Germany, England, Denmark, and Sweden between 1999 and 2001 under EC project 98/097. Some data from other projects going back to 1997 were also available to SGBDI. WGNSSK noted in its 2002 report (ICES 2003c) that ignoring discards in stock assessments may introduce bias and affect estimates of $F$ and stock biomass, particularly when discard patterns vary over time. The collection and collation of data as undertaken by SGDBI was not useful at that time for assessment purposes. Since 2002, the EC data regulation (EC 2001) has introduced the obligation for EU member states to collect discards data for their major fleets. The data collected needs to be submitted to the EC in annual reports: however, there is no official requirement to submit the data in a suitable format to the relevant ICES working groups. Therefore, the discards data that have been collected for the North Sea stocks by the different countries have not yet been made available to this WG. This is clearly an undesirable situation.

The WG recognized that some effort has been made within SGDFF to develop a format for exchanging fishery based information. This format has been used to generate datafiles for the mixed-fisheries forecasts. However, at present there is no standardised procedure for handling the landings and discards data in the exchange files, and therefore $a d-h o c$ approaches have been developed to combine the data for the mixed fisheries forecasts. The WG recognized the need to develop software that can be used to compile and aggregate the raw input data for working groups like WGNSSK. This would involve software that could generate a database of the raw input data, and merge and raise the input data to the required level (e.g. landings and discards at age by year). Within ICES, there have been initiatives to develop such an approach, but so far this has not resulted in any software that is directly useable by assessment WGs.

The European Commission is in the process of developing exchange formats and software for the data collected within the data regulation, but the likely development of this software is at too high and aggregation level to be useful for assessment WGs.

The WG recommends that ICES tasks a specific group to develop and test a software approach to compiling and aggregating landings and discards data for working groups. The obvious candidate for such a task would be the SGDFF which involves the chairs of different assessment working groups.

### 1.3.1.3 Natural mortality

The estimates of natural mortality for cod, haddock and whiting are based on historical estimates of multispecies predation rates (ICES 1989) and, unless specified otherwise, are kept constant over the whole time period of the assessment. In the plaice and sole stocks, natural mortality is assumed to be 0.1 for all age groups. The natural mortality of saithe is assumed to be 0.2 for all age groups. Natural mortality estimates for Norway pout have been changed in this year's assessment (see Section 12). For sandeel, the natural mortalies used are derived from multispecies considerations (ICES 1989), although they are not exactly the same (see the sandeel stock annex in the Quality Control Handbook).

### 1.3.1.4 Commercial fleet and research vessel data

All available time-series of CPUE and effort data from commercial fleets and research-vessel surveys have been presented in this year's report, and a subset of these data have been used to tune the relevant assessments and refine short-term prognoses (see Section 1.4). The validity of many of the commercial tuning fleets as indicators of stock size and fishing mortality in recent years has become more uncertain, since the enforcement of national quota, ITQ's, and technical measures is known to have led to changes in fishing patterns (and in some cases to possible misreporting and discarding). For this reason the commercial CPUE data has been excluded from the assessments of a number of stocks. Such data has been retained in assessments only in cases where no survey data are available, or where commercial CPUE series provide reliable information that cannot be obtained elsewhere. At the time of year when the meeting took place, survey indices from the Dutch beam trawl survey and the IBTS Q3 surveys were not available. Indices from the English Q3 groundfish survey were made available for some stocks during the second week of the meeting, and were included in forecast estimates where appropriate. Figure 1.3 .1 shows the roundfish sampling areas covered by the IBTS Q1 and Q3 surveys.

### 1.3.2 Data sources for Norway pout and sandeel

The data used in the assessment for Norway pout and sandeel stocks are based on:

- total landings;
- samples of landings for species composition, weight, length, age, and sometimes maturity. Samples of industrial landings are used for an exact species composition of by-catch species and to get the percentage of target-species;
- fleet data: effort data from logbooks and CPUE data from associated fleet landings;
- survey data: survey indices by age for Norway pout;
- data on sandeel natural mortality from the MSVPA.


### 1.3.2.1 Data on landings, age composition, weights-at-age, and maturity

In some cases management areas do not entirely correspond with areas for which the assessments are carried out. If the management areas are larger, landings cannot always be obtained for the assessment area separately. In these cases landings have to be estimated by the WG from external information.

The sampling of Norway pout and sandeel landings are described in detail in the Quality Control Handbook of the present report (see Appendix 4). The applied sampling systems vary between countries.

In Norway, the sampling system since 1993 is based on catch samples from three market categories: E02 (mainly sandeel), D13 (blue whiting, if not sandeel and catch taken west of $0^{\circ} \mathrm{E}$ ), D12 (Norway pout, if not sandeel and catch taken east of $0^{\circ} \mathrm{E}$ ). The samples are raised to total landings on the basis of sales slip information on landed categories. Effort is estimated from the total number of trips and an estimate of average days-at-sea per trip.

In Denmark, the catch estimates are based on sales slip information, logbook data, species composition from inspectors, and biological data, including age-length keys from independent biological sampling. Total landings are estimated per statistical rectangle based on total catch estimates from sales slip and logbook data, together with biological and species composition data. Historical time-series of market sampling data for sandeel and Norway pout are kept and maintained in Charlottenlund (DIFRES). Any revisions in the catch- and weight-at-age data are indicated in the relevant stock sections.

In the assessment of Norway pout the weights-at-age in the stock are kept constant over the whole period of assessment. Samples from the landings, however, suggest high variability both between years and between seasons. One of the problems of using mean catch weights is that the 0 -group is not fully recruited in the third quarter, giving an overestimate of weight-at-age in the stock for this age group. More knowledge is required before variable weight-at-age in the catches can fully be taken into account in the assessment. For sandeel, the weights-at-age in the catches in the first half-year are used as estimation for weights-at-age in the stock.

The maturity ogives for Norway pout and sandeel are kept constant over the whole period of assessment. A paper presented at the WG meeting in 2000 indicated high variability in maturity of 1-group Norway pout.

### 1.3.2.2 Natural mortality

The currently-used natural mortality estimates are based on historical information (MSVPA, ICES, 1989) and kept constant over the whole time period of the assessment. Natural mortality for Norway pout has been taken as 0.4 per quarter, corresponding to an annual mortality of 1.6. This year the sandeel stock was assessed by using both XSA and SXSA. The annual natural mortality for sandeel estimates by age are:

| Age 0: | $M=0.8$ |
| :--- | :--- |
| Age 1: | $M=1.2$ |

$$
\text { Age 2+: } \quad M=0.6
$$

As mentioned previously (Section 1.3.1.3), SGMSMS has re-estimated natural mortality of cod, haddock, whiting, sandeel, and Norway pout (Section 1.6.2), and the effects of using these in the assessments of cod and haddock are explored.

### 1.3.2.3 Fleet and research vessel data

For Norway pout, time-series of CPUE and effort data from Danish and Norwegian commercial fleets and data from research vessels are available. The research vessel data include first and third quarter IBTS, third quarter EngGFS and third quarter ScoGFS.

For sandeel, only data from the Danish and Norwegian commercial fleets are available.

### 1.3.3 Sampling levels and sampling procedures

Methods of data collection and processing vary between countries and stocks. The sampling procedures applied in the various countries to the various stocks until 2002 were described in detail in the report of the WGNSSK meeting in 1998 (ICES 1999a). Since 2002 an EU regulation (1639/2001) has been in place which has altered market sampling procedures. Firstly, each country is obliged to sample all fleet segments, including foreign vessels, landing in their country. Secondly, a minimum number of market samples per tonnes of landing is required. The national market sampling programmes have been adjusted accordingly.

Table 1.3.1 gives an overview of the sampling levels in 2003 for each stock. Sampling levels in recent years for the Scottish discard observer programme are summarised in Table 1.3.2.

### 1.4 Methods and software

### 1.4.1 Update and benchmark assessments

Following guidelines adopted by ACFM in October 2002, the WG performed each assessment as either a benchmark assessment or an update assessment, according to a previously-agreed schedule. The intention of this split is to reduce the high workload implied by the ToRs, while ensuring that the WG performs an in-depth analysis of each stock at least once every three years. Benchmark assessments should include full explorations of input data and analyses of the implications of different model choices and assumptions. Update assessments are intended to be more concise and follow (where appropriate) the estimation procedures outlined in the relevant stock annex. However, there is a degree of flexibility in this approach, so that issues causing concern in update assessments can be addressed in limited exploratory analyses. This year, the WG took this one step further and permitted small modifications in update assessments if there was a clear need. Such alterations are highlighted in the opening paragraph of each stock section if they were found to be necessary.

The issue of which outputs to include in an update assessment report caused considerable discussion during the WG. The template produced by ACFM allowed only for tables of input data and basic outputs, and two summary figures (stock summaries and historical assessment performance). This year the WG has departed from this template by including a limited number of additional figures that are of direct relevance to fisheries managers. The WG took the view that the main benefit of an update assessment is that time is saved by not revisting the estimation process every year. However, the outputs and implications for managers will change from year to year, even with a consistent model, and therefore key aspects of model outputs still need to be presented in an update assessment. This does not add significantly to the time taken for the update, and increases greatly the usefulness of the report. The required figures and tables for each update assessment are listed below:

## Figures

1. Relative commercial effort and CPUE.
2. Stock summaries: catches, mean $F$, recruitment (including intermediate year), SSB (including intermediate year).
3. Historical performance of the assessment.
4. Probability profiles for short-term projection.

## Tables

1. Official statistics (including TACs).
2. Catch numbers at age (all available ages and years, with those used in the assessment highlighted in bold).
3. Discard estimates (if available).
4. Catch weights at age (all available ages and years, with those used in the assessment highlighted in bold).
5. Stock weights at age (if different from catch weights-at-age).
6. Commercial effort and CPUE.
7. Tuning data (all available series, ages and years, with those used in assessment highlighted in bold).
8. Model diagnostics.
9. Fishing mortality at age.
10. Stock numbers at the start of the year.
11. Stock summaries, with intermediate-year estimates for recruitment and SSB (there should be a footnote explaining these).
12. Input for RCT3 (if used).
13. Output from RCT3 (if used).
14. Input data for catch forecasts (SEN file data).
15. Catch forecast output (management option table).
16. Detailed forecast table.
17. Relative contributions of year-classes to forecast landings and SSB.

Other figures and tables could be included as required to illustrate any important exploratory analyses that were done.

The schedule of assessments for WGNSSK is as follows, including a provisional proposed schedule for 20052007 (modified from that presented in last year's report). Concerns over the modelling of the large 1999 haddock yearclass as a plus-group in forecasts have meant that it has been moved forward in the schedule. Due to low stock sizes, North Sea cod and plaice are on an observation list, which means that they are always treated as benchmark assessments.

| Stock | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 4}$ | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 0 6}$ | $\mathbf{2 0 0 7}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Cod 3a47d | Benchmark | Benchmark | Benchmark | Benchmark | Benchmark |
| Haddock 3a4 | Benchmark | Update | Benchmark | Update | Update |
| Whiting 47d | Update | Benchmark | Update | Update | Update |
| Saithe 3a46 | Update | Update | Benchmark | Update | Update |
| Sole 4 | Benchmark | Update | Update | Update | Benchmark |
| Sole 7d | Update | Update | Update | Benchmark | Update |
| Plaice 4 | Benchmark | Benchmark | Benchmark | Benchmark | Benchmark |
| Plaice 3a | Update | Update | Update | Benchmark | Update |
| Plaice 7d | Update | Update | Update | Benchmark | Update |
| Sandeel | Update | Benchmark | Update | Update | Benchmark |
| Norway pout | Update | Benchmark | Update | Update | Benchmark |
| \# benchmark | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{5}$ |

The approach of categorizing assessments as updates or benchmarks has caused the WG considerable concern. The system has been in operation for two meetings of this WG, and it has not been a success. For the WG to do justice to a benchmark assessment, a great deal of in-depth analysis needs to be performed. There are two main problems with this. There is not enough time to do all the analyses that are required, and the length of time taken by those analyses that the WG can do means that there is no time left to review and correct the text satisfactorily. The purpose of update assessments is that they should be finished quickly, leaving WG members free to work on benchmark assessments. However, when clear problems are found in the existing data or method, these have to be addressed otherwise a faulty assessment will result. This means that work on update assessments continues into the second week, no matter how stringent time-keeping is. The consequence is that effort on assessments cannot be redistributed as planned.

In the opinion of the WG, the update/benchmark system can only function if the following conditions are met:

- Update assessments need to be fully completed (including stock annexes and ACFM summary sheets) at least one week before the WG meeting. The assessments should be circulated and reviewed by the WG members. One or two days can be allowed at the start of the meeting for modifications, but no more.
- Groups must be identified to work by correspondence on key topics for benchmark assessments. Examples from this year might include discards for cod, plaice and whiting, stock structure in whiting, and tuning indices for Norway pout and sandeel.
- It may be appropriate to limit the number of benchmark assessments to three.

The first two of these points requires commitments by WG members and their institutes to participating. If there
can be no guarantee of such intersessional work, then the update/benchmark approach must be replaced by an alternative system. This is particularly true if the Integrated Approach (see Section 15) is to be implemented. One possibility would be to undertake all the necessary analyses for a benchmark assessment intersessionally, and treat all assessments during the meeting itself as updates.

### 1.4.2 Quality Control Handbook

Stock annexes for all stocks assessed by this WG (except North Sea plaice, see Section 9) have been drafted this year following the outlines proposed by ICES, and are available in the Quality Control Handbook (included this year as an appendix). In some cases these are still in draft form, while for other stocks they are more complete.

### 1.4.3 Assessment methods

Table 1.4.1 lists the biological basis of the stock assessments undertaken by this Working Group. Table 1.4.2 gives an overview of model settings for these assessments.

## XSA

Extended Survivors' Analysis (XSA; Darby and Flatman 1994) has been used for catch-at-age analysis for most stocks, although it has not been selected as the final assessment in all cases. Two implementations were used: version 3.1 of the Lowestoft VPA package was used for roundfish and flatfish stocks along with sandeel, while Seasonal XSA (Skagen 1994) was used for Norway pout and sandeel to allow for seasonal data.

For XSA assessments, a full tuning window was used, either with or without a 20 -year tricubic time-taper depending on the stock. The general exploratory approach was as follows (Darby and Flatman 1994):

- A separable analysis was carried out to explore the internal consistency of the catch-at-age data, and also to judge whether the plus group was appropriately chosen.
- For appropriate tuning series, single fleet runs were carried out using Laurec-Shepherd $a d$ hoc tuning. These runs were used to explore the consistency of research-vessel survey indices or commercial CPUE indices with the catch-at-age data.
- An XSA run was performed with all selected tuning series, no power model (no dependence of catchability on stock size for any age), light shrinkage (s.e. $=2.0$ ), and the oldest available age for the catchability plateau. Tuning diagnostics from this run were examined to determine what the plateau age should be, and whether a power catchability model would be appropriate on any of the younger ages.
- Shrinkage was kept light if possible (so that s.e. $=2.0$ ). If there were trends in recent fishing mortality estimates, then heavy shrinkage was not used as this would lead to retrospective bias. Stronger shrinkage $($ s.e. $=0.5)$ was only considered for those cases in which recent $F$ fluctuated without trend, where survey indices were noisy, and where the use of strong shrinkage improved retrospective patterns.

Following these exploratory steps, a final run was performed. Residuals and the results of retrospective analyses were scrutinised to evaluate the quality of the assessment (or at least, whether survey and commercial data were in agreement about stock trends).

Seasonal XSA (SXSA) was used in the sandeel and Norway pout assessments (Sections 12 and 13) to estimate fishing mortalities and stock numbers at age by half-year, using data up to and including the first half year of 2004. SXSA weights the estimated survivors from manually entered data or according to the variance of the estimated log catchability. The WG used the standard setting with manual entered weighting factors, where estimates of survivors are given a lower weighting in the second half of the year. This setting is used because the fishery inflicts the majority of the fishing mortality in the $1^{\text {st }}$ half of the year and thus the signal from the fishery is considered less reliable in the second half. The residuals used to evaluate the quality of the assessment are equivalent to the log catchability residuals obtained from the standard XSA, and are calculated as:

$$
\text { residuals }=\log \left(\frac{\hat{N}}{N}\right)
$$

where $N$ is the stock number-at-age derived from the VPA and $\hat{N}$ is the stock number-at-age derived from the CPUE index for each tuning fleet.

An implementation (Time-Series Analysis or TSA) of the Kalman filter algorithm was used in comparative assessments for cod and whiting. Its main advantage is that it is thought to encapsulate the uncertainty in terminal-year estimates, and it can model industrial bycatch separately from human consumption and discard catch components. Its main disadvantage is that it is still difficult to use, with a nearly-flat parameter solution space in which it can be difficult to obtain maximum-likelihood solutions. Development on TSA has slowed in recent years due to time constraints on the principal developer: a robust and generally-applicable implementation is proving difficult to specify, and the future of the method is unclear.

Technical details of the basic model may be found in Harvey (1989), Jones (1993) and Gudmundsson (1994), while the TSA implementation used here is discussed in the 1998 report of the ICES WG on the Assessment of Northern Shelf Demersal Stocks (WGNSDS; ICES CM 1999/ACFM:1, Appendix 3), the 2001 and 2003 reports of the ICES WG on Methods of Fish Stock Assessment (WGMG; ICES CM 2002/D:01, ICES CM 2003/D:03), Fryer et al (1998), Fryer (2001) and the 2003 report of the Working Group on Methods in Fish Stock Assessment. In brief, the Kalman filter TSA algorithm is a recursive procedure that represents the variables of interest (stock numbers and fishing mortalities at age) as unobserved state variables that evolve forward over time. Each year, observed catches-at-age are used to update the estimates of the state variables. Year-class strength is assumed (in this implementation) to be distributed according to a Ricker stock-recruitment model. Model fitting proceeds by examination of standardised catch prediction errors (equivalent to model-fit residuals) and inflation of permitted variance on year-age pairs for which such errors are high. Each estimate of historical mean $F$ and stock numbers is produced with an associated standard error, allowing a statistical evaluation of the uncertainty in the assessment. A number of research-vessel tuning series can be incorporated. The model is also able to roll forward and produce estimates for all parameters for as many years as required following the last historical year. A new version this year assumed a constant CV on catch and survey estimates, and allowed for the separate modelling of industrial bycatch.

## SURBA

For several stocks, the WG used SURBA (version 2.20) to summarise the population dyanamics information provided by research-vessel survey indices and commercial CPUE indices. SURBA is a Windows-based surveyanalysis programme which fits a separable model of fishing mortality to index data, and which also generates a variety of plots to support exploratory analyses. The method generates relative indices of abundance, which can optionally be raised to pseudo-absolute abundance estimates using externally-derived catchabilities. These estimates can also be bootstrapped to allow for estimation of uncertainty, although the validity of this approach for these data is currently being questioned. The method is based on the model presented in $\operatorname{Cook}(1997,2004)$, while the software implementation is described in detail in ICES (2003a, 2003b, 2004) and Needle (2002, 2003, 2005).

SURBA was used in two different ways by the WG. Firstly, plots were generated to summarise information from indices without any modelling. These included bivariate scatterplots of index values-at-age, catch curves (log index values by cohort), mean-standardised index values at age by cohort, and empirical estimates of relative SSB and $Z$ where, for index values $I_{a, y}$,

$$
\mathrm{SSB}_{\mathrm{y}}=\sum_{\mathrm{a}=\mathrm{a}}^{\mathrm{a} 2} I_{a, y} W_{a, y} \mathrm{Mat}_{a, y} \text { and } Z_{a, y}=\ln \left(\frac{I_{a, y}}{I_{a+1, y+1}}\right) \text {. }
$$

Depending on the stock, these summaries were based on unsmoothed (raw) or smoothed indices. This smoothing was done by fitting a cubic smoothing spline with a user-defined smoothing parameter. While this can be useful in terms of reducing noise and dealing with missing values, it can also lead to a loss of information.

Secondly, for some stocks the separable model in SURBA was applied to generate abundance and $Z$ estimates. Abundances were not raised to pseudo-absolute estimates, but were left as relative values. Point estimates were used in preference to the $50^{\text {th }}$ percentiles from bootstraps, as the latter have been shown to be misleading in simulations (see WP2).

## ICA

Integrated Catch-at-age Analysis (ICA; Patterson and Melvin 1996) combines a statistical separable model of fishing mortality for recent years with a conventional VPA for the more distant past. Population estimates are tuned by CPUE indices from commercial fisheries or research-vessel surveys, which may be age-structured or not as required. The model fit can optionally be modified to a greater or lesser degree by the assumption of an underlying Beverton-Holt stock-recruitment relationship.

## ADAPT with missing catch data

A new implementation of the ADAPT method (Gavaris, 1988) was developed for the WG, in order to provide estimates of underreporting in the North Sea cod fishery. This method is described in full in Appendix 4.

## SMS

SMS (Stochastic Multi Species model; Lewy and Vinther, 2004) is an age-structured multi-species assessment model which includes biological interactions. However, the model can be used with one species only. In "single species mode" the model can be fitted to observations of catch-at-age and survey CPUE. SMS uses maximum likelihood to weight the various data sources assuming a log-normal error distribution for both data sources. The likelihood for the catch observation is then as defined below:

$$
L_{C}=\prod_{a, y, q} \frac{1}{\sigma_{\text {cacch }}(a a) \sqrt{2 \pi}} \exp \left(-(\ln (C(a, y, q))-\ln (\hat{C}(a, y, q)))^{2} /\left(2 \sigma_{\text {catch }}^{2}(a a)\right)\right)
$$

where $C$ is the observed catch-at-age number, $\hat{C}$ is expected catch-at-age number, $y$ is year, $q$ is quarter, $a$ is age group, and $a a$ is one or more age groups.

SMS is a "traditional" forward running assessment model where the expected catch is calculated from the catch equation and $F$-at-age, which is assumed to be separable into an age selection, a year effect and a season (year, halfyear, quarter) effect.

As an example, the F model configuration is shown below for Norway pout (see also Section 12), where the assessment includes ages $0-3+$ and quarterly catch data are used:
$F=F\left(a_{a}\right) \times F\left(y_{y}\right) \times F\left(q_{q}\right)$,
with $F$-components defined as follows:
$F(a):$

| Age 0 | $\mathrm{Fa}_{0}$ |
| :---: | :--- |
| Age 1 | $\mathrm{Fa}_{1}$ |
| Age 2 | $\mathrm{Fa}_{2}$ |
| Age 3 | $\mathrm{Fa}_{3}$ |

$F(q)$ :

|  | q 1 | q 2 | q 3 | q 4 |
| :--- | :--- | :--- | :--- | :--- |
| Age 0 | 0.0 | 0.0 | Fq | 0.25 |
| Age 1 | $\mathrm{Fq}_{1,1}$ | $\mathrm{Fq}_{1,2}$ | $\mathrm{Fq}_{1,3}$ | 0.25 |
| Age 2 | $\mathrm{Fq}_{2,1}$ | $\mathrm{Fq}_{2,2}$ | $\mathrm{Fq}_{1,3}$ | 0.25 |
| Age 3 | $\mathrm{Fq}_{3,1}$ | $\mathrm{Fq}_{3,2}$ | $\mathrm{Fq}_{3,3}$ | 0.25 |

$F(y):$

| Y 1 | Y 2 | Y 3 | Y 4 | Y 5 | Y 6 | Y 7 | Y 8 | Y 9 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | $\mathrm{Fy}_{2}$ | $\mathrm{Fy}_{3}$ | $\mathrm{Fy}_{4}$ | $\mathrm{Fy}_{5}$ | $\mathrm{Fy}_{6}$ | $\mathrm{Fy}_{7}$ | $\mathrm{Fy}_{8}$ | $\mathrm{Fy}_{9}$ | $\ldots$. |

The parameters $F\left(a_{a}\right), F\left(y_{y}\right)$ and $F\left(q_{q}\right)$ are estimated in the model. $F\left(q_{q}\right)$ in the last quarter and $F\left(y_{y}\right)$ Fy in the first year are set to constants to obtain a unique solution.

One $F(a)$ vector can be estimated for the whole assessment period, or alternatively, individual $F(a)$ vectors can be estimated for subsets of the assessment periods. A separate $F(q)$ matrix is estimated for each $F(a)$ vector.

For the CPUE time series the expected CPUE numbers are calculated as the product of an assumed age (or age group) dependent catchability and the mean stock number in the survey quarter. Catchability is assumed age dependent for all ages of Norway pout.

The likelihood for CPUE observations, $L_{S}$, is similar to $L_{C}$, as both are assumed lognormal distributed. The total likelihood is the product of the likelihood of the catch and the likelihood for CPUE ( $L=L_{C} * L_{\text {CPUE }}$ ). Parameters are estimated from a minimisation of $-\log (L)$.

The estimated model parameters include stock numbers the first year, recruitment in the remaining years, age selection pattern, and the year and season effect for the separable $F$ model, and catchability at age for CPUE time series.

SMS is implemented using the Ad-model builder (Otter Research Ltd.), which is a software package to develop non-linear statistical models. The SMS model is still under development, but the "single species part" has extensively been tested in the last year on both simulated and real data.

SMS can estimate the variance of parameters and derived values like average $F$ or SSB from the Hessian matrix.

Alternatively, variance can be estimated by using the built-in functionality of the AD-Model builder package to carry out Markov Chain Monte Carlo simulations (Gilks et al. 1996), MCMC, to estimate the posterior distributions of the parameters. For the historical assessment, period uniform priors are used. For prediction, an additional stock/recruitment relation can be used.

### 1.4.4 Recruit estimation

For several stocks, recruitment estimates have been made using RCT3 (Shepherd 1997). This was the case when recruitment indices from 2004 surveys are available, or when $F$-shrinkage in XSA has relatively high weighting on the estimation of recruiting survivors. This creates some inconsistencies in the approaches used. The survey indices may end up being used twice for recruitment estimation - once in the survivors' analysis (and thus in the VPA recruitment) and again with the same survey indices in RCT3. For plaice, haddock, whiting and cod, large discrepancies have been observed in recent Working Groups in the recruitment predicted by RCT3 and the observed recruitment in XSA. In most cases RCT3 seems to overestimate recruitment and WGNSSK considers this may partly explain the overestimation of landings in the short term forecasts for these species.

A problem with the use of the power model for recruiting age groups in XSA, is that it cannot be restricted to those tuning fleets for which the use of this model is appropriate. In the present implementation of XSA the use of the power model may solve problems in some fleets while creating problems in other fleets. The fact that the $F$-shrinkage cannot be turned off for recruiting age groups has in some cases been seen to have an undesirably strong influence on recruitment estimates derived from XSA.

### 1.4.5 Short-term prognoses and sensitivity analyses

Short-term prognoses (forecasts) were made for all stocks, including sandeel and Norway pout for the first time. Half-year forecasts (to the start of 2005) were produced for the industrial stocks this year in order to give ACFM further information on which to base advice in the current situation of low biomass. These were based on survivors estimates at the end of the second quarter in 2004 from Seasonal XSA, rolled forwards to the start of the first quarter in 2005 using assumed mortality and weights-at-age.

Forecasts for all non-industrial stocks were based on initial stock sizes as estimated by XSA (in a number of cases supplemented with separate recruitment estimates as described above), natural mortalities and maturity ogives as used in the XSA, and mean weights at age averaged over recent years (normally 3). For haddock, the mean weight-at-age of the large 1999 year-class in the forecast was modelled using a fitted growth curve. Fishing mortalities-at-age in forecasts were taken to be either the 2003 values, or a scaled or unscaled mean $F$-pattern over the most recent 3 years. Forecasts and corresponding sensitivity analyses were undertaken using either the Aberdeen suite of forecast programs or the MFDP/MFYPR software.

The WG attempted to incorporate possible effects of management measures implemented during 2004, such as days-at-sea restrictions and the cod protection area, along with perceived effort reductions. For each stock the best estimate of the likely effect was included in the final forecast presented, but the sensitivity of the forecast to the assumptions made was also explored.

Short-term forecasts have been given on a stock basis, which in some cases includes more than one management area. For management purposes the catch forecast has been split by Sub-area and Division on the basis of the distribution of recent landings.

### 1.4.6 Stock-recruitment modelling and medium-term projections

The WGMTERMC program (from the Aberdeen suite) was used to generate stochastic medium-term (10-year) projections for those stocks where this was thought to be appropriate. Two programs were available to fit stockrecruitment models for these projections. RECRUIT, also part of the Aberdeen suite, fits Ricker, Beverton-Holt and Shepherd models by nonlinear least-squares regression. RecAn 2.0 is a Windows-based alternative that can fit 24 different stock-recruit models and which produces graphical summaries of the output. The use of non-standard models from RecAn 2.0 is, however, currently limited by WGMTERMC, which only incorporates the three models mentioned above.

### 1.4.7 Estimation of biological reference points

Established biological reference points ( $\boldsymbol{F}_{\text {med }}, \boldsymbol{F}_{\text {high }}, \boldsymbol{F}_{0.1}, \boldsymbol{F}_{\text {max }}$ etc) have been estimated using the REFPOINT software or the PA-software. For stocks where the perception of abundance or fioshing mortality has changed significantly, the PA software has been used to provide a full exploration of the biological reference points.

### 1.4.8 Mixed fisheries modelling

Last year, the WG was asked to evaluate methods for generating mixed-fisheries forecasts and to run the forecasts themselves. However, producing such forecasts requires decisions on the relative importance of different stocks and fisheries which the WG was unable to make as they are essentially political in nature. Therefore the WG concentrated
this year on collating data for mixed-fisheries forecasts, for subsequent use by advisory groups such as ACFM and STECF. The de facto standard for producing forecasts based on these data is the MTAC model, which was described in full in last year's WG report (Section 1.4.7).

### 1.4.9 Software versions

The following table lists the versions of each item of software that was used by the WG.

| Software | Purpose | Version |
| :--- | :--- | :--- |
| VPA95 (Lowestoft VPA suite) | Catch-at-age analysis (separable <br> VPA, Laurec-Shepherd tuning, <br> XSA). | Compiled 08/06/1998. |
| RETVPA00 | Retrospective analysis for XSA. | Compiled 12/06/2002. |
| TSA (Time Series Analysis) | Catch-at-age analysis (with <br> surveys, constant CV <br> assumption, industrial bycatch <br> modelled separately). | No formal version number: <br> recompiled for each run. |
| SXSA (Seasonal XSA) | Catch-at-age analysis for <br> seasonal fisheries. | Compiled 01/09/2004. |
| RCT3 | Recruitment estimation. | Compiled 26/08/1996. |
| SURBA | Survey-based analysis. | 2.20 (compiled 13/09/2004). |
| INSENS | Generation of input files for <br> Aberdeen Suite programmes. | Compiled 20/05/2002. |
| RECRUIT | Estimation of stock-recruit <br> model parameters. | Compiled 04/02/2002. |
| RecAn | Estimation of stock-recruit <br> model parameters. | 2.20 (compiled 01/07/2004). |
| WGFRANSW | Short-term prediction and <br> sensitivity analysis. | 1.0 (compiled 22/05/2001). |
| WGMTERMC | Medium-term projections. | Compiled: 03/11/1999. |
| REFPOINT | Calculation of reference points <br> and yield-per-recruit. | Compiled: 12/06/1997. |
| MTAC | Fisheries-based forecasts. | R script created 25/02/2004. |
| SMS | Catch-at-age analysis with a <br> stochastic multi-species model | Unknown. |
| ICA | Catch-at-age analysis (mixed <br> separable and conventional <br> VPA) | 1.4 (compiled 09/09/1999). |
| BADAPT | Catch-at-age analysis with <br> estimated misreporting | Compiled 01/10/2004. |
|  | Par\| |  |

### 1.5 Biological reference points

For update assessments, biological reference points $\left(\boldsymbol{F}_{l i m}, \boldsymbol{F}_{p a}, \boldsymbol{B}_{\text {lim }}, \boldsymbol{B}_{p a}\right)$ have been retained at the values defined by ICES: these are given in the stock annex for each case (see the Quality Control Handbook in the Appendix). For benchmark assessments, if the method or data used has been substantially altered, then biological reference points have been revised to the technical basis for each stock. In these cases, the revised points are given in both the stock section and the stock annex. For all assessments, the technical basis for estimating reference points is given in the relevant stock annex.

ACFM has stated that future management advice by ICES will be constrained by $\boldsymbol{F}_{p a}$ and $\boldsymbol{B}_{p a}$, the precautionary thresholds which imply a reasonably high probability of remaining below a limit fishing mortality and above a limit spawning stock biomass. $\boldsymbol{F}_{p a}$ and $\boldsymbol{B}_{p a}$ are thus the main devices to be used by ICES in providing management advice.

### 1.6 Working papers and background documents

WP 1: Robin Cook \& Mike Heath. The implications of warming climate for the management of North Sea demersal fisheries.


#### Abstract

This work applies a modified Ricker stock and recruitment model to data covering a recent thirty to forty year period for North Sea cod, haddock, whiting, saithe, plaice, sole and herring. The modified Ricker function incorporates an additional parameter to permit the influence of variable temperature to be expressed in the relationship


between stock and recruitment:

$$
R=a S S B e^{(c T-S S B / b)}
$$

where $a, b$ and $c$ are parameters. An index of sea-surface temperature was derived from IBTS stations and ICES hydrographic records, and the modified Ricker model was applied to the time-series of stock, recruitment and temperature. The temperature index is assumed to reflect the general variation in the environment over time, and specifically to reflect the impact of climate change as indicated by the recent warming of the North Sea. For cod, plaice and sole the temperature parameter was significant and negative. For saithe it was significant and positive, but insignificant for herring, haddock and whiting.

A positive value for the temperature parameter implies an increase in recruitment per unit SSB with increasing temperature while a negative value indicates a decrease. Consequently, species with a negative relationship between recruitment and temperature may be expected to support smaller fisheries in a future warm period. As the temperature data indicate that the North Sea experienced a warmer period since 1988 relative to the period from 1957-1987, stock projections were made for those species exhibiting a significant temperature parameter. The projections assumed a future temperature regime corresponding to the mean of (i) the earlier, cooler period, and (ii) the latter, warmer period.

The projections were made for fishing mortalities corresponding to $\mathbf{F}_{\text {MSY }}$ under each of the temperature regimes and also to $\mathbf{F}_{\mathrm{pa}}$. The former indicates the effect of these temperature bounds on MSY and and $\mathrm{SSB}_{\text {MSY }}$ whereas the latter predicts outcomes at the upper limit of fishing mortality commensurate with ICES' implementation of the Precautionary Approach.

For cod, plaice and sole (those species with a significant negative temperature parameter), $\mathbf{F}_{\text {MSY }}$, MSY and $\mathrm{SSB}_{\text {MSY }}$ were all estimated to be lower during warmer periods than cooler ones; for saithe (with a significant positive relationship), these values are higher in the warmer period. Also, during the warmer period, the equilibrium SSB corresponding to exploitation at $\mathbf{F}_{\mathrm{pa}}$ is below $\mathbf{B}_{\mathrm{pa}}$ for cod, plaice and sole. This implies that at equilibrium for the warmer period, $\mathbf{F}_{\mathrm{pa}}$ is inappropriately high for the adopted values of $\mathbf{B}_{\mathrm{p} a}$. However, for cod, MSY under the warmer regime is still estimated to be substantially greater than the current low yields. This reflects the fact that fishing mortality on cod has been in excess of $\mathbf{F}_{\mathrm{MSY}}$ for a long period and has contributed to the current depleted state of the stock.

Discussion: The WG welcomed this paper as helpful attempt to quantify the effect of warming of the North Sea on commercially important North Sea fish stocks, particularly on the expected future productivity of the stocks during a warmer period.

Concerns were expressed to whether the recruitment model incorporating a temperature parameter was overparameterised. Parameters from stock-recruit model fits are usually highly correlated, implying over-parameterisation. This is not, however, unique to this analysis and it is true that additional information is used by the model in the form of the sea surface temperatures,.

Comments concerned with specific stocks were firstly that recruitment data for whiting in this model was used since 1960. The working group has for a long time queried the full time-series of stock and recruitment information for this species because of an abrupt shift in apparent productivity around the end of the 1970s. One explanation for this could be the impact of a regime shift at that time; however, a more mundane explanation could be the incorrect attribution of a late-1970s discard ogive to the landings data for whiting prior to that time. This too could present itself as a change in productivity and would have a confounding effect on the sort of analysis presented here.

Haddock tends to be characterised by occasional extreme recruitment events. As these have occurred in both the cooler, (pre-1988), and warmer (post-1988) periods, it was considered unsurprising that the temperature parameter for haddock was found to be insignificant with very wide error bounds.

Concern was also expressed for the cod results. Inspection of the time-series of temperature and spawning stock biomass indicate that the period of low SSB is concurrent with the predominant period of warmer sea surface temperatures. Because of this, it is not clear that the estimation of the temperature parameter in the stock and recruitment model is not confounded in some way. Although the existence of at least some "warmer" years in the high SSB period for cod may recompense this, the extent to which this occurs is not clear.

WP2: Liz Clarke. Scottish fishery definitions.
Abstract: We defined Scottish fisheries using cluster analysis of the landings composition of Scottish demersal reported landings data for the North Sea in 2000-2002. We used the percentage weight landed by species (or species group) i.e. the landings composition for each trip to define the clusters. The final analyses were performed on data grouped by gear. The resulting clusters were aggregated after consultation with the industry and experts, so that they are defined by simple combinations of gear, mesh-size, time of year and fishing area. Landings and discard numbers-at-age were estimated using Scottish data based on the current Scottish fleet definitions.

Discussion: Scottish fishermen have been consulted about this work and the working group was interested about their views. Generally the industry was in favour of the idea of mixed fisheries. When asked about their views on the number of fisheries present in the Scottish fleet, however, skippers tended to prefer a high level of aggregation into few
fisheries. If fishermen identified seasonal differences in fishing patterns this tended to centre on differing bycatch. This could be problematic for fisheries definitions based on landings as a large proportion of bycatch can be discarded. Different statistical tests for determining the optimal number of fisheries were discussed. It was agreed one or more could be applied to this work, although presently human intervention to decide the merits of splitting a fleet into a different number of fisheries is preferred.

The resolution of the data being used to form the fisheries definitions was discussed. It was decided the resolution, both spatially and temporally, was sufficient given the level of aggregation of fisheries being preferred.

The WG considered the fact that the fisheries definitions can only be based on current and past landings. The approach can not take account of any segment of the fleet preparing to target new areas or species. The consistency of the fisheries definitions over time was also considered. It was asked whether use of mesh size would be a sufficient and consistent means of defining fisheries. The existing method, however, does take account of mesh size and gear type as well as landings composition and it is hoped this combination will allow fisheries definitions to remain consistent over time. It was asked whether there were any examples of boats with a single gear being classified into different fisheries on different trips. These tests have not been performed yet but the work has highlighted problems with the available data, in that boats with a single gear are recorded as having different gear on different trips. This problem is being addressed with the help of the industry.

WP3: Coby Needle. Data simulation and testing of XSA, SURBA and TSA.


#### Abstract

A series of six configurations of a data simulator were set up, involving misreporting, changes in survey catchability, and variable discarding rates in different combinations. Two realisations of each configuration were generated, and corresponding population estimates from three different assessment models (XSA, TSA and SURBA) were compared with the true underlying values from the simulations. In general, XSA performed best with simple simulations, TSA performed best with more complicated simulations, and SURBA was the least successful of the three. However, time constraints and the difficulties inherent in fitting the TSA model meant that the number of possible replications was far too low to enable concrete conclusions to be drawn to assist ACFM in their deliberations on Division VIa gadoid stocks, and the conclusions of this study are limited to qualitative comments only.

Discussion: The WG found the results of this paper interesting, but the number of simulations was too low to make general statements about the different estimation methods. There was general discussion about simulations and the need for careful choice of simulation model to avoid inadvertently favouring a method with similar assumptions. The assumption of changes in survey "catchability" in TSA, which actually reflects changes in mismatch between catch and survey data, was also discussed, and it was noted that one of the purposes of the simulations was to test the effects of making such assumptions. It was commented that, for most models, poor fits could have been made worse by user intervention on the basis of diagnostics.


WP4: Clara Ulrich-Rescan \& Maria Hansson. Revision of the IBTS time series for plaice IIIa - can the "scientisteffect" affect stock perception?


#### Abstract

The IBTS q1 data used for tuning the assessment of Plaice IIIa is traditionally not provided by ICES. They are calculated directly by the DIFRES scientist in charge of the assessment from haul-by-haul Swedish data, usually computed every year for the previous year's data only. The responsibility for assessing this stock has changed quite often both in DIFRES and IMR, with four different DIFRES scientists and three IMR scientists in the last ten years. There is no existing documentation of the estimation method used and the calculation of indices, but we know that some differences occurred in the methodology. As a matter of quality insurance and data control, we decided to check the whole time series by extracting all haul-by-haul data since 1991, and to compare them with the official numbers shown in the last WG report. Two methods of index estimation are presented, one as average over all hauls, and one as an average over average by rectangle. It was concluded from this exercise that: 1 . small differences in basic methodology (raw data extraction, averaging method) give large differences in single-fleet assessment results. 2. Old time series are not reliable anymore and should be replaced by the revised time series. 3. To avoid the "scientist-effect", and for quality check of the data, documentation on working procedure for preparation of input data is needed. Also, ICES is requested to do the calculation of the indices also for this stock in the future.


## Discussion:

- Recommendation to the ICES IBTS WG, asking them for making a guideline how to calculate these indices.
- Generally, hauls with large number of individuals should not be removed as outliers just because of the magnitude.

Hauls with zero catch should be included in the data series.

WP5: Clara Ulrich-Rescan \& Else Nielsen. Should western Baltic plaice be included in the plaice IIIa assessment?


#### Abstract

The assessment of plaice IIIa has repeatedly been criticised because of its large fluctuations in estimations of fishing mortality, and its major retrospective patterns. Concerns have often been expressed by the scientists in charge of the assessment regarding non accounted "natural" mortality, which includes migrations outside the assessment area.

We showed here that there are large catches of plaice being taken outside IIIa, and for which there exists strong belief that they belong to the same biological stock as the one being assessed. These catches are not likely to be only the fact of misreporting, as the same increase of biomass was detected in both areas from survey data.

The stock delimitation will not be changed during this session of the WG, but the matter should be discussed. If the WG considers it important to include these catches in the stock, then extra intersessional work will be performed in order to derive catches at age, and results will be analysed and compared during a forthcoming benchmark assessment.


WP6: Mark Dickey-Collas et al. How can differing assumptions about the trend in fishing mortality within a stock assessment affect the management of a fish stock?


#### Abstract

Simulated populations of sole and plaice are assessed and managed for a period of 13 years into the future. True and perceived populations are compared. The effect of shrinking fishing mortality ( F ) towards the recent mean F , as part of the solution of a stock assessment is investigated during a period of strong trends in F . By their nature, recovery plans should result in a negative trend in F. Using shrinkage to mean F is a compromise between introducing bias in the assessment and coping with the noise in the data. This amounts to trading off bias against uncertainty in the assessment. It is intuitive that this bias should exist, however this study shows that the bias can affect management. In this scenario the bias results in a cyclical difference developing between the true and perceived populations. The simulation suggests that the management measures are often out sync with that actually required by the stock for sustainable exploitation and to reach stable management targets. It questions whether scientists can really reliably monitor a stock experiencing extreme fluctuations in exploitation. Recruitment is also under- or overestimated by up to $25 \%$. The bias introduced by shrinkage towards the mean F, in this scenario, also in results less stability in the annual catches.


Discussion: The WG reacted that shrinkage of 0.5 was chosen to get rid of the retrospective pattern but in fact did introduce a bias. Due to the high shrinkage it takes a relatively long time to pick up signals in the data.

WP7: Hajo Rätz, Kay Panten \& Jens Ulleweit. German Otter Trawl Board Fleet as Tuning Series for the Assessment of Saithe in IV, VI and IIIa, 1995-2003.


#### Abstract

The working document gives an update of the commercial tuning series used in the saithe assessment, accompanied with information about sampling efforts and biological parameters. During 1995-2003, otter trawl catches were considered of 8 vessels continuously being engaged in the directed saithe fishery. The saithe fleet used for tuning accounted for $64-85 \%$ of the entire annual German saithe landings officially reported.

The German fleet reported only about $9,000 \mathrm{t}$ of saithe landings in 2003 representing a quota utilization of about $50 \%$ only, the lowest figure since 1995. Very poor market conditions for saithe attracted the German vessels to target other resources. No significant discarding occurred during 2 trips covered by scientific observation. The geographical distribution of the quarterly aggregated landings in 1995-2003 reveals a fairly constant fishing pattern in the northern part of the North Sea mainly along the Norwegian trench. However, the northern fishing grounds seem to have been avoided in 2003, probably in order to reduce sailing. The age disaggregated abundance indices derived from CPUE indicated the 1992, 1996 and 1998 year classes as strong, the latter one being the strongest and most important year class for recent catches ( $47 \%$ in numbers). The 1998 year class remains the only abundant year class exceeding the average abundance at age since 1995. The age group 4 does seem to be a significant estimator of year class strength at age 5 explaining about $60 \%$ of the observed variation.


WP8: Joe Horwood. UK effort 1997-2003 \& 2004 North Sea \& West of Scotland.
Abstract: No abstract presented.

Discussion: No rapporteur's report available.

WP9: Peter Wright and Henrik Jensen. Potential effects of technical management measures for the sandeel stock in the North Sea.


#### Abstract

This WP was been produced in response to the Norwegian government's request to ICES for advice on "the uncertain situation for the sandeel stock in the North Sea". The high mortality of sandeel and the few year classes in the fishery make the North Sea stock size and catch opportunities largely dependent on the size of the incoming year classes. Based on the latest ICES assessment of sandeels ACFM reported that the state of the North Sea sandeel stock was uncertain (ICES 2003). The 2001 year-class still appeared to be abundant in 2003 but the 2002 year-class was estimated to be extremely weak. Total landings and effort (days at sea) in 2003 was close to $41 \%$ and $66 \%$ of the average recorded for the period 1987-2003, respectively. The scarcity of the 2002 year-class means that the strength of the 2003 year-class was particularly important to the state of the stock in 2004. For this reason the Council of the EU adopted a harvest control rule based on the size of the 2003 year-class. From an estimate of 2003 year-class and the uncertainty associated with that estimate STECF considered that continued fishing throughout 2004 with unrestricted effort carried the risk of overexploitation of the North Sea sandeel stock (STECF 2004a). The STECF working group, set up to provide an estimate for the EU harvest control rule, highlighted that the North Sea level approach does not account for the possible effect of the fishery on future spawning stock biomass. Further, this approach does not take into consideration the complex population structure of this stock (STECF 2004b). This WP concludes that there is insufficient data to permit a quantitative reponse to the Norwegian request, but raises some qualitative points that may be of assistance to fisheries managers.


Discussion: see WP14 below.

WP10: C. Millar and R. F. Fryer. Revised estimates of annual discards-at-age for cod, haddock, whiting and saithe in ICES Division IV.

This paper describes recent modifications made to the collation process applied to data from the Scottish discard observer sampling programme. A collapsed-strata method is presented which reduces bias and variability in estimation. The paper illustrates the effect that the new methods will have on discard estimates for cod, haddock, whiting and saithe. Note that this WP was made available to the WG as background information, but was not discussed in plenary because discard estimates from the new method are not yet finalised.

WP11: RIVO. RIVO work overview.


#### Abstract

The working document highlights major findings of a joint evaluation of biological and commercial data as well as management measures to improve the North Sea flat fish assessments. Productivity parameters (growth rates) were estimated through length back calculation from otoliths. Reconstructed growth patterns for plaice revealed slower growth since mid 1980s, which coincided with poor recruitment. Nutrient Flows (phosphate) in the ecosystem were hypothesised to be environmental drivers of such effects. Female maturity of plaice increased over the whole time series as the proportion of females in the population increased as well. An analysis of spatial distribution of plaice at age 1 showed that juveniles tend to moved offshore after 1995. Thus, the plaice box had recently a decreased effect on the protection of juveniles. Discard reconstructions based on historic and recent samplings showed a variable but increased discard rates in the plaice fisheries, in excess of $80 \%$ over all age groups most recently. The effort of the Dutch fleet decreased in horse power days, since 1995. The fishing effort is recently concentrating in the southern North Sea. Newly developed CPUE trends in the first and second quarters based on landings only have undergone decreases with a minimum at the end of the 1990s, followed by a reversal since 2000. CPUE at age indicate a strong recruiting 2001 year class, which is however estimated to be less abundant than the year class 1996.


WP12: O. van Keeken, M. Pastoors and A. D. Rijnsdorp. Reconstructing the numbers of plaice discarded in the demersal fisheries since 1957.

Abstract: Discard percentages at age are simulated based on mean length at age, selection and availability ogives, leading to discard estimations by means of correction of F at ages 1-6. The model considers 3 different ogives: a gear selection ogive, a availability ogive to account for differences in plaice distribution, and a sorting ogive. From this,
discard percentages at age were calculated and used to correct F at age. From these newly calculated F at age, discardcorrected stock numbers and resulting catch numbers at age were calculated. Estimates of ages 1 and 2 are strongly affected by the inclusion of discard estimates with significant implications for changes in PA management reference points. The inclusion of discards in the plaice assessment was considered necessary during the following discussion of the working group.

WP13: T. Johannessen, E. Johnsen, K. Korsbrekke and D. Skagen. Yield and sustainability in the sandeel fishery in the North Sea.


#### Abstract

The 2003 and 2004 landings of sandeel in the North Sea were the lowest recorded since the mid-1970s, and in the northern assessment area the fishery has practically collapsed after several years with decreasing landings. The very strong 2001 year-class gave a prediction of a spawning stock well above $\mathbf{B}_{\mathrm{pa}}$, but the low 2003 landings indicate that the high SSB prediction was far too high. An increased targeting of 0-group sandeel, a higher general fishing mortality or a combination of these may have caused a higher proportion of 0 -group sandeel in the landings in recent years. This work suggests measures should be taken to protect 0 -group and to utilize the large weight and oil content increase that the sandeels undergo from early spring until June.


General measures:

- yield of sandeel may be increased by delaying the opening of the fishery until mid-April or until the Fulton condition factor exceeds 0.28 .

Measures suggested for northern assessment area:

- closing the fishery from July onwards may protect 0 -group as the fishery in the second half of the year is mainly targeting 0 -group.

Measures suggested for southern assessment area:

- a minimum landing size of 12 cm from June onwards will protect 0 -group sandeel and reduce the effort in the fishery for I-group sandeel.

Discussion: see WP14.

WP14: E. Bell. Response to sandeel request - 2005 Sandeel assessment.
No abstract is available for this WP.
Discussion: (including WDs 9 and 13) These three papers were all submitted in response to the special request on sandeels from Norway, and were therefore discussed together. Wright and Jensen (WP9) wrote about the request in general terms, and concluded that sufficient data were not available to enable the WG to provide a quantitative response. The WG agreed with this conclusion as it stood, but emphasised that there was a need to provide qualitative statements (at the very least) upon which ACFM could build useful advice to attempt to reverse the recent sandeel decline. Johanesson et al (WP13) were only able to list methods by which the points of the special request could in theory be met, without providing data or outlining appropriate data collection programmes. The WG concluded that the focus of its work needed to be on the likely effect of plausible management measures, not just the form that those measures could take. Bell (WP14) presented a hindcast sensitivity test of the in-year monitoring system developed by STECF (see BD9). Overall, the WG decided that there were probably insufficient data to provide a quantitative response to the request, but that a more qualitative response needs to be presented in order for ACFM to deliver advice for the sandeel stock. Furthermore, the poor state of the stock suggested by the current assessment implies that a recovery-plan proposal is a distinct possibility, in which case a stronger focus will fall on the assessment. Given this, the request provides a useful structure around which to plan work for next year's assessment of this stock.

### 1.7.1 WGECO

Data on species composition of bycatches in the industrial fisheries in the North Sea are given in Tables 2.1.1, 2.1.2 and 2.1.3. The allocation of roundfish bycatches (from the Danish industrial fisheries) to human consumption or reduction purposes is summarised in Tables 2.1.4-2.1.7. In addition, data on the age composition of commercil roundfish species from these bycatches are provided for the Danish (cod, haddock, whiting: Table 2.1.9) and Norwegian (cod, haddock, saithe, whiting: Table 2.1.10) fisheries.

### 1.7.2 WGMSVPA

Data for multispecies assessment were not made available to the WG. These will be collated after the meeting.

### 1.8 Recommendations

The WG appreciated the presentation given by Lena Larsen (ICES) on the DATRAS system and the data-collation process used the generate IBTS indices. The WG recommends that IBTS data be made available for review at least two months before the next WG meeting (September 2005), and that these data should be reviewed by the WG Chair and at least two other WG members. The protocol for this checking process should agreed by correspondance. Following this review and associated corrections, the finalised IBTS series should be provided to all WG members at least one month before the WG meeting.

ICES have proposed that, from 2005, assessments of Nephrops stocks will be undertaken in the relevant regional assessment WG. For WGNSSK, this means that six extra stocks will need to be assessed during the meeting, as well as being reviewed in plenary, and that several extra WG members will need to participate. The WG suggests that this will cause logistical difficulties that will prove insurmountable. In addition, it is not the Nephrops assessments themselves that are necessary to address the concerns of ICES, but just the collated data for mixed-fisheries analyses. Therefore, the WG recommends that WGNEPH meet annually before the WGNSSK meeting to carry out Nephrops stock assessments. Resultant input data for fisheries-based forecasts should then be presented to WGNSSK during a short visit by appropriate members of WGNEPH.

The WG has encountered serious problems in addressing the split between benchmark and update assessments. In order to make a benchmark assessment worthwhile, a great deal of analysis needs to be done during the meeting itself. It has proved impossible to complete much of this analysis intersessionally, due to constraints in time and data availability. As a result, the text for benchmark assessments is reviewed in haste and may not be of good quality. In addition, it is unclear what should be included in the report for an update assessment to ensure its utility for both ICES and fisheries managers. The WG also encountered difficulty in evaluating whether an assessment scheduled for an update should remain as such, or be changed to a benchmark. The WG recommends that ICES review the system of update and benchmark assessments. Suggestions for ways in which this could be done are given in Section 1.4.1 above.

The WG appreciated the provision of official statistics tables in Excel as well as Word format. It would be a further improvement for these updated tables to include the full time-series usually presented in the WG report, rather than just the last 10 or so years. The WG recommends that the official statistics tables provided by ICES be expanded to include all available years.

The Scottish North Sea acoustic survey carried out each year in August has the potential to yield important abundance indices for Norway pout (and possibly sandeel, although this is less likely to be representative). The WG recommends that the generation of indices for Norway pout (and sandeel) be included in the Terms of Reference for the next meeting of the Planning Group for Herring Surveys (PGHERS), scheduled for January 2005.

The WG recommends that ICES tasks a specific group to develop and test a software approach to compiling and aggregating landings and discards data for working groups. The obvious candidate for such a task would be the SGDFF which involves the chairs of different assessment working groups.

The WG recommends that a period of at least one week be allowed between the end of the meeting and the final report submission date to ICES. The current requirement that the report be available to reviewers immmediately after the meeting does not allow any time for editing and correction of errors.

The WG recommends that its 2005 meeting be held at ICES Headquarters, during dates set in relation to the preceding recommendation.

### 1.8.1. Proposed Study Group on Stock Identity and Management Units of Whiting

The assessment of the whiting stock in Sub-Area IV and Division VIId in this report is uncertain. Spatiallydisaggregated research-vessel survey indices, reported landings data, and perceptions of change in abundance from the North Sea Fishers' Survey, all indicate that stock trends may be different in different areas (possibly with a north-south
split). Any such structure is difficult to accommodate in the current assessment and management framework. To address this, the WG makes the following recommendation.

A Study Group on Stock Identity and Management Units of Whiting [SGSIMUW] (Chair: Phil Kunzlik, UK) should be established and meet in Aberdeen for three days in early 2005 to:
a) review all reported material on the stock identity of whiting in the North Sea and adjacent waters in order to identify the most likely definition of biological stocks of whiting as well as suggest practical management units;
b) agree a data exchange format to provide (i) survey data and (ii) commercial landings and discard data, disaggregated by ICES statistical rectangle and quarter of the year to Study Group members. This will be done to provide spatially-structured catch data to which appropriate biological characteristics are or can attributed (eg age compositions etc) in order to compile assessment datasets nominally derived from the stock definitions determined under ToR (a);
c) define an evaluation protocol under which the consequences of assessing multiple stocks or stock sub-units as a single stock can be determined, and allocate responsibilities, as required, between Study Group members;

SGIMUW will report by (Annual science conference at Aberdeen) for the attention of RMC and ACFM.

Supporting information:

| Priority | High |
| :--- | :--- |
| Scientific justification and <br> relation to Action Plan | The assessments of whiting in the North Sea, Irish Sea and West of <br> Scotland have been problematic for many years. Available sources of <br> information include reported landings, estimated discards, and research- <br> vessel surveys. Stock-dynamics trends derived from these different <br> sources are often contradictory, making coherent assessments of these <br> stocks extremely difficult. It is possible that the use of incorrect <br> management units is a contributing factor in this situation. it may be that <br> each whiting management unit covers several distinct substocks, which <br> have different and irreconcilable stock dynamics. However, little is <br> currently known of the stock structure of whiting populations in ICES <br> areas. The aim of the proposed SG would be to analyse extant data from <br> commercial landings records, research-vessel surveys, tagging studies, <br> and fishery-related information such as industry questionnaires, to <br> determine if there is evidence for substocks, as well as to evaluate stock <br> assessments based on any new management units suggested by the <br> analysis. The consequences in more general terms of assessing multiple <br> stocks would also be investigated. |
| Resource requirements | Coastal states must give an undertaking to provide the necessary <br> disaggregated catch and survey data for at least the last 20 years. |
| Participants | Experts on stock assessment, structure and biology for the North Sea <br> whiting stock. |
| Secretariat facilities | None. |
| Financial | None. |
| Linkages to Advisory <br> Committees | ACFM |
| Linkages to other <br> Committees or Groups | RMC, WGNSSK |
| Linkages to other <br> Organisations | Cost share |

Table 1.3.1. Biological sampling levels by stock and country: preliminary official landings ( t ) and number of fish measured and aged to analyse commercial landings in 2003.

|  | Cod in IIIa, IV, VIId |  |  | Whiting in IV, VIId |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Landings (t) | Lengths (No) | Ages (No) | Landings (t) | Lengths (No) | Ages (No) |
| Belgium | 1536 | 1980 | 0 | 313 | 0 |  |
| Denmark | 9188 | 3696 | 3674 | 89 | 0 |  |
| France | 1744 | 0 | 0 | 8892 | 0 |  |
| Germany | 2097 | 6026 | 1505 | 334 | 1811 | 2146 |
| Netherlands | 2367 | 4943 | 1989 | 1617 | 7098 | 1200 |
| Norway | 5326 | 3536 | 86 | 39 | 165 |  |
| Poland | 35 | 0 | 0 | 0 | 0 |  |
| Sweden | 1626 | 330 | 330 | 10 | 0 |  |
| UK (E/W/NI) | 2334 | 24487 | 2929 | 789 | 8180 | 1153 |
| UK (Scotland) | 7852 | 35694 | 9192 | 5734 | 51540 | 3781 |
| Total | 34105 | 80692 | 19705 | 17817 | 68794 | 8280 |


|  | Haddock in IIIa, IV |  |  | Saithe in IV, IIIa, VI |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Landings (t) | Lengths (No) | Ages (No) | Landings (t) | Lengths (No) | Ages (No) |
| Belgium | 375 | 0 | 0 | 44 | 0 | 0 |
| Denmark | 4776 | 2902 | 2879 | 6954 | 5547 | 5522 |
| France | 1100 | 288 | 645 | 21500 | 5596 | 1933 |
| Germany | 1675 | 2524 | 1074 | 9010 | 4900 | 8632 |
| Ireland | 0 | 0 | 0 | 170 | 0 | 0 |
| Netherlands | 193 | 0 | 0 | 11 | 0 | 0 |
| Norway | 2397 | 7618 | 258 | 61712 | 21415 | 1588 |
| Poland | 16 | 0 | 0 | 734 | 0 | 0 |
| Russia | 0 | 0 | 0 | 6 | 0 | 0 |
| Sweden | 642 | 943 | 0 | 1876 | 0 | 0 |
| UK (E/W/NI) | 1561 | 8029 | 1236 | 1478 | 0 | 0 |
| UK (Scotland) | 31527 | 94342 | 5988 | 7018 | 15168 | 4940 |
| Total | 44262 | 116646 | 12080 | 110513 | 52626 | 22615 |


|  | Sole in IV <br> Landings (t) | Lengths (No) | Ages (No) | Sole in VIId <br> Landings (t) | Lengths (No) | Ages (No) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Belgium | 1622 | 3400 | 350 | 1659 | 5100 | 390 |
| Denmark | 703 | 235 | 233 | - 0 | 0 | 0 |
| France | 264 | 0 | 0 | 0 2898 | 9031 | 1533 |
| Germany | 749 | 1115 | 92 | - | 0 |  |
| Netherlands | 12469 | 3592 | 3592 | 0 | 0 |  |
| Norway | 125 | 0 | 0 | 0 | 0 | 0 |
| UK (E/W/NI) | 521 | 3082 | 1112 | 1114 | 15534 | 2385 |
| UK (Scotland) | 239 | 0 | 0 | 0 | 0 | 0 |
| Total | 16692 | 11424 | 5379 | 5671 | 29665 | 4308 |

Table 1.3.1. cont. Biological sampling levels by stock and country: preliminary official landings ( t ) and number of fish measured and aged to analyse commercial landings in 2003.

|  | Plaice in IV |  |  | Plaice in VIId <br> Landings ( t ) | Lengths (No) | Ages (No) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Landings (t) | Lengths (No) | Ages (No) |  |  |  |
| Belgium | 4570 | 5500 | 350 | 995 | 2000 | 300 |
| Denmark | 13742 | 2953 | 2894 | 0 | 0 | 0 |
| France | 343 | 0 | 0 | - 2783 | 7789 | 1837 |
| Germany | 3800 | 5476 | 1100 | 0 | 0 | 0 |
| Netherlands | 27372 | 5689 | 5689 | 2 | 0 | 0 |
| Norway | 1967 | 1019 | 0 | 0 | 0 | 0 |
| Sweden | 2 | 0 | 0 | 0 | 0 | 0 |
| UK (E/W/NI) | 7135 | 0 | 0 | ) 756 | 15225 | 2007 |
| UK (Scotland) | 6757 | 8623 | 0 | 0 | 0 | 0 |
| Total | 65688 | 29260 | 10033 | 4536 | 25014 | 4144 |


|  | Plaice in IIIa |  |  | Norway Pout in IV, IIIa |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Landings ( t ) | Lengths (No) | Ages (No) | Landings ( t ** | Lengths (No) | Ages (No) |
| Denmark | 6884 | 4180 | ) 3947 | 16649 | 843 | 723 |
| Germany | 14 | 0 | 0 | 0 | 0 | 0 |
| Netherlands | 1494 | 96 | 96 | 0 | 0 | 0 |
| Norway | 74 | 0 | 0 | 11387 | 2244 | 412 |
| Sweden | 377 | 427 | - 427 | 0 | 0 | 0 |
| Total | 8843 | 4703 | - 4470 | 28036 | 3087 | 1135 |


|  | Sandeel in IV <br> Landings (t) | Lengths (No) | Ages (No) |
| :---: | :---: | :---: | :---: |
| Denmark | 274141 | 10335 | 2942 |
| Norway | 29616 | 1292 | 286 |
| Sweden | 21517 | 0 | 0 |
| UK (E/W/NI) | 0 | 0 | 0 |
| UK (Scotland) | 301 | 0 | 0 |
| Total | 325575 | -11627 | 3228 |

Table 1.3.2. Sampling levels (1996-2003) for the Scottish discard observer programme.

| Year | Trips | Lengths measured |  |  |  |  | Ages estimated |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | Haddock | Whiting | Saithe | Other | Cod | Haddock | Whiting | Saithe |  |
| 1996 | 62 | 5802 | 91385 | 27481 | 4152 | 45529 | 1510 | 4752 | 3718 | 813 |
| 1997 | 66 | 11542 | 74208 | 25145 | 6096 | 65177 | 2909 | 5240 | 3242 | 1495 |
| 1998 | 64 | 11639 | 65558 | 25057 | 4027 | 49615 | 2769 | 4944 | 3329 | 1125 |
| 1999 | 54 | 3635 | 61489 | 27792 | 1498 | 59552 | 1140 | 4087 | 3043 | 917 |
| 2000 | 53 | 4122 | 73851 | 29083 | 8544 | 42901 | 1792 | 4022 | 2639 | 1414 |
| 2001 | 77 | 10394 | 128510 | 19228 | 14486 | 54630 | 2344 | 5615 | 3222 | 2341 |
| 2002 | 63 | 2415 | 66195 | 22102 | 7444 | 40046 | 1425 | 3791 | 2697 | 1641 |
| 2003 | 48 | 1381 | 36886 | 15965 | 12642 | 42861 | 852 | 2723 | 1994 | 1421 |

Table 1.4.1. Overview of the biological basis of stock assessments carried out by the WG.

| Stock | Area | Stock numbers | Mean wt catch | Mean wt stock | \|Natural mort. | Proportion mature | Ages |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cod | 3a47d | $\begin{aligned} & \text { AC from EW, SC, DK, NL. } \\ & \text { AC of discards from SC. } \\ & \text { SOP correction applied. } \end{aligned}$ | Based on AC. No smoothing. <br> Calculated separately for different catch components. | Same as mean weight in the catch | $\begin{aligned} & \mathbf{M}=(0.8,0.35, \\ & 0.25,0.2, \ldots, 0.2) \end{aligned}$ | $\begin{aligned} & \text { Mat }=(0.01,0.05, \\ & 0.23,0.62,0.86,1.0, \\ & \ldots, 1.0) \end{aligned}$ | 1-7+ |
| Haddock | 3 a 4 | AC from SC, EW, DK, NL. AC on ind. bycatch from DK and N. AC of discards from SC. Discard and ind. bycatch included in assessment | Based on AC. No smoothing. Calculated separately for different catch components. | Same as mean weight in the catch | $\begin{aligned} & \mathbf{M}=(2.05,1.65, \\ & 0.4,0.25,0.25, \\ & 0.2, \ldots, 0.2) \end{aligned}$ | $\begin{aligned} & \text { Mat }=(0.0,0.01,0.32, \\ & 0.71,0.87,0.95,1.0, \\ & \ldots, 1.0) \end{aligned}$ | 0-7+ |
| Whiting | 47 d | AC from SC, EW, FR, NL, GER. AC on ind. bycatch from DK and N. AC of discards from SC, not applied to 7d. Discard and ind. Bycatch included in assessment | Based on AC. No smoothing. Calculated separately for different catch components. | Same as mean weight in the catch | $\begin{aligned} & \mathbf{M}=(0.95,0.45, \\ & 0.35,0.3,0.25, \\ & 0.25,0.2,0.2) \end{aligned}$ | $\begin{aligned} & \text { Mat }=(0.11,0.92, \\ & 1.0, \ldots, 1.0) \end{aligned}$ | 1-8+ |
| Saithe | 3 a 46 | AC from N, SC, DK, GER, FR for area IV. AC from SC for area VI. No discards included. SOP corrected. | Based on AC. No smoothing. | Same as mean weight in the catch | $\mathrm{M}=0.2$ | $\begin{aligned} & \text { Mat }=(0.0,0.15,0.70, \\ & 0.90,1.0, \ldots, 1.0) \end{aligned}$ | 1-10+ |
| Sole | 4 | AC from NL, EW, FR, B. No discards included. SOP corrections applied by EW and B | Based on AC. No smoothing. | $2^{\text {nd }}$ quarter catch weights at age | $\begin{aligned} & M=0.1,0.9 \text { in } \\ & 1963 \end{aligned}$ | $\begin{aligned} & \text { Mat }=(0.0,0.0,1.0, \\ & \ldots, 1.0) \end{aligned}$ | 1-10+ |
| Sole | 7 d | AC from B, FR and EW <br> (since 1985). AC of <br> discards from NL. No SOP <br> correction. | Based on AC. No <br> smoothing. <br> Calculated separately <br> for different catch <br> components. | $2^{\text {nd }}$ quarter catch weights at age | $\mathbf{M}=0.1$ | $\begin{aligned} & \text { Mat }=(0.0,0.0,1.0, \\ & \ldots, 1.0) \end{aligned}$ | 1-11+ |
| Plaice | 4 | AC from NL, EW, DK, FR, B. No discards included. SOP corrections applied by EW and B | Based on AC. No smoothing. | $\begin{aligned} & 1^{1^{\text {st }} \text { quarter catch }} \\ & \text { weights } \end{aligned}$ | $\mathrm{M}=0.1$ | $\begin{aligned} & \text { Mat }=(0.0,0.5,0.5, \\ & 1.0, \ldots, 1.0) \end{aligned}$ | 1-15+ |
| Plaice | 3 a | AC from DK only. No discards included. SOP corrected ?? | Based on AC. No smoothing. | Same as mean weight in the catch | $\mathbf{M}=0.1$ | $\begin{aligned} & \text { Mat }=(0.0,1.0, \ldots, \\ & 1.0) \end{aligned}$ | 2-11+ |
| Plaice | 7 d | AC from FR, B and EW. No discards included. SOP corrected ??? | Based on AC. No smoothing. | 1st quarter catch weight | $\mathbf{M}=0.1$ | $\begin{aligned} & \text { Mat }=(0.0,0.15,0.53, \\ & 0.96,1.0, \ldots, 1.0) \end{aligned}$ | 1-10+ |
| Norway pout | 4 | AC from DK and N. No discards in the fishery. | Based on AC. No smoothing. | Fixed mean weight in the stock by quarter and age used | $\mathbf{M}=0.4 \text { per }$ <br> quarter | $\begin{aligned} & \text { Mat }=(0.0,0.10,1.0, \\ & 1.0,1.0) \end{aligned}$ | 0-4+ |
| Sandeel | 4 | AC from DK and N. No discards in the fishery. | Based on AC. No smoothing. | Same as mean weight in the catch | First half year: $\mathbf{M}_{1-3}=(1.0,0.4$, 0.4) <br> Second half year: $\begin{aligned} & \mathbf{M}_{0-3}=(0.0,0.2, \\ & \ldots, 0.2) \end{aligned}$ | $\begin{aligned} & \text { Mat }=(0.0,0.0,1.0, \\ & \ldots, 1.0) \end{aligned}$ | 0-4+ |

Table 1.4.2. Overview of model settings used for stock assessments by WGNSSK 2004.

| $\begin{aligned} & \text { n } \\ & \stackrel{y}{\theta} \end{aligned}$ | 毕 | 0 $\sum_{0}^{0}$ 0 0 0 0 0 0 |  |  | Fbar Age Range |  |  |  |  |  | Min S.E. for pop. Estimates |  |  |  | 荡 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cod | 347d | BADAPT | 1-7+ | 1963-2003 | 2-4 | None | None | 5 | None | N/a | N/a | N/a | $\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$ | ScoGFS <br> EngGFS <br> IBTS_Q1 | 1982-2004 <br> $1992-2004$ <br> $1976-2004$ | $\begin{aligned} & 1-6 \\ & 1-6 \\ & 1-5 \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 0.5-0.75 \\ 0.5-0.75 \\ 0-0.25 \end{gathered}$ |
| Haddock | 34 | XSA | 0-7+ | 1963-2003 | 2-4 | None | 0 | 2 | 5 years, 3 ages | 2.0 | 0.3 | No | $\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \hline \end{aligned}$ | EngGFS ScoGFS IBTS_Q1 | $1992-2004$ $1982-2004$ $1975-2003$ | $\begin{aligned} & \hline 0-5 \\ & 0-5 \\ & 0-4 \\ & \hline \end{aligned}$ | $\begin{array}{c\|} \hline 0.5-0.75 \\ 0.5-0.75 \\ 0.99-1 \\ \hline \end{array}$ |
| Whiting | 47d | None | N/a |
| Saithe | 346 | XSA | 1-10+ | 1967-2003 | 3-6 | $\begin{array}{r} 20 \mathrm{yr} \\ \text { Tricubic } \end{array}$ | 1-2 | 7 | 5 years, 3 ages | 1.0 | 0.3 | No | $\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~S} \\ & \hline \end{aligned}$ | FraTRB NorTRL GerOTB NORACU | $1990-2003$ <br> $1980-2003$ <br> $1995-2003$ <br> $1995-2003$ | $\begin{aligned} & \hline 3-9 \\ & 3-9 \\ & 3-9 \\ & 3-7 \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 0-1 \\ 0-1 \\ 0-1 \\ 0.5-0.75 \\ \hline \end{gathered}$ |
| Sole | 4 | XSA | 1-10+ | 1957-2003 | 2-6 | None | 1 | 7 | 5 years, 5 ages | 2.0 | 0.3 | No | $\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$ | NL beam BTS-Isis SNS | $1990-2003$ <br> $1985-2003$ <br> $1970-2003$ | $\begin{aligned} & 2-9 \\ & 1-9 \\ & 1-4 \end{aligned}$ | $\begin{gathered} \hline 0-1 \\ 0.67-0.75 \\ 0.67-0.75 \\ \hline \end{gathered}$ |
| Sole | 7d | XSA | 1-11+ | 1982-2003 | 3-8 | None | None | 7 | 5 years, 5 ages | 2.0 | 0.3 | No | $\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \hline \end{aligned}$ | BEL beam UK beam UK BTS FR YFS | $1986-2003$ <br> $1986-2003$ <br> $1988-2003$ <br> $1987-2003$ | $\begin{gathered} \hline 2-10 \\ 2-10 \\ 1-6 \\ 1-1 \\ \hline \end{gathered}$ | $0-1$ <br> $0-1$ <br> $0.5-0.75$ <br> $0.5-0.75$ <br> $0.66-0.75$ |
| Plaice | 4 | XSA | 1-10+ | 1957-2003 | 2-6 | None | None | 6 | 5 years 2 ages | 0.5 | 0.3 | No | $\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \hline \end{aligned}$ | BTS-Isis BTS-Tri SNS | $\begin{array}{\|l\|} \hline 1985-2003 \\ 1996-2003 \\ 1982-2003 \\ \hline \end{array}$ | $\begin{aligned} & \hline 1-9 \\ & 2-9 \\ & 1-3 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.66-0.75 \\ & 0.66-0.75 \\ & 0.66-0.75 \end{aligned}$ |

Table 1.4.2. cont. Overview of model settings used for stock assessments by WGNSSK 2004.

| $\begin{aligned} & \text { n} \\ & \stackrel{\ddot{V}}{6} \end{aligned}$ | 毕 |  |  |  |  |  |  |  |  |  |  | Prior weighting |  |  | 淢 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plaice | 3a | XSA | 2-11+ | 1978-2003 | 4-8 | 20-year tricubic | None | 8 | 5 years <br> 5 ages | 0.5 | 0.3 | No | $\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \hline \end{aligned}$ | DK seine DK trawl DK gillnet IBTS_Q1 IBTS_Q3 Kasu Q1 Kasu Q4 | 1987-2003 $1987-2003$ $1987-2003$ $1991-2003$ $1995-2003$ $1995-2003$ $1994-2003$ | $\begin{gathered} \hline 2-10 \\ 2-10 \\ 2-10 \\ 1-6 \\ 1-6 \\ 1-6 \\ 1-6 \\ \hline \end{gathered}$ | $0-1$ <br> $0-1$ <br> $0-1$ <br> $0.99-1.00$ <br> $0.83-0.92$ <br> $0.99-1.00$ <br> $0.83-0.92$ |
| Plaice | 7d | XSA | 1-10+ | 1980-2003 | 2-6 | None | None | 7 | 5 years 3 ages | 0.5 | 0.3 | No | $\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \hline \end{aligned}$ | UK Insh. BEL beam FRA TRL UK BTS YFS FRA GFS | $1988-2003$ $1988-2003$ $1989-2003$ $1988-2003$ $1988-2003$ $1988-2003$ | $\begin{gathered} \hline 2-9 \\ 2-9 \\ 2-9 \\ 1-6 \\ 1 \\ 1-5 \\ \hline \end{gathered}$ | $0-1$ $0-1$ $0-1$ $0.5-0.75$ $0.5-0.75$ $0.75-1$ |
| N. pout | 4 | SXSA | 0-4+ | 1983-2004 | 1-2 | None | N/a | N/a | N/a | N/a | N/a | N/a | $\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \hline \end{aligned}$ |  | $1982-2004$ <br> $1982-2003$ <br> $1982-2003$ <br> $1982-2004$ <br> $1992-2004$ <br> $1998-2004$ <br> $1991-2003$ | $\begin{aligned} & 1-3 \\ & 1-3 \\ & 0-3 \\ & 1-3 \\ & 0-1 \\ & 0-1 \\ & 2-3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Q1 } \\ & \text { Q3 } \\ & \text { Q4 } \\ & \text { Q1 } \\ & \text { Q2 } \\ & \text { Q2 } \\ & \text { Q3 } \end{aligned}$ |
| Sandeel 1 | 4 | SXSA | 0-4+ | 1983-2004 | 1-2 | None | N/a | N/a | N/a | N/a | N/a | N/a | $\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \hline \end{aligned}$ | North 1 <br> North 2 <br> South 1 <br> South 2 | $\begin{array}{\|l\|} \hline 1983-2004 \\ 1983-2004 \\ 1983-2004 \\ 1983-2004 \\ \hline \end{array}$ | $\begin{aligned} & \hline 1-3 \\ & 1-3 \\ & 0-3 \\ & 0-3 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.25-0.5 \\ 0.5-0.75 \\ 0.25-0.5 \\ 0.5-0.75 \\ \hline \end{array}$ |
| Sandeel 2 | 4 | XSA | 0-4+ | 1983-2003 | 1-2 | None | None | 2 | $\begin{aligned} & 5 \text { year } \\ & 2 \text { ages } \end{aligned}$ | 1.5 | 0.3 | No | $\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \hline \end{aligned}$ | North 1 <br> North 2 <br> South 1 <br> South 2 | $\begin{array}{\|l\|} \hline 1983-2004 \\ 1983-2004 \\ 1983-2004 \\ 1983-2004 \\ \hline \end{array}$ | $\begin{aligned} & \hline 1-3 \\ & 1-3 \\ & 0-3 \\ & 0-3 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.25-0.5 \\ 0.5-0.75 \\ 0.25-0.5 \\ 0.5-0.75 \\ \hline \end{array}$ |

Figure 1.3.1. Roundfish sampling areas for the IBTS Q1 and Q3 research-vessel survey indices.


### 2.1 Stocks in the North Sea (Sub-Area IV)

### 2.1.1 Description of the fisheries

The demersal fisheries in the North Sea can be categorised as a) human consumption fisheries, and b) industrial fisheries which land the majority of their catch for reduction purposes. Demersal human consumption fisheries usually either target a mixture of roundfish species (cod, haddock, whiting), a mixture of flatfish species (plaice and sole) with a by-catch of roundfish, or Nephrops with a bycatch of roundfish and flatfish. A fishery directed at saithe exists along the shelf edge. On average $90 \%$ of the landings for reduction consist of sandeel, Norway pout, blue whiting and sprat. The industrial landings also contain by-catches of various other species (Table 2.1.2). The industrial by-catches of human consumption species landed for consumption and reduction by the Danish small-mash fleet are given for 1993-2003 in Tables 2.1.3 and 2.1.4 respectively. Similar data by quarter for 2003 are shown in Tables 2.1.5 and 2.1.6. Sampling intensity of the Danish industrial by-catch is given in Table 2.1.7.

Gear types vary between fisheries. Human consumption fisheries use otter trawls, pair trawls, seines, gill nets, or beam trawls, while industrial fisheries use small meshed otter trawls.

## Effort

The human-consumption fisheries in the North Sea have been subject to a number of restrictive management measures in recent years, in response to declining stock abundance. These are summarised in Section 2.1.2 below. In addition, a series of decommissioning rounds have reduced fleet size in a number of countries. These measures have all had an effect on reported effort, although it must be remembered that fleet efficiency is not constant and realised catch rates may not have declined commensurate with effort. Recent trends in reported effort in UK fisheries are described in WP1 (see Section 1.6.1), which show significant declines. Total effort data by country were made available to the WG for the UK and the Netherlands, while combined Danish-Norwegian effort data were made available for the sandeel and Norway pout fisheries. These are summarised in Table 2.1.11 and Figure 2.1.1 which show considerable declines in effort. Trends in commerical effort and CPUE on each stock is reported in the relevant stock sections.

### 2.1.1.1.1.1 Landings

The trends in the landings (WG estimates) since 1970 of the species assessed by the WG are shown in Table 2.1.1 and in Figure 2.1.2. The human consumption landings have steadily declined over the last 30 years, with an intermediate high in the early 80 's. The landings of the industrial fisheries are fluctuating around 1 million $t$ over the years. These landings show the largest annual variations, probably due to the short life span of the main target species. The total demersal landings from the North Sea reached over 2 million $t$ in 1974 , and have been around 1.5 million $t$ in the 1990s.

The landings by country and fleet segment for the human consumption fisheries are presented in Section 15 of this report (Table 15.2.1.1 and Figure 15.2.1.2). Most of the human consumption landings are from the Dutch beam-trawl fishery harvesting plaice and sole (> 0000 t ) and from the Scottish fishery harvesting cod, haddock and whiting (> 100000 t ). This Figure shows clearly the great level of technical interactions between the cod, haddock and whiting fisheries and between the sole and plaice fisheries. The flatfish and roundfish landings are generally taking by different fleet segments, with the exception of gill-netters which may potentially target any of these groups of species. The fisheries landing saithe have a low impact on the others. However, the fisheries non-directed to cod, haddock and whiting may generate discards of saithe. Most of the saithe landings are taken by the Norwegian, French and German offshore trawlers.

### 2.1.1.1.1.2 Assessment areas

For some stocks, the North Sea assessment area may also comprises other regions adjacent to Sub-area IV. Thus, combined assessments were made for cod including IIIaN (Skagerrak) and VIId, for haddock and Norway pout
including IIIa, for whiting including VIId, and for saithe including IIIa and VI. Sandeel stocks at Shetlands and in IIIa are separately dealt with.

### 2.1.1.1.1.3 Biological interactions

Biological interactions are not incorporated in the assessments or the forecasts for the North Sea stocks. However, average values of natural mortalities estimated by multispecies assessments for cod, haddock, whiting and sandeel are incorporated in the assessments of these species.

### 2.1.1. Technical measures

The national management measures with regard to the implementation of the quota in the fisheries differ between species and countries. The industrial fisheries are subject to regulations for the by-catches of other species (e.g. herring, whiting, haddock, cod). TACs for these fisheries have only recently been introduced.

Until 2001, the technical measures applicable to the North Sea demersal stocks in EU waters were laid down in the Council Regulation (EC) No 850/98. Additional technical measures have been established in 2001 by the Commission Regulation (EC) No 2056/2001, for the recovery of the stocks of cod in the North Sea and to the west of Scotland. Their implementation in EU waters is described below. In 2001, an emergency measure was enforced by the Commission to enhance cod spawning (Commission Regulation EC No 259/2001). Council Regulation (EC) No 423/2004, the cod stocks recovery plan, was put into force by 26 February 2004. The TAC and Quota regulation for 2004 in Council Regulation (EC) No 2287/2003 further establishes a revised interim effort management based on days at sea by area, vessel, month and gear (Annex V) and an area based management to enhance the utilisation of the North Sea haddock TAC with the aim to prevent cod by-catches Annex (IV, Article 17).

### 2.1.1.1. Minimum landing size

"Undersized marine organisms must not be retained on board or be transhipped, landed, transported, stored, sold, displayed or offered for sale, but must be discarded immediately to the sea" (EC 850/98). Minimum landing sizes in the North Sea are the same as in all European waters (except in Skagerrak and Kattegat, where minimum sizes are slightly smaller). The value for demersal stocks is shown below.

| Cod | 35 cm |
| :--- | :--- |
| Haddock | 30 cm |
| Saithe | 35 cm |
| Whiting | 27 cm |
| Sole | 24 cm |
| Plaice | 27 cm |

### 2.1.1.2. Minimum mesh size

Regulations on mesh sizes are more complex than those on landing sizes, as they differ depending on gears used, target species and fishing areas. Many other accompanying measures are implemented simultaneously with mesh sizes. They include regulations on gear dimensions (e.g. number of meshes on the circumference), square-meshed panels, and netting material. The most relevant mesh size regulations of EC No 2056/2001 are presented below.

### 2.1.1.1.1.4 Towed nets excluding beam trawls

Since January 2002, the minimum mesh size for towed nets fishing for human consumption demersal species in the North Sea is 120 mm . There are however many derogations to this general rule, and the most important are given below:

- Nephrops fishing. It is possible to use a mesh size in range $70-109 \mathrm{~mm}$, provided catches retained on board consist of at least $30 \%$ of Nephrops. However, the net needs to be equipped with a 80 mm square-meshed panel if a mesh size of $70-99 \mathrm{~mm}$ is to be used, and with a codend if a mesh size of $70-79 \mathrm{~mm}$ is to be used.
- Saithe fishing. It is possible to use a mesh size range of $110-119 \mathrm{~mm}$, provided catches consist of at least $70 \%$ of saithe and less than $3 \%$ of cod. This exeption however does not apply to Norwegian waters, where the minimum mesh size for all human consumption fishing is 120 mm . Since January 2002 Norwegian trawlers (human consumtion) have had a minimum mesh size of 120 mm in EU-waters. However, since August 2004 they have been allowed to use down to 110 mm mesh size in EU-waters (but minimum mesh size is still 120 mm in Norwegian waters).
- Fishing for other stocks. It is possible to use a mesh size range of $100-119 \mathrm{~mm}$, provided the net is equipped with a square-meshed panel of at least 90 mm mesh size and the catch composition retained on board consists of no more than $3 \%$ of cod.
- 2002 exemption. In 2002 only, it was possible to use a mesh size range of $110-119 \mathrm{~mm}$, provided catches retained on board consist of at least $50 \%$ of a mixture of haddock, whiting, plaice sole, lemon sole, skates and anglerfish, and no more than $25 \%$ of cod.


## Beam trawls

- Northern North Sea. It is prohibited to use any beam trawl of mesh size range 32 to 119 mm in that part of ICES Sub-area IV to the north of $56^{\circ} 00^{\prime} \mathrm{N}$. However, it is permitted to use any beam trawl of mesh size range 100 to 119 mm within the area enclosed by the east coast of the United Kingdom between $55^{\circ} 00^{\prime} \mathrm{N}$ and $56^{\circ} 00^{\prime} \mathrm{N}$ and by straight lines sequentially joining the following geographical coordinates: a point on the east coast of the United Kingdom at $55^{\circ} 00^{\prime} \mathrm{N}, 55^{\circ} 00^{\prime} \mathrm{N} 05^{\circ} 00^{\prime} \mathrm{E}, 56^{\circ} 00^{\prime} \mathrm{N} 05^{\circ} 00^{\prime} \mathrm{E}$, a point on the east coast of the United Kingdom at $56^{\circ} 00^{\prime} \mathrm{N}$, provided that the catches taken within this area with such a fishing gear and retained on board consist of no more than $5 \%$ of cod.
- Southern North Sea. It is possible to fish for sole south of $56^{\circ} \mathrm{N}$ with $80-99 \mathrm{~mm}$ meshes in the cod end, provided that at least $40 \%$ of the catch is sole, and no more than $5 \%$ of the catch is composed of cod, haddock and saithe.

Combined nets. It is prohibited to simultaneously carry on board beam trawls of more than two of the mesh size ranges 32 to $99 \mathrm{~mm}, 100$ to 119 mm and equal to or greater than 120 mm .

## Fixed gears

The minimum mesh size of fixed gears is of 140 mm when targeting cod, that is when the proportion of cod catches retained exceeds $30 \%$ of total catches.

### 2.1.1.3. Closed areas

## Twelve-mile zones

Twelve miles zone. Beam trawling is not allowed in a 12 nm wide zone along the British coast, except for vessel having an engine power not exceeding 221 kW and an overall length of 24 m maximum. In the 12 mile zone extending from the French coast at $51^{\circ} \mathrm{N}$ to Hirtshals in Denmark trawling is not allowed to vessels over 8 m overall length. However, otter trawling is allowed to vessels of maximum 221 kW and 24 m overall length, provided that catches of plaice and sole do not exceed $5 \%$ of the total catch. Beam trawling is only allowed to vessels included in a list that has been drawn up for the purposes. The number of vessels on this list is bound to a maximum, but the vessels on it may be replaced by another ones, provided that their engine power does not exceed 221 kW and their overall length is 24 m maximum. Vessels on the list are allowed to fish within the twelve miles zone with beam trawls having an aggregate width of 9 m maximum. To this rule there is a further derogation for vessels having shrimping as their main occupation. Such vessels may be included in annually revised second list and are allowed to use beam trawls exceeding 9 m total width.

Plaice box. To reduce the discarding of plaice in the nursery grounds along the continental coast of the North Sea, an area between $53^{\circ} \mathrm{N}$ and $57^{\circ} \mathrm{N}$ has been closed to fishing for trawlers with engine power of more than 221 kw (300 hp ) in the second and third quarter since 1989, and for the whole year since 1995.

Cod box. An emergency measure to enhance cod spawning in the North Sea has been enforced in January 2001. The EU and Norway agreed on a temporary closure of the demersal fishery in the main spawning grounds from February 15 until 30 April 2001.

Sandeel box. In the light of studies linking low sandeel availability to poor breeding success of kittiwake, ICES advised in 2000 for a closure of the sandeel fisheries in the Firth of Forth area east of Scotland. All commercial fishing was excluded, except for a maximum of 10 boat days in each of May and June for stock monitoring purposes. The closure was maintained for three years and has been extended until 2006, with a small increase in the effort of the monitoring fishery, after which the effect of the closure will be evaluated.

Cod protection area in the North Sea. The cod protection area defined in Council Regulation (EC) No 2287/2003 Annex IV is aimed to enhance the TAC uptake of haddock in the North Sea while preventing cod bycatches. It regulates fishing of haddock of licensed vessels for a maximum of 3 months under the condition not to fish
inside or transit the cod protection area, that cod does not contribute more than $5 \%$ to the total catch retained on board, not to tranship any fish at sea, not to carry on board or deploy trawl gear of less than 100 mm mesh size and to comply with a number of special landing regulations.

### 2.1.1.1.2 Fishing effort limitation

Interim fishing effort limitations laid down in Council Regulation (EC) No 2287/2003 Annex V determine maximum days at sea for 2004 by area, month, vessel and gear types and mesh ranges deployed with a variety of derogations, e.g. depending on landings composition in the track record of individual vessels, mesh size, or on the basis of the achieved results of decommissioning programmes that have taken place since 1 January 2002.

### 2.1.2. Human consumption fisheries

## Data

2.1.1.1.2.1 The volume of biological sampling in 2003 for most of the stocks assessed by this WG is close to that for previous years (Table 1.3.1).

Estimates of discarding rates from the Scottish observer sampling programme were used in the assessments of cod, haddock and whiting in the North Sea, after raising to the level of the international catch. A combination of observed (from the Dutch sampling programme) and reconstructed discard rates were used in the North Sea plaice assessment. Other discard sampling programmes have been in place in recent years, but have not been used in the assessments yet because of short time-series. In general, considerable discarding occurs in most human-consumption fisheries, particularly when strong year-classes are approaching the minimum landing size.

For a number of years there have been indications that substantial under-reporting of roundfish and flatfish landings is likely to have occurred. Anecdotal evidence for this is particularly strong for cod during 2001-2003, when the agreed TAC implied a reduction in effort of more than $50 \%$ which the WG suggests probably did not occur. In the absence of information from the industry on the likely scale of this under-reporting, the WG have used a new assessment method for North Sea cod (Section 3 and Appendix 4) which estimates under-reporting on the basis of research-vessel survey data.

Several research-vessel survey indices are available for most species, and were used both to tune population estimates from catch-at-age analyses, and in exploratory analyses based on survey data only. Commercial CPUE series were available for a number of fleets and stocks, but for various reasons few of them could be used for assessment purposes (although they are presented and discussed in full for each stock). The use of commercial CPUE indices is being phased out where possible.

Bycatches in the industrial fisheries were historically significant for haddock, whiting and saithe, but these have reduced considerably in recent years.

### 2.1.1.1.2.2 Stock impressions

In the North Sea all stocks of roundfish and flatfish species have been exposed to high levels of fishing mortality for a long period. For most of these stocks their lowest observed spawning stock size has been seen in recent years. This may be an indication of excessive fishing effort, possibly combined with an effect of a climatic phase which is unfavourable to recruitment.

For a number of years, ICES has recommended significant and sustained reductions in fishing mortality on some of the stocks. In order to achieve this, significant reductions in fishing effort are required. The trends in landings, spawning-stock biomass (SSB), mean fishing mortality ( $F$ ) and recruitment from the assessments are presented in Figures 2.1.3-2.1.6. Note that the WG were unable to propose a final assessment for North Sea whiting this year (see Section 5).

WG estimates of total catches (reported landings + discards + estimated under-reported landings) for cod in 2003 $(78,000 \mathrm{t})$ are the second-lowest in the historical record. The inclusion of estimated under-reported catch and discards in the assessment this year increased the estimates of SSB during 1993-1997, but not in more recent years in which SSB is still very low and well below the current $B_{\text {lim }}(70,000$ tonnes). Fishing mortality has increased slightly after falling for several years, although the absolute level of $F$ in 2003 is uncertain. Recruitment has remained at a low level after the strong 1996 year-class.

The strong 1999 year-class again dominated the catches of haddock in 2003 ( $69,000 \mathrm{t}$ ). However, the contribution of this year-class to the fishery appears to be drawing to a close. Recruitment following the 1999 yearclass has been low, and SSB is likely to decline in the short-term. All sources of information agree that fishing mortality has declined rapidly in this fishery to an historical minimum.

Catches of whiting ( $43,000 \mathrm{t}$ ) have continued to decline in 2003 to the lowest observed level. However, two of the three available survey indices covering the North Sea area indicate that stock abundance is at or near a historic maximum. There are also considerable within-series discrepancies in apparent stock trends between different sub-units of the assessed area. These conflicting signals on population trends have prevented the WG from being able to propose a final assessment. The problem requires a fundemental review of all available data for which the WG had neither the time nor the resources, but which the WG proposes be taken up by a dedicated Study Group (see Section 1.8).

While still above $B_{\mathrm{pa}}$ and apparently increasing, the estimated SSB for saithe has been revised downwards from last year's assessment. Fishing mortality is at or near the historic low, and recruitment remains near the long-term mean. Considerable annual revisions of the saithe assessment are a direct consequence of the lack of survey or fishery information for younger age-groups. Reported landings for $2003(107,000 \mathrm{t})$ were near to the recent mean.

Landings of sole in $2003(18,000 \mathrm{t})$ were at a similar level as seen for 2001 and 2002. SSB has fluctuated around a moderate level for several years and for 2003 was estimated to be just below $B_{\mathrm{pa}} . F$ is still estimated to be above $F_{\mathrm{pa}}$, but has declined fairly steadily since the historical maximum in 1996. After the strong 2001 year-class, recruitment has fallen back down to near the mean of the full time-series.

The assessment for plaice included discards for the first time this year. Although reported landings for 2003 are at the lowest observed level ( $66,000 \mathrm{t}$ ), estimated total catches $(141,000 \mathrm{t})$ are the highest since 1998. SSB is estimated to be stable, but very low and well below $B_{\mathrm{pa}}$. Fishing mortality is fluctuating around a very high level. The 2001 yearclass is estimated to have been the strongest seen since the mid-1980s, but subsequent year-classes are thought to be weak.

### 2.1.3. Industrial fisheries

### 2.1.4.1. Description of fisheries

The industrial fisheries dealt with in this report are the small meshed trawl fisheries targeted at Norway pout and sandeel.

### 2.1.4.2. Data available

Data on landings, fishing effort and species composition are available from all industrial fisheries.

### 2.1.4.3. Trends in landings and effort

Sandeel landings in 1974-1985 fluctuated between 428,000 and 787,000 tonnes with a mean of 611,000 tonnes. In the period 1986-2000 the landings increased to a generally higher level between 591,000 and 1,091,000 tonnes and a mean of 819,000 tonnes. In 1997 the combined Danish and Norwegian landings of more than 1 million tonnes were the highest ever recorded. Landings in 2002 for Norway and Denmark were 804,000 tonnes (Table 2.1.2) which is just above the average of 779,000 tonnes for the period 1980-2002. The landings in 2003 of about 326,000 tonnes were very low, and current indications of the total landings in 2004 are at about the same low level.

Norway pout landings showed a downward trend in the period 1974-1988. Thereafter the landings have fluctuated around a level of 150,000 tonnes. The respective landings in 1998 and 1999 were 80,000 and 92,000 tonnes, which were the lowest landings since 1974. In 2000 Norway pout landings increased to around 184,000 tonnes based on a fishery on the strong 1999 year class. Landings in 2001 and 2002 were around 66,000 and 77,000 tonnes, respectively. These were the lowest landings recorded since 1967 and well below average for the previous five years. The 2003 landings decreased further: in this year only about 25,000 tonnes were landed.

Trends in effort of the Norwegian and Danish small-meshed fisheries for Norway pout and sandeel are shown in Figure 2.1.1. The effort of the sandeel fleet decreased gradually from 1989 to 1994, increased a little from 1994 to 1998, before decreasing from 1998 to 2002. The 2003 effort was a little higher than the effort in 2002. The Danish fishery targeting sandeel mainly determines the total effort of the sandeel fleet.

The effort in the Norway pout fleet decreased gradually from 1993 to 2003, when reported effort reached a historic low (Figure 2.1.1). The effort in 2002 nearly doubled from the 2001 effort being at the same level as in the eight years
before 2001. But the 2003 effort decreased considerably and was even below the very low effort in 2001.

### 2.1.4.4. Landings of Blue Whiting

The following text relates to the 2003 assessment of blue whiting. At the time of writing there was no updated information on blue whiting for 2004.

ACFM states, that the linkage between blue whiting and e.g. Norway pout fisheries should be addressed. Blue whiting is caught by different gears and mesh sizes and can be grouped in two types of fisheries. The first is a directed fishery where by-catches of other species are insignificant. These landings are used for human consumption or for meal and oil production. Secondly there is mixed industrial fishery where varying proportions of juvenile blue whiting are caught together with Norway pout or other species. The majority of these landings are for meal and oil production.

In 2001 ACFM stated that the Blue Whiting stock is considered to be outside safe biological limits. Total catches in 2002 were estimated to be 1554995 t compared to 1780170 t in 2001.

The Danish blue whiting fishery is conducted by trawlers using a minimum mesh size of 40 mm in the directed fishery and in the fisheries where blue whiting was taken as by-catch, trawls with mesh sizes between 16 and 36 mm were used. The directed fishery in 2002 caught 39100 t mainly in Divisions IIa (13 600 t), IVa (20 900 t) with small catches from Divisions IIIa, Vb, VIa and VIIb. By-catches of blue whiting (12 100 t) were caught mainly in the Norway pout fishery in the North Sea and in the Skagerrak. Some blue whiting by-catches were also taken during the human consumption herring fishery in the Skagerrak.

Norway set a blue whiting quota of 250000 tonnes for the Norwegian EEZ, Jan Mayen zone and international waters for 2002. In addition, through international agreements, 120000 t in the EEZ of EU and 35000 tonnes in the Faroese zone were made available to the Norwegian fishery. The mixed industrial fishery in the North Sea/southern Norwegian Sea was allowed to take 79396 tonnes. The total quota for Norwegian vessels in 2002 was 484396 tonnes. The main Norwegian fishery is a directed pelagic trawl fishery, regulated by vessel quotas, and is carried out on and west of the spawning areas west of the British Isles. The Norwegian fishery in 2002 started at the beginning of February and stopped on 5 May when the quota in the EU zone was taken.

In addition young blue whiting are fished by Norway in the North Sea and in the southern Norwegian Sea (areas south of $64^{\circ} N$ ) in the mixed industrial fishery targeting blue whiting and Norway pout. An estimated catch of approximately 98000 tonnes was taken in this fishery in 2002 in this fishery.

### 2.1.4.5. Stock impressions

Trends in yield, mean $F$, SSB and recruitment for sandeel and Norway pout are given in Figures 2.1.4-2.1.7.
The SSB of Norway pout showed an increasing trend in the period 1974-1984. Over the next two years SSB dropped to a low level which was followed by an increase. SSB peaked in 1996 due to the big 1994 year-class but decreased again in the period up to 1999. SSB in 2001 increased to 238,000 tonnes to reach a similar level as in 1996, due to the strong 1999 year class. The SSB decreased to 164,000 tonnes in 2002 and decreased further to 120,000 tonnes in 2003, and estimated to be about 90,000 tonnes (near $B_{\text {lim }}$ ) in the 1st quarter of 2004. Fishing mortality has generally been lower than the natural mortality for this stock and has generally decreased in recent years well below the long term average $F$ (0.7). Fishing mortality was historically low in 2003 and in the two first quarters of the year in 2004. Fishing effort has in general decreased in recent years reaching a historically minimum in 2001 and in 2003 and in the first part of the year 2004, but increased in 2002 to the level of that in 1999-2000.

Over the years, SSB of sandeel has been fluctuating around 1 million tonnes with an increasing trend from 1989 to 1995 and a decreasing trend from 1998 to 2002. Until 2003 the sandeel stock was considered to be within safe biological limits, and the stock was thought to be able to sustain the exisiting fishing mortality. However, in the 2003 ICES assessment SSB was estimated to be below $B_{\text {lim }}$ in 2003, and ICES reported that the state of the North Sea sandeel stock is uncertain. The sandeel stock shows large fluctuations over time, mainly due to large variations in the recruitment pattern, and the scarcity of the 2002 year-class means that the strength of the 2003 year-class was particularly important to the state of the stock in 2004. The present assessment estimates the 2003 year-class to be below the average recruitment.

### 2.2. Overview of the stocks in the Skagerrak and Kattegat (Division IIIa)

The fleets operating in the Skagerrak and Kattegat (Division IIIa) include vessels targeting species for both human consumption and reduction purposes. The human consumption fleets include gill-netters and Danish seiners exploiting
flatfish and cod, and demersal trawlers involved in various human consumption fisheries (roundfish, flatfish, Pandalus, and Nephrops). Demersal trawling is also used in the fisheries for industrial species and herring, which are landed for reduction purposes.

The roundfish, flatfish, and Nephrops stocks are mainly exploited by Danish and Swedish fleets consisting of bottom trawlers (Nephrops trawls with $>70 \mathrm{~mm}$ mesh size and bottom trawls with $>105 \mathrm{~mm}$ mesh size), gill-netters, and Danish seiners. Effort measures available from the major Danish fleets (Figure 2.2.1) fishing plaice and cod have been stable for nearly a decade. These fleets do not comprise the entire fishery, but are however considered representative for trends in effort.

The industrial fishery is a small-mesh trawl fishery mainly carried out by vessels of a size above 20 m . This fleet component has also decreased over the past decade. Highest catches are from fisheries targeting sandeel, sprat and herring. There is also a trawl fishery landing a mixture of species for reduction purposes. Catches from the industrial fishery is given in Table 2.2.1.

There are important technical interactions between the fleets. This issue has been discussed by the WG since its 2003 meeting. Last year the analysis was restricted to the North Sea, but in 2004 data were also available for the Skagerrak Danish, Norwegian, Swedish and German fisheries. The methodology used is presented in Section 14. Most of the human consumption demersal fleets are involved in mixed fisheries. Norway pout and the mixed clupeoid fishery have by-catches of protected species.

Discard data have been collected for cod, whiting, haddock, and flatfish in the area since the second half of 1999. Due to the short time-series the data were not included in the assessment this year. The Skagerrak-Kattegat area is to a large extent a transition area between the North Sea and the Baltic, with regards to the hydrology, the biology, and the identity of stocks in the area. The exchange of water between the North Sea and the Baltic is the main hydrographic feature of the area.

Several of the stocks in the Skagerrak may not be separate stocks but are assumed to intermingle with the stocks in the North Sea. This is the case for cod, haddock, whiting, and Norway pout. Plaice in IIIa in considered as being a mix of several sub-populations, which would intermingle both with the North Sea and the Baltic Sea.

The official landings of cod in Division IIIa were 6.7 thousand tonnes in 2003 in the human consumption fishery, which is a historic low and $30 \%$ less than last year. $70 \%$ was taken in Skagerrak, and the majority of catches were taken by Denmark and Sweden. Cod in Skagerrak is assessed together with the North Sea (Division IV) and Eastern Channel (Division VIId) stock. Cod in Kattegat is assessed as a separate stock by the Baltic Fisheries Assessment Working Group. ICES has since 2002 advised that no fishery should take place on this stock. The Kattegat cod is covered by the EC recovery plan (Council Regulation no. 423/2004, of 26 February 2004, which allows a TAC even though biomass is below $B_{\text {lim }}$. ICES considers the agreement to be inconsistent with the precautionary approach.

By-catches of cod in the Danish small-meshed fishery have been decreasing steadily in the latest decade (Table 2.2.2.).

Landings of haddock in Division IIIa, in the human consumption fishery, amounted to 2.2 thousand tonnes. Most of the catches are taken by Danish fleets in the Skagerrak. Haddock in IIIa is assessed together with the North Sea (Division IV) stock. By-catches of haddock in the Danish small-meshed fishery have been decreasing steadily in the latest decade (Table 2.2.2.).

Landings of whiting (for human consumption) were 186 tonnes in 2002. Most of the landings are taken in Skagerrak. No analytical assessment of whiting in IIIa was possible. By-catches of whiting in the Danish small-meshed fishery have been slightly increasing in the recent 6 years (Table 2.2.2.).

Landings of saithe in Divisions IV and IIIa were about 105 thousand tonnes in 2003, which is close to the landings last year. The saithe assessment comprises Divisions IV, IIIa, and VI. Almost no by-catches of saithe have occured in the Danish small-meshed fishery since 1999 (Table 2.2.2.).

The plaice landings in Division IIIa amounted to 8.9 thousand tonnes in 2003, which is close to the 2002 landings. Historically, TAC has not been restrictive for this stock. About $75 \%$ of the landings were taken in Skagerrak. Plaice in IIIa is assessed as a separate stock. By-catches of plaice in the Danish small-meshed fishery have been decreasing steadily in the latest decade (Table 2.2.2.).

The sole landings in Division IIIa are mostly taken in Kattegat and this stock is assessed by the Baltic Fisheries Assessment Working Group. Landings in 2003 amounted 300 tonnes, and $75 \%$ was taken in the Kattegat. Further
information may be found in the report of this Working Group.
The Norway lobster stock in Division IIIa is assessed by the Nephrops Assessment Working Group. Landings data may be found in the report of this Working Group.

Most of the landings from the industrial fisheries in IIIa consisted of sandeel, sprat and herring, but also blue whiting and Norway pout (Table 2.2.1). Data were provided by Denmark and Sweden for the years 1999-2002. All other years refer to data provided by Denmark only. The Norway pout assessment comprises Divisions IIIa and IV. Sandeel in Division IIIa was not possible to assess.

Table 2.2.1 Catches of the most important species in the industrial fisheres in Division Illa (' 000 t), 1989-2002.

| Year | Sandeel | Sprat $^{1}$ | Herring | Norway <br> pout | Blue <br> whiting | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1989 | 18 | 4 | 52 | 5 | 9 | 88 |
| 1990 | 16 | 2 | 51 | 27 | 10 | 106 |
| 1991 | 24 | 14 | 44 | 39 | 10 | 131 |
| 1992 | 39 | 4 | 66 | 45 | 19 | 173 |
| 1993 | 45 | 2 | 71 | 8 | 32 | 158 |
| 1994 | 55 | 58 | 30 | 7 | 12 | 162 |
| 1995 | 12 | 42 | 34 | 50 | 10 | 148 |
| 1996 | 53 | 10 | 26 | 36 | 15 | 140 |
| 1997 | 82 | 12 | 6 | 32 | 4 | 136 |
| 1998 | 11 | 11 | 5 | 15 | 7 | 49 |
| $1999^{*}$ | 13 | 26 | 11 | 7 | 16 | 73 |
| $2000^{*}$ | 17 | 19 | 18 | 10 | 7 | 71 |
| $2001^{*}$ | 25 | 28 | 16 | 9 | 5 | 83 |
| 2002 | 49 | 26 | 32 | 3 | 12 | 122 |
| Mean 1989-2002 | 33 | 18 | 33 | 21 | 12 | 117 |

* 1999-2001 data provided from Denmark and Sweden. Other years, only data from Denmark is presented
${ }^{1}$ Data provided by Working Group members
Table 2.2.2 By catches of the most important consumption species in the Danish small meshed fisheries in Division IIla (t), 1989'-2003

| Year | Whiting | Haddock | Plaice | Saithe | Cod |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 1989 | 3961 | 64 | 135 | 1 | 399 |
| 1990 | 5304 | 297 | 58 | 9 | 131 |
| 1991 | 4506 | 400 | 86 | 13 | 421 |
| 1992 | 3340 | 513 | 111 | 2 | 293 |
| 1993 | 1987 | 415 | 141 | 13 | 153 |
| 1994 | 1900 | 138 | 65 | 0 | 181 |
| 1995 | 2549 | 247 | 20 | 9 | 304 |
| 1996 | 1232 | 302 | 107 | 1 | 234 |
| 1997 | 264 | 77 | 16 | 2 | 45 |
| 1998 | 354 | 39 | 5 | 1 | 44 |
| 1999 | 695 | 89 | 8 | 0 | 53 |
| 2000 | 777 | 140 | 30 | 0 | 42 |
| 2001 | 970 | 43 | 35 | 0 | 74 |
| 2002 | 975 | 12 | 9 | 0 | 60 |
| 2003 | 654 | 82 | 16 | 4 | 50 |
| Mean 1989-2003 | 1965 | 191 | 56 | 4 | 166 |

Figure 2.2.1. Standardised effort in the Danish demersal mixed fisheries for plaice in Division IIIa.


### 2.3. Overview of stocks in the Eastern Channel (Division VIId)

### 2.3.1. Description of the fisheries

Flatfish: Approximately 500 vessels fish for sole and plaice at some time during the year in the eastern Channel and are heavily dependent on sole. More than $50 \%$ of the reported landings come from small vessels ( $<10 \mathrm{~m}$ ). The gears used are mainly fixed nets but there is also considerable effort on trawling and potting. The other main commercial fleets fishing for flatfish in Division VIId include, Belgian and English offshore beam trawlers (>300HP) which fish mainly for sole and also take plaice. The contribution of Dutch beam-trawlers to the flatfish fishery in Division VIId has increased in recent years as a result of the application of more restrictive management measures in Sub-Area IV. These vessels switch effort to other areas and onto scallops leading to periodic large changes in effort in Division VIId.

Roundfish: The offshore French trawlers are the main fleet fishing for cod and whiting using high headline trawls, but cod is also very important for inshore vessels who target this species during the winter using fixed nets. Cod and whiting are caught within a mixed fishery, along with other valuable species including bass, red mullet, gurnards and squid.

Effort: The fishing effort of French otter-trawlers and Belgian beam-trawlers has increased consistently since the mid-1970s. The fishing effort of both English beam trawlers and netters has increased between 1980s and 1990s, but has shown a decline in recent years (Figure 2.3.1). Information on the French fixed net fleet, which takes about $50 \%$ of the French sole landings and less than $20 \%$ of the French plaice landings, is only available since 2001, and it has not been presented here.

### 2.3.2. Data

Discards: Within EU Regulation 1639/2001, UK, France and Belgium have initiated a discard sampling program. The UK program started in 2002 and is designed to sample North Sea and Eastern Channel. The level of the UK sampling in Eastern Channel is proportional to the effort of the UK fleet between the two areas. The French discard sampling has started late in 2003 and it is designed to sample the main fleets in the Eastern Channel. Belgium started a pilot study on discards in 2003. Results will only be indicative for the level of discarding.

Catch at age: French fleets contribute to most of the landings of cod, whiting, sole and plaice, taking around 80 $95 \%$ of the roundfish species and between $4560 \%$ of the flatfish. Sampling for flatfish species was poor before 1986 but has improved since then. Quarterly sampling for age and sex is taken, and is thought to be representative of more than $80 \%$ of the landings of flatfish.

Surveys: The $4^{\text {th }}$ quarter French Groundfish Survey (CGFS) provides tuning indices for cod, whiting and plaice. A research vessel survey using beam trawl which covers most of VIId in August (BTS) is used in tuning sole and
plaice. An International Young Fish Survey (YFS) is carried out along the English coast and in the Baie de Somme on the French coast and is used to calculate an index for $0-\mathrm{gp}$ and $1-\mathrm{gp}$ of sole and plaice.

### 2.3.3. State of the stocks

Cod and whiting have been assessed with the North Sea stocks since 1998 and are included in the overview for the North Sea (Section 2.1.3).

Sole: The stock is considered to be within safe biological limits. The fishing mortality is estimated to be below $F_{\mathrm{pa}}$ The SSB is above $B_{\mathrm{pa}}$ (8000t) following improved recruitment in recent years particularly of the year classes 1998 to 2000. There is a tendency to underestimate F and overestimate SSB.

Plaice: The stock follows the pattern of a general decline in plaice stocks observed in other areas up to 1997. Since then SSB appears to have oscillated between $B_{\lim }$ and $B_{\mathrm{pa}}$. F has decreased since 1998, and it is currently between $F_{\text {lim }}$ and $F_{\text {pa }}$. Recruitment is close to mean levels after the confirmed strong 2000 year class. The state of the plaice stock in VIId is highly dependent on the quality of the recruitment.

Figure 2.3.1. Reported fishing effort of demersal fleets in Division VIId.


### 2.4. Overview of industrial fisheries in Division VIa

There are two distinct industrial fisheries operating in Division VIa; a Norway pout fishery and a sandeel fishery. The Norway pout fishery is now exclusively Danish, whereas the sandeel fishery is almost exclusively Scottish and operates in more inshore areas. No information is available on by-catches in the Norway pout fishery. The sandeel fishery has a small by-catch of other species; information from the 1995 and 1996 catches indicates that in excess of $97 \%$ of the catch consisted of Ammodytes marinus, with the by-catch consisting mostly of other species of sandeel. Landings from both fisheries are small compared to the fisheries in the North Sea. Landings of sandeel from VIa were very low in 2003, reflecting the continued reduced effort in the fishery.

Table 2.1.1 Working Group estimates of landings (' 000 t ) from the management areas of species assessed by WGNSSK.
$\mathrm{hc}=$ landings for human consumption; ib = by-catch of human consumption species landed from the small mesh fisheries and sent for reduction ic = landings from the small mesh fisheries sent for reduction

|  | cod |  | haddock |  | whiting |  | saithe | sole (1) | plaice (2) hc | Norway pout ic | sandeel ic | $\begin{array}{r} \mathrm{h} \text { cons } \\ \text { total } \end{array}$ | industrial total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | hc | ib | hc | ib | hc | ib | hc | hc |  |  |  |  |  |
| 1970 | 226 | n/a | 525 | 180 | 83 | 115 | 237 | 20 | 130 | 238 | 191 | 1221 | 724 |
| 1971 | 328 | n/a | 235 | 32 | 61 | 72 | 272 | 24 | 114 | 305 | 382 | 1034 | 791 |
| 1972 | 354 | n/a | 193 | 30 | 64 | 61 | 275 | 21 | 123 | 445 | 359 | 1030 | 895 |
| 1973 | 239 | n/a | 179 | 11 | 71 | 90 | 260 | 19 | 130 | 346 | 297 | 898 | 744 |
| 1974 | 214 | n/a | 150 | 48 | 81 | 130 | 309 | 18 | 113 | 736 | 524 | 885 | 1438 |
| 1975 | 205 | n/a | 147 | 41 | 84 | 86 | 309 | 21 | 109 | 560 | 428 | 874 | 1115 |
| 1976 | 234 | n/a | 166 | 48 | 83 | 150 | 362 | 17 | 114 | 437 | 488 | 976 | 1123 |
| 1977 | 209 | n/a | 137 | 35 | 78 | 106 | 223 | 18 | 119 | 390 | 786 | 785 | 1317 |
| 1978 | 297 | n/a | 86 | 11 | 97 | 55 | 166 | 20 | 141 | 270 | 787 | 807 | 1123 |
| 1979 | 270 | n/a | 83 | 16 | 107 | 59 | 136 | 23 | 167 | 329 | 578 | 786 | 982 |
| 1980 | 294 | n/a | 99 | 22 | 101 | 46 | 142 | 16 | 159 | 483 | 729 | 811 | 1280 |
| 1981 | 335 | n/a | 130 | 17 | 90 | 67 | 146 | 15 | 157 | 239 | 569 | 874 | 892 |
| 1982 | 303 | n/a | 166 | 19 | 81 | 33 | 190 | 25 | 170 | 395 | 611 | 935 | 1058 |
| 1983 | 259 | n/a | 159 | 13 | 88 | 24 | 198 | 28 | 160 | 451 | 537 | 892 | 1025 |
| 1984 | 228 | n/a | 128 | 10 | 86 | 19 | 220 | 30 | 173 | 393 | 669 | 865 | 1091 |
| 1985 | 215 | n/a | 159 | 6 | 62 | 15 | 226 | 28 | 179 | 205 | 622 | 870 | 848 |
| 1986 | 204 | n/a | 166 | 3 | 64 | 18 | 203 | 22 | 186 | 178 | 848 | 845 | 1047 |
| 1987 | 216 | n/a | 108 | 4 | 68 | 16 | 181 | 22 | 178 | 149 | 825 | 773 | 994 |
| 1988 | 184 | n/a | 105 | 4 | 56 | 49 | 141 | 25 | 178 | 110 | 893 | 689 | 1056 |
| 1989 | 140 | n/a | 76 | 2 | 45 | 36 | 118 | 26 | 186 | 168 | 1039 | 591 | 1245 |
| 1990 | 125 | n/a | 51 | 3 | 47 | 50 | 108 | 39 | 177 | 152 | 591 | 547 | 796 |
| 1991 | 102 | n/a | 45 | 5 | 53 | 38 | 116 | 38 | 165 | 193 | 843 | 518 | 1079 |
| 1992 | 114 | n/a | 70 | 11 | 52 | 27 | 104 | 33 | 143 | 300 | 855 | 517 | 1193 |
| 1993 | 122 | 0.66 | 80 | 11 | 53 | 20 | 119 | 36 | 134 | 184 | 579 | 544 | 795 |
| 1994 | 111 | 0.78 | 80 | 5 | 49 | 10 | 115 | 37 | 128 | 182 | 786 | 520 | 984 |
| 1995 | 136 | 0.96 | 75 | 8 | 46 | 27 | 125 | 35 | 114 | 241 | 918 | 531 | 1195 |
| 1996 | 126 | 0.34 | 76 | 5 | 41 | 5 | 120 | 27 | 98 | 166 | 777 | 488 | 953 |
| 1997 | 124 | 0.79 | 79 | 7 | 36 | 7 | 113 | 20 | 100 | 170 | 1137 | 471 | 1322 |
| 1998 | 146 | 0.40 | 77 | 5 | 28 | 3 | 109 | 24 | 86 | 80 | 1004 | 470 | 1092 |
| 1999 | 96 | 0.10 | 66 | 4 | 30 | 5 | 115 | 28 | 96 | 92 | 735 | 430 | 836 |
| 2000 | 71 | 0.06 | 47 | 9 | 28 | 8 | 94 | 26 | 96 | 184 | 699 | 362 | 900 |
| 2001 | 50 | 0.10 | 41 | 8 | 25 | 7 | 96 | 24 | 99 | 66 | 862 | 335 | 943 |
| 2002 | 54 | 0.03 | 58 | 4 | 22 | 8 | 122 | 22 | 85 | 77 | 811 | 362 | 899 |
| 2003 | 31 | n/a | 44 | 1 | 16 | 3 | 107 | 23 | 80 | 25 | 325 | 301 | 354 |

(1) 1970-1980: IV only. 1980-2003: IV and VIId. (2) 1970-1978: IV only. 1978-1979: IV and IIla. 1980-2003: IV, Illa and VIId.

Table 2.1.2. Species composition in the Danish and Norwegian small-meshed fisheries in the North Sea (thousand tonnes). Data provided by WG members. The "other" category is subdivided by species in Table 2.1.3.

| Year | Sandeel | Sprat | Herring | Norway pout | Blue whiting | Haddock | Whiting | Saithe | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1974 | 525 | 314 | - | 736 | 62 | 48 | 130 | 42 |  | 1857 |
| 1975 | 428 | 641 | - | 560 | 42 | 41 | 86 | 38 |  | 1836 |
| 1976 | 488 | 622 | 12 | 435 | 36 | 48 | 150 | 67 |  | 1858 |
| 1977 | 786 | 304 | 10 | 390 | 38 | 35 | 106 | 6 |  | 1675 |
| 1978 | 787 | 378 | 8 | 270 | 100 | 11 | 55 | 3 |  | 1612 |
| 1979 | 578 | 380 | 15 | 320 | 64 | 16 | 59 | 2 |  | 1434 |
| 1980 | 729 | 323 | 7 | 471 | 76 | 22 | 46 | - |  | 1674 |
| 1981 | 569 | 209 | 84 | 236 | 62 | 17 | 67 | 1 |  | 1245 |
| 1982 | 611 | 153 | 153 | 360 | 118 | 19 | 33 | 5 | 24 | 1476 |
| 1983 | 537 | 88 | 155 | 423 | 118 | 13 | 24 | 1 | 42 | 1401 |
| 1984 | 669 | 77 | 35 | 355 | 79 | 10 | 19 | 6 | 48 | 1298 |
| 1985 | 622 | 50 | 63 | 197 | 73 | 6 | 15 | 8 | 66 | 1100 |
| 1986 | 848 | 16 | 40 | 174 | 37 | 3 | 18 | 1 | 33 | 1170 |
| 1987 | 825 | 33 | 47 | 147 | 30 | 4 | 16 | 4 | 73 | 1179 |
| 1988 | 893 | 87 | 179 | 102 | 28 | 4 | 49 | 1 | 45 | 1388 |
| 1989 | 1039 | 63 | 146 | 162 | 28 | 2 | 36 | 1 | 59 | 1536 |
| 1990 | 591 | 71 | 115 | 140 | 22 | 3 | 50 | 8 | 40 | 1040 |
| 1991 | 843 | 110 | 131 | 155 | 28 | 5 | 38 | 1 | 38 | 1349 |
| 1992 | 854 | 214 | 128 | 252 | 45 | 11 | 27 | - | 30 | 1561 |
| 1993 | 578 | 153 | 102 | 174 | 17 | 11 | 20 | 1 | 27 | 1083 |
| 1994 | 769 | 281 | 40 | 172 | 11 | 5 | 10 | - | 19 | 1307 |
| 1995 | 911 | 278 | 66 | 181 | 64 | 8 | 27 | 1 | 15 | 1551 |
| 1996 | 761 | 81 | 39 | 122 | 93 | 5 | 5 | 0 | 13 | 1119 |
| 1997 | 1091 | 99 | 15 | 126 | 46 | 7 | 7 | 3 | 21 | 1416 |
| 1998 | 956 | 131 | 16 | 72 | 72 | 5 | 3 | 3 | 24 | 1283 |
| 1999 | 678 | 166 | 23 | 97 | 89 | 4 | 5 | 2 | 40 | 1103 |
| 2000 | 655 | 191 | 24 | 176 | 98 | 8 | 8 | 6 | 21 | 1187 |
| 2001 | 810 | 156 | 21 | 59 | 76 | 6 | 7 | 3 | 14 | 1152 |
| 2002 | 804 | 142 | 26 | 73 | 107 | 4 | 8 | 8 | 15 | 1186 |
| 2003 | 303 | 175 | 16 | 18 | 139 | 1 | 3 | 8 | 18 | 681 |
| Avg 74-03 | 718 | 200 | 61 | 238 | 63 | 13 | 38 | 9 | 33 | 1359 |
|  |  |  |  |  |  |  |  |  |  |  |
| Year quarter | Sandeel | Sprat | Herring | Norway pout | $\begin{gathered} \hline \text { Blue } \\ \text { whiting } \end{gathered}$ | Haddock | Whiting | Saithe | Other | Total |
| 1998 q1 | 37 | 7 | 7 | 13 | 11 | 1 | 0 | 0 | 5 | 80 |
| 1998 q2 | 754 | 1 | 2 | 8 | 12 | 2 | 1 | 0 | 4 | 784 |
| 1998 q3 | 153 | 60 | 4 | 29 | 38 | 2 | 1 | 2 | 9 | 298 |
| 1998 q4 | 12 | 63 | 4 | 23 | 12 | 0 | 0 | 0 | 6 | 121 |
| 1999 q1 | 14 | 14 | 4 | 8 | 23 | 1 | 1 | 1 | 8 | 74 |
| 1999 q2 | 507 | 2 | 4 | 22 | 30 | 1 | 2 | 1 | 8 | 577 |
| 1999 q 3 | 139 | 129 | 10 | 41 | 18 | 1 | 2 | 0 | 7 | 347 |
| 1999 q4 | 17 | 21 | 6 | 25 | 17 | 1 | 1 | 0 | 18 | 106 |
| 2000 q1 | 10 | 42 | 1 | 9 | 13 | 1 | 0 | 0 | 5 | 82 |
| 2000 q2 | 581 | 2 | 4 | 17 | 32 | 3 | 2 | 0 | 4 | 646 |
| 2000 q 3 | 63 | 133 | 10 | 30 | 39 | 2 | 3 | 6 | 5 | 291 |
| 2000 q4 | 0 | 15 | 8 | 119 | 14 | 2 | 3 | 0 | 8 | 169 |
| 2001 q1 | 12 | 40 | 2 | 20 | 15 | 1 | 1 | 0 | 3 | 94 |
| 2001 q2 | 462 | 1 | 2 | 10 | 32 | 3 | 1 | 2 | 4 | 517 |
| 2001 q3 | 314 | 44 | 4 | 4 | 12 | 1 | 2 | 0 | 5 | 386 |
| 2001 q 4 | 22 | 72 | 13 | 24 | 16 | 1 | 2 | 0 | 2 | 152 |
| 2002 q1 | 11 | 5 | 6 | 8 | 18 | 0 | 0 | 0 | 2 | 50 |
| 2002q2 | 772 | 0 | 3 | 5 | 19 | 1 | 2 | 0 | 4 | 806 |
| 2002q3 | 21 | 71 | 8 | 31 | 46 | 1 | 3 | 5 | 4 | 189 |
| 2002q4 | 0 | 66 | 10 | 28 | 24 | 1 | 2 | 3 | 6 | 141 |
| 2003 q1 | 3 | 18 | 1 | 2 | 14 | 0 | 0 | 1 | 5 | 45 |
| 2003 q2 | 239 | 1 | 2 | 4 | 42 | 0 | 1 | 1 | 3 | 292 |
| 2003 q 3 | 57 | 56 | 4 | 5 | 56 | 0 | 1 | 4 | 4 | 188 |
| 2003 q 4 | 4 | 100 | 9 | 7 | 28 | 0 | 1 | , | 6 | 157 |
| 0 denotes < | nes |  |  |  |  |  |  |  |  |  |

Table 2.1.3. Sum of Danish and Norwegian North Sea by-catch (tonnes) landed for industrial reduction in the small-meshed fisheries by year and species (excluding Saithe, haddock and whiting accounted for in Table 2.1.2) .


Table 2.1.4. Danish by-catch landings of cod, haddock and saithe in 1993-2003 from small-meshed fisheries in the North Sea. Landings (tonnes) used for human consumption purposes. Note: these landings have been counted against the Danish human consumption quotas and have been included in the estimated catch in numbers reported to ICES.

| Cod | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sandeel fishery | 89 | 80 | 167 | 208 | 223 | 134 | 16 | 5 | 7 | 11 | 3 |
| Sprat fishery | 124 | 172 | 222 | 87 | 12 | 15 | 6 | 4 | 7 | 3 | + |
| Norway pout fishery | 435 | 413 | 537 | 419 | 497 | 216 | 89 | 147 | 77 | 40 | 1 |
| Blue whiting fishery | 4 | + | 0 | 77 | 38 | 94 | 92 | 39 | 31 | 37 | 10 |
| "Others" fishery | 34 | 17 | 38 | 25 | 41 | 69 | 24 | 10 | 3 | 13 | 5 |
| Total | 686 | 682 | 964 | 816 | 811 | 528 | 227 | 205 | 125 | 104 | 19 |


| Haddock | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sandeel fishery | 86 | 16 | 19 | 51 | 32 | 5 | 4 | 1 | 3 | 11 | 4 |
| Sprat fishery | 20 | 26 | 62 | 2 | 2 | 4 | 2 | + | 5 | 1 | + |
| Norway pout fishery | 547 | 567 | 280 | 128 | 175 | 53 | 84 | 63 | 20 | 15 | 2 |
| Blue whiting fishery | 3 | + | 0 | 16 | 8 | 23 | 24 | 8 | 8 | 15 | 9 |
| "Others" fishery | 70 | 15 | 19 | 8 | 9 | 8 | 10 | 3 | 3 | 17 | 2 |
| Total | 726 | 624 | 380 | 205 | 226 | 93 | 124 | 75 | 39 | 59 | 17 |


| Whiting | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sandeel fishery | 19 | 3 | 3 | + | + | + | + | + | + | + | 0 |
| Sprat fishery | 10 | 4 | 3 | 2 | + | + | + | + | + | + | 0 |
| Norway pout fishery | 932 | 307 | 201 | 92 | 33 | 11 | 9 | 19 | 9 | 9 | 2 |
| Blue whiting fishery | 6 | + | 0 | 9 | 3 | 4 | 1 | 1 | 2 | 2 | 1 |
| "Others" fishery | 60 | 5 | 2 | 4 | 2 | 1 | 1 | + | + | + | + |
| Total | 1,027 | 319 | 209 | 107 | 38 | 16 | 11 | 20 | 11 | 11 | 3 |


| Saithe | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sandeel fishery | 52 | 52 | 111 | 88 | 73 | 23 | 44 | 6 | 5 | 5 | 3 |
| Sprat fishery | 37 | 48 | 123 | 9 | 1 | 3 | 6 | 1 | 13 | 13 | 0 |
| Norway pout fishery | 589 | 514 | 1,057 | 359 | 599 | 264 | 205 | 267 | 245 | 245 | 27 |
| Blue whiting fishery | 2 | 4 | 0 | 155 | 167 | 356 | 476 | 214 | 186 | 186 | 143 |
| "Others" fishery | 21 | 43 | 73 | 43 | 117 | 137 | 108 | 21 | 11 | 11 | 46 |
| Total | 701 | 661 | 1,364 | 654 | 957 | 783 | 839 | 509 | 460 | 460 | 219 |

Table 2.1.5. Danish by-catch landings of cod, haddock and saithe in 1993-2003 from small-meshed fisheries in the North Sea. Landings (tonnes) used for reduction purposes.

| Cod | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sandeel fishery | 185 | 70 | 79 | 288 | 375 | 202 | 51 | 56 | 7 | 12 | 5 |
| Sprat fishery | 116 | 493 | 174 | 23 | 40 | 11 | 7 | 4 | 4 | 0 | 11 |
| Norway pout fishery | 232 | 201 | 680 | 4 | 242 | 161 | 11 | 0 | 81 | 3 | 3 |
| Blue whiting fishery | 0 | 0 |  | 24 | 37 | 20 | 28 | 0 | 0 | 14 | 0 |
| "Others" fishery | 126 | 14 | 23 | 2 | 94 | 6 | 4 | 1 | 4 | 1 | 2 |
| Total | 659 | 778 | 956 | 341 | 789 | 400 | 101 | 61 | 97 | 30 | 21 |


| Haddock | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sandeel fishery | 2,879 | 528 | 534 | 1,600 | 524 | 202 | 364 | 1,226 | 1,557 | 220 | 103 |
| Sprat fishery | 113 | 685 | 1,097 | 18 | 11 | 6 | 62 | 66 | 223 | 27 | 15 |
| Norway pout fishery | 3,028 | 1,399 | 4,766 | 1,774 | 1,454 | 251 | 318 | 1,734 | 1,252 | 1,545 | 16 |
| Blue whiting fishery | 0 | 10 |  | 153 | 205 | 66 | 195 | 258 | 218 | 133 | 59 |
| "Others" fishery | 1,193 | 71 | 349 | 77 | 137 | 218 | 117 | 40 | 42 | 183 | 96 |
| Total | 7,214 | 2,693 | 6,745 | 3,622 | 2,331 | 744 | 1,055 | 3,324 | 3,292 | 2,108 | 289 |


| Whiting | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sandeel fishery | 4,493 | 1,392 | 3,322 | 1,909 | 2,143 | 902 | 2,121 | 1,539 | 2,761 | 1,397 | 444 |
| Sprat fishery | 4,122 | 4,352 | 10,386 | 784 | 107 | 673 | 1,088 | 2,107 | 1,700 | 2,238 | 1,105 |
| Norway pout fishery | 7,071 | 3,121 | 7,291 | 1,373 | 2,235 | 178 | 331 | 2,935 | 1,559 | 1,675 | 265 |
| Blue whiting fishery | 0 | 0 |  | 126 | 113 | 83 | 169 | 71 | 217 | 123 | 30 |
| "Others" fishery | 2,448 | 187 | 4,422 | 22 | 173 | 112 | 116 | 89 | 184 | 127 | 63 |
| Total | 18,134 | 9,053 | 25,422 | 4,214 | 4,771 | 1,948 | 3,825 | 6,740 | 6,420 | 5,560 | 1,907 |


| Saithe | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sandeel fishery | 21 | 0 | 0 | 40 | 0 |  | 28 |  | 1 | 0 | 30 |
| Sprat fishery | 0 | 11 | 297 | 0 | 0 |  |  |  | 3 | 0 | 0 |
| Norway pout fishery | 9 | 135 | 490 | 84 | 209 |  |  | 116 | 22 | 246 | 0 |
| Blue whiting fishery | 0 | 0 |  | 20 | 80 | 11 | 8 | 2 | 84 | 72 | 17 |
| "Others" fishery | 41 | 0 | 542 | 0 | 40 | 1 | 4 | 2 | 7 | 109 | 69 |
| Total | 71 | 146 | 1,329 | 144 | 329 | 12 | 40 | 120 | 117 | 427 | 116 |


| All species | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sandeel fishery | 482,832 | 611,554 | 644,473 | 622,211 | 761,963 | 624,925 | 514,047 | 551,008 | 637,518 | 628,205 | 274,854 |
| Sprat fishery | 246,980 | 314,970 | 344,309 | 107,243 | 103,523 | 145,978 | 171,757 | 208,641 | 170,862 | 167,472 | 194,210 |
| Norway pout fishery | 115,595 | 111,208 | 140,550 | 76,390 | 104,499 | 33,515 | 29,361 | 135,196 | 47,788 | 54,980 | 9,020 |
| Blue whiting fishery | 1,615 | 419 |  | 34,857 | 13,181 | 46,052 | 51,060 | 34,129 | 26,038 | 27,052 | 21,320 |
| "Others" fishery | 40,283 | 19,480 | 48,936 | 8,882 | 14,554 | 17,893 | 26,945 | 7,433 | 10,554 | 8,503 | 6,184 |
| Total | 887,304 | 1,057,632 | 1,178,268 | 849,584 | 997,719 | 868,363 | 793,169 | 936,408 | 892,760 | 886,212 | 505,588 |

Table 2.1.6. Quarterly Danish by-catch landings of cod, haddock and saithe in 2003 from smallmeshed fisheries in the North Sea. Landings (tonnes) used for human consumption purposes. Note: these landings have been counted against the Danish human consumption quotas and have been included in the estimated catch in numbers reported to ICES.

| Cod | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Sandeel fishery |  | 0.6 | 1.9 |  | 2.5 |
| Sprat fishery |  |  | 0.1 |  | 0.1 |
| Norway pout fishery |  |  | 0.5 | 0.8 | 1.3 |
| Blue whiting fishery | 7.3 | 0.7 | 1.7 |  | 9.7 |
| "Others" fishery | 5.3 |  |  |  | 5.3 |
| Total | 12.6 | 1.3 | 4.2 | 0.8 | 18.9 |


| Haddock | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Sandeel fishery |  | 2.7 | 0.8 |  | 3.5 |
| Sprat fishery |  |  |  |  | 0.0 |
| Norway pout fishery |  |  | 0.1 | 1.8 | 1.9 |
| Blue whiting fishery | 5.2 | 1.6 | 2.3 |  | 9.1 |
| "Others" fishery | 1.7 |  |  |  | 1.7 |
| Total | 6.9 | 4.3 | 3.2 | 1.8 | 16.2 |


| Whiting | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Sandeel fishery |  |  |  |  | 0.0 |
| Sprat fishery |  |  |  |  | 0.0 |
| Norway pout fishery |  |  | 0.3 | 2.0 | 2.3 |
| Blue whiting fishery | 0.6 | 0.1 | 0.1 |  | 0.8 |
| "Others" fishery | 0.2 |  |  |  | 0.2 |
| Total | 0.8 | 0.1 | 0.4 | 2.0 | 3.3 |


| Saithe | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Sandeel fishery | 0.6 | 0.1 | 2.0 |  | 2.7 |
| Sprat fishery |  |  |  |  | 0.0 |
| Norway pout fishery |  | 0.4 | 4.0 | 22.8 | 27.2 |
| Blue whiting fishery | 95.2 | 12.2 | 35.8 |  | 143.2 |
| "Others" fishery | 45.7 |  |  |  | 45.7 |
| Total | 141.5 | 12.7 | 41.8 | 22.8 | 218.8 |


| All other human <br> consumtion species | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Sandeel fishery | 0.3 | 2.0 | 1.8 | 0.2 | 4.3 |
| Sprat fishery |  |  | 1.2 | 1.0 | 2.2 |
| Norway pout fishery | 52.9 | 0.6 | 2.2 | 6.2 | 9.0 |
| Blue whiting fishery | 15.0 | 21.4 |  | 89.3 |  |
| "Others" fishery | 19.5 |  | 0.1 |  | 19.6 |
| Total | 72.7 | 17.6 | 26.7 | 7.4 | 124.4 |

Table 2.1.7. Quarterly Danish by-catch landings of cod, haddock and saithe in 2003 from smallmeshed fisheries in the North Sea. Landings (tonnes) used for reduction purposes.

| Cod | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Sandeel fishery |  | 1 | 4 |  | 5 |
| Sprat fishery |  |  | 11 |  | 11 |
| Norway pout fishery |  |  |  | 3 | 3 |
| Blue whiting fishery |  |  |  |  | 0 |
| OUthers" fishery | 2 |  |  | 3 |  |
| Total | 2 | 1 | 15 | 3 | 21 |


| Haddock | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Sandeel fishery | 22 | 45 | 35 | 1 | 103 |
| Sprat fishery |  |  | 15 | 15 | 15 |
| Norway pout fishery |  |  |  | 16 | 16 |
| Blue whiting fishery | 56 | 3 |  |  | 59 |
| "Others" fishery | 96 |  |  | 96 |  |
| Total | 174 | 48 | 50 | 17 | 289 |


| Whiting | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Sandeel fishery |  | 380 | 56 | 8 | 444 |
| Sprat fishery | 2 |  | 798 | 305 | 1,105 |
| Norway pout fishery |  |  | 51 | 214 | 265 |
| Blue whiting fishery | 2 | 26 | 2 |  | 30 |
| OOthers" fishery | 56 |  | 7 |  | 63 |
| Total | 60 | 406 | 914 | 527 | 1,907 |


| Saithe | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Sandeel fishery |  |  | 30 | 30 |  |
| Sprat fishery |  |  |  | 0 |  |
| Norway pout fishery |  |  |  | 0 |  |
| Blue whiting fishery | 17 |  |  | 17 |  |
| Others" fishery | 69 | 86 | 0 | 30 | 0 |
| Total |  |  |  | 116 |  |


| All species | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Sandeel fishery | 2,834 | 221,895 | 46,155 | 3,970 | 274,854 |
| Sprat fishery | 17,982 |  | 64,129 | 112,099 | 194,210 |
| Norway pout fishery |  | 66 | 2,025 | 6,929 | 9,020 |
| Blue whiting fishery | 6,877 | 7,847 | 6,596 |  | 21,320 |
| "Others" fishery | 5,153 |  | 1,031 |  | 6,184 |
| Total | 32,846 | 229,808 | 119,936 | 122,998 | 505,588 |

Table 2.1.8. Numbers of fish aged and measured from the Danish industrial by-catch sent for reduction from 1998-2003.


Table 2.1.9. Numbers and mean weight at age of commercial roundfishes from the Danish smallmeshed fishery sent for reduction, 2003

Cod
Not specified

|  | Haddock |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Quarter 1 |  | Quarter 2 |  | Quarter 3 |  | Quarter 4 |  | N Total SoP Total |  |
| Age  <br>  0 <br>  1 <br>  2 <br>  3 <br>   <br>   | $\begin{array}{\|r\|} \hline \text { Number ('000) } \\ 0 \\ 4780 \\ 1480 \\ 50 \\ \hline \end{array}$ | $\begin{array}{\|r\|} \hline \text { Weight }(\mathrm{g}) \\ 0 \\ 22 \\ 44 \\ 158 \end{array}$ | \| Number ('000) | Weight (g) <br> 0 <br> 43 <br> 50 <br> 68 | Number ('000) <br> 3390 <br> 170 <br> 20 <br> 4 | Weight (g) ${ }^{11}$ [3 | Number ('000) <br> 760 <br> 160 <br> 5 <br> 3 |  | 4150 5540 1915 137 | 48.69 137.3 88.355 14.289 |
| $\begin{aligned} & \hline \text { Total } \\ & \text { SoP }(\mathrm{t}) \end{aligned}$ | 6310 | 178.18 | 920 | 44.43 | 3584 | 49.136 | 928 | 16.888 | 11742 | 288.634 |


|  | Quarter 1 |  | Quarter 2 |  | Quarter 3 |  | Quarter 4 |  | N Total | SoP Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age  <br>  0 <br>  1 <br>  2 <br>  3 <br>  4 <br>  5 <br>  6 | Number ('000) <br> 0 <br> 110 <br> 130 <br> 90 <br> 50 <br> 0 <br> 0 | $\begin{array}{\|r\|} \hline \text { Weight (g) } \\ 0 \\ 65 \\ 151 \\ 251 \\ 204 \\ 0 \\ 0 \end{array}$ | Number ('000) <br> 0 <br> 5870 <br> 2810 <br> 510 <br> 0 <br> 0 <br> 0 | $\begin{array}{\|r\|} \hline \text { Weight }(\mathrm{g}) \\ 0 \\ 27 \\ 68 \\ 111 \\ 0 \\ 0 \\ 0 \end{array}$ | Number ('000) <br> 53560 <br> 8790 <br> 630 <br> 190 <br> 60 <br> 0 <br> 0 | $\begin{array}{r} \text { Weight (g) } \\ 9 \\ 33 \\ 116 \\ 194 \\ 304 \\ 0 \\ 0 \end{array}$ | Number ('000) <br> 3580 <br> 2570 <br> 810 <br> 460 <br> 180 <br> 0 <br> 20 | Weight $(\mathrm{g})$ <br> 21 <br> 61 <br> 180 <br> 196 <br> 270 <br> 0 <br> 380 | 57140 17340 4380 1250 290 0 20 | 557.22 612.48 429.59 206.22 77.04 0 7.6 |
| $\begin{aligned} & \hline \text { Total } \\ & \text { SoP }(\mathrm{t}) \end{aligned}$ | 330 | 49.37 | 9190 | 406.18 | 63170 | 882.05 | 7420 | 467.91 | 80110 | 1805.51 |

Table 2.1.10. Numbers ('000) and mean weight (g) at age of commercial roundfish species in 2003 in the bycatch of the Norwegian industrial fishery.

| Saithe | 2003 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1. Quarter |  | 2. Quarter |  | 3. Quarter |  | 4. Quarter |  | Year |  |
| AGE | NUMBER | WEIGHT |
| 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2 | 2.0 | 452.0 | 5.7 | 452.0 | 0.0 | 0.0 | 13.2 | 452.0 | 20.9 | 1355.9 |
| 3 | 24.3 | 551.3 | 68.3 | 547.1 | 847.6 | 697.7 | 844.8 | 628.8 | 1785.1 | 2424.8 |
| 4 | 304.3 | 611.7 | 295.5 | 721.0 | 2301.9 | 806.0 | 1494.2 | 731.1 | 4395.9 | 2869.9 |
| 5 | 548.3 | 758.1 | 658.1 | 766.6 | 1730.0 | 894.1 | 788.9 | 836.1 | 3725.3 | 3254.9 |
| 6 | 56.0 | 838.7 | 47.8 | 912.4 | 18.9 | 1135.3 | 0.0 | 0.0 | 122.6 | 2886.5 |
| 7 | 3.9 | 863.2 | 10.6 | 946.0 | 9.4 | 1135.3 | 0.0 | 0.0 | 23.9 | 2944.5 |
| 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Cod |  |  |  |  |  |  |  |  |  |  |
|  | 2003 |  |  |  |  |  |  |  |  |  |
|  | 1. Quarter |  | 2. Quarter |  | 3. Quarter |  | 4. Quarter |  | Year |  |
| AGE | NUMBER | WEIGHT |
| 0 | 0.0 | 0.0 | 0.0 | 0.0 | 669.8 | 23.0 | 0.0 | 0.0 | 669.8 | 23.0 |
| 1 | 0.0 | 0.0 | 30.5 | 60.2 | 0.0 | 0.0 | 0.0 | 0.0 | 30.5 | 60.2 |
| 2 | 10.4 | 218.9 | 6.9 | 352.8 | 0.0 | 0.0 | 0.0 | 0.0 | 17.3 | 571.6 |
| 3 | 0.0 | 0.0 | 4.9 | 1043.2 | 0.0 | 0.0 | 0.0 | 0.0 | 4.9 | 1043.2 |
| 4 | 0.0 | 0.0 | 2.0 | 1043.2 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 1043.2 |
| 5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  |  |  |  |  |  |  |  |  |  |  |
| Whiting | 2003 |  |  |  |  |  |  |  |  |  |
|  | 1. Quarter |  | 2. Quarter |  | 3. Quarter |  | 4. Quarter |  | Year |  |
| AGE | NUMBER | WEIGHT |
| 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1 | 46.1 | 55.0 | 60.4 | 90.4 | 0.0 | 0.0 | 1.4 | 90.4 | 107.9 | 235.7 |
| 2 | 154.8 | 136.2 | 480.5 | 117.6 | 10.7 | 267.0 | 8.2 | 114.1 | 654.3 | 634.8 |
| 3 | 512.6 | 215.2 | 699.4 | 197.0 | 101.3 | 279.5 | 11.5 | 291.2 | 1324.7 | 982.9 |
| 4 | 302.0 | 302.3 | 251.8 | 270.9 | 316.7 | 348.0 | 52.1 | 371.0 | 922.5 | 1292.2 |
| 5 | 124.5 | 392.4 | 62.0 | 380.9 | 170.2 | 446.3 | 33.8 | 434.5 | 390.5 | 1654.1 |
| 6 | 0.0 | 0.0 | 0.0 | 0.0 | 24.6 | 521.8 | 4.1 | 501.1 | 28.7 | 1023.0 |
| 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  |  |  |  |  |  |  |  |  |  |  |
| Haddock | 2003 |  |  |  |  |  |  |  |  |  |
|  | 1. Quarter |  | 2. Quarter |  | 3. Quarter |  | 4. Quarter |  | Year |  |
| AGE | NUMBER | WEIGHT |
| 0 | 0.0 | 0.0 | 18.4 | 4.6 | 0.0 | 0.0 | 0.0 | 0.0 | 18.4 | 4.6 |
| 1 | 98.2 | 101.6 | 155.5 | 65.0 | 219.9 | 123.7 | 0.0 | 0.0 | 473.7 | 290.4 |
| 2 | 95.8 | 122.5 | 42.3 | 119.8 | 57.4 | 220.0 | 1.0 | 287.4 | 196.6 | 749.6 |
| 3 | 600.0 | 239.3 | 329.0 | 266.5 | 209.0 | 224.6 | 9.7 | 398.7 | 1147.6 | 1129.0 |
| 4 | 457.7 | 290.4 | 466.6 | 389.3 | 500.5 | 277.7 | 97.9 | 447.3 | 1522.6 | 1404.7 |
| 5 | 0.0 | 0.0 | 0.0 | 0.0 | 7.2 | 287.4 | 4.6 | 420.1 | 11.8 | 707.5 |
| 6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

Table 2.1.11. Reported international effort data made available to the WG.

| Year | UK (all gears) | Netherlands (beam trawl) | Demark/Norway (Norway pout) | Denmark/Norway (sandeel) |
| :---: | :---: | :---: | :---: | :---: |
|  | Millions kW-days | Million HP days | - Units not known - |  |
| 1978 |  | 44.3 |  |  |
| 1979 |  | 44.9 |  |  |
| 1980 |  | 45.0 |  |  |
| 1981 |  | 46.3 |  |  |
| 1982 |  | 57.3 |  | 12.7015 |
| 1983 |  | 65.6 |  | 11.63582 |
| 1984 |  | 70.8 |  | 12.22938 |
| 1985 |  | 70.3 |  | 14.84857 |
| 1986 |  | 68.2 |  | 16.30781 |
| 1987 |  | 68.5 | 5529.247 | 14.87949 |
| 1988 |  | 76.3 | 4356.924 | 21.70644 |
| 1989 |  | 61.6 | 8428.324 | 27.62465 |
| 1990 |  | 71.4 | 7948.764 | 22.00438 |
| 1991 |  | 68.5 | 7113.295 | 20.02274 |
| 1992 |  | 71.1 | 8305.812 | 17.72369 |
| 1993 |  | 76.9 | 7695.403 | 16.04519 |
| 1994 |  | 81.4 | 6205.364 | 15.24447 |
| 1995 |  | 81.2 | 4557.385 | 19.45047 |
| 1996 |  | 72.1 | 4093.32 | 16.20835 |
| 1997 | 58.777 | 72.0 | 3952.925 | 17.41714 |
| 1998 | 55.019 | 70.2 | 2764.317 | 18.37847 |
| 1999 | 55.090 | 67.3 | 3898.407 | 17.59725 |
| 2000 | 52.560 | 67.7 | 4327.099 | 15.0605 |
| 2001 | 51.085 | 61.4 | 1807.445 | 15.0451 |
| 2002 | 43.954 | 56.6 | 3257.887 | 12.01759 |
| 2003 | 35.898 | 51.6 | 1592.550 | 12.50286 |

Figure 2.1.1. Reported total effort data by country made available to the WG, along with combined reported Danish/Norwegian effort in the sandeeland Norway pout fisheries. Data are mean-standardised to a common period (1997-2003).


Figure 2.1.2. Total demersal landings from the North Sea management area.


Figure 2.1.3. Yield by species for the main stocks considered by this WG. For cod, yield refers to reported landings, discards and estimated under-reported landings; for haddock, whiting and plaice in Sub-Area IV, yield refers to total catches (reported landings and discards); for all other species, yield refers to reported landings.


Figure 2.1.4. Trends in SSB for the stocks assessed by this WG. Dotted lines show levels of $B_{\mathrm{pa}}$. The 2004 estimate (based on survivors from 2003) is included. There was no final whiting assessment at this year's WG meeting.


Figure 2.1.5. Trends in mean fishing mortality for the stocks assessed by this WG. Dotted lines show levels of $F_{\text {pa }}$. There was no final whiting assessment at this year's WG meeting.












Figure 2.1.6. Trends in recruitment for the stocks assessed by this WG. Dotted lines show the geometric mean (GM) for the whole time period for each stock. There was no final whiting assessment at this year's WG meeting.


Since 1996, this assessment has covered the cod stock in the North Sea (Sub-area IV), the Skagerrak (Division IIIa) and the eastern Channel (Division VIIa). Prior to 1996 cod in these areas were assessed separately.

Due to its very poor state, this stock is classified as an "observation" stock by ICES with the consequence that an update assessment is not considered to be appropriate for it. The assessment of this stock has also been under continuous external review by the North Sea Commission Fisheries Partnership (NSCFP). Note that there is no Stock Annex as yet for this stock.

### 3.1 Stock definition and the fishery

Cod occur throughout the North Sea. Available information ${ }^{1}$ indicates that spawning takes place from December through to April, offshore in waters of salinity 34-35 \%. Around the British Isles there is a tendency towards later timing with increasing latitude. Cod spawn throughout much of the North Sea but spawning adult and egg survey data and fishermen's observations indicate a number of spawning aggregations. It is not possible to quantify long-term changes in the use of spawning grounds because of a lack of comprehensive survey series on eggs or spawning adults. However, the limited data available suggest a contraction in significant spawning areas, beginning with the loss of sites at Great Fisher Bank and Aberdeen Bank by the 1980s, and more recently from other coastal spawning sites around Scotland and in the Forties area. Information on changes for more southerly spawning sites is lacking.

A recent genetic survey of cod in European continental shelf waters using micro-satellite DNA detected significant fine scale differentiation, which suggests the existence of at least 3-4 genetically divergent cod populations, resident in the northern North Sea off Bergen Bank, within the Moray Firth, off Flamborough Head and within the Southern Bight (Hutchinson et al., 2001). As is typical of marine fishes, the level of detectable genetic differentiation among these populations was low, which is to be expected from the large population sizes and high dispersal potentials. The biological significance of such low differentiation is often questioned in part because the temporal stability of the observed patterns is generally unknown and where different studies exist these have sometimes provided conflicting results. This new genetic evidence is largely consistent with the limited movements suggested by historical tagging studies (Anon 1971).

Young fish have historically been found in large numbers in the southern part of the North Sea. In the 1980s an attempt was made to afford the juveniles some protection through the so-called cod box in the German Bight, in which the minimum mesh size of towed demersal fishing gears was greater than in other parts of the North Sea. Between 1987 and 1992 the minimum mesh size in the major North Sea otter trawl and seine net fisheries for roundfish increased in several steps from 80 mm to 100 mm , implicitly revoking the special regulation of the cod box. Cod are caught by virtually all the demersal gears in Sub-area IV and Divisions IIIa (Skagerrak) and VIId, including beam trawls, otter trawls, seine nets, gill nets and lines. Most of these gears take a mixture of species. In some of them cod are considered to be a by-catch, for example in beam trawls targeting flatfish, while in others the fisheries are directed mainly towards cod, for example some of the fixed gear fisheries. The spatial distribution of reported international landings for 2000-2002 was shown in last year's WG report. The landings in those years generally coincided with the areas of highest density of cod aged 2 and older seen in the IBTS Q1 survey. This was especially apparent for the northern North Sea; however, a significant proportion of the landings in 2000-2002 were reported from the Southern Bight, the eastern central North Sea and entrance to the Skagerrak, where observed IBTS densities of cod aged 2 and older were relatively low. This was intepreted as a reflection of the large amount of effort deployed in areas of low cod density. It has not been possible to update the spatial distribution of landings to include 2003 values.

In recent years much has been discussed about the possibility of large scale shift of cod distributions northwards within the North Sea caused by climate change. The arguments state that cod, preferring cooler temperatures, are moving north away from a warming North Sea. A working paper presented to WGNSSK at its 2003 meeting (Bannister \& Turrell, 2003) analysed the oceanographic evidence for this hypothesis and found that it to be lacking. Briefly, the paper concluded that owing to the effect of the Atlantic water Flowing past the northern boundary of the North Sea, the North Sea has rather a unique internal ocean climate. In the winter, temperatures get warmer further north, not cooler. Hence if fish move according to some temperature preference, seeking cooler water, they are more likely to move south in the winter in the North Sea.

[^1]
### 3.1.1

The advice from ICES for 2003 was as follows:
Given the very low stock size, the recent poor recruitments, and continued high fishing mortality despite management efforts to promote stock recovery, ICES recommends a closure of all fisheries for cod as a targeted species or by-catch. In fisheries where cod comprises solely an incidental catch there should be stringent restrictions on the catch and discard rates of cod, with effective monitoring of compliance with those restrictions.

These and other measures that may be implemented to promote stock recovery should be kept in place until there is clear evidence of the recovery of the stock to a size associated with a reasonable probability of good recruitment and there is evidence that productivity has improved. The current SSB is so far below historic stock sizes that both the biological dynamics of the stock and the behaviour of fleets are unknown, and therefore historic experience and data are not considered a reliable basis for medium-term forecasts of stock dynamics under various rebuilding scenarios.

For 2004, the ICES advice was presented in a modified format to provide mixed-fishery advice. For cod the single species exploitation boundary was:

Given the very low stock size, the recent poor recruitments and the continued substantial catch [54 000 t in 2002], ICES recommends the implementation of a recovery plan to ensure a safe and rapid rebuilding of SSB to levels above $B_{p a}$. Such a recovery plan must include a provision for zero catch until the estimate of SSB is above $B_{\text {lim }}$ or other strong evidence of rebuilding is observed. In accordance with such a recovery plan ICES recommends a zero catch in 2004.

The mixed-fisheries advice was as follows:
Cod, plaice and sole (with the exception of sole in the Eastern Channel) are outside safe biological limits. These stocks are the overriding concerns in the management advice of all demersal fisheries:

- for cod in Division IIIa, North Sea and Eastern Channel ICES recommends a zero catch;
- for plaice in the North Sea ICES recommends a recovery plan that will ensure a safe and rapid recovery of SSB to a level in excess of $\mathbf{B}_{\mathrm{pa}}$;
- for other plaice stocks than the North Sea plaice and for sole stocks fishing should be restricted within $\mathbf{F}_{\mathrm{pa}}$.

Demersal fisheries in Division IIIa (Skagerrak-Kattegat), in Subarea IV (North Sea) and in Division VIId (Eastern Channel) should in 2004 be managed according to the following rules, which should be applied simultaneously:

They should fish:

- without bycatch or discards of cod;
- within a recovery plan for North Sea plaice. Until a recovery plan has been implemented that ensures rapid and sure recovery of $\operatorname{SSB}$ above $B_{p a}$, fishing mortality should be restricted to the lowest possible level and well below $\mathrm{F}_{\mathrm{pa}}$. Management must include measures that ensure that discards of plaice be significantly reduced and quantified;
- within the biological exploitation limits for all other stocks.

Furthermore, unless ways can be found to harvest species caught in a mixed fisheries within precautionary limits for all those species individually then fishing should not be permitted.

The single species fishing mortality and biomass reference points agreed by the EU and Norway are as follows:
$\mathbf{B}_{\text {lim }}=70,000 \mathrm{t} ; \mathbf{B}_{\mathrm{pa}}=150,000 \mathrm{t}, \mathbf{F}_{\text {lim }}=0.86 ; \mathbf{F}_{\mathrm{pa}}=0.65$

### 3.1.2 Management applicable in 2003 and 2004

Management of cod is by TAC and technical measures. The agreed TACs for Cod in Division IIIa (Skagerrak) and Subarea IV were as follows:

|  | 2002 | 2003 |
| :--- | :--- | :--- |
|  | Agreed | Agreed |
|  | TAC $(000 \mathrm{t})$ | TAC $(000 \mathrm{t})$ |
| IIIa (Skagerrak) | 3.9 | 3.9 |
| IIa + IV | 27.3 | 27.3 |

There is no TAC for cod set for Division VIId alone. Landings from Division VIId count against the overall TAC agreed for ICES Divisions VII b-k.

In 1999 the EU and Norway "agreed to implement a long-term management plan for the cod stock, which is consistent with the precautionary approach and is intended to constrain harvesting within safe biological limits and designed to provide for sustainable fisheries and greater potential yield. The plan shall consist of the following elements:
$1 \quad$ Every effort shall be made to maintain a minimum level of SSB greater than $70000 t\left(\boldsymbol{B}_{\text {lim }}\right)$.
2 For 2000 and subsequent years the Parties agreed to restrict their fishing on the basis of a TAC consistent with a fishing mortality rate of 0.65 for appropriate age groups as defined by ICES.

3 Should the SSB fall below a reference point of $150000 t\left(\boldsymbol{B}_{p a}\right)$, the fishing mortality referred to under paragraph 2 shall be adapted in the light of scientific estimates of the conditions then prevailing. Such adaptation shall ensure a safe and rapid recovery of SSB to a level in excess of 150000 t .

4 In order to reduce discarding and to enhance the spawning biomass of cod, the Parties agreed that the exploitation pattern shall, while recalling that other demersal species are harvested in these fisheries, be improved in the light of new scientific advice from, inter alia, ICES.

The Parties shall, as appropriate, review and revise these management measures and strategies on the basis of any new advice provided by ICES."

This agreement has been re-established annually since 1999.
EU technical regulations in force in 2003 and 2004 are contained in Council Regulation (EC) 850/98 and its amendments. The regulation prescribes the minimum target species' composition for different mesh size ranges. In 2001, cod in the whole of NEAFC region 2 were a legitimate target species for towed gears with a minimum codend mesh size of 100 mm . As part of the cod recovery measures, the EU and Norway introduced additional technical measures from 1 January 2002. Details are given in Council regulation (EC) 2056/2001. The basic minimum mesh size for towed gears for cod from 2002 was 120 mm , although a transitional arrangement until 31 December 2002, vessels were allowed to exploit cod with 110 mm codends provided that the trawl is fitted with a 90 mm square mesh panel and the catch composition of cod retained on board is not greater than $30 \%$ by weight of the total catch. From 1 January 2003, the basic minimum mesh size for towed gears for cod was 120 mm . In addition effort restrictions were introduced in 2003. The details for 2003 are given in Annex XVII of Council Regulation (EC) 2341/2002 and amended in Council Regulation (EC) 671/2003. The minimum mesh size for vessels targeting cod in Norwegian waters is also 120 mm . Effort restriction measures were revised for 2004 and the details are given in Annex V of Council Regulation (EC) 2287/2003.

In 2004 agreement was reached within the EU on a formal recovery plan that will operational during the TAC and management decision processes of 2004, effectively rendering the plan operational in 2005. Details of it are given in Council Regulation (EC) 423/2004.

The emergency measure (Council Regulation (EC) 259/2001) involving the closure of a large area of the North Sea from 14 February to 30 April 2001 to all fishing vessels using gears likely to catch cod, has not been adopted since. The minimum landing size for cod in Sub-area IV and Divisions IIIa and VIId is 35 cm , although for Danish vessels it is 40 cm .

### 3.1.3 The fishery in 2003

Landings data from human consumption fisheries for recent years as officially reported to ICES together with those estimated by the WG are given for each area separately and combined in Table 3.1.1. The WG estimate for landings from the three areas combined in 2003 is 30.9 thousand tonnes, split as follows for the separate areas.

| Division IIIa(Skagerrak) | 3.8 |
| :--- | :--- |
| Sub-Area IV | 25.8 |
| Division VIId | 1.2 |
| Total | 30.9 |

Minor revisions for 2002 were also reported for landings from some countries.
WG estimates of landings indicate that the TACs for Subarea IV was not fully taken in 2003. This is in keeping with previous years.

For cod in IIIa, IV and VIId, ICES first raised concerns about the mis-reporting and non-reporting of landings in the early 1990s, particularly when TACs became intentionally restrictive for management purposes. Some WG members have since provided estimates of under-reporting of landings to the WG, but by their very nature these are difficult to quantify. In terms of events since the mid-1990s, the WG suspects that under-reporting of landings may have been significant in 1998 because of the abundance in the population of the relatively strong 1996 year-class as 2 -yearolds. The landed weight and input numbers at age data for 1998 were adjusted to include an estimated 3000 t of underreported catch. The 1998 catch estimates remain unchanged in the present assessment.

For 1999 and 2000, the WG has no a priori reason to suspect that there was significant under-reporting of landings. However, the substantial reduction in fishing effort implied by the 2001, 2002 and 2003 TACs is likely to have resulted in an increase in unreported catch in those years. Anecdotal information from the fisheries in some countries indicates that this may indeed have been the case, but the extent of the alleged under-reporting of catch varies considerably. Since the WG has no basis to judge the overall extent of under-reported catch, it has no alternative than to use its best estimates of landings, which in general are in line with the officially reported landings. An attempt is made to incorporate a statistical correction to the reported landings data in the assessment of this stock, but the figures shown in Table 3.1.1 nevertheless comprise the basic input values to the assessment.

Estimates of the proportion of cod discarded by age group for the period 1994-2003 from observations aboard English vessels in the North Sea are given in Table 3.1.2. International discard estimates for the period 1997-2001 are given in the 2002 report of the SGDBI (iwww.ices.dk - reports/ACFM/2002/SGDBI/datafiles/northseaandskagerrak). The by-catch of cod from the Danish and Norwegian industrial fisheries that was sent for reduction to fishmeal and oil in 2002 was 29 tonnes (Table 2.1.3). An additional 19 tonnes of cod from the Danish industrial catch was landed for human consumption (Table 2.1.4) and was declared against the cod quota for Denmark. The WG has no information on any by-catch of cod in the Norwegian industrial catch that was landed for human consumption.

### 3.2 Natural Mortality, Maturity, Age Compositions, and Mean Weight at Age

Values for natural mortality and maturity are given in Table 3.2.1, they are applied to all years and are unchanged from those used in recent assessments. The natural mortality values are model estimates from a multi-species VPA fitted by the Multi-species WG in 1986. The maturity values were estimated using the International Bottom trawl Survey series 1981-1985. These values were derived for the North Sea and are equally applied to the three stock areas (IV, IIIa and VIId). The WG notes that although natural mortality is treated as constant in the assessment, the results of multi-species VPA indicate that this is probably not the case.

Landings in numbers at age for age groups 1-11+ and years 1963-2003 are given in Table 3.2.2. SOP corrections have been applied. These data form the basis for the catch-at-age analysis but do not include industrial fishery bycatches landed for reduction purposes, or discards. By-catch estimates are available for the total Danish and Norwegian small-meshed fishery in Sub-area IV (Table 2.1.3) and separately for the Skagerrak (Table 3.1.1.), but as in previous years, these data were not included in the assessment.

In 2002, the landings were dominated by the 1999 year-class as 3-year olds, which accounted for $42 \%$ of the total international landings in number. Approximately $90 \%$ of the international landings in number were accounted for by juveniles aged 1-3, with 1-year-old cod from the 2001 year-class accounting for almost $25 \%$.

In contrast, in the corresponding values for 2003, the landings were dominated by the 2001 year-class as 2 -year olds, which accounted for $57 \%$ of the total international landings in number. Approximately $80 \%$ of the international landings in number were accounted for by juveniles aged 1-3, in 20031 -year-old cod accounted for less than $3 \%$. Mean weight at age data for landings are given in Table 3.2.3. These values were also used as stock mean weights. Values of discard numbers-at-age and discard mean weights-at-age are shown in Tables 3.2.4 and 3.2.5. These values arise from the application of Scottish discard ogives to the international landings-at-age. Although in some cases other nations' discard proportions are available for a range of years, these have not been transmitted to the relevant WG data coordinator in an appropriate form for inclusion in the international dataset.

Age compositions were provided by Denmark, Germany, England, France, the Netherlands, Norway and Scotland (Table 1.3.1).

Long-term trends in mean weight at age for ages 1-9 are plotted in Figure 3.2.1. It indicates that there have been short-term trends in mean weight at age and that the decline over the recent decade on ages $3-5$ now seems to have stabilised. The data also indicate a slight downward trend in mean weight for ages 3-6 over time. Ages 1 and 2 show little absolute variation over the long-term.

### 3.3 Catch, Effort, and Research Vessel Data

Historically, the effort and CPUE series of Scottish fleets was presented using hours fished as the measure of fishing effort. This consisted of aggregated hours fished by fleet and year and aggregated catch or landings divided by this value. Individual, disaggregated trip data were not available for the analysis of CPUE. Since the mid-to-late 1990s, changes to the central database and method of recording data means that individual trip data are now more accessible than before; however, the recording of fishing effort as hours fished has become less reliable as it is not a mandatory field in the logbook data and proportionately fewer entries have been made since the late 1990s. Consequently, the effort data, as hours fished, are not considered to be representative of the actual deployed fishing effort. These effort data for selected commercial fleets exploiting cod are shown in Figure 3.3.1.1. Section 2.1.1 presents a discussion of UK fishing effort data expressed in terms of kW-days that is considered to be a more reliable reflection of recent effort trends, recent changes in which are attributable to the joint effects of vessel decommissioning, days-at-sea limitations and the transference of activity between fleet segments.

The report of the 2001 meeting of this WG (ICES CM 2002/ACFM:01), and the ICES advice for 2002 (ICES Coop. Res. Rep 2001/246) provides arguments for the exclusion of commercial CPUE tuning series from calibration of the catch-at-age analysis. Such arguments remain valid and only survey data have been considered for calibration purposes.

Four survey series are available for this assessment:

- English third-quarter groundfish survey (EngGFS), ages 0-7, which covers the whole of the North sea in AugustSeptember each year to about 200 m depth using a fixed station design of 75 standard tows. The survey was conducted using the Granton trawl from 1977-1991 and with the GOV trawl from 1992-2004. Only ages 1-6 are used for calibration, as catch rates for older ages are very low. The age-composition data for 2004 from this survey were not available at the start of the WG meeting, but were ultimately included in the assessment. At its 2003 meeting, the WG split this survey into 2 periods based on the timing of the change from the Granton to the GOV trawl (ICES CM2004/ACFM:07). This was due to a step change in total mortality ( Z ) that was implied by the survey. This was coincident with the change in gear despite the inclusion of a GOV-to-Granton conversion factor being applied, and interpreted as a change in catchability at age 1 with the change in gear. Consequently, the WG split the survey series into two for calibrating catch data, and this has been maintained this year. This survey covers the whole of the North Sea in August-September each year to about 200m depth, using a fixed station design of 75 standard tows and the GOV trawl.
- Scottish third-quarter groundfish survey (ScoGFS): ages 1-8. This survey covers the period 1982-2004. Only ages $1-6$ are used for calibration, as catch rates for older ages are very low. This survey is undertaken during August each year using a fixed station design and the GOV trawl. Coverage was restricted to the northern part of the North Sea until 1988, corresponding to only the northernmost distribution of cod in the North Sea. Since 1998 it has been extended into the central North Sea. For the purpose of this assessment, the indices used correspond to the area of the pre-1988 change, ie., the indices since 1987 are calculated by excluding the "new" central North sea stations in the survey. The ScoGFS has also used a new gear and vessel since 1999. The catch rates as presented are corrected for the change in vessel and gear, on the basis of comparative trawl haul data (Zuur et al 2001).
- Quarter 1 international bottom-trawl survey (IBTSQ1): ages 1-6+, covering the period 1976-2004. This multivessel survey covers the whole of the North Sea using fixed stations of at least two tows per rectangle with the GOV trawl.
- The French VIId survey has taken place in October in the eastern Channel since 1988. A GOV trawl is used with half-hour tows and indices standardised to one hour. Cod is one of the species to which this survey is targeted. Indices are available for ages 1-3.

A third quarter international bottom-trawl survey series is also available (IBTS Q3) from 1991-2003. This was not used for calibrating the catch-at-age analysis because data from the Scottish and English third quarter surveys contribute to this index.

Maps showing the distribution of cod are shown in Figures 3.3.1.2 (IBTS ages 1-3) and 3.3.1.3 (EngGFS ages 14). The recent dominant effect of the size and distribution of the 1996 and, to a lesser extent, the 1999 year-classes are clearly apparent from these charts.

The complete data available for calibrating the catch-at-age analysis are shown in Table 3.3.1. These tables do not include the addition of discard estimates to the fleet landings-at-age.

### 3.4 Exploratory analyses

As part of the benchmark review process a series of analyses have been used to examine each of the sources of information available for the assessment of the North Sea cod stock. Within the following Sections, the recorded landings data and survey series are screened for sampling errors and the time series of survey and commercial CPUE are examined for correlation between series. Survey CPUE is then used independently of the catch data to provide indices of the stock dynamics before a catch-at-age model is fitted to the catch and survey series in order to derive time
series of stock and exploitation estimates. The review process was used to guide the WG in its conclusions with regard to the current state of the stock and its projected dynamics.

### 3.4.1 A Separable VPA of the North Sea cod catch-at-age data.

As in previous years, a Separable VPA model was used to examine the structure of the catch numbers at age data before its use in VPA based models.

Figure 3.4.1.1 illustrates the $\log$ catch ratio residuals at age for the final 5 years. The residuals in the most recent years indicate no strong patterns or large values for ages less than age 10. The fitted model indicates that the age structure of the recorded landings has been relatively consistent in recent years and that the landings data are not subject to large random or process errors that would lead to concerns as to the way in which the recorded catch has been processed.

### 3.4.2 The assessment age range

In the previous years' benchmark review of this stock the age range of the assessment was reduced from and 11+ group to a $7+$ group due to the scarcity of survey calibration data older than age 6 . The revision to the assessment age range required a revision to the reference ages used for calculating average fishing mortality, previously ages $2-8$. In recent years, average fishing mortality at ages $2-4$ has been used to highlight exploitation rates on the juvenile ages. The age range represents ages that are predominant in the landings and was therefore adopted as the new benchmark for measuring fishing mortality.

### 3.4.3 Survey and commercial catch per unit effort concurrence

All the available calibration series are presented as log-transformed catch curves of the available cohort data. Figure 3.4.3.1 shows the data for the commercial series and Figure 3.4.3.2 for the survey series. The commercial series are presented for both human consumption landings data and for a series that incorporates discard quantities that have been attributed on the basis of the long-term Scottish discard ogives. The effect of the inclusion of discard information is to lessen, and in some cases remove, the appearance of partial recruitment at the youngest age (age 1) represented in the data. For the commercial series, there is little evidence of substantial distortion in the cohort curves from year to year. The survey series (Figure 3.4.3.2) also demonstrate partial recruitment to the survey gear at the youngest age, and there is also some evidence that older fish are not well sampled by the surveys. Nevertheless, with the exception of the FraGFS series that provides indices of fish aged 1 to 3 only, there is little evidence of substantial distortion in the cohort curves from year to year.

Within each series, the CPUE values were mean-standardised at each age, with the year range over which the means were taken constant across all series. The mean-standardised catch rates from all the available survey series are presented in Figure 3.4.3.3 for the commercial series (excluding the discard data) and in Figure 3.4.3.4 for the survey series. These figures show the data plotted by year-class across series, indicating the consistency with which the different series track the relative abundance of yearclasses at different ages. These figures indicate an inconsistency between some of the commercial series and the survey series when considering the stronger yearclasses of recent times. Past catch-at-age analyses have indicated the 1996 yearclass to be the only above average yearclass since the mid1980s, although its magnitude has generally been reduced in successive assessments. Figure 3.4.3.3 indicates across several ages of the commercial CPUE data, that the 1999 yearclass was of at least a corresponding magnitude for the Scottish fleets with their more northerly activity (however, these are also the fleets for which the hours-fished effort data are considered to be the least consistent in terms of reporting). For the more southerly-orientated English fleets, the relative abundance of the 1999 yearclass is very much lower. For the survey series, the 1996 yearclass is clearly more abundant than the 1999 yearclass, not only for the IBTS and EngGFS series that cover the entire North Sea, but also for the ScoGFS in the northern North Sea.
All of the CPUE series are also presented as unsmoothed, non-standardised values in two additional ways. Figure 3.4.3.5 shows the pairwise bivariate scatterplots plotted by age within series for log-transformed series. This demonstrates the internal consistency of the indices within each series. Figure 3.4.3.6 shows similar plots by series within ages. This demonstrates the consistency between indices for the different ages. No attempt is made to quantify this because in many cases individual points with high leverage or potential outliers are likely to corrupt the validity of simple $R^{2}$ goodness-of-fit values. Nevertheless, linear trends are plotted in the Figures to indicate where overall positive or negative associations exist. From Figure 3.4.3.5 it can be seen that all the series demonstrate positive relationships between the log-abundance of neighbouring age groups. The FraGFS series is highly sensitive to a single point with high leverage and excluding that value would leave little evidence of a clear relationship between indices. The other surveys indicate consistency between adjacent age groups and also between non-adjacent age groups up to the age of 5 although for the EngGFS and ScoGFS, the observed relationship becomes noisier as the difference between ages increases. The IBTS comparisions are clearly sensitive to a single influential point at age 1 . The commercial series also demonstrate consistency between adjacent age groups values, with occasional points of high leverage for example in the EngTrl series at ages 1 and 2. These series also demonstrate consistency between non-adjacent age groups, particularly
where the difference between ages is of the order of 2-3 years. The EngSei series appears to be very consistent across all ages.

Figure 3.4.3.6 shows the same data plotted by age across the different series. Excluding the VIId FraGFS, the survey series demonstrate the strongest agreement at ages 1-3. There is a positive but noisier association at ages 4 and 5 with occasional outlying points. The surveys and commercial series are mostly concordant at ages 2 and 3 ; thereafter the relationships between survey and commercial series become noisier, but there is still a reasonable degree of concordance between the ScoGFS and the two English commercial series up to age 6. Between the commercial series alone, the agreement within English fleets and within Scottish fleets is generally more consistent than between the English and Scottish fleets.

### 3.4.4 Survey-based analyses

Survey-based evaluations of stock trends are presented for the IBTSQ1, EngGFS and ScoGFS series. For the IBTSQ1, EngGFS and ScoGFS, data were avalailable up to and including 2004. The indices are presented as smoothed empirical estimates of SSB, as unsmoothed empirical estimates of Z, and as SURBA estimates based on unsmoothed indices (see Section 1.4.3 for a description of methods).

Although all the surveys indicate that the cod stock is at a low level, the smoothed empirical esimates of SSB indicate differences in the detailed interpretation of the most recent years of the survey series (Figure 3.4.4.1). The IBTSQ1 and ScoGFS both indicate a substantial decline in SSB since the early- to mid- 1980s, and the EngGFS also shows a decline from an earlier peak. They differ in that the ScoGFS indicates a short-term arrest of the decline in the mid-1990s before falling further to a historical low in the series followed by a slight recovery in 2003 and 2004, whereas the decline in SSB suggested by the IBTSQ1 is almost continuous to a new historic low. The EngGFS series only covers the more recent period, and generally reflects the pattern shown by the ScoGFS over that period other than for a decrease rather than an increase in 2004. The estimates of unsmoothed empirical Z (Figure 3.4.4.2) also differ in their interpretation of the most recent data; the IBTS and EngGFS indicate a fluctuating value around a stable trend; the ScoGFS indicates a sharp decrease in 2002, 2003 and 2004.

SURBA estimates were calculated using raw rather than smoothed indices, and made use of mean-standardised estimates of the ADAPT catchabilities at age from the catch-at-age analysis (Section 3.4.7) to provide relative catchabilities at age in the SURBA analysis. Results from the IBTSQ1, ScoGFS and EngGFS surveys are presented in Figure 3.4.4.3 from which it can be seen the development of SSB and mean F are similar in each case to the empirical estimates of the survey series. The residuals of the SURBA fits are shown in Figure 3.4.4.4, and the results of retrospective SURBA analyses are given in Figure 3.4.4.5 from which it is seen that the IBTSQ1 estimate of fishing mortality is extremely sensitive to the index value for 2004.

### 3.4.5 A Laurec-Shepherd based analysis of the North Sea cod tuning data

The Laurec-Shepherd VPA calibration model was used to screen the survey calibration data before fitting within assessment models. The Laurec-Shepherd model makes the assumption that the selection pattern at the oldest ages is constant, which reduces the number of parameters to be estimated.

Figures 3.4.5.1-3.4.5.4 present the time series of the log catchability residuals from single fleet Laurec-Shepherd tuning models fitted to the English (EGFS), Scottish (ScoGFS), and International Bottom Trawl Survey (IBTS) surveys in the North Sea, and the French groundfish survey in Division VIId (FraGFS). The figures illustrate that for the majority of survey ages, catchability has been increasing over time and shows cohort effects related to population abundance. The increase is more pronounced at the youngest ages of the ScoGFS, IBTS and the FraGFS surveys.

Catchability is derived as the ratio of the survey catch-at-age to the population calculated from a VPA transformation of the catch data. The changes in level in recent catchability could result from bias in the VPA populations induced by underreporting, increased levels of discarding and/or natural mortality, or changes in survey catchability. There have been frequent reports from the fishing industry that the recent reductions in TAC have not been observed. It is therefore considered that the most likely cause of the trends in residuals, which are consistent across surveys, is underreporting bias in the catch-at-age data.

Apart from the trends and cohort effects noted in the residuals there are no strong outliers in the surveys previously used for tuning (IBTS, ScoGFS and EGFS). These series were therefore accepted as being suitable for inclusion in an assessment analysis of the stock.

The FraGFS series has similar trends and cohort effects to the longer time series but exhibits stronger variation. This could result from noise in the series as discussed in Section 3.4.3 or coverage of a small part of the stock distribution, which may have differing dynamics. It was therefore agreed that the survey would not be included in the assessment tuning model this year. Its contribution and CPUE dynamics will be reviewed each year as the series develops.

### 3.4.6 Time Series Analysis (TSA)

TSA could not be fitted to the cod data sets due to an inability to achieve a stable minimisation. The minimisation was found to be highly sensitive to the initial starting conditions.

### 3.4.7 ADAPT Analysis

Last year's WG noted that there have been frequent reports from the fishing industry that the recent reductions in TAC have not been observed. The WG concluded that as a direct consequence of the uncertainty in the reported landings of North Sea cod, estimates of stock abundance and exploitation rates for recent years could not be reliably determined by assessment models, such as XSA, that treat the catch data as unbiased. Stock and exploitation rate trends were considered to be representative only of the historic stock and fishery development.

A development of the ADAPT (Gavaris 1988) model structure is described in Appendix 4. The model uses survey information to estimate under-reporting bias in recent landings data. The model is able to "correct" simulated biased catch data and was therefore applied to the North Sea cod data in order to examine its potential for estimating the stock and fishery times series required for the provision of advice.

The model was applied to the WG numbers at age and landings weight at age data sets listed in Tables 3.2.2-3.2.3 and the English (ages 1-6), Scottish (ages 1-6) and IBTS (ages 1-5) groundfish survey series (Table 3.3.1).
Fishing mortality at the oldest assessment age was estimated as the average of ages $3-5$ (an assumption of a flat topped selection pattern). Catchability of each survey was assumed to be constant in time and independent at all ages except for ages 5 and 6 of the EngGFS and ScoGFS surveys for which a single survey catchability parameter was estimated. Equal weight was assumed for the estimates from the three survey series in the estimation of parameters.

In order to estimate the uncertainty in the derived stock parameters, the model was bootstrapped by age-structured re-sampling of the log catchability residuals to derive new CPUE values.

Based on anecdotal information provided by the commercial fishing industry, bias parameters were estimated for the years 1993-2003. Two model fits are presented:

1) A fit with no smoothing of catches during the underreporting period; catches are allowed to exhibit strong variation from year to year.
2) A fit with a smoothing constraint (set to 1.0) applied to year to year variation in catch during the period in which bias is estimated; permitted variation in catches from year to year is reduced.

## Run(1) No smoothing of catches

Figures 3.4.7.1-3.4.7.4 present the bootstrap percentiles for the time series of estimated catches, fishing mortality, SSB and the bias parameter estimates. The SSB, F and the landings estimated without fitting the bias parameter are also plotted.

Year effects in the survey CPUE series result in a variable time series of estimated landings. Landings are estimated to have been under-reported in 1995, 1996, 1999, 2001 and 2003. The pattern of increasing under reporting from 1995-1996 with a drop in 1997/8, when the 1996 year class arrived in the fishery and the high rate of underreporting in 2001 and 2003, are consistent with reports from the industry.

The estimates of annual fishing mortality in 2003 are double the value estimated without fitting the bias parameters. SSB estimates are higher from 1994 onwards. The model estimates that since 1994, the stock has followed a similar trajectory to that estimated using the reported landings but at a higher level. This pattern of under estimation of the stock size is consistent with the known retrospective pattern, noted previously for this stock, in which survey estimates are revised downwards in successive years when populations that were initially estimated from survey information are later calculated from biased landings. The trends in the estimates of SSB are also consistent with the analyses carried out by the WG last year, in which survey estimates of SSB were consistently higher than those estimated from an XSA assessment of recorded landings.

## Run(2) smoothing of catches

The second run examined the effect of introducing a smoothing factor that penalises large-scale changes in catch from year to year, to the model objective function.

Figures 3.4.7.5-3.4.7.8 present the estimates of catch, SSB, F and bias in the landings. A weak smoothing was applied to the time series of total catches (a weight of 1.0 for each residual between years). The model estimates showed less variability between years and reduced uncertainty in the time series estimates. Smoothing the time series of estimated catch results in similar, but less variable, trends in fishing mortality and spawning stock biomass to those estimated without the constraint.

Figure 3.4.7.9 illustrates the sensitivity of the time series of estimates of spawning stock biomass, average fishing mortality at ages $2-4$ and estimated landings to the weight applied to the constraint in the year to year variation in landings within the smoothed objective function. The first row of figures illustrates the estimated values when no smoothing is applied, the second a smoothing weight of 1.0 and the final row a weight of 10.0 . The smoothing parameter has the desired effect of reducing variation in the estimates between years with only a minor effect on the overall trends in the time series.

## The final ADAPT model structure

The smoothed time series of estimated fishing mortality and landings were considered to be more consistent with the reports from the commercial fishery and the effort series submitted to the WG. The WG considered the smoothed ADAPT to be the most appropriate of the models available at the meeting for estimating the dynamics of the fishery and stock. In order to reduce the potential for over-smoothing and introducing model-imposed bias to the estimates, the smoothing weight was set to 1.0 .

The diagnostics and stock estimates from the fitted model are presented in Tables 3.4.1-3.4.6, fishing mortality estimates in Table 3.4.7, stock numbers in Table 3.4.8, the assessment summary in Table 3.4.9. Figure 3.4.7.10 presents the time series of log catchability residuals from the fitted smoothed ADAPT model. Figure 3.4.7.11 presents the time series of ADAPT derived assessment estimates of the stock, exploitation trends and the stock and recruitment plot.

## Retrospective analysis

Figures 3.4.7.12-3.4.7.14 present the retrospective analysis estimates of landings, SSB and average fishing mortality from retrospective runs back to the year 2000. There is no retrospective bias in the model results. Fishing mortality is more variable than the other estimated series.

### 3.4.8 An assessment of the North Sea cod: ADAPT including discards

The data sets used for the North Sea cod stock assessment do not contain information on historic discards and this has raised concerns as to the reliability and quality of the estimated population trends and consequent advice to managers.

At last year's WG meeting, the sensitivity of the assessment models to discarding was examined. Discard data sampling of the North Sea fleets has been undertaken in Scotland since 1978; data are available from other countries since 2001. Discarding, as measured within the available data sets, occurs on predominantly small juvenile North Sea cod which make up the first ages of the assessment age range. The dominant effect of the inclusion of discards in the cod assessment is therefore to increase the level of recruitment and age- 1 mortality.

At an EU meeting of experts that took place in May 2003 (EC 2003), comparisons were made between the discard ogives recorded in the EU study with those from the Scottish sampling program. The discard ogives were very similar for the available range of overlapping years. Therefore, Scottish discard observations for the years 1978-2003 have been used to raise the complete time series of North Sea cod catch-at-age data and the effect on the assessment time series of estimates examined. The raising process makes the gross assumption that the Scottish observations of discards from, predominantly, trawl gear can be applied to all gear types used by the fleets fishing in the North Sea.

The ADAPT model was applied to the discard-corrected landings data, Table 3.2.2 lists the landings numbers at age, Table 3.2.3 the discard numbers at age, Table 3.2.4 landings weight at age and Table 3.2.5 discard weights at age. Discard numbers are estimated from the landings data therefore parameters fitted to estimate the bias in landings numbers at age should also be applied to the discard numbers. There was therefore no need to modify the model structure described previously.

When discards were included, the fit of the model (partial sum of squares) improved at the youngest ages resulting in a $4 \%$ reduction in the overall sum of squares. Figure 3.4.8.1 presents the time series of ADAPT-derived assessment estimates of the spawning stock biomass, exploitation trends and the stock and recruitment plot.
The largest change in the assessment estimates, when discards were included, was in the abundance and mortality rates at the youngest ages. Historic year class strength was estimated to be considerably higher, especially during the relatively stronger recruitment recorded during the 1970 's and 80 's. There was no major change in the structure of the time series, only in the level of the recruitment.

Figure 3.4.8.2 presents the average fishing mortality at age estimated with and without discards, F at age 1 is increased by a factor of 4 and at age 2 by a factor of 1.5 . Reference fishing mortality calculated as the average of ages 2 - 4 is increased with the inclusion of discards, but the trends in the rate of exploitation are unchanged.

The time series of spawning stock biomass which consists of ages that were largely unaffected by historic discarding is unchanged.

Given the requirement for fishing mortality vectors that are consistent with the mixed fisheries forecasts described in Section 14 the Group considered that the fit of the ADAPT model to the data set that includes discards should be presented as the most appropriate assessment of the dynamics of cod in 347d.

### 3.4.9 Conclusions drawn from the exploratory analysis

All of the models used to examine the dynamics of the North Sea cod stock indicate that the spawning stock biomass of the stock is close to its lowest level within the recorded time series. This conclusion is robust to the source of information used for the analysis.

Survey indices of SSB have remained stable since 2001 (Figures 3.4.4.1 and 3.4.9.1). The trends in SSB estimated by survey only methods are consistent with the fitted assessment model, apart from the early years of the Scottish groundfish survey, which indicates higher historic biomasses.

The results of the catch-at-age analyses indicate that fishing mortality rates have been too high to maintain a spawning stock biomass above current Precautionary Approach reference levels. Fishing mortality is estimated to have
declined in recent years but not to the extent estimated by models that assume reported landings to be unbiased. Survey analyses that are independent of the changes in recorded landings support the conclusion of a high mortality rate with a reduction in recent years (Figure 3.4.9.2). However, the extent of the reduction is unclear from the survey analyses.

For many years recorded landings have followed the TAC, which in 2001, 2002 and 2003 implied severe reductions in fishing mortality. Based on the reported landings the fitted models indicate that the fishing mortality rate has declined. While the WG agrees that recent decommissioning and reductions in the TAC may have reduced exploitation rates, there are frequent anecdotal reports from the fishing industry that the reductions in TAC during 20012003 were not complied with. Therefore the WG considers that fishing mortality has not been reduced to the extent estimated by models that are fitted to reported catch-at-age data.

This year the WG has developed a model that estimates bias in the landings data. The results indicate that the level of non-compliance was high during 1995, 1996, 1999, 2001 and 2003. The pattern of increasing bias from 1995-1996 with a drop in 1997/8, when the 1996 year class arrived in the fishery and the high levels of bias in 2001 and 2003 are consistent with reports from the industry. The model estimates of stock abundance and fishing mortality rate are both higher than those estimated using the reported landings.

In the absence of any quantitative information provided by the industry on the actual bias in the reported landings, the WG cannot validate the model estimates. The WG can only determine the capability of the model to recover the unbiased time series, required by fisheries management, using simulated data. Such a simulation test is described in Appendix 4. The method was able to provide estimates of SSB and fishing mortality rate that are consistent with the series with simulated bias and a significant improvement on the estimates obtained from biased landings data.

If the industry cannot or will not provide the WG with the information it requires to correct for the level of bias, and if anecdotal evidence suggests that this bias is considerable, then the WG must use models that attempt to estimate additional parameters and which are therefore associated with increased uncertainty and risk to the stock. Given the lack of choice the WG accepted the ADAPT model fitted to landings and discards data and with estimation of underreporting bias in landings, as the most appropriate model on which to base its catch forecasts and management advice.

### 3.4.10 Final Assessment

The final ADAPT model structure was fitted to landings data for the years 1963-2003 and ages 1-7+, adjusted for discarding using estimates from the Scottish discard sampling program. Survey data was used from the English groundfish survey (1992-2004, ages 1-6), the International Bottom Trawl Survey (1976-2004, ages 1-5) and the Scottish groundfish survey (1982-2004, ages 1-6).

Surviving population numbers at ages $1-5$ were estimated in 2004 with fishing mortality at age 6 in all years calculated as the average of ages 3-5. Bias parameters were estimated in the years 1993-2003.

A smoothing weight of 1.0 was applied to interannual residuals of the log of total landings in tonnes: that is, interannual variability in landings was penalised. No time series weighting was applied and survey residuals were given equal eight in the analysis. Catchability was assumed to be constant in time and independent of age for ages 1-5. Catchability at age 6 constrained to be equal to that at age 5 .

The fitted model diagnostics are presented in Tables 3.4.10-3.4.15, fishing mortality estimates in Table 3.4.16, stock numbers in Table 3.4.17, and the assessment summary in Table 3.4.18. The estimated time series trends are plotted in Figure 3.4.8.1.

### 3.5 Historic Stock Trends

The historic stock and fishery trends are presented in Figure 3.4.8.1.
Recruitment has fluctuated at a relatively low level since 1997. The 1996 year-class was the last large year class that contributed to the fishery. Addition of discards to the assessment has raised the overall level of recruitment abundance but not the trend in recent year class strengths.

Fishing mortality increased until the early 1980's and remained high until 2000, after which it has decreased. Average fishing mortality (human consumption and discard mortality) at ages 2-4 in 2003 is estimated to be 0.91 .

SSB declined steadily during the 1970's and 80's. There was a small increase in SSB following the recruitment of the 1995 and 1996 year classes but with low recruitment abundance since 1997 and continued high mortality rates, SSB reached a historic low in 2001. In the last two years SSB is estimated to have increased to 43,000 t: however, given the uncertainties in the assessment data and reported landings, this rise cannot be considered to be significant.

### 3.6 The North Sea Stock Survey 2004

The North Sea Stock Survey 2004 (Marrs 2004) was submitted to the WG in preliminary form in order that the fishers' perception of the state of the stock be considered as part of the assessment process. The spatial distribution of the change in the abundance since 2001 is recorded by survey area in Figure 3.6.1. Figure 3.6.2 presents the IBTS survey results by area for the $1+$ group abundance.

The North Sea Survey responses indicate that (apart from areas 1, 7 and 8) the abundance of cod has remained relatively stable since 2001. In area 1 there has been a steady year on year increase, in areas 7 and 8 there has been an increase in the most recent year. Areas 4 and 5 have recorded a decrease in abundance compared to last year.

The IBTS survey data are broadly in agreement in recording a stable overall stock abundance, although the survey has more variability due to the inherent variation in survey results. The increase in area 1 is not recorded in the surveys if all age classes are considered the survey records a decrease in abundance. However, if only the older (4+) fish caught by the survey are considered there has been an increase in abundance since 2001. The North Sea Survey responses on the size of fish being taken from area 1 indicate that there are more mostly large fish in area 1 than adjacent areas and this may provide the linkage between the North Sea survey and IBTS results.

In areas 7 and 8 the IBTS survey has recorded a locally high level of recruits (Figure 3.3.1.2). This is consistent with the North Sea survey recording high abundance, relatively high recruitment and more discards in those areas. The IBTS survey has also recorded less fish in area 4 and 5 in 2004 compared with 2003.

### 3.7 Recruitment estimates

Figures 3.7.1 and 3.7.2 present the 1991-2004 indices of abundance at ages 1 and 2 for the three surveys, each scaled to the mean. The surveys show consistent agreement at both ages. The 2004 indices are concurrent in indicating that the 2003 year-class is at the average of the values recorded in recent years.

Inputs to RCT3 are listed in Table 3.7.1. The output from the RCT3 run is presented in Table 3.7.2. Figure 3.7.3 plots the RCT3 estimates and the VPA estimates in the same years and the geometric mean of the VPA estimates for the 1997-2002 year classes. The RCT3 model consistently overestimates the VPA populations. Given this consistent overestimation bias in recent years, the WG adopted the geometric mean of the 1997-2002 year classes for recruitment at age 1 in 2004.

## $3.8 \quad$ Short term Forecast

Table 3.8.1 presents the inputs to the short term forecast. Population numbers are taken from the ADAPT model apart from the recruitment, which is the geometric mean of the 1997-2002 year classes at age 1. Estimates of fishing mortality for the human consumption and discard components are derived from the partial fishing mortalities at each age in 2001-2003 and scaled to the final year. Mean landings and discard weights at age for each fishery component are derived as the mean of the data for 2001-2003. Stock weights at age are the average of the overall catch weight at age during 2001-2003.

Short-term forecasts were run using the input data shown in Table 3.8.1 Two forecasts were run initially, one corresponding to status quo fishing mortality during 2004 (the "middle year") and a second assuming a TAC constraint in 2004 of 27.3 kt . Results from these forecasts are presented in Tables 3.8.2 and 3.8.3.

Under the assumption of status quo fishing mortality ( 0.91 ), the landings in 2004 are predicted to be 59.3 kt compared to the TAC of 27.3 kt . The TAC-constrained forecast implies a fishing mortality in 2004 of 0.32 , substantially below the status quo value.

When interpreting these values, it is important to recall that the status quo forecast implicitly includes a component in the predicted catch that can be considered to be a "mis-reported" component, as the status quo assumptions of fishing mortality and population size are derived from an assessment that includes a statistical estimation of the mis-reported catch. Assuming the other inputs to the forecasts to be adequately specified, then the TAC-constrained forecast essentially implies no mis-reporting of landings in 2004.

Whereas these two forecasts are considered likely to bound the upper and lower limits of the expected catch in 2004, there is other information available to inform the appropriate choice of middle-year assumption. Anecdotal information from UK fishermen and from UK enforcement agencies strongly suggests control and enforcement in 2004 to be more robust than in previous years. Consequently, it is unlikely that a status quo "mis-reporting" component is appropriate in for 2004, the middle year of the forecast. Whether this is sufficient to reduce mis-reporting to zero is unlikely; however, an additional factor is also relevant.

During 2001-2002 the UK decommissioned a total of $13.3 \%$ of its $>100 \mathrm{~mm}$ mesh demersal whitefish effort (expressed as the percentage reduction in Kw days of decommissioned vessels relative to a 2001 baseline value). Then during 2003-2004 the UK decommissioned a further 16.5\% relative to 2001 (Horwood, 2004 WP 8 ). (These values related to effort within the EU cod protection zone of the North Sea, ie the areas from which the predominant cod landings have been reported in recent years). These schemes have liberated the quota attached to the decommissioned vessels, and that quota is now available for lease or purchase by the remaining vessel owners. Hence there is a reduced incentive to misreport compared to the status quo assumption in the short-term forecast, particularly in consideration of the 2003-2004 round of decommissioning which is not acknowledged in the calculation of status quo F. It should be noted that this is not an argument based on effort reduction, but reflects the decommissioning of fishing vessels and the subsequent redistribution of quota to reduce the incentive to misreport landings.
In addition to this, there is also the consequence of the EU days at sea regulation to consider. Relative to the baseline year of 2001, this implies a reduction in Kw days of $34 \%$ for the UK demersal fleet ( $>100 \mathrm{~mm}$ minimum mesh size), notwithstanding the decommissioning of vessels -a total reduction of approximately $65 \%$ is found if combined with the decommissioning data. Although there is no clear evidence of a decline in fishing mortality in the catch-at-age analysis attributable to such a large-scale reduction in effort, it is highly questionable whether a status quo assumption is appropriate in this case. Allowing for some transfer of fishing effort from the $>100 \mathrm{~mm}$ whitefish demersal fleet to the
<100mm Nephrops fleet, Horwood (2004, WP 8) considers the actual reduction in UK fishing effort (relative to the 2001 baseline) to lie between $25 \%$ and $60 \%$, and probably nearer to the upper value.

As most of the non-UK demersal whitefish sector has also undergone some form of days at sea regulation since 2002, an additional short-term forecast has been made that assumes a reduction in fishing mortality of $50 \%$ relative to F in the baseline year of 2001. (EU Member States adopted a TAC for 2003 that assumed a greater, $65 \%$, reduction in fishing mortality relative to 2001, and this was simply rolled-over into 2004 due to the absence of catch options other than zero in the ICES advice).

The WG was unable to recommend this as the most likely middle year forecast scenario, but notes that it is consistent with the implied (if not observed) reduction in fishing mortality contingent on the effort regulation scheme, the increased control and enforcement measures during 2004 within the UK and the reduced incentive to mis-report through the lease or purchase of quota formerly available to the now decommissioned UK vessels.

The results of this forecast are presented in Table 3.8 .4 and imply a fishing mortality during 2004 of 0.53 with corresponding landings of 41 kt and an SSB at the start of 2005 of 60 kt . Figures $3.8 .1-3.8 .3$ presents the sensitivity analysis, probability profiles and short term forecast plots for this stock projection scenario.

### 3.9 Medium-Term Projections

No medium-term predictions have been undertaken for cod at the present meeting.

### 3.10 Biological Reference Points

The PA reference points for cod in IIIa (Skagerrak), IV and VIId have been unchanged since 1999. They are:

## Reference point:

$\mathbf{B}_{\lim } 70000 \mathrm{t} . \quad \mathbf{B}_{\mathrm{pa}} \quad 150000 \mathrm{t}$.
$\mathbf{F}_{\text {lim }}: 0.86 \quad \mathbf{F}_{\text {pa }} \quad 0.65$

## Technical basis:

$\mathbf{B}_{\text {lim }}$ Rounded $\mathbf{B}_{\text {loss. }}$. The lowest observed spawning stock biomass.
$\mathbf{B}_{\mathrm{pa}} \quad$ The previously agreed MBAL and affords a high probability of maintaining SSB above $\mathbf{B}_{\text {lim }}$, taking into account the uncertainty of assessments. Below this value the probability of below average recruitment increases. Previous MBAL and signs of impaired recruitment below: 150000 t .
$\mathbf{F}_{\text {lim }} \mathbf{F}_{\text {loss }}$
$\mathbf{F}_{\mathrm{pa}}$ Approx. 5th percentile of $\mathbf{F}_{\text {loss }}$
Changes to the range of ages used for the assessment of this stock resulting from the lack of reliable tuning information at the oldest ages and the addition of discard data necessitate a recalculation of the PA reference points for this stock. The PA soft program was therefore applied to the stock and exploitation estimates derived from the ADAPT model based on the fit to landings and discards. The stock and recruit time series used for the estimation of reference points was 1963-2002, that is the 1962-2001 year classes.

The PAsoft diagnostic program was used to examine the appropriate settings for the span of the calculation for Gloss. There is a minimum value in the Akaike information index at spans lower than 0.8 (Figure 3.10.1) therefore this value was used in the estimation of the reference point.

Figure 3.10.2 and Table 3.10.1 present the PAsoft output from the reference point estimation procedure.
The revised assessment model and inclusion of discards set has not significantly altered the structure in the scatter plot of the estimates of SSB and recruitment. This implies that the position of the break point in the stock and recruitment plot is unchanged at about 150,000 t. There remains a high probability of poor recruitment at SSB below this value. ACFM has previously recommended that this value should be used as $\mathbf{B}_{\mathrm{pa}}$ but this is currently under review.

Using the previously applied criteria for the selection of fishing mortality reference points (ACFM report 2002) $\mathbf{F}_{\text {lim }}=\mathbf{F}_{\text {loss }}$, the new deterministic estimate of $\mathbf{F}_{\text {loss }}$ for the assessment including discards is 0.94 and the median of the bootstrapped values 1.01. Using the previous ACFM formulation $\mathbf{F}_{\mathrm{pa}}$ is therefore taken from the 5th percentile of $\mathbf{F}_{\text {loss }}$ and is estimated to be 0.80 . This compares with the previous value of 0.65 when the assessment data does not include discards.

The WG notes that the $F_{\text {loss }}$ estimate may be an over-estimate. The PAsoft diagnostic plots indicate that the non-parametric smoother is over estimating the majority of the recent low recruitment, near to the origin of the stock and recruitment relationship. Given that the region around the origin of the stock and recruitment curve is currently being explored, and that there is a well defined curvature in the pairs of estimates, the WG consider that a parametric model estimate of the slope at the origin may be more robust to random variation in recent recruitment. This should be examined in detail before the $\mathrm{F}_{\mathrm{lim}}$ and $\mathrm{F}_{\mathrm{pa}}$ values are revised.

The results of long-term equilibrium yield and SSB-per-recruit analyses are given in Figure 3.10.2.

The estimates of biological reference points and management reference points for the cod assessment including discards are given in the text Tables below.

| Biological reference point | 2004 estimate |
| :--- | :--- |
| $\mathbf{F}_{\max }$ | 0.20 |
| $\mathbf{F}_{0.1}$ | 0.13 |
| $\mathbf{F}_{\text {med }}$ | 0.80 |

### 3.11 State of the stock

The general perception of the cod stock remains unchanged from recent assessments. All sources of information indicate that the mortality rate has remained high since the late 1970s. There has been an apparent reduction in fishing mortality in 2001 and 2002. However, the magnitude of the reduction is uncertain.

The proportion of mature individuals in the stock and the catches remains very low. Only about $5 \%$ of individuals at age 1 survive to age 5 .

Survey indices and results from models fitted to the commercial catch-at-age data indicate that the spawning stock biomass is at about 20-25\% of the level it was in the 1980's.

Recruitment of 1 year old cod has varied considerably since the 1960s but since 1997 average recruitment has been lower than any other time. There are no indications of a strong year-class of cod since 1996, a year class that was a prominent feature in all surveys and was heavily exploited by the fishery at ages 1-5. The incoming 2003 year class is estimated to be close to the average of the recent low values.

### 3.12 Management considerations

There is a need to maintain a low fishing mortality on North Sea cod in order to allow more fish to reach sexual maturity and increase the probability of good recruitment. In addition, there is also a need to reduce the mortality rate on younger age groups (1-3). The exploitation pattern has remained the same since the early 1960s despite various changes to technical regulations (gear modifications and mesh size changes) aimed at improving it.

Cod is a specific target for some fleets, but the majority of cod in the North Sea are caught (landings and discards) in mixed demersal fisheries. This means it is important to take into account the impact of the management of cod on other stocks, especially haddock and whiting, although fishing opportunities for other commercially important stocks will also be affected. The reverse is also true. Comparisons between the extent of the reduction in fishing mortality on haddock in 2003 compared to that on cod indicate that some degree of de-coupling may have occurred in 2003.

Recent measures to protect North Sea cod, such as the 2001 closed area, and proposals to increase mesh size, will most likely have a greater beneficial effect to stocks other than cod. Any benefits for cod by such measures are likely to be through reduced discarding of fish below the minimum landing size. The discard data available to the WG do not indicate a substantial decline in discards at the youngest ages in recent years.

It is considered that conclusions drawn from the trends in the historic stock dynamics and exploitation rates are robust to the uncertainty in the level of recent recorded catches. A sensitivity analysis has shown that the recent stock trends are largely unaffected by the measured rate of discarding but are highly sensitive, especially estimates of fishing mortality, to bias in the reported landings.

Table 3.1.1. Nominal landings (in tonnes) of COD in IIIa (Skagerrak), IV and VIId, 1984-2003 as officially reported to ICES and as used by the Working Group.

| Sub-area IV |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Country | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| Belgium | 5,804 | 4,815 | 6,604 | 6,693 | 5,508 | 3,398 | 2,934 | 2,331 | 3,356 | 3,374 |
| Denmark | 46,751 | 42,547 | 32,892 | 36,948 | 34,905 | 25,782 | 21,601 | 18,998 | 18,479 | 19,547 |
| Faroe Islands | - | 71 | 45 | 57 | 46 | 35 | 96 | 23 | 109 | 46 |
| France | 8,129 | 4,834 | 8,402 | 8,199 | 8,323 | 2,578 | 1,641 | 975 | 2,146 | 1,868 |
| Germany | 13,453 | 7,675 | 7,667 | 8,230 | 7,707 | 11,430 | 11,725 | 7,278 | 8,446 | 6,800 |
| Netherlands | 25,460 | 30,844 | 25,082 | 21,347 | 16,968 | 12,028 | 8,445 | 6,831 | 11,133 | 10,220 |
| Norway | 7,005 | 5,766 | 4,864 | 5,000 | 3,585 | 4,813 | 5,168 | 6,022 | 10,476 | 8,742 |
| Poland | 7 | - | 10 | 13 | 19 | 24 | 53 | 15 | - | - |
| Sweden | 575 | 748 | 839 | 688 | 367 | 501 | 620 | 784 | 823 | 646 |
| UK (E/W/NI) | 35,605 | 29,692 | 25,361 | 29,960 | 23,496 | 18,375 | 15,622 | 14,249 | 14,462 | 14,940 |
| UK (Scotland) | 54,359 | 60,931 | 45,748 | 49,671 | 41,382 | 31,480 | 31,120 | 29,060 | 28,677 | 28,197 |
| United Kindom |  |  |  |  |  |  |  |  |  |  |
| Total Nominal Catch | 197,148 | 187,923 | 157,514 | 166,806 | 142,306 1 | 110,444 | 99,025 | 86,566 | 98,107 | 94,380 |
| Unallocated landings | 7,723 | 6,773 | 11,292 | 15,288 | 14,253 | 5,256 | 5,726 | 1,967 | -758 | 10,200 |
| WG estimate of total landings | 204,871 | 194,696 | 168,806 | 182,094 | 156,559 1 | 115,700 | 104,751 | 88,533 | 97,349 | 104,580 |
| Agreed TAC | 215,000 | 250,000 | 170,000 | 175,000 | 160,000 1 | 124,000 | 105,000 | 100,000 | 100,000 | 101,000 |
| Division VIId |  |  |  |  |  |  |  |  |  |  |
| Country | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| Belgium | 331 | 501 | 650 | 815 | 486 | 173 | 237 | 182 | 187 | 157 |
| Denmark | - | - | 4 | - | + | + | - | - | 1 | 1 |
| France | 2,492 | 2,589 | 9,938 | 7,541 | 8,795 n/a | /a | n/a | n/a | 2,079 | 1,771 |
| Netherlands | - | - | - | - | 1 | 1 | - | - | 2 | - |
| UK (E/W/NI) | 282 | 326 | 830 | 1,044 | 867 | 562 | 420 | 341 | 443 | 530 |
| UK (Scotland) | - | - | - | - | - | - | 7 | 2 | 22 | 2 |
| United Kingdom |  |  |  |  |  |  |  |  |  |  |
| Total Nominal Catch | 3,105 | 3,416 | 11,422 | 9,400 | 10,149 n/a |  | n/a | n/a | 2,734 | 2,461 |
| Unallocated landings | 419 | -111 | 3,722 | 4,819 | 580 | - | - | - | -65 | -29 |
| WG estimate of total landings | 3,524 | 3,305 | 15,144 | 14,219 | 10,729 | 5,538 | 2,763 | 1,886 | 2,669 | 2,432 |


| Division IIIa <br> (Skagerrak) | (not official statistics as these are only reported for the entire Division IIIa. The numbers below are as used by the WG) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Country | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| Denmark | 17,443 | 14,521 | 18,424 | 17,824 | 14,806 | 16,634 | 15,788 | 10,396 | 11,194 | 11,997 |
| Sweden | 1,981 | 1,914 | 1,505 | 1,924 | 1,648 | 1,902 | 1,694 | 1,579 | 2,436 | 2,574 |
| Norway | 311 | 193 | 174 | 152 | 392 | 256 | 143 | 72 | 270 | 75 |
| Germany | - | - | - | - | - | 12 | 110 | 12 |  | - |
| Others | 156 | - | - | - | 106 | 34 | 65 | 12 | 102 | 91 |
| Norwegian coast * | 1,187 | 990 | 917 | 838 | 769 | 888 | 846 | 854 | 923 | 909 |
| Danish industrial bycatch * | 1,084 | 1,751 | 997 | 491 | 1,103 | 428 | 687 | 953 | 1,360 | 511 |
| Total Nominal Catch | 19,891 | 16,628 | 20,103 | 19,900 | 16,952 | 18,838 | 17,800 | 12,071 | 14,002 | 14,737 |
| WG estimate of total landings | 19,891 | 16,628 | 20,103 | 19,900 | 16,952 | 18,697 | 17,800 | 12,059 | 14,002 | 14,737 |
| Agreed TAC | 28,000 | 29,000 | 29,000 | 22,500 | 21,500 | 20,500 | 21,000 | 15,000 | 15,000 | 15,000 |

## Table 3.1.1. cont'd

Sub-area IV, Divisions VIId and IIIa
(Skagerrak) combined

|  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Total |  |  |  |  |  |  |  |  |  |  |  |
| Nominal <br> Catch | 220,144 | 207,967 | 189,039 | 196,106 | 169,407 | $\mathrm{n} / \mathrm{a}$ | $\mathrm{n} / \mathrm{a}$ | $\mathrm{n} / \mathrm{a}$ | 114,843 | 111,578 |  |
| Unallocat <br> ed | 8,142 | 6,662 | 15,014 | 20,106 | 14,833 | - | - | - |  | -823 | 10,171 |
| landings <br> WG <br> estimate <br> of total <br> landings |  | $\mathbf{2 2 8 , 2 8 6}$ | $\mathbf{2 1 4 , 6 2 9}$ | $\mathbf{2 0 4 , 0 5 3}$ | $\mathbf{2 1 6 , 2 1 2}$ | $\mathbf{1 8 4 , 2 4 0}$ | $\mathbf{1 3 9 , 9 3 6}$ | $\mathbf{1 2 5 , 3 1 4}$ | $\mathbf{1 0 2 , 4 7 8}$ | $\mathbf{1 1 4 , 0 2 0}$ | $\mathbf{1 2 1 , 7 4 9}$ |

Table 3.1.1. Nominal landings (in tonnes) of COD in IIIa (Skagerrak), IV and VIId, 1984-2003 as cont'd. officially reported to ICES and as used by the Working Group.

| Sub-area IV |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Country | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| Belgium | 2,648 | 4,827 | 3,458 | 4,642 | 5,799 | 3,882 | 3,304 | 2,470 | 2,616 | 1,482* |
| Denmark | 19,243 | 24,067 | 23,573 | 21,870 | 23,002 | 19,697 | 14,000 | 8,358 | 9,022 | 4,676 |
| Faroe Islands | 80 | 219 | 44 | 40 | 102 | 96 |  |  |  |  |
| France | 1,868 | 3,040 | 1,934 | 3,451 | 2,934* | 1,750 ${ }^{1}$ | 1,222 | 717 | 1,777 | 617 |
| Germany | 5,974 | 9,457 | 8,344 | 5,179 | 8,045 | 3,386 | 1,740 | 1,810 | 2,018 | 2,048 |
| Netherlands | 6,512 | 11,199 | 9,271 | 11,807 | 14,676 | 9,068 | 5,995 | 3,574 | 4,707 | 2,305* |
| Norway | 7,707 | 7,111 | 5,869 | 5,814 | 5,823 | 7,432 | 6,410 | 4,383* | 4,994* | 4,518* |
| Poland | - | - | 18 | 31 | 25 | 19 | 18 | 18 | 39 | 35* |
| Sweden | 630 | 709 | 617 | 832 | 540 | 625 | 640 | 661 | 463 | 252 |
| UK (E/W/NI) | 13,941 | 14,991 | 15,930 | 13,413 | 17,745 | 10,344 | 6,543 | 4,087 | 3,112 | 2,213 |
| UK (Scotland) | 28,854 | 35,848 | 35,349 | 32,344 | 35,633 | 23,017 | 21,009 | 15,640 | 15,416 | 7,852 |
| United Kindom |  |  |  |  |  |  |  |  |  |  |
| Total Nominal Catch | 87,457 | 111,468 | 104,407 | 99,423 | 114,324 | 79,316 | 60,881 | 41,718 | 44,164 | 25,998 |
| Unallocated landings | 7,066 | 8,555 | 2,161 | 2,746 | 7,779 | -924 | -1,114 | -745 | 136 | -151 |
| WG estimate of total landings | 94,523 | 120,023 | 106,568 | 102,169 | 122,103 | 78,392 | 59,767 | 40,973 | 44,300 | 25,847 |
| Agreed TAC | 102,000 | 120,000 | 130,000 | 115,000 | 140,000 | 132,400 | 81,000 | 48,600 | 49,300 | 27,300 |
| Division VIId |  |  |  |  |  |  |  |  |  |  |
| Country | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| Belgium | 228 | 377 | 321 | 310 | 239 | 172 | 110 | 93 | 51 | 54* |
| Denmark | 9 | - | - | - | - | - | - | - | - |  |
| France | 2,338 | 3,261 | 2,808 | 6,387 | 7,788* |  | 3,084 | 1,677 | 1,361 | 1,127 |
| Netherlands | - | - | + | - | 19 | 3 | 4 | 17 | 6 | 36* |
| UK (E/W/NI) | 312 | 336 | 414 | 478 | 618 | 454 | 385 | 249 | 145 | 121 |
| UK (Scotland) | + | + | 4 | 3 | 1 | - | - | - | - |  |
| United Kingdom |  |  |  |  |  |  |  |  |  |  |
| Total Nominal Catch | 2,887 | 3,974 | 3,547 | 7,178 | 8,665 | 629 | 3,583 | 2,036 | 1,563 | 1,338 |
| Unallocated landings | -37 | -10 | -44 | -135 | -85 | 6,229 | -1,258 | -463 | 1,534 | -104 |
| WG estimate of total landings | 2,850 | 3,964 | 3,503 | 7,043 | 8,580 | 6,858 | 2,325 | 1,573 | 3,097 | 1,234 |


| Division IIIa (Skagerrak) | (not official statistics as these are only reported for the entire Division IIIa. The numbers below are as used by the WG) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Country | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| Denmark | 11,953 | 8,948 | 13,573 | 12,164 | 12,340 | 8,734 | 7,683 | 5,901 | 5,524 | 3,070 |
| Sweden | 1,821 | 2,658 | 2,208 | 2,303 | 1608 | 1,909 | 1,350 | 1,035 | 1,716 | 509 |
| Norway | 60 | 169 | 265 | 348 | 303 | 345 | 301 | 134 | 146 | 193 |
| Germany | 301 | 200 | 203 | 81 | 16 | 54 | 9 | 32 | 83 | - |
| Others | 25 | 134 | - | - | - | - | - | - | - | - |
| Norwegian coast * | 760 | 846 | 748 | 911 | 976 | 788 | 624 | 846 | $\mathrm{n} / \mathrm{a}$ | $\mathrm{n} / \mathrm{a}$ |
| Danish industrial by-catch * | 666 | 749 | 676 | 205 | 97 | 62 | 99 | 687 | n/a | $\mathrm{n} / \mathrm{a}$ |
| Total Nominal Catch | 14160 | 12109 | 16249 | 14896 | 14267 | 11042 | 9343 | 7102 | 7469 | 3772 |
| Unallocated landings | -899 | 0 | 0 | 50 | 1,064 | -68 | -66 | -16 | -1 | 19 |
| WG estimate of total landings | 13,261 | 12,109 | 16,249 | 14,946 | 15,331 | 10,974 | 9,277 | 7,086 | 7,468 | 3,791 |
| Agreed TAC | 15,500 | 20,000 | 23,000 | 16,100 | 20,000 | 19,000 | 11,600 | 7,000 | 7,100 | 3,900 |

## Table 3.1.1. cont'd

Sub-area IV, Divisions VIId and IIIa (Skagerrak) combined

|  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Total Nominal | 104,504 | 127,551 | 124,203 | 121,497 | 137,256 | 90,987 | 73,807 | 50,856 | 53,196 | 31,108 |
| Catch |  |  |  |  |  |  |  |  |  |  |

[^2]Table 3.1.2. Percentage cod discards at age recorded during 1994 - 2003 from English vessels fishing in ICES Sub-area IV.

|  |  | Percentage discards at age |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Quarter | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7+ |
| 1994 | $\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | 100 | $\begin{gathered} \hline 100 \\ 100 \\ 92 \\ 40 \end{gathered}$ | $\begin{gathered} 25 \\ 30 \\ 12 \\ 0 \end{gathered}$ | $\begin{aligned} & \hline 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| 1995 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | 100 | $\begin{gathered} \hline 100 \\ 91 \\ 74 \\ 36 \end{gathered}$ | $\begin{gathered} 30 \\ 8 \\ 7 \\ 0 \end{gathered}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | 0 0 0 0 | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$ |
| 1996 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | 100 | $\begin{gathered} \hline 100 \\ 100 \\ 58 \\ 73 \end{gathered}$ | 9 5 5 0 | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | 0 0 0 | 0 0 0 0 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| 1997 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | 100 | $\begin{gathered} \hline 100 \\ 100 \\ 79 \\ 68 \end{gathered}$ | $\begin{aligned} & 42 \\ & 17 \\ & 22 \\ & 14 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| 1998 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ |  | $\begin{gathered} \hline 100 \\ 65 \\ 90 \\ 55 \end{gathered}$ | $\begin{gathered} 49 \\ 34 \\ 21 \\ 1 \end{gathered}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | 0 0 0 0 | $\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$ |
| 1999 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | 100 | $\begin{gathered} 100 \\ 0 \\ 78 \\ 74 \end{gathered}$ | 65 0 2 0 | $\begin{gathered} 20 \\ 0 \\ 1 \\ 0 \end{gathered}$ | $\begin{aligned} & \hline 5 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $0$ <br> 0 <br> 0 | 0 0 0 | 0 0 0 | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$ |
| 2000 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | 100 | $\begin{gathered} \hline 100 \\ 97 \\ 88 \\ 61 \end{gathered}$ | 16 3 5 16 | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | 0 0 0 |  | 0 <br> 0 |
| 2001 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | 100 | $\begin{gathered} \hline 100 \\ 97 \\ 89 \\ 59 \end{gathered}$ | $\begin{gathered} 48 \\ 19 \\ 14 \\ 4 \end{gathered}$ | $\begin{gathered} \hline 0 \\ 0 \\ 0 \\ 15 \end{gathered}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$ |  |
| 2002 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ |  | $\begin{gathered} \hline 100 \\ 94 \\ 33 \\ 63 \end{gathered}$ | 44 64 25 23 | $\begin{aligned} & \hline 7 \\ & 4 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | 0 0 0 | 100 |
| 2003 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | 100 | $\begin{aligned} & 100 \\ & \\ & 96 \\ & 63 \end{aligned}$ | 31 33 7 2 | 0 9 0 0 | 11 0 0 0 | 0 0 0 0 | 0 0 | 0 |  |

Table 3.2.1 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Natural mortality and proportion mature by age-group.

| Age group | Natural mortality | Proportion mature |
| :---: | :---: | :---: |
| 1 | 0.8 | 0.01 |
| 2 | 0.35 | 0.05 |
| 3 | 0.25 | 0.23 |
| 4 | 0.2 | 0.62 |
| 5 | 0.2 | 0.86 |
| 6 | 0.2 | 1.0 |
| $7+$ | 0.2 | 1.0 |

Table 3.2.2 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Landings numbers at age (Thousands)


Table 3.2.3 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Landings mean weight at age

| Cod North Sea/Skaggerak/Eastern Channel 20/08/2004 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Table 2 Catch weights at age (kg) |  |  |  |  |  |  |  |  |  |  |  |
| AGE/YEAR | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 |
| 1 | 0.538 | 0.496 | 0.581 | 0.579 | 0.59 | 0.64 | 0.544 | 0.626 | 0.579 | 0.616 | 0.559 |
| 2 | 1.004 | 0.863 | 0.965 | 0.994 | 1.035 | 0.973 | 0.921 | 0.961 | 0.941 | 0.836 | 0.869 |
| 3 | 2.657 | 2.377 | 2.304 | 2.442 | 2.404 | 2.223 | 2.133 | 2.041 | 2.193 | 2.086 | 1.919 |
| 4 | 4.491 | 4.528 | 4.512 | 4.169 | 3.153 | 4.094 | 3.852 | 4.001 | 4.258 | 3.968 | 3.776 |
| 5 | 6.794 | 6.447 | 7.274 | 7.027 | 6.803 | 5.341 | 5.715 | 6.131 | 6.528 | 6.011 | 5.488 |
| 6 | 9.409 | 8.52 | 9.498 | 9.599 | 9.61 | 8.02 | 6.722 | 7.945 | 8.646 | 8.246 | 7.453 |
| 7 | 11.562 | 10.606 | 11.898 | 11.766 | 12.033 | 8.581 | 9.262 | 9.953 | 10.356 | 9.766 | 9.019 |
| 8 | 11.942 | 10.758 | 12.041 | 11.968 | 12.481 | 10.162 | 9.749 | 10.131 | 11.219 | 10.228 | 9.81 |
| 9 | 13.383 | 12.34 | 13.053 | 14.059 | 13.589 | 10.72 | 10.384 | 11.919 | 12.881 | 11.875 | 11.077 |
| 10 | 13.756 | 12.54 | 14.441 | 14.746 | 14.271 | 12.497 | 12.743 | 12.554 | 13.147 | 12.53 | 12.359 |
| +gp | 0 | 14.998 | 15.6669 | 15.6718 | 19.0163 | 11.5951 | 11.5675 | 14.3667 | 15.5441 | 14.3504 | 12.886 |
| SOPCOFAC | 0.9998 | 0.9999 | 1 | 1.0001 | 1.0001 | 0.9999 | 0.9999 | 1 | 0.9999 | 1.0001 | 0.9999 |
| AGE/YEAR | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
| 1 | 0.594 | 0.619 | 0.568 | 0.542 | 0.572 | 0.55 | 0.55 | 0.723 | 0.589 | 0.632 | 0.594 |
| 2 | 1.039 | 0.899 | 1.029 | 0.948 | 0.937 | 0.936 | 1.003 | 0.837 | 0.962 | 0.919 | 1.007 |
| 3 | 2.217 | 2.348 | 2.47 | 2.16 | 2.001 | 2.411 | 1.948 | 2.189 | 1.858 | 1.835 | 2.156 |
| 4 | 4.156 | 4.226 | 4.577 | 4.607 | 4.146 | 4.423 | 4.401 | 4.615 | 4.13 | 3.88 | 3.972 |
| 5 | 6.174 | 6.404 | 6.494 | 6.713 | 6.531 | 6.58 | 6.109 | 7.045 | 6.784 | 6.491 | 6.19 |
| 6 | 8.333 | 8.691 | 8.62 | 8.828 | 8.667 | 8.475 | 9.12 | 8.884 | 8.903 | 8.423 | 8.362 |
| 7 | 9.889 | 10.107 | 10.132 | 10.071 | 9.686 | 10.637 | 9.55 | 9.934 | 10.399 | 9.848 | 10.317 |
| 8 | 10.79 | 10.91 | 11.341 | 11.052 | 11.099 | 11.55 | 11.867 | 11.519 | 12.5 | 11.837 | 11.352 |
| 9 | 12.175 | 12.339 | 12.888 | 11.824 | 12.427 | 13.057 | 12.782 | 13.338 | 13.469 | 12.797 | 13.505 |
| 10 | 12.425 | 12.976 | 14.14 | 13.134 | 12.778 | 14.148 | 14.081 | 14.897 | 12.89 | 12.562 | 13.408 |
| +gp | 13.7308 | 14.4309 | 14.5568 | 14.3616 | 13.9808 | 15.478 | 15.3918 | 16.6291 | 14.6081 | 14.4263 | 13.4716 |
| SOPCOFAC | 0.9999 | 0.9998 | 1 | 0.9999 | 1.0035 | 1.0087 | 0.9963 | 0.9985 | 0.9946 | 0.9968 | 0.9993 |
| AGE/YEAR | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| 1 | 0.59 | 0.583 | 0.635 | 0.586 | 0.673 | 0.737 | 0.67 | 0.699 | 0.699 | 0.678 | 0.721 |
| 2 | 0.933 | 0.856 | 0.976 | 0.881 | 1.052 | 0.976 | 1.078 | 1.146 | 1.065 | 1.075 | 1.02 |
| 3 | 2.14 | 1.834 | 1.955 | 1.982 | 1.846 | 2.176 | 2.037 | 2.546 | 2.479 | 2.201 | 2.21 |
| 4 | 4.164 | 3.504 | 3.65 | 3.187 | 3.585 | 3.791 | 3.971 | 4.223 | 4.55 | 4.471 | 4.292 |
| 5 | 6.324 | 6.23 | 6.052 | 5.992 | 5.273 | 5.932 | 6.083 | 6.248 | 6.54 | 7.167 | 7.22 |
| 6 | 8.43 | 8.14 | 8.307 | 7.914 | 7.921 | 7.889 | 8.034 | 8.483 | 8.094 | 8.436 | 8.98 |
| 7 | 10.362 | 9.896 | 10.242 | 9.764 | 9.725 | 10.235 | 9.545 | 10.102 | 9.641 | 9.536 | 10.283 |
| 8 | 12.073 | 11.939 | 11.461 | 12.127 | 11.211 | 10.924 | 10.949 | 10.481 | 10.735 | 10.323 | 11.743 |
| 9 | 13.072 | 12.951 | 12.447 | 14.242 | 12.586 | 12.802 | 13.481 | 11.85 | 12.329 | 12.224 | 13.107 |
| 10 | 14.443 | 13.859 | 18.691 | 17.787 | 15.557 | 15.525 | 13.17 | 13.905 | 13.443 | 14.247 | 12.052 |
| +gp | 16.5876 | 14.7073 | 16.6043 | 16.4767 | 14.6939 | 23.2341 | 14.9889 | 15.7944 | 13.9612 | 12.5231 | 13.9541 |
| SOPCOFAC | 0.9952 | 1.0098 | 0.9968 | 1 | 0.995 | 0.9945 | 0.997 | 0.9928 | 0.9948 | 0.9941 | 0.9836 |
| AGE/YEAR | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |  |  |  |
| 1 | 0.699 | 0.656 | 0.542 | 0.64 | 0.621 | 0.725 | 0.758 | 0.608 |  |  |  |
| 2 | 1.117 | 0.96 | 0.922 | 0.935 | 1.03 | 1.004 | 1.082 | 1.173 |  |  |  |
| 3 | 2.147 | 2.12 | 1.724 | 1.663 | 1.737 | 2.303 | 1.916 | 1.848 |  |  |  |
| 4 | 4.034 | 3.821 | 3.495 | 3.305 | 3.196 | 3.663 | 3.857 | 3.255 |  |  |  |
| 5 | 6.637 | 6.228 | 5.387 | 5.726 | 4.83 | 5.871 | 5.372 | 5.185 |  |  |  |
| 6 | 8.494 | 8.394 | 7.563 | 7.403 | 7.411 | 7.332 | 7.991 | 7.409 |  |  |  |
| 7 | 9.729 | 9.979 | 9.628 | 8.582 | 9.532 | 9.264 | 9.627 | 8.704 |  |  |  |
| 8 | 11.08 | 11.424 | 10.643 | 10.365 | 10.952 | 10.081 | 10.403 | 12.178 |  |  |  |
| 9 | 12.264 | 12.3 | 11.499 | 11.6 | 11.914 | 12.062 | 10.963 | 12.851 |  |  |  |
| 10 | 12.756 | 12.761 | 13.085 | 12.33 | 12.437 | 12.009 | 12.816 | 10.772 |  |  |  |
| +gp | 11.3036 | 13.4162 | 14.9208 | 11.9259 | 15.0776 | 10.1952 | 11.8422 | 17.5069 |  |  |  |
| SOPCOFAC | 0.999 | 1.0002 | 0.9998 | 1.0034 | 1.0002 | 1.0001 | 1.0001 | 0.9999 |  |  |  |

Table 3.2.4 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Discard numbers at age

| Run title: Cod At 13/09/2004 21:31 |  | North Sea/Skaggerak/Eastern Channel 20/08/2004 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Discard numbers at age |  | Numbers*10**-3 |  |  |  | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 |
| AGE/YEAR | 1963 | 1964 | 1965 | 1966 | 1967 |  |  |  |  |  |  |
| 1 | 15043 | 7432 | 93840 | 104296 | 48299 | 30045 | 2425 | 51493 | 249475 | 37039 | 82279 |
| 2 | 18539 | 5695 | 6324 | 21292 | 23793 | 22168 | 9963 | 8417 | 35866 | 57463 | 16651 |
| 3 | 30 | 106 | 86 | 68 | 154 | 190 | 109 | 148 | 45 | 172 | 236 |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| +gp | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| TOTALNUM | 33613 | 13233 | 100249 | 125656 | 72245 | 52404 | 12498 | 60057 | 285387 | 94674 | 99166 |
| AGE/YEAR | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
| 1 | 117784 | 123776 | 206340 | 394689 | 24353 | 572445 | 1156680 | 153431 | 178144 | 51390 | 533311 |
| 2 | 15064 | 14687 | 75277 | 39853 | 70934 | 4963 | 16294 | 32166 | 7755 | 10560 | 10953 |
| 3 | 67 | 0 | 168 | 417 | 0 | 0 | 0 | 63 | 87 | 20 | 4 |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| +gp | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| TOTALNUM | 132915 | 138463 | 281785 | 434959 | 95287 | 577409 | 1172975 | 185660 | 185986 | 61970 | 544268 |
| AGE/YEAR | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| 1 | 56953 | 501956 | 22405 | 14026 | 170046 | 31498 | 46369 | 90602 | 30155 | 260406 | 38594 |
| 2 | 34916 | 3937 | 53130 | 15876 | 6938 | 43623 | 7390 | 8439 | 25704 | 14225 | 39087 |
| 3 | 96 | 260 | 0 | 182 | 392 | 55 | 401 | 2 | 9 | 144 | 24 |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| +gp | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| TOTALNUM | 91965 | 506153 | 75535 | 30084 | 177376 | 75176 | 54160 | 99043 | 55868 | 274775 | 77704 |
| AGE/YEAR | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |  |  |  |
| 1 | 13410 | 57334 | 13606 | 21523 | 33629 | 4472 | 10812 | 7973 |  |  |  |
| 2 | 19873 | 11570 | 80433 | 4202 | 4790 | 29983 | 2046 | 8084 |  |  |  |
| 3 | 656 | 33 | 1107 | 7294 | 0 | 609 | 1625 | 912 |  |  |  |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 65 |  |  |  |
| 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |  |  |  |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |  |  |  |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |  |  |  |
| 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| +gp | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| TOTALNUM | 33939 | 68938 | 95146 | 33019 | 38418 | 35064 | 14483 | 17046 |  |  |  |

Table 3.2.5 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Dicard weights at age


Table 3.3.1 COD in IIIa (Skagerrak), IV and VIId: Scottish Trawl. Ages 1-10. Effort in column one is hours fished (Including discards)

| SCOTRL_IV |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 | 2003 |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |
| 1 | 10 |  |  |  |  |  |  |  |  |  |
| 135220 | 409.35 | 1474.496 | 285.8833 | 181.9258 | 63.9739 | 15.99347 | 11.99511 | 6.997144 | 2.998776 | 0.999592 |
| 87467 | 279.8442 | 925.261 | 447.2435 | 73.87503 | 46.92063 | 22.96116 | 11.97974 | 3.993245 | 2.994933 | 0.998311 |
| 55475 | 247.8763 | 921.5746 | 379.3265 | 127.3929 | 19.96455 | 19.96455 | 7.605545 | 6.654851 | 0.950693 | 1.901386 |
| 51553 | 109.3078 | 992.8969 | 387.6827 | 113.6954 | 51.25613 | 13.97894 | 5.591578 | 1.863859 | 0.93193 | 0.93193 |
| 47889 | 708.2266 | 310.4488 | 392.9126 | 73.23587 | 17.39352 | 6.408139 | 2.746345 | 0.915448 | 0.915448 | 0 |
| 48339 | 358.3487 | 1471.041 | 208.3826 | 112.4297 | 23.26131 | 9.692212 | 1.938442 | 0 | 0 | 0.969221 |
| 34574 | 459.2087 | 787.6639 | 346.0258 | 32.72631 | 16.83067 | 7.480299 | 0.935037 | 0.935037 | 0 | 0 |
| 33103 | 177.5764 | 1003.979 | 196.0045 | 79.31344 | 9.116488 | 4.558244 | 2.734946 | 0.911649 | 0.911649 | 0 |
| 27839 | 619.7301 | 194.4787 | 256.0416 | 19.91435 | 10.43132 | 0.948302 | 0.948302 | 0 | 0 | 0 |
| 27208 | 294.4729 | 891.5172 | 38.46321 | 39.40134 | 8.443145 | 1.876254 | 0 | 0.938127 | 0 | 0 |
| 21559 | 32.12963 | 374.3775 | 159.5134 | 8.07663 | 8.07663 | 4.038315 | 1.009579 | 1.009579 | 0 | 0 |
| 16657 | 398.0894 | 62.98812 | 136.7382 | 40.92921 | 2.974049 | 2.233094 | 1.19371 | 0.186866 | 0.725151 | 0.079953 |
| 14325 | 70.0218 | 427.7629 | 18.79561 | 22.48633 | 5.118328 | 1.214538 | 1.003704 | 0.225413 | 0 | 0 |
| 13495 | 135.025 | 109.5013 | 103.953 | 7.730703 | 6.99791 | 1.717706 | 0.482721 | 0 | 0.027672 | 0 |
| 10887 | 797.19 | 103.8477 | 30.2392 | 33.29115 | 1.15342 | 1.210886 | 0.120062 | 0.029759 | 0.053361 | 0 |
| 11657 | 66.56156 | 197.3851 | 31.23236 | 4.272787 | 6.325061 | 0.634283 | 0.055382 | 0.001045 | 0 | 0 |
| 15671 | 157.2719 | 41.89827 | 124.9601 | 9.460851 | 1.712914 | 1.656455 | 0.520226 | 0.37303 | 0 | 0 |
| 17728 | 71.63212 | 482.127 | 93.74244 | 49.03211 | 1.500962 | 0.465057 | 0.538377 | 0.034565 | 0.019901 | 0.199011 |
| 13471 | 6.349531 | 142.4422 | 108.3843 | 23.9094 | 15.04451 | 1.5798 | 0.200256 | 0.356011 | 0.002023 | 0.017194 |
| 12651 | 305.5104 | 88.36956 | 91.36169 | 26.78548 | 4.987823 | 2.978304 | 0.730642 | 0.104377 | 0.00912 | 0 |
| 25744 | 242.2595 | 1475.276 | 161.5658 | 91.32574 | 20.54947 | 6.612289 | 3.318138 | 0.714599 | $1.10 \mathrm{E}-02$ | 0.169905 |
| 23859 | 106.704 | 127.215 | 819.216 | 45.336 | 23.229 | 5.972 | 4.037 | 2.009 | 0.417 | 0.358 |
| 21320 | 649.464 | 581.585 | 76.825 | 164.579 | 25.919 | 14.448 | 7.8 | 1.014 | 0.292 | 0.109 |
| 11897 | 183.86 | 977.54 | 107.302 | 12.17 | 20.422 | 3.53 | 1.518 | 0.874 | 0.327 | 0.092 |
| 10480 | 238.473 | 231.259 | 412.183 | 32.258 | 2.906 | 10.843 | 3.297 | 2.036 | 1.035 | 0 |
| 7186 | 88.585 | 202.61 | 121.085 | 87.317 | 7.419 | 0.606 | 1.367 | 0.427 | 0.345 | 0 |

Table 3.3.1 Cont'd. COD in IIIa (Skagerrak), IV and VIId: Scottish Seine. Ages 1-12. Effort in column one is hours fished (Including discards)

| SCOSEI_IV |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Table 3.3.1 Cont'd. COD in IIIa (Skagerrak), IV and VIId: Scottish Light trawl. Ages 1-11. Effort in colimn 1 is hours fished (Including discards)

| SCOLTR_IV |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 | 2003 |  |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |
| 1 | 11 |  |  |  |  |  |  |  |  |  |  |
| 236929 | 3563.496 | 6140.808 | 670.8813 | 269.9522 | 50.99097 | 27.99505 | 6.998762 | 7.998584 | 4.999115 | 0 | 0.999823 |
| 207494 | 59063.64 | 5976.786 | 1808.121 | 178.0119 | 61.00409 | 15.001 | 3.000201 | 4.000268 | 2.000134 | 0 | 0 |
| 333197 | 116771.3 | 5763.403 | 2100.709 | 549.1993 | 71.40472 | 15.86772 | 4.407699 | 3.526159 | 0.88154 | 0 | 0 |
| 251504 | 8520.899 | 5931.566 | 1475.438 | 293.6062 | 81.83851 | 10.96805 | 5.905871 | 0 | 0 | 0 | 0.843696 |
| 250870 | 10234.89 | 3302.19 | 2303.319 | 377.3817 | 109.9951 | 39.34785 | 8.048424 | 6.259885 | 3.577077 | 5.365616 | 0 |
| 244349 | 4298.235 | 6519.319 | 1020.723 | 459.821 | 111.1458 | 31.37181 | 14.3414 | 5.378024 | 2.689012 | 0.896337 | 0.896337 |
| 240725 | 24925.01 | 3487.897 | 1544.073 | 180.3689 | 85.67522 | 36.07378 | 9.920289 | 7.214756 | 2.705533 | 0 | 0 |
| 268136 | 973.9859 | 6897.385 | 865.994 | 293.6529 | 39.33668 | 21.04055 | 3.659226 | 2.74442 | 0.914807 | 0.914807 | 0 |
| 279767 | 6008.823 | 1198.853 | 1849.553 | 250.9651 | 95.65086 | 12.3115 | 8.523344 | 4.735191 | 1.894076 | 0.947038 | 0 |
| 351131 | 3343.454 | 7206.319 | 530.2775 | 468.273 | 45.34659 | 31.46498 | 10.17985 | 5.552644 | 0.925441 | 0.925441 | 0 |
| 391988 | 718.7831 | 3936.688 | 1919.598 | 133.3749 | 148.4171 | 33.09301 | 14.03946 | 2.005637 | 1.002819 | 0 | 1.002819 |
| 405883 | 8549.296 | 1550.909 | 1616.046 | 565.7122 | 48.60529 | 45.2361 | 13.34317 | 3.38168 | 0.893709 | 0.256581 | 1.048427 |
| 398153 | 1367.276 | 9253.556 | 525.4563 | 456.8287 | 179.5233 | 25.74575 | 11.32401 | 3.712067 | 0.999011 | 0.127846 | 0.015839 |
| 408056 | 5550.412 | 2470.334 | 2152.873 | 138.0389 | 94.18764 | 48.09913 | 8.198981 | 8.481565 | 1.205553 | 0.028462 | 0 |
| 473955 | 14015.88 | 3034.779 | 748.3596 | 646.7289 | 44.07698 | 36.368 | 11.91228 | 2.053066 | 2.020331 | 0.219935 | 0.122754 |
| 447064 | 3493.383 | 6959.532 | 1262.558 | 163.9833 | 80.12223 | 9.88541 | 5.160946 | 3.794121 | 0.415991 | 0.211069 | 0.210045 |
| 480400 | 4978.661 | 2325.239 | 2367.073 | 370.5925 | 47.31199 | 42.37136 | 5.791775 | 2.345689 | 0.299924 | 0.22393 | 0.144896 |
| 442010 | 2420.854 | 9246.369 | 1579.927 | 797.1688 | 73.98882 | 8.576699 | 6.861158 | 0.636685 | 0.882335 | 0.554467 | 0.114303 |
| 445995 | 1436.903 | 5317.354 | 3114.515 | 424.1476 | 296.4993 | 31.73013 | 9.558771 | 5.477213 | 1.110849 | 0.797662 | 0.113517 |
| 479449 | 8339.782 | 3709.375 | 2809.411 | 808.3259 | 112.982 | 114.5114 | 10.293 | 0.946728 | 1.937183 | 3.067969 | 1.068756 |
| 427868 | 2486.337 | 17511.68 | 1694.537 | 675.569 | 193.1438 | 36.46541 | 31.4808 | 2.837979 | 0.226756 | 0.233811 | 0.101 |
| 329750 | 3712.019 | 1757.858 | 3913.763 | 299.8275 | 160.4792 | 45.76834 | 13.62074 | 7.653232 | 1.843825 | 0.630385 | 4.13E-02 |
| 280938 | 5732.985 | 3236.786 | 378.5365 | 905.9968 | 70.23299 | 36.84406 | 8.206451 | 6.20034 | 3.166538 | $9.25 \mathrm{E}-02$ | $5.43 \mathrm{E}-02$ |
| 245489 | 318.0813 | 6565.431 | 535.7789 | 83.25088 | 131.8429 | 11.16488 | 9.613866 | 1.375123 | 1.362131 | $1.76 \mathrm{E}-01$ | $2.48 \mathrm{E}-01$ |
| 184103 | 1545.652 | 701.137 | 2072.433 | 171.2748 | 38.53872 | 34.31218 | 9.563167 | 8.874635 | 3.944505 | 8.60E-01 | $1.41 \mathrm{E}-02$ |
| 98722 | 425.6158 | 1290.52 | 317.5353 | 433.8435 | 25.27571 | 5.618623 | 6.893836 | 0.698788 | 0.752386 | $2.83 \mathrm{E}-02$ | 7.89E-02 |

Table 3.3.1 Cont'd. COD in IIIa (Skagerrak), IV and VIId: English Trawl. Ages 1-12. Effort in column 1 is hours fished (Including discards based on Scottish ogive)

| ENGTRL_IV |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 | 2003 |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |  |
| 1 | 12 |  |  |  |  |  |  |  |  |  |  |  |
| 559930 | 4286.281 | 17150.92 | 1093 | 987 | 338 | 117 | 57 | 60 | 22 | 4 | 1 | 5 |
| 553020 | 53526.49 | 8150.569 | 3341 | 393 | 403 | 99 | 54 | 15 | 30 | 7 | 0 | 0 |
| 442036 | 77510.33 | 4851.411 | 2106 | 865 | 122 | 114 | 38 | 16 | 6 | 8 | 3 | 0 |
| 423658 | 12210.64 | 15133.98 | 1890.779 | 535 | 250 | 38 | 48 | 8 | 6 | 4 | 2 | 0 |
| 424272 | 17618.05 | 3652.63 | 3808.614 | 587 | 298 | 179 | 35 | 24 | 11 | 2 | 0 | 0 |
| 392364 | 5143.314 | 15130.79 | 1186.742 | 907 | 127 | 87 | 49 | 16 | 4 | 2 | 1 | 0 |
| 358387 | 36713.86 | 4141.779 | 2656.27 | 267 | 217 | 42 | 32 | 16 | 3 | 3 | 0 | 0 |
| 342844 | 3952.108 | 10221.1 | 1052.532 | 533 | 72 | 54 | 16 | 10 | 4 | 1 | 1 | 0 |
| 288867 | 38689.89 | 2339.106 | 2403.338 | 209 | 161 | 15 | 12 | 4 | 2 | 2 | 0 | 0 |
| 275899 | 1705.453 | 13419.24 | 682 | 596 | 36 | 26 | 3 | 4 | 2 | 1 | 1 | 0 |
| 296092 | 1806.404 | 2818.93 | 2436.241 | 90 | 126 | 17 | 10 | 0 | 2 | 0 | 0 | 0 |
| 310444 | 9209.517 | 2293.573 | 736.9495 | 501 | 25 | 34 | 5 | 4 | 0 | 0 | 0 | 0 |
| 255314 | 2153.731 | 5290.257 | 515.7698 | 134 | 101 | 11 | 13 | 4 | 1 | 0 | 0 | 0 |
| 258037 | 3416.509 | 1963.237 | 1113.923 | 88 | 25 | 17 | 2 | 2 | 0 | 0 | 0 | 0 |
| 223702 | 6218.854 | 2613.981 | 481.0823 | 234 | 19 | 5 | 5 | 0 | 0 | 0 | 0 | 0 |
| 209869 | 2179.172 | 5417.093 | 442.4967 | 96 | 55 | 5 | 3 | 2 | 0 | 1 | 0 | 0 |
| 184764 | 15928.13 | 3255.314 | 1154.464 | 78.19 | 14.284 | 7.036 | 1.762 | 0.673 | 0.847 | 0.023 | 0.063 | 0.002 |
| 173463 | 2737.632 | 5740.289 | 873.0717 | 158.03 | 11.028 | 2.992 | 1.896 | 0.662 | 0.132 | 0.247 | 0.048 | 0 |
| 159155 | 1502.486 | 4428.232 | 1688.046 | 189.238 | 43.97 | 6.812 | 1.649 | 1.464 | 0.552 | 0.155 | 0.003 | 0.008 |
| 152030 | 3897.965 | 3372.261 | 892.0419 | 334.563 | 41.12 | 14.836 | 2.063 | 0.781 | 0.286 | 0.084 | 0.173 | 0.002 |
| 161478 | 1842.657 | 22614.77 | 1858.418 | 243.07 | 77.418 | 12.373 | 4.033 | 0.807 | 0.326 | 0.086 | 0 | 0 |
| 137699 | 1781.07 | 878.0279 | 2302.694 | 97.058 | 11.516 | 3.962 | 0.446 | 0.319 | 0.043 | 0.015 | 0 | 0 |
| 129140 | 2078.156 | 1845.977 | 154.424 | 143.879 | 10.037 | 1.254 | 0.256 | 0.166 | 0.072 | 0.029 | 0 | 0.025 |
| 111826 | 331.8458 | 2258.866 | 270.9495 | 7.983 | 5.018 | 0.538 | 0.213 | 0.056 | 0.001 | 0 | 0 | 0 |
| 69953 | 752.0542 | 540.0665 | 264.5585 | 32.047 | 1.364 | 1.079 | 0.117 | 0.009 | 0.01 | 0.004 | 0 | 0 |
| 53661 | 217.27 | 582.1016 | 69.02214 | 25.00927 | 2.914894 | 0.191703 | 0.202812 | 0.021884 | 0.022 | 0.005 | 0.000199 | 0 |

Table 3.3.1 Cont'd. COD in IIIa (Skagerrak), IV and VIId: English Seine. Ages 1-12. Column 1 is Effort hours fished (Including discards based on Scottish ogive)

| ENGSEI_IV |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 | 2001 |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |  |
| 1 | 12 |  |  |  |  |  |  |  |  |  |  |  |
| 203382 | 2605.229 | 17803.75 | 746 | 547 | 131 | 78 | 21 | 37 | 9 | 1 | 1 | 2 |
| 187180 | 39918.48 | 7335.21 | 2438 | 162 | 280 | 76 | 35 | 14 | 18 | 4 | 1 | 0 |
| 201169 | 80642.77 | 8866.299 | 1370 | 611 | 146 | 210 | 54 | 29 | 9 | 12 | 4 | 0 |
| 185423 | 9402.239 | 14588.24 | 1056.733 | 398 | 359 | 61 | 74 | 12 | 8 | 6 | 3 | 0 |
| 183209 | 10494.28 | 3583.168 | 2477.399 | 330 | 294 | 189 | 38 | 31 | 9 | 3 | 2 | 0 |
| 177004 | 3155.493 | 5273.114 | 574.0176 | 557 | 207 | 150 | 104 | 18 | 17 | 8 | 3 | 2 |
| 167699 | 21674.56 | 1932.847 | 1215.166 | 147 | 290 | 72 | 50 | 32 | 6 | 5 | 1 | 0 |
| 157815 | 1915.811 | 4339.895 | 329.0231 | 241 | 72 | 117 | 40 | 27 | 13 | 4 | 2 | 0 |
| 136358 | 11817.84 | 397.7102 | 577.664 | 65 | 139 | 34 | 52 | 13 | 7 | 7 | 2 | 1 |
| 123281 | 753.4219 | 3560.337 | 82 | 184 | 44 | 77 | 10 | 22 | 8 | 2 | 1 | 0 |
| 91178 | 519.8114 | 1131.193 | 596.8989 | 19 | 80 | 19 | 12 | 3 | 3 | 1 | 0 | 0 |
| 88782 | 3614.582 | 881.4858 | 223.5378 | 138 | 9 | 46 | 7 | 8 | 1 | 2 | 0 | 1 |
| 80537 | 731.6764 | 1778.592 | 116.9737 | 45 | 58 | 4 | 15 | 3 | 1 | 1 | 0 | 0 |
| 84346 | 971.7097 | 396.3006 | 214.2835 | 33 | 26 | 38 | 6 | 16 | 1 | 1 | 1 | 0 |
| 67810 | 1586.26 | 572.7483 | 57.02038 | 42 | 10 | 8 | 8 | 2 | 3 | 0 | 0 | 0 |
| 54574 | 288.5182 | 705.421 | 41.07595 | 19 | 22 | 4 | 3 | 2 | 0 | 1 | 0 | 0 |
| 39667 | 2478.6 | 391.5565 | 139.77 | 11.373 | 17.04 | 14.114 | 3.077 | 0.889 | 0.519 | 0.07 | 0.278 | 0.071 |
| 28406 | 356.6505 | 713.6282 | 83.35091 | 21 | 5.216 | 3.742 | 5.623 | 3.043 | 0.608 | 0.162 | 0.755 | 0.085 |
| 14991 | 95.13878 | 310.3846 | 170.7331 | 19.592 | 16.881 | 4.434 | 1.542 | 1.136 | 0.148 | 0.24 | 0 | 0 |
| 11823 | 207.0991 | 113.4073 | 35.41122 | 27.906 | 6.115 | 5.284 | 1.7 | 0.333 | 0.357 | 0.26 | 0.024 | 0.001 |
| 10664 | 50.75842 | 578.1492 | 38.14429 | 9.665999 | 11.58 | 3.732 | 2.002 | 0.382 | 0.126 | 0.105 | 0 | 0 |
| 9720 | 113.2627 | 41.63449 | 107.0153 | 2.902 | 1.297 | 0.928 | 0.329 | $7.30 \mathrm{E}-02$ | 0.013 | 0.014 | 0 | 0 |
| 10230 | 88.74635 | 69.33748 | 2.275 | 7.197 | 0.765 | 0.853 | 0.438 | $1.15 \mathrm{E}-01$ | 0.166 | 0.001 | 0 | 0.008 |
| 8885 | 4.437132 | 38.41618 | 3.399988 | 0.246 | 1.045 | 0.062 | 0.115 | $2.00 \mathrm{E}-02$ | 0.006 | 0.002 | 0.003 | 0.002 |

Table 3.3.1 Cont'd. COD in IIIa (Skagerrak), IV and VIId: ScoGFS. Ages 1-8

| SCOGFS_IV |  |  |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1982 | 2004 |  |  |  |  |  |  |  |
| 1 | 1 | 0.5 | 0.75 |  |  |  |  |  |
| 1 | 8 |  |  |  |  |  |  |  |
| 100 | 61.4 | 35.1 | 57.2 | 18.3 | 9.2 | 5.9 | 1.4 | 0.5 |
| 100 | 32.5 | 78 | 18.1 | 19.7 | 7.5 | 2.3 | 1.5 | 0 |
| 100 | 81.9 | 39.1 | 25.3 | 5 | 5.7 | 1.6 | 0.5 | 0.2 |
| 100 | 6.6 | 114.3 | 19.7 | 11.2 | 3 | 2.4 | 0.6 | 1 |
| 100 | 80.1 | 10.4 | 39.6 | 5.7 | 3.9 | 1.9 | 0.6 | 0 |
| 100 | 21.9 | 69.5 | 3.4 | 9.2 | 2.9 | 0.7 | 0.2 | 0 |
| 100 | 16.2 | 28.8 | 16.5 | 2.5 | 3.3 | 1.2 | 0.4 | 0 |
| 100 | 56.1 | 13.5 | 16.8 | 9.5 | 2 | 0.8 | 0.5 | 0 |
| 100 | 11.4 | 49 | 5.9 | 7.4 | 2.6 | 0.9 | 0.8 | 0 |
| 100 | 30.3 | 15.4 | 13.3 | 1.3 | 0.6 | 0.4 | 0.2 | 0 |
| 100 | 64.2 | 19.3 | 7.2 | 6.7 | 2.9 | 1.8 | 1.2 | 0.2 |
| 100 | 34.7 | 74.9 | 10.1 | 2.5 | 1.2 | 0.3 | 0 | 0.1 |
| 100 | 115.8 | 33.4 | 28.8 | 3.1 | 1.2 | 0.7 | 0.2 | 0 |
| 100 | 47.5 | 144.3 | 13 | 8.5 | 1.1 | 0.7 | 0.4 | 0 |
| 100 | 31.8 | 35.6 | 54.2 | 7.4 | 3.4 | 0.4 | 0 | 0 |
| 100 | 99.9 | 27.8 | 22.4 | 10.2 | 2.2 | 1 | 0.2 | 0 |
| 100 | 10.4 | 213.4 | 11.6 | 5.7 | 3.7 | 0.8 | 0.2 | 0 |
| 100 | 44 | 10.3 | 61.6 | 2.7 | 1 | 0.6 | 0.3 | 0 |
| 100 | 70 | 23.7 | 2.8 | 4.4 | 0 | 0.8 | 0.3 | 0 |
| 100 | 6.9 | 40.9 | 6.8 | 0.3 | 1.8 | 0 | 0 | 0 |
| 100 | 27.4 | 12 | 21.5 | 1.1 | 0.6 | 0.5 | 0 | 0 |
| 100 | 11.9 | 29.4 | 3.5 | 5.1 | 0.5 | 0 | 0 | 0 |
| 100 | 21.5 | 21.2 | 27.8 | 3.4 | 2.1 | 0 | 0 | 0 |

Table 3.3.1 Cont'd. COD in IIIa (Skagerrak), IV and VIId:
EngGFS. 1977-1991, Granton trawl
ENGGFS_IV_GRT

| 1977 | 1991 |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | 0.5 | 0.75 |  |  |  |
| 1 | 5 |  |  |  |  |  |
| 100 | 6269.55 | 447.37 | 323.77 | 57.3 | 10.9 | 0.63 |
| 100 | 2283.89 | 1249.86 | 98.52 | 98.87 | 13.28 | 6.62 |
| 100 | 2422.7 | 579.97 | 200.13 | 27.22 | 35.51 | 5.59 |
| 100 | 5084.39 | 670.06 | 153.25 | 72.93 | 10.93 | 5.32 |
| 100 | 1135.94 | 1386.46 | 127.5 | 38.33 | 40.04 | 23.04 |
| 100 | 3237.01 | 290.46 | 328.71 | 52.54 | 36.96 | 22.97 |
| 100 | 1539.78 | 1095.61 | 120.18 | 110.36 | 28.58 | 22.21 |
| 100 | 6122.1 | 474.79 | 177.69 | 40.54 | 20.81 | 7.8 |
| 100 | 429.55 | 1189.3 | 107.48 | 55.66 | 20.23 | 21.17 |
| 100 | 3437.94 | 115.13 | 202.01 | 29.3 | 10.88 | 1.09 |
| 100 | 1421.91 | 1065.49 | 27.86 | 60.83 | 14.67 | 0.57 |
| 100 | 835.52 | 406.73 | 198.22 | 1.31 | 42.25 | 3.78 |
| 100 | 2284.99 | 248.08 | 118.49 | 60.89 | 5.86 | 5.73 |
| 100 | 608.46 | 503.78 | 60.69 | 13.73 | 12.09 | 0 |
| 100 | 751.71 | 155.24 | 72.94 | 12.75 | 3.63 | 5.41 |

1992-2004, GOV trawl. Ages 1-5
ENGGFS_GOV

| 1992 | 2004 |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | 0.5 | 0.75 |  |  |  |
| 1 | 6 |  |  |  |  |  |
| 100 | 3708.6 | 240.98 | 70.66 | 54.31 | 11.97 | 2.36 |
| 100 | 1128.36 | 988.6 | 124.95 | 24.03 | 24.81 | 3.02 |
| 100 | 4008.2 | 448.86 | 233.85 | 28.41 | 7.58 | 9.4 |
| 100 | 1561.81 | 1940.76 | 181.19 | 84.49 | 2.47 | 2.47 |
| 100 | 1023.15 | 1102.44 | 260.28 | 29.12 | 30.35 | 0 |
| 100 | 6147.36 | 431.9 | 82.5 | 38.34 | 2.26 | 9.04 |
| 100 | 178.75 | 2122.3 | 125.01 | 12.65 | 10.28 | 7.45 |
| 100 | 557.26 | 84 | 359.35 | 19.74 | 9.46 | 0 |
| 100 | 1448.25 | 299.61 | 22.94 | 48.34 | 0 | 4.52 |
| 100 | 264.39 | 803 | 49.11 | 2.83 | 6.99 | 2.36 |
| 100 | 1199.47 | 222.01 | 193.28 | 25.42 | 0 | 0 |
| 100 | 205.96 | 270.408 | 67.184 | 49.248 | 5.32 | 5.472 |
| 100 | 428.74 | 147.23 | 49.73 | 9.03 | 12.43 | 0.0 |

Table 3.3.1 Cont'd. COD in IIIa (Skagerrak), IV and VIId: IBTS Q1, Ages 1-5.

| IBTS_Q1_IV |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1976 | 2004 |  |  |  |  |  |
| 1 | 1 | 0 | 0.25 |  | -1 | -1 |
| 1 | 5 |  |  | -1 | -1 | -1 |
| 1 | 7.9 | 19.9 | -1 | -1 | -1 |  |
| 1 | 36.7 | 3.2 | -1 | -1 | -1 | -1 |
| 1 | 12.9 | 29.3 | -1 | -1 | -1 | -1 |
| 1 | 9.9 | 9.3 | -1 | -1 | -1 | -1 |
| 1 | 16.9 | 14.8 | -1 | -1 | -1 | -1 |
| 1 | 2.9 | 25.5 | -1 | -1 | 0.8 | 1.5 |
| 1 | 9.2 | 6.7 | -1 | 1.8 | 0.9 |  |
| 1 | 3.9 | 16.6 | 2.7 | 0.9 | 1 | 1 |
| 1 | 15.2 | 8 | 3.9 | 1.7 | 0.5 | 1.3 |
| 1 | 0.9 | 17.6 | 3.5 | 2.3 | 1.7 |  |
| 1 | 17 | 3.6 | 6.8 | 1.7 | 0.6 | 0.9 |
| 1 | 8.8 | 28.8 | 1.4 | 0.6 | 0.9 | 1.1 |
| 1 | 3.6 | 6.1 | 5.8 | 5 | 2.3 | 0.4 |
| 1 | 13.1 | 6.3 | 1 | 1 | 0.8 |  |
| 1 | 3.4 | 15.2 | 2 | 1 | 1 |  |
| 1 | 2.4 | 4.1 | 3.4 | 0.8 | 0.4 | 0.8 |
| 1 | 13 | 4.5 | 1.2 | 1 | 0.3 | 0.5 |
| 1 | 12.7 | 19.9 | 2 | 0.7 | 0.6 | 0.4 |
| 1 | 14.8 | 4.4 | 3 | 0.8 | 0.5 | 0.5 |
| 1 | 9.7 | 22.1 | 2.8 | 1.1 | 0.3 | 0.3 |
| 1 | 3.5 | 8 | 6 | 0.7 | 0.6 | 0.4 |
| 1 | 40 | 6.9 | 2.3 | 1.1 | 0.4 | 0.4 |
| 1 | 2.7 | 26.4 | 2 | 0.9 | 0.5 | 0.4 |
| 1 | 2.1 | 1.6 | 8.1 | 0.8 | 0.5 | 0.5 |
| 1 | 6.6 | 3.8 | 0.7 | 2 | 0.4 | 0.5 |
| 1 | 2.8 | 8.7 | 1.7 | 0.2 | 0.4 | 0.3 |
| 1 | 7.8 | 3.4 | 4.3 | 0.5 | 0.1 | 0.2 |
| 1 | 0.6 | 3 | 1 | 1.4 | 0.4 | 0.3 |
| 1 | 7.537 | 1.328 | 1.225 | 0.299 | 0.407 | 0.012 |

Table 3.3.1 Cont'd. COD in IIIa (Skagerrak), IV and VIId: FraGFS. Ages 1-3
FRAgfs

| 1991 | 2003 |  |  |
| ---: | ---: | ---: | ---: |
| 1 | 1 | 0.75 | 0.85 |
| 1 | 3 |  |  |
| 1 | 0 | 0.117 | 0.057 |
| 1 | 1.598 | 0.082 | 0.137 |
| 1 | 0.1 | 0 | 0.308 |
| 1 | 2.592 | 0 | 0.219 |
| 1 | 2.652 | 0.31 | 0.093 |
| 1 | 0.154 | 0.969 | 0.259 |
| 1 | 32.85 | 0.158 | 0.149 |
| 1 | 0.214 | 6.311 | 0.385 |
| 1 | 6.253 | 0.18 | 0.63 |
| 1 | 2.194 | 0.687 | 0.125 |
| 1 | 0.402 | 0.495 | 0.33 |
| 1 | 6.088 | 0.17 | 0.025 |
| 1 | 0.059 | 1.019 | 0.033 |

Table 3.4.1 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Tuning diagnostics for the modified ADAPT fitted to the data without discards.

| Lowestoft VPA Program |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14/09/2004 8:23 |  |  |  |  |  |  |  |
| Adapt Analysis |  |  |  |  |  |  |  |
| Cod | North Sea/Skaggerak/Eastern Channel 20/08/2004 |  |  |  |  |  |  |
| CPUE data from file CODIVEF.TUN |  |  |  |  |  |  |  |
| Catch data for 41 years: 1963 to 2003. Ages 1 to 7+ |  |  |  |  |  |  |  |
| Fleet | First year | Last year | First age |  |  |  |  |
| IBTS_Q1_IV | 1976 | 2004 |  | 1 | 5 | 0 | 0.25 |
| SCOGFS_IV | 1982 | 2004 |  | 1 | 6 | 0.5 | 0.75 |
| ENGGFS_IV_GOV | 1992 | 2004 |  | 1 | 6 | 0.5 | 0.75 |

Time series weights :
Tapered time weighting not applied
Catchability analysis :

| Fleet | PowerQ <br> ages $<x$ | QPlateau <br> ages $>x$ |
| :--- | ---: | :--- |
| IBTS_Q1_IV |  | 1 |
| SCOGFS_IV | 1 | 5 |
| ENGGFS_IV_GOV | 1 | 5 |

Catchability independent of stock size for all ages
Individual fleet weighting not applied
INITIAL SSQ $=\quad 167.1807$
PARAMETERS =
16
OBSERVATIONS = 339
FINAL SSQ = 77.29828
|FAIL =
0

Table 3.4.2 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Tuning diagnostics for the modified ADAPT fitted to the data without discards.

Fleet : IBTS_Q1_IV
Log index residuals

| Age |  | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 0.28 | 0.6 | 0.08 | -0.25 | -0.25 | -0.97 | -0.48 | -0.7 |  |  |
|  | 2 | 0.35 | -0.88 | 0.23 | -0.45 | -0.04 | -0.01 | -0.31 | 0.01 |  |  |
|  | 3 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.07 |  |  |
|  | 4 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.21 |  |  |
|  | 5 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.11 |  |  |
|  | 6 | No data for | fleet a |  |  |  |  |  |  |  |  |
| Age |  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
|  | 1 | 0.06 | -1.45 | -0.01 | 0.25 | -0.28 | 0.67 | 0.02 | -0.6 | 0.4 | 0.9 |
|  | 2 | -0.14 | 0.09 | -0.27 | 0.45 | -0.27 | 0.15 | 0.65 | 0.03 | -0.16 | 0.62 |
|  | 3 | -0.19 | 0.17 | 0.31 | -0.12 | -0.03 | 0.65 | 0.07 | 0.23 | -0.28 | -0.02 |
|  | 4 | 0.05 | 0.02 | 0.78 | 0.04 | 0.01 | 0.26 | 0.16 | 0.17 | -0.02 | 0.02 |
|  | 5 | -0.11 | 0.06 | 0.31 | 0.15 | 0.08 | 0.29 | 0.14 | -0.13 | -0.24 | 0.05 |
|  | 6 | No data for | fleet a |  |  |  |  |  |  |  |  |
| Age |  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|  | 1 | $0.23$ | $0.23$ | $-0.37$ | 1.19 | 0.29 | $-0.52$ | 0.25 | 0.44 | 0.72 | -0.74 |
|  | 2 | $-0.43$ | $0.41$ | $-0.14$ | 0.05 | 0.55 | -0.52 | -0.12 | 0.28 | 0.36 | -0.49 |
|  | 3 | $-0.41$ | $-0.02$ | 0.19 | -0.39 | -0.31 | 0.35 | -0.42 | 0.14 | 0.37 | -0.19 |
|  | 4 | $-0.05$ | $-0.37$ | $-0.28$ | -0.3 | -0.23 | -0.1 | 0.47 | -0.39 | -0.03 | -0.01 |
|  | 5 | $0.26$ | $-0.39$ | $-0.32$ | -0.14 | -0.38 | -0.03 | 0.34 | -0.1 | -0.23 | 0.51 |
|  |  | No data for | fleet a | age |  |  |  |  |  |  |  |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age | 1 | 2 | 3 | 4 | 5 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log | -10.4859 | -9.3541 | -9.1986 | -9.0177 | -8.5681 |
| S.E(Log q) | 0.596 | 0.3796 | 0.2887 | 0.2759 | 0.251 |

Regression statistics :
Ages with $q$ independent of year class strength and constant w.r.t. time.

| Age | Slope |  | t-value | Intercept | RSquare | No Pts | Reg s.e | Mean Q |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |
| 1 | 0.89 | 0.787 | 10.71 | 0.66 | 28 | 0.53376 | -10.49 |  |
| 2 | 0.85 | 1.521 | 9.69 | 0.81 | 28 | 0.31685 | -9.35 |  |
| 3 | 0.87 | 1.229 | 9.35 | 0.82 | 21 | 0.24776 | -9.2 |  |
| 4 | 0.95 | 0.441 | 9.03 | 0.77 | 21 | 0.26621 | -9.02 |  |
|  | 5 | 1.08 | -0.677 | 8.61 | 0.79 | 21 | 0.2748 | -8.57 |

Table 3.4.3 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Tuning diagnostics for the modified ADAPT fitted to the data without discards.

Fleet : ENGGFS_IV_GOV
Log index residuals

| Age |  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.64 | -0.06 |
|  | 2 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.51 | 0.14 |
|  | 3 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.16 | 0.18 |
|  | 4 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.52 | 0.09 |
|  | 5 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.47 | 0.8 |
|  | 6 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.29 | 0.06 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 0.4 | -0.09 | -0.13 | 0.8 | -0.97 | -0.35 | 0.22 | -0.44 | 0.33 | -0.36 |
|  | 2 | -0.2 | 0.61 | 0.47 | -0.19 | 0.58 | -0.92 | -0.03 | 0.4 | 0.04 | -0.41 |
|  | 3 | 0.11 | 0.35 | 0.21 | -0.63 | -0.01 | 0.54 | -0.65 | -0.34 | 0.17 | 0.23 |
|  | 4 | 0.1 | 0.54 | 0.04 | -0.15 | -0.97 | -0.09 | 0.43 | -1.05 | 0.5 | 0.05 |
|  | 5 | 0.06 | -1.27 | 0.77 | -1.31 | -0.21 | 0.24 | 99.99 | -0.03 | 99.99 | 0.46 |
|  | 6 | 0.88 | 0.02 | 99.99 | 0.73 | 1.05 | 99.99 | 1.01 | 0.87 | 99.99 | 2.07 |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log | -9.2257 | -9.08 | -9.3399 | -9.6423 | -9.7334 | -9.7334 |
| S.E(Log q) | 0.5035 | 0.4738 | 0.3744 | 0.5297 | 0.7522 | 1.0344 |

Regression statistics:
Ages with q independent of year class strength and constant w.r.t. time.

| Age | Slope |  | t-value | Intercept | RSquare | No Pts | Reg s.e | Mean Q |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 0.65 | 4.222 | 10.25 | 0.93 | 12 | 0.20423 | -9.23 |
|  | 2 | 0.64 | 3.259 | 9.89 | 0.89 | 12 | 0.22083 | -9.08 |
|  | 3 | 0.75 | 1.804 | 9.57 | 0.84 | 12 | 0.25703 | -9.34 |
|  | 4 | 0.7 | 1.304 | 9.47 | 0.66 | 12 | 0.36175 | -9.64 |
|  | 5 | 0.82 | 0.29 | 9.41 | 0.24 | 10 | 0.64791 | -9.73 |
|  | 6 | 3.39 | -1.811 | 14.71 | 0.08 | 9 | 2.11338 | -9.02 |

Table 3.4.4 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Tuning diagnostics for the modified ADAPT fitted to the data without discards.

Fleet : SCOGFS_IV
Log index residuals

| Age |  | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.3 | -0.33 |  |  |
|  | 2 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.16 | 0.12 |  |  |
|  | 3 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.44 | 0.27 |  |  |
|  | 4 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.79 | 0.64 |  |  |
|  | 5 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.75 | 0.7 |  |  |
|  | 6 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 1 | 0.52 |  |  |
| Age |  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
|  | 1 | 0.02 | -1.22 | -0.15 | -0.57 | -0.5 | 0.38 | -0.51 | 0.19 | 0.24 | 0.12 |
|  | 2 | -0.05 | 0.48 | -0.72 | -0.18 | -0.23 | -0.62 | 0.3 | -0.25 | -0.29 | 0.29 |
|  | 3 | 0.03 | 0.22 | 0.45 | -0.93 | -0.55 | 0.24 | -0.52 | -0.1 | -0.26 | -0.15 |
|  | 4 | 0.18 | 0.3 | 0.17 | 0.19 | -0.1 | 0.16 | 0.59 | -0.94 | 0.29 | -0.31 |
|  | 5 | 0.19 | 0.39 | -0.01 | 0.27 | -0.05 | 0.52 | -0.37 | -1.16 | 0.55 | -0.73 |
|  | 6 | 0.24 | 0.36 | 1.02 | -0.66 | 0.5 | -0.34 | 0.81 | -1.23 | 0.93 | -0.75 |
| Age |  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|  | 1 | 0.52 | 0.07 | 0.05 | 0.34 | -0.16 | 0.77 | 0.84 | -0.43 | 0.2 | 0.45 |
|  | 2 | -0.06 | 0.75 | -0.22 | -0.2 | 1.02 | -0.28 | 0.17 | 0.16 | -0.14 | 0.11 |
|  | 3 | 0.2 | -0.1 | 0.82 | 0.25 | -0.2 | 0.96 | -0.57 | -0.13 | 0.16 | -0.54 |
|  | 4 | -0.25 | 0.11 | 0.54 | 0.39 | 0.1 | -0.21 | -0.1 | -1.43 | -0.77 | -0.35 |
|  | 5 | -0.29 | -0.58 | 0.07 | 0.16 | 0.26 | -0.52 | 99.99 | 0.11 | 0.15 | -0.41 |
|  | 6 | -0.22 | 0.26 | -0.48 | 0.03 | 0.31 | -0.12 | 0.77 | 99.99 | -0.03 | 99.99 |

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log | -12.8809 | -11.816 | -11.5244 | -11.5106 | -11.2267 | -11.2267 |
| S.E(Log q. | 0.4854 | 0.4055 | 0.465 | 0.5354 | 0.4962 | 0.6469 |

Regression statistics :
Ages with q independent of year class strength and constant w.r.t. time.
Age Slope t-value Intercept RSquare No Pts Regs.e Mean Q

| 1 | 0.96 | 0.236 | 12.86 | 0.69 | 22 | 0.47914 | -12.88 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 0.73 | 2.805 | 11.73 | 0.85 | 22 | 0.25763 | -11.82 |
| 3 | 0.64 | 4.241 | 11.12 | 0.87 | 22 | 0.21966 | -11.52 |
| 4 | 0.55 | 5.062 | 10.46 | 0.86 | 22 | 0.19841 | -11.51 |
| 5 | 0.88 | 0.649 | 10.85 | 0.6 | 21 | 0.4428 | -11.23 |
| 6 | 1.23 | -0.605 | 11.99 | 0.27 | 20 | 0.78849 | -11.08 |

Table 3.4.5 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Tuning diagnostics for the modified ADAPT fitted to the data without discards.

| Landings(Tonnes) |  |  |  |
| :---: | :---: | :---: | :---: |
| Year | Estimated | Recorded | Factor |
| 1963 | 116457 | 116457 | 1.00 |
| 1964 | 126041 | 126041 | 1.00 |
| 1965 | 181036 | 181036 | 1.00 |
| 1966 | 221336 | 221336 | 1.00 |
| 1967 | 252977 | 252977 | 1.00 |
| 1968 | 288368 | 288368 | 1.00 |
| 1969 | 200760 | 200760 | 1.00 |
| 1970 | 226124 | 226124 | 1.00 |
| 1971 | 328098 | 328098 | 1.00 |
| 1972 | 353976 | 353976 | 1.00 |
| 1973 | 239051 | 239051 | 1.00 |
| 1974 | 214279 | 214279 | 1.00 |
| 1975 | 205245 | 205245 | 1.00 |
| 1976 | 234169 | 234169 | 1.00 |
| 1977 | 209154 | 209154 | 1.00 |
| 1978 | 297022 | 297022 | 1.00 |
| 1979 | 269973 | 269973 | 1.00 |
| 1980 | 293644 | 293644 | 1.00 |
| 1981 | 335497 | 335497 | 1.00 |
| 1982 | 303251 | 303251 | 1.00 |
| 1983 | 259287 | 259287 | 1.00 |
| 1984 | 228286 | 228286 | 1.00 |
| 1985 | 214629 | 214629 | 1.00 |
| 1986 | 204053 | 204053 | 1.00 |
| 1987 | 216212 | 216212 | 1.00 |
| 1988 | 184240 | 184240 | 1.00 |
| 1989 | 139936 | 139936 | 1.00 |
| 1990 | 125314 | 125314 | 1.00 |
| 1991 | 102478 | 102478 | 1.00 |
| 1992 | 114020 | 114020 | 1.00 |
| 1993 | 124607 | 121749 | 1.02 |
| 1994 | 155297 | 110634 | 1.40 |
| 1995 | 208287 | 136096 | 1.53 |
| 1996 | 198686 | 126320 | 1.57 |
| 1997 | 151237 | 124158 | 1.22 |
| 1998 | 155324 | 146014 | 1.06 |
| 1999 | 147007 | 96225 | 1.53 |
| 2000 | 88591 | 71371 | 1.24 |
| 2001 | 78162 | 49632 | 1.57 |
| 2002 | 59986 | 54865 | 1.09 |
| 2003 | 72741 | 30872 | 2.36 |

Table 3.4.6 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Tuning diagnostics for the modified ADAPT fitted to the data without discards.

| Parameters |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Survivors | s.e log est |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 21854.381 | 0.21017 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 25430.519 | 0.21274 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3659.7109 | 0.22945 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 5027.7193 | 0.23454 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 305.94507 | 0.41993 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Year | Multiplier | s.e log est |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.02348 | 0.21608 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.4037 | 0.20436 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.53045 | 0.20257 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.57288 | 0.19695 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.21811 | 0.2087 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.06376 | 0.20306 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.52774 | 0.18397 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.24128 | 0.18982 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.57482 | 0.209 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.09334 | 0.22751 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2.3562 | 0.19198 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Variance covariance matrix |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|  | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
|  | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0.00 | 0.00 | 0.05 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0.00 | 0.00 | 0.00 | 0.06 | -0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
|  | 0.00 | 0.00 | 0.01 | -0.03 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 |
|  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.04 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.04 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.04 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.04 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.04 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.03 | -0.01 | 0.00 | 0.00 | 0.00 |
|  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.04 | -0.01 | 0.00 | 0.00 |
|  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.04 | -0.01 | 0.00 |
|  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.05 | -0.01 |
|  | 0.01 | 0.00 | 0.00 | 0.01 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.04 |

Table 3.4.7 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Fishing mortality at age as estimated by ADAPT without discards

Run title : Cod North Sea/Skaggerak/Eastern Channel 20/08/2004
At 14/09/2004 8:24

| Fishing mortality (F) at age |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGEIYEAR |  | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 |
|  | 1 | 0.025 | 0.0199 | 0.0584 | 0.0554 | 0.0331 | 0.0452 | 0.0213 | 0.1092 | 0.0757 | 0.0335 | 0.1287 |
|  | 2 | 0.5328 | 0.3834 | 0.4649 | 0.556 | 0.5076 | 0.6293 | 0.3917 | 0.5853 | 0.8832 | 0.8815 | 0.6993 |
|  | 3 | 0.3934 | 0.5997 | 0.6822 | 0.6181 | 0.7479 | 0.7699 | 0.5966 | 0.7487 | 0.7915 | 0.9128 | 0.832 |
|  | 4 | 0.5005 | 0.4627 | 0.6368 | 0.5653 | 0.5213 | 0.7554 | 0.6356 | 0.5678 | 0.7175 | 0.6961 | 0.7977 |
|  | 5 | 0.4227 | 0.5618 | 0.5074 | 0.5126 | 0.6735 | 0.5985 | 0.7095 | 0.6888 | 0.6854 | 0.7283 | 0.6489 |
|  | 6 | 0.4389 | 0.5414 | 0.6088 | 0.5653 | 0.6476 | 0.7079 | 0.6472 | 0.6684 | 0.7314 | 0.7791 | 0.7595 |
| +gp |  | 0.4389 | 0.5414 | 0.6088 | 0.5653 | 0.6476 | 0.7079 | 0.6472 | 0.6684 | 0.7314 | 0.7791 | 0.7595 |
| FBAR 2-4 |  | 0.4756 | 0.4819 | 0.5947 | 0.5798 | 0.5923 | 0.7182 | 0.5413 | 0.6339 | 0.7974 | 0.8302 | 0.7763 |
| AGE\YEAR |  | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |  |
|  | 1 | 0.0925 | 0.108 | 0.0355 | 0.1433 | 0.095 | 0.1037 | 0.1094 | 0.1008 | 0.1743 | 0.1253 |  |
|  | 2 | 0.8151 | 0.7444 | 0.9423 | 0.852 | 1.0197 | 0.7963 | 0.8813 | 0.9705 | 0.9365 | 1.0741 |  |
|  | 3 | 0.6831 | 0.8023 | 0.8941 | 0.7922 | 0.96 | 0.9553 | 0.9978 | 1.0193 | 1.2409 | 1.1976 |  |
|  | 4 | 0.6381 | 0.7002 | 0.8003 | 0.6047 | 0.82 | 0.6474 | 0.8127 | 0.8121 | 0.95 | 0.9491 |  |
|  | 5 | 0.6748 | 0.7349 | 0.6218 | 0.7142 | 1.0656 | 0.8167 | 0.7772 | 0.7193 | 0.889 | 0.853 |  |
|  | 6 | 0.6653 | 0.7458 | 0.772 | 0.7037 | 0.9485 | 0.8064 | 0.8626 | 0.8503 | 1.0266 | 0.9999 |  |
| +gp |  | 0.6653 | 0.7458 | 0.772 | 0.7037 | 0.9485 | 0.8064 | 0.8626 | 0.8503 | 1.0266 | 0.9999 |  |
| FBAR 2-4 |  | 0.7121 | 0.749 | 0.8789 | 0.7496 | 0.9332 | 0.7996 | 0.8973 | 0.934 | 1.0425 | 1.0736 |  |
| AGEIYEAR |  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |  |
|  | 1 | 0.1754 | 0.0871 | 0.2311 | 0.1402 | 0.1754 | 0.1267 | 0.135 | 0.1176 | 0.1207 | 0.0354 |  |
|  | 2 | 0.9517 | 0.9794 | 0.9008 | 0.9104 | 0.9081 | 0.8707 | 0.8884 | 0.73 | 0.7588 | 0.6372 |  |
|  | 3 | 1.0092 | 0.9671 | 1.062 | 0.9205 | 1.1719 | 1.0816 | 0.9638 | 0.9223 | 0.779 | 0.8212 |  |
|  | 4 | 0.8585 | 0.8 | 0.9882 | 0.9426 | 0.9355 | 0.9983 | 0.8848 | 0.8405 | 0.8433 | 0.8148 |  |
|  | 5 | 0.8198 | 0.77 | 0.8491 | 0.788 | 0.8256 | 0.9282 | 0.7458 | 0.8148 | 0.7264 | 0.7387 |  |
|  | 6 | 0.8959 | 0.8457 | 0.9664 | 0.8837 | 0.9776 | 1.0027 | 0.8648 | 0.8592 | 0.7829 | 0.7916 |  |
| +gp |  | 0.8959 | 0.8457 | 0.9664 | 0.8837 | 0.9776 | 1.0027 | 0.8648 | 0.8592 | 0.7829 | 0.7916 |  |
| FBAR 2-4 |  | 0.9398 | 0.9155 | 0.9837 | 0.9245 | 1.0052 | 0.9836 | 0.9123 | 0.8309 | 0.7937 | 0.7577 |  |
| AGE\YEAR |  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | FBAR |
|  | 1 | 0.07 | 0.1197 | 0.0572 | 0.0897 | 0.0245 | 0.0978 | 0.0757 | 0.0729 | 0.0779 | 0.0284 | 0.0597 |
|  | 2 | 0.6293 | 0.8562 | 0.7927 | 0.6571 | 0.7026 | 0.6786 | 0.8611 | 0.5959 | 0.4095 | 0.5581 | 0.5212 |
|  | 3 | 0.9982 | 1.0775 | 1.179 | 1.0307 | 1.0126 | 1.4845 | 1.2257 | 1.0026 | 0.6717 | 1.0941 | 0.9228 |
|  | 4 | 0.9045 | 0.8926 | 0.954 | 0.949 | 1.0064 | 1.3839 | 1.304 | 1.1368 | 0.9512 | 0.7603 | 0.9494 |
|  | 5 | 0.8548 | 0.7156 | 1.0041 | 0.8931 | 0.9776 | 1.3242 | 1.3906 | 1.1137 | 0.8632 | 1.4171 | 1.1314 |
|  | 6 | 0.9192 | 0.8952 | 1.0457 | 0.9576 | 0.9988 | 1.3975 | 1.3068 | 1.0844 | 0.8287 | 1.0905 | 1.0012 |
| +gp |  | 0.9192 | 0.8952 | 1.0457 | 0.9576 | 0.9988 | 1.3975 | 1.3068 | 1.0844 | 0.8287 | 1.0905 |  |
| FBAR 2-4 |  | 0.844 | 0.9421 | 0.9752 | 0.8789 | 0.9072 | 1.1823 | 1.1303 | 0.9118 | 0.6775 | 0.8042 |  |

Table 3.4.8 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Population numbers at age as estimated by ADAPT without discards

Run title : Cod
North Sea/Skaggerak/Eastern Channel 20/08/2004

| At 14/09/2004 8:24 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Table 10 | Stock number at age (start of year) |  |  |  | Numbers*10**-3 |  |  |  |  |  |  |
| AGEIYEAR | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 |
| 1 | 188927 | 370476 | 403369 | 489332 | 480629 | 190887 | 202829 | 759828 | 888836 | 168750 | 309796 |
| 2 | 120348 | 82796 | 163187 | 170963 | 208018 | 208924 | 81977 | 89216 | 306096 | 370266 | 73328 |
| 3 | 24231 | 49779 | 39767 | 72237 | 69093 | 88238 | 78463 | 39044 | 35016 | 89188 | 108061 |
| 4 | 9827 | 12733 | 21282 | 15655 | 30321 | 25471 | 31823 | 33652 | 14383 | 12358 | 27881 |
| 5 | 8862 | 4877 | 6563 | 9217 | 7283 | 14740 | 9798 | 13799 | 15615 | 5746 | 5044 |
| 6 | 3740 | 4755 | 2277 | 3235 | 4520 | 3040 | 6633 | 3946 | 5673 | 6442 | 2271 |
| +gp | 1825 | 2160 | 2612 | 2815 | 3293 | 3150 | 2935 | 3345 | 3676 | 5659 | 3786 |
| TOTAL | 357761 | 527576 | 639056 | 763454 | 803157 | 534450 | 414459 | 942830 | 1269296 | 658409 | 530167 |
| AGEIYEAR | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |  |
| 1 | 254341 | 470113 | 237777 | 812870 | 473562 | 510065 | 871115 | 305092 | 599697 | 314870 |  |
| 2 | 122393 | 104186 | 189602 | 103112 | 316481 | 193499 | 206601 | 350844 | 123937 | 226367 |  |
| 3 | 25679 | 38174 | 34876 | 52071 | 30995 | 80441 | 61497 | 60309 | 93675 | 34234 |  |
| 4 | 36624 | 10101 | 13327 | 11109 | 18365 | 9243 | 24101 | 17658 | 16948 | 21093 |  |
| 5 | 10280 | 15841 | 4106 | 4902 | 4968 | 6623 | 3961 | 8754 | 6417 | 5366 |  |
| 6 | 2158 | 4286 | 6219 | 1805 | 1965 | 1401 | 2396 | 1491 | 3491 | 2160 |  |
| +gp | 3221 | 2140 | 2487 | 4103 | 1858 | 1484 | 1595 | 1634 | 1327 | 1574 |  |
| TOTAL | 454697 | 644841 | 488394 | 989973 | 848193 | 802756 | 1171266 | 745782 | 845492 | 605664 |  |
| AGEIYEAR | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |  |
| 1 | 577933 | 153224 | 695127 | 274195 | 191763 | 269205 | 133849 | 175018 | 350779 | 203899 |  |
| 2 | 124820 | 217899 | 63107 | 247892 | 107089 | 72304 | 106565 | 52548 | 69918 | 139697 |  |
| 3 | 54493 | 33961 | 57665 | 18067 | 70291 | 30434 | 21331 | 30887 | 17846 | 23070 |  |
| 4 | 8050 | 15469 | 10056 | 15527 | 5605 | 16959 | 8036 | 6337 | 9564 | 6378 |  |
| 5 | 6685 | 2793 | 5691 | 3065 | 4953 | 1801 | 5117 | 2716 | 2239 | 3369 |  |
| 6 | 1872 | 2411 | 1059 | 1993 | 1141 | 1776 | 583 | 1987 | 984 | 886 |  |
| +gp | 1478 | 1279 | 1513 | 1047 | 810 | 787 | 837 | 766 | 898 | 703 |  |
| TOTAL | 775331 | 427036 | 834218 | 561787 | 381652 | 393265 | 276317 | 270258 | 452227 | 378002 |  |
| AGEIYEAR | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| 1 | 467053 | 307363 | 202349 | 487175 | 79991 | 140554 | 204101 | 71799 | 151705 | 50037 | 0 |
| 2 | 88429 | 195672 | 122528 | 85870 | 200114 | 35072 | 57268 | 85021 | 29993 | 63059 | 21854 |
| 3 | 52054 | 33211 | 58573 | 39080 | 31367 | 69848 | 12538 | 17058 | 33015 | 14034 | 25431 |
| 4 | 7904 | 14941 | 8806 | 14032 | 10858 | 8875 | 12327 | 2867 | 4874 | 13134 | 3660 |
| 5 | 2312 | 2619 | 5010 | 2777 | 4447 | 3250 | 1821 | 2740 | 753 | 1542 | 5028 |
| 6 | 1318 | 805 | 1048 | 1503 | 931 | 1370 | 708 | 371 | 736 | 260 | 306 |
| +gp | 460 | 414 | 509 | 423 | 531 | 487 | 301 | 217 | 196 | 122 | 105 |
| TOTAL | 619530 | 555025 | 398824 | 630861 | 328240 | 259455 | 289064 | 180072 | 221273 | 142188 | 56383 |

Table 3.4.9 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Stock summary as estimated by ADAPT without discards

Run title : Cod North Sea/Skaggerak/Eastern Channel 20/08/2004
At 14/09/2004 8:24
Table 16 Summary (without SOP correction)
RECRUITS TOTALBIO TOTSPBIO LANDINGS YIELD/SSB FBAR 2-4
Age 1

| 1963 | 188927 | 448184 | 157994 | 116457 | 0.7371 | 0.4756 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1964 | 370476 | 526631 | 159411 | 126041 | 0.7907 | 0.4819 |
| 1965 | 403369 | 680691 | 185353 | 181036 | 0.9767 | 0.5947 |
| 1966 | 489332 | 826035 | 214406 | 221336 | 1.0323 | 0.5798 |
| 1967 | 480629 | 894510 | 238079 | 252977 | 1.0626 | 0.5923 |
| 1968 | 190887 | 758858 | 243107 | 288368 | 1.1862 | 0.7182 |
| 1969 | 202829 | 605181 | 240930 | 200760 | 0.8333 | 0.5413 |
| 1970 | 759828 | 926829 | 250115 | 226124 | 0.9041 | 0.6339 |
| 1971 | 888836 | 1133276 | 253481 | 328098 | 1.2944 | 0.7974 |
| 1972 | 168750 | 794520 | 230820 | 353976 | 1.5336 | 0.8302 |
| 1973 | 309796 | 631103 | 195567 | 239051 | 1.2224 | 0.7763 |
| 1974 | 254341 | 605281 | 224343 | 214279 | 0.9551 | 0.7121 |
| 1975 | 470113 | 679826 | 203316 | 205245 | 1.0095 | 0.749 |
| 1976 | 237777 | 584356 | 172061 | 234169 | 1.361 | 0.8789 |
| 1977 | 812870 | 794988 | 155295 | 209154 | 1.3468 | 0.7496 |
| 1978 | 473562 | 775337 | 144221 | 297022 | 2.0595 | 0.9332 |
| 1979 | 510065 | 769170 | 148410 | 269973 | 1.8191 | 0.7996 |
| 1980 | 871115 | 975542 | 168424 | 293644 | 1.7435 | 0.8973 |
| 1981 | 305092 | 820334 | 181732 | 335497 | 1.8461 | 0.934 |
| 1982 | 599697 | 806381 | 176717 | 303251 | 1.716 | 1.0425 |
| 1983 | 314870 | 621598 | 142613 | 259287 | 1.8181 | 1.0736 |
| 1984 | 577933 | 691915 | 124238 | 228286 | 1.8375 | 0.9398 |
| 1985 | 153224 | 483492 | 117948 | 214629 | 1.8197 | 0.9155 |
| 1986 | 695127 | 660799 | 108488 | 204053 | 1.8809 | 0.9837 |
| 1987 | 274195 | 555493 | 101945 | 216212 | 2.1209 | 0.9245 |
| 1988 | 191763 | 411811 | 92717 | 184240 | 1.9871 | 1.0052 |
| 1989 | 269205 | 406318 | 87003 | 139936 | 1.6084 | 0.9836 |
| 1990 | 133849 | 323754 | 75721 | 125314 | 1.6549 | 0.9123 |
| 1991 | 175018 | 302487 | 72263 | 102478 | 1.4181 | 0.8309 |
| 1992 | 350779 | 442967 | 71814 | 114020 | 1.5877 | 0.7937 |
| 1993 | 203899 | 414019 | 73431 | 121749 | 1.658 | 0.7577 |
| 1994 | 467053 | 594082 | 86309 | 110634 | 1.2818 | 0.844 |
| 1995 | 307363 | 589380 | 96851 | 136096 | 1.4052 | 0.9421 |
| 1996 | 202349 | 487115 | 102080 | 126320 | 1.2375 | 0.9752 |
| 1997 | 487175 | 572933 | 91638 | 124158 | 1.3549 | 0.8789 |
| 1998 | 79991 | 356261 | 78645 | 146014 | 1.8566 | 0.9072 |
| 1999 | 140554 | 301519 | 78119 | 96225 | 1.2318 | 1.1823 |
| 2000 | 204101 | 263995 | 49507 | 71371 | 1.4416 | 1.1303 |
| 2001 | 71799 | 208139 | 39021 | 49632 | 1.2719 | 0.9118 |
| 2002 | 151705 | 241430 | 40339 | 54865 | 1.3601 | 0.6775 |
| 2003 | 50037 | 184204 | 46481 | 30872 | 0.6642 | 0.8042 |
| Arith. |  |  |  |  |  |  |
| Mean | 353422 | 589043 | 139535 | 189094 | 1.4128 | 0.8315 |
| 0 Units | (Thousand | (Tonnes) | (Tonnes) | (Tonnes) |  |  |

Table 3.4.10 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Diagnostic of the ADAPT model fitted to the cod347d data including discards

```
Lowestoft VPA Program
14/09/2004 9:48
```

Adapt Analysis
North Sea/Skagerrak/Eastern Channel Cod INCLUDES DISCARDS
CPUE data from file cod347ef.tun
Catch data for 41 years : 1963 to 2003. Ages 1 to $7+$

| Fleet | First year | Last year | First age |  | Last age |  | Alpha | Beta |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IBTS_Q1_IV | 1976 | 2004 |  | 1 |  | 5 | 0 | 0.25 |
| SCOGFS_IV | 1982 | 2004 |  | 1 |  | 6 | 0.5 | 0.75 |
| ENGGFS_IV_GOV | 1992 | 2004 |  | 1 |  | 6 | 0.5 | 0.75 |

Time series weights : Tapered time weighting not applied
Catchability analysis

| Fleet | PowerQ <br> ages $<x$ | QPlateau <br> ages $>x$ |  |
| :--- | :--- | :--- | :--- |
| IBTS_Q1_IV |  | 1 | 5 |
| SCOGFS_IV | 1 | 5 |  |
| ENGGFS_IV_GOV |  | 1 | 5 |

Catchability independent of stock size for all ages
Terminal population estimation :

Individual fleet weighting not applied survey estimates at age given equal weight

| INITIAL SSQ $=$ | 87.75677 |
| :--- | ---: |
| PARAMETERS $=$ | 16 |
| OBSERVATIONS $=$ | 339 |
| FINAL SSQ $=$ | 74.55961 |
| IFAIL $=$ | 0 |

Regression weights

Table 3.4.11 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Diagnostic of the ADAPT model fitted to the cod347d data including discards
Fleet : IBTS_Q1_IV
Log index residuals

| Age |  | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | -0.14 | 0.49 | 0.48 | -0.63 | -0.72 | -1 | -0.34 | -0.47 |  |  |
|  | 2 | 0.2 | -1.02 | 0.21 | -0.3 | 0.06 | 0.08 | -0.2 | 0.14 |  |  |
|  | 3 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.06 |  |  |
|  | 4 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.22 |  |  |
|  | 5 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.12 |  |  |
|  | 6 No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |
| Age |  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
|  | 1 | -0.26 | -1.38 | -0.24 | 0.51 | 0.03 | 0.37 | 0.13 | -0.51 | 0.42 | 1.06 |
|  | 2 | -0.05 | 0.12 | -0.15 | 0.43 | -0.23 | 0.24 | 0.48 | 0.06 | -0.13 | 0.58 |
|  | 3 | -0.18 | 0.18 | 0.32 | -0.11 | -0.02 | 0.65 | 0.08 | 0.22 | -0.3 | -0.05 |
|  | 4 | 0.04 | 0.02 | 0.77 | 0.03 | 0.01 | 0.25 | 0.15 | 0.15 | -0.05 | -0.03 |
|  | 5 | -0.12 | 0.05 | 0.31 | 0.14 | 0.07 | 0.29 | 0.13 | -0.15 | -0.28 | 0.01 |
|  | 6 No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |
| Age |  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|  | 1 | -0.04 | 0.32 | -0.18 | 1.15 | 0.44 | -0.38 | 0.13 | 0.68 | 0.87 | -0.79 |
|  | 2 | -0.38 | 0.32 | -0.18 | 0.05 | 0.34 | -0.48 | -0.08 | 0.04 | 0.4 | -0.55 |
|  | 3 | -0.31 | -0.01 | 0.19 | -0.38 | -0.3 | 0.26 | -0.42 | 0.13 | 0.36 | -0.26 |
|  | 4 | 0.03 | -0.37 | -0.28 | -0.31 | -0.21 | -0.08 | 0.45 | -0.36 | -0.03 | 0.05 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age | 1 | 2 | 3 | 4 | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Mean Log q | -10.9663 | -9.5322 | -9.2146 | -9.011 | -8.5614 |
| S.E(Log q) | 0.6208 | 0.3498 | 0.2806 | 0.2697 | 0.2539 |

Regression statistics :
Ages with $q$ independent of year class strength and constant w.r.t. time.
Age

| Slope |  | t-value |  | Intercept | RSquare | No Pts | Reg s.e |  | Mean Q |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| 1 | 1.09 | -0.577 | 10.79 | 0.63 | 28 | 0.68283 | -10.97 |  |  |
| 2 | 0.85 | 1.713 | 9.87 | 0.84 | 28 | 0.28878 | -9.53 |  |  |
| 3 | 0.85 | 1.512 | 9.39 | 0.84 | 21 | 0.23052 | -9.21 |  |  |
| 4 | 0.94 | 0.465 | 9.02 | 0.78 | 21 | 0.25972 | -9.01 |  |  |
| 5 | 1.09 | -0.777 | 8.61 | 0.79 | 21 | 0.28018 | -8.56 |  |  |

Table 3.4.12 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Diagnostic of the ADAPT model fitted to the cod347d data including discards
Fleet : ENGGFS_IV_GOV
Log index residuals

| Age |  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.62 | 0.05 |
|  | 2 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.49 | 0.21 |
|  | 3 | 99.99 | 99.99 | 99.99 | 999 | 99.99 | 99.99 | 99.99 | 99.99 | -0.21 | 0.22 |
|  | 4 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.45 | 0.1 |
|  | 5 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.41 | 0.83 |
|  | 6 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.35 | 0.09 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Age |  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|  | 1 | 0.23 | -0.08 | -0.04 | 0.66 | -0.88 | -0.26 | 0.01 | -0.3 | 0.37 | -0.39 |
|  | 2 | -0.14 | 0.6 | 0.48 | -0.17 | 0.46 | -0.89 | 0.01 | 0.31 | 0.04 | -0.42 |
|  | 3 | 0.14 | 0.36 | 0.2 | -0.62 | 0.02 | 0.49 | -0.64 | -0.35 | 0.2 | 0.19 |
|  | 4 | 0.12 | 0.53 | 0.02 | -0.15 | -0.95 | -0.1 | 0.43 | -1.05 | 0.5 | 0.11 |
|  | 5 | 0.09 | -1.27 | 0.76 | -1.3 | -0.17 | 0.22 | 99.99 | -0.01 | 99.99 | 0.43 |
|  | 6 | 0.91 | 0.02 | 99.99 | 0.74 | 1.09 | 99.99 | 1.02 | 0.9 | 99.99 | 2.13 |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log | -9.5526 | -9.1909 | -9.3423 | -9.6245 | -9.7221 | -9.7221 |
| S.E(Log q | 0.4381 | 0.4477 | 0.3686 | 0.5211 | 0.7452 | 1.0647 |

Regression statistics:
Ages with $q$ independent of year class strength and constant w.r.t. time.

| Age | Slope |  | t-value | Intercept | RSquare |  | No Pts | Regs.e |  | Mean Q |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| 1 | 0.71 | 3.71 | 10.42 | 0.94 | 12 | 0.21177 | -9.55 |  |  |  |
| 2 | 0.67 | 3.52 | 9.98 | 0.92 | 12 | 0.20971 | -9.19 |  |  |  |
| 3 | 0.74 | 2.016 | 9.59 | 0.86 | 12 | 0.24046 | -9.34 |  |  |  |
|  | 0.69 | 1.424 | 9.45 | 0.68 | 12 | 0.3458 | -9.62 |  |  |  |
|  | 0.79 | 0.356 | 9.35 | 0.27 | 10 | 0.61968 | -9.72 |  |  |  |
|  |  | 0.18 | -2.016 | 16.54 | 0.05 | 9 | 2.61374 | -9 |  |  |

3.4.10.13 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:

Diagnostic of the ADAPT model fitted to the cod347d data including discards
Fleet: SCOGFS_IV
Log index residuals

| Age |  | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.17 | -0.19 |  |  |
|  | 2 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.1 | 0.19 |  |  |
|  | 3 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.45 | 0.28 |  |  |
|  | 4 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.78 | 0.64 |  |  |
|  | 5 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.75 | 0.7 |  |  |
|  | 6 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 1 | 0.52 |  |  |
| Age |  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
|  | 1 | -0.11 | -1.14 | -0.28 | -0.46 | -0.32 | 0.13 | -0.46 | 0.23 | 0.2 | 0.2 |
|  | 2 | 0 | 0.51 | -0.66 | -0.18 | -0.21 | -0.57 | 0.22 | -0.24 | -0.31 | 0.34 |
|  | 3 | 0.03 | 0.23 | 0.45 | -0.93 | -0.55 | 0.24 | -0.53 | -0.12 | -0.3 | -0.11 |
|  | 4 | 0.17 | 0.29 | 0.16 | 0.18 | -0.11 | 0.15 | 0.57 | -0.97 | 0.24 | -0.29 |
|  | 5 | 0.18 | 0.38 | -0.02 | 0.27 | -0.06 | 0.51 | -0.39 | -1.19 | 0.49 | -0.7 |
|  | 6 | 0.23 | 0.36 | 1.02 | -0.66 | 0.49 | -0.34 | 0.8 | -1.25 | 0.87 | -0.73 |
| Age |  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|  | 1 | 0.32 | 0.07 | 0.12 | 0.18 | -0.09 | 0.83 | 0.62 | -0.31 | 0.22 | 0.39 |
|  | 2 | -0.03 | 0.72 | -0.24 | -0.19 | 0.88 | -0.27 | 0.19 | 0.05 | -0.17 | 0.07 |
|  | 3 | 0.23 | -0.09 | 0.82 | 0.26 | -0.17 | 0.91 | -0.55 | -0.14 | 0.19 | -0.58 |
|  | 4 | -0.22 | 0.11 | 0.53 | 0.4 | 0.13 | -0.22 | -0.09 | -1.41 | -0.76 | -0.29 |
|  | 5 | -0.26 | -0.58 | 0.07 | 0.17 | 0.31 | -0.52 | 99.99 | 0.14 | 0.19 | -0.43 |
|  | 6 | -0.19 | 0.26 | -0.48 | 0.04 | 0.36 | -0.07 | 0.78 | 99.99 | 0.03 | 99.99 |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q | -13.1875 | -11.9049 | -11.528 | -11.5026 | -11.2203 | -11.2203 |
| S.E(Log q) | 0.4178 | 0.3773 | 0.4634 | 0.5287 | 0.496 | 0.6426 |

Regression statistics :
Ages with q independent of year class strength and constant w.r.t. time.

| Age | Slope |  | $t$-value | Intercept | RSquare | No Pts | Reg s.e | Mean Q |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 0.99 | 0.059 | 13.18 | 0.79 | 22 | 0.4252 | -13.19 |
|  | 2 | 0.72 | 3.709 | 11.84 | 0.9 | 22 | 0.21439 | -11.9 |
|  | 3 | 0.63 | 4.473 | 11.12 | 0.88 | 22 | 0.21016 | -11.53 |
|  | 4 | 0.55 | 5.298 | 10.45 | 0.87 | 22 | 0.19086 | -11.5 |
|  | 5 | 0.89 | 0.612 | 10.86 | 0.6 | 21 | 0.44669 | -11.22 |
|  | 6 | 1.25 | -0.644 | 12.04 | 0.27 | 20 | 0.79063 | -11.07 |

Table 3.4.14 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Diagnostic of the ADAPT model fitted to the cod347d data including discards

Parameters

| Age | Survivors | s.e log est |
| :---: | :---: | :--- |
|  |  |  |
| 1 | 27874 | 0.221 |
| 2 | 26393 | 0.220 |
| 3 | 3710 | 0.228 |
| 4 | 4694 | 0.231 |
| 5 | 322.39 | 0.408 |
|  |  |  |
| Year | Multiplier | s.e log est |
|  |  |  |
| 1993 | 1.220 | 0.194 |
| 1994 | 1.196 | 0.210 |
| 1995 | 1.540 | 0.199 |
| 1996 | 1.541 | 0.194 |
| 1997 | 1.263 | 0.201 |
| 1998 | 1.049 | 0.194 |
| 1999 | 1.424 | 0.184 |
| 2000 | 1.306 | 0.185 |
| 2001 | 1.498 | 0.198 |
| 2002 | 1.122 | 0.220 |
| 2003 | 2.147 | 0.185 |

Variance covariance matrix

| 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.00 | 0.05 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | -0.01 | 0.05 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.05 | -0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.01 | -0.03 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.04 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.04 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.04 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.04 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.04 | -0.01 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.03 | -0.01 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.03 | 0.00 | 0.00 |
| 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | -0.01 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.05 |
| 0.01 | 0.00 | 0.00 | 0.01 | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 |
| 0.0 .03 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 3.4.15 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Diagnostic of the ADAPT model fitted to the cod347d data including discards

| Landings(Tonnes) |  |  |  |
| :---: | :---: | :---: | :---: |
| Year |  |  |  |
| Estimated | Recorded | Factor |  |
| 1963 | 127808 | 127808 | 1.00 |
| 1964 | 130391 | 130391 | 1.00 |
| 1965 | 208931 | 208931 | 1.00 |
| 1966 | 257829 | 257829 | 1.00 |
| 1967 | 275410 | 275410 | 1.00 |
| 1968 | 305254 | 305254 | 1.00 |
| 1969 | 205406 | 205406 | 1.00 |
| 1970 | 243475 | 243475 | 1.00 |
| 1971 | 409005 | 409005 | 1.00 |
| 1972 | 386591 | 386591 | 1.00 |
| 1973 | 267823 | 267823 | 1.00 |
| 1974 | 251858 | 251858 | 1.00 |
| 1975 | 238645 | 238645 | 1.00 |
| 1976 | 299956 | 299956 | 1.00 |
| 1977 | 325415 | 325415 | 1.00 |
| 1978 | 325928 | 325928 | 1.00 |
| 1979 | 429774 | 429774 | 1.00 |
| 1980 | 580500 | 580500 | 1.00 |
| 1981 | 391478 | 391478 | 1.00 |
| 1982 | 355945 | 355945 | 1.00 |
| 1983 | 279862 | 279862 | 1.00 |
| 1984 | 377421 | 377421 | 1.00 |
| 1985 | 243567 | 243567 | 1.00 |
| 1986 | 327012 | 327012 | 1.00 |
| 1987 | 240297 | 240297 | 1.00 |
| 1988 | 194066 | 194066 | 1.00 |
| 1989 | 198546 | 198546 | 1.00 |
| 1990 | 149740 | 149740 | 1.00 |
| 1991 | 120057 | 120057 | 1.00 |
| 1992 | 145961 | 145961 | 1.00 |
| 1993 | 172156 | 141057 | 1.22 |
| 1994 | 228129 | 190712 | 1.20 |
| 1995 | 252658 | 164104 | 1.54 |
| 1996 | 213901 | 138827 | 1.54 |
| 1997 | 186096 | 147345 | 1.26 |
| 1998 | 190420 | 181568 | 1.05 |
| 1999 | 152023 | 106754 | 1.42 |
| 2000 | 108917 | 83423 | 1.31 |
|  | 92576 | 61808 | 1.50 |
|  | 77997 | 36336 | 1.12 |

Table 3.4.16 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Fishing mortality at age as estimated by the ADAPT model fitted to the cod347d data including discards

| Run title : Cod with discards |  |  |  | North Sea/Skaggerak/Eastern Channel 20/08/2004 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| At 14/09/2004 9:48 |  |  |  |  |  |  |  |  |  |  |  |  |
| Table 8 Fishing mortality ( F ) at age |  |  |  |  |  |  |  |  |  |  |  |  |
| AGEIYEAR |  | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 |
|  | 1 | 0.124 | 0.0464 | 0.3064 | 0.2874 | 0.1509 | 0.2201 | 0.0347 | 0.1798 | 0.3581 | 0.25 | 0.401 |
|  | 2 | 0.6949 | 0.4592 | 0.5084 | 0.6886 | 0.6303 | 0.7434 | 0.5217 | 0.6875 | 1.0067 | 1.0422 | 0.928 |
|  | 3 | 0.395 | 0.6021 | 0.6848 | 0.6193 | 0.7506 | 0.7723 | 0.5982 | 0.7529 | 0.7931 | 0.915 | 0.8347 |
|  | 4 | 0.5009 | 0.4628 | 0.6372 | 0.5655 | 0.5215 | 0.7558 | 0.6358 | 0.568 | 0.7178 | 0.6965 | 0.7979 |
|  | 5 | 0.4232 | 0.5623 | 0.5077 | 0.5131 | 0.6741 | 0.5989 | 0.7104 | 0.6892 | 0.6858 | 0.7288 | 0.6495 |
|  | 6 | 0.4397 | 0.5424 | 0.6099 | 0.566 | 0.6487 | 0.709 | 0.6481 | 0.67 | 0.7322 | 0.7801 | 0.7607 |
| +gp |  | 0.4397 | 0.5424 | 0.6099 | 0.566 | 0.6487 | 0.709 | 0.6481 | 0.67 | 0.7322 | 0.7801 | 0.7607 |
| FBAR 2-4 |  | 0.5302 | 0.508 | 0.6101 | 0.6245 | 0.6341 | 0.7572 | 0.5852 | 0.6695 | 0.8392 | 0.8846 | 0.8535 |
| AGEIYEAR |  | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |  |
|  | 1 | 0.5271 | 0.3114 | 0.6399 | 0.5576 | 0.1616 | 0.9761 | 1.0714 | 0.5997 | 0.5004 | 0.3069 |  |
|  | 2 | 0.9461 | 0.8903 | 1.3059 | 1.2146 | 1.245 | 0.8251 | 0.9664 | 1.0686 | 1.0047 | 1.1253 |  |
|  | 3 | 0.6863 | 0.8023 | 0.8993 | 0.801 | 0.96 | 0.9553 | 0.9978 | 1.0205 | 1.242 | 1.1983 |  |
|  | 4 | 0.6386 | 0.701 | 0.8003 | 0.6047 | 0.82 | 0.6474 | 0.8128 | 0.8122 | 0.95 | 0.9493 |  |
|  | 5 | 0.6751 | 0.7359 | 0.6231 | 0.7142 | 1.0656 | 0.8167 | 0.7774 | 0.7194 | 0.8891 | 0.8531 |  |
|  | 6 | 0.6667 | 0.7464 | 0.7742 | 0.7066 | 0.9485 | 0.8065 | 0.8627 | 0.8507 | 1.0271 | 1.0003 |  |
| +gp |  | 0.6667 | 0.7464 | 0.7742 | 0.7066 | 0.9485 | 0.8065 | 0.8627 | 0.8507 | 1.0271 | 1.0003 |  |
| FBAR 2-4 |  | 0.757 | 0.7979 | 1.0018 | 0.8734 | 1.0083 | 0.8093 | 0.9257 | 0.9671 | 1.0656 | 1.091 |  |
| AGEIYEAR |  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |  |
|  | 1 | 0.8882 | 0.4799 | 0.7936 | 0.2168 | 0.2496 | 0.5714 | 0.3687 | 0.3824 | 0.3482 | 0.238 |  |
|  | 2 | 1.0444 | 1.1425 | 0.969 | 1.1253 | 1.0532 | 0.9692 | 1.2516 | 0.8609 | 0.8505 | 0.9902 |  |
|  | 3 | 1.0093 | 0.9702 | 1.0671 | 0.9201 | 1.1736 | 1.0921 | 0.9584 | 0.922 | 0.7443 | 0.9791 |  |
|  | 4 | 0.8588 | 0.8 | 0.9882 | 0.9429 | 0.9345 | 0.9958 | 0.8774 | 0.8233 | 0.8129 | 0.9692 |  |
|  | 5 | 0.8204 | 0.7706 | 0.8491 | 0.7882 | 0.8262 | 0.9256 | 0.7414 | 0.7992 | 0.6951 | 0.8875 |  |
|  | 6 | 0.8962 | 0.847 | 0.9681 | 0.8837 | 0.9781 | 1.0045 | 0.8591 | 0.8482 | 0.7508 | 0.9453 |  |
| +gp |  | 0.8962 | 0.847 | 0.9681 | 0.8837 | 0.9781 | 1.0045 | 0.8591 | 0.8482 | 0.7508 | 0.9453 |  |
| FBAR 2-4 |  | 0.9709 | 0.9709 | 1.0081 | 0.9961 | 1.0538 | 1.019 | 1.0291 | 0.8687 | 0.8026 | 0.9795 |  |
| AGEIYEAR |  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | FBAR |
|  | 1 | 0.5782 | 0.2937 | 0.1607 | 0.1951 | 0.2178 | 0.3181 | 0.2297 | 0.1702 | 0.1478 | 0.345 | 0.221 |
|  | 2 | 0.7703 | 1.1521 | 1.0242 | 0.8407 | 1.0194 | 0.8153 | 0.9861 | 1.0296 | 0.4666 | 0.7834 | 0.7599 |
|  | 3 | 0.9054 | 1.0889 | 1.1772 | 1.071 | 1.0723 | 1.5678 | 1.288 | 1.0301 | 0.7792 | 1.1744 | 0.9945 |
|  | 4 | 0.8152 | 0.9013 | 0.9372 | 0.9915 | 1.0246 | 1.3132 | 1.3706 | 1.1139 | 0.9905 | 0.7598 | 0.9547 |
|  | 5 | 0.7673 | 0.7255 | 0.9847 | 0.9356 | 1.0085 | 1.2555 | 1.4639 | 1.098 | 0.9203 | 1.3266 | 1.115 |
|  | 6 | 0.8293 | 0.9053 | 1.033 | 0.9994 | 1.0351 | 1.3788 | 1.3741 | 1.0807 | 0.8966 | 1.0869 | 1.0214 |
| +gp |  | 0.8293 | 0.9053 | 1.033 | 0.9994 | 1.0351 | 1.3788 | 1.3741 | 1.0807 | 0.8966 | 1.0869 |  |
| FBAR 2-4 |  | 0.8303 | 1.0474 | 1.0462 | 0.9677 | 1.0388 | 1.2321 | 1.2149 | 1.0579 | 0.7454 | 0.9058 |  |

Table 3.4.17 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Population numbers at age as estimated by the ADAPT model fitted to the cod347d data including discards
Run title : Cod with discards North Sea/Skaggerak/Eastern Channel 20/08/2004
At 14/09/2004 9:48

| Table 10 | Stock number at age (start of year) |  |  |  | Numbers*10**-3 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGEIYEAR | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 |
| 1 | 225530 | 397692 | 591568 | 699253 | 606874 | 259979 | 227993 | 924561 | 1387482 | 264063 | 463714 |
| 2 | 141797 | 89516 | 170585 | 195652 | 235708 | 234487 | 93734 | 98945 | 347060 | 435771 | 92405 |
| 3 | 24258 | 49876 | 39855 | 72300 | 69249 | 88439 | 78573 | 39202 | 35060 | 89371 | 108297 |
| 4 | 9822 | 12727 | 21273 | 15650 | 30311 | 25461 | 31817 | 33643 | 14379 | 12354 | 27877 |
| 5 | 8854 | 4873 | 6560 | 9210 | 7279 | 14732 | 9790 | 13794 | 15608 | 5743 | 5040 |
| 6 | 3735 | 4748 | 2274 | 3233 | 4514 | 3037 | 6627 | 3939 | 5669 | 6437 | 2269 |
| +gp | 1823 | 2157 | 2608 | 2812 | 3289 | 3146 | 2932 | 3339 | 3673 | 5654 | 3782 |
| TOTAL | 415817 | 561589 | 834723 | 998109 | 957224 | 629282 | 451465 | 1117423 | 1808932 | 819392 | 703384 |
| AGEIYEAR | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |  |
| 1 | 456923 | 836041 | 625361 | 1540962 | 520974 | 1330214 | 2517050 | 538197 | 874746 | 415554 |  |
| 2 | 139526 | 121196 | 275141 | 148179 | 396440 | 199157 | 225204 | 387378 | 132757 | 238293 |  |
| 3 | 25743 | 38174 | 35060 | 52530 | 30994 | 80439 | 61496 | 60377 | 93765 | 34254 |  |
| 4 | 36606 | 10093 | 13327 | 11109 | 18365 | 9242 | 24100 | 17657 | 16947 | 21089 |  |
| 5 | 10277 | 15826 | 4099 | 4901 | 4968 | 6622 | 3960 | 8753 | 6417 | 5366 |  |
| 6 | 2155 | 4284 | 6207 | 1800 | 1965 | 1401 | 2396 | 1490 | 3490 | 2159 |  |
| +gp | 3216 | 2139 | 2482 | 4092 | 1858 | 1484 | 1595 | 1634 | 1327 | 1573 |  |
| TOTAL | 674447 | 1027752 | 961678 | 1763572 | 975563 | 1628560 | 2835801 | 1015486 | 1129450 | 718289 |  |
| AGEIYEAR | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |  |
| 1 | 1394484 | 243058 | 1517590 | 347718 | 229758 | 618422 | 198851 | 266802 | 571202 | 287983 |  |
| 2 | 137378 | 257766 | 67583 | 308358 | 125787 | 80436 | 156925 | 61798 | 81786 | 181192 |  |
| 3 | 54498 | 34066 | 57946 | 18072 | 70523 | 30918 | 21504 | 31632 | 18412 | 24622 |  |
| 4 | 8048 | 15469 | 10055 | 15525 | 5608 | 16984 | 8079 | 6423 | 9798 | 6812 |  |
| 5 | 6682 | 2792 | 5691 | 3064 | 4951 | 1804 | 5137 | 2751 | 2308 | 3558 |  |
| 6 | 1872 | 2409 | 1058 | 1993 | 1141 | 1774 | 585 | 2004 | 1013 | 943 |  |
| +gp | 1478 | 1278 | 1511 | 1047 | 809 | 786 | 841 | 772 | 924 | 627 |  |
| TOTAL | 1604440 | 556837 | 1661434 | 695777 | 438578 | 751125 | 391922 | 372181 | 685443 | 505737 |  |
| AGEIYEAR | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| 1 | 1051982 | 468262 | 273808 | 828759 | 114034 | 204246 | 381625 | 92026 | 211507 | 87592 | 0 |
| 2 | 101995 | 265135 | 156860 | 104770 | 306371 | 41209 | 66770 | 136281 | 34880 | 81980 | 27874 |
| 3 | 47433 | 33269 | 59035 | 39691 | 31851 | 77900 | 12850 | 17552 | 34298 | 15414 | 26393 |
| 4 | 7203 | 14938 | 8721 | 14167 | 10592 | 8489 | 12649 | 2760 | 4880 | 12255 | 3710 |
| 5 | 2116 | 2610 | 4966 | 2797 | 4304 | 3113 | 1869 | 2630 | 742 | 1484 | 4694 |
| 6 | 1199 | 804 | 1034 | 1519 | 899 | 1285 | 726 | 354 | 718 | 242 | 322 |
| +gp | 491 | 411 | 512 | 412 | 520 | 490 | 294 | 217 | 186 | 123 | 101 |
| TOTAL | 1212420 | 785429 | 504937 | 992114 | 468570 | 336732 | 476784 | 251820 | 287211 | 199091 | 63093 |

Table 3.4.18 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Stock summary as estimated by the ADAPT model fitted to the cod347d data including discards
Run title : Cod with discards $\quad$ North Sea/Skaggerak/Eastern Channel 20/08/2004

At 14/09/2004 9:48
Table 16 Summary (without SOP correction)
RECRUITS TOTALBIO TOTSPBIO CATCHES LANDINGS YIELD/SSE FBAR 2-4
Age 1

| 1963 | 225530 | 412859 | 157266 | 127808 | 127808 | 0.8127 | 0.5302 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| 1964 | 397692 | 483405 | 158724 | 130391 | 130391 | 0.8215 | 0.508 |
| 1965 | 591568 | 628360 | 184545 | 208931 | 208931 | 1.1321 | 0.6101 |
| 1966 | 699253 | 757246 | 213346 | 257829 | 257829 | 1.2085 | 0.6245 |
| 1967 | 606874 | 800288 | 236561 | 275410 | 275410 | 1.1642 | 0.6341 |
| 1968 | 259979 | 718342 | 242373 | 305254 | 305254 | 1.2594 | 0.7572 |
| 1969 | 227993 | 585640 | 240329 | 205406 | 205406 | 0.8547 | 0.5852 |


| 1970 | 924561 | 866919 | 249249 | 243475 | 243475 | 0.9768 | 0.6695 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1971 | 1387482 | 1058291 | 252712 | 409005 | 409005 | 1.6185 | 0.8392 |


| 1972 | 264063 | 779206 | 230886 | 386591 | 386591 | 1.6744 | 0.8846 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1973 | 463714 | 615797 | 195346 | 267823 | 267823 | 1.371 | 0.8535 |


| 1974 | 456923 | 593120 | 224034 | 251858 | 251858 | 1.1242 | 0.757 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1975 | 836041 | 647494 | 202845 | 238645 | 238645 | 1.1765 | 0.7979 |


| 1976 | 625361 | 582243 | 172158 | 299956 | 299956 | 1.7423 | 1.0018 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 1977 | 1540962 | 823554 | 155538 | 325415 | 325415 | 2.0922 | 0.8734 |
| 1978 | 520974 | 739325 | 143996 | 325928 | 325928 | 2.2635 | 1.0083 |


| 1979 | 1330214 | 876560 | 149452 | 429774 | 429774 | 2.8757 | 0.8093 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1980 | 2517050 | 1146456 | 170149 | 580500 | 580500 | 3.4117 | 0.9257 |


| 1981 | 538197 | 783175 | 181649 | 391478 | 391478 | 2.1551 | 0.9671 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1982 | 874746 | 769883 | 176409 | 355945 | 355945 | 2.0177 | 1.0656 |


| 1983 | 415554 | 595158 | 142435 | 279862 | 279862 | 1.9648 | 1.091 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1984 | 1394484 | 776124 | 125145 | 377421 | 377421 | 3.0159 | 0.9709 |


| 1985 | 243058 | 474786 | 117996 | 243567 | 243567 | 2.0642 | 0.9709 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 1986 | 1517590 | 709398 | 108929 | 327012 | 327012 | 3.0021 | 1.0081 |


| 1987 | 347718 | 539699 | 101897 | 240297 | 240297 | 2.3582 | 0.9961 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1988 | 229758 | 409167 | 92740 | 194066 | 194066 | 2.0926 | 1.0538 |


| 1989 | 618422 | 452079 | 87527 | 198546 | 198546 | 2.2684 | 1.019 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


| 1990 | 198851 | 309987 | 76159 | 149740 | 149740 | 1.9662 | 1.0291 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1991 | 266802 | 291145 | 72782 | 120057 | 120057 | 1.6495 | 0.8687 |


| 1992 | 571202 | 433472 | 73551 | 145961 | 145961 | 1.9845 | 0.8026 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1993 | 287983 | 381408 | 76186 | 172156 | 141057 | 1.8515 | 0.9795 |


| 1994 | 1051982 | 574899 | 79516 | 228129 | 190712 | 2.3984 | 0.8303 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1995 | 468262 | 579264 | 97013 | 252658 | 164104 | 1.6916 | 1.0474 |


| 1996 | 273808 | 461153 | 100841 | 213901 | 138827 | 1.3767 | 1.0462 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1997 | 828759 | 600511 | 92731 | 186096 | 147345 | 1.589 | 0.9677 |


| 1998 | 114034 | 366508 | 77396 | 190420 | 181568 | 2.346 | 1.0388 |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: | :--- |


| 1999 | 204246 | 272840 | 74775 | 152023 | 106754 | 1.4277 | 1.2321 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 2000 | 381625 | 279353 | 51084 | 108917 | 83423 | 1.633 | 1.2149 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2001 | 92026 | 189135 | 37517 | 92576 | 61808 | 1.6475 | 1.0579 |


| 2001 | 92026 | 189135 | 37517 | 92576 | 61808 | 1.6475 | 1.0579 |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| 2002 | 211507 | 224534 | 39153 | 66699 | 59459 | 1.5186 | 0.7454 |

$\begin{array}{llllllll}2003 & 87592 & 163816 & 42924 & 77997 & 36336 & 0.8465 & 0.9058\end{array}$

| Arith. <br> Mean | 612060 | 579332 | 139167 <br> 0 Units | 244768.85 <br> (Thousands) | 234277 | 1.767 | 0.8922 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| (Tonnes) | (Tonnes) | (Tonnes) |  |  |  |  |  |

Table 3.7.1 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Input to the RCT3 program

| 4 Cod (1year olds) |  |  |
| :---: | :---: | :---: |
| 3192 |  |  |
| 19851517590 | 80.117 | -1 |
| 1986347718 | 21.98 .8 | -1 |
| 1987229758 | 16.23 .6 | -1 |
| 1988618422 | 56.113 .1 | -1 |
| 1989198851 | 11.43 .4 | -1 |
| 1990266802 | 30.32 .4 | -1 |
| 1991571202 | 64.213 | 3708.6 |
| 1992287983 | 34.712 .7 | 1128.36 |
| 19931051982 | 115.8 | 14.84008 .2 |
| 1994468262 | 47.59 .7 | 1561.81 |
| 1995273808 | 31.83 .5 | 1023.15 |
| 1996828759 | 99.940 | 6147.36 |
| 1997114034 | 10.42 .7 | 178.75 |
| 1998204246 | 442.1 | 557.26 |
| 1999381625 | $70 \quad 6.6$ | 1448.25 |
| 200092026 | 6.92 .8 | 264.39 |
| 2001211507 | 27.47 .8 | 1199.47 |
| 200287592 | 11.90 .6 | 205.96 |
| 2003-1 21.5 | 7.537 | 428.74 |
| ScoGfs |  |  |
| IBTS |  |  |
| EngGFS |  |  |

Table 3.7.2 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Ouptput from RCT3

Analysis by RCT3 ver3.1 of data from file :
cod4 inp.txt 4 Cod (1year olds)

| 19 years : 1985 - 2003 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tapered time weighting not applied |  |  |  |  |  |  |  |  |  |
| Survey weighting not applied |  |  |  |  |  |  |  |  |  |
| Final estimates not shrunk towards mean |  |  |  |  |  |  |  |  |  |
| Estimates with S.E.'S greater than that of mean included |  |  |  |  |  |  |  |  |  |
| Minimum S.E. for any survey taken as . 20 |  |  |  |  |  |  |  |  |  |
| Minimum of 3 points used for regression |  |  |  |  |  |  |  |  |  |
| Forecast/Hindcast variance correction used. |  |  |  |  |  |  |  |  |  |
| Yearclass = 1999 |  |  |  |  |  |  |  |  |  |
| Survey/ | Slope | Inter- | Std | Rsquare | No. | Index | Predicted | Std | WAP |
| Series |  | cept | Error |  | Pts | Value | Value | Error | Weights |
| ScoGfs | 1.13 | 8.76 | . 41 | . 772 | 14 | 4.26 | 13.55 | . 470 | . 204 |
| IBTS | 1.11 | 10.48 | . 50 | . 691 | 14 | 2.03 | 12.73 | . 564 | . 141 |
| EngGFS | . 66 | 8.04 | . 21 | . 934 | 8 | 7.28 | 12.86 | . 262 | . 655 |
|  |  |  |  |  | VPA | Mean $=$ | 12.87 | . 725 | . 000 |

```
Yearclass = 2000
```

| Survey/ <br> Series | Slope | Intercept | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | No. Pts | Index Value | Predicted Value | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ScoGfs | 1.13 | 8.71 | . 44 | . 733 | 15 | 2.07 | 11.03 | . 561 | . 155 |
| IBTS | 1.11 | 10.49 | . 49 | . 691 | 15 | 1.34 | 11.97 | . 558 | . 157 |
| EngGFS | . 66 | 8.04 | . 20 | . 934 | 9 | 5.58 | 11.73 | . 267 | . 688 |
|  |  |  |  |  | VPA | Mean = | 12.87 | . 698 | . 000 |

```
Yearclass = 2001
```



Table 3.7.2 (cont) Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Ouptput from RCT3


Table 3.8.1 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Input data for catch forecast and linear sensitivity analysis

| Label | Value | CV | Label | Value | CV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number at age |  |  | Weight in the stock |  |  |
| N1 | 157309 | 0.58 | WS1 | 0.38 | 0.27 |
| N2 | 27874 | 0.22 | WS2 | 0.79 | 0.20 |
| N3 | 26393 | 0.22 | WS 3 | 1.82 | 0.16 |
| N4 | 3710 | 0.23 | WS 4 | 3.57 | 0.10 |
| N5 | 4694 | 0.23 | WS5 | 5.45 | 0.07 |
| N6 | 322 | 0.41 | WS 6 | 7.55 | 0.05 |
| N7 | 101 | 0.41 | WS 7 | 9.96 | 0.02 |
| H.cons selectivity |  |  | Weight in the HC catch |  |  |
| sH1 | 0.04 | 0.54 | WH1 | 0.70 | 0.11 |
| sH2 | 0.39 | 0.08 | WH2 | 1.09 | 0.08 |
| sH3 | 0.82 | 0.16 | WH3 | 2.02 | 0.12 |
| sH4 | 0.90 | 0.20 | WH4 | 3.59 | 0.09 |
| sH5 | 1.05 | 0.17 | WH5 | 5.48 | 0.06 |
| sH6 | 0.97 | 0.10 | WH6 | 7.58 | 0.05 |
| sH7 | 0.97 | 0.10 | WH7 | 9.99 | 0.02 |
| Discard selectivity |  |  | Weight in the discards |  |  |
| sD1 | 0.22 | 0.74 | WD1 | 0.26 | 0.12 |
| sD2 | 0.43 | 0.73 | WD2 | 0.38 | 0.11 |
| sD3 | 0.17 | 0.62 | WD3 | 0.43 | 0.24 |
| sD4 | 0.01 | 1.73 | WD 4 | 0.23 | 1.73 |
| sD5 | 0.01 | 1.73 | WD5 | 0.76 | 1.73 |
| sD6 | 0.01 | 1.73 | WD 6 | 0.95 | 1.73 |
| sD7 | 0.01 | 1.73 | WD 7 | 1.32 | 1.73 |
| Natural mortality |  |  | Proportion mature |  |  |
| M1 | 0.80 | 0.10 | MT1 | 0.01 | 0.10 |
| M2 | 0.35 | 0.10 | MT2 | 0.05 | 0.10 |
| M3 | 0.25 | 0.10 | MT3 | 0.23 | 0.10 |
| M4 | 0.20 | 0.10 | MT4 | 0.62 | 0.10 |
| M5 | 0.20 | 0.10 | MT5 | 0.86 | 0.10 |
| M6 | 0.20 | 0.10 | MT6 | 1.00 | 0.10 |
| M7 | 0.20 | 0.10 | MT7 | 1.00 | 0.10 |
| Relative effort |  |  | Year effect for natural |  |  |
| in HC fishery |  |  |  |  |  |
| HFO 4 | 1.00 | 0.10 | K03 | 1.00 | 0.10 |
| HFO5 | 1.00 | 0.10 | K04 | 1.00 | 0.10 |
| HFO 6 | 1.00 | 0.10 | K05 | 1.00 | 0.10 |

Recruitment in 2005 and 2006
$\begin{array}{lll}\text { R04 } & 157309 & 0.58\end{array}$
$\begin{array}{lll}\text { R05 } & 157309 & 0.58\end{array}$
Proportion of $F$ before spawning $=.00$
Proportion of $M$ before spawning $=.00$
Recruitment in 2004 is the 1997 - 2002 GM; other stock numbers in 2004 are VPA survivors
All catch component $F s$ are obtained from mean $2001-2003$ exploitation pattern , scaled to estimated $F(2003)$
CVs for weights and $F s$ are from 3-year ranges
Effort multiplier 1.0


Table 3.8.2 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Status quo F in 2004 catch forecast with effort multipliers of $0.0-0.6$ in 2005

|  | Year |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2004 | 2005 |  |  |  |  |  |  |
| Mean F Ages |  |  |  |  |  |  |  |  |
| Total 2 to 4 | 0.91 | 0.00 | 0.09 | 0.18 | 0.27 | 0.36 | 0.45 | 0.54 |
| Effort relative to 2003 |  |  |  |  |  |  |  |  |
| Total | 1.00 | 0.00 | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 |
| Biomass |  |  |  |  |  |  |  |  |
| Total 1 January | 172.6 | 164.4 | 164.4 | 164.4 | 164.4 | 164.4 | 164.4 | 164.4 |
| SSB at spawning time | 46.4 | 40.4 | 40.4 | 40.4 | 40.4 | 40.4 | 40.4 | 40.4 |
| Catch weight (,000t) |  |  |  |  |  |  |  |  |
| H.cons | 59.3 | 0.0 | 7.1 | 13.6 | 19.6 | 25.1 | 30.2 | 34.8 |
| Discards | 9.3 | 0.0 | 1.4 | 2.7 | 3.9 | 5.1 | 6.2 | 7.3 |
| Total Catch | 68.7 | 0.0 | 8.5 | 16.3 | 23.6 | 30.2 | 36.4 | 42.2 |
| Biomass in year.... 2006 |  |  |  |  |  |  |  |  |
| Total 1 January |  | 263.7 | 249.6 | 236.7 | 224.8 | 213.9 | 203.8 | 194.5 |
| SSB at spawning time |  | 83.2 | 76.1 | 69.5 | 63.6 | 58.2 | 53.2 | 48.7 |

Status quo F in 2004 catch forecast with effort multipliers of $0.7-1.3$ in 2005

|  | Year |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2004 | 2005 |  |  |  |  |  |  |
| Mean F Ages <br> Total 2 to 4 | 0.91 | 0.63 | 0.72 | 0.82 | 0.91 | 1.00 | 1.09 | 1.18 |
| Effort relative to 2003 Total | 1.00 | 0.70 | 0.80 | 0.90 | 1.00 | 1.10 | 1.20 | 1.30 |
| Biomass |  |  |  |  |  |  |  |  |
| Total 1 January | 172.6 | 164.4 | 164.4 | 164.4 | 164.4 | 164.4 | 164.4 | 164.4 |
| SSB at spawning time | 46.4 | 40.4 | 40.4 | 40.4 | 40.4 | 40.4 | 40.4 | 40.4 |
| Catch weight (,000t) |  |  |  |  |  |  |  |  |
| H.cons | 59.3 | 39.1 | 43.1 | 46.7 | 50.1 | 53.1 | 56.0 | 58.6 |
| Discards | 9.3 | 8.3 | 9.3 | 10.2 | 11.1 | 12.0 | 12.8 | 13.5 |
| Total Catch | 68.7 | 47.5 | 52.4 | 56.9 | 61.2 | 65.1 | 68.8 | 72.2 |
| Biomass in year.... 2006 |  |  |  |  |  |  |  |  |
| Total 1 January |  | 185.9 | 178.0 | 170.7 | 163.9 | 157.6 | 151.9 | 146.5 |
| SSB at spawning time |  | 44.6 | 40.9 | 37.4 | 34.3 | 31.5 | 28.9 | 26.5 |

Table 3.8.3 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
TAC constraint in 2004 catch forecast with effort multipliers of $0.0-0.6$ in 2005

|  | Year |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2004 | 2005 |  |  |  |  |  |  |
| Mean F Ages <br> Total 2 to 4 | 0.32 | 0.00 | 0.03 | 0.06 | 0.10 | 0.13 | 0.16 | 0.19 |
| Effort relative to 2003 Total | 1.00 | 0.00 | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 |
| Biomass |  |  |  |  |  |  |  |  |
| Total 1 January | 172.6 | 224.1 | 224.1 | 224.1 | 224.1 | 224.1 | 224.1 | 224.1 |
| SSB at spawning time | 46.4 | 74.1 | 74.1 | 74.1 | 74.1 | 74.1 | 74.1 | 74.1 |
| Catch weight (,000t) |  |  |  |  |  |  |  |  |
| H.cons | 27.2 | 0.0 | 4.2 | 8.3 | 12.3 | 16.1 | 19.9 | 23.5 |
| Discards | 3.8 | 0.0 | 0.6 | 1.1 | 1.6 | 2.2 | 2.7 | 3.2 |
| Total Catch | 31.0 | 0.0 | 4.8 | 9.4 | 13.9 | 18.3 | 22.6 | 26.7 |
| Biomass in year.... 2006 |  |  |  |  |  |  |  |  |
| Total 1 January |  | 341.5 | 333.9 | 326.5 | 319.4 | 312.4 | 305.7 | 299.1 |
| SSB at spawning time |  | 140.6 | 136.1 | 131.8 | 127.6 | 123.5 | 119.6 | 115.7 |

TAC constraint in 2004 catch forecast with effort multipliers of $0.7-1.3$ in 2005

|  | Year |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2004 | 2005 |  |  |  |  |  |  |
| Mean F Ages |  |  |  |  |  |  |  |  |
| Total 2 to 4 | 0.32 | 0.22 | 0.261 | 0.291 | 0.32 | 0.35 | 0.38 | 0.421 |
| Effort relative to 2003 |  |  |  |  |  |  |  |  |
| Total | 1.00 | 0.70 | 0.80 | 0.90 | 1.00 | 1.10 | 1.20 | 1.30 |
| Biomass |  |  |  |  |  |  |  |  |
| Total 1 January | 172.6 | 224.1 | 224.1 | 224.1 | 224.1 | 224.1 | 224.1 | 224.1 |
| SSB at spawning time | 46.4 | 74.1 | 74.1 | 74.1 | 74.1 | 74.1 | 74.1 | 74.1 |
| Catch weight (,000t) |  |  |  |  |  |  |  |  |
| H.cons | 27.2 | 27.0 | 30.4 | 33.7 | 36.9 | 40.0 | 43.0 | 45.9 |
| Discards | 3.8 | 3.7 | 4.2 | 4.7 | 5.1 | 5.6 | 6.0 | 6.5 |
| Total Catch | 31.0 | 30.7 | 34.6 | 38.4 | 42.0 | 45.6 | 49.1 | 52.4 |
| Biomass in year.... 2006 |  |  |  |  |  |  |  |  |
| Total 1 January |  | 292.8 | 286.6 | 280.7 | 274.9 | 269.3 | 263.8 | 258.5 |
| SSB at spawning time |  | 112.1 | 108.5 | 105.0 | 101.7 | 98.5 | 95.4 | 92.3 |

Table 3.8.4 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
F 50\% 2001 in 2004 catch forecast with effort multipliers of $0.0-0.6$ in 2005

|  | Year |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2004 | 2005 |  |  |  |  |  |  |
| Mean F Ages <br> Total 2 to 4 | 0.53 | 0.00 | 0.05 | 0.11 | 0.16 | 0.21 | 0.26 | 0.32 |
| Effort relative to 2003 Total | 1.00 | 0.00 | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 |
| Biomass |  |  |  |  |  |  |  |  |
| Total 1 January | 172.6 | 198.8 | 198.8 | 198.8 | 198.8 | 198.8 | 198.8 | 198.8 |
| SSB at spawning time | 46.4 | 59.5 | 59.5 | 59.5 | 59.5 | 59.5 | 59.5 | 59.5 |
| Catch weight (,000t) |  |  |  |  |  |  |  |  |
| H.cons | 40.9 | 0.0 | 5.8 | 11.3 | 16.5 | 21.4 | 26.2 | 30.6 |
| Discards | 6.0 | 0.0 | 0.9 | 1.7 | 2.6 | 3.4 | 4.1 | 4.9 |
| Total Catch | 46.9 | 0.0 | 6.7 | 13.0 | 19.0 | 24.8 | 30.3 | 35.5 |
| Biomass in year.... 2006 |  |  |  |  |  |  |  |  |
| Total 1 January |  | 308.7 | 298.0 | 287.7 | 278.0 | 268.8 | 260.0 | 251.6 |
| SSB at spawning time |  | 116.0 | 110.0 | 104.3 | 98.9 | 93.7 | 88.9 | 84.3 |

F $50 \% 2001$ in 2004 catch forecast with effort multipliers of $0.7-1.3$ in 2005

|  | Year |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2004 | 2005 |  |  |  |  |  |  |
| Mean F Ages |  |  |  |  |  |  |  |  |
| Total 2 to 4 | 0.53 | 0.37 | 0.42 | 0.48 | 0.53 | 0.58 | 0.64 | 0.69 |
| Effort relative to 2003 |  |  |  |  |  |  |  |  |
| Total | 1.00 | 0.70 | 0.80 | 0.90 | 1.00 | 1.10 | 1.20 | 1.30 |
| Biomass |  |  |  |  |  |  |  |  |
| Total 1 January | 172.6 | 198.8 | 198.8 | 198.8 | 198.8 | 198.8 | 198.8 | 198.8 |
| SSB at spawning time | 46.4 | 59.5 | 59.5 | 59.5 | 59.5 | 59.5 | 59.5 | 59.5 |
| Catch weight (,000t) |  |  |  |  |  |  |  |  |
| H.cons | 40.9 | 34.9 | 39.0 | 42.8 | 46.5 | 50.0 | 53.3 | 56.5 |
| Discards | 6.0 | 5.6 | 6.3 | 7.0 | 7.7 | 8.3 | 8.9 | 9.5 |
| Total Catch | 46.9 | 40.5 | 45.3 | 49.8 | 54.2 | 58.3 | 62.3 | 66.0 |
| Biomass in year.... 2006 |  |  |  |  |  |  |  |  |
| Total 1 January |  | 243.6 | 236.0 | 228.8 | 221.9 | 215.4 | 209.1 | 203.2 |
| SSB at spawning time |  | 79.9 | 75.8 | 71.9 | 68.2 | 64.7 | 61.4 | 58.3 |

Table 3.10.1 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId
Precautionary approach reference points as estimated by PAplot:


| Reference point | Deterministic | Median | 75th percentile | 95th percentile | Hist SSB < ref pt \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MedianRecruits | 463710 | 463710 | 520970 | 591570 |  |
| MBAL | 150000 |  |  |  | 56.10 |
| Bloss | 37520 |  |  |  |  |
| SSB90\%R90\%Surv | 149428 | 136422 | 151979 | 172588 | 53.66 |
| SPR\%ofVirgin | 2.08 | 2.08 | 2.67 | 3.63 |  |
| VirginsPR | 10.33 | 10.35 | 12.82 | 17.03 |  |
| SPRIoss | 0.26 | 0.24 | 0.32 | 0.44 |  |
|  | Deterministic | Median | 25th percentile | 5th percentile | Hist F > ref pt \% |
| FBar | 0.91 | 0.91 | 0.83 | 0.71 | 78.05 |
| Fmax | 0.20 | 0.20 | 0.19 | 0.17 | 100.00 |
| F0.1 | 0.13 | 0.13 | 0.12 | 0.11 | 100.00 |
| Flow | 0.57 | 0.55 | 0.49 | 0.42 | 97.56 |
| Fmed | 0.79 | 0.81 | 0.74 | 0.65 | 80.49 |
| Fhigh | 1.21 | 1.23 | 1.11 | 0.99 | 31.71 |
| F35\%SPR | 0.15 | 0.15 | 0.14 | 0.12 | 100.00 |
| Floss | 0.84 | 0.86 | 0.75 | 0.62 | 80.49 |

For estimation of Gloss and Floss:
A LOWESS smoother with a span of 0.5 was used.
Stock recruit data were log-transformed
A point representing the origin was included in the stock recruit data.
For estimation of the stock recruitment relationship used in equilibrium calculations:
A LOWESS smoother with a span of 0.5 was used.
Stock recruit data were log-transformed
A point representing the origin was included in the stock recruit data.

## 347d Cod

Steady state selection provided as input
FBar averaged from age 2 to 4
Number of iterations $=1000$
Random number seed $=-99$
Stock recruitment data Monte Carloed using residuals from the equilibrium LOWESS fit

Data source:
C:lemas2\adapt\cod4\2004wg\adapt\Adapt with discards\PAplot\cod discards.sen
C:lemas2\adapt\cod4\2004wg\adapt\Adapt with discards\PAplot\cod discards.SUM

## FishLab DLL used

FLVB32.DLL built on Jun 141999 at 11:53:37
PASoft 4 October 1999

16/09/04 05:50:50

Figure 3.2.1 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Mean weight at age in the landings.



Figure 3.3.1.1 Nominal hours fished by UK fleets. The values plotted are those from Table 3.3.1, indicating the catch-at-age calibration fleets that were available to the working group. Recording of hours fished is not mandatory in logbooks and is not considered to be representative of deployed fishing effort



Figure 3.3.1.3


Figure 3.4.1.1 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
Separable VPA residuals for the years 1999-2003


Figure 3.4.3.1 Cod in Sub-area IV and Divisions IIIa (Skagerrak) and VIId. Cohort (catch) curves for Scottish commercial series both including and excluding discard estimates (based on Scottish discard ogives).

Excluding discards
ScoTrl


## ScoSei



## ScoLtr



## Including discards

ScoTrl


ScoSei


ScoLtr


Figure 3.4.3.1(cont'd). Cohort (catch) curves for English commercial series both including and excluding discard estimates (NB. based on Scottish discard ogives).

## Excluding discards

EngTrI


EngSei


Including discards
EngTrl


EngSei


Figure 3.4.3.2 Cod in Sub-area IV and Divisions IIIa (Skagerrak) and VIId. Cohort (catch) curves for surveys (IBTSQ1, EngGFS, ScoGFS \& FraGFS).
Surveys

IBTS


EngGFS


ScoGFS


FraGFS


Figure 3.4.3.3 Cod in Sub-area IV and Divisions IIIa (Skagerrak) and VIId. Mean-standardised CPUE indices by age for commercial fleets (excluding discards).

Age 1


Age 2


Age 3


Figure 3.4.3.3 (Cont'd). Mean-standardised CPUE indices by age for commercial fleets.

Age 4


Age 5


Age 6


Figure 3.4.3.4 Cod in Sub-area IV and Divisions IIIa (Skagerrak) and VIId. Mean-standardised CPUE indices by age for survey fleets.

Age 1


Age 2


Age 3


Figure 3.4.3.4 (Cont'd). Mean-standardised CPUE indices by age for survey fleets.

Age 4


Age 5


Age 6


Figure 3.4.3.5 Cod in Sub-area IV and Divisions IIIa (Skagerrak) and VIId. Bivariate scatterplots indicating withinsurvey consistency of IBTSQ1 indices.


Figure 3.4.3.5 (Cont'd). Bivariate scatterplots indicating within-survey consistency of EngGFS indices.


Figure 3.4.3.5 (Cont'd). Bivariate scatterplots indicating within-survey consistency of ScoGFS indices.


Figure 3.4.3.5 (Cont'd). Bivariate scatterplots indicating within-survey consistency of FraGFS indices.


Figure 3.4.3.5 Cod in Sub-area IV and Divisions IIIa (Skagerrak) and VIId. Bivariate scatterplots indicating withinseries consistency of commercial ScoTrl indices.


Figure 3.4.3.5 (Cont'd). Bivariate scatterplots indicating within-series consistency of commercial ScoSei indices.


Figure 3.4.3.5 (Cont'd). Bivariate scatterplots indicating within-series consistency of commercial ScoLtr indices.


Figure 3.4.3.5 (Cont'd). Bivariate scatterplots indicating within-series consistency of commercial EngTrl indices.


Figure 3.4.3.5 (Cont'd). Bivariate scatterplots indicating within-series consistency of commercial EngSei indices.


Figure 3.4.3.6 Cod in Sub-area IV and Divisions IIIa (Skagerrak) and VIId. Bivariate scatterplots indicating betweenseries consistency of indices by age: Age 1.


Figure 3.4.3.6 (Cont'd). Bivariate scatterplots indicating between-series consistency of indices by age: Age 2 .


Figure 3.4.3.6 (Cont'd). Bivariate scatterplots indicating between-series consistency of indices by age: Age 3.


Figure 3.4.3.6 (Cont'd). Bivariate scatterplots indicating between-series consistency of indices by age: Age 4.


Figure 3.4.3.6 (Cont'd). Bivariate scatterplots indicating between-series consistency of indices by age: Age 5 .


Figure 3.4.3.6 (Cont'd). Bivariate scatterplots indicating between-series consistency of indices by age: Age 6.


Figure 3.4.4.1 Cod in Sub-area IV and Divisions IIIa (Skagerrak) and VIId. Smoothed empirical SSB by survey.





Figure 3.4.4.2 Cod in Sub-area IV and Divisions IIIa (Skagerrak) and VIId. Raw empirical Z by survey.





Figure 3.4.4.3 Cod in Sub-area IV and Divisions IIIa (Skagerrak) and VIId. Summary results from SURBA, by survey.




SSB at survey time











Figure 3.4.4.4 Cod in Sub-area IV and Divisions IIIa (Skagerrak) and VIId. Residual plots from SURBA model fits, by survey.












Figure 3.4.5.1 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId:
The log catchability residuals resulting from a fit of the Laurec-Shepherd VPA calibration model to the North Sea cod reported landings at age data set and the English groundfish survey data for 1992-2003.

Cod in IIla, IV and VIId, WGNSSK 2003: EGFS GOV (92-2003) log catchability residuals Laurec shepherd single fleet tuning (age range 1-7+) Age 4





Figure 3.4.5.2 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The log catchability residuals resulting from a fit of the Laurec-Shepherd VPA calibration model to the North Sea cod reported landings at age data set and the Scottish groundfish survey data for 1983-2003.

Cod in Illa, IV and VIId, WGNSSK 2004: SCOGFS log catchability residuals Laurec shepherd single fleet tuning (ages 1-7+)



Age 2




Figure 3.4.5.3 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The log catchability residuals resulting from a fit of the Laurec-Shepherd VPA calibration model to the North Sea cod reported landings at age data set and the IBTS groundfish survey data for 1993-2003.

Cod in IIIa, IV and VIId, WGNSSK 2003: IBTS Q1 log catchability residuals Laurec shepherd single fleet tuning (ages 1-7+)







Figure 3.4.5.4 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The log catchability residuals resulting from a fit of the Laurec-Shepherd VPA calibration model to the North Sea cod reported landings at age data set and the French groundfish surveyin 7d for 1991-2003.

Cod in IIIa, IV and VIId, WGNSSK 2004: FRAgfs log catchability residuals Laurec shepherd single fleet tuning (ages 1-3)







Figure 3.4.7.1 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The percentiles $(5,25,50,75,95)$ of cod in 347 d total landings as estimated by the ADAPT model applied without catch smoothing. The solid line represents the reported catch.


Figure 3.4.7.2 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The percentiles $(5,25,50,75,95)$ of the cod in 347d average fishing mortality estimates from the ADAPT model applied without catch smoothing. The solid horizontal line represents the estimate of average mortality without assuming bias in the catch data.


Figure 3.4.7.3 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The percentiles $(5,25,50,75,95)$ of the cod in 347 d SSB estimates as estimated by the ADAPT model applied without catch smoothing. The solid line represents the estimate SSB without assuming bias in the catch data.


Figure 3.4.7.4 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The percentiles $(5,25,50,75,95)$ of the cod in 347d catch raising factor estimates from the ADAPT model applied without catch smoothing. The solid line represents no bias.


Figure 3.4.7.5 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The percentiles $(5,25,50,75,95)$ of estimated cod in 347d total catch from the ADAPT model applied with catch smoothing. The solid line represents the reported catch.


Figure 3.4.7.6 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The percentiles $(5,25,50,75,95)$ of the cod in 347 d average fishing mortality estimates from the ADAPT model applied with catch smoothing. The solid horizontal line represents the estimate of average mortality without assuming bias in the catch data.


Figure 3.4.7.7 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The percentiles $(5,25,50,75,95)$ of the cod 347 d SSB estimates from the ADAPT model applied with catch smoothing. The solid line represents the estimate SSB without assuming bias in the catch data.


Figure 3.4.7.8 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The percentiles $(5,25,50,75,95)$ of the cod 347 d catch raising factor estimates from the ADAPT model applied with catch smoothing. The solid line represents no bias.


Figure 3.4.7.9 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The sensitivity of the estimates of landings, SSB and average fishing mortality (ages $2-4$ ) to the weight given to the smoothing constraint on year to year variation on total landings. Solid line - estimates with estimation of missing landings, fine line - estimates without estimation of missing landings.










Figure 3.4.7.10 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: ScoGFS log catchability residuals resulting from a fit of the modified ADAPT model without estimation of missing catch data (open diamonds) and with estimation of missing catch (solid squares)



Figure 3.4.7.10 (cont) EGFS log catchability residuals resulting from a fit of the modified ADAPT model without estimation of missing catch data (open diamonds) and with estimation of missing catch (solid squares)


Figure 3.4.7.10 (cont) IBTS log catchability residuals resulting from a fit of the modified ADAPT model without estimation of missing catch data (open diamonds) and with estimation of missing catch (solid squares)






Figure 3.4.7.11 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: historic trends estimated by the modified ADAPT model when fitted to landings data without discards.


Figure 3.4.7.12 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Retrospective series of the total landings as estimated using the modified ADAPT model for assessment years finishing in 1998-2003 (without discards).


Figure 3.4.7.13 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Retrospective series of average fishing mortality as estimated using the modified ADAPT model for assessment years finising in 1998-2003 (without discards).


Figure 3.4.7.14 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Retrospective series of spawning stock biomass as estimated using the modified ADAPT model for assessment years finising in 1998-2003 (without discards).

 line illustrates the with discards estimates the fine lines estimates from the run without discards.


Figure 3.4.8.2 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Average (2001 - 3002) fishing mortality at age estimated the modified ADAPT when applied to catch


Figure 3.4.9.1 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: A comparison between SURBA estimates of relative SSB (fine lines) and the estimates from the modified ADAPT (solid line).


Figure 3.4.9.2 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: A comparison between SURBA estimates of relative average fishing mortality (fine lines) and the estimates from the modified ADAPT (solid line).


Figure 3.6.1 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The time trends in the responses on cod abundance as presented in the North Sea Survey


Figure 3.6.2 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The indices of $1+$ cod caught in the IBTS first quarter ground fish survey during the years 2002 - 2004 scaled to the index values for 2001 for comparison with the North Sea survey respones


Figure 3.7.1 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: standardised survey indices of year class abundance recorded at age 1 during 1992-2004


Figure 3.7.2 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: standardised survey indices of year class abundance recorded at age 2 during 1992-2004


Figure 3.7.3 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Comparison of the VPA estimates of recruitment for 2001 and 2002 (solid squares) with the RCT3 esimates (open squares). The horizontal line plots the geometric mean of the 1997-2002 year classes which was used for the recruitment at age 1 in 2004


Figure 3.8.1 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: A sensitivity analysis of the stock projection with fishing mortality in 2004 set to $50 \%$ of that estimated for 2001.

Figure Cod,347d. Sensitivity analysis of short term forecast.


Figure 3.8.2 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The probability profiles for the stock projection with fishing mortality in 2004 set to $50 \%$ of that estimated for 2001.

Figure Cod, 347 d . Probability profiles for short term forecast.


Data from file:C:|Assess|cod4al2004ladaptladapt|Adapt with discards|short term w

Figure 3.8.3 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The short term forecast plot of the stock projection with fishing mortality in 2004 set to $50 \%$ of that estimated for 2001.

Figure Cod,347d. Short term forecast


Fishing mortality (2-4)

Figure 3.10.1 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The PAsoft reference point estimation diagnostic output


Figure 3.10.2 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The PAsoft reference point charts


The assessment of haddock in sub-area IV and IIIa is presented as an update assessment, with the exception of small modifications to the survey series used. Some exploratory analyses were carried out to confirm the outcome of the standard assessment for this stock. All the relevant biological and methodological information can be found in the stock annex dealing with this stock. In this section, the basic input and output from the assessment model will be presented along with the results of the additional analysis.

### 4.1 The Fishery

A description of the fishery is presented in the stock annex.

### 4.1.1 ICES advice applicable to 2003 and 2004

Following the October 2002 ACFM meeting, and in response to continued high fishing mortality (above $\boldsymbol{F}_{p a}=0.7$ ) and low spawning-stock biomass (below $\boldsymbol{B}_{p a}=140000 \mathrm{t}$ ) during 2001, ICES recommended that fishing for haddock should not be permitted unless ways to harvest haddock without by-catch or discards of cod could be demonstrated. The main principle behind this advice was the strong perceived linkage between the North Sea cod and haddock fisheries, and the requirement for a recovery of the cod stock. If this linkage were not considered in management, then the advice for haddock alone would indicate a reduction of fishing mortality of at least $40 \%$ to below 0.52 , to ensure that the stock remained above $\boldsymbol{B}_{p a}$.

In October 2003, ICES classified the stock as being inside safe biological limits, but noted that the estimate of the fishing mortality was uncertain. ICES recommended that fishing mortality in 2004 should be less than $\boldsymbol{F}_{p a}$ but furthermore that the mixed fishery aspects should be taken into account. ICES recommended that demersal fisheries in Division IIIa (Skagerrak-Kattegat), in Sub-Area IV (North Sea) and in Division VIId (Eastern Channel) should in 2004 be managed according to the following rules, which should be applied simultaneously. They should fish:

- without bycatch or discards of cod;
- within a recovery plan for North Sea plaice. Until a recovery plan has been implemented that ensures rapid and sure recovery of SSB above $\mathbf{B}_{\mathrm{pa}}$, fishing mortality should be restricted to the lowest possible level and well below $\boldsymbol{F}_{p a}$. Management must include measures that ensure that discards of plaice be significantly reduced and quantified;
- within the biological exploitation limits for all other stocks.

Furthermore, ICES recommended that unless ways can be found to harvest species caught in a mixed fisheries within precautionary limits for all those species individually then fishing should not be permitted.

### 4.1.2 Management applicable to 2003 and 2004

Annual management of the fishery operates through TACs. The 2003 and 2004 TACs for haddock in Sub-Area IV and Division IIa (EC waters) were 51,735 and $77,000^{1}$ t respectively, while the TACs for Divisions IIIa, IIIb and IIIc were $3,150 \mathrm{t}$ and 4,940 t respectively.
[Check these quotas.]
The agreed 2004 TAC for haddock recognised that it was possible to exploit haddock in areas of the North Sea in which cod by-catches were low compared to other areas. "Additional" haddock could be available to EU Member States if caught outside a defined cod protection area. Council Regulation (EC) 2287/2003 defined the conditions under which certain stocks, including haddock, could be caught in Community waters. Council Regulation (EC) 867/2004 subsequently amended Regulation 2287/2004 to redefine the cod protection area (Figure 4.1.1) and set a maximum of

[^3]$35 \%$ of the haddock TAC that could be taken from within the cod protection area, and a minimum of $65 \%$ to be taken outside the cod protection zone.

For UK vessels a complex quota scheme was developed for 2004. The overall UK quota was $46,100 \mathrm{t}$. A minimum of $29,500 t$ was available to those vessels that took a special permit that forbade the capture of haddock in the cod protection zone. For vessels that did not take the special permit, a maximum of 16,600 t could be taken, but these could be taken from within the cod protection zone. Although this management scheme was proposed to permit additional haddock to be caught in 2004 at the cost of reducing fishing effort in the cod protection zone, the proportion of the overall UK quota that was accessible outside the cod protection zone became a matter of dispute with fishermen and uptake of the special permit has been relatively low. By the end of June 2004, just over one-third of the overall quota and one-third of the special permit quota had been taken.

Vessel decommissioning in several fleets has been underway since 2002. Effort reductions for much of the international fleet to 15 days at sea per month have been imposed since February 2003 (EU 2003/0090).

### 4.2 Data available

### 4.2.1 Landings

Official catch data for each country participating in the fishery are presented in Table 4.2.1, together with the corresponding WG estimates. The full time series of landings, discards and industrial bycatch (in tonnes) is presented in Table 4.2.2.

### 4.2.2 Age compositions

Total catch-at-age data are given in Table 4.2.3. while catch-at-age data for each catch component are given in Tables 4.2.4-4.2.6.

### 4.2.3 Weight at age

Weight-at-age data from the total catch (that is, human consumption, discards and industrial bycatch) in the North Sea, which are also used as stock weights-at-age, are given in Table 4.2.7. The mean weights-at-age for the separate catch components are given for in Tables 4.2.8-4.2.10.

### 4.2.4 Maturity and natural mortality

Maturity and natural mortality are assumed at fixed values and are described in the stock annex.

### 4.2.5 Catch, effort and research vessel data

Auxiliary data available for calibration of the assessment are presented in Table 4.2.11. Trends in CPUE are shown in Figure 4.2.1. During preparations for the 2000 round of assessment WG meetings it became apparent that the 1999 effort data for the Scottish commercial fleets were not in accord with the historical series and specific concerns were outlined in the 2000 report of WGNSSK (ICES CM 2001/ACFM:07). Effort recording is still not mandatory for these fleets, and concerns remain about the validity of the historical and current estimates.

### 4.3 Catch-at-age analysis

Catch-at-age analysis was carried out according to the specifications in the stock annex. The model used was XSA. The EGFS survey was truncated to 1992 because of the change in gear that took place in that year. Furthermore, the SGFS survey was used with the consistent area definition in contrast to the assessment presented last year that erroneously mixed the old and new area definitions within one tuning series. The differences are minor, however.

Results of the analysis are presented in Tables 4.3.1 (diagnostics), 4.3.2 (fishing mortality at age), 4.3.3 (population numbers at age), and 4.3.4 (stock summary). The stock summary is also shown in Figure 4.3.1.

Exploratory analyses of the survey-based auxiliary data were carried out using SURBA in order to investigate whether the signals from the XSA assessment were confirmed from the individual CPUE series. The indices were smoothed, and based on these smoothed indices, the total Z from the CPUE data and the relative SSB were estimated. The separable model implemented within SURBA was not used. Results are shown in Figure 4.3.2 and indicate that the trends observed in the XSA assessment are close to the individual survey estimates.

The historical performance of the assessment is shown in Figure 4.3.3.

Recruitment estimation was carried out according to the specifications in the stock annex, which means for this stock that the short term geometric mean is used for the 2004 year-class at age 0 . Average recruitment in the period 19632003 was 22.6 billion (geometric mean) 0-group fish. The short term GM (2000-2003) was 6.1 billion. Year class strength estimates used for short term prognosis are summarised in the text table below.

| Year <br> Class | Age <br> in 2004 | XSA | GM <br> $(1963-2003)$ | GM <br> $(2000-2003)$ |
| :--- | :--- | :--- | :--- | :--- |
| 2002 | 2 | $\underline{\mathbf{9 6}}$ | 498 | 395 |
| 2003 | 1 | $\underline{\mathbf{5 3 2}}$ | 3137 | 1859 |
| 2004 | 0 |  | 22655 | $\underline{\mathbf{6 1 3 9}}$ |

### 4.5 Short term prognosis

The relatively slow growth of the large 1999 year-class continues to present a problem to the short term forecast. Given the dominance of this year-class in the stock, accurate estimation of future stock and catch weight is critical. Reduced weight at age appears to have remained an issue only in the human consumption landings. Catch weights for the 1999 year-class in the discard and industrial by-catch components remain within the bounds of previously observed weights.

The model used to project human consumption catch weight was the same exponential function used in last year's WG report. The formulation is as follows:

$$
y=\frac{1}{1+\exp (a-b x)}
$$

where $y$ is weight in kg at age $x$ for the 1999 year-class.
Given that there are only four data points with which to fit two parameters (and only three points in last year's estimation), the model appears to perform well. The following text table gives modelled and real weights with parameter estimates. Weights in italics are estimates and the values for the 1967 year-class are given for comparison (as the largest year-class on record). The 1999 year-class at age 4 is slower growing than even the 1967 year-class. The sensitivity to the weight of the 1999 year-class was explored below.

|  | Actual CW |  |  | 2003 model 2004 model 1967 |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| 1 | 0.298 | 0.299 | 0.301 | 0.256 |  |  |
| 2 | 0.348 | 0.345 | 0.345 | 0.302 |  |  |
| 3 | 0.393 | 0.394 | 0.392 | 0.403 |  |  |
| 4 | 0.450 | 0.445 | 0.441 | 0.524 |  |  |
| 5 |  | 0.498 | 0.491 | 0.609 |  |  |
| 6 |  | 0.550 | 0.541 | 0.726 |  |  |
| 7 |  |  | 0.591 | 0.963 |  |  |
|  |  |  |  |  |  |  |
| a |  | 1.060 | 1.046 |  |  |  |
| b |  | 0.210 | 0.202 |  |  |  |

Stock weight at age is calculated as an average of the three catch weight components, weighted by their catch numbers. As the ratio of $F$ between human consumption and industrial fisheries changes with each forecast scenario, the stock weights for 2005 and 2006 are unique to each scenario.

The requirement for different catch weights and dynamic calculation of stock weights prevented the use of the standard short-term prediction software. Short-term forecasts were therefore carried out on a spreadsheet.

With the numerous management measures in place for 2004, the standard usage of $\boldsymbol{F}_{s q}$ in the intermediate year was investigated. A working paper (WP8) was presented to the WG in which UK fishing effort (KW days absent) was reported to have declined by about $10 \%$ in 2004 compared to the first half year of 2003 . There also appears to be some evidence of a relationship between $F$ and effort for this stock.

Four scenarios have been explored with two options for the $F$ multiplier ( 0.9 and 1.0), and modelled or 1967-yearclass weights-at-age for the 1999 year-class. The following text table gives SSB and landings estimates for 2004 and SSB for 2005 for each of the scenarios. SBB in 2005 varies within each scenario depending upon the F multiplier in 2005.

| 1999 YC basis | $F$ mult 2004 | SSB 2004 | Landings 2004 | SSB 2005 |
| :--- | :--- | :--- | :--- | :--- |
| Modelled weight | 0.90 | 450 | 88 | $383-385$ |
| Modelled weight | 1.00 | 450 | 96 | $374-376$ |
| 1967 weight | 0.90 | 525 | 106 | $460-462$ |
| 1967 weight | 1.00 | 525 | 116 | $448-450$ |

The decision between 1.0 and 0.9 multipliers for $\boldsymbol{F}_{s q}$ makes relatively little difference in the scenarios compared to the use of modelled or 1967 weights. Information from some member states regarding quota uptake in 2004 indicates that total landings for the year will be below quota $(80,000 t)$, mainly due to the permit system.

The forecast put forward by the WG as the most appropriate was therefore $0.9 * \mathbf{F}_{\mathrm{sq}}$, using modelled weights for the 1999 year-class out to age 7 in 2006. The inputs are given in Table 4.5.1, and outputs in Table 4.5.2.
[Need basis for $\boldsymbol{F}_{s q}$ ]

### 4.6 Biological reference points

Biological reference points for this stock are presented in the Stock Annex.

### 4.7 Comments

Fishing mortality on haddock has shown a strong decrease which is likely to be due to the combination of a reduction in fishing effort and the presence of the strong 1999 year-class. Reductions of fishing mortality are also observed for whiting and cod which are caught in mixed fisheries with haddock.

There is some, albeit limited, evidence for effects of mesh size regulations and effort regulation. Since 2002 and the mandatory use of 120 mm mesh in the main whitefish fishery, there has been a sudden increase in weight at age in the human consumption component for age 2 haddock (Figure 4.7.1). No similar increase is seen in age 1 fish, nor does there appear to have been a major shift in exploitation pattern at the early ages. UK data on effort (KW days absent) indicates significant declines since 2001, partially as a result of decommissioning. This appears to coincide with the sudden decline in $F$ from the haddock fishery although a similar linkage in the other whitefish fisheries is less apparent.

The modelling of the growth of 1999 year-class is crucial and problematic for the forecast of this stock. This yearclass is the main driver for both the size of the stock and of the catches, and has so far shown even lower growth than the strong 1967 year-class. The short-term forecast is very sensitive to effects of management measures and to biological characteristics.

Preliminary results of the fishermen survey are shown in Figure 4.7.2. This indicates that the fishermen perceive there to have been more haddock over the recent years, notably in the northern part of the North Sea and around the time of the recruitment of the 1999 year-class to the fishery. The fishermen indicate that in 2004 they still perceive more haddock than the year before, but the increase is smaller than in the years before. This is broadly consistent with the results of the assessment presented above.

The WG proposes that the next benchmark assessment for this stock be rescheduled for 2005 (see Section 1.4.1). This is because the strong 1999 year-class will enter the 7+ group in 2006 and additional forecast tools will be needed accordingly.

Table 4.2.1. Nominal catch ('000 t) of Haddock from Sub-Area IV and Division IIIa 1998-2003, as officially reported to ICES and estimated by ACFM.


* Preliminary

Subarea IV

| Country | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 2}$ | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 4}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 724 | 462 | 399 | 606 | 559 | 375 | $*$ |
| Denmark | 2,608 | 2,104 | 1,670 | 2,407 | 5,123 | 3,035 |  |
| Faroe Islands | 43 | 55 | - |  |  |  |  |
| France | 427 | $*$ | 742 | $* 1$ | 724 | 485 | 903 |
| Germany | 1,314 | 565 | 342 | 681 | 852 | 1,100 |  |
| Netherlands | 275 | 110 | 119 | 274 | 2 | 359 | 187 |
| Norway | 3,262 | 3,830 | 3,118 | 1,901 | $*$ | 2,245 | $*$ |
| Poland | 7 | 17 | 13 | 12 | 17 | $* 213$ | $*$ |
| Sweden | 472 | 686 | 596 | 804 | 572 | 477 |  |
| UK (E\&W\&NI) | 3,280 | 2,398 | 1,876 | 3,334 | 3,647 | 1,561 |  |
| UK (Scotland) | 60,324 | 53,628 | 37,772 | 29,263 | 39,624 | 31,527 |  |
| Total reported | 72,736 | 64,597 | 46,629 | 39,767 | 53,901 | 42,053 |  |
| Unallocated landings | 4,575 | -388 | -545 | -809 | $-1,290$ | 226 |  |
| WG estimate of H.cons. landings | 77,311 | 64,209 | 46,084 | 38,958 | 52,611 | 42,279 |  |
| WG estimate of discards | 45,175 | 42,562 | 48,841 | 118,320 | 44,730 | 23,499 |  |
| WG estimate of industrial by-catch | 5,100 | 3,834 | 8,134 | 7,879 | 3,717 | 1,149 |  |
| WG estimate of total catch | 127,586 | 110,605 | 103,059 | 165,157 | 101,058 | 66,927 |  |
| TAC | 115,000 | 88,600 | 73,000 | 61,000 | 104,000 | 51,735 | 80,000 |

* Preliminary. 1 Includes Ila(EC). 2 Note: Not included here 21t of haddock reported in area unknown.

Division IIla and Subarea IV

|  | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 2}$ | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 4}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| WG estimate of total catch | 131,620 | 112,299 | 105,161 | 167,278 | 105,252 | 68,735 |  |
| $T A C$ | 122,000 | 94,000 | 77,500 | 65,000 | 110,300 | 54,885 | 84,940 |

Table 4.2.2. Haddock in Sub-Area IV and Division IIIa. WG estimates of catch components by weight (' 000 tonnes) and the proportion of IIIa HC landings to the total HC landings.

|  | North Sea |  |  |  | Division Illa |  |  | Total | IIIa HC as proportion of tot total HC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | H.cons | Disc | Ind. BC | Total | H. cons. | Ind. BC | Total |  |  |
| 1963 | 68.4 | 189.0 | 13.7 | 271.0 | 0.4 | 0.1 | 0.5 | 271.5 | 0.6\% |
| 1964 | 130.5 | 160.3 | 88.6 | 379.4 | 0.4 | 0.3 | 0.7 | 380.2 | 0.3\% |
| 1965 | 161.6 | 62.2 | 74.6 | 298.4 | 0.7 | 0.3 | 1.0 | 299.5 | 0.4\% |
| 1966 | 225.8 | 73.6 | 46.7 | 346.0 | 0.6 | 0.1 | 0.7 | 346.7 | 0.3\% |
| 1967 | 147.4 | 78.1 | 20.7 | 246.1 | 0.4 | 0.1 | 0.4 | 246.6 | 0.3\% |
| 1968 | 105.4 | 161.9 | 34.2 | 301.5 | 0.4 | 0.1 | 0.5 | 302.0 | 0.4\% |
| 1969 | 330.9 | 260.2 | 338.4 | 929.5 | 0.5 | 0.5 | 1.1 | 930.5 | 0.2\% |
| 1970 | 524.6 | 101.4 | 179.7 | 805.7 | 0.7 | 0.2 | 0.9 | 806.7 | 0.1\% |
| 1971 | 235.4 | 177.5 | 31.5 | 444.4 | 2.0 | 0.3 | 2.2 | 446.6 | 0.8\% |
| 1972 | 192.9 | 128.1 | 29.6 | 350.6 | 2.6 | 0.4 | 3.0 | 353.6 | 1.3\% |
| 1973 | 178.6 | 114.7 | 11.3 | 304.6 | 2.9 | 0.2 | 3.1 | 307.7 | 1.6\% |
| 1974 | 149.6 | 166.8 | 47.8 | 364.2 | 3.5 | 1.1 | 4.6 | 368.8 | 2.3\% |
| 1975 | 146.6 | 260.4 | 41.4 | 448.4 | 4.8 | 1.3 | 6.1 | 454.5 | 3.2\% |
| 1976 | 165.6 | 154.3 | 48.2 | 368.1 | 7.0 | 2.0 | 9.1 | 377.1 | 4.1\% |
| 1977 | 137.3 | 44.3 | 35.0 | 216.6 | 7.8 | 2.0 | 9.8 | 226.4 | 5.4\% |
| 1978 | 85.8 | 76.9 | 10.8 | 173.5 | 5.9 | 0.7 | 6.6 | 180.1 | 6.4\% |
| 1979 | 83.1 | 41.7 | 16.4 | 141.2 | 4.0 | 0.8 | 4.8 | 146.0 | 4.6\% |
| 1980 | 98.6 | 94.7 | 22.3 | 215.7 | 6.4 | 1.5 | 7.9 | 223.6 | 6.1\% |
| 1981 | 129.6 | 60.1 | 17.1 | 206.8 | 9.1 | 1.2 | 10.4 | 217.2 | 6.6\% |
| 1982 | 165.8 | 40.5 | 19.4 | 225.8 | 10.8 | 1.3 | 12.1 | 237.8 | 6.1\% |
| 1983 | 159.3 | 65.9 | 13.1 | 238.4 | 8.0 | 7.2 | 15.2 | 253.6 | 4.8\% |
| 1984 | 128.1 | 75.3 | 10.1 | 213.5 | 6.4 | 2.7 | 9.1 | 222.6 | 4.7\% |
| 1985 | 158.5 | 85.4 | 6.0 | 250.0 | 7.2 | 1.0 | 8.1 | 258.1 | 4.3\% |
| 1986 | 165.5 | 52.2 | 2.6 | 220.4 | 3.6 | 1.7 | 5.3 | 225.7 | 2.2\% |
| 1987 | 108.0 | 59.2 | 4.4 | 171.6 | 3.8 | 1.4 | 5.3 | 176.9 | 3.4\% |
| 1988 | 105.1 | 62.1 | 4.0 | 171.2 | 2.9 | 1.5 | 4.3 | 175.5 | 2.6\% |
| 1989 | 76.2 | 25.7 | 2.4 | 104.3 | 4.1 | 0.4 | 4.5 | 108.8 | 5.1\% |
| 1990 | 51.5 | 32.6 | 2.6 | 86.7 | 4.1 | 2.0 | 6.1 | 92.7 | 7.4\% |
| 1991 | 44.6 | 40.3 | 5.4 | 90.3 | 4.1 | 2.6 | 6.7 | 97.0 | 8.4\% |
| 1992 | 70.2 | 48.0 | 10.8 | 129.0 | 4.4 | 4.6 | 9.0 | 138.0 | 5.9\% |
| 1993 | 79.6 | 79.6 | 10.7 | 169.9 | 2.0 | 2.4 | 4.4 | 174.3 | 2.4\% |
| 1994 | 80.9 | 65.4 | 3.6 | 149.9 | 1.8 | 2.2 | 4.0 | 153.9 | 2.2\% |
| 1995 | 75.3 | 57.4 | 7.7 | 140.4 | 2.2 | 2.2 | 4.4 | 144.8 | 2.8\% |
| 1996 | 76.0 | 72.5 | 5.0 | 153.6 | 3.1 | 2.9 | 6.1 | 159.7 | 4.0\% |
| 1997 | 79.1 | 52.1 | 6.7 | 137.9 | 3.4 | 0.6 | 4.0 | 141.9 | 4.1\% |
| 1998 | 77.3 | 45.2 | 5.1 | 127.6 | 3.8 | 0.3 | 4.0 | 131.6 | 4.6\% |
| 1999 | 64.2 | 42.6 | 3.8 | 110.6 | 1.4 | 0.3 | 1.7 | 112.3 | 2.1\% |
| 2000 | 46.1 | 48.8 | 8.1 | 103.1 | 1.5 | 0.6 | 2.1 | 105.2 | 3.1\% |
| 2001 | 39.0 | 118.3 | 7.9 | 165.2 | 1.9 | 0.2 | 2.1 | 167.3 | 4.7\% |
| 2002 | 54.2 | 45.9 | 3.7 | 103.8 | 4.1 | 0.0 | 4.1 | 107.9 | 7.1\% |
| 2003 | 42.3 | 23.5 | 1.1 | 66.9 | 1.8 | 0.0 | 1.8 | 68.7 | 4.1\% |
| Min | 39.0 | 23.5 | 1.1 | 66.9 | 0.4 | 0.0 | 0.4 | 92.7 | 0.1\% |
| Mean | 127.9 | 88.9 | 30.5 | 247.4 | 3.6 | 1.3 | 4.8 | 267.3 | 3.4\% |
| Max | 524.6 | 260.4 | 338.4 | 929.5 | 10.8 | 7.2 | 15.2 | 930.5 | 8.4\% |

Table 4.2.3. Haddock in Sub-Area IV and Division IIIa. Catch-at-age data (thousands). Data used in the assessment are highlighted in bold.

| HC+Disc+lB | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 7+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1963 | 1367 | 1307178 | 335092 | 20963 | 13026 | 5781 | 502 | 653 | 566 | 59 | 18 | 0 | 0 | 0 | 0 | 0 | 1295 |
| 1964 | 140235 | 7436 | 1296771 | 135227 | 9069 | 5350 | 2405 | 287 | 236 | 231 | 25 | 0 | 0 | 0 | 0 | 0 | 779 |
| 1965 | 652537 | 368593 | 15184 | 649840 | 29496 | 4662 | 1972 | 452 | 107 | 90 | 41 | 0 | 0 | 0 | 0 | 0 | 690 |
| 1966 | 1671205 | 1007322 | 25674 | 6425 | 412551 | 9980 | 1045 | 601 | 165 | 90 | 23 | 2 | 0 | 0 | 0 | 0 | 880 |
| 1967 | 306037 | 838189 | 89083 | 4863 | 3585 | 177857 | 2443 | 215 | 216 | 57 | 34 | 0 | 0 | 0 | 0 | 0 | 521 |
| 1968 | 11146 | 1098748 | 439511 | 19600 | 1947 | 2529 | 45973 | 325 | 40 | 13 | 5 | 0 | 0 | 0 | 0 | 0 | 383 |
| 1969 | 72670 | 20493 | 3578611 | 303489 | 7596 | 2411 | 2515 | 19129 | 200 | 24 | 7 | 0 | 0 | 0 | 0 | 0 | 19360 |
| 1970 | 925768 | 266379 | 218480 | 1908736 | 57435 | 1178 | 1197 | 256 | 5954 | 67 | 11 | 19 | 0 | 0 | 0 | 0 | 6308 |
| 1971 | 333396 | 1815054 | 71035 | 47546 | 400469 | 10374 | 462 | 195 | 147 | 1592 | 160 | 3 | 5 | 0 | 0 | 0 | 2102 |
| 1972 | 244075 | 679205 | 587590 | 40604 | 21213 | 158000 | 3563 | 190 | 34 | 27 | 408 | 11 | 0 | 0 | 0 | 0 | 670 |
| 1973 | 60545 | 366830 | 570630 | 240604 | 6192 | 4470 | 39459 | 1257 | 108 | 29 | 109 | 49 | 5 | 0 | 0 | 0 | 1556 |
| 1974 | 614903 | 1220855 | 176342 | 332967 | 54314 | 1875 | 1351 | 10922 | 242 | 23 | 32 | 4 | 5 | 0 | 0 | 0 | 11228 |
| 1975 | 46388 | 2116937 | 641755 | 58991 | 109062 | 15813 | 983 | 620 | 2714 | 266 | 63 | 11 | 0 | 8 | 0 | 0 | 3682 |
| 1976 | 174161 | 170529 | 1062943 | 211544 | 9952 | 31311 | 4996 | 206 | 76 | 759 | 60 | 3 | 0 | 0 | 0 | 0 | 1106 |
| 1977 | 120798 | 258923 | 107675 | 394175 | 40185 | 4318 | 6275 | 1300 | 135 | 29 | 200 | 3 | 0 | 1 | 0 | 0 | 1668 |
| 1978 | 305115 | 463554 | 146957 | 30377 | 113703 | 8708 | 1264 | 2076 | 402 | 116 | 15 | 64 | 13 | 2 | 0 | 0 | 2688 |
| 1979 | 881823 | 351451 | 204046 | 41297 | 7406 | 28024 | 2237 | 262 | 483 | 152 | 54 | 12 | 11 | 1 | 0 | 0 | 976 |
| 1980 | 399372 | 678499 | 333261 | 73043 | 10476 | 1901 | 8067 | 598 | 121 | 162 | 75 | 31 | 9 | 3 | 1 | 0 | 1002 |
| 1981 | 646419 | 134470 | 423059 | 143151 | 15228 | 2034 | 458 | 2498 | 125 | 64 | 23 | 30 | 4 | 1 | 3 | 0 | 2749 |
| 1982 | 278705 | 275686 | 86126 | 299895 | 41435 | 3407 | 713 | 279 | 784 | 30 | 15 | 7 | 2 | 2 | 0 | 0 | 1119 |
| 1983 | 639814 | 157259 | 252258 | 73920 | 127250 | 16480 | 1708 | 297 | 61 | 191 | 53 | 6 | 4 | 4 | 0 | 0 | 616 |
| 1984 | 95502 | 432193 | 168273 | 122984 | 22079 | 32658 | 3789 | 596 | 84 | 41 | 112 | 16 | 5 | 1 | 1 | 0 | 857 |
| 1985 | 139579 | 178878 | 534269 | 78726 | 37445 | 5306 | 7355 | 965 | 212 | 52 | 21 | 88 | 4 | 0 | 0 | 0 | 1343 |
| 1986 | 56503 | 160398 | 178824 | 323650 | 27685 | 9691 | 1237 | 1810 | 237 | 117 | 49 | 32 | 36 | 13 | 4 | 1 | 2298 |
| 1987 | 13384 | 314017 | 250496 | 47432 | 67864 | 4761 | 2877 | 545 | 778 | 135 | 36 | 50 | 27 | 29 | 5 | 8 | 1613 |
| 1988 | 16535 | 30044 | 490706 | 89940 | 13431 | 18579 | 1602 | 639 | 166 | 141 | 50 | 18 | 11 | 10 | 15 | 1 | 1051 |
| 1989 | 12042 | 47648 | 35358 | 182748 | 18106 | 2636 | 4058 | 510 | 200 | 83 | 30 | 13 | 6 | 2 | 2 | 1 | 848 |
| 1990 | 57702 | 86819 | 103021 | 18947 | 57830 | 3905 | 896 | 1380 | 210 | 78 | 41 | 11 | 11 | 1 | 4 | 2 | 1738 |
| 1991 | 123910 | 228553 | 78258 | 23197 | 3888 | 12526 | 976 | 401 | 614 | 148 | 54 | 6 | 5 | 1 | 2 | 1 | 1231 |
| 1992 | 270758 | 209879 | 253286 | 32494 | 6552 | 1250 | 4861 | 454 | 301 | 293 | 124 | 22 | 6 | 2 | 0 | 0 | 1203 |
| 1993 | 141209 | 359995 | 262765 | 108421 | 7107 | 1698 | 450 | 1138 | 146 | 103 | 144 | 59 | 3 | 2 | 0 | 0 | 1595 |
| 1994 | 85966 | 99260 | 296776 | 100476 | 29609 | 1920 | 573 | 191 | 509 | 115 | 32 | 27 | 25 | 5 | 0 | 0 | 905 |
| 1995 | 273689 | 301733 | 85925 | 167801 | 25875 | 7645 | 511 | 127 | 45 | 62 | 19 | 8 | 6 | 2 | 1 | 0 | 269 |
| 1996 | 347568 | 53415 | 357942 | 56894 | 55147 | 7503 | 3052 | 756 | 52 | 31 | 25 | 5 | 8 | 3 | 1 | 0 | 882 |
| 1997 | 40082 | 134642 | 86231 | 213293 | 15272 | 15406 | 1892 | 679 | 62 | 15 | 12 | 4 | 4 | 4 | 2 | 0 | 782 |
| 1998 | 23902 | 83557 | 167359 | 49648 | 108066 | 5743 | 3562 | 472 | 140 | 14 | 6 | 5 | 2 | 2 | 1 | 1 | 643 |
| 1999 | 108254 | 81423 | 121249 | 87242 | 24739 | 39860 | 2338 | 1595 | 342 | 41 | 6 | 2 | 1 | 1 | 0 | 0 | 1988 |
| 2000 | 52181 | 350998 | 88624 | 43351 | 26356 | 6026 | 8707 | 560 | 234 | 32 | 12 | 2 | 1 | 1 | 0 | 0 | 842 |
| 2001 | 3510 | 86744 | 632880 | 32343 | 8886 | 4122 | 1561 | 1305 | 195 | 64 | 17 | 3 | 1 | 0 | 0 | 0 | 1585 |
| 2002 | 50754 | 18400 | 66343 | 242196 | 6547 | 2038 | 1066 | 549 | 458 | 265 | 15 | 8 | 5 | 0 | 0 | 0 | 1301 |
| 2003 | 6132 | 18616 | 14122 | 44745 | 109063 | 1970 | 602 | 271 | 110 | 89 | 38 | 5 | 1 | 0 | 0 | 0 | 515 |

Table 4.2.4. Haddock in Sub-Area IV and Division IIIa. HC catch-at-age data (thousands). Data used in the assessment are highlighted in bold.

| HC landings | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 7+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1963 | 0 | 27353 | 118185 | 16692 | 12212 | 5644 | 498 | 653 | 566 | 59 | 18 | 0 | 0 | 0 | 0 | 0 | 1295 |
| 1964 | 0 | 48 | 250523 | 86368 | 8166 | 4689 | 2283 | 286 | 236 | 231 | 25 | 0 | 0 | 0 | 0 | 0 | 777 |
| 1965 | 0 | 2636 | 3445 | 335396 | 23479 | 4063 | 1852 | 446 | 107 | 90 | 41 | 0 | 0 | 0 | 0 | 0 | 684 |
| 1966 | 0 | 12976 | 6724 | 4250 | 372535 | 9188 | 1018 | 599 | 165 | 90 | 23 | 2 | 0 | 0 | 0 | 0 | 878 |
| 1967 | 0 | 54953 | 33894 | 3845 | 3345 | 174011 | 2421 | 215 | 216 | 57 | 34 | 0 | 0 | 0 | 0 | 0 | 521 |
| 1968 | 0 | 18443 | 139035 | 14557 | 1806 | 2495 | 45047 | 324 | 40 | 13 | 5 | 0 | 0 | 0 | 0 | 0 | 382 |
| 1969 | 0 | 139 | 713860 | 166997 | 6542 | 2014 | 2381 | 18876 | 200 | 24 | 7 | 0 | 0 | 0 | 0 | 0 | 19107 |
| 1970 | 0 | 2259 | 51861 | 1133133 | 50823 | 1012 | 1131 | 254 | 5954 | 67 | 11 | 19 | 0 | 0 | 0 | 0 | 6305 |
| 1971 | 0 | 34019 | 25862 | 35168 | 369443 | 10006 | 455 | 195 | 147 | 1592 | 160 | 3 | 5 | 0 | 0 | 0 | 2102 |
| 1972 | 0 | 12778 | 207267 | 33215 | 19853 | 156344 | 3550 | 190 | 34 | 27 | 408 | 11 | 0 | 0 | 0 | 0 | 670 |
| 1973 | 0 | 6024 | 205717 | 193852 | 5829 | 4238 | 39336 | 1257 | 108 | 29 | 109 | 49 | 5 | 0 | 0 | 0 | 1556 |
| 1974 | 0 | 23993 | 52416 | 227998 | 46793 | 1785 | 1232 | 10693 | 242 | 23 | 32 | 4 | 5 | 0 | 0 | 0 | 10999 |
| 1975 | 0 | 24144 | 200961 | 38295 | 90302 | 15524 | 978 | 620 | 2709 | 266 | 63 | 11 | 0 | 8 | 0 | 0 | 3677 |
| 1976 | 0 | 2301 | 223465 | 142803 | 9721 | 28103 | 4978 | 206 | 76 | 759 | 60 | 3 | 0 | 0 | 0 | 0 | 1106 |
| 1977 | 0 | 8484 | 31741 | 249285 | 37092 | 4057 | 6021 | 1300 | 135 | 29 | 200 | 3 | 0 | 1 | 0 | 0 | 1668 |
| 1978 | 0 | 12883 | 54630 | 25305 | 100036 | 8568 | 1152 | 2070 | 402 | 116 | 15 | 64 | 13 | 2 | 0 | 0 | 2682 |
| 1979 | 0 | 14009 | 110008 | 36486 | 7284 | 27543 | 2219 | 262 | 483 | 152 | 54 | 12 | 11 | 1 | 0 | 0 | 976 |
| 1980 | 0 | 8982 | 141895 | 61901 | 9063 | 1843 | 7975 | 591 | 121 | 161 | 75 | 31 | 9 | 3 | 1 | 0 | 994 |
| 1981 | 0 | 1759 | 153466 | 112407 | 14679 | 2025 | 455 | 2498 | 125 | 64 | 23 | 30 | 4 | 1 | 3 | 0 | 2748 |
| 1982 | 0 | 7373 | 38819 | 236209 | 37728 | 2913 | 713 | 279 | 784 | 30 | 15 | 7 | 2 | 2 | 0 | 0 | 1119 |
| 1983 | 0 | 7101 | 109201 | 52566 | 117819 | 15760 | 1603 | 297 | 61 | 190 | 53 | 6 | 4 | 4 | 0 | 0 | 616 |
| 1984 | 0 | 19501 | 75963 | 104651 | 21372 | 31874 | 3788 | 596 | 84 | 41 | 112 | 16 | 5 | 1 | 1 | 0 | 857 |
| 1985 | 0 | 2120 | 248125 | 70806 | 36734 | 5076 | 7329 | 965 | 212 | 52 | 21 | 88 | 4 | 0 | 0 | 0 | 1343 |
| 1986 | 0 | 12132 | 62362 | 261225 | 27548 | 9671 | 1237 | 1810 | 237 | 117 | 49 | 32 | 36 | 13 | 4 | 1 | 2298 |
| 1987 | 0 | 6896 | 113196 | 37763 | 66221 | 4760 | 2877 | 545 | 778 | 135 | 36 | 50 | 27 | 29 | 5 | 8 | 1613 |
| 1988 | 0 | 1524 | 146403 | 76925 | 12024 | 18310 | 1602 | 639 | 166 | 141 | 50 | 18 | 11 | 10 | 15 | 1 | 1051 |
| 1989 | 0 | 4519 | 16387 | 128051 | 16762 | 2574 | 3916 | 498 | 199 | 83 | 30 | 13 | 6 | 2 | 2 | 1 | 835 |
| 1990 | 0 | 5493 | 43168 | 14338 | 45015 | 3269 | 775 | 1242 | 202 | 78 | 41 | 11 | 11 | 1 | 4 | 2 | 1592 |
| 1991 | 0 | 19482 | 46902 | 21841 | 3812 | 12337 | 976 | 401 | 614 | 148 | 54 | 6 | 5 | 1 | 2 | 1 | 1231 |
| 1992 | 0 | 2853 | 117953 | 28828 | 6485 | 1247 | 4779 | 454 | 300 | 293 | 124 | 22 | 6 | 2 | 0 | 0 | 1203 |
| 1993 | 0 | 2488 | 77820 | 86806 | 6976 | 1686 | 450 | 1119 | 146 | 103 | 144 | 59 | 3 | 2 | 0 | 0 | 1575 |
| 1994 | 0 | 467 | 69457 | 70354 | 27587 | 1860 | 524 | 191 | 509 | 115 | 32 | 27 | 25 | 5 | 0 | 0 | 905 |
| 1995 | 0 | 1870 | 29177 | 101663 | 24715 | 7565 | 511 | 127 | 45 | 62 | 19 | 8 | 6 | 2 | 1 | 0 | 269 |
| 1996 | 0 | 742 | 74892 | 36685 | 47168 | 7501 | 3052 | 756 | 52 | 31 | 25 | 5 | 8 | 3 | 1 | 0 | 882 |
| 1997 | 0 | 1409 | 23943 | 123178 | 14028 | 15208 | 1892 | 679 | 62 | 15 | 12 | 4 | 4 | 4 | 2 | 0 | 782 |
| 1998 | 0 | 822 | 38321 | 36736 | 92738 | 5607 | 3543 | 472 | 140 | 14 | 6 | 5 | 2 | 2 | 1 | 1 | 643 |
| 1999 | 0 | 994 | 25856 | 53192 | 23301 | 37630 | 2155 | 1595 | 342 | 41 | 6 | 2 | 1 | 1 | 0 | 0 | 1988 |
| 2000 | 0 | 4750 | 30316 | 28653 | 23407 | 5873 | 8644 | 560 | 234 | 32 | 12 | 2 | 1 | 1 | 0 | 0 | 842 |
| 2001 | 0 | 611 | 67196 | 16117 | 7406 | 3929 | 1561 | 1295 | 191 | 64 | 17 | 3 | 1 | 0 | 0 | 0 | 1571 |
| 2002 | 0 | 639 | 13666 | 111346 | 5640 | 2004 | 1066 | 419 | 458 | 265 | 15 | 8 | 5 | 0 | 0 | 0 | 1171 |
| 2003 | 0 | 32 | 1091 | 13925 | 73059 | 1920 | 571 | 270 | 109 | 89 | 38 | 5 | 1 | 0 | 0 | 0 | 513 |

Table 4.2.5. Haddock in Sub-Area IV and Division IIII. Discards catch-at-age data (North Sea only). Data used in the assessment are highlighted in bold.

| Disc | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 7+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1963 | 42 | 1047925 | 193718 | 3476 | 708 | 51 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1964 | 2395 | 4182 | 623111 | 13597 | 262 | 21 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1965 | 5307 | 110628 | 4020 | 130369 | 3641 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1966 | 7880 | 444111 | 12388 | 1166 | 24114 | 35 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1967 | 6250 | 389691 | 49635 | 863 | 216 | 1576 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1968 | 39 | 615649 | 219022 | 3006 | 94 | 15 | 186 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1969 | 1732 | 5152 | 1158445 | 37686 | 420 | 16 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1970 | 51717 | 92978 | 77992 | 289679 | 2640 | 13 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1971 | 7586 | 1205838 | 35117 | 8960 | 24590 | 66 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1972 | 4231 | 424657 | 322547 | 6353 | 1212 | 1212 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1973 | 18540 | 241423 | 352310 | 46740 | 352 | 33 | 123 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1974 | 24758 | 915157 | 90904 | 57011 | 2814 | 6 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1975 | 630 | 1478590 | 353422 | 15781 | 13388 | 143 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1976 | 2191 | 98420 | 648662 | 38317 | 183 | 137 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1977 | 11812 | 95090 | 44918 | 73431 | 605 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1978 | 5250 | 316339 | 80219 | 4207 | 12085 | 72 | 106 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1979 | 1824 | 205555 | 75517 | 3232 | 34 | 84 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1980 | 644 | 369727 | 168124 | 2346 | 39 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1981 | 1509 | 33434 | 237524 | 25928 | 86 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1982 | 3703 | 93865 | 31915 | 49462 | 1845 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1983 | 151108 | 85338 | 128171 | 15966 | 7112 | 717 | 105 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1984 | 2915 | 314421 | 80803 | 13430 | 327 | 240 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1985 | 17501 | 165086 | 267747 | 6088 | 149 | 4 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1986 | 23807 | 108204 | 114606 | 61612 | 31 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1987 | 1166 | 188582 | 133010 | 9320 | 1506 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1988 | 1528 | 24588 | 325259 | 9684 | 788 | 67 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1989 | 1790 | 40211 | 16959 | 51491 | 814 | 20 | 42 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1990 | 52477 | 68625 | 56359 | 3977 | 10190 | 235 | 77 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1991 | 7001 | 182162 | 27942 | 725 | 27 | 145 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1992 | 29056 | 110995 | 123961 | 3298 | 38 | 0 | 65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1993 | 16715 | 235123 | 170794 | 18375 | 48 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1994 | 16059 | 82033 | 217538 | 29100 | 1862 | 53 | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1995 | 3228 | 191807 | 54448 | 65250 | 1095 | 79 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1996 | 3968 | 35340 | 275597 | 16870 | 7872 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1997 | 7162 | 85588 | 50976 | 85664 | 1061 | 182 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1998 | 3132 | 72793 | 112075 | 10165 | 13766 | 71 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1999 | 14588 | 69196 | 90861 | 31119 | 1094 | 2064 | 180 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2000 | 2474 | 272894 | 36568 | 12614 | 2764 | 148 | 64 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2001 | 545 | 61878 | 529908 | 6100 | 1446 | 186 | 0 | 10 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 |
| 2002 | 946 | 3872 | 48189 | 127212 | 403 | 8 | 0 | 130 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 130 |
| 2003 | 1987 | 12601 | 10930 | 29535 | 34480 | 37 | 31 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |

Table 4.2.6. Haddock in Sub-Area IV and Division IIIa. Industrial bycatch catch-at-age data (North Sea only). Data used in the assessment are highlighted in bold.

| Ind BC | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 7+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1963 | 1325 | 231900 | 23190 | 795 | 106 | 85 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1964 | 137840 | 3205 | 423136 | 35262 | 641 | 641 | 112 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1965 | 647230 | 255329 | 7719 | 184075 | 2375 | 594 | 119 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| 1966 | 1663325 | 550235 | 6562 | 1009 | 15901 | 757 | 25 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 1967 | 299787 | 393545 | 5554 | 156 | 24 | 2269 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1968 | 11107 | 464656 | 81454 | 2036 | 46 | 19 | 740 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1969 | 70938 | 15201 | 1706305 | 98806 | 633 | 380 | 126 | 253 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 253 |
| 1970 | 874052 | 171142 | 88628 | 485924 | 3972 | 153 | 61 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 1971 | 325810 | 575197 | 10056 | 3419 | 6435 | 302 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1972 | 239844 | 241771 | 57776 | 1037 | 148 | 444 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1973 | 42005 | 119383 | 12604 | 11 | 11 | 199 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1974 | 590144 | 281705 | 33021 | 47958 | 4707 | 84 | 115 | 229 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 229 |
| 1975 | 45758 | 614202 | 87373 | 4916 | 5372 | 146 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
| 1976 | 171970 | 69809 | 190817 | 30424 | 48 | 3071 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1977 | 108986 | 155349 | 31016 | 71460 | 2488 | 251 | 254 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1978 | 299865 | 134332 | 12109 | 864 | 1582 | 68 | 7 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| 1979 | 879999 | 131887 | 18520 | 1579 | 88 | 397 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1980 | 398727 | 299790 | 23243 | 8796 | 1375 | 58 | 92 | 7 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 8 |
| 1981 | 644910 | 99277 | 32070 | 4817 | 463 | 6 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1982 | 275003 | 174449 | 15392 | 14225 | 1862 | 494 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1983 | 488707 | 64821 | 14885 | 5387 | 2320 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1984 | 92587 | 98272 | 11507 | 4903 | 380 | 543 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1985 | 122079 | 11672 | 18397 | 1832 | 563 | 226 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1986 | 32696 | 40062 | 1857 | 813 | 106 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1987 | 12217 | 118539 | 4290 | 348 | 138 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1988 | 15007 | 3933 | 19044 | 3332 | 620 | 202 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1989 | 10251 | 2918 | 2013 | 3206 | 530 | 42 | 99 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
| 1990 | 5225 | 12702 | 3494 | 632 | 2625 | 401 | 44 | 138 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 146 |
| 1991 | 116909 | 26909 | 3415 | 631 | 49 | 44 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1992 | 241702 | 96031 | 11373 | 367 | 29 | 3 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1993 | 124495 | 122384 | 14151 | 3240 | 83 | 9 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 |
| 1994 | 69907 | 16759 | 9782 | 1022 | 160 | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1995 | 270461 | 108056 | 2300 | 888 | 65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1996 | 343600 | 17333 | 7453 | 3338 | 107 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1997 | 32920 | 47645 | 11312 | 4451 | 184 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1998 | 20771 | 9942 | 16963 | 2748 | 1562 | 65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1999 | 93667 | 11232 | 4531 | 2932 | 344 | 166 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2000 | 49707 | 73355 | 21740 | 2085 | 186 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2001 | 2965 | 24255 | 35776 | 10127 | 35 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2002 | 49807 | 13889 | 4489 | 3638 | 504 | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2003 | 4145 | 5983 | 2101 | 1285 | 1524 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table 4.2.7. Haddock in Sub-Area IV and Division IIIa. Weight-at-age data from the total catch in the North Sea, which are also used as stock weights-at-age. Data used in the assessment are highlighted in bold.

| CWt catch | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 7+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1963 | 0.012 | 0.123 | 0.253 | 0.473 | 0.695 | 0.807 | 1.004 | 1.131 | 1.173 | 1.576 | 1.825 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.179 |
| 1964 | 0.011 | 0.118 | 0.239 | 0.403 | 0.664 | 0.814 | 0.908 | 1.382 | 1.148 | 1.470 | 1.781 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.350 |
| 1965 | 0.010 | 0.069 | 0.225 | 0.366 | 0.648 | 0.844 | 1.193 | 1.173 | 1.482 | 1.707 | 2.239 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.353 |
| 1966 | 0.010 | 0.088 | 0.247 | 0.367 | 0.533 | 0.949 | 1.266 | 1.525 | 1.938 | 1.727 | 2.963 | 2.040 | 0.000 | 0.000 | 0.000 | 0.000 | 1.662 |
| 1967 | 0.011 | 0.115 | 0.281 | 0.461 | 0.594 | 0.639 | 1.057 | 1.501 | 1.922 | 2.069 | 2.348 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.792 |
| 1968 | 0.010 | 0.125 | 0.253 | 0.510 | 0.731 | 0.857 | 0.837 | 1.606 | 2.260 | 2.702 | 2.073 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.719 |
| 1969 | 0.011 | 0.063 | 0.216 | 0.406 | 0.799 | 0.891 | 1.031 | 1.094 | 2.040 | 3.034 | 3.264 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.107 |
| 1970 | 0.013 | 0.073 | 0.222 | 0.352 | 0.735 | 0.873 | 1.191 | 1.362 | 1.437 | 2.571 | 3.950 | 3.869 | 0.000 | 0.000 | 0.000 | 0.000 | 1.458 |
| 1971 | 0.011 | 0.106 | 0.247 | 0.362 | 0.506 | 0.887 | 1.267 | 1.534 | 1.337 | 1.275 | 1.969 | 4.306 | 3.543 | 0.000 | 0.000 | 0.000 | 1.366 |
| 1972 | 0.024 | 0.115 | 0.243 | 0.388 | 0.506 | 0.606 | 1.000 | 1.366 | 2.241 | 2.006 | 1.651 | 2.899 | 0.000 | 0.000 | 0.000 | 0.000 | 1.635 |
| 1973 | 0.044 | 0.112 | 0.241 | 0.373 | 0.586 | 0.649 | 0.725 | 1.044 | 1.302 | 2.796 | 1.726 | 2.020 | 2.158 | 0.000 | 0.000 | 0.000 | 1.176 |
| 1974 | 0.024 | 0.127 | 0.226 | 0.344 | 0.549 | 0.891 | 0.895 | 0.952 | 1.513 | 2.315 | 2.508 | 4.152 | 2.264 | 0.000 | 0.000 | 0.000 | 0.973 |
| 1975 | 0.020 | 0.100 | 0.242 | 0.357 | 0.450 | 0.680 | 1.245 | 1.124 | 1.093 | 1.720 | 2.217 | 2.854 | 0.000 | 3.426 | 0.000 | 0.000 | 1.173 |
| 1976 | 0.013 | 0.124 | 0.225 | 0.402 | 0.512 | 0.588 | 0.922 | 1.933 | 1.784 | 1.306 | 2.425 | 2.528 | 0.000 | 0.000 | 0.000 | 0.000 | 1.521 |
| 1977 | 0.019 | 0.107 | 0.242 | 0.346 | 0.602 | 0.613 | 0.802 | 1.181 | 1.943 | 2.322 | 1.780 | 3.189 | 0.000 | 4.119 | 0.000 | 0.000 | 1.340 |
| 1978 | 0.011 | 0.142 | 0.255 | 0.420 | 0.442 | 0.719 | 0.745 | 0.955 | 1.398 | 2.124 | 2.867 | 1.849 | 2.454 | 4.782 | 0.000 | 0.000 | 1.114 |
| 1979 | 0.009 | 0.095 | 0.292 | 0.443 | 0.637 | 0.664 | 0.933 | 1.187 | 1.187 | 1.468 | 2.679 | 1.624 | 1.760 | 1.643 | 0.000 | 0.000 | 1.326 |
| 1980 | 0.012 | 0.102 | 0.285 | 0.487 | 0.732 | 1.046 | 0.936 | 1.394 | 1.599 | 1.593 | 1.726 | 3.328 | 1.119 | 3.071 | 3.111 | 0.000 | 1.542 |
| 1981 | 0.009 | 0.074 | 0.264 | 0.477 | 0.745 | 1.147 | 1.479 | 1.180 | 1.634 | 1.764 | 1.554 | 1.492 | 3.389 | 4.273 | 1.981 | 0.000 | 1.226 |
| 1982 | 0.011 | 0.100 | 0.293 | 0.462 | 0.785 | 1.166 | 1.441 | 1.672 | 1.456 | 2.634 | 2.164 | 1.924 | 1.886 | 3.179 | 0.000 | 0.000 | 1.558 |
| 1983 | 0.022 | 0.135 | 0.298 | 0.449 | 0.651 | 0.916 | 1.215 | 1.162 | 1.920 | 1.376 | 1.395 | 1.907 | 2.853 | 4.689 | 0.000 | 0.000 | 1.366 |
| 1984 | 0.010 | 0.141 | 0.302 | 0.489 | 0.671 | 0.805 | 1.097 | 1.100 | 1.868 | 2.425 | 1.972 | 2.247 | 2.422 | 2.822 | 4.995 | 0.000 | 1.389 |
| 1985 | 0.013 | 0.149 | 0.280 | 0.481 | 0.668 | 0.857 | 1.049 | 1.459 | 1.833 | 2.124 | 2.145 | 2.003 | 2.387 | 2.471 | 2.721 | 3.970 | 1.594 |
| 1986 | 0.025 | 0.124 | 0.242 | 0.397 | 0.613 | 0.863 | 1.257 | 1.195 | 1.715 | 1.525 | 2.484 | 2.653 | 2.538 | 3.075 | 2.778 | 2.894 | 1.348 |
| 1987 | 0.007 | 0.116 | 0.267 | 0.407 | 0.615 | 1.029 | 1.276 | 1.433 | 1.529 | 1.877 | 2.054 | 1.940 | 2.471 | 2.411 | 2.996 | 2.638 | 1.592 |
| 1988 | 0.022 | 0.164 | 0.217 | 0.416 | 0.590 | 0.748 | 1.284 | 1.424 | 1.551 | 1.627 | 1.680 | 3.068 | 2.468 | 2.885 | 3.337 | 2.863 | 1.565 |
| 1989 | 0.025 | 0.197 | 0.304 | 0.372 | 0.606 | 0.811 | 0.983 | 1.364 | 1.655 | 1.684 | 2.248 | 2.166 | 2.364 | 2.389 | 2.307 | 1.146 | 1.520 |
| 1990 | 0.042 | 0.190 | 0.292 | 0.435 | 0.476 | 0.775 | 0.968 | 1.152 | 1.521 | 2.037 | 2.653 | 2.530 | 2.392 | 3.444 | 1.852 | 4.731 | 1.296 |
| 1991 | 0.029 | 0.177 | 0.322 | 0.472 | 0.640 | 0.651 | 1.042 | 1.232 | 1.481 | 1.776 | 1.996 | 2.253 | 2.404 | 1.070 | 3.509 | 2.936 | 1.468 |
| 1992 | 0.018 | 0.104 | 0.307 | 0.486 | 0.748 | 1.016 | 0.896 | 1.395 | 1.537 | 1.912 | 1.997 | 2.067 | 2.441 | 1.781 | 0.000 | 0.000 | 1.637 |
| 1993 | 0.010 | 0.113 | 0.282 | 0.447 | 0.680 | 0.894 | 1.173 | 1.102 | 1.592 | 1.737 | 1.920 | 1.718 | 2.274 | 2.516 | 0.000 | 0.000 | 1.288 |
| 1994 | 0.017 | 0.115 | 0.251 | 0.420 | 0.597 | 0.943 | 1.209 | 1.570 | 1.469 | 1.620 | 2.418 | 2.108 | 2.849 | 2.403 | 2.580 | 0.000 | 1.606 |
| 1995 | 0.013 | 0.101 | 0.299 | 0.364 | 0.592 | 0.763 | 1.099 | 1.423 | 1.685 | 1.873 | 1.881 | 2.508 | 1.674 | 1.699 | 2.243 | 0.000 | 1.644 |
| 1996 | 0.018 | 0.121 | 0.247 | 0.390 | 0.483 | 0.780 | 0.870 | 0.846 | 1.833 | 2.025 | 1.623 | 2.393 | 2.369 | 2.598 | 3.439 | 0.000 | 0.999 |
| 1997 | 0.017 | 0.133 | 0.280 | 0.359 | 0.579 | 0.615 | 0.909 | 0.966 | 1.647 | 2.247 | 2.146 | 2.634 | 2.757 | 2.262 | 2.867 | 2.782 | 1.092 |
| 1998 | 0.023 | 0.153 | 0.254 | 0.394 | 0.440 | 0.651 | 0.760 | 1.103 | 1.153 | 1.825 | 2.357 | 2.150 | 2.824 | 2.423 | 2.085 | 2.509 | 1.163 |
| 1999 | 0.022 | 0.168 | 0.243 | 0.361 | 0.473 | 0.498 | 0.680 | 0.782 | 0.749 | 1.247 | 1.559 | 1.913 | 2.232 | 2.392 | 2.912 | 2.225 | 0.791 |
| 2000 | 0.057 | 0.119 | 0.254 | 0.367 | 0.498 | 0.615 | 0.650 | 1.100 | 1.091 | 1.760 | 1.959 | 2.331 | 2.385 | 2.315 | 3.810 | 1.843 | 1.142 |
| 2001 | 0.019 | 0.109 | 0.216 | 0.311 | 0.467 | 0.697 | 0.754 | 0.971 | 1.892 | 1.198 | 2.114 | 2.706 | 3.237 | 2.534 | 1.239 | 3.425 | 1.111 |
| 2002 | 0.016 | 0.096 | 0.264 | 0.326 | 0.530 | 0.736 | 0.924 | 0.846 | 1.423 | 1.941 | 2.368 | 1.840 | 2.349 | 2.762 | 0.000 | 0.000 | 1.302 |
| 2003 | 0.030 | 0.097 | 0.213 | 0.321 | 0.404 | 0.674 | 0.770 | 1.155 | 1.380 | 1.646 | 2.181 | 2.209 | 2.506 | 2.606 | 1.981 | 3.092 | 1.380 |

Table 4.2.8. Weight-at-age data from the HC catch in the North Sea. Data used in the assessment are highlighted in bold.

| CWt HC | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1963 | 0.000 | 0.233 | 0.326 | 0.512 | 0.715 | 0.817 | 1.009 | 1.131 | 1.173 | 1.576 | 1.825 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1964 | 0.000 | 0.221 | 0.313 | 0.459 | 0.695 | 0.870 | 0.934 | 1.386 | 1.148 | 1.470 | 1.781 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1965 | 0.000 | 0.310 | 0.357 | 0.410 | 0.679 | 0.907 | 1.242 | 1.182 | 1.482 | 1.707 | 2.239 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1966 | 0.000 | 0.301 | 0.384 | 0.416 | 0.553 | 0.995 | 1.288 | 1.529 | 1.938 | 1.727 | 2.963 | 2.040 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1967 | 0.000 | 0.260 | 0.404 | 0.510 | 0.614 | 0.645 | 1.063 | 1.501 | 1.922 | 2.069 | 2.348 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1968 | 0.000 | 0.256 | 0.361 | 0.591 | 0.761 | 0.863 | 0.846 | 1.610 | 2.260 | 2.702 | 2.073 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1969 | 0.000 | 0.178 | 0.302 | 0.506 | 0.870 | 0.984 | 1.065 | 1.102 | 2.040 | 3.034 | 3.264 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1970 | 0.000 | 0.242 | 0.310 | 0.403 | 0.786 | 0.949 | 1.235 | 1.370 | 1.437 | 2.571 | 3.950 | 3.869 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1971 | 0.000 | 0.256 | 0.335 | 0.399 | 0.524 | 0.905 | 1.281 | 1.534 | 1.337 | 1.275 | 1.969 | 4.306 | 3.543 | 0.000 | 0.000 | 0.000 |
| 1972 | 0.000 | 0.244 | 0.329 | 0.421 | 0.523 | 0.609 | 1.003 | 1.366 | 2.241 | 2.006 | 1.651 | 2.899 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1973 | 0.000 | 0.225 | 0.315 | 0.406 | 0.606 | 0.663 | 0.726 | 1.044 | 1.302 | 2.796 | 1.726 | 2.020 | 2.158 | 0.000 | 0.000 | 0.000 |
| 1974 | 0.000 | 0.275 | 0.320 | 0.389 | 0.585 | 0.908 | 0.954 | 0.963 | 1.513 | 2.315 | 2.508 | 4.152 | 2.264 | 0.000 | 0.000 | 0.000 |
| 1975 | 0.000 | 0.258 | 0.345 | 0.408 | 0.487 | 0.686 | 1.248 | 1.124 | 1.094 | 1.720 | 2.217 | 2.854 | 0.000 | 3.426 | 0.000 | 0.000 |
| 1976 | 0.000 | 0.250 | 0.344 | 0.467 | 0.516 | 0.614 | 0.923 | 1.933 | 1.784 | 1.306 | 2.425 | 2.528 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1977 | 0.000 | 0.286 | 0.362 | 0.396 | 0.614 | 0.630 | 0.817 | 1.181 | 1.943 | 2.322 | 1.780 | 3.189 | 0.000 | 4.119 | 0.000 | 0.000 |
| 1978 | 0.000 | 0.275 | 0.356 | 0.457 | 0.470 | 0.725 | 0.789 | 0.956 | 1.398 | 2.124 | 2.868 | 1.849 | 2.454 | 4.782 | 0.000 | 0.000 |
| 1979 | 0.000 | 0.274 | 0.361 | 0.468 | 0.642 | 0.668 | 0.935 | 1.187 | 1.187 | 1.468 | 2.679 | 1.624 | 1.760 | 1.643 | 0.000 | 0.000 |
| 1980 | 0.000 | 0.299 | 0.367 | 0.526 | 0.750 | 1.056 | 0.934 | 1.392 | 1.599 | 1.592 | 1.726 | 3.328 | 1.119 | 3.071 | 3.111 | 0.000 |
| 1981 | 0.000 | 0.339 | 0.385 | 0.525 | 0.754 | 1.149 | 1.481 | 1.180 | 1.634 | 1.764 | 1.554 | 1.492 | 3.389 | 4.273 | 1.981 | 0.000 |
| 1982 | 0.000 | 0.300 | 0.364 | 0.507 | 0.818 | 1.237 | 1.441 | 1.672 | 1.456 | 2.634 | 2.164 | 1.924 | 1.886 | 3.179 | 0.000 | 0.000 |
| 1983 | 0.000 | 0.312 | 0.387 | 0.482 | 0.663 | 0.925 | 1.243 | 1.162 | 1.920 | 1.376 | 1.395 | 1.907 | 2.853 | 4.689 | 0.000 | 0.000 |
| 1984 | 0.000 | 0.281 | 0.376 | 0.515 | 0.677 | 0.810 | 1.097 | 1.100 | 1.868 | 2.425 | 1.972 | 2.247 | 2.422 | 2.822 | 4.995 | 0.000 |
| 1985 | 0.000 | 0.277 | 0.359 | 0.502 | 0.671 | 0.871 | 1.051 | 1.459 | 1.833 | 2.124 | 2.145 | 2.003 | 2.387 | 2.471 | 2.721 | 3.970 |
| 1986 | 0.000 | 0.276 | 0.351 | 0.433 | 0.613 | 0.863 | 1.257 | 1.195 | 1.715 | 1.525 | 2.484 | 2.653 | 2.538 | 3.075 | 2.778 | 2.894 |
| 1987 | 0.000 | 0.274 | 0.345 | 0.451 | 0.622 | 1.029 | 1.276 | 1.433 | 1.529 | 1.877 | 2.054 | 1.940 | 2.471 | 2.411 | 2.996 | 2.638 |
| 1988 | 0.000 | 0.258 | 0.324 | 0.445 | 0.619 | 0.752 | 1.284 | 1.424 | 1.551 | 1.627 | 1.680 | 3.068 | 2.468 | 2.885 | 3.337 | 2.863 |
| 1989 | 0.000 | 0.310 | 0.388 | 0.415 | 0.617 | 0.810 | 0.982 | 1.361 | 1.653 | 1.684 | 2.236 | 2.166 | 2.364 | 2.389 | 2.307 | 1.146 |
| 1990 | 0.000 | 0.308 | 0.379 | 0.484 | 0.516 | 0.802 | 1.039 | 1.191 | 1.543 | 2.037 | 2.653 | 2.530 | 2.392 | 3.444 | 1.852 | 4.731 |
| 1991 | 0.000 | 0.319 | 0.377 | 0.480 | 0.643 | 0.653 | 1.042 | 1.232 | 1.481 | 1.776 | 1.996 | 2.253 | 2.404 | 1.070 | 3.509 | 2.936 |
| 1992 | 0.000 | 0.336 | 0.379 | 0.510 | 0.751 | 1.017 | 0.904 | 1.395 | 1.538 | 1.912 | 1.997 | 2.067 | 2.441 | 1.781 | 0.000 | 0.000 |
| 1993 | 0.000 | 0.326 | 0.393 | 0.483 | 0.684 | 0.896 | 1.173 | 1.111 | 1.592 | 1.737 | 1.920 | 1.718 | 2.274 | 2.516 | 0.000 | 0.000 |
| 1994 | 0.000 | 0.288 | 0.390 | 0.482 | 0.617 | 0.962 | 1.296 | 1.570 | 1.469 | 1.620 | 2.418 | 2.108 | 2.849 | 2.403 | 2.580 | 0.000 |
| 1995 | 0.000 | 0.312 | 0.396 | 0.421 | 0.603 | 0.767 | 1.099 | 1.423 | 1.685 | 1.873 | 1.881 | 2.508 | 1.674 | 1.699 | 2.243 | 0.000 |
| 1996 | 0.000 | 0.342 | 0.359 | 0.462 | 0.515 | 0.780 | 0.870 | 0.846 | 1.833 | 2.025 | 1.623 | 2.393 | 2.369 | 2.598 | 3.439 | 0.000 |
| 1997 | 0.000 | 0.333 | 0.396 | 0.412 | 0.601 | 0.618 | 0.909 | 0.966 | 1.647 | 2.247 | 2.146 | 2.634 | 2.757 | 2.262 | 2.867 | 2.782 |
| 1998 | 0.000 | 0.263 | 0.361 | 0.429 | 0.460 | 0.657 | 0.762 | 1.103 | 1.153 | 1.825 | 2.357 | 2.150 | 2.824 | 2.423 | 2.085 | 2.509 |
| 1999 | 0.000 | 0.286 | 0.347 | 0.416 | 0.482 | 0.510 | 0.717 | 0.782 | 0.749 | 1.247 | 1.559 | 1.913 | 2.232 | 2.392 | 2.912 | 2.225 |
| 2000 | 0.000 | 0.298 | 0.366 | 0.419 | 0.520 | 0.622 | 0.653 | 1.100 | 1.091 | 1.760 | 1.959 | 2.331 | 2.385 | 2.315 | 3.810 | 1.843 |
| 2001 | 0.000 | 0.378 | 0.348 | 0.439 | 0.498 | 0.714 | 0.754 | 0.976 | 1.922 | 1.198 | 2.114 | 2.706 | 3.237 | 2.534 | 1.239 | 3.425 |
| 2002 | 0.000 | 0.356 | 0.427 | 0.393 | 0.556 | 0.742 | 0.924 | 0.997 | 1.423 | 1.941 | 2.368 | 1.840 | 2.349 | 2.762 | 0.000 | 0.000 |
| 2003 | 0.000 | 0.311 | 0.424 | 0.450 | 0.439 | 0.679 | 0.777 | 1.156 | 1.382 | 1.647 | 2.181 | 2.209 | 2.506 | 2.606 | 1.981 | 3.092 |

Table 4.2.9. Haddock in Sub-Area IV and Division IIIa. Weight-at-age data from the Discards catch in the North Sea. Data used in the assessment are highlighted in bold.

| CWt disc | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1963 | 0.064 | 0.139 | 0.218 | 0.327 | 0.397 | 0.321 | 0.321 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1964 | 0.065 | 0.177 | 0.249 | 0.306 | 0.337 | 0.321 | 0.321 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1965 | 0.064 | 0.131 | 0.200 | 0.341 | 0.613 | 0.321 | 0.321 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1966 | 0.063 | 0.141 | 0.208 | 0.244 | 0.310 | 0.321 | 0.321 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1967 | 0.064 | 0.171 | 0.209 | 0.274 | 0.306 | 0.321 | 0.321 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1968 | 0.063 | 0.186 | 0.212 | 0.256 | 0.318 | 0.321 | 0.321 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1969 | 0.064 | 0.129 | 0.216 | 0.237 | 0.301 | 0.321 | 0.321 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1970 | 0.063 | 0.129 | 0.210 | 0.238 | 0.263 | 0.321 | 0.321 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1971 | 0.063 | 0.134 | 0.201 | 0.242 | 0.263 | 0.321 | 0.321 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1972 | 0.063 | 0.139 | 0.206 | 0.237 | 0.261 | 0.321 | 0.321 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1973 | 0.063 | 0.131 | 0.201 | 0.235 | 0.263 | 0.321 | 0.321 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1974 | 0.062 | 0.145 | 0.200 | 0.233 | 0.259 | 0.321 | 0.321 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1975 | 0.050 | 0.123 | 0.200 | 0.257 | 0.275 | 0.348 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1976 | 0.079 | 0.176 | 0.197 | 0.237 | 0.292 | 0.337 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1977 | 0.071 | 0.196 | 0.197 | 0.216 | 0.309 | 0.347 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1978 | 0.037 | 0.180 | 0.199 | 0.222 | 0.224 | 0.265 | 0.284 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1979 | 0.053 | 0.118 | 0.219 | 0.242 | 0.259 | 0.340 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1980 | 0.051 | 0.149 | 0.231 | 0.274 | 0.324 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1981 | 0.073 | 0.160 | 0.198 | 0.290 | 0.650 | 0.727 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1982 | 0.072 | 0.197 | 0.248 | 0.271 | 0.264 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1983 | 0.067 | 0.187 | 0.237 | 0.347 | 0.476 | 0.711 | 0.792 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1984 | 0.046 | 0.162 | 0.245 | 0.317 | 0.300 | 0.314 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1985 | 0.040 | 0.155 | 0.214 | 0.264 | 0.336 | 0.423 | 0.421 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1986 | 0.045 | 0.138 | 0.184 | 0.245 | 0.408 | 0.329 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1987 | 0.023 | 0.159 | 0.200 | 0.225 | 0.287 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1988 | 0.063 | 0.172 | 0.170 | 0.238 | 0.254 | 0.360 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1989 | 0.085 | 0.187 | 0.229 | 0.268 | 0.335 | 0.708 | 0.844 | 0.000 | 2.572 | 0.000 | 3.048 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1990 | 0.046 | 0.196 | 0.229 | 0.249 | 0.266 | 0.290 | 0.333 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1991 | 0.065 | 0.179 | 0.243 | 0.344 | 0.464 | 0.493 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1992 | 0.043 | 0.137 | 0.246 | 0.286 | 0.347 | 0.000 | 0.415 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1993 | 0.027 | 0.142 | 0.237 | 0.287 | 0.344 | 0.369 | 0.000 | 0.369 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1994 | 0.044 | 0.126 | 0.211 | 0.269 | 0.306 | 0.304 | 0.270 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1995 | 0.064 | 0.131 | 0.251 | 0.275 | 0.363 | 0.384 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1996 | 0.046 | 0.138 | 0.219 | 0.279 | 0.297 | 0.358 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1997 | 0.063 | 0.161 | 0.254 | 0.286 | 0.321 | 0.385 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1998 | 0.041 | 0.162 | 0.231 | 0.293 | 0.315 | 0.391 | 0.428 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1999 | 0.049 | 0.183 | 0.217 | 0.273 | 0.307 | 0.304 | 0.250 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2000 | 0.030 | 0.129 | 0.246 | 0.281 | 0.319 | 0.355 | 0.287 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2001 | 0.045 | 0.116 | 0.205 | 0.307 | 0.308 | 0.364 | 0.000 | 0.411 | 0.416 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2002 | 0.042 | 0.166 | 0.226 | 0.268 | 0.352 | 0.378 | 0.000 | 0.357 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2003 | 0.067 | 0.128 | 0.223 | 0.265 | 0.332 | 0.536 | 0.654 | 0.951 | 0.946 | 1.154 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

Table 4.2.10. Haddock in Sub-Area IV and Division IIIa. Weight-at-age data from the industrial bycatch in the North Sea. Data used in the assessment are highlighted in bold.

| CWt Ind BC | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1963 | 0.010 | 0.040 | 0.180 | 0.302 | 0.400 | 0.420 | 0.440 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1964 | 0.010 | 0.040 | 0.180 | 0.302 | 0.400 | 0.420 | 0.440 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1965 | 0.010 | 0.040 | 0.180 | 0.302 | 0.400 | 0.420 | 0.440 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1966 | 0.010 | 0.040 | 0.180 | 0.302 | 0.400 | 0.420 | 0.440 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1967 | 0.010 | 0.040 | 0.180 | 0.302 | 0.400 | 0.420 | 0.440 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1968 | 0.010 | 0.040 | 0.180 | 0.302 | 0.400 | 0.420 | 0.440 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1969 | 0.010 | 0.040 | 0.180 | 0.302 | 0.400 | 0.420 | 0.440 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1970 | 0.010 | 0.040 | 0.180 | 0.302 | 0.400 | 0.420 | 0.440 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1971 | 0.010 | 0.040 | 0.180 | 0.302 | 0.400 | 0.420 | 0.440 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1972 | 0.023 | 0.067 | 0.136 | 0.255 | 0.288 | 0.231 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1973 | 0.035 | 0.068 | 0.141 | 0.246 | 0.327 | 0.396 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1974 | 0.022 | 0.058 | 0.150 | 0.260 | 0.359 | 0.579 | 0.277 | 0.447 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1975 | 0.020 | 0.039 | 0.173 | 0.275 | 0.267 | 0.413 | 0.585 | 0.000 | 0.585 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1976 | 0.012 | 0.046 | 0.181 | 0.304 | 0.473 | 0.360 | 0.725 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1977 | 0.013 | 0.042 | 0.184 | 0.307 | 0.490 | 0.352 | 0.442 | 1.234 | 1.315 | 1.319 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1978 | 0.011 | 0.040 | 0.174 | 0.286 | 0.372 | 0.473 | 0.411 | 0.456 | 1.315 | 0.000 | 1.400 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1979 | 0.009 | 0.039 | 0.177 | 0.285 | 0.384 | 0.461 | 0.735 | 1.234 | 1.315 | 0.000 | 1.400 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1980 | 0.012 | 0.039 | 0.176 | 0.268 | 0.623 | 0.722 | 1.102 | 1.591 | 0.000 | 1.796 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1981 | 0.009 | 0.040 | 0.176 | 0.371 | 0.467 | 0.858 | 1.200 | 1.234 | 1.315 | 1.319 | 1.400 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1982 | 0.010 | 0.040 | 0.206 | 0.379 | 0.636 | 0.751 | 1.225 | 1.233 | 1.315 | 1.319 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1983 | 0.008 | 0.047 | 0.173 | 0.428 | 0.584 | 1.006 | 1.225 | 1.234 | 1.315 | 1.319 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1984 | 0.009 | 0.045 | 0.211 | 0.414 | 0.626 | 0.751 | 1.225 | 1.234 | 1.315 | 1.319 | 1.400 | 1.400 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1985 | 0.009 | 0.043 | 0.186 | 0.371 | 0.550 | 0.563 | 0.565 | 1.234 | 1.315 | 1.319 | 1.400 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1986 | 0.010 | 0.040 | 0.186 | 0.375 | 0.626 | 1.259 | 1.225 | 1.234 | 1.315 | 1.319 | 1.400 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1987 | 0.006 | 0.038 | 0.258 | 0.442 | 0.908 | 1.171 | 1.225 | 1.234 | 1.315 | 1.319 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1988 | 0.018 | 0.077 | 0.196 | 0.274 | 0.455 | 0.549 | 1.225 | 1.234 | 1.315 | 1.319 | 1.400 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1989 | 0.015 | 0.165 | 0.251 | 0.347 | 0.670 | 0.923 | 1.065 | 1.492 | 1.315 | 0.000 | 1.400 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1990 | 0.005 | 0.104 | 0.229 | 0.506 | 0.609 | 0.842 | 0.829 | 0.796 | 0.956 | 1.319 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1991 | 0.027 | 0.058 | 0.206 | 0.357 | 0.472 | 0.477 | 1.225 | 1.234 | 1.315 | 1.319 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1992 | 0.015 | 0.059 | 0.217 | 0.422 | 0.552 | 0.615 | 0.548 | 1.234 | 0.621 | 0.820 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1993 | 0.008 | 0.053 | 0.206 | 0.399 | 0.521 | 0.578 | 1.225 | 0.582 | 1.315 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1994 | 0.011 | 0.055 | 0.155 | 0.435 | 0.595 | 0.698 | 0.490 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1995 | 0.012 | 0.045 | 0.193 | 0.285 | 0.387 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1996 | 0.018 | 0.077 | 0.136 | 0.162 | 0.264 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1997 | 0.007 | 0.076 | 0.149 | 0.309 | 0.419 | 0.601 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1998 | 0.020 | 0.075 | 0.166 | 0.291 | 0.351 | 0.453 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1999 | 0.018 | 0.064 | 0.177 | 0.304 | 0.416 | 0.309 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2000 | 0.058 | 0.070 | 0.113 | 0.176 | 0.370 | 0.203 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2001 | 0.014 | 0.086 | 0.133 | 0.110 | 0.353 | 0.431 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2002 | 0.016 | 0.064 | 0.178 | 0.283 | 0.374 | 0.431 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2003 | 0.012 | 0.031 | 0.056 | 0.231 | 0.326 | 0.339 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

Table 4.2.11. Haddock in Sub-Area IV and Division IIIa. Auxiliary data available for calibration of the assessment. Data used in the assessment are highlighted in bold.

English Groundfish Survey, age $0-7+$. Survey period: 0.5-0.75

|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| ENG_GFS | effort | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 1977 | 100 | 53.480 | 6.681 | 3.206 | 6.163 | 0.925 | 0.072 | 0.091 | 0.013 |
| 1978 | 100 | 35.827 | 13.688 | 2.617 | 0.239 | 2.220 | 0.214 | 0.005 | 0.074 |
| 1979 | 100 | 87.551 | 29.554 | 5.461 | 0.872 | 0.109 | 0.437 | 0.035 | 0.004 |
| 1980 | 100 | 37.402 | 62.331 | 16.731 | 2.570 | 0.273 | 0.043 | 0.142 | 0.022 |
| 1981 | 100 | 153.746 | 17.319 | 43.910 | 7.557 | 0.742 | 0.064 | 0.003 | 0.060 |
| 1982 | 100 | 28.134 | 31.547 | 7.979 | 11.800 | 1.026 | 0.236 | 0.098 | 0.014 |
| 1983 | 100 | 83.193 | 21.821 | 10.952 | 2.143 | 2.174 | 0.266 | 0.041 | 0.014 |
| 1984 | 100 | 22.846 | 59.933 | 6.159 | 3.078 | 0.417 | 0.478 | 0.103 | 0.013 |
| 1985 | 100 | 24.587 | 18.656 | 23.819 | 2.111 | 0.698 | 0.196 | 0.128 | 0.041 |
| 1986 | 100 | 26.600 | 14.973 | 4.472 | 3.383 | 0.278 | 0.175 | 0.038 | 0.036 |
| 1987 | 100 | 2.241 | 28.193 | 4.310 | 0.533 | 0.687 | 0.048 | 0.033 | 0.003 |
| 1988 | 100 | 6.074 | 2.856 | 18.353 | 1.549 | 0.160 | 0.279 | 0.040 | 0.012 |
| 1989 | 100 | 9.429 | 8.168 | 1.446 | 3.968 | 0.252 | 0.030 | 0.060 | 0.014 |
| 1990 | 100 | 28.188 | 6.645 | 1.983 | 0.286 | 0.878 | 0.048 | 0.027 | 0.013 |
| 1991 | 100 | 26.333 | 11.505 | 0.961 | 0.231 | 0.048 | 0.219 | 0.005 | 0.006 |
| $\mathbf{1 9 9 2}$ | $\mathbf{1 0 0}$ | $\mathbf{8 2 . 7 7 4}$ | $\mathbf{1 9 . 6 8 8}$ | $\mathbf{9 . 7 7 4}$ | $\mathbf{0 . 5 8 4}$ | $\mathbf{0 . 0 4 9}$ | $\mathbf{0 . 0 1 2}$ | 0.084 | 0.004 |
| $\mathbf{1 9 9 3}$ | $\mathbf{1 0 0}$ | $\mathbf{1 3 . 5 7 8}$ | $\mathbf{2 4 . 6 0 9}$ | 5.859 | $\mathbf{1 . 6 6 5}$ | $\mathbf{0 . 0 5 9}$ | $\mathbf{0 . 0 1 7}$ | 0.000 | 0.009 |
| $\mathbf{1 9 9 4}$ | $\mathbf{1 0 0}$ | $\mathbf{9 4 . 2 9 7}$ | $\mathbf{8 . 0 6 6}$ | $\mathbf{9 . 0 2 0}$ | $\mathbf{0 . 8 3 9}$ | $\mathbf{0 . 2 8 3}$ | $\mathbf{0 . 0 2 0}$ | 0.001 | 0.001 |
| $\mathbf{1 9 9 5}$ | $\mathbf{1 0 0}$ | $\mathbf{1 7 . 9 9 3}$ | $\mathbf{3 8 . 3 1 0}$ | $\mathbf{4 . 4 5 2}$ | $\mathbf{3 . 4 0 3}$ | $\mathbf{0 . 2 7 8}$ | $\mathbf{0 . 0 9 2}$ | 0.007 | 0.000 |
| $\mathbf{1 9 9 6}$ | $\mathbf{1 0 0}$ | $\mathbf{1 9 . 9 1 7}$ | $\mathbf{8 . 3 1 0}$ | $\mathbf{1 4 . 5 7 0}$ | $\mathbf{1 . 2 1 7}$ | $\mathbf{0 . 8 3 0}$ | $\mathbf{0 . 0 7 1}$ | 0.054 | 0.000 |
| $\mathbf{1 9 9 7}$ | $\mathbf{1 0 0}$ | $\mathbf{1 3 . 0 3 2}$ | $\mathbf{1 4 . 8 6 3}$ | $\mathbf{4 . 3 3 4}$ | $\mathbf{6 . 6 0 7}$ | $\mathbf{0 . 2 2 7}$ | $\mathbf{0 . 2 1 6}$ | 0.027 | 0.006 |
| $\mathbf{1 9 9 8}$ | $\mathbf{1 0 0}$ | $\mathbf{5 . 3 0 2}$ | $\mathbf{8 . 8 9 1}$ | $\mathbf{5 . 6 8 1}$ | $\mathbf{1 . 3 4 7}$ | $\mathbf{1 . 4 1 8}$ | $\mathbf{0 . 0 8 3}$ | 0.046 | 0.003 |
| $\mathbf{1 9 9 9}$ | $\mathbf{1 0 0}$ | $\mathbf{2 1 0 . 9 8 4}$ | $\mathbf{5 . 5 7 2}$ | $\mathbf{2 . 8 3 0}$ | $\mathbf{1 . 2 3 3}$ | $\mathbf{0 . 4 2 3}$ | $\mathbf{0 . 4 0 5}$ | 0.014 | 0.012 |
| $\mathbf{2 0 0 0}$ | $\mathbf{1 0 0}$ | $\mathbf{3 1 . 0 2 3}$ | $\mathbf{8 4 . 1 1 2}$ | $\mathbf{1 . 5 2 5}$ | $\mathbf{0 . 5 5 0}$ | $\mathbf{0 . 2 4 7}$ | $\mathbf{0 . 1 1 3}$ | 0.118 | 0.000 |
| $\mathbf{2 0 0 1}$ | $\mathbf{1 0 0}$ | $\mathbf{0 . 3 7 2}$ | $\mathbf{9 . 6 3 5}$ | $\mathbf{3 2 . 4 9 3}$ | $\mathbf{1 . 0 2 3}$ | $\mathbf{0 . 2 7 9}$ | $\mathbf{0 . 1 1 8}$ | 0.045 | 0.019 |
| $\mathbf{2 0 0 2}$ | $\mathbf{1 0 0}$ | $\mathbf{0 . 9 1 9}$ | $\mathbf{1 . 3 2 9}$ | $\mathbf{7 . 5 9 6}$ | $\mathbf{2 0 . 4 0 0}$ | $\mathbf{0 . 1 8 3}$ | $\mathbf{0 . 0 3 3}$ | 0.051 | 0.032 |
| $\mathbf{2 0 0 3}$ | $\mathbf{1 0 0}$ | $\mathbf{1 . 0 7 8}$ | $\mathbf{2 . 0 2 1}$ | $\mathbf{0 . 0 4 2}$ | $\mathbf{4 . 7 0 5}$ | $\mathbf{1 5 . 1 7 7}$ | $\mathbf{0 . 2 4 2}$ | 0.009 | 0.074 |

Scottish Groundfish Survey. Ages 0-5+. Survey period: 0.5-0.75

|  |  | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SCO_GFS | effort | 0 | 1235 | 2488 | 996 | 1336 | 115 |
| 1982 | 10 | 10 | 2203 | 1813 | 1611 | 372 | 455 |
| 1983 | 10 | 873 | 4367 | 788 | 336 | 53 | 65 |
| 1984 | 10 | 818 | 1976 | 2981 | 232 | 103 | 14 |
| 1985 | 10 | 1747 | 2329 | 574 | 598 | 36 | 27 |
| 1986 | 10 | 277 | 2393 | 704 | 106 | 128 | 8 |
| 1987 | 10 | 406 | 467 | 1982 | 170 | 27 | 23 |
| 1988 | 10 | 432 | 886 | 214 | 574 | 31 | 4 |
| 1989 | 10 | 3163 | 1002 | 240 | 32 | 103 | 7 |
| 1990 | 10 | 3471 | 1705 | 178 | 21 | 5 | 16 |
| 1991 | 10 | 8270 | 3832 | 963 | 48 | 8 | 3 |
| 1992 | 10 | 859 | 5836 | 1380 | 269 | 6 | 4 |
| 1993 | 10 | 13762 | 1265 | 2080 | 210 | 53 | 2 |
| 1994 | 10 | 1566 | 8153 | 734 | 926 | 74 | 28 |
| 1995 | 10 | 1980 | 2231 | 4705 | 231 | 206 | 22 |
| 1996 | 10 | 972 | 2779 | 849 | 1397 | 66 | 56 |
| 1997 | 10 | 3280 | 6349 | 1924 | 490 | 511 | 24 |
| 1998 | 10 | 66067 | 1907 | 1141 | 688 | 197 | 164 |
| 1999 | 10 | 11902 | 30611 | 460 | 221 | 130 | 73 |
| 2000 | 10 | 79 | 3790 | 11352 | 179 | 65 | 40 |
| 2001 | 10 | 2149 | 675 | 2632 | 6931 | 70 | 37 |
| 2002 | 10 | 2159 | 1172 | 307 | 2092 | 4344 | 22 |
| 2003 |  |  |  |  |  |  |  |

Table 4.2.11 cont. Haddock in Sub-Area IV and Division IIIa. Auxiliary data available for calibration of the assessment. Data used in the assessment are highlighted in bold.

IBTS Q1 survey, backshifted. Ages 0-5+. Survey period: 0.99-1.00

| IBTS_Q1- | effort | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1966 | 1 | 42.00 | 3.94 | 2.85 | 6.01 | 0.21 | 0.26 |
| 1967 | 1 | 4877.59 | 29.18 | 13.11 | 4.97 | 1.76 | 7.41 |
| 1968 | 1 | 3555.63 | 1600.88 | 159.08 | 46.54 | 21.70 | 24.98 |
| 1969 | 1 | 52.58 | 148.78 | 145.93 | 60.28 | 7.23 | 1.24 |
| 1970 | 1 | 528.51 | 30.02 | 31.80 | 64.81 | 1.10 | 0.23 |
| 1971 | 1 | 395.09 | 258.09 | 32.94 | 4.74 | 9.70 | 0.82 |
| 1972 | 1 | 327.80 | 876.33 | 200.08 | 12.08 | 2.24 | 0.96 |
| 1973 | 1 | 1136.06 | 136.13 | 198.45 | 18.66 | 0.87 | 7.44 |
| 1974 | 1 | 1146.29 | 355.76 | 18.62 | 34.47 | 6.22 | 0.88 |
| 1975 | 1 | 105.00 | 556.39 | 182.89 | 16.47 | 13.72 | 3.23 |
| 1976 | 1 | 139.44 | 66.46 | 134.55 | 16.45 | 1.17 | 1.80 |
| 1977 | 1 | 352.82 | 105.85 | 27.92 | 66.53 | 10.43 | 2.92 |
| 1978 | 1 | 468.16 | 212.41 | 52.46 | 6.70 | 15.32 | 2.61 |
| 1979 | 1 | 863.66 | 388.56 | 86.65 | 10.66 | 2.37 | 5.76 |
| 1980 | 1 | 267.74 | 637.56 | 159.70 | 25.73 | 4.38 | 3.06 |
| 1981 | 1 | 537.59 | 253.00 | 421.86 | 60.26 | 8.05 | 2.16 |
| 1982 | 1 | 308.22 | 402.61 | 89.79 | 115.26 | 12.71 | 1.92 |
| 1983 | 1 | 1067.67 | 221.34 | 130.95 | 20.93 | 21.20 | 4.65 |
| 1984 | 1 | 228.46 | 828.35 | 105.12 | 33.77 | 4.29 | 7.16 |
| 1985 | 1 | 584.54 | 251.14 | 285.87 | 17.22 | 6.03 | 2.06 |
| 1986 | 1 | 917.32 | 328.81 | 47.18 | 61.09 | 4.73 | 2.58 |
| 1987 | 1 | 100.66 | 670.95 | 96.97 | 12.70 | 13.56 | 2.02 |
| 1988 | 1 | 217.62 | 97.39 | 273.66 | 16.79 | 2.14 | 4.70 |
| 1989 | 1 | 217.45 | 139.11 | 33.00 | 50.37 | 3.16 | 1.80 |
| 1990 | 1 | 677.98 | 132.96 | 24.83 | 4.24 | 8.43 | 2.41 |
| 1991 | 1 | 1162.98 | 344.58 | 18.08 | 3.00 | 0.61 | 2.04 |
| 1992 | 1 | 1254.31 | 540.80 | 154.47 | 8.87 | 1.08 | 0.95 |
| 1993 | 1 | 228.73 | 503.86 | 98.30 | 23.29 | 1.56 | 0.79 |
| 1994 | 1 | 1355.49 | 201.07 | 176.17 | 24.34 | 5.31 | 0.80 |
| 1995 | 1 | 267.41 | 813.27 | 65.87 | 46.69 | 7.73 | 3.07 |
| 1996 | 1 | 860.15 | 366.45 | 470.59 | 24.83 | 15.14 | 3.39 |
| 1997 | 1 | 373.58 | 432.33 | 105.51 | 113.69 | 8.65 | 5.36 |
| 1998 | 1 | 211.76 | 232.93 | 129.71 | 48.10 | 36.62 | 4.26 |
| 1999 | 1 | 3702.06 | 107.83 | 49.88 | 25.37 | 15.56 | 10.28 |
| 2000 | 1 | 887.61 | 2279.02 | 47.76 | 10.93 | 7.18 | 5.71 |
| 2001 | 1 | 58.17 | 491.76 | 1392.57 | 9.97 | 7.45 | 4.34 |
| 2002 | 1 | 89.62 | 40.30 | 237.85 | 537.85 | 2.45 | 2.40 |
| 2003 | 1 | 75.68 | 81.96 | 36.88 | 172.92 | 357.71 | 1.98 |

Scottisch Seiners CPUE. Ages 0-13.

| SCO_SEI | fishing | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1978 | 325246 | 1665 | 160843 | 69033 | 14340 | 44152 | 2366 | 482 | 673 | 86 | 29 | 3 | 16 | 6 | 0 |
| 1979 | 316419 | 543 | 83631 | 78815 | 17215 | 3040 | 8073 | 648 | 70 | 113 | 24 | 4 | 1 | 1 | 0 |
| 1980 | 297227 | 210 | 131314 | 128306 | 26205 | 3393 | 501 | 2415 | 123 | 20 | 56 | 23 | 13 | 1 | 1 |
| 1981 | 289672 | 345 | 10367 | 134260 | 55726 | 5181 | 702 | 102 | 579 | 15 | 22 | 1 | 10 | 2 | 0 |
| 1982 | 297730 | 1445 | 31143 | 30969 | 118898 | 14297 | 682 | 145 | 39 | 230 | 1 | 9 | 1 | 0 | 0 |
| 1983 | 333168 | 18101 | 29021 | 77289 | 30414 | 50115 | 6394 | 583 | 119 | 15 | 69 | 26 | 1 | 2 | 0 |
| 1984 | 388085 | 422 | 120868 | 63391 | 49286 | 9426 | 14977 | 1594 | 254 | 18 | 8 | 38 | 3 | 2 | 0 |
| 1985 | 382910 | 2052 | 29239 | 164839 | 33203 | 15993 | 2293 | 2846 | 308 | 47 | 19 | 9 | 28 | 2 | 0 |
| 1986 | 425017 | 8265 | 33999 | 72604 | 155836 | 12895 | 4169 | 490 | 620 | 58 | 11 | 20 | 15 | 11 | 3 |
| 1987 | 418734 | 138 | 43646 | 97731 | 19731 | 28883 | 1989 | 1174 | 199 | 285 | 31 | 16 | 15 | 12 | 7 |
| 1988 | 377132 | 499 | 11576 | 201533 | 37421 | 4736 | 7415 | 718 | 290 | 80 | 70 | 27 | 6 | 6 | 7 |
| 1989 | 355735 | 123 | 19004 | 19274 | 91070 | 8389 | 1091 | 1611 | 223 | 89 | 40 | 13 | 6 | 4 | 1 |
| 1990 | 300076 | 712 | 35844 | 46489 | 9055 | 26705 | 1434 | 302 | 408 | 67 | 29 | 5 | 3 | 0 | 0 |
| 1991 | 336675 | 2226 | 66144 | 30755 | 9531 | 1485 | 5028 | 308 | 122 | 183 | 42 | 11 | 1 | 1 | 0 |
| 1992 | 300217 | 1232 | 30384 | 64733 | 8588 | 1512 | 290 | 1180 | 79 | 57 | 53 | 18 | 4 | 0 | 1 |
| 1993 | 268413 | 2913 | 74523 | 88375 | 34997 | 2349 | 446 | 100 | 314 | 29 | 15 | 14 | 3 | 0 | 1 |
| 1994 | 264738 | 3231 | 26626 | 125357 | 34127 | 10522 | 415 | 138 | 42 | 95 | 9 | 7 | 7 | 2 | 1 |
| 1995 | 204545 | 236 | 67772 | 32301 | 70290 | 8734 | 2181 | 117 | 39 | 13 | 9 | 4 | 2 | 3 | 1 |
| 1996 | 177092 | 1333 | 9192 | 123829 | 18532 | 17077 | 2161 | 707 | 84 | 12 | 8 | 11 | 3 | 2 | 1 |
| 1997 | 166817 | 3109 | 30046 | 19165 | 59309 | 3918 | 4083 | 495 | 195 | 10 | 7 | 2 | 0 | 0 | 2 |
| 1998 | 150361 | 38 | 12692 | 36813 | 12003 | 26564 | 1659 | 856 | 69 | 22 | 4 | 2 | 2 | 0 | 0 |
| 1999 | 93796 | 3466 | 23253 | 35102 | 21991 | 6628 | 11164 | 690 | 456 | 56 | 12 | 0 | 1 | 0 | 0 |
| 2000 | 69505 | 110 | 46422 | 13650 | 8497 | 5610 | 1761 | 2357 | 110 | 41 | 4 | 1 | 0 | 0 | 0 |
| 2001 | 36135 | 60 | 3973 | 91165 | 4469 | 1720 | 799 | 273 | 263 | 27 | 18 | 1 | 1 | 0 | 0 |
| 2002 | 21817 | 14 | 653 | 9269 | 42086 | 1126 | 377 | 187 | 55 | 42 | 15 | 2 | 1 | 0 | 0 |
| 2003 | 15374 | 29 | 395 | 1312 | 8571 | 23778 | 346 | 80 | 32 | 11 | 4 | 5 | 2 | 0 | 0 |

Table 4.2.11 cont. Haddock in Sub-Area IV and Division IIIa. Auxiliary data available for calibration of the assessment. Data used in the assessment are highlighted in bold.

Scottish light trawlers, ages 0-13.

| SCO_LTR | fishing hours | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 | 236929 | 1692 | 45733 | 11471 | 2914 | 12279 | 774 | 110 | 167 | 24 | 4 | 0 | 5 | 1 | 0 |
| 1979 | 287494 | 464 | 44562 | 23135 | 4109 | 714 | 3644 | 203 | 20 | 57 | 20 | 0 | 0 | 1 | 0 |
| 1980 | 333197 | 180 | 92519 | 46282 | 8062 | 755 | 197 | 1015 | 61 | 18 | 8 | 5 | 0 | 0 | 0 |
| 1981 | 251504 | 436 | 7979 | 58146 | 13653 | 1518 | 161 | 20 | 320 | 12 | 6 | 7 | 6 | 0 | 0 |
| 1982 | 250870 | 352 | 24575 | 10170 | 33463 | 3937 | 133 | 67 | 7 | 58 | 0 | 0 | 2 | 0 | 0 |
| 1983 | 244349 | 63676 | 19635 | 48680 | 6955 | 11807 | 1258 | 124 | 27 | 4 | 25 | 7 | 0 | 0 | 2 |
| 1984 | 240725 | 514 | 56769 | 22191 | 13375 | 2074 | 3392 | 402 | 98 | 15 | 7 | 14 | 1 | 0 | 0 |
| 1985 | 268136 | 3548 | 38850 | 57422 | 4913 | 2787 | 414 | 872 | 128 | 27 | 2 | 0 | 18 | 0 | 0 |
| 1986 | 279767 | 4371 | 26322 | 26549 | 32339 | 2797 | 1014 | 124 | 307 | 43 | 37 | 2 | 2 | 2 | 3 |
| 1987 | 351128 | 97 | 26220 | 33648 | 6464 | 7197 | 496 | 377 | 72 | 119 | 27 | 2 | 4 | 3 | 4 |
| 1988 | 391988 | 209 | 2931 | 57589 | 14075 | 2367 | 2924 | 167 | 84 | 28 | 21 | 6 | 0 | 0 | 0 |
| 1989 | 405883 | 1077 | 10415 | 2919 | 24895 | 2754 | 541 | 627 | 109 | 30 | 21 | 7 | 4 | 1 | 1 |
| 1990 | 441084 | 201 | 11886 | 19205 | 2665 | 10237 | 669 | 168 | 264 | 45 | 14 | 5 | 2 | 1 | 0 |
| 1991 | 408056 | 1041 | 44141 | 12394 | 3356 | 564 | 2213 | 226 | 80 | 146 | 38 | 16 | 2 | 1 | 0 |
| 1992 | 473955 | 1838 | 20443 | 31073 | 3889 | 757 | 144 | 766 | 98 | 52 | 58 | 17 | 3 | 1 | 0 |
| 1993 | 447064 | 231 | 39863 | 39176 | 20213 | 1527 | 362 | 84 | 274 | 29 | 27 | 26 | 8 | 2 | 1 |
| 1994 | 480400 | 1482 | 8267 | 49047 | 23557 | 6304 | 474 | 128 | 42 | 64 | 13 | 7 | 7 | 2 | 2 |
| 1995 | 442010 | 144 | 22874 | 13762 | 32063 | 5821 | 1658 | 97 | 15 | 13 | 17 | 3 | 2 | 1 | 1 |
| 1996 | 445995 | 353 | 14281 | 72692 | 9860 | 13959 | 2041 | 955 | 304 | 10 | 14 | 7 | 1 | 2 | 1 |
| 1997 | 479449 | 460 | 15907 | 13451 | 49548 | 3537 | 4511 | 553 | 163 | 13 | 2 | 2 | 1 | 1 | 1 |
| 1998 | 427868 | 157 | 27498 | 33166 | 9597 | 29614 | 1666 | 1228 | 173 | 46 | 4 | 1 | 1 | 0 | 1 |
| 1999 | 329750 | 2101 | 24475 | 36849 | 24426 | 5531 | 11752 | 841 | 579 | 94 | 9 | 2 | 0 | 0 | 0 |
| 2000 | 280938 | 5 | 64710 | 15038 | 11707 | 7061 | 1300 | 2593 | 174 | 83 | 8 | 2 | 1 | 0 | 0 |
| 2001 | 245489 | 87 | 15567 | 173376 | 6323 | 2897 | 1253 | 365 | 444 | 62 | 17 | 9 | 0 | 0 | 0 |
| 2002 | 184096 | 8 | 982 | 11514 | 53313 | 1738 | 664 | 395 | 165 | 218 | 94 | 5 | 4 | 2 | 0 |
| 2003 | 98723 | 71 | 2804 | 3186 | 10931 | 30249 | 601 | 235 | 123 | 56 | 35 | 15 | 2 | 1 | 0 |

Table 4.3.1 Haddock in Sub-Area IV and Division IIIa. Tuning diagnostics
Lowestoft VPA Version 3.1
13/09/2004 13:50

Extended Survivors Analysis
Haddock in the North Sea and Skagerrak, ages 0-7+

CPUE data from file hadivef.txt
Catch data for 41 years. 1963 to 2003. Ages 0 to 7


Time series weights :
Tapered time weighting not applied

```
Catchability analysis :
Catchability dependent on stock size for ages < 1
    Regression type = C
    Minimum of 5 points used for regression
    Survivor estimates shrunk to the population mean for ages < 1
Catchability independent of age for ages >= 2
```

Terminal population estimation :
Survivor estimates shrunk towards the mean $F$ of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk $=2.000$

Minimum standard error for population
estimates derived from each fleet $=$. 300
Prior weighting not applied
Tuning converged after 24 iterations

|  | $1.000$ | 1.000, | 1.000, | 1.000, | . 000 , | 1.000, | 1.000, | . 000 , | 1.000, | . 000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fishing mortalities |  |  |  |  |  |  |  |  |  |  |
| Age, | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003 |
| 0 , | . 004 , | . 057 , | . 047 , | . 009 , | . 007 , | . 002 , | . 005 , | . 003 , | . 033, | . 004 |
| 1, | . 154 , | . 105 , | . 076 , | .126, | . 130 , | .167, | . 048 , | . 058 , | .121, | . 081 |
| 2, | . 574 , | . 514, | . 456 , | . 439 , | . 628, | . 819 , | . 800 , | . 285 , | . 136 , | . 322 |
| 3 , | 1.096, | . 932, | . 958 , | . 648 , | . 579, | . 995, | . 988 , | . 964 , | . 192 , | . 147 |
| 4, | 1.083, | 1.075, | 1.049, | . 807 , | . 899, | . 696 , | 1.084, | . 586 , | . 547 , | . 131 |
| 5 , | 1.286, | 1.000, | 1.205, | 1.045, | . 879, | 1.118, | . 367 , | . 483 , | . 260 , | . 321 |
| 6 , | 2.042, | 1.901, | 1.819, | 1.273, | . 736 , | 1.204, | . 798 , | . 151, | . 218, | . 113 |

XSA population numbers (Thousands)

| YEAR , | 0, | 1, | 2, | 3, |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6, | $5.39 \mathrm{E}+07$, | $1.59 \mathrm{E}+06$, | $8.30 \mathrm{E}+05$, | $1.71 \mathrm{E}+05$, | $5.07 \mathrm{E}+04$, | $2.93 \mathrm{E}+03$, | $7.28 \mathrm{E}+02$, |
| 1994, | $1.37 \mathrm{E}+07$, | $6.90 \mathrm{E}+06$, | $2.61 \mathrm{E}+05$, | $3.14 \mathrm{E}+05$, | $4.45 \mathrm{E}+04$, | $1.34 \mathrm{E}+04$, | $6.64 \mathrm{E}+02$, |
| 1995, | $2.11 \mathrm{E}+07$, | $1.66 \mathrm{E}+06$, | $1.19 \mathrm{E}+06$, | $1.05 \mathrm{E}+05$, | $9.62 \mathrm{E}+04$, | $1.18 \mathrm{E}+04$, | $4.03 \mathrm{E}+03$, |
| 1996, | $1.23 \mathrm{E}+07$, | $2.59 \mathrm{E}+06$, | $2.96 \mathrm{E}+05$, | $5.07 \mathrm{E}+05$, | $3.12 \mathrm{E}+04$, | $2.63 \mathrm{E}+04$, | $2.90 \mathrm{E}+03$, |
| 1997, | $9.46 \mathrm{E}+06$, | $1.57 \mathrm{E}+06$, | $4.38 \mathrm{E}+05$, | $1.28 \mathrm{E}+05$, | $2.06 \mathrm{E}+05$, | $1.09 \mathrm{E}+04$, | $7.56 \mathrm{E}+03$, |
| 1998, | $1.33 \mathrm{E}+08$, | $1.21 \mathrm{E}+06$, | $2.65 \mathrm{E}+05$, | $1.57 \mathrm{E}+05$, | $5.59 \mathrm{E}+04$, | $6.54 \mathrm{E}+04$, | $3.69 \mathrm{E}+03$, |
| 1999, | $2.74 \mathrm{E}+07$, | $1.70 \mathrm{E}+07$, | $1.97 \mathrm{E}+05$, | $7.83 \mathrm{E}+04$, | $4.51 \mathrm{E}+04$, | $2.17 \mathrm{E}+04$, | $1.75 \mathrm{E}+04$, |
| 2000, | $2.87 \mathrm{E}+06$, | $3.51 \mathrm{E}+06$, | $3.12 \mathrm{E}+06$, | $5.93 \mathrm{E}+04$, | $2.27 \mathrm{E}+04$, | $1.19 \mathrm{E}+04$, | $1.23 \mathrm{E}+04$, |
| 2001, | $4.36 \mathrm{E}+06$, | $3.68 \mathrm{E}+05$, | $6.35 \mathrm{E}+05$, | $1.57 \mathrm{E}+06$, | $1.76 \mathrm{E}+04$, | $9.83 \mathrm{E}+03$, | $6.00 \mathrm{E}+03$, |
| 2002, | $4.15 \mathrm{E}+06$, | $5.43 \mathrm{E}+05$, | $6.26 \mathrm{E}+04$, | $3.72 \mathrm{E}+05$, | $1.01 \mathrm{E}+06$, | $7.94 \mathrm{E}+03$, | $6.21 \mathrm{E}+03$, |

Estimated population abundance at 1st Jan 2004

$$
0.00 \mathrm{E}+00, \quad 5.31 \mathrm{E}+05, \quad 9.62 \mathrm{E}+04, \quad 3.04 \mathrm{E}+04, \quad 2.50 \mathrm{E}+05, \quad 6.90 \mathrm{E}+05, \quad 4.71 \mathrm{E}+03,
$$

Taper weighted geometric mean of the VPA populations:

$$
2.27 \mathrm{E}+07, \quad 3.14 \mathrm{E}+06,4.98 \mathrm{E}+05, \quad 1.67 \mathrm{E}+05,4.70 \mathrm{E}+04, \quad 1.25 \mathrm{E}+04, \quad 3.73 \mathrm{E}+03,
$$

Standard error of the weighted Log(VPA populations) :

1

$$
1.1022, \quad 1.1205, \quad 1.1418, \quad 1.1930, \quad 1.2316, \quad 1.1272, \quad 1.1376,
$$

## Log catchability residuals.

## Fleet : ENGGFS

| Age | , | 1984, | 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | . 18, | 29 |
| 1 |  | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | . 21, | . 06 |
| 2 |  | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | . 69, | 24 |
| 3 |  | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | . 50 , | . 16 |
| 4 |  | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | -. 46 , | -. 34 |
| 5 | , | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 1.55, | -. 02 |
| Age |  | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003 |
| 0 |  | -.03, | . 39 , | . 01 , | . 29 , | . 02 , | -. 45, | -. 01 , | -. 35, | -.23, | -. 10 |
| 1 |  | .11, | .17, | . 04 , | . 22 , | . 20 , | . 02 , | . 02 , | -. 56 , | -. 25 , | -. 25 |
| 2 |  | . 16, | . 57 , | . 20 , | . 37 , | . 37 , | . 29 , | -.04, | -. 06 , | -.02, | -2.78 |
| 3 |  | -. 40 , | . 29 , | . 38, | . 29 , | . 04 , | . 00 , | -. 11, | . 77 , | . 01 , | -. 05 |
| 4 |  | -. 30, | -.17, | . 13, | -.19, | -.19, | -. 22 , | -. 30, | . 20 , | . 00 , | . 12 |
| 5 |  | . 01 , | -. 18, | -. 18 , | . 05 , | -. 13, | -. 19, | -.83, | -.11, | -1.33, | . 91 |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age , | 1, | 2, | 3, | 4, | 5 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -15.7867, | -15.5880, | -15.5880, | -15.5880, | -15.5880, |
| S.E (Log q), | .2379, | .9060, | .3513, | .2571, | .7277, |

Regression statistics :
Ages with $q$ dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log q
0, $.59, \quad 5.669, \quad 17.06, \quad .95,12, \quad .27,-17.42$,

Ages with $q$ independent of year class strength and constant w.r.t. time. Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 1, | .94, | .967, | 15.72, | .96, | 12, | .22, | -15.79, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2, | .67, | 2.031, | 14.74, | .79, | 12, | .53, | -15.59, |
| 3, | 1.13, | -1.178, | 15.85, | .90, | 12, | .34, | -15.43, |
| 4, | .93, | 1.515, | 15.41, | .98, | 12, | .18, | -15.73, |
| 5, | 1.50, | -1.622, | 18.86, | .51, | 12, | 1.02, | -15.63, |

Fleet : SCOGFS

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age , | 1, | 2, | 3, | 4, | 5 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -10.3860, | -9.9532, | -9.9532, | -9.9532, | -9.9532, |
| S.E (Log q), | .5296, | .3390, | .4971, | .5715, | .5093, |

Regression statistics :

Ages with $q$ dependent on year class strength
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Log q
0, .93, .340,
12.76
.55,
22, .93, -12.47,

Ages with $q$ independent of year class strength and constant w.r.t. time. Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 1, | 1.24, | -1.680, | 9.34, | .70, | 22, | .63, | -10.39, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2, | 1.01, | -.076, | 9.93, | .88, | 22, | .35, | -9.95, |
| 3, | .84, | 1.832, | 10.40, | .87, | 22, | .38, | -10.10, |
| 4, | .82, | 2.689, | 10.36, | .92, | 22, | .34, | -10.26, |
| 5, | .85, | 2.054, | 10.13, | .90, | 22, | .31, | -10.28, |



Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age , | 1, | 2, | 3, | 4 |
| :---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -7.2176, | -7.2583, | -7.2583, | -7.2583, |
| S.E (Log q), | .2221, | .2601, | .3327, | .4449, |

Regression statistics :

Ages with $q$ dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log q


Ages with $q$ independent of year class strength and constant w.r.t. time.

Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean $Q$

| 1, | 1.09, | -1.612, | 6.58, | .94, | 23, | .23, | -7.22, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2, | 1.03, | -.537, | 7.06, | .92, | 23, | .27, | -7.26, |
| 3, | .98, | .351, | 7.57, | .94, | 23, | .24, | -7.49, |
| 4, | .97, | .410, | 7.64, | .93, | 23, | .32, | -7.56, |

## Terminal year survivor and $F$ summaries :

Age 0 Catchability dependent on age and year class strength


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| 531493., | .21, | .25, | 5, | 1.224, | .004 |

Age 1 Catchability constant w.r.t. time and dependent on age


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $96163 .$, | .14, | .14, | 7, | .985, | .081 |

Age 2 Catchability constant w.r.t. time and dependent on age

| Year class $=2001$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fleet, |  | Estimated, | Int, | Ext, | Var, | N, | Scaled, | Estimated |
| , |  | Survivors, | s.e, | S.e, | Ratio, | , | Weights, | F |
| ENGGFS | , | 19563. | . 213, | . 409, | 1.92, | 3, | . 318, | . 464 |
| SCOGFS | , | 45231. | . 282, | . 292, | 1.04, | 3, | . 196 , | . 228 |
| IBTS_Q1 (backshift; | 5, | 34886 . | . 176 , | . 221, | 1.25, | 3, | . 480 , | . 286 |
| F shrinkage mean | , | 16006., | 2.00, |  |  |  | . 006 , | . 544 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | S.e, | Ratio, |  |  |
| $30406 .$, | .12, | .18, | 10, | 1.471, | .322 |

Age 3 Catchability constant w.r.t. time and age (fixed at the value for age) 2
Year class $=2000$

| Fleet, |  | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | Ext, s.e, | $\begin{gathered} \text { Var, } \\ \text { Ratio, } \end{gathered}$ | N, | Scaled, Weights, | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ENGGFS | , | 202921 | . 181, | . 148, | . 82 , | 4, | . 341 , | . 178 |
| SCOGFS | , | 330418. | . 246 , | . 160, | . 65, | 4, | . 189, | . 113 |
| IBTS_Q1 (backshift; | 5, | $264049 .$, | . 155 , | . 086 , | . 56 , | 4, | . 467 , | . 139 |
| F shrinkage mean | , | $35151 .$, | 2.00, |  |  |  | . 004 , | . 753 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | ---: | ---: | ---: | ---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $249948 .$, | .11, | .09, | 13, | .829, | .147 |

Age 4 Catchability constant w.r.t. time and age (fixed at the value for age) 2


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $689973 .$, | .10, | .07, | 16, | .720, | .131 |

Age 5 Catchability constant w.r.t. time and age (fixed at the value for age) 2


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | S.e, | S.e, | Ratio, |  |  |
| $4714 .$, | .14, | .11, | 18, | .792, | .321 |

Age 6 Catchability constant w.r.t. time and age (fixed at the value for age) 2


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $4538 .$, | .14, | .11, | 18, | .760, | .113 |

Table 4.3.2. Haddock in Sub-Area IV and Division IIIa. $F$ at age


Table 4.3.3. Haddock in Sub-Area IV and Division IIIa. Stock numbers at age

```
    Run title : Haddock in the North Sea and Skagerrak, ages 0-7+
    At 13/09/2004 13:50
        Terminal Fs derived using XSA (With F shrinkage)
    Table 10 Stock number at age (start of year) Numbers*10**-5
    YEAR, 1963,
        259948,
            7485,
            503,
            286,
                119,
                    11,
    +gp, 28,
    YEAR, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973,
    0, 92014, 263163, 688326, 3885141, 170966, 121530, 877086, 781820, 215227, 729040,
    1, 3093, 11342, 31537, 82615, 499055, 21969, 15384, 109590, 99451, 26831,
        44195, 5661, 563,
            207, 578, 9068, 140, 87, 116, 885, 7858, 343, 122,
            108, 81, 190, 3422, 77, 51, 24, 182, 2586, 80,
                45, 40, 24, 65, 1192, 40, 20, 9, 55, 687,
    +gp, 15, 14, 20, 14, 10, 303, 102, 39, 10, 27,
0 TOTAL, 141950, 294786, 729980, 3973205, 683951, 239613, 929349, 902264, 331381, 776876,
```



```
O TOTAL, 1437581, 300211, 206561, 286554, 432630, 774448, 254379, 359713, 253948, 701615,
    YEAR, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993,
        171247, 239426, 496672, 41673, 84166, 85761, 280674, 273662, 407241, 127088,
```




```
            354, 624, 413, 1118, 208, 282, 930, 72, 110, 118,
            488, 81, 156, 78, 27, 27, 43, 60, 20, 214, 21, 28,
            56, 104, 18, 40, 21, 54, 12, 14, 62, 6,
    +gp, 12, 19, 32, 22, 13, 11, 22, 17, 15, 22,
0 TOTAL, 262007, 277516, 536100, 112591, 102241, 101082, 294862, 312039, 448652, 186357,
    YEAR, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, GMST 63-03 AMST 63-03
        538523, 136939, 210850, 123052, 94638, 1325620, 273846, 28682, 43609, 41456, 0, 246847, 439007,
```




```
        1710,
```



```
TOTAL, 564946, 212293, 241607, 157595, 118261, 1343215, 447720, 96095, 69756, 61519, 16111,
```

Table 4.3.4. Haddock in Sub-Area IV and Division IIIa. Stock summary table

Run title : Haddock in the North Sea and Skagerrak, ages 0-7+
At 13/09/2004 13:50
Table 16 Summary (without SOP correction)
Terminal Fs derived using XSA (With F shrinkage)

|  | Recruitment Age 0 | Total Biomass | SSB | Total catch | HC | Disc | IB | Yield/SSB | F 2-4 | $\begin{array}{r} \text { FHC } \\ 4 \end{array}$ | $\begin{gathered} \text { 2. F Disc } \\ 2-4 \end{gathered}$ | $\begin{gathered} \hline \text { F IB } \\ 2-4 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1963 | 2406440 | 3473263 | 140251 | 271531 | 68779 | 188969 | 13783 | 1.94 | 0.72 | 0.49 | 0.20 | 0.03 |
| 1964 | 9201402 | 1314189 | 429790 | 380158 | 130944 | 160318 | 88896 | 0.88 | 0.75 | 0.47 | 0.12 | 0.16 |
| 1965 | 26316326 | 1100591 | 544405 | 299464 | 162307 | 62236 | 74921 | 0.55 | 0.59 | 0.34 | 0.10 | 0.14 |
| 1966 | 68832632 | 1496730 | 457782 | 346726 | 226335 | 73572 | 46819 | 0.76 | 0.63 | 0.36 | 0.17 | 0.10 |
| 1967 | 388514080 | 5513842 | 253987 | 246589 | 147778 | 78056 | 20755 | 0.97 | 0.61 | 0.35 | 0.23 | 0.03 |
| 1968 | 17096554 | 6900896 | 288304 | 302043 | 105830 | 161886 | 34327 | 1.05 | 0.59 | 0.38 | 0.15 | 0.07 |
| 1969 | 12152958 | 2475569 | 812540 | 930538 | 331419 | 260232 | 338887 | 1.15 | 1.13 | 0.69 | 0.15 | 0.29 |
| 1970 | 87708592 | 2545017 | 898942 | 806674 | 525325 | 101380 | 179969 | 0.90 | 1.17 | 0.70 | 0.20 | 0.27 |
| 1971 | 78182032 | 2532359 | 418674 | 446634 | 237340 | 177482 | 31812 | 1.07 | 0.78 | 0.54 | 0.18 | 0.06 |
| 1972 | 21522668 | 2192177 | 301055 | 353606 | 195494 | 128130 | 29983 | 1.17 | 1.12 | 0.84 | 0.24 | 0.04 |
| 1973 | 72904016 | 4108057 | 295678 | 307688 | 181518 | 114719 | 11451 | 1.04 | 0.86 | 0.65 | 0.21 | 0.00 |
| 1974 | 133302984 | 4766987 | 258593 | 368797 | 153116 | 166786 | 48895 | 1.43 | 0.97 | 0.60 | 0.23 | 0.13 |
| 1975 | 11505774 | 2388681 | 236404 | 454536 | 151386 | 260424 | 42726 | 1.92 | 1.11 | 0.68 | 0.34 | 0.10 |
| 1976 | 16467185 | 1095137 | 305461 | 377118 | 172607 | 154265 | 50246 | 1.23 | 0.99 | 0.62 | 0.25 | 0.12 |
| 1977 | 25619152 | 1050722 | 236043 | 226411 | 145083 | 44347 | 36982 | 0.96 | 1.11 | 0.71 | 0.21 | 0.19 |
| 1978 | 39467552 | 1094539 | 130538 | 180144 | 91674 | 76878 | 11592 | 1.38 | 1.11 | 0.78 | 0.28 | 0.04 |
| 1979 | 71919000 | 1316396 | 107000 | 146001 | 87094 | 41732 | 17175 | 1.36 | 1.06 | 0.87 | 0.14 | 0.05 |
| 1980 | 15545177 | 1429199 | 149801 | 223610 | 105071 | 94743 | 23796 | 1.49 | 1.06 | 0.81 | 0.13 | 0.12 |
| 1981 | 32394300 | 957347 | 237561 | 217151 | 138731 | 60115 | 18306 | 0.91 | 0.84 | 0.66 | 0.14 | 0.03 |
| 1982 | 20463828 | 1059421 | 296051 | 237842 | 176635 | 40549 | 20658 | 0.80 | 0.72 | 0.55 | 0.11 | 0.05 |
| 1983 | 66627320 | 2216120 | 247802 | 253594 | 167353 | 65925 | 20316 | 1.02 | 0.97 | 0.71 | 0.21 | 0.05 |
| 1984 | 17124650 | 1651865 | 193958 | 222563 | 134505 | 75294 | 12764 | 1.15 | 0.97 | 0.78 | 0.15 | 0.04 |
| 1985 | 23942562 | 1159846 | 234662 | 258117 | 165672 | 85444 | 7001 | 1.10 | 0.91 | 0.76 | 0.13 | 0.02 |
| 1986 | 49667240 | 1947539 | 215228 | 225697 | 169157 | 52209 | 4331 | 1.05 | 1.24 | 0.93 | 0.30 | 0.01 |
| 1987 | 4167343 | 1090001 | 150540 | 176880 | 111779 | 59212 | 5889 | 1.18 | 1.06 | 0.81 | 0.24 | 0.01 |
| 1988 | 8416576 | 620320 | 151845 | 175516 | 107978 | 62062 | 5475 | 1.16 | 1.15 | 0.85 | 0.25 | 0.05 |
| 1989 | 8576092 | 619557 | 122081 | 108772 | 80288 | 25713 | 2770 | 0.89 | 0.99 | 0.74 | 0.22 | 0.03 |
| 1990 | 28067428 | 1568431 | 75532 | 92720 | 55558 | 32603 | 4559 | 1.23 | 1.18 | 0.78 | 0.36 | 0.04 |
| 1991 | 27366224 | 1526371 | 58731 | 97021 | 48731 | 40276 | 8014 | 1.65 | 0.94 | 0.80 | 0.11 | 0.03 |
| 1992 | 40724084 | 1329344 | 96601 | 138001 | 74614 | 47967 | 15420 | 1.43 | 1.03 | 0.85 | 0.17 | 0.02 |
| 1993 | 12708826 | 978188 | 130068 | 174296 | 81539 | 79601 | 13156 | 1.34 | 1.01 | 0.74 | 0.24 | 0.03 |
| 1994 | 53852304 | 1414363 | 150779 | 153864 | 82730 | 65392 | 5741 | 1.02 | 0.92 | 0.64 | 0.27 | 0.01 |
| 1995 | 13693884 | 1111223 | 146593 | 144773 | 77503 | 57360 | 9909 | 0.99 | 0.84 | 0.59 | 0.24 | 0.01 |
| 1996 | 21084962 | 1006482 | 178687 | 159671 | 79176 | 72522 | 7973 | 0.89 | 0.82 | 0.54 | 0.26 | 0.02 |
| 1997 | 12305150 | 905011 | 193889 | 141900 | 82496 | 52105 | 7299 | 0.73 | 0.63 | 0.41 | 0.19 | 0.03 |
| 1998 | 9463799 | 723700 | 166437 | 131621 | 81070 | 45175 | 5376 | 0.79 | 0.70 | 0.45 | 0.22 | 0.04 |
| 1999 | 132562000 | 3437088 | 121712 | 112299 | 65569 | 42562 | 4168 | 0.92 | 0.84 | 0.48 | 0.33 | 0.02 |
| 2000 | 27384620 | 3468187 | 102082 | 105161 | 47569 | 48841 | 8751 | 1.03 | 0.96 | 0.63 | 0.24 | 0.08 |
| 2001 | 2868186 | 1175802 | 272374 | 167278 | 40861 | 118320 | 8097 | 0.61 | 0.61 | 0.33 | 0.17 | 0.11 |
| 2002 | 4360863 | 806212 | 444592 | 107917 | 58308 | 45892 | 3717 | 0.24 | 0.29 | 0.20 | 0.08 | 0.02 |
| 2003 | 4145552 | 732225 | 459438 | 68735 | 44087 | 23499 | 1149 | 0.15 | 0.20 | 0.05 | 0.13 | 0.02 |
| Arith. |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean | 41966639 | 1909732 | 261280 |  |  |  |  |  |  |  |  |  |
| 0 Units | (Thousands) | (Tonnes | (Tonnes | (Tonnes | (Tonnes | (Tonnes | (Tonnes) |  |  |  |  |  |

[^4]Table 4.5.1. Haddock in Sub-Area IV and Division IIII. Short term forecast input.


Table 4.5.2. Haddock in Sub-Area IV and Division IIIa. Short term forecast output.

|  | 2004 | 2005 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean F |  |  |  |  |  | $\mathrm{F}_{\mathrm{pa}}$ |  |
| H.cons | 0.16 | 0.13 | 0.15 | 0.16 | 0.20 | 0.24 | 0.64 |
| Ind BC | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Relative to 2003 |  |  |  |  |  |  |  |
| H.cons | 0.9 | 0.7 | 0.81 | 0.9 | 1.1 | 1.3 | 3.5 |
| Ind BC | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Biomass |  |  |  |  |  |  |  |
| Total | 870 | 800 | 803 | 805 | 808 | 811 | 825 |
| SSB | 450 | 382 | 382 | 382 | 382 | 383 | 383 |
| Catch weights |  |  |  |  |  |  |  |
| HCONS | 88 | 41 | 46 | 51 | 61 | 71 | 155 |
| DIS | 8 | 5 | 6 | 7 | 8 | 9 | 22 |
| IBC | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
| Total | 98 | 47 | 54 | 59 | 71 | 82 | 178 |
| Biomass in 2006 |  |  |  |  |  |  |  |
| Total |  | 818 | 811 | 809 | 800 | 791 | 697 |
| SSB |  | 397 | 390 | 384 | 372 | 361 | 259 |

Figure 4.1.1. Haddock in Sub-Area IV and Division IIIa. The EU cod protection zone as defined in Council Regulation (EC) 867/2004 for the haddock fishery in 2004.

## Commission Proposal for amended Cod Recovery Area



Figure 4.2.1.a. Haddock in Sub-Area IV and Division IIIa. CPUE data at age from surveys.








Figure 4.2.1.b. Haddock in Sub-Area IV and Division IIIa. Commercial CPUE data at age.




Figure 4.3.1. Haddock in Sub-Area IV and Division IIIa. Stock summary. Dotted horizontal lines indicate $\boldsymbol{F}_{p a}$ and $\boldsymbol{B}_{p a}$, while solid horizontal lines indicate $\boldsymbol{F}_{\text {lim }}$ and $\boldsymbol{B}_{\text {lim }}$.

## Haddock in Sub-area IV (North Sea) and Division Illa






Figure 4.3.2. Haddock in Sub-Area IV and Division IIIa. Relative SSB and Z-estimates from SURBA.



Figure 4.3.3. Haddock in Sub-Area IV and Division IIIa. Quality control graph.



Note: reference age for fishing mortality was changed from 2-6 to 2-4 at the WGNSSK 2003 and onwards.

Figure 4.7.1. Haddock in Sub-Area IV and Division IIIa. Catch weights at age from the human consumption fishery by age.


Figure 4.7.2. Haddock in Sub-Area IV and Division IIIa. Results of the North Sea fishermen survey.


## $5 \quad$ Whiting in Sub-area IV and Divisions VIId AND IIIA

### 5.1 Whiting in Sub-area IV and Divisions VIId

The present assessment is classified as a benchmark assessment. All the relevant biological and methodological information can be found in the stock annex dealing with this stock. The assessment of the stock will be subject to review this year by the North Sea Commission Fisheries Partnership (NSCFP).

### 5.1.1 The Fishery

Total nominal landings are given in Table 5.1.1.1 for the North Sea (Sub-area IV) and Eastern Channel (Division VIId). A brief description of the fishery is given in the stock annex.

### 5.1.1.1 ICES advice applicable to 2003 and 2004

The advice in 2002 for the fishery in 2003 was:

> "Since whiting is mostly taken in demersal fisheries with cod and haddock, the advice for cod determines the advice for whiting. Except where it can be demonstrated that whiting can be harvested without by-catch or discards of cod, fishing for whiting should not be permitted.
> On the status of whiting alone, in order to bring SSB above $\boldsymbol{B}_{p a}$ in 2004, ICES would recommend that fishing mortality in 2002 should be below 0.27 , corresponding to human consumption landings of less than $26,000 t$. This implies a reduction in fishing mortality of at least 40\%. If fishing on whiting is permitted consistent with the advice on cod then total catches should not exceed these values."

For 2004, the ICES advice was presented in a modified format to provide mixed-fishery advice. For whiting the single species exploitation boundaries were:
"Fishing mortality in 2004 should be less than $\boldsymbol{F}_{p a}$. Catch should not increase in 2004 compared to recent years."

This coexists with advice that all demersal fisheries in Sub-Area IV and Division VIId should fish
"Without bycatch or discards of cod; and
Within a recovery plan for North Sea plaice."
Biological reference points for this stock are given in the relevant Stock Annex.

### 5.1.1.2 Management applicable in 2003 and 2004

Annual management of the fishery operates through TACs. The 2003 and 2004 TACs for whiting in Sub-area IV and Division IIIa (EC waters) were $16,000 t$ for both years. The minimum mesh size for vessels fishing for cod in the mixed demersal fishery in EC Zones 1 and 2 (West of Scotland and North Sea excluding Skagerrak) was changed from 100 mm to 120 mm from the start of 2002 under EU regulations regarding the cod recovery plan (Commission Regulation EC 2056/2001), with a one-year derogation of 110 mm for vessels targeting other species such as whiting. This derogation was not extended beyond the end of 2002. Whiting are a by-catch in some Nephrops fisheries that use a smaller mesh size, although landings are restricted through by-catch regulations. Industrial fishing with small-meshed gear is permitted, subject to by-catch limits of protected species including whiting. The minimum landing size of whiting in the human consumption fishery from this area is 27 cm . Regulations applying to the Norway pout box prevent industrial fishing with small meshes in an area where the by-catch limits are likely to be exceeded.

The UK implemented a national regulation in mid 2000, requiring the mandatory fitting of a 90 mm square mesh panel (SSI 227/2000), predominantly to reduce discarding of the large 1999 year class of haddock. Further unilateral legislation in 2001 (SSI 250/2001) banned the use of lifting bags in the Scottish fleet. These measures are likely to have affected the selectivity of whiting.

Vessel decommissioning in several fleets has been underway since 2002. Effort reductions for much of the international fleet to 15 days at sea per month have been imposed since February 2003 (EU 2003/0090).

There is no separate TAC for Division VIId, landings from this Division are counted against the TAC for Divisions VIIb-k combined ( $31,700 \mathrm{t}$ in 2003 and 27,000 t in 2004). Minimum mesh size for whiting in Division VIId is 80 mm , with a 27 cm minimum landing size.

### 5.1.1.3 The fishery in 2003

For the North Sea, the total international catches were $37,500 \mathrm{t}$ in 2003, of which $10,700 \mathrm{t}$ were human consumption landings, $24,100 \mathrm{t}$ discards and $2,700 \mathrm{t}$ industrial by-catch. The human consumption landings were the lowest ever recorded, as was industrial bycatch. Discards in the North Sea went from near parity with human consumption landings in 2002 to well over double human consumption landings in 2003. For the eastern Channel, the total catch in 2003 $(6,800 \mathrm{t})$ was $1,000 \mathrm{t}$ greater than the previous year, and the highest since 1994.

The total North Sea and eastern Channel human consumption landings of $17,800 \mathrm{t}$ in 2003 were $26 \%$ of the status quo forecast of $69,000 \mathrm{t}$ from the 2002 assessment. No short-term forecasts were made during last year's WG.

### 5.1.2 Data available

### 5.1.2.1 Landings and Discards

Total international catches as estimated by the Working Group for the combined North Sea and Eastern Channel are shown in Table 5.1.2.1. Eastern Channel catches as used by the Working Group are also shown separately in Table 5.1.2.2.

In 2002, the WG decided to truncate the catch data to start from 1980. This was because discard data for years prior to 1978 were estimated, and furthermore there was evidence of a regime shift in recruitment around 1980. There is no new evidence to suggest this decision should be reversed.

### 5.1.2.2 Age compositions

Total international catch numbers at age (IV and VIId combined) are presented in Table 5.1.2.3. Total international human consumption landings, discards and industrial by-catch numbers at age (Sub-Area IV and Division VIId combined) are presented in Tables 5.1.2.4-5.1.2.6. The Scottish discard estimates are used to estimate discarding in all other fleets. This may not be appropriate because of different spatial distributions in fleet effort and different discarding practices.

Proportion of catch at age is given in Figure 5.1.2.1. Ages 0-4 comprise approximately $95 \%$ of the catch on average.

### 5.1.2.3 Weight at age

Mean weights at age (Sub-Area IV and Division VIId combined) in the catch are presented in Table 5.1.2.7. Mean weights at age (both areas combined) in human consumption landings, discards and industrial by-catch are presented in Tables 5.1.2.8-5.1.2.10 and Figure 5.1.2.2. There appears to be an increase in mean weight at age across ages in the most recent years for the human consumption fishery. This may reflect the increase in minimum mesh size from the beginning of 2002 associated with the cod recovery plan (see Section 5.1.1.2).

### 5.1.2 4 Maturity and natural mortality

Maturity and natural mortality are assumed at fixed values, and are given in the Stock Annex.

### 5.1.2.5 Catch, effort and research vessel data

A summary of available tuning series is presented in Table 5.1.2.11. The full commercial CPUE and survey tuning indices are presented in Table 5.1.2.12. Due to non-mandatory reporting of effort (in terms of hours fished), commercial CPUE series are not considered reliable and are therefore not included in the assessment.

The IBTS surveys for whiting treat age 6 as a plus group. Therefore only ages 1 to 5 of the IBTS survey data were used in analyses. IBTS data prior to 1983 is not used because not all participating countries used the same GOV trawl gear before that year, and fewer ages were included in the series. The English ground fish survey (EngGFS), changed gears from 1992. Although a correction factor was applied to the data from earlier years this was regarded by the WG as unreliable and so English ground fish survey data was split into two series, one containing data up to 1991 and the second data from 1992 onwards. Catch rates for ages 7 and 8 in the Scottish ground fish survey (ScoGFS) are very low, and have been excluded when the Scottish series is used as a tuning fleet.

### 5.1.3 Exploration of Survey data

Survey data were examined to evaluate the internal and external consistency of the survey data, and to estimate stock trends independently of catch-at-age data.

### 5.1.3.1 Mean-standardised indices and log CPUE curves

Previous WGs have noted different trends in the signals from the IBTS Q1, ScoGFS, EngGFS and French ground fish survey (FraGFS) survey indices.

Catch-at-age indices from these surveys, mean-standardised over the years 1992 to 2003, are shown in Figure 5.1.3.1. Trends in survey indices agree relatively well for ages 1 and above from 1995 onwards, although the FraGFS is more variable and less consistent than the other series. The high 1988 year class is picked up by the surveys at ages 1 to 5.

FraGFS is conducted in Division VIId whereas the ScoGFS, EngGFS and IBTS Q1 surveys cover Sub-area IV. The WG was concerned that the lack of consistency between FraGFS and the other surveys was evidence of stock substructure in the assessment area. This was investigated further using IBTS Q1 indices and international landings data for ICES round fish areas, together with maps of the numbers and locations of fish caught in recent years for both the IBTS Q1 and Q3 surveys (see Section 5.1.6).

Mean standardised catch-at-age indices by cohort are shown in Figure 5.1.3.2. The EngGFS, ScoGFS and IBTS Q1 surveys demonstrate good self-consistency, for ages 1-5, picking up strong year-classes in 1986, 1988 and 1999. The FraGFS appears less internally consistent, although the shorter time series allows for fewer comparisons by cohort.

Plots of $\log$ CPUE by cohort (catch curves) are shown in Figure 5.1.3.3. Scottish, English and French data include age-0 fish. It is believed that age 0 fish are only partially selected, even in survey trawls using a small mesh size. This accounts for the positive slopes found at the beginning of cohort lines. Considering only cohorts from age 1 , all surveys show good internal consistency and age 0 fish are therefore removed from subsequent analyses.

### 5.1.3.2 Empirical SSB and $Z$ estimates

SURBA (see section 1.4) was used to calculate empirical Z and SSB time series for ScoGFS, EngGFS and IBTS Q1 surveys. A comparison of Z estimates is shown in Figure 5.1.3.4. The time series are noisy but there is indication that mortality has fallen in recent years. A loess smoother was fitted to each series and the resultant curves reinforce the idea of falling Z values, possibly from the beginning of the 1990s. A comparison of these SSB estimates, mean standardised over 1992 to 2003, show different trends (Figure 5.1.3.4). The ScoGFS and EngGFS surveys indicate that the spawning stock has generally increased since the 1980s, and is now at a relatively high level compared to historical values, whereas the IBTS Q1 survey indicates a highly variable but relatively stable stock. However, relative trends in SSB agree well from 1995, indicating a decrease to 1998 , followed by an increase to a peak around 2001 and a subsequent decrease in the last three years.

### 5.1.4 Exploration of catch data

Figure 5.1.4.1 shows total catch in tonnes, disaggregated into human consumption landings, discards and industrial bycatch. Each component of the catch has reduced since 1980. Industrial bycatch has been low since 1996. However, there is no marked trend in the proportions of each component in the catch. Figure 5.1.4.2 shows landings for Sub-Area IV, disaggregated into landings by Scotland and landings from all other countries combined, and landings for Division VIId. Landings by Scotland have decreased 5 fold since 1985. Landings from all other countries combined have decreased to a lesser extent, so they are now at a similar level to those of Scotland. Landings from VIId have remained relatively constant and now form about one third of the total landings from Sub-Area IV and Division VIId.

### 5.1.4.1 Mean-standardised index

Figure 5.1.4.3 shows the total international catch numbers at age of whiting, mean-standardised over 1992-2003. These are quite variable, particularly for older ages, but have general decreasing trends over the whole time series. Catches at age decreased sharply between 1983-1985. The 1988 year-class is well represented in the catch data, the 1998 yearclass to a lesser extent. Catches generally dropped to their lowest levels in about 1997, increasing thereafter until about 2001, but remain at historically low levels. This is in contrast to the survey time series (Figure 5.1.3.1), which are generally at historically high levels for ages 3+ in particular.

### 5.1.4.2 Discards

International discards are currently estimated by applying Scottish discard rates to the landings, due to lack of appropriate discard data for other countries. Table 5.1.4.1 gives the approximate discard rate by Scottish fleets, estimated as the ratio of international discards to international human consumption catch. Table 5.1.4.2 shows the actual
discarding rate of the English fleet. Figure 5.1.4.4 compares these time series of discard rates at age. It can be seen that the rate of discarding in the English fleet is generally greater than that in the Scottish based series up to and including age 4. As stated in Section 5.1.2.2, ages 0-4 comprise approximately $95 \%$ of the whiting catch. The current practice of applying Scottish discard rates to English landings could lead to underestimation of English discards.

Landings and discards numbers-at-length of whiting by the French Otter Trawl and Gillnet fleets are shown in Figures 5.1.4.5 and 5.1.4.6. Discarding rates for the French Otter Trawl are relatively low. There was insufficient time at the Working Group to appropriately convert this data to discard proportions at age. The data is valuable, however, and should be investigated intersessionally, for example, at the proposed whiting Study Group (see Section 1.8.1).

### 5.1.5 Catch-at-age analysis

A number of exploratory runs were performed. Separable VPA runs were carried out to determine the plus-group and minimum age for inclusion of catch data. Laurec-Shepherd runs were performed to investigate the relationship between absolute population abundance as indicated by catch data, and relative population abundance as indicated by the surveys. Time series of the residuals were also used to characterise any trend in catchability mismatch between the catch and survey data. XSA and TSA runs were carried out to determine the population dynamics indicated by both the catch data alone and catch and survey data combined.

### 5.1.5.1 Separable VPA

A separable VPA (Lowestoft assessment suite) was run on the full catch at age dataset (years 1980-2003, ages 0-12+). This run used equal weighting of 1.0 on ages, and equal weighting of 1.0 on all years. Based on last year's assessment terminal F (on age 4) was set to 0.35 , and terminal S to 1.0 . Log catch residuals were large for age ratio $9: 10$ upwards, (Figure 5.1.5.1), but increasing from ratio 8:9. This supported the use of a plus-group at age $8+$, as in previous assessments. Residuals were also larger for the ratio 0:1 than for intermediate ages. Whiting at age zero are only partially recruited and subject to discarding in the human consumption fishery. Fish at this age are also a significant component of the industrial fisheries bycatch. Therefore, age 0 catch data were excluded from assessment runs.

### 5.1.5.2 Single-fleet Laurec-Shepherd

Single-fleet Laurec-Shepherd runs were carried out using each of IBTS Q1, ScoGFS, EngGFS (pre 1992), EngGFS (1992 and later) and FraGFS tuning fleets in turn. Time series of residuals were plotted to characterise any trend in catchability mismatch between the catch and survey data (Figure 5.1.5.2). The residuals show very definite trends from the ScoGFS, EngGFS (pre 1992) and especially from the FraGFS, and a trend is still evident in the IBTS Q1 plot. The only survey series not to show any trend in residuals is the EngGFS (1992 and later). Scatter plots of log survey index against log estimated numbers at age are shown in Figures 5.1.5.3 to 5.1.5.7. Good agreement would result in a regression line with high $R^{2}$ and positive slope.

With the exception of age 6, results for the EngGFS (1992 and later) were much better than those for EngGFS (pre 1992). Given the low $R^{2}$ values for the latter series it was decided not to include it in the assessment. Correlation between survey index and estimated catch numbers were also poor for the FraGFS, with the slope being negative for some ages. This was seen as further evidence that stock trends might be different in different parts of the North Sea. The results for the ScoGFS and IBTS Q1 surveys were considered reasonable and there is nothing within them to suggest these surveys should not be used as tuning surveys.

### 5.1.5.3 Extended Survivors Analysis (XSA)

Settings for the XSA runs performed are listed below:

| Run | Surveys included | Plus group | shrinkage | mean F |
| :--- | :--- | :--- | :--- | :--- |
| run 1 | 3 surveys | Age 6 | 0.5 | $(2-4)$ |
| run 2 | 3 surveys | Age 6 | 2 | $(2-4)$ |
| run 3 | 3 surveys | Age 8 | 0.5 | $(2-4)$ |
| run 4 | 3 surveys | Age 8 | 0.5 | $(2-6)$ |
| run 5 | 3 surveys | Age 8 | 2 | $(2-6)$ |
| run 6 | EngGFS | Age 8 | 2 | $(2-6)$ |
| run 7 | ScoGFS | Age 8 | 2 | $(2-6)$ |
| run 8 | IBTS Q1 | Age 8 | 2 | $(2-6)$ |

Run 1 uses the same settings as final XSA run from last year's WG report. In this run, the plus group is ages 6 and above. This plus-group was chosen because the survey indices are truncated at age 6 . However, this also meant reducing the mean $F$ range from $F(2-6)$ to $F(2-4)$. Therefore runs using an 8 plus-group were performed for comparison with TSA analyses, and further runs were performed with weak shrinkage to allow the model to follow the trends in the data more closely. Single fleet runs for each of the survey indices, with an 8 plus-group, F (2-6) and weak shrinkage were also carried out.

These runs show very similar overall trends in SSB, mean F and recruitment (Figure 5.1.5.8), with the main differences occuring from 1998-2001, but generally converging again for 2003. Estimated SSB for 2003 is around or slightly below $\mathbf{B}_{\mathrm{lim}}$, with an estimated mean $F$ for 2003 of around 0.3 . F (2-6) has decreased more rapidly in recent years than $\mathrm{F}(2-4)$, indicating that F on older ages is decreasing. Log catchability residuals for XSA run 5 (with 8 plus group and low shrinkage) indicate the models fit relatively well but show a trend for ScoGFS before 1995 (Figure 5.1.5.9). The retrospective plots for this run show large retrospective bias in mean $F$ (Figure 5.1.5.10). Input settings, the tuning file, and relevant output for run 5 are given in Tables 5.1.5.1-5.1.5.5.

### 5.1.5.4 Time series Analysis (TSA)

A new version of the TSA was available for this year's assessment, in which catch data can be modelled with separate human consumption (landings and discards) and industrial bycatch components, and fishing mortality attributed to each component. Hereafter, we refer to this as the HCI model. The TSA runs performed are given below.

| Run | Catch model | Surveys included |
| :--- | :--- | :--- |
| TSA run 1 | total catch | no surveys |
| TSA run 2 | total catch | EngGFS |
| TSA run 3 | total catch | ScoGFS |
| TSA run 4 | total catch | IBTS Q1 |
| TSA run 4 | total catch | EngGFS \& ScoGFS \& IBTS Q1 |
| TSA run 6 | HCI: separate industrial bycatch | no surveys |
| TSA run 7 | HCI: separate industrial bycatch | EngGFS |
| TSA run 8 | HCI: separate industrial bycatch | ScoGFS |
| TSA run 9 | HCI: separate industrial bycatch | IBTS Q1 |
| TSA run 10 | HCI: separate industrial bycatch | EngGFS \& ScoGFS |
| TSA run 11 | HCI: separate industrial bycatch | EngGFS \& IBTS Q1 |
| TSA run 12 | HCI: separate industrial bycatch | ScoGFS \& IBTS Q1 |
| TSA run 13 | HCI: separate industrial bycatch | EngGFS \& ScoGFS \& IBTS Q1 |

Runs modelling total catch gave very similar results to the equivalent HCI runs (e.g. run 1 and run 4 ), and so, since the HCI model gives potential for greater insight into the individual fishing mortality components, this model was used for further analyses (i.e. runs 6-10). The results for these runs had generally similar trends, with the main differences between 1998 to 2003. The greatest difference in trend occurred between the run excluding survey data (run 6 ) and that including the EngGFS, ScoGFS and IBTS Q1 surveys (run 13). The stock summaries for these two runs are shown in Figure 5.1.5.11, with the $95 \%$ confidence intervals for run 13. They do not follow the catch data exactly, particularly in 1986 and 1990, where estimated discards are unusually high. Although the run using no surveys falls outside the confidence intervals of the three surveys run for the last few years, the general trend is of a declining stock with large fluctuations in mean $F$ over the last few years.

The retrospective plots for TSA run 13 show high retrospective variance and positive bias (Figure 5.1.5.12). For SSB and recruitment, however, the bias seems that much less severe over the last three years. The settings and output files for this TSA run are given in Tables 5.1.5.6-5.1.5.11.

### 5.1.5.5 Comparison of analyses

SSB estimates from the catch-at-age analyses (XSA runs 4-8, and TSA runs 6-9 and 13), mean-standardised over 1992 to 2003, with empirical SSB estimate from the surveys superimposed, are shown in Figure 5.1.5.13. Although the trend of the estimates between 1998 to 2003 is similar, predicting a recent peak in SSB in about 2000, the discrepancy in overall trends between the catch-at-age analyses and the survey estimates is clear.

### 5.1.6 Indications of stock sub-structure

Whiting are known to aggregate in some localised areas, but for the most part have traditionally been caught as part of a mixed fishery operating throughout the entire year. Historically, adult whiting have been widespread in the North Sea, while high numbers of immature fish occur off the Scottish coast, in the German Bight and along the coast of the Netherlands.

Tagging experiments, and the use of a number of fish parasites as markers, suggest that the whiting found to the north and south of the Dogger Bank form two virtually separate populations (Hislop \& MacKenzie, 1976). It is also possible that the whiting in the northern North Sea may contain 'inshore' and 'offshore' populations.

IBTS Q1 and Q3 survey data were used to investigate the possibility of using survey indices to identify stock structure within the North Sea. These spatial data were only available from 1996, so long-term changes in distribution could not be assessed. The ICES roundfish sampling areas within area IV are shown in Figure 1.3.1.

Figures 5.1.6.1 and 5.1.6.2 show maps of location and numbers caught at different ages for whiting from the IBTS Q1 and Q3 surveys respectively. These maps show relatively large numbers of age 1 fish caught between 1999 and 2002. The high catch rates occurred mainly off the UK coast, and remained high for ages 2 and $3+$ in subsequent years. These high catch rates were not present in roundfish area 1 (northern North Sea), historically the most important area for landings.

IBTS Q1 indices for age 1 and approximate SSB indices for 1998-2004 were constructed for each of the ICES roundfish areas within the assessment region (Figures 5.1.6.3 and 5.1.6.4 respectively). These show that the majority of age 1 fish can be found off the UK coast in roundfish areas 3,4 and 5. The general trends for age 1 fish are similar for all the roundfish areas, indicating a peak around 1999-2001, followed by a subsequent decrease. These are consistent with the empirical SSBs estimated for the whole area. The approximate SSB index shows that the main concentration of mature fish has contracted from areas 3 and 4 to area 4 only in recent years, so that the SSB in area 4 shows a large increase over these years. Elsewhere SSB indices show a peak around 2000-2001, and relatively low abundance since then.

## Spatial distribution of landings

Total international landings by quarter for each roundfish area (tonnage and percentage) for 2000-2003 have been calculated using the database compiled by the EU-Norway Expert Group on Cod Assessment and Technical Measures, Brussels, 2003 (Table 5.1.6.1). It is clear that roundfish area 1 is the most important area, although it has become less important over these years, whilst area 6 is becoming more important. Strong seasonal trends in landings are also apparent in roundfish areas 4,5 and 6 .

Total landings by ICES rectangle for most of the countries involved in the whiting fishery (UK, Netherlands and Denmark but not France) were also available for 1996-2002. Figure 5.1.6.5 shows the distribution of landings in 2002 from all these countries combined. The majority of the catches are caught in the eastern North Sea, in three distinct areas, in the northern North Sea (area 1), off the northern English coast, and in the south (across the boundary between Sub-area IV and Division VIId). Figure 5.1.6.6 shows the landings aggregated over roundfish area for 1996-2002.
These show that roundfish area 1 is still the most important area, despite decreasing landings from this area, but area 6 , where landings are increasing slightly, is increasing in overall importance. Landings from VIId have remained relatively constant since 1980, so this area is also increasing in importance because overall landings are declining (Figure 5.1.4.2).

## Comparison

In summary, surveys indicate roundfish areas 3, 4 and 5 are currently the most important areas for the North Sea whiting stock, although historically this may not have been the case. The important area for the fishery is still roundfish area 1.

The Working Group has proposed that a Study Group should be set up to investigate the issue of North Sea stock sub-structure for whiting, including data on Division VIId (see Section 1.8.1).

### 5.1.7 Conclusion

The trends in the research survey indices for the whole of the North Sea (IBTS Q1, ENGGFS and SCOGFS) are consistent over the last 10 years, indicating a peak around 2000 with a possible subsequent decline. The spatial distributions obtained from IBTS Q1 and Q3 surveys indicate that whiting ages 1 and 2 mainly occur in roundfish areas 3,4 and 5 , and ages 3-5 are concentrated in area 4. There is evidence of different trends in these areas, with substantial increasing trends in area 4 for older fish since 1998. The FRAGFS survey index for Division VIId has different trends to the North Sea surveys. Thus there is evidence of different stock trends and age-structure in different areas of the North Sea.

The FraGFS index and the status of the stock in Division VIId should be investigated further in the proposed Study Group on whiting stock sub-structure (see Section 1.8.1).

The catch at age analyses are driven mainly by the catch data, and whilst the changes in SSB apparent in recent survey indices are reflected in the recent catch, the overall pattern is of a declining stock. This is because total catch in area IV has been steadily decreasing since 1980, the small increase in the late 1990s being mainly due to discarding and industrial bycatch of the 1998 year class. The decrease is mainly due to a large decline in Scottish (and also English) landings - landings from other countries have remained relatively constant. The Scottish landings are mainly taken from the northern North Sea, in roundfish areas 1 and 3, whilst landings from other countries are mainly taken from the south, in areas 4-6.

At least some of this decline in catch could be due to changes in fishing patterns or demand rather than reduced availability. Furthermore, Scottish discard ogives have been applied to the total international landings. Whilst this may have been appropriate when Scottish landings accounted for a large proportion of the international landings, it is much less appropriate for recent years. Discarding patterns in Divisions IVb, IVc and VIId, which now account for a large proportion of the total landings, are likely to be very different to those in area IVa, due to different fishing methods and different stock structure.

Thus the WG concludes that the catch data, as currently aggregated, does not reflect the stock structure of whiting in the North Sea, and therefore catch at age analyses are inappropriate. Survey data are subject to these same
aggregation problems and therefore a survey-based assessment is also inappropriate. Hence the WG cannot propose a final assessment for this stock.

### 5.1.8 Final Assessment

There is no final assessment.

### 5.1.9 Recruitment estimates

There are no recruitment estimates for 2004 to 2006.

### 5.1.10 Short term forecasts

There are no short-term forecasts.

### 5.1.11 Comments

## Quality of assessment

Previous meetings of this WG have concluded that the survey data and commercial catch data contain varying signals concerning the stock. Analyses at this WG suggest the differences could be due to spatial structure within the stock. Until this is addressed, an adequate assessment is unlikely. These problems were noted in the ACFM Technical Minutes last year.

An appropriate time series of discard data suitable for use in catch-at-age analysis was available only for Scottish catches. For assessment purposes, discards for other human consumption fleets are estimated by extrapolation from Scottish data. However the Scottish fleets now account for only about $50 \%$ of human consumption landings, and other fleets are likely to have different discarding patterns. Data are also collected by other countries, but were not made available to data collators in time for the Working Group.

## Fisher's North Sea Stock Survey

The fishermen's surveys (Figure 5.1.11.1) indicate a decrease in stock in the northwest North Sea (roundfish areas 1 and 3 ), with little change in the northeast, roundfish areas $2,7,8$ and 9 , but increases in stock in the south (roundfish areas 4 and 6). These results are in accordance with the general trends in SSB in these areas from the IBTS Q1 survey (Figure 5.1.5.4).

## Management considerations

Surveys indicate increasing or relatively stable stock from the mid 1980s, with a peak around 2000 followed by a subsequent decline in SSB. In contrast, catch-at-age analyses imply a longer-term decline. There are indications that this conflict may be caused by the changing spatial distribution of the stock.

### 5.2 Whiting in Division IIIa

Total landings are shown in Table 5.2.1.
No analytical assessment of this stock was possible.

Table 5.1.1.1 Nominal landings (in tonnes) of Whiting in Sub-area IV and Division VIId, as officially reported to ICES.
Sub-area IV

| Country | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Belgium | 1,030 | 944 | 1,042 | 880 | 843 | 391 | 268 | 529 | 536 | 454 | 270 | 246* |
| Denmark | 1,377 | 1,418 | 549 | 368 | 189 | 103 | 46 | 58 | 105 | 105 | 96 | 89 |
| Faroe Islands | 16 | 7 | 2 | 21 | - | 6 | 1 | 1 | - | - | - |  |
| France | 5,071 | 5,502 | 4,735 | 5,963 | 4,704 | 3,526 | 1,908* | $4,292 *^{1}$ | 2,527 | 3,455 | 3,314 | 2,414 |
| Germany, Fed.Rep. | 511 | 441 | 239 | 124 | 187 | 196 | 103 | 176 | 424 | 402 | 354 | 334 |
| Netherlands | 5,390 | 4,799 | 3,864 | 3,640 | 3,388 | 2,539 | 1,941 | 1,795 | 1,884 | 2,478 ${ }^{2}$ | 2,425 | 1,442* |
| Norway | 232 | 130 | 79 | 115 | 66 | 75 | 65 | 68 | 33 | 44 | 41* | 39* |
| Poland | - | - | - | - | - | - | 1 | - | - | - | - | -* |
| Sweden | 22 | 18 | 10 | 1 | 1 | 1 | + | 9 | 4 | 6 | 7 | 10 |
| UK (E.\&W) ${ }^{3}$ | 2,528 | 2,774 | 2,722 | 2,477 | 2,329 | 2,638 | 2,909 | 2,268 | 1,782 | 1,301 | 1,322 | 680 |
| UK (Scotland) | 30,821 | 31,268 | 28,974 | 27,811 | 23,409 | 22,098 | 16,696 | 17,206 | 17,158 | 10,589 | 7,756 | 5,734 |
| United Kingdom |  |  |  |  |  |  |  |  |  |  |  |  |
| Total | 46,998 | 47,301 | 42,216 | 41,400 | 35,116 | 31,573 | 23,938 | 26,402 | 24,453 | 18,834 | 15,585 | 10,988 |
| Unallocated landings | -554 | 680 | 401 | -348 | 1,006 | -276 | -72 | -421 | -412 | 592 | 331 | -329 |
| WG estimate of H.Cons. landings | 46,444 | 47,981 | 42,617 | 41,052 | 36,122 | 31,297 | 23,866 | 25,981 | 24,041 | 19,412 | 15,916 | 10,659 |
| WG estimate of discards | 30,615 | 42,871 | 33,010 | 30,264 | 28,181 | 17,217 | 12,708 | 23,584 | 23,214 | 16,488 | 17,509 | 24,093 |
| WG estimate of Ind. By-catch | 26,901 | 20,099 | 10,354 | 26,561 | 4,702 | 5,965 | 3,141 | 5,183 | 8,886 | 7,357 | 7,327 | 2,743 |
| WG estimate of total catch | 103,960 | 110,951 | 85,981 | 97,877 | 69,005 | 54,479 | 39,715 | 54,748 | 56,609 | 43,258 | 40,752 | 37,496 |

*Preliminary: year 2001, France 1998-1999.
${ }^{1}$ Includes Division IIa (EC).
${ }^{2}$ Not included here are 68 t reported into an unknown area.
${ }^{3}$ 1989-1994 revised. N. Ireland included with England and Wales.

## Division VIId

| Country | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Belgium | 66 | 74 | 61 | 68 | 84 | 98 | 53 | 48 | 65 | 75 | 58 | 67* |
| France | 5,414 | 5,032 | 6,734 | 5,202 | 4,771 | 4,532 | 4,495* | - | 5,875 | 6,338 | 5,172 | 6,478 |
| Netherlands | - | - | - | - | 1 | 1 | 32 | 6 | 14 | 67 | 19 | 175* |
| UK (E.\&W) | 419 | 321 | 293 | 280 | 199 | 147 | 185 | 135 | 118 | 134 | 112 | 109 |
| UK (Scotland) | 24 | 2 | - | 1 | 1 | 1 | + | - | - | - | - | - |
| United Kingdom |  |  |  |  |  |  |  |  |  |  |  |  |
| Total | 5,923 | 5,429 | 7,088 | 5,551 | 5,056 | 4,779 | 4,765 | 189 | 6,072 | 6,614 | 5,361 | 6,829 |
| Unallocated | -178 | -214 | -463 | -161 | -104 | -156 | -167 | 4,242 | -1,775 | -810 | 439 | -1,117 |
| W.G. estimate | 5,745 | 5,215 | 6,625 | 5,390 | 4,952 | 4,623 | 4,598 | 4,431 | 4,297 | 5,804 | 5,800 | 5,712 |

*Preliminary.

|  | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| W.G. estimate | 109,705 | 6,166 | 92,606 | 103,267 | 73,957 | 59,102 | 44,313 | 59,179 | 59,587 | 49,062 | 46,552 | 43,208 |

Annual TAC for Subarea IV and Division IIa

|  | 2000 | 2001 | 2002 | 2003 |
| ---: | ---: | ---: | ---: | ---: |
| TAC | 29,700 | 32,358 | 16,000 | 16,000 |

Table 5.1.2.1 Whiting in IV and VIId. Annual weight and numbers caught, years 1980-2003, ages 0-12+.

| Year | Weight (thousand tonnes) |  |  | Numbers (millions) |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | Total | H. cons. | Disc. | Ind. BC | Total | H. cons. | Disc. | Ind. BC |
|  |  |  |  |  |  |  |  | 645 |
| 1980 | 224 | 101 | 77 | 46 | 1456 | 340 | 471 | 645 |
| 1981 | 192 | 90 | 36 | 67 | 1439 | 296 | 214 | 929 |
| 1982 | 140 | 81 | 27 | 33 | 778 | 271 | 173 | 333 |
| 1983 | 161 | 88 | 50 | 24 | 1358 | 290 | 370 | 697 |
| 1984 | 146 | 86 | 41 | 19 | 909 | 285 | 327 | 297 |
| 1985 | 106 | 62 | 29 | 15 | 688 | 176 | 231 | 280 |
| 1986 | 162 | 64 | 80 | 18 | 1207 | 225 | 583 | 399 |
| 1987 | 139 | 68 | 54 | 16 | 946 | 245 | 416 | 285 |
| 1988 | 133 | 56 | 28 | 49 | 1395 | 212 | 231 | 952 |
| 1989 | 124 | 45 | 36 | 43 | 883 | 172 | 280 | 431 |
| 1990 | 153 | 47 | 56 | 51 | 1294 | 177 | 539 | 578 |
| 1991 | 125 | 53 | 34 | 38 | 1611 | 199 | 242 | 1170 |
| 1992 | 110 | 52 | 31 | 27 | 863 | 182 | 216 | 465 |
| 1993 | 116 | 53 | 43 | 20 | 1231 | 174 | 343 | 714 |
| 1994 | 93 | 49 | 33 | 10 | 702 | 162 | 235 | 304 |
| 1995 | 103 | 46 | 30 | 27 | 2020 | 147 | 214 | 1659 |
| 1996 | 74 | 41 | 28 | 5 | 448 | 143 | 177 | 128 |
| 1997 | 59 | 36 | 17 | 6 | 293 | 131 | 101 | 61 |
| 1998 | 44 | 28 | 13 | 3 | 290 | 110 | 83 | 97 |
| 1999 | 59 | 30 | 24 | 5 | 456 | 117 | 179 | 160 |
| 2000 | 61 | 29 | 23 | 9 | 311 | 114 | 142 | 55 |
| 2001 | 49 | 25 | 16 | 7 | 498 | 102 | 114 | 282 |
| 2002 | 46 | 22 | 17 | 7 | 377 | 77 | 96 | 205 |
| 2003 | 43 | 16 | 24 | 3 | 351 | 57 | 210 | 84 |
|  |  |  |  |  |  |  |  |  |
| Min | 43 | 16 | 13 | 3 | 290 | 57 | 83 | 55 |
| GM | 100 | 48 | 32 | 16 | 775 | 168 | 226 | 326 |
| AM | 111 | 53 | 35 | 23 | 908 | 184 | 258 | 467 |
| Max | 224 | 101 | 80 | 67 | 2020 | 340 | 583 | 1659 |

Table 5.1.2.2 Whiting in VIId. Annual weight and numbers caught, year 1980-2003, ages 0-12+.

| Year | Weight <br> (tonnes) | Numbers (thousands) |
| :---: | :---: | :---: |
|  |  |  |
| 1980 | 9167 | 35509 |
| 1981 | 8932 | 34279 |
| 1982 | 7911 | 32952 |
| 1983 | 6936 | 29470 |
| 1984 | 7373 | 33413 |
| 1985 | 7390 | 19561 |
| 1986 | 5498 | 21143 |
| 1987 | 4671 | 18208 |
| 1988 | 4428 | 17922 |
| 1989 | 4156 | 16869 |
| 1990 | 3483 | 13648 |
| 1991 | 5718 | 17884 |
| 1992 | 5745 | 19398 |
| 1993 | 5215 | 17842 |
| 1994 | 6625 | 24049 |
| 1995 | 5390 | 18492 |
| 1996 | 4952 | 22360 |
| 1997 | 4623 | 22556 |
| 1998 | 4598 | 23047 |
| 1999 | 4431 | 18867 |
| 2000 | 4297 | 22087 |
| 2001 | 5804 | 28560 |
| 2002 | 5800 | 19697 |
| 2003 | 5712 | 22821 |
| Min | 3483 | 13648 |
| GM | 5611 | 22221 |
| AM | 5786 | 22943 |
| Max | 9167 | 35509 |
|  |  |  |

Table 5.1.2.3 Whiting in IV and VIId. Total catch numbers at age (thousands).

| Age | $\mathbf{1 9 8 0}$ | $\mathbf{1 9 8 1}$ | $\mathbf{1 9 8 2}$ | $\mathbf{1 9 8 3}$ | $\mathbf{1 9 8 4}$ | $\mathbf{1 9 8 5}$ | $\mathbf{1 9 8 6}$ | $\mathbf{1 9 8 7}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1}$ | 265359 | 162899 | 192640 | 205646 | 323408 | 203321 | 576731 | 267051 |
| $\mathbf{2}$ | 416008 | 346343 | 114444 | 184746 | 175965 | 141716 | 167077 | 368229 |
| $\mathbf{3}$ | 286077 | 266517 | 245246 | 118412 | 124886 | 82037 | 169577 | 122748 |
| $\mathbf{4}$ | 90718 | 102295 | 88137 | 131508 | 49505 | 37847 | 46517 | 85240 |
| $\mathbf{5}$ | 52969 | 27776 | 26796 | 37231 | 59817 | 14420 | 13367 | 11392 |
| $\mathbf{6}$ | 10751 | 12297 | 6909 | 8688 | 13860 | 17445 | 3487 | 4556 |
| $\mathbf{7}$ | 1152 | 3540 | 2082 | 1780 | 2964 | 3328 | 3975 | 928 |
| $\mathbf{8 +}$ | 767 | 326 | 484 | 930 | 613 | 904 | 569 | 1035 |
|  |  |  |  |  |  |  |  |  |
| $\mathbf{A g e}$ | $\mathbf{1 9 8 8}$ | $\mathbf{1 9 8 9}$ | $\mathbf{1 9 9 0}$ | $\mathbf{1 9 9 1}$ | $\mathbf{1 9 9 2}$ | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ |
| $\mathbf{1}$ | 430344 | 331672 | 253745 | 128507 | 239792 | 217539 | 163609 | 137481 |
| $\mathbf{2}$ | 307429 | 173676 | 505010 | 191193 | 165354 | 167577 | 147177 | 139010 |
| $\mathbf{3}$ | 179502 | 191942 | 129126 | 187195 | 89563 | 124287 | 90611 | 111489 |
| $\mathbf{4}$ | 39635 | 78464 | 86324 | 36830 | 93636 | 46543 | 47533 | 35728 |
| $\mathbf{5}$ | 17901 | 14367 | 32270 | 26209 | 11967 | 46136 | 17384 | 15161 |
| $\mathbf{6}$ | 2175 | 5050 | 2003 | 5519 | 6878 | 3946 | 17264 | 5159 |
| $\mathbf{7}$ | 544 | 516 | 735 | 542 | 2609 | 1519 | 998 | 4515 |
| $\mathbf{8 +}$ | 168 | 334 | 112 | 273 | 117 | 771 | 460 | 474 |
|  |  |  |  |  |  |  |  |  |
| $\mathbf{A g e}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 2}$ | $\mathbf{2 0 0 3}$ |
| $\mathbf{1}$ | 72645 | 53408 | 71430 | 178079 | 66789 | 84121 | 49857 | 72709 |
| $\mathbf{2}$ | 113956 | 74200 | 44697 | 91355 | 124365 | 86178 | 61239 | 104040 |
| $\mathbf{3}$ | 98476 | 82944 | 42771 | 45627 | 63526 | 58908 | 82940 | 53560 |
| $\mathbf{4}$ | 48575 | 42154 | 36459 | 34175 | 23888 | 20559 | 34006 | 42048 |
| $\mathbf{5}$ | 14235 | 18492 | 17756 | 18528 | 16232 | 9177 | 8007 | 14305 |
| $\mathbf{6}$ | 4695 | 3358 | 6392 | 7547 | 8791 | 4814 | 2043 | 2372 |
| $\mathbf{7}$ | 1294 | 1020 | 1426 | 2049 | 4322 | 2232 | 1457 | 474 |
| $\mathbf{8 +}$ | 1113 | 460 | 407 | 676 | 1265 | 1268 |  |  |

Table 5.1.2.4 Whiting in IV and VIId. Human consumption landings numbers at age (thousands).

| Age | $\mathbf{1 9 8 0}$ | $\mathbf{1 9 8 1}$ | $\mathbf{1 9 8 2}$ | $\mathbf{1 9 8 3}$ | $\mathbf{1 9 8 4}$ | $\mathbf{1 9 8 5}$ | $\mathbf{1 9 8 6}$ | $\mathbf{1 9 8 7}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1}$ | 3656 | 4240 | 10890 | 10568 | 14388 | 2288 | 12879 | 11074 |
| $\mathbf{2}$ | 62405 | 69211 | 46703 | 68640 | 62693 | 51194 | 44500 | 72372 |
| $\mathbf{3}$ | 152570 | 104348 | 124656 | 67312 | 99204 | 57049 | 111527 | 70504 |
| $\mathbf{4}$ | 68422 | 78253 | 59393 | 101342 | 41277 | 32340 | 37287 | 73742 |
| $\mathbf{5}$ | 41430 | 23698 | 21376 | 31266 | 51745 | 12974 | 11285 | 10808 |
| $\mathbf{6}$ | 9911 | 12036 | 5664 | 8330 | 12735 | 16361 | 3379 | 4506 |
| $\mathbf{7}$ | 1135 | 3530 | 2058 | 1730 | 2813 | 3238 | 3912 | 928 |
| $\mathbf{8 +}$ | 767 | 326 | 484 | 921 | 613 | 904 | 557 | 1004 |
|  |  |  |  |  |  |  |  |  |
| Age | $\mathbf{1 9 8 8}$ | $\mathbf{1 9 8 9}$ | $\mathbf{1 9 9 0}$ | $\mathbf{1 9 9 1}$ | $\mathbf{1 9 9 2}$ | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ |
| $\mathbf{1}$ | 7462 | 8636 | 6949 | 11610 | 9603 | 5980 | 17126 | 8832 |
| $\mathbf{2}$ | 61360 | 28406 | 54361 | 43110 | 45154 | 29305 | 31660 | 28132 |
| $\mathbf{3}$ | 94163 | 77009 | 45423 | 91129 | 48838 | 64353 | 46217 | 58538 |
| $\mathbf{4}$ | 29147 | 44307 | 50603 | 26169 | 60806 | 33514 | 36814 | 28013 |
| $\mathbf{5}$ | 16556 | 9249 | 17747 | 21697 | 9956 | 34651 | 14169 | 13767 |
| $\mathbf{6}$ | 2158 | 3888 | 1407 | 4687 | 6223 | 2989 | 14706 | 4953 |
| $\mathbf{7}$ | 544 | 420 | 622 | 405 | 1496 | 1361 | 928 | 4401 |
| $\mathbf{8 +}$ | 164 | 249 | 110 | 273 | 110 | 771 | 446 | 467 |
|  |  |  |  |  |  |  |  |  |
| Age | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 2}$ | $\mathbf{2 0 0 3}$ |
| $\mathbf{1}$ | 12516 | 6522 | 17081 | 16689 | 15406 | 12257 | 2606 | 403 |
| $\mathbf{2}$ | 26768 | 23543 | 19894 | 26966 | 31989 | 28499 | 10343 | 11610 |
| $\mathbf{3}$ | 47593 | 48237 | 25016 | 25863 | 28500 | 27332 | 30858 | 13991 |
| $\mathbf{4}$ | 36288 | 31904 | 24713 | 23792 | 14327 | 17518 | 22328 | 18981 |
| $\mathbf{5}$ | 12023 | 15824 | 14717 | 14708 | 11841 | 8640 | 6703 | 9515 |
| $\mathbf{6}$ | 4453 | 2957 | 5446 | 6660 | 6657 | 4506 | 1710 | 1862 |
| $\mathbf{7}$ | 1116 | 1017 | 1213 | 1882 | 3774 | 2092 | 1329 | 444 |
| $\mathbf{8 +}$ | 1113 | 443 | 301 | 591 | 1159 | 1249 |  |  |
|  |  |  |  |  |  |  |  |  |

Table 5.1.2.5 Whiting in IV and VIId. Discard numbers at age (thousands).

| Age | $\mathbf{1 9 8 0}$ | $\mathbf{1 9 8 1}$ | $\mathbf{1 9 8 2}$ | $\mathbf{1 9 8 3}$ | $\mathbf{1 9 8 4}$ | $\mathbf{1 9 8 5}$ | $\mathbf{1 9 8 6}$ | $\mathbf{1 9 8 7}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1}$ | 103203 | 50407 | 53753 | 152488 | 200589 | 154232 | 404604 | 158531 |
| $\mathbf{2}$ | 250735 | 96509 | 26922 | 85318 | 82563 | 48791 | 120492 | 202154 |
| $\mathbf{3}$ | 88399 | 57403 | 52349 | 33325 | 16815 | 15117 | 43479 | 34824 |
| $\mathbf{4}$ | 14135 | 7313 | 18230 | 23442 | 4437 | 2985 | 5242 | 9776 |
| $\mathbf{5}$ | 10795 | 1285 | 2972 | 4309 | 4495 | 761 | 627 | 582 |
| $\mathbf{6}$ | 786 | 149 | 343 | 295 | 1034 | 801 | 108 | 49 |
| $\mathbf{7}$ | 0 | 10 | 22 | 25 | 151 | 65 | 63 | 0 |
| $\mathbf{8 +}$ | 0 | 0 | 0 | 9 | 0 | 0 | 12 | 31 |
|  |  |  |  |  |  |  |  |  |
| Age | $\mathbf{1 9 8 8}$ | $\mathbf{1 9 8 9}$ | $\mathbf{1 9 9 0}$ | $\mathbf{1 9 9 1}$ | $\mathbf{1 9 9 2}$ | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ |
| $\mathbf{1}$ | 65021 | 150598 | 79488 | 76938 | 98967 | 124426 | 77783 | 46209 |
| $\mathbf{2}$ | 87197 | 36712 | 245129 | 77383 | 57629 | 101119 | 97847 | 77320 |
| $\mathbf{3}$ | 51135 | 61442 | 33194 | 74005 | 26527 | 49064 | 36762 | 48601 |
| $\mathbf{4}$ | 5877 | 21267 | 23488 | 4900 | 22976 | 8992 | 9528 | 6943 |
| $\mathbf{5}$ | 846 | 3276 | 12012 | 1828 | 1199 | 10709 | 2856 | 1318 |
| $\mathbf{6}$ | 17 | 103 | 253 | 89 | 350 | 519 | 2337 | 205 |
| $\mathbf{7}$ | 0 | 8 | 87 | 60 | 1064 | 131 | 7 | 113 |
| $\mathbf{8 +}$ | 3 | 12 | 0 | 0 | 2 | 0 | 0 | 6 |
|  |  |  |  |  |  |  |  |  |
| Age | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 2}$ | $\mathbf{2 0 0 3}$ |
| $\mathbf{1}$ | 30480 | 19347 | 29979 | 84613 | 33848 | 27570 | 8670 | 54781 |
| $\mathbf{2}$ | 82020 | 28837 | 18755 | 51740 | 75869 | 44645 | 31959 | 87376 |
| $\mathbf{3}$ | 48240 | 30616 | 16361 | 14422 | 23590 | 21930 | 43444 | 36989 |
| $\mathbf{4}$ | 11319 | 9175 | 10992 | 8844 | 2898 | 2528 | 9491 | 21853 |
| $\mathbf{5}$ | 2192 | 2392 | 2976 | 3077 | 2257 | 385 | 1099 | 4401 |
| $\mathbf{6}$ | 240 | 399 | 935 | 857 | 1548 | 268 | 211 | 461 |
| $\mathbf{7}$ | 179 | 2 | 213 | 166 | 474 | 140 | 128 | 31 |
| $\mathbf{8 +}$ | 0 | 17 | 106 | 85 | 107 | 19 |  |  |

Table 5.1.2.6 Whiting in IV and VIId. Industrial bycatch numbers at age (thousands).

| Age | $\mathbf{1 9 8 0}$ | $\mathbf{1 9 8 1}$ | $\mathbf{1 9 8 2}$ | $\mathbf{1 9 8 3}$ | $\mathbf{1 9 8 4}$ | $\mathbf{1 9 8 5}$ | $\mathbf{1 9 8 6}$ | $\mathbf{1 9 8 7}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1}$ | 158500 | 108252 | 127998 | 42591 | 108431 | 46801 | 159249 | 97446 |
| $\mathbf{2}$ | 102869 | 180623 | 40818 | 30789 | 30709 | 41731 | 2086 | 93704 |
| $\mathbf{3}$ | 45108 | 104767 | 68242 | 17775 | 8868 | 9871 | 14572 | 17420 |
| $\mathbf{4}$ | 8162 | 16729 | 10514 | 6723 | 3790 | 2522 | 3987 | 1722 |
| $\mathbf{5}$ | 744 | 2793 | 2448 | 1656 | 3577 | 685 | 1456 | 2 |
| $\mathbf{6}$ | 55 | 112 | 902 | 63 | 91 | 284 | 0 | 0 |
| $\mathbf{7}$ | 18 | 0 | 2 | 25 | 0 | 26 | 0 | 0 |
| $\mathbf{8 +}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  |  |  |  |  |  |  |  |
| Age | $\mathbf{1 9 8 8}$ | $\mathbf{1 9 8 9}$ | $\mathbf{1 9 9 0}$ | $\mathbf{1 9 9 1}$ | $\mathbf{1 9 9 2}$ | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ |
| $\mathbf{1}$ | 357861 | 172438 | 167308 | 39959 | 131221 | 87133 | 68701 | 82439 |
| $\mathbf{2}$ | 158872 | 108558 | 205521 | 70701 | 62571 | 37153 | 17670 | 33558 |
| $\mathbf{3}$ | 34205 | 53491 | 50508 | 22062 | 14198 | 10870 | 7632 | 4351 |
| $\mathbf{4}$ | 4611 | 12890 | 12233 | 5761 | 9855 | 4037 | 1192 | 772 |
| $\mathbf{5}$ | 500 | 1842 | 2511 | 2684 | 812 | 776 | 359 | 76 |
| $\mathbf{6}$ | 0 | 1060 | 342 | 743 | 305 | 437 | 222 | 0 |
| $\mathbf{7}$ | 0 | 89 | 26 | 78 | 49 | 27 | 64 | 0 |
| $\mathbf{8 +}$ | 0 | 72 | 2 | 0 | 6 | 0 | 14 | 0 |
| $\mathbf{A g e}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 2}$ | $\mathbf{2 0 0 3}$ |
| $\mathbf{1}$ | 29648 | 27539 | 24370 | 76777 | 17535 | 44294 | 38580 | 17525 |
| $\mathbf{2}$ | 5168 | 21820 | 6047 | 12649 | 16508 | 13034 | 18937 | 5054 |
| $\mathbf{3}$ | 2643 | 4091 | 1395 | 5342 | 11436 | 9646 | 8638 | 2580 |
| $\mathbf{4}$ | 968 | 1075 | 754 | 1539 | 6663 | 513 | 2186 | 1214 |
| $\mathbf{5}$ | 21 | 276 | 63 | 743 | 2134 | 152 | 205 | 391 |
| $\mathbf{6}$ | 2 | 2 | 12 | 30 | 586 | 40 | 122 | 49 |
| $\mathbf{7}$ | 0 | 0 | 0 | 0 | 74 | 0 | 0 | 0 |
| $\mathbf{8 +}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table 5.1.2.7 Whiting in IV and VIId. Total catch mean weights at age (kg).

| Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.075 | 0.083 | 0.061 | 0.107 | 0.089 | 0.094 | 0.105 | 0.077 |
| 2 | 0.176 | 0.168 | 0.184 | 0.191 | 0.188 | 0.192 | 0.183 | 0.148 |
| 3 | 0.252 | 0.242 | 0.253 | 0.273 | 0.271 | 0.284 | 0.255 | 0.247 |
| 4 | 0.328 | 0.321 | 0.314 | 0.325 | 0.337 | 0.332 | 0.318 | 0.297 |
| 5 | 0.337 | 0.379 | 0.376 | 0.384 | 0.382 | 0.402 | 0.378 | 0.375 |
| 6 | 0.458 | 0.411 | 0.478 | 0.426 | 0.391 | 0.435 | 0.475 | 0.379 |
| 7 | 0.458 | 0.444 | 0.504 | 0.452 | 0.463 | 0.494 | 0.468 | 0.542 |
| 8+ | 0.572 | 0.72 | 0.735 | 0.537 | 0.567 | 0.439 | 0.625 | 0.584 |
| Age | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| 1 | 0.054 | 0.07 | 0.083 | 0.103 | 0.082 | 0.073 | 0.08 | 0.087 |
| 2 | 0.146 | 0.157 | 0.137 | 0.169 | 0.185 | 0.175 | 0.17 | 0.181 |
| 3 | 0.223 | 0.225 | 0.209 | 0.218 | 0.257 | 0.252 | 0.254 | 0.258 |
| 4 | 0.301 | 0.267 | 0.25 | 0.29 | 0.277 | 0.319 | 0.323 | 0.341 |
| 5 | 0.346 | 0.318 | 0.279 | 0.307 | 0.332 | 0.329 | 0.371 | 0.385 |
| 6 | 0.423 | 0.391 | 0.408 | 0.338 | 0.346 | 0.349 | 0.367 | 0.43 |
| 7 | 0.506 | 0.431 | 0.49 | 0.365 | 0.314 | 0.403 | 0.414 | 0.434 |
| 8+ | 0.694 | 0.394 | 0.599 | 0.401 | 0.503 | 0.381 | 0.416 | 0.42 |
| Age | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| 1 | 0.093 | 0.091 | 0.091 | 0.076 | 0.113 | 0.072 | 0.067 | 0.053 |
| 2 | 0.167 | 0.178 | 0.18 | 0.174 | 0.182 | 0.191 | 0.156 | 0.114 |
| 3 | 0.236 | 0.243 | 0.236 | 0.233 | 0.238 | 0.227 | 0.222 | 0.195 |
| 4 | 0.302 | 0.295 | 0.281 | 0.256 | 0.288 | 0.283 | 0.281 | 0.260 |
| 5 | 0.387 | 0.333 | 0.314 | 0.289 | 0.287 | 0.270 | 0.314 | 0.298 |
| 6 | 0.406 | 0.381 | 0.339 | 0.303 | 0.277 | 0.300 | 0.360 | 0.352 |
| 7 | 0.428 | 0.381 | 0.33 | 0.309 | 0.277 | 0.287 | 0.357 | 0.383 |
| 8+ | 0.43 | 0.418 | 0.367 | 0.287 | 0.273 | 0.294 |  |  |

Table 5.1.2.8 Whiting in IV and VIId. Human consumption landings mean weights at age (kg).

| Age | $\mathbf{1 9 8 0}$ | $\mathbf{1 9 8 1}$ | $\mathbf{1 9 8 2}$ | $\mathbf{1 9 8 3}$ | $\mathbf{1 9 8 4}$ | $\mathbf{1 9 8 5}$ | $\mathbf{1 9 8 6}$ | $\mathbf{1 9 8 7}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1}$ | 0.2038 | 0.1942 | 0.1863 | 0.1990 | 0.1942 | 0.1870 | 0.1886 | 0.1885 |
| $\mathbf{2}$ | 0.2391 | 0.2420 | 0.2304 | 0.2396 | 0.2310 | 0.2475 | 0.2297 | 0.2256 |
| $\mathbf{3}$ | 0.2733 | 0.2915 | 0.2818 | 0.2825 | 0.2788 | 0.3069 | 0.2788 | 0.2856 |
| $\mathbf{4}$ | 0.3351 | 0.3308 | 0.3398 | 0.3317 | 0.3459 | 0.3370 | 0.3271 | 0.3096 |
| $\mathbf{5}$ | 0.3580 | 0.3776 | 0.3961 | 0.3829 | 0.3912 | 0.4081 | 0.3760 | 0.3811 |
| $\mathbf{6}$ | 0.4733 | 0.4114 | 0.4606 | 0.4290 | 0.4035 | 0.4428 | 0.4837 | 0.3808 |
| $\mathbf{7}$ | 0.4566 | 0.4449 | 0.5066 | 0.4522 | 0.4725 | 0.4983 | 0.4725 | 0.5422 |
| $\mathbf{8 +}$ | 0.5718 | 0.7198 | 0.7355 | 0.5384 | 0.5674 | 0.4385 | 0.6323 | 0.5928 |
|  |  |  |  |  |  |  |  |  |
| Age | $\mathbf{1 9 8 8}$ | $\mathbf{1 9 8 9}$ | $\mathbf{1 9 9 0}$ | $\mathbf{1 9 9 1}$ | $\mathbf{1 9 9 2}$ | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ |
| $\mathbf{1}$ | 0.1941 | 0.1783 | 0.2013 | 0.2040 | 0.1954 | 0.1952 | 0.1836 | 0.1718 |
| $\mathbf{2}$ | 0.2262 | 0.2260 | 0.2198 | 0.2496 | 0.2479 | 0.2509 | 0.2497 | 0.2554 |
| $\mathbf{3}$ | 0.2559 | 0.2528 | 0.2600 | 0.2518 | 0.2903 | 0.2866 | 0.2974 | 0.2981 |
| $\mathbf{4}$ | 0.3276 | 0.2878 | 0.2921 | 0.3086 | 0.3068 | 0.3476 | 0.3454 | 0.3670 |
| $\mathbf{5}$ | 0.3515 | 0.3448 | 0.3349 | 0.3182 | 0.3425 | 0.3591 | 0.3927 | 0.3977 |
| $\mathbf{6}$ | 0.4248 | 0.3700 | 0.4493 | 0.3493 | 0.3577 | 0.3877 | 0.3823 | 0.4373 |
| $\mathbf{7}$ | 0.5064 | 0.4397 | 0.5225 | 0.3878 | 0.3828 | 0.4218 | 0.4128 | 0.4369 |
| $\mathbf{8 +}$ | 0.7017 | 0.4050 | 0.6012 | 0.4013 | 0.5027 | 0.3804 | 0.4117 | 0.4217 |
|  |  |  |  |  |  |  |  |  |
| $\mathbf{A g e}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 2}$ | $\mathbf{2 0 0 3}$ |
| $\mathbf{1}$ | 0.1700 | 0.1715 | 0.1642 | 0.1840 | 0.1659 | 0.1600 | 0.199 | 0.209 |
| $\mathbf{2}$ | 0.2220 | 0.2067 | 0.2090 | 0.2365 | 0.2264 | 0.2168 | 0.223 | 0.239 |
| $\mathbf{3}$ | 0.2743 | 0.2607 | 0.2592 | 0.2702 | 0.2714 | 0.2682 | 0.269 | 0.263 |
| $\mathbf{4}$ | 0.3280 | 0.3140 | 0.3041 | 0.2801 | 0.3001 | 0.2857 | 0.304 | 0.309 |
| $\mathbf{5}$ | 0.4067 | 0.3476 | 0.3299 | 0.3024 | 0.2924 | 0.2692 | 0.325 | 0.310 |
| $\mathbf{6}$ | 0.4133 | 0.3977 | 0.3596 | 0.3139 | 0.3153 | 0.3033 | 0.376 | 0.373 |
| $\mathbf{7}$ | 0.4484 | 0.3807 | 0.3444 | 0.3175 | 0.2781 | 0.2909 | 0.365 | 0.389 |
| $\mathbf{8 +}$ | 0.4302 | 0.4205 | 0.4237 | 0.2951 | 0.2737 | 0.2944 |  |  |

Table 5.1.2.9 Whiting in IV and VIId. Discard mean weights at age (kg).

| Age | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.1070 | 0.1310 | 0.0910 | 0.1140 | 0.1010 | 0.1050 | 0.1230 | 0.0900 |
| 2 | 0.1660 | 0.1640 | 0.1820 | 0.1670 | 0.1620 | 0.1690 | 0.1660 | 0.1490 |
| 3 | 0.2020 | 0.1970 | 0.2110 | 0.2350 | 0.2160 | 0.2130 | 0.1900 | 0.2060 |
| 4 | 0.2440 | 0.2300 | 0.2250 | 0.2640 | 0.2460 | 0.2380 | 0.2080 | 0.2050 |
| 5 | 0.2530 | 0.2890 | 0.2410 | 0.2900 | 0.2650 | 0.2420 | 0.2270 | 0.2630 |
| 6 | 0.2640 | 0.2520 | 0.2440 | 0.3170 | 0.2480 | 0.2530 | 0.1940 | 0.2570 |
| 7 | 0.0000 | 0.2680 | 0.2610 | 0.2770 | 0.2780 | 0.2550 | 0.2170 | 0.0000 |
| 8+ | 0.0000 | 0.0000 | 0.0000 | 0.3650 | 0.0000 | 0.0000 | 0.3110 | 0.2920 |
| Age | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| 1 | 0.0630 | 0.0830 | 0.0950 | 0.0890 | 0.0930 | 0.0870 | 0.0900 | 0.1020 |
| 2 | 0.1460 | 0.1640 | 0.1300 | 0.1540 | 0.1730 | 0.1600 | 0.1510 | 0.1630 |
| 3 | 0.1810 | 0.1910 | 0.1830 | 0.1770 | 0.2100 | 0.2050 | 0.2030 | 0.2040 |
| 4 | 0.2100 | 0.2130 | 0.1860 | 0.2130 | 0.2150 | 0.2370 | 0.2300 | 0.2330 |
| 5 | 0.2190 | 0.2270 | 0.1960 | 0.2300 | 0.2410 | 0.2350 | 0.2440 | 0.2470 |
| 6 | 0.2350 | 0.2410 | 0.2490 | 0.2530 | 0.2450 | 0.2250 | 0.2540 | 0.2470 |
| 7 | 0.0000 | 0.3510 | 0.3020 | 0.2680 | 0.2200 | 0.2130 | 0.3320 | 0.3320 |
| 8+ | 0.2840 | 0.2210 | 0.0000 | 0.0000 | 1.1830 | 0.0000 | 0.0000 | 0.2900 |
| Age | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| 1 | 0.0940 | 0.1250 | 0.0860 | 0.1000 | 0.1272 | 0.0844 | 0.130 | 0.057 |
| 2 | 0.1510 | 0.1810 | 0.1730 | 0.1660 | 0.1669 | 0.1828 | 0.167 | 0.098 |
| 3 | 0.1980 | 0.2130 | 0.2040 | 0.1970 | 0.1946 | 0.2169 | 0.196 | 0.169 |
| 4 | 0.2250 | 0.2250 | 0.2280 | 0.2010 | 0.2262 | 0.2591 | 0.224 | 0.215 |
| 5 | 0.2810 | 0.2330 | 0.2340 | 0.2250 | 0.2086 | 0.2482 | 0.224 | 0.262 |
| 6 | 0.2650 | 0.2560 | 0.2240 | 0.2310 | 0.2191 | 0.2398 | 0.225 | 0.257 |
| 7 | 0.3040 | 0.6170 | 0.2470 | 0.2120 | 0.2223 | 0.2249 | 0.272 | 0.293 |
| 8+ | 0.0000 | 0.3523 | 0.2063 | 0.2266 | 0.2640 | 0.2425 |  |  |

Table 5.1.2.10 Whiting in IV and VIId. Industrial bycatch mean weights at age (kg).

| Age | $\mathbf{1 9 8 0}$ | $\mathbf{1 9 8 1}$ | $\mathbf{1 9 8 2}$ | $\mathbf{1 9 8 3}$ | $\mathbf{1 9 8 4}$ | $\mathbf{1 9 8 5}$ | $\mathbf{1 9 8 6}$ | $\mathbf{1 9 8 7}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1}$ | 0.0510 | 0.0560 | 0.0380 | 0.0580 | 0.0530 | 0.0540 | 0.0540 | 0.0430 |
| $\mathbf{2}$ | 0.1640 | 0.1410 | 0.1330 | 0.1480 | 0.1730 | 0.1500 | 0.1500 | 0.0850 |
| $\mathbf{3}$ | 0.2810 | 0.2180 | 0.2320 | 0.3110 | 0.2890 | 0.2630 | 0.2620 | 0.1730 |
| $\mathbf{4}$ | 0.4120 | 0.3180 | 0.3200 | 0.4310 | 0.3430 | 0.3820 | 0.3810 | 0.2620 |
| $\mathbf{5}$ | 0.3800 | 0.4330 | 0.3660 | 0.6510 | 0.3900 | 0.4540 | 0.4550 | 0.4000 |
| $\mathbf{6}$ | 0.3890 | 0.5960 | 0.6740 | 0.5650 | 0.2280 | 0.5040 | 0.5000 | 0.5000 |
| $\mathbf{7}$ | 0.5610 | 0.6000 | 0.2840 | 0.6020 | 0.6000 | 0.5840 | 0.6000 | 0.6000 |
| $\mathbf{8 +}$ | 1.0000 | 0.8000 | 0.8400 | 0.8023 | 0.8959 | 0.8091 | 0.8000 | 0.8216 |
|  |  |  |  |  |  |  |  |  |
| Age | $\mathbf{1 9 8 8}$ | $\mathbf{1 9 8 9}$ | $\mathbf{1 9 9 0}$ | $\mathbf{1 9 9 1}$ | $\mathbf{1 9 9 2}$ | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ |
| $\mathbf{1}$ | 0.0500 | 0.0530 | 0.0730 | 0.1010 | 0.0660 | 0.0440 | 0.0420 | 0.0690 |
| $\mathbf{2}$ | 0.1150 | 0.1370 | 0.1230 | 0.1360 | 0.1500 | 0.1550 | 0.1320 | 0.1590 |
| $\mathbf{3}$ | 0.1970 | 0.2240 | 0.1810 | 0.2130 | 0.2280 | 0.2590 | 0.2420 | 0.3100 |
| $\mathbf{4}$ | 0.2450 | 0.2850 | 0.1990 | 0.2690 | 0.2420 | 0.2640 | 0.3740 | 0.3730 |
| $\mathbf{5}$ | 0.3800 | 0.3440 | 0.2800 | 0.2650 | 0.3350 | 0.3080 | 0.5210 | 0.5110 |
| $\mathbf{6}$ | 0.5000 | 0.4820 | 0.3550 | 0.2790 | 0.2190 | 0.2350 | 0.5550 | 0.0000 |
| $\mathbf{7}$ | 0.6000 | 0.3960 | 0.3350 | 0.3220 | 0.2550 | 0.3920 | 0.4400 | 0.0000 |
| $\mathbf{8 +}$ | 0.8000 | 0.3854 | 0.4730 | 0.0000 | 0.2820 | 0.0000 | 0.5550 | 0.0000 |
|  |  |  |  |  |  |  |  |  |
| Age | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 2}$ | $\mathbf{2 0 0 3}$ |
| $\mathbf{1}$ | 0.0590 | 0.0480 | 0.0450 | 0.0270 | 0.0410 | 0.0402 | 0.044 | 0.035 |
| $\mathbf{2}$ | 0.1430 | 0.1440 | 0.1050 | 0.0770 | 0.1640 | 0.1643 | 0.101 | 0.101 |
| $\mathbf{3}$ | 0.2350 | 0.2500 | 0.2000 | 0.1460 | 0.2420 | 0.1323 | 0.184 | 0.189 |
| $\mathbf{4}$ | 0.2330 | 0.3210 | 0.3040 | 0.1960 | 0.2890 | 0.3200 | 0.293 | 0.302 |
| $\mathbf{5}$ | 0.3470 | 0.3480 | 0.2860 | 0.2860 | 0.3390 | 0.3510 | 0.415 | 0.418 |
| $\mathbf{6}$ | 0.2500 | 0.5880 | 0.0000 | 0.0000 | 0.0000 | 0.3860 | 0.38 | 0.462 |
| $\mathbf{7}$ | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5880 | 0.0000 | 0.0 | 0.0 |
| $\mathbf{8 +}$ | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0 | 0.0 |

Table 5.1.2.11 Whiting in IV and VIId. Natural mortality and proportion mature by age.

| Age | Natural <br> mortality | Maturity |
| :---: | :---: | :---: |
| 1 | 0.95 | 0.11 |
| 2 | 0.45 | 0.92 |
| 3 | 0.35 | 1.00 |
| 4 | 0.30 | 1.00 |
| 5 | 0.25 | 1.00 |
| 6 | 0.25 | 1.00 |
| 7 | 0.20 | 1.00 |
| $8+$ | 0.20 | 1.00 |

Table 5.1.2.12 Whiting in IV and VIId. Summary of available tuning series.

| Country | Fleet | Code | Year range | Age Range |
| :---: | :---: | :---: | :---: | :---: |
| Scotland | Groundfish survey <br> Seiners <br> Light trawlers | SCOGFS <br> SCOSEI <br> SCOLTR | $\begin{aligned} & 1982-2004 \\ & 1978-2003 \\ & 1978-2003 \end{aligned}$ | $\begin{aligned} & 0-6 \\ & 0-10 \\ & 0-10 \end{aligned}$ |
| England | Groundfish survey | ENGGFS | 1977-2003 | 0-6 |
| France | Trawlers | FRATRB <br> FRATRO_IV <br> FRATRO-7d <br> FRAGFS-7d | $\begin{aligned} & 1978-2002 \\ & 1986-2003 \\ & 1986-2003 \\ & 1988-2003 \end{aligned}$ | $\begin{aligned} & 1-9 \\ & 0-8 \\ & 1-7 \\ & 0-3 \end{aligned}$ |
| International | $\begin{aligned} & \text { Groundfish survey }^{1} \\ & \text { Q II survey }^{2} \\ & \text { Q IV survey }^{3} \end{aligned}$ | IBTS_QI IBTS_Q2_SCO IBTS_Q4-ENG | $\begin{aligned} & 1967-2004 \\ & 1991-1997 \\ & 1991-1996 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1-6^{4} \\ & 1-6 \\ & 0-7 \\ & \hline \end{aligned}$ |

${ }^{1}$ Formerly IYFS.
${ }^{2}$ Scottish sub-set of IBTS data - discontinued in 1997.
${ }^{3}$ English sub-set of IBTS data - discontinued in 1996.
${ }^{4}$ Age 6 is a plus group

Table 5.1.2.13 Whiting in IV and VIId. Complete available tuning series. Numbers in bold show the data used in catch at age analyses.

| SCOSEI_IV |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 | 2003 |  |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |
| 0 | 10 |  |  |  |  |  |  |  |  |  |  |
| 325246.00 | 5345.92 | 14993.60 | 29307.94 | 43710.81 | 15390.20 | 1057.94 | 1408.92 | 200.99 | 36.00 | 0.00 | 7.00 |
| 316419.00 | 302.00 | 90749.85 | 41091.74 | 28124.23 | 14745.01 | 6083.68 | 676.92 | 155.75 | 3.00 | 0.00 | 0.00 |
| 297227.00 | 668.98 | 27032.33 | 73704.44 | 37657.65 | 11914.98 | 9367.98 | 2556.00 | 260.00 | 229.00 | 27.00 | 7.00 |
| 289672.00 | 93.00 | 8726.79 | 22243.64 | 25047.81 | 10551.99 | 2402.00 | 2084.00 | 374.00 | 41.00 | 4.00 | 1.00 |
| 297730.00 | 43.00 | 3720.99 | 7032.00 | 26194.14 | 13117.11 | 2713.03 | 539.01 | 277.00 | 81.00 | 5.00 | 0.00 |
| 333168.00 | 572.01 | 11565.39 | 14957.38 | 21690.02 | 34199.11 | 9830.62 | 2154.56 | 406.80 | 157.78 | 16.26 | 0.00 |
| 388035.00 | 296.72 | 4922.50 | 24015.61 | 20669.76 | 14985.59 | 21269.32 | 4715.24 | 959.96 | 87.28 | 49.59 | 6.94 |
| 381647.00 | 773.22 | 20067.84 | 20263.32 | 19695.99 | 8956.38 | 4795.86 | 8013.08 | 1362.79 | 333.95 | 17.89 | 5.96 |
| 425017.00 | 137.76 | 139498.17 | 48705.18 | 34509.26 | 11340.96 | 2624.40 | 1097.50 | 1771.08 | 215.94 | 7.27 | 0.00 |
| 418536.00 | 1358.85 | 13793.33 | 52715.14 | 38938.77 | 18440.26 | 3637.71 | 1096.91 | 297.74 | 348.42 | 15.88 | 3.97 |
| 377132.00 | 26.01 | 2502.07 | 28446.11 | 44869.26 | 12631.40 | 4071.61 | 678.72 | 63.97 | 20.99 | 16.99 | 2.0 |
| 355735.00 | 10.13 | 6878.80 | 15704.13 | 41407.43 | 23710.40 | 4769.04 | 1323.23 | 112.08 | 43.04 | 10.72 | 0. |
| 252732.00 | 184.88 | 14229.83 | 124635.82 | 27694.11 | 29920.98 | 14767.80 | 720.82 | 206.52 | 23.23 | 0.02 | 0. |
| 336675.00 | 886.65 | 11951.95 | 44964.26 | 63414.28 | 10436.10 | 8730.12 | 1742.93 | 195.19 | 93.63 | 0.00 | 0.25 |
| 300217.00 | 426.21 | 16613.69 | 19452.01 | 21217.15 | 27961.87 | 2804.54 | 1958.07 | 564.87 | 32.42 | 3.39 | 0.00 |
| 268413.00 | 599.77 | 9563.69 | 31623.36 | 26012.82 | 12457.88 | 14446.11 | 899.25 | 332.18 | 153.13 | 7.51 | 8.25 |
| 264738.00 | 82.71 | 9235.94 | 21451.65 | 22570.72 | 11778.49 | 5530.94 | 5611.98 | 203.91 | 115.77 | 14.69 | 0.00 |
| 204545.00 | 26.01 | 8287.88 | 22152.73 | 30006.96 | 9018.67 | 3874.63 | 1373.44 | 1270.02 | 86.01 | 14.99 | 18.13 |
| 177092.00 | 223.90 | 5732.24 | 26020.51 | 21430.22 | 10505.52 | 3483.37 | 1031.27 | 295.71 | 289.16 | 28.12 | 1.00 |
| 166817.00 | 175.60 | 6627.68 | 8974.45 | 16231.23 | 9922.01 | 4445.23 | 575.33 | 109.85 | 61.63 | 37.34 | 2.35 |
| 150361.00 | 14.45 | 3710.69 | 4694.83 | 6806.23 | 6840.32 | 3669.55 | 1417.13 | 243.74 | 12.81 | 1.89 | 12.27 |
| 93796.00 | 663.34 | 13384.17 | 13750.43 | 7009.42 | 6068.11 | 3461.79 | 1684.05 | 409.19 | 77.42 | 3.15 | 0.00 |
| 69505.00 | 2.79 | 5176.09 | 11207.84 | 6458.23 | 2111.81 | 1971.96 | 835.64 | 297.65 | 89.60 | 6.92 | 0.04 |
| 36135.00 | 929.75 | 606.97 | 6352.27 | 5592.05 | 1715.36 | 485.81 | 352.94 | 145.84 | 65.57 | 10.54 | 0.00 |
| 21830.00 | 1.94 | 1017.01 | 3348.65 | 7715.86 | 2181.93 | 363.15 | 139.67 | 78.78 | 23.47 | 5.90 | 0.00 |
| 15371.00 | 5.07 | 387.66 | 1088.55 | 2514.00 | 2980.16 | 1045.83 | 256.33 | 30.10 | 16.93 | 5.08 | 1.13 |

Table 5.1.2.13 contd. Whiting in IV and VIId. Complete available tuning series. Numbers in bold show the data used in catch at age analyses.

| SCOLTR_IV |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 | 2003 |  |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |
| 0 | 10 |  |  |  |  |  |  |  |  |  |  |
| 236944.00 | 7158.39 | 8785.46 | 19909.95 | 30722.31 | 14472.60 | 956.04 | 1612.07 | 635.03 | 72.00 | 6.00 | 0.00 |
| 287494.00 | 368.00 | 171147.28 | 42910.40 | 23154.59 | 17995.66 | 4057.93 | 376.99 | 286.00 | 57.00 | 5.00 | 0.00 |
| 333197.00 | 869.00 | 20805.96 | 58381.99 | 38436.16 | 9525.06 | 9430.05 | 1864.01 | 144.00 | 145.00 | 3.00 | 0.00 |
| 251504.00 | 170.99 | 6576.46 | 19069.21 | 21549.75 | 9706.15 | 1777.02 | 1455.03 | 310.01 | 9.00 | 1.00 | 0.00 |
| 250870.00 | 6390.16 | 5214.10 | 8196.98 | 26680.54 | 12944.74 | 3333.92 | 646.98 | 338.99 | 74.00 | 16.00 | 3.00 |
| 244349.00 | 20191.06 | 37495.68 | 17925.87 | 12535.31 | 19234.31 | 6123.52 | 1216.61 | 182.80 | 140.85 | 25.97 | 1.00 |
| 240775.00 | 2553.17 | 38266.77 | 16048.09 | 10784.18 | 6306.82 | 9018.98 | 2371.19 | 478.59 | 13.13 | 30.29 | 5.05 |
| 267393.00 | 1221.65 | 28760.94 | 9368.37 | 7616.93 | 3085.79 | 1333.19 | 2901.19 | 443.13 | 173.09 | 13.85 | 0.00 |
| 279727.00 | 796.71 | 8138.43 | 8571.90 | 9577.94 | 4108.82 | 767.44 | 425.28 | 608.60 | 51.64 | 2.03 | 0.00 |
| 351131.00 | 599.52 | 18761.18 | 25933.34 | 16160.77 | 5954.48 | 1182.95 | 388.46 | 116.04 | 128.99 | 3.93 | 0.00 |
| 391988.00 | 60.00 | 2397.96 | 15778.77 | 22525.54 | 5127.73 | 1640.63 | 207.22 | 31.03 | 15.02 | 6.01 | 6.01 |
| 405883.00 | 491.80 | 20318.75 | 10051.62 | 21389.72 | 10836.81 | 2394.09 | 448.22 | 33.08 | 54.36 | 2.39 | 0.61 |
| 371493.00 | 371.48 | 3676.88 | 35321.99 | 7664.57 | 8960.09 | 3423.01 | 159.54 | 39.94 | 5.34 | 0.07 | 0.00 |
| 408056.00 | 688.42 | 8726.88 | 11908.03 | 22145.62 | 3192.25 | 2906.40 | 628.63 | 49.90 | 40.87 | 0.45 | 0.25 |
| 473955.00 | 1379.23 | 17580.58 | 14551.32 | 11822.72 | 15417.66 | 1500.40 | 1160.44 | 304.40 | 12.75 | 0.34 | 0.66 |
| 447064.00 | 614.45 | 16438.91 | 20513.15 | 14385.55 | 6590.76 | 10105.47 | 574.20 | 203.58 | 97.35 | 24.36 | 4.59 |
| 480400.00 | 1259.30 | 4132.65 | 15771.00 | 13004.65 | 6453.76 | 2710.23 | 2997.31 | 171.83 | 83.94 | 13.86 | 0.00 |
| 442010.00 | 208.07 | 9248.04 | 15886.83 | 19322.30 | 6261.60 | 2982.51 | 1092.21 | 1131.71 | 88.83 | 3.48 | 14.19 |
| 445995.00 | 188.32 | 6661.92 | 12461.08 | 13523.11 | 9223.33 | 3012.11 | 860.73 | 281.91 | 242.80 | 8.93 | 0.54 |
| 479449.00 | 100.18 | 2557.22 | 6767.92 | 15603.23 | 9463.72 | 4535.19 | 628.02 | 181.35 | 51.94 | 30.82 | 0.31 |
| 427868.00 | 39.44 | 5096.42 | 5350.24 | 8058.40 | 9506.50 | 4311.78 | 1728.79 | 275.71 | 57.74 | 12.20 | 2.67 |
| 329750.00 | 1274.23 | 26518.76 | 20672.07 | 9295.36 | 6705.67 | 4079.53 | 2051.46 | 487.24 | 40.79 | 7.35 | 0.10 |
| 280938.00 | 1.15 | 8384.66 | 16220.42 | 9287.05 | 3788.38 | 2621.24 | 1469.79 | 601.84 | 79.39 | 7.11 | 0.17 |
| 245489.00 | 2221.71 | 1303.16 | 11409.11 | 10419.00 | 3287.13 | 745.34 | 430.51 | 247.31 | 65.76 | 26.77 | 0.00 |
| 184099.00 | 5.78 | 979.77 | 4652.75 | 11067.22 | 3686.10 | 817.98 | 221.33 | 179.72 | 60.26 | 13.00 | 0.00 |
| 98721.00 | 12.51 | 871.43 | 1639.36 | 3985.89 | 5135.98 | 2079.84 | 286.25 | 73.38 | 59.19 | 7.07 | 4.84 |

Table 5.1.2.13 contd. Whiting in IV and VIId. Complete available tuning series. Numbers in bold show the data used in catch at age analyses.

| FRATRB_IV |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 0 |  |  |  |  |  |  |  |  |
| 1978 | 2001 |  |  |  |  |  |  |  |  |
| 1 | 1 |  |  |  |  |  |  |  |  |
| 1 | 9 |  |  |  |  |  |  |  |  |
| 69739 | 153.00 | 10312.00 | 14789.00 | 8544.00 | 807.00 | 1091.00 | 227.00 | 34.00 | 4.00 |
| 89974 | 698.00 | 12272.00 | 14379.00 | 10884.00 | 3789.00 | 394.00 | 315.00 | 45.00 | 14.00 |
| 63577 | 90.00 | 5388.00 | 11298.00 | 4605.00 | 4051.00 | 1004.00 | 78.00 | 71.00 | 10.00 |
| 76517 | 144.00 | 6591.00 | 13139.00 | 8196.00 | 2090.00 | 1644.00 | 314.00 | 16.00 | 10.00 |
| 78523 | 173.00 | 1643.00 | 16561.00 | 11241.00 | 3948.00 | 1035.00 | 539.00 | 119.00 | 14.00 |
| 69720 | 500.00 | 4407.00 | 8188.00 | 16698.00 | 5541.00 | 1061.00 | 228.00 | 126.00 | 19.00 |
| 76149 | 317.00 | 4281.00 | 7465.00 | 4576.00 | 5999.00 | 1596.00 | 308.00 | 32.00 | 26.00 |
| 25915 | 314.55 | 3653.12 | 2942.09 | 1225.28 | 565.55 | 598.65 | 117.27 | 12.32 | 4.23 |
| 28611 | 890.57 | 3830.33 | 3990.71 | 1202.06 | 368.64 | 93.79 | 160.46 | 22.28 | 1.28 |
| 28692 | 431.03 | 4822.77 | 3667.48 | 2151.59 | 496.97 | 166.11 | 47.91 | 45.81 | 3.04 |
| 25208 | 150.44 | 2717.69 | 4815.08 | 1124.87 | 529.69 | 100.13 | 31.08 | 3.11 | 4.17 |
| 25184 | 447.52 | 2064.11 | 4351.49 | 1877.20 | 313.54 | 106.16 | 9.86 | 3.52 | 0.78 |
| 21758 | 163.76 | 3793.84 | 2123.86 | 2009.65 | 619.55 | 55.06 | 13.45 | 1.07 | 0.14 |
| 19840 | 292.26 | 2224.03 | 3828.93 | 818.81 | 657.22 | 137.59 | 15.33 | 3.49 | 0.08 |
| 15656 | 365.35 | 1597.81 | 1685.80 | 2204.15 | 248.32 | 195.02 | 43.88 | 2.82 | 0.06 |
| 19076 | 172.98 | 1224.59 | 2633.02 | 1141.30 | 1233.36 | 96.75 | 37.16 | 13.84 | 4.10 |
| 17315 | 107.74 | 1805.61 | 1720.52 | 1466.30 | 412.54 | 429.99 | 29.43 | 8.24 | 1.34 |
| 17794 | 114.32 | 1022.59 | 3304.45 | 1536.77 | 1162.94 | 240.08 | 211.60 | 13.83 | 6.66 |
| 18883 | 20.89 | 655.48 | 1594.39 | 1438.24 | 482.20 | 199.09 | 37.91 | 29.82 | 10.03 |
| 15574 | 39.68 | 356.96 | 1406.89 | 1138.71 | 606.01 | 85.94 | 15.86 | 9.70 | 2.25 |
| 14949 | 31.88 | 125.79 | 316.62 | 326.18 | 191.97 | 62.83 | 7.94 | 2.31 | 1.19 |
| -9 | 95.73 | 489.82 | 489.30 | 683.82 | 451.53 | 239.35 | 58.67 | 13.88 | 1.21 |
| 11747 | 47.25 | 1148.44 | 2968.16 | 1204.67 | 319.60 | 298.20 | 124.42 | 53.59 | 5.27 |
| 6771 | 297.73 | 648.68 | 528.07 | 149.80 | 36.49 | 35.62 | 13.53 | 6.28 | 2.11 |

## FRATRO_IV

| 1986 | 2003 |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | 0 | 1 |  |  |  |  |  |  |
| 0 | 8 |  |  |  |  |  |  |  |  |
| 56099.00 | 19.48 | 1541.94 | 1891.94 | 7145.98 | 3782.82 | 599.91 | 157.52 | 39.03 | 2.14 |
| 71765.00 | 12.20 | 2507.72 | 4984.96 | 1271.29 | 5713.14 | 412.56 | 257.90 | 91.79 | 69.82 |
| 84052.00 | 0.31 | 2536.92 | 8981.89 | 3222.83 | 704.34 | 1320.59 | 122.85 | 55.31 | 0.54 |
| 88397.00 | 26.94 | 2958.16 | 3739.55 | 5628.95 | 1654.27 | 208.58 | 280.47 | 47.27 | 10.86 |
| 71750.00 | 37.70 | 3209.61 | 6169.85 | 3780.85 | 2456.12 | 365.14 | 28.65 | 43.61 | 1.65 |
| 67836.00 | 323.02 | 4464.91 | 6083.87 | 2864.37 | 1412.45 | 776.93 | 84.61 | 5.78 | 2.53 |
| 51340.00 | 355.02 | 3426.92 | 6498.04 | 1939.69 | 635.38 | 358.08 | 96.22 | 4.78 | 0.12 |
| 62553.00 | 937.84 | 3950.46 | 4586.36 | 4306.75 | 877.04 | 289.87 | 68.31 | 39.73 | 6.21 |
| 51241.00 | 86.53 | 7005.88 | 3298.43 | 1190.63 | 612.13 | 108.28 | 11.05 | 8.38 | 0.98 |
| 57823.00 | 262.76 | 6331.03 | 6125.08 | 2673.85 | 543.82 | 98.58 | 19.19 | 0.03 | 1.79 |
| 50163.00 | 577.46 | 5522.73 | 4742.85 | 3214.22 | 890.19 | 155.83 | 7.73 | 12.12 | 0.03 |
| 48904.00 | 266.77 | 1961.14 | 4676.60 | 3929.12 | 1020.11 | 220.78 | 18.01 | 3.07 | 0.02 |
| 38103.00 | 566.68 | 4893.44 | 1959.25 | 532.61 | 161.28 | 68.00 | 35.86 | 0.39 | 1.55 |
| -9.00 | 51.18 | 7651.96 | 2885.69 | 1452.71 | 960.37 | 500.08 | 133.31 | 45.54 | 30.71 |
| 30082.00 | 129.16 | 7366.57 | 8191.31 | 2452.95 | 1056.07 | 737.31 | 454.67 | 345.11 | 94.79 | 2002 French data not broken down by gear. Given as ALL gears

$\begin{array}{llllllllll}52609.00 & 625.48 & 9276.84 & 16879.91 & 7857.03 & 5528.14 & 1701.23 & 188.34 & 18.53 & 23.06\end{array}$

Table 5.1.2.13 contd. Whiting in IV and VIId. Complete available tuning series. Numbers in bold show the data used in catch at age analyses.

| SCOGFS_IV |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1982 | 2004 |  |  |  |  |  |  |
| 1 | 1 | 0.5 | 0.75 |  |  |  |  |
| 0 | 6 |  |  |  |  |  |  |
| 100 | 102.00 | $\mathbf{6 5 3 . 0 0}$ | $\mathbf{9 7 1 . 0 0}$ | $\mathbf{9 7 2 . 0 0}$ | $\mathbf{2 2 4 . 0 0}$ | $\mathbf{6 0 . 0 0}$ | $\mathbf{1 6 . 0 0}$ |
| 100 | 210.00 | $\mathbf{5 6 3 . 0 0}$ | $\mathbf{5 7 8 . 0 0}$ | $\mathbf{4 0 7 . 0 0}$ | $\mathbf{5 1 1 . 0 0}$ | $\mathbf{1 1 6 . 0 0}$ | $\mathbf{1 7 . 0 0}$ |
| 100 | 442.00 | $\mathbf{1 0 4 8 . 0 0}$ | $\mathbf{3 7 1 . 0 0}$ | $\mathbf{1 7 0 . 0 0}$ | $\mathbf{7 7 . 0 0}$ | $\mathbf{9 2 . 0 0}$ | $\mathbf{1 8 . 0 0}$ |
| 100 | 169.00 | $\mathbf{1 5 7 7 . 0 0}$ | $\mathbf{9 7 3 . 0 0}$ | $\mathbf{2 4 7 . 0 0}$ | $\mathbf{6 3 . 0 0}$ | $\mathbf{3 6 . 0 0}$ | $\mathbf{1 8 . 0 0}$ |
| 100 | 406.00 | $\mathbf{1 1 1 1 . 0 0}$ | $\mathbf{4 5 2 . 0 0}$ | $\mathbf{2 2 4 . 0 0}$ | $\mathbf{2 7 . 0 0}$ | $\mathbf{5 . 0 0}$ | $\mathbf{5 . 0 0}$ |
| 100 | 120.00 | $\mathbf{1 4 0 5 . 0 0}$ | $\mathbf{1 1 5 0 . 0 0}$ | $\mathbf{2 0 8 . 0 0}$ | $\mathbf{7 7 . 0 0}$ | $\mathbf{1 6 . 0 0}$ | $\mathbf{3 . 0 0}$ |
| 100 | 642.00 | $\mathbf{9 6 7 . 0 0}$ | $\mathbf{1 6 0 6 . 0 0}$ | $\mathbf{4 5 2 . 0 0}$ | $\mathbf{7 0 . 0 0}$ | $\mathbf{1 9 . 0 0}$ | $\mathbf{2 . 0 0}$ |
| 100 | 427.00 | $\mathbf{4 0 4 3 . 0 0}$ | $\mathbf{7 4 1 . 0 0}$ | $\mathbf{7 3 3 . 0 0}$ | $\mathbf{1 5 7 . 0 0}$ | $\mathbf{1 3 . 0 0}$ | $\mathbf{6 . 0 0}$ |
| 100 | 1943.00 | $\mathbf{2 2 3 9 . 0 0}$ | $\mathbf{2 0 5 3 . 0 0}$ | $\mathbf{2 4 8 . 0 0}$ | $\mathbf{2 5 5 . 0 0}$ | $\mathbf{4 7 . 0 0}$ | $\mathbf{5 . 0 0}$ |
| 100 | 1379.00 | $\mathbf{1 7 6 9 . 0 0}$ | $\mathbf{9 5 0 . 0 0}$ | $\mathbf{7 5 9 . 0 0}$ | $\mathbf{5 1 . 0 0}$ | $\mathbf{4 0 . 0 0}$ | $\mathbf{9 . 0 0}$ |
| 100 | 2417.00 | $\mathbf{2 9 2 5 . 0 0}$ | $\mathbf{1 2 6 7 . 0 0}$ | $\mathbf{5 5 3 . 0 0}$ | $\mathbf{5 8 5 . 0 0}$ | $\mathbf{4 7 . 0 0}$ | $\mathbf{2 6 . 0 0}$ |
| 100 | 247.00 | $\mathbf{3 1 6 9 . 0 0}$ | $\mathbf{1 1 6 8 . 0 0}$ | $\mathbf{4 2 3 . 0 0}$ | $\mathbf{1 5 6 . 0 0}$ | $\mathbf{1 8 2 . 0 0}$ | $\mathbf{6 . 0 0}$ |
| 100 | 648.00 | $\mathbf{2 6 3 5 . 0 0}$ | $\mathbf{9 5 0 . 0 0}$ | $\mathbf{2 5 4 . 0 0}$ | $\mathbf{5 7 . 0 0}$ | $\mathbf{3 4 . 0 0}$ | $\mathbf{2 3 . 0 0}$ |
| 100 | 1243.00 | $\mathbf{4 1 7 6 . 0 0}$ | $\mathbf{2 0 1 0 . 0 0}$ | $\mathbf{9 0 3 . 0 0}$ | $\mathbf{1 9 6 . 0 0}$ | $\mathbf{5 8 . 0 0}$ | $\mathbf{2 2 . 0 0}$ |
| 100 | 440.00 | $\mathbf{2 8 8 8 . 0 0}$ | $\mathbf{3 0 4 7 . 0 0}$ | $\mathbf{1 2 1 5 . 0 0}$ | $\mathbf{4 6 0 . 0 0}$ | $\mathbf{4 3 . 0 0}$ | $\mathbf{1 5 . 0 0}$ |
| 100 | 317.00 | $\mathbf{1 8 2 4 . 0 0}$ | $\mathbf{1 4 3 4 . 0 0}$ | $\mathbf{1 1 9 1 . 0 0}$ | $\mathbf{3 1 9 . 0 0}$ | $\mathbf{1 2 2 . 0 0}$ | $\mathbf{1 7 . 0 0}$ |
| 100 | 12302.00 | $\mathbf{4 1 4 1 . 0 0}$ | $\mathbf{1 2 8 5 . 0 0}$ | $\mathbf{6 4 9 . 0 0}$ | $\mathbf{3 2 1 . 0 0}$ | $\mathbf{1 3 1 . 0 0}$ | $\mathbf{6 2 . 0 0}$ |
| 100 | 15275.68 | $\mathbf{5 4 0 9 . 6 5}$ | $\mathbf{2 0 9 0 . 3 8}$ | $\mathbf{6 1 4 . 7 2}$ | $\mathbf{3 2 8 . 5 1}$ | $\mathbf{1 2 8 . 7 2}$ | $\mathbf{5 8 . 3 5}$ |
| 100 | 17076.44 | $\mathbf{6 6 4 5 . 5 2}$ | $\mathbf{3 3 2 9 . 0 7}$ | $\mathbf{6 7 5 . 6 6}$ | $\mathbf{2 0 2 . 2 5}$ | $\mathbf{1 3 0 . 2 0}$ | $\mathbf{8 1 . 1 7}$ |
| 100 | 116.72 | $\mathbf{3 4 9 9 . 1 1}$ | $\mathbf{2 4 5 0 . 7 5}$ | $\mathbf{8 4 4 . 3 9}$ | $\mathbf{2 0 7 . 1 7}$ | $\mathbf{5 1 . 3 2}$ | $\mathbf{4 8 . 4 9}$ |
| 100 | 1606.00 | $\mathbf{4 9 8 0 . 0 0}$ | $\mathbf{2 4 2 2 . 0 0}$ | $\mathbf{1 6 0 8 . 0 0}$ | $\mathbf{7 2 4 . 0 0}$ | $\mathbf{9 4 . 0 0}$ | $\mathbf{4 4 . 0 0}$ |
| 100 | 5392.65 | $\mathbf{1 8 9 0 . 6 5}$ | $\mathbf{1 4 3 3 . 1 6}$ | $\mathbf{1 2 1 1 . 3 2}$ | $\mathbf{8 2 3 . 3 0}$ | $\mathbf{2 7 6 . 2 2}$ | $\mathbf{3 5 . 6 6}$ |
| 100 | 2552.95 | $\mathbf{2 5 8 0 . 2 9}$ | $\mathbf{4 4 0 . 0 5}$ | $\mathbf{5 8 3 . 2 9}$ | $\mathbf{5 6 6 . 2 1}$ | $\mathbf{4 0 7 . 9 5}$ | $\mathbf{9 5 . 5 3}$ |

Table 5.1.2.13 contd. Whiting in IV and VIId. Complete available tuning series. Numbers in bold show the data used in catch at age analyses.

| ENGGFS_IV |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1977 | 2003 |  |  |  |  |  |  |
| 1 | 1 | 0.5 | 0.75 |  |  |  |  |
| 0 | 6 |  |  |  |  |  |  |
| 100 | 28.43 | 21.95 | 7.44 | 1.11 | 0.22 | 0.09 | 0.02 |
| 100 | 18.44 | 24.71 | 5.15 | 1.06 | 0.34 | 0.05 | 0.06 |
| 100 | 35.48 | 20.06 | 7.12 | 1.90 | 0.84 | 0.31 | 0.06 |
| 100 | 19.90 | 35.33 | 12.51 | 4.81 | 1.20 | 0.62 | 0.08 |
| 100 | 34.94 | 18.31 | 28.80 | 16.05 | 0.62 | 0.34 | 0.05 |
| 100 | 6.93 | 27.72 | 7.93 | 8.59 | 2.22 | 1.70 | 0.24 |
| 100 | 71.67 | 11.85 | 10.80 | 1.91 | 0.07 |  |  |
| 100 | 17.25 | 50.61 | 10.82 | 3.01 | 0.89 | 0.77 | 0.38 |
| 100 | 19.99 | 15.88 | 17.04 | 1.67 | 0.98 | 0.18 | 0.15 |
| 100 | 16.33 | 15.16 | 6.59 | 3.85 | 0.41 | 0.10 | 0.01 |
| 100 | 13.73 | 22.76 | 13.04 | 2.69 | 2.01 | 0.35 | 0.12 |
| 100 | 38.17 | 18.81 | 13.16 | 4.55 | 0.64 | 0.17 | 0.02 |
| 100 | 116.95 | 29.47 | 11.76 | 7.69 | 1.67 | 0.34 | 0.02 |
| 100 | 87.53 | 19.01 | 12.84 | 3.85 | 2.32 | 0.33 | 0.05 |
| 100 | 16.73 | 33.30 | 7.67 | 3.82 | 1.09 | 0.37 | 0.04 |
| 100 | 45.50 | $\mathbf{2 6 . 5 5}$ | $\mathbf{1 3 . 0 7}$ | $\mathbf{3 . 0 5}$ | $\mathbf{2 . 6 1}$ | $\mathbf{0 . 4 9}$ | $\mathbf{0 . 5 9}$ |
| 100 | 25.24 | $\mathbf{2 5 . 1 0}$ | $\mathbf{9 . 6 3}$ | $\mathbf{3 . 7 5}$ | $\mathbf{1 . 1 6}$ | $\mathbf{0 . 7 4}$ | $\mathbf{0 . 1 9}$ |
| 100 | 21.14 | $\mathbf{3 0 . 5 5}$ | $\mathbf{1 0 . 5 9}$ | $\mathbf{2 . 4 4}$ | $\mathbf{1 . 1 2}$ | $\mathbf{0 . 3 3}$ | $\mathbf{0 . 1 1}$ |
| 100 | 36.28 | $\mathbf{3 5 . 5 1}$ | $\mathbf{2 3 . 7 4}$ | $\mathbf{7 . 3 6}$ | $\mathbf{1 . 8 7}$ | $\mathbf{0 . 2 5}$ | $\mathbf{0 . 1 4}$ |
| 100 | 9.92 | $\mathbf{1 8 . 8 4}$ | $\mathbf{1 0 . 9 3}$ | $\mathbf{6 . 0 3}$ | $\mathbf{1 . 3 6}$ | $\mathbf{0 . 2 7}$ | $\mathbf{0 . 1 2}$ |
| 100 | 48.97 | $\mathbf{1 5 . 4 7}$ | $\mathbf{8 . 7 1}$ | $\mathbf{7 . 5 1}$ | $\mathbf{2 . 2 7}$ | $\mathbf{0 . 8 6}$ | $\mathbf{0 . 4 8}$ |
| 100 | 158.81 | $\mathbf{1 7 . 7 1}$ | $\mathbf{1 1 . 5 3}$ | $\mathbf{2 . 9 2}$ | $\mathbf{2 . 3 6}$ | $\mathbf{0 . 8 9}$ | $\mathbf{0 . 1 6}$ |
| 100 | 105.79 | $\mathbf{4 4 . 5 7}$ | $\mathbf{1 0 . 0 1}$ | $\mathbf{3 . 7 6}$ | $\mathbf{1 . 4 3}$ | $\mathbf{0 . 7 8}$ | $\mathbf{0 . 1 6}$ |
| 100 | 70.27 | $\mathbf{6 0 . 1 7}$ | $\mathbf{1 8 . 5 9}$ | $\mathbf{3 . 5 5}$ | $\mathbf{0 . 9 5}$ | $\mathbf{0 . 5 1}$ | $\mathbf{0 . 2 0}$ |
| 100 | 99.90 | $\mathbf{5 4 . 4 5}$ | $\mathbf{1 4 . 7 1}$ | $\mathbf{5 . 0 8}$ | $\mathbf{1 . 2 6}$ | $\mathbf{0 . 3 3}$ | $\mathbf{0 . 3 8}$ |
| 100 | 5.32 | $\mathbf{6 2 . 5 7}$ | $\mathbf{1 7 . 9 7}$ | $\mathbf{8 . 0 1}$ | $\mathbf{2 . 4 5}$ | $\mathbf{0 . 2 7}$ | $\mathbf{0 . 0 6}$ |
| 100 | 15.00 | $\mathbf{6 . 8 0}$ | $\mathbf{1 3 . 0 4}$ | $\mathbf{9 . 3 2}$ | $\mathbf{4 . 8 0}$ | $\mathbf{2 . 0 2}$ | $\mathbf{0 . 3 8}$ |

Table 5.1.2.13 contd. Whiting in IV and VIId. Complete available tuning series. Numbers in bold show the data used in catch at age analyses.

| IBTS_Q1_IV |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1967 | 2004 |  |  |  |  |  |
| 1 | 1 | 0 | 0.25 |  |  |  |
| 1 | 6 |  |  |  |  |  |
| 1 | 440.36 | 97.85 | 21.16 | 7.21 | 0.84 | 1.15 |
| 1 | 1267.71 | 81.75 | 25.43 | 4.74 | 0.65 | 0.31 |
| 1 | 504.74 | 382.30 | 19.75 | 7.98 | 1.09 | 0.09 |
| 1 | 57.55 | 132.91 | 27.44 | 5.31 | 0.60 | 0.18 |
| 1 | 219.74 | 19.69 | 10.02 | 10.17 | 0.55 | 0.25 |
| 1 | 263.69 | 104.31 | 33.53 | 10.68 | 4.15 | 0.18 |
| 1 | 1460.01 | 381.80 | 53.72 | 33.61 | 8.36 | 5.70 |
| 1 | 312.49 | 485.97 | 105.66 | 7.10 | 0.58 | 1.30 |
| 1 | 881.19 | 174.47 | 91.13 | 19.69 | 3.81 | 0.57 |
| 1 | 676.19 | 349.44 | 130.00 | 31.29 | 5.03 | 0.53 |
| 1 | 411.42 | 232.59 | 69.08 | 12.25 | 11.03 | 13.00 |
| 1 | 542.89 | 256.84 | 88.72 | 21.12 | 4.97 | 7.50 |
| 1 | 440.93 | 228.84 | 112.59 | 33.06 | 4.89 | 1.17 |
| 1 | 674.04 | 403.34 | 125.75 | 25.62 | 9.15 | 1.96 |
| 1 | 229.26 | 464.30 | 228.31 | 45.93 | 9.29 | 2.78 |
| 1 | 151.38 | 216.14 | 257.36 | 68.51 | 10.14 | 4.57 |
| 1 | 127.09 | 126.86 | 112.57 | 79.19 | 33.39 | 6.36 |
| 1 | 439.01 | 178.88 | 89.20 | 30.25 | 25.38 | 10.49 |
| 1 | 339.01 | 361.76 | 65.70 | 18.53 | 7.03 | 7.18 |
| 1 | 469.37 | 268.42 | 194.60 | 32.42 | 6.60 | 3.85 |
| 1 | 683.38 | 556.49 | 90.42 | 46.17 | 4.98 | 1.98 |
| 1 | 450.74 | 863.72 | 312.75 | 34.17 | 12.28 | 1.31 |
| 1 | 1446.08 | 538.56 | 414.76 | 109.90 | 12.05 | 5.09 |
| 1 | 518.94 | 862.35 | 198.16 | 91.61 | 16.98 | 3.62 |
| 1 | 1009.16 | 686.18 | 479.41 | 70.86 | 37.60 | 7.59 |
| 1 | 904.61 | 677.69 | 250.36 | 162.89 | 14.96 | 14.26 |
| 1 | 1088.20 | 523.70 | 244.52 | 65.48 | 59.00 | 11.44 |
| 1 | 720.99 | 636.97 | 179.84 | 66.59 | 11.56 | 8.93 |
| 1 | 678.59 | 448.48 | 239.45 | 58.07 | 11.87 | 5.58 |
| 1 | 502.36 | 485.97 | 244.70 | 69.74 | 23.09 | 9.85 |
| 1 | 287.87 | 342.07 | 162.52 | 60.43 | 18.01 | 9.18 |
| 1 | 556.11 | 161.26 | 125.49 | 54.05 | 15.50 | 9.26 |
| 1 | 676.27 | 305.45 | 94.67 | 57.45 | 25.82 | 11.08 |
| 1 | 752.89 | 543.74 | 181.81 | 51.89 | 19.69 | 14.51 |
| 1 | 648.62 | 598.34 | 299.14 | 98.28 | 25.68 | 26.08 |
| 1 | 664.60 | 372.73 | 273.12 | 60.67 | 13.34 | 5.87 |
| 1 | 144.15 | 311.32 | 233.24 | 124.73 | 40.75 | 7.34 |
| 1 | 188.72 | 101.99 | 202.64 | 101.90 | 51.33 | 19.23 |

Table 5.1.2.13 contd. Whiting in IV and VIId. Complete available tuning series. Numbers in bold show the data used in catch at age analyses.

| FRATRO_7d |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1986 | 2003 |  |  |  |
| 1 | 1 | 0.00 | 1.00 |  |
| 1 | 7 |  |  |  |
| 257794.00 | 2586.59 | 2249.77 | 7740.58 | 4462.98 |
| 188236.00 | 1954.81 | 5050.15 | 907.04 | 4606.14 |
| 215422.00 | 2233.10 | 7957.35 | 2551.70 | 536.69 |
| 320383.00 | 2577.84 | 3916.35 | 6005.56 | 1489.83 |
| 257120.00 | 2491.70 | 5240.14 | 3362.65 | 2168.19 |
| 294594.00 | 4009.06 | 8176.54 | 3984.56 | 2625.40 |
| 285718.00 | 5732.56 | 10924.16 | 3241.05 | 881.71 |
| 283999.00 | 3158.34 | 6542.83 | 8606.51 | 1676.81 |
| 286019.00 | 13931.57 | 7979.57 | 3268.93 | 1776.04 |
| 268151.00 | 6301.32 | 8449.94 | 5260.61 | 1217.42 |
| 274495.00 | 6140.12 | 6465.75 | 5465.37 | 1622.56 |
| 282216.00 | 3320.15 | 8143.54 | 6607.75 | 1974.21 |
| 291360.00 | 9921.00 | 6863.22 | 2384.88 | 781.09 |
| -9.00 | 5536.90 | 5976.23 | 2822.66 | 1672.18 |
| 215553.00 | 7096.32 | 7026.28 | 1733.97 | 1724.37 |
| 163848.00 | 89.05 | 6101.35 | 10124.09 | 3975.55 |
| 192589.00 | 985.42 | 1922.07 | 6247.38 | 6475.65 |
| 296717.00 | 154.90 | 6896.37 | 5488.74 | 5551.26 |
| FRAGFS_7d |  |  |  |  |
| 1988 | 2003 |  |  |  |
| 1 | 1 | 0.75 | 1 |  |
| 0 | 3 |  |  |  |
| 27 | 24.77 | - | - | - |
| 27 | 25.56 | - | - | - |
| 27 | 17.92 | - | - | - |
| 27 | 171.89 | 26.25 | 2.94 | 0.48 |
| 27 | 162.73 | 42.70 | 7.66 | 0.85 |
| 27 | 67.53 | 17.09 | 7.22 | 1.14 |
| 27 | 24.25 | 68.93 | 8.09 | 1.42 |
| 27 | 61.68 | 17.80 | 2.82 | 0.26 |
| 27 | 30.12 | 27.31 | 5.53 | 1.02 |
| 27 | 17.76 | 50.11 | 16.34 | 2.52 |
| 27 | 27.52 | 12.34 | 8.19 | 4.53 |
| 27 | 8.24 | 70.87 | 5.82 | 0.99 |
| 27 | 10.82 | 64.25 | 27.45 | 2.58 |
| 27 | 19.37 | 15.10 | 14.57 | 1.41 |
| Awaiting 2002 data |  |  |  |  |
| 27 | 19.56 | 6.84 | 30.65 | 4.12 |

Table 5.1.2.13 contd. Whiting in IV and VIId. Complete available tuning series. Numbers in bold show the data used in catch at age analyses.

| IBTS_Q4_ENG_IV | Survey discontinued |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1991 | 1996 |  | 1 |  |  |  |
| 1 | 1 | 0.75 |  |  |  |  |
| 0 | 7 |  |  |  |  |  |
| 100 | 46.826 | 55.276 | 19.642 | 15.092 | 3.255 | 1.851 |
| 100 | 94.233 | 45.090 | 26.462 | 5.379 | 5.030 | 0.645 |
| 100 | 78.871 | 54.210 | 19.474 | 7.161 | 2.335 | 0.827 |
| 100 | 69.848 | 61.335 | 26.413 | 4.140 | 0.842 | 0.621 |
| 100 | 71.328 | 107.996 | 41.715 | 11.186 | 2.560 | 0.523 |
| 100 | 29.983 | 36.556 | 30.330 | 8.653 | 4.815 | 1.626 |
|  |  |  |  |  |  |  |
| IBTS_Q2_SCO_IV |  |  | Survey discontinued |  |  |  |
| 1991 | 1997 |  |  |  |  |  |
| 1 | 1 | 0.25 | 0.5 |  |  |  |
| 1 | 6 |  |  |  |  |  |
| 100 | 94.900 | 38.560 | 22.860 | 3.740 | 1.230 | 0.510 |
| 100 | 129.760 | 47.500 | 11.420 | 4.280 | 1.140 | 0.450 |
| 100 | 104.670 | 41.490 | 20.860 | 5.170 | 4.850 | 0.360 |
| 100 | 65.400 | 35.710 | 8.550 | 2.380 | 0.900 | 0.750 |
| 100 | 191.610 | 77.300 | 26.190 | 4.420 | 2.210 | 0.410 |
| 100 | 44.020 | 49.620 | 22.300 | 8.330 | 1.250 | 0.590 |
| 100 | 14.070 | 22.600 | 18.020 | 6.430 | 1.400 | 0.130 |

Table 5.1.4.1 Percentage international whiting discards at age from human consumption fleet in ICES IV and VIId assuming Scottish fleet discard rates apply to all fleets.

| year | age0 | age1 | age2 | age3 | age 4 | age5 | age 6 | age7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1960 | 99.997 | 96.066 | 78.444 | 60.06 | 37.605 | 4.0805 | 1.4987 | 0.1432 |
| 1961 | 100 | 96.072 | 77.881 | 59.771 | 12.316 | 10.849 | 1.7612 | 0 |
| 1962 | 99.794 | 95.567 | 65.885 | 45.101 | 33.376 | 6.6466 | 4.6382 | 0.6288 |
| 1963 | 100 | 96.857 | 80.51 | 44.038 | 30.71 | 15.968 | 2.0584 | 0 |
| 1964 | 99.969 | 93.207 | 66.856 | 35.407 | 15.127 | 12.172 | 11.67 | 2.4739 |
| 1965 | 100 | 95.619 | 79.191 | 27.893 | 15.944 | 6.1047 | 7.9783 | 0.4972 |
| 1966 | 99.979 | 96.136 | 79.091 | 34.496 | 9.8455 | 7.6404 | 0.5459 | 0.7045 |
| 1967 | 100 | 95.492 | 69.988 | 44.673 | 23.581 | 4.154 | 4.021 | 1.0283 |
| 1968 | 100 | 92.616 | 64.819 | 38.725 | 25.789 | 10.728 | 0.7564 | 0.8384 |
| 1969 | 100 | 92.709 | 81.938 | 39.836 | 21.31 | 28.153 | 4.9095 | 4.3484 |
| 1970 | 100 | 95.192 | 75.166 | 49.609 | 12.834 | 9.9985 | 8.5328 | 5.4574 |
| 1971 | 99.915 | 93.573 | 66.44 | 28.428 | 12.666 | 10.184 | 2.2816 | 0.4804 |
| 1972 | 100 | 92.032 | 69.464 | 29.828 | 11.62 | 5.1678 | 4.4636 | 0 |
| 1973 | 100 | 90.521 | 70.043 | 41.095 | 11.092 | 3.6591 | 3.9833 | 1.8797 |
| 1974 | 96.628 | 92.939 | 64.194 | 34.014 | 20 | 11.402 | 1.5961 | 0.7153 |
| 1975 | 100 | 94.72 | 77 | 49.012 | 17.09 | 10.922 | 0.5432 | 0 |
| 1976 | 100 | 95.491 | 76.736 | 38.119 | 15.382 | 3.2225 | 1.7036 | 0 |
| 1977 | 99.97 | 92.919 | 70.25 | 33.328 | 12.629 | 5.9918 | 1.1799 | 0 |
| 1978 | 100 | 78.076 | 53.522 | 19.514 | 8.518 | 3.6648 | 1.5051 | 0 |
| 1979 | 99.82 | 98.24 | 53.863 | 17.961 | 7.594 | 4.5338 | 0.8889 | 0.4157 |
| 1980 | 100 | 96.579 | 80.071 | 36.685 | 17.121 | 20.671 | 7.3445 | 0 |
| 1981 | 99.299 | 92.241 | 58.236 | 35.489 | 8.5463 | 5.1422 | 1.2205 | 0.2897 |
| 1982 | 100 | 83.154 | 36.566 | 29.575 | 23.485 | 12.206 | 5.71 | 1.06 |
| 1983 | 99.999 | 93.519 | 55.416 | 33.114 | 18.786 | 12.113 | 3.4226 | 1.4173 |
| 1984 | 100 | 93.307 | 56.839 | 14.493 | 9.7056 | 7.9923 | 7.5081 | 5.0951 |
| 1985 | 99.987 | 98.538 | 48.798 | 20.948 | 8.4504 | 5.5426 | 4.665 | 1.9557 |
| 1986 | 99.643 | 96.915 | 73.029 | 28.05 | 12.326 | 5.2601 | 3.0935 | 1.5926 |
| 1987 | 99.778 | 93.471 | 73.638 | 33.063 | 11.705 | 5.1109 | 1.081 | 0 |
| 1988 | 99.998 | 89.705 | 58.696 | 35.193 | 16.779 | 4.8597 | 0.7567 | 0 |
| 1989 | 99.245 | 94.577 | 56.378 | 44.378 | 32.432 | 26.156 | 2.5693 | 1.7997 |
| 1990 | 99.984 | 91.961 | 81.849 | 42.223 | 31.702 | 40.363 | 15.244 | 12.302 |
| 1991 | 94.125 | 86.888 | 64.222 | 44.815 | 15.77 | 7.7698 | 1.8574 | 12.821 |
| 1992 | 95.857 | 91.155 | 56.069 | 35.198 | 27.423 | 10.752 | 5.3258 | 41.569 |
| 1993 | 98.516 | 95.414 | 77.531 | 43.26 | 21.154 | 23.608 | 14.786 | 8.7852 |
| 1994 | 99.077 | 81.956 | 75.554 | 44.303 | 20.56 | 16.776 | 13.713 | 0.6952 |
| 1995 | 99.164 | 83.954 | 73.323 | 45.362 | 19.861 | 8.7388 | 3.9751 | 2.5062 |
| 1996 | 70.179 | 70.89 | 75.394 | 50.337 | 23.776 | 15.42 | 5.1032 | 13.795 |
| 1997 | 94.158 | 74.788 | 55.053 | 38.826 | 22.335 | 13.133 | 11.884 | 0.2306 |
| 1998 | 70.331 | 63.703 | 48.527 | 39.541 | 30.785 | 16.822 | 14.647 | 14.928 |
| 1999 | 99.537 | 83.526 | 65.738 | 35.8 | 27.099 | 17.3 | 11.4 | 8.1212 |
| 2000 | 99.986 | 68.721 | 70.342 | 45.287 | 16.823 | 16.007 | 18.861 | 11.167 |
| 2001 | 99.121 | 69.224 | 61.038 | 44.518 | 12.61 | 4.2663 | 5.616 | 6.2513 |
| 2002 | 100 | 76.888 | 75.55 | 58.469 | 29.829 | 14.081 | 10.99 | 8.8149 |
| 2003 | 99.459 | 99.27 | 88.271 | 72.556 | 53.517 | 31.624 | 19.856 | 6.4913 |

Table 5.1.4.2 Percentage whiting discards at age recorded during 1994-2003 from English vessels fishing in ICES area IV.

|  |  | Percentage discards at age |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Quarter | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7+ |
| 1994 | 1 |  | 100 | 87 | 64 | 18 | 31 | 0 |  |  |
|  | 2 | 100 | 100 | 92 | 56 | 54 | 0 | 0 |  |  |
|  | 3 | 100 | 100 | 94 | 66 | 0 | 0 | 0 |  |  |
|  | 4 | 100 | 98 | 92 | 0 | 0 | 0 | 0 |  |  |
| 1995 | 1 |  | 100 | 100 | 94 | 98 | 93 | 0 | 0 |  |
|  | 2 |  | 100 | 90 | 39 | 68 | 24 | 67 | 0 |  |
|  | 3 |  | 97 | 93 | 53 | 68 | 0 | 0 | 0 |  |
|  | 4 | 100 | 95 | 67 | 67 | 44 | 51 | 0 | 0 |  |
| 1996 | 1 |  | 100 | 97 | 79 | 82 | 0 | 0 | 0 |  |
|  | 2 |  | 100 | 98 | 71 | 70 | 0 | 0 |  |  |
|  | 3 |  | 100 | 96 | 65 | 56 | 0 | 0 |  |  |
|  | 4 | 100 | 100 | 97 | 51 | 94 | 0 | 0 |  |  |
| 1997 | 1 |  | 100 | 97 | 54 | 77 | 0 | 0 | 0 |  |
|  | 2 |  | 100 | 98 | 84 | 88 | 0 | 0 | 0 |  |
|  | 3 |  | 100 | 90 | 47 | 55 | 37 | 0 | 0 |  |
|  | 4 | 100 | 98 | 89 | 37 | 0 | 19 | 0 | 0 | 0 |
| 1998 | 1 |  | 100 | 96 | 57 | 82 | 25 | 45 | 81 |  |
|  | 2 |  | 100 | 86 | 55 | 91 | 39 | 86 | 97 | 100 |
|  | 3 | 100 | 97 | 73 | 47 | 87 | 50 | 97 | 100 |  |
|  | 4 | 100 | 96 | 85 | 59 | 88 | 70 | 93 | 100 | 100 |
| 1999 | 1 |  | 100 | 96 | 74 | 92 | 78 | 72 | 96 |  |
|  | 2 |  | 0 | 0 | 0 |  |  |  |  |  |
|  | 3 | 100 | 93 | 83 | 43 | 0 | 0 | 0 |  |  |
|  | 4 | 100 | 93 | 52 | 52 | 0 | 0 |  |  |  |
| 2000 | 1 |  | 100 | 85 | 56 | 0 | 0 |  |  |  |
|  | 2 |  | 100 | 85 | 40 | 93 | 0 | 0 |  |  |
|  | 3 |  | 96 | 60 | 9 | 0 | 0 | 0 |  |  |
|  | 4 |  | 92 | 79 | 53 | 0 | 0 | 0 |  |  |
| 2001 | 1 |  | 100 | 98 | 69 | 91 | 0 | 0 |  |  |
|  | 2 |  | 100 | 76 | 28 | 51 | 0 | 0 | 0 |  |
|  | 3 | 100 | 100 | 89 | 56 | 0 | 0 | 0 |  |  |
|  | 4 | 100 | 98 | 72 | 20 | 0 | 0 | 0 |  |  |
| 2002 | 1 |  | 100 | 58 | 22 | 63 | 30 | 0 | 0 | 100 |
|  | 2 |  | 100 | 81 | 29 | 73 | 41 | 92 |  | 100 |
|  | 3 | 100 | 100 | 85 | 53 | 57 | 22 | 99 |  |  |
|  | 4 | 100 | 100 | 92 | 68 | 70 | 0 | 0 | 0 |  |
| 2003 | 1 |  | 100 | 100 | 80 | 98 | 52 | 0 |  | 100 |
|  | 2 |  | 100 | 95 | 72 | 91 | 0 | 97 | 0 |  |
|  | 3 | 100 | 100 | 81 | 53 | 0 | 81 | 0 |  |  |
|  | 4 |  |  | 0 | 0 | 0 | 0 | 0 |  |  |

Table 5.1.5.1 Whiting in IV and VIId. Input settings for final XSA run.

Catch data range

| ScoSEI | Not used |
| :---: | :---: |
| ScoLTR | Not used |
| FraTRB | Not used |
| FraTRO | Not used |
|  |  |
| ScoGFS | $1982-2004,1-6$ |
| EngGFS | $1992-2003,1-5$ |
| IBTS Q1* | $1982-2003,0-4$ |
| FraGFS | Not used |

Plus group
Mean F

Time series weights

## Power model used for catchability

Catchability plateau

Survival estimate shrunk towards mean
s.e. of other means

Min std error for pop. estimates
Prior weighting
1980-2003
$1982-2004,1-6$
$1992-2003,1-5$
$1982-2003,0-4$
Not used

Age 6

Tricubic over 15 years

| Catchability plateau | Age 4 |
| :--- | :--- |

Final 3 years on 2 oldest ages
0.5
0.3

None

* The IBTS Q1 Survey was back-shifted to allow incorporation of 2003 survey indices.

Table 5.1.5.2 Whiting in IV and VIId. Tuning file for final XSA run.
Lowestoft VPA Version 3.1

$$
14 / 09 / 2004 \quad 13: 15
$$

Extended Survivors Analysis


Time series weights :
Tapered time weighting applied
Power $=3$ over 15 years

Catchability analysis :
Catchability independent of stock size for all ages
Catchability independent of age for ages >= 4

Terminal population estimation :
Survivor estimates shrunk towards the mean $F$
of the final 3 years or the 2 oldest ages.
S.E. of the mean to which the estimates are shrunk $=2.000$

Minimum standard error for population
estimates derived from each fleet $=$. 300
Prior weighting not applied

Tuning converged after 45 iterations
1

| Regression weights |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | . 482 , | . 610, | . 725 , | . 820 , | . 893 , | . 944 , | . 976, | . 993 , | . 999 , | 1.000 |
| Fishing mortalities |  |  |  |  |  |  |  |  |  |  |
| Age, | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003 |
| 1, | . 157 , | .149, | . 116, | . 117 , | . 116, | . 176 , | . 059 , | . 089, | . 060 , | . 273 |
| 2, | . 340 , | . 345 , | . 313, | . 292 , | . 235 , | . 382, | . 315 , | .171, | . 146 , | . 298 |
| 3 , | . 697, | .611, | . 571, | . 508, | . 344 , | . 516, | . 658, | . 304 , | . 312 , | . 230 |
| 4, | . 929, | . 799 , | . 709 , | . 609, | . 515, | . 606, | . 673, | . 540, | . 333, | . 297 |
| 5, | 1.050, | 1.032, | 1.026, | . 727 , | . 626, | . 600, | . 736 , | . 665, | . 457, | . 247 |
| 6 , | 1.267, | 1.229, | 1.266, | . 780 , | . 643, | . 645, | . 695, | . 535, | . 314 , | . 249 |
| 7 , | 1.440, | 1.803, | 1.427, | 1.181, | . 991 , | . 450, | 1.047, | . 384 , | . 312 , | . 114 |

1
XSA population numbers (Thousands)


Estimated population abundance at 1st Jan 2004
$0.00 \mathrm{E}+00,1.44 \mathrm{E}+05,2.39 \mathrm{E}+05,1.74 \mathrm{E}+05,1.04 \mathrm{E}+05,4.50 \mathrm{E}+04,7.40 \mathrm{E}+03$,

Taper weighted geometric mean of the VPA populations:

```
1.27E+06, 4.94E+05, 2.37E+05, 9.84E+04, 3.61E+04, 1.19E+04, 3.97E+03,
```

Standard error of the weighted Log(VPA populations) :

```
1. . 4567, . 3098, . 3440, .4137, .4334, .4425, .6497,
Log catchability residuals.
```



Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age, | 1, | 2, | 3, | 4 |
| ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -7.1504, | -7.0885, | -7.2632, | -7.4045, |
| S.E(Log q), | .1847, | .1892, | .3798, | .3776, |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 1, | .85, | 1.256, | 8.16, | .91, | 15, | .15, | -7.15, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2, | .95, | .211, | 7.36, | .75, | 15, | .19, | -7.09, |
| 3, | 3.20, | -2.131, | -3.96, | .12, | 15, | 1.01, | -7.26, |
| 4, | 2.20, | -1.996, | 2.50, | .28, | 15, | .71, | -7.40, |

```
Fleet : SCOGFS
\begin{tabular}{rrr} 
Age, & 1982, & 1983 \\
1, & 99.99, & 99.99 \\
2, & 99.99, & 99.99 \\
3, & 99.99, & 99.99 \\
4 & 99.99, & 99.99 \\
5 & 99.99, & 99.99 \\
6, & 99.99, & 99.99
\end{tabular}
Age , 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
    1 , 99.99, 99.99, 99.99, 99.99, 99.99, -1.10, -.85, -1.09, -.47, -.53
    2 , 99.99, 99.99, 99.99, 99.99, 99.99, -1.08, -.86, -.79, -.60, -.47
    3', 99.99, 99.99, 99.99, 99.99, 99.99, -.64, -1.01, -.89, -.36, -.65
```



Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age, | 1, | 2, | 4, | 5, | 6 |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -9.8161, | -9.7078, | -9.7465, | -9.8140, | -9.8140, | -9.8140, |
| S.E (Log q), | .3469, | .4036, | .3758, | .4372, | .2952, | .3887, |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean $Q$

| 1, | 1.57, | -1.452, | 7.41, | .48, | 15, | .51, | -9.82, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2, | 2.37, | -1.326, | 5.05, | .12, | 15, | .91, | -9.71, |
| 3, | 1.47, | -.825, | 8.50, | .30, | 15, | .56, | -9.75, |
| 4, | .91, | .240, | 9.96, | .52, | 15, | .42, | -9.81, |
| 5, | .93, | .313, | 9.98, | .76, | 15, | .26, | -9.95, |
| 6, | .99, | .046, | 9.85, | .57, | 15, | .41, | -9.85, |


| Fleet |  | ENGGFS2 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | , | 1984, | 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993 |
| 1 | , | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | -. 37 , | -. 56 |
| 2 | , | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | -. 22 , | -. 31 |
| 3 | , | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | -.47, | -. 29 |
| 4 | , | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | -. 42 , | -. 25 |
| 5 | , | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | . 43 , | -. 60 |
| 6 | , | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 99.99, | 1.42, | . 85 |
| Age | , | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003 |
| 1 | , | -.28, | -. 01 , | -. 26 , | -. 14, | -.31, | . 12 , | . 29 , | . 38 , | . 64, | -. 41 |
| 2 | , | -. 46 , | . 42 , | -. 26 , | -. 13, | . 44 , | . 09 , | . 20, | -. 30, | . 08 , | -. 04 |
| 3 | , | -. 51, | . 24 , | . 09 , | . 35, | -. 34 , | . 28, | . 16, | -. 24 , | -. 10, | . 17 |
| 4 | , | -.18, | . 43, | -.33, | . 16, | . 16, | -. 10, | -.03, | . 15, | -. 20 , | . 14 |
| 5 |  | -.25, | -. 42 , | -.31, | . 20 , | .11, | -.11, | -.17, | -.16, | -. 63, | . 16 |
| 6 | , | -1.09, | . 32 , | . 26 , | 1.40, | -. 53, | -. 73, | -. 55, | . 39, | -1.24, | . 29 |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age, | 1, | 2, | 3, | 4, | 6 |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -14.6208, | -14.6662, | -14.8312, | -14.9611, | -14.9611, | -14.9611, |
| S.E (Log q), | .3778, | .2794, | .2846, | .2252, | .3347, | .8512, |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 1, | .72, | 1.433, | 14.46, | .79, | 12, | .25, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2, | 1.87, | -1.536, | 16.03, | .31, | 12, | .48, |
| $2,14.67$, |  |  |  |  |  |  |


| 3, | 1.11, | -.307, | 15.10, | .53, | 12, | .34, | -14.83, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4, | 1.15, | -.644, | 15.47, | .73, | 12, | .27, | -14.96, |
| 5, | .80, | 1.076, | 14.17, | .80, | 12, | .23, | -15.11, |
| 6, | -15.64, | -1.739, | -78.81, | .00, | 12, | 11.85, | -15.03, |

Terminal year survivor and $F$ summaries :
Age 1 Catchability constant w.r.t. time and dependent on age
Year class $=2002$

| Fleet, | Estimated, | Int, | Ext, | Var, N, | Scaled, |  | imated |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | Survivors, | s.e, | S.e, | Ratio, | Weights, |  | F |  |
| IBTSQ1 | , | 131343., | . 300, | . 000 , | . 00 , | 1, | . 440, | . 296 |
| SCOGFS | , | 218169. | . 365 , | . 000 , | . 00 , | 1, | . 297 , | . 188 |
| ENGGFS2 | , | 95857., | . 398, | . 000 , | . 00 , | 1 , | . 250 , | . 386 |
| F shrinkage mean | 606388., | 2.00, , , |  |  | . 013, |  | . 072 |  |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | S.e, | r, | Ratio, |  |
| $143987 .$, | .20, | .20, | 4, | 1.018, | .273 |

1 Age 2 Catchability constant w.r.t. time and dependent on age
Year class $=2001$

| Fleet, | Estimated, Survivors, | Int, s.e, | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio, | Scaled, Weights, |  | mated |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IBTSQ1 | , | 204577., | . 212, | . 140, | .66, | 2, | . 418, | 341 |
| SCOGFS | , | 236074. | . 277, | . 251 , | . 91, | 2, | . 244 , | . 302 |
| ENGGFS2 | , | 291326., | . 240 , | . 322 , | 1.34, | 2, | . 331 , | . 251 |
| F shrinkage mean | 348238. | .00, , |  |  | . 007 , |  | 14 |  |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | , | Ratio, |  |
| $238963 .$, | .14, | .12, | 7, | .849, | .298 |

Age 3 Catchability constant w.r.t. time and dependent on age
Year class $=2000$

| Fleet, | Estimated, Survivors, | Int, s.e, | Ext, s.e, | Var, <br> Ratio, | Scaled, Weights, |  | mated |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IBTSQ1 | , | 157048., | . 188 , | . 048, | . 26 , | 3, | . 364 , | . 252 |
| SCOGFS | , | 157318., | . 228 , | . 086 , | . 38, | 3 , | . 252 , | . 251 |
| ENGGFS2 | , | 207813., | . 188, | . 076 , | . 40 , | 3 , | . 380 , | . 196 |
| F shrinkage mean | 83506. | 2.00, , , |  |  | .005, |  | 31 |  |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | ---: | :--- |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| 174227. | .11, | .06, | 10, | .508, | .230 |

1
Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=1999$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | Ratio, | Ratin, |  |
| $104474 .$, | .10, | .05, | 13, | .471, | .297 |

Age 5 Catchability constant w.r.t. time and age (fixed at the value for age) 4
Year class $=1998$

| Fleet, | Estimated, | Int, | Ext, | Var, $\quad$ N | N, Scaled, | Estimated |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Survivors, | s.e, | s.e, | Ratio, | Weights, | F |  |
| IBTSQ1 | , | 45490., | .180, | .141, | . 78, | 4, .236, | . 245 |
| SCOGFS | , | 46863., | .187, | .107, | . 57, | 5, .330, | . 239 |
| ENGGFS2 | , | 43993., | .156, | .096, | . 62, | 5, .429, | . 252 |
| $F$ shrinkage mean | 14496., | 2.00, , , |  |  | . 005 , | . 626 |  |


| Survivors, | Int, | Ext, | N, | Var, |
| :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, |  | Ratio, |

1
Age 6 Catchability constant w.r.t. time and age (fixed at the value for age) 4
Year class $=1997$

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, N Ratio, | N, Scaled, <br> , Weights, |  | mated |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IBTSQ1 | Sur | 11121., | .196, | .150, | , .77, | 4, | .159, | . 172 |
| SCOGFS |  | 7311., | .198, | .109, | , .55, | 6, | . 448, | . 252 |
| ENGGFS2 | , | 6467., | .177, | .169, | , .95, | 6, | . 384 , | . 280 |
| F shrinkage mean | 3068., | 2.00, , |  |  | .009, |  | 20 |  |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | S.e, | Ratio, | Rat |  |
| $7402 .$, | .12, | .09, | 17, | .775, | .249 |

Age 7 Catchability constant w.r.t. time and age (fixed at the value for age) 4
Year class $=1996$

| Fleet, | Estimated, | Int, | Ext, | Var, N, | Scaled, Weights, |  | mated |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , ' | Survivors, | s.e, | s.e, | Ratio, , | Weights, |  |  |  |
| IBTSQ1 | , | 4281., | . 191, | . 231, | 1.21, | 4, | . 152, | . 095 |
| SCOGFS | , | 3770. | . 208 , | .115, | . 55, | 6, | . 467 , | . 108 |
| ENGGFS2 | , | 3174. | . 184 , | . 195 , | 1.06, | 6, | . 370 , | . 127 |
| F shrinkage mean | 1514., | 2.00, , , |  |  | . 012, |  | 49 |  |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | S.e, | Ratio, | Rat |  |
| $3567 .$, | .12, | .10, | 17, | .770, | .114 |

Table 5.1.5.3 Whiting in IV and VIId. XSA final run; fishing mortality at age.
Run title : Whiting in the North Sea and eastern Channel, ages 1-8+ (11/09/2004 EDC)
At 14/09/2004 13:15
Terminal Fs derived using XSA (With F shrinkage)

|  | Table 8 | Fishing | mortality | (F) at |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | YEAR, | 1980, | 1981, | 1982, | 1983, |  |  |  |  |  |  |
|  | AGE |  |  |  |  |  |  |  |  |  |  |
|  | 1, | .1016, | .1654, | .1735, | . 2105, |  |  |  |  |  |  |
|  | 2, | . 4414, | . 3299 , | . 2936 , | . 4557, |  |  |  |  |  |  |
|  | 3, | . 8243, | . 7556 , | . 5324, | . 7482 , |  |  |  |  |  |  |
|  | 4, | . 9808, | 1.0040, | . 7271 , | .7377, |  |  |  |  |  |  |
|  | 5, | 1.2556, | 1.1140, | . 9071 , | . 9027 , |  |  |  |  |  |  |
|  | 6, | 1.0075, | 1.3793, | 1.0602, | . 9543, |  |  |  |  |  |  |
|  | 7, | 1.1452, | 1.2622, | .9948, | .9387, |  |  |  |  |  |  |
|  | +gp, | 1.1452, | 1.2622, | . 9948 , | .9387, |  |  |  |  |  |  |
| 0 | FBAR 2-6, | .9019, | . 9165, | . 7041 , | . 7597 , |  |  |  |  |  |  |
|  | Table 8 | Fishing | mortality | (F) at |  |  |  |  |  |  |  |
|  | YEAR, | 1984, | 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, |
|  | AGE |  |  |  |  |  |  |  |  |  |  |
|  | 1, | . 2234, | .1903, | . 2710, | .1407, | . 3593 , | .1299, | . 2274 , | .1173, | . 2410, | .1918, |
|  | 2, | . 5171, | . 2496 , | . 4259, | . 5112, | . 4313 , | . 4328 , | . 5542, | . 4899, | . 3891 , | . 4839, |
|  | 3, | . 8727, | . 6368, | .7054, | . 8721 , | .6640, | . 6978, | . 9180, | . 5269 , | . 5831, | . 7624 , |
|  | 4, | 1.0332, | . 8780 , | 1.1999, | 1.2475, | . 9729, | . 8446 , | . 9897 , | . 9009, | .6543, | .8423, |
|  | 5, | 1.0594, | 1.1846, | 1.0608, | 1.3780, | 1.1589, | 1.5387, | 1.2678, | 1.1261, | .9817, | . 9143, |
|  | 6 , | 1.2068, | 1.2235, | 1.2197, | 1.7512, | 1.2995, | 1.5702, | 1.0634, | . 8224 , | 1.2108, | 1.2262, |
|  | 7, | 1.1467, | 1.2189, | 1.1540, | 1.5856, | 1.2445, | 1.5753, | 1.1850, | 1.0309, | 1.4083, | 1.0548, |
|  | +gp, | 1.1467, | 1.2189, | 1.1540, | 1.5856, | 1.2445, | 1.5753, | 1.1850, | 1.0309, | 1.4083, | 1.0548, |
| 0 | FBAR 2-6, | .9378, | .8345, | . 9223, | 1.1520, | . 9053, | 1.0168, | . 9586, | .7732, | .7638, | .8458, |

Run title : Whiting in the North Sea and eastern Channel, ages 1-8+ (11/09/2004 EDC)
At 14/09/2004 13:15
Terminal Fs derived using XSA (With F shrinkage)


Table 5.1.5.4 Whiting in IV and VIId. XSA final run; stock numbers at age.
Run title : Whiting in the North Sea and eastern Channel, ages 1-8+ (11/09/2004 EDC)
At 14/09/2004 13:15
Terminal Fs derived using XSA (With F shrinkage)

| Table 10 | Stock | number at | age (star | t of year |
| :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1980, | 1981, | 1982, | 1983, |
| AGE |  |  |  |  |
| 1 , | 4418051, | 1718383, | 1944296, | 1741851, |
| 2, | 1459975, | 1543619, | 563265, | 632139, |
| 3, | 606983, | 598732, | 707694, | 267769, |
| 4, | 168646, | 187584, | 198190, | 292830, |
| 5, | 83935, | 46854, | 50920 , | 70962, |
| 6, | 19189, | 18623, | 11978, | 16009, |
| 7, | 1867, | 5457, | 3652, | 3231, |
| +gp, | 1218, | 492, | 833, | 1660, |
| TOTAL, | 6759864, | 4119743, | 3480827, | 3026451, |


 2, $\quad 545757$, 803502, 603319, 1152262, 1098846, 619115, 1486382, 618156, 642367 , 547079 , 3, 255547, 207479, $399173,251279,440678,455168,256082,544501,241483, ~ 277554$,

| 6, | 22409, | 28007, | 5608, | 6246, | 3388, | 7225, | 3466, | 11155, | 11101, | 6327, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7, | 4801, | 5221, | 6417, | 1290, | 844, | 720, | 1171, | 932, | 3817, | 2576, |
| gp, | 974, | 1388, | 900, | 1400, | 255, | 453, | 175, | 461, | 167, | 1283, |

$$
\begin{array}{lrrrrrr}
\text { +gp, } & 974, & 1388, & 900, & 1400, & 255, & 453, \\
\text { TOTAL, } & 3620190, & 3031334, & 5022733, & 4839395, & 3940456, & 5639954, \\
3964187, & 3158836, & 2947356, & 3021795,
\end{array}
$$

Run title : Whiting in the North Sea and eastern Channel, ages 1-8+ (11/09/2004 EDC)
At 14/09/2004 13:15

| Table 10 | Termin Stock | al Fs der number at | ived using age (star | $9 \text { XSA (Wit }$ <br> of yea | h F shri | kage) | mbers*10 | *-3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003, | 2004, | GMST 80-** | AMST 80-** |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1, | 1806584, | 1595940, | 1066423, | 777099, | 1047086, | 1776005, | 1879742, | 1594880, | 1386080, | 489220, | 0, | 1967076, | 2153498, |
| 2, | 640032, | 596934, | 531718, | 367253, | 267322, | 360530, | 576109, | 685438, | 564492 , | 505048, | 143987, | 670690, | 742778, |
| 3, | 215020, | 290579, | 269620, | 248043, | 174921, | 134761, | 156936, | 268036, | 368240, | 311036, | 238963, | 298664, | 330365, |
| 4, | 91255, | 75458, | 111178, | 107332, | 105165, | 87360, | 56663, | 57263, | 139431, | 189870, | 174227, | 110781, | 123039, |
| 5, | 30307 , | 26691, | 25149, | 40553, | 43231, | 46527, | 35303, | 21416, | 24727, | 74024, | 104474, | 37602, | 42892, |
| 6, | 27233, | 8262 , | 7407, | 7024, | 15264, | 17999, | 19884, | 13170, | 8581, | 12191, | 45029, | 11018, | 13044, |
| 7, | 1446, | 5974, | 1882, | 1626, | 2506, | 6246, | 7358, | 7728, | 6008, | 4880, | 7402, | 2726, | 3489, |
| +gp, | 650, | 608, | 1579, | 718, | 702, | 2042, | 2114, | 4357, | 3089, | 4062, | 6536, |  |  |
| TOTAL, | 2812528, | 2600447, | 2014957, | 1549647, | 1656198, | 2431471, | 2734109, | 2652288, | 2500647, | 1590332, | 720618, |  |  |

Table 5.1.5.5 Whiting in IV and VIId. XSA final run; stock summary.
Run title : Whiting in the North Sea and eastern Channel, ages 1-8+ (11/09/2004 EDC)
At 14/09/2004 13:15
Table 17 Summary (with SOP correction)
Terminal Fs derived using XSA (With F shrinkage)

| ', | RECRUITS, <br> Age 1 | TOTALBIO, | TOTSPBIO, | LANDINGS, | YIELD/SSB, | SOPCOFAC, | FBAR | 2-6, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1980, | 4418051, | 852931, | 531352, | 223517, | . 4207, | 1.0207, |  | . 9019, |
| 1981, | 1718383, | 653842, | 502026, | 192049, | . 3825 , | 1.0304, |  | . 9165, |
| 1982, | 1944296, | 501472, | 384923, | 140195, | . 3642 , | 1.0210, |  | . 7041 , |
| 1983, | 1741851, | 543770, | 357485, | 161212, | . 4510 , | 1.0635, |  | . 7597 , |
| 1984, | 2597668, | 495831, | 276791, | 145741, | . 5265, | 1.0230, |  | . 9378 , |
| 1985, | 1886952, | 479956, | 294241, | 106363, | . 3615 , | 1.0893, |  | . 8345 , |
| 1986, | 3906807 , | 678053, | 294361, | 161744, | . 5495, | 1.0222, |  | . 9223, |
| 1987, | 3270718, | 539822, | 300356, | 138775, | .4620, | 1.0080, |  | 1.1520, |
| 1988, | 2292851, | 436694, | 307248 , | 133470, | .4344, | 1.0441, |  | . 9053 , |
| 1989, | 4376686 , | 568449, | 283318, | 123753, | . 4368, | 1.0183, |  | 1.0168, |
| 1990, | 2006397, | 494492, | 324475, | 153453, | . 4729, | 1.0291, |  | . 9586 , |
| 1991, | 1867616, | 529621, | 319999, | 124975, | . 3905 , | 1.1661, |  | . 7732 , |
| 1992, | 1800175, | 416256, | 270583, | 109704, | . 4054 , | 1.0303, |  | . 7638 , |
| 1993, | 2004744, | 399654, | 252843, | 116165, | .4594, | 1.0681, |  | . 8458 , |
| 1994, | 1806584, | 369985, | 229028 , | 92606 , | . 4043, | 1.0308, |  | . 8566 , |
| 1995, | 1595940, | 425795, | 271448, | 103268, | . 3804 , | 1.1714, |  | . 8031 , |
| 1996, | 1066423, | 306798 , | 209225, | 73957, | . 3535, | 1.0249, |  | . 7768 , |
| 1997, | 777099, | 246965 , | 178282, | 59102, | . 3315, | 1.0077, |  | . 5834 , |
| 1998, | 1047086, | 239633, | 149027, | 44312, | . 2973, | 1.0251, |  | . 4729 , |
| 1999, | 1776005, | 282341, | 152575, | 59179, | . 3879, | 1.0316, |  | . 5498 , |
| 2000, | 1879742, | 390615, | 192025, | 60907, | . 3172 , | 1.0017, |  | .6155, |
| 2001, | 1594880, | 353606, | 234962, | 49062, | . 2088, | 1.0512, |  | . 4428 , |
| 2002, | 1386080, | 327488 , | 234627, | 46552, | . 1984, | 1.0377 , |  | . 3126 , |
| 2003, | 489220, | 226862, | 198732, | 43208, | . 2174 , | 1.0178, |  | . 2643 , |
| Arith. Mean | 2052177, | 448372, | 281247, | 110969, | . 3839 |  |  | . 7529, |
| 0 Units, | (Thousands), | (Tonnes), | (Tonnes), | (Tonnes), |  |  |  |  |


| Parameter | Setting | Justification |
| :---: | :---: | :---: |
| Age above which selection is constant. | $a_{m}=5$ | Based on inspection of exploratory TSA runs. |
| Multipliers on variance matrices of measurements. | $\begin{aligned} & B_{\text {landings }}(a)=2 \text { for ages } 7, \\ & 8+ \end{aligned}$ | Allows extra measurement variability for older ages with fewer catches. |
| Multipliers on variances for fishing mortality estimates. | $H(1)=2$ | Allows for more variable fishing mortalities for age 1 fish. |
| Downweighting of particular data points (implemented by setting the relevant $q$ to 9 ) | Catch values at age 1 in 1986, age 2 in 1990. | Revised discards estimates suggest current value far too high. |
|  | Industrial bycatch values at age 2 in 1986, age 5 in 1987, age 1 in 1988, ages 1,4 and 5 in 1999 and qges 4 and 5 in 2000. |  |
| Recruitment. | Modelled by a Ricker model, with numbers-at-age 1 assumed to be independent and normally distributed with mean $\eta_{1} S$ $\exp \left(-\eta_{2} S\right)$, where $S$ is the spawning stock biomass at the start of the previous year. To allow recruitment variability to increase with mean recruitment, a constant coefficient of variation is assumed. |  |
| Large year classes. | No year classes sufficiently special modelling treatmen. | large during 1980-2003 to warrant |

Table 5.1.5.7 Whiting in IV and VIId. TSA parameter estimates for TSA run 13. Starting values and lower and upper estimation bounds are also given: these are not empirical standard errors, but user-defined run-time limits that were used to obtain a converged estimate.

| Parameter |  | Estimate | Starting value | Lower bound | Upper bound |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Human consumption (and discards) | $\mathrm{F}_{\mathrm{H}}(1,1980)$ | 0.0894 | 0.1 | 0.05 | 0.4 |
|  | $\mathrm{F}_{\mathrm{H}}(2,1980)$ | 0.1522 | 0.3 | 0.1 | 0.8 |
|  | $\mathrm{F}_{\mathrm{H}}(5,1980)$ | 0.8830 | 1.2 | 0.7 | 1.5 |
|  | $\sigma_{\text {H }}$ | 0.1660 | 0.1 | 0.01 | 0.5 |
|  | $\sigma_{\text {HF }}$ | 0.1859 | 0.2 | 0.0 | 0.4 |
|  | $\sigma_{\mathrm{HU}}$ | 0.0000 | 0.05 | 0.0 | 0.1 |
|  | $\sigma_{\text {HV }}$ | 0.0000 | 0.1 | 0.0 | 0.16 |
|  | $\sigma_{\text {HY }}$ | 0.1305 | 0.05 | 0.0 | 0.4 |
| Industrial | $\mathrm{F}_{\mathrm{I}}(1,1980)$ | 0.0291 | 0.1 | 0.02 | 0.8 |
|  | $\mathrm{F}_{\mathrm{I}}(2,1980)$ | 0.2441 | 0.2 | 0.02 | 2.0 |
|  | $\mathrm{F}_{\mathrm{I}}(5,1980)$ | 1.0000 | 0.1 | 0.02 | 1.0 |
|  | $\sigma_{\text {I }}$ | 0.3697 | 0.3 | 0.1 | 1.2 |
|  | $\sigma_{\text {IF }}$ | 0.0868 | 0.2 | 0.0 | 0.5 |
|  | $\sigma_{\text {IU }}$ | 0.0584 | 0.05 | 0.0 | 0.2 |
|  | $\sigma_{\text {IV }}$ | 0.0000 | 0.05 | 0.0 | 0.5 |
|  | $\sigma_{\text {IY }}$ | 0.4220 | 0.3 | 0.0 | 0.7 |
| Recruitment | $\alpha$ | 11.8773 | 9.0 | 5.0 | 30.0 |
|  | $\beta$ | 0.1654 | 0.05 | 0.0 | 0.5 |
|  | $\sigma_{\mathrm{R}}$ | 0.3598 | 0.3 | 0.2 | 0.8 |
| Surveys: EngGFS | $\Phi_{\mathrm{E}}(1)$ | 0.0523 | 0.2 | 0.01 | 2.0 |
|  | $\Phi_{\mathrm{E}}(2)$ | 0.0510 | 0.2 | 0.01 | 3.0 |
|  | $\Phi_{\mathrm{E}}(5)$ | 0.0528 | 0.2 | 0.01 | 2.0 |
|  | $\sigma_{\mathrm{E}}$ | 0.2964 | 0.5 | 0.1 | 1.0 |
|  | $\sigma_{\mathrm{E} \Omega}$ | $0.0707$ | 0.1 | 0.0 | 0.5 |
|  | $\sigma_{E \beta}$ | 0.0960 | 0.8 | 0.0 | 1.0 |
| IBTS Q1 |  | 0.2407 | 0.5 | 0.001 | 1.0 |
|  | $\Phi_{\mathrm{I}}(2)$ | 0.5706 | 0.7 | 0.01 | 1.0 |
|  | $\Phi_{\mathrm{I}}(5)$ | 0.4367 | 0.6 | 0.001 | 1.0 |
|  | $\sigma_{\text {I }}$ | 0.1312 | 0.2 | 0.01 | 1.0 |
|  | $\sigma_{\mathrm{I} \Omega}$ | 0.1331 | 0.2 | 0.0 | 1.0 |
|  | $\sigma_{I \beta}$ | 0.2220 | 0.4 | 0.0 | 1.0 |
| ScoGFS | $\Phi_{\text {S }}(1)$ | 0.2116 | 0.2 | 0.01 | 0.5 |
|  | $\Phi_{\text {S }}(2)$ | 0.2994 | 0.3 | 0.01 | 0.8 |
|  | $\Phi_{\text {S }}(5)$ | 0.3184 | 0.3 | 0.01 | 0.5 |
|  | $\sigma_{\text {S }}$ | 0.2109 | 0.3 | 0.1 | 1.0 |
|  | $\sigma_{\mathrm{S} \Omega}$ | 0.1530 | 0.05 | 0.0 | 0.2 |
|  | $\sigma_{S \beta}$ | 0.2764 | 0.5 | 0.0 | 1.0 |

## Table 5.1.5.7 contd. Notation

$\mathrm{F}_{\mathrm{H}}(\mathrm{a}, \mathrm{y})$ Human consumption fishing mortality at age a in year y
$\sigma_{\mathrm{H}}$ Standard deviation of human consumption catch-at-age data
$\sigma_{\mathrm{HF}}$ Transitory changes in overall human consumption fishing mortality
$\sigma_{\mathrm{HU}}$ Persistent changes in selection (age effect in human consumption fishing mortality)
$\sigma_{\mathrm{HV}}$ Transitory changes in the year effect in human consumption fishing mortality
$\sigma_{\mathrm{HY}}$ Persistent changes in the year effect in human consumption fishing mortality
$\mathrm{F}_{\mathrm{I}}(\mathrm{a}, \mathrm{y})$ Industrial fishing mortality at age a in year y
$\sigma_{I}$ Standard deviation of industrial catch-at-age data
$\sigma_{\text {IF }}$ Transitory changes in overall industrial fishing mortality
$\sigma_{\text {IU }}$ Persistent changes in selection (age effect in industrial fishing mortality)
$\sigma_{\mathrm{IV}}$ Transitory changes in the year effect in industrial fishing mortality
$\sigma_{I Y}$ Persistent changes in the year effect in industrial fishing mortality
$\alpha$ Ricker parameter (slope at the origin)
$\beta$ Ricker parameter (curve dome occurs at $1 / \beta$ )
$\sigma_{\mathrm{R}}$ Standard error of recruitment data
$\Phi_{\mathrm{E}}(1) \quad$ Selectivity at age 1, EngGFS survey
$\Phi_{\mathrm{E}}(2) \quad$ Selectivity at age 2, EngGFS survey
$\Phi_{\mathrm{E}}(5) \quad$ Selectivity at age 5, EngGFS survey
$\sigma_{\mathrm{E}}$ Standard deviation of catch-at-age data, EngGFS survey
$\sigma_{\mathrm{E} \Omega}$ Standard deviation of transitory changes in "catchability", EngGFS survey
$\sigma_{\mathrm{E} \beta}$ Standard deviation of persistent changes in "catchability", EngGFS survey
$\Phi_{\mathrm{I}}(1) \quad$ Selectivity at age 1, IBTS Q1 survey
$\Phi_{\mathrm{I}}(2) \quad$ Selectivity at age 2, IBTS Q1 survey
$\Phi_{\mathrm{I}}(5) \quad$ Selectivity at age 5 , IBTS Q1 survey
$\sigma_{I}$ Standard deviation of catch-at-age data, IBTS Q1 survey
$\sigma_{\mathrm{I} \Omega}$ Standard deviation of transitory changes in "catchability", IBTS Q1 survey
$\sigma_{\mathrm{I} \beta}$ Standard deviation of persistent changes in "catchability", IBTS Q1 survey
$\Phi_{\mathrm{S}}(1) \quad$ Selectivity at age 1, ScoGFS survey
$\Phi_{S}(2)$ Selectivity at age 2 , ScoGFS survey
$\Phi_{S}(5) \quad$ Selectivity at age 5 , ScoGFS survey
$\sigma_{S}$ Standard deviation of catch-at-age data, ScoGFS survey
$\sigma_{\mathrm{S} \Omega}$ Standard deviation of transitory changes in "catchability", ScoGFS survey
$\sigma_{\mathrm{S} \beta}$ Standard deviation of persistent changes in "catchability", ScoGFS survey

Table 5.1.5.8
Population numbers at age from final TSA run, including standard errors.
Estimates

| 1980 | 41.2155 | 14.1900 | 5.8407 | 1.6152 | 0.9080 | 0.1648 | 0.0158 | 0.0088 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1981 | 18.8828 | 14.0140 | 5.7974 | 1.7810 | 0.4082 | 0.1805 | 0.0412 | 0.0053 |
| 1982 | 17.2497 | 6.0242 | 6.1647 | 2.0003 | 0.5009 | 0.1092 | 0.0409 | 0.0111 |
| 1983 | 17.8691 | 5.6205 | 2.7467 | 2.6231 | 0.7173 | 0.1472 | 0.0286 | 0.0154 |
| 1984 | 27.6253 | 5.1910 | 2.3180 | 0.9487 | 0.9292 | 0.2089 | 0.0388 | 0.0108 |
| 1985 | 18.9135 | 8.5683 | 2.0699 | 0.6610 | 0.2589 | 0.2372 | 0.0436 | 0.0110 |
| 1986 | 34.8804 | 6.0181 | 3.9499 | 0.7715 | 0.2088 | 0.0612 | 0.0500 | 0.0114 |
| 1987 | 33.7545 | 11.1816 | 2.3060 | 1.2641 | 0.1803 | 0.0573 | 0.0137 | 0.0127 |
| 1988 | 17.7775 | 11.5822 | 4.4408 | 0.6602 | 0.2822 | 0.0335 | 0.0094 | 0.0048 |
| 1989 | 37.0513 | 5.6150 | 4.8183 | 1.4656 | 0.1859 | 0.0675 | 0.0073 | 0.0038 |
| 1990 | 19.7915 | 12.0781 | 2.2764 | 1.5799 | 0.4408 | 0.0334 | 0.0131 | 0.0027 |
| 1991 | 18.9199 | 6.1606 | 5.0739 | 0.7199 | 0.4517 | 0.1002 | 0.0085 | 0.0043 |
| 1992 | 17.7496 | 6.0782 | 2.4504 | 2.0638 | 0.2190 | 0.1207 | 0.0310 | 0.0035 |
| 1993 | 20.7181 | 5.4446 | 2.5835 | 0.8905 | 0.8052 | 0.0625 | 0.0325 | 0.0095 |
| 1994 | 17.8441 | 6.5216 | 2.1691 | 0.8321 | 0.2843 | 0.2364 | 0.0150 | 0.0101 |
| 1995 | 15.8478 | 5.9230 | 2.8683 | 0.7707 | 0.2379 | 0.0801 | 0.0529 | 0.0064 |
| 1996 | 10.3873 | 5.2756 | 2.6688 | 1.0384 | 0.2559 | 0.0644 | 0.0214 | 0.0145 |
| 1997 | 7.3769 | 3.5431 | 2.3768 | 1.0017 | 0.3569 | 0.0715 | 0.0148 | 0.0094 |
| 1998 | 10.4981 | 2.5214 | 1.6817 | 0.9557 | 0.3737 | 0.1164 | 0.0246 | 0.0076 |
| 1999 | 16.3768 | 3.5975 | 1.2476 | 0.7554 | 0.3827 | 0.1363 | 0.0382 | 0.0111 |
| 2000 | 15.9664 | 5.0805 | 1.5958 | 0.4949 | 0.2746 | 0.1338 | 0.0456 | 0.0163 |
| 2001 | 12.6138 | 5.4937 | 2.1910 | 0.5893 | 0.1732 | 0.0847 | 0.0349 | 0.0167 |
| 2002 | 10.9368 | 4.3390 | 2.7504 | 0.9527 | 0.2084 | 0.0480 | 0.0262 | 0.0162 |
| 2003 | 3.8486 | 3.8323 | 2.2482 | 1.3192 | 0.4247 | 0.0757 | 0.0180 | 0.0163 |
| 2004 | 7.7329 | 1.2090 | 1.7 |  | 1008 | 0.6198 | 0.1833 | 0.0323 |
| 2005 | 11.4725 | 2.7429 | 0.6232 | 0.8431 | 0.4937 | 0.2462 | 0.0725 | 0.0195 |
| 2006 | 10.8342 | 4.0695 | 1.4164 | 0.2972 | 0.3761 | 0.1910 | 0.0967 | 0.0380 |

0.0148

Standard errors

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1980 | 2.5496 | 1.1498 | 0.6025 | 0.1730 | 0.0721 | 0.0148 | 0.0031 | 0.0012 |
| 1981 | 1.2379 | 0.9310 | 0.5043 | 0.1809 | 0.0247 | 0.0154 | 0.0057 | 0.0010 |
| 1982 | 1.1061 | 0.3995 | 0.3905 | 0.1646 | 0.0479 | 0.0102 | 0.0084 | 0.0026 |
| 1983 | 1.1296 | 0.3563 | 0.1650 | 0.1486 | 0.0486 | 0.0139 | 0.0052 | 0.0034 |
| 1984 | 1.4398 | 0.3322 | 0.1342 | 0.0675 | 0.0692 | 0.0206 | 0.0058 | 0.0023 |
| 1985 | 1.1744 | 0.4933 | 0.1325 | 0.0431 | 0.0230 | 0.0190 | 0.0073 | 0.0018 |
| 1986 | 2.3764 | 0.4180 | 0.2503 | 0.0541 | 0.0163 | 0.0079 | 0.0088 | 0.0030 |
| 1987 | 1.6309 | 0.5807 | 0.1669 | 0.0967 | 0.0178 | 0.0043 | 0.0030 | 0.0028 |
| 1988 | 1.1177 | 0.6221 | 0.3005 | 0.0568 | 0.0255 | 0.0044 | 0.0017 | 0.0012 |
| 1989 | 2.1243 | 0.3201 | 0.2933 | 0.0952 | 0.0136 | 0.0044 | 0.0012 | 0.0005 |
| 1990 | 1.2197 | 0.8903 | 0.1618 | 0.1340 | 0.0414 | 0.0049 | 0.0027 | 0.0007 |
| 1991 | 1.1136 | 0.3828 | 0.2934 | 0.0526 | 0.0417 | 0.0096 | 0.0018 | 0.0010 |
| 1992 | 1.1142 | 0.3859 | 0.1667 | 0.1241 | 0.0189 | 0.0127 | 0.0042 | 0.0008 |
| 1993 | 1.1754 | 0.3832 | 0.1733 | 0.0665 | 0.0615 | 0.0072 | 0.0068 | 0.0021 |
| 1994 | 1.0193 | 0.4205 | 0.1640 | 0.0654 | 0.0249 | 0.0224 | 0.0032 | 0.0028 |
| 1995 | 0.9503 | 0.3672 | 0.1905 | 0.0565 | 0.0206 | 0.0067 | 0.0080 | 0.0014 |
| 1996 | 0.6659 | 0.3534 | 0.1847 | 0.0841 | 0.0240 | 0.0074 | 0.0043 | 0.0037 |
| 1997 | 0.4913 | 0.2403 | 0.1744 | 0.0823 | 0.0347 | 0.0089 | 0.0034 | 0.0025 |
| 1998 | 0.7168 | 0.1733 | 0.1192 | 0.0760 | 0.0332 | 0.0139 | 0.0047 | 0.0020 |
| 1999 | 0.9586 | 0.2658 | 0.0876 | 0.0544 | 0.0326 | 0.0135 | 0.0070 | 0.0024 |
| 2000 | 0.9611 | 0.3551 | 0.1287 | 0.0424 | 0.0268 | 0.0157 | 0.0076 | 0.0038 |
| 2001 | 1.0244 | 0.3714 | 0.1838 | 0.0603 | 0.0214 | 0.0134 | 0.0093 | 0.0049 |
| 2002 | 1.3081 | 0.3884 | 0.2098 | 0.0981 | 0.0308 | 0.0110 | 0.0078 | 0.0059 |
| 2003 | 1.3737 | 0.5048 | 0.2275 | 0.1258 | 0.0557 | 0.0162 | 0.0060 | 0.0055 |
| 2004 | 2.9458 | 0.5098 | 0.2879 | 0.1519 | 0.0889 | 0.0375 | 0.0097 | 0.0052 |
| 2005 | 4.4034 | 1.0611 | 0.2720 | 0.1730 | 0.0990 | 0.0593 | 0.0208 | 0.0069 |
| 2006 | 4.4284 | 1.5846 | 0.5701 | 0.1416 | 0.1088 | 0.0631 | 0.0352 | 0.0150 |

Table 5.1.5.9 Variance-covariance matrix for forecast numbers at age in 2006 from final TSA run.

| 19.610425 | 1.427303 | 1.045817 | 0.224330 | 0.156103 | 0.080520 | 0.042154 | 0.018417 |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| 1.427303 | 2.510802 | 0.200635 | 0.073129 | 0.048421 | 0.024539 | 0.012655 | 0.005640 |
| 1.045817 | 0.200635 | 0.324982 | 0.036811 | 0.027443 | 0.014513 | 0.007493 | 0.003300 |
| 0.224330 | 0.073129 | 0.036811 | 0.020042 | 0.009927 | 0.005306 | 0.002756 | 0.001214 |
| 0.156103 | 0.048421 | 0.027443 | 0.009927 | 0.011831 | 0.005023 | 0.002697 | 0.001177 |
| 0.080520 | 0.024539 | 0.014513 | 0.005306 | 0.005023 | 0.003987 | 0.001601 | 0.000702 |
| 0.042154 | 0.012655 | 0.007493 | 0.002756 | 0.002697 | 0.001601 | 0.001240 | 0.000393 |
| 0.018417 | 0.005640 | 0.003300 | 0.001214 | 0.001177 | 0.000702 | 0.000393 | 0.000224 |

Table 5.1.5.10 Fishing mortality at age from final TSA run. Standard errors are on Log fishing mortality.

```
Human consumption fishery (including discards)
```

estimates

| 1980 | 0.0474 | 0.3234 | 0.6965 | 0.8512 | 1.2242 | 1.0718 | 1.3389 | 1.2909 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1981 | 0.0549 | 0.2060 | 0.5096 | 0.8317 | 0.9630 | 1.2324 | 1.2583 | 1.0280 |
| 1982 | 0.0614 | 0.2126 | 0.4013 | 0.6246 | 0.8942 | 1.0904 | 1.0366 | 0.9436 |
| 1983 | 0.2226 | 0.3428 | 0.6207 | 0.6758 | 0.9326 | 1.0608 | 1.2378 | 1.1528 |
| 1984 | 0.1657 | 0.3875 | 0.8245 | 0.9373 | 1.0314 | 1.3027 | 1.2890 | 1.1848 |
| 1985 | 0.1357 | 0.2446 | 0.5630 | 0.7959 | 1.1417 | 1.3064 | 1.3715 | 1.2679 |
| 1986 | 0.1425 | 0.3893 | 0.6857 | 1.0732 | 0.9340 | 1.2494 | 1.4093 | 1.2581 |
| 1987 | 0.0723 | 0.3599 | 0.7902 | 1.1354 | 1.3747 | 1.5556 | 1.4768 | 1.4852 |
| 1988 | 0.0827 | 0.2292 | 0.5961 | 0.8350 | 0.9788 | 1.2343 | 1.0443 | 1.0078 |
| 1989 | 0.0605 | 0.2089 | 0.5331 | 0.7633 | 1.3306 | 1.3776 | 1.2081 | 1.1947 |
| 1990 | 0.0750 | 0.2328 | 0.5949 | 0.8141 | 1.1308 | 1.1198 | 1.1032 | 1.0223 |
| 1991 | 0.0789 | 0.2895 | 0.4408 | 0.7957 | 1.0029 | 0.8911 | 1.1263 | 1.0662 |
| 1992 | 0.1002 | 0.2548 | 0.5360 | 0.5670 | 0.9422 | 1.0406 | 1.1004 | 0.9499 |
| 1993 | 0.1127 | 0.3357 | 0.6882 | 0.7822 | 0.9296 | 1.1722 | 1.2034 | 1.2034 |
| 1994 | 0.0882 | 0.2937 | 0.6243 | 0.9136 | 0.9546 | 1.2233 | 1.1986 | 1.1168 |
| 1995 | 0.0703 | 0.2680 | 0.5963 | 0.7614 | 1.0330 | 1.0576 | 1.2096 | 1.0580 |
| 1996 | 0.0724 | 0.2823 | 0.5705 | 0.7322 | 1.0035 | 1.2067 | 1.1103 | 1.0969 |
| 1997 | 0.0670 | 0.2301 | 0.5044 | 0.6581 | 0.8511 | 0.8095 | 0.9739 | 0.8907 |
| 1998 | 0.0695 | 0.2131 | 0.4205 | 0.5966 | 0.7408 | 0.8647 | 0.8781 | 0.8316 |
| 1999 | 0.1216 | 0.2653 | 0.4826 | 0.6597 | 0.7721 | 0.8443 | 0.9005 | 0.8944 |
| 2000 | 0.0535 | 0.2718 | 0.5079 | 0.6458 | 0.8563 | 1.0307 | 1.0897 | 0.9423 |
| 2001 | 0.0548 | 0.1864 | 0.4007 | 0.6280 | 0.8917 | 0.8468 | 0.8725 | 0.8346 |
| 2002 | 0.0371 | 0.1569 | 0.3422 | 0.4779 | 0.7188 | 0.7049 | 0.7442 | 0.7051 |
| 2003 | 0.1104 | 0.2717 | 0.3309 | 0.4359 | 0.5747 | 0.6000 | 0.6462 | 0.6351 |
| 2004 | 0.0533 | 0.1769 | 0.3723 | 0.4816 | 0.6579 | 0.6771 | 0.6840 | 0.6840 |
| 2005 | 0.0533 | 0.1751 | 0.3574 | 0.4870 | 0.6840 | 0.6840 | 0.6840 | 0.6840 |
| 2006 | 0.0533 | 0.1751 | 0.3574 | 0.4870 | 0.6840 | 0.6840 | 0.6840 | 0.6840 |

standard errors

| 1980 | 0.1523 | 0.1197 | 0.1090 | 0.0949 | 0.0905 | 0.1333 | 0.1690 | 0.1886 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1981 | 0.1453 | 0.1183 | 0.1074 | 0.1067 | 0.0950 | 0.1371 | 0.1646 | 0.1962 |
| 1982 | 0.1447 | 0.1204 | 0.1022 | 0.1063 | 0.1057 | 0.1369 | 0.1704 | 0.1922 |
| 1983 | 0.1350 | 0.1150 | 0.0985 | 0.1018 | 0.1008 | 0.1292 | 0.1717 | 0.1863 |
| 1984 | 0.1368 | 0.1111 | 0.0807 | 0.0966 | 0.0891 | 0.1237 | 0.1578 |  |
| 1985 | 0.1464 | 0.1245 | 0.1072 | 0.0989 | 0.1067 | 0.1251 | 0.1672 | 0.1898 |
| 1986 | 0.2375 | 0.1136 | 0.0982 | 0.0911 | 0.0924 | 0.1341 | 0.1562 | 0.1902 |
| 1987 | 0.1525 | 0.1109 | 0.0960 | 0.0841 | 0.0928 | 0.1142 | 0.1738 |  |
| 1988 | 0.1451 | 0.1133 | 0.0979 | 0.0984 | 0.0897 | 0.1281 | 0.1701 | 0.1766 |
| 1989 | 0.1623 | 0.1149 | 0.1050 | 0.1016 | 0.0920 | 0.1252 | 0.1790 | 0.1874 |
| 1990 | 0.1415 | 0.1471 | 0.0954 | 0.0997 | 0.0916 | 0.1344 | 0.1660 | 0.1914 |
| 1991 | 0.1461 | 0.1102 | 0.1006 | 0.0993 | 0.1020 | 0.1356 | 0.1761 | 0.1900 |
| 1992 | 0.1441 | 0.1168 | 0.1069 | 0.1104 | 0.1088 | 0.1360 | 0.1686 | 0.1944 |
| 1993 | 0.1440 | 0.1146 | 0.0970 | 0.1020 | 0.0998 | 0.1327 | 0.1654 | 0.1895 |
| 1994 | 0.1481 | 0.1183 | 0.1051 | 0.0966 | 0.0985 | 0.1209 | 0.1755 | 0.1841 |
| 1995 | 0.1512 | 0.1223 | 0.1094 | 0.1084 | 0.1054 | 0.1416 | 0.1652 | 0.1954 |
| 1996 | 0.1511 | 0.1222 | 0.1108 | 0.1097 | 0.1071 | 0.1338 | 0.1775 | 0.1849 |
| 1997 | 0.1514 | 0.1248 | 0.1161 | 0.1134 | 0.1163 | 0.1422 | 0.1815 | 0.1880 |
| 1998 | 0.1515 | 0.1268 | 0.1206 | 0.1170 | 0.1179 | 0.1395 | 0.1767 | 0.1913 |
| 1999 | 0.1458 | 0.1221 | 0.1142 | 0.1116 | 0.1173 | 0.1421 | 0.1768 | 0.1918 |
| 2000 | 0.1549 | 0.1215 | 0.1146 | 0.1171 | 0.1198 | 0.1410 | 0.1776 | 0.1905 |
| 2001 | 0.1554 | 0.1296 | 0.1241 | 0.1221 | 0.1260 | 0.1478 | 0.1821 | 0.1910 |
| 2002 | 0.1638 | 0.1378 | 0.1307 | 0.1354 | 0.1401 | 0.1600 | 0.1910 | 0.1962 |
| 2003 | 0.1714 | 0.1498 | 0.1552 | 0.1603 | 0.1750 | 0.1912 | 0.2153 | 0.2162 |
| 2004 | 0.4150 | 0.2522 | 0.2480 | 0.2440 | 0.2451 | 0.2447 | 0.2508 | 0.2508 |
| 2005 | 0.4349 | 0.2844 | 0.2841 | 0.2840 | 0.2827 | 0.2827 | 0.2827 | 0.2827 |
| 2006 | 0.4541 | 0.3129 | 0.3126 | 0.3125 | 0.3114 | 0.3114 | 0.3114 | 0.3114 |

Table 5.1.5.10 contd. Fishing mortality at age from final TSA run. Standard errors are on Log fishing mortality.

| Industrial fishery |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| estimates |  |  |  |  |  |  |  |  |
| 1980 | 0.0878 | 0.1394 | 0.1500 | 0.1066 | 0.0833 | 0.0000 | 0.0000 | 0.0000 |
| 1981 | 0.1242 | 0.2013 | 0.2200 | 0.1496 | 0.1164 | 0.0000 | 0.0000 | 0.0000 |
| 1982 | 0.0949 | 0.1350 | 0.1374 | 0.0969 | 0.0771 | 0.0000 | 0.0000 | 0.0000 |
| 1983 | 0.0619 | 0.0944 | 0.0950 | 0.0649 | 0.0522 | 0.0000 | 0.0000 | 0.0000 |
| 1984 | 0.0590 | 0.0896 | 0.0837 | 0.0618 | 0.0482 | 0.0000 | 0.0000 | 0.0000 |
| 1985 | 0.0527 | 0.0844 | 0.0781 | 0.0568 | 0.0446 | 0.0000 | 0.0000 | 0.0000 |
| 1986 | 0.0808 | 0.1218 | 0.1060 | 0.0802 | 0.0622 | 0.0000 | 0.0000 | 0.0000 |
| 1987 | 0.0627 | 0.1171 | 0.1026 | 0.0693 | 0.0555 | 0.0000 | 0.0000 | 0.0000 |
| 1988 | 0.1385 | 0.2245 | 0.1796 | 0.1282 | 0.0964 | 0.0000 | 0.0000 | 0.0000 |
| 1989 | 0.1191 | 0.2315 | 0.1943 | 0.1347 | 0.1043 | 0.0000 | 0.0000 | 0.0000 |
| 1990 | 0.1512 | 0.2360 | 0.2154 | 0.1415 | 0.1069 | 0.0000 | 0.0000 | 0.0000 |
| 1991 | 0.1015 | 0.1679 | 0.1323 | 0.0972 | 0.0725 | 0.0000 | 0.0000 | 0.0000 |
| 1992 | 0.1037 | 0.1431 | 0.1162 | 0.0792 | 0.0608 | 0.0000 | 0.0000 | 0.0000 |
| 1993 | 0.0775 | 0.1112 | 0.0886 | 0.0614 | 0.0455 | 0.0000 | 0.0000 | 0.0000 |
| 1994 | 0.0586 | 0.0766 | 0.0625 | 0.0415 | 0.0316 | 0.0000 | 0.0000 | 0.0000 |
| 1995 | 0.0546 | 0.0629 | 0.0489 | 0.0323 | 0.0249 | 0.0000 | 0.0000 | 0.0000 |
| 1996 | 0.0349 | 0.0418 | 0.0337 | 0.0222 | 0.0169 | 0.0000 | 0.0000 | 0.0000 |
| 1997 | 0.0371 | 0.0463 | 0.0359 | 0.0230 | 0.0178 | 0.0000 | 0.0000 | 0.0000 |
| 1998 | 0.0310 | 0.0361 | 0.0300 | 0.0191 | 0.0146 | 0.0000 | 0.0000 | 0.0000 |
| 1999 | 0.0633 | 0.0680 | 0.0649 | 0.0385 | 0.0292 | 0.0000 | 0.0000 | 0.0000 |
| 2000 | 0.0513 | 0.0685 | 0.0668 | 0.0404 | 0.0299 | 0.0000 | 0.0000 | 0.0000 |
| 2001 | 0.0479 | 0.0511 | 0.0494 | 0.0294 | 0.0225 | 0.0000 | 0.0000 | 0.0000 |
| 2002 | 0.0461 | 0.0494 | 0.0452 | 0.0281 | 0.0212 | 0.0000 | 0.0000 | 0.0000 |
| 2003 | 0.0358 | 0.0356 | 0.0325 | 0.0200 | 0.0155 | 0.0000 | 0.0000 | 0.0000 |
| 2004 | 0.0331 | 0.0358 | 0.0330 | 0.0203 | 0.0155 | 0.0000 | 0.0000 | 0.0000 |
| 2005 | 0.0331 | 0.0358 | 0.0330 | 0.0203 | 0.0155 | 0.0000 | 0.0000 | 0.0000 |
| 2006 | 0.0331 | 0.0358 | 0.0330 | 0.0203 | 0.0155 | 0.0000 | 0.0000 | 0.0000 |
| standard errors |  |  |  |  |  |  |  |  |
| 1980 | 0.2299 | 0.2066 | 0.2059 | 0.2083 | 0.2711 | 0.0000 | 0.0000 | 0.0000 |
| 1981 | 0.2217 | 0.1934 | 0.1916 | 0.1988 | 0.2602 | 0.0000 | 0.0000 | 0.0000 |
| 1982 | 0.2238 | 0.1990 | 0.1957 | 0.2014 | 0.2610 | 0.0000 | 0.0000 | 0.0000 |
| 1983 | 0.2263 | 0.2021 | 0.2008 | 0.2034 | 0.2601 | 0.0000 | 0.0000 | 0.0000 |
| 1984 | 0.2236 | 0.1998 | 0.1997 | 0.2010 | 0.2567 | 0.0000 | 0.0000 | 0.0000 |
| 1985 | 0.2241 | 0.2000 | 0.1985 | 0.2003 | 0.2545 | 0.0000 | 0.0000 | 0.0000 |
| 1986 | 0.2273 | 0.2255 | 0.2044 | 0.2061 | 0.2598 | 0.0000 | 0.0000 | 0.0000 |
| 1987 | 0.2248 | 0.1987 | 0.1981 | 0.2003 | 0.2613 | 0.0000 | 0.0000 | 0.0000 |
| 1988 | 0.2616 | 0.1874 | 0.1934 | 0.1971 | 0.2507 | 0.0000 | 0.0000 | 0.0000 |
| 1989 | 0.2194 | 0.1822 | 0.1871 | 0.1917 | 0.2438 | 0.0000 | 0.0000 | 0.0000 |
| 1990 | 0.2140 | 0.1821 | 0.1840 | 0.1904 | 0.2429 | 0.0000 | 0.0000 | 0.0000 |
| 1991 | 0.2205 | 0.1900 | 0.1927 | 0.1960 | 0.2476 | 0.0000 | 0.0000 | 0.0000 |
| 1992 | 0.2188 | 0.1915 | 0.1939 | 0.1962 | 0.2483 | 0.0000 | 0.0000 | 0.0000 |
| 1993 | 0.2209 | 0.1952 | 0.1969 | 0.1985 | 0.2510 | 0.0000 | 0.0000 | 0.0000 |
| 1994 | 0.2224 | 0.1973 | 0.1984 | 0.2001 | 0.2534 | 0.0000 | 0.0000 | 0.0000 |
| 1995 | 0.2227 | 0.1981 | 0.1992 | 0.2010 | 0.2555 | 0.0000 | 0.0000 | 0.0000 |
| 1996 | 0.2247 | 0.1997 | 0.2003 | 0.2022 | 0.2584 | 0.0000 | 0.0000 | 0.0000 |
| 1997 | 0.2248 | 0.1992 | 0.2001 | 0.2027 | 0.2609 | 0.0000 | 0.0000 | 0.0000 |
| 1998 | 0.2273 | 0.2010 | 0.2015 | 0.2069 | 0.2663 | 0.0000 | 0.0000 | 0.0000 |
| 1999 | 0.2882 | 0.2216 | 0.2221 | 0.2558 | 0.3020 | 0.0000 | 0.0000 | 0.0000 |
| 2000 | 0.2373 | 0.2138 | 0.2141 | 0.2478 | 0.2968 | 0.0000 | 0.0000 | 0.0000 |
| 2001 | 0.2323 | 0.2082 | 0.2086 | 0.2157 | 0.2811 | 0.0000 | 0.0000 | 0.0000 |
| 2002 | 0.2387 | 0.2162 | 0.2168 | 0.2209 | 0.2883 | 0.0000 | 0.0000 | 0.0000 |
| 2003 | 0.2567 | 0.2387 | 0.2394 | 0.2418 | 0.3077 | 0.0000 | 0.0000 | 0.0000 |
| 2004 | 0.5192 | 0.4936 | 0.4938 | 0.4950 | 0.5276 | 0.0000 | 0.0000 | 0.0000 |
| 2005 | 0.6716 | 0.6520 | 0.6521 | 0.6531 | 0.6781 | 0.0000 | 0.0000 | 0.0000 |
| 2006 | 0.7953 | 0.7788 | 0.7790 | 0.7797 | 0.8008 | 0.0000 | 0.0000 | 0.0000 |

Table 5.1.5.10 contd. Fishing mortality at age from final TSA run. Standard errors are on Log fishing mortality.

Total fishery
estimates

| 1980 | 0.1352 | 0.4628 | 0.8465 | 0.9578 | 1.3074 | 1.0718 | 1.3389 | 1.2909 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1981 | 0.1792 | 0.4073 | 0.7296 | 0.9813 | 1.0794 | 1.2324 | 1.2583 | 1.0280 |
| 1982 | 0.1563 | 0.3476 | 0.5387 | 0.7215 | 0.9713 | 1.0904 | 1.0366 | 0.9436 |
| 1983 | 0.2845 | 0.4372 | 0.7157 | 0.7406 | 0.9848 | 1.0608 | 1.2378 | 1.1528 |
| 1984 | 0.2247 | 0.4771 | 0.9081 | 0.9991 | 1.0796 | 1.3027 | 1.2890 | 1.1848 |
| 1985 | 0.1885 | 0.3289 | 0.6411 | 0.8527 | 1.1863 | 1.3064 | 1.3715 | 1.2679 |
| 1986 | 0.2233 | 0.5111 | 0.7917 | 1.1534 | 0.9963 | 1.2494 | 1.4093 | 1.2581 |
| 1987 | 0.1350 | 0.4769 | 0.8927 | 1.2047 | 1.4302 | 1.5556 | 1.4768 | 1.4852 |
| 1988 | 0.2212 | 0.4537 | 0.7758 | 0.9632 | 1.0752 | 1.2343 | 1.0443 | 1.0078 |
| 1989 | 0.1796 | 0.4404 | 0.7273 | 0.8980 | 1.4349 | 1.3776 | 1.2081 | 1.1947 |
| 1990 | 0.2262 | 0.4687 | 0.8103 | 0.9556 | 1.2377 | 1.1198 | 1.1032 | 1.0223 |
| 1991 | 0.1804 | 0.4574 | 0.5731 | 0.8930 | 1.0754 | 0.8911 | 1.1263 | 1.0662 |
| 1992 | 0.2039 | 0.3979 | 0.6522 | 0.6462 | 1.0031 | 1.0406 | 1.1004 | 0.9499 |
| 1993 | 0.1902 | 0.4469 | 0.7768 | 0.8436 | 0.9751 | 1.1722 | 1.2034 | 1.2034 |
| 1994 | 0.1468 | 0.3703 | 0.6868 | 0.9551 | 0.9862 | 1.2233 | 1.1986 | 1.1168 |
| 1995 | 0.1249 | 0.3309 | 0.6452 | 0.7937 | 1.0578 | 1.0576 | 1.2096 | 1.0580 |
| 1996 | 0.1073 | 0.3241 | 0.6042 | 0.7544 | 1.0205 | 1.2067 | 1.1103 | 1.0969 |
| 1997 | 0.1041 | 0.2764 | 0.5403 | 0.6812 | 0.8689 | 0.8095 | 0.9739 | 0.8907 |
| 1998 | 0.1005 | 0.2492 | 0.4505 | 0.6157 | 0.7554 | 0.8647 | 0.8781 | 0.8316 |
| 1999 | 0.1848 | 0.3333 | 0.5474 | 0.6982 | 0.8013 | 0.8443 | 0.9005 | 0.8944 |
| 2000 | 0.1048 | 0.3403 | 0.5747 | 0.6863 | 0.8862 | 1.0307 | 1.0897 | 0.9423 |
| 2001 | 0.1027 | 0.2375 | 0.4501 | 0.6575 | 0.9143 | 0.8468 | 0.8725 | 0.8346 |
| 2002 | 0.0832 | 0.2063 | 0.3874 | 0.5060 | 0.7400 | 0.7049 | 0.7442 | 0.7051 |
| 2003 | 0.1462 | 0.3073 | 0.3634 | 0.4559 | 0.5902 | 0.6000 | 0.6462 | 0.6351 |
| 2004 | 0.0865 | 0.2127 | 0.4053 | 0.5019 | 0.6734 | 0.6771 | 0.6840 | 0.6840 |
| 2005 | 0.0864 | 0.2109 | 0.3904 | 0.5073 | 0.6996 | 0.6840 | 0.6840 | 0.6840 |
| 2006 | 0.0864 | 0.2109 | 0.3904 | 0.5073 | 0.6996 | 0.6840 | 0.6840 | 0.6840 |
| standard errors |  |  |  |  |  |  |  |  |
| 1980 | 0.2743 | 0.2334 | 0.2255 | 0.2193 | 0.2772 | 0.1333 | 0.1690 | 0.1886 |
| 1981 | 0.2567 | 0.2079 | 0.1938 | 0.2128 | 0.2562 | 0.1371 | 0.1646 | 0.1962 |
| 1982 | 0.2613 | 0.2274 | 0.2037 | 0.2214 | 0.2755 | 0.1369 | 0.1704 | 0.1922 |
| 1983 | 0.2600 | 0.2296 | 0.2148 | 0.2247 | 0.2742 | 0.1292 | 0.1717 | 0.1863 |
| 1984 | 0.2554 | 0.2219 | 0.2056 | 0.2181 | 0.2660 | 0.1237 | 0.1578 | 0.1898 |
| 1985 | 0.2657 | 0.2324 | 0.2198 | 0.2198 | 0.2724 | 0.1251 | 0.1672 | 0.1941 |
| 1986 | 0.2946 | 0.2427 | 0.2155 | 0.2167 | 0.2656 | 0.1341 | 0.1562 | 0.1902 |
| 1987 | 0.2704 | 0.2184 | 0.2111 | 0.2121 | 0.2712 | 0.1142 | 0.1738 | 0.1766 |
| 1988 | 0.2864 | 0.1915 | 0.1977 | 0.2091 | 0.2546 | 0.1281 | 0.1701 | 0.1874 |
| 1989 | 0.2737 | 0.1946 | 0.1980 | 0.2074 | 0.2486 | 0.1252 | 0.1790 | 0.1921 |
| 1990 | 0.2436 | 0.1934 | 0.1803 | 0.2028 | 0.2469 | 0.1344 | 0.1660 | 0.1914 |
| 1991 | 0.2621 | 0.2073 | 0.2056 | 0.2131 | 0.2623 | 0.1356 | 0.1761 | 0.1900 |
| 1992 | 0.2546 | 0.2147 | 0.2122 | 0.2206 | 0.2661 | 0.1360 | 0.1686 | 0.1944 |
| 1993 | 0.2585 | 0.2193 | 0.2115 | 0.2191 | 0.2665 | 0.1327 | 0.1654 | 0.1895 |
| 1994 | 0.2644 | 0.2257 | 0.2195 | 0.2191 | 0.2696 | 0.1209 | 0.1755 | 0.1841 |
| 1995 | 0.2666 | 0.2297 | 0.2242 | 0.2276 | 0.2752 | 0.1416 | 0.1652 | 0.1954 |
| 1996 | 0.2705 | 0.2325 | 0.2268 | 0.2295 | 0.2791 | 0.1338 | 0.1775 | 0.1849 |
| 1997 | 0.2700 | 0.2322 | 0.2290 | 0.2316 | 0.2850 | 0.1422 | 0.1815 | 0.1880 |
| 1998 | 0.2727 | 0.2372 | 0.2343 | 0.2379 | 0.2914 | 0.1395 | 0.1767 | 0.1913 |
| 1999 | 0.3117 | 0.2476 | 0.2438 | 0.2755 | 0.3210 | 0.1421 | 0.1768 | 0.1918 |
| 2000 | 0.2840 | 0.2420 | 0.2382 | 0.2715 | 0.3185 | 0.1410 | 0.1776 | 0.1905 |
| 2001 | 0.2827 | 0.2477 | 0.2441 | 0.2503 | 0.3106 | 0.1478 | 0.1821 | 0.1910 |
| 2002 | 0.2992 | 0.2652 | 0.2613 | 0.2693 | 0.3281 | 0.1600 | 0.1910 | 0.1962 |
| 2003 | 0.3293 | 0.3040 | 0.3109 | 0.3172 | 0.3771 | 0.1912 | 0.2153 | 0.2162 |
| 2004 | 0.6727 | 0.5627 | 0.5606 | 0.5604 | 0.5904 | 0.2447 | 0.2508 | 0.2508 |
| 2005 | 0.8068 | 0.7182 | 0.7183 | 0.7194 | 0.7419 | 0.2827 | 0.2827 | 0.2827 |
| 2006 | 0.9216 | 0.8452 | 0.8453 | 0.8462 | 0.8654 | 0.3114 | 0.3114 | 0.3114 |

## Table 5.1.5.11 Stock summary from final TSA run.

| year | total catch |  |  | mean f |  | ssb |  | stock biomass |  | recruitment |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | observed | fitted | se | estimate | se | estimate | se | estimate | se | estimat | se |
| 1980 | 2.1888 | 2.2873 | 0.1672 | 0.9293 | 0.0462 | 5.0415 | 0.2567 | 7.9894 | 0.3347 | 41.2155 | 2.5496 |
| 1981 | 1.8637 | 1.9083 | 0.1381 | 0.8860 | 0.0469 | 4.5612 | 0.2063 | 6.1407 | 0.2452 | 18.8828 | 1.2379 |
| 1982 | 1.3725 | 1.3594 | 0.0913 | 0.7339 | 0.0424 | 3.5928 | 0.1420 | 4.6212 | 0.1662 | 17.2497 | 1.1061 |
| 1983 | 1.5153 | 1.5519 | 0.0860 | 0.7878 | 0.0421 | 3.1586 | 0.1086 | 4.9429 | 0.1732 | 17.8691 | 1.1296 |
| 1984 | 1.4235 | 1.4148 | 0.0745 | 0.9533 | 0.0470 | 2.5791 | 0.0928 | 4.8481 | 0.1694 | 27.6253 | 1.4398 |
| 1985 | 0.9762 | 1.0784 | 0.0657 | 0.8631 | 0.0489 | 2.7495 | 0.1105 | 4.4666 | 0.1722 | 18.9135 | 1.1744 |
| 1986 | 1.5818 | 1.5534 | 0.1232 | 0.9404 | 0.0488 | 2.8062 | 0.1182 | 6.1662 | 0.2913 | 34.8804 | 2.3764 |
| 1987 | 1.3767 | 1.3253 | 0.0795 | 1.1120 | 0.0538 | 2.8546 | 0.1113 | 5.2970 | 0.1834 | 33.7545 | 1.6309 |
| 1988 | 1.2776 | 1.2736 | 0.0920 | 0.9004 | 0.0459 | 2.9723 | 0.1253 | 3.9699 | 0.1528 | 17.7775 | 1.1177 |
| 1989 | 1.2153 | 1.2858 | 0.0874 | 0.9757 | 0.0504 | 2.6632 | 0.1027 | 5.0388 | 0.1948 | 37.0513 | 2.1243 |
| 1990 | 1.4911 | 1.2620 | 0.0995 | 0.9184 | 0.0462 | 2.7177 | 0.1402 | 4.3189 | 0.1901 | 19.7915 | 1.2197 |
| 1991 | 1.0720 | 1.1492 | 0.0783 | 0.7780 | 0.0408 | 2.6622 | 0.1049 | 4.4815 | 0.1684 | 18.9199 | 1.1136 |
| 1992 | 1.0647 | 1.0492 | 0.0692 | 0.7480 | 0.0428 | 2.5214 | 0.1007 | 3.9114 | 0.1484 | 17.7496 | 1.1142 |
| 1993 | 1.0877 | 1.0717 | 0.0659 | 0.8429 | 0.0457 | 2.2803 | 0.0954 | 3.6988 | 0.1391 | 20.7181 | 1.1754 |
| 1994 | 0.8979 | 0.9107 | 0.0585 | 0.8443 | 0.0447 | 2.1991 | 0.0941 | 3.5519 | 0.1353 | 17.8441 | 1.0193 |
| 1995 | 0.8809 | 0.8707 | 0.0572 | 0.7770 | 0.0463 | 2.2893 | 0.0936 | 3.5978 | 0.1351 | 15.8478 | 0.9503 |
| 1996 | 0.7207 | 0.7377 | 0.0513 | 0.7820 | 0.0473 | 2.0019 | 0.0868 | 2.9304 | 0.1149 | 10.3873 | 0.6659 |
| 1997 | 0.5860 | 0.5828 | 0.0426 | 0.6353 | 0.0395 | 1.6825 | 0.0736 | 2.3305 | 0.0926 | 7.3769 | 0.4913 |
| 1998 | 0.4317 | 0.4542 | 0.0306 | 0.5871 | 0.0380 | 1.3551 | 0.0561 | 2.2388 | 0.0928 | 10.4981 | 0.7168 |
| 1999 | 0.5733 | 0.5577 | 0.0373 | 0.6449 | 0.0393 | 1.3654 | 0.0596 | 2.5292 | 0.1041 | 16.3768 | 0.9586 |
| 2000 | 0.6070 | 0.6125 | 0.0437 | 0.7036 | 0.0451 | 1.7038 | 0.0828 | 3.3905 | 0.1560 | 15.9664 | 0.9611 |
| 2001 | 0.4654 | 0.5090 | 0.0377 | 0.6212 | 0.0448 | 1.8175 | 0.1025 | 2.7110 | 0.1539 | 12.6138 | 1.0244 |
| 2002 | 0.4484 | 0.4458 | 0.0321 | 0.5089 | 0.0438 | 1.6766 | 0.1185 | 2.3779 | 0.1845 | 10.9368 | 1.3081 |
| 2003 | 0.4241 | 0.4026 | 0.0287 | 0.4634 | 0.0536 | 1.3714 | 0.1328 | 1.5879 | 0.1880 | 3.8486 | 1.3737 |
| 2004 | NA | 0.3840 | 0.0628 | 0.4941 | 0.0880 | 1.1727 | 0.1945 | 1.6271 | 0.3232 | 7.7329 | 2.9458 |
| 2005 | NA | 0.3386 | 0.0699 | 0.4984 | 0.1109 | 1.0929 | 0.2587 | 1.7787 | 0.4354 | 11.4725 | 4.4034 |
| 2006 | NA | 0.3452 | 0.0871 | 0.4984 | 0.1276 | 1.2571 | 0.3471 | 1.9230 | 0.5284 | 10.8342 | 4.4284 |

Table 5.1.6.1 Whiting in IV and VIId. Landings by ICES round fish area.

| Landed weight |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IBTS Area | $2000$ | $\begin{aligned} & \hline 2000 \\ & \mathrm{O} 2 \end{aligned}$ | $\begin{aligned} & \hline 2000 \\ & \mathrm{O} 3 \end{aligned}$ | $2000$ | $2001$ | $\begin{aligned} & 2001 \\ & \mathrm{O} 2 \end{aligned}$ | $\begin{aligned} & 2001 \\ & \mathrm{O} 3 \end{aligned}$ | $\begin{aligned} & 2001 \\ & \mathrm{O} 4 \end{aligned}$ | $2002$ | $\begin{aligned} & \hline 2002 \\ & \mathrm{O} 2 \end{aligned}$ | $2002$ | $2002$ |
| 1E | 2371 | 1963 | 1699 | 2484 | 1921 | 1212 | 896 | 1205 | 1194 | 640 | 546 | 739 |
| 1W | 1933 | 868 | 845 | 779 | 1047 | 710 | 528 | 534 | 889 | 742 | 607 | 535 |
| 2 | 486 | 157 | 219 | 243 | 217 | 126 | 115 | 92 | 82 | 39 | 68 | 51 |
| 3 | 461 | 244 | 293 | 366 | 292 | 169 | 227 | 149 | 148 | 230 | 222 | 191 |
| 4 | 1809 | 25 | 58 | 158 | 1241 | 20 | 28 | 246 | 1283 | 10 | 26 | 150 |
| 5 | 1580 | 7 | 1 | 197 | 2443 | 24 | 0 | 185 | 1837 | 2 | 0 | 214 |
| 6 | 976 | 448 | 3 | 1682 | 1368 | 368 | 3 | 2364 | 926 | 331 | 3 | 2206 |
| 7 | 5 | 10 | 2 | 8 | 2 | 20 | 3 | 10 | 1 | 18 | 2 | 6 |
| 8 | 2 | 21 | 7 | 12 | 2 | 39 | 5 | 9 | 0 | 51 | 2 | 3 |
| Percentage of landed weight |  |  |  |  |  |  |  |  |  |  |  |  |
| IBTS | 2000 | 2000 | 2000 | 2000 | 2001 | 2001 | 2001 | 2001 | 2002 | 2002 | 2002 | 2002 |
| Area | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 |
| 1E | 24.6 | 52.5 | 54.3 | 41.9 | 22.5 | 45.1 | 49.7 | 25.1 | 18.8 | 31.0 | 37.0 | 18.0 |
| 1W | 20.1 | 23.2 | 27.0 | 13.1 | 12.3 | 26.4 | 29.2 | 11.1 | 14.0 | 36.0 | 41.1 | 13.1 |
| 2 | 5.0 | 4.2 | 7.0 | 4.1 | 2.5 | 4.7 | 6.4 | 1.9 | 1.3 | 1.9 | 4.6 | 1.3 |
| 3 | 4.8 | 6.5 | 9.4 | 6.2 | 3.4 | 6.3 | 12.6 | 3.1 | 2.3 | 11.1 | 15.0 | 4.7 |
| 4 | 18.8 | 0.7 | 1.9 | 2.7 | 14.5 | 0.8 | 1.5 | 5.1 | 20.2 | 0.5 | 1.8 | 3.7 |
| 5 | 16.4 | 0.2 | 0.0 | 3.3 | 28.6 | 0.9 | 0.0 | 3.9 | 28.9 | 0.1 | 0.0 | 5.2 |
| 6 | 10.1 | 12.0 | 0.1 | 28.4 | 16.0 | 13.7 | 0.1 | 49.3 | 14.6 | 16.1 | 0.2 | 53.9 |
| 7 | 0.0 | 0.3 | 0.1 | 0.1 | 0.0 | 0.7 | 0.2 | 0.2 | 0.0 | 0.9 | 0.1 | 0.1 |
| 8 | 0.0 | 0.6 | 0.2 | 0.2 | 0.0 | 1.4 | 0.3 | 0.2 | 0.0 | 2.5 | 0.1 | 0.1 |

Table 5.2.1 Nominal landings ( t ) of Whiting from Division IIIa as supplied by the Study Group on Division IIIa Demersal Stocks (ICES 1992b) and updated by the Working Group.

| Year |  | Denmark |  | Norway | Sweden | Others | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 |  | 19,018 |  | 57 | 611 | 4 | 19,690 |
| 1976 |  | 17,870 |  | 48 | 1,002 | 48 | 18,968 |
| 1977 |  | 18,116 |  | 46 | 975 | 41 | 19,178 |
| 1978 |  | 48,102 |  | 58 | 899 | 32 | 49,091 |
| 1979 |  | 16,971 |  | 63 | 1,033 | 16 | 18,083 |
| 1980 |  | 21,070 |  | 65 | 1,516 | 3 | 22,654 |
|  | Total consumption | Total industrial | Total |  |  |  |  |
| 1981 | 1,027 | 23,915 | 24,942 | 70 | 1,054 | 7 | 26,073 |
| 1982 | 1,183 | 39,758 | 40,941 | 40 | 670 | 13 | 41,664 |
| 1983 | 1,311 | 23,505 | 24,816 | 48 | 1,061 | 8 | 25,933 |
| 1984 | 1,036 | 12,102 | 13,138 | 51 | 1,168 | 60 | 14,417 |
| 1985 | 557 | 11,967 | 12,524 | 45 | 654 | 2 | 13,225 |
| 1986 | 484 | 11,979 | 12,463 | 64 | 477 | 1 | 13,005 |
| 1987 | 443 | 15,880 | 16,323 | 29 | 262 | 43 | 16,657 |
| 1988 | 391 | 10,872 | 11,263 | 42 | 435 | 24 | 11,764 |
| 1989 | 917 | 11,662 | 12,579 | 29 | 675 | - | 13,283 |
| 1990 | 1,016 | 17,829 | 18,845 | 49 | 456 | 73 | 19,423 |
| 1991 | 871 | 12,463 | 13,334 | 56 | 527 | 97 | 14,041 |
| 1992 | 555 | 10,675 | 11,230 | 66 | 959 | 1 | 12,256 |
| 1993 | 261 | 3,581 | 3,842 | 42 | 756 | 1 | 4,641 |
| 1994 | 174 | 5,391 | 5,565 | 21 | 440 | 1 | 6,027 |
| 1995 | 85 | 9,029 | 9,114 | 24 | 431 | 1 | 9,570 |
| 1996 | 55 | 2,668 | 2,723 | 21 | 182 | - | 2,926 |
| 1997 | 38 | 568 | 606 | 18 | 94 | - | 718 |
| 1998 | 35 | 847 | 882 | 16 | 81 | - | 979 |
| 1999 | 37 | 1,199 | 1,236 | 15 | 111 | - | 1,362 |
| 2000 | 59 | 386 | 445 | 17* | 138 | 1 | 622 |
| 2001 | 61 | n/a | $\mathrm{n} / \mathrm{a}$ | 27* | 126 | + | 214 |
| 2002 | 101 | n/a | $\mathrm{n} / \mathrm{a}$ | 23* | 127 | 1 | 252 |
| 2003 | 93 | n/a | n/a | 20* | 71 | 2 | 186 |

*Preliminary.

Figure 5.1.2.1 Whiting in VI and VIId. Proportion by number in total catch at age.

## Proportion of Total Catch Numbers by Age



Figure 5.1.2.2 Whiting in VI and VIId. Mean weights at age (kg).


Figure 5.1.3.1 Whiting in IV and VIId. Mean standardised indices and total catch. Ages 0 to 7 .


Age 2


Age 4


Age 6


Age 1


Age 3


Age 5


Age 7


Figure 5.1.3.2 Whiting in IV and VIId. Mean standardised indices and total catch by cohort. Ages 1 to 6 for ScoGFS, EngGFS and IBTS Q1. Ages 0 to 3 for FraGFS.






Figure 5.1.3.3 Whiting: Log CPUE by cohort, ScoGFS, IBTS Q1, EngGFS(pre 1992), EngGFS(1992 and later) and FraGFS.



Figure 5.1.3.4 Empirical Z estimates, EngGFS, ScoGFS and IBTS Q1. Thick lines are loess smooths that have been fitted through each time series. The span of the smoother was adjusted for the EngGFS so that the degree of smoothing applied was roughly equivalent between this series and the other two.


Figure 5.1.3.5 Mean standardised empirical SSB estimates, EngGFS, ScoGFS and IBTS Q1.


Figure 5.1.4.1 Whiting: catches by category.




Figure 5.1.4.2 Whiting: landings in Sub-area IV by the Scottish fleet and fleets from all other nations combined. Landings in division VIId by all fleets.


Figure 5.1.4.3 Whiting in IV and VIId. Mean standardised total catch. Ages 0 to 7.


Age 2


Age 4


Age 6


Age 1


Age 3


Age 5


Age 7


Figure 5.1.4.4 Comparison of discards as percentage of human consumption catches from English data (thick dashed lines) and international data assuming all discard rates are the same as for the Scottish fleet (thin solid line).


Figure 5.1.4.5 Landings and discards of whiting from the French Otter trawl fleet.


Figure 5.1.4.6 Landings and discards of whiting from the French Gillnet fleet.


Figure 5.1.5.1 Whiting separable VPA Residuals: all ages; years 1980-2003


Figure 5.1.5.2 Single-fleet Laurec-Shepherd. Plots of residual time series. IBTS Q1, ScoGFS, EngGFS, (pre 1992), EngGFS, (1992 and later), FraGFS.


Figure 5.1.5.3 Single-fleet Laurec-Shepherd. Scatter plots of log survey index against log estimated numbers at age. IBTS Q1.


Figure 5.1.5.4 Single-fleet Laurec-Shepherd. Scatter plots of log survey index against log estimated numbers at age. ScoGFS.


Figure 5.1.5.5 Single-fleet Laurec-Shepherd. Scatter plots of log survey index against log estimated numbers at age. EngGFS, (pre 1992)


Figure 5.1.5.6 Single-fleet Laurec-Shepherd. Scatter plots of log survey index against log estimated numbers at age. EngGFS, (1992 and later)


Figure 5.1.5.7 Single-fleet Laurec-Shepherd. Scatter plots of log survey index against log estimated numbers at age. FraGFS


Figure 5.1.5.8 XSA runs comparing the effect of different shrinkage and plus group choices and single fleet runs. For runs where choice of the plus group is at age 6 , mean $F$ is required to be calculated over ages 2-4 rather than 2-6, which is used in TSA. This results in much lower historical mean Fs.




Figure 5.1.5.9 XSA Log catchability residuals.




Figure 5.1.5.10 XSA retrospectives for run 3.


Figure 5.1.5.11 Whiting in IV and VIId. Comparison of TSA model with separable human consumption and industrial bycatch. Grey and black lines represent a run including no surveys and a run including EngGFS, ScoGFS and IBTS Q1 survey tuning fleets respectively. $95 \%$ confidence intervals are included as dashed lines for the three survey run. The vertical dotted lines indicate the last year of catch data, all subsequent estimates are TSA forecasts. Circles on the first graph indicate total reported catches (human consumption, discards and industrial bycatch).


Figure 5.1.5.12 Whiting in IV and VIId. TSA run with separate industrial bycatch. Retrospective analyses for 10 years, for mean $\mathrm{F}(2-6)$, SSB and recruitment at age 1 .




Figure 5.1.5.13 Comparison of SSB time series estimated from catch at age model runs and empirical survey SSB, mean standardised over 1992-2003.


Figure 5.1.6.1 Locations and numbers caught by IBTS Q1 survey


Figure 5.1.6.2 Locations and numbers caught by IBTS Q3 survey


Figure 5.1.6.3 Whiting: IBTS index by ICES round fish area. Age 1


Figure 5.1.6.4 Whiting: estimate of approximate empirical SSB by ICES round fish area. This has been derived by summing (in each ICES round fish area) IBTS index numbers at age 2 and above multiplied by mean total catch weight at age. The weights at age are those derived for Sub-area IV and Division VIId as a whole.


Figure 5.1.6.5 International landings of whiting by ICES rectangle in 2002. Darker rectangles are those with the highest landings. They contribute $70 \%$ of total landings.


Figure 5.1.6.6 U.K., Netherlands and Denmark landings of whiting by ICES roundfish area.


Figure 5.1.11.1 Whiting: graphs of fishers' perceptions of abundance for ICES roundfish areas in the North Sea.
Fishers survey, whiting


The assessment of saithe in Sub-Areas IV and VI and Division IIIa is presented here as an update assessment. All the relevant biological and methodological information can be found in the relevant Stock Annex. Here, only the basic input and output from the assessment model will be presented.

### 6.1 The Fishery

A general description of the fishery is given in the Stock Annex.

### 6.1.1 ICES advice applicable to 2003 and 2004

For 2003 ICES considered the stock to be inside safe biological limits and advised that fishing mortality in 2003 should be below $F_{\mathrm{pa}}$, corresponding to landings less than 193000 t .

For 2004 ICES classified the stock as being within safe biological limits. In a single species context, ICES recommended a fishing mortality below $F_{\mathrm{pa}}$ corresponding to landings less than $232000 \mathrm{t}(211000 \mathrm{t}$ in IV and IIIa and 20900 t in VI). However, the ICES advice for the stock was presented in the context of mixed fisheries.

### 6.1.2 Management applicable in 2003 and 2004

Management of saithe is by TAC and technical measures. The fishery is not regulated by days at sea for vessels that have less bycatch than 5\% of each cod, plaice and sole. The agreed TAC for saithe in Sub-Area IV and Division IIIa for 2003 was 165000 t. In Division Vb and Sub-Areas VI, XII, and XIV the TAC for 2003 was 17000 t. For 2004 the TACs were 190000 t and 20000 t , respectively. Current technical measures are described in Section 2.1.1.

### 6.1.3 The fishery in 2003

In 2003 the landings were estimated to be 102000 t in Sub-area IV and Division IIIa, and 5000 t in Sub-Area VI, which is well below the TAC. One of the reasons that the TAC was not taken may have been the very low price for saithe in 2003. Discards are thought to be substantial in the UK fishery which does not target saithe. Sampling levels for saithe in the Scottish discard programme are given in Table 1.3.2, but as Scottish discarding rates are not representative of the majority of the saithe fishery these have not been used in the assessment.

### 6.2 Data available

### 6.2.1 Landings

Landings data by country and TACs are presented in Table 6.2.1.

### 6.2.2 Age compositions

Age compositions of the landings are presented in Table 6.2.2.

### 6.2.3 Weight at age

Weight at age in the catch is presented in Table 6.2.3. These are also used as stock weights.

### 6.2.4 Maturity and natural mortality

Maturity and natural mortality are set to fixed values and are described in the Stock Annex.

### 6.2.5 Catch, effort and research vessel data

Fleet data used for calibration of the assessment and other available tuning series are presented in Table 6.2.4 and Figure 6.2.1. Commercial fleets and surveys used in the assessment are described in the Stock Annex.

### 6.3 Catch-at-age analysis

Catch-at-age analysis was carried out according to the specifications in the stock annex. Results of the analysis are presented in Table 6.3 .1 (diagnostics), Table 6.3 .2 (fishing mortality at age), Table 6.3 .3 (population numbers at age), and Table 6.3 .4 (stock summary). The stock summary is also shown in Figure 6.3.1 and the historical performance of the assessment is shown in Figure 6.3.2.

### 6.4 Recruitment estimates

The calculation of recruitment estimates is described in the stock annex. Year class strength estimates used for short term prognosis are summarized in the text table below.

| Year class | Age in 2004 | XSA | GM(85-01) |
| :--- | :---: | :--- | :--- |
| 2000 | 4 | $\mathbf{1 0 2 ~ 8 7 5}$ |  |
| 2001 | 3 | 123756 | $\mathbf{1 2 9 2 4 0}^{*}$ |
| 2002 | 2 | 123258 | $\mathbf{1 6 2 ~ 0 9 3}^{*}$ |
| 2003 | 1 |  | $\mathbf{1 9 8 ~ 0 0 0}$ |
| 2004 | 1 |  | $\mathbf{1 9 8 ~ 0 0 0}$ |

*This number is not the GM of ages 2 and 3 , but a function of GM of age 1 (see Stock Annex).

### 6.5 Short term prognosis

The short term prognosis was carried out according to the specifications in the Stock Annex. The input is presented in Table 6.5.1. Results are presented in Tables 6.5.2 and 6.5.3, and Figures 6.5.1 and 6.5.2. The short term prognosis is made using the $\mathbf{F}_{\mathrm{sq}}$ assumption for the intermediate year. A $\mathbf{F}_{\mathrm{sq}}$ catch for 2004 corresponds to 114000 t which is well below the agreed TAC ( 210000 t ). The reported catch in 2003 was also much lower than the TAC, and the reported effort was considerably lower than in 2002. Information from fishermen from several countries indicates that the current low price of saithe is an important contributing factor in these reductions. Norwegian fishermen have also stated that part of the reduction was due to the 120 mm mesh size regulation. Norwegian trawlers are now allowed to use 110 mm mesh size in the EU zone (from August 2004). Whether this will be an incentive to increase Norwegian fishing effort in the second half of 2004 is not yet known. It is therefore difficult to make assumptions about the catches in the intermediate year.

### 6.6 Comments

There is no conflict between the assessment results and the fishermen's perception of the stock (Figure 6.6.1).
The present assessment estimates increases in $F_{3-6}$ for the years 2001 and 2002 of about $11 \%$ and $33 \%$, respectively, and reductions in SSB for 2001 and 2002 of about $8 \%$ and $16 \%$, respectively. This indicates overestimation of SSB and underestimation of $F$ in the assessment year. The observed strong retrospective pattern in recruitment at age 1 is a result of the ages covered by the available data. Saithe do not recruit fully to the fishery before age 4, and as there are (as yet) no fishery-independent indices, stock estimates for ages 1-3 are inevitably very uncertain and subject to considerable annual revisions.

The estimated numbers at age 1,3 and 4 in 2002 are much lower in this year's assessment relative to last year's assessment. Consequently, the total stock biomass in 2002 is significantly adjusted downward ( $29 \%$ lower in this year's assessment relative to the 2003 assessment). At the benchmark assessment, the WG should consider to run the assessment with age 3 as recruits and the reference points should be re-evaluated.

A survey along the Norwegian coast targeting saithe larvae (0-group) started in 1999. The time series from this survey is currently too short to evaluate its potential as a year class strength predictor. However, this could possibly be done in the forthcoming benchmark assessment.

Variations in EU and Norwegian mesh size regulations in the saithe fishery in 2001-2003 may have contributed to changes in the exploitation pattern. In January 2002 the minimum mesh size (in bottom trawls for human consumption) was changed from 100 to 110 mm in EU waters and from 100 to 120 mm in Norwegian waters (the minimum mesh size for Norwegian vessels was set to 120 mm both in Norwegian and EU waters). This regulation was not strictly enforced in the first half of 2002 to allow a transition period. The selection pattern ( $F$ at age) does not seem to have changed much during 2001-2003, but mesh size regulations may have affected catch rates and the spatial distribution of trawl fleets. For example, the spatial distribution of German landings changed from 2002 to 2003 (WP7). In addition, commercial catch rates dropped significantly from 2002 to 2003. The trawl fishery is directed towards large mature fish in the first quarter of the year (spawning aggregations), while immature fish dominate in the catches the rest of the year. Increasing mesh sizes between years might therefore be a contributing factor to lower catch rates in the last three quarter of the year when the fishery is directed towards small fish.

Discarding of saithe may be considerable in the fleets not targeting saithe and this is possibly a source of bias in the assessment.

Potential issues to be addressed at the forthcoming benchmark assessment (scheduled for 2005) include:

- Run the assessment with age 3 as recruits;
- Evaluate available tuning series (individual retrospective analysis, log catchability residuals etc.);
- Evaluate the performance of the IBTS survey series used for tuning;
- Improve the Norwegian trawl CPUE tuning series;
- Consider the re-estimation of reference points;
- Evaluate the Norwegian 0-group survey as an index of recruitment;

Table 6.2.1. Nominal catch (in tonnes) of Saithe in Subarea IV and Division IIIa and Subarea VI, 1997-2003, as officially reported to ICES.
SAITHE IV and IIIa

| Country | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 254 | 249 | 200 | 122 | 24 | 107 | $44^{*}$ |
| Denmark | 4513 | 3967 | 4494 | 3529 | 3575 | 5668 | 6954 |
| Faroe Islands | 158 | 1298 | 1101 |  |  |  |  |
| France | 10932 | $11786^{*}$ | $24305^{1^{*}}$ | 19200 | 20472 | 25441 | 18001 |
| Germany | 12581 | 10117 | 10481 | 9273 | 9479 | 10999 | 8956 |
| Greenland | - | - | - | $602^{*}$ | $1526^{2^{*}}$ | $-{ }^{*}$ |  |
| Ireland | - | - | - | 1 | - | - |  |
| Netherlands | 40 | 7 | 7 | 11 | 20 | 6 | $11^{*}$ |
| Norway | 46424 | 50254 | 56150 | 43665 | $43725^{*}$ | $58983^{*}$ | $61690^{*}$ |
| Poland | 822 | 813 | 862 | 747 | 727 | 752 | $734^{*}$ |
| Russia | - | - | - | 67 | - | - | - |
| Sweden | 1647 | 1857 | 1929 | 1468 | 1627 | 1863 | 1876 |
| UK (E/W/NI) | 2556 | 2293 | 2874 | 1227 | 1186 | 2521 | 1215 |
| UK (Scotland) | 6329 | 5353 | 5420 | 5484 | 5219 | 6596 | 5829 |
| Total reported | 86256 | 87994 | 107823 | 85395 | 87580 | 112936 | 105310 |
| Unallocated | 17066 | 12269 | -510 | 2281 | 2093 | 3852 | -3771 |
| W. G. Estimate | 103322 | 100263 | 107314 | 87676 | 89673 | 116788 | 101539 |
| TAC | 115000 | 97000 | 110000 | 85000 | 87000 | 135000 | 165000 |
| TPr |  |  |  |  |  |  |  |

${ }^{\text {TP }}$ Preliminary. ${ }^{1}$ Reported by TAC area, IIa(EC),IIIa-d(EC) and IV. ${ }^{2}$ Preliminary data reported in Division IVa.

SAITHE VI

| Country | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | - | - | - | - | - | - | $-^{*}$ |
| Denmark | - | - | - | - | - | - | - |
| Faroe Islands | 1 |  | 2 |  |  |  |  |
| France | 4662 | $3635^{*}$ | $3467^{1^{*}}$ | 3310 | 5157 | 3062 | 3499 |
| Germany | 492 | 506 | 250 | 305 | 466 | 467 | 54 |
| Ireland | 411 | 216 | 320 | 410 | 399 | 91 |  |
| Norway | 26 | 41 | 126 | 58 | $92^{*}$ | $136^{*}$ | $22^{*}$ |
| Portugal | 1 | - | - | - | - | - | - |
| Russia | - | - | 3 | 25 | 1 | 1 | 6 |
| Spain | 13 | 54 | 23 | 3 | 15 | 4 |  |
| UK (E/W/NI) | 294 | 526 | 503 | 276 | 273 | 307 | 263 |
| UK (Scotland) | 2659 | 2402 | 2084 | 2463 | 2246 | 1567 | 1189 |
| Total reported | 8559 | 7380 | 6778 | 6850 | 8649 | 5635 | 5033 |
| Unallocated | 859 | 1056 | 564 | -960 | -1831 | -449 | 217 |
| W. G. Estimate | 9418 | 8436 | 7342 | 5890 | 6818 | 5186 | 5250 |
| TAC | 12000 | 10900 | 7500 | 7000 | 9000 | 14000 | 17119 |

${ }^{*}$ Preliminary. ${ }^{1}$ Reported by TAC area, Vb(EC),VI, XII and XIV.

SAITHE IV, IIIa and VI

|  | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| WG estimate | 112740 | 108699 | 114655 | 93566 | 96491 | 121974 | 106789 |

Table 6.2.2. Saithe in Sub-Areas IV and VI and Division IIIa. Catch numbers at age.

| Catch numbers at age |  |  | Numbers*10**-3 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 1 | 0 | 174 | 36 | 234 | 594 | 430 | 4708 |  |  |  |
| 2 | 8879 | 3832 | 2099 | 2261 | 11156 | 23833 | 37832 |  |  |  |
| 3 | 17330 | 23223 | 30235 | 37249 | 69809 | 48075 | 54332 |  |  |  |
| 4 | 16220 | 21231 | 17681 | 76661 | 57792 | 66095 | 37698 |  |  |  |
| 5 | 15531 | 13184 | 11057 | 15000 | 32737 | 25317 | 26849 |  |  |  |
| 6 | 2303 | 6023 | 7609 | 12128 | 4736 | 21207 | 16061 |  |  |  |
| 7 | 1594 | 429 | 5738 | 3894 | 4248 | 3672 | 8428 |  |  |  |
| 8 | 292 | 242 | 791 | 1792 | 2843 | 2944 | 2000 |  |  |  |
| 9 | 198 | 123 | 626 | 318 | 1874 | 1641 | 1357 |  |  |  |
| +gp | 183 | 145 | 150 | 267 | 774 | 1607 | 2381 |  |  |  |
| YEAR | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 1 | 4753 | 335 | 270 | 2172 | 1253 | 916 | 1321 | 5457 | 1970 | 312 |
| 2 | 19206 | 74231 | 34111 | 14125 | 20551 | 17756 | 24100 | 20644 | 29570 | 36824 |
| 3 | 66938 | 56987 | 207823 | 27461 | 35059 | 16332 | 17494 | 26178 | 31895 | 28242 |
| 4 | 33740 | 25864 | 53060 | 54967 | 27269 | 14216 | 12341 | 8339 | 40587 | 20604 |
| 5 | 14123 | 10319 | 11696 | 14755 | 18062 | 11182 | 9015 | 6739 | 9174 | 26013 |
| 6 | 20688 | 7566 | 6253 | 5490 | 3312 | 8699 | 6718 | 3675 | 5978 | 5678 |
| 7 | 14666 | 13657 | 3976 | 3777 | 1138 | 2805 | 5658 | 3335 | 2145 | 4893 |
| 8 | 5199 | 9357 | 5362 | 3447 | 1033 | 733 | 1150 | 3396 | 1454 | 1494 |
| 9 | 1477 | 3501 | 3586 | 3812 | 768 | 540 | 509 | 657 | 982 | 1036 |
| +gp | 1955 | 2687 | 3490 | 4701 | 3484 | 2089 | 2302 | 2536 | 1254 | 1327 |
| YEAR | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 1 | 206 | 231 | 322 | 787 | 32 | 3664 | 355 | 492 | 319 | 160 |
| 2 | 37387 | 9415 | 7227 | 31017 | 8762 | 9871 | 5764 | 13091 | 6679 | 10118 |
| 3 | 80933 | 134024 | 55435 | 31220 | 32578 | 22128 | 40808 | 46117 | 18404 | 37823 |
| 4 | 32172 | 55605 | 91223 | 97470 | 26408 | 30752 | 19583 | 29871 | 33614 | 20828 |
| 5 | 12957 | 13281 | 15186 | 13990 | 35323 | 13187 | 11322 | 7467 | 12753 | 11845 |
| 6 | 13011 | 4765 | 5381 | 3158 | 3828 | 10951 | 4714 | 3583 | 3193 | 3125 |
| 7 | 1657 | 3005 | 2603 | 1811 | 1908 | 1557 | 2776 | 1716 | 1524 | 1568 |
| 8 | 1252 | 682 | 1456 | 1240 | 1104 | 739 | 745 | 953 | 696 | 1511 |
| 9 | 335 | 399 | 445 | 910 | 776 | 419 | 281 | 367 | 518 | 814 |
| +gp | 646 | 742 | 900 | 700 | 680 | 488 | 364 | 458 | 422 | 1026 |
| YEAR | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 1 | 106 | 157 | 354 | 27 | 218 | 64 | 145 | 4 | 913 | 9 |
| 2 | 8033 | 4338 | 8963 | 12396 | 3706 | 6634 | 2692 | 1846 | 6878 | 2912 |
| 3 | 19958 | 26664 | 11066 | 15036 | 10363 | 9429 | 7064 | 17355 | 20066 | 11648 |
| 4 | 40194 | 26034 | 38861 | 19299 | 31017 | 13872 | 17295 | 18565 | 42915 | 20162 |
| 5 | 13034 | 14797 | 11786 | 30177 | 16367 | 26684 | 8940 | 23497 | 9003 | 25724 |
| 6 | 4297 | 3774 | 7731 | 3676 | 16077 | 8389 | 12339 | 3622 | 9001 | 6268 |
| 7 | 947 | 3494 | 3163 | 2640 | 2231 | 10070 | 3159 | 3518 | 2441 | 7059 |
| 8 | 346 | 674 | 808 | 1012 | 1206 | 2346 | 3226 | 1417 | 2936 | 1511 |
| 9 | 427 | 552 | 210 | 291 | 567 | 891 | 641 | 1121 | 1828 | 1979 |
| +gp | 794 | 800 | 491 | 288 | 277 | 657 | 441 | 218 | 1588 | 1039 |

Table 6.2.3. Saithe in Sub-Areas IV and VI and Division IIIa. Catch weights at age (kg)

| YEAR | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 1 | . 0000 | . 5006 | . 4510 | . 4340 | - . 4950 | . 3281 | . 1637 |  |  |  |
| 2 | . 6970 | . 7700 | . 6086 | . 6955 | . 6101 | . 5488 | . 4317 |  |  |  |
| 3 | . 9305 | 1.2784 | . 9663 | . 9414 | 4.8399 | . 8082 | . 8212 |  |  |  |
| 4 | 1.3620 | 1.6521 | 1.5568 | 1.4408 | 1.3480 | 1.1958 | 1.4061 |  |  |  |
| 5 | 2.1035 | 1.9886 | 2.2614 | 2.0587 | 72.1775 | 1.9610 | 1.6410 |  |  |  |
| 6 | 3.1858 | 3.0093 | 2.7133 | 2.7180 | 2.9360 | 2.3687 | 2.5709 |  |  |  |
| 7 | 3.7541 | 4.0404 | 3.5588 | 3.5995 | 5 3.7657 | 3.7941 | 3.3571 |  |  |  |
| 8 | 5.3162 | 4.4278 | 4.4063 | 4.4632 | 4.6339 | 4.2276 | 4.6844 |  |  |  |
| 9 | 5.8905 | 6.1355 | 5.2203 | 5.6871 | 15.1725 | 4.6304 | 4.8138 |  |  |  |
| +gp | 7.7190 | 7.4055 | 6.7675 | 6.8452 | 6.1630 | 6.3263 | 6.4449 |  |  |  |
| YEAR | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 1 | . 2750 | . 2160 | . 4588 | . 4257 | 7.3548 | . 4348 | . 2586 | . 2774 | . 2525 | . 4126 |
| 2 | . 5093 | . 5021 | . 5156 | . 4301 | 1. 5165 | . 4060 | . 4210 | . 5958 | . 5077 | . 4780 |
| 3 | . 8608 | . 8928 | . 7024 | . 7598 | - . 8215 | 1.1072 | . 9546 | . 9608 | 1.0857 | 1.0276 |
| 4 | 1.5606 | 1.4977 | 1.3092 | 1.2560 | 1.3267 | 1.6228 | 1.8212 | 1.8211 | 1.5746 | 1.7178 |
| 5 | 2.3834 | 2.4904 | 2.2604 | 1.9348 | 2.1545 | 2.2381 | 2.3911 | 2.7175 | 2.5293 | 2.1493 |
| 6 | 2.7527 | 3.3002 | 3.0706 | 3.1107 | 7 3.3401 | 3.0950 | 3.0300 | 3.5868 | 3.2202 | 3.1377 |
| 7 | 3.4286 | 3.7647 | 4.0347 | 4.1618 | 8.5221 | 4.0504 | 4.0895 | 4.5360 | 4.2069 | 3.6906 |
| 8 | 4.4977 | 4.2957 | 4.3833 | 4.6045 | 4.9005 | 5.2742 | 5.1262 | 5.4776 | 5.1251 | 4.6317 |
| 9 | 5.7128 | 5.5396 | 5.1117 | 4.8589 | 5.4494 | 6.3077 | 5.9393 | 6.9804 | 5.9049 | 5.5053 |
| +gp | 7.8570 | 07.56 | 6207. | 14706 | 6.5419 | 7.4000 | 7.9551 | 8.1476 | 8.7237 | 8.8232 |
| 8.4529 |  |  |  |  |  |  |  |  |  |  |
| YEAR | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 1 | . 3886 | . 1487 | . 6295 | . 3711 | 1.5165 | . 4264 | . 2717 | . 4794 | . 6189 | . 3585 |
| 2 | . 5009 | . 5550 | . 5479 | . 4181 | . 6379 | . 7263 | . 7025 | . 5571 | . 6299 | . 7437 |
| 3 | . 7948 | . 6632 | . 6943 | . 6739 | - 7787 | . 8954 | . 8441 | . 7913 | . 9641 | . 8994 |
| 4 | 1.6139 | 1.2654 | 1.0353 | . 8763 | 3.9810 | 1.0362 | 1.1958 | 1.1579 | 1.1893 | 1.2603 |
| 5 | 2.2966 | 1.9505 | 1.7944 | 1.8236 | 1.3859 | 1.4196 | 1.5828 | 1.7523 | 1.6066 | 1.7544 |
| 6 | 2.6899 | 2.7715 | 2.4316 | 3.0747 | 72.7907 | 1.9984 | 2.2472 | 2.3646 | 2.2417 | 2.6363 |
| 7 | 3.8959 | 3.4067 | 3.5717 | 4.2098 | 4.0238 | 3.9139 | 3.2419 | 3.1653 | 3.6677 | 3.1851 |
| 8 | 4.6647 | 4.9499 | 4.2094 | 5.3300 | - 5.2544 | 5.0175 | 4.8583 | 4.2221 | 4.3296 | 3.9798 |
| 9 | 6.1830 | 5.8649 | 5.6506 | 6.1284 | 6.3221 | 6.4298 | 6.3149 | 6.0661 | 5.4125 | 5.0802 |
| +gp | 8.4735 | 8.8543 | 8.2184 | 8.6026 | 6 8.6489 | 8.4308 | 8.4162 | 8.1914 | 7.0455 | 6.8909 |
| YEAR | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 1 | . 2866 | . 5024 | . 2797 | . 4324 | 4.6027 | . 5195 | . 5634 | . 5085 | . 7152 | . 4518 |
| 2 | . 6975 | . 7593 | . 5103 | . 4357 | 7.6594 | . 5887 | . 8033 | . 7299 | . 7765 | . 4589 |
| 3 | . 9439 | 1.0022 | . 9668 | . 9047 | 7.8917 | . 8808 | 1.0274 | . 7961 | . 8031 | . 7173 |
| 4 | 1.1188 | 1.2937 | 1.1873 | 1.1448 | - . 9660 | 1.0605 | 1.1266 | 1.0709 | . 8578 | . 9527 |
| 5 | 1.6010 | 1.8159 | 1.8068 | 1.4522 | 1.3925 | 1.2112 | 1.5389 | 1.3025 | 1.3234 | 1.0825 |
| 6 | 2.4337 | 2.5619 | 2.3678 | 2.5867 | 1.7440 | 1.7537 | 1.6843 | 2.0573 | 1.7556 | 1.6674 |
| 7 | 3.6175 | 3.5549 | 2.9518 | 3.5556 | 6 2.9486 | 2.3374 | 2.5936 | 2.5693 | 2.2819 | 2.2583 |
| 8 | 4.7869 | 4.7670 | 4.7053 | 4.5251 | 13.8829 | 3.4934 | 3.0842 | 3.5225 | 3.1237 | 3.3577 |
| 9 | 6.5479 | 5.2674 | 6.0922 | 6.1575 | 54.9955 | 4.8438 | 4.7733 | 4.1728 | 3.9395 | 3.7758 |
| +gp | 8.3256 | 7.8907 | 8.3821 | 8.8663 | 7.2273 | 6.7452 | 7.4615 | 6.1926 | 3.7783 | 4.3222 |

Table 6.2.4. Saithe in Sub-Areas IV and VI and Division IIIa. Combined tuning data available to the WG. The data which were used in the assessment are in bold.
108

| FRATRB_IV |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 | 2003 |  |  |  |  |  |  |  |  |
| 1 | 10 | 1 |  |  |  |  |  |  |  |
| 2 | 10 |  |  |  |  |  |  |  |  |
| 69739 | 248.000 | 1853.000 | 3183.000 | 5447.000 | 762.000 | 190.000 | 154.000 | 122.000 | 163.000 |
| 89974 | 230.000 | 4525.000 | 3618.000 | 4128.000 | 2809.000 | 329.000 | 87.000 | 51.000 | 84.000 |
| 63577 | 528.000 | 3149.000 | 4450.000 | 2322.000 | 1412.000 | 746.000 | 104.000 | 45.000 | 29.000 |
| 76517 | 4538.000 | 9067.000 | 2893.000 | 2423.000 | 939.000 | 456.000 | 258.000 | 36.000 | 48.000 |
| 78523 | 1285.000 | 6001.000 | 10009.000 | 2630.000 | 1328.000 | 543.000 | 164.000 | 98.000 | 21.000 |
| 69720 | 799.000 | 3487.000 | 5770.000 | 8617.000 | 1183.000 | 270.000 | 86.000 | 37.000 | 29.000 |
| 76149 | 1311.000 | 5482.000 | 8632.000 | 5121.000 | 3837.000 | 232.000 | 155.000 | 33.000 | 49.000 |
| 25915 | 836.335 | 5281.644 | 4310.798 | 1509.202 | 448.289 | 267.927 | 24.519 | 28.316 | 21.824 |
| 28611 | 729.658 | 4055.637 | 7070.781 | 1775.235 | 588.972 | 158.056 | 88.067 | 15.597 | 8.863 |
| 28692 | 935.823 | 1309.565 | 7304.318 | 2025.032 | 244.229 | 96.101 | 35.404 | 16.628 | 4.304 |
| 25208 | 540.473 | 1839.994 | 1960.061 | 5873.634 | 481.893 | 84.136 | 21.385 | 11.816 | 10.409 |
| 25184 | 802.910 | 2628.746 | 3697.394 | 1719.062 | 1877.664 | 100.777 | 22.815 | 8.139 | 5.692 |
| 21758 | 489.433 | 3379.574 | 2471.553 | 1405.54 | 304.063 | 290.298 | 32.728 | 14.813 | 6.182 |
| 15248 | 292.123 | 1381.383 | 2538.766 | 731.379 | 372.239 | 130.79 | 67.670 | 11.930 | 5.811 |
| 7902 | 351.996 | 717.161 | 1480.817 | 498.716 | 73.572 | 24.402 | 7.133 | 5.741 | 1.447 |
| 13527 | 1025.751 | 3917.800 | 2253.440 | 1162.230 | 103.625 | 8.299 | 8.648 | 6.183 | 9.637 |
| 14417 | 434.898 | 1770.754 | 3652.840 | 1381.104 | 434.086 | 38.895 | 5.317 | 2.710 | 3.839 |
| 14632 | 192.925 | 3151.807 | 1682.869 | 921.653 | 225.695 | 70.393 | 24.088 | 13.317 | 13.919 |
| 16241 | 195.815 | 895.031 | 4286.247 | 1053.226 | 535.95 | 107.63 | 24.634 | 15.158 | 7.895 |
| 12903 | 148.823 | 1087.280 | 1914.745 | 3175.192 | 190.091 | 83.908 | 16.535 | 13.738 | 6.274 |
| 13559 | 147.772 | 799.753 | 2538.413 | 1870.453 | 1480.902 | 52.256 | 23.023 | 10.381 | 12.464 |
| 14588 | 187.322 | 852.467 | 1233.817 | 2666.699 | 620.174 | 399.661 | 24.212 | 13.688 | 10.661 |
| 8695 | 183.807 | 889.314 | 1993.229 | 1038.898 | 1195.148 | 214.774 | 180.514 | 31.751 | 11.726 |
| 6366 | 97.087 | 724.102 | 1339.454 | 2372.881 | 269.951 | 144.906 | 25.554 | 29.280 | 6.760 |
| 11022 | 192.801 | 3275.662 | 7576.645 | 1220.435 | 1242.118 | 175.302 | 151.434 | 40.935 | 36.378 |
| 10536 | 333.738 | 1516.931 | 3235.528 | 2354.784 | 264.339 | 325.113 | 80.521 | 112.883 | 39.509 |
| NORTRL_IV |  |  |  |  |  |  |  |  |  |
| 1980 | 2003 |  |  |  |  |  |  |  |  |
| 1 | 10 | 1 |  |  |  |  |  |  |  |
| 3 | 10 |  |  |  |  |  |  |  |  |
| 18317 | 186.000 | 1290.000 | 658.000 | 980.000 | 797.000 | 261.000 | 60.000 | 82.000 |  |
| 28229 | 88.000 | 844.000 | 1345.000 | 492.000 | 670.000 | 699.000 | 119.000 | 64.000 |  |
| 47412 | 6624.000 | 12016.000 | 2737.000 | 2112.000 | 341.000 | 234.000 | 19.000 | 77.000 |  |
| 43099 | 4401.000 | 4963.000 | 8176.000 | 1950.000 | 2367.000 | 481.000 | 357.000 | 84.000 |  |
| 47803 | 20576.000 | 7328.000 | 2207.000 | 3358.000 | 433.000 | 444.000 | 106.000 | 51.000 |  |
| 66607 | 27088.000 | 21401.000 | 5307.000 | 1569.000 | 637.000 | 56.000 | 46.000 | 4.000 |  |
| 57468 | 5297.000 | 29612.000 | 3589.000 | 818.000 | 393.000 | 122.000 | 25.000 | 33.000 |  |
| 30008 | 2645.000 | 18454.000 | 2217.000 | 290.000 | 235.000 | 201.000 | 198.000 | 64.000 |  |
| 18402 | 3132.000 | 2042.000 | 2214.000 | 141.000 | 157.000 | 74.000 | 134.000 | 43.000 |  |
| 17781 | 649.000 | 2126.000 | 835.000 | 694.000 | 309.000 | 154.000 | 65.000 | 7.000 |  |
| 10249 | 804.000 | 781.000 | 924.000 | 519.000 | 203.000 | 63.000 | 12.000 | 3.000 |  |
| 28768 | 14348.000 | 4968.000 | 1194.000 | 518.000 | 203.000 | 51.000 | 56.000 | 1.000 |  |
| 35621 | 3447.000 | 9532.000 | 4031.000 | 1087.000 | 465.000 | 165.000 | 109.000 | 6.000 |  |
| 24572 | 7635.000 | 4028.000 | 2878.000 | 1018.000 | 526.000 | 365.000 | 252.000 | 252.000 |  |
| 30628 | 3939.000 | 16098.000 | 4276.000 | 926.000 | 251.000 | 72.000 | 203.000 | 21.000 |  |
| 32489 | 4347.000 | 9366.000 | 5412.000 | 833.000 | 1644.000 | 273.000 | 203.000 | 104.000 |  |
| 40400 | 3790.000 | 14429.000 | 4414.000 | 2765.000 | 1144.000 | 189.000 | 16.000 | 13.000 |  |
| 36026 | 2894.000 | 5266.000 | 9837.000 | 1419.000 | 892.000 | 299.000 | 72.000 | 28.000 |  |
| 24510 | 1376.000 | 8279.000 | 5454.000 | 5662.000 | 977.000 | 489.000 | 243.000 | 55.000 |  |
| 20570 | 783.000 | 2527.000 | 6741.000 | 2333.000 | 3573.000 | 1162.000 | 342.000 | 187.000 |  |
| 15520 | 284.189 | 1628.393 | 2054.227 | 4260.877 | 1065.562 | 1203.276 | 221.166 | 86.654 |  |
| 20593 | 4553.766 | 4982.461 | 6332.307 | 922.334 | 1224.328 | 505.707 | 388.118 | 43.571 |  |
| 29278 | 3173.164 | 9666.659 | 2807.922 | 3060.900 | 779.758 | 1298.303 | 838.771 | 837.599 |  |
| 40324 | 1526.250 | 5194.127 | 10190.330 | 3583.292 | 4417.696 | 790.552 | 1003.411 | 569.831 |  |
| GER_OTB_IV |  |  |  |  |  |  |  |  |  |
| 1995 | 2003 |  |  |  |  |  |  |  |  |
| 1 | 10 | 1 |  |  |  |  |  |  |  |
| 2 | 10 |  |  |  |  |  |  |  |  |
| 21167 | 361158 | 23591350 | 589152 | 3016 | 11 |  |  |  |  |
| 19064 | $27 \quad 510$ | 31671081 | 517257 | 14841 | 33 |  |  |  |  |
| 21707 | 0816 | 24753636 | 292163 | 7024 | 9 |  |  |  |  |
| 20153 | $46 \quad 591$ | 27441395 | 1776238 | 10039 | 20 |  |  |  |  |
| 18596 | $42 \quad 284$ | 10652264 | 9431015 | $77 \quad 36$ | 23 |  |  |  |  |
| 12223 | $10 \quad 542$ | 2185823 | 1216242 | 32538 | 15 |  |  |  |  |
| 11008 | 62892 | 13292317 | 372532 | 249155 | 22 |  |  |  |  |
| 12789 | 18650 | 36581230 | 110099 | 14069 | 52 |  |  |  |  |
| 14560 | 14500 | 13992630 | 438392 | 5872 | 41 |  |  |  |  |

Table 6.2.4. cont. Saithe in Sub-Areas IV and VI and Division IIIa. Combined tuning data available to the WG. The data which were used in the assessment are in bold.
SCOLTR_IV+V
1989
2002


Table 6.2.4. cont. Saithe in Sub-Areas IV and VI and Division IIIa. Combined tuning data available to the WG. The data which were used in the assessment are in bold.

```
SCOGFS IV
SCOGFS_IV
llll
    680 1370
    500 370
    8390 26470
    50070 40140
    3160 43180
    170 1700
    350}143
    290 1320
    3130 4010
    700 3180
    310 1840
    20107890
    8 1 0 1 3 9 0
    270 13920
    16304050
    200 3670
    40 1860
    900 710
    380 1970
    3450 21930
    3450 21930
NORACU
1995 2003
    562444756
    21480 29698
    2258516188
    1518048295
    1693321109
    34551 82338
    72108 28764
    8 2 5 0 1 1 6 3 5 2 4
    67774 107730
    1214}1774\quad16
    6125 4593 1821
    249393002 }247
    13540 11194 1173
    27036 4399 1170
    270364399 3590
    14213 13842 3018
    17405 3870 109
    174794475 2437
```

Table 6.3.1. Saithe in Sub-Areas IV and VI and Division IIIa. XSA diagnostics.
Lowestoft VPA Version 3.1

```
25/08/2004 17:29
```

Extended Survivors Analysis
SAITHE IN IV VI and IIIa : 1967-2003
CPUE data from file update04.tun
Catch data for 37 years. 1967 to 2003. Ages 1 to 10 .

| Fleet | First year | Last year | $\begin{gathered} \text { First } \\ \text { age } \end{gathered}$ | Last age | Alpha | Beta |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FRATRB_IV | 1990 | 2003 |  | 9 | . 000 | 1.000 |
| NORTRL_IV | 1980 | 2003 | 3 | 9 | . 000 | 1.000 |
| GER_OTB_IV | 1995 | 2003 | 3 | 9 | . 000 | 1.000 |
| NORACU | 1995 | 2003 | 3 | 7 | . 500 | . 750 |

Time series weights :
Tapered time weighting applied
Power = 3 over 20 years

Catchability analysis :
Catchability dependent on stock size for ages < 3
Regression type $=\mathrm{C}$
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 3

Catchability independent of age for ages >= 7

Terminal population estimation :
Survivor estimates shrunk towards the mean $F$
of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk $=1.000$

Minimum standard error for population
estimates derived from each fleet $=$. 300
Prior weighting not applied

Tuning converged after 37 iterations
1

Regression weights
$\begin{array}{llllllllllll}. & .851 & .820 & .877 & .921 & .954 & .976 & .990 & .997 & 1.000 & 1.000\end{array}$

Fishing mortalities

| Age 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

1 |  | .001 | .001 | .003 | .000 | .002 | .000 | .001 | .000 | .005 | .000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 2 | .032 | .035 | .048 | .145 | .023 | .067 | .011 | .011 | .044 | .021 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | .241 | .141 | .118 | .107 | .173 | .075 | .094 | .094 | .162 | .098 |


| 3 | .241 | .141 | .118 | .107 | .173 | .075 | .094 | .094 | .162 | .098 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | .680 | .569 | .315 | .311 | .336 | .371 | .193 | .379 | .353 | .243 |


| .662 | .577 | .552 | .433 | .475 | .543 | .435 | .436 | .319 | .371 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 6 | .486 | .403 | .689 | .330 | .435 | .479 | .524 | .315 | .296 | .385 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| .390 | .970 | .710 | .534 | .342 | .540 | .332 | .274 | .363 | .400 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| .310 | .537 | .621 | .518 | .501 | .740 | .329 | .243 | .388 | .402 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| .895 | 1.230 | .314 | .477 | .624 | .883 | .456 | .181 | .567 | .494 |

Table 6.3.1. cont. Saithe in Sub-Areas IV and VI and Division IIIa. XSA diagnostics.
XSA population numbers (Thousands)

| AGE |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 1994 | 1.70E+05 | $2.82 \mathrm{E}+05$ | $1.03 \mathrm{E}+05$ | $9.00 \mathrm{E}+04$ | $2.98 \mathrm{E}+04$ | $1.23 \mathrm{E}+04$ | $3.24 \mathrm{E}+03$ | $1.43 \mathrm{E}+03$ | $7.98 \mathrm{E}+02$ |
| 1995 | $2.56 \mathrm{E}+05$ | $1.39 \mathrm{E}+05$ | $2.23 \mathrm{E}+05$ | $6.63 \mathrm{E}+04$ | $3.73 \mathrm{E}+04$ | $1.26 \mathrm{E}+04$ | $6.22 \mathrm{E}+03$ | $1.79 \mathrm{E}+03$ | $8.62 \mathrm{E}+02$ |
| 1996 | $1.24 \mathrm{E}+05$ | $2.10 \mathrm{E}+05$ | $1.10 \mathrm{E}+05$ | $1.59 \mathrm{E}+05$ | $3.07 \mathrm{E}+04$ | $1.72 \mathrm{E}+04$ | $6.87 \mathrm{E}+03$ | $1.93 \mathrm{E}+03$ | $8.59 \mathrm{E}+02$ |
| 1997 | $2.19 \mathrm{E}+05$ | $1.02 \mathrm{E}+05$ | 1.63E+05 | $7.98 \mathrm{E}+04$ | $9.48 \mathrm{E}+04$ | $1.45 \mathrm{E}+04$ | $7.05 \mathrm{E}+03$ | $2.77 \mathrm{E}+03$ | $8.49 \mathrm{E}+02$ |
| 1998 | 1.39E+05 | $1.79 \mathrm{E}+05$ | $7.19 \mathrm{E}+04$ | 1.20E+05 | $4.79 \mathrm{E}+04$ | $5.03 \mathrm{E}+04$ | $8.52 \mathrm{E}+03$ | $3.38 \mathrm{E}+03$ | $1.35 \mathrm{E}+03$ |
| 1999 | $3.23 \mathrm{E}+05$ | $1.14 \mathrm{E}+05$ | $1.43 \mathrm{E}+05$ | $4.95 \mathrm{E}+04$ | $7.03 \mathrm{E}+04$ | $2.44 \mathrm{E}+04$ | $2.67 \mathrm{E}+04$ | $4.96 \mathrm{E}+03$ | $1.68 \mathrm{E}+03$ |
| 2000 | $2.24 \mathrm{E}+05$ | $2.64 \mathrm{E}+05$ | $8.72 \mathrm{E}+04$ | $1.09 \mathrm{E}+05$ | $2.80 \mathrm{E}+04$ | $3.34 \mathrm{E}+04$ | $1.24 \mathrm{E}+04$ | 1.27E+04 | $1.94 \mathrm{E}+03$ |
| 2001 | $2.16 \mathrm{E}+05$ | $1.83 \mathrm{E}+05$ | $2.14 \mathrm{E}+05$ | $6.50 \mathrm{E}+04$ | $7.34 \mathrm{E}+04$ | $1.48 \mathrm{E}+04$ | $1.62 \mathrm{E}+04$ | $7.27 \mathrm{E}+03$ | $7.50 \mathrm{E}+03$ |
| 2002 | $1.89 \mathrm{E}+05$ | $1.77 \mathrm{E}+05$ | $1.48 \mathrm{E}+05$ | $1.59 \mathrm{E}+05$ | $3.64 \mathrm{E}+04$ | $3.89 \mathrm{E}+04$ | $8.86 \mathrm{E}+03$ | $1.01 \mathrm{E}+04$ | $4.67 \mathrm{E}+03$ |
| 2003 | $1.51 \mathrm{E}+05$ | $1.54 \mathrm{E}+05$ | $1.39 \mathrm{E}+05$ | $1.03 \mathrm{E}+05$ | $9.17 \mathrm{E}+04$ | $2.17 \mathrm{E}+04$ | $2.37 \mathrm{E}+04$ | $5.05 \mathrm{E}+03$ | $5.61 \mathrm{E}+03$ |

Estimated population abundance at 1st Jan 2004
$0.00 \mathrm{E}+001.24 \mathrm{E}+051.23 \mathrm{E}+051.03 \mathrm{E}+056.62 \mathrm{E}+04 \quad 5.18 \mathrm{E}+041.21 \mathrm{E}+04 \quad 1.30 \mathrm{E}+04 \quad 2.76 \mathrm{E}+03$
Taper weighted geometric mean of the VPA populations:
$1.99 \mathrm{E}+05 \quad 1.66 \mathrm{E}+05 \quad 1.29 \mathrm{E}+05 \quad 8.61 \mathrm{E}+04 \quad 4.27 \mathrm{E}+04 \quad 1.81 \mathrm{E}+04 \quad 8.56 \mathrm{E}+03 \quad 3.68 \mathrm{E}+03 \quad 1.68 \mathrm{E}+03$
Standard error of the weighted Log(VPA populations) :
$1.3010 \quad .3027 \quad .3484 \quad .4045 \quad .5266 \quad .5834 \quad .6696 \quad .7015 \quad .8131$

Log catchability residuals.

Fleet : FRATRB_IV
$\begin{array}{llllllllllll}\text { Age } & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993\end{array}$
$\begin{array}{llllllllll} & 99.99 & 99.99 & 99.99 & 99.99 & 99.99 & 99.99 & .54 & -.15 & .15\end{array}$
$4 \quad 99.99 \quad 99.9999 .9999 .9999 .99 \quad 99.99 \quad .23 \quad .30 \quad .24 \quad .21$
$5 \quad 99.99 \quad 99.99 \quad 99.9999 .99 \quad 99.9999 .99 \quad-.01 \quad-.01 \quad .13 \quad .11$
$6 \quad 99.99 \quad 99.99 \quad 99.99 \quad 99.9999 .99 \quad 99.99 \quad-.29 \quad .30-.37-.51$
$7 \quad 99.99 \quad 99.99 \quad 99.99 \quad 99.99 \quad 99.99 \quad 99.99 \quad .91 \quad .62-.48-1.64$

|  | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -.16 | .66 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | .18 | .01 |$-.30-.70$

$\begin{array}{lrrrrrrrrrr}\text { Age } & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003\end{array}$
$\begin{array}{rrrrrrrrrr}3 & .35 & .09 & -.57 & -.55 & -.06 & -.80 & .26 & -.53 & .83 \\ 4 & .30 & -.24 & -.39 & -.28 & -.45 & -.34 & -.21 & .30 & .58 \\ 5 & .18 & .50 & -.29 & -.4 & -.01 & -.09 & .36 & .53 & -.03\end{array}$
$\begin{array}{rrrrrrrrrr}4 & .30 & -.24 & -. .39 & -.28 & -.45 & -.34 & -.21 & .30 & .58 \\ 5 & .18 & -.50 & -. .29 & -.14 & -.01 & -.09 & .36 & .53 & -.03 \\ -.23\end{array}$

| 6 | .29 | .- .44 | .14 | -.66 | -.15 | -.05 | .36 | .53 | -.03 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | -.23 |  |  |  |  |  |  |  |  |
| 7 | -.21 | -.04 | .07 | -.05 | -.85 | .06 | .63 | .37 | .37 |


| 7 | -.21 | -.04 | .07 | -.05 | -.85 | .06 | .63 | .25 | .54 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 8 | -1.43 | -.05 | -.17 | -.74 | -.67 | -.97 | .24 | -.69 | .28 |

$\begin{array}{rrrrrrrrrr}8 & -1.43 & -.05 & -.17 & -.74 & -.67 & -.97 & .43 & -.69 & .28 \\ 9 & -1.26 & .37 & .02 & .23 & -.49 & -.40 & .63 & -.62 & -.18 \\ .66\end{array}$

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age |  |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q | -13.7766 | -12.6675 | -12.4236 | -12.8880 | -13.5028 | -13.5028 | -13.5028 |
| S.E(Log q) | .5357 | .3463 | .2802 | .4590 | .6183 | .7616 | .5710 |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age Slope t-value Intercept RSquare No Pts Reg s.e Mean $Q$

| 3 | 1.34 | -.502 | 14.46 | .19 | 14 | .75 | -13.78 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 1.02 | -.057 | 12.69 | .57 | 14 | .37 | -12.67 |
| 5 | 1.06 | -.305 | 12.52 | .77 | 14 | .31 | -12.42 |
| 6 | .72 | 1.744 | 12.03 | .81 | 14 | .30 | -12.89 |
| 7 | .73 | 1.350 | 12.30 | .72 | 14 | .43 | -13.50 |
| 8 | .71 | 1.512 | 12.24 | .74 | 14 | .44 | -13.88 |
| 9 | .95 | .246 | 13.31 | .71 | 14 | .55 | -13.62 |

Table 6.3.1. cont. Saithe in Sub-Areas IV and VI and Division IIIa. XSA diagnostics.
Fleet : NORTRL_IV

| Age | 1980 | 1981 | 1982 | 1983 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 99.99 | 99.99 | 99.99 | 99.99 |  |  |  |  |  |  |
| 4 | 99.99 | 99.99 | 99.99 | 99.99 |  |  |  |  |  |  |
| 5 | 99.99 | 99.99 | 99.99 | 99.99 |  |  |  |  |  |  |
| 6 | 99.99 | 99.99 | 99.99 | 99.99 |  |  |  |  |  |  |
| 7 | 99.99 | 99.99 | 99.99 | 99.99 |  |  |  |  |  |  |
| 8 | 99.99 | 99.99 | 99.99 | 99.99 |  |  |  |  |  |  |
| 9 | 99.99 | 99.99 | 99.99 | 99.99 |  |  |  |  |  |  |
| Age | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| 3 | 1.33 | . 89 | -. 70 | . 26 | . 90 | -. 25 | . 12 | 1.82 | . 48 | 1.19 |
| 4 | . 01 | . 61 | . 87 | . 52 | -. 24 | -. 12 | -. 20 | . 31 | . 57 | . 16 |
| 5 | -. 86 | -. 21 | -. 28 | -. 13 | -. 46 | -. 69 | . 07 | -. 41 | . 46 | . 17 |
| 6 | -. 04 | -. 70 | -. 94 | -1.08 | -1.35 | -. 33 | . 36 | -. 63 | . 18 | . 55 |
| 7 | -. 63 | -1.29 | -1.39 | -. 87 | -. 54 | . 11 | -. 10 | -. 98 | -. 45 | . 51 |
| 8 | -. 10 | -2.30 | -2.12 | -. 68 | -. 68 | . 41 | -. 16 | -1.66 | -. 74 | . 55 |
| 9 | -. 19 | -1.90 | -2.23 | -. 27 | . 24 | . 22 | -. 68 | -. 49 | -. 27 | 1.00 |
| Age | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| 3 | . 66 | -. 12 | . 22 | -. 33 | . 16 | -. 96 | -1.19 | . 40 | . 09 | -. 93 |
| 4 | . 99 | . 65 | -. 12 | -. 33 | . 11 | . 00 | -1.02 | . 41 | -. 19 | -. 74 |
| 5 | . 31 | . 22 | -. 02 | -. 28 | . 22 | . 25 | . 21 | . 09 | -. 42 | -. 35 |
| 6 | -. 34 | -. 56 | . 24 | -. 30 | . 27 | . 30 | . 89 | -. 21 | -. 33 | . 13 |
| 7 | -. 51 | . 91 | . 12 | -. 12 | . 08 | . 50 | . 25 | -. 19 | -. 35 | . 10 |
| 8 | -. 98 | . 17 | -. 45 | -. 28 | . 38 | 1.15 | . 34 | -. 29 | . 04 | -. 08 |
| 9 | . 89 | . 89 | -2.25 | -. 54 | . 66 | 1.07 | . 59 | -. 61 | . 45 | . 10 |

Mean $\log$ catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age | 3 |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q | -14.0419 | -12.6370 | -12.1754 | -12.2578 | -12.0954 | -12.0954 | -12.0954 |
| S.E (Log q) | .7821 | .5520 | .3091 | .4865 | .4682 | .6747 | .9415 |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age Slope t-value Intercept RSquare No Pts Reg s.e Mean Q

| 3 | .85 | .258 | 13.69 | .22 | 20 | .69 | -14.04 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 1.66 | -.971 | 13.48 | .17 | 20 | .92 | -12.64 |
| 5 | 1.15 | -.720 | 12.40 | .70 | 20 | .36 | -12.18 |
| 6 | .79 | 1.071 | 11.74 | .72 | 20 | .38 | -12.26 |
| 7 | .83 | .966 | 11.58 | .76 | 20 | .39 | -12.10 |
| 8 | .74 | 1.251 | 11.15 | .70 | 20 | .48 | -12.17 |
| 9 | .92 | .227 | 11.66 | .47 | 20 | .91 | -12.01 |


| Fleet : GER_OTB_IV |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| Age | 199 |  |  |  |  |  |  |  |  |  |
| 3 | 99.99 | -.12 | -.13 | -.20 | .40 | -.98 | .59 | .29 | .23 | -.13 |
| 4 | 99.99 | .31 | -.28 | .03 | -.19 | -.15 | .12 | .33 | .28 | -.43 |
| 5 | 99.99 | -.11 | -.04 | -.14 | -.32 | -.11 | .17 | .35 | .21 | -.06 |
| 6 | 99.99 | .17 | -.04 | -.73 | -.05 | .14 | .52 | .16 | .12 | -.31 |
| 7 | 99.99 | -.04 | .38 | -.30 | -.13 | .35 | .01 | .61 | -.58 | -.30 |
| 8 | 99.99 | -.60 | 1.06 | -.22 | .00 | -.46 | .28 | .64 | -.35 | -.66 |
| 9 | 99.99 | -.21 | .45 | -.13 | .03 | -.08 | .07 | .10 | -.21 | -.51 |

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q | -14.9366 | -13.2455 | -12.8075 | -12.9033 | -13.1051 | -13.1051 | -13.1051 |
| S.E(Log q) | .4695 | .2782 | .2111 | .3530 | .3895 | .5851 | .2716 |

Table 6.3.1. cont. Saithe in Sub-Areas IV and VI and Division IIIa. XSA diagnostics.
Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age Slope t-value Intercept RSquare No Pts Reg s.e Mean Q

| 3 | 1.76 | -.945 | 17.31 | .19 | 9 | .83 | -14.94 |
| ---: | ---: | ---: | ---: | ---: | :--- | ---: | :--- |
| 4 | 1.15 | -.502 | 13.51 | .63 | 9 | .34 | -13.25 |
| 5 | 1.08 | -.444 | 12.97 | .82 | 9 | .24 | -12.81 |
| 6 | .81 | .864 | 12.36 | .76 | 9 | .29 | -12.90 |
| 7 | .83 | .754 | 12.48 | .76 | 9 | .33 | -13.11 |
| 8 | 1.01 | -.031 | 13.19 | .58 | 9 | .63 | -13.14 |
| 9 | 1.13 | -1.015 | 13.87 | .91 | 9 | .30 | -13.16 |


| Fleet $: ~ N O R A C U$ |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| Age | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| 3 | 99.99 | -.05 | -.31 | -.67 | -.20 | -.84 | .38 | .22 | .76 | .59 |
| 4 | 99.99 | -1.57 | -.77 | -.69 | .00 | .08 | .55 | .13 | .95 | .90 |
| 5 | 99.99 | -2.04 | -.24 | -.04 | .06 | .41 | .62 | -.14 | .50 | .47 |
| 6 | 99.99 | -2.52 | .62 | .14 | .28 | .10 | .95 | .36 | -.47 | .20 |
| 7 | 99.99 | -1.44 | .72 | .89 | -.16 | -.06 | .40 | -.92 | .54 | -.08 |
| 8 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 9 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age | 3 | 4 | 5 | 6 | 7 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Mean Log q | -1.1203 | -.5814 | -.9054 | -1.3846 | -1.4825 |
| S.E (Log q) | .5581 | .8178 | .7722 | .9590 | .7495 |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age Slope t-value Intercept RSquare No Pts Reg s.e Mean Q

| 3 | .99 | .023 | 1.26 | .32 | 9 | .59 | -1.12 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | .62 | .813 | 4.68 | .42 | 9 | .52 | -.58 |
| 5 | .80 | .395 | 2.88 | .38 | 9 | .66 | -.91 |
| 6 | .60 | .913 | 4.85 | .44 | 9 | .58 | -1.38 |
| 7 | 1.28 | -.409 | -.69 | .25 | 9 | 1.01 | -1.48 |

1

Terminal year survivor and $F$ summaries :
Age 1 Catchability dependent on age and year class strength
Year class $=2002$

| Fleet | Estimated | Int | Ext | Var | N | Scaled | Estimated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Survivors | s.e | s.e | Ratio |  | Weights | F |
| FRATRB_IV | 1. | . 000 | . 000 | . 00 | 0 | . 000 | . 000 |
| NORTRL_IV | 1. | . 000 | . 000 | . 00 | 0 | . 000 | . 000 |
| GER_OTB_IV | 1. | . 000 | . 000 | . 00 | 0 | . 000 | . 000 |
| NORACU | 1. | . 000 | . 000 | . 00 | 0 | . 000 | . 000 |
| P shrinkage mean | 166181. | . 30 |  |  |  | . 916 | . 000 |
| F shrinkage mean | 4959. | 1.00 |  |  |  | . 084 | . 002 |



Table 6.3.1. cont. Saithe in Sub-Areas IV and VI and Division IIIa. XSA diagnostics.
Age 2 Catchability dependent on age and year class strength


Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=1999$

| Fleet | Estimated | Int | Ext | Var | N Scaled | Estimated |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Survivors | s.e | S.e | Ratio | Weights | F |  |
| FRATRB_IV | 92433. | .304 | .297 | .98 | 2 | .303 | .180 |
| NORTRL_IV | 40343. | .471 | .380 | .81 | 2 | .126 | .373 |
| GER_OTB_IV | 50417. | .257 | .278 | 1.08 | 2 | .424 | .309 |
| NORACU | 148906. | .489 | .067 | .14 | 2 | .110 | .116 |
| F shrinkage mean | 46937. | 1.00 |  |  |  |  | .037 |

Weighted prediction :

| Survivors | Int | Ext | N | Var | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year | s.e | s.e |  | Ratio |  |
| 66185. | .17 | .18 | 9 | 1.056 | .243 |

Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1998$

| Fleet | Estimated <br> Survivors | Int | s.e | Sxt | Var | N Scaled |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | Estimated

[^5]Table 6.3.1. cont. Saithe in Sub-Areas IV and VI and Division IIIa. XSA diagnostics.
Age 6 Catchability constant w.r.t. time and dependent on age

| Fleet | Estimated | Int | Ext | Var | N | Scaled | Estimated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Survivors | s.e | s.e | Ratio |  | Weights | F |
| FRATRB_IV | 11456. | . 202 | . 169 | . 83 | 4 | . 300 | . 402 |
| NORTRL_IV | 9861. | . 242 | . 226 | . 93 | 4 | . 223 | . 454 |
| GER_OTB_IV | 13403. | . 180 | . 172 | . 95 | 4 | . 384 | . 353 |
| NORACU | 16687. | . 408 | . 080 | . 20 | 4 | . 068 | . 293 |
| F shrinkage mean | 11108. | 1.00 |  |  |  | . 025 | . 412 |
| Weighted prediction : |  |  |  |  |  |  |  |
| Survivors Int | Ext | N Var | F |  |  |  |  |
| at end of year s.e | s.e | Ratio |  |  |  |  |  |
| 12064. | . 09 | 17 . 754 | . 385 |  |  |  |  |
| Age 7 Catchability | constant | w.r.t. time | nd dep | endent |  |  |  |
| Year class $=1996$ |  |  |  |  |  |  |  |
| Fleet | Estimated | Int | Ext | Var | N | Scaled Weights | Estimated |
|  | Survivors | s.e | s.e | Ratio |  |  | F |
| FRATRB_IV | 15918. | . 198 | . 198 | 1.00 | 5 | . 265 | . 337 |
| NORTRL_IV | 11321. | . 226 | . 187 | . 83 | 5 | . 236 | . 447 |
| GER_OTB_IV | 12885. | . 171 | . 174 | 1.01 | 5 | . 392 | . 403 |
| NORACU | 10129. | . 381 | . 207 | . 54 | 5 | . 080 | . 489 |
| F shrinkage mean | 14149. | 1.00 |  |  |  | . 026 | . 373 |

Weighted prediction :
$\begin{array}{llll}\text { Survivors } & \text { Int } & \text { Ext } & \text { N } \\ \text { at end of year } & \text { S.e } & \text { S.e } & \\ \text { Satio }\end{array}$
$\begin{array}{crrrrr}\text { at end of year } & \text { s.e } & \text { s.e } & & \text { Ratio } & \\ \text { 12996. } & .11 & .09 & 21 & .816 & .400\end{array}$

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age)
Year class $=1995$

| Fleet | Estimated <br> Survivors | Int | S.e | Ext | Var | N | Scaled |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ratio | Estimated |  |  |  |  |  |  |
| FRATRB_IV | 3607. | .207 | .125 | .60 | 6 | .258 | .321 |
| NORTRL_IV | 2553. | .228 | .099 | .43 | 6 | .251 | .429 |
| GER_OTB_IV | 2323. | .177 | .166 | .94 | 6 | .391 | .463 |
| NORACU | 3902. | .399 | .149 | .37 | 5 | .066 | .300 |
|  |  |  |  |  |  |  |  |
| F shrinkage mean | 2452. | 1.00 |  |  |  | .034 | .443 |

Weighted prediction :

| Survivors | Int | Ext | N | Var | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year | s.e | s.e |  | Ratio |  |
| 2763. | .11 | .08 | 24 | .672 | .402 |

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class $=1994$

| Fleet | Estimated | Int | Ext | Var | N | Scaled | Estimat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Survivors | s.e | s.e | Ratio |  | Weights | F |
| FRATRB_IV | 3742. | . 234 | . 176 | . 75 | 7 | . 225 | . 391 |
| NORTRL_IV | 3250. | . 245 | . 143 | . 58 | 7 | . 186 | . 439 |
| GER_OTB_IV | 2347. | . 178 | . 180 | 1.01 | 7 | . 508 | . 567 |
| NORACU | 2056. | . 426 | . 362 | . 85 | 5 | . 043 | . 626 |
| F shrinkage mean | 3658. | 1.00 |  |  |  | . 038 | . 398 |


| Survivors | Int | Ext | N | Var |
| :---: | :---: | :---: | :---: | :---: |
| at end of year | s.e | s.e |  | Ratio |
| 2800. | 12 | 09 | 27 | 773 |

1
1

Table 6.3.2. Saithe in Sub-Areas IV and VI and Division IIIa. Fishing mortality $(F)$ at age
Fishing mortality (F) at age

|  |  | YEAR | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AGE |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | . 0000 | . 0004 | . 0001 | . 0010 | . 0025 | . 0017 | . 0174 |  |  |  |  |  |
|  |  | 2 | . 0680 | . 0115 | . 0065 | . 0062 | . 0572 | . 1320 | . 2071 |  |  |  |  |  |
|  |  | 3 | . 1628 | . 2548 | . 1178 | . 1521 | . 2682 | . 3711 | . 4990 |  |  |  |  |  |
|  |  | 4 | . 2632 | . 3074 | . 3145 | . 4897 | . 3728 | . 4397 | . 5628 |  |  |  |  |  |
|  |  | 5 | . 3782 | . 3551 | . 2599 | . 4828 | . 3998 | . 2768 | . 3202 |  |  |  |  |  |
|  |  | 6 | . 4836 | . 2455 | . 3574 | . 5070 | . 2735 | . 4925 | . 2838 |  |  |  |  |  |
|  |  | 7 | . 4161 | . 1524 | . 3913 | . 3127 | . 3319 | . 3538 | . 3695 |  |  |  |  |  |
|  |  | 8 | . 2603 | . 1004 | . 4639 | . 2016 | . 3965 | . 4054 | . 3317 |  |  |  |  |  |
|  |  | 9 | . 3893 | . 1668 | . 4070 | . 3426 | . 3361 | . 4202 | . 3303 |  |  |  |  |  |
|  |  | +gp | . 3893 | . 1668 | . 4070 | . 3426 | . 3361 | . 4202 | . 3303 |  |  |  |  |  |
| 0 | FBAR | 3-6 | . 3220 | . 2907 | . 2624 | . 4079 | . 3286 | . 3950 | . 4164 |  |  |  |  |  |
|  |  | YEAR | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | . 0078 | . 0017 | . 0019 | . 0166 | . 0111 | . 0035 | . 0076 | . 0276 | . 0061 | . 0007 |  |  |
|  |  | 2 | . 0916 | . 1612 | . 2325 | . 1296 | . 2152 | . 2155 | . 1194 | . 1575 | . 2045 | . 1507 |  |  |
|  |  | 3 | . 6880 | . 4270 | . 9114 | . 2975 | . 5436 | . 2654 | . 3417 | . 1842 | . 3886 | . 3075 |  |  |
|  |  | 4 | . 6749 | . 6293 | . 9308 | . 6551 | . 5451 | . 4427 | . 3292 | . 2706 | . 4828 | . 4696 |  |  |
|  |  | 5 | . 4242 | . 4463 | . 6617 | . 7378 | . 4643 | . 4510 | . 5645 | . 3012 | . 5407 | . 6652 |  |  |
|  |  | 6 | . 4388 | . 4243 | . 5384 | . 7718 | . 3555 | . 4270 | . 5417 | . 4744 | . 4792 | . 7811 |  |  |
|  |  | 7 | . 4556 | . 5873 | . 4144 | . 7472 | . 3489 | . 5828 | . 5503 | . 5724 | . 5668 | . 9537 |  |  |
|  |  | 8 | . 4106 | . 5975 | . 4833 | . 7845 | . 4637 | . 3983 | . 5041 | . 7719 | . 5302 | 1.0468 |  |  |
|  |  | 9 | . 4382 | . 5408 | . 4824 | . 7755 | . 3920 | . 4729 | . 5363 | . 6116 | . 5297 | . 9374 |  |  |
|  |  | +gp | . 4382 | . 5408 | . 4824 | . 7755 | . 3920 | . 4729 | . 5363 | . 6116 | . 5297 | . 9374 |  |  |
| 0 | FBAR | 3-6 | . 5565 | . 4817 | . 7606 | . 6156 | . 4771 | . 3965 | . 4443 | . 3076 | . 4728 | . 5559 |  |  |
|  |  | YEAR | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | . 0005 | . 0014 | . 0017 | . 0068 | . 0002 | . 0187 | . 0025 | . 0023 | . 0021 | . 0005 |  |  |
|  |  | 2 | . 1033 | . 0293 | . 0568 | . 2195 | . 0975 | . 0718 | . 0370 | . 1201 | . 0391 | . 0852 |  |  |
|  |  | 3 | . 5737 | . 6470 | . 2406 | . 3686 | . 3782 | . 3798 | . 4716 | . 4594 | . 2473 | . 3223 |  |  |
|  |  | 4 | . 6950 | 1.0503 | 1.4124 | . 8775 | . 6172 | . 7549 | . 6919 | . 7737 | . 7323 | . 4906 |  |  |
|  |  | 5 | . 6168 | . 7054 | . 9675 | . 8717 | . 9726 | . 7353 | . 7072 | . 6248 | . 9390 | . 6250 |  |  |
|  |  | 6 | . 8610 | . 4831 | . 7073 | . 5349 | . 6252 | . 9750 | . 6428 | . 5067 | . 6038 | . 6275 |  |  |
|  |  | 7 | . 5481 | . 4864 | . 5353 | . 5495 | . 7383 | . 5647 | . 7157 | . 5127 | . 4196 | . 6876 |  |  |
|  |  | 8 | . 6899 | . 4569 | . 4633 | . 5309 | . 7878 | . 7275 | . 5860 | . 5774 | . 4029 | . 9979 |  |  |
|  |  | 9 | . 7065 | . 4884 | . 6207 | . 5977 | . 7669 | . 8109 | . 6872 | . 6521 | . 7312 | 1.2353 |  |  |
|  |  | +gp | . 7065 | . 4884 | . 6207 | . 5977 | . 7669 | . 8109 | . 6872 | . 6521 | . 7312 | 1.2353 |  |  |
| 0 | FBAR | 3-6 | . 6866 | . 7215 | . 8319 | . 6632 | . 6483 | . 7113 | . 6284 | . 5912 | . 6306 | . 5164 |  |  |
|  |  |  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | FBAR 67-03 | FBAR 99-03 |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | . 0007 | . 0007 | . 0031 | . 0001 | . 0017 | . 0002 | . 0007 | . 0000 | . 0054 | . 0001 | . 0042 | . 0013 |
|  |  | 2 | . 0320 | . 0352 | . 0484 | . 1449 | . 0231 | . 0666 | . 0113 | . 0112 | . 0439 | . 0212 | . 0936 | . 0308 |
|  |  | 3 | . 2410 | . 1415 | . 1182 | . 1072 | . 1734 | . 0755 | . 0938 | . 0939 | . 1622 | . 0975 | . 3128 | . 1046 |
|  |  | 4 | . 6805 | . 5695 | . 3154 | . 3110 | . 3358 | . 3705 | . 1932 | . 3794 | . 3530 | . 2435 | . 5413 | . 3079 |
|  |  | 5 | . 6619 | . 5768 | . 5522 | . 4333 | . 4747 | . 5435 | . 4354 | . 4364 | . 3192 | . 3710 | . 5486 | . 4211 |
|  |  | 6 | . 4857 | . 4033 | . 6892 | . 3296 | . 4353 | . 4786 | . 5239 | . 3148 | . 2957 | . 3853 | . 5077 | . 3996 |
|  |  | 7 | . 3904 | . 9702 | . 7103 | . 5341 | . 3416 | . 5401 | . 3317 | . 2741 | . 3631 | . 3998 | . 5060 | . 3817 |
|  |  | 8 | . 3098 | . 5366 | . 6210 | . 5182 | . 5006 | . 7404 | . 3289 | . 2428 | . 3878 | . 4021 | . 5124 | . 4204 |
|  |  | 9 | . 8947 | 1.2298 | . 3144 | . 4767 | . 6245 | . 8827 | . 4558 | . 1806 | . 5671 | . 4944 | . 5818 | . 5161 |
|  |  | +gp | . 8947 | 1.2298 | . 3144 | . 4767 | . 6245 | . 8827 | . 4558 | . 1806 | . 5671 | . 4944 |  |  |
| 0 | FBAR | 3-6 | . 5172 | . 4228 | . 4187 | . 2953 | . 3548 | . 3670 | . 3116 | . 3061 | . 2825 | . 2743 |  |  |

Table 6.3.3. Saithe in Sub-Areas IV and VI and Division IIIa. Stock number at age (start of year) Numbers*10**-3


Table 6.3.4. Saithe in Sub-Areas IV and VI and Division IIIa. Summary (without SOP correction)

| Summary | (without SOP correction) |  |  |  |  | FBAR | $3-6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Terminal Fs derived using XSA (With F shrinkage) |  |  |  |  |  |  |
|  | RECRUITS | TOTALBIO | TOTSPBIO | LANDINGS | YIELD/SSB |  |  |
|  | Age 1 |  |  |  |  |  |  |
| 1967 | 453741 | 499613 | 150837 | 94514 | . 6266 |  | . 3220 |
| 1968 | 438382 | 1025940 | 211721 | 116789 | . 5516 |  | . 2907 |
| 1969 | 492293 | 1134509 | 263956 | 131882 | . 4996 |  | . 2624 |
| 1970 | 270965 | 1288484 | 312001 | 236636 | . 7584 |  | . 4079 |
| 1971 | 260847 | 1282606 | 429557 | 272481 | . 6343 |  | . 3286 |
| 1972 | 273424 | 1110241 | 474073 | 275098 | . 5803 |  | . 3950 |
| 1973 | 301479 | 993277 | 534454 | 259602 | . 4857 |  | . 4164 |
| 1974 | 678401 | 1143738 | 554859 | 309439 | . 5577 |  | . 5565 |
| 1975 | 222367 | 1068085 | 472004 | 308926 | . 6545 |  | . 4817 |
| 1976 | 157196 | 917980 | 351455 | 361680 | 1.0291 |  | . 7606 |
| 1977 | 145666 | 626479 | 263025 | 223395 | . 8493 |  | . 6156 |
| 1978 | 125016 | 568415 | 267888 | 166199 | . 6204 |  | . 4771 |
| 1979 | 290126 | 585743 | 240770 | 135967 | . 5647 |  | . 3965 |
| 1980 | 192634 | 545131 | 234687 | 142395 | . 6067 |  | . 4443 |
| 1981 | 221844 | 647702 | 240292 | 146092 | . 6080 |  | . 3076 |
| 1982 | 357545 | 688653 | 209029 | 189861 | . 9083 |  | . 4728 |
| 1983 | 514630 | 815107 | 212024 | 197774 | . 9328 |  | . 5559 |
| 1984 | 440319 | 844008 | 173649 | 219642 | 1.2649 |  | . 6866 |
| 1985 | 176957 | 711551 | 156641 | 226129 | 1.4436 |  | . 7215 |
| 1986 | 212795 | 693762 | 146910 | 202758 | 1.3802 |  | . 8319 |
| 1987 | 128144 | 497624 | 147451 | 180776 | 1.2260 |  | . 6632 |
| 1988 | 192304 | 479499 | 143182 | 140778 | . 9832 |  | . 6483 |
| 1989 | 218241 | 458681 | 109693 | 117609 | 1.0722 |  | . 7113 |
| 1990 | 156567 | 421697 | 96482 | 107945 | 1.1188 |  | . 6284 |
| 1991 | 235891 | 458234 | 92419 | 115576 | 1.2506 |  | . 5912 |
| 1992 | 167662 | 494671 | 94789 | 104147 | 1.0987 |  | . 6306 |
| 1993 | 344304 | 544359 | 102247 | 119073 | 1.1646 |  | . 5164 |
| 1994 | 169603 | 556670 | 111454 | 115255 | 1.0341 |  | . 5172 |
| 1995 | 256060 | 688416 | 134106 | 125183 | . 9335 |  | . 4228 |
| 1996 | 124429 | 583710 | 155011 | 119669 | . 7720 |  | . 4187 |
| 1997 | 218838 | 603413 | 193993 | 112740 | . 5812 |  | . 2953 |
| 1998 | 139257 | 586462 | 192797 | 108699 | . 5638 |  | . 3548 |
| 1999 | 322881 | 637445 | 201998 | 114655 | . 5676 |  | . 3670 |
| 2000 | 223633 | 740266 | 189641 | 93566 | . 4934 |  | . 3116 |
| 2001 | 215943 | 716942 | 212378 | 96491 | . 4543 |  | . 3061 |
| 2002 | 188817 | 729772 | 200939 | 121974 | . 6070 |  | . 2825 |
| 2003 | 151165 | 576047 | 220921 | 106789 | . 4834 |  | . 2743 |
| 2004 | 198000* |  | 260000 * |  |  |  |  |
| Arith. |  |  |  |  |  |  |  |
| Mean | 261632 | 728782 | 229712 | 168059 | . 8098 |  | . 4776 |
| 0 Units | (Thousands) | (Tonnes) | (Tonnes) | (Tonnes) |  |  |  |

*Estimates for 2004 are from short-term prognoses (see Sections 6.4 and 6.5).

Table 6.5.1. Saithe in Sub-Areas IV and VI and Division IIIa.Input data for catch forecast and linear sensitivity analysis

| Label | Value | CV | Label | Value | CV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number at age |  |  | Weight in the stock |  |  |
| N1 | 198000 | 0.29 | WS1 | 0.56 | 0.25 |
| N2 | 162092 | 0.29 | WS2 | 0.66 | 0.26 |
| N3 | 129240 | 0.29 | WS3 | 0.77 | 0.06 |
| N4 | 102875 | 0.28 | WS4 | 0.96 | 0.11 |
| N5 | 66185 | 0.18 | WS5 | 1.24 | 0.11 |
| N6 | 51823 | 0.12 | WS 6 | 1.83 | 0.11 |
| N7 | 12063 | 0.11 | WS 7 | 2.37 | 0.07 |
| N8 | 12995 | 0.11 | WS8 | 3.34 | 0.06 |
| N9 | 2763 | 0.11 | WS9 | 3.96 | 0.05 |
| N10 | 4255 | 0.12 | WS10 | 4.76 | 0.27 |
| H.cons selectivity |  |  | Weight in the HC catch |  |  |
| sH1 | 0.00 | 1.68 | WH1 | 0.56 | 0.25 |
| sH2 | 0.03 | 0.67 | WH2 | 0.66 | 0.26 |
| sH3 | 0.12 | 0.35 | WH3 | 0.77 | 0.06 |
| sH4 | 0.33 | 0.18 | WH4 | 0.96 | 0.11 |
| sH5 | 0.38 | 0.12 | WH5 | 1.24 | 0.11 |
| sH6 | 0.33 | 0.18 | WH6 | 1.83 | 0.11 |
| sH7 | 0.35 | 0.24 | WH7 | 2.37 | 0.07 |
| sH8 | 0.34 | 0.30 | WH8 | 3.34 | 0.06 |
| sH9 | 0.41 | 0.52 | WH9 | 3.96 | 0.05 |
| sH10 | 0.41 | 0.52 | WH10 | 4.76 | 0.27 |
| Natural mortality |  |  | Proportion mature |  |  |
| M1 | 0.20 | 0.10 | MT1 | 0.00 | 0.00 |
| M2 | 0.20 | 0.10 | MT2 | 0.00 | 0.00 |
| M3 | 0.20 | 0.10 | MT3 | 0.00 | 0.10 |
| M4 | 0.20 | 0.10 | MT4 | 0.15 | 0.10 |
| M5 | 0.20 | 0.10 | MT5 | 0.70 | 0.10 |
| M6 | 0.20 | 0.10 | MT6 | 0.90 | 0.10 |
| M7 | 0.20 | 0.10 | MT7 | 1.00 | 0.10 |
| M8 | 0.20 | 0.10 | MT8 | 1.00 | 0.00 |
| M9 | 0.20 | 0.10 | MT9 | 1.00 | 0.00 |
| M10 | 0.20 | 0.10 | MT10 | 1.00 | 0.00 |
| Relative effort |  |  | Year effect for natural mortality |  |  |
| in HC fishery |  |  |  |  |  |
| HFO4 | 1.00 | 0.06 | K04 | 1.00 | 0.10 |
| HF05 | 1.00 | 0.06 | K05 | 1.00 | 0.10 |
| HF06 | 1.00 | 0.06 | K06 | 1.00 | 0.10 |
| Recruitment in 2005 and 2006 |  |  |  |  |  |
| R05 | 198000 | 0.29 |  |  |  |
| R06 | 198000 | 0.29 |  |  |  |

```
Proportion of F before spawning = .00
Proportion of M before spawning = .00
    Stock numbers in 2004 are VPA survivors.
    These are overwritten at Age 1 Age 2 Age 3.
```



Table 6.5.2. Saithe in Suba-Areas IV and VI and Division IIIa. Catch forecast output and estimates of coefficient of variation (CV) from linear analysis.


Table 6.5.3. Saithe in Sub-Areas IV and VI and Division IIIa. Detailed forecast tables.
Forecast for year 2004
F multiplier H.cons=1.00


Forecast for year 2005
F multiplier H.cons $=1.00$


Figure 6.2.1. Saithe in Sub-areas IV and VI and Division IIIa. Commercial effort series (mean standardised hours trawled) and commercial CPUE (mean standardised total catch per total hours trawled).



Figure 6.3.1. Saithe in Sub-area IV, Division IIIa and Sub-area VI. Stock summary. Note that the recruitment in 2004 is the geometric mean from the period 1985-2001 and SSB in 2004 is taken from the short-term prognosis (see Table 6.5.2).





Figure 6.3.2. Saithe in Sub-Area IV, Division IIIa, and Sub-Area VI. Comparison of historical performance of the assessments.




Figure 6.5.1. Saithe in Sub-areas IV and VI and Division IIIa. Stock numbers of recruits and their source for recent year classes used in predictions, and the relative (\%) contributions to landings and SSB (by weight) of these year classes.

| Year-class |  |  | 2000 | 2001 | 2002 | 2003 | 2004 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stock No. (thousands) |  |  | 215943 | 198000 | 198000 | 198000 | 198000 |
| of |  | year-olds |  |  |  |  |  |
| Source |  |  | VPA | GM | GM | GM | GM |
| Status Quo F: |  |  |  |  |  |  |  |
| \% in | 2004 | landings | 21.8 | 8.8 | 2.1 | 0.2 | - |
| \% in | 2005 |  | 18.8 | 19.9 | 8.8 | 2.1 | 0.2 |
| \% in | 2004 | SSB | 5.7 | 0.0 | 0.0 | 0.0 | - |
| \% in | 2005 | SSB | 19.5 | 5.0 | 0.0 | 0.0 | 0.0 |
| \% in | 2006 | SSB | 21.3 | 18.3 | 5.1 | 0.0 | 0.0 |

GM : geometric mean recruitment

Saithe IIIa, IV and Via : Year-class\% contribution to


Figure 6.5.2. Saithe in Sub-areas IV and VI and Division IIIa. Probability profiles for short term forecast.


Figure 6.6.1. Saithe in Sub-Area IV, Division IIIa and Sub-Area VI. Results from North Sea fishermen's survey for saithe in different areas of the North Sea from 2001 to 2004.


## $7 \quad$ Sole in Sub-area IV

The assessment of sole in Sub-Area IV is presented here as an update assessment. All the relevant biological and methodological information can be found in the Stock Annex dealing with this stock. Here, only the basic input and output from the assessment model will be presented. The most recent benchmark assessment was carried out in 2003 for this stock. The assessment of the stock will be subject to review this year by the North Sea Commission Fisheries Partnership (NSCFP).

### 7.1 The fishery

A general description of the fishery is given in the Stock Annex.
The national uptake rates in 2004 by the Netherlands (the main sole-landing country) indicate that approximately $64 \%$ of the national quota was taken by the beginning of September 2004. The indications are that the 2004 TAC will be fished out by the end of December.

### 7.2 ICES advice applicable to 2003 and 2004

ICES commented that the stock was being harvested outside safe biological limits in 2003. ICES recommended that fishing mortality in 2004 should be reduced to less than $\boldsymbol{F}_{p a}(=0.40)$ corresponding to landings less than $17,900 \mathrm{t}$ in 2004. The TAC for 2004 was set at 17,000 . The advice on the exploitation of the stock was presented in the context of mixed fisheries.

### 7.3 Data available

### 7.3.1 Landings

Landings data by country and TACs are presented in Table 7.3.1.

### 7.3.2 Age compositions

Age compositions of the landings are presented in Table 7.3.2.

### 7.3.3 Weight at age

Weight at age in the catch is presented in Table 7.3.3 and weight at age in the stock in Table 7.3.4. The procedure for calculating mean weights is described in the Stock Annex.

### 7.3.4 Maturity and natural mortality

Maturity and natural mortality are assumed at fixed values and are described in the Stock Annex.

### 7.3.5 Catch, effort and research vessel data

The effort and CPUE data are presented in Table 7.3.5. Trends in relative effort and CPUE are shown in Figure 7.3.1. Survey data used for calibration of the assessment are presented in Tables 7.3.6.

### 7.4 Catch at age analysis

Catch at age analysis was carried out according to the specifications in the Stock Annex. The model used was XSA. Results of the analysis are presented in Tables 7.4.1 (diagnostics), 7.4.2 (fishing mortality at age), 7.4.3 (population numbers at age), and 7.4.4 (stock summary). The stock summary is also shown in Figure 7.4.1 and the historic performance is shown in Figure 7.4.2.

### 7.5 Recruitment estimates

Recruitment estimation was carried out according to the specifications in the Stock Annex. The model used was RCT3. Input to the RCT3 model is presented in Table 7.5.1. Results are presented in Table 7.5.2a and 7.5.2b. Average recruitment in the period 1957-2001 was around 96 million (geometric mean) 1-year-old-fish. Year class strength
estimates used for short term prognosis are summarized in the text Table below. These recruitment estimates are preliminary and will be updated prior to the ACFM October meeting when the BTS 2004 indices become available.

| Year Class | Age in 2004 | XSA <br> thousands | RCT3 <br> thousands | GM(1957-2001) <br> thousands |
| :--- | :--- | :--- | :--- | :--- |
| 2002 | 2 | 93034 | $\underline{\mathbf{7 6 3 5 3}}$ | 85043 |
| 2003 | 1 |  | 62378 | $\underline{\mathbf{9 5 8 9 0}}$ |
| 2004 | Recruit |  |  | $\underline{\underline{95890}}$ |

### 7.6 Short-term prognosis

The short-term prognosis was carried out according to the specifications in the Stock Annex. The software used was WGFRANSW. Inputs to WGFRANSW are presented in Table 7.6.1. Results are presented in Tables 7.6.2 and 7.6.3. A scaled three-year mean was used for $\boldsymbol{F}_{s q}$, the exploitation pattern in the intermediate year (2004). On this basis, catches in 2004 are forecast to be 21000 t , and would hence exceed the 2004 TAC ( 15850 t ). With $\mathrm{F}(2005)$ also set to $\boldsymbol{F}_{s q}$, $\operatorname{SSB}(2006)$ would be slightly above $\boldsymbol{B}_{p a}(=35000 \mathrm{t})$. In order to account for a possible reduction in $\mathrm{F}(2004)$ resulting from management measures (restrictive TAC and days at sea limits), exploratory runs were carried out using the TAC constraint option and $\boldsymbol{F}_{s q}$ defined as above. With a TAC constraint of 15850 t , $\mathrm{F}(2004)$ would be $70 \%$ of $\mathrm{F}(2003)$. With an intermediate TAC constraint of $18000 \mathrm{t}, \mathrm{F}(2004)$ would be $80 \%$ of $\mathrm{F}(2003)$. $\mathrm{SSB}(2006)$ would be around $40000 t$ with $\mathrm{F}(2005)=\boldsymbol{F}_{p a}$, when applying any of these TAC constraint options.

Table 7.6.4 show the relative contribution of the year classes to landings and SSB. Figure 7.6 .1 show the probability profiles for the short term forecast.

### 7.7 Biological reference points

Biological reference points are described in the Stock Annex.

### 7.8 Comments

This year's assessment was carried out as an update assessment. No changes were made to the estimation procedure used last year.

Sole is mainly caught in a mixed beam trawl fishery with plaice using 80 mm mesh in the southern North Sea. This mesh size results in large number of undersized plaice being discarded. In general, it is expected that both plaice and sole would benefit from measures to reduce discards in the beam trawl fishery.

Skippers were asked to compare the state of their catch in January to June 2004 with the same period in 2003. Findings were based upon the catch not the landings. The skippers were asked to describe the catch rates (less, the same or more than last year), the size range (mostly small, all sizes, mostly large) and the discard rates (less, the same or more than last year). Questionnaire returns were received from skippers of vessels registered in Belgium, Denmark, England, the Netherlands, Scotland and Sweden. A total of 322 views were collected on the state of sole catches (all gear types combined). The area covered by this survey was subdivided into 10 zones, 8 within the North Sea and 2 in subdivision IIIa.

In the southern North Sea and the Skagerrak and Kattegat, there are strong indications that the abundance of sole is increasing (Figure 7.8.1). The assessment indicates little or no increase in SSB. The increase reported by the industry may represent the large numbers of small sole that were frequently mentioned by Dutch and Danish fishermen in the comments Section of the 2003 survey. Following this, the majority of the respondents reported catches of all sizes. In zone 3 (Western North Sea) catches of relatively small Sole were reported in 2004 as in 2003. No strong trends in discarding are reported, the discard rates have remained the same or showed a slight decrease. Only zone 8 (roughly the Northern part of ICES Area IIIa) reported a increase in discarding. This possibly reflects an increase in abundance. The next benchmark assessment for this stock is foreseen in 2006. During this benchmark, attention should be paid to:

- In 2003 a proposal was made for the revision of the biological referencepoints. This revision was rejected by ACFM. The revision of the reference points will be re-investigated.
- The small increase in the number of males at older ages resulting in a lower weight at age (WG2003).
- The changes in maturity as studied within the COMPASS project
- Potential misreporting (VIId)
- Tuning with of without commercial fleet data

Table 7.3.1. Nominal catch (tonnes) of Sole in Sub-Area IV, and landings as estimated by the Working Group.

| Year | Belgium | Denmark | France | Germany <br> Fed. Rep. | Netherlands | UK (Engl. <br> Wales, North. I.) | Other countries | Total reported | Unallocated landings | $\begin{gathered} \text { WG } \\ \text { Total } \end{gathered}$ | TAC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 1927 | 522 | 686 | 290 | 17749 | 403 |  | 21577 | 2 | 21579 | 20000 |
| 1983 | 1740 | 730 | 332 | 619 | 16101 | 435 |  | 19957 | 4970 | 24927 | 20000 |
| 1984 | 1771 | 818 | 400 | 1034 | 14330 | 586 | 1 | 18940 | 7899 | 26839 | 20000 |
| 1985 | 2390 | 692 | 875 | 303 | 14897 | 774 | 3 | 19934 | 4314 | 24248 | 22000 |
| 1986 | 1833 | 443 | 296 | 155 | 9558 | 647 | 2 | 12934 | 5266 | 18200 | 20000 |
| 1987 | 1644 | 342 | 318 | 210 | 10635 | 676 | 4 | 13829 | 3539 | 17368 | 14000 |
| 1988 | 1199 | 616 | 487 | 452 | 9841 | 740 | 28 | 13363 | 8227 | 21590 | 14000 |
| 1989 | 1596 | 1020 | 312 | 864 | 9620 | 1033 | 50 | 14495 | 7311 | 21806 | 14000 |
| 1990 | 2389 | 1428 | 352 | 2296 | 18202 | 1614 | 263 | 26544 | 8576 | 35120 | 25000 |
| 1991 | 2977 | 1307 | 465 | 2107 | 18758 | 1723 | 271 | 27608 | 5905 | 33513 | 27000 |
| 1992 | 2058 | 1359 | 548 | 1880 | 18601 | 1281 | 277 | 26004 | 3337 | 29341 | 25000 |
| 1993 | 2783 | 1661 | 490 | 1379 | 22015 | 1149 | 298 | 29775 | 1716 | 31491 | 32000 |
| 1994 | 2935 | 1804 | 499 | 1744 | 22874 | 1137 | 298 | 31291 | 1711 | 33002 | 32000 |
| 1995 | 2624 | 1673 | 640 | 1564 | 20927 | 1040 | 312 | 28780 | 1687 | 30467 | 28000 |
| 1996 | 2555 | 1018 | 535 | 670 | 15344 | 848 | 229 | 20351 | 2300 | 22651 | 23000 |
| 1997 | 1519 | 689 | 99 | 510 | 10241 | 479 | 204 | 13741 | 1160 | 14901 | 18000 |
| 1998 | 1844 | 520 | 510 | 782 | 15198 | 549 | 338 | 19739 | 1129 | 20868 | 19100 |
| 1999 | 1919 | 828 | 357 | 1458 | 16283 | 645 | 501 | 21991 | 1484 | 23475 | 22000 |
| 2000 | 1806 | 1069 | 362 | 1280 | 15273 | 600 | 346 | 20736 | 1796 | 22532 | 22000 |
| 2001 | 1874 | 773 | 370 | 958 | 11547 | 596 | 310 | 16428 | 3421 | 19849 | 19000 |
| 2002 | 1437 | 644 | 266 | 759 | 12120 | - 451 | 292 | 15969 | 331 | 16300 | 16000 |
| 2003 | 1622* | 703 | 264 | 749 | 12482* | 521 | 364* | 16705 | 1215 | 17920 | 15850 |

Table 7.3.2. North Sea sole: catch numbers at age
Run title : Sole in IV At 9/09/2004 10:45

|  | Table 1 | Catch numbers at age |  |  | Numbers*10**-3 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | YEAR, | 1957, | 1958, | 1959, | 1960, | 1961, | 1962, | 1963, |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
|  | 1, | 0 , | 0, | 0 , | 0, | 0 , | 0 , | 0 , |  |  |  |
|  | 2, | 1415, | 1854, | 3659, | 12042, | 959, | 1594, | 676, |  |  |  |
|  | 3, | 10148, | 8440, | 12025, | 14133, | 49786, | 6210, | 8339, |  |  |  |
|  | 4, | 12642, | 14169, | 10401, | 16798, | 19140, | 59191, | 8555, |  |  |  |
|  | 5, | 3762, | 9500, | 8975, | 9308, | 12404, | 15346, | 46201, |  |  |  |
|  | 6 , | 2924, | 3484, | 5768, | 8367, | 4695, | 10541, | 8490, |  |  |  |
|  | 7, | 6518, | 3008, | 1206, | 4846, | 3944, | 4826, | 6658, |  |  |  |
|  | 8 , | 1733, | 4439, | 2025, | 1593, | 4279, | 4112, | 2423, |  |  |  |
|  | 9, | 509, | 2253, | 2574, | 1056, | 836, | 2087, | 3393, |  |  |  |
|  | +gp, | 6288, | 6557, | 5615, | 7901, | 7254, | 7494, | 8384, |  |  |  |
| 0 | TOTALNUM, | 45939, | 53704, | 52248, | 76044, | 103297, | 111401, | 93119, |  |  |  |
|  | TONSLAND, | 12067, | 14287, | 13832, | 18620, | 23566, | 26877, | 26164, |  |  |  |
|  | SOPCOF \%, | 104, | 100, | 101, | 99, | 101, | 99, | 99, |  |  |  |
|  | YEAR, | 1964, | , 1965, | 1966, | 1967, | 1968, | 1969, | 1970, | 1971, | 1972, | 1973, |
|  | AGE |  |  |  |  |  |  |  |  |  |  |
|  | 1, | 55, | 0 , | 0 , | 0 , | 1037, | 396, | 1299, | 420, | 358, | 703, |
|  | 2, | 155, | 47100, | 12278, | 3686, | 17148, | 23922, | 6140, | 33369, | 7594, | 12228, |
|  | 3, | 2113, | 1089, | 133617, | 25683, | 13896, | 21451, | 25993, | 14425, | 36759, | 12783, |
|  | 4, | 5712, | 1599, | 990, | 85127, | 24973, | 5326, | 8235, | 12757, | 7075, | 16187, |
|  | 5, | 3809, | 5002, | 1181, | 1954, | 48571, | 12388, | 1784, | 4485, | 4965, | 4025, |
|  | 6 , | 17337, | 2482, | 3689, | 536, | 462, | 25139, | 3231, | 1442, | 1565, | 2324, |
|  | 7, | 3126, | 12500, | 744, | 1919, | 245, | 331, | 11960, | 2327, | 523, | 994, |
|  | 8 , | 1810, | 1557, | 6324, | 760, | 1644, | 244, | 246, | 7214, | 1232, | 765, |
|  | 9, | 818, | 1525, | 702, | 5047, | 324, | 1190, | 140, | 192, | 4706, | 1218, |
|  | +gp, | 3015, | 3208, | 2450, | 2913, | 6523, | 5272, | 5234, | 4594, | 2801, | 5790, |
| 0 | TOTALNUM, | 37950, | 76062, | 161975, | 127625, | 114823, | 95659, | 64262, | 81225, | 67578, | 57017, |
|  | TONSLAND, | 11342, | 17043, | 33340, | 33439, | 33179, | 27559, | 19685, | 23652, | 21086, | 19309, |
|  | SOPCOF \%, | 97, | 96, | 99, | 102, | 100, | 102, | 100, | 101, | 99, | 102, |
|  |  | 1974, | 1975, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, | 1982, | 1983, |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
|  | 1, | 101, | 264, | 1041, | 1747, | 27, | 9, | 637, | 423, | 2660, | 389, |
|  | 2, | 15380, | 22954, | 3542, | 22328, | 25031, | 8179, | 1209, | 29217, | 26435, | 34408, |
|  | 3, | 21540, | 28535, | 27966, | 12073, | 29292, | 41170, | 12511, | 3259, | 45746, | 41386, |
|  | 4, | 5487, | 11717, | 14013, | 15306, | 6129, | 16060, | 17781, | 6866, | 1843, | 21189, |
|  | 5, | 7061, | 2088, | 4819, | 7440, | 6639, | 2996, | 7297, | 8223, | 3535, | 624, |
|  | 6 , | 1922, | 3830, | 966, | 1779, | 4250, | 3222, | 1450, | 3661, | 4789, | 1378, |
|  | 7, | 1585, | 790, | 1909, | 319, | 1738, | 1747, | 2197, | 948, | 1678, | 1950, |
|  | 8 , | 658, | 907, | 550, | 1112, | 611, | 816, | 1409, | 886, | 615, | 978, |
|  | 9, | 401, | 508, | 425, | 256, | 646, | 241, | 367, | 766, | 605, | 386, |
|  | +gp, | 4814, | 3445, | 2663, | 2115, | 1602, | 1527, | 1203, | 908, | 1278, | 1176, |
| 0 | TOTALNUM, | 58949, | 75038, | 57894, | 64475, | 75965, | 75967, | 46061 , | 55157, | 89184, | 103864, |
|  | TONSLAND, | 17989, | 20773, | 17326, | 18003, | 20280, | 22598, | 15807, | 15403, | 21579, | 24927, |
|  | SOPCOF \%, | 99, | 101, | 102, | 102, | 100, | 101, | 102, | 103, | 101, | 100, |
|  | YEAR, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993,AGE |  |  |  |  |  |  |  |  |  |  |
|  | 1, | 191, | 165, | 374, | 94, | 10, | 117, | 863, | 120, | 980, | 54, |
|  | 2, | 30734, | 16618, | 9363, | 29053, | 13219, | 46387, | 11939, | 13163, | 6832, | 50451, |
|  | 3, | 43931, | 43213, | 18497, | 22046, | 47182, | 18263, | 104454, | 25420, | 44378, | 16768, |
|  | 4, | 22554, | 20286, | 17702, | 8899, | 15232, | 22654, | 9767, | 77913, | 16204, | 31409, |
|  | 5, | 8791, | 9403, | 7747, | 6512, | 4381, | 4624, | 9194, | 6724, | 38319, | 13869, |
|  | 6 , | 741, | 3556, | 5515, | 3119, | 3882, | 1653, | 3349, | 3675, | 2477, | 24035, |
|  | 7, | 854, | 209, | 2270, | 1567, | 1551, | 1437, | 1043, | 1736, | 3041, | 1489, |
|  | 8, | 1043, | 379, | 110, | 903, | 891, | 647, | 1198, | 719, | 741, | 1184, |
|  | 9, | 524, | 637, | 283, | 81, | 524, | 458, | 554, | 730, | 399, | 461, |
|  | +gp, | 894, | 975, | 1682, | 694, | 317, | 468, | 845, | 1090, | 1180, | 842, |
| 0 | TOTALNUM, | 110257, | 95441, | 63543, | 72968, | 87189, | 96708, | 143206, | 131290, | 114551, | 140562, |
|  | TONSLAND, | 26839, | 24248, | 18201, | 17368, | 21590, | 21805, | 35120, | 33513, | 29341, | 31491, |
|  | SOPCOF \%, | 100, | 99, | 99, | 99, | 100, | 98, | 99, | 98, | 99, | 99, |
|  | YEAR, | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003, |
|  | AGE |  |  |  |  |  |  |  |  |  |  |
|  | 1, | 718, | 4801, | 172, | 1590, | 244, | 287, | 2351, | 884, | 1055, | 1048, |
|  | 2, | 7804, | 12767, | 18824, | 6047, | 56648, | 15762, | 15073, | 25846, | 11053, | 32330, |
|  | 3, | 87403, | 16822, | 16190, | 23651, | 15141, | 72470, | 32738, | 21595, | 32852, | 17498, |
|  | 4, | 13550, | 68571, | 16964, | 7325, | 14934, | 8187, | 42803, | 19876, | 12290, | 16090, |
|  | 5, | 18739, | 6308, | 27257, | 5108, | 3496, | 6111, | 3288, | 16730, | 8215, | 5820, |
|  | 6 , | 5711, | 7307, | 3858, | 12793, | 1941, | 1212, | 2477, | 1427, | 6448, | 3906, |
|  | 7, | 11310, | 1995, | 4780, | 1201, | 4768, | 664, | 804, | 834, | 673, | 2430, |
|  | 8 , | 464, | 6015, | 943, | 2326, | 794, | 1984, | 435, | 274, | 597, | 400, |
|  | 9, | 916, | 295, | 3305, | 333, | 1031, | 331, | 931, | 168, | 89, | 128, |
|  | +gp, | 908, | 668, | 988, | 1688, | 846, | 812, | 714, | 724, | 364, | 451, |
| 0 | TOTALNUM, | 147523, | 125549, | 93281, | 62062, | 99843, | 107820, | 101614, | 88358, | 73636, | 80101, |
|  | TONSLAND, | 33002, | 30467, | 22651, | 14901, | 20868, | 23475, | 22641, | 19944, | 16945, | 17920, |
|  | SOPCOF \%, | 99, | 99, | 99, | 99, | 99, | 99, | 99, | 97, | 99, | 100, |

Table 7.3.3. North Sea sole: catch weights at age
Run title : Sole in IV
At 9/09/2004 10:45

|  | Table 2 | Catch | eights at | age (kg) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | YEAR, | 1957, | 1958, | 1959, | 1960, | 1961, | 1962, | 1963, |  |  |  |
|  | AGE |  |  |  |  |  |  |  |  |  |  |
|  | 1, | . 0000, | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , | . 0000 , |  |  |  |
|  | 2, | . 1540, | . 1450, | .1620, | . 1530, | .1460, | . 1550, | .1630, |  |  |  |
|  | 3, | . 1770, | . 1780, | . 1880, | .1850, | . 1740 , | . 1650, | . 1710, |  |  |  |
|  | 4, | . 2040 , | . 2200, | . 2280 , | . 2350 , | . 2110, | . 2080, | . 2190, |  |  |  |
|  | 5, | . 2480 , | . 2540 , | . 2610, | . 2540, | . 2550, | . 2410, | . 2580 , |  |  |  |
|  | 6, | . 2790, | . 2730, | . 3010 , | . 2770, | . 2880, | . 2950 , | . 3090 , |  |  |  |
|  | 7, | . 2900, | . 3140 , | . 3280 , | . 3010, | . 3190 , | . 3200 , | . 3230 , |  |  |  |
|  | 8, | . 3350 , | . 3230 , | . 3210 , | . 3090 , | . 3040 , | . 3210 , | . 3870 , |  |  |  |
|  | 9, | . 4360 , | . 3880 , | . 3730 , | . 3810 , | . 3460 , | . 3340 , | . 3760 , |  |  |  |
|  | +gp, | . 4081 , | . 4135 , | . 4262, | .4177, | . 4193, | . 4119, | . 4846 , |  |  |  |
| 0 | SOPCOFAC, | 1.0402, | 1.0050 , | 1.0095, | . 9936, | 1.0137, | . 9940 , | . 9918 , |  |  |  |
|  | YEAR, AGE | 1964, | 1965, | 1966, | 1967, | 1968, | 1969, | 1970, | 1971, | 1972, | 1973, |
|  | 1, | . 1530, | . 0000 , | . 0000 , | . 0000 , | . 1570, | . 1520, | . 1540 , | . 1450 , | .1690, | . 1460 , |
|  | 2, | . 1750 , | . 1690 , | . 1770 , | . 1920, | . 1890, | . 1910, | . 2120, | . 1930, | . 2040 , | . 2080, |
|  | 3 , | . 2130, | . 2090 , | . 1900, | . 2010, | . 2070, | . 1960 , | . 2180, | . 2370 , | . 2520 , | . 2380, |
|  | 4, | . 2520, | . 2460 , | .1800, | . 2520, | . 2670, | . 2550, | . 2850 , | . 3220 , | . 3340 , | . 3460 , |
|  | 5, | . 2740 , | . 2860 , | . 3010 , | . 2770 , | . 3270 , | . 3110 , | . 3500 , | . 3580 , | . 4340, | . 4040 , |
|  | 6 , | . 3090 , | . 2820 , | . 3320 , | . 3890 , | . 3420 , | . 3730 , | . 4040 , | . 4250 , | . 4250, | . 4480 , |
|  | 7, | . 3270 , | . 3450 , | . 4290, | . 4190, | . 3540 , | . 5530, | . 4410 , | . 4200 , | . 5320, | . 5520, |
|  | 8 , | . 3460 , | . 3780 , | . 3990 , | . 3390 , | . 4550, | . 3980 , | . 4630, | . 4900, | . 4850, | . 5670, |
|  | 9, | . 3880 , | . 4040 , | . 4490, | . 4240, | . 4650 , | . 4680 , | . 4430, | . 5340 , | . 5580, | . 5090 , |
|  | +gp, | . 4805 , | . 4797 , | . 5015, | .4912, | . 5075, | . 5227, | . 5326, | . 5471, | .6291, | . 5858, |
| 0 | SOPCOFAC, | . 9661 , | . 9592, | . 9892, | 1.0225, | . 9968 , | 1.0202, | 1.0001 , | 1.0119, | . 9890 , | 1.0189, |
|  | $\begin{aligned} & \text { YEAR, } \\ & \text { AGE } \end{aligned}$ | 1974, | 1975, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, | 1982, | 1983, |
|  | 1, | . 1640, | . 1290, | . 1430, | . 1470, | . 1520, | . 1370, | . 1410, | . 1430, | . 1410, | . 1340, |
|  | 2, | . 1920 , | .1820, | . 1900 , | .1880, | . 1960, | . 2080, | . 1990 , | . 1870 , | . 1880 , | . 1820, |
|  | 3, | . 2330 , | . 2250 , | . 2220 , | . 2360 , | . 2310, | . 2460 , | . 2440 , | . 2260 , | . 2160, | . 2170, |
|  | 4, | . 3380 , | . 3200 , | . 3060 , | . 3070 , | . 3140 , | . 3230, | . 3310 , | . 3240 , | . 3070, | . 3010, |
|  | 5, | . 4180, | . 4060 , | . 3890 , | . 3690 , | . 3700 , | . 3910 , | . 3710 , | . 3780 , | . 3710 , | . 3890 , |
|  | 6 , | . 4480 , | . 4560 , | . 4410 , | . 4240, | . 4260, | . 4480 , | . 4180, | . 4240 , | . 4090 , | . 4160 , |
|  | 7, | . 5200, | . 5290, | . 5120, | . 4300, | . 4660 , | . 5340, | . 4990, | . 4420 , | .4370, | . 4670 , |
|  | 8 , | . 5590, | . 5950, | . 5620, | . 5200, | . 4170 , | . 5440 , | . 5500, | . 5160 , | . 4910, | . 4890 , |
|  | 9, | . 6090, | . 6290, | . 6670, | . 5620, | . 5720, | . 6090, | . 5980, | . 5420 , | . 5800, | . 5050 , |
|  | +gp, | . 6533, | .6693, | .6647, | .6194, | . 6663, | . 7630 , | .6841, | . 6302, | .6557, | . 6422 , |
| 0 | SOPCOFAC, | . 9864 , | 1.0104, | 1.0216, | 1.0188, | . 9956 , | 1.0124, | 1.0201, | 1.0262, | 1.0138, | 1.0040, |
|  | YEAR, AGE | 1984, | 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, |
|  | 1, | . 1530, | . 1220, | . 1350 , | . 1390 , | . 1270, | . 1180, | . 1240 , | . 1270, | . 1460 , | . 0970, |
|  | 2, | .1710, | .1870, | . 1790 , | .1850, | . 1750, | . 1730, | .1830, | . 1860 , | . 1780 , | . 1670 , |
|  | 3 , | . 2210, | . 2160 , | . 2130, | . 2050 , | . 2170, | . 2160 , | . 2270, | . 2100, | . 2130, | . 1960, |
|  | 4, | . 2860 , | . 2880 , | . 2990 , | . 2770, | . 2700, | . 2880 , | . 2920, | . 2630 , | . 2580, | . 2390 , |
|  | 5, | . 3610 , | . 3570 , | . 3570 , | . 3560 , | . 3540 , | . 3360 , | . 3710 , | . 3150 , | . 2980, | . 2640 , |
|  | 6 , | . 3860 , | . 4270, | . 4070, | . 3780 , | . 4280, | . 3750 , | . 4130, | . 4360 , | . 3800 , | . 3000 , |
|  | 7, | . 4650 , | . 4470 , | . 4850 , | .4280, | . 4840 , | . 4560 , | . 4150, | . 4430 , | .4090, | . 3380 , |
|  | 8, | . 5550, | . 5440 , | . 5430, | . 4810, | . 5210, | . 4920, | . 5140, | . 4670 , | . 4600, | . 4410 , |
|  | 9, | . 5750 , | . 6120, | . 5680, | . 3930 , | . 5590, | . 4700, | . 4760, | . 5070 , | . 4870, | . 4960 , |
|  | +gp, | .6339, | . 6447 , | . 6096, | .6569, | . 7124, | . 6111, | . 6198, | . 5579, | . 5557, | . 6031, |
| 0 | SOPCOFAC, | 1.0034, | . 9898 , | . 9937 , | . 9946 , | . 9990 , | . 9841 , | . 9897 , | . 9829 , | . 9850 , | . 9885 , |
|  | YEAR, AGE | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003, |
|  | 1, | . 1430, | . 1510, | . 1630, | . 1510, | . 1280, | . 1630, | . 1450 , | . 1430, | . 1400, | . 1360 , |
|  | 2, | .1800, | .1860, | . 1770 , | .1800, | . 1820, | . 1790 , | .1700, | .1850, | .1830, | . 1820 , |
|  | 3 , | . 2020, | .1960, | . 2020, | . 2060 , | . 1890 , | . 2120, | . 2000, | . 2020, | . 2110, | . 2140 , |
|  | 4, | . 2280, | . 2470, | . 2340 , | . 2360, | . 2520 , | . 2290, | . 2480, | . 2700, | . 2430, | . 2560, |
|  | 5, | . 2570, | . 2650, | . 2740 , | . 2670 , | . 2620, | . 2870 , | . 2900, | . 2750 , | . 2810, | . 2730, |
|  | 6, | . 3000 , | . 3190 , | . 2850 , | . 2960 , | . 2890, | . 3240 , | . 2990, | . 3330 , | . 3120 , | . 3170 , |
|  | 7, | . 3170 , | . 3440 , | . 3180 , | . 3230 , | . 3360 , | . 3540 , | . 3230 , | . 3910 , | . 3660 , | . 3400 , |
|  | 8 , | . 4320, | . 3560 , | . 3700 , | . 3060 , | . 2920, | . 3720 , | . 3680 , | . 4140 , | . 3190 , | . 3440 , |
|  | 9, | . 4090, | . 4440 , | . 3900 , | . 3840 , | . 3350 , | . 3720 , | . 4020, | . 4330 , | . 5710, | . 5030, |
|  | +gp, | . 5101, | . 5914, | . 5943, | . 4396, | . 5039, | . 4527, | . 4274, | . 4935, | . 5361 , | . 4305, |
| 0 | SOPCOFAC, | . 9879 , | . 9927 , | . 9886, | . 9901, | . 9914 , | . 9898 , | . 9904 , | . 9690 , | . 9914 , | . 9989 , |

Table 7.3.4. North Sea sole: stock weights at age
Run title : Sole in IV
At 9/09/2004 10:45


Table 7.3.5. North Sea sole: effort and CPUE series
Note: only NL beam is used for tuning


Table 7.3.6. North Sea sole: tuning data


FLT03:NL Comm BT


Table 7.4.1. North Sea sole: XSA diagnostics
Lowestoft VPA Version 3.1

$$
8 / 09 / 2004 \quad 15: 05
$$

Extended Survivors Analysis

```
Sole in IV
CPUE data from file fleet03
Catch data for 47 years. }1957\mathrm{ to 2003. Ages 1 to 10.
    Fleet, First, Last, First, Last, Alpha, Beta
FLT01:NL BTS-ISIS ', year, year, age , age . 985, 2003, 1, 9, .670, . 750
FLT02:NL SNS , 1970, 2003, 1, 4, .670, .750
FLT03:NL Comm BT , 1990, 2003, 2, 9, .000, 1.000
Time series weights :
```

    Tapered time weighting not applied
    Catchability analysis :
Catchability dependent on stock size for ages < 2
Regression type $=C$
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 2
Catchability independent of age for ages $>=7$
Terminal population estimation :
Survivor estimates shrunk towards the mean $F$
of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk $=2.000$
Minimum standard error for population
estimates derived from each fleet $=$. 300
Prior weighting not applied
Tuning converged after 27 iterations
1
Regression weights
, $1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000$
Fishing mortalities
Age, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
1, .013, . $054, .004, .006, .002, .004, .019, .013, .006, .011$
$2, \quad .140, \quad .306, \quad .274, \quad .155, \quad .273, \quad .163, \quad .237, \quad .260, \quad .205, \quad .209$
3, .479, .444, .695, . $577, .623, .585, .520, .549, \quad .538, .509$
. 635, .761, .976, .697, .788, .727, .732, .612, .617, . 488
.670, .609, .696, .800, .758, .781, .643, .627, .487, . 591
$\begin{array}{llllllll}.670, & .609, & .696, & .800, & .758, & .781, & .643, & .627, \\ .878, & .530, & .836, & .737, & .723, & .569, & .755, & .566,\end{array} .465, \quad .400$
.497, $.782, \quad .703, \quad .597, \quad .596, \quad .512, .826, .544, .506, \quad .283$
$\begin{array}{llllllll}.623, & .475, & .966, & .795, & .908, & .470, & .663, & .662, \\ .901, & .935, & .461, & 1.008, & .904, & 1.144, & .373, & .513,\end{array} .411, \quad .380$

Table 7.4.1. cont. North Sea sole: XSA diagnostics
XSA population numbers (Thousands)

| YEAR | , | 1, |  | $\begin{aligned} & \text { AGE } \\ & 2, \end{aligned}$ | 3, |  | 4, | 5, | 6, |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8, |  | 9, |  |  |  |  |  |  |  |  |
| 1994 | , | 5.71E+04, | $6.27 \mathrm{E}+04$, | 2.41E+05, | $3.03 \mathrm{E}+04$, | 4.03E+04, | 1.03E+04, | $3.04 \mathrm{E}+04$, | $1.05 \mathrm{E}+03$, | 1.62E+03, |
| 1995 | , | 9.62E+04, | 5.10E+04, | 4.93E+04, | 1.35E+05, | 1.45E+04, | 1.87E+04, | $3.87 \mathrm{E}+03$, | 1.67E+04, | $5.11 \mathrm{E}+02$, |
| 1996 | , | 4.91E+04, | 8.24E+04, | 3.40E+04, | $2.86 \mathrm{E}+04$, | 5.71E+04, | $7.16 \mathrm{E}+03$, | 9.95E+03, | 1.60E+03, | 9.41E+03, |
| 1997 | , | 2.78E+05, | 4.43E+04, | $5.67 \mathrm{E}+04$, | $1.53 \mathrm{E}+04$, | 9.75E+03, | $2.58 \mathrm{E}+04$, | 2.81E+03, | 4.46E+03, | $5.51 \mathrm{E}+02$, |
| 1998 | , | 1.22E+05, | 2.50E+05, | 3.43E+04, | $2.88 \mathrm{E}+04$, | 6.92E+03, | 3.96E+03, | 1.12E+04, | 1.40E+03, | 1.82E+03, |
| 1999 | , | 8.34E+04, | 1.10E+05, | 1.72E+05, | $1.67 \mathrm{E}+04$, | 1.19E+04, | 2.94E+03, | 1.74E+03, | 5.56E+03, | $5.11 \mathrm{E}+02$, |
| 2000 | , | 1.34E+05, | 7.52E+04, | 8.49E+04, | 8.67E+04, | $7.29 \mathrm{E}+03$, | $4.91 \mathrm{E}+03$, | 1.50E+03, | 9.44E+02, | $3.15 \mathrm{E}+03$, |
| 2001 | , | 7.01E+04, | 1.19E+05, | $5.37 \mathrm{E}+04$, | $4.56 \mathrm{E}+04$, | 3.77E+04, | 3.47E+03, | 2.09E+03, | $5.95 \mathrm{E}+02$, | $4.40 \mathrm{E}+02$, |
| 2002 | , | 2.01E+05, | $6.26 \mathrm{E}+04$, | 8.30E+04, | $2.81 \mathrm{E}+04$, | $2.24 \mathrm{E}+04$, | 1.82E+04, | 1.78E+03, | 1.10E+03, | 2.78E+02, |
| 2003 | , | 1.04E+05, | 1.80E+05, | 4.61E+04, | 4.38E+04, | 1.37E+04, | 1.24E+04, | $1.04 \mathrm{E}+04$, | 9.72E+02, | 4.26E+02, |

Estimated population abundance at 1st Jan 2004
$0.00 \mathrm{E}+00,9.30 \mathrm{E}+04,1.33 \mathrm{E}+05,2.51 \mathrm{E}+04,2.44 \mathrm{E}+04,6.87 \mathrm{E}+03,7.55 \mathrm{E}+03,7.07 \mathrm{E}+03,4.99 \mathrm{E}+02$,
Taper weighted geometric mean of the VPA populations:
$9.76 \mathrm{E}+04,8.59 \mathrm{E}+04,6.33 \mathrm{E}+04,3.50 \mathrm{E}+04,1.77 \mathrm{E}+04,9.39 \mathrm{E}+03,5.23 \mathrm{E}+03,2.96 \mathrm{E}+03,1.65 \mathrm{E}+03$,
Standard error of the weighted Log(VPA populations) :

1
.7693, .8124, .8350, .8730, .9146, .9220, .9888, 1.0303, 1.1051,

Log catchability residuals.

Fleet : FLT01:NL BTS-ISIS

| Age | , | 1984, | 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | , | 99.99, | -. 64, | -. 62, | . 09, | -.18, | -. 12, | -. 06, | -.35, | . 01 , | -. 08 |
| 2 | , | 99.99, | .15, | -.67, | -. 26 , | . 55, | . 30 , | . 63, | .14, | 1.09, | -. 32 |
| 3 | , | 99.99, | -.13, | -.21, | -. 52, | -. 60, | . 51, | . 04 , | . 27 , | . 26 , | -1.10 |
| 4 |  | 99.99, | . 28 , | -.43, | -. 25 , | . 00 , | . 93, | -.43, | -.21, | . 26 , | . 42 |
| 5 |  | 99.99, | -.19, | .13, | -.02, | -. 90, | . 34 , | -.06, | -1.35, | -.25, | 1.19 |
| 6 | , | 99.99, | . 25 , | -.18, | .15, | -. 40 , | -.03, | 1.03, | -.80, | -. 78 , | 1.08 |
| 7 |  | 99.99, | 99.99, | -.25, | .19, | -.11, | . 32, | -.23, | -.41, | -. 33, | -. 98 |
| 8 | , | 99.99, | 99.99, | -1.66, | .03, | -. 24 , | 99.99, | -.55, | -.39, | .15, | -. 07 |
| 9 | , | 99.99, | 99.99, | -.16, | 1.62, | -.56, | .53, | -1.21, | -1.32, | -. 26 , | . 98 |
| Age | , | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003 |
| 1 |  | . 22 , | . 71 , | . 04 , | . 80, | . 02 , | . 26 , | -. 12, | . 21, | -. 21 , | . 01 |
| 2 |  | -.42, | . 43 , | -.39, | . 01, | . 06 , | . 38 , | -.27, | -.20, | -. 54, | -. 68 |
| 3 |  | .14, | . 91 , | . 16 , | .09, | . 14 , | . 62, | -. 12, | -.19, | -. 26 , | -. 01 |
| 4 |  | -2.07, | . 44 , | . 64, | . 44 , | . 40 , | .14, | -.57, | . 04 , | -. 07 , | . 03 |
| 5 |  | . 12 , | . 01 , | . 36 , | 1.03, | -.94, | 1.80, | . 21, | -.49, | -. 80 , | -. 17 |
| 6 |  | -.74, | . 66, | . 75 , | -.33, | -1.70, | 1.53, | . 38 , | -. 05 , | -.31, | -. 53 |
| 7 |  | -. 04 , | 1.07, | . 34, | .17, | . 18, | 1.34, | . 46 , | -. 54, | -1.00, | -. 20 |
| 8 |  | -.85, | . 52, | . 33 , | -1.17, | 99.99, | 1.22, | -1.27, | . 51, | . 72, | 99.99 |
| 9 | , | -2.34, | 1.35, | -.12, | 1.24, | 99.99, | -1.29, | . 33, | 99.99, | 99.99, | . 34 |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age, | 2, | 3, | 4, | 5, | 6, | 7, | 8, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -8.8482, | -9.3825, | -9.7413, | -9.8342, | -10.1398, | -9.8674, | -9.8674, |
| S.E (Log q), | .4804, | .4548, | .6346, | .7666, | .7879, | .6034, | .8307, |

Table 7.4.1. cont. North Sea sole: XSA diagnostics
Regression statistics :
Ages with q dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log
1, $64, ~ 2.572, ~ 9.99, ~ 19, ~ .35, ~-9.04$,

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 2, | 1.09, | -.459, | 8.60, | .60, | 19, | .54, | -8.85, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3, | .94, | .399, | 9.50, | .69, | 19, | .44, | -9.38, |
| 4, | .96, | .186, | 9.78, | .55, | 19, | .63, | -9.74, |
| 5, | .99, | .047, | 9.83, | .46, | 19, | .78, | -9.83, |
| 6, | .91, | .382, | 10.05, | .52, | 19, | .73, | -10.14, |
| 7, | .99, | .061, | 9.85, | .63, | 18, | .61, | -9.87, |
| 8, | .74, | 1.629, | 9.41, | .76, | 15, | .57, | -10.05, |
| 9, | 1.76, | -1.388, | 12.22, | .21, | 15, | 1.94, | -9.93, |
| 1 |  |  |  |  |  |  |  |

Fleet : FLT02:NL SNS

| Age $\begin{array}{r}\text { a } \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9\end{array}$ |  | $\begin{array}{r} 1970, \\ .31, \\ .77, \\ .39, \\ .33, \end{array}$ <br> No data | $\begin{array}{r} 1971, \\ -.06 \text {, } \\ .85 \text {, } \\ .13 \text {, } \\ -1.38 \text {, } \\ \text { for } t l \\ \text { for } t \\ \text { for } t \\ \text { for } t l \\ \text { for } t \end{array}$ | $\begin{array}{r} 1972, \\ -.05 \\ .24 \\ -.17, \\ -5.26, \end{array}$ <br> his fle <br> his fle <br> his fle <br> this flee <br> his fle | $\begin{array}{r} 1973 \\ .52 \\ .57 \\ .20 \\ -.13 \\ \text { et at th } \end{array}$ | is age <br> is age <br> is age <br> is age <br> is age |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age |  | 1974, | 1975, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, | 1982, | 1983 |
| 1 |  | -.17, | -.07, | -.43, | .09, | . 50, | -.13, | .15, | . 02, | . 24 , | -. 19 |
| 2 | , | -.61, | . 24, | -1.30, | . 06 , | . 42 , | .21, | -.02, | . 37 , | .13, | . 20 |
| 3 | , | -. 60, | -.09, | .09, | . 02 , | . 42 , | .43, | . 23 , | . 88 , | . 05 , | -. 81 |
| 4 | , | -4.76, | . 55, | . 44, | . 86, | . 47, | . 50, | .02, | -. 26 , | . 42 , | . 04 |
| 5 |  | No data | for th | this flee | t at th | is age |  |  |  |  |  |
| 6 | , | No data | for th | his flee | t at th | is age |  |  |  |  |  |
| 7 | , | No data | for th | his flee | t at th | is age |  |  |  |  |  |
| 8 | , | No data | for th | his flee | t at th | is age |  |  |  |  |  |
| 9 |  | No data | for th | his flee | t at th | is age |  |  |  |  |  |
| Age |  | 1984, | 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993 |
| 1 |  | . 42 , | . 22 , | -.03, | . 23 , | -. 26 , | .19, | -.34, | -.05, | -. 02, | . 02 |
| 2 | , | .19, | . 48 , | -. 20 , | -.09, | . 22 , | . 51, | . 35 , | . 67, | -1.48, | . 37 |
| 3 | , | . 41, | -.19, | -.41, | -. 92, | .16, | . 72 , | -. 02, | . 90 , | -.13, | -1.13 |
|  | , | . 74, | . 47, | -.21, | -. 34, | 1.02, | . 06 , | 1.30, | 1.03, | 1.31, | . 68 |
| 5 |  | No data | for th | this flee | t at th | is age |  |  |  |  |  |
| 6 | 6 , | No data | for th | this fle | t at th | is age |  |  |  |  |  |
| 7 | , | No data | for th | this flee | t at th | is age |  |  |  |  |  |
| 8 |  | No data | for th | this fle | t at th | is age |  |  |  |  |  |
| 9 |  | No data | for th | this flee | t at th | is age |  |  |  |  |  |

Age , 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003

$1,-.45,-.20,-.14, \quad .16, ~ .02,-.01,-.44,-.25, \quad .21,99.99$ $2,-.02,-.41,-.21,-.87, \quad .12, \quad .09,-1.29,-.28,-.25,99.99$ |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| , | -1.13, | -.07, | -1.06, | .49, | .46, | -.11, |$\quad-.15, ~-.32, ~-.20, ~ 99.99$

, No data for this fleet at this age
, No data for this fleet at this age
, No data for this fleet at this age
, No data for this fleet at this age
, No data for this fleet at this age

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age , | 2, | 3, | 4 |
| :---: | ---: | ---: | ---: |
| Mean Log q, | -4.6875, | -5.5147, | -6.3681, |
| S.E (Log q), | .5744, | .5072, | 1.4630, |

Table 7.4.1. cont. North Sea sole: XSA diagnostics
Regression statistics :
Ages with $q$ dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log q
1, $.76, \quad 3.674, \quad 5.65, \quad .88, ~ 33, ~ .26, ~ 3.77$,

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 2, | .79, | 1.885, | 6.09, | .72, | 33, | .44, | -4.69, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3, | 1.08, | -.565, | 5.06, | .61, | 33, | .55, | -5.51, |
| 4, | .59, | 1.941, | 7.99, | .43, | 32, | .83, | -6.37, |
| 1 |  |  |  |  |  |  |  |

Fleet : FLT03: NL Comm BT


Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age , | 2, | 3, | 4, | 5, | 6, | 7, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -6.1933, | -5.2538, | -5.0848, | -5.0645, | -5.2319, | -5.2976, |
| S.E (Log q), | .4805, | .2275, | .2195, | .2342, | .2059, | .2357, |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 2, | .94, | .282, | 6.52, | .64, | 14, | .47, | -6.19, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3, | 1.01, | -.076, | 5.21, | .91, | 14, | .24, | -5.25, |
| 4, | 1.00, | .016, | 5.09, | .92, | 14, | .23, | -5.08, |
| 5, | 1.00, | .057, | 5.09, | .92, | 14, | .24, | -5.06, |
| 6, | .95, | .720, | 5.42, | .95, | 14, | .20, | -5.23, |
| 7, | .98, | .301, | 5.37, | .94, | 14, | .24, | -5.30, |
| 8, | 1.02, | -.163, | 5.19, | .88, | 14, | .34, | -5.23, |
| 9, | .98, | .285, | 5.33, | .96, | 14, | .21, | -5.31, |

Table 7.4.1. cont. North Sea sole: XSA diagnostics
Terminal year survivor and $F$ summaries :
Age 1 Catchability dependent on age and year class strength
Year class $=2002$

1
Age 2 Catchability constant w.r.t. time and dependent on age
Year class $=2001$

| Fleet, |  | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, <br> Ratio, | N, | Scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT01:NL BTS-ISIS | , | 89981., | . 303, | . 229, | . 75, | 2, | . 414, | . 294 |
| FLT02:NL SNS |  | 164259., | . 300 , | . 000 , | . 00 , | 1, | . 421, | . 172 |
| FLT03:NL Comm BT | , | 210069., | . 497, | . 000 , | . 00 , | 1, | . 154, | . 137 |
| F shrinkage mean |  | 120220., | 2.00, |  |  |  | . 012, | . 228 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $132500 .$, | .19, | .18, | 5, | .945, | .209 |

Age 3 Catchability constant w.r.t. time and dependent on age
Year class $=2000$

| Fleet, |  | Estimated, | Int, | Ext, | Var, | N, | Scaled, | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , |  | Survivors, | s.e, | s.e, | Ratio, |  | Weights, | F |
| FLT01:NL BTS-ISIS | , | 23904., | . 255 , | . 210, | . 82 , | 3, | . 339, | . 528 |
| FLT02:NL SNS | , | 19488., | . 267 , | . 001 , | . 00 , | 2 , | . 286 , | . 617 |
| FLT03:NL Comm BT | , | 32183., | . 258 , | . 065 , | . 25 , | 2 , | . 364 , | . 417 |
| F shrinkage mean |  | 21904., | 2.00, |  |  |  | .011, | . 565 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, | Ration |  |
| $25102 .$, | .15, | .10, | 8, | .680, | .509 |

Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=1999$

| Fleet, |  | Estimated, | Int, | Ext, | Var, | N, | Scaled, | Estimat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , |  | Survivors, | s.e, | s.e, | Ratio, |  | Weights, | F |
| FLT01:NL BTS-ISIS | , | 21196., | . 249, | . 063, | . 25 , | 4, | . 260 , | . 544 |
| FLT02:NL SNS | , | 17110., | .239, | . 075, | . 32, | 3, | . 221, | . 639 |
| FLT03:NL Comm BT | , | 30784 | . 204, | . 062 , | . 30, | 3, | . 508, | . 404 |
| F shrinkage mean |  | 15157., | 2.00, |  |  |  | .011, | . 698 |

Weighted prediction :

| Survivors, at end of year, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | N, | Var, Ratio, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |

Table 7.4.1. cont. North Sea sole: XSA diagnostics
Age 5 Catchability constant w.r.t. time and dependent on age

| Year class $=1998$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fleet, |  | Estimated, Survivors, |  |  | Ext, | Var, <br> Ratio, |  | Scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$ |
| FLT01:NL BTS-ISIS | , | 6438., | . 26 |  | . 097, | . 37, | 5, | . 208, | . 621 |
| FLT02:NL SNS | , | 5131., | . 23 |  | . 318, | 1.33, | 3, | .137, | . 732 |
| FLT03:NL Comm BT | , | 7498., | . 18 |  | . 036 , | .19, | 4, | . 641, | . 553 |
| F shrinkage mean |  | 5899., | 2.0 | , , , |  |  |  | . 013, | . 662 |
| Weighted prediction : |  |  |  |  |  |  |  |  |  |
| Survivors, at end of year, 6872., | Int, s.e, .14, | Ext, s.e, .07, | $\begin{array}{r} \mathrm{N}, \\ \text { ', } \\ 13^{\prime}, \end{array}$ | Var, Ratio, .500, | F .591 |  |  |  |  |
| 1 |  |  |  |  |  |  |  |  |  |
| Age 6 Catchability constant w.r.t. time and dependent on age |  |  |  |  |  |  |  |  |  |
| Year class $=1997$ |  |  |  |  |  |  |  |  |  |
| Fleet, |  | Estimated, Survivors, |  |  | Ext, | Var, <br> Ratio |  | Scaled, Weights, | Estimated |
| FLT01:NL BTS-ISIS | , | 5984., |  |  | .169, | . 60, | 6, | .177, | . 483 |
| FLT02:NL SNS | , | 7354., | . 23 |  | . 066 , | . 28 , | 4, | . 095 , | . 409 |
| FLT03:NL Comm BT | , | 8088., | . 16 |  | . 047 , | . 28 , | 5, | . 717, | . 378 |
| F shrinkage mean |  | 4343., | 2.0 | , , , |  |  |  | .011, | . 618 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | ---: | ---: | ---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $7547 .$, | .13, | .06, | 16, | .426, | .400 |

Age 7 Catchability constant w.r.t. time and dependent on age
Year class $=1996$


| Weighted prediction : |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Survivors, | Int, | Ext, | N, | Var, | F |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $7074 .$, | .14, | .06, | 18, | .414, | .283 |

1
Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class $=1995$

| Fleet, |  | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, <br> Ratio, | N, | Scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT01:NL BTS-ISIS | , | 316., | . 343 , | . 220, | . 64, | 7, | .118, | . 790 |
| FLT02:NL SNS |  | 441., | . 238 , | . 232 , | . 98 , | 4, | . 028, | . 622 |
| FLT03:NL Comm BT | , | 538., | .167, | . 057 , | . 34, | 7, | . 837, | . 535 |
| F shrinkage mean |  | 366., | 2.00, |  |  |  | . 016, | . 713 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $499 .$, | .15, | .07, | 19, | .465, | .567 |

Table 7.4.1. cont. North Sea sole: XSA diagnostics
Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class $=1994$

| Fleet, |  | Estimated, Survivors, | Int, | Ext, | Var, <br> Ratio, |  | Scaled, Weights, | Estimated <br> F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT01: NL BTS-ISIS |  | $337 .,$ | . 4.41 , | $\begin{aligned} & \text { s.e, } \\ & .201, \end{aligned}$ | $.46,$ | 9', | Weights, | . 309 |
| FLT02:NL SNS |  | 270., | . 240 , | .195, | . 81, | 4, | . 009 , | . 373 |
| FLT03: NL Comm BT | , | 257., | . 185, | .147, | . 79, | 8, | . 869 , | . 388 |
| F shrinkage mean |  | 204., | 2.00, |  |  |  | . 016, | . 467 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $264 .$, | .17, | .09, | 22, | .535, | .380 |

Table 7.4.2. North Sea sole: fishing mortality at age


Table 7.4.3. North Sea sole: stock numbers at age

Run title : Sole in IV
At 9/09/2004 15:50
Terminal Fs derived using XSA (With F shrinkage)


Table 7.4.4. North Sea sole: XSA summary

Run title : Sole in IV
At 8/09/2004 15:06
Table 16 (without SOP correction)
Terminal Fs derived using XSA (With F shrinkage)


[^6]Table 7.5.1. North Sea Sole. Input RCT3 - age 1.


Table 7.5.1 (cont'd). North Sea Sole. Input RCT3 - age 2.


Table 7.5.2a. North Sea Sole. Output RCT3 - age 1.
Analysis by RCT3 ver3.1 of data from file :

```
s4rct-1_.txt
SoleNorthSea - Age1.
Data for 8 surveys over 36 years : 1968-2003
Regression type = C
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
```

Yearclass $=2001$

| Survey/ <br> Series | Slope | Intercept | Std Error | Rsquare | No. <br> Pts | Index Value | Predicted Value | Std <br> Error | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DFS-0 | 1.37 | 5.21 | 1.22 | . 290 | 23 | 4.47 | 11.35 | 1.309 | . 023 |
| SNS-1 | . 77 | 5.60 | . 27 | . 878 | 31 | 8.87 | 12.44 | . 287 | . 474 |
| DFS-1 | 1.35 | 8.35 | . 64 | . 602 | 24 | 2.96 | 12.36 | . 694 | . 081 |
| SNS-2 |  |  |  |  |  |  |  |  |  |
| SNS-3 |  |  |  |  |  |  |  |  |  |
| Solea- |  |  |  |  |  |  |  |  |  |
| BTS-1 | . 66 | 9.91 | . 38 | . 760 | 16 | 3.11 | 11.97 | . 422 | . 219 |
| BTS-2 | 1.14 | 8.63 | . 51 | . 633 | 17 | 2.45 | 11.42 | . 557 | . 125 |
|  |  |  |  |  | VPA | Mean $=$ | 11.49 | . 701 | . 079 |




Table 7.5.2b. North Sea Sole. Output RCT3 - age 2.

```
Analysis by RCT3 ver3.1 of data from file :
```

```
s4rct-2_.txt
SoleNorthSea - Age2.
Data for 8 surveys over 36 years : 1968-2003
Regression type = C
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
```

Yearclass $=2001$

| Survey/ <br> Series | Slope | $\begin{gathered} \text { Inter- } \\ \text { cept } \end{gathered}$ | Std <br> Error | Rsquare | No. <br> Pts | Index Value | Predicted Value | Std Error | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DFS-0 | 1.37 | 5.11 | 1.22 | . 290 | 23 | 4.47 | 11.24 | 1.305 | . 023 |
| SNS-1 | . 77 | 5.51 | . 26 | . 880 | 31 | 8.87 | 12.33 | . 284 | . 482 |
| DFS-1 | 1.35 | 8.24 | . 64 | . 604 | 24 | 2.96 | 12.25 | . 691 | . 081 |
| SNS-2 |  |  |  |  |  |  |  |  |  |
| SNS-3 |  |  |  |  |  |  |  |  |  |
| Solea- |  |  |  |  |  |  |  |  |  |
| BTS-1 | . 67 | 9.79 | . 39 | . 751 | 16 | 3.11 | 11.86 | . 433 | . 207 |
| BTS-2 | 1.14 | 8.53 | . 50 | . 640 | 17 | 2.45 | 11.32 | . 551 | . 128 |
|  |  |  |  |  | VPA | Mean = | 11.38 | . 701 | . 079 |

## Yearclass $=2002$

| Survey/ <br> Series | Slope | $\begin{gathered} \text { Inter- } \\ \text { cept } \end{gathered}$ | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | No. <br> Pts | Index Value | $\begin{aligned} & \text { Predicted } \\ & \text { Value } \end{aligned}$ | Std Error | WAP Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DFS-0 | 1.37 | 5.11 | 1.22 | . 290 | 23 | 4.19 | 10.85 | 1.310 | . 058 |
| SNS-1 |  |  |  |  |  |  |  |  |  |
| DFS-1 | 1.35 | 8.24 | . 64 | . 604 | 24 | 1.85 | 10.74 | . 688 | . 209 |
| SNS-2 |  |  |  |  |  |  |  |  |  |
| SNS-3 |  |  |  |  |  |  |  |  |  |
| Solea- |  |  |  |  |  |  |  |  |  |
| BTS-1 | . 67 | 9.79 | . 39 | . 751 | 16 | 2.46 | 11.43 | . 432 | . 532 |
| BTS-2 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | VPA | Mean $=$ | 11.38 | . 701 | . 202 |

Yearclass $=2003$

| Survey/ <br> Series | Slope | $\begin{gathered} \text { Inter- } \\ \text { cept } \end{gathered}$ | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | No. <br> Pts | Index Value | Predicted Value | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DFS-0 | 1.37 | 5.11 | 1.22 | . 290 | 23 | 2.98 | 9.21 | 1.375 | . 206 |
| SNS-1 |  |  |  |  |  |  |  |  |  |
| DFS-1 |  |  |  |  |  |  |  |  |  |
| SNS-2 |  |  |  |  |  |  |  |  |  |
| SNS-3 |  |  |  |  |  |  |  |  |  |
| Solea- |  |  |  |  |  |  |  |  |  |
| BTS-1 |  |  |  |  |  |  |  |  |  |
| BTS-2 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | VPA | Mean $=$ | 11.38 | . 701 | . 794 |


| Year <br> Class | Weighted <br> Average <br> Prediction | Log | WAP | Int <br> Std <br> Error | Ext <br> Std <br> Error | Var <br> Ratio | VPA |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | | Log |
| :--- |
|  |
| 2001 |

Table 7.6.1. North Sea Sole. Input data for catch forecast and linear sensitivity analysis.

| Label | Value | CV | Label | Value | CV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Numbe | age |  | Weigh | the st |  |
| N1 | 95889 | 0.78 | WS1 | 0.05 | 0.00 |
| N2 | 76353 | 0.34 | WS2 | 0.15 | 0.01 |
| N3 | 132499 | 0.19 | WS3 | 0.19 | 0.03 |
| N4 | 25101 | 0.15 | WS 4 | 0.24 | 0.05 |
| N5 | 24352 | 0.13 | WS5 | 0.26 | 0.02 |
| N6 | 6871 | 0.14 | WS6 | 0.29 | 0.09 |
| N7 | 7547 | 0.13 | WS7 | 0.32 | 0.05 |
| N8 | 7074 | 0.14 | WS8 | 0.35 | 0.18 |
| N9 | 498 | 0.15 | WS9 | 0.45 | 0.11 |
| N10 | 1188 | 0.17 | WS10 | 0.48 | 0.10 |
| H.con | lectivi |  | Weigh | the HC | atch |
| sH1 | 0.01 | 0.37 | WH1 | 0.14 | 0.03 |
| sH2 | 0.21 | 0.06 | WH2 | 0.18 | 0.01 |
| sH3 | 0.49 | 0.06 | WH3 | 0.21 | 0.03 |
| sH4 | 0.53 | 0.10 | WH4 | 0.26 | 0.05 |
| sH5 | 0.53 | 0.12 | WH5 | 0.28 | 0.02 |
| sH6 | 0.44 | 0.09 | WH6 | 0.32 | 0.03 |
| sH7 | 0.41 | 0.27 | WH7 | 0.37 | 0.07 |
| sH8 | 0.64 | 0.22 | WH8 | 0.36 | 0.14 |
| sH9 | 0.40 | 0.07 | WH9 | 0.50 | 0.14 |
| sH10 | 0.40 | 0.07 | WH10 | 0.49 | 0.11 |
| Natur | nortalit |  | Propo | n matur |  |
| M1 | 0.10 | 0.10 | MT1 | 0.00 | 0.00 |
| M2 | 0.10 | 0.10 | MT2 | 0.00 | 0.10 |
| M3 | 0.10 | 0.10 | MT3 | 1.00 | 0.10 |
| M4 | 0.10 | 0.10 | MT4 | 1.00 | 0.00 |
| M5 | 0.10 | 0.10 | MT5 | 1.00 | 0.00 |
| M6 | 0.10 | 0.10 | MT6 | 1.00 | 0.00 |
| M7 | 0.10 | 0.10 | MT7 | 1.00 | 0.00 |
| M8 | 0.10 | 0.10 | MT8 | 1.00 | 0.00 |
| M9 | 0.10 | 0.10 | MT9 | 1.00 | 0.00 |
| M10 | 0.10 | 0.10 | MT10 | 1.00 | 0.00 |
| Relative effort |  |  | Year effect for natural mortality |  |  |
| in HC fishery |  |  |  |  |  |
| HFO4 | 1.00 | 0.09 | K04 | 1.00 | 0.10 |
| HF05 | 1.00 | 0.09 | K05 | 1.00 | 0.10 |
| HFO 6 | 1.00 | 0.09 | K06 | 1.00 | 0.10 |
| Recruitment in 2005 and 2006 |  |  |  |  |  |
| R05 | 95890 | 0.78 |  |  |  |
| R06 | 95890 | 0.78 |  |  |  |

[^7]Table 7.6.2. North Sea Sole. Catch forecast output and estimates of coefficient of variation (CV) from linear analysis.

|  | 2004 | $\begin{aligned} & \text { Year } \\ & 2005 \end{aligned}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean F Ages <br> H.cons 2 to 6 | 0.44 | 0.00 | 0.09 | 0.18 | 0.26 | 0.40 | 0.44 | 0.53 |
| Effort relative to 2003 H.cons | 1.00 | 0.00 | 0.20 | 0.40 | 0.60 | 0.90 | 1.00 | 1.20 |
| Biomass |  |  |  |  |  |  |  |  |
| Total 1 January | 61.2 | 57.4 | 57.4 | 57.4 | 57.4 | 57.4 | 57.4 | 57.4 |
| SSB at spawning time | 45.4 | 40.2 | 40.2 | 40.2 | 40.2 | 40.2 | 40.2 | 40.2 |
| Catch weight (,000t) <br> H.cons | 21.1 | 0.0 | 4.6 | 8.8 | 12.7 | 17.8 | 19.4 | 22.3 |
| Biomass in year.... 2006 Total 1 January |  | 73.9 | 69.3 | 65.1 | 61.2 | 56.1 | 54.5 | 51.6 |
| SSB at spawning time |  | 56.5 | 51.9 | 47.7 | 43.9 | 38.8 | 37.2 | 34.3 |
|  |  |  |  |  |  |  |  |  |
|  | 2004 |  |  |  | 2005 |  |  |  |
| Effort relative to 2003 H.cons | 1.00 | 0.00 | 0.20 | 0.40 | 0.60 | 0.90 | 1.00 | 1.20 |
| Est. Coeff. of Variation |  |  |  |  |  |  |  |  |
| Biomass |  |  |  |  |  |  |  |  |
| Total 1 January | 0.12 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
| SSB at spawning time | 0.13 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
| Catch weight |  |  |  |  |  |  |  |  |
| H.cons | 0.13 | 0.00 | 0.46 | 0.26 | 0.21 | 0.18 | 0.18 | 0.17 |
| Biomass in year.... 2006 |  |  |  |  |  |  |  |  |
| Total 1 January |  | 0.23 | 0.24 | 0.24 | 0.25 | 0.26 | 0.27 | 0.28 |
| SSB at spawning time |  | 0.23 | 0.24 | 0.25 | 0.26 | 0.27 | 0.28 | 0.29 |

Table 7.6.3. North Sea Sole. Detailed forecast tables.


Forecast for year 2005
F multiplier H.cons=1.00

| Populations |  |
| :---: | :---: |
| Age | No. |
| 1 | 95890 |
| 2 | 85987 |
| 3 | 55854 |
| 4 | 73301 |
| 5 | 13382 |
| 6 | 13022 |
| 7 | 4000 |
| 8 | 4527 |
| 9 | 3375 |
| 10 | 1021 |
| Wt | 57 |



Sole IV
Stock numbers of recruits and their source for recent year classes used in predictions, and the relative (\%) contributions to landings and SSB (by weight) of these year classes

| Year-class | 2000 | 2001 | 2002 | 2003 | 2004 |
| :--- | ---: | :---: | :---: | :---: | ---: |
| Stock No. (thousands) |  | 70122 | 200507 | 76353 | 96000 |

## Sole IV : Year-class \% contribution to



Figure 7.3.1. North Sea sole: trends in relative effort and cpue



Figure 7.4.1. North Sea sole. Stock summary plots


Figure 7.4.2. North Sea sole: Historic performance of the assessment.




Figure 7.6.1. North Sea Sole. Probability profiles for short term forecasts.

Figure Sole,North Sea. Probability profiles for short term forecast.


Data from file:C:\Paul\Wgnssk04\SOLIV.SEN on 11/09/2004 at 14:10:37

Figure 7.8.1. North Sea sole: results of the fishermen's survey


The assessment of sole in Division VIId is presented here as an update assessment. Procedures and settings are the same as in last year's assessment, except for:

- revisions to landing data for the historical time series from 1986 onwards, taking into account misreporting in adjacent areas (see Section 8.2.1);
- modification of the shrinkage setting in XSA (see Section 8.3); and
- the use of XSA estimates in prediction for age 2 survivors and not RCT3 estimates (see Section 8.4).

All the relevant biological and methodological information can be found in the Stock Annex dealing with this stock. Here, only the basic input and output from the assessment model will be presented.

### 8.1 The fishery

A detailed description of the fishery can be found in the Stock Annex

### 8.1.1 ICES advice applicable to 2003 and 2004

Both in 2002 and in 2003, ICES considered the stock to be within safe biological limits. ICES recommended that fishing mortality should be maintained below the proposed $\boldsymbol{F}_{p a}$, corresponding to landings of less than 5400t in 2003 and less than 5900 t in 2004.

### 8.1.2 Management applicable in 2003 and 2004

The TAC for sole was set at 5400t in 2003 and 5900 t in 2004.

### 8.1.3 The fishery in 2003

The 2003 landings used by the Working Group were 5038 t which is $7 \%$ below the agreed TAC of 5400 t and around the catch predicted at status quo fishing mortality in 2003 (4930t). The contribution of Belgium, France and the UK to the landings in 2003 is $29 \%, 51 \%$ and $19 \%$ respectively (Table 8.2.1).

### 8.2 Data available

### 8.2.1 Landings

Landings data reported to ICES are shown in Table 8.2.1, together with the total landings estimated by the Working Group. There are strong indications of misreporting by beam trawlers from Division VIIe into Division VIId. Prior to this year's meeting, the historical landings data from 1986 have been investigated and reallocated to the appropriate ICES sub-areas. Specifically, historical landings have been adjusted for misallocated UK landings between the Eastern and Western Channel over the period 1986-2001. The Belgian historical data have also been adjusted when the sum of products did not correspond to the real landings or when landings into foreign harbours were not accounted for in the total Belgian landings (see also the section on sole in Division VIIe in the 2004 report of WGSSDS). There is also a considerable under-reporting by small vessels, which take up to $60 \%$ of the landings in the eastern Channel. However, it has not been possible to quantify the level of these for inclusion in the assessment.

There are no discards included in the assessment, but in general discards for sole are minor (Table 8.2.2 and Figure 8.2.1).

### 8.2.2 Age compositions

Age compositions of the landings are presented in Table 8.2.3.

### 8.2.3 Weight at age

Weight at age in the catch is presented in Table 8.2.4 and weight at age in the stock in Table 8.2.5. The procedure for calculating mean weights is described in the Stock Annex.

### 8.2.4 Maturity and natural mortality

Maturity and natural mortality are assumed at fixed values and are described in the Stock Annex.

### 8.2.5 Catch, effort and research vessel data

Available estimates of commercial effort and LPUE are presented in Table 8.2.6 and Figure 8.2.2.
Survey and commercial data used for calibration of the assessment are presented in Table 8.2.7. Additional information that is used for recruitment estimation is presented in Table 8.4.1.

### 8.3 Catch at age analysis

Catch at age analysis was carried out according to the specifications in the Stock Annex. The model used was XSA. Although this stock was scheduled as an update assessment, revisions to the historical landings series (see Section 8.2.1) made the Working Group decide to make some extra investigation, especially on the appropriateness of strong shrinkage. In the following discussion, last year's final run is referred to as Run1. An exploratory run (Run2) was carried out with the same settings as last year, using the revised historical landings. Similar values were observed on fishing mortality and recruitment, and a somewhat lower SSB over the whole time series (Figure 8.3.1). In previous years, heavy shrinkage (s.e $=0.5$ ) has influenced the final estimate of the one-year-olds quite substantially with estimation weighting of $43 \%$ in last year's assessment (Run1) and 39\% in Run2. In last year's assessment the high XSA value for the 2001 year class was replaced with the RCT3 value, which now appears to have been an under-estimate (Figure 8.3.1). Investigations on weaker levels of shrinkage ( $1.0,1.5$ and 2.0 ) resulted in better diagnostics and a reduced estimation weighting of $F$-shrinkage to less than $5 \%$ on one-year-olds. Using a weaker shrinkage did not remove the retrospective patterns in fishing mortality and SSB, but improved the recruitment estimates (Figure 8.3.2). Therefore the Working Group decided to depart from the strong shrinkage used in previous years and apply a shrinkage of 2.0 for the final XSA.

Results of the analysis are presented in Table 8.3.1 (diagnostics), 8.3.2 (fishing mortality at age), 8.3.3 (population numbers at age), and 8.3.4 (stock summary). The stock summary is also shown in Figure 8.3.3 and the retrospective performance of the assessment is shown in Figure 8.3.2. A historical performance of the assessment is presented in Figure 8.3.4.

### 8.4 Recruitment estimates

For this year's assessment the WG did not use, as in previous years, the RCT3 estimates for predictions, but the XSA final survivors-estimates.

The 2001 year-class in 2002 was estimated by XSA to be the highest of the time series with 62 million fish at age 1 . $98 \%$ of the estimation weighting for this year-class comes from the tuning fleets, giving rather similar results. The XSA survivor estimates for this year class were used for further prediction.

The 2002 year class in 2003 was estimated by XSA to be 26 million one year olds, which is around average. $F$ shrinkage only gets $4 \%$ of the weight; the other $94 \%$ comes from the surveys. The XSA survivor estimates for this year class were used for further prediction.

The long term GM recruitment ( 22 million, 1982-2001) was assumed for the 2003 and subsequent year classes. For comparison, RCT3 runs were carried out. Input to the RCT3 model is given in Table 8.4.1 and results are presented in Table 8.4.2 and Table 8.4.3. However RCT3 estimates were not taken forward into predictions since they performed poorly in recent assessments and current XSA estimates are now less influenced by shrinkage.
The WG estimates of year-class strength used for prediction can be summarised as follows:

|  |  | XSA | GM 82-01 | RCT3 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Year class | At age in 2004 |  |  |  | Accepted Estimate |
| $\mathbf{2 0 0 1}$ | 3 | $\underline{39745}$ | 15133 | - | XSA |
| $\mathbf{2 0 0 2}$ | 2 | $\underline{23195}$ | 19615 | 20577 | XSA |
| $\mathbf{2 0 0 3}$ | 1 | - | $\underline{22326}$ | 20821 | GM 1982-01 |
| $\mathbf{2 0 0 4} \& 2005$ | recruits | - | $\underline{22326}$ | - | GM 1982-01 |

### 8.5 Short-term prognosis

The short-term prognosis was carried out according to the specifications in the Stock Annex. As fishing mortality has declined since 1999, the selection pattern for prediction has been taken as a 3 year average, rescaled to the 2003 mean $F_{3-8}$. Weights at age in the catch and in the stock are averages for the years 2001-003.

Input to the short term predictions and the sensitivity analysis are presented in Table 8.5.1. Results are presented in Table 8.5.2 (management options) and Table 8.5.3 (detailed output).

Assuming status quo F, the proportional contributions of recent year classes to the landings in 2005 and SSB in 2006 are given in Table 8.5.4.

Result of a sensitivity analysis are presented in Figure 8.5.1 (probability profiles).

### 8.6 Comments

- Although this is a scheduled update assessment, the Working Group has investigated different shrinkage values to overcome the discrepancies between XSA and RCT3 estimates, resulting in not using RCT3 estimates for any year class in predictions. Lighter shrinkage has also been used. The other parameters have not been altered.
- In last year's assessment, the replacement of the XSA estimate for the 2001 year class with the RCT3 estimate has proven to be an underestimate of the apparent strongest year class in the time series.
- The year classes 1998 to 2002 are estimated to be above average and explain the increase in SSB.
- There is a tendency to underestimate fishing mortality and overestimate SSB in this assessment.
- The historical performance of this assessment is rather poor (Figure 8.3.4).
- Uncertainties in the assessment include under-reporting by important segments of the inshore fleet, since this fleet takes a major part of the landings of sole in VIId, and the misreporting of beam trawl fleets fishing in adjacent areas. In this year's assessment, revisions have been made to current and historical landings, taking into account these discrepancies.
- The EU regulation enforced in 2004 invoked a limitation of 22 days at sea per month for trawlers with mesh size less than 99 mm , and 14 days at sea for beam trawlers. Gill-netters have a derogation of 20 days at sea in the Eastern Channel provided that their mesh size is less than 110 mm . However these effort limitations from the cod recovery plan are not likely to decrease the effort on sole in Division VIId and therefore the short-term prognosis was not modified in the intermediate year.

The WG proposes the following work plan for forthcoming benchmark (scheduled for 2006):

- Analyse the consistency of the tuning fleets by individual retrospective analysis
- Consider redefinition of the current tuning fleets (prior to the Working Group) and/or the integration of new ones like the UK beam trawlers that have been provided for this assessment but not used.
- In depth analysis of possible effects of under- and misreporting.

Table 8.2.1 Sole VIId. Nominal landings (tonnes) as officially reported to ICES and used by the Working Group

|  |  |  |  |  |  | Total used |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Belgium | France | UK(E+W) | others | reported | Unallocated | by WG |  |
| 1974 | 159 | 469 | 309 | 3 | 940 | -56 | 884 |  |
| 1975 | 132 | 464 | 244 | 1 | 841 | 41 | 882 |  |
| 1976 | 203 | 599 | 404 | . | 1206 | 99 | 1305 |  |
| 1977 | 225 | 737 | 315 | . | 1277 | 58 | 1335 |  |
| 1978 | 241 | 782 | 366 | . | 1389 | 200 | 1589 |  |
| 1979 | 311 | 1129 | 402 | . | 1842 | 373 | 2215 |  |
| 1980 | 302 | 1075 | 159 | . | 1536 | 387 | 1923 |  |
| 1981 | 464 | 1513 | 160 | . | 2137 | 340 | 2477 |  |
| 1982 | 525 | 1828 | 317 | 4 | 2674 | 516 | 3190 |  |
| 1983 | 502 | 1120 | 419 | . | 2041 | 1417 | 3458 |  |
| 1984 | 592 | 1309 | 505 | . | 2406 | 1169 | 3575 |  |
| 1985 | 568 | 2545 | 520 | . | 3633 | 204 | 3837 |  |
| 1986 | 858 | 1528 | 551 | . | 2937 | 995 | 3932 |  |
| 1987 | 1100 | 2086 | 655 | . | 3841 | 950 | 4791 | 3850 |
| 1988 | 667 | 2057 | 578 | . | 3302 | 551 | 3853 | 3850 |
| 1989 | 646 | 1610 | 689 | . | 2945 | 860 | 3805 | 3850 |
| 1990 | 996 | 1255 | 742 | . | 2993 | 654 | 3647 | 3850 |
| 1991 | 904 | 2054 | 825 | . | 3783 | 568 | 4351 | 3850 |
| 1992 | 891 | 2187 | 706 | 10 | 3794 | 278 | 4072 | 3500 |
| 1993 | 917 | 1907 | 610 | 13 | 3447 | 852 | 4299 | 3200 |
| 1994 | 940 | 2001 | 701 | 15 | 3657 | 726 | 4383 | 3800 |
| 1995 | 817 | 2248 | 669 | 9 | 3743 | 677 | 4420 | 3800 |
| 1996 | 899 | 2322 | 877 | . | 4098 | 699 | 4797 | 3500 |
| 1997 | 1306 | 1702 | 933 | . | 3941 | 823 | 4764 | 5230 |
| 1998 | 541 | 1703 | $* *$ | 803 | . | 3047 | 316 | 3363 |
| 1999 | 880 | 2239 | $* *$ | 769 | . | 3888 | 247 | 4135 |
| 2000 | 1021 | 2190 | 621 | . | 3832 | -356 | 3476 | 4700 |
| 2001 | 1313 | 2482 | 822 |  | 4617 | -592 | 4025 | 4600 |
| 2002 | 1643 | 2780 | 976 |  | 5399 | -666 | 4733 | 5200 |
| 2003 | 1659 | 2898 | 1114 | 1 | 5672 | -634 | 5038 | 5400 |
| 10 |  |  |  |  |  |  |  |  |

* Unallocated mainly due misreporting
** Preliminary

Table 8.2.2 - Sole VIId - Length structure of discards and landings collected by observations on board.
(numbers raised to sampled trips)


Table 8.2.3 - Sole VIId - Catch numbers at age (kg)

| Run title : Sole in VIId |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| At 9/09/2004 10:32 |  |  |  |  |  |  |  |  |  |  |  |
|  | Table 1 Cat | Catch numbers at age |  |  | Numbers*10**-3 |  |  |  |  |  |  |
|  | YEAR | 1982 | 1983 |  |  |  |  |  |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 155 | 0 |  |  |  |  |  |  |  |  |
|  | 2 | 2625 | 852 |  |  |  |  |  |  |  |  |
|  | 3 | 5256 | 3452 |  |  |  |  |  |  |  |  |
|  | 4 | 1727 | 3930 |  |  |  |  |  |  |  |  |
|  | 5 | 570 | 897 |  |  |  |  |  |  |  |  |
|  | 6 | 653 | 735 |  |  |  |  |  |  |  |  |
|  | 7 | 549 | 627 |  |  |  |  |  |  |  |  |
|  | 8 | 240 | 333 |  |  |  |  |  |  |  |  |
|  | 9 | 122 | 108 |  |  |  |  |  |  |  |  |
|  | 10 | 83 | 89 |  |  |  |  |  |  |  |  |
|  | +gp | 202 | 193 |  |  |  |  |  |  |  |  |
| 0 | TOTALNUM | 12182 | 11216 |  |  |  |  |  |  |  |  |
|  | TONSLAND | 3190 | 3458 |  |  |  |  |  |  |  |  |
|  | SOPCOF \% | 97 | 99 |  |  |  |  |  |  |  |  |
| Table 1 Catch numbers at age |  |  |  |  | Numbers*10**-3 |  |  |  |  |  |  |
|  | YEAR | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 24 | 49 | 49 | 9 | 95 | 163 | 1245 | 383 | 105 | 85 |
|  | 2 | 1977 | 3693 | 1251 | 3117 | 2162 | 3484 | 2851 | 7166 | 4046 | 5028 |
|  | 3 | 3157 | 5211 | 5296 | 3730 | 7174 | 3220 | 5580 | 4105 | 8789 | 6442 |
|  | 4 | 2610 | 1646 | 3195 | 3271 | 1602 | 4399 | 1151 | 4160 | 1888 | 5444 |
|  | 5 | 1900 | 1027 | 904 | 2053 | 1159 | 1434 | 1496 | 604 | 1993 | 1008 |
|  | 6 | 742 | 1860 | 768 | 1042 | 856 | 840 | 301 | 996 | 288 | 563 |
|  | 7 | 457 | 144 | 1056 | 1090 | 388 | 571 | 390 | 257 | 368 | 162 |
|  | 8 | 317 | 158 | 155 | 784 | 255 | 201 | 260 | 247 | 135 | 188 |
|  | 9 | 136 | 156 | 190 | 111 | 256 | 166 | 129 | 258 | 171 | 116 |
|  | 10 | 99 | 69 | 212 | 163 | 83 | 224 | 126 | 92 | 95 | 62 |
|  | +gp | 238 | 128 | 372 | 459 | 275 | 282 | 489 | 382 | 231 | 129 |
| 0 | TOTALNUM | 11657 | 14141 | 13448 | 15829 | 14305 | 14984 | 14018 | 18650 | 18109 | 19227 |
|  | TONSLAND | 3575 | 3837 | 3932 | 4791 | 3853 | 3805 | 3647 | 4351 | 4072 | 4299 |
|  | SOPCOF \% | 99 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |

Run title : Sole in VIId
At 9/09/2004 10:32

| Table 1 Catch numbers at age |  |  |  |  | Numbers*10**-3 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | YEAR | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 31 | 838 | 9 | 24 | 33 | 168 | 138 | 168 | 707 | 379 |
|  | 2 | 694 | 2977 | 1825 | 1489 | 1376 | 3268 | 3586 | 6042 | 7011 | 10957 |
|  | 3 | 6203 | 4375 | 7764 | 6068 | 5609 | 8506 | 4852 | 6194 | 7513 | 5086 |
|  | 4 | 5902 | 4765 | 3035 | 5008 | 2704 | 3307 | 4395 | 1595 | 3767 | 3178 |
|  | 5 | 3404 | 2968 | 3206 | 2082 | 1636 | 1311 | 1076 | 2491 | 1414 | 1805 |
|  | 6 | 584 | 1980 | 1823 | 1670 | 609 | 869 | 505 | 728 | 655 | 671 |
|  | 7 | 567 | 375 | 1283 | 916 | 558 | 350 | 319 | 290 | 298 | 588 |
|  | 8 | 109 | 278 | 271 | 775 | 441 | 672 | 148 | 128 | 129 | 198 |
|  | 9 | 147 | 88 | 319 | 239 | 354 | 351 | 328 | 56 | 97 | 70 |
|  | 10 | 93 | 106 | 112 | 169 | 239 | 192 | 150 | 81 | 57 | 88 |
| +gp |  | 258 | 241 | 344 | 267 | 301 | 359 | 248 | 265 | 197 | 245 |
| 0 | TOTALNUM | 17992 | 18991 | 19991 | 18707 | 13860 | 19353 | 15745 | 18038 | 21845 | 23265 |
|  | TONSLAND | 4383 | 4420 | 4797 | 4764 | 3363 | 4135 | 3476 | 4025 | 4733 | 5038 |
|  | SOPCOF \% | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |

Table 8.2.4 - Sole VIId - Catch weights at age (kg)

Run title : Sole in VIId

| At 9/09/2004 10:32 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Table 2 YEAR |  | Catch weights at age (kg) |  |  |
|  |  |  | 1982 | 1983 |
|  | AGE |  |  |  |
|  |  | 1 | 0.102 | 0.000 |
|  |  | 2 | 0.171 | 0.173 |
|  |  | 3 | 0.225 | 0.230 |
|  |  | 4 | 0.312 | 0.302 |
|  |  | 5 | 0.386 | 0.404 |
|  |  | 6 | 0.428 | 0.436 |
|  |  | 7 | 0.439 | 0.435 |
|  |  | 8 | 0.509 | 0.524 |
|  |  | 9 | 0.502 | 0.537 |
|  |  | 10 | 0.463 | 0.583 |
|  | +gp |  | 0.673 | 0.628 |
| 0 | SOPCOFAC |  | 0.971 | 0.991 |



Run title : Sole in VIId
At 9/09/2004 10:32


Table 8.2.5 - Sole VIId - Stock weights at age (kg)

Run title : Sole in VIId
At 9/09/2004 10:32
Table 3 Stock weights at age (kg)

| YEAR |  | 1982 | 1983 |
| :--- | ---: | ---: | :--- |
|  |  |  |  |
| AGE |  |  |  |
|  | 1 | 0.059 | 0.070 |
|  | 2 | 0.114 | 0.135 |
|  | 3 | 0.167 | 0.197 |
|  | 4 | 0.217 | 0.255 |
|  | 5 | 0.263 | 0.309 |
|  | 6 | 0.306 | 0.359 |
|  | 7 | 0.347 | 0.406 |
|  | 8 | 0.384 | 0.448 |
|  | 9 | 0.418 | 0.487 |
|  | 10 | 0.450 | 0.522 |
| + gp |  | 0.530 | 0.601 |


| Stock weights at age (kg) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 1 | 0.067 | 0.065 | 0.070 | 0.072 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 |
| 2 | 0.131 | 0.129 | 0.136 | 0.139 | 0.145 | 0.113 | 0.138 | 0.138 | 0.144 | 0.130 |
| 3 | 0.192 | 0.192 | 0.198 | 0.203 | 0.223 | 0.182 | 0.232 | 0.225 | 0.199 | 0.189 |
| 4 | 0.249 | 0.254 | 0.256 | 0.262 | 0.268 | 0.269 | 0.305 | 0.279 | 0.277 | 0.246 |
| 5 | 0.304 | 0.315 | 0.309 | 0.318 | 0.365 | 0.323 | 0.400 | 0.380 | 0.305 | 0.366 |
| 6 | 0.355 | 0.376 | 0.358 | 0.370 | 0.425 | 0.335 | 0.361 | 0.384 | 0.454 | 0.377 |
| 7 | 0.403 | 0.436 | 0.403 | 0.417 | 0.477 | 0.480 | 0.476 | 0.410 | 0.405 | 0.545 |
| 8 | 0.448 | 0.495 | 0.443 | 0.461 | 0.498 | 0.504 | 0.535 | 0.449 | 0.459 | 0.560 |
| 9 | 0.490 | 0.554 | 0.480 | 0.500 | 0.572 | 0.586 | 0.571 | 0.474 | 0.430 | 0.559 |
| 10 | 0.529 | 0.611 | 0.512 | 0.536 | 0.636 | 0.536 | 0.507 | 0.451 | 0.528 | 0.813 |
| +gp | 0.627 | 0.780 | 0.576 | 0.616 | 0.750 | 0.714 | 0.577 | 0.620 | 0.527 | 0.566 |

Run title : Sole in VIId
At 9/09/2004 10:32

| le 3 Stock weights at age (kg) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 1 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 |
| 2 | 0.116 | 0.126 | 0.155 | 0.139 | 0.140 | 0.128 | 0.122 | 0.127 | 0.136 | 0.151 |
| 3 | 0.161 | 0.129 | 0.176 | 0.165 | 0.158 | 0.180 | 0.148 | 0.157 | 0.179 | 0.207 |
| 4 | 0.215 | 0.220 | 0.258 | 0.220 | 0.233 | 0.205 | 0.208 | 0.216 | 0.209 | 0.249 |
| 5 | 0.273 | 0.234 | 0.286 | 0.264 | 0.299 | 0.253 | 0.402 | 0.226 | 0.258 | 0.314 |
| 6 | 0.316 | 0.333 | 0.308 | 0.317 | 0.374 | 0.277 | 0.440 | 0.223 | 0.254 | 0.376 |
| 7 | 0.368 | 0.357 | 0.366 | 0.376 | 0.363 | 0.298 | 0.395 | 0.231 | 0.301 | 0.399 |
| 8 | 0.530 | 0.330 | 0.391 | 0.404 | 0.357 | 0.324 | 0.554 | 0.253 | 0.234 | 0.418 |
| 9 | 0.461 | 0.614 | 0.438 | 0.563 | 0.450 | 0.336 | 0.443 | 0.256 | 0.326 | 0.446 |
| 10 | 0.470 | 0.382 | 0.466 | 0.494 | 0.372 | 0.323 | 0.420 | 0.301 | 0.404 | 0.444 |
| +gp | 0.612 | 0.629 | 0.630 | 0.654 | 0.577 | 0.512 | 0.682 | 0.420 | 0.417 | 0.503 |

Table 8.2.6a
Sole in VIId. Indices of effort

| Year | France Beam trawl ${ }^{1}$ | England \& Wales Beam trawl ${ }^{2}$ | Belgium Beam trawl ${ }^{2}$ |
| :---: | :---: | :---: | :---: |
| 1971 |  |  |  |
| 1972 |  |  |  |
| 1973 |  |  |  |
| 1974 |  |  |  |
| 1975 |  |  | 5.02 |
| 1976 |  |  | 6.56 |
| 1977 |  |  | 6.87 |
| 1978 |  |  | 8.22 |
| 1979 |  |  | 7.30 |
| 1980 |  |  | 12.81 |
| 1981 |  |  | 19.00 |
| 1982 |  |  | 23.94 |
| 1983 |  |  | 23.64 |
| 1984 |  |  | 28.00 |
| 1985 |  |  | 25.29 |
| 1986 |  | 2.79 | 23.54 |
| 1987 |  | 5.64 | 27.11 |
| 1988 |  | 5.09 | 38.52 |
| 1989 |  | 5.65 | 35.67 |
| 1990 |  | 7.27 | 30.33 |
| 1991 | 10.69 | 7.67 | 24.29 |
| 1992 | 10.52 | 8.78 | 21.99 |
| 1993 | 10.22 | 6.40 | 20.02 |
| 1994 | 10.61 | 5.43 | 25.17 |
| 1995 | 12.38 | 6.89 | 24.17 |
| 1996 | 14.09 | 10.31 | 25.00 |
| 1997 | 10.92 | 10.25 | 30.89 |
| 1998 | 11.71 | 7.31 | 18.12 |
| 1999 | 10.63 | 5.86 | 21.39 |
| 2000 | 13.78 | 5.65 | 30.54 |
| 2001 | 11.38 | 7.64 | 32.39 |
| 2002 |  | 7.90 | 33.68 |
| 2003 |  | 6.69 | 39.75 |

${ }^{1}$ in Kg/1000 h*KW-04
${ }^{1}$ Beam trawl $>=10 \mathrm{~m}$ in millions hp hrs $>10 \%$ sole
${ }^{2}$ Fishing hours ( $\times 10^{\wedge} 3$ ) corrected for fishing power using $P=0.000204 B H P^{\wedge} 1.23$

Table 8.2.6b
Sole in VIId. LPUE indices

|  | France $^{1}$ <br> Beam trawl | England \& Wales |
| :---: | :---: | :---: | :---: |
| Year |  |  |
| Beam trawl |  |  |$~$| Belgium $^{3}$ |
| :---: |
| Beam trawl |

${ }^{1}$ in ${ }^{*}$ KWW-04
${ }^{2}$ in Kg/1000 HP*HRS $>10 \%$ sole
${ }^{3}$ in $\mathrm{Kg} / \mathrm{hr}$ corrected for fishing power using $\mathrm{P}=0.000204 \mathrm{BHP}{ }^{\wedge} 1.23$
$\underset{\text { Bolded numbers }=\text { used in } \times \text { SA }}{\text { Table }}$ 8IId - tuning files

| SOLE 7d,TUNING |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BEL ${ }^{104}$ BT |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1980 | 2003 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 15 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12.8 | 69.3 | 46.1 | 298.7 | 189.6 | 57.4 | 24.7 | 10.3 | 5.1 | 8.6 | 3.1 | 5.5 | 2.4 | 2.6 | 37.9 |
| 19.0 | 640.7 | 161.4 | 82.1 | 312.8 | 229.6 | 44.7 | 32.9 | 33.1 | 6.9 | 9.0 | 18.4 | 9.3 | 0.8 | 51.9 |
| 23.9 | 148.7 | 980.9 | 128.0 | 93.4 | 155.9 | 112.6 | 38.8 | 60.1 | 15.2 | 14.0 | 7.4 | 12.5 | 5.9 | 54.3 |
| 23.6 | 190.4 | 373.0 | 818.9 | 65.5 | 54.0 | 81.7 | 73.2 | 23.5 | 20.2 | 27.0 | 5.0 | 1.0 | 7.1 | 33.0 |
| 28.0 | 603.8 | 347.2 | 311.2 | 436.0 | 53.7 | 38.5 | 104.9 | 59.9 | 25.4 | 23.2 | 25.3 | 9.0 | 8.2 | 42.4 |
| 25.3 | 382.9 | 612.1 | 213.0 | 209.1 | 260.2 | 58.2 | 34.1 | 48.0 | 31.0 | 16.9 | 19.6 | 9.2 | 7.7 | 21.3 |
| 23.4 | 215.0 | 1522.3 | 675.0 | 233.7 | 170.6 | 194.0 | 30.1 | 53.1 | 64.2 | 32.6 | 12.7 | 2.6 | 43.0 | 29.3 |
| 27.1 | 843.6 | 451.0 | 739.3 | 724.4 | 344.5 | 232.4 | 152.7 | 25.3 | 86.5 | 56.0 | 56.1 | 54.5 | 9.3 | 109.0 |
| 38.5 | 131.6 | 990.4 | 243.3 | 362.9 | 216.7 | 111.8 | 41.8 | 73.8 | 47.0 | 9.8 | 22.3 | 35.8 | 8.6 | 25.3 |
| 35.7 | 47.5 | 512.6 | 543.6 | 748.0 | 276.6 | 225.0 | 53.1 | 36.4 | 12.7 | 4.7 | 0.0 | 0.0 | 4.7 | 27.0 |
| 30.3 | 1011.4 | 1375.2 | 218.1 | 366.2 | 85.3 | 198.2 | 65.5 | 39.0 | 22.4 | 22.2 | 25.4 | 2.8 | 24.0 | 18.2 |
| 24.3 | 320.2 | 1358.6 | 710.1 | 125.6 | 283.9 | 60.6 | 56.2 | 21.0 | 19.8 | 22.2 | 18.0 | 5.6 | 0.3 | 21.4 |
| 22.0 | 499.3 | 1613.7 | 523.3 | 477.7 | 36.9 | 67.9 | 28.2 | 31.7 | 11.2 | 11.4 | 6.0 | 5.7 | 3.2 | 16.7 |
| 20.0 | 1654.5 | 1520.4 | 889.5 | 215.5 | 78.5 | 38.9 | 40.8 | 37.8 | 11.3 | 8.7 | 13.3 | 1.5 | 3.0 | 22.4 |
| 22.2 | 196.9 | 1183.2 | 1598.5 | 912.9 | 201.0 | 160.0 | 39.5 | 33.8 | 46.2 | 16.0 | 10.2 | 14.9 | 8.8 | 18.6 |
| 24.2 | 206.2 | 542.7 | 671.3 | 590.9 | 409.4 | 100.6 | 40.3 | 25.4 | 14.2 | 9.3 | 5.0 | 11.9 | 3.4 | 8.0 |
| 25.0 | 284.1 | 975.5 | 628.7 | 560.1 | 354.3 | 316.8 | 68.3 | 77.6 | 34.2 | 26.2 | 15.8 | 10.8 | 1.1 | 4.2 |
| 30.9 | 196.0 | 1282.3 | 966.1 | 500.2 | 422.3 | 301.1 | 144.7 | 56.6 | 29.3 | 25.8 | 12.1 | 12.6 | 3.4 | 1.4 |
| 18.1 | 254.1 | 450.3 | 375.4 | 175.1 | 54.8 | 116.1 | 95.9 | 59.1 | 12.4 | 16.0 | 7.7 | 2.9 | 4.4 | 19.2 |
| 21.4 | 367.7 | 1043.6 | 640.2 | 308.3 | 94.6 | 48.7 | 90.6 | 68.3 | 28.2 | 44.7 | 22.9 | 4.7 | 8.5 | 11.3 |
| 30.5 | 569.1 | 1170.7 | 1225.1 | 239.1 | 139.4 | 68.4 | 66.6 | 74.4 | 46.0 | 26.9 | 7.6 | 6.6 | 0.3 | 1.9 |
| 32.4 | 1055.5 | 1385.4 | 375.0 | 617.9 | 351.1 | 105.4 | 31.6 | 15.2 | 18.7 | 35.5 | 11.6 | 6.9 | 12.3 | 4.6 |
| 33.7 | 1267.7 | 1612.6 | 804.3 | 286.3 | 122.4 | 95.7 | 45.2 | 24.8 | 28.6 | 15.8 | 13.8 | 8.0 | 6.0 | 2.6 |
| 47.5 | 2157.2 | 1848.1 | 1368.5 | 737.0 | 395.3 | 191.8 | 97.9 | 15.0 | 47.9 | 33.5 | 30.8 | 37.9 | 0.0 | 1.2 |
| UK BT |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1986 | 2003 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 15 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2.8 | 30.0 | 144.8 | 100.5 | 28.0 | 28.8 | 39.4 | 1.2 | 2.4 | 5.2 | 2.5 | 2.8 | 1.5 | 1.7 | 5.3 |
| 5.6 | 251.8 | 106.0 | 143.5 | 99.2 | 18.6 | 14.6 | 37.6 | 1.4 | 0.4 | 3.3 | 1.1 | 1.5 | 3.3 | 2.4 |
| 5.1 | 112.3 | 281.3 | 56.4 | 62.9 | 39.6 | 9.0 | 11.5 | 16.2 | 2.0 | 0.2 | 4.6 | 4.9 | 0.0 | 0.2 |
| 5.7 | 162.3 | 78.1 | 144.2 | 18.2 | 31.7 | 23.1 | 5.1 | 4.2 | 16.3 | 1.0 | 0.6 | 2.2 | 2.7 | 12.9 |
| 7.3 | 112.6 | 327.4 | 47.7 | 66.1 | 14.1 | 15.1 | 15.1 | 4.1 | 7.4 | 22.2 | 1.9 | 0.4 | 3.4 | 7.6 |
| 7.7 | 349.0 | 139.2 | 195.2 | 8.4 | 30.7 | 5.1 | 7.4 | 10.9 | 2.7 | 1.9 | 8.4 | 0.3 | 0.0 | 5.0 |
| 8.8 | 240.1 | 516.6 | 81.3 | 167.5 | 11.1 | 20.3 | 6.4 | 14.6 | 4.9 | 2.2 | 1.5 | 3.3 | 0.1 | 2.5 |
| 6.4 | 174.9 | 222.5 | 218.9 | 34.6 | 52.7 | 5.2 | 10.7 | 4.5 | 3.0 | 3.3 | 1.1 | 1.3 | 2.1 | 2.8 |
| 5.4 | 33.6 | 260.9 | 144.1 | 113.3 | 27.5 | 45.5 | 4.4 | 10.5 | 3.2 | 4.1 | 3.7 | 2.4 | 1.6 | 9.3 |
| 6.9 | 181.1 | 106.9 | 220.4 | 107.6 | 94.6 | 18.3 | 37.5 | 5.4 | 9.4 | 2.0 | 4.3 | 4.4 | 0.9 | 7.7 |
| 10.3 | 295.8 | 251.3 | 79.5 | 169.0 | 84.6 | 67.4 | 17.5 | 33.2 | 4.1 | 8.8 | 4.2 | 5.4 | 3.6 | 11.9 |
| 10.3 | 268.5 | 331.1 | 158.5 | 42.4 | 125.2 | 50.8 | 48.7 | 11.6 | 23.0 | 2.7 | 7.1 | 1.1 | 3.8 | 7.6 |
| 7.3 | 252.6 | 169.4 | 97.5 | 65.2 | 22.1 | 51.7 | 28.8 | 22.4 | 5.8 | 12.5 | 2.0 | 5.3 | 1.5 | 9.0 |
| 5.9 | 170.0 | 300.0 | 105.6 | 43.6 | 31.8 | 12.3 | 26.3 | 12.9 | 7.3 | 3.4 | 3.8 | 0.7 | 2.5 | 4.1 |
| 5.7 | 152.1 | 178.8 | 171.4 | 54.7 | 25.8 | 18.2 | 6.9 | 21.6 | 9.7 | 5.7 | 2.3 | 4.2 | 0.6 | 7.9 |
| 7.6 | 284.3 | 268.0 | 101.0 | 111.9 | 44.0 | 19.0 | 19.6 | 5.8 | 14.7 | 12.1 | 5.0 | 1.4 | 3.0 | 4.7 |
| 7.9 | 314.6 | 449.0 | 222.2 | 71.7 | 54.9 | 22.9 | 18.6 | 6.0 | 3.1 | 5.2 | 2.3 | 2.4 | 0.4 | 2.9 |
| 6.7 | 383.1 | 219.1 | 148.3 | 64.3 | 27.0 | 31.8 | 14.9 | 5.6 | 5.8 | 0.9 | 4.2 | 2.8 | 1.9 | 5.1 |
| UK BTS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1988 | 2003 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0.5 | 0.75 |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 8.20 | 14.20 | 9.90 | 0.80 | 1.30 | 0.60 |  |  |  |  |  |  |  |  |
| 1 | 2.60 | 15.40 | 3.40 | 1.70 | 0.60 | 0.20 |  |  |  |  |  |  |  |  |
| 1 | 12.10 | 3.70 | 3.40 | 0.70 | 0.80 | 0.20 |  |  |  |  |  |  |  |  |
| 1 | 8.90 | 22.80 | 2.20 | 2.30 | 0.30 | 0.50 |  |  |  |  |  |  |  |  |
| 1 | 1.40 | 12.00 | 10.00 | 0.70 | 1.10 | 0.30 |  |  |  |  |  |  |  |  |
| 1 | 0.50 | 17.50 | 8.40 | 7.00 | 0.80 | 1.00 |  |  |  |  |  |  |  |  |
| 1 | 4.80 | 3.20 | 8.30 | 3.30 | 3.30 | 0.20 |  |  |  |  |  |  |  |  |
| 1 | 3.50 | 10.60 | 1.50 | 2.30 | 1.20 | 1.50 |  |  |  |  |  |  |  |  |
| 1 | 3.50 | 7.30 | 3.80 | 0.70 | 1.30 | 0.90 |  |  |  |  |  |  |  |  |
| 1 | 19.00 | 7.30 | 3.20 | 1.30 | 0.20 | 0.50 |  |  |  |  |  |  |  |  |
| 1 | 2.00 | 21.20 | 2.50 | 1.00 | 0.90 | 0.10 |  |  |  |  |  |  |  |  |
| , | 28.10 | 9.40 | 13.20 | 2.50 | 1.70 | 1.30 |  |  |  |  |  |  |  |  |
| 1 | 10.49 | 22.03 | 4.15 | 4.24 | 1.03 | 0.58 |  |  |  |  |  |  |  |  |
| 1 | 9.09 | 21.01 | 8.36 | 1.20 | 1.91 | 0.54 |  |  |  |  |  |  |  |  |
| 1 | 31.76 | 11.42 | 5.42 | 3.45 | 0.27 | 0.71 |  |  |  |  |  |  |  |  |
| 1 | 6.47 | 28.48 | 4.13 | 2.46 | 1.58 | 0.30 |  |  |  |  |  |  |  |  |
| YFS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1981 | 2003 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0.5 | 0.75 |  |  |  |  |  |  |  |  |  |  |  |
| 0 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1.881 | -11 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 2.6555 | 0.2005 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 11.887 | 0.695 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | -11 | -11 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | -11 | -11 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | -11 | -11 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 7.995 | 0.66 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1.1875 | 0.94 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 12.588 | 0.36 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3.3285 | 1.15 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1.3865 | 1.87 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1.281 | 0.80 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 6.534 | 0.62 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 8.1035 | 1.59 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 5.3135 | 1.46 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 0.9865 | 0.34 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1.942 | 0.52 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 9.3725 | 0.56 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 2.7455 | 0.85 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1.8475 | 1.28 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 4.5135 | 0.84 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 2.52 | 1.93 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 2.16 | 0.82 |  |  |  |  |  |  |  |  |  |  |  |  |

## Table 8.3.1 - Sole VIId - XSA diagnostics

Lowestoft VPA Version 3.1
9/09/2004 10:31
Extended Survivors Analysis
Sole in VIId
CPUE data from file tun.txt
Catch data for 22 years. 1982 to 2003 . Ages 1 to 11 .

| Fleet | First Last <br> year year |  | First <br> age | Last <br> age | Alpha |  | Beta |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | :---: |

Time series weights :
Tapered time weighting not applied

Catchability analysis
Catchability independent of stock size for all ages
Catchability independent of age for ages $>=7$

Terminal population estimation :
Survivor estimates shrunk towards the mean $F$
of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk $=2.000$

Minimum standard error for population
estimates derived from each fleet $=.300$
Prior weighting not applied

Tuning had not converged after 70 iterations

Total absolute residual between iterations
69 and $70=.00011$

| Final year F values |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Iteration 69 | 0.0154 | 0.2329 | 0.4057 | 0.3485 | 0.3761 | 0.4433 | 0.363 | 0.2547 |
| Iteration 70 | 0.0154 | 0.2329 | 0.4057 | 0.3485 | 0.376 | 0.4432 | 0.363 | 0.2547 |

Regression weights

## Table 8.3.1 - Sole VIId - XSA diagnostics - continued

| Fishing mortalities <br> Age | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  | 0.001 | 0.046 | 0 | 0.001 | 0.002 | 0.007 | 0.005 | 0.006 | 0.012 | 0.015 |
|  | 1 | 0.049 | 0.14 | 0.121 | 0.095 | 0.06 | 0.241 | 0.171 | 0.248 | 0.348 |
| 0.233 |  |  |  |  |  |  |  |  |  |  |
|  | 2 | 0.337 | 0.436 | 0.566 | 0.641 | 0.539 | 0.548 | 0.591 | 0.44 | 0.488 |
| 0.406 |  |  |  |  |  |  |  |  |  |  |
| 4 | 0.494 | 0.416 | 0.543 | 0.783 | 0.585 | 0.627 | 0.538 | 0.346 | 0.465 | 0.348 |
| 5 | 0.414 | 0.439 | 0.483 | 0.791 | 0.56 | 0.555 | 0.376 | 0.592 | 0.52 | 0.376 |
| 6 | 0.311 | 0.4 | 0.469 | 0.442 | 0.494 | 0.58 | 0.38 | 0.418 | 0.268 | 0.443 |
| 7 | 0.266 | 0.3 | 0.435 | 0.404 | 0.23 | 0.52 | 0.384 | 0.347 | 0.267 | 0.363 |
| 8 | 0.283 | 0.181 | 0.328 | 0.451 | 0.308 | 0.422 | 0.384 | 0.233 | 0.228 | 0.255 |
| 9 | 0.265 | 0.345 | 0.289 | 0.475 | 0.34 | 0.381 | 0.333 | 0.218 | 0.248 | 0.167 |
| 10 | 0.618 | 0.276 | 0.866 | 0.219 | 1.113 | 0.278 | 0.247 | 0.114 | 0.321 | 0.332 |

XSA population numbers (Thousands)

| AGE |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|  | 1994 | $2.66 \mathrm{E}+04$ | $1.51 \mathrm{E}+04$ | $2.28 \mathrm{E}+04$ | $1.59 \mathrm{E}+04$ | $1.06 \mathrm{E}+04$ | $2.30 \mathrm{E}+03$ | $2.55 \mathrm{E}+03$ | $4.65 \mathrm{E}+02$ | $6.65 \mathrm{E}+02$ | $2.12 \mathrm{E}+02$ |
|  | 1995 | $1.95 \mathrm{E}+04$ | $2.40 \mathrm{E}+04$ | $1.30 \mathrm{E}+04$ | $1.47 \mathrm{E}+04$ | $8.78 \mathrm{E}+03$ | $6.31 \mathrm{E}+03$ | $1.52 \mathrm{E}+03$ | $1.77 \mathrm{E}+03$ | $3.17 \mathrm{E}+02$ | $4.61 \mathrm{E}+02$ |
|  | 1996 | $1.90 \mathrm{E}+04$ | $1.68 \mathrm{E}+04$ | $1.89 \mathrm{E}+04$ | 7.62E+03 | $8.80 \mathrm{E}+03$ | $5.12 \mathrm{E}+03$ | $3.83 \mathrm{E}+03$ | $1.02 \mathrm{E}+03$ | $1.33 \mathrm{E}+03$ | $2.03 \mathrm{E}+02$ |
|  | 1997 | $2.75 \mathrm{E}+04$ | $1.72 \mathrm{E}+04$ | $1.35 \mathrm{E}+04$ | $9.70 \mathrm{E}+03$ | $4.00 \mathrm{E}+03$ | $4.91 \mathrm{E}+03$ | $2.90 \mathrm{E}+03$ | $2.24 \mathrm{E}+03$ | $6.65 \mathrm{E}+02$ | $9.04 \mathrm{E}+02$ |
|  | 1998 | $1.78 \mathrm{E}+04$ | $2.49 \mathrm{E}+04$ | $1.41 \mathrm{E}+04$ | $6.42 \mathrm{E}+03$ | $4.01 \mathrm{E}+03$ | $1.64 \mathrm{E}+03$ | $2.86 \mathrm{E}+03$ | $1.75 \mathrm{E}+03$ | $1.29 \mathrm{E}+03$ | $3.74 \mathrm{E}+02$ |
|  | 1999 | $2.67 \mathrm{E}+04$ | $1.61 \mathrm{E}+04$ | $2.12 \mathrm{E}+04$ | 7.47E+03 | $3.24 \mathrm{E}+03$ | $2.08 \mathrm{E}+03$ | 9.07E+02 | $2.05 \mathrm{E}+03$ | $1.16 \mathrm{E}+03$ | $8.32 \mathrm{E}+02$ |
|  | 2000 | $3.21 \mathrm{E}+04$ | $2.40 \mathrm{E}+04$ | $1.14 \mathrm{E}+04$ | $1.11 \mathrm{E}+04$ | $3.61 \mathrm{E}+03$ | $1.68 \mathrm{E}+03$ | $1.05 \mathrm{E}+03$ | $4.88 \mathrm{E}+02$ | $1.22 \mathrm{E}+03$ | $7.20 \mathrm{E}+02$ |
|  | 2001 | $2.79 \mathrm{E}+04$ | $2.89 \mathrm{E}+04$ | $1.83 \mathrm{E}+04$ | 5.73E+03 | $5.86 \mathrm{E}+03$ | $2.24 \mathrm{E}+03$ | $1.04 \mathrm{E}+03$ | $6.48 \mathrm{E}+02$ | $3.00 \mathrm{E}+02$ | $7.91 \mathrm{E}+02$ |
|  | 2002 | $6.20 \mathrm{E}+04$ | $2.51 \mathrm{E}+04$ | $2.04 \mathrm{E}+04$ | $1.07 \mathrm{E}+04$ | $3.66 \mathrm{E}+03$ | $2.93 \mathrm{E}+03$ | $1.34 \mathrm{E}+03$ | $6.65 \mathrm{E}+02$ | $4.64 \mathrm{E}+02$ | $2.19 \mathrm{E}+02$ |
|  | 2003 | $2.60 \mathrm{E}+04$ | $5.54 \mathrm{E}+04$ | $1.60 \mathrm{E}+04$ | $1.14 \mathrm{E}+04$ | $6.05 \mathrm{E}+03$ | $1.97 \mathrm{E}+03$ | $2.03 \mathrm{E}+03$ | $9.26 \mathrm{E}+02$ | $4.79 \mathrm{E}+02$ | $3.28 \mathrm{E}+02$ |

Estimated population abundance at 1st Jan 2004
$0.00 \mathrm{E}+00 \quad 2.32 \mathrm{E}+04 \quad 3.97 \mathrm{E}+04 \quad 9.67 \mathrm{E}+03 \quad 7.25 \mathrm{E}+03 \quad 3.76 \mathrm{E}+03 \quad 1.14 \mathrm{E}+03 \quad 1.28 \mathrm{E}+03 \quad 6.49 \mathrm{E}+02 \quad 3.67 \mathrm{E}+02$
Taper weighted geometric mean of the VPA populations:
$2.36 \mathrm{E}+04 \quad 2.08 \mathrm{E}+04 \quad 1.54 \mathrm{E}+04 \quad 8.40 \mathrm{E}+03 \quad 4.48 \mathrm{E}+03 \quad 2.57 \mathrm{E}+03 \quad 1.56 \mathrm{E}+03 \quad 9.36 \mathrm{E}+02 \quad 5.95 \mathrm{E}+02 \quad 3.75 \mathrm{E}+02$
Standard error of the weighted Log(VPA populations) :

$$
\begin{array}{llllllllll}
0.4118 & 0.4132 & 0.3507 & 0.4328 & 0.4467 & 0.4793 & 0.5156 & 0.5234 & 0.532 & 0.5881
\end{array}
$$

Log catchability residuals.

Fleet : BEL BT

| Age |  | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 : at this age |  |  |  |  |  |  |  |  |
|  | 2 | 0.12 | 0.66 | -0.64 | -2.49 | 1.2 | -0.68 | 0.05 | 1.39 |
|  | 3 | 0.62 | -0.3 | -0.53 | -0.1 | -0.01 | 0.74 | 0 | 0.16 |
|  | 4 | 0.12 | 0.29 | -0.78 | -0.47 | -0.21 | -0.01 | 0.34 | -0.11 |
|  | 5 | -0.17 | 0.49 | -0.33 | 0.93 | -0.18 | -0.13 | 0.13 | -0.12 |
|  | 6 | -0.16 | 0.87 | -0.28 | 0.21 | -0.22 | 0.58 | -0.53 | -0.92 |
|  | 7 | -0.24 | 0.56 | 0.02 | 0.28 | 0.49 | 0.04 | -0.27 | -0.02 |
|  | 8 | 0.03 | -0.15 | -0.8 | -0.09 | -0.32 | -0.11 | -0.19 | -0.31 |
|  | 9 | 0.73 | 0.31 | -0.8 | -0.38 | 0.33 | -0.74 | -0.13 | 0.66 |
|  | 10 | 0.05 | 2.2 | 1.45 | -2.15 | -0.15 | 0.56 | -0.75 | -0.68 |

## Table 8.3.1 - Sole VIId - XSA diagnostics - continued

|  | Age |  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1: at this age |  |  |  |  |  |  |  |  |  |  |
|  | 2 | -0.21 | -0.67 | -0.04 | -0.65 | -0.25 | 0.48 | 0.13 | 0.53 | 0.87 | 0.21 |
|  | 3 | -0.13 | -0.39 | -0.15 | 0.29 | -0.32 | -0.05 | 0.35 | -0.08 | -0.06 | -0.06 |
|  | 4 | 0.5 | -0.41 | 0.21 | 0.29 | 0.21 | 0.44 | 0.3 | -0.37 | -0.21 | -0.14 |
|  | 5 | 0.17 | -0.15 | -0.22 | 0.38 | -0.24 | 0.37 | -0.43 | 0.07 | -0.3 | -0.26 |
|  | 6 | 0.37 | 0.02 | 0.09 | 0.08 | -0.31 | -0.13 | 0.03 | 0.62 | -0.81 | 0.5 |
|  | 7 | -0.04 | -0.06 | 0.2 | 0.2 | -0.29 | -0.04 | -0.26 | 0.1 | -0.32 | -0.35 |
|  | 8 | 0.27 | -1.18 | -0.06 | -0.26 | 0.05 | -0.28 | 0.48 | -0.68 | -0.39 | -0.28 |
|  | 9 | -0.25 | 0.16 | -0.22 | 0.03 | -0.12 | -0.02 | -0.35 | -0.65 | -0.63 | -1.54 |
|  | 10 | 1.37 | -0.83 | 1.1 | -1.05 | -0.1 | -0.61 | -0.35 | -1.46 | 0.3 | 0.08 |

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q | -7.1548 | -5.7222 | -5.6194 | -5.4741 | -5.7042 | -5.6527 | -5.6527 | -5.6527 | -5.6527 |
| S.E(Log q) | 0.8814 | 0.3298 | 0.3581 | 0.3515 | 0.4841 | 0.2711 | 0.4504 | 0.5938 | 1.0985 |

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

| Age |  | Slope t -value |  | Intercept | RSquare | No Pts | Reg s.e |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Mean Q

Fleet : UK BT

| Age |  | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | is age |  |  |  |  |  |  |  |  |  |
|  | 2 | -0.3 | 0.46 | 0.65 | 0 | -0.14 | -0.02 | -0.34 | -0.29 |  |  |
|  | 3 | 0.57 | 0 | 0.41 | 0.03 | 0.15 | -0.22 | -0.05 | -0.45 |  |  |
|  | 4 | 0.57 | 0.46 | 0.01 | 0.27 | -0.07 | 0.08 | -0.38 | -0.14 |  |  |
|  | 5 | 0.31 | 0.56 | 0.42 | -0.47 | 0.01 | -1.2 | 0.49 | -0.33 |  |  |
|  | 6 | 0.4 | -0.25 | 0.26 | 0.1 | -0.38 | -0.27 | -0.6 | 0.04 |  |  |
|  | 7 | 0.65 | -0.26 | -0.11 | 0.21 | -0.29 | -0.92 | -0.2 | -0.53 |  |  |
|  | 8 | -0.7 | 0.4 | 0.3 | -0.23 | 0.01 | -0.62 | -0.39 | -0.14 |  |  |
|  | 9 | 0.13 | -0.64 | 0.07 | -0.34 | -0.13 | 0.12 | 0.38 | 0.04 |  |  |
|  | 10 | 0.02 | -1.24 | 0.68 | 0.3 | 0.53 | 0.08 | -0.29 | -0.5 |  |  |
| Age |  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|  | 1 : at this age |  |  |  |  |  |  |  |  |  |  |
|  | 2 | -1.14 | -0.12 | 0.32 | 0.19 | 0.08 | 0.42 | -0.09 | 0.1 | 0.35 | -0.13 |
|  | 3 | -0.05 | -0.58 | -0.44 | 0.21 | -0.21 | 0.17 | 0.32 | -0.1 | 0.29 | -0.06 |
|  | 4 | -0.26 | -0.04 | -0.74 | -0.19 | 0 | 0.16 | 0.24 | 0 | 0.18 | -0.17 |
|  | 5 | -0.02 | -0.12 | -0.05 | -0.51 | 0.16 | 0.19 | 0.26 | 0.3 | 0.25 | -0.26 |
|  | 6 | 0.01 | 0.03 | -0.24 | 0.18 | -0.09 | 0.29 | 0.24 | 0.21 | 0.06 | -0.01 |
|  | 7 | 0.48 | -0.14 | -0.1 | -0.12 | 0.18 | 0.24 | 0.45 | 0.2 | 0.06 | 0.18 |
|  | 8 | -0.14 | 0.37 | -0.17 | 0.12 | 0.12 | 0.14 | 0.25 | 0.66 | 0.53 | 0.16 |
|  | 9 | 0.36 | 0.23 | 0.18 | -0.09 | 0.19 | -0.03 | 0.45 | 0.2 | -0.23 | -0.2 |
|  | 10 | 0.48 | 0.38 | 0.23 | 0.17 | 0.41 | -0.31 | 0.14 | 0.11 | -0.1 | 0.29 |

## Table 8.3.1 - Sole VIId - XSA diagnostics - continued

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q | -6.5825 | -5.8971 | -5.8511 | -5.9579 | -5.9245 | -6.019 | -6.019 | -6.019 | -6.019 |
| S.E(Log q) | 0.4007 | 0.3085 | 0.305 | 0.4348 | 0.2618 | 0.3803 | 0.3739 | 0.2786 | 0.4559 |

Regression statistics :
Ages with q independent of year class strength and constant w.r.t. time.

| Age |  | Slope | t-value | Intercept | RSquare | No Pts | Reg s.e | Mean Q |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 1.13 | -0.501 | 6.13 | 0.47 | 18 | 0.46 | -6.58 |  |  |  |
|  | 3 | 1.07 | -0.314 | 5.63 | 0.54 | 18 | 0.34 | -5.9 |  |  |  |
|  | 4 | 0.98 | 0.117 | 5.92 | 0.68 | 18 | 0.31 | -5.85 |  |  |  |
|  | 5 | 0.73 | 1.591 | 6.62 | 0.69 | 18 | 0.3 | -5.96 |  |  |  |
|  | 6 | 0.83 | 1.602 | 6.25 | 0.84 | 18 | 0.21 | -5.92 |  |  |  |
|  | 7 | 0.76 | 1.894 | 6.35 | 0.8 | 18 | 0.27 | -6.02 |  |  |  |
|  | 8 | 0.81 | 1.449 | 6.14 | 0.79 | 18 | 0.29 | -5.98 |  |  |  |
|  | 9 | 0.83 | 1.803 | 6.05 | 0.88 | 18 | 0.22 | -5.98 |  |  |  |
|  | 10 | 1.01 | -0.065 | 5.94 | 0.67 | 18 | 0.47 | -5.94 |  |  |  |
| Fleet |  |  |  |  |  |  |  |  |  |  |  |
| Age |  | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |  |  |
|  | 1 | 99.99 | 99.99 | 0.36 | -0.35 | 0.23 | 0.16 | -1.67 | -2 |  |  |
|  | 2 | 99.99 | 99.99 | 1.04 | 0.21 | -0.74 | 0.12 | -0.34 | 0.08 |  |  |
|  | 3 | 99.99 | 99.99 | 0.65 | 0.63 | -0.49 | -0.37 | 0.12 | 0.06 |  |  |
|  | 4 | 99.99 | 99.99 | -0.26 | -0.03 | 0.06 | 0.06 | -0.6 | 0.63 |  |  |
|  | 5 | 99.99 | 99.99 | 0.44 | 0.19 | -0.14 | -0.21 | -0.09 | 0.03 |  |  |
|  | 6 | 99.99 | 99.99 | 0.13 | -0.78 | -0.23 | 0.1 | 0.39 | 0.33 |  |  |
|  | 7 | No data fo | this fleet at | this age |  |  |  |  |  |  |  |
|  | 8 | No data for | this fleet at | this age |  |  |  |  |  |  |  |
|  | 9 | No data for | this fleet at | this age |  |  |  |  |  |  |  |
|  | 10 | No data fo | this fleet at | this age |  |  |  |  |  |  |  |
| Age |  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|  | 1 | -0.2 | -0.17 | -0.18 | 1.14 | -0.67 | 1.57 | 0.4 | 0.4 | 0.85 | 0.13 |
|  | 2 | -1 | -0.21 | -0.24 | -0.28 | 0.4 | 0.13 | 0.54 | 0.35 | -0.05 | 0 |
|  | 3 | 0.12 | -0.97 | -0.33 | -0.12 | -0.48 | 0.79 | 0.27 | 0.41 | -0.1 | -0.18 |
|  | 4 | 0.02 | -0.31 | -0.76 | -0.23 | -0.21 | 0.59 | 0.66 | -0.06 | 0.45 | -0.02 |
|  | 5 | 0.41 | -0.4 | -0.3 | -1.19 | 0.17 | 1.01 | 0.29 | 0.56 | -0.97 | 0.2 |
|  | 6 | -0.81 | 0.25 | -0.01 | -0.57 | -1.05 | 1.33 | 0.61 | 0.28 | 0.19 | -0.17 |
|  | 7 | No data for | this fleet at | this age |  |  |  |  |  |  |  |
|  | 8 | No data for | this fleet at | this age |  |  |  |  |  |  |  |
|  | 9 | No data for | this fleet at | this age |  |  |  |  |  |  |  |
|  | 10 | No data fo | this fleet at | this age |  |  |  |  |  |  |  |

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q | -8.3582 | -7.3646 | -7.7646 | -8.1344 | -8.1574 | -8.2844 |
| S.E(Log q) | 0.9122 | 0.4896 | 0.4777 | 0.4155 | 0.5527 | 0.5995 |

Table 8.3.1 - Sole VIId - XSA diagnostics - continued
Regression statistics :
Ages with q independent of year class strength and constant w.r.t. time.

| Age |  | Slope | t-value | Intercept | RSquare | No Pts | Reg s.e |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Mean Q

Fleet: YFS

| Age | $\begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$ | 1986 <br> 99.99 <br> No data for | 1987 0.57 <br> fleet at | 1988 0.06 age age age age age age age age | $\begin{array}{r} 1989 \\ -0.46 \end{array}$ | $\begin{array}{r} 1990 \\ -0.26 \end{array}$ | $\begin{array}{r} 1991 \\ 0.46 \end{array}$ | $\begin{aligned} & 1992 \\ & -0.36 \end{aligned}$ | $\begin{array}{r} 1993 \\ 0.08 \end{array}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age |  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|  | 1 | 0.56 | 0.82 | -0.64 | -0.59 | -0.08 | -0.06 | 0.16 | -0.12 | -0.08 | -0.07 |
|  | 2 | No data for | fleet at | age |  |  |  |  |  |  |  |
|  | 3 | No data for | fleet at | age |  |  |  |  |  |  |  |
|  | 4 | No data for | fleet at | age |  |  |  |  |  |  |  |
|  | 5 | No data for | fleet at | age |  |  |  |  |  |  |  |
|  | 6 | No data for | fleet at | age |  |  |  |  |  |  |  |
|  | 7 | No data for | fleet at |  |  |  |  |  |  |  |  |
|  | 8 | No data for | fleet at | age |  |  |  |  |  |  |  |
|  | 9 | No data for | fleet at | age |  |  |  |  |  |  |  |
|  | 10 | No data for | fleet at |  |  |  |  |  |  |  |  |

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age | 1 |
| :--- | ---: |
| Mean Log q | -10.2247 |
| S.E(Log q) | 0.4157 |

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

| Age |  | Slope | t-value | Intercept | RSquare | No Pts | Reg s.e | Mean Q |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 1.23 | -0.721 | 10.24 | 0.4 | 17 | 0.52 | -10.22 |

## Table 8.3.1 - Sole VIId - XSA diagnostics - continued

Terminal year survivor and F summaries :
Age 1 Catchability constant w.r.t. time and dependent on age
Year class $=2002$


Weighted prediction :

| Survivors | Int | Ext | N |  | Var | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year | s.e | s.e |  |  | Ratio |  |
| 23195 | 0.38 | 0.14 |  | 3 | 0.359 | 0.015 |

Age 2 Catchability constant w.r.t. time and dependent on age
Year class = 2001

| Fleet | Estimated Survivors | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ | Var <br> Ratio | N | Scaled <br> Weights | Estimated <br> F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BEL BT | 48999 | 0.906 | 0 | 0 | 1 | 0.068 | 0.193 |
| UK BT | 34809 | 0.412 | 0 | 0 | 1 | 0.33 | 0.262 |
| UK BTS | 47934 | 0.445 | 0.354 | 0.8 | 2 | 0.282 | 0.197 |
| YFS | 36582 | 0.428 | 0 | 0 | 1 | 0.302 | 0.251 |
| F shrinkage mean | 43716 | 2 |  |  |  | 0.018 | 0.214 |

Weighted prediction :

| Survivors | Int | Ext | N |  | Var | F |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| at end of year | s.e | s.e |  | Ratio |  |  |
| 39745 |  |  | 0.24 | 0.11 | 6 | 0.449 |

Age 3 Catchability constant w.r.t. time and dependent on age
Year class $=2000$

| Fleet | Estimated | Int | Ext | Var | $N$ | Scaled |  | Estimated |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
|  | Survivors | s.e | s.e | Ratio |  | Weights | F |  |
| BEL BT | 9928 | 0.319 | 0.264 | 0.83 | 2 | 0.269 | 0.397 |  |
| UK BT | 10315 | 0.254 | 0.186 | 0.73 | 2 | 0.397 | 0.385 |  |
| UK BTS | 8959 | 0.335 | 0.121 | 0.36 | 3 | 0.216 | 0.432 |  |
| YFS | 8578 | 0.428 | 0 | 0 | 1 | 0.108 | 0.447 |  |
| F shrinkage mean | 7037 |  | 2 |  |  |  |  | 0.011 |

Weighted prediction :

| Survivors | Int | Ext | N |  | Var | F |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| at end of year | s.e | s.e |  |  | Ratio |  |
|  | 9669 | 0.16 | 0.07 |  | 9 | 0.469 |

## Table 8.3.1 - Sole VIId - XSA diagnostics - continued

Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=1999$

| Fleet | Estimated | Int | Ext | Var | N |  | Scaled | Estimated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Survivors | s.e | s.e | Ratio |  |  | Weights |  |
| BEL BT | 6712 | 0.248 | 0.097 | 0.39 |  | 3 | 0.291 | 0.372 |
| UK BT | 7365 | 0.204 | 0.149 | 0.73 |  | 3 | 0.418 | 0.344 |
| UK BTS | 7600 | 0.275 | 0.102 | 0.37 |  | 4 | 0.227 | 0.335 |
| YFS | 8502 | 0.428 | 0 | 0 |  | 1 | 0.057 | 0.304 |
| F shrinkage mean | 4496 | 2 |  |  |  |  | 0.008 | 0.514 |

Weighted prediction :

| Survivors at end of year | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ | N |  | Var <br> Ratio | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7252 | 0.13 | 0.06 |  | 12 | 0.44 | 0.348 |

Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1998$

| Fleet | Estimated | Int | Ext | Var | $N$ | Scaled |  | Estimated |
| :--- | ---: | :--- | ---: | :--- | ---: | ---: | ---: | ---: |
|  | Survivors | s.e | s.e | Ratio |  | Weights |  | F |
| BEL BT | 3083 | 0.215 | 0.052 | 0.24 |  | 0.355 | 0.443 |  |
| UK BT | 3615 | 0.193 | 0.105 | 0.55 | 4 | 0.381 | 0.389 |  |
| UK BTS | 5741 | 0.258 | 0.13 | 0.51 | 5 | 0.216 | 0.262 |  |
| YFS | 3533 | 0.428 | 0 | 0 | 1 | 0.04 | 0.396 |  |
|  |  |  |  |  |  |  | 0.008 | 0.523 |

Weighted prediction :

| Survivors | Int | Ext | N |  | Var | F |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year | s.e | s.e |  |  | Ratio |  |  |
|  | 3761 | 0.12 | 0.08 |  | 15 | 0.639 | 0.376 |

Age 6 Catchability constant w.r.t. time and dependent on age
Year class $=1997$


## Table 8.3.1 - Sole VIId - XSA diagnostics - continued

Age 7 Catchability constant w.r.t. time and dependent on age
Year class $=1996$

| Fleet | Estimated Survivors | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ | Var Ratio | $N$ | Scaled Weights | Estimated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BEL BT | 972 | 0.19 | 0.139 | 0.73 | 6 | 0.417 | 0.454 |
| UK BT | 1482 | 0.176 | 0.037 | 0.21 | 6 | 0.442 | 0.32 |
| UK BTS | 2066 | 0.272 | 0.109 | 0.4 | 6 | 0.119 | 0.24 |
| YFS | 709 | 0.428 | 0 | 0 | 1 | 0.015 | 0.581 |
| F shrinkage mean | 1331 | 2 |  |  |  | 0.007 | 0.351 |

Weighted prediction :

| Survivors |  | Int | Ext | N |  | Var |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| at end of year | s.e | s.e |  | F |  |  |
| 1278 |  | 0.12 | 0.08 |  | 20 | 0.692 |

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class $=1995$

| Fleet | Estimated Survivors | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ | Var Ratio | N |  | Scaled Weights | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BEL BT | 540 | 0.181 | 0.136 | 0.75 |  | 7 | 0.421 | 0.299 |
| UK BT | 748 | 0.168 | 0.04 | 0.24 |  | 7 | 0.471 | 0.224 |
| UK BTS | 804 | 0.265 | 0.148 | 0.56 |  | 6 | 0.09 | 0.21 |
| YFS | 341 | 0.428 | 0 | 0 |  | 1 | 0.011 | 0.44 |
| F shrinkage mean | 507 | 2 |  |  |  |  | 0.007 | 0.316 |
| Weighted prediction : |  |  |  |  |  |  |  |  |
| Survivors | Int | Ext | N | Var | F |  |  |  |
| at end of year | s.e | s.e |  | Ratio |  |  |  |  |
| 649 | 0.11 | 0.07 | 22 | 0.591 |  |  |  |  |

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class $=1994$

| Fleet | Estimated Survivors | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ | Var Ratio | N | Scaled Weights | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BEL BT | 292 | 0.184 | 0.23 | 1.25 | 8 | 0.358 | 0.205 |
| UK BT | 407 | 0.159 | 0.106 | 0.67 | 8 | 0.57 | 0.152 |
| UK BTS | 531 | 0.278 | 0.224 | 0.81 | 6 | 0.06 | 0.118 |
| YFS | 832 | 0.428 | 0 | 0 | 1 | 0.006 | 0.077 |
| F shrinkage mean | 187 | 2 |  |  |  | 0.006 | 0.305 |
| Weighted prediction : |  |  |  |  |  |  |  |
| Survivors at end of year | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ | N | Var Ratio | F |  |  |
| 367 | 0.11 | 0.1 | 24 | 0.881 | 0.167 |  |  |

Table 8.3.1 - Sole VIId - XSA diagnostics - continued
Age 10 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class = 1993

| Fleet | Estimated | Int | Ext | Var | $N$ | Scaled |  | Estimated |
| :--- | ---: | :--- | :--- | ---: | :--- | ---: | ---: | ---: |
|  | Survivors | s.e | S.e | Ratio |  | Weights | F |  |
| BEL BT | 148 | 0.194 | 0.093 | 0.48 | 9 | 0.33 | 0.447 |  |
| UK BT | 250 | 0.162 | 0.121 | 0.75 | 9 | 0.615 | 0.289 |  |
| UK BTS | 331 | 0.289 | 0.315 | 1.09 | 6 | 0.042 | 0.226 |  |
| YFS | 374 | 0.428 | 0 | 0 | 1 | 0.004 | 0.202 |  |
|  |  |  |  |  |  |  | 0.009 | 0.322 |

Weighted prediction :
$\left.\begin{array}{lrrlllll}\begin{array}{l}\text { Survivors } \\ \text { at end of year }\end{array} & \text { Int } & \text { Ext } & \text { N } & & \text { Var } & \text { F } \\ & 213 & \text { s.e } & \text { s.e } & & & \text { Ratio }\end{array}\right)$

Table 8.3.2 - Sole VIId - Fishing mortality (F) at age

| Run title : Sole in VIId |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| At 9/09/2004 10:33 |  |  |  |  |  |  |  |  |  |  |  |  |
| Table 8 Fishing mortality (F) at age |  |  |  |  |  |  |  |  |  |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | 0.0129 | 0.0000 |  |  |  |  |  |  |  |  |
|  |  | 2 | 0.1862 | 0.0822 |  |  |  |  |  |  |  |  |
|  |  | 3 | 0.3095 | 0.3530 |  |  |  |  |  |  |  |  |
|  |  | 4 | 0.4884 | 0.3563 |  |  |  |  |  |  |  |  |
|  |  | 5 | 0.2303 | 0.4486 |  |  |  |  |  |  |  |  |
|  |  | 6 | 0.2266 | 0.4605 |  |  |  |  |  |  |  |  |
|  |  | 7 | 0.4671 | 0.3146 |  |  |  |  |  |  |  |  |
|  |  | 8 | 0.4109 | 0.5094 |  |  |  |  |  |  |  |  |
|  |  | 9 | 0.3464 | 0.2913 |  |  |  |  |  |  |  |  |
|  | 10 | 0 | 0.3372 | 0.4061 |  |  |  |  |  |  |  |  |
|  | +gp |  | 0.3372 | 0.4061 |  |  |  |  |  |  |  |  |
| 0 | FBAR 3-8 |  | 0.3555 | 0.4071 |  |  |  |  |  |  |  |  |
| Table 8 Fishing mortality (F) at age |  |  |  |  |  |  |  |  |  |  |  |  |
|  | YEAR |  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | 0.0012 | 0.0040 | 0.0020 | 0.0009 | 0.0039 | 0.0103 | 0.0299 | 0.0116 | 0.0033 | 0.0053 |
|  |  | 2 | 0.1136 | 0.2217 | 0.1200 | 0.1517 | 0.2600 | 0.1702 | 0.2222 | 0.2148 | 0.1467 | 0.1904 |
|  |  | 3 | 0.4319 | 0.4314 | 0.4999 | 0.5446 | 0.5390 | 0.6707 | 0.3982 | 0.5040 | 0.3926 | 0.3259 |
|  |  | 4 | 0.4366 | 0.3729 | 0.4549 | 0.5847 | 0.4211 | 0.6617 | 0.4741 | 0.5158 | 0.4051 | 0.3992 |
|  |  | 5 | 0.2596 | 0.2719 | 0.3206 | 0.5260 | 0.3726 | 0.7297 | 0.4348 | 0.4335 | 0.4422 | 0.3491 |
|  |  | 6 | 0.7288 | 0.3867 | 0.2987 | 0.6567 | 0.3841 | 0.4489 | 0.2867 | 0.5120 | 0.3368 | 0.1907 |
|  |  | 7 | 0.5141 | 0.2614 | 0.3514 | 0.7895 | 0.4814 | 0.4234 | 0.3436 | 0.3759 | 0.3189 | 0.2862 |
|  |  | 8 | 0.2314 | 0.2968 | 0.4392 | 0.4238 | 0.3723 | 0.4370 | 0.3083 | 0.3382 | 0.3077 | 0.2383 |
|  |  | 9 | 0.3564 | 0.1527 | 0.6147 | 0.5734 | 0.2113 | 0.3923 | 0.4922 | 0.5041 | 0.3680 | 0.4188 |
|  | 10 | 0 | 0.4194 | 0.2746 | 0.2848 | 1.6353 | 1.0214 | 0.2581 | 0.5158 | 0.6956 | 0.3103 | 0.1963 |
|  | +gp |  | 0.4194 | 0.2746 | 0.2848 | 1.6353 | 1.0214 | 0.2581 | 0.5158 | 0.6956 | 0.3103 | 0.1963 |
| 0 | FBAR 3-8 |  | 0.4337 | 0.3368 | 0.3941 | 0.5875 | 0.4284 | 0.5619 | 0.3743 | 0.4466 | 0.3672 | 0.2983 |

Run title : Sole in VIId
At 9/09/2004 10:33

| Table 8 Fishing mortality (F) at age |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | YEAR | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | FBAR 01-03 |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 0.0012 | 0.0463 | 0.0005 | 0.0009 | 0.0020 | 0.0066 | 0.0045 | 0.0063 | 0.0121 | 0.0154 | 0.0113 |
|  | 2 | 0.0495 | 0.1397 | 0.1212 | 0.0954 | 0.0599 | 0.2406 | 0.1711 | 0.2477 | 0.3478 | 0.2329 | 0.2761 |
|  | 3 | 0.3368 | 0.4360 | 0.5661 | 0.6415 | 0.5392 | 0.5476 | 0.5911 | 0.4403 | 0.4882 | 0.4057 | 0.4447 |
|  | 4 | 0.4945 | 0.4155 | 0.5429 | 0.7825 | 0.5850 | 0.6268 | 0.5385 | 0.3465 | 0.4649 | 0.3485 | 0.3866 |
|  | 5 | 0.4141 | 0.4393 | 0.4830 | 0.7911 | 0.5596 | 0.5551 | 0.3760 | 0.5922 | 0.5204 | 0.3760 | 0.4962 |
|  | 6 | 0.3113 | 0.4002 | 0.4691 | 0.4423 | 0.4940 | 0.5803 | 0.3797 | 0.4175 | 0.2676 | 0.4432 | 0.3761 |
|  | 7 | 0.2664 | 0.3000 | 0.4345 | 0.4040 | 0.2299 | 0.5205 | 0.3843 | 0.3469 | 0.2671 | 0.3630 | 0.3257 |
|  | 8 | 0.2830 | 0.1808 | 0.3277 | 0.4515 | 0.3077 | 0.4217 | 0.3844 | 0.2329 | 0.2279 | 0.2547 | 0.2385 |
|  | 9 | 0.2647 | 0.3450 | 0.2895 | 0.4746 | 0.3398 | 0.3812 | 0.3326 | 0.2181 | 0.2481 | 0.1667 | 0.2110 |
|  | 10 | 0.6178 | 0.2764 | 0.8665 | 0.2189 | 1.1127 | 0.2778 | 0.2474 | 0.1139 | 0.3205 | 0.3317 | 0.2554 |
|  | +gp | 0.6178 | 0.2764 | 0.8665 | 0.2189 | 1.1127 | 0.2778 | 0.2474 | 0.1139 | 0.3205 | 0.3317 |  |
| 0 | FBAR 3-8 | 0.3510 | 0.3620 | 0.4705 | 0.5855 | 0.4526 | 0.5420 | 0.4423 | 0.3961 | 0.3727 | 0.3652 |  |

Table 8.3.3 - Sole VIId - Stock numbers at age

Run title : Sole in VIId
At 9/09/2004 10:33

|  | Table 10 | Stock number at age (start of year)$1982 \quad 1983$ |  |  |  | Numbers* $10^{* *}-3$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | YEAR |  |  |  |  |  |  |  |  |  |  |
|  | AGE |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 12711 | 21394 |  |  |  |  |  |  |  |  |
|  | 2 | 16244 | 11354 |  |  |  |  |  |  |  |  |
|  | 3 | 20761 | 12201 |  |  |  |  |  |  |  |  |
|  | 4 | 4699 | 13785 |  |  |  |  |  |  |  |  |
|  | 5 | 2913 | 2609 |  |  |  |  |  |  |  |  |
|  | 6 | 3385 | 2094 |  |  |  |  |  |  |  |  |
|  | 7 | 1546 | 2442 |  |  |  |  |  |  |  |  |
|  | 8 | 749 | 877 |  |  |  |  |  |  |  |  |
|  | 9 | 438 | 449 |  |  |  |  |  |  |  |  |
|  | 10 | 305 | 280 |  |  |  |  |  |  |  |  |
|  | +gp | 740 | 606 |  |  |  |  |  |  |  |  |
| 0 | TOTAL | 64491 | 68091 |  |  |  |  |  |  |  |  |
|  | Table 10 | Stock number at age (start of year) |  |  |  | Numbers*10**-3 |  |  |  |  |  |
|  | YEAR | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
|  | AGE |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 21601 | 12910 | 25781 | 10982 | 25962 | 16799 | 44389 | 34844 | 33805 | 16793 |
|  | 2 | 19358 | 19522 | 11635 | 23281 | 9929 | 23401 | 15045 | 38981 | 31164 | 30488 |
|  | 3 | 9463 | 15635 | 14152 | 9337 | 18101 | 6927 | 17860 | 10901 | 28455 | 24350 |
|  | 4 | 7757 | 5560 | 9191 | 7767 | 4901 | 9554 | 3205 | 10852 | 5959 | 17387 |
|  | 5 | 8735 | 4536 | 3465 | 5277 | 3917 | 2911 | 4461 | 1805 | 5862 | 3596 |
|  | 6 | 1507 | 6096 | 3127 | 2275 | 2822 | 2441 | 1269 | 2613 | 1059 | 3409 |
|  | 7 | 1195 | 658 | 3747 | 2099 | 1068 | 1739 | 1410 | 862 | 1417 | 684 |
|  | 8 | 1613 | 647 | 458 | 2386 | 862 | 597 | 1030 | 905 | 536 | 932 |
|  | 9 | 477 | 1158 | 435 | 267 | 1413 | 538 | 349 | 685 | 584 | 356 |
|  | 10 | 304 | 302 | 899 | 213 | 136 | 1035 | 329 | 193 | 374 | 366 |
|  | +gp | 728 | 559 | 1574 | 591 | 448 | 1300 | 1270 | 796 | 908 | 759 |
| 0 | TOTAL | 72737 | 67583 | 74464 | 64477 | 69557 | 67241 | 90617 | 103438 | 110123 | 99120 |

Run title : Sole in VIId
At 9/09/2004 10:33

|  | Table 10 | Stock number at age (start of year) |  |  |  | Numbers*10**-3 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | YEAR | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | GMST 8 | 01 A | AMST 82-01 |
|  | AGE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 26554 | 19457 | 19019 | 27525 | 17791 | 26673 | 32140 | 27905 | 62018 | 26033 | $0^{\text {a }}$ | 22326 | 23752 |  |
|  | 2 | 15114 | 23998 | 16808 | 17200 | 24883 | 16066 | 23975 | 28950 | 25090 | 55444 | 23195 | 19615 | 20870 |  |
|  | 3 | 22804 | 13016 | 18882 | 13472 | 14147 | 21206 | 11429 | 18283 | 20448 | 16033 | 39745 | 15133 | 16069 |  |
|  | 4 | 15905 | 14733 | 7616 | 9700 | 6418 | 7465 | 11097 | 5726 | 10651 | 11355 | 9669 | 8174 | 8964 |  |
|  | 5 | 10553 | 8777 | 8799 | 4004 | 4013 | 3235 | 3609 | 5860 | 3664 | 6054 | 7252 | 4456 | 4947 |  |
|  | 6 | 2295 | 6311 | 5119 | 4912 | 1642 | 2075 | 1680 | 2242 | 2933 | 1970 | 3761 | 2586 | 2919 |  |
|  | 7 | 2549 | 1521 | 3827 | 2897 | 2856 | 907 | 1051 | 1040 | 1336 | 2031 | 1144 | 1548 | 1776 |  |
|  | 8 | 465 | 1767 | 1020 | 2243 | 1750 | 2053 | 488 | 648 | 665 | 926 | 1278 | 953 | 1101 |  |
|  | 9 | 665 | 317 | 1334 | 665 | 1292 | 1164 | 1219 | 300 | 464 | 479 | 649 | 609 | 705 |  |
|  | 10 | 212 | 461 | 203 | 904 | 374 | 832 | 720 | 791 | 219 | 328 | 367 | 388 | 462 |  |
|  | +gp | 585 | 1046 | 619 | 1425 | 467 | 1552 | 1187 | 2583 | 753 | 910 | 804 |  |  |  |
| 0 | TOTAL | 97702 | 91405 | 83245 | 84947 | 75634 | 83230 | 88594 | 94328 | 128241 | 121562 | 87865 |  |  |  |

${ }^{\text {a }}$ Replaced with GM in prediction

## Table 8.3.4 - Sole VIId - Summary

Run title : Sole in VIId<br>At 9/09/2004 10:33<br>Table 16 Summary (without SOP correction)

|  | RECRUITS | TOTALBIO | TOTSPBIO | LANDINGS | YIELD/SSB | FBAR $3-8$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | Age 1 |  |  |  |  |  |
| 1982 | 12711 | 10427 | 7825 | 3190 | 0.4077 | 0.3555 |
| 1983 | 21394 | 12620 | 9590 | 3458 | 0.3606 | 0.4071 |
| 1984 | 21601 | 12977 | 8993 | 3575 | 0.3975 | 0.4337 |
| 1985 | 12910 | 13362 | 10004 | 3837 | 0.3835 | 0.3368 |
| 1986 | 25781 | 14021 | 10634 | 3932 | 0.3698 | 0.3941 |
| 1987 | 10982 | 13064 | 9037 | 4791 | 0.5301 | 0.5875 |
| 1988 | 25962 | 12886 | 10148 | 3853 | 0.3797 | 0.4284 |
| 1989 | 16799 | 12006 | 8522 | 3805 | 0.4465 | 0.5619 |
| 1990 | 44389 | 13979 | 9684 | 3647 | 0.3766 | 0.3743 |
| 1991 | 34844 | 15957 | 8835 | 4351 | 0.4924 | 0.4466 |
| 1992 | 33805 | 17507 | 11329 | 4072 | 0.3594 | 0.3672 |
| 1993 | 16793 | 18105 | 13302 | 4299 | 0.3232 | 0.2983 |
| 1994 | 26554 | 15727 | 12646 | 4383 | 0.3466 | 0.351 |
| 1995 | 19457 | 15228 | 11231 | 4420 | 0.3935 | 0.362 |
| 1996 | 19019 | 15806 | 12250 | 4797 | 0.3916 | 0.4705 |
| 1997 | 27525 | 14486 | 10719 | 4764 | 0.4445 | 0.5855 |
| 1998 | 17791 | 12569 | 8196 | 3363 | 0.4103 | 0.4526 |
| 1999 | 26673 | 12521 | 9131 | 4135 | 0.4529 | 0.542 |
| 2000 | 32140 | 13059 | 8527 | 3476 | 0.4077 | 0.4423 |
| 2001 | 27905 | 12808 | 7737 | 4025 | 0.5203 | 0.3961 |
| 2002 | 62018 | 15201 | 8688 | 4733 | 0.5448 | 0.3727 |
| 2003 | 26033 | 20476 | 10802 | 5038 | 0.4664 | 0.3652 |
| 2004 | $223266^{1}$ |  | $13827^{2}$ |  |  | $0.3652^{3}$ |
| Arith. |  |  |  |  |  |  |
| Mean | 25595 | 14309 | 9901 | 4088 | 0.4184 | 0.4241 |
| Onits | (Thousands) | (Tonnes) | (Tonnes) | (Tonnes) |  |  |

${ }^{1}$ Geometric mean 1982-2001
${ }^{2}$ From forecast
${ }^{3} \mathrm{~F}_{(01-03)}$ rescaled to $\mathrm{F}_{2003}$

## Table 8.4.1 - Sole VIId - RCT3 input

| Yearclass XSA (Age 1) | XSA (Age 2) | yfs0 | yfs1 | bts1 | bts2 |  |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: |
| 1981 | 12711 | 11354 | 1.881 | 0.2005 | -11 | -11 |
| 1982 | 21394 | 19358 | 2.6555 | 0.695 | -11 | -11 |
| 1983 | 21601 | 19522 | 11.887 | -11 | -11 | -11 |
| 1984 | 12910 | 11635 | -11 | -11 | -11 | -11 |
| 1985 | 25781 | 23281 | -11 | -11 | -11 | -11 |
| 1986 | 10982 | 9929 | -11 | 0.6595 | -11 | 14.2 |
| 1987 | 25962 | 23401 | 7.995 | 0.935 | 8.2 | 15.4 |
| 1988 | 16799 | 15045 | 1.1875 | 0.356 | 2.6 | 3.7 |
| 1989 | 44389 | 38981 | 12.588 | 1.152 | 12.1 | 22.8 |
| 1990 | 34844 | 31164 | 3.3285 | 1.8695 | 8.9 | 12 |
| 1991 | 33805 | 30488 | 1.3865 | 0.796 | 1.4 | 17.5 |
| 1992 | 16793 | 15114 | 1.281 | 0.615 | 0.5 | 3.2 |
| 1993 | 26554 | 23998 | 6.534 | 1.591 | 4.8 | 10.6 |
| 1994 | 19457 | 16808 | 8.1035 | 1.4635 | 3.5 | 7.4 |
| 1995 | 19019 | 17200 | 5.3135 | 0.339 | 3.5 | 7.3 |
| 1996 | 27525 | 24883 | 0.9865 | 0.5205 | 19 | 21.23 |
| 1997 | 17791 | 16066 | 1.942 | 0.559 | 2 | 9.44 |
| 1998 | 26673 | 23975 | 9.3725 | 0.854 | 28.14 | 22.03 |
| 1999 | 32140 | 28950 | 2.7455 | 1.282 | 10.49 | 21.01 |
| 2000 | -11 | -11 | 1.8475 | 0.8365 | 9.09 | -11 |
| 2001 | -11 | -11 | 4.5135 | 1.93 | 31.76 | 28.48 |
| 2002 | -11 | -11 | 2.52 | 0.82 | 6.47 | -11 |
| 2003 | -11 | -11 | 2.16 | -11 | -11 | -11 |

## Table 8.4.2 - Sole VIId - RCT3 output (1 year olds)

```
Analysis by RCT3 ver3.1 of data from file :
S7DREC1.TXT
7D Sole (1year olds)
Data for 4 surveys over 23 years : 1981-2003
Regression type = C
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
```

Forecast/Hindcast variance correction used.





Table 8.5.1-Sole in VIId
Input for catch forecast and linear sensitivity analysis


Recruitment in 2005 and 2006
R05 $22326 \quad 0.37$

| R06 | 22326 | 0.37 |
| :--- | :--- | :--- |

Table 8.5.2 Sole in VIId - Management option table
MFDP version 1a
Run: S7D_FinP
Sole in VIld
Time and date: 10:34 10/09/2004
Fbar age range: 3-8

| $\begin{gathered} 2004 \\ \text { Biomass } \end{gathered}$ | SSB | FMult | FBar | Landings |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18145 | 13827 | 1.0000 | 0.3652 | 5931 |  |  |
| 2005 |  |  |  |  | 2006 |  |
| Biomass | SSB | FMult | FBar | Landings | Biomass | SSB |
| 16628 | 12754 | 0.0000 | 0.0000 | 0 | 20494 | 16589 |
|  | 12754 | 0.1000 | 0.0365 | 618 | 19903 | 16002 |
| . | 12754 | 0.2000 | 0.0730 | 1213 | 19333 | 15435 |
| . | 12754 | 0.3000 | 0.1096 | 1787 | 18785 | 14890 |
|  | 12754 | 0.4000 | 0.1461 | 2340 | 18256 | 14364 |
|  | 12754 | 0.5000 | 0.1826 | 2874 | 17747 | 13858 |
|  | 12754 | 0.6000 | 0.2191 | 3388 | 17256 | 13370 |
| . | 12754 | 0.7000 | 0.2556 | 3884 | 16784 | 12901 |
| . | 12754 | 0.8000 | 0.2921 | 4362 | 16328 | 12448 |
|  | 12754 | 0.9000 | 0.3287 | 4824 | 15889 | 12012 |
|  | 12754 | 1.0000 | 0.3652 | 5269 | 15466 | 11592 |
|  | 12754 | 1.1000 | 0.4017 | 5698 | 15058 | 11187 |
| . | 12754 | 1.2000 | 0.4382 | 6112 | 14665 | 10797 |
| . | 12754 | 1.3000 | 0.4747 | 6512 | 14286 | 10421 |
| . | 12754 | 1.4000 | 0.5113 | 6897 | 13920 | 10058 |
| . | 12754 | 1.5000 | 0.5478 | 7269 | 13568 | 9709 |
| . | 12754 | 1.6000 | 0.5843 | 7627 | 13228 | 9372 |
|  | 12754 | 1.7000 | 0.6208 | 7974 | 12901 | 9048 |
|  | 12754 | 1.8000 | 0.6573 | 8308 | 12585 | 8735 |
|  | 12754 | 1.9000 | 0.6938 | 8630 | 12281 | 8434 |
|  | 12754 | 2.0000 | 0.7304 | 8941 | 11987 | 8143 |

Input units are thousands and kg - output in tonnes

Table 8.5.3 Sole in VIId. Detailed results

MFDP version 1a
Run: S7D_FinP
Time and date: 10:34 10/09/2004
Fbar age range: 3-8

| Year: Age | 2004 F | F multiplier: 1 CatchNos | Yield | Fbar: <br> StockNos | $\begin{aligned} & 0.3652 \\ & \text { Biomass } \end{aligned}$ | SSNos(Jan) | SSB(Jan) | SSNos(ST) | SSB(ST) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0109 | 230 | 26 | 22326 | 1116 | 0 | 0 | 0 | 0 |
| 2 | 0.2668 | 5180 | 836 | 23195 | 3201 | 0 | 0 | 0 | 0 |
| 3 | 0.4297 | 13258 | 2753 | 39745 | 7194 | 39745 | 7194 | 39745 | 7194 |
| 4 | 0.3736 | 2877 | 761 | 9669 | 2172 | 9669 | 2172 | 9669 | 2172 |
| 5 | 0.4794 | 2639 | 775 | 7252 | 1929 | 7252 | 1929 | 7252 | 1929 |
| 6 | 0.3634 | 1094 | 389 | 3761 | 1069 | 3761 | 1069 | 3761 | 1069 |
| 7 | 0.3146 | 295 | 110 | 1144 | 355 | 1144 | 355 | 1144 | 355 |
| 8 | 0.2304 | 251 | 101 | 1278 | 386 | 1278 | 386 | 1278 | 386 |
| 9 | 0.2038 | 114 | 55 | 649 | 222 | 649 | 222 | 649 | 222 |
| 10 | 0.2467 | 77 | 36 | 367 | 141 | 367 | 141 | 367 | 141 |
| 11 | 0.2467 | 168 | 90 | 804 | 359 | 804 | 359 | 804 | 359 |
| Total |  | 26182 | 5931 | 110190 | 18145 | 64669 | 13827 | 64669 | 13827 |
| Year: Age | 2005 F | F multiplier: 1 CatchNos | Yield | Fbar: <br> StockNos | $\begin{aligned} & 0.3652 \\ & \text { Biomass } \end{aligned}$ | SSNos(Jan) | SSB(Jan) | SSNos(ST) | SSB(ST) |
| 1 | 0.0109 | 230 | 26 | 22326 | 1116 | 0 | 0 | 0 | 0 |
| 2 | 0.2668 | 4463 | 720 | 19983 | 2758 | 0 | 0 | 0 | 0 |
| 3 | 0.4297 | 5362 | 1113 | 16073 | 2909 | 16073 | 2909 | 16073 | 2909 |
| 4 | 0.3736 | 6963 | 1841 | 23401 | 5258 | 23401 | 5258 | 23401 | 5258 |
| 5 | 0.4794 | 2191 | 643 | 6022 | 1602 | 6022 | 1602 | 6022 | 1602 |
| 6 | 0.3634 | 1182 | 420 | 4063 | 1155 | 4063 | 1155 | 4063 | 1155 |
| 7 | 0.3146 | 609 | 228 | 2366 | 734 | 2366 | 734 | 2366 | 734 |
| 8 | 0.2304 | 148 | 60 | 756 | 228 | 756 | 228 | 756 | 228 |
| 9 | 0.2038 | 161 | 78 | 918 | 315 | 918 | 315 | 918 | 315 |
| 10 | 0.2467 | 100 | 47 | 479 | 183 | 479 | 183 | 479 | 183 |
| 11 | 0.2467 | 173 | 92 | 828 | 370 | 828 | 370 | 828 | 370 |
| Total |  | 21582 | 5269 | 97215 | 16628 | 54906 | 12754 | 54906 | 12754 |
| Year: Age | 2006 F | F multiplier: 1 CatchNos | Yield | Fbar: <br> StockNos | $\begin{aligned} & 0.3652 \\ & \text { Biomass } \end{aligned}$ | SSNos(Jan) | SSB(Jan) | SSNos(ST) | SSB(ST) |
| 1 | 0.0109 | 230 | 26 | 22326 | 1116 | 0 | 0 | 0 | 0 |
| 2 | 0.2668 | 4463 | 720 | 19983 | 2758 | 0 | 0 | 0 | 0 |
| 3 | 0.4297 | 4619 | 959 | 13847 | 2506 | 13847 | 2506 | 13847 | 2506 |
| 4 | 0.3736 | 2816 | 744 | 9464 | 2126 | 9464 | 2126 | 9464 | 2126 |
| 5 | 0.4794 | 5303 | 1557 | 14574 | 3877 | 14574 | 3877 | 14574 | 3877 |
| 6 | 0.3634 | 981 | 349 | 3374 | 959 | 3374 | 959 | 3374 | 959 |
| 7 | 0.3146 | 658 | 247 | 2556 | 793 | 2556 | 793 | 2556 | 793 |
| 8 | 0.2304 | 307 | 123 | 1563 | 472 | 1563 | 472 | 1563 | 472 |
| 9 | 0.2038 | 95 | 46 | 543 | 186 | 543 | 186 | 543 | 186 |
| 10 | 0.2467 | 141 | 67 | 678 | 260 | 678 | 260 | 678 | 260 |
| 11 | 0.2467 | 193 | 103 | 924 | 413 | 924 | 413 | 924 | 413 |
| Total |  | 19807 | 4942 | 89831 | 15466 | 47522 | 11592 | 47522 | 11592 |

Input units are thousands and kg - output in tonnes

## Sole VIId

Stock numbers of recruits and their source for recent year classes used in
predictions, and the relative (\%) contributions to landings and SSB (by weight) of these year classes

| Year-class |  |  | 2000 | 2001 | 2002 | 2003 | 2004 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stock No. (thousands) |  |  | 27905 | 62018 | 26033 | 22326 | 22326 |
| of |  | year-olds |  |  |  |  |  |
| Source |  |  | XSA | XSA | XSA | GM82-01 | GM82-01 |
| Status Quo F: |  |  |  |  |  |  |  |
| \% in | 2004 | landings | 12.8 | 46.4 | 14.1 | 0.4 |  |
| \% in | 2005 |  | 12.2 | 34.9 | 21.1 | 13.7 | 0.5 |
| \% in | 2004 | SSE | 15.7 | 52.0 | 0.0 | 0.0 | - |
| \% in | 2005 | SSE | 12.6 | 41.2 | 22.8 | 0.0 | 0.0 |
| \% in | 2006 | SSE | 8.3 | 33.4 | 18.3 | 21.6 | 0.0 |

Sole VIId : Year-class \% contribution to


Figure 8.2.1 - Sole VIId - Length distributions of discarded and retained fish from discard sampling studies


Figure 8.2.2a


Figure 8.2.2b Sole VIId - Commercial Relative LPUE series


Figure 8.3.1 - Sole VIId - Comparison between F,SSB and Recruits from a SPALY-run, last years and this year's WG




Figure 8.3.2 - Sole VIId retrospective XSA analysys (shinkage SE=2.0)


Figure 8.3.3 Sole in VIId. Summary plots
Recruitment in 2004 = GM 82-01 (shaded)
SSB in 2004 from forecast (square in graph)





Figure 8.3.4 Sole in VIId. Historical Performance of assessment




Figure 8.5.1 - Sole in VIId Probability profiles for short term forecast.


## $9 \quad$ North Sea plaice

North Sea plaice has been placed on the observation list for this WG, which means that a benchmark assessment is carried out every year. The assessment of the stock will be subject to review this year by the North Sea Commission Fisheries Partnership (NSCFP).

A Stock Appendix is not yet available for North Sea plaice. Therefore information that should be given in the Stock Appendix is currently still presented within this Section of the report.

### 9.1 The fishery

North Sea plaice is taken mainly in a mixed flatfish fishery by beam trawlers in the southern and south-eastern North Sea. Directed fisheries are also carried out with seines, gill nets, and twin trawls, and by beam trawlers in the central North Sea. Due to the minimum mesh size enforced ( 80 mm in the mixed beam trawl fishery), large numbers of (undersized) plaice are discarded.

Fleets exploiting North Sea plaice have generally decreased in number of vessels in the last 10 years, partly due to the MAGP policy. However, in some instances, reflagging vessels to other countries has compensated these reductions. The Dutch beam trawl fleet, one of the major operators in the mixed flatfish fishery in the North Sea, has seen a reduction in the number of vessels and also a shift towards two categories of vessels: 2000HP (the maximum engine power allowed) and 300 HP (the maximum engine power for vessels that are allowed to fish within the 12 mile coastal zone and the plaice box).

Approximately $85 \%$ of plaice landings from the UK (England and Scotland) is landed into the Netherlands by Dutch vessels fishing on the UK register. Vessels fishing under foreign registry are referred to as 'flag' vessels. As described in the 2001 report of this WG (ICES CM 2002/ACFM:01), the fishing pattern of flag vessels can be very different from that of other fleet segments.

### 9.1.1 ICES advice applicable to 2003 and 2004

In October 2002 ICES stated that the stock was still outside safe biological limits, as it was in 2001. SSB in 2002 was below $\boldsymbol{B}_{p a}$ and fishing mortality in 2001 was above $\boldsymbol{F}_{p a}$. ICES recommended that fishing mortality be less than $\mathrm{F}=0.23$ in order to bring SSB above $\mathbf{B}_{\mathrm{pa}}$ in 2004. This corresponded to landings of less than 60000 t in 2003, and implied a reduction in fishing mortality of at least $40 \%$. Management of fisheries taking plaice were to respect the stringent restrictions on the catch and discard rates advised for cod, with effective monitoring of compliance with those restrictions.

In October 2003, ICES classified the stock as being outside safe biological limits, but noted that the estimate of the fishing mortality was uncertain. ICES recommended that fishing mortality in 2004 should be less than $\boldsymbol{F}_{p a}$ and furthermore that the mixed fishery aspects should be taken into account. ICES recommended that demersal fisheries in Division IIIa (Skagerrak-Kattegat), in Sub-area IV (North Sea) and in Division VIId (Eastern Channel) should in 2004 be managed according to the following rules, which should be applied simultaneously. They should fish:

- without bycatch or discards of cod;
- within a recovery plan for North Sea plaice. Until a recovery plan has been implemented that ensures rapid and sure recovery of SSB above $\boldsymbol{B}_{p a}$, fishing mortality should be restricted to the lowest possible level and well below $\boldsymbol{F}_{p a}$. Management must include measures that ensure that discards of plaice be significantly reduced and quantified;
- within the biological exploitation limits for all other stocks.

Furthermore, ICES recommended that unless ways can be found to harvest species caught in a mixed fisheries within precautionary limits for all those species individually, then fishing should not be permitted.

### 9.1.2 Management applicable to 2003 and 2004

The TAC in 2003 was agreed at 73,250 tonnes, which was substantially higher than the ICES recommendation. For 2004 the TAC was set at 61,000 tonnes. The ICES advice for 2004 was to fish at the lowest F possible.

In 1999, the EU and Norway agreed to implement a long-term management plan for the plaice stock, which is consistent with the precautionary approach and is intended to constrain harvesting within safe biological limits and
designed to provide for sustainable fisheries and greater potential yield. The plan is re-instigated every year and consists of the following elements:

1. Every effort shall be made to maintain a minimum level of SSB greater than 210,000 tonnes ( $\boldsymbol{B}_{\text {lim }}$ )
2. For 2000 and subsequent years the Parties agreed to restrict their fishing on the basis of a TAC consistent with a fishing mortality of 0.3 for appropriate age groups as defined by ICES.
3. Should the SSB fall below a reference point of 300,000 tonnes $\left(\boldsymbol{B}_{p a}\right)$, the fishing mortality referred to under paragraph 2, shall be adapted in the light of scientific estimates of the conditions then prevailing. Such adaptation shall ensure a safe and rapid recovery of SSB to a level in excess of 300,000 tonnes.
4. In order to reduce discarding and to enhance the spawning biomass of plaice, the Parties agreed that the exploitation pattern shall, while recalling that other demersal species are harvested in these fisheries, be improved in the light of new scientific advice from, inter alia, ICES.
5. The Parties shall, as appropriate, review and revise these management measures and strategies on the basis of any new advice provided by ICES."
The current Multi-annual guidance program (MAGP-IV) has defined national targets for EU fleet reductions in fleet capacity and/or days at sea.

Technical measures applicable to the plaice fishery in the North Sea included mesh size regulations, minimum landing size, gear restrictions and a closed area (the plaice box). Mesh size regulations for towed gears require that vessels fishing North of $55^{\circ} \mathrm{N}$ (or $56^{\circ} \mathrm{N}$ east of $5^{\circ} \mathrm{E}$, since January 2000) should have a minimum mesh size of 100 mm , while to the south of this limit, where the majority the plaice fishery takes place, an 80 mm mesh is allowed. In the fishery with fixed gears a minimum mesh size of 100 mm is required. In addition to this, since 2002 a small part of North Sea plaice fishery is affected by the additional cod recovery plan (EU regulation 2056/2001) that prohibits trawl fisheries with a mesh size $<120 \mathrm{~mm}$ in the area to the north of $56^{\circ} \mathrm{N}$.

The minimum landing size of North Sea plaice is 27 cm . A closed area has been in operation since 1989 (the plaice box). Since 1995 this area was closed in all quarters. The closed area applies to vessels using towed gears, but vessels smaller than 300 HP are exempted from the regulation. An additional technical measure concerning the fishing gear is the restriction of the aggregated beam length of beam trawlers to 24 m . In the 12 nautical mile zone and in the plaice box the maximum aggregated beam-length is 9 m .

### 9.1.3 The fishery in 2003 and 2004

## Landings

Total landings of North Sea plaice in 2003 (Table 9.1.1) were estimated by the WG to be just over 66000 t , which is approximately 4000 t less than the 2002 landings. The TAC was taken in 2003. Since 1996, the TAC has been fished out only in 2001 and 2003.

The national uptake rates in 2004 by the Netherlands (the main plaice landing country) indicate that approximately $63 \%$ of the national quota was taken by the beginning of September 2004. The indications are that the 2004 TAC will be fished out by the end of December.

## Discards

There are indications that the North Sea plaice stock has been subject to increased discarding in recent years. It has been suggested that the slow growth of the strong 1996 year-class and changes in the distribution of young fish have contributed to these changes in discard patterns. In 1999 a discard sampling programme was started to obtain discard estimates from the Dutch beam trawl fleet. This sampling programme gives information on discard rates in recent years but not for the historical time series. Therefore discard rates prior to 1999 were reconstructed using a growth model and length based selection, availability and sorting ogives (see Section 9.2.3).

### 9.2 Natural mortality, maturity, age compositions and mean weight at age

### 9.2.1 Natural mortality and maturity-at-age

Natural mortality is assumed to be 0.1 for all age groups and constant over time.
A fixed maturity ogive (Table 9.2.1) is generally used for the estimation of SSB in North Sea plaice, but maturity-at-age is not likely to be constant over time. Grift et al. (2003) showed that the age and length at maturation have decreased over the past half century. Within an ongoing international collaboration an attempt is being made to collate international maturity data and provide annual maturity ogives for male and female plaice. These data are not yet
available but preliminary annual maturity ogives, based on Dutch market samples only, are available and have been used in this year's report to explore the sensitivity of SSB to the assumption of fixed maturity-at-age. These Dutch maturity ogives were calculated using the observed maturity-at-age of females in market samples, a fixed maturity-atage for males based on a dedicated survey carried out in 1985, and the observed sex-ratio at age in survey and market samples. The maturity and sex-ratio at age estimates were raised to the catches and smoothed using a 5 -year running mean. These preliminary maturity-at-age data are presented in Table 9.2.2 and Figure 9.2.1, and the calculation procedures are described in detail in WP11. The maturity-at-age of females varies over time (Figure 9.2.1, top panel) but, assuming that the maturity of males has not changed, these fluctuations are partly compensated for by changes in sex-ratios over time (Figure 9.2.1, bottom panel).

### 9.2.2 Catch numbers and weights-at-age in the landings

Market sampling programmes (Table 1.3.1) supplied age distributions representative for $76 \%$ of the official total landings in 2003. Age compositions by sex and quarter were available for the Dutch landings. Combined age compositions by quarter were available from Germany, Belgium, Denmark and France. Landings from countries that do not provide age compositions were raised to the international age composition. Until 2002 an age composition of the UK beam trawl fleet was provided, but since 2003 this fleet has ceased to exist. As the UK fleet historically fished further north than the other fleets, a larger proportion of their catches consisted of older animals (Figure 9.2.2). However, the omission of the UK age composition data will only marginally affect the international age composition because of the relatively small proportion of the UK landings. The landings of flag vessels (see Section 9.1) were not sampled prior to 2002. From 2002 onwards, following EU regulation (1639/2001), each country is obliged to sample landings from foreign vessels that land in their country. These samples from flag vessels are now included in the Dutch age composition. The catch numbers at age in the landings are presented in Table 9.2.3. Mean weights-at-age in the landings were estimated from market samples taken throughout the year (Table 9.2.4). No SOP-correction was applied to the results of the assessment.

### 9.2.3 Catch numbers and weights-at-age in the discards

Discard sampling programmes onboard Dutch vessels were carried out intermittently in the period 1969-1990 and continuously since 1999 (Table 9.2.5). These indicate that the proportions of plaice catches discarded at present are large ( $80 \%$ in numbers and $50 \%$ in weight: Van Keeken et al. 2004) and have increased since the 1970 s ( $51 \%$ in numbers and $27 \%$ in weight: Van Beek 1998). Age composition data have been collected in the Dutch discard sampling programme that started in 1999, allowing an estimation of the catch at age for the Dutch beam trawl fleet. The discards numbers at age were raised to discards numbers at age of plaice in the North Sea by the ratio of the landings of the international fleet to the landings of the Dutch fleet. A detailed description of the calculation procedures and results is presented in WP12 and by Van Keeken et al. (2004).

English discard data for the period 1999-2003, and Danish data for the period 2002-2003, were made available to the WG. However, these data are only partially available as percentages discards by age and can therefore not be incorporated in an age-based assessment (see Section 9.11.1).

It has been generally agreed (see, for example, last year's WG report, and the ACFM October 2003 report) that the quality of the assessment of North Sea plaice is questionable if discards are not included. As the continuous time series of discard observations is short, reconstructed discard numbers at age in the past are required. Previous attempts to reconstruct discards were hampered by the fact that landings of age 1 plaice were low or zero, and multiplication of discard proportions and landing numbers at age 1 therefore were erroneous. Through correcting values of $F$-at-age for discarding, this problem can be circumvented. This method is a further development of the approach of Casey (1996), and continues earlier work on the effects of area closures on the exploitation (ICES, 1987; Rijnsdorp \& Van Beek, 1991).

To reconstruct the number of plaice discards at age, catch numbers at age are calculated from corrected levels of fishing mortality at age, using a reconstructed population and selection and distribution ogives. Figure 9.2.3 shows a $\mathbf{F}_{\text {low }}$ diagram explaining the steps used in the reconstruction. From modelled mean length at age and standard deviation, obtained from survey and otolith back-calculation estimates of mean length at age, the proportion of a length class at age in the population was calculated. Using a gear-selection ogive and distribution ogives per year, the proportion of the population at the fishing ground being retained in the net was calculated. Using a discards sorting ogive, this part was split up in a discarded and a landed part. Mean $F$ at ages 5 and 6 from the assessment was used as the level of $F$ for fully recruited age groups. Using the proportions calculated above and this mean $F_{5-6}$, corrected $F$ for ages 1-4 were calculated. Using the newly calculated $F$ for discards, new population and catch numbers at age were calculated. Discards numbers at age were finally calculated by subtracting landings numbers at age from the newly calculated catch numbers at age. The method to reconstruct discards is described in more detail in Appendix 1.
This procedure described was used to reconstruct discards for the period 1957-1998. The actual observations from the Dutch discard sampling program were used for the period 1999-2003, because in most recent years $F$ at ages 5 and 6 may be biased by the disproportional discarding of the large 1996 year-class. Table 9.2.6 presents the reconstructed (1957-1998) and observed (1999-2003) discard numbers at age. Figure 9.2.4 shows the estimated number of discards
compared to the number of landings for ages 1-6. The discard reconstruction can also be used to reconstruct discards for the full time series. In this case the output of a VPA model including data up to 2003 is used as input for the discard reconstruction, which results in different discard estimates for the period 1957-1999. The estimates are presented in Table 9.2.7.

Mean weight-at-age in the discards was calculated from the size distribution used in the discard reconstruction and a fixed length-weight relationship. The weight at age in the period 1999-2003 is also obtained from the Dutch discardsampling program (Table 9.2.8).

### 9.2.4 Stock weights-at-age

Traditionally weights-at-age in this stock have been estimated as first quarter weights in the market samples (Table 9.2.9). However these samples overestimate the weight of the youngest age groups because these are not yet fully recruited. The modelled mean length based on survey and back-calculation data (see Appendix 1) converted to mean weight using a fixed length-weight relationship can be used as alternative estimate of stock weights for the younger age groups. Figure 9.2 .5 shows that for ages 1 to 4 the weights-at-age in the catches overestimate stock weights compared to survey and back-calculation estimates. The alternative stock weights are presented in Table 9.2.10 and have been used in the final assessment.

Weight at age has varied considerably over time. For age groups 4-6, weights appear to have decreased strongly in the period 1998-2001 (Figure 9.2.6), but are more or less stable since 2001. The survey estimates of weights at ages 2 and 3 indicate these have not changed much either in the last 3 years (Figure 9.2.5).

### 9.3 Catch, effort and survey data

### 9.3.1 Commercial CPUE data

At the ACFM meeting in October 2001 the validity of the information provided by commercial tuning fleets was discussed and it was decided to exclude commercial tuning fleets from the assessment. A working document presented to ACFM October 2001 showed that "The CPUE series of the Dutch beam trawl fleet and the new English beam trawl fleet (excluding flag vessels) are reasonably consistent, and show a decreasing trend in CPUE in the early 1990s. However, the time series of the English flag vessels show a different pattern of a more or less flat CPUE trend. The observed differences can be due to different spatial coverages by the different fleets or to different management measures applicable to the fleets. Therefore, CPUE data may rather reflect trends in management rather than trends in the stock." (Pastoors et al. 2002). Poos et al. (2001) showed that the CPUE of individual vessels indeed declined when quota restrictions were more severe. In general, commercial CPUE series are considered to be unreliable due to potential gear efficiency changes and, if alternative tuning fleets are available, are not used in the final assessment. Although the fleets may not be incorporated in the final assessment these series are always examined to evaluate the quality of the final assessment. Previously only the NL beam trawl and the UK beam trawl CPUE series were available by age. This year the CPUE by age of UK registered vessels landing in the Netherlands (flag vessels) were made available to the working group. This fleet segment is assumed to be less affected by quota restrictions.

Commercial CPUE series available :

- NL beam trawl CPUE (1989-2003)
- UK beam-trawl CPUE, excluding all flag vessels (1990-2002)
- $\quad$ NL flag vessels (UK register landing in NL, 1991-2004)

The Dutch commercial beam-trawl CPUE consists of the total catch at age by the Dutch (beam trawl) fleet and the effort in horsepower days (days absent from port times the horsepower of the vessel). The effort series are estimated by the Agricultural Economics Institute (LEI-DLO), except for the final year, which is a preliminary estimate by the WG. The series are available for 1979 onwards and for the age 2 to 9 .

The UK commercial beam-trawl CPUE is derived from the catch at age of the beam trawlers registered in England and Wales but excluding Scottish registered vessels and Dutch flag vessels. Effort was calculated on a trip basis as hours fishing multiplied by the horsepower (HP) of the vessel. The series is available for 1990-2002 onwards and for the age 4 to 12 . The series was not continued in 2003.

The NL flag vessel CPUE consists of the catches per unit of effort in the first half year. Effort was calculated on a trip basis as days fished. This is the first year that the series is available in age structured form. The series is available for the period 1991-2004 for ages 1-15.

The effort and CPUE in biomass of the three commercial fleets is presented in Figure 9.3.1 and Table 9.3.1. Effort has decreased in the NL and UK beam trawl fleets since the early/mid 1990s. The flag vessel effort increased until 2001, decreased in 2002 and is more or less at the same level since then. The relative CPUE of the NL and UK beam trawl fleets appear to be more or less at the same level since 1995. The flag vessel CPUE may show a slight increase since 1995, but the CPUE estimates fluctuate strongly from year to year.

The CPUE for the three commercial fleets is presented in numbers at age in Figure 9.3.2 and Table 9.3.2. In the $4+$ age groups the 3 commercial fleets generally show the same trends in time. At age 3 the 1996 year-class appears to be relatively strong according to the NL beam trawl series, which corresponds to the information provided by the surveys, but it does not seem to have recruited to the NL flag vessel fishery yet. The flag vessel CPUE is already available for 2004 (quarter 1 and 2 data only included in this CPUE). The increase in CPUE in 2004 at age 3 suggests that the 2001 year-class is recruiting to this fleet as a relatively strong year-class.

### 9.3.2 Survey data

Survey indices that have been used as tuning fleets (Table 9.3.3):

- Beam Trawl Survey RV 'Isis’ (BTS)
- Sole Net Survey in September-Oktober (SNS)
- Beam Trawl Survey RV ‘Tridens’ (BTS-tri)

Survey indices that have been used for recruitment estimates:

- Demersal Young Fish Survey (DFS)

The Beam Trawl Survey (BTS \& BTS-tri) was initiated in 1985 and was set up to obtain indices of the younger age groups of plaice and sole. However, due to its spatial distribution the BTS survey also catches considerable numbers of older plaice and sole. Initially, the survey only covered the south-eastern part of the North Sea (RV Isis). Since 1996 the survey area of the BTS has been extended. The RV Tridens now covers the north-western part of the North Sea. Both vessels use an $8-\mathrm{m}$ beam trawl with 40 mm stretched mesh cod-end, but the Tridens beam trawl is rigged with a modified net. The BTS-Isis survey is used as a tuning series for the plaice assessment and consists of average catches in numbers by fishing hour. Previously age groups 1 to 4 were used for tuning the North Sea plaice assessment, but the age range has been extended to 1 to 9 in the revision done by ACFM in October 2001. The 2004 indices of the BTS and BTS-tri were not available to the WG, but preliminary indices will be made available to the ACFM meeting in October 2004.

The Sole Net Survey (SNS \& SNSQ2) was carried out with RV Tridens until 1995 and then continued with the RV Isis. Until 1990 this survey was carried out in both spring and autumn. The gear used is a 6 m beam trawl with 40 mm stretched mesh cod-ends. The stations fished are on transects along or perpendicular to the coast. This survey is directed to juvenile plaice and sole. Ages 1 to 3 are used for tuning the North Sea plaice assessment, the 0 -group index is used in the RCT3. In an attempt to solve the problem of not having the survey indices in time for the WG, the SNS was moved to spring in 2003. However, because of the gap in the spring series these data could not be used in the plaice assessment or in RCT3. The decision to move the SNS to the spring was revisited and in 2004 the SNS will be carried out in the autumn as before.

The Demersal Young Fish Survey (DFS) is an international survey (The Netherlands, England, Belgium and Germany) that covers the coastal and estuarine areas of the southern North Sea. This survey is directed to 0 and 1 -group plaice and sole. In the Wadden Sea and Scheldt estuaries a light 3-m beam trawl is used with a $20-\mathrm{mm}$ cod-end and one light tickler chain. The coastal area is fished with a $6-\mathrm{m}$ beam trawl rigged with a similar net as the $3-\mathrm{m}$ beam trawl. The combined index is calculated as the mean of the national indices with a weighting by country, based on the size of the nursery area. In 1998 and 1999 no estimates of the DFS were available due to bad weather conditions during the period of the survey and technical problems with one of the Dutch research vessels. The combined DFS index is only used for the RCT3 analysis and not for tuning the VPA. The 2004 indices of the DFS were not available to the working group and will not be available before the ACFM meeting in October 2004.

The standardised CPUE of the commercial fleets and all surveys are plotted by age in Figure 9.3.2. All fleets indicate at some age that the 1996 and 1985 year-classes are strong. The 2001 year-class appears to be strong based on the SNS survey at age 0 and the BTS and BTS-tridens surveys at ages 1 and 2. However the DFS survey at age 1 suggests that this year-class is one of the weakest year-classes on record. This can be explained by the offshore movement of juvenile plaice, especially of 1 group plaice out of the Wadden Sea, that has been observed in recent years (Figure 9.3.3; Grift et al., 2004). The DFS 1-group index is not used in the assessment and its influence on RCT3 analyses for forecasts is minimal (see Table 9.5.2a).

### 9.4.1 Data explorations - catch at age $\&$ tuning fleet data

## Separable models

The catch-at-age data were examined using a separable VPA. Three catch at age matrices were examined: the landings at age; the catch at age including reconstructed discards for the period 1958-1998 and observed discards for the period 1999-2003; and catch at age including reconstructed discards for the whole period. The age range was set at 1-14 and the year range at 1994-2003. The diagnostics are presented in Table 9.4.1 and Figure 9.4.1. A dome-shaped selection pattern is apparent for plaice in the North Sea, with selection declining from age 5 to approximately age 10, and thereafter remaining at more or less the same level. The selection pattern of the younger ages is adjusted upward if discards are included, especially if observed discards are included. The residuals in log-catch ratios at the younger ages decrease slightly if reconstructed and observed discards are included, and strongly if only reconstructed discards are included. The latter is probably caused by the fact that the discards were generated from the catch matrix. No consistent trends could be detected in the residual plots.

## Single-fleet XSA

Single-fleet XSA runs were carried out for all CPUE series, using a low F-shrinkage (1.5), no power model, no tuning window and no time taper. The age range was set at $1-10+$ and the q-plateau at age 6 , as in last year's assessment. The discard estimates were not included in the catch-at-age data for these analyses.

Log-catchability residuals derived from these runs are presented in Figure 9.4.2. The surveys have high residuals indicating noisy data. The BTS-Tridens series does not include age 1, because the survey area does not cover the mayor areas of distribution of 1 -group plaice. The residuals of this fleet are relatively low compared to the other two survey fleets. No obvious trends were observed in the catchability residuals of the surveys except in the first year of the BTSTridens and at age 3 in the SNS. The UK beam trawl does not show any clear trends in catchability but both Dutch commercial CPUE series show a year-class effect, indicating that these CPUE series are not suitable as tuning fleets. The similarity in the patterns of the two Dutch commercial series may be caused by the fact that both are based on the same age information although raised to a different market category composition.

The trends in $\mathrm{SSB}, F$ and recruitment are very similar in all single-fleet runs except for the UK beam trawl and the SNS in the most recent years (Figure 9.4.3). Note that tuning the VPA using only the SNS is not very reliable because only ages 1-3 are included in this survey. Furthermore, SNS indices for 2003 are missing (see Section 9.3.2) causing erratic patterns in SSB and $F$ in the most recent years. The result of the UK beam trawl differs most from the other single fleet runs giving a higher SSB and lower $F$ estimates. This series was terminated in 2002.

## SURBA

SURBA was used as a supplementary analysis tool to explore trends in relative SSB from surveys and commercial CPUE. SURBA is a survey-only method, which fits survey indices assuming a separable $F$ selection pattern. However, this option was not used in the analysis since the relative abundance ratios $\left(q_{a}\right)$ at age were not determined. Instead, empirical SSB and $Z$ (total mortality) estimates were obtained directly from survey indices after these were smoothed by fitting a cubic spline smoother down cohorts (see Section 1.4.3). The implicit assumption behind these empirical calculations is that the survey is equally efficient in catching each age, which is unlikely to be true.

A summary plot is presented in Figure 9.4.4 for the two beam trawl surveys (BTS and BTS-Tridens) and for the Dutch flag vessels CPUE. Trends from the SNS survey were not considered useful because this survey is restricted to the immediate coastal area and is therefore not representative of the adult population. The BTS-Tridens survey and the NL flag vessel CPUE appear to indicate an increase in the spawning stock after 1998-1999. The BTS survey appears to pick up changes in the spawning stock earlier than the other indices, which could be explained by the spatial coverage of the survey relative to the distribution of the adult population.

### 9.4.2 Data explorations - additional data sources

## Maturity data and new stock weight estimates

Neither maturity nor stock weight-at-age affect numbers estimated by the VPA but are used to calculate the SSB from stock numbers-at-age. If the proportion mature or the stock weights do not change in time then a measurement error of these variables will only cause re-scaling of biomass estimates and associated reference points. However if trends in time occur then perception of trends in SSB may be biased.

This year, preliminary estimates of annual maturity-at-age were made available to the WG and were used to examine the sensitivity of SSB estimates to annual varying maturity ogives. Furthermore weights of the younger age groups in the population were estimated using survey data (see Section 9.2.1). The step-wise inclusion of these additional data is illustrated in Figure 9.4.5. The top panel shows the absolute estimates and the bottom panel shows the relative SSB compared to the last year's WG estimate for the 1997 value. Inclusion of annual varying maturity ogives
and modelled stock weights mainly affects the level of SSB, but it seems that SSB was relatively overestimated in the period 1983-1990.

## Discard data

Different catch at age matrices have been examined using XSA, configured as last years assessment (high F-shrinkage (0.5), no power model, no tuning window or time taper, plusgroup set at $10+$ and q-plateau at age 6 ). Three datasets were considered: one with no discards included; one including reconstructed discards for 1957-2003; and one including reconstructed discards for the period 1957-1998 and observed discards for the period 1999-2003.

The model including only landings-at-age is very consistent with last year's assessment. So the addition of the 2003 landing data does not greatly affect our perception of SSB, F and recruitment in previous years (Figure 9.4.6). If discard data are included in the catch-at-age matrix then the level and pattern of total $F$ changes considerably, but the pattern and level of human-consumption $F$ hardly changes (Figure 9.4.6). The overall level of recruitment increases if discards are included. Superficially the trends in recruitment appear to be the same, but recruitment estimates in the 1980s and especially the strong 1985 year-class are adjusted more by including discard data. The overall level of SSB is not strongly affected by including discards. Slightly higher SSBs are estimated for the 1980s when discard data are included, and since 1995 in the case of observed discard data.

If observed discard data are used for the most recent years, then both SSB and F since 1995 appear to be at a higher level and more variable than if reconstructed discard data are used for the whole time series. The reconstructed discard numbers at age in the most recent years are believed to be less reliable than the observed discard rates for two reasons. Firstly the overall level of discard rates which have been reconstructed for the most recent years do not correspond with the observed levels (Figure 9.4.7). Although the Dutch discard sampling programme only covers a small proportion of the fishing trips ( $0.15 \%$ in effort), the discard percentages are similar to those observed in other fleets (SGDBI 2002). Secondly the age composition of the reconstructed and observed discards differ. The reconstructed discards appear to underestimate the discarding of the 2001 year-class and in general the discarding at age 2 (Figure 9.4.8). This corresponds to the differences in selection pattern observed in the separable VPA (Figure 9.4.1). The raised age compositions of the discard sampling programme are considered to provide a more reliable estimate of the discarding of the relatively strong year-class 2001.

The WG decided that the final assessment of North Sea plaice should include discards and that the time series based on reconstructed discards for the period 1957-1998 and observed discards for the period 1999-2003 is the best series available to the WG at the moment.

### 9.4.3 Model explorations

## XSA

In general in this WG (see Section 1.4.3), the preferred configuration of an XSA assessment is to use only survey indices as tuning fleets, for reasons explained in Section 9.3.1. This is of course only possible if survey data covering sufficient number age groups are available. In the case of North Sea plaice, the coverage of the older age groups has improved after including the BTS Tridens survey, and the model was adjusted to the age range covered by the surveys (revisions of the model carried out by the WG in 2003, see ICES 2004). Nevertheless, unbiased CPUE series, which targeted older age groups, may improve the quality of the North Sea plaice assessment. Therefore the NL flag vessel fleet was examined because this fleet is presumably less restricted by quotas compared to other CPUE series (see Section 9.3.1). However, the single fleet XSA showed similar trends in the log-catchability plots as was observed for the NL beam trawl fleet (see Section 9.4.1). It was decided that the NL flag vessel would not be included in the final assessment for this reason. As a sensitivity analyses, the results of a (low shrinkage) XSA run including all tuning fleets was compared to (low and high shrinkage) XSA runs including only survey tuning fleets. This clearly shows that, at present, our perception of SSB, F and recruitment is not strongly affected by the tuning fleets included in the assessment (Figure 9.4.9).

Traditionally high shrinkage has been used in the North Sea plaice assessment because of strong retrospective patterns. We carried out retrospective XSA analyses at high (0.5) and low (2.0) F-shrinkage using the landings at age data (Figure 9.4.10) and the catch-at-age data including observed and reconstructed discard estimates (Figure 9.4.11). All other settings were the same as those of the final run in last year's assessment ( 3 survey tuning fleets, no power model, no tuning window or time taper, 10+ group and the q-plateau at age 6). These comparisons were also carried for models in which the BTS-Tridens fleet was excluded because of the restricted time span of this series (figures are available in the stockfiles), but this does not alter the following conclusions. The retrospective patterns improve if estimates of discards-at-age are included in the catch-at-age matrix, which supports the decision to include discard estimates in the final assessment. Although the tendency to over- or underestimate appears to decrease after including the discard data, the retrospective pattern is still considered to be too severe to allow low shrinkage. In general, the risk of using high shrinkage is that a bias will be introduced if trends in $F$ and SSB occur (see WP6). The WG considered this risk to be low because the present assessment including discards does not show clear trends in $F$ and SSB in the last 5 years.

Figure 9.4.12 shows the estimation weights in XSA of the tuning fleets and $F$-shrinkage, when using the high shrinkage XSA model and including discard estimates. The relative weight of $F$-shrinkage is $22-35 \%$ at ages 2 to 9 , and
$55 \%$ at age 1 . This relatively high weight at age 1 is caused by the fact that age 1 is predominantly determined by the SNS survey, but the SNS quarter 3 survey was not carried out in 2003.

## ICA

The addition of another data year to the XSA assessment hardly affects the $F$ and SSB estimates in previous years (that is, there is little retrospective pattern). So, the drastic downward revision of the WG perception of the state of the stock that occurred last year is confirmed by an additional data year. We examined if these patterns were also confirmed if another assessment model was used. Figure 9.4.13 compares the XSA and ICA results for an assessment including discard estimates. The historic SSB estimates diverge if the plus group is set at $10+$, but comparison of models in which the plus group is set at $15+$ show very similar trends in SSB until approximately 1997. Therefore it is concluded that the downward revision does not appear to be an artefact of XSA.

Since 1997, the SSB estimates are variable and differ between the models. Similarly the historic mean $F$ and recruitment estimates are very similar in both models but start to differ from 1997 onwards. The two models differ in the last six years, which corresponds to the separable period of the ICA model. Within this period no clear trends in SSB or $F$ are observed in either of the models, but the estimates in the final year differ by $15 \%$ for SSB and $30 \%$ for mean $F_{2-6}$.

### 9.4.4 Final assessment

The settings of the final XSA assessment are given below:

North Sea Plaice final assessment settings


As last year, the 1997 survey results for the 1995 and 1996 year-classes (at ages 1 and 2) in the BTS and SNS surveys were not used in the assessment and will not be used in RCT3, due to age-reading problems in that year. Diagnostics of the final run are presented in Table 9.4.2. Figure 9.4.14 shows the log catchability residuals for the tuning fleets in the final run. Fishing mortality and stock numbers are shown in Tables 9.4.3 and 9.4.4. Weighting of the different data sources in the assessment is shown in Figure 9.4.12. The retrospective analysis is shown in Figure 9.4.11 (right panels) and was carried out by chopping off one year at the end and without a tuning window.

NOTE: The WG proposed the XSA assessment including discards forward as the final assessment, but the incorporation of discards has a considerable effect on the perception of the stock status in relation to the precautionary reference points. Therefore the recruitment estimates, all projections and the biological reference points were estimated both for the final assessment including discards, and for an update assessment in which the same settings and data sources are used as last year. The results for the final assessment (denoted by "a" in Figure and Table captions) are presented in Sections 9.5 and 9.7-9.10. The results for the update assessment (denoted by "b") are presented in Appendix 2.

### 9.5 Recruitment estimates

Input to the RCT3 analysis is presented in Table 9.5.1a. Results for age 1 and 2 are presented in Tables 9.5.2a and 9.5.3a respectively. The geometric mean (GM) recruitment is 906 million and the arithmetic mean is 1056 million.

The 2002 year-class in 2004 (at age 2) is estimated at 521 million in XSA and 522 million in RCT3. All indices estimate this year-class to be below average ( 672 million), and the RCT3 estimate was used for further analysis.

The 2003 year-class in 2004 (at age 1) is poorly estimated by the RCT3 analysis (only one survey index available). The long term GM for this year-class was used for further analysis.

For the 2004 and subsequent year-classes, the long term GM was used as there were no RCT3 estimates. The text table below summarises the year-class strength estimates:

| Yearclass | At age in 2004 | XSA | RCT3 | GM 57-01 | Accepted estimate |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 0 0 2}$ | 2 | 520606 | $\mathbf{5 2 2 1 1 8}$ | 671852 | RCT3 |
| $\mathbf{2 0 0 3}$ | 1 | - | 1001290 | $\mathbf{9 0 6 4 8 3}$ | GM 1957-2001 |
| $\mathbf{2 0 0 4}$ \& subsequent | Recruits | - |  | $\mathbf{9 0 6 4 8 3}$ | GM 1957-2001 |

### 9.6 Historical stock trends

Table 9.6.1 and Figure 9.6.1 present the trends in landings, mean $F_{2-6}$, SSB and recruitment since 1957. Reported landings gradually increased up to the late 1980s and then rapidly declined until 1996, in line with the decrease in TAC. The landings have levelled off in the most recent years.

Fishing mortality increased until the late 1990s and reached its highest observed level during 1997-1998. Overall $F$ and $F_{\text {HC }}$ have decreased after 1998, but $F_{\text {discards }}$ has increased in the most recent years. Current fishing mortality is estimated at $0.71\left(\mathrm{~F}_{\mathrm{HC}}=0.43, \mathrm{~F}_{\text {discards }}=0.28\right)$. The overall $F$ of an assessment including discards cannot be compared to the current $\boldsymbol{F}_{p a}$, but $\mathrm{F}_{\mathrm{HC}}$ is above $\boldsymbol{F}_{p a}(=0.3)$.

The SSB increased to a peak in 1967 when the strong 1963 year-class became mature. Since then, SSB declined to a level of around 270 kt in the early 1980s. Due to the recruitment of the strong year-classes 1981 and 1985, SSB again increased to a peak in 1987 followed by a rapid decline (up to 1995). SSB has remained low in the most recent years. In plaice the inter-annual variability in recruitment is relatively small, except for a limited number of strong yearclasses. Previously only year-classes 1963, 1981, 1985 and 1996 were considered to be strong. Including discard data in the assessment alters the recruitment estimates and indicates that 1984, 1986 and 1987 were also relatively strong yearclasses and that the 1985 year-class was by far the strongest year-class on record. VPA estimates of recruitment show a periodic change with relatively poor recruitment in the 1960s and relatively strong recruitment in the 1980s. The recruitment level in the 1990s appears to be somewhat lower than in the 1980s. The 1996 and 2001 year-classes are estimated to be relatively strong, while the 2000 and 2002 year-class are relatively weak.

### 9.7 Short-term prognosis

Short-term prognoses have been carried out with the same model settings as last year. Inputs are given in Table 9.7.1a. Weight-at-age in the stock and weight-at-age in the catch are taken to be the average over the last 3 years. The exploitation pattern was taken to be the mean value of the last three years, scaled to $F$ in 2003. Population numbers at ages 3 and older are XSA survivor estimates. Numbers at age 2 are estimated from RCT3. Numbers at age 1 and recruitment of the 2004 year-class are taken from the long-term geometric mean (1957-2001)

The management option table is given in Table 9.7.2a, and the short-term forecast is summarise in Figure 9.7.1a. Given that $\boldsymbol{F}_{p a}$ was previously defined for a stock assessed without discards, it must be revised to account for the new stock perception with discards included. Therefore no management option referring to $\boldsymbol{F}_{p a}$ is presented. $F$ in 2004 is set at the status quo level. The detailed table for a forecast based on $\boldsymbol{F}_{s q}$ is given in Table 9.7.3a. At status quo fishing mortality in 2004 and 2005, SSB is expected to be at 192,000 tonnes in 2005 and 174,000 tonnes in 2006.

The yield at $\boldsymbol{F}_{s q}$ is expected to be around 77,000 tonnes in 2004, which is close to the predicted value for 2004 from last years status quo forecast. The landings in 2005 are predicted to be around 69,000 tonnes at $\boldsymbol{F}_{s q}$.

A sensitivity analysis has been carried out to identify the different sources of uncertainty underlying the predictions and is presented in Figure 9.7.2a.
The probability profiles relative to the short term forecast is given in Figure 9.7.3a. At the current yield of around 66,500 tonnes, the probability that F is higher that $\boldsymbol{F}_{s q}$ is around $45 \%$. The probability that SSB will stay below 210,000 tonnes is predicted to be about $85 \%$.

### 9.8 Medium term prognoses

A 10-year average was used for the catch weight at age and stock weight at age. A Ricker stock-recruit curve was used to fit the model. The estimated parameters and the residuals from the fit were exported to the input-file for the WGTERMC program.

Figure 9.8.1a shows the stock-recruitment fit and the medium term forecasts at $\boldsymbol{F}_{s q}$. The probability that the SSB remains under 220,000 tonnes over the medium time period is around $75 \%$. There is a high probability ( $90 \%$ ) that the SSB remains under 260,000 tonnes over the medium time period.

Figure 9.8.2a shows the probability of SSB to remain below 300,000 tonnes over the next 10 years. At F of 0.7 there is a $90 \%$ that $\mathrm{SSB}<300,000$ tonnes.

## 9.9

 Long term prognosesThe Aberdeen suite was used to determine the effect of the inclusion of discards on the yield on the long term. The input files for the medium-term analyses (SEN and SUM files) were used with a truncated year range at 40 years. The yield was calculated based on the long-term geometric mean (1957-2003).

The results show that the maximum human consumption yield calculated is around 130,000 t (Figure 9.9.1a) and could be reached at an overall $F=0.19$ (Figure 9.9.2a). The discard yield at this $F$ is around 23,000t.

### 9.10 Reference points

### 9.10.1 Biological reference points

The estimated biological reference points are presented in Table 9.10.1a and Figure 9.10.1a.
$\boldsymbol{B}_{\text {loss }}$ is now estimated to be 160600 tonnes, which is the SSB in 1999, whereas in last year's assessment the $\boldsymbol{B}_{\text {loss }}$ was the SSB in 1997.
$\boldsymbol{F}_{\max }$ is estimated to be 0.17, $\boldsymbol{F}_{\text {med }}=0.47$, and $\boldsymbol{F}_{\text {high }}=0.75$.

### 9.10.2 PA reference points

The PA reference points of North Sea plaice must be revised due to the model revisions carried out last year (ICES 2004) and the inclusion of (reconstructed) discard estimates in the catch at age data of this years final assessment. The current state of the stock, especially the level of fishing mortality, cannot be evaluated in relation to the old PA reference points.

Appendix 3 describes the general background to PA reference points, the general procedures to determine PA reference points and the technical basis on which the current reference points for North Sea plaice have been set.

Note that $\boldsymbol{B}_{l i m}$ has to be defined first, because $\boldsymbol{F}_{\text {lim }}$ is defined with reference to $\boldsymbol{B}_{l i m}, \boldsymbol{B}_{p a}$ with reference to $\boldsymbol{B}_{l i m}$, and $\boldsymbol{F}_{p a}$ with reference to $\boldsymbol{F}_{\text {lim }}$ (see Appendix 3).

Two different approaches can be followed in setting new PA reference points:

1. Re-apply the old technical basis, which means that $\boldsymbol{B}_{\text {lim }}$ is set at $\boldsymbol{B}_{\text {loss }}$ (= lowest observed value).
2. Examine if the old technical basis is still valid. Should SSB be set at the lowest observed value because no SSB has been observed below which recruitment was impaired? Or has a decrease in recruitment related to SSB been observed? This approach involves re-examination of the stock-recruitment plot. The best method currently available to determine the SSB at which recruitment is impaired, is segmented or changepoint regression. If a breakpoint in the SR relation exists than $\boldsymbol{B}_{\text {lim }}$ should be set be set to this value ( $\mathrm{S}^{*}$ ).
The PA reference points have been re-calculated (as far as possible) for both approaches and for two XSA models: the final XSA assessment including discard estimates and a XSA assessment without discards configured according to last years settings. The results are presented in the Table below.

If the technical basis is re-applied, then the re-calculation of $\boldsymbol{B}_{p a}$ and $\boldsymbol{F}_{\text {lim }}$ is straight-forward. However, the recalculation of $\boldsymbol{F}_{p a}$ is complicated (see Appendix 3) and questionable because it is based on the $10 \%$ probability curve in the medium term projection, which is now considered to be unreliable (Patterson et al., 2001).

If it is decided that the old technical basis is no longer valid then the segmented regression should be used to determine $\boldsymbol{B}_{\text {lim }} . \boldsymbol{F}_{\text {lim }}$ can then be calculated following the guidelines set by the Study Group on the Precautionary Approach to Fisheries Management (see Appendix 3, ICES 1997, 1998), however these have not been calculated at the WG. $\boldsymbol{F}_{p a}$ and $\boldsymbol{B}_{p a}$ can be determined from limit values by fixed multipliers. Assuming that there is no reason to change the multiplier for $\boldsymbol{B}_{p a}$, new values have been calculated for $\boldsymbol{B}_{p a}$. The PA study group has proposed an alternative method to determine PA-values from LIM-values but software to apply this complicated method is not yet available.

| Model | Approach | $\boldsymbol{B}_{\text {lim }}$ | $\boldsymbol{B}_{p a}$ | $\boldsymbol{F}_{\text {lim }}$ | $\boldsymbol{F}_{p a}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Current values (set in <br> 1998) |  | 210000 t | 300000 t | 0.6 | 0.3 |
| Final assessment <br> including discards <br> "" | Technical basis | 161000 t | 230000 t | 0.74 | $?$ |
| Update assessment <br> excluding discards <br> "" | Tegmented regression | 159000 t | 227000 t |  | $?$ |

The underlying stock-recruitment plots and segmented regression curves are presented in Figure 9.10.2. Comparing the two upper figures clearly shows that in the final assessment, which includes discard estimates, a breakpoint in the stock recruitment relationship is far less evident than in an assessment without discards. In an assessment without discards it can be argued that the stock are currently at a level of SSB which causes impaired recruitment, but including discards almost completely takes away suggestion of impaired recruitment.

Comparing the top right plot with the bottom right plot in Figure 9.10 .2 shows that the breakpoint of the segmented regression can change considerably if the range of the stock recruitment plot is changed. Notably, the segmented regression breakpoint is very sensitive to the addition of the most recent datum. This could either be due to a decreasing limb of the SRR curve becoming apparent in the SRR data, or to the non-converged part of the VPA delivering very uncertain estimates.

Given that the final assessment includes discards, the WG concluded that both possible approaches (technical basis and segmented regression) give estimates of $\boldsymbol{B}_{\text {lim }}$ in the area of 160000 t . Therefore the WG proposes to set $\boldsymbol{B}_{\text {lim }}$ at $\boldsymbol{B}_{\text {loss }}$ and calculate the other reference points accordingly:

$$
\begin{aligned}
& \boldsymbol{B}_{l i m}=160000 \text { tonnes } \\
& \boldsymbol{B}_{p a}=230000 \text { tonnes } \\
& \boldsymbol{F}_{\text {lim }}=0.74, \text { which is the sum of the appropriate } F_{\mathrm{HC}} \text { and } F_{\text {discards }} .
\end{aligned}
$$

### 9.11 Quality of the assessment

### 9.11.1 Incorporation of discards into the assessment

The assessment presented by the WG incorporates discards for the first time. For a number of years it has been noted in the ACFM report that discards were important for assessing the state of this stock. Observations from (scanty) discards trips indicated that the level of discarding of plaice was high and there were also indications that discarding had increased in recent years compared to the historic observations from the mid-1970s.

Compilation of discards data for North Sea plaice (as for other species) has been attempted by SGDBI in 2002 (ICES 2002). The data were mainly from towed-gear fisheries for cod, haddock, whiting, saithe, sole and plaice in IIIa and IV as collected by Germany, England, Denmark, and Sweden between 1999 and 2001 under EC project 98/097. Some data from other projects going back to 1997 were also available to the SGBDI. WGNSSK noted in 2002 (ICES 2003) that not considering discard catches in stock assessments may introduce bias and affect estimates of F and stock biomass, particularly when discard patterns vary over time. The collection and collation of data as undertaken by the SGDBI was not yet useful for assessment purposes. Since 2002, the EC data regulation (EC 2001) has introduced the obligation for EU member states to collect discards data for their major fleets. The data collected needs to be submitted to the EC in annual reports, however, there is no official requirement to submit the data in a suiTable format to the relevant ICES working groups. Therefore, the discards data that has been collected for North Sea plaice by the different countries has not yet been made available to WGNSSK.

In order to be able to evaluate the effects of discards on the assessment of North Sea plaice, the working group has followed a double strategy. A working paper was presented on a method of reconstructing discard data based on growth information, spatial distribution of plaice by length, selection ogives and discard ogives (Van Keeken et al. 2004). Substantial advances have been made in this method of reconstructing discards. The general principles of the reconstruction are described in Section 9.2.3. Even though the method of reconstructing discards appeared to behave reasonably well, one major drawback was that the reconstruction was relatively sensitive to the assessment that was used to generate the discards estimates. Notably, reconstructing discards from 1999 backwards and from 2003 backwards gave substantial different perceptions on both the overall amount and the relative age compositions of the reconstructed discards in the 1990s. The assessment of North Sea plaice has shown a substantial revision in estimated stock size and fishing mortality during WGNSSK 2003 (ICES 2004) when the size of the 1996 year-class was estimated to be much smaller than previously assumed. This revision will also have affected the reconstruction of discards as shown in Figure 9.4.7.

Recent discard trips indicated that the percentage discards of plaice in the most recent 3-4 years was higher than the percentages discards observed in the 1970s and 1980s. As indicated above, no international estimates of discards at age are available. As a proxy, the Dutch discards estimates have been raised to the international level (see WP6). Given the low sampling level of the Dutch discards program, this could introduce additional variability (or bias) in the discards at age, but the WG considered that it would still be a preferable to use the observed discards rates for the recent years (see Section 9.2.3 for a full discussion).

The introduction of discards in the assessment of North Sea plaice has a large effect on the recruitment estimates and also substantial effects on trends in fishing mortality and SSB. The trends in fishing mortality are heavily affected by the estimated fishing mortality on the discards component; the fishing mortality in the human consumption component is very comparable with the assessment without discards. The recruitment estimate of the strong 1985 yearclass is much higher when including discards into the assessment. This re-evaluation of the strength of the 1985 year-
class is beyond what has been observed in the surveys. According to the surveys, the 1985 and 1996 year-classes should have been in the same order of magnitude. The assessment including discards also indicates that the strength of the 2001 year-class is larger than previously assumed. Preliminary indications of the CPUE in the first half of 2004 appear to confirm this picture.

The inclusion of discards into the assessment has not resolved the main problem that was identified in last year's WG: the revision of the stock size due to the revision of the estimated strength of the 1996 year-class. Last year it was stated that the absence of discards in the assessment was the likely cause for that revision. The retrospective analysis that was carried out during this WG has shown that a retrospective pattern is still persistent for this assessment. With the inclusion of discards this can no longer be attributed to that factor, but it could still be due to the mismatch between the catch and discards data and the relative abundance indices. Further investigations are required to explore what the most likely causes are for this retrospective pattern.

### 9.11.2 Contrasting the assessment with external information

The assessment presented by the WG combines information from research vessel surveys and catches (landings + discards) at age. Not all auxiliary information that was available to the WG was used in the final assessment. Nevertheless it is useful to contrast the outcome of the assessment with external information, to explore how consistent the different data sources are for this stock. There are two main sources of information that can be contrasted to the XSA-based stock estimate: commercial CPUE data and the results of the Fishermen survey.

## Commercial CPUE

Trends in surveys, commercial CPUE and different assessment model configurations are presented in Figure 9.11.1. The biomass indices are standardised over the period 1996-2003 in terms of $\log$ relative trends ( $\log (\mathrm{SSB} / \mathrm{avg}$ SSB) ). The results indicate that the different assessment methods give generally the same interpretation of the data: high stock size in the late 1980s, followed by a decrease until the mid-1990s after which it stabilises. A slightly alternative interpretation is presented by the BTS (as SSB index) and to a lesser extent by the NL flag CPUE series, which indicates that the decrease in SSB has not been as large as indicated by the catch based assessments.

## Fishermen's survey

The results of the fishermen survey is presented in Figure 9.11 .2 in terms of relative increases and decreases compared to the year before. The fishermen survey indicates that in most areas, fishermen perceive there to be more plaice in all areas except in the western part of the North Sea. The level of increase cannot really be determined from this information, but as a whole the fishermen are observing an increasing trend in the stock, which is to a certain extent consistent with the outcome of the assessment.

### 9.11.3 PA reference points

The WG and ACFM consider discards important for assessing the state of this stock. This year, for the first time, an assessment including reconstructed discard estimates is presented as the final assessment. However this revision (and last years revision) change our perception of the stock in relation to the fixed PA reference points. Therefore a revision of the PA reference is necessary. Without revised PA reference points the state of the stock in relation to biological reference points cannot be evaluated.

The background to PA reference points, the general procedures to determine PA reference points and the technical basis on which the current reference points for North Sea plaice have been set are described in Appendix 3. In this report we have listed a number of options regarding the estimation of new reference points. The WG proposed the assessment including discards as the final assessment: therefore, the WG also had to choose between updating the reference points using the original approach with which the reference points were set in 1998 (ICES 1998; ICES 1999) or using the approach proposed by the SGPA (ICES 2003b). The WG did not have the time to follow the complete procedure outlined by SGPA, but has been able to recalculate the old technical basis and to calculate the breakpoint of the segmented regression. The newly estimated $\boldsymbol{B}_{\text {loss }}$ is practically equal to the breakpoint in the segmented regression suggesting a $\boldsymbol{B}_{\text {lim }}$ of $160,000 \mathrm{t}$. (current $\boldsymbol{B}_{\text {lim }}$ is 210,000 tonnes). $\boldsymbol{F}_{\text {loss }}$ (which can be taken as a proxy for $\boldsymbol{F}_{\text {lim }}$ ) was calculated as 0.74 , but it should be noted that this estimate includes discards mortality.

### 9.12 Management considerations

The minimum mesh size $(80 \mathrm{~mm})$ in the mixed beam-trawl fishery for plaice and sole in the southern North Sea means that large numbers of (undersized) plaice are discarded. Measures to reduce discarding in the mixed beam-trawl fishery would greatly benefit the plaice stock and future yields. There are indications from recent surveys that undersized plaice are distributed further offshore and may therefore have become available to the fishery, which generated additional discards.

Effort in the major fisheries has been reduced. Since 1998 overall $F$ and $F_{\mathrm{HC}}$ appear to have decreased slightly and $F_{\text {discards }}$ has increased. However, on a longer time scale these changes are minor. TACs set by managers since 1997 have been intended to result in substantial reductions in $F$ to $F=0.3$. Although landings have been at or below the TAC in each year, $F$ did not decline as expected and the magnitude of the reduction is highly uncertain.

The reduction in plaice TACs in combination with the reduction in the days at sea has had a potential spin-off of limiting the fishery more to the southern North Sea. Given the spatial distribution of plaice, this could have resulted in additional pressure on the plaice stock and notably on the juvenile part of the plaice population.

The effects of the "plaice box" was evaluated in 1999 and has recently again been evaluated by an EU-Norway expert group. The report of the latter group is not available yet and could not be evaluated by the WG.

## Special request

During the week before the start of the WG meeting, the Dutch Delegate to ICES (Ir. Ger de Peuter) requested that the following analyses be done by this WG:

1. An evaluation of the current levels of reference points $\left(\boldsymbol{B}_{\text {lim }}, \boldsymbol{F}_{\text {lim }}, \boldsymbol{B}_{p a}, \boldsymbol{F}_{p a}\right)$ during the ICES WGNSSK in September 2004 and the development of proposals for updated levels, based on the most recent knowledge.
2. Advice on what levels of $F$ are required to restore the North Sea plaice stock to safe biological levels over a period of about 5-10 years.

In response to this request, the WG have proposed new PA reference points for plaice (Section 9.10.2). Evaluation of these reference points requires answers to questions such as "Given likely future climate scenarios, how realistic is the goal of rebuilding to a reference biomass level?" The WG are currently unable to answer such questions satisfactorily, and this will remain the case unless considerable changes are made to WG practice (see Section 15). The WG have also produced medium-term projections of the plaice stock, and have indicated the likely level of biomass if the current fishing mortality was continued for the next 10 years. However, in the absence of agreed precautionary reference points for the new plaice assessment including discards, it is difficult for the WG to conclude whether or not this level of biomass could be considered "safe".

Table 9.1.1. North Sea plaice. Nominal landings (tonnes) in Sub-Area IV as officially reported to ICES, 1997-2003.

| YEAR | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 5223 | 5592 | 6160 | 7260 | 6369 | 4859 | 4570 |
| Denmark | 13940 | 10087 | 13468 | 13408 | 13797 | 12552 | 13742 |
| France | 254 | 489 | 624 | 547 | 429 | 552 | 343 |
| Germany | 4159 | 2773 | 3144 | 4310 | 4739 | 3927 | 3800 |
| Netherlands | 3143 | 30541 | 37513 | 35030 | 3329 | 29081 | 27372 |
| Norway | 1620 | 965 | 643 | 866 | 1926 | 1996 | 1967 |
| Sweden | 10 | 2 | 4 | 3 | 3 | 2 | 2 |
| UK (E/W/NI) | 13789 | 11473 | 9743 | 13131 | 11025 | 8504 | 7135 |
| UK (Scotland) | 8345 | 8442 | 7318 | 7579 | 8122 | 8236 | 6757 |
| Others | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| Total | 81483 | 70365 | 78617 | 82134 | 79700 | 69709 | 65688 |
| Unallocated | 1565 | 1169 | 2045 | -984 | 2263 | 508 | 814 |
| WG estimate | 83048 | 71534 | 80662 | $\mathbf{8 1 1 5 0}$ | $\mathbf{8 1 9 6 3}$ | $\mathbf{7 0 2 1 7}$ | $\mathbf{6 6 5 0 2}$ |
| TAC | 91000 | 87000 | 102000 | 97000 | 78000 | 77000 | 73250 |

Table 9.2.1. North Sea plaice. Natural mortality and maturity at age.

| Age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Natural mortality | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| Maturity | 0 | 0.5 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Table 9.2.2. North Sea plaice. Annual varying maturity ogives based on Dutch market samples.

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1957 | 0.00 | 0.29 | 0.44 | 0.64 | 0.83 | 0.97 | 1.00 |
| 1958 | 0.00 | 0.29 | 0.44 | 0.64 | 0.83 | 0.97 | 1.00 |
| 1959 | 0.00 | 0.29 | 0.43 | 0.64 | 0.84 | 0.97 | 1.00 |
| 1960 | 0.00 | 0.29 | 0.42 | 0.67 | 0.88 | 0.98 | 1.00 |
| 1961 | 0.00 | 0.29 | 0.40 | 0.67 | 0.88 | 0.97 | 1.00 |
| 1962 | 0.00 | 0.29 | 0.38 | 0.66 | 0.87 | 0.98 | 1.00 |
| 1963 | 0.00 | 0.29 | 0.37 | 0.66 | 0.87 | 0.98 | 1.00 |
| 1964 | 0.00 | 0.29 | 0.36 | 0.66 | 0.89 | 0.99 | 1.00 |
| 1965 | 0.00 | 0.29 | 0.35 | 0.62 | 0.86 | 0.98 | 1.00 |
| 1966 | 0.00 | 0.33 | 0.35 | 0.62 | 0.85 | 0.97 | 1.00 |
| 1967 | 0.00 | 0.33 | 0.35 | 0.61 | 0.86 | 0.95 | 1.00 |
| 1968 | 0.00 | 0.33 | 0.37 | 0.61 | 0.86 | 0.96 | 1.00 |
| 1969 | 0.00 | 0.34 | 0.39 | 0.63 | 0.84 | 0.92 | 1.00 |
| 1970 | 0.00 | 0.34 | 0.41 | 0.66 | 0.85 | 0.93 | 1.00 |
| 1971 | 0.00 | 0.29 | 0.42 | 0.69 | 0.89 | 0.93 | 1.00 |
| 1972 | 0.00 | 0.30 | 0.44 | 0.72 | 0.89 | 0.96 | 1.00 |
| 1973 | 0.00 | 0.30 | 0.42 | 0.71 | 0.90 | 0.95 | 1.00 |
| 1974 | 0.00 | 0.30 | 0.44 | 0.69 | 0.91 | 0.97 | 1.00 |
| 1975 | 0.00 | 0.31 | 0.46 | 0.68 | 0.86 | 0.95 | 1.00 |
| 1976 | 0.00 | 0.31 | 0.48 | 0.69 | 0.85 | 0.93 | 1.00 |
| 1977 | 0.00 | 0.31 | 0.48 | 0.70 | 0.87 | 0.93 | 1.00 |
| 1978 | 0.00 | 0.31 | 0.49 | 0.72 | 0.89 | 0.95 | 1.00 |
| 1979 | 0.00 | 0.30 | 0.48 | 0.76 | 0.92 | 0.95 | 1.00 |
| 1980 | 0.00 | 0.30 | 0.45 | 0.76 | 0.94 | 0.97 | 1.00 |
| 1981 | 0.00 | 0.29 | 0.43 | 0.75 | 0.94 | 0.99 | 1.00 |
| 1982 | 0.00 | 0.29 | 0.42 | 0.71 | 0.94 | 0.98 | 1.00 |
| 1983 | 0.00 | 0.29 | 0.40 | 0.68 | 0.94 | 0.97 | 1.00 |
| 1984 | 0.00 | 0.29 | 0.39 | 0.64 | 0.91 | 0.97 | 1.00 |
| 1985 | 0.00 | 0.29 | 0.38 | 0.64 | 0.89 | 0.97 | 1.00 |
| 1986 | 0.00 | 0.29 | 0.37 | 0.60 | 0.91 | 0.96 | 1.00 |
| 1987 | 0.00 | 0.29 | 0.37 | 0.60 | 0.86 | 0.98 | 1.00 |
| 1988 | 0.00 | 0.29 | 0.37 | 0.61 | 0.84 | 0.99 | 1.00 |
| 1989 | 0.00 | 0.29 | 0.37 | 0.61 | 0.84 | 0.98 | 1.00 |
| 1990 | 0.00 | 0.29 | 0.39 | 0.61 | 0.86 | 0.98 | 1.00 |
| 1991 | 0.00 | 0.29 | 0.41 | 0.63 | 0.85 | 0.98 | 1.00 |
| 1992 | 0.00 | 0.29 | 0.42 | 0.69 | 0.88 | 0.97 | 1.00 |
| 1993 | 0.00 | 0.29 | 0.44 | 0.74 | 0.91 | 0.98 | 1.00 |
| 1994 | 0.00 | 0.30 | 0.47 | 0.80 | 0.93 | 0.98 | 1.00 |
| 1995 | 0.00 | 0.29 | 0.47 | 0.83 | 0.96 | 0.99 | 1.00 |
| 1996 | 0.00 | 0.29 | 0.45 | 0.84 | 0.98 | 0.99 | 1.00 |
| 1997 | 0.00 | 0.29 | 0.44 | 0.83 | 0.98 | 1.00 | 1.00 |
| 1998 | 0.00 | 0.34 | 0.44 | 0.78 | 0.98 | 0.99 | 1.00 |
| 1999 | 0.00 | 0.33 | 0.44 | 0.76 | 0.97 | 1.00 | 1.00 |
| 2000 | 0.00 | 0.35 | 0.44 | 0.74 | 0.97 | 1.00 | 1.00 |
| 2001 | 0.00 | 0.40 | 0.45 | 0.73 | 0.96 | 1.00 | 1.00 |
| 2002 | 0.00 | 0.51 | 0.50 | 0.70 | 0.94 | 0.99 | 1.00 |
| 2003 | 0.00 | 0.51 | 0.50 | 0.70 | 0.94 | 0.99 | 1.00 |

Table 9.2.3. North Sea plaice. Catch numbers at age in the landings.

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1957 | 0 | 4315 | 59818 | 44718 | 31771 | 8885 | 11029 | 9028 | 4973 | 4300 | 2580 | 1312 | 787 | 875 | 1005 |
| 1958 | 0 | 7129 | 22205 | 62047 | 34112 | 19594 | 8178 | 8000 | 6110 | 4093 | 4530 | 1740 | 1110 | 528 | 1147 |
| 1959 | 0 | 16556 | 30427 | 25489 | 41099 | 22936 | 13873 | 6408 | 6596 | 5360 | 3386 | 3564 | 1507 | 869 | 1494 |
| 1960 | 0 | 5959 | 61876 | 51022 | 21321 | 27329 | 14186 | 9013 | 5087 | 4711 | 3418 | 2391 | 1966 | 1014 | 1653 |
| 1961 | 0 | 2264 | 33392 | 67906 | 32699 | 12759 | 14680 | 9748 | 5996 | 3446 | 3621 | 2887 | 1743 | 1345 | 1618 |
| 1962 | 0 | 2147 | 35876 | 66779 | 50060 | 20628 | 9060 | 9035 | 5257 | 3428 | 2659 | 2266 | 2001 | 1061 | 1386 |
| 1963 | 0 | 4340 | 21471 | 76926 | 54364 | 31799 | 12848 | 6833 | 7047 | 3863 | 3591 | 2117 | 2089 | 1536 | 3396 |
| 1964 | 0 | 14708 | 40486 | 64735 | 57408 | 37091 | 15819 | 6595 | 3980 | 3804 | 3066 | 1905 | 1518 | 1300 | 5293 |
| 1965 | 0 | 9858 | 42202 | 53188 | 43674 | 30151 | 18361 | 8554 | 4213 | 4015 | 2807 | 2221 | 1745 | 1338 | 5461 |
| 1966 | 0 | 4144 | 65009 | 51488 | 36667 | 27370 | 16500 | 10784 | 6467 | 3336 | 1843 | 2552 | 1624 | 1032 | 4541 |
| 1967 | 0 | 5982 | 30304 | 112917 | 41383 | 22053 | 16175 | 8004 | 6728 | 3045 | 2033 | 968 | 1303 | 783 | 3043 |
| 1968 | 0 | 9474 | 40698 | 38140 | 123619 | 17139 | 10341 | 10102 | 3925 | 4891 | 2273 | 1556 | 607 | 1007 | 3031 |
| 1969 | 3 | 15017 | 45187 | 36084 | 35585 | 102014 | 10410 | 6086 | 8192 | 3739 | 4760 | 1796 | 1223 | 703 | 3871 |
| 1970 | 76 | 17294 | 51174 | 56153 | 40686 | 35074 | 78886 | 6311 | 4185 | 4778 | 2202 | 2871 | 1150 | 939 | 2900 |
| 1971 | 19 | 29591 | 48282 | 33475 | 26059 | 22903 | 16913 | 29730 | 6414 | 4602 | 3377 | 2213 | 1910 | 929 | 3879 |
| 1972 | 2233 | 36528 | 62199 | 52906 | 23043 | 16998 | 14380 | 10903 | 18585 | 3467 | 2841 | 2538 | 1553 | 1591 | 3661 |
| 1973 | 1268 | 31733 | 59099 | 73065 | 42255 | 13817 | 8885 | 9848 | 6084 | 13829 | 1680 | 1995 | 1516 | 1355 | 3603 |
| 1974 | 2223 | 23120 | 55548 | 42125 | 41075 | 19666 | 8005 | 6321 | 5568 | 3931 | 10118 | 1634 | 1686 | 1242 | 3369 |
| 1975 | 981 | 28124 | 61623 | 31262 | 25419 | 21188 | 11873 | 5923 | 4106 | 3337 | 1741 | 7935 | 1080 | 1424 | 4178 |
| 1976 | 2820 | 33643 | 77649 | 96398 | 13779 | 9904 | 9120 | 6391 | 2947 | 2020 | 2111 | 911 | 4478 | 388 | 2644 |
| 1977 | 3220 | 56969 | 43289 | 66013 | 83705 | 9142 | 5912 | 5022 | 4061 | 1927 | 1301 | 1357 | 489 | 2290 | 1827 |
| 1978 | 1143 | 60578 | 62343 | 54341 | 50102 | 35510 | 5940 | 3352 | 2419 | 2176 | 1145 | 603 | 689 | 330 | 2525 |
| 1979 | 1318 | 58031 | 118863 | 48962 | 47886 | 39932 | 24228 | 4161 | 2807 | 2333 | 1849 | 1113 | 707 | 707 | 2579 |
| 1980 | 979 | 64904 | 133741 | 77523 | 24974 | 17982 | 13761 | 8458 | 1864 | 1326 | 952 | 1173 | 433 | 284 | 1209 |
| 1981 | 253 | 100927 | 122296 | 57604 | 35745 | 12414 | 9564 | 8092 | 4874 | 1406 | 1097 | 830 | 796 | 468 | 1306 |
| 1982 | 3334 | 47776 | 209007 | 69544 | 28655 | 16726 | 7589 | 5470 | 4482 | 3706 | 1134 | 712 | 575 | 519 | 2007 |
| 1983 | 1214 | 119695 | 115034 | 99076 | 29359 | 12906 | 8216 | 4193 | 3013 | 2947 | 2144 | 1219 | 581 | 344 | 1052 |
| 1984 | 108 | 63252 | 274209 | 53549 | 37468 | 13661 | 6465 | 5544 | 2720 | 2088 | 1307 | 1143 | 455 | 310 | 1262 |
| 1985 | 121 | 73552 | 144316 | 185203 | 32520 | 15544 | 6871 | 3650 | 2698 | 1543 | 1030 | 1070 | 727 | 371 | 1057 |
| 1986 | 1674 | 67125 | 163717 | 93801 | 84479 | 24049 | 9299 | 4490 | 2733 | 2026 | 1178 | 1084 | 806 | 628 | 1228 |
| 1987 | 0.1 | 85123 | 115951 | 111239 | 64758 | 34728 | 11452 | 4341 | 2154 | 1743 | 1033 | 663 | 529 | 296 | 1214 |
| 1988 | 0.1 | 15146 | 250675 | 74335 | 47380 | 25091 | 16774 | 5381 | 3162 | 1671 | 932 | 932 | 505 | 516 | 1677 |
| 1989 | 1261 | 46757 | 105929 | 231414 | 52909 | 19247 | 10567 | 7561 | 2120 | 1692 | 927 | 630 | 446 | 328 | 1557 |
| 1990 | 1550 | 32533 | 97766 | 110997 | 159814 | 26757 | 8129 | 4216 | 3451 | 1097 | 716 | 456 | 293 | 208 | 1038 |
| 1991 | 1461 | 43266 | 83603 | 116155 | 72961 | 77557 | 14910 | 5233 | 3141 | 2325 | 956 | 592 | 356 | 289 | 1073 |
| 1992 | 3410 | 43954 | 85120 | 72494 | 72703 | 33406 | 29547 | 6970 | 3200 | 2240 | 1516 | 925 | 524 | 490 | 1233 |
| 1993 | 3461 | 53949 | 98375 | 72286 | 51405 | 29001 | 13472 | 11272 | 3645 | 1888 | 1241 | 932 | 743 | 215 | 864 |
| 1994 | 1394 | 45148 | 101617 | 80236 | 38542 | 20388 | 15323 | 6399 | 5368 | 2319 | 942 | 646 | 580 | 300 | 646 |
| 1995 | 7751 | 36575 | 81398 | 78370 | 36499 | 17953 | 9772 | 4366 | 2336 | 1682 | 864 | 427 | 229 | 209 | 342 |
| 1996 | 1104 | 42496 | 64382 | 46359 | 32130 | 14460 | 10605 | 4528 | 2624 | 1659 | 1170 | 511 | 260 | 238 | 1054 |
| 1997 | 892 | 42855 | 86948 | 43669 | 22541 | 13518 | 6362 | 3632 | 2179 | 1252 | 690 | 889 | 396 | 224 | 730 |
| 1998 | 196 | 30401 | 68920 | 56329 | 16713 | 6432 | 4986 | 2506 | 1761 | 912 | 500 | 403 | 431 | 176 | 697 |
| 1999 | 549 | 8689 | 155971 | 39857 | 24112 | 6829 | 2783 | 2246 | 1521 | 1180 | 515 | 381 | 230 | 267 | 520 |
| 2000 | 2694 | 15819 | 39550 | 164330 | 14993 | 9343 | 2130 | 1030 | 940 | 544 | 392 | 393 | 203 | 134 | 431 |
| 2001 | 4509 | 35886 | 52480 | 48238 | 89949 | 6836 | 4418 | 1127 | 637 | 566 | 296 | 465 | 232 | 173 | 577 |
| 2002 | 1233 | 15596 | 58262 | 48361 | 36551 | 37877 | 4644 | 1788 | 742 | 312 | 484 | 264 | 156 | 121 | 249 |
| 2003 | 694 | 42594 | 47802 | 48894 | 27126 | 15999 | 17069 | 1608 | 650 | 249 | 97 | 303 | 32 | 91 | 87 |

Table 9.2.4. North Sea plaice. Catch weights at age in the landings.

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1957 | 0.000 | 0.165 | 0.201 | 0.258 | 0.353 | 0.456 | 0.533 | 0.589 | 0.396 | 0.821 | 0.957 | 1.048 | 1.233 | 1.141 | 1.487 |
| 1958 | 0.000 | 0.198 | 0.221 | 0.259 | 0.337 | 0.453 | 0.513 | 0.615 | 0.665 | 0.802 | 0.920 | 1.045 | 1.134 | 1.370 | 1.563 |
| 1959 | 0.000 | 0.218 | 0.246 | 0.293 | 0.362 | 0.473 | 0.592 | 0.623 | 0.750 | 0.791 | 0.918 | 1.009 | 1.190 | 1.267 | 1.563 |
| 1960 | 0.000 | 0.200 | 0.236 | 0.289 | 0.386 | 0.485 | 0.601 | 0.683 | 0.724 | 0.874 | 0.959 | 1.162 | 1.232 | 1.360 | 1.572 |
| 1961 | 0.000 | 0.191 | 0.233 | 0.302 | 0.412 | 0.509 | 0.604 | 0.671 | 0.812 | 0.870 | 0.942 | 1.033 | 1.224 | 1.239 | 1.553 |
| 1962 | 0.000 | 0.211 | 0.248 | 0.300 | 0.400 | 0.541 | 0.570 | 0.692 | 0.777 | 0.959 | 0.995 | 1.100 | 1.187 | 1.410 | 1.540 |
| 1963 | 0.000 | 0.253 | 0.286 | 0.319 | 0.399 | 0.533 | 0.624 | 0.667 | 0.715 | 0.860 | 0.920 | 1.033 | 1.004 | 1.182 | 1.276 |
| 1964 | 0.000 | 0.250 | 0.273 | 0.312 | 0.388 | 0.487 | 0.628 | 0.700 | 0.737 | 0.841 | 0.890 | 0.954 | 0.938 | 1.098 | 1.204 |
| 1965 | 0.000 | 0.242 | 0.282 | 0.321 | 0.385 | 0.471 | 0.539 | 0.663 | 0.726 | 0.615 | 0.792 | 0.857 | 0.974 | 0.878 | 1.121 |
| 1966 | 0.000 | 0.232 | 0.270 | 0.348 | 0.436 | 0.484 | 0.559 | 0.624 | 0.690 | 0.813 | 0.858 | 0.843 | 0.943 | 1.018 | 1.080 |
| 1967 | 0.000 | 0.232 | 0.279 | 0.322 | 0.425 | 0.547 | 0.597 | 0.662 | 0.738 | 0.837 | 0.870 | 0.902 | 0.950 | 1.032 | 1.214 |
| 1968 | 0.000 | 0.267 | 0.298 | 0.331 | 0.366 | 0.517 | 0.590 | 0.596 | 0.686 | 0.750 | 0.817 | 0.939 | 0.936 | 0.973 | 1.201 |
| 1969 | 0.217 | 0.294 | 0.310 | 0.333 | 0.359 | 0.412 | 0.573 | 0.655 | 0.658 | 0.694 | 0.810 | 0.838 | 1.022 | 0.863 | 1.179 |
| 1970 | 0.315 | 0.286 | 0.318 | 0.356 | 0.419 | 0.443 | 0.499 | 0.672 | 0.744 | 0.762 | 0.780 | 0.892 | 0.941 | 1.021 | 1.128 |
| 1971 | 0.256 | 0.318 | 0.356 | 0.403 | 0.448 | 0.514 | 0.542 | 0.607 | 0.699 | 0.724 | 0.818 | 0.848 | 0.922 | 1.004 | 1.133 |
| 1972 | 0.246 | 0.296 | 0.352 | 0.428 | 0.493 | 0.541 | 0.608 | 0.646 | 0.674 | 0.785 | 0.841 | 0.901 | 0.900 | 0.964 | 1.192 |
| 1973 | 0.272 | 0.316 | 0.344 | 0.405 | 0.486 | 0.539 | 0.605 | 0.627 | 0.677 | 0.729 | 0.978 | 0.907 | 0.942 | 0.983 | 1.079 |
| 1974 | 0.285 | 0.311 | 0.354 | 0.405 | 0.476 | 0.554 | 0.609 | 0.693 | 0.707 | 0.779 | 0.849 | 0.971 | 1.002 | 1.040 | 1.224 |
| 1975 | 0.249 | 0.300 | 0.330 | 0.420 | 0.495 | 0.587 | 0.636 | 0.703 | 0.783 | 0.853 | 0.854 | 0.983 | 0.953 | 1.138 | 1.264 |
| 1976 | 0.265 | 0.295 | 0.338 | 0.375 | 0.513 | 0.594 | 0.641 | 0.705 | 0.741 | 0.813 | 0.851 | 0.928 | 1.019 | 1.009 | 1.159 |
| 1977 | 0.254 | 0.323 | 0.353 | 0.380 | 0.418 | 0.556 | 0.647 | 0.721 | 0.715 | 0.791 | 0.898 | 0.970 | 0.855 | 1.063 | 1.165 |
| 1978 | 0.244 | 0.315 | 0.369 | 0.397 | 0.438 | 0.491 | 0.609 | 0.687 | 0.776 | 0.781 | 0.886 | 0.983 | 1.039 | 0.933 | 1.094 |
| 1979 | 0.235 | 0.311 | 0.349 | 0.388 | 0.429 | 0.474 | 0.550 | 0.675 | 0.796 | 0.871 | 0.818 | 0.894 | 1.083 | 1.044 | 1.115 |
| 1980 | 0.238 | 0.286 | 0.344 | 0.401 | 0.473 | 0.545 | 0.588 | 0.662 | 0.772 | 0.931 | 0.943 | 0.848 | 1.015 | 1.308 | 1.248 |
| 1981 | 0.237 | 0.274 | 0.329 | 0.416 | 0.505 | 0.558 | 0.604 | 0.642 | 0.725 | 0.869 | 0.950 | 0.931 | 0.933 | 1.179 | 1.236 |
| 1982 | 0.279 | 0.262 | 0.311 | 0.424 | 0.514 | 0.608 | 0.664 | 0.712 | 0.738 | 0.840 | 0.983 | 1.045 | 1.174 | 0.970 | 1.177 |
| 1983 | 0.200 | 0.250 | 0.300 | 0.383 | 0.515 | 0.604 | 0.677 | 0.771 | 0.815 | 0.893 | 0.913 | 0.984 | 1.240 | 1.209 | 1.167 |
| 1984 | 0.233 | 0.263 | 0.283 | 0.375 | 0.491 | 0.613 | 0.684 | 0.725 | 0.837 | 0.916 | 0.981 | 1.026 | 1.112 | 1.250 | 1.214 |
| 1985 | 0.247 | 0.264 | 0.290 | 0.337 | 0.462 | 0.577 | 0.678 | 0.729 | 0.804 | 0.900 | 1.001 | 0.950 | 1.071 | 1.139 | 1.215 |
| 1986 | 0.221 | 0.269 | 0.304 | 0.347 | 0.425 | 0.488 | 0.675 | 0.751 | 0.853 | 0.921 | 0.948 | 1.063 | 1.078 | 1.074 | 1.110 |
| 1987 | 0.221 | 0.249 | 0.300 | 0.351 | 0.402 | 0.504 | 0.583 | 0.728 | 0.829 | 0.826 | 0.996 | 1.015 | 1.045 | 1.127 | 1.150 |
| 1988 | 0.221 | 0.254 | 0.278 | 0.352 | 0.453 | 0.512 | 0.608 | 0.699 | 0.813 | 0.936 | 0.964 | 1.041 | 1.137 | 1.115 | 1.038 |
| 1989 | 0.236 | 0.280 | 0.309 | 0.332 | 0.392 | 0.533 | 0.603 | 0.670 | 0.792 | 0.819 | 0.923 | 0.952 | 1.157 | 1.084 | 0.994 |
| 1990 | 0.271 | 0.285 | 0.298 | 0.317 | 0.366 | 0.447 | 0.597 | 0.692 | 0.761 | 0.826 | 1.044 | 1.098 | 1.117 | 0.991 | 1.094 |
| 1991 | 0.227 | 0.286 | 0.294 | 0.306 | 0.365 | 0.455 | 0.528 | 0.671 | 0.747 | 0.843 | 0.930 | 0.944 | 1.000 | 0.976 | 1.026 |
| 1992 | 0.251 | 0.263 | 0.290 | 0.318 | 0.341 | 0.425 | 0.531 | 0.605 | 0.715 | 0.755 | 0.843 | 0.945 | 0.994 | 0.928 | 1.098 |
| 1993 | 0.249 | 0.273 | 0.289 | 0.326 | 0.356 | 0.423 | 0.518 | 0.631 | 0.721 | 0.775 | 0.806 | 0.903 | 0.846 | 0.919 | 1.046 |
| 1994 | 0.229 | 0.263 | 0.286 | 0.339 | 0.397 | 0.449 | 0.502 | 0.611 | 0.732 | 0.787 | 0.936 | 0.948 | 1.034 | 0.920 | 1.131 |
| 1995 | 0.272 | 0.277 | 0.301 | 0.338 | 0.402 | 0.454 | 0.528 | 0.611 | 0.734 | 0.881 | 0.865 | 0.923 | 0.918 | 0.943 | 1.104 |
| 1996 | 0.240 | 0.280 | 0.307 | 0.355 | 0.420 | 0.486 | 0.499 | 0.589 | 0.720 | 0.854 | 0.928 | 0.933 | 0.923 | 0.829 | 0.739 |
| 1997 | 0.208 | 0.271 | 0.313 | 0.364 | 0.457 | 0.524 | 0.603 | 0.616 | 0.683 | 0.803 | 0.907 | 0.957 | 0.884 | 1.100 | 1.076 |
| 1998 | 0.152 | 0.260 | 0.310 | 0.394 | 0.497 | 0.607 | 0.633 | 0.695 | 0.700 | 0.800 | 0.975 | 1.078 | 0.888 | 0.907 | 0.943 |
| 1999 | 0.245 | 0.253 | 0.280 | 0.355 | 0.455 | 0.547 | 0.630 | 0.682 | 0.752 | 0.608 | 0.750 | 0.933 | 1.031 | 0.936 | 1.093 |
| 2000 | 0.228 | 0.267 | 0.284 | 0.314 | 0.432 | 0.500 | 0.684 | 0.710 | 0.751 | 0.831 | 0.843 | 0.749 | 0.853 | 1.013 | 1.102 |
| 2001 | 0.238 | 0.267 | 0.292 | 0.309 | 0.365 | 0.482 | 0.592 | 0.708 | 0.795 | 0.776 | 0.765 | 0.725 | 0.831 | 0.799 | 0.892 |
| 2002 | 0.237 | 0.264 | 0.289 | 0.316 | 0.348 | 0.445 | 0.511 | 0.692 | 0.761 | 0.855 | 0.964 | 0.749 | 0.797 | 1.022 | 0.997 |
| 2003 | 0.232 | 0.253 | 0.287 | 0.326 | 0.371 | 0.414 | 0.487 | 0.654 | 0.766 | 0.933 | 0.911 | 0.794 | 1.087 | 0.688 | 0.867 |

Table 9.2.5. North Sea plaice. Sampling effort of the Dutch discards sampling programme during 1999-2003.

| Year | \# trips | \# hauls | \# hours |
| :---: | :---: | :---: | :---: |
| 1999 | 3 | 106 | 183 |
| 2000 | 13 | 420 | 762 |
| 2001 | 4 | 128 | 235 |
| 2002 | 6 | 172 | 342 |
| 2003 | 10 | 306 | 554 |

Table 9.2.6. North Sea plaice. Catch numbers at age in the discards (1957-1998 is reconstructed, 1999-2003 is observed).

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1957 | 32356 | 45596 | 9220 | 909 | 961 | 25 | 0 | 0 | 0 | 0 |
| 1958 | 66199 | 73552 | 23655 | 2572 | 2137 | 65 | 0 | 0 | 0 | 0 |
| 1959 | 116086 | 127771 | 46402 | 11407 | 4737 | 106 | 0 | 0 | 0 | 0 |
| 1960 | 73939 | 167893 | 44948 | 997 | 1067 | 519 | 0 | 0 | 0 | 0 |
| 1961 | 75578 | 144609 | 89014 | 538 | 1612 | 130 | 0 | 0 | 0 | 0 |
| 1962 | 51265 | 181321 | 87599 | 21716 | 799 | 186 | 0 | 0 | 0 | 0 |
| 1963 | 90913 | 136183 | 129778 | 9964 | 2112 | 188 | 0 | 0 | 0 | 0 |
| 1964 | 66035 | 153274 | 64156 | 33825 | 3011 | 323 | 0 | 0 | 0 | 0 |
| 1965 | 43708 | 426021 | 59262 | 3404 | 923 | 267 | 0 | 0 | 0 | 0 |
| 1966 | 38496 | 163125 | 349358 | 14399 | 1402 | 125 | 0 | 0 | 0 | 0 |
| 1967 | 20199 | 133545 | 87532 | 152496 | 623 | 260 | 0 | 0 | 0 | 0 |
| 1968 | 73971 | 72192 | 46339 | 26530 | 22436 | 58 | 0 | 0 | 0 | 0 |
| 1969 | 85192 | 67378 | 16747 | 19334 | 773 | 2024 | 0 | 0 | 0 | 0 |
| 1970 | 123569 | 152480 | 27747 | 1287 | 5061 | 161 | 0 | 0 | 0 | 0 |
| 1971 | 69337 | 96968 | 42354 | 2675 | 426 | 81 | 0 | 0 | 0 | 0 |
| 1972 | 70002 | 55470 | 33899 | 5714 | 567 | 73 | 0 | 0 | 0 | 0 |
| 1973 | 132352 | 49815 | 4008 | 673 | 1289 | 67 | 0 | 0 | 0 | 0 |
| 1974 | 211139 | 308411 | 3652 | 285 | 611 | 109 | 0 | 0 | 0 | 0 |
| 1975 | 244969 | 280130 | 190536 | 4807 | 253 | 123 | 0 | 0 | 0 | 0 |
| 1976 | 183879 | 140921 | 71054 | 18013 | 174 | 41 | 0 | 0 | 0 | 0 |
| 1977 | 256628 | 103696 | 79317 | 33552 | 9317 | 129 | 0 | 0 | 0 | 0 |
| 1978 | 226872 | 154113 | 27257 | 10775 | 1244 | 570 | 0 | 0 | 0 | 0 |
| 1979 | 293166 | 215084 | 57578 | 18382 | 589 | 310 | 0 | 0 | 0 | 0 |
| 1980 | 226371 | 122561 | 932 | 687 | 193 | 86 | 0 | 0 | 0 | 0 |
| 1981 | 134142 | 193241 | 1850 | 373 | 431 | 55 | 0 | 0 | 0 | 0 |
| 1982 | 411307 | 204572 | 4624 | 1109 | 216 | 98 | 0 | 0 | 0 | 0 |
| 1983 | 261400 | 436331 | 30716 | 2235 | 804 | 72 | 0 | 0 | 0 | 0 |
| 1984 | 310675 | 313490 | 52651 | 24529 | 1492 | 69 | 0 | 0 | 0 | 0 |
| 1985 | 405385 | 229208 | 35566 | 2221 | 200 | 78 | 0 | 0 | 0 | 0 |
| 1986 | 1117345 | 490965 | 48510 | 26470 | 1451 | 146 | 0 | 0 | 0 | 0 |
| 1987 | 361519 | 1374202 | 180969 | 1427 | 1348 | 248 | 0 | 0 | 0 | 0 |
| 1988 | 348597 | 608109 | 459385 | 61167 | 882 | 177 | 0 | 0 | 0 | 0 |
| 1989 | 213291 | 485845 | 193176 | 85758 | 7224 | 115 | 0 | 0 | 0 | 0 |
| 1990 | 145314 | 279298 | 168674 | 28102 | 5011 | 177 | 0 | 0 | 0 | 0 |
| 1991 | 183126 | 301575 | 141567 | 40739 | 5528 | 939 | 0 | 0 | 0 | 0 |
| 1992 | 138755 | 219619 | 94581 | 34348 | 4307 | 880 | 0 | 0 | 0 | 0 |
| 1993 | 96371 | 154083 | 48088 | 11966 | 1635 | 216 | 0 | 0 | 0 | 0 |
| 1994 | 62122 | 95703 | 35703 | 1038 | 822 | 144 | 0 | 0 | 0 | 0 |
| 1995 | 118863 | 82676 | 15753 | 860 | 663 | 120 | 0 | 0 | 0 | 0 |
| 1996 | 111250 | 331065 | 27606 | 3930 | 451 | 116 | 0 | 0 | 0 | 0 |
| 1997 | 128653 | 510918 | 193828 | 588 | 271 | 108 | 0 | 0 | 0 | 0 |
| 1998 | 104538 | 646250 | 191631 | 53354 | 297 | 33 | 0 | 0 | 0 | 0 |
| 1999 | 103539 | 189167 | 99382 | 669 | 62 | 78 | 0 | 0 | 8 | 0 |
| 2000 | 174719 | 313166 | 72492 | 83443 | 114 | 51 | 9 | 9 | 2 | 5 |
| 2001 | 24171 | 357233 | 141404 | 48086 | 44836 | 97 | 3 | 3 | 0 | 0 |
| 2002 | 380104 | 246015 | 93159 | 10361 | 1298 | 188 | 8 | 5 | 5 | 5 |
| 2003 | 101383 | 835509 | 52105 | 13683 | 3969 | 185 | 735 | 0 | 0 | 0 |

Table 9.2.7. North Sea plaice. Catch numbers at age in the discards (reconstructed for full time series).

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1957 | 32356 | 45596 | 9220 | 909 | 961 | 25 | 0 | 0 | 0 | 0 |
| 1958 | 66199 | 73552 | 23655 | 2572 | 2137 | 65 | 0 | 0 | 0 | 0 |
| 1959 | 116087 | 127770 | 46402 | 11407 | 4737 | 106 | 0 | 0 | 0 | 0 |
| 1960 | 73938 | 167893 | 44948 | 997 | 1067 | 519 | 0 | 0 | 0 | 0 |
| 1961 | 75578 | 144609 | 89014 | 538 | 1612 | 130 | 0 | 0 | 0 | 0 |
| 1962 | 51265 | 181322 | 87599 | 21716 | 799 | 186 | 0 | 0 | 0 | 0 |
| 1963 | 90914 | 136181 | 129779 | 9963 | 2112 | 188 | 0 | 0 | 0 | 0 |
| 1964 | 66035 | 153275 | 64155 | 33826 | 3011 | 323 | 0 | 0 | 0 | 0 |
| 1965 | 43708 | 426013 | 59262 | 3403 | 923 | 267 | 0 | 0 | 0 | 0 |
| 1966 | 38497 | 163125 | 349351 | 14400 | 1402 | 125 | 0 | 0 | 0 | 0 |
| 1967 | 20199 | 133545 | 87531 | 152490 | 623 | 260 | 0 | 0 | 0 | 0 |
| 1968 | 73971 | 72193 | 46340 | 26530 | 22436 | 58 | 0 | 0 | 0 | 0 |
| 1969 | 85191 | 67377 | 16747 | 19334 | 773 | 2024 | 0 | 0 | 0 | 0 |
| 1970 | 123554 | 152476 | 27746 | 1288 | 5061 | 161 | 0 | 0 | 0 | 0 |
| 1971 | 69334 | 96948 | 42351 | 2674 | 426 | 81 | 0 | 0 | 0 | 0 |
| 1972 | 70014 | 55462 | 33882 | 5712 | 567 | 73 | 0 | 0 | 0 | 0 |
| 1973 | 132255 | 49825 | 4003 | 673 | 1289 | 67 | 0 | 0 | 0 | 0 |
| 1974 | 211096 | 308154 | 3654 | 284 | 610 | 109 | 0 | 0 | 0 | 0 |
| 1975 | 244856 | 280021 | 190325 | 4817 | 253 | 123 | 0 | 0 | 0 | 0 |
| 1976 | 183863 | 140797 | 70982 | 17906 | 173 | 41 | 0 | 0 | 0 | 0 |
| 1977 | 255761 | 103704 | 79261 | 33532 | 9306 | 128 | 0 | 0 | 0 | 0 |
| 1978 | 225995 | 153328 | 27264 | 10750 | 1241 | 569 | 0 | 0 | 0 | 0 |
| 1979 | 288919 | 213941 | 56952 | 18404 | 586 | 307 | 0 | 0 | 0 | 0 |
| 1980 | 220311 | 119566 | 918 | 677 | 191 | 84 | 0 | 0 | 0 | 0 |
| 1981 | 120691 | 185063 | 1826 | 365 | 425 | 54 | 0 | 0 | 0 | 0 |
| 1982 | 372053 | 178365 | 4577 | 1094 | 209 | 95 | 0 | 0 | 0 | 0 |
| 1983 | 238334 | 387065 | 17343 | 2210 | 798 | 67 | 0 | 0 | 0 | 0 |
| 1984 | 290686 | 285671 | 30704 | 19127 | 1485 | 67 | 0 | 0 | 0 | 0 |
| 1985 | 392924 | 221441 | 30469 | 2231 | 200 | 76 | 0 | 0 | 0 | 0 |
| 1986 | 1068293 | 486357 | 48488 | 26159 | 1456 | 147 | 0 | 0 | 0 | 0 |
| 1987 | 344214 | 1325536 | 182074 | 1401 | 1341 | 250 | 0 | 0 | 0 | 0 |
| 1988 | 336872 | 570632 | 426086 | 59753 | 870 | 174 | 0 | 0 | 0 | 0 |
| 1989 | 218710 | 462136 | 172810 | 68397 | 7213 | 110 | 0 | 0 | 0 | 0 |
| 1990 | 153263 | 293070 | 163305 | 22076 | 5083 | 176 | 0 | 0 | 0 | 0 |
| 1991 | 200351 | 334308 | 161291 | 44103 | 5628 | 971 | 0 | 0 | 0 | 0 |
| 1992 | 154860 | 248825 | 113346 | 44545 | 4341 | 903 | 0 | 0 | 0 | 0 |
| 1993 | 95581 | 169687 | 56626 | 16021 | 1621 | 222 | 0 | 0 | 0 | 0 |
| 1994 | 64812 | 91066 | 41284 | 1022 | 825 | 140 | 0 | 0 | 0 | 0 |
| 1995 | 54293 | 82406 | 8357 | 838 | 655 | 121 | 0 | 0 | 0 | 0 |
| 1996 | 34857 | 143018 | 29276 | 1201 | 440 | 113 | 0 | 0 | 0 | 0 |
| 1997 | 95494 | 133076 | 52271 | 528 | 280 | 100 | 0 | 0 | 0 | 0 |
| 1998 | 74274 | 453963 | 12530 | 666 | 270 | 36 | 0 | 0 | 0 | 0 |
| 1999 | 66335 | 180104 | 187738 | 284 | 403 | 42 | 0 | 0 | 0 | 0 |
| 2000 | 87252 | 140715 | 84741 | 11263 | 97 | 52 | 0 | 0 | 0 | 0 |
| 2001 | 100756 | 146840 | 69350 | 30562 | 11475 | 38 | 0 | 0 | 0 | 0 |
| 2002 | 235284 | 102090 | 49242 | 14966 | 3854 | 591 | 0 | 0 | 0 | 0 |
| 2003 | 159600 | 312600 | 11748 | 268 | 1771 | 454 | 0 | 0 | 0 | 0 |

Table 9.2.8. North Sea plaice. Catch weights at age in the discards (1957-1998 is reconstructed, 1999-2003 is observed).

| reconstructed | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1957 | 0.047 | 0.102 | 0.148 | 0.179 | 0.203 | 0.231 | 0.244 | 0.231 |  |  |
| 1958 | 0.050 | 0.094 | 0.159 | 0.186 | 0.197 | 0.244 | 0.244 | 0.244 |  |  |
| 1959 | 0.054 | 0.105 | 0.156 | 0.184 | 0.193 | 0.231 |  |  |  |  |
| 1960 | 0.047 | 0.110 | 0.160 | 0.186 | 0.199 | 0.210 | 0.231 |  |  |  |
| 1961 | 0.046 | 0.098 | 0.161 | 0.192 | 0.199 | 0.212 | 0.211 | 0.244 |  |  |
| 1962 | 0.045 | 0.096 | 0.156 | 0.191 | 0.211 | 0.219 | 0.219 | 0.220 |  |  |
| 1963 | 0.050 | 0.103 | 0.157 | 0.186 | 0.203 | 0.231 | 0.220 | 0.231 |  |  |
| 1964 | 0.034 | 0.112 | 0.161 | 0.191 | 0.199 | 0.219 | 0.231 | 0.231 |  |  |
| 1965 | 0.040 | 0.071 | 0.166 | 0.190 | 0.205 | 0.220 | 0.220 | 0.244 |  |  |
| 1966 | 0.040 | 0.099 | 0.128 | 0.192 | 0.203 | 0.231 | 0.220 | 0.231 |  |  |
| 1967 | 0.038 | 0.103 | 0.158 | 0.168 | 0.211 | 0.212 | 0.231 | 0.231 |  |  |
| 1968 | 0.063 | 0.094 | 0.157 | 0.189 | 0.189 | 0.244 | 0.211 | 0.244 |  |  |
| 1969 | 0.055 | 0.143 | 0.162 | 0.185 | 0.205 | 0.210 | 0.244 | 0.220 |  |  |
| 1970 | 0.056 | 0.114 | 0.179 | 0.186 | 0.192 | 0.244 | 0.212 | 0.231 |  |  |
| 1971 | 0.059 | 0.109 | 0.183 | 0.198 | 0.210 |  |  | 0.231 |  |  |
| 1972 | 0.064 | 0.144 | 0.174 | 0.205 | 0.204 | 0.244 |  |  |  |  |
| 1973 | 0.045 | 0.127 | 0.179 | 0.193 | 0.204 | 0.231 | 0.244 |  |  |  |
| 1974 | 0.057 | 0.105 | 0.174 | 0.210 | 0.211 | 0.231 | 0.244 |  |  |  |
| 1975 | 0.070 | 0.134 | 0.163 | 0.204 | 0.220 | 0.244 | 0.231 |  |  |  |
| 1976 | 0.088 | 0.150 | 0.176 | 0.192 | 0.219 | 0.244 | 0.244 | 0.244 |  |  |
| 1977 | 0.071 | 0.157 | 0.186 | 0.193 | 0.195 | 0.211 |  |  |  |  |
| 1978 | 0.072 | 0.140 | 0.196 | 0.203 | 0.205 | 0.211 | 0.220 |  |  |  |
| 1979 | 0.069 | 0.155 | 0.184 | 0.202 | 0.219 | 0.231 | 0.219 | 0.231 |  |  |
| 1980 | 0.057 | 0.146 | 0.190 | 0.211 | 0.220 | 0.244 | 0.244 |  |  |  |
| 1981 | 0.050 | 0.132 | 0.180 | 0.210 | 0.219 | 0.244 |  |  |  |  |
| 1982 | 0.057 | 0.124 | 0.182 | 0.198 | 0.231 | 0.231 | 0.244 |  |  |  |
| 1983 | 0.054 | 0.123 | 0.180 | 0.203 | 0.204 | 0.244 | 0.244 |  |  |  |
| 1984 | 0.055 | 0.124 | 0.173 | 0.210 | 0.203 |  | 0.244 |  |  |  |
| 1985 | 0.056 | 0.137 | 0.177 | 0.193 | 0.231 | 0.244 |  |  |  |  |
| 1986 | 0.051 | 0.122 | 0.180 | 0.192 | 0.211 | 0.244 | 0.231 |  |  |  |
| 1987 | 0.044 | 0.104 | 0.166 | 0.202 | 0.210 | 0.231 |  |  |  |  |
| 1988 | 0.045 | 0.097 | 0.155 | 0.184 | 0.211 | 0.231 |  |  |  |  |
| 1989 | 0.048 | 0.101 | 0.163 | 0.180 | 0.192 | 0.244 | 0.244 |  |  |  |
| 1990 | 0.054 | 0.112 | 0.160 | 0.184 | 0.205 | 0.231 |  |  |  |  |
| 1991 | 0.058 | 0.130 | 0.162 | 0.184 | 0.198 | 0.219 | 0.220 | 0.220 |  |  |
| 1992 | 0.055 | 0.124 | 0.168 | 0.186 | 0.199 | 0.205 | 0.220 | 0.231 |  |  |
| 1993 | 0.060 | 0.119 | 0.172 | 0.196 | 0.205 | 0.231 | 0.231 | 0.244 |  |  |
| 1994 | 0.062 | 0.141 | 0.175 | 0.192 | 0.211 | 0.231 | 0.244 | 0.220 |  |  |
| 1995 | 0.061 | 0.140 | 0.186 | 0.198 | 0.212 | 0.231 | 0.231 | 0.244 |  |  |
| 1996 | 0.053 | 0.122 | 0.178 | 0.203 | 0.219 | 0.231 |  | 0.244 |  |  |
| 1997 | 0.042 | 0.118 | 0.160 | 0.202 | 0.220 | 0.244 |  |  |  |  |
| 1998 | 0.049 | 0.086 | 0.168 | 0.196 | 0.211 |  | 0.244 |  |  |  |
| 1999 | 0.055 | 0.096 | 0.145 | 0.193 | 0.211 | 0.244 |  |  |  |  |
| 2000 | 0.061 | 0.109 | 0.152 | 0.173 | 0.231 |  | 0.197 |  |  |  |
| 2001 | 0.070 | 0.122 | 0.168 | 0.176 | 0.193 | 0.231 |  | 0.231 |  |  |
| 2002 | 0.058 | 0.119 | 0.172 | 0.191 | 0.196 | 0.211 |  |  |  |  |
| 2003 | 0.069 | 0.114 | 0.174 | 0.184 | 0.198 | 0.204 | 0.219 | 0.178 |  |  |
| observed | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1999 | 0.057 | 0.109 | 0.148 | 0.173 | 0.163 | 0.154 |  | 0.223 | 0.176 | 0.267 |
| 2000 | 0.044 | 0.079 | 0.104 | 0.136 | 0.298 | 0.315 | 0.358 | 0.305 | 0.478 | 0.392 |
| 2001 | 0.018 | 0.066 | 0.126 | 0.126 | 0.136 | 0.200 | 0.218 | 0.218 |  |  |
| 2002 | 0.070 | 0.085 | 0.117 | 0.168 | 0.189 | 0.225 | 0.197 | 0.196 | 0.196 | 0.196 |
| 2003 | 0.045 | 0.073 | 0.130 | 0.124 | 0.162 | 0.191 | 0.181 |  |  |  |

Table 9.2.9. North Sea plaice. Stock weights at age derived from first quarter landing weights at age.

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1957 | 0.141 | 0.200 | 0.268 | 0.238 | 0.325 | 0.485 | 0.719 | 0.682 | 0.844 | 0.918 | 1.137 | 1.182 | 1.385 | 1.480 | 1.585 |
| 1958 | 0.141 | 0.200 | 0.197 | 0.226 | 0.303 | 0.442 | 0.577 | 0.778 | 0.793 | 0.945 | 1.081 | 0.785 | 1.042 | 1.615 | 2.159 |
| 1959 | 0.141 | 0.146 | 0.194 | 0.240 | 0.329 | 0.470 | 0.650 | 0.686 | 0.908 | 0.897 | 0.901 | 1.138 | 1.410 | 0.945 | 1.340 |
| 1960 | 0.141 | 0.190 | 0.208 | 0.240 | 0.364 | 0.469 | 0.633 | 0.726 | 0.845 | 0.918 | 0.975 | 1.126 | 1.148 | 1.373 | 1.522 |
| 1961 | 0.141 | 0.126 | 0.202 | 0.254 | 0.337 | 0.483 | 0.579 | 0.691 | 0.779 | 0.911 | 0.947 | 1.079 | 1.184 | 1.186 | 1.424 |
| 1962 | 0.141 | 0.187 | 0.258 | 0.306 | 0.424 | 0.573 | 0.684 | 0.806 | 0.873 | 1.335 | 1.074 | 1.240 | 1.141 | 1.800 | 1.619 |
| 1963 | 0.141 | 0.200 | 0.232 | 0.290 | 0.378 | 0.540 | 0.663 | 0.788 | 0.882 | 0.961 | 1.097 | 1.261 | 1.246 | 1.403 | 1.678 |
| 1964 | 0.141 | 0.200 | 0.228 | 0.276 | 0.373 | 0.477 | 0.645 | 0.673 | 0.845 | 0.973 | 0.999 | 1.255 | 1.201 | 1.620 | 1.460 |
| 1965 | 0.141 | 0.200 | 0.246 | 0.274 | 0.333 | 0.430 | 0.516 | 0.601 | 0.722 | 0.578 | 0.790 | 0.843 | 1.072 | 0.721 | 1.234 |
| 1966 | 0.141 | 0.200 | 0.243 | 0.301 | 0.403 | 0.455 | 0.503 | 0.565 | 0.581 | 0.848 | 0.949 | 0.704 | 1.052 | 1.056 | 1.216 |
| 1967 | 0.141 | 0.203 | 0.246 | 0.281 | 0.442 | 0.528 | 0.585 | 0.650 | 0.703 | 0.833 | 0.907 | 1.007 | 0.898 | 0.976 | 1.221 |
| 1968 | 0.141 | 0.200 | 0.265 | 0.301 | 0.344 | 0.532 | 0.592 | 0.362 | 0.667 | 0.746 | 0.791 | 0.919 | 0.810 | 0.938 | 1.170 |
| 1969 | 0.175 | 0.203 | 0.258 | 0.297 | 0.344 | 0.390 | 0.565 | 0.621 | 0.679 | 0.635 | 0.772 | 0.741 | 0.995 | 0.907 | 1.179 |
| 1970 | 0.175 | 0.250 | 0.261 | 0.311 | 0.369 | 0.410 | 0.468 | 0.636 | 0.732 | 0.747 | 0.771 | 0.898 | 0.839 | 1.155 | 1.175 |
| 1971 | 0.175 | 0.248 | 0.305 | 0.363 | 0.413 | 0.489 | 0.512 | 0.583 | 0.696 | 0.707 | 0.817 | 0.847 | 0.941 | 0.936 | 1.102 |
| 1972 | 0.175 | 0.274 | 0.321 | 0.401 | 0.473 | 0.534 | 0.579 | 0.606 | 0.655 | 0.759 | 0.815 | 0.869 | 0.849 | 0.971 | 1.237 |
| 1973 | 0.175 | 0.264 | 0.322 | 0.380 | 0.468 | 0.521 | 0.566 | 0.583 | 0.617 | 0.690 | 0.926 | 0.899 | 0.961 | 0.977 | 0.998 |
| 1974 | 0.170 | 0.234 | 0.304 | 0.375 | 0.437 | 0.524 | 0.570 | 0.629 | 0.652 | 0.690 | 0.774 | 0.932 | 1.017 | 0.962 | 1.113 |
| 1975 | 0.170 | 0.275 | 0.294 | 0.417 | 0.483 | 0.544 | 0.610 | 0.668 | 0.704 | 0.762 | 0.830 | 0.886 | 0.874 | 1.070 | 1.217 |
| 1976 | 0.170 | 0.217 | 0.281 | 0.332 | 0.484 | 0.550 | 0.593 | 0.658 | 0.694 | 0.743 | 0.784 | 0.875 | 0.972 | 1.158 | 1.107 |
| 1977 | 0.160 | 0.250 | 0.309 | 0.364 | 0.405 | 0.551 | 0.627 | 0.690 | 0.667 | 0.759 | 0.818 | 0.909 | 0.838 | 1.055 | 1.116 |
| 1978 | 0.150 | 0.242 | 0.336 | 0.367 | 0.411 | 0.467 | 0.547 | 0.630 | 0.704 | 0.773 | 0.848 | 0.939 | 0.959 | 1.024 | 1.119 |
| 1979 | 0.150 | 0.243 | 0.303 | 0.363 | 0.414 | 0.459 | 0.543 | 0.667 | 0.764 | 0.826 | 0.894 | 0.880 | 1.127 | 1.041 | 1.255 |
| 1980 | 0.150 | 0.229 | 0.307 | 0.372 | 0.444 | 0.524 | 0.582 | 0.651 | 0.778 | 1.025 | 0.947 | 0.838 | 1.209 | 1.194 | 1.310 |
| 1981 | 0.150 | 0.250 | 0.282 | 0.378 | 0.473 | 0.536 | 0.570 | 0.624 | 0.707 | 0.849 | 0.910 | 0.866 | 1.114 | 1.218 | 1.324 |
| 1982 | 0.150 | 0.242 | 0.265 | 0.381 | 0.490 | 0.589 | 0.631 | 0.679 | 0.726 | 0.828 | 0.981 | 1.066 | 1.182 | 0.897 | 1.197 |
| 1983 | 0.150 | 0.211 | 0.248 | 0.329 | 0.494 | 0.559 | 0.624 | 0.712 | 0.754 | 0.791 | 0.824 | 1.011 | 1.130 | 1.257 | 1.124 |
| 1984 | 0.150 | 0.203 | 0.242 | 0.338 | 0.464 | 0.571 | 0.649 | 0.692 | 0.787 | 0.898 | 0.932 | 1.042 | 1.235 | 1.127 | 1.235 |
| 1985 | 0.150 | 0.208 | 0.243 | 0.310 | 0.452 | 0.536 | 0.635 | 0.656 | 0.764 | 0.869 | 0.955 | 0.906 | 1.068 | 1.108 | 1.308 |
| 1986 | 0.150 | 0.195 | 0.253 | 0.336 | 0.440 | 0.533 | 0.692 | 0.779 | 0.888 | 0.971 | 0.953 | 1.107 | 1.153 | 1.126 | 1.354 |
| 1987 | 0.150 | 0.194 | 0.265 | 0.330 | 0.401 | 0.503 | 0.573 | 0.711 | 0.747 | 0.817 | 1.009 | 1.018 | 1.019 | 1.214 | 1.114 |
| 1988 | 0.150 | 0.212 | 0.238 | 0.315 | 0.426 | 0.467 | 0.547 | 0.644 | 0.706 | 0.897 | 0.937 | 1.009 | 1.065 | 1.135 | 0.972 |
| 1989 | 0.150 | 0.215 | 0.248 | 0.282 | 0.362 | 0.484 | 0.553 | 0.616 | 0.759 | 0.837 | 0.791 | 0.968 | 1.215 | 0.899 | 0.857 |
| 1990 | 0.150 | 0.245 | 0.272 | 0.281 | 0.342 | 0.421 | 0.555 | 0.648 | 0.713 | 0.769 | 1.051 | 1.154 | 1.022 | 1.090 | 1.084 |
| 1991 | 0.131 | 0.208 | 0.263 | 0.275 | 0.340 | 0.400 | 0.463 | 0.640 | 0.658 | 0.762 | 0.855 | 0.990 | 0.982 | 0.860 | 0.928 |
| 1992 | 0.131 | 0.262 | 0.266 | 0.300 | 0.316 | 0.402 | 0.501 | 0.575 | 0.696 | 0.751 | 0.844 | 0.886 | 0.998 | 0.859 | 1.078 |
| 1993 | 0.131 | 0.257 | 0.264 | 0.301 | 0.328 | 0.391 | 0.491 | 0.595 | 0.646 | 0.737 | 0.805 | 0.942 | 0.866 | 0.912 | 1.101 |
| 1994 | 0.131 | 0.222 | 0.249 | 0.302 | 0.366 | 0.410 | 0.467 | 0.548 | 0.679 | 0.752 | 0.912 | 0.961 | 1.027 | 0.846 | 1.020 |
| 1995 | 0.124 | 0.245 | 0.265 | 0.311 | 0.401 | 0.451 | 0.520 | 0.607 | 0.705 | 0.836 | 0.739 | 0.885 | 0.827 | 0.913 | 1.128 |
| 1996 | 0.124 | 0.245 | 0.282 | 0.329 | 0.390 | 0.464 | 0.490 | 0.572 | 0.689 | 0.845 | 0.906 | 0.973 | 0.900 | 0.781 | 0.870 |
| 1997 | 0.124 | 0.217 | 0.254 | 0.342 | 0.442 | 0.491 | 0.563 | 0.586 | 0.684 | 0.771 | 0.913 | 0.865 | 0.898 | 1.287 | 1.052 |
| 1998 | 0.124 | 0.205 | 0.269 | 0.362 | 0.471 | 0.578 | 0.588 | 0.657 | 0.676 | 0.709 | 1.004 | 1.092 | 0.788 | 1.175 | 0.829 |
| 1999 | 0.124 | 0.211 | 0.251 | 0.346 | 0.436 | 0.524 | 0.591 | 0.680 | 0.696 | 0.639 | 0.764 | 0.898 | 1.185 | 0.839 | 1.102 |
| 2000 | 0.124 | 0.224 | 0.236 | 0.290 | 0.409 | 0.468 | 0.687 | 0.742 | 0.707 | 0.864 | 0.872 | 0.744 | 0.818 | 1.082 | 1.081 |
| 2001 | 0.124 | 0.213 | 0.247 | 0.273 | 0.331 | 0.452 | 0.560 | 0.641 | 0.798 | 0.816 | 0.805 | 0.698 | 0.784 | 0.811 | 0.986 |
| 2002 | 0.124 | 0.223 | 0.252 | 0.297 | 0.344 | 0.433 | 0.463 | 0.650 | 0.709 | 0.805 | 0.961 | 0.917 | 0.996 | 0.931 | 0.812 |
| 2003 | 0.124 | 0.214 | 0.240 | 0.291 | 0.344 | 0.391 | 0.464 | 0.600 | 0.714 | 0.960 | 0.774 | 0.679 | 1.261 | 0.522 | 0.783 |

Table 9.2.10. North Sea plaice. Stock weights at ages 1-4 derived from survey samples.

|  | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1957 | 0.040 | 0.100 | 0.162 | 0.247 |
| 1958 | 0.043 | 0.091 | 0.185 | 0.278 |
| 1959 | 0.047 | 0.103 | 0.178 | 0.270 |
| 1960 | 0.040 | 0.108 | 0.187 | 0.278 |
| 1961 | 0.039 | 0.095 | 0.190 | 0.312 |
| 1962 | 0.037 | 0.094 | 0.178 | 0.307 |
| 1963 | 0.043 | 0.101 | 0.181 | 0.279 |
| 1964 | 0.026 | 0.111 | 0.189 | 0.302 |
| 1965 | 0.033 | 0.066 | 0.204 | 0.301 |
| 1966 | 0.033 | 0.097 | 0.130 | 0.312 |
| 1967 | 0.030 | 0.101 | 0.184 | 0.209 |
| 1968 | 0.057 | 0.092 | 0.180 | 0.293 |
| 1969 | 0.049 | 0.154 | 0.193 | 0.271 |
| 1970 | 0.049 | 0.113 | 0.246 | 0.279 |
| 1971 | 0.053 | 0.107 | 0.262 | 0.352 |
| 1972 | 0.058 | 0.155 | 0.227 | 0.412 |
| 1973 | 0.038 | 0.130 | 0.245 | 0.319 |
| 1974 | 0.051 | 0.103 | 0.227 | 0.425 |
| 1975 | 0.066 | 0.139 | 0.195 | 0.397 |
| 1976 | 0.085 | 0.166 | 0.236 | 0.314 |
| 1977 | 0.067 | 0.180 | 0.277 | 0.318 |
| 1978 | 0.067 | 0.148 | 0.333 | 0.382 |
| 1979 | 0.064 | 0.175 | 0.269 | 0.373 |
| 1980 | 0.051 | 0.160 | 0.302 | 0.438 |
| 1981 | 0.043 | 0.137 | 0.249 | 0.431 |
| 1982 | 0.050 | 0.126 | 0.261 | 0.359 |
| 1983 | 0.047 | 0.125 | 0.253 | 0.389 |
| 1984 | 0.050 | 0.127 | 0.225 | 0.422 |
| 1985 | 0.050 | 0.145 | 0.239 | 0.325 |
| 1986 | 0.045 | 0.125 | 0.254 | 0.316 |
| 1987 | 0.037 | 0.103 | 0.205 | 0.382 |
| 1988 | 0.038 | 0.096 | 0.178 | 0.270 |
| 1989 | 0.041 | 0.100 | 0.198 | 0.250 |
| 1990 | 0.046 | 0.109 | 0.186 | 0.268 |
| 1991 | 0.051 | 0.132 | 0.192 | 0.268 |
| 1992 | 0.048 | 0.123 | 0.205 | 0.274 |
| 1993 | 0.053 | 0.117 | 0.215 | 0.326 |
| 1994 | 0.055 | 0.143 | 0.221 | 0.296 |
| 1995 | 0.052 | 0.141 | 0.262 | 0.341 |
| 1996 | 0.044 | 0.117 | 0.235 | 0.374 |
| 1997 | 0.033 | 0.116 | 0.188 | 0.374 |
| 1998 | 0.040 | 0.080 | 0.207 | 0.337 |
| 1999 | 0.045 | 0.090 | 0.154 | 0.320 |
| 2000 | 0.052 | 0.106 | 0.170 | 0.223 |
| 2001 | 0.063 | 0.121 | 0.208 | 0.237 |
| 2002 | 0.049 | 0.118 | 0.220 | 0.305 |
| 2003 | 0.062 | 0.112 | 0.228 | 0.269 |

Table 9.3.1. North Sea plaice: effort and CPUE trends for the NL and UK commercial fleets

|  | Effort |  | CPUE |  |
| :---: | :---: | :---: | :---: | :---: |
|  | NL beam-trawlers | English beamtrawlers | NL beam-trawlers | UK beam-trawlers |
| Year | HP days * 100000 | HP days *million |  |  |
| 1979 | 44.3 |  | 1693 |  |
| 1980 | 45 |  | 1729 |  |
| 1981 | 46.3 |  | 1853 |  |
| 1982 | 57.3 |  | 1707 |  |
| 1983 | 65.6 |  | 1441 |  |
| 1984 | 70.8 |  | 1439 |  |
| 1985 | 70.3 |  | 1511 |  |
| 1986 | 68.2 |  | 1651 |  |
| 1987 | 68.4 |  | 1440 |  |
| 1988 | 76.2 |  | 1194 |  |
| 1989 | 72.5 |  | 1379 |  |
| 1990 | 71.1 | 102.3 | 1104 | 86 |
| 1991 | 68.5 | 123.6 | 1022 | 70 |
| 1992 | 71.1 | 151.5 | 745 | 59 |
| 1993 | 76.9 | 146.6 | 656 | 51 |
| 1994 | 81.4 | 131.4 | 626 | 47 |
| 1995 | 81.2 | 105.0 | 565 | 49 |
| 1996 | 72.1 | 82.9 | 510 | 46 |
| 1997 | 72 | 76.3 | 492 | 55 |
| 1998 | 70.3 | 68.8 | 451 | 55 |
| 1999 | 67.3 | 68.6 | 577 | 45 |
| 2000 | 67.7 (1) | 57.8 | 536 | 68 (2) |
| 2001 | 61.4 (3) | 54.1 | 550 | 61 |

(1) Updated at ACFM meeting october 2001
(2) Revised 2002
(3) Provisional

Table 9.3.2. North Sea plaice. Commercial tuning fleets (not used in the final assessment)

| Plaice | in | the | North | Sea | (Area | IV) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 106 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NL | Beam | Trawl |  |  |  |  |  |  |  |  |  |  |  |  |
| 1989 | 2003 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 9 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 72.5 | 40443 | 73696 | 131915 | 23064 | 9634 | 5240 | 2715 | 947 |  |  |  |  |  |  |
| 71.1 | 21956 | 60038 | 49862 | 76521 | 12187 | 3682 | 1790 | 1161 |  |  |  |  |  |  |
| 68.5 | 27501 | 42376 | 53152 | 30697 | 34092 | 6879 | 1954 | 1137 |  |  |  |  |  |  |
| 71.1 | 24271 | 44306 | 31854 | 27165 | 12219 | 9485 | 2464 | 993 |  |  |  |  |  |  |
| 76.9 | 27552 | 46536 | 31333 | 19705 | 10984 | 6040 | 3611 | 1025 |  |  |  |  |  |  |
| 81.4 | 30194 | 48106 | 35901 | 15371 | 7938 | 6174 | 2866 | 1929 |  |  |  |  |  |  |
| 81.2 | 22519 | 43505 | 33883 | 14453 | 6575 | 3418 | 1549 | 931 |  |  |  |  |  |  |
| 72.1 | 26600 | 27628 | 20922 | 13980 | 5313 | 3644 | 1366 | 944 |  |  |  |  |  |  |
| 72 | 23098 | 45655 | 18156 | 6884 | 4337 | 2016 | 975 | 460 |  |  |  |  |  |  |
| 70.3 | 15288 | 32486 | 26751 | 6389 | 2290 | 1359 | 669 | 314 |  |  |  |  |  |  |
| 67.3 | 4341 | 76295 | 18251 | 11058 | 2999 | 998 | 833 | 506 |  |  |  |  |  |  |
| 67.7 | 8973 | 16995 | 72228 | 5789 | 3880 | 735 | 336 | 214 |  |  |  |  |  |  |
| 61.4 | 16227 | 22535 | 19715 | 40807 | 2745 | 1759 | 390 | 196 |  |  |  |  |  |  |
| 56.6 | 10034 | 32616 | 21690 | 14223 | 16567 | 1048 | 565 | 156 |  |  |  |  |  |  |
| 51.6 | 19234 | 19957 | 20943 | 9620 | 5354 | 6659 | 311 | 259 |  |  |  |  |  |  |
| UK | Beam | Trawl |  |  |  |  |  |  |  |  |  |  |  |  |
| 1990 | 2002 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |  |  |  |
| 4 | 12 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 102.3 | 2764 | 9488 | 1786 | 1133 | 722 | 842 | 251 | 170 | 98 |  |  |  |  |  |
| 123.6 | 2711 | 3538 | 6599 | 1325 | 837 | 427 | 610 | 226 | 183 |  |  |  |  |  |
| 151.5 | 2909 | 4446 | 2787 | 3674 | 968 | 558 | 485 | 497 | 166 |  |  |  |  |  |
| 146.6 | 3436 | 3060 | 2530 | 923 | 1876 | 635 | 400 | 357 | 255 |  |  |  |  |  |
| 131.4 | 3038 | 2890 | 1772 | 1252 | 593 | 850 | 431 | 189 | 160 |  |  |  |  |  |
| 105 | 3574 | 1657 | 1475 | 1020 | 620 | 332 | 378 | 287 | 143 |  |  |  |  |  |
| 82.9 | 1105 | 1579 | 890 | 836 | 543 | 388 | 207 | 274 | 163 |  |  |  |  |  |
| 76.3 | 1253 | 844 | 1066 | 599 | 686 | 505 | 211 | 148 | 229 |  |  |  |  |  |
| 68.8 | 1623 | 892 | 617 | 598 | 347 | 415 | 317 | 134 | 110 |  |  |  |  |  |
| 68.6 | 1011 | 1045 | 457 | 327 | 367 | 258 | 224 | 193 | 98 |  |  |  |  |  |
| 57.8 | 3655 | 865 | 575 | 255 | 141 | 201 | 108 | 103 | 146 |  |  |  |  |  |
| 54.1 | 794 | 2436 | 481 | 336 | 134 | 93 | 112 | 49 | 91 |  |  |  |  |  |
| 30.6 | 716 | 637 | 906 | 157 | 126 | 43 | 53 | 46 | 41 |  |  |  |  |  |
| NL | Flag |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1991 | 2003 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 15 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 96 | 43 | 472 | 735 | 546 | 770 | 159 | 64 | 35 | 17 | 8 | 4 | 2 | 1 | 4 |
| 166 | 367 | 1251 | 1103 | 1021 | 571 | 537 | 134 | 67 | 31 | 19 | 15 | 7 | 6 | 8 |
| 211 | 173 | 1351 | 1505 | 1124 | 727 | 427 | 294 | 94 | 51 | 25 | 20 | 14 | 5 | 7 |
| 194 | 297 | 1047 | 1569 | 806 | 486 | 390 | 192 | 138 | 53 | 19 | 9 | 5 | 5 | 4 |
| 219 | 389 | 1486 | 1549 | 819 | 358 | 214 | 118 | 71 | 45 | 17 | 7 | 3 | 2 | 2 |
| 152 | 269 | 855 | 1013 | 821 | 353 | 243 | 101 | 74 | 42 | 29 | 9 | 3 | 3 | 3 |
| 155 | 207 | 1542 | 1166 | 510 | 357 | 199 | 95 | 48 | 26 | 18 | 10 | 4 | 2 | 5 |
| 207 | 128 | 1335 | 2042 | 653 | 342 | 176 | 97 | 41 | 22 | 17 | 15 | 6 | 4 | 3 |
| 275 | 0 | 1785 | 1319 | 1153 | 302 | 119 | 95 | 58 | 38 | 13 | 17 | 9 | 9 | 4 |
| 272 | 148 | 817 | 5612 | 625 | 430 | 79 | 42 | 23 | 14 | 7 | 5 | 5 | 2 | 5 |
| 353 | 542 | 1284 | 1680 | 4857 | 377 | 288 | 63 | 36 | 28 | 12 | 22 | 6 | 1 | 13 |
| 253 | 271 | 2117 | 2007 | 1561 | 2236 | 134 | 81 | 25 | 6 | 20 | 2 | 4 | 4 | 11 |
| 246 | 369 | 1184 | 2002 | 1058 | 682 | 929 | 37 | 42 | 13 | 4 | 29 | 0 | 7 | 11 |

Table 9.3.3. North Sea plaice. Surveys tuning fleets (all used in the final assessment).

| $\begin{gathered} \text { Plaice } \\ 103 \end{gathered}$ | in | the | North | Sea | (Area | IV) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BTS |  |  |  |  |  |  |  |  |  |  |
|  | 1985 | 2003 |  |  |  |  |  |  |  |  |
|  | 1 | 1 | 0.66 | 0.75 |  |  |  |  |  |  |
|  | 1 | 9 |  |  |  |  |  |  |  |  |
| 1 | 115.577 | 179.898 | 38.813 | 11.843 | 1.371 | 1.048 | 0.362 | 0.167 | 0.098 | 0.246 |
| 1 | 660.199 | 131.772 | 51.003 | 8.886 | 3.285 | 0.428 | 0.338 | 0.129 | 0.038 | 0.211 |
| 1 | 225.822 | 764.285 | 33.065 | 4.773 | 2.039 | 1.017 | 0.352 | 0.087 | 0.072 | 0.314 |
| 1 | 577.319 | 140.105 | 173.719 | 9.241 | 2.594 | 0.775 | 0.421 | 0.036 | 0.115 | 0.22 |
| 1 | 428.699 | 319.272 | 38.66 | 47.305 | 5.85 | 0.822 | 0.289 | 0.661 | 0.144 | 0.096 |
| 1 | 112.063 | 102.639 | 55.674 | 22.78 | 5.572 | 0.801 | 0.205 | 0.379 | 0.261 | 0.165 |
| 1 | 185.442 | 122.051 | 28.553 | 11.86 | 4.264 | 5.691 | 0.259 | 0.231 | 0.118 | 0.102 |
| 1 | 171.538 | 125.93 | 27.314 | 5.62 | 3.184 | 2.662 | 1.136 | 0.259 | 0.053 | 0.091 |
| 1 | 124.762 | 179.103 | 38.399 | 6.116 | 0.931 | 0.812 | 0.636 | 0.444 | 0.173 | 0.085 |
| 1 | 145.212 | 64.217 | 35.242 | 10.875 | 2.857 | 0.638 | 0.861 | 0.957 | 0.401 | 0.032 |
| 1 | 252.168 | 43.622 | 14.235 | 8.106 | 1.195 | 0.868 | 0.357 | 1.135 | 0.223 | 0.119 |
| 1 | 218.284 | 212.134 | 22.882 | 4.834 | 3.717 | 0.919 | 0.047 | 0.173 | 0.131 | 0.118 |
| 1 | -11 | -11 | 19.914 | 2.788 | 0.219 | 0.39 | 0.171 | 0.121 | 0 | 0.034 |
| 1 | 338.198 | 436.197 | 47.413 | 8.906 | 1.44 | 0.755 | 0.145 | 0.078 | 0.105 | 0.087 |
| 1 | 305.874 | 130.001 | 182.54 | 3.656 | 2.109 | 0.137 | 0.139 | 0.029 | 0.032 | 0.085 |
| 1 | 278.776 | 75.219 | 31.594 | 24.21 | 0.613 | 0.174 | 0.539 | 0.029 | 0.019 | 0.055 |
| 1 | 225.784 | 78.903 | 19.557 | 10.049 | 9.525 | 0.294 | 0.15 | 0.041 | 0.043 | 0.192 |
| 1 | 568.654 | 45.463 | 15.365 | 5.501 | 2.683 | 1.427 | 0.083 | 0.14 | 0 | 0.113 |
| 1 | 125.505 | 170.076 | 10.784 | 5.941 | 1.525 | 1.214 | 0.684 | 0.112 | 0.101 | 0.022 |
| SNS |  |  |  |  |  |  |  |  |  |  |
| 1982 | 2002 |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0.66 | 0.75 |  |  |  |  |  |  |  |
| 1 | 3 |  |  |  |  |  |  |  |  |  |
| 1 | 70108 | 8503 | 1146 |  |  |  |  |  |  |  |
| 1 | 34884 | 14708 | 308 |  |  |  |  |  |  |  |
| 1 | 44667 | 10413 | 2480 |  |  |  |  |  |  |  |
| 1 | 27832 | 13789 | 1584 |  |  |  |  |  |  |  |
| 1 | 93573 | 7558 | 1155 |  |  |  |  |  |  |  |
| 1 | 33426 | 33021 | 1232 |  |  |  |  |  |  |  |
| 1 | 36672 | 14430 | 13140 |  |  |  |  |  |  |  |
| 1 | 37238 | 14952 | 3709 |  |  |  |  |  |  |  |
| 1 | 24903 | 7287 | 3248 |  |  |  |  |  |  |  |
| 1 | 57349 | 11149 | 1507 |  |  |  |  |  |  |  |
| 1 | 48223 | 13742 | 2257 |  |  |  |  |  |  |  |
| 1 | 22184 | 9484 | 988 |  |  |  |  |  |  |  |
| 1 | 18225 | 4866 | 884 |  |  |  |  |  |  |  |
| 1 | 24900 | 2786 | 415 |  |  |  |  |  |  |  |
| 1 | 24663 | 10377 | 1189 |  |  |  |  |  |  |  |
| 1 | -11 | -11 | 1393 |  |  |  |  |  |  |  |
| 1 | 33391 | 29431 | 5739 |  |  |  |  |  |  |  |
| 1 | 35188 | 9235 | 14347 |  |  |  |  |  |  |  |
| 1 | 23028 | 2489 | 905 |  |  |  |  |  |  |  |
| 1 | 10193 | 2416 | 356 |  |  |  |  |  |  |  |
| 1 | 30265 | 1047 | 264 |  |  |  |  |  |  |  |
| BTS | Tridens |  |  |  |  |  |  |  |  |  |
| 1996 | 2003 |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0.66 | 0.75 |  |  |  |  |  |  |  |
| 2 | 9 |  |  |  |  |  |  |  |  |  |
| 1 | 5.576 | 4.39 | 3.307 | 2.388 | 1.841 | 0.83 | 0.479 | 0.177 | 0.495 |  |
| 1 | -11 | 10.355 | 3.96 | 2.837 | 1.927 | 0.463 | 1.123 | 0.447 | 0.59 |  |
| 1 | 30.786 | 9.969 | 5.521 | 2.705 | 1.349 | 0.899 | 0.782 | 0.327 | 0.448 |  |
| 1 | 8.292 | 36.931 | 6.462 | 2.649 | 2.133 | 0.6 | 0.764 | 0.333 | 0.169 |  |
| 1 | 9.453 | 12.736 | 17.227 | 2.936 | 1.893 | 1.076 | 0.954 | 0.247 | 0.621 |  |
| 1 | 6.926 | 9.051 | 7.224 | 7.646 | 1.204 | 0.691 | 0.48 | 0.593 | 0.605 |  |
| 1 | 14.405 | 10.724 | 7.611 | 4.262 | 4.132 | 0.519 | 0.629 | 0.358 | 0.779 |  |
| 1 | 34.836 | 11.912 | 8.571 | 4.752 | 2.722 | 3.973 | 0.702 | 0.72 | 1.618 |  |

Table 9.4.1. North Sea plaice. Diagnostics of the separable VPA using (a) the landings at age matrix; (b) the catch at age matrix using reconstructed discards; (c) the catch at age matrix using reconstructed and observed discards.


Years 1994/95 1995/96 1996/97 1997/98 1998/99 1999/** 2000/** 2001/** 2002/**


Fishing Mortalities (F)

|  | 19941995 | 19961997199819992000200120022003 |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| F-values 0.8113 | 0.6776 | 0.7643 | 0.8088 | 0.6938 | 0.7245 | 0.6038 | 0.6832 | 0.6923 | 0.5 |


| 1 | 2 | 3 | 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S-values | 0.2382 | 0.6866 | 0.8591 | 0.9556 |  |


| 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |  |  |
| ---: | :--- | :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S-values 1 | 0.9009 | 0.8621 | 0.7172 | 0.7029 | 0.6078 | 0.5054 | 0.7356 | 0.491 | 0.5 |  |  |

Title : Plaice in IV (c) the catch at age matrix using reconstructed and observed discards

At 13/09/2004 14:45
Separable analysis
from 1994 to 2003 on ages 1 to 14
with Terminal $F$ of .500 on age 5 and Terminal $S$ of .500

| Initial sum of squared residuals was | 50.939 and |
| ---: | :--- | :--- |
| final sum of squared residuals is | 11.409 after 67 iterations |

Matrix of Residuals


```
13/14 0.351 [-0.311 
    TOT 0}0
    WTS 0.001 0.001 0.001 0.001 1 1 1 1 1 1 1 1 1
    Fishing Mortalities (F)
    1994199519961997199819992000200120022003
F-values 0.8352 0.6636 0.7684 0.8199 0.7402 
    Selection-at-age (S)
S-values 0.1857 1 % 0.90766 1.0193 1.0.0675
    5 6 6 % 7 8 8 9 0
S-values1 
```

Table 9.4.2. North Sea plaice. Diagnostics of the final XSA run.


XSA population numbers (Thousands)

| YEAR |  | 1, | 2, | 3, | 4, | 5 , | 6, | 7, | 8, | 9, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1994 |  | $4.37 \mathrm{E}+05$, | $3.80 \mathrm{E}+05$ | .13E+05, | 1.65E+05, | 8.73E+04, | 4.50E+04, | 2.82E+04, | $1.51 \mathrm{E}+0$ | $37 \mathrm{E}+04$, |
| 1995 |  | 1.16E+06, | 3.35E+05, | $2.09 \mathrm{E}+05$, | 1.53E+05, | 7.23E+04, | 4.16E+04, | 2.12E+04, | $1.09 \mathrm{E}+04$, | 57E+03, |
| 1996 |  | $1.21 \mathrm{E}+06$, | 9.26E+05, | 1.90E+05, | 9.71E+04, | $6.30 \mathrm{E}+04$, | 3.00E+04, | 2.04E+04, | $9.86 \mathrm{E}+03$ | 5.74E+03, |
| 1997 |  | 1.95E+06, | 9.85E+05, | $4.82 \mathrm{E}+05$, | $8.44 \mathrm{E}+04$, | $4.00 \mathrm{E}+04$, | 2.60E+04, | 1.33E+04, | $8.40 \mathrm{E}+03$, | $4.61 \mathrm{E}+03$, |
| 1998 |  | 7.43E+05, | 1.64E+06, | 3.65E+05, | 1.69E+05, | 3.43E+04, | 1.45E+04, | 1.06E+04, | $5.99 \mathrm{E}+03$, | 4.14E+03, |
| 1999 |  | $9.21 \mathrm{E}+05$, | 5.73E+05, | 8.42E+05, | 8.23E+04, | 4.88E+04, | 1.49E+04, | 7.00E+03, | $4.84 \mathrm{E}+03$, | $3.04 \mathrm{E}+03$, |
| 2000 |  | $1.01 \mathrm{E}+06$, | 7.35E+05, | $3.30 \mathrm{E}+05$, | $5.19 \mathrm{E}+05$, | 3.59E+04, | 2.12E+04, | $6.87 \mathrm{E}+03$, | $3.69 \mathrm{E}+03$, | 2.25E+03, |
| 2001 |  | $5.83 \mathrm{E}+05$, | $7.46 \mathrm{E}+05$, | 3.52E+05, | 1.92E+05, | 2.34E+05, | 1.82E+04, | 1.02E+04, | .18E+03, | . $35 \mathrm{E}+03$, |
| 2002 |  | $2.23 \mathrm{E}+06$, | $5.00 \mathrm{E}+05$, | 3.02E+05, | 1.34E+05, | 8.24E+04, | 8.37E+04, | 9.83E+03, | $5.03 \mathrm{E}+03$, | 2.71E+03, |
| 2003 |  | $6.83 \mathrm{E}+05$, | $1.66 \mathrm{E}+06$ | $2.04 \mathrm{E}+05$, | 1.29E+05, | $6.53 \mathrm{E}+04$ | $3.85 \mathrm{E}+0$ | $3.95 \mathrm{E}+04$ | 47E+03 | . 84 E |

Estimated population abundance at 1st Jan 2004
$0.00 \mathrm{E}+00,5.21 \mathrm{E}+05,6.65 \mathrm{E}+05,8.95 \mathrm{E}+04,5.70 \mathrm{E}+04,2.95 \mathrm{E}+04,1.95 \mathrm{E}+04,1.88 \mathrm{E}+04,2.51 \mathrm{E}+03$,
Taper weighted geometric mean of the VPA populations:
$9.18 \mathrm{E}+05,6.81 \mathrm{E}+05,3.76 \mathrm{E}+05,2.00 \mathrm{E}+05,1.04 \mathrm{E}+05,5.35 \mathrm{E}+04,2.93 \mathrm{E}+04,1.63 \mathrm{E}+04,9.75 \mathrm{E}+03$,
Standard error of the weighted Log(VPA populations) :

$$
\text { , } 5322, .5394, .4783, .4902, .5380, .5828, .6302, .
$$

Log catchability residuals.


Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age , | 1, | 2, | 3 , | 4, | 5, | 6 , | 7, | 8, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Mean Log q, } \\ & -10.3957, \end{aligned}$ | -8.2233, | -8.2564, | -8.8661, | -9.5097, | -10.1069, | -10.3957, | -10.3957, | -10.3957, |
| $\begin{aligned} & \text { S.E(Log q), } \\ & .3991, \end{aligned}$ | . 4946 , | . 3725 , | . 4232 , | . 3585, | . 5907, | .5465, | .6947, | . 8248, |

Regression statistics :
Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 1, | 1.59, | -1.972, | 4.84, | .41, | 18, | .73, | -8.22, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2, | .88, | .810, | 8.88, | .76, | 18, | .33, | -8.26, |
| 3, | .91, | .506, | 9.24, | .65, | 19, | .39, | -8.87, |
| 4, | 1.03, | -.204, | 9.42, | .72, | 19, | .38, | -9.51, |
| 5, | .97, | .133, | 10.15, | .55, | 19, | .59, | -10.11, |
| 6, | .90, | .505, | 10.42, | .62, | 19, | .50, | -10.40, |
| 7, | 1.23, | -.741, | 10.81, | .37, | 19, | .81, | -10.63, |
| 8, | .67, | 1.438, | 10.08, | .53, | 19, | .53, | -10.54, |
| 9, | .74, | 1.950, | 9.95, | .79, | 17, | .27, | -10.44, |

Fleet : SNS

| Age, | 1982, | 1983 |
| ---: | ---: | ---: |
| 1, | .25, | -.01 |
| 2, | .24, | .01 |
| 3, | -.25, | -1.43 |

$-.25,-1.43$
No data for this fleet at this age , No data for this fleet at this age

```
Age , 1984, 1985, 1986, 1987, 1988,
            , .32, -. 57, -.28, -.45, -. 27,
            No data for this fleet at this age
            No data for this fleet at this age
\begin{tabular}{rrrrrrrrrr} 
Age, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, \\
1, & .38, & -.31, & -.37, & 99.99, & .45, & .27, & -.19, & -.56, & -.72, \\
29 & .22, & -.23, & .13, & 99.99, & .61, & .42, & -1.01, & -.93, & -1.38, \\
99.99 \\
3, & -.20, & -.52, & .66, & .05, & 2.06, & 1.43, & -.36, & -1.05, & -1.28, \\
49.99
\end{tabular}
```

6 , No data for this fleet at this age
7 , No data for this fleet at this age
8 , No data for this fleet at this age
9 , No data for this fleet at this age
Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age , | 1, | 2, | 3 |
| :---: | ---: | ---: | ---: |
| Mean Log q, | -3.3741, | -4.1600, | -5.1607, |
| S.E (Log q), | .4589, | .5640, | .8370, |

Regression statistics :
Ages with $q$ independent of year class strength and constant w.r.t. time.

| Age, | Slope, t | -value, |  | rcept, R | quare, |  | Reg |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1, | 1.68, | -2.406, |  | -3.82, | . 41, | 20, |  |  | 37, |  |
| 2, | . 86 , | . 650, |  | 5.47, | . 55, | 20, |  |  | 16, |  |
| 3, | . 63, | 1.592, |  | 8.10, | . 49 , | 21, |  |  | 16, |  |
| Fleet : BTS Tridens |  |  |  |  |  |  |  |  |  |  |
| Age | 1994, | 1995, | 1996, | , 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003 |
| 1 , No data for this fleet at this ag |  |  |  |  |  |  |  |  |  |  |
| 2 | , 99.99, | 99.99, | -.94, | , 99.99, | . 21, | -. 13, | -. 12, | -. 32, | . 80 , | . 50 |
| 3 | 3, 99.99, | 99.99, | -. 39, | , -.29, | . 26 , | . 02 , | -. 06 , | -.17, | . 07 , | . 55 |
| 4 | , 99.99, | 99.99, | -. 29 , | , .04, | -. 08 , | . 50 , | -. 38, | -. 22, | . 10, | . 33 |
| 5 | 5 , 99.99, | 99.99, | -.39, | , .32, | . 31 , | -. 07 , | . 23 , | -. 44 , | -.17, | . 20 |
| 6 | 6, 99.99, | 99.99, | -. 18, | , .06, | .17, | . 64, | . 13, | -. 25 , | -. 44 , | -. 13 |
| 7 | , 99.99, | 99.99, | -. 54, | , -.76, | . 12, | . 03, | . 53, | -.16, | -. 35, | . 26 |
| 8 | , 99.99, | 99.99, | -. 45, | , .52, | . 48, | . 73, | 1.00, | . 18, | . 36 , | . 59 |
|  | , 99.99, | 99.99, | -. 91, | . 26 , | -. 02 , | . 42 , | . 31 , | . 97, | . 32 , | . 92 |

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age , | 2, | 3, | 4, | 5, | 6, | 7, | 8, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -10.6243, | -9.7186, | -9.3718, | -9.1656, | -8.9423, | -8.9423, | -8.9423, |
| S.E (Log q), | .5694, | .3030, | .3067, | .3101, | .3312, | .4452, | .6261, |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.

| Age, | Slope , | t-value, | Intercept, | RSquare, | No Pts, | Reg s.e, | Mean Q |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2, | .95, | .107, | 10.79, | . 44 , | 7, | . 59, | -10.62, |
| 3 , | 1.09, | -. 323, | 9.44, | . 68 , | 8, | . 35 , | -9.72, |
| 4, | 1.46, | -1.925, | 8.21, | . 74, | 8, | . 38 , | -9.37, |
| 5, | 1.63, | -3.074, | 7.99, | . 80 , | 8, | . 34, | -9.17, |
| 6, | 1.73, | -2.680, | 8.05 , | . 69 , | 8, | . 42 , | -8.94, |
| 7, | 1.12, | -. 367 , | 9.01, | . 60, | 8, | . 52 , | -9.05, |
| 8 , | 6.27 , | -2.213, | 8.02 , | . 03, | 8, | 2.17, | -8.52, |
| 9, | -2.72, | -3.124, | 6.57 , | . 10, | 8 , | 1.07, | -8.66, |

Terminal year survivor and $F$ summaries :
Age 1 Catchability constant w.r.t. time and dependent on age
Year class $=2002$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | ---: | ---: | ---: |
| at end of year, | s.e, | s.e, | , | Ratio, |  |
| $520606 .$, | .36, | .25, | 2, | .705, | .171 |

Age 2 Catchability constant w.r.t. time and dependent on age
Year class $=2001$


| BTS | , | 575729., | . 307, | . 206 , | . 67 , | 2, | . 393, | . 896 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNS | , | $324656 .$, | .470, | . 000, | . 00, | 1, | . 146, | 1.273 |
| BTS Tridens | , | 1093840., | .609, | . 000 , | . 00 , | 1, | .106, | . 567 |
| F shrinkage mean | , | 903615., | . 50, |  |  |  | . 355, | . 655 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | ' | Ratio, |  |
| $665187 .$, | .23, | .22, | 5, | .925, | .813 |

Age 3 Catchability constant w.r.t. time and dependent on age
Year class $=2000$

| Fleet, |  | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | Ext, <br> s.e, | Var, <br> Ratio, |  | Scaled, Weights, | $\underset{\mathrm{F}}{\text { Estimated }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BTS | , | 68908., | . 271 , | . 231 , | . 85, | 3, | . 309, | . 867 |
| SNS | , | 36447., | . 365 , | . 400 , | 1.10, | 2, | . 101, | 1.283 |
| BTS Tridens | , | 159692., | . 294 , | .079, | . 27 , | 2, | . 336 , | . 467 |
| F shrinkage mean |  | 81985., | . 50, |  |  |  | .254, | . 770 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | , | Ratio, |  |
| $89541 .$, | .19, | .20, | 8, | 1.060, | .723 |

Age 4 Catchability constant w.r.t. time and dependent on age

Year class $=1999$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | ---: | ---: | ---: | ---: | ---: |
| at end of year, | S.e, | s.e, | , | Ratio, |  |
| $57004 .$, | .17, | .10, | 11, | .592, | .715 |

Age 5 Catchability constant w.r.t. time and dependent on age

Year class $=1998$

| Fleet, |  | Estimated, Survivors, | Int, S.e, | Ext, s.e, | Var, <br> Ratio, | N, | Scaled, Weights, | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BTS | , | 26967. | . 252 , | . 079, | . 31 , | 5, | . 260, | . 740 |
| SNS | , | 18085., | . 353, | . 453, | 1.28, | 3, | . 033, | 969 |
| BTS Tridens | , | 33085. | . 210, | . 072, | . 34 , | 4, | . 479, | . 639 |
| F shrinkage mean | , | 27391., | . 50 , |  |  |  | . 228, | . 732 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | , | Ratio, |  |
| $29464 .$, | .17, | .06, | 13, | .369, | .695 |

Age 6 Catchability constant w.r.t. time and dependent on age

Year class $=1997$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | ---: | ---: | ---: | ---: | ---: |
| at end of year, | S.e, | S.e, | Ratio, |  |  |
| $19460 .$, | .16, | .06, | 15, | .398, | .583 |

Age 7 Catchability constant w.r.t. time and age (fixed at the value for age) 6 Year class = 1996

| Fleet, |  | Estimated, Survivors, | Int, s.e, | Ext, s.e, | Var, <br> Ratio, | N, | Scaled, Weights, | $\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BTS | , | 21380 | . 313, | . 134, | . 43, | 6, | . 217, | 583 |
| SNS | , | 49778. | . 498, | . 408, | . 82, | 2, | . 008, | . 293 |
| BTS Tridens | , | 16155., | . 217, | .149, | . 68 , | 6, | . 480 , | . 717 |
| F shrinkage mean |  | 21275., | . 50, |  |  |  | . 295, | . 586 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | ---: | ---: | ---: | ---: | ---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $18794 .$, | .19, | .09, | 15, | .446, | .642 |

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 6
Year class $=1995$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | S.e, | r, | Ratio, |  |
| $2514 .$, | .20, | .09, | 16, | .441, | .475 |

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 6
Year class $=1994$

| Fleet, |  | Estimated, Survivors, | Int, | Ext, s.e, | $\begin{gathered} \text { Var, } \\ \text { Ratio, } \end{gathered}$ | N, | Scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BTS | , | 2570. | . 304, | . 123, | . 40, | 9, | . 399 , | . 216 |
| SNS | , | 1811 | . 349 , | . 142 , | . 41 , | 3, | . 003 , | . 294 |
| BTS Tridens | , | 2615., | . 255, | . 160 , | .63, | 8, | . 354 , | . 212 |
| F shrinkage mean |  | 822., | . 50 , |  |  |  | . 244 , | . 561 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | , | Ratio, |  |
| $1956 .$, | .19, | .15, | 21, | .758, | .275 |

Table 9.4.3. North Sea plaice. F derived from final XSA run.


Table 9.4.4. North Sea plaice. Stock numbers derived from final XSA run.

| Table 10 | Terminal Fs derived using XSA (With F shrinkage) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stock number at age (start of year) |  |  |  |  | Numbers*10**-3 |  |
| YEAR, | 1957, | 1958, | 1959, | 1960, | 1961, | 1962, | 1963, |
| AGE |  |  |  |  |  |  |  |
| 1, | 460650, | 698409, | 870210, | 758653, | 864419, | 591497, | 689154, |
| 2, | 260380, | 386035, | 568976, | 676973, | 616125, | 710267, | 486444, |
| 3, | 324321, | 188125, | 272553, | 377543, | 447178, | 417783, | 468156, |
| 4, | 187128, | 227787, | 126599, | 173534, | 240001, | 288187, | 260573, |
| 5, | 118244, | 125919, | 144643, | 79455, | 107538, | 152056, | 176583, |
| 6 , | 51320, | 75856, | 79455, | 87278, | 50598, | 64667, | 89207, |
| 7, | 51837, | 37961, | 49937, | 49976, | 52482, | 33522, | 38714, |
| 8, | 40466, | 36413, | 26569, | 31989, | 31726, | 33524, | 21714, |
| 9, | 22772, | 28027, | 25338, | 17945, | 20371, | 19434, | 21739, |
| +gp, | 49596, | 60156, | 61964, | 53276, | 49633, | 47171, | 50987, |
| TOTAL, | 1566714, | 1864688, | 2226245, | 2306621, | 2480071, | 2358108, | 2303271, |



| Table 10 | k | number at | age (sta | of | Numbers*10**-3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1984, | 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 1, | 1259721, | 1851012, | 4739127, | 1924351, | 1772820, | 1185927, | 1035623, | 911473, | 773924, | 524443, |
| 2, | 933180, | 844217, | 1289136, | 3223695, | 1397337, | 1272518, | 868983, | 797369, | 649151, | 565044 , |
| 3, | 779611, | 486008, | 475885, | 635587, | 1528767, | 671504, | 644796, | 489665, | 393466, | 336657, |
| 4, | 184493, | 394502, | 268649, | 228722, | 292664, | 707855, | 323085, | 329990, | 228879, | 185086, |
| 5, | 87068, | 92666, | 178677, | 128679, | 99785, | 135919, | 338790, | 160024, | 149345, | 105467, |
| 6 , | 34559, | 41722, | 52724, | 79935, | 53551, | 44381, | 65785, | 149764, | 70135, | 61878, |
| 7, | 17185, | 18210, | 22892, | 24691, | 39058, | 24419, | 21740, | 33904, | 60844, | 30847, |
| 8, | 12880, | 9400, | 9941, | 11868, | 11448, | 19385, | 12044, | 11938, | 16495, | 26948, |
| 9, | 6714, | 6381, | 5033, | 4724, | 6609, | 5240, | 10348, | 6887, | 5824, | 8295, |
| $\begin{aligned} & \text { +gp, } \\ & \text { TOTA1 } \end{aligned}$ | 16123, | $\begin{aligned} & \text { 13641, } \\ & 757760, \end{aligned}$ | $\begin{aligned} & \text { 12706, } \\ & 54769, \end{aligned}$ | $\begin{aligned} & \text { 11945, } \\ & \text { 274195, } \end{aligned}$ | $\begin{aligned} & \text { 12947, } \\ & 214986, \end{aligned}$ | 13724, 80874, | $\begin{aligned} & \text { 11373, } \\ & 332566, \end{aligned}$ | 12189, | 12516, | $\begin{aligned} & \text { 13314, } \\ & 57980, \end{aligned}$ |


| Table 10 | Stock | number at | age (st | art of ye |  |  | Numbers*10 | **-3 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003, | 2004, |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
| 1, | 437408, | 1156083, | 1207190, | 1951141, | 743403, | 921277, | 1011454, | 583250, | 2233559, | 682668, | 0 , |
| 2, | 379572, | 335365, | 925628, | 985436, | 1642239, | 573033, | 734594, | 746498, | 500465, | 1658268, | 520606, |
| 3, | 313387, | 209469, | 190016, | 482201, | 364894, | 842309, | 330295, | 351748, | 301513, | 203987, | 665187, |
| 4, | 165300, | 152941, | 97123, | 84432, | 169231, | 82326, | 519253, | 192286, | 133847, | 128784, | 89541, |
| 5, | 87330, | 72260, | 63021, | 40044, | 34298, | 48793, | 35942, | 234150, | 82361, | 65251 , | 57004, |
| 6 , | 44977, | 41575, | 30034, | 26032, | 14534, | 14854, | 21154, | 18152, | 83657, | 38520, | 29464, |
| 7, | 28198, | 21167, | 20427, | 13310, | 10593, | 7001, | 6870, | 10205, | 9829, | 39487, | 19460, |
| 8, | 15096, | 10939, | 9857, | 8396, | 5992, | 4842, | 3688, | 4182, | 5029, | 4469, | 18794, |
| 9, | 13661, | 7573, | 5745, | 4612, | 4142, | 3038, | 2245, | 2348, | 2709, | 2845, | 2514, |
| +gp, | 13760, | 12122, | 10648, | 8795, | 7297, | 6105, | 4984, | 8485, | 5751, | 3749, | 4533, |
| TOTAL, | 1498691, | 2019493, | 2559688, | 3604398, | 2996622, | 2503577, | 2670478, | 2151303, | 3358718, | 2828028, | 1407103, |
|  | GMST 57-* | * AMST 57-** |  |  |  |  |  |  |  |  |  |
| AGE | 906483, | 1055815, |  |  |  |  |  |  |  |  |  |
| 1, | 671852, | 783425, |  |  |  |  |  |  |  |  |  |
| 2, | 382841, | 434956, |  |  |  |  |  |  |  |  |  |
| 3, | 204082, | 233029, |  |  |  |  |  |  |  |  |  |
| 4, | 105478, | 122952, |  |  |  |  |  |  |  |  |  |
| 5, | 53387, | 63843, |  |  |  |  |  |  |  |  |  |
| 6, | 29785, | 36110, |  |  |  |  |  |  |  |  |  |
| 7 , | 17227, | 21230, |  |  |  |  |  |  |  |  |  |

Table 9.5.1a. North Sea plaice. Inputs to RCT3 analysis, discards included.


Table 9.5.2a. North Sea plaice. RCT3 output for 1 year olds, discards included.

```
Analysis by RCT3 ver3.1 of data from file :
p4rct1.csv
Plaice North Sea - 1-Y-Rcr.,,,,,,,,,,',
Data for 11 surveys over 37 years : 1967-2003
```

Regression type $=C$
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass = 2000

| Survey/ <br> Series | Slope | Intercept | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | $\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$ | Index Value | Predicted Value | Std Error | WAP Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNS-0 | . 96 | 4.84 | . 81 | . 302 | 30 | 10.09 | 14.55 | . 864 | . 073 |
| SNS-1 | 1.20 | 1.66 | . 59 | . 443 | 30 | 9.23 | 12.70 | . 644 | . 132 |
| SNS-2 | 1.34 | 1.63 | . 81 | . 309 | 31 | 6.95 | 10.93 | . 964 | . 059 |
| SNS-3 |  |  |  |  |  |  |  |  |  |
| SNS-4 |  |  |  |  |  |  |  |  |  |
| BTS-1 | 1.89 | 3.56 | . 90 | . 307 | 15 | 5.42 | 13.84 | 1.003 | . 054 |
| BTS-2 | . 96 | 9.18 | . 39 | . 699 | 16 | 3.83 | 12.85 | . 467 | . 251 |
| BTS-3 | 1.06 | 10.11 | . 49 | . 563 | 18 | 2.48 | 12.76 | . 578 | . 164 |
| BTS-4 |  |  |  |  |  |  |  |  |  |
| comb D | 2.79 | -2.56 | 1.02 | . 248 | 17 | 5.23 | 11.99 | 1.222 | . 037 |
| comb D | 1.26 | 8.18 | . 80 | . 339 | 17 | 1.79 | 10.43 | 1.194 | . 038 |
|  |  |  |  |  | VPA | Mean = | 13.81 | . 535 | . 191 |

Yearclass $=2001$

| Survey/ <br> Series | Slope | $\begin{aligned} & \text { Inter- } \\ & \text { cept } \end{aligned}$ | Std Error | Rsquare | $\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$ | Index <br> Value | Predicted Value | Std <br> Error | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNS-0 | . 96 | 4.84 | . 81 | . 302 | 30 | 11.53 | 15.93 | . 921 | . 078 |
| SNS-1 | 1.20 | 1.66 | . 59 | . 443 | 30 | 10.32 | 14.01 | . 624 | . 169 |
| SNS-2 |  |  |  |  |  |  |  |  |  |
| SNS-3 |  |  |  |  |  |  |  |  |  |
| SNS-4 |  |  |  |  |  |  |  |  |  |
| BTS-1 | 1.89 | 3.56 | . 90 | . 307 | 15 | 6.35 | 15.58 | 1.082 | . 056 |
| BTS-2 | . 96 | 9.18 | . 39 | . 699 | 16 | 5.14 | 14.11 | . 433 | . 350 |
| BTS-3 |  |  |  |  |  |  |  |  |  |
| BTS-4 |  |  |  |  |  |  |  |  |  |
| comb D | 2.79 | -2.56 | 1.02 | . 248 | 17 | 6.22 | 14.75 | 1.134 | . 051 |
| comb D | 1.26 | 8.18 | . 80 | . 339 | 17 | 3.00 | 11.95 | . 997 | . 066 |
|  |  |  |  |  | VPA | Mean $=$ | 13.81 | . 535 | . 230 |

```
Yearclass = 2002
```

| Survey/ <br> Series | Slope | $\begin{aligned} & \text { Inter- } \\ & \text { cept } \end{aligned}$ | Std Error | Rsquare | $\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$ | Index Value | Predicted Value | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNS-0 | . 96 | 4.84 | . 81 | . 302 | 30 | 10.31 | 14.75 | . 869 | . 181 |
| SNS-1 |  |  |  |  |  |  |  |  |  |
| SNS-2 |  |  |  |  |  |  |  |  |  |
| SNS-3 |  |  |  |  |  |  |  |  |  |
| SNS-4 |  |  |  |  |  |  |  |  |  |
| BTS-1 | 1.89 | 3.56 | . 90 | . 307 | 15 | 4.84 | 12.74 | 1.045 | . 125 |
| BTS-2 |  |  |  |  |  |  |  |  |  |
| BTS-3 |  |  |  |  |  |  |  |  |  |



Table 9.5.3a. North Sea plaice. RCT3 output for 2 year olds, discards included.

```
Analysis by RCT3 ver3.1 of data from file :
p4rct2.csv
Plaice North Sea - 2-Y-Rcr.,,,,,,,,,,',
Data for 11 surveys over 37 years : 1967-2003
```

Regression type $=C$
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass = 2000

| Survey/ <br> Series | Slope | $\begin{aligned} & \text { Inter- } \\ & \text { cept } \end{aligned}$ | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | No. <br> Pts | Index Value | Predicted Value | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNS-0 | . 87 | 5.34 | . 70 | . 374 | 30 | 10.09 | 14.16 | . 743 | . 090 |
| SNS-1 | 1.14 | 1.87 | . 54 | . 484 | 30 | 9.23 | 12.42 | . 593 | . 141 |
| SNS-2 | 1.32 | 1.46 | . 79 | . 320 | 31 | 6.95 | 10.65 | . 944 | . 056 |
| SNS-3SNS-4 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| BTS-1 | 1.79 | 3.83 | . 85 | . 316 | 15 | 5.42 | 13.55 | . 942 | . 056 |
| BTS-2 | . 92 | 9.05 | . 37 | . 712 | 16 | 3.83 | 12.59 | . 441 | . 255 |
| BTS-3 | 1.02 | 9.97 | . 46 | . 581 | 18 | 2.48 | 12.51 | . 543 | . 168 |
| BTS-4 |  |  |  |  |  |  |  |  |  |
| comb D | 2.85 | -3.26 | 1.06 | . 225 | 17 | 5.23 | 11.64 | 1.270 | . 031 |
| comb D | 1.28 | 7.79 | . 83 | . 316 | 17 | 1.79 | 10.08 | 1.231 | . 033 |
|  |  |  |  |  | VPA | Mean $=$ | 13.49 | . 537 | . 172 |

Yearclass $=2001$

| Survey/ <br> Series | Slope | Intercept | Std Error | Rsquare | $\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$ | Index <br> Value | Predicted Value | Std <br> Error | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNS-0 | . 87 | 5.34 | . 70 | . 374 | 30 | 11.53 | 15.41 | . 792 | . 095 |
| SNS-1 | 1.14 | 1.87 | . 54 | . 484 | 30 | 10.32 | 13.67 | . 574 | . 182 |
| SNS-2 |  |  |  |  |  |  |  |  |  |
| SNS-3 |  |  |  |  |  |  |  |  |  |
| SNS-4 |  |  |  |  |  |  |  |  |  |
| BTS-1 | 1.79 | 3.83 | . 85 | . 316 | 15 | 6.35 | 15.20 | 1.017 | . 058 |
| BTS-2 | . 92 | 9.05 | . 37 | . 712 | 16 | 5.14 | 13.80 | . 409 | . 358 |
| BTS-3 |  |  |  |  |  |  |  |  |  |
| BTS-4 |  |  |  |  |  |  |  |  |  |
| comb D | 2.85 | -3.26 | 1.06 | . 225 | 17 | 6.22 | 14.47 | 1.179 | . 043 |
| comb D | 1.28 | 7.79 | . 83 | . 316 | 17 | 3.00 | 11.62 | 1.027 | . 057 |
|  |  |  |  |  | VPA | Mean $=$ | 13.49 | . 537 | . 207 |

```
Yearclass = 2002
```

| Survey/ <br> Series | Slope | Intercept | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | $\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$ | Index Value | ```Predicted Value``` | Std Error | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNS-0 | . 87 | 5.34 | . 70 | . 374 | 30 | 10.31 | 14.35 | . 748 | . 230 |
| SNS-1 |  |  |  |  |  |  |  |  |  |
| SNS-2 |  |  |  |  |  |  |  |  |  |
| SNS-3 |  |  |  |  |  |  |  |  |  |
| SNS-4 |  |  |  |  |  |  |  |  |  |
| BTS-1 | 1.79 | 3.83 | . 85 | . 316 | 15 | 4.84 | 12.51 | . 982 | . 133 |
| BTS-2 |  |  |  |  |  |  |  |  |  |
| BTS-3 |  |  |  |  |  |  |  |  |  |



Table 9.6.1. North Sea plaice. Summary table derived from the final XSA run.

| Year | Recruits millions | $\begin{gathered} \text { SSB } \\ \text { '000t } \end{gathered}$ | $\begin{gathered} \text { TSB } \\ \text { '000 t } \end{gathered}$ | $\begin{aligned} & \text { Catch } \\ & \text { '000 } \end{aligned}$ | Landings '000 t | Discards '000 t | Fbar 2-6 | F-HC | F-Discards |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1957 | 461 | 289.6 | 347.3 | 78.5 | 70.6 | 7.9 | 0.264 | 0.213 | 0.051 |
| 1958 | 698 | 309.3 | 374.3 | 88.3 | 73.4 | 14.9 | 0.315 | 0.232 | 0.083 |
| 1959 | 870 | 310.9 | 405.4 | 109.3 | 79.3 | 30.0 | 0.359 | 0.231 | 0.129 |
| 1960 | 759 | 318.0 | 420.2 | 117.2 | 87.5 | 29.6 | 0.361 | 0.264 | 0.097 |
| 1961 | 864 | 328.5 | 433.9 | 118.4 | 86.0 | 32.4 | 0.341 | 0.230 | 0.111 |
| 1962 | 591 | 388.9 | 481.4 | 125.2 | 87.5 | 37.7 | 0.385 | 0.248 | 0.137 |
| 1963 | 689 | 380.4 | 476.9 | 148.4 | 107.1 | 41.3 | 0.418 | 0.263 | 0.155 |
| 1964 | 2238 | 378.4 | 495.3 | 147.4 | 110.5 | 36.9 | 0.461 | 0.296 | 0.165 |
| 1965 | 700 | 353.6 | 474.7 | 139.9 | 97.1 | 42.7 | 0.384 | 0.278 | 0.105 |
| 1966 | 591 | 367.1 | 503.8 | 167.3 | 101.8 | 65.5 | 0.394 | 0.238 | 0.156 |
| 1967 | 404 | 427.5 | 499.4 | 163.0 | 108.8 | 54.2 | 0.423 | 0.248 | 0.175 |
| 1968 | 434 | 409.7 | 479.0 | 139.5 | 111.5 | 28.0 | 0.332 | 0.205 | 0.127 |
| 1969 | 651 | 386.1 | 465.4 | 142.8 | 121.7 | 21.2 | 0.340 | 0.245 | 0.095 |
| 1970 | 652 | 343.6 | 430.4 | 160.9 | 130.3 | 30.5 | 0.471 | 0.346 | 0.125 |
| 1971 | 411 | 323.1 | 409.2 | 136.1 | 113.9 | 22.1 | 0.377 | 0.283 | 0.094 |
| 1972 | 368 | 326.7 | 406.6 | 142.5 | 122.8 | 19.7 | 0.408 | 0.324 | 0.084 |
| 1973 | 1314 | 280.6 | 370.9 | 143.8 | 130.4 | 13.4 | 0.463 | 0.405 | 0.058 |
| 1974 | 1136 | 289.0 | 419.9 | 157.8 | 112.5 | 45.3 | 0.486 | 0.403 | 0.083 |
| 1975 | 867 | 301.0 | 478.5 | 195.3 | 108.5 | 86.8 | 0.555 | 0.368 | 0.187 |
| 1976 | 693 | 312.6 | 470.6 | 167.0 | 113.7 | 53.3 | 0.412 | 0.291 | 0.121 |
| 1977 | 988 | 322.4 | 475.0 | 176.8 | 119.2 | 57.6 | 0.504 | 0.333 | 0.172 |
| 1978 | 911 | 308.4 | 459.6 | 159.8 | 114.0 | 45.8 | 0.464 | 0.355 | 0.109 |
| 1979 | 891 | 301.5 | 462.9 | 213.4 | 145.3 | 68.1 | 0.667 | 0.483 | 0.184 |
| 1980 | 1129 | 276.5 | 419.9 | 171.1 | 140.0 | 31.2 | 0.553 | 0.489 | 0.065 |
| 1981 | 871 | 265.4 | 395.1 | 172.5 | 139.7 | 32.7 | 0.540 | 0.472 | 0.068 |
| 1982 | 2034 | 268.1 | 470.0 | 204.5 | 154.5 | 49.9 | 0.605 | 0.515 | 0.090 |
| 1983 | 1307 | 317.4 | 514.4 | 218.0 | 144.0 | 73.9 | 0.594 | 0.482 | 0.112 |
| 1984 | 1260 | 326.9 | 536.8 | 225.9 | 156.1 | 69.8 | 0.580 | 0.427 | 0.153 |
| 1985 | 1851 | 348.1 | 560.0 | 220.7 | 159.8 | 60.9 | 0.524 | 0.431 | 0.094 |
| 1986 | 4739 | 374.6 | 728.8 | 296.4 | 165.3 | 131.0 | 0.648 | 0.481 | 0.167 |
| 1987 | 1924 | 448.2 | 750.6 | 343.2 | 153.7 | 189.5 | 0.689 | 0.479 | 0.210 |
| 1988 | 1773 | 395.7 | 666.2 | 311.8 | 154.5 | 157.4 | 0.673 | 0.399 | 0.274 |
| 1989 | 1186 | 419.3 | 598.0 | 277.5 | 169.8 | 107.6 | 0.618 | 0.380 | 0.238 |
| 1990 | 1036 | 376.0 | 531.0 | 228.6 | 156.2 | 72.4 | 0.585 | 0.399 | 0.186 |
| 1991 | 911 | 340.7 | 486.8 | 229.6 | 148.0 | 81.6 | 0.697 | 0.460 | 0.237 |
| 1992 | 774 | 273.3 | 390.7 | 183.4 | 125.2 | 58.2 | 0.678 | 0.460 | 0.217 |
| 1993 | 524 | 236.4 | 333.4 | 152.2 | 117.1 | 35.1 | 0.638 | 0.501 | 0.137 |
| 1994 | 437 | 203.8 | 289.6 | 134.4 | 110.4 | 24.0 | 0.627 | 0.522 | 0.105 |
| 1995 | 1156 | 184.2 | 295.4 | 120.4 | 98.4 | 22.1 | 0.662 | 0.570 | 0.092 |
| 1996 | 1207 | 180.3 | 309.9 | 133.8 | 81.7 | 52.1 | 0.709 | 0.553 | 0.156 |
| 1997 | 1951 | 188.1 | 354.9 | 180.0 | 83.0 | 96.9 | 0.871 | 0.570 | 0.301 |
| 1998 | 743 | 204.4 | 337.5 | 174.6 | 71.5 | 103.1 | 0.894 | 0.466 | 0.427 |
| 1999 | 921 | 160.6 | 292.7 | 122.0 | 80.7 | 41.4 | 0.594 | 0.474 | 0.120 |
| 2000 | 1011 | 220.9 | 340.5 | 132.5 | 81.1 | 51.4 | 0.597 | 0.370 | 0.227 |
| 2001 | 583 | 230.3 | 348.8 | 136.0 | 82.0 | 54.0 | 0.773 | 0.362 | 0.411 |
| 2002 | 2234 | 183.0 | 355.1 | 130.7 | 70.2 | 60.4 | 0.695 | 0.426 | 0.269 |
| 2003 | 683 | 214.3 | 372.7 | 141.3 | 66.5 | 74.8 | 0.706 | 0.425 | 0.281 |
| 2004 | 906 | 187.0 |  |  |  |  |  |  | 0.706 |

Table 9.7.1a. North Sea plaice. Short term forecast input data, discards included.

| Label | Value | CV | Label | Value | CV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number at | age |  | Weigh | the stock |  |
| N1 | 906483 | 0.53 | WS1 | 0.06 | 0.13 |
| N2 | 522118 | 0.36 | WS2 | 0.12 | 0.04 |
| N3 | 665186 | 0.23 | WS3 | 0.22 | 0.05 |
| N4 | 89541 | 0.20 | WS4 | 0.27 | 0.13 |
| N5 | 57003 | 0.17 | WS5 | 0.34 | 0.02 |
| N6 | 29463 | 0.17 | WS 6 | 0.43 | 0.07 |
| N7 | 19460 | 0.16 | WS7 | 0.50 | 0.11 |
| N8 | 18793 | 0.19 | WS8 | 0.63 | 0.04 |
| N9 | 2514 | 0.20 | WS9 | 0.74 | 0.07 |
| N10 | 4532 | 0.19 | WS10 | 0.84 | 0.07 |
| H.cons selectivity |  |  | Weight in the HC catch |  |  |
| sH1 | 0.01 | 1.24 | WH1 | 0.24 | 0.01 |
| sH2 | 0.05 | 0.28 | WH2 | 0.26 | 0.03 |
| sH3 | 0.29 | 0.23 | WH3 | 0.29 | 0.01 |
| sH4 | 0.47 | 0.24 | WH4 | 0.32 | 0.03 |
| sH5 | 0.62 | 0.07 | WH5 | 0.36 | 0.03 |
| sH6 | 0.56 | 0.17 | WH6 | 0.45 | 0.08 |
| sH7 | 0.62 | 0.11 | WH7 | 0.53 | 0.10 |
| sH8 | 0.41 | 0.24 | WH8 | 0.69 | 0.04 |
| sH9 | 0.31 | 0.11 | WH9 | 0.77 | 0.02 |
| sH10 | 0.31 | 0.12 | WH10 | 0.85 | 0.06 |
| Discard selectivity |  |  | Weight in the discards |  |  |
| sD1 | 0.13 | 0.62 | WD1 | 0.04 | 0.59 |
| sD2 | 0.73 | 0.08 | WD2 | 0.08 | 0.13 |
| sD3 | 0.47 | 0.21 | WD3 | 0.12 | 0.05 |
| sD4 | 0.20 | 0.60 | WD 4 | 0.14 | 0.18 |
| sD5 | 0.12 | 1.03 | WD5 | 0.16 | 0.16 |
| sD6 | 0.01 | 0.35 | WD6 | 0.21 | 0.09 |
| sD7 | 0.01 | 1.59 | WD7 | 0.20 | 0.09 |
| sD8 | 0.00 | 0.94 | WD8 | -3.53 | 0.08 |
| sD9 | 0.00 | 1.73 | WD9 | -7.27 | 0.00 |
| sD10 | 0.00 | 1.73 | WD10 | -7.27 | 0.00 |
| Natural mortality |  |  | Proportion mature |  |  |
| M1 | 0.10 | 0.10 | MT1 | 0.00 | 0.10 |
| M2 | 0.10 | 0.10 | MT2 | 0.50 | 0.10 |
| M3 | 0.10 | 0.10 | MT3 | 0.50 | 0.10 |
| M4 | 0.10 | 0.10 | MT4 | 1.00 | 0.10 |
| M5 | 0.10 | 0.10 | MT5 | 1.00 | 0.00 |
| M6 | 0.10 | 0.10 | MT6 | 1.00 | 0.00 |
| M7 | 0.10 | 0.10 | MT7 | 1.00 | 0.00 |
| M8 | 0.10 | 0.10 | MT8 | 1.00 | 0.00 |
| M9 | 0.10 | 0.10 | MT9 | 1.00 | 0.00 |
| M10 | 0.10 | 0.10 | MT10 | 1.00 | 0.00 |
| Relative effort |  |  | Year effect for natural mortality |  |  |
| in HC fishery |  |  |  |  |  |
| HFO4 | 1.00 | 0.06 | K04 | 1.00 | 0.10 |
| HFO5 | 1.00 | 0.06 | K05 | 1.00 | 0.10 |
| HFO6 | 1.00 | 0.06 | K06 | 1.00 | 0.10 |

Recruitment in 2005 and 2006
R05 $906483 \quad 0.53$
R06 $906483 \quad 0.53$
Proportion of $F$ before spawning $=.00$
Proportion of $M$ before spawning $=.00$
Stock numbers in 2004 are VPA survivors.
These are overwritten at Age 2
Human consumption + discard Fs are obtained from mean exploitation pattern over 2001 to 2003.
This is scaled to give a value for mean $F$ (ages 2 to 6) equal to that in 2003 , i.e. 0.706
Fs are distributed between consumption and discards by mean proportion retained over 2001 to 2003.
N.B. Above value for $H C O$ tDIS ref $F$ is value for both catch categories combined.

Table 9.7.2a. North Sea plaice. Management option table, discards included.
Table $\qquad$ . plaice, north sea

Catch forecast output and estimates of coefficient of variation (CV) from linear analysis.

|  | Year |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean F <br> Ages <br> H.cons <br> 2 to 6 | 0.71 | 0.00 | 0.14 | 0.28 | 0.42 | 0.56 | 0.71 | 0.85 |
| Effort relative to 2003 H.cons | 1.00 | 0.00 | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 | 1.20 |
| Biomass |  |  |  |  |  |  |  |  |
| Total 1 January | 343 | 310 | 310 | 310 | 310 | 310 | 310 | 310 |
| SSB at spawning time | 187 | 192 | 192 | 192 | 192 | 192 | 192 | 192 |
| Catch weight (,000t) |  |  |  |  |  |  |  |  |
| H.cons | 76.8 | 0.0 | 17.6 | 33.0 | 46.6 | 58.5 | 68.9 | 78.2 |
| Discards | 52.3 | 0.0 | 11.7 | 21.8 | 30.7 | 38.4 | 45.1 | 51.0 |
| Total Catch | 129.1 | 0.0 | 29.2 | 54.8 | 77.2 | 96.8 | 114.1 | 129.2 |
| Biomass in year.... 2006 Total 1 January |  | 483 | 436 | 395 | 359 | 328 | 301 | 277 |
| SSB at spawning time |  | 312 | 276 | 245 | 218 | 195 | 174 | 156 |
|  |  |  |  |  |  |  |  |  |
|  | 2004 |  |  |  | 2005 |  |  |  |
| Effort relative to 2003 H.cons | 1.00 | 0.00 | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 | 1.20 |
| Est. Coeff. of Variation |  |  |  |  |  |  |  |  |
| Biomass |  |  |  |  |  |  |  |  |
| Total 1 January | 0.15 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
| SSB at spawning time | 0.12 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 |
| Catch weight |  |  |  |  |  |  |  |  |
| H.cons | 0.17 | 0.00 | 0.33 | 0.22 | 0.19 | 0.18 | 0.18 | 0.17 |
| Discards | 0.23 | 0.00 | 0.45 | 0.37 | 0.36 | 0.35 | 0.35 | 0.34 |
| Biomass in year.... 2006 |  |  |  |  |  |  |  |  |
| Total 1 January |  | 0.21 | 0.21 | 0.21 | 0.22 | 0.22 | 0.23 | 0.23 |
| SSB at spawning time |  | 0.18 | 0.19 | 0.19 | 0.19 | 0.20 | 0.21 | 0.21 |

Table 9.7.3a. North Sea plaice. Detailed forecast table, discards included.


Forecast for year 2005
F multiplier H.cons=1.00

| Populations |  |
| :---: | :---: |
| Age | $k$ No. |
| 1 | 906483 |
| 2 | 715207 |
| 3 | 215485 |
| 4 | 281481 |
| 5 | 41252 |
| 6 | 24584 |
| 7 | 15107 |
| 8 | 9387 |
| 9 | 11218 |
| 10 | 4679 |
| Wt | 310 |



Table 9.10.1a. North Sea plaice. Biological reference points, discards included.

| Reference point | Deterministic | Median | 75th percentile | 95th percentile | $\begin{gathered} \text { Hist SSB }<\text { ref } \\ \text { pt } \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MedianRecruits | 871000 | 871000 | 911000 | 1011000 |  |
| MBAL | 0 |  |  |  | 0.00 |
| $\mathbf{B}_{\text {loss }}$ | 160600 |  |  |  |  |
| SSB90\% R90\%Surv | 301729 | 278868 | 303761 | 333094 | 42.55 |
| SPR\% ofVirgin | 3.25 | 3.29 | 3.64 | 4.22 |  |
| VirginSPR | 5.33 | 5.31 | 6.08 | 6.94 |  |
| SPRIoss | 0.16 | 0.16 | 0.18 | 0.22 |  |
|  | Deterministic | Median | 25th percentile | 5th percentile | $\begin{gathered} \text { Hist F }>\text { ref pt } \\ \hline \end{gathered}$ |
| FBar | 0.71 | 0.70 | 0.67 | 0.63 | 10.64 |
| $\mathbf{F}_{\text {max }}$ | 0.17 | 0.17 | 0.16 | 0.15 | 100.00 |
| $\mathbf{F}_{0.1}$ | 0.12 | 0.12 | 0.11 | 0.10 | 100.00 |
| $\mathbf{F}_{\text {low }}$ | 0.33 | 0.31 | 0.29 | 0.27 | 95.74 |
| $\mathbf{F}_{\text {med }}$ | 0.47 | 0.47 | 0.45 | 0.42 | 59.57 |
| $\mathbf{F}_{\text {high }}$ | 0.75 | 0.77 | 0.72 | 0.66 | 6.38 |
| F35\%SPR | 0.13 | 0.13 | 0.13 | 0.12 | 100.00 |
| $\mathrm{F}_{\text {loss }}$ | 0.74 | 0.72 | 0.67 | 0.60 | 6.38 |

## For estimation of Gloss and $\mathrm{F}_{\text {loss }}$ :

A LOWESS smoother with a span of 1 was used.
Stock recruit data were log-transformed
A point representing the origin was included in the stock recruit data.
For estimation of the stock recruitment relationship used in equilibrium calculations:
A LOWESS smoother with a span of 1 was used.
Stock recruit data were log-transformed
A point representing the origin was included in the stock recruit data.
north sea plaice
Steady state selection provided as input
FBar averaged from age 2 to 6
Number of iterations $=100$
Random number seed $=-99$
Stock recruitment data Monte Carloed using residuals from the equilibrium LOWESS fit Data source:
D:\Groups\Working_groups\WGNSSK\2004\at_wg\ple\longterm\with_discards\PLED2.SEN
D:\Groups\Working_groups\WGNSSK\2004\at_wg\ple\longterm\with_discards\PLED2.SUM
FishLab DLL used FLVB32.DLL built on Jun 141999 at 11:53:37
PASoft 4 October 1999 14/09/2004 13:27:51

Figure 9.2.1. North Sea plaice. Maturity at age of female plaice (top panel) and combined sexes (bottom panel).



Figure 9.2.2. North Sea plaice. Relative age compositions of the landings by country in 2002 and 2003. The percentages in the legend indicate the proportion of the total landings for each country.


Landings at age in 2002


Figure 9.2.3. North Sea plaice. Schematic overview of the discards reconstruction method.

Modeled mean length and standard deviation at age from surveys and otolith back-calculations


Proportion of population at age available to the fleet, retained in net


Proportion of the catch discarded and landed at age

$F$ at ages 1-6 corrected for discards


Figure 9.2.4. North Sea plaice. Landing and discard (observed + reconstructed) numbers by age.







Figure 9.2.5. North Sea plaice. Weights at age in the landings based on market samples, and in the discards and stock based on survey data and discard reconstructions.


Figure 9.2.6. North Sea plaice. Stock weights at ages as derived from the market sampling programmes.



Figure 9.3.1. North Sea plaice. Relative effort and CPUE.



Figure 9.3.2. North Sea plaice. Standardised CPUE for commercial fleets and surveys by age group. The fleets between brackets have not been used in the assessments of previous years.


Figure 9.3.3. North Sea plaice. Catch rates of 1+ group in the DFS survey in the Wadden Sea.


Figure 9.4.1. North Sea plaice. Separable VPA residuals and selection patterns.
Without discards



With reconstructed discards



With reconstructed and observed discards



Figure 9.4.2. North Sea plaice. Log-catchability residuals derived from single-fleet XSA using only the landing at age ( F -shrinkage $=1.5$ ).


Figure 9.4.3. North Sea plaice. Comparison of the results of single fleet XSA models using only the landings at age data ( F -shrinakge $=1.5$ ).




Figure 9.4.4. North Sea plaice. Relative SSB from tuning indices standardized to the period 1996-2003.


Figure 9.4.5. North Sea plaice. Changes in trends in SSB related to maturity at age and stock weight estimations.



Figure 9.4.6. North Sea plaice. Comparison of XSA model results for catch at age data with no discards; reconstructed discards; and reconstructed + observed discards.




Figure 9.4.7. North Sea plaice. Observed and reconstructed discard proportions (percentage of the of the catch in numbers discarded).


Figure 9.4.8. North Sea plaice. Observed and reconstructed discard numbers at age.


Figure 9.4.9. North Sea plaice. Comparison of XSA model results using different F-shrinkage and tuning fleets.




Figure 9.4.10. North Sea plaice. Retrospective patterns of low and high shrinkage XSA models without discard data.






Figure 9.4.11. North Sea plaice. Retrospective patterns of low and high shrinkage XSA models including reconstructed and observed discard data.

| SSB |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 400,000 |  |  |  |  |
| 350,000 |  |  |  |  |
| 300,000 - |  |  |  |  |
| 250,000 |  |  |  |  |
| 200,000 |  |  |  |  |
| 150,000 |  |  |  |  |
| 100,000 |  |  |  |  |
| 50,000 |  |  |  |  |
| 0 |  |  |  |  |
| 1985 | 1990 | 1995 | 2000 | 2005 |







Figure 9.4.12. North Sea plaice. Relative weights of F-shrinkage and the tuning fleets in the final XSA model.


Figure 9.4.13. North Sea plaice. Comparison between XSA and ICA.




Figure 9.4.14. North Sea plaice. Log catchability residuals from the final run.







Figure 9.6.1. North Sea plaice. Stock summaries. Estimates of recruitment and SSB for 2004 are based on intermediate-year forecasts. The yield and fishing mortality are shown for each catch component separately (human consumption landings and discards), as well as together.


Figure 9.7.1a. North Sea plaice. Short term forecast, discards included.
Plaice in IV with discards. Short term forecast


Fishing mortality ( 2-6)

- Yield 2005

SSB 2006

Data from file:C:ICLARA\TEMP2\PLED2.SEN on 14/09/2004 at 19:18:23
Figure 9.7.2a. North Sea plaice. Sensitivity analysis of the short term forecast, discards included. Plaice IV with discards. Sensitivity analysis of short term forecast.


Figure 9.7.3a. North Sea plaice. Probability profiles for short term forecast, discards included.

Plaice in the North Sea. Probability profiles for short term forecast.


Figure 9.8.1a. North Sea Plaice. Medium term analysis, discards included.
plaice, north sea. Medium term analysis, $1.00 *$ Fsq. Number of simulations=500.





Figure 9.8.2a. North Sea plaice. Summary of medium-term analysis, discards included. Contours show the probability that SSB will be below $\mathbf{B}_{\mathrm{pa}}$ for any combination of year and fishing mortality.


Figure 9.9.1a. North Sea plaice. Long term yield, discards included.


Figure 9.9.2a. North Sea plaice. Long term yield and stock recruitment, discards included.
north sea plaice: Yield per Recruit



Figure 9.10.1a. North Sea plaice. Biological reference points, discards included.


Figure 9.10.2. North Sea plaice. Stock recruitment plots based on the final assessment (left) or an assessment without discards (right), including (top) or excluding (bottom) the last 2 years.


Figure 9.11.1. North Sea plaice. Comparison of SSB time series.


Figure 9.11.2. North Sea plaice. Results fishermen's survey.


The assessment of plaice in Division IIIa is presented here as an update assessment with modifications in the recruitment estimation procedure (Section 10.4) and in the IBTS time series (Section 10.2.5). All the relevant biological and methodological information can be found in the Stock Annex dealing with this stock. Here, only the basic input and output from the assessment model will be presented.

### 10.1 The Fishery

A general description of the fishery is given in the Stock Annex.

### 10.1.1 ICES advice applicable to 2003 and 2004

ICES recommended for 2003 to reduce fishing mortality below the proposed $F_{\mathrm{pa}}\left(F_{\mathrm{pa}}=0.73\right)$, corresponding to landings in 2003 of less than $18,400 \mathrm{t} . F_{\mathrm{pa}}$ was set to the value of $F_{\text {med }}$ in 1998. $B_{\mathrm{pa}}$ was set to a smoothed value of $B_{\text {loss. }}$. Neither $F_{\text {lim }}$ nor $B_{\text {lim }}$ are defined.

ICES recommended for 2004 that fishing mortality in 2004 should be less than $F_{\mathrm{pa}}$, i.e. close to the current levels of exploitation. ICES noted that attention should be paid to the mixed fisheries context, where both North Sea and Kattegat cod stocks, which are caught together with plaice, are well below $B_{\text {lim }}$. Furthermore, ICES indicated that the projected catches in 2003 appeared to be higher than the catches that would be realised.

### 10.1.2 Management applicable in 2003 and 2004

TAC in 2003 was $16700 t$ and 11363 t in 2004.
Effort reductions for much of the fleets catching plaice in Division IIIa have been implemented in 2004. These range from 13 days-at-sea per month for trawlers and Danish seiners using mesh size equal to or more than 100 mm , to 22 days-at-sea per month for Nephrops trawlers.

### 10.1.3 The fishery in 2003

According to ICES official tables (Belgian, Norwegian and German landings) and national statistics (Danish, Swedish and Dutch landings) total landings in 2003 were estimated to be close to those in 2002, around 9000 t (Table 10.1.1). In 2003, the Danish share of landings decreased from 90 to $77 \%$, as the Dutch fleets caught around 1500 tonnes in the Skagerrak. No quantitative information on misreporting is available, but there are recent indications that misreporting from the North Sea to the Skagerrak could have occurred repeatedly in the rectangles being shared between both areas.

### 10.2 Data available

### 10.2.1 Catches

The official landings reported to ICES are given in Table 10.1.1. The annual landings used by the Working Group, available since 1972, are given by country for Kattegat and Skagerrak separately in Tables 10.2.1 and 10.2.2. In the start of this period, landings were mostly taken in Kattegat but from the mid-1970s, the major proportion of the landings has been taken in Skagerrak. In 2003, around $75 \%$ of the landings were taken in Skagerrak.

Some Danish and Swedish estimates of discards by age were available for 2003. Danish discards in the Skagerrak represented $17 \%$ and $47 \%$ of the catches by weight and in numbers respectively. Swedish discards in Division IIIa represented $57 \%$ (weight) and $78 \%$ (numbers) of the catches (Table 10.1.2). Almost all catches up to age 2 were discarded, and discarding rate was still important up to age 4 , especially during the first quarter.

### 10.2.2 Age compositions

Age compositions of the landings are presented in Table 10.2.3. Age-disaggregated Swedish samples were available for 2003 and were included for the first time in the total catch at age estimation.

### 10.2.3 Weight at age

Weights at age in the stock were assumed equal to those in the catch. Weight at age data is presented in Table 10.2.4. The procedure for calculating mean weights is described in the Stock Annex.

### 10.2.4 Maturity and natural mortality

Maturity and natural mortality are assumed constant for all years. Natural mortality is set at 0.1 for all ages. A knifeedge maturity distribution was employed: age group 2 was assumed to be immature whereas age 3 and older plaice were assumed mature.

### 10.2.5 Catch, effort and research vessel data

Survey data used for calibration of the assessment are presented in Tables 10.2.5. The tuning fleets consist of three commercial tuning fleets and the four survey tuning series that were added in the 2002 stock assessment (Figures 10.2.1 and 10.2.2). The two IBTS time series were however revised up to 2002 before the Working Group (WP4), following a check and an update of raw data extraction and index estimation methods. Both of these series were used in the exploratory assessments: however, the effect of the revision was minor.

### 10.3 Catch at age analysis

Catch at age analysis was carried out according to the specifications in the Stock Annex. The model used was XSA Sensitivity analyses showed that the effect of the revision of IBTS time series on the stock perception was minor. Results of the analysis are presented in Table 10.3.1 (diagnostics), 10.3.2 (fishing mortality at age), 10.3.3 (population numbers at age), and 10.3.4 (stock summary). The stock summary is also shown in Figure 10.3.1 and the historical performance of the assessment is shown in Figure 10.3.2.

SSB in 2003 is well above $B_{\mathrm{pa}}$ and fishing mortality is close to $F_{\mathrm{pa}}$.

### 10.4 Recruitment estimates

The XSA estimated the 2001 year-class at a very high level for 2004, although the surveys indices did not track such a high signal. Therefore recruitment estimation was carried out using RCT3 software for both the 2001 and 2002 yearclasses (Tables 10.4.1-10.4.3), which enabled the use of survey indices for age-0 and age-1 (in previous assessments the time-series had been too short). Average recruitment in the period 1978-2001 was 47 million (geometric mean) 2-year-old-fish, which was used as recruitment in 2006. The basis for estimates of year-class strength is summarised below:

| Year <br> Class | Age <br> in 2004 | XSA | RCT3 | GM <br> $(1978-2001)$ <br> Thousands |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| 2000 | 4 | $\mathbf{3 2 4 4 8}$ |  |  |
| 2001 | 3 | 103163 | $\mathbf{5 9 3 6 3}$ | 41898 |
| 2002 | 2 |  | $\mathbf{5 3 7 9 0}$ | 47311 |
| 2003 | Recr. age 2 |  | 70457 | $\mathbf{4 7 3 1 1}$ |
| 2004 | Recr. age 2 |  |  | $\mathbf{4 7 3 1 1}$ |

### 10.5 Short-term prognosis

The short-term prognosis was carried out according to the specifications in the Stock Annex. The model used was WGFRANSW. Input parameters are presented in Table 10.5.1. Results are presented in Tables 10.5.2 and 10.5.3, and probability profiles in Figure 10.5.1. The strong 1998 and 1999 year-classes will still comprise $50 \%$ of the landings, but only $25 \%$ of the SSB in 2005 (Table 10.5.4).

## Issues to be addressed in a forthcoming benchmark assessment

During its October 2002 meeting ACFM appreciated the inclusion of new survey tuning series, and recommended that WGNSSK reconsidered using the commercial tuning series in the assessment. The data exploration in 2004 was deliberately limited as assessment of the plaice stock in Division IIIa was regarded as an update assessment only. Some comments are, however, provided on this issue for a forthcoming benchmark assessment.

Current commercial tuning series are considered questionable as measures for stock abundance for several reasons. First, all commercial trips having a non-zero catch of plaice are included, irrespective of whether they are actually targeting plaice. This could lead to high effort estimates and to CPUE values that might not be representative for the fishery. More accurate tuning fleet definitions should be considered. Second, the information on catch and effort in the logbooks are provided by statistical square and fishing trip only. Consequently, fishing effort is defined as standardised days fishing calculated from duration of total trip which may not reflect accurately hours fished. Third, catch composition is based on market weight categories and a common ALK, obtained from the market sorting categories irrespective of geartype and fishing area, is applied to the catch by market categories of the fleets. This results in poor precision of fleet-specific age composition of catches and auto-correlation between the commercial tuning fleets and the catch-at-age matrix. Onboard sampling data by fleet should be explored for potential improvement of age composition of the fleet-specific catches. The further inclusion of commercial tuning series in the assessment should be evaluated in a forthcoming benchmark assessment.

Some intersessional work has been started in 2004 about the biological links between the Kattegat and the Western Baltic (ICES area 22), and the potential extension of the stock beyond its current assessment area (WP5). Preliminary results concluded that there is good evidence for mixing sub-populations in both areas. Migration of plaice outside the assessment area is one of the reasons that could explain the large and probably unrealistic fluctuations in the estimated fishing mortality. A forthcoming benchmark assessment should include a comparison of assessment results with and without the inclusion of Western Baltic in the analysis.

Available discard numbers for 2003 in the plaice fishery in Division IIIa showed higher discarding rates than previously assumed, especially for the young ages. Further work should be attempted to derive estimates for previous years and for the Kattegat as well, for a possible inclusion of discards in a benchmark assessment.

The use of stock weight at age and maturity data available from Swedish IBTS, quarter 1 and 3, should be attempted in future assessments, as well as the inclusion of the Danish maturity data available for the recent years.

The present indices for stock abundance convey two different trends. The commercial tuning series indicating a smaller increase in SSB in the recent years than the survey time series. These differences in perception should be further explored.
Abundance indices from a Danish 0-group survey with R/V "Havkatten" since 1957 should be explored for possible inclusion as a recruitment estimator.
A benchmark assessment for this stock is scheduled for 2006.

Table 10.1.1 Plaice in Illa. Official landings in tonnes as reported to ICES and WG estimates, 1972-2003

| Year | Denmark |  | Sweden |  | Germany |  | Belgium |  | Norway |  | Netherlands |  | Total |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Official | WG est. | Official | Unalloc. | WG est. | TAC |
| 1972 |  | 20599 |  | 418 |  | 77 |  |  |  | 3 |  |  |  |  | 21097 |  |
| 1973 |  | 13892 |  | 311 |  | 48 |  |  |  | 6 |  |  |  |  | 14257 |  |
| 1974 |  | 14830 |  | 325 |  | 52 |  |  |  | 5 |  |  |  |  | 15212 |  |
| 1975 |  | 15046 |  | 373 |  | 39 |  |  |  | 6 |  |  |  |  | 15464 |  |
| 1976 |  | 18738 |  | 228 |  | 32 |  | 717 |  | 6 |  |  |  |  | 19721 |  |
| 1977 |  | 24466 |  | 442 |  | 32 |  | 846 |  | 6 |  |  |  |  | 25792 |  |
| 1978 |  | 26068 |  | 405 |  | 100 |  | 371 |  | 9 |  |  |  |  | 26953 |  |
| 1979 |  | 20766 |  | 400 |  | 38 |  | 763 |  | 9 |  |  |  |  | 21976 |  |
| 1980 |  | 15096 |  | 384 |  | 40 |  | 914 |  | 11 |  |  |  |  | 16445 |  |
| 1981 |  | 11918 |  | 366 |  | 42 |  | 263 |  | 13 |  |  |  |  | 12602 |  |
| 1982 |  | 10506 |  | 384 |  | 19 |  | 127 |  | 11 |  |  |  |  | 11047 |  |
| 1983 |  | 10108 |  | 489 |  | 36 |  | 133 |  | 14 |  |  |  |  | 10780 |  |
| 1984 |  | 10812 |  | 699 |  | 31 |  | 27 |  | 22 |  |  |  |  | 11591 |  |
| 1985 |  | 12625 |  | 699 |  | 4 |  | 136 |  | 18 |  |  |  |  | 13482 |  |
| 1986 |  | 13115 |  | 404 |  | 2 |  | 505 |  | 26 |  |  |  |  | 14052 |  |
| 1987 |  | 14173 |  | 548 |  | 3 |  | 907 |  | 27 |  |  |  |  | 15658 | 19250 |
| 1988 |  | 11602 |  | 491 |  | 0 |  | 716 |  | 41 |  |  |  |  | 12850 | 19750 |
| 1989 |  | 7023 |  | 455 |  | 0 |  | 230 |  | 33 |  |  |  |  | 7741 | 19000 |
| 1990 |  | 10559 |  | 981 |  | 2 |  | 471 |  | 69 |  |  |  |  | 12082 | 13000 |
| 1991 |  | 7546 |  | 737 |  | 34 |  | 315 |  | 68 |  |  |  |  | 8700 | 11300 |
| 1992 |  | 10582 |  | 589 |  | 117 |  | 537 |  | 106 |  |  |  |  | 11931 | 14000 |
| 1993 |  | 10419 |  | 462 |  | 37 |  | 326 |  | 79 |  |  |  |  | 11323 | 14000 |
| 1994 |  | 10330 |  | 542 |  | 37 |  | 325 |  | 91 |  |  |  |  | 11325 | 14000 |
| 1995 | 9722 | 9722 | 470 | 470 | 48 | 48 | 302 | 302 | 224 | 224 |  |  | 10766 | 0 | 10766 | 14000 |
| 1996 | 9593 | 9641 | 465 | 465 | 31 | 11 |  |  | 428 | 428 |  |  | 10517 | 28 | 10545 | 14000 |
| 1997 | 9505 | 9504 | 499 | 499 | 39 | 39 |  |  | 249 | 249 |  |  | 10292 | -1 | 10291 | 14000 |
| 1998 | 7918 | 7918 | 393 | 393 | 22 | 21 |  |  | 98 | 98 |  |  | 8431 | -1 | 8430 | 14000 |
| 1999 | 7983 | 7983 | 373 | 394 | 27 | 27 |  |  | 336 | 336 |  |  | 8719 | 21 | 8740 | 14000 |
| 2000 | 8324 | 8324 | 401 | 414 | 15 | 15 |  |  | 67 | 67 |  |  | 8807 | 13 | 8820 | 14000 |
| 2001 | 11112 | 11114 | 385 | 385 | 1 | 0 |  |  | 61 | 61 |  |  | 11559 | 1 | 11560 | 11750 |
| 2002 | 8275 | 8276 | 322 | 338 | 29 | 29 |  |  | 58 | 58 |  |  | 8684 | 17 | 8701 | 12800 |
| 2003 | 6884 | 6884 | 377 | 396 | 14 | 14 |  |  | 74 | 74 | 1494 | 1584 | 8843 | 109 | 8952 | 16600 |
| 2004 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 11363 |

Table 10.1.2. Plaice in IIIa. Discards estimates in 2003

|  | DENMARK - SKAGERRAK - 2003 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Discards No |  |  |  | Landings No |  |  |  | Ratio of catches |  |  |  |  |
|  | Q1 | Q2 | Q3 | Q4 | Q1 | 2 | 3 | 4 | Q1 | Q2 | Q3 | Q4 | Total |
| age0 | 0 | 0 | 21 | 5 | 0 | 0 | 0 | 0 |  |  | 100\% | 100\% | 100\% |
| age1 | 47 | 162 | 1027 | 314 | 0 | 0 | 0 | 5 | 100\% | 100\% | 100\% | 98\% | 100\% |
| age2 | 954 | 1083 | 2813 | 1089 | 0 | 0 | 600 | 1094 | 100\% | 100\% | 82\% | 50\% | 78\% |
| age3 | 1456 | 1638 | 1061 | 558 | 42 | 604 | 1080 | 524 | 97\% | 73\% | 50\% | 52\% | 68\% |
| age4 | 1021 | 944 | 331 | 310 | 413 | 1910 | 1783 | 534 | 71\% | 33\% | 16\% | 37\% | 36\% |
| age5 | 285 | 450 | 120 | 127 | 736 | 1871 | 2143 | 713 | 28\% | 19\% | 5\% | 15\% | 15\% |
| age6 | 132 | 99 | 23 | 7 | 604 | 1521 | 781 | 191 | 18\% | 6\% | 3\% | 3\% | 8\% |
| age7 | 27 | 16 | 0 | 5 | 227 | 311 | 136 | 50 | 11\% | 5\% | 0\% | 10\% | 6\% |
| age8 | 1 | 1 | 0 | 0 | 37 | 37 | 16 | 11 | 4\% | 4\% | 0\% | 0\% | 3\% |
| age9 | 1 | 0 | 0 | 0 | 6 | 0 | 1 | 3 | 10\% | 100\% | 6\% | 0\% | 10\% |
| age10 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 2 | 8\% | 100\% |  | 0\% | 7\% |
| age11 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 100\% | 100\% | 0\% |  | 24\% |
| Total No ('000) | 3926 | 4394 | 5397 | 2417 | 2069 | 6255 | 6541 | 3127 | 65\% | 41\% | 45\% | 44\% | 47\% |
| Total weight (tons) | 392 | 345 | 111 | 137 | 593 | 1620 | 1789 | 846 | 40\% | 18\% | 6\% | 14\% | 17\% |
| No trips sampled | 7 | 8 | 5 | 5 |  |  |  |  |  |  |  |  |  |


|  | SWEDEN - IIIa - 2003 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Discards No |  |  |  | Landings No |  |  |  | Ratio of catches |  |  |  |  |
|  | Q1 | Q2 | Q3 | Q4 | Q1 |  |  |  | Q1 | Q2 | Q3 | Q4 | Total |
| age0 | 0 | 0 | 0 | N/A | 0 | 0 | 0 | 0 |  |  |  | N/A |  |
| age1 | 4 | 22 | 31 | N/A | 0 | 0 | 0 | 0 | 100\% | 100\% | 100\% | N/A | 100\% |
| age2 | 235 | 753 | 2176 | N/A | 3 | 13 | 430 | 153 | 99\% | 98\% | 83\% | N/A | 88\% |
| age3 | 312 | 66 | 96 | N/A | 31 | 30 | 67 | 86 | 91\% | 69\% | 59\% | N/A | 79\% |
| age4 | 236 | 20 | 0 | N/A | 123 | 160 | 41 | 29 | 66\% | 11\% | 0\% | N/A | 44\% |
| age5 | 2 | 0 | 0 | N/A | 61 | 120 | 0 |  | 4\% | 0\% |  | N/A | 1\% |
| age6 | 0 | 0 | 0 | N/A | 19 | 3 | 22 | 1 | 0\% | 0\% | 0\% | N/A | 0\% |
| age7 | 0 | 0 | 0 | N/A | 4 | 7 | 0 | 0 | 0\% | 0\% |  | N/A | 0\% |
| age8 | 0 | 0 | 0 | N/A | 5 | 0 | 0 | 0 | 0\% |  |  | N/A | 0\% |
| age9 | 0 | 0 | 0 | N/A | 4 | 0 | 0 | 0 | 0\% |  |  | N/A | 0\% |
| age10 | 0 | 0 | 0 | N/A | 2 | 0 | 0 | 0 | 0\% |  |  | N/A | 0\% |
| age11 | 0 | 0 | 0 | N/A | 0 | 0 | 0 | 0 |  |  |  | N/A |  |
| Total No ('000) | 790 | 861 | 2303 | N/A | 252 | 333 | 561 | 290 | 76\% | 72\% | 80\% | N/A | 78\% |
| Total weight (tons) | 92 | 74 | 252 | N/A | 78 | 92 | 147 | 78 | 54\% | 45\% | 63\% | N/A | 57\% |
| No trips sampled | 13 | 10 | 9 |  |  |  |  |  |  |  |  |  |  |

Table 10.2.1 Plaice in Kattegat. Landings in tonnes Working Group estimates, 1972-2003

| Year | Denmark | Sweden | Germany | Belgium | Norway | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1972 | 15504 | 348 | 77 |  |  | 15929 |
| 1973 | 10021 | 231 | 48 |  |  | 10300 |
| 1974 | 11401 | 255 | 52 |  |  | 11708 |
| 1975 | 10158 | 296 | 39 |  |  | 10493 |
| 1976 | 9487 | 177 | 32 |  |  | 9696 |
| 1977 | 11611 | 300 | 32 |  |  | 11943 |
| 1978 | 12685 | 312 | 100 |  |  | 13097 |
| 1979 | 9721 | 333 | 38 |  |  | 10092 |
| 1980 | 5582 | 313 | 40 |  |  | 5935 |
| 1981 | 3803 | 256 | 42 |  |  | 4101 |
| 1982 | 2717 | 238 | 19 |  |  | 2974 |
| 1983 | 3280 | 334 | 36 |  |  | 3650 |
| 1984 | 3252 | 388 | 31 |  |  | 3671 |
| 1985 | 2979 | 403 | 4 |  |  | 3386 |
| 1986 | 2470 | 202 | 2 |  |  | 2674 |
| 1987 | 2846 | 307 | 3 |  |  | 3156 |
| 1988 | 1820 | 210 | 0 |  |  | 2030 |
| 1989 | 1609 | 135 | 0 |  |  | 1744 |
| 1990 | 1830 | 202 | 2 |  |  | 2034 |
| 1991 | 1737 | 265 | 19 |  |  | 2021 |
| 1992 | 2068 | 208 | 101 |  |  | 2377 |
| 1993 | 1294 | 175 | 0 |  |  | 1469 |
| 1994 | 1547 | 227 | 0 |  |  | 1774 |
| 1995 | 1254 | 133 | 0 |  |  | 1387 |
| 1996 | 2337 | 205 | 0 |  |  | 2542 |
| 1997 | 2198 | 255 | 25 |  |  | 2478 |
| 1998 | 1786 | 185 | 10 |  |  | 1981 |
| 1999 | 1510 | 161 | 20 |  |  | 1691 |
| 2000 | 1644 | 184 | 10 |  |  | 1838 |
| 2001 | 2069 | 260 |  |  |  | 2329 |
| 2002 | 1806 | 198 | 26 |  |  | 2030 |
| 2003 | 2037 | 253 | 6 |  |  | 2296 |

Table 10.2.2. Plaice in Skagerrak. Landings in tonnes. Working Group estimates, 1972-2003

| Year | Denmark | Sweden | Germany | Belgium | Norway letherlands | Total |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1972 | 5095 | 70 |  |  | 3 | 5168 |  |
| 1973 | 3871 | 80 |  |  | 6 | 3957 |  |
| 1974 | 3429 | 70 |  |  | 5 | 3504 |  |
| 1975 | 4888 | 77 |  | 717 | 6 | 4971 |  |
| 1976 | 9251 | 51 |  | 846 | 6 | 10025 |  |
| 1977 | 12855 | 142 |  | 371 | 9 | 13849 |  |
| 1978 | 13383 | 94 |  | 763 | 9 | 13857 |  |
| 1979 | 11045 | 67 |  | 914 | 11 | 11884 |  |
| 1980 | 9514 | 71 |  | 263 | 13 | 10510 |  |
| 1981 | 8115 | 110 |  | 127 | 11 | 8501 |  |
| 1982 | 7789 | 146 |  | 133 | 14 | 8073 |  |
| 1983 | 6828 | 155 |  | 27 | 22 | 7130 |  |
| 1984 | 7560 | 311 |  | 136 | 18 | 7920 |  |
| 1985 | 9646 | 296 |  | 505 | 26 | 10096 |  |
| 1986 | 10645 | 202 |  | 907 | 27 | 11378 |  |
| 1987 | 11327 | 241 |  | 716 | 41 | 12502 |  |
| 1988 | 9782 | 281 |  | 230 | 33 | 10820 |  |
| 1989 | 5414 | 320 |  | 471 | 69 | 5997 |  |
| 1990 | 8729 | 779 |  | 315 | 68 | 10048 |  |
| 1991 | 5809 | 472 | 15 | 315 | 6679 |  |  |
| 1992 | 8514 | 381 | 16 | 537 | 106 | 9554 |  |
| 1993 | 9125 | 287 | 37 | 326 | 79 | 9854 |  |
| 1994 | 8783 | 315 | 37 | 325 | 91 | 9551 |  |
| 1995 | 8468 | 337 | 48 | 302 | 224 | 9379 |  |
| 1996 | 7304 | 260 | 11 |  | 428 | 8003 |  |
| 1997 | 7306 | 244 | 14 |  | 249 | 7813 |  |
| 1998 | 6132 | 208 | 11 |  | 98 | 6449 |  |
| 1999 | 6473 | 233 | 7 |  | 336 | 7049 |  |
| 2000 | 6680 | 230 | 5 |  | 67 | 6982 |  |
| 2001 | 9045 | 125 |  |  | 61 | 9231 |  |
| 2002 | 6470 | 140 | 3 |  | 58 | 6671 |  |
| 2003 | 4847 | 143 | 8 |  | 74 | 1584 | 6656 |

Table 10.2.3. Plaice in IIIa. Catch numbers at age. Numbers* 10 **-3

| YEAR, |  | 1978, | 1979, | 1980, | 1981, |  | 1982, | 1983, |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
|  | 2, | 489, | 1105, | 362, |  | 90, | 526, | 1481, |  |  |
|  | 3, | 15692, | 9789, | 4772, |  | 48, | 2067, | 9715, |  |  |
|  | 4, | 39531, | 29655, | 16353, |  | 98, | 9204, | 8630, |  |  |
|  | 5, | 24919, | 20807, | 12575, | , 109 |  | 10602, | 8026, |  |  |
|  | 6 , | 8011, | 7646 , | 6033, |  | 6, | 5554, | 2673, |  |  |
|  | 7, | 620, | 2514, | 2393, |  | 7, | 1851, | 925, |  |  |
|  | 8, | 63, | 170, | 949, |  | 6, | 758, | 531, |  |  |
|  | 9, | 63, | 75, | 203, |  | 13, | 301, | 257, |  |  |
|  | 0 | 48, | 50, | 54, |  | 19, | 113, | 96, |  |  |
|  |  | 60, | 55, | 50, |  | 97, | 48, | 106, |  |  |
| 0 TOTA | LNUM, | 89496, | 71866, | 43744, | , 350 |  | 31024, | 32440, |  |  |
| TONS | AND, | 26953, | 21976, | 16445 , |  |  | 11047, | 10780, |  |  |
| SOPC | OF \%, | 102, | 104, | 106, |  | 3, | 102, | 101, |  |  |
| YEAR, | 1984, | 1985, | 1986, | 1987, | 1988, | 1989, | , 1990, | 1991, | 1992, | 1993, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 2154, | 1400, | 375, | 623, | 101, | 1012, | , 3147, | 2309, | 904, | 1038, |
| 3, | 12620, | 8641, | 4366, | 4227, | 3052, | 3844 , | , 8748, | 8611, | 3858, | 3505, |
| 4, | 11140, | 21798, | 14749, | 12400, 1 | 12037, | 7102, | , 8623, | 9583, | 11759, | 10088, |
| 5, | 4463, | 6232, | 19193, | 17710, 1 | 13783, | 6255, | , 9718, | 4663, | 17427, | 13233, |
| 6, | 2183, | 1715, | 4477, | 10205, | 6860 , | 2708, | , 3222, | 2893, | 4297, | 6891, |
| 7, | 985, | 698, | 633, | 2089, | 2745, | 1171, | , 981, | 892, | 1033, | 1657, |
| 8, | 904, | 260, | 274, | 373, | 946, | 549, | , 481, | 306 , | 296, | 376, |
| 9, | 695, | 197, | 154, | 242, | 322, | 254, | , 349, | 156, | 115, | 104, |
| 10, | 337 , | 168, | 141, | 125, | 136, | 136, | , 155, | 87, | 27, | 47, |
| +gp, | 120, | 156, | 98, | 190, | 156, | 236, | , 273, | 137, | 115, | 69, |
| TOTALNUM, | 35601, | 41265, | 44460, | 48184, 4 | 40138, | 23267, | , 35697, | 29637, | 39831, | 37008, |
| TONSLAND, | 11591, | 13482, | 14052, | 15658, 1 | 12850, | 7741 , | , 12082, | 8700 , | 11931, | 11323, |
| SOPCOF \%, | 100, | 100, | 100, | 100, | 100, | 100, | , 100, | 100, | 100, | 100, |
| YEAR, | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | , 2000, | 2001, | 2002, | 2003, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 1411, | 446, | 4527, | 529, | 563, | 687, | , 1223, | 3981, | 377, | 3621, |
| 3, | 6919, | 2277, | 5353, | 4733, | 6710, | 2704, | , 3937, | 9172, | 5149, | 4872, |
| 4, | 8016, | 6606, | 7971, | 6379, | 8219, | 8432 , | , 8302, | 9399, | 8870, | 9460, |
| 5, | 9859, | 11530, | 5283, | 9465, | 6856, | 8520, | , 11212, | 11001, | 7442, | 9657, |
| 6, | 8002, | 6622, | 4751, | 5104, | 2971, | 7419, | , 3599, | 4744, | 4776, | 4511, |
| 7, | 2780, | 4929, | 1812, | 3072, | 791, | 1301, | , 888, | 410, | 1740, | 1010, |
| 8 , | 448, | 853, | 1355, | 1369, | 385, | 380, | , 139, | 102, | 442, | 144, |
| 9, | 111, | 137, | 151, | 849, | 234, | 77 , | , 17, | 19, | 50, | 20, |
| 10, | 38, | 65, | 23, | 114, | 170, | 106, | 7, | 14, | 17, | 11, |
| +gp, | 55, | 51, | 45, | 36, | 64, | 43, | , 29, | 33, | 12, | 5, |
| TOTALNUM, | 37639, | 33516, | 31271, | 31650, 2 | 26963, | 29669, | , 29353, | 38875, | 28875, | 33311, |
| TONSLAND, | 11325, | 10766, | 10545, | 10291, | 8430, | 8740, | , 8820, | 11560, | 8701, | 8952, |
| SOPCOF \%, | 100, | 100, | 101, | 100, | 100, | 100, | , 101, | 100, | 100, | 96, |

Table 10.2.4. Plaice in IIIa. Stock weight at age. Numbers* $10 * *-3$


Table 10.2.5. Plaice IIIa. Tuning data by fleet.

Tuning Data; Plaice in IIIa (Skagerrak + Kattegat)
107
Danish Gillnetters
19872003


Danish Seiners
19872003
$\begin{array}{ll}1 & 1 \\ 2 & 11\end{array}$

| 7895 | 97426 | 1157332 | 4050596 | 52273902536790 | 426009 | 72398 | 40925 | 20944 | 22943 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6957 | 466750 | 1343996 | 3116463 | 33689831446989 | 521283 | 158464 | 47106 | 16431 | 19006 |
| 9574 | 334835 | 1483241 | 3030013 | 27339691193297 | 477612 | 171227 | 76749 | 33563 | 39868 |
| 93641116082 | 3542256 | 3431384 | 37483251097119 | 299716 | 116328 | 81119 | 32922 | 60674 |  |
| 8906 | 515012 | 2426848 | 3289407 | 18380741057052 | 265606 | 88516 | 42174 | 17972 | 28587 |
| 8762 | 106267 | 791895 | 4199036 | 68195661725235 | 324760 | 77400 | 27070 | 4686 | 17868 |
| 7364 | 139121 | 509253 | 1721085 | 28008221649545 | 413535 | 89601 | 21958 | 5718 | 3978 |
| 7247 | 336892 | 1620907 | 1883228 | 25148441977352 | 552285 | 69993 | 19937 | 4536 | 4288 |
| 6801 | 195908 | 569871 | 1348638 | 22821551664669 | 1118605 | 153081 | 23915 | 11391 | 8384 |
| 6381 | 949342 | 1363113 | 1878662 | 980782 | 913661 | 327089 | 230807 | 22762 | 3019 |
| 5767 | 165538 | 1193786 | 1794123 | 25722641359436 | 909634 | 392850 | 278160 | 26736 | 5420 |
| 5506 | 144000 | 2251000 | 2489000 | 2044000 | 884000 | 231000 | 109000 | 61000 | 49000 |
| 6039 | 173000 | 721000 | 2487000 | 27550002425000 | 367000 | 103000 | 16000 | 36000 | 9000 |
| 5890 | 286000 | 1240000 | 2954000 | 43000001202000 | 334000 | 46000 | 3000 | 1000 | 3000 |
| 6134 | 1534686 | 3619758 | 3159809 | 33773811347729 | 137169 | 33892 | 5948 | 4204 | 4928 |
| 5515 | 109606 | 1732101 | 3339718 | 29607531745554 | 566533 | 131577 | 11847 | 3376 | 2136 |
| 4387 | 945600 | 1403590 | 2707165 | 26185711210328 | 230619 | 32943 | 2658 | 1506 | 658 |

Table 10.2.5 (cont.). Plaice IIIa. Tuning data by fleet.

| KASU_q4 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19942003 |  |  |  |  |  |  |
| 1 | 0.830 .92 |  |  |  |  |  |
| 1 | 6 |  |  |  |  |  |
| 1 | 0.87 | 10.51 | 5.88 | 0.37 | 0.990 |  |
| 1 | 1.67 | 10.33 | 3.77 | 0.19 | 1.100 |  |
| 1 | 2.48 | 37.87 | 11.07 | 0.36 | 0.420 |  |
| 1 | 11.14 | 11.27 | 4.32 | 1.25 | 0.640 |  |
| 1 | 17.85 | 14.80 | 5.19 | 3.50 | 0.000 |  |
| 1 | 89.27 | 33.15 | 7.70 | 0.27 | 0.600 |  |
| 1 | 99.71 | 121.08 | 15.63 | 0.00 | 0.470 |  |
| 1 | 52.84 | 99.58 | 29.67 | 1.70 | 0.490 |  |
| 1 | 46.11 | 18.36 | 25.18 | 12.40 | 1.240 |  |
| 1 | 42.10 | 61.85 | 15.01 | 6.15 | 3.400 |  |
| KASU_q1_backshifted |  |  |  |  |  |  |
| 19952003 |  |  |  |  |  |  |
| 1 | 0.991 |  |  |  |  |  |
| 1 | 6 |  |  |  |  |  |
| 1 | 23.26 | 26.79 | 7.00 | 1.69 | 0.81 | 0 |
| 1 | 11.52 | 20.47 | 4.77 | 1.03 | 0.67 | 0.2 |
| 1 | -9.00 | -9.00 | -9.00 | -9.00 | -9.00 | -9.00 |
| 1 | 25.82 | 22.27 | 2.92 | 1.25 | 0.15 | 0 |
| 1 | 196.46 | 47.55 | 9.06 | 1.88 | 1.64 | 0 |
| 1 | 127.68 | 74.02 | 6.68 | 1.71 | 1.41 | 0.08 |
| 1 | 45.73 | 78.31 | 32.05 | 2.30 | 0.44 | 0.33 |
| 1 | 134.21 | 36.87 | 34.79 | 8.27 | 0.16 | 0.10 |
| 1 | 77.1 | 79.328 | 11.5 | 1.3 |  |  |
| IBTSQ1_backshifted (Revised) |  |  |  |  |  |  |
| 19902003 |  |  |  |  |  |  |
| 1 | 0.991 |  |  |  |  |  |
| 1 | 6 |  |  |  |  |  |
| 1 | 6.65 | 18.27 | 10.20 | 3.17 | 0.38 | 0.11 |
| 1 | 8.07 | 18.83 | 13.20 | 2.97 | 0.45 | 0.12 |
| 1 | 12.61 | 11.94 | 11.89 | 10.77 | 4.15 | 0.51 |
| 1 | 16.82 | 13.29 | 3.87 | 2.30 | 2.51 | 0.55 |
| 1 | 8.31 | 20.07 | 8.77 | 2.39 | 1.80 | 0.86 |
| 1 | 34.31 | 25.16 | 9.17 | 3.19 | 0.74 | 0.29 |
| 1 | 17.19 | 39.00 | 8.24 | 2.99 | 0.16 | 0.10 |
| 1 | 15.88 | 16.09 | 8.54 | 3.00 | 0.67 | 0.25 |
| 1 | 36.29 | 19.40 | 5.51 | 4.94 | 0.27 | 0.14 |
| 1 | 98.25 | 55.47 | 13.09 | 4.31 | 2.65 | 0.27 |
| 1 | 42.45 | 73.24 | 16.92 | 2.91 | 1.76 | 0.65 |
| 1 | 11.04 | 47.41 | 32.34 | 9.17 | 1.72 | 1.30 |
| 1 | 75.23 | 39.62 | 36.10 | 25.75 | 4.94 | 0.84 |
| 1 | 30.65 | 85.54 | 24.19 | 19.19 | 17.77 | 1.13 |
| IBTSQ3 (Revised) |  |  |  |  |  |  |
| 19952003 |  |  |  |  |  |  |
| 1 | 0.830 .92 |  |  |  |  |  |
| 1 | 6 |  |  |  |  |  |
| 1 | 7.63 | 9.67 | 9.88 | 2.95 | 1.62 | 0.87 |
| 1 | 8.67 | 16.61 | 6.55 | 2.17 | 0.77 | 0.33 |
| 1 | 15.24 | 18.35 | 9.07 | 2.54 | 0.91 | 0.51 |
| 1 | 18.46 | 20.95 | 5.16 | 3.57 | 0.47 | 0.00 |
| 1 | 46.72 | 46.20 | 13.74 | 1.52 | 1.50 | 0.27 |
| 1 | -9.00 | -9.00 | -9.00 | -9.00 | -9.00 | -9.00 |
| 1 | 7.31 | 81.66 | 49.68 | 7.95 | 2.81 | 0.90 |
| 1 | 26.92 | 25.39 | 18.17 | 14.00 | 3.15 | 0.37 |
| 1 | 2.13 | 29.14 | 5.43 | 7.53 | 4.06 | 0.84 |

Table 10.3.1. Plaice in IIIa. Diagnostic from xsa tuning.


Tuning converged after 27 iterations

| Regression weights |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | . 751, | . 820 , | . 877, | . 921 , | . 954 , | . 976, | . 990 , | . 997 , | 1.000, | 1.000 |
| Fishing mortalities |  |  |  |  |  |  |  |  |  |  |
| Age, | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003 |
| 2, | . 043, | . 012, | . 126, | . 012, | . 015, | . 018, | . 018, | . 053, | . 009, | . 033 |
| 3, | . 268 , | . 082, | . 180, | .169, | .189, | . 083, | . 119 , | . 164, | . 080, | . 134 |
| 4, | . 294, | . 392 , | . 402, | . 302 , | . 435, | . 340 , | . 348 , | . 407, | . 212, | . 186 |
| 5, | . 602, | . 786 , | . 551, | 1.046, | . 542, | . 980, | . 905 , | . 943, | .580, | . 333 |
| 6 , | . 657, | . 950, | . 785, | 1.538, | 1.023, | 1.970, | 1.499, | 1.165, | 1.394, | . 747 |
| 7, | 1.133, | 1.000, | . 653, | 1.911, | . 984 , | 1.986, | 1.696, | . 576 , | 2.244, | 1.231 |
| 8, | 1.190, | 1.252, | . 738, | 1.463, | 1.597, | 2.196, | 1.357, | . 832, | 2.630, | 1.473 |
| 9, | . 750 , | 1.483, | . 670, | 1.412, | . 987, | 2.044, | . 503, | . 572, | 1.216, | 1.031 |
| 10, | 1.060, | 1.283, | 1.001, | 1.591, | 1.162, | 1.847, | 1.124, | . 902 , | 1.444, | . 861 |

XSA population numbers (Thousands)
AGE

$1994,3.51 \mathrm{E}+04,3.10 \mathrm{E}+04,3.30 \mathrm{E}+04,2.29 \mathrm{E}+04,1.75 \mathrm{E}+04,4.31 \mathrm{E}+03,6.77 \mathrm{E}+02,2.21 \mathrm{E}+02,6.11 \mathrm{E}+01$, $1995,3.81 \mathrm{E}+04,3.04 \mathrm{E}+04,2.14 \mathrm{E}+04,2.23 \mathrm{E}+04,1.14 \mathrm{E}+04,8.20 \mathrm{E}+03,1.26 \mathrm{E}+03,1.86 \mathrm{E}+02,9.45 \mathrm{E}+01$, $1996,4.02 \mathrm{E}+04,3.41 \mathrm{E}+04,2.53 \mathrm{E}+04,1.31 \mathrm{E}+04,9.18 \mathrm{E}+03,3.97 \mathrm{E}+03,2.73 \mathrm{E}+03,3.25 \mathrm{E}+02,3.82 \mathrm{E}+01$, $1997,4.59 \mathrm{E}+04,3.20 \mathrm{E}+04,2.57 \mathrm{E}+04,1.53 \mathrm{E}+04,6.83 \mathrm{E}+03,3.79 \mathrm{E}+03,1.87 \mathrm{E}+03,1.18 \mathrm{E}+03,1.51 \mathrm{E}+02$, $1998,4.00 \mathrm{E}+04,4.10 \mathrm{E}+04,2.45 \mathrm{E}+04,1.72 \mathrm{E}+04,4.88 \mathrm{E}+03,1.33 \mathrm{E}+03,5.08 \mathrm{E}+02,3.92 \mathrm{E}+02,2.60 \mathrm{E}+02$, $1999,4.14 \mathrm{E}+04,3.56 \mathrm{E}+04,3.07 \mathrm{E}+04,1.43 \mathrm{E}+04,9.06 \mathrm{E}+03,1.59 \mathrm{E}+03,4.49 \mathrm{E}+02,9.30 \mathrm{E}+01,1.32 \mathrm{E}+02$, $2000,7.17 \mathrm{E}+04,3.68 \mathrm{E}+04,2.97 \mathrm{E}+04,1.98 \mathrm{E}+04,4.87 \mathrm{E}+03,1.14 \mathrm{E}+03,1.97 \mathrm{E}+02,4.52 \mathrm{E}+01,1.09 \mathrm{E}+01$, $2001, \quad 8.16 \mathrm{E}+04,6.37 \mathrm{E}+04,2.95 \mathrm{E}+04,1.89 \mathrm{E}+04,7.25 \mathrm{E}+03,9.84 \mathrm{E}+02,1.90 \mathrm{E}+02,4.58 \mathrm{E}+01,2.48 \mathrm{E}+01$, $2002,4.57 \mathrm{E}+04,7.01 \mathrm{E}+04,4.89 \mathrm{E}+04,1.78 \mathrm{E}+04,6.68 \mathrm{E}+03,2.05 \mathrm{E}+03,5.01 \mathrm{E}+02,7.47 \mathrm{E}+01,2.34 \mathrm{E}+01$, $2003,1.18 \mathrm{E}+05,4.10 \mathrm{E}+04,5.85 \mathrm{E}+04,3.58 \mathrm{E}+04,9.02 \mathrm{E}+03,1.50 \mathrm{E}+03,1.96 \mathrm{E}+02,3.27 \mathrm{E}+01,2.00 \mathrm{E}+01$,

Estimated population abundance at 1st Jan 2004
$0.00 \mathrm{E}+00,1.03 \mathrm{E}+05,3.24 \mathrm{E}+04,4.40 \mathrm{E}+04,2.32 \mathrm{E}+04,3.87 \mathrm{E}+03,3.96 \mathrm{E}+02,4.07 \mathrm{E}+01,1.05 \mathrm{E}+01$,
Taper weighted geometric mean of the VPA populations:
$5.11 \mathrm{E}+04,4.13 \mathrm{E}+04,3.25 \mathrm{E}+04,1.96 \mathrm{E}+04,7.75 \mathrm{E}+03,2.15 \mathrm{E}+03,5.77 \mathrm{E}+02,1.59 \mathrm{E}+02,6.09 \mathrm{E}+01$,
Standard error of the weighted Log(VPA populations) :
.3814, .2895, .3155, .3351, .3787, .6132, .8485, 1.0873, 1.0390,

Log catchability residuals.

| Age | , | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | , | -.35, | . 01, | -1.00, | . 04 , | .11, | . 41 , | -2.12 |
| 3 | , | .11, | . 21, | -.67, | -.09, | -. 37, | . 38 , | -1.15 |
| 4 | , | . 53, | . 74, | -. 41, | . 05, | -. 73 | . 21, | -. 51 |
| 5 | , | . 50, | . 50, | -. 38, | .03, | -.81, | .19, | -. 63 |


| 6 | , | . 23 , | .17, | -.41, | -.34, | -. 24 , | -. 40, | -. 25 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | , | . 06 , | . 28, | -.09, | -. 52, | -. 24 , | -. 23, | . 01 |  |  |  |
| 8 | , | -.59, | .11, | -.11, | -.28, | -.25, | -. 22, | -. 51 |  |  |  |
| 9 | , | -. 23 , | .12, | . 04 , | -.01, | .15, | -.03, | -. 41 |  |  |  |
| 10 | , | . 00, | . 30, | . 33, | . 18 , | . 15, | . 37 , | -. 66 |  |  |  |
| Age | , | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003 |
| 2 | , | . 15 , | . 20, | 1.76, | -. 11, | -.10, | . 05, | -.89, | . 70 , | -. 52, | . 47 |
| 3 | , | . 77, | -. 06 , | . 58, | . 52, | . 43, | -. 43, | -. 18, | -. 25 , | -. 15, | -. 03 |
| 4 | , | -.09, | . 25 , | . 25 , | -.08, | . 54, | .14, | . 33, | .15, | -.53, | -. 42 |
| 5 |  | -. 27 , | . 25 , | -.08, | . 33, | . 06 , | . 43, | . 25 , | . 62, | -. 30 , | -. 63 |
| 6 |  | -.78, | -. 31, | -.39, | . 35, | . 02 , | . 74, | . 32 , | . 45, | . 30 , | -. 23 |
| 7 |  | -.47, | -. 23, | -.84, | . 44 , | -. 25 , | . 57, | -. 05, | -. 32 , | . 94, | . 38 |
| 8 |  | -. 56, | -.15, | -.96, | .12, | . 14, | . 59, | -. 24 , | . 06 , | 1.08, | . 45 |
| 9 |  | -. 72 , | . 04 , | -1.14, | -. 42, | -. 25 , | . 91, | -. 68, | -.63, | . 66, | . 12 |
| 10 |  | -. 51, | -.14, | -.76, | . 05, | -.07, | . 01, | -. 38, | .03, | . 67, | . 05 |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age | 2, | 3, | 4, | 5, | 6, | 7, | 8, | 9, | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean Log q, | -8.4405, | -6.6935, | -5.6581, | -4.7192, | -4.0189, | -3.6841, | -3.4503, | -3.4503, | -3.4503, |
| S.E(Log q), | . 8498 , | . 4906 , | . 3868 , | . 4323, | . 4292 , | . 4958, | .5367, | .6014, | . 4012 , |

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 2, | .77, | .433, | 9.00, | .26, | 17, | .68, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3, | 2.11, | -1.034, | 2.33, | .08, | 17, | 1.03, |
| 4, | 5.37, | -2.783, | -15.01, | .04, | 17, | 1.64, |
| 5, | 1.69, | -1.051, | 1.14, | .19, | 17, | .73, |
| 6, | 1.79, | -1.333, | .13, | .22, | 17, | .74, |
| 7, | 1.14, | -.493, | 3.12, | .55, | 17, | .59, |
| 8, | 1.34, | -1.406, | 2.45, | .62, | 17, | .69, |
| 9, | 1.12, | -.671, | 3.44, | .75, | 17, | .66, |
| 10, | .97, | .227, | 3.53, | .88, | 17, | .40, |

## Fleet : Danish Trawlers

| Age | , | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | , | -.15, | -.89, | -.30, | .49, | . 30 , | -. 24, | -. 46 |  |  |  |
| 3 |  | -. 05, | -.23, | -.19, | -.08, | -.07, | -. 34, | -. 46 |  |  |  |
| 4 | , | .07, | . 27 , | -.31, | .13, | -.43, | -. 41, | . 00 |  |  |  |
| 5 | , | -.16, | .17, | -. 25 , | . 16 , | -. 50, | . 05, | -. 47 |  |  |  |
| 6 | , | -.65, | -.39, | -. 40, | -. 22 , | -. 35, | -. 18, | -. 18 |  |  |  |
| 7 | , | -1.09, | -. 86 , | -.68, | -.36, | -. 53, | -. 23, | . 38 |  |  |  |
| 8 | , | -1.40, | -1.08, | -1.05, | -. 38, | -.63, | -. 30, | -. 09 |  |  |  |
| 9 | , | -.93, | -1.34, | -. 90, | -.63, | . 03, | -. 86 , | -. 45 |  |  |  |
| 10 | , | -.39, | -.24, | -. 74, | -. 52, | -. 26 , | -. 81 , | . 25 |  |  |  |
| Age | , | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003 |
| 2 | , | . 66, | . 02, | 1.33, | -. 62, | -. 22, | -. 25, | -.04, | . 75 , | -.91, | -. 06 |
| 3 | , | . 65 , | -.14, | . 32, | . 30 , | . 36 , | -. 36 , | . 15, | .18, | -. 38, | -. 19 |
| 4 | , | -. 10, | . 06 , | . 03, | .13, | . 45 , | . 00 , | . 19, | . 33 , | -. 22 , | -. 43 |
| 5 | , | -.06, | .13, | -.21, | . 48 , | -.18, | . 22 , | . 37 , | . 36 , | . 11, | -. 68 |
| 6 |  | -. 34, | -. 20 , | -. 44, | . 32 , | -. 04 , | . 36 , | . 44, | . 22 , | .59, | -. 30 |
| 7 | , | . 30, | -. 32, | -. 58, | .10, | -. 24 , | . 47, | . 38 , | -.39, | . 81, | . 19 |
| 8 |  | . 29 , | . 05, | -. 52, | -.27, | . 14, | . 48 , | . 09 , | -.28, | . 82, | . 56 |
| 9 |  | -.62, | . 22 , | -.68, | -. 23 , | -.25, | . 25 , | -.22, | -.01, | -.10, | . 15 |
| 10 | , | . 42 , | .09, | -. 13, | .09, | -. 21 , | -.08, | . 77, | . 25 , | . 23 , | . 42 |

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age | 2, | 3, | 4, | 5, | 6, | 7, | 8, | 9, | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean Log $q$, | -8.2041, | -6.6855, | -5.9536, | -5.3400, | -4.9664, | -4.8975, | -4.8783, | -4.8783, | -4.8783, |
| S.E(Log q), | .6195, | . 3327 , | . 2747, | . 3570 , | . 3606 , | .4707, | 5001, | 4647, | 4088 |

Regression statistics :
Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 2, | .83, | .413, | 8.66, | .36, | 17, | .53, | -8.20, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3, | 1.53, | -.994, | 4.61, | .26, | 17, | .51, | -6.69, |
| 4, | 3.13, | -3.911, | -3.47, | .25, | 17, | .57, | -5.95, |
| 5, | 1.80, | -1.442, | 1.70, | .24, | 17, | .61, | -5.34, |
| 6, | 1.60, | -1.356, | 2.57, | .34, | 17, | .56, | -4.97, |
| 7, | 1.14, | -.504, | 4.52, | .58, | 17, | .55, | -4.90, |
| 8, | 1.36, | -1.578, | 4.35, | .66, | 17, | .64, | -4.88, |
| 9, | 1.23, | -1.910, | 5.14, | .88, | 17, | .43, | -5.12, |
| 10, | 1.34, | -2.724, | 5.05, | .86, | 17, | .43, | -4.81, |

## Fleet : Danish Seiners

Age , 1987, 1988, 1989, 1990, 1991, 1992, 1993

| 2 | , | -.98, | . 75 , | -.59, | . 55, | .19, | -1.27, | -. 57 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | , | -.16, | . 18 , | . 01, | . 23, | -.18, | -.94, | -1.12 |  |  |  |
| 4 | , | . 26 , | . 50 , | . 06 , | . 33, | -.43, | -. 24 , | -. 61 |  |  |  |
| 5 | , | .17, | . 37 , | .10, | . 29, | -. 42, | .18, | -. 72 |  |  |  |
| 6 | , | -.28, | -.14, | -.14, | -.21, | -.27, | -. 12, | -. 51 |  |  |  |
| 7 | , | -. 88 , | -. 46, | -. 26 , | -. 44 , | -. 44, | -. 42 , | -. 22 |  |  |  |
| 8 | , | -1.47, | -. 72 , | -. 79 , | -. 52, | -.53, | -. 56, | -. 47 |  |  |  |
| 9 | , | -1.12, | -1.04, | -. 79 , | -. 50, | -. 10, | -. 70 , | -. 59 |  |  |  |
| 10 | , | -.97, | -.87, | -. 73, | -. 59, | -. 71 , | -.85, | -. 96 |  |  |  |
| Age | , | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003 |
| 2 | , | . 34 , | -.23, | 1.41, | -. 42, | -. 38, | -. 32, | -.34, | 1.18, | -.79, | . 66 |
| 3 | , | . 39 , | -. 66 , | . 21 , | . 24 , | . 68 , | -.46, | . 09 , | .59, | -.17, | . 41 |
| 4 | , | -.45, | -. 24 , | -.01, | -.02, | . 47, | .10, | . 34, | . 40 , | -.03, | -. 21 |
| 5 | , | -. 42 , | -. 34 , | -. 70 , | . 42 , | -.09, | . 48, | . 60, | . 38 , | . 26 , | -. 44 |
| 6 | , | -.80, | -. 35, | -. 75, | . 35 , | . 10, | . 75, | . 53, | . 07 , | . 61, | -. 09 |
| 7 | , | -.49, | -. 42 , | -1.01, | . 65, | . 02 , | . 59, | . 75 , | -.48, | . 95, | . 23 |
| 8 |  | -.66, | -.41, | -.92, | . 38 , | . 50, | . 68 , | . 42, | -. 10, | 1.04, | . 43 |
| 9 |  | -. 98, | -.27, | -1.14, | . 47, | -. 06 , | . 34, | -1.19, | -. 53, | . 05 , | -. 47 |
| 10 | , | -1.05, | -.41, | -.88, | . 26 , | . 20, | . 73, | -.60, | -. 12, | . 04 , | -. 61 |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age , | 2, | 3, | 4, | 5, | 6, | 7, | 8 , | 9, | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean Log $q$, | -6.8975, | -5.1466, | -4.2051, | -3.4408, | -3.0041, | -2.9867, | -3.0095, | -3.0095, | -3.0095, |
| S.E(Log q), | . 7663 , | .5366, | . 3316 , | . 4618, | . 4915, | .6143, | . 6450, | .6945, | .6633, |

Regression statistics :
Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 2, | . 58, | 1.245, |  | 8.57, | . 46 , | 17, |  | . 43 , |  | -6.90, |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 , | . 84, | . 335 , |  | 6.04, | . 30 , | 17, |  | . 47 , |  | -5.15, |  |
| 4, | 1.81, | -1.475, |  | -. 78, | . 25 , | 17, |  | . 57 , |  | -4.21, |  |
| 5, | 1.75, | -1.026, |  | 1.39, | . 16 , | 17, |  | . 81 |  | -3.44, |  |
| 6 , | 3.27 , | -2.000, |  | 0.51, | . 07 , | 17, |  | 1.42, |  | -3.00, |  |
| 7, | 1.46, | -1.052, |  | .83, | . 34, | 17, |  | . 89 |  | -2.99, |  |
| 8 , | 1.54, | -1.652, |  | 1.20, | . 48 , | 17, |  | . 92 |  | -3.01, |  |
| 9, | . 90 , | . 691, |  | 3.58, | . 84, | 17, |  | . 50 , |  | -3.42, |  |
| 10, | . 86 , | . 965 , |  | 3.46, | . 84, | 17, |  | . 48 , |  | -3.36, |  |
| Fleet : KASU_q4 |  |  |  |  |  |  |  |  |  |  |  |
| Age | , 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000 |  | 2001, | , 2002, | 2003 |
| 2 | , -.62, | -. 75 , | . 60 , | -.85, | -. 44 , | . 34 , | 1.08 |  | . 79, | , -.36, | -. 07 |
| 3 | , -.16, | -. 75, | . 30 , | -.59, | -. 64 , | -. 20, | . 51 |  | . 64, | , .31, | . 37 |
| 4 | , -1.30, | -1.45, | -.97, | . 17, | 1.37, | -1.50, | 99.99 |  | . 43 , | , 1.75, | . 84 |
| 5 | , -.12, | .17, | -.47, | . 23, | 99.99, | .18, | -. 46 |  | -.34, | , .34, | . 43 |
| 6 | , -3.23, | -1.85, | -1.27, | . 96 , | -.33, | 1.65, | 1.54 |  | 1.40, | , -.01, | -. 03 |
| 7 | , No data | for th | is flee | et at th | is age |  |  |  |  |  |  |
| 8 | , No data | for th | is flee | et at th | is age |  |  |  |  |  |  |
| 9 | , No data | for th | is flee | et at th | is age |  |  |  |  |  |  |
| 10 | , No data | for th | is flee | et at th | is age |  |  |  |  |  |  |

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age , | 2, | 3, | 4, | 5, | 6 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -7.3646, | -8.0828, | -9.7533, | -9.3127, | -9.3835, |
| S.E (Log q), | .6897, | .5177, | 1.2711, | .3547, | 1.5525, |

Regression statistics :
Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 2, | .56, | 1.380, | 8.89, | .58, | 10, | .37, | -7.36, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3, | .50, | 1.873, | 9.34, | .66, | 10, | .23, | -8.08, |
| 4, | .35, | 1.396, | 10.15, | .43, | 9, | .42, | -9.75, |
| 5, | .70, | 1.000, | 9.48, | .64, | 9, | .25, | -9.31, |
| 6, | -.54, | -2.506, | 8.75, | .27, | 10, | .66, | -9.38, |

Fleet : KASU_q1_backshifted

| Age | , | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | , | 99.99, | -.12, | -.33, | 99.99, | -. 35, | . 37 , | . 27 , | . 23 , | . 01 , | -. 15 |
| 3 | , | 99.99, | -.17, | -.57, | 99.99, | -1.24, | -.07, | -. 37, | . 69, | . 60, | . 97 |
| 4 | , | 99.99, | . 04 , | -.61, | 99.99, | -.35, | -.27, | -. 32, | . 04 , | . 62 , | . 75 |
| 5 | , | 99.99, | .08, | . 19, | 99.99, | -1.59, | 1.42, | . 87 , | -.21, | -1.52, | . 75 |
| 6 |  | 99.99, | 99.99, | -.74, | 99.99, | 99.99, | 99.99, | -. 32 , | . 37, | -.51, | 1.11 |
| 7 |  | No dat | for | s fle | t at thi | is age |  |  |  |  |  |
| 8 |  | No dat | for t | s fle | t at thi | is age |  |  |  |  |  |
| 9 |  | No dat | for t | s fle | t at thi | is age |  |  |  |  |  |
| 10 |  | No dat | for t | s fle | t at th | is age |  |  |  |  |  |

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age , | 2, | 3, | 4, | 5, | 6 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -7.0263, | -8.0249, | -8.9983, | -9.4236, | -9.1100, |
| S.E (Log q), | .2771, | .7464, | .4868, | 1.1063, | .7567, |

Regression statistics :
Ages with $q$ independent of year class strength and constant w.r.t. time.

Age, Slope, t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 2, | .87, | .554, | 7.53, | .77, | 8, | .26, | -7.03, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3, | .43, | 1.526, | 9.54, | .56, | 8, | .29, | -8.02, |
| 4, | .46, | 3.739, | 9.75, | .89, | 8, | .13, | -9.00, |
| 5, | .66, | .340, | 9.57, | .15, | 8, | .79, | -9.42, |
| 6, | .51, | .602, | 9.00, | .34, | 5, | .42, | -9.11, |

Fleet : IBTSQ1_backshifted

| Age | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 99.99, | 99.99, | 99.99, | -.89, | -.49, | -.86, | -. 49 |
| 3 | 99.99, | 99.99, | 99.99, | -.53, | -. 35, | -. 15, | -1.19 |
| 4 | 99.99, | 99.99, | 99.99, | -.01, | -.97, | . 27 , | -. 90 |
| 5 | , 99.99, | 99.99, | 99.99, | -.80, | -.99, | . 72, | -. 15 |
| 6 | , 99.99, | 99.99, | 99.99, | -.89, | -.99, | .13, | -. 34 |
| 7 | , No data | for | is flee | at t | s age |  |  |
| 8 | , No data | for t | is flee | at t | s age |  |  |
| 9 | , No data | for t | is fle | at t | s age |  |  |
| 10 | , No data | for t | is fle | at t | s age |  |  |

Age , 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
, -.06, .05, .55, -.58, -.25, .77, .50, -.04, .32, . 17
, .06, -.06, -.18, -.09, -.76, .14, .40, .55, .48, . 67
$-.83,-.02,-.24,-.35, \quad .33,-.13,-.48, \quad .73,1.07, \quad .57$
$-.05,-.73,-1.97,-.20,-1.72,1.18, \quad .37, \quad .43,1.19,1.52$
$-.54,-.90,-1.92, \quad .04,-.71, \quad .27,1.30,1.26,1.14, .49$
, No data for this fleet at this age
, No data for this fleet at this age
, No data for this fleet at this age
10 , No data for this fleet at this age

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age, | 2, | 3, | 4, | 5, | 6 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -7.2639, | -7.8678, | -8.3071, | -8.6997, | -8.6300, |
| S.E (Log q), | .4995, | .5243, | .6256, | 1.1241, | .9956, |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 2, | .91, | .247, | 7.60, | .42, | 14, | .47, | -7.26, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3, | .72, | .689, | 8.66, | .38, | 14, | .38, | -7.87, |
| 4, | .62, | .993, | 9.09, | .42, | 14, | .39, | -8.31, |
| 5, | .40, | 1.518, | 9.41, | .40, | 14, | .42, | -8.70, |
| 6, | 3.93, | -.889, | 7.67, | .01, | 14, | 3.95, | -8.63, |

Fleet : IBTSQ3

| Age | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 99.99, | -. 70 , | -.11, | -. 24 , | .03, | .79, | 99.99, | . 71, | . 08 , | -. 70 |
| 3 | , 99.99, | . 16, | -.28, | .10, | -.69, | . 33 , | 99.99, | 1.11, | -.06, | . 69 |
| 4 | , 99.99, | .10, | -. 37 , | -. 31, | .19, | -.97, | 99.99, | . 78, | . 67 , | . 15 |
| 5 | , 99.99, | -.08, | -. 50, | -.06, | -1.28, | . 45, | 99.99, | . 76, | . 62 , | -. 04 |
| 6 | 99.99, | -.05, | -. 96 , | . 43 , | 99.99, | -.11, | 99.99, | . 62 , | . 01 , | -. 04 |
| 7 | , No data | for th | is flee | at t | is age |  |  |  |  |  |
| 8 | , No data | for th | is flee | at t | is age |  |  |  |  |  |
| 9 | , No data | for th | is fle | at t | is age |  |  |  |  |  |
| 10 | No data | for th | is fle | at t | is age |  |  |  |  |  |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age , | 2, | 3, | 4, | 5, | 6 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -7.4845, | -8.0349, | -8.5575, | -8.6689, | -8.5042, |
| S.E (Log q), | .5636, | .6023, | .5873, | .6726, | .4946, |

Regression statistics :
Ages with $q$ independent of year class strength and constant w.r.t. time
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q
2, $1.24,-.340, \quad 6.68, \quad .27, \quad$ 8, $75,-7.48$,

| 3, | .63, | .773, | 9.01, | .44, | 8, | .39, | -8.03, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4, | .79, | .394, | 8.94, | .38, | 8, | .50, | -8.56, |
| 5, | .88, | .159, | 8.81, | .23, | 8, | .64, | -8.67, |
| 6, | -2.93, | -1.298, | 10.54, | .02, | 7, | 1.37, | -8.50, |

Terminal year survivor and $F$ summaries :
Age 2 Catchability constant w.r.t. time and dependent on age
Year class $=2001$

| Fleet, |  | Estimated, Survivors, | Int, <br> s.e, | Ext, s.e, | Var, <br> Ratio, | N, | Scaled, Weights, | Estimated <br> F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Danish Gillnetters | , | 164301., | . 884, | . 000, | . 00, | 1, | . 044 , | . 021 |
| Danish Trawlers | , | 97040., | . 645, | . 000 , | . 00 , | 1, | .083, | . 035 |
| Danish Seiners |  | 199493., | . 798 , | . 000 , | . 00 , | 1, | . 054 , | . 017 |
| KASU_q4 | , | 96057., | . 726 , | . 000 , | . 00 , | 1, | . 066 , | . 035 |
| KASU_q1_backshifted |  | 89218., | . 300 , | . 000 , | . 00 , | 1, | . 385 , | . 038 |
| IBTSQ1_backshifted | , | 122056., | . 521, | . 000 , | . 00 , | 1, | . 128, | . 028 |
| IBTSQ3 | , | 51020., | . 600, | . 000 , | . 00 , | 1, | . 096, | . 065 |
| F shrinkage mean |  | 152011., | . 50, |  |  |  | .143, | . 022 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | Ratio, | Ration |  |
| $103163 .$, | .19, | .13, | 8, | .699, | .033 |

Age 3 Catchability constant w.r.t. time and dependent on age
Year class $=2000$

| Fleet, |  | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, <br> Ratio, | N, | Scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Danish Gillnetters | , | 27888., | . 442 , | . 213, | . 48, | 2, | . 092, | 154 |
| Danish Trawlers |  | 22874., | . 305 , | . 298, | . 98 , | 2, | . 194, | 184 |
| Danish Seiners |  | 32999., | . 458, | . 562, | 1.23, | 2, | . 086 , | . 131 |
| KASU_q4 | , | 36283., | . 436, | . 352 , | .81, | 2, | . 095 , | . 120 |
| KASU_q1_backshifted |  | 37051., | . 281, | . 317, | 1.13, | 2, | . 228 , | . 118 |
| IBTSQ1_backshifted |  | 52751., | . 377 , | . 172, | . 45, | 2, | .127, | . 084 |
| IBTSQ3 | , | 24554., | . 438, | . 386 , | . 88 , | 2, | . 094 , | . 173 |
| F shrinkage mean | , | 34134., | . 50 , |  |  |  | . 083, | . 127 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | ---: | ---: | ---: | ---: | ---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $32448 .$, | .14, | .11, | 15, | .815, | .134 |

Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=1999$

| Fleet, |  | Estimated, Survivors, | Int, s.e, | Ext, | Var, <br> Ratio, | N, | Scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Danish Gillnetters | , | 35403., | . 298, | . 237, | . 79, | 3, | . 127, | . 226 |
| Danish Trawlers | , | 32841. | . 214, | . 247 , | 1.15, | 3, | . 245, | . 242 |
| Danish Seiners | , | 41846., | . 276, | . 304 , | 1.10, | 3, | .149, | . 195 |
| KASU_q4 | , | 73497., | . 415, | . 172 , | . 41 , | 3 , | . 062 , | . 116 |
| KASU_q1_backshifted | , | 65240., | . 247 , | . 163, | . 66 , | 3 , | . 174 , | . 129 |
| IBTSQ1_backshifted |  | $59994 .$, | . 327, | . 190, | . 58 , | 3 , | .101, | . 140 |
| IBTSQ3 | , | 51837., | . 359 , | . 275 , | . 77 , | 3 , | .085, | . 160 |
| F shrinkage mean | , | 21512., | . 50, |  |  |  | . 056, | . 349 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | ---: | ---: | :--- |
| at end of year, | s.e, | S.e, | Ratio, | Rat |  |
| $43952 .$, | .11, | .10, | 22, | .962, | .186 |

Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1998$

| Fleet, |  | Estimated, Survivors, | Int, s.e, | Ext, <br> s.e, | Var, Ratio, | N, | Scaled, Weights, | Estimated <br> F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Danish Gillnetters | , | 13631., | . 251, | . 095, | . 38, | 4, | .144, | 515 |
| Danish Trawlers |  | 17991., | .188, | . 186, | . 99, | 4, | . 252 , | . 412 |
| Danish Seiners | , | 21340., | . 242 , | .196, | . 81, | 4, | . 154, | . 358 |
| KASU_q4 | , | 42362., | . 283, | . 181, | . 64, | 4, | .119, | . 196 |
| KASU_q1_backshifted | , | 35417. | . 244 , | . 112, | . 46 , | 4, | .131, | . 231 |
| IBTSQ1_backshifted | , | 49628., | . 318, | . 200 , | . 63, | 4, | . 079, | . 170 |
| IBTSQ3 | , | 40525., | . 384 , | . 328 , | . 85, | 3, | . 061 , | . 204 |
| F shrinkage mean |  | 7584., | . 50, |  |  |  | . 060 , | . 794 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $23224 .$, | .10, | .11, | 28, | 1.200, | .333 |

Age 6 Catchability constant w.r.t. time and dependent on age


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $3867 .$, | .10, | .09, | 35, | .883, | .747 |

Age 7 Catchability constant w.r.t. time and dependent on age
Year class $=1996$

| Fleet, |  | Estimated, Survivors, | Int, s.e, | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, <br> Ratio, | N, | Scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Danish Gillnetters | , | 559., | . 329, | . 080, | . 24 , | 6 , | .166, | 1.001 |
| Danish Trawlers | , | 510., | . 272 , | .106, | . 39, | 6 , | . 215, | 1.060 |
| Danish Seiners | , | 531. | . 357 , | . 106 , | . 30 , | 6 , | . 125, | 1.033 |
| KASU_q4 | , | 295. | . 302, | . 062 , | . 21, | 4, | .029, | 1.448 |
| KASU_q1_backshifted |  | 276., | . 279 , | . 057 , | . 20, | 5, | . 038, | 1.499 |
| IBTSQ1_backshifted |  | 491., | . 361 , | . 302 , | . 84 , | 5, | . 024 , | 1.084 |
| IBTSQ3 | , | 460., | . 366 , | . 152, | . 42 , | 4, | . 037 , | 1.127 |
| F shrinkage mean | , | 274., | . 50, |  |  |  | . 366 , | 1.507 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | ---: | ---: | ---: | ---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $396 .$, | .21, | .07, | 37, | .349, | 1.231 |

Age 8 Catchability constant w.r.t. time and dependent on age

| Fleet, |  | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | Ext, s.e, | Var, <br> Ratio, | N, | Scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Danish Gillnetters |  | 67., | . 459, | . 066 , | .14, | 7, | .134, | 1.118 |
| Danish Trawlers | , | 70., | . 417, | . 065 , | .16, | 7, | . 158, | 1.081 |
| Danish Seiners | , | 64., | . 541, | . 079, | . 15, | 7, | . 095, | 1.141 |
| KASU_q4 | , | 27. | . 299, | . 291, | . 97, | 5, | . 005 , | 1.800 |
| KASU_q1_backshifted |  | 42. | . 444 , | . 333 , | . 75, | 4, | . 004 , | 1.458 |
| IBTSQ1_backshifted |  | 43., | . 368 , | . 403, | 1.09, | 5, | . 004 , | 1.440 |
| IBTSQ3 | , | 49., | . 370 , | . 365 , | . 98, | 4, | . 006 , | 1.340 |
| F shrinkage mean | , | 29., | . 50, |  |  |  | . 595, | 1.734 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $41 .$, | .31, | .10, | $40^{\prime}$ | .327, | 1.473 |

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 8
Year class $=1994$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| 11., | .30, | .04, | 43, | .136, | 1.031 |

Age 10 Catchability constant w.r.t. time and age (fixed at the value for age) 8
Year class $=1993$

| Fleet, |  | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, <br> Ratio, | N, | Scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Danish Gillnetters | , | 9., | . 349, | . 067 , | .19, | 9, | . 260 , | . 795 |
| Danish Trawlers | , | 10., | . 329, | . 087 , | . 26 , | 9, | . 275, | . 706 |
| Danish Seiners | , | 5., | . 499, | .117, | . 23 , | 9 , | .113, | 1.116 |
| KASU_q4 | , | 10., | . 463, | . 440, | . 95, | 4, | . 000, | . 726 |
| KASU_q1_backshifted |  | 6., | . 302 , | . 312 , | 1.03, | 3, | . 001, | 1.057 |
| IBTSQ1_backshifted | , | $6 .$, | . 347 , | . 265, | . 76 , | 5, | . 001, | . 987 |
| IBTSQ3 | , | 5., | . 316 , | . 207, | . 65, | 5, | . 001, | 1.111 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $8 .$, | .22, | .05, | 45, | .217, | .861 |

Table 10.3.2. Plaice in IIIa. Fishing mortality (F) at age.

| At | 9/09/2004 | 13:57 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Terminal Fs derived using XSA (With F shrinkage) |  |  |  |  |  |  |  |  |
|  | Table 8 | Fishing | mortality | (F) at |  |  |  |  |  |  |
|  | YEAR, | 1978, | 1979, | 1980, | 1981, | 1982, | 1983, |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |
|  | 2, | . 0084 , | . 0257 , | .0111, | . 0078, | .0115, | . 0166 , |  |  |  |
|  | 3, | . 2335, | . 2058, | . 1327 , | . 1487, | . 0988 , | . 2685 , |  |  |  |
|  | 4, | . 7572 , | .7969, | . 5479 , | .5627, | . 5156, | .6524, |  |  |  |
|  | 5, | 1.0753, | 1.0747, | . 8465 , | . 7787 , | 1.1261, | 1.0505, |  |  |  |
|  | 6 , | 1.0199, | 1.0636, | . 9628, | . 7009 , | 1.0772, | . 8688 , |  |  |  |
|  | 7, | . 5951, | . 9543, | 1.0673, | . 5503, | .6588, | . 4407 , |  |  |  |
|  | 8 , | . 2824 , | . 2829 , | 1.0973, | . 6559, | . 5634, | . 3504 , |  |  |  |
|  | 9, | . 4844 , | . 5608, | . 5648, | .6835, | . 8318, | . 3334, |  |  |  |
|  | 10, | .6945, | . 7910, | . 9124, | . 6768 , | . 8557 , | .6113, |  |  |  |
|  | +gp, | . 6945, | . 7910 , | . 9124, | . 6768, | . 8557 , | .6113, |  |  |  |
| 0 FBAR | 4-8, | . 7460 , | . 8345 , | . 9044 , | . 6497, | . 7882, | . 6726 , |  |  |  |
|  | Table 8 | Fishing | mortality | (F) at |  |  |  |  |  |  |
| YEAR, | 1984, | 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2 , | . 0326 , | . 0305 , | . 0107, | . 0191, | . 0032 , | . 0162 , | . 0462 , | . 0490 , | . 0212, | . 0314 , |
| 3 , | . 1721 , | . 1591, | .1130, | . 1434, | . 1103 , | .1454, | .1697, | . 1544 , | . 0973 , | . 0961 , |
| 4, | . 4947 , | . 4438, | . 3936, | . 4706 , | .6640, | . 3566 , | .4911, | . 2535, | . 2902 , | . 3498 , |
| 5, | . 7464 , | . 5037, | . 7844 , | 1.0217, | 1.3401, | . 7793 , | 1.0439, | .4764, | . 8673, | . 5426 , |
| 6 , | .8184, | .6371, | . 7336, | 1.2038, | 1.4316, | . 9473 , | 1.1140, | .9301, | . 9714, | . 9245 , |
| 7 , | .8293, | . 5936, | . 4517, | . 8171, | 1.1825, | . 9187, | .9997, | . 9838 , | . 9306 , | 1.2026, |
| 8 , | . 9118, | . 4729 , | . 4332 , | . 4649 , | 1.0013, | .6934, | 1.1509, | . 8967 , | . 9524 , | . 9621 , |
| 9, | .9341, | . 4440 , | . 5038, | . 7534, | . 8318, | . 7152 , | 1.2137, | 1.4896, | . 9234 , | . 9627 , |
| 10, | . 8522 , | . 5322, | . 5837, | . 8857 , | 1.1983, | . 9305, | 1.2190, | 1.0549, | 1.0704, | 1.1569, |
| +gp, | . 8522, | . 5322, | . 5837, | . 8857 , | 1.1983, | . 9305, | 1.2190, | 1.0549, | 1.0704, | 1.1569, |
| FBAR4-8 | 8, .7601, | . 5302, | . 5593, | . 7956 , | 1.1239, | . 7390 , | .9599, | . 7081 , | . 8024 , | . 7963 , | 1

Run title : Plaice IIIa VPA data, 2003 WG,ANON, COMBSEX,PLUSGROUP
At 9/09/2004 13:57
Terminal Fs derived using XSA (With F shrinkage)

|  | Table |  | g mo | ity (F) | at age |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003, FBAR | R 01-03 |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
| 2 , | . 0432 , | . 0124, | . 1261 , | . 0122, | . 0149, | . 0176 , | . 0181 , | . 0526 , | . 0087 , | . 0328 , | . 0314 , |
| 3, | . 2678 , | . 0820, | .1805, | . 1688, | . 1886, | . 0831, | . 1194, | . 1641 , | . 0804 , | .1335, | . 1260, |
| 4, | . 2944 , | . 3917 , | . 4017, | . 3018 , | . 4351, | . 3401 , | . 3484 , | . 4072 , | . 2115, | . 1863, | . 2683, |
| 5, | . 6021, | . 7858 , | . 5512, | 1.0462, | . 5421, | . 9797, | . 9048 , | . 9427, | . 5795, | . 3333, | .6185, |
| 6 , | . 6568, | . 9497, | . 7850 , | 1.5380, | 1.0235, | 1.9703, | 1.4991, | 1.1648, | 1.3936, | .7465, 1 | 1.1016, |
| 7, | 1.1331, | 1.0000, | . 6525, | 1.9107, | . 9836, | 1.9864, | 1.6958, | . 5759, | 2.2436, | 1.2311, 1 | 1.3502, |
| 8 , | 1.1902, | 1.2516, | . 7383 , | 1.4633, | 1.5970, | 2.1960 , | 1.3572, | . 8324 , | 2.6296, | 1.4730, 1 | 1.6450, |
| 9 , | .7499, | 1.4834, | .6700, | 1.4121, | . 9868 , | 2.0436, | . 5025, | . 5724 , | 1.2163, | 1.0314, | . 9400 , |
| 10, | 1.0605, | 1.2829, | 1.0006, | 1.5908, | 1.1617, | 1.8473, | 1.1238, | . 9020 , | 1.4437, | .8612, 1 | 1.0690, |
| +gp, | 1.0605, | 1.2829, | 1.0006, | 1.5908, | 1.1617, | 1.8473, | 1.1238, | . 9020 , | 1.4437, | . 8612 , |  |
| FBAR4-8 | 8,.7753, | . 8758 , | .6257, | 1.2520, | . 9162 , | 1.4945, | 1.1610, | . 7846 , | 1.4116, | . 7940 , |  |

Table 10.3.3. Plaice in IIIA. Stock numbers at age (start of year) Numbers 10*-3


Table 10.3.4. Plaice in IIIa. Summary Table

Run title : Plaice IIIa VPA data, 2003 WG,ANON,COMBSEX,PLUSGROUP

```
At 9/09/2004 13:57
```

    Table 16 Summary (without SOP correction)
    Terminal Fs derived using XSA (With F shrinkage)
    | ', | RECRUITS, <br> Age 2 | TOTALBIO, | TOTSPBIO, | LANDINGS, | YIELD/SSB, | FBAR 4-8, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978, | 61661, | 74881, | 60329, | 26953, | . 4468 , | . 7460 , |
| 1979, | 45790, | 56723, | 46558, | 21976, | . 4720 , | . 8345 , |
| 1980, | 34418, | 48458, | 39475, | 16445, | . 4166 , | . 9044 , |
| 1981, | 25724, | 38489, | 32573, | 12602, | . 3869 , | . 6497, |
| 1982, | 48495, | 39803, | 26710, | 11047, | .4136, | . 7882 , |
| 1983, | 94310, | 54420, | 27541, | 10780, | . 3914 , | . 6726 , |
| 1984, | 70510, | 61367, | 41483, | 11591, | . 2794 , | . 7601 , |
| 1985, | 48963, | 60746, | 47135, | 13482, | . 2860 , | . 5302, |
| 1986, | 37160, | 52166, | 42876, | 14052, | . 3277 , | . 5593, |
| 1987, | 34604, | 48129, | 36986, | 15658, | . 4233 , | . 7956 , |
| 1988, | 33106, | 36311, | 27969, | 12850, | . 4594 , | 1.1239, |
| 1989, | 66177, | 41318, | 23185, | 7741, | . 3339 , | .7390, |
| 1990, | 73255, | 54949, | 33558, | 12082, | . 3600 , | . 9599, |
| 1991, | 50792, | 49033, | 35674, | 8700, | . 2439 , | . 7081 , |
| 1992, | 45378, | 53825, | 39803, | 11931, | . 2997, | . 8024 , |
| 1993, | 35304, | 45722, | 36296, | 11323, | . 3120 , | . 7963 , |
| 1994, | 35068, | 41429, | 31786, | 11325, | . 3563 , | . 7753 , |
| 1995, | 38128, | 39755, | 29727, | 10766, | . 3622 , | . 8758 , |
| 1996, | 40169, | 39155, | 28469, | 10545, | . 3704 , | . 6257, |
| 1997, | 45903, | 40458, | 26687, | 10291, | . 3856 , | 1.2520, |
| 1998, | 39967, | 36437, | 26046, | 8430, | . 3237 , | . 9162 , |
| 1999, | 41376, | 37486, | 26273, | 8740, | . 3327 , | 1.4945, |
| 2000, | 71680, | 44594, | 26172, | 8820, | . 3370 , | 1.1610, |
| 2001, | 81642, | 55854, | 34872, | 11560, | . 3315 , | .7846, |
| 2002, | 45689, | 52026, | 40787, | 8701, | . 2133, | 1.4116, |
| 2003, | 66685, (1) | 68625, | 39995, | 8952, | . 2238, | . 7940 , |
| 2004, | 53790, (1) |  | 47064, (2) |  |  |  |
| Arith. |  |  |  |  |  |  |
| Mean | 52426, | 48929, | 34960, | 12206, | . 3496 , | .8639, |
| 0 Units, | (Thousands), | (Tonnes), | (Tonnes), | (Tonnes), |  |  |

(1) RCT3 estimate
(2) Assuming 3-years average stock weight

Table 10.4.1. Plaice in IIIa. Input to RCT3.

| Y.CLASS | XSA a.2 | XSA a.3 | IBTSq1 a.1 | IBTSq1 a.2 | KASUq1 a.1 | KASUq1 a.2 | KASUq4 a.1 | KASUq4 a.2 | KASUq4 a.0 | IBTSq3 a. 1 | IBTSq3 a.2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1989 | 50792 | 43762 | -11 | 6.65 | -11 | -11 | -11 | -11 | -11 | -11 | -11 |  |
| 1990 | 45378 | 40199 | -11 | 8.07 | -11 | -11 | -11 | -11 | -11 | -11 |  |  |
| 1991 | 35304 | 30957 | -11 | 12.61 | -11 | -11 | -11 | -11 | -11 | -11 |  |  |
| 1992 | 35068 | 30389 | 0.71 | 16.82 | -11 | -11 | -11 | 10.51 | -11 | -11 | -11 |  |
| 1993 | 38128 | 34076 | 0.64 | 8.31 | -11 | -11 | 0.87 | 10.33 | -11 | -11 | 9.67 |  |
| 1994 | 40169 | 32041 | 0.5 | 34.31 | -11 | 23.26 | 1.67 | 37.87 | 0.09 | 7.63 | 16.61 |  |
| 1995 | 45903 | 41032 | 0 | 17.19 | 2.3 | 11.52 | 2.48 | 11.27 | 0.02 | 8.67 | 18.35 |  |
| 1996 | 39967 | 35628 | 0.26 | 15.88 | 0.1 | 0 | 11.14 | 14.8 | 0.1 | 15.24 | 20.95 |  |
| 1997 | 41376 | 36785 | 1.39 | 36.29 | 0 | 25.82 | 17.85 | 33.15 | 0.28 | 18.46 | 46.2 |  |
| 1998 | 71680 | 63695 | 3.29 | 98.25 | 4.7 | 196.46 | 89.27 | 121.08 | 5.61 | 46.72 | -11 |  |
| 1999 | 81642 | 70086 | 3.87 | 42.45 | 33.2 | 127.68 | 99.71 | 99.58 | 6.11 | -11 | 81.66 |  |
| 2000 | 45689 | 40982 | 0.15 | 11.04 | 11.5 | 45.73 | 52.84 | 18.36 | 0 | 7.31 | 25.39 |  |
| 2001 | -11 | -11 | 1.02 | 75.23 | 20.9 | 134.21 | 46.11 | 61.85 | 14.78 | 26.92 | 29.14 |  |
| 2002 | -11 | -11 | 1.77 | 30.65 | 9.4 | 77.09 | 42.1 | -11 | 1.64 | 2.13 | -11 | -11 |
| 2003 | -11 | -11 | 1.88 | -11 | 7.7 | -11 | -11 | -11 | 12.26 | -11 | -11 |  |

Table 10.4.2. Plaice in IIIa. RCT3 output at age 2.
Analysis by RCT3 ver3.1 of data from file :
input2.txt
PLE IIIa _ WG 2004. Input from the XSA run 2 at age 2, non shifted indices
Data for 9 surveys over 15 years : 1989 - 2003
Regression type $=C$
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as
Minimum of 3 points used for regression 20
Forecast/Hindcast variance correction used.
Yearclass = 2000


Yearclass $=2001$

| Survey/ <br> Series | Slope | $\begin{gathered} \text { Inter- } \\ \text { cept } \end{gathered}$ | Std Error | Rsquare | No. Pts | Index <br> Value | Predicted Value | Std <br> Error | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IBq1. 1 | . 66 | 10.33 | . 25 | . 616 | 9 | . 70 | 10.80 | . 295 | . 099 |
| IBq1. 2 | . 62 | 8.89 | . 42 | . 307 | 12 | 4.33 | 11.58 | . 532 | . 030 |
| HVq1.1 | . 29 | 10.43 | . 28 | . 591 | 6 | 3.09 | 11.31 | . 413 | . 050 |
| HVq1. 2 | . 23 | 10.07 | . 30 | . 542 | 7 | 4.91 | 11.20 | . 397 | . 054 |
| HVq4.1 | . 23 | 10.17 | . 25 | . 605 | 8 | 3.85 | 11.06 | . 320 | . 084 |
| HVq4. 2 | . 37 | 9.52 | . 19 | . 728 | 9 | 4.14 | 11.07 | . 238 | . 151 |
| HVq4.0 | . 34 | 10.62 | . 09 | . 926 | 7 | 2.76 | 11.56 | . 156 | . 214 |
| IBq3.1 | . 44 | 9.55 | . 22 | . 555 | 6 | 3.33 | 11.03 | . 315 | . 086 |
| IBq3. 2 | . 49 | 9.14 | . 22 | . 626 | 7 | 3.41 | 10.81 | . 282 | . 108 |
|  |  |  |  |  | VPA | Mean $=$ | 10.74 | . 264 | . 123 |

Yearclass $=2002$

| Survey/ <br> Series | Slope | $\begin{aligned} & \text { Inter- } \\ & \text { cept } \end{aligned}$ | Std Error | Rsquare | No. <br> Pts | Index Value | Predicted Value | Std Error | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IBq1.1 | . 66 | 10.33 | . 25 | . 616 | 9 | 1.02 | 11.01 | . 302 | . 130 |
| IBq1. 2 | . 62 | 8.89 | . 42 | . 307 | 12 | 3.45 | 11.03 | . 481 | . 051 |
| HVq1.1 | . 29 | 10.43 | . 28 | . 591 | 6 | 2.34 | 11.10 | . 385 | . 080 |
| HVq1. 2 | . 23 | 10.07 | . 30 | . 542 | 7 | 4.36 | 11.07 | . 385 | . 080 |
| HVq4.1 | . 23 | 10.17 | . 25 | . 605 | 8 | 3.76 | 11.04 | . 318 | . 117 |
| HVq4. 2 |  |  |  |  |  |  |  |  |  |
| HVq4.0 | . 34 | 10.62 | . 09 | . 926 | 7 | . 97 | 10.95 | . 117 | . 297 |
| IBq3.1 | . 44 | 9.55 | . 22 | . 555 | 6 | 1.14 | 10.06 | . 406 | . 072 |
| IBq3.2 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | VPA | Mean $=$ | 10.74 | . 264 | . 171 |

Yearclass $=2003$


HVq1. 2
HVq4. 1
HVq4.2
HVq4. 0
IBq3. 1
IBq3. 2

| Year | Weighted <br> Average <br> Class | Log <br> WAP | Int <br> Std <br> Error | Ext <br> Std <br> Error | Var <br> Ratio | VPA | Log <br> VPA |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| 2000 | 46691 | 10.75 | .09 | .09 | 1.07 | 45689 | 10.73 |
| 2001 | 66685 | 11.11 | .09 | .10 | 1.16 |  |  |
| 2002 | 53790 | 10.89 | .11 | .10 | .80 |  |  |
| 2003 | 70457 | 11.16 | .13 | .18 | 1.89 |  |  |
|  |  |  |  |  |  |  |  |

Table 10.4.3. Plaice in IIIa. RCT3 output at age 3.
Analysis by RCT3 ver3.1 of data from file :
inp_age3.txt
"PLE IIIa _ WG 2004. Input from the XSA run 2 at age 3, non shifted indices" Data for 9 surveys over 15 years : 1989 - 2003

Regression type $=C$
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as
Minimum of 3 points used for regression 20
Forecast/Hindcast variance correction used.





HVq4. 2
HVq4. 0
IBq3. 1
IBq3. 2


Table 10.5.1. Plaice in III. Input data for catch forecast and linear sensitivity analysis.

| Label | Value | CV | Label | Value | CV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number | age |  | Weight | the st |  |
| N2 | 53790 | 0.33 | WS2 | 0.25 | 0.03 |
| N3 | 59363 | 0.19 | WS3 | 0.27 | 0.04 |
| N4 | 32448 | 0.14 | WS 4 | 0.28 | 0.04 |
| N5 | 43952 | 0.11 | WS5 | 0.30 | 0.06 |
| N6 | 23223 | 0.11 | WS 6 | 0.32 | 0.07 |
| N7 | 3866 | 0.10 | WS 7 | 0.41 | 0.03 |
| N8 | 396 | 0.21 | WS8 | 0.55 | 0.13 |
| N9 | 40 | 0.31 | WS 9 | 0.75 | 0.17 |
| N10 | 11 | 0.30 | WS10 | 0.82 | 0.34 |
| N11 | 11 | 0.22 | WS11 | 1.09 | 0.22 |
| H.cons | ectivi |  | Weight | the HC | atch |
| sH2 | 0.03 | 0.80 | WH2 | 0.25 | 0.03 |
| sH3 | 0.10 | 0.54 | WH3 | 0.27 | 0.04 |
| sH4 | 0.21 | 0.64 | WH4 | 0.28 | 0.04 |
| sH5 | 0.49 | 0.67 | WH5 | 0.30 | 0.06 |
| sH6 | 0.88 | 0.27 | WH6 | 0.32 | 0.07 |
| sH7 | 1.08 | 0.37 | WH7 | 0.41 | 0.03 |
| sH8 | 1.31 | 0.29 | WH8 | 0.55 | 0.13 |
| sH9 | 0.75 | 0.31 | WH9 | 0.75 | 0.17 |
| sH10 | 0.85 | 0.06 | WH10 | 0.82 | 0.34 |
| sH11 | 0.85 | 0.06 | WH11 | 1.09 | 0.22 |
| Natura | rtalit |  | Propor | matur |  |
| M2 | 0.10 | 0.10 | MT2 | 0.00 | 0.10 |
| M3 | 0.10 | 0.10 | MT3 | 1.00 | 0.10 |
| M4 | 0.10 | 0.10 | MT 4 | 1.00 | 0.00 |
| M5 | 0.10 | 0.10 | MT5 | 1.00 | 0.00 |
| M6 | 0.10 | 0.10 | MT 6 | 1.00 | 0.00 |
| M7 | 0.10 | 0.10 | MT 7 | 1.00 | 0.00 |
| M8 | 0.10 | 0.10 | MT8 | 1.00 | 0.00 |
| M9 | 0.10 | 0.10 | MT9 | 1.00 | 0.00 |
| M10 | 0.10 | 0.10 | MT10 | 1.00 | 0.00 |
| M11 | 0.10 | 0.10 | MT11 | 1.00 | 0.00 |
| Relative effort |  |  | Year effect for natural mortality |  |  |
| in HC fishery |  |  |  |  |  |
| HFO4 | 1.00 | 0.36 | K04 | 1.00 | 0.10 |
| HF05 | 1.00 | 0.36 | K05 | 1.00 | 0.10 |
| HFO6 | 1.00 | 0.36 | K06 | 1.00 | 0.10 |
| Recruitment in 2005 and 2006 |  |  |  |  |  |
| R05 | 47311 | 0.33 |  |  |  |
| R06 | 47311 | 0.33 |  |  |  |

Proportion of $F$ before spawning $=.00$
Proportion of M before spawning $=.00$
Stock numbers in 2004 are VPA survivors.
These are overwritten at Age 2 Age 3

Table 10.5.2. Plaice in IIIa. Catch forecast output and estimates of coefficient of variation (CV) from linear analysis.


Table 10.5.3. Plaice in IIIa. Detailed forecast tables.

Forecast for year 2004
F multiplier H.cons=1.00


Forecast for year 2005
F multiplier H.cons=1.00

| Populations |  |
| :---: | :---: |
| Age | No. |
| 2 | 47311 |
| 3 | 47470 |
| 4 | 48602 |
| 5 | 23704 |
| 6 | 24291 |
| 7 | 8733 |
| 8 | 1193 |
| 9 | 97 |
| 10 | 17 |
| 11 | 8 |
| Wt | 57 |



Plaice in Illa
Stock numbers of recruits and their source for recent year classes used in

## predictions, and the relative (\%) contributions to landings and SSB (by weight) of these year classes

|  | Year-class |  | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 oth |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stock No. (thousa 2 year-olds |  | 71680 | 81642 | 45689 | 117818 | 53790 | 47311 |  |
| Source |  |  |  | VPA | VPA | VPA | GM | GM |  |
| Status Quo F: |  |  |  |  |  |  |  |  |  |
| \% in | 2004 | landings | 30.2 | 36.1 | 12.1 | 10.5 | 2.3 | - | 8.7 |
| \% in | 2005 |  | 16.6 | 31.6 | 19.4 | 18.2 | 8.4 | 2.1 | 3.7 |
| \% in | 2004 | SSB | 15.6 | 28.0 | 19.1 | 33.4 | 0.0 | - | 3.9 |
| \% in | 2005 | SSB | 7.9 | 17.0 | 15.7 | 29.8 | 27.9 | 0.0 | 1.7 |
| \% in | 2006 | SSB | 3.5 | 8.9 | 9.8 | 25.3 | 25.6 | 26.3 | 0.6 |

Plaice in Illa : Year-class \% contribution to


Figure 10.2.1. Plaice in IIIa. Commercial fleet effort and CPUE.




Figure 10.2.2. Plaice in Illa. Relative survey indices by age.


Figure 10.3.1. Plaice in IIIa. Stock summary plots.





Figure 10.3.2. Plaice in IIIa. Historical performance of the assesssment.



Plaice in Division Illa (Skagerrak - Kattegat)


Figure 10.5.1. Plaice in IIIa. Probability profiles for the short-term forecast.

Plaice,IIIa. Probability profiles for short term forecast.



The assessment of plaice in Division VIId is presented here as an update assessment. All the relevant biological and methodological information can be found in the Stock Annex dealing with this stock. Here, only the basic input and output from the assessment model will be presented.

### 11.1 The fishery

Relevant information on the fishery can be found in the Stock Annex.

### 11.1.1 ICES advice applicable to 2003 and 2004

ICES advice for 2003 and 2004 was that the stock was harvested outside safe biological limits.
The fishing mortality in 2003 should be reduced to less than the proposed $\boldsymbol{F}_{p a}(0.45)$, corresponding to landings in 2003 of less than 5300t.

The fishing mortality in 2004 should be reduced to less than the proposed $\boldsymbol{F}_{p a}(0.45)$, corresponding to landings in 2004 of less than 5400t.

### 11.1.2 Management applicable in 2003 and 2004

The TAC in 2003 and 2004 were set respectively to 5970 t and 6060 t . for the combined ICES Division VIIde.

### 11.1.3 The fishery in 2003

The first quarter is usually the most important for the fisheries but the relative part of the catch for this quarter has been decreasing from the early 1990s. The landings (in weight) in the first quarter was $32 \%$ of the annual total in 2003, compared to $44 \%$ in $2000,41 \%$ in 2001 and $35 \%$ in 2002.

### 11.2 Data available

### 11.2.1 Landings

Landings data as reported to ICES together with the total landings estimated by the Working Group are shown in Table 11.2.1. Since 1992, the landings have remained steady between 5100 t and 6300 t . The 2003 landings of 4536 t . represents one of the weakest value of the historical time series, $30 \%$ below the 6470 t . predicted at $\boldsymbol{F}_{s q}$ from last year's assessment. France contributed to $61 \%$ of the official landings in 2003 followed by Belgium ( $22 \%$ ) and UK ( $17 \%$ ).

There is relatively little information on discarding practices on this stock. Routine discard monitoring has recently begun following the introduction of the EU data collection regulations. Discards data for 2003 are available from France (Table 11.2.2 and Figure 11.2.1) though sampling levels are not high. Initial indications are that discard rates may be substantial.

### 11.2.2 Age compositions

Age compositions of the landings are presented in Table 11.2.3

### 11.2.3 Weight at age

Weight at age in the catch is presented in Table 11.2.4 and weight at age in the stock in Table 11.2.5. The procedure for calculating mean weights is described in the Stock Annex.

### 11.2.4 Maturity and natural mortality

Maturity and natural mortality are assumed at fixed values and are presented in Stock Annex.

### 11.2.5 Catch, effort and research vessel data

Commercial effort and CPUE data are available from four commercial fleets (Figure 11.2.2). All survey and commercial data available for calibration of the assessment are presented in Tables 11.2.6

### 11.3 Catch at age analysis

Catch at age analysis was carried out according to the specifications in the Stock Annex. The model used was XSA. Results of the analysis are presented in Tables 11.3.1 (diagnostics), 11.3.2 (fishing mortality at age), 11.3.3 (population numbers at age), and 11.3.4 (stock summary). The stock summary is also shown in Figure 11.3.1 and the historical performance of the assessment is shown in Figure 11.3.2.

### 11.4 Recruitment estimates

Recruitment estimation was carried out according to the specifications in the Stock Annex. The model used was RCT3. Input to the RCT3 model is presented in Table 11.4.1. Results are presented in Table 11.4.2 and Table 11.4.3.

Average recruitment in the period 1980-2003 was 23 millions (geometric mean) 1-year-old-fish. Year class strength estimates used for short term prognosis are summarised in the text table below.

| Year <br> Class | Age <br> in 2004 | XSA <br> Thousands | RCT3 <br> Thousands | GM (1980-2001) <br> Thousands |
| :--- | :--- | :--- | :--- | :--- |
| 2001 | 3 | $\underline{\mathbf{1 6 7 6 7}}$ |  | 13544 |
| 2002 | 2 | 8063 | $\underline{\mathbf{1 2 6 7 6}}$ | 19913 |
| 2003 | 1 |  | 22972 | $\underline{\mathbf{2 3 1 4 6}}$ |
| 2004 | 0 |  |  | $\underline{\mathbf{2 3 1 4 6}}$ |

### 11.5 Short-term prognosis

The short-term prognosis was carried out according to the specifications in the Stock Annex. The exploitation pattern used was the unscaled mean F-at-age over the period 2001-2003. Input to the WGFRANSW model is presented in Table 11.5.1. Results are presented in Tables 11.5.2 and 11.5.3. The relative contributions of different year-classes to future SSB are given in Table 11.5.4, while probability profiles for the forecast are shown in Figure 11.5.1.

### 11.6 Comments

- This assessment has been carried out with exactly the same parameters as last year
- Recruitment in 2003 (the 2002 year-class at age 1 ) is perceived as the weakest in the available time-series and is likely to have an adverse effect on spawning stock biomass in the near future.
- Two consecutive years of recruitment above average (yearclasses 2000 and 2001) have constituted the main component of the catches in 2003 but the total landings were $30 \%$ under the value predicted at $\mathbf{F}_{\text {sq }}$ from last year's assessment indicating a tendency of overestimating SSB in the recent years. Consequently, the perception of decreasing F in 2003 can be an artefact as the reference fleets have all shown an increase in effort.
- This assessment doesn't include discards.
- The EU regulation enforced in 2004 invoked a limitation of 22 days at sea per month for trawlers with mesh size less than 99 mm , and 14 days at sea for beam trawlers. Gill-netters have a derogation of 20 days at sea in the Eastern Channel provided that their mesh size is less than 110 mm . However these effort limitations from the cod recovery plan are not likely to decrease the effort on plaice in Division VIId and therefore the short-term prognosis was not modified in the intermediate year.


## Suggested work plan for benchmark:

- Analyse the consistency and reliability of the tuning fleets (individual retrospective analysis, log catchabilities residuals, standardised CPUE, etc). Consider redefinition of the current tuning fleets (prior to the WG) and/or the integration of new ones. UK have provided beam-trawler data for this assessment but this new tuning fleet has not been used given that this was an update assessment.
- Integrate the ongoing discard estimation into the assessment.
- Investigate whether the problem of misreporting on sole could affect the reporting of plaice.
- Verify the consistency of the weights time series, with particular reference to the influence of an incorrect assumption about sex-ratios on mean weight calculations.
- Produce maps of catches per ICES rectangle for the recent years to investigate a possible shift in catch distribution.

The next benchmark assessment for this stock is scheduled for 2006.

Table 11.2.1 - Plaice in Division VIId. Nominal landings (tonnes) as officially reported to ICES , 1976-2003

| Year |  | Belgium |  | Denmark | France | UK(E+W) | Others |  | Total reported | Unallocated | Total as used by WG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1976 |  | 147 | 1(1) | 1439 | 376 | - |  | 1963 | - | 1963 |
|  | 1977 |  | 149 | 81(2) | 1714 | 302 |  |  | 2246 | - | 2246 |
|  | 1978 |  | 161 | 156(2) | 1810 | 349 |  |  | 2476 | - | 2476 |
|  | 1979 |  | 217 | 28(2) | 2094 | 278 |  |  | 2617 |  | 2617 |
|  | 1980 |  | 435 | 112(2) | 2905 | 304 |  |  | 3756 | -1106 | 2650 |
|  | 1981 |  | 815 |  | 3431 | 489 |  |  | 4735 | 34 | 4769 |
|  | 1982 |  | 738 |  | 3504 | 541 |  | 22 | 4805 | 60 | 4865 |
|  | 1983 |  | 1013 |  | 3119 | 548 |  |  | 4680 | 363 | 5043 |
|  | 1984 |  | 947 |  | 2844 | 640 |  |  | 4431 | 730 | 5161 |
|  | 1985 |  | 1148 |  | 3943 | 866 |  |  | 5957 | 65 | 6022 |
|  | 1986 |  | 1158 |  | 3288 | 828 |  | 488 (2) | 5762 | 1072 | 6834 |
|  | 1987 |  | 1807 |  | 4768 | 1292 |  |  | 7867 | 499 | 8366 |
|  | 1988 |  | 2165 |  | 5688 (2) | 1250 |  |  | 9103 | 1317 | 10420 |
|  | 1989 |  | 2019 |  | 3265 (1) | 1383 |  |  | 6667 | 2091 | 8758 |
|  | 1990 |  | 2149 |  | 4170 (1) | 1479 |  |  | 7798 | 1249 | 9047 |
|  | 1991 |  | 2265 |  | 3606 (1) | 1566 |  |  | 7437 | 376 | 7813 |
|  | 1992 |  | 1560 | 1 | 3099 | 1553 |  | 19 | 6232 | 105 | 6337 |
|  | 1993 |  | 877 | +(2) | 2792 | 1075 |  | 27 | 4771 | 560 | 5331 |
|  | 1994 |  | 1418 |  | 3199 | 993 |  | 23 | 5633 | 488 | 6121 |
|  | 1995 |  | 1157 |  | 2598 (2) | 796 |  | 18 | 4569 | 561 | 5130 |
|  | 1996 |  | 1112 |  | 2630 (2) | 856 |  |  | 4598 | 795 | 5393 |
|  | 1997 |  | 1161 |  | 3077 | 1078 |  |  | 5316 | 991 | 6307 |
|  | 1998 |  | 854 |  | 3276 (23) | 700 | + |  | 4830 | 932 | 5762 |
|  | 1999 |  | 1306 |  | 3259 (23) | 743 |  |  | 5437 | 889 | 6326 |
|  | 2000 |  | 1298 |  | 3183 | 752 | + |  | 5233 | 781 | 6014 |
|  | 2001 |  | 1346 |  | 2962 | 655 | + |  | 4963 | 303 | 5266 |
|  | 2002 |  | 1204 |  | 3454 | 841 |  |  | 5499 | 278 | 5777 |
|  | 2003 |  | 995 |  | 2783 (3) | 756 |  |  | 4536 | - | 4536 |
| 1 Estimated by the Working Group from combined Division VIId <br> 2 Includes Division VIIe <br> 3 Preliminary |  |  |  |  |  |  |  |  |  |  |  |

Table 11.2.2 - Plaice VIId. Length structure of discards and landings collected by observations on board (numbers raised to sampled trips)
$\left.\begin{array}{|r|l|l|l|}\hline \text { (numbers raised to sampled trips) } & \\ \hline \text { Discards } & \text { Fr Otter trawl } \\ \text { Landings } & & \text { Discards } & \text { Fr Gillnet } \\ \text { Landings }\end{array}\right]$

Table 11.2.3 - Plaice in Division VIId. Catch in numbers (thousands)

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1980 | 53 | 2644 | 1451 | 540 | 490 | 75 | 45 | 44 | 4 | 103 |
| 1981 | 16 | 2446 | 6795 | 2398 | 290 | 159 | 51 | 42 | 56 | 200 |
| 1982 | 265 | 1393 | 6909 | 3302 | 762 | 206 | 96 | 62 | 21 | 88 |
| 1983 | 92 | 3030 | 3199 | 5908 | 931 | 226 | 92 | 122 | 4 | 101 |
| 1984 | 350 | 1871 | 7310 | 2814 | 1874 | 533 | 236 | 101 | 34 | 100 |
| 1985 | 142 | 5714 | 6195 | 4883 | 413 | 612 | 164 | 99 | 139 | 50 |
| 1986 | 679 | 4884 | 7034 | 3663 | 1458 | 562 | 254 | 69 | 19 | 34 |
| 1987 | 25 | 8499 | 7508 | 3472 | 1257 | 430 | 442 | 154 | 105 | 77 |
| 1988 | 16 | 5011 | 18813 | 4900 | 1118 | 541 | 439 | 127 | 105 | 174 |
| 1989 | 826 | 3638 | 7227 | 9453 | 2672 | 588 | 288 | 179 | 81 | 197 |
| 1990 | 1632 | 2627 | 8746 | 5983 | 3603 | 801 | 243 | 203 | 178 | 231 |
| 1991 | 1542 | 5860 | 5445 | 4524 | 2437 | 1681 | 286 | 120 | 113 | 125 |
| 1992 | 1665 | 6193 | 4450 | 1725 | 1187 | 1044 | 698 | 200 | 116 | 118 |
| 1993 | 740 | 7606 | 3817 | 1259 | 542 | 468 | 334 | 287 | 102 | 152 |
| 1994 | 1242 | 3633 | 6968 | 3111 | 850 | 419 | 312 | 267 | 275 | 312 |
| 1995 | 2592 | 4340 | 2933 | 2928 | 922 | 228 | 277 | 225 | 122 | 258 |
| 1996 | 1119 | 4847 | 3606 | 1547 | 1436 | 488 | 179 | 176 | 165 | 347 |
| 1997 | 550 | 4246 | 7189 | 3434 | 1080 | 752 | 464 | 199 | 114 | 306 |
| 1998 | 464 | 4400 | 8629 | 3419 | 537 | 143 | 136 | 81 | 52 | 188 |
| 1999 | 741 | 1758 | 12104 | 6460 | 1043 | 171 | 86 | 81 | 38 | 111 |
| 2000 | 1383 | 6214 | 4284 | 7241 | 1652 | 307 | 82 | 27 | 42 | 98 |
| 2001 | 2682 | 4159 | 4380 | 2141 | 1985 | 310 | 87 | 22 | 13 | 78 |
| 2002 | 902 | 7204 | 5191 | 1907 | 1565 | 888 | 234 | 62 | 25 | 92 |
| 2003 | 646 | 4874 | 5668 | 1864 | 424 | 373 | 333 | 75 | 50 | 62 |

Table 11.2.4 -Plaice in Division VIId. Weight in the catch

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1980 | 0.309 | 0.312 | 0.499 | 0.627 | 0.787 | 1.139 | 1.179 | 1.293 | 1.475 | 1.557 |
| 1981 | 0.239 | 0.299 | 0.373 | 0.464 | 0.712 | 0.87 | 0.863 | 0.897 | 0.992 | 1.174 |
| 1982 | 0.245 | 0.271 | 0.353 | 0.431 | 0.64 | 0.795 | 1.153 | 1.067 | 1.504 | 1.355 |
| 1983 | 0.266 | 0.296 | 0.349 | 0.42 | 0.542 | 0.822 | 0.953 | 1.144 | 0.943 | 1.591 |
| 1984 | 0.233 | 0.295 | 0.336 | 0.402 | 0.508 | 0.689 | 0.703 | 0.945 | 1.028 | 1.427 |
| 1985 | 0.254 | 0.278 | 0.301 | 0.427 | 0.502 | 0.57 | 0.557 | 1.081 | 0.849 | 1.421 |
| 1986 | 0.226 | 0.306 | 0.331 | 0.406 | 0.546 | 0.486 | 0.629 | 0.871 | 1.446 | 1.579 |
| 1987 | 0.251 | 0.282 | 0.36 | 0.477 | 0.577 | 0.783 | 0.735 | 1.142 | 1.268 | 1.515 |
| 1988 | 0.292 | 0.268 | 0.321 | 0.432 | 0.56 | 0.657 | 0.77 | 0.908 | 1.218 | 1.328 |
| 1989 | 0.201 | 0.268 | 0.321 | 0.37 | 0.473 | 0.648 | 0.837 | 0.907 | 1.204 | 1.519 |
| 1990 | 0.201 | 0.256 | 0.326 | 0.378 | 0.483 | 0.61 | 0.781 | 0.963 | 1.159 | 1.31 |
| 1991 | 0.225 | 0.277 | 0.311 | 0.39 | 0.454 | 0.556 | 0.745 | 1.087 | 0.924 | 1.602 |
| 1992 | 0.182 | 0.277 | 0.352 | 0.429 | 0.509 | 0.585 | 0.701 | 0.837 | 0.85 | 1.195 |
| 1993 | 0.22 | 0.272 | 0.336 | 0.432 | 0.507 | 0.591 | 0.741 | 0.82 | 0.934 | 1.156 |
| 1994 | 0.243 | 0.27 | 0.288 | 0.356 | 0.466 | 0.576 | 0.686 | 0.928 | 0.969 | 1.287 |
| 1995 | 0.218 | 0.271 | 0.313 | 0.39 | 0.485 | 0.688 | 0.612 | 0.806 | 1.15 | 1.298 |
| 1996 | 0.221 | 0.3 | 0.29 | 0.396 | 0.475 | 0.643 | 0.764 | 0.934 | 1.057 | 1.312 |
| 1997 | 0.199 | 0.252 | 0.298 | 0.332 | 0.442 | 0.577 | 0.801 | 0.894 | 1.055 | 1.395 |
| 1998 | 0.159 | 0.244 | 0.267 | 0.381 | 0.502 | 0.762 | 0.839 | 0.981 | 0.986 | 1.379 |
| 1999 | 0.197 | 0.245 | 0.235 | 0.306 | 0.461 | 0.751 | 0.768 | 0.868 | 0.885 | 1.508 |
| 2000 | 0.182 | 0.256 | 0.314 | 0.37 | 0.44 | 0.607 | 0.768 | 0.972 | 0.975 | 1.193 |
| 2001 | 0.215 | 0.252 | 0.303 | 0.37 | 0.447 | 0.642 | 0.876 | 1.008 | 1.144 | 1.223 |
| 2002 | 0.254 | 0.256 | 0.309 | 0.376 | 0.438 | 0.562 | 0.627 | 0.880 | 0.909 | 1.330 |
| 2003 | 0.254 | 0.268 | 0.271 | 0.363 | 0.556 | 0.643 | 0.624 | 0.85 | 0.972 | 1.205 |

Table 11.2.5 -Plaice in Division VIId. Weight in the stock

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1981 | 0.11 | 0.216 | 0.317 | 0.414 | 0.506 | 0.594 | 0.677 | 0.756 | 0.83 | 1.042 |
| 1982 | 0.105 | 0.208 | 0.308 | 0.406 | 0.502 | 0.596 | 0.687 | 0.776 | 0.862 | 1.118 |
| 1983 | 0.097 | 0.192 | 0.286 | 0.379 | 0.47 | 0.56 | 0.648 | 0.735 | 0.821 | 1.169 |
| 1984 | 0.082 | 0.164 | 0.248 | 0.333 | 0.42 | 0.507 | 0.596 | 0.686 | 0.777 | 1.086 |
| 1985 | 0.084 | 0.171 | 0.259 | 0.348 | 0.44 | 0.533 | 0.628 | 0.725 | 0.824 | 1.206 |
| 1986 | 0.101 | 0.205 | 0.311 | 0.42 | 0.532 | 0.646 | 0.763 | 0.882 | 1.004 | 1.313 |
| 1987 | 0.122 | 0.242 | 0.361 | 0.479 | 0.596 | 0.712 | 0.826 | 0.939 | 1.051 | 1.306 |
| 1988 | 0.084 | 0.168 | 0.254 | 0.34 | 0.427 | 0.514 | 0.603 | 0.692 | 0.783 | 0.952 |
| 1989 | 0.079 | 0.162 | 0.25 | 0.342 | 0.439 | 0.541 | 0.648 | 0.759 | 0.874 | 1.211 |
| 1990 | 0.085 | 0.23 | 0.322 | 0.346 | 0.465 | 0.549 | 0.748 | 0.899 | 0.979 | 1.766 |
| 1991 | 0.065 | 0.219 | 0.275 | 0.335 | 0.375 | 0.472 | 0.633 | 1.057 | 1.022 | 1.502 |
| 1992 | 0.088 | 0.241 | 0.336 | 0.421 | 0.477 | 0.521 | 0.634 | 0.713 | 0.741 | 1.229 |
| 1993 | 0.108 | 0.258 | 0.296 | 0.379 | 0.493 | 0.539 | 0.573 | 0.699 | 0.787 | 1.056 |
| 1994 | 0.165 | 0.198 | 0.276 | 0.331 | 0.383 | 0.493 | 0.603 | 0.903 | 0.781 | 1.15 |
| 1995 | 0.058 | 0.257 | 0.286 | 0.354 | 0.442 | 0.707 | 0.531 | 0.703 | 1.092 | 1.194 |
| 1996 | 0.178 | 0.229 | 0.263 | 0.347 | 0.354 | 0.474 | 0.536 | 0.907 | 0.958 | 1.126 |
| 1997 | 0.059 | 0.202 | 0.256 | 0.266 | 0.417 | 0.53 | 0.665 | 0.686 | 0.972 | 1.364 |
| 1998 | 0.072 | 0.203 | 0.273 | 0.361 | 0.53 | 0.67 | 0.629 | 0.656 | 0.915 | 1.107 |
| 1999 | 0.072 | 0.172 | 0.213 | 0.351 | 0.429 | 0.644 | 0.76 | 0.782 | 0.593 | 1.166 |
| 2000 | 0.068 | 0.184 | 0.204 | 0.246 | 0.355 | 0.554 | 0.693 | 0.817 | 0.89 | 1.131 |
| 2001 | 0.093 | 0.206 | 0.274 | 0.338 | 0.404 | 0.624 | 0.844 | 0.989 | 1.153 | 1.405 |
| 2002 | 0.102 | 0.206 | 0.281 | 0.379 | 0.467 | 0.558 | 0.610 | 0.759 | 1.053 | 1.250 |
| 2003 | 0.103 | 0.191 | 0.249 | 0.33 | 0.496 | 0.492 | 0.548 | 0.748 | 0.662 | 0.982 |

Table 11.2.6- Plaice in Division VIId. Tuning fleets. Data used in the assessment are highlighted in bold.


FLT03: FRENCH TRAWLERS (EFFORT H*KW*10-4) 1989-90 DERAISED 1991> TRUE (Catch: Unknown) 19892003
110.001 .00

210

| 6983 | 1190.1 | 1635.9 | 1643.2 | 466.2 | 73.5 | 34.3 | 34.1 | 19.3 | 16.1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 8395 | 698.2 | 1876.1 | 1289.5 | 728.3 | 153.7 | 42.6 | 33.1 | 46.5 | 14.4 |
| 10689 | 1938.7 | 1474.1 | 1430.0 | 399.5 | 255.2 | 41.0 | 17.6 | 11.9 | 9.9 |
| 10519 | 1802.9 | 1396.1 | 370.2 | 269.4 | 230.7 | 143.5 | 21.2 | 12.1 | 11.6 |
| 10217 | 2124.4 | 1118.2 | 268.4 | 56.0 | 73.4 | 48.7 | 32.3 | 14.3 | 4.6 |
| 10609 | 1034.2 | 2271.2 | 476.4 | 177.6 | 69.5 | 48.2 | 48.3 | 32.0 | 25.0 |
| 12384 | 1354.7 | 686.5 | 578.5 | 95.4 | 21.4 | 19.5 | 27.5 | 21.8 | 28.2 |
| 14476 | 1133.3 | 1283.9 | 352.7 | 317.5 | 98.8 | 43.6 | 33.3 | 34.6 | 36.9 |
| 10921 | 1396.2 | 3536.0 | 1155.4 | 139.0 | 170.7 | 88.3 | 50.8 | 22.4 | 28.2 |
| 11707 | 1446.0 | 3541.9 | 1534.4 | 205.4 | 29.8 | 20.2 | 17.8 | 6.9 | 8.2 |
| 10625 | 1139.1 | 5654.6 | 2456 | 254.4 | 36.1 | 24.8 | 23.5 | 4.4 | 16.6 |
| 13779 | 2757.4 | 1634 | 3110.4 | 781.5 | 130.9 | 21.2 | 6.1 | 12.9 | 19.9 |
| 11376 | 2113.6 | 1726.3 | 663.1 | 642.5 | 81.3 | 21.6 | 1.4 | 1.2 | 16.4 |
| 13489 | 3130.4 | 1134.9 | 336.6 | 230.9 | 186.2 | 36.7 | 9.5 | 2.9 | 13.1 |
| 15934 | 1984.9 | 2715.5 | 701.5 | 129.6 | 82.8 | 75.1 | 17.8 | 16.3 | 11.2 |

Table 11.2.6-(continued) Plaice in Division VIId. Tuning fleets. Data used in the assessment are highlighted in bold.

```
FLT04: UK BEAM TRAWL SURVEY true age 6 [rev: 15/08/04-RM] (Catch: Unknown) (Effort: Unknown)
19882003
110.500 .75
16
\begin{tabular}{rrrrrr}
26.5 & 31.3 & 43.8 & 7.0 & 4.6 & 1.5 \\
2.3 & 12.1 & 16.6 & 19.9 & 3.3 & 1.5 \\
5.2 & 4.9 & 5.8 & 6.7 & 7.5 & 1.8 \\
11.8 & 9.1 & 7.0 & 5.3 & 5.4 & 3.2 \\
16.5 & 12.5 & 4.2 & 4.2 & 5.6 & 4.9 \\
3.2 & 13.4 & 5.0 & 1.7 & 1.9 & 1.6 \\
8.3 & 7.5 & 9.2 & 5.6 & 1.9 & 0.8 \\
11.3 & 4.1 & 3.0 & 3.7 & 1.5 & 0.6 \\
13.2 & 11.9 & 1.3 & 0.7 & 1.3 & 0.9 \\
33.1 & 13.5 & 4.2 & 0.6 & 0.3 & 0.3 \\
11.4 & 27.3 & 7.0 & 3.1 & 0.3 & 0.2 \\
11.3 & 14.1 & 15.9 & 2.9 & 1.0 & 0.2 \\
13.2 & 21.0 & 14.4 & 13.8 & 3.5 & 0.9 \\
17.9 & 13.0 & 10.0 & 7.1 & 10.9 & 1.9 \\
20.7 & 15.9 & 7.7 & 3.5 & 1.8 & 3.5 \\
6.2 & 22.8 & 6.0 & 2.9 & 1.6 & 0.8
\end{tabular}
FLT05: French GFS [option 2] true age 5 [rev: 01/09/04-JV] (Catch: Unknown) (Effort: Unknown)
19882003
110.751 .00
05
\begin{tabular}{rrrrrrr}
1 & 1.9 & 8.0 & 17.6 & 9.9 & 1.7 & 0.6 \\
1 & 1.6 & 3.5 & 7.4 & 2.7 & 1.1 & 0.1 \\
1 & 1.0 & 2.7 & 0.8 & 1.8 & 1.3 & 1.1 \\
1 & 1.0 & 1.7 & 1.4 & 0.6 & 0.4 & 0.3 \\
1 & 6.6 & 23.8 & 2.5 & 1.3 & 0.2 & 0.2 \\
1 & 43.8 & 19.2 & 8.9 & 4.2 & 0.9 & 0.4 \\
1 & 36.2 & 5.2 & 2.2 & 0.8 & 0.2 & 0.1 \\
1 & 13.6 & 4.9 & 3.0 & 1.1 & 0.7 & 0.2 \\
1 & 236.0 & 4.5 & 2.6 & 0.3 & 0.1 & 0.2 \\
1 & 89.0 & 35.5 & 8.4 & 4.5 & 0.3 & 0.1 \\
1 & 76.8 & 12.5 & 14.0 & 3.1 & 0.5 & 0.0 \\
1 & 10.3 & 8.5 & 4.6 & 7.6 & 1.3 & 0.2 \\
1 & 159.0 & 10.3 & 12.8 & 3.5 & 3.1 & 0.8 \\
1 & 46.1 & 7.4 & 3.5 & 1.2 & 0.8 & 0.3 \\
1 & 5.4 & 11.3 & 9.3 & 4.3 & 0.4 & 0.2 \\
1 & 91.2 & 9.1 & 2.7 & 8.9 & 4.1 & 2.1
\end{tabular}
FLT06: Intl YFS [rev: 01/09/04-JV] (Catch: Unknown) (Effort: Unknown)
19872003
110.500 .75
01
\begin{tabular}{rr}
11.68 & \(\mathbf{1 . 4 4}\) \\
5.56 & \(\mathbf{1 . 3 2}\) \\
3.97 & \(\mathbf{0 . 5 8}\) \\
3.42 & 0.71 \\
4.36 & \(\mathbf{0 . 6 2}\) \\
4.04 & \(\mathbf{1 . 7 8}\) \\
3.70 & 0.84 \\
8.69 & \(\mathbf{0 . 7 9}\) \\
6.87 & \(\mathbf{1 . 6 8}\) \\
4.07 & 0.66 \\
2.23 & 0.82 \\
5.30 & 0.8 \\
3.81 & 0.76 \\
5.14 & 0.48 \\
3.74 & 0.83 \\
0.67 & 0.92 \\
4.92 & \(\mathbf{0 . 2 2}\)
\end{tabular}
```

Table 11.3.1 Plaice in Division VIId. Tuning diagnostics.

```
Lowestoft VPA Version 3.1
    8/09/2004 15:08
Extended Survivors Analysis
Plaice in Division VIId (run: XSAAEDB01/X01)
CPUE data from file fleet_Id.dat
Catch data for 24 years. 1980 to 2003. Ages 1 to 10.
    Fleet, First, Last, First, Last, Alpha, Beta
    year, year, age , age
FLT01: UK INSHORE TR, 1988, 2003, 2, 9, .000, 1.000
FLT02: BELGIAN BEAM, 1988, 2003, 2, 9, .000, 1.000
FLT03: FRENCH TRAWLE, 1989, 2003, 2, 9, .000, 1.000
FLT04: UK BEAM TRAWL, 1988, 2003, 1, 6, .500, . 750
FLT05: French GFS [0, 1988, 2003, 1, 5, .750, 1.000
FLT06: Intl YFS [rev, 1988, 2003, 1, 1, .500, .750
Time series weights :
    Tapered time weighting not applied
Catchability analysis :
    Catchability independent of stock size for all ages
    Catchability independent of age for ages >= 7
Terminal population estimation :
    Survivor estimates shrunk towards the mean F
    of the final 5 years or the 3 oldest ages.
    S.E. of the mean to which the estimates are shrunk = . 500
    Minimum standard error for population
    estimates derived from each fleet = . 300
    Prior weighting not applied
Tuning had not converged after 30 iterations
```

Total absolute residual between iterations
29 and $30=.00021$
Final year $F$ values

$\begin{array}{llllllllll}\text { Iteration } 29, & .0734, & .2441, & .6228, & .6166, & .5068, & .5104, & .4363, & .3087, & .5576 \\ \text { Iteration } 30, & .0734, & .2441, & .6228, & .6165, & .5068, & .5104, & .4362, & .3087, & .5575\end{array}$
1
Regression weights
, $1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000$
Fishing mortalities
Age, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003

| 1, | .078, | .115, | .039, | .015, | .033, | .044, | .081, | .111, | .036, | .073 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2, | .415, | .378, | .289, | .184, | .147, | .150, | .543, | .329, | .427, | .244 |
| 3, | .725, | .613, | .548, | .796, | .605, | .657, | .573, | .826, | .770, | .623 |
| 4, | .803, | .682, | .679, | 1.462, | 1.019, | 1.162, | .952, | .557, | .962, | .617 |
| 5, | .649, | .517, | .755, | 1.389, | .850, | .909, | .969, | .658, | .923, | .507 |
| 6, | .432, | .316, | .504, | 1.058, | .580, | .638, | .658, | .415, | .617, | .510 |
| 7, | .376, | .502, | .389, | 1.169, | .471, | .740, | .641, | .345, | .559, | .436 |
| 8, | .538, | .452, | .612, | .879, | .559, | .504, | .479, | .309, | .392, | .309 |
| 9, | .532, | .446, | .621, | .925, | .522, | .492, | .472, | .396, | .608, | .558 |

Table 11.3.1 (continued) Plaice in Division VIId. Tuning diagnostic
1
${ }^{1}$ XSA population numbers (Thousands)

|  |  |  |  | AGE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR | , | 1, | 2, | 3 , | 4, | 5, | 6 , | 7, | 8, | 9, |
| 1994 | , | 1.73E+04, | 1.13E+04, | 1.42E+04, | 5.92E+03, | 1.87E+03, | 1.26E+03, | $1.05 \mathrm{E}+03$, | 6.75E+02, | 7.01E+02, |
| 1995 | , | 2.52E+04, | 1.45E+04, | 6.73E+03, | $6.23 \mathrm{E}+03$, | 2.40E+03, | 8.85E+02, | 7.38E+02, | 6.51E+02, | 3.57E+02, |
| 1996 | , | $3.05 \mathrm{E}+04$, | 2.03E+04, | 8.98E+03, | 3.30E+03, | $2.85 \mathrm{E}+03$, | 1.29E+03, | $5.84 \mathrm{E}+02$, | 4.04E+02, | 3.75E+02, |
| 1997 | , | $3.80 \mathrm{E}+04$, | 2.66E+04, | 1.38E+04, | 4.70E+03, | 1.51E+03, | 1.21E+03, | 7.08E+02, | 3.58E+02, | 1.99E+02, |
| 1998 | , | $1.51 \mathrm{E}+04$, | 3.38E+04, | 2.00E+04, | 5.62E+03, | 9.86E+02, | 3.41E+02, | $3.81 \mathrm{E}+02$, | 1.99E+02, | 1.34E+02, |
| 1999 |  | $1.80 \mathrm{E}+04$, | 1.33E+04, | $2.64 \mathrm{E}+04$, | 9.88E+03, | $1.84 \mathrm{E}+03$, | 3.81E+02, | 1.73E+02, | 2.15E+02, | 1.03E+02, |
| 2000 | , | $1.87 \mathrm{E}+04$, | 1.56E+04, | 1.03E+04, | $1.24 \mathrm{E}+04$, | 2.80E+03, | 6.69E+02, | 1.82E+02, | 7.46E+01, | 1.17E+02, |
| 2001 |  | 2.69E+04, | 1.56E+04, | 8.19E+03, | 5.27E+03, | 4.33E+03, | 9.60E+02, | $3.14 \mathrm{E}+02$, | 8.69E+01, | $4.18 \mathrm{E}+01$, |
| 2002 | , | 2.71E+04, | 2.18E+04, | 1.02E+04, | 3.24E+03, | 2.73E+03, | 2.03E+03, | 5.74E+02, | 2.01E+02, | $5.77 \mathrm{E}+01$, |
| 2003 |  | 9.59E+03, | $2.37 \mathrm{E}+04$, | $1.29 \mathrm{E}+04$, | 4.26E+03, | 1.12E+03, | 9.81E+02, | 9.90E+02, | 2.97E+02, | 1.23E+02, |

Estimated population abundance at 1st Jan 2004
$0.00 \mathrm{E}+00,8.06 \mathrm{E}+03,1.68 \mathrm{E}+04,6.24 \mathrm{E}+03,2.08 \mathrm{E}+03,6.11 \mathrm{E}+02,5.33 \mathrm{E}+02,5.79 \mathrm{E}+02,1.97 \mathrm{E}+02$,
Taper weighted geometric mean of the VPA populations:
$2.25 \mathrm{E}+04,2.01 \mathrm{E}+04,1.34 \mathrm{E}+04,6.16 \mathrm{E}+03,2.43 \mathrm{E}+03,1.08 \mathrm{E}+03,5.52 \mathrm{E}+02,2.89 \mathrm{E}+02,1.36 \mathrm{E}+02$, Standard error of the weighted Log(VPA populations) :
$1.3897, \quad .3568, \quad .4457, \quad .5200, \quad .5232, \quad .6435, \quad .7014, \quad .0512$,

| Age | , | 1988, | 1989, | 1990, | 1991, | 1992, | 1993 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | No data | for t | is fle | t at t | his age |  |  |  |  |  |
| 2 | , | . 07 , | -1.70, | -. 80, | . 41, | . 37, | . 13 |  |  |  |  |
| 3 |  | . 18, | -. 43, | -. 40, | . 39, | . 47, | $-.11$ |  |  |  |  |
| 4 |  | -. 28 , | . 51, | -. 55, | . 28, | . 64, | . 01 |  |  |  |  |
| 5 | , | .17, | . 41, | -. 07 , | -.05, | . 32 , | . 05 |  |  |  |  |
| 6 | , | . 07 , | . 70 , | . 29 , | . 05 , | . 36 , | -. 03 |  |  |  |  |
| 7 | , | -. 36, | . 28 , | . 24 , | -. 40, | . 22 , | . 03 |  |  |  |  |
| 8 | , | -.82, | -. 59, | . 27 , | -. 58, | . 38 , | . 17 |  |  |  |  |
| 9 | , | -. 12, | -. 88 , | . 26, | -.84, | -. 48, | . 42 |  |  |  |  |
| Age | , | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003 |
| 1 |  | No data | $\text { for } t$ | his fle | et at t | his age |  |  |  |  |  |
| 2 |  | $.26$ | .19, | $.52,$ | $.15$ | $-.31,$ | -. 10, | . 54, | -. 21, | -. 50, | . 97 |
| 3 | , | -. 06 , | -. 05, | -. 55, | .19, | -.41, | . 33, | -. 07 , | -. 21, | 1.06, | $-.33$ |
| 4 | , | -.06, | -. 22, | -. 84, | -.89, | -.03, | -.61, | . 46 , | -.35, | 1.82, | . 12 |
| 5 | , | .11, | -.13, | -. 48 , | -. 70, | -. 31, | -.11, | . 23, | .19, | . 53, | $-.14$ |
| 6 | , | -. 14, | -. 20, | -. 41, | -. 29, | -. 10, | -. 59, | . 45, | -.05, | . 03, | -. 15 |
| 7 |  | -. 22 , | -. 49, | -1.08, | . 02, | . 54, | -.88, | . 31 , | -. 29 , | 1.79, | . 29 |
| 8 |  | -. 35, | -. 29 , | -. 40, | . 10, | . 21, | . 05 , | . 34, | . 57, | . 86 , | 1.13 |
| 9 |  | . 31 , | -. 04 , | -. 53, | . 15, | . 43, | -. 25 , | . 58, | . 25 , | 1.82, | $-.76$ |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age, | 2, | 3, | 4, | 5, | 6, | 7, | 8, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -12.0521, | -11.5075, | -11.4827, | -11.5373, | -11.5785, | -11.5515, | -11.5515, |
| S.E (Log q), | .6270, | .4228, | .6685, | .3227, | .3278, | .6569, | .5478, |

Table 11.3.1 (continued) Plaice in Division VIId. Tuning diagnostic


Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age , | 2, | 3, | 4, | 5, | 6, | 7, | 8, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -7.6754, | -5.6759, | -5.1226, | -5.0701, | -5.4106, | -5.5340, | -5.5340, |
| S.E (Log q), | 1.0386, | .5999, | .4444, | .4968, | .4844, | .4402, | .3809, |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 2, | 1.73, | -.458, | 6.11, | .03, | 15, | 1.85, | -7.68, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3, | 1.44, | -.952, | 4.00, | .25, | 16, | .87, | -5.68, |
| 4, | 1.30, | -1.081, | 4.04, | .49, | 16, | .57, | -5.12, |
| 5, | 1.21, | -.737, | 4.49, | .47, | 16, | .61, | -5.07, |
| 6, | 1.18, | -.759, | 5.11, | .56, | 16, | .58, | -5.41, |
| 7, | 1.10, | -.504, | 5.44, | .66, | 16, | .50, | -5.53, |
| 8, | .90, | .912, | 5.70, | .85, | 16, | .31, | -5.69, |
| 9, | 1.16, | -.668, | 5.51, | .56, | 16, | .68, | -5.47, |

Table 11.3.1 (continued) Plaice in Division VIId. Tuning diagnostic


Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age | 2, | 3, | 4, | 5, | 6, | 7, | 8, | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean Log q, | -11.6003, | -10.8778, | -10.9082, | -11.2575, | -11.5797, | -11.7914, | -11.7914, | -11.7914, |
| S.E(Log q), | . 4499 , | . 3373 , | . 5253, | . 6159, | . 5444 , | . 5087, | .6308, | 5526, |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 2, | 5.18, | -2.361, | 18.99, | .02, | 15, | 2.02, | -11.60, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3, | .78, | 1.233, | 10.56, | .71, | 15, | .26, | -10.88, |
| 4, | .70, | 1.797, | 10.25, | .73, | 15, | .34, | -10.91, |
| 5, | .95, | .187, | 11.08, | .50, | 15, | .61, | -11.26, |
| 6, | 1.06, | -.234, | 11.84, | .56, | 15, | .60, | -11.58, |
| 7, | 1.48, | -1.695, | 14.35, | .49, | 15, | .71, | -11.79, |
| 8, | .91, | .464, | 11.35, | .65, | 15, | .57, | -11.92, |
| 9, | .82, | 1.153, | 10.58, | .76, | 15, | .45, | -11.76, |

## Fleet : FLT04: UK BEAM TRAWL

| Age, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1, | .62, | -1.30, | -.61, | .06, | .13, | -.76 |
| 2, | .43, | -.37, | -.71, | -.01, | .10, | -.11 |
| 3, | .67, | .24, | -.53, | .33, | -.01, | -.27 |
| 4, | .00, | .50, | -.13, | .10, | .42, | -.40 |
| 5, | .59, | -.12, | .04, | .21, | .65, | -.09 |
| 6, | .02, | .18, | .13, | -.05, | .93, | -.04 |
| 7, | No data for this fleet at this age |  |  |  |  |  |
| $8, ~ N o ~ d a t a ~ f o r ~ t h i s ~ f l e e t ~ a t ~ t h i s ~ a g e ~$ |  |  |  |  |  |  |

Table 11.3.1 (continued) Plaice in Division VIId. Tuning diagnostic

| Age, | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003 |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1, | -.07, | -.11, | -.19, | .49, | .36, | .18, | .32, | .28, | .37, | .23 |
| 2, | .05, | -.83, | -.15, | -.36, | .08, | .36, | .84, | .22, | .15, | .32 |
| 3, | .20, | -.25, | -1.41, | -.51, | -.49, | .08, | .87, | .89, | .38, | -.19 |
| 4, | .43, | -.11, | -1.14, | -1.16, | .03, | -.52, | .69, | .63, | .66, | -.01 |
| 5, | .14, | -.42, | -.59, | -1.03, | -.94, | -.32, | .55, | 1.06, | -.12, | .39 |
| 6 , | -.41, | -.42, | -.28, | -.97, | -.40, | -.48, | .48, | .71, | .70, | -.11 |
| 7 , No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |
| 8 , No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |
| 9 , No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age , | 1, | 2, | 3, | 4, | 5, |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -7.4645, | -7.0458, | -7.0254, | -6.8321, | -6.5686, |
| S.E (Log q), | .5088, | .4240, | .5948, | .5799, | .5786, |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time. Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 1, | .66, | 1.408, | 8.30, | .56, | 16, | .33, | -7.46, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| 2, | .91, | .262, | 7.29, | .40, | 16, | .40, | -7.05, |
| 3, | .88, | .426, | 7.33, | .47, | 16, | .54, | -7.03, |
| 4, | .77, | 1.071, | 7.27, | .61, | 16, | .45, | -6.83, |
| 5, | .70, | 1.726, | 6.96, | .70, | 16, | .38, | -6.57, |
| 6, | .77, | 1.434, | 6.72, | .74, | 16, | .38, | -6.62, |



Table 11.3.1 (continued) Plaice in Division VIId. Tuning diagnostic

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age , | 1, | 2, | 3, | 4, | 5 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -7.7410, | -7.9772, | -7.9833, | -8.3519, | -8.4173, |
| S.E (Log q), | .8169, | .7308, | .8209, | .8553, | .9791, |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 1, | 3.17, | -1.158, | 2.98, | .02, | 16, | 2.56, | -7.74, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2, | .59, | 1.180, | 8.75, | .37, | 16, | .42, | -7.98, |
| 3, | .85, | .405, | 8.22, | .33, | 16, | .71, | -7.98, |
| 4, | .98, | .048, | 8.36, | .29, | 16, | .87, | -8.35, |
| 5, | 83.16, | -2.185, | 48.72, | .00, | 15, | 72.26, | -8.42, |

1

Fleet : FLT06: Intl YFS [rev

```
Age , 1988, 1989, 1990, 1991, 1992, 1993
, .25, -.05, .03, -. 26, .53,
. }5
    , No data for this fleet at this age
    No data for this fleet at this age
Age , 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
    , 21, .61, -. 56, -.58, .33, .11, -.37, -.16, -.11, -.48
    No data for this fleet at this age
    , No data for this fleet at this age
    9 , No data for this fleet at this age
```

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

```
    Age ,
Mean Log q, -10.0910,
S.E(Log q), .3908,
```

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean $Q$

$$
1, \quad 1.18, \quad-.525, \quad 10.12, \quad .37, \quad 16, \quad .47,-10.09,
$$

1

Table 11.3.1 (continued) Plaice in Division VIId. Tuning diagnostic

Terminal year survivor and $F$ summaries :
Age 1 Catchability constant w.r.t. time and dependent on age


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | S.e, | Ratio, |  |  |
| $8063 .$, | .26, | .26, | 4, | 1.006, | .073 |

1
Age 2 Catchability constant w.r.t. time and dependent on age
Year class $=2001$

| Fleet, | Estimated, Survivors, | Int, s.e, | Ext, s.e, | $\begin{gathered} \text { Var, } \\ \text { Ratio, } \end{gathered}$ | N, | Scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT01: UK INSHORE TR, | 44256. | . 646 , | . 000, | . 00, | 1, | . 078, | 100 |
| FLT02: BELGIAN BEAM, | 18376., | 1.073, | . 000 , | . 00, | 1, | . 028, | . 225 |
| FLT03: FRENCH TRAWLE, | 11390. | . 465 , | . 000 , | . 00 , | 1, | . 150, | 342 |
| FLT04: UK BEAM TRAWL, | 23526. | . 336 , | . 028, | . 08, | 2, | . 284 , | . 180 |
| FLT05: French GFS [0, | 11042., | . 562 , | . 435, | . 77 , | 2, | .101, | . 351 |
| FLT06: Intl YFS [rev, | 14952 | . 403, | . 000, | . 00 , | 1, | . 193, | . 270 |
| F shrinkage mean , | 12287., | . 50 , |  |  |  | . 166 , | . 320 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | ---: | ---: | ---: | ---: | ---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $16767 .$, | .18, | .15, | 9, | .837, | .244 |

Age 3 Catchability constant w.r.t. time and dependent on age

```
Year class = 2000
```

| Fleet, | Estimated, Survivors, | Int, s.e, | Ext, s.e, | Var, <br> Ratio, | N, | Scaled, Weights, | $\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT01: UK INSHORE TR, | $4306 .$, | . 367 , | . 070, | . 19, | 2, | . 156 , | . 812 |
| FLT02: BELGIAN BEAM | 6261 | . 543, | . 113, | . 21, | 2, | . 072 , | . 621 |
| FLT03: FRENCH TRAWLE, | 6884. | . 284 , | . 184, | . 65, | 2, | . 257 , | . 578 |
| FLT04: UK BEAM TRAWL, | 6714 | . 302 , | . 136 , | . 45, | 3, | . 187, | . 589 |
| FLT05: French GFS [0, | 12818., | . 481 , | . 447 , | . 93, | 3, | . 077 , | . 351 |
| FLT06: Intl YFS [rev, | 5300. | . 403, | . 000 , | . 00 , | 1 , | . 082 , | . 702 |
| F shrinkage mean , | 5435., | . 50, |  |  |  | . 170, | . 689 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | , | Ratio, |  |
| $6239 .$, | .15, | .10, | 14, | .631, | .623 |

Table 11.3.1 (continued) Plaice in Division VIId. Tuning diagnostic

Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=1999$

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio, |  | Scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT01: UK INSHORE TR, | 3435., | . 350 , | .373, | 1.06, | 3, | .135, | . 416 |
| FLT02: BELGIAN BEAM, | 1935., | . 372 , | .189, | . 51, | 3 , | .159, | . 650 |
| FLT03: FRENCH TRAWLE, | 1717., | . 272 , | . 224 , | . 82 , | 3, | . 222 , | . 709 |
| FLT04: UK BEAM TRAWL, | 2469., | . 301 , | .093, | . 31 , | 4, | .174, | . 541 |
| FLT05: French GFS [0, | $6544 .$, | . 468 , | .488, | 1.04, | 4, | . 075 , | . 240 |
| FLT06: Intl YFS [rev, | 1442., | .403, | .000, | . 00 , | 1 , | . 048 , | . 802 |
| F shrinkage mean , | 1145., | . 50, |  |  |  | .188, | . 936 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | S.e, | S.e, | Ratio, |  |  |
| $2080 .$, | .15, | .14, | 19, | .953, | .617 |

Age 5 Catchability constant w.r.t. time and dependent on age

| Fleet, | Estimated, | Int, | Ext, | Var, | N, | Scaled, | Estimated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | Survivors, | s.e, | s.e, | Ratio, | , | Weights, | F |
| FLT01: UK INSHORE TR, | 620., | . 282 , | . 299 , | 1.06, | 4, | . 295, | . 501 |
| FLT02: BELGIAN BEAM, | 547. | . 348 , | . 240 , | . 69, | 4, | . 166 , | . 553 |
| FLT03: FRENCH TRAWLE, | 574., | . 322 , | . 217, | . 67, | 4, | . 151, | . 533 |
| FLT04: UK BEAM TRAWL, | 1030., | . 355 , | . 103, | . 29 , | 5, | .139, | . 330 |
| FLT05: French GFS [o, | 2741., | . 554, | . 595, | 1.07, | 5, | . 054 , | . 137 |
| FLT06: Intl YFS [rev, | 681. | . 403 , | . 000 , | . 00 , | 1, | . 015 , | . 465 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | ---: | ---: | ---: | ---: | ---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $611 .$, | .15, | .15, | 24, | .949, | .507 |

1
Age 6 Catchability constant w.r.t. time and dependent on age
Year class = 1997

| Fleet, | Estimated, Survivors, | Int, s.e, | Ext, s.e, | Var, <br> Ratio, | N, | Scaled, Weights, | $\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT01: UK INSHORE TR, | 547. | . 234 , | . 150, | . 64, | 5, | . 324 , | . 500 |
| FLT02: BELGIAN BEAM | 644 | . 315, | . 158, | . 50, | 5, | . 166, | . 439 |
| FLT03: FRENCH TRAWLE, | 425. | . 305, | . 038, | . 13 , | 5, | . 153, | . 607 |
| FLT04: UK BEAM TRAWL, | 574 | . 312 , | .141, | . 45, | 6, | .157, | . 481 |
| FLT05: French GFS [o, | 639. | . 440 , | . 170 , | . 39 , | 5, | . 028, | . 441 |
| FLT06: Intl YFS [rev, | 738., | . 403 , | . 000 , | . 00 , | 1, | . 015 , | . 393 |
| F shrinkage mean | 447., | . 50, |  |  |  | . 157, | . 584 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | S.e, | Ratio, | Ration |  |
| $533 .$, | .14, | .06, | 28, | .412, | .510 |

Table 11.3.1 (continued) Plaice in Division VIId. Tuning diagnostic

Age 7 Catchability constant w.r.t. time and dependent on age
Year class $=1996$

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio, |  | Scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT01: UK INSHORE TR, | 667., | .233, | .058, | . 25 , | 6, | . 275, | . 389 |
| FLT02: BELGIAN BEAM , | 474., | . 288 , | .173, | . 60 , | 6, | . 240, | . 511 |
| FLT03: FRENCH TRAWLE, | 557., | . 310 , | . 124, | . 40 , | 6 , | .193, | 450 |
| FLT04: UK BEAM TRAWL, | 1164., | . 320 , | .120, | . 38, | 6, | .099, | . 241 |
| FLT05: French GFS [0, | 709., | . 500 , | .316, | .63, | 5, | .018, | . 369 |
| FLT06: Intl YFS [rev, | 324. | .403, | .000, | . 00 , | 1 , | .008, | . 681 |
| F shrinkage mean | 429., | . 50, |  |  |  | .169, | . 553 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $579 .$, | .14, | .07, | 31, | .501, | .436 |

1
Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class $=1995$

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ |  | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio, | N, Scaled, Estimated <br> , Weights, F |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT01: UK INSHORE TR, | 370., | .249, |  | .284, | 1.14, | 7, | . 262 , |  |
| FLT02: BELGIAN BEAM , | 147., | . 255, |  | .085, | . 33, | 6, | . 329, | . 396 |
| FLT03: FRENCH TRAWLE, | 167., | . 313 , |  | .154, | . 49, | 7, | . 182, | . 355 |
| FLT04: UK BEAM TRAWL, | 322., | . 358, |  | .186, | . 52, | 6, | . 061, | . 200 |
| FLT05: French GFS [0, | 351., | .533, |  | . 348 , | . 65, | 5, | . 008, | . 185 |
| FLT06: Intl YFS [rev, | 112., | .403, |  | .000, | . 00 , | 1 , | . 003 , | . 492 |
| F shrinkage mean , | 125., | . 50, , , , |  |  |  |  | . 154, | . 450 |
| Weighted prediction : |  |  |  |  |  |  |  |  |
| Survivors, Int, | Ext, | N, | Var, | F |  |  |  |  |
| at end of year, s.e, | s.e, | , | Ratio, |  |  |  |  |  |
| 197., .14, | .11, | 33, | . 747 , | . 309 |  |  |  |  |

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class = 1994

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio, | N, | Scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT01: UK INSHORE TR, | 71., | .253, | .233, | . 92, | 8, | . 235, | 514 |
| FLT02: BELGIAN BEAM, | 41., | . 241 , | . 203, | . 84, | 8, | . 309 , | . 773 |
| FLT03: FRENCH TRAWLE, | 75., | . 295, | .163, | . 55, | 8, | .215, | . 492 |
| FLT04: UK BEAM TRAWL, | 79., | . 355 , | .159, | . 45, | 6, | . 040 , | . 472 |
| FLT05: French GFS [0, | 67. | .543, | .191, | . 35 , | 5, | . 006 , | . 536 |
| FLT06: Intl YFS [rev, | 117., | . 403 , | .000, | . 00 , | 1 , | . 002 , | . 340 |
| F shrinkage mean , | 91., | . 50, |  |  |  | . 194, | . 420 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | S.e, | Ratio, |  |  |
| $64 .$, | .15, | .10, | 37, | .634, | .558 |

Table 11.3.2 - Plaice in Division VIId. Fishing mortality at age

Run title : Plaice in VIId (run: XSAAEDB01/X01)

| At 8/09/2004 15:09 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Terminal Fs derived using XSA (With F shrinkage) |  |  |  |  |  |
| Table 8 Fishing mortality ( F ) at age |  |  |  |  |  |
| YEAR |  | 1980 | 1981 | 1982 | 1983 |
| AGE |  |  |  |  |  |
|  | 1 | 0.0022 | 0.0013 | 0.0111 | 0.0049 |
|  | 2 | 0.1674 | 0.1183 | 0.1342 | 0.1522 |
|  | 3 | 0.2789 | 0.7287 | 0.4974 | 0.4533 |
|  | 4 | 0.3371 | 0.8856 | 0.8578 | 0.939 |
|  | 5 | 0.6174 | 0.2717 | 0.6936 | 0.5501 |
|  | 6 | 0.4143 | 0.3657 | 0.2811 | 0.3976 |
|  | 7 | 0.399 | 0.4874 | 0.349 | 0.1746 |
|  | 8 | 0.2537 | 0.7046 | 1.8572 | 0.8832 |
|  | 9 | 0.3567 | 0.5211 | 0.8332 | 0.4868 |
| +gp |  | 0.3567 | 0.5211 | 0.8332 | 0.4868 |
| FBAR 2-6 |  | 0.363 | 0.474 | 0.4928 | 0.4985 |


| Table 8 | Fishing mortality ( F ) at age |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR |  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 0.0148 | 0.005 | 0.0119 | 0.0008 | 0.0006 | 0.0548 | 0.0956 | 0.0776 | 0.0647 | 0.0607 |
|  | 2 | 0.1159 | 0.3132 | 0.2137 | 0.1814 | 0.2064 | 0.1741 | 0.2207 | 0.5077 | 0.4433 | 0.4116 |
|  | 3 | 0.5769 | 0.5974 | 0.6939 | 0.5189 | 0.6668 | 0.4547 | 0.7035 | 0.8338 | 0.8101 | 0.4781 |
|  | 4 | 0.8154 | 0.8586 | 0.7638 | 0.7905 | 0.6746 | 0.7474 | 0.748 | 0.8761 | 0.6086 | 0.4947 |
|  | 5 | 0.7895 | 0.2286 | 0.5955 | 0.5705 | 0.5597 | 0.8688 | 0.6315 | 0.695 | 0.5215 | 0.3439 |
|  | 6 | 0.6238 | 0.569 | 0.4883 | 0.3083 | 0.4554 | 0.5727 | 0.6134 | 0.6051 | 0.6447 | 0.3542 |
|  | 7 | 0.8291 | 0.3488 | 0.4333 | 0.7922 | 0.5232 | 0.4146 | 0.4355 | 0.4067 | 0.4805 | 0.3859 |
|  | 8 | 0.2633 | 0.9128 | 0.2158 | 0.4516 | 0.484 | 0.3708 | 0.5112 | 0.3536 | 0.4907 | 0.329 |
|  | 9 | 0.5743 | 0.6127 | 0.3802 | 0.5193 | 0.5623 | 0.5777 | 0.6798 | 0.5285 | 0.6037 | 0.4417 |
| +gp |  | 0.5743 | 0.6127 | 0.3802 | 0.5193 | 0.5623 | 0.5777 | 0.6798 | 0.5285 | 0.6037 | 0.4417 |
| FBAR 2-6 |  | 0.5843 | 0.5134 | 0.551 | 0.4739 | 0.5126 | 0.5635 | 0.5834 | 0.7035 | 0.6057 | 0.4165 |


| Table 8 | Fishing mortality (F) at age |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR |  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | FBAR 01-03 |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 0.0784 | 0.1145 | 0.0393 | 0.0153 | 0.0327 | 0.0442 | 0.0809 | 0.1108 | 0.0356 | 0.0734 | 0.0733 |
|  | 2 | 0.4145 | 0.3781 | 0.2888 | 0.184 | 0.147 | 0.1501 | 0.5433 | 0.3288 | 0.4273 | 0.2441 | 0.3334 |
|  | 3 | 0.725 | 0.613 | 0.5481 | 0.7957 | 0.6046 | 0.6569 | 0.573 | 0.8261 | 0.7699 | 0.6228 | 0.7396 |
|  | 4 | 0.8033 | 0.682 | 0.6795 | 1.4618 | 1.0192 | 1.1619 | 0.9522 | 0.5574 | 0.9624 | 0.6165 | 0.7121 |
|  | 5 | 0.6492 | 0.5172 | 0.7551 | 1.3886 | 0.8502 | 0.9091 | 0.9694 | 0.6581 | 0.9233 | 0.5068 | 0.696 |
|  | 6 | 0.4317 | 0.316 | 0.5045 | 1.0578 | 0.5805 | 0.6379 | 0.658 | 0.4145 | 0.6168 | 0.5104 | 0.5139 |
|  | 7 | 0.3757 | 0.5017 | 0.3893 | 1.1694 | 0.4712 | 0.7402 | 0.6405 | 0.3447 | 0.5595 | 0.4362 | 0.4468 |
|  | 8 | 0.5379 | 0.4517 | 0.6115 | 0.8788 | 0.5591 | 0.5045 | 0.4787 | 0.3094 | 0.3917 | 0.3087 | 0.3366 |
|  | 9 | 0.5318 | 0.4458 | 0.6213 | 0.9254 | 0.5219 | 0.4917 | 0.4716 | 0.3956 | 0.6077 | 0.5575 | 0.5203 |
| +gp |  | 0.5318 | 0.4458 | 0.6213 | 0.9254 | 0.5219 | 0.4917 | 0.4716 | 0.3956 | 0.6077 | 0.5575 |  |
| 0 FBAR 2-6 |  | 0.6047 | 0.5013 | 0.5552 | 0.9776 | 0.6403 | 0.7032 | 0.7392 | 0.557 | 0.7399 | 0.5001 |  |

Table 11.3.3 - Plaice in Division VIld. Stocks numbers at age

Run title : Plaice in VIId (run: XSAAEDB01/X01)
At 8/09/2004 15:09
Terminal Fs derived using XSA (With F shrinkage)

|  | Table 10 | Stock number at age (start of year) |  |  |  | Numbers* $10 * *$ - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | YEAR |  | 1980 | 1981 | 1982 | 1983 |
|  | AGE |  |  |  |  |  |
|  |  | 1 | 25536 | 12905 | 25210 | 19958 |
|  |  | 2 | 18036 | 23056 | 11662 | 22559 |
|  |  | 3 | 6267 | 13805 | 18535 | 9227 |
|  |  | 4 | 1984 | 4291 | 6028 | 10199 |
|  |  | 5 | 1118 | 1282 | 1601 | 2313 |
|  |  | 6 | 232 | 546 | 884 | 724 |
|  |  | 7 | 144 | 139 | 343 | 604 |
|  |  | 8 | 206 | 87 | 77 | 219 |
|  |  | 9 | 14 | 145 | 39 | 11 |
|  | +gp |  | 360 | 515 | 162 | 274 |
| 0 | TOTAL |  | 53899 | 56770 | 64541 | 66088 |


|  | YEAR |  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AgE |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | 25056 | 29636 | 60228 | 31248 | 26474 | 16281 | 18816 | 21713 | 27938 | 13217 |
|  |  | 2 | 17971 | 22339 | 26681 | 53850 | 28251 | 23940 | 13946 | 15473 | 18180 | 23696 |
|  |  | 3 | 17530 | 14481 | 14778 | 19496 | 40641 | 20796 | 18201 | 10120 | 8426 | 10559 |
|  |  | 4 | 5306 | 8909 | 7210 | 6681 | 10499 | 18878 | 11942 | 8150 | 3978 | 3392 |
|  |  | 5 | 3609 | 2124 | 3416 | 3040 | 2742 | 4839 | 8090 | 5115 | 3071 | 1958 |
|  |  | 6 | 1207 | 1483 | 1529 | 1704 | 1555 | 1418 | 1837 | 3893 | 2310 | 1649 |
|  |  | 7 | 440 | 585 | 759 | 849 | 1133 | 892 | 724 | 900 | 1923 | 1097 |
|  |  | 8 | 459 | 174 | 374 | 446 | 348 | 607 | 533 | 424 | 542 | 1076 |
|  |  | 9 | 82 | 319 | 63 | 273 | 257 | 194 | 379 | 289 | 269 | 300 |
|  | +gp |  | 239 | 114 | 113 | 199 | 423 | 470 | 489 | 319 | 272 | 446 |
| 0 | TOTAL |  | 71900 | 80164 | 115151 | 117785 | 112323 | 88315 | 74957 | 66395 | 66910 | 57390 |
|  |  | 1 |  |  |  |  |  |  |  |  |  |  |
|  | YEAR |  | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|  | AGE |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | 17322 | 25178 | 30531 | 37964 | 15141 | 18001 | 18699 | 26889 | 27090 | 9590 |
|  |  | 2 | 11255 | 14492 | 20317 | 26561 | 33828 | 13259 | 15584 | 15604 | 21779 | 23654 |
|  |  | 3 | 14206 | 6728 | 8985 | 13773 | 19994 | 26424 | 10325 | 8190 | 10163 | 12854 |
|  |  | 4 | 5923 | 6226 | 3298 | 4700 | 5624 | 9884 | 12395 | 5267 | 3244 | 4258 |
|  |  | 5 | 1871 | 2400 | 2848 | 1513 | 986 | 1836 | 2798 | 4328 | 2729 | 1121 |
|  |  | 6 | 1256 | 885 | 1295 | 1211 | 341 | 381 | 669 | 960 | 2028 | 981 |
|  |  | 7 | 1047 | 738 | 584 | 708 | 381 | 173 | 182 | 314 | 574 | 990 |
|  |  | 8 | 675 | 651 | 404 | 358 | 199 | 215 | 75 | 87 | 201 | 297 |
|  |  | 9 | 701 | 357 | 375 | 199 | 134 | 103 | 117 | 42 | 58 | 123 |
|  | +gp |  | 791 | 751 | 784 | 529 | 484 | 299 | 273 | 250 | 211 | 152 |
| 0 | TOTAL |  | 55048 | 58406 | 69420 | 87514 | 77112 | 70575 | 61118 | 61931 | 68077 | 54020 |


| 2004 GMST 80-01 | AMST 80-01 |  |
| ---: | ---: | ---: |
|  |  |  |
| $23146(1)$ | 23146 | 24725 |
| $12676(2)$ | 19913 | 21388 |
| 16767 | 13544 | 15068 |
| 6239 | 6449 | 7307 |
| 2080 | 2505 | 2859 |
| 611 | 1056 | 1271 |
| 533 | 537 | 666 |
| 579 | 294 | 374 |
| 197 | 142 | 212 |
| 142 |  |  |
| 35212 |  |  |

Table 11.3.4 - Plaice in Division VIId. Stock summary

Run title : Plaice in VIId (run: XSAAEDB01/X01)
At 8/09/2004 15:09
Table 16 Summary (without SOP correction)
Terminal Fs derived using XSA (With F shrinkage)

|  |  | RECR <br> Age 1 | TOTALBIO | TOTSPBIO | LANDINGS | YIELD/SSB | FBAR 2-6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1980 | 25536 | 16512 | 5586 | 2650 | 0.4744 | 0.363 |
|  | 1981 | 12905 | 14342 | 6562 | 4769 | 0.7268 | 0.474 |
|  | 1982 | 25210 | 15070 | 7580 | 4865 | 0.6418 | 0.4928 |
|  | 1983 | 19958 | 15146 | 8133 | 5043 | 0.62 | 0.4985 |
|  | 1984 | 25056 | 14145 | 7471 | 5161 | 0.6908 | 0.5843 |
|  | 1985 | 29636 | 15779 | 8156 | 6022 | 0.7383 | 0.5134 |
|  | 1986 | 60228 | 23102 | 10089 | 6834 | 0.6774 | 0.551 |
|  | 1987 | 31248 | 31773 | 13448 | 8366 | 0.6221 | 0.4739 |
|  | 1988 | 26474 | 24360 | 13108 | 10420 | 0.795 | 0.5126 |
|  | 1989 | 16281 | 21488 | 14204 | 8758 | 0.6166 | 0.5635 |
|  | 1990 | 18816 | 21826 | 14580 | 9047 | 0.6205 | 0.5834 |
|  | 1991 | 21713 | 17554 | 10151 | 7813 | 0.7697 | 0.7035 |
|  | 1992 | 27938 | 16154 | 8573 | 6337 | 0.7392 | 0.6057 |
|  | 1993 | 13217 | 15894 | 7750 | 5331 | 0.6879 | 0.4165 |
|  | 1994 | 17322 | 15002 | 8329 | 6121 | 0.7349 | 0.6047 |
|  | 1995 | 25178 | 14797 | 7516 | 5130 | 0.6825 | 0.5013 |
|  | 1996 | 30531 | 17138 | 6592 | 5393 | 0.8181 | 0.5552 |
|  | 1997 | 37964 | 15284 | 6776 | 6307 | 0.9307 | 0.9776 |
|  | 1998 | 15141 | 17225 | 7652 | 5762 | 0.753 | 0.6403 |
|  | 1999 | 18001 | 14416 | 8398 | 6326 | 0.7533 | 0.7032 |
|  | 2000 | 18699 | 11259 | 6438 | 6015 | 0.9343 | 0.7392 |
|  | 2001 | 26889 | 12837 | 6479 | 5266 | 0.8128 | 0.557 |
|  | 2002 | 27090 | 14569 | 6601 | 5777 | 0.8752 | 0.7399 |
|  | 2003 | 15053(1) | 12128 | 5740 | 4536 | 0.7903 | 0.5001 |
|  | 2004 | 23146 (2) |  | 7330(3) |  |  |  |
| Arith. Mean |  | 24193 | 16992 | 8580 | 6169 | 0.7294 | 0.5773 |
| Units |  | (Thousands | (Tonnes) | (Tonnes) | (Tonnes) |  |  |

(1) RCT3 estimate
(2) GM 1980-2001
(3) Forecast

Table 11.4.1 - Plaice in Division VIId. Input to RCT3

7D PLAICE - VPA indices all * per 100
5182

| YEARCLASS | VPA age 1 | VPA age 2 | yfs0 | yfs1 | bts1 | gfs0 | gfs1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1 9 8 6}$ | 31248 | 28251 | -11 | 144 | -11 | -11 | -11 |
| $\mathbf{1 9 8 7}$ | 26474 | 23940 | 1168 | 132 | 2647 | -11 | 1033 |
| $\mathbf{1 9 8 8}$ | 16281 | 13946 | 556 | 58 | 231 | 19 | 408 |
| $\mathbf{1 9 8 9}$ | 18816 | 15473 | 397 | 71 | 516 | 16 | 270 |
| $\mathbf{1 9 9 0}$ | 21713 | 18180 | 342 | 62 | 1175 | 10 | 173 |
| $\mathbf{1 9 9 1}$ | 27938 | 23696 | 436 | 178 | 1653 | 10 | 2379 |
| $\mathbf{1 9 9 2}$ | 13217 | 11255 | 404 | 84 | 322 | 66 | 1916 |
| $\mathbf{1 9 9 3}$ | 17322 | 14492 | 370 | 79 | 833 | 438 | 517 |
| $\mathbf{1 9 9 4}$ | 25178 | 20317 | 869 | 168 | 1132 | 362 | 491 |
| $\mathbf{1 9 9 5}$ | 30531 | 26561 | 687 | 66 | 1320 | 136 | 447 |
| $\mathbf{1 9 9 6}$ | 37964 | 33828 | 407 | 82 | 3310 | 2360 | 3549 |
| $\mathbf{1 9 9 7}$ | 15141 | 13259 | 223 | 80 | 1140 | 890 | 1253 |
| $\mathbf{1 9 9 8}$ | 18001 | 15584 | 530 | 76 | 1130 | 768 | 848 |
| $\mathbf{1 9 9 9}$ | 18699 | 15604 | 381 | 48 | 1319 | 103 | 1026 |
| $\mathbf{2 0 0 0}$ | 26889 | -11 | 514 | 83 | 1791 | 1590 | 738 |
| $\mathbf{2 0 0 1}$ | -11 | -11 | 374 | 92 | 2066 | 461 | 1134 |
| $\mathbf{2 0 0 2}$ | -11 | -11 | 67 | 23 | 618 | 54 | 266 |
| $\mathbf{2 0 0 3}$ | -11 | -11 | 492 | -11 | -11 | 912 | -11 |

Table 11.4.2 - Plaice in Division VIId. RCT3 output for age 1

```
Analysis by RCT3 ver3.1 of data from file : recpl7d1.in
7D PLAICE - VPA AGE 1 / indices all * per 100
Data for 5 surveys over 18 years : 1986 - 2003
```

Regression type $=\mathrm{C}$
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 00
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass = 2001

| Survey/ <br> Series | Slope | Intercept | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | $\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$ | Index Value | $\begin{aligned} & \text { Predicted } \\ & \text { Value } \end{aligned}$ | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| yfs 0 | 1.68 | -. 42 | . 65 | . 188 | 14 | 5.93 | 9.56 | . 740 | . 068 |
| yfs1 | 1.81 | 1.91 | . 66 | . 190 | 15 | 4.53 | 10.10 | . 729 | . 070 |
| bts1 | . 53 | 6.29 | . 25 | . 603 | 14 | 7.63 | 10.33 | . 293 | . 435 |
| gfs0 | . 70 | 6.48 | 1.36 | . 053 | 13 | 6.14 | 10.75 | 1.552 | . 016 |
| gfs1 | 1.77 | -1.81 | 1.52 | . 041 | 14 | 7.03 | 10.64 | 1.710 | . 013 |
|  |  |  |  |  | VPA | Mean = | 10.00 | . 307 | . 398 |

Yearclass $=2002$


Yearclass $=2003$

| Survey/ <br> Series | Slope | $\begin{aligned} & \text { Inter- } \\ & \text { cept } \end{aligned}$ | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | $\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$ | Index Value | Predicted Value | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| yfs 0 | 1.68 | -. 42 | . 65 | . 188 | 14 | 6.20 | 10.02 | . 731 | . 145 |
| yfs1 |  |  |  |  |  |  |  |  |  |
| bts1 |  |  |  |  |  |  |  |  |  |
| gfs0 <br> gfs1 | . 70 | 6.48 | 1.36 | . 053 | 13 | 6.82 | 11.23 | 1.584 | . 031 |
|  |  |  |  |  | VPA | Mean = | 10.00 | . 307 | . 824 |


| Year | Weighted | Log | Int | Ext | Var | VPA | Log |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Class | Average | WAP | Std | Std | Ratio |  | VPA |
|  | Prediction |  | Error | Error |  |  |  |
| 2001 | 25301 | 10.14 | . 19 | . 10 | . 29 |  |  |
| 2002 | 15053 | 9.62 | . 20 | . 32 | 2.55 |  |  |
| 2003 | 22972 | 10.04 | . 28 | . 15 | . 29 |  |  |

Table 11.4.3- Plaice in Division VIId. RCT3 output for age 2

Analysis by RCT3 ver3.1 of data from file : recpl7d2.in
7D PLAICE - VPA AGE 2 / indices all * per 100
Data for 5 surveys over 18 years : 1986 - 2003
Regression type $=\mathrm{C}$
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 00
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass = 2001

| Survey/ <br> Series | Slope | Intercept | Std Error | Rsquare | $\begin{aligned} & \text { No. } \\ & \text { Pt s } \end{aligned}$ | Index Value | Predicted Value | Std Error | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| yfs0 | 1.70 | -. 70 | . 69 | . 188 | 13 | 5.93 | 9.39 | . 786 | . 067 |
| yfs1 | 1.83 | 1.65 | . 69 | . 198 | 14 | 4.53 | 9.92 | . 768 | . 070 |
| bts1 | . 54 | 6.05 | . 26 | . 616 | 13 | 7.63 | 10.18 | . 306 | . 445 |
| gfs0 | . 88 | 5.54 | 1.69 | . 038 | 12 | 6.14 | 10.96 | 1.970 | . 011 |
| gfs1 | 1.42 | . 32 | 1.26 | . 065 | 13 | 7.03 | 10.33 | 1.430 | . 020 |
|  |  |  |  |  | VPA | Mean $=$ | 9.83 | . 328 | . 386 |

Yearclass = 2002

| Survey/ Series | Slope | Intercept | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | $\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$ | Index Value | Predicted Value | $\begin{gathered} \text { Std } \\ \text { Error } \end{gathered}$ | WAP Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| yfs 0 | 1.70 | -. 70 | . 69 | . 188 | 13 | 4.22 | 6.49 | 1.249 | . 028 |
| yfs1 | 1.83 | 1.65 | . 69 | . 198 | 14 | 3.18 | 7.45 | 1.016 | . 043 |
| bts1 | . 54 | 6.05 | . 26 | . 616 | 13 | 6.43 | 9.53 | . 301 | . 487 |
| gfs0 | . 88 | 5.54 | 1.69 | . 038 | 12 | 4.01 | 9.08 | 1.943 | . 012 |
| gfs1 | 1.42 | . 32 | 1.26 | . 065 | 13 | 5.59 | 8.27 | 1.500 | . 020 |
|  |  |  |  |  | VPA | Mean $=$ | 9.83 | . 328 | . 410 |

Yearclass = 2003


Table 11.5.1 - Plaice in Division VIId. Input for short term prediction
input data for catch forecast and linear sensitivity analysis

| Label | Value | CV | Label | Value | CV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number | age |  | Weight | the sto |  |
| N1 | 23146 | 0.36 | WS 1 | 0.10 | 0.06 |
| N2 | 12676 | 0.21 | WS 2 | 0.20 | 0.04 |
| N3 | 16766 | 0.18 | WS 3 | 0.27 | 0.06 |
| N4 | 6239 | 0.15 | WS 4 | 0.35 | 0.08 |
| N5 | 2080 | 0.15 | WS 5 | 0.46 | 0.10 |
| N6 | 610 | 0.15 | WS 6 | 0.56 | 0.12 |
| N7 | 533 | 0.14 | WS 7 | 0.67 | 0.23 |
| N8 | 579 | 0.14 | WS 8 | 0.83 | 0.16 |
| N9 | 197 | 0.14 | WS 9 | 0.91 | 0.37 |
| N10 | 141 | 0.15 | WS10 | 1.21 | 0.18 |
| H.cons | lectivi |  | Weigh | the HC | atch |
| sH1 | 0.07 | 0.58 | WH1 | 0.24 | 0.09 |
| sH2 | 0.33 | 0.10 | WH2 | 0.26 | 0.03 |
| sH3 | 0.74 | 0.18 | WH3 | 0.29 | 0.07 |
| sH4 | 0.71 | 0.13 | WH4 | 0.37 | 0.02 |
| sH5 | 0.70 | 0.11 | WH5 | 0.48 | 0.14 |
| sH6 | 0.51 | 0.16 | WH6 | 0.62 | 0.08 |
| sH7 | 0.45 | 0.17 | WH7 | 0.71 | 0.20 |
| sH8 | 0.34 | 0.08 | WH8 | 0.91 | 0.09 |
| sH9 | 0.52 | 0.24 | WH9 | 0.88 | 0.32 |
| sH10 | 0.52 | 0.24 | WH10 | 1.25 | 0.05 |
| Natura | ortalit |  | Propo | matur |  |
| M1 | 0.10 | 0.10 | MT1 | 0.00 | 0.10 |
| M2 | 0.10 | 0.10 | MT2 | 0.15 | 0.10 |
| M3 | 0.10 | 0.10 | MT3 | 0.53 | 0.10 |
| M4 | 0.10 | 0.10 | MT 4 | 0.96 | 0.10 |
| M5 | 0.10 | 0.10 | MT5 | 1.00 | 0.10 |
| M6 | 0.10 | 0.10 | MT 6 | 1.00 | 0.00 |
| M7 | 0.10 | 0.10 | MT 7 | 1.00 | 0.00 |
| M8 | 0.10 | 0.10 | MT8 | 1.00 | 0.00 |
| M9 | 0.10 | 0.10 | MT9 | 1.00 | 0.00 |
| M10 | 0.10 | 0.10 | MT10 | 1.00 | 0.00 |
| Relative effort |  |  | Year effect for natural mortality |  |  |
| in HC fishery |  |  |  |  |  |
| HFO 4 | 1.00 | 0.21 | K04 | 1.00 | 0.10 |
| HFO5 | 1.00 | 0.21 | K05 | 1.00 | 0.10 |
| HFO 6 | 1.00 | 0.21 | K06 | 1.00 | 0.10 |
| Recruitment in 2005 and 2006 |  |  |  |  |  |
| R05 | 23146 | 0.36 |  |  |  |
| R06 | 23146 | 0.36 |  |  |  |

```
Proportion of F before spawning = .00
Proportion of M before spawning = . 00
    Stock numbers in 2004 are VPA survivors.
    These are overwritten at Age 2
```



Table 11.5.2 - Plaice in Division VIId. Short term prediction (management option table)

MFDP version 1a
Run: pl7d
Plaice in VIId (run: XSAAEDB01/X01)
Time and date: 11:27 10/09/2004
Fbar age range: 2-6

| 2004 <br> Biomass | SSB | FMult | FBar | Landings |
| :---: | :---: | :---: | :---: | :---: |
| 13995 | 7332 | 1.0000 | 0.5990 | 5891 |


| 2005 <br> Biomass | SSB | FMult | FBar | Landings | 2006 <br> Biomass | SSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 3 7 6 5}$ | 7004 | 0.0000 | 0.0000 | 0 | 19888 | 11688 |
| . | 7004 | 0.1000 | 0.0599 | 694 | 19139 | 11046 |
| . | 7004 | 0.2000 | 0.1198 | 1349 | 18434 | 10443 |
| . | 7004 | 0.3000 | 0.1797 | 1970 | 17768 | 9878 |
| . | 7004 | 0.4000 | 0.2396 | 2557 | 17140 | 9347 |
| . | 7004 | 0.5000 | 0.2995 | 3113 | 16546 | 8848 |
| . | 7004 | 0.6000 | 0.3594 | 3639 | 15986 | 8380 |
| . | 7004 | 0.7000 | 0.4193 | 4139 | 15457 | 7940 |
| . | 7004 | 0.8000 | 0.4792 | 4612 | 14957 | 7527 |
| . | 7004 | 0.9000 | 0.5391 | 5061 | 14484 | 7138 |
| . | 7004 | 1.0000 | 0.5990 | 5487 | 14036 | 6772 |
| . | 7004 | 1.1000 | 0.6589 | 5892 | 13612 | 6429 |
| . | 7004 | 1.2000 | 0.7188 | 6276 | 13211 | 6105 |
| . | 7004 | 1.3000 | 0.7787 | 6641 | 12831 | 5801 |
| . | 7004 | 1.4000 | 0.8386 | 6989 | 12471 | 5515 |
| . | 7004 | 1.5000 | 0.8985 | 7320 | 12130 | 5245 |
| . | 7004 | 1.6000 | 0.9584 | 7634 | 11806 | 4991 |
| . | 7004 | 1.7000 | 1.0183 | 7934 | 11498 | 4752 |
| . | 7004 | 1.8000 | 1.0782 | 8220 | 11206 | 4526 |
| . | 7004 | 1.9000 | 1.1381 | 8493 | 10929 | 4314 |
| . | 7004 | 2.0000 | 1.1980 | 8753 | 10665 | 4113 |

Input units are thousands and kg - output in tonnes

Table 11.5.3 - Plaice in Division VIId. Short term prediction (Detailed output)

MFDP version 1a
Run: pl7d
Time and date: 11:27 10/09/2004
Fbar age range: 2-6

| Year: 2004 Age | F multiplier: 1 |  |  | Fbar: 0.599 |  | SSNos(Jan) | SSB(Jan) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | F | CatchNos | Yield | StockNos | Biomass |  |  |
| 1 | 0.0733 | 1557 | 375 | 23146 | 2299 | 0 | 0 |
| 2 | 0.3334 | 3429 | 887 | 12676 | 2548 | 1901 | 382 |
| 3 | 0.7396 | 8391 | 2470 | 16767 | 4494 | 8887 | 2382 |
| 4 | 0.7121 | 3042 | 1125 | 6239 | 2177 | 5989 | 2090 |
| 5 | 0.6961 | 998 | 480 | 2080 | 948 | 2080 | 948 |
| 6 | 0.5139 | 235 | 144 | 611 | 341 | 611 | 341 |
| 7 | 0.4468 | 183 | 130 | 533 | 356 | 533 | 356 |
| 8 | 0.3366 | 158 | 144 | 579 | 482 | 579 | 482 |
| 9 | 0.5203 | 76 | 67 | 197 | 179 | 197 | 179 |
| 10 | 0.5203 | 55 | 69 | 142 | 172 | 142 | 172 |
| Total |  | 18125 | 5891 | 62970 | 13995 | 20919 | 7332 |
| $\text { Year: } 2005$ Age | F | F multiplier: 1 CatchNos | Yield | Fbar: StockNos | 99 <br> Biomass | SSNos(Jan) | SSB(Jan) |
| 1 | 0.0733 | 1557 | 375 | 23146 | 2299 | 0 | 0 |
| 2 | 0.3334 | 5266 | 1362 | 19464 | 3912 | 2920 | 587 |
| 3 | 0.7396 | 4113 | 1210 | 8218 | 2202 | 4355 | 1167 |
| 4 | 0.7121 | 3531 | 1305 | 7241 | 2527 | 6952 | 2426 |
| 5 | 0.6961 | 1329 | 639 | 2770 | 1262 | 2770 | 1262 |
| 6 | 0.5139 | 360 | 222 | 938 | 524 | 938 | 524 |
| 7 | 0.4468 | 114 | 81 | 331 | 221 | 331 | 221 |
| 8 | 0.3366 | 84 | 77 | 308 | 257 | 308 | 257 |
| 9 | 0.5203 | 145 | 127 | 374 | 340 | 374 | 340 |
| 10 | 0.5203 | 71 | 89 | 182 | 221 | 182 | 221 |
| Total |  | 16570 | 5487 | 62973 | 13765 | 19130 | 7004 |
| $\begin{aligned} & \text { Year: } 2006 \\ & \text { Age } \\ & \hline \end{aligned}$ | F | F multiplier: 1 CatchNos | Yield | Fbar: <br> StockNos | $99$ <br> Biomass | SSNos(Jan) | SSB(Jan) |
| 1 | 0.0733 | 1557 | 375 | 23146 | 2299 | 0 | 0 |
| 2 | 0.3334 | 5266 | 1362 | 19464 | 3912 | 2920 | 587 |
| 3 | 0.7396 | 6315 | 1859 | 12618 | 3382 | 6688 | 1792 |
| 4 | 0.7121 | 1731 | 640 | 3549 | 1239 | 3407 | 1189 |
| 5 | 0.6961 | 1543 | 741 | 3215 | 1465 | 3215 | 1465 |
| 6 | 0.5139 | 480 | 295 | 1249 | 697 | 1249 | 697 |
| 7 | 0.4468 | 175 | 124 | 508 | 339 | 508 | 339 |
| 8 | 0.3366 | 52 | 48 | 191 | 159 | 191 | 159 |
| 9 | 0.5203 | 77 | 68 | 199 | 181 | 199 | 181 |
| 10 | 0.5203 | 116 | 145 | 299 | 363 | 299 | 363 |
| Total |  | 17311 | 5657 | 64439 | 14036 | 18676 | 6772 |

Input units are thousands and kg - output in tonnes

Figure 11.2.1 - Plaice in Division VIId. Length structure of discards and landings collected by observations on board (numbers raised to sampled trips)


Figure 11.2.2 - Plaice in Division VIId. Commercial effort and CPUE.


Figure 11.3.1 - Plaice in Division VIId. Stock summary. Estimated recruitment in 2004 (unshaded bar) is the longterm geometric mean used in short-term forecasts. SSB in 2004 (marked by a small square) are VPA survivors.


Figure 11.3.2 - Plaice in Division VIId. Quality control of assessments generated by successive Working Groups.




Figure 11.5.1 - Plaice VIId. Probability profiles for short term forecast.


The 2004 assessment of Norway pout in the North Sea and Skagerrak is a benchmark assessment. Exploratory assessment runs have been carried out using different assessment methods and different assessment tuning fleets including single tuning fleet runs. Input data to the tuning fleets have been analysed during benchmark assessment. The accepted assessment continues to use the seasonal assessment method (SXSA) with revised tuning fleets.

### 12.1 The fishery

The fishery is mainly performed by Danish and Norwegian (large) vessels using small mesh trawls in the north-western North Sea especially at the Fladden Ground and along the edge of the Norwegian Trench in the north-eastern part of the North Sea. Main fishing seasons are $3^{\text {rd }}$ and $4^{\text {th }}$ quarters of the year with also high catches in $1^{\text {st }}$ quarter of the year especially previous to 1999.

### 12.1.1 ACFM advice applicable to 2003 and 2004

There is no management objective set for this stock. With present fishing mortality levels the status of the stock is more determined by natural processes and less by the fishery. The ACFM advice for 2003 and 2004 was that the stock was considered to be within safe biological limits and the stock could on average sustain current fishing mortality. However, it can be expected that the SSB in the second half of 2003 and in $1^{\text {st }}$ quarter of 2004 will decrease further from the $1^{\text {st }}$ quarter 2003 level ( $172,000 \mathrm{t}$ ). Consequently, in the first half year 2003 the stock seems still to be within safe biological limits ( $\mathbf{B}_{\mathrm{pa}}=150,000 \mathrm{t}$ ), however the stock are in risk of decreasing below $\mathbf{B}_{\mathrm{pa}}$ in second half of 2003 and in $1^{\text {st }}$ quarter of 2004.

There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. Bycatches of other species should also be taken into account in management of the fishery. Existing measures to protect other species should be maintained.

Biological reference points for the stock have been set by ICES at $\mathbf{B}_{\lim }=90,000 \mathrm{t}$ as the lowest observed biomass and $\mathbf{B}_{\mathrm{pa}}=150,000 \mathrm{t}$ which should be maintained. The advised TAC was 220,000 t .

### 12.1.2 Management applicable to 2003 and 2004

In 1996-2004 the TAC was set to 220,000 t. In managing this fishery by-catches of other species have been taken into account. Existing technical measures such as the closed Norway pout box, minimum mesh size in the fishery, and bycatch regulations to protect other species have been maintained.

### 12.1.3 The Fishery in 2003 and 2004

Nominal landings of Norway pout as officially reported to ICES are given in Table 12.1.1. Annual landings as provided by Working Group members are shown in Tables 12.1.2-3 and trends in yield are shown in Figures 12.3.2-3. Development in the fishery in catch in numbers by season (quarter of the year) is shown in Table 12.2.1 under Section 12.2. The spatial distribution of catches in tons by ICES statistical square and season of year for 2002 and 2003 from the Danish commercial fishery for Norway pout is shown in Figures 12.1.1-2.

Landings in 2001 and 2002 were low, and the landings in 2003 and in the $1^{\text {st }}$ and $2^{\text {nd }}$ quarter of the year 2004 were historically low on the lowest level ever recorded since 1961. Especially in $1^{\text {st }}$ quarter of the year 2003 catches have been relative low compared to previous years.

Effort in 2003 and the $1^{\text {st }}$ and $2^{\text {nd }}$ quarter of the year 2004 have been historically low and well below long term average of the 5 previous years (see Table 12.2.6 under Section 12.2). The effort in the Norway pout fishery was also relatively low in 2001, but nearly doubled in 2002 being at the same level as in the previous 8 years before 2001.

### 12.2 Data available

### 12.2.1 Landings

Data for annual nominal landings of Norway pout as officially reported to ICES are shown in Table 12.1.1. Data for annual landings as provided by Working Group members are presented in Table 12.1.2, and data for national landings by quarter of year and by geographical area are given in Table 12.1.3

### 12.2.2 Age compositions in Landings

Age compositions were available from Norway and Denmark. Catch at age by quarter of year is shown in Table 12.2.1.

### 12.2.3 Weight at age

Mean weight at age in the catch is shown in Table 12.2.2 and mean weight at age in the stock is given in Table 12.2.3. The estimation of mean weights at age in the catches and in the used mean weights in the stock in the assessment is described in the stock quality handbook.

Mean weight at age in the catch is estimated as a weighted average of Danish and Norwegian data. Historical levels and variation in mean weight at age in catch by quarter of year is shown in Figure 12.2.1. In general, the mean weights at age in the catches are variable between seasons of year. The same mean weight at age in the stock is used for all years. Mean weight at age in catch is not used as estimator of weight in the stock partly because the smallest 0-group fish are not fully recruited to the fishery in $3^{\text {rd }}$ quarter of the year, i.e. because of likely effects of selectivity in the fishery.

### 12.2.4 Maturity and natural mortality

Proportion mature and natural mortality by age and quarter used in the assessment is given in Table 12.2.3. Maturity and natural mortality used in the assessment is described in the stock quality handbook.

In the 2001 and 2002 assessment exploratory runs were made with revised input data for natural mortality by age based on the results from two papers presented to the working group in 2001, (both papers published in ICES J. Mar. Sci. in 2002, Sparholt, Larsen and Nielsen 2002a,b). This was not explored further in the 2003 up-date assessment but this years benchmark assessment of the stock includes an exploratory run with revised natural mortalities. These revised natural mortalities are given in Table 12.2.3.

The resulting SSB ( $1^{\text {st }}$ quarter of year), F and R for the final exploratory run was compared to those for the accepted run with standard settings (Figure 12.3.11). It appears that the implications of these revised input data are very significant (also for TSB ( $3^{\text {rd }}$ quarter of year) - not shown). The working group in 2002 suggested that an assessment with partly the traditional settings (constant M ) and a new assessment with the revised values for M were made for at least a 3 year period in order to compare the output and the performance of the assessments before the working group decided on final adoption of the revised values for $M$ to be used in the assessment. This attitude was adopted by the working group again in the 2004 benchmark assessment where a exploratory run with revised values for M was performed as well. The results of the exploratory runs have been consistent throughout the 3 years of exploratory runs.

### 12.2.5 Catch, Effort and Research Vessel Data

Description of catch, effort and research vessel data used in the assessment is given in the stock quality control handbook. Data used in the present assessment is given in Tables 12.2.4-8 as described below.

## Effort standardization:

The method for effort standardization of the commercial Norway pout fishery tuning fleet is described in the stock quality control handbook. In the 2004 benchmark assessment the same method of effort standardization as in previous years was used based on the below argumentation.

Results and parameter estimates by period from the yearly regression analysis on CPUE versus GRT for the different Danish vessel size categories is used in the effort standardization of both the Norwegian and Danish commercial fishery vessels included in the assessment tuning fleet.

Parameter estimates from regressions of $\ln$ (CPUE) versus $\ln$ (average GRT) by period together with estimates of standardized CPUE to the group of Danish 175 GRT industrial fishery trawlers is shown for the period 1994-2004 in the quality control handbook.

In 2002 the assessment was run both with and without the new standardization method (regression). The differences in results of output SSB, TSB and F between the two assessment runs were small.

With respect to further exploration of the effect of using effort standardization and using a combined Danish and Norwegian commercial fishery tuning fleet in the Norway pout assessment different analyses have been made in relation to the benchmark assessment in 2004. This was done to investigate alternative standardization methods and alternative division of the commercial fishery assessment tuning fleet used in the assessment. The results of these analyses were presented to the working group and were discussed here.

Analysis of variance (GLM-analyses) of catch, effort and log transformed CPUE data on trip basis for the Danish commercial fishery for Norway pout during the period 1986 to 2004 showed statistical significant differences in catch rates between different GT-groups, years, quarters of years (seasons), and fishing areas, as well as statistical significant first order interaction effects between all of these variables. The detailed patterns in this variation are not clear and straight forward to conclude on.

It has not yet been possible to obtain disaggregated effort and catch data by area and vessel size (GT-group) from the Norwegian Norway pout fishery to perform similar analyses for the Norwegian fishery.

Also it is not possible to regenerate the historical time series (before 1996) of catch numbers at age in the commercial fishery tuning fleet by nation which is only available for the combined Danish and Norwegian commercial tuning fleet. The reason for this is partly that there is no documentation of historical allocation of biological samples (mean weight at age data) to catch data (catch in weight) in the tuning fleet in order to calculate catch number at age for the period previous to 1996 for both nations, and partly because it seems impossible to obtain historical biological data for Norway pout (previous to 1996) from Norway. Alternative division of the commercial fishery tuning fleet would, thus, need new allocation of biological data to catch data for both the Danish and Norwegian fleet, and result in a significantly shorter Norwegian commercial fishery tuning fleet time series, and a historically revised Danish commercial fishery tuning fleet with new allocation of biological data to catch data. Revision of the tuning fleet would, furthermore, need analyses of possible variation in biological mean weight at age data to be applied to different fleets, as well as of the background for and effect of this possible variation.

The conclusion of the discussion in the working group of these preliminary analysis results was that further analysis and exploration of data is necessary before suggesting an alternative standardization method and alternative division of commercial fishery tuning fleets to be used in the assessment.

Accordingly, the same method of effort standardization as in previous years was used in the 2004 benchmark assessment.

## Danish effort data

Table 12.2.4 shows CPUE data by vessel size category and year for the Danish commercial fishery in ICES area IVa. The basis for these data is described in the stock quality handbook.

## Norwegian effort data

Observed average GRT and effort for the Norwegian commercial fleets are given in Table 12.2.5.

## Standardized effort data

The resulting combined and standardized Danish and Norwegian effort for the commercial fishery used in the assessment is presented in Table 12.2.6.

## Commercial fishery standardized CPUE data

Combined CPUE indices by age and quarter for the commercial fishery tuning fleet are shown in Table 12.2.7. Trends in CPUE (normalized) by quarterly commercial tuning fleet and survey tuning fleet for each age group and all age groups together are shown in Figure 12.2.2.

## Research vessel data

Survey indices series of abundance of Norway pout by age and quarter are for the assessment period available from the IBTS (International Bottom Trawl Survey 1. and 3. quarter) and the EGFS (English Ground Fish Survey, 3. quarter) and SGFS (Scottish Ground Fish Survey, 3. quarter), Table 12.2.8. Surveys covering the Norway pout stock are described in the quality control handbook. Survey data time series used in tuning of the Norway pout stock assessment are described below.

## Revision of assessment tuning fleets in the 2004 benchmark assessment:

Revision of the Norway pout assessment tuning fleets during benchmark assessment have been based partly on cohorte analyses and analyses of correlations within and between the different tuning fleet indices by age group, as well as on the results from a row of exploratory assessment runs described under Section 12.3 which analyses the performance of the different tuning fleets in the assessment. The exploratory assessment runs also give indications of possible catchability patterns and trends in the fishery over time within the assessment period. The analyses of the tuning fleet indices are presented in Figures 12.2.3-12.2.8 and Tables 12.2.9-12.2.12.

The revision of the tuning fleets used in the assessment is summarised in Table 12.3.1.
Commercial fishery tuning fleets:
In addition to the analyses of the commercial fishery assessment tuning fleet as described above (effort standardization) the quarterly CPUE indices of the commercial fishery tuning fleet were analyzed during the 2004 benchmark assessment:

1. The indices for the 0 -group in $3^{\text {rd }}$ quarter of the year have been excluded from the commercial fishery tuning fleet. The main argumentation for doing that is that this age group indicate clear patterns in trends in catchability over the assessment period as shown in the single fleet/quarter assessment runs in Section 12.3 (Figure 12.3.7). Secondly, there is no correlation between the commercial fishery quarter 30 -group index and the commercial fishery quarter 40 -group index, and no correlation between the quarter 3 commercial fishery

0 -group index in a given year with the 1 -group index of the $3^{\text {rd }}$ quarter commercial fishery 1 -group index the following year.
2. The $2^{\text {nd }}$ quarter indices for all age groups of the $2^{\text {nd }}$ quarter have been excluded from the commercial fishery tuning fleet. This is mainly because of indications of strong trends in catchability over time in the assessment period for this part of the tuning fleet for all age groups as indicated by single fleet tuning runs in the Section 12.3 (Figure 12.3.7). Also, the within quarter and between quarter correlation indices are in general relatively poor. The cohorte analyses of the $2^{\text {nd }}$ quarter commercial fishery indices indicate as well relative changes over time.

Survey tuning fleets:
Survey index series of abundance of Norway pout by age and quarter are for the assessment period available from the IBTS (Q1 and Q3) and the EGFS (Q3) and the SGFS (Q3) as given in Table 12.2.8. The SGFS data from 1998 onwards should be used with caution due to new survey design (new vessel from 1998 and new gear and extended survey area from 1999). The 0-group indices from this survey have accordingly not been used in the assessment tuning fleet for this survey previous to the 2004 benchmark assessment. It can be seen that the index for the 0 -group from SGFS changed with an order of magnitude in the years after the change in survey design compared to previous years (Table 12.2.8).
The EGFS data from previous to 1992 should be used with caution as the survey design shifted in 1992. This change in survey design has so far been accounted for by simply multiplying all indices with a factor 3.5 for all age groups in the years previous to 1992 in order to standardize it to the later indices. The EGFS survey indices for Norway pout has been revised in the 2004 assessment compared to the previous years assessment for the 1996, 2001, 2002, and 2003 indices. In previous years assessment the full EGFS survey time series for all age groups have been included as an assessment tuning fleet. Time series for IBTS Q3 are only available from 1991 and onwards. The $3^{\text {rd }}$ quarter IBTS and the EFGS and SGFS are not independent of each other as the two latter is a part of the first.

1. The IBTS Q3 for the period 1991-2003 has been included in the assessment. This survey has a broader coverage of the Norway pout distribution area compared to the EGFS and SGFS isolated. However, as this survey index is not available for the most recent year to be used in the seasonal assessment it has been chosen to exclude the 0 - and 1-group indices from the IBTS Q3 in order to allow inclusion of the 0 - and 1-group indices from the SGFS and EGFS which are available for the most recent year in the assessment. Accordingly, the IBTS Q3 tuning fleet for age 2 and age 3 has been included in the assessment as a new tuning fleet. The SXSA demands at least two age groups in order to run which is the reason for including both age 0 and age 1 under the EGFS and SGFS tuning fleets and not including age 1 in the IBTS Q3 tuning fleet.
2. The SGFS for age group 0 and 1 for the period 1998 and onwards has been used as tuning fleet in the assessment. The short time series is due to the change in survey design for SGFS as explained above. The quarter 30 -group survey index for SGFS is back-shifted to the final season of the assessment in the terminal year, i.e. to quarter 2 of the assessment year in order to include the most recent 0 -group estimate in the assessment.
3. The EGFS for age group 0 and 1 for the period 1992 and onwards has been used as tuning fleet in the assessment. The shorter time series is due to the change in survey design for EGFS as explained above. Furthermore, there is a good argument for excluding the age 2-3 of the EGFS as the within survey correlation between the age groups 1-2 and 2-3 is very poor while the within correlation between age groups $0-1$ is good. The quarter 30 -group survey index for EGFS is back-shifted to the final season of the assessment in the terminal year, i.e. to quarter 2 of the assessment year in order to include the most recent 0 -group estimate in the assessment.
4. The IBTS Q1 tuning fleet has remained unchanged compared to previous years assessment.

### 12.3 Catch at Age Analyses

The SXSA (Seasonal Extended $\underline{\text { Survivors }} \underline{\text { Annalysis) was used to estimate quarterly stock numbers and fishing }}$ mortalities for Norway pout in the North Sea and Skagerrak in 2004. The catch at age analysis was carried out according to the specifications in the stock quality control handbook. The tuning fleets have been changed in this years assessment in accordance with the description in Section 12.2.5. An overview of indices used in this year assessment is provided in Table 12.3.1. The parameter settings of the SXSA have remained unchanged, except that recruitment season to the fishery has been backshifted from $3^{\text {rd }}$ quarter of the year to $2^{\text {nd }}$ quarter of the year in order to gain benefit from the most recent 0 -group indices from the $3^{\text {rd }}$ quarter surveys (SGFS and EGFS as explained above) in the assessment (Table 12.3.2).

Results of the analysis are presented in Table 12.3.3 (population numbers at age, SSB and TSB), Table 12.3.4 (partial fishing mortalities by quarter of year), Table 12.3.5 (diagnostics from the SXSA), and Figure 12.3.1 ( $\log \mathrm{N}$ residuals), as well as Table 12.3.7 (stock summary). The stock summary is also shown in Figures 12.3.2-3, and the historical performance of the assessment is shown in Figure 12.3.4.

The tuning fleet data is provided in Tables 12.2.7-12.2.8. Fishing mortality has generally been lower than natural mortality and has decreased in recent decade below the long term average ( 0.7 ). Fishing mortality for the $1^{\text {st }}$ and $2^{\text {nd }}$ quarter has decreased to insignificant levels in recent years ( F less than 0.05 ), while fishing mortality for $4^{\text {th }}$ quarter, that historically constitutes the main part of the annual F, has not decreased in recent 3-4 years (Figure. 12.5.1). The main fishery is usually in $3^{\text {rd }}$ and $4^{\text {th }}$ quarter of the year therefore giving only little indication of total fishing mortality in 2003 and 2004 in Figure 12.5.1.

Stock biomass (SSB) has since 2001 decreased continuously from about 240 thousand tons to 90 thousand tons in $1^{\text {st }}$ quarter of 2003 which is below $\mathbf{B}_{\mathrm{pa}}$ and about $\mathbf{B}_{\text {lim }}$. Retrospective plots of F, SSB and recruitment is shown in Figure 12.3.5.

## Exploratory catch at age analyses.

A number of exploratory runs were carried out as part of the benchmark assessment in 2004 in order to evaluate performance of stock indices as tuning fleets and also to compare performance of the seasonal XSA (SXSA) to the 'conventional' XSA. The exploratory runs are briefly described below as an addition to the final run presented above.

In Figure 12.3.6 a comparison of the revised 2004 assessment with new tuning fleets compared to the 2003 assessment is shown. The estimates of the SSB, recruitment and the average fishing mortality of the 1-and 2-group are in general consistent with the estimates of previous years assessment. Only historical F seems to slightly deviate from previous years assessment.

## Catchability trends:

Previously a number of indices, commercial as well as surveys, have been used as tuning fleets in the assessment of Norway pout. In addition to the inspection of the tuning fleets as described in Section 12.2.5, the SXSA was used to explore trends in catchability over the time series within the single tuning series. Running SXSA by default assumes a constant catchability over the time series used. Applying a cosine function option allows catchability to change gradually over years, and allows to examine whether the single stock index has changed its catchability over time. The exploratory runs were based on the 2003 assessment data, due to late compilation of 2004 data and in order to test on basis of an accepted assessment by ACFM. Figure 12.3.7 provides inverse catchabilities for ages $0-3$ from single runs of all indices previously used in the assessment of Norway pout. For catchability of ages 2 and 3 ( $q$ of the oldest and the second oldest age group in catches is assumed equal) for the commercial fleet, the $2^{\text {nd }}$ quarter index, obviously displays a decrease in q (inverse catchability) over time for all age groups. Also q for age 0 in $3^{\text {rd }}$ quarter of the commercial tuning fleet changes through time. In the survey indices changes in $q$ is relatively smaller and is only considered a problem for the EGFS $3^{\text {rd }}$ quarter. For both EGFS and SGFS $3^{\text {rd }}$ quarter new survey gears were introduced in the 1990'ies, which might have affected catchability (see Section 12.2.5).

## SXSA performance of single indices:

SXSA runs with single fleet tuning indices were run for the previous used fleets (2003 assessment): commercial fleets $1^{\text {st }}-4^{\text {th }}$ quarter, IBTS $1^{\text {st }}$ quarter, EGFS $3^{\text {rd }}$ quarter, and SGFS $3^{\text {rd }}$ quarter, in order to explore performance of the SXSA in relation to each series. For the estimation of survivors the SXSA weight the tuning indices by the inverse variance similar to XSA. Historical development in SSB, recruitment at age 0 and F (ages 1-2) are given in Figure 12.3.8 for all single runs. Most single fleet runs results in a stock and fishery perception markedly different from the 2003 assessment, however, the historical trends in stock dynamics of SSB, R and F mortality being the same. Some indices, e.g. the IBTS $3^{\text {rd }}$ quarter (early period) and $3^{\text {rd }}$ quarter commercial fleet, did not behave properly in SXSA (SXSA was not able to estimate population numbers for some years). Among the survey indices, IBTS Q1 showed the highest variations in history, high SSB and recruitment in periods and the lowest F in the entire time series. Contrary to this, EGFS Q3 performs with lowest SSB and recruitment and highest F in time series. Among the commercial indices, only the $2^{\text {nd }}$ quarter index did perform markedly different from the remaining series, with high SSB and low F in the entire time series. The 2003 point estimates of SSB and F is also given in the Figure 12.3.8, showing the high variation in the present perception of SSB and F. In summary, using only single fleet stock indices as tuning fleets will result in a higher SSB except from the commercial fleet index from $1^{\text {st }}$ and $4^{\text {th }}$ quarter of the year giving the same SSB and F range as in the accepted 2003 assessment. Thus, those two commercial fleets mainly drive the behaviour of the SXSA. Runs with different combinations of tuning fleets confirmed this.

## XSA performance on the 2003 assessment data:

The Working Group has in the past discussed the appropriate assessment models to use, both for the sandeel stock and for the Norway pout stock, partly due to questions in the interpretation of the SXSA model compared to the XSA. Thus, the comparison of the two models as carried out here, cannot be considered a verification of the SXSA performance but rather an informatory, comparison analysis of the performance of both models. A comparison between the seasonal and annual assessment have been conducted in 1998 by this Working Group (ICES CM 1998:Assess:7). In order to compare runs, XSA were run without any F and P shrinkage, as SXSA operate without shrinkage. The annual F derived from the

SXSA in the output is generated as a sum of the quarterly F 's. This is an approximation of annual F which results in incomparable F levels between the two models, but a comparable F history between them. SSB, F and recruitment from the XSA run are presented in Figure 12.3.9. The XSA single fleet runs shows less variation in SBB for 2003 than did the SXSA, but the same or a higher variation in F for 2002. The two methods apparently weight the stock indices different in their estimation of survivors (Figure. 12.3.10), the XSA putting approximately equal weight to each of the fleets, while the SXSA puts more weight to the commercial fleet indices. However, the overall performance of the two methods is similar, so the group decided to continue using SXSA. Both methods did overall not show insensible to the tuning fleet indices used in the assessment.
Effect of new proposed natural mortalities.
Investigations on revised mortality rates of Norway pout (see Quality handbook and Section 12.2) suggests that the natural mortality due to spawning is significant higher for the old age groups and lower for the small age groups than the suggested values of 0.4 per quarter for all ages. Thus, for the younger ages ( 0 and 1 ) quarterly values of 0.25 is estimated, while for ages 2 and $3, \mathrm{M}$ is estimated to 0.75 and 0.95 (Table 12.2.3). Stock summary from an SXSA run using these new M values is given in Figure 12.3.11. Stock trends remain the same, but levels differ significantly. The group decided not to use the suggested higher $M$ values in present assessment but to present this also this year as an exploratory assessment run in accordance with the decisions put forward in the 2001 and 2002 assessments.

## Data exploration with SMS

SMS (see Section 1.4.3) was applied to the SXSA data set including catches for the period 1974-2003 and first halfyear of 2004. The CPUE time series beginning in 1983 were updated up to second half of 2004.

The SMS diagnostic (Table 12.3.6) shows that the negative log likelihood per observation is similar for catch and CPUE observations. The best fit for CPUE observations is obtained for fleet "Commercial Q1" and "IBTS Q1". SMS estimate a selection pattern (Fa) for age 2 and age 3 twice the value for age 1 . Such difference seems difficult to explain from mesh selection alone.

The lowest CV, $44 \%$, for the catch at age observation is estimated for age 1 , followed by a CV at $60 \%$ for age 2 (Table 12.3.6). The CV is more than $125 \%$ for the 0 - and 3 group. The residual plots for catch observation (Figure 12.3.12.1) shows accordingly the smallest residuals for age 1 and 2.

For the CPUE observations, the lowest CV is estimated for the 1-group in the commercial fishery in the third and fourth quarter. CV on CPUE data from IBTS Q1 are relatively low for the age 1 and 2. The same can be concluded from the CPUE residual plots (Figure 12.3.12.2). For the EGFS Q3, the pattern of the residuals indicates a shift in catchability around 1992. The SGFS Q4 has a similar shift for the 0-group around 1997.

Average F (age 1 and 2) and SSB for the period 1974-2004 (first half -year) is shown in Figure 12.3.12.3. There is as pronounced downward trend in F for the whole period, with the lowest estimated F at 0.024 in the first half year of 2004. SSB has been more variable through the time period and the lowest SSB in the time series, 58.000 t , is estimated for 2004. The CV of SSB for the 6 last years is estimated to be around 15\% (Figure 12.3.12.4). CV of average F shows a steep increase to $33 \%$ in the last year, which only include the first half-year.

The results presented below have been made without input data from the first half -year of 2004. Retrospective runs using all CPUE fleets show surprisingly sTable estimates of both F and SSB (Figure 12.3.12.5). When individual set of CPUE data is applied, F is more variable (Figure 12.3.12.6), but all fleets' CPUE data estimate the same trend in F. The most variable retrospective pattern is found for the fleets "Commercial Q2" and "ENGF Q3" supporting the (above explained) decisions in relation to selection of new tuning fleets as used in the 2004 benchmark assessment for the Norway pout stock. The time series length used for CPUE seems to have limited influence on the estimate of SSB and F (Figure 12.3.12.7). Estimated SSB in 2003 varies however, in the range of 50.000-100.000 t supporting the output levels from SXSA and XSA.

To summarize the explorative runs: Catch and CPUE data for the assessment of Norway pout are very noisy, but internally consistent. The assessment, using SMS, gave very similar results irrespective of the CPUE time series used. Four of the seven CPUE series are data from the commercial fishery and these data are already included in the catch data. Therefore, these commercial fleets will not give a signal very different from the catch data. None of the scientific surveys had a clear signal different form the signal in the catch data.

SMS uses the build in functionality in the AD-Model builder package to carry out Markov Chain Monte Carlo simulations (Gilks et al. 1996), MCMC, to estimate the posterior distributions of the parameters. An example is shown for average F and SSB in Figure 12.3.12.8, where the variance is estimated using MCMC with 500.000 chains thinned by a factor 500 resulting in 1000 uncorrelated chains. Uniform priors were used for all parameters except for the recruitment, for which the Ricker function was assumed. The $95 \%$ confidence limits of the historical estimate of F and SSB are quite wide, and the very wide confidence limit for the predicted SSB highligth, that forecasts for this shortlived species is very uncertain in the SMS. The models predict a SSB in 2005 is far below $\mathbf{B}_{\mathrm{lim}}$.

### 12.4 Recruitment Estimates

The long-term average recruitment (age 0, 2nd quarter) is 87 billions (arithmetic mean) and 72 billions (geometric mean) for the period 1983-2003 (Table 12.3.7). Recruitment is highly variable and influences SSB and TSB rapidly due to the short life span of the species.

No strong year-classes have appeared since the 1999 year-class. Recruitment has been well below the long-term average since 2000, and the 2003 and 2004 year-classes are the lowest in the time series. Both surveys in $3^{\text {rd }}$ quarter of 2004 (EGFS and SGFS) have the lowest recruitment indices for a number of years (Table 12.2.8).

### 12.5 Short-term prognoses

Deterministic short-term prognoses were performed for the Norway pout stock. The forecast was calculated as a stock projection up to $1^{\text {st }}$ of January 2005 without assuming anything about the recruitment in 2005 or taking unknown recruitment into consideration. A management Table is presented with forecast $F$ being equal to last year (2003), i.e. with very low level of fishing mortality (Table 12.5). This F-level is not expected to increase as the recent reduction in effort targeting Norway pout most probably is caused by by-catch restrictions in the Norway pout fishery which is not expected to change during the next years fishery. Mean catch weight at age are averaged over the last three years. The low successive year-classes in 2002, 2003 and 2004 leads to a SSB estimate at $\mathbf{B}_{\text {lim }}$ at start of 2004 (start of $1^{\text {st }}$ quarter of 2004), and far below $\mathbf{B}_{\text {lim }}$ at the start of 2005 ( $1^{\text {st }}$ of January). Fishing at $F$ status quo in the second half of 2004 (Landings around 12000 t ) would lead to SSB in 2005 at $50 \%$ of $\mathbf{B}_{\mathrm{lim}}$, while no fishing would still lead to SSB being only $60 \%$ of $\mathbf{B}_{\text {lim }}$.

Short term developments in the stock:
Recruitment has been low since 2000 and recent $20043^{\text {rd }}$ quarter survey indices also indicate low recruitment of 0group Norway pout in 2004 (Table 12.3.5 and Table 12.2.8). Stock biomass (SSB) is just about $\mathbf{B}_{\mathrm{lim}}$ in $1^{\text {st }}$ quarter of 2004 (Table 12.3.5). Fishing mortality has decreased in 2003 to the lowest level in the time series. The fishing mortality of the first half year in 2004 has been lowest in time series in the first half year.

### 12.6 Management considerations

State of the stock and the exploitation: Stock biomass (SSB) is on $\mathbf{B}_{\mathrm{lim}}$ and below $\mathbf{B}_{\mathrm{pa}}$ in the $1^{\text {st }}$ quarter of 2004. Recruitment has been historically low in 2003 and 2004, and was also relatively low in 2001-2002. Fishing mortality has generally been lower than the natural mortality for this stock and has decreased in recent years well below the long term average F (0.7). Fishing mortality was historically low in 2003 and in the two first quarters of the year in 2004. Fishing effort has in general decreased in recent years reaching a historically minimum in 2001 and in 2003 and in the first part of the year 2004, but increased in 2002 to the level of that in 1999-2000.

A forecast is given for this stock for the first time in this report. Catch predictions for 0 - and 1 -groups are important as the fishery target the 0 -group already in $3^{\text {rd }}$ and (especially in) $4^{\text {th }}$ quarter of the year as well as the 1 -group in the $1^{\text {st }}$ quarter of the following year. The SSB is in the first part of 2004 on $\mathbf{B}_{\mathrm{lim}}$, and the stock projection indicate that the stock $1^{\text {st }}$ of January 2005 will be around half of $\mathbf{B}_{\text {lim }}(45.000 \mathrm{t})$ with present low level of fishing mortality. The forecast is based on the $3^{\text {rd }}$ quarter 2004 survey estimates of the 0 -group Norway pout in 2004 . Survey indices in the $3^{\text {rd }}$ quarter seems to predict strong 0 -group year classes relatively well when comparing with 0 -group indices from commercial fishery ( $4^{\text {th }}$ quarter) and to 1 -group survey indices the following spring. The 0 -group is recruited to the $4^{\text {th }}$ quarter commercial fishery which tends to predict strong year classes well as 0-group. (Tables 12.2.8-12, and Figures. 12.2.2-8). The deterministic forecast is off course affected by that: (a) the potential catches are largely dependent on the size of a few year classes, (b) the large dependence on the strength of the recruiting 0 -group year classes, and (c) added uncertainty (in assessment and potential forecast) arising from variations in natural mortality. However, the forecast is not dependent on any assumption about the strength of the new year classes (2005 recruitment).

The population dynamics of Norway pout in the North Sea and Skagerrak are very dependent on changes caused by recruitment variation and variation in predation (or other natural) mortality, and less by the fishery. Recruitment is highly variable and influences SSB and TSB rapidly due to the short life span of the species. The forecasts indicate that total closure of fishery (i.e. $\mathrm{F}=0$ ) will result in that the stock in the start of 2005 will still be below $\mathbf{B}_{\text {lim }}$. The fishery targets both Norway pout and blue whiting. In managing this fishery, by-catches of haddock, whiting, herring, and blue whiting should be taken into account and existing measures to protect these by-catch species should be maintained.
The assessment in relation to potential real time monitoring and management of the stock:
ACFM has proposed that it may be more appropriate to formulate reference points based on total mortality, recruitment and stock biomass for use within management procedures using surveys and real time monitoring of catches. In that respect it has been questioned whether the 0 -group is fully recruited to the $3^{\text {rd }}$ quarter surveys in relation to forecast based on surveys alone. The assessment is considered appropriate to indicate trends in the stock and immediate changes in the stock because of the seasonal assessment taking into account the seasonality in fishery and using most recent information about recruitment. In real time monitoring of this stock it should be noted that both the $3^{\text {rd }}$ quarter IBTS and the $4^{\text {th }}$ quarter commercial fishery index seems in general for all ages in the stock to be relatively good indicators of the year class strengths and the size of the stock (Table 12.2.12, as well as Tables. 12.2.8-11, and Figures. 12.2.2-8).

### 12.7 Comments on the assessment and needs for future studies

It appears from the quality control diagrams made from the results of the assessment (Figure 12.3.4) as well as from Figure 12.3.6 with a comparison of the 2003 and 2004 assessment that the estimates of the SSB, recruitment and the average fishing mortality of the 1 - and 2 -group are consistent with the estimates of previous years assessment. Only historical F seems to slightly deviate from previous years assessment. Consequently, the revised assessment using new tuning fleets does not introduce a new perception of the stock, as well as of the stock dynamics in and development of the stock.

## Potential workplan and suggestions for investigations in near future:

1. Further analysis and exploration of catch, effort and catch rate data of the commercial fishery is necessary before suggesting an alternative standardization method and alternative division of commercial fishery tuning fleets to be used in the assessment. This could include further investigation of disaggregation of Danish and Norwegian commercial tuning fleet time series taking into consideration their spatial behaviour.
2. Investigate further the potential for real time monitoring of the stock only based on catch rates indices from surveys and from commercial fishery on quarterly basis. It should among other be investigated whether these time series can estimate total mortality (slope of catch curve) and from this estimate both natural mortality and fishing mortality over years. This also include possible further exploration of whether it is more appropriate to formulate reference points based on total stock biomass (TSB) based on estimates of total mortality from surveys for use within management of this stock.
3. Evaluation of the Norway pout in Division VIa. ACFM (October 2001) asked the Working Group to verify the justification of treating Division VIa as a management area for Norway pout and sandeel separately from ICES area IV and IIIa. Preliminary results from an analysis of regionalized survey data on Norway pout maturity, presented in a Working Document to the 2000 meeting of the Working Group (Larsen, Lassen, Nielsen and Sparholt,2001 in ICES C.M.2001/ACFM:07), gave no evidence for a stock separation in the whole northern area. However, this has to be explored further.

Evaluation of availability of data necessary for performing assessment of the VIa stock should be performed.

### 12.8 Norway Pout in Division VIa

### 12.8.1 Catch trends and assessment

Landings of Norway pout from Division VIa as reported to ICES are given in Table 12.8.1 and Figure 12.8.1. Reported landings in 2003 were $6,400 \mathrm{t}$. This level of landings is well below the series average of nearly $11,000 \mathrm{t}$ (1974-2003). No data are available on by-catches in this fishery. Since no age compositions are available, data are insufficient for an assessment of this stock.

### 12.8.2 Stock identity

ACFM (October 2001) asked the Working Group to verify the justification of treating Division VIa as a management area for Norway pout and sandeel separately from ICES area IV and IIIa. Preliminary results from an analysis of regionalized survey data on Norway pout maturity, presented in a Working Document to the 2000 meeting of the Working Group (Larsen, Lassen, Nielsen and Sparholt, 2001 in ICES C.M.2001/ACFM:07), gave no evidence for a stock separation in the whole northern area.

The WG considers that the extent of the data that is available on VIa Norway pout should be assessed before the discussion on the merging of the VIa stock with the North Sea stock is finalized.

Table 12.1.1
NORWAY POUT nominal landings (tonnes) from the North Sea and Skagerrak / Kattegat, ICES areas IV and IIIa in the period 19972003, as officially reported to ICES.

Norway pout ICES area IIIa

| Country | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | 34,746 | 11,080 | 7,194 | 14,545 | 13,619 | 3,780 | 4,235 |
| Norway | - | - | - | - | - | $*$ | 96 |
| Sweden | 2 | - | - | 133 | 780 | $-0^{*}$ | - |
| Total | 34,748 | 11,080 | 7,194 | 14,678 | 14,399 | 3,876 | 4,265 |

*Preliminary.

| Norway pout ICES area IVa | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Country | 106,958 | 42,154 | 39,319 | 133,149 | 44,818 | 68,858 | 12,223 |
| Denmark | 7,033 | 4,707 | 2,534 |  |  |  |  |
| Faroe Islands | 35 | - | - | - | - | - |  |
| Netherlands | 39,006 | 22,213 | 44,841 | 48,061 | 17,158 | $*$ | 23,657 |
| Norway | + | - | - | - | 11,357 |  |  |
| Sweden | 153,032 | 69,074 | 86,694 |  | - | - | - |
| Total |  |  |  |  |  |  |  |

*Preliminary.
Norway pout ICES area IVb

${ }^{*}$ Preliminary.
Norway pout ICES area IVc

| Country | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| Denmark | - | - | 514 | 182 | 304 | - |
| Netherlands | - | - | + | - | - | - |
| UK (E/W/NI) | - | - | - | - | - | - |
| Total | - | - | 514 | 182 | 304 | - |
| Preliminary. |  |  | - |  |  |  |

Preliminary.
Norway pout Sub-area IV and IIla (Skagerrak) combined

| Country | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | 143,498 | 56,492 | 51,812 | 147,852 | 59,069 | 73,194 | 16,649 |
| Faroe Islands | 7,033 | 4,707 | 2,534 | 0 | 0 | 0 | 0 |
| Norway | 39,006 | 22,270 | 44,841 | 48,095 | 17,158 | 23,753 | 11,387 |
| Sweden | 2 | 0 | 0 | 133 | 780 | 0 | 0 |
| Netherlands | 85 | 2 | 0 | 3 | 0 | 0 | 0 |
| Germany | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| UK | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total nominal landings | 189,624 | 83,471 | 99,187 | 196,085 | 77,007 | 96,947 | 28,036 |
| By-catch of other species and other | $-19,924$ | $-3,671$ | $-7,187$ | $-11,685$ | $-11,407$ | $-20,247$ | $-3,136$ |
| WG estimate of total landings (IV+lllaN) | 169700 | 79800 | 92000 | 184400 | 65600 | 76700 | 24900 |
| Agreed TAC | 220000 | 220000 | 220000 | 220000 | 220000 | 220000 | 220000 |
| * provisional |  |  |  |  |  |  |  |
| ** provisional |  |  |  |  |  |  |  |
| + Landings less than 1 |  |  |  |  |  |  |  |
| n/a not available |  |  |  |  |  |  |  |

Table 12.1.2
NORWAY POUT annual landings ('000 t) in the North Sea and Skagerrak (not incl. Kattegat, IIIaS) by country, for 1961-2003 (Data provided by Working Group members). (Norwegian landing data include landings of by-catch of other species).


Table 12.1.3 NORWAY POUT, North Sea and Skagerak. National landings (t) by quarter of year 1992-2004.
(Data provided by Working Group members. Norwegian landing data include landings of by-catch of other species).

| Year | Quarter Area | Denmark |  |  |  |  |  |  |  |  | Norway |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Illan | Illas | Div. Illa | IVaE | IVaW | IVb | IVc | Div. IV | Div. IV + IllaN | IVaE | Div. IV | Div. IV + Illan |
| 1992 |  | 2,330 | 619 | 2,950 | 29,701 | 8,862 | 1,096 | - | 39,659 | 41,989 |  |  |  |
|  | , | 9,235 | 1,684 | 10,919 | 1,610 | 264 | 1,529 | - | 3,403 | 12,638 |  |  |  |
|  | 3 | 22,586 | 817 | 23,402 | 9,908 | 34,053 | 6,465 | - | 50,426 | 73,012 |  |  |  |
|  | 4 | 7,561 | 263 | 7,824 | 4,102 | 47,704 | 1,630 | 2 | 53,439 | 61,000 |  |  |  |
|  | Total | 41,713 | 3,383 | 45,095 | 45,321 | 90,883 | 10,720 | 2 | 146,926 | 188,639 |  |  |  |
| 1993 | 1 | 319 | 30 | 350 | 16,471 | 6,581 | 151 | - | 23,203 | 23,522 |  |  |  |
|  | 2 | 1,052 | 77 | 1,129 | 594 | 102 | 802 | - | 1,498 | 2,550 |  |  |  |
|  | 3 | 3,629 | 531 | 4,161 | 7,461 | 25,072 | 409 | - | 32,941 | 36,570 |  |  |  |
|  | 4 | 1,728 | 406 | 2,133 | 10,685 | 28,994 | 9 | - | 39,688 | 41,416 |  |  |  |
|  | Total | 6,729 | 1,044 | 7,773 | 35,210 | 60,748 | 1,371 | - | 97,330 | 104,058 |  |  |  |
| 1994 | 1 | 568 | 75 | 643 | 18,660 | 3,588 | 533 | - | 22,781 | 23,350 |  |  |  |
|  | 2 | 4 | 0 | 4 | 511 | 170 | - | - | 681 | 685 |  |  |  |
|  | 3 | 2,137 | 74 | 2,211 | 5,674 | 12,604 | 493 | - | 18,772 | 20,908 |  |  |  |
|  | 4 | 3,623 | 116 | 3,739 | 5,597 | 49,935 | 91 | - | 55,622 | 59,246 |  |  |  |
|  | Total | 6,332 | 265 | 6,598 | 30,442 | 66,298 | 1,117 | - | 97,857 | 104,189 |  |  |  |
| 1995 | 1 | 576 | 9 | 585 | 19,421 | 1,336 | 7 | - | 20,764 | 21,339 | 15521 | 15521 | 36,860 |
|  | 2 | 10,495 | 290 | 10,793 | 2,841 | 30 | 3,670 | - | 6,540 | 17,035 | 10639 | 10639 | 27,674 |
|  | 3 | 20,563 | 976 | 21,540 | 13,316 | 17,681 | 11,445 | - | 42,442 | 63,004 | 5790 | 5790 | 68,794 |
|  | 4 | 14,748 | 2,681 | 17,430 | 10,812 | 56,159 | 1,426 | - | 68,396 | 83,145 | 11131 | 11131 | 94,276 |
|  | Total | 46,382 | 3,956 | 50,347 | 46,390 | 75,205 | 16,547 | - | 138,142 | 184,524 | 43,081 | 43081 | 227,605 |
| 1996 | 1 | 1,231 | 164 | 1,395 | 6,133 | 3,149 | 658 | 2 | 9,943 | 11,174 | 10604 | 10604 | 21,778 |
|  | 2 | 7,323 | 970 | 8,293 | 1,018 | 452 | 1,476 | - | 2,946 | 10,269 | 4281 | 4281 | 14,550 |
|  | 3 | 20,176 | 836 | 21,012 | 7,119 | 17,553 | 1,517 | - | 26,188 | 46,364 | 27466 | 27466 | 73,830 |
|  | 4 | 5,028 | 500 | 5,528 | 9,640 | 25,498 | 42 | - | 35,180 | 40,208 | 5466 | 5466 | 45,674 |
|  | Total | 33,758 | 2,470 | 36,228 | 23,910 | 46,652 | 3,692 | 2 | 74,257 | 108,015 | 47,817 | 47817 | 155,832 |
| 1997 | 1 | 2,707 | 460 | 3,167 | 6,203 | 2,219 | 7 | - | 8,429 | 11,137 | 4183 | 4183 | 15,320 |
|  | 2 | 5,656 | 200 | 5,857 | 141 | - | 45 |  | 185 | 5,842 | 8466 | 8466 | 14,308 |
|  | 3 | 16,432 | 649 | 17,081 | 19,054 | 21,024 | 740 | - | 40,818 | 57,250 | 21546 | 21546 | 78,796 |
|  | 4 | 4,464 | 1,042 | 5,505 | 6,555 | 38,202 | 7 |  | 44,765 | 49,228 | 4884 | 4884 | 54,112 |
|  | Total | 29,259 | 2,351 | 31,610 | 31,953 | 61,445 | 799 | - | 94,197 | 123,456 | 39,079 | 39079 | 162,535 |
| 1998 | 1 | 1,117 | 317 | 1,434 | 7,111 | 2,292 | - | - | 9,403 | 10,520 | 8913 | 8913 | 19,433 |
|  | 2 | 3,881 | 103 | 3,984 | 131 | 5 | 124 | - | 259 | 4,140 | 7885 | 7885 | 12,025 |
|  | 3 | 6,011 | 406 | 6,417 | 7,161 | 1,763 | 2,372 | - | 11,297 | 17,308 | 3559 | 3559 | 20,867 |
|  | 4 | 2,161 | 677 | 2,838 | 1,051 | 17,752 | 77 | - | 18,880 | 21,041 | 1778 | 1778 | 22,819 |
|  | Total | 13,171 | 1,503 | 14,673 | 15,454 | 21,811 | 2,573 | - | 39,838 | 53,009 | 22,135 | 22135 | 75,144 |
| 1999 | 1 | 4 | 12 | 15 | 2,769 | 1,246 | 1 | - | 4,016 | 4,020 | 3021 | 3021 | 7,041 |
|  | 2 | 1,568 | 36 | 1,605 | 953 | 361 | 418 | - | 1,731 | 3,300 | 10321 | 10321 | 13,621 |
|  | 3 | 3,094 | 109 | 3,203 | 7,500 | 3,710 | 2,584 | - | 13,794 | 16,887 | 24449 | 24449 | 41,336 |
|  | 4 | 2,156 | 517 | 2,673 | 3,577 | 16,921 | 928 | 1 | 21,426 | 23,583 | 6385 | 6385 | 29,968 |
|  | Total | 6,822 | 674 | 7,496 | 14,799 | 22,237 | 3,931 | 1 | 40,968 | 47,790 | 44,176 | 44176 | 91,966 |
| 2000 | 1 | 0 | 11 | 12 | 3,726 | 1,038 | - | - | 4,764 | 4,765 | 5440 | 5440 | 10,205 |
|  | 2 | 929 | 15 | 944 | 684 | 22 | 227 | - | 933 | 1,862 | 9779 | 9779 | 11,641 |
|  |  | 7,380 | 139 | 7,519 | 1,708 | 5,613 | 515 | - | 7,836 | 15,216 | 28428 | 28428 | 43,644 |
|  | 4 | 947 | 209 | 1,157 | 1,656 | 111,732 | 76 | - | 113,464 | 114,411 | 4334 | 4334 | 118,745 |
|  | Total | 9,257 | 375 | 9,631 | 7,774 | 118,406 | 818 | - | 126,998 | 136,255 | 47,981 | 47981 | 184,236 |
| 2001 | 1 |  |  | 302 | 7,341 | 9,734 | 103 | 72 | 17,250 | 17,250 | 3838 | 3838 | 21,088 |
|  | 2 |  |  | 2,174 | 31 | 30 | 269 | - | 330 | 330 | 9268 | 9268 | 9,598 |
|  | 3 |  |  | 2,006 | 15 | 154 | 191 | - | 360 | 360 | 2263 | 2263 | 2,623 |
|  | 4 |  |  | 3,059 | 2,553 | 19,826 | 329 | - | 22,708 | 22,708 | 1426 | 1426 | 24,134 |
|  | Total |  |  | 7,541 | 9,940 | 29,744 | 892 | 72 | 40,648 | 40,648 | 16,795 | 16795 | 57,443 |
| 2002 | 1 | - | , | 1 | 4,869 | 1,660 | 114 | - | 6,643 | 6,643 | 1896 | 1896 | 8,539 |
|  | 2 | 883 | 161 | 1,045 | 56 | 9 | 22 | - | 87 | 970 | 5563 | 5563 | 6,533 |
|  | , | 1,567 | 213 | 1,778 | 2,234 | 14,739 | 104 | - | 17,077 | 18,644 | 14147 | 14147 | 32,791 |
|  | 4 | 393 | 100 | 492 | 1,787 | 24,273 | 335 | - | 26,395 | 26,788 | 2033 | 2033 | 28,821 |
|  | Total | 2,843 | 475 | 3,316 | 8,946 | 40,681 | 575 | - | 50,202 | 53,045 | 23,639 | 23639 | 76,684 |
| 2003 | 1 | - | 1 | 1 | 615 | 581 | 22 | - | 1,218 | 1,218 | 1977 | 1977 | 3,195 |
|  | 2 | 246 | 160 | 406 | 76 | - | 22 | - | 98 | 344 | 2773 | 2773 | 3,117 |
|  |  | 2,984 | 1,005 | 3,989 | 172 | 1,613 | 89 | - | 1,874 | 4,858 | 5989 | 5989 | 10,847 |
|  | 4 | 188 | 547 | 735 | 0 | 6270 | 457 | - | 6,727 | 6,915 | 644 | 644 | 7,559 |
|  | Total | 3,418 | 1,713 | 5,131 | 863 | 8,464 | 590 | - | 9,917 | 13,335 | 11,383 | 11,383 | 24,718 |
| 2004 | 1 | 187 | - | 187 | 87 | 650 | 0 | - | 737 | 924 | 990 | 990 | 1,914 |
|  | 2 | 0 | - |  | 0 | 0 | 7 | - | 7 | 7 | 660 | 660 | 667 |

Table 12.2.1 NORWAY POUT in the North Sea and Skagerrak. Catch in numbers at age by quarter (millions). SOP is given in tons. Data for 1990 were estimated within the SXSA program used in the 1996 assessment.

| Age | Year Quarter | $\begin{array}{r} 1984 \\ 1 \end{array}$ | 2 | 3 | 4 | 1985 1 | 2 | 3 | 4 | $1986$ | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 0 | 0 | 1 | 2231 | 0 | 0 | 6 | 678 | 0 | 0 | 0 | 5572 |
| 1 |  | 2,759 | 2252 | 5290 | 3492 | 2,264 | 857 | 1400 | 2991 | 396 | 260 | 1186 | 1791 |
| 2 |  | 1,375 | 1165 | 1683 | 734 | 1,364 | 145 | 793 | 174 | 1,069 | 87 | 245 | 39 |
| 3 |  | 143 | 269 | 8 | 0 | 192 | 13 | 19 | 0 | 72 | 3 | 6 | 0 |
| ${ }^{4+}$ |  | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
| SOP |  | 56790 | 56532 | 152291 | 110942 | 57464 | 15509 | 62489 | 92017 | 37889 | 7657 | 45085 | 89993 |
| Age | Year | 1987 |  |  |  | 1988 |  |  |  | 1989 |  |  |  |
|  | Quarter | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 |  | 0 | 0 | 8 | 227 | 0 | 0 | 741 | 3146 | 0 | 0 | 151 | 4854 |
| 1 |  | 2687 | 1075 | 1627 | 2151 | 249 | 95 | 183 | 632 | 1736 | 678 | 1672 | 1741 |
| 2 |  | 401 | 60 | 171 | 233 | 700 | 73 | 250 | 405 | 48 | 133 | 266 | 93 |
| 3 |  | 12 | 0 | 0 | 5 | 20 | 0 | 0 | 0 | 6 | 6 | 5 | 13 |
| ${ }^{4+}$ |  | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| SOP |  | 33894 | 15435 | 38729 | 60847 | 22181 | 3559 | 21793 | 61762 | 15379 | 13234 | 55066 | 82880 |
| Age | Year | 1990 |  |  |  | 1991 |  |  |  | 1992 |  |  |  |
|  | Quarter | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 |  | 0 | 0 | 20 | 993 | 0 | 0 | 734 | 3486 | 0 | 0 | 879 | 954 |
| 1 |  | 1840 | 1780 | 971 | 1181 | 1501 | 636 | 1519 | 1048 | 3556 | 1522 | 3457 | 2784 |
| 2 |  | 584 | 572 | 185 | 116 | 1336 | 404 | 215 | 187 | 1086 | 293 | 389 | 267 |
| 3 |  | 20 | 19 | 6 | 4 | 93 | 19 | 22 | 18 | 118 | 20 | 1 | 2 |
| $4+$ |  | 10 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
| SOP |  | 28287 | 39713 | 26156 | 45242 | 42776 | 20786 | 62518 | 64380 | 64224 | 27973 | 114122 | 96177 |
| Age | Year | 1993 |  |  |  | 1994 |  |  |  | 1995 |  |  |  |
|  | Quarter | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 |  | 0 | 0 | 96 | 1175 | 0 | 0 | 647 | 4238 | 0 | 0 | 700 | 1692 |
| 1 |  | 1942 | 813 | 1147 | 1050 | 1975 | 372 | 1029 | 1148 | 3992 | 1905 | 2545 | 3348 |
| 2 |  | 699 | 473 | 912 | 445 | 591 | 285 | 421 | 134 | 240 | 256 | 47 | 59 |
| 3 |  | 15 | 58 | 19 | 2 | 56 | 29 | 71 | 0 | 6 | 32 | 3 | 3 |
| ${ }^{4+}$ |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| SOP |  | 36206 | 29291 | 62290 | 53470 | 34575 | 15373 | 53799 | 79838 | 36942 | 28019 | 69763 | 97048 |
| Age | Year | 1996 |  |  |  | 1997 |  |  |  | 1998 |  |  |  |
|  | Quarter | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 |  | 0 | 0 | 724 | 2517 | 0 | 0 | 109 | 343 | 0 | 0 | 94 | 339 |
| 1 |  | 535 | 560 | 1043 | 650 | 672 | 99 | 3090 | 1922 | 261 | 210 | 411 | 531 |
| 2 |  | 772 | 201 | 1002 | 333 | 325 | 131 | 372 | 207 | 690 | 310 | 332 | 215 |
| 3 |  | 14 | 38 | 37 | 0 | 79 | 119 | 105 | 35 | 47 | 18 | 2 | 13 |
| ${ }^{4+}$ |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 24 | 0 | 0 |
| SOP |  | 21888 | 13366 | 74631 | 46194 | 15320 | 8708 | 78809 | 54100 | 19562 | 12026 | 20866 | 22830 |
| Age | Year | 1999 |  |  |  | 2000 |  |  |  | 2001 |  |  |  |
|  | Quarter | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 |  | 0 | 0 | 41 | 1127 | 0 | 0 | 73 | 302 | 0 | 0 | 32 | 368 |
| 1 |  | 202 | 318 | 1298 | 576 | 653 | 280 | 1368 | 4616 | 220 | 133 | 122 | 267 |
| 2 |  | 128 | 220 | 338 | 160 | 185 | 207 | 266 | 245 | 845 | 246 | 27 | 439 |
| 3 |  | 73 | 93 | 35 | 23 | 3 | 48 | 20 | 6 | 35 | 100 | 1 | 1 |
| ${ }^{4+}$ |  | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| SOP |  | 7833 | 12535 | 41445 | 30497 | 10207 | 11589 | 44173 | 119001 | 21400 | 11778 | 4630 | 26565 |
| Age | Year | 2002 |  |  |  | 2003 |  |  |  | 2004 |  |  |  |
|  | Quarter | 1 | 2 | 3 | 4 |  | 2 | 3 | 4 | 1 | 2 |  |  |
| 0 |  | 0 | 0 | 340 | 290 | 0 | 0 | 18 | 1 | 0 | 0 |  |  |
| 1 |  | 485 | 351 | 621 | 473 | 57 | 64 | 223 | 54 | 10 | 4 |  |  |
| 2 |  | 148 | 24 | 284 | 347 | 76 | 49 | 87 | 161 | 52 | 16 |  |  |
| 3 |  | 17 | 5 | 24 | 26 | 22 | 25 | 7 | 32 | 9 | 6 |  |  |
| ${ }^{4+}$ |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |
| SOP |  | 8553 | 6686 | 32922 | 28947 | 3190 | 3106 | 11613 | 7460 | 1934 | 667 |  |  |

Table 12.2.2 NORWAY POUT in the North Sea and Skagerrak. Mean weights (grams) at age in catch, by quarter 1983-2004, from Danish and Norwegian catches combined. Data for 1974 to 1982 are assumed to be the same as in 1983.


Table 12.2.3 NORWAY POUT. Mean weight at age in the stock, proportion mature and natural mortality used in the assessment as well as revised natural mortality used in the exploratory assessment run.

| Age | Weight (g) |  |  |  | Proportion <br> mature | M <br> (quarterly) | Revised M <br> (quarterly) <br> (Exploratory run) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Q1 | Q2 | Q3 | Q4 |  |  | 0.25 |
| 0 | - | - | 4 | 6 | 0 | 0.4 | 0.25 |
| 1 | 7 | 15 | 25 | 23 | 0.1 | 0.4 | 0.55 |
| 2 | 22 | 34 | 43 | 42 | 1 | 0.4 | 0.75 |
| 3 | 40 | 50 | 60 | 58 | 1 | 0.4 |  |

Table 12.2.4 NORWAY POUT. Danish CPUE data (tonnes / fishing day) and fishing activities by vessel category for 1988-2003. Non-standardized CPUE-data for the Danish part of the commercial tuning fleet. (Logbook information).

| Vessel <br> GRT | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $51-100$ | 20.27 | 14.58 | 10.03 | 12.56 | 31.75 | 31 | 24.8 | 29.53 |
| $101-150$ | 18.83 | 19.59 | 17.38 | 24.14 | 26.42 | 23.72 | 26.76 | 38.96 |
| $151-200$ | 22.71 | 23.17 | 25.6 | 28.22 | 34.2 | 27.36 | 31.52 | 34.73 |
| $201-250$ | 30.44 | 26.1 | 24.87 | 29.74 | 36 | 27.76 | 40.59 | 39.34 |
| $251-300$ | 23.29 | 26.14 | 21.3 | 28.15 | 31.9 | 32.05 | 36.98 | 38.84 |
| $301-$ | 38.81 | 28.58 | 24.96 | 36.48 | 42.6 | 34.89 | 44.91 | 57.9 |
|  |  |  |  |  |  |  |  |  |
| Vessel | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| GRT |  |  |  |  |  |  |  | - |
| $51-100$ | - | 20 | - | - | - | - | - | - |
| $101-150$ | 20.48 | 22.68 | - | - | - | - | - | - |
| $151-200$ | 22.05 | 27.45 | 16.85 | 12.43 | 29.13 | - | 20.45 | - |
| $201-250$ | 24.96 | 30.59 | 19.68 | 26.69 | 48.55 | 25.35 | 17.09 | 12.94 |
| $251-300$ | 31.43 | 32.55 | 17.48 | 23.98 | 45.92 | 20.02 | 21.73 | 10.8 |
| $301-$ | 39.14 | 43.01 | 32.32 | 31 | 64.33 | 52.95 | 46.36 | 30.86 |

Table 12.2.5 NORWAY POUT. Effort in days fishing and average GRT of Norwegian vessels fishing for Norway pout by quarter, 1983-2004.

| Year | Quarter 1 |  | Quarter 2 |  | Quarter 3 |  | Quarter 4 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Effort | Aver. GRT |
| 1983 | 293 | 167.6 | 1168 | 168.4 | 2039 | 159.9 | 552 | 171.7 |
| 1984 | 509 | 178.5 | 1442 | 141.6 | 1576 | 161.2 | 315 | 212.4 |
| 1985 | 363 | 166.9 | 417 | 169.1 | 230 | 202.8 | 250 | 221.4 |
| 1986 | 429 | 184.3 | 598 | 148.2 | 195 | 197.4 | 222 | 226.0 |
| 1987 | 412 | 199.3 | 555 | 170.5 | 208 | 158.4 | 334 | 196.3 |
| 1988 | 296 | 216.4 | 152 | 146.5 | 73 | 191.1 | 590 | 202.9 |
| 1989 | 132 | 228.5 | 586 | 113.5 | 1054 | 192.1 | 1687 | 178.7 |
| 1990 | 369 | 211.0 | 2022 | 171.7 | 1102 | 193.9 | 1143 | 187.6 |
| 1991 | 774 | 196.1 | 820 | 180.0 | 1013 | 179.4 | 836 | 187.7 |
| 1992 | 847 | 206.3 | 352 | 181.3 | 1030 | 202.2 | 1133 | 199.8 |
| 1993 | 475 | 227.5 | 1045 | 206.6 | 1129 | 217.8 | 501 | 219.8 |
| 1994 | 436 | 226.5 | 450 | 223.5 | 1302 | 212.0 | 686 | 211.4 |
| 1995 | 545 | 223.6 | 237 | 233.8 | 155 | 221.7 | 297 | 218.1 |
| 1996 | 456 | 213.6 | 136 | 219.9 | 547 | 208.3 | 132 | 207.2 |
| 1997 | 132 | 202.4 | 193 | 218.9 | 601 | 194.8 | 218 | 182.3 |
| 1998 | 497 | 192.6 | 272 | 213.6 | 263 | 176.8 | 203 | 193.8 |
| 1999 | 267 | 173.0 | 735 | 180.1 | 1165 | 187.4 | 229 | 166.9 |
| 2000 | 294 | 197.1 | 348 | 180.7 | 929 | 205.3 | 196 | 219.3 |
| 2001 | 252 | 203.4 | 297 | 192.9 | 130 | 165.0 | 65 | 219.4 |
| 2002 | 90 | 208.6 | 246 | 189.1 | 1022 | 211.7 | 205 | 182.2 |
| 2003 | 162 | 219.1 | 320 | 215.3 | 550 | 252.8 | 75 | 208.4 |
| 2004 | 94 | 214.6 | 85 | 196.7 |  |  |  |  |

Table 12.2.6 NORWAY POUT. Combined Danish and Norwegian fishing effort (standardised) to be used in the assessment.

|  | Quarter 1 |  |  | Quarter 2 |  |  | Quarter 3 |  |  | Quarter 4 |  |  | Year total |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Norway | Denmark | Total |
| 1987 | 441 | 1127 | 1568 | 547 | 31 | 578 | 197 | 1194 | 1391 | 355 | 1637 | 1992 | 1540 | 3989 | 5529 |
| 1988 | 315 | 883 | 1198 | 144 | 13 | 156 | 75 | 417 | 492 | 617 | 1894 | 2511 | 1150 | 3207 | 4357 |
| 1989 | 146 | 777 | 923 | 485 | 195 | 680 | 1093 | 1749 | 2841 | 1701 | 2284 | 3985 | 3424 | 5004 | 8428 |
| 1990 | 406 | 991 | 1397 | 2002 | 87 | 2089 | 1162 | 463 | 1625 | 1185 | 1653 | 2838 | 4754 | 3195 | 7949 |
| 1991 | 824 | 1319 | 2143 | 833 | 33 | 866 | 1027 | 484 | 1512 | 869 | 1724 | 2593 | 3553 | 3561 | 7113 |
| 1992 | 866 | 2092 | 2958 | 354 | 17 | 371 | 1051 | 1530 | 2581 | 1154 | 1242 | 2396 | 3424 | 4881 | 8306 |
| 1993 | 483 | 1234 | 1717 | 1056 | 37 | 1094 | 1145 | 1560 | 2705 | 508 | 1671 | 2179 | 3193 | 4502 | 7695 |
| 1994 | 464 | 1265 | 1728 | 477 | 74 | 551 | 1364 | 617 | 1981 | 718 | 1227 | 1945 | 3023 | 3183 | 6205 |
| 1995 | 578 | 809 | 1387 | 254 | 99 | 353 | 164 | 853 | 1017 | 313 | 1487 | 1800 | 1309 | 3248 | 4557 |
| 1996 | 478 | 579 | 1057 | 144 | 185 | 328 | 571 | 760 | 1330 | 138 | 1240 | 1378 | 1330 | 2763 | 4093 |
| 1997 | 137 | 394 | 531 | 204 | 17 | 220 | 617 | 1244 | 1861 | 220 | 1121 | 1341 | 1178 | 2775 | 3953 |
| 1998 | 509 | 446 | 955 | 285 | 34 | 319 | 264 | 562 | 825 | 208 | 457 | 665 | 1266 | 1498 | 2764 |
| 1999 | 266 | 305 | 571 | 740 | 56 | 796 | 1185 | 387 | 1572 | 226 | 733 | 959 | 2418 | 1481 | 3898 |
| 2000 | 303 | 303 | 606 | 351 | 75 | 426 | 966 | 221 | 1186 | 207 | 1903 | 2110 | 1826 | 2501 | 4327 |
| 2001 | 261 | 441 | 702 | 304 | 15 | 319 | 128 | 48 | 176 | 69 | 541 | 610 | 762 | 1045 | 1807 |
| 2002 | 94 | 388 | 481 | 251 | 21 | 272 | 1070 | 676 | 1746 | 207 | 551 | 758 | 1622 | 1636 | 3258 |
| 2003 | 171 | 212 | 383 | 336 | 15 | 352 | 600 | 79 | 679 | 78 | 101 | 179 | 1185 | 407 | 1593 |
| 2004 | 99 | 147 | 246 | 87 | 34 | 122 |  |  |  |  |  |  |  |  |  |

Table 12.2.7 NORWAY POUT. CPUE indices ('000s per fishing day) by age and quarter from Danish and Norwegian commercial fishery (CF) in the North Sea (Area IV, commercial tuning fleet).

| Year | CF, 1st quarter |  |  |  | CF, 2nd quarter |  |  |  | CF, 3rd quarter |  |  |  | CF, 4th quarter |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-group | 1-group | 2-group | 3-group |
| 1982 |  | 2144.5 | 169.0 | 87.9 | . | 1705.7 | 144.3 | 12.1 | 30.3 | 1320.2 | 86.5 | 12.4 | 368.4 | 1050.5 | 16.0 | 0.0 |
| 1983 | . | 1524.2 | 470.0 | 5.4 | . | 1044.9 | 706.5 | 5.5 | 74.3 | 969.6 | 262.0 | 2.8 | 604.9 | 972.9 | 85.9 | 1.7 |
| 1984 |  | 1137.9 | 566.8 | 59.1 | . | 1518.0 | 784.9 | 181.1 | 0.2 | 990.2 | 314.9 | 1.5 | 462.0 | 723.1 | 152.1 | 0.0 |
| 1985 |  | 877.1 | 528.2 | 74.3 | . | 1310.5 | 221.5 | 20.3 | 2.6 | 599.0 | 339.0 | 8.3 | 183.6 | 809.5 | 47.2 | 0.0 |
| 1986 | . | 108.5 | 292.9 | 19.8 | . | 267.9 | 89.3 | 3.0 | 0.0 | 531.1 | 109.7 | 2.7 | 892.9 | 277.1 | 5.9 | 0.0 |
| 1987 |  | 1699.6 | 253.8 | 7.7 | . | 1856.4 | 103.8 | 0.0 | 5.8 | 1139.5 | 118.6 | 0.0 | 110.9 | 1073.3 | 115.5 | 2.5 |
| 1988 |  | 205.2 | 583.1 | 16.4 | . | 525.6 | 457.7 | 0.0 | 48.2 | 372.4 | 508.9 | 0.0 | 1173.6 | 251.6 | 161.3 | 0.0 |
| 1989 |  | 1860.8 | 52.1 | 7.6 |  | 1019.8 | 214.9 | 9.6 | 2.4 | 386.0 | 69.6 | 0.0 | 1184.7 | 488.1 | 22.6 | 3.2 |
| 1990 |  | 1063.6 | 450.8 | 25.7 | . | 865.0 | 258.2 | 14.7 | 9.5 | 571.0 | 126.6 | 7.2 | 444.1 | 394.5 | 39.7 | 2.3 |
| 1991 |  | 692.9 | 623.0 | 43.3 | . | 484.3 | 458.2 | 22.0 | 50.2 | 668.2 | 44.0 | 1.0 | 1005.4 | 397.3 | 71.5 | 6.6 |
| 1992 |  | 1129.0 | 360.7 | 39.6 | . | 2686.5 | 619.9 | 53.4 | 13.0 | 1010.4 | 144.0 | 0.4 | 190.3 | 1103.2 | 105.9 | 1.0 |
| 1993 | . | 1121.0 | 403.3 | 7.9 | . | 689.2 | 431.6 | 52.7 | 3.9 | 384.4 | 328.5 | 6.9 | 426.5 | 474.2 | 203.0 | 0.8 |
| 1994 | . | 1100.8 | 340.9 | 32.6 | . | 675.7 | 517.0 | 52.4 | 93.9 | 519.3 | 203.1 | 35.6 | 1950.6 | 590.1 | 68.9 | 0.0 |
| 1995 | . | 2846.0 | 171.0 | 4.0 | . | 3179.5 | 726.3 | 90.1 | 117.6 | 1860.5 | 38.5 | 2.9 | 198.3 | 1701.8 | 32.9 | 1.7 |
| 1996 | . | 365.0 | 730.6 | 13.2 | . | 121.1 | 408.5 | 115.7 | 121.8 | 346.2 | 714.4 | 27.4 | 1063.4 | 472.0 | 241.7 | 0.2 |
| 1997 | . | 988.8 | 479.3 | 146.6 | . | 435.0 | 593.0 | 540.5 | 1.9 | 1254.0 | 154.0 | 56.4 | 75.0 | 1344.0 | 152.5 | 25.8 |
| 1998 | . | 149.9 | 722.7 | 49.3 | . | 182.8 | 756.7 | 54.8 | 31.0 | 319.1 | 349.7 | 1.1 | 232.4 | 773.4 | 322.0 | 20.0 |
| 1999 |  | 351.0 | 224.6 | 128.0 | . | 280.3 | 230.0 | 116.8 | 0.0 | 725.5 | 213.5 | 21.9 | 1084.5 | 515.2 | 166.6 | 24.1 |
| 2000 |  | 1077.6 | 304.8 | 4.5 | . | 575.3 | 426.9 | 113.6 | 20.0 | 894.8 | 206.9 | 17.2 | 121.9 | 2174.1 | 114.5 | 2.8 |
| 2001 |  | 300.3 | 1196.9 | 50.0 | . | 216.0 | 662.1 | 312.0 | 30.5 | 369.2 | 142.7 | 6.3 | 557.3 | 321.6 | 718.4 | 1.5 |
| 2002 |  | 1008.8 | 307.7 | 34.7 | . | 1139.9 | 58.9 | 18.0 | 194.2 | 321.0 | 157.7 | 13.5 | 382.7 | 601.2 | 454.3 | 34.8 |
| 2003 | . | 153.2 | 199.6 | 57.0 | . | 165.9 | 134.6 | 70.3 | 20.2 | 220.9 | 106.0 | 11.0 | 3.9 | 276.4 | 893.3 | 178.2 |
| 2004 |  | 23.0 | 190.9 | 36.0 | . | 28.9 | 131.5 | 45.9 |  |  |  |  |  |  |  |  |

Table 12.2.8 NORWAY POUT. Research vessel indices (CPUE in catch in number per trawl hour) of abundance for Norway pout.

| Year | IBTS/IYFS ${ }^{1}$ February |  |  | EGFS ${ }^{2,3}$ August |  |  |  | SGFS ${ }^{4}$ August |  |  |  | IBTS $3^{\text {rd }}$ Quarter ${ }^{1}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1-group | 2-group | 3-group | 0-group | 1-group | 2-group | 3-group | 0 -group | 1-group | 2-group | 3-group | 0-group | 1-group | 2-group | 3-group |
| 1970 | 35 | 6 | - | - | - |  | - | - | - | - | - | - | - |  |  |
| 1971 | 1,556 | 22 | - | - | - | - | - | - | - | - | - | - | - | - |  |
| 1972 | 3,425 | 653 | - | - | - | - | - | - | - | - | - |  | - | - |  |
| 1973 | 4,207 | 438 | - | - | - | - | - | - | - | - | - | - | - | - |  |
| 1974 | 25,626 | 399 | - | - | - | - | - | - | - | - | - | - | - | - |  |
| 1975 | 4,242 | 2,412 | - | - | - | - | - | - | - | - | - | - | - | - |  |
| 1976 | 4,599 | 385 | - | - | - | - | - | - | - | - | - | - | - | - |  |
| 1977 | 4,813 | 334 | - | - | - | - | - | - | - | - | - | - | - | - |  |
| 1978 | 1,913 | 1,215 | - | - | - | - | - | - | - | - | - | - | - | - |  |
| 1979 | 2,690 | 240 | - | - | - | - | - | - | - | - | - | - | - | - |  |
| 1980 | 4,081 | 611 | - | - | - | - | - | - | 1,928 | 346 | 12 | - | - | - |  |
| 1981 | 1,375 | 557 | - | - | - | - | - | - | 185 | 127 | 9 | - | - | - |  |
| 1982 | 3,315 | 403 | - | 6,594 | 2,609 | 39 | 77 | 8 | 991 | 44 | 22 | - | - | - |  |
| 1983 | 2,331 | 663 | 9 | 6,067 | 1,558 | 114 | 0.4 | 13 | 490 | 91 | 1 | - | - | - |  |
| 1984 | 3,925 | 802 | 58 | 457 | 3,605 | 359 | 14 | 2 | 615 | 69 | 9 | - | - | - |  |
| 1985 | 2,109 | 1,423 | 71 | 362 | 1,201 | 307 | 0 | 5 | 636 | 173 | 5 | - | - | - |  |
| 1986 | 2,043 | 384 | 23 | 285 | 717 | 150 | 80 | 38 | 389 | 54 | 9 | - | - | - |  |
| 1987 | 3,023 | 469 | 65 | 8 | 552 | 122 | 0.9 | 7 | 338 | 23 | 1 | - | - | - |  |
| 1988 | 127 | 760 | 13 | 165 | 102 | 134 | 21 | 14 | 38 | 209 | 4 | - | - | - |  |
| 1989 | 2,079 | 260 | 178 | 1,530 | 1,274 | 621 | 20 | 2 | 382 | 21 | 14 | - | - | - |  |
| 1990 | 1,320 | 773 | 46 | 2,692 | 917 | 158 | 23 | 58 | 206 | 51 | 2 | - | - | - |  |
| 1991 | 2,497 | 677 | 129 | 1,509 | 683 | 399 | 6 | 10 | 732 | 42 | 6 | 7,383 | 1,105 | 222 |  |
| 1992 | 5,121 | 902 | 33 | 2,885 | 6,193 | 1,069 | 157 | 12 | 1,715 | 221 | 24 | 2,588 | 4,366 | 640 | 48 |
| 1993 | 2,681 | 2,644 | 259 | 5,699 | 3,278 | 1,715 | 0 | 2 | 580 | 329 | 20 | 3,953 | 1,861 | 597 | 53 |
| 1994 | 1,868 | 375 | 67 | 7,764 | 1,305 | 112 | 7 | 136 | 387 | 106 | 6 | 3,196 | 704 | 102 | 14 |
| 1995 | 5,941 | 785 | 77 | 7,546 | 6,174 | 387 | 14 | 37 | 2,438 | 234 | 21 | 1,762 | 4,527 | 317 | 42 |
| 1996 | 912 | 2,635 | 234 | 3,456 | 1,332 | 319 | 3 | 127 | 412 | 321 | 8 | 4,554 | 763 | 362 | 12 |
| 1997 | 9,752 | 1,474 | 670 | 1,103 | 5,579 | 364 | 32 | 1 | 2,154 | 130 | 32 | 490 | 3,521 | 169 | 40 |
| 1998 | 1,006 | 5,343 | 300 | 2,684 | 411 | 248 | 0 | 2,628 | 938 | 1,027 | 5 | 2,931 | 806 | 743 | 11 |
| 1999 | 3,527 | 597 | 667 | 6,358 | 1,930 | 88 | 26 | 3,603 | 1,784 | 180 | 37 | 7,844 | 2,367 | 201 | 94 |
| 2000 | 8,091 | 1,538 | 65 | 2,005 | 6,261 | 141 | 2 | 2,094 | 6,656 | 207 | 23 | 1,643 | 7,872 | 278 | 11 |
| 2001 | 1,298 | 2,867 | 235 | 3,948 | 1,013 | 693 | 5 | 756 | 727 | 710 | 26 | 2,089 | 1,272 | 862 | 27 |
| 2002 | 1,795 | 809 | 880 | 9,737 | 1,784 | 61 | 21 | 2,559 | 1,192 | 151 | 123 | 1,974 | 766 | 64 | 48 |
| 2003 | 1,243 | 573 | 92 | 379 | 681 | 85 | 5 | 1,767 | 779 | 126 | 1 | 1,812 | 1,064 | 146 |  |
| 2004 | 909 | 362 | 35 | 564 | 542 | 90 | 7 | 731 | 719 | 175 | 19 | $\mathrm{n} / \mathrm{a}$ | n/a | n/a | $\mathrm{n} / \mathrm{a}$ |

${ }^{2}$ English groundfish survey, arithmetic mean catch in no./h, 22 selected rectangles within Roundfish areas 1, 2, and 3
${ }^{3}$ 1982-91 EGFS numbers adjusted from Granton trawl to GOV trawl by multiplying by 3.5
${ }^{4}$ Scottish groundfish surveys, arithmetic mean catch no./h. Survey design changed in 1998 and 2000. 0-group indices
${ }^{5}$ English

assessment.

Table 12.2.9 Within tuning fleet consistency

|  | $\mathbf{r}^{2}$ values |  |  |
| :--- | :---: | :---: | :---: |
|  | Age 0 vs 1 | Age 1 vs 2 | Age 2 vs 3 |
| ibtsq1 |  | 0.57 | 0.43 |
| ibtsq3 | 0.51 | 0.34 | 0.31 |
| sgfs | 0.31 | 0.63 | 0.40 |
| egfs | 0.40 | 0.05 | 0.00 |
| commq1 |  | 0.33 | 0.14 |
| commq2 |  | 0.02 | 0.24 |
| commq3 | 0.02 | 0.42 | 0.06 |
| commq4 | 0.38 | 0.17 | 0.18 |

Table 12.2.10 Between survey consistency (Survey tuning fleet)

| $\mathbf{r}^{2}$ values |  |  |  |  |  |  |
| :--- | :---: | ---: | :---: | ---: | ---: | ---: |
|  | EGFSq3 | EGFSq3 | SGFSq3 | IBTSq1 | IBTSq1 | IBTSq1 |
|  | vs SGFSq3 | vs IBTSq3 | vs IBTSq3 vs SGFSq3 | vs EGFSq3 | vs IBTSq3 |  |
| Age 0 | 0.08 | 0.13 | 0.03 |  |  |  |
| Age 1 | 0.54 | 0.75 | 0.75 | 0.66 | 0.77 | 0.82 |
| Age 2 | 0.04 | 0.62 | 0.51 | 0.68 | 0.14 | 0.53 |
| Age 3 | 0.14 | 0.27 | 0.57 | 0.41 | 0.01 | 0.14 |

Table 12.2.11 Between quarter consistency (Commercial Fishery tuning fleet)

|  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | q1-q2 | r1-q3 | q1-g4 | q2-q3 | q2-q4 | q3-q4 |
| Age 0 |  |  |  |  |  | 0.01 |
| Age 1 | 0.65 | 0.31 | 0.36 | 0.34 | 0.23 | 0.51 |
| Age 2 | 0.17 | 0.24 | 0.30 | 0.02 | 0.07 | 0.22 |
| Age 3 | 0.19 | 0.10 | 0.13 | 0.37 | 0.06 | 0.05 |

Table 12.2.12 Correlations ( $r^{2}$ ) between the tuning fleet indices and assessment (SXSA) abundance estimates (2003 Assessment) by age.
(CF = Commercial Fishery tuning fleet).

| Fleets | Age 0 | Age 1 | Age 2 | Age 3 |
| :---: | :---: | :---: | :---: | :---: |
| CF_Q1 |  | 0.50 | 0.57 | 0.45 |
| CF_Q2 |  | 0.32 | 0.35 | 0.50 |
| CF_Q3 | 0.05 | 0.69 | 0.45 | 0.37 |
| CF_Q4 | 0.69 | 0.63 | 0.56 | 0.44 |
| IBTS_1Q |  | 0.64 | 0.48 | 0.62 |
| EGFS_3Q | 0.26 | 0.61 | 0.04 | 0.04 |
| SGFS_3Q | 0.04 | 0.41 | 0.43 | 0.66 |
| IBTS_3Q | 0.52 | 0.79 | 0.32 | 0.28 |

The correlation coefficients ( $r^{2}$ ) are estimated from data covering the period 1983-2003 for the quarterly commercial tuning fleet indices.

Table 12.3.1. Norway pout. Stock indices used in final assessment compared to 2003 assessment.

|  |  | 2003 ASSESSMENT | 2004 ASSESSMENT |  |
| :---: | :---: | :---: | :---: | :---: |
| RECRUITING SEASON |  | 3rd quarter | 2nd quarter |  |
| FLT01: comm Q1 |  |  |  |  |
|  | Year range | 1982-2003 | 1982-2004 |  |
|  | Quarter | 1 | 1 |  |
|  | Ages | 1-3 | 1-3 |  |
| FLT01: comm Q2 |  |  | NOT USED |  |
|  | Year range | 1982-2003 |  |  |
|  | Quarter | 2 |  |  |
|  | Ages | 1-3 |  |  |
| FLT01: comm Q3 |  |  |  |  |
|  | Year range | 1982-2003 | 1982-2003 |  |
|  | Quarter | 3 | 3 |  |
|  | Ages | 0-3 | 1-3 |  |
| FLT01: comm Q4 |  |  |  |  |
|  | Year range | 1982-2003 | 1982-2003 |  |
|  | Quarter | 4 | 4 |  |
|  | Ages | 0-3 | 0-3 |  |
| FLT02: ibtsq1 |  |  |  |  |
|  | Year range | 1982-2003 | 1982-2004 |  |
|  | Quarter | 1 | 1 |  |
|  | Ages | 1-3 | 1-3 |  |
| FLT03: egfs |  |  |  |  |
|  | Year range | 1982-2003 | 1992-2004 |  |
|  | Quarter | 3 | Q3 -> Q2 |  |
|  | Ages | 0-3 | 0-1 |  |
| FLT05: sgfs |  |  |  |  |
|  | Year range | 1982-2003 | 1998-2004 |  |
|  | Quarter | 3 | Q3 -> Q2 |  |
|  | Ages | 0-3 | 0-1 |  |
| FLT04: ibtsq3 |  | NOT USED |  |  |
|  | Year range |  | 1991-2003 |  |
|  | Quarter |  |  |  |
|  | Ages |  | 2-3 |  |

Table 12.3.2. Seasonal extended survivor analysis (SXSA) of Norway pout in the North Sea and Skagerrak. Parameters, settings and the options of the SXSA as well as the input data used in the SXSA.

```
SURVIVORS ANALYSIS OF: Norway pout stock in 2004
Run: npns2004_2 (Summary from NPNS2004_2)
The following parameters were used:
Year range: 1983-2004
Seasons per year: 4
The last season in the last year is season : 2
Youngest age: 0
Oldest age: 3
Plus age: 4
Recruitment in season: 2
Spawning in season: 1
```

The following fleets were included:

| Fleet 1: (Q1: Age 1-3; Q2: None; Q3: Age 1-3) | Commercial q134 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Fleet 2: |  | (Age 1-3) |  |
| Fleet 3: |  | egFsq2 | (Age 0-1) |
| Fleet 4: |  | sgFsq2 | (Age 0-1) |
| Fleet 5: | ibtsq3 | (Age 2-3) |  |

## The following options were used:

```
1: Inv. catchability: 2
    (1: Linear; 2: Log; 3: Cos. filter)
2: Indiv. shats
    (1: Direct; 2: Using z)
3: Comb. shats:
    (1: Linear; 2: Log.)
4: Fit catches: 0
    (0: No fit; 1: No SOP corr; 2: SOP corr.)
5: Est unknown catches
    (0: No; 1: No SOP corr; 2: SOP corr; 3: Sep. F)
6: Weighting of rhats:
    (0: Manual)
7: Weighting of shats: 2
    (0: Manual; 1: Linear; 2: Log.)
8: Handling of the plus group: 1
    (1: Dynamic; 2: Extra age group)
```

Data were input from the following files:
Catch in numbers:
canumr1.qrt
Weight in catch:
Weight in stock:
Natural mortalities:
Maturity ogive:
Tuning data (CPUE):
Weighting for rhats:
weca.qrt
west. qrt
natmor.qrt
matprop. qrt
04.xsa
rweigh.xsa

Table 12.3.3. Seasonal extended survivor analysis (SXSA) of Norway pout in the North Sea and Skagerrak. Stock numbers, SSB and TSB at start of season.

| Year | 1983 |  |  |  | 1984 |  |  |  | 1985 |  |  | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Season | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 |  |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | * | 221864. | 148720. | 99324. | * | 119619. | 80183. | 53748. | * | 85444. | 57275. | 38387. |
| 1 | 109118. | 69700. | 45226. | 25547. | 64392. | 40904. | 25575. | 12812. | 34201. | 21072. | 13423. | 7851. |
| 2 | 13119. | 7732. | 4172. | 1508. | 13607. | 7996. | 4406. | 1576. | 5729. | 2724. | 1707. | 496. |
| 3 | 118. | 67. | 37. | 11. | 700. | 352. | 16. | 4. | 455. | 148. | 88. | 43. |
| $4+$ | 6. | 3. | 0 . | 0. | 1. | 1. | 1. | 0. | 3. | 1. | 1. | 1. |
| SSN | 24155. |  |  |  | 20748. |  |  |  | 9608. |  |  |  |
| SSB | 370068. |  |  |  | 372501. |  |  |  | 168363. |  |  |  |
| TSN | 122361. | 299364. | 198154. | 126390. | 78701. | 168872. | 110181. | 68140. | 40389. | 109389. | 72495. | 46778. |
| TSB | 1057515. | 1311854. | 1907134. | 1247483. | 778172. | 903055. | 1150527. | 683585. | 383832. | 416182. | 643410. | 434241. |
| Year | 1986 |  |  |  | 1987 |  |  |  | 1988 |  |  |  |
| Season | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | * | 160015. | 107261. | 71899. | * | 46805. | 31374. | 21024. | * | 128728. | 86289. | 57234. |
| 1 | 25176. | 16552. | 10882. | 6323. | 43634. | 27048. | 17251. | 10232. | 13907. | 9119. | 6035. | 3895. |
| 2 | 2814. | 1011. | 607. | 206. | 2773. | 1530. | 976. | 515. | 5098. | 2844. | 1846. | 1033. |
| 3 | 189. | 68. | 43. | 24. | 106. | 61. | 41. | 27. | 154. | 87. | 58. | 39. |
| $4+$ | 30. | 17. | 12. | 8. | 21. | 13. | 9. | 6. | 18. | 12. | 8. | 5. |
| SSN | 5551. |  |  |  | 7264. |  |  |  | 6661. |  |  |  |
| SSB | 88771. |  |  |  | 96985. |  |  |  | 129078. |  |  |  |
| TSN | 28210. | 177662. | 118804. | 78460. | 46534. | 75458. | 49651. | 31804. | 19178. | 140790. | 94236. | 62207. |
| TSB | 247383. | 287013. | 729762. | 586876. | 371878. | 461566. | 601212. | 384679. | 216695. | 238514. | 578897. | 478640. |
| Year | 1989 |  |  |  | 1990 |  |  |  | 1991 |  |  |  |
| Season | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | * | 136036. | 91188. | 60995. | * | 127476. | 85450. | 57262. | * | 245481. | 164551. | 109701. |
| 1 | 35790. | 22569. | 14573. | 8400. | 36912. | 23237. | 14119. | 8669. | 37571. | 23956. | 15538. | 9171. |
| 2 | 2094. | 1364. | 806. | 322. | 4206. | 2341. | 1101. | 586. | 4844. | 2154. | 1113. | 570. |
| 3 | 361. | 237. | 154. | 99. | 140. | 77. | 36. | 19. | 298. | 124. | 67. | 27. |
| $4+$ | 30. | 20. | 13. | 9. | 62. | 33. | 22. | 15. | 20. | 8. | 6. | 4. |
| SSN | 6063. |  |  |  | 8098. |  |  |  | 8919. |  |  |  |
| SSB | 87214. |  |  |  | 127416. |  |  |  | 145902. |  |  |  |
| TSN | 38274. | 160226. | 106734. | 69825. | 41320. | 153164. | 100728. | 66552. | 42733. | 271722. | 181275. | 119472. |
| TSB | 312691. | 397882. | 772949. | 578447. | 359964. | 433870. | 744275. | 568716. | 382600. | 439212. | 1098549. | 894628. |
| Year | 1992 |  |  |  | 1993 |  |  |  | 1994 |  |  |  |
| Season | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | * | 103004. | 69046. | 45563. | * | 72656. | 48703. | 32568. | * | 313086. | 209868. | 140149. |
| 1 | 70681. | 44467. | 28561. | 16315. | 29761. | 18359. | 11640. | 6864. | 20869. | 12372. | 7988. | 4512. |
| 2 | 5290. | 2656. | 1541. | 714. | 8657. | 5231. | 3119. | 1344. | 3741. | 2024. | 1123. | 408. |
| 3 | 229. | 57. | 22. | 14. | 260. | 162. | 61. | 26. | 537. | 314. | 187. | 67. |
| $4+$ | 6. | 1. | 1. | 1. | 8. | 5. | 4. | 2. | 17. | 11. | 8. | 5. |
| SSN | 12592. |  |  |  | 11901. |  |  |  | 6382. |  |  |  |
| SSB | 175334. |  |  |  | 222143. |  |  |  | 119340. |  |  |  |
| TSN | 76205. | 150186. | 99170. | 62606. | 38686. | 96414. | 63528. | 40804. | 25164. | 327807. | 219174. | 145142. |
| TSB | 620623. | 760262. | 1057768. | 679415. | 409635. | 461651. | 623633. | 411202. | 250814. | 270730. | 1098677. | 965719. |
| Year | 1995 |  |  |  | 1996 |  |  |  | 1997 |  |  |  |
| Season | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | * | 98492. | 66021. | 43682. | * | 238709. | 160012. | 106666. | * | 67837. | 45472. | 30392. |
| 1 | 90475. | 57379. | 36902. | 22653. | 27896. | 18261. | 11782. | 7044. | 69440. | 45996. | 30751. | 18084. |
| 2 | 2085. | 1201. | 595. | 361. | 12443. | 7709. | 5003. | 2533. | 4189. | 2541. | 1597. | 766. |
| 3 | 164. | 105. | 45. | 27. | 193. | 118. | 48. | 2. | 1425. | 891. | 500. | 249. |
| $4+$ | 48. | 32. | 22. | 15. | 26. | 17. | 12. | 8. | 7. | 4. | 3. | 2. |
| SSN | 11345. |  |  |  | 15452. |  |  |  | 12565. |  |  |  |
| SSB | 118470. |  |  |  | 302455. |  |  |  | 198151. |  |  |  |
| TSN | 92772. | 157209. | 103585. | 66738. | 40558. | 264815. | 176856. | 116253. | 75060. | 117270. | 78323. | 49493. |
| TSB | 688460. | 908605. | 1214916. | 799856. | 478198. | 542894. | 1152612. | 908544. | 635620. | 821146. | 1049310. | 644890. |
| Year | 1998 |  |  |  | 1999 |  |  |  | 2000 |  |  |  |
| Season | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | * | 94065. | 63054. | 42189. | * | 233146. | 156282. | 104726. | * | 80731. | 54116. | 36215. |
| 1 | 20092. | 13254. | 8712. | 5503. | 28003. | 18605. | 12211. | 7122. | 69277. | 45903. | 30541. | 19352. |
| 2 | 10548. | 6506. | 4107. | 2481. | 3254. | 2076. | 1212. | 536. | 4302. | 2733. | 1662. | 897. |
| 3 | 344. | 192. | 114. | 75. | 1487. | 937. | 552. | 342. | 228. | 151. | 61. | 25. |
| $4+$ | 140. | 87. | 39. | 26. | 57. | 38. | 25. | 17. | 221. | 148. | 99. | 67. |
| SSN | 13041. |  |  |  | 7598. |  |  |  | 11680. |  |  |  |
| SSB | 267705. |  |  |  | 153848. |  |  |  | 164674. |  |  |  |
| TSN | 31124. | 114104. | 76025. | 50274. | 32801. | 254802. | 170283. | 112742. | 74029. | 129666. | 86479. | 56555. |
| TSB | 394284. | 434477. | 653449. | 488258. | 330267. | 398629. | 1015640. | 834487. | 601121. | 797301. | 1055129. | 701461. |

Table 12.3.3. (Continued)

| Year | 2001 |  |  |  | 2002 |  |  |  | 2003 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Season | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | * | 77293. | 51811. | 34704. | * | 51192. | 34315. | 22724. | * | 16966. | 11373. | 7618. |
| 1 | 24029. | 15927. | 10567. | 6984. | 22961. | 14994. | 9764. | 6036. | 14995. | 10003. | 6653. | 4303. |
| 2 | 9192. | 5470. | 3465. | 2300. | 4463. | 2870. | 1904. | 1044. | 3659. | 2390. | 1562. | 948. |
| 3 | 401. | 240. | 79. | 52. | 1182. | 779. | 518. | 328. | 416. | 261. | 155. | 91. |
| $4+$ | 56. | 38. | 25. | 17. | 46. | 31. | 20. | 14. | 207. | 139. | 93. | 62. |
| SSN | 12052. |  |  |  | 7987. |  |  |  | 5782. |  |  |  |
| SSB | 238227. |  |  |  | 164107. |  |  |  | 119251. |  |  |  |
| TSN | 33678. | 98968. | 65948. | 44058. | 28652. | 69866. | 46521. | 30146. | 19277. | 29759. | 19835. | 13021. |
| TSB | 389608. | 438986. | 625185. | 468496. | 308763. | 363164. | 494324. | 338044. | 213717. | 252147. | 288267. | 189755. |
| Year | 2004 |  |  |  |  |  |  |  |  |  |  |  |
| Season | 1 | 2 |  |  |  |  |  |  |  |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | * | 19662. |  |  |  |  |  |  |  |  |  |  |
| 1 | 5105. | 3414. |  |  |  |  |  |  |  |  |  |  |
| 2 | 2840. | 1861. |  |  |  |  |  |  |  |  |  |  |
| 3 | 504. | 330. |  |  |  |  |  |  |  |  |  |  |
| $4+$ | 75. | 51. |  |  |  |  |  |  |  |  |  |  |
| SSN | 3930. |  |  |  |  |  |  |  |  |  |  |  |
| SSB | 90428. |  |  |  |  |  |  |  |  |  |  |  |
| TSN | 8525. | 25319. |  |  |  |  |  |  |  |  |  |  |
| TSB | 122592. | 133846. |  |  |  |  |  |  |  |  |  |  |

Table 12.3.4. Seasonal extended survivor analysis (SXSA) of Norway pout in the North Sea and Skagerrak. Fishing mortalities by quarter of year.

| Year | 1983 |  |  |  | 1984 |  |  |  | 1985 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Season | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 | * | 0.000 | 0.004 | 0.033 | * | 0.000 | 0.000 | 0.052 | * | 0.000 | 0.000 | 0.022 |
| 1 | 0.048 | 0.032 | 0.168 | 0.225 | 0.053 | 0.069 | 0.283 | 0.389 | 0.083 | 0.050 | 0.134 | 0.585 |
| 2 | 0.127 | 0.212 | 0.578 | 0.354 | 0.130 | 0.192 | 0.586 | 0.760 | 0.332 | 0.066 | 0.756 | 0.529 |
| 3 | 0.164 | 0.188 | 0.745 | 1.324 | 0.280 | 1.597 | 0.859 | 0.000 | 0.665 | 0.114 | 0.302 | 0.000 |
| $4+$ | 0.000 | 1.807 | * | * | 0.000 | 0.000 | 0.000 | 0.000 | 0.341 | 0.000 | 0.000 | 0.000 |
| F ( 1-2) | 0.087 | 0.122 | 0.373 | 0.290 | 0.092 | 0.130 | 0.435 | 0.574 | 0.208 | 0.058 | 0.445 | 0.557 |
| Year | 1986 |  |  |  | 1987 |  |  |  | 1988 |  |  |  |
| Season | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 | * | 0.000 | 0.000 | 0.098 | * | 0.000 | 0.000 | 0.013 | * | 0.000 | 0.010 | 0.069 |
| 1 | 0.019 | 0.019 | 0.141 | 0.407 | 0.077 | 0.049 | 0.121 | 0.288 | 0.022 | 0.013 | 0.037 | 0.216 |
| 2 | 0.583 | 0.109 | 0.630 | 0.256 | 0.191 | 0.049 | 0.234 | 0.731 | 0.180 | 0.032 | 0.178 | 0.607 |
| 3 | 0.585 | 0.053 | 0.183 | 0.000 | 0.147 | 0.000 | 0.010 | 0.247 | 0.170 | 0.000 | 0.000 | 0.000 |
| 4+ | 0.131 | 0.000 | 0.000 | 0.000 | 0.059 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| F ( 1-2) | 0.301 | 0.064 | 0.385 | 0.331 | 0.134 | 0.049 | 0.178 | 0.510 | 0.101 | 0.022 | 0.107 | 0.411 |
| Year | 1989 |  |  |  | 1990 |  |  |  | 1991 |  |  |  |
| Season | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| AGE | * | , | 0.002 | 0.101 | * | 0.000 | 0.000 | 0.021 | * | 0.000 | 005 | 0.039 |
|  | 0.060 | 0.037 | 0.149 | 0.284 | 0.062 | 0.097 | 0.087 | 0.179 | 0.050 | 0.033 | 0.125 | 0.039 0.148 |
| 2 | 0.028 | 0.125 | 0.491 | 0.417 | 0.182 | 0.342 | 0.225 | 0.269 | 0.394 | 0.254 | 0.263 | 0.485 |
| 3 | 0.020 | 0.031 | 0.037 | 0.171 | 0.189 | 0.345 | 0.221 | 0.283 | 0.457 | 0.204 | 0.493 | 1.279 |
| $4+$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.215 | 0.000 | 0.000 | 0.000 | 0.443 | 0.000 | 0.000 | 0.000 |
| F ( 1-2) | 0.044 | 0.081 | 0.320 | 0.350 | 0.122 | 0.220 | 0.156 | 0.224 | 0.222 | 0.143 | 0.194 | 0.317 |
| Year | 1992 |  |  |  | 1993 |  |  |  | 1994 |  |  |  |
| Season | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 | * | 0.000 | 0.016 | 0.026 | * | 0.000 | 0.002 | 0.045 | * | 0.000 | 0.004 | 0.037 |
| 1 | 0.063 | 0.042 | 0.157 | 0.228 | 0.082 | 0.055 | 0.126 | 0.203 | 0.121 | 0.037 | 0.168 | 0.359 |
| 2 | 0.281 | 0.142 | 0.356 | 0.571 | 0.102 | 0.115 | 0.423 | 0.491 | 0.210 | 0.185 | 0.572 | 0.486 |
| 3 | 0.869 | 0.526 | 0.057 | 0.190 | 0.071 | 0.539 | 0.453 | 0.099 | 0.134 | 0.118 | 0.583 | 0.000 |
| $4+$ | 0.870 | 0.000 | 0.000 | 0.000 | 0.026 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| F ( 1-2) | 0.172 | 0.092 | 0.257 | 0.400 | 0.092 | 0.085 | 0.275 | 0.347 | 0.166 | 0.111 | 0.370 | 0.422 |
| Year | 1995 |  |  |  | 1996 |  |  |  | 1997 |  |  |  |
| Season | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 | * | 0.000 | 0.013 | 0.048 | * | 0.000 | 0.006 | 0.029 | * | 0.000 | 0.003 | 0.014 |
| 1 | 0.055 | 0.041 | 0.087 | 0.195 | 0.024 | 0.038 | 0.113 | 0.118 | 0.012 | 0.003 | 0.129 | 0.137 |
| 2 | 0.149 | 0.293 | 0.099 | 0.219 | 0.078 | 0.032 | 0.273 | 0.172 | 0.098 | 0.064 | 0.324 | 0.386 |
| 3 | 0.042 | 0.438 | 0.085 | 0.141 | 0.091 | 0.473 | 1.575 | 0.162 | 0.069 | 0.175 | 0.288 | 0.183 |
| $4+$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| F ( 1-2) | 0.102 | 0.167 | 0.093 | 0.207 | 0.051 | 0.035 | 0.193 | 0.145 | 0.055 | 0.033 | 0.227 | 0.262 |
| Year | 1998 |  |  |  | 1999 |  |  |  | 2000 |  |  |  |
| Season | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 | * | 0.000 | 0.002 | 0.010 | * | 0.000 | 0.000 | 0.013 | * | 0.000 | 0.002 | 0.010 |
| 1 | 0.016 | 0.019 | 0.059 | 0.124 | 0.009 | 0.021 | 0.137 | 0.103 | 0.012 | 0.007 | 0.056 | 0.333 |
| 2 | 0.082 | 0.059 | 0.103 | 0.110 | 0.049 | 0.136 | 0.400 | 0.433 | 0.053 | 0.096 | 0.213 | 0.390 |
| 3 | 0.180 | 0.122 | 0.017 | 0.239 | 0.061 | 0.127 | 0.079 | 0.085 | 0.014 | 0.473 | 0.491 | 0.338 |
| $4+$ | 0.072 | 0.399 | 0.000 | 0.000 | 0.011 | 0.006 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| F ( 1-2) | 0.049 | 0.039 | 0.081 | 0.117 | 0.029 | 0.079 | 0.268 | 0.268 | 0.032 | 0.052 | 0.134 | 0.361 |
| Year | 2001 |  |  |  | 2002 |  |  |  | 2003 |  |  |  |
| Season | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 | * | 0.000 | 0.001 | 0.013 | * | 0.000 | 0.012 | 0.016 | * | 0.000 | 0.001 | 0.000 |
| 1 | 0.011 | 0.010 | 0.014 | 0.047 | 0.026 | 0.029 | 0.080 | 0.099 | 0.005 | 0.008 | 0.035 | 0.015 |
| 2 | 0.117 | 0.056 | 0.010 | 0.259 | 0.041 | 0.010 | 0.197 | 0.493 | 0.026 | 0.025 | 0.098 | 0.227 |
| 3 | 0.112 | 0.655 | 0.017 | 0.021 | 0.017 | 0.008 | 0.057 | 0.102 | 0.066 | 0.121 | 0.131 | 0.529 |
| $4+$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | 0.025 |
| F ( 1- 2) | 0.064 | 0.033 | 0.012 | 0.153 | 0.033 | 0.020 | 0.139 | 0.296 | 0.015 | 0.016 | 0.067 | 0.121 |



Table 12.3.5. Seasonal extended survivor analysis (SXSA) of Norway pout in the North Sea and Skagerrak. Diagnostics from the SXSA.

```
Log inverse catchabilities, fleet no:
1 (commercial q134)
```

Year 1983-2004 (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)

| Season | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |
| 0 | * | * | * | 11.631 |
| 1 | 10.728 | * | 9.890 | 9.277 |
| 2 | 9.268 | * | 8.861 | 8.505 |
| 3 | 9.268 | * | 8.861 | 8.505 |

Log inverse catchabilities, fleet no:

## 2 (ibtsq1)

Year 1983-2004 (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)

| Season | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |
| 0 | ${ }^{\text {* * }}$ | * | * | * |
| 2 | 1.451 | * | * | * |
| 3 | 1.451 | * | * | * |

Log inverse catchabilities, fleet no: 3 (egFsq2)
Year 1992-2004 (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)

| Season | 1 | 2 | 3 | 4 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| AGE |  | $*$ | 3.159 | $*$ | $*$ |
|  | 0 | $*$ | 2.107 | $*$ | $*$ |
| 1 | $*$ | $*$ | $*$ | $*$ |  |
| 2 | $*$ | $*$ | $*$ | $*$ |  |

```
Log inverse catchabilities, fleet no: 4 (sgFsq2)
```

Year 1998-2004 (all quarters of year); (The same for all years; estimated and held
constant by year as option in SXSA)
$\begin{array}{llllll}\text { Season } & 1 & 2 & 3 & 4\end{array}$
AGE 0 * 3.318 * *
$\begin{array}{rrrrr}0 & * & 3.318 & * & * \\ 1 & * & 2.180 & * & * \\ 2 & * & * & * & * \\ 3 & * & * & *\end{array}$

## Log inverse catchabilities, fleet no:

Year 1991-2004 (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)

| Season <br> AGE | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 0 | * | * | * | * |
| 1 | * | * | * | * |
| 2 | * | * | 1.583 | * |
| 3 | * | * | 1.583 | * |

Table 12.3.5. (Continued)

```
Weighting factors for computing survivors:
Fleet no: 1 (commercial q134)
Year 1983-2004 (all quarters of year); (The same for all years; estimated and held
constant by year as option in SXSA)
Season
AGE
\begin{tabular}{rrrrr}
0 & & & & \\
1 & 1.363 & \(*\) & \(*\) & 3.202 \\
2 & 2.138 & \(*\) & 1.797 & 2.504 \\
3 & 1.271 & \(*\) & 0.812 & 1.270
\end{tabular}
```

Weighting factors for computing survivors:
Fleet no: 2 (ibtsq1)
Year 1983-2004 (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)
Season 1102

AGE

| 1 | 2 | 3 | 4 |
| ---: | :--- | :--- | :--- |
|  | $*$ | $*$ | $*$ |
| 1.515 | $*$ | $*$ | $*$ |
| 1.722 | $*$ | $*$ | $*$ |
| 0.968 | $*$ | $*$ | $*$ |

Weighting factors for computing survivors:
Fleet no: 3 (egFsq2)
Year 1992-2004 (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)

| SeasonAGE | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 0 | * | 1.333 | * | * |
| 1 | * | 2.041 | * | * |
| 2 | * | * | * | * |
| 3 | * | * | * | * |

Weighting factors for computing survivors:
Fleet no: 4 (sgFsq2)
Year 1998-2004 (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)

| Season <br> AGE | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 0 | * | 1.211 | * | * |
| 1 | * | 1.876 | * | * |
| 2 | * | * | * | * |
| 3 | * | * | * | * |

Weighting factors for computing survivors:
Fleet no: 5 (ibtsq3)
Year 1991-2004 (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)

```
AGE
```

Table 12.3.6. Norway pout. SMS diagnostic.

```
objective function, negative log likelihood: 229.322
objective function contributions (total):
    Catch CPUE S/R
Species:1 105.94 116.99 6.40
objective function contributions (per observation):
    Catch CPUE S/R
Species:1 0.217 0.228 0.206
```

contribution by fleets:

| Commercial Q1 | obj conb.:-4.213 | mean contb.:-0.064 |
| :--- | :--- | :--- |
| Commercial Q2 | obj conb.:15.054 | mean contb.: 0.228 |
| Commercial Q3 | obj conb.:26.899 | mean contb.: 0.320 |
| Commercial Q4 | obj conb.:17.622 | mean contb.: 0.210 |
| IBTS Q1 | obj conb.:-4.076 | mean contb.:-0.062 |
| EGFS Q3 | obj conb.:51.267 | mean contb.: 0.610 |
| SGFS Q3 | obj conb.:14.436 | mean contb.: 0.229 |

F, year effect:
$\begin{array}{lllllllllllllllllllll}1.000 & 0.716 & 0.691 & 0.527 & 0.485 & 0.525 & 0.599 & 0.645 & 0.725 & 0.587 & 0.635 & 0.740 & 0.590\end{array}$
$\begin{array}{llllllllllllll}0.495 & 0.307 & 0.384 & 0.466 & 0.449 & 0.441 & 0.477 & 0.497 & 0.346 & 0.253 & 0.189 & 0.181 & 0.219\end{array}$
$0.208 \quad 0.121 \quad 0.238 \quad 0.098 \quad 0.044$
F, season effect:
age-season group: age 0
0.0000 .0000 .0150 .250
age-season group: age 1
$0.052 \quad 0.045 \quad 0.155 \quad 0.250$
age-season group: age $2 \& 3$
$0.0890 .0740 .191 \quad 0.250$
F, age effect:
$\begin{array}{cccc}\text {-------------- } & & \\ \text { age } 0 & \text { age } 1 & \text { age } 2 & \text { age } 3 \\ 0.282 & 2.445 & 5.152 & 5.152\end{array}$
sqrt(catch variance) ~ CV:

| age 0 | age 1 | age 2 | age 3 |
| :--- | :--- | :--- | :--- |
| 1.548 | 0.435 | 0.604 | 1.269 |

Survey catchability:

|  | age 0 | age 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: |
| Commercial Q1 |  | $2.84 \mathrm{e}-002$ | $1.26 \mathrm{e}-001$ | $1.43 \mathrm{e}-001$ |
| Commercial Q2 |  | $4.15 \mathrm{e}-002$ | $1.97 \mathrm{e}-001$ | $3.93 \mathrm{e}-001$ |
| Commercial Q3 | $2.54 \mathrm{e}-002$ | $6.51 \mathrm{e}-002$ | $1.97 e-001$ | $8.88 \mathrm{e}-002$ |
| Commercial Q4 | $1.14 \mathrm{e}-002$ | $1.23 \mathrm{e}-001$ | $2.91 \mathrm{e}-001$ | $7.82 \mathrm{e}-002$ |
| IBTS Q1 |  | $1.02 \mathrm{e}-001$ | $3.14 \mathrm{e}-001$ | $5.62 \mathrm{e}-001$ |
| EGFS Q3 | $3.00 \mathrm{e}-002$ | $1.45 \mathrm{e}-001$ | $2.61 \mathrm{e}-001$ | $1.43 \mathrm{e}-001$ |
| SGFS Q3 |  | $7.52 \mathrm{e}-002$ | $1.52 \mathrm{e}-001$ | $1.74 \mathrm{e}-001$ |

Table 12.3.6. cont. Norway pout. SMS diagnostic.

```
sqrt(CPUE variance) ~ CV:
```

|  | age 0 | 1 | age 2 | age 3 |
| :---: | :---: | :---: | :---: | :---: |
| Commercial Q1 |  | 0.57 | 0.36 | 0.91 |
| Commercial Q2 |  | 0.68 | 0.61 | 1.07 |
| Commercial Q3 | 2.11 | 0.29 | 0.60 | 1.34 |
| Commercial Q4 | 0.73 | 0.31 | 0.79 | 1.74 |
| IBTS Q1 |  | 0.65 | 0.40 | 0.71 |
| EGFS Q3 | 1.44 | 0.64 | 1.00 | 1.67 |
| SGFS Q3 |  | 0.83 | 0.58 | 0.92 |

Average F:

```
1974: 2.171
1975: 1.554
1976: 1.500
1977: 1.144
1978: 1.053
1979: 1.141
1980: 1.299
1981: 1.400
1982: 1.573
1983: 1.275
1984: 1.377
1985: 1.606
1986: 1.282
1987: 1.074
1988: 0.667
1989: 0.834
1990: 1.012
1991: 0.974
1992: 0.957
1993: 1.035
1994: 1.078
1995: 0.750
1996: 0.549
1997: 0.410
1998: 0.392
1999: 0.476 CV %
2000: 0.452 21
2001: 0.262 23
2002: 0.517 21
2003: 0.212 23
2004: 0.024 33
```

F in 2004 include first half-year only.

| Recruit-SSB | alfa | beta recruit $s 2$ recruit $s$ |
| :--- | :--- | :--- | :--- |

Table 12.3.7 Norway pout IIla, IV. Stock summary table.
(Recruits in millions. SSB and TSB in t , and Yield in '000 t).

| Year | Recruits(age 0 2nd qrt) | SSB (Q1) | TSB (Q3) | Landings ('000 t) | Fbar(1-2) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 221864 | 370068 | 1907134 | 451.40 | 0.872 |
| 1984 | 119619 | 372501 | 1150527 | 393.00 | 1.231 |
| 1985 | 85444 | 168363 | 643410 | 205.10 | 1.268 |
| 1986 | 160015 | 88771 | 729762 | 178.40 | 1.081 |
| 1987 | 46805 | 96985 | 601212 | 149.30 | 0.871 |
| 1988 | 128728 | 129078 | 578897 | 109.50 | 0.641 |
| 1989 | 136036 | 87214 | 772949 | 166.40 | 0.795 |
| 1990 | 127476 | 127416 | 744275 | 163.30 | 0.722 |
| 1991 | 245481 | 145902 | 1098549 | 186.60 | 0.876 |
| 1992 | 103004 | 175334 | 1057768 | 296.80 | 0.921 |
| 1993 | 72656 | 222143 | 623633 | 183.10 | 0.799 |
| 1994 | 313086 | 119340 | 1098677 | 182.00 | 1.069 |
| 1995 | 98492 | 118470 | 1214916 | 236.80 | 0.569 |
| 1996 | 238709 | 302455 | 1152612 | 163.80 | 0.424 |
| 1997 | 67837 | 198151 | 1049310 | 169.70 | 0.577 |
| 1998 | 94065 | 267705 | 653449 | 79.80 | 0.286 |
| 1999 | 233146 | 153848 | 1015640 | 92.00 | 0.644 |
| 2000 | 80731 | 164674 | 1055129 | 184.40 | 0.579 |
| 2001 | 77293 | 238227 | 625185 | 65.60 | 0.262 |
| 2002 | 51192 | 164107 | 494324 | 76.70 | 0.488 |
| 2003 | 16966 | 119251 | 288267 | 24.90 | 0.219 |
| 2004 | 19662 | 90428 |  |  |  |
| Arit mean | 129,459 | 178,201 | 883,601 |  | 0.724 |
| Geomean | 106,992 |  |  |  |  |

Table 12.5. Norway pout Illa and IV. Short term forecast
Basis: $F=F(2003)$.

| F multiplier | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 | 1.2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Fbar : Q1 | 0.000 | 0.002 | 0.005 | 0.007 | 0.010 | 0.012 | 0.014 |
| Fbar : Q2 | 0.000 | 0.001 | 0.002 | 0.004 | 0.005 | 0.006 | 0.007 |
| Fbar : Q3 | 0.000 | 0.013 | 0.027 | 0.040 | 0.053 | 0.067 | 0.080 |
| Fbar : Q4 | 0.000 | 0.024 | 0.048 | 0.073 | 0.097 | 0.121 | 0.145 |

SSB start of

| 2004 | 90428 | 90428 | 90428 | 90428 | 90428 | 90428 | 90428 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2005 | 55615 | 53092 | 50760 | 48601 | 46600 | 44742 | 43016 |


| Yield |  |  |  |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 2004 Q3+Q4 | 0 | 3040 | 5674 | 7966 | 9973 | 11738 | 13299 |
| 2005 Q1+Q2 | 0 | 273 | 525 | 759 | 976 | 1177 | 1365 |

Table 12.8.1 Norway pout in Division VIa
Officially reported landings (tonnes)

| Country | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | 5849 | 28180 | 3316 | 4348 | 5147 | 7338 | 14147 | 24431 | 6175 | 9549 |
| Faroes | 376 | 11 | - | - | - | - | - | - | - | - |
| Germany | - | - | - | - | - | - | - | 1 | - | - |
| Netherlands | - | - | - | - | 10 | - | - | 7 | 7 | - |
| Norway | - | - | - | - | - | - | - | - | - | - |
| Poland | - | - | - | - | - | - | - | - | - | - |
| UK (E+W) | - | - | - | - | 1 | - | 1 | - | - | - |
| UK (Scotland) | 517 | 5 | - | - | - | - | + | - | 140 | 13 |
| Total | 6742 | 28196 | 3316 | 4348 | 5158 | 7338 | 14148 | 24439 | 6322 | 9562 |


| Country | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | 7186 | 4624 | 2005 | 3214 | 4815 | 6397 |
| Faroes | - | - | - | - | - | - |
| Germany | - | - | - | - | - | - |
| Netherlands | - | 1 | - | - | - | - |
| Norway | - | - | - | - | - | - |
| Poland | - | - | - | - | - | - |
| UK (E+W) | - | - | - | - | - | - |
| UK (Scotland) | - | - | - | - | - | - |
| Total | 7186 | 4625 | 2005 | 3214 | 4815 | 6397 |

Figure 12.1.1 Spatial distribution of Danish Norway pout fishery. Catch in tons by area (ICES Statistical square) and season (quarter of year) in 2002 from the Danish commercial fishery for Norway pout in the North Sea, Skagerrak and Kattegat areas. Large symbols indicate 1000 tonnes, medium 500 tonnes, small 100 tonnes.

2002 first quarter:


2002 third quarter:


2002 second quarter:


2002 fourth quarter:


Figure 12.1.2 Spatial distribution of Danish Norway pout fishery. Catch in tons by area (ICES Statistical square) and season (quarter of year) in 2003 from the Danish commercial fishery for Norway pout in the North Sea, Skagerrak and Kattegat areas. Large symbols indicate 1000 tonnes, medium 500 tonnes, small 100 tonnes.

2003 first quarter:


2003 third quarter:


2003 second quarter:


2003 fourth quarter:


Figure 12.2.1. NORWAY POUT. Weighted mean weights at age in catch of the Danish and Norwegian commercial fishery for Norway pout by quarter of year during the period 1982-2004.












Figure 12.2.3 NORWAY POUT. Cohorte analysis of Norway pout survey CPUE indices: abundance indices by year class.






Figure 12.2.5 Within Survey Variability. Correlation between year class estimates by age.

Survey: IBTS_Q1



Survey: SGFS_Q3


Survey: EGFS Q3




Survey: IBTS_Q3




Figure 12.2.6 Within Quarter commercial fishery tuning fleet variability. Commercial Fishery (CF) assessment tuning fleet abundance indices. Correlation between year class estimates by age.

Quarter: CF Quarter 1 (Q1).



Quarter: CF Quarter 3 (Q3).




Quarter: CF Quarter 2 (Q2).



Quarter: CF Quarter 4 (Q4).




Figure 12.2.7 Between survey variability and consistency


Figure 12.2.7 cont. Norway pout. Between survey variability and consistency.


Figure 12.2.8 Norway pout. Between quarter variability. Commercial fishery assessment tuning fleet, Norway pout indices by age and quarter.


Figure 12.2.8. cont. Norway pout. Between quarter variability. Commercial fishery assessment tuning fleet, Norway pout indices by age and quarter.


Figure 12.3.1 Log residual stock numbers $(\log (N h a t / N))$ per age group divided by fleet and season. SXSA-Norway pout in the North Sea and Skagerak.








Figure 12.3.2. Norway pout. Stock summary plots.





Figure 12.3.3 Trends in yield, SSB and TSB for Norway pout in the North Sea and Skagerrak during the period 1983-2003.


Figure 12.3.4 Norway pout. Historic performance of stock.


Figure 12.3.5. Norway pout IIIa and IV Retrospective plot of R, SSB and F from final assessment 2004.



F(1-2)


Figure 12.3.6. Norway pout IIIa and IV. Comparison of 2004 assessment to 2003 assessment.




Figure 12.3.7. Norway pout in IIIa and IV. Log inverse catchabilities, from SXSA using a cosine function option with a range of 10 cohorts. Tuning fleets previously used in SXSA tuning.


Figure.12.3.8. Norway pout IIIa and IV. Results of SXSA (Seasonal) runs with single tuning fleets compared to 2003 assessment. Upper: surveys, Lower: commercial fleet by quarter.









Figure 12.3.9. Norway pout IIIa and IV. Results of XSA (annual) run with 2003 assessment data; single fleet runs compared to 2003 assesment . Upper: single fleet runs; Lower: all fleets run XSA compared to 2003 assessment.



2003 point estimates





Figure 12.3.10. Norway pout IIIa and IV. Weighting of stock indices in SXSA versus XSA (both running on 2003 assessment data).


Figure. 12.3.11. Norway pout IIIA and IV. Stock summary using the new proposed natural mortalities. For the two uppermost plots, SSB and F, the new $M$ series is associated with the right Y -axis.




Figure 12.3.12.1. Norway pout. Catch residuals from SMS.
Norway pout, Season 1


Norway pout, Season 2




Figure 12.3.12.2. Norway pout. CPUE observation residuals from SMS.


Commercial Q4


Figure 12.3.12.2. cont. Norway pout. CPUE observation residuals from SMS.


Figure 12.3.12.3. Norway pout. Mean F and SSB 1974-2004 from SMS runs (F in 2004 for first half year only)


Figure 12.3.12.4. NORWAY POUT. Estimated variance on average F and SSB, (from the Hessian matrix). SMS model.


Figure 12.3.12.5. Norway pout. Retrospective runs, all fleets and full year data, SMS
Retrospective 1998-2003


Retrospective 1998-2003


Figure 12.3.12.6. Norway pout Single fleet retrospective runs 1998-2003, full year, SMS








Figure 12.3.12.7. Norway pout. Tuning fleet window, all fleets data applied, assessment period 1974-2003, SMS

Tuning fleet first year: 1983-1994


Tuning fleet first year: 1983-1994


Figure 12.3.12.8. Norway pout. Posterior density of SSB, and average F estimated from 500000 Markov Chain Monte Carlo simulations. $2.5 \%, 25 \%, 50 \%, 75 \%, 97.5 \%$ quantiles are shown. SMS model.

Norway pout


Norway pout


Figure 12.5.1. Norway pout IIIA and IV. Quarterly F(1-2) Upper: 5 years moving average, Lower: $\mathrm{F}(1-2)$ by quarter and year.



## Figure 12.8.1 Norway pout in Division Vla

 Catch trends

For assessment purposes, the European continental shelf has since 1995 been divided into four regions: Division IIIa (Skagerrak), Division IV (the North Sea excluding the Shetland Islands), Division Vb2 (Shetland Islands), and Division VIa (west of Scotland). Only the stock in Division IV is assessed in this report.

### 13.1 Sandeel in sub-area IV

The assessment is classified as a benchmark assessment.

### 13.1.1 The Fishery

General information about the sandeel fishery can be found in the stock annex.

### 13.1.1.1 ICES advice applicable to 2003 and 2004

In 2003 the advice from ICES was that there is a need to develop management objectives to ensure that the stock remains high enough to provide food for a variety of predator species. The fishing mortality should not increase because of the consequences of removing a larger fraction of the food-biomass for other biota is unknown. Further, local depletion of sandeel aggregations should be prevented, particularly in areas where predators congregate.

The advice from ICES in 2003 was repeated in 2004. Further, based on the 2003 assessment ICES concluded that the state of the North Sea sandeel stock is uncertain (ICES 2003). The 2001 year-class still appeared to be abundant in 2002 but the 2002 year-class was estimated to be extremely weak. SSB in 2002 was estimated to be below $\mathrm{B}_{\text {lim }}$ and to increase to above $\mathrm{B}_{\mathrm{pa}}$ in 2003. Due to the low recruitment in 2002 SSB was expected to be low in 2004. The scarcity of the 2002 year-class meant that the strength of the 2003 year-class was particularly important to the state of the stock in 2004. ICES advised that the fishery in 2004 should be managed through capacity control. Further, ICES advised that the exploitation in the beginning of the 2004 fishing season should be kept below the exploitation in 2003. This restriction should apply until the strength of the 2003 year class had been evaluated, at which time appropriate adjustment in management could be advised.

In the light of studies linking low sandeel availability to poor breeding success of kittiwake, ICES advised in 2000 for a closure of the sandeel fisheries in the Firth of Forth area east of Scotland (see Figure 13.1.1.1).

### 13.1.1.2 Management applicable in 2003 and 2004

The TAC was set to 918000 tonnes in 2003 and to 826200 tonnes in 2004.
All commercial fishing in the Firth of Forth area has been prohibited since 2000, except for a maximum of 10 boat days in each of May and June for stock monitoring purposes. The closure was maintained for three years and has been extended until 2006, with an increase in the effort of the monitoring fishery to 20 days, after which the effect of the closure will be evaluated.

The Council of the EU agreed in December 2003 that the Commission should implement a fishing effort regulation in 2004 for vessels fishing for sandeel in the North Sea and the Skagerrak. The Council of the EU adopted a harvest control rule based on the size of the 2003 year-class. For each member state the number of kilowatt-days in 2004 for vessels flying its flag or registered in the Community was not allowed to exceed the number in 2003. The maximum number of kilowatt-days was revised by the Commission, based on advice from the Scientific Technical and Economic Committee for Fisheries (STECF) on the size of the 2003 year class of North Sea sandeel, in accordance with the following rules:

- where STECF estimates the size of the 2003 year class of North Sea sandeel to be at or above 500000 million individuals at age 0 , no restrictions in kilowatt-days shall apply
- where STECF estimates the size of the 2003 year class of North Sea sandeel to be between 300000 and 500000 million individuals at age 0 , the number of kilowatt-days shall not exceed the level in 2003 as calculated in total kilowatt-days
- where STECF estimates the size of the 2003 year class of North Sea sandeel to be below 300000 million individuals at age 0 , fishing with demersal trawl, seine or similar towed gears with a mesh size of less than 16 mm shall be prohibited for the remaining of 2004. However, a limited fishery will be allowed in order to monitor the sandeel stocks in the North Sea and the Skagerrak and the effects of the closure. To this end the Member states concerned shall in cooperation with the Commission develop a plan for the monitoring of the fishery.

The Commission based this regulation on advice from STECF. An ad hoc working group was convened to establish a method for providing an estimate of the size of the 2003 year class by mid-April 2004 and to propose a procedure providing this estimate (STECF 2004, see Section 13.1.11).

From an estimate of the 2003 year-class and the uncertainty associated with that estimate STECF considered that continued fishing throughout 2004 with unrestricted effort carried the risk of overexploitation of the North Sea sandeel stock (STECF 2004a). The Council Regulation (EC) No 2287/2003 of 19 December 2003, in which it is stated that the number of kilowatt-days in 2004 must not exceed the level in 2003 as calculated in total kilowatt-days, was therefore maintained. This effort limit was reached for the Danish fleet in September and the Danish fishery for sandeels in the North Sea and Skagerrak (areas IV and IIIa) was closed from $13^{\text {th }}$ September 2004. There is no information available about restrictions to be implemented on the Norwegian sandeel fishery for 2004.

### 13.1.1.3 The fishery in 2003 and 2004

Official landings statistics of sandeel by country and area of the North Sea are presented in Table 13.1.1.1. These are slightly higher than the landings provided by the Working Group members (Table 13.1.1.2). Industrial species are not sorted by species before processing and it is assumed that the landings consist of one species only in the calculation of the official landings.

The catch history is shown in Figure 13.1.1.2. Figure 13.1.1.1 shows the areas for which catches are tabulated in Tables 13.1.1.3 and 13.1.1.4. Figure 13.1.1.3 shows the distribution of catches for 2003 by quarter and ICES statistical rectangle based on logbook data or sales slips from Danish, Norwegian, and Scottish vessels and for the first two quarters of 2004 based on logbook data or sales slips from Danish and Norwegian vessels. A catch of " 0.0 " in a rectangle indicates a very small catch or, for Danish data, that no sandeel were found in a sample from an industrial catch in the rectangle.

The sandeel fishery was developed in the beginning of the fifties and rose to a peak in 1997 ( 1.1 million t ). The total landings of sandeels from the North Sea were at a historic low level in 2003. The landings of sandeel in the North Sea in 2003, as estimated by the Working Group members were $325,400 \mathrm{t}$, of which $84 \%$ were landed by the Danish fishery. Danish landings declined $60 \%$ from 2002 to 2003 and Norwegian landings declined by more than $80 \%$. The distribution of landings in 2003 differed from the typical long-term pattern with generally low landings in the ICES rectangles most frequently exploited and higher landings from ICES rectangles that are usually less intensively fished (Figure 13.1.1.3, Table 13.1.1.3 and 13.1.1.4). Landings were particularly low in the north-eastern grounds (sampling area 2B, see Table 13.1.1.4). A relative increase in the importance of grounds close to the coast was observed. This change in fishing pattern is confirmed by the DIFRES monitoring programme, in which more detailed information about the catches of sandeels has been collected for a small number of vessels since 1999. The 2003 year-class appeared in the biological samples in mid-May, which is more early than usual, and fishing on this year-class continued through to November. The majority of these catches were taken in the areas where 0 -group sandeels are most often targeted, i.e. off the Danish west coast (Figure 13.1.1.3).

The landings in the first half year of 2004 were at a similar low level as in 2003 (Table 13.1.1.5), and the same spatial trends in landings observed in 2003 was observed in 2004 (Figure 13.1.1.3). The tendency towards an increase in landings from grounds closer to the coast was more pronounced in 2004 than in 2003.

Total international standardized effort (see Section 13.1.3) peaked in 1989, decreased until 1994, and was followed by a small increase until 2001 (Figure 13.1.1.2). A decrease in effort is observed from 2001 to 2003. The landings in 2003 is $29 \%$ of the highest observed landings and the effort in $200345 \%$ of highest observed effort recorded in 1989. CPUE fluctuated without a clear trend throughout the period 1983 to 2001. A large increase in CPUE was observed from 2001 to 2002, followed by a large decrease from 2002 to 2003. The low levels of landings and effort seen in 2003 were carried forward into the first half year of 2004, whereas there seemed to have been a small increase in CPUE from 2003 to 2004.

### 13.1.2 Natural Mortality, Maturity, Age Composition and mean Weight at Age

Maturity and natural mortality are assumed at fixed values and are described in the stock annex.
The compilation of age-length-weight keys was carried out using the method described in the stock annex. The mean weights-at-age in the catch for the southern and northern North Sea in the time period 2000 to 2004 are given in Tables 13.1.2.3 and 13.1.2.4. Mean weight in the catch from 1983 to 2004 is given in Table 13.1.2.5 by half year and in Table 13.1.2.6 by year. Mean weight in the stock from 1983 to 2004 is given in Table 13.1.2.7 by half year and in Table 13.1.2.8 by year. The time series of mean weight in the stock and in the catch is shown in Figure 13.1.2.1 and 13.1.2.2. Mean weight at age show a large fluctuation over time. Most remarkable is a decrease in mean weight at age in age 2 and 3 sandeels in the first half year, the period where most of the catch is taken. Reasons for the variation in catch weight at age are discussed in the stock annex.

Catch numbers at age by half-year and year are given in Tables 13.1.2.1 and 13.1.2.2.

### 13.1.3 Catch, Effort and Research Vessel data

There are no survey time-series available for this stock. As in previous assessments effort data from the commercial fishery in the northern and southern North Sea are treated as two independent tuning fleets, separated into first and second half year.

The effort data for the southern North Sea prior to 1999 are only available for Danish vessels, but since 1999 Norwegian vessels have also provided effort data (see Table 13.1.3.1). These data for the first half year have been included in the tuning series since 2003. The effect of this on the assessment is analysed in this year's assessment (see Section 13.1.4.1.4). The reason for including the Norwegian effort data for first half year for the southern North Sea is that in recent years Norwegian catches in the southern North Sea in first half year constitute a significant part of Norwegian landings in the North Sea. The tuning fleet used for the northern North Sea is a mixture of Danish and Norwegian vessels. A separation of the Danish and Norwegian fleets is presently not possible, due to the lack of Norwegian age-length keys for the period before 1996. Separate national fleets would have been preferable because this would have made the procedure for the generation of the tuning series more transparent. This issue should be addressed at the next benchmark assessment.

The vessel-size distribution of the fleet has changed through time (Figure 13.1.3.1). Therefore effort standardisation is required. The assumption underlying the standardisation procedure is that CPUE is a function of sandeel abundance and vessel size. Standardised effort is calculated from standardised CPUE and total catch. CPUE is standardized to a vessel size of 200 Gross Tonnes (GR) using the relationship:

$$
\begin{equation*}
\mathrm{CPUE}=a * \mathrm{GR}^{b} \tag{1}
\end{equation*}
$$

where $a$ and $b$ are constants and GR is vessel size in GR

Applying a logarithmic transform to (1) gives

$$
\begin{equation*}
\operatorname{Ln}(\mathrm{C} / \mathrm{e})=\ln (a)+b^{*} \ln (\mathrm{GR}) \tag{2}
\end{equation*}
$$

where $\mathrm{C}=$ catch in tonnes, and $\mathrm{e}=$ effort in days spend fishing.
Since the 2003 WG meeting, the parameters in (2) have estimated using catch and effort data on single trip level, instead of average values of catch and effort for each vessel size category (see ICES 2004). The data used for the regression is logbook data for the Danish industrial fleet for the years 1984 to 2003 and first half year of 2004. General linear models were used to estimate the parameters in:

$$
\begin{equation*}
\ln (\mathrm{CPUE})=\mathrm{d}_{y}+\mathrm{f}_{y} * \ln (\mathrm{GR}) \tag{3}
\end{equation*}
$$

where $y=$ year, $\mathrm{GR}=$ vessel size in GR , and the remaining factors are constants. Log transformation was required to stabilise the variance in CPUE to fit the model although it does result in a more skewed distribution of GR leading to the smaller vessels receiving a higher weight in the subsequent regression. The GLM was carried out by half year (first and second half year) and area (northern and southern North Sea) to generate estimates of effort for the fleets presently used in the assessment of sandeels in IV. Type III analysis was used to test for significance of parameters. All analyses were weighted by the number of days spend fishing, as the variation on the average catch per day fishing decreases with the number of days fished. The results of the analysis and the parameter estimates are given in Table 13.1.3.2.

The parameters estimated in (3) were used to estimate CPUE for a vessel size of 200 GR from:

$$
\begin{equation*}
\text { CPUE }=\mathrm{e}^{\mathrm{d} y * 20} 0^{\mathrm{fy}} \tag{4}
\end{equation*}
$$

Mean CPUE of Danish and Norwegian fleets, after the Norwegian CPUE had been standardised to a vessel size of 200 GR, was estimated as a weighted mean weighted by the catches sampled and used to estimate CPUE. Total standardised effort was afterwards estimated from the combined Danish and Norwegian CPUE and total international catches. The combined Norwegian and Danish effort is shown in Tables 13.1.3.3 and 13.1.3.4.

An additional analysis was carried out, to estimate the consequence of changing (3) to:

$$
\begin{equation*}
\ln (\mathrm{CPUE})=\mathrm{d}_{y}+\ln (\mathrm{GR}) \tag{5}
\end{equation*}
$$

Using (5) instead of (3) only changes the estimates of total effort slightly (Table 13.1.3.5). Total international effort was therefore estimated for each of the 4 fleets using the same method as during last assessment (ICES 2004).

The tuning fleets used in the assessments area given in Table 13.1.3.6. The CPUE for these fleets is summarised in Figures 13.1.3.2 and 13.1.3.3.

### 13.1.4 Catch at age analyses

The Seasonal XSA $(S X S A)$ developed by Skagen $(1993,1994)$ has previously been used for stock assessment of sandeel. Annual XSA was tried in 2002 where it was concluded that the two approaches gave similar results (ICES 2003). For a standardization of methodology, it was decided to shift to XSA in 2002. Therefore, XSA has since 2002 been used for the final assessment. However, because data for the first half year of 2004 was available for this year's assessment SXSA is this year included as a comparison to XSA.

### 13.1.4.1 Exploration of data

### 13.1.4.1.1 A separable VPA of the North Sea sandeel catch at age data

A separable VPA was used to examine the catch at age data. The model constraints applied when fitting the model were $F 1(2003)=0.6$ and $S(1)=1.0$. These settings are based on the exploitation pattern from previous assessments.

Table 13.1.4.1 presents the log catch ratio residuals from the fitted separable VPA, the estimated selection at age and overall fishing mortality effects. Figure 13.1.4.1 illustrates the average selection pattern estimated for the last 6 years. Figure 13.1.4.2 shows the fitted year effects and Figure 13.1.4.3 the time series of log catch ratio residuals. Sandeels in IV are fully selected at age 1 . The separable VPA suggest that the fishing mortality was at a relatively high level from 1988 to 1991. From 1992 until 1997 F was lower, compared to the previous period, but increased from 1998 to 2002 . There is no consistent trend in the log catch residuals.

### 13.1.4.1.2 SMS

An exploratory run was generated for sandeel using SMS (see Section 1.4.3) the same input data as for SXSA (catch data by half-year). Exploratory runs showed a large variance of the catch at age observation, with minimum variance for age 1 and age $2(\mathrm{CV}$ at $60 \%$ ). This high variance is mainly due to low landings (and sampling) in the second half-year. In SMS, catch at age observations have one common age specific variance and it is assumed that the variance for both half-years are evenly distributed over the year. This assumption seems not to be applicable to the half-yearly sandeel assessment.

The F at age estimated by XSA or SXSA shows highly variable age selection between the years. Therefore, the SMS assumption of constant age selection in catches is probably seriously violated. As an example of how SMS performs on half-yearly data, the retrospective pattern of F and SSB are shown in Figure 13.1.4.4. It is clear that the uncertainty of estimated F in the terminal year is very high, especially for the period since 2000. It is concluded that the basic assumption of a separable fishing mortality and one common variance for an age group is violated and no further runs were made with the SXSA data set.

To overcome the problem with different variance level of catch at age observation between the half-years, SMS was also tried on annual catch data (the input data for XSA analyses). Several configurations with different subsets of CPUE time series and ages included, and with different settings for variance and selectivity at age, were tried. The results from these SMS runs showed the same trend for the stock development, but e.g. F and SSB in the terminal years were highly dependant on the actual configuration of SMS. The overall conclusion of the explorative runs is that both catch and tuning data are noisy, and that the maximum likelihood method used by SMS weights the catch at age observation higher than the CPUE time series. The best fit for CPUE data is, not surprisingly, obtained for first halfyear fleets that include most of the annual catch. The non-constant catchability is a problem, but is likewise a problem for XSA and SXSA that also assume a constant catchability for the tuning fleets.

### 13.1.4.1.3 Seasonal XSA

The Seasonal XSA (SXSA; Skagen 1994) was used to estimate fishing mortalities and stock numbers at age by half year, using data from 1983 to 2003 and first half year of 2004. The options used in run 01 were the same as in the 2002 report (Table 13.1.4.2). Weighting of estimated catchabilities ( $r_{\text {hat }}$ ) was set manually, where the final year's data is down-weighted (Table 13.1.4.2).

The following 3 exploratory runs, in addition to run 01 , were carried out, using the same settings as for run 01 except where indicated:

| SXSA <br> Run | Estimation of $r$ <br> $(r=$ inverse catchability $)$ | Weighting of $r_{\text {hat }}$ <br> $\left(r_{\text {hat }}=\right.$ estimated inverse <br> catchability $)$ <br> Opt. 6 in Table 13.1.4.2 | Weighting of $s_{\text {hats }}$ <br> $\left(S_{\text {hats }}=\right.$ estimated survivors $)$ |
| :--- | :--- | :--- | :--- |
| Opt. 7 in Table 13.1.4.2 |  |  |  |

The usual assumption in the SXSA assessments is that $r$ (inverse catchability), for each commercial tuning fleet, is constant over years. In SXSA run 02 a cosine filter (option 1 in Table 13.1.4.2) is used in the estimation of the inverse catchability. Using this option inverse catchability is allowed to vary gradually over years, without assuming any particular model for the time dependence.

SXSA weights the estimated survivors from manually entered data or according to the variance of the estimated $\log$ catchability. The working group has used manual entered weighting factors for many years, and this setting was used in SXSA run 01 and 02, where estimates of survivors are given a lower weighting in the second half of the year. This setting was chosen because the fishery inflicts the majority of the fishing mortality in the $1^{\text {st }}$ half of the year and thus the signal from the fishery is considered less reliable in the second half. The number of samples taken from the fisheries is related to the size of landings. In years with a limited fishery in the second half-year (like year 2002 and onwards) a smaller number of samples are taken which influence the accuracy of the catch at age data. To explore the effect of this weighting method two runs were made where the survivors were weighted by the inverse variance of the $\log$ catchability, instead of the manual weighting (SXSA run 03 and 04). Further, in SXSA run 04 the effect of down weighting last half years data in the estimation of the inverse catchability is explored, by giving data from first half year same weight as for data from 1993 to 2002.

The residuals of log stock number for run 01, 02, 03, and 04 are given in Figures 13.1.4.5, 13.1.4.6, 13.1.4.8. and 13.1.4.9. These residuals are equivalent to the $\log$ catchability residuals obtained from the standard XSA, and are calculated as:

$$
\text { residuals }=\log \left(\frac{\hat{N}}{N}\right)
$$

where $N$ is the stock number-at-age derived from the VPA and $\hat{N}$ is the stock number-at-age derived from the CPUE index for each tuning fleet. There are large trends in the residuals from run 01,03 and 04 , which indicate changes in catchability over the year range of data used in the assessment. In Figure 13.1.4.7 log inverse catchability from run 02 (cosine filter used in the estimation of the inverse catchability) is plotted for each tuning fleet. The graph indicates that the assumption about constant catchability used in the assessment is violated. The residual plot from run 02 (Figure 13.1.4.6) seem to support this as the trends in the residuals does not appear in this plot (see also Section 13.1.4.1.2).

The fixed factors used in run 01 and 02 for weighting the survivor estimates from each fleet and weighting factors according to the inverse variance of log catchability (run 03) is given in Table 13.1.4.4. The weighting factors estimated in run 04 are almost identical to those estimated in run 03 . The estimated weighting factors in run 03 show a relatively higher weighting of the first half-year fleets, but the difference between the two season is not that big as for the manually-set weighting factors. The weighting factors for run 03 are to a large extend comparable to those used in XSA (see Section 13.1.4.1.4 and Figure 13.1.4.14), i.e. for age-0 sandeel the fleet for the Northern North Sea in second half-year is given the highest weight, for age-1 sandeels the fleet for the southern North Sea in first half year is given the highest weight, and for age 2 sandeels the fleet for the southern North Sea in first half year is given the highest weight.

A comparison of the SXSA runs is shown in Figure 13.1.4.10. The 4 runs show similar trends of SSB, R and F. However SSB and F of run 02 deviate in absolute terms somewhat from the other 3 runs. Using the cosine filter in the estimation of the inverse catchability imply the addition of an extra parameter to be estimated. Further, no information is available to substantiate that catchability has changed in the latest years. Run 02 should thus be seen as exploratory with respect to catchability, and should not be considered in the evaluation of changes in stock dyamics. As the results from the other runs give similar results the choice of options has a limited effect on the assessment results. Therefore run 01 (using the same settings as those used in previous years where the SXSA was used as the assessment model) is chosen as the final assessment using the SXSA model.
The log inverse catchabilities for run 01 are given in Table 13.1.4.3. The stock summary plot is shown in Figure 13.1.4.11 and the assessment summary in Table 13.1.4.8. The retrospective plot is shown in Figure 13.1.4.12. Partial fishing mortalities by each of the commercial tuning fleets are shown in Table 13.1.4.5 and annual fishing mortalities in Table 13.1.4.6. The stock number at age is given in Table 13.1.4.7. As in the previous assessments (see e.g. ICES
2003) large variations in F are seen in recent years in the retrospective plot. This may be due to a violation in the assumption of constant catchability over years (see also Section 13.1.4.1.2).

A comparison between the final SXSA, the final XSA assessment (see Section 13.1.4.1.4), and previous assessments is given in Section 13.1.4.1.5.

### 13.1.4.1.4 XSA

An XSA analysis was carried out using data from 1983 to 2003 and the settings used in previous year's assessments (see ICES 2003 and 2004):

Settings used for tuning in XSA run 01:

| Year of assessment | 2004 |
| :--- | :--- |
| Assessment method | XSA |
| Combined Northern 1st half-year | $0-4+$ |
| Combined Northern 2nd half-year | $0-4+$ |
| Combined Southern 1st half-year | $0-4+$ |
| Combined Southern 2nd half-year | $0-4+$ |
| Time series weights | None |
| Power model used for catchability | Not used |
| Catchability plateau age | 2 |
| Surv. est. shrunk towards mean F | 5 years / 2 ages |
| s.e. of means | 1.5 |
| Min. stand. Error for pop. estimates | 0.3 |
| Prior weighting | None |
| Number of iteration | 28 |
| Convergence | Yes |

Two more exploratory runs were carried out using the same settings except where indicated in the Table below:

| XSA Run |  |
| :---: | :--- |
| 2 | Tapered time weighting: Power 3 over 10 years |
| 3 | Norwegian effort data not used in tuning fleets for the southern North Sea <br> first half year |

The residual plot of XSA run 01 (Figure 13.1.4.13) shows the same trends in the residuals as that of SXSA run 01 (Figure 13.1.4.5). The tuning weights estimated in run 01 with the XSA model are shown in Figure 13.1.4.14. The weighting of the fleets is comparable to those used in the final assessments of recent years, except for age- 0 for which the fleet for the southern North Sea in the second half year is given a lower weight in this years assessment. No age-0 sandeels was found in the biological samples from the southern part of the North Sea (second half-year) in either 2002 or 2003 (Table 13.1.2.1).

To explore the effect of the change in the fishing pattern that seem to have taken place in the recent years (see Section 13.1.1.3) a run with the XSA was carried out using a tapered time weighting (XSA run 02). Further, the effect of including Norwegian catch and effort data in the tuning fleet for the southern North Sea in first half year was explored by an additional XSA run without Norwegian data included in this tuning fleet (XSA run 03).

The alternative settings used in XSA run 02 and 03 did not have any effect on the assessment, except for a slightly smaller estimate of recruitment in run 02 compared to run 01 and 03 (Figure 13.1.4.15). Further, the trends in the residual plot were the same but slightly smaller for XSA run 02 than for XSA run 01. XSA run 01 was chosen as the final assessment using the XSA model.

The diagnostic output from XSA run 01 is given in Table 13.1.4.9, fishing mortalities in Table 13.1.4.10, stock numbers in Table 13.1.4.11, and the assessment summary in Table 13.1.4.12. The stock summary plot is shown in Figure 13.1.4.17 and the results of the retrospective analysis in Figure 13.1.4.18.

### 13.1.4.2 Final Assessment

This year the Working Group decided to present two final assessments, one final assessment based on the SXSA model (SXSA run 01) and one final assessment based on the XSA model (XSA run 01). The WG has considerable experience in XSA. SXSA have been used for several years and recommended by ACFM, but the method does not give comprehensive diagnostics. The SXSA analysis use data from the first half year of 2004, which gives an indication of the size of the 2003 year-class. The XSA analysis estimates the 2003 year class from 0-group fishery data only, and retrospective analysis has shown that this estimate is highly unreliable.

Similar trends in both SSB, recruitment and F are estimated in the final assessments (Figure 13.1.4.20), the largest difference being the recruitment in 2003, where the SXSA estimate is higher than the XSA estimate. Further, the same
large variations, in the recent years estimate of F observed in the last assessments is also seen in the retrospective plot of both XSA run 01 and SXSA run 01, although the tendency of underestimation of F is more consistent in the XSA result compared to the SXSA result.

The comparison of the exploratory assessments is shown in Figure 13.1.4.19 and a comparison between the final SXSA and the final XSA assessments to previous years assessments are shown in Figure 13.1.4.20. The 2001 year class is estimated to be lower in this years assessments than in previous years assessments. In 2002 the 2001 year class was estimated to be historic high, although the WG noted that this was a very uncertain estimate of the recruitment. In 2003 the 2001 year class was estimated to well above the average recruitment. The present assessments estimate the 2001 year class to be at the level of the 1983 year-class that is one of the highest recruitments in the time series.

SSB in 2004 was estimated to be at the historic low and under $\mathrm{B}_{\mathrm{lim}}$ in both of the final assessments. The reason for such a low SSB is the recruitment in 2002 that is estimated to be historic low. SSB is in the final SXSA estimated to be below $B_{p a}$ from 2001 and for the rest of the time series. In the final XSA assessment SSB is estimated to be below Bpa from 2000 and the rest of the time series. Also in 1996 and from 1989 to 1991 SSB was on a low level, but SSB has not previous to 2001 been below $\mathrm{B}_{\mathrm{pa}}$ for two succeeding years.

### 13.1.5 Recruitment estimates

As no recruitment estimates from surveys are available, recruitment estimates are based exclusively on commercial catch-at-age data. The tuning diagnostics indicate that the 0 -group CPUE is a rather poor predictor of recruitment. Recruitment in 2003 is estimated in the final SXSA assessment to just below average and to well below average in the final XSA assessment. The retrospective pattern of the recruitment from the two final runs (the XSA and the SXSA) does not indicate a higher precision in one model over the other.

For the short term prognosis, recruitment in 2003 were taken both from the XSA and the SXSA model, to explore the sensitivity of the prognosis of the choice of model estimate. Besides several recruitment estimates for 2004 ( 0 -group sandeels recruiting to the population in $3^{\text {rd }}$ quarter of the year) were explored in the prognosis.
a) Maximum recruitment (1983-2003).
b) Geometric mean recruitment (1983-2003).
c) Minimum recruitment (1983-2003)
d) Modelled recruitment based on a relationship between the proportion of total landings made in the $2^{\text {nd }}$ half year and $\log$ recruitment. The model formulation and result is in the following text table.

```
Call: lm(formula = ln.recr ~ ppn.2nd)
    Coefficients:
```



```
        \(\begin{array}{lllll}\text { ppn.2nd } & 5.6259 & 1.7179 & 3.2748 & 0.0113\end{array}\)
    Residual standard error: 0.5971 on 8 degrees of freedom
    Multiple R-Squared: 0.5728
    F-statistic: 10.72 on 1 and 8 degrees of freedom, the p-value is 0.01127
```


### 13.1.6 Short term prognoses

The high natural mortality of sandeel and the few year classes in the fishery make the stock size and catch opportunities largely dependent on the size of the incoming year classes. Although recruits (age 0 ) have appeared in the fishery at the time of the WG, the biological samples from the fishery has not been processed to a stage where number of 0 -sandeels caught can be estimated. Furthermore, 0 -group CPUE is a poor predictor of recruitment (ICES C.M. 2003) and traditional deterministic forecasts are therefore not considered appropriate. Therefore the working group has previously not provided short term forecasts However, the critical state of the sandeel stock indicated by the current assessment compels us to provide at least some indicative forecasts for a range of scenarios for recruitment in the second half of 2004.

Stock and catch weights for 2004 were taken as 3-year averages of annual values. Stock numbers in 2004 were taken from the final SXSA assessment. Annual Fs at age for the forecasts were taken as the 2003 values because the terminal estimate of F in 2004 from SXSA is only for the first half year. The recruitment estimates used in the prognosis are described in Section 13.1.5.

In addition to exploring the variability in the forecasts as a result of uncertainty surrounding the 2004 recruitment, uncertainty in the terminal stock sizes and selection patterns were explored. Four scenarios were investigated, with combinations of SXSA population /F estimates, XSA population/F estimates, and the use of mean scaled vs terminal selection patterns. The following text table gives a summary of forecast SSBs under the assumption of geometric mean recruitment in 2004, all SSBs are in thousands of tonnes.

|  | SXSA | SXSA | XSA | XSA |
| :--- | :--- | :--- | :--- | :--- |
| F2003 | Fscaled | F2003 | Fscaled |  |
| SSB |  |  |  |  |
| 2004 | 238 | 238 | 285 | 285 |
| 2005 | 517 | 492 | 351 | 345 |
| 2006 | 579 | 536 | 480 | 461 |

Forecast SSBs are therefore highly influenced by the choice of input model and assumptions, with SXSA and F2003 being the most optimistic although even this fails to indicate a return to SSB above Bpa by 2006.

The forecast tables covering the full range recruitment scenarios for 2004 and input models are given in Tables 13.1.6.1-13.1.6.4. The range of SSB forecasts for 2004 is 238-285 kt, while SSB in 2005 ranges from $345-517 \mathrm{kt}$. SSB in 2006 is highly influenced by recruitment in 2004, with a range of 175 to 1769 kt using the extremes of historically observed recruitment. The GM recruitment and the modelled recruitment are of similar magnitude and consequently give similar estimates of SSB in 2006 at 401-579 kt. The modelled recruitment relies upon total catches for 2004 being known. At the time of the working group, the Danish fishery had been closed due to the European Commission's management regime for 2004, although the Norwegian fishery was continuing. This model may therefore underestimate recruitment. If recruitment in 2004 is at the same level as the minimum previously seen, SSB in 2006 is predicted to fall below $\mathrm{B}_{\mathrm{lim}}$ again.

The SXSA assessment indicates F in 2004 to be lower than that observed in 2003, hence the forward projection of F2003 may lead to an overestimate of landings in 2004 and hence lower SSB in 2005. Terminal estimates of $F$ in recent assessments have, however, been subject to major upwards revisions with the addition of more years data. There is therefore a large degree of uncertainty in the estimates of F used in the projections, as well as the uncertainty regarding the recruitment in 2004.

Despite the uncertainty in recruitment estimates for 2004, the SSB in 2005 is not projected to rise above $\mathrm{B}_{\mathrm{pa}}$, and recruitment in 2004 will have to be above average if the SSB is to rise above $\mathrm{B}_{\mathrm{pa}}$ in 2006 under the assumption of a continued fishery at current levels.

### 13.1.7 Medium term prognoses

Medium term prognoses are not appropriate for sandeels, because of their short life-span.

### 13.1.8 Biological reference points

Information about biological reference points for sandeels in Sub-Area IV is included in the stock annex.

### 13.1.9 Quality of the assessment

The assessment of sandeels in IV is carried out without fisheries-independent indices of sandeel abundance. The tuning fleets used in the assessment are thought to be representative of the total landings of sandeels in the North Sea. Different sampling approaches have been tried during scientific surveys (see e.g. Jensen et al. 2001, STECF 2004b) but presently no scientific survey series exist that can be used for the assessment. The large decline in the stock size (Section 13.1.4.1) and landings (Section 13.1.1.3), and the change in fishing pattern seen in the latest years (Section 13.1.1.3) lead to a higher uncertainty in the assessment and seem to invalidate the assumptions of constant catchability that the assessment is based upon (see e.g. Section 13.1.4.1.3). Given the current dependency on the data from the commercial fishery and the potentially critically state of the stock, there is an urgent need to develop survey-based fisheryindependent indicators of sandeel stock development.

### 13.1.10 Management considerations

There is a need to ensure that the sandeel stock remains high enough to provide food for a variety of predator species. Management of fisheries should try to prevent local depletion of sandeel aggregations, particularly in areas where predators congregate.

No fishing mortality $(F)$ reference points are given for sandeels in the North Sea because mortality appears to be determined mostly by natural causes rather than by fishing. The recruitment of sandeels seems more linked to environmental factors than to the size of the spawning stock biomass (Arnott and Ruxton 2002). Nevertheless, $\mathrm{B}_{\text {lim }}$ has been set to the historic lowest level of SSB that gave a recruitment about the average level. Until 2003 the sandeel stock has been considered to be within safe biological limits, and the stock has been able to sustain the fishing mortality. However, in the 2003 ICES assessment (ICES 2004) SSB was estimated to be below $B_{\text {lim }}$ in 2003, and ICES reported that the state of the North Sea sandeel stock was uncertain.

The sandeel stock size shows large fluctuations over time, mainly due to large variations in the recruitment pattern. The scarcity of the 2002 year-class means that the strength of the 2003 year-class was particularly important to the state of the stock in 2004. The present assessment estimates the 2003 year-class from half the average (the XSA assessment) to just below the average recruitment (the SXSA assessment). The short-term prognosis, although uncertain, predicts SSB in 2005 to be below $\mathrm{B}_{\mathrm{pa}}$ and possibly below $\mathrm{B}_{\text {lim }}$.. SSB in 2006 is predicted to rise above $\mathrm{B}_{\mathrm{lim}}$ in 2006 only if the recruitment in 2004 is at the average level. If recruitment in 2004 is low, SSB in 2006 is predicted to be below $\mathrm{B}_{\text {lim }}$.

A close monitoring of a stock in 2005 is needed in order to get an early estimate the size of the 2004 year-class. In the case of low recruitment in 2004, fishing effort should be restricted to a level which will ensure that SSB in 2006 will be above $\mathrm{B}_{\mathrm{pa}}$. The real time monitoring system implemented in 2004 (see Section 13.1.11) could be implemented in 2005, with the expansion also to consider the effect of the fishery on the spawning biomass in 2006 (see comments below on the advantages and disadvantages of this approach).

Although the assessment is uncertain, all data available indicate that a drastic change in the stock development has taken place in recent years. The landings in 2003 and 2004 are at a historic low level, and both the XSA and the SXSA assessment estimate SSB in 2004 to be at an historic low and well below $\mathrm{B}_{\mathrm{lim}}$. Although SSB was also on a low level in 1996 and from 1989 to 1991, SSB has previous to 2001 not been below $B_{p a}$ for two succeeding years. In this year's assessment, SSB is estimated to have been below $\mathrm{B}_{\mathrm{pa}}$ from 2001 onwards. The decline in the North Sea stock abundance in 2003 seems to be linked to a decline in the density of sandeels in the entire North Sea, and is thus not only limited to the fished areas (see Section 13.1.12). If this change in the stock situation is caused by changes in the environment this may suggest that the reference points used for sandeels need to be revised. However, presently there is not data to quantify a link between changes in the environment and sandeel population dynamics, although sandeel recruitment is supposed to be influenced by e.g. climate changes. In case of a regime shift it is uncertain if the sandeel stock will be able to sustain the historic fishing effort.
In Section 13.1.12 the possible effect the implementation of different management tools on the sandeel population is discussed. The potential effects of implementing closed areas, closed seasons or a minimum landing size could not (yet) be assessed quantitatively.

A range of options for managing the fishery in 2005 could be considered. The following overview summarises the possible management measures and the qualitative effects that these measures are expected to achieve in terms of advantages (indicated by "+") and disadvantages (indicated by "-").

## 1 A total closure of the fishery

+A closure will be the most effective way of reducing fishing mortality and promoting stock increase.

- In the absence of fishery-independent abundance indices, a closure of the fishery will mean that no information will be available to monitor changes in stock abundance.

2 Real time management/in year advice, based on monitoring of the fishery, with the following options:

### 2.1 Unrestricted fishery for the whole fleet in the start of the fishing season

+ A real time management system was carried out in 2004, and this approach has proven suitable for estimation of the year class strength of the previous year's recruitment.
- An unrestricted fishery during the start of the fishing season will carry the risk of recruitment and growth overfishing. The extent of this risk is unknown, but may be relatively small due to a tendency for fishing effort to be lighter at the start of the season (i.e. before a management decision can be implemented; see the text table in Section 13.1.11). However, fishing effort may become concentrated to the start of the year if real-time monitoring is continued, which would increase the risk of overfishing once more.


### 2.2 Unrestricted fishery for a selection of the fishing fleet ("sentinel" fishery)

+ A real-time management system will enable the monitoring of the changes in population size. The fishing mortality exerted on the sandeel population could effectively be adjusted (by delimiting the number of vessels) to reduce the risk of recruitment overfishing and local depletion of sandeels. Experience with an unrestricted sandeel fishery for a selection of the fishing fleet does not exist. However, since 2000 a small number of vessels have been allowed a restricted fishery in the Firth of Forth area that has otherwise been closed (see Section 13.1.1.3). The performance of this monitoring programme has yet to be evaluated.
- The information collected from a reduced monitoring programme could be more uncertain than the information from the whole fishery.


## 3 A fixed TAC restricted fishery

+ A TAC restricted fishery provides opportunities to monitor changes in the stock abundance and provide data for stock assessment.
- A fixed TAC restricted fishery carries the risk of recruitment and growth overfishing. This concern will be specially pronounced in case of a low 2004 year-class.
The WG highly recommends that fisheries-independent indices of sandeels should be generated for use in stock assessment. The experience from the latest years, when fisheries data are getting more noisy concurrent with a declining trend in stock abundance (see also Section 13.1.9), shows that a fishery-independent index of abundance would greatly improve the knowledge about the present stock situation and expand the options for managing the fishery.

The WG recommend that an additional XSA analysis will be carried out this year before the ACFM meeting, using data from the total Danish fishery for 2004 (the Danish sandeel fishery was closed $13^{\text {th }}$ September, see Section 13.1.1.2), and Norwegian data up to October 2004, to present the most updated information about the stock situation.

### 13.1.11 Real time management of sandeels in the North Sea in 2004

The Council of the EU agreed a fishing effort regulation for vessels fishing for sandeel in the North Sea and the Skagerrak during its December 2003 meeting (Council Regulation (EC) No 2287/2003). The background for the implementation of this regulation is described in Section 13.1.1.1 and 13.1.1.2.

An ad hoc working group was convened in early 2004 to establish a method for providing an estimate of the size of the 2003 year class by mid-April 2004 and to propose a procedure for providing this estimate. The ad hoc group established a method for estimating the size of the 2003 year-class using data from the Danish fishery in March and April of 2004. This method generates weekly estimates of accumulated CPUE for 1-group sandeels from the Danish commercial fishery in the first part of the fishery season. Based on a regression of VPA population numbers of age-1 sandeels and the historical CPUE of 1-group sandeels the observed CPUE of 1-group sandeels in 2004 is used to quantify size of the 2003 year class. In this procedure historic values of fishing mortality and natural mortality were used to back calculate the abundance of 1 -group sandeels $1^{\text {st }}$ January 2004 to abundance of 0-group sandeels in 2003.

A four step process was used to estimate the size of the 2003 year class:

1. Forward calculation of 0-group abundance to the $1^{\text {st }}$ January 2004 as 1-group.
2. CPUE (tonnes per day absent) is standardised to a 200GT vessel. This is necessary due to changes over years in the size composition of the fleet.
3. Estimation of a standardised CPUE (numbers per day) for 1 -group sandeels. In this step data from the biological sampling programme is used to determine the proportion of 1-group in the landings.
4. Conversion of standardised CPUE into a population estimate from a regression of historical CPUE against VPA population numbers at age $1,1^{\text {st }}$ January.
In order to determine the earliest time in the year at which year-class strength can be determined with reasonable accuracy, this procedure was performed on cumulative, weekly data for a range of weeks (12-26). For example in week 14 , for each year, data from weeks 12-14 was used in each of the above steps. Week numbers were calculated starting from $1^{\text {st }}$ January. The procedure thus requires weekly estimates of CPUE and the proportion of 1 -group sandeels in the catches.

Using this procedure and data up to the end of April 2004, the $a d$ hoc working group estimated the size of the 2003 year class to approximately 650 billions slightly less than the long-term average estimated by the XSA in 2003.


Abundance estimates of the 2003 year-class at age 0 sandeel by week 17 of 2004.
In the table below the estimate of the 2003 year class derived from the real time monitoring procedure is contrasted to the estimates from this years assessment using the SXSA (see Section 13.1.4.1.3) and the XSA (Section 13.1.4.1.4) models.

| Method | Real time monitoring | XSA | SXSA |
| :--- | :--- | :--- | :--- |
| $\mathrm{N} \cdot 10^{9}$ age-0 in 2003 | 650 | 354 | 561 |
| Average recruitment $\left(\mathrm{N} \cdot 10^{9}\right) 1983-2003$ |  | 656 | 620 |

The estimate of the 2003 year class estimated from the real time monitoring procedure is on about the average level of the recruitment estimated for the time series 1983 to 2003 of both the XSA and the SXSA model. The estimate is slightly higher than the SXSA estimate for 2003 and much higher than the XSA estimate for 2003.

An analysis of the performance of the model using historical data up to and including week 17 showed that the method misclassified (overestimated) year-class strength in 20\% of cases, and underestimated year-class strength in 7\% of cases. For year-classes less than 500 billion at age 0 , over-classification occurred in $50 \%$ of cases and underclassification (below 300 billion) occurred in $17 \%$ of cases.

The real time monitoring system implemented in 2004 was only used for in-year assessment of the size of the 1group population in relation to a pre-defined population size. No attempt was made to investigate the impact of implementing the management plan in terms of the subsequent effect on established spawning biomass reference points. It is therefore not clear if the restrictions on effort will reduce fishing mortality to a level that will ensure sufficient escapement of the 1-group sandeels to safeguard the level of SSB in 2005.

Because no recruitment index of sandeels exist, real time management is presently the only way to estimate yearclass strength of sandeels in due time before the start of the main fishing season. Real time management in 2004 showed that the size of the year class in previous year can be estimated at week 17 approximate middle to end of April, and that this can be transferred into a management response in the middle of May. The Table below shows, that the percentage of the catches taken by the end of April in recent years has been on about $117000 t$ and about $240000 t$ by the end of May. As the largest part of the landings in May is known to be taken towards the end of that month average landings at the time when management can be made on the basis of a real time monitoring system will be between 117000 and 240000 t comprising 15 and $31 \%$ of the annual total catch.

The ad hoc STECF WG concluded that the variance of estimated CPUE of 1-group sandeels were relatively low. However the relationship between CPUE and XSA estimated stock numbers was more uncertain. Thus improving the precision of the stock assessment will also improve the performance of the real time monitoring. Alternatively it could be considered that a more robust measure of stock abundance, e.g. age independent CPUE ( $x$ ton landed per day) could be applied.

The real time monitoring system could be expanded to also consider the effect of the management on the spawning stock biomass, as well as including analyses of spatial effects of the fishery on the sandeel stock. Spatial effects may be considered through analyses of catches from smaller areas and CPUE data correspond to those areas.

Total landings by year and different time periods taken by Danish, Norwegian and Scottish vessels in the North Sea (from Table 13.1.1.3)

| Year | Total landings | Total landings Jan-Apr | Total landings JanApr + half of May | Percentage of landings taken from Jan-Apr | Percentage of annual landings taken from Jan to middle of May |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1994 | 769279 | 116498 | 252204 | 15 | 33 |
| 1995 | 917959 | 18626 | 160913 | 2 | 18 |
| 1996 | 760737 | 44142 | 139566 | 6 | 18 |
| 1997 | 1102447 | 179680 | 319980 | 16 | 29 |
| 1998 | 961130 | 215541 | 351687 | 22 | 37 |
| 1999 | 695016 | 155864 | 288809 | 22 | 42 |
| 2000 | 666429 | 10850 | 135303 | 2 | 20 |
| 2001 | 813803 | 122810 | 230305 | 15 | 28 |
| 2002 | 809291 | 251634 | 420162 | 31 | 52 |
| 2003 | 303598 | 53921 | 107174 | 18 | 35 |
| Average | 779969 | 116957 | 240610 | 15 | 31 |

### 13.1.12 Norwegian request for advice on the effects of technical management measures

## Rationale

This Section is the answer from the WG to a request from the Norwegian government to ICES for advice on "the uncertain situation for the sandeel stock in the North Sea" (7.7.04). The Section is based on two working documents presented for the WG (Wright and Jensen 2004, Johannessen et al. 2004) and input from the WG. The Norwegian request asks for advice on the effects of three possible technical measures; minimum landing sizes, closed areas or closed seasons. Clearly, any such measures should take account of the information on seasonal availability and population structure of North Sea sandeels. At present there is insufficient information to quantify the possible effect of such measures. Therefore, the following Sections will review the potential benefits of each measure in relation to our current understanding of the stock. The WG has also chosen to consider alternative management actions to those mentioned in the request from the Norwegian government. These additional management actions are: regional TACs and real time monitoring of the sandeel stock in 2005.

## Background, biology and fishery

The sandeel landings from the North Sea consist almost entirely of the lesser sandeel (Ammodytes marinus; PoppMadsen, 1994) and so only this species is described below.

Sandeels are characterised by bank affiliated resident juvenile and adult life stages (Kunzlik et al., 1986, Popp Madsen, 1994, unpubl. data, Wright et al., 1998) coupled to specific areas of sediment (Wright et al., 1998; Wright et al., 2000). The patchy distribution of this sediment is a key constraint on the distributional extent of sandeels, following settlement. The eggs are also demersal and are spawned directly onto the sandy areas they inhabit. Consequently, dispersal between patches of suitable sediment is confined to the pelagic larval stage (Berntsen, et al. 1994; Wright et al., 1998; Proctor et al., 1998; Munk et al., 2001; Jensen et al. 2003), which lasts between 1 and 3 months (Wright and Bailey, 1996; Jensen, 2001). Estimates of passive transport during this phase indicate varying levels of exchange between spawning grounds (Proctor et al., 1998). As a result inter-mixing across sandeel aggregations within the North Sea stock is limited. Furthermore, the relative geographic and hydrographic isolation of some sandeel aggregations, such as near the Firth of Forth, make them dependent on local spawning. Given the potential for differences in recruitment and mortality between local populations, the present management of the stock by a single TAC covering the whole North Sea makes these populations vulnerable to regional specific overexploitation.

There is considerable variation in size and maturity at age between regions and banks within the North Sea. Sandeels in coastal areas off Shetland (Wright, 1996), Norway (Bergstad et al. 2001) and off the Firth off Forth (Wanless et al., in press) have much lower growth rates than those from offshore banks (Macer. 1966; Bergstad et al. 2001) and as a result mature at older ages (Gauld \& Hutcheon, 1990; Macer, 1966; Jensen et al., 2001). This regional difference in growth and reproductive potential has implications for the maximum fishing mortality an area will support and the duration of any recovery time resulting from a local collapse, but little information is available to test this. For example, although sandeels are very patchy distributed and that densities can be very high in the areas where they occur (see e.g. Jensen et al. 2003) density dependent effects on growth and mortality have not been analysed for sandeels in the North Sea.

The size of sandeels available to fishing fleets is influenced by the time when sandeels emerge and return to the sand (Winslade 1974) as well as their age (Reeves 1994) and growth rate. Because growth rates within the North Sea stock vary substantially between regions and between years the patterns of emergence and thus the availability of sandeels to the fishery is also highly variable. This has strong implications for analyses of the effect of management actions on the sandeel stock dynamics.

For other species of sandeels, with a similar life cycle and behaviour as that of A. marinus in the North Sea cannibalism of immature sandeels on the early life stages on sandeels have a major impact on the recruitment pattern (see e.g. Kimura et al. 1992, Kishi et al. 1991). A. marinus in the North Sea is also a fish predator (see e.g. Christensen

1983, Macer 1966), but no field investigations have been carried out to analyze the effect of cannibalism in A. marinus. Also the effect of other fish predators on the mortality of early life stages of sandeels is lacking. Only analyses of predation on juvenile and adult sandeels have been analyzed (see e.g. ICES 2003). Information about cannibalism and density dependent growth and mortality is important to include in an analysis of the effect of the fishery and of management measures on the sandeel stock.

## Minimum landing sizes

Minimum landing sizes of sandeels could be implemented to increase the yield over a fishing season (due to the rapid growth of sandeel over the fishing season). It could also be implemented to decrease fishing mortality on 0 -group sandeels, which appear in the catches from late in the summer and may dominate the catches towards the end of the fishing season. However, the adoption of a minimum landing size may have varying success since the implementation will most likely only be possible through the use of closed areas and seasons.

The economical low value of very small sandeels, in terms of their low oil content, is already a practical limiting factor for a directed fishery on small sandeels. Because of the quality constraint almost all fishing on 0-group takes place late in the year and is mostly limited to those areas where 0 -group growth rates are very high, such as Fisher banks. The directed fishery for 0-group sandeels is carried out by a small number of vessels, which targets a small part of the areas which is inhabited by sandeels. A minimum landing size restriction late in the season could reduce mortality on 0 -group sandeels in the areas where this fishery occur. This may be of value given the current low stock size. However, for any such measure to have a conservation value it would require that fishing effort is displaced rather than catches of undersized fish being discarded. A control rule of the type that fishing should cease in an area if catches are composed of $\mathrm{x} \%$ sandeels $<\mathrm{ycm}$ in z hauls would be required.

## Closed seasons

In the Shetland assessment area a closed season approach has been applied in the past to reduce fishing pressure on 0group sandeels at times when they have been important to local seabird predators (Reeves, 1999). The protection of 0group sandeels was considered important since historically the fishery took a large proportion of that age-class.

In contrast to Shetland, 0-group sandeels only comprise a small proportion of the North Sea landings (ICES 2004, and this WG report). However, given the small size of the 2002 year-class and the less than average size of the 2003 year-class (STECF, 2004a, this WG report) reducing 0-group mortality on the 2004 and 2005 year-class may help in stock recovery. The quantification of the effect on the sandeel stock by decreasing the mortality of 0 -group sandeels would require a more detailed analysis, taking into account i.e. the high natural mortality that sandeel suffer, the likelihood of an increase in SSB, and the possible effect of an increase in cannibalism of immature 1-group sandeels on the early life stages on sandeels. Such an analysis is not possible at the present time.

1-group sandeel have a rapid increase in weight and oil content from April until June. Postponing the start of the fishery has the potential of increasing the yield in weight, and yield in the form of oil even more.

## Closed areas

Closing an area to a fishery has the potential to conserve fish stocks if the area encompasses a large spawning congregation that provides a source of recruits for many surrounding areas or if it contains a resident and reproductively isolated population (Polunin, 2002). Wright et al. (1998) provided evidence for a resident and reproductively isolated sandeel population off the north east U.K. This information together with a decline in the breeding success of sandeel dependent seabirds and particularly kittiwakes (Wanless et al., 1999) in this region following the development of a fishery in the 1990s led to a precautionary closure in 2000. The concern was that any reduction of the local sandeel population below a level where it affected breeding success of sandeel dependent seabirds could potentially affect other top predators. The direct impact of the closure is still uncertain (Wright et al., 2002) and the decision rules for reopening have yet to be agreed.

The precautionary closed area approach has also been applied to the small Shetland sandeel assessment area in the early 1990s and since re-opening in 1995 there has been a precautionary TAC and limit on the size of vessels operating (Reeves, 1999). The initial total closure in 1991 was in response to a succession of poor year-classes in the managed region which was associated with almost complete breeding failure in local seabird colonies. The stock did recover during the closure, but the primary reason for this appeared to be due to immigration of 0 -group from outside the assessed region (Wright, 1996). The stock has suffered poor recruitment in recent years that cannot be explained by the very low fishing mortality.

These two examples of closed areas highlight the importance of understanding how different patches of sandeels are linked by larval dispersal. Identifying and protecting source populations and small reproductively isolated resident populations could help in achieving sustainable management of the North Sea stock. Closed areas could be permanent or rotated such that sufficient local spawning aggregations are protected to ensure sources of larval recruitment to nearby areas. Unfortunately, scientific knowledge is currently insufficient to identify and quantify how such a management regime would work. However, a FP6 project PROTECT FP6-2003-SSP-3, Priority 8 - Task 6 will be starting shortly to consider this issue.

## Regional area TACs

In light of the changed perception of the geographical status of the North Sea sandeel stock (i.e. Wright et al. 1998) it might be more appropriate to set separate TACs to cover identified separate sandeel populations. In the first instance, such TACs would be intended to ensure the persistence of the sandeel populations and support a viable fishery in the identified regions. This proposal requires that assessments are disaggregated accordingly. Work has been done on assessing the three units separately (Pedersen et al. 1999) but more work is required to be confident that regional assessments can be done adequately. It is essential that appropriate fishery data on catch and effort are collected. It is also important that at least one fishery independent data set is initiated for stock assessment purposes. Further, it is essential that the population units to be assessed separately can be defined based upon knowledge on sandeel biology and distribution pattern.

## Real time monitoring in 2005

A Danish real time monitoring system was established in 2004, to estimate the strength of the 2003 year-class based on catches of 1-group sandeels in the start of the 2004 sandeel fishing season (STECF 2004b). This approach was found to be suitable for estimating the size of the year-class, and the uncertainties associated with this method have been described (STECF 2004a). This approach may be broadened to include estimation of the total stock biomass and the spawning stock biomass, to supplement the information from the routine assessment. The method may be developed further to consider spatial differences in distribution and abundance of sandeels, e.g. for larger aggregations of fishing grounds.

## Summary

The effect of implementing closed areas is not possible to assess, due to a lack of knowledge about sandeel biology. Collation of existing knowledge on the geographical distribution of catches and effort would also be needed. Further knowledge about the variability in local reproduction and the exchange of larvae between spawning grounds is especially needed. This lack of information is also hindering the implementation of regional area TACs, as more detailed information about the population structure of sandeels is needed to define the areas which will have to be assessed separately. Having said this, the implementation of regional TACs could lead to a more detailed monitoring of the stock development in sandeels and decrease the possibility of a local stock collapse caused by overexploitation.

The implementation of a minimum landing size, to decrease fishing mortality on 0 -group sandeels, is most likely to require the implementation of closed seasons and areas. The effect of such a management measure is likely to be restricted to the areas where 0 -group sandeels are targeted by the fleet. The effect is thus more likely to be at a regional than at a North Sea level. The same conclusions may also apply to the effect of closed seasons.

In an evaluation of the effect of implementing the above described management measures it should also be considered that the effect of the fishery on the sandeel population is influenced by sandeel population density and the economical value of the catch. Effort reduces in years and areas with a low abundance of sandeels, as seen in 2003 and 2004. A reduction in effort is also occurring in seasons and areas where the oil content of the fish is small.

Table 13.1.1.1 Sandeel in IV. Official landings reported to ICES
SANDEELS IVa

| Country | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | 26,498 | 23,138 | 3,388 | 4,742 | 1,058 | 111 | 399 |
| Faroe Islands | 11,221 | 11,000 | 6,582 |  |  |  |  |
| Norway | 98,386 | 172,887 | 44,620 | $11,522^{*}$ | $4,121^{*}$ | $185^{*}$ | $280^{*}$ |
| Sweden | - | 55 | 495 | 55 | - | - | 73 |
| UK (E/W/NI) | - | - | - | - | - | - | - |
| UK (Scotland) | 3,463 | 5,742 | 4,195 | 4,781 | 970 | 543 | 186 |
| Total | 139,568 | 212,822 | 59,280 | 21,100 | 6,149 | 839 | 938 |
| Preliminary. |  |  |  |  |  |  |  |

SANDEELS IVb

| Country | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | 731,184 | 603,491 | 503,572 | 533,905 | 638,657 | 627,097 | 245,096 |
| Faroe Islands | - | - | - |  |  |  |  |
| Germany | - | - | - | - | - | - | 534 |
| Ireland | - | - | 389 | - | - | - |  |
| Norway | 252,177 | 170,737 | 142,969 | $107,493^{*}$ | $183,329^{*}$ | $175,799^{*}$ | $29,336^{*}$ |
| Sweden | - | 8,465 | 21,920 | 27,867 | 47,080 | 36,842 | 21,444 |
| UK (E/W/NI) | 2,575 | - | - | - | - | - | - |
| UK (Scotland) | 20,554 | 18,008 | 7,280 | 5,978 | - | 2,442 | 115 |
| Total | $1,006,490$ | 800,701 | 676,130 | 675243 | 869066 | 842180 | 296525 |

*Preliminary.

## SANDEELS IVc

| Country | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | 3,163 | 9,674 | 10,356 | 11,993 | 7,177 | 4,996 | 28,646 |
| France | - | - | - | 1 | - | - | $-*$ |
| Netherlands | - | + | + | - | - | + | $-*$ |
| Sweden | - | - | - | - | - | - | 160 |
| UK (E/W/NI) | - | - | - | + | - | - | + |
| Total | 3,163 | 9,674 | 10,356 | 11,994 | 7,177 | 4,996 | 28,806 |

*Preliminary.
Summary table official landings

|  | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Total IV tonnes | $1,149,221$ | $1,023,197$ | 745,766 | 708,337 | 882,392 | 848,015 | 326,269 |
| TAC |  | $1,000,000$ | $1,000,000$ | $1,020,000$ | $1,020,000$ | $1,020,000$ | 918,000 |

## $\underline{\text { By-catch and other landings }}$

|  | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Area IV tonnes: official-WG | 11,439 | 18,797 | 10,628 | 9,188 | 20,781 | 37,315 | 00,849 |

Summary table - landing data provided by Working Group members

|  | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Total IV - tonnes | $1,137,782$ | $1,004,400$ | 735,138 | 699,149 | 861,611 | 810,700 | 325,420 |

Table 13.1.1.2. Sandeel in IV. Landings ('000 t), 1952-2003 (Data provided by Working Group members).

| Year | Denmark | Germany | Faroes | Ireland | Netherlands | Norway | Sweden | UK | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1952 | 1.6 | - | - | - | - | - | - | - | 1.6 |
| 1953 | 4.5 | + | - | - | - | - | - | - | 4.5 |
| 1954 | 10.8 | + | - | - | - | - | - | - | 10.8 |
| 1955 | 37.6 | + | - | - | - | - | - | - | 37.6 |
| 1956 | 81.9 | 5.3 | - | - | + | 1.5 | - | - | 88.7 |
| 1957 | 73.3 | 25.5 | - | - | 3.7 | 3.2 | - | - | 105.7 |
| 1958 | 74.4 | 20.2 | - | - | 1.5 | 4.8 | - | - | 100.9 |
| 1959 | 77.1 | 17.4 | - | - | 5.1 | 8.0 | - | - | 107.6 |
| 1960 | 100.8 | 7.7 | - | - | + | 12.1 | - | - | 120.6 |
| 1961 | 73.6 | 4.5 | - | - | + | 5.1 | - | - | 83.2 |
| 1962 | 97.4 | 1.4 | - | - | - | 10.5 | - | - | 109.3 |
| 1963 | 134.4 | 16.4 | - | - | - | 11.5 | - | - | 162.3 |
| 1964 | 104.7 | 12.9 | - | - | - | 10.4 | - | - | 128.0 |
| 1965 | 123.6 | 2.1 | - | - | - | 4.9 | - | - | 130.6 |
| 1966 | 138.5 | 4.4 | - | - | - | 0.2 | - | - | 143.1 |
| 1967 | 187.4 | 0.3 | - | - | - | 1.0 | - | - | 188.7 |
| 1968 | 193.6 | + | - | - | - | 0.1 | - | - | 193.7 |
| 1969 | 112.8 | + | - | - | - | - | - | 0.5 | 113.3 |
| 1970 | 187.8 | + | - | - | - | + | - | 3.6 | 191.4 |
| 1971 | 371.6 | 0.1 | - | - | - | 2.1 | - | 8.3 | 382.1 |
| 1972 | 329.0 | + | - | - | - | 18.6 | 8.8 | 2.1 | 358.5 |
| 1973 | 273.0 | - | 1.4 | - | - | 17.2 | 1.1 | 4.2 | 296.9 |
| 1974 | 424.1 | - | 6.4 | - | - | 78.6 | 0.2 | 15.5 | 524.8 |
| 1975 | 355.6 | - | 4.9 | - | - | 54.0 | 0.1 | 13.6 | 428.2 |
| 1976 | 424.7 | - | - | - | - | 44.2 | - | 18.7 | 487.6 |
| 1977 | 664.3 | - | 11.4 | - | - | 78.7 | 5.7 | 25.5 | 785.6 |
| 1978 | 647.5 | - | 12.1 | - | - | 93.5 | 1.2 | 32.5 | 786.8 |
| 1979 | 449.8 | - | 13.2 | - | - | 101.4 | - | 13.4 | 577.8 |
| 1980 | 542.2 | - | 7.2 | - | - | 144.8 | - | 34.3 | 728.5 |
| 1981 | 464.4 | - | 4.9 | - | - | 52.6 | - | 46.7 | 568.6 |
| 1982 | 506.9 | - | 4.9 | - | - | 46.5 | 0.4 | 52.2 | 610.9 |
| 1983 | 485.1 | - | 2.0 | - | - | 12.2 | 0.2 | 37.0 | 536.5 |
| 1984 | 596.3 | - | 11.3 | - | - | 28.3 | - | 32.6 | 668.5 |
| 1985 | 587.6 | - | 3.9 | - | - | 13.1 | - | 17.2 | 621.8 |
| 1986 | 752.5 | - | 1.2 | - | - | 82.1 | - | 12.0 | 847.8 |
| 1987 | 605.4 | - | 18.6 | - | - | 193.4 | - | 7.2 | 824.6 |
| 1988 | 686.4 | - | 15.5 | - | - | 185.1 | - | 5.8 | 892.8 |
| 1989 | 824.4 | - | 16.6 | - | - | 186.8 | - | 11.5 | 1039.1 |
| 1990 | 496.0 | - | 2.2 | - | 0.3 | 88.9 | - | 3.9 | 591.3 |
| 1991 | 701.4 | - | 11.2 | - | - | 128.8 | - | 1.2 | 842.6 |
| 1992 | 751.1 | - | 9.1 | - | - | 89.3 | 0.5 | 4.9 | 854.9 |
| 1993 | 482.2 | - | - | - | - | 95.5 | - | 1.5 | 579.2 |
| 1994 | 603.5 | - | 10.3 | - | - | 165.8 | - | 5.9 | 785.5 |
| 1995 | 647.8 | - | - | - | - | 263.4 | - | 6.7 | 917.9 |
| 1996 | 601.6 | - | 5.0 | - | - | 160.7 | - | 9.7 | 776.9 |
| 1997 | 751.9 | - | 11.2 | - | - | 350.1 | - | 24.6 | 1137.8 |
| 1998 | 617.8 | - | 11.0 | - | + | 343.3 | 8.5 | 23.8 | 1004.4 |
| 1999 | 500.1 | - | 13.2 | 0.4 | + | 187.6 | 22.4 | 11.5 | 735.1 |
| 2000 | 541.0 | - | - | - | + | 119.0 | 28.4 | 10.8 | 699.1 |
| 2001 | 630.8 | - | - | - | - | 183.0 | 46.5 | 1.3 | 861.6 |
| 2002 | 629.7 | - | - | - | - | 176.0 | 0.1 | 4.9 | 810.7 |
| 2003 | 274.0 | - | - | - | - | 29.6 | 21.5 | 0.3 | 325.4 |

[^8]Table 13.1.1.3 Sandeel in IV. Monthly landings (ton) by Denmark, Norway and Scotland from each area defined in
Fig 13.1.1.1

*) Only landings by Denmark and Norway

Table 13.1.1.4 Sandeel in IV. Annual landings ('000 t) by area of the North Sea.
Data provided by Working Group members (Denmark, Norway and Scotland).

|  | Area |  |  |  |  |  |  |  |  |  | Sampling area |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 1A | 1B | 1C | 2A | 2B | 2 C | 3 | 4 | 5 | 6 | Shetland | Northern | Southern |
| 1972 | 98.8 | 28.1 | 3.9 | 24.5 | 85.1 | 0.0 | 13.5 | 58.3 | 6.7 | 28.0 | 0 | 130.6 | 216.3 |
| 1973 | 59.3 | 37.1 | 1.2 | 16.4 | 60.6 | 0.0 | 8.7 | 37.4 | 9.6 | 59.7 | 0 | 107.6 | 182.4 |
| 1974 | 50.4 | 178.0 | 1.7 | 2.2 | 177.9 | 0.0 | 29.0 | 27.4 | 11.7 | 25.4 | 7.4 | 386.6 | 117.1 |
| 1975 | 70.0 | 38.2 | 17.8 | 12.2 | 154.7 | 4.8 | 38.2 | 42.8 | 12.3 | 19.2 | 12.9 | 253.7 | 156.5 |
| 1976 | 154.0 | 3.5 | 39.7 | 71.8 | 38.5 | 3.1 | 50.2 | 59.2 | 8.9 | 36.7 | 20.2 | 135.0 | 330.6 |
| 1977 | 171.9 | 34.0 | 62.0 | 154.1 | 179.7 | 1.3 | 71.4 | 28.0 | 13.0 | 25.3 | 21.5 | 348.4 | 392.3 |
| 1978 | 159.7 | --50 |  | 346.5 | --70 |  | 42.5 | 37.4 | 6.4 | 27.2 | 28.1 | 163.0 | 577.2 |
| 1979 | 194.5 | 0.9 | 61.0 | 32.3 | 27.0 | 72.3 | 34.1 | 79.4 | 5.4 | 44.3 | 13.4 | 195.3 | 355.9 |
| 1980 | 215.1 | 3.3 | 119.3 | 89.5 | 52.4 | 27.0 | 90.0 | 30.8 | 8.7 | 57.1 | 25.4 | 292 | 401.2 |
| 1981 | 105.2 | 0.1 | 42.8 | 151.9 | 11.7 | 23.9 | 59.6 | 63.4 | 13.3 | 45.1 | 46.7 | 138.1 | 378.9 |
| 1982 | 189.8 | 5.4 | 4.4 | 132.1 | 24.9 | 2.3 | 37.4 | 75.7 | 6.9 | 74.7 | 52.0 | 74.4 | 479.2 |
| 1983 | 197.4 | - | 2.8 | 59.4 | 17.7 | - | 57.7 | 87.6 | 8.0 | 66.0 | 37.0 | 78.2 | 419.0 |
| 1984 | 337.8 | 4.1 | 5.9 | 74.9 | 30.4 | 0.1 | 51.3 | 56.0 | 3.9 | 60.2 | 32.6 | 91.8 | 532.8 |
| 1985 | 281.4 | 46.9 | 2.8 | 82.3 | 7.1 | 0.1 | 29.9 | 46.6 | 18.7 | 84.5 | 17.2 | 79.7 | 513.5 |
| 1986 | 295.2 | 35.7 | 8.5 | 55.3 | 244.1 | 2.0 | 84.8 | 22.5 | 4.0 | 80.3 | 14.0 | 375.1 | 457.4 |
| 1987 | 275.1 | 63.6 | 1.1 | 53.5 | 325.2 | 0.4 | 5.6 | 21.4 | 7.7 | 45.1 | 7.2 | 395.9 | 402.8 |
| 1988 | 291.1 | 58.4 | 2.0 | 47.0 | 256.5 | 0.3 | 37.6 | 35.3 | 12.0 | 102.2 | 4.7 | 384.8 | 487.6 |
| 1989 | 228.3 | 31.0 | 0.5 | 167.9 | 334.1 | 1.5 | 125.3 | 30.5 | 4.5 | 95.1 | 3.5 | 492.4 | 526.3 |
| 1990 | 141.4 | 1.4 | 0.1 | 80.4 | 156.4 | 0.6 | 61.0 | 45.5 | 13.8 | 85.5 | 2.3 | 219.5 | 366.7 |
| 1991 | 228.2 | 7.1 | 0.7 | 114.0 | 252.8 | 1.8 | 110.5 | 22.6 | 1.0 | 93.1 | + | 372.9 | 458.9 |
| 1992 | 422.4 | 3.9 | 4.2 | 168.9 | 67.1 | 0.3 | 101.2 | 20.1 | 2.8 | 54.4 | 0 | 176.7 | 668.6 |
| 1993 | 196.5 | 21.9 | 0.1 | 26.2 | 164.9 | 0.3 | 88.0 | 26.6 | 3.9 | 48.7 | 0 | 276.0 | 301.9 |
| 1994 | 157.0 | 108.6 | - | 61.7 | 203.4 | 2.7 | 175.0 | 16.0 | 2.8 | 42.0 | 0 | 489.7 | 279.5 |
| 1995 | 322.4 | 43.9 | 147.4 | 86.7 | 169.5 | 1.0 | 59.4 | 26.6 | 5.3 | 55.8 | 1.3 | 421.2 | 496.8 |
| 1996 | 310.5 | 18.6 | 31.2 | 40.8 | 153.0 | 4.5 | 134.1 | 12.7 | 3.0 | 52.5 | 1 | 341.2 | 419.5 |
| 1997 | 352.0 | 53.3 | 8.9 | 92.8 | 390.5 | 1.2 | 112.9 | 18.1 | 4.7 | 88.6 | 2.4 | 566.8 | 535.8 |
| 1998 | 282.2 | 58.3 | 2.0 | 90.3 | 395.3 | 1.0 | 40.6 | 34.5 | 4.2 | 63.4 | 5.2 | 497.2 | 480.7 |
| 1999 | 266.7 | 32.6 | 0.1 | 132.8 | 167.9 | 0.0 | 48.0 | 16.9 | 2.7 | 27.2 | 4.2 | 248.7 | 446.4 |
| 2000 | 226.1 | 29.2 | 0.0 | 87.2 | 139.9 | 0.3 | 111.7 | 20.4 | 8.3 | 43.3 | 4.3 | 281.0 | 385.4 |
| 2001 | 239.9 | 13.0 | 1.6 | 263.0 | 177.9 | 0.1 | 49.6 | 12.4 | 7.3 | 49.0 | 1.3 | 242.2 | 571.6 |
| 2002 | 403.6 | 5.2 | 0.0 | 177.0 | 110.9 | 0.0 | 64.9 | 13.6 | 3.0 | 31.3 | 0.5 | 181.0 | 628.4 |
| 2003 | 106.9 | 7.2 | 0.1 | 43.6 | 24.5 | 0.0 | 30.0 | 35.0 | 16.2 | 40.0 | 0.5 | 61.8 | 241.7 |

Sampling areas: $\quad$ Northern - Areas 1B, 1C, 2B, 2C, 3.
Southern-Areas 1A, 2A, 4, 5, 6.

Table 13.1.1.5 Sandeel in IV. Monthly landings ( t ) by Denmark, Norway and Scotland (Data provided by Working Group members).


[^9]Table 13.1.2.1 Sandeel in IV. Catch numbers at age (numbers $\cdot 10^{-5}$ ) by half year.


Table 13.1.2.2 Sandeel in IV. Catch numbers at age (numbers $\cdot 10^{-5}$ ) by year.


Table 13.1.2.3 Sandeel in IV. Northern North Sea mean weight (g) in the catch by country and combined. Age group 4++ is the 4-plus group used in assessment.

| Year | Age | $\begin{aligned} & \text { Denmark } \\ & \hline \text { Half-year } \\ & \hline \end{aligned}$ |  | Norway Half-year |  | $\frac{\text { Combined }}{\text { Half-year }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  |  | 1 | 2 | 1 | 2 | 1 | 2 |
| 2000 | 0 | - | - | - | - | - | - |
|  | 1 | 6.41 | 14.92 | 8.46 | - | 6.78 | 14.92 |
|  | 2 | 7.44 | 17.95 | 8.05 | - | 7.90 | 17.95 |
|  | 3 | 12.68 | 19.18 | 11.17 | - | 11.86 | 19.18 |
|  | 4 | 18.49 | 22.62 | - | - | 18.49 | 22.62 |
|  | 4+ | - | - | 21.92 | - | 21.92 | - |
|  | 5 | 19.37 | 25.37 | - | - | 19.37 | 25.37 |
|  | 6 | 18.41 | 18.41 | - | - | 18.41 | 18.41 |
|  | 4++ | 18.60 | 22.67 | 21.92 | - | 19.66 | 22.67 |
| 2001 | 0 | 1.89 | 2.48 | 1.62 | 3.28 | 1.68 | 3.10 |
|  | 1 | 5.48 | 9.73 | 7.21 | 9.07 | 6.29 | 9.61 |
|  | 2 | 10.10 | 17.00 | 15.63 | 17.61 | 11.78 | 17.50 |
|  | 3 | 11.55 | - | 19.81 | 9.07 | 15.82 | 9.07 |
|  | 4 | 13.09 | - | 25.45 | - | - | - |
|  | 5 | 16.93 | - | - | - | - | - |
|  | $5+$ |  |  | 8.03 |  |  |  |
|  | 6 | 21.04 | - | - | - | - | - |
|  | 4++ | 15.20 | - | 9.18 | - | 11.58 | - |
| 2002 | 0 | - | - | 1.77 | - | 1.77 | - |
|  | 1 | 4.89 | 7.33 | 7.65 | - | 6.17 | 7.33 |
|  | 2 | 9.05 | 17.52 | 12.17 | - | 11.77 | 17.52 |
|  | 3 | 23.36 | - | 18.27 | - | 18.40 | - |
|  | 4 | 25.29 | - | - | - | - | - |
|  | 5 | - | - |  | - | - | - |
|  | $5+$ |  |  |  |  |  |  |
|  | 6 | 26.42 | - | - | - |  |  |
|  | 4++ | 26.08 | - | 32.12 | - | 31.98 | - |
| 2003 | 0 | 2.26 | 3.56 |  | 2.82 | 2.26 | 3.37 |
|  | 1 | 5.34 | 15.74 | 5.06 | 12.13 | 5.33 | 13.00 |
|  | 2 | 13.03 | 17.90 | 14.24 |  | 13.09 | 17.90 |
|  | 3 | 11.86 |  | 18.77 |  | $12.17$ |  |
|  | 4 | 14.47 |  |  |  | $14.47$ |  |
|  | 5 | 17.24 |  |  |  | 17.24 |  |
|  | $5+$ |  |  |  |  |  |  |
|  | 6 |  |  |  |  |  |  |
|  | 4++ | 14.82 |  | 28.30 |  | 14.98 |  |
| 2004 | 0 |  |  | 1.73 |  | 1.73 |  |
|  | 1 | 6.07 |  | 7.36 |  | 6.27 |  |
|  | 2 | 11.10 |  | 10.07 |  | 10.64 |  |
|  | 3 | 11.23 |  | 15.78 |  | 13.40 |  |
|  | 4 | 25.01 |  |  |  | 25.01 |  |
|  | 5 | 33.17 |  |  |  | 33.17 |  |
|  | $5+$ |  |  |  |  |  |  |
|  | 6 |  |  |  |  |  |  |
|  | 4++ | 30.69 |  | 27.53 |  | 28.39 |  |

Table 13.1.2.4 Sandeel in IV. Southern North Sea mean weight (g) in the catch (Denmark). Age group 4++ is the 4-plus group used in assessment

| Year |  | Half-year |  |
| :---: | :---: | :---: | :---: |
|  | Age | 1 | 2 |
| 2000 | 0 | 1.72 | 1.66 |
|  | 1 | 6.16 | 6.61 |
|  | 2 | 9.56 | 13.68 |
|  | 3 | 14.42 | 15.74 |
|  | 4 | 15.41 | 18.06 |
|  | 5 | 16.66 | 19.60 |
|  | 6 | 19.82 | 19.75 |
|  | 7 | 18.69 | 19.75 |
|  | 8+ | 19.88 | - |
|  | 4++ | 15.93 | 18.34 |
| 2001 | 0 | 1.75 | 2.40 |
|  | 1 | 4.22 | 9.51 |
|  | 2 | 7.93 | 17.00 |
|  | 3 | 12.57 | - |
|  | 4 | 16.19 | - |
|  | 5 | 16.71 | - |
|  | 6 | 17.73 | - |
|  | 7 | 21.56 | - |
|  | 8+ | - | - |
|  | 4++ | 16.76 | - |
| 2002 | 0 | 1.07 | - |
|  | 1 | 6.14 | 8.40 |
|  | 2 | 8.10 | 12.53 |
|  | 3 | 12.49 | - |
|  | 4 | 15.58 | - |
|  | 5 | 18.25 | - |
|  | 6 | 17.79 | - |
|  | 7 | 15.93 | - |
|  | 8+ | - | - |
|  | 4++ | 16.73 | - |
| 2003 | 0 | 2.13 | - |
|  | 1 | 5.25 | 15.57 |
|  | 2 | 7.86 | 16.59 |
|  | 3 | 9.33 | - |
|  | 4 | 11.65 | - |
|  | 5 | 15.27 | - |
|  | 6 | 24.43 | - |
|  | 7 | 15.05 | - |
|  | 8+ | 15.90 | - |
|  | 4++ | 12.47 | - |
| 2004 | 0 |  | - |
|  | 1 | 5.49 | - |
|  | 2 | 10.49 | - |
|  | 3 | 11.34 | - |
|  | 4 | 10.27 | - |
|  | 5 |  | - |
|  | 6 |  | - |
|  | 7 |  | - |
|  | $8+$ |  | - |
|  | 4++ | 10.27 | - |

Table 13.1.2.5 Sandeel in IV. Mean weight (g) in the catch by half year.

| Northern North Sea, first half-year <br> year |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: |
| 1983 | age-1 | age-2 | age-3 | age-4+ |
| 1984 | 5.64 | 13.05 | 27.30 | 43.97 |
| 1985 | 5.64 | 13.05 | 27.30 | 42.20 |
| 1986 | 5.64 | 13.05 | 27.30 | 43.34 |
| 1987 | 5.64 | 13.05 | 27.30 |  |
| 1988 | 5.64 | 13.05 | 27.30 | 43.84 |
| 1989 | 6.20 | 14.00 | 16.30 | 42.20 |
| 1990 | 5.64 | 13.05 | 27.30 | 44.32 |
| 1991 | 7.43 | 14.23 | 22.40 | 30.87 |
| 1992 | 5.45 | 10.86 | 18.49 | 29.92 |
| 1993 | 5.97 | 20.62 | 24.92 | 22.14 |
| 1994 | 6.43 | 13.70 | 15.08 | 19.29 |
| 1995 | 6.95 | 19.75 | 24.90 | 24.70 |
| 1996 | 7.80 | 14.98 | 25.93 | 37.49 |
| 1997 | 4.94 | 7.95 | 11.76 | 24.64 |
| 1998 | 4.24 | 8.73 | 14.21 | 33.61 |
| 1999 | 6.53 | 8.08 | 13.20 | 25.68 |
| 2000 | 6.78 | 7.90 | 11.86 | 19.66 |
| 2001 | 6.29 | 11.78 | 15.82 | 11.58 |
| 2002 | 6.17 | 11.77 | 18.40 | 31.98 |
| 2003 | 5.33 | 13.09 | 12.17 | 14.98 |
| 2004 | 6.27 | 10.64 | 13.40 | 28.39 |

Southern North Sea, first half-year

| year | age-1 | age-2 | age-3 | age-4+ |
| ---: | ---: | ---: | ---: | ---: |
| 1983 | 5.51 | 9.96 | 13.74 | 16.90 |
| 1984 | 5.51 | 9.96 | 13.74 | 16.95 |
| 1985 | 5.51 | 9.96 | 13.74 | 16.51 |
| 1986 | 5.51 | 9.96 | 13.74 | 16.30 |
| 1987 | 5.80 | 11.00 | 15.60 | 18.04 |
| 1988 | 4.00 | 12.50 | 15.50 | 18.73 |
| 1989 | 4.00 | 12.50 | 15.50 | 18.01 |
| 1990 | 4.00 | 12.50 | 15.50 | 19.28 |
| 1991 | 8.20 | 16.40 | 16.90 | 17.20 |
| 1992 | 7.43 | 13.83 | 17.51 | 22.60 |
| 1993 | 6.08 | 11.54 | 15.09 | 20.31 |
| 1994 | 6.07 | 11.01 | 13.46 | 16.94 |
| 1995 | 7.30 | 13.20 | 16.60 | 20.48 |
| 1996 | 5.57 | 8.31 | 13.16 | 16.89 |
| 1997 | 6.52 | 10.92 | 11.81 | 16.27 |
| 1998 | 5.54 | 8.38 | 10.64 | 13.21 |
| 1999 | 5.52 | 9.27 | 13.50 | 18.33 |
| 2000 | 6.16 | 9.56 | 14.42 | 15.93 |
| 2001 | 4.22 | 7.93 | 12.57 | 16.76 |
| 2002 | 6.14 | 8.10 | 12.49 | 16.73 |
| 2003 | 5.25 | 7.86 | 9.33 | 12.47 |
| 2004 | 5.49 | 10.49 | 11.34 | 10.27 |

Northern North Sea, second half-year

| year | age-0 | age-1 | age-2 | age-3 | age-4+ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1983 | 3.03 | 13.23 | 27.84 | 36.20 |  |
| 1984 | 3.03 | 13.23 | 27.84 | 36.20 |  |
| 1985 | 3.03 | 13.23 | 27.84 | 36.20 | 51.91 |
| 1986 | 3.03 | 13.23 | 27.84 | 36.20 |  |
| 1987 | 3.03 | 13.23 | 27.84 | 36.20 |  |
| 1988 | 3.03 | 13.23 | 27.84 | 36.20 | 44.00 |
| 1989 | 5.00 | 8.90 | 16.00 |  |  |
| 1990 | 3.03 | 13.23 | 27.84 | 36.20 | 44.00 |
| 1991 | 3.42 | 9.57 | 14.99 | 16.20 | 44.00 |
| 1992 | 5.48 | 18.03 | 25.40 | 21.56 |  |
| 1993 | 2.71 | 10.37 | 19.22 | 20.28 | 21.37 |
| 1994 | 6.58 | 22.75 | 30.20 | 58.07 | 72.15 |
| 1995 | 5.08 | 13.46 | 14.20 | 21.00 | 19.00 |
| 1996 | 2.94 | 10.85 | 14.92 | 15.59 | 23.58 |
| 1997 | 1.71 | 8.11 | 10.15 | 23.96 | 17.19 |
| 1998 | 2.48 | 3.91 | 11.13 | 20.15 | 13.39 |
| 1999 | 3.07 | 7.78 | 10.43 | 24.15 |  |
| 2000 |  | 14.92 | 17.95 | 19.18 | 22.67 |
| 2001 | 3.10 | 9.61 | 17.50 | 9.07 |  |
| 2002 |  | 7.33 | 17.52 |  |  |
| 2003 | 3.37 | 13.00 | 17.90 |  |  |

Southern North Sea, second half-year

| year | age-0 | age-1 | age-2 | age-3 | age-4+ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1983 | 2.42 | 7.50 | 10.75 | 14.12 | 17.71 |
| 1984 | 2.42 | 7.50 | 10.75 | 14.12 | 17.71 |
| 1985 | 2.42 | 7.50 | 10.75 | 14.12 | 18.66 |
| 1986 | 2.42 | 7.50 | 10.75 | 14.12 | 18.76 |
| 1987 | 1.30 | 8.90 | 10.80 | 21.40 | 19.85 |
| 1988 | 1.00 | 10.50 | 14.00 | 17.00 | 19.11 |
| 1989 | 1.00 | 10.50 | 14.00 | 17.00 | 19.01 |
| 1990 | 1.00 | 10.50 | 14.00 | 17.00 | 20.05 |
| 1991 | 2.60 | 7.50 | 13.60 | 12.00 |  |
| 1992 | 3.40 | 9.43 | 16.61 | 20.04 | 22.58 |
| 1993 | 3.08 | 10.13 | 15.66 | 17.04 | 21.96 |
| 1994 |  | 8.56 | 17.16 | 19.50 | 23.74 |
| 1995 |  | 6.60 | 13.60 | 17.70 | 21.22 |
| 1996 | 2.34 | 9.90 | 16.66 | 21.77 | 33.39 |
| 1997 | 4.72 | 7.99 | 13.54 | 14.73 | 18.88 |
| 1998 | 2.79 | 3.01 | 12.65 | 11.57 | 17.14 |
| 1999 | 5.42 | 10.02 | 11.05 | 16.85 | 15.68 |
| 2000 | 1.66 | 6.61 | 13.68 | 15.74 | 18.34 |
| 2001 | 2.40 | 9.51 | 17.00 |  |  |
| 2002 |  | 8.40 | 12.53 |  |  |
| 2003 |  | 15.57 | 16.59 |  |  |

Table 13.1.2.6 Sandeel in IV. Mean weight (kg) in the catch by year.

| Run title : Sandeel in IV |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| At 31/08/2004 | 11:46 |  |  |  |  |  |  |  |  |  |
| Catch weights at age (kg) |  |  |  |  |  |  |  |  |  |  |
| YEAR, | 1983, |  |  |  |  |  |  |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 0 , | .0027, |  |  |  |  |  |  |  |  |  |
| 1, | .0059, |  |  |  |  |  |  |  |  |  |
| 2, | .0103, |  |  |  |  |  |  |  |  |  |
| 3 , | .0149, |  |  |  |  |  |  |  |  |  |
| +gp, | .0177, |  |  |  |  |  |  |  |  |  |
| SOPCOFAC, | .9997, |  |  |  |  |  |  |  |  |  |
| YEAR, | 1984, | 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 0 , | .0000, | . 0024 , | .0030, | .0023, | .0030, | .0050, | .0029, | .0030, | . 0054 , | .0027, |
| 1, | .0059, | .0059, | .0064, | .0070, | . 0061 , | .0055, | .0053, | .0077, | .0073, | . 0064 , |
| 2, | .0117, | .0103, | .0115, | .0116, | .0130, | .0131, | .0129, | .0159, | .0131, | .0131, |
| 3, | .0140, | .0166, | .0151, | .0187, | .0165, | .0161, | .0180, | .0188, | .0180, | .0172, |
| +gp, | .0172, | . 0297 , | .0172, | .0291, | .0191, | .0181, | .0243, | .0229, | .0249, | .0211, |
| SOPCOFAC, | .9999, | . 9998 , | .9995, | 1.0001, | 1.0000, | 1.0002, | 1.0001, | 1.0005, | . 9999 , | 1.0000, |
| YEAR, | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 0 , | . 0066 , | .0051, | .0029, | .0019, | .0025, | . 0032 , | . 0017 , | .0027, | . 0000, | .0034, |
| 1, | . 0067 , | . 0074 , | .0073, | .0061, | .0045, | . 0057 , | .0065, | .0045, | . 0062 , | .0055, |
| 2, | .0149, | .0150, | .0113, | .0098, | . 0087 , | . 0089 , | .0088, | .0086, | . 0091 , | .0081, |
| 3, | .0166, | .0198, | .0150, | .0120, | .0121, | .0137, | .0136, | .0132, | .0141, | . 0094 , |
| +gp, | . 0194, | .0210, | .0261, | .0214, | .0164, | .0216, | .0172, | .0152, | .0238, | .0130, |
| SOPCOFAC, | 1.0000, | 1.0002, | 1.0000, | 1.0002, | 1.0004, | 1.0000, | .9997, | 1.0004, | . 9995 , | 1.0000, |

Table 13.1.2.7 Sandeel in IV. Mean weight (g) in the stock by half year.

First half-year

| Year | age-1 | age-2 | age-3 | age-4+ |
| ---: | ---: | ---: | ---: | ---: |
| 1983 | 5.03 | 12.89 | 16.92 | 24.76 |
| 1984 | 4.10 | 13.81 | 16.28 | 21.01 |
| 1985 | 4.19 | 12.79 | 18.75 | 22.08 |
| 1986 | 4.18 | 13.10 | 16.32 | 27.79 |
| 1987 | 4.70 | 12.82 | 16.00 | 21.23 |
| 1988 | 4.40 | 14.84 | 15.81 | 19.17 |
| 1989 | 4.40 | 13.49 | 19.58 | 18.28 |
| 1990 | 4.26 | 13.31 | 17.59 | 19.26 |
| 1991 | 4.29 | 13.22 | 16.95 | 20.65 |
| 1992 | 4.08 | 13.07 | 17.18 | 21.15 |
| 1993 | 4.50 | 12.70 | 16.38 | 21.34 |
| 1994 | 6.26 | 12.99 | 14.58 | 18.71 |
| 1995 | 7.13 | 15.41 | 20.02 | 20.93 |
| 1996 | 6.75 | 9.99 | 14.52 | 21.10 |
| 1997 | 5.63 | 9.44 | 11.77 | 21.61 |
| 1998 | 5.01 | 8.54 | 12.03 | 16.34 |
| 1999 | 5.59 | 8.85 | 13.42 | 22.15 |
| 2000 | 6.40 | 8.57 | 13.30 | 17.03 |
| 2001 | 4.41 | 8.51 | 13.51 | 15.19 |
| 2002 | 6.14 | 8.96 | 14.11 | 23.85 |
| 2003 | 5.26 | 7.96 | 9.40 | 12.95 |
| 2004 | 5.64 | 10.55 | 11.53 | 18.95 |


| Second half-year <br> Year |  |  | age-0 | age-1 | age-2 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1983 | 1.11 | 11.83 | 14.73 | 19.14 | 24.35 |
| 1984 | 1.19 | 10.58 | 16.58 | 19.54 | 21.90 |
| 1985 | 1.19 | 10.69 | 14.65 | 22.49 | 24.95 |
| 1986 | 1.72 | 10.64 | 14.75 | 17.96 | 30.44 |
| 1987 | 1.43 | 11.18 | 14.29 | 17.26 | 20.91 |
| 1988 | 1.44 | 10.81 | 18.07 | 17.19 | 20.61 |
| 1989 | 1.28 | 10.76 | 15.80 | 17.05 | 19.39 |
| 1990 | 1.36 | 10.72 | 15.51 | 19.37 | 19.95 |
| 1991 | 1.10 | 10.67 | 15.49 | 18.02 | 19.39 |
| 1992 | 1.54 | 10.57 | 14.85 | 18.67 | 20.44 |
| 1993 | 1.44 | 10.91 | 14.25 | 17.61 | 20.49 |
| 1994 | 6.58 | 10.95 | 27.46 | 45.24 | 31.15 |
| 1995 | 5.08 | 10.14 | 13.66 | 17.96 | 21.19 |
| 1996 | 2.90 | 10.33 | 16.13 | 20.52 | 32.88 |
| 1997 | 1.94 | 8.04 | 11.70 | 15.27 | 18.86 |
| 1998 | 2.49 | 3.84 | 12.03 | 13.92 | 17.11 |
| 1999 | 3.15 | 8.29 | 10.49 | 17.14 | 15.68 |
| 2000 | 1.66 | 7.56 | 14.29 | 15.96 | 18.87 |
| 2001 | 2.67 | 9.56 | 17.42 | 9.07 | 18.87 |
| 2002 |  | 8.29 | 12.60 |  |  |
| 2003 | 3.37 | 13.58 | 17.69 |  |  |

Table 13.1.2.8 Sandeel in IV. Mean weight (kg) in the stock by year.

Run title : Sandeel in IV
At 31/08/2004 11:46


Table 13.1.3.1 Sandeel in IV. Norwegian effort data.

| Year | Fishing days |  | Mean gross register tonnage (Av. GRT pr. trip) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Jan-Jun | Jul-Dec | Jan-Jun | Jul-Dec |
| 1976 | 595 |  | 199 |  |
| 1977 | 2212 | 457 | 172 | 185 |
| 1978 | 1747 | 806 | 203 | 204 |
| 1979 | 1407 | 1720 | 214 | 189 |
| 1980 | 2642 | 1099 | 216 | 210 |
| 1981 | 1740 | 404 | 217 | 191 |
| 1982 | 1206 |  | 209 |  |
| 1983 | 304 | 66 | 255 | 191 |
| 1984 | 145 |  | 183 |  |
| 1985 | 366 |  | 220 |  |
| 1986 | 1562 | 567 | 201 | 187 |
| 1987 | 2123 | 1584 | 219 | 201 |
| 1988 | 3571 | 925 | 203 | 198 |
| 1989 | 4292 | 588 | 192 | 202 |
| 1990 | 2275 | 731 | 208 | 189 |
| 1991 | 1749 | 958 | 200 | 194 |
| 1992 | 1202 | 23 | 205 | 213 |
| 1993 | 1462 | 971 | 231 | 201 |
| 1994 | 2559 | 742 | 222 | 227 |
| 1995 | 3305 | 980 | 216 | 218 |
| 1996 | 1935 | 724 | 224 | 219 |
| 1997 | 3354 | 1484 | 218 | 221 |
| 1998 | 2479 | 2176 | 222 | 219 |
| 1999 | 2030 | 1540 | 240 | 241 |
| 2000 | 2045 | n/a (very low) | 254 | n/a |
| 2001 | 579 | 1371 | 281 | 256 |
| 2002 | 859 |  | 269 | n/a (very low) |
| 2003 | 683 |  | 322 | 291 |
| 2004 | 493 |  | 390 |  |

Southern area

| Year | Fishing days |  | Mean gross register tonnage <br> (Av. GRT pr. trip) |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  |  | Jan-Jun | Jul-Dec |  | Jul-Dec |
|  | 521 | 10 |  | 262 | 316 |
| 2099 | 111 | $\mathrm{n} / \mathrm{a}$ |  | 259 | $\mathrm{n} / \mathrm{a}$ |
| 2001 | 138 | $\mathrm{n} / \mathrm{a}$ |  | 295 | $\mathrm{n} / \mathrm{a}$ |
| 2002 | 276 | $\mathrm{n} / \mathrm{a}$ |  | 282 | $\mathrm{n} / \mathrm{a}$ |
| 2003 | 187 | 44 |  | 288 | 282 |
| 2004 | 621 |  | 378 |  |  |

Table 13.1.3.2 Sandeel in IV. Danish CPUE data. Regression summary and parameter estimates from the regression CPUE $=\mathrm{e}^{\mathrm{dy}} * \mathrm{GR}^{\mathrm{fy}}$ and estimates of standardised CPUE (200 GR).

| Area | Half year | N | DF | Sum of squares | $F$ value | Pr>F | R-square |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| North | 1 | 28321 | 46 | 732810 | 16382 | <0.0001 | 0.32 |  |
| North | 2 | 12751 | 46 | 280132 | 7469 | <0.0001 | 0.27 |  |
| South | 1 | 58204 | 46 | 2030942 | 47718 | <0.0001 | 0.34 |  |
| South | 2 | 18706 | 46 | 459537 | 13170 | <0.0001 | 0.31 |  |
| North Ja | -Jun |  |  |  | North Jul-Dec |  |  |  |
| Year | $d^{y}$ | $\mathrm{f}^{\text {y }}$ | CPUE |  | Year | $d^{y}$ | $f^{\text {y }}$ | CPUE |
| 1982 | 0.91 | 0.46 | 28.21 |  | 1982 | 5.76 | -0.49 | 23.81 |
| 1983 | 0.78 | 0.47 | 26.03 |  | 1983 | 1.33 | 0.43 | 37.17 |
| 1984 | 1.01 | 0.46 | 31.19 |  | 1984 | 0.90 | 0.47 | 29.36 |
| 1985 | -0.17 | 0.72 | 39.12 |  | 1985 | 2.15 | 0.20 | 24.27 |
| 1986 | 1.45 | 0.44 | 42.99 |  | 1986 | 0.45 | 0.65 | 48.61 |
| 1987 | 1.34 | 0.49 | 51.81 |  | 1987 | 1.50 | 0.32 | 24.68 |
| 1988 | 1.02 | 0.50 | 39.02 |  | 1988 | 1.51 | 0.35 | 29.42 |
| 1989 | 0.97 | 0.49 | 35.09 |  | 1989 | 1.68 | 0.30 | 25.64 |
| 1990 | 1.75 | 0.27 | 24.72 |  | 1990 | 2.11 | 0.25 | 31.15 |
| 1991 | 1.01 | 0.50 | 39.04 |  | 1991 | 0.96 | 0.51 | 38.73 |
| 1992 | 1.19 | 0.44 | 33.55 |  | 1992 | 1.60 | 0.37 | 34.83 |
| 1993 | 1.00 | 0.48 | 33.62 |  | 1993 | 1.60 | 0.33 | 28.39 |
| 1994 | 1.22 | 0.53 | 56.38 |  | 1994 | 1.80 | 0.37 | 43.56 |
| 1995 | 1.21 | 0.49 | 44.72 |  | 1995 | 1.96 | 0.35 | 44.85 |
| 1996 | 1.03 | 0.45 | 30.76 |  | 1996 | 1.60 | 0.38 | 36.51 |
| 1997 | 1.50 | 0.46 | 50.95 |  | 1997 | 1.29 | 0.38 | 27.46 |
| 1998 | 0.77 | 0.54 | 37.05 |  | 1998 | 1.09 | 0.40 | 24.59 |
| 1999 | 0.95 | 0.48 | 32.94 |  | 1999 | 1.16 | 0.42 | 29.31 |
| 2000 | 0.80 | 0.55 | 40.62 |  | 2000 | 1.33 | 0.41 | 33.31 |
| 2001 | 1.22 | 0.44 | 34.31 |  | 2001 | 1.59 | 0.38 | 36.92 |
| 2002 | 1.04 | 0.52 | 44.84 |  | 2002 | 2.09 | 0.05 | 10.63 |
| 2003 | -0.46 | 0.61 | 15.96 |  | 2003 | 0.72 | 0.44 | 20.99 |

South Jan-Jun

| Year | $d^{y}$ | $f^{y}$ | CPUE |
| ---: | ---: | ---: | ---: |
| 1982 | 1.19 | 0.49 | 43.25 |
| 1983 | 0.63 | 0.58 | 41.05 |
| 1984 | 0.82 | 0.56 | 44.95 |
| 1985 | 0.29 | 0.64 | 39.38 |
| 1986 | 1.36 | 0.46 | 45.60 |
| 1987 | 1.10 | 0.56 | 57.37 |
| 1988 | 1.03 | 0.53 | 46.70 |
| 1989 | 0.96 | 0.53 | 43.84 |
| 1990 | 1.46 | 0.37 | 31.01 |
| 1991 | 1.33 | 0.48 | 47.04 |
| 1992 | 0.24 | 0.71 | 54.89 |
| 1993 | 0.59 | 0.58 | 38.64 |
| 1994 | 1.19 | 0.53 | 53.36 |
| 1995 | 0.89 | 0.59 | 56.77 |
| 1996 | 0.47 | 0.62 | 41.65 |
| 1997 | 1.15 | 0.57 | 64.15 |
| 1998 | 0.73 | 0.59 | 46.64 |
| 1999 | 1.27 | 0.46 | 40.69 |
| 2000 | 0.95 | 0.53 | 42.78 |
| 2001 | 0.70 | 0.55 | 37.35 |
| 2002 | 0.20 | 0.71 | 52.80 |
| 2003 | 0.18 | 0.56 | 22.69 |
| 2004 | 0.80 | 0.46 | 25.12 |

South Jul-Dec

| Year | $d^{y}$ | $f^{y}$ | CPUE |
| ---: | ---: | ---: | ---: |
| 1982 | 4.63 | -0.22 | 32.68 |
| 1983 | 1.21 | 0.40 | 28.68 |
| 1984 | 0.51 | 0.55 | 31.10 |
| 1985 | 0.79 | 0.50 | 30.35 |
| 1986 | 1.43 | 0.41 | 36.83 |
| 1987 | 1.02 | 0.49 | 37.13 |
| 1988 | 1.93 | 0.28 | 30.19 |
| 1989 | 2.10 | 0.24 | 29.48 |
| 1990 | 2.50 | 0.20 | 35.59 |
| 1991 | 1.13 | 0.51 | 46.61 |
| 1992 | 1.78 | 0.34 | 36.17 |
| 1993 | 1.92 | 0.29 | 31.96 |
| 1994 | 2.18 | 0.32 | 48.91 |
| 1995 | 2.06 | 0.36 | 51.97 |
| 1996 | 0.98 | 0.55 | 50.14 |
| 1997 | 1.34 | 0.45 | 41.13 |
| 1998 | 0.78 | 0.47 | 26.18 |
| 1999 | 3.63 | -0.03 | 31.89 |
| 2000 | 1.08 | 0.46 | 33.42 |
| 2001 | 1.32 | 0.48 | 46.39 |
| 2002 | 1.97 | 0.21 | 22.37 |
| 2003 | 0.12 | 0.54 | 19.60 |

Table 13.1.3.3 Sandeel in IV. Fishing effort in the Northern North Sea (days fishing times scaling factor for each vessel category to represent days fishing for a vessel of 200 GR )

| Year | Norweigian |  |  |  | Danish |  | Mean CPUE (t/day) | Total internat. catch ('000t) | Derived internat. effort ('000 days) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Standardized <br> Fishing days |  | Catch sampled for fishing effort ('000t) | CPUE (t/day) | Catch sampled for fishing effort ('000 t) | $\begin{aligned} & \hline \text { CPUE } \\ & \text { (t/day) } \end{aligned}$ |  |  |  |
|  |  |  |  |  | First half-year |  |  |  |  |
|  | 1976 | 593 | 11.1 | 18.7 |  | - | 18.7 | 110.3 | 5.90 |
|  | 1977 | 2061 | 50.4 | 24.4 |  |  | 24.5 | 276.0 | 11.27 |
|  | 1978 | 1761 | 44.9 | 25.5 |  |  | 25.5 | 109.7 | 4.30 |
|  | 1979 | 1451 | 29.6 | 20.4 |  |  | 20.4 | 47.7 | 2.34 |
|  | 1980 | 2733 | 112.8 | 41.3 |  | - | 41.3 | 220.9 | 5.35 |
|  | 1981 | 1804 | 42.8 | 23.7 |  | - | 23.7 | 93.3 | 3.94 |
|  | 1982 | 1231 | 26.9 | 21.9 | 13.5 | 34.9 | 26.2 | 62.3 | 2.38 |
|  | 1983 | 338 | 8.7 | 25.7 | 17.4 | 28.9 | 27.8 | 54.5 | 1.96 |
|  | 1984 | 139 | 3.5 | 25.2 | 54.1 | 41.2 | 40.2 | 74.1 | 1.84 |
|  | 1985 | 382 | 8.7 | 22.8 | 47.4 | 46.7 | 43.0 | 69.9 | 1.63 |
|  | 1986 | 1565 | 60.4 | 38.6 | 154.1 | 54.7 | 50.2 | 221.3 | 4.41 |
|  | 1987 | 2219 | 122.9 | 55.4 | 214.2 | 51.8 | 53.1 | 360.9 | 6.79 |
|  | 1988 | 3600 | 143.8 | 39.9 | 156.0 | 39.0 | 39.5 | 332.0 | 8.41 |
|  | 1989 | 4211 | 146.9 | 34.9 | 240.8 | 35.1 | 35.0 | 435.2 | 12.43 |
|  | 1990 | 2299 | 58.6 | 25.5 | 87.0 | 24.7 | 25.0 | 148.7 | 5.94 |
|  | 1991 | 1748 | 67.7 | 38.7 | 190.9 | 39.0 | 39.0 | 282.2 | 7.24 |
|  | 1992 | 1214 | 53.7 | 44.2 | 102.6 | 33.6 | 37.2 | 151.2 | 4.06 |
|  | 1993 | 1565 | 70.7 | 45.2 | 134.3 | 33.6 | 37.6 | 189.0 | 5.03 |
|  | 1994 | 2707 | 130.1 | 48.1 | 283.3 | 56.4 | 53.8 | 413.4 | 7.69 |
|  | 1995 | 3429 | 208.6 | 60.8 | 143.3 | 44.7 | 54.3 | 348.5 | 6.42 |
|  | 1996 | 2036 | 100.9 | 49.6 | 99.0 | 30.8 | 40.2 | 203.1 | 5.05 |
|  | 1997 | 3489 | 254.9 | 73.1 | 183.1 | 50.9 | 63.8 | 456.5 | 7.15 |
|  | 1998 | 2622 | 220.8 | 84.2 | 125.1 | 37.1 | 67.1 | 364.8 | 5.43 |
|  | 1999 | 2217 | 77.4 | 34.9 | 46.4 | 32.9 | 34.2 | 137.2 | 4.01 |
|  | 2000 | 2328 | 104.5 | 44.9 | 152.2 | 40.6 | 42.4 | 271.1 | 6.40 |
|  | 2001 | 672 | 44.6 | 66.4 | 42.1 | 34.3 | 50.8 | 88.5 | 1.74 |
|  | 2002 | 1003 | 119.5 | 119.2 | 57.3 | 44.8 | 95.1 | 179.7 | 1.89 |
|  | 2003 | 914 | 17.1 | 18.7 | 15.275 | 15.96 | 17.41 | 32 | 1.84 |
|  | 2004 | 692 | 19.3 | 27.9 | 38.652 | 24.52 | 25.64 | 61.2 | 2.39 |
|  |  |  |  |  | Second half-year |  |  |  |  |
|  | 1976 | 108 | 2.0 | 18.5 | - | - | 18.5 | 44.9 | 2.43 |
|  | 1977 | 445 | 11.8 | 26.5 |  | - | 26.5 | 110.0 | 4.15 |
|  | 1978 | 811 | 22.5 | 27.6 |  | - | 27.8 | 53.3 | 1.92 |
|  | 1979 | 1688 | 52.2 | 30.9 |  | - | 30.9 | 147.7 | 4.78 |
|  | 1980 | 1117 | 33.1 | 29.6 | - | - | 29.5 | 71.1 | 2.41 |
|  | 1981 | 398 | 7.9 | 19.6 | - | - | 19.9 | 44.9 | 2.26 |
|  | 1982 | - | - | - | 1.8 | 32.3 | 33.0 | 12.0 | 0.36 |
|  | 1983 | 65 | 2.4 | 36.9 | 12.3 | 36.6 | 37.3 | 23.7 | 0.64 |
|  | 1984 | - | - | - | 10.7 | 29.6 | 30.2 | 17.7 | 0.59 |
|  | 1985 | - | - | - | 16.4 | 38.0 | 38.8 | 16.8 | 0.43 |
|  | 1986 | 555 | 21.8 | 39.3 | 96.1 | 60.2 | 57.4 | 153.8 | 2.68 |
|  | 1987 | 1586 | 68.1 | 42.9 | 3.0 | 24.7 | 42.1 | 76.9 | 1.82 |
|  | 1988 | 922 | 26.9 | 29.2 | 61.7 | 29.4 | 29.3 | 71.4 | 2.43 |
|  | 1989 | 590 | 11.5 | 19.5 | 40.8 | 25.6 | 24.3 | 57.2 | 2.36 |
|  | 1990 | 721 | 22.8 | 31.6 | 60.4 | 31.1 | 31.3 | 70.8 | 2.26 |
|  | 1991 | 943 | 30.3 | 32.1 | 70.0 | 38.7 | 36.7 | 90.7 | 2.47 |
|  | 1992 | 24 | 1.5 | 63.8 | 42.5 | 34.8 | 35.8 | 25.5 | 0.71 |
|  | 1993 | 972 | 30.7 | 31.6 | 58.0 | 28.4 | 29.5 | 87.0 | 2.95 |
|  | 1994 | 777 | 35.7 | 45.9 | 80.5 | 43.6 | 44.3 | 76.4 | 1.73 |
|  | 1995 | 1009 | 53.3 | 52.8 | 54.5 | 44.8 | 48.8 | 72.6 | 1.49 |
|  | 1996 | 749 | 42.9 | 57.3 | 89.2 | 36.5 | 43.3 | 140.7 | 3.25 |
|  | 1997 | 1542 | 95.7 | 62.1 | 21.8 | 27.5 | 55.6 | 121.5 | 2.18 |
|  | 1998 | 2257 | 114.4 | 50.7 | 35.4 | 24.6 | 44.5 | 148.5 | 3.34 |
|  | 1999 | 1665 | 77.8 | 46.7 | 34.3 | 29.3 | 41.4 | 125.2 | 3.02 |
|  | 2000 | 0 | 0.0 | 0.0 | 6.5 | 33.3 | 33.3 | 10.0 | 0.30 |
|  | 2001 | 1508 | 122.2 | 81.0 | 26.9 | 36.9 | 73.1 | 153.8 | 2.10 |
|  | 2002 | 0 | 0.7 | 0.0 | 0.4 | 10.6 | 3.8 | 1.3 | 0.34 |
|  | 2003 | 295 | 7.5 | 25.4 | 17.5 | 21.0 | 22.33 | 29.8 | 1.33 |
|  | 2004 |  |  |  |  |  |  |  |  |

Table 13.1.3.4 Sandeel in IV. Fishing effort in the Southern North Sea (days fishing times scaling factor for each vessel category to represent days fishing for a vessel of 200 GR ), based on Danish and Norwegian data.

|  | First half year |  |  | Second half year |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | CPUE (t/day) | Total Int'I catch ('000 t) | Total int'l effort ('000 days) | CPUE <br> (t/day) | Total Int'I catch ('000 t) | Total int'l effort ('000 days) |
| 1982 | 48.2 | 427 | 8.85 | 35.7 | 53 | 1.47 |
| 1983 | 42.8 | 360 | 8.41 | 33.9 | 59 | 1.75 |
| 1984 | 50.5 | 461 | 9.13 | 32.9 | 71 | 2.16 |
| 1985 | 41.9 | 417 | 9.95 | 33.6 | 111 | 3.29 |
| 1986 | 53.7 | 386 | 7.20 | 44.1 | 76 | 1.71 |
| 1987 | 57.4 | 298 | 5.19 | 37.1 | 105 | 2.83 |
| 1988 | 46.7 | 462 | 9.89 | 30.2 | 33 | 1.11 |
| 1989 | 43.8 | 506 | 11.54 | 29.5 | 19 | 0.63 |
| 1990 | 31.0 | 342 | 11.03 | 35.6 | 24 | 0.67 |
| 1991 | 47.0 | 327 | 6.95 | 46.6 | 132 | 2.84 |
| 1992 | 54.9 | 621 | 11.31 | 36.2 | 73 | 2.02 |
| 1993 | 38.6 | 268 | 6.94 | 32.0 | 34 | 1.07 |
| 1994 | 53.4 | 226 | 4.24 | 48.9 | 48 | 0.97 |
| 1995 | 56.8 | 429 | 7.56 | 52.0 | 68 | 1.30 |
| 1996 | 41.6 | 294 | 7.05 | 50.1 | 139 | 2.77 |
| 1997 | 64.2 | 421 | 6.55 | 41.1 | 138 | 3.36 |
| 1998 | 46.6 | 448 | 9.61 | 26.2 | 43 | 1.64 |
| 1999 | 40.9 | 432 | 10.56 | 31.9 | 36 | 1.13 |
| 2000 | 43.1 | 360 | 8.36 | 33.4 | 53 | 1.59 |
| 2001 | 38.7 | 433 | 11.20 | 46.4 | 185 | 3.98 |
| 2002 | 62.2 | 609 | 9.79 | 22.4 | 19 | 0.86 |
| 2003 | 22.6 | 211 | 9.33 | 20.5 | 31 | 1.53 |
| 2004 | 25.2 | 214 | 8.48 |  |  |  |

Table 13.1.3.5 Sandeel in IV. Comparison of effort estimated using regression model 3: $\ln (\mathrm{CPUE})=\mathrm{d}_{y}+\mathrm{f}_{y} * \ln (\mathrm{GR})$ and regression model 5: $\ln ($ CPUE $)=d_{y}+\ln (\mathrm{GR})$ on logbook data for the Danish industrial fleet for the years 1984 to 2003 .
$\left.\begin{array}{crrrrr} & \begin{array}{r}\text { Effort estimated } \\ \text { using model 3 }\end{array} & \begin{array}{r}\text { Effort estimated } \\ \text { North Jan-Jun }\end{array} & \begin{array}{r}\text { using } \\ \text { model 5 }\end{array} & \text { South Jan-Jun } \\ \text { model 3 }\end{array}\right)$

Table 13.1.3.6 Sandeel in IV. Tuning fleets. Total international standardised effort and catch at age in numbers (millions).

| Sandeel IV |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 104 |  |  |  |  |
| North IV 1.half year |  |  |  |  |
| 19762004 |  |  |  |  |
| 110.250 .50 |  |  |  |  |
| 14 |  |  |  |  |
| 5.90 | 5697.20 | 1130.00 | 445.00 | 155.10 |
| 11.30 | 24306.50 | 2350.50 | 516.30 | 144.00 |
| 4.30 | 6126.90 | 2337.80 | 572.50 | 143.50 |
| 2.30 | 2335.20 | 1327.60 | 242.20 | 11.80 |
| 5.40 | 13394.10 | 8865.00 | 1049.60 | 827.30 |
| 3.90 | 5505.00 | 4109.00 | 904.00 | 174.00 |
| 2.40 | 3518.00 | 2132.00 | 556.00 | 85.00 |
| 2.00 | 5684.00 | 1215.00 | 89.00 | 12.00 |
| 1.80 | 11692.20 | 1646.70 | 152.70 | 4.50 |
| 1.60 | 2688.00 | 3292.00 | 1002.00 | 480.00 |
| 4.40 | 23934.00 | 2600.00 | 200.00 | 0.00 |
| 6.79 | 26236.00 | 10855.00 | 350.00 | 155.00 |
| 8.41 | 9855.00 | 25922.00 | 1319.00 | 26.00 |
| 12.43 | 56661.00 | 2219.00 | 3385.00 | 0.00 |
| 5.94 | 13101.00 | 3907.00 | 578.00 | 175.00 |
| 7.24 | 41855.00 | 2342.00 | 908.00 | 318.00 |
| 4.06 | 9871.00 | 4056.00 | 486.00 | 305.00 |
| 5.03 | 15768.00 | 2635.00 | 1023.00 | 646.00 |
| 7.69 | 28490.20 | 7225.30 | 5953.50 | 2155.50 |
| 6.42 | 36140.00 | 3360.00 | 1091.00 | 145.00 |
| 5.05 | 11523.60 | 5384.60 | 760.80 | 300.70 |
| 7.15 | 67037.80 | 3640.30 | 5254.30 | 1205.70 |
| 5.43 | 6667.10 | 33215.80 | 2038.90 | 410.10 |
| 4.01 | 2117.70 | 3490.80 | 5086.00 | 1022.70 |
| 6.40 | 22887.20 | 8809.90 | 1419.80 | 1469.70 |
| 1.74 | 6433.80 | 2407.80 | 472.00 | 1034.60 |
| 1.89 | 21718.80 | 2649.00 | 401.50 | 219.20 |
| 1.84 | 887.60 | 308.20 | 89.70 | 284.30 |
| 2.39 | 6819.00 | 541.50 | 375.30 | 212.80 |
| South IV 1.half year |  |  |  |  |
| 19822004 |  |  |  |  |
| 110.250 .50 |  |  |  |  |
| 14 |  |  |  |  |
| 8.90 | 56545.00 | 6224.00 | 3277.00 | 1939.00 |
| 8.40 | 2232.00 | 35029.00 | 934.00 | 387.00 |
| 9.10 | 62517.00 | 2257.10 | 13271.70 | 442.10 |
| 10.00 | 7790.00 | 39301.00 | 2490.00 | 265.00 |
| 7.20 | 43629.00 | 7333.00 | 1604.00 | 30.00 |
| 5.19 | 4351.00 | 22771.00 | 1158.00 | 165.00 |
| 8.89 | 2349.00 | 10074.00 | 17914.00 | 2769.00 |
| 11.54 | 44444.00 | 4525.00 | 957.00 | 3368.00 |
| 11.03 | 20179.00 | 16670.00 | 2467.00 | 745.00 |
| 6.95 | 20058.00 | 9224.00 | 1320.00 | 454.00 |
| 11.31 | 60337.00 | 10021.00 | 1002.00 | 621.00 |
| 6.94 | 3581.00 | 14659.00 | 3707.00 | 1012.00 |
| 4.24 | 24697.10 | 2594.20 | 2654.40 | 715.30 |
| 7.56 | 39060.00 | 6503.00 | 1531.00 | 1226.00 |
| 7.05 | 10193.90 | 16015.30 | 6403.40 | 1169.10 |
| 6.55 | 52358.70 | 3647.90 | 2404.60 | 683.30 |
| 9.61 | 9545.80 | 39552.90 | 3188.00 | 2260.30 |
| 10.56 | 31950.90 | 6498.70 | 13149.80 | 946.70 |
| 8.36 | 35612.80 | 5972.90 | 1825.30 | 3528.00 |
| 11.20 | 64084.00 | 13530.70 | 1158.00 | 2389.10 |
| 9.79 | 84858.00 | 8666.70 | 1059.90 | 250.00 |
| 9.33 | 4981.90 | 15588.30 | 3592.70 | 1203.80 |
| 8.48 | 29029.60 | 952.40 | 3683.20 | 231.40 |


| North IV 2.half year 19762003 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{llll}1 & 1 & 0.50 .75\end{array}$ |  |  |  |  |  |
| 04 |  |  |  |  |  |
| 2.40 | 6125.60 | 648.00 | 83.50 | 367.80 | 36.60 |
| 4.20 | 3067.20 | 2855.70 | 913.30 | 141.90 | 141.10 |
| 1.90 | 7820.20 | 1001.00 | 307.30 | 38.90 | 1.90 |
| 4.80 | 44202.90 | 1310.10 | 433.10 | 66.20 | 9.50 |
| 2.40 | 8348.80 | 1172.70 | 213.90 | 19.40 | 7.50 |
| 2.30 | 9128.00 | 346.00 | 94.00 | 14.00 | 6.00 |
| 0.40 | 6530.00 | 65.00 | 0.00 | 0.00 | 0.00 |
| 0.60 | 7911.00 | 303.00 | 316.00 | 19.00 | 0.00 |
| 0.60 | 0.00 | 1207.20 | 120.60 | 42.60 | 0.00 |
| 0.40 | 349.00 | 109.00 | 239.00 | 89.00 | 11.00 |
| 2.70 | 7105.00 | 7077.00 | 473.00 | 0.00 | 0.00 |
| 1.82 | 455.00 | 5768.00 | 198.00 | 0.00 | 0.00 |
| 2.43 | 13196.00 | 1283.00 | 340.00 | 119.00 | 17.00 |
| 2.36 | 3380.00 | 4038.00 | 274.00 | 0.00 | 0.00 |
| 2.26 | 12107.00 | 1670.00 | 342.00 | 51.00 | 15.00 |
| 2.47 | 13616.00 | 866.00 | 28.00 | 8.00 | 3.00 |
| 0.71 | 6797.00 | 48.00 | 3.00 | 0.00 | 0.00 |
| 2.95 | 26960.00 | 1004.00 | 112.00 | 34.00 | 22.00 |
| 1.73 | 457.00 | 828.60 | 1211.00 | 396.30 | 24.70 |
| 1.49 | 4046.00 | 3374.00 | 338.00 | 26.00 | 2.00 |
| 3.25 | 31817.40 | 1705.70 | 1771.50 | 135.80 | 55.30 |
| 2.18 | 2431.00 | 11345.60 | 633.20 | 24.90 | 1.90 |
| 3.34 | 35220.00 | 10005.30 | 1837.00 | 78.80 | 0.60 |
| 3.02 | 33652.80 | 693.50 | 550.70 | 57.80 | 0.00 |
| 0.30 | 0.00 | 467.20 | 83.90 | 23.60 | 46.10 |
| 2.10 | 46385.40 | 771.20 | 72.80 | 134.30 | 0.00 |
| 0.34 | 0.00 | 157.00 | 6.40 | 0.00 | 0.00 |
| 1.33 | 7509.80 | 118.00 | 163.70 | 0.00 | 0.00 |
| South IV 2.half year |  |  |  |  |  |
| $19822003$ |  |  |  |  |  |
| 110.50 .75 |  |  |  |  |  |
| 04 |  |  |  |  |  |
| 1.50 | 5039.00 | 4718.00 | 490.00 | 344.00 | 40.00 |
| 1.80 | 9298.00 | 240.00 | 2806.00 | 513.00 | 2.00 |
| 2.20 | 0.00 | 9422.50 | 91.60 | 577.30 | 43.80 |
| 3.30 | 11940.00 | 1896.00 | 3229.00 | 2234.00 | 298.00 |
| 1.70 | 112.00 | 5350.00 | 293.00 | 241.00 | 18.00 |
| 2.83 | 298.00 | 3095.00 | 6664.00 | 196.00 | 51.00 |
| 1.11 | 0.00 | 0.00 | 234.00 | 2084.00 | 68.00 |
| 0.63 | 1.00 | 1619.00 | 165.00 | 35.00 | 123.00 |
| 0.67 | 597.00 | 1438.00 | 477.00 | 71.00 | 21.00 |
| 2.84 | 12115.00 | 11411.00 | 344.00 | 111.00 | 0.00 |
| 2.02 | 134.00 | 3903.00 | 382.00 | 157.00 | 34.00 |
| 1.07 | 838.00 | 1037.00 | 953.00 | 266.00 | 87.00 |
| 0.97 | 0.00 | 4092.90 | 322.30 | 197.60 | 136.90 |
| 1.30 | 0.00 | 3166.00 | 2789.00 | 307.00 | 157.00 |
| 2.77 | 2088.10 | 2030.50 | 4080.40 | 536.10 | 1023.00 |
| 3.36 | 198.00 | 15238.30 | 535.50 | 406.20 | 135.60 |
| 1.64 | 1141.80 | 737.50 | 2672.50 | 209.40 | 65.20 |
| 1.13 | 1322.10 | 202.50 | 58.20 | 1391.80 | 166.40 |
| 1.59 | 6659.00 | 3600.60 | 495.90 | 339.20 | 329.50 |
| 3.98 | 73442.60 | 819.30 | 15.10 | 0.00 | 0.00 |
| 0.86 | 0.00 | 1370.40 | 472.20 | 0.00 | 0.00 |
| 1.53 | 0.00 | 34.50 | 31.20 | 0.00 | 0.00 |

Table 13.1.4.1 Sandeel in IV. Separable VPA diagnostic output.

```
Title : Sandeel in IV
At 3/09/2004 14:57
Separable analysis
from 1983 to 2003 on ages 0 to 3
with Terminal F of . 600 on age 1 and Terminal S of 1.000
Initial sum of squared residuals was }333.028\mathrm{ and
    final sum of squared residuals is }42.315\mathrm{ after 113 iterations
Matrix of Residuals
Years, 1983/84,1984/85,1985/86,1986/87,1987/88,1988/89,1989/90,1990/91,1991/92,1992/93,
    Ages
    0/ 1, .469, -2.114, -.458, .068, -.123, -.267, -.121, -.123, .320, .708,
    1/ 2, -.083, 1.157, -1.592, -.547, -.163, -.699, .723, -.455, -.054, .299,
    2/ 3, -.085, -.046, 1.003, .282, .124, .458, -.364, .284, -.060, -.362,
    TOT, .000, .000, .000, .000, .000, .000, .000, .000, .000, .000,
    WTS , 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000,
Years, 1993/94,1994/95,1995/96,1996/97,1997/98,1998/99,1999/00,2000/01,2001/02,2002/03,
    0/1, 1.441, -2.934, .507, .494, .339, 1.933, 1.606, -.519, 1.315, -2.540,
    1/ 2, -.097, .824, .485, .045, .248, -.412, -.259, -.199, -.345, 1.123,
    2/ 3, -.349, .365, -.408, -.162, -.231, -.313, -.305, .254, -.177, .091,
    TOT . .000, .000, .000, .000, .000, .000, .000, .000, .000, .000,
    WTS , 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000,
```

Fishing Mortalities (F)

| , | 1984, | 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F-values, | .1163, | . 5491, | . 2981, | .2219, | . 4950 , | . 4234 , | . 5916, | .4227, | . 2135, | .1663, |
| , | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | 2002, | 2003, |
| F-values, | 1835, | 2234, | 3062, | 2814, | 5911 | 5743 | 8138 | 8494 | 3932 | 6000 |

## Selection-at-age (S)

$\begin{array}{rrrr}\text { S-values, } & 0, & 1, & 2, \\ \text { 2, } & 3,\end{array}$

Table 13.1.4.2 Sandeel in IV. Options for Seasonal survivor analysis (SXSA 01).

```
Dankert Skagens SXSA program
    last updated 5/9 - 1995
Data were input from the following files:
    1: Catch in numbers: CANUM4.hyr
    2: Weight in catch: WECA4.hyr
    3: Weight in stock: WEST4.hyr
    4: Natural mortalities: natmor.hyr
    5: Maturity ogive: matprop.hyr
    6: Tuning data (CPUE): Tuning4.hyr
    7: *Weighting for rhats: tweq.new
    8: *Weighting for shats: twred.xsa
    9: *Catches to be fitted:
    10: *Unknown catches:
The following fleets were used:
Fleet: 1: Fishery in the Northern North Sea
Fleet: 2: Fishery in the Southern North Sea
The following values was used:
    1: First VPA year
        1983
    2: Last VPA year
        2 0 0 4
    3: Youngest age
    4: Oldest true age
    5: Number of seasons
    6: Recruiting season
    7: Last season in last year
    8: Spawning season
    9: Number of fleets
The following options were used:
    1: Inv. catchability:
2: Indiv. shats:2
```

(1: Direct; 2: Using z)

```3: Comb. shats:2
(1: Linear; 2: Log.)
4: *Fit catches:0
```

(0: No fit; 1: No SOP corr; 2: SOP corr.)

```5: *Est. unknown catches0
```

(0: No; 1: No SOP cor

```6: *Weighting of \(r\)
            (0: Manual; (1: not available at present).)

7: *Weighting of shats ..... 0
```(0: Manual; 1: Linear; 2: Log.
```

8: Handling of the plus group

```(1: Dynamic; 2: Extra age group)
```You need a factor for weighting the inverse catchabilities at the oldest age vs. the second oldest ageIt must be between 0.0 and 1.0 .
Factor 1.0 means that the catchabilities for the oldest are used as they are
Present value \(0.0000000 \mathrm{E}+00\)
You have to specify a minimum value for the survivor number.
This is used instead of the estimate if the estimate becomes very low
Present value: 1.000000
    The iteration will carry on until convergence.

Weighting factors for computing catchability for both fleets (Weighting for rhats)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Year 1983-2003} & \multicolumn{5}{|c|}{Year 2004} \\
\hline Season & 1 & 2 & & Season & 1 & 2 & \\
\hline Age & & & Age & & & & \\
\hline 0 & 1 & 1 & & 0 & 0 & 0.5 & 0.1 \\
\hline 1 & 1 & 1 & & 1 & & 0.5 & 0.1 \\
\hline 2 & 1 & 1 & & 2 & & 0.5 & 0.1 \\
\hline 3 & 1 & 1 & & 3 & 3 & 0.5 & 0.1 \\
\hline
\end{tabular}

Weighting factors for computing survivors in all years (Weighting for shats)
Season 1 2
AGE
0 * 0.02
\(1 \quad 1 \quad 0.1\)
10.1
10.1

Table 13.1.4.3 Sandeel in IV. SXSA (Run 01), log inverse catchability
```

Log inverse catchabilities, fleet no: 1
Fishery in the Northern North Sea
Season 1 2
AGE
* * 4.671
1 3.664 4.198
2
Log inverse catchabilities, fleet no: 2
Fishery in the Southern North Sea
Season
1 2
AGE
0 * 6.571
1 3.963 3.793
2

```

Table 13.1.4.4Sandeel in IV. SXSA (run 01). Factors for weighting of the survivor estimated from each fleet set manually, or estimated from the inverse variance of the log catchability.

Fixed weights (SXSA run 01 and 02 )
\begin{tabular}{lrrr} 
& \multicolumn{3}{c}{ Northern and Southern } \\
Age & & 1st half-year & 2nd half-year \\
\hline 0 & & 0.02 \\
1 & 1 & 0.1 \\
2 & 1 & 0.1 \\
3 & 1 & 0.1
\end{tabular}

Weighting according to the inverse variance of log catchability (SXSA run 03)
\begin{tabular}{rrrrrr} 
& \multicolumn{2}{c}{ Northern } & \multicolumn{2}{c}{ Southern } \\
Age & 1st half-year & 2nd half-year & 0.77 & & 1st half-year
\end{tabular} 2nd half-year

Table 13.1.4.5 Sandeel in IV. SXSA (run 01) fishing mortality at age.
Partial fishing mortality for fleet: Fishery in the Northern North Sea
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & 1983 & & 1984 & & 1985 & & 1986 & & 1987 & & 1988 & \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
\hline AGE & & & & & & & & & & & & \\
\hline 0 & * & 0.013 & * & 0.000 & * & 0.000 & * & 0.017 & * & 0.003 & * & 0.027 \\
\hline 1 & 0.093 & 0.010 & 0.055 & 0.015 & 0.046 & 0.004 & 0.077 & 0.053 & 0.163 & 0.082 & 0.194 & 0.058 \\
\hline 2 & 0.021 & 0.012 & 0.083 & 0.009 & 0.089 & 0.029 & 0.181 & 0.076 & 0.136 & 0.005 & 0.796 & 0.038 \\
\hline 3 & 0.036 & 0.016 & 0.013 & 0.013 & 0.127 & 0.027 & 0.050 & 0.000 & 0.097 & 0.000 & 0.067 & 0.021 \\
\hline \(4+\) & 0.051 & 0.000 & 0.010 & 0.000 & 0.253 & 0.012 & 0.000 & 0.000 & 0.063 & 0.000 & 0.028 & * \\
\hline F ( 1-2) & 0.057 & 0.011 & 0.069 & 0.012 & 0.067 & 0.016 & 0.129 & 0.065 & 0.150 & 0.043 & 0.495 & 0.048 \\
\hline Year & 1989 & & 1990 & & 1991 & & 1992 & & 1993 & & 1994 & \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
\hline 0 & * & 0.015 & * & 0.028 & * & 0.026 & * & 0.032 & * & 0.066 & * & 0.001 \\
\hline 1 & 0.361 & 0.089 & 0.171 & 0.061 & 0.283 & 0.017 & 0.053 & 0.001 & 0.199 & 0.029 & 0.201 & 0.015 \\
\hline 2 & 0.173 & 0.042 & 0.175 & 0.045 & 0.167 & 0.005 & 0.151 & 0.000 & 0.060 & 0.004 & 0.358 & 0.119 \\
\hline 3 & 0.744 & 0.000 & 0.176 & 0.045 & 0.207 & 0.004 & 0.151 & 0.000 & 0.128 & 0.009 & 0.417 & 0.059 \\
\hline 4+ & 0.000 & * & 0.238 & 0.101 & 0.595 & 0.039 & 0.238 & 0.000 & 0.938 & * & 1.993 & * \\
\hline F ( 1-2) & 0.267 & 0.065 & 0.173 & 0.053 & 0.225 & 0.011 & 0.102 & 0.000 & 0.129 & 0.017 & 0.279 & 0.067 \\
\hline Year & 1995 & & 1996 & & 1997 & & 1998 & & 1999 & & 2000 & \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
\hline 0 & * & 0.017 & * & 0.023 & * & 0.010 & * & 0.128 & * & 0.095 & * & 0.000 \\
\hline 1 & 0.170 & 0.040 & 0.130 & 0.045 & 0.130 & 0.052 & 0.072 & 0.262 & 0.023 & 0.019 & 0.202 & 0.012 \\
\hline 2 & 0.099 & 0.017 & 0.108 & 0.070 & 0.156 & 0.046 & 0.277 & 0.032 & 0.177 & 0.054 & 0.448 & 0.010 \\
\hline 3 & 0.190 & 0.009 & 0.076 & 0.033 & 0.404 & 0.004 & 0.278 & 0.025 & 0.158 & 0.004 & 0.242 & 0.008 \\
\hline 4+ & 0.035 & 0.001 & 0.094 & 0.045 & 0.491 & 0.002 & 0.104 & 0.000 & 0.388 & 0.000 & 0.155 & 0.010 \\
\hline F ( 1-2) & 0.134 & 0.029 & 0.119 & 0.058 & 0.143 & 0.049 & 0.174 & 0.147 & 0.100 & 0.037 & 0.325 & 0.011 \\
\hline Year & 2001 & & 2002 & & 2003 & & 2004 & & & & & \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 & & & & & \\
\hline 0 & * & 0.086 & * & 0.000 & * & 0.020 & * & & & & & \\
\hline 1 & 0.058 & 0.023 & 0.143 & 0.004 & 0.050 & 0.016 & 0.048 & & & & & \\
\hline 2 & 0.124 & 0.009 & 0.138 & 0.001 & 0.013 & 0.015 & 0.115 & & & & & \\
\hline 3 & 0.092 & 0.044 & 0.079 & 0.000 & 0.018 & 0.000 & 0.059 & & & & & \\
\hline 4+ & 0.272 & 0.000 & 0.072 & 0.000 & 0.088 & 0.000 & 0.077 & & & & & \\
\hline F ( 1-2) & 0.091 & 0.016 & 0.141 & 0.002 & 0.031 & 0.015 & 0.082 & & & & & \\
\hline
\end{tabular}

Partial fishing mortality for fleet:
Fishery in the Southern North Sea
\begin{tabular}{|c|c|c|c|}
\hline Year & 1983 & & 1984 \\
\hline Season & 1 & 2 & 1 \\
\hline \multicolumn{4}{|l|}{AGE} \\
\hline 0 & * & 0.016 & * \\
\hline 1 & 0.037 & 0.008 & 0.295 \\
\hline 2 & 0.608 & 0.107 & 0.114 \\
\hline 3 & 0.373 & 0.437 & 1.089 \\
\hline \(4+\) & 1.654 & 0.477 & 0.948 \\
\hline F ( 1-2) & 0.322 & 0.058 & 0.205 \\
\hline
\end{tabular}
\begin{tabular}{rrrrr} 
& 1985 & & 1986 & \\
2 & 1 & 2 & 1 & 2 \\
0.000 & \(*\) & 0.015 & \(*\) & 0.000 \\
0.116 & 0.133 & 0.072 & 0.141 & 0.040 \\
0.007 & 1.059 & 0.388 & 0.510 & 0.047 \\
0.180 & 0.315 & 0.678 & 0.399 & 0.114 \\
0.311 & 0.140 & 0.315 & 0.014 & 0.012 \\
0.061 & 0.596 & 0.230 & 0.325 & 0.044
\end{tabular}
\begin{tabular}{rrrr}
1987 & & 1988 & \\
1 & 2 & 1 & 2 \\
\(\star\) & 0.002 & & \(\star\) \\
0.027 & 0.044 & 0.046 & 0.000 \\
0.286 & 0.160 & 0.309 & 0.026 \\
0.319 & 0.100 & 0.912 & 0.373 \\
0.067 & 0.031 & 3.023 & \(*\) \\
& & & \\
0.157 & 0.102 & 0.178 & 0.013
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & 1989 & & 1990 & & 1991 & & 1992 \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 \\
\hline \multicolumn{8}{|l|}{AGE} \\
\hline 0 & * & 0.000 & * & 0.001 & * & 0.023 & * \\
\hline 1 & 0.283 & 0.036 & 0.264 & 0.052 & 0.136 & 0.224 & 0.326 \\
\hline 2 & 0.353 & 0.025 & 0.746 & 0.062 & 0.659 & 0.063 & 0.374 \\
\hline 3 & 0.210 & 0.022 & 0.751 & 0.063 & 0.301 & 0.049 & 0.311 \\
\hline 4+ & 2.142 & * & 1.014 & 0.141 & 0.850 & 0.000 & 0.486 \\
\hline F ( 1-2) & 0.318 & 0.030 & 0.505 & 0.057 & 0.397 & 0.144 & 0.350 \\
\hline Year & 1995 & & 1996 & & 1997 & & 1998 \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 \\
\hline \multicolumn{8}{|l|}{AGE} \\
\hline 0 & * & 0.000 & * & 0.002 & * & 0.001 & * \\
\hline 1 & 0.186 & 0.038 & 0.115 & 0.054 & 0.101 & 0.069 & 0.103 \\
\hline 2 & 0.195 & 0.143 & 0.321 & 0.162 & 0.157 & 0.039 & 0.330 \\
\hline 3 & 0.270 & 0.102 & 0.640 & 0.130 & 0.185 & 0.065 & 0.435 \\
\hline \(4+\) & 0.295 & 0.065 & 0.367 & 0.830 & 0.278 & 0.139 & 0.572 \\
\hline F ( 1-2) & 0.190 & 0.091 & 0.218 & 0.108 & 0.129 & 0.054 & 0.216 \\
\hline Year & 2001 & & 2002 & & 2003 & & 2004 \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 \\
\hline \multicolumn{8}{|l|}{AGE} \\
\hline 0 & * & 0.135 & * & 0.000 & * & 0.000 & * \\
\hline 1 & 0.579 & 0.024 & 0.560 & 0.032 & 0.280 & 0.005 & 0.204 \\
\hline 2 & 0.696 & 0.002 & 0.451 & 0.051 & 0.650 & 0.003 & 0.203 \\
\hline 3 & 0.226 & 0.000 & 0.208 & 0.000 & 0.708 & 0.000 & 0.580 \\
\hline 4+ & 0.628 & 0.000 & 0.082 & 0.000 & 0.375 & 0.000 & 0.083 \\
\hline F ( 1-2) & 0.637 & 0.013 & 0.506 & 0.041 & 0.465 & 0.004 & 0.203 \\
\hline
\end{tabular}

Table 13.1.4.6 Sandeel in IV. SXSA (run 01) annual fishing mortality at age.
Annual F at age (second half-year only for age 0 )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year/age & & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 \\
\hline & 0 & 0.029 & 0.000 & 0.015 & 0.017 & 0.006 & 0.027 & 0.015 & 0.030 & 0.048 & 0.032 & 0.068 \\
\hline & 1 & 0.152 & 0.459 & 0.238 & 0.292 & 0.280 & 0.296 & 0.785 & 0.543 & 0.600 & 0.447 & 0.301 \\
\hline & 2 & 0.798 & 0.231 & 1.646 & 0.872 & 0.601 & 1.314 & 0.638 & 1.128 & 0.985 & 0.606 & 0.467 \\
\hline & 3 & 0.822 & 1.413 & 1.070 & 0.589 & 0.541 & 1.428 & 1.100 & 1.136 & 0.606 & 0.587 & 0.723 \\
\hline & 4 & 4.184 & 1.413 & 0.706 & 0.025 & 0.167 & 0.000 & 0.000 & 1.850 & 2.122 & 0.885 & 0.000 \\
\hline F (1-2) & & \(0.475^{\overline{7}}\) & \(0.345^{\overline{7}}\) & \(0.942^{\bar{F}}\) & \(0.582^{\overline{7}}\) & \(0.440^{\overline{7}}\) & \(0.805^{\bar{\prime}}\) & \(0.712^{\bar{F}}\) & \(0.836^{\overline{7}}\) & \(0.792^{\overline{7}}\) & \(0.526^{\text {F }}\) & 0.384 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year/age & & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 \\
\hline 0 & 0 & 0.001 & 0.017 & 0.024 & 0.011 & 0.133 & 0.099 & 0.020 & 0.222 & 0.000 & 0.020 & 0.000 \\
\hline & 1 & 0.464 & 0.435 & 0.324 & 0.322 & 0.352 & 0.425 & 0.629 & 0.731 & 0.800 & 0.373 & 0.254 \\
\hline 2 & 2 & 0.662 & 0.454 & 0.664 & 0.414 & 0.740 & 0.610 & 0.900 & 0.932 & 0.697 & 0.754 & 0.321 \\
\hline 3 & 3 & 0.743 & 0.599 & 0.933 & 0.711 & 0.872 & 0.707 & 0.720 & 0.386 & 0.315 & 0.812 & 0.657 \\
\hline 4 & 4 & 0.000 & 0.419 & 1.284 & 1.010 & 0.803 & 0.993 & 0.659 & 1.068 & 0.169 & 0.517 & 0.161 \\
\hline F (1-2) & - & \(0.563^{\prime \prime}\) & \(0.445^{\prime}\) & \(0.49{ }^{\text {r }}\) & \(0.368^{\prime \prime}\) & \(0.546^{\prime}\) & \(0.518^{\prime}\) & \(0.765^{\prime}\) & \(0.832^{\prime \prime}\) & \(0.749^{\prime}\) & \(0.563^{\prime}\) & 0.288 \\
\hline
\end{tabular}

Table 13.1.4.7 Sandeel in IV. SXSA (Run 01) stock numbers at age (millions)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Stock numbers (at start of season)} \\
\hline \multicolumn{13}{|l|}{***********************************} \\
\hline Year & 1983 & & 1984 & & 1985 & & 1986 & & 1987 & & 1988 & \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
\hline \multicolumn{13}{|l|}{AGE} \\
\hline 0 & * & 874709. & * & 221210. & * & 1199641. & * & 620569. & * & 196916. & * & 712338. \\
\hline 1 & 101278. & 32457. & 381496. & 95335. & 99396. & 30211. & 530796. & 154290. & 274002. & 82248. & 87975. & 24962. \\
\hline 2 & 89801. & 30521. & 26082. & 14287. & 68435. & 11001. & 22920. & 7231. & 115077. & 49608. & 59319. & 10292. \\
\hline 3 & 3600. & 1576. & 22164. & 3866. & 11505. & 4853. & 5869. & 2457. & 5227. & 2269. & 34407. & 7317. \\
\hline \(4+\) & 498. & 6. & 812. & 178. & 2711. & 1207. & 2580. & 1705. & 3173. & & & 0 . \\
\hline SSN & 93900. & & 49058. & & 82651. & & 31369. & & 123478. & & 96887. & \\
\hline SSB & 1230791. & & 738074. & & 1150859. & & 467735. & & 1626297. & & 1484869. & \\
\hline TSN & 195178. & 939268. & 430554. & 334876. & 182047. & 1246913. & 562165. & 786252. & 397480. & 332906. & 184862. & 754909. \\
\hline TSB & 1740220. & 1834771. & 2302209. & 1588208. & 1567329. & 2050955. & 2686461. & 2911712. & 2914106. & 1988186. & 1871960. & 1607357. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & 1989 & & 1990 & & 1991 & & 1992 & & 1993 & & 1994 & \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
\hline \multicolumn{13}{|l|}{AGE} \\
\hline 0 & * & 320474. & * & 625432. & * & 788276. & * & 315843. & * & 614117. & * & 856279. \\
\hline 1 & 311229. & 53171. & 141732. & 31955. & 272509. & 62698. & 336947. & 81373. & 137271. & 38764. & 257307. & 62398. \\
\hline 2 & 19276. & 7400. & 38414. & 8903. & 23350. & 6183. & 40224. & 15438. & 63047. & 28103. & 29890. & 11996. \\
\hline 3 & 7907. & 1745. & 5661. & 1302. & 6548. & 2565. & 4725. & 1949. & 12291. & 4366. & 22045. & 7730. \\
\hline \(4+\) & 3997. & 0 . & 1397. & 183. & 1073. & 87. & 2061. & 623. & 1933. & 0. & 3303. & 0 . \\
\hline SSN & 31180. & & 45473. & & 30971. & & 47011. & & 77272. & & 55238. & \\
\hline SSB & 487916. & & 637784. & & 441834. & & 650504. & & 1043287. & & 771491. & \\
\hline TSN & 342409. & 382791. & 187205. & 667775. & 303480. & 859809. & 383958. & 415226. & 214543. & 685349. & 312545. & 938404. \\
\hline TSB & 1857322. & 1129003. & 1241562. & 1360101. & 1610897. & 1679777. & 2025248. & 1624893. & 1661007. & 1784594. & 2382232. & 6996687. \\
\hline Year & 1995 & & 1996 & & 1997 & & 1998 & & 1999 & & 2000 & \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
\hline \multicolumn{13}{|l|}{AGE} \\
\hline 0 & * & 349174. & * & 2037738. & * & 352593. & * & 421559. & * & 533064. & * & 497460. \\
\hline 1 & 384445. & 95440. & 154182. & 43548. & 892887. & 256057. & 156668. & 47801. & 165045. & 40053. & 216077. & 44008. \\
\hline 2 & 46634. & 23100. & 72222. & 30891. & 32273. & 15666. & 185588. & 64825. & 29416. & 11539. & 31982. & 9335. \\
\hline 3 & 8434. & 3487. & 16083. & 4915. & 19997. & 7134. & 11769. & 3610. & 48994. & 17911. & 8897. & 3307. \\
\hline \(4+\) & 5791. & 2759. & 4669. & 1926. & 4017. & 1146. & 6264. & 2013. & 4283. & 1258. & 14232. & 5448. \\
\hline SSN & 60859. & & 92974. & & 56288. & & 203621. & & 82693. & & 55111. & \\
\hline SSB & 1008692. & & 1053541. & & 626840. & & 1828861. & & 1012695. & & 634782. & \\
\hline TSN & 445304. & 473961. & 247156. & 2119019. & 949175. & 632597. & 360289. & 539808. & 247738. & 603826. & 271187. & 559558. \\
\hline TSB & 3749784. & 3178212. & 2094269. & 7021767. & 5653795. & 3056580. & 2613768. & 2097772. & 1935295. & 2458973. & 2017673. & 1447465. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & 2001 & & 2002 & & 2003 & & 2004 \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 \\
\hline \multicolumn{8}{|l|}{AGE} \\
\hline 0 & * & 859656. & * & 70763. & * & 561357. & * \\
\hline 1 & 219059. & 37816. & 305945. & 47909. & 31796. & 8137. & 247200. \\
\hline 2 & 32350. & 8636. & 29522. & 10525. & 37842. & 12352. & 6524. \\
\hline 3 & 7118. & 3437. & 6991. & 3489. & 8184. & 2471. & 9936. \\
\hline \(4+\) & 6500. & 1554. & 3964. & 2273. & 4718. & 1944. & 3615. \\
\hline SSN & 45968. & & 40477. & & 50744. & & 20075. \\
\hline SSB & 470197. & & 457709. & & 439253. & & 251892. \\
\hline TSN & 265027. & 911098. & 346422. & 134959. & 82540. & 586260. & 267275. \\
\hline TSB & 1436249. & 2867729. & 2336212. & 529776. & 606499. & 2220771. & 1646099. \\
\hline
\end{tabular}

Table 13.1.4.8 Sandeel in IV. SXSA (run 01) assessment summary
\begin{tabular}{rrrrrrr}
\hline \multicolumn{2}{c}{ Year } & \multicolumn{1}{c}{\begin{tabular}{c} 
Recruits \\
Age 0
\end{tabular}} & Totalbio & \multicolumn{1}{c}{ SSB } & Landings & Yield/SSB \\
\hline 1983 & 874709000 & 1740220 & 1230791 & 530640 & 0.4311 & \multicolumn{1}{c}{\begin{tabular}{l} 
Mean F \\
Ages 1-2
\end{tabular}} \\
1984 & 221210000 & 2302209 & 738074 & 750040 & 1.0162 & 0.3753 \\
1985 & 1199641000 & 1567329 & 1150859 & 707105 & 0.6144 & 0.9421 \\
1986 & 620569000 & 2686461 & 467735 & 685950 & 1.4665 & 0.5822 \\
1987 & 196916000 & 2914106 & 1626297 & 791050 & 0.4864 & 0.4403 \\
1988 & 712338000 & 1871960 & 1484869 & 1007304 & 0.6784 & 0.8051 \\
1989 & 320474000 & 1857322 & 487916 & 826835 & 1.6946 & 0.7115 \\
1990 & 625432000 & 1241562 & 637784 & 584912 & 0.9171 & 0.8358 \\
1991 & 788276000 & 1610897 & 441834 & 898959 & 2.0346 & 0.7924 \\
1992 & 315843000 & 2025248 & 650504 & 820140 & 1.2608 & 0.5264 \\
1993 & 614117000 & 1661007 & 1043287 & 576932 & 0.5530 & 0.3843 \\
1994 & 856279000 & 2382232 & 771491 & 770747 & 0.9990 & 0.5630 \\
1995 & 349174000 & 3749784 & 1008692 & 915043 & 0.9072 & 0.4447 \\
1996 & 2037738000 & 2094269 & 1053541 & 776126 & 0.7367 & 0.4941 \\
1997 & 352593000 & 5653795 & 626840 & 1114044 & 1.7772 & 0.3681 \\
1998 & 421559000 & 2613768 & 1828861 & 1000375 & 0.5470 & 0.5461 \\
1999 & 533064000 & 1935295 & 1012695 & 718668 & 0.7097 & 0.5175 \\
2000 & 497460000 & 2017673 & 634782 & 692498 & 1.0909 & 0.7650 \\
2001 & 859656000 & 1436249 & 470197 & 858619 & 1.8261 & 0.8316 \\
2002 & 70763000 & 2336212 & 457709 & 806921 & 1.7630 & 0.7488 \\
2003 & 561357000 & 606499 & 439253 & 242153 & 0.5513 & 0.5634 \\
2004 & & 1646099 & 251892 & & & \\
\hline Average & 620436571.4 & 2179554 & 841632 & 765479 & 1.0505 & 0.6039 \\
Units & (Thousands) & (Tonnes) & (Tonnes) & (Tonnes) & & \\
\hline
\end{tabular}

Table 13.1.4.9 Sandeel in IV. XSA (run 01) diagnostics
Lowestoft VPA Version 3.1
\(31 / 08 / 2004\) 11:46
Extended Survivors Analysis

Sandeel in IV
CPUE data from file fleet.dat
Catch data for 21 years. 1983 to 2003. Ages 0 to 4.
Fleet, First, Last, First, Last, Alpha, Beta year, year, age, age
\begin{tabular}{lllllll} 
North IV 1.half year, & 1983,2003, & 1, & 3, & .250, & .500 \\
South IV 1.half year, & 1983, & 2003, & 1, & 3, & .250, & .500
\end{tabular}
North IV 2.half year, 1983, 2003, 0, 3, .500, . 750
South IV 2.half year, 1983, 2003, 0, 3, .500, . 750

Time series weights :
Tapered time weighting not applied

Catchability analysis :
Catchability independent of stock size for all ages

Catchability independent of age for ages >= 2

Terminal population estimation :
Survivor estimates shrunk towards the mean \(F\)
of the final 5 years or the 2 oldest ages.
S.E. of the mean to which the estimates are shrunk \(=1.500\)

Minimum standard error for population
estimates derived from each fleet = . 300
Prior weighting not applied
Tuning converged after 28 iterations

Regression weights
, \(1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000\)
Fishing mortalities
Age, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
0, .001, .017, .025, .012, .142, .104, .017, .211, .000, . 032
\(1, .404, .495, .335, .343, .394, .507, .763, .713, .859, .512\)
2, .668, .323, .737, .394, .760, .630, 1.248, 1.278, .542, . 689
3, .762, .606, .538, .890, .854, .753, .785, .733, .563, . 527
1
XSA population numbers (Thousands)
\begin{tabular}{cccc} 
AGE \\
YEAR , 0, & 1,
\end{tabular}

1994 , \(8.56 \mathrm{E}+08,3.18 \mathrm{E}+08,3.14 \mathrm{E}+07,2.33 \mathrm{E}+07\),
\(1995,3.68 \mathrm{E}+08,3.84 \mathrm{E}+08,6.40 \mathrm{E}+07,8.84 \mathrm{E}+06\),
1996 , \(2.09 \mathrm{E}+09,1.63 \mathrm{E}+08,7.06 \mathrm{E}+07,2.54 \mathrm{E}+07\),
1997, 3.40E+08, 9.16E+08, 3.50E+07, 1.85E+07,
\(1998,4.11 \mathrm{E}+08,1.51 \mathrm{E}+08,1.96 \mathrm{E}+08,1.30 \mathrm{E}+07\),
\(1999,5.27 \mathrm{E}+08,1.60 \mathrm{E}+08,3.06 \mathrm{E}+07,5.02 \mathrm{E}+07\),
2000 , \(5.83 \mathrm{E}+08,2.14 \mathrm{E}+08,2.91 \mathrm{E}+07,8.95 \mathrm{E}+06\),
2001 , \(9.39 \mathrm{E}+08,2.58 \mathrm{E}+08,3.00 \mathrm{E}+07,4.58 \mathrm{E}+06\),
2002 , \(6.09 \mathrm{E}+07,3.42 \mathrm{E}+08,3.80 \mathrm{E}+07,4.58 \mathrm{E}+06\),
2003 , \(3.54 \mathrm{E}+08,2.74 \mathrm{E}+07,4.36 \mathrm{E}+07,1.21 \mathrm{E}+07\),
Estimated population abundance at 1st Jan 2004
\(0.00 \mathrm{E}+00,1.54 \mathrm{E}+08,4.94 \mathrm{E}+06,1.20 \mathrm{E}+07\),

Taper weighted geometric mean of the VPA populations:
, \(5.19 \mathrm{E}+08,2.20 \mathrm{E}+08,4.84 \mathrm{E}+07,1.18 \mathrm{E}+07\),

Standard error of the weighted Log (VPA populations) :
, .7528, .7577, .6213, .7878,

Log catchability residuals.


Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{crrr} 
Age , & \multicolumn{1}{c}{1,} & \multicolumn{1}{c}{2,} & \multicolumn{1}{c}{3} \\
Mean \(\log q\), & -10.6019, & -10.4296, & -10.4296, \\
S.E (Log q), & .5163, & .8361, & 1.0695,
\end{tabular}

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q
\begin{tabular}{lrrrrrrr}
1, & 1.11, & -.641, & 9.66, & .64, & 21, & .58, & -10.60, \\
2, & 1.46, & -1.043, & 7.12, & .22, & 21, & 1.21, & -10.43, \\
3, & 2.23, & -1.965, & 3.56, & .12, & 21, & 2.21, & -10.58,
\end{tabular}

1

Fleet : South IV 1.half year
```

Age , 1983
0, No data for this fleet at this age
1, -1.47
2,.13
3,-.15

```
Age , 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
    0 , No data for this fleet at this age
    \(1, .52,-.47,-.16,-1.26,-1.40, .31, .29, .02, .41,-1.07\)
    \(2,-1.19,1.02, \quad .36,-.01,-.04,-.48, \quad .52, .91,-.44, \quad .11\)
    \(3,-22,-.02,-.07, .04, \quad .36,-.45, .23, .03,-.22, .16\)
Age , 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
    0 , No data for this fleet at this age
    \(1, .59, .32,-.16,-.17,-.44, .66, .81, .90,1.08, .69\)
    \(2,-.30,-.79, .23,-.60,-.19,-.28, \quad .15, \quad .66,-.16, \quad .39\)
    \(3, .06,-.16, ~ .26,-.20, ~ .05,-.02,-.03,-.12,-.14, .14\)

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
```

    Age , 1, 2, 3
    Mean Log q, -10.9040, -10.0797, -10.0797,
S.E(Log q), .7726, .5484, .1913,

```

Regression statistics :
Ages with \(q\) independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean \(Q\)
\begin{tabular}{lrrrrrr}
1, & .83, & .882, & 12.30, & .59, & 21, & .65, \\
2, & .95, & .271, & 10.48, & .59, & 21, & .53, \\
2, & -10.08, \\
3, & .87, & 3.231, & 10.86, & .97, & 21, & .14,
\end{tabular}\(-10.08\),

Fleet : North IV 2.half year
\begin{tabular}{rr} 
Age, & 1983 \\
0, & .81 \\
1, & .23 \\
2, & .23 \\
3, & .77
\end{tabular}

Age , 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993 0 , 99.99, -2.37, -.41, -1.74, .14, -.36, .23, .07, 1.55, . 69 \(1, .43,-.45, .08,1.16, .37, .73, .55,-.92,-2.83,-.39\) \(2, .69,1.58, .82,-1.56, .29, .48, .56,-1.53,-3.63,-1.76\) \(3,-.62,2.19,99.99,99.99,-1.14,99.99, .19,-1.85,99.99,-1.50\)

Age , 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
\(0,-3.02, \quad .17,-.28,-.65,1.49,1.27,99.99,1.45,99.99, .95\) \(1,-.79, .63,-.07, .50,1.78,-.78,1.01,-.66,-.62, .04\) \(2,2.04,-.01,1.03, .88, .03, .70,1.56,-.54,-1.84,-.01\) \(3,1.28,-.42,-.64,-1.41,-.35,-1.97,1.18,1.61,99.99,99.99\)

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{crrrr} 
Age , & 0, & 1, & 2, & 3 \\
Mean Log q, & -11.4751, & -11.6189, & -11.9661, & -11.9661, \\
S.E (Log q), & 1.3066, & .9656, & 1.3778, & 1.3371,
\end{tabular}

Regression statistics :

Ages with \(q\) independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean \(\Omega\)
\begin{tabular}{llrrllll}
0, & 1.65, & -.720, & 5.75, & .07, & 18, & 2.19, & -11.48, \\
1, & 1.10, & -.324, & 10.83, & .34, & 21, & 1.09, & -11.62, \\
2, & 1.58, & -.729, & 8.66, & .08, & 21, & 2.20, & -11.97, \\
3, & 4.55, & -1.967, & -3.32, & .02, & 15, & 5.49, & -12.14,
\end{tabular}
```

Fleet : South IV 2.half year
Age , 1983
0, 1.82
1, -1.46
2, . 54
3, 2.19
Age , 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
0, 99.99, .99, -2.15, -.66, 99.99, -5.23, .38, 1.76, -1.48, . }1
1 , .82, -.07, -.10, -.26, 99.99, .78, 1.25, 1.16, .17, . }3
2,-1.66, 1.29, .02, .73, -.08, .51, 1.33, .06, -.60, . 62
3, -.09, 2.52, .83, .22, 1.73, .84, .96, -.14, 1.09, .79
Age , 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
0 , 99.99, 99.99, -.91, -1.65, .71, .96, 2.08, 3.21, 99.99, 99.99
1, 1.02, .34, -.10, .00, -.47, -1.39, 1.02, -1.59, .26, -1.69
2, .52, 1.46, 1.24, -.49, .34, -1.34, .89, -3.53, .75, -2.59
3, .39, 1.41, .11, .17, .56, 1.41, 1.40, 99.99, 99.99, 99.99

```

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time


Terminal year survivor and \(F\) summaries :

Age 0 Catchability constant w.r.t. time and dependent on age
Year class = 2003
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & \[
\begin{aligned}
& \text { Int, } \\
& \text { s.e, }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext, } \\
& \text { s.e, }
\end{aligned}
\] & \begin{tabular}{l}
Var, \\
Ratio,
\end{tabular} & N, & \begin{tabular}{l}
Scaled, \\
Weights,
\end{tabular} & \begin{tabular}{l}
Estimated \\
F
\end{tabular} \\
\hline North IV 1.half year, & 1., & .000, & .000, & .00, & 0 , & .000, & . 000 \\
\hline South IV 1.half year, & 1., & .000, & .000, & . 00 , & 0 , & .000, & . 000 \\
\hline North IV 2.half year, & 397223100., & 1.342, & .000, & .00, & 1, & .547, & . 000 \\
\hline South IV 2.half year, & 1., & .000, & .000, & .00, & 0 , & .000, & . 000 \\
\hline F shrinkage mean & 48995190., & 1.50, & & & & .453, & . 098 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{lrrrrr} 
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & s.e, & Ratio, & \\
\(154029000 .\), & 1.00, & 1.41, & 2, & 1.407, & .032
\end{tabular}

Age 1 Catchability constant w.r.t. time and dependent on age
Year class \(=2002\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & \[
\begin{aligned}
& \text { Int, } \\
& \text { s.e, }
\end{aligned}
\] & Ext,
s.e, & Var, Ratio, & & \begin{tabular}{l}
Scaled, \\
Weights,
\end{tabular} & \begin{tabular}{l}
Estimat \\
F
\end{tabular} \\
\hline North IV 1.half year, & 6602955., & . 528 , & .000, & .00, & 1, & .445, & . 406 \\
\hline South IV 1.half year, & 9887020., & .791, & . 000 , & .00, & 1 , & .199, & . 288 \\
\hline North IV 2.half year, & \(5151369 .\), & .988, & . 0000 & .00, & 1 , & .127, & . 496 \\
\hline South IV 2.half year, & 913839., & .950, & . 000 , & . 00 , & 1 , & .137, & 1.530 \\
\hline F shrinkage mean & 3217578., & 1.50, & & & & .092, & . 707 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{llllll} 
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & s.e, & , & Ratio, & \\
\(4943270 .\), & .36, & .37, & 5, & 1.015, & .512
\end{tabular}

1
Age 2 Catchability constant w.r.t. time and dependent on age
Year class = 2001
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & \[
\begin{aligned}
& \text { Int, } \\
& \text { s.e, }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext, } \\
& \text { s.e, }
\end{aligned}
\] & Var, Ratio, & N, & Scaled, Weights, & \begin{tabular}{l}
Estimated \\
F
\end{tabular} \\
\hline North IV 1.half year, & 10034140., & .492, & 1.310, & 2.66, & 2, & .293, & . 783 \\
\hline South IV 1.half year, & 20029400., & .483, & . 264 , & . 55, & 2, & . 391 , & . 467 \\
\hline North IV 2.half year, & 12027560., & .769, & .501, & . 65 , & 3 , & .115, & . 689 \\
\hline South IV 2.half year, & 4514033., & .805, & 1.251, & 1.55, & 3 , & .111, & 1.292 \\
\hline F shrinkage mean , & 7815343., & 1.50, & & & & .090, & . 926 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{llllll} 
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & s.e, & Ratio, & \\
\(12013900 .\), & .30, & .34, & 11, & 1.138, & .689
\end{tabular}

Year class \(=2000\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & \[
\begin{aligned}
& \text { Int, } \\
& \text { s.e, }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext, } \\
& \text { s.e, }
\end{aligned}
\] & Var, Ratio, & & \begin{tabular}{l}
Scaled, \\
Weights,
\end{tabular} & \begin{tabular}{l}
Estimat \\
F
\end{tabular} \\
\hline North IV 1.half year, & 3087014., & . 476 , & .655, & 1.38, & 3, & .146, & . 633 \\
\hline South IV 1.half year, & 4454288., & . 262 , & . 126, & . 48 , & 3 , & . 741 , & . 478 \\
\hline North IV 2.half year, & 1126928., & . 861 , & .593, & .69, & 2, & . 032, & 1.230 \\
\hline South IV 2.half year, & 3224311., & . 778 , & .934, & 1.20, & 3 , & .038, & . 613 \\
\hline F shrinkage mean & 3170065., & 1.50, & & & & .042, & . 621 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{lllll} 
Survivors, & Int, & Ext, \\
at end of year, & s.e, & s.e, & Ratio, &
\end{tabular}

Table 13.1.4.10 Sandeel in IV. XSA (run 01) fishing mortality at age.

Run title : Sandeel in IV
At 31/08/2004 11:46
Terminal Fs derived using XSA (With F shrinkage)
Fishing mortality \((\mathrm{F})\) at age
\begin{tabular}{cccccccccccc} 
YEAR & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & \\
AGE & & & & & & & & & & \\
& 0 & 0.0277 & 0.0000 & 0.0124 & 0.0172 & 0.0050 & 0.0263 & 0.0154 & 0.0280 & 0.0470 & 0.0319 \\
& 1 & 0.1609 & 0.4713 & 0.2198 & 0.2486 & 0.2973 & 0.2783 & 0.8810 & 0.6060 & 0.6000 & 0.4734 \\
& 2 & 0.5165 & 0.2344 & 1.6301 & 0.7302 & 0.4329 & 1.5578 & 0.5453 & 1.1929 & 1.1154 & 0.5012 \\
& 3 & 0.5758 & 0.5791 & 1.1393 & 0.4035 & 0.3741 & 0.7395 & 1.7008 & 0.8734 & 0.6143 & 0.7235 \\
+gp & 0.5758 & 0.5791 & 1.1393 & 0.4035 & 0.3741 & 0.7395 & 1.7008 & 0.8734 & 0.6143 & 0.7235 & 0.5317 \\
FBAR 1-2 & 0.3387 & 0.3529 & 0.9250 & 0.4894 & 0.3651 & 0.9181 & 0.7132 & 0.8995 & 0.8577 & 0.4873 & 0.3887
\end{tabular}

Table 13.1.4.11 Sandeel in IV. XSA (run 01) stock numbers at age (millions)


Table 13.1.4.12 Sandeel in IV. XSA (run 01) assessment summary.
Run title : Sandeel in IV

At 31/08/2004 11:46

Summary (without SOP correction)
Terminal Fs derived using XSA (With F shrinkage)
\begin{tabular}{rrrrrrr}
\hline \multicolumn{1}{c}{ Year } & \multicolumn{1}{c}{\begin{tabular}{l} 
Recruits \\
Age 0
\end{tabular}} & \multicolumn{2}{l}{ Totalbio } & \multicolumn{1}{l}{ SSB } & Landings & Yield/SSB \\
\hline 1983 & 941060160 & 3271018 & 1808364 & 530640 & 0.2934 & \begin{tabular}{c} 
Mean F \\
Ages 1-2
\end{tabular} \\
1984 & 256559984 & 3042566 & 1099634 & 750040 & 0.3387 \\
1985 & 1491949824 & 3223488 & 1248515 & 707105 & 0.5664 & 0.3529 \\
1986 & 632810432 & 3906568 & 506017 & 685950 & 1.3556 & 0.4890 \\
1987 & 226273776 & 3684730 & 2144795 & 791050 & 0.3688 & 0.3651 \\
1988 & 758963584 & 3142909 & 1938812 & 1007304 & 0.5195 & 0.9181 \\
1989 & 329735584 & 2339977 & 548655 & 826835 & 1.5070 & 0.7132 \\
1990 & 685734336 & 2028438 & 721198 & 584912 & 0.8110 & 0.8995 \\
1991 & 835763584 & 2599962 & 478894 & 898959 & 1.8772 & 0.8577 \\
1992 & 329378944 & 2563147 & 771966 & 820140 & 1.0624 & 0.4873 \\
1993 & 749898688 & 2636770 & 1241780 & 576932 & 0.4646 & 0.3887 \\
1994 & 856012224 & 3732887 & 884206 & 770747 & 0.8717 & 0.5364 \\
1995 & 368189536 & 4362382 & 1253956 & 915043 & 0.7297 & 0.4092 \\
1996 & 2089891072 & 4429476 & 1241183 & 776126 & 0.6253 & 0.5362 \\
1997 & 339510848 & 6141995 & 643595 & 1114044 & 1.7310 & 0.3686 \\
1998 & 410970976 & 3094550 & 1928122 & 1000375 & 0.5188 & 0.5773 \\
1999 & 527482432 & 2483536 & 1060048 & 718668 & 0.6780 & 0.5681 \\
2000 & 583386944 & 2533990 & 583763 & 692498 & 1.1863 & 1.0056 \\
2001 & 939409728 & 2521268 & 445538 & 858619 & 1.9272 & 0.9956 \\
2002 & 60947416 & 2598612 & 439130 & 806921 & 1.8375 & 0.7006 \\
2003 & 354005376 & 1020271 & 522218 & 242153 & 0.4637 & 0.6006 \\
2004 & & & \(223430 *\) & & & \\
\hline Average & 655616000 & 3112311 & 1024304 & 765479 & 0.9561 & 0.6206 \\
Units & (Thousands) & (Tonnes) & (Tonnes) & (Tonnes) & & \\
\hline
\end{tabular}

\footnotetext{
*Calculated using the 2003 weight in the stock
}

Table 13.1.6.1 Sandeel in IV. Short term forecast based upon SXSA, forecasting with 2003 F.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{Terminal population from SXSA, 2003F} \\
\hline & \multicolumn{5}{|c|}{Recruitment basis for 2004} \\
\hline & & Historic max & Geometric mean & Regression of proportion of landings from 2nd half year on log recruitment ( \(\mathrm{rsq}=0.573\) ) & Historic min \\
\hline Fmult & 2004 & 1 & 1 & 1 & 1 \\
\hline F & 2004 & 0.564 & 0.564 & 0.564 & 0.564 \\
\hline SSB & 2004 & 238 & 238 & 238 & 238 \\
\hline SSB & 2005 & 517 & 517 & 517 & 517 \\
\hline SSB & 2006 & 1769 & 579 & 532 & 245 \\
\hline TSB & 2004 & 3579 & 2043 & 1982 & 1612 \\
\hline TSB & 2005 & 5748 & 2183 & 2043 & 1183 \\
\hline TSB & 2006 & 3434 & 2245 & 2198 & 1911 \\
\hline Landings & 2004 & 401 & 359 & 357 & 347 \\
\hline Landings & 2005 & 1133 & 448 & 421 & 255 \\
\hline Recruitment & 2004 & 2037738 & 501500 & 441176 & 70763 \\
\hline Recruitment & 2005 & 501500 & 501500 & 501500 & 501500 \\
\hline Recruitment & 2006 & 501500 & 501500 & 501500 & 501500 \\
\hline
\end{tabular}

Table 13.1.6.2 Sandeel in IV. Short term forecast based upon SXSA, forecasting with average selection pattern scaled to 2003 F .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{Terminal population from SXSA, scaled F} \\
\hline & \multicolumn{5}{|l|}{Recruitment basis for 2004} \\
\hline & & Historic max & Geometric mean & Regression of proportion of landings from 2nd half year on log recruitment (rsq=0.573) & Historic min \\
\hline Fmult & 2004 & 1 & 1 & 1 & \\
\hline F & 2004 & 0.564 & 0.564 & 0.564 & 0.564 \\
\hline SSB & 2004 & 238 & 238 & 238 & 238 \\
\hline SSB & 2005 & 492 & 492 & 492 & 492 \\
\hline SSB & 2006 & 1556 & 536 & 496 & 251 \\
\hline TSB & 2004 & 3579 & 2043 & 1982 & 1612 \\
\hline TSB & 2005 & 5552 & 2115 & 1980 & 1152 \\
\hline TSB & 2006 & 3180 & 2160 & 2120 & 1874 \\
\hline Landings & 2004 & 542 & 424 & 420 & 391 \\
\hline Landings & 2005 & 1314 & 482 & 450 & 249 \\
\hline Recruitment & 2004 & 2037738 & 501500 & 441176 & 70763 \\
\hline Recruitment & 2005 & 501500 & 501500 & 501500 & 501500 \\
\hline Recruitment & 2006 & 501500 & 501500 & 501500 & 501500 \\
\hline
\end{tabular}

Table 13.1.6.3 Sandeel in IV. Short term forecast based upon SXSA, forecasting with 2003 F.


Table 13.1.6.4 Sandeel in IV. Short term forecast based upon XSA, forecasting with average selection pattern scaled to 2003 F .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{Terminal population from XSA, scaled F} \\
\hline & \multicolumn{5}{|c|}{Recruitment basis for 2004} \\
\hline & & Historic max & Geometric mean & Regression of proportion of landings from 2nd half year on log recruitment (rsq=0.597) & Historic min \\
\hline Fmult & 2004 & 1 & 1 & 1 & 1 \\
\hline F & 2004 & 0.600 & 0.600 & 0.600 & 0.600 \\
\hline SSB & 2004 & 285 & 285 & 285 & 285 \\
\hline SSB & 2005 & 345 & 345 & 345 & 345 \\
\hline SSB & 2006 & 1439 & 461 & 401 & 176 \\
\hline TSB & 2004 & 3187 & 1616 & 1519 & 1158 \\
\hline TSB & 2005 & 5557 & 2030 & 1813 & 1001 \\
\hline TSB & 2006 & 3123 & 2146 & 2086 & 1860 \\
\hline Landings & 2004 & 455 & 342 & 335 & 309 \\
\hline Landings & 2005 & 1418 & 470 & 411 & 193 \\
\hline Recruitment & 2004 & 2089891 & 519091 & 422471 & 60947 \\
\hline Recruitment & 2005 & 519091 & 519091 & 519091 & 519091 \\
\hline Recruitment & 2006 & 519091 & 519091 & 519091 & 519091 \\
\hline
\end{tabular}

Figure 13.1.1.1 Sandeel in IV. Danish sandeel sampling areas.


Figure 13.1.1.2 Sandeel in IV. Total international landings, effort and CPU. 2004 only represent first half year.



Figure 13.1.1.3 Sandeel in IV. Quarterly catches of sandeels by Denmark, Norway and Scotland in 2003 and by Denmark and Norway in 2004 by ICES rectangle (' 000 tonnes).

\section*{North Sea sandeel landings in 2003 quarter 1}

Total landings: 3033 ton
Max landings per rectangle: 1900 ton


North Sea sandeel landings in 2003 quarter 2
Total landings: 260498 ton
Max landings per rectangle: 39250 ton


Figure 13.1.1.3 (continued) Quarterly catches of Sandeel by ICES rectangle ('000 tonnes).

North Sea sandeel landings in 2003 quarter 3
Total landings: 57822 ton
Max landings per rectangle: 7320 ton


\section*{North Sea sandeel landings in 2003 quarter 4}

Total landings: 3945 ton
Max landings per rectangle: 2173 ton


Figure 13.1.1.3 (continued) Quarterly catches of Sandeel by ICES rectangle ('000 tonnes).

North Sea sandeel landings in 2004 quarter 1
Total landings: 1633 ton
Max landings per rectangle: 343 ton


North Sea sandeel landings in 2004 quarter 2
Total landings: 273314 ton
Max landings per rectangle: 27853 ton


Figure 13.1.2.1 Sandeel in IV. Mean weight at age in the stock, by half year.



Figure 13.1.2.2 Sandeel in IV. Mean weight at age in the catch by fleet and half year.





Figure 13.1.3.1. Sandeel in IV. Total effort by the Danish fleet by GT class for the years 1987 to 2003.


Figure 13.1.3.2 Sandeel in IV. CPUE (ton/day) by fleet.


Figure 13.1.3.3 Sandeel in IV. Normalized CPUE by age group and year.






Figure 13.1.3.3 Sandeel in IV. Continued









Figure 13.1.4.1 Sandeel in IV. Selection at age estimated from catch data for the years 1983 to 2003.
The year weights were set to estimate the selection pattern from the log catch ratios of the last 6 years.


Figure 13.1.4.2 Sandeel in IV. Overall fishing mortality estimated from the catch data for the years 1983 to 2003. Fishing mortality in 2003 is user defined. Fishing mortalities for the years prior to 2003 are model estimates.


Figure 13.1.4.3 Sandeel in IV. Separable VPA log catch ratio residuals for the years 1983 to 2003.




Figure 13.1.4.4 Sandeel in IV. Retrospective pattern of \(F\) and SSB from a SMS run using input data as for SXSA (halfyearly catch at age data). (F in 2004 is for first half year only)


Retrospective 1995-2004


Figure 13.1.4.5 Sandeel in IV. Log residual stocknr. (nhat/n) by fleet. SXSA Run 01.


Figure 13.1.4.6 Sandeel in IV. Log residual stocknr. (nhat/n) by fleet. SXSA Run 02





Figure 13.1.4.7 Sandeel in IV. Log inverse catchability by fleet and half-year. SXSA Run 02





Figure 13.1.4.8 Sandeel in IV. Log residual stocknr. (nhat/n) by fleet. SXSA Run 03



Figure 13.1.4.9 Sandeel in IV. Log residual stocknr. (nhat/n) by fleet. SXSA Run 04





Figure 13.1.4.10 Sandeel in IV. Comparison of historical performances of exploratory assessments in 2004 using the SXSA. \(\mathrm{F}_{\text {bar }}\) in 2004 only represent first half year.




Figure 13.1.4.11 Sandeel in IV. Stock summary for SXSA run 01.




Figure 13.1.4.12 Sandeel IV. Retrospective analysis of SSB, recruitment, and Fbar 1983-2004 for SXSA run 01.




Figure 13.1.4.13 Sandeel in IV. Log catchability residuals by fleet. XSA Run 01.





Figure 13.1.4.14 Sandeel in IV. XSA (run 01) tuning weights.


Figure 13.1.4.15 Sandeel in IV. Comparison of exploratory assessments in 2004 using the XSA.




Figure 13.1.4.16 Sandeel in IV. Log catchability residuals by fleet. XSA Run 02





Figure 13.1.4.17 Sandeel in IV. Stock summary for XSA run 01.





Figure 13.1.4.18 Sandeel in IV. Retrospective analysis of SSB, recruitment, and Fbar 1983-2003 for XSA run 01.




Figure 13.1.4.19 Sandeel in IV. Overview of exploratory runs.



Figure 13.1.4.20 Sandeel in IV. Comparison of historical performances of SXSA run 01 and XSA run 01.




\section*{14 Mixed fisheries investigations}

\subsection*{14.1 State of the art}

\subsection*{14.1.1 WGNSSK03 conclusions}

WGNSSK03 has investigated mixed-fisheries issues by compiling mixed fisheries data over the period 20002002 and also by applying the mixed fisheries forecast model MTAC to these data. WGNSSK03 considered that this approach be considered as a step forward towards providing routine, fishery-based, advice. However, the group expressed concern and made recommendations on, (i) the quality of the mixed-fisheries database, (ii) the capacity of MTAC to provide suitable mixed-fisheries forecasts and, (iii) the ability of assessment working groups to accommodate more fully fishery interactions.

Regarding (i), WGNSSK03 recognised that discard data were provided by only one nation and that landings or catch at age data were country- and not fishery-disaggregated. WGNSSK03 recommended that future collation of mixed-fisheries data should be made according to the framework proposed by SGDFF, and that the SGDFF should initiate the compilation of these data.

Regarding (ii), WGNSSK03 noted that a critical assumption underlying MTAC is that the fishery-, speciesand age-dependent exploitation pattern used in the forecasts is estimated from the last years average. However, this assumption is likely to be violated in the case of shifts in fishing tactics, as a result of e.g. changes in management regulations. There are a number of on-going approaches aiming at modeling fishermen's adaptation to management changes, which could at a later stage be incorporated in the mixed-fisheries model. Nevertheless, MTAC was seen as a step further towards providing mixed-fisheries forecasts.

Regarding (iii), WGNSSK03 noted that within the current working group framework, stock assessments (including forecasts) are undertaken on a stock by stock basis with little consideration of fisheries and the linkage between the two. ICES groups that are currently considering the working practices and structure of the assessment and advisory process need to consider these points when considering the appropriate framework under which fishery-based forecasts are to be undertaken. WGNNSSK03 suggested that maintaining the current working group structure whilst improving interchanges between working groups was the easiest to implement in the short term.

\subsection*{14.1.2 ACFM03 conclusions}

During its 2003 autumn meeting, ACFM commented the work carried out by WGNSSK03 on mixed-fisheries based advice. ACFM concluded that the mixed fisheries forecasts provided by MTAC are not yet adequate to provide an analytical basis for fishery-based advice, due to a number of limitations. The different concerns raised by ACFM are summarized below.
- ACFM identified two management problems which are related to technical interactions. First, managers must keep catches of all stocks within their TACs without foregoing catches of stocks whose TACs are taken up more slowly. Second, when several fisheries all take a species in common, managers may also allocate the safe harvest of the shared species among those fisheries in ways that allow the fisheries to take their allowable harvest of their various target species, without exceeding the total allowable catch of the shared species.
- ACFM noted that "experience of fisheries-based advice in other parts of the world indicate that such provision is possible, but that it requires well-defined fisheries that are based on complete and reliable catch data. In the ICES case, model development has outstripped the provision of appropriate data both for defining fisheries and providing mixed fishery advice. Specifically, the lack of data on discards for most species is a principal concern. Although this is a weakness of many single-stock forecasts it is accentuated in a mixed fisheries context and may lead to inappropriate advice being given to the extent of mis-informing managers". ACFM recommended more work be done on data collation (e.g. through better catch monitoring) and fishery definitions.
- ACFM was concerned "that any approach to managing mixed fisheries that assumes constant species composition over time implicitly discourages adaptive behaviour".
- ACFM recommended that managers take action in two ways. First, managers should specify the level of fishery desegregation at which they intend to operate. Second, managers should supply policy parameters, such as the tolerance for exceeding the sustainable catches of each individual species.
- ACFM expressed the concern that "many of the single-stock assessments that are used as a basis for mixed fishery projections currently cannot provide a reliable basis for single-species catch projections; hence the initial single species TAC constraints cannot be set to start the computations".

\subsection*{14.1.3 STECF03 investigations}

The STECF sub-group on mixed-fisheries met in 2003, after ACFM, with the mandate of calculating mixedfisheries forecasts to the intention of managers. The SG overall shared the concerns expressed by ACFM and the group treated these in two different ways. Regarding the lack of management inputs and the lack of single-stock assessments and projections, the group took action in obtaining management inputs from the Commission and in carrying out exploratory sensitivity analyses. Regarding data inadequacies, fishery definitions, and fleet adaptive behavior, the group was of the opinion that, as long as the advice derived from MTAC is mixed-species rather than mixed-fisheries, these concerns would not be more critical than those applicable to traditional shortterm forecasts. Overall, the group acknowledged that the scientific basis underlying the mixed-species projections derived from MTAC and related datasets was not the best one, but only the best available at the time of the meeting. The group was of the opinion that, despite its numerous limitations, it would be more appropriate to provide advice based on evidence for the mixed-species nature of the different fisheries than advice that would completely ignore the effects of technical interactions on the implementation success of TACbased management.

\subsection*{14.1.4 SGDFF04 conclusions}

Although the compilation of fishery- and age-disaggregated catch and effort data was initially one of the task allotted to SGDFF04, the SG felt that the ideal approach would be for assessment WGs to modify the way in which they compile data in order that it is available on a fleet or fishery basis. The role of this SG would then be to act as technical support to the WGs in relation to fleet and fishery issues. The SG first recognised that market sampling by national institutes is designed to provide species-based rather than fishery-based information. The SG finalised the data exchange format required to collate inputs to mixed-fisheries forecasts. In addition, the SG defined fleets and fisheries for the North Sea, the Northern Shelf and the Southern Shelf areas. Finally, the SG considered that the MTAC model was an appropriate short-term fix. However, the group also recognised that models should be developed in the medium-term to accommodate several processes including biological interactions, fleet adaptation, recruitment dynamics, in the provision of mixed-species forecasts.

\subsection*{14.2 WGNSSK04 contribution to mixed-fisheries forecasts}

\subsection*{14.2.1 Database and data available}

WGNSSK04 acknowledged the different comments and concerns raised by the different groups that have recently been involved in the development and provision of mixed-fisheries forecasts. The WG recognized that the main obstacle to the routine provision of such advice was the quality of the underlying catch and effort data. The WG therefore decided to focus effort in improving the quality of the MF database. The common exchange format used by the WG was that developed by SGDFF04. The progress made compared to last year is summarized in the text table below.
\begin{tabular}{|l|l|l|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & WGNSSK03 & WGNSSK04 \\
\hline Fishery-based landings & 8 nations / 6 stocks & 9 nations / 15 stocks \\
\hline Fishery-based discards & 1 nation / 3 stocks & 5 nations 8 stocks \\
\hline Fishery- and age-disaggregated information & 0 nation / 0 stock & 9 nations / 8 stocks \\
\hline
\end{tabular}

A detailed overview of the 2003 fishery-based data submissions by country is given in the text table below.
\begin{tabular}{|l|l|l|l|}
\hline Country & Landings total/ by age & Discard total/ by age & Effort \\
\hline Belgium \(^{1}\) & Yes / No & No / No & No \\
\hline Denmark & Yes / Yes & No / No & Yes \\
\hline France & Yes / Yes & Yes / No & Yes \\
\hline Germany & Yes / Yes & Yes / Yes & Yes \\
\hline Netherlands & Yes / Yes & Yes / Yes & No \(^{2}\) \\
\hline Norway & Yes / No & No / No & No \\
\hline Sweden & Yes / Yes & Yes / Yes & No \\
\hline UK England \({ }^{1}\) & Yes / Yes & No / No & No \\
\hline UK Scotland & Yes / Yes & Yes / Yes & Yes \\
\hline
\end{tabular}

The SGDFF requirements for landings and effort data was to report by country, year, quarter, gear, mesh size range, fishery, area and species. The number of these strata for each country is presented in the text table below, which highlights the fact that different procedures were carried out to define fisheries in different countries.
\begin{tabular}{|l|l|l|}
\hline Country & Landings or discards & Effort \\
\hline Belgium & 398 & - \\
\hline Denmark & 1072 & 210 \\
\hline France & 666 & 221 \\
\hline Germany & 687 & 275 \\
\hline Netherlands & 30 & - \\
\hline Norway & 319 & - \\
\hline Sweden & 168 & - \\
\hline UK England & 424 & - \\
\hline UK Scotland & 1504 & 188 \\
\hline
\end{tabular}

The stocks assessed by this WG, for which fishery- and age-disaggregated information was available, are given in the following text table, and the landings from the documented fisheries, as reported in the MF database, have been compared to official landings. The examination of the table indicates that the coverage in the MF database is reasonable
\begin{tabular}{|l|l|l|l|}
\hline Stock & Official landings & MF database landings & Percentage \\
\hline Cod 3an, 4, 7d & 34105 & 31246 & \(92 \%\) \\
\hline Haddock 3a, 4 & 44262 & 43661 & \(99 \%\) \\
\hline Plaice 3a & 8843 & 7256 & \(82 \%\) \\
\hline Plaice 4 & 65688 & 66492 & \(101 \%\) \\
\hline Plaice 7d & 4537 & 3386 & \(75 \%\) \\
\hline Saithe 3a, 4, 6a & 110518 & 107520 & \(97 \%\) \\
\hline Sole 4 & 16692 & 18008 & \(108 \%\) \\
\hline Whiting 4, 7d & 17817 & 17345 & \(97 \%\) \\
\hline
\end{tabular}

Finally, fishery-disaggregated (but not age-disaggregated) data were also provided for Sole (Division VIId), Nephrops (Sub-Area IV and Division IIIa), Sandeel (Sub-Area IV) and Norway pout (Sub-Area IV).

\footnotetext{
\({ }^{1}\) Mesh size not available
\({ }^{2}\) NL effort is available but has accidentally not been included in the exchange files.
}

\subsection*{14.2.2 Data treatments}

The mandatory SGDFF-formatted landings, discard, numbers and weights at age data submissions by country given in a one-dimensional vector are imported into a SAS data base in a tabular format. The mandatory SGDFF formatted effort data submissions by country are provided and treated similar to the catch data.
The large number of strata (i.e. combinations of "country", "fishery", "area", "quarter", "gear", "mesh size range" and "species") used by the WG resulted in numerous missing entries. The WG implemented a coarse procedure to fill in such missing entries
- Missing discards for a given stratum were estimated by multiplying the landings of that stratum by the ratio of total international discards to total international landings
- Missing landings at age for a given stratum were estimated by multiplying the landings of that stratum by the overall landings at age ogive estimated for the species under consideration
- Missing discards at age for a given stratum were estimated by multiplying the discards of that stratum by the overall discards at age ogive estimated for the species under consideration. The species for which some age-disaggregated information was available were cod, haddock, plaice, saithe, sole and whiting. The selected fishing areas were Sub-Area 4, and Divisions IIIA, IVa and VIId.

\subsection*{14.2.2.1 Results}

The database is now recorded in the WG's directory and some results are presented in Table 14.1. A striking feature is the high level of saithe discards. The general perception is that the Norwegian, French and German vessels, which are the major contributors to the saithe fishery, have discarded relatively few fish in 2003. However, the Scottish have reported substantial amounts of discards. Given that only Scotland provided discards-at-age information for saithe, the discard ogive for the other countries is derived from that of Scotland. The inconsistency generated by this assumption illustrates some limitations of the current interpolation procedure, but it also stresses that countries should be encouraged to provide complete discard information.

\subsection*{14.2.3 Conclusions and recommendations}

The WG has made progress in compiling fishery- and age-disaggregated landings, discards and effort data. Future developments would nevertheless be required to further develop the quality of that database, as detailed below.
- The data coverage is still not comprehensive. This situation could lead to a distortion between calculated landings and/or discards and their perceived level, especially when the major countries contributing to a fishery do not provide appropriate data. The WG recommends that all nations provide the complete agestructured information for the stocks and fisheries they are sampling.
- Missing information was eventually completed with a coarse procedure (missing discard and landing ogives were estimated over all available information) in order to generate the database required by ACFM and others. This procedure is only a first proxy, and any results derived from the current MF database should be interpreted cautiously.
- The WG felt unable to provide an acceptable way to derive catch at age information for those fishing units where information was missing and could not be interpolated using the filter detailed in section 14.2.3.
- The WG endorsed the views of SGDFF04 that current market sampling of all participating nations is undesirably designed to provide stock-based catch at age. The WG strongly recommends that the move towards fishery-based data provision must be accompanied by a reconfiguration of market sampling procedures by national institutes. The WG was of the opinion that the PGCCDBS and the WKSCMFD have the widest expertise to make recommendations on the design of market sampling within the ICES community.
- Mixed-fisheries data were compiled under the SGDFF format during the WG. This task was considered as demanding, given the general overload of the WG. Furthermore, there is a risk of both redundancy and
duplication if individuals compile data and if this task is repeated by those coordinating stock assessments. The WG was therefore of the opinion that such MF data should be compiled under the agreed format prior to the WG. The MF database could then be used to provide input data not only to MF forecasts, but also to stock assessments.
- The WG suggested that current assessment working groups could be restructured to accommodate more fully the fishery interactions. This could involve for example to create a permanent ICES fishery-based forecast group.

Table 14.1. Summary of the raw and estimated MF data.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Stocks & Official landings & \[
\begin{aligned}
& \text { MF database } \\
& \text { landings }
\end{aligned}
\] & Landings (t) by fleets with total discard information available & Landings (t) by fleets with landings at age ogive available & Landings (t) by fleets with discards at age ogive available & Estimated total discard \\
\hline Cod 3an, 4, 7d & 34105 & 31246 & 8651 & 2031 & 116 & 1492 \\
\hline Haddock 3a, 4 & 44262 & 43661 & 31852 & 2616 & 971 & 19542 \\
\hline Plaice 3a & 8843 & 7256 & 88 & 878 & 25 & 3679 \\
\hline Plaice 4 & 65688 & 66492 & 29722 & 3728 & 5148 & 25945 \\
\hline Plaice 7d & 4537 & 3386 & 0 & 73 & 0 & 499 \\
\hline Saithe 3a, 4, 6a & 110518 & 107520 & 7195 & 2404 & 329 & 6575 \\
\hline Sole 4 & 16692 & 18008 & 13506 & 1037 & 307 & 1552 \\
\hline Whiting 4, 7d & 17817 & 17345 & 5698 & 1131 & 387 & 7658 \\
\hline
\end{tabular}

\section*{15 THE INTEGRATED APPROACH}

In conjunction with client commissions, ICES are moving towards a new system whereby advice from traditionally disaparate areas is to be combined. The intention is that this integrated approach will combine the separate outputs from ACFM, ACE and ACME into one overall body of advice. This theme was developed by Jake Rice (chair of the Consultative Committee) in an recent letter to all chairs of ICES Working Groups and Study Groups. ICES are intending to augment the ToRs of assessment (and other) Working Groups to attempt to encourage more efficient working practices in pursuit of the integrated approach. Chairs were asked to pose the following question to their Groups: "What do we need to augment our advice to fisheries (and other) managers on the effects of the environment on their fisheries, or the effects of their fisheries on the ecosystem?"

The WG included two plenary sessions on this issue during the meeting. The first introduced the issue to the WG in general terms. The second centred on a presentation by Einar Svendsen (IMR Norway), chair of the Oceanography Committee, on the integrated approach in general, and some possible uses of oceanographic and ecosystem models currently under development in Bergen and elsewhere. The overall conclusion of the WG was that we needed to encourage environmental scientists and ecosystem modellers to become more involved in the annual round of assessments, for without this involvement it is hard to see how the integrated approach will ever become reality. Members of assessments WGs simply do not have the time, either at their meetings or intersessionally, to consider adequately environmental effects on fisheries, or fishery effects on ecosystems.
The sort of questions that we need to ask of the environmental science community might include:
- Given current and projected environmental conditions, is the aim of trying to achieve precautionary biomass levels realistic?
- Can information on hydrography and primary production help us to answer questions on sandeel biology and ecology? This is particularly important now when the North Sea sandeel stock abundance is estimated to be very low.
- Are apparent shifts in recruitment "regimes" caused by actual changes in productivity (survival of juveniles), or by reduced numbers of spawners?
Process models and data on environmental influences may be particularly useful for stocks that recruit to the fishery at ages older than one year. In these cases there is a lag between hatching and recruitment during which environmental conditions can be measured, which may lead to improved estimates of year-class strength. Shorter time-scales may also be useful: Einar Svendsen highlighted the example of the strong linkage between Atlantic water in \(\mathbf{F}_{\text {low }}\) to the North Sea, and horse mackerel recruitment. On the other hand there is the case of Bay of Biscay anchovy, for which an upwelling index (with a strong historical relationship to recruitment) was used to forecast recruitment in the exact year that the relationship failed.

The view of the WG was that the integrated approach was a valid idea to promote, but that the ability of assessment WGs to address these issues was limited by their current membership. WG practice would have to change considerably for the integrated approach to become a reality. There are also some dangers to be aware of: complex models do not always improve understanding of natural systems, some current models are far more complicated that justified by the quality of the data to which they are fitted, and correlational analyses without good hypotheses of causation are unlikely to be reliable. However, although there are problems, there is also a clear requirement for assessment WGs to evolve to fit the new focus. One possible model is that of the NAFO scientific meeting, at which environmental scientists present information to stock assessors to help them in their deliberations. Such integration would necessarily require a reduction in the time available for the type of population analysis done currently. There would have to be a tradeoff between integration, the ability to carry out in-depth analyses of stocks, and the time available.

\section*{Appendix 1: Discard reconstruction of North Sea plaice}

The approach builds on the concept that during its life a cohort will grow through the discard size range. Dependent on the growth rate of plaice, mesh size, minimum landing size, and the availability of the fish to the fishery, the cohort size distribution may be broken up in different components: fish that are unavailable or escape through the meshes; undersized-fish that are retained in the cod-end; and markeTable fish that are retained in the cod-end (Figure 1). To reconstruct the number of plaice discards at age, catch numbers at age are calculated from corrected levels of fishing mortality at age, using a reconstructed population and selection and distribution ogives. This method is a further development of the approach of Casey (1996), and is a follow up of earlier work on the effects of area closures on the exploitation (ICES, 1987; Rijnsdorp \& Van Beek, 1991).


Figure 1. Factors determining the proportion of the population that will be retained in the cod-end and will be landed by the fishery (upper panel) and the resulting size distributions of the discarded and landed fraction. The heavy line in the bottom panel shows the reconstructed length distribution of the cohort.

Following the analysis of Rijnsdorp et al. (2004), the mean length of age groups \(1-6\) were estimated using a GLM model of the length at age ( Li ) estimated in surveys (SNS and BTS survey) and otolith back-calculations. The model was estimated for each age separately:
\(L i=\) Year + Survey \(+\square\)
The class variable Year extracts the signal of inter-annual variations in length at age, whereas the class variable Survey estimates the differences in length observed between surveys. Differences in length estimates between the surveys do occur due to differences in timing (BTS: August-September; SNS: September-October) and differences in survey area. The otolith back-calculation time series comprise of female data only and will give higher length at age estimates for older age groups ( 2 plus) because of the sexual dimorphism in growth. With the fitted model, the length at age was predicted for the BTS survey for the whole time period (Figure 2), as the BTS length will most closely match the mean length of the population during the year. Length distributions (proportion of a length class at age) were modeled as a normal distribution with the mean length at age from the above analysis and the average coefficient of variation (9\%) observed in the BTS survey.


Figure 2. Variations in the mean length at age in summer as estimated from the BTS and SNS surveys and the time series of otolith back-calculations.

The mesh selection and sorting ogives were assumed to be constant throughout the time period and corresponds to a selection factor of 2.2 , a selection range of 3 cm , a cod end mesh of 80 mm and a minimum landing size of 27 cm .

The availability curves were estimated from survey data for individual years assuming that only those size classes that occur outside the coastal zone ( 12 nm zone and since 1989 the plaice box) are available to the fisheries. The availability was estimated for each cm-class as the proportion of the population numbers outside the coastal zone of the area between \(52^{\circ} \mathrm{N}-55^{\circ} 30^{\prime} \mathrm{N}\) and east of \(3^{\circ} \mathrm{E}\). The population numbers were estimated as the sum of the catch rates per stratum (ICES rectangle) times the surface area of the stratum. In the next step a logistic regression was calculated over the proportion of fish outside the coastal waters per cm-class. In order to smooth the relationships, the availability ogive was estimated from the pooled survey data of the year (i) and two neighbouring years ( \(\mathrm{i}-1, \mathrm{i}+1\) ), analogous to a threeyear running mean. Availability ogives were thus estimated for individual years since 1980. For the period 1957 - 1979, a mean availability ogive was used based on the survey data from 1970-1979. With these regressions, the proportions availability were estimated for the size range up to 30 cm , and rescaled to an availability of 1 for 30 cm fish (Figure 3).


Figure 3. Variation in the availability ogives for different years illustrating the effect of changes in distribution pattern of plaice and the establishment of the plaice box in 1989.

The proportion of the population at age available at the fishing ground and retained in the net (Figure 4) was calculated from the proportion of a length class at age using the mesh selection ogive and the availability ogives. This proportion was divided into a discarded and a landed part (Figure 5). The level of fishing mortality on the pre-recruit age groups 1-4 was set relative to the level of mean F on the ages 5 and 6 , since these age groups are almost completely recruited to the fishery. For these age groups the F was available from the VPA of landings data and was corrected for
the simulated proportion of discards calculated.


Figure 4. Proportion of the population by age retained by the cod-end and available on the fishing grounds.


Figure 5. Proportion of the catch by age that is landed.
Stock numbers at age were calculated using the newly calculated F's. However for this calculation procedure the stock numbers in the final year for ages 1-6, from which population numbers at younger ages in earlier years are calculated, were missing. For ages 1-4 the stock numbers in the final year were estimated using RCT3, and were taken from the VPA of landings data for ages 5-6. The population numbers at age were calculated backwards from the stock numbers in the final year or from stock numbers at age 7 in earlier years:
\(N_{i-1}=N_{i} *^{(M+F)}\)
Catch numbers at age including discards were calculated using the newly calculated population numbers and F at age:
\(C_{i}=F /(F+M) * N_{i}-N_{i+1}\)
Discards numbers at age were calculated by subtracting landings numbers at age from the newly calculated catch numbers at age. Discard percentages by number compared to the catch from this reconstruction for 1957-1998 are presented in Figure 6.


Figure 6. North Sea plaice. Discard percentage by year estimated from the discards numbers over all ages divided by the catch numbers over all ages (simulated), compared to observations from the Dutch discard sampling program (Van Beek, 1998; Van Keeken et al. 2004).

\section*{Appendix 2: Recruitment estimates, predictions and biological reference points for an assessment without discards}

\section*{Recruitment estimates}

Input to the RCT3 analysis is presented in Table 9.5.1b. Results for age 1 and 2 are presented in Table 9.5.2b and 9.5.3b respectively. The geometric mean (GM) recruitment is 388 million and the arithmetic mean is 427 million.

The 2002 year-class in 2004 (at age 2) is estimated at 107 million in XSA and 210 in RCT3. All indices estimate this year-class to be below average ( 350 million), and the RCT3 estimate was used for further analysis.

The 2003 year-class in 2004 (at age 1) is poorly estimated by the RCT3 analysis (only one survey index available).
The long term GM for this year-class was used for further analysis.
For the 2004 and subsequent year-classes, the long term GM was used as there were no RCT3 estimates.
The text Table below summarises the year-class strength estimates.
\begin{tabular}{llllll}
\hline Yearclass & At age in 2004 & XSA & RCT3 & GM 57-01 & Accepted estimate \\
\hline \(\mathbf{2 0 0 2}\) & 2 & 107002 & \(\mathbf{2 1 0 2 3 3}\) & 350452 & RCT3 \\
\(\mathbf{2 0 0 3}\) & 1 & - & 412008 & \(\mathbf{3 8 8 1 6 4}\) & GM 1957-2001 \\
\(\mathbf{2 0 0 4}\) \& subsequent & Recruits & - & & \(\mathbf{3 8 8 1 6 4}\) & GM 1957-2001 \\
\hline
\end{tabular}

\section*{Short term prognoses}

The input for the short term prognoses is given in Table 9.7.1b, the management option Table is presented in Table 9.7.2b. F in 2004 is set at the status quo level. The detailed Table for F status quo is given in Table 9.7.3b. At status quo fishing mortality in 2004 and 2005 the SSB is expected to be at around 175,000 tonnes in 2005 and 173,000 tonnes in 2006.

The yield at status quo \(F\) is expected to be at 80,000 tonnes in 2004. The landings in 2005 are predicted to be around 77,000 tonnes at status quo \(F\).

A sensitivity analysis has been carried out to identify the different sources of uncertainty underlying the predictions and is presented in Figure 9.7.2b.

The probability profiles relative to the short term forecast is given in Figure 9.7.3b. At the current yield of around 66,000 tonnes, the probability that \(F\) is higher that \(\mathbf{F}_{\text {sq }}\) is around \(20 \%\). The probability that SSB will stay below 210,000 tonnes is predicted to be about \(90 \%\).

\section*{Medium term prognoses}

Figure 9.8.1b shows the stock-recruitment fit and the medium term forecasts at \(\mathbf{F}_{\text {sq }}\). There is a high probability ( \(>90 \%\) ) that the SSB remains under 240,000 tonnes over the medium time period.

Figure 9.8 .2 b shows the probability of SSB to remain below 300,000 tonnes over the next 10 years with discards included. At \(\mathrm{F}=0.3\), the probability of remaining below 300,000 tonnes is around \(40 \%\) in 2013.

\section*{Long term prognoses}

The results show that the maximum human consumption yield calculated is around \(90,000 \mathrm{t}\) (Figure 9.9.1b) and can be reached at \(\mathrm{F}=0.27\) (Figure 9.9.2b).

\section*{Biological reference points}

The estimated biological reference points are presented in Table 9.10.1b and Figure 9.10.1b.
\(\mathbf{B}_{\text {loss }}\) (SSB in 1997) is now estimated to be 134200 tonnes, whereas in last year's assessment it was estimated at 134 383 tonnes.
\(\mathbf{F}_{\text {max }}\) is revised upwards from 0.23 to \(0.27 . \mathbf{F}_{\text {med }}\) is revised downwards from 0.33 to \(0.32 . \mathbf{F}_{\text {high }}\) is revised upwards from 0.53 to 0.58 .

Table 9.5.1b. North Sea plaice. Inputs to RCT3 analysis, no discards included.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 'yc' & 'VPA-1' & 'VPA-2' & 'SNS-0' & 'SNS-1' & 'SNS-2' & 'SNS-3' & 'SNS-4' & 'BTS-1' & 'BTS-2' & 'BTS-3' & 'BTS-4' & \[
\begin{gathered}
\text { 'comb } \\
\text { DFS/YFS } \\
0 \text { ' }
\end{gathered}
\] & 'comb DFS/YFS\(1^{\prime}\) \\
\hline 1967 & 237191 & 214619 & -11 & -11 & -11 & 2813 & 156 & -11 & -11 & -11 & -11 & -11 & -11 \\
\hline 1968 & 319312 & 288923 & -11 & -11 & 9450 & 1008 & 70 & -11 & -11 & -11 & -11 & -11 & -11 \\
\hline 1969 & 363584 & 328912 & -11 & 8032 & 23848 & 4484 & 795 & -11 & -11 & -11 & -11 & -11 & -11 \\
\hline 1970 & 267735 & 242239 & 3678 & 18101 & 9584 & 1631 & 258 & -11 & -11 & -11 & -11 & -11 & -11 \\
\hline 1971 & 224206 & 200746 & 6705 & 6437 & 4191 & 1261 & 33 & -11 & -11 & -11 & -11 & -11 & -11 \\
\hline 1972 & 531150 & 479398 & 9242 & 57238 & 17985 & 10744 & 185 & -11 & -11 & -11 & -11 & -11 & -11 \\
\hline 1973 & 447146 & 402480 & 5451 & 15648 & 9171 & 791 & 591 & -11 & -11 & -11 & -11 & -11 & -11 \\
\hline 1974 & 327713 & 295593 & 2193 & 9781 & 2274 & 1720 & 136 & -11 & -11 & -11 & -11 & -11 & -11 \\
\hline 1975 & 317705 & 284789 & 1151 & 9037 & 2900 & 435 & 159 & -11 & -11 & -11 & -11 & -11 & -11 \\
\hline 1976 & 463106 & 415973 & 11544 & 19119 & 12714 & 1577 & 110 & -11 & -11 & -11 & -11 & -11 & -11 \\
\hline 1977 & 420668 & 379549 & 4378 & 13924 & 9540 & 456 & 34 & -11 & -11 & -11 & -11 & -11 & -11 \\
\hline 1978 & 435425 & 392735 & 3252 & 21681 & 12084 & 785 & 93 & -11 & -11 & -11 & -11 & -11 & -11 \\
\hline 1979 & 654712 & 591477 & 27835 & 58049 & 16106 & 1146 & 78 & -11 & -11 & -11 & -11 & -11 & -11 \\
\hline 1980 & 417218 & 377274 & 4039 & 19611 & 8503 & 308 & 16 & -11 & -11 & -11 & -11 & -11 & -11 \\
\hline 1981 & 1021353 & 920987 & 31542 & 70108 & 14708 & 2480 & 351 & -11 & -11 & -11 & 12 & 634 & 287 \\
\hline 1982 & 582671 & 526068 & 23987 & 34884 & 10413 & 1584 & 145 & -11 & -11 & 39 & 9 & 457 & 160 \\
\hline 1983 & 600866 & 543584 & 36722 & 44667 & 13789 & 1155 & 198 & -11 & 180 & 51 & 5 & 432 & 117 \\
\hline 1984 & 523565 & 473626 & 7958 & 27832 & 7558 & 1232 & 1357 & 116 & 132 & 33 & 9 & 263 & 101 \\
\hline 1985 & 1247428 & 1127127 & 47385 & 93573 & 33021 & 13140 & 4034 & 660 & 764 & 174 & 47 & 718 & 269 \\
\hline 1986 & 539766 & 488401 & 8818 & 33426 & 14429 & 3709 & 828 & 226 & 140 & 39 & 23 & 345 & 189 \\
\hline 1987 & 560481 & 507145 & 21270 & 36672 & 14952 & 3248 & 1161 & 577 & 319 & 56 & 12 & 465 & 105 \\
\hline 1988 & 403903 & 364267 & 15598 & 37238 & 7287 & 1507 & 612 & 429 & 103 & 29 & 6 & 331 & 135 \\
\hline 1989 & 392584 & 353750 & 24198 & 24903 & 11149 & 2257 & 98 & 112 & 122 & 27 & 6 & 463 & 129 \\
\hline 1990 & 399309 & 359920 & 9559 & 57349 & 13742 & 988 & 78 & 185 & 126 & 38 & 11 & 468 & 151 \\
\hline 1991 & 401054 & 359645 & 17120 & 48223 & 9484 & 884 & 96 & 172 & 179 & 35 & 8 & 496 & 131 \\
\hline 1992 & 285642 & 255167 & 5398 & 22184 & 4866 & 415 & 42 & 125 & 64 & 14 & 5 & 357 & 74 \\
\hline 1993 & 239160 & 215075 & 9226 & 18225 & 2786 & 1189 & 34 & 145 & 44 & 23 & 3 & 263 & 31 \\
\hline 1994 & 322002 & 283986 & 27901 & 24900 & 10377 & 1393 & 41 & 252 & 212 & 20 & 9 & 445 & 38 \\
\hline 1995 & 249542 & 224745 & 13029 & 24663 & -11 & 5739 & 1040 & 218 & -11 & 47 & 4 & 184 & 117 \\
\hline 1996 & 749963 & 677746 & 91713 & -11 & 29431 & 14347 & 982 & -11 & 436 & 183 & 24 & 572 & 153 \\
\hline 1997 & 255267 & 230789 & 15363 & 33391 & 9235 & 905 & 196 & 338 & 130 & 32 & 10 & 157 & -11 \\
\hline 1998 & 249774 & 225483 & 22720 & 35188 & 2489 & 356 & 58 & 305 & 75 & 20 & 6 & -11 & -11 \\
\hline 1999 & 271104 & 242800 & 39201 & 23028 & 2416 & 263 & -11 & 279 & 79 & 15 & 6 & -11 & 14 \\
\hline 2000 & -11 & -11 & 24185 & 10193 & 1047 & -11 & -11 & 226 & 45 & 11 & -11 & 185 & 5 \\
\hline 2001 & -11 & -11 & 101291 & 30265 & -11 & -11 & -11 & 569 & 170 & -11 & -11 & 500 & 19 \\
\hline 2002 & -11 & -11 & 29905 & -11 & -11 & -11 & -11 & 126 & -11 & -11 & -11 & 213 & 11 \\
\hline 2003 & -11 & -11 & -11 & -11 & -11 & -11 & -11 & -11 & -11 & -11 & -11 & 363 & -11 \\
\hline
\end{tabular}

Table 9.5.2b. North Sea plaice. RCT3 output for 1 year olds, no discards included.
```

Analysis by RCT3 ver3.1 of data from file :

```
p4rct1.csv
Plaice North Sea - 1-Y-Rcr., ,, ,',, ,',,
Data for 11 surveys over 37 years : 1967 - 2003
Regression type \(=C\)
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass \(=2000\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Survey/ \\
Series
\end{tabular} & Slope & \[
\begin{gathered}
\text { Inter- } \\
\text { cept }
\end{gathered}
\] & \begin{tabular}{l}
Std \\
Error
\end{tabular} & Rsquare & \begin{tabular}{l}
No. \\
Pts
\end{tabular} & \begin{tabular}{l}
Index \\
Value
\end{tabular} & Predicted Value & Std Error & \begin{tabular}{l}
WAP \\
Weights
\end{tabular} \\
\hline SNS-0 & . 96 & 3.95 & . 87 & . 200 & 30 & 10.09 & 13.63 & . 922 & . 031 \\
\hline SNS-1 & 1.00 & 2.80 & . 51 & . 405 & 30 & 9.23 & 11.99 & . 554 & . 086 \\
\hline SNS-2 & . 79 & 5.74 & . 39 & . 536 & 31 & 6.95 & 11.24 & . 467 & . 121 \\
\hline \multicolumn{10}{|l|}{SNS-3} \\
\hline \multicolumn{10}{|l|}{SNS-4} \\
\hline BTS-1 & 1.92 & 2.31 & 1.00 & . 174 & 15 & 5.42 & 12.75 & 1.112 & . 021 \\
\hline BTS-2 & . 73 & 9.31 & . 27 & . 752 & 16 & 3.83 & 12.09 & . 321 & . 256 \\
\hline BTS-3 & . 82 & 9.96 & . 33 & . 662 & 18 & 2.48 & 11.99 & . 390 & . 173 \\
\hline \multicolumn{10}{|l|}{BTS-4} \\
\hline comb D & 1.53 & 3.91 & . 42 & . 579 & 17 & 5.23 & 11.92 & . 503 & . 104 \\
\hline comb D & . 84 & 9.10 & . 45 & . 547 & 17 & 1.79 & 10.62 & . 663 & . 060 \\
\hline & & & & & VPA & Mean \(=\) & 12.91 & . 420 & . 149 \\
\hline
\end{tabular}


Yearclass \(=2002\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Survey/ \\
Series
\end{tabular} & Slope & \[
\begin{aligned}
& \text { Inter- } \\
& \text { cept }
\end{aligned}
\] & \begin{tabular}{l}
Std \\
Error
\end{tabular} & Rsquare & \begin{tabular}{l}
No. \\
Pts
\end{tabular} & \begin{tabular}{l}
Index \\
Value
\end{tabular} & Predicted Value & \begin{tabular}{l}
Std \\
Error
\end{tabular} & \begin{tabular}{l}
WAP \\
Weights
\end{tabular} \\
\hline SNS-0 & . 96 & 3.95 & . 87 & . 200 & 30 & 10.31 & 13.83 & . 927 & . 080 \\
\hline SNS-1 & & & & & & & & & \\
\hline SNS-2 & & & & & & & & & \\
\hline SNS-3 & & & & & & & & & \\
\hline SNS-4 & & & & & & & & & \\
\hline BTS-1 & 1.92 & 2.31 & 1.00 & . 174 & 15 & 4.84 & 11.63 & 1.160 & . 051 \\
\hline BTS-2 & & & & & & & & & \\
\hline BTS-3 & & & & & & & & & \\
\hline BTS-4 & & & & & & & & & \\
\hline comb D & 1.53 & 3.91 & . 42 & . 579 & 17 & 5.37 & 12.13 & . 489 & . 287 \\
\hline comb D & . 84 & 9.10 & . 45 & . 547 & 17 & 2.48 & 11.20 & . 595 & . 194 \\
\hline & & & & & VPA & Mean \(=\) & 12.91 & . 420 & . 389 \\
\hline
\end{tabular}

\footnotetext{
Yearclass \(=2003\)
}


Table 9.5.3b. North Sea plaice. RCT3 output for 2 year olds, no discards included.




\footnotetext{
Yearclass \(=2003\)

}


Table 9.7.1b. North Sea plaice. Short term forecast input data, no discards included.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Label & Value & CV & Label & Value & CV \\
\hline Number & age & & Weight & the st & \\
\hline N1 & 388165 & 0.42 & WS1 & 0.12 & 0.00 \\
\hline N2 & 210233 & 0.56 & WS2 & 0.22 & 0.03 \\
\hline N3 & 386227 & 0.19 & WS3 & 0.25 & 0.02 \\
\hline N4 & 70335 & 0.21 & WS4 & 0.29 & 0.04 \\
\hline N5 & 55266 & 0.14 & WS5 & 0.34 & 0.02 \\
\hline N6 & 31699 & 0.13 & WS6 & 0.43 & 0.07 \\
\hline N7 & 22324 & 0.13 & WS7 & 0.50 & 0.11 \\
\hline N8 & 20272 & 0.17 & WS8 & 0.63 & 0.04 \\
\hline N9 & 2639 & 0.19 & WS9 & 0.74 & 0.07 \\
\hline N10 & 4828 & 0.18 & WS10 & 0.84 & 0.07 \\
\hline \multicolumn{3}{|l|}{H.cons selectivity} & \multicolumn{3}{|l|}{Weight in the HC catch} \\
\hline sH1 & 0.01 & 1.14 & WH1 & 0.24 & 0.01 \\
\hline sH2 & 0.13 & 0.34 & WH2 & 0.26 & 0.03 \\
\hline sH3 & 0.43 & 0.15 & WH3 & 0.29 & 0.01 \\
\hline sH4 & 0.55 & 0.13 & WH4 & 0.32 & 0.03 \\
\hline sH5 & 0.65 & 0.13 & WH5 & 0.36 & 0.03 \\
\hline sH6 & 0.57 & 0.12 & WH6 & 0.45 & 0.08 \\
\hline sH7 & 0.64 & 0.07 & WH7 & 0.53 & 0.10 \\
\hline sH8 & 0.43 & 0.13 & WH8 & 0.69 & 0.04 \\
\hline sH9 & 0.32 & 0.17 & WH9 & 0.77 & 0.02 \\
\hline sH10 & 0.32 & 0.17 & WH10 & 0.85 & 0.06 \\
\hline \multicolumn{3}{|l|}{Natural mortality} & \multicolumn{3}{|l|}{Proportion mature} \\
\hline M1 & 0.10 & 0.10 & MT1 & 0.00 & 0.10 \\
\hline M2 & 0.10 & 0.10 & MT2 & 0.50 & 0.10 \\
\hline M3 & 0.10 & 0.10 & MT3 & 0.50 & 0.10 \\
\hline M4 & 0.10 & 0.10 & MT4 & 1.00 & 0.10 \\
\hline M5 & 0.10 & 0.10 & MT5 & 1.00 & 0.00 \\
\hline M6 & 0.10 & 0.10 & MT6 & 1.00 & 0.00 \\
\hline M7 & 0.10 & 0.10 & MT7 & 1.00 & 0.00 \\
\hline M8 & 0.10 & 0.10 & MT8 & 1.00 & 0.00 \\
\hline M9 & 0.10 & 0.10 & MT9 & 1.00 & 0.00 \\
\hline M10 & 0.10 & 0.10 & MT10 & 1.00 & 0.00 \\
\hline \multicolumn{3}{|l|}{Relative effort} & \multicolumn{3}{|l|}{Year effect for natural mortality} \\
\hline \multicolumn{3}{|l|}{in HC fishery} & & & \\
\hline HFO4 & 1.00 & 0.04 & K04 & 1.00 & 0.10 \\
\hline HF05 & 1.00 & 0.04 & K05 & 1.00 & 0.10 \\
\hline HF0 6 & 1.00 & 0.04 & K06 & 1.00 & 0.10 \\
\hline \multicolumn{6}{|l|}{Recruitment in 2005 and 2006} \\
\hline R05 & 388165 & 0.42 & & & \\
\hline R06 & 388165 & 0.42 & & & \\
\hline
\end{tabular}

\footnotetext{
Proportion of \(F\) before spawning \(=.00\)
Proportion of M before spawning \(=.00\)
Stock numbers in 2004 are VPA survivors.
These are overwritten at Age 2
}

Data from

Table 9.7.2b. North Sea plaice. Management option table, no discards included.
Table \(\qquad\) .plaice,North Sea - no disca Catch forecast output and estimates of coefficient of variation (CV) from linear analysis.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{8}{|c|}{Year} \\
\hline & 2004 & \multicolumn{7}{|c|}{2005} \\
\hline Effort relative to 2003 H.cons & 1.00 & 0.00 & 0.20 & 0.40 & 0.64 & 0.80 & 1.00 & 1.20 \\
\hline \multicolumn{9}{|l|}{Est. Coeff. of Variation} \\
\hline \multicolumn{9}{|l|}{Biomass} \\
\hline Total 1 January & 0.14 & 0.17 & 0.17 & 0.17 & 0.17 & 0.17 & 0.17 & 0.17 \\
\hline SSB at spawning time & 0.12 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 \\
\hline \multicolumn{9}{|l|}{Catch weight} \\
\hline H.cons & 0.13 & 0.00 & 0.25 & 0.18 & 0.17 & 0.16 & 0.16 & 0.16 \\
\hline Biomass in year.... 2006 & & & & & & & & \\
\hline Total 1 January & & 0.16 & 0.16 & 0.16 & 0.17 & 0.17 & 0.17 & 0.18 \\
\hline SSB at spawning time & & 0.15 & 0.16 & 0.16 & 0.16 & 0.17 & 0.17 & 0.17 \\
\hline
\end{tabular}

Table 9.7.3b. North Sea plaice. Detailed forecast table, no discards included.

Table \(\qquad\) .plaice,North Sea - no disca Detailed forecast tables.

Forecast for year 2004
F multiplier H.cons=1.00


Forecast for year 2005
F multiplier H.cons=1.00


Table 9.10.1b. North Sea plaice. Biological reference points, no discards included.
\begin{tabular}{l|ccccc} 
Reference point & Deterministic & Median & 75th percentile & 95th percentile & Hist SSB < ref pt \% \\
\hline MedianRecruits & 381000 & 381000 & 401000 & 404650 & \\
MBAL & 0 & & & & 0.00 \\
\(\mathbf{B}_{\text {loss }}\) & 134200 & & & & \\
SSB90\%R90\%Surv & 255524 & 284973 & 307737 & 337022 & 23.40 \\
SPR\%ofVirgin & 9.28 & 9.20 & 9.97 & 11.84 & \\
VirginSPR & 5.40 & 5.35 & 5.92 & 7.22 & \\
SPRloss & 0.59 & 0.54 & 0.59 & 0.65 & \\
& & & & & \\
& Deterministic & Median & \(\mathbf{2 5 t h}\) percentile & \(\mathbf{5 t h}\) percentile & Hist F > ref pt \% \\
\hline FBar & 0.46 & 0.46 & 0.45 & 0.42 & 36.17 \\
\(\mathbf{F}_{\text {max }}\) & 0.27 & 0.28 & 0.25 & 0.22 & 76.60 \\
\(\mathbf{F}_{0.1}\) & 0.13 & 0.13 & 0.12 & 0.10 & 100.00 \\
\(\mathbf{F}_{\text {low }}\) & 0.19 & 0.20 & 0.19 & 0.18 & 100.00 \\
\(\mathbf{F}_{\text {med }}\) & 0.32 & 0.31 & 0.29 & 0.26 & 68.09 \\
\(\mathbf{F}_{\text {high }}\) & 0.58 & 0.59 & 0.49 & 0.44 & 6.38 \\
F35\%SPR & 0.12 & 0.12 & 0.11 & 0.10 & 100.00 \\
\(\mathbf{F}_{\text {loss }}\) & 0.40 & 0.43 & 0.40 & 0.37 & 57.45
\end{tabular}

\section*{For estimation of Gloss and \(\mathbf{F}_{\text {loss }}\) :}

A LOWESS smoother with a span of 1 was used.
Stock recruit data were log-transformed
A point representing the origin was included in the stock recruit data.
For estimation of the stock recruitment relationship used in equilibrium calculations:
A LOWESS smoother with a span of 1 was used.
Stock recruit data were log-transformed
A point representing the origin was included in the stock recruit data.
North Sea - no disca plaice
Steady state selection provided as input
FBar averaged from age 2 to 6
Number of iterations \(=100\)
Random number seed \(=-99\)
Stock recruitment data Monte Carloed using residuals from the equilibrium LOWESS fit
Data source:
D:\Groups\Working_groups\WGNSSK\2004\at_wg\ple\longterm\without_discards\PLE_NOD.SEN
D:\Groups\Working_groups\WGNSSK\2004\at_wg\ple\longterm\without_discards\PLE_NOD.SUM
FishLab DLL used FLVB32.DLL built on Jun 141999 at 11:53:37
PASoft 4 October 1999 14/09/2004 13:28:59

Figure 9.7.1b. North Sea plaice. Short term forecast, no discards included.
Plaice in IV - no discards. Short term forecast


Fishing mortality ( 2-6)
- Yield 2005

Data from file:C:ICLARA\TEMP3\PLE_NOD.SEN on 14/09/2004 at 19:20:24
Figure 9.7.2b. North Sea plaice. Sensitivity analysis of the short term forecast, no discards included.

Plaice in IV - no discards. Sensitivity analysis of short term forecast.


Figure 9.7.3b. North Sea plaice. Probability profiles for short term forecast, no discards included.
plaice,North Sea - no discards. Probability profiles for short term forecast.



Figure 9.8.1b. North Sea Plaice. Medium term analysis, no discards included.


Figure 9.8.2b. North Sea plaice. Summary of medium-term analysis, no discards included. Contours show the probability that SSB will be below \(\mathbf{B}_{\mathrm{pa}}\) for any combination of year and fishing mortality.


Figure 9.9.1b. North Sea plaice. Long term yield, no discards included.
NS Plaice Total Yield


Figure 9.9.2b. North Sea plaice. Long term yield and stock recruitment, no discards included.



Figure 9.10.1b. North Sea plaice. Biological reference points, no discards included.


\section*{Appendix 3: Precautionary reference points}

\section*{Background}

The ICES approach is that in order to have stocks and fisheries within safe biological limits, the probability should be high that
1. the spawning stock biomass (SSB) is above a limit value (called \(\mathbf{B}_{\mathrm{lim}}\) ) below which recruitment (R) becomes impaired or the dynamics of the stock are unknown, and
2. the fishing mortality \((\mathrm{F})\) is below a limit value (called \(\mathbf{F}_{\text {lim }}\) ) that will drive the spawning stock to that biomass limit \(\mathbf{B}_{\text {lim }}\).

Because of uncertainty in the annual estimation of SSB and F, ICES defines the more conservative operational reference points, \(\mathbf{B}_{\mathrm{pa}}\) and \(\mathbf{F}_{\mathrm{pa}}\) (the subscripts pa stand for precautionary approach). When a stock is estimated to be at \(\mathbf{B}_{\mathrm{pa}}\) the probability should be high that in reality it is above \(\mathbf{B}_{\mathrm{lim}}\). Similarly, when F is estimated to be at \(\mathbf{F}_{\mathrm{pa}}\) the probability should be high that in reality it is below \(\mathbf{F}_{\text {lim }}\). In other words, if the assessed F is at or below \(\mathbf{F}_{\mathrm{pa}}\), the risk is low - taking assessment uncertainty into account - that the real exploitation will lead to impaired recruitment. Thus \(\mathbf{B}_{\mathrm{pa}}\) and \(\mathbf{F}_{\mathrm{pa}}\) are operational values that ensure with high probability that exploitation is sustainable.

The values of \(\mathbf{B}_{\mathrm{lim}}, \mathbf{F}_{\text {lim }}, \mathbf{B}_{\mathrm{pa}}\), and \(\mathbf{F}_{\mathrm{pa}}\) are estimated based on the history of the stock and the fishery. \(\mathbf{B}_{\mathrm{lim}}\) and \(\mathbf{F}_{\text {lim }}\) may be considered estimates of properties of nature, reflecting the reproductive capacity of a fish stock under the current natural regime. The distances between \(\mathbf{B}_{\mathrm{lim}}\) and \(\mathbf{B}_{\mathrm{pa}}\) and between \(\mathbf{F}_{\text {lim }}\) and \(\mathbf{F}_{\mathrm{pa}}\) reflect our ability to measure the present SSB and F , and are thus related to data quality, estimation methodology, and the perception of accepTable risk.

\section*{Determination of reference points}

From the above it can be understood that \(\mathbf{B}_{\text {lim }}\) has to be defined first, because \(\mathbf{F}_{\text {lim }}\) is defined with reference to \(\mathbf{B}_{\text {lim }}, \mathbf{B}_{\mathrm{pa}}\) with reference to \(\mathbf{B}_{\mathrm{lim}}\), and \(\mathbf{F}_{\mathrm{pa}}\) with reference to \(\mathbf{F}_{\text {lim }}\).
\(\mathbf{B}_{\text {lim }}\) can be defined after inspection of the R-SSB plot. If an SSB has been observed below which recruitment is impaired, this SSB should be taken as the value of \(\mathbf{B}_{\text {lim }}\). If no SSB has been observed below which recruitment is impaired, the lowest observed value of SSB \(\left(\mathbf{B}_{\text {loss }}\right)\) should be taken as the value of \(\mathbf{B}_{\text {lim }}\) (as the SSB below which the dynamics of the stock are unknown). \(\mathbf{F}_{\text {lim }}\) should be estimated by measuring the slope of the replacement line at \(\mathbf{B}_{\text {lim }}\), i.e. \(\mathrm{R} / \mathbf{B}_{\mathrm{lim}}\), and calculate the inverse \(\mathbf{B}_{\mathrm{lim}} / \mathrm{R}\). The equivalent fishing mortality derived from a curve of \(\mathrm{SSB} / \mathrm{R}\) against F will therefore be \(\mathbf{F}_{\text {lim }}\). If \(\mathbf{B}_{\text {loss }}\) is used as \(\mathbf{B}_{\text {lim }}\) then \(\mathbf{F}_{\text {loss }}\) should be used as \(\mathbf{F}_{\text {lim }}\). The pa values are determined from the lim values by fixed multipliers (ICES 1997; ICES 1998).

As a method to determine \(\mathbf{B}_{\text {lim }}\) from an R-SSB plot, the SGPA (ICES 2003a) proposed to use the "segmented regression" or "hockey-stick method" (O'Brien \& Maxwell 2002a, 2002b). With this method a breakpoint SSB, labeled \(S^{*}\), can be identified below which recruitment declines linearly to zero at \(\mathrm{SSB}=0\), and above which recruitment is assumed to be independent of SSB

SGPRP (ICES 2003b) classified North Sea plaice as having no S/R signal and a distinct plateau (wide range of SSB), and it was suggested that \(\mathbf{B}_{\text {lim }}\) should be estimated according to standard method. The segmented regression was not significant, and SGPRP requested from the WGNSSK "to evaluate a change in reference points for North Sea plaice based on an updated version of \(\mathbf{B}_{\text {loss }}\) ".

The technical basis and the values of the current reference points for plaice are:
\begin{tabular}{|l|l|l|}
\hline Reference point & Value & Technical basis \\
\hline \(\mathbf{B}_{\text {lim }}\) & \(210,000 \mathrm{t}\) & \(\mathbf{B}_{\text {loss }}\) \\
\hline \(\mathbf{B}_{\mathrm{pa}}\) & \(300,000 \mathrm{t}\) & \(1.43 * \mathbf{B}_{\text {lim }}\) \\
\hline \(\mathbf{F}_{\text {lim }}\) & 0.6 & \(\mathbf{F}_{\text {loss }}\) \\
\hline \(\mathbf{F}_{\mathrm{pa}}\) & 0.3 & \begin{tabular}{l} 
The \(5^{\text {th }}\) percentile of \(\mathbf{F}_{\text {loss }}\) or lower, such that it implies Beq \(>\mathbf{B}_{\mathrm{pa}}\) and a \\
less than \(10 \%\) probability that \(\mathrm{SSB}_{\mathrm{MT}}<\mathbf{B}_{\mathrm{pa}}\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Appendix 4}

\title{
Estimating systematic bias in the North Sea cod landings data
}

\author{
C.D.Darby \\ Centre for Environment, Fisheries and Aquaculture Science \\ Lowestoft Laboratory \\ Pakefield Road \\ Lowestoft \\ Suffolk NR33 0HT \\ England
}

\section*{Introduction}

For many years reported North Sea cod landings have followed the Total Allowable Catch (TAC), which in 2001, 2002 and 2003 implied severe reductions in order to significantly reduce exploitation rates. Assessment models subsequently fitted to the reported landings at age data, estimate that the fishing mortality rate declined strongly in line with the reductions in the TAC.

In contrast, the 2003 Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK) noted that, while decommissioning and effort regulation may have reduced exploitation rates, there have been frequent reports from the fishing industry that the TAC has not limited landings. The WGNSSK concluded that whilst the perception of the low level of current stock biomass is robust to the biased landings data, fishing mortality had not been reduced to the extent estimated. As a direct consequence of the uncertainty in the true level of landings, estimates of the current stock abundance and fishing mortality rate could not be reliably determined and the WGNSSK was unable to provide management advice on the response of the stock to exploitation

Under the management regime adopted for this stock by the European Union and Norway, an inability to provide advice for a stock that is considered to be well below safe Precautionary Approach reference levels, is unacceptable. Therefore, in this paper a model structure that, theoretically, could be used to estimate the bias in reported landings is tested with simulated data to evaluate its potential for recovering unbiased abundance and exploitation rate estimates for the provision of management advice. The model is applied to the North Sea cod assessment data sets in order to determine the level of potential bias in the reported landings from that stock.

\section*{An ADAPT model structure for the estimation of bias in landings data}

In recent years indices of North Sea cod population abundance (N) and fishing mortality (F) calculated from groundfish survey catch per unit effort (cpue) have indicated higher levels of abundance and mortality rates than those estimated by catch at age analysis (ICES WGNSSK 2003). Within the model diagnostics generated from fits of catch at age models to the North Sea cod assessment data, the inconsistencies between the population abundance estimated from the two data sources are apparent in the residuals about the mean of log survey catchability ( \(\mathrm{q}=\mathrm{cpue} / \mathrm{N}\) ). The residuals have been positive in recent years at the majority of ages, a pattern that is consistent across surveys (Figure 1). Although the patterns could result from a variety of causes, for instance, changes in natural mortality, survey catchability or discarding, the most probable cause is bias in the reported landings. Residual patterns that show systematic bias indicate model mis-specification which may be addressed by defining a more appropriate model.

It is straightforward to show that if bias is present in the landings data, the magnitude and sign of the log catchability residuals is proportional to the degree of bias. If \(\mathrm{C}_{(\mathrm{a}, \mathrm{y})}\) represents catch at age a in year \(\mathrm{y}, \mathrm{N}_{(\mathrm{a}, \mathrm{y})}\) population numbers at age by year, \(\mathrm{F}_{(\mathrm{a}, \mathrm{y})}\) fishing mortality at age by year, \(\mathrm{Z}_{(\mathrm{a}, \mathrm{y})}\) total mortality (fishing + natural mortality \((\mathrm{M})\) ) and \(\mathrm{B}_{(\mathrm{y})}\) the bias in year y ; in the years without bias
\[
\begin{equation*}
N_{(a, y)}=C_{(a, y)} Z_{(a, y)}\left(1-\exp \left(-Z_{(a, y)}\right)\right) / F_{(a, y)} \tag{1}
\end{equation*}
\]
and for the years with bias
\[
\begin{equation*}
N^{\prime}{ }_{(a, y)}=B_{(y)} C_{(a, y)} Z_{(a, y)}\left(1-\exp \left(-Z_{(a, y)}\right)\right) / F_{(a, y)} \tag{2}
\end{equation*}
\]

Survey catch per unit effort ( \(\mathrm{u}_{(\mathrm{a}, \mathrm{y}, \mathrm{f})}\), f - fleet or survey) is related to population abundance by a constant of proportionality or catchability \(\left(\mathrm{q}_{(\mathrm{a}, \mathrm{f})}\right)\) which is assumed, in this study, to be constant in time and independent of population abundance
\[
\begin{equation*}
\mathrm{N}_{(\mathrm{a}, \mathrm{y})}=\mathrm{u}_{(\mathrm{a}, \mathrm{y}, \mathrm{f})} / \mathrm{q}_{(\mathrm{y}, \mathrm{f})} \tag{3}
\end{equation*}
\]

If the unbiased survey catchability can be calculated, an estimate of bias can be obtained from
\[
\begin{equation*}
\mathrm{B}_{(\mathrm{y})}=\mathrm{N}_{(\mathrm{a}, \mathrm{y})}^{\prime} /\left(\mathrm{u}_{(\mathrm{a}, \mathrm{y}, \mathrm{f})} / \mathrm{q}_{(\mathrm{y}, \mathrm{f})}\right) \tag{4}
\end{equation*}
\]

Gavaris and Van Eeckhaute (1998) examined the potential for using a relatively simple ADAPT model structure to estimate the bias in declared landings of Georges Bank haddock. Their model fitted a year effect for the bias in landings in each year of the assessment times series under the assumption that landings bias does not distort the age composition only the overall total numbers. The authors determined that the model was over-parameterised and that it was necessary to introduce a constraint, that one year-class abundance was known exactly, in order to estimate the remaining catchability, bias and population abundance parameters. They concluded that, for the data sets to which they applied the model, the indices of abundance from trawl surveys were so highly variable that this resulted in estimates of bias with wide confidence intervals and therefore the model could only be used as a diagnostic tool.

A modification to the Gavaris and Van Eeckhaute ADAPT model can be made by assuming that the time series of landings can be divided into two periods; a historic time series in which landings were relatively unbiased and a recent period during which landings at age were biased by a common factor across all ages.
The fit of the model to the early period of unbiased data provides estimates of appropriately scaled population abundance and survey catchability, thereby removing the indeterminacy noted by Gavaris and Van Eeckhaute.

Note that it is assumed that during both periods, landings numbers at age have relatively low random sampling variability (relative to survey variance) so that the population numbers at age can be determined using the virtual population analysis (VPA) equations. This assumption has been found to hold for the North Sea cod by European Union funded by the EMAS project (EMAS 2001) which examined the errors associated with current sampling programs.

Within the modified ADAPT VPA model population numbers were estimated from the VPA equations
\[
\begin{align*}
& N_{(a, y)}=B_{(y)} C_{(a, y)} Z_{(a, y)}\left(1-\exp \left(-Z_{(a, y)}\right)\right) / F_{(a, y)}  \tag{5}\\
& N_{(a, y)}=N_{(a+1, y+1)} e^{Z(a, y)}
\end{align*}
\]

Where \(B_{(y)}\) was estimated for years in which bias was considered to have occurred and defined as 1.0 for years without bias. Selection was assumed to be flat topped with fishing mortality at the oldest age defined as the scaled (s) arithmetic mean of the estimates from \(n\) younger ages, where \(n\) and \(s\) are user defined. That is for the oldest age o
\[
\begin{equation*}
\mathrm{F}_{(0)}=\mathrm{s}\left[\left(\mathrm{~F}_{(0-1)}+\mathrm{F}_{(0-2)} \ldots . .+\mathrm{F}_{(0-\mathrm{n})}\right] / \mathrm{n}\right. \tag{7}
\end{equation*}
\]

The parameters estimated to fit the population model to the cpue calibration data were the surviving population numbers \(\left(\mathrm{N}_{(\mathrm{a}, \mathrm{fy}}\right)\) at the end of the final assessment year (fy) (estimated for all ages except the oldest) and the bias \(\left(\mathrm{B}_{(\mathrm{y}}\right)\) in each year of the user selected year range. Under the assumption of log normally distributed errors, the least squares objective function for the estimated cpue indices was
\[
\begin{equation*}
\operatorname{SSQvpa}=\Sigma_{\mathrm{a}, \mathrm{y}, \mathrm{f}}\left\{\operatorname{Ln}\left(\mathrm{u}_{(\mathrm{a}, \mathrm{y}, \mathrm{f})}\right)-\left[\operatorname{Ln}\left(\mathrm{q}_{(\mathrm{a}, \mathrm{f})}\right)+\operatorname{Ln}\left(\mathrm{N}_{(\mathrm{a}, \mathrm{y})}\right)\right]\right\}^{2} \tag{8}
\end{equation*}
\]

The year range of the summation extended across all years in the assessment for which catch at age data is available and also (if required) the year after the last catch at age data year. This allows for the inclusion of survey information collected in the year of the assessment working group meeting.

Testing with simulated data (described later) established that increasing the uncertainty in the survey indices results in estimates of bias and the derived fishing mortality that are more variable from year to year. One solution to this problem is to introduce smoothing to the model estimates.

A constraint used frequently in stock assessment models is that of restricting the amount that fishing mortality can vary from year to year. This reflects limitations on the ability of fleets to rapidly increase capacity and the lack of historic effort regulation reducing catching opportunities. However, given the current over-capacity in the fleets prosecuting the North Sea cod fishery this form of smoothing constraint was not considered appropriate.

Anecdotal information supplied by the commercial industry has indicated that the recent severe changes in the TAC have not been adhered to. Therefore it was considered more appropriate to apply smoothing to the total catches, across
the years in which the bias was estimated. Smoothing of catches was introduced by an addition to the objective function sum of squares:
\[
\begin{equation*}
\text { SSQcatches }=\lambda \Sigma\left\{\operatorname{Ln}\left(\mathrm{B}_{(\mathrm{y})} \Sigma_{\mathrm{a}}\left[\mathrm{C}_{(\mathrm{a}, \mathrm{y})} \mathrm{CW}_{(\mathrm{a}, \mathrm{y})}\right]\right)-\operatorname{Ln}\left(\mathrm{B}_{(\mathrm{y}+1)} \Sigma_{\mathrm{a}}\left[\mathrm{C}_{(\mathrm{a}, \mathrm{y}+1)} \mathrm{CW}_{(\mathrm{a}, \mathrm{y}+1)}\right]\right)\right\}^{2} \tag{9}
\end{equation*}
\]
\(\mathrm{CW}_{(\mathrm{a}, \mathrm{y})}\) are the catch weights at age a in year y and natural logarithms were used to provide residuals of equivalent magnitude to those of \(\log\) catchability within SSQvpa. \(\lambda\) is a user defined weight that allowed the effect of the smoothing constraint to be examined. The year range for the summation of the catch smoothing objective function was from the last year of the unbiased catches to the last year of the assessment.

The total objective function used to estimate the model parameters was therefore
SSQ = SSQvpa + SSQcatches

The least squares objective function was mimimised using the NAG Gauss - Newton algorithm with uncertainty estimated using two methods, calculation of the variance covariance matrix and bootstrap re-sampling of the log catchability residuals to provide new cpue indices.

\section*{Simulation testing of the ADAPT model}

A data set derived from a simulated population and fishery was used to test the ADAPT model. The population consisted of 25 years and 15 ages with recruitment generated from a Beverton and Holt stock and recruit model with random noise. The fishery was simulated at constant annual fishing mortality ( 0.5 ) and a constant selection at age pattern throughout the time period used for extracting the fishery test data. Catch data was generated without error and a cpue data series for all ages and years generated with log-normal random noise at a standard error of 0.3 ; similar to the values estimated for the North Sea cod survey indices (ICES WGNSSK 2003).

CPUE data collected from the North Sea survey is available in the year of the assessment (one year after the final catch data year). Therefore in order to test the model with the inclusion of an extra survey year, the ADAPT model was fitted to 24 years of catch at age data and 25 years of survey data from the simulated series. Catch under-reporting biases of \(17,33,0,33,50 \%\) were applied to the catches in years \(20-24\), the multipliers on catch required for recovery of the true landings were therefore \(1.2,1.5,1.0,1.5\) and 2.0.

The ADAPT model was applied to the unbiased data set in order to test its ability to reconstruct the true population values in the absence of bias and then to the biased data sets with and without the smoothing of catches.

\section*{Results of testing with simulated data}

\section*{Unbiased catch data}

The estimates of population abundance and fishing mortality calculated using the unbiased test data set were consistent with the simulated populations. Only minor, unbiased differences between model estimates and true values were recorded. They result from the noise in the simulated cpue series.

\section*{Biased catch data with no catch smoothing, \(\lambda=0.0\)}

Tables 1 and 2 present the parameter estimates, their standard \(\log\) errors and the variance covariance matrix of the parameter estimates. Note that the parameters are estimated on a log scale so that the standard errors are approximate coefficients of variation on the un-transformed scale. Figures \(2-5\) present the bootstrap percentile distributions for total landings, fishing mortality, SSB and bias with the true values and the values estimated without bias correction.

Biased catch data with catch smoothing, \(\lambda=1.0\)
Tables 3 and 4 present the parameter estimates, their standard log errors and the variance covariance matrix of the logarithms of the estimates. Figures \(6-9\) present the bootstrap percentile distributions for total landings, fishing mortality, SSB and bias with the true values and the values estimated using the biased landings data. Figures 10 and 11 illustrate the log catchability residual pattern before and after fitting of the smoothed model, demonstrating the improvement in the model fit in the final five years.

\section*{Discussion of the simulation test results}

The bias parameter estimates, plotted in Figures 5 and 9, have the correct trajectory as the simulated series and the true values lie within the bootstrap percentiles. Of the two most important management metrics, spawning stock biomass is the least affected by the under-reported landings. The assessment without bias correction estimates the terminal year SSB to be close to the true value; years behind the terminal year are underestimated. Fishing mortality is severely affected by underreported landings and if used with the relatively unbiased population numbers estimates would result in biased stock projections. Fitting the bias parameter within the model recovers the trajectory of the simulated fishing mortality time series and would result in projections that have more uncertainty and substantially less bias.

The Figures and Tables illustrate that under an assumption of constant catchability there is sufficient information within structure of the survey indices and the landings at age data to estimate the bias in the total landings. The models ability to estimate the parameters will be dependent on the level of random noise in the survey cpue series to which the model is fitted and the number of years in which the unbiased catch data coincides with the survey series. If the survey series only covers years with biased data the estimates of bias and catchability will be confounded and the model will be indeterminate.

Smoothing the total catch estimates results in an improved fit of the model to the simulated data. For this series of tests, the cpue data series were generated with random noise without structure. If simulated year effects in the survey data had been generated they would be confounded with the bias estimate and unless multiple survey series with independent year effects were available the estimation of bias may be more problematic and require a greater weight to applied to smoothing.

\section*{Fitting the model to the North Sea cod data}

The ADAPT model was fitted to North Sea cod landings data for the years 1963 - 2003 and ages 1-7+. Survey data from the English groundfish survey (1992-2004, ages 1-6), the International Bottom Trawl Survey (1976 - 2004, ages \(1-5\) ) and the Scottish groundfish survey ( \(1982-2004\), 1ges \(1-6\) ). Surviving population numbers at ages 1-5 were estimated in 2004 with fishing mortality at age 6 in all years calculated as the average of ages \(3-5\).

Based on information from the commercial fishing industry bias parameters were estimated in the years 1993 - 2003. A smoothing weight of 1.0 was applied to the residuals between year of the log of total landings in tonnes, catchability residuals from each survey were given equal eight in the analysis. Catchability was assumed to be constant in time and independent of age for ages \(1-5\). Catchability at age 6 constrained to be equal to that at age 5 .

Two of the survey series have a sufficient number of years in their time series of observations to enable catchabilities to be estimated during a period in which the landings were considered to be relatively unbiased, the IBTS and Scottish groundfish surveys. The majority of the time series of English groundfish survey indices lies within the time period in which bias is considered to have occurred. Therefore the EGFS will only provide information on the trends in the population abundance in recent years; its catchability estimates will be confounded with the estimates of bias.

\section*{Single survey runs}

Figures 12 and 13 present the estimated bias and landings from a fit of the smoothed model to the Scottish groundfish survey data series and Figures 14 and 15 to the estimates from fitting to the IBTS survey series. The patterns in estimated bias are very similar, increasing after 1993 until 1997/1998 when the last strong year class arrived in the fishery, and then increasing again until 2003. Fits to both data series indicate that the latest reduction in TAC is unlikely to have been effective in reducing landings.

\section*{Fitting the model to all survey series simultaneously}

Figures \(16-18\) present the reported and ADAPT estimated landings, the estimates of average fishing mortality at ages 2-4 and SSB from fits of the model with and without estimation of bias. Bootstrap percentiles are plotted for each times series. Figure 19 plots the estimates of bias with bootstrap percentiles.

\section*{Sensitivity to the smoothing constraint}

Figure 20 illustrates the sensitivity of the time series of estimates of spawning stock biomass, average fishing mortality at ages 2-4 and estimated landings to the weight applied to the constraint in the year to year variation in landings within the smoothed objective function. The first row of figures illustrates the estimated values when no smoothing is applied, the second a smoothing weight of 1.0 and the final row a weight of 10.0 . The smoothing parameter has the desired effect of reducing variation in the estimates between years with only a minor effect on the overall trends in the time series.

\section*{Retrospective analysis}

Figures 21-23 present the retrospective analysis estimates of landings, SSB and average fishing mortality from retrospective runs back to the year 2000. There is no retrospective bias in the model results. Fishing mortality is more variable than the other estimated series.

\section*{Discussion of the application to the North sea cod data}

The single and multi-fleet model fits are consistent in estimating increasing bias in the reported North Sea cod landings data from 1993. The landings were more consistent with the model estimates in 1997/98 a time when the strong 1996 year class recruited to the fishery. The estimates of bias and their trend in time are consistent with anecdotal reports from the commercial industry. There is no external information that can be used to validate the magnitude of the estimated bias.

Population estimates and hence spawning stock biomass in the final assessment year are relatively less biased than the preceding years. The difference is consistent with the findings of the simulation experiment and also with the known retrospective bias in SBB, that is a characteristic of the assessments of this stock that have been fitted to reported landings.

Fishing mortality is estimated to be severely biased in the most recent years. This is consistent with the WGNSSK's perception of the validity of fishing mortalities obtained from assessment models fitted to reported landings, which led to the rejection of the 2003 assessment estimates by that group.

The analysis of the sensitivity to the weight given to smoothing and the retrospective analysis demonstrate that the model estimates are robust to the assumption of smoothing and are consistent between assessment years with the addition of more data.

The simulation studies have established that an estimate of the level of the unbiased exploitation rate can be recovered from biased data using the modified ADAPT model. The estimates of bias are based on survey indices that can be affected by year effects and therefore confounded with the estimated bias. However, the estimates of bias are consistent between surveys, giving more credibility to the results.

The method provides a procedure by which, in the absence of information from other sources, potentially unbiased estimates of exploitation levels can be derived to make stock projections for the North Sea cod. There is greater uncertainty associated with the estimates but for management of the stock this is an improvement on the current uncertainty resulting from bias in the reported landings.

\section*{References}

EMAS 2001 Evaluation of market sampling strategies for a number of commercially exploited stocks in the North Sea and development of procedures for consistent data storage and retrieval (EMAS). RIVO CEFAS DIFRES SOAEFD CLO-DZ, CFP Study Project 98/075

Gavaris, S. 1988. An adaptive framework for the estimation of population size. Canadian Atlantic Fisheries Scientific Advisory Committee Research Document No. 88/29, 12 pp.

Gavaris, S, and Van Eeckhaute L, 1998. Diagnosing Systematic Errors in Reported Fishery Catch in Proceedings of the International Symposium on Fishery Stock Assessment Models for the 21st Century, October 8-11, 1997. Alaska Sea Grant College Program AK-SG-98-01

ICES 2003. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, 9 18 September 2003. ICES CM 2003/ACFM:07


Figure 1a The log catchability residuals resulting from a fit of the Laurec-Shepherd VPA calibration model to the North Sea cod reported landings at age data set and the Scottish groundfish survey data for 1983-2003.


Figure 1b The log catchability residuals resulting from a fit of the Laurec-Shepherd VPA calibration model to the North Sea cod reported landings at age data set and the IBTS groundfish survey data for 1983 - 2003.


Figure 2 The percentiles \((5,25,50,75,95)\) of estimated total catch from the ADAPT model applied without catch smoothing to the simulated data set. The solid line represents the true catch, the dashed solid line the reported biased catch.


Figure 3 The percentiles \((5,25,50,75,95)\) of the average fishing mortality estimates from the ADAPT model applied without catch smoothing to the simulated data set. The solid horizontal line represents the true mortality rate the descending dashed solid line the estimate of average mortality without assuming bias in the catch data.


Figure 4 The percentiles \((5,25,50,75,95)\) of the SSB estimates from the ADAPT model applied without catch smoothing to the simulated data set. The solid line represents the true SSB the dashed solid line the estimate SSB without assuming bias in the catch data.


Figure 5 The percentiles \((5,25,50,75,95)\) of the catch raising factor estimates from the ADAPT model applied without catch smoothing to the simulated data set. The solid line represents the true raising factor.


Figure 6 The percentiles \((5,25,50,75,95)\) of estimated total catch from the ADAPT model applied with catch smoothing to the simulated data set. The solid line represents the true catch, the dashed solid line the reported biased catch.


Figure 7 The percentiles \((5,25,50,75,95)\) of the average fishing mortality estimates from the ADAPT model applied with catch smoothing to the simulated data set. The solid horizontal line represents the true mortality rate the descending dashed solid line the estimate of average mortality without assuming bias in the catch data.


Figure 8 The percentiles \((5,25,50,75,95)\) of the SSB estimates from the ADAPT model applied with catch smoothing to the simulated data set. The solid line represents the true SSB the dashed solid line the estimate SSB without assuming bias in the catch data.


Figure 9 The percentiles \((5,25,50,75,95)\) of the catch raising factor estimates from the ADAPT model applied with catch smoothing to the simulated data set. The solid line represents the true raising factor.


Figure 10 The log catchabilty residuals resulting from the fit of the ADAPT model, applied with catch smoothing, to simulated biased landings data (years 2020,21,23,24) without estimation of bias.


Figure 11 The log catchabilty residuals resulting from the fit of the ADAPT model to the simulated data set, applied with catch smoothing, to simulated biased landings data (years 2020,21,23,24) with estimation of bias.


Figure 12 The bias (+/- 2 standard errors) in landings data for the North Sea cod (Ices areas 347d) as estimated by a modified ADAPT model fitted to reported landings at age and the Scottish groundfish survey cpue series.


Figure 13 The reported landings data for the North Sea cod (Ices areas 347d, solid line) and landings as estimated (fine line, +/- 2 standardr errors) by a modified ADAPT model fitted to reported landings at age and the Scottish groundfish survey cpue series.


Figure 14 The bias (+/- 2 standard errors) in landings data for the North Sea cod (Ices areas 347d) as estimated by a modified ADAPT model fitted to reported landings at age and the IBTS groundfish survey cpue series.


Figure 15 The reported landings data for the North Sea cod (Ices areas 347d, solid line) and landings as estimated (fine line, \(+/-2\) standardr errors) by a modified ADAPT model fitted to reported landings at age and the IBTS groundfish survey cpue series.


Figure 16 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The percentiles \((5,25,50,75,95)\) of estimated cod in 347d total catch from the ADAPT model applied with catch smoothing to all survey series. The solid line represents the reported catch.


Figure 17 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The percentiles \((5,25,50,75,95)\) of the cod in 347 d average fishing mortality estimates from the ADAPT model applied with catch smoothing to all survey series. The solid horizontal line represents the estimate of average mortality without assuming bias in the catch data.


Figure 18 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The percentiles \((5,25,50,75,95)\) of the cod347d SSB estimates from the ADAPT model applied with catch smoothing to all survey series. The solid line represents the estimate SSB without assuming bias in the catch data.


Figure 19 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The percentiles \((5,25,50,75,95)\) of the cod 347d catch raising factor estimates from the ADAPT model applied with catch smoothing to all survey series. The solid line represents no bias.


Figure 20 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The sensitivity of the estimates of landings, SSB and average fishing mortality (ages \(2-4\) ) to the weight given to the smoothing constraint on year to year variation on total landings. Solid line - estimates with estimation of missing landings, fine line - estimates without estimation of missing landings.


Figure 21 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Retrospective series of the total landings as estimated using the modified ADAPT model for assessment years finishing in 1998-2003 (without discards).


Figure 22 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Retrospective series of average fishing mortality as estimated using the modified ADAPT model for assessment years finising in 1998-2003 (without discards).


Figure 23 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Retrospective series of spawning stock biomass as estimated using the modified ADAPT model for assessment years finising in 1998-2003 (without discards).

Table 1 The estimated population numbers at age in the final year and catch data raising factors for the final 5 years of the simulated data with bias. The simulated raising factors were 1.2, 1.5, 1.0, 1.5, 2.0. The ADAPT model was applied without catch smoothing.
\begin{tabular}{|cccc|}
\hline Parameter & Age & Survivors & s.e.log est \\
\hline 1 & 1 & 813.0 & 0.22 \\
2 & 2 & 1267.5 & 0.19 \\
3 & 3 & 762.9 & 0.19 \\
4 & 4 & 349.1 & 0.21 \\
5 & 5 & 48.8 & 0.24 \\
6 & 6 & 42.9 & 0.24 \\
7 & 7 & 23.1 & 0.26 \\
8 & 8 & 67.0 & 0.24 \\
9 & 9 & 32.4 & 0.25 \\
10 & 10 & 8.5 & 0.26 \\
11 & 11 & 3.1 & 0.26 \\
12 & 12 & 0.6 & 0.27 \\
13 & 13 & 0.6 & 0.26 \\
14 & 14 & 0.8 & 0.26 \\
& & & \\
\hline Parameter & Year & Factor & s.e.log est \\
\hline 15 & 20 & 0.89 & 0.32 \\
16 & 21 & 2.15 & 0.21 \\
17 & 22 & 0.87 & 0.30 \\
18 & 23 & 1.52 & 0.27 \\
19 & 24 & 2.65 & 0.20 \\
\hline
\end{tabular}

Table 2 The variance co-variance estimates from the ADAPT model applied without catch smoothing, parameter numbers refer to the parameters listed in Table 1.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Parameter & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\hline 1 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2 & 0.00 & 0.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 3 & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 4 & 0.00 & 0.00 & 0.00 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 5 & 0.00 & 0.00 & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 6 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 7 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 8 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 9 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 11 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 13 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 14 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 15 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.10 & -0.04 & 0.00 & 0.00 & 0.00 \\
\hline 16 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.04 & 0.04 & -0.03 & 0.00 & 0.00 \\
\hline 17 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.03 & 0.09 & -0.04 & 0.00 \\
\hline 18 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.04 & 0.08 & -0.03 \\
\hline 19 & 0.00 & 0.00 & 0.00 & -0.01 & -0.01 & -0.01 & -0.01 & -0.01 & -0.01 & -0.01 & -0.01 & -0.01 & -0.01 & -0.01 & 0.00 & 0.00 & 0.00 & -0.03 & 0.04 \\
\hline
\end{tabular}

Table 3 The estimated population numbers at age in the final year and catch data raising factors for the final 5 years of the simulated data with bias. The simulated raising factors were 1.2, 1.5, 1.0, 1.5, 2.0. The ADAPT model was applied with catch smoothing.
\begin{tabular}{|cccc|}
\hline Parameter & Age & Survivors & s.e.log est \\
\hline 1 & 1 & 815.17 & 0.22 \\
2 & 2 & 1272.92 & 0.19 \\
3 & 3 & 770.62 & 0.18 \\
4 & 4 & 357.43 & 0.21 \\
5 & 5 & 48.86 & 0.24 \\
6 & 6 & 42.76 & 0.24 \\
7 & 7 & 23.26 & 0.26 \\
8 & 8 & 66.84 & 0.24 \\
9 & 9 & 32.79 & 0.25 \\
10 & 10 & 8.56 & 0.26 \\
11 & 11 & 3.16 & 0.26 \\
12 & 12 & 0.65 & 0.27 \\
13 & 13 & 0.57 & 0.26 \\
14 & 14 & 0.84 & 0.26 \\
& & & \\
\hline Parameter & Year & Factor & s.e.log est \\
\hline 15 & 20 & 1.10 & 0.15 \\
16 & 21 & 1.63 & 0.14 \\
17 & 22 & 1.04 & 0.15 \\
18 & 23 & 1.69 & 0.14 \\
19 & 24 & 2.44 & 0.16 \\
\hline
\end{tabular}

Table 4 The variance co-variance estimates from the ADAPT model applied with catch smoothing, parameter numbers refer to the parameters listed in Table 3.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Parameter & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\hline 1 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2 & 0.00 & 0.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 3 & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 4 & 0.00 & 0.00 & 0.00 & 0.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 5 & 0.00 & 0.00 & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 6 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 7 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 8 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 9 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.06 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 11 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 13 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 14 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 15 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 16 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 \\
\hline 17 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 \\
\hline 18 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 \\
\hline 19 & 0.00 & 0.00 & 0.00 & -0.01 & -0.01 & -0.01 & -0.01 & 0.00 & 0.00 & -0.01 & -0.01 & -0.01 & -0.01 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.03 \\
\hline
\end{tabular}

Table 5 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The estimated population numbers at age in the final year and landings data raising factors for the final 11 years. The ADAPT model was fitted with catch smoothing.
\begin{tabular}{|cccc|}
\hline Parameter & Age & Survivors & s.e.log est \\
\hline 1 & 1 & 21854.38 & 0.21 \\
2 & 2 & 25430.52 & 0.21 \\
3 & 3 & 3659.71 & 0.23 \\
4 & 4 & 5027.72 & 0.23 \\
5 & 5 & 305.95 & 0.42 \\
& & & \\
\hline Parameter & Year & Factor & s.e.log est \\
\hline 6 & 1993 & 1.02 & 0.22 \\
7 & 1994 & 1.40 & 0.20 \\
8 & 1995 & 1.53 & 0.20 \\
9 & 1996 & 1.57 & 0.20 \\
10 & 1997 & 1.22 & 0.21 \\
11 & 1998 & 1.06 & 0.20 \\
12 & 1999 & 1.53 & 0.18 \\
13 & 2000 & 1.24 & 0.19 \\
14 & 2001 & 1.57 & 0.21 \\
15 & 2002 & 1.09 & 0.23 \\
16 & 2003 & 2.36 & 0.19 \\
\hline
\end{tabular}

Table 6 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The variance co-variance estimates from the ADAPT model applied with catch smoothing, parameter numbers refer to the parameters listed in Table 5.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Parameter & 1 & & & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline 1 & 0.04 & 0.00 & 0.00 & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 \\
\hline 2 & 0.00 & 0.05 & 0.00 & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 3 & 0.00 & 0.00 & 0.05 & & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 4 & 0.00 & 0.00 & 0.00 & & 0.06 & -0.03 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 \\
\hline 5 & 0.00 & 0.00 & 0.01 & & -0.03 & 0.18 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 \\
\hline 6 & 0.00 & 0.00 & 0.00 & & 0.00 & 0.00 & 0.05 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 7 & 0.00 & 0.00 & 0.00 & & 0.00 & 0.00 & -0.01 & 0.04 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 8 & 0.00 & 0.00 & 0.00 & & 0.00 & 0.00 & 0.00 & -0.01 & 0.04 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 9 & 0.00 & 0.00 & 0.00 & & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.04 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 10 & 0.00 & 0.00 & 0.00 & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.04 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 11 & 0.00 & 0.00 & 0.00 & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.04 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 12 & 0.00 & 0.00 & 0.00 & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.03 & -0.01 & 0.00 & 0.00 & 0.00 \\
\hline 13 & 0.00 & 0.00 & 0.00 & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.04 & -0.01 & 0.00 & 0.00 \\
\hline 14 & 0.00 & 0.00 & 0.00 & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.04 & -0.01 & 0.00 \\
\hline 15 & 0.00 & 0.00 & 0.00 & & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.05 & -0.01 \\
\hline 16 & 0.01 & 0.00 & 0.00 & & 0.01 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.04 \\
\hline
\end{tabular}

\section*{WORKING GROUP ON THE ASSESSMENT OF DEMERSAL STOCKS IN THE NORTH SEA AND SKAGERRAK}

ICES Headquarters, 7 - 16 September 2004

\section*{LIST OF PARTICIPANTS}
\begin{tabular}{|c|c|c|c|c|}
\hline NAME & ADDRESS & TELEPHONE & FAX & E-MAIL \\
\hline Ewen Bell & \begin{tabular}{l}
CEFAS \\
Fisheries Laboratory \\
Lowestoft \\
Suffolk, NR33 OHT \\
United Kingdom
\end{tabular} & \[
\begin{gathered}
+441502524238 \\
\text { or } \quad 562244
\end{gathered}
\] & +44 1502513865 & e.d.bell@cefas. co.uk \\
\hline Loes Bolle & \begin{tabular}{l}
RIVO \\
P.O. Box 68 \\
1970 AB IJmuiden \\
The Netherlands
\end{tabular} & +31255 564681 & +31 255564644 & loes.bolle@wur.nl \\
\hline Chris Darby & \begin{tabular}{l}
CEFAS \\
Fisheries Laboratory Lowestoft \\
Suffolk, NR33 0HT United Kingdom
\end{tabular} & \[
\begin{gathered}
+44150254329 \\
\quad \text { or } \quad 562244
\end{gathered}
\] & \[
\begin{array}{lr}
\hline+44 & 1502524511 \\
\text { or } & 513865
\end{array}
\] & c.d.darby@cefas. co.uk \\
\hline Uli Damm & \begin{tabular}{l}
Bundesforschungsanstalt f. Fischerei Palmaille 9 \\
D 22767 Hamburg \\
Germany
\end{tabular} & +40 38905268 & +40 38905263 & damm@ish.bfafisch.de \\
\hline Maria Hansson & Institute of Marine Research P.O. Box 4 45321 Lysekil Sweden & +46 52318713 & +46 52313977 & Maria.hansson@ Fiskeriverket.se \\
\hline Henrik Jensen & Danish Institute for Fisheries Research Charlottenlund Slot 2920 Charlottenlund Denmark & +45 33963370 & +45 33963333 & hj@dfu.min.dk \\
\hline Knut Korsbrekke & \begin{tabular}{l}
Institute of Marine Research P.O. Box 1870 \\
Nordnes \\
5817 Bergen \\
Norway
\end{tabular} & +47 55238688 & +47 55238687 & knutk@imr.no \\
\hline Phil Kunzlik & \begin{tabular}{l}
FRS Marine Laboratory \\
P.O. Box 101 \\
Victoria Road \\
Aberdeen AB11 9DB \\
Scotland, United Kingdom
\end{tabular} & +44 1224295404 & +44 1224295511 & p.kunzlik@marlab. ac.uk \\
\hline Paul Marchal & \begin{tabular}{l}
IFREMER \\
150 Quai Gambetta \\
B.P. 699 \\
62321 Boulogne-sur-Mer \\
France
\end{tabular} & +33 321995616 & +33 321995601 & \begin{tabular}{l}
pmarchal@ \\
ifremer.fr
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline NAME & ADDRESS & TELEPHONE & FAX & E-MAIL \\
\hline Coby Needle (Chair) & \begin{tabular}{l}
FRS Marine Laboratory P.O. Box 101 \\
Victoria Road \\
Aberdeen AB11 9DB \\
Scotland
\end{tabular} & +44 1224295456 & +44 1224295511 & \begin{tabular}{l}
needlec@marlab. \\
ac.uk \\
or \\
c.needle@marlab. \\
ac.uk
\end{tabular} \\
\hline J. Rasmus Nielsen & Danish Institute for Fisheries Research Charlottenlund Slot DK-2920 Charlottenlund Denmark & +4533963381 & +4533963333 & rn@dfu.min.dk \\
\hline Martin Pastoors & RIVO
P.O. Box 68
1970 AB IJmuiden
The Netherlands & +31 255564690 & +31255 564644 & Martin.Pastoors@ wur.nl \\
\hline Hans-Joachim Rätz & \begin{tabular}{l}
Bundesforschungsanstalt f. Fischerei Palmaille 9 \\
D 22767 Hamburg \\
Germany
\end{tabular} & +40 38905169 & +40 38905263 & Raetz@ish.bfafisch.de \\
\hline Clara Ulrich & Danish Institute for Fisheries Research Charlottenlund Slot DK-2920 Charlottenlund Denmark & +45 33963395 & +4533963333 & clu@dfu.min.dk \\
\hline Joël Vigneau & \begin{tabular}{l}
IFREMER \\
Avenue Général de Gaulle \\
B.P. 32 \\
14520 Port-en-Bessin \\
France
\end{tabular} & +33 231511300 & +33 231511301 & jvigneau@ ifremer.fr \\
\hline SietoVerver & \begin{tabular}{l}
RIVO \\
P.O. Box 68 \\
1970 AB IJmuiden \\
Netherlands
\end{tabular} & +31 255564700 & +31 255564644 & sieto.verver@ wur. nl \\
\hline Morten Vinther & Danish Institute for Fisheries Research Charlottenlund Slot DK-2920 Charlottenlund Denmark & +4533963353 & +4533963333 & mv@dfu.min.dk \\
\hline Olvin van Keeken & \begin{tabular}{l}
RIVO \\
P.O. Box 68 \\
1970 AB IJmuiden \\
The Netherlands
\end{tabular} & +31 255564646 & +31255 564644 & olvin.vankeeken@ wur.nl \\
\hline Steven Holmes & \begin{tabular}{l}
FRS Marine Laboratory \\
P.O. Box 101 \\
Victoria Road \\
Aberdeen AB11 9DB \\
Scotland, United Kingdom
\end{tabular} & +44 1224295507 & +44 1224295511 & s.holmes@marlab.a c.uk \\
\hline Liz Clarke & \begin{tabular}{l}
FRS Marine Laboratory \\
P.O. Box 101 \\
Victoria Road \\
Aberdeen AB11 9DB \\
Scotland, United Kingdom
\end{tabular} & +44 1224295507 & +44 1224295511 & e.d.clarke@marlab. ac.uk \\
\hline Willy Vanhee & \begin{tabular}{l}
CLO Sea Fisheries Department \\
Ankerstraat 1 \\
B-8400 Ostende \\
Belgium
\end{tabular} & +32 59342255 & +3259330629 & willy.vanhee@dvz. be \\
\hline Are Salthaug & Institute of Marine Research P.O. Box 1870 Nordnes N-5817 Bergen Norway & +4755238673 & +4755238687 & ares@imr.no \\
\hline
\end{tabular}
\begin{tabular}{||l|l|l|l|l||}
\hline NAME & ADDRESS & TELEPHONE & FAX & E-MAIL \\
\hline Espen Johnsen & \begin{tabular}{l} 
Institute of Marine Research \\
P.O. Box 1870 Nordnes \\
N-5817 Bergen \\
Norway
\end{tabular} & +4755235355 & +4755238687 & \begin{tabular}{l} 
espen.johnsen@im \\
r.no
\end{tabular} \\
\hline
\end{tabular}
Frans van Beek (Chair)Martin Pastoors
Tore Johannessen
Stuart Reeves
Sieto Verver
Odd M. Smedstad
John Casey
Uli Damm
Alain Tétard
Wim Demaré
Ewen Bell
Maria HanssonMette Bertelsen
Knut Korsbrekke
Henrik Sparholt
Phil Kunzlik
Morten Vinther
Paul Marchal
Capucine Mellon
Richard Millner
J. Rasmus Nielsen
Coby Needle

\section*{WORKING}


ASSESSMENT


AND
SKAGERRAK

\section*{11-20 JUNE 2002}

\section*{WORKING}


ASSESSMENT


AND
SKAGERRAK

\section*{FINAL REPORT}

\section*{WORKING}


ASSESSMENT


AND
SKAGERRAK

\section*{TABLES AND FIGURES}

\section*{WORKING}


ASSESSMENT


AND
SKAGERRAK

\section*{WORKING DOCUMENTS}

\section*{WGNSSK Quality Handbook}

Stock specific documentation of standard assessment procedures used by the ICES WGNSSK.

\section*{1. HADDOCK IN THE NORTH SEA AND IIIA}

\author{
Working group: WGNSSK
}

Version: 1.0
Updated: 10/09/2004, by: Martin Pastoors (martin.pastoors@wur.nl), Ewen Bell (ewen.d.bell@cefas.co.uk).

\subsection*{1.1 GENERAL}

\subsection*{1.1.1 Stock definition}

Haddock occur in many areas of the central and Northern North Sea and Skagerrak, and are prevalent as far south as the Humber estuary. They usually inhabit depths less than 200 metres. Results from tagging experiments and particle-tracking simulations suggest that there may also be links between the stocks of North Sea haddock and those to the north-west of Scotland. Spawning occurs from March until May and takes place in almost any area around the Scottish coasts to the Norwegian Deeps

\subsection*{1.1.2 Fishery}

In the North Sea, haddock is taken as part of a mixed demersal fishery, with the large majority of the catch being taken by Scottish light trawlers, seiners and pair trawlers. Until 2001, these gears had a minimum legal mesh size of 100 mm , and smaller quantities were taken by other Scottish vessels, including Nephrops trawlers which used mesh sizes between 70 and 100 mm mesh and hence may have had higher discard rates. New gear regulations were brought in for 2002 as a part of the North Sea cod recovery plan (Commission Regulation (EC) No 2056/2001). Vessels from other countries including England, Denmark and Norway also participate in the fishery, and haddock are also taken as a by-catch by Danish and Norwegian vessels fishing for industrial species. In Division IIIa, haddock are taken as a by catch in a mixed demersal fishery, and in the industrial fishery. Landings from Division IIIa are small compared to those the North Sea.

The minimum mesh size for vessels fishing for cod in the mixed demersal fishery in EC Zones 1 and 2 (West of Scotland and North Sea excluding Skagerrak) was changed from 100 mm to 120 mm from the start of 2002 under EU regulations regarding the cod recovery plan (Commission Regulation EC \(2056 / 2001\) ), with a one-year derogation of 110 mm for vessels targeting species other than cod. This derogation was not extended beyond the end of 2002. Since mid-2000, UK vessels in this fishery have been required to include a 90 mm square mesh panel (SSI 227/2000), predominantly to reduce discarding of the large 1999 year class of haddock. Further unilateral legislation in 2001 (SSI 250/2001) banned the use of lifting bags in the Scottish fleet.

\subsection*{1.1.3 Ecosystem aspects}

To be done

\subsection*{1.2 DATA}

\subsection*{1.2.1 Commercial catch}

Quarterly age composition data for the North Sea (Sub-area IV) human consumption landings were supplied by Denmark, England and Wales, France and Scotland. These nations accounted for \(90 \%\) of the
total human consumption landings. Sampling levels are given in Table 1.3.3.1. The procedures used to aggregate national data sets into total international landings are given in Section 1.3. Germany, Norway and Sweden provided quarterly landings, Belgium supplied annual age compositions, and the Faroe Islands, Poland and the Netherlands provided official landings statistics only. Industrial bycatch age compositions for the North Sea were supplied by Denmark and Norway. Age composition data for the human consumption and industrial catches in the Skagerrak (Division IIIa) in 2002 were supplied by Denmark, which accounts for most of the human consumption landings and all of the industrial bycatch in this area.

Discard estimates are derived by raising a mean discard proportion ogive from the Scottish sampling programme to the level of the international fleet landings. The Scottish discard programme follows a stratified random design, with fishing trips stratified by area, gear and quarter. Discards are estimated independently in each stratum and total discards are then estimated by summing across strata. Raising to landings is done for each individual trip. However, when there are few trips per stratum (often there is only one trip per stratum), this traditional estimator can be both biased and imprecise. Stratoudakis et al (1999) developed an alternative ratio estimator that collapses the stratification (i.e. combines strata with similar discard properties) and then estimates discards independently in each collapsed stratum. Total discards are then estimated by summing across collapsed strata. Collapsing strata has the effect of increasing the sample size in each stratum, and results in a collapsed ratio estimator that has negligible bias and greater precision than the traditional estimator. Work is underway to estimate cod, haddock and whiting discards in Sub-Area IV and Divisions VIId and IIIa using the collapsed ratio estimator, to compare these estimates with the traditional estimates, and to compare stock assessments using the two sets of discard estimates. It should also be noted that the method assumes that the Scottish fleet characteristics for haddock are applicable to the international fleet, which may be more tenable for haddock than for other species (given the large Scottish share of the catches). However, further evaluation work on this discard series will be beneficial. No estimates of discards are available for Division IIIa.

North Sea
\begin{tabular}{|l|c|c|c|}
\hline Country & HC & Disc & Ind BC \\
\hline Belgium & QL & & - \\
Denmark & AC & AC & AC \\
France & QL & & - \\
Germany & QL & AC & - \\
Netherlands & QL & & - \\
Norway & QL & & AC \\
Poland & OS & & - \\
Sweden & QL & & - \\
UK E+W & AC & & - \\
UK Scotland & AC & AC & - \\
\hline
\end{tabular}

Skagerrak
\begin{tabular}{|c|c|c|c|}
\hline Nation & HC & Disc & Ind BC \\
\hline Belgium & QL & & \\
\hline Denmark & AC & & \\
\hline Germany & included in IV & & \\
\hline Norway & QL & & \\
\hline Sweden & QL & AC & \\
\hline
\end{tabular}

AC - Quarterly Age compositions \(\quad\) QL - Quarterly landings OS - Official statistics.

How are data aggregated; describe the Aberdeen programs.

\subsection*{1.2.2 Biological}

\section*{Natural mortality}

The values of natural mortality and proportion mature at age used in the assessment are unchanged from last year's meeting (Table 4.2.1). The estimates of natural mortality originate from MSVPA (ICES CM 1989/Assess:20). For roundfish, values of M are based on predation mortality estimated from MSVPA. They were first adopted by the Roundfish Working Group for the assessment of North Sea Cod, Haddock and Whiting in 1986 (ICES 1986b/Assess:??). The values adopted were means at age over 1980-1982 as given by the MSWG (Section 3.1.1, ICES 1986a/Assess:??).

Subsequently, the Roundfish Working Group reviewed the values in use at its 1987 meeting (ICES 1987b), based on the results of a key run in the 1986 MSWG (Table 2.8.2, ICES 1987a/Assess:??). These used mean total Ms over the years 1978-1982. This review resulted in slight changes to the values used for Haddock and Whiting, but the values used for Cod were unchanged.

There was a further review by the Roundfish Working Group at its 1989 meeting (ICES 1990/Assess:??) which considered the values given by the 1989 MSWG (Table 2.8.2, ICES 1989). This used means over 1981-1986. As these values did not differ greatly from the values already in use by the Roundfish WG, the values were not changed.

\section*{Maturity}

The estimates of proportion mature are based on IBTS data. Both natural mortality and maturity are assumed constant with time. Biomass totals are calculated as at the beginning of the year.

\section*{Weight at age}

The mean weight-at-age data for the Division IIIa catches do not cover all years and for earlier years are not split by catch category, so only North Sea weight-at-age data have been used. Weight-at-age data from the total catch is calculated as a weighted average of the human consumption, discards and industrial bycatch in the North Sea. Weight at age in the stock is assumed to be the same as weight at age in the catch

\section*{Proportion mortality before spawning}

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

\subsection*{1.2.3 Surveys}

Three research vessel survey series are available:
- Scottish third-quarter groundfish survey (ScoGFS): ages 0-8, years 1982-2003. Only ages 0-5 are used for tuning, as there are several missing data points at older ages and very low catch rates. This survey is undertaken during August each year using a fixed station design and the GOV trawl. Coverage was restricted to the northern part of the North Sea corresponding to the more northerly distribution of haddock, but since 1998 it has been extended into the central North Sea. There are two versions of the series available, the first with the new areas ignored to ensure consistent coverage, the second with the new areas included. The catch rates as presented are corrected for the change in vessel and gear, on the basis of comparative trawl haul data (Zuur et al 2001). Nevertheless, the series with consistent area definitions are used for the assessment.
- English third-quarter groundfish survey (EngGFS): ages 0-7, years 1977-2002. Only ages 0-5 are used for tuning, as catch rates for older ages are low. This survey covers the whole of the North Sea in August-September each year to about 200 m depth, using a fixed station design of 75 standard tows and the GOV trawl from 1992 onwards. Prior to 1992 a different gear was used (WHICH) and therefore the series used in the assessment is truncated in 1992.
- International bottom-trawl survey (IBTS Q1): ages 1-6+, years 1967-2003. This survey covers the whole of the North Sea using fixed stations of at least two tows per rectangle with the GOV trawl. Previously this series covered only the years from 1982 onwards for ages 3-6+, and from 1973 onwards for ages \(1-2\). However, the methodology of the historical extension of the series has not been evaluated and is therefore not used in the assessment. The series is backshifted to the previous year and age so that the information collected in the spring of the current year can be used in the assessment.

\subsection*{1.2.4 Commercial CPUE}

Two commercial Scottish CPUE series have been available in recent years for use in assessments of this stock, specifically light trawlers (ScoLTR) and seiners (ScoSEI). However, none have been used in the final assessment presented by the WG during any of its last three meetings, although they have been used in exploratory and comparative analyses. During preparations for the 2000 round of assessment WG meetings it became apparent that the 1999 effort data for the Scottish commercial fleets were not in accord with the historical series and specific concerns were outlined in the 2000 report of WGNSSK (ICES CM 2001/ACFM:07). Effort recording is still not mandatory for these fleets, and concerns remain about the validity of the historical and current estimates.

The commercial CPUE data available for this meeting consisted of the following:
- Scottish seiners (ScoSEI): ages 0-13, years 1978-2002.
- Scottish light trawlers (ScoLTR): ages 0-13, years 1978-2002.

The definitions of these commercial fleets are the same as those given for the equivalent vessels fishing in Division VIa, which are given in the Report of the 1998 Working Group on the Assessment of Northern Shelf Demersal Stocks (ICES CM 1999/ACFM:1, Appendix 2).

\subsection*{1.2.5 Other relevant data}

\section*{None.}

\subsection*{1.3 HISTORICAL STOCK DEVELOPMENT}

\subsection*{1.3.1 Deterministic modelling}

Model used: XSA
Software used: Lowestoft VPA suite
Model Options chosen:
```

Tapered time weighting not applied
Catchability dependent on stock size for ages < 1
Regression type = C
Minimum of }5\mathrm{ points used for regression
Survivor estimates shrunk to the population mean for ages < 1
Catchability independent of age for ages >= 2
Survivor estimates shrunk towards the mean F of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk = 2.000
Minimum standard error for population estimates derived from each fleet = . 300
Input data types and characteristics:

| Type | Name | Year range | Age range | Variable <br> year to year <br> Yes/No |
| :--- | :--- | :--- | :--- | :--- |

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline Caton & Catch in tonnes & \begin{tabular}{l}
1963 - \\
data year
\end{tabular} & last & 0-7+ & Yes \\
\hline Canum & Catch at age in numbers & \begin{tabular}{l}
\[
1963
\] \\
data year
\end{tabular} & last & 0-7+ & Yes \\
\hline Weca & Weight at age in the commercial catch & \begin{tabular}{l}
\[
1963
\] \\
data year
\end{tabular} & last & 0-7+ & \[
\begin{aligned}
& \text { Yes (except for } \\
& \text { IIIa) }
\end{aligned}
\] \\
\hline West & Weight at age of the spawning stock at spawning time. & \begin{tabular}{l}
1963 \\
data year
\end{tabular} & last & 0-7+ & Yes. assumed to be the same as weight at age in the catch \\
\hline Mprop & Proportion of
natural
mortality before
spawning & 1963 data year & last & 0-7+ & ```
No - set to 0
for all ages in
all years
``` \\
\hline Fprop & ```
Proportion of
fishing
mortality before
spawning
``` & \begin{tabular}{l}
\[
1963
\] \\
data year
\end{tabular} & last & 0-7+ & No - set to 0 for all ages in all years \\
\hline Matprop & Proportion mature at age & \begin{tabular}{l}
1963 \\
data year
\end{tabular} & last & 0-7+ & \begin{tabular}{llr} 
No - & the same \\
ogive for all \\
years & & \\
\hline
\end{tabular} \\
\hline Natmor & Natural mortality & \begin{tabular}{l}
\[
1963
\] \\
data year
\end{tabular} & last & 0-7+ & \begin{tabular}{llr} 
No - & fixed \\
values at & age \\
for all ages in \\
all years
\end{tabular} \\
\hline
\end{tabular}

Tuning data:
\begin{tabular}{lrrcrrr} 
Fleet & First, & Last, & First, & Last, & Alpha, & Beta \\
ENGGFS_ & 1992, & year 1, & 0, & 5, & .500, & .750 \\
SCOGFS consistent area & 1982, & year-1, & 0, & 5, & .500, & .750 \\
IBTS_Q1 backshifted & 1975, & year-1, & 0, & 4, & .990, & 1.000
\end{tabular}

Fbar is calculated over ages 2-4.

\subsection*{1.3.2 uncertainty analysis}

Scenario analysis using Fishlab excel spreadsheet where alternative structural model assumptions can be explored.

\subsection*{1.3.3 Retrospective analysis}

Retrospective analysis using Fishlab excel spreadsheet with diminishing tuning series (cut off final years)

\subsection*{1.4 SHORT-TERM PROJECTION}

Model used: Age structured
Software used: Excel.

Initial stock size. Taken from the XSA survivors for age 1 and older.
Recruitment: The short-term geometric mean recruitment for the years 2000 and beyond. The GM is used for all recruitments in the forecast.

Natural mortality: same vector as in assessment.

Maturity: The same ogive as in the assessment is used for all years
F and M before spawning: Set to 0 for all ages in all years

Weight at age in the stock: Determined as the average from the three catch components (human consumption, discard and industrial by-catch, weighted by their proportions in the catch.

Weight at age in the catch: The relatively slow growth of the large 1999 yearclass is highly inflential to the short term forecast. Reduced weight at age remains an issue only in the human consumption landings. Catch weights for the ' 99 year class in the discard and industrial by-catch components remain within the bounds of previously observed weights. Weight at age in the human consumption fishery was modelled as an exponential function of age. The formulation is as follows.
\(y=1 /(1+\exp (a-b x))\)
where y is weight in kg at age x for the ' 99 yearclass.
Exploitation pattern: Average of the three last years, scaled by the Fbar (2-4) to the level of the last year. Exploitation patterns for the different catch components (human consumption, discards and industrial bycatch) calculated based on the relative catch by component (partial F at age).

Intermediate year assumptions: \(0.9 *\) Fstatus quo to reflect reductions in the main fleets targetting haddock and the restrictive management measures in 2004. Multipliers on \(\mathbf{F}_{\mathrm{sq}}\) refer to human consumption and discard partial fishing mortality only. By-catch F is assumed constant at 0.017 .

Stock recruitment model used: Not used
Procedures used for splitting projected catches: The landings in Division IIIa are calculated the long-term average of the Division IIIa (human consumption) landings expressed as a percentage of the combined IIIa-IV (human consumption) landings (1963-last year). The percentage of 1963-2003 was 3.4\%.

\subsection*{1.5 MEDIUM-TERM PROJECTIONS}

The recruitment dynamics of haddock (with occasional large year-classes) are very uncertain, and future recruitment cannot be projected with any confidence. This means that a medium-term projection for haddock on the basis of the current assessment is unlikely to be informative, and no such projection is presented.

If a stock recruitment curve is used, the Beverton-Holt type is applied.

\subsection*{1.6 LONG-TERM PROJECTIONS, YIELD PER RECRUIT}
to be specified

\subsection*{1.7 BIOLOGICAL REFERENCE POINTS}

\subsection*{1.8 OTHER ISSUES}

None.

\subsection*{1.9 REFERENCES}

Stratoudakis, Y., Fryer, R. J., Cook, R. M. and Pierce, G. J. 1999. Fish discarded from Scottish demersal vessels: estimators of total discards and annual estimates for targeted gadoids. ICES J. Mar. Sci., 56, 592605.

Zuur, A.F., Fryer, R.J. and Newton, A.W. 2001. The comparative fishing trial between Scotia II and Scotia III. FRS Marine Laboratory, Report No 03/01.

ICES 1999. Report of the Working Group on the Assessment of Northern Shelf Demersal Stocks, 1998. ICES CM 1999/ACFM:1

ICES 2001. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 2000. ICES CM 2001/ACFM:7.

\section*{WGNSSK Quality Handbook}

Stock specific documentation of standard assessment procedures used by the ICES WGNSSK.

\section*{1. PLAICE IIIA}

Working group: North Sea Demersal Working Group
Updated: 15/09/2003
By: Clara Ulrich-Rescan

\subsection*{1.1 General}

\subsection*{1.1.1 STOCK DEFINITION}

The stock boundaries are arbitrary and more for management purposes than based on a biological recognised stock separation. Electrophoresis and meristic character indicated that the plaice in IIIa is a mixed population of the Kattegat and the Skagerrak component, which is dominating and a Belt Sea component (Simonsen et al., 1988).

The influence of the North Sea stock component, especially via the transport of eggs or larvae could also contribute to the IIIa plaice stock abundance (see Ecosystem aspects).

\subsection*{1.1.2 FISHERY}

The fishery is dominated by Denmark, with Danish landings usually accounting for more than \(90 \%\) of the total. from spring to autumn by Danish seiners, flatfish gillnetters and beam trawlers. Plaice is also caught within a mixed cod-plaice fishery by otter trawlers, and is a bycatch of other gillnet fisheries. Plaice is also caught as by-catch in the directed Nephrops fishery. Since 1978, landings have declined from 27000 to 9 000 tonnes in the late nineties. However, landings in 2001 were the highest since 1992. The fishery exploits traditionally three age classes (ages 4 to 6). The TAC is usually not restrictive.

The use of beam trawl in the Kattegat is prohibited, but allowed in the Skagerrak. Minimum mesh size is 90 mm for towed gears, and 100 mm for fixed gears. The minimum landing size is 27 cm . Danish fleets are prohibited to land females in area IIIa from january 15th to april 30th.

\subsection*{1.1.3 ECOSYSTEM ASPECTS}

The large scale circulation pattern in the Northern Kattegat depends mainly on interaction between Baltic runoffs and local variation due to wind stress. Nielsen et al., (1998) demonstrated that the abundance of settled 0-group plaice along the Danish coast of the Kattegat depends on transport from the Skagerrak. The 0 -group abundance measured in July-August was significantly higher in years when wind conditions during the larval development period (March-April) were moderate to strong. This might imply that larval plaice are food-limited in years when calm conditions prevail during the larval drift period (Nielsen et al., 1998).

\subsection*{1.2.1 COMMERCIAL CATCH}

ICES official landings are available from Belgien, Norway and Germany, and national statistics are available from Denamrk, Sweden and the Netherlands. The age-disaggregated indices were derived by merging logbook statistics supplying catch weight per market category with the age distribution within these categories available from the market sampling. Catch-at-age and mean weight-at-age in the catch information were traditionally provided by Denmark only. For 2003 data were also provided by Sweden.The sampling scheme is broken down by quarter, landing harbours, and fishing area. The total international catches-at-age have been estimated for Kattegat and Skagerrak separately since 1984.

\subsection*{1.2.2 BIOLOGICAL}

Weights-at-age in the stock were assumed equal to those of the catch.
Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

A fixed natural mortality of 0.1 per year was assumed for all years and ages.
A knife-edge maturity distribution was employed: age group 2 was assumed to be immature, whereas age 3 and older plaice were assumed mature.

\subsection*{1.2.3 SURVEYS}

Data from four surveys are available. IBTS survey data for Kattegat and Skagerrak for the first and third quarter are provided by Sweden as numbers-per-age and hour on a haul-by-haul basis for the period 19912004and 1995-2003 respectively (no survey was performed in third quarter 2000). Two Danish bottom trawl surveys ('KASU') are conducted by the vessel 'Havfisken' in Kattegat, Belt Sea, and Western Baltic in the first and fourth quarter of each year. The indices available from these surveys cover the period 19962004 for the first quarter survey (except 1998), and 1994-2003 for the fourth quarter survey. The survey indices of the IBTS and KASU surveys first quarter is shifted from February to the preceding December to allow for full use of the available data.

Very few plaice aged 79 are caught during the surveys and these ages are removed from the analysis.

\subsection*{1.2.4 COMMERCIAL CPUE}

Three Danish fleets, i.e., trawlers, gillnetters, and Danish seiners, are available. The age-disaggregated indices were derived by merging logbook statistics supplying catch weight per market category with the age distribution within these categories available from the market sampling. Fishing effort has been defined as standardised days fishing. The standardisation of effort by vessel length is obtained by modelling LogCPUE using a GLM approach, with (Log-) vessel length (continuous variable), year (discrete variable) and quarter (discrete variable) taken as external factors. A 15 m vessel is used as the reference fishing unit. The fishing effort appears to have been fairly stable over the last decade. There has been a decrease in the fishing effort of towed-geared fleets since 1990, but this trend has been reversing since 1998. The fishing effort of gillnetters has steeply increased over 1990-1994, and steadily decreased since then. All commercial fleets show increase in both the yield and the CPUE in 2001. Highest values and increases are observed for the Danish seiners.

\subsection*{1.2.5 OTHER RELEVANT DATA}

None.

\subsection*{1.3 Historical Stock Development}

\subsection*{1.3.1 DETERMINISTIC MODELLING}

Model used: XSA
Software used: IFAP / Lowestoft VPA suite
Model Options chosen:
Tapered time weighting applied, power \(=3\) over 20 years
Catchability independent of stock size for all ages
Catchability independent of age for ages \(>=8\)
Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages
S.E. of the mean to which the estimate are shrunk \(=0.500\)

Minimum standard error for population estimates derived from each fleet \(=0.300\)
Prior weighting not applied

Input data types and characteristics:
\begin{tabular}{|l|l|l|l|l|}
\hline Type & Name & Year range & Age range & \begin{tabular}{l} 
Variable from year \\
to year \\
Yes/No
\end{tabular} \\
\hline Caton & Catch in tonnes & \begin{tabular}{l}
\(1978-\) last data \\
year
\end{tabular} & \(2-11+\) & Yes \\
\hline Canum & \begin{tabular}{l} 
Catch at age in \\
numbers
\end{tabular} & \begin{tabular}{l}
\(1978-\) last data \\
year
\end{tabular} & \(2-11+\) & Yes \\
\hline Weca & \begin{tabular}{l} 
Weight at age in \\
the commercial \\
catch
\end{tabular} & \begin{tabular}{l}
\(1978-\) last data \\
year
\end{tabular} & \(2-11+\) & Yes \\
\hline West & \begin{tabular}{l} 
Weight at age of \\
the spawning stock \\
at spawning time.
\end{tabular} & \begin{tabular}{l}
\(1978-\) last data \\
year
\end{tabular} & \(2-11+\) & \begin{tabular}{l} 
Yes/No - assumed \\
to be the same as \\
weight at age in \\
the catch
\end{tabular} \\
\hline Mprop & \begin{tabular}{l} 
Proportion of \\
natural mortality \\
before spawning
\end{tabular} & \begin{tabular}{l}
\(1978-\) last data \\
year
\end{tabular} & \(2-11+\) & \begin{tabular}{l} 
No set to for all \\
ages in all years
\end{tabular} \\
\hline Fprop & \begin{tabular}{l} 
Proportion mortality \\
fishing moar \\
before spawning
\end{tabular} & \begin{tabular}{l}
\(1978-\) last data \\
year
\end{tabular} & \(2-11+\) & \begin{tabular}{l} 
No - set to 0 for all \\
ages in all years
\end{tabular} \\
\hline Matprop & \begin{tabular}{l} 
Proportion mature \\
at age
\end{tabular} & \begin{tabular}{l}
\(1978-\) last data \\
year
\end{tabular} & \(2-11+\) & \begin{tabular}{l} 
No - the same \\
ogive for all years
\end{tabular} \\
\hline Natmor & Natural mortality & \begin{tabular}{l}
\(1978-\) last data \\
year
\end{tabular} & \(2-11+\) & \begin{tabular}{l} 
No -set to 0.1 for \\
all ages in all years
\end{tabular} \\
\hline
\end{tabular}

Tuning data:
\begin{tabular}{|l|l|l|l|}
\hline Type & Name & Year range & Age range \\
\hline Tuning fleet 1 & Danish Gillnetters & \(1987-\) last data year & \(2-11+\) \\
\hline Tuning fleet 2 & Danish Trawlers & \(1987-\) last data year & \(2-11+\) \\
\hline Tuning fleet 3 & Danish seiners & 1987 - last data year & \(2-11+\) \\
\hline Tuning fleet 4 & IBTS Q1 & 1991 - last data year & \(1-6\) \\
\hline Tuning fleet 5 & KASU Q4 & \(1994-\) last data year & \(1-6\) \\
\hline Tuning fleet 6 & KASU Q1 & \(1995-\) last data year & \(1-5\) \\
\hline Tuning fleet 6 & IBTS Q3 & 1995 - last data year & \(1-6\) \\
\hline
\end{tabular}

\subsection*{1.3.2 UNCERTAINTY ANALYSIS}

\subsection*{1.3.3 RETROSPECTIVE ANALYSIS??}

\subsection*{1.4 Short-Term Projection}

Model used: Age structured
Software used: WGFRANSW
Initial stock size. Stock sizes for age 3 and older are taken from the estimated number of survivors from the XSA. The age 2 recruitments are taken as the geometric average over the entire period.

Natural mortality: Set to 0.1 for all ages in all years
Maturity: The same ogive as in the assessment is used for all years
F and M before spawning: Set to 0 for all ages in all years
Weight at age in the stock: Assumed to be the same as weight at age in the catch
Weight at age in the catch: Average weight of the three last years
Exploitation pattern: Average of the three last years, scaled by the Fbar (3-6) to the level of the last year
Intermediate year assumptions: TAC constraint
Stock recruitment model used: None, the long term geometric mean recruitment at age 2 is used
Procedures used for splitting projected catches: Not relevant

\section*{WGNSSK Quality Handbook}

Stock specific documentation of standard assessment procedures used by the ICES WGNSSK.

\section*{1. EASTERN CHANNEL PLAICE (PLE-ECHE)}

Working group: North Sea Demersal Working Group
Updated: 5/9//2003

By: Richard Millner (r.s.millner@cefas.cu.uk) and Joel Vigneau (joel.vigneau@ifremer.fr)

\subsection*{1.1 General}

\subsection*{1.1.1 STOCK DEFINITION}

There is mixing of plaice between the North Sea and VIId both as adults and juveniles. Analysis of tagging data shows that around \(40 \%\) of the juvenile plaice in VIId come from nursery grounds in the North Sea. The eastern Channel supplies very few recruits to the North Sea. There is also an adult migration between the North Sea and Channel with \(20-30 \%\) of the plaice caught in the winter in VIId were from migratory North Sea fish. Separation between VIId and the western Channel (VIIe) is much clearer. VIId does not receive significant numbers of juvenile plaice from VIIe but contributes around 20\% of the recruits to VIIe. Similarly, around \(20 \%\) of the adult plaice spawning in VIId may have spent part of the year in VIIe but few plaice tagged in VIIe during the spawning period are recaptured in VIId. It can be concluded that there is considerable interchange of plaice from the North Sea into VIId but a much smaller interchange between VIId and VIIe. Since the exploitation patterns between the three areas are very different, it has been concluded that separate assessments should be carried out.

The management area for channel plaice is a combined one between VIId and VIIe. TACs are obtained by combining the agreed TAC from each area.

\subsection*{1.1.2 FISHERY}

Plaice is mainly caught in beam trawl fisheries for sole or in mixed demersal fisheries using otter trawls. There is also a directed fishery during parts of the year by inshore trawlers and netters on the English and French coasts. The main fleet segments are the English and Belgian beam trawlers. The Belgian beam trawlers fish mainly in the \(1^{\text {st }}\) and \(4^{\text {th }}\) quarters and their area of activity covers almost the whole of VIId south of the 6 mile contour from the English coast. There is only light activity by this fleet between April and September. The second offshore fleet is mainly large otter trawlers from Boulogne, Dieppe and Fecamp. The target species of these vessels are cod, whiting, plaice mackerel, gurnards and cuttlefish and the fleet operates throughout VIId. The inshore trawlers and netters are mainly vessels <10m operating on a daily basis within 6 miles of the coast. There are a large number of these vessels (in excess of 400) operating from small ports along the French and English coast. These vessels target sole, plaice, cod and cuttlefish.

The minimum landing size for plaice is 27 cm . Demersal gears permitted to catch plaice are 80 mm for beam trawling and 100 mm for otter trawlers. Fixed nets are required to use 100 mm mesh since 2002 although an exemption to permit 90 mm has been in force since that time.

There is widespread discarding of plaice, especially from beam trawlers. The 25 and \(50 \%\) retention lengths for plaice in an 80 mm beam trawl are 16.4 cm and 17.6 cm respectively which are substantially below the

MLS. Routine data on discarding is not available but comparison with the North Sea suggests that discarding levels in excess of \(40 \%\) by weight are likely. Discard survival from small otter trawlers can be in excess of \(50 \%\) (Millner et al., 1993). In comparison discard mortality from large beam trawlers has been found to be between less than \(20 \%\) after a 2 h haul and up to \(40 \%\) for a one-hour tow (van Beek et al 1989).

\subsection*{1.1.3 ECOSYSTEM ASPECTS}

No information is available.

\subsection*{1.2 Data}

\subsection*{1.2.1 COMMERCIAL CATCH}

The landings are taken by three countries France ( \(55 \%\) of combined TAC), England (29\%) and Belgium \((16 \%)\). Quarterly catch numbers and weights were available for a range of years depending on country; the availability is presented in the text table below. Levels of sampling prior to 1985 were poor and these data are considered to be less reliable. In 2001 international landings covered by market sampling schemes represented the majority of the total landings.

\subsection*{1.2.1.1 Belgium}

Belgian commercial landings and effort information by quarter, area and gear are derived from log-books (CHECK).

Sampling for age and length occurs for the beam trawl fleet (main fleet operating in Belgium).
Quarterly sampling of landings takes place at the auctions of Zeebrugge and Oostende (main fishing ports in Belgium). Length is measured to the cm below. Samples are raised per market category to the catches of both harbours.

Quarterly otolith samples are taken throughout the length range of the landings (sexes separated). These are aged and combined to the quarterly level. The ALK is used to obtain the quarterly age distribution from the length distribution.

In 2003 a pilot study started on on-board sampling with respect to discarded and retained catch.

\subsection*{1.2.1.2 France}

French commercial landings in tonnes by quarter, area and gear are derived from log-books for boats over 10 m and from sales declaration forms for vessels under 10 m . These self declared production are then linked to the auction sales in order to have a complete and precise trip description.

The collection of discard data has begun in 2003 within the EU Regulation 1639/2001. This first year of collection will be incomplete in term of time coverage, therefore the use of these data should be investigated only from 2005.

The length measurements are done by market commercial categories and by quarter into the principal auctions of Grandcamp, Port-en-Bessin, Dieppe and Boulogne. Samplings from Grandcamp and Port-enBessin are used for raising catches from Cherbourg to Fecamp and samplings from Dieppe and Boulogne are used to raise the catches from Dieppe to Dunkerque

Otoliths samples are taken by quarter throughout the length range of the landed catch for quarters 1 to 3 and from the october GFS survey in quarter 4 . These are aged and combined to the quarterly level and the age-
length key thus obtained is used to transform the quarterly length compositions. The length not sampled during one quarter are derived from the same year close quarter.

Weight, sex and maturity at length and at age are obtained from the fish sampled for the age-length keys.

\subsection*{1.2.1.3 England}

English commercial landings in tonnes by quarter, area and gear are derived from the sales notes statistics for vessels under 12 m who do not complete logbooks. For those over 12 m (or \(>10 \mathrm{~m}\) fishing away for more than 24 h ), data is taken from the EC logbooks. Effort and gear information for the vessels \(<10 \mathrm{~m}\) is not routinely collected and is obtained by interview and by census. . No information is collected on discarding from vessels <10m. Discarding from vessels >10m has been obtained since 2002 under the EU Data Collection Regulation.

The gear group used for length measurements are beam trawl, otter trawl and net.
Separate-sex length measurements are taken from each of the gear groupings by trip. Trip length samples are combined and raised to monthly totals by port and gear group. Months and ports are then combined to give quarterly total length compositions by gear group; unsampled port landings are added in at this stage. Quarterly length compositions are added to give annual totals by gear. These are for reference only, as ALK conversion takes place at the quarterly level. Otoliths samples are taken by 2 cm length groups separately for each sex throughout the length range of the landed catch. These are aged and combined to the quarterly level, and include all ports, gears and months. The quarterly sex-separate age-length-keys are used to transform quarterly length compositions by gear group to quarterly age compositions.

A minimum of 24 length samples are collected per gear category per quarter. Age samples are collected by sexes separately and the target is 300 otoliths per sex per quarter. If this is not reached, the \(1^{\text {st }}\) and \(2^{\text {nd }}\) or \(3^{\text {rd }}\) and \(4{ }^{\text {th }}\) quarters are combined.
1.2.1.4 The text table below shows which country supplies which kind of data:
\begin{tabular}{lll}
\hline Country & Numbers & Weights-at-age \\
\hline Belgium & 1981-present & 1986 -present \\
France & 1989- present & 1989-present \\
UK & 1980-present & 1989-present \\
\hline
\end{tabular}

Data are supplied as FISHBASE files containing quarterly numbers at age, weight at age, length at age and total landings. The files are aggregated by the stock co-ordinator to derive the input VPA files in the Lowestoft format. No SOP corrections are applied to the data because individual country SOPs are usually better than \(95 \%\). The quarterly data files by country can be found with the stock co-ordinator

The resulting files (FAD data) can be found at ICES and with the stock co-ordinator, either in the IFAP system as SAS datasets or as ASCII files on the Lowestoft format, either under w:lacfm\nsskwg\2002\data|ple_eche or w:lifapdataleximport\nsskwg\ple_eche.

\subsection*{1.2.2 BIOLOGICAL}

Natural mortality was assumed constant over ages and years at 0.1 as in the North Sea. The maturity ogive used assumes that \(15 \%\) of age \(2,53 \%\) of age 3 and \(96 \%\) of age 4 are mature and \(100 \%\) for ages 5 and older.

Prior to 2001, stock weights were calculated from a smoothed curve of the catch weights interpolated to the \(1^{\text {st }}\) January. From 2001, second quarter catch weights were used as stock weights in order to be consistent with North Sea sole. The database was revised back to 1990.

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

\subsection*{1.2.3 SURVEYS}

A dedicated 4 m beam trawl survey for plaice and sole has been carried out by England using the RV Corystes since 1988. The survey covers the whole of VIId and is a depth stratified survey with most samples allocated to the shallower inshore stations where the abundance of sole is highest. In addition, inshore small boat surveys using 2 m beam trawls are undertaken along the English coast and in a restricted area of the Baie de Somme on the French coast. In 2002, The English and French Young Fish Surveys were combined into an International Young Fish Survey. The dataset was revised for the period back to 1987. The two surveys operate with the same gear (beam trawl) during the same period (September) in two different nursery areas. Previous analysis (Riou et al, 2001) has shown that asynchronous spawning occurs for flatfish in Division VIId. Therefore both surveys were combined based on weighting of the individual index with the area nursery surface sampled. Taking into account the low, medium, and high potential area of recruitment, the French YFS got a weight index of 55\% and the English YFS of 45\%.

A third survey consists of the French otter trawl groundfish survey (FR GFS) in October. Prior to 2002, the abundance indices were calculated by splitting the survey area into five zones, calculating a separate index for each zone each zone, and then averaging to obtain the final GFS index. This procedure was not thought to be entirely satisfactory, as the level of sampling was inconsistent across geographical strata. A new procedure was developed based on raising abundance indices to the level of ICES rectangles, and then by averaging those to calculate the final abundance index. Although there are only minor differences between the two indices, the revised method was used in 2002 and subsequently.

\subsection*{1.2.4 COMMERCIAL CPUE}

Three commercial fleets have been used in tuning. UK inshore trawlers, Belgian beam trawl fleet and French otter trawlers as well as three survey fleets.
The effort of the French otter trawlers is obtained by the log-books information on the duration of the fishing time weighted by the engine power (in KW) of the vessel. Only trips where sole and/or plaice have been caught is accounted for.

\subsection*{1.2.5 OTHER RELEVANT DATA}

None.

\subsection*{1.3 Historical Stock Development}

\subsection*{1.3.1 DETERMINISTIC MODELLING}

Model used: XSA

Software used: IFAP / Lowestoft VPA suite

Model Options chosen:
Tapered time weighting not applied
Catchability independent of stock size for all ages
Catchability independent of age for ages \(>=7\)
Survivor estimates shrunk towards the mean F of the final 5 years or the 3 oldest ages
S.E. of the mean to which the estimate are shrunk \(=0.500\)

Minimum standard error for population estimates derived from each fleet \(=0.300\)
Prior weighting not applied
Input data types and characteristics:
Catch data available for 1982-present year. However, there was no French age compositions before 1986 and large catchability residuals were observed in the commercial data before 1986. In the final analyses only data from 1986-present were used in tuning
\begin{tabular}{|c|c|c|c|c|}
\hline Type & Name & Year range & Age range & \begin{tabular}{l}
Variable from year to year \\
Yes/No
\end{tabular} \\
\hline Caton & Catch in tonnes & \[
\begin{aligned}
& 1980 \text { - last data } \\
& \text { year }
\end{aligned}
\] & 2-10+ & Yes \\
\hline Canum & Catch at age in numbers & \[
\begin{aligned}
& 1980 \text { - last data } \\
& \text { year }
\end{aligned}
\] & 2-10+ & Yes \\
\hline Weca & Weight at age in the commercial catch & \[
1980 \text { - last data }
\] year & 2-10+ & Yes \\
\hline West & Weight at age of the spawning stock at spawning time. & 1980 - last data year & 2-10+ & Yes - assumed to be the weight at age in the Q1 catch \\
\hline Mprop & Proportion of natural mortality before spawning & \[
\begin{aligned}
& 1980 \text { - last data } \\
& \text { year }
\end{aligned}
\] & 2-10+ & No - set to 0 for all ages in all years \\
\hline Fprop & Proportion of fishing mortality before spawning & \[
\begin{aligned}
& 1980 \text { - last data } \\
& \text { year }
\end{aligned}
\] & 2-10+ & No - set to 0 for all ages in all years \\
\hline Matprop & Proportion mature at age & \[
\begin{aligned}
& 1980 \text { - last data } \\
& \text { year }
\end{aligned}
\] & 2-10+ & No - the same ogive for all years \\
\hline Natmor & Natural mortality & \[
\begin{aligned}
& 1980 \text { - last data } \\
& \text { year }
\end{aligned}
\] & 2-10+ & No - set to 0.2 for all ages in all years \\
\hline
\end{tabular}

Tuning data:
\begin{tabular}{|l|l|l|l|}
\hline Type & Name & Year range & Age range \\
\hline Tuning fleet 1 & \begin{tabular}{l} 
English commercial \\
Inshore trawl
\end{tabular} & 1985 - last data year & \(2-10\) \\
\hline Tuning fleet 2 & \begin{tabular}{l} 
Belgian commercial \\
Beam trawl
\end{tabular} & 1981 - last data year & \(2-10\) \\
\hline Tuning fleet 3 & French trawlers & 1989 - last data year & \(2-10\) \\
\hline Tuning fleet 4 & English BT survey & 1988 - last data year & \(1-6\) \\
\hline Tuning fleet 5 & French GFS & 1988 - last data year & \(1-5\) \\
\hline Tuning fleet 6 & International YFS & 1987 - last data year & \(1-1\) \\
\hline
\end{tabular}

\subsection*{1.3.2 UNCERTAINTY ANALYSIS}

\subsection*{1.3.3 RETROSPECTIVE ANALYSIS}

\subsection*{1.4 Short-Term Projection}

Model used: Age structured

Software used: IFAP prediction with management option table and yield per recruit routines
Initial stock size: Taken from XSA for age 3 and older. The number at age 2 in the last data year is estimated using RCT3. The recruitment at age 1 in the last data year is estimated using the geometric mean over a long period (1980 - last data year)

Natural mortality: Set to 0.1 for all ages in all years

Maturity: The same ogive as in the assessment is used for all years
F and M before spawning: Set to 0 for all ages in all years

Weight at age in the stock: Average weight of the three last years

Weight at age in the catch: Average weight of the three last years

Exploitation pattern: Average of the three last years, scaled by the Fbar (2-6) to the level of the last year

Intermediate year assumptions:
Stock recruitment model used: None, the long term geometric mean recruitment at age 1 is used

Procedures used for splitting projected catches: Not relevant

\subsection*{1.5 Medium-Term Projections}

The segmented stock/recruitment relationship is considered not significant (ICES, 2003a). There is therefore no consistent basis to build a medium term projection
1.6 Biological Reference Points
\[
\begin{array}{ll}
\hline \mathbf{B}_{\mathrm{lim}}= & 5400 \mathrm{t} . \\
\mathbf{B}_{\mathrm{pa}}= & 8000 \mathrm{t} . \\
\mathbf{F}_{\text {lim }}= & 0.54 \\
\mathbf{F}_{\mathrm{pa}}= & 0.45
\end{array}
\]
1.7 Other Issues

None.

Beek, F.A. van, Leeuwen, P.I. van and Rijnsdorp, A.D. 1989. On the survivalof plaice and sole discards in the otter trawl and beam trawl fisheries in the North Sea. ICES C.M. 1989/G:46, 17pp

ICES 2003a. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 2002. ICES CM 2003/ACFM:02

ICES 2003b. Report of the Study Group on Precautionary Reference Points For Advice on Fishery Management ICES CM 2003/ACFM:15

Millner, R.S., Whiting, C.L and Howlett, G.J. 1993. Estimation of discard mortality of plaice from small otter trawlers using tagging and cage survival studies. ICES C.M. 1993/G:24, 6pp

Riou et al. 2001. Relative contributions of different sole and plaice nurseries to the adult population in the Eastern Channel : application of a combined method using generalized linear models and a geographic information system. Aquatic Living Resources. 14 (2001) 125-135

\section*{Quality Handbook Norway pout}

ANNEX: WGNSSK -

Stock specific documentation of standard assessment procedures used by ICES.

Stock: Norway pout in North Sea and Skagerrak (ICES Area IV and IIIa)

Working Group: WG on the Assessment of Demersal Stocks in the North Sea and Skagerrak

Date: 15.9.04

\section*{A. General}

\section*{A.1. Stock definition}

Norway pout is a small, short-lived gadoid species, which rarely gets older than 5 years (Sparholt, Larsen and Nielsen 2002a). It is mainly distributed in the northern North Sea ( \(>57^{\circ} \mathrm{N}\) ) and in Skagerrak at depths between 50 and 250 m (Raitt 1968; Sparholt, Larsen and Nielsen 2002b).

ICES ACFM (October 2001) asked the ICES WGNSSK to verify the justification of treating ICES Division VIa as a management area for Norway pout (and sandeel) separately from ICES areas IV and IIIa. Preliminary results from an analysis of regionalized survey data on Norway pout maturity, presented in a Working Document to the 2000 meeting of the WGNSSK (Larsen, Lassen, Nielsen and Sparholt,2001 in ICES C.M.2001/ACFM:07), gave no evidence for a stock separation in the whole northern area.

\section*{A.2. Fishery}

The fishery is mainly by Danish and Norwegian (large) vessels using small mesh trawls in the northern North Sea at Fladen Ground and along the edge of the Norwegian Trench. Main fishing seasons are \(1^{\text {st }}\), \(3^{\text {rd }}\), and \(4^{\text {th }}\) quarters of the year. Norway pout is caught in small meshed trawls \((16-31 \mathrm{~mm})\) in a mixed fishery with blue whiting. The fishery is mainly carried out by Denmark ( \(\sim 70-80 \%\) ) and Norway ( \(\sim 20-\) \(30 \%\) ) at fishing grounds in the northern North Sea especially at Fladen Ground and along the edge of the Norwegian Trench. Norway pout is landed for reduction purposes (fish meal and fish oil).

With present fishing mortality levels the status of the stock is more determined by natural processes and less by the fishery. The Norway pout fishery is regulated by minimum mesh size in the trawls, fishing area closure in the Norway pout box in the North-Western part of the North Sea, and by-catch regulations to protect other species.

\section*{A.3. Ecosystem aspects}

There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. By-catches of other species should also be taken into account in management of the fishery. Existing technical measures such as the closed Norway pout box, minimum mesh size in the fishery, and by-catch regulations to protect other species have been maintained.

Recruitment in Norway pout is highly variable and influences spawning stock biomass (SSB) and total stock biomass (TSB) rapidly due to the short life span of the species. The fishing mortality is lower than the natural mortality, and this stock is important as food source for other species, which means that the population dynamics for Norway pout in the North Sea and in Skagerrak are very dependent on changes caused by recruitment variation and predation mortality (or other natural mortality causes) and less by the fishery

\section*{B. Data}

\section*{B.1. Commercial catch and effort data}

The assessment uses the combined catch and effort data from the commercial Danish and Norwegian small meshed trawler fleets fishing mainly in the northern North Sea.

For the Danish and Norwegian commercial landings sampling procedures of the commercial landings, which vary between the countries, were described in detail in the report of the WGNSSK meeting in 2004 (ICES 2005).

From 2002 onwards, an EU regulation (1639/2001) was endorsed which affects the market sampling procedures. First, each country is obliged to sample all fleet segments, including foreign vessels landing in their country. Second, a minimum number of market samples per tonnes of landing are required. The national market sampling programmes have been adjusted accordingly.

\section*{Method of effort standardization of the commercial fishery tuning fleet}

Background descriptions of the commercial fishery tuning series used and methods of effort standardization of the commercial fishery between different vessel size categories and national commercial fleets are given in the 2004 working group report (ICES 2005) and the 1996 working group report (ICES CM 1997/Assess:6). Previous to the 2001 assessment the effort has been standardized by vessel category (to a standard 175 GRT vessel) only using the catch rate proportions between vessel size categories within the actual year.

In the 2004 (as well as in the 2001-2003) assessments the output of the regression analyses using time series from 1987-2004 has been applied to the Danish and Norwegian commercial fishery as well. Effort standardization of both the Danish and the Norwegian part of the commercial fishery tuning series is performed by applying standardization factors to reported catch and effort data for the different vessel size categories. The standardization factors are obtained from regression of CPUE indices by vessel size category over years of the Danish commercial fishery tuning fleet. The number of small vessels in the Danish Norway pout fishing fleet has decreased significantly and the relative number of large vessels has increased in the latest years. Furthermore, there was found no trends in CPUE between vessel categories over time. For these reasons the CPUE indices used in the regression has been obtained from pooled catch and effort data over the years 1994-present assessment year by vessel category in order to obtain and include estimates for all vessel categories also for the latest years where no observations exists for the smallest vessels groups. Results and parameter estimates from the yearly regression analyses on CPUE versus GRT for the different Danish vessel size categories used in the effort standardization of both the Norwegian and Danish commercial fishery are yearly updated to the yearly performed assessment.

The regression model used in effort standardisation is the following:

Regression models: \(\mathrm{CPUE}=\mathrm{b} * \mathrm{GRT}^{\mathrm{a}}=>\ln (\mathrm{CPUE})=\ln (\mathrm{b})+\mathrm{a} * \ln ((\) GRT-50 \())\)
Parameter estimates from regressions of \(\ln (C P U E)\) versus \(\ln\) (average GRT) by period together with estimates of standardized CPUE to the group of Danish 175 GRT industrial fishery trawlers is used to standardize effort in the commercial fishery tuning fleet used in the Norway pout assessment. Parameter estimates for the period 1994-2004 is the following:
\begin{tabular}{ccccc}
\hline Year & Slope & Intercept & R-Square & CPUE(175 tonnes) \\
\hline \(1994-2004\) & 0.18 & 18.88 & 0.77 & 32.86 \\
\hline
\end{tabular}

In 2002 the assessment was run both with and without the new standardization method (regression). The differences in results of output SSB, TSB and F between the two assessment runs were small.

\section*{Norwegian effort data}

In 1997, Norwegian effort data were revised as described in sections 13.1.3.1 and 1.3.2 of the 1997 working group report (ICES CM 1998/Assess:7). Furthermore, in the 2000 assessment Norwegian average GRT and Effort data for 1998-99 were corrected because data from ICES area IIa were included for these years in the 1998-99 assessments. Observed average GRT and effort for the Norwegian commercial fleets are given in the input data to the yearly performed assessment. This information has been put together in the report of the ICES WGNSSK meeting in 2004 (ICES 2005),

\section*{Danish effort data}

In each yearly assessment the input data as CPUE data by vessel size category and year for the Danish commercial fishery in area IVa is given. This is based on fishing trips where total catch included at least 70 \% Norway pout and blue whiting per trip, and where Norway pout was reported as main species in catch in the logbook per fishing day and fishing trip. There has been a relative reduction in the number and effort of small vessels and an increase for the larger vessels in the fleet in the latest years. Furthermore, it appears clearly that there is big difference in CPUE (as an indicator of fishing power) between different vessel size categories (BRT). Accordingly, standardization of effort is necessary when using a combined commercial fishery tuning fleet in the assessment including several vessel categories. Minor revisions (up-dating) of the Danish effort and catch data used in the effort standardization and as input to the tuning fleets have been made for the 2001 assessment.

\section*{Standardized effort data}

The resulting combined and standardized Danish and Norwegian effort for the commercial fishery used in the assessment is presented in the input data to the yearly performed assessment, as well as the combined CPUE indices by age and quarter for the commercial fishery tuning fleet.

The seasonal variation in effort data is one reason for performing a seasonal VPA.

\section*{B.2. Biological data}

\section*{Age reading}

There are no reports of age reading problems of Norway pout otoliths, no indications of low quality of the age length keys used in the assessment of this stock.

\section*{Weight at age}

Mean weight at age in the catch is estimated as a weighted average of Danish and Norwegian data. Historical levels and variation in mean weight at age in catch by quarter of year is shown in Figure 12.2.1 in the 2004 benchmark assessment in the 2004 ICES WGNSSK Report (ICES 2005). In general, the mean weights at age in the catches are variable between seasons of year. The same mean weight at age in the stock is used for all years. Mean weight in catch is not used as estimator of weight in the stock partly because the smallest 0 -group fish are not fully recruited to the fishery in \(3^{\text {rd }}\) quarter of the year.

\section*{Maturity and natural mortality}

The same proportion mature and natural mortality are used for all years in the assessment. The natural mortality is set to 0.4 for all age groups in all seasons that result in an annual natural mortality of 1.6 for all age groups. The proportion mature used is \(0 \%\) for the 0 -group, \(10 \%\) of the 1 -group and \(100 \%\) of the \(2+\)-group independent of sex.

In the 2001 and 2002 assessment exploratory runs were made with revised input data for natural mortality based on the results from two papers presented to the working group in 2001, (both papers published in ICES J. Mar. Sci. in 2002, Sparholt, Larsen and Nielsen 2002a,b). This was not explored further in the 2003 up-date assessment but this year benchmark assessment of the stock includes an exploratory run with revised natural mortalities. These revised natural mortalities are given in Table 12.2.3 in the 2004 ICES WGNSSK Report (ICES 2005).

The resulting SSB, TSB (3rd quarter of year), TSB (1st quarter of year) and F for the final exploratory run was compared to those for the accepted run with standard settings. It appears that the implications of these revised input data are very significant. The working group in 2002 suggested that an assessment with partly the traditional settings (constant M) and a new assessment with the revised values for M were made for at least a 3 year period in order to compare the output and the performance of the assessments before the working group decided on final adoption of the revised values for M to be used in the assessment. This attitude was adopted by the Working Group again in the 2004 benchmark assessment where a exploratory run with revised values for \(M\) was performed as well. The results of the exploratory runs have been consistent throughout the 3 years of exploratory runs.

\section*{Research results on population dynamics parameters (e.g. natural mortality and maturity)}

Investigations on population dynamics (natural mortality, distribution, and spawning and maturity as well as growth patterns) of Norway pout in the North Sea are ongoing. Exploratory runs of the SXSA model was presented in the 2001 and 2002 assessment reports as well as in the 2004 assessment (Norway pout benchmark assessment) with revised input data for natural mortality by age based on the results from two papers presented to the working group in 2001, (later published in Sparholt, Larsen and Nielsen, 2002a,b). The resulting SSB, TSB ( \(3^{\text {rd }}\) quarter of year), TSB ( \(1^{\text {st }}\) quarter of year) and F for the final exploratory run was compared to those for the accepted run with standard settings. It appears that the implications of these revised input data are very significant. The working group in 2002 suggested that an assessment with partly the traditional settings (constant M) and a new assessment with the revised values for \(M\) were made for at least a 3 year period in order to compare the output and the performance of the assessments before the working group decided on final adoption of the revised values for M to be used in the assessment. This attitude was adopted by the working group again in the 2004 benchmark assessment where a exploratory run with revised values for M was performed as well. The results of the exploratory runs have been consistent throughout the 3 years of exploratory runs.

Preliminary results from an analysis of regionalized survey data on Norway pout maturity is presented in a Working Document to the 2000 meeting of the Working Group (Larsen, Lassen, Nielsen and Sparholt,2001 in ICES C.M.2001/ACFM:07).

\section*{B.3. Survey data}

Survey index series of abundance of Norway pout by age and quarter are for the assessment period available from the IBTS (Q1 and Q3) and the EGFS (Q3) and the SGFS (Q3) as given in Table 12.2.8. The SGFS data from 1998 onwards should be used with caution due to new survey design (new vessel from 1998 and new gear and extended survey area from 1999). The 0 -group indices from this survey have accordingly not been used in the assessment tuning fleet for this survey previous to the 2004 benchmark assessment. It can be seen that the index for the 0-group from SGFS changed with an order of magnitude in the years after the change in survey design compared to previous years (Table 12.2.8). The EGFS data from previous to 1992 should be used with caution as the survey design shifted in 1992. This change in survey design has so far been accounted for by simply multiplying all indices with a factor 3.5 for all age groups in the years previous to 1992 in order to standardize it to the later indices. The EGFS survey indices for Norway pout has been revised in the 2004 assessment compared to the previous years assessment for the 1996, 2001, 2002, and 2003 indices. In previous years assessment the full EGFS survey time series for all age groups have been included as an assessment tuning fleet. Time series for IBTS Q3 are only available from 1991 and onwards. The \(3^{\text {rd }}\) quarter IBTS and the EFGS and SGFS are not independent of each other as the two latter is a part of the first.

\section*{B.4. Commercial CPUE data}

Combined CPUE indices by age and quarter for the Danish and Norwegian commercial fishery tuning fleet is calculated from effort data obtained from the method of effort standardization of the commercial fishery tuning fleet described under section B. 1 and vessel category specific catches by area. CPUE is estimated on a quarterly basis for the Danish and Norwegian commercial fleets.

The resulting combined, commercial fishery CPUE data by age and quarter used in tuning of the assessment based on the combined and standardized Danish and Norwegian effort data and on catch data for the commercial fishery is presented in the input data to the yearly performed assessment.

\section*{Revision of assessment tuning fleets (survey CPUE data and commercial fishery CPUE data)} in the 2004 benchmark assessment:
Revision of the Norway pout assessment tuning fleets during benchmark assessment have been based partly on cohorte analyses and analyses of correlations within and between the different tuning fleet indices by age group, as well as on the results from a row of exploratory assessment runs described under section 12.3 which analyses the performance of the different tuning fleets in the assessment. The exploratory assessment runs also give indications of possible catchability patterns and trends in the fishery over time within the assessment period. The analyses of the tuning fleet indices are presented in Figures 12.2.3-12.2.8 and Tables 12.2.9-12.2.12.

The revision of the tuning fleets used in the assessment is summarised in Table 12.3.1.
Commercial fishery tuning fleets:
In addition to the analyses of the commercial fishery assessment tuning fleet as described above (effort standardization) the quarterly CPUE indices of the commercial fishery tuning fleet were analyzed during the 2004 benchmark assessment:
1. The indices for the 0 -group in \(3^{\text {rd }}\) quarter of the year have been excluded from the commercial fishery tuning fleet. The main argumentation for doing that is that this age group indicate clear patterns in trends in catchability over the assessment period as shown in the single fleet/quarter assessment runs in section 12.3 (Figure 12.3.7). Secondly, there is no correlation between the commercial fishery quarter 30 -group index and the commercial fishery quarter 4 0 -group index, and no correlation between the quarter 3 commercial fishery 0 -group index in a given year with the 1 -group index of the \(3^{\text {rd }}\) quarter commercial fishery 1-group index the following year.
2. The \(2^{\text {nd }}\) quarter indices for all age groups of the \(2^{\text {nd }}\) quarter have been excluded from the commercial fishery tuning fleet. This is mainly because of indications of strong trends in catchability over time in the assessment period for this part of the tuning fleet for all age groups as indicated by single fleet tuning runs in the section 12.3 (Figure 12.3.7). Also, the within quarter and between quarter correlation indices are in general relatively poor. The cohorte analyses of the \(2^{\text {nd }}\) quarter commercial fishery indices indicate as well relative changes over time.

Survey tuning fleets:
Survey index series of abundance of Norway pout by age and quarter are for the assessment period available from the IBTS (Q1 and Q3) and the EGFS (Q3) and the SGFS (Q3) as given in Table 12.2.8. The SGFS data from 1998 onwards should be used with caution due to new survey design (new vessel from 1998 and new gear and extended survey area from 1999). The 0 -group indices from this survey have accordingly not been used in the assessment tuning fleet for this survey previous to the 2004 benchmark assessment. It can be seen that the index for the 0 -group from SGFS changed with an order of magnitude in the years after the change in survey design compared to previous years (Table 12.2.8). The EGFS data from previous to 1992 should be used with caution as the survey design shifted in 1992. This change in survey design has so far been accounted for by simply multiplying all indices with a factor 3.5 for all age groups in the years previous to 1992 in order to standardize it to the later indices. The EGFS survey indices for Norway pout has been revised in the 2004 assessment compared to the previous years assessment for the 1996, 2001, 2002, and 2003 indices. In previous years assessment the full EGFS survey time series for all age groups have been included as an assessment
tuning fleet. Time series for IBTS Q3 are only available from 1991 and onwards. The \(3^{\text {rd }}\) quarter IBTS and the EFGS and SGFS are not independent of each other as the two latter is a part of the first.
1. The IBTS Q3 for the period 1991-2003 has been included in the assessment. This survey has a broader coverage of the Norway pout distribution area compared to the EGFS and SGFS isolated. However, as this survey index is not available for the most recent year to be used in the seasonal assessment it has been chosen to exclude the 0 - and 1 -group indices from the IBTS Q3 in order to allow inclusion of the 0 - and 1 -group indices from the SGFS and EGFS which are available for the most recent year in the assessment. Accordingly, the IBTS Q3 tuning fleet for age 2 and age 3 has been included in the assessment as a new tuning fleet. The SXSA demands at least two age groups in order to run which is the reason for including both age 0 and age 1 under the EGFS and SGFS tuning fleets and not including age 1 in the IBTS Q3 tuning fleet.
2. The SGFS for age group 0 and 1 for the period 1998 and onwards has been used as tuning fleet in the assessment. The short time series is due to the change in survey design for SGFS as explained above. The quarter 30 -group survey index for SGFS is back-shifted to the final season of the assessment in the terminal year, i.e. to quarter 2 of the assessment year in order to include the most recent 0 -group estimate in the assessment.
3. The EGFS for age group 0 and 1 for the period 1992 and onwards has been used as tuning fleet in the assessment. The shorter time series is due to the change in survey design for EGFS as explained above. Furthermore, there is a good argument for excluding the age 2-3 of the EGFS as the within survey correlation between the age groups 1-2 and 2-3 is very poor while the within correlation between age groups \(0-1\) is good. The quarter 30 -group survey index for EGFS is back-shifted to the final season of the assessment in the terminal year, i.e. to quarter 2 of the assessment year in order to include the most recent 0 -group estimate in the assessment.
4. The IBTS Q1 tuning fleet has remained unchanged compared to previous years assessment.

\section*{C. Historical Stock Development}

The SXSA (Seasonal Extended Survivors Analysis: Skagen (1993)) was used to estimate quarterly stock numbers and fishing mortalities for Norway pout in the North Sea and Skagerrak. The catch at age analysis is carried out according to the specifications given in the present stock quality handbook.

\section*{Model used: SXSA}

The SXSA (Seasonal Extended Survivors Analysis: Skagen (1993)) is used to estimate quarterly stock numbers and fishing mortalities for Norway pout in the North Sea and Skagerrak. The assessment is analytical using catch-at-age analysis based on quarterly catch and CPUE data. The assessment is considered appropriate to indicate trends in the stock and immediate changes in the stock because of the seasonal assessment taking into account the seasonality in fishery. The seasonal model makes it possible to include and use the most recent information from the fishery and from the surveys at the assessment in , and provides a gives at the assessment time an The seasonal variation in effort data is one reason for performing a seasonal VPA.

In the options chosen in the SXSA for the Norway pout assessment the catchability, r, per age and quarter and fleet is assumed to be constant within the period 1983-2004 where the estimated catchability, rhat, is a geometric mean over years by age, quarter and tuning fleet. In the 2004 benchmark assessment exploration of trends in tuning fleet catchabilities was investigated by single fleet runs with the SXSA. The accepted assessment with revised tuning fleets in the 2004 benchmark assessment assume constant catchability. Tuning is performed over the period 1983 to present producing \(\log\) residual \((\log (\mathrm{Nhat} / \mathrm{N}))\) stock numbers and survivor estimates by year, quarter, age and tuning fleet. The contributions from the various age groups to the survivor estimates by year and quarter and fleet are in the SXSA combined to an overall survivors estimate, shat, estimated as the geometric mean over years of \(\log\) (shat) weighted by the exponential of the inverse cumulated fishing mortality as described in Skagen (1993).

Comparison of output from a seasonal based assessment model (the SXSA model) and a annual based (the XSA model):

In the 2004 benchmark assessment of the Norway pout stock a comparison of the output, performance and weighting of tuning tuning fleets of the seasonal based SXSA model and the annual based XSA model was performed. The results are in detail presented in the 2004 ICES WGNSSK Report (ICES 2005). The differences in results of output SSB, TSB and F between the two assessment runs were small. Both model runs gave in general similar weighting to the different tuning fleets used. This was based on comparison of runs of the accepted assessment (by the WG and ACFM) in 2003.

\section*{Software used:}

SXSA program available from ICES.
(XSA program available from ICES; Exploratory run).

\section*{Model Options chosen:}

The parameter settings and options of the SXSA has been the same in all recent years assessments. No time taper or shrinkage is used in the catch at age analysis. The three surveys and the seasonally (by quarter) divided commercial fleets are all used in the tuning.

```

The following options were used:
1: Inv. catchability: 2
(1: Linear; 2: Log; 3: Cos. filter)
2: Indiv. shats:
3: Comb. shats:
4: Fit catches: 0
(0: No fit; 1: No SOP corr; 2: SOP corr.)
5: Est. unknown catches: 0
(0: No; 1: No SOP corr; 2: SOP corr; 3: Sep. F)
6: Weighting of rhats:
(0: Manual)
7: Weighting of shats: 2
(0: Manual; 1: Linear; 2: Log.)
8: Handling of the plus group:
1
(1: Dynamic; 2: Extra age group)
Factor (between 0 and 1) for weighting the inverse catchabilities
at the oldest age versus the second oldest age (factor 1 means that
the catchabilities for the oldest age are used as they are):0
Specification of minimum value for the survivor number (this is
Used instead of the estimate if the estimate becomes very low):
Iteration until convergence (setting 0):
Input data types and characteristics:

```
\begin{tabular}{|l|l|l|l|l|}
\hline Type & Name & Year range & Age range & \begin{tabular}{l} 
Variable from \\
year to year \\
Yes/No
\end{tabular} \\
\hline Caton & Catch in tonnes & 1983-present & \(0-3+\) & Yes \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Canum & Catch at age in numbers & 1983-present| & 0-3+ & Yes \\
\hline Weca & Weight at age in the commercial catch & 1983-present| & 0-3+ & Yes \\
\hline West & Weight at age of the spawning stock at spawning time. & 1983-present| & 0-3+ & No \\
\hline Mprop & Proportion of natural mortality before spawning & Not relevant SXSA & & \\
\hline Fprop & Proportion of fishing mortality before spawning & 1983-present| & 0-1 & Yes \\
\hline Matprop & Proportion mature at age & 1983-present| & 1-3+ & \[
\begin{aligned}
& \text { No, 10\%age } 1, \\
& 100 \% 2+
\end{aligned}
\] \\
\hline Natmor & Natural mortality & 1983-present| & 0-3+ & \begin{tabular}{lll}
\begin{tabular}{lll} 
No, & 0.4 & per \\
quarter \\
group
\end{tabular} & per & age \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Tuning data:
\begin{tabular}{|l|l|l|l|}
\hline Type & Name & Year range & Age range \\
\hline Tuning fleet 1 & \begin{tabular}{l} 
Commercial fleet, \\
Q1,3,4
\end{tabular} & 1983-present & \(0-3+\) \\
\hline Tuning fleet 2 & IBTS Q1 & 1983-present & \(0-3+\) \\
\hline Tuning fleet 3 & EGFS & 1992-present & \(0-1\) \\
\hline Tuning fleet 4 & SGFS & 1998-present & \(0-1\) \\
\hline Tuning fleet 5 & IBTS Q3 & 1991-present & \(2-3+\) \\
\hline
\end{tabular}

\section*{D. Short-Term Projection}

Deterministic short-term forecasts was performed for the Norway pout stock in 2004. The forecast was calculated as a stock projection up to \(1^{\text {st }}\) of January 2005 without assuming anything about the recruitment in 2005 or taking unknown recruitment into consideration. A management table is presented with forecast F being equal to last year (2003), i.e. with very low level of fishing mortality (ICES 2005, Table 12.5). This F-level is not expected to increase as the recent reduction in effort targeting Norway pout most probably is caused by by-catch restrictions in the Norway pout fishery which is not expected to change during the next years fishery. Mean catch weight at age are averaged over the last three years. The low successive year-classes in 2002, 2003 and 2004 leads to a SSB estimate at \(\mathbf{B}_{\text {lim }}\) at start of 2004 (start of \(2^{\text {nd }}\) quarter of 2004), and far below \(\mathbf{B}_{\text {lim }}\) at the start of 2005 (1 \({ }^{\text {st }}\) of January). Fishing at F status quo in the second half of 2004 (Landings around 12000 t ) would lead to SSB in 2005 at \(50 \%\) of \(\mathbf{B}_{\text {lim }}\), while no fishing would still lead to SSB being only \(60 \%\) of \(\mathbf{B}_{\mathrm{lim}}\).

\section*{E. Biological Reference Points}
\(\mathbf{B}_{\text {lim }}\) is 90000 t
\(\mathbf{B}_{\mathrm{pa}}=150000 \mathrm{t}\)
\(\mathbf{F}_{\text {low }}=0.23\)
\(\mathbf{F}_{\text {med }}=0.67\)
\(\mathbf{F}_{\text {high }}=1.21\)
\(\mathbf{B}_{\text {lim }}\) is 90.000 t , the lowest observed biomass
\(\mathbf{B}_{\mathrm{pa}}\) be established at \(150,000 \mathrm{t}\). This affords a high probability of maintaining SSB above \(\mathbf{B}_{\mathrm{lim}}\), taking into account the uncertainty of assessments. Below this value the probability of below average recruitment increases.
\(\mathbf{F}_{\text {lim }}\) None advised.
\(\mathbf{F}_{\mathrm{pa}}\) None advised.

\section*{F. Other Issues}

There is no management objective set for this stock. With present fishing mortality levels the status of the stock is more determined by natural processes and less by the fishery. There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. In managing this fishery by-catches of other species have been taken into account. Technical measures such as the closed Norway pout box, minimum mesh size in the fishery, and by-catch regulations to protect other species have been used in managing this stock and the fishery.

\section*{G. References}

ICES 1996. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. ICES C.M. 1996/Assess:6.

ICES 1998. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1997. ICES CM 1998/Assess :7

ICES 1999. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1998. ICES CM 1999/ACFM :8

Larsen, L.I., Lassen, H., Nielsen, J.R., and Sparholt, H. 2001. Working Document to the 2000 meeting of the WGNSSK. ICES C.M.2001/ACFM:07)

Raitt, D.F.S. 1968. The population dynamics of Norway Pout in the North Sea. Marine Research 5: 123.

Skagen, D. 1993. Revision and extension of the Seasonal Extended Survivors Analysis (SXSA). Working document for Norway pout and Sandeel Working Group. Unpublished

Sparholt, H., Larsen, L.I., Nielsen, J.R. 2002a. Verification of multispiesces interactions in the North Sea by trawl survey data on Norway Pout (Trisopterus esmarkii). ICES Journal of Marine Science 59:1270-1275.

Sparholt, H., Larsen, L.I., Nielsen, J.R. 2002b. Non-predation natural mortality of Norway pout (Trisopterus esmarkii) in the North Sea. ICES Journal of Marine Science 59:1276-1284.

\section*{STOCK ANNEX: SAITHE IN SUB-AREAS IV AND VI AND DIVISION IIIa}

\section*{1. General}

\subsection*{1.1 STOCK DEFINITION}

The geographical distribution of juveniles (< age 3) and adults differs. Typical for all saithe stocks are the inshore nursery grounds. Juveniles are therefore mainly distributed along the west and south coast of Norway, the coast of Shetland and the coast of Scotland. Around age 3 the individuals gradually migrate from the costal areas to the northern part of the North Sea \(\left(57^{\circ} \mathrm{N}-62^{\circ} \mathrm{N}\right)\), where the feeding grounds of the adult part of the stock are situated. The age at maturity is between 4 and 6 years, and spawning takes place in January-March at about 200 m depth along the Northern Shelf edge and the western edge of the Norwegian deeps. Mature fish migrate during the season between the feeding grounds (summer) and spawning grounds (winter).

Before 1999 saithe in Sub-area IV and Division IIIa and saithe in Sub-area VI was treated as a separate stock units. These stock boundaries were more for management purposes than a biological basis for stock separation. Present biological knowledge shows no evidence that saithe in Division IVa and Via belong to separate stock units. There seems to be a similar recruitment pattern and the spawning areas in these divisions are not separated (ICES 1995).

Tagging experiments by various countries have shown that exchange between all saithe stock components in the north-east Atlantic takes place to a variable extent (ICES 1995). For example, a substantial migration of immature saithe from the Norwegian coast between \(62^{\circ} \mathrm{N}\) and \(66^{\circ} \mathrm{N}\) to the North Sea has been shown to occur (Jakobsen 1981). 0-group saithe, on the other hand, drifts from the northern North Sea to the coast of Norway north of \(62^{\circ} \mathrm{N}\).

\subsection*{1.2 FISHERY}

Saithe in the North Sea are mainly taken in a direct trawl fishery in deep water near the Northern Shelf edge and the Norwegian deeps. The majority of the catches are taken by Norwegian, French, and German trawlers. In the first half of the year the fishery are directed towards mature fish, while immature fish dominate in the catches the rest of the year. In recent years the French fishery deployed less effort along the Norwegian deeps, while the German and Norwegian fisheries have maintained their effort there. The main fishery developed in the beginning of the 1970s. Recently trawlers have also been targeting deep sea fish, and it is necessary to take account of that when tuning series are established. The fishery in Area VI consists largely of a directed French, German, and Norwegian deep-water fishery operating on the shelf edge, and a Scottish fishery operating inshore. In both areas most of the saithe do not enter the main fishery before age 3, because the younger ages are staying in inshore waters. A small proportion of the total catch is taken in a limited purse seine fishery along the west coast of Norway targeting juveniles (age 2 and 3). Minimum landing size for saithe is currently 35 cm in the EU zone and 32 cm in the Norwegian zone (south of \(62^{\circ} \mathrm{N}\) ). Since the fish are distributed inshore until they are 2-3 years old, discarding of young fish is assumed to be a small problem in this fishery. Problems with by-catches in other fisheries when saithe quotas are exceeded may cause discarding. Data from SGDBI and Scotland indicate that the discard in the UK fleets in 2000 and 2001 was about 22000 t and 15000 t , respectively, mainly age 3 and age 4. French and German trawlers are targeting saithe and they have larger quotas, so the problem may be less in these fleets. The Norwegian trawlers move out of the area when the boat quotas are reached, and in addition the fishery is closed if the seasonal quota is reached.

\subsection*{1.3 ECOSYSTEM ASPECTS}

Saithe in the North Sea mainly preys on krill and Norway pout.

\section*{2 Data}

\subsection*{2.1 COMMERCIAL CATCH}

Catch at age data by fleet are supplied by Denmark, Germany, France, Norway, UK (England), and UK (Scotland) for Area IV and only UK(Scotland) for Area VI. Aberdeen (FRS) is responsible for the database with catch at age data from the different countries.

\subsection*{2.2 BIOLOGICAL}

Average weights at age in the stock are assumed to be equal to average weights at age in the catches. Average weights at age by fleet are supplied by Denmark, Germany, France, Norway, UK (England), and UK (Scotland) for Area IV and only UK(Scotland) for Area VI.

Aberdeen (FRS) is responsible for the database with weights at age in the catches from the different countries.

A natural mortality rate of 0.2 is used for all ages in all years. A constant maturity ogive based on historic biological sampling is used for all years:
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Age & 1 & 2 & 3 & 4 & 5 & 6 & \(7+\) \\
\hline Proportion mature & 0.0 & 0.0 & 0.0 & 0.15 & 0.7 & 0.9 & 1.0 \\
\hline
\end{tabular}

\subsection*{2.3 SURVEYS}

A Norwegian acoustic survey is conducted in conjunction with the IBTS Q3 survey, covering the area north of \(56^{\circ} 30^{\prime} \mathrm{N}\) up to \(62^{\circ} \mathrm{N}\) and directed towards saithe. The time series of indices from this survey is the only survey data used for tuning, and it extends back to 1995.
Time series from the English and Scottish Groundfish surveys are also available for tuning but since saithe is not well represented they are, at the time being, excluded.

A survey along the Norwegian coast targeting saithe larvae (0-group) started in 1999. The time series from this survey is currently too short to evaluate its potential as a year class strength predictor (i.e. to investigate the correlation between the 0 -group indices and the corresponding VPA numbers at age 3 ).

\subsection*{2.4 COMMERCIAL CPUE}

Three time series of CPUE are used in the tuning: Norwegian bottom trawl, German bottom trawl and French fresh fish trawlers. All fleets are targeting saithe along the Northern Shelf edge and along the western edge of the Norwegian deep, primarily at depths between 150-250 m. A more detailed description of the CPUE time series follows.
Norwegian bottom trawl: This time series extends back to 1980. The resolution of the logbook data is day-byday (i.e. a record comprises total daily catch and total hours trawled for each vessel). Only records where the weight proportion of saithe exceeds \(50 \%\) and records from vessels larger than 30 m are used to calculate CPUE \((\mathrm{kg} / \mathrm{h})\). Samples of age compositions in commercial trawl catches are used to age disaggregated the CPUE time series.
German bottom trawl: This age disaggregated CPUE time series extends back to 1995, and it is described in (Rätz et al. 2002)
French fresh fish trawlers: This time series extends back to 1990. The French saithe fishery has developed in the seventies, during the gadoid outburst. At the beginning of the nineties, the saithe stock reached its lowest historical level. Part of the French vessels reacted by fishing in different areas and in deeper waters. The remaining vessels have been harvesting saithe, almost exclusively in the North Sea, and with by-catches of deepwater species (blue ling) west of Scotland. The French fleet targeting saithe is now made up of large trawlers and freezer trawlers over 50 m . The vessels are registered in Boulogne and Lorient.
Series of CPUE (kg/h) at age were not supplied for the French freezers after 2002, as the landings from this fleet were neither length- nor age-sampled. The French tuning fleet is therefore made up of the non-freezer trawlers. Data are restricted to the fishing trips with more than \(10 \%\) of saithe landings.

\subsection*{2.5 OTHER RELEVANT DATA}

None.

\section*{3 Historical Stock Development}

\subsection*{3.1 DETERMINISTIC MODELLING}

Modell used: XSA (Darby and Flatman 1994)
Software used: Lowstoft VPA suite.
The settings of the final run in 2003 are given in the following table.
Year of assessment 2003
Assessment model XSA
French trawlers (TRB) IV 1990-2002 3-9
Norwegian trawlers IV 1980-2002 3-9
\begin{tabular}{|c|c|}
\hline German trawlers IV & 1995-2002 3-9 \\
\hline SGFS & not used \\
\hline EGFS & not used \\
\hline Norwegian acoustic survey IV & 1995-2002 3-7 \\
\hline Time-series weights & tricubic over 20 yrs \\
\hline Power model used for catchability & 1-2 \\
\hline Catchability plateau age & 7 \\
\hline Surv. est. shrunk towards mean F & 5 years / 3 ages \\
\hline s.e. of the means & 1.0 \\
\hline Min. stand. error for pop. estimates & 0.3 \\
\hline Prior weighting & none \\
\hline
\end{tabular}

\subsection*{3.2 UNCERTAINTY ANALYSIS}

Nothing here yet.

\subsection*{3.3 RETROSPECTIVE ANALYSIS}

\section*{4 Short-Term Projection}

Model used:
WGFRANSW (Reeves and Cook 1994)
Recruitment at age 1 :
The geometric mean of historic XSA numbers at age 1 (in 2003 the geometric mean from the period 1985-00 was used).

Initial stock structure:
The number at age 2 are found by applying natural mortality (0.2) and XSA fishing mortality at age 1 from the last year to the number of recruits at age 1 (geometric mean). The number at age 3 are found by first applying natural mortality ( 0.2 ) and XSA fishing mortality at age 1 from the second last year (i.e. for the 2003-assessment \(F_{1}\) from 2001) to the number of recruits at age 1 (geometric mean) and, second, apply natural mortality ( 0.2 ) and XSA fishing mortality at age 2 from the last year to this number (i.e. for the 2003-assessment \(\mathrm{F}_{2}\) from 2002). For ages older than 3, XSA-numbers for the current year are used.

Mortality:
Natural mortality is 0.2 for all ages. Fishing mortalities at age is the mean of the XSA fishing mortalities at age for the 3 last years. (The fishing pattern is not scaled to \(\mathrm{F}_{3-6}\) for the last year.)

Maturity:
The constant maturity ogive used (see section 2.2).
Mean weights at age in the stock and catch:
The average of mean weights at age for the last three years.

\section*{5 Medium-Term Projections}

Initial stock size, maturity at age, natural mortality, fishing mortality and mean weights at age in the stock/catch are the same as in the short-term projection.

Recruitment:
A Ricker stock-recruitment curve is fitted to the historic data (SSB and age 1 from XSA).

\section*{6 Long-Term Projections, yield per recruit}

Nothing here yet.

\section*{7 Biological reference points}
\begin{tabular}{llll}
\(\mathbf{F}_{0.1}\) & 0.09 & \(\mathbf{F}_{\text {lim }}\) & 0.60 \\
\(\mathbf{F}_{\text {max }}\) & 0.17 & \(\mathbf{F}_{\mathrm{pa}}\) & 0.40 \\
\(\mathbf{F}_{\text {med }}\) & 0.49 & \(\mathbf{B}_{\text {lim }}\) & 106000 t \\
\(\mathbf{F}_{\text {high }}\) & \(>0.49\) & & \(\mathbf{B}_{\mathrm{pa}}\)
\end{tabular}

\section*{8 Other Issues}

None

\section*{9 References}

Darby, C.D. and Flatman, S. 1994. Virtual Population Analysis: version 3.1 (Windows/DOS) user guide. Info. Tech. Ser., MAFF Direct. Fish. Res., Lowestoft, (1): 85pp.

ICES 1995. Report of the saithe study group. ICES CM 1995/G:2.
ICES 2003. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, June 2002. ICES CM 2003/ACFM:02.

Jakobsen, T. 1981. preliminary results of saithe tagging experiments on the Norwegian coast. ICES CM 1981/G:35.

Reeves, S. and Cook, R. 1994. Demersal assessment programs, September 1994. WD in WGNSSK 1994.
Rätz, H.J., Panten, K. and Ulleweit, J. 2002 German Otter Trawl Board Fleet as Tuning Series for the Assessment of Saithe in IV, VI and IIIa, 1995-2001. WD:1 in ICES CM 2003/ACFM:02.

\section*{Quality Handbook}

Stock specific documentation of standard assessment procedures used by ICES.
Working group: North Sea Demersal Working Group
Updated: 15/9//2004 by: Henrik Jensen (hj@dfu.min.dk)

\section*{1 Sandeel in IV}

\subsection*{1.1 General}

\subsection*{1.1.1 Stock definition}

For assessment purposes, the European continental shelf was divided into four regions for sandeel assessment purposes up to 1995: Division IIIa (Skagerrak), northern North Sea, southern North Sea, and Shetland Islands and Division VIa. These divisions were based on regional differences in growth rate and evidence for a limited movement of adults between divisions (e.g. ICES CM 1977/F:7, ICES CM 1991/Assess:14.). The two North Sea divisions were revised in 1995, and it was decided to amalgamate the two stocks into a single stock unit with two fleets, one fleet in the northern North Sea and one in the southern North Sea. The Shetland sandeel stock is assessed separately. ICES assessments have used these stock definitions since 1995.

Sandeels are largely stationary after settlement and the North Sea sandeel fishery must be considered as exploiting a complex of local populations. Recruitment to local areas may not only be related to the local stock, as interchange between areas seems to take place during the early phases of life before settlement.

Based on the distribution and simulated dispersal of larval stages, Wright et al. (1998) suggest that the North Sea stock could be split into six areas, including the Shetland as a separate population. Assessments have tentatively been made for some of these areas (Pedersen et al. 1999) and there was high correlation between the results from the study and the assessment made by the WG for the whole North Sea. Presently there are insufficient information about sandeel biology, especially about the intermixing of the early life stages between spawning aggregations, to allow for and alternative separation of the North Sea into separate population units to be assessed.

\subsection*{1.1.2 Fishery}

Sandeel is taken by trawlers using small meshed trawls with mesh sizes < 16 mm . The fishery is seasonal. The geographical distribution of the sandeel fishery varies seasonally and annually, taking place mostly in the spring and summer. In the third quarter of the year the distribution of catches generally changes from a dominance of the west Dogger Bank area back to the more easterly fishing grounds.

Most of the sandeel catch consists of the lesser sandeel Ammodytes marinus, although small quantities of other Ammodytoidei spp. are caught as well. There is little by-catch of protected species (ICES 2004).

In most years and particularly prior to 1998, most landings of sandeels in March were taken from the eastern North Sea banks whilst sandeel landings in April-June were mainly from the west Dogger Bank. As there can be regional differences in the age composition this seasonal expansion of the fishery can result in a change in the age composition in the fishery. In some years a relatively large part of the sandeel landings are taken from the central and eastern North Sea along the Danish west coast. From 1991, grounds off the Scottish east coast have been targeted particularly in June. However, since 2000 the banks in the Firth of Forth area have been closed to fishing.

Technical measures for the sandeel fishery include a minimum percentage of the target species at \(95 \%\) for meshes < 16 mm , or a minimum of \(90 \%\) target species and maximum \(5 \%\) of the mixture of cod, haddock, and saithe for 16 to 31 mm meshes.

\subsection*{1.1.3 Ecosystem aspects}

ACFM consider that there is a need to ensure that the sandeel stock remains high enough to provide food for a variety of predator species.

In 1999 the U.K called for a moratorium on sandeel fishing adjacent to seabird colonies along the U.K. coast and in response the EU requested advice from ICES. An ICES Study Group, was convened in 1999 to assess whether removal of sandeel by fisheries has a measurable effect on sandeel, whether establishment of closed areas and seasons for sandeel fisheries could ameliorate any effects, and to identify possible spatial and/or temporal restrictions of the fishery as specifically as possible. The ICES Advisory committees (ACFM and ACE) accepted the advice from the study group. STECF (1999) agreed with this ICES advice and the EU advised to close the fishery whilst maintaining a commercial monitoring. A 3-year closure, from 2000 to 2002, was decided. All commercial fishing was excluded, except for a maximum of 10 boat days in each of May and June for stock monitoring purposes. The closure was maintained for three years (see e.g. Wright et al. 2002) and has been extended until 2006, with a small increase in the effort of the monitoring fishery, after which the effect of the closure will be evaluated.

\subsection*{1.2 Data}

\subsection*{1.2.1 Commercial catch}

In the last 20 years the landings of sandeels in IV have been taken by 5 countries: Denmark (78\%), Norway ( \(19 \%\) ) UK/Scotland ( \(1 \%\) ), Sweden ( \(1 \%\) ) and Faroes Isl. ( \(1 \%\) ). In the 1950's also Germany and the Netherlands participated in this fishery, but since the start of the 1970's no landings have been recorded for these countries.

Age, length and weight at age data are available for Denmark and Norway to estimate numbers by age in the landings. Prior to 1996, the Norwegian age composition data were based on Danish ALK's. Catch numbers and weight at age for the southern North Sea are based only on Danish age compositions.

\subsection*{1.2.1.1 Denmark More details to be included in this section}

Industrial species are not sorted by species before processing and it is assumed that the landings consist of one species only in the calculation of the official landings. The WG estimate of landings is based on samples for species composition taken by the Fishery Inspectors for control of the by-catch regulation. At least one sample ( \(10-15 \mathrm{~kg}\) ) per 1000 tons landings is taken and these samples are used to estimate average species composition by area (ICES rectangles) and month. This species/area/period key, logbook data (spatial distribution) and landings slip data (quantity) are used to derive the Danish WG estimates of landings of sandeel and by-catch of other species (further information can be found in ICES, 1994/Assess:7; Dalskov, 2002).

\subsection*{1.2.1.2 Norway Text to be inserted by Norway}

For Norway and Sweden, the official landings and the WG estimated landings are the same.
1.2.1.3 UK/Scotland Text to be inserted by UK/Scotland
1.2.1.4 Sweden Text to be inserted by Sweden

The text table below shows which country supplies which kind of data:
\begin{tabular}{|l|l|l|l|l|l|}
\hline & Data & \begin{tabular}{l} 
Canum (catch \\
Country (catch \\
in weight)
\end{tabular} & \begin{tabular}{l} 
Canum (weight \\
at age in \\
numbers)
\end{tabular} & \begin{tabular}{l} 
Watprop \\
atage in the \\
catch)
\end{tabular} & \begin{tabular}{l} 
Length \\
(proportion \\
mature by age)
\end{tabular} \\
\hline camposition in \\
catch
\end{tabular}\(|\)

All input files are Excel spreadsheet files.
The national data sets have been imported in a database aggregated to international data by DIFRES.
The combined Danish and Norwegian age composition data and weight at age data are applied on the landings of UK, Sweeden and Farao Isl., assuming catches from these countries have the same age composition and weight at age as the Danish and Norwegian landings. Excel spreadsheet files can be found with the Danish stock co-ordinator and in the ICES computer system under w:lacfm\WGNSSK\**.

The result files can be found at ICES and with the stock co-ordinator as ASCII files on the Lowestoft format under w: \(\operatorname{acfm}\) \WGNSSK\**.

\subsection*{1.2.2 Biological}

Historically, assessments were done separately for the Northern and Southern North Sea. In recent years, the assessment has been done for the whole North Sea, but data are still compiled separately for the two areas. The catch numbers and weight at age data for the Northern North Sea are constructed by combining Danish and Norwegian data by half-year.

The catch numbers and weight-at-age data for the northern North Sea were constructed by combining Danish and Norwegian data by half-year. Prior to 1996, the Norwegian age composition data were based on Danish ALK's. Catch numbers and weight-at-age for the southern North Sea are based on Danish age compositions. The mean weight at age in the catch used in the assessment is the mean weights at age in the catch for the Southern and Northern North Sea weighted by catch numbers. The mean weight at age in the stock is copied from the mean weight in the catch first half-year, and an arbitrary chosen weight at 1 gram was used for the 0 -group.

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

Values for natural mortalities are the same as used since 1989 (ICES CM 1989/Asssess:13). MSVPA (ICES CM 2002/D:04) estimates of natural mortalities are relatively stable in the period covered by this assessment. The values used in this assessment are quite similar to the MSVPA M, except for the 0-group where MSVPA estimates a value of approximately 1.2 for the second half of the year. The assessment uses a value of 0.8 for the whole year for the 0 -group, 1.2 for the 1 -group, and 0.6 for the 3 -group and \(4+\)-group.

The proportion mature is assumed constant over the whole period with \(100 \%\) mature from age 2 and \(0 \%\) of age 0 and 1 . Recent research indicates however, that there are large regional variations in age at maturity of Ammodytes marinus in the North Sea (see e.g. Jensen et al. 2001). Whilst sandeels in some areas seem to spawn at age 2 or older, sandeels in other regions seem to mature and spawn at age 1 . As the decision to spawn at age 1 or 2 is an annual event, it is likely that there are large regional and annual variations in the fraction of the populations of the sandeels that contribute to the spawning. The age at maturity keys used in the assessment might thus considerably underestimate the spawning biomass of sandeels in the North Sea.

The fishing fleet catch sandeels in different parts of the North Sea during the year, and the fishing pattern changes from year to year. Because sandeels, Ammodytes marinus, in the North Sea possibly consist of a number of sub populations (see section \({ }^{* *}\) ) the industrial fishery target different part of the sandeel populations during the year and between years. There seem to be significant spatial and temporal variations in emergence behaviour (e.g. Rindorf et al. 2000) and growth (e.g. Pedersen et al. 1999; Wright et al. 1998) of sandeels in the North Sea. Further, there are age/length dependent variations in the burrowing behaviour of sandeels (Kvist et al. 2001). The information about age compositions in the catches and the age and weight relationships thus represent average values over time and space and reflect the variability in emergence behaviour and growth. For example, weight at age of sandeels seems to vary both between years and between Danish and Norwegian catches.

The effect of variations in the biological data on the performance of the assessments has not yet been analysed. Such an analysis requires information about spatial and temporal variations in emergence and growth. A new sampling programme for such data for the Danish industrial fleet was initiated in 1999 in which a part of the fleet is monitored in detail (Jensen et al. 2001). In 1999, information about catches of sandeel was collected on a trawl haul basis from 17 Danish vessels. In total 231 samples was taken from 49 grounds, corresponding to \(2.6 \%\) of the Danish landings of sandeel in the North Sea in 1999. This sampling programme was continued in 2000 to 2003 with about the same sampling level. Basic analysis of the data from 1999-2003 is not completed. However, the data have been used for estimation of assessment catch at age numbers. Due to the new sampling program, the number of fish measured and aged has since 1999 increased by a factor of around 10 compared to previous years.

\subsection*{1.2.3 Surveys}

There are no survey time series available for this stock.

\subsection*{1.2.4 Commercial CPUE}

There is no survey time-series available for this stock. As in previous assessments effort data from the commercial fishery in the northern and southern North Sea are treated as two independent tuning fleets, separated into first and second half year.

The effort data for the southern North Sea prior to 1999 are only available for Danish vessels, but since 1999 Norwegian vessels have also provided effort data. These data for the first half year has since 2003 been included in tuning series. The effect of this on the assessment is analysed in this year's assessment. The reason for including the Norwegian effort data for first half year for the southern North Sea into the tuning fleet is that in recent years Norwegian catches in the southern North Sea in first half year constitute a significant part of Norwegian landings in the North Sea. The tuning fleet used for the northern North Sea is a mixture of Danish and Norwegian vessels. A separation of the Danish and Norwegian fleets is presently not possible, due to the lack of Norwegian age-length keys for the period before 1996. Separate national fleets would have been preferable because this would have made procedure for the generation of the tuning series more transparent. This issue should be addressed at the next benchmark assessment.

The size distribution of the fleet has changed through time. Therefore effort standardisation is required. The assumption underlying the standardisation procedure is that CPUE is a function of sandeel abundance and vessel size. Standardised effort is calculated from standardised CPUE and total catch. CPUE is standardized to a vessel size of 200 Gross Tonnes (GR) using the relationship:
\[
\begin{equation*}
\mathrm{CPUE}=a * \mathrm{GR}^{b} \tag{1}
\end{equation*}
\]
where \(a\) and \(b\) are constants and GR is vessel size in GR

The constants \(a\) and \(b\) were prior to 2003 estimated for each year by performing the regression analysis:
\(\operatorname{Ln}(\mathrm{C} / \mathrm{e})=\ln (a)+b^{*} \ln (\mathrm{GR})\)
where \(\mathrm{C}=\) catch in ton, \(\mathrm{e}=\) effort in days spend fishing, and the rest of the parameters are as in (1).
Since 2003 the parameters in (2) have estimated using catch and effort data on single trip level, instead of average values of catch and effort for each vessel size category (see ICES 2004). The data used for the regression is logbook data for the Danish industrial fleet for the years 1984 to 2003 and first half year of 2004. General linear models were used to estimate the parameters in:
\(\ln (\) CPUE \()=\mathrm{d}_{y}+\mathrm{f}_{y} * \ln (\mathrm{GR})\)
where \(y=y e a r\), GR=vessel size in GR as defined in Table 1, and the remaining factors are constants. Log transformation was required to stabilise the variance in CPUE to fit the model although it does result in a more skewed distribution of GT leading to the smaller vessels receiving a higher weight in the subsequent regression. The GLM was carried out by half year (first and second half year) and area (northern and southern North Sea) to generate estimates of effort for the fleets presently used in the assessment of sandeels in IV. Type III analysis was used to test for significance of parameters. All analyses were weighted by the number of days spend fishing, as the variation on the average catch per day fishing decreases with the number of days fished. The results of the analysis and the parameter estimates are given in Table 13.1.3.2.

The parameters estimated in (3) were used to estimate CPUE for a vessel size of 200 GR from:
\[
\begin{equation*}
\text { CPUE }=\mathrm{e}^{\mathrm{d} y} * 200^{\mathrm{fy}} \tag{4}
\end{equation*}
\]

Mean CPUE of Danish and Norwegian fleets, after the Norwegian CPUE had been standardised to a vessel size of 200 GR, was estimated as a weighted mean weighted by the catches sampled used to estimate CPUE. Total standardised effort was afterwards estimated from the combined Danish and Norwegian CPUE and total international catches.

As no recruitment estimates from surveys are available, recruitment estimates are based exclusively on commercial catch-at-age data. The tuning diagnostics indicate that the 0 -group CPUE is a poor predictor of recruitment.

There is a relatively poor correlation between the tuning indices and the stock, which may be due to the fact that several sub-stocks are assessed as a single unit.

\subsection*{1.2.5Other relevant data}

None.

\subsection*{1.3 Estimation of Historical Stock Development}

The Seasonal XSA (SXSA) developed by Skagen (1993) was up to 2001 used for stock assessment of sandeel in IV. Annual XSA was tried in 2002 WG where it was concluded that the two approaches gave similar results. For a standardization of methodology, it was decided to shift to XSA in 2003. For analysis
of alternative procedures see WG reports from previous years (ICES 1986, ... \(2003 * *\) to be updated with references prior to 1986). In 2004 SXSA was used again, as a supplement to the XSA, the reason being that data were available for the first half year of 2004 for the assessment.

The assessment of sandeels in IV now use the XSA method with the following settings for tuning:


Input data types and characteristics:
\begin{tabular}{|l|l|l|l|l|}
\hline Type & Name & Year range & Age range & \begin{tabular}{l} 
Variable from year \\
to year \\
Yes/No
\end{tabular} \\
\hline Caton & Catch in tonnes & 1974 - last data year & \(0-4+\) & Yes \\
\hline Canum & Catch at age in numbers & 1974 - last data year & \(0-4+\) & Yes \\
\hline Weca & \begin{tabular}{l} 
Weight at age in the \\
commercial catch
\end{tabular} & 1974 - last data year & \(0-4+\) & Yes \\
\hline West & \begin{tabular}{l} 
Weight at age of the \\
spawning stock at \\
spawning time.
\end{tabular} & 1974 - last data year & \(0-4+\) & Yes \\
\hline Mprop & \begin{tabular}{l} 
Proportion of natural \\
mortality before spawning
\end{tabular} & 1974 - last data year & \(0-4+\) & \begin{tabular}{l} 
No - set to 0 for all \\
ages in all years
\end{tabular} \\
\hline Fprop & \begin{tabular}{l} 
Proportion of fishing \\
mortality before spawning
\end{tabular} & 1974 - last data year & \(0-4+\) & \begin{tabular}{l} 
No - set to 0 for all \\
ages in all years
\end{tabular} \\
\hline Matprop & Proportion mature at age & 1974 - last data year & \(0-4+\) & No (see section **) \\
\hline Natmor & Natural mortality & 1974 - last data year & \(0-4+\) & No (see section **) \\
\hline
\end{tabular}

Tuning data:
\begin{tabular}{|l|l|l|l|}
\hline Type & Name & Year range & Age range \\
\hline Tuning fleet 1 & \begin{tabular}{l} 
Northern North Sea \\
first half year
\end{tabular} & 1976 - last data year & \(1-4+\) \\
\hline Tuning fleet 2 & Northern North Sea & 1976 - last data year & \(0-4+\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & second half year & & \\
\hline Tuning fleet 3 & \begin{tabular}{l} 
Southern North Sea \\
first half year
\end{tabular} & 1982 - last data year & \(1-4+\) \\
\hline Tuning fleet 4 & \begin{tabular}{l} 
Southern North Sea \\
second half year
\end{tabular} & 1982 - last data year & \(0-4+\) \\
\hline
\end{tabular}

The low number of age groups makes the assessment highly sensitive to estimated terminal fishing mortalities for the oldest age (age 3). This in combination with an assumed constant and poorly determined proportion mature makes the SSB estimate highly uncertain.

\subsection*{1.4 Short-Term Projection}

\section*{Not done}

The high natural mortality of sandeel and the few year classes in the fishery make the stock size and catch opportunities largely dependent on the size of the incoming year classes. Quantitative estimates of recruits (age 0) in the year of the assessment are not available at the time of the WG. Traditional deterministic forecasts are therefore not considered appropriate.

\subsection*{1.5 Medium-Term Projections}

Not done

\subsection*{1.6 Long-Term Projections}

Not done

\subsection*{1.7 Biological Reference Points}

There is no management objective set for this stock. There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. Management of fisheries should try to prevent local depletion of sandeel aggregations, particularly in areas where predators congregate.

In 1998 ACFM proposed that \(\mathbf{B}_{\text {lim }}\) be set at 430,000 \(t\), the lowest observed SSB. The \(\mathbf{B}_{\mathrm{pa}}\) was estimated at \(600,000 \mathrm{t}\), approximately \(\mathbf{B}_{\mathrm{lim}} * 1.4\). This corresponds to that if SSB is estimated to be at \(\mathbf{B}_{\mathrm{pa}}\) then the probability that the true SSB is less than \(\mathbf{B}_{\mathrm{lim}}\) will be less than \(5 \%\) (assuming that estimated SSB is log normal distributed with a CV of 0.2 ). No fishing mortality reference points are given. These reference points are based on an assessment using another tuning method than used from 2002 (see section 1.2.4). Due to the few age-groups, SSB is highly dependent on the terminal F and thereby tuning method. Even though the previously used SXSA and XSA give similar results, an update of the reference points is needed.

The TAC was set to \(1,020,000\) tonnes for 2002 and 918.000 t for 2003. The ACFM advice for 2003 was that the stock can sustain the current fishing mortality and that the fishing mortality should not be allowed to increase because the consequences of removing a larger fraction of the food-biomass for other biota are unknown.

\subsection*{1.8 Other Issues}

None

\subsection*{1.9 References}

ICES 1986. Report of the Industrial Fisheries Working Group. ICES C.M. 1986/Assess:15.

ICES 1987. Report of the Industrial Fisheries Working Group. ICES C.M. 1987/Assess:17.
ICES 1988. Report of the Industrial Fisheries Working Group. ICES C.M. 1988/Assess:15.
ICES 1989. Report of the Industrial Fisheries Working Group. ICES C.M. 1989/Assess:13.
ICES 1990. Report of the Industrial Fisheries Working Group. ICES C.M. 1990/Assess:13.
ICES 1991. Report of the Industrial Fisheries Working Group. ICES C.M. 1991/Assess:14.
ICES 1992. Report of the Industrial Fisheries Working Group. ICES C.M. 1992/Assess:9.
ICES 1994. Report of the Working Group on the Assessment of Norway Pout and Sandeel. ICES C.M. 1994/Assess:7.

ICES 1995. Report of the Working Group on the Assessment of Norway Pout and Sandeel. ICES C.M. 1995/Assess:5.

ICES 1996. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 1996/Assess:6.

ICES 1997. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 and 3. ICES C.M. 1997/Assess:6.

ICES 1998. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 and 3. ICES C.M. 1998/Assess:7.

ICES 1999. Report of the Study group on effects of sandeel fishing. ICES 1999/ACFM:19.
ICES 1999b. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 1999/ACFM:8.

ICES 2000. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 2000/ACFM:7.

ICES 2001. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 2. ICES C.M. 2001/ACFM:7.

ICES 2003. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 2003/ACFM:2.

ICES 2004. Report of the Working Group on the Ecosystem Effects of Fishing Activities. ICES C.M. 2004/ACE:0*, Ref. D,E,G.

Jensen H.; Rindorf A.; Horsten M.B.; Mosegaard H.; Brogaard P.; Lewy P.; Wright P.J.; Kennedy F.M.; Gibb I.M.; Ruxton G.; Arnott S.A. and Leth J.O. 2001. Modelling the population dynamics of sandeel (Ammodytes marinus) populations in the North Sea on a spatial resolved level. DG XIV no. 98/025..

Jensen H., Mosegaard H., Rindorf A., Dalskov J. and Brogaard P. 2002. Indsamling af detaljerede oplysninger om tobisfiskeriet i Nordsøen. DFU rapport no. 97-02.

Jensen and Vinther. 2003. Estimation of fishing effort for the Danish sandeel fishery in the North Sea based on catch per unit effort data. Working document for the 2003 ICES WGNSSK meeting in Bolougne.

Pedersen, S.A., Lewy, P. and Wright, P., 1999. Assessment of the lesser sandeel (Ammodytes marinus) in the North Sea based on revised stock divisions. Fisheries Research, 41: 221-241.

Proctor, R., Wright, P.J. and Everitt, A. (1998). Modelling the transport of larval sandeels on the north west European shelf. Fisheries Oceanography.7, 347-354.

Rindorf, A, Wanless, S and Harris, MP (2000) Effects of changes in sandeel availability on the reproductive output of seabirds. Marine Ecology Progress Series 202:241-252.

Wright P., Verspoor E., Andersen C., Donald L., Kennedy F., Mitchell A., Munk P., Pedersen S.A., Jensen H., Gislason H. and Lewy P. 1998. Population structure in the lesser sandeel (Ammodytes marinus) and its implications for fishery-predator interactions. DG XIV no. 94/071.

Wright P.J., Jensen H., Mosegaard H., and Dalskov J. 2002. European Commission's annual report on the impact of the Northeast sandeel fishery closure and status report on the monitoring fishery in 2000 and 2001.

\section*{WGNSSK Stock Annex}

Stock specific documentation of standard assessment procedures used by the ICES WGNSSK.

\section*{1. EASTERN CHANNEL SOLE (SOLE_ECHE)}

Working group: North Sea Demersal Working Group
Updated: 3/9//2003
By: Richard Millner (r.s.millner@cefas.cu.uk) and Wim Demaré (wim.demare@dvz.be)

\subsection*{1.1 General}

\subsection*{1.1.1 STOCK DEFINITION}

The sole in the eastern English Channel (VIId) are considered to be a separate stock from the larger North Sea stock to the east and the smaller geographically separate stock to the west in VIIe. There is some movement of juvenile sole from the North Sea into VIId (ICES CM 1989/G:21) and from VIId into the western Channel (VIIe) and into the North Sea. Adult sole appear to largely isolated from other regions except during the winter, when sole from the southern North Sea may enter the Channel temporarily (Pawson, 1995).

\subsection*{1.1.2 FISHERY}

There is a directed fishery for sole by small inshore vessels using trammel nets and trawls, who fish mainly along the English and French coasts and possibly exploit different coastal populations. Sole represents the most important species for these vessels in terms of the annual value to the fishery. The fishery for sole by these boats occurs throughout the year with small peaks in landings in spring and autumn. There is also a directed fishery by English and Belgian beam trawlers who are able to direct effort to different ICES divisions. These vessels are able to fish for sole in the winter before the fish move inshore and become accessible to the local fleets. In cold winters, sole are particularly vulnerable to the offshore beamers when they aggregate in localised areas of deeper water. Effort from the beam trawl fleet can change considerably depending on whether the fleet moves to other areas or directs effort at other species such as scallops and cuttlefish. A third fleet is made up of French offshore trawlers fishing for mixed demersal species and taking sole as a by-catch.

The minimum landing size for sole is 24 cm . Demersal gears permitted to catch sole are 80 mm for beam trawling and 90 mm for otter trawlers. Fixed nets are required to use 100 mm mesh since 2002 although an exemption to permit 90 mm has been in force since that time.

\subsection*{1.1.3 ECOSYSTEM ASPECTS}

No information is available.
1.2 Data

\subsection*{1.2.1 COMMERCIAL CATCH}

The landings are taken by three countries France (50\%), Belgium (30\%) and England (20\%). Age sampling for the period before 1980 was poor, but between 1981 and 1984 quarterly samples were provided by both Belgium and England. Since 1985, quarterly catch and weight-at-age compositions were available from Belgium, France, and England.

\subsection*{1.2.1.1 Belgium text to be inserted by Belgium}

\subsection*{1.2.1.2 France text to be inserted by France}

\subsection*{1.2.1.3 England}

English commercial landings in tonnes by quarter, area and gear are derived from the sales notes statistics for vessels under 12 m who do not complete logbooks. For those over 12 m (or \(>10 \mathrm{~m}\) fishing away for more than 24 h ), data is taken from the EC logbooks. Effort and gear information for the vessels \(<10 \mathrm{~m}\) is not routinely collected and is obtained by interview and by census. .No information is collected on discarding from vessels <10m but it is known to be low. Discarding from vessels >10m has been obtained since 2002 under the EU Data Collection Regulation and is also relatively low.

Length samples are combined and raised to monthly totals by port and gear group for each stock. Months and ports are then combined to give quarterly total length compositions by gear group; unsampled port landings are added in at this stage. Quarterly length compositions are added to give annual totals by gear. These are for reference only, as ALK conversion takes place at the quarterly level. Age structure from otolith samples are combined to the quarterly level, and generally include all ports, gears and months. For sole the sex ratio from the randomally collected otolih samples are used to spli the unsexed length composition into sex-separate length compositions. The quarterly ses separate age-length-keys are used to transform quarterly length compositions by gear group to quarterly age compositions. At this stage the age compositions by gear group are combined to give total quarterly age compositions.

A minimum of 24 length samples are collected per gear category per quarter. Age samples are collected by sexes separately and the target is 300 otoliths per sex per quarter. If this is not reached, the \(1^{\text {st }}\) and \(2^{\text {nd }}\) or \(3^{\text {rd }}\) and \(4^{\text {th }}\) quarters are combined.

Weight at age is derived from the length samples using:
to be completed
1.2.1.4 The text table below shows which country supply which kind of data:
\begin{tabular}{|l|l|l|l|l|l|}
\hline & \multicolumn{4}{|l|}{ Kind of data supplied quarterly } \\
\hline Country & \begin{tabular}{l} 
Caton (catch \\
in weight)
\end{tabular} & \begin{tabular}{l} 
Canum (catch \\
at age in \\
numbers)
\end{tabular} & \begin{tabular}{l} 
Weca (weight \\
at age in the \\
catch)
\end{tabular} & \begin{tabular}{l} 
Matprop \\
(proportion \\
mature by age)
\end{tabular} & \begin{tabular}{l} 
Length \\
composition in \\
catch
\end{tabular} \\
\hline Belgium & x & x & x & & x \\
\hline England & x & x & x & & x \\
\hline France & x & x & x & & x \\
\hline
\end{tabular}

Data are supplied as FISHBASE files containing quarterly numbers at age, weight at age, length at age and total landings. The files are aggregated by the stock coordinator to derive the input VPA files in the Lowestoft format. No SOP corrections are applied to the data because individual country SOPs are usually better than \(95 \%\). The quarterly data files by country can be found with the stock co-ordinator

The resulting files (FAD data) can be found at ICES and with the stock co-ordinator, either in the IFAP system as SAS datasets or as ASCII files on the Lowestoft format, either under w:\acfm\nsskwg\2002\datalsol_eche or w:lifapdataleximport\nsskwglsol_eche.

\subsection*{1.2.2 BIOLOGICAL}

Natural mortality was assumed constant over ages and years at 0.1 , and the maturity ogive used was knifeedged with sole regarded as fully mature at age 3 and older as in the North Sea.

Prior to 2001 WG, stock weights were calculated from a smoothed curve of the catch weights interpolated to the \(1^{\text {st }}\) January. Since the 2002 WG, second quarter catch weights were used as stock weights in order to be consistent with North Sea sole.

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

\subsection*{1.2.3 SURVEYS}

A dedicated 4 m beam trawl survey for plaice and sole has been carried out by England using the RV Corystes since 1988. The survey covers the whole of VIId and is a depth stratified survey with most samples allocated to the shallower inshore stations where the abundance of sole is highest. In addition, inshore small boat surveys using 2 m beam trawls are undertaken along the English coast and in a restricted area of the Baie de Somme on the French coast. In 2002, The English and French Young Fish Surveys were combined into an International Young Fish Survey. The dataset was revised for the full period back to 1981. The two surveys operate with the same gear (beam trawl) during the same period (September) in two different nursery areas. Previous analysis (Riou et al, 2001) has shown that asynchronous spawning occurs for flatfish in Division VIId. Therefore both surveys were combined based on weighting of the individual index with the area nursery surface sampled. Taking into account the low, medium, and high potential area of recruitment, the French YFS got a weight index of \(55 \%\) and the English YFS of 45\%.

\subsection*{1.2.4 COMMERCIAL CPUE}

Three commercial fleets have been used in tuning. The Belgian beam trawl fleet (BEL BT), the UK Beam Trawl fleet (UK BT) and a French otter trawl fleet (FR OT). The two beam trawl fleets carry out fishing directed towards sole but can switch effort between ICES areas. The UK BT CPUE data is derived from trips where landings of sole from VIId exceeded \(10 \%\) of the total demersal catch by weight on a trip basis. Effort from both the BT fleets is corrected for HP. The French otter trawl fleet is description needed.

\subsection*{1.2.5 OTHER RELEVANT DATA}

None.

\subsection*{1.3 Historical Stock Development}

\subsection*{1.3.1 DETERMINISTIC MODELLING}

Model used: XSA
Software used: IFAP / Lowestoft VPA suite
Model Options chosen:
Tapered time weighting not applied
Catchability independent of stock size for all ages
Catchability independent of age for ages \(>=7\)
Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages
S.E. of the mean to which the estimate are shrunk \(=0.500\)

Minimum standard error for population estimates derived from each fleet \(=0.300\)
Prior weighting not applied
Input data types and characteristics:
Catch data available for 1982-present year. However, there was no French age compositions before 1986 and large catchability residuals were observed in the commercial data before 1986. In the final analyses only data from 1986-present were used in tuning
\begin{tabular}{|l|l|l|l|l|}
\hline Type & Name & Year range & Age range & \begin{tabular}{l} 
Variable from year \\
to year \\
Yes/No
\end{tabular} \\
\hline Caton & Catch in tonnes & \begin{tabular}{l}
\(1982-\) last data \\
year
\end{tabular} & \(2-11+\) & Yes \\
\hline Canum & \begin{tabular}{l} 
Catch at age in \\
numbers
\end{tabular} & \begin{tabular}{l}
\(1982-\) last data \\
year
\end{tabular} & \(2-11+\) & Yes \\
\hline Weca & \begin{tabular}{l} 
Weight at age in \\
the commercial \\
catch
\end{tabular} & \begin{tabular}{l}
\(1982-\) last data \\
year
\end{tabular} & \(2-11+\) & Yes \\
\hline West & \begin{tabular}{l} 
Weight at age of \\
the spawning stock \\
at spawning time.
\end{tabular} & \begin{tabular}{l}
\(19682-\) last data \\
year
\end{tabular} & \(2-11+\) & \begin{tabular}{l} 
Yes - assumed to \\
be the same as \\
weight at age in \\
the Q2 catch
\end{tabular} \\
\hline Mprop & \begin{tabular}{l} 
Proportion of \\
natural mortality \\
before spawning
\end{tabular} & \begin{tabular}{l}
\(1982-\) last data \\
year
\end{tabular} & \(2-11+\) & \begin{tabular}{l} 
No -set to for all \\
ages in all years
\end{tabular} \\
\hline Fprop & \begin{tabular}{l} 
Proportion moftality \\
fishing mortar \\
before spawning
\end{tabular} & \begin{tabular}{l}
\(1982-\) last data \\
year
\end{tabular} & \(2-11+\) & \begin{tabular}{l} 
No - set to 0 for all \\
ages in all years
\end{tabular} \\
\hline Matprop & \begin{tabular}{l} 
Proportion mature \\
at age
\end{tabular} & \begin{tabular}{l}
\(1982-\) last data \\
year
\end{tabular} & \(2-11+\) & \begin{tabular}{l} 
No - the same \\
ogive for all years
\end{tabular} \\
\hline Natmor & \begin{tabular}{l} 
Natural mortality \\
\(1982-\) last data \\
year
\end{tabular} & \(2-11+\) & \begin{tabular}{l} 
No - set to 0.2 for \\
all ages in all years
\end{tabular} \\
\hline
\end{tabular}

Tuning data:
\begin{tabular}{|l|l|l|l|}
\hline Type & Name & Year range & Age range \\
\hline Tuning fleet 1 & \begin{tabular}{l} 
Belgian commercial \\
BT
\end{tabular} & 1986-last data year & \(2-10\) \\
\hline Tuning fleet 2 & \begin{tabular}{l} 
English commercial \\
BT
\end{tabular} & 1986-last data year & 2-10 \\
\hline Tuning fleet 3 & English BT survey & 1988-last data year & \(1-6\) \\
\hline Tuning fleet 4 & International YFS & 1994 - last data year & \(1-1\) \\
\hline
\end{tabular}

\subsection*{1.3.2 UNCERTAINTY ANALYSIS}

\subsection*{1.3.3 RETROSPECTIVE ANALYSIS}

\subsection*{1.4 Short-Term Projection}

Model used: Age structured

Initial stock size is taken from the XSA for age 3 and older and from RCT3 for age 2. The long-term geometric mean recruitment is used for age 1 in all projection years.

Natural mortality: Set to 0.1 for all ages in all years
Maturity: The same ogive as in the assessment is used for all years
F and M before spawning: Set to 0 for all ages in all years
Weight at age in the stock: Average weight over the last three years

Weight at age in the catch: Average weight over the three last years
Exploitation pattern: Average of the three last years, scaled to the level of Fbar (3-8) in the last year
Intermediate year assumptions: F status quo
Stock recruitment model used: None, the long term geometric mean recruitment at age 1 is used
Procedures used for splitting projected catches: Not relevant

\subsection*{1.5 Medium-Term Projections}

Model used: Age structured
Software used: WGMTERMc
Settings as in short term projection except for the weights in the catch and in the stock which are averaged over the last 10 years
1.6 Long-Term Projections, yield per recruit

Model used: Age structured
Software used: WGMTERMc

Settings as in short term projection except for the weights in the catch and in the stock which are averaged over the last 10 years

\subsection*{1.7 Biological Reference Points}

Biological reference points
\begin{tabular}{lll}
\hline \(\mathbf{B}_{\mathrm{pa}}\) & \(\mathbf{F}_{\mathrm{pa}}\) & \(\mathbf{F}_{\text {lim }}\) \\
\hline \(8,000 \mathrm{t}\) & 0.4 & 0.55 \\
\hline
\end{tabular}

\subsection*{1.8 Other Issues}

None.

CEFAS 1999. PA software users guide. The Centre for Environment, Fisheries and Aquaculture Science, CEFAS, Lowestoft, United Kingdom, 22 April 1999.

\section*{Quality Handbook}

\section*{Annex: WGNSSK: IV \& VIId Whiting}

Stock specific documentation of standard assessment procedures used by ICES.

\author{
Stock: Whiting in Division IV \\ Working Group: Assessment of Demersal Stocks in the North Sea and Skagerrak \\ Date: \(\quad 16\) September 2004
}

Last updated: 16 September 2004

\section*{A. General}

\section*{A.1. Stock definition}

Whiting is known to occur exclusively in some localised areas, but for the most part it is caught as part of a mixed fishery operating throughout the entire year. Adult whiting are widespread in the North Sea, while high numbers of immature fish occur off the Scottish coast, in the German Bight and along the coast of the Netherlands.

Tagging experiments, and the use of a number of fish parasites as markers, have shown that the whiting found to the north and south of the Dogger Bank form two virtually separate populations (Hislop \& MacKenzie, 1976). It is also possible that the whiting in the northern North Sea may contain 'inshore' and 'offshore' populations.

\section*{A.2. Fishery}

\section*{A.3. Ecosystem aspects}

Results from key runs of the North Sea MSVPA in 2002 and 2003 indicate three major sources of mortality. For ages two and above, the primary source of mortality is the fishery, followed by predation by seals, which increases with fish age. For ages \(0-1\), though more notable on 0 -group, there is evidence for cannibalism. This is corroborated by Bromley et al. (1997), who postulate that multiple spawings over a protracted period may provide continued resources for earlier spawned 0-group whiting.

Results from key runs of the North Sea MSVPA in 2002 and 2003 indicate that, as a predator, whiting tend to feed on (in order of importance): whiting, sprat, Norway pout, sandeel and haddock.

\section*{B. Data}

\section*{B.1. Commercial catch}

For North Sea catches, human consumption landings data and age compositions were provided by Scotland, the Netherlands, England, and France. Discard data were provided by Scotland and used to estimate total international discards. Other discard estimates do exist (Section 1.11.4, 2002 WG), but were not made available to Working Group data collators. Since 1991 the age composition of the Danish industrial by-catch has been directly sampled, whereas it was calculated from research vessel survey data during the period 1985-1990. Norway provides age composition data for its industrial bycatch.

For eastern Channel catches, age composition data were supplied by England and France. No estimates of discards are available for whiting in the Eastern Channel, although given the relatively low numbers in the Channel catch compared to that in the North Sea, this is not considered to be a major omission. There is no industrial fishery in this area.

\section*{B.2. Biological}

Weight at age in the stock is assumed to be the same as weight at age in the catch.
Natural mortality values are rounded averages of estimates produced by previous key runs of the North Sea MSVPA (see Section 1.3.1.3 of the 1999 WG report: ICES CM 2000/ACFM:7). The values used in both the assessment and the forecast are :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Age & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(8+\) \\
\hline Natural Mortality & 0.95 & 0.45 & 0.35 & 0.30 & 0.25 & 0.25 & 0.20 & 0.20 \\
\hline
\end{tabular}

The maturity ogive is based on North Sea IBTS quarter 1 data, averaged over the period 1981-1985. The maturity ogive used in both the assessment and forecast is:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Age & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(8+\) \\
\hline Maturity Ogive & 0.11 & 0.92 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline
\end{tabular}

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to zero.

\section*{B.3. Surveys}

The Scottish Groundfish Survey (SCOGFS) is carried out in August each year, and covers depths of roughly 35 m to 200 m in the North Sea to the north of the Dogger Bank. It samples at most one survey station per statistical rectangle. In 1998 the coverage of this survey was extended into the central North Sea, but the index available to the Working Group has been modified so as to cover a consistent area throughout the time-series.

The English Groundfish Survey (ENGGFS) is carried out in August each year, and samples at most one station per rectangle. It covers depths of roughly 35 m to 200 m in the whole of the North Sea basin.

The time-series of the survey indices of whiting supplied by the French Channel Groundfish Survey (FRAGFS) was revised in 2002. In 2001, the Eastern Channel was split into five zones. Abundance indices were first calculated for each zone, and then averaged to obtain the final FRAGFS index. This procedure was not thought to be entirely satisfactory, as the level of sampling was inconsistent across geographical strata. In 2002, it was thought more appropriate first to raise abundance indices to the level of ICES rectangles, and then to average those to calculate the final abundance index. Previous to the 2002 WG, only the hauls in which whiting were caught were used to derive abundance indices. This procedure biased estimates, and therefore, the indices supplied from 2002 are calculated on the basis of all hauls.

The first quarter International Bottom Trawl Survey (IBTS Q1) is undertaken in February and March of each year, and covers depths of roughly 35 m to 200 m in the whole of the North Sea basin. It uses a higher density of survey stations than either the SCOGFS or the ENGGFS, with several hauls per statistical rectangle.

\section*{B.4. Commercial CPUE}

Effort data are available for two Scottish commercial fleets: seiners (SCOSEI) and light trawlers (SCOLTR). Non-mandatory reporting of fishing effort for these fleets means that they cannot be viewed as strictly reliable for use for catch-at-age tuning.

Effort data are available for two French commercial fleets: otter trawl (FRATRO) and beam trawl (FRATRB). The same comment on non-mandatory reporting of fishing effort applies to these fleets.

\section*{B.5. Other relevant data}

None

\section*{C. Historical Stock Development}

N/A for the time being

\section*{D. Short-term Projection}

N/A for the time being

\section*{E. Medium-Term Projections}

N/A for the time being

\section*{F. Yield and Biomass per Recruit / Long-Term Projections}

N/A for the time being

\section*{G. Biological Reference Points}

The precautionary fishing mortality and biomass reference points agreed by the EU and Norway, (unchanged since 1999), are as follows:
\(\mathbf{B}_{\text {lim }}=225,000 \mathrm{t} ; \mathbf{B}_{\mathrm{pa}}=315,000 \mathrm{t} ; \mathbf{F}_{\text {lim }}=0.90 ; \mathbf{F}_{\mathrm{pa}}=0.65\).

\section*{H. Other Issues}

\section*{References}

Bromley, P. J., Watson, T., and Hislop, J. R. G. (1997). Diel feeding patterns and the development of food webs in pelagic 0 -group cod (Gadus morhua L.), haddock (Melanogrammus aeglefinus L.), whiting (Merlangius merlangus L.), saithe (Pollachius virens L.), and Norway pout (Trisopterus esmarkii Nilsson) in the northern North Sea. Ices Journal of Marine Science 54: 846-853.

Hislop, J. R. G \& MacKenzie, K. (1976). Population studies of the whiting (Merlangius merlangus L.) of the northern North Sea. Journal du Conseil International pour l'Exploration de laMer. 37: 98-111.

\section*{Appendix 1 Stock Annex template.}

\section*{Quality Handbook}

\section*{ANNEX:}
\(\qquad\)

Stock specific documentation of standard assessment procedures used by ICES.
Stock:... North Sea sole \(\qquad\)
Working Group:... WGNSSK \(\qquad\)
Date: 09-09-2004

\section*{A. General}

\section*{A.1. Stock definition}

The sole in the North Sea (IV) are considered to be a separate stock from the smaller stock in VIId. There is some movement of juvenile sole from the North Sea into VIId (ICES CM 1989/G:21) and from VIId into the North Sea. Adult sole appear to largely isolated from other regions except during the winter, when sole from the southern North Sea may enter the Channel temporarily.

\section*{A.2. Fishery}

Sole is mainly taken by beam trawlers in a mixed fishery with plaice in the southern part of the North Sea. Fishing by different countries is described below:

Belgium: The Belgian fleet operates out of 2 main ports: Oostende and Zeebrugge. The majority of the fleet use beam trawl exclusively and fish for sole an plaice. The fishing grounds change throughout the year depending on catch rates, although the central and southern North Sea (IVb,c) are the preferred fishing area of the Belgian fleet.

Denmark: The main Danish fishery is a directed one for sole using fixed nets although there is also a little effort using beam trawling, and some by-catch in otter trawlers.

Germany: The German sole fishery can be divided into three segments: 7 large beam-trawl vessels \(>30 \mathrm{~m}\), 20-30 Euro-cutters and a varying number of small shrimp beam-trawl vessels catching sole during Q2 \& Q3.

The Netherlands: A high proportion of the fishing effort in the North Sea is by Dutch beam trawlers fishing for plaice and sole. The introduction of the Plaice Box in 1989 resulted in a change in the distribution pattern of beam trawl vessels > 300 HP with an increase in activity outside and to the north of the Box.

UK: The English fleet consists of a large number of small otter trawlers fishing in the southern North Sea for sole mainly in the 2 nd and 3 rd quarters of the year. Prior to 2002, Sole was also taken as by-catch in the English beam trawl fishery ( 9 vessels) which fished mainly for plaice with 120 mm mesh. Since 2002, these vessels do not participate in the fishery any more. These vessels landed the majority of the catch in The Netherlands.

Technical measures applicable to the sole fishery before 2000 were an exemption to use 80 mm mesh codend when fishing south of \(55^{\circ}\) North. From January 2000, the exemption area extends from \(55^{\circ}\) North to \(56^{\circ}\) North, East of \(5^{\circ} \mathrm{E}\) latitude. Fishing with this mesh size is permitted within that area providing that the landings comprise at least \(70 \%\) of a mix of species which are defined in the new technical measures of
the EU [EU 850/98]. Some additional protection is given to sole fron the closure of the plaice box along the Dutch and danish coast. in the year 1989 to 1993 the box was closed in the second and the third quarters of the year to all vessels using towed gears and with engine power larger than 300 HP. Since 1994 the box has been closed during all quarter.

\section*{A.3. Ecosystem aspects}

Rijnsdorp et al. (ICES CM2004/K:13) describes the changes in growth of plaice Pleuronectes platessa L. and sole Soleasolea (L.). The changes are analysed to explore changes in the productivity of the North Sea.. Based on market sampling data it was concluded that both length at age and condition factor increased since the mid 1960s to reach a highest level in the mid 1970s. Since the mid 1980s, length at age and condition decreased to a level intermediate between the low level around 1960 and the high level around 1975. Growth rate of the juvenile age groups was negatively affected by intra-specific competition. Length of 0 -group fish attained in autumn showed a positive relationship with the temperature in the 2 nd and 3 rd quarter, but for the older fish no temperature effect could be detected. Also, no correlation could be detected with the NAO-index. The overall pattern of the increase in growth and the later decline correlated with the temporal patterns in eutrophication, in particular the discharge of dissolved phosphates by the Rhine. It is concluded that the productivity of the southeastern North Sea for flatfish has decreased over the last two decades, possibly in relation to a decrease in the in \(\mathbf{F}_{\text {low }}\) of nutrients and an overall change in the

North Sea ecosystem.

\section*{A. 4 Management reference points}

The management reference points for this stock are presented in the text table below:
\begin{tabular}{|l|l|l|l|}
\hline \(\mathbf{F}_{\text {lim }}\) & \(\mathbf{F}_{\mathrm{pa}}\) & \(\mathbf{B}_{\text {lim }}\) & \(\mathbf{B}_{\mathrm{pa}}\) \\
\hline undefined & 0.40 & 25000 t & 35000 t \\
\hline
\end{tabular}

\section*{B. Data}

\section*{B.1. Commercial catch}

The text table below show the countries and the kind of data they provide to the Working Group.
\begin{tabular}{|l|l|l|l|l|}
\hline Country & Catch weights & \begin{tabular}{l} 
Catch numbers at \\
age
\end{tabular} & Weight in catch & \begin{tabular}{l} 
Length \\
composition
\end{tabular} \\
\hline The Netherlands & X & X (by sex) & X (by sex) & X (by sex) \\
\hline Scotland & X & X & X & X \\
\hline UK (England,Wales) & X & & & \\
\hline UK (Northern Ireland) & X & X & X & \\
\hline Germany & X & X & X & X \\
\hline Belgium & X & X & X & \\
\hline France & X & X & X & \\
\hline Denmark & Xorway & & & \\
\hline
\end{tabular}

The catch weights are based on official logbookdata corrected with unallocated landings which represent the difference between official landings and the figures supplied by the WG members. Catch numbers ata age are derived from market sampling programmes. The age compositions were combined on a quarterly basis and then raised to the annual international total.

Data are supplied as FISHBASE files containing quarterly numbers at age, weight at age, length at age and total landings. The files are aggregated by the stock coordinator to derive the input VPA files in the Lowestoft format. No SOP corrections are applied to the data because individual country SOPs are usually better than \(95 \%\). The quarterly data files by country as well as the input files can be found with the stock co-ordinator (Sieto Verver, RIVO, The Netherlands, sieto.verver@wur.nl).

Despite the data regulation that came into action in 2002, no structural sampling takes place to collect samples from national vessels which land abroad and this constitutes for an substatial part of the total landings by some countries. Some samples are taken but there is no international exchange system for this information available.

Discarding is not considered to be a problem in the sole fishery.

\section*{B.2. Biological data}

\section*{Weights}

Weight at age in the catch are measured weights from the various national market sampling programmes of the landings. Weight at age in the stock are those of the \(2^{\text {nd }}\) quarter in the landings.

No clear trends in weights are evident over the last years, although age 7 to 13 and older show a slight decline in stock weight at age. This decline is supported by the average decline in length for these ages for the most important fleets over the last years. The sexratio for quarter 2 over the period 1986 to 2002 do not show an evident change, at most a small increase in the number of males at the older ages that could support the decrease in the stock weight. This increase is not further explored during the benchmark assessment in 2003 (ICES CM 2004/ACFM:07) (check the year).

\section*{Maturity}

A knife-edged maturity was used in all years, assuming full maturation at age 3. This maturity-ogive is based on market samples of females in the sixties and seventies. A working document was presented to the WG in 2003 describing an international collaboration (COMPASS) to explore how to determine annually varying maturity ogives for North Sea flatfish from market and research samples and the consequences of such ogives on the stock assessment and the biological reference points. The explorations have so far not produced results that can be used for the assessment.

\section*{Natural mortality}

Natural mortality has been assumed constant over all ages at 0.1 , except for 1963 where a value of 0.9 is used to take into account the effect of the severe winter (ICES CM 1979/G:10). In 1996 additional natural mortality was observed in the cold winter of 1995/1996, but in the absence of precise estimates, the standard value of 0.1 has been retained (ICES 1997e/Assess:6).

\section*{B.3. Surveys}

The SNS (Sole Net Survey) is a coastal survey with a 6-m beam trawl carried out in the 3 th quarter. The
BTS (Beam Trawl Survey) is carried out in the southern and south-eastern North Sea in August and September using an 8-m beam trawl. The BTS survey indices were revised in 1998 (ICES CM 2000/ACFM:07) and again examined this year. The procedure to convert length distribution into age distribution was improved and database corrections were carried out. These changes resulted in minimal changes. Figure 9.3.1 (Section North Sea plaice) shows a map of the distribution of the surveys.

The Demersal Young Fish Survey (DFS) is an international survey (The Netherlands, England, Belgium and Germany), which covers the coastal and estuarine areas of the southern North Sea. This survey is
directed to 0 and 1-group plaice and sole. The combined international DFS index is only used for RCT3 analysis and not for tuning the VPA.

\section*{B.4. Commercial CPUE}

Effort data is available from Belgium, UK and The Netherlands. Only the latter is used for tuning. Effort in the Netherlands commercial beam trawl is total HP effort days and this has nearly doubled between 1978 and 1994. Since 1996 the effort show a decline and the effort is around the same level as it was in the early 1980's.

The English effort is based on the effort from otter trawlers mainly fishing for sole in area IVc. Effort is in HP*hrs and excludes trips directed at cod or shrimps.

The Belgium effort is based on fishing hours corrected for fishing power.
B.5. Other relevant data

None.

\section*{C. Historical Stock Development}

Model used: XSA

Software used: Lowestoft VPA suite

\section*{Model Options chosen:}

Tapered time weighting not applied
Catchability dependent on stock size for ages < 2

Regression type \(=\mathrm{C}\)
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 2
Catchability independent of age for ages \(>=7\)
Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk \(=2.000\)

Minimum standard error for population estimates derived from each fleet \(=.300\)
Prior weighting not applied
Input data types and characteristics:
\begin{tabular}{|l|l|l|l|l|}
\hline Type & Name & Year range & Age range & \begin{tabular}{l} 
Variable from year \\
to year \\
Yes/No
\end{tabular} \\
\hline Caton & Catch in tonnes & \(1957-2003\) & \(1-10+\) & Yes \\
\hline Canum & \begin{tabular}{l} 
Catch at age in \\
numbers
\end{tabular} & \(1957-2003\) & \(1-10+\) & Yes \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Weca & \begin{tabular}{l} 
Weight at age in \\
the commercial \\
catch
\end{tabular} & \(1957-2003\) & \(1-10+\) & Yes \\
\hline West & \begin{tabular}{l} 
Weight at age of \\
the spawning stock \\
at spawning time.
\end{tabular} & \(1957-2003\) & \(1-10+\) & Yes \\
\hline Mprop & \begin{tabular}{l} 
Proportion of \\
natural mortality \\
before spawning
\end{tabular} & \(1957-2003\) & \(1-10+\) & No \\
\hline Fprop & \begin{tabular}{l} 
Proportion of \\
fishing mortality \\
before spawning
\end{tabular} & \(1957-2003\) & \(1-10+\) & No \\
\hline Matprop & \begin{tabular}{l} 
Proportion mature \\
at age
\end{tabular} & \(1957-2003\) & \(1-10+\) & No \\
\hline Natmor & Natural mortality & \(1957-2003\) & \(1-10+\) & No \\
\hline
\end{tabular}

Tuning data:
\begin{tabular}{|l|l|l|l|}
\hline Type & Name & Year range & Age range \\
\hline Survey fleet & NL-BTS ISIS & \(1985-2003\) & \(1-9\) \\
\hline Tuning fleet 2 & NL-SNS & \begin{tabular}{l}
\(1970-2002\) (no 2003 \\
survey)
\end{tabular} & \(0-4\) \\
\hline Tuning fleet 3 & NL Comm BT & \(1990-2003\) & \(2-9\) \\
\hline
\end{tabular}

\section*{D. Short-Term Projection}

Fishing mortality at age were the average over the last 3 years, scaled to the reference \(\mathrm{F}(2-6)\). Weight at age in the catch and in the stock are averages for the last 3 years. The maturity ogive and natural mortality were the same as XSA.

Model used: Age structured.
Software used: WGFRANSW.

Initial stock size: Taken from XSA for age 3 and older. The number at age \(1 \& 2\) in the last data year is estimated using the geometric mean over a long period (1957-last data year).

Maturity: Set to 1 for age 3 and older in all years, same as in XSA.
F and M before spawning: Set to 0 for al ages in all years.
Weight at age in the stock: Average weight over the last 3 years.
Weight at age in the catch: Average weight over the last 3 years.
Exploitation pattern:
Intermediate year assumptions:

Stock recruitment model used: Long term geometric mean for age 1 is used
Procedures used for splitting projected catches: none.

\section*{E. Medium-Term Projections}

Not carried out during WG2004
Model used: (WG2003) Age structured
Software used: (WG2003) WGMTERMc
Settings used a in short term projections

\section*{F. Long-Term Projections}

Not carried out.
Model used:
Software used
Maturity:
F and M before spawning:
Weight at age in the stock:
Weight at age in the catch:
Exploitation pattern:
Procedures used for splitting projected catches:

\section*{G. Biological Reference Points}

The biological reference points and the basis for the management reference point are:
\(\mathbf{B}_{\text {in }}=\mathbf{B}_{\text {lose }}=25000 \mathrm{t} . \mathbf{B}_{\mathrm{pa}}=1.4 *_{\mathrm{B}_{\mathrm{in}}}\).
\(\mathbf{F}_{\mathrm{pa}}=5\) th percentile (0.49) of \(\mathbf{F}_{\text {loss }}\) implies Beq \(<\sim \mathbf{B}_{\mathrm{pa}}\),
\(\mathrm{F}=0.4\) implies Beq \(>\mathbf{B}_{\mathrm{pa}}\) and \(\mathrm{P}\left(\mathbf{S S}_{\text {BMT }}<\mathbf{B}_{\mathrm{pr}}\right)<10 \%\).

\section*{H. Other Issues}

\section*{I. References}

ICES 1979. Report of the Flatfish Working Group. ICES CM 1979/G:10
ICES 1997. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1996. ICES CM 1997/Assess :6

ICES 2000. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1999. ICES CM 2000/ACFM:7```


[^0]:    H. C. Andersens Boulevard 44-46 • DK-1553 Copenhagen V • Denmark

    Telephone $+4533386700 \cdot$ Telefax +4533934215
    'Www.ices.dī•info@ices.dk

[^1]:    ${ }^{1}$ Information on spawning cod and population structuring is taken from a summary prepared for the 2003 meeting of this WG, and presented at that meeting as a working paper by Wright et al. (2003).

[^2]:    * Preliminary
    ${ }^{1}$ includes $\mathrm{IIa}(\mathrm{EC})$

[^3]:    ${ }^{1}$ The TAC was set at $80,000 \mathrm{t}$. (COUNCIL REGULATION (EC) No 2287/2003 of 19 December 2003) but was later revised to 77,000 tonnes.

[^4]:    * XSA survivors multiplied by the weight as in the short term forecast.

[^5]:    Weighted prediction :
    Survivors Int Ext N Var F
    $\begin{array}{llll}\text { at end of year s.e } & \text { s.e } & \text { Ratio }\end{array}$

[^6]:    ${ }^{1}$ Replaced by RCT3 estimate
    ${ }^{2}$ Replaced by long term GM
    ${ }^{3}$ Assuming mean weights at age in 2004 as the mean of 2001-2003

[^7]:    Proportion of $F$ before spawning $=.00$
    Proportion of $M$ before spawning $=.00$

    Stock numbers in 2004 are VPA survivors.
    These are overwritten at Age 2 and replaced by RCT3 estimates

[^8]:    $+=$ less than half unit.

    - = no information or no catch.

[^9]:    * No data available

