International Council for the Exploration of the Sea

ICESCIEM

ICES CM 2004/ACFM:20, Ref. I Advisory Committee on Fishery Management

Report of the
Working Group on North Atlantic Salmon

29 March -8 April 2004
Halifax, Canada

This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Main Tasks 1
1.2 Participants. 2
2 ATLANTIC SALMON IN THE NORTH ATLANTIC AREA. 3
2.1 Catches of North Atlantic Salmon 3
2.1.1 Nominal catches of salmon 3
2.1.2 Catch and release 4
2.1.3 Unreported catches. 4
2.2 Farming and Sea Ranching of Atlantic Salmon 5
2.2.1 Production of farmed Atlantic salmon 5
2.2.2 Production of ranched Atlantic salmon 5
2.3 Update on the estimation of natural mortality at sea of Atlantic salmon 5
2.4 Significant developments towards the management of salmon 7
2.4.1 Application of a Bayesian hierarchical approach to setting Conservation Limits in Ireland 7
2.4.2 DNA-based analysis of the composition of the Foyle fishery in Northeast Ireland. 8
2.4.3 Examining the effects of fisheries on biological characteristics of Atlantic salmon stocks. 10
2.4.4 Static vs. dynamic models for forecasting salmon pre fishery abundance 12
2.5 Long-term projections for stock rebuilding 12
2.5.1 Impact of mixed stock fisheries on stocks with different productivities. 13
2.5.2 A Dennis-type Population Viability Analysis of North American and Northeast Atlantic Commission Groups 14
2.6 Distribution, behaviour and migration of salmon 15
2.6.1 Sonic tracking of escaped farmed salmon in Maine (USA) 16
2.6.2 Smolt migration/emmigration tracking studies 16
2.6.3 Data Storage Tags (DST) tagging of pre-adult salmon. 16
2.7 Compilation of Tag Releases and Finclip Data by ICES Member Countries in 2003 17
3 NORTH-EAST ATLANTIC COMMISSION. 45
3.1 Status of stocks/exploitation 45
3.2 Management objectives 45
3.3 Reference points. 46
3.3.1 Progress with setting river-specific conservation limits. 46
3.3.2 Description of the national Conservation limits model. 46
3.3.3 National Conservation Limits 47
3.4 Advice on management. 47
3.5 Relevant factors to be considered in management 48
3.5.1 Grouping of national stocks 48
3.6 Catch forecast for 2004 49
3.6.1 Southern NEAC area. 49
3.6.2 Northern NEAC area. 50
3.7 Medium to long term projections 50
3.8 Comparison with previous assessment. 50
3.9 NASCO has requested ICES to: describe 51
3.9.1 Fishing at Faroes in 2002/2003 51
3.9.2 Significant events in NEAC homewater fisheries in 2003 51
3.9.3 Gear and effort 51
3.9.4 Catches. 52
3.9.5 Catch per unit effort (CPUE) 52
3.9.6 Age composition of catches 52
3.9.7 Farmed and ranched salmon in catches. 53
3.9.8 National origin of catches 53
3.9.9 Summary of homewater fisheries in the NEAC area 53
3.9.10 The NEAC-PFA model 53
3.9.11 Sensitivity of the PFA model 54
3.9.12 National input to the NEAC-PFA model 54
3.9.13 Status of national stocks as derived from the PFA model 54
3.9.14 Trends in the PFA for NEAC stocks 56
3.9.15 Survival indices NEAC stocks 57
3.10 NASCO has requested ICES to: evaluate the extent to which the objectives of any significant management measures introduced in the last five years have been achieved 57
3.11 NASCO has requested ICES to: consider the report of the Study Group on the Bycatch of Salmon inPelagic Trawl Fisheries, provide estimates of bycatch of salmon in pelagic fisheries, and advise on theirreliability59
3.11.1 Consideration of the report of SGBYSAL on the by-catch of salmon in pelagic trawl fisheries. 59
3.11.2 Estimates of by-catch of salmon in pelagic fisheries 61
3.11.3 Examination of time series of catches of herring, mackerel, blue whiting and capelin against PFA for Northern and Southern Europe stock complexes. 62
3.11.4 Salmon surveys in the sea 63
Sampling of post-smolts and pre-adults in Norway and the Norwegian Sea 63
4 NORTH AMERICAN COMMISSION 135
4.1 Status of stocks/exploitaton 135
4.2 Management objectives. 135
4.3 Reference points. 135
4.4 Advice on management 135
4.5 Relevant factors to be considered in management 135
4.6 Catch forecast for 2004 136
4.7 Medium to long term projections 137
4.8 Comparison with previous assessment and advice. 137
4.9 NASCO has requested ICES to describe key events of the 2003 fisheries and the status of the stocks 138
4.9.1 Catch of North American salmon, expressed as 2 SW salmon equivalents 138
4.9.2 Gear and effort 138
4.9.3 Catches in 2003 140
4.9.4 Origin and composition of catches. 143
4.9.5 Elaboration on status of stocks. 144
4.9.6 Exploitation rates 148
4.9.7 Pre-Fisheries Abundance 149
4.9.8 Egg depositions in 2003 153
4.9.9 Marine survival rates. 153
4.9.10 Endangered populations of Atlantic Salmon. 154
4.9.11 Summary on status of stocks. 155
4.10 NASCO has requested ICES to evaluate the extent to which the objectives of any significant management measures introduced in the last five years have been achieved 156
4.11 NASCO has asked ICES to provide an analysis of any new biological and/or tag return data to identify the origin and biological characteristics of Atlantic salmon caught at St. Pierre and Miquelon 156
4.12 NASCO has asked ICES to provide descriptions (gear type; and fishing depth, location and season) for all pelagic fisheries that may catch Atlantic salmon 157
4.12.1 Database Queries 157
4.12.2 Fisheries with Bycatch Potential 158
4.13 Data deficiencies and research needs. 159
5 ATLANTIC SALMON IN THE WEST GREENLAND COMMISSION. 207
5.1 Status of stocks/exploitaton 207
5.2 Management objectives 207
5.3 Reference points. 208
5.4 Advice on management. 208
5.5 Relevant factors to be considered in management 209
5.6 Catch forecast for 2004 209
5.7 Medium to long-term projections. 209
5.8 Comparison with previous assessment and advice. 210
5.9 NASCO has requested ICES to Describe the events of the 2003 fishery and status of the stocks 210
5.9.1 Catch and effort in 2003 210
5.9.2 Biological characteristics of the catches 210
5.9.3 Continent of Origin of catches at West Greenland 211
5.9.4 NASCO has requested ICES to Provide information on the origin of Atlantic salmon caught at West Greenland at a finer resolution than continent of origin (river stocks, country or stock complexes) 212
5.9.5 Elaboration on Status of the stocks in the West Greenland Commission area 213
Southern European Stock 214
5.10 NASCO has requested ICES to provide a detailed explanation and critical examination of any changes to the models used to provide catch advice 215
5.10.1 Forecast models for pre-fishery abundance of 2SW salmon. 216
5.10.2 Development and risk assessment of catch options for 2004 218
5.11 NASCO has requested ICES to With respect to stock rebuilding consider and evaluate various alternative baseline measures for use in the risk analysis. 220
5.12 NASCO has requested ICES to Evaluate the extent to which the objectives of any significant management measures introduced in recent years have been achieved. 220
6 NASCO HAS REQUESTED ICES TO IDENTIFY RELEVENT DATA DEFICIENTCIES, MONITORING NEEDS AND RESEARCH REQUIREMENTS TAKING INTO ACCOUNT NASCO'S INTERNATIONAL ATLANTIC SALMON RESEARCH BOARD'S INVENTORY OF ON-GOING RESEARCH RELATING TO SALMON MORTALITY IN THE SEA 245
6.1 Data deficiencies and research needs. 245
APPENDIX 1 249
APPENDIX 2 251
APPENDIX 3 255
APPENDIX 4 257
APPENDIX 5 263
APPENDIX 6 277

1.1 Main Tasks

At its 2003 Statutory Meeting, ICES resolved (C. Res. 2003/2ACFM05) that the Working Group on North Atlantic Salmon [WGNAS] (Chair: Dr W Crozier, UK) will meet in Halifax, Canada, from the 28 March-8 April 2004 to consider questions posed to ICES by the North Atlantic Salmon Conservation Organisation (NASCO). The terms of reference and sections of the report in which the answers are provided, follow:

a) With respect to Atlantic salmon in the North Atlantic area:	Section 2
i. provide an overview of salmon catches and landings, including unreported catches by country and catch and release, and worldwide production of farmed and ranched salmon in 2003;	2.1 and 2.2
ii. report on significant developments which might assist NASCO with the management of salmon stocks;	2.4
iii. provide a compilation of tag releases by country in 2003.	2.7
iv. identify relevant data deficiencies, monitoring needs and research requirements, taking into account NASCOs International Atlantic Salmon Research Board's inventory of on-going research relating to salmon mortality in the sea.	6
b) With respect to Atlantic salmon in the North-East Atlantic Commission area:	Section 3
i. describe the key events of the 2003 fisheries and the status of the stocks;	3.9
ii. evaluate the extent to which the objectives of any significant management measures introduced during the last five years have been achieved;	3.10
iii. further develop the age-specific stock conservation limits where possible based upon individual river stocks;	3.3
iv. provide catch options or alternative management advice, if possible based on a forecast of PFA, for northern and southern stocks, with an assessment of risks relative to the objective of exceeding stock conservation limits and advise on the implications of these options for stock rebuilding.	3.6
v. consider the report of the Study Group on the Bycatch of Salmon in Pelagic Trawl Fisheries, provide estimates of by-catch of salmon in pelagic trawl fisheries and advise on their reliability.	3.11
c) With respect to Atlantic salmon in the North American Commission area:	Section 4
i. describe the key events of the 2003 fisheries and the status of the stocks;	4.9
ii. evaluate the extent to which the objectives of any significant management measures introduced during the last five years have been achieved;	4.10
iii. update age-specific stock conservation limits based on new information as available;	4.3
iv. provide catch options or alternative management advice with an assessment of risks relative to the objective of exceeding stock conservation limits and advise on the implications of these options for stock rebuilding.	4.6
v. provide an analysis of any new biological and/or tag return data, to identify the origin of Atlantic salmon caught at St Pierre and Miquelon;	4.11
vi. provide descriptions (gear type, and fishing depth, location and season) for all pelagic fisheries that may catch Atlantic salmon.	4.12

d) With respect to Atlantic salmon in the West Greenland Commission area:	Section 5
i. describe the events of the 2003 fisheries and the status of the stocks;	5.9
ii. evaluate the extent to which the objectives of any significant management measures introduced in recent years have been achieved;;	5.12
iii. provide information on the origin of Atlantic salmon caught at West Greenland at a finer resolution than continent of origin (river stocks, country or stock complexes);	5.9
iv. provide catch options or alternative management advice with an assessment of risks relative to the objective of exceeding stock conservation limits and advise on the implications of these for stock rebuilding.	5.6
Notes: 1. In the responses to questions b.i, c.i and d.i ICES is asked to provide details of catch, gear, effort, composition and origin of the catch and rates of exploitation. For homewater fisheries, the information provided should indicate the location of the catch in the following categories: in-river; estuarine; and coastal. Any new information on non-catch fishing mortality of the salmon gear used and on the bycatch of other species in salmon gear and of salmon in any existing and new fisheries for other species is also requested.	
2. With regard to question d.i ICES is requested to provide a brief summary of the status of the	
North American and North-East Atlantic salmon stocks. The detailed information on the status	
of these stocks should be provided in response to questions b.i and c.i.	
3. In response to questions b.iv, c.iv and d.iv provide a detailed explanation and critical	
examination of any changes to the models used to provide catch advice. With respect to stock	
rebuilding, consider and evaluate various alternative baseline measures for use in the risk	
analysis.	

The Working Group considered 44 Working Documents submitted by participants (Appendix 1); other references cited in the report are given in Appendix 2. A full address list for the participants is provided in Appendix 3.

1.2 Participants

Amiro, P.
Caron, F.
Chaput, G.
Crozier, W (Chair)
Erkinaro, J.
Gibson. J.
Gudbergsson, G.
Hansen, L.P.
Jones, R.
Kanneworff, P.
Lachance, S.
Legault, C.
MacLean, J.C.
Meerburg, D.J.
Ó Maoiléidigh, N .
Prusov, S.
Reddin, D.G.
Russell, I.C.
Sheehan, T.
Smith, G.W.
Trial, J.
Whoriskey, F.

Canada
Canada
Canada
UK (Northern Ireland)
Finland
Canada
Iceland
Norway
Canada
Greenland
Canada
USA
UK (Scotland)
Canada
Ireland
Russia
Canada
UK (England \& Wales)
USA
UK (Scotland)
USA
Canada

2.1 Catches of North Atlantic Salmon

2.1.1 Nominal catches of salmon

The nominal catch of a fishery is defined as the round, fresh weight of fish that are caught and retained. Total nominal catches of salmon reported by country in all fisheries for 1960-2003 are given in Table 2.1.1.1. Catch statistics in the North Atlantic also include fish farm escapees and, in some north-east Atlantic countries, relatively small numbers of ranched fish (see Section 2.2.2). Catch and release has become increasingly commonplace in some countries, but these fish do not appear in the nominal catches (see Section 2.1.2).

Icelandic catches have traditionally been split into two separate categories, wild and ranched, reflecting the fact that Iceland has been the only North Atlantic country where large-scale ranching has been undertaken with the specific intention of harvesting all returns at the release site. However, the release of smolts for ranching purposes ceased in Iceland in 1998. While ranching does occur in some other countries, this is on a much smaller scale. Some of these operations are experimental and at others harvesting does not occur solely at the release site. The ranched component in these countries has therefore been included in the nominal catch.

Figure 2.1.1.1 shows the nominal catch data grouped by the following areas: 'Northern Europe' (Norway, Russia, Finland, Iceland, Sweden and Denmark); 'Southern Europe' (Ireland, UK (Scotland), UK (England and Wales), UK (Northern Ireland), France and Spain); 'North America' (including Canada and USA); and 'Greenland and Faroes'. Catches for St Pierre et Miquelon (France) are normally included in North America, but no data were made available for 2003.

The provisional total nominal catch for 2003 was 2,461 tonnes, 179 t below the confirmed catch for $2002(2,640 \mathrm{t})$. The 2003 catch was about $200 t$ below the average of the last five years ($2,653 \mathrm{t}$), and over 500 t below the average of the last 10 years $(3,003 \mathrm{t})$. For the majority of countries, catches in 2003 were lower than those in 2002, although in four countries catches rose slightly on the previous year. Catches were below the previous five- and ten-year averages in eleven countries. In three countries, the nominal catch in 2003 was the lowest recorded in the time series.

Nominal catches in homewater fisheries split, where available, by sea-age or size category are presented in Table 2.1.1.2 (weight only). The data for 2003 are provisional and, as in Table 2.1.1.1, include both wild and reared salmon and fish farm escapees in some countries. A more detailed breakdown, providing both numbers and weight for different sea-age groups for most countries, is provided at Appendix 4. Countries use different methods to partition their catches by sea-age class and these are outlined in the footnotes to Appendix 4. The composition of catches in different areas is discussed in more detail in Sections 3, 4, and 5.

Table 2.1.1.3 presents the nominal catch by country in homewater fisheries partitioned according to whether the catch was taken in coastal, estuarine or riverine areas. Overall, coastal fisheries accounted for 53% of catches in North East Atlantic countries in 2003, in-river fisheries 39% and estuarine fisheries 8%. In North America, coastal fisheries accounted for 12% of the catch in 2003 , while in-river fisheries took 70% and estuarine fisheries 18%.

There is considerable variability in the percentage of the catch taken in different fisheries between individual countries. For some countries the entire catch is taken in freshwater, while in other countries the majority of the catch is taken in coastal waters (Figure 2.1.1.2). Data aggregated by region are presented in Figure 2.1.1.3. In the NEAC northern area (Iceland, Norway, Russia, Finland and Sweden) around half the catch over the period 1995 to 2003 has been taken in coastal waters and half in rivers; estuarine catches comprise no more than 2% of the total. There is no trend over the period in the percentages taken in each area. In the NEAC southern area (France, Ireland, Spain, UK (N. Ireland), UK (Scotland) and UK (England \& Wales)) estuarine fisheries have comprised a small ($<20 \%$) and relatively stable part of the catch, whereas the percentage of the catch taken in coastal fisheries shows an increasing trend and that in river a decreasing trend. This is thought to reflect increasing use of catch and release, since catches and effort in coastal fisheries have also been reduced in many countries over the period. In North America, the majority of the catch has been taken in freshwater (69 to 77% over the period).

2.1.2

 Catch and releaseThe practice of catch and release (also termed hook and release or live release) in rod fisheries has become increasingly common as a salmon management/conservation measure in light of the widespread decline in salmon abundance in the North Atlantic. In some areas of Canada and USA, catch and release has been practiced since 1984, and in more recent years it has also been widely used in many NEAC countries both as a result of statutory regulation and through voluntary practice.

The nominal catches presented in Section 2.1.1 comprise fish which have been caught and retained and do not include salmon that have been caught and released. Table 2.1.2.1 presents catch-and-release information from 1991 to 2003 for six countries that have records; catch-and-release may also be practiced in other countries while not being formally recorded. There are large differences in the percentage of the total rod catch that is released: in 2003 this ranged from 16% in Iceland to 81% in Russia, reflecting varying management practices among these countries. Within countries, the percentage of fish released has tended to increase over time, and the rates in 2003 are the highest in the time series for three countries and among the highest for two other countries. Overall, almost 127,000 salmon were reported to have been released around the North Atlantic in 2003, an increase of 11% on 2002, and the highest in the time series. There is also evidence from some countries that larger MSW fish are released in higher proportions than smaller fish.

Concerns have been expressed about the survival of fish following catch and release. However, various research studies (detailed in ICES 2003/ACFM:19) have demonstrated that if fish are appropriately handled, mortality following capture is low and a large proportion of fish survive to spawn. It is recognised, however, that fish are more likely to die when water temperatures are high ($>20^{\circ} \mathrm{C}$) or if fish are 'played' for an extended period. In deriving river-specific conservation limits, Canada (various regions) and UK (England \& Wales) make a small allowance for catch-and-release mortality. These correction factors vary: up to 10% for Canadian Regions and 20% for UK (England \& Wales).

2.1.3 Unreported catches

Unreported catches by year (1987-2003) and Commission Area are presented in Table 2.1.3.1. A description of the methods used to evaluate the unreported catches was provided in ICES 2000/ACFM:13 and updated for the NEAC Region in ICES 2002/ACFM:14. In practice, the estimation methods used by each country have remained relatively unchanged and thus comparisons over time may be appropriate. However, the estimation procedures vary markedly between countries. For example, some countries include only illegally caught fish in the unreported catch, while other countries include estimates of unreported catch by legal gear as well as illegal catches in their estimates. For France, the illegal catch is included in the nominal catch. Over recent years efforts have been made to reduce the level of unreported catch in a number of countries (e.g. through improved reporting procedures). The introduction of carcass tagging programmes in Ireland and UK (N. Ireland) in recent years is also expected to lead to reductions in unreported catches.

The total unreported catch in NASCO areas in 2003 was estimated to be 847 t , a fall of 18% on $2002(1,039 \mathrm{t})$. The unreported catch in the North East Atlantic Commission Area in 2003 was estimated at 719 t , that for the North American Commission Area 118 t , with 10 t estimated for the West Greenland Commission Area. The unreported catch, expressed as a percentage of the total North Atlantic catch (nominal and unreported), has fluctuated since 1987 (range $23-34 \% ; 26 \%$ in 2003), but has declined over the past 5 years (Figure 2.1.3.1). Estimates for 2003 are presented by country in Table 2.1.3.2. Expressed as a percentage of the total unreported catch for the North Atlantic, these range from 0 to 13% for individual countries. Relative to national catches, unreported catches range between 1% and 54% of country totals.

In the past, salmon fishing by non-contracting parties is known to have taken place in international waters to the north of the Faroe Islands. Two surveillance flights were made over the area by the Icelandic coastguard in 2003; additional flights may have been made by the Norwegian coastguard, but no information was available. No sightings of vessels were made during the Icelandic flights, although the flights took place outside the period from mid-September to late March, which is the period when previous salmon fishing has been reported.

2.2.1 Production of farmed Atlantic salmon

The provisional estimate of farmed Atlantic salmon production in the North Atlantic area for 2003 is $761,752 \mathrm{t}$. This represents a 5% increase on $2002(726,210 \mathrm{t}$) and a 16% increase on the 5 -year mean (1998-2002) (Table 2.2.1.1 and Figure 2.2.1.1). Most of the North Atlantic production took place in Norway (61%) and UK (Scotland) (23%). Production in 2003 increased on 2002 in most countries, but fell a little in USA and by around a quarter in Ireland.

In 2002, world-wide production of farmed Atlantic salmon topped one million tonnes for the first time. Total production increased further in 2003 (up 2\%) and is provisionally estimated at over 1.1 million tonnes (Table 2.2.1.1 and Figure 2.2.1.1). Production outside the North Atlantic increased by 74% between 2001 and 2002, but fell slightly in 2003 (down 4\%) to $353,000 \mathrm{t}$. The largest contribution to the farmed production outside the North Atlantic area was in Chile ($261,000 \mathrm{t}$). World-wide production of farmed Atlantic salmon in 2003 was over 450 times the reported nominal catch of Atlantic salmon in the North Atlantic. Farmed salmon therefore dominate world markets.

2.2.2 Production of ranched Atlantic salmon

Ranching has been defined as the production of salmon through smolt releases with the intent of harvesting the total population that returns to freshwater (harvesting can include fish collected for broodstock) (ICES 1994/Assess:16). The total production of ranched Atlantic salmon in countries bordering the North Atlantic in 2003 was 12 t , an increase of 2 t on 2002 (Figure 2.2.2.1). Salmon ranching (smolt releases) ceased in Iceland in 1998. Small catches of ranched fish were recorded in each of the three other countries reporting such fish (Ireland, UK(N. Ireland), and Norway), the data including catches in net, trap, and rod fisheries. Ranched fish comprised less than 2% of the nominal catches in each of these countries.

2.3 Update on the estimation of natural mortality at sea of Atlantic salmon

The Working Group was asked for clarification on the choice of the inverse weight method for estimating M in the second year at sea and used in the reconstruction models of the North American PFA and the NEAC PFA. A more detailed review of the methods and assumptions are provided by Chaput (2003) and Chaput et al. (2003).

In 2002, the Working Group reviewed theoretical and empirical methods for estimating M for Atlantic salmon and applied the inverse-weight model to observations from the River Bush (UK N. Ireland) as well as growth and abundance data of the River Trinité, LaHave River and Northwest Miramichi River (Canada) (ICES CM2002/ACFM: 14). The Working Group also considered a maturity schedule method to derive estimates of natural mortality at sea for stocks which mature at two or more different ages. The group determined that the most appropriate growth function for use with the inverse-weight method was linear rather than the previously used exponential function. This change in growth function, plus analysis of data from additional rivers, resulted in the instantaneous monthly mortality rate used in the run-reconstruction model for the North American and NEAC areas to be changed from 0.01 to 0.03 .

In 2003, the Working Group reviewed an analysis of a more extensive data set from 5 rivers on the NEAC area and 6 rivers in the NAC area (ICES 2003/ACFM: 19). The rivers with suitable data extended from the Scorff (France) to the North Esk (Scotland) and North to the Vesturdalsa River (Iceland). On the North American side, hatchery and wild stock data sets extended from the Scotia-Fundy region to the north shore of the St. Lawrence (Quebec). The time period analysed was from 1981 to 1999 in the NEAC area and 1970 to 1999 in the NAC area. Both the inverse weight method and the maturity schedule method were applied to the sets with appropriate data. The analysis of the river-specific growth data supported the previous conclusion that a linear function characterized the observed weights at age in the marine phase better than the exponential function. The additional analyses confirmed the previous conclusion that monthly mortality in the second year at sea was greater than 1% and distributed around 3%, at least for the wild fish. There were important differences among stocks and even regions which were not accounted for in the generalization over the entire NEAC and NAC areas.

The data requirements of the methods and the assumptions are briefly reviewed below.

Data requirements

Both methods require estimates of return rates of salmon at two life stages, 1SW and 2SW (Table 2.3.1). The inverse weight method also requires measurements of weights at age for smolts, 1SW and 2 SW salmon as well as dates of smolt migration and dates of return. These data are generally easy to obtain since weight and time of return data can be
collected without sacrificing fish. On the other hand, the maturity schedule method requires sex ratios of smolts, 1 SW and 2 SW salmon although sex ratios of smolts can be used if return rate estimates are not available (i.e. no smolt production estimates but estimates of returns of 1SW and 2SW salmon). Chaput et al. (2003) show that the precision of the estimates from the maturity schedule method is poor when sample size is small. The data requirement for abundance at age by sex of the maturity schedule model can not always be realized especially in small populations. Adult sex ratios are generally easier to obtain since these fish are exploited in fisheries, however in some cases, adults are not harvested in fisheries. The sex ratio of smolts is more difficult to obtain since in many research and assessment activities, sacrificing of fish may not be an option. However, hatchery stocking programs should at least attempt to confirm the sex ratio of the released smolts as this information could greatly enhance the exploration of trends in mortality at sea.

Assumptions of the methods

Both methods utilize return rates at a given age to estimate the mortality between the time periods. If there are no fisheries on these age groups, then the mortality rates equate to natural mortality. If there are fisheries on the age groups and the removals are accounted for in the abundance at 1 SW or 2 SW , then the mortality estimates also equate to natural mortality. In cases where unaccounted removals of fish occur prior to enumeration (for ex. exploitation in marine fisheries) and these removals are not accounted for, then the mortality estimates equate to the sum of fishing mortality and natural mortality. An analysis of changes in total mortality over time may provide an indication of the changes in exploitation if natural mortality is assumed to be constant over time.

Two assumptions are inherent in both methods:

1. Mortality in the first year at sea is similar for maturing 1 SW and non-maturing 1 SW salmon
2. Mortality is similar for male and female fish.

The inverse-weight method further assumes that the mortality at sea is determined primarily by weight (or size) and the integral over time can be calculated if the growth function over time is defined. The integrated mortality is then a continuous and montonically increasing function of time. The maturity schedule method does not describe any time function of mortality other at than the end points defined by the 1 SW and 2SW stages.

Differences in results

In 2004, the Working Group showed that there were large differences in the mortality rates estimated using the inverseweight method and the maturity schedule method, in some cases by as much as seven times (R. Scorff, Figure 2.3.1). The maturity schedule method estimates were always greater than those from the inverse-weight method although the latter estimates were less variable when estimated for comparable stocks and time periods (Figure 2.3.1). For de la Trinite River, the inverse weight method failed to characterize the apparent average decrease in mortality associated with the closure of coastal interceptory fisheries in the 1990s (Figure 2.3.2). Any changes in integrated mortality are apportioned between the two age groups relative to the growth function. The maturity schedule method is not constrained by such a function and mortality estimates have been observed to be much more variable. It was noted however that in several situations, the maturity schedule estimates were biologically unfeasible with survival values greater than one. This was considered to be the result of violations of the assumptions of the model.

The reviews of natural mortality were undertaken by the Working Group to verify if the value assumed in the run reconstruction models was appropriate. This resulted in the value of M being changed from 0.01 to 0.03 per month in the second year at sea. The analysis of series of return rate data from several rivers in both NEAC and NAC suggested that M could be higher than 0.03 in the last decade and in several stocks was increasing. However, there were no historical data prior to the mid 1980s which could be used to verify whether the mortality had changed from the 1970s and 1980s. There were also fewer data with which to correct estimates of abundance at age for exploitation in fisheries and as a result, total mortality rather than M would have been estimated. This may still be a factor in some data sets in both NAC and NEAC areas although the interceptory fisheries have been essentially closed in the NAC area. In any case, return rates to many stocks in the NAC and NEAC areas are lower now under reduced exploitation than in the 1970s and 1980s when fisheries were more intensive suggesting that natural mortality must have increased as fishing mortality rate declined.

The choice of the inverse weight derived value for M was also motivated by the concern that the high mortality values from the maturity schedule method would unlikely have applied to the 1970s and mid 1980s period of higher salmon abundance. The inability at this time to model a temporally varying M in the run-reconstruction models of PFA adds to the uncertainty in the description of the recruitment and spawning stock functions. Large changes in mortality could however be detected under models with constant M as appears to be the case for the North American PFA dynamic.

2.4.1 Application of a Bayesian hierarchical approach to setting Conservation Limits in Ireland

Up until 2001, the Irish salmon fishery was managed by a combination of effort limitation and the restrictions on the size and type of fishing gear. While these measures regulate the effort in the fishery, they are not sensitive to the stock available and may allow the same level of exploitation even when stocks are low. A Salmon Management Task Force established in Ireland in 1996 (Anon. 1996) recommended a new rationale for management of salmon stocks based on achieving "spawning escapement targets" for each specific stock and maintaining stocks above conservation limits (CLs). The Task Force proposed the application of a Total Allowable Catch (TAC) to allow sufficient fish to spawn to meet the CL.

In order to provide catch advice for the 17 individual fishery district fisheries in Ireland, it is necessary to calculate both the Pre-fishery abundance (PFA) and CLs. The ICES models used to estimate the PFA of salmon from countries in the NEAC area (Section 3.3) employ a run-reconstruction approach similar to that described by Potter and Dunkley (1993) and Rago et al. (1993). The main inputs required for these models are the catch of salmon, the unreported catch and the exploitation rate. Catch records from commercial salmon dealer's registers of each of the 17 salmon fishing districts are available for the period 1971 to 2000. Following the implementation of a salmon carcass tagging and logbook scheme in 2001 (Ó Maoiléidigh et al.. 2001, Anon 2004) the catch data derive from the logbook returns of commercial and recreational fishermen. Exploitation rates derive from coded wire tag returns for 9 stocks, while unreported catches are based on best local knowledge or information obtained during catch scanning for coded wire tags.

Following Potter et al. (1998) and the methodology for establishing National Conservation Limits (Section 3.3), estimates of spawning stocks in each district are derived as model outputs from the information on catches, unreported catch and exploitation rate. The lagged egg estimates provide a measure of the relative spawning level which gave rise to the recruitment estimates expressed above as the PFA. These data can then be plotted to provide a "pseudo" stock recruitment (PSR) relationship and a number of reference points can be derived.

Bayesian Hierarchal Stock and Recruitment Analysis/Wetted Area

The analysis of stock and recruitment (SR) data is the most widely used approach for deriving Biological Reference Points (BRPs) for salmon populations (Prévost et al.. 2001). While the conservation limits generated from PSR models are derived from the stock and recruitment data for each district, they are "pseudo" because they relate to geographic entities (i.e. the number of fish returning to that district) rather than true biological stocks. They are further complicated by the mixed stock nature of these district fisheries. Ó Maoiléidigh et al. (1994) and Browne et al. (1994) have shown that over 50\% of fish tagged from specific rivers may be caught in districts other than the district in which they migrated as smolts.

Prévost et al.. (2003) have applied Bayesian hierarchical modeling of stock-recruitment (SR) relationships to estimate BRPs for European Atlantic salmon stocks. The structure of the hierarchical SR model developed distinguishes two nested levels of randomness, within-river and between-rivers. The parameters of the Ricker function are assumed to be different between rivers, but drawn from a common probability distribution depending on two primary covariates i.e. river size and river latitude. The Bayesian analysis of this hierarchical model has been developed using a set of 13 stock and recruitment data series from monitored salmon rivers located in the North East Atlantic (Crozier et al.., 2003). The outputs of interest are the posterior predictive distributions of the SR parameters and their associated BRPs for new rivers with no SR data provided information is available on wetted area and latitude. Posterior distributions are estimated by means of MCMC sampling (Gibbs algorithm) as implemented by the Winbugs software. Details of the model specification and its Bayesian treatment are given in Prévost et al. (2003).

The latitude value used for each river in Ireland in the analysis is the river catchment area mid-point and the size is quantified as the riverine wetted area accessible to salmon. The wetted area is computed from statistically combined parameters, the length of upstream river, upstream catchment area, stream order and local channel gradient, captured by aerial photography and extracted within a GIS platform (McGinnity et al. 2003). Given this latitude and wetted area information, the approach described in Prévost et al. (2003) was used to estimate new District CLs, defined as the sum of river specific CLs for each of the fishery districts.

There are 173 salmon rivers in Ireland located between 51.6° and 55.3° North. They vary in size from 3,700 to $8,800,000 \mathrm{~m}^{2}$ of riverine wetted area accessible to salmon (median 183, $000 \mathrm{~m}^{2}$). There is wide overlap in the size of the Irish rivers and the size range of the 13 monitored rivers used by Prévost et al. (2003) i.e. 10% of the Irish rivers are smaller than the smallest monitored river but none are bigger the largest one. The Irish rivers are grouped into the 17 salmon fishing plus that part of the River Foyle within the Republic of Ireland. The number of rivers in each fishery district varies from 1 to 30 .

Due to the lognormal structure of the hierarchical SR model used, the posterior predictive distributions and median CLs are best examined on a log-scale (Figure 2.4.1.1). The resulting posterior predictive distributions (approximately 0.5 to 20 eggs m^{2}) for the egg deposition rates of the fishery district CLs vary more widely than the national CL (approximately 3-7 eggs m^{2}). This compares with the egg deposition rates for the training set used to generate the posterior predictions, which range from 0.1 to 100 eggs m^{2} (Prevost et al., 2003). The difference is due to the narrower latitudinal range in Ireland. There are large variations in the precision of the individual district posterior predictive CLs (e.g. in the Drogheda district the posterior predictive distribution ranges from approximately 0.5 eggs m^{2} to 16 eggs m^{2}). In those districts where several rivers are aggregated together the CLs provided are more precise e.g. the Kerry districts ranging from approximately 2 eggs m^{2} to 8 eggs m^{2}. The variance reduction effect gained from the aggregation of several rivers under a regional entity is more pronounced when the number of rivers increases. This explains why the CL egg deposition rate at the national level is more precisely estimated than that of any individual fishery district. The relative size of the rivers within a fishery region also has an effect on the precision of the estimates. The CL of the Lismore fishery district, which is made of seven rivers with one large river accounting for more than 75% of the wetted area accessible to salmon in the district, is estimated with a similar level of precision as the Drogheda fishery district, which comprises only one river.

The posterior predictive distributions of CLs generally encompass the point estimate CLs derived from the PSR approach previously used for providing catch advice in Ireland (Figure 2.4.1.1). However the PSR CLs are over dispersed compared to their corresponding posterior predictions using the BHSRA/Wetted area approach: only 5 out of 17 are located in the inter-quartile interval and 11 out of 17 are within the 75% probability interval. There is also a tendency of the PSR estimates to be greater than the estimates derived from BHSRA/Wetted area values approach. Indeed 10 of 17 of the PSR based CL estimates are located in the upper half of their corresponding posterior distribution, while 6 are situated within or very close to lower half of their posterior distribution. The only exception is the Dublin fishery district where the previous estimate based on the PSR model was significantly underestimated. The national CL derived from the PSR model results in a mean value of approximately 7 eggs m^{2} and is located in the upper part of the posterior predictive distribution close to the $90^{\text {th }}$ percentile. This compares to the BHSRA/Wetted Area median value of approximately 4 eggs m^{2}.

Despite the two different approaches used, the national CL based on the PFA/PSR approach (209,000 1SW salmon) is not greatly different from the equivalent value using the BHSRA/Wetted Area approach (198,000 1SW salmon - see Section 3, Table 3.3.3.1). This tends to support the contention that the PSR models are robust for National CL estimation as all spawning stocks are included.

Catch advice and TACs for Irish salmon fisheries are expressed in terms of numbers of adult 1SW salmon. Conservation limits in eggs $/ \mathrm{m}^{2}$ are converted to total egg requirement for each river by multiplying by the total wetted area accessible to salmon. Subsequently, the egg deposition values are converted to adults and subsequently corrected for 1 SW fish only. Multi-sea winter (MSW) salmon are not included in the catch advice, principally because they are not exposed to a significant commercial fishery, angling pressure has been reduced and these fish represent less than 10% of the total population.

The status of the 1SW district stocks relative to their attainment of BHSRA/Wetted Area CLs in 2003 is shown in Figure 2.4.1.2. Of the 17 fisheries districts in Ireland only 6 are shown to be meeting their conservation limits, 6 are over 50% of CL , while the remaining districts fall as low as 15% of CL. The national 1SW stock is slightly above CL despite being below for 4 of the previous 7 years.

Ideally, river specific stock and recruitment analysis would be the most accurate way to determine river specific conservation limits. However, given that river specific stock and recruitment studies are resource-intensive and take a long time to cover several generations and a wide range of stock levels, the BHSRA/Wetted Area method represents the most feasible method of deriving individual river CLs for the foreseeable future (Prevost et al.. 2001). The derivation of CL probability distributions by the BHSRA/Wetted Area approach is an improvement to the point estimates of district CLs obtained from the PFA/PSR catch based models as it reduces the uncertainty associated with the mixed stock nature of the district fisheries. It also allows for a more in-depth appraisal of the underlying biology of the individual stocks in relation to the productive capacity of the river producing them. Furthermore, these river CLs can potentially be refined with more information on the physical characteristics of the catchments (compromised water quality, gradient etc) to a higher level of precision.

2.4.2 DNA-based analysis of the composition of the Foyle fishery in Northeast Ireland

Within a mixed stock fishery, the identification of the origin and composition of the exploited salmon is important for responsible management of the shared resource (NASCO, 2002). The application of genetic stock identification (GSI) procedures has allowed the evaluation of mixed stock in a variety of species for several decades, initially based on use of protein polymorphisms as genetic tags (Taggart and Ferguson, 1984; Seeb et al. 1986; Crozier and Moffett, 1995;

Koljonen \& McKinnell, 1996), though recent work has predominantly used minisatellite and microsatellite DNA variation (Galvin et al 1995; Beacham et al. 1999; Beacham \& Wood, 1999; Beacham et al. 2002). Conditional maximum likelihood estimates (CMLE), are based on the expectation maximization algorithm described by Fournier et al. (1984) and work by sequentially improving a computed "guess" until convergence at a maximum likelihood perceived to be the best estimate. A pseudo-Bayesian analytical procedure recently implemented by Pella and Masuda (2001) uses Bayesian likelihood functions to generate a prior probability density, based on the relative frequencies of the alleles present in both the baseline samples and in the stock mixture. The incorporation of Bayesian assignment methods on the stock mixture generates a posterior probability for the origin of the unknowns, which is then used to determine the most likely mixture estimate.

In the northern part of Ireland, Atlantic salmon populations in the cross-border Foyle and Carlingford catchments are under the management of the Loughs Agency (LA), which forms part of the Foyle, Carlingford and Irish Lights Commission (FCILC). On an Irish and European scale, the Foyle mixed stock fishery is significant, with declared catches in the commercial fishery fluctuating around $25,000-40,000$ fish in recent years (source, Loughs Agency, Annual Reports). Fishing takes place during a 6 week period from $15^{\text {th }}$ June to $31^{\text {st }}$ July and is directed at 1 SW fish. A management target system operates in the Foyle fishery area, whereby closures of the angling and/or commercial fisheries take place if target numbers of fish have not been counted upstream at three Foyle rivers by certain specified dates during the season. Conversely, if the seasonal management targets have been met by the normal end of the commercial netting season, an extension is granted. The fished stocks are believed to mainly originate from rivers in the Foyle catchment, but may include some fish from stocks in neighbouring rivers and districts. A study was therefore carried out applying these techniques to analyse the composition of the mixed stock fishery in the Foyle area in 2003.

This investigation was based on the analysis of the variability at six microsatellite loci: Ssa202, Ssa197, Ssa171 (O’Reilly et al. 1996), Ssa406UOS, Ssa405UOS (Cairney et al. 2000) and One9ASC (Scribner et al. 1996).

In order to provide a baseline of potentially contributing stocks, sampling of putative river populations was carried out between 1999 and 2001, by electrofishing for juvenile salmon in rivers and tributaries at 19 sites throughout the Foyle catchment and including two neighbouring coastal rivers to the East of the Foyle area. (Grillagh and R. Bush) ($\mathrm{n}=966$). For three sites in the surveyed area, samples were obtained over multiple years and multiple year classes, to test for short-term temporal stability, a pre-requisite for mixture analysis. Allele frequencies at all loci were seen to vary in both sample and region, with significant spatial heterogeneity among the baseline population samples; both at the drainage and tributary level. Where among-sample geographical differences were non-significant, baseline samples were then grouped together (Pella and Milner, 1987), in order to increase baseline sample sizes; resulting in 14 final freshwater juvenile baseline samples. The three temporal sample groups were tested for levels of temporal stability based on allelic heterogeneity, with non-significant heterogeneity being present in all pairwise comparisons. These samples were therefore pooled for subsequent analysis.

During summer of 2003, 840 samples of commercially-caught adult salmon were taken at Greencastle, the major landing point for commercially-caught salmon in the Foyle area, comprising fish mainly from drift nets in the estuary and near-sea coastal areas. In addition to these samples, 185 migrating wild smolts were sampled using a screw trap from the River Finn in the Foyle system during a three-week period in May 2002. This sample was screened in order to verify the accuracy of the proportional estimates attained from the mixture analysis. GSI precision for both methods was determined by examining variation in the standard error in proportional composition due to sample size. This was estimated using a simulated mixture file composed of $50,100,250,500,1000,2500$ and 5000 individuals. These mixtures then had the standard error calculated for 1000 iterations and 1000 bootstraps for the 14 baseline groups.

The observed precision of the GSI estimate was seen to improve significantly when the simulated admixture sample size was approximately 200-400 individuals, with mean standard error approximately 10% that of an admixture of 5 individuals, implying that, using the baseline dataset here, minimum mixture samples sizes of the order of 300 individuals should allow adequate composition analysis.

The absolute and relative accuracy of the two GSI techniques were tested using the sample of wild smolts from the R. Finn as a known-origin independent sample, together with the freshwater baseline set. It can be seen from Figure 2.4.2.1 that the pseudo-Bayesian approach produces the most accurate estimate of River Finn fish ($84 \pm 8 \%$). CMLE, on the other hand, estimates that a mixture made up entirely of River Finn smolts, is composed of only $58 \pm 2 \%$ River Finn salmon with significant representation of other rivers in the Foyle system. From this it can be concluded that the pseudo-Bayesian approach should be more powerful in discerning the composition of the Foyle fishery.

Results of the analysis of the 2003 mixed stock fishery are shown in Figure 2.4.2.2, with CMLE and Bayesian analyses being shown separately and split into the first, second and last (two week) periods of the fishery. Comparison of the two techniques shows that both detect the R. Finn as the main river contributing stock to the fishery in 2003, however the

CMLE technique records R. Finn salmon in the catch at a lower level and proportionately allocates more of the remainder over the other rivers. Taking the Bayesian analysis as potentially more accurate, it appears that this fishery comprised mainly R. Finn fish from the western part of the Foyle system, while the Cappagh Burn was the strongest contributor from the eastern Foyle rivers. Several other rivers in the eastern Foyle contributed at relativity high levels (Cashel Bridge, Owenreagh and Quiggery). However, two of the larger rivers appeared not to be contributing significantly to the 2003 fishery (R. Roe and R. Derg). The R. Finn was represented in the baseline by samples from the main stem, together with samples from its Reelin, Elatagh and Cummirk trubutaries. Although the main stem and the Elatagh contributed to the fishery, salmon from the Reelin and Cummirk tributaries were virtually absent. It is noted that the Reelin tributary has significant multi-sea-winter spring salmon stocks, thus these would not be expected to be detected in the summer grilse fishery.

In both analyses, the two rivers from outside the Foyle management area that were included in the baseline (R. Grillagh and R. Bush, combined here as North Coast group) were also detected in the fishery, though at a relatively low level ($<5 \%$). Both analyses indicate strong temporal variation in the composition of the fishery during the 2003 season. Referring to the Bayesian method, it is clear that R. Finn salmon were present in the fishery at the start of the season and tailed off significantly towards the end. In contrast, Cappagh Burn fish were more strongly represented at the end of the season, as was the case with Cashel Bridge and R. Roe fish. The Owenreagh and Quiggery salmon appear to be present at higher levels during the middle two weeks of the season.

Ideally, some form of independent validation of the results should always be sought, such as physical tagging of individuals from known locations, to ground-truth one or more of the estimates of contributing stocks. The genetic analysis indicated presence at low level ($<5 \%$) of fish from the two north coastal rivers outside the Foyle area in the 2003 fishery (Fig. 2.4.2.2). This is corroborated by tagged R. Bush fish that have been recorded during CWT recovery programmes in this area (Crozier and Kennedy, 1994, with Bush fish comprising an estimated 1.9% of the 2003 Foyle catch.

The current study reports the first comprehensive genetic analysis of the proportional composition of one of the largest mixed stock fisheries in Europe. The methods used produced estimates of the stock composition that would appear to make intuitive sense when spawning distributions for this region are considered. The contribution of the Foyle rivers and tributaries to the fishery also probably reflects the non-homogenous structure of suitable Atlantic salmon habitat within the Foyle area. The patchy distribution leads to certain areas driving the majority of yield to this fishery, while other areas are under-producing salmon relative to their available habitat areas. The significant differences among river stocks in the composition of this fishery could also partly reflect stock differences in timing of spawning runs, which results in uneven representation of the contributing freshwater stocks. Although the sampling carried out here was stratified to cover the whole period of the fishery, differences within the season were very clear and could conceivably arise if certain stocks or stock components were passing through the fishery at different times, or being caught in differing locations.

Results of this type of analysis may enable managers to regulate the fishery to achieve conservation in stocks, to ensure fishery sustainability, and to identify where specific action is needed to restore production in vulnerable or underproducing stocks.

2.4.3 Examining the effects of fisheries on biological characteristics of Atlantic salmon stocks

Increased occurrence, abundance and return rate of repeat spawning salmon

Atlantic salmon returning to the Narraguagus, Penoboscot, Saint John, Nashwaak, Magaguadavic, LaHave, Miramichi, Aux Rochers, de La Trinite, and St. Jean rivers in the North American Commission Area (NAC) and the Teno, North Esk and some rivers of France in the Northern European Area Commission (NEAC) have been sampled during their entire spawning migrations intermittently or in some cases continuously since 1971. In many cases fisheries management have instigated closures of commercial and recreational fisheries and mandatory release of large salmon in recreational fisheries. In many cases the relative proportion and the absolute abundance of repeat spawning salmon in the returns of large salmon have increased (Table 2.4.3.1). The working Group noted that increases in the relative contribution to egg depositions by repeat spawning salmon can influence the resilience and spawning requirements of a river stock.

In the southern regions of the NAC, USA and outer Bay of Fundy, the average incidence of repeat spawning is lower i.e. 1.2% to 6% than more northerly rivers where repeat salmon comprised 4.4% to 10%. These rates are variable and in the case of the outer Bay of Fundy and Scotia Fundy areas have declined since the mid 1990s. Some of the lower repeat spawning salmon frequency may be attributed to downstream passage inefficiencies. In the Gulf of St. Lawrence
including Quebec, the proportion of repeat spawning has continued to increase and has reached 20% of the return in the Miramichi River in 1997 and 1998.

Average repeat spawning was highest in the Lahave River at 10%, peaked in 1986 at 24% and has since declined. The decline in the LaHave River was attributed to a change in the frequency of consecutive spawning salmon first spawned as 1 SW salmon and a decline in the frequency of alternate spawning 1SW salmon. Consecutive spawning salmon first spawning as 2 SW salmon have been non existent since 1997 while alternate spawning 2 SW salmon declined from 10% in 1985 to 0% in 1995 but have since increased to 6% in 2000.

In the Gulf of St. Lawrence, including rivers in Quebec, the proportions of repeat spawning salmon have increased from less than 5% in the 1970 s to about 20% in 1998 to 2002. In the Miramichi River the repeat spawning component of those fish that first spawned at age 1SW increased, although repeat spawning salmon that first spawned at age 2SW are now a higher proportion. Since 1995, salmon on their sixth spawning migration have been observed and salmon on the third to fifth spawning return are more abundant since 1992. In the recent three years, salmon undertaking a seventh spawning have been observed. Return rates to a second spawning for 2SW salmon were highest during 1992 to 2000, ranging between 10% and 35%. The return rate to a second spawning of 1 SW maiden salmon varied between 2% and 9%, substantially lower than for 2SW salmon. This is expected as there is differential in-river harvest on small salmon. The return rates of 1 SW repeat spawning salmon have increased over the past five years with the greatest increase in the return rate of consecutive spawners. A similar increase in return rate of 2 SW salmon returning as consecutive spawners was also noted.

In the NEAC area the proportions of repeat spawning salmon have increased in the Teno River since 2000 but have remained low $(<1 \%)$ and variable in the North Esk. In the Teno River the proportion of repeat spawning salmon has increased substantially since 2000 from 2 to 4% to $10-15 \%$ in 2003 (Figure 2.4.3.1). Most (c. 65%) of the repeat spawning salmon in the River Teno are alternate 1SW salmon. In the rivers of France the proportion of repeat spawning salmon is low and the proportion of repeat spawning salmon that first spawned after 2 SW has declined.

In northern Europe two major fishery management measures were introduced over the past 15 years that may have influenced the salmon stocks of the River Teno. First, the drift net fishery off the northern Norwegian coast was banned in 1989, and second, gill nets with less than 58 mm mesh size (knot to knot) have been banned for salmon fishing in the River Teno since 1990. The ban on at-sea drift netting was shown to improve the 1-2SW returns in other northern European salmon stocks (Jensen et al. 1999). The ban on smaller mesh sized drift nets in the River Teno was especially designed to better protect grilse stocks and consequently, grilse returns increased from 1990 onwards (Fig. 2.4.3.1). As the mean smolt age of the grilse stocks of the Teno system is between four and five years, the generation time from adults to adults is typically seven or eight years. As the high grilse returns resulted in high proportions of alternate repeat spawners only from 1999 onwards, and the corresponding grilse returns in early 1990's did not increase, improved oceanic conditions in the Barents Sea (2000-2002 vs. 1992-1994) could be a cofactor in explaining the high proportions and survival of repeat spawning salmon since 2000 (Niemelä et al.).

The Working Group also noted incidences of other changes in biological characteristics that were most likely associated with reductions in fishing mortality. For example, the proportion of female 2SW salmon increased in the LaHave River immediately following the closures in the local and interceptory commercial salmon fisheries in 1985. Coincident with this increase in the proportion of female 2 SW salmon was an increase in the average length of 2 SW salmon. These increases resulted in an increase in the number of eggs per retuning fish. However, these gains were offset by reductions in the numbers of salmon surviving after 2 SW .

Modeling the effect of repeat spawning frequency on population size and fishery reference points

The proportion of repeat spawners, equilibrium population size and population persistence can be influenced by selective fishing. Additionally, changes in natural mortality can affect fishery yields and reference points. The effect of changes in the repeat spawning component (post-spawning natural mortality) of the population on equilibrium population size and fishery reference points is illustrated using a dynamic model for a hypothetical population (similar to the salmon population in the LaHave River). Two scenarios are contrasted. The first scenario assumes that postspawning adult annual survival is 50% and adults can spawn up to 6 times in their lives. The second scenario is that salmon do not repeat spawn (a post-spawning adult mortality of 99.9\%). These scenarios are shown with the LaHave River spawner-recruit relationship (1974 to 1986) in Figure 2.4.3.2. For the dynamics analysed here, the eggs per recruit in the repeat spawning scenario are about 3 times those in the absence of repeat spawning (Table 2.4.3.2). As a result, the equilibrium population size in the absence of repeat spawning is $1 / 3$ the size of that for the repeat spawning population. Fishery reference points differ between the scenarios (Table 2.4.3.2). The fishing mortality rate at MSY decreases with increased repeat spawning, whereas the egg deposition at MSY is higher in the repeat spawning
scenario. In this analysis, a Beverton-Holt model was used to model density dependence. Different results may be obtained if a different dynamical model is assumed.

The above example illustrates the sensitivity of reference points to changes in the number and frequency of repeat spawning. Its relationship to stock assessment depends on how conservation limits are derived, and how stock status is assessed. The status of populations in monitored rivers in the USA and Canada is assessed by comparing the egg deposition from the estimated spawning escapement with the conservation limits (required number of eggs) established for each river. Repeat spawners are included when calculating the annual egg deposition, and as a result, changes in the number of repeat spawners are included in the assessment of whether conservation limits are being met in these rivers. Higher proportions of repeat spawning fish increase the probability that conservation limits will be met.

The Working Group concluded that repeat spawning, persistence and reference points can be influenced by selective fishing, environmental and ecological conditions. However, increases in some biological characteristics such as eggs per fish can be offset by coincidental decreases in the number of fish surviving to spawn. Impacts on management options depend on how conservation limits (CLs) are derived. If CLs are derived from egg deposition rates then fewer spawning salmon would be required. However, if based on stock and recruitment (S / R) and repeat spawners are included, CLs could be underestimated and more salmon would be required.

2.4.4 Static vs. dynamic models for forecasting salmon pre fishery abundance

When catch levels are to be set annually in order to maintain escapement above a pre-determined threshold, a forecast of abundance is needed prior to fishery opening. A simple approach for forecasting PFA before a fishery opens is to use a measure of abundance of the stock available at the time the catch advice is elaborated (e.g. smolt counts) and, combined with knowledge about survival to derive an estimate of PFA. The Working Group adopted a Bayesian approach to compare a static (i.e. time invariant) vs a dynamic model in a simple real-world case based on River Bush (UK, Northern Ireland) data. The static model is a standard regression type model, i.e. the parameters associated to predictors are assumed fixed over-time, whereas the more flexible dynamic modelling allows parameters to vary over time. For this example, smolt counts from the period 1985-1990, together with PFA (calculated from runreconstruction treatment of catch and exploitation data) were used to "condition" the models, resulting in forecasts of PFA for years 1991-2003, which were then compared against observed values.

The Working Group examined an application-oriented approach for the comparison of these models in relation to their management advice objectives: cross-validation techniques were used to assess the quality of PFA forecasts. Given a major reduction in marine survival in this stock starting in 1987 and subsequently falling to 25% of previous values, the challenge was to quickly detect this change and reflect this accurately in the PFA forecasts. An example of the evaluation of the relative performance of these two model approaches is illustrated in Figure 2.4.4.1, where the likelihood of the observed PFA given the forecast was assessed. This likelihood is distributed from $0-0.5$, with a uniform distribution centred on 0.25 , expected when observed PFA equates to the median of the forecast distribution. Both models were unable to predict the severe drop in marine survival that occurred between 1996 and 1997, both considering the probability of observing the extreme low PFA values in 1997 and 1998 as low ($<10 \%$). However, the static model did not perform as well as the dynamic one in forecasting PFA for 1998, and produced a particularly poor forecast for 2000, when marine survival dropped further. The dynamic model captured the further drop in 2002 satisfactorily, indicating that it was better able to adapt to the non-stationary time trend in marine survival in this stock , though at a price in terms of precision of the forecast.

Dynamic modelling appears as a valuable option for salmon PFA forecast, which should be considered more systematically, especially at single river level, where reliable measures of cohort abundance may be available. This application may be best developed to produce pre-season catch forecasts, perhaps leading to catch quotas, which could then be modified in-season, in the light of real time information on performance of the stock.

2.5 Long-term projections for stock rebuilding

In 2003, the Working Group provided information on long term trajectories for stock rebuilding for specific stocks with different productive capacities and under different conditions of exploitation and starting stock size (relative to CL). The data and analysis indicate that there is an increased probability of not achieving $\mathrm{S}_{\text {lim }}$ in low productivity rivers when exploitation was increased. Under these conditions recovery was unobtainable in fifty-year projections in a low productivity river and possibly unobtainable in a moderate productivity river. The analysis suggests that increased caution needs to be taken when assigning exploitation to low productivity stocks. It also suggested that current management strategies for mixed stock fisheries are likely to fail to protect "the weakest link" i.e. those stocks that are far below their $\mathrm{S}_{\mathrm{lim}}$ and of low productivity. Similarly, expected contributions to rebuilding from restocking
programmes may also be confounded by prevailing low levels of marine survival, high or variable exploitation rates and even negative interactions between hatchery reared fish and their wild counterparts.

The Working Group therefore cautions that further simulations should also reflect declining stock trajectories and population viability given that the probability of rebuilding in the short term is low in most areas and that the main result of recent management measures may have been to reduce this rate of decline rather than lead to any significant stock rebuilding.

2.5.1 Impact of mixed stock fisheries on stocks with different productivities

The recovery trajectory analyses conducted by the Working Group last year were extended with the river specific exploitation rates replaced by a total catch applied to three rivers in a mixed stock fishery. The simulations examined the ability to catch fish from high productivity stocks while still rebuilding low productivity stocks in a mixed stock fishery. The potential for extirpation when catch levels are set too high was also investigated.

Parameters for Ricker stock and recruitment functions were obtained from SALMODEL (Crozier et al. 2003, Table 4.2) for the rivers representing low, medium, and high productivity, as measured by the ability to support exploitation. The parameters $\mathrm{H}_{\text {opt }}$ (exploitation at optimum spawning stock abundance) and $\mathrm{R}_{\text {opt }}$ (recruitment at optimum spawning stock) were used to obtain the Ricker parameters alpha (α)and beta (β) for the formula;
$R=\alpha^{*} S^{*} \operatorname{Exp}\left(-\beta^{*} S\right)$
Alpha was calculated according to the formula
$\alpha=\operatorname{Exp}($ Hopt $/(1-$ Hopt $))$
and Beta was calculated as;
$\beta=$ Hopt $/((1-H o p t) * R o p t)$

Spawning stock at optimum recruitment ($\mathrm{S}_{\mathrm{opt}}$) was
Sopt $=(1-$ Hopt $) *$ Ropt

Projections were dependant on partial recruitment vectors particular to each of the three example rivers. The partial recruitment vector was the proportioned product of matrices consisting of rows for proportional smolt age, sea age at maturity and relative fecundity at sea age.

Obtaining recruits for 7 years (the longest period required to obtain complete recruitment) initialized projections at the selected starting stock size before accumulating recruits for any trajectory. Error in trajectories was introduced by selecting a new value of alpha and beta for each river and simulation from the posterior distribution and applying a lognormal deviate each year with a common variance (posterior distributions of the SR parameters were kindly provided by È. Prèvost). This selection process mimics the model used in the original analysis which generated the posteriors (Crozier et al. 2003). The reported stock recruitment scale was eggs* m^{-2}. Spawning egg densities were converted to adults through the use of the river specific riverine wetted area, eggs per adult, and weight per adult.

A total catch was applied jointly to all three rivers assuming complete mixing of the stocks so that catch occurred in proportion to abundance in each river. The adults remaining after catch were removed were converted back to egg densities so that the stock recruitment relationship could be applied.

Starting spawning stock sizes were 10% of $\mathrm{S}_{\mathrm{opt}}$ and 50% of $\mathrm{S}_{\mathrm{opt}}$. Projections were run using catches of zero to 5000 kg in steps of 1000 kg . The expected optimum catch for the three rivers combined, if each was exploited optimally, was always set to 4584 kg . This is the catch which would be generated if each of these rivers was fished at the optimum rate when they were at their optimum population size. Forward simulations of 50 years were run 10,000 times in an $@$ Risk $®$ framework in Excel®. The output collected was the number of years in the projection that each river was below its conservation limit ($\mathrm{S}_{\mathrm{opt}}$) and whether or not the three rivers were extirpated. In these simulations, 50 years below CL was taken as analogous with extirpation. Median values of the number of years below the conservation limit provide a measure of the ability to rebuild the stock given a total mixed fishery catch level where the greater the number of years below Sopt, the less likely the stock is to rebuild. The probability of extirpation was computed as the fraction of simulations in which all three rivers were extirpated and in this simulation is a measure of overfishing given both the
total catch level and the initial population sizes. A number of scenarios were examined which varied the size of the rivers and the stock recruitment relationships.

The number of years below the conservation limit was always greatest for the low productivity stock, meaning the low productivity stock had the lowest probability of rebuilding at any catch level (Figure 2.5.1.1). Conversely, the high productivity stock always had the highest probability of rebuilding, as measured by the lowest number of years below the conservation limit, although high total catches could overfish even this stock. The medium productivity stock showed the greatest change in number of years below the conservation limit as catch was increased when the initial population sizes were set to half of Sopt. This occurred even though the medium productivity river contained approximately 60% of the total riverine habitat of the three rivers combined. The medium productivity stock also had the largest confidence intervals generally (Table 2.5.1.1), demonstrating the sensitivity of medium productivity stocks to relatively small changes in total catch when the stocks occur in a mixed stock fishery. Increasing the total catch not only increased the number of years below the conservation limit, but could drive the stocks to extirpation, especially when the initial populations were low.

In this simulation, stock productivity was the most important factor in determining the ability of a stock to rebuild in a mixed stock fishery. Changing the riverine wetted area so that each river was equal size did not produce a large change in results. Similarly, using three rivers with the same stock productivity but different riverine wetted area also demonstrated the dependence of the results on stock productivity instead of river size.

2.5.2 A Dennis-type Population Viability Analysis of North American and Northeast Atlantic Commission Groups

A simple Dennis-type population viability analysis (PVA, Dennis et al., 1991) was applied to abundance estimates for the North America (NA) and Northeast Atlantic Commission (NEAC) stock complexes. This PVA utilizes past observations of changes in population size to predict future trends. The approach is equivalent to a stochastic Leslie matrix projection without density dependent terms and has been widely used on the west coast of the US to establish the viability of Pacific salmon with regard to the endangered species listings. The basic data required are a time series for a stage in the life cycle of the animal. For these analyses, the pre-fishery abundance, returns, and spawners were examined and results compared in an attempt to detect the changes due to reductions in fishing in the past.

This PVA assumes that the population at time t is related to the population at time $\mathrm{t}-1$ as follows:
$\mathrm{N}(\mathrm{t})=\mathrm{N}(\mathrm{t}-1) \exp (u+\varepsilon)$,
where ε is distributed normally with a mean of zero and a variance equal to σ^{2}.

Estimates of the population growth rate (u) are calculated from the average of $\ln [\mathrm{N}(\mathrm{t}) / \mathrm{N}(\mathrm{t}-1)]$ over the time series. The variance of this measure is an estimate of σ^{2} and used for stochastic projections. A positive growth rate implies the population will grow without bound in the future while a negative growth rate implies the population will decline exponentially in the future. However, the stochastic projections take into account the variance of the growth rate to produce distributions of abundance in the future such that populations with negative growth rates (i.e. are in decline) have a chance of increasing and populations with positive growth rates (i.e. are increasing) may actually decrease. These projected distributions can be used to estimate the probability of population persistence over a given time period. The main assumption with these projections is that the rate of change in the population observed in the past will continue into the future i.e. that non-stationarity is not an issue.

The time series examined from both the NAC and NEAC areas showed both positive and negative growth rates, with large variances in general (Table 2.5.2.1). The pre-fishery abundance growth rates were negative for all five groups examined, with the largest declines seen in North America and the NEAC southern multi sea winter series. The spawner growth rates were only negative for the two southern NEAC groups and positive for the other groups examined. The returns for North America had a negative growth rate as a whole as well as for five of the six regions within North America. Growth rates for returns to the NEAC area were all negative and followed the same patterns as seen in the PFA and spawners.

These difficulties in population growth rate by life stage can be explained by the reduction in fisheries during the time period used to estimate the growth rates. Since PFA is estimated prior to in-river, coastal, and the West Greenland fisheries, it has the largest observed decline due to the large catches that occurred early in the time series. The spawners are estimated after all the fisheries have occurred and so represent escapement. Since constant escapement is the desired management objective, the reduction in catches have been offset by other reductions in population productivity so that there is virtually no discernible trend in the spawner time series. The North America returns are estimated after
the coastal and West Greenland fisheries but before the in-river fisheries and thus have a growth rate intermediate to the PFA and spawners growth rates. In North America nearly all the fisheries have been closed in recent years. In spite of these fishery closures, the populations have continued to decline at a similar rate as observed previously. Thus, a change in productivity must have occurred which offset the reduction in fishing mortality. Other sources of potential change in productivity such as hatchery supplementation and changes in freshwater survival due to water quality, passage, habitat modifications, etc. could increase or decrease the population growth rate. In this regard, non-stationarity is not considered to be an issue as there were no indications of changes in the population growth rate over the historic time period examined for any of the life stages or groups.

Projections were conducted using these mean growth rates, associated variances, and initial population sizes (Table 2.5.2.1). As management strategies have affected each of the abundance indices in different ways, the stock projection simulations should be considered independently and comparing the outputs of PFA, spawners and returns after each period may not be appropriate. Projections are affected by all three factors with larger negative growth rates, larger variance, and lower initial population size all increasing the probability of the population being below a given number of fish in the future. Despite this, the projected median population sizes for 12 years (approximately 3 generation) and 25 years (approximately 6 generations) suggests a significant decline in PFA in North America which have the largest negative growth rates and smallest current population sizes. Although the relative decline is smaller, there is a also decline in the PFA for Northern NEAC 1SW and MSW stocks, but an increase in the spawners. Declines in both PFA and spawners are indicated for southern NEAC stocks. Examination of the projected returns to individual areas in North America suggests declines in each stock complex although the relative size of these declines varies. Despite the large variances observed in all stock complexes and the large amount of heterogeneity among rivers within each group longer term forecasts suggest that some stocks, particularly individual rivers stocks, could face extirpation within 50 years.

2.6 Distribution, behaviour and migration of salmon

Historically, information on the migration phase of Atlantic salmon has been sparse, partially because the majority of this phase occurs in the marine environment, which has been difficult to study. Recent developments in tag type/techniques and fish capture techniques have vastly improved our ability to investigate salmon behaviour in the sea. These developments will allow researchers to further investigate the distribution, behaviour and migration of Atlantic salmon at sea.

A number of different "tags" are available (external tags (Carlin, Lea, Floy, etc.), visible implant tags, coded wire tags (CWT), passive integrated transponder (PIT) tags, sonic tags, data storage tags (DST), genetic tags, physiological tags (otholith marking, trace elements in bones and otoliths, fatty acids, etc.)) for investigating the migrational patterns of Atlantic salmon. Researchers have begun to use these techniques to investigate the distribution, behaviour and migration of Atlantic salmon.

Three areas of recent study have been: 1) the behaviour of escaped farmed salmon, 2) smolt/post-smolt emigration/migration and 3) post-smolt/adult marine behaviour.

Farmed salmon are taken in large numbers in Norwegian coastal commercial salmon fisheries (about 12% of total nominal catch in 2003). Tagging experiments have shown that farmed salmon from Norway have historically been caught in the Faroes' fisheries (Hansen et al. 1987). Farmed fish have been captured at much lower frequencies in fisheries in UK Scotland, Ireland and UK Northern Ireland, despite the presence of extensive salmon farm production in these regions (ICES CM 2001/ACFM:15). This may be due to differences in the locations of salmon farms in relation to the salmon rivers and fisheries or it may be due to different dispersal patterns of the farmed fish after they escape. Regardless, farm escapees are caught in ocean fisheries, and should they mature while in the ocean they may move to freshwater to spawn (e.g. Hansen et al. 1987; Gausen \& Moen 1991; Webb and Youngson, 1992; Youngson et al. 1997; Crozier 1998; Carr et al. 1998; Whoriskey \& Carr 2001). This raises concerns as interbreeding between wild and cultured salmon can cause fitness reduction and potential extinction of wild stocks (McGinnity et al. 2003).

In the north east Atlantic, both smolt tagging experiments and post-smolt surveys have strongly indicated that ocean currents are the vectors that displace fish northwards (Holm et al. 2000). Results from experimental releases of large salmon from two farms on the south and mid-Norwegian coast also suggested that ocean movements of the farmed salmon may be controlled by prevailing currents (ICES CM 2001/ACFM:15; Hansen 2002) as well. Given this, the following hypothesis has been proposed: Farmed salmon escaping from cages in different countries are displaced with the currents, and any fish that become sexually mature when they are relatively close to the coast enter local fisheries and rivers. The significance of this is that escaped farmed salmon may spread into fisheries and rivers far away from where they escaped (Hansen 2002).

2.6.1

Sonic tracking of escaped farmed salmon in Maine (USA)

The Working Group reviewed preliminary results from an ultrasonic tracking study involving experimentally "escaped" farmed salmon from a sea-cage site in Maine. The study objectives are to document the dispersal and survival patterns of the escapees, and to help identify the most appropriate mitigation measures for future escape events in the region. Fish from the first release in January 2004 seemingly acted independently from each other and dispersed rapidly away from the farm site, out to the Bay of Fundy. Powerful tidal currents in this region affected fish movements. A second release is planned for spring 2004 and local rivers will be monitored to determine if any of these fish enter them to spawn in autumn 2004.

In addition, the Working Group noted that a proposed study to tag farmed salmon in various countries of the NEAC area, release them, and trace their movements from fishery recaptures, will be difficult to implement in the near future due to public concern over the impacts of farmed salmon upon wild populations.

2.6.2 Smolt migration/emmigration tracking studies

The Working Group reviewed preliminary results from two ultrasonic tracking studies involving emigrating smolts. The two studies used ultrasonic telemetry to document the movements of wild and hatchery smolts from the Miramichi (Canada) and Dennys (USA) Rivers respectively, through freshwater and out to sea. Survival from release to the head of tide was high ($>90 \%$) even though a subset of the Miramichi River released smolts travelled as far as 140 km during this transition. However in both studies, a major loss occurred in the estuary. These results are preliminary, but suggest that both hatchery and wild origin smolts from these two different river systems, which are spatially distant from each other, maybe experiencing similar influences affecting survival during their marine transition. The reasons for this are not clear and further investigations are planned for 2004.

The Working Group fully endorsed these types of telemetry studies and acknowledged their role in attempting to partition marine survival into discrete phases. The Working Group made a number of suggestions regarding data verification and analysis. In particular, information related to receiver unit detection efficiency should be presented with the results from any tracking study. These data can only be obtained through rigorous testing of field deployed units, but will greatly strengthen the conclusions made from any telemetry study. Without measures of detection efficiencies, survival estimates resulting from telemetry investigation should be considered minimum values. In general, the Working Group encourages these studies, which are likely to further contribute to our understanding of some key aspects of wild salmon biology.

2.6.3 Data Storage Tags (DST) tagging of pre-adult salmon

Within the framework of a Nordic DST tagging program started in 2002, a new salmon trawl design and "Fish-lifter" (after Holst \& McDonald 2000) was developed for the live capture of fish in post-smolt and mackerel investigations in the Norwegian Sea. This allows most of the salmon to be taken with little or no external damage, making the catch fit for tagging and release.

In 2002, a total 76 post-smolts and adults captured within the Norwegian Sea (Figure 2.6.3.1) were tagged with DST tags. The DSTs were designed to record temperature and/or depth for two years. All tags contained a contact address and reward announcement. To date, only 1 DST tag has been return from that effort. The tag was returned 18 days after release from the bag net fishery in the Namsenfjord, Norway- a distance of $\sim 480 \mathrm{~km}$ (Figure 2.6.3.1). The low return rate from this study is not unexpected as heavy scale loss was recorded on the fish prior to tagging.

The Working Group also reviewed preliminary results from a new tagging effort conducted within the Nordic Council of Ministers' project "Distribution of salmon in relation to environmental parameters and origin in the North Atlantic" (NM 13.04.07). The tagging survey was conducted during October 2003, also within the Norwegian Sea (Figure 2.6.3.2). Salmon caught suitable for tagging were fitted with either a DST archival tag (temperature and depth) or an iButton archival tag (temperature only). These tags were inserted internally and a HallPrint spaghetti tag and adipose clip were applied as a secondary external mark. In total 116 salmon were tagged, 95 with DST tags and 21 with iButton tags. Most of the salmon were in their first winter at sea with a mean length of $40 \mathrm{~cm}(35-45 \mathrm{~cm})$, but 4 larger 2SW salmon ($60-68 \mathrm{~cm}$) were also caught. Tag returns are expected in 2004.

It is anticipated that data generated from returned DSTs will provide new information on the marine phase of Atlantic salmon including temperature regimes in the salmon habitats during the first and possibly the second winter and temperature preferences at different times of the year. These recorded temperatures may then be relatable to individual growth trajectories. Vertical distribution in relation to temperature, diurnal vertical distribution and migration may also be detected. For the management of salmon, the vertical distributions and temperature/growth relationships will be
particularly valuable for assessing the potential of salmon being intercepted by pelagic fisheries and for building predictive models.

2.7 Compilation of Tag Releases and Finclip Data by ICES Member Countries in 2003

Data on releases of tagged, fin-clipped, and otherwise marked salmon in 2003 were provided by the Working Group and are compiled as a separate report. In summary (see Table 2.7.1), about 3.9 million salmon were marked in 2003, a decrease from the 4.1 million fish marked in 2002. Primary marks are summarized in three classes: microtags (i.e., coded wire tag), external tags/marks, and adipose clips (without other external marks or fin clips). Secondary marks, primarily adipose clips on fish with coded wire tags, are also presented in the separate report. The adipose clip was the most used primary mark (2.7 million), with microtags (0.67 million) the next most common primary mark. Most marks were applied to hatchery-origin juveniles (3.8 million), while 69,124 wild juveniles and 17,905 adults were marked.

The Working Group has begun reporting information on the use of data storage tags (DST's) and sonic tags (also known as pingers). In 2003, 116 DST's were applied in the Faroes (see section 2.6.3), and 263 and 250 sonic tags for studies in Canada and the USA, respectively (see section 2.6.1 and 2.6.2 for information on some of this work). These recent technologies provide valuable and previously unobtainable information on salmon movements and the environmental conditions they are experiencing, and their use is expected to grow in the future.

In 2003, the Working Group began recording information on marks being applied to farmed salmon. These may help trace the origin of farmed salmon captured in the wild in the case of escape events. At this time, two jurisdictions (USAMaine, and Iceland) require that some or all of the sea-cage farmed fish reared in their area be marked. In Maine, some firms have opted for a genetic "marking" procedure. The broodstock of these firms has been screened with molecular genetic techniques, which makes it feasible to trace an escaped farmed salmon back to its hatchery of origin through analysis of its DNA. One company has applied a left ventral fin clip, but has not reported numbers for reasons of commercial confidentiality. In Iceland, coded wire tags are being applied to about 10% of sea-cage farm production. The Icelandic data are included in the separate report mentioned above.
Table 2.1.1.1 Nominal catch of SALMON by country (in tonnes round fresh weight), 1960-2003. (2003 figures include provisional data).

Year	NAC Area			NEAC (N. Area)							NEAC (S. Area)						Faroes \& Greenland				Total Reported Nominal Catch	Unreported catches	
	Canada (1)	USA	St. P\&M (12)	Norway (2)	Russia (3)	$\begin{gathered} \text { Icel } \\ \hline \text { Wild } \end{gathered}$	and Ranch	Sweden (West)	Den.	Finland	Ireland $(4,5)$	$\begin{gathered} \text { UK } \\ (E \& W) \end{gathered}$	UK (N.Ir1.) $(5,6)$	UK (Scot1.)	France	Spain (7)	Faroes (8)	East Grld.	West Grld. (9)	Other (10)		$\begin{array}{\|l\|} \hline \text { NASCO } \\ \text { Areas } \\ \hline \end{array}$	International waters (11)
1960	1636	1	-	1659	1100	100		40	-	-	743	283	139	1443	-	33	-	-	60	-	7237	-	-
1961	1583	1	-	1533	790	127		27	-	-	707	232	132	1185	-	20	-	-	127	-	6464	-	-
1962	1719	1	-	1935	710	125		45	-	-	1459	318	356	1738	-	23	-	-	244	-	8673	-	-
1963	1861	1	-	1786	480	145		23	-	-	1458	325	306	1725	-	28	-	-	466	-	8604	-	-
1964	2069	1	-	2147	590	135		36	-	-	1617	307	377	1907	-	34	-	-	1539	-	10759	-	-
1965	2116	1	-	2000	590	133		40	-	-	1457	320	281	1593	-	42	-	-	861	-	9434	-	-
1966	2369	1	-	1791	570	104	2	36	-	-	1238	387	287	1595	-	42	-	-	1370	-	9792	-	-
1967	2863	1	-	1980	883	144	2	25	-	-	1463	420	449	2117	-	43	-	-	1601	-	11991	-	-
1968	2111	1	-	1514	827	161	1	20	-	-	1413	282	312	1578	-	38	5	-	1127	403	9793	-	-
1969	2202	1	-	1383	360	131	2	22	-	-	1730	377	267	1955	-	54	7	-	2210	893	11594	-	-
1970	2323	1	-	1171	448	182	13	20	-	-	1787	527	297	1392	-	45	12	-	2146	922	11286	-	-
1971	1992	1	-	1207	417	196	8	18	-	-	1639	426	234	1421	-	16	-	-	2689	471	10735	-	-
1972	1759	1	-	1578	462	245	5	18	-	32	1804	442	210	1727	34	40	9	-	2113	486	10965	-	-
1973	2434	2.7	-	1726	772	148	8	23	-	50	1930	450	182	2006	12	24	28	-	2341	533	12670	-	-
1974	2539	0.9	-	1633	709	215	10	32	-	76	2128	383	184	1628	13	16	20	-	1917	373	11877	-	-
1975	2485	1.7	-	1537	811	145	21	26	-	76	2216	447	164	1621	25	27	28	-	2030	475	12136	-	-
1976	2506	0.8	2.5	1530	542	216	9	20	-	66	1561	208	113	1019	9	21	40	<1	1175	289	9327	-	-
1977	2545	2.4	-	1488	497	123	7	10	-	59	1372	345	110	1160	19	19	40	6	1420	192	9414	-	-
1978	1545	4.1	-	1050	476	285	6	10	-	37	1230	349	148	1323	20	32	37	8	984	138	7682	-	-
1979	1287	2.5	-	1831	455	219	6	12	-	26	1097	261	99	1076	10	29	119	$<0,5$	1395	193	8118	-	-
1980	2680	5.5	-	1830	664	241	8	17	-	34	947	360	122	1134	30	47	536	$<0,5$	1194	277	10127	-	-
1981	2437	6	-	1656	463	147	16	26	-	44	685	493	101	1233	20	25	1025	<0,5	1264	313	9954	-	-
1982	1798	6.4	-	1348	364	130	17	25	-	54	993	286	132	1092	20	10	606	<0,5	1077	437	8395	-	-
1983	1424	1.3	3	1550	507	166	32	28	-	58	1656	429	187	1221	16	23	678	$<0,5$	310	466	8755	-	-
1984	1112	2.2	3	1623	593	139	20	40	-	46	829	345	78	1013	25	18	628	$<0,5$	297	101	6912	-	-
1985	1133	2.1	3	1561	659	162	55	45	-	49	1595	361	98	913	22	13	566	7	864	-	8108	-	-
1986	1559	1.9	2.5	1598	608	232	59	54	-	37	1730	430	109	1271	28	27	530	19	960	-	9255	315	-
1987	1784	1.2	2	1385	564	181	40	47	-	49	1239	302	56	922	27	18	576	<0,5	966	-	8159	2788	-
1988	1310	0.9	2	1076	420	217	180	40	-	36	1874	395	114	882	32	18	243	4	893	-	7737	3248	-
1989	1139	1.7	2	905	364	141	136	29	-	52	1079	296	142	895	14	7	364	-	337	-	5904	2277	-
1990	911	2.4	1.9	930	313	146	280	33	13	60	567	338	94	624	15	7	315	-	274	-	4924	1890	180-350

Table 2.1.1.1 continued

Year	NAC Area			NEAC (N. Area)							NEAC (S. Area)						Faroes \& Greenland				Total Reported Nominal Catch	Unreported catches	
	Canada (1)	USA	St. P\&M (12)	Norway (2)	Russia (3)	$\begin{array}{r} \text { Ice } \\ \hline \text { Wild } \end{array}$	and Ranch	Sweden (West)	Den.	Finland	Ireland $(4,5)$	$\begin{gathered} \text { UK } \\ (\mathrm{E} \& W) \\ \hline \end{gathered}$	$\begin{gathered} \text { UK } \\ \text { (N.Irl.) } \\ (5,6) \\ \hline \end{gathered}$	UK (Scotl.)	France	Spain (7)	Faroes (8)	East Grld.	West Grld. (9)	Other (10)		NASCO Areas	International waters (11)
1991	711	0.8	1.2	876	215	130	345	38	3.3	70	404	200	55	462	13	11	95	4	472	-	4106	1682	25-100
1992	522	0.7	2.3	867	167	175	461	49	10	77	630	171	91	600	20	11	23	5	237	-	4119	1962	25-100
1993	373	0.6	2.9	923	139	160	496	56	9	70	541	248	83	547	16	8	23	-	-	-	3696	1644	25-100
1994	355	0	3.4	996	141	141	308	44	6	49	804	324	91	649	18	10	6	-	-	-	3945	1276	25-100
1995	260	0	0.8	839	128	150	298	37	3.1	48	790	295	83	588	9	9	5	2	83	-	3628	1060	-
1996	292	0	1.6	787	131	122	239	33	1.7	44	685	183	77	427	14	7	-	0.1	92	-	3136	1123	-
1997	229	0	1.5	630	111	106	50	19	1.3	45	570	142	93	296	8	3	-	1	58	-	2364	827	-
1998	157	0	2.3	740	131	130	34	15	1.3	48	624	123	78	283	9	4	6	0	11	-	2397	1210	-
1999	152	0	2.3	811	103	120	26	16	0.5	62	515	150	53	199	11	6	0	0.4	19	-	2246	1032	-
2000	153	0	2.3	1176	124	83	2	33	5.2	95	621	219	78	274	11	7	8	0	21	-	2913	1269	-
2001	148	0	2.2	1267	114	88	0	33	6.4	126	730	184	53	251	11	13	0	0	43	-	3069	1180	-
2002	148	0	3.6	1019	118	97	0	28	5.3	93	682	161	64	191	12	9	0	0	9	-	2640	1039	-
2003	137	0	-	1071	107	108	0	18	3.6	76	575	88	48	201	14	6	0	0	9	-	2461	847	-
Average																							
1998-2002	152	0	3	1003	118	104	12	25	4	85	634	167	65	240	11	8	2	0	21	-	2653	1146	-
1993-2002	227	0	2	919	124	120	145	31	4	68	656	203	75	371	12	8	6	0	42	-	3003	1166	-

8. Between $1991 \& 1999$, there was only a research fishery at Faroes.
In 1997 \& 1999 no fishery took place, the commercial fishery resumed in 2000,
but has not operated in 2001, 2002 or 2003.
9. Includes catches made in the West Greenland area by Norway, Faroes,
Sweden and Denmark in 1965-1975.
10. Includes catches in Norwegian Sea
11. Includes catches in Norwegian Sea by vessels from Denmark, Sweden, Germany, Norway and Finland.
12. Estimates refer to season ending in given year.
13. No data available for 2003.
O:\Advisory Process $\backslash A C F M \backslash W G R E P S \backslash W G N A S \backslash R E P O R T S \backslash 2004 \backslash 2$ - ATLANTIC SALMON IN THE NORTH ATLANTIC AREA.Doc 03/05/04 16:05
Table 2．1．1．2 Nominal catch of SALMON in homewaters by country（in tonnes round fresh weight），1960－2003．（2003 figures include provisional data）．
$\mathrm{S}=$ Salmon（2SW or MSW fish）． $\mathrm{G}=\mathrm{Grilse}$（ 1 SW fish）． $\mathrm{Sm}=$ small． $\mathrm{Lg}=\operatorname{large;~for~definitions,~see~Section~4.1.~} \mathrm{T}=\mathrm{S}+\mathrm{G}$ or $\mathrm{Lg}+\mathrm{Sm}$

		気家
复		

[^0]Table 2.1.1.3 The catch (tonnes round fresh weight) and $\%$ of the nominal catch by country taken in coastal, estuarine and riverine fisheries.

Country	Year	Coast		Estuaty		River		Total Weight
		Weight	\%	Weight	\%	Weight	$\%$	
Canada	1999	7	5	38	25	105	70	150
	2000	11	7	22	15	117	78	150
	2001	13	9	20	14	112	77	145
	2002	12	8	21	14	114	77	148
	2003	17	12	24	18	96	70	137
Firiland	1905	0	0	0	0	48	100	48
	1996	0	0	0	0	44	100	44
	1997	0	0	0	0	45	100	45
	1998	0	0	0	0	48	100	48
	1999	0	0	0	0	62	100	62
	2000	0	0	0	0	95	100	95
	2001	0	0	0	0	126	100	126
	2002	0	0	0	0	93	100	93
	2003	0	0	0	0	76	100	76
France ${ }^{1}$	1995	-	-	2	20	8	80	10
	1996	-	-	4	31	9	69	13
	1997	-	-	3	38	5	63	8
	1998	1	13	2	25	5	63	8
	1999	0	0	4	35	7	65	11
	2000	0	4	4	35	7	61	11
	2001	0	4	5	44	6	53	11
	2002	1	5	6	48	6	47	12
	2003	-	-	-	-	-	-	14
Iceland	1995	20	13	0	0	130	87	150
	1996	11	9	0	0	111	91	122
	1997	0	0	0	0	106	100	106
	1998	0	0	0	0	130	100	130
	1999	0	0	0	0	120	100	120
	2000	0	0	0	0	83	100	83
	2001	0	0	0	0	88	100	88
	2002	0	0	0	0	97	100	97
	2003	0	0	0	0	108	100	108
Ireland	1995	566	72	140	18	84	11	790
	1996	440	64	134	20	110	16	684
	1997	380	67	100	18	91	16	571
	1998	433	69	92	15	99	16	624
	1999	335	65	83	16	97	19	515
	2000	440	71	79	13	102	16	621
	2001	551	75	109	15	70	10	730
	2002	514	75	89	13	79	12	682
	2003	403	70	92	16	79	14	574
Norway	1995	515	61	0	0	325	39	840
	1996	520	66	0	0	267	34	787
	1997	394	63	0	0	235	37	629
	1998	410	55	0	0	331	45	741
	1999	483	60	0	0	327	40	810
	2000	619	53	0	0	557	47	1176
	2001	696	55	0	0	570	45	1266
	2002	596	58	0	0	423	42	1019
	2003	597	56	0	0	474	44	1071
Russia	1995	43	33	9	7	77	60	128
	1996	64	49	21	16	46	35	131
	1997	63	57	17	15	32	28	111
	1998	55	42	2	2	74	56	131
	1999	48	47	2	2	52	51	102
	2000	64	52	15	12	45	36	124
	2001	70	74	0	0	24	26	95
	2002	62	64	0	0	35	36	96
	2003	58	71	0	0	24	29	81

Tabile 2.1.1.3 continued

Counity	Year	Coast		Estuaty		Fiver		Total Weight
		Weight	\%	Weight.	\%	Wreight.	\%	
Spain	1995	\square	0	0	0	9	100	9
	1996	0	0	0	0	7	100	7
	1997	0	0	0	0	4	100	4
	1998	0	0	0	0	4	100	4
	1999	0	0	0	0	6	100	6
	2000	0	0	0	0	7	100	7
	2001	0	0	0	0	13	100	13
	2002	0	0	0	0	9	100	9
	2003	0	0	0	0	6	100	6
Sweden ${ }^{4}$	1995	24	65	0	0	13	35	37
	1996	19	58	0	0	14	42	33
	1997	10	56	0	0	8	44	18
	1998	5	33	0	0	10	67	15
	1999	5	31	0	0	11	69	16
	2000	10	30	0	0	23	70	33
	2001	9	27	0	0	24	73	33
	2002	7	25	0	0	21	75	28
	2003	4	23	0	0	14	77	18
UK England \& Wales	1995	200	68	45	15	49	17	295
	1996	83	45	42	23	58	31	183
	1997	81	57	27	19	35	24	142
	1998	65	53	19	16	38	31	123
	1999	101	67	23	15	26	17	150
	2000	157	72	25	12	37	17	219
	2001	129	70	24	13	31	17	184
	2002	108	67	24	15	29	18	161
	2003	42	48	27	30	20	22	88
UK W. Iteland ${ }^{2}$	1999	44	83	9	17	-	-	53
	2000	63	82	14	18	-	-	77
	2001	41	77	12	23	-	-	53
	2002	48	74	17	26	-	-	64
	2003	28	58	20	42	-	-	48
UK Scotland	1995	201	34	105	18	282	48	588
	1996	129	30	80	19	218	51	427
	1997	79	27	33	11	184	62	296
	1998	60	21	28	10	195	69	283
	1999	35	18	23	11	141	71	199
	2010	76	28	41	15	157	57	274
	2001	77	30	22	9	153	61	251
	2002	55	29	20	10	116	61	191
	2003	83	41	32	16	86	43	201
Totals Worth East Atlantic ${ }^{3}$ Worth Arnetica								
	2003	1214	53	171	8	887	39	2272
	2003	17	12	24	18	96	70	137

'An illegal net fishery operated from 1995 to 1998 , catch unkrow in the first 3 years but thought to be increasing.
Fishery ceased in $1999.2001 / 2$ catches from the illegal coastal net fishery in Lower Nomandy are unkrown.
${ }^{2}$ No nominal catch data is collected for river (rod) fisheries in UK (WI).
${ }^{3}$ Data not available from Denuark $\&$ France.
${ }^{4}$ Estuarine catch inchuded in coastal catch
Table 2.1.2.1 Wurnbers of fish caught and released in tod fisheries along with the \% of the total rod catch (released + fetained) for countries in the North Atlartic where records are available, 1991-2003. Figures for 2003 are provisional.

Year	Canada		Iceland		Russia		UK (E\&W)		UK (Scotland)		USA	
	Total	\% of total rod catch	Total	$\%$ of total rod catch	Total	$\%$ of total rod catch	Total	\% of total rod catch	Total	$\%$ of total rod catch	Total	\% of total rod catch
1991	22,497	33			3,211	51					239	50
1992	46,450	34			10,120	73					407	67
1993	53,849	41			11,246	82	1,448	10			507	77
1994	61,830	39			12,056	83	3,227	13	6,595	8	249	95
1995	47,679	36			11,904	84	3,189	20	12,133	14	370	100
1996	52,166	33	669	2	10,745	73	3,428	20	10,409	15	542	100
1997	57,251	49	1,558	5	14,823	87	3,132	24	10,906	18	333	100
1998	62,938	53	2,826	7	12,776	81	5,365	31	13,455	18	273	100
1999	55,335	50	3,055	10	11,450	77	5,447	44	14,839	28	211	100
2000	64,432	55	2,918	11	12,914	74	7,470	42	21,068	32	0	-
2001	59,387	55	3,607	12	16,945	76	6,143	43	27,699	38	0	-
2002	50,924	52	5985	18	25,248	80	7,658	50	24,042	42	0	-
2003	51,442	56	5357	16	33,862	81	5,981	55	30,156	55	0	-

Table 2.1.3.1 Estimates of unreported catches by various methods in tonnes within national EEZs in the North-East Atlantic, North American and West Greerland Commissions of NASCO, 1987-2003.

Year	North-East Atlantic	North-America	West Greenland	Total
1987	2,554	234	-	2,788
1988	3,087	161	-	3,248
1989	2,103	174	-	2,277
1990	1,779	111	-	1,890
1991	1,555	127	-	1,682
1992	1,825	137	-	1,962
1993	1,471	161	<12	1,644
1994	1,157	107	<12	1,276
1995	942	98	20	1,060
1996	947	156	20	1,123
1997	732	90	5	827
1998	1,108	91	11	1,210
1999	887	133	12.5	1,032
2000	1,135	124	10	1,269
2001	1,089	81	10	1,180
2002	946	83	10	1,039
2003	719	118	10	847
Mean				
$1998-2002$	1,033	102	11	1,146

Table 2.1.3.2. Estimates of unreported catches by warious methods in tonnes by country within national EEZs in the North-East Atlantic, North American and West Greenland Commissions of NASCO, 2003.

2003 Commission Area	Country	Unreported Catch t	Unreported as \% of Total North Atlantic Catch (Unreported + Reported)	Unreported as \% of Total National Catch (Unreported + Reported)
NEAC	Denmark	3	0.1	45
NEAC	Finland	19	0.5	20
NEAC	Iceland	2.2	0.1	2
NEAC	Ireland	58	1.6	9
NEAC	Norway	459	12.5	30
NEAC	Russia	125	3.4	54
NEAC	Sweden	4	0.1	18
NEAC	UK (E \& W)	24	0.7	21
NEAC	UK (N. Ireland)	0.3	0.01	1
NEAC	UK (Scotland)	25	0.7	11
NAC	Canada	118	3.2	46
NAC	USA	0	0.0	\square
WGC	West Greenland	10	0.3	53
	Total Unreported Catch	847	25.6	
	Total Reported Catch of North Atlantic salmon	2461		

Note: No unreported catch estimate for France, Spain \& St. Pierre et Miquelon
Table 2.2.1.1 Production of farmed salmon in the North A tlantic area and in areas other than the North Atlantic (inn tonnes round fresh weight), 1980 -2003.

Year	North Atlantic Area										Outside the North Atlantic Area							World-wide
	Norway	$\begin{gathered} \mathrm{UK} \\ \text { (Scot.) } \end{gathered}$	Faroes	Canada	Ireland	USA	Iceland	$\begin{gathered} \hline \text { UK } \\ \text { (N.Ire.) } \end{gathered}$	Russia	Total	Chile	West Coast USA	West Coast Canada	Australia	Turkey	Other	Total	Total
1980	4,153	598	0	11	21	0	0	0	0	4,783	0	0	0	0	0	0	0	4,783
1981	8,422	1,133	0	21	35	0	0	0	0	9,611	0	0	0	0	0	0	0	9,611
1982	10,266	2,152	70	38	100	0	0	0	0	12,626	0	0	0	0	0	0	0	12,626
1983	17,000	2,536	110	69	257	0	0	0	0	19,972	0	0	0	0	0	0	0	19,972
1984	22,300	3,912	120	227	385	0	0	0	0	26,944	0	0	0	0	0	0	0	26,944
1985	28,655	6,921	470	359	700	0	91	0	0	37,196	0	0	0	0	0	0	0	37,196
1986	45,675	10,337	1,370	672	1,215	0	123	0	0	59,392	0	0	0	20	0	0	0	59,392
1987	47,417	12,721	3,530	1,334	2,232	365	490	0	0	68,089	3	0	0	50	0	0	53	68,142
1988	80,371	17,951	3,300	3,542	4,700	455	1,053	0	0	111,372	174	0	0	250	0	0	424	111,796
1989	124,000	28,553	8,000	5,865	5,063	905	1,480	0	0	173,866	1,864	1,100	1,000	400	0	700	5,064	178,930
1990	165,000	22,351	13,000	7,810	5,983	2,086	2,800	$\leqslant 100$	5	229,035	9,500	700	1,700	1,700	0	800	14,400	243,435
1991	155,000	40,593	15,000	9,395	9,483	4,560	2,680	100	0	236,811	14,991	2,000	3,500	2,700	0	1,400	24,591	261,402
1992	140,000	36,101	17,000	10,380	9,231	5,850	2,100	200	0	220,862	23,769	4,900	6,600	2,500	0	400	38,169	259,031
1993	170,000	48,691	16,000	11,115	12,366	6,75	2,348	<100	0	267,275	29,248	4,200	12,000	4,500	1,000	400	51,348	318,623
1994	204,686	64,066	14,789	12,441	11,616	6,130	2,588	<100	0	316,316	34,077	5,000	16,100	5,000	1,000	800	61,977	378,293
1995	261,522	70,060	9,000	12,550	11,811	10,020	2,880	259	0	378,102	41,093	5000	16,000	6,000	1,000	0	69,093	447,195
1996	297,557	83.121	18,600	17,715	14,025	10,010	2.772	338	0	444,138	69,960	5,200	17,000	7,500	1,000	600	101,260	545,398
1997	332,581	99,197	22,205	19,354	14,025	12,140	2,554	225	0	502,281	87,700	6,000	28,751	9,000	1,000	900	133,351	635,632
1998	361,879	110,784	20,362	16,418	14,860	13,166	2,686	114	0	540,269	125,000	3,000	42,300	7,068	1,000	400	178,768	719,037
1999	425,154	126,686	37,000	23,370	18,000	12,194	2,900	234	0	645,538	150,000	5000	38,800	9,195	0	500	203,495	849,033
2000	440,861	128,959	32,000	29,095	17,648	16,400	2,600	250	0	667,813	176,000	5,670	39,300	10,906	0	500	232,376	900,189
2001	436,103	138,519	46,014	37,606	23,312	13,230	2,645	250	0	697,679	200,000	5,443	58,000	11,500	0	500	275,443	973,122
2002	462,495	145,609	45,150	42,131	22,294	6,810	1,471	250	0	726,210	273,000	5,000	72,800	11,000	0	1,000	362,800	1,089,010
2003	462,495	176,596	52,526	43,450	16,500	6,435	3,500	250	0	761,752	261,000	4,000	73,000	11,000	0	1,000	350,000	1,111,752
$\begin{gathered} \text { Mean } \\ 1098-2002 \end{gathered}$	425,298	130,111	36,105	29,724	19,223	12,360	2,460	220	0	655,502	184,800	4,823	50,240	9,934	200	580	250,576	906,078
$\left\lvert\, \begin{aligned} & \text { \% change of } \\ & 1998-2002 \end{aligned}\right.$	+9	+36	+45	+46	-14	-48	+42	+14	0	+16	+41	-17	+45	+11	-	+72	+40	+23

Table 2.3.1. Data requirements for the inverse-weight mortality model and the maturity schedule model. The common letters above the variable fields indicate the variables required to calculate mortality for each model. The maturity schedule can estimate mortality in the second year at sea if only sex ratio of smolts is known but mortality in the first year at sea can not be estimated.

Inverse-weight	A		A		A	A		A		A	A		A		A
Maturity schedule	B	B				B	B				B	B			
Maturity schedule		C				C	C				C	C			
	wild smolts					1SW returns in year + 1					2SW returns in year + 2				
Smolt cohort		prop.	mean	mean date	days at		prop.	mean	mean date	days at		prop.	mean	mean date	days at
year	number	female	wt (kg)	to sea	large	return	female	wt (kg)	to sea	large	return	female	wt (kg)	to sea	large
						River					River				
1997	6331	0.687	0.025	Mid May	0	516	0.676	1.9	Mid July	420	7	0.71	3.99	End of April	720
1998	9588	0.562	0.023	Mid May	0	508	0.580	1.9	Mid July	420	6	1.00	3.99	End of April	720
1999	7118	0.620	0.027	Mid May	0	574	0.559	2.1	Mid July	420	4	0.75	3.99	End of April	720
2000	6400	0.593	0.030	Mid May	0	574	0.630	1.8	Mid July	420	1	1.00	3.99	End of April	720
2001	8600	0.637	0.041	Mid May	0	649	0.506	1.9	Mid July	420	12	0.67	3.99	End of April	720
2002	8423	0.586	0.029	Mid May	0	547	0.515	1.9	Mid July	420		0			720

Table 2.4.3.1 Percentage of repeat spawning salmon in the total returns to ten rivers in NAC and two rivers in NEAC areas

Table 2.4.3.2. Equilibrium population sizes at MSY and for an unfished population, and $F_{m s y}$ for a hypothetical salmon population (similar to the LaHave River, Nova Scotia) under 2 assumptions about repeat spawning. In scenario 1, a post-spawning annual mortality rate of 50% is assumed up to a maximum of 6 spawnings. In scenario 2 , salmon spawn once and then die.

Parameter	Scenario	
	24 million eggs	2. semelparous
equilibrium (fishing at MSY)	5.3 million eggs	8.3 million eggs
$F_{m s y}$	0.78	2.3 million eggs
eggs per recruit no fishing	3,247 eggs	0.96
		1,216 eggs

Table 2.5.1.1. Median and 80% confidence interval for the number of years below conservation limit for the three rivers with different productivity, six levels of catch in the mixed stock fishery, and two levels of initial population abundance ($\mathrm{S}_{\text {init }}$) at 10% and 50%).

			$\mathbf{S}_{\text {init }}=\mathbf{1 0 \%} \mathbf{S}_{\text {opt }}$		$\mathbf{S}_{\text {init }}=\mathbf{5 0 \%} \mathbf{S}_{\text {opt }}$	
SR Productivity	Catch	Median	$80 \% \mathrm{Cl}$	Median	$80 \% \mathrm{Cl}$	
Low	0	45	$(17,50)$	36	$(9,50)$	
	1000	50	$(29,50)$	46	$(16,50)$	
	2000	50	$(44,50)$	50	$(26,50)$	
	3000	50	$(50,50)$	50	$(38,50)$	
	4000	50	$(50,50)$	50	$(47,50)$	
	5000	50	$(50,50)$	50	$(49,50)$	
Medium						
	0	26	$(12,50)$	18	$(6,43)$	
	1000	35	$(14,50)$	23	$(8,50)$	
	2000	48	$(16,50)$	32	$(11,50)$	
	3000	50	$(17,50)$	40	$(14,50)$	
	4000	50	$(19,50)$	47	$(16,50)$	
	5000	50	$(21,50)$	50	$(18,50)$	
	0	7	$(3,14)$	7	$(0,14)$	
	1000	9	$(4,16)$	6	$(0,15)$	
	2000	14	$(6,50)$	7	$(0,16)$	
	3000	42	$(8,50)$	10	$(0,30)$	
	4000	50	$(10,50)$	14	$(1,41)$	
	5000	50	$(12,50)$	22	$(3,45)$	

Table 2.5.2.1. Mean and variance of population growth rates for three life stages examined for North America and Northeast Atlantic Commission groups. Also shown are the range of initial population sizes used in projections (minimum, maximum, and midpoint) and the median number of fish projected 12 and 25 years into the future for each group

Life Stage	Stock Complex	Population Mean	Growth Rates Variance	Initial Population Sizes ${ }^{1}$			Median No. Fish	
				Min	Max	Midpoint	Year 12	Year 25
PFA	North America	-8.7\%	0.090	54,615	111,372	82,994	28,631	9,351
PFA	NEAC North 1SW	-1.2\%	0.0 .38	643,937	810,018	726,977	626,602	541,306
PFA	NEAC North MSW	-1.0\%	0.029	837,210	1,043,488	940,349	828,117	729,083
PFA	NEAC South 1Sw	-2.8\%	0.069	944,469	1,343,715	1,144,192	810,557	657,967
PFA	NEAC South MSW	-5.1%	0.047	466,833	627, 045	546,939	295,088	152,749
Spawners	North America	1.3\%	0.144	46,895	91,483	69,189	79,656	91,452
Spawners	NEAC North 1SW	1.4\%	0.0 .36	211,255	326,869	269,162	315,918	374,6610
Spawners	NEAC North MBW	3.4\%	0.037	174,033	273,577	223,805	3341064	527,200
Spawners	NEAC South 1SW	-1.3\%	0.090	398,093	693,480	545,786	463,621	397,852
Spawners	NEAC South MSW	-2.0\%	0.058	206,253	309,195	257,724	201,276	156,987
Returns	Labrador	-2.0\%	0.204	8,133	9,691	8,912	6,884	5,397
Returns	Newfoundland	0.2\%	0.218	2,054	10,078	6, 166	5,841	6,044
Returns	Quebec	-2.1%	0.0610	18,700	26,108	22,404	17,395	12,907
Returns	Gulf	-3.7\%	0.295	6,950	17, 042	11,996	7,323	4,573
Returns	Scotia-Fundy	-6.6\%	0.198	1,399	2,141	1,770	8109	335
Returns	USA	-0.8\%	0.265	511	511	511	464	423
Returns	Whole NA	-2.7%	0.096	37,747	65,571	51,659	36,980	25,955

[^1]Table 2.7.1. Summary of Atlantic Salmon Tagged and Marked in 2003. 'Hatchery' and 'Wild' refer to smolts or parr; 'Adult' refers to wild and hatchery fish. Data from France were not available. Fish were not tagged in Finland or Denmark. PIT tags were not included.

		Primary Tag or Mark			
Country	Origin	Microtag	External mark	Adipose clip	Total
Canada	Hatchery	0	31,048	$2,014,223$	$2,045,271$
	Wild	651	29,167	0	29,818
	Adult	0	6,388	0	6,388
	Total	651	66,603	$2,014,223$	$2,081,477$

NB: Wild/Microtag fish had secondary adipose clip

Iceland	Hatchery	239,879	290	0	240,169
	Wild	4,364	0	0	4,364
	Adult	0	608	0	608
	Total	244,243	898	0	245,141
Ireland	Hatchery	310,323	0	0	310,323
	Wild	8,063	0	0	8,063
	Adult	0	0	0	0
	Total	318,386	0	0	318,386
Norway	Hatchery	0	47,934	0	47,934
	Wild	0	2,887	0	2,887
	Adult	0	680	0	680
	Total	0	51,501	0	51,501
Russia	Hatchery	0	0	287,200	287,200
	Wild	0	0	0	0
	Adult	0	2,218	0	2,218
	Total	0	2,218	287,200	289,418
Spain	Hatchery	10,676	0	231,703	242,379
	Wild	0	0	0	0
	Adult	0	0	0	0
	Total	10,676	0	231,703	242,379
Sweden	Hatchery	0	4,000	20,580	24,580
	Wild	0	447	0	447
	Adult	0	0	0	0
	Total	0	4,447	20,580	25,027
UK (England \&	Hatchery	59,840	17,920	50,750	128,510
Wales)	Wild	6,239	0	1,595	7,834
	Adult	0	2,185	0	2,185
	Total	66,079	20,105	52,345	138,529
UK (N. Ireland)	Hatchery	17,526	0	3,472	20,998
	Wild	2,507	0	0	2,507
	Adult	0	0	0	0
	Total	20,033	0	3,472	23,505
UK (Scotland)	Hatchery	7,500	0	0	7,500
	Wild	5,013	3,296	2,184	10,493
	Adult	0	737	0	737
	Total	12,513	4,033	2,184	18,730
USA	Hatchery	0	356,737	138,329	495,066
	Wild	0	2,301	410	2,711
	Adult	0	1,466	3,623	5,089
	Total	0	360,504	142,362	502,866
All Countries	Hatchery	645,744	457,929	2,746,257	3,849,930
	Wild	26,837	38,098	4,189	69,124
	Adult	0	14,282	3,623	17,905
	Total	672,581	510,309	2,754,069	3,936,959

Figure 2.1.1.1 Nominal catches of salmon in four North Atlantic regions, 1960-2003

Figure 2.1.1.2. Percentage of nominal catch taken in coastal, estuarine and riverine fisheries by country for 1995-2003 (where available).

Figure 2.1.1.3 Percentages of nominal catch taken in coastal, estuarine and riverine fisheries for the NAC area (1999-2003) and for NEAC northern and southen areas (1995-2003).
(

Figure 2.1.3.1 Nominal North Atlantic salmon catch, unreported catch and percentage unreported, expressed as \% of total catch (nominal + unreported), in NASCO Areas, 1987-2003.

Figure 2.2.1.1. World-wide farmed Atlantic salmon production, 1980-2003.

Figure 2.2.2.1. Production of ranched salmon (tonnes round fresh weight) as harvested at ranching facilities in the North Atlantic, 1980-2003.

Figure 2.3.1. A comparison of the estimates of the mortality by month in the second year at sea for five rivers from the NEAC and NAC areas using the inverse weight and the maturity schedule methods. The symbols represent the median and the vertical bar the minimum and maximum values for at least five annual estimates.

Figure 2.3.2. Monthly mortality rate in the second year at sea for salmon from de la Trinite River stock as estimated from the maturity schedule method and the inverse weight method (assuming linear growth function).

Figure 2.4.1.1. Posterior predictive distributions of the egg deposition rate per m^{2} of riverine wetted area accessible to salmon corresponding to the CLs of the fishery districts and of Ireland as a whole. Each box plot displays on a log scale the $5^{\text {th }}, 10^{\text {th }}, 25^{\text {th }}, 50^{\text {th }}, 75^{\text {th }}, 90^{\text {th }}$ and $95^{\text {th }}$ percentiles. Black dots represent the currently used CLs for management advice in Ireland for the fisheries district and at ICES for the whole country. The Dublin fishery district CL does not appear on the graph because it is lower than the lower bound of the Y-axis.

Figure 2.4.1.2. Average attainment of conservation limits (CL) based on the BHSRA/Wetted Area approach from 1997 to 2003 for Irish salmon fishing districts.

Figure 2.4.2.1. Composition of a known origin sample of wild smolts from the R. Finn, used together with the baseline samples in a test of relative accuracy of the CMLE and pseudo-Bayesian mixed stock fishery analyses.

Figure 2.4.2.2. Estimated composition of the Foyle mixed stock salmon fishery in 2003, based on two mixture analysis techniques.

Figure 2.4.3.1. Proportions of repeat spawning salmon in the returns to two rivers in the NEAC area (top), five rivers in the mid (middle) and five rivers in the southern (bottom) NAC area.

Figure 2.4.3.2. Changes in equilibrium population size in a hypothetical salmon population (similar to the LaHave River, Nova Scotia) in the absence of fishing (2) and fished at MSY (1) under two repeat spawning scenarios. The left plot assumes post-spawning mortality of 50% annually up to 6 spawnings. The right plot shows the equilibrium points in the absence of any repeat spawning. The SR data are from the LaHave River, but the remaining dynamics are hypothetical.

Figure 2.4.4.1. Dynamic vs static model accuracy of the PFA forecast for R. Bush salmon derived from static vs. dynamic modelling approaches. Each point is a smolt year for which a forecast has been derived conditionally on the smolt data from 1986 up to that year and on the PFA data from 1986 up to the year before.

Figure 2.5.1.1. Median number of years below the conservation limit for three rivers with low, medium, and high productivity and two levels of initial population abundance.

Figure 2.6.3.1. Positions and numbers of large post-smolts and salmon captured in surface trawl hauls for DST tagging in a Nordic project during the Norwegian survey, 21-June - 5 July 2002 west of the Vøring plateau.

Figure 2.6.3.2. Cruise track of the R/V Magnus Heinason and trawl stations occupied for tagging salmon (cruise 0384) 22-29/10 2003. Highest concentrations of salmon were found in the colder area northwest towards the fishery limit, $64^{\circ} 20^{\prime} \mathrm{N} 8^{\circ} 00^{\prime} \mathrm{W}$.

3.1 Status of stocks/exploitation

The status of stocks is considered with respect to the following guidance from ICES.

The interpretation of Conservation limits (CLs) have been defined by ICES as the level of stock that will achieve long term average maximum sustainable yield (MSY), as derived from the adult to adult stock and recruitment relationship. NASCO has adopted this definition of CLs (NASCO, 1998). The CL is a limit reference point ($\mathrm{S}_{\text {lim }}$). However, management targets have not yet been defined for North Atlantic salmon stocks. ICES has interpreted stocks to be within safe biological limits only if the lower bound of the confidence interval of the most recent spawner estimate is above the CL.

The status of this stock complex with respect to conservation requirements is:

- Northern European 1SW stocks were above the Conservation limit (CL) in 2003 (as they were for 2002). However, these stocks are not considered to be within safe biological limits.
- Northern European MSW stocks were above the CL in 2003 (as they have been for the 4 previous years). These stocks are considered to be within safe biological limits.
- Southern European 1SW stocks were above the CL in 2003 (as they have been for the 3 previous years). However, these stocks are not considered to be within safe biological limits.
- Southern European MSW stocks were close to CL in 2003 (as they were in 2002). These stocks are not considered to be within safe biological limits.

Therefore, with the exception of the Northern European MSW stock, these stocks are considered to be outside safe biological limits.

The status of stocks is shown in Figure 3.1 and is elaborated upon in Section 3.9.

3.2 Management objectives

NASCO (NASCO CNL31.210) has identified the primary management objective of that organisation as:
"To contribute through consultation and co-operation to the conservation, restoration, enhancement and rational management of salmon stocks taking into account the best scientific advice available".

NASCO further stated that "the Agreement on the Adoption of a Precautionary Approach states that an objective for the management of salmon fisheries is to provide the diversity and abundance of salmon stocks" and NASCOs Standing Committee on the Precautionary Approach interpreted this as being "to maintain both the productive capacity and diversity of salmon stocks"

NASCO's Action Plan for Application of the Precautionary Approach (NASCO 1999) provides interpretation of how this is to be achieved, as follows:
"Management measures should be aimed at maintaining all stocks above their conservation limits by the use of management targets"

Socio-economic factors could be taken into account in applying the Precautionary Approach to fisheries management issues":
"The precautionary approach is an integrated approach that requires, inter alia, that stock rebuilding programmes (including as appropriate, habitat improvements, stock enhancement, and fishery management actions) be developed for stocks that are below conservation limits".

As precautionary reference points have not been developed for NEAC stock complexes, management advice is therefore referenced to the $\mathrm{S}_{\mathrm{lim}}$ conservation limit. Thus, these limits should be avoided with high probability (ie. at least 75\%).

3.3.1 Progress with setting river-specific conservation limits

Most NEAC countries have not yet developed river-specific CLs. In 2004, progress with setting river-specific conservation limits was reported for UK (England \& Wales) and Ireland.

Conservation limits for all principal salmon rivers in UK (England \& Wales) have been revised in 2003 to take account of the fact that levels of sea survival are currently much lower than those of 20 years ago. New default values of 11% for 1SW salmon and 5% for MSW fish (based on the latest 5 -year mean rates for the North Esk) were therefore introduced in calculating CLs and in assessing compliance against these new CLs. Introducing marine survival rates which are intended to reflect those currently experienced by UK salmon stocks will reduce the effect of high natural mortality at sea as a cause of failing CLs. This will help managers focus on other issues over which they have more control (e.g. poor environmental quality in-river, over-exploitation by net and rod fisheries, etc.) when compliance failure occurs. The reduction in CLs means that lower levels of spawning escapement are accepted before the stock is considered to be threatened.

River specific conservation limits have been established for all rivers in Ireland using a Bayesian Hierarchical Stock Recruitment Analysis and transporting known stock and recruitment parameters from well monitored European rivers to all Irish rivers. The approach was not possible in the past due to a lack of information on wetted areas available to salmon, an important covariate in the analysis. In 2003, a special report was commissioned and funded by the Central Fisheries Board and the requisite information made available for analyses. A more thorough presentation of the methodology is provided in Section 2.4.1. The estimates of CL derived from the Bayesian approach (195,950 1SW and $17,9602 \mathrm{SW}$) are similar to the estimates derived from the National Conservation Limit model ($210,5881 \mathrm{SW}, 23,301$ 2 SW) in 2004. While the differences at national level are small, the Bayesian approach can be applied to provide conservation limits for each of the 17 salmon fishing districts in Ireland, removing the uncertainty associated with applying the National Conservation Limit model to district mixed stock catch and exploitation rate data.

3.3.2 Description of the national Conservation limits model

Relatively few river-specific conservation limits have been developed for salmon stocks in the NEAC area. An interim approach has therefore been developed for estimating national conservation limits for countries that cannot provide one based upon river-specific estimates. The approach is based on establishing pseudo-stock-recruitment relationships for national salmon stocks in the North East Atlantic Commission (NEAC) area (Potter et al., 1998).

As described in 2002 (ICES 2002/ACFM:14), the model provides a means for relating estimates of the numbers of spawners and recruits derived from the PFA model. This is achieved by converting the numbers of 1SW and MSW spawners into numbers of eggs deposited, using the proportion of female fish in each age class and the average number of eggs produced per female. The egg deposition in year ' n ' is assumed to contribute to the recruitment in years ' $n+3$ ' to ' $\mathrm{n}+8$ ' in proportion to the numbers of smolts produced of ages 1 to 6 years. These proportions are then used to estimate the 'lagged egg deposition' contributing to the recruitment of maturing and non-maturing 1SW fish in the appropriate years. The plots of lagged eggs (stock) against the 1 SW adults in the sea (recruits) have been presented as 'pseudo-stock-recruitment' relationships.

ICES and NASCO currently define the conservation limit for salmon as the stock size that will result in the maximum sustainable yield (MSY) in the long term (i.e. $\mathrm{S}_{\mathrm{lim}}$). However, it is not straightforward to estimate this point on the national stock-recruitment relationships because the replacement line (ie the line on which 'stock' equals 'recruits') is not known for the pseudo-stock-recruitment relationships established by the national model because the stock is expressed as eggs, while the recruits are expressed as adult salmon. In 2001 the Working Group adopted a method for setting biological reference points from "noisy" (uncertain) stock-recruitment relationships, such as provided by the national pseudo-stock-recruitment datasets (ICES CM2001/ACFM:15). This model assumes that there is a critical stock level below which recruitment decreases linearly towards zero stock and recruitment, and above which recruitment is constant. The position of the critical stock level is determined by searching for the value that minimises the residual sum of squares. This point is a proxy for $\mathrm{S}_{\mathrm{lim}}$ and is therefore defined as the conservation limit for salmon stocks. A modified version of this method, which updates the approach first used by ICES in 2001, by allowing uncertainty around these estimates to be described was outlined in 2002 (ICES 2002/ACFM:14). This approach was again applied
to the 2004 national stock-recruitment relationship assessment for countries where no river-specific conservation limits have been determined.

3.3.3 National Conservation Limits

The national model has been run for all countries. The outputs are illustrated in Figures 3.9.13.1(a-j). For Iceland, Russia, Norway, UK (Northern Ireland), and UK (Scotland) the input data for the PFA analysis (1971-2003 have been provided separately for more than one region; the lagged spawner analysis has therefore been conducted for each region separately and the estimated conservation limits summed for the country. The conservation limits derived from the national model are used for countries where no river-specific conservation limits have been developed. Where riverspecific estimates have been derived (ie. France, Ireland and UK (England \& Wales)) they are used to provide national estimates. These values are shown in Table 3.3.3.1. The Working Group has previously noted that outputs from the national model are only designed to provide a provisional guide to the status of stocks in the NEAC area. It will also be noted that the conservation limit estimates may alter from year to year as the input of new data affects the 'pseudo-stock-recruitment relationship'. This further emphasises the fact that this approach only provides a basis for qualitative catch advice.

The estimated national conservation limits have been summed for Northern and Southern Europe (Table 3.3.3.1) and are given on Figures 3.9.14.4 and 3.9.14.6 for comparison with the estimated spawning escapement. The conservation limits have been calculated as $309,8311 \mathrm{SW}$ spawners and $152,155 \mathrm{MSW}$ spawners for the northern NEAC grouping, and 499,695 1 SW spawners and 267,894 MSW spawners for the southern NEAC grouping. The conservation limits have also been used to estimate the spawner escapement reserves (SERs) (i.e. the CL increased to take account of natural mortality between the recruitment date ($1^{\text {st }} \mathrm{Jan}$) and return to home waters) for maturing and non-maturing 1SW salmon from the Northern and Southern Europe stock complexes. The SERs are shown as horizontal lines in Figures 3.9.14.3 and 3.9.14.5. The Working Group also considers the current SER levels may be less appropriate for evaluating the historic status of stocks (e.g. pre-1985), that in many cases have been estimated with less precision.

3.4 Advice on management

ICES use the catch advice presented in this section to determine whether stock complexes are within safe biological limits according to the NASCO management objectives.

The Working Group has been asked to provide catch options or alternative management advice, if possible based on a forecast of PFA, with an assessment of risks relative to the objective of exceeding stock conservation limits in the NEAC area. The Working Group reiterated its concerns about harvesting salmon in mixed stock fisheries, particularly for fisheries exploiting individual river stocks and sub-river populations that are at unsatisfactorily low levels. Annual adjustments in quotas or effort regulations based on changes in the mean status of the stocks are unlikely to provide adequate protection to the individual river stocks that are most heavily exploited by the fishery or are in the weakest condition.

For all fisheries, the Working Group considers that management of single stock fisheries should be based upon local assessments of the status of stocks. Conservation would be best achieved by fisheries in estuaries and rivers targeting stocks that have been shown to be above biologically-based escapement requirements.

The Working Group also emphasised that the national stock conservation limits discussed above are not appropriate for the management of homewater fisheries, particularly where these exploit separate river stocks. This is because of the relative imprecision of the national conservation limits and because they will not take account of differences in the status of different river stocks or sub-river populations. Nevertheless, the Working Group agreed that the combined conservation limits for the main stock groups (national stocks) exploited by the distant water fisheries could be used to provide general management advice to the distant water fisheries.

Due to the preliminary nature of the conservation limit estimates, the Working Group is unable to provide quantitative catch options for most stock complexes at this stage. Furthermore, to do so requires predictive estimates of PFA which have not yet been developed for all stock complexes. However, a quantitative prediction of PFA for Southern European MSW stocks is again provided. The Working Group also notes that progress has been made in the development of an approach to derive predictive estimates of PFA for the Northern European PFA stocks (ICES 2003/ACFM 19). The Working Group considers that the following qualitative catch advice is appropriate based upon the PFA data and estimated SERs shown in Figures 3.9.14.3 and 3.9.14.5. [NB In the evaluation of the status of stocks, PFA or recruitment values should be assessed against the spawner escapement reserve values while the spawner numbers should be compared with the conservation limits.]

Based on recent work on resolving the most appropriate stock groupings for management advice for the distant water fisheries (ICES 2002/ACFM 14) the Working Group agreed that advice for the Faroes fishery (both 1SW and MSW) should be based upon all NEAC stocks. Advice for the West Greenland fishery should be based upon southern European MSW salmon stocks only (comprising UK, Ireland and France).

Northern European 1SW stocks: The PFA of 1SW salmon from the Northern European stock complex has been above the spawning escapement reserve throughout the time series (Figure 3.9.14.3a). However, the spawning escapement was at or below the conservation limit until 1997 (Figure 3.9.14.4a). Thereafter the spawning escapement has remained above the conservation limit. However, given the confidence limits on the spawner estimates, the Working Group considers that this stock complex is outside safe biological limits. The Working Group considers that the overall exploitation of the stock complex should decrease so that the conservation limit can be consistently met. In addition it should be noted, however, that the inclusion of farmed fish in the Norwegian data would result in the exploitable surplus being overestimated. Since very few of these salmon have been caught outside homewater fisheries in Europe, even when fisheries were operating in the Norwegian Sea, management of maturing 1SW salmon should be based upon local assessments of the status of river or sub-river stocks.

Northern European MSW stocks: The PFA of non-maturing 1SW salmon from the Northern European stock complex has been declining throughout the time series and the exploitable surplus has fallen from around 1.2 million recruits in the early 1980s to about 0.7 million in recent years (Figure 3.9.14.3b). The Working Group considers the Northern European MSW stock complex to be within safe biological limits, as spawners are currently above CL and trending in a positive direction (Figure 3.9.14.4b). However, it should be noted that the status of individual stocks may vary considerably. In addition, the inclusion of farmed fish in the Norwegian data will result in the exploitable surplus being overestimated. The Working Group therefore considers that caution should still be exercised in the management of these stocks particularly in mixed stock fisheries and exploitation should not be permitted to increase, until a clear pattern of status above SER is established.

Southern European 1SW stocks: Recruitment of maturing 1SW salmon in the Southern European stock complex has shown a strong decreasing trend throughout most of the time series (Figure 3.9.14.5a). Moreover the spawning escapement for the whole stock complex has fluctuated around the conservation limit in recent years, and was only marginally above the conservation limit in 2003 (3.9.14.6a). Despite a small surplus above SER of around 400,000 fish during the last five years, exploitation in these years was clearly high enough to prevent conservation limits being consistently met. The Working Group therefore considers that this stock complex is outside safe biological limits and further that, mixed stock fisheries present particular threats to conservation. Reductions in exploitation rates are required for as many stocks as possible, except those stocks shown to above conservation limits.

Southern European MSW stocks: The PFA of non-maturing 1SW salmon from Southern Europe has been declining steadily since the 1970s (Figure 3.9.14.5b) and the preliminary quantitative prediction of PFA for this stock complex in 2004 is 489,000 (Figure 3.6.1.1). There is evidence from the prediction that PFA will decrease in the near future and the spawning escapement has not been significantly above conservation limit for the last eight years (Figure 3.9.14.6b). The Working Group therefore considers that this stock complex is outside safe biological limits and further that, mixed stock fisheries present particular threats to conservation. Reductions in exploitation rates are required for as many stocks as possible, except those stocks shown to above conservation limits

With catch advice for three of the four stock groupings above still being provided on the basis of extrapolation from historical PFA data, the Working Group recommends that further progress be made with establishing PFA forecast methodologies. Catch advice would also be significantly enhanced if conservation limits were more certain for national stocks.

3.5 Relevant factors to be considered in management

For all fisheries, the Working Group considers that management of single stock fisheries should be based upon assessments of the status of individual stocks. Conservation would be best achieved if fisheries can be targeted at stocks that have been shown to be above biologically based escapement requirements. Fisheries in estuaries and rivers are more likely to fulfil this requirement.

3.5.1 Grouping of national stocks

National outputs of the NEAC PFA model are combined in the following groups to provide NASCO with catch advice or alternative management advice for the distant water fisheries at West Greenland and Faroes.

Southern European countries:	Northern European countries:
Ireland	Finland
France	Norway
UK(England \& Wales)	Russia
UK(Northern Ireland)	Sweden
UK(Scotland)	Iceland

The groups were deemed appropriate by the Working Group as they fulfilled an agreed set of criteria for defining stock groups for the provision of management advice that were considered in detail at the 2002 meeting (ICES 2002/ACFM:14). Consideration of the level of exploitation of national stocks at both the distant water fisheries resulted in the proposal that that advice for the Faroes fishery (both 1SW and MSW) should be based upon all NEAC area stocks, but that advice for the West Greenland fishery should be based upon Southern European MSW salmon stocks only (comprising UK, Ireland, and France).

3.6 Catch forecast for 2004

3.6.1 Southern NEAC area

The Working Group has previously considered the development of a model to forecast the pre-fishery abundance of PFA of non-maturing (potential MSW) salmon from the Southern European stock group (comprising Ireland, France, and all parts of UK) (ICES 2002/ACFM:14 and ICES 2003/ACFM:19). Stocks in this group are the main European contributors to the West Greenland fishery (See Section 3.5.1). Model options were re-evaluated in 2004.

The full model considered was:

PFA $=$ Spawners ${ }^{\lambda} \times e^{\beta_{0}+\beta_{1} \text { Habiat }+\beta_{2} \log (\text { PFAm })+\beta_{3} \text { Year }+ \text { noise }} \quad$ Model 1
where Spawners are expressed as lagged egg numbers, PFAm refers to pre-fishery abundance of maturing 1SW salmon and the habitat term is the same as that previously used in the North American model (ICES 2003/ACFM:19). Previous analysis suggested that the noise term was approximately Normally distributed with constant variance, so this assumption was used here.

To provide some guidance as to which of the variables in the model provided a significant contribution to predictions, the R squared values were calculated for a series of models. This indicated that Year provided the best fit of the 2parameter models with only the subsequent addition of Spawners providing a significant improvement to the model. Therefore, the Working Group decided to apply a model that used only the Year and Spawners terms to predict the PFA of non-maturing salmon as in 2003. The model takes the form:
$\log ($ PFA $/$ Spawners $)=-1.127 \log ($ Spawners $)+114.8-0.050$ Year

This is equivalent to:

PFA $=$ Spawners $^{-0.127} \times e^{114.8-0.050 \text { Year }}$

Model 2

The model was fitted to data from 1977-2002 (Table 3.6.1.1) to predict PFA in the subsequent years 2003-2004. The forecast used for 2003 was 525,000 , this updates the previously given forecast (sec. 3.8). The forecasted value for 2004 was 489,000 (Figure 3.6.1.1).

The predictions using this model and the 95% confidence intervals are given in Table 3.6.1.2. It should be noted that the confidence intervals are wide and this reflects the uncertainty around the point estimate. These predictions have been used as an input to the provision of quantitative catch advice for this stock complex for 2004.

Alternative model inputs

The Working Group has previously discussed whether Year should be included because models with Year will be poor at detecting a change from a decreasing trend in PFA non-m to an increasing trend. An assessment of models without

Year were shown to be poor predictors of PFA, however using PFAm (PFA of maturing 1SW salmon) is better than Habitat or Spawners: indeed the fit increases very little on adding either of these to a model with PFAm. The advantage of such a model is that the inclusion of the PFA m utilises a further biological variable and thus should capture, to some degree, the effects of biological influences on the stock. However, the problem with using PFAm remains that, as predictions are required two years in advance to provide catch advice for the West Greenland fishery, the final value for the PFA of maturing 1SW salmon has to be estimated. The Working Group used the mean of the previous 3 years as an estimate of the PFA of maturing 1SW salmon. However, the Working Group agreed not to include this variable in the 2004 assessment.

3.6.2 Northern NEAC area

It has previously been noted that predicting PFA of non-maturing salmon based on the PFA of maturing 1SW salmon might be more appropriate in the Northern NEAC area, since the final input value of the PFA of maturing 1SW salmon might be obtained in time (e.g. from homewater fisheries). This might provide a basis for catch advice for the Faroes fishery that is believed to exploit salmon mainly from the northern NEAC area. A re-examination of the models indicated that PFA of maturing 1SW salmon provides the best fitting 2-parameter model, with a further improvement in fit from adding Habitat, but little further improvement from adding Year and Spawners. The chosen final model was:

$$
\log (\text { PFA } / \text { Spawners })=-7.048-0.272 \text { Habitat }+0.597 \log (\text { PFAm })
$$

which is equivalent to:

$$
\text { PFA }=\text { Spawners } \times e^{-7.048-0.272 \text { Habitat }+0.597 \log (\text { PFAm })} \quad \text { Model } 3
$$

The Working Group noted that any prediction for 2004 may be poor as it is based on the PFA of maturing 1SW salmon and Habitat values, which would need to be averages of previous years. The habitat term (mean sea surface temperature (SST) in the month of February in the area $58-64^{\circ} \mathrm{N} 10^{\circ} \mathrm{W}-10^{\circ} \mathrm{E}$) has not been extracted for 2002 or 2003. The Working Group therefore did not make a northern area prediction for 2004, but recommended that such a model should be developed further.

3.7 Medium to long term projections

The quantitative prediction for the southern NEAC MSW stock component gives a projected PFA (at $1^{\text {st }}$ January 2004) of 489,000 fish for catch advice in 2004. No projections are available beyond that, or for other stock components or complexes in the NEAC area.

3.8 Comparison with previous assessment

National PFA model and national conservation limit model

Several countries made changes to the input data to these models.
Data input for Norway has been restricted to the period 1983 to the present. As a result, the time series of PFA for both the NEAC area as a whole and for Northern Europe must be restricted to the same period.

Changes were made in the estimated contribution of UK (Scotland) origin fish to the UK (E\&W) north east coast net fisheries. These reflected the reduction in effort of the fishery and change in the relative contribution of coastal and drift net fisheries. Catches of these UK (Scotland) origin fish were also raised to estimated numbers of returning fish using unreported catch and exploitation rate estimates appropriate for the UK (E\&W) fishery.

Changes were made to the Russian Kola Peninsula: White Sea Basin input data for 2001 onwards. Catches taken in the recently developed recreational rod fishery were subdivided into fish which had entered freshwater in the year of catch and those which had entered the previous year. Fish entering in the year of catch were used to estimate numbers of returning fish and both categories used in the estimate of spawning escapement. The sea age composition of the estimated numbers of fish returning to freshwater in Russia (Pechora river) in 2001 was also revised using a salmon:grilse ratio averaged over the previous 10 years.

Catch from the Foyle system has been removed from the input data for Ireland as these were included in the input catch for UK (NI). Exploitation rate for 1SW salmon is now based on estimates of exploitation rates on wild fish ($+/-15 \%$),
unreported rates have been revised upwards for the period 1997 to 2000 to reflect new data available from the carcass tagging and log book scheme in Ireland..

The river age composition of smolts has been revised for Iceland.

The river specific conservation limits for UK (E\&W) have been revised downwards. The river specific conservation limit formerly used for Sweden have been replaced by the limit estimated from the PFA model.

PFA forecast model

The revised forecast of the southern NEAC MSW PFA for 2003 provides a PFA mid-point of 525,000 . This is very close to the value forecast last year at this time of 524,000.

3.9 NASCO has requested ICES to: describe the key events of the $\mathbf{2 0 0 3}$ fisheries and the status of the stocks

3.9.1 Fishing at Faroes in 2002/2003

No fishery for salmon was carried out in 2002/2003 or, to date, in 2003/2004. Consequently, no sample data are available from the Faroese area for this season. No buyout arrangement has been arranged since 1999.

3.9.2 Significant events in NEAC homewater fisheries in 2003

In Russia in 2003, a commercial in-river fishery was restarted in the Pechora River after a prolonged ban implemented in 1989. The main purpose of the reopening was a wish to reduce the illegal fishery. In contrast, in the Kola Peninsula management activity aimed at reducing commercial in-river fishery and developing recreational fisheries was maintained. Barrier fences on a number of rivers of this region were, for the first time, used specifically for scientific purposes with no commercial harvest occurring in 2003.

Since 2001, all salmon fishermen in Ireland (commercial and rod) have been obliged to tag their catch with carcass tags indicating the region, year and method of capture and to record details of the catch in a logbook. An initial commercial TAC of 219,619 fish was imposed for the 2002 season as a method of limiting catches, followed by a reduced TACs of 182,000 fish for 2003 . A TAC of 162,000 fish is currently being considered for the 2004 fishery based on the recommendations of the National Salmon Commission.

To reduce the mixed-stock fisheries on the north east UK(England) coast, only 16 drift net licences were issued in 2003 compared with 69 in 2002 (down by 77%), and the number of drift net licences issued for the north east coast has now been reduced by 89% since 1992. The remaining drift nets took a catch of 5,511 salmon compared with 27,685 in 2002 (down by 80%). Some of these netsmen were able to remain in the fishery by switching to inshore T- or J- nets, which are known to exploit a higher proportion of local fish.

3.9.3 Gear and effort

In 2003 no significant changes in the type of gear used for salmon fishing were reported in the NEAC area.

The number of gear units licensed or authorised in several of the NEAC area countries provides a partial measure of effort, but does not take into account other restrictions, for example, closed seasons (Table 3.9.3.1). In addition, there is no indication from these data of the actual number of licences utilised or the time each licencee fished.

Trends in effort are shown in Figures 3.9.3.1 and 3.9.3.2 for the Northern and Southern NEAC countries respectively. In the Northern NEAC area, drift net effort in Norway accounted for the majority of the effort expended, in the early part of the time-series. However, this fishery closed in 1989, reducing the overall effort substantially. The liftnet fishery, which made a minor contribution to overall effort, showed a decreasing trend until it ceased to operate in 1993. The two remaining methods, bagnets and bendnets, show contrasting patterns of effort until the early 1990s when both show downward trends until the end of the time-series. In the Archangel region of Russia, the effort in the coastal and in the river fisheries shows a decline for the time series reported. In the Southern NEAC countries, net effort data show a downward trend of various degrees for UK (England \& Wales), UK (N. Ireland), Ireland, France and UK (Scotland).

Rod effort, where available, show both upward and downward trends for the period reported. In the Northern NEAC area the catch and release rod fishery in the Kola Peninsula in Russia has increased from 1,711 fishing days in 1991 to 11,898 in 2003. In Finland there has been an increasing trend in the number of fishing days since 1997 although the 2003 value was slightly less than that recorded in 2002. In the Southern NEAC area rod fishing effort show a decreasing trend in UK (England \& Wales) over the period presented. In Ireland, rod fishing effort increased in the early 1990s apparently due to the introduction of a one day license.

3.9.4 Catches

NEAC area catches are presented in Table 3.9.4.1. The provisional declared catch in the NEAC area in 2003 was 2,315 tonnes, down 7% on 2002, but representing 94% of the total North Atlantic nominal catch in 2003. The catch in the NEAC Southern area (932 t) fell by 17% on 2002 and was the lowest in the time series. In contrast, the catch in the NEAC Northern area ($1,384 \mathrm{t}$) increased by 2%, a little above the 5 -year mean and only 2% below the 10 -year mean.

Figure 3.9.4.1 shows the trends in nominal catches of salmon in the Southern and Northern NEAC areas from 1971 until 2003. The catch in the Southern area declined from about 4,500 t in 1972-75 to below 1,500 t since 1986, and less than $1,000 \mathrm{t}$ in 1999 and 2003. The catch features two sharp declines, one in 1976 and the other in 1989-91. The catch in the Northern area also shows an overall decline over the time series, but this is less steep than for the Southern area. The catch in the Northern area varied between 1,850 and $2,700 \mathrm{t}$ from 1971 to 1986, and fell to a low of 962 t in 1997. However, since this time, the catch has increased and has fluctuated around $1,500 \mathrm{t}$ over the last four years. Thus, the catch in the Southern area, which comprised around two-thirds of the NEAC total in the early 1970s, is now lower than that in the Northern area.

3.9.5 Catch per unit effort (CPUE)

CPUE is a measure that can be influenced by various factors, and it is assumed that the CPUE of net fisheries is a more stable indicator of the general status of salmon stocks than rod CPUE; the latter may be more affected by varying local factors, e.g. weather conditions, management measures and angler experience. Both may also be affected by many measures taken to reduce fishing effort, for example, changes in regulations affecting gear. If large changes occur for one or more factors a common pattern may not be evident over larger areas. It is, however, expected that for a relatively stable effort CPUE can reflect changes in the status of stocks and stock size. This can be seen in the changes in CPUE for the Norwegian marine fishery that is also reflected in catch (Section 3.9.4) as well as the estimated PFA values (Section 3.9.14).

An overview of the CPUE data for the NEAC area is presented in Figure 3.9.5.1. The CPUE values presented are standardized indices relative to the averages of the time series. The original, more detailed CPUE data are presented in Tables 3.9.5.1-3.9.5.5. The CPUE for rod fisheries have been collected by relating the catch to rod days or angler season, and that of net fisheries was calculated as catch per licence- day, trap month or crew month.

In Southern NEAC area, CPUE shows a general decrease in UK(Scotland) net and coble fisheries, whereas no trend was observed in UK(Scotland) fixed engine fisheries, UK(England \& Wales) net fisheries and in France rod fisheries (Figure 3.9.5.1). In UK (England and Wales) CPUE for the net fishery decreased in most regions compared to 2002 (Table 3.9.5.3). The CPUE for the Scottish net fisheries was higher than in 2002 and the previous 5 -year averages (Table 3.9.5.4). In UK(N-Ireland), the river Bush rod fishery CPUE showed a slight increase compared to the previous year (Table 3.9.5.1).

In most of the Northern NEAC area, there has been a general increasing trend in the CPUE figures for various fisheries in recent years, but the figures of 2002 and 2003 generally decreased from the previous years (Tables 3.9.5.1 \& 3.9.5.5). In comparison with the previous year, half of the CPUE values for the rod fisheries in Russian rivers were down and the other half was up. The same pattern was true in comparison with the previous five-year means (Table 3.9.5.2). No longterm trend can be detected either on the White Sea rivers or the Barents Sea rivers (Figure 3.9.5.1).

3.9.6 Age composition of catches

The percentage of 1SW salmon in NEAC catches is presented in Table 3.9.6.1 and Figure 3.9.6.1 (Northern area) and Figure 3.9.6.2 (Southern area). The percentage of 1SW fish in the Northern area was 62% in 2003, close to the 5-and 10 -year mean. Since 1987, the overall proportion of 1SW fish has varied between 54 and 72%. In general, there has been greater variability in the proportion of 1SW fish between countries in recent years (since 1994) than prior to this time. The proportion of 1SW fish in the catch increased in 2003 in Finland and Norway, but decreased in other countries. On average, 1SW fish comprise a higher proportion of the catch (around 75-80\%) in Iceland and Russia than in the other countries ($60-65 \%$).

For the Southern European countries (Figure 3.9.6.2), the overall percentage of 1SW fish in the catch was 55\%, below both the 5-and 10-year mean. The overall percentage in the catch in 2003 has varied from 49 to 65% over the time series. The proportion of 1SW fish in the catch decreased in 2003 in all countries. On average, 1SW fish comprise a higher proportion of the catch (around 75\%) in UK (England \& Wales) than in the other southern countries (around 55% in UK (Scotland) and France, and 40% in Spain).

3.9.7 Farmed and ranched salmon in catches

The contribution of farmed and ranched salmon to national catches in the NEAC area in 2003 was again generally low ($<2 \%$ in most countries) and is similar to the values that have been reported in previous reports (e.g. ICES 2003/ACFM:19). Thus, the occurrence of such fish is usually ignored in assessments of the status of national stocks (Section 3.9.13). However, in Norway farmed salmon continue to form a large proportion of the catch in coastal, fjordic and rod fisheries. An assessment of the likely effect of these fish on the output data from the PFA model was included in ICES 2001/ACFM:15.

3.9.8 National origin of catches

In 2003, a number of tags originating from fish released from other countries (58 from UK (N. Ireland), 27 from UK (England \& Wales) and 17 from Spain) were recovered in Irish fisheries. A recent tagging study in Norway (19962001) confirmed previous observations that very few Norwegian salmon are intercepted in other countries.

3.9.9 Summary of homewater fisheries in the NEAC area

In the NEAC area, there has been a general reduction in catches since the 1980s. This reflects a decline in fishing effort, as a consequence of management as well as a reduction in the size of stocks. The overall nominal catch in the NEAC area in 2003 (2315t) represented a 7\% decrease on both the catch for 2002 and on the average 1998-2002 catch. Catches in the Southern area decreased substantially compared to both the 2002 and the 1998-2002 mean values (by 17% in both comparisons). In contrast, in the Northern area, marginal increases in catch were recorded compared to both the 2002 and the 1998-2002 mean values (by 2% in both comparisons).

While there have been no major changes in the types of commercial fishing gear used, both northern and southern Europe have experienced general reductions in the number of licensed gear units. In contrast, there are no consistent trends for the rod fishing effort in NEAC countries.

CPUE data for various net and rod fisheries do not indicate any general pattern or trend in either the northern or southern NEAC areas. The Working Group noted that reduction in the number of fisheries operating can benefit those fisheries still in operation and that the lack of consistent trends in CPUE may reflect the imprecise nature of these indices.

The proportion of 1 SW salmon in catches varies considerably both among countries and within countries among years. No general trend is apparent in either the northern or southern NEAC areas. In 2003, the proportion of 1SW salmon in catches increased in the northern area but decreased in the southern area in comparison to the 2002 values.

Despite the continued high levels of production in the salmon farming industry, the incidence of farmed and ranched salmon in NEAC homewater fisheries was generally low ($<2 \%$) and similar to recent years. The exception to this is Norway, where farmed salmon still comprise a large proportion of the catch in several of the coastal, fjordic and rod fisheries.

3.9.10 The NEAC-PFA model

The Working Group has previously developed a model to estimate the pre-fishery abundance (PFA) of salmon from countries in the NEAC area. PFA in the NEAC area is defined as the number of 1SW recruits on January $1^{\text {st }}$ in the first sea winter. The method employs a basic run-reconstruction approach similar to that described by Rago et al. (1993) and Potter and Dunkley (1993). The model estimates the PFA from the catch in numbers of 1SW and MSW salmon in each country. These are raised to take account of minimum and maximum estimates of non-reported catches and exploitation rates of these two sea-age groups. Finally these values are raised to take account of the natural mortality between January $1^{\text {st }}$ in the first sea winter and the mid-point of the respective national fisheries. As reported in 2002 (ICES 2002/ACFM:14), the Working Group has determined an ' m ' value of 0.03 per month to be appropriate. A Monte Carlo simulation (1000 runs) using 'Crystal Ball' in Excel (Decisioneering, 1996) is used to estimate confidence limits on the PFA values. Potter et al. (1998) provides full details of the model. In estimating confidence intervals for output
variables such as spawner escapement and 1SW recruits, the PFA model assumes that the results from the Monte Carlo simulations are normally distributed. Preliminary analysis showed that such assumptions were not fully met indicating that further work may be warranted in this area.

3.9.11 Sensitivity of the PFA model

A sensitivity analysis for the spreadsheet model which generates PFA estimates in the NEAC area was described in ICES 2002/ACFM:14.

The sensitivity of the overall assessment of PFA for the NEAC Area, and for the Northern and Southern European stock complexes, depends on the values of the various parameters provided for different countries, and these will also be weighted by the national catches. The analysis provided an evaluation of the effects ($\%$ change) on the assessment of PFA of maturing and non-maturing 1SW salmon from Northern and Southern Europe of making changes to the nonreporting rate (' R '), the exploitation rate (' U ') and the time of return to homewaters (' t ').

Changes to the parameter values listed in the text table below had a greater than 5% effect on the respective (ie. Northern or Southern European) PFA estimates indicating that particular attention should be paid to ensuring that these parameter values are accurate:

Country (Region)	Sea-age	Parameter
Norway (mid)	1SW	Non-reporting rate
Norway (North)	MSW	Non-reporting rate
Ireland	1SW	Non-reporting rate
Ireland	1SW	Exploitation rate
Scotland (East)	1SW	Exploitation rate
Scotland (East \& West)	MSW	Exploitation rate
Scotland (East)	MSW	Non-reporting rate

For the 2004 assessment, the time series of both 1SW non-reporting rate and of 1SW exploitation rates in Ireland were revised in accordance with a recent reappraisal of these values.

3.9.12 National input to the NEAC-PFA model

To run the NEAC PFA model, most countries are required to input the following time-series information (beginning in 1971) for 1SW and MSW salmon:

- Catch in numbers
- Unreported catch levels (min and max)
- Exploitation levels (min and max)

For some countries, the data is supplied in two or more regional blocks. In these instances, the model output is combined to provide one set of output variables per country. Descriptions of how the model input has been derived were presented in detail at the Working Group meeting in 2002 (ICES 2002/ACFM:14). Modifications are reported in the year in which they are first implemented and significant modifications undertaken in 2004 are indicated. The model input data are provided in Tables 3.9.12.1(a-t).

3.9.13 Status of national stocks as derived from the PFA model

The Working Group has previously noted that the NEAC PFA model provides our best interpretation of available information on national salmon stocks. There remains considerable uncertainty around the derived estimates, and national representatives are continuing to improve the data inputs each year on the basis of new data, improved sampling and further analysis.

The National Conservation limits model has been designed as a means to provide a preliminary $\mathrm{S}_{\text {lim }}$ reference point for countries where river-specific reference points have not been developed. These figures should also be regarded as uncertain and should only be used with caution in developing management options. A further limitation with a single
national status of stocks analysis is that it does not capture variations in status in different fishery areas or stock complexes. This has been addressed, at least in part, by the area splits in some countries.

The model output for each country has been displayed as a summary sheet (Figures 3.9.13.1(a to j$)$) comprising the following:

- Estimated total returns and spawners $(\pm \mathrm{SD})$
- Estimated total catch (including non-reported) of 1SW and MSW salmon.
- Estimated pre-fishery abundance (PFA) of maturing 1SW and non-maturing 1SW salmon (labelled as 1SW and MSW).
- Total exploitation rate of 1SW and MSW salmon estimated from the total returns and total catches derived from the model.
- National stock-recruitment relationship (PFA against lagged egg deposition), with $\mathrm{S}_{\text {lim }}$ fitted by the method presented in ICES 2001/ACCESS:15.

The Working Group noted that CLs may not be appropriate for quantitative catch advice at national levels, however they are regarded as useful indicators of overall stock status. Stock status summaries are presented by country below:

Finland: Finnish salmon essentially comprise a single river stock, the River Teno (Tana). The data inputs include both Finnish and Norwegian rod catches for this river. The analysis suggests that the numbers of returns and spawners have fluctuated widely since 1971. The early part of the time-series (1971 to 1975) is characterised by a steep rise, followed by a sharp decline. Numbers of returns and spawners remained low until 1982, but have shown a steady increase since this time, reaching a peak in 2000. In the last three years both returns and spawners have again shown a steep decline. In 2003, 1SW spawners were below CL and MSW spawners were at or above CL.

France: Returns and spawners are estimated to have declined over the past 20 years, although there have been large annual fluctuations. Numbers have been particularly low in recent years, with the last nine years being the lowest in the time-series. There has also been a decline in the proportion of MSW salmon in the catch over the time-series. The current status of the stocks must therefore be considered to be low with no indication of a recovery. In 2003, both 1SW and MSW spawners were below their respective CLs.

Iceland: The assessment suggests that there has been an overall decline in total returns of salmon to Iceland, from around 120,000 in the 1970 s to about 60,000 in 2003. However the values for both returns and spawners in 2002 and 2003 are greater than observed in the two previous years. Estimated returns showed an upward trend in the early part of the time-series (1971-78), followed by a sharp decline (1979-84) and a brief recovery to early levels in the late 1980s. There has been a clear downward trend since 1988. There has also been a marked decline in MSW salmon relative to 1SW fish in the catch. In 2003, both 1SW and MSW spawners were below their respective CLs.

Ireland: Estimates of PFA and spawning stocks for Ireland show significant fluctuations over time and three distinct periods are indicated with highest abundance in the 1970's, lower abundance in the 1980's, and the lowest abundance occurring from the early 1990's to the present. The early part of the time-series (1971 to 1981) is characterised by a steep rise to the maximum value for the time-series, followed by a sharp and prolonged decline. A subsequent recovery period is noted from 1981 to 1989, although the values did not rise to the levels observed in the earlier part of the timeseries. A period of steep decline occurred over the period 1989 to 1992 with stock levels fluctuating around a new, lower, level for the remainder of the time series. The status of the stocks must therefore be considered to be low with no significant recovery in the last decade. However, in 2003, both 1SW and MSW spawners were at or above their respective CLs.

Norway: Before 1983 the catch data are considered to be unreliable and therefore, model input data is restricted to the period from 1983 to the present. In addition, the data for the Norwegian rod catch from the River Tana (Teno) are included in the Finnish PFA estimates. There was a decline in returns from the beginning of the time series until the late 1990s. Thereafter, a sustained increase in returns was observed over the period 1998-2001 but a decline was observed in 2002. The spawning stock has remained relatively stable throughout the period due to a reducing exploitation rate through the time period. In 2003, both 1SW and MSW spawners were at or above their respective CLs.

Russia: Total returns to Russia are estimated to have been at their highest in the early part of the time series followed by a sharp decline during the late 1970s and early 1980s. From this period onwards there has been a general upward trend in the number of returns although the estimates for last year show a decline. Estimates of spawners follow a similar pattern to that described for returns. There has been a marked reduction in the exploitation rate in the last decade. It should be noted that, for Russia in particular, year on year trends in estimated PFA may not be closely reflected in the subsequent year on year trend in the number of spawners. To account for biological reality, the model assigns a fixed proportion of potential spawners returning in a given year to the spawning numbers for the following year. In 2003, both 1SW and MSW spawners were at or above their respective CLs.

Sweden: Stocks in Sweden have fluctuated widely throughout the time-series. Following a substantial decline in the mid-1990s, there has again, been a rapid recovery followed by successive declines in the last three years. A feature of the latter half of the time-series is the increase in the proportion of the stock that is comprised of MSW salmon. The exploitation rate has remained high over the last 30 years although there has been a decline from 1990 onwards. In 2003, both 1SW and MSW spawners were at or above their respective CLs.

UK (England \& Wales): Stocks are estimated to have declined over the past 30 years, although there have been large annual fluctuations. Since the early 1990s, the decline in spawner numbers is less marked than that for the returns, reflecting a reduction in the homewater exploitation rate. The estimated PFA has declined more rapidly for MSW than 1SW salmon. There has been a slight up-turn in overall PFA since 1997, the lowest in the time-series. In 2003, 1SW spawners were below CL and MSW spawners were at or above CL.

UK (Northern Ireland): Returns are estimated to have declined over the time series as a whole, albeit with considerable short-term fluctuations. The catch is dominated by 1SW fish, but there are uncertainties in the relative status of 1SW and MSW fish, as the data on catch composition by sea age are uncertain for most of the historical timeseries. In 2003, both 1SW and MSW spawners were at or above their respective CLs.

UK (Scotland): The assessment indicates that stocks have fallen markedly since the early 1970s, although the decline in total spawner numbers has been less marked than those of homewater returns, reflecting the reduction in homewater exploitation rates. The estimated return rates for the last eight years are the lowest in the time series. In 2003, both 1SW and MSW spawners were below their respective CLs.

3.9.14 Trends in the PFA for NEAC stocks

Tables 3.9.14.1 to 3.9.14.6 show combined results from the PFA assessment for the Northern and Southern European groups and the whole NEAC area. The PFA of maturing and non-maturing 1SW salmon and the numbers of 1SW and MSW spawners for these areas are shown in Figures 3.9.14.1 to 3.9.14.6.

The 95% confidence limits (dotted lines for PFA and vertical bars for the spawning escapement) shown in Figures 3.9.14.1 to 3.9.14.6 indicate the high level of uncertainty in this assessment procedure. However, the Working Group recognised that the model provided an interpretation of our current understanding of national fisheries and stocks based upon simple parameters. Errors or inconsistencies in the output largely reflect uncertainties in our best estimates of these parameters. Furthermore, there are risks that progressive errors could occur if, for example, the rate that exploitation has been reduced over a period of years is underestimated. The results therefore need to be interpreted with caution.

Figure 3.9.14.1 shows that there has been a general decline in recruitment among 1SW and MSW salmon in the whole NEAC area over the past 30 years. In recent years, both age groups have been at the lowest levels observed. Numbers of 1SW and MSW spawners have also declined (Figure 3.9.14.2) over the past 30 years. The decline has been less severe than that observed in the recruits, however, indicating that reductions in exploitation have, to some extent, compensated for the decline in stocks. The general trends depicted are similar to those derived from the model run last year.

Figure 3.9.14.3 shows that recruitment of maturing 1SW salmon (potential grilse) in Northern Europe showed a steady decline from the mid-1980s to the mid-1990s. Following an upturn in the late 1990s, there has been a steep downturn in recent years followed by slight increase in 2003. In contrast, there is an increasing trend in the number of 1SW spawners (Figure 3.9.14.4) throughout the time-series, with escapement in 1997 to 2003 being above the conservation limit. This is consistent with a decline in exploitation. However, in 2002, there has been a marked drop in the number of 1SW spawners, which have remained at similar levels in 2003.

Numbers of non-maturing 1SW recruits (potential MSW returns) for Northern Europe (Figure 3.9.14.4) are also estimated to have fallen throughout the period from the early 1980s to the late 1990sThe numbers of MSW spawners,
however, show no trend. The numbers show a general increase from the lowest estimated value in 1988, although estimates have fallen back in the last 2 years. . Despite the decline in the last two years the upward trend has been continued. It therefore appears that the decline in recruitment has been balanced by the reductions in exploitation both in homewater fisheries and at Faroes. These trends in recruitment for the Northern European stocks are broadly consistent with the limited data available on the marine survival of monitored stocks in the Northern area (Section 3.9.15).

In the Southern European stock complex (Figure 3.9.14.5), the numbers of maturing 1SW recruits are estimated to have fallen substantially since the 1970s. This pattern is consistent with the data obtained from a number of monitored stocks. Survival of wild smolts to return as 1SW fish fell to very low levels in the Southern European area for which data were available (Section 3.9.15).

The PFA estimates suggest that the number of non-maturing 1SW recruits in Southern Europe has also followed a fairly steady and substantial decline over the past 30 years (Figure 3.9.14.5). This is broadly consistent with the general pattern of decline in marine survival of 2SW returns in most monitored stocks in the area (Section 3.9.5). In more recent years, reductions in exploitation do not appear to have kept pace with the stock declines, and the spawning escapement suffered a substantial decline in the mid 1990s from which it has not recovered to date (Figure 3.9.15.6).

3.9.15 Survival indices NEAC stocks

An overview of the estimates of marine survival for wild and hatchery-reared smolts returning to homewaters (i.e. before homewater exploitation) for the 2002 and 2001 smolt year classes (returning 1SW and 2SW salmon, respectively) is presented in Figure 3.9.15.1. The survival values presented are standardized (Z-score) indices relative to the averages of the time series. The original survival indices for different rivers and experimental facilities are presented in Tables 3.9.15.1 and 3.9.15.2.

An overall trend in both Northern and Southern NEAC areas, both wild and hatchery smolts, show a constant decline in marine survival over the past 10-20 years (Figure 3.9.15.1). The steepest decline appears to for the wild smolts in Southern NEAC area. Survival indices of both wild and reared fish in Northern NEAC area, however, have generally shown lesser declines than those in Southern NEAC area (Figure 3.9.15.1).

In general, a majority of the survival indices for the latest smolt year classes for wild smolts returning as 1SW fish were below those of the previous year and the 5- and 10-year averages. However, the opposite was true for most of the indices of wild MSW returns (Table 3.9.15.1). A majority of the survival indices for the hatchery-reared smolts were below those of the previous year and the 5- and 10 -year averages (Table 3.9.15.2). Return rates of hatchery released fish, however, may not always be a reliable indicator of marine survival of wild fish.

Results from these analyses are consistent with the information on estimated returns and spawners as derived from the PFA model (section 3.9.14).

3.10 NASCO has requested ICES to: evaluate the extent to which the objectives of any significant management measures introduced in the last five years have been achieved

The Working Group noted the ongoing reductions in the number of gear units deployed in most countries in the NEAC area since 1997 (Table 3.10.1). This is thought to reflect both management measures aimed at reducing levels of exploitation and the declining commercial viability of some fisheries. A number of other measures have also been introduced, or continued, in NEAC countries over this period. These include: restrictions on fishing seasons and gear, buy-out arrangements, voluntary restrictions, and increasing use of catch and release. Given the widely divergent measures introduced, variability in the timing of their introduction and duration, and the nature of the fisheries themselves, the Working Group recognised that it was not possible to quantify the effects of management measures on stocks and fisheries across the NEAC area in a consistent manner.

The effect of specific management measures on stocks and fisheries has been evaluated in a number of NEAC countries.

NEAC northern area

In Russia, commercial catches have been declining steadily as a result of various management changes, including the prohibition of some important in-river fisheries, aimed at reducing the fishing effort and enhancing the development of recreational catch-and-release fisheries. The mean commercial catch in the last five years (1999-2003) is 22% below that of
the previous five years (1994-1998). Some new regulations have been introduced in Sweden in 2002 and 2003, with the establishment and extension of protected areas outside certain salmon rivers and the extension of the close season by one month (to the end of March). The impact of these measures has not been assessed, although the catch in 2003 was over 30\% lower than that in 2002.

NEAC southern area

An appraisal of the earlier management changes in the commercial fishery in Ireland, introduced in 1997, was presented in ICES 2001/ACFM:15. More recently, there have been further substantial changes to the management of fisheries in Ireland, with the introduction of logbooks, carcass tagging and TACs, and these have also contributed to a reduction in both the overall catch and the exploitation rate on Irish stocks.

In UK (N. Ireland), significant management changes came into effect in the Fisheries Conservancy Board area in 2002, aimed at conservation of wild salmon stocks. For the 2001 season there was a voluntary agreement with licensed net operators that no net should operate until $1^{\text {st }}$ June (season was previously $17^{\text {th }}$ March to $15^{\text {th }}$ September), with 8 license holders agreeing not to fish at all. Holders of drift net licenses agreed to operate for only eight weeks during the period $1^{\text {st }}$ June to $15^{\text {th }}$ September, split into two four-week periods. These voluntary agreements preceded a public:private sponsored voluntary buyout, which came into effect for the 2002 season, with funds being made available to purchase netting rights from a significant proportion of operators in the FCB area. This scheme has resulted in the buyout of some 18 commercial licence holders. The number of commercial licences issued in the FCB area fell to 14 in the 2002 season (in comparison to 23 in 2001 and 27 in 2000) and was further reduced to 8 licences for 2003. Accompanying measures to regulate angling, introduced into the FCB area on a voluntary code-of-practice basis in 2001, operated again in 2003, following introduction of appropriate byelaws. These included catch and release from the start of the season up to the end of May; a daily bag limit of two fish from $1^{\text {st }}$ June to the end of the season. A ban on the sale of rod caught salmon is proposed. While the effects of these measures on stock status will require some years to fully evaluate, it is noted that the voluntary net buyout scheme probably contributed to the reduction in net catch in the FCB area from 23.4 t in 2001 to 9.4 t in 2002 and 6.3 t in 2003.

National measures were introduced in UK (England \& Wales) in 1999 to protect spring salmon. In 2003, these are estimated to have saved around 1,200 salmon from capture by net fisheries and around 1,000 by rod fisheries before June 1. These estimates are based on the catch and the average proportion of fish taken in this period in the 5 years prior to the measures being introduced; the latter estimate has been adjusted for catch and release. A 5-year review of these measures, completed in 2003, found that spawning escapement of spring salmon may have increased by up to one third on some rivers as a result of the measures, but that spring salmon stocks are still seriously depleted on many rivers. The review concluded that the measures should remain in place until 2008.

Since 1993, there has also been a policy to phase out coastal mixed stock salmon fisheries in UK (England \& Wales). In December 2000, the Government offered funds, subject to matching contributions from interested parties, to launch compensation arrangements designed to accelerate the phase out of mixed stock fisheries on a voluntary basis, with particular emphasis on the north east coast fishery. As a consequence, 52 drift net licensees in this fishery signed agreements with $\operatorname{NASF}(\mathrm{UK})$ to permanently relinquish their licences; this was effective for the 2003 season. The number of licences issued has now been reduced by 89% since 1992 and the drift net catch in 2003 fell to 5,511 compared with 27,685 in 2002 (down by 80%). Nine other small coastal mixed stock fisheries in UK (England \& Wales) have also been identified in recent years, seven of which are no longer operating, while the remaining two are in the process of been phased out.

Although there have been large annual fluctuations in the declared catches in UK (England \& Wales), the overall effect of these phase outs has been to reduce the catches in these coastal fisheries from an average of about 41,000 fish for the period 1988-92 to a little under 32,000 for the period 1998-2002 and to 10,526 fish in 2003. These measures have had more of an impact at the local level. For example, prior to the buy-off of the nets and fixed engines on the River Usk in 2000, this fishery took, on average, about 1,000 fish each year ($\sim 40 \%$ of the total net catch in Wales). The partial phase out of the Taw/Torridge fishery in 2002 resulted in a drop in the catch from a five-year mean (1997-2001) of 665 fish to 103 in 2002 and 276 in 2003.

In UK (Scotland), members of the Salmon Net Fishing Association, to which the majority of active net operators are affiliated, continued a voluntary agreement, introduced in 2000, to delay fishing until the beginning of April in order to protect early running MSW salmon. This has resulted in about an 80% reduction in the catch of MSW salmon by nets and fixed engines in the months of February and March, compared with the previous five years.

The above estimates and the overall reduction in gear units suggest that management measures introduced in the last 5 years have continued to reduce levels of exploitation on NEAC stocks.

Despite measures taken in relation to national and local objectives described here, the Working Group notes that three of the four NEAC stock complexes remain outside safe biological limits (sec. 3.1).

3.11 NASCO has requested ICES to: consider the report of the Study Group on the Bycatch of Salmon in Pelagic Trawl Fisheries, provide estimates of bycatch of salmon in pelagic fisheries, and advise on their reliability

3.11.1 Consideration of the report of SGBYSAL on the by-catch of salmon in pelagic trawl fisheries

The Terms of Reference of SGBYSAL were to:
a) work with WGMHNSA to disaggregate data on the commercial catches of mackerel and herring in the Norwegian Sea (ICES Divisions IIa and Vb), Northern North Sea (Division IVa), and the west of Ireland and Scotland (Divisions VI a \& b; VII b,c,j \& c) by ICES Division and standard week;
b) work with WGMHNSA to disaggregate data on the number of boats and gear types used in the commercial fishery of mackerel, herring and horse mackerel in the Norwegian Sea (ICES Divisions IIa and Vb), Northern North Sea (Division IVa), and the west of Ireland and Scotland (Divisions VI a \& b; VII b,c,j \& k) by ICES Division and standard week;
c) provide estimates of the by-catch of Atlantic salmon in the mackerel and herring fisheries in the Norwegian Sea with measures of their reliability;
d) explore analytical methods to allow catch rates of salmon in research surveys to be extrapolated to catch rates in commercial fisheries;
e) review methods used for intensive screenings of pelagic research hauls for the presence of post-smolts (small salmon in their 1st year at sea, generally $<45 \mathrm{~cm}$) and older salmon.

The Working Group considered that progress was made in clarifying the fisheries (including areas) and fishing gears where there was potential overlap with migrating post-smolt salmon in time and space. Table 3.11.1.1 summarises these fisheries while the SGBYSAL Report provides more specific details on each of the fisheries i.e. the countries participating and the times, areas and gears used. The ICES' areas and Divisions are shown in Figure 3.11.1.1. Potential fisheries are mackerel, herring (Norwegian spring spawning and North Sea herring), blue whiting, capelin. The horse mackerel fishery was not thought to coincide significantly in time and space with salmon migrations. Specific details are also available on the size of the catches by several countries by quarter and area, but disaggregated data were not available which limited the applicability of the catch data for assessment of post-smolt or adult by-catch.

The main gears considered to interact with migrating salmon were offshore pelagic trawls and purse seines. The Working Group noted that the gear used for surface and mid-water trawling was essentially the same and that they were deployed depending on where pelagic fish shoals were identified in the water. It was considered that the trawling on the surface was more likely to intercept post-smolt salmon than trawling lower in the water column. Purse seines probably did not have the same capacity to intercept smolts due to the smaller area fished by the individual nets compared to the towed gears.

SGBYSAL examined a number of potential methods for estimating by-catches of salmon, including:

- Extrapolation from research surveys
- Extrapolation from commercial fishery observer programme.
- Examination of all sources of catch rates for all years to establish a range of catch rates. (weighted by source/gear type) that are then applied to commercial catches.
- Others (e.g. large scale salmon tagging programmes and coordinated releases).

Information available from the first two techniques presented by SGBYSAL plus further information presented to the Working Group is examined further in Section 3.11.2.

SGBYSAL also considered existing screening programmes for pelagic fisheries as well as those directed specifically at identifying salmon in various countries and fisheries and noted the low incidence in the majority of these programmes.

These included :

- Research surveys (small catch, complete screening, different gear types)
- Salmon targeted research surveys
- General pelagic research surveys (e.g. Planning Group North East Atlantic Pelagic Ecosystems)
- Commercial fishery
- On-shore fish plants

The notable exception was information on landings recorded in the Netherlands of by-catches of salmon in the fisheries in the North Sea 1995-2003. A total of 5,851 salmon were recorded as a by-catch by Dutch vessels from 1995 to 2003 while 63 were reported by other vessels in the North sea. SGBYSAL noted that the highest densities of by-catches are recorded close to the coast with a peak occurring outside the Rhine estuary. It is also noted that the recorded by-catches were highest in June, with another peak occurring in October. In the absence of data on the fishery in these areas it is impossible to tell whether these peaks arise from higher fishing activity or whether they reflect a true spatial and temporal aggregation of salmon. . The Working Group noted that there is also a possibility of misclassifying sea trout as salmon in these Dutch fisheries and that this would need further clarification.

SGBYSAL recorded advantages and disadvantages in current screening programmes (research catch and commercial catch) providing data for estimation of by-catch. The following reservations were noted regarding by-catch estimates currently available.

Research catch screening

SGBYSAL considered that scanning research survey catches for salmon, although highly accurate, was not viable for the purpose of extrapolation to estimated by-catch in the commercial fishery, unless extensive intercalibration trials of the research and commercial gear were carried out. It was felt that the resources involved in such inter-calibrations would be better expended on intensifying screening of commercial catches.

Commercial catch screening:

Clearly, commercial catch screening methods cannot examine all the catch, as numbers are large, thus it is necessary to sub-sample many of these hauls to provide coverage of the catch. As screening will necessarily involve slowing down the commercial operation (perhaps only half the tows normally undertaken would be possible), some payment may have to be made to achieve access to catches as there will be commercial penalties for the lower catches that result. This principle was applied in a large scale observer based screening programme of the mackerel fishery in the Norwegian Sea in 2002 as reported to ICES in 2003 (ICES 2003/ACFM:19). However, these estimates were not considered by SGBYSAL to be reliable as the data were presented based on quarterly catches and it was felt that weekly disaggregated catches would be a prerequisite.

However, SGBYSAL endorsed observer based screening programmes for pelagic fisheries and concluded that it should be possible to establish suitable protocols for such screening. For example, the analysis by SGBYSAL of the overlap in time and space between salmon and the mackerel fishery suggests that screening may only be required during a relatively restricted period of time in the fishery, thus a more intensive programme may be considered. The group noted that screening is most viable on board factory vessels, where fish pass along conveyor belts, in contrast to tank vessels where catch is pumped directly into holding tanks and screening is not possible.

The Working Group noted the recommendations made by the SGBYSAL in their report:

1. Methods of estimating salmon post-smolt by-catches should be developed primarily via observer screening programmes on commercial fishing vessels. This will minimise assumptions required to extrapolate from research surveys.
2. Screening of commercial catches on board commercial fishing vessels should be carried out in pelagic fisheries that are of relevance to potential salmon by-catch. Protocols should be established for screening herring and mackerel fisheries, as these are likely to require special screening methods.
3. Research catches should continue to be screened for presence of salmon, as this will add to the knowledge base on distribution of salmon at sea and will help refine the spatial and temporal coincidence of pelagic species and salmon.
4. Screening of discards from filleting factories should be explored.
5. It is recommended that detailed information about the fishery i.e. applied fishing gear, fishing depth, number of boats, weekly catches by statistical rectangles is provided by NEAFC and the different nations for the fisheries in the Divisions and time periods identified by SGBYSAL (in Table 3.6.1) before it is appropriate to hold any future SGBYSAL meeting. UK, Iceland, Norway and Germany provided some of these data for the present SG.
6. Regardless of whether research catches or screening of commercial catches is used to make estimates of captures of post smolts in the fishery, there is a requirement for the use of weekly catch data. The estimate presented by ICES in 2002 used quarterly data and thus is not viewed by the Group as reliable
7. SGBYSAL should reconvene when disaggregated catch data for the Mackerel fishery in the Norwegian Sea become available, in order to provide estimates of by-catch in this fishery.
8. Work should be carried out to apply a range of by-catch estimates to known data on salmon abundance and survival trends in the stocks in question (southern NEAC stock complex mainly) to determine whether the present preliminary and crude range of levels of potential by-catch can account for recent changes in abundance or survival at sea.
9. Work should be carried out, under a range of by-catch rate scenarios to determine the scale and nature of any tagging programme that would be required to yield reliable estimates of by-catch.

3.11.2 Estimates of by-catch of salmon in pelagic fisheries

Two methods have previously been used to estimate the level of by-catch in pelagic fisheries. The limitations of each have been reviewed by SGBYSAL and commented on above. The outputs from both of these approaches are presented here to illustrate how these methods have been applied generally and the widely different estimates of by-catch produced by each method. For this reason the estimates have not been scaled up to the commercial catch in specific areas or times and should not be used as an indication of the scale of by-catch in pelagic fisheries.

Extrapolation from research surveys

By-catches of salmon in pelagic fisheries, Norwegian surveys

Information is available on research cruises carried out between 2001 and 2003. These cruises were dedicated to salmon and mackerel investigations both in the international area and in the Norwegian EEZ west (2001-2003) and north of the Voering Plateau in the Norwegian Sea (2002 and 200, $61-73.3^{\circ} \mathrm{N} ; 1.5^{\circ} \mathrm{W}-13^{\circ} \mathrm{E}$). During the by-catch investigations, 198, 590 and 436 post-smolts were taken respectively between 2001 and 2003 (Table 3.11.2.1). Starting from the north and moving southwards during the 2003 cruise, the post-smolt catches were medium to large at the beginning of the cruise and became smaller when approaching the $66^{\circ} \mathrm{N}$. As in 2002, the captures in single tows were smaller in the Norwegian EEZ than in the international zone. This might be expected, as the strongest branch of the North Atlantic Current passes west of the Vøring Plateau into the international area. However, post-smolts were also captured consistently within the Norwegian EEZ along with large numbers of mackerel. The mackerel sometimes filled the cod end of the experimental "Fish lift" trawl completely, resulting in post-smolts being badly damaged.

Calculation of the total number of post-smolts per tonne mackerel captured in the international zone gave an estimate 26 in 2002 and 25 in 2003. This area was not surveyed in 2001. In the Norwegian EEZ, in 2001, this estimate was 16 post-smolts/tonne compared with 57 post-smolts/tonne in 2002 and 6 post-smolts/tonne of mackerel in 2003. The overlap in time with the salmon and the fisheries in this area may, however, be shorter than first anticipated but this would need to be verified with disaggregated data on the fisheries.

Extrapolation directly from commercial fishery observer programme

By-catches of salmon in pelagic fisheries, Russian surveys

In 2002 the Russian Federation started a comprehensive investigation of potential by-catch of Atlantic salmon and postsmolts in the Russian mackerel fishery in the Norwegian Sea. In 2003 the program was continued. Scientific observers and fisheries inspectors worked onboard Russian fishing vessels in both years. Their tasks included, inter alia, screening of pelagic catch for potential by-catch of Atlantic salmon and its post-smolts. The catches were scanned immediately after retrieval of the trawl while discharging the fish into bins and also at a ship factory during grading. The screening protocol was the same as in previous year. For catches of more than 10 t one to three samples of $3,000 \mathrm{~kg}$ each were taken for screening. Crew of the vessels assisted in this work. The total catch of vessels inspected was $3,800 \mathrm{t}$ of mackerel and $3,400 \mathrm{t}$ of blue-whiting. Total or partial screening of 416 hauls was carried out. 1 post-smolt and 15 adult salmon were recorded in July-August. Two of the adults were caught when the targeted fish was blue-whiting. Also one fish caught in late July was described as a sea trout.

The data collected in 2002-2003 in the Russian pelagic fish surveys and in the screening program are summarized in Tables 3.11.2.2 and 3.11.2.3. Estimates provided for the research fishery in 2002 suggest a post-smolt/mackerel ratio of 5.93 per tonne and an adult salmon/mackerel ratio of 0.56 per tonne. Calculation of the ratio of total number of postsmolts per tonne of mackerel in the international zone gave an estimate of 0.002 post-smolts per tonne captured in the commercial fishery in 2002 and 0.0003 in 2003. The ratio of total number of adults per tonne of mackerel in the international zone was 0.002 in 2002 and 0.004 in 2003. As in 2002, the results suggest very extremely low numbers of post-smolts and adult salmon caught in the mackerel fishery in July-August in the international waters of the Norwegian Sea.

Conclusions on estimating by-catch

Clearly there is a large discrepancy between the estimates derived from each of the methods. The highest value is 57 post-smolts/tonne of mackerel while the lowest values is 0.0003 post-smolts/tonne. Despite the surveys being carried out in areas where post-smolts and adults are known to occur, it is not possible to derive a single estimate due to the limitations of the methodologies previously noted.

3.11.3 Examination of time series of catches of herring, mackerel, blue whiting and capelin against PFA for Northern and Southern Europe stock complexes.

Historical trends in pre-fishery abundance of NEAC stock complexes have been examined to compare trends in relative abundance of pelagic stocks in specific areas and salmon stocks (Figure 3.11.3.1). The ICES areas are shown in Figure 3.11.1.1.

Mackerel catch Catch in sub-area I, II \& Divs. Vb

(ICES 2004/ACFM:08)
Herring catch Total catch of Norwegian spring-spawning herring
(ICES 2003/ACFM:23)
Blue-whiting catch Total catch in northern areas
(ICES 2003/ACFM:23)

Capelin catch Total catch in Iceland-East Greenland-Jan Mayen area
(ICES 2003/ACFM:23)
Mackerel fishery - The mackerel catches increased significantly from 1981. However, there was already a decline in PFA noted for the Southern NEAC stock complex. From 1981 on there is no overall trend in mackerel catches, while there is an obvious declining trend in PFA for NEAC stocks complexes (maturing and non-maturing).

Herring fishery - The main increase in catch occurred later in the time series than the mackerel catch. Again, while the fishery increased substantially from 1990 on, the decline in PFA was already clearly established before this time.

Blue-whiting fishery - The increase in the fishery from 1995 coincides with a relatively stable period in the PFA time series for all four NEAC stock complexes.

Capelin fishery - There is little common trend in catch of capelin and PFA of salmon from any of the four NEAC stock complexes.

A similar analysis should be carried out using disaggregated data when these become available.

3.11.4 Salmon surveys in the sea

Sampling of post-smolts and pre-adults in Norway and the Norwegian Sea

Since 19905,081 post-smolts and 246 older salmon have been captured in 2656 surface trawl hauls carried out during cruises for surveying pelagic fish as well as dedicated salmon surveys (Table 3.11.4.1). The geographical distribution of post-smolts captured in 2003 is shown in Figure 3.11.4.1.

The CPUE values for post-smolts (number of fish caught per trawl hour) (Table 3.11.4.1) were relatively high during the dedicated salmon cruises, perhaps reflecting favourable timing of the cruises in relation to the density of post-smolt cohorts passing through the area surveyed (west of the Vøring Plateau). The detection rate of smolts may also be higher when they are the target species of the cruise and experienced "salmon personnel" are on board.

The gear currently in use is thought to be more effective in catching post-smolts than larger salmon during the summer months. Thus, CPUEs for larger salmon have not been calculated. However, in a Nordic data storage tag (DST) tag and release experiment, described in Section 2, where a specially designed salmon trawl has been used, substantial numbers of pre-adult and adult salmon were captured in late autumn of 2002 and 2003. It is thought that the gear may be effective in catching larger fish at colder sea temperatures.

Pelagic fish survey in the international waters of the Norwegian Sea

In 2003, the Russian pelagic fish survey in the Norwegian Sea was carried out by the R/V "Smolensk" M-103 (cruise 50). This survey is a part of an international research programme to study commercial species in the Norwegian and Barents Seas and is conducted on a yearly basis from May to July. Its target species are herring, blue whiting and mackerel. One of the objectives of the survey was to map the distribution of post-smolts in the Norwegian Sea.

The area was surveyed from $64^{\circ} 45 \mathrm{~N}$ to $68^{\circ} 30 \mathrm{~N}$ between $03^{\circ} \mathrm{E}$ and $06^{\circ} \mathrm{W}$ (Figure 3.11.4.2, Table 3.11.4.2). Trawling was carried out using a TR-2492 midwater trawl with a 50 -meter vertical and horizontal opening. This trawl is used in the commercial pelagic fishery, the only difference being a 16 mm mesh blinder net in the cod end. From 8 to 17 July 31 hauls were undertaken, of which 22 were with a headline at $0-5 \mathrm{~m}$ depth and 9 with a headline at $30-340 \mathrm{~m}$ depth.

At headline depths between 0 and 5 m , the towing speed was from 3.9 to 5.2 knots, with haul duration of $30-90$ min. The whole catch was screened and each fish was handled and identified individually. Mackerel were found in all trawls and catches varied from 5 kg to $5,395 \mathrm{~kg}$ (average 429 kg , total $13,293 \mathrm{~kg}$). Fish length varied between 32 cm and 38 cm , weight between 370 g and 670 g . When towing was carried out with a headline depth of $30-340 \mathrm{~m}$, the catch consisted largely of blue-whiting.

Other species found in all trawls were lumpsucker, which were caught on regular basis, herring (15 individuals), saithe (1 individual) and angler fish (1 individual). No salmon (adults or post-smolts) were caught in any of the trawls.

Table 3.3.3.1 Conservation limit options for NEAC stock groups estimated from national lagged egg deposition model and from river specific values (where available).

	National	del CLs	River S	ific CLs	Conservation L	Limit used
	1SW	MSW	1SW	MSW	1SW	MSW
Northern Europe						
Finland	28,142	16,571			28,142	16,571
Iceland	41,412	8,891			41,412	8,891
Norway ${ }^{1}$	136,970	81,008			136,970	81,008
Russia	100,442	44,552			100,442	44,552
Sweden	2,865	1,133			2,865	1,133
${ }^{1}$ Norwegian Conservation Limits calculated on data from 1983				Conservation Limit : Spawner Escapement Reserve:	309,831	152,155
					391,970	255,655

Table 3.6.1.1. Southern NEAC input data (Spawners/eggs and year) used in PFA forecast model.

Year	Eggs $\left(\times 10^{3}\right)$
1977	$5,586,325$
1978	$5,534,261$
1979	$5,223,240$
1980	$4,195,159$
1981	$3,701,509$
1982	$3,770,343$
1983	$3,567,144$
1984	$3,517,084$
1985	$3,572,419$
1986	$3,445,149$
1987	$4,298,094$
1988	$3,643,532$
1989	$3,790,052$
1990	$4,532,542$
1991	$4,435,278$
1992	$4,734,881$
1993	$4,730,640$
1994	$3,999,181$
1995	$3,270,875$
1996	$3,361,433$
1997	$3,595,631$
1998	$3,469,755$
1999	$3,537,399$
2000	$3,197,751$
2001	$2,624,551$
2002	$2,470,106$
2003	$2,294,264$
2004	$2,676,809$

Table 3.6.1.2 Predictions and 95% confidence limits (all values in thousands) of PFA non-maturing salmon for Southern NEAC using Spawners (Eggs) and Year.

Year	Prediction	Lower limit	Upper limit
2003	525	321	859
2004	489	305	786

Table 3.9.3.1 Numbers of gear units licensed or authorised by country and gear type.

Year	England \&		Wales			UK (Scotland)		UK (N. Ireland)			Norway			Driftnet (No. nets)
	Gillnet licences	Sweepnet	$\begin{gathered} \hline \text { Hand-held } \\ \text { net } \\ \hline \end{gathered}$	$\begin{array}{r} \hline \text { Fixed } \\ \text { engine } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Rod \& } \\ \text { Line }^{1} \\ \hline \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { Fixed } \\ \text { engine }{ }^{2} \\ \hline \end{array}$	Net and coble 3	Drifnet	Draftnet	$\begin{array}{\|c} \hline \text { Bagnets } \\ \text { and boxes } \end{array}$	Bagnet	Bendnet	Liftnet	
1971	437	230	294	79		3,069	802	142	305	18	4,608	2,421	26	8,976
1972	308	224	315	76	-	3,437	810	130	307	18	4,215	2,367	24	13,448
1973	291	230	335	70	-	3,241	884	130	303	20	4,047	2,996	32	18,616
1974	280	240	329	69	-	3,182	777	129	307	18	3,382	3,342	29	14,078
1975	269	243	341	69	-	2,978	768	127	314	20	3,150	3,549	25	15,968
1976	275	247	355	70	-	2,854	756	126	287	18	2,569	3,890	22	17,794
1977	273	251	365	71	-	2,742	677	126	293	19	2,680	4,047	26	30,201
1978	249	244	376	70	-	2,572	691	126	284	18	1,980	3,976	12	23,301
1979	241	225	322	68	-	2,698	747	126	274	20	1,835	5,001	17	23,989
1980	233	238	339	69	-	2,892	670	125	258	20	2,118	4,922	20	25,652
1981	232	219	336	72	-	2,704	647	123	239	19	2,060	5,546	19	24,081
1982	232	221	319	72	-	2,415	647	123	221	18	1,843	5,217	27	22,520
1983	232	209	333	74	-	2,530	669.5	120	207	17	1,735	5,428	21	21,813
1984	226	223	354	74	-	2,443	653	121	192	19	1,697	5,386	35	21,210
1985	223	230	375	69	-	2,196	551	122	168	19	1,726	5,848	34	20,329
1986	220	221	368	64	-	1,996	618.5	121	148	18	1,630	5,979	14	17,945
1987	213	206	352	68	-	1,762	577	120	119	18	1,422	6,060	13	17,234
1988	210	212	284	70	-	1,577	402	115	113	18	1,322	5,702	11	15,532
1989	201	199	282	75	-	1,235	355.5	117	108	19	1,888	4,100	16	0
1990	200	204	292	69	-	1,280	339.5	114	106	17	2,375	3,890	7	0
1991	199	187	264	66	-	1,136	289	118	102	18	2,343	3,628	8	0
1992	203	158	267	65	-	850	292.5	121	91	19	2,268	3,342	5	0
1993	187	151	259	55	-	900	263.5	120	73	18	2,869	2,783	-	0
1994	177	158	257	53	37,278	752	243.5	119	68	18	2,630	2,825	-	0
1995	163	156	249	47	34,941	729	221.5	122	68	16	2,542	2,715	-	0
1996	151	132	232	42	35,281	644	200.5	117	66	12	2,280	2,860	-	0
1997	139	131	231	35	32,781	688	190	116	63	12	2,002	1,075	-	0
1998	130	129	196	35	32,525	545	143.5	117	70	12	1,865	1,027	-	0
1999	120	109	178	30	29,132	384	128.5	113	52	11	1,649	989	-	0
2000	110	103	158	32	30,139	385	119	109	57	10	1,557	982	-	0
2001	113	99	143	33	24,350	387	95	107	50	6	1,976	1,081	-	0
2002	113	94	147	32	29,407	427	101	106	47	4	1,666	917	-	0
2003	58	97	160	57	27,209	328	105	102	52	2	1,664	766	-	0
Mean 1998-2002	117	107	164	32	29,111	426	117	110	55	9	1,743	999		0
$\%$ change ${ }^{4}$	-50.5	-9.2	-2.7	75.9	-6.5	-22.9	-10.6	-7.6	-5.8	-76.7	-4.5	-23.3		
Mean 1993-2002	140	126	205	39	31759	584	171	115	61	12	2104	1725		0
$\%$ change ${ }^{4}$	-58.7	-23.1	-22.0	44.7	-14.3	-43.8	-38.5	-11.0	-15.3	-83.2	-20.9	-55.6		

Table 3.9.3.1 continued Number of gear units licensed or authorised by country and gear type.

Year	Ireland				Finland				France			Russia		
			Other nets Commercial	Rod	The Teno River			$\frac{$ R. Näatämö Recreational fishery }{}	Rod and line licences	Com. nets in freshwater	Licences inestuary 4,5	$\begin{aligned} & \text { Kola Peninsula } \\ & \text { Catch-and-release } \\ & \text { Fishing days } \end{aligned}$	Commercial number of gears Coastal	
	Dritnets No.	Dratnets			Tourist anglers	fishery	Local rod and net fishery							
					Fishing days	Fishermen	Fishermen	Fishermen						In-river
1971	916	${ }^{697}$	213	10,566										
1972	1,156	678	197	9,612	-	-	-		-	-				
1973	1,112	713	224	11,660	-	-	-	.	-	-	-			
1974	1,048	681	211	12,845	-		-			-				
1975	1,046	672	212	13,142	-	-	-		-	-	-			
1976	1,047	677	225	14,139	-	-	-		-	-	-			
1977	997	${ }_{650}$	211	11,721	-	-	-			-	-			
1978	1,007	608	209	13,327	-	-	-	-	-	-	-			
1979	924	657	240	12,726	-	-	-	-	-	-	-			
1980	959	601	195	15,864			-			-				
1981	878	601	195	15,519	16,859	5,742	677	467						
1982	830	560	192	15,697	19,690	7,002	693	484	4,145	55	82			
1983	801	526	190	16,737	20,363	7,053	740	587	3,856	49	82			
1984	819	515	194	14,878	21,149	7,665	737	677	3,911	42	82			
1985	827	526	190	15,929	21,742	7,575	740	866	4,443	40	82			
1986	768	507	183	17,977	21,482	7,404	702	691	5,919	58^{1}	86			
1987			- .		22,487	7,759	754	689	5,804 ${ }^{1}$	87^{2}	80			
1988	836			11,539	21,708	7,755	${ }^{741}$	538	4,413	101	76			
1989	801		-	16,484	24,118	8,681	742	696	3,826	83	78			
1990	756	525	189	15,395	19,596	7,677	${ }^{278}$	614	2,977	71	${ }^{76}$			
1991	707	504	182	15,178	22,922	8,286	734	718	2,760	78	${ }^{71}$	1,711		
1992	691	535	183	20,263	26,748	9,058	749	875	2,160	57	71	4,088		
1993	673	457	161	23,875	29,461	10,198	755	705	2,111	53	55	6,026	59	199
1994	732	494	176	24,988	26,517	8,985	751	671	1,680	17	59	8,619	${ }^{60}$	230
1995	768	512	164	27,056	24,951	8,141	687	716	1,881	17	59	5,822	55	239
1996	778	523	170	29,759	17,625	5,743	672	814	1,806	21	69	6,326	85	330
1997	852	531	172	31,873	16,255	5,036	616	588	2,974	10	59	6,355	${ }_{68}$	282
1998	874	513	174	31,565	18,700	5,759	621	673	2,358	16	${ }_{6} 3$	6,034	${ }_{6} 6$	270
1999	874	499	- 162	32,493	22,935	6,857	616	${ }^{850}$	${ }^{2,232}$	15	${ }_{31}$	7,023	66	194
2000	871	490	- 158	33,527	28,385	8,275	633	624	2,744 ${ }^{3}$	16	35	7,336	60	173
2001	881	540) 155	32,814	33,501	9,367	863	590	3,111 ${ }^{7}$	12	32	8,468	${ }_{5}^{53}$	121
2002	833	544	159	32,814	37,491	10,560	853	660	na. ${ }^{8}$	20.	58	9,624	${ }^{63}$	72
2003	877	549	159	32,725	34,979	10,032	832	644	na. ${ }^{8}$	na. ${ }^{8}$	na. ${ }^{8}$	11,898	55	84
Mean 1998-2002	867	517	162	32,643	28,202	8,164	717	679				7,043	63	208
$\%$ change ${ }^{\text {e }}$	1.2	6.1	-1.6	0.3	24.0	22.9	16.0	-5.2				68.9	-12.1	-59.6
Mean 1993-2002	814	510	${ }^{165}$	30,076	25,582	7,892	707	689				6,610	64	226
\% change ${ }^{6}$	7.8	7.6	-3.7	8.8	36.7	27.1	17.7	-6.5				80.0	-13.5	-62.9

[^2]${ }^{2}$ Since 1987 fishermen have been obliged to declare their catches.
${ }^{3}$ This figure is an estimate from a sample of anglers, the sea trout an
${ }^{3}$ This figure is an estimate from a sample of anglers, the sea trout and salmon angling licenses being common since 2000
${ }^{4}$ The number of licences, 1999 included, indicates only the number of fishermen or boats allowed to fish for salmon. It ove 5 Adour estuary only southwest of France.
${ }^{6}(2003 /$ mean -1$) * 100$
${ }^{7}(2003 / \mathrm{mean}-1) * 100$
${ }^{7}$ Estimated from from licences sold to migratory salmonid fisheries.
${ }^{8}$ Figures not avaliable

Table 3.9.4.1 Nominal catch of SALMON in NEAC Area (in tonnes round fresh weight), 1960-2003 (2003 figures are provisional).

Year	Southern countries	Northern countries	Faroes (1)	Other catches in international waters	Total Reported Catch	Unreported catches	
						NEAC Area	International waters (2)
1960	2,641	2,899	-	-	5,540	-	-
1961	2,276	2,477	-	-	4,753	-	-
1962	3,894	2,815	-	-	6,709	-	-
1963	3,842	2,434	-	-	6,276	-	-
1964	4,242	2,908	-	-	7,150	-	-
1965	3,693	2,763	-	-	6,456	-	-
1966	3,549	2,503	-	-	6,052	-	-
1967	4,492	3,034	-	-	7,526	-	-
1968	3,623	2,523	5	403	6,554	-	-
1969	4,383	1,898	7	893	7,181	-	-
1970	4,048	1,834	12	922	6,816	-	-
1971	3,736	1,846	-	471	6,053	-	-
1972	4,257	2,340	9	486	7,092	-	-
1973	4,604	2,727	28	533	7,892	-	-
1974	4,352	2,675	20	373	7,420	-	-
1975	4,500	2,616	28	475	7,619	-	-
1976	2,931	2,383	40	289	5,643	-	-
1977	3,025	2,184	40	192	5,441	-	-
1978	3,102	1,864	37	138	5,141	-	-
1979	2,572	2,549	119	193	5,433	-	-
1980	2,640	2,794	536	277	6,247	-	-
1981	2,557	2,352	1,025	313	6,247	-	-
1982	2,533	1,938	606	437	5,514	-	-
1983	3,532	2,341	678	466	7,017	-	-
1984	2,308	2,461	628	101	5,498	-	-
1985	3,002	2,531	566	-	6,099	-	-
1986	3,595	2,588	530	-	6,713	-	-
1987	2,564	2,266	576	-	5,406	2,554	-
1988	3,315	1,969	243	-	5,527	3,087	-
1989	2,433	1,627	364	-	4,424	2,103	-
1990	1,645	1,775	315	-	3,735	1,779	180-350
1991	1,145	1,677	95	-	2,917	1,555	25-100
1992	1,523	1,806	23	-	3,352	1,825	25-100
1993	1,443	1,853	23	-	3,319	1,471	25-100
1994	1,896	1,685	6	-	3,587	1,157	25-100
1995	1,774	1,503	5	-	3,282	942	-
1996	1,393	1,358	-	-	2,751	947	-
1997	1,112	962	-	-	2,074	732	-
1998	1,121	1,099	6	-	2,226	1,108	-
1999	934	1,139	0	-	2,073	887	-
2000	1,210	1,518	8	-	2,736	1,135	-
2001	1,242	1,634	0	-	2,876	1,089	-
2002	1,119	1,360	0	-	2,479	946	-
2003	932	1,384	0	-	2,315	719	-
Means							
1998-2002	1,125	1,350	3	-	2,478	1,033	-
1993-2002	1,324	1,411	6	-	2,740	1,041	-

1. Since 1991, fishing carried out at the Faroes has only been for research purposes.
2. Estimates refer to season ending in given year.

Table 3.9.5.1 CPUE for salmon rod fisheries in Finland (Teno, Naatamo), France, and UK(N.Ireland)(Bush).

	Finland (R. Teno)		Finland (R. Naatamo)		$\begin{aligned} & \frac{\text { France }}{\text { Catch per }} \\ & \text { angler season } \end{aligned}$	$\begin{aligned} & \frac{\text { UK(N.Ire.)(R.Bush) }}{\text { Catch per }} \\ & \text { rod day } \end{aligned}$
	Catch per angler seasor	Catch per angler day	Catch per angler season	Catch per angler day		
Year	kg	kg	kg	kg	Number	Number
1974		2.8				
1975		2.7				
1976		-				
1977		1.4				
1978		1.1				
1979		0.9				
1980		1.1				
1981	3.2	1.2				
1982	3.4	1.1				
1983	3.4	1.2				0.248
1984	2.2	0.8	0.5	0.2		0.083
1985	2.7	0.9	n / a	n /a		0.283
1986	2.1	0.7	n / a	n/a		0.274
1987	2.3	0.8	n/a	n/a	0.39	0.194
1988	1.9	0.7	0.5	0.2	0.73	0.165
1989	2.2	0.8	1.0	0.4	0.55	0.135
1990	2.8	1.1	0.7	0.3	0.71	0.247
1991	3.4	1.2	1.3	0.5	0.60	0.396
1992	4.5	1.5	1.4	0.3	0.94	0.258
1993	3.9	1.3	0.4	0.2	0.88	0.341
1994	2.4	0.8	0.6	0.2	2.31	0.205
1995	2.7	0.9	0.5	0.1	1.15	0.206
1996	3.0	1.0	0.7	0.2	1.57	0.267
1997	3.4	1.0	1.1	0.2	$0.43{ }^{1}$	0.338
1998	3.0	0.9	1.3	0.3	0.67	0.569
1999	3.7	1.1	0.8	0.2	0.76	0.273
2000	5.0	1.5	0.9	0.2	0.79	0.259
2001	5.9	1.7	1.2	0.3	0.65	0.444
2002	3.1	0.9	0.7	0.2		0.184
2003	2.6	0.7	0.8	0.2		0.238
Mean						
1998-02	4.1	1.2	1.0	0.2	0.7	0.3

${ }^{1}$ Large numbers of new, inexperienced anglers in 1997 because cheaper licence types were introduced.

Table 3.9.5.2 CPUE for salmon rod fisheries in the Barents Sea and White Sea basin in Russia.

Barents Sea Basin, catch per angler day					White Sea Basin, catch per angler day			
Year	Rynda	Kharlovka	Varzina	Iokanga	Ponoy	Varzuga	Kitsa	Umba
1991					2.794	1.870		1.330
1992	2.370	1.454	1.070	0.135	3.489	2.261	1.209	1.366
1993	1.177	1.464	0.488	0.650	2.881	1.278	1.425	2.720
1994	0.710	0.847	0.548	0.325	2.332	1.596	1.588	1.436
1995	0.486	0.782	1.220	0.718	3.459	2.524	1.784	1.196
1996	0.703	0.845	1.502	1.398	3.503	1.444	1.761	0.930
1997	1.197	0.709	0.613	1.411	5.330	2.364	2.482	1.457
1998	1.010	0.551	0.441	0.868	4.544	2.284	2.784	0.979
1999	0.947	0.642	0.427	1.193	3.300	1.710	1.657	0.756
2000	1.348	0.769	0.565	2.283	3.494	1.526	3.018	1.245
2001	1.160	1.272	0.888	0.730	4.200	1.860	1.814	1.039
2002	2.390	0.993	0.794	2.822	5.807	1.436	2.108	0.360
2003	1.611	1.143	0.785	2.009	6.343			
Mean 1998-02	1.371	0.845	0.623	1.579	4.269	1.763	2.276	0.876

Table 3.9.5.3 CPUE data for net and fixed engine salmon fisheries by Region in UK (England \& Wales). Data expressed as catch per licence-tide in all Regions except the North East, for which the data are recorded as catch per licence-day.

		Region (aggregated data, various methods)						
	North East							
Year	drift nets	North East	Southern	South West	Midlands ${ }^{1}$	Wales	North West	
1988		5.49	10.15		-	-		
1989		4.39	16.80		0.90	0.82		
1990		5.53	8.56		0.78	0.63		
1991		3.20	6.40		0.62	0.51		
1992		3.83	5.00		0.69	0.40		
1993	8.23	6.43	No fishing		0.68	0.63		
1994	9.02	7.53	-		1.02	0.71		
1995	11.18	7.84	-		1.00	0.79		
1996	4.93	3.74	-		0.73	0.59		
1997	6.84	5.30	-	0.42		0.77	0.35	
1998	6.49	5.12	-	0.56	0.25	0.69	0.32	
1999	8.77	7.28	-	0.48	0.36	0.83	0.37	
2000	12.21	10.50	-	0.69	0.43	0.40	0.64	
2001	10.06	8.70	-	0.62	0.42	0.47	0.56	
2002	8.23	7.00	-	0.62	0.34	0.53	0.63	
2003	7.1	4.69	-	0.67	0.48	0.39	0.51	
Mean								
$1998-02$	9.15	7.72		0.59	0.38	0.58	0.50	

${ }^{1}$ Seine nets and lave nets only

Table 3.9.5.4 CPUE data for Scottish net fisheries.
Catch in numbers of fish per unit effort.

Year	Fixed engine	Net and coble CPUE
	Catch/trap month (1)	Catch/crew month
1952	33.91	156.39
1953	33.12	121.73
1954	29.33	162.00
1955	37.09	201.76
1956	25.71	117.48
1957	32.58	178.70
1958	48.36	170.39
1959	33.30	159.34
1960	30.67	177.80
1961	31.00	155.17
1962	43.89	242.00
1963	44.25	182.86
1964	57.92	247.11
1965	43.67	188.61
1966	44.86	210.59
1967	72.57	329.80
1968	46.99	198.47
1969	65.51	327.64
1970	50.28	241.91
1971	57.19	231.61
1972	57.49	248.04
1973	73.74	240.60
1974	63.42	257.11
1975	53.63	235.71
1976	42.88	150.79
1977	45.58	188.67
1978	53.93	196.07
1979	42.20	157.19
1980	37.65	158.62
1981	49.60	183.86
1982	61.29	180.21
1983	55.84	203.59
1984	58.88	155.31
1985	49.60	148.88
1986	75.19	193.42
1987	61.83	145.61
1988	50.57	198.43
1989	71.04	262.35
1990	33.22	145.96
1991	35.87	106.35
1992	59.58	153.66
1993	52.84	125.23
1994	92.13	123.74
1995	75.60	142.27
1996	57.52	110.93
1997	32.96	57.79
1998	36.02	68.67
1999	21.94	58.78
2000	53.73	105.22
2001	60.26	76.14
2002	43.80	67.30
2003	84.40	100.30
Mean		
1998-02	43.15	75.22

${ }^{1}$ Excludes catch and effort for Solway Region

Table 3.9.5.5 Catch per unit effort for the marine fishery in Norway. The CPUE is expressed as numbers of salmon caught per net day in bagnets and bendnets divided by salmon weight.

	Bagnet			Bendnet		
Year	$<\mathbf{3 k g}$	$\mathbf{3 - 7} \mathbf{~ k g}$	$\mathbf{7} \mathbf{~ k g}$	$<\mathbf{3 k g}$	$\mathbf{3 - 7} \mathbf{~ k g}$	$\mathbf{7 \mathbf { k g }}$
1998	0.88	0.66	0.12	0.80	0.56	0.13
1999	1.16	0.72	0.16	0.75	0.67	0.17
2000	2.01	0.90	0.17	1.24	0.87	0.17
2001	1.52	1.03	0.22	1.03	1.39	0.36
2002	0.91	1.03	0.26	0.74	0.87	0.32
2003	1.57	0.9	0.26	0.84	0.69	0.28
Mean						
1998-02	1.30	0.87	0.19	0.91	0.87	0.23

Table 3.9.6.1. Percentage of 1 SW salmon in catches from countries in the North East Atlantic, 1987-2003

Year	Iceland	Finland	Norway	Russia	Sweden	Northern countries	UK (Scot)	UK (E\&W)	France	Spain (1)	Southern countries
1987		66	61	71		63	61	68	77		63
1988		63	64	53		62	57	69	29		60
1989	69	66	73	73	41	72	63	65	33		63
1990	66	64	68	73	70	69	48	52	45		49
1991	72	59	65	70	71	66	53	71	39		58
1992	72	70	62	72	68	65	55	77	48		59
1993	76	58	61	61	62	63	57	81	74	64	64
1994	64	55	68	69	64	67	54	77	55	61	61
1995	72	59	58	70	78	62	53	72	60	22	59
1996	74	79	53	80	63	61	53	65	51	22	56
1997	73	69	64	82	54	68	54	73	51	22	60
1998	82	75	66	82	59	70	58	83	71	50	65
1999	71	83	65	78	71	68	45	70	27	13	54
2000	84	71	67	75	69	69	54	79	58	63	65
2001	81	48	58	74	55	60	55	75	51	36	62
2002	82	34	49	70	63	54	54	75	69	33	63
2003	76	51	61	67	57	62	52	66	45	15	55
Means											
1998-2002	80	62	61	76	63	64	53	76	55	39	62
1993-2002	76	63	61	74	64	64	54	75	57	39	61

1. Based on catches in Asturias (90% of the Spanish catch).

Table 3.9.12.1a Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - River Teno (FINLAND/NORWAY)

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total		Exp. rate 1SW (\%)		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	8,422	8,538	30	40	30	40	40	60	40	70
1972	13,160	13,341	30	40	30	40	40	60	40	70
1973	11,969	15,958	30	40	30	40	40	60	40	70
1974	23,709	23,709	30	40	30	40	40	60	40	70
1975	16,527	26,417	30	40	30	40	40	60	40	70
1976	11,323	21,719	30	40	30	40	40	60	40	70
1977	5,807	13,227	30	40	30	40	40	60	40	70
1978	7,902	8,452	30	40	30	40	40	60	40	70
1979	9,249	7,390	30	40	30	40	40	60	30	60
1980	4,792	8,938	20	30	20	30	40	60	30	60
1981	7,386	9,835	20	30	20	30	40	60	30	60
1982	2,163	12,826	20	30	20	30	40	60	30	60
1983	10,680	13,990	20	30	20	30	40	60	30	60
1984	11,942	13,262	20	30	20	30	40	60	30	60
1985	18,039	10,339	20	30	20	30	40	60	30	60
1986	16,389	9,028	20	30	20	30	40	60	30	60
1987	20,950	11,290	20	30	20	30	40	60	30	60
1988	10,019	7,231	20	30	20	30	40	60	30	60
1989	28,091	10,011	20	30	20	30	50	70	40	70
1990	26,646	12,562	20	30	20	30	50	70	40	70
1991	32,423	15,136	20	30	20	30	50	70	40	70
1992	42,965	16,158	20	30	20	30	50	70	40	70
1993	30,197	18,720	20	30	20	30	50	70	40	70
1994	12,016	15,521	20	30	20	30	50	70	40	70
1995	11,801	9,634	20	30	20	30	50	70	40	70
1996	22,799	6,956	20	30	20	30	40	60	30	60
1997	19,481	10,083	20	30	20	30	40	60	30	60
1998	22,460	8,497	20	30	20	30	40	60	30	60
1999	38,687	8,854	20	30	20	30	50	70	40	60
2000	40,654	19,707	20	30	20	30	50	70	40	60
2001	18,372	28,337	20	30	20	30	50	70	40	60
2002	10757	22717	20	30	20	30	40	60	40	60
2003	12699	16093	20	30	20	30	40	60	40	60
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} \mathrm{M}(\min) & = \\ \mathrm{M}(\max) & = \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.040 \end{aligned}$		Return time (m) =		1SW(min) 1SW(max)	7 9	MSW (min) MSW (max)	16 18		

Table 3.9.12.1b Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - FRANCE

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total MSW		Exp. rate 1SW (\%)		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
	Non-reporting included in exploitation rates until 2002									
1971	1,740	4,060	0	0	0	0	2	5	25	50
1972	3,480	8,120	0	0	0	0	2	5	25	50
1973	2,130	4,970	0	0	0	0	2	5	25	50
1974	990	2,310	0	0	0	0	2	5	25	50
1975	1,980	4,620	0	0	0	0	2	5	25	50
1976	1,820	3,380	0	0	0	0	2	5	25	50
1977	1,400	2,600	0	0	0	0	2	5	25	50
1978	1,435	2,665	0	0	0	0	2	5	25	50
1979	1,645	3,055	0	0	0	0	2	5	25	50
1980	3,430	6,370	0	0	0	0	2	5	25	50
1981	2,720	4,080	0	0	0	0	2	5	20	50
1982	1,680	2,520	0	0	0	0	2	5	20	50
1983	1,800	2,700	0	0	0	0	2	5	20	50
1984	2,960	4,440	0	0	0	0	2	5	20	50
1985	1,100	3,330	0	0	0	0	2	5	20	50
1986	3,400	3,400	0	0	0	0	2	12	20	50
1987	6,000	1,800	0	0	0	0	2	12	20	50
1988	2,100	5,000	0	0	0	0	2	12	20	50
1989	1,100	2,300	0	0	0	0	2	12	20	50
1990	1,900	2,300	0	0	0	0	2	12	20	50
1991	1,400	2,100	0	0	0	0	2	12	20	50
1992	2,500	2,700	0	0	0	0	2	12	20	50
1993	3,600	1,300	0	0	0	0	2	12	20	50
1994	2,800	2,300	0	0	0	0	2	12	20	40
1995	1,669	1,095	0	0	0	0	5	20	20	40
1996	2,063	1,942	0	0	0	0	5	20	20	40
1997	1,060	1,001	0	0	0	0	5	20	20	40
1998	2,065	846	0	0	0	0	5	20	20	40
1999	690	1,831	0	0	0	0	5	20	20	40
2000	1,792	1,277	0	0	0	0	5	20	20	40
2001	1,544	1,489	0	0	0	0	5	20	20	40
2002	2,423	1,063	2	5	2	5	5	20	20	55
2003	1,531	1,834	2	5	2	5	5	20	20	55
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} \mathrm{M}(\min) & = \\ \mathrm{M}(\max) & = \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.040 \end{aligned}$			ime (m) $=$	1SW(min) 1SW(max)	7 9	MSW (\min) $M S W(\max)$	16 18		

Table 3.9.12.1c Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - ICELAND-WEST \& SOUTH

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total		Exp. rate 1SW (\%)		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	30618	16749	1	3	1	3	40	60	50	70
1972	24832	25733	1	3	1	3	40	60	50	70
1973	26624	23183	1	3	1	3	40	60	50	70
1974	18975	20017	1	3	1	3	40	60	50	70
1975	29428	21266	1	3	1	3	40	60	50	70
1976	23233	18379	1	3	1	3	40	60	50	70
1977	23802	17919	1	3	1	3	40	60	50	70
1978	31199	23182	1	3	1	3	40	60	50	70
1979	28790	14840	1	3	1	3	40	60	50	70
1980	13073	20855	1	3	1	3	40	60	50	70
1981	16890	13919	1	3	1	3	40	60	50	70
1982	17331	9826	1	3	1	3	40	60	50	70
1983	21923	16423	1	3	1	3	40	60	50	70
1984	13476	13923	1	3	1	3	40	60	50	70
1985	21822	10097	1	3	1	3	40	60	50	70
1986	35891	8423	1	3	1	3	40	60	50	70
1987	22302	7480	1	3	1	3	40	60	50	70
1988	40028	8523	1	3	1	3	40	60	50	70
1989	22377	7607	1	3	1	3	40	60	50	70
1990	20584	7548	1	3	1	3	40	60	50	70
1991	22711	7519	1	3	1	3	40	60	50	70
1992	26006	8479	1	3	1	3	40	60	50	70
1993	25479	4155	1	3	1	3	40	60	50	70
1994	20985	6736	1	3	1	3	40	60	50	70
1995	25371	6777	1	3	1	3	40	60	50	70
1996	21913	4364	1	3	1	3	40	60	50	70
1997	16007	4910	1	3	1	3	40	60	50	70
1998	21900	3037	1	3	1	3	40	60	50	70
1999	17448	5757	1	3	1	3	40	60	50	70
2000	15502	1519	1	3	1	3	40	60	50	70
2001	13586	2707	1	3	1	3	40	60	50	70
2002	16952	2845	1	3	1	3	40	60	50	70
2003	18522	4530	1	3	1	3	40	60	50	70
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} \mathrm{M}(\min) & = \\ \mathrm{M}(\max) & = \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.040 \end{aligned}$		Return time (m)=		1SW(min) 1SW(max)	7 9	MSW (min) MSW (\max)	16 18		

Table 3.9.12.1d Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - ICELAND- North \& East

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total		Exp. rate 1SW (\%)		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	4610	6625	1	3	1	3	40	60	50	70
1972	4223	10337	1	3	1	3	40	60	50	70
1973	5060	9672	1	3	1	3	40	60	50	70
1974	5047	9176	1	3	1	3	40	60	50	70
1975	6152	10136	1	3	1	3	40	60	50	70
1976	6184	8350	1	3	1	3	40	60	50	70
1977	8597	11631	1	3	1	3	40	60	50	70
1978	8739	14998	1	3	1	3	40	60	50	70
1979	8363	9897	1	3	1	3	40	60	50	70
1980	1268	13784	1	3	1	3	40	60	50	70
1981	6528	4827	1	3	1	3	40	60	50	70
1982	3007	5539	1	3	1	3	40	60	50	70
1983	4437	4224	1	3	1	3	40	60	50	70
1984	1611	5447	1	3	1	3	40	60	50	70
1985	11116	3511	1	3	1	3	40	60	50	70
1986	13827	9569	1	3	1	3	40	60	50	70
1987	8145	9908	1	3	1	3	40	60	50	70
1988	11775	6381	1	3	1	3	40	60	50	70
1989	6342	5414	1	3	1	3	40	60	50	70
1990	4752	5709	1	3	1	3	40	60	50	70
1991	6900	3965	1	3	1	3	40	60	50	70
1992	12996	5903	1	3	1	3	40	60	50	70
1993	10689	6672	1	3	1	3	40	60	50	70
1994	3414	5656	1	3	1	3	40	60	50	70
1995	8776	3511	1	3	1	3	40	60	50	70
1996	4681	4605	1	3	1	3	40	60	50	70
1997	6406	2594	1	3	1	3	40	60	50	70
1998	10905	3780	1	3	1	3	40	60	50	70
1999	5326	4030	1	3	1	3	40	60	50	70
2000	5595	2324	1	3	1	3	40	60	50	70
2001	4976	2587	1	3	1	3	40	60	50	70
2002	8437	2366	1	3	1	3	40	60	50	70
2003	4428	3367	1	3	1	3	40	60	50	70
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} \mathrm{M}(\min) & = \\ \mathrm{M}(\max) & = \end{aligned}$	0.020 0.040			ime (m) =	$1 S W(\min)$ $1 S W(\max)$	7 9	MSW (min) MSW (max)	16 18		

Table 3.9.12.1e Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - All IRELAND.

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total		Exp. rate 1SW (\%)		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	417,428	46,381	30.00	45.00	30.00	45.00	50.00	75.00	35.00	60.00
1972	449,160	49,907	30.00	45.00	30.00	45.00	50.00	75.00	35.00	60.00
1973	460,665	51,185	30.00	45.00	30.00	45.00	50.00	75.00	35.00	60.00
1974	561,324	62,369	30.00	45.00	30.00	45.00	50.00	75.00	35.00	60.00
1975	616,250	68,472	30.00	45.00	30.00	45.00	50.00	75.00	35.00	60.00
1976	420,509	46,723	30.00	45.00	30.00	45.00	50.00	75.00	35.00	60.00
1977	368,580	40,953	30.00	45.00	30.00	45.00	50.00	75.00	35.00	60.00
1978	324,350	36,039	30.00	45.00	30.00	45.00	50.00	75.00	35.00	60.00
1979	289,539	32,171	30.00	45.00	30.00	45.00	50.00	75.00	35.00	60.00
1980	237,561	37,890	30.00	45.00	30.00	45.00	50.00	75.00	35.00	60.00
1981	157,713	29,205	30.00	45.00	30.00	45.00	50.00	75.00	35.00	60.00
1982	277,528	11,059	30.00	45.00	30.00	45.00	0.00	0.00	28.34	44.99
1983	463,603	27,161	30.00	45.00	30.00	45.00	0.00	0.00	10.34	45.41
1984	243,152	19,844	30.00	45.00	30.00	45.00	0.00	0.00	37.02	50.00
1985	456,437	17,960	30.00	45.00	30.00	45.00	0.00	0.00	32.75	39.45
1986	509,992	29,011	30.00	45.00	30.00	45.00	0.00	0.00	36.95	54.30
1987	344,067	26,472	20.00	40.00	20.00	40.00	0.00	0.00	27.50	36.86
1988	416,652	22,795	20.00	40.00	20.00	40.00	0.00	0.00	31.85	94.21
1989	316,537	25,776	20.00	40.00	20.00	40.00	0.00	0.00	38.35	78.00
1990	183,589	14,950	20.00	40.00	20.00	40.00	0.00	0.00	53.85	76.69
1991	116,924	9,521	20.00	40.00	20.00	40.00	0.00	0.00	30.47	61.54
1992	180,869	14,728	20.00	40.00	20.00	40.00	0.00	0.00	47.66	55.26
1993	152,577	12,425	15.00	35.00	15.00	35.00	0.00	0.00	23.59	56.43
1994	235,935	19,213	15.00	35.00	15.00	35.00	0.00	0.00	38.06	62.08
1995	233,314	18,999	15.00	35.00	15.00	35.00	0.00	0.00	40.65	88.47
1996	202,582	16,497	15.00	35.00	15.00	35.00	0.00	0.00	51.93	58.282798
1997	152,809	12,443	15.00	35.00	10.00	20.00	0.00	0.00	18.51	74.44
1998	162,055	13,196	15.00	35.00	10.00	20.00	0.00	0.00	60.47	63.25
1999	145,337	11,835	15.00	35.00	10.00	20.00	0.00	0.00	42.70	52.29
2000	180,823	14,725	15.00	35.00	10.00	20.00	0.00	0.00	26.51	35.48
2001	234,683	19,111	5	10	5	10	0.00	0.00	27	38
2002	198,634	16,175	5	10	5	10	0.00	0.00	20	35
2003	166152	13530	5	10	5	10	0.00	0.00	16	43
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} \mathrm{M}(\min) & = \\ \mathrm{M}(\max) & = \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.040 \end{aligned}$		Return time (m)=		$1 S W(\min)$ $1 S W(\max)$	7 9	MSW (min) MSW (max)	16 18		

Table 3.9.12.1f Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - NORWAY-South

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total		Exp. rate 1SW (\%)		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	0	0	0	0	0	0	0	0	0	0
1972	0	0	0	0	0	0	0	0	0	0
1973	0	0	0	0	0	0	0	0	0	0
1974	0	0	0	0	0	0	0	0	0	0
1975	0	0	0	0	0	0	0	0	0	0
1976	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	0	0	0
1979	0	0	0	0	0	0	0	0	0	0
1980	0	0	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	0	0	0	0	0
1982	0	0	0	0	0	0	0	0	0	0
1983	40,511	37,105	40	60	40	60	65	85	65	85
1984	34,248	38,614	40	60	40	60	65	85	65	85
1985	47,877	36,968	40	60	40	60	65	85	65	85
1986	51,839	41,890	40	60	40	60	65	85	65	85
1987	48,690	39,641	40	60	40	60	65	85	65	85
1988	53,775	37,145	40	60	40	60	65	85	65	85
1989	43,128	25,279	40	60	40	60	55	75	55	75
1990	44,259	25,907	40	60	40	60	55	75	55	75
1991	30,771	19,054	40	60	40	60	55	75	55	75
1992	32,488	24,124	40	60	40	60	55	75	55	75
1993	34,503	22,835	30	50	30	50	55	75	55	75
1994	42,551	20,903	30	50	30	50	55	75	55	75
1995	32,685	24,725	30	50	30	50	55	75	55	75
1996	27,739	26,029	30	50	30	50	55	75	55	75
1997	31,381	14,922	25	45	25	45	50	70	50	70
1998	38,299	16,966	25	45	25	45	50	70	50	70
1999	31,256	9,881	25	45	25	45	50	70	50	70
2000	54,671	22,208	25	45	25	45	50	70	50	70
2001	59,425	29,896	25	45	25	45	50	70	50	70
2002	39,068	21,513	25	45	25	45	50	70	50	70
2003	41,642	28,168	20	40	20	40	50	70	50	70
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0
$\begin{array}{r} \mathrm{M}(\min)= \\ \mathrm{M}(\max)= \end{array}$	$\begin{aligned} & 0.020 \\ & 0.040 \end{aligned}$			ime (m) =	$1 S W(\min)$ $1 S W(\max)$	7 9	MSW (min) MSW $($ max $)$	16 18		

Table 3.9.12.1g Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - NORWAY-Mid

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total		Exp. rate 1SW (\%)		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	0	0	0	0	0	0	0	0	0	0
1972	0	0	0	0	0	0	0	0	0	0
1973	0	0	0	0	0	0	0	0	0	0
1974	0	0	0	0	0	0	0	0	0	0
1975	0	0	0	0	0	0	0	0	0	0
1976	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	0	0	0
1979	0	0	0	0	0	0	0	0	0	0
1980	0	0	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	0	0	0	0	0
1982	0	0	0	0	0	0	0	0	0	0
1983	121,221	74,648	40	60	40	60	65	85	65	85
1984	94,373	67,639	40	60	40	60	65	85	65	85
1985	114,613	56,641	40	60	40	60	65	85	65	85
1986	106,921	77,225	40	60	40	60	65	85	65	85
1987	83,669	62,216	40	60	40	60	65	85	65	85
1988	80,111	45,609	40	60	40	60	65	85	65	85
1989	94,897	30,862	40	60	40	60	55	75	55	75
1990	78,888	40,174	40	60	40	60	55	75	55	75
1991	67,370	30,087	40	60	40	60	55	75	55	75
1992	51,463	33,092	40	60	40	60	55	75	55	75
1993	58,326	28,184	30	50	30	50	55	75	55	75
1994	113,427	33,520	30	50	30	50	55	75	55	75
1995	57,813	42,696	30	50	30	50	55	75	55	75
1996	28,925	31,613	30	50	30	50	55	75	55	75
1997	43,127	20,565	25	45	25	45	50	70	50	70
1998	63,497	26,817	25	45	25	45	50	70	50	70
1999	60,689	28,792	25	45	25	45	50	70	50	70
2000	109,278	42,452	25	45	25	45	50	70	50	70
2001	88,096	52,031	25	45	25	45	50	70	50	70
2002	42,669	52,774	25	45	25	45	50	70	50	70
2003	91,118	46,963	20	40	20	40	50	70	50	70
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0
$\begin{array}{r} \mathrm{M}(\min)= \\ \mathrm{M}(\max)= \end{array}$	$\begin{aligned} & 0.020 \\ & 0.040 \end{aligned}$		Return time (m) =		$1 S W(\min)$ $1 S W(\max)$	7 9	MSW (min) MSW $($ max $)$	16 18		

Table 3.9.12.1h Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - NORWAY-North

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total		Exp. rate 1SW (\%)		Exp. rate MSW (\%)	
1971	0	0	0	0	0	0	0	0	0	0
1972	0	0	0	0	0	0	0	0	0	0
1973	0	0	0	0	0	0	0	0	0	0
1974	0	0	0	0	0	0	0	0	0	0
1975	0	0	0	0	0	0	0	0	0	0
1976	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	0	0	0
1979	0	0	0	0	0	0	0	0	0	0
1980	0	0	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	0	0	0	0	0
1982	0	0	0	0	0	0	0	0	0	0
1983	104,040	49,413	40	60	40	60	70	90	70	90
1984	150,372	58,858	40	60	40	60	70	90	70	90
1985	118,841	58,956	40	60	40	60	70	90	70	90
1986	84,150	63,418	40	60	40	60	70	90	70	90
1987	72,370	34,232	40	60	40	60	70	90	70	90
1988	53,880	32,140	40	60	40	60	70	90	70	90
1989	42,010	13,934	40	60	40	60	60	80	60	80
1990	38,216	17,321	40	60	40	60	60	80	60	80
1991	42,888	21,789	40	60	40	60	60	80	60	80
1992	34,593	19,265	40	60	40	60	60	80	60	80
1993	51,440	39,014	30	50	30	50	60	80	60	80
1994	37,489	33,411	30	50	30	50	60	80	60	80
1995	36,283	26,037	30	50	30	50	60	80	60	80
1996	40,792	36,636	30	50	30	50	60	80	60	80
1997	39,930	30,115	25	45	25	45	60	80	60	80
1998	46,645	34,806	25	45	25	45	60	80	60	80
1999	46,394	46,744	25	45	25	45	60	80	60	80
2000	61,854	51,569	25	45	25	45	60	80	60	80
2001	46,331	54,023	25	45	25	45	60	80	60	80
2002	38,101	43,100	25	45	25	45	60	80	60	80
2003	44,947	35,972	20	40	20	40	60	80	60	80
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} \mathrm{M}(\min) & = \\ \mathrm{M}(\max) & = \end{aligned}$	0.02 0.04			ime (m) =	1SW(min) 1SW(max)	7 9	MSW (min) MSW (max)	16 18		

Table 3.9.12.1i Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - RUSSIA (Archangelsk \& Karelia)

Table 3.9.12.1j Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - RUSSIA (Kola Peninsula; Barents Sea Basin)

Table 3.9.12.1k Input data for NEAC Area Pre Fishery Abundance analysis using
Monte Carlo simulation - RUSSIA (Kola peninsula; White Sea Basin)

Year	Catch (numbers) Current year returns		Unrep. as \% of 1SW		Unrep. as \% of MSW		Exp. rate 1SW (\%)		Exp. Rate MSW (\%)		Catch (numbers) Previous year returns	
	1SW	MSW	min	max	min	max	min	max	min	max	1SW	MSW
1971	67845	29077	1	5	1	5	40	60	50	70		
1972	45837	19644	1	5	1	5	40	60	50	70		
1973	68684	29436	1	5	1	5	40	60	50	70		
1974	63892	27382	1	5	1	5	40	60	50	70		
1975	109038	46730	1	5	1	5	40	60	50	70		
1976	76281	41075	1	5	1	5	40	60	50	70		
1977	47943	32392	1	5	1	5	40	60	50	70		
1978	49291	17307	1	5	1	5	40	60	50	70		
1979	69511	21369	1	5	1	5	40	60	50	70		
1980	46037	23241	1	5	1	5	40	60	50	70		
1981	40172	12747	1	5	1	5	40	60	50	70		
1982	32619	14840	1	5	1	5	40	60	50	70		
1983	54217	20840	1	5	1	5	40	60	50	70		
1984	56786	16893	1	5	1	5	40	60	50	70		
1985	87274	16876	1	5	1	5	40	60	50	70		
1986	72102	17681	1	5	1	5	40	60	50	70		
1987	79639	12501	1	5	1	5	40	60	40	60		
1988	44813	18777	1	5	1	5	40	50	40	50		
1989	53293	11448	5	10	5	10	40	50	40	50		
1990	44409	11152	10	15	10	15	40	50	40	50		
1991	31978	6263	15	20	15	20	30	40	30	40		
1992	23827	3680	20	25	20	25	20	30	20	30		
1993	20987	5552	20	30	20	30	20	30	20	30		
1994	25178	3680	25	35	25	35	20	30	10	20		
1995	19381	2847	30	40	30	40	20	30	10	20		
1996	27097	2710	30	40	30	40	20	30	10	20		
1997	27695	2085	30	40	30	40	20	30	10	20		
1998	32693	1963	30	40	30	40	20	30	10	20		
1999	22330	2841	30	40	30	40	20	30	10	20		
2000	26376	4396	30	40	30	40	20	30	10	20		
2001	20483	3959	30	40	30	40	10	20	10	20	1215	663
2002	19174	3937	30	40	30	40	10	20	10	20	2176	784
2003	15687	3734	30	40	30	40	10	20	10	20	3717	1182
2004	0	0	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{M}(\mathrm{min})=$	0.020		Return tio		1SW(min)		$7 \mathrm{MSW}(\mathrm{min})$					
$\mathrm{M}(\max)=$	0.040				1SW(max)		0 MSW(max)					

Table 3.9.12.11 Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - RUSSIA (Pechora River)

Table 3.9.12.1m Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - SWEDEN

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total		Exp. rate 1SW (\%)		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	6,330	420	15	45	15	45	40	65	45	70
1972	5,005	295	15	45	15	45	40	65	45	70
1973	6,210	1,025	15	45	15	45	40	65	45	70
1974	8,935	660	15	45	15	45	40	65	45	70
1975	9,620	160	15	45	15	45	40	65	45	70
1976	5,420	480	15	45	15	45	40	65	45	70
1977	2,555	360	15	45	15	45	40	65	45	70
1978	2,917	275	15	45	15	45	40	65	45	70
1979	3,080	800	15	45	15	45	40	65	45	70
1980	3,920	1,400	15	45	15	45	40	65	45	70
1981	7,095	407	15	45	15	45	40	65	45	70
1982	6,230	1,460	15	45	15	45	40	65	45	70
1983	8,290	1,005	15	45	15	45	40	65	45	70
1984	11,680	1,410	15	45	15	45	40	65	45	70
1985	13,890	590	15	45	15	45	40	65	45	70
1986	14,635	570	15	45	15	45	40	65	45	70
1987	11,860	1,700	15	45	15	45	40	65	45	70
1988	9,930	1,650	15	45	15	45	40	65	45	70
1989	3,180	4,610	15	45	15	45	40	65	45	70
1990	7,430	3,135	5	25	5	25	30	60	35	65
1991	8,990	3,620	5	25	5	25	30	60	35	65
1992	9,850	4,655	5	25	5	25	30	60	35	65
1993	10,540	6,370	5	25	5	25	30	60	35	65
1994	8,035	4,660	5	25	5	25	30	60	35	65
1995	9,761	2,770	5	25	5	25	25	50	30	55
1996	6,008	3,542	5	25	5	25	25	50	30	55
1997	2,747	2,307	5	25	5	25	25	50	30	55
1998	2,421	1,702	5	25	5	25	25	50	30	55
1999	3,573	1,460	5	25	5	25	25	50	30	55
2000	7,103	3,196	5	25	5	25	25	50	30	55
2001	4,634	3,853	5	25	5	25	25	50	30	55
2002	4733	2826	5	25	5	25	25	50	30	55
2003	2701	2062	5	25	5	25	25	50	30	55
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} \mathrm{M}(\min) & = \\ \mathrm{M}(\max) & = \end{aligned}$	0.020 0.040			ime (m) =	$1 S W(\min)$ $1 S W(\max)$	7 9	MSW (min) MSW (max)	16 18		

Table 3.9.12.1n Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - UK(England and Wales).

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total		Exp. rate 1SW (\%)		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	28,915	23,611	29	48	29	48	36	56	31	51
1972	24,613	34,364	29	49	29	49	35	55	30	50
1973	28,989	26,097	29	48	29	48	35	55	29	49
1974	35,431	18,776	29	49	29	49	35	55	29	49
1975	36,465	25,819	29	48	29	48	35	55	29	49
1976	25,422	14,113	28	46	28	46	36	56	30	50
1977	27,836	17,260	29	49	29	49	37	57	31	51
1978	31,397	14,228	29	48	29	48	36	56	30	50
1979	29,030	6,803	29	48	29	48	35	55	30	50
1980	26,997	22,019	29	49	29	49	36	56	30	50
1981	28,414	31,115	29	48	29	48	36	56	30	50
1982	24,139	12,003	29	48	29	48	37	57	31	51
1983	35,903	13,861	28	46	28	46	37	57	31	51
1984	31,923	11,355	27	46	27	46	37	57	31	51
1985	30,759	16,020	29	49	29	49	37	57	31	51
1986	35,695	21,822	28	47	28	47	37	57	31	51
1987	36,339	17,101	29	48	29	48	37	57	31	51
1988	47,989	21,560	30	50	30	50	37	57	31	51
1989	33,610	18,098	28	46	28	46	38	58	32	52
1990	24,152	22,294	28	46	28	46	38	58	32	52
1991	23,018	9,402	28	47	28	47	37	57	31	51
1992	22,787	6,806	30	50	30	50	37	57	31	51
1993	30,526	7,160	29	48	29	48	34	54	28	48
1994	41,662	12,444	18	30	18	30	35	55	29	49
1995	30,148	11,724	17	28	17	28	32	52	26	46
1996	21,848	11,764	15	26	15	26	31	51	25	45
1997	18,690	6,913	14	24	14	24	27	47	22	42
1998	19,466	3,987	14	24	14	24	25	45	20	40
1999	15,032	6,442	13	22	13	22	20	40	12	32
2000	23,116	6,145	12	21	12	21	20	40	8	28
2001	18,867	6,289	12	20	12	20	18	38	7	27
2002	17,443	5,814	12	20	12	20	19	39	7	27
2003	10,164	5,236	12	20	12	20	16	36	6	26
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} \mathrm{M}(\min) & = \\ \mathrm{M}(\max) & = \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.040 \end{aligned}$			ime (m)=	$1 S W(\min)$ $1 S W(\max)$	7 9	MSW (min) MSW (max)	17 19		

Table 3.9.12.10 Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - UK(Northern Ireland)- Foyle Fisheries area

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total		Exp. rate 1SW (\%)		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	79,715	4,196	10	33	10	33	75	85	45	55
1972	66,054	3,477	10	33	10	33	75	85	45	55
1973	58,705	3,090	10	33	10	33	75	85	45	55
1974	74,148	3,903	10	33	10	33	75	85	45	55
1975	52,159	2,745	10	33	10	33	75	85	45	55
1976	36,984	1,947	10	33	10	33	75	85	45	55
1977	37,295	1,963	10	33	10	33	75	85	45	55
1978	45,515	2,396	10	33	10	33	75	85	45	55
1979	35,153	1,850	10	33	10	33	75	85	45	55
1980	46,762	2,461	10	33	10	33	75	85	45	55
1981	33,042	1,739	10	33	10	33	75	85	45	55
1982	57,149	3,008	10	33	10	33	75	85	45	55
1983	79,089	4,163	10	33	10	33	75	85	45	55
1984	28,055	1,477	10	33	10	33	75	85	45	55
1985	38,495	2,026	10	33	10	33	75	85	45	55
1986	44,036	2,318	10	33	10	33	75	85	45	55
1987	17,559	924	10	33	10	33	62	76	41	51
1988	44,920	2,364	10	33	10	33	58	71	32	40
1989	61,585	3,241	10	37	10	37	80	98	54	66
1990	40,732	2,144	10	17	10	17	56	68	34	42
1991	22,176	1,167	10	17	10	17	58	71	39	47
1992	40,144	2,113	10	23	10	23	50	62	30	36
1993	36,127	1,901	10	17	10	17	37	45	11	13
1994	36,921	1,943	10	28	10	28	63	77	36	44
1995	34,116	1,796	10	17	10	17	60	74	38	46
1996	29,017	1,527	10	20	10	20	47	67	24	44
1997	41,765	2,198	5	15	5	15	50	70	24	44
1998	37,953	1,998	5	15	5	15	20	30	15	30
1999	22,126	1,165	5	15	5	15	58	68	25	40
2000	31,038	1,634	5	15	5	15	53	63	25	40
2001	21,827	1,149	0	10	0	10	45	55	25	35
2002	38730	2038	0	5	0	5	45	65	25	35
2003	31643	1665	0	0	0	0	47	67	25	35
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} \mathrm{M}(\min) & = \\ \mathrm{M}(\max) & = \end{aligned}$	0.020 0.040			ime (m) =	1SW(min) 1SW(max)	7 9	MSW (min) $M S W(\max)$	16 18		

Table 3.9.12.1p Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - UK(Northern Ireland)-FCB area

Table 3.9.12.1q Input data for NEAC Area Pre Fishery Abundance analysis using
Monte Carlo simulation - UK(Scotland)-East

Table 3.9.12.1r Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - UK(Scotland)-West

Table 3.9.12.1s Input data for NEAC Area Pre Fishery Abundance analysis using
Monte Carlo simulation - FAROES

Table 3.9.12.1t Input data for NEAC Area Pre Fishery Abundance analysis using
Monte Carlo simulation - WEST GREENLAND.

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total MSW		Exp. rate 1SW (\%)		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	0	856369	0	0	5	15	100	100	100	100
1972	0	614244	0	0	5	15	100	100	100	100
1973	0	560048	0	0	5	15	100	100	100	100
1974	0	535475	0	0	5	15	100	100	100	100
1975	0	650641	0	0	5	15	100	100	100	100
1976	0	386513	0	0	5	15	100	100	100	100
1977	0	442368	0	0	5	15	100	100	100	100
1978	0	293731	0	0	5	15	100	100	100	100
1979	0	417665	0	0	5	15	100	100	100	100
1980	0	370807	0	0	5	15	100	100	100	100
1981	0	398738	0	0	5	15	100	100	100	100
1982	0	346302	0	0	5	15	100	100	100	100
1983	0	100000	0	0	5	15	100	100	100	100
1984	0	95498	0	0	5	15	100	100	100	100
1985	0	301045	0	0	5	15	100	100	100	100
1986	0	316832	0	0	5	15	100	100	100	100
1987	0	305696	0	0	5	15	100	100	100	100
1988	0	280818	0	0	5	15	100	100	100	100
1989	0	117422	0	0	5	15	100	100	100	100
1990	0	101859	0	0	5	15	100	100	100	100
1991	0	178113	0	0	5	15	100	100	100	100
1992	0	84342	0	0	5	15	100	100	100	100
1993	0	2,000	0	0	-25	25	100	100	100	100
1994	0	2,000	0	0	-25	25	100	100	100	100
1995	0	32422	0	0	5	15	100	100	100	100
1996	0	31944	0	0	0	0	100	100	100	100
1997	0	21402	0	0	0	0	100	100	100	100
1998	0	3957	0	0	0	0	100	100	100	100
1999	0	6169	0	0	0	0	100	100	100	100
2000	0	8171	0	0	30	50	100	100	100	100
2001	0	14,333	0	0	14	24	100	100	100	100
2002	0	3,369	0	0	43	63	100	100	100	100
2003	0	4,050	0	0	35	55	100	100	100	100
2004	0	0	0	0	0	0	100	100	100	100
2005	0	0	0	0	0	0	100	100	100	100
$\begin{aligned} \mathrm{M}(\min) & = \\ \mathrm{M}(\max) & = \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.040 \end{aligned}$		Return time (m)=		1SW(min)	7 8	MSW(min) MSW(max)	8 10		

Table 3.9.14.1

Year	Northern Europe							Southern Europe					
	Finland	Iceland	Norway	Russia	Sweden	Total		France	Ireland	UK(EW)	UK(NI)	UK(Scot)	To
						Est.	SD						Est.
1971	26,436	72,592		155,317	17,759			53,103	1,084,571	103,412	185,698	669,193	2,095,977
1972	41,089	60,007		119,035	14,088			106,760	1,169,750	92,372	162,305	577,570	2,108,756
1973	37,435	65,463		175,482	17,561			65,448	1,193,936	107,490	142,436	704,086	2,213,396
1974	74,134	49,810		175,027	25,123			30,579	1,468,592	134,201	154,917	673,700	2,461,989
1975	51,381	73,469		266,708	27,218			60,293	1,601,133	135,885	127,744	553,440	2,478,495
1976	35,479	60,786		185,126	15,296			56,330	1,096,065	89,395	88,535	452,103	1,782,427
1977	18,003	67,196		119,020	7,194			43,040	957,133	100,438	87,499	495,901	1,684,011
1978	24,579	82,671		119,631	8,176			43,533	839,483	113,135	114,477	567,585	1,678,213
1979	28,954	76,978		166,122	8,640			50,223	748,039	106,292	80,142	475,611	1,460,306
1980	12,994	29,618		118,542	11,003			104,804	618,653	98,852	101,195	300,421	1,223,925
1981	19,838	48,503		97,693	20,045			82,841	408,345	101,734	78,992	372,786	1,044,699
1982	5,865	42,026		85,616	17,618			51,640	615,449	86,578	114,567	515,738	1,383,972
1983	28,927	54,364	703,898	142,793	23,653	953,636	63,528	55,134	1,172,311	124,022	161,671	551,563	2,064,701
1984	32,315	31,344	734,208	154,377	32,966	985,209	68,501	90,683	619,267	108,638	63,435	559,047	1,441,070
1985	49,035	67,761	745,595	212,908	39,144	1,114,443	67,615	33,627	990,142	109,016	82,123	466,527	1,681,435
1986	44,576	103,175	643,886	181,546	41,241	1,014,425	57,227	60,769	1,210,666	124,782	92,466	572,236	2,060,918
1987	56,791	62,814	543,316	194,381	33,913	891,215	50,668	107,026	785,378	128,170	50,447	433,430	1,504,452
1988	27,359	107,580	502,676	132,400	27,927	797,942	44,158	37,640	1,067,833	170,480	118,766	650,737	2,045,456
1989	63,339	59,583	558,224	197,200	8,897	887,242	54,237	19,524	727,226	113,515	114,049	701,263	1,675,578
1990	60,138	52,470	496,970	163,297	20,055	792,931	47,380	33,273	463,283	82,604	94,560	350,316	1,024,035
1991	72,993	61,336	435,031	139,173	24,655	733,188	41,592	25,478	316,982	79,016	52,676	337,070	811,223
1992	97,257	81,216	364,807	173,032	26,780	743,092	38,171	44,931	413,897	82,770	106,823	481,045	1,129,466
1993	68,135	75,065	367,445	148,450	28,768	687,863	34,472	63,341	349,570	113,722	125,326	456,165	1,108,124
1994	27,096	50,422	497,663	175,690	22,300	773,170	48,575	50,943	449,190	125,227	85,780	484,078	1,195,218
1995	26,712	70,370	323,340	157,412	32,079	609,913	31,517	15,498	476,782	95,149	79,870	481,585	1,148,883
1996	62,125	54,911	247,279	214,908	19,793	599,017	30,161	19,222	486,790	69,178	82,581	329,313	987,084
1997	52,770	46,388	283,575	211,164	8,831	602,728	32,442	9,582	374,874	63,370	98,099	248,424	794,349
1998	60,960	67,677	369,683	232,458	7,908	738,686	40,102	18,986	383,160	70,680	214,172	333,696	1,020,695
1999	87,017	47,062	343,131	177,707	11,556	666,473	34,089	6,401	376,123	61,934	55,454	188,224	688,137
2000	91,167	43,778	565,578	195,201	22,981	918,705	53,019	16,588	450,266	94,230	80,592	357,121	998,797
2001	41,429	38,422	486,594	269,162	15,218	850,824	62,666	14,016	533,478	83,917	63,774	344,865	1,040,051
2002	29,124	52,557	298,474	244,570	15,503	640,228	49,648	22,775	432,546	75,643	79,272	278,334	888,570
2003	34,489	47,364	413,631	212,688	8,867	717,038	50,737	14,737	421,923	49,492	60,345	245,910	792,406
$10 \mathrm{yr} \mathrm{Av}$.	51,289	51,895	382,895	209,096	16,504	711,678	43,296	18,875	438,513	78,882	89,994	329,155	955,419

Estimated number of RETURNING MSW salmon by NEAC country and year

Year	Northern Europe							Southern Europe					
	Finland	Iceland	Norway	Russia	Sweden	Total		France	Ireland	UK(EW)	UK(N)	UK(Scot)	To
						Est.	SD						Est.
1971	24,399	40,087		133,339	1,071			11,217	161,535	97,733	15,696	618,437	904,618
1972	38,063	61,993		134,703	754			22,313	171,986	146,661	13,765	791,865	1,146,590
1973	46,210	56,366		224,002	2,640			13,760	179,401	110,167	11,976	864,391	1,179,695
1974	68,014	49,986		212,378	1,690			6,441	215,745	81,828	13,086	609,128	926,228
1975	76,189	53,896		226,231	409			12,803	237,943	109,800	10,772	672,487	1,043,805
1976	62,669	45,834		195,125	1,224			9,363	163,690	57,042	7,476	404,296	641,867
1977	37,883	50,891		134,693	925			7,231	143,083	71,386	7,380	467,181	696,261
1978	24,511	65,321		117,148	715			7,402	125,403	59,128	9,568	567,205	768,706
1979	26,402	42,563		101,995	2,069			8,608	111,611	28,522	6,729	414,897	570,367
1980	27,616	59,457		170,479	3,618			17,757	130,936	92,634	8,543	521,277	771,148
1981	30,374	32,221		97,157	1,034			12,495	100,345	128,267	6,692	582,021	829,821
1982	39,553	26,305		86,181	3,664			7,669	49,244	49,337	9,664	448,699	564,613
1983	42,641	35,592	429,897	124,683	2,595	635,408	38,252	8,304	187,826	54,954	13,579	487,433	752,097
1984	41,560	33,224	438,103	124,282	3,611	640,779	37,417	13,574	73,337	44,421	5,345	404,378	541,055
1985	31,888	23,379	404,098	135,533	1,515	596,413	35,790	10,358	80,282	65,290	6,945	496,905	659,780
1986	27,831	30,765	486,841	134,739	1,461	681,638	43,261	10,289	104,533	88,702	7,753	637,632	848,909
1987	35,028	29,844	363,084	100,412	4,388	532,756	33,581	5,556	119,066	69,357	3,976	406,520	604,475
1988	22,248	25,642	307,493	100,005	4,233	459,621	26,310	15,223	56,979	89,602	11,191	628,679	801,675
1989	24,870	22,392	216,153	97,714	11,839	372,967	20,585	6,985	65,944	70,650	8,924	547,407	699,909
1990	31,466	22,824	259,453	124,917	7,702	446,362	24,246	7,027	33,190	87,357	8,100	474,674	610,348
1991	37,537	19,682	218,888	122,373	8,791	407,271	20,695	6,541	30,833	37,259	4,157	343,177	421,967
1992	40,174	24,696	236,444	116,418	11,277	429,008	22,656	8,209	41,096	28,645	9,530	453,530	541,010
1993	46,752	18,612	227,770	138,228	15,291	446,653	20,389	3,904	44,296	31,218	22,453	378,336	480,208
1994	38,702	21,260	223,036	123,240	11,466	417,704	20,472	7,977	52,283	43,312	7,895	459,002	570,470
1995	24,126	17,658	238,183	139,197	7,879	427,043	20,545	3,811	42,066	43,329	6,674	434,861	530,740
1996	21,350	15,408	239,213	105,422	10,029	391,421	20,048	6,706	40,291	44,015	7,450	324,248	422,710
1997	31,092	12,805	159,606	85,454	6,587	295,545	14,846	3,490	36,219	27,654	9,275	227,128	303,767
1998	26,079	11,690	192,593	105,806	4,884	341,052	16,313	2,948	25,116	17,106	12,817	234,340	292,326
1999	23,889	16,742	205,310	93,014	4,203	343,157	18,080	6,333	29,480	38,516	5,725	200,481	280,535
2000	53,289	6,588	284,040	162,992	9,247	516,157	24,445	4,446	56,365	47,458	7,698	257,795	373,761
2001	77,051	9,104	335,416	116,094	11,063	548,729	29,464	5,111	65,442	52,745	5,582	250,771	379,653
2002	61,557	8,925	288,566	162,003	8,110	529,160	26,209	3,157	64,833	46,313	7,640	204,411	326,354
2003	43,428	13,560	256,277	99,242	5,895	418,402	21,964	5,498	53,698	47,071	5,994	213,510	325,770
10yr Av.	40,056	13,374	242,224	119,246	7,936	422,837	21,239	4,948	46,579	40,752	7,675	280,655	380,609

Table 3.9.14.3

Year	Northern Europe							Southern Europe					
	Finland	Iceland	Norway	Russia	Sweden	Total		France	Ireland	UK(EW)	UK(NI)	UK(Scot)	To
						Est.	SD						Est.
1971	33,734	92,341		200,585	22,783			67,491	1,379,860	131,884	237,190	844,868	2,661,293
1972	52,375	76,330		153,066	18,103			135,578	1,488,358	117,892	207,332	728,907	2,678,066
1973	47,735	83,265		225,701	22,561			83,191	1,519,330	137,146	182,023	888,289	2,809,980
1974	94,312	63,374		224,483	32,153			38,895	1,868,739	171,017	197,837	850,325	3,126,813
1975	65,458	93,462		343,388	34,869			76,637	2,037,277	173,250	163,268	699,104	3,149,536
1976	45,185	77,333		238,331	19,601			71,604	1,394,639	113,961	113,143	571,291	2,264,638
1977	22,958	85,471		153,191	9,242			54,665	1,217,951	128,043	111,765	626,296	2,138,721
1978	31,294	105,171		154,024	10,477			55,288	1,068,210	144,197	146,184	716,901	2,130,780
1979	36,889	97,907		214,042	11,114			63,831	951,559	135,497	102,418	600,090	1,853,396
1980	16,758	37,681		152,724	14,273			133,174	787,432	126,291	129,492	379,915	1,556,304
1981	25,594	61,687		126,434	25,950			105,480	520,382	130,340	101,393	471,594	1,329,189
1982	7,814	53,457		110,538	22,807			65,923	783,864	110,968	146,688	652,117	1,759,560
1983	37,177	69,174	897,727	183,971	30,561	1,218,610	84,673	70,336	1,492,029	158,721	206,859	697,477	2,625,422
1984	41,266	39,884	935,701	198,255	42,237	1,257,343	94,545	115,203	788,406	138,685	81,236	706,118	1,829,649
1985	62,462	86,187	949,586	274,350	50,062	1,422,647	91,955	42,800	1,260,043	139,081	105,003	589,097	2,136,024
1986	56,860	131,231	820,384	233,704	52,761	1,294,940	77,760	77,341	1,540,665	159,247	118,287	722,100	2,617,641
1987	72,351	79,900	692,328	250,459	43,408	1,138,446	69,281	135,972	999,910	163,501	64,637	547,378	1,911,398
1988	34,944	136,820	640,815	170,189	35,772	1,018,540	60,709	47,913	1,358,970	217,442	151,774	822,361	2,598,460
1989	80,633	75,811	711,068	252,070	11,460	1,131,041	73,762	24,896	925,139	144,743	145,658	885,600	2,126,037
1990	76,561	66,752	632,822	208,744	25,659	1,010,538	63,991	42,321	589,530	105,333	120,769	442,576	1,300,530
1991	92,835	78,008	553,767	178,822	31,494	934,925	56,167	32,354	403,443	100,717	67,281	426,157	1,029,951
1992	123,608	103,285	464,460	221,299	34,178	946,829	52,387	57,139	526,633	105,411	136,342	607,642	1,433,167
1993	86,604	95,485	467,683	190,182	36,730	876,684	47,121	80,432	444,729	144,806	159,923	576,035	1,405,924
1994	34,457	64,166	633,273	225,883	28,463	986,243	66,287	64,701	571,467	159,494	109,470	610,998	1,516,130
1995	33,977	89,525	411,589	201,923	40,945	777,958	43,325	19,694	606,573	121,170	101,958	607,841	1,457,237
1996	78,954	69,851	314,720	275,864	25,262	764,652	41,902	24,420	619,296	88,090	105,410	415,443	1,252,659
1997	67,055	58,990	360,880	271,308	11,262	769,495	45,207	12,172	476,747	80,666	125,172	313,529	1,008,287
1998	77,456	86,084	470,420	299,444	10,088	943,491	55,543	24,109	487,336	90,005	273,322	420,988	1,295,759
1999	110,592	59,875	436,525	227,891	14,731	849,613	46,755	8,123	478,387	78,845	70,761	237,372	873,488
2000	115,864	55,683	719,607	251,035	29,308	1,171,496	72,460	21,037	572,716	119,979	102,844	450,446	1,267,023
2001	52,676	48,853	619,067	345,690	19,412	1,085,697	84,216	17,779	678,547	106,807	81,374	434,799	1,319,306
2002	37,018	66,842	379,839	314,524	19,765	817,988	67,018	28,915	550,129	96,291	101,129	350,992	1,127,456
2003	43,838	60,250	526,274	272,615	11,305	914,282	67,536	18,694	536,649	63,022	76,957	310,287	1,005,609
10yr Av.	65,189	66,012	487,219	268,618	21,054	908,092	59,025	23,964	557,785	100,437	114,840	415,270	1,212,295

Estimated pre-fishery abundance of NON-MATURING 1SW salmon (potential MSW returns) by NEAC country and year

Estimated number of 1SW SPAWNERS by NEAC country and year

Year	Northern Europe							Southern Europe					
	Finland	Iceland	Norway	Russia	Sweden	Total		France	Ireland	UK(EW)	UK(NI)	UK(Scot)	To
						Est.	SD						Est.
1971	13,448	36,636		43,169	8,639			51,363	413,201	56,100	37,289	307,561	865,514
1972	20,822	30,363		72,234	6,803			103,280	447,071	51,671	32,594	233,618	868,234
1973	18,952	33,131		79,009	8,528			63,318	453,794	60,082	28,630	303,127	908,951
1974	37,630	25,295		94,728	12,171			29,589	564,567	75,277	30,956	275,997	976,386
1975	25,832	37,155		112,798	13,278			58,313	610,491	76,135	25,670	245,886	1,016,495
1976	18,006	30,763		109,340	7,437			54,510	419,667	48,902	17,753	191,329	732,161
1977	9,054	34,130		74,516	3,504			41,640	364,683	54,364	17,592	227,743	706,023
1978	12,388	41,920		59,026	3,968			42,098	318,149	61,671	23,115	283,967	729,000
1979	14,663	39,057		75,124	4,168			48,578	283,620	58,767	16,089	219,659	626,713
1980	6,579	14,981		73,922	5,335			101,374	237,836	53,965	20,198	149,466	562,838
1981	9,996	24,607		54,047	9,754			80,121	154,834	55,379	15,870	185,862	492,067
1982	2,979	21,268		49,790	8,585			49,960	170,251	47,153	22,847	257,318	547,528
1983	14,687	27,467	166,172	64,812	11,611	284,749	50,325	53,334	427,798	66,685	32,425	290,477	870,720
1984	16,361	15,948	167,499	80,636	16,028	296,473	52,689	87,723	228,384	58,112	12,826	294,541	681,586
1985	24,960	34,144	174,981	93,997	18,922	347,003	53,532	32,527	257,949	58,336	16,490	270,116	635,419
1986	22,694	52,450	151,551	103,792	20,104	350,591	45,676	57,369	390,542	66,711	18,565	321,202	854,388
1987	28,781	31,747	128,263	97,091	16,626	302,507	41,353	101,026	288,921	69,013	15,776	228,517	703,253
1988	13,963	54,708	121,348	88,228	13,567	291,814	35,535	35,540	468,915	90,368	42,515	464,226	1,101,564
1989	25,814	30,279	193,225	96,478	4,321	350,117	46,831	18,424	272,031	59,693	12,865	502,055	865,068
1990	24,573	26,620	170,288	97,035	11,253	329,769	41,166	31,373	199,991	44,074	36,192	257,514	569,143
1991	29,612	31,117	148,797	83,211	14,035	306,772	36,263	24,078	149,569	42,084	18,779	252,442	486,952
1992	39,815	41,417	124,954	116,475	15,195	337,856	34,326	42,431	152,826	44,316	47,262	365,012	651,848
1993	27,832	38,161	124,280	114,309	16,318	320,900	31,398	59,741	145,072	63,887	74,214	348,081	690,994
1994	11,065	25,523	172,481	116,488	12,772	338,328	43,819	48,143	133,117	70,297	25,779	371,845	649,181
1995	10,936	35,536	110,275	121,862	20,502	299,110	28,931	13,829	163,280	56,357	26,633	379,462	639,559
1996	31,592	27,764	83,019	139,102	12,717	294,195	28,560	17,159	215,227	41,651	36,005	254,332	564,373
1997	26,771	23,513	106,570	159,594	5,594	322,043	31,020	8,522	169,431	40,307	39,685	195,426	453,370
1998	31,002	34,202	139,634	164,941	5,040	374,819	38,102	16,921	165,560	46,637	161,283	273,210	663,610
1999	35,312	23,823	128,755	164,060	7,346	359,296	32,018	5,711	181,253	43,711	20,607	159,779	411,061
2000	36,886	22,252	215,569	141,711	14,615	431,032	49,324	14,796	207,251	66,529	34,032	307,398	630,007
2001	16,841	19,483	186,474	201,174	9,742	433,714	60,443	12,472	279,751	61,356	32,011	297,110	682,700
2002	14,767	26,648	112,655	211,989	9,893	375,951	48,681	20,263	217,774	54,751	36,159	242,872	571,819
2003	17,506	23,940	158,221	178,946	5,676	384,289	49,000	13,150	242,368	37,337	26,399	211,906	531,161
10yr.av.	23,268	26,268	141,365	159,987	10,390	361,278	40,990	17,097	197,501	51,893	43,859	269,334	579,684

Estimated number of MSW SPAWNERS by NEAC country and year

Year	Northern Europe							Southern Europe					
	Finland	Iceland	Norway	Russia	Sweden	Total		France	Ireland	UK(EW)	UK(NI)	UK(Scot)	To
						Est.	SD						Est.
1971	11,234	16,235		38,903	461			7,157	87,008	59,113	7,885	395,862	557,025
1972	17,520	25,180		59,208	327			14,193	91,911	89,970	6,920	492,075	695,068
1973	21,594	22,842		66,161	1,158			8,790	96,972	67,516	6,009	539,044	718,331
1974	31,442	20,202		99,934	731			4,131	115,108	50,632	6,554	349,681	526,105
1975	35,461	21,852		88,628	178			8,183	127,731	67,623	5,396	387,900	596,833
1976	29,241	18,558		87,266	533			5,983	88,449	34,697	3,749	245,688	378,566
1977	17,481	20,736		71,804	403			4,631	77,304	42,631	3,711	275,904	404,181
1978	11,453	26,363		50,835	312			4,737	67,386	35,831	4,793	342,799	455,546
1979	15,022	17,319		45,386	906			5,553	59,772	17,400	3,374	233,405	319,505
1980	15,679	24,106		48,353	1,575			11,387	69,840	56,112	4,283	309,048	450,670
1981	17,246	13,089		67,238	445			8,415	53,526	77,431	3,358	366,664	509,394
1982	22,428	10,629		41,234	1,564			5,149	31,468	29,711	4,851	290,470	361,649
1983	23,974	14,527	103,413	49,896	1,135	192,944	30,355	5,604	143,996	32,793	6,799	306,920	496,113
1984	23,793	13,459	103,743	62,542	1,563	205,100	29,354	9,134	41,500	26,424	2,685	271,208	350,951
1985	18,067	9,490	95,227	51,630	660	175,075	28,306	7,028	51,420	38,846	3,485	354,140	454,919
1986	15,776	12,405	115,698	52,323	630	196,833	34,075	6,889	57,786	53,025	3,874	454,047	575,621
1987	19,980	12,098	88,182	54,022	1,911	176,194	27,212	3,756	80,912	41,511	2,156	277,878	406,213
1988	12,602	10,436	74,633	45,633	1,841	145,145	21,006	10,223	24,223	53,295	7,175	488,784	583,700
1989	11,498	9,102	74,373	51,122	5,156	151,251	17,796	4,685	28,835	41,624	3,589	429,322	508,055
1990	14,687	9,296	89,510	48,450	4,001	165,943	20,477	4,727	11,739	51,804	5,035	374,999	448,303
1991	17,291	7,963	74,706	60,377	4,521	164,858	17,640	4,441	17,167	22,156	2,373	269,113	315,250
1992	18,605	10,019	81,111	58,226	5,779	173,739	19,433	5,509	19,968	17,183	6,393	359,278	408,330
1993	21,733	7,563	76,237	56,030	7,787	169,351	17,577	2,604	27,640	19,535	19,761	296,910	366,451
1994	17,982	8,616	74,924	65,457	5,966	172,946	18,066	5,677	26,626	26,949	4,741	362,940	426,933
1995	11,262	7,162	81,039	64,958	4,612	169,034	17,208	2,716	16,620	28,202	3,876	346,733	398,148
1996	12,078	6,257	80,734	63,518	5,853	168,441	17,322	4,764	18,104	29,185	4,995	258,968	316,015
1997	17,650	5,146	58,028	53,127	3,864	137,815	13,313	2,489	21,539	19,122	6,208	181,502	230,860
1998	14,734	4,732	70,650	41,954	2,879	134,949	13,932	2,102	9,578	12,184	10,037	190,823	224,724
1999	12,085	6,755	73,177	54,363	2,483	148,861	16,002	4,502	15,503	30,706	3,891	165,931	220,533
2000	27,000	2,667	103,344	58,592	5,463	197,065	21,003	3,169	39,023	40,100	5,245	216,383	303,920
2001	39,232	3,700	124,034	89,499	6,507	262,973	26,896	3,622	44,795	45,218	3,912	211,635	309,182
2002	31,242	3,607	106,994	78,498	4,782	225,124	23,849	2,056	47,353	39,359	5,370	174,538	268,676
2003	21,940	5,503	96,729	93,975	3,459	221,607	20,421	3,597	39,062	40,800	4,208	181,732	269,399
10yr.av.	20,631	5,610	85,990	65,452	4,878	182,561	18,690	3,391	27,804	30,124	6,568	235,281	303,167

Table 3.9.15.1 Estimated survival of wild smolts (\%) to return to homewaters (prior to coastal fisheries) for various monitored rivers in the NE Atlantic area.

Table 3.9.15.2
Estimated survival of hatchery smolts (\%) to adult return to homewaters, (prior to coastal fisheries) for monitored rivers and experimental facilities in the NE Atlantic area.

${ }^{1}$ Microtagged.
${ }^{2}$ Carlin tagged, not corrected for tagging mortality.

Table 3.9.15.2 Cont'd. Estimated survival of hatchery smolts (\%) to 1 SW adult return to homewaters, (prior to coastal fisheries) for monitored rivers and experimental facilities in Ireland.

Smolt year	R. Shannon	R. Screebe	R. Burrishoole ${ }^{1}$	R. Delphi	R. Bunowen	R. Lee	$\begin{gathered} \hline \text { R. Corrib } \\ \text { Cong. }^{2} \\ \hline \end{gathered}$	R. Corrib Galway ${ }^{2}$	R. Erne
1980	8.6		3.3			8.3	0.9		
1981	2.8		6.9			2.0	1.2		
1982	4.1		8.2			16.3	2.7	16.1	
1983	3.9		2.3			2.0	1.7	4.1	
1984	4.9	10.4	23.5			2.3	5.2	13.2	9.2
1985	4.8	12.3	26.3			14.7	1.4	14.4	7.9
1986	9.1	0.4	7.6			16.4	-	7.6	10.1
1987	4.7	8.3	11.2			8.8	-	2.2	7.0
1988	4.9	9.2	13.8			5.5	4.2	-	2.6
1989	5.0	1.6	7.9			1.7	6.0	4.9	1.2
1990	1.3	0.0	7.1			2.5	0.2	2.3	2.5
1991	4.1	0.2	11.4	9.7		0.8	3.5	4.0	1.3
1992	4.3	1.3	5.3	9.8	4.2	-	0.9	0.6	-
1993	2.9	2.2	12.0	13.0	5.4	-	1.0	-	-
1994	5.1	1.9	14.3	3.9	8.1	-	-	5.3	-
1995	3.6	4.1	6.6	3.4	3.5	-	2.4	-	-
1996	2.9	1.8	5.3	9.8	3.4	-	-	-	-
1997	6.0	0.4	13.3	15.8	5.3	7.0	-	-	7.6
1998	3.1	1.3	5.6	6.9	2.7	4.6	3.3	2.9	2.5
1999	1.0	2.8	8.2	14.5	1.5	-	-	3.6	3.5
2000	1.2	3.8	11.8	14.2	4.1	3.5	6.7	-	4.0
2001	2.0	2.5	8.7	17.0	3.0	2.0	3.4	-	5.9
2002	0.7	3.8	4.8	9.6	1.8	2.0	-	1.9	2.5
Mean									
(5-year)	2.7	2.2	9.5	13.7	3.3	3.8	4.5	3.3	4.3
(10-year)	3.2	2.2	9.1	10.8	4.1	4.3	3.0	3.1	4.7

[^3]Table 3.10.1. Percentage change in gear units over the period 1998-2003 for countries where such data are available (excludes rod fisheries).

Country	Type of gear units	\% Change in gear units from 1998 to 2003
Russia	Coastal nets In-river nets	-17
Norway	Bag net Bend net	-69
UK (England \& Wales)	Gill net Sweep net Hand-held net Fixed engine	-25
UK (Scotland)	Fixed engine Net and coble	-55
	Drift net	-25
UK (N. Ireland)	Draft net Bag nets and boxes	-9
Ireland	Drift net Draft net	-40
	Other nets	-27

Weeks 16-25							Weeks 20-26				Weeks 27-36			
Fishery	$\begin{gathered} \mathrm{IVb} \\ 2 \mathrm{Q} \end{gathered}$	$\begin{aligned} & \hline \text { VIa } \\ & 2 \mathrm{Q} \end{aligned}$	$\begin{gathered} \hline \text { VIIb } \\ 2 \mathrm{Q} \end{gathered}$	$\begin{gathered} \hline \text { VIIc } \\ 2 \mathrm{Q} \end{gathered}$	$\begin{aligned} & \hline \mathrm{VIIj} \\ & 2 \mathrm{Q} \end{aligned}$	$\begin{gathered} \hline \text { VIIk } \\ 2 \mathrm{Q} \end{gathered}$	$\begin{gathered} \hline I V a \\ 2 Q \end{gathered}$	Gear type	$\begin{gathered} \hline V b \\ 2 Q \end{gathered}$	Gear type	$\begin{aligned} & \hline I I a \\ & 3 Q \end{aligned}$	Gear type	$\begin{aligned} & \hline I I b \\ & 3 Q \\ & \hline \end{aligned}$	Gear type
Mackerel	Denmark Norway	England Scotland Ireland Germany	England Scotland Ireland	Ireland	England Scotland France Ireland Germany Netherlands		England Scotland	Midwater trawl Midwater trawl	Russia	Midwater trawl	Norway Russia Faroes	Purse seine Midwater trawl Midwater trawl		
Herring		Scotland					Norway Scotland Germany Denmark	Purse seine Midwater trawl Purse seine Midwater trawl Purse seine Midwater trawl Purse seine Midwater trawl	Germany	Purse seine Midwater trawl	Iceland Faroes Russia	Purse seine Midwater trawl Purse seine Midwater trawl Midwater trawl	Iceland Faroes Russia	Purse seine Midwater trawl Purse seine Midwater trawl
Blue- whiting		Netherlands Norway Germany		Netherlands Germany					Russia Iceland Faroes Norway	Midwater trawl Midwater trawl Midwater trawl Midwater trawl	Russia Norway Faroes Germany	Midwater trawl Midwater trawl Midwater trawl Purse seine Midwater trawl		
Capelin (Iceland, East Greenland, Jan Mayen)												Purse seine Purse seine Purse seine	Iceland Norway	Purse seine Purse seine
Horse- mackerel					England Ireland Netherlands									

Table 3.11.2.1 Number of post-smolts, and ratio of post-smolts per metric tonne of mackerel in Salmon surveys in Norwegian and International zone in the Norwegian Sea, 2001-2003

No. of post-smolts caught and CPUE		No. of post-smolts caught per tonne of mackerel				
	Norwegian EEZ	International zone	Norwegian EEZ	Intertnational zone		
	No. of		No. of	Post-smolts/tonne		Post-
:---:						
post-						
smolts						

Table 3.11.2.2 Summarized data from the pelagic fish surveys conducted in the Norwegian Sea in June-July 20022003 by Russian research vessels.

Year	No. of hauls taken	Total catch (t)	Mackerel catch (t)	No. of Salmon caught		No. of salmon caught per tonne of mackerel	
				Adults	Postsmolt	Adults	Post-smolt
2002	82	13.7	5.4	3	32	0.56	5.93
2003	31	15.6	13.3	0	0	0	0

Table 3.11.2.3 Summarized data of the screening of catches from the Russian mackerel fishery in the Norwegian Sea in June-August 2002-2003.

Year	No of hauls screened	Total catch, t	Mackrel catch, t	No of Salmon found		No. of salmon caught per tonne of mackerel	
			Adults	Post- smolt	Adults	Post-smolt	
2002	1070	10,921	7,760	15	12	0.002	0.002
2003	416	7,200	3,800	15	1	0.004	0.0003

Table 3.11.4.1. Cruises with surface trawling (flotation on trawl wings), captures of post-smolts and older salmon and post-smolt catch per unit of effort (CPUE, trawl hours) in 2003 and summary of catches, $1990-2003$.

Year and Cruise	Gear	Dates	Total number of surface hauls	\% hauls with postsmolt captures	Number of post-smolts captured	Number of salmon captured	Mean CPUE Postsmolts	Area surveyed
$2003-1{ }^{\text {SS }}$	$\begin{aligned} & \text { Salmon trawl }{ }^{\mathbf{A} ;} \\ & \text { Fish lift } \end{aligned}$	17.5-24.05 ${ }^{\text {SS }}$	35	47	475	55	9.3	Mid Norwegian coast- west of the midNorwegian shelf edge (63.4-65.4 N ; 8.0$11.1^{\circ} \mathrm{E}$
2003-2 $2^{\text {SS }}$	Salmon trawl ${ }^{\text {A }}$; Fish lift	$16.06-07.07{ }^{\text {SS }}$	81	44	436	16	8.4	Norwegian Sea east (Norway's EEZ and International zone, mackerel by-catch investigations), $61-73.3^{\circ} \mathrm{N} ; 1.5^{\circ} \mathrm{W}-13^{\circ} \mathrm{E}$
2003-3	Åkra trawl ${ }^{\mathbf{B}}$	01-22.07	34 (74)	0	0	2	*	North Sea-Norwegian Sea (south), Herring \& Blue whiting Pelagic survey
2003-4	Midwater trawl	15-29.07	47 (57)	7	6	1	0. 5	Norwegian Sea $62.7=>71.0^{\circ} \mathrm{N} ; 5^{\circ} \mathrm{W}-15^{\circ} \mathrm{E}$, Mackerel survey
2002-5	Midwater trawl	18-30.07	21 (33)	0	0	1	*	Norwegian Sea, $69.5=>62.7{ }^{\circ} \mathrm{N} ; 5^{\circ} \mathrm{W}-14^{\circ} \mathrm{E}$
		TOTAL 2003	218 (280)		917	75		
		1990-2002	2438		4164	171		
TOTAL	1990-2003		2656		5081	246		

[^4]${ }^{\text {ss }}$ Cruises dedicated to salmon investigations

Table 3.11.4.2. Results of the pelagic fish survey conducted by R/V "Smolensk" M-103 (cruise 50) in 08-17 July 2003 in the international waters of the Norwegian Sea.

$\begin{gathered} \text { Trawl } \\ \# \end{gathered}$	Date	Stop in	Stop out	Lat	Long	Speed , kn	Headlin e depth, m	Total catch, kg	Mackere 1 catch, kg	No of postsmolts	No of salmon
108	8.7	1614	1635	6820N	152W	4,1	300	311	0	0	0
109	8.7	2029	2120	6820N	27W	4,2	1	61	57	0	0
110	9.7	444	510	6819N	225E	4,2	3	84	84	0	0
111	9.7	1123	1230	6755N	58 E	4,2	5	233	228	0	0
112	9.7	1937	2032	6755N	135W	4,4	117	235	0	0	0
113	10.7	330	400	6748N	414W	4,4	33	20	0	0	0
114	10.7	1021	1054	6731 N	522W	4,5	0	12	5	0	0
115	10.7	2104	2132	6730N	226W	4,5	1	14	11	0	0
116	11.7	734	748	6730N	47E	4,9	2	15	15	0	0
117	11.7	943	1013	6730N	102E	4,7	0	5395	5395	0	0
118	11.7	1906	2007	6659N	257E	4,3	175	94	10	0	0
119	12.7	132	200	6700N	55E	4,1	0	178	175	0	0
120	12.7	717	745	6701 N	104W	4,3	0	146	144	0	0
121	12.7	1515	1611	6701 N	338W	4,0	102	434	380	0	0
122	13.7	158	248	6640N	549W	3,9	83	131	13	0	0
123	13.7	1015	1039	6640N	249W	5,0	1	876	876	0	0
124	13.7	1659	1727	6641N	21W	4,3	1	1232	1225	0	0
125	14.7	28	100	6639N	157E	4,9	0	208	208	0	0
126	14.7	820	849	6610N	53E	4,7	0	728	725	0	0
127	14.7	1532	1621	6611 N	106W	3,9	87	730	602	0	0
128	14.7	2218	2243	6611 N	321W	4,8	5	55	54	0	0
129	15.7	415	441	6611 N	513W	4,6	30	972	5	0	0
130	15.7	1039	1103	6545N	427W	5,0	1	126	124	0	0
131	15.7	1754	1815	6545N	216W	4,3	1	10	5	0	0
132	16.7	19	102	6545N	17W	4,2	0	2578	2382	0	0
133	16.7	816	843	6544N	156E	4,5	0	78	77	0	0
134	16.7	1405	1431	6521 N	32E	4,6	2	347	346	0	0
135	16.7	1922	1952	6520N	112 W	4,1	1	47	45	0	0
136	17.7	304	328	6510N	224W	5,0	0	77	60	0	0
137	17.7	914	937	6450N	26 E	5,2	0	43	43	0	0
138	17.7	1140	1226	6451N	4E	3,9	340	118	0	0	0
Total catch, kg								15588	13293	0	0

Status of stocks in NEAC

Estimated recruitment (PFA),
with 95% confidence limits, and
Spawning Escapement Reserve
for maturing and non-maturing salmon
in Northern \& Southern Europe.

Estimated spawning escapement with 95% confidence limits, and conservation limits for 1SW and MSW salmon in Northern \& Southern Europe.

Northern Europe

Southern Europe

Figure 3.6.1.1 PFA trends and predictions (+/-5\% confidence intervals) for non-maturing 1SW Southern European stock

Figure 3.9.3.1 Overview of effort as reported for various fisheries and countries 1971-2003 in the Northern NEAC area.

Figure 3.9.3.2 Overview of effort as reported for various fisheries and countries 1971-2003 in the Southern NEAC area.

Figure 3.9.4.1. Nominal catches of salmon and 5-year running mean in the Southern and Northern NEAC Areas, 1971-2003.

Figure. 3.9.5.1. CPUE indices in various fisheries of the NEAC countries. Vertical axes represent standardized (Z-score) index values, or averages of several series, relative to the average of the time series (0.0).

Southern NEAC area

Northern NEAC area

Figure 3.9.6.1. Percentage of 1 SW salmon in the reported catch for Northern NEAC countries, 1987-2003.

Figure 3.9.6.2. Percentage of 1 SW salmon in the reported catch for Sorthern NEAC countries, 1987-2003.

Figure 3.9.13.1a
SUMMARY OF FISHERIES AND STOCK DESCRIPTION FINLAND (including Norwegian R. Teno catch)

Figure 3.9.13.1b
SUMMARY OF FISHERIES AND STOCK DESCRIPTION France

Figure 3.9.13.1c
SUMMARY OF FISHERIES AND STOCK DESCRIPTION ICELAND

Figure 3.9.13.1d
SUMMARY OF FISHERIES AND STOCK DESCRIPTION IRELAND

National S-R Relationship

Figure 3.9.13.1e
SUMMARY OF FISHERIES AND STOCK DESCRIPTION NORWAY (minus Norwegian rod catches from the R. Teno)

Figure 3.9.13.1f
SUMMARY OF FISHERIES AND STOCK DESCRIPTION RUSSIA

National S-R Relationship

Figure 3.9 .13 .1 g
SUMMARY OF FISHERIES AND STOCK DESCRIPTION SWEDEN

Figure 3.9.13.1h
SUMMARY OF FISHERIES AND STOCK DESCRIPTION UK (E\&W)

Figure 3.9.13.1i
SUMMARY OF FISHERIES AND STOCK DESCRIPTION UK(Northern Ireland)

Figure 3.9.13.1j
SUMMARY OF FISHERIES AND STOCK DESCRIPTION UK(Scotland)

Figure 3.9.14.1 Estimated recruitment (PFA) in the NEAC area
a) Maturing 1SW recruits (potential 1SW returns)
(Recruits in Year N become spawners in Year N)

b) Non-maturing 1SW recruits (potential MSW returns)
(Recruits in Year N become spawners in Year $\mathrm{N}+1$)

Figure 3.9.14.2 Estimated spawning escapement in the NEAC area
a) 1SW spawners (and 95\% confidence limits)

b) MSW spawners (and 95\% confidence limits)

Figure 3.9.14.3 Estimated recruitment (PFA) and Spawning Escapement Reserve (SER) for maturing and non-maturing salmon in Northern Europe.

a) Maturing 1SW recruits (potential 1SW returns)

(Recruits in Year N become spawners in Year N)

b) Non-maturing 1SW recruits (potential MSW returns)
(Recruits in Year N become spawners in Year $\mathrm{N}+1$)

Figure 3.9.14.4 Estimated spawning escapement of maturing and nonmaturing salmon in Northern Europe.
a) 1SW spawners (and 95\% confidence limits)

b) MSW spawners (and 95\% confidence limits)

Figure 3.9.14.5 Estimated recruitment (PFA) and Spawning Escapement Reserve (SER) for maturing and non-maturing salmon in Southern Europe.
a) Maturing 1SW recruits (potential 1SW returns)
(Recruits in Year N become spawners in Year N)

b) Non-maturing 1SW recruits (potential MSW returns)
(Recruits in Year N become spawners in Year $\mathrm{N}+1$)

Figure 3.9.14.6 Estimated spawning escapement of maturing and nonmaturing salmon in Southern Europe.
a) 1SW spawners (and 95\% confidence limits)

b) MSW spawners (and 95\% confidence limits)

Figure 3.9.15.1. An overview of the estimated survival indices of wild and hatchery smolts to adult returns to homewaters (prior to coastal fisheries) in Northern and Southern NEAC area.
Index values represent averages of standardized (Z-score) survival estimates for monitored rivers and experimental facilities, and are relative to the average of the time series (0).
The number of rivers included are indicated in each panel legend.

Figure 3.11.1.1 The ICES' Areas and Divisions

Figure 3.11.3.1 Time series of pelagic fisheries catches and PFAA for southern and northern NEAC complexes

Figure 3.11.4.1. Pelagic trawl sites May - late July 2003, with salmon captures (legends in figure) and without salmon captures (stars).

Figure 3.11.4.2. Positions of trawl hauls in the pelagic fish survey conducted by R/V "Smolensk" M-103 (cruise 50) in 08-17 July 2003 in the international waters of the Norwegian Sea.

4.1 Status of stocks/exploitaton

In 2003, the overall conservation limit ($\mathrm{S}_{\mathrm{lim}}$) for $\mathbf{2 S W}$ salmon was not met in any area, therefore the stock complexes in these regions are considered to be outside safe biological limits.

The stock status is elaborated in section 4.9.

4.2 Management objectives

The conservation limits (CLs) have been defined by ICES as the level of stock that will achieve long term average maximum sustainable yield (MSY), as derived from the adult to adult stock and recruitment relationship. NASCO has adopted this definition of CLs (NASCO, 1998). The CL is a limit reference point $\left(\mathrm{S}_{\mathrm{lim}}\right)$. However, management targets have not yet been defined for North Atlantic salmon stocks. ICES has interpreted stocks to be within safe biological limits only if the lower bound of the confidence interval of the most recent spawner estimate is above the CL.

4.3 Reference points

As precautionary reference points have not been developed for these stocks, management advice is therefore referenced to the $\mathrm{S}_{\text {lim }}$ conservation limit. Thus, these limits should be avoided with high probability (i.e. at least 75%). In Atlantic Canada, CLs have been set on the basis of stock and recruitment studies which provided for MSY on a limited number of river stocks where data was available, and these derived egg deposition rates were used on the remainder of rivers where only habitat area and spawner demographics were available, as documented in O'Connell, et al. (1997). The added production from lacustrine areas in Labrador and Newfoundland was also accommodated. In USA, conservation limits were set following a similar approach. Recently, for stocks in Quebec, stock-recruitment analysis for six local rivers was used to define the CL, defined as the $\mathrm{S}_{\mathrm{MSY}}$ level at 75% probability level, calculated by Bayesian analysis. For the purposes of management, egg deposition requirements are converted into 2 SW fish equivalents. These are presented by fishery management zone in Table 4.3.1.

There are no changes recommended in the 2 SW salmon conservation limits ($\mathrm{S}_{\mathrm{lim}}$) from those recommended previously. Conservation limits for 2 SW salmon for Canada now total 123,349 and for the USA, 29,199 for a combined total of 152,548.

4.4 Advice on management

As the biological objective is to have all rivers reaching their conservation requirements, river-by-river management is necessary. On individual rivers where spawning requirements are being achieved, there are no biological reasons to restrict the harvest. Advice regarding management of this stock complex in the fishery at West Greenland is provided in Section 5.

4.5 Relevant factors to be considered in management

For all fisheries, ICES considers that management of single stock fisheries should be based upon assessments of the status of individual stocks. Conservation would be best achieved if fisheries can be targeted at stocks that have been shown to be above biologically-based escapement requirements. Fisheries in estuaries and rivers are more likely to fulfil this requirement.

Reduced exploitation on large salmon in the in-river and estuarine fisheries of the Miramichi has resulted in an expanded age structure in which repeat spawners have comprised as much as 50% of the large salmon returns. It is therefore necessary to consider that if this is a widespread response to fishery closures, a large proportion of the actual egg deposition may in future be provided by fish which are not presently considered in setting CLs and assessing whether CLs have been achieved. The contribution of all sea-age categories of females is however considered when assessing whether the eggs deposited in a river reach the total egg requirements for each assessed river.

Catch options are only provided for the non-maturing 1SW and maturing 2 SW components as the maturing 1 SW component is not fished outside of home waters, and in the absence of significant marine interceptory fisheries, is managed in homewaters by the producing nations.

It is possible to provide catch advice for the North American Commission area for two years. The revised forecast for 2004 for 2 SW maturing fish is based on a new forecast of the 2003 pre-fishery abundance and accounting for fish which were already removed from the cohort by fisheries in Greenland and Labrador in 2003 as 1 SW non-maturing fish. The second is a new estimate for 2005 (see section 4.7) based on the pre-fishery abundance forecast for 2004 from Section 5. A consequence of these annual revisions is that the catch options for 2SW equivalents in North America may change compared to the options developed the year before.

Catch advice for 2004 fisheries on 2SW maturing salmon

The revised forecast of the pre-fishery abundance for 2003 provides a PFA mid-point of 90,700 .
In order to compare the PFA to conservation limits, the pre-fishery abundance of 90,700 can be expressed as 2 SW equivalents by considering natural mortality of 3% per month for 11 months (a factor of 0.72), resulting in $65,3042 \mathrm{SW}$ salmon equivalents. There have already been harvests of this cohort as 1 SW non-maturing salmon in 2003 for both the Labrador (358) and Greenland (1,958) fisheries (Tables 4.9.1.1 and 4.9.1.2) for a total of 2,316 2 SW salmon equivalents already harvested, when the mortality factor is considered, leaving 62,988 2SW salmon returning to North America.

As the predicted number of 2 SW salmon returning to North America $(62,988)$ in 2004 is substantially lower than the 2 SW conservation limit ($\mathrm{S}_{\mathrm{lim}}$) of 152,548 , there are no harvest possibilities at forecasted levels considered risk-averse (at probability levels of 75% and below). Harvest possibilities refer to the composite North American fisheries. As the biological objective is to have all rivers reaching their conservation requirements, river-by-river management is necessary. On individual rivers, where spawning requirements are being achieved, there are no biological reasons to restrict the harvest.

Regional assessments in some areas of eastern North America provide a more detailed consideration of expectations for 2004, taking into consideration the contribution of all sea ages of salmon to the spawning population. By area, these are:

Labrador:

As there has been a lack of long-term monitoring facilities in Labrador, there is little information available to comment on expectations for 2004 and beyond.

Newfoundland:

There are no forecasts available for returns of small and large salmon in 2004. The majority of returns are small salmon and their return depends mainly on marine survival which has been quite variable. Exploitation in Newfoundland occurs primarily on maturing 1SW salmon.

Gulf:

In all rivers of the Gulf Region, large salmon returns and spawners in 2003 improved from 2002 and spawning escapement was above or appoximated the conservation requirement. Small salmon abundance was down from 2002 but within the previous five year average abundance. Exploitation on salmon in the Gulf region is restricted to retention of small salmon in the recreational fisheries and an allocation of large salmon to the native fisheries. Harvest rates on large salmon resulting from catch and release mortality and native fisheries has been rarely above 10% and usually less than 5%. The majority of the egg depositions come from large salmon which are predominantly females with some additional eggs from the small salmon which can be comprised of upwards of 25% female but are more often less than 10% female. The largest salmon producing river, the Miramichi, almost met the conservation requirements in 2003. The outlook for 2004 is for a lower return of large salmon relative to 2003 , with a small chance (28%) of meeting the conservation requirement in the

Miramichi River overall. Because the majority of salmon returning to the Morell (91\% in 2002) and to other PEI rivers (SFA 17) are of hatchery origin, current fisheries have little impact on future runs. In all areas of the Gulf, with the exception of the southeast New Brunswick rivers which are closed to salmon fishing, juvenile abundance in rivers declined in 2003 but remains at historical high levels.

Scotia-Fundy:

Expectations that salmon returns in 2004 will meet or exceed conservation limits among twelve assessed rivers of the Atlantic coast of Nova Scotia and southern New Brunswick range from zero to about 45%, with most rivers at zero (exceptions being two rivers in Cape Breton, North at 45% and Middle at 14% and the LaHave River in SFA 21at 20\%). Harvest in home waters is dependent on bi-weekly in-season assessments beginning June 15, at two monitoring facilities, Morgans Falls fishway on the LaHave River and at Mactaquac dam fishway on the Saint John River. Under the existing fisheries management strategy, harvest fisheries including aboriginal, hook and release recreational fishery or retention of small salmon in the recreational fishery would only be considered if the probability of achieving the conservation limit was greater than 75%. Supportive rearing programs are expected to move away from fisheries support objectives and toward population maintenance by rearing parr to mature adult spawners, pedigree breeding and earlier ages for stocking.

Québec:

There were 19% less 1SW returns in 2003 than in 2002, and the 2003 value was 5% less than the 1998-2002 mean. Returns of large salmon in 2004 are expected to decrease by a range of 15% to 25% over 2003 and be less than the previous 5 year mean. This level of returns should be sufficient for attainment of conservation limits on rivers south of the St. Lawrence, zones Q1 to Q3, but not on the majority of rivers on the north shore. Consequently, retention of large salmon is not expected to be permitted on any river of the zone Q5, Q6 and Q10 and on the majority of rivers of the zones Q7.

USA:

Salmon returns (both large and small) in 2004 are not expected to be sufficient to meet conservation limits in any river, including those receiving hatchery stocking.

4.7 Medium to long term projections

Catch advice for 2005 fisheries on 2SW maturing salmon

Most catches (88%) in North America now take place in rivers or in estuaries. The commercial fisheries are now closed and the remaining coastal food fisheries in Labrador are mainly located close to river mouths and likely harvest few salmon from other than local rivers. Fisheries are principally managed on a river-by-river basis and, in areas where retention of large salmon is allowed, it is closely controlled.

Catch options which could be derived from the pre-fishery abundance forecast for 2004 (100,400 at the 50\% probability level) would apply principally to North American fisheries in 2005 and hence the level of fisheries in 2004 needs to be accounted for before providing them.

Accounting for mortality and the conservation limit and considering an allocation of 60% of the surplus to North America, the only risk averse catch option for 2SW salmon in 2005 is "zero" catch. This "zero" catch option refers to the composite North American fisheries. As the biological objective is to have all rivers reaching or exceeding their conservation limits, river-by-river management will be necessary. On individual rivers, where conservation limits are being achieved, there are no biological reasons to restrict the harvest.

4.8 Comparison with previous assessment and advice

The revised forecast of the pre-fishery abundance for 2003 provides a PFA mid-point of 90,700 . This is about 18% lower than the value forecast last year at this time of 111,042 . This is mainly due to slight changes in the input values and changes to the model used to forecast PFA for these stocks, as detailed in Section 5.

4.9.1 Catch of North American salmon, expressed as 2SW salmon equivalents

Catch histories of salmon, expressed as 2 SW salmon equivalents, which could have been available to the Greenland fishery, 1972-2003, are provided in Tables 4.9.1.1 and 4.9.1.2 and. The Newfoundland-Labrador commercial fishery historically was a mixed stock fishery and harvested both maturing and non-maturing 1SW salmon as well as 2 SW maturing salmon. The harvest in these fisheries of repeat spawners and older sea-ages was not considered in the run reconstructions. Harvests of 1SW non-maturing salmon in Newfoundland-Labrador commercial fisheries have been adjusted by natural mortalities of 3% per month for 13 months, and 2 SW harvests in these same fisheries have been adjusted by one month to express all harvests as 2 SW equivalents in the year and time they would reach rivers of origin. Starting in 1998, the Labrador commercial fishery was closed. An Aboriginal Peoples' fishery occurred in 1998-2003 that may have harvested, to some degree, mixed stocks, and catches for this fishery have been included (Tables 4.9.1.1, 4.9.1.2). As well, a residents' food fishery in Labrador which started in 2000 is included. Mortalities (principally in fisheries) in mixed stock and terminal fisheries areas in Canada are summed with those of USA to estimate total 2 SW equivalent mortalities in North America (Table 4.9.1.1). The terminal fisheries areas included coastal and river catches of all areas, except Newfoundland and Labrador where only river catches were included. Catch equivalents within North America peaked at about 365,000 in 1976 and are now about $11,8002 \mathrm{SW}$ salmon equivalents. In the most recent five years estimated (that is those since the closure of the Labrador commercial fishery), those taken as non-maturing fish in Labrador comprise 3\%, or less, of the total in North America.

Of the North American fisheries on the cohort destined to be 2SW salmon, 82% of the catch comes from terminal fisheries in the most recent year. This value has ranged from as low as 20% in 1973,1976 and 1987 to values of $77-91 \%$ in 19962003 fisheries (Table 4.9.1.1). The percentage increased significantly since 1992 with the reduction and closures of the Newfoundland and Labrador commercial mixed stock fisheries.

Table 4.9.1.2 shows the mortalities expressed as 2 SW equivalents in Canada, USA, and Greenland for 1972-2003, by applying a mortality of 3% per month for 11 months to the estimates of harvests of 1SW non-maturing North American salmon in the Greenland fishery. Harvests within the USA of the total within North America approached 0.6% on a few occasions in the time-series and as recently as in 1990. As well as these harvests in the USA, USA-origin salmon were also harvested in Canada during the time period indicated. The percentage of the total 2 SW equivalents that have been harvested in North American waters has ranged from $48-100 \%$, with the most recent year estimated at 88%. The two years when 100% of the mortality occurred in North America were the years when the Greenland commercial fishery did not operate.

4.9.2 Gear and effort

Canada

The 23 areas for which the Department of Fisheries and Oceans (DFO) manages the salmon fisheries are called Salmon Fishing Areas (SFAs); for Québec, the management is delegated to the Société de la Faune et des Parcs du Québec and the fishing areas are designated by Q1 through Q11 (Figure 4.9.2.1). Harvest (fish which are retained) and catches (including harvests and fish caught-and-released in recreational fisheries) are categorized in two size groups: small and large. Small salmon, generally 1 SW , in the recreational fisheries refer to salmon less than 63 cm fork length, whereas in commercial fisheries, it refers to salmon less than 2.7 kg whole weight. Large salmon, generally MSW, in recreational fisheries are greater than or equal to 63 cm fork length and in commercial fisheries refer to salmon greater than or equal to 2.7 kg whole weight.

Three user groups exploited salmon in Canada in 2003: Aboriginal peoples, residents fishing for food in Labrador, and recreational fishers. Commercial quotas normally fished by Aboriginal peoples in Ungava Bay (zone Q11) remained closed. Hence there were no commercial fisheries in Canada in 2003.

The following management measures were in effect in 2003:

Aboriginal peoples' food fisheries

In Québec, Aboriginal peoples' food fisheries took place subject to agreements or through permits issued to the bands. There are 10 bands with subsistence fisheries in addition to the fishing activities of the Inuit in Ungava (Q11), who fished in estuaries or within rivers. The permits generally stipulate gear, season, and catch limits. Catches for subsistence fisheries have to be reported collectively by each Aboriginal user group. However, if reports are not available, the catches are estimated. In the Maritimes and Newfoundland (SFAs 1 to 23), food fishery harvest agreements were signed with several Aboriginal peoples groups (mostly First Nations) in 2003. The signed agreements often included allocations of small and large salmon and the area of fishing was usually in-river or estuaries, except in Labrador. Harvests which occurred both within and outside agreements were obtained directly from the Aboriginal peoples. In Labrador (SFAs 1 and 2), food fishery arrangements with the Labrador Inuit Association and the Innu resulted in fisheries in estuaries and coastal areas. There were no food fisheries on the island of Newfoundland in 2003. Under agreements reached in 2003, several Aboriginal communities in Nova Scotia agreed to retain only "adipose clipped" 1SW salmon from nine Atlantic coast rivers in SFA's 20 and 21, using methods that allowed live release of wild fish. Harvest by Aboriginal peoples with recreational licenses are reported under the recreational harvest categories.

Residents food fisheries in Labrador

In the Lake Melville (SFA 1) and the coastal southern Labrador (SFA 2) areas, DFO allowed a food fishery, using gillnets, for local residents. Residents who requested a license were permitted to retain a maximum of four salmon of any size while fishing for trout and charr; four salmon tags accompanied each license. All licensees were to complete logbooks.

Recreational fisheries

Unless otherwise determined by management authorities, licenses are required for all persons fishing recreationally for Atlantic salmon, gear is generally restricted to fly fishing and there are restrictive daily/seasonal bag limits. Recreational fisheries management in 2003 varied by area (Figure 4.9.2.2). Except in Québec and Labrador (SFA 1 and some rivers of SFA 2), only small salmon could be retained in the recreational fisheries.

The seasonal bag limits in the recreational fishery remained at eight small salmon in New Brunswick and in Nova Scotia. In SFA 16 and in Nepisiquit River (SFA 15) of New Brunswick, the small salmon daily retention limit remained at one fish. In the remainder of SFA 15 and in Nova Scotia (SFA 18), the daily retention limits were two small salmon. The maximum daily catch limit was four fish daily. In SFA 17 (PEI), the season and daily bag limits were seven and one respectively. Catch-and-release fishing only for all sizes of Atlantic salmon was in effect in SFA 19 of Nova Scotia. In SFAs 20-23 of Nova Scotia and New Brunswick, most rivers were closed to all salmon angling, except for four acid-impacted rivers on the Atlantic coast of Nova Scotia, where retention of small salmon was allowed. As well, five other eastern and southern shore (SFA 20,21) rivers and all but one river of eastern Cape Breton (SFA19) were opened for a hook and release fishery from June 1 to July 15 in 2003.

A five-year (2002-2006) management plan was introduced in Newfoundland and Labrador in 2002, based upon the river classification system utilized for SFAs 3-14B in 1999-2001. For insular Newfoundland (SFAs 3 to 14A) and the Strait of Belle Isle and southern Labrador (SFA2,14B), retention limits ranged from a seasonal limit of six fish on Class I rivers, to no retention and catch-and-release only on Class IV rivers. Some rivers were closed to all angling and were not assigned a class number. In SFA 1 and some rivers of SFA 2 of Labrador, there was a seasonal limit of four fish, only one of which could be a large salmon, except in those rivers (now Class II) of SFA 2 crossed by the new Trans Labrador Highway, where a seasonal retention limit of two small salmon and no large salmon was imposed.

In Québec, three different fishing permits are sold. The first allows a retention of seven salmon for the season. The second is a one day permit and allows a retention of two salmon. The third type of permit is for catch and release only. In the northern zones, the management regimes for Q8, Q9 and Q11 (44 rivers) were applied uniformly to rivers within each zone. Retention of both small and large salmon was generally allowed throughout these northern zones. The daily limit was two fish in Q8 and Q11, and three fish in zone Q9. In some rivers, stricter limits were applied by local groups. Also, in Q11, if the first fish caught was a large salmon, fishing stopped for the day. Release of large salmon occurred mainly on a voluntary basis in these zones. The 74 rivers of the southern zones were managed river by river. Fishing was not allowed on 31 rivers, retention of small salmon only was in force on 24 rivers, and retention of small and large salmon (maximum of one large salmon daily) was allowed on 19 rivers at the start of the season. However, on these 19 rivers, 3 were further restricted to retention of small salmon only after mid-season reviews.

There was no fishery for sea-run Atlantic salmon in the USA in 2003 as a result of angling closures in 1999. Therefore effort measured by license sales, was 0 .

France (Islands of Saint-Pierre and Miquelon)

There was no information available to the Working Group describing the Saint-Pierre and Miquelon fisheries in 2003.

In 2002, there were 12 professional and 42 recreational gillnet licenses issued. Since 1997, the number of professional fishermen has doubled from six to 12 and the number of recreational licenses has increased by six to 42 .

| Year | Number
 Professional
 Licenses | of
 Recreational
 Licenses |
| :--- | :---: | :---: | :---: |
| $\mathbf{1 9 9 5}$ | 12 | 42 |
| $\mathbf{1 9 9 6}$ | 12 | 42 |
| $\mathbf{1 9 9 7}$ | 6 | 36 |
| $\mathbf{1 9 9 8}$ | 9 | 42 |
| $\mathbf{1 9 9 9}$ | 7 | 40 |
| $\mathbf{2 0 0 0}$ | 8 | 35 |
| $\mathbf{2 0 0 1}$ | 10 | 42 |
| $\mathbf{2 0 0 2}$ | 12 | 42 |
| $\mathbf{2 0 0 3}$ | unknown | unknown |

There is no legal limit on the number of professional and recreational licences. However, local authorities have restricted these numbers to 12 (professional) and 42 (recreational) so far, based on the maxima observed since the beginning of the statistics recording on salmon fishing at SPM in 1990.

Due to a sharp decline in other fish resources exploited by the professional fishermen (lumpfish, snow crab and cod), more of them have expressed interest in having salmon licenses and have asked for an increase in the number of licences that could be compensated by a reduction in the number of recreational licences.

4.9.3 Catches in 2003

Canada

The provisional harvest of salmon in 2003 by all users was 137 t , about 7% lower than the 2002 harvest (Table 2.1.1.1; Figure 4.9.3.1). The 2003 harvest was 44,426 small salmon and 11,172 large salmon, 17% fewer small salmon and 32% more large salmon, compared to 2002 (Table 4.9.3.1). The dramatic decline in harvested tonnage since 1988 is in large part the result of the reductions in commercial fisheries effort, the closure of the insular Newfoundland commercial fishery in 1992, the closure of the Labrador commercial fishery in 1998, and the closure of the Québec commercial fishery in 2000 (Figure 4.9.3.1). These reductions were introduced as a result of declining abundance of salmon.

The 2003 harvest of small and large salmon, by number, was divided among the three user groups in different proportions depending on the province and the fish-size group exploited (Table 4.9.3.1). Newfoundland reported the largest proportion of the total harvest of small salmon and Québec reported the greatest share of the large salmon harvest. Recreational fisheries exploited the greatest number of small salmon in each province, accounting for 81% of the total small salmon harvests in eastern Canada. Unlike years previous to 1999 when commercial fisheries took the largest share of large salmon and the years 2000-2002 when food fisheries (including the Labrador resident food fishery) accounted for the largest share, the recreational fishery took the largest share in 2003 (52% by number).

Aboriginal peoples' food fisheries

Harvests in 2003 (by weight) were down 5% from 2002 and 4% lower than the previous 5-year average harvest.

Aboriginal peoples' food fisheries			
		\% large	
Year	Harvest (t)	by weight	by number
$\mathbf{1 9 9 0}$	31.9	78	
$\mathbf{1 9 9 1}$	29.1	87	
$\mathbf{1 9 9 2}$	34.2	83	
$\mathbf{1 9 9 3}$	42.6	83	58
$\mathbf{1 9 9 4}$	41.7	83	56
$\mathbf{1 9 9 5}$	32.8	82	65
$\mathbf{1 9 9 6}$	47.9	87	74
$\mathbf{1 9 9 7}$	39.4	91	63
$\mathbf{1 9 9 8}$	47.9	83	49
$\mathbf{1 9 9 9}$	45.9	73	41
$\mathbf{2 0 0 0}$	45.7	68	47
$\mathbf{2 0 0 1}$	42.1	72	43
$\mathbf{2 0 0 2}$	46.3	68	49
$\mathbf{2 0 0 3}$	43.8	71	

Residents fishing for food in Labrador

The estimated catch for the entire fishery in 2003 was 6.8 t , about 3,000 fish (79% small salmon by number).

Recreational fisheries

Harvest in recreational fisheries in 2003 totaled 40,692 small and large salmon, 5% below the previous 5-year average, 4% below the 2002 harvest level, and the lowest total harvest reported (Figure 4.9.3.2). The small salmon harvest of 35,994 fish was 19% below the previous 5 -year mean. The large salmon harvest of 4,698 fish was about 5% greater than the previous five-year mean. Small and large salmon harvests were down 18% and up 179% from 2002, respectively. The small salmon size group has contributed 87% on average of the total harvests since the imposition of catch-and-release recreational fisheries in the Maritimes and insular Newfoundland (SFA 3 to 14B, 15 to 23) in 1984 (Figure 4.9.3.2).

In 1984, anglers were required to release all large salmon in the Maritime provinces and insular Newfoundland. In more recent years, anglers have been required to release all salmon on some rivers for conservation reasons and, on others, they are voluntarily releasing angled fish. In addition, numerous areas in the Maritimes Region in 2003 were closed to retention of all sizes of salmon (Figure 4.9.2.2).

In 2003, about 51,400 salmon (about 22,900 large and 28,500 small) were caught and released (Table 4.9.3.2), representing about 56% of the total number caught, including retained fish. This was a 1% increase from the number released in 2002. Most of the fish released were in Newfoundland (51 \%), followed by New Brunswick (27\%), Québec (16\%), Nova Scotia (5%), and Prince Edward Island (0.6%). Expressed as a proportion of the fish caught, that is, the sum of the retained and released fish, Nova Scotia released the highest percentage (91%), followed by New Brunswick (60%), Newfoundland (55%), Prince Edward Island (53\%), and Québec (47%). As has been mentioned in Section 2.1.2, there is some mortality on these released fish, which is accounted for when individual rivers are assessed for their attainment of conservation limits.

Commercial fisheries

All commercial fisheries for Atlantic salmon remained closed in Canada in 2003 and the catch therefore was zero. Catches have decreased from a peak in 1980 of almost $2,500 \mathrm{t}$ to zero currently as a result of effort reductions, low abundance of stocks, and closures of fisheries.

Unreported catches

Canada's unreported catch estimate for 2003 was about 118 t . Estimates were included for all five provinces and within each province for all salmon fishing areas (SFA), with the exception of Nova Scotia were estimates were available for two of five SFAs. Estimates were provided mainly by enforcement staff. In all areas, most unreported catch arises from illegal fishing or illegal retention of bycatch of salmon.

By stock groupings used for Canadian stocks throughout the report, the unreported catch estimates for 2003 were:

Stock Area	Unreported Catch (t)
Labrador	2
Newfoundland	42
Gulf	39
Scootia-Fundy	1
Québec	34
Total	118

All fisheries (commercial and recreational) for sea-run Atlantic salmon within the USA remained closed, including rivers previously open to catch-and-release fishing. Thus, there was no harvest of sea-run Atlantic salmon in the USA in 2003.

Unreported catches in the USA were estimated to be 0 t . There was likely an illegal harvest of at least five 2 SW salmon in 2003 from the federally endangered Gulf of Maine Distinct Population Segment (DPS). Management measures have been implemented to help prevent illegal take from occurring in the future.

France (Islands of Saint-Pierre and Miquelon)

There was no information available to the Working Group describing the Saint-Pierre and Miquelon fisheries in 2003.

The harvest in 2002 was reported to be 3.6 t from professional and recreational fishermen, 67% higher than in 2001 and the largest catch recorded since before 1960 (Table 2.1.1.1). Professional and recreational fishermen reported catching 2,437 kg and $1,153 \mathrm{~kg}$ of salmon, respectively.

Year	Catch Professional Licenses (kg)	by Recreational Licenses (kg)	Total (kg)
$\mathbf{1 9 9 0}$	1,146	734	1,880
$\mathbf{1 9 9 1}$	632	530	1,162
$\mathbf{1 9 9 2}$	1,295	1,024	2,319
$\mathbf{1 9 9 3}$	1,902	1,041	2,943
$\mathbf{1 9 9 4}$	2,633	790	3,423
$\mathbf{1 9 9 5}$	392	445	837
$\mathbf{1 9 9 6}$	951	617	1,568
$\mathbf{1 9 9 7}$	762	729	1,491
$\mathbf{1 9 9 8}$	1,039	1,268	2,307
$\mathbf{1 9 9 9}$	1,182	1,140	2,322
$\mathbf{2 0 0 0}$	1,134	1,133	2,267
$\mathbf{2 0 0 1}$	1,544	611	2,155
$\mathbf{2 0 0 2}$	2,437	1,153	3,590
$\mathbf{2 0 0 3}$	Unknown	Unknown	Unknown

4.9.4 Origin and composition of catches

In the past, salmon from both Canada and the USA were taken in the commercial fisheries of eastern Canada. These fisheries have been closed. The Aboriginal Peoples' and resident food fisheries that exist in Labrador may intercept some salmon from other areas of North America although there are no reports of tagged fish being captured there in 2003. The fisheries of Saint-Pierre and Miquelon catch salmon of both Canadian and US origin (section 4.11). Sampling was carried out on this fishery in 2003 but results were not available to the Working Group.

Fish designated as being of wild origin are defined as the progeny of fish where mate selection occurred naturally (eggs not stripped and fertilized artificially) and whose life cycle is completed in the natural environment (ICES 1997/Assess:10). Hatchery-origin fish, designated as fish introduced into the rivers at any life stage, were identified on the basis of the presence of marks or an adipose clip, from fin deformations, and/or from scale characteristics. Not all hatchery fish could be identified as such in the returns because of stocking in the early life stages. Commercial fish-farm escapees were differentiated from hatchery fish on the basis of scale characteristics and fin erosion (especially of the tail), although the identification of early life stage escapees is also problematic.

The returns in 2003 to the majority of the rivers in Newfoundland and to most rivers of the Gulf of St. Lawrence and Québec were comprised exclusively of wild salmon (Figure 4.9.4.1). Hatchery-origin salmon made up varying proportions of the total returns and were most abundant in the rivers of the Bay of Fundy, the Atlantic coast of Nova Scotia and the

USA. Aquaculture escapees were noted in the returns to four rivers of the Bay of Fundy and the coast of USA (Saint John, Magaguadavic, St. Croix, Dennys).

Aquaculture production of Atlantic salmon in eastern Canada has increased annually, exceeding 10,000 t in 1992 and rising to about $43,450 \mathrm{t}$ in 2003 (Table 2.2.1.1). Escapes of Atlantic salmon have occurred annually. Reports of these escapes have not been made available to the Working Group.

In the Magaguadavic River (SFA 23; Table 4.9.4.1), which is located in close proximity to the center of both the Canadian and USA east coast salmon farming areas, the proportion of the adult run composed of fish farm escapees has been high (greater than 50\%) since 1994. Escaped fish were not observed between 1983 and 1988. Since 1992, escaped fish have comprised between 33% and 90% of adult salmon counts. However, while fish farm escapees have dominated the run in terms of percentages, in absolute terms, their numbers have been trending downwards (Table 4.9.4.1). Fish farm escapees were also monitored in the St. Croix River (Canada/USA border), and Maine's Dennys, Narraguagus and Union rivers. The St. Croix and Dennys rivers are also in close proximity to the principal USA and Canadian salmon farming areas, whereas the Narraguagus and Union are more to the south, but have a few farm sites located in their vicinity. Percentages of returns that were fish farm escapees in the returns to the St. Croix and Dennys rivers in 2003 were 38% and 18% respectively. In both the Union and Narraguagus rivers, no fish farm escapees were observed in 2003.

4.9.5 Elaboration on status of stocks

There are approximately 550 Atlantic salmon rivers in eastern Canada and 21 rivers in eastern USA each of which could contain at least one population of salmon. Assessments are prepared for a limited number of specific rivers, because they compose significant fractions of the salmon resource or are indicators of patterns within a region, or because of the demands by user groups, or as a result of requests for biological advice from fisheries management. The status is evaluated by examining trends in returns and escapement relative to the conservation requirements.

Measures of abundance in monitored rivers

Canada

1985-2003 patterns of adult returns

The returns represent the size of the population before any in-river and estuarine removals (Figure 4.9.5.1). These returns can include returns from hatchery stocking but do not account for commercial fisheries removals in Newfoundland, Labrador, Québec, and Greenland. A gradual moratorium closed the Newfoundland, Labrador and Québec commercial salmon fisheries in Canada between 1992 and 2000.

Annual returns of salmon by size group are available for 21 rivers in eastern Canada since 1985. Peak return years differed for regions within eastern Canada (Figure 4.9.5.1). For rivers in Scotia-Fundy, Gulf, and Québec regions, the returns have been generally decreasing since the closures of the Newfoundland and Québec commercial fisheries, showing that factors other than fisheries are influencing marine mortality. Alternatively, the returns to six rivers in Newfoundland have generally increased since the commercial fisheries closures there in 1992. These Newfoundland stocks mainly mature at 1SW age and seem to have been more heavily affected by the local commercial fisheries. The large salmon are mostly repeat-spawning 1SW fish. The total returns of these six Newfoundland rivers doubled during 1993 to 2003 from the low levels observed during 1989 to 1991 period (Figure 4.9.5.1).

As estimated on these 21 rivers, the returns for 2003 of large salmon in Scotia-Fundy, Gulf, Québec and Newfoundland were increased from 2002 by $114 \%, 68 \%, 109 \%$ and 10% respectively. As compared to the 5 -year average, these 2003 returns increased by 26% and 70% for the Gulf and Québec rivers, but are lower by 17% and 26% for the Scotia-Fundy and Newfoundland rivers (Figure 4.9.5.1). Returns of small salmon in 2003 relative to 2002 were lower by $50 \%, 40 \%$ and 24% in the Scotia-Fundy, Gulf and Québec rivers respectively, and were higher by 48% in Newfoundland. As compared to the 5year average, small salmon returns were lower by 57% and 12% in the Scotia-Fundy and Gulf rivers, about average in Québec, and higher by 22% in Newfoundland (Figure 4.9.5.1).

Smolt and juvenile abundance

Counts of smolts provide direct measurements of the outputs from the freshwater habitat. Previous reports have documented the high annual variability in the annual smolt output. In tributaries, smolt output can vary by five times but in the counts for entire rivers, annual smolt output has generally varied by a factor of three. Wild smolt production was estimated in 12 rivers of eastern Canada in 2003. Of these, nine rivers have several years of data (Figure 4.9.5.2). In numerous other rivers, juvenile abundance surveys have been conducted.

In 2003, smolt production decreased from the previous year in four of five monitored rivers in Newfoundland, in one of two rivers of Québec, and in two of three rivers in the Maritimes Provinces (Figure 4.9.5.2). Comparing the 2003 smolt production estimates to the previous five-year mean for the 9 rivers monitored during that time period, two of these rivers were unchanged (+ or -10%) while production decreased in the seven other rivers.

Juvenile salmon abundance has been monitored annually since 1971 in the Miramichi (SFA 16) and Restigouche (SFA 15) rivers and for shorter and variable time periods in other rivers (Figure 4.9.5.3). In the rivers of the southern Gulf, densities of young-of-the-year (fry) and parr (juveniles of one or more years old) have increased since 1985 in response to increased spawning escapements (Figure 4.9.5.3). Densities of parr remained at high values in the Gulf rivers in 2003. The mean density values were similar to the previous year and down slightly from the previous 5 -year mean. Fry densities decreased from the previous year on all four monitored rivers. Rivers of SFAs 20 and 21 along the Atlantic coast of Nova Scotia are generally organic stained, of lower productivity, and when combined with acid precipitation, can result in acidic conditions lethal to salmon. In the low-acidified St. Mary's River, fry (age $0+$) density was low (similar to 2002) and older parr (age$1+$ and $2+$) densities remain low (Figure 4.9.5.3). Trends in densities of age-1+ and older parr in the outer Bay of Fundy (SFA 23) have varied since 1980. Parr densities in the Nashwaak River and Saint John River above Mactaquac Dam have generally declined in accordance with reduced spawning escapements. In 2003, parr densities increased on the Saint John River and declined on the Nashwaak River from the previous year. For the salmon stock in 33 rivers of the inner Bay of Fundy (SFA22 and a portion of SFA 23), juvenile densities remained critically low in 2003.

USA

Total estimated return to USA rivers was 1,436 , a 46% increase from the 2002 total (985). These are the sum of documented returns to traps and returns estimated using redd counts on selected Maine rivers. However, the documented return of Atlantic salmon as determined strictly from returns to traps and weirs to rivers in New England was 1,396. Returns of 1SW salmon were 232, a 53% decrease from the 436 in 2002. Returns from MSW were 1,157 , a 120% increase from the 526 in 2002.

Total salmon returns to the rivers of New England continued the downward trend that began in the mid-1980s, and were lower than the previous 5 -year and 10 -year averages (Figure 4.9.5.4). These are minimal estimates, since many rivers in Maine do not contain fish counting facilities, and where counting facilities exist; they do not count 100% of the returns.

For five of the eight rivers that comprise the federally endangered Gulf of Maine Distinct Population Segment (DPS), redd counts were used in a linear regression model to estimate returns because traps or weirs were not present. The total estimated returns for the entire DPS was 72 fish $(95 \% \mathrm{CI}=61-86)$ originating either from natural spawning or hatchery fry, with no rivers having an estimate of zero. These estimates are up from the 2002 estimates of 33 fish ($95 \% \mathrm{CI}=26-41$) when two rivers had a zero estimate.

The majority of the returns were recorded in the rivers of Maine, with the Penobscot River accounting for nearly 77% of the total New England returns. Connecticut River returns accounted for 3.0% of the total returns. Overall, 16.5% of the adult returns were 1 SW salmon and 83.2% were MSW salmon. Most returns (86%) originated from hatchery smolts and the balance (14%) originated from either natural spawning or hatchery fry.

Wild salmon production has been estimated on the Narraguagus River for seven years (Figure 4.9.5.2). Smolt production in 2003 decreased both from 2002 and the previous five-year mean.

The mean parr density in 2003 from 37 sites on the Narraguagus River was low (less than 5 fish $/ 100 \mathrm{~m}^{2}$) and similar to the values observed since 1990 (Figure 4.9.5.3).

Estimates of total abundance by geographic area

For assessment purposes, the following regions were considered: Labrador (SFA 1, 2, \& 14B), Newfoundland (SFA 3-14A), Québec (Q1-Q11), Gulf of St. Lawrence (SFA 15-18), Scotia-Fundy (SFA 19-23), and USA. Returns of 1SW and 2SW salmon to each region (Tables 4.9.5.1 and 4.9.5.2; Figures 4.9.5.5 and 4.9.5.6; and Appendix 5) were estimated by updating the methods and variables used by Rago et al. (1993b) and reported in ICES 1993/Assess:10. The returns for both sea-age groups were derived by applying a variety of methods to data available for individual river systems and management areas. These methods included counts of salmon at monitoring facilities, population estimates from markrecapture studies, and the application of angling and commercial catch statistics, angling exploitation rates, and measurements of freshwater habitat (Appendix 5). The 2SW component of the MSW returns was determined using the seaage composition of one or more indicator stocks.

In the context used here "returns" are the number of salmon that returned to the geographic region, including homewater commercial fisheries, except in the case of the Newfoundland and Labrador regions where returns do not include commercial fisheries. This was done to avoid double counting of fish when commercial catches in Newfoundland and Labrador are added to returns of all geographic areas in North America to estimate the PFA of North American salmon.

Canada

Labrador

The basis for estimates of 2SW and 1SW salmon returns and spawners for Labrador (SFAs 1, 2 \& 14B) prior to 1998 are catch data from angling and commercial fisheries. In 1998-2003, there was no commercial fishery in Labrador and although counting projects took place in 2003 on four Labrador rivers, out of about 100 salmon rivers that exist, it is not possible to extrapolate from these rivers to unsurveyed ones. For Labrador, returns were previously estimated from commercial catches and exploitation rates. As there was no commercial fishery since 1998, it was not possible to estimate the returns or spawners to Labrador for these years.

While total returns and spawners could not be determined for Labrador, there were four monitored rivers in Labrador in 2003 with known numbers of returning adults. Sand Hill River in SFA 2 has the longest time series albeit broken into three time periods, 1970-1973, 1994-1996 and 2002-2003. Returns of small and large salmon in 2003 were 3,157 and 621 large salmon, respectively. Small salmon returns were the $5^{\text {th }}$ highest on record and returns of large salmon were the $2^{\text {nd }}$ highest. Returns of small salmon in 2003 were similar to the mean of the returns in all other years; while returns of large salmon were approximately 50% higher then average returns of all other years. There are three other rivers in Labrador with counts although the time series are relatively short. At Southwest Brook in SFA 2, a tributary of Paradise River, returns of small and large salmon have declined steadily over the last four years but remain higher than in 1998, the first year of operation. At Muddy Bay Brook in SFA 2, where information is available for only two years (2002, 2003), returns of small and large salmon increased considerably in 2003 over the previous year. At English River in SFA 1 where a counting fence has been operated since 1999, returns of small salmon have declined from a high of 367 in 2000 to a low of 133 in 2003. Large salmon have varied over the same time with no apparent trend.

Newfoundland

The estimates of 1 SW and 2 SW returns and spawners for insular Newfoundland (SFAs 3-12 \& 14A) are updated for the entire time-series. Prior to 1999, they were derived from exploitation rates estimated from rivers with counting facilities which were subsequently applied to angling catches of small salmon, adjusted for the proportions of large:small salmon at counting facilities, and finally the proportion of large salmon that were 2SW. Beginning in 1999, the method used in previous years was modified to take into consideration the changes implemented in the 1999-2002 Salmon Management Plan. The Management Plan introduced, for the first time, a river classification scheme with different season limits for each of classes I-IV and, in addition, some other rivers were placed in a special class with a different management plan for each river. Returns and spawners were estimated as documented previously (ICES 2002/ ACFM:14). Catches in 1994-2002 and the calculated exploitation rates and large:small salmon ratios were updated to reflect changes made to catch statistics in Newfoundland from the Licence Stub Return System and catches in 2003 and exploitation rates were calculated.

The mid-point of the estimated returns $(185,300)$ of 1SW salmon to Newfoundland rivers in 2003 is 15% higher than in 2002 and 4% higher than the average 1 SW returns $(178,800)$ for the past five years (Figure 4.9.5.1, Appendix 5). The midpoint $(3,900)$ of the estimated 2SW returns to Newfoundland rivers in 2003 was 11% higher than in 2002 and 94% lower than the recent 5-year average of 5,600 (Figure 4.9.5.6, Appendix 5).

Québec

The mid-point $(27,500)$ of the estimated returns of 1 SW salmon to Québec in 2003 is 19% lower than that observed in 2002 and is 5% lower than the previous five-year mean (Figure 4.9.5.1, Appendix 5).The mid-point $(34,200)$ of the estimated returns of 2 SW salmon in Québec in 2003 is 52% higher than that observed for 2002 (Figure 4.9.5.2).

Gulf of St. Lawrence, SFAs 15-18

The mid-point $(41,000)$ of the estimated returns in 2003 of 1 SW salmon returning to the Gulf of St. Lawrence was a 39% decrease from 2002. The values noted in 1997 through 2003 are low relative to the values observed during 1985-1994 (Figure 4.9.5.5, Appendix 5).

The mid-point $(25,000)$ of the estimate of 2 SW returns in 2003 is 93% higher than the estimate for 2002 (Figure 4.9.5.6, Appendix 5), and similar to 2001. Returns of 2SW salmon have declined since 1995 with only slight improvement shown in 2001 and 2003, relative to the years prior to 1995.

Scotia-Fundy, SFAs 19-23

The mid-point $(9,500)$ of the estimate of the 1SW returns in 2003 to the Scotia-Fundy Region was a 25% decrease from the 2002 estimate, and the third lowest value in the time-series, 1971-2003. Returns have generally been low since 1990 (Figure 4.9.5.5, Appendix 5). The mid-point $(3,800)$ of the 2 SW returns in 2003 is 114% higher than the returns in 2002 but still the third lowest value in the time-series, 1971-2003 (Figure 4.9.5.6, Appendix 5). A declining trend in returns has been observed from 1985 to 2003.

USA

Total salmon returns for USA rivers in 2003 were based on trap and weir catches (documented returns). Because many of the Maine rivers do not have fish counting facilities total abundance continue to be underestimated. The 1SW returns and spawners to USA rivers in 2003 were 237 fish (Figure 4.9.5.5). This was a decrease from the 2002 estimate and lower than both the previous 5 -year (343) and 10-year (356) averages. The 2SW returns in 2002 to USA rivers were 1192 fish, an increase over the 5 -year (856) average, but a decrease compared to the 10-year (1267) average (Figure 4.9.5.6). There were only 73 SW and repeat spawners compared to 22 in 2002.

Run-reconstruction estimates of spawning escapement

Updated estimates for 1SW spawners were derived for the six geographic regions (Table 4.9.5.3). Estimates of 2SW spawners, 1971-2003 are provided in Table 4.9.5.4. These estimates were derived by subtracting the in-river removals from the estimates of returns to rivers. A comparison between the numbers of spawners, returns, and conservation limits ($\mathrm{S}_{\mathrm{lim}}$) for 2SW salmon is shown in Figure 4.9.5.6 (there are no spawning requirements defined specifically for 1 SW salmon).

$\underline{\text { Labrador }}$

As previously explained, it was not possible to estimate spawners in Labrador in 1998-2003 due to lack of assessment information.

Newfoundland

The mid-point of the estimated numbers of 2SW spawners $(3,900)$ in 2003 was 14% above that estimated in $2002(3,400)$ and was 96% of the total 2 SW conservation limit ($\mathrm{S}_{\mathrm{lim}}$) for all rivers. The 2 SW spawner limit has been met or exceeded in nine years since 1984 (Figure 4.9.5.6). The 1SW spawners (164,600) in 2003 were 19% higher than the 138,300 1SW spawners in 2002. The 1SW spawners since 1992 were higher than the spawners in 1989-91 and similar to levels in the late 1970s and 1980s (Figure 4.9.5.5), although in 1995-1996 they were unusually high. There had been a general increase in both 2SW and 1SW spawners during the period 1992-96 and 1998-2001, and this is consistent with the closure of the commercial fisheries in Newfoundland. For 1997, decreases occurred most strongly in the 1SW spawners.

Québec

The mid-point of the estimated numbers of 2SW spawners $(25,300)$ in 2003 was 67% higher than that observed for 2002 and was about 86% of the total 2 SW conservation limit ($\mathrm{S}_{\mathrm{lim}}$) for all rivers (Figure 4.9.5.6). The spawning escapement in 2003 ranked approximately in the middle of the range in the time-series (1971-2003), with 1971 having been the lowest and the 2003 value was the highest since 1997. Estimates of the numbers of spawners approximated the spawner limit from 1971 to 1990; however, they have been below the limit since 1990. The mid-point of the estimated 1SW spawners in 2003 $(19,300)$ was about 9% lower than in 2002 (Figure 4.9.5.5) and similar to the mean value of the previous ten years.

Gulf of St. Lawrence

The mid-point of the estimated numbers of 2SW spawners $(24,700)$ in 2003 was about 93% higher than estimated in 2002 $(12,800)$ and was about 81% of the total 2 SW conservation limits $\left(\mathrm{S}_{\mathrm{lim}}\right)$ for all rivers in this region (Figure 4.9.5.6). This is the eighth time in ten years that these rivers have not exceeded their 2 SW spawner limits. The mid-point of the estimated spawning escapement of 1SW salmon $(31,600)$ decreased by 39% from 2002 and was approximately the average of the last ten years. The abundance remains low relative to the peak (154,000) observed in 1992 (Figure 4.9.5.5). Spawning escapement has on average been higher in the mid-1980s than it was before and after this period.

Scotia-Fundy

The mid-point of the estimated numbers of 2SW spawners $(3,600)$ in 2003 is a 127% increase from 2002 (the lowest in the time series, 1971-2003) and is about 15% of the total 2 SW conservation limits ($\mathrm{S}_{\mathrm{lim}}$) for rivers in this region (Figure 4.9.5.6). Neither the spawner estimates nor the conservation limits include rivers of the inner Bay of Fundy (SFA 22 and part of SFA 23) as these rivers do not contribute to distant water fisheries and spawning escapements are extremely low. The 2SW spawning escapement in the rest of the area has been generally declining since 1985. The mid-point of the estimated 1SW spawners $(9,200)$ in 2003 is a 25% decrease from 2002 and is the seventh lowest in the time-series, 19712003. There has been a general downward trend in 1SW spawners since 1990 (Figure 4.9.5.5).

USA

All age classes of spawners (1SW, 2SW, 3SW, and repeat) in 2003 (1,436 salmon) represented 4.9% of the 2SW spawner requirements for all USA rivers combined. Spawning 2SW salmon, expressed as the percentage of conservation requirement was only 4.1% for all USA rivers combined (Figure 4.9.5.6). On an individual river basis, the Penobscot River met 13.2% of its spawner requirement while all the other US rivers met between $0.4-5.2 \%$ of their 2 SW requirements.

4.9.6 Exploitation rates

Canada

There is no exploitation by commercial fisheries and the only remaining fisheries are for recreation and food.

In the Newfoundland recreational fishery, exploitation rates were available for 12 rivers in 2003 . For those rivers with retention of small salmon, exploitation rates ranged from 3% to 38% with a mean value of 12%. Declines were noted in exploitation for several river from those of 2002.

In the Québec recreational fishery, exploitation rates were available for 37 rivers in 2003. Exploitation rates of small salmon ranged from 4% to 69% with a mean value of 24%. Retention of large salmon was permitted on 18 of those rivers; exploitation rate for large salmon ranged from 1% to 29% with a mean value of 11%. Overall exploitation rates by the Québec recreational fishery, using mid-point estimates of total returns and recreational landings, were 18% for small salmon and 10% for large salmon.

In previous years, overall Canadian exploitation rates were calculated as the harvest of salmon divided by the estimated returns to North America. No estimates of returns to Labrador are possible for 1998-2003, as there was no commercial fishery and there was insufficient information collected on freshwater escapements to extrapolate to other Labrador rivers. For this reason, exploitation rates cannot be calculated for 1998-2003. Harvests of 44,426 small and 11,172 large salmon
in 2003 were less than those of 1997, substantially in the case of large salmon. Exploitation rates in 1997 were estimated to be between 14% and 26% for small and between 15% and 25% for large salmon.

USA

There was no exploitation of USA salmon in home waters, and no salmon of USA origin were reported in Canadian fisheries in 2003.

4.9.7 Pre-Fisheries Abundance

North American run-reconstruction model

The Working Group has used the North American run-reconstruction model to estimate pre-fishery abundance, which serves as the basis of abundance forecasts used in the provision of catch advice. The catch statistics used to derive returns and spawner estimates have been updated from those used in ICES 2003/ACFM:19 (Table 4.9.7.1). The North American run-reconstruction model has also been used to estimate the fishery exploitation rates for West Greenland and in homewaters.

Non-maturing 1SW salmon

The non-maturing component of 1 SW fish, destined to be 2 SW returns (excludes 3 SW and previous spawners) is represented by the pre-fishery abundance estimator for year i designated as [NN1(i)]. Definitions of the variables are given in Table 4.9.7.2. It is constructed by summing 2 SW returns in year $\mathrm{i}+1$ [NR2(i+1)], 2 SW salmon catches in commercial and Aboriginal peoples' food fisheries in Canada [NC2(i+1)], and catches in year i from fisheries on non-maturing 1SW salmon in Canada [$\mathrm{NC} 1(\mathrm{i})]$ and Greenland [NG1(i)]. In Labrador, Aboriginal peoples' food harvests of small (AH_s) and large salmon (AH_l) were included in the reported catches for 1999-2003. Because harvests occurred in both Lake Melville and coastal areas of northern Labrador, the fraction of these catches that are immature was labeled as af_imm. This was necessary because non-maturing salmon do not occur in Lake Melville where approximately half the catch originated. However, non-maturing salmon may occur in coastal marine areas in the remainder of northern Labrador. Consequently, af_imm for the fraction of Aboriginal peoples' harvests that was non-maturing was set at 0.05 to 0.1 which is half of f_imm from commercial fishery samples. The equations used to calculate NC 1 and NC 2 are as follows:

Eq. 4.9.7.1 $\mathrm{NC} 1(\mathrm{i})=\left[\left(\mathrm{H} _\mathrm{s}(\mathrm{i})_{\{1-7,14 b\}}+\mathrm{H}_{-} \mathrm{l}(\mathrm{i})_{\{1-7,14 \mathrm{~b}\}} * \mathrm{q}\right) * \mathrm{f}_{-} \mathrm{imm}\right]$

$$
+\left[\left(\mathrm{AH} _\mathrm{s}(\mathrm{i})+\mathrm{AH} _l(\mathrm{i}) * \mathrm{q}\right) * \mathrm{af} \text { imm }\right], \text { and }
$$

Eq. 4.9.7.2 $\mathrm{NC} 2(\mathrm{i}+1)=\left[\mathrm{H}_{-} \mathrm{l}(\mathrm{i}+1)_{\{1-7,14 \mathrm{~b}\}} *(1-\mathrm{q})\right]+\left[\mathrm{AH}_{-} \mathrm{l}(\mathrm{i}+1) *(1-\mathrm{q})\right]$

As in 1998-2002, the commercial fishery in Labrador remained closed in 2003. In past reports, salmon returns and spawners for Labrador, which make up one of the six geographical areas contributing to NR2 for Canada, were based on commercial fishery data. Since the commercial fishery was closed in Labrador beginning in 1998, the time-series also ended. However, in order to estimate pre-fishery abundance it was still necessary to include Labrador returns for 1998-2003. Consequently, a raising factor was developed by dividing returns to North America without Labrador into returns to North America with Labrador based on the time-series from 1971-97. The raising factor (RFL2) to estimate returns to Labrador for 1998-2003 for 2 SW salmon was set to the low and high range of values in the time-series which was 1.05 to 1.27 . An assumed natural mortality rate [M] of 0.03 per month is used to adjust the numbers between the salmon fisheries on the 1 SW and 2 SW salmon (10 months) and between the fishery on 2 SW salmon and returns to the rivers (1 month) as shown below:

Eq. 4.9.7.3 $\mathrm{NN} 1(\mathrm{i})=\mathrm{RFL} 2 *[(\mathrm{NR} 2(\mathrm{i}+1) / \mathrm{S} 1+\mathrm{NC} 2(\mathrm{i}+1)) / \mathrm{S} 2+\mathrm{NC} 1(\mathrm{i})]+\mathrm{NG} 1(\mathrm{i})$
where the parameters $S 1$ and $S 2$ are defined as $\exp (-M * 1)$ and $\exp (-M * 10)$, respectively. A detailed explanation of the model used to determine pre-fishery abundance is given in Rago et al. (1993a).

This estimated pre-fishery abundance represents the extant population and does not account for the fraction of the population present in a given fishery area. The model does not take into account non-catch fishing mortality in any of the
fisheries. This is because rates for non-catch fishing mortality are not available on an annual basis and are not well described for some of the fisheries harvesting potential or actual 2SW salmon. Commercial catches were not included in the run-reconstruction model for the West Greenland fishery (1993 and 1994), Newfoundland fishery (1992-2003), and Labrador fishery (1998-2003), as these fisheries were closed.

As the pre-fishery abundance estimates for potential 2 SW salmon requires estimates of returns to rivers, the most recent year for which an estimate is available is 2002 . This is because pre-fishery abundance estimates for 2003 require 2 SW returns to rivers in North America in the year 2004, which are not yet available. The minimum and maximum values of the catches and returns for the 2SW cohort are summarized in Table 4.9.7.3. The 2002 abundance estimates ranged between 77,291 and 159,558 salmon. The mid-point of this range $(118,400)$ is 47% higher than the 2001 value $(80,400)$ and is the $5^{\text {th }}$ lowest in the 31-year time-series (Figure 4.9.7.1). The most recent six years are shown with hollow symbols as no Labrador values were estimated for these years and the raising factor described previously was used. Even though the 2002 value has increased considerably from the previous year, the general trend towards lower values in recent years is still evident and current year values are still much lower than the 917,300 in 1975. Despite the increase in the 2002 value, the Working Group expressed concern over the continued low numbers which remain considerably lower than the conservation limit.

Maturing 1SW salmon

Estimation of an aggregate measure of abundance has utility for identifying trends, evaluating management measures, and investigating the influence of the marine environment on survival, distribution, and abundance of salmon. Maturing 1SW salmon are in some areas a major component of salmon stocks, and measuring their abundance is important to provide measures of abundance of the entire cohort from a specific smolt class.

For the commercial catches in Newfoundland and Labrador, all small salmon are assumed to be 1SW fish based on catch samples, which show the percentage of 1SW salmon to be in excess of 95%. Large salmon are primarily MSW salmon, but some maturing and non-maturing 1SW are also present in commercial catches in SFAs 1-7, 14B. Estimates of fractions of non-maturing salmon present in the Newfoundland and Labrador catch were presented in ICES 1991/Assess:12. The large category in SFAs 1-7 and 14B consists of 0.1-0.3 1SW salmon (Rago et al. 1993a; ICES 1993/Assess:10). Salmon catches in SFAs 8-14A are mainly maturing salmon (Idler et al. 1981). These values were assumed to apply to the Aboriginal food fishery catches in marine coastal areas of northern Labrador.

Similar to calculations to determine non-maturing 1SW salmon, a raising factor was also required to include Labrador returns in the maturing component of pre-fishery abundance necessitated by the closure of the commercial fishery in Labrador in 1998. Consequently, a raising factor was developed by dividing pre-fishery abundance without Labrador into pre-fishery abundance with Labrador based on the time-series of Labrador recruit estimates and pre-fishery abundance data from 1971-97. The raising factor (RFL1) to estimate returns to Labrador for 1998-2003 for 1SW salmon was set to the low and high range of values in the time-series, which were 1.04 to 1.59 .

The maturing 1SW component is represented by the pre-fishery abundance estimator for year i [MN1(i)]. It is constructed by summing maturing 1SW returns in year i [MR1(i)] in Canada and the USA and catches in year i from commercial and food fisheries on maturing 1SW salmon in Newfoundland and Labrador [MC1(i)]. An assumed natural mortality rate [M] of 0.03 per month is used to adjust the numbers between the fishery on 1 SW salmon and returns to the rivers (1 month) as shown below:

Eq. 4.9.7.4 $\operatorname{MN1}(\mathrm{i})=[\mathrm{MR} 1(\mathrm{i}) / \mathrm{S} 1+\mathrm{MC1}(\mathrm{i})] * \mathrm{RFL} 1$
where the parameter S 1 is defined as $\exp (-\mathrm{M} * 1)$.

Eq. 4,9.7.5 $\mathrm{MC1}(\mathrm{i})=\left[\left(1-\mathrm{f} _\mathrm{imm}\right)\left(\mathrm{H}_{-} \mathrm{s}(\mathrm{i})_{\{1-7,14 \mathrm{~b}\}}+\mathrm{q}^{*} \mathrm{H}_{-} 1(\mathrm{i})_{\{1-7,14 \mathrm{~b}\}}\right)\right]+\mathrm{H}_{-} \mathrm{s}(\mathrm{i})_{\{8-14 \mathrm{a}\}}$

$$
+\left[\left(1-\mathrm{af} _i m m\right)\left(A H _s(i)+\mathrm{q}^{*} A H _1(i)\right)\right]
$$

This estimated pre-fishery abundance represents the extant population and does not account for the fraction of the population present in a given fishery area. The model does not take into account non-catch fishing mortality in any of the fisheries. This is because rates for non-catch fishing mortality are not available on an annual basis and are not well described for the fisheries harvesting 1SW salmon. Thus, catches used in the run-reconstruction model for the Newfoundland commercial fishery were set to zero for 1992-2003 and for Labrador for 1998-2003 to remain consistent with catches used in other years in these areas (Section 4.9.1).

The minimum and maximum values of the catches and returns for the 1 SW cohort are summarized in Table 4.9.7.4 and the mid-point values are shown in Figure 4.9.7.1. The most recent six years are shown with hollow symbols as no Labrador values were estimated for these years and the raising factor described previously was used. The mid-point of the range of pre-fishery abundance estimates for $2003(380,547)$ is 3% lower than in $2002(393,100)$ and had increased considerably from the low 1994 value of 309,000 , the lowest estimated in the time-series 1971-2003. The reduced values observed in 1978 and 1983-84 and 1994 were followed by large increases in pre-fishery abundance.

Total 1SW recruits (maturing and non-maturing)

Figure 4.9.7.1 shows the pre-fishery abundance of 1SW maturing for the 1971-2003 and 1SW non-maturing salmon from North America for 1971-2002. Figure 4.9.7.2 shows these data combined to give the total 1SW recruits. While maturing 1SW salmon in 1998-2003 have increased over the lowest value achieved in 1994, the non-maturing portion of these cohorts remained unchanged since 1997. As the prefishery abundance of the non-maturing portion (potential 2SW salmon)
has been consistently well below the Spawning Escapement Reserve (derived from $\mathrm{S}_{\mathrm{lim}}$) since 1993, this situation is considered to be very serious. The decline in recruits in the time-series is alarming. Although the declining trend appears common to both maturing and non-maturing portions of the cohort, non-maturing 1SW salmon have declined further. The Working Group expressed concerns about these stock trends and recommended further investigation into their causes.

Escapement variability in North America

The projected numbers of potential 2 SW spawners that could have returned to North America in the absence of fisheries can be computed from estimates of the pre-fishery abundance taking into consideration the 11 months of natural mortality at 3% per month. These values, termed potential 2SW recruits, along with total North American 2SW returns, spawners, and conservation limits ($\mathrm{S}_{\mathrm{lim}}$) are shown in Figure 4.9.7.3 and indicate that the overall North American conservation limit could have been met, in the absence of all fisheries prior to, but not since 1994. The difference between the potential 2SW recruits and actual 2 SW returns reflect the extent to which mixed stock fisheries at West Greenland and in SFAs 1-14 have reduced the populations.

Similarly, the impact of the Greenland fishery can be considered by subtracting the non-maturing 1SW salmon (accounting for natural mortality) harvested there from the total potential 2 SW recruits. These values, termed 2SW recruits to North America, are also shown in Figure 4.9.7.3. The difference between the 2SW recruits to North America and the 2SW returns reflects the impact of removals by the commercial fisheries of Newfoundland and Labrador when they were open and the Labrador food fisheries since reports began in 1998. The 2SW recruits to North America indicate that, even if there had not been a West Greenland commercial fishery, conservation limits could not have been met since 1992. The difference between the actual 2SW returns and the spawner numbers reflects in-river removals throughout North America and coastal removals in Québec, Gulf, and Scotia Fundy regions.

Following on the technique outlined in previous reports (ICES 1994/Assess:16, ICES 1995/Assess:14), the spawners in each geographic area were allocated (weighted forward) to the year of the non-maturing 1SW component in the Northwest Atlantic using the weighted smolt age proportions from each area (Table 4.9.7.5). The smolt age distribution for the USA area was updated with 1990-2003 age and return data. The original USA smolt age distributions are used to allocate the USA spawners for years 1971-1989 and the new distribution for 1990 onward. Changes were made to the USA portion of the table due to declines in natural spawning for US Atlantic salmon populations and changes in hatchery and stocking practices. The total spawners for a given recruitment year in each area is the sum of the lagged spawners. Because the smolt age distributions in North America range from one to six years and the time-series of estimated 2SW spawners to North America begins in 1971, the first recruiting year for which the total spawning stock size can be estimated is 1979 (although a value for 1978 was obtained by leaving out the 6 -year old smolt contribution which represents 4% of the Labrador stock complex (Table 4.9.7.5). Furthermore, for 1977, a value was obtained by estimating contributions from Québec and Newfoundland where five year old smolts exist, representing about 9% of the spawners from these two areas.

After consideration of the changes in North American Atlantic salmon dynamics, and, the modifications made to the US smolt age distribution at this years meeting, the Working Group recommended that Canadian smolt age distributions be examined and if necessary updated in 2005. Furthermore, the smolt age distributions for the six North American areas should be re-evaluated on a five-year schedule, beginning in 2009.

Except for Labrador, the 2SW spawners to North America have been estimated to 2006. In Labrador, the spawning stock is only known to 1997 and therefore lagged spawners contributing to the pre-fishery abundance can only be completely assembled to the 2002 pre-fishery abundance (Figure 4.9.7.4, Table 4.9.7.6). In Labrador, age-3 smolts contribute about 7\% to 2 SW returns six years later, or five years later to the pre-fishery abundance.

Spawning escapement of 2SW salmon to several stock complexes has been below $\mathrm{S}_{\mathrm{lim}}$ (Labrador, Québec, Scotia-Fundy, USA) since at least the 1980s (Figure 4.9.7.4). In the last four years, lagged spawner abundance has been increasing in Labrador and Newfoundland, but decreasing in all other areas. Only the Newfoundland stock complex has received spawning escapements that have exceeded the area's requirements, all other complexes were below requirement, although most increased slightly in 2003.

The relative contributions of the stocks from these six geographic areas to the total spawning escapement of 2SW salmon has varied over time (Figure 4.9.7.5). The reduced potential contribution of Scotia-Fundy stocks and the initial increased proportion of the spawning stock from the Gulf of St. Lawrence and, more recently, from Labrador rivers to future recruitment is most noticeable.

4.9.8

Egg depositions in 2003

Egg depositions by all sea-ages combined in 2003 exceeded or equaled the river specific conservation limits in 34 of the 83 assessed rivers (41%) and were less than 50% of conservation limits in 24 other rivers (29\%) (Figure 4.9.8.1). Large deficiencies in egg depositions were noted in the Bay of Fundy and Atlantic coast of Nova Scotia where 8 of the 12 rivers assessed (67%) had egg depositions that were less than 50% of conservation limits. Proportionally fewer rivers in Gulf (0%) and Québec (16%) had egg depositions less than 50% of conservation limits. For 80% of the Gulf rivers and 52% of the Quebec rivers, egg depositions equaled or exceeded conservation limits (Figure 4.9.8.1). In Newfoundland, 33\% of the rivers assessed met or exceeded the conservation limits and 14% had egg depositions that were less than 50% of limits. Most of the deficits occurred in the east and southwest rivers of Newfoundland (SFA 13). All age classes of spawners (1SW, 2SW, 3SW, and repeat) in 2003 (1,436 salmon) represented 4.9% of the 2 SW spawner requirements for all USA rivers combined. Spawning 2 SW salmon exclusively, expressed as the percentage of conservation requirement was 4.1% for all USA rivers combined. On an individual river basis, the Penobscot River met 13.2% of its spawner requirement while all the other US rivers met between $0.4-5.2 \%$ of their 2 SW requirements (Figure 4.9.8.1).

Egg depositions by all sea-age groups in the Bay of Fundy/Atlantic coast of Nova Scotia, Gulf and Newfoundland areas were mostly stable whereas Québec regions increased relative to the previous year (Figure 4.9.8.2). The proportion of the conservation limits achieved on two Bay of Fundy/Atlantic coast of Nova Scotia rivers has severely declined, especially since 1989. For the Québec rivers, spawning escapements declined continually from a peak median value in 1989. With the exception of one year (2002) in Québec, the median proportion of conservation requirements achieved has been at or above the requirements. In 2003, the median proportion doubled from the previous year which was the lowest value of the time series at 64% of the conservation limit. This reflects the good returns of the 2 SW salmon observed for all of the Québec areas in 2003. The rivers of the Gulf of St. Lawrence have also previously been quite consistent in equalling or exceeding the conservation limits. The median escapements from the 3 Gulf rivers were at conservation limits in 2003. Newfoundland rivers in 2003 observed another small increase from the previous year to be slightly above the conservation limit. The exceeding of limits encountered in Newfoundland from 1992 to 2000 corresponded to the commercial salmon and groundfish moratoria initiated in 1992.

4.9.9 Marine survival rates

With the closure of most sea fisheries, counts of smolts and returning adult salmon can provide indices (\% smolt survival) of natural survival at sea. These estimates are potentially influenced by annual variation in the size, age and sex composition of smolts leaving freshwater and possibly, annual variation in sea-age at maturity. Data available in 2003 on rivers with smolt counts and corresponding adult counts were from eleven wild and four hatchery populations distributed among Newfoundland (SFAs 4, 9, 11, 13, and 14a), Québec (Q2 and Q7), Nova Scotia (SFA 21), New Brunswick (SFA 16, 23) and Maine (USA), Penobscot and Narraguagus rivers.

Plots of percent returns of 1 SW and 2SW adults over time (Figures 4.9.9.1 to 4.9.9.5) provide insight into the impact of changes in management measures and possible changes in marine survival of wild and hatchery 1SW and 2SW stocks. In general the plots suggest:

- Survival of North American stocks to home waters has not increased as expected after closure of the commercial fisheries in 1984 and 1992,
- 1SW survival greatly exceeded that of 2SW fish (except for Maine, where survival of 2SW fish generally exceeds that of 1SW fish),
- Survival of wild stocks exceeded that of hatchery stocks by roughly a factor of 10 , and
- Survival of fish from many rivers in North America is low compared to historic levels, especially in the south.

In 2003, estimated return rates for 1 SW fish improved somewhat for 5 stocks, declined in eight, and was unchanged (+ or 10%) in one compared to 2002. By contrast, 2SW fish estimated return rates in 2003 improved in nine stocks and decreased in one, compared to 2002.

There have been no significant increasing trends ($\mathrm{p} \leq 0.05$) in survival indices of any of the stock components since commercial closures in 1992.

Sea-age \& stock	Province/region	Number of stocks					
		Relative to 2002			10-Year Trend		
		仓	\Leftrightarrow	(1)	ง	\Leftrightarrow	(1)
1SW Wild	West \& North Nfld	1	1			2	
	South Nfld	1		2		3	
	Québec	2				2	
	NS/NB			3			
Hatchery	Québec	1				1	
	NS			1		1	
	NB			1		1	
	Maine			1		1	
	Total	5	1	8	0	11	0
2SW Wild	NS/NB	3					
	Québec	1		1		2	
	Maine	1					
Hatchery	Québec	1				1	
	NS	1					1
	NB	1				1	
	Maine	1				1	
	Total	9	0	1	0	5	1

4.9.10

Endangered populations of Atlantic Salmon

Salmon populations in the southern portion of the range in North America and in isolated locations throughout the range have diminished to levels that require actions to prevent their extirpation. Two population segments in North America have been listed as Endangered by their respective national legislation, one listing consists of eight rivers in Maine, USA and the other consists of thirty-three rivers of the inner Bay of Fundy, Canada. Within the USA, a team is reviewing the status of stocks in other rivers within the Gulf of Maine for future consideration as either threatened or endangered. A similar process is occurring for Outer Bay of Fundy and Atlantic coast of Nova Scotia stocks in Canada.

In addition to historic extirpations, no spawning occurred on two of the eight listed rivers in the USA in 2001 and 2002. In two areas in Canada, the Atlantic coast of Nova Scotia (approximately 50 of 65 rivers) and the outer Bay of Fundy (11 of 11 rivers) have salmon populations that have been extirpated or are perilously close to extirpation. Population viability modeling in both the USA and Canada has predicted that many of the river populations are not sustainable, possibly even when supportive breeding and rearing programs are used.

Currently, these programs for listed populations rely on annual collections of parr or smolt being raised as captive brood. Brood fish are genetically characterized prior to sexual maturity to guide hatchery-spawning operations and either ensures siblings or closely related individuals are not mated or mated according to a designed pedigree. These measures are taken to reduce inbreeding, loss of genetic diversity and fitness.

Stocking into the natal rivers include fry, parr, limited numbers of smolts and redundant mature fish.

Estimates of pre-fishery abundance suggest a continuing decline of North American adult salmon over the last 10 years. The total population of 1 SW and 2SW Atlantic salmon in the northwest Atlantic has oscillated around a generally declining trend since the 1970 s , and the abundance recorded in 1993-2002 was the lowest in the time-series (Figure 4.9.7.2). During 1993 to 2000, the total population of 1 SW and 2 SW Atlantic salmon was about 600,000 fish, about half of the average abundance during 1972 to 1990 . A 21% increase however has occurred between 2001 and 2002, the most recent year for which it is possible to estimate the total population. The decline from earlier higher levels of abundance has been more severe for the 2 SW salmon component than for the small salmon (maturing as 1 SW salmon) age group.

In most regions, the returns in 2003 of 2SW fish increased substantially from 2002 however they are still close to the lower end of the 33-year time-series (1971-2003). In Newfoundland, the 2 SW salmon are a minor age group component of the stocks in this area and even here, decreases of about 30% have occurred from peak levels of a few years ago. Returns of 1SW salmon generally decreased from 2002 in all areas except Newfoundland.

The rank of the estimated returns in 2003 in the 1971-2003 time-series for six regions in North America is shown below:

Region	Rank of 2003 returns in 1971-2003 (1=highest)		Rank of 2003 returns in 1994-2003 (1=highest)		Mid-point estimate of 2SW spawners as proportion of
	1SW	2SW	1SW	2SW	(\%)
Labrador	Unknown	Unknown	Unknown	Unknown	Unknown
Newfoundland	13	19	5	8	96
Québec	21	19	9	4	86
Gulf	28	18	7	4	81
Scotia-Fundy	31	31	9	8	15
USA	24	25	9	8	4

Trends in abundance of small salmon and large salmon within the geographic areas show a general synchronicity among the rivers. Returns of large salmon in North America were generally increased from 2002 often from record low values, while small salmon returns decreased. Decreases in small salmon returns were often to low values similar to 2001. For the rivers of Newfoundland, both small and large salmon returns increased from 2002, and remained high relative to the years before the closure of the commercial fisheries. Large salmon in Newfoundland are predominantly repeat-spawning 1SW salmon, while in other areas of eastern Canada, 2SW and 3SW salmon make up varying proportions of the returns.

Egg depositions in 2003 exceeded or equaled the river-specific conservation limits ($\mathrm{S}_{\text {lim }}$ for eggs) in 34 of the 83 assessed rivers (41%), a significant improvement since 2002 when only 27% reached this criterion. In 2003, however egg depositions were less than 50% of conservation limits in 24 other rivers (29%). Large deficiencies in egg depositions were noted in the Bay of Fundy and Atlantic coast of Nova Scotia where 8 of the 12 rivers assessed (67%) had egg depositions that were less than 50% of conservation limits. Proportionally fewer rivers in Gulf (0%) and Québec (16%) had egg depositions less than 50% of conservation. For 80% of the Gulf rivers and 52% of the Quebec rivers, egg depositions equaled or exceeded conservation limits. In Newfoundland, 33% of the rivers assessed met or exceeded the conservation egg limits, and 14% had egg depositions that were less than 50% of limits. The deficits mostly occurred in the east and southwest rivers of Newfoundland (SFA 13). All USA rivers had egg depositions less than 5% of conservation limits. The Penobscot River in the USA met 13.2% of its egg deposition requirements while all the other US rivers were 5% or less of their requirements.

In 2003, the overall conservation limit ($\mathrm{S}_{\mathrm{lim}}$) for 2 SW salmon was not met in any area. The overall 2 SW conservation limit for Canada could have been met or exceeded in only nine (1974-78, 1980-82 and 1986) of the past 31 years (considering the mid-points of the estimates) by reduction of terminal fisheries (Figures 4.9.5.6 and 4.9.7.3). In the remaining years, conservation limits could not have been met even if all terminal harvests had been eliminated. It is only within the last decade that Québec and the Gulf areas have failed to achieve their overall 2SW salmon conservation limits.

Measures of marine survival rates over time indicate that survival of North America stocks to home waters has not increased as expected as a result of fisheries changes. There have been no significant increasing trends in survival indices of any of the stock components since commercial closures in 1992.

Substantive increases in spawning escapements in recent years in northeast coast Newfoundland rivers and high smolt and juvenile production in many rivers, in conjunction with suitable ocean climate indices, were suggestive of the potential for improved adult salmon returns for 1998 through 2003. Colder oceanic conditions both nearshore and in the Labrador Sea in the early 1990s are thought to have contributed to lower survival of salmon stocks in eastern Canada during that period.

Based on the generally decreased 1SW returns in 2003, some modest decrease is expected for large salmon in 2004. An additional concern is the low abundance levels of many salmon stocks in rivers in eastern Canada, particularly in the Bay of Fundy and Atlantic coast of Nova Scotia. USA salmon stocks exhibit these same downward trends. Most salmon rivers in the USA are hatchery-dependent and remain at low levels compared to conservation requirements. Despite major changes in fisheries management, returns have continued to decline in these areas and many populations are currently threatened with extirpation.

4.10 NASCO has requested ICES to evaluate the extent to which the objectives of any significant management measures introduced in the last five years have been achieved

The management of Atlantic salmon in eastern North America has focused on the management of spawning escapement to meet or exceed conservation limits. Significant measures introduced in the last 18 years in order to meet this objective have included the closure of all commercial fisheries in eastern Canada as of 2000, the complete closure of numerous rivers to any fishing including Native and recreational fisheries, and the imposition of catch and release only access in others. However increased escapements were not realized in all areas (Fig. 4.9.5.1) and in some areas, increased escapements from fisheries did not always result in increased smolt production (Figure 4.9.5.2). These observations indicate that factors other than fishing are impacting survival of Atlantic salmon at sea.

Management measures can have impacts on Atlantic salmon stocks beyond changes in abundance of returning and spawning Atlantic salmon. The Working Group reviewed some examples of biological characteristics of stocks which may change as a consequence of changes in fishing exploitation. These included changes in spawning escapement (Section 2.4.3), juvenile abundance (Section 4.9.5), age structure and composition, as well as marine survival rates. Over three decades some stocks responded initially to the 1984 management plan (closure of commercial fisheries and mandatory catch and release of large salmon throughout the Maritimes) but the higher escapements were not sustained into the 1990s (Fig. 4.9.5.1). Juvenile abundance generally increased in response to these changes but declined in the early 1990s and again in 2001 when escapements declined (Fig. 4.9.5.3). Collectively these data indicate that freshwater habitats generally have remained productive over the time period of the management actions but an increase in marine mortality continues to impact yield in the more productive areas and persistence in some lower productive areas.

4.11 NASCO has asked ICES to provide an analysis of any new biological and/or tag return data to identify the origin and biological characteristics of Atlantic salmon caught at St. Pierre and Miquelon

The Working Group is aware that the fishery was sampled in 2003 by the local government and that over 300 fish were examined. No further details on the sampling program are available.

The following types of data are essential to gaining a better understanding of the composition of the Saint-Pierre and Miquelon Atlantic salmon fishery and for determining the effect that this fishery has on the Atlantic salmon resources of North America.

A biological sampling program for the Saint-Pierre and Miquelon gillnet fishery should be an international cooperative effort between USA, Canada, France and the local government of Saint-Pierre and Miquelon. At a minimum, an individual sampler needs to be coupled with a local contact and stationed in Saint-Pierre for a period of 2-3 weeks during the period when the fishery is expected to be prosecuted (June through August). The local contact would be essential for connecting the sampler with individuals who would likely be gillnetting during this period. The sampler would collect information related to fishing effort (description of gear, number of nets fished, soak time etc.) as well as catch (type and amount of species caught). In addition, detailed biological data needs to be collected for each individual Atlantic salmon sampled: including individual length and individual weight data plus a scale and genetic sample (to provide data on origin). The
presence or absence of any external tags, clips or marks should also be noted for each individual as well as any abnormal physical features. Additional support from the countries involved could result in an increase of the number of sampling teams. This increase could be used to widen the sampling coverage in both time and space. Increased sampling may be valuable, depending on the spatial and temporal occurrence of the fishery, which is currently unknown.

4.12 NASCO has asked ICES to provide descriptions (gear type; and fishing depth, location and season) for all pelagic fisheries that may catch Atlantic salmon

The Working Group examined the potential for Atlantic salmon to be taken as by-catch in pelagic fisheries in the North Atlantic by reviewing existing data about the fisheries and gear that have reported salmon by-catch in the past, and by reviewing research survey data and observer data to identify gear known to have captured salmon.

4.12.1 Database Queries

Observer databases

Observer databases maintained by both the Northeast Fisheries Science Center (NEFSC) of the National Marine Fisheries Service (USA) and the Department of Fisheries and Oceans (DFO, Canada) were examined for records of Atlantic salmon catch. Direct observations of Atlantic salmon catch in the observer database are rare. With the NEFSC observer database, there were a total of five trips which occurred in the early 1990's that recorded a total of 12 kg of Atlantic salmon catch. In 1990 one gillnet trip discarded one pound of Atlantic salmon. In 1992, one otter trawl trip discarded 1 kg of Atlantic salmon. In 1992, three separate (but close in time) gillnet trips discarded 7 kg and kept 3 kg of Atlantic salmon. Given that the level of observer coverage has increased in recent years for both USA gillnet and trawl fisheries and that no reports have been made of Atlantic salmon catch in recent years, these fisheries are not thought to be causing a large amount of Atlantic salmon bycatch. Observer coverage for gillnet fisheries in Maine during the summer of 1996 was approximately 9%. There are no salmon bycatch records associated with these observer trips.

The search of the DFO observer database yielded similar results. This observer program covers waters off most of Atlantic Canada and has reported catches since 1977. A total of 15 records of salmon catches, all prior to 1994 , were found in the database (Table 4.12.1.1.). Twelve of these records are for bottom trawls, one for a midwater trawl, one for longline and one for a scallop dredge. The total combined catch was 156 kg . All records of salmon catches came from the Gulf of MaineScotian Shelf, except one from the Grand Banks (Figure 4.12.1.1). Thirteen of the fifteen records occurred between midApril and mid-June. Between 1995 and 2002, Canadian observers covered 628 gillnet sets (mostly for groundfish) off southwestern Nova Scotia. No salmon catches were reported.

Commercial Landings Databases

The NEFSC vessel trip report (VTR) database was queried to determine the time and location of midwater trawl, midwater paired trawl and purse seine (herring targeted) activities. These gears were selected under the assumption that these would be the only gears with potential Atlantic salmon bycatch due to salmon's pelagic nature. This database does not contain records of salmon catches, or even a code for Atlantic salmon. The purse seine fishery targeting herring occurs predominantly in the summer along the coast of Maine (Figure 4.12.1.2, 4.12.1.3), with most recent effort in area 512 (Table 4.12.1.2). Since there are no observer records and only a total of eight species were recorded in the VTR database for this gear (all pelagic), no conclusions can be drawn definitively about whether this gear catches salmon. However, given the location and timing of catch and the targeting of herring, there is a possibility that both salmon post-smolts and adults could be captured by this gear. The low number of trips reported for this gear means that there is only a relatively small amount of fishing effort exerted by this gear. The midwater otter trawl and midwater paired trawl fisheries both operate slightly south of the purse seine fishery in general, area 513, and have a larger area of coverage (Table 4.12.1.2, Figure 4.12.1.4). These fisheries operate throughout the Gulf of Mexico, on Georges Bank, and in Southern New England waters. Southern areas are winter fisheries while the northern areas are summer fisheries. Both types of gear target herring and Atlantic mackerel, but do have occasional records of bottom fish including monkfish, summer flounder, and croakers demonstrating that at least some sets are made close to or on the bottom. There is an overlap in the timing and location of the fishing operations and the spatial and temporal distribution of Atlantic salmon that has the potential to cause bycatch. Midwater trawl catches are sometimes quite large (Figure 4.12.1.4). Recent herring landings in southern New Brunswick, Georges Bank and Gulf of Maine are low relative to the late 1960's primarily due to high levels caught historically by the foreign fleet operating on Georges Bank (Figure 4.12.1.5). The recent increase is due to an increase in the number of paired trawlers operating in the fishery (Bisack, 2002).

The Canadian equivalent to the NEFSC VTR database is the DFO ZIFF database. This database contains primarily logbook data, but also contains some data from other sources (e.g. reports filed by fisheries officers). The database covers the time period from 1986 to 2003. Total landings of salmon reported in this database are $6,672 \mathrm{t}$, in comparison with the commercial landings of salmon reported by Canada to the Working Group of $6,943 \mathrm{t}$ during this time period. Therefore, most, if not all, of the salmon reported within this database are from past legal commercial salmon fisheries. This database was queried to determine the type of gear and the main species landed when salmon was reported in the catch. The query was restricted to landings with known vessel numbers to avoid potential errors resulting from data aggregation. Vessel numbers are known for 14.7% (987 t) of the total landings of salmon reported in the database. More than 99% of the salmon landings were taken with gillnets (Table 4.12.1.3). The main species captured is unknown for 29.1% of these landings (Table 4.12.1.3). Where the "main species captured" is known, 91.5% of the salmon catch occurred where salmon was reported as the main species captured (Table 4.12.1.3), followed by cod (6.9%), herring (1.1%) and trout (0.2%).

The DFO research survey database was also queried for records of salmon catch. These are groundfish surveys conducted with bottom trawls, covering the southern Gulf and Scotia-Fundy regions from 1970 to 2003. Two records of salmon catches in the research trawls were found, one in the southern Gulf and one in the Bay of Fundy, both in 1983. The catches were likely one fish in each case.

4.12.2 Fisheries with Bycatch Potential

The following are the principal fisheries that are likely to account for most of the salmon bycatch in the NAC area. Smaller more localized fisheries also exist that have the potential to affect local populations.

Mackerel fishery (Gulf of St. Lawrence, Canada)

The mackerel fishery in the Gulf of St. Lawrence is executed by over 15,000 commercial licensees. They fish mainly inshore using gillnets, jiggers, purse seines and traps. The timing of the fishery varies with location: most landings in 4X come from traps in May to July, from gillnets and jiggers in 4T from August to October and from purse seines in 4R and 3K in August to October. Mackerel landings by Canadian fisheries are generally stable and have averaged about $20,000 \mathrm{t}$ annually from 1990 to 2002. Close to 70% of the landings are made in a fall purse seine fishery in Newfoundland, mostly off the islands west coast (DFO 2003).

In 2000, there were 2 salmon marked in Miramichi River that were recaptured at sea in mackerel drift nets. Both were recaptured $20-30 \mathrm{~km}$ NNE of Cape North, Prince Edward Island. The first of these fish was recaptured on June 5 and had been tagged as a 1 SW adult in the fall of 1999. The second was recaptured on June 23 and had been tagged as a smolt in the spring of 1999. A third recapture from the Miramichi River occurred off the coast of Newfoundland (fishery unknown) at Lance aux Meadows on September 12 and had been tagged as a 1SW adult in the fall of 1999.

Midwater Trawl Fisheries (USA)

This fishery, primarily for herring, is described above and has the potential to catch salmon. Increased observer coverage in this fishery is anticipated in 2004 by the National Marine Fisheries Service due mainly to anecdotal reports of groundfish bycatch. These observers should be able to provide the most direct method to determine if bycatch of Atlantic salmon in the midwater trawl fishery for herring is a large problem or not.

Capelin Fishery (Newfoundland, Canada)

DFO evaluated the potential for bycatch in the Newfoundland capelin fishery in 1985 by examining the landings at five fish plants. No postsmolts were found in $90,859 \mathrm{~kg}$ of capelin examined. Additionally, all pelagic offshore fisheries for capelin in the Northwest Atlantic and, in particular in the Newfoundland and Labrador Region, were closed in 1992, including a Russian fishery for capelin for industrial use. The remaining fisheries are inshore and in recent years catches have been restricted to less then 25,000 tonnes due mainly to a lack of markets (Figure 4.12.2.1).

Fisheries for Bait (Newfoundland, Canada)

As of April 2001, there were 3,538 bait net licenses issued by DFO in Newfoundland, of which about 46% were fished (Reddin et al. 2002). These are distributed around the island of Newfoundland and along the coast of southern Labrador. In
order to receive a license to fish for bait, the individual must hold a license for a species requiring bait. Each licensee is permitted to fish two nets of maximum length of 40 fathoms and a maximum mesh size of 67 mm . In 2001, DFO carried out an assessment of bycatch in this fishery using telephone surveys, surveys by enforcement staff, examination of bycatch in herring index fisheries and experimental fishing. The overall conclusion was that some salmon are caught in this fishery but the overall number captured and its effect is low (Reddin et al. 2002).

Herring Fisheries (Gulf of St. Lawrence, Canada)

Herring stocks on the west coast of Newfoundland (Division 4R) are harvested by both large and small seines and by a large number of boats using gillnets (DFO 2002a). Herring landings in this area averaged 16,593 t per year, with about 75% of the catch being taken by large purse seiners. The average catch by gillnetters during this time period was $1,512 \mathrm{t}$. The season is April to December. Herring in the southern Gulf of St. Lawrence (4T) are harvested by an inshore gillnet fishery and an offshore purse seine fishery (vessels $>65 \mathrm{ft}$.). Both spring and fall spawning herring are harvested. From 1988 to 1997, landing of spring and fall spawning herring averaged $17,700 \mathrm{t}$ and $51,000 \mathrm{t}$ respectively (DFO 2002b).

The Working Group discussed potential salmon bycatch in the Northwest Atlantic area. At present, there is insufficient information to quantify bycatch although, based on information reviewed so far, there was no obvious concern about bycatch of salmon in these fisheries. The Working Group made the following observations:

- The gears with the greatest potential to catch salmon in the NAC area are seines, midwater trawls and gillnets.
- Technologies available to quantify bycatch amount are similar on both sides of the Atlantic and include observer programs, experimental fishing and tagging studies with automated detection systems that allow large catches to be scanned automatically.
- Historical data may provide some evidence of potential for bycatch, and salmon have been reported in commercial landings when the main species captured was not salmon. Based on the Canadian landings data, this occurs most frequently in gillnet fisheries, and the numbers of salmon captured are very low relative to targeted salmon fisheries. No landings from purse seines or trawls are reported in the DFO ZIFF database.
- Salmon abundance in waters off the USA, southern Nova Scotia and southern New Brunswick is presently low enough that quantifying bycatch rates may be difficult in these areas.

4.13 Data deficiencies and research needs

Data deficiencies and research needs for the NAC area are presented in Section 6.

Table 4.3.1. 2SW spawning requirements for North America by country, management zone and overall. Management zones are shown in Figure 4.9.2.1.

Country	Stock Area	Management zone	2SW spawner requirement	
Canada	Labrador	SFA 1	7,992	
		SFA 2	25,369	
		SFA 14B	1,390	
	Subtotal			34,746
	Newfoundland	SFA 3	240	
		SFA 4	488	
		SFA 5	233	
		SFA 6 to 8	13	
		SFA 9 to 12	212	
		SFA 13	2,544	
		SFA 14A	292	
	Subtotal			4,022
	Gulf of St. Lawrence	SFA 15	5,656	
		SFA 16	21,050	
		SFA 17	537	
		SFA 18	3,187	
	Subtotal			30,430
	Québec	Q1	2,532	
		Q2	1,797	
		Q3	1,788	
		Q5	948	
		Q6	818	
		Q7	2,021	
		Q8	11,195	
		Q9	3,378	
		Q10	1,582	
		Q11	3,387	
	Subtotal			29,446
	Scotia-Fundy	SFA 19	3,138	
		SFA 20	2,691	
		SFA 21	5,817	
		SFA 22	0	
		SFA 23	13,059	
	Subtotal			24,705
Total				123,349
USA	Connecticut		9,727	
	Merrimack		2,599	
	Penobscot		6,838	
	Other Maine rivers		9,668	
	Paucatuck		367	
Total				29,199
North American Total				152,548

Table 4.9.1.1. Catches expressed as 2SW salmon equivalents in North American salmon fisheries, 1972-2004.

Year i	CANADA										USA	Total
	MIXED STOCK				TERMINAL FISHERIES IN YEAR i							
	NF-LAB Comm 1SW (Year i-1) (b)	Year i $\%$ 1SW of total 2SW equivalents	Year i NF-LAB Comm 2SW (b)	$\begin{gathered} \text { Year i } \\ \text { NF-Lab } \\ \text { comm total } \\ \hline \end{gathered}$	Labrador rivers (a)	Nfld rivers (a)	Quebec Region	Gulf Region	Scotia - Fundy Region	$\begin{gathered} \text { Canadian } \\ \text { total } \\ \hline \end{gathered}$		
1972	20,857	9	153,775	174,632	314	633	27,417	22,389	6,801	232,186	346	232,532
1973	17,971	6	219,175	237,146	719	895	32,751	17,914	6,680	296,105	327	296,433
1974	24,564	7	235,910	260,475	593	542	47,631	21,430	12,734	343,405	247	343,652
1975	24,181	7	237,598	261,779	241	528	41,097	15,677	12,375	331,696	389	332,085
1976	35,801	10	256,586	292,388	618	412	42,139	18,090	11,111	364,758	191	364,949
1977	27,519	8	241,217	268,736	954	946	42,301	33,433	15,562	361,932	1,355	363,287
1978	27,836	11	157,299	185,135	580	559	37,421	23,806	10,781	258,281	894	259,175
1979	14,086	10	92,058	106,144	469	144	25,234	6,300	4,506	142,798	433	143,231
1980	20,894	6	217,209	238,103	646	699	53,567	29,832	18,411	341,257	1,533	342,789
1981	34,486	11	201,336	235,822	384	485	44,375	16,329	13,988	311,383	1,267	312,650
1982	34,341	14	134,417	168,757	473	433	35,204	25,709	12,353	242,929	1,413	244,342
1983	25,701	12	111,562	137,263	313	445	34,472	27,097	13,515	213,105	386	213,491
1984	19,432	14	82,807	102,238	379	215	24,408	5,997	3,971	137,210	675	137,884
1985	14,650	11	78,760	93,410	219	15	27,483	2,708	4,930	128,765	645	129,410
1986	19,832	12	104,890	124,723	340	39	33,846	4,542	2,824	166,313	606	166,919
1987	25,163	13	132,208	157,371	457	20	33,807	3,757	1,370	196,781	300	197,082
1988	32,081	21	81,130	113,211	514	29	34,262	3,832	1,373	153,220	248	153,468
1989	22,197	16	81,355	103,551	337	9	28,901	3,426	265	136,488	397	136,886
1990	19,577	18	57,359	76,937	261	24	27,986	2,700	593	108,501	696	109,197
1991	12,048	14	40,433	52,481	66	16	29,277	1,777	1,331	84,949	231	85,180
1992	9,979	14	25,108	35,087	581	67	30,016	2,673	1,114	69,539	167	69,706
1993	3,229	8	13,273	16,502	273	63	23,153	1,211	1,110	42,312	166	42,478
1994	2,139	5	11,938	14,077	365	165	24,052	2,206	756	41,621	1	41,622
1995	1,242	3	8,677	9,918	420	155	23,331	2,007	330	36,162	0	36,162
1996	1,075	3	5,646	6,721	320	183	22,413	2,389	766	32,793	0	32,793
1997	969	4	5,390	6,360	175	157	18,574	1,849	581	27,695	0	27,695
1998	1,155	7	1,872	3,027	276	112	11,256	2,204	322	17,197	0	17,197
1999	179	1	894	1,073	311	72	9,032	1,446	450	12,383	0	12,383
2000	152	1	1,115	1,267	404	218	9,425	1,761	193	13,267	0	13,267
2001	286	2	1,380	1,666	336	102	10,104	1,624	255	14,086	0	14,086
2002	263	3	1,185	1,448	221	152	7,297	174	179	9,471	0	9,471
2003	312	3	1,806	2,118	221	57	8,870	348	189	11,803	0	11,803
2004	358			358						358		358

NF-Lab comm as $1 \mathrm{SW}=\mathrm{NC1}($ mid-pt) $* 0.677057$ (M of 0.03 per month for 13 months to July for Canadian terminal fisheries)
NF-Lab comm as $2 \mathrm{SW}=\mathrm{NC} 2($ mid-pt $) * 0.970446$ (M of 0.03 per month for 1 month to July of Canadian terminal fisheries) Terminal fisheries $=2$ SW returns $($ mid-pt $)-2$ SW spawners $($ mid-pt $)$
a - starting in 1993, includes estimated mortality of 10% on hook and
b - starting in 1998, there was no commercial fishery in Labrador; numbers reflect size of aboriginal fish harvest in 1998-2002 and resident food fishery harvest in 2000-2002

Table 4.9.1.2. Catches of North American salmon expressed as 2SW salmon equivalents, 19722004, in North America and Greenland.

Year	Canadian Total	$\begin{aligned} & \text { USA } \\ & \text { Total } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { North } \\ & \text { America } \\ & \text { Total } \end{aligned}$	\% USA of Total North American	Greenland Total	NW Atlantic Total	Harvest in homewaters as \% of total NW Atlantic
1972	232,186	346	232,532	0.15	206,814	439,346	53
1973	296,105	327	296,433	0.11	144,348	440,781	67
1974	343,405	247	343,652	0.07	173,615	517,267	66
1975	331,696	389	332,085	0.12	158,583	490,668	68
1976	364,758	191	364,949	0.05	200,464	565,413	65
1977	361,932	1,355	363,287	0.37	112,077	475,364	76
1978	258,281	894	259,175	0.34	136,386	395,561	66
1979	142,798	433	143,231	0.30	85,446	228,677	63
1980	341,257	1,533	342,789	0.45	143,829	486,618	70
1981	311,383	1,267	312,650	0.41	135,157	447,807	70
1982	242,929	1,413	244,342	0.58	163,718	408,060	60
1983	213,105	386	213,491	0.18	139,985	353,476	60
1984	137,210	675	137,884	0.49	23,897	161,781	85
1985	128,765	645	129,410	0.50	27,978	157,388	82
1986	166,313	606	166,919	0.36	100,098	267,017	63
1987	196,781	300	197,082	0.15	123,472	320,553	61
1988	153,220	248	153,468	0.16	124,868	278,336	55
1989	136,488	397	136,886	0.29	83,947	220,832	62
1990	108,501	696	109,197	0.64	43,634	152,831	71
1991	84,949	231	85,180	0.27	52,560	137,740	62
1992	69,539	167	69,706	0.24	79,571	149,277	47
1993	42,312	166	42,478	0.39	30,091	72,569	59
1994	41,621	1	41,622	0.00	0	41,622	100
1995	36,162	0	36,162	0.00	0	36,162	100
1996	32,793	0	32,793	0.00	15,343	48,135	68
1997	27,695	0	27,695	0.00	15,776	43,471	64
1998	17,197	0	17,197	0.00	12,088	29,285	59
1999	12,383	0	12,383	0.00	2,175	14,558	85
2000	13,267	0	13,267	0.00	3,863	17,131	77
2001	14,086	0	14,086	0.00	4,005	18,092	78
2002	9,471	0	9,471	0.00	6,989	16,461	58
2003	11,803	0	11,803	0.00	1,627	13,430	88
2004	358	-	358	-	1,958	-	-

Greenland harvest of 2 SW equivalents $=\mathrm{NG} 1 * 0.718924$ (M of 0.03 per month for 11 months to July of Canadian terminal fisheries)

Table 4.9.3.1. Percentages by user group and province of small and large salmon harvested (by number) in the Atlantic salmon fisheries of eastern Canada during 2003.

	\% of provincial harvest				\% of eastern Canada
	Aboriginal peoples’ food	Recreational fisheries	Resident food fisheries	Number of fish	
	fisheries				
Newfoundland / Labrador	15.1	76.4	8.5	62.4	27,721
Québec	16.1	83.9	0.0	13.0	5,790
New Brunswick	8.9	91.1	0.0	23.2	10,327
P.E.I.	5.7	94.3	0.0	0.6	280
Nova Scotia	9.7	90.3	0.0	0.7	308
		Large salmon			
Newfoundland / Labrador	64.8	9.4	25.8	21.6	2,414
Québec	45.6	54.4	0.0	73.5	8,217
New Brunswick	100.0	0.0	0.0	4.8	541
P.E.I.	-	-	-	0.0	0
Nova Scotia	-	-	-	0.0	0
Eastern Canada		\% by user group			
Small salmon	13.7	81.0	5.3		44,426
Large salmon	42.1	52.4	5.6		11,172

* totals for all years prior to 1997 are incomplete and are considered minimal estimates
blank cells indicate no information available
Table 4.9.3.2. Hook-and-release Atlantic salmon caught by recreational fishermen in Canada, 1984 - 2003.

Year	Newfoundland			Nova Scotia			New Brunswick					Prince Edward Island			Quebec			CANADA*		
	Small	Large	Total	Small	Large	Total	Small Kelt	Small Bright	Large Kelt	$\begin{aligned} & \text { Large } \\ & \text { Bright } \\ & \hline \end{aligned}$	Total	Small	Large	Total	Small	Large	Total	SMALL	LARGE	TOTAL
1984				939	1,655	2,594	661	${ }^{851}$	1,020	14,479	17,011							2,451	17,154	19,605
1985		315	315	1,323	6,346	7,669	1,098	3,963	3,809	17,815	26,685			67				6,384	28,285	34,669
1986		798	798	1,463	10,750	12,213	5,217	9,333	6,941	25,316	46,807							16,013	43,805	59,818
1987		410	410	1,311	6,339	7,650	7,269	10,597	5,723	20,295	43,884							19,177	32,767	51,944
1988		600	600	1,146	6,795	7,941	6,703	10,503	7,182	19,442	43,830	767	256	1,023				19,119	34,275	53,394
1989		183	183	1,562	6,960	8,522	9,566	8,518	7,756	22,127	47,967							19,646	37,026	56,672
1990		503	503	1,782	5,504	7,286	4,435	7,346	6,067	16,231	34,079			1,066				13,563	28,305	41,868
1991		336	336	908	5,482	6,390	3,161	3,501	3,169	10,650	20,481	1,103	187	1,290				8,673	19,824	28,497
1992	5,893	1,423	7,316	737	5,093	5,830	2,966	8,349	5,681	16,308	33,304			1,250				17,945	28,505	46,450
1993	18,196	1,731	19,927	1,076	3,998	5,074	4,422	7,276	4,624	12,526	28,848							30,970	22,879	53,849
1994	24,442	5,032	29,474	796	2,894	3,690	4,153	7,443	4,790	11,556	27,942	577	147	724				37,411	24,419	61,830
1995	26,273	5,166	31,439	979	2,861	3,840	770	4,260	880	5,220	11,130	209	139	348		922	922	32,491	15,188	47,679
1996	34,342	6,209	40,551	3,526	5,661	9,187						472	238	710		1,718	1,718	38,340	13,826	52,166
1997	25,316	4,720	30,036	717	3,358	4,075	3,457	4,870	3,786	8,874	20,987	210	118	328	182	1,643	1,825	34,752	22,499	57,251
1998	31,368	4,375	35,743	687	2,520	3,207	3,154	5,760	3,452	8,298	20,664	233	114	347	297	2,680	2,977	41,499	21,439	62,938
1999	24,567	4,153	28,720	591	2,161	2,752	3,155	5,631	3,456	8,281	20,523	192	157	349	298	2,693	2,991	34,434	20,901	55,335
2000	29,705	6,479	36,184	407	1,303	1,710	3,154	6,689	3,455	8,690	21,988	101	46	147	445	4,008	4,453	40,501	23,981	64,482
2001	22,348	5,184	27,532	527	1,199	1,726	3,094	6,166	3,829	11,252	24,341	202	103	305	809	4,674	5,483	33,146	26,241	59,387
${ }_{2} 2002$	23,071	3,992	27,063	829	1,100	1,929	1,034	7,351	2,190	5,349	15,924	207	31	${ }^{238}$	852	4,918	5,770	33,344	17,580	50,924
2003	21,599	4,637	26,236	618	2,092	2,710	1,618	3,253	1,089	7,981	13,941	177	125	302	1,238	7,015	8,253	28,503	22,939	51,442

Table 4.9.4.1. Counts of wild/hatchery and escaped farm salmon (AQ) at counting facilities in rivers of eastern Maine, USA, and the Magaguadavic River (SFA 23, Canada).
Table 4.9.5.1 Estimated numbers of 1SW returns in North America by geographic regions, 1971-2003.

Year	Labrador		Newfoundland		Quebec		Gulf of St. Lawrence		Scotia-Fundy		USA	North America		
	Min	Max		Min	Max	Mid-points								
1971	32,966	115,382	112,644	226,129	14,969	22,453	33,115	57,968	11,515	19,525	32	205,241	441,490	323,365
1972	24,675	86,362	109,282	219,412	12,470	18,704	42,195	73,700	9,522	16,915	18	198,161	415,112	306,637
1973	5,399	18,897	144,267	289,447	16,585	24,877	43,653	77,061	14,766	24,823	23	224,693	435,128	329,910
1974	27,034	94,619	85,216	170,748	16,791	25,186	65,663	114,068	26,723	44,336	55	221,481	449,011	335,246
1975	53,660	187,809	112,272	225,165	18,071	27,106	58,607	101,878	25,940	36,316	84	268,633	578,358	423,496
1976	37,540	131,391	115,034	230,595	19,959	29,938	90,292	155,669	36,931	55,937	186	299,942	603,716	451,829
1977	33,409	116,931	110,114	220,501	18,190	27,285	31,311	56,070	30,860	48,387	75	223,959	469,250	346,605
1978	16,155	56,542	97,375	195,048	16,971	25,456	26,003	45,407	12,457	16,587	155	169,117	339,195	254,156
1979	21,943	76,800	107,402	215,160	21,683	32,524	50,771	93,190	30,875	49,052	250	232,923	466,976	349,950
1980	49,670	173,845	121,038	242,499	29,791	44,686	45,688	81,695	49,925	73,560	818	296,929	617,103	457,016
1981	55,046	192,662	157,425	315,347	41,667	62,501	70,085	128,432	37,371	62,083	1,130	362,724	762,155	562,440
1982	38,136	133,474	141,247	283,002	23,699	35,549	79,756	143,370	23,839	38,208	334	307,011	633,938	470,474
1983	23,732	83,061	109,934	220,216	17,987	26,981	25,325	43,905	15,553	23,775	295	192,826	398,233	295,530
1984	12,283	42,991	130,836	262,061	21,566	30,894	37,670	63,906	27,954	47,493	598	230,907	447,943	339,425
1985	22,732	79,563	121,731	243,727	22,771	33,262	61,215	110,517	29,410	51,983	392	258,250	519,444	388,847
1986	34,270	119,945	125,329	251,033	33,758	46,937	114,665	204,378	30,935	54,678	758	339,715	677,730	508,722
1987	42,938	150,283	128,578	257,473	37,816	54,034	86,492	155,985	31,746	55,564	1,128	328,698	674,466	501,582
1988	39,892	139,623	133,237	266,895	43,943	62,193	123,472	223,211	32,992	56,935	992	374,529	749,850	562,189
1989	27,113	94,896	60,260	120,661	34,568	48,407	72,906	129,462	34,957	59,662	1,258	231,063	454,347	342,705
1990	15,853	55,485	99,543	199,416	39,962	54,792	84,934	161,505	33,939	60,828	687	274,918	532,713	403,816
1991	12,849	44,970	64,552	129,308	31,488	42,755	56,479	108,066	19,759	31,555	310	185,437	356,964	271,200
1992	17,993	62,094	118,778	237,811	35,257	48,742	150,290	234,582	22,832	37,340	1,194	346,344	621,764	484,054
1993	25,186	80,938	134,150	268,550	30,645	42,156	75,124	195,457	16,714	27,539	466	282,284	615,107	448,696
1994	18,159	56,888	91,495	189,808	29,667	40,170	50,402	83,027	8,216	11,583	436	198,375	381,912	290,144
1995	25,022	76,453	167,485	301,743	23,851	32,368	46,511	72,939	14,239	21,822	213	277,321	505,537	391,429
1996	51,867	153,553	200,277	422,635	32,008	42,558	40,140	70,561	22,795	36,047	651	347,737	726,005	536,871
1997	66,812	155,963	118,973	192,852	24,300	33,018	22,183	41,835	7,173	10,467	365	239,806	434,500	337,153
1998			150,644	202,611	24,495	34,301	28,890	53,032	16,770	26,481	403			
1999	-		163,417	215,042	25,880	36,679	27,725	44,762	10,556	16,901	419			
2000	-		148,710	254,736	24,129	35,070	37,847	55,675	10,997	18,343	270	-	-	
2001	-	-	136,949	194,299	16,931	24,437	33,924	55,311	6,752	11,746	266	-	-	
2002	-		134,679	187,273	28,609	39,275	51,148	83,432	9,207	15,870	450	-	-	
200			143,456	227,146	23,103	31,928	30,454	51,595	6,794	12,138	237	-	-	

Table 4.9.5.2 Estimated numbers of 2SW returns in North America by geographic regions, 1971 - 2003.

Year	Labrador		Newfoundland		Quebec		Gulf of St. Lawrence		Scotia-Fundy		USA	North America		
	Min	Max		Min	Max	Mid-points								
1971	4,312	29,279	2,388	8,923	34,568	51,852	29,450	46,846	11,187	16,410	653	81,905	153,310	117,607
1972	3,706	25,168	2,511	9,003	45,094	67,642	35,604	59,953	14,028	19,731	1,383	102,328	182,881	142,604
1973	5,183	35,196	2,995	11,527	49,765	74,647	34,871	59,568	10,359	14,793	1,427	104,600	197,158	150,879
1974	5,003	34,148	1,940	6,596	66,762	100,143	49,044	83,418	21,902	29,071	1,394	146,045	254,771	200,408
1975	4,772	32,392	2,305	7,725	56,695	85,042	31,153	51,874	23,944	31,496	2,331	121,200	210,860	166,030
1976	5,519	37,401	2,334	7,698	56,365	84,547	29,238	51,439	21,768	29,837	1,317	116,541	212,240	164,390
1977	4,867	33,051	1,845	6,247	66,442	99,663	58,774	100,788	28,606	39,215	1,998	162,533	280,963	221,748
1978	3,864	26,147	1,991	6,396	59,826	89,739	30,411	51,505	16,946	22,561	4,208	117,247	200,555	158,901
1979	2,231	15,058	1,088	3,644	32,994	49,491	8,643	14,337	8,962	12,968	1,942	55,860	97,440	76,650
1980	5,190	35,259	2,432	7,778	78,447	117,670	43,359	73,863	31,897	44,823	5,796	167,121	285,189	226,155
1981	4,734	32,051	3,451	12,035	61,633	92,449	17,695	29,615	19,030	28,169	5,601	112,144	199,921	156,033
1982	3,491	23,662	2,914	9,012	54,655	81,982	31,591	51,156	17,516	24,182	6,056	116,222	196,049	156,136
1983	2,538	17,181	2,586	8,225	44,886	67,329	28,987	46,897	14,310	20,753	2,155	95,462	162,540	129,001
1984	1,806	12,252	2,233	7,060	44,661	59,160	20,437	34,150	17,938	27,899	3,222	90,298	143,743	117,020
1985	1,448	9,779	958	3,059	45,916	61,460	22,965	43,606	22,841	38,784	5,529	99,657	162,218	130,937
1986	2,470	16,720	1,606	5,245	55,159	72,560	35,866	71,110	18,102	33,101	6,176	119,379	204,912	162,145
1987	3,289	22,341	1,336	4,433	52,699	68,365	22,289	48,137	11,529	20,679	3,081	94,223	167,036	130,629
1988	2,068	14,037	1,563	5,068	56,870	75,387	25,976	50,039	10,370	19,830	3,286	100,134	167,646	133,890
1989	2,018	13,653	697	2,299	51,656	67,066	17,094	35,461	11,939	21,818	3,197	86,602	143,493	115,047
1990	1,148	7,790	1,347	4,401	50,261	66,352	23,152	51,735	10,248	18,871	5,051	91,207	154,201	122,704
1991	548	3,740	1,054	3,429	46,841	60,724	19,711	42,977	10,613	17,884	2,647	81,415	131,401	106,408
1992	2,515	15,548	3,111	10,554	46,917	61,285	30,396	59,868	9,777	16,456	2,459	95,174	166,171	130,673
1993	3,858	18,234	1,499	5,094	37,023	46,484	18,731	74,077	6,764	11,087	2,231	70,106	157,208	113,657
1994	5,653	24,396	1,495	5,226	37,703	47,180	20,372	43,698	4,379	6,908	1,346	70,947	128,754	99,851
1995	12,368	44,205	2,243	7,535	43,755	54,186	29,885	50,879	4,985	8,317	1,748	94,984	166,871	130,927
1996	9,113	32,759	2,964	8,832	39,413	49,846	17,775	37,200	7,227	12,054	2,407	78,898	143,097	110,998
1997	9,384	23,833	3,469	8,538	32,443	41,017	14,774	37,114	3,645	5,922	1,611	65,326	118,034	91,680
1998	-	-	4,280	8,813	24,358	31,832	8,447	26,746	2,728	6,003	1,526			
1999	-	-	2,599	9,661	25,415	33,710	9,475	20,747	3,482	7,107	1,168	-		
2000	-	-	2,022	12,023	24,317	33,992	10,451	20,965	2,038	5,079	533	-		
2001	-	-	1,614	7,832	25,562	35,398	17,049	30,844	3,099	6,902	788			
2002	-		1,268	5,796	18,714	26,135	7,071	18,912	1,399	2,141	511	-		
2003	-	-	1,266	6,586	29,209	39,132	15,308	34,767	2,705	4,887	1,192	-	-	

[^5]Table 4.9.5.3. Estimated numbers of 1SW spawners in North America by geographic regions, 1971-2003.

	Labrador		Newfoundland		Quebec		Gulf of St. Lawrence		Scotia-Fundy		USA	North America		
Year	Min	Max		Min	Max	Mid-points								
1971	29,032	111,448	85,978	199,463	9,338	14,007	18,714	35,529	4,800	12,810	29	147,891	373,287	260,589
1972	21,728	83,415	84,880	195,010	8,213	12,320	22,883	43,310	2,992	10,385	7	140,713	344,457	242,585
1973	0	11,405	108,785	253,965	10,987	16,480	26,468	51,224	8,658	18,715	13	154,911	351,802	253,356
1974	24,533	92,118	58,731	144,263	10,067	15,100	45,426	84,673	16,209	33,822	40	155,005	370,016	262,511
1975	49,688	183,837	78,882	191,775	11,606	17,409	40,108	74,913	18,232	28,608	67	198,582	496,608	347,595
1976	31,814	125,665	80,571	196,132	12,979	19,469	52,720	99,791	24,589	43,595	151	202,825	484,803	343,814
1977	28,815	112,337	75,762	186,149	12,004	18,006	13,339	27,572	16,704	34,231	54	146,679	378,350	262,514
1978	13,464	53,851	68,756	166,429	11,447	17,170	13,008	25,469	5,678	9,808	127	112,480	272,854	192,667
1979	17,825	72,682	76,233	183,991	15,863	23,795	28,073	57,265	18,577	36,754	247	156,817	374,732	265,774
1980	45,870	170,045	85,189	206,650	20,817	31,226	25,014	50,265	28,878	52,513	722	206,490	511,420	358,955
1981	49,855	187,471	110,755	268,677	30,952	46,428	37,218	77,324	18,236	42,948	1,009	248,026	623,858	435,942
1982	34,032	129,370	99,376	241,131	16,877	25,316	48,992	96,935	12,179	26,548	290	211,746	519,591	365,668
1983	19,360	78,689	77,514	187,796	12,030	18,045	12,821	24,669	7,747	15,969	255	129,726	325,423	227,574
1984	9,348	40,056	91,505	222,730	16,316	24,957	16,981	33,633	17,964	37,503	540	152,655	359,420	256,037
1985	19,631	76,462	85,179	207,175	15,608	25,140	37,301	73,871	18,158	40,731	363	176,240	423,742	299,991
1986	30,806	116,481	87,833	213,537	22,230	33,855	77,403	149,553	21,204	44,947	660	240,135	559,033	399,584
1987	37,572	144,917	104,096	232,991	25,789	40,481	56,009	110,287	21,589	45,407	1,087	246,141	575,169	410,655
1988	34,369	134,100	93,396	227,054	28,582	44,815	80,832	159,806	23,288	47,231	923	261,391	613,930	437,660
1989	22,429	90,212	41,798	102,199	24,710	37,319	42,161	81,697	23,873	48,578	1,080	156,051	361,086	258,568
1990	12,544	52,176	69,576	169,449	26,594	39,826	49,760	124,531	22,753	49,642	617	181,844	436,243	309,043
1991	10,526	42,647	44,023	108,779	20,582	30,433	36,475	87,038	13,814	25,610	235	125,655	294,741	210,198
1992	15,229	59,331	95,096	214,129	21,754	33,583	106,918	192,842	15,125	29,633	1,124	255,247	530,642	392,945
1993	22,499	78,251	107,816	242,217	17,493	27,444	50,042	169,880	11,539	22,252	444	209,834	540,487	375,160
1994	15,228	53,958	60,194	158,507	16,758	25,642	27,038	56,937	6,918	10,218	427	126,563	305,689	216,126
1995	22,144	73,575	134,676	268,934	14,409	21,548	21,202	46,851	12,114	19,697	213	204,758	430,818	317,788
1996	48,362	150,048	161,780	384,138	18,923	27,805	13,691	41,225	19,253	32,472	651	262,661	636,339	449,500
1997	64,049	153,200	93,841	167,720	14,724	22,210	7,109	25,768	6,143	9,428	365	186,232	378,692	282,462
1998			125,215	177,182	16,743	25,730	16,076	39,975	16,342	26,028	403			
1999	-		138,692	190,317	18,969	28,808	15,010	32,343	10,177	16,516	419			
2000	-		124,643	230,669	16,444	25,865	21,381	40,263	10,656	17,977	270	-	-	
2001	-		111,756	169,106	10,829	16,974	21,064	43,166	6,449	11,414	266	-	-	
2002	-		111,970	164,564	17,070	25,625	34,620	69,340	8,937	15,567	450	-	-	
2003	-	-	122,742	206,433	15,406	23,222	19,952	43,210	6,571	11,891	237	-	-	

Table 4．9．5．4．Estimated numbers of 2SW spawners in North America by geographic regions，1971－2003．

E	 	
$\\|$		
$\mid \overrightarrow{c_{1}^{2}} \underset{\sim}{x}$	 	
－\sim_{0}^{0}	 	
\sum	 	
号范	 	
运家家		
$\\| ⿻ 丅 𠃍$		
＊		

[^6]Table 4.9.7.1 Run reconstruction data inputs for harvests used to estimate pre-fishery abundance of maturing and non-maturing 1SW salmon of North American origin (terms defined in Table 4.9.7.2).

$\begin{aligned} & \text { 1SW } \\ & \text { Year } \end{aligned}$	AH_Small (i)	$\begin{array}{\|c} \hline\{1\} \\ \mathrm{AH}_{(} \text {Large } \\ (\mathrm{i}+1) \end{array}$	$\underset{\text { (i) }}{\text { AH_Large }^{\text {(i) }}}$	\{1-7, 14b $\}$		\{8-14a\}		$\begin{array}{\|c\|} \hline\{1-7,14 b\} \\ \text { H_Large } \\ (i+1) \\ \hline \end{array}$
				H_Small (i)	$\begin{gathered} \mathrm{H}_{-} \text {Large } \\ \text { (i) } \end{gathered}$	H_Small (i)	$\begin{array}{\|r} \mathrm{H}_{-} \text {Large } \\ (\mathrm{i}+1) \end{array}$	
1971	0	0	0	158896	199176	70936	42861	144496
1972	0	0	0	143232	144496	111141	43627	227779
1973	0	0	0	188725	227779	176907	85714	196726
1974	0	0	0	192195	196726	153278	72814	215025
1975	0	0	0	302348	215025	91935	95714	210858
1976	0	0	0	221766	210858	118779	63449	231393
1977	0	0	0	220093	231393	57472	37653	155546
1978	0	0	0	102403	155546	38180	29122	82174
1979	0	0	0	186558	82174	62622	54307	211896
1980	0	0	0	290127	211896	94291	38663	211006
1981	0	0	0	288902	211006	60668	35055	129319
1982	0	0	0	222894	129319	77017	28215	108430
1983	0	0	0	166033	108430	55683	15135	87742
1984	0	0	0	123774	87742	52813	24383	70970
1985	0	0	0	178719	70970	79275	22036	107561
1986	0	0	0	222671	107561	91912	19241	146242
1987	0	0	0	281762	146242	82401	14763	86047
1988	0	0	0	198484	86047	74620	15577	85319
1989	0	0	0	172861	85319	60884	11639	59334
1990	0	0	0	104788	59334	46053	10259	39257
1991	0	0	0	89099	39257	42721	0	32341
1992	0	0	0	24249	32341	0	0	17096
1993	0	0	0	17074	17096	0	0	15377
1994	0	0	0	8640	15377	0	0	11176
1995	0	0	0	7980	11176	0	0	7272
1996	0	0	0	7849	7272	0	0	6943
1997	0	2269	0	9753	6943	0	0	0
1998	2988	1084	2269	0	0	0	0	0
1999	2739	1352	1084	0	0	0	0	0
2000	5323	1673	1352	0	0	0	0	0
2001	4789	1437	1673	0	0	0	0	0
2002	5806	2189	1437	0	0	0	0	0
2003	6534	0	2189	0	0	0	0	0

Table 4.9.7.2 Definitions of key variables used in continental run-reconstruction models for North American salmon.

i	Year of the fishery on 1SW salmon in Greenland and Canada
M	Natural mortality rate (0.03 per month)

M \quad Natural mortality rate (0.03 per month)
t1 Time between the mid-point of the Canadian fishery and return to river $=1$ months
S1 Survival of 1 SW salmon between the homewater fishery and return to river $\{\exp (-\mathrm{Mt})\}$
H_s(i) Number of "Small" salmon caught in Canada in year i; fish $<2.7 \mathrm{~kg}$
H_1(i) Number of "Large" salmon caught in Canada in year i; fish $>=2.7 \mathrm{~kg}$
AH_s Aboriginal and resident food harvests of small salmon in northern Labrador
AH_1 Aboriginal and resident food harvest of large salmon in northern Labrador
f imm
Fraction of 1SW salmon that are immature, i.e. non-maturing: range $=0.1$ to 0.2
$\overline{\mathrm{af}}$ imm Fraction of 1SW salmon that are immature in native and resident food fisheries in N Lab
q
MC1(i)
i+1
MR1(i) Fraction of 1SW salmon present in the large size market category; range $=0.1$ to 0.3

Harvest of maturing 1SW salmon in Newfoundland and Labrador in year i
Year of fishery on 2SW salmon in Canada
Return estimates of maturing 1SW salmon in Atlantic Canada in year i
NN1(i) Pre-fishery abundance of non-maturing 1SW + maturing 2SW salmon in year i
NR(i) Return estimates of non-maturing + maturing 2SW salmon in year i
NR2(i+1) Return estimates of maturing 2SW salmon in Canada
NC1(i) Harvest of non-maturing 1SW salmon in Nfld + Labrador in year i
NC2(i+1) Harvest of maturing 2SW salmon in Canada
NG(i) Catch of 1SW North American origin salmon at Greenland
S2 Survival of 2SW salmon between Greenland and homewater fisheries
MN1(i) Pre-fishery abundance of maturing 1SW salmon in year i
RFL1 Labrador raising factor for 1SW used to adjust pre-fishery abundance
RFL2 Labrador raising factor for 2SW used to adjust pre-fishery abundance

Table 4.9.7.3 Run reconstruction data inputs used to estimate pre-fishery abundance of non-maturing (NN1) 1SW salmon of North American origin (terms defined in Table 4.9.7.2).

$\begin{aligned} & \text { 1SW } \\ & \text { Year (i) } \end{aligned}$	$\begin{aligned} & \text { NG1 } \\ & \text { (i) } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{NC} 1 \\ \mathrm{~min} \\ \text { (i) } \\ \hline \end{array}$	max (i)	$\begin{aligned} & \mathrm{NC} 2 \\ & \mathrm{~min} \\ & (\mathrm{i}+1) \\ & \hline \end{aligned}$	$\begin{aligned} & \max \\ & (\mathrm{i}+1) \end{aligned}$	$\begin{aligned} & \hline \mathrm{NR} 2 \\ & \mathrm{~min} \\ & (\mathrm{i}+1) \\ & \hline \end{aligned}$	$\begin{aligned} & \max \\ & (i+1) \end{aligned}$	$\begin{array}{\|l} \hline \text { NN1 } \\ \text { min } \\ \text { (i) } \\ \hline \end{array}$	max (i)	mid- point (i)
1971	287672	17881	43730	144008	172907	102328	182881	642279	819184	730732
1972	200784	15768	37316	203072	248628	104600	197158	636167	847954	742060
1973	241493	21150	51412	223422	262767	146045	254771	767376	1001982	884679
1974	220584	21187	50243	223332	266337	121200	210860	711821	923643	817732
1975	278839	32385	73371	243315	285486	116541	212240	801769	1032796	917282
1976	155896	24285	57005	225424	271703	162533	280963	710550	970471	840510
1977	189709	24323	57902	146535	177644	117247	200555	574920	766372	670646
1978	118853	11796	29813	86644	103079	55860	97440	325305	423344	374325
1979	200061	19478	42242	202634	245013	167121	285189	725526	969725	847626
1980	187999	31132	70739	186367	228568	112144	199921	626689	845357	736023
1981	227727	31000	70441	125578	151442	116222	196049	589902	775292	682597
1982	194715	23583	52338	104116	125802	95462	162540	491624	642955	567290
1983	33240	17688	39712	76554	94103	90298	143743	279866	399920	339893
1984	38916	13255	30019	74062	88256	99657	162218	290764	413708	352236
1985	139233	18582	40002	97329	118841	119379	204912	455247	624679	539963
1986	171745	23343	50988	121610	150859	94223	167036	490306	658712	574509
1987	173687	29639	65127	74996	92205	100134	167646	443842	596469	520156
1988	116767	20709	44860	75300	92364	86602	143493	359581	485900	422740
1989	60693	18139	39691	53173	65040	91207	154201	277474	402667	340070
1990	73109	11072	24518	37739	45590	81415	131401	248369	341942	295155
1991	110680	9302	20175	22639	29107	95174	166171	282926	401284	342105
1992	41855	2748	6790	11967	15386	70106	157208	158272	288085	223179
1993	0	1878	4441	10764	13839	70947	128754	115094	202214	158654
1994	0	1018	2651	7823	10058	94984	166871	143698	248340	196019
1995	21341	910	2267	5090	6545	78898	143097	138867	231486	185177
1996	21944	858	2006	4860	6249	65326	118034	120228	196567	158398
1997	16814	1045	2367	1588	2269	41340	74920	80488	155420	117954
1998	3026	161	367	759	1084	42138	72393	65806	133135	99470
1999	5374	142	306	946	1352	39362	72593	64346	136235	100291
2000	5571	273	573	1171	1673	48112	81764	77772	153450	115611
2001	9722	248	529	1006	1437	28963	53494	53696	107214	80455
2002	2263	297	624	1532	2189	49680	86564	77291	159558	118425
2003	2724	338	719	0	0	0	0	3062	3443	3252

Table 4.9.7.4 Run reconstruction data inputs and estimated pre-fishery abundance for maturing (MN1) 1SW salmon (grilse) of North American origin (terms defined in Table 4.9.7.2).

$\begin{aligned} & 1 \mathrm{SW} \\ & \text { Year (i) } \end{aligned}$	MC1 min (i)	\max (i)	MR1 min (i)	max (i)	MN1 min (i)	\max (i)	mid- point (i)
1971	213987	267720	205241	441490	425478	722655	574067
1972	237286	279064	198161	415112	441483	706818	574150
1973	346109	408260	224693	435128	577645	856639	717142
1974	322772	379370	221481	449011	550998	842055	696527
1975	351015	422105	268633	578358	627830	1018077	822953
1976	313060	375300	299942	603716	622137	997402	809769
1977	252058	318032	223959	469250	482838	801573	642205
1978	132546	172340	169117	339195	306813	521865	414339
1979	218442	252711	232923	466976	458459	733909	596184
1980	343344	412617	296929	617103	649316	1048513	848915
1981	308670	377651	362724	762155	682441	1163018	922729
1982	265678	312538	307011	633938	582039	965782	773910
1983	197184	234389	192826	398233	395882	644750	520316
1984	158852	187900	230907	447943	396791	649485	523138
1985	227928	259284	258250	519444	494043	794548	644295
1986	278654	321357	339715	677730	628714	1019727	824221
1987	319510	375472	328698	674466	658218	1070479	864349
1988	240291	276488	374529	749850	626226	1049175	837700
1989	205998	239495	231063	454347	444099	707679	575889
1990	134630	156382	274918	532713	417921	705319	561620
1991	117141	133509	185437	356964	308225	501344	404784
1992	21986	30556	346344	621764	378878	671255	525067
1993	15027	19983	282284	615107	305908	653822	479865
1994	8142	11928	198375	381912	212559	405471	309015
1995	7278	10200	277321	505537	293044	531133	412088
1996	6861	9028	347737	726005	365188	757143	561166
1997	8358	10652	239806	434500	255467	458385	356926
1998	3054	3302	221202	316828	240232	522400	381316
1999	2705	2758	227997	313803	247152	516900	382026
2000	5185	5156	221953	364094	243254	601695	422474
2001	4708	4762	194823	286060	213683	473448	343566
2002	5652	5613	224093	326299	246033	540229	393131
2003	6415	6472	204044	323044	225340	535754	380547

Table 4.9.7.5. Smolt age distributions in six stock areas of North America used to weight forward the spawning escapement in the current year to the year of the non-maturing 1SW component in the Northwest Atlantic.

	Smolt age (years)					
Stock area	1	2	3	4	5	6
Labrador	0.0	0.0	0.077	0.542	0.341	0.040
Newfoundland	0.0	0.041	0.598	0.324	0.038	0.0
Québec	0.0	0.058	0.464	0.378	0.089	0.010
Gulf of St. Lawrence	0.0	0.398	0.573	0.029	0.0	0.0
Scotia-Fundy	0.0	0.600	0.394	0.006	0.0	0.0
USA, 1971-1989	0.377	0.520	0.103	0.0	0.0	0.0
USA, 1990-2003	0.6274	0.3508	0.0218	0.0	0.0	0.0

Table 4.9.7.6 The mid-point of 2 SW spawners and lagged spawners for North America and to each of the geographic areas. Lagged refers to the allocation of spawners to the year
in which they would have contributed to the year of prefishery abundance.

	North America		Prefishery abundance recruits	Recruits/2SW laggedspawner	Labrador (L)		Newfoundland (N)		Quebec (Q)		Gulf of St. Lawrence (G)		Scotia-Fundy (S)		USA (US)	
Year	Total 2SW spawners	Lagged 2SW spawners			Total	Lagged										
1971	33229		730732		16447		4936		14777		6261		6764		490	
1972	70581		742060		14124		5124		28951		25390		10079		1038	
1973	72122		884679		19470		6366		29455		29306		5896		1100	
1974	98248		817732		18982		3726		35821		44802		12752		1147	
1975	77383		917282		18341		4487		29772		25836		15345		1942	
1976	70987		840510		20842		4605		28316		22248		14691		1126	
1977	109191		670646		18006		3101		40752		46347		18348		643	
1978	70436	95524	374325	3.92	14425	14759	3635	5802	37362	28128	17152	35360	8973	10034	3314	1442
1979	31387	107013	847626	7.92	8175	17486	2221	4664	16008	32232	5190	36809	6459	14270	1509	1553
1980	101889	96086	736023	7.66	19579	18903	4406	4316	44492	31940	28779	24963	19949	14937	4263	1029
1981	61196	104065	682597	6.56	18009	18795	7258	4472	32666	30266	7327	31944	9612	16888	4334	1699
1982	67448	107269	567290	5.29	13104	19695	5530	3661	33115	34821	15664	34034	8496	12699	4643	2358
1983	43227	82167	339893	4.14	9546	18710	4961	3440	21636	36526	10845	13244	4017	7514	1769	2733
1984	74725	79786	352236	4.41	6650	15422	4432	2801	27502	28065	21296	14925	18947	14569	2547	4006
1985	89543	85392	539963	6.32	5394	11576	1994	3786	26205	32359	30578	19559	25882	13668	4884	4443
1986	110693	80959	574509	7.10	9255	15361	3386	6075	30013	35728	48946	11269	22777	8998	5570	3528
1987	78561	78592	520156	6.62	12358	17772	2865	6023	26725	33119	31456	13506	14734	5813	2781	2359
1988	86094	79004	422740	5.35	7538	14762	3287	5209	31866	27538	34176	15145	13728	13002	3038	3347
1989	74215	93796	340070	3.63	7498	10875	1490	4544	30461	25762	22851	24688	16614	23026	2800	4901
1990	86236	102732	295155	2.87	4208	7799	2850	2951	30320	26580	34744	37620	13966	23978	4356	3805
1991	71632	99735	342105	3.43	2078	6285	2225	2953	24506	28072	29567	41457	12917	17965	2416	3003
1992	87603	89423	223179	2.50	8451	8072	6765	3018	24085	28227	42459	33050	12002	14173	2292	2883
1993	76907	92185	158654	1.72	10773	10649	3233	3080	18601	29616	45193	29594	7816	15464	2065	3781
1994	57646	88099	196019	2.22	14660	9247	3196	2178	18389	30646	29829	27915	4888	15007	1344	3105
1995	76818	88063	185177	2.10	27866	7453	4734	2400	25639	30138	38375	32341	6322	13350	1748	2381
1996	64310	84548	158398	1.87	20617	5299	5714	2585	22216	27289	25098	34850	8875	12373	2407	2152
1997	53912	87352	117954	1.35	16434	3511	5847	5004	18155	24550	24095	43176	4203	9493	1611	1618
1998	44236	78632	99470	1.27		6285	6435	4337	16839	21312	15392	39005	4044	6080	1526	1613
1999	46266	74389	100291	1.35		9930	6058	3404	20531	19459	13665	33680	4845	5764	1168	2152
2000	45435	82958	115611	1.39		14098	6805	4219	19730	22055	13947	32847	3366	7845	1587	1893
2001	53557	83042	80455	0.97		22118	4622	5307	20376	22898	22323	25088	4746	6056	1491	1575
2002	33427	74697	118425	1.59		22527	3381	5786	15127	20286	12817	20664	1591	4133	511	1303
2003	58658						3870	6202	25301	18121	24689	14960	3607	4525	1192	1439
2004								6202		18894		13829		3952		1518
2005								6460		19796		17273		4202		878
2006								5331		19806		18299		2844		960

[^7]Table 4.12.1.1. Records of Atlantic salmon catches by the Department of Fisheries and Oceans (Canada) observer program.

| Date | Gear | | | Lain Species Caught | Long. |
| :---: | :---: | :---: | :---: | :---: | :---: | Lat. | Salmon |
| :---: |
| Catch (kg) |

Table 4.12.1.2. Number of Trips Reported in VTR dataset by gear, area, and month (2000 - 2003).

Area	Purse Seine												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
511						4	12	19	12	10	1		58
512		1		9	21	123	248	260	206	109	18		995
513				23	51	62	33	45	26	40	14		294
514							4	2	2				8
515					4	1	1						6
521						1	5	5	11				22
526								1					1
612						34	67	12					113
614						39	71	96	47	20			273
615						1							1
621					2	42	38	101	90	67			340
Total		1		32	78	307	479	541	394	246	33		2111

Midwater Trawl													
Area	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
511						5	3	4	8	2			22
512					12	82	78	63	64	30	3		332
513	8	3	19	78	210	319	274	239	140	161	36	1	1488
514	23	40	38	34	19		3	9	1	45	86		298
515					9	1	8	2	2	2	15		39
521	21	9	10	9					4	7	100	78	238
522	3		4	6	12	20	126	107	148	38	5		469
523							3						3
525				1	1				3	2			7
533	1												1
537	6	18	45	7	2				1		6	4	89
539	162	74	19						1			38	294
543				1									1
561					4		43	38	52	38			175
611	12												12
612	33	41	20	1									95
613	124	160	68	17				1	1			5	376
614			1					3				1	5
615	43	39	18	5								2	107
616	1	19	62	17							1		100
621	1	3	8	5	2	2	2	6	1	8		5	43
622	2	10	9	7	1	4	5	3	2				43
625		3											3
626		2	4	2		4		3		2	1	1	19
630	1												1
631	1	3	2							1	3	1	11
632	3	4	3			2						1	13
635	9	31	7							6	3	3	59
639		1											1
Total	454	460	337	190	272	439	545	478	428	342	259	140	4344

Table 4.12.1.3. Commercial landings (mt) of Atlantic salmon from the ZIF (Canada) database by main species caught and gear type. Only records with known vessel numbers were included in the query.

Main species caught	gillnet	Gear handline	Type rod+reel	trap	Total
code-0 (NA)	286.147				286.147
cod	48.15			0.049	48.199
rock cod	0.056				0.056
halibut	0.474				0.474
plaice	0.042	0.181			0.223
yellowtail	0.534				0.534
winter flounder	0.084				0.084
turbot	0.022				0.022
white hake	0.031				0.031
herring	7.379				7.379
Atlantic salmon	637.387	3.446	0.045	0.266	641.144
shad	0.006				0.006
smelt	0.033	0.235			0.268
trout	1.659	0.018			1.677
silverside	0.030				0.03
winkle				0.123	0.123
missing	0.145				0.145
Total	982.179	3.88	0.045	0.438	986.542

Figure 4.9.2.1. Map of Salmon Fishing Areas (SFAs) and Quebec Management Zones (Qs) in Canada.

Figure 4.9.2.2. Summary of recreational fisheries management in eastern Canada and Maine (U.S.A.) during 2003.

Figure 4.9.3.1. Harvest (t) of small salmon, large salmon, and combined in Canada, 1960-2003 by all users.

Figure 4.9.3.2. Harvest (number) of small and large salmon and both sizes combined in the recreational fisheries of Canada, 1974 to 2003.

Figure 4.9.4.1. Origin (wild, hatchery, farmed) of Atlantic salmon returning to monitored rivers of eastern North America in 2003.

Figure 4.9.5.1. In-river returns of small salmon and large salmon for 21 monitored rivers in four geographic areas of eastern Canada from 1985 to 2003. The in-river returns do not account for removals in marine fisheries. Rivers by area are: Newfoundland (Conne, Exploits, Middle Brook, Northeast Trepassey, Torrent, Western Arm Brook), Québec (Bonaventure, Cascapédia, Port-Daniel Nord, Grande Rivière, St-Jean, York, Dartmouth, Madeleine, Matane, de la Trinité), Gulf (Restigouche, Miramichi, Margaree), and Scotia-Fundy (LaHave, Saint John at Mactaquac).

Figure 4.9.5.2. Wild smolt production from twelve rivers of eastern Canada and one river of Eastern USA, 1971 to 2003. Smolt production is expressed relative to the conservation egg requirements for each river (smolt output / conservation egg requirements).

Figure 4.9.5.3 Atlantic salmon juvenile densities in eight rivers of the Maritime provinces (Restigouche SFA 15; Margaree SFA 18; Miramichi SFA 16; St. Mary’s SFA 20; Nashwaak and upstream of Mactaquac, Saint John River SFA 23) and the United States (Narraguagus).

Figure 4.9.5.4. Documented returns of Atlantic salmon to USA rivers, 1967 to 2003. Natural refers to fry stocked or wild individuals.

Figure 4.9.5.5 Comparison of estimated mid-points of 1SW returns to and 1SW spawners in rivers of six geographic areas in North America. Returns and spawners for Scotia-Fundy do not include those from SFA 22 and a portion of SFA 23.

Figure 4.9.5.6 Comparison of estimated mid-points of 2 SW returns, 2 SW spawners, and 2 SW conservation requirements for six geographic areas in North America. Returns and spawners for Scotia-Fundy do not include those from SFA 22 and a portion of SFA 23.

Fig. 4.9.7.1. Prefishery abundance estimate of maturing and non-maturing salmon in North America. Open symbols are for the years that returns to Labrador were assumed as a proportion of returns to other areas in North America.

Fig. 4.9.7.2 Total 1SW recruits (non-maturing and maturing) originating in North America.

Figure 4.9.7.3 Top panel: comparison of estimated potential 2 SW production prior to all fisheries, 2SW recruits available to North America, 1971-2002 and 2SW returns and spawners for 1971-97, as 1998-2003 data for Labrador are unavailable. The horizontal line indicates the 2 SW conservation limits. Bottom panel: comparison of potential maturing 1SW recruits, 1971-2003 and returns and 1SW spawners for 1971-97 return years as Labrador data for 19982003 are unavailable.

Fig. 4.9.7.4. Midpoints of lagged spawners (solid circles) and estimated annual spawners (open circles) as contribution to potential recruitment in the year of prefishery abundance (PFA) for six geographic areas of North America. The horizontal line represents the spawning requirement (in terms of 2 SW fish) in each geographic area. Labrador spawner numbers not available after 2002 or for 1977.

Fig. 4.9.7.5. Proportion of spawners (mid-points) lagged to year of PFA (solid circles) and as returns to rivers (open circles) in six geographic areas of North America relative to the total lagged spawner or annual spawning escapement to North America. The horizontal line represents the theoretical spawner proportions for each area based on the 2SW spawner requirement for North America.

Figure 4.9.8.1. Egg depositions by all sea-ages combined relative to conservation limits in 83 rivers of North America in 2003. The black slice represents the proportion of the limit achieved. A solid black circle indicates the egg deposition limit was attained or exceeded.

Figure 4.9.8.2. Proportion of the conservation limits met in monitored rivers in four geographic areas of eastern Canada, 1984 to 2003. The vertical line represents the minimum and maximum proportion achieved in individual rivers, the black square is the median proportion. The range of the number of rivers included in the annual summary was 7-8 for Newfoundland, 3-8 for the Gulf, 2 for Scotia-Fundy and 8-9 for Québec.

Figure 4.9.9.1. Return rates (\%) of wild smolts to return as 1 SW salmon from the rivers in west and north Newfoundland (Highlands, SFA 13, Western Arm Brook, SFA 14A and Campbellton, SFA 4) and south Newfoundland (NE Trepassey, SFA 9; Rocky, SFA 9; and Conne, SFA 11).

Figure 4.9.9.2. Return rates (\%) of wild smolts to return as 1SW (upper two panels) and 2SW (bottom panel) salmon from the rivers in the Maritime provinces (top: Northwest Miramichi SFA 16, LaHave SFA 21, Nashwaak SFA 23) and Quebec (Bec-Scie Q10, de la Trinité, Q7 and Saint-Jean, Q2).

Figure 4.9.9.3. Return rates (\%) to the river of hatchery released smolts from the Saint John River (SFA 23), LaHave River (SFA 21), Liscomb and East Rivers (SFA 20), and Aux Rochers River (Q7) as 1SW (upper panel) and 2SW (lower panel) salmon.

Figure 4.9.9.4. River return rates (\%) of hatchery released smolts from the Penobscot River (Maine, USA) as 1SW and 2 SW salmon.

Figure 4.9.9.5. Return rates (\%) of wild smolts to return as 2SW salmon from the rivers (Miramichi SFA 16, LaHave SFA 21, Nashwaak SFA 23) in the Maritime provinces (upper panel) and from the Narraguagus River, Maine, USA (bottom panel).

Figure 4.12.1.1. Locations of salmon catches reported by the DFO (Canada) observer program.

All Divisions SALMON(ATLANTC), Jan-Dece 1977-2004, fotal catch from Observer Data

Figure 4.12.1.2 USA reporting areas used for recording commercial catch.

Figure 4.12.1.3. Location and total catch of all species by purse seine operations during the months of April to October, 2003, based on USA trip vessel reports.

Figure 4.12.1.4. Location and total catch of all species by midwater trawl operations during the months of April to October, 2003, based on USA trip vessel reports.

Figure 4.12.1.5. Catch of herring for southern New Brunswick (NB), Georges Bank (GB), and Gulf of Maine (GOM).

Figure 4.12.2.1. Capelin landings from NAFO Area 2J3KL from 1972 to 2003.

ATLANTIC SALMON IN THE WEST GREENLAND COMMISSION

5.1 Status of stocks/exploitaton

The Working Group considers the stock complex at West Greenland to be outside safe biological limits.
The salmon caught in the West Greenland fishery are mostly ($>90 \%$) non-maturing 1SW salmon, most of which are destined to return to homewaters in Europe or North America as MSW fish if they survived. There are also 2SW salmon and repeat spawners, including salmon that had originally spawned for the first time after 1 -sea-winter. The most abundant European stocks in West Greenland are thought to originate from the UK and Ireland, although low numbers may originate from northern European rivers. Most MSW stocks in North America are thought to contribute to the fishery at West Greenland.

The Working Group notes that the North American stock complex of non-maturing salmon has declined to record levels and is in tenuous condition. Despite the closure of Newfoundland commercial fisheries in 1992 and subsequently in Labrador in 1998 and Québec in 2000, sea survival of adults returning to rivers has not improved and in some areas has declined further. The abundance of maturing 1SW salmon has also declined in many areas of eastern North America. Smolt production in 2002 and 2003 in monitored rivers of eastern Canada was less than or similar to the average of the last five years. Unless sea survival improves, the abundance of non-maturing 1SW salmon in the Northwest Atlantic is not expected to increase above the levels of the last five years.

The Working Group also noted that the non-maturing 1SW salmon from Southern Europe have been declining steadily since the 1970s (Figure 3.9.14.5), and the preliminary quantitative prediction of pre-fishery abundance for this stock complex will remain low for 2004 (489,000 fish) (Figure 3.6.1.1).

In European and North American areas, the overall status of stocks contributing to the West Greenland fishery is at the lowest level recorded, and as a result, the status of stocks within the West Greenland area is thought to be extremely low compared to historical levels. Status of stocks in the NEAC and NAC areas are presented in the relevant commission sections of this report.

The Working Group noted that tentative exploitation rates for non-maturing 1SW fish at West Greenland can be calculated by dividing the recorded harvest of 1SW salmon of North American origin at West Greenland by the PFA estimate for the corresponding year. This indicates that exploitation rates in last five years have averaged around 5% compared to values prior to 1993 averaging 26%, and suggests that recent management measures in this fishery have reduced exploitation in this stock complex.

5.2 Management objectives

The Conservation limits (CLs) have been defined by ICES as the level of stock that will achieve long term average maximum sustainable yield (MSY), as derived from the adult to adult stock and recruitment relationship. NASCO has adopted this definition of CLs (NASCO, 1998). The CL is a limit reference point $\left(\mathrm{S}_{\mathrm{lim}}\right)$. However, management targets have not yet been defined for North Atlantic salmon stocks. ICES has interpreted stocks to be within safe biological limits only if the lower bound of the confidence interval of the most recent spawner estimate is above the CL.

The spawning requirement used for North America is for the continent as a whole. However, based on past performance, there is no reason to expect the abundance of salmon in the North Atlantic to be proportional to the regional 2 SW spawner requirements. Specifically, the 2 SW returns to Scotia-Fundy, and USA have been below their corresponding conservation limits since 1985 (Figure 4.9.5.6). For the 1998 to 2002 PFA $_{\mathrm{NA}}$ years, the most recent years when estimates of lagged spawners are available for all regions of North America, the Quebec and Gulf regions have accounted for a disproportionate number of lagged spawners relative to their 2 SW requirements (Figure 5.2.1). Assuming that the abundance of Atlantic salmon in 2004 will be proportional to the abundance of lagged spawners in the last five years when lagged spawner estimates across regions were available, it is possible to calculate the number of salmon required to return to North America to achieve region-specific conservation requirements. For example, to achieve the Newfoundland 2 SW requirement of 4,022 2SW salmon, a total of 92,722 fish would be required to leave West Greenland at the $\mathrm{PFA}_{\mathrm{NA}}$ stage (Table 5.2.1). In the regions with lower stock performance, total PFA $\mathrm{PA}_{\mathrm{NA}}$ abundance of about 454,000 fish would be required for the Scotia-Fundy region, and $\mathrm{PFA}_{\mathrm{NA}}$ abundance of almost 1.8 million fish would be required for achieving the USA conservation requirements (See Section 4).

NASCO has therefore considered an Alternative Management Objectives of meeting the conservation limits simultaneously in the four northern regions of North America: Labrador, Newfoundland, Quebec, and Gulf. For the two
southern regions, Scotia-Fundy and USA, where there is a zero chance of meeting conservation limits, an alternate objective would be to achieve increases in returns relative to previous years with the hope that this will lead to the rebuilding of stocks. Improvement from previous years could be as low as 10% for those stocks that are approaching a stock status objective. More aggressive rebuilding rates might be to seek a 25% improvement over returns of a previous time period. These improvements refer to current stock size and not to percent of conservation limits.

The Working Group had previously used a moving average as the baseline value for these increases. However, if a moving average were used, and these stocks continued to decline, so would the baseline value. The Working Group therefore decided to establish 1992 to 1996 as the range of years to define the baseline for the Scotia-Fundy and USA regions to assess $\mathrm{PFA}_{\mathrm{NA}}$ abundance and fishery options. These years correspond to about one generation time for 2SW salmon following the closure of the Newfoundland commercial fishery and reductions in the Labrador commercial fishery prior to the complete moratorium in 1998. Improvements of greater than 10% and greater than 25% relative to returns during this base period were evaluated. This will provide NASCO with consistent criteria to assess performance of the fisheries management being considered. In Section 2, it was shown that stocks with low productivity, such as these, are particularly susceptible to over fishing in a mixed stock fishery, thus preventing or delaying rebuilding to conservation limits. To assess the potential to rebuild these stocks, the Working Group calculated the probability of returns to the weaker stocks in USA and Scotia-Fundy being equal or less than the previous five-year average.

5.3 Reference points

As precautionary reference points have not been developed for these stocks, management advice is therefore referenced to the $\mathrm{S}_{\text {lim }}$ conservation limit. Thus, these limits should be avoided with high probability (i.e. at least 75%).

Sampling of the fishery at West Greenland since 1985 has shown that harvested European and North American stocks harvested are primarily (greater than 90%) 1SW non-maturing salmon destined to mature as either 2 or 3SW salmon. Usually less than 3% of the harvest is composed of salmon that have previously spawned and a few percent are 2SW salmon that would mature as 3 SW or older salmon. Therefore, conservation limits defined for North American stocks have been limited to the 2SW salmon. These numbers have been documented previously by the Working Group and are in Section 4.3. The 2SW spawner limits of salmon stocks from North America total 152,548 fish, with 123,349 and 29,199 required in Canadian and USA rivers, respectively.

Conservation limits for the NEAC area have been split into 1SW and MSW components on the basis of the average age composition of catches in the past ten years. The stocks have also been partitioned into northern and southern stock complexes, and tagging information and biological sampling indicates that the majority of the European salmon caught at West Greenland originate from the southern stock complex. The current conservation limit estimate for southern European MSW stocks is approximately 268,000 fish. There is still considerable uncertainty in the conservation limits for European stocks and estimates may change from year to year as the input of new data affects the pseudo-stockrecruitment relationship.

5.4 Advice on management

The Working Group has provided management advice for the West Greenland fishery, based on the NAC stocks, and for the combined NAC and NEAC stock complexes.

Catch advice for the NAC area

For 2004, the $\mathrm{PFA}_{\mathrm{NA}}$ forecast remains among the lowest of the time series with a median value of 100,000 fish and a 75% probability that the abundance will be less than 218,000 fish (i.e. highly unlikely to meet the 2 SW spawner reserve of 212,000 salmon to North America) (Figure 5.4.1). In the absence of any marine-induced fishing mortality, there is a very low probability (5% probability) that the returns of 2 SW salmon to North America in 2005 will be sufficient to meet the conservation requirements of the four northern regions (Labrador, Newfoundland, Quebec, and Gulf) (Table 5.4.1). There is essentially no chance ($<1 \%$) that the returns in the southern regions (Scotia-Fundy and USA) will be greater than the returns observed in the 1992 to 1996 base period. Furthermore, in the absence of a fishery there is a 73% probability that returns in these regions will be less than the average of the period 1999 to 2003 (Table 5.4.2).

[^8]
Catch advice for the NAC/NEAC combined

The Working Group followed the process developed last year for providing catch advice for West Greenland using the PFA and CLs of the NAC and NEAC areas. The PFA for NAC and NEAC are applied in parallel to the Greenland fishery and then combined at the end of the process into a single catch advice table (Section 5.10.2). In the absence of any fishery at West Greenland, there is a less than 75% probability that the MSW conservation limit for southern Europe will be met (Table 5.4.1).

Using the $\mathbf{7 5 \%}$ probability level, none of the stated management objectives in NAC or NEAC would allow a fishery to take place.

5.5 Relevant factors to be considered in management

For all fisheries, ICES considers that management of single stock fisheries should be based upon assessments of the status of individual stocks. Conservation would be best achieved if fisheries can be targeted at stocks that have been shown to be above safe biologically limits. Fisheries on mixed stocks, either in coastal waters or on the high seas, do not target only those stocks exceeding biologically based escapement levels. Fisheries in estuaries and rivers are more likely to fulfill this requirement.

5.6 Catch forecast for 2004

The abundance of non-maturing 1SW in the Northwest Atlantic is not expected to improve. Sea survival of adults returning to rivers has not improved and in some areas of North America has declined further. The abundance of maturing 1SW salmon has also declined in many areas of eastern North America. Associations between 1SW returns in year i and 2SW returns in year i+1 observed in several rivers in eastern Canada suggest that abundance of 2SW salmon in 2004 in eastern Canada will be less than that of 2003 (Section 4.9.5). Further, smolt production in 2002 and 2003 in monitored rivers in eastern Canada and USA were less than or similar to the average for the previous five years (Section 4.9.5).

The Working Group has described two temporal phases of salmon production in the Northwest Atlantic. A phase shift in recruitment per spawner in the northwest Atlantic became apparent during the last two decades. The lower recruitment rate, which may not be sufficient to achieve population replacement, is evident throughout eastern Canada and U.S., especially in the southern regions. The reduced rate of recruitment may be the result of an integration of factors across all aquatic habitats of Atlantic salmon. Given the present condition of salmon stocks, there is no evidence in the stock status from any of the regions in North America that there will be a turnaround in abundance in 2004.

The Working Group also concluded that the southern European stock complex of non-maturing salmon has declined to record levels. The spawning escapement to southern Europe has not greatly exceeded conservation limit for the last eight years (Figure 3.9.14.6b).

5.7 Medium to long-term projections

North American stocks

Catch options which could be derived from the pre-fishery abundance forecast for $2004(100,000)$ would apply principally to North American fisheries in 2005 and hence the level of fisheries in 2004 needs to be accounted for before providing these catch options. Accounting for mortality and the conservation limit and considering an allocation of 60% of the surplus to North America, the only risk averse catch option for 2 SW salmon in 2005 is zero catch. This zero catch option refers to the composite North American fisheries. As the biological objective is to have all rivers reaching or exceeding their conservation limits, river-by-river management will be necessary. On individual rivers, where conservation limits are being achieved, there are no biological reasons to restrict the harvest.

NEAC stocks

The quantitative prediction for the southern NEAC MSW stock component gives a projected PFA (at $1^{\text {st }}$ January 2004) of 489,000 in 2004. No projections are available beyond that for this stock complex. The stock group is outside safe biological limits, and the Working Group considers that precautionary reductions in exploitation rates are required for as many stocks as possible, in order to ensure that conservation requirements are met for each river stock with high probability. On individual rivers, where conservation limits are being achieved, there are no biological reasons to restrict the harvest.

The current modelling approach was applied to the $\mathrm{PFA}_{\mathrm{NA}}$ series that now includes the 2002 PFA to update the 2003 forecast. The median value of the updated analysis has decreased to 90,000 fish from 110,000 based on the previous year's model and data. More importantly, the upper bound on the distribution is substantially lower, 196,000 in the updated analysis versus 305,000 in the previous year's analysis (Figure 5.8.1).

5.9 NASCO has requested ICES to Describe the events of the 2003 fishery and status of the stocks

At its annual meeting in June 2003 NASCO agreed to restrict the fishery at West Greenland to that amount used for internal subsistence consumption in Greenland, which in the past has been estimated at 20 tons. Consequently, the Greenlandic authorities set the commercial quota to nil, i.e. landings to fish plants, purchase of salmon by shops for resale, and any export of salmon from Greenland were forbidden. Licensed fishermen were allowed to sell salmon at the open markets, to hotels, restaurants and institutions. A private fishery for personal consumption without a license was allowed. All catches were to be reported to the License Office on a daily basis. In agreement with the Organisation for Fishermen and Hunters in Greenland the fishery for salmon was allowed from 11 August. The Greenland authorities set a closing date of 31 October.

5.9.1 Catch and effort in 2003

By the end of the season a total of 8.7 t of landed salmon were reported (Table 5.9.1.1). In total, 77 reports were received. The geographical distribution of the reported catches was similar to that in 2000 and 2001, with more than 50% of the landings reported from NAFO Div. 1F (Table 5.9.1.2). Provided that the information on the landing reports is representative of the temporal distribution of the catches for the total fishery was not similar to previous years, with the majority of the catches taken in the first 7 weeks of the season.

The number of active participants in the salmon fishery has decreased sharply since 1987, when a catch of more than 900 tons was allowed and more than 500 licenses were active in the fishery. During 2000, 2001 and 2003, there were about 40 active fishermen, the lowest numbers recorded in the time series.

Because the fishery includes provisions for personal consumption or subsistence fishing, unreported catch is likely. There is presently no quantitative approach for estimating the magnitude of unreported catch; however, it is likely to have been at the same level proposed in recent years (around 10 t).

5.9.2 Biological characteristics of the catches

An international sampling program instituted by NASCO in 2001 to sample landings at West Greenland has continued. The sampling program in 2003 included sampling teams from Canada, Greenland, Ireland, United Kingdom and United States. Teams were in place at the start of the fishery and continued to mid September. Further, one sample was obtained late in the season (20-21 October). In total, 2,198 specimens, representing a high proportion of the landings, were sampled for presence of tags or fork length, weight, scales, and tissue samples for DNA analysis. The limitation of the fishery to subsistence fishery caused practical problems for the sampling teams, however, the sampling program was fairly successful in adequately sampling the Greenland catch temporally and spatially. In fact, the sampling teams at some sites sampled larger amounts of salmon than reported for sale in the official statistics. Where that occurred, the Working Group adjusted the total landings by replacing the purchased catch with the weight of fish sampled to use in assessment calculations.

Tissue and biological samples were collected from the mixed population at West Greenland caught for local consumption in 2003. Samples were obtained from three landing sites: Qaqortoq, Nuuk (NAFO Div. 1D), and Maniitsoq (NAFO Div. 1C) (Figure 5.9.1). The sampled salmon were measured, scales were removed for ageing, and gutted weight recorded. Data from this program were used to fulfill the requests for information from NASCO related to Atlantic salmon in the West Greenland Commission area.

Biological characteristics (length, weight, and age) were recorded from 1,824 fish in catches from NAFO Div. 1C, 1D and 1 F in 2003 (Tables 5.9 .2 .1 to 5.9 .2 .3). The smallest fish sampled was 51 cm fork length and weighed 1.46 kg gutted weight while the largest was 100 cm and weighed 10.74 kg . The average weight of fish in the 2003 catch was 3.04 kg , with North American 1SW fish averaging 63 cm and European 1SW fish averaging 64.4 cm in length (Table 5.9.2.1). There was a significant decline in weight (unadjusted for sampling date) of both European and North American 1SW from 1969 to 1992, followed by a significant increase in weights over time (1995-2003). The mean lengths and mean weights for 2003 were among the highest in the last decade.

The river ages of European salmon ranged from 1 to 5 (Table 5.9.2.2). Over half (58\%) of the European fish in the catch were river-age 2 and 22% were river age 3. Although the proportion of the European origin river age 1 salmon in the catch has been variable in the last 15 years, it has been between 10% and 16% since 2001 (Table 5.9.2.2). A low proportion of this group suggests low representation of Southern European stocks in the catch. North American Salmon up to river age 6 were caught at West Greenland in 2003 (Table 5.9.2.2), with over half distributed among river ages 2 (29\%) and 3 (39\%).

In 2003, 1SW salmon were 98.9% of the European catch (Table 5.9.2.3). No previous spawners of European origin were observed and 1.1% of the European samples collected from the West Greenland fishery were 2SW salmon. One SW salmon dominated $(96.7 \%$) the North American component, with repeat spawners 2.3% of the catch (Table 5.9.2.3).

Between 17 August and 4 September the sampling team stationed in Nuuk obtained 55 whole fish to remove tissue for disease testing. These samples were tested for the presence of ISAv by RTPCR assay only and all test results were negative. The sex of 59 individuals, the 55 collected in Nuuk and 4 in Maniitsoq, was determined by examining gonads; of these $6(10 \%)$ were males and $53(90 \%)$ females. The Working Group recommends that sex be determined on as many whole fish as practicable, and methods be considered for determining sex on gutted individuals.

5.9.3 Continent of Origin of catches at West Greenland

A total of 1,779 tissue samples were removed and preserved for DNA analysis. All genetically sampled salmon were genotyped at 4 microsatellite loci (Ssa202, Ssa289, SSOSL438, and SSOSL311). A database of 4,802 Atlantic salmon genotypes of known origin was used as a baseline to assign the 1,779 salmon to continent of origin. In total, 1,212 (68.1 $\%$) of the salmon sampled from the 2003 fishery were of North American origin and 567 (31.9\%) fish were determined to be of European origin (Table 5.9.3.1). For the first time, continent of origin was determined solely based on genetics.

The Working Group noted that the variability in the composition of the catch among the divisions (see table below) (Chi Square $\mathrm{p}<0.001$) necessitates a broad geographic sampling program.

NAFO division	North America		Europe	
	Number	$\%$	Number	$\%$
Div. 1C	234	79.9	59	20.1
Div. 1D	611	81.9	135	18.1
Div. 1F	367	49.6	373	50.4

Applying the continental percentages to the adjusted total catch (12.3 t) resulted in estimates of 7.9 t of North American origin and 4.3 t of European origin fish (2,600 and 1,400 rounded to the nearest 100 fish, respectively) landed in West Greenland in 2003 (Table 5.9.3.2 and Fig. 5.9.3.1). The Working Group also adjusted the 2002 landings, raising the total catch from 9.0 t to 9.8 t to the weighted catch result in estimates of 6.8 t of North American origin and 3.0 t of European origin fish (2,300 and 1,000 fish rounded to the nearest 100 fish respectively). Quota reductions have resulted in an overall reduction in the numbers of both North American and European salmon landed at West Greenland.

5.9.4 NASCO has requested ICES to Provide information on the origin of Atlantic salmon caught at West Greenland at a finer resolution than continent of origin (river stocks, country or stock complexes)

Within a mixed stock fishery, the identification of the origin and composition of the catch is essential for responsible management. This is especially true for stocks that are protected under various nation-specific Endangered species legislations. In addition, the NASCO Decision Structure requires that the stock composition of mixed stock fisheries be considered while developing management plans. As an example, the West Greenland Atlantic salmon fishery falls within this category. In 2003, the International Sampling Team determined the origin of 16 fish with either external or internal tags. These included seven fish from Ireland, two from UK England and Wales, one from UK Scotland, three from Canada, and three from USA.

A major genetic dichotomy exists between populations from either side of the North Atlantic Ocean and between European populations in Baltic and Atlantic drainages (Ståhl 1987). One microsatellite locus has shown almost perfect separation of North American and European Atlantic salmon (Taggart et al. 1995; Koljonen et al. 2002). Such hypervariable nuclear DNA marker types can in theory be used to distinguish any distinct population group from one another, provided that there is a demonstrated positive correlation between genetic and geographic distance and that a sufficient number of unlinked loci are studied. However, it remains to be seen how well these markers estimate finer scale composition within a mixed stock fishery where a large number of populations are contributing.

A model was presented at the 2003 Working Group meeting that classified the West Greenland catch not only to continent of origin, but country and sub-country of origin as well. The Probabilistic-based Genetic Assignment model (PGA) uses Monte Carlo sampling to partition the reported and unreported catch estimates to continent, country and within country levels for all North American origin fish. Known misclassification accuracies at the sub-continent level within North America are incorporated and both point and variance estimates are generated for each assignment level.

The PGA model was applied to the 2002 West Greenland fishery by inputting the genetic assignment data obtained from the fishery for both continent and country of origin. The 2002 genetic assignment data came from samples genotyped at the 11 loci traditionally used for continent of origin assignment (King et al. 2001). The suit of 11 loci provides the maximum genetic distance dataset between North American (Canada vs. USA) origin fish currently available to researchers. This allows for suitable classification accuracy within the North America country of origin level. The 2002 West Greenland catch was partitioned into European and North American origin and then Canadian and USA origin. The USA estimate was then partitioned to river of origin, in particular, the federally protected Distinct Population Segment (a group of 8 federally protected rivers).

A progress report on the PGA development was presented to the Working Group. The PGA continues to be tuned and error checked. An inventory of West Greenland genetic sample data at 11 loci was conducted and the years available as inputs to the PGA model were 1997 and 2000-2002. The 2003 samples are expected to be available in the near future. Once the model is finalized, all available data will be inputted and estimated catch at West Greenland at a finer scale than continent of origin for the North American origin samples will be made available.

Classifying Southern and Northern European stock complexes in the West Greenland catch has direct applicability to the forecast of PFA. An example of the potential for management based on finer scale stock classification was described for the Foyle area of Northeast Ireland (Section 2.4.2), where genetics techniques are being used to identify stocks contributing to the coastal fishery. Knowledge of temporal and spatial variation in fishery composition may allow managers to achieve conservation in stocks and to identify where specific actions are required to protect or rebuild stocks.

The PGA model demonstrates that identifying country or region of origin for the management of mixed stock fisheries is possible and practical. The Working Group endorsed the PGA model and was encouraged by the preliminary results presented. They supported this approach that accounts for the inaccuracy of assigning samples to country of origin and the estimation of both point estimates and variance around these estimates. The Working Group noted last year that reference baseline datasets for the European and Canadian stock complexes lacked adequate spatial and temporal coverage for finer scale assignments with acceptable accuracy. Some progress has been made to bolster reference datasets within the lab currently processing the samples from the West Greenland fishery; however, deficiencies remain, particularly for Southern NEAC stocks. An ad hoc approach will not assure significant progress toward assigning origin of Atlantic salmon caught at West Greenland at a finer resolution than continent of origin (river stocks, country or stock complexes). Therefore, the Working Group recommends an integrated approach that builds on work at the laboratories in NAC and NEAC currently studying Atlantic salmon genetics.

5.9.5 Elaboration on Status of the stocks in the West Greenland Commission area

The most abundant European stocks in West Greenland are thought to originate from the UK and Ireland, although low numbers may originate from northern European rivers. Most MSW stocks in North America are thought to contribute to the fishery at West Greenland. The percentage of North American salmon in the West Greenland catch was less than 70 $\%$ for all but one year until 1992, then increased from 60% to 90% from 1995 to 1999 , and has averaged approximately 68% from 2000 to 2003 (Table 5.9.3.2).

North American Stock

Estimates of pre-fishery abundance suggest a continuing decline of North American adult salmon over the last 10 years. The total population of 1 SW and 2SW Atlantic salmon in the northwest Atlantic has oscillated around a generally declining trend since the 1970s, and the abundance recorded in 1993-2002 was the lowest in the time-series (Figure
4.9.7.2). During 1993 to 2000, the total population of 1 SW and 2 SW Atlantic salmon was about 600,000 fish, about half of the average abundance during 1972 to 1990 . A 21% increase however has occurred between 2001 and 2002, the most recent year for which it is possible to estimate the total population. The decline from earlier higher levels of abundance has been more severe for the 2 SW salmon component than for the small salmon (maturing as 1 SW salmon) age group.

In most regions, the returns in 2003 of 2SW fish increased substantially from 2002 however they are still close to the lower end of the 33-year time-series (1971-2003). In Newfoundland, the 2 SW salmon are a minor age group component of the stocks in this area and even here, decreases of about 30% have occurred from peak levels of a few years ago. Returns of 1SW salmon generally decreased from 2002 in all areas except Newfoundland. In 2003, the overall conservation limit ($\mathrm{S}_{\mathrm{lim}}$) for 2SW salmon was not met in any area. Specifically:

Newfoundland:

- 2 SW and 3 SW salmon are a relatively small component of this stock complex
- 2 SW returns ranked 19 for the last 33 years
- 2 SW spawners in 2003 were approximately 96% of the 2 SW stock conservation limits $\left(\mathrm{S}_{\mathrm{lim}}\right)$

Labrador:

- 2 SW salmon are historically an important part of this stock complex
- 2SW returns peaked in 1995, and decreased again in 1996 and 1997
- no estimate is given after 1997 from this area when the commercial fishery, the basis for the return and spawner model for Labrador, ended

Québec:

- 2 SW and 3 SW salmon are an important part of this stock complex
- 2 SW returns ranked 19 in a 33 -year time-series
- 2 SW spawners in 2003 were at 86% of 2 SW conservation limit $\left(\mathrm{S}_{\mathrm{lim}}\right)$

Gulf of St. Lawrence:

- 2SW salmon are an important part of this stock complex
- 2 SW returns ranked 18 in a 33 -year time-series
- 2 SW spawners in 2003 were at 81% of 2 SW conservation limit $\left(\mathrm{S}_{\mathrm{lim}}\right)$

Scotia-Fundy:

- 2SW salmon are historically an important part of this stock complex
- 2 SW returns were the third lowest in a 33 -year time-series
- 2 SW spawners in 2003 were at 15% of 2 SW conservation limit $\left(\mathrm{S}_{\mathrm{lim}}\right)$
- inner Bay of Fundy stocks are listed as Endangered by the Committee on the Status of Endangered Wildlife in Canada
- 2 SW salmon are historically an important part of this stock complex
- 2 SW returns ranked 25 in a 33 -year time-series
- 2 SW returns in 2003 are at 4% of 2 SW conservation limit $\left(\mathrm{S}_{\text {lim }}\right)$
- stocks in 8 rivers are listed as Endangered under the Endangered Species Act

Southern European Stock

The main contributor to the abundance of the European component of the West Greenland stock complex is nonmaturing 1SW salmon from southern Europe. The percentage of European fish in catches at West Greenland was around 30% in the early 1990's and the 2000 's, but was below 20% from 1996 to 1999 . The contributions of countries within NEAC to this PFA, based on tagging data are: France, 2.7\%; Ireland, 14.7\%; UK (England \&Wales), 14.9\%; UK (Northern Ireland), $<0.01 \%$; UK (Scotland), 64.5%; and northern NEAC countries, 3.2%. Southern European MSW salmon stocks in the NEAC area consistently decline over the past $10-15$ years, and the estimated overall spawning escapement has been below conservation limits ($\mathrm{S}_{\mathrm{lim}}$) in recent years. Information from individual countries is summarized below:

France:

- MSW returns are third lowest in the time series
- MSW spawners are below CL in 2003.

Ireland:

- MSW returns are below the median value for the time series
- MSW spawners are below the median value for the time series
- MSW numbers are subject to considerable uncertainty as the sea age composition of the catch is not known accurately
- MSW spawners are above CL in 2003.

UK (England \& Wales):

- MSW returns are below the median value for the time series
- MSW spawners are close to the median value for the time series
- MSW spawners are at or above CL in 2003

UK (Northern Ireland):

- Historical trends are unclear as the sea age composition of the catch is unknown for most of the time series.
- MSW spawners are at or above CL in 2003

UK (Scotland):

- MSW fish are estimated to contribute between 40% \& 70% of the spawning stock
- MSW returns are for the last nine years lowest in the time series
- MSW spawners are below CL in 2003

5.10 NASCO has requested ICES to provide a detailed explanation and critical examination of any changes to the models used to provide catch advice

The forecast model used to estimate pre-fishery abundance of 2 SW salmon in 2004 was modified from the model used in 2003. The change to the model was made to better account for uncertainty in the data and in model selection. The overall approach of modeling the natural \log transformed $\mathrm{PFA}_{\mathrm{NA}}$ and $\mathrm{LS}_{\mathrm{NA}}$ using linear regression did not change from 2003, and the Monte Carlo method used to derive the probability density for the $\mathrm{PFA}_{\mathrm{NA}}$ forecast was also retained from 2003. The change to the model in 2004 was the addition of several alternative models, one of which was selected during each Monte Carlo simulation and used to predict a value used to generate the $\mathrm{PFA}_{\mathrm{NA}}$ probability density. The specific changes to the model to incorporate this feature are:

- In 2003, a single model was used to estimate the mean PFA in each of two productivity phases. The break year between phases alternated between 1989 and 1990 in each Monte Carlo random draw when generating the probability density for the $2003 \mathrm{PFA}_{\mathrm{NA}}$.
- In 2004, 42 models were fit to each dataset produced in each Monte Carlo simulation. These models included two models without phase shifts, plus five models with phase shifts with eight possible break years (1986 to 1993) for each model. In each simulation the most parsimonious model was selected using Akaike's Information Criterion and this model was used to generate a value for the probability density for the 2004 $\mathrm{PFA}_{\mathrm{NA}}$.

5.10.1 Forecast models for pre-fishery abundance of 2SW salmon

The advice for any given year has been dependent on obtaining a reliable predictor of the abundance of non-maturing 1SW North American stocks prior to the start of the fishery in Greenland. A two-phase regression between North American pre-fishery abundance ($\mathrm{PFA}_{\mathrm{NA}}$) and lagged spawners ($\mathrm{LS}_{\mathrm{NA}}$) was used (Figure 5.10.1.1). Seven models (Table 5.10.1.1) and eight break years (1986 to 1993) were run for ten thousand random datasets of $\mathrm{PFA}_{\mathrm{NA}}$ and $\mathrm{LS}_{\mathrm{NA}}$ created based on the estimated ranges for each year and PFA. One PFA ${ }_{\mathrm{NA}}$ prediction was carried forward for the parsimonious model for each randomly selected dataset. For phase shift models, the probability of being in either phase was based on changes in $\mathrm{PFA}_{\mathrm{NA}}$ from year t to year $\mathrm{t}+2$. Although it was possible that up to 42 combinations of model and break year (8 years * 5 regressions +2 regressions without break years) might be represented in estimating the distribution of $\mathrm{PFA}_{\mathrm{NA}}$, those selected most often were model numbers 2, 5, and 6 and break years 1989 through 1992. The selection of model 2 indicated that the lagged spawner index was not informative and the break years selected was 1991 or 1992. When the lagged spawner index was included in the model (models 5 and 6) the break years were 1989 and 1990 (Table 5.10.1.2).

North American run-reconstruction model

The Working Group has used the North American run-reconstruction model to estimate pre-fishery abundance of 1SW non-maturing and maturing 2 SW fish adjusted by natural mortality to the time prior to the West Greenland fishery (Section 4.9.7). Region-specific estimates of 2SW returns are listed in Table 4.9.5.2. Estimates of 2SW returns prior to 1998 in Labrador are derived from estimated 2SW catches in the fishery using a range of assumptions regarding exploitation rates and origin of the catch. With the closure of the Labrador fishery, 1998 to 2003 returns were estimated as a proportion of the total for other areas based on historical data (Section 4.9.7).

The Working Group examined 1SW and 2SW returns and spawner estimates for insular Newfoundland salmon stocks for the years 1971-2003. The catch statistics used to derive returns and spawner estimates were updated for 1994-2002 from those used in Anon. (2003) and new estimates were presented for 2003. The updated catch statistics are the result of information collected during telephone surveys of anglers who did not respond (non-respondents) to the prompts to return their angling logs with records of their angling activities. Non-respondent surveys were carried out in years 19982003. Year-specific information for non-respondents has been incorporated into catch and effort estimates for 19982002 and average values of catch and effort per angler (1998-2000) for years 1994-1998. Average non-respondents information for all years is used for the preliminary estimates for 2003. Also, the conversion of large salmon to 2SW salmon requires a sea age distribution. From recent samples collected on various rivers a range of 0.06 to 0.14 was used
for SFAs 3-12 and for SFAs 13-14A, a range of 0.24 to 0.46 is used for the period of 1994 to 2003. These two revisions of the data resulted in $\mathrm{PFA}_{\mathrm{NA}}$ changing from 1% to 8% in any year.

Update of Lagged Spawners

The lagged spawner variable used in the model is an index of the 2 SW parental stock of the PFA. It provides a means of examining the value in managing for spawning escapement and predicting recruitment in the extant sea fisheries. The calculation procedure is described in Section 4.9.7. The lagged spawner index was the sum of the lagged spawner estimates for five regions of North America, excluding Labrador. Ideally, the lagged spawner variable would be the sum of the lagged spawners in six regions. The difficulty arises after 1998 when the spawner estimate for Labrador could not be derived because of the closure of the commercial fishery (ICES 2003/ACFM:19). In terms of assessing population dynamics or relative recruits per spawner, a relative (time) index of spawners is sufficient. The lagged spawner index without Labrador was highly correlated with the sum of lagged spawners for all of North America $(r=0.86)$ in the years when these data were available.

Spawner estimates are available for these regions and are anticipated to continue into the future. The Working Group recognized however that this is not an ideal situation as this spawner index may not be an unbiased measure of the overall lagged spawner abundance from North America, particularly as the impression into the late 1990s was that spawning escapement in Labrador was estimated to have been rising rapidly. However the exclusion of Labrador did allow the lagged spawner series to be extended back in time one more year to the 1977 year of PFA (Section 4.9.7).

North American Forecast Model

In 2003, a plot of the midpoint estimates $\mathrm{PFA}_{\mathrm{NA}}$ versus the $\mathrm{LS}_{\mathrm{NA}}$ index suggested two periods of productivity, a high productivity period during 1977 to 1988 and a low productivity period during 1990 to 2001 with intermediate productivity in 1978 and 1989. This pattern was reinforced with the addition of the $2002 \mathrm{PFA}_{\mathrm{NA}}$ estimate (Figure 5.10.1.1). A two-phase regression between North American pre-fishery abundance ($\mathrm{PFA}_{\mathrm{NA}}$) and lagged spawners $\left(\mathrm{LS}_{\mathrm{NA}}\right)$, assuming a break between the phases occurred during 1989 or 1990, was developed in 2003.

The relative recruit $\left(\mathrm{PFA}_{\mathrm{NA}}\right)$ per spawner $\left(\mathrm{LS}_{\mathrm{NA}}\right)$ has declined from an average of 7.6 during 1977-1989 to an average of 2.3 during the period 1990 to 2002 (Figure 5.10.1.1).

In 2004, a more generalized nested model structure was considered which examined the form of the lagged spawner index and PFA relationship as well as the break years when a phase shift occurred (Table 5.10.1.1). The $\mathrm{PFA}_{\mathrm{NA}}$ and $\mathrm{LS}_{\mathrm{NA}}$ variables were natural log transformed before analysis. The linearized form of the model was:

$$
\operatorname{Ln}\left(\mathrm{PFA}_{\mathrm{NA}}\right)=\alpha+\beta^{*} \mathrm{Ph}+\left(\gamma+\delta^{*} \mathrm{Ph}\right) * \operatorname{Ln}\left(\mathrm{LS}_{\mathrm{NA}}\right)+\xi
$$

Akaike's Information Criterion (AICc) with the adjustment for small sample size (Burnham and Anderson 1998) was used to determine the parsimonious model, i.e. the model that best explains the data while using the fewest parameters. The model and break year combination with the lowest AICc value was retained for forecasting. The AICc is calculated as:

$$
A I C_{c}=-2 \log (L(\hat{\theta}))+2 K\left(\frac{n}{n-K-1}\right)
$$

where $L(\hat{\theta})=$ likelihood of the parameters given the model and the data
$\mathrm{K}=$ number of parameters in the model (including intercept and σ^{2})
$\mathrm{n}=$ number of observations (26 for 1997 to 2002), and

$$
\left(\frac{n}{n-K-1}\right)=\text { small sample size correction. }
$$

The effect of uncertainty in $\mathrm{PFA}_{\mathrm{NA}}$ and $\mathrm{LS}_{\mathrm{NA}}$ on the selection of the most parsimonious model and the detection of a phase shift was examined by Monte Carlo simulation. The minimum and maximum values of the $\mathrm{PFA}_{\mathrm{NA}}$ and lagged spawner variables were calculated from the input data (Figure 5.10.1.2). $\mathrm{PFA}_{\mathrm{NA}}$ was estimated by random draws from a uniform distribution within the minimum and maximum range of the source data (from Section 4.9.7). The uncertainty in $\mathrm{LS}_{\mathrm{NA}}$ was characterized by random draws from a uniform distribution within the minimum and maximum range of
the regional estimates prior to summation. A total of 10,000 data sets of annual values (1977-2002) of $\mathrm{PFA}_{\mathrm{NA}}$ and $\mathrm{LS}_{\mathrm{NA}}$ were generated.
The model and phase shift period combination resulting in the minimum $\mathrm{AIC}_{\mathrm{c}}$ was saved for each of the simulated data sets. Over the 10,000 datasets, three models for predicting PFA were retained (Table 5.10.1.2). The lagged spawner index variable was informative for $\mathrm{PFA}_{\mathrm{NA}}$ in 67% of the simulated data sets. In such cases, the break years describing the phase shift were 1988 and 1989. The simple proportional model with the intercept through the origin was favored more often (43% of all models). In 33% of the data sets, the lagged spawner index was uninformative and the model with two means describing phases in PFA was selected. The corresponding break years were 1991 and 1992 (Table 5.10.1.2).

Determining the probability of the forecast year of interest being in one of the phases

When sequential observations are autocorrelated, previous states may provide a reasonable forecast of the immediate future. In the case of the phases described by the lagged spawner and $\mathrm{PFA}_{\mathrm{NA}}$ model, it seems reasonable to expect that 2004 will be in the lower phase, as observed over the last ten years. However, to provide a $\mathrm{PFA}_{\mathrm{NA}}$ for 2004, and a revised value for 2003, a quantification of the probability of being in either phase is required. The approach taken to estimate this probability was to examine the historical changes in $\operatorname{Ln}\left(\mathrm{PFA}_{\mathrm{NA}}\right)$ from year t to year $\mathrm{t}+2$. The two-year lag is used because current year PFA (i.e 2003) is not available due to its dependence upon 2SW returns in the next year. These historical observations are used to estimate the possible values of $\operatorname{Ln}\left(\mathrm{PFA}_{\mathrm{NA}}\right)$ in the predicted year from the observed $\operatorname{Ln}\left(\mathrm{PFA}_{\mathrm{NA}}\right)$ two years earlier under the assumption that the rate of change in $\mathrm{PFA}_{\mathrm{NA}}$ is stationary over time (Figure 5.10.1.3). Application of these observed rates of change to last year's $\mathrm{PFA}_{\mathrm{NA}}$ results in a distribution of potential $\mathrm{PFA}_{\mathrm{NA}}$ values for the forecast year. These values are not used for catch advice, but rather to determine the probability of being in each phase of the two-phase regression. Using the mean square error from the fit model, the probability of any PFA value given a lagged spawner value can be calculated for each regression. Summing and standardizing these probabilities over all the potential $\mathrm{PFA}_{\mathrm{NA}}$ values for each regression and standardizing produces the probability of being in either phase.

For the 2004 forecast of $\mathrm{PFA}_{\mathrm{NA}}$, the probability (runs $/ 10,000$) of being in the high phase was negligible (0.5%) and the probability of being in the lower productivity phase was over 99.5% (Table 5.10.1.2). The predicted $\mathrm{PFA}_{\mathrm{NA}}$ is then a modeled average distribution with random draws of a binomial distribution determining which intercept shift is applied to the lagged spawner variable in the year of interest. This distribution is as a weighted combination of the two possible predicted PFA distributions, with weights determined by the probability of being in each phase.

Stochastic Analyses for North American PFA

Although the exact error bounds for the estimates of pre-fishery abundance (NN1(i)) are unknown, minimum and maximum values of component catch and return estimates have been estimated. Simulation methods, in the software package SAS (SAS Institute, 1996), were used to generate the probability density function of NN1(i) ($\mathrm{PFA}_{\mathrm{NA}}$) (Appendix 6). This was done in a six-step procedure as follows:

Step 1: Annual values (1977-2002) of pre-fishery abundance (NN1) were generated assuming a uniform distribution of the minimum to maximum values of input parameters $\mathrm{NC} 1, \mathrm{NC} 2$, and NR2.

Step 2: Annual values (1977-2002) of the new lagged spawner index $\left(\mathrm{LS}_{\mathrm{NA}}\right)$ were generated assuming a uniform distribution of the minimum to maximum values of $\mathrm{LS}_{\mathrm{NA}}$.

Step 3: The nested models and break year combinations are fit to the data and the model/break year combination that gave the minimum AICc value was retained.

Step 4: A single pre-fishery forecast value for 2003 or 2004 was obtained by drawing at random from a normal distribution defined by the mean forecast value and the mean square error of the estimate (for a single prediction) from the regression statistics. The year 2003 or 2004 was assigned to one of the phases based on the likelihood of observing a change from PFA levels sufficient to move the stock to an alternate state (see following section). The normal distribution was used because the error structure of the regression (after log transformation) is assumed to be normal.

Step 5: Steps 1-4 are repeated 10,000 times to generate a vector of forecast values from variable model fits and predicted values. This resampling incorporates the uncertainty of the input parameters (steps 1 to 3) and the unexplained variance in pre-fishery abundance from the regression (steps 4 and 5).

Step 6: The probability profile of these stochastic realizations of the pre-fishery abundance forecast was generated from the vector of pre-fishery abundance forecast values obtained in step 5 .

These estimates were then used to develop the risk analysis and catch advice presented in Section 5.4. Managers may use this information to determine the relative risks borne by the stock (i.e., not meeting spawning limits $\mathrm{S}_{\mathrm{lim}}$) versus the fishery (e.g., reduced catches).

5.10.2 Development and risk assessment of catch options for 2004

The provision of catch advice in a risk framework involves incorporating the uncertainty in all the factors used to develop the catch options. The ranges in the uncertainties of all the factors will result in assessments of differing levels of precision.

The analysis of risk involves four steps: 1) identifying the sources of uncertainty; 2) describing the precision or imprecision of the assessment; 3) defining a management strategy; and 4) evaluating the probability of an event (either desirable or undesirable) resulting from the fishery action. Atlantic salmon are managed with the objective of achieving spawning conservation limits. The undesirable event to be assessed is that the spawning escapement after fisheries will be below the conservation limit.

A composite spawning limit $\left(\mathrm{S}_{\mathrm{lim}}\right)$ for the North American 2SW stock complex was developed by summing the spawning limits of Salmon Fishing Areas in Canada and river basins within the USA. Details on the methodology to estimate and update the spawner limits are provided in (ICES 1996/Assess:11) and in Section 4.4 of this report.

Fisheries are managed for harvests of fish, not for escapes of fish. As such the development of catch advice in a risk analysis framework considers the consequences to the objective of meeting conservation limits in the rivers of North America of catching different quantities of fish. The risk consists of not having sufficient numbers of fish returning after the harvesting has taken place and the evaluation of the risk of not meeting the conservation limits depends upon the degree of uncertainty associated with the predicted number of salmon returning to the rivers to spawn.

The risk analysis of catch options for Atlantic salmon from North America incorporates the following input parameter uncertainties:

1) the uncertainty in attaining the conservation requirements simultaneously in different regions,
2) the uncertainty of the pre-fishery abundance forecast, and
3) the uncertainty in the biological parameters used to translate catches (weight) into numbers of North American origin salmon.
The risk analysis proceeds as illustrated in the Flowchart of Figure 5.10.2.1. The three primary inputs are the $\mathrm{PFA}_{\mathrm{NA}}$ forecast for the year of the fishery, the harvest level being considered (t of salmon), and the management objectives for the regions of North America. The uncertainty in the $\mathrm{PFA}_{\mathrm{NA}}$ is accounted for in the re-sampling approach described in Section 5.10.1. The number of fish of North American and European origin in a given catch (t) is conditioned by the continent of origin of the fish $\left(\operatorname{prop}_{\mathrm{NA}}\right.$, prop $\left._{\mathrm{E}}\right)$, by the average weight of the fish in the fishery $\left(\mathrm{Wt1SW} \mathrm{NA}, \mathrm{Wtl}^{2} \mathrm{SW}_{\mathrm{E}}\right)$ and a correction factor by weight for the other age groups in the fishery (ACF). These parameters define how many fish originating from the NAC and southern NEAC areas will be in the fishery. Since these parameters are not known, they must be borrowed from previous year values. For the 2003 fishery, it was assumed that the parameters for Wt1SW ${ }_{\mathrm{NA}}$, $\mathrm{Wt1SW}_{\mathrm{E}}$, prop $_{\mathrm{NA}}$, and prop${ }_{\mathrm{E}}$, and the ACF could vary uniformly within the values observed in the past five years (Table 5.10.2.1).

Harvest

For a level of fishery under consideration, the weight of the catch is converted to fish of each continent's origin and subtracted from one of the simulated forecast values of $\mathrm{PFA}_{\mathrm{NA}}$. The fish that escape the Greenland fishery are immediately discounted by the fixed sharing fraction (Fna) historically used in the negotiations of the West Greenland fishery. The sharing fraction chosen is the $4: 6$ West Greenland:North America split. Any sharing fraction can be considered and incorporated at this stage of the risk assessment. After the fishery, fish returning to home waters are discounted for natural mortality from the time they leave West Greenland to the time they return to rivers, a total of 11 months at a rate of $\mathrm{M}=0.03$ (equates to 28.1% mortality). The fish that survive to homewaters are then distributed among the regions and the total fish escaping to each region is compared to the region's 2 SW spawning requirements.

The final step in the risk analysis of the catch options involves combining the conservation requirement with the probability distribution of the returns to North America for different catch options. The returns to North America are partitioned into regional returns based on the regional proportions of lagged spawners for the 1998 to 2002 period. Estimated returns to each region are compared to the conservation objectives of Labrador, Newfoundland, Quebec, and Gulf. Estimated returns for Scotia-Fundy and US are compared to the objective of achieving an improvement of 10% and 25% increase relative to average returns of the base period, 1992 to 1996. The management objectives are shown in Table 5.10.2.1.

Incorporating southern NEAC PFA into catch advice

The Working Group considered a process for the provision of catch advice for West Greenland based on the combined PFA and CLs of the NAC and southern NEAC areas. A procedure for doing this is outlined in Figure 5.10.2.1 in which the PFA for NAC and southern NEAC are applied in parallel to the Greenland fishery and then combined at the end of the process into a single summary plot or catch advice table.

For the southern NEAC evaluation, the following parameter inputs were used.

- The southern NEAC PFA prediction model for MSW salmon from southern Europe and the prediction of PFA NEAC for 2004 are presented in Section 3.6. For 2004, the forecast for the southern Europe MSW salmon on January 1 of the first sea-winter year is 489,477 fish (95% C.I. 304,832 to 785,968).
- Fish returning to home waters are discounted for natural mortality from the time they leave West Greenland to the time they return to rivers, a total of 8 months at a rate of $M=0.03$ (equates to 21% mortality).
- The sharing arrangement for the West Greenland fishery used in this example corresponds to the sharing arrangement used for the provision of catch advice for the southern NAC area. Historically, the West Greenland share of the total southern NEAC MSW harvest was on average 40\% from 1970 to 1993.
- The biological characteristics of the fish at West Greenland are simultaneously derived for fish from both continents
- The conservation limit for the southern NEAC MSW salmon is 267,898 fish (Table 3.3.3.1)

Critical evaluation

Critical evaluations of updates to the model were documented during the process of developing catch advice. These include:

- Application of the updated model to estimate the 2003 PFA produced a lower estimate (median 99,400) than the estimate provided last year (median 325,000).
- The lagged spawner variable used in the model declines in 2004 to its lowest value and is used to predict PFA using relative spawner abundances that are outside the range of previously observed values. The uncertainty of associations increases as the predictor variable gets farther from the mean, which is the case for the 2004 projection.
- A residual analysis of the model and break year performance indicated that all model formulations overpredicted the estimated PFA in the most recent five years (Figure 5.10.2.2). The phase shifted slope and intercept models had the least bias but these models were picked less frequently.

5.11 NASCO has requested ICES to With respect to stock rebuilding consider and evaluate various alternative baseline measures for use in the risk analysis.

The Working Group had previously used a moving average as baseline value for these increases. However, if a moving average were used, and these stocks continued to decline, so would the baseline value. The Working Group decided to establish 1992 to 1996 as the range of years to define the baseline for the Scotia-Fundy and USA regions to assess $\mathrm{PFA}_{\mathrm{NA}}$ abundance and fishery options. These years correspond to about one generation time for 2 SW salmon, follow the closure of the Newfoundland commercial fishery, reductions in the Labrador commercial fishery, and are prior to
the complete moratorium in 1998. This provides NASCO with a consistent criterion to assess performance of the fisheries management being considered.

5.12 NASCO has requested ICES to Evaluate the extent to which the objectives of any significant management measures introduced in recent years have been achieved.

There have been the following significant changes in the management regime at West Greenland since 1993:

- First, NASCO adopted a new management model (Anon 1993) based upon ICES' assessment of the PFA of non-maturing 1SW North American salmon and the spawner escapement requirements for these stocks. This resulted in a substantial reduction in the TAC agreed to by NASCO from 840 t in 1991 to 258 t in 1992, and further reductions in subsequent years.
- The next change in management was the suspension of fishing in 1993 and 1994 following the agreement of compensation payments by the North Atlantic Salmon Fund. Due to the closure of the fishery in the two years no sampling could be carried out in Greenland, and no biological data were collected.
- In 1998, NASCO agreed on a subsistence fishery of 20 t , which in the past has been estimated for internal consumption at Greenland. In 1999, a multi-year management was agreed restricting the annual catch to that amount used for internal consumption.
- An ad hoc management arrangement for 2001 was agreed by NASCO, implementing an adaptive quota calculation, based upon three harvest periods. The resulting total quota for all harvest periods was 114 t .
- A revised ad hoc management arrangement for 2002 was agreed to by NASCO. In addition, an agreement was negotiated between the North Atlantic Salmon Fund and its partners, and the Greenland Association of Hunters and Fishers (KNAPK), to suspend the commercial part of the salmon fishery. The agreement is for a total of five years, and is automatically renewed annually unless one of the parties gives notice in advance of the fishing season of their intention to withdraw.
- In 2003, NASCO agreed on a subsistence fishery of 20 t , which in the past has been estimated for internal consumption at Greenland. No landing to factories or shops, and no export from Greenland were permitted.

The table produced contains the number of salmon returning to home waters provided no fishing of the given magnitude took place in Greenland. The mean number for 1994-2003 of potentially returning fish per ton caught at Greenland (Table 5.12.1) is calculated to 172 and 83 salmon for North America and Europe, respectively. The biological parameters given in the table represent the annual sampling data.

In the current analysis the effects of the management measures taken at West Greenland have been examined in terms of numbers of fish only. Thus it has been difficult to show direct benefits to home-water stocks from these measures.

Table 5.2.1. A - Lagged spawners achieved, 2 SW conservation limits and the PFA number of fish required to meet region specific conservation limits if the returns to the regions are in proportion to the average lagged spawner distributions of 1998 to 2002. B-2SW returns to the regions of North America for two time perioids, 1992-1996, 19992003. C - Management objectives for the NAC area used to develop the risk analysis of catch options for the 2004 fishery.

A - Achieved lagged spawners								
Year of PFA	Labrador	NF	Quebec	Gulf	ScotiaFundy	US	North	LS Index
1998	6285	4337	21312	39005	6080	1613	78632	72347
1999	9930	3404	19459	33680	5764	2152	74389	64459
2000	14098	4219	22055	32847	7845	1893	82958	68860
2001	22118	5307	22898	25088	6056	1575	83042	60924
2002	22527	5786	20286	20664	4133	1303	74697	52171
2003		6202	18121	14960	4525	1439		45246
2004		6202	18894	13829	3952	1518		44394
\% of North America (1998-2002)								
	9.0			38.4		2.2		
\% of Lagged Spawner Index (1998-2004)								
		8.7	35.0	44.1	9.4	2.8		
2SW Conservation Limit								
Number	34,746	4,022	29,446	30,430	24,705	29,199	152,548	
of fish								
\% of NA	22.8	2.6	19.3	19.9	16.2	19.1		
$\begin{array}{ll}\text { Spawner Reserve corrected for } 11 \text { months of M at } 0.03 \text { per month } & 212,189\end{array}$								
PFA required to meet regional 2SW conservation limit based on average lagged spawner contributions 1998-2002								
	253,860	92,722	147,623	106,902	439,452	1,817,776		

B - 2SW Returns to Regions													North	Labrador	NF	Quebec	Gulf	Scotia- Fundy	US	America

C - Management objectives for the NAC area							
	Northern regions				Southern regions		
	Labrador	NF	Quebec	Gulf	ScotiaFundy	US	
	2SW Conservation Limit			30,430	Average returns during base period 1992-1996 7129 1868		
Number of fish	34,746	4,022	29,446				
Total	2SW Conservation Limit98644				Increase relative to base period		
					7,842	2,055	+10\%
					8,911	2,336	+25\%

Table 5.4.1. Probability of meeting the 2SW conservation limits simultaneously in the four northern areas of North America (Labrador, Newfoundland, Quebec, Gulf); of achieving increases in returns from the 1992 to 1996 base year average in the two southern areas (Scotia-Fundy and USA) of NAC area, of meeting the MSW conservation limit of the southern European stock complex relative to quota options for West Greenland. A sharing arrangement of 40:60 (Fna) of the salmon from North America and southern European MSW stocks was assumed.

West Greenland Harvest (t)	SimultaneousConservation(Lab, NF, Queb, Gulf)	Improvement (SF, USA) of Returns in 2004		Conservation MSW Salmon
		> 10%	> 25%	Southern NEAC
0	0.05	0.01	0.01	0.73
5	0.05	0.01	0.01	0.73
10	0.05	0.01	0.01	0.73
15	0.04	0.01	0.01	0.72
20	0.04	0.01	0.01	0.72
25	0.04	0.01	0.01	0.71
30	0.04	0.01	0.01	0.71
35	0.04	0.01	0.01	0.71
40	0.03	0.01	0.00	0.70
45	0.03	0.01	0.00	0.70
50	0.03	0.01	0.00	0.69
100	0.02	0.01	0.00	0.66

Table 5.4.2. Probability of 2 SW returns in 2005 being less than the previous five-year average (1999 to 2003) returns to regions of North America, relative to catch options at West Greenland.

West Greenland Harvest Tons	Probability
0	0.73
5	0.75
10	0.77
15	0.78
20	0.80
25	0.81
30	0.83
35	0.84
40	0.85
45	0.86
50	0.87
100	0.93

Table 5.9.1.1. Nominal catches of salmon, West Greenland 1977-2003 (metric tons round fresh weight).

Year	Total	Quota
1977	1,420	1,191
1978	984	1,191
1979	1,395	1,191
1980	1,194	1,191
1981	1,264	$1,265^{2}$
1982	1,077	$1,253^{2}$
1983	310	1,191
1984	297	870
1985	864	852
1986	960	909
1987	966	935
1988	893	-3
1989	337	-3
1990	274	$-{ }^{3}$
1991	472	840
1992	237	258^{4}
1993	0^{1}	89^{5}
1994	0^{1}	137^{5}
1995	83	77
1996	92	174^{4}
1997	58	57
1998	11	20^{6}
1999	19	20^{6}
2000	21	20^{6}
2001	43	14^{7}
2002	$95^{5}, 8,9,10$	
2003	90^{6}	$20^{6,8,10}$

${ }_{2}^{1}$ The fishery was suspended.
${ }_{3}^{2}$ Quota corresponds to specific opening dates of the fishery.
${ }^{3}$ Quota for 1988-90 was 2,520 t with an opening date of 1 August and annual catches not to exceed the annual average (840 t) by more than 10%. Quota adjusted to 900 t in 1989 and 924 t in 1990 for later opening dates.
${ }^{4}$ Set by Greenland authorities.
${ }^{5}$ Quotas were bought out.
${ }_{7}^{6}$ Fishery restricted to catches used for internal consumption in Greenland.
${ }^{7}$ Calculated final quota in ad hoc management system.
${ }^{8}$ No factory landing allowed.
${ }^{9}$ Maximum allowable catch
${ }^{10}$ For the assessments the Working Group used higher catch figures for 2002 and 2003, based on information from the sampling programme.

Table 5.9.1.2. Distribution of nominal catches (metric tons) by Greenland vessels (1977-2003).

[^9]Table 5.9.2.1. Annual mean fork lengths (cm) and whole weights (kg) of Atlantic salmon caught at West Greenland, 1969-1992 and 1995-2003. NA = North America; E = Europe.

Year	Whole weight (kg)									Fork length (cm)					
	1SW		2SW		Sea age \& originPS		All sea ages		TOTAL	1SW		Sea age \& origin			
			2 S												
	NA	E			NA	E	NA	E		NA	EU	NA	E	NA	E
1969	3.12	3.76	5.48	5.80	-	5.13	3.25	3.86	3.58	65.0	68.7	77.0	80.3		
1970	2.85	3.46	5.65	5.50	4.85	3.80	3.06	3.53	3.28	64.7	68.6	81.5	82.0		
1971	2.65	3.38	4.30	-	-	-	2.68	3.38	3.14	62.8	67.7	72.0	-		
1972	2.96	3.46	5.85	6.13	2.65	4.00	3.25	3.55	3.44	64.2	67.9	80.7	82.4		
1973	3.28	4.54	9.47	10.00	-	-	3.83	4.66	4.18	64.5	70.4	88.0	96.0		
1974	3.12	3.81	7.06	8.06	3.42	-	3.22	3.86	3.58	64.1	68.1	82.8	87.4		
1975	2.58	3.42	6.12	6.23	2.60	4.80	2.65	3.48	3.12	61.7	67.5	80.6	82.2		
1976	2.55	3.21	6.16	7.20	3.55	3.57	2.75	3.24	3.04	61.3	65.9	80.7	87.5		
1977	-	-	-	-	-	-	-	-	-	-	-	-	-		
1978	2.96	3.50	7.00	7.90	2.45	6.60	3.04	3.53	3.35	63.7	67.3	83.6	-		
1979	2.98	3.50	7.06	7.60	3.92	6.33	3.12	3.56	3.34	63.4	66.7	81.6	85.3		
1980	2.98	3.33	6.82	6.73	3.55	3.90	3.07	3.38	3.22	64.0	66.3	82.9	83.0		
1981	2.77	3.48	6.93	7.42	4.12	3.65	2.89	3.58	3.17	62.3	66.7	82.8	84.5		
1982	2.79	3.21	5.59	5.59	3.96	5.66	2.92	3.43	3.11	62.7	66.2	78.4	77.8		
1983	2.54	3.01	5.79	5.86	3.37	3.55	3.02	3.14	3.10	61.5	65.4	81.1	81.5		
1984	2.64	2.84	5.84	5.77	3.62	5.78	3.20	3.03	3.11	62.3	63.9	80.7	80.0		
1985	2.50	2.89	5.42	5.45	5.20	4.97	2.72	3.01	2.87	61.2	64.3	78.9	78.6		
1986	2.75	3.13	6.44	6.08	3.32	4.37	2.89	3.19	3.03	62.8	65.1	80.7	79.8		
1987	3.00	3.20	6.36	5.96	4.69	4.70	3.10	3.26	3.16	64.2	65.6	81.2	79.6		
1988	2.83	3.36	6.77	6.78	4.75	4.64	2.93	3.41	3.18	63.0	66.6	82.1	82.4		
1989	2.56	2.86	5.87	5.77	4.23	5.83	2.77	2.99	2.87	62.3	64.5	80.8	81.0		
1990	2.53	2.61	6.47	5.78	3.90	5.09	2.67	2.72	2.69	62.3	62.7	83.4	81.1		
1991	2.42	2.54	5.82	6.23	5.15	5.09	2.57	2.79	2.65	61.6	62.7	80.6	82.2		
1992	2.54	2.66	6.49	6.01	4.09	5.28	2.86	2.74	2.81	62.3	63.2	83.4	81.1		
1993	-	-	-	-	-	-	-	-	-	-	-	-	-		
1994	-	-	-	-	-	-	-	-	-	-	-	-	-		
1995	2.37	2.67	6.09	5.88	3.71	4.98	2.45	2.75	2.56	61.0	63.2	81.3	81.0		
1996	2.63	2.86	6.50	6.30	4.98	5.44	2.83	2.90	2.88	62.8	64.0	81.4	81.1		
1997	2.57	2.82	7.95	6.11	4.82	6.90	2.63	2.84	2.71	62.3	63.6	85.7	84.0		
1998	2.72	2.83	6.44	-	3.28	4.77	2.76	2.84	2.78	62.0	62.7	84.0	-		
1999	3.02	3.03	7.59	-	4.20	-	3.09	3.03	3.08	63.8	63.5	86.6	-		
2000	2.47	2.81	-	-	2.58	-	2.47	2.81	2.57	60.7	63.2	-	-		
2001	2.89	3.03	6.76	5.96	4.41	4.06	2.95	3.09	3.00	63.1	63.7	81.7	79.1		
2002	2.84	2.92	7.12	-	5.00	-	2.89	2.92	2.90	62.6	62.1	83.0	-		
2003	2.94	3.08	8.82	5.58	4.04	-	3.02	3.10	3.04	63.0	64.4	86.1	78.3		

Table 5.9.2.2. River age distribution (\%) and mean river age for all North American origin salmon caught at West Greenland, 1968-1992 and 1995-2003.

		River age							
Year	1	2	3	4	5	6	7	8	age
North American origin									
1968	0.3	19.6	40.4	21.3	16.2	2.2	0.0	0.0	3.4
1969	0.0	27.1	45.8	19.6	6.5	0.9	0.0	0.0	3.1
1970	0.0	58.1	25.6	11.6	2.3	2.3	0.0	0.0	2.6
1971	1.2	32.9	36.5	16.5	9.4	3.5	0.0	0.0	3.1
1972	0.8	31.9	51.4	10.6	3.9	1.2	0.4	0.0	2.9
1973	2.0	40.8	34.7	18.4	2.0	2.0	0.0	0.0	2.8
1974	0.9	36.0	36.6	12.0	11.7	2.6	0.3	0.0	3.1
1975	0.4	17.3	47.6	24.4	6.2	4.0	0.0	0.0	3.3
1976	0.7	42.6	30.6	14.6	10.9	0.4	0.4	0.0	3.0
1977	-	-	-	-	-	-	-	-	-
1978	2.7	31.9	43.0	13.6	6.0	2.0	0.9	0.0	3.0
1979	4.2	39.9	40.6	11.3	2.8	1.1	0.1	0.0	2.7
1980	5.9	36.3	32.9	16.3	7.9	0.7	0.1	0.0	2.9
1981	3.5	31.6	37.5	19.0	6.6	1.6	0.2	0.0	3.0
1982	1.4	37.7	38.3	15.9	5.8	0.7	0.0	0.2	2.9
1983	3.1	47.0	32.6	12.7	3.7	0.8	0.1	0.0	2.7
1984	4.8	51.7	28.9	9.0	4.6	0.9	0.2	0.0	2.6
1985	5.1	41.0	35.7	12.1	4.9	1.1	0.1	0.0	2.7
1986	2.0	39.9	33.4	20.0	4.0	0.7	0.0	0.0	2.9
1987	3.9	41.4	31.8	16.7	5.8	0.4	0.0	0.0	2.8
1988	5.2	31.3	30.8	20.9	10.7	1.0	0.1	0.0	3.0
1989	7.9	39.0	30.1	15.9	5.9	1.3	0.0	0.0	2.8
1990	8.8	45.3	30.7	12.1	2.4	0.5	0.1	0.0	2.6
1991	5.2	33.6	43.5	12.8	3.9	0.8	0.3	0.0	2.8
1992	6.7	36.7	34.1	19.1	3.2	0.3	0.0	0.0	2.8
1993	-	-	-	-	-	-	-	-	-
1994	-	-	-	-	-	-	-	-9	-1
1995	2.4	19.0	45.4	22.6	8.8	1.8	0.1	0.0	3.2
1996	1.7	18.7	46.0	23.8	8.8	0.8	0.1	0.0	3.2
1997	1.3	16.4	48.4	17.6	15.1	1.3	0.0	0.0	3.3
1998	4.0	35.1	37.0	16.5	6.1	1.1	0.1	0.0	2.9
1999	2.7	23.5	50.6	20.3	2.9	0.0	0.0	0.0	3.0
2000	3.2	26.6	38.6	23.4	7.6	0.6	0.0	0.0	3.1
2001	1.9	15.2	39.4	32.0	10.8	0.7	0.0	0.0	3.4
2002	0.6	26.7	44.8	16.9	10.1	0.9	0.0	0.0	3.1
2003	2.6	28.9	39.0	21.0	7.6	1.1	0.0	0.0	3.1
Mean	2.9	33.4	38.3	17.3	6.8	1.3	0.1	0.0	3.0

cont.

Table 5.9.2.2 cont. River age distribution (\%) and mean river age for all European origin salmon caught at West Greenland, 1968-1992 and 1995-2003.

			River age							
Year	1	2	3	4	5	6	7	8	age	
European origin										
1968	21.6	60.3	15.2	2.7	0.3	0.0	0.0	0.0	2.0	
1969	0.0	83.8	16.2	0.0	0.0	0.0	0.0	0.0	2.2	
1970	0.0	90.4	9.6	0.0	0.0	0.0	0.0	0.0	2.1	
1971	9.3	66.5	19.9	3.1	1.2	0.0	0.0	0.0	2.2	
1972	11.0	71.2	16.7	1.0	0.1	0.0	0.0	0.0	2.1	
1973	26.0	58.0	14.0	2.0	0.0	0.0	0.0	0.0	1.9	
1974	22.9	68.2	8.5	0.4	0.0	0.0	0.0	0.0	1.9	
1975	26.0	53.4	18.2	2.5	0.0	0.0	0.0	0.0	2.0	
1976	23.5	67.2	8.4	0.6	0.3	0.0	0.0	0.0	1.9	
1977	-	-	-	-	-	-	-	-	-	
1978	26.2	65.4	8.2	0.2	0.0	0.0	0.0	0.0	1.8	
1979	23.6	64.8	11.0	0.6	0.0	0.0	0.0	0.0	1.9	
1980	25.8	56.9	14.7	2.5	0.2	0.0	0.0	0.0	1.9	
1981	15.4	67.3	15.7	1.6	0.0	0.0	0.0	0.0	2.0	
1982	15.6	56.1	23.5	4.2	0.7	0.0	0.0	0.0	2.2	
1983	34.7	50.2	12.3	2.4	0.3	0.1	0.1	0.0	1.8	
1984	22.7	56.9	15.2	4.2	0.9	0.2	0.0	0.0	2.0	
1985	20.2	61.6	14.9	2.7	0.6	0.0	0.0	0.0	2.0	
1986	19.5	62.5	15.1	2.7	0.2	0.0	0.0	0.0	2.0	
1987	19.2	62.5	14.8	3.3	0.3	0.0	0.0	0.0	2.0	
1988	18.4	61.6	17.3	2.3	0.5	0.0	0.0	0.0	2.1	
1989	18.0	61.7	17.4	2.7	0.3	0.0	0.0	0.0	2.1	
1990	15.9	56.3	23.0	4.4	0.2	0.2	0.0	0.0	2.2	
1991	20.9	47.4	26.3	4.2	1.2	0.0	0.0	0.0	2.2	
1992	11.8	38.2	42.8	6.5	0.6	0.0	0.0	0.0	2.5	
1993	-	-	-	-	-	-	-	-	-	
1994	-	-	-	-	-	-	-	-	-0	
1995	14.8	67.3	17.2	0.6	0.0	0.0	0.0	0.0	2.0	
1996	15.8	71.1	12.2	0.9	0.0	0.0	0.0	0.0	2.0	
1997	4.1	58.1	37.8	0.0	0.0	0.0	0.0	0.0	2.3	
1998	28.6	60.0	7.6	2.9	0.0	1.0	0.0	0.0	1.9	
1999	27.7	65.1	7.2	0.0	0.0	0.0	0.0	0.0	1.8	
2000	36.5	46.7	13.1	2.9	0.7	0.0	0.0	0.0	1.8	
2001	16.0	51.2	27.3	4.9	0.7	0.0	0.0	0.0	2.2	
2002	10.1	65.2	18.4	6.3	0.0	0.0	0.0	0.0	2.2	
2003	16.2	58.1	22.1	3.0	0.7	0.0	0.0	0.0	2.1	
Mean	18.7	61.6	17.0	2.4	0.3	0.0	0.0	0.0	2.0	

Table 5.9.2.3. Sea-age composition (\%) of samples from commercial catches at West Greenland, 1985-2003.

	North American			European		
Year		Previous			Previous	
	1 SW	2 SW	Spawners	1SW	2 SW	spawners
1985	92.5	7.2	0.3	95.0	4.7	0.4
1986	95.1	3.9	1.0	97.5	1.9	0.6
1987	96.3	2.3	1.4	98.0	1.7	0.3
1988	96.7	2.0	1.2	98.1	1.3	0.5
1989	92.3	5.2	2.4	95.5	3.8	0.6
1990	95.7	3.4	0.9	96.3	3.0	0.7
1991	95.6	4.1	0.4	93.4	6.5	0.2
1992	91.9	8.0	0.1	97.5	2.1	0.4
1993	-	-	-	-	-	-
1994	-	-	-	-	-	-
1995	96.8	1.5	1.7	97.3	2.2	0.5
1996	94.1	3.8	2.1	96.1	2.7	1.2
1997	98.2	0.6	1.2	99.3	0.4	0.4
1998^{1}	96.8	0.5	2.7	99.4	0.0	0.6
1999^{1}	96.8	1.2	2.0	100.0	0.0	0.0
2000^{1}	97.4	0.0	2.6	100.0	0.0	0.0
2001	98.2	1.3	0.5	97.8	2.0	0.3
2002^{1}	97.3	0.9	1.8	100.0	0.0	0.0
2003^{1}	96.7	1.0	2.3	98.9	1.1	0.0

${ }^{1}$ Catches for local consumption only.

Table 5.9.3.1. Size of biological samples and percentage (by number) of North American and European salmon in research vessel catches at West Greenland (1969-82), from commercial samples (1978-92, 1995-97 and 2001), and from local consumption samples (1998-2000 and 2002-03).

Source	Year	Sample size		Continent of origin (\%)			
		Length	Scales	NA	(95\%CI) ${ }^{1}$	E	$(95 \% \mathrm{CI})^{1}$
Research	1969	212	212	51	$(57,44)$	49	$(56,43)$
	1970	127	127	35	$(43,26)$	65	$(75,57)$
	1971	247	247	34	$(40,28)$	66	$(72,50)$
	1972	3,488	3,488	36	$(37,34)$	64	$(66,63)$
	1973	102	102	49	$(59,39)$	51	$(61,41)$
	1974	834	834	43	$(46,39)$	57	$(61,54)$
	1975	528	528	44	$(48,40)$	56	$(60,52)$
	1976	420	420	43	$(48,38)$	57	$(62,52)$
	1977	-	-	45	-	55	-
	$1978{ }^{2}$	606	606	38	$(41,34)$	62	$(66,59)$
	$1978{ }^{3}$	49	49	55	$(69,41)$	45	$(59,31)$
	1979	328	328	47	$(52,41)$	53	$(59,48)$
	1980	617	617	58	$(62,54)$	42	$(46,38)$
	1982	443	443	47	$(52,43)$	53	$(58,48)$
Commercial	1978	392	392	52	$(57,47)$	48	$(53,43)$
	1979	1,653	1,653	50	$(52,48)$	50	$(52,48)$
	1980	978	978	48	$(51,45)$	52	$(55,49)$
	1981	4,570	1,930	59	$(61,58)$	41	$(42,39)$
	1982	1,949	414	62	$(64,60)$	38	$(40,36)$
	1983	4,896	1,815	40	$(41,38)$	60	$(62,59)$
	1984	7,282	2,720	50	$(53,47)$	50	$(53,47)$
	1985	13,272	2,917	50	$(53,46)$	50	$(54,47)$
	1986	20,394	3,509	57	$(66,48)$	43	$(52,34)$
	1987	13,425	2,960	59	$(63,54)$	41	$(46,37)$
	1988	11,047	2,562	43	$(49,38)$	57	$(62,51)$
	1989	9,366	2,227	56	$(60,52)$	44	$(48,40)$
	1990	4,897	1,208	75	$(79,70)$	25	$(30,21)$
	1991	5,005	1,347	65	$(69,61)$	35	$(39,31)$
	1992	6,348	1,648	54	$(57,50)$	46	$(50,43)$
	1995	2,045	2,045	68	$(72,65)$	32	$(35,28)$
	1996	3,341	1,297	73	$(76,71)$	27	$(29,24)$
	1997	794	282	80	$(84,75)$	20	$(25,16)$
Local cons.	1998	540	406	79	$(84,73)$	21	$(27,16)$
	1999	532	532	90	$(97,84)$	10	$(16,3)$
	2000	491	491	70	4	30	${ }^{4}$
Commercial	2001	2,896	1,718	69	$(72,67)$	31	$(33,29)$
Local cons.	2002	1,326	501	68	4	33	${ }^{4}$
	2003	1,823	1,823	68	5	32	5

${ }^{1}$ CI - confidence interval calculated by method of Pella and Robertson (1979) for 1984-86 and by binomial for the others, except 1997 when percentages extrapolated.
${ }^{2}$ During Fishery.
${ }^{3}$ Research samples after fishery closed.
${ }^{4}$ Determined by genetic analysis to be 100% correct
${ }^{5}$ Determined by genetic analysis only

Table 5.9.3.2. The weighted percentages and numbers of North American and European Atlantic salmon caught at West Greenland 1982-1992 and 1995-2003. Numbers are rounded to the nearest hundred fish.

	Percentages weighted by catch in numbers			Numbers of salmon caught		
Year	NA	E		NA		
					E	
1982	57	43		192,200	143,800	
1983	40	60		39,500	60,500	
1984	54	46		48,800	41,200	
1985	47	53		143,500	161,500	
1986	59	41		188,300	131,900	
1987	59	41		171,900	126,400	
1988	43	57		125,500	168,800	
1989	55	45		65,000	52,700	
1990	74	26		62,400	21,700	
1991	63	37		11,700	65,400	
1992	55	45		46,900	38,500	
1993	-	-		-	-	
1994	-	-		-	-	
1995	67	33		21,400	10,700	
1996	70	30		22,400	9,700	
1997	85	15		18,000	3,300	
1998	79	21		3,100	900	
1999	91	9		5,700	600	
2000	65	35		5,100	2,700	
2001	67	33		9,400	4,700	
2002	69	31		2,300	1,000	
2003	64	36		2,600	1,400	

Table 5.10.1.1. Reference number, formula, and brief description of the nested models included in the approach to modelling lagged spawner index and $\mathrm{PFA}_{\mathrm{NA}}$ encompassing a possible phase shift relative recruitment per spawner.

Number	Function $\operatorname{Ln}\left(\mathrm{PFA}_{\mathrm{NA}}\right)=$	Model description
0	$\mu+\xi$	A single mean PFA spawner index variable
1	$\alpha+\gamma^{*} \operatorname{Ln}\left(\mathrm{LS}_{\mathrm{NA}}\right)+\xi$	A single regression of $P F A_{N A}$ on lagged spawner index
2	$\beta^{*} \mathrm{Ph}+\xi$	Two means of $P F A_{N A}$ for the two phases; no lagged spawner index variable
$3,4,5$	$\alpha+\beta^{*} \mathrm{Ph}+\left(\gamma+\delta^{*} \mathrm{Ph}\right) * \operatorname{Ln}\left(\mathrm{LS}_{\mathrm{NA}}\right)+\xi$	Two regressions of $P F A_{N A}$ on lagged spawner index with possible variations in slopes and intercepts
6	$\alpha+\beta^{*} P h+\operatorname{Ln}(L S)+\xi$	Two regressions of $P F A_{N A}$ on lagged spawner index with intercept trough the origin
PFA LS NA$=$ Lagged spawner index excluding Labrador $(1977$ to 2002) Ph $=$ Phase (indicator variable representing two time periods) $\alpha, \beta, \gamma, \delta=$ coefficients of the slope and intercept variables $\xi=$ residual error, normal phase shift periods: ranging from 1977-1985 and 1986-2002 to 1977-1993 and 1994-2002		

Table 5.10.1.2. Summary of model and break year selections for PFA prediction for 2004, based on 10,000 simulations. Break year refers to last year in high phase.

Break Year	Models						By phase		$\begin{array}{r} \text { By } \\ \text { Year } \\ \hline \end{array}$
	Mean by phase		Intercept at origin - slope by phase		Intercept and slope by phase				
	High	Low	High	Low	High	Low	High	Low	
1988				898	28	1123	28	2021	2049
1989				2304	20	930	20	3234	3254
1990				115		27		142	142
1991		2102		810		228		3140	3140
1992		1168		210		37		1415	1415
Total	0	3270	0	4337	48	2345			10000
By model		3270		4337		2393			
By phase							48	9952	

Table 5.10.2.1. Input parameters and management objectives for the risk analysis of catch advice for the West Greenland salmon fishery for 2004.

Biological characteristics in the fishery Time period 1999 to 2003			
		Minimum	Maximum
Proportion NA		0.65	0.91
Proprtion European		0.09	0.35
Mean weight 1SW NA		2.47	3.02
Mean weight 1SW NEAC		2.81	3.08
Age Correction Factor		1.017	1.050
Conservation spawning objectives (2SW fish) Labrador34746			
Newfoundland 4022			
Quebec 29446			
Gulf 30430			
Scotia-Fundy 24705			
USA 29199			
Alternative management objectives - return of 2SW salmon			
Mean Minimum Maximum			
Base period	1992 to 1996		
$\begin{array}{llll}\text { Scotia-Fundy } & 7127 & 5579 & 8549\end{array}$			
USA 18681346			
Recent five-year period 1998 to 2002			
Labrador ${ }^{1}$ [37748 12260 67139			
Newfoundland $\quad 5054$ Q			
Quebec 291522540532849			
Gulf $1858212665 \quad 23961$			
Scotia-Fundy 3886			
USA	838	511	1192
$\begin{aligned} & 1 \\ & \text { Labrador returns are derived from a ratio of Labrador to all of North America } \\ & \text { during } 1971 \text { to } 1998\end{aligned}$			

Table 5.12.1. Number of salmon returning to home waters provided no fishery took place at Greenland 1994-2003. The average number of potentially returning salmon per ton caught in Greenland is also given.

Year	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Nominal catch at Greenland (tons) ${ }^{1}$:	137.0	82.7	92.1	58.2	11.1	19.0	20.5	42.5	9.8	12.3
Proportion of NA fish in catch (PropNA):	0.540	0.670	0.732	0.850	0.785	0.910	0.650	0.670	0.690	0.640
Proportion of EU fish in catch (PropEU):	0.460	0.330	0.268	0.150	0.215	0.090	0.350	0.330	0.310	0.360
Mean weight, NA fish, all sea ages (kg):	2.655	2.450	2.830	2.630	2.760	3.090	2.470	2.950	2.890	3.020
Mean weight, EU fish, all sea ages (kg):	2.745	2.750	2.900	2.840	2.840	3.030	2.810	3.090	2.920	3.100
Mean weight of all sea ages (NA+EU fish):	2.696	2.549	2.849	2.662	2.777	3.085	2.589	2.996	2.899	3.049
Proportion of 1SW NA-fish in catch:	0.919	0.968	0.941	0.982	0.968	0.968	0.974	0.982	0.973	0.967
Catch of 1SW NA fish:	25607	21892	22417	18471	3056	5416	5254	9479	2269	2523
Catch of 1SW EU fish:	21098	9606	8009	3019	813	546	2487	4457	1009	1383
Natural mortality during migration to NA:	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
Natural mortality during migration to EU:	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24
Additional fish if no fishery at Greenland:										
2SW fish returning to NA (numbers):	18410	15739	16116	13279	2197	3894	3778	6815	1632	1814
Percent of conservation limit ${ }^{2}$:	12.1	10.3	10.6	8.7	1.4	2.6	2.5	4.5	1.1	1.2
2SW fish returning to $\mathbf{E U}$ (numbers):	16597	7557	6300	2375	640	430	1956	3506	794	1088
Percent of conservation limit ${ }^{3}$:	6.2	2.8	2.4	0.9	0.2	0.2	0.7	1.3	0.3	0.4

${ }^{1}$ Figure for 1994 correspond to calculated quotas. Figures for 2002 and 2003 were adjusted by the WG
${ }^{2}$ Conservation limit for NA:
152,548
${ }^{3}$ Conservation limit for Southern Europe: 267,894

Average number of salmon potentially returning to home waters per ton caught in Greenland:

| 2SW fish returning to NA (numbers per ton, 10 year average): | 172 |
| :--- | ---: | ---: |
| 2SW fish returning to EU (numbers per ton, 10 year average): | 85 |

Figure 5.2.1. Average lagged spawners in the six regions of North America for the PFA years 1998 to 2002 and the 2SW spawner requirement in each region expressed as a proportion of the total for North America.

Figure 5.4.1. $\mathrm{PFA}_{\mathrm{NA}}$ forecast estimate distribution for the year 2004 non-maturing 1SW salmon.

Percentile	Estimate
5	45,148
10	54,857
15	61,901
20	68,289
25	73,642
30	79,073
35	84,538
40	89,519
45	94,471
50	100,357
55	106,096
60	112,263
65	119,408
70	126,784
75	136,006

Figure 5.8.1. Revised $\mathrm{PFA}_{\mathrm{NA}}$ estimated distribution for the 2003 PFA year using the updated data and nested model selection approach of 2004 (upper panel) and PFA forecast distribution using the previous year's formulation (lower panel).

Figure 5.9.1. West Greenland NAFO divisions.

Figure 5.9.3.1. Number of North American and European salmon caught at West Greenland 1982-1992 and 1995-2003.

Figure 5.10.1.1. PFA (mid-point) and lagged spawner (mid-point) association for the NAC area showing the sequence from 1977 to 2002 (upper panel) and the relative change of the $\operatorname{Ln}(\mathrm{PFA})$ (recruit) to $\operatorname{Ln}(\operatorname{LS})$ (lagged spawner index) over the time series (lower panel).

Figure 5.10.1.2. Midpoints and error bars (minimum to maximum range) of lagged spawner index (upper) and PFA (lower) used in the forecasting of PFA abundance for the NAC area.

Figure 5.10.1.3. Relative change in $\operatorname{Ln}(\mathrm{PFA})$ in year relative to $\operatorname{Ln}(\mathrm{PFA})$ in year-2 (upper panel).

Figure 5.10.2.2. Mean residuals from the best model fits to 1,000 data sets for each of the model groups retained. Mean by phase refers to model predicting PFA based on average abundance in two phases. Slopes-intercept through origin refers to a model with lagged spawners proportional to PFA with the intercept set through the origin. Slopes and intercepts refer to models that allow the slope, intercept or both to vary with phase.

Figure 5.10.2.1. Flowchart, risk analysis for catch options at West Greenland using the $\mathrm{PFA}_{\mathrm{NA}}$ and the $\mathrm{PFA}_{\text {NEAC }}$ predictions for the year of the fishery. Inputs with solid borders are considered known without error. Inputs with dashed borders are estimated, contain observation error that is incorporated in the analysis. Solid arrows are functions that introduce or transfer without error whereas dashed arrows transfer errors through the components.

NASCO HAS REQUESTED ICES TO IDENTIFY RELEVENT DATA DEFICIENTCIES, MONITORING NEEDS AND RESEARCH REQUIREMENTS TAKING INTO ACCOUNT NASCO'S INTERNATIONAL ATLANTIC SALMON RESEARCH BOARD'S INVENTORY OF ON-GOING RESEARCH RELATING TO SALMON MORTALITY IN THE SEA

The Working Group recommends that it should meet in 2005 to address questions posed by ACFM, including those posed by NASCO. The Working Group intends to convene in Nuuk, Greenland, from the $4^{\text {th }}$ April to $14^{\text {th }}$ April 2005. It is strongly recommended by the Working Group that this period is adhered in order to provide sufficient time to adequately review and complete the report.

6.1 Data deficiencies and research needs.

Recommendations from Section 2- Atlantic salmon in the North Atlantic Area:

1. Given the importance of M in the provision of catch advice and in the understanding of the dynamics of Atlantic salmon in the ocean, and in order to refine the assessment of M with the maturity schedule method, hatchery stocking programs should attempt to confirm the sex ratio of the released smolts (Section 2.3.1).
2. The Working Group recommends that life history characteristics of salmon stocks including age structure, length at age, relative and absolute abundance of repeat spawners, run-timing and other such features be examined for Atlantic salmon stocks to ensure that conservation of salmon goes beyond abundance (Section 2.4.3).
3. The Working Group recommends that in regions where fishery closures have not resulted in stock rebuilding, that urgent research work be undertaken to forecast population viability, to determine the cause or causes of declines, and that activities be implemented to reverse declining population trends (Section 2.5).
4. A coordinated tagging study should be designed and carried on to give information on migration, distribution, survival and growth of escaped farmed salmon from the NEAC countries (Sections 2.6.1 \& 2.6.3).
5. Further basic research is needed on the spatial and temporal distribution of salmon and their predators at sea to assist in explaining variability in survival rates (Sections 2.6).

Recommendations from Section 3 - Fisheries and Stocks from the North East Atlantic Commission Area:

1. Further progress should be made in establishing a PFA predictive model using the PFA of maturing 1SW salmon, in addition to the spawner term, as a predictor variable for the PFA of non-maturing 1SW in the northern NEAC area (Section 3.6.2).

The Working Group endorses the recommendations given by the SGBYSAL and makes the following additional recommendations (Section 3.11):
2. Existing long-term data sets on the pelagic trawl surveys by IMR, Norway, and PINRO, Russia, from relevant areas should be made available for further analysis to SGBYSAL and WGNAS. Special attention should be paid to hauls close to or at the surface.
3. Experimental trawling surveys should be conducted using commercial trawl in addition to the experimental trawl for better comparison of results between the two gear types and efforts should be made to inter-calibrate the CPUE for different trawling methods, in particular research gears against commercial trawls, to provide a better basis for assessing levels of by-catch.
4. Surveys should be extended to provide better temporal and spatial information on the distribution of post-smolts in relation to pelagic fisheries.
5. Experimental trawling surveys should be conducted to evaluate the vertical distribution of post-smolts and older salmon in the sea, if possible in combination with tagging of post-smolt and salmon with depth and temperature recording tags (DSTs).
6. Studies on post-smolts and older salmon should be extended to elucidate behaviour patterns at sea and to investigate their behaviour in relation to different commercial gear types (e.g. pelagic trawls, purse seines).
7. The Planning Group on Surveys on Pelagic Fish in the Norwegian Sea (PGSPFN) should consider intensive screenings of pelagic research hauls for the presence of post-smolts (small salmon in their 1st year at sea, generally $<45 \mathrm{~cm}$) and older salmon.
8. The Working Group requests that ICES should make available data on the commercial catches of mackerel and herring in the Norwegian Sea (ICES Divisions IIa and Vb), Northern North Sea (Division IVa), and the west of Ireland and Scotland (Divisions VI a \& b; VII b,c,j \& k) by ICES Division and standard week. Further information on the number of vessels fishing, gear types, fishing techniques and fishing effort is also requested.

Recommendations from Section 4- Fisheries and Stocks from the North American Commission Area:

1. Estimates of total returns to Labrador no longer exist. There is a critical need to develop alternate methods to derive estimates of salmon returns and develop habitat-based spawner requirements in Labrador, and to monitor salmon returns in the Ungava region of Québec (Sections 4.9.5 \& 4.9.7).
2. There is a need to investigate changes in the biological characteristics (mean weight, sex ratio, sea-age and river-age composition) of returns to rivers, of smolt output, of spawning stocks of Canadian and US rivers, and the harvest in food fisheries in Labrador. These data and new information on measures of habitat and stock recruitment are necessary to re-evaluate existing estimates of spawner requirements in Canada and USA and for use in the run reconstruction model (Sections 4.9.7).
3. There is a requirement for additional smolt-to-adult survival rates for wild salmon. As well, sea survival rates of wild salmon from rivers stocked with hatchery smolts should be examined to determine if hatchery return rates can be used as an index of sea survival of wild salmon elsewhere (Section 4.9.7).
4. A consistent approach to estimating returns is needed for instances in which offspring from broodstock are stocked back into the management area from which their parents originated (Section 4.1.3).
5. After consideration of the changes in North American Atlantic salmon dynamics, the Working Group recommends that the Canadian smolt age distribution be updated in 2005 and smolt age distributions for the six North American areas be re-evaluated on a five year schedule, starting in 2009 (Section 4.9.7).

Recommendations from Section 5 - Atlantic Salmon in the West Greenland Commission Area:

1. Continued efforts should be made to improve the estimates of the annual catches of salmon taken for private sales and local consumption in Greenland (Section 5.9.1).
2. The mean weights, sea and freshwater ages and continent of origin are essential parameters to provide catch advice for the West Greenland fishery. In addition, sampling to determine sex on as many whole fish as practicable and testing for ISAv and other diseases in Atlantic salmon caught in West Greenland methods should be included in the program. Methods for determining sex on gutted individuals should be considered. The Working Group recommends that the sampling program be continued and closely coordinated with fishery harvest plan to be executed annually in West Greenland. (Section 5.9).
3. To assure significant progress toward assigning origin of Atlantic salmon caught at West Greenland at a finer resolution than continent of origin (river stocks, country or stock complexes). The Working Group recommends an integrated approach that builds on work at the laboratories in NAC and NEAC currently studying Atlantic salmon genetics. (Section 5.9.4).
4. Scale analysis of salmon captured at West Greenland indicated an infrequent appearance of escaped-farm salmon. To investigate this observation, farmed salmon need to be genetically characterized and included as baseline populations in continent of origin analyses of samples collected at West Greenland (Section 5.9.3.1).
5. The Working Group recommends that stage-specific mortality rates be determined, in particular the PFA estimate be verified through at sea research programs, similar to 1972, when an estimate of the non-maturing Atlantic salmon population at Greenland and the extant population in the western North Atlantic was developed (Section 5.10).
6. Further basic research is needed on the spatial/temporal distribution and migration patterns of salmon and their predators at sea to assist in explaining variability in survival rates. Other indices of change, i.e. changes in age composition, size at age and sea survival, should also be included in this analysis (Section 5.12).

APPENDIX 1

WORKING DOCUMENTS SUBMITTED TO THE WORKING GROUP ON NORTH ATLANTIC SALMON, 2004

1. Whoriskey F., Brooking P., Doucette G. and Tinker S. Preliminary results from sonic tracking of experimentally escaped farmed salmon in the Bay of Fundy region.
2. Whoriskey F., Brooking P., Doucette G. and Tinker S. Preliminary results from sonic tracking of smolts in the Miramichi River, New Brunswick.
3. McKeon J., Sweka J., Trial J., Kocik J., Legault C. and Sheehan T. National report for the United States, 2003.
4. Maoiléidigh N. Ó., Cullen A., McDermott T., Bond N., McLaughlin D., Rogan G. and Cotter D. National report for Ireland - The 2003 salmon season.
5. Maoiléidigh N. Ó., McGinnity P., Prévost E., Potter E. C. E., Gargan P., Crozier W., Mills P. and Roche W. Application of pre-fishery abundance modelling and bayesian hierarchical stock and recruitment analysis to the provision of precautionary catch advice for Irish salmon (Salmo salar L.) fisheries.
6. Caron F., Fontaine P.-M. and Lachance S. Status of Atlantic Salmon Stocks in Québec, 2003..
7. Caron F. and Lachance S. Smolt production, freshwater and sea survival, on two index rivers, the Trinité and Saint-Jean, in Québec.
8. Gibson A. J. F. and Black J. DFO VDC database query for records pertaining to Atlantic salmon bycatch.
9. Meerburg D. Catch, catch-and-released, and unreported catch estimates for Atlantic salmon in Canada, 2003.
10. Chaput G., Cameron P., Moore D., Cairns D. and Clement M. Stock status summary for Atlantic salmon from Gulf Region, SFA 15-18 for 2003.
11. Chaput G., Legault C., Reddin D., Caron F. and Amiro P. Provision of catch advice taking account of nonstationarity in productivity of Atlantic salmon in the northwest Atlantic.
12. Vauclin V. Changes in biological characteristics (length, age structure) of Atlantic salmon (Salmo salar) populations from Brittany (France) during 1972 to 2002.
13. Erkinaro J., Länsman M., Kylmäaho M., Kuusela J. and Niemelä E. National report for Finland: salmon fishing season in 2003.
14. Gudbergsson G., Antonsson Th. and Gudjonsson S. National report from Iceland. The 2003 salmon season.
15. Hansen L. P., Fiske P., Holm M., Jensen A. J., Sægrov H., Arnekleiv J. V., Holst J. C., Hvidsten N. A. and Jonsson N. Atlantic salmon; national report for Norway 2003.
16. Jacobsen, J. A. Status of the fisheries for Atlantic salmon and production of farmed salmon in 2003 for the Faroe Islands.
17. Jacobsen J. A. Survey report from the Faroese R/V Magnus Heinason, 22-29/10-2003 - Tagging of salmon with DSTs north of the Faroes.
18. Prusov S. V., Krylova S. S., Studenov I. I. and Mandrikov V. V. Atlantic salmon fisheries and status of stocks in Russia. National report for 2003.
19. Prusov S. V., Dolgov A. V., Prischepa B. F. and Krylova S. S. Russian studies of distribution and by-catch of Atlantic salmon post-smolts in the Norwegian Sea in 2003.
20. Sheehan T. F., Reddin D. G., Kanneworff P. and King T. L. The international sampling program, continent of origin and biological characteristics of Atlantic salmon collected at West Greenland in 2003.
21. Sheehan T. F., Legault C. M. and Spidle A. Probabilistic-based genetic assignment model (PGA): subcontinent of origin assignments of the West Greenland Atlantic salmon catch.
22. Legault C. M. and Sheehan T. F. Is Atlantic salmon bycatch at sea a big problem in the US?
23. Anon. Annual assessment of salmon stocks and fisheries in England and Wales, 2003.
24. MacLean J. C., Smith G. W. and McLaren I. S. National report for UK (Scotland) for the year 2003.
25. Karlsson L. Salmon fisheries and status of salmon stocks in Sweden: National report for 2003.
26. De la Hoz J. Spain-Asturias salmon report 2003 for ICES.
27. Reddin D.G. Return and spawner estimates for Atlantic salmon in Insular Newfoundland, 2003.
28. Anon. Newfoundland and Labrador Atlantic salmon 2003 Stock Status Update.
29. Reddin D.G. By catch of Atlantic salmon in pelagic fisheries in Newfoundland.
30. Kanneworff P. The salmon fishery in Greenland 2003.
31. Crozier W.W., Kennedy G. J. A., Boylan P. and Kennedy R. Summary of salmon fisheries and status of stocks in Northern Ireland for 2003.
32. Booth D., Crozier W.W., Prodohl P., Brownlee L., Boylan P., O'Maoileidigh N. and McGinnity P. Preliminary analysis of the genetic composition of the mixed stock fishery for Atlantic salmon (Salmo salar L.) in the Foyle area of north-east Ireland.
33. Department of Fisheries and Oceans, Maritimes Region. Expert opinion on Atlantic salmon of salmon fishing areas (SFAs) 19-23.
34. Jones R. A. Estimates of returns and spawners to the Maritimes Region in 2003.
35. Sheehan T. F., Lacroix G. and Kocik J. F. Atlantic salmon hatchery smolt emigration dynamics determined through ultrasonic telemetry: Dennys River Maine, USA.
36. Rasmussen G. A short review on the salmon research at the Danish Institute of Fisheries Research, Department of Inland Fisheries.
37. Sheehan T., Trial J. and Legault C. Redefining the US smolt age Distribution.
38. Anon. Study group on the by-catch of salmon in pelagic fisheries (SGBYSAL).
39. Legault C. M. Simple Population Viability Analysis of Pre-Fishery Abundance, Returns, and Spawners in the North America and the Northeast Atlantic Commissions
40. Amiro P., Trial J., Whorisky F., Chaput G., Caron F., Reddin D., Erkinaro J. and MacLean, J. Review of temporal trend of repeat spawning incidence and biological changes among Atlantic salmon of North America and Europe.
41. Maxwell D. and Potter T. An Application of Prediction Models for Pre-Fishery Abundance of Southern European Salmon.
42. Prévost É., Crozier W. W. and Schön P. J. Static vs. dynamic model for Forecasting salmon Pre-Fishery Abundance of the Bush R.: A bayesian comparison.
43. Legault C. M., Chaput G., Amiro P. and Gibson J. An Examination of Recovery Projections in a Mixed Stock Fishery with Different Levels of Stock Productivity.
44. Gibson A. J. F. and Amiro P. G. Relationships Between Repeat Spawning Frequency, Population Size and Fishery Reference Points for a Hypothetical Atlantic Salmon Population

APPENDIX 2

References Cited

Anon, 1993. Report of the West Greenland Commission of North Atlantic Salmon Conservation Organisation. NASCO 1993.

Anon, 1996. Report of the Salmon Management Task Force. Government Publications, Molesworth Street, Dublin.
Anon, 2004. Wild Salmon and Sea Trout Tagging Scheme: Fisheries statistic report. Central Fisheries Board, Ireland.
Beacham, T.D., McIntosh, B., \& MacConnachie, C. 2002. Microsatellite identification of individual sockeye salmon in Barkely Sound, British Columbia. Journal of Fish Biology 61: 1021-1032.

Beacham, T.D., Pollard, S. \& Le, K.D. 1999. Population structure and stock identification of steelhead in Southern British Columbia, Washington, and the Columbia River based on microsatellite DNA variation. Transactions of the American Fisheries Society 128: 1068-1084.

Beacham, T. D. \& Wood, C. C. (1999) Application of microsatellite DNA variation to estimation of stock composition and escapement of Nass River sockeye salmon (Oncorhynchus nerka). Canadian Journal of Fisheries \& Aquatic Sciences 56: 597-610.

Browne, J., Ó Maoiléidigh, N., McDermott, T., Cullen, A., Bond, N., McEvoy, B., O' Farrell, M., and O' Connor, W. 1994. High seas and homewater exploitation of an Irish reared salmon stock. ICES CM 1994 M:10.

Burnham, K.P. and Anderson, D.R. 1998. Model selection and multimodel inference: a practical information-theoretic approach, second edition. Springer-Verlag, New York.

Bisack, K. D. 2002. Estimates of marine mammal bycatch in the Northeast (New England) multispecies sink gillnet fishery in 1996. Northeast Fisheries Science Center Reference Document 03-18.

Cairney, M., Taggart, J.B., \& Høyheim, B. 2000. Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Molecular Ecology 9: 2175-2178.

Chaput, G. 2003. Estimation of mortality for Atlantic salmon (Salmo salar L.), pp. 59-82. In: E.C.E Potter, N. Ó Maoiléidigh, and G. Chaput (Eds.). Marine mortality of Atlantic salmon Salmo salar L.: methods and measures. DFO Can. Science Adv. Secr. Res. Doc. 2003/101.

Chaput, G., F. Caron, and L. Marshall. 2003. Estimates of survival of Atlantic salmon (Salmo salar L.) in the first and second years at sea, pp. 83-109. In: E.C.E Potter, N. Ó Maoiléidigh, and G. Chaput (Eds.). Marine mortality of Atlantic salmon Salmo salar L.: methods and measures. DFO Can. Science Adv. Secr. Res. Doc. 2003/101.

Carr, J.W., J.M. Anderson, F.G. Whoriskey and T. Dilworth. 1998. The occurrence and spawning of cultured Atlantic salmon (Salmo salar) in a Canadian river. ICES Journal of Marine Science 54:1064-1073.

Crozier, W.W., \& Kennedy, G.J.A. 1994. Marine exploitation of Atlantic salmon (Salmo salar L.) from the River Bush, Northern Ireland. Fisheries Research 19: 141-155.

Crozier, W.W., \& Moffett, I.J.J. 1995. Applications of low frequency genetic marking at GP1-3* and MDH-B1,2* loci to assess supplementary stocking of Atlantic salmon Salmo salar L., in a Northern Irish stream. Fisheries Management and Ecology 2: 27-36.

Crozier, W.W. 1998. Incidence of escaped farmed salmon Salmo salar L. in commercial salmon catches and fresh water in Northern Ireland. Fisheries Management and Ecology 5: 23-29.

Crozier, W.W., Potter, E.C.E., Prévost, E., Schon, P-J. and Ó Maoiléidigh, N. 2003. A co-ordinated approach towards the development of a scientific basis for management of wild Atlantic salmon in the north-east Atlantic (SALMODEL Scientific Report Contract QLK5-1999-01546 to EU Concerted Action Quality of Life and Management of Living Resources). Queen's University of Belfast, Belfast, pp. 431.

Decisioneering, 1996. Crystal Ball - Forecasting and risk analysis for spreadsheet users (Version 4.0). 286 pp.
Dennis, B., P.L. Mulholland, and J.M. Scott. 1991. Estimation of growth and extinction parameters for endangered species. Ecological Monographs. 61: 115-143.

DFO, 2002a. West Coast of Newfoundland Atlantic Herring (Division 4R). DFO Science, Stock Status Report B4-01 (2002).

DFO, 2002b. Southern Gulf of St. Lawrence (4T) Herring. DFO Science, Stock Status Report B3-01 (2002).
DFO, 2003. Atlantic Mackerel of the Northwest Atlantic in 2002. DFO-Science, Stock Status Report 2003/010.
Fournier, D.A., Beacham, T.D., Riddell, B.E. \& Busack, C.A. 1984. Estimating stock composition in mixed stock fisheries using morphometric, meristic, and electrophoretic characteristics. Canadian Journal of Fisheries \& Aquatic Sciences 41: 400-408.

Galvin, P., McKinnell, S., Taggart, J.B, Ferguson, A., O'Farrell, M. \& Cross, T.F. 1995. Genetic stock identification of Atlantic salmon using single locus minisatellite DNA probes. Journal of Fish Biology 47: (Supp A), 186-199.

Gausen, D. \& Moen, V. 1991. Large-scale escapes of farmed Atlantic salmon (Salmo salar) into Norwegian rivers threaten natural populations. Canadian Journal of Fisheries and Aquatic Sciences 48: 945-957.

Hansen, L.P., K.B. Døving \& B. Jonsson 1987. Migration of farmed adult Atlantic salmon with and without olfactory sense, released on the Norwegian coast. Journal of Fish Biology 30: 713-721.

Hansen, L.P. 2002. Escaped farmed salmon - what are their survival in nature and where do they go? The Salmon Net 32: 14-19.

Holm, M., J.C. Holst \& L.P. Hansen 2000. Spatial and temporal distribution of Atlantic salmon post-smolts in the Norwegian Sea and adjacent areas. ICES Journal of Marine Science 57: 955-964.

Holst, J.C. \& A. McDonald. 2000. FISH-LIFT: A device for sampling live fish with trawls. Fish. Res. 48: 87-91.
ICES 1991. Report of the Working Group on North Atlantic Salmon. Copenhagen, 14-21 March 1991 ICES CM 1991/Assess: 12, 156 pp.

ICES 1993. Report of the North Atlantic Salmon Working Group. Copenhagen, 5-12 March 1993. ICES, Doc. CM 1993/Assess: 10.

ICES 1994. Report of the North Atlantic Salmon Working Group. Reykjavik, 6-15 April 1994. ICES, Doc. CM 1994/Assess: 16, Ref. M.

ICES 1995. Report of the North Atlantic Salmon Working Group. Copenhagen, 3-12 April 1995. ICES, Doc. CM 1995/Assess: 14, Ref. M, 191 pp.

ICES 1996. Report of the Working Group on North Atlantic Salmon. Moncton, Canada. 10-19 April 1996. ICES CM 1996/Assess: 11, Ref. M. 227 pp.

ICES 1997. Report of the Working Group on North Atlantic Salmon. Copenhagen, 7-16 April 1997. ICES, Doc. CM 1997/Assess: 10. 242 pp.

ICES 2000. Report of the Working Group on North Atlantic Salmon. ICES Headquarters, Copenhagen, April 3-13. ICES CM 2000/ACFM:13. 301 pp.

ICES 2001. Report of the Working Group on North Atlantic Salmon. Aberdeen, 2-11 April 2001. ICES CM 2001/ACFM: 15. 290 pp.

ICES 2002. Report of the Working Group on North Atlantic Salmon. ICES Headquarters, Copenhagen, 3-13 April 2002. ICES CM 2002/ACFM: 14. 299 pp.

ICES 2003. Report of the Working Group on North Atlantic Salmon. ICES Headquarters, Copenhagen, 31-10 April 2003. ICES CM 2003/ACFM: 19. 310 pp.

ICES 2003. Report of the Northern Pelagic and Blue Whiting Fisheries Working Group. ICES Copenhagen, 29 April - 8 May 2003. ICES CM 2003/ACFM:23. 229pp.

ICES 2004. Report of the Working Group on the Assessment of Mackerel, Horse Mackerel, Sardine and Anchovy. ICES Copenhagen, 09-18 September 2003. ICES CM 2004/ACFM:08. 487pp.

Idler, D.R., S.J. Hwang, L.W. Crim, \& D. Reddin. 1981. Determination of sexual maturation stages of Atlantic salmon (Salmo salar) captured at sea. Can. J. Fish. Aquat. Sci. 38: 405-413.

Jensen, A.J., Zubchenko, A.V., Heggberget,T.G, Hvidsten, N.A., Johnsen, B.O., Kuzmin, O., Loenko, A.A, Lund, R.A., Martynov, V.G., Nœsje, T.F., Sharov, A.F. and Økland, F. (1999) Cessation of the Norwegian drift net fishery: changes observed in Norwegian and Russian populations of Atlantic salmon. ICES J Mar Sci 56: 84-95.

King, T.L., Kalinowski, S.T., Schill, W.B., Spidle, A.P., Lubinski, B.A. (2001). Population structure of Atlantic salmon (Salmo salar L.): a range-wide perspective from microsatellite DNA variation. Molecular Ecology 10: 807-821.

Koljonen, M-L. \& McKinnell, S. 1996. Assessing seasonal changes in stock composition of Atlantic salmon catches in the Baltic Sea with genetic stock identification. Journal of Fish Biology 49: 998-1018.

Koljonen, M.L., Tahtinen, J., Saisa, M. and Koskiniemi, J. 2002. Maintance of genetic diversity of Atlantic salmon (Salmo salar) by captive breeding programmes and the geographic distribution of microsatellite variation. Aquaculture 212: 69-92.

McElhany, P., M.H. Ruckelshaus, M.J. Ford, T.C. Wainwright, and E.P. Bjorkstedt. 2000. Viable salmonid populations and the recovery of evolutionary significant units. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-42, 156 p.

McGinnity P., Gargan P., Roche W., Linnane S., and Mills P. 2003. Quantification of the freshwater salmon habitat asset in Ireland using data interpreted in a GIS platform. Central Fisheries Board, 27 p.

McGinnity, P., Prodöhl, P., Ferguson, A., Hynes, R., Ó Maoiléidigh, N., Baker, N., Cotter, D., O’Hea, B., Cooke, D., Rogan, G., Taggart, J. \& Cross, T. 2003. Fitness reduction and potential extinction of wild population of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proceedings of the Royal Society: Biological Sciences, 270: 2443-2450.

NASCO, 1998. North Atlantic Salmon Conservation Organisation. Agreement on the adoption of a precautionary approach. Report of the fifteenth annual meeting of the Council. CNL(98)46. pp. 4.

NASCO, 2002. North Atlantic Salmon Conservation Organisation. Report of the Standing Committee on the precautionary approach. CNL(02)17. pp. 18.

Niemelä, E., Erkinaro, J., Julkunen, M., Mäkinen, T., Hassinen, E., Länsman, M. and Kuusela, J. Life history of previously spawned Atlantic salmon in a large subarctic River Teno (Manuscript)

O’Connell, M.F., D.G. Reddin, P.G. Amiro, T.L. Marshall, G. Chaput, C.C. Mullins, A. Locke, S.F. O’Neil, \& D.K. Cairns. 1997. Estimates of conservation spawner requirements for Atlantic salmon (Salmo salar L.) for Canada. DFO Can. Stock. Assess. Sec. Res. Doc. 97/100. 58pp.

Ó Maoiléidigh, N., Browne, J., Cullen, A., McDermott, T. and Keatinge, M. 1994. Exploitation of reared salmon released into the Burrishoole River System. ICES CM 1994/M:9.

Ó Maoiléidigh, N., McLaughlin, D., Cullen, A., McDermott, T. and Bond, N. 2001. Carcass tags and logbooks for managing Irish salmon stocks. In: Catchment Management - Proceedings of the $31^{\text {st }}$ Annual Study Course of the Institute of Fisheries Management. C. Moriarty (Ed.). Trinity College, Dublin.

O'Reilly, P.T., Hamilton, L.C., McConnell, S.K. \& Wright, J.M. 1996. Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Canadian Journal of Fisheries \& Aquatic Sciences 53: 2292-2298.

Pella, J.J. and Robertson T.L. 1979. Assessment of composition of stock mixtures. U.S. Fish and Wildlife Service, Fisheries Bullitin 77(2): 387-398.

Pella, J.J. \& Milner, G.B. 1987. Use of genetic marks in stock composition analysis. In: Population Genetics and Fishery Management pp. 247-276. Ryman, N. and Utter, F., (Eds). London: University of Washington Press.

Pella, J. \& Masuda, M. 2001. Bayesian methods for analysis of stock mixtures from genetic characters. Fishery Bulletin 99: 151-167.

Potter, E.C.E., L.P. Hansen, G. Gudbergsson, W.C. Crozier, J. Erkinaro, C. Insulander, J. MacLean, N. O'Maoileidigh, \& S. Prusov. 1998. A method for estimating preliminary conservation limits for salmon stocks in the NASCO-NEAC area. ICES CM 1998/T:17.

Potter, E.C.E. and Dunkley, D.A. 1993. Evaluation of marine exploitation of salmon in Europe. In: Salmon in the Sea, and new enhancement strategies. pp. 203-219. D. Mills (Ed.). Fishing News Books, Oxford. 424 pp.

Potter, E.C.E., Hansen, L.P., Gudbergsson, G., Crozier, W.W., Erkinaro, J., Insulander, C., MacLean, J., Ó Maoileidigh, N.S. and Prusov, S. 1998. A method for estimating preliminary conservation limits for salmon stocks in the NASCONEAC area. ICES CM 1998/T: 17.

Prévost, E., Chaput, G., and Chadwick, E. M. P. 2001. Transport of stock-recruitment reference points for Atlantic salmon. In: Stock, recruitment and reference points - Assessment and management of Atlantic salmon. pp. 95-135. E. Prévost and G. Chaput (Ed.). Hydrobiologie et aquaculture, INRA, Paris.

Prévost, E., Parent, E., Crozier, W., Davidson, I., Dumas, J., Gudbergsson, G., Hindar, K., McGinnity, P., MacLean, J. and Sættem, L. M. 2003. Setting biological reference points for Atlantic salmon stocks: transfer of information from data-rich to sparse-data situations by Bayesian hierarchical modelling. ICES Journal of Marine Science 60: 1177-1194.

Rago, P.J., D.G. Reddin, T.R. Porter, D.J. Meerburg, K.D. Friedland \& E.C.E. Potter. 1993a. A continental run reconstruction model for the non-maturing component of North American Atlantic salmon: analysis of fisheries in Greenland and Newfoundland-Labrador, 1974-1991. ICES CM 1993/M:25.

Rago, P.J., D.J. Meerburg, D.G. Reddin, G.J. Chaput, T.L. Marshall, B. Dempson, F. Caron, T.R. Porter, K.D. Friedland, \& E.T. Baum. 1993b. Estimation and analysis of pre-fishery abundance of the two-sea-winter population of North American Atlantic salmon (Salmo salar), 1974-1991. ICES CM 1993/M:24.

Reddin, D. G., R. Johnson, and P. Downton. 2002. A study of by-catches in herring bait nets in Newfoundland, 2001. DFO Canadian Science Advisory Secretariat Research Document 2002/031.

SAS Institute. 1996. GLM procedure of SAS. SAS Institute, Cary, NC, USA.
Scribner, K. T., Gust, J. R. \& Fields, R. L. 1996. Isolation and characterization of novel salmon microsatellite loci: cross-species amplification and population genetic applications. Canadian Journal of Fisheries \& Aquatic Sciences 53: 833-841.

Seeb, J.E., Seeb, L.W. \& Utter, F.M. 1986. Use of genetic marks to assess stock dynamics and management programs for Chum salmon. Transactions of the American Fisheries Society 115: 448-454.

Ståhl, G. 1987. Genetic population structure of Atlantic salmon. in N. Ryman and F. Utter editors. Population genetics \& fishery management. University of Washington Press, Seattle: Pages 121-140.

Taggart, J.B. \& Ferguson, A. 1984. An electrophoretically-detectable genetic tag for hatchery reared brown trout (Salmo trutta L.). Aquaculture 41: 119-130.

Taggart, J.B., Verspoor, E., Galvin, P.T., Morán, P., and Ferguson, A. 1995. A minisatellite DNA marker for discriminating between European and North American Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 52: 2305-2311.

Webb, J.H. \& Youngson, A.F. 1992. Reared Atlantic salmon, Salmo salar L., in the catches of a salmon fishery on the western coast of Scotland. Aquaculture and Fisheries Management 23: 393-397.

Whoriskey, F.G. and J.W. Carr. 2001. Interactions of escaped farmed salmon, and wild salmon, in the Bay of Fundy region. pp. 141-149. In: Tlusty, M., D. A.

Youngson, A.F., Webb, J.H., MacLean, J.C. and Whyte, B.M. 1997. Frequency of occurrence of reared Atlantic salmon in Scottish salmon fisheries. ICES Journal of Marine Science 54: 1216-1220.

APPENDIX 3

LIST OF PARTICIPANTS

Name	Address	Telephone	Fax	E-mail
Walter Crozier (Chair)	DARD River Bush Salmon Station 21 Church Street Bushmills BT57 8Q5 United Kingdom	+442820 731435	+442820 732130	walter.crozier@dardni. gov.uk
Peter Amiro	Dept. of Fisheries and Oceans Diadromous Fish Division BIO P.O.Box 1006, Dartmouth, NS B2Y 4A2 Canada	+19024268104	+19024266814	amirop@ mar.dfo-mpo.gc.ca
François Caron	Direction de la Recherche Faune et Parcs Québec, 675 est, Boul. René-Lévesque Boîte $92,11^{\mathrm{e}}$ étage, Québec, Québec G1R 5V7 Canada	$\begin{aligned} & +1418521-3955 \\ & \text { ext } 4377 \end{aligned}$	+14186466863	francois.caron@ fapaq.gouv.qc.ca
Gerald Chaput	Dept. of Fisheries and Oceans P.O. Box 5030 Moncton NB E1C 9B6 Canada	+1 5068512022	+15068512147	ChaputG@ dfo-mpo.gc.ca
Jaakko Erkinaro	Finnish Game and Fisheries Research Institute Oulu Game and Fisheries Research Tutkijantie 2 FIN-90570 Oulu	$\begin{aligned} & +358 \quad 205751 \\ & 871 \end{aligned}$	$\begin{aligned} & +358 \quad 205751 \\ & 879 \end{aligned}$	jaakko.erkinaro@ rktl.fi
Gudni Gudbergsson	Institute of Freshwater Fisheries Vagnhöfda 7 110 Reykjavik Iceland	+354 5676400	+354 5676420	gudni.gudbergsson@ve idimal.is
Lars Petter Hansen	Norwegian Institute for Nature Research P.O. Box 736, Sentrum N-0105 Oslo Norway	$\begin{aligned} & +4723355000 \\ & \text { Direct: } \\ & +4723355113 \end{aligned}$	+4723 355101	1.p.hansen@ nina.no
Per Kanneworff	Greenland Institute of Natural Resources P.O. Box 570 DK-3900 Nuuk Denmark	+299 361246	+299 361212	pka@natur.gl
Christopher Legault	NOAA-Fisheries 166 Water Str. Woods Hole, MA 02543 USA	+15084952025	+15084952393	chris.legault@noaa.gov
Julian MacLean	FRS, FL Field Station 16 River St. Montrose, Angus DD10 8DL Scotland, United Kingdom	+44 1674677070	+44 1674672604	j.c.maclean@ marlab.ac.uk
Dave Meerburg	Dept. of Fisheries and Oceans 200 Kent Street Ottawa, Ont. K1A 0E6 Canada	+1613 9900286	+1613 9540807	meerburd@ dfo-mpo.gc.ca

Name	Address	Telephone	Fax	E-mail
Niall Ó Maoiléidigh	Marine Institute Abbotstown Castleknock Dublin 15 Ireland	+353-1-8228200	+353-1-8205078	Niall.omaoileidigh@m arine.ie
Sergei Prusov	Polar Research Institute of Marine Fisheries \& Oceanography 6 Knipovitch Street 183763 Murmansk Russia	+78152473658	+78152473331	prusov@pinro.ru
Dave Reddin	Dept. of Fisheries and Oceans Po.Box 5667 St. John's Newfoundland A1C 5X1 Canada	+1709 7724484	+17097723578	$\begin{aligned} & \text { ReddinD@DFO- } \\ & \text { MPO.GC.CA } \end{aligned}$
Ian Russell	CEFAS Lowestoft Laboratory Pakefield Rd Lowestoft, Suffolk NR33 0HT United Kingdom	$\begin{aligned} & +441502562244 \\ & \text { (Inst.) } \\ & +441502524330 \\ & \text { (Dir.) } \end{aligned}$	+441502513865	i.c.russell@ cefas.co.uk
Tim Sheehan	NOAA-Fisheries 166 Water Str. Woods Hole, MA 02543 USA	+1 508495-2215	+15084952393	tim.sheehan@noaa.gov
Gordon Smith	FRS FL Field Station 16 River Street Montrose DD10 8DL Scotland, UK	+441674677070	+441674672604	g.w.smith@marlab.ac.uk
Joan Trial	Maine Atlantic Commission 650 State Street Bangor, Maine, 04401 USA	+12079414452	+1 2079414443	joan.trial@maine.gov
Fred Whoriskey	Atlantic Salmon Federation P.O.Box 5200 St Andrews NB E5B 3A9 Canada	+1506529 1039	+15065294985	asfres@nbnet.nb.ca
Stephanie Lachance	Direction de la Recherche Faune et Parcs Québec, 675 est, Boul. René-Lévesque Boîte $92,11^{\mathrm{e}}$ étage, Québec, Québec G1R 5V7 Canada	$\begin{aligned} & +1418521-3955 \\ & \text { ext } 4463 \end{aligned}$	+14186466863	stephanie.lachance@ fapaq.gouv.qc.ca
Ross Jones	Dept. of Fisheries and Oceans P.O. Box 5030 Moncton NB E1C 9B6 Canada	+15068516441	+15068512147	JonesRA@mar. dfo-mpo.gc.ca
Jamie Gibson	Dept. of Fisheries and Oceans Diadromous Fish Division BIO P.O.Box 1006, Dartmouth, NS B2Y 4A2 Canada	+19024263136	+19024266814	gibsonajf@mar.dfompo.gc.ca

APPENDIX 4

		＇，＇＇＇＇＇＇＇＇	＇＇＇＇＇＇＇＇＇＇＇＇＇
3			
	＋1＇1＇1＇1＇11－7000000	＇＇＇＇＇＇＇＇＇	！！！！！！！！！！！
$\stackrel{8}{8}$		！！＇！＇！！＇	＇，＇＇＇＇＇，＇，＇，＇，＇
\％		，．	
		＇，＇＇，＇＇＇＇＇＇	，！，＇，＇，＇＇＇＇
		1＇1！＇1，＇1．	
		＇＇．＇	＇＇＇＇＇＇＇＇＇＇＇＇＇＇
			＇＇＇＇＇＇＇＇＇＇＇＇
沶			
宕	荡		宕

Appendix 4. continued

Appendix 4. continued

$C_{\text {countr }}$	Year	1sw		2Sw		3SW		4 SW		5sw		MSW (1)		PS		Tot	
			Wt	${ }^{\text {No }}$	${ }_{\text {wt }}$	No.	${ }^{\text {wt }}$	${ }^{\text {No. }}$	${ }^{\text {wt }}$	No.	Wt		${ }^{\text {wit }}$	No.	Wt	${ }^{\text {No, }}$	${ }^{\text {Wt }}$
Ireland	1980 1981	${ }^{248,333}$	${ }^{745}$									39,608 32159 1	${ }_{164}^{202}$			287,941 205826	${ }_{685}^{947}$
	1982	310,000	930									12,353	${ }_{63}$			322,353	993
	1983	502.000	1.506									29,411	150			531,411	${ }^{1.656}$
	1984	24,666	728									19,804	101			262,470	829
	1985	${ }^{498,335}$	${ }^{1,495}$									${ }^{19,6085}$	100			517,941	${ }^{1,595}$
	1988	4885,26	${ }_{1}^{1,1,12}$									28,33, 27,609	136 127 1			- 326,468	1,239
	1988	559,297	1,733									30,599	141			589,836	1,874
	$\begin{array}{r}1989 \\ 1990 \\ \hline 1\end{array}$															330,588 188,89	1,079 67
	1991															135,474	404
	1992															235,43,	631 541
	1994															288,266	804
	1995 1996															288,225 249623	790 685
	1997															209,214	570
	1998 1998															${ }^{237,663}$	$\stackrel{624}{615}$
	2000 2001															228,220	621
	${ }_{2002}^{2001}$																${ }_{7}^{730}$
	2003															212,887	${ }_{575}^{68}$
UR	1985	${ }^{62,815}$										32,716				99,531	361
(England \& Wales)	1986											42,035				110,794	430 302
	1987 1988											34,151				83,493 110,163	302 395
	1989	54,384										29,284				83,668	296
	1990	45,072										41,604				${ }^{36,676}$	338
	1991	36,671										${ }^{14,978}$				${ }^{51,649}$	200
	1993	${ }_{56,033} 5$										$\xrightarrow{13,144}$				${ }_{69,17}$	248
	1994	67,853										20,268				${ }^{38,121}$	${ }^{324}$
	1995	57,944										${ }_{\substack{22,534 \\ 16,34}}^{1,2}$				${ }^{80,47896}$	$\begin{array}{r}295 \\ 188 \\ \hline 1\end{array}$
	1997	[30,203										${ }_{11,171}$				41, 374	142
	1998	30,641										6,276				36.917	123
	1999 2000	28,766 48.153										12,328 12800 12				41.944 60.953	150 219
	2001	-38,400										12,38 12,827				${ }_{51,307}$	${ }_{184}^{29}$
	${ }_{2002}^{2003}$	- 34.352														${ }^{45,669}$	${ }_{168}^{161}$

Appendix 4. continued

Country	Year	1SW		2SW		3SW		4SW		5SW		MSW (1)		PS		Total	
		No.	Wt	No	Wt	No.	Wt	No.	Wt,								
UK (Scotland)	1982	208,061	496									128,242	596			336,303	1,092
	1983	209,617	549	-		-						145,961	672			355,578	1,221
	1984	213,079	509	-	-	-						107,213	504			320,292	1,013
	1985	158,012	399	-	-	-						114,648	514			272,660	913
	1986	202,855	526	-								148,397	745			351,252	1,271
	1987	164,785	419									103,994	503			268,779	922
	1988	149,098	381	-	-	-						112,162	501			261,260	882
	1989	174,941	431	-	-							103,886	464			278,827	895
	1990	81,094	201	-	-	-						87,924	423			169,018	624
	1991	73,608	177		-							65,193	285			138,801	462
	1992	101,676	238	-	-	-						82,841	361			184,517	599
	1993	94,517	227	-	-	-						71,726	320			166,243	547
	1994	99,459	248	-	-	-						85,404	400			184,863	648
	1995	89,921	224	-	-							78,452	364			168,373	588
	1996	66,413	160	-	-	-						57,920	267			124,333	427
	1997	46,872	114	-	-	-						40,427	182			87,299	296
	1998	53,447	121	-	-	-						39,248	162			92,695	283
	1999	25,183	57	-	-	-						30,651	142			55,834	199
	2000	43,879	114	-	-	-						36,657	160			80,536	274
	2001	42,565	101	-		-						34,908	150			77,473	251
	2002	31,347	73	-		-						26,383	118			57,730	191
	2003	31,102	74	-	-	-						28,659	127			59,761	201
France	1987	6,013	18									1,806	9			7,819	27
	1988	2,063	7			-						4,964	25			7,027	32
	1989	1,124	3	1,971	9	311							-			3,406	14
	1990	1,886	5	2,186	9	146						-				4,218	15
	1991	1,362	3	1,935	9	190						-				3,487	13
	1992	2,490	7	2,450	12	221										5,161	21
	1993	3,581	10	987	4	267										4,835	16
	1994	2,810	7	2,250	10	40										5,100	18
	1995	1,669	4	1,073	5	22										2,764	9
	1996	2,063	5	1,891	9	52										4,006	14
	1997	1,060	3	964	5	37										2,061	8
	1998	2,065	5	824	4	22						-	-			2,911	9
	1999	690	2	1,799	9	32						-	-			2,521	11
	2000	1,792	4	1,253	6	24						-	-			3,069	11
	2001	1,544	4	1,464	7	25										3,033	11
	2002	2,424	6	1,023	5	41										3,488	12
	2003	1,531	4	1,834	10											3,365	14

Appendix 4. continued

Spain (2)	1993	1,589	827		75	-									2,491
	1994	1,658	1,042	-	14	-	-	-	-	-	-	-	-	-	2,714
	1995	389	1,373	-	30	-	-	-	-	-	-	-	-	-	1,792
	1996	351	1,219	-	9	-	-	-	-	-	-	-	-	-	1,579
	1997	172	604	-	21	-	-	-	-	-	-	-	-	-	797
	1998	486	486	-	8	-	-	-	-	-	-	-	-	-	980
	1999	160	1,047	-	42	-	-	-	-	-	-	-	-	-	1,249
	2000	1,223	705	-	10	-	-	-	-	-	-	-	-	-	1,938
	2001	1,138	1,913	-	111	-	-	-	-	-	-	-	-	-	3,162
	2002	655	1,266	-	39	-	-	-	-	-	-	-	-	-	1,960
	2003	199	1,127			-	-	-	-	-	-	-	-	-	1,326

[^10]Scale reading: Faroe Islands, Finland (1996 onwards), France, Russia, USA and West Greenland.
Size (split weightlength) Canada (2.7 kg for nets; 63 cm for rods), Finland up until 1995 (3 kg),
Iceland (various splits used at different times and places), Norway (3 kg), UK Scotland (3 kg in some places and 3.7 kg in others),
All countries except Scotland report no problems with using weight to catergotise catches into sea age classes, mis-classification may be wery high in some years.
In Norway, catches shown as $3 S W$ fefer to salmon of 3 SW or greater.

O:\Advisory Process\ACFM|WGREPSIWGNAS\REPORTSI2004\APPENDICES.Doc 14/04/04 14:28

APPENDIX 5

Appendix 5(i). Estimated numbers of 1SW salmon recruits, returns and spawners for Labrador.

Commercial catches of small salmon			Grilse Recruits			Grilse to rivers		Labrador grilse spawners Angling catch subtracted	
Year	SFA 1	SFA 2	SFA 14B	SFA 1,2\&14	Nfld	SFA 1,			
				Min	Max	Min	Max	Min	Max
*1969	10774	21627	6321	48912	122280	18587	65053	15476	61942
*1970	14666	29441	8605	66584	166459	25302	88556	21289	84543
*1971	19109	38359	11212	86754	216884	32966	115382	29032	111448
*1972	14303	28711	8392	64934	162335	24675	86362	21728	83415
*1973	3130	6282	1836	14208	35520	5399	18897	0	11405
1974	9848	37145	9328	71142	177856	27034	94619	24533	92118
1975	34937	57560	19294	141210	353024	53660	187809	49688	183837
1976	17589	47468	13152	98790	246976	37540	131391	31814	125665
1977	17796	40539	11267	87918	219796	33409	116931	28815	112337
1978	17095	12535	4026	42513	106282	16155	56542	13464	53851
1979	9712	28808	7194	57744	144360	21943	76800	17825	72682
1980	22501	72485	8493	130710	326776	49670	173845	45870	170045
1981	21596	86426	6658	144859	362147	55046	192662	49855	187471
1982	18478	53592	7379	100357	250892	38136	133474	34032	129370
1983	15964	30185	3292	62452	156129	23732	83061	19360	78689
1984	11474	11695	2421	32324	80811	12283	42991	9348	40056
1985	15400	24499	7460	59822	149555	22732	79563	19631	76462
1986	17779	45321	8296	90184	225461	34270	119945	30806	116481
1987	13714	64351	11389	112995	282486	42938	150283	37572	144917
1988	19641	56381	7087	104980	262449	39892	139623	34369	134100
1989	13233	34200	9053	71351	178377	27113	94896	22429	90212
1990	8736	20699	3592	41718	104296	15853	55485	12544	52176
1991	1410	20055	5303	33812	84531	12849	44970	10526	42647
1992	9588	13336	1325	29632	79554	17993	62094	15229	59331
1993	3893	12037	1144	33382	93231	25186	80938	22499	78251
1994	3303	4535	802	22306	63109	18159	56888	15228	53958
1995	3202	4561	217	28852	82199	25022	76453	22144	73575
1996	1676	5308	865	55634	159204	51867	153553	48362	150048
1997	1728	8025		72138	162610	66812	155963	64049	153200

Estimates are based on:
EST SMALL RETURNS - (COMM CATCH*PROP LAB ORIGIN)/EXP RATE, PROP SFAs1,2\&14B=.6-.8, SFA 1:0.36-0.42\&SFA 2:0.75-0.85(97) EXP RATE-SFAs $1,2 \& 14 \mathrm{~B}=.3-.5(69-91), .22-.39(92), .13-.25(93)$,
-.10-.19(94),.07-.13(95),.04-.07(96), SFA 1:0.07-0.14\&SFA 2:0.04-0.07 (97)
EST GRILSE RETURNS CORRECTED FOR NON-MATURING 1SW - (SMALL RET*PROP GRILSE), PROP GRILSE SFAs1,2\&14B=0.8-0.9 EST RET TO FRESHWATER - (EST GRILSE RET-GRILSE CATCHES)
EST GRILSE SPAWNERS = EST GRILSE RETURNS TO FRESHWATER - GRILSE ANGLING CATCHES
*Catches for 1969-73 are Labrador totals distributed into SFAs as the proportion of landings by SFA in 1974-78.
Furthermore small catches in 1973 were adjusted by ratio of large:small in 1972\&74 (SFA 1-1.4591, SFA 2-2.2225, SFA 14B-1.5506).

Appendix 5(ii). Estimated numbers of 2SW salmon recruits, returns and spawners for Labrador salmon stocks including west Greenland.

Commercial catches of large salmon				Labrador 2SW Recruits,NF \& Greenland Labrador salmon SFAs 1,2 \& Labrador at Total+NF+WG					Labrador 2SW to rivers SFAs 1,2 \& 14B		Labrador 2SW spawners SFAs 1,2 \& 14B Angling catch subtracted	
				Min	Max		Min	Max	Min	Max	Min	Max
*1969	18929	48822	10300	32483	69198	34280	80636	133032	3248	20760	2890	20287
*1970	17633	45479	9595	30258	68490	56379	99561	154121	3026	20547	2676	20085
*1971	25127	64806	13673	43117	97596	24299	85831	163577	4312	29279	4012	28882
*1972	21599	55708	11753	37064	83895	59203	112096	178927	3706	25168	3435	24812
*1973	30204	77902	16436	51830	117319	22348	96314	189771	5183	35196	4565	34376
1974	13866	93036	15863	50030	113827	38035	109433	200476	5003	34148	4490	33475
1975	28601	71168	14752	47715	107974	40919	109012	195006	4772	32392	4564	32119
1976	38555	77796	15189	55186	124671	67730	146485	245646	5519	37401	4984	36701
1977	28158	70158	18664	48669	110171	28482	97937	185706	4867	33051	4042	31969
1978	30824	48934	11715	38644	87155	32668	87816	157045	3864	26147	3361	25490
1979	21291	27073	3874	22315	50194	18636	50481	90267	2231	15058	1823	14528
1980	28750	87067	9138	51899	117530	21426	95490	189152	5190	35259	4633	34525
1981	36147	68581	7606	47343	106836	32768	100331	185233	4734	32051	4403	31615
1982	24192	53085	5966	34910	78873	43678	93497	156236	3491	23662	3081	23127
1983	19403	33320	7489	25378	57268	30804	67021	112531	2538	17181	2267	16824
1984	11726	25258	6218	18063	40839	4026	29802	62306	1806	12252	1478	11822
1985	13252	16789	3954	14481	32596	3977	24644	50494	1448	9779	1258	9530
1986	19152	34071	5342	24703	55734	17738	52991	97275	2470	16720	2177	16334
1987	18257	49799	11114	32885	74471	29695	76625	135970	3289	22341	2895	21821
1988	12621	32386	4591	20681	46789	27842	57355	94614	2068	14037	1625	13452
1989	16261	26836	4646	20181	45509	26728	55528	91673	2018	13653	1727	13270
1990	7313	17316	2858	11482	25967	9771	26158	46828	1148	7790	923	7493
1991	1369	7679	4417	5477	12467	7779	15596	25571	548	3740	491	3665
1992	9981	19608	2752	14756	37045	13713	28469	50758	2515	15548	2012	14889
1993	3825	9651	3620	10242	29482	6592	16834	36074	3858	18234	3624	17922
1994	3464	11056	857	11396	34514	0	11396	34514	5653	24396	5339	23981
1995	2150	8714	312	16520	51530	0	16520	51530	12368	44205	12006	43726
1996	1375	5479	418	11814	37523	4312	16126	41835	9113	32759	8838	32395
1997	1393	5550		13167	28647	3806	16973	32453	9384	23833	9221	23646

Estimates are based on:
EST LARGE RETURNS - (COMM CATCH*PROP LAB ORIGIN)/EXP RATE, PROP SFAs1,2\&14B=.6-.8,SFA 1: 0.64-0.72 \& SFA 2 0.88-0.95 (97); EXP RATE-SFAs $1,2 \& 14 \mathrm{~B}=.7-.9(69-91), .58-.83(92), .38-.62(93), .29-.50(94), .15-.26(95), .13-.23(96)$,

- SFA 1: 0.22-0.40, SFA 2: 0.16-0.28 (97)

EST 2SW RETURNS - (EST LARGE RETURNS*PROP 2SW), PROP 2SW SFA $1=.7-.9$, SFAs 2\&14B=.6-. 8
WG - are North American 1SW salmon of river age 4 and older of which 70% are Labrador origin EST RET TO FRESHWATER - (EST 2SW RET-2SW CATCHES)
EST 2SW SPAWNERS = EST 2SW RETURNS TO FRESHWATER - 2SW ANGLING CATCHES
*Catches for 1969-73 are Labrador totals distributed into SFAs as the proportion of landings by SFA in 1974-78.
Appendix 5(iii). Atlantic salmon returns to freshwater, total recruits prior to the commercial fishery and spawners summed for Salmon Fishing Area 3-14A, insular Newfoundland, 1969-2003.

Year	Small catch Retained	Small returns to river		Small recruits		Small spawners		Large returns to river		Large recruits		Large catch Retained	Large spawners		2SW returns to river		2SW spawners		2SW recruits	
		Min	Max		Min	Max	Min	Max	Min	Max	Min	Max								
1969	34,944	109,580	219,669	219,160	732,230	74,636	184,725	10,634	25,631	35,446	256,307	2,310	8,324	23,321	2,193	8,995	1,383	7,760	7,311	89,953
1970	30,437	140,194	281,466	280,388	938,221	109,757	251,030	12,731	29,313	42,435	293,127	2,138	10,593	27,175	3,135	11,517	2,359	10,340	10,450	115,168
1971	26,666	112,644	226,129	225,288	753,763	85,978	199,463	9,999	23,221	33,330	232,208	1,602	8,397	21,619	2,388	8,923	1,817	8,055	7,959	89,230
1972	24,402	109,282	219,412	218,564	731,374	84,880	195,010	10,368	23,434	34,560	234,343	1,380	8,988	22,054	2,511	9,003	2,008	8,240	8,371	90,031
1973	35,482	144,267	289,447	288,534	964,822	108,785	253,965	13,489	31,645	44,964	316,451	1,923	11,566	29,722	2,995	11,527	2,283	10,449	9,985	115,268
1974	26,485	85,216	170,748	170,431	569,159	58,731	144,263	10,541	21,113	35,137	211,133	1,213	9,328	19,900	1,940	6,596	1,510	5,942	6,465	65,964
1975	33,390	112,272	225,165	224,544	750,550	78,882	191,775	11,605	23,260	38,682	232,596	1,241	10,364	22,019	2,305	7,725	1,888	7,086	7,684	77,247
1976	34,463	115,034	230,595	230,068	768,650	80,571	196,132	10,863	21,768	36,211	217,677	1,051	9,812	20,717	2,334	7,698	2,011	7,198	7,781	76,982
1977	34,352	110,114	220,501	220,229	735,004	75,762	186,149	9,795	19,624	32,650	196,237	2,755	7,040	16,869	1,845	6,247	1,114	5,088	6,151	62,470
1978	28,619	97,375	195,048	194,751	650,159	68,756	166,429	7,892	15,841	26,307	158,411	1,563	6,329	14,278	1,991	6,396	1,557	5,712	6,637	63,959
1979	31,169	107,402	215,160	214,803	717,199	76,233	183,991	5,469	10,962	18,230	109,619	561	4,908	10,401	1,088	3,644	980	3,463	3,625	36,437
1980	35,849	121,038	242,499	242,076	808,330	85,189	206,650	9,400	18,866	31,335	188,656	1,922	7,478	16,944	2,432	7,778	1,888	6,925	8,108	77,784
1981	46,670	157,425	315,347	314,850	1,051,158	110,755	268,677	21,022	42,096	70,074	420,961	1,369	19,653	40,727	3,451	12,035	3,074	11,442	11,502	120,353
1982	41,871	141,247	283,002	282,494	943,342	99,376	241,131	9,060	18,174	30,198	181,736	1,248	7,812	16,926	2,914	9,012	2,579	8,481	9,714	90,117
1983	32,420	109,934	220,216	219,868	734,053	77,514	187,796	9,717	19,490	32,391	194,903	1,382	8,335	18,108	2,586	8,225	2,244	7,677	8,620	82,253
1984	39,331	130,836	262,061	261,673	873,537	91,505	222,730	8,115	16,268	27,052	162,684	511	7,604	15,757	2,233	7,060	2,063	6,800	7,445	70,602
1985	36,552	121,731	243,727	243,461	812,424	85,179	207,175	3,672	7,370	12,240	73,702	0	3,641	7,339	958	3,059	946	3,042	3,193	30,593
1986	37,496	125,329	251,033	250,657	836,778	87,833	213,537	7,052	14,140	23,505	141,400	0	6,972	14,060	1,606	5,245	1,575	5,198	5,353	52,445
1987	24,482	128,578	257,473	257,157	858,244	104,096	232,991	6,394	12,817	21,313	128,170	0	6,353	12,776	1,336	4,433	1,320	4,409	4,453	44,329
1988	39,841	133,237	266,895	266,474	889,652	93,396	227,054	6,572	13,183	21,908	131,832	0	6,512	13,123	1,563	5,068	1,540	5,033	5,211	50,681
1989	18,462	60,260	120,661	120,520	402,203	41,798	102,199	3,234	6,482	10,780	64,815	0	3,216	6,463	697	2,299	690	2,289	2,325	22,992
1990	29,967	99,543	199,416	199,086	664,721	69,576	169,449	5,939	11,909	19,798	119,093	0	5,889	11,859	1,347	4,401	1,327	4,372	4,489	44,011
1991	20,529	64,552	129,308	129,105	431,027	44,023	108,779	4,534	9,090	15,112	90,896	0	4,500	9,056	1,054	3,429	1,041	3,410	3,514	34,291
1992	23,118	118,778	237,811	118,778	237,811	95,096	214,129	16,705	33,463	16,705	33,463	0	16,564	33,322	3,111	10,554	3,057	10,474	3,111	10,554
1993	24,693	134,150	268,550	134,150	268,550	107,816	242,217	8,121	16,267	8,121	16,267	0	7,957	16,103	1,499	5,094	1,449	5,017	1,499	5,094
1994	29,225	91,495	189,808	91,495	189,808	60,194	158,507	7,776	16,029	7,776	16,029	0	7,308	15,561	1,495	5,226	1,368	5,024	1,495	5,226
1995	30,512	167,485	301,743	167,485	301,743	134,676	268,934	13,391	24,268	13,391	24,268	0	12,926	23,802	2,243	7,535	2,125	7,343	2,243	7,535
1996	35,440	200,277	422,635	200,277	422,635	161,780	384,138	17,291	35,518	17,291	35,518	0	16,719	34,946	2,964	8,832	2,824	8,605	2,964	8,832
1997	22,819	118,973	192,852	118,973	192,852	93,841	167,720	18,213	29,000	18,213	29,000	0	17,798	28,584	3,469	8,538	3,348	8,346	3,469	8,538
1998	22,668	150,644	202,611	150,644	202,611	125,215	177,182	23,727	30,545	23,727	30,545	0	23,371	30,189	4,280	8,813	4,195	8,674	4,280	8,813
1999	22,870	163,417	215,042	163,417	215,042	138,692	190,317	22,018	37,509	22,018	37,509	0	21,697	37,189	2,599	9,661	2,551	9,565	2,599	9,661
2000	21,808	148,710	254,736	148,710	254,736	124,643	230,669	16,432	54,789	16,432	54,789	0	15,929	54,286	2,022	12,023	1,829	11,781	2,022	12,023
2001	20,977	136,949	194,299	136,949	194,299	111,756	169,106	14,601	37,188	14,601	37,188	0	14,201	36,788	1,614	7,832	1,534	7,709	1,614	7,832
2002	20,913	134,679	187,273	134,679	187,273	111,970	164,564	10,855	26,315	10,855	26,315	0	9,555	25,015	1,268	5,796	1,175	5,586	1,268	5,796
2003	19,141	143,456	227,146	143,456	227,146	122,742	206,433	10,678	29,771	10,678	29,771	0	10,373	29,466	1,266	6,586	1,229	6,510	1,266	6,586

[^11]Appendix 5(iv). Small, large, and 2SW return and spawner estimates for SFA 15.

Year	Small salmon				Large salmon				Proportion 2SW	2SW salmon			
	Returns		awners		Returns		Spawners		in large	Returns		Spawners	
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	salmon	Min.	Max.	Min.	Max.
1970	3513	7505	1497	4418	24955	36452	1917	5548	0.65	16221	23694	1246	3606
1971	2629	5566	1116	3246	12096	17412	846	2335	0.65	7863	11318	550	1518
1972	2603	5537	1092	3235	10621	21963	4323	12085	0.59	6266	12958	2550	7130
1973	5146	9852	1589	4720	10588	21653	4184	11686	0.74	7835	16023	3096	8648
1974	2869	6007	1159	3422	13102	27353	5345	15221	0.73	9564	19968	3902	11112
1975	3150	6567	1262	3717	7229	13894	2413	6660	0.79	5711	10976	1906	5261
1976	11884	20582	2619	7647	12318	25396	5005	14313	0.76	9362	19301	3804	10878
1977	7438	14652	2606	7527	14011	28399	5728	15988	0.83	11629	23571	4754	13270
1978	5215	9595	1477	4244	9716	19224	3768	9917	0.75	7287	14418	2826	7437
1979	5451	11163	2223	6260	3655	6267	1114	2602	0.51	1864	3196	568	1327
1980	9692	18781	3164	9285	11473	22537	4577	11997	0.81	9294	18255	3708	9717
1981	11367	21188	3362	9669	12078	21265	3163	8305	0.47	5677	9995	1487	3903
1982	8889	16834	2736	7978	9431	15011	1810	4599	0.59	5565	8856	1068	2713
1983	3621	6207	799	2268	9281	14864	1654	4489	0.59	5476	8770	976	2648
1984	11861	18589	1646	4732	6924	12237	3603	7403	0.79	5470	9667	2847	5848
1985	8525	18272	3639	10801	9802	20224	7600	16096	0.63	6175	12741	4788	10140
1986	12895	27635	5490	16311	13324	27128	10333	21470	0.76	10126	20617	7853	16317
1987	11708	24768	4930	14408	9627	19058	6932	14401	0.64	6161	12197	4437	9217
1988	16037	34159	6796	20027	12796	26222	9932	20804	0.72	9213	18880	7151	14979
1989	7673	16088	3185	9249	9905	19797	7319	15185	0.57	5646	11284	4172	8655
1990	9527	19902	3975	11418	8125	16280	6066	12636	0.68	5525	11070	4125	8592
1991	5276	10962	2219	6270	6185	12207	4621	9388	0.50	3092	6104	2311	4694
1992	10529	22220	4462	12930	9530	19257	7125	14911	0.54	5146	10399	3848	8052
1993	6578	13541	2739	7643	4407	8742	3156	6647	0.40	1763	3497	1262	2659
1994	10446	21861	4390	12580	8493	17143	6379	13317	0.60	5096	10286	3828	7990
1995	3310	6832	1344	3830	5590	10880	3977	8132	0.65	3636	7077	2587	5290
1996	7468	15529	3259	9043	7796	15745	5902	12275	0.65	5067	10234	3836	7979
1997	7666	16238	3572	9898	5302	10602	4008	8295	0.65	3446	6891	2605	5392
1998	7657	18381	3710	12036	2871	7562	600	3976	0.65	1866	4916	390	2584
1999	5712	12785	3096	8614	3423	7350	2511	5706	0.65	2225	4778	1632	3709
2000	7659	12983	4581	9160	4782	7193	2805	4838	0.65	3108	4676	1823	3145
2001	7232	15183	3644	9750	4835	9691	3165	7018	0.65	3142	6299	2057	4562
2002	10011	21882	7650	18786	3078	6729	2986	6608	0.65	2001	4374	1941	4295
2003	3228	7056	2471	6063	6208	13571	6022	13327	0.65	4035	8821	3914	8662

Appendix 5(v) a. Returns of large salmon and 2SW salmon to SFA 16.

Year	2SW returns to SFA 16		Large Salmon Returns to the Miramichi River						Returns of large salmon to SFA 16	
			PointEstimate	Min.	Max.	Prop.$2 \mathrm{SW}$	2SW Returns			
	Min.	Max.					Min	Max	Min	Max
1971	19697	32746	24407	19526	32461	0.918	17924	29799	21457	35672
1972	24645	40972	29049	23239	38635	0.965	22427	37284	25538	42456
1973	22896	38065	27192	21754	36165	0.958	20835	34639	23905	39742
1974	33999	56523	42592	34074	56647	0.908	30939	51436	37444	62250
1975	21990	36558	28817	23054	38327	0.868	20011	33267	25334	42117
1976	17118	28459	22801	18241	30325	0.854	15578	25898	20045	33325
1977	43160	71753	51842	41474	68950	0.947	39275	65296	45575	75769
1978	18539	30822	24493	19594	32576	0.861	16871	28048	21532	35797
1979	5484	9117	9054	7243	12042	0.689	4991	8297	7960	13233
1980	30332	50426	36318	29054	48303	0.95	27602	45888	31928	53080
1981	9489	15775	16182	12946	21522	0.667	8635	14355	14226	23651
1982	21875	36368	30758	24606	40908	0.809	19907	33095	27040	44954
1983	19762	32854	27924	22339	37139	0.805	17983	29897	24549	40812
1984	12562	20884	15137	12110	20132	0.944	11431	19005	13307	22123
1985	15861	26369	20738	16590	27582	0.87	14434	23996	18231	30309
1986	23460	39003	31285	25028	41609	0.853	21349	35493	27503	45724
1987	13590	22594	19421	15537	25830	0.796	12367	20561	17073	28385
1988	15599	25933	21745	17396	28921	0.816	14195	23599	19116	31781
1989	9880	16426	17211	13769	22891	0.653	8991	14948	15131	25155
1990	14452	24087	28574	21350	35583	0.616	13152	21919	23462	39102
1991	14892	24820	29949	22400	37333	0.605	13552	22586	24615	41025
1992	21106	30340	37000	31056	44643	0.618	19206	27609	34127	49058
1993	14946	58092	35000	19732	76695	0.689	13601	52863	21684	84280
1994	13155	24008	20946	15870	28962	0.754	11971	21847	17440	31827
1995	24711	35937	32015	26643	38747	0.844	22487	32703	29278	42579
1996	10711	18429	18433	14294	24594	0.682	9747	16771	15708	27026
1997	8254	13759	16399	12931	21554	0.581	7511	12520	14210	23686
1998	4565	11229	14753	10039	24695	0.414	4154	10218	11032	27138
1999	6059	9627	14078	11329	18002	0.487	5513	8761	12449	19782
2000	6280	10757	15492	12058	20653	0.474	5715	9789	13250	22696
2001	12615	17780	21027	17780	25060	0.646	11479	16180	19538	27539
2002	4074	9322	10453	7382	16892	0.502	3707	8483	8112	18563
2003	9549	16916	19361	14849	26305	0.585	8689	15393	16317	28907

Appendix 5(v) b. Large salmon and 2SW salmon spawners to SFA 16. Same procedure as for returns (Appendix 5(v) a.

Year	2SW spawners to SFA 16		Large Salmon Spawners to the Miramichi River						Large salmon spawners to SFA 16	
						Prop.	2SW Sp			
	Min.	Max.	Estimate	Min.	Max.	2SW	Min	Max	Min	Max
1971	3508	5832	4347	3478	5782	0.918	3192	5307	3822	6353
1972	14992	24924	17671	14137	23502	0.965	13643	22681	15535	25827
1973	17134	28486	20349	16279	27064	0.958	15592	25922	17889	29741
1974	27495	45711	34445	27556	45812	0.908	25021	41597	30281	50343
1975	16366	27209	21448	17158	28526	0.868	14893	24760	18855	31347
1976	10760	17889	14332	11466	19062	0.854	9792	16279	12600	20947
1977	27404	45560	32917	26334	43780	0.947	24938	41459	28938	48109
1978	8197	13627	10829	8663	14403	0.861	7459	12401	9520	15827
1979	2751	4573	4541	3633	6040	0.689	2503	4161	3992	6637
1980	15762	26204	18873	15098	25101	0.950	14343	23846	16592	27584
1981	2702	4492	4608	3686	6129	0.667	2459	4088	4051	6735
1982	9429	15676	13258	10606	17633	0.809	8581	14265	11655	19377
1983	5986	9951	8458	6766	11249	0.805	5447	9056	7436	12362
1984	12189	20264	14687	11750	19534	0.944	11092	18440	12912	21466
1985	15390	25586	20122	16098	26762	0.870	14005	23283	17690	29409
1986	22659	37670	30216	24173	40187	0.853	20619	34280	26564	44162
1987	12635	21006	18056	14445	24014	0.796	11498	19116	15873	26390
1988	15050	25021	20980	16784	27903	0.816	13696	22769	18444	30663
1989	8921	14831	15540	12432	20668	0.653	8118	13496	13662	22712
1990	13785	23420	27588	20364	34597	0.616	12544	21312	22378	38019
1991	14321	24249	29089	21540	36473	0.605	13032	22066	23670	40080
1992	20377	29610	35927	29983	43570	0.618	18543	26945	32948	47879
1993	14483	57629	34389	19121	76084	0.689	13179	52442	21012	83609
1994	12826	23679	20549	15473	28565	0.754	11672	21548	17003	31390
1995	24192	35419	31456	26084	38188	0.844	22015	32231	28664	41965
1996	10185	17903	17731	13592	23892	0.682	9268	16292	14936	26255
1997	7727	13231	15573	12105	20728	0.581	7032	12041	13302	22778
1998	4361	11026	14306	9592	24248	0.414	3969	10033	10540	26646
1999	5505	9073	13042	10293	16966	0.487	5009	8257	11311	18644
2000	5978	10455	14911	11477	20073	0.474	5440	9514	12613	22058
2001	12466	17631	20816	17570	24850	0.646	11344	16044	19307	27308
2002	4017	9265	10350	7278	16788	0.502	3655	8431	7998	18449
2003	9425	16792	19168	14656	26112	0.585	8576	15280	16105	28695

Year	1SW returns to SFA 16		Small returns to Miramichi			1SW Returns to Miramichi	
						0.97	1.00
	Min.	Max.	Small	Min.	Max.	Min	Max
1971	30420	52137	35673	28538	47445	27682	47445
1972	39461	67633	46275	37020	61546	35909	61546
1973	37986	65104	44545	35636	59245	34567	59245
1974	62607	107303	73418	58734	97646	56972	97646
1975	55345	94857	64902	51922	86320	50364	86320
1976	78095	133848	91580	73264	121801	71066	121801
1977	23658	40547	27743	22194	36898	21529	36898
1978	20711	35496	24287	19430	32302	18847	32302
1979	43460	74487	50965	40772	67783	39549	67783
1980	35464	60782	41588	33270	55312	32272	55312
1981	55661	95399	65273	52218	86813	50652	86813
1982	68543	117477	80379	64303	106904	62374	106904
1983	21476	36807	25184	20147	33495	19543	33495
1984	25333	43418	29707	23766	39510	23053	39510
1985	51847	88862	60800	48640	80864	47181	80864
1986	100240	171802	117549	94039	156340	91218	156340
1987	72327	123962	84816	67853	112805	65817	112805
1988	103966	178189	121919	97535	162152	94609	162152
1989	64153	109953	75231	60185	100057	58379	100057
1990	72484	124286	83500	68000	113100	65960	113100
1991	48713	83516	60900	45700	76000	44329	76000
1992	136440	202198	152600	128000	184000	124160	184000
1993	65555	169011	95000	61500	153800	59655	153800
1994	39087	57794	43571	36669	52592	35569	52592
1995	41524	61253	46458	38956	55741	37787	55741
1996	30041	44423	33610	28183	40425	27337	40425
1997	13470	23300	16139	12637	21203	12258	21203
1998	19962	31885	23143	18727	29015	18165	29015
1999	21073	29884	23121	19770	27194	19177	27194
2000	29411	40958	32031	27592	37272	26764	37272
2001	25606	37705	28664	24022	34312	23301	34312
2002	40139	59277	44864	37656	53942	36526	53942
2003	26045	41966	30264	24434	38189	23701	38189

Appendix 5(v) d. Small salmon and 1SW salmon spawners to SFA 16. Same procedure as for Appendix 5(v)c.							
Year	1SW Spawners to SFA 16		Small Spawners to Miramichi			1SW Spawners to Miramichi	
	Min	Max	Small	Min.	Max.	Min	Max
1971	17557	32075	21946	17557	29188	15977	29188
1972	21708	39659	27135	21708	36090	19754	36090
1973	24550	44852	30688	24550	40815	22341	40815
1974	44149	80656	55186	44149	73397	40175	73397
1975	38775	70839	48469	38775	64464	35285	64464
1976	49904	91171	62380	49904	82965	45413	82965
1977	10598	19361	13247	10598	17619	9644	17619
1978	11482	20977	14353	11482	19089	10449	19089
1979	24678	45086	30848	24678	41028	22457	41028
1980	21515	39307	26894	21515	35769	19579	35769
1981	31943	58358	39929	31943	53106	29068	53106
1982	44800	81846	56000	44800	74480	40768	74480
1983	11879	21702	14849	11879	19749	10810	19749
1984	15143	27665	18929	15143	25176	13780	25176
1985	33452	61114	41815	33452	55614	30441	55614
1986	71518	130659	89398	71518	118899	65082	118899
1987	50222	91751	62777	50222	83493	45702	83493
1988	72222	131945	90278	72222	120070	65722	120070
1989	38708	70717	48385	38708	64352	35224	64352
1990	44376	98325	59876	44376	89476	40382	89476
1991	33289	69878	48489	33289	63589	30293	63589
1992	100557	172041	125157	100557	156557	91507	156557
1993	45516	151446	79016	45516	137816	41420	137816
1994	22232	41929	29134	22232	38155	20232	38155
1995	18895	39208	26397	18895	35680	17194	35680
1996	8618	22923	14045	8618	20860	7842	20860
1997	3051	12766	6553	3051	11617	2776	11617
1998	11719	24183	16135	11719	22007	10664	22007
1999	11490	20784	14841	11490	18914	10456	18914
2000	16508	28778	20947	16508	26188	15022	26188
2001	16871	29847	21513	16871	27161	15352	27161
2002	26457	46971	33665	26457	42743	24076	42743
2003	16901	33688	22731	16901	30657	15380	30657

Year	Small recruits		Small spawners		Large recruits		Large spawners		2SW recruits		2SW spawners	
	Min	Max										
1970	0	0	0	0	0	0	0	0	0	0	0	0
1971	0	0	0	0	0	0	0	0	0	0	0	0
1972	0	0	0	0	0	0	0	0	0	0	0	0
1973	5	9	3	7	0	0	0	0	0	0	0	0
1974	0	0	0	0	0	0	0	0	0	0	0	0
1975	0	0	0	0	0	0	0	0	0	0	0	0
1976	14	28	8	22	2	5	1	4	2	5	1	4
1977	0	0	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	0	0	0	0	0
1979	2	5	1	4	5	9	3	7	5	9	3	7
1980	12	23	7	18	2	5	1	4	2	5	1	4
1981	259	498	151	390	40	77	36	73	40	77	36	73
1982	175	336	102	263	16	31	8	23	16	31	8	23
1983	17	32	10	25	17	32	15	30	17	32	15	30
1984	17	32	10	25	13	26	13	26	13	26	13	26
1985	113	217	66	170	8	15	8	15	8	15	8	15
1986	566	1088	330	852	5	11	5	11	5	11	5	11
1987	1141	2194	665	1718	66	128	66	128	66	128	66	128
1988	1542	2963	899	2320	96	185	96	185	96	185	96	185
1989	400	770	233	603	149	287	149	287	149	287	149	287
1990	1842	3539	1074	2771	284	545	284	545	284	545	284	545
1991	1576	3028	919	2371	188	361	188	361	188	361	188	361
1992	1873	3599	1092	2818	95	183	95	183	95	183	95	183
1993	1277	2454	745	1922	22	43	22	43	22	43	22	43
1994	210	385	118	292	169	310	166	307	169	310	166	307
1995	1058	1914	585	1441	85	154	81	151	85	154	81	151
1996	1161	2576	738	2154	158	351	154	347	158	351	154	347
1997	485	932	283	730	31	59	30	58	31	59	30	58
1998	635	1221	370	956	79	151	76	149	79	151	76	149
1999	379	728	221	570	23	45	20	41	23	45	20	41
2000	304	584	177	457	56	108	55	107	56	108	55	107
2001	429	824	250	645	57	110	55	107	57	110	55	107
2002	307	591	179	463	46	88	45	87	46	88	45	87
2003	583	1120	340	877	76	146	73	143	76	146	73	143

Appendix 5(vii). Total returns and spawners of small salmon and large salmon, and 2SW salmon returns and spawners to SFA 18.

Year	Small salmon				Large Salmon				2SW Salmon			
	Returns		Spawners		Returns		Spawners		Returns		Spawners	
	MIN	MAX										
1970	264	1,073	167	842	6,161	7,858	709	2,660	4,744	6,836	546	2,314
1971	65	265	41	208	2,456	3,198	276	1,036	1,891	2,782	213	901
1972	131	530	82	416	6,095	6,924	293	1,101	4,693	6,024	226	958
1973	516	2,095	325	1,645	5,376	6,299	309	1,160	4,140	5,481	238	1,009
1974	187	757	118	595	7,119	7,963	343	1,286	5,481	6,928	264	1,119
1975	112	454	71	357	4,483	4,989	231	864	3,452	4,340	178	752
1976	299	1,212	188	951	3,578	4,223	288	1,080	2,755	3,674	222	939
1977	215	871	135	684	5,175	6,280	424	1,587	3,985	5,463	326	1,381
1978	78	316	49	248	5,954	7,201	550	2,062	4,585	6,265	424	1,794
1979	1,857	7,536	1,170	5,915	1,676	2,315	286	1,071	1,290	2,014	220	932
1980	520	2,108	327	1,655	4,846	5,951	536	2,009	3,732	5,177	413	1,748
1981	2,797	11,348	1,762	8,908	3,234	4,332	487	1,823	2,490	3,769	375	1,586
1982	2,150	8,722	1,354	6,847	5,370	6,783	598	2,242	4,135	5,901	461	1,951
1983	212	858	133	674	4,848	6,024	517	1,938	3,733	5,241	398	1,686
1984	460	1,867	182	1,210	3,105	4,107	336	1,319	2,391	3,573	259	1,148
1985	730	3,167	144	1,786	1,196	5,150	1,130	5,009	921	4,481	870	4,358
1986	965	3,854	64	1,731	2,953	13,195	2,811	12,888	2,274	11,479	2,164	11,213
1987	1,316	5,061	191	2,410	3,209	15,193	3,109	14,977	2,471	13,218	2,394	13,030
1988	1,927	7,900	915	5,514	1,387	5,794	1,296	5,598	1,068	5,040	998	4,870
1989	680	2,651	35	1,129	1,842	8,579	1,768	8,420	1,418	7,464	1,362	7,326
1990	1,082	13,778	335	12,017	3,754	18,429	3,683	18,276	2,891	16,033	2,836	15,900
1991	914	10,559	48	8,519	1,998	13,439	1,915	13,260	1,539	11,692	1,475	11,536
1992	1,448	6,565	807	5,053	5,257	21,778	5,166	21,581	4,048	18,947	3,978	18,776
1993	1,714	10,451	1,043	8,869	2,597	14,305	2,538	14,177	2,000	12,445	1,954	12,334
1994	660	2,988	298	2,136	2,534	10,454	2,465	10,304	1,951	9,095	1,898	8,964
1995	619	2,939	379	2,372	1,887	8,862	1,837	8,755	1,453	7,710	1,415	7,617
1996	1,470	8,033	1,076	7,105	2,388	9,408	2,300	9,220	1,839	8,185	1,771	8,021
1997	562	1,365	204	2,375	3,951	18,856	3,838	18,611	3,043	16,404	2,955	16,192
1998	636	1,545	278	2,799	2,517	12,012	2,445	11,856	1,938	10,450	1,883	10,315
1999	562	1,365	204	2,375	1,517	7,238	1,473	7,144	1,168	6,297	1,134	6,215
2000	473	1,150	115	1,868	1,306	6,234	1,269	6,154	1,006	5,424	977	5,354
2001	657	1,598	299	2,923	1,603	7,650	1,557	7,551	1,234	6,655	1,199	6,569
2002	692	1,681	334	3,120	1,235	5,894	1,200	5,818	951	5,128	924	5,061
2003	598	1,453	240	2,582	2,140	10,212	2,078	10,079	1,648	8,884	1,600	8,769

Appendix 5(viii). Total 1SW returns and spawners, SFAs 19, 20, 21 and 23, 1970-2003.

Year	RETURNS						TOTAL RETURNS		SPAWNERS						TOTAL SPAWNERS 19,20,21,23		
	River returns SFA 19-21		Commercial 19-21	SFA 23					angled	Spawners 19-21		SFA 23					
			Wild	Wild	Hatch	As 19,20,	20,21,23	H+W				rtns	Harvest				
	MIN	MAX		MIN	MAX		MIN	MAX			MAX	MIN	MAX		MIN	MAX	
1970	8,236	16,868		3,189	5,206	7,421	100	16,731	27,578	3,609	4,627	13,259	5,306	7,521	1,420	8,513	19,360
1971	6,345	13,062	1,922	2,883	4,176	365	11,515	19,525	2,761	3,584	10,301	3,248	4,541	2,032	4,800	12,810	
1972	6,636	13,354	1,055	1,546	2,221	285	9,522	16,915	2,917	3,719	10,437	1,831	2,506	2,558	2,992	10,385	
1973	8,225	16,744	1,067	3,509	5,047	1,965	14,766	24,823	3,604	4,621	13,140	5,474	7,012	1,437	8,658	18,715	
1974	14,478	29,385	2,050	6,204	8,910	3,991	26,723	44,336	6,340	8,138	23,045	10,195	12,901	2,124	16,209	33,822	
1975	5,096	10,393	2,822	11,648	16,727	6,374	25,940	36,316	2,227	2,869	8,166	18,022	23,101	2,659	18,232	28,608	
1976	12,421	25,398	1,675	13,761	19,790	9,074	36,931	55,937	5,404	7,017	19,994	22,835	28,864	5,263	24,589	43,595	
1977	13,349	27,943	3,773	6,746	9,679	6,992	30,860	48,387	5,841	7,508	22,102	13,738	16,671	4,542	16,704	34,231	
1978	2,535	5,241	3,651	3,227	4,651	3,044	12,457	16,587	1,113	1,422	4,128	6,271	7,695	2,015	5,678	9,808	
1979	12,365	25,381	3,154	11,529	16,690	3,827	30,875	49,052	5,428	6,937	19,953	15,356	20,517	3,716	18,577	36,754	
1980	16,534	33,825	8,252	14,346	20,690	10,793	49,925	73,560	7,253	9,281	26,572	25,139	31,483	5,542	28,878	52,513	
1981	18,594	38,329	1,951	11,199	16,176	5,627	37,371	62,083	8,163	10,431	30,166	16,826	21,803	9,021	18,236	42,948	
1982	10,008	20,552	2,020	8,773	12,598	3,038	23,839	38,208	4,361	5,647	16,191	11,811	15,636	5,279	12,179	26,548	
1983	4,662	9,562	1,621	7,706	11,028	1,564	15,553	23,775	2,047	2,615	7,515	9,270	12,592	4,138	7,747	15,969	
1984	12,398	25,815	0	14,105	20,227	1,451	27,954	47,493	4,724	7,674	21,091	15,556	21,678	5,266	17,964	37,503	
1985	16,354	34,055	0	11,038	15,910	2,018	29,410	51,983	6,360	9,994	27,695	13,056	17,928	4,892	18,158	40,731	
1986	16,661	34,495	0	13,412	19,321	862	30,935	54,678	6,182	10,479	28,313	14,274	20,183	3,549	21,204	44,947	
1987	18,388	37,902	0	10,030	14,334	3,328	31,746	55,564	7,056	11,332	30,846	13,358	17,662	3,101	21,589	45,407	
1988	16,611	33,851	0	15,131	21,834	1,250	32,992	56,935	6,384	10,227	27,467	16,381	23,084	3,320	23,288	47,231	
1989	17,378	35,141	0	16,240	23,182	1,339	34,957	59,662	6,629	10,749	28,512	17,579	24,521	4,455	23,873	48,578	
1990	20,119	41,652	0	12,287	17,643	1,533	33,939	60,828	7,391	12,728	34,261	13,820	19,176	3,795	22,753	49,642	
1991	6,718	13,870	0	10,602	15,246	2,439	19,759	31,555	2,399	4,319	11,471	13,041	17,685	3,546	13,814	25,610	
1992	9,269	18,936	0	11,340	16,181	2,223	22,832	37,340	3,629	5,640	15,307	13,563	18,404	4,078	15,125	29,633	
1993	9,104	18,711	0	7,610	8,828	foot-	16,714	27,539	3,327	5,777	15,384	5,762	6,868	foot-	11,539	22,252	
1994	2,446	4,973	0	5,770	6,610	note:"a"	8,216	11,583	493	1,953	4,480	4,965	5,738	note:"a"	6,918	10,218	
1995	5,974	12,364	0	8,265	9,458		14,239	21,822	1,885	4,089	10,479	8,025	9,218		12,114	19,697	
1996	9,888	20,791	0	12,907	15,256		22,795	36,047	2,211	7,677	18,580	11,576	13,892		19,253	32,472	
1997	2,665	5,488	0	4,508	4,979		7,173	10,467	493	2,172	4,995	3,971	4,433		6,143	9,428	
1998	7,567	15,680	0	9,203	10,801		16,770	26,481	0	7,567	15,680	8,775	10,348		16,342	26,028	
1999	5,048	10,535	0	5,508	6,366		10,556	16,901	67	4,981	10,468	5,196	6,048		10,177	16,516	
2000	6,201	12,890	0	4,796	5,453		10,997	18,343	0	6,201	12,890	4,455	5,087		10,656	17,977	
2001	4,239	8,884	0	2,513	2,862		6,752	11,746	0	4,239	8,884	2,210	2,530		6,449	11,414	
2002	5,706	11,879	0	3,501	3,991		9,207	15,870	0	5,705	11,878	3,232	3,689		8,937	15,567	
2003	4,502	9,422	0	2,292	2,716		6,794	12,138	0	4,502	9,422	2,069	2,469		6,571	11,891	

SFAs 19, 20, 21: Returns, 1970-1997, estimated as run size (1SW recreational catch / expl. rate [0.2 t0 0.45]; where MIN and MAX selected as 5th and 95th percentile values from 1,000 monte carlo estimates) + estimated 1 SW fish in commercial landings 1970-1983 (Cutting MS 1984). For 1998-2000, see "a" below.
SFA 22: Inner Fundy stocks and inner-Fundy SFA 23 (primarily 1SW fish) do not go to the North Atlantic.
SFA 23: For 1970-'97, similar to SFAs 19-21 except that estimated wild 1SW returns destined for Mactaquac Dam, Saint John River, replaced values for recreational catch and estimated proportions that production above Mactaquac is of the total (0.4-0.6) river replaced exploitataion rates (commercial harvest, bi-catch etc., incl. in estimated returns); hatchery returns attributed to above Mactaquac only; 1SW production in rest of SFA (outer Fundy) omitted.
"a"- Revision of method, SFA 23, 1993-2001, estimated returns to Nashwaak fence raised by proportion of area below Mactaquac (0.21-0.30) and added to total estimated returns originating upriver of Mactaquac (Marshall et al. 1998); MIN and MAX removals below Mactaquac based on Nashwaak losses, Mactaquac losses are a single value and together summed and removed from returns to establish estimate of spawners. SFAs 19-21, estimate of returns 19982000 based on regression of LaHave wild counts on MIN and MAX estimates of total SFA 19-21 returns, 1984-1997, because there was no (1998 and 2000) \& little (1999) angling in SFAs 20-21.

Appendix 5(ix)a. Total 2SW returns to SFAs 19, 20, 21 and 23, 1970-2003.

SFAs 19, 20, 21: Returns, 1970-'97 estimated as run size (MSW recreational catch * prop. 2SW [range of values]/ expl. rate [range of values]; where MIN and MAX selected as 5th and 95th percentile values from 1,000 monte carlo estimates) + estimated 2SW fish in commercial landings 1970-1983 (Cutting MS 1984). For 1998-2001 see "a" below.

SFA 22: Inner Fundy stocks do not go to north Atlantic.
SFA 23: For 1970-1997 Similar approach as for SFAs 19-21 except that estimated wild MSW returns destined for Mactaquac Dam, Saint John River, replaced values for recreational catch; and estimated proportions that production above Mactaquac is of the total river replaced exploitation rates (commercial harvest,bi-catch etc., incl. in estimated returns) + est. 0.85-0.95* MSW hatchery returns to Mactaquac; 2SW production in rest of SFA omitted.
"a": Revsion of method, SFA 23, 1993-2001, estimated MSW returns to Nashwaak fence raised by prop. of area below Mactaquac ($0.21-0.30$) * prop. 2 SW $(0.7 \& 0.9)$ and added to estimated MSW hatchery and wild returns * (Marshall et al. MS 1998) (0.85-0.95; 2SW) originating upriver of Mactaquac. MIN \& MAX removals below Mactaquac based on Nashwaak losses: Mactaquac losses were a single value and together summed and removed from MSW returns (prevously) to estimate spawners.
SFAs 19-21, estimate of 2SW returns for 1998-'02, based on regression of LaHave wild counts on MIN and MAX estimates of total SFA 19-21 MSW returns and 5th and 95th percentile values of MIN-MAX ($0.5 \& 0.9$ 2SW fish among MSW salmon).

Appendix 5(ix) b. Total 2SW spawners in SFAs 19, 20, 21 and 23, 1970-2003.

Year	SFA 19		RETURNS SFA 20		SFA 21		REMOVALS angled (19-21)		SPAWNERS SFAs (19-21)		SFA 23				TOTAL SPAWNERS			
			RETURNS	REMOVALS														
	MIN	MAX			MIN	MAX												
1970	1,170	2,537	658	1,535			597	1,525	941	1,375	1,485	4,222	8,540	12,674	7,004	7,828	3,021	9,068
1971	600	1,266	344	802	481	1,199	541	812	884	2,455	7,155	10,536	3,543	3,960	4,496	9,032		
1972	735	1,614	421	1,002	454	1,198	623	922	987	2,892	7,869	11,368	1,397	1,562	7,459	12,699		
1973	726	1,571	665	1,532	546	1,437	740	1,108	1,197	3,432	4,205	6,036	1,454	1,625	3,949	7,844		
1974	1,035	2,225	691	1,588	548	1,397	871	1,277	1,404	3,933	10,755	14,988	2,632	2,942	9,526	15,979		
1975	376	824	149	343	882	2,321	534	867	874	2,621	13,107	18,578	2,120	2,369	11,861	18,830		
1976	791	1,672	346	822	441	1,146	603	887	975	2,754	14,274	20,281	4,203	4,698	11,045	18,337		
1977	999	2,152	660	1,509	873	2,354	967	1,463	1,565	4,552	16,869	23,995	4,856	5,427	13,578	23,119		
1978	810	1,739	429	995	655	1,706	723	1,088	1,171	3,352	8,225	11,294	2,879	3,218	6,517	11,428		
1979	532	1,169	431	978	508	1,288	560	851	911	2,585	5,165	7,207	1,393	1,557	4,683	8,234		
1980	1,408	3,051	746	1,714	1,483	3,989	1,390	2,131	2,247	6,623	19,056	26,865	7,033	7,860	14,270	25,628		
1981	886	1,856	926	2,133	1,754	4,475	1,338	2,125	2,228	6,339	11,026	15,267	7,384	8,253	5,870	13,353		
1982	917	1,990	316	746	682	1,756	734	1,096	1,181	3,396	9,782	13,871	5,307	5,932	5,656	11,335		
1983	477	1,030	641	1,475	552	1,434	633	971	1,037	2,968	9,662	13,836	9,194	10,275	1,505	6,529		
1984	828	1,768	638	1,500	766	2,004	267	419	1,965	4,853	15,706	22,627	3,426	3,829	14,245	23,650		
1985	1,495	3,132	2,703	6,355	2,102	5,469			6,300	14,956	16,541	23,828	4,656	5,204	18,185	33,580		
1986	3,500	7,541	2,561	5,987	2,150	5,312			8,211	18,840	9,891	14,261	2,667	2,981	15,435	30,120		
1987	2,427	5,237	1,066	2,527	1,114	2,872			4,607	10,636	6,922	10,043	1,294	1,446	10,235	19,233		
1988	2,635	5,724	1,914	4,464	1,105	2,945			5,654	13,133	4,716	6,697	1,296	1,449	9,074	18,381		
1989	2,236	4,810	1,512	3,485	1,631	4,086			5,379	12,381	6,560	9,437	250	279	11,689	21,539		
1990	2,406	5,178	1,085	2,515	1,271	3,260			4,762	10,953	5,486	7,918	560	626	9,688	18,245		
1991	1,890	4,050	965	2,200	421	1,071			3,276	7,321	7,337	10,563	1,257	1,405	9,356	16,479		
1992	1,788	3,923	631	1,488	480	1,236			2,899	6,647	6,878	9,809	1,052	1,176	8,725	15,280		
1993	876	1,897	1,006	2,321	564	1,498			2,446	5,716	4,318	5,371	1,054	1,166	5,710	9,921		
1994	833	1,845	242	561	305	773			1,380	3,179	2,999	3,729	697	815	3,682	6,093		
1995	759	1,582	666	1,565	518	1,339			1,943	4,486	3,042	3,831	313	346	4,672	7,971		
1996	1,231	2,692	604	1,404	894	2,293			2,729	6,389	4,498	5,665	720	812	6,507	11,242		
1997	607	1,299	170	387	301	1,026			1,078	2,712	2,567	3,210	550	611	3,095	5,311		
1998	>>>>>>>>	>>>>>>	>>>>>>>	>>>>>>	1,103	3,888			1,103	3,888	1,625	2,115	304	340	2,424	5,663		
1999	>>>>>>>	-	-	->>>>	1,230	4,324			1,230	4,324	2,252	2,783	441	459	3,041	6,648		
2000	>>>>>>>>	>>>>>>>>>>>1	->>>>>>>>>>>1	-	1,086	3,816			1,086	3,816	952	1,263	183	202	1,855	4,877		
2001	>>>>>>>>	>>>>	>>>>>>>>1	-	1,374	4,720			1,374	4,720	1,725	2,182	239	271	2,860	6,631		
2002	>>>>>>>>	>>>>>	>>>>>>	->>>>>	876	1,483			876	1,483	523	658	166	192	1,233	1,949		
2003	>>>>>>>>	>>>>	>>>>	>>>	1,776	3,745			1,776	3,745	929	1,142	178	200	2,527	4,687		

Spawners = returns minus removals where: "returns" are from previous Appendix as are outlines of revisions to methods for SFAs 19-21, 1998-2000, and SFA 23, 1993-2000. "Removals" of 2SW fish in SFAs 19-21 have been few, largely illegal and unascribed since the catch-and-release angling regulations in 1985; removals in SFA 23, 1985-1997, had been in total, the assessed losses to stocks originating above Mactaquac. The revised method, 1993-2000, incorporates 5th and 95th percentile values for losses noted on the Nashwaak raised to the total production area downstream of Mactaquac as well as the previously assessed and used values for stocks upstream of Mactaquac.

APPENDIX 6

SAS program code to:
(1) - model and forecast PFA for North America based on phase shift
(2) provide catch advice for the West Greenland fishery in 2004 based on catch options and management objectives of NAC and NEAC areas.

```
***FILE CALLED pfa-model-PREDICTION-2004.sas
Code written by Gerald Chaput, DFO Gulf Region, Canada;
```

OPTIONS NOCENTRE;
/**** ASCII file containing regional lagged spawner estimates, by minimum and maximum generated from Excel table of lagged spawners, edited and updated by Dave Reddin **/
Filename in1 "I:\WGNAS-04\personal\Chaput\catch-advice\regional-lagged-spawners2004.prn";
data spawners;
infile in1 missover;
input year LBLS_L LBLS_H NFLS_L NFLS_H QCLS_L QCLS_H GFLS_L GFLS_H SFLS_L SFLS_H USALS;
RUN;
/**** ASCII file containing input data to calculate PFA as well as estimates of 2SW returns by region, as minimum and maximum generated from Excel table of input data and regional returns edited and updated by Dave Reddin**********/ Filename in2 "I:\Wgnas-04\personal\Chaput\catch-advice\catch-returns-2004.prn"; data catchreturns;
infile in2 missover;
INPUT YEAR NG1 NC1_L NC1_H NC2_L NC2_H NR2_L NR2_H RFL2_L RFL2_H
LBR2_L LBR2_H NFR2_L NFR2_H QCR2_L QCR2_H GFR2_L GFR2_H SFR2_L SFR2_H USAR2;
RUN;
PROC SORT DATA = catchreturns; BY YEAR; RUN;
PROC SORT DATA = spawners; BY YEAR; RUN;
DATA INPUTS; MERGE spawners catchreturns; BY YEAR; RUN;
/* this seciton creates various sub-files used in generating PFA estimates, model fits, PFA predictions and for subsequent risk analysis */
data fishdata (keep $=$ sim break year phase pfa lnspawn lnpfa lnpfaspawn dumb)
/** this is the base file for modelling */ pfa (keep $=$ sim year lnpfa)
/** this is the base file for estimating relative change in pfa relative to year-2 **/
lnpfa2002 (keep = sim lnpfa2002)
lnpfa2001 (keep $=$ sim lnpfa2001)
/* these files are later combined with "pfa" file to generate predictions of PFA
for the years of interest, the earlier year is for an update, later year is for
prediction in year of interest $* * * * /$
returnsall (keep $=$ sim year USAR2 R2SF R2GF R2QC R2NF R2LB R2NA)
returnssouthnow (keep $=$ sim year R2SF USAR2)
RETURNSSOUTH (keep $=$ sim year R2SF USAR2)
/*** these files are used to accumulate returns by region for apportioning PFA
to regions and for developing indices of returns for risk analysis ****/
yearofinterest (keep $=$ sim break year phase lnspawn dumb);
$/ * * * *$ this file accumulates years for which forecasts will be generated, it is
required to automatically generate forecasts under two phase states *****/ set inputs;
maxsim $=1000 ; \quad * * *$ maximum number of simulations;
do sim $=1$ to maxsim;
seed $=0$;

```
/* incorporating uncertainty in PFA estimated */
    RAN_C1 = NC1_L + (NC1_H - NC1_L)* RANUNI (SEED);
    RAN_C2 = NC2_L + (NC2_H - NC2_L)* RANUNI (SEED);
    RAN_R2 = NR2_L + (NR2_H - NR2_L)* RANUNI (SEED);
    if rfl2_l = 1.00 then RAN_RFL2 = 1;
    else RAN_RFL2 = RFL2_L + (RFL2_H - RFL2_L)* RANUNI(SEED);
                            *ratio correction for Labrador;
    nareturns = RAN_RFL2*(((RAN_R2*exp(0.03*1) + RAN_C2)*exp(0.03*10)) + RAN_C1);
    pfa = nareturns + NG1;
        /* PFA based on equation 4.2.3.3 in WG report*/
    lnpfa = log(pfa);
    /* calculates uncertainty of lagged spawner index and the lagged spawner
proportions by region */
    LSLB = LBLS_L + (LBLS_H - LBLS_L)* RANUNI (SEED);
    LSNF = NFLS_L + (NFLS_H - NFLS_L)* RANUNI(SEED);
    LSQC = QCLS_L + (QCLS_H - QCLS_L)* RANUNI (SEED);
    LSGF = GFLS_L + (GFLS_H - GFLS_L)* RANUNI (SEED);
    LSSF = SFLS_L + (SFLS_H - SFLS_L)* RANUNI (SEED);
    LSIndex = sum(LSNF, LSQC, LSGF, LSSF, USALS); ** all lagged spawnes minus
Labrador;
    LSNA = sum(LSLB, LSNF, LSQC, LSGF, LSSF, USALS); ** all lagged spawners;
    lnspawn = log(LSIndex);
    if year = 2001 then do; /** for updated forecasts, adjust year as needed **/
        lnpfa2001 = lnpfa;
        output lnpfa2001;
        end;
    if year = 2002 then do;
/** for forecast of year of interest, adjust year as needed ***/
        lnpfa2002 = lnpfa;
        output lnpfa2002;
        end;
*** file to prepare data for selecting phase ********;
    if lnpfa ne . then do;
        output pfa;
        end;
        R2SF = SFR2_L + (SFR2_H - SFR2_L)* RANUNI (SEED);
        R2LB = LBR2_L + (LBR2_H - LBR2_L)* RANUNI (SEED);
        R2NF = NFR2_L + (NFR2_H - NFR2_L)* RANUNI (SEED);
        R2QC = QCR2_L + (QCR2_H - QCR2_L)* RANUNI (SEED);
        R2GF = GFR2_L + (GFR2_H - GFR2_L)* RANUNI (SEED);
        if year ge 1997 then R2LB = nareturns - sum(USAR2, R2SF, R2GF, R2QC, R2NF);
        R2NA = sum(R2LB, R2NF, R2QC, R2GF, R2SF, USAR2);
if 1992 le year le 1996 then OUTPUT RETURNSSOUTH;
/*** <<--5 year base period for Scotia-Fundy and USA returns improvement--*/
if 1998 le year le 2002 then do;
        OUTPUT RETURNSALL;
        output returnssouthnow;
        end;
/*** <<--5 year moving period for proportioning PFA to regions
            slide 5-year period as more recent PFA value is obtained**/
    lnpfaspawn = lnpfa - lnspawn;
    dumb = 1; * need this to calculate likelihood of null model;
do break = 1985 to 1993;
            * stepping through possible break years;
        if year le break then phase = 1;
        if break lt year le 2002 then phase = 2;
/** change to 2003 once 2003 PFA is known;
```

```
    if lnspawn ne . and lnpfa ne . then output fishdata;
        if 2003 le year le 2004 then do;
        do i = 1 to 2;
            phase = i;
            output yearofinterest;
            end;
        end;
    end;
end; * finish generating the data sets;
run;
proc means data = returnssouth noprint nway mean;
    class sim;
    var R2SF USAR2;
    output out = meanretsouth mean = R2SF USAR2;
    run;
data _nul_; set meanretsouth;
        file "I:\Wgnas-04\personal\Chaput\catch-advice\meanretsouth.dat";
        /* file of average returns by simulation to southern areas, 1992 to 1996 ***/
        put sim 8. R2SF 10. USAR2 10.;
run;
proc means data = returnssouthnow noprint nway mean;
    class sim;
    var R2SF USAR2;
    output out = meanretsouthnow mean = R2SF USAR2;
    run;
data _nul_; set meanretsouthnow;
        file "I:\Wgnas-04\personal\Chaput\catch-advice\meanretsouth-now.dat";
        /* file of average returns by simulation to southern areas, most recent five
years ***/
    put sim 8. R2SF 10. USAR2 10.;
run;
proc means data = returnsall noprint nway mean;
    class sim;
    var USAR2 R2SF R2GF R2QC R2NF R2LB R2NA;
    output out = meanretall mean = USAR2 R2SF R2GF R2QC R2NF R2LB R2NA;
    run;
data _nul_; set meanretall;
        file "I:\Wgnas-04\personal\Chaput\catch-advice\meanretall.dat";
/* file of average returns by simulation to all areas, most recent five years*/
        put sim 8. USAR2 10. R2SF 10. R2GF 10. R2QC 10. R2NF 10. R2LB 10. R2NA 10.;
run;
/*** prepares the predictions files for year of interest based on
history of ratio of pfa in year to pfa in year-2 */
data pfa2 (keep = sim year lnpfa2); set pfa;
    year = year+2;
    lnpfa2 = lnpfa;
    run;
proc sort data = pfa; by sim year; run;
proc sort data = pfa2; by sim year; run;
data pfaratio; merge pfa2 pfa;
    by sim year;
    pfaratio = lnpfa/lnpfa2;
    if pfaratio ne . then output pfaratio;
    run;
data expectations (keep = sim expected2003 expected2004);
/** variable names correspond to years of interest during this analysis, i.e.
update 2003, forecast 2004. Change for clarity as new data become available */
    merge pfaratio lnpfa2001 lnpfa2002;
    by sim;
```

```
    expected2003 = pfaratio*lnpfa2001;
    expected2004 = pfaratio*lnpfa2002;
run;
```

```
/* Model fitting, seven nested models considered */
/** file to analyze the models for different break years ***/
data analyze; set fishdata yearofinterest;
run;
proc sort data = analyze; by sim break;
run;
/*model 0, just intercept */
proc glm data = analyze noprint outstat = results;
    by sim break;
    class dumb;
    model lnpfa = dumb / solution;
    output out = pred p = predpfa stdi = prederror stdp = meanerror;
run;
data model0 (keep = sim break model parameters SS DF); set results;
    if __SOURCE_ = "ERROR" then do;
                parameters = 2;
                    model = 0;
                    output;
    end;
run;
data pred0 (keep = sim break model year phase predpfa prederror meanerror);
    set pred;
    model = 0;
        if 2003 le year le 2004; /* adjust to 2003 once 2002 PFA is known */
        run;
```

/*model 1, fixed intercept, just slope */
proc glm data = analyze noprint outstat = results;
by sim break;
model lnpfa = lnspawn / solution;
output out $=$ pred $p=$ predpfa stdi $=$ prederror stdp $=$ meanerror;
run;
data modell (keep $=$ sim break model parameters $S S$ DF); set results;
if __SOURCE_ = "ERROR" then do;
parameters $=3$;
model $=1$;
output;
end;
run;
data pred1 (keep $=$ sim break model year phase predpfa prederror meanerror); set
pred;
model $=1$;
if 2003 le year le 2004; ** adjust to 2003 once 2002 PFA is known;
run;
/* model 2 - no slope, just intercept */
proc glm data = analyze noprint outstat = results;
by sim break;
class phase;
model lnpfa $=$ phase / solution;
output out $=$ pred $p=$ predpfa stdi $=$ prederror stdp $=$ meanerror;
run;
data model2 (keep $=$ sim break model parameters S S D); set results;
if _SOURCE_ = "ERROR" then do;

```
        parameters = 3;
            model = 2;
            output;
    end;
run;
data pred2 (keep = sim break model year phase predpfa prederror meanerror); set
pred;
    model = 2;
    if 2003 le year le 2004; ** adjust to 2003 once 2002 PFA is known;
    run;
    /* model 3 different intercept, common slope */
proc glm data = analyze noprint outstat = results;
    by sim break;
    class phase;
    model lnpfa = phase lnspawn / solution;
    output out = pred p = predpfa stdi = prederror stdp = meanerror;
run;
data model3 (keep = sim break model parameters SS DF); set results;
    if __SOURCE__ = "ERROR" then do;
        parameters = 4;
            model = 3;
            output;
    end;
run;
data pred3 (keep = sim break model year phase predpfa prederror meanerror); set
pred;
    model = 3;
    if 2003 le year le 2004; ** adjust to 2003 once 2002 PFA is known;
    run;
    /* model 4 - common intercept, different slope */
proc glm data = analyze noprint outstat = results;
    by sim break;
    class phase;
    model lnpfa = phase*lnspawn / solution;
    output out = pred p = predpfa stdi = prederror stdp = meanerror;
run;
data model4 (keep = sim break model parameters SS DF); set results;
    if _SOURCE_ = "ERROR" then do;
                parameters = 4;
                    model = 4;
                    output;
    end;
run;
data pred4 (keep = sim break model year phase predpfa prederror meanerror); set
pred;
    model = 4;
    if 2003 le year le 2004; ** adjust to 2003 once 2002 PFA is known;
    run;
    /* model 5 - different slope, different intercept */
proc glm data = analyze noprint outstat = results;
    by sim break;
    class phase;
    model lnpfa = phase lnspawn phase*lnspawn / solution;
    output out = pred p = predpfa stdi = prederror stdp = meanerror;
run;
data model5 (keep = sim break model parameters SS DF); set results;
    if __SOURCE_ = "ERROR" then do;
                parameters = 5;
                    model = 5;
                    output;
    end;
```

```
run;
data pred5 (keep = sim break model year phase predpfa prederror meanerror); set
pred;
    model = 5;
    if 2003 le year le 2004; ** adjust to 2003 once 2002 PFA is known;
    run;
    /* model 6 - different slope, intercept through the origin */
proc glm data = analyze noprint outstat = results;
    by sim break;
    class phase;
    model lnpfaspawn = phase / solution;
    output out = pred p = predpfa stdi = prederror stdp = meanerror;
run;
data model6 (keep = sim break model parameters SS DF); set results;
    if _SOURCE_ = "ERROR" then do;
                parameters = 3;
                    model = 6;
                output;
    end;
run;
data pred6 (keep = sim break model year phase predpfa prederror meanerror); set
pred;
    model = 6;
    predpfa = predpfa + lnspawn;
    if 2003 le year le 2004; ** adjust to 2003 once 2002 PFA is known;
    run;
/* calculates negative log likelihood and Akaike information criterion for each
simulation and model and break year */
data models; set model0 model1 model2 model3 model4 model5 model6;
N = 26; * number of observations in model fitting, once PFA2002 is known, N=26-;
        MSE = SS / DF;
                LH = (N/2 *log(2*(3.141593)) + (N/2 * log(MSE)) + (1/(2*MSE))*SS);
                AICc = 2*LH + 2*parameters *(N / (N-parameters-1));
    run;
/* summarizes parsimonious model based on break year, and uncertainty in data */
proc sort data = models; by sim;
run;
proc means data = models noprint min;
/* finds the minimum Akaike value among break year and models for each sim */
    by sim;
    var AICc;
    output out = minac min = minaicc;
    run;
data modelkeep (keep = sim break model aicdiff);
    merge models minac;
/* calculates AIC differences as per Burnham and Anderson 1998 for each sim */
    by sim;
    aicdiff = aicc - minaicc;
    run;
    /* output predicted PFA for years of interest in phase 1 and phase 2
            for each model and break year */
    /* <<--year of interest for forecast for 2004 WGNAS meeting, interested in
updated 2003 forecast and 2004 PFA forecast-----*/
data predyear;
        set pred0 pred1 pred2 pred3 pred4 pred5 pred6;
run;
```

```
proc sort data = modelkeep; by sim break model;
proc sort data = predyear; by sim break model;
data predict2003 predict2004 predict2003high predict2003low predict 2004high
predict2004low;
    merge modelkeep predyear;
    by sim break model;
    if aicdiff = 0;
    if year = 2003 and phase = 1 then output predict2003high;
    if year = 2003 and phase = 2 then output predict2003low;
    if year = 2004 and phase = 1 then output predict2004high;
    if year = 2004 and phase = 2 then output predict2004low;
    if year = 2003 then output predict2003;
    if year = 2004 then output predict2004;
    run;
/* calculates the relative probability of the year of interest being in either
phase 1 or phase 2. Calculate the density based on the normal distirbution of
observing in 2003 the value of PFA in 2001 times pfaratio within the 2003
predicted value distribution. Then sums the exact densities for 2003 in phase 1,
2003 in phase 2 and calculates relative probabilities of phase 1 and phase 2. */
proc sort data = predict2003high; by sim; run;
proc sort data = predict2003low; by sim; run;
proc sort data = predict2004high; by sim; run;
proc sort data = predict2004low; by sim; run;
proc sort data = expectations; by sim; run;
/**** REVISED PREDICTIONS FOR UPCOMING 2SW YEAR IN NORTH AMERICA ****/
data density2003low; merge predict2003low expectations;
    by sim;
    density = (1 / (sqrt(2*3.14159)*prederror))* exp(-0.5 * (((expected2003-
predpfa) /meanerror)**2));
/** from Neter, Kutner Nachtsheim and Wasserman 1996 Applied Linear Regression
Models p. 34-35 **/
    run;
data density2003high; merge predict2003high expectations;
    by sim;
    density = (1 / (sqrt(2*3.14159)*prederror))* exp(-0.5 * (((expected2003-
predpfa)/meanerror)**2));
    ** from Neter, Kutner Nachtsheim and Wasserman 1996 Applied Linear Regression
Models p. 34-35 ;
    run;
proc means data = density2003low noprint nway sum;
    class sim; * sum of densities by sim in low phase;
    var density;
    output out = sum2003low sum = dens2003low;
    run;
proc means data = density2003high noprint nway sum;
    class sim; * sum of densities by sim in high phase;
    var density;
    output out = sum2003high sum = dens2003high;
    run;
data phaseweight2003; merge sum2003low sum2003high;
    by sim;
    density2003 = dens2003low + dens2003high;
    weightlow = dens2003low/density2003;
    if ranuni(0) le weightlow then phasekeep = 2; *** low phase;
    else phasekeep = 1; *** high phase;
    run;
data predictions2003 (keep = sim model break phase predpfa prederror pfa);
    merge phaseweight2003 predict2003;
```

```
    by sim;
    if phase = phasekeep;
    pfa = exp(predpfa + prederror*(rannor(0)));
    run;
data _nul_; set predictions2003;
    file "I:\Wgnas-04\personal\Chaput\catch-advice\predicted2003.dat";
/*** ASCII file containing the predicted values, models kept for each simulation
for the updated year of interest ***/
put sim 8. break 8. model 6. phase 6. pfa 12. predpfa 12.6 prederror 12.6;
run;
/****** PREDICTIONS FOR 2004 PFA *************/
data density2004low; merge predict2004low expectations;
    by sim;
    density = (1 / (sqrt(2*3.14159)*prederror))* exp(-0.5 * (((expected2004-
predpfa)/meanerror)**2));
    ** from Neter, Kutner Nachtsheim and Wasserman 1996 Applied Linear Regression
Models p. 34-35 ;
    run;
data density2004high; merge predict2004high expectations;
    by sim;
    density = (1 / (sqrt(2*3.14159)*prederror))* exp(-0.5 * (((expected2004-
predpfa)/meanerror)**2));
    ** from Neter, Kutner Nachtsheim and Wasserman 1996 Applied Linear Regression
Models p. 34-35 ;
    run;
proc means data = density2004low noprint nway sum;
    class sim; * sum of densities by sim in low phase;
    var density;
    output out = sum2004low sum = dens2004low;
    run;
proc means data = density2004high noprint nway sum;
    class sim; * sum of densities by sim in high phase;
    var density;
    output out = sum2004high sum = dens2004high;
    run;
data phaseweight2004; merge sum2004low sum2004high;
    by sim;
    density2004 = dens2004low + dens2004high;
    weightlow = dens2004low/density2004;
    if ranuni(0) le weightlow then phasekeep = 2; *** low phase;
    else phasekeep = 1; *** high phase;
    run;
data predictions2004 (keep = sim model break phase predpfa prederror pfa);
    merge phaseweight2004 predict2004;
    by sim;
    if phase = phasekeep;
    pfa = exp(predpfa + prederror*(rannor(0)));
    run;
data _nul_; set predictions2004;
    file "I:\Wgnas-04\personal\Chaput\catch-advice\predicted2004.dat";
/*** ASCII file containing the predicted values, models kept for each simulation
for the
            year of interest, in this case 2004 ***/
    put sim 8. break 8. model 6. phase 6. pfa 12. predpfa 12.6 prederror 12.6;
run;
```

(2) ***FILE CALLED risk-analysis-2004.sas;

OPTIONS NOCENTRE;

```
/* this is the risk analysis portion of the Greenland advice
    PFA forecast, returns variability, etc. are generated using previous program
    called PFA-model-prediciton-2004.sas
    written by Gerald Chaput, DFO Gulf Region */
```

data harvestperton (keep = sim NA1SW NEAC1SW);
/*** this generates number of fish of NA and NEAC origin per ton of catch at
West Greenland ***/
maxsim $=10000$;
/*** maximum number of simulations, should match number of simulations from PFA
estimation run ************/
do sim $=1$ to maxsim;
seed $=0$;
/* calculating harvest of NA and European fish per ton of fishery input
parameters for biological characteristics variations for 2004
PropNA: 0.65 to 0.91
Prope: 1 - propNA
Wt1SWNA: 2.47 to 3.02 kg
Wt1SWE: 2.81 to 3.08 kg
ACF: $\quad 1.017$ to 1.050
HarvestNA: harvest of NA 1SW salmon based on bio characteristics.
Harvest per ton $=(1000 /$ ACF $/$ (propNA*Wt1SWNA +
propE*Wt1SWE)) *propNA
HarvestNEAC: harvest of NEAC 1SW salmon based on bio characteristics.
Harvest (per ton) $=(1000 /$ ACF $/$ (propNA*Wt1SWNA +
propE*Wt1SWE))*propE */
propNA $=0.65+((0.91-0.65) * r a n u n i($ seed $)) ; ~ / *$ change min and max as
required-*/
propE = 1 - propNA;

required----;

required----;
$\mathrm{ACF}=1.017+((1.050-1.017) * r a n u n i($ seed $)) ; * * *<-$ change min and max as
required----;
NA1SW $=(1000 /$ ACF / (propNA * Wt1SWNA + propE * Wt1SWE))* propNA;
NEAC1SW $=(1000 / \mathrm{ACF} /(\mathrm{propNA} * W t 1 S W N A+\operatorname{propE} * W t 1 S W E)) *$ propE;
output harvestperton; /*** number of fish by continent per ton of catch----*/
end;
run;
filename a1 "I:\Wgnas-04\personal\Chaput\catch-advice\meanretsouth.dat";
/*generated previously, mean returns to southern areas for period 1992 to 1996*/
data southobj (keep $=$ sim R2SFthen USAR2then); infile al missover;
input sim R2SF USAR2;
R2SFthen = R2SF;
USAR2then = USAR2;
* mean returns to southern areas for 1992 to 1996;
run;

```
filename a2 "I:\Wgnas-04\personal\Chaput\catch-advice\meanretall.dat";
/*** mean returns to each region for most recent five years, 1998 to 2002 ****/
data returnna;
    infile a2 missover;
    input sim USAR2 R2SF R2GF R2QC R2NF R2LB R2NA;
    propUSA = USAR2/R2NA;
    propSF = R2SF/R2NA;
    propGF = R2GF/R2NA;
    propQC = R2QC/R2NA;
```

```
propNF = R2NF/R2NA;
propLB = R2LB/R2NA;
run;
```

```
filename a4 "I:\Wgnas-04\personal\Chaput\catch-advice\predicted2004.dat";
data pfayearnac (keep = sim pfanac); infile a4 missover;
    input sim break model phase pfanac predpfa prederror;
    /* predicted PFA over all models and break years*/
run;
filename a5 "I:\Wgnas-04\personal\Chaput\catch-advice\neac-mswsouth-pfaforecast-
2004.prn";
data pfayearneac (keep = sim pfaneac); infile a5 missover;
    input sim pfaneac;
/* 10000 values of PFA NEAC were derived using CrystallBall and lognormal
distibution parametrized by 95% CI of 304832 to 785968 */
    run;
    /* predicted PFA for southern MSW European stock */
```

/**** doing the Greenland risk analysis ********/
data risk; merge southobj harvestperton returnna pfayearnac pfayearneac;
by sim;
ShFr = 0.4; /*sharing fraction 40:60 Greenland:NA, used to bump up Greenland
quota to pre-agreed sharing arrangement for NA ********/
do $t=0$ to 100 by 5;
nalswt = nalsw * t;
neac1swt = neac1sw*t;
returnna $=($ pfanac $-(n a 1 s w t / S h F r)) * \exp (-0.03 * 11) ;$
returnneac $=(p f a n e a c * \exp (-0.03 * 7)-($ neac1swt/ShFr))*exp(-0.03*8);
/** NEAC PFA is for Jan. 1 of first year at sea therfore fish are
discounted for 7 months (Jan 1 to Aug 1) to get to the Greenland fishery and
after harvests are taken, fish are discounted for 8 months on their return to
homewaters (Aug. 1 to April 1 of next year) */
consLB $=$ ((returnna*propLB) >=34746);
consNF $=(($ returnna*propNF) $>=4022)$;
consQC $=(($ returnna*propQC) $>=29446)$;
consGF $=$ ((returnna*propGF) >=30430);
consNorth $=$ consLB*consNF*consQC*consGF;
consneac $=$ (returnneac>=267894); /* NEAC CL for MSW southern Europe -
2004 report**/
objSFless0 $=((r e t u r n n a * p r o p S F)$ lt R2SF);
objUSless0 = ((returnna*propUSA) lt USAR2);
objSouthless0 = objSFless0*objUSless0;
objSF10then $=((r e t u r n n a * p r o p S F)$ ge (R2SFthen*1.1));
objUS10then = ((returnna*propUSA) ge (USAR2then*1.1));
objSF25then = ((returnna*propSF) ge (R2SFthen*1.25));
objUS25then $=((r e t u r n n a * p r o p U S A)$ ge (USAR2then*1.25));
objSouth10then = objSF10then*objUS10then;
objSouth25then = objSF25then*objUS25then;
output risk;
end;
run;
proc means data = risk noprint sum nway;
class t;
var consLB consNF consQC consGF consNorth
objSF10then objUS10then objSouth10then
objSF25then objUS25then objSouth25then
objSFless0 objUSless0 objsouthless0 consneac;
output out = byton
sum $=$ consLB consNF consQC consGF consNorth

```
            objSF1Othen objUS1Othen objSouth1Othen
            objSF25then objUS25then objSouth25then
            objSFlessO objUSless0 objsouthless0 consneac;
        run;
data probtable; set byton;
    file "I:\Wgnas-04\personal\Chaput\catch-advice\risk-analysis-results-2004.dat";
                put t 6. consLB 10. consNF 10. consQC 10. consGF 10. consNorth 10.
                        objSF10then 10. objUS10then 10. objSouth10then 10.
                        objSF25then 10. objUS25then 10. objSouth25then 10.
                        objSFless0 10. objUSless0 10. objsouthless0 10. consneac 10. ;
            run;
proc print data = probtable;
var t consLB consNF consQC consGF consNorth
        objSF1Othen objUS1Othen objSouth1Othen
        objSF25then objUS25then objSouth25then
        objSFless0 objUSless0 objsouthless0 consneac;
    run;
```

International Council for the Exploration of the Sea Advisory Committee on Fishery Management

INTERNAL DOCUMENT

TECHNICAL MINUTES OF ACFM SUB-GROUP MEETING

ICES 21-23 April 2004

The meeting was attended by the WGNAS Chair Walter Crozier, the ACFM Chair Poul Degnbol, the Reviewer Jake Rice, the Chair of ICES Diadromous Fish Committee Niall O Maoiléidigh, and ICES Fisheries Assessment Scientist Henrik Sparholt.

Minutes of the ACFM meeting are compiled as two separate papers following the decision made at the May 1996 ACFM meeting. The first paper is called "Minutes of ACFM Meeting" and is made available to a broad audience as an "A:" paper at the Annual Science Conference. The other paper is called "Technical Minutes of ACFM Meeting" and is for use internally in ACFM and in its Assessment Working Groups.

The "Minutes of the ACFM Meeting" records general topics discussed and especially decisions taken on such general issues. The "Minutes" furthermore records revised assessments if such were done during the ACFM plenary.

The "Technical Minutes of ACFM Meeting" (the present one) records the technical considerations related to specific assessment Working Groups, i.e. Advisory Committee on Fishery Management's review of the Working Group reports. The "Technical Minutes" includes new VPA and projection runs, etc. where such new runs were presented to ACFM. The "Technical Minutes" paper is mainly the outcome of the ACFM Sub-group meetings.

At the present meeting the report of the Working Group of North Atlantic Salmon (WGNAS) was dealt with.

2 GENERAL POINTS

No points.

3 WORKING GROUP ON THE NORTH ATLANTIC SALMON

The report was presented by the WG Chair Walter Crozier.

The Working Group was commended for the report.

Given the decision in 2003 to restructure the ACFM advice format, to align it with current ICES formats for advice on other species, the Working Group report was similarly restructured in 2004. The Review Group noted that this would simplify the process of reviewing the report and preparing the advice.

The Review Group noted that the term "safe biological limits" was used in the WGNAS report when referring to formal assessment of stock status. It was pointed out that ICES is moving towards globally adopting the terms "within precautionary limits/outside precautionary limits". However, as these terms have not yet been formally ratified by ICES, there was no need to change this in the report or ACFM extract. However, ACFM requested the WGNAS chair to point out the incoming terms at the presentation to NASCO.

Generally, the technical parts of the report were accepted and no significant modifications were required. Specific comments on the report sections are summarised below:

Section 2.3 (Extract Section 2.2.1).The review Group noted further analyses of data sets intended to improve estimates of natural mortality " m ", as used in the run-reconstruction models. The Review Group recommended that, where possible, further datasets should be examined for temporal changes in M .

Section 2.4.1, (Extract Section 2.3.2) The Review Group welcomed the progress being made with developing riverspecific conservation limits in Ireland, with Bayesian hierarchical approaches being applied to determine conservation requirements at district and national levels, replacing the previously used pseudo-s/r method. The Review Group noted that when comparing results from existing and developing methods, uniform measures of central tendency should be used.

Section 2.5 (Extract Section 2.3.4).The Review Group commended the way in which the Working Group is continuing to approach answering the terms of reference relating to long-term projections for stock rebuilding, especially in modelling trajectories for achieving conservation limits in stocks of differing productivity under mixed stock fishery scenarios. In order for these approaches to be incorporated into catch advice, the theoretical models must include increased complexity and specific applications that will require adequate data on stocks and well defined management objectives. However, the Review Group considers that these theoretical models are sufficiently well developed to demonstrate the sensitivity of low and medium productivity stocks to over-exploitation in mixed stock fisheries.The

Working Group was also commended for extending analyses of stock rebuilding to encompass population viability analysis (PVA). Noting that these PVA simulations were preliminary, the Review Group suggested that further development should be carried out to explore PVA in Atlantic salmon stocks and stock complexes, as this will highlight to managers the risks of extinction facing some stocks. In particular, it was noted that, in many cases, restricting catches alone may be insufficient to achieve stock rebuilding unless additional rebuilding measures are taken.

Section 3. 11 (Extract Section 3.10). The Review Group noted the information provided by the Working Group on salmon by-catches in pelagic fisheries in the NEAC area and strongly endorsed the Working Group's recommendations for the vital necessity for disaggregated pelagic catch data for certain fisheries, before reliable estimates of salmon bycatch could be provided. The Review Group strongly endorsed the view of the Working Group that screening of commercial catches was likely to provide the most viable method of deriving by-catch estimates, and although research surveys were very useful in understanding distribution in time and space of salmon in relation to pelagic fisheries, extrapolations from these surveys was not likely to be viable (particularly from research surveys targeted specifically on salmon post-smolts).

Section 5.10 (Extract Section 5.10). The Review Group noted the further development of the model used to provide forecasts of PFA of North American stocks at West Greenland, commending the new approaches on model selection and on further accounting for uncertainty in the data used in developing catch advice.

[^0]: $\begin{array}{lll}\text { Includes estimates of some local sales，and，prior to 1984，by－catch．} & \text { 5．From 1994，includes increased reporting of rod catches．} \\ \text { Before } 1966 \text { ，sea trout and sea charr included（ } 5 \% \text { of total）．} & \text { ．Not including angling catch（mainly } 1 \text { SW）．} \\ \text { Figures from } 1991 \text { to } 2000 \text { do not include catches of the recently developed recreational（rod）fishery．} & \text { 7．Weights estimated from mean weight of fish caught in Asturias（80－90\％of Spanish catch）．}\end{array}$

[^1]: ${ }^{1}$ Projections begin in 2001 for PFA and Spawners and begin in 2002 for Returns

[^2]: ${ }^{1}$ Common licence for salmon and seatrout introduced in 1986 leading to a short-term increase in the number of licences issued.

[^3]: ${ }^{1}$ Return rates to rod fishery with constant effort.
 ${ }^{2}$ Different release sites

[^4]: $\begin{array}{ll}\text { (..) total } \mathrm{nr} \text { of trawl hauls deeper hauls included } & { }^{*} \text { CPUE not calculated, because no smolts were captured } \\ \text { A Dimensions of trawl opening } 10 \times 40 & { }^{\text {B }} \text { Dimensions of the Åkra trawl opening } 25 \times 25 \mathrm{~m}\end{array}$

[^5]: Labrador: SFAs 1,2\&14B
 Newfoundland: SFAs 3-14A
 Gulf of St. Lawrence: SFAs 15-18
 Scotia-Fundy: SFAs 19-23 (SFA 22 is not included as it does not produce 2SW salmon)
 Quebec: Q1-Q11

[^6]: Labrador：SFAs 1，2\＆14B
 Newfoundland：SFAs 3－14A
 Newfoundland：SFAs 3－14A Gulf of St．Lawrence：SFAs 15－18 Scotia－Fundy：SFAs 19－23（SFA 22 is not included as it does not produce 2SW salmon）
 Quebec：Q1－Q11

[^7]: Labrador $=0.0768 \times i-5$ spawners $+0.542 \times i-6+0.341 \times i-7+0.0401 \times i-8$
 Newfoundland $=0.0408 \times \mathrm{i}-4$ spawners $+0.5979 \times i-5+0.3237 \times \mathrm{i}-6+0.0375 \times \mathrm{i}-7$
 Quebec $=0.0577 \times \mathrm{i}-4$ spawners $+0.4644 \times \mathrm{i}-5+0.3783 \times \mathrm{i}-6+0.0892 \times \mathrm{i}-7+0.0104 \times \mathrm{i}-8$
 Qulf $=0.3979 \times i-4$ spawners $+0.5731 \times i-5+0.0291 \times i-6$
 Scotia-Fundy $=0.6002 \times$ i-4 spawners $+0.3942 \times i-5+0.0055 \times$ i- 6
 wners $+0.520 \times i-4+0.1033 \times i-5,1971-1989$
 $\& 0.6274 \times i-3$ spawners $+0.3508 \times i-4+0.0218 \times i-5,1990-2003$.

[^8]: Even in the absence of fisheries on the non-maturing 1SW salmon at West Greenland in 2004 and subsequently on the returning 2SW salmon to North America in 2005, there is a very small chance (5\%) that the abundance of salmon will be sufficient to achieve the conservation requirements for $2 S W$ salmon in the four northern regions. The probability of realizing increases in returns to the southern North American stocks is close to zero. None of the stated management objectives would allow a fishery to take place.

[^9]: ${ }^{1}$) The fishery was suspended
 +) Small catches $<0.5 \mathrm{t}$
 -) No catch

[^10]: 1. MSW includes all seades $\geqslant 1$, when this carrol be broker dowir
[^11]: SRR (Small returns to river) are the sum of Bay St. George small returns (Reddin \& Mullins 1996) plus Humber R small returns (Mullins \& Reddin 1996) plus small returns in SFAs 3-12 \& 14A
 SSR (Small recruits) $=$ SRR/(1-Exploitation rate commercial (ERC)) where ERC=0.5-0.7, 1969-91 \& ERC=0,1992-98. SS (Small spawners) = SSR-(SC+(SR*0.1))
 $S C=$ small salmon catch retained
 SR = small salmon catch released with assumed mortalities at 10%
 RL (RATIO large:small) are from counting facilities in SFAs $3-11,13$ \& 14A, angling catches in SFA 12.
 LRR (Large returns to river) = SRR *RL
 LR (Large recruits) $=\operatorname{LRR} *$ (1-Exploitation rate large (ERL)), where $E R L=0.7-0.9,1969-91 ;$ \& $E R L=0,1992-98$.
 LS (Large spawners) = LRR-large catch retained (LC)-(0SW returns to river) = LRR*proportion 2SW of 0.4-0.6 for SFAs 13-14A \& $0.1-0.2$ for SFAs 3-11, 1969-1993 \& $0.24-0.46$ for SFAs 13-14A \& 0.06-0.12 for SFAs 3-12, 1994-2003. $2 S W-S(2 S W$ spawners $)=$ LS * proportion 2SW of 0.4-0.6 for SFAs 13-14A \& 0.1-0.2 for SFAs 3-12, 1969-1993 \& 0.24-0.46 for SFAs 13-14A \& 0.06-0.12 for SFAs 3-12, 1994-2003
 $2 S W-R(2 S W$ recruits $)=$ LR * proportion $2 S W$ of $0.4-0.6$ for SFAs 13-14A\& 0.1-0.2 for SFAs 3-12, 1969-1993 \& $0.24-0.46$ for SFAs 13-14A \& 0.06-0.12 for SFAs 3-12, 1994-2003..

